1 /*- 2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 3. Neither the names of the above-listed copyright holders nor the names 16 * of any contributors may be used to endorse or promote products derived 17 * from this software without specific prior written permission. 18 * 19 * Alternatively, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") version 2 as published by the Free 21 * Software Foundation. 22 * 23 * NO WARRANTY 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 34 * THE POSSIBILITY OF SUCH DAMAGES. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /* 41 * Driver for the Atheros Wireless LAN controller. 42 * 43 * This software is derived from work of Atsushi Onoe; his contribution 44 * is greatly appreciated. 45 */ 46 47 #include "opt_inet.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 64 #include <machine/bus.h> 65 66 #include <net/if.h> 67 #include <net/if_dl.h> 68 #include <net/if_media.h> 69 #include <net/if_types.h> 70 #include <net/if_arp.h> 71 #include <net/ethernet.h> 72 #include <net/if_llc.h> 73 74 #include <net80211/ieee80211_var.h> 75 76 #include <net/bpf.h> 77 78 #ifdef INET 79 #include <netinet/in.h> 80 #include <netinet/if_ether.h> 81 #endif 82 83 #define AR_DEBUG 84 #include <dev/ath/if_athvar.h> 85 #include <contrib/dev/ath/ah_desc.h> 86 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */ 87 88 /* unaligned little endian access */ 89 #define LE_READ_2(p) \ 90 ((u_int16_t) \ 91 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 92 #define LE_READ_4(p) \ 93 ((u_int32_t) \ 94 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 95 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 96 97 enum { 98 ATH_LED_TX, 99 ATH_LED_RX, 100 ATH_LED_POLL, 101 }; 102 103 static void ath_init(void *); 104 static void ath_stop_locked(struct ifnet *); 105 static void ath_stop(struct ifnet *); 106 static void ath_start(struct ifnet *); 107 static int ath_reset(struct ifnet *); 108 static int ath_media_change(struct ifnet *); 109 static void ath_watchdog(struct ifnet *); 110 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 111 static void ath_fatal_proc(void *, int); 112 static void ath_rxorn_proc(void *, int); 113 static void ath_bmiss_proc(void *, int); 114 static int ath_key_alloc(struct ieee80211com *, 115 const struct ieee80211_key *); 116 static int ath_key_delete(struct ieee80211com *, 117 const struct ieee80211_key *); 118 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 119 const u_int8_t mac[IEEE80211_ADDR_LEN]); 120 static void ath_key_update_begin(struct ieee80211com *); 121 static void ath_key_update_end(struct ieee80211com *); 122 static void ath_mode_init(struct ath_softc *); 123 static void ath_setslottime(struct ath_softc *); 124 static void ath_updateslot(struct ifnet *); 125 static int ath_beaconq_setup(struct ath_hal *); 126 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 127 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 128 static void ath_beacon_proc(void *, int); 129 static void ath_bstuck_proc(void *, int); 130 static void ath_beacon_free(struct ath_softc *); 131 static void ath_beacon_config(struct ath_softc *); 132 static void ath_descdma_cleanup(struct ath_softc *sc, 133 struct ath_descdma *, ath_bufhead *); 134 static int ath_desc_alloc(struct ath_softc *); 135 static void ath_desc_free(struct ath_softc *); 136 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 137 static void ath_node_free(struct ieee80211_node *); 138 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 139 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 140 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 141 struct ieee80211_node *ni, 142 int subtype, int rssi, u_int32_t rstamp); 143 static void ath_setdefantenna(struct ath_softc *, u_int); 144 static void ath_rx_proc(void *, int); 145 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 146 static int ath_tx_setup(struct ath_softc *, int, int); 147 static int ath_wme_update(struct ieee80211com *); 148 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 149 static void ath_tx_cleanup(struct ath_softc *); 150 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 151 struct ath_buf *, struct mbuf *); 152 static void ath_tx_proc_q0(void *, int); 153 static void ath_tx_proc_q0123(void *, int); 154 static void ath_tx_proc(void *, int); 155 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 156 static void ath_draintxq(struct ath_softc *); 157 static void ath_stoprecv(struct ath_softc *); 158 static int ath_startrecv(struct ath_softc *); 159 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 160 static void ath_next_scan(void *); 161 static void ath_calibrate(void *); 162 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 163 static void ath_setup_stationkey(struct ieee80211_node *); 164 static void ath_newassoc(struct ieee80211com *, 165 struct ieee80211_node *, int); 166 static int ath_getchannels(struct ath_softc *, u_int cc, 167 HAL_BOOL outdoor, HAL_BOOL xchanmode); 168 static void ath_led_event(struct ath_softc *, int); 169 static void ath_update_txpow(struct ath_softc *); 170 171 static int ath_rate_setup(struct ath_softc *, u_int mode); 172 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 173 174 static void ath_sysctlattach(struct ath_softc *); 175 static void ath_bpfattach(struct ath_softc *); 176 static void ath_announce(struct ath_softc *); 177 178 SYSCTL_DECL(_hw_ath); 179 180 /* XXX validate sysctl values */ 181 static int ath_dwelltime = 200; /* 5 channels/second */ 182 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime, 183 0, "channel dwell time (ms) for AP/station scanning"); 184 static int ath_calinterval = 30; /* calibrate every 30 secs */ 185 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 186 0, "chip calibration interval (secs)"); 187 static int ath_outdoor = AH_TRUE; /* outdoor operation */ 188 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor, 189 0, "outdoor operation"); 190 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor); 191 static int ath_xchanmode = AH_TRUE; /* extended channel use */ 192 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode, 193 0, "extended channel mode"); 194 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode); 195 static int ath_countrycode = CTRY_DEFAULT; /* country code */ 196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode, 197 0, "country code"); 198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode); 199 static int ath_regdomain = 0; /* regulatory domain */ 200 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain, 201 0, "regulatory domain"); 202 203 #ifdef AR_DEBUG 204 static int ath_debug = 0; 205 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 206 0, "control debugging printfs"); 207 TUNABLE_INT("hw.ath.debug", &ath_debug); 208 enum { 209 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 210 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 211 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 212 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 213 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 214 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 215 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 216 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 217 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 218 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 219 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 220 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 221 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 222 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 223 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 224 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 225 ATH_DEBUG_NODE = 0x00080000, /* node management */ 226 ATH_DEBUG_LED = 0x00100000, /* led management */ 227 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 228 ATH_DEBUG_ANY = 0xffffffff 229 }; 230 #define IFF_DUMPPKTS(sc, m) \ 231 ((sc->sc_debug & (m)) || \ 232 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 233 #define DPRINTF(sc, m, fmt, ...) do { \ 234 if (sc->sc_debug & (m)) \ 235 printf(fmt, __VA_ARGS__); \ 236 } while (0) 237 #define KEYPRINTF(sc, ix, hk, mac) do { \ 238 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 239 ath_keyprint(__func__, ix, hk, mac); \ 240 } while (0) 241 static void ath_printrxbuf(struct ath_buf *bf, int); 242 static void ath_printtxbuf(struct ath_buf *bf, int); 243 #else 244 #define IFF_DUMPPKTS(sc, m) \ 245 ((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 246 #define DPRINTF(m, fmt, ...) 247 #define KEYPRINTF(sc, k, ix, mac) 248 #endif 249 250 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 251 252 int 253 ath_attach(u_int16_t devid, struct ath_softc *sc) 254 { 255 struct ifnet *ifp; 256 struct ieee80211com *ic = &sc->sc_ic; 257 struct ath_hal *ah = NULL; 258 HAL_STATUS status; 259 int error = 0, i; 260 261 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 262 263 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 264 if (ifp == NULL) { 265 device_printf(sc->sc_dev, "can not if_alloc()\n"); 266 error = ENOSPC; 267 goto bad; 268 } 269 270 /* set these up early for if_printf use */ 271 if_initname(ifp, device_get_name(sc->sc_dev), 272 device_get_unit(sc->sc_dev)); 273 274 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 275 if (ah == NULL) { 276 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 277 status); 278 error = ENXIO; 279 goto bad; 280 } 281 if (ah->ah_abi != HAL_ABI_VERSION) { 282 if_printf(ifp, "HAL ABI mismatch detected " 283 "(HAL:0x%x != driver:0x%x)\n", 284 ah->ah_abi, HAL_ABI_VERSION); 285 error = ENXIO; 286 goto bad; 287 } 288 sc->sc_ah = ah; 289 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 290 291 /* 292 * Check if the MAC has multi-rate retry support. 293 * We do this by trying to setup a fake extended 294 * descriptor. MAC's that don't have support will 295 * return false w/o doing anything. MAC's that do 296 * support it will return true w/o doing anything. 297 */ 298 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 299 300 /* 301 * Check if the device has hardware counters for PHY 302 * errors. If so we need to enable the MIB interrupt 303 * so we can act on stat triggers. 304 */ 305 if (ath_hal_hwphycounters(ah)) 306 sc->sc_needmib = 1; 307 308 /* 309 * Get the hardware key cache size. 310 */ 311 sc->sc_keymax = ath_hal_keycachesize(ah); 312 if (sc->sc_keymax > ATH_KEYMAX) { 313 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 314 ATH_KEYMAX, sc->sc_keymax); 315 sc->sc_keymax = ATH_KEYMAX; 316 } 317 /* 318 * Reset the key cache since some parts do not 319 * reset the contents on initial power up. 320 */ 321 for (i = 0; i < sc->sc_keymax; i++) 322 ath_hal_keyreset(ah, i); 323 /* 324 * Mark key cache slots associated with global keys 325 * as in use. If we knew TKIP was not to be used we 326 * could leave the +32, +64, and +32+64 slots free. 327 * XXX only for splitmic. 328 */ 329 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 330 setbit(sc->sc_keymap, i); 331 setbit(sc->sc_keymap, i+32); 332 setbit(sc->sc_keymap, i+64); 333 setbit(sc->sc_keymap, i+32+64); 334 } 335 336 /* 337 * Collect the channel list using the default country 338 * code and including outdoor channels. The 802.11 layer 339 * is resposible for filtering this list based on settings 340 * like the phy mode. 341 */ 342 error = ath_getchannels(sc, ath_countrycode, 343 ath_outdoor, ath_xchanmode); 344 if (error != 0) 345 goto bad; 346 /* 347 * Setup dynamic sysctl's now that country code and 348 * regdomain are available from the hal. 349 */ 350 ath_sysctlattach(sc); 351 352 /* 353 * Setup rate tables for all potential media types. 354 */ 355 ath_rate_setup(sc, IEEE80211_MODE_11A); 356 ath_rate_setup(sc, IEEE80211_MODE_11B); 357 ath_rate_setup(sc, IEEE80211_MODE_11G); 358 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 359 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 360 /* NB: setup here so ath_rate_update is happy */ 361 ath_setcurmode(sc, IEEE80211_MODE_11A); 362 363 /* 364 * Allocate tx+rx descriptors and populate the lists. 365 */ 366 error = ath_desc_alloc(sc); 367 if (error != 0) { 368 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 369 goto bad; 370 } 371 callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 372 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE); 373 374 ATH_TXBUF_LOCK_INIT(sc); 375 376 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 377 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 378 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 379 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 380 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc); 381 382 /* 383 * Allocate hardware transmit queues: one queue for 384 * beacon frames and one data queue for each QoS 385 * priority. Note that the hal handles reseting 386 * these queues at the needed time. 387 * 388 * XXX PS-Poll 389 */ 390 sc->sc_bhalq = ath_beaconq_setup(ah); 391 if (sc->sc_bhalq == (u_int) -1) { 392 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 393 error = EIO; 394 goto bad2; 395 } 396 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 397 if (sc->sc_cabq == NULL) { 398 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 399 error = EIO; 400 goto bad2; 401 } 402 /* NB: insure BK queue is the lowest priority h/w queue */ 403 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 404 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 405 ieee80211_wme_acnames[WME_AC_BK]); 406 error = EIO; 407 goto bad2; 408 } 409 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 410 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 411 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 412 /* 413 * Not enough hardware tx queues to properly do WME; 414 * just punt and assign them all to the same h/w queue. 415 * We could do a better job of this if, for example, 416 * we allocate queues when we switch from station to 417 * AP mode. 418 */ 419 if (sc->sc_ac2q[WME_AC_VI] != NULL) 420 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 421 if (sc->sc_ac2q[WME_AC_BE] != NULL) 422 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 423 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 424 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 425 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 426 } 427 428 /* 429 * Special case certain configurations. Note the 430 * CAB queue is handled by these specially so don't 431 * include them when checking the txq setup mask. 432 */ 433 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 434 case 0x01: 435 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 436 break; 437 case 0x0f: 438 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 439 break; 440 default: 441 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 442 break; 443 } 444 445 /* 446 * Setup rate control. Some rate control modules 447 * call back to change the anntena state so expose 448 * the necessary entry points. 449 * XXX maybe belongs in struct ath_ratectrl? 450 */ 451 sc->sc_setdefantenna = ath_setdefantenna; 452 sc->sc_rc = ath_rate_attach(sc); 453 if (sc->sc_rc == NULL) { 454 error = EIO; 455 goto bad2; 456 } 457 458 sc->sc_blinking = 0; 459 sc->sc_ledstate = 1; 460 sc->sc_ledon = 0; /* low true */ 461 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 462 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 463 /* 464 * Auto-enable soft led processing for IBM cards and for 465 * 5211 minipci cards. Users can also manually enable/disable 466 * support with a sysctl. 467 */ 468 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 469 if (sc->sc_softled) { 470 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 471 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 472 } 473 474 ifp->if_softc = sc; 475 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 476 ifp->if_start = ath_start; 477 ifp->if_watchdog = ath_watchdog; 478 ifp->if_ioctl = ath_ioctl; 479 ifp->if_init = ath_init; 480 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 481 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 482 IFQ_SET_READY(&ifp->if_snd); 483 484 ic->ic_ifp = ifp; 485 ic->ic_reset = ath_reset; 486 ic->ic_newassoc = ath_newassoc; 487 ic->ic_updateslot = ath_updateslot; 488 ic->ic_wme.wme_update = ath_wme_update; 489 /* XXX not right but it's not used anywhere important */ 490 ic->ic_phytype = IEEE80211_T_OFDM; 491 ic->ic_opmode = IEEE80211_M_STA; 492 ic->ic_caps = 493 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 494 | IEEE80211_C_HOSTAP /* hostap mode */ 495 | IEEE80211_C_MONITOR /* monitor mode */ 496 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 497 | IEEE80211_C_SHSLOT /* short slot time supported */ 498 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 499 ; 500 /* 501 * Query the hal to figure out h/w crypto support. 502 */ 503 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 504 ic->ic_caps |= IEEE80211_C_WEP; 505 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 506 ic->ic_caps |= IEEE80211_C_AES; 507 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 508 ic->ic_caps |= IEEE80211_C_AES_CCM; 509 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 510 ic->ic_caps |= IEEE80211_C_CKIP; 511 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 512 ic->ic_caps |= IEEE80211_C_TKIP; 513 /* 514 * Check if h/w does the MIC and/or whether the 515 * separate key cache entries are required to 516 * handle both tx+rx MIC keys. 517 */ 518 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 519 ic->ic_caps |= IEEE80211_C_TKIPMIC; 520 if (ath_hal_tkipsplit(ah)) 521 sc->sc_splitmic = 1; 522 } 523 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 524 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 525 /* 526 * TPC support can be done either with a global cap or 527 * per-packet support. The latter is not available on 528 * all parts. We're a bit pedantic here as all parts 529 * support a global cap. 530 */ 531 sc->sc_hastpc = ath_hal_hastpc(ah); 532 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah)) 533 ic->ic_caps |= IEEE80211_C_TXPMGT; 534 535 /* 536 * Mark WME capability only if we have sufficient 537 * hardware queues to do proper priority scheduling. 538 */ 539 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 540 ic->ic_caps |= IEEE80211_C_WME; 541 /* 542 * Check for misc other capabilities. 543 */ 544 if (ath_hal_hasbursting(ah)) 545 ic->ic_caps |= IEEE80211_C_BURST; 546 547 /* 548 * Indicate we need the 802.11 header padded to a 549 * 32-bit boundary for 4-address and QoS frames. 550 */ 551 ic->ic_flags |= IEEE80211_F_DATAPAD; 552 553 /* 554 * Query the hal about antenna support. 555 */ 556 if (ath_hal_hasdiversity(ah)) { 557 sc->sc_hasdiversity = 1; 558 sc->sc_diversity = ath_hal_getdiversity(ah); 559 } 560 sc->sc_defant = ath_hal_getdefantenna(ah); 561 562 /* 563 * Not all chips have the VEOL support we want to 564 * use with IBSS beacons; check here for it. 565 */ 566 sc->sc_hasveol = ath_hal_hasveol(ah); 567 568 /* get mac address from hardware */ 569 ath_hal_getmac(ah, ic->ic_myaddr); 570 571 /* call MI attach routine. */ 572 ieee80211_ifattach(ic); 573 /* override default methods */ 574 ic->ic_node_alloc = ath_node_alloc; 575 sc->sc_node_free = ic->ic_node_free; 576 ic->ic_node_free = ath_node_free; 577 ic->ic_node_getrssi = ath_node_getrssi; 578 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 579 ic->ic_recv_mgmt = ath_recv_mgmt; 580 sc->sc_newstate = ic->ic_newstate; 581 ic->ic_newstate = ath_newstate; 582 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 583 ic->ic_crypto.cs_key_delete = ath_key_delete; 584 ic->ic_crypto.cs_key_set = ath_key_set; 585 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 586 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 587 /* complete initialization */ 588 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 589 590 ath_bpfattach(sc); 591 592 if (bootverbose) 593 ieee80211_announce(ic); 594 ath_announce(sc); 595 return 0; 596 bad2: 597 ath_tx_cleanup(sc); 598 ath_desc_free(sc); 599 bad: 600 if (ah) 601 ath_hal_detach(ah); 602 if (ifp != NULL) 603 if_free(ifp); 604 sc->sc_invalid = 1; 605 return error; 606 } 607 608 int 609 ath_detach(struct ath_softc *sc) 610 { 611 struct ifnet *ifp = sc->sc_ifp; 612 613 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 614 __func__, ifp->if_flags); 615 616 ath_stop(ifp); 617 bpfdetach(ifp); 618 /* 619 * NB: the order of these is important: 620 * o call the 802.11 layer before detaching the hal to 621 * insure callbacks into the driver to delete global 622 * key cache entries can be handled 623 * o reclaim the tx queue data structures after calling 624 * the 802.11 layer as we'll get called back to reclaim 625 * node state and potentially want to use them 626 * o to cleanup the tx queues the hal is called, so detach 627 * it last 628 * Other than that, it's straightforward... 629 */ 630 ieee80211_ifdetach(&sc->sc_ic); 631 ath_rate_detach(sc->sc_rc); 632 ath_desc_free(sc); 633 ath_tx_cleanup(sc); 634 ath_hal_detach(sc->sc_ah); 635 636 return 0; 637 } 638 639 void 640 ath_suspend(struct ath_softc *sc) 641 { 642 struct ifnet *ifp = sc->sc_ifp; 643 644 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 645 __func__, ifp->if_flags); 646 647 ath_stop(ifp); 648 } 649 650 void 651 ath_resume(struct ath_softc *sc) 652 { 653 struct ifnet *ifp = sc->sc_ifp; 654 655 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 656 __func__, ifp->if_flags); 657 658 if (ifp->if_flags & IFF_UP) { 659 ath_init(sc); 660 if (ifp->if_flags & IFF_RUNNING) 661 ath_start(ifp); 662 } 663 if (sc->sc_softled) { 664 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 665 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 666 } 667 } 668 669 void 670 ath_shutdown(struct ath_softc *sc) 671 { 672 struct ifnet *ifp = sc->sc_ifp; 673 674 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 675 __func__, ifp->if_flags); 676 677 ath_stop(ifp); 678 } 679 680 /* 681 * Interrupt handler. Most of the actual processing is deferred. 682 */ 683 void 684 ath_intr(void *arg) 685 { 686 struct ath_softc *sc = arg; 687 struct ifnet *ifp = sc->sc_ifp; 688 struct ath_hal *ah = sc->sc_ah; 689 HAL_INT status; 690 691 if (sc->sc_invalid) { 692 /* 693 * The hardware is not ready/present, don't touch anything. 694 * Note this can happen early on if the IRQ is shared. 695 */ 696 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 697 return; 698 } 699 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 700 return; 701 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 702 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 703 __func__, ifp->if_flags); 704 ath_hal_getisr(ah, &status); /* clear ISR */ 705 ath_hal_intrset(ah, 0); /* disable further intr's */ 706 return; 707 } 708 /* 709 * Figure out the reason(s) for the interrupt. Note 710 * that the hal returns a pseudo-ISR that may include 711 * bits we haven't explicitly enabled so we mask the 712 * value to insure we only process bits we requested. 713 */ 714 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 715 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 716 status &= sc->sc_imask; /* discard unasked for bits */ 717 if (status & HAL_INT_FATAL) { 718 /* 719 * Fatal errors are unrecoverable. Typically 720 * these are caused by DMA errors. Unfortunately 721 * the exact reason is not (presently) returned 722 * by the hal. 723 */ 724 sc->sc_stats.ast_hardware++; 725 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 726 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask); 727 } else if (status & HAL_INT_RXORN) { 728 sc->sc_stats.ast_rxorn++; 729 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 730 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask); 731 } else { 732 if (status & HAL_INT_SWBA) { 733 /* 734 * Software beacon alert--time to send a beacon. 735 * Handle beacon transmission directly; deferring 736 * this is too slow to meet timing constraints 737 * under load. 738 */ 739 ath_beacon_proc(sc, 0); 740 } 741 if (status & HAL_INT_RXEOL) { 742 /* 743 * NB: the hardware should re-read the link when 744 * RXE bit is written, but it doesn't work at 745 * least on older hardware revs. 746 */ 747 sc->sc_stats.ast_rxeol++; 748 sc->sc_rxlink = NULL; 749 } 750 if (status & HAL_INT_TXURN) { 751 sc->sc_stats.ast_txurn++; 752 /* bump tx trigger level */ 753 ath_hal_updatetxtriglevel(ah, AH_TRUE); 754 } 755 if (status & HAL_INT_RX) 756 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask); 757 if (status & HAL_INT_TX) 758 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask); 759 if (status & HAL_INT_BMISS) { 760 sc->sc_stats.ast_bmiss++; 761 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask); 762 } 763 if (status & HAL_INT_MIB) { 764 sc->sc_stats.ast_mib++; 765 /* 766 * Disable interrupts until we service the MIB 767 * interrupt; otherwise it will continue to fire. 768 */ 769 ath_hal_intrset(ah, 0); 770 /* 771 * Let the hal handle the event. We assume it will 772 * clear whatever condition caused the interrupt. 773 */ 774 ath_hal_mibevent(ah, 775 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats); 776 ath_hal_intrset(ah, sc->sc_imask); 777 } 778 } 779 } 780 781 static void 782 ath_fatal_proc(void *arg, int pending) 783 { 784 struct ath_softc *sc = arg; 785 struct ifnet *ifp = sc->sc_ifp; 786 787 if_printf(ifp, "hardware error; resetting\n"); 788 ath_reset(ifp); 789 } 790 791 static void 792 ath_rxorn_proc(void *arg, int pending) 793 { 794 struct ath_softc *sc = arg; 795 struct ifnet *ifp = sc->sc_ifp; 796 797 if_printf(ifp, "rx FIFO overrun; resetting\n"); 798 ath_reset(ifp); 799 } 800 801 static void 802 ath_bmiss_proc(void *arg, int pending) 803 { 804 struct ath_softc *sc = arg; 805 struct ieee80211com *ic = &sc->sc_ic; 806 807 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 808 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 809 ("unexpect operating mode %u", ic->ic_opmode)); 810 if (ic->ic_state == IEEE80211_S_RUN) { 811 /* 812 * Rather than go directly to scan state, try to 813 * reassociate first. If that fails then the state 814 * machine will drop us into scanning after timing 815 * out waiting for a probe response. 816 */ 817 NET_LOCK_GIANT(); 818 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 819 NET_UNLOCK_GIANT(); 820 } 821 } 822 823 static u_int 824 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 825 { 826 #define N(a) (sizeof(a) / sizeof(a[0])) 827 static const u_int modeflags[] = { 828 0, /* IEEE80211_MODE_AUTO */ 829 CHANNEL_A, /* IEEE80211_MODE_11A */ 830 CHANNEL_B, /* IEEE80211_MODE_11B */ 831 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 832 0, /* IEEE80211_MODE_FH */ 833 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */ 834 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 835 }; 836 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 837 838 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 839 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 840 return modeflags[mode]; 841 #undef N 842 } 843 844 static void 845 ath_init(void *arg) 846 { 847 struct ath_softc *sc = (struct ath_softc *) arg; 848 struct ieee80211com *ic = &sc->sc_ic; 849 struct ifnet *ifp = sc->sc_ifp; 850 struct ieee80211_node *ni; 851 struct ath_hal *ah = sc->sc_ah; 852 HAL_STATUS status; 853 854 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 855 __func__, ifp->if_flags); 856 857 ATH_LOCK(sc); 858 /* 859 * Stop anything previously setup. This is safe 860 * whether this is the first time through or not. 861 */ 862 ath_stop_locked(ifp); 863 864 /* 865 * The basic interface to setting the hardware in a good 866 * state is ``reset''. On return the hardware is known to 867 * be powered up and with interrupts disabled. This must 868 * be followed by initialization of the appropriate bits 869 * and then setup of the interrupt mask. 870 */ 871 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq; 872 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); 873 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 874 if_printf(ifp, "unable to reset hardware; hal status %u\n", 875 status); 876 goto done; 877 } 878 879 /* 880 * This is needed only to setup initial state 881 * but it's best done after a reset. 882 */ 883 ath_update_txpow(sc); 884 885 /* 886 * Setup the hardware after reset: the key cache 887 * is filled as needed and the receive engine is 888 * set going. Frame transmit is handled entirely 889 * in the frame output path; there's nothing to do 890 * here except setup the interrupt mask. 891 */ 892 if (ath_startrecv(sc) != 0) { 893 if_printf(ifp, "unable to start recv logic\n"); 894 goto done; 895 } 896 897 /* 898 * Enable interrupts. 899 */ 900 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 901 | HAL_INT_RXEOL | HAL_INT_RXORN 902 | HAL_INT_FATAL | HAL_INT_GLOBAL; 903 /* 904 * Enable MIB interrupts when there are hardware phy counters. 905 * Note we only do this (at the moment) for station mode. 906 */ 907 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 908 sc->sc_imask |= HAL_INT_MIB; 909 ath_hal_intrset(ah, sc->sc_imask); 910 911 ifp->if_flags |= IFF_RUNNING; 912 ic->ic_state = IEEE80211_S_INIT; 913 914 /* 915 * The hardware should be ready to go now so it's safe 916 * to kick the 802.11 state machine as it's likely to 917 * immediately call back to us to send mgmt frames. 918 */ 919 ni = ic->ic_bss; 920 ni->ni_chan = ic->ic_ibss_chan; 921 ath_chan_change(sc, ni->ni_chan); 922 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 923 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 924 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 925 } else 926 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 927 done: 928 ATH_UNLOCK(sc); 929 } 930 931 static void 932 ath_stop_locked(struct ifnet *ifp) 933 { 934 struct ath_softc *sc = ifp->if_softc; 935 struct ieee80211com *ic = &sc->sc_ic; 936 struct ath_hal *ah = sc->sc_ah; 937 938 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 939 __func__, sc->sc_invalid, ifp->if_flags); 940 941 ATH_LOCK_ASSERT(sc); 942 if (ifp->if_flags & IFF_RUNNING) { 943 /* 944 * Shutdown the hardware and driver: 945 * reset 802.11 state machine 946 * turn off timers 947 * disable interrupts 948 * turn off the radio 949 * clear transmit machinery 950 * clear receive machinery 951 * drain and release tx queues 952 * reclaim beacon resources 953 * power down hardware 954 * 955 * Note that some of this work is not possible if the 956 * hardware is gone (invalid). 957 */ 958 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 959 ifp->if_flags &= ~IFF_RUNNING; 960 ifp->if_timer = 0; 961 if (!sc->sc_invalid) { 962 if (sc->sc_softled) { 963 callout_stop(&sc->sc_ledtimer); 964 ath_hal_gpioset(ah, sc->sc_ledpin, 965 !sc->sc_ledon); 966 sc->sc_blinking = 0; 967 } 968 ath_hal_intrset(ah, 0); 969 } 970 ath_draintxq(sc); 971 if (!sc->sc_invalid) { 972 ath_stoprecv(sc); 973 ath_hal_phydisable(ah); 974 } else 975 sc->sc_rxlink = NULL; 976 IFQ_DRV_PURGE(&ifp->if_snd); 977 ath_beacon_free(sc); 978 } 979 } 980 981 static void 982 ath_stop(struct ifnet *ifp) 983 { 984 struct ath_softc *sc = ifp->if_softc; 985 986 ATH_LOCK(sc); 987 ath_stop_locked(ifp); 988 if (!sc->sc_invalid) { 989 /* 990 * Set the chip in full sleep mode. Note that we are 991 * careful to do this only when bringing the interface 992 * completely to a stop. When the chip is in this state 993 * it must be carefully woken up or references to 994 * registers in the PCI clock domain may freeze the bus 995 * (and system). This varies by chip and is mostly an 996 * issue with newer parts that go to sleep more quickly. 997 */ 998 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0); 999 } 1000 ATH_UNLOCK(sc); 1001 } 1002 1003 /* 1004 * Reset the hardware w/o losing operational state. This is 1005 * basically a more efficient way of doing ath_stop, ath_init, 1006 * followed by state transitions to the current 802.11 1007 * operational state. Used to recover from various errors and 1008 * to reset or reload hardware state. 1009 */ 1010 static int 1011 ath_reset(struct ifnet *ifp) 1012 { 1013 struct ath_softc *sc = ifp->if_softc; 1014 struct ieee80211com *ic = &sc->sc_ic; 1015 struct ath_hal *ah = sc->sc_ah; 1016 struct ieee80211_channel *c; 1017 HAL_STATUS status; 1018 1019 /* 1020 * Convert to a HAL channel description with the flags 1021 * constrained to reflect the current operating mode. 1022 */ 1023 c = ic->ic_ibss_chan; 1024 sc->sc_curchan.channel = c->ic_freq; 1025 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1026 1027 ath_hal_intrset(ah, 0); /* disable interrupts */ 1028 ath_draintxq(sc); /* stop xmit side */ 1029 ath_stoprecv(sc); /* stop recv side */ 1030 /* NB: indicate channel change so we do a full reset */ 1031 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1032 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1033 __func__, status); 1034 ath_update_txpow(sc); /* update tx power state */ 1035 if (ath_startrecv(sc) != 0) /* restart recv */ 1036 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1037 /* 1038 * We may be doing a reset in response to an ioctl 1039 * that changes the channel so update any state that 1040 * might change as a result. 1041 */ 1042 ath_chan_change(sc, c); 1043 if (ic->ic_state == IEEE80211_S_RUN) 1044 ath_beacon_config(sc); /* restart beacons */ 1045 ath_hal_intrset(ah, sc->sc_imask); 1046 1047 ath_start(ifp); /* restart xmit */ 1048 return 0; 1049 } 1050 1051 static void 1052 ath_start(struct ifnet *ifp) 1053 { 1054 struct ath_softc *sc = ifp->if_softc; 1055 struct ath_hal *ah = sc->sc_ah; 1056 struct ieee80211com *ic = &sc->sc_ic; 1057 struct ieee80211_node *ni; 1058 struct ath_buf *bf; 1059 struct mbuf *m; 1060 struct ieee80211_frame *wh; 1061 struct ether_header *eh; 1062 1063 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1064 return; 1065 for (;;) { 1066 /* 1067 * Grab a TX buffer and associated resources. 1068 */ 1069 ATH_TXBUF_LOCK(sc); 1070 bf = STAILQ_FIRST(&sc->sc_txbuf); 1071 if (bf != NULL) 1072 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1073 ATH_TXBUF_UNLOCK(sc); 1074 if (bf == NULL) { 1075 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n", 1076 __func__); 1077 sc->sc_stats.ast_tx_qstop++; 1078 ifp->if_flags |= IFF_OACTIVE; 1079 break; 1080 } 1081 /* 1082 * Poll the management queue for frames; they 1083 * have priority over normal data frames. 1084 */ 1085 IF_DEQUEUE(&ic->ic_mgtq, m); 1086 if (m == NULL) { 1087 /* 1088 * No data frames go out unless we're associated. 1089 */ 1090 if (ic->ic_state != IEEE80211_S_RUN) { 1091 DPRINTF(sc, ATH_DEBUG_ANY, 1092 "%s: ignore data packet, state %u\n", 1093 __func__, ic->ic_state); 1094 sc->sc_stats.ast_tx_discard++; 1095 ATH_TXBUF_LOCK(sc); 1096 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1097 ATH_TXBUF_UNLOCK(sc); 1098 break; 1099 } 1100 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1101 if (m == NULL) { 1102 ATH_TXBUF_LOCK(sc); 1103 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1104 ATH_TXBUF_UNLOCK(sc); 1105 break; 1106 } 1107 /* 1108 * Find the node for the destination so we can do 1109 * things like power save and fast frames aggregation. 1110 */ 1111 if (m->m_len < sizeof(struct ether_header) && 1112 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1113 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1114 ni = NULL; 1115 goto bad; 1116 } 1117 eh = mtod(m, struct ether_header *); 1118 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1119 if (ni == NULL) { 1120 /* NB: ieee80211_find_txnode does stat+msg */ 1121 m_freem(m); 1122 goto bad; 1123 } 1124 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1125 (m->m_flags & M_PWR_SAV) == 0) { 1126 /* 1127 * Station in power save mode; pass the frame 1128 * to the 802.11 layer and continue. We'll get 1129 * the frame back when the time is right. 1130 */ 1131 ieee80211_pwrsave(ic, ni, m); 1132 goto reclaim; 1133 } 1134 /* calculate priority so we can find the tx queue */ 1135 if (ieee80211_classify(ic, m, ni)) { 1136 DPRINTF(sc, ATH_DEBUG_XMIT, 1137 "%s: discard, classification failure\n", 1138 __func__); 1139 m_freem(m); 1140 goto bad; 1141 } 1142 ifp->if_opackets++; 1143 BPF_MTAP(ifp, m); 1144 /* 1145 * Encapsulate the packet in prep for transmission. 1146 */ 1147 m = ieee80211_encap(ic, m, ni); 1148 if (m == NULL) { 1149 DPRINTF(sc, ATH_DEBUG_ANY, 1150 "%s: encapsulation failure\n", 1151 __func__); 1152 sc->sc_stats.ast_tx_encap++; 1153 goto bad; 1154 } 1155 } else { 1156 /* 1157 * Hack! The referenced node pointer is in the 1158 * rcvif field of the packet header. This is 1159 * placed there by ieee80211_mgmt_output because 1160 * we need to hold the reference with the frame 1161 * and there's no other way (other than packet 1162 * tags which we consider too expensive to use) 1163 * to pass it along. 1164 */ 1165 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1166 m->m_pkthdr.rcvif = NULL; 1167 1168 wh = mtod(m, struct ieee80211_frame *); 1169 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1170 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1171 /* fill time stamp */ 1172 u_int64_t tsf; 1173 u_int32_t *tstamp; 1174 1175 tsf = ath_hal_gettsf64(ah); 1176 /* XXX: adjust 100us delay to xmit */ 1177 tsf += 100; 1178 tstamp = (u_int32_t *)&wh[1]; 1179 tstamp[0] = htole32(tsf & 0xffffffff); 1180 tstamp[1] = htole32(tsf >> 32); 1181 } 1182 sc->sc_stats.ast_tx_mgmt++; 1183 } 1184 1185 if (ath_tx_start(sc, ni, bf, m)) { 1186 bad: 1187 ifp->if_oerrors++; 1188 reclaim: 1189 ATH_TXBUF_LOCK(sc); 1190 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1191 ATH_TXBUF_UNLOCK(sc); 1192 if (ni != NULL) 1193 ieee80211_free_node(ni); 1194 continue; 1195 } 1196 1197 sc->sc_tx_timer = 5; 1198 ifp->if_timer = 1; 1199 } 1200 } 1201 1202 static int 1203 ath_media_change(struct ifnet *ifp) 1204 { 1205 #define IS_UP(ifp) \ 1206 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) 1207 int error; 1208 1209 error = ieee80211_media_change(ifp); 1210 if (error == ENETRESET) { 1211 if (IS_UP(ifp)) 1212 ath_init(ifp->if_softc); /* XXX lose error */ 1213 error = 0; 1214 } 1215 return error; 1216 #undef IS_UP 1217 } 1218 1219 #ifdef AR_DEBUG 1220 static void 1221 ath_keyprint(const char *tag, u_int ix, 1222 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1223 { 1224 static const char *ciphers[] = { 1225 "WEP", 1226 "AES-OCB", 1227 "AES-CCM", 1228 "CKIP", 1229 "TKIP", 1230 "CLR", 1231 }; 1232 int i, n; 1233 1234 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1235 for (i = 0, n = hk->kv_len; i < n; i++) 1236 printf("%02x", hk->kv_val[i]); 1237 printf(" mac %s", ether_sprintf(mac)); 1238 if (hk->kv_type == HAL_CIPHER_TKIP) { 1239 printf(" mic "); 1240 for (i = 0; i < sizeof(hk->kv_mic); i++) 1241 printf("%02x", hk->kv_mic[i]); 1242 } 1243 printf("\n"); 1244 } 1245 #endif 1246 1247 /* 1248 * Set a TKIP key into the hardware. This handles the 1249 * potential distribution of key state to multiple key 1250 * cache slots for TKIP. 1251 */ 1252 static int 1253 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1254 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1255 { 1256 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1257 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1258 struct ath_hal *ah = sc->sc_ah; 1259 1260 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1261 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1262 KASSERT(sc->sc_splitmic, ("key cache !split")); 1263 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1264 /* 1265 * TX key goes at first index, RX key at +32. 1266 * The hal handles the MIC keys at index+64. 1267 */ 1268 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1269 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1270 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 1271 return 0; 1272 1273 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1274 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1275 /* XXX delete tx key on failure? */ 1276 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 1277 } else if (k->wk_flags & IEEE80211_KEY_XR) { 1278 /* 1279 * TX/RX key goes at first index. 1280 * The hal handles the MIC keys are index+64. 1281 */ 1282 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ? 1283 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic)); 1284 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1285 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1286 } 1287 return 0; 1288 #undef IEEE80211_KEY_XR 1289 } 1290 1291 /* 1292 * Set a net80211 key into the hardware. This handles the 1293 * potential distribution of key state to multiple key 1294 * cache slots for TKIP with hardware MIC support. 1295 */ 1296 static int 1297 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1298 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1299 struct ieee80211_node *bss) 1300 { 1301 #define N(a) (sizeof(a)/sizeof(a[0])) 1302 static const u_int8_t ciphermap[] = { 1303 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1304 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1305 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1306 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1307 (u_int8_t) -1, /* 4 is not allocated */ 1308 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1309 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1310 }; 1311 struct ath_hal *ah = sc->sc_ah; 1312 const struct ieee80211_cipher *cip = k->wk_cipher; 1313 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1314 const u_int8_t *mac; 1315 HAL_KEYVAL hk; 1316 1317 memset(&hk, 0, sizeof(hk)); 1318 /* 1319 * Software crypto uses a "clear key" so non-crypto 1320 * state kept in the key cache are maintained and 1321 * so that rx frames have an entry to match. 1322 */ 1323 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1324 KASSERT(cip->ic_cipher < N(ciphermap), 1325 ("invalid cipher type %u", cip->ic_cipher)); 1326 hk.kv_type = ciphermap[cip->ic_cipher]; 1327 hk.kv_len = k->wk_keylen; 1328 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1329 } else 1330 hk.kv_type = HAL_CIPHER_CLR; 1331 1332 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1333 /* 1334 * Group keys on hardware that supports multicast frame 1335 * key search use a mac that is the sender's address with 1336 * the high bit set instead of the app-specified address. 1337 */ 1338 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1339 gmac[0] |= 0x80; 1340 mac = gmac; 1341 } else 1342 mac = mac0; 1343 1344 if (hk.kv_type == HAL_CIPHER_TKIP && 1345 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1346 sc->sc_splitmic) { 1347 return ath_keyset_tkip(sc, k, &hk, mac); 1348 } else { 1349 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1350 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 1351 } 1352 #undef N 1353 } 1354 1355 /* 1356 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1357 * each key, one for decrypt/encrypt and the other for the MIC. 1358 */ 1359 static u_int16_t 1360 key_alloc_2pair(struct ath_softc *sc) 1361 { 1362 #define N(a) (sizeof(a)/sizeof(a[0])) 1363 u_int i, keyix; 1364 1365 KASSERT(sc->sc_splitmic, ("key cache !split")); 1366 /* XXX could optimize */ 1367 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1368 u_int8_t b = sc->sc_keymap[i]; 1369 if (b != 0xff) { 1370 /* 1371 * One or more slots in this byte are free. 1372 */ 1373 keyix = i*NBBY; 1374 while (b & 1) { 1375 again: 1376 keyix++; 1377 b >>= 1; 1378 } 1379 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1380 if (isset(sc->sc_keymap, keyix+32) || 1381 isset(sc->sc_keymap, keyix+64) || 1382 isset(sc->sc_keymap, keyix+32+64)) { 1383 /* full pair unavailable */ 1384 /* XXX statistic */ 1385 if (keyix == (i+1)*NBBY) { 1386 /* no slots were appropriate, advance */ 1387 continue; 1388 } 1389 goto again; 1390 } 1391 setbit(sc->sc_keymap, keyix); 1392 setbit(sc->sc_keymap, keyix+64); 1393 setbit(sc->sc_keymap, keyix+32); 1394 setbit(sc->sc_keymap, keyix+32+64); 1395 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1396 "%s: key pair %u,%u %u,%u\n", 1397 __func__, keyix, keyix+64, 1398 keyix+32, keyix+32+64); 1399 return keyix; 1400 } 1401 } 1402 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1403 return IEEE80211_KEYIX_NONE; 1404 #undef N 1405 } 1406 1407 /* 1408 * Allocate a single key cache slot. 1409 */ 1410 static u_int16_t 1411 key_alloc_single(struct ath_softc *sc) 1412 { 1413 #define N(a) (sizeof(a)/sizeof(a[0])) 1414 u_int i, keyix; 1415 1416 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1417 for (i = 0; i < N(sc->sc_keymap); i++) { 1418 u_int8_t b = sc->sc_keymap[i]; 1419 if (b != 0xff) { 1420 /* 1421 * One or more slots are free. 1422 */ 1423 keyix = i*NBBY; 1424 while (b & 1) 1425 keyix++, b >>= 1; 1426 setbit(sc->sc_keymap, keyix); 1427 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1428 __func__, keyix); 1429 return keyix; 1430 } 1431 } 1432 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1433 return IEEE80211_KEYIX_NONE; 1434 #undef N 1435 } 1436 1437 /* 1438 * Allocate one or more key cache slots for a uniacst key. The 1439 * key itself is needed only to identify the cipher. For hardware 1440 * TKIP with split cipher+MIC keys we allocate two key cache slot 1441 * pairs so that we can setup separate TX and RX MIC keys. Note 1442 * that the MIC key for a TKIP key at slot i is assumed by the 1443 * hardware to be at slot i+64. This limits TKIP keys to the first 1444 * 64 entries. 1445 */ 1446 static int 1447 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k) 1448 { 1449 struct ath_softc *sc = ic->ic_ifp->if_softc; 1450 1451 /* 1452 * Group key allocation must be handled specially for 1453 * parts that do not support multicast key cache search 1454 * functionality. For those parts the key id must match 1455 * the h/w key index so lookups find the right key. On 1456 * parts w/ the key search facility we install the sender's 1457 * mac address (with the high bit set) and let the hardware 1458 * find the key w/o using the key id. This is preferred as 1459 * it permits us to support multiple users for adhoc and/or 1460 * multi-station operation. 1461 */ 1462 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1463 u_int keyix; 1464 1465 if (!(&ic->ic_nw_keys[0] <= k && 1466 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1467 /* should not happen */ 1468 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1469 "%s: bogus group key\n", __func__); 1470 return IEEE80211_KEYIX_NONE; 1471 } 1472 keyix = k - ic->ic_nw_keys; 1473 /* 1474 * XXX we pre-allocate the global keys so 1475 * have no way to check if they've already been allocated. 1476 */ 1477 return keyix; 1478 } 1479 1480 /* 1481 * We allocate two pair for TKIP when using the h/w to do 1482 * the MIC. For everything else, including software crypto, 1483 * we allocate a single entry. Note that s/w crypto requires 1484 * a pass-through slot on the 5211 and 5212. The 5210 does 1485 * not support pass-through cache entries and we map all 1486 * those requests to slot 0. 1487 */ 1488 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1489 return key_alloc_single(sc); 1490 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1491 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1492 return key_alloc_2pair(sc); 1493 } else { 1494 return key_alloc_single(sc); 1495 } 1496 } 1497 1498 /* 1499 * Delete an entry in the key cache allocated by ath_key_alloc. 1500 */ 1501 static int 1502 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1503 { 1504 struct ath_softc *sc = ic->ic_ifp->if_softc; 1505 struct ath_hal *ah = sc->sc_ah; 1506 const struct ieee80211_cipher *cip = k->wk_cipher; 1507 struct ieee80211_node *ni; 1508 u_int keyix = k->wk_keyix; 1509 1510 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1511 1512 ath_hal_keyreset(ah, keyix); 1513 /* 1514 * Check the key->node map and flush any ref. 1515 */ 1516 ni = sc->sc_keyixmap[keyix]; 1517 if (ni != NULL) { 1518 ieee80211_free_node(ni); 1519 sc->sc_keyixmap[keyix] = NULL; 1520 } 1521 /* 1522 * Handle split tx/rx keying required for TKIP with h/w MIC. 1523 */ 1524 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1525 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1526 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1527 ni = sc->sc_keyixmap[keyix+32]; 1528 if (ni != NULL) { /* as above... */ 1529 ieee80211_free_node(ni); 1530 sc->sc_keyixmap[keyix+32] = NULL; 1531 } 1532 } 1533 if (keyix >= IEEE80211_WEP_NKID) { 1534 /* 1535 * Don't touch keymap entries for global keys so 1536 * they are never considered for dynamic allocation. 1537 */ 1538 clrbit(sc->sc_keymap, keyix); 1539 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1540 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1541 sc->sc_splitmic) { 1542 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1543 clrbit(sc->sc_keymap, keyix+32); /* RX key */ 1544 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */ 1545 } 1546 } 1547 return 1; 1548 } 1549 1550 /* 1551 * Set the key cache contents for the specified key. Key cache 1552 * slot(s) must already have been allocated by ath_key_alloc. 1553 */ 1554 static int 1555 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1556 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1557 { 1558 struct ath_softc *sc = ic->ic_ifp->if_softc; 1559 1560 return ath_keyset(sc, k, mac, ic->ic_bss); 1561 } 1562 1563 /* 1564 * Block/unblock tx+rx processing while a key change is done. 1565 * We assume the caller serializes key management operations 1566 * so we only need to worry about synchronization with other 1567 * uses that originate in the driver. 1568 */ 1569 static void 1570 ath_key_update_begin(struct ieee80211com *ic) 1571 { 1572 struct ifnet *ifp = ic->ic_ifp; 1573 struct ath_softc *sc = ifp->if_softc; 1574 1575 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1576 #if 0 1577 tasklet_disable(&sc->sc_rxtq); 1578 #endif 1579 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1580 } 1581 1582 static void 1583 ath_key_update_end(struct ieee80211com *ic) 1584 { 1585 struct ifnet *ifp = ic->ic_ifp; 1586 struct ath_softc *sc = ifp->if_softc; 1587 1588 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1589 IF_UNLOCK(&ifp->if_snd); 1590 #if 0 1591 tasklet_enable(&sc->sc_rxtq); 1592 #endif 1593 } 1594 1595 /* 1596 * Calculate the receive filter according to the 1597 * operating mode and state: 1598 * 1599 * o always accept unicast, broadcast, and multicast traffic 1600 * o maintain current state of phy error reception (the hal 1601 * may enable phy error frames for noise immunity work) 1602 * o probe request frames are accepted only when operating in 1603 * hostap, adhoc, or monitor modes 1604 * o enable promiscuous mode according to the interface state 1605 * o accept beacons: 1606 * - when operating in adhoc mode so the 802.11 layer creates 1607 * node table entries for peers, 1608 * - when operating in station mode for collecting rssi data when 1609 * the station is otherwise quiet, or 1610 * - when scanning 1611 */ 1612 static u_int32_t 1613 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1614 { 1615 struct ieee80211com *ic = &sc->sc_ic; 1616 struct ath_hal *ah = sc->sc_ah; 1617 struct ifnet *ifp = sc->sc_ifp; 1618 u_int32_t rfilt; 1619 1620 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1621 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1622 if (ic->ic_opmode != IEEE80211_M_STA) 1623 rfilt |= HAL_RX_FILTER_PROBEREQ; 1624 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1625 (ifp->if_flags & IFF_PROMISC)) 1626 rfilt |= HAL_RX_FILTER_PROM; 1627 if (ic->ic_opmode == IEEE80211_M_STA || 1628 ic->ic_opmode == IEEE80211_M_IBSS || 1629 state == IEEE80211_S_SCAN) 1630 rfilt |= HAL_RX_FILTER_BEACON; 1631 return rfilt; 1632 } 1633 1634 static void 1635 ath_mode_init(struct ath_softc *sc) 1636 { 1637 struct ieee80211com *ic = &sc->sc_ic; 1638 struct ath_hal *ah = sc->sc_ah; 1639 struct ifnet *ifp = sc->sc_ifp; 1640 u_int32_t rfilt, mfilt[2], val; 1641 u_int8_t pos; 1642 struct ifmultiaddr *ifma; 1643 1644 /* configure rx filter */ 1645 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1646 ath_hal_setrxfilter(ah, rfilt); 1647 1648 /* configure operational mode */ 1649 ath_hal_setopmode(ah); 1650 1651 /* 1652 * Handle any link-level address change. Note that we only 1653 * need to force ic_myaddr; any other addresses are handled 1654 * as a byproduct of the ifnet code marking the interface 1655 * down then up. 1656 * 1657 * XXX should get from lladdr instead of arpcom but that's more work 1658 */ 1659 IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2ENADDR(ifp)); 1660 ath_hal_setmac(ah, ic->ic_myaddr); 1661 1662 /* calculate and install multicast filter */ 1663 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1664 mfilt[0] = mfilt[1] = 0; 1665 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1666 caddr_t dl; 1667 1668 /* calculate XOR of eight 6bit values */ 1669 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1670 val = LE_READ_4(dl + 0); 1671 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1672 val = LE_READ_4(dl + 3); 1673 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1674 pos &= 0x3f; 1675 mfilt[pos / 32] |= (1 << (pos % 32)); 1676 } 1677 } else { 1678 mfilt[0] = mfilt[1] = ~0; 1679 } 1680 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1681 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 1682 __func__, rfilt, mfilt[0], mfilt[1]); 1683 } 1684 1685 /* 1686 * Set the slot time based on the current setting. 1687 */ 1688 static void 1689 ath_setslottime(struct ath_softc *sc) 1690 { 1691 struct ieee80211com *ic = &sc->sc_ic; 1692 struct ath_hal *ah = sc->sc_ah; 1693 1694 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1695 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 1696 else 1697 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 1698 sc->sc_updateslot = OK; 1699 } 1700 1701 /* 1702 * Callback from the 802.11 layer to update the 1703 * slot time based on the current setting. 1704 */ 1705 static void 1706 ath_updateslot(struct ifnet *ifp) 1707 { 1708 struct ath_softc *sc = ifp->if_softc; 1709 struct ieee80211com *ic = &sc->sc_ic; 1710 1711 /* 1712 * When not coordinating the BSS, change the hardware 1713 * immediately. For other operation we defer the change 1714 * until beacon updates have propagated to the stations. 1715 */ 1716 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1717 sc->sc_updateslot = UPDATE; 1718 else 1719 ath_setslottime(sc); 1720 } 1721 1722 /* 1723 * Setup a h/w transmit queue for beacons. 1724 */ 1725 static int 1726 ath_beaconq_setup(struct ath_hal *ah) 1727 { 1728 HAL_TXQ_INFO qi; 1729 1730 memset(&qi, 0, sizeof(qi)); 1731 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 1732 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 1733 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 1734 /* NB: for dynamic turbo, don't enable any other interrupts */ 1735 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1736 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 1737 } 1738 1739 /* 1740 * Setup the transmit queue parameters for the beacon queue. 1741 */ 1742 static int 1743 ath_beaconq_config(struct ath_softc *sc) 1744 { 1745 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 1746 struct ieee80211com *ic = &sc->sc_ic; 1747 struct ath_hal *ah = sc->sc_ah; 1748 HAL_TXQ_INFO qi; 1749 1750 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 1751 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1752 /* 1753 * Always burst out beacon and CAB traffic. 1754 */ 1755 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 1756 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 1757 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 1758 } else { 1759 struct wmeParams *wmep = 1760 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 1761 /* 1762 * Adhoc mode; important thing is to use 2x cwmin. 1763 */ 1764 qi.tqi_aifs = wmep->wmep_aifsn; 1765 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 1766 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 1767 } 1768 1769 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 1770 device_printf(sc->sc_dev, "unable to update parameters for " 1771 "beacon hardware queue!\n"); 1772 return 0; 1773 } else { 1774 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 1775 return 1; 1776 } 1777 #undef ATH_EXPONENT_TO_VALUE 1778 } 1779 1780 /* 1781 * Allocate and setup an initial beacon frame. 1782 */ 1783 static int 1784 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1785 { 1786 struct ieee80211com *ic = ni->ni_ic; 1787 struct ath_buf *bf; 1788 struct mbuf *m; 1789 int error; 1790 1791 bf = STAILQ_FIRST(&sc->sc_bbuf); 1792 if (bf == NULL) { 1793 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 1794 sc->sc_stats.ast_be_nombuf++; /* XXX */ 1795 return ENOMEM; /* XXX */ 1796 } 1797 /* 1798 * NB: the beacon data buffer must be 32-bit aligned; 1799 * we assume the mbuf routines will return us something 1800 * with this alignment (perhaps should assert). 1801 */ 1802 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 1803 if (m == NULL) { 1804 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 1805 __func__); 1806 sc->sc_stats.ast_be_nombuf++; 1807 return ENOMEM; 1808 } 1809 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 1810 bf->bf_segs, &bf->bf_nseg, 1811 BUS_DMA_NOWAIT); 1812 if (error == 0) { 1813 bf->bf_m = m; 1814 bf->bf_node = ieee80211_ref_node(ni); 1815 } else { 1816 m_freem(m); 1817 } 1818 return error; 1819 } 1820 1821 /* 1822 * Setup the beacon frame for transmit. 1823 */ 1824 static void 1825 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 1826 { 1827 #define USE_SHPREAMBLE(_ic) \ 1828 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 1829 == IEEE80211_F_SHPREAMBLE) 1830 struct ieee80211_node *ni = bf->bf_node; 1831 struct ieee80211com *ic = ni->ni_ic; 1832 struct mbuf *m = bf->bf_m; 1833 struct ath_hal *ah = sc->sc_ah; 1834 struct ath_node *an = ATH_NODE(ni); 1835 struct ath_desc *ds; 1836 int flags, antenna; 1837 u_int8_t rate; 1838 1839 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 1840 __func__, m, m->m_len); 1841 1842 /* setup descriptors */ 1843 ds = bf->bf_desc; 1844 1845 flags = HAL_TXDESC_NOACK; 1846 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 1847 ds->ds_link = bf->bf_daddr; /* self-linked */ 1848 flags |= HAL_TXDESC_VEOL; 1849 /* 1850 * Let hardware handle antenna switching. 1851 */ 1852 antenna = 0; 1853 } else { 1854 ds->ds_link = 0; 1855 /* 1856 * Switch antenna every 4 beacons. 1857 * XXX assumes two antenna 1858 */ 1859 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 1860 } 1861 1862 KASSERT(bf->bf_nseg == 1, 1863 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 1864 ds->ds_data = bf->bf_segs[0].ds_addr; 1865 /* 1866 * Calculate rate code. 1867 * XXX everything at min xmit rate 1868 */ 1869 if (USE_SHPREAMBLE(ic)) 1870 rate = an->an_tx_mgtratesp; 1871 else 1872 rate = an->an_tx_mgtrate; 1873 ath_hal_setuptxdesc(ah, ds 1874 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 1875 , sizeof(struct ieee80211_frame)/* header length */ 1876 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1877 , ni->ni_txpower /* txpower XXX */ 1878 , rate, 1 /* series 0 rate/tries */ 1879 , HAL_TXKEYIX_INVALID /* no encryption */ 1880 , antenna /* antenna mode */ 1881 , flags /* no ack, veol for beacons */ 1882 , 0 /* rts/cts rate */ 1883 , 0 /* rts/cts duration */ 1884 ); 1885 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1886 ath_hal_filltxdesc(ah, ds 1887 , roundup(m->m_len, 4) /* buffer length */ 1888 , AH_TRUE /* first segment */ 1889 , AH_TRUE /* last segment */ 1890 , ds /* first descriptor */ 1891 ); 1892 #undef USE_SHPREAMBLE 1893 } 1894 1895 /* 1896 * Transmit a beacon frame at SWBA. Dynamic updates to the 1897 * frame contents are done as needed and the slot time is 1898 * also adjusted based on current state. 1899 */ 1900 static void 1901 ath_beacon_proc(void *arg, int pending) 1902 { 1903 struct ath_softc *sc = arg; 1904 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 1905 struct ieee80211_node *ni = bf->bf_node; 1906 struct ieee80211com *ic = ni->ni_ic; 1907 struct ath_hal *ah = sc->sc_ah; 1908 struct mbuf *m; 1909 int ncabq, error, otherant; 1910 1911 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 1912 __func__, pending); 1913 1914 if (ic->ic_opmode == IEEE80211_M_STA || 1915 ic->ic_opmode == IEEE80211_M_MONITOR || 1916 bf == NULL || bf->bf_m == NULL) { 1917 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 1918 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 1919 return; 1920 } 1921 /* 1922 * Check if the previous beacon has gone out. If 1923 * not don't don't try to post another, skip this 1924 * period and wait for the next. Missed beacons 1925 * indicate a problem and should not occur. If we 1926 * miss too many consecutive beacons reset the device. 1927 */ 1928 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 1929 sc->sc_bmisscount++; 1930 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 1931 "%s: missed %u consecutive beacons\n", 1932 __func__, sc->sc_bmisscount); 1933 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 1934 taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask); 1935 return; 1936 } 1937 if (sc->sc_bmisscount != 0) { 1938 DPRINTF(sc, ATH_DEBUG_BEACON, 1939 "%s: resume beacon xmit after %u misses\n", 1940 __func__, sc->sc_bmisscount); 1941 sc->sc_bmisscount = 0; 1942 } 1943 1944 /* 1945 * Update dynamic beacon contents. If this returns 1946 * non-zero then we need to remap the memory because 1947 * the beacon frame changed size (probably because 1948 * of the TIM bitmap). 1949 */ 1950 m = bf->bf_m; 1951 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 1952 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 1953 /* XXX too conservative? */ 1954 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1955 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 1956 bf->bf_segs, &bf->bf_nseg, 1957 BUS_DMA_NOWAIT); 1958 if (error != 0) { 1959 if_printf(ic->ic_ifp, 1960 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 1961 __func__, error); 1962 return; 1963 } 1964 } 1965 1966 /* 1967 * Handle slot time change when a non-ERP station joins/leaves 1968 * an 11g network. The 802.11 layer notifies us via callback, 1969 * we mark updateslot, then wait one beacon before effecting 1970 * the change. This gives associated stations at least one 1971 * beacon interval to note the state change. 1972 */ 1973 /* XXX locking */ 1974 if (sc->sc_updateslot == UPDATE) 1975 sc->sc_updateslot = COMMIT; /* commit next beacon */ 1976 else if (sc->sc_updateslot == COMMIT) 1977 ath_setslottime(sc); /* commit change to h/w */ 1978 1979 /* 1980 * Check recent per-antenna transmit statistics and flip 1981 * the default antenna if noticeably more frames went out 1982 * on the non-default antenna. 1983 * XXX assumes 2 anntenae 1984 */ 1985 otherant = sc->sc_defant & 1 ? 2 : 1; 1986 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 1987 ath_setdefantenna(sc, otherant); 1988 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 1989 1990 /* 1991 * Construct tx descriptor. 1992 */ 1993 ath_beacon_setup(sc, bf); 1994 1995 /* 1996 * Stop any current dma and put the new frame on the queue. 1997 * This should never fail since we check above that no frames 1998 * are still pending on the queue. 1999 */ 2000 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2001 DPRINTF(sc, ATH_DEBUG_ANY, 2002 "%s: beacon queue %u did not stop?\n", 2003 __func__, sc->sc_bhalq); 2004 } 2005 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 2006 2007 /* 2008 * Enable the CAB queue before the beacon queue to 2009 * insure cab frames are triggered by this beacon. 2010 */ 2011 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */ 2012 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2013 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2014 ath_hal_txstart(ah, sc->sc_bhalq); 2015 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2016 "%s: TXDP[%u] = %p (%p)\n", __func__, 2017 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc); 2018 2019 sc->sc_stats.ast_be_xmit++; 2020 } 2021 2022 /* 2023 * Reset the hardware after detecting beacons have stopped. 2024 */ 2025 static void 2026 ath_bstuck_proc(void *arg, int pending) 2027 { 2028 struct ath_softc *sc = arg; 2029 struct ifnet *ifp = sc->sc_ifp; 2030 2031 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2032 sc->sc_bmisscount); 2033 ath_reset(ifp); 2034 } 2035 2036 /* 2037 * Reclaim beacon resources. 2038 */ 2039 static void 2040 ath_beacon_free(struct ath_softc *sc) 2041 { 2042 struct ath_buf *bf; 2043 2044 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2045 if (bf->bf_m != NULL) { 2046 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2047 m_freem(bf->bf_m); 2048 bf->bf_m = NULL; 2049 } 2050 if (bf->bf_node != NULL) { 2051 ieee80211_free_node(bf->bf_node); 2052 bf->bf_node = NULL; 2053 } 2054 } 2055 } 2056 2057 /* 2058 * Configure the beacon and sleep timers. 2059 * 2060 * When operating as an AP this resets the TSF and sets 2061 * up the hardware to notify us when we need to issue beacons. 2062 * 2063 * When operating in station mode this sets up the beacon 2064 * timers according to the timestamp of the last received 2065 * beacon and the current TSF, configures PCF and DTIM 2066 * handling, programs the sleep registers so the hardware 2067 * will wakeup in time to receive beacons, and configures 2068 * the beacon miss handling so we'll receive a BMISS 2069 * interrupt when we stop seeing beacons from the AP 2070 * we've associated with. 2071 */ 2072 static void 2073 ath_beacon_config(struct ath_softc *sc) 2074 { 2075 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10)) 2076 struct ath_hal *ah = sc->sc_ah; 2077 struct ieee80211com *ic = &sc->sc_ic; 2078 struct ieee80211_node *ni = ic->ic_bss; 2079 u_int32_t nexttbtt, intval; 2080 2081 /* extract tstamp from last beacon and convert to TU */ 2082 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2083 LE_READ_4(ni->ni_tstamp.data)); 2084 /* NB: the beacon interval is kept internally in TU's */ 2085 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2086 if (nexttbtt == 0) /* e.g. for ap mode */ 2087 nexttbtt = intval; 2088 else if (intval) /* NB: can be 0 for monitor mode */ 2089 nexttbtt = roundup(nexttbtt, intval); 2090 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2091 __func__, nexttbtt, intval, ni->ni_intval); 2092 if (ic->ic_opmode == IEEE80211_M_STA) { 2093 HAL_BEACON_STATE bs; 2094 u_int64_t tsf; 2095 u_int32_t tsftu; 2096 int dtimperiod, dtimcount; 2097 int cfpperiod, cfpcount; 2098 2099 /* 2100 * Setup dtim and cfp parameters according to 2101 * last beacon we received (which may be none). 2102 */ 2103 dtimperiod = ni->ni_dtim_period; 2104 if (dtimperiod <= 0) /* NB: 0 if not known */ 2105 dtimperiod = 1; 2106 dtimcount = ni->ni_dtim_count; 2107 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2108 dtimcount = 0; /* XXX? */ 2109 cfpperiod = 1; /* NB: no PCF support yet */ 2110 cfpcount = 0; 2111 #define FUDGE 2 2112 /* 2113 * Pull nexttbtt forward to reflect the current 2114 * TSF and calculate dtim+cfp state for the result. 2115 */ 2116 tsf = ath_hal_gettsf64(ah); 2117 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE; 2118 do { 2119 nexttbtt += intval; 2120 if (--dtimcount < 0) { 2121 dtimcount = dtimperiod - 1; 2122 if (--cfpcount < 0) 2123 cfpcount = cfpperiod - 1; 2124 } 2125 } while (nexttbtt < tsftu); 2126 #undef FUDGE 2127 memset(&bs, 0, sizeof(bs)); 2128 bs.bs_intval = intval; 2129 bs.bs_nexttbtt = nexttbtt; 2130 bs.bs_dtimperiod = dtimperiod*intval; 2131 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2132 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2133 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2134 bs.bs_cfpmaxduration = 0; 2135 #if 0 2136 /* 2137 * The 802.11 layer records the offset to the DTIM 2138 * bitmap while receiving beacons; use it here to 2139 * enable h/w detection of our AID being marked in 2140 * the bitmap vector (to indicate frames for us are 2141 * pending at the AP). 2142 * XXX do DTIM handling in s/w to WAR old h/w bugs 2143 * XXX enable based on h/w rev for newer chips 2144 */ 2145 bs.bs_timoffset = ni->ni_timoff; 2146 #endif 2147 /* 2148 * Calculate the number of consecutive beacons to miss 2149 * before taking a BMISS interrupt. The configuration 2150 * is specified in ms, so we need to convert that to 2151 * TU's and then calculate based on the beacon interval. 2152 * Note that we clamp the result to at most 10 beacons. 2153 */ 2154 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2155 if (bs.bs_bmissthreshold > 10) 2156 bs.bs_bmissthreshold = 10; 2157 else if (bs.bs_bmissthreshold <= 0) 2158 bs.bs_bmissthreshold = 1; 2159 2160 /* 2161 * Calculate sleep duration. The configuration is 2162 * given in ms. We insure a multiple of the beacon 2163 * period is used. Also, if the sleep duration is 2164 * greater than the DTIM period then it makes senses 2165 * to make it a multiple of that. 2166 * 2167 * XXX fixed at 100ms 2168 */ 2169 bs.bs_sleepduration = 2170 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2171 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2172 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2173 2174 DPRINTF(sc, ATH_DEBUG_BEACON, 2175 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2176 , __func__ 2177 , tsf, tsftu 2178 , bs.bs_intval 2179 , bs.bs_nexttbtt 2180 , bs.bs_dtimperiod 2181 , bs.bs_nextdtim 2182 , bs.bs_bmissthreshold 2183 , bs.bs_sleepduration 2184 , bs.bs_cfpperiod 2185 , bs.bs_cfpmaxduration 2186 , bs.bs_cfpnext 2187 , bs.bs_timoffset 2188 ); 2189 ath_hal_intrset(ah, 0); 2190 ath_hal_beacontimers(ah, &bs); 2191 sc->sc_imask |= HAL_INT_BMISS; 2192 ath_hal_intrset(ah, sc->sc_imask); 2193 } else { 2194 ath_hal_intrset(ah, 0); 2195 if (nexttbtt == intval) 2196 intval |= HAL_BEACON_RESET_TSF; 2197 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2198 /* 2199 * In IBSS mode enable the beacon timers but only 2200 * enable SWBA interrupts if we need to manually 2201 * prepare beacon frames. Otherwise we use a 2202 * self-linked tx descriptor and let the hardware 2203 * deal with things. 2204 */ 2205 intval |= HAL_BEACON_ENA; 2206 if (!sc->sc_hasveol) 2207 sc->sc_imask |= HAL_INT_SWBA; 2208 ath_beaconq_config(sc); 2209 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2210 /* 2211 * In AP mode we enable the beacon timers and 2212 * SWBA interrupts to prepare beacon frames. 2213 */ 2214 intval |= HAL_BEACON_ENA; 2215 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2216 ath_beaconq_config(sc); 2217 } 2218 ath_hal_beaconinit(ah, nexttbtt, intval); 2219 sc->sc_bmisscount = 0; 2220 ath_hal_intrset(ah, sc->sc_imask); 2221 /* 2222 * When using a self-linked beacon descriptor in 2223 * ibss mode load it once here. 2224 */ 2225 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2226 ath_beacon_proc(sc, 0); 2227 } 2228 #undef TSF_TO_TU 2229 } 2230 2231 static void 2232 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2233 { 2234 bus_addr_t *paddr = (bus_addr_t*) arg; 2235 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2236 *paddr = segs->ds_addr; 2237 } 2238 2239 static int 2240 ath_descdma_setup(struct ath_softc *sc, 2241 struct ath_descdma *dd, ath_bufhead *head, 2242 const char *name, int nbuf, int ndesc) 2243 { 2244 #define DS2PHYS(_dd, _ds) \ 2245 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2246 struct ifnet *ifp = sc->sc_ifp; 2247 struct ath_desc *ds; 2248 struct ath_buf *bf; 2249 int i, bsize, error; 2250 2251 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2252 __func__, name, nbuf, ndesc); 2253 2254 dd->dd_name = name; 2255 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2256 2257 /* 2258 * Setup DMA descriptor area. 2259 */ 2260 error = bus_dma_tag_create(NULL, /* parent */ 2261 PAGE_SIZE, 0, /* alignment, bounds */ 2262 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2263 BUS_SPACE_MAXADDR, /* highaddr */ 2264 NULL, NULL, /* filter, filterarg */ 2265 dd->dd_desc_len, /* maxsize */ 2266 1, /* nsegments */ 2267 BUS_SPACE_MAXADDR, /* maxsegsize */ 2268 BUS_DMA_ALLOCNOW, /* flags */ 2269 NULL, /* lockfunc */ 2270 NULL, /* lockarg */ 2271 &dd->dd_dmat); 2272 if (error != 0) { 2273 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2274 return error; 2275 } 2276 2277 /* allocate descriptors */ 2278 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2279 if (error != 0) { 2280 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2281 "error %u\n", dd->dd_name, error); 2282 goto fail0; 2283 } 2284 2285 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2286 BUS_DMA_NOWAIT, &dd->dd_dmamap); 2287 if (error != 0) { 2288 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2289 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2290 goto fail1; 2291 } 2292 2293 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2294 dd->dd_desc, dd->dd_desc_len, 2295 ath_load_cb, &dd->dd_desc_paddr, 2296 BUS_DMA_NOWAIT); 2297 if (error != 0) { 2298 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2299 dd->dd_name, error); 2300 goto fail2; 2301 } 2302 2303 ds = dd->dd_desc; 2304 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2305 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2306 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2307 2308 /* allocate rx buffers */ 2309 bsize = sizeof(struct ath_buf) * nbuf; 2310 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2311 if (bf == NULL) { 2312 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2313 dd->dd_name, bsize); 2314 goto fail3; 2315 } 2316 dd->dd_bufptr = bf; 2317 2318 STAILQ_INIT(head); 2319 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2320 bf->bf_desc = ds; 2321 bf->bf_daddr = DS2PHYS(dd, ds); 2322 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2323 &bf->bf_dmamap); 2324 if (error != 0) { 2325 if_printf(ifp, "unable to create dmamap for %s " 2326 "buffer %u, error %u\n", dd->dd_name, i, error); 2327 ath_descdma_cleanup(sc, dd, head); 2328 return error; 2329 } 2330 STAILQ_INSERT_TAIL(head, bf, bf_list); 2331 } 2332 return 0; 2333 fail3: 2334 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2335 fail2: 2336 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2337 fail1: 2338 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2339 fail0: 2340 bus_dma_tag_destroy(dd->dd_dmat); 2341 memset(dd, 0, sizeof(*dd)); 2342 return error; 2343 #undef DS2PHYS 2344 } 2345 2346 static void 2347 ath_descdma_cleanup(struct ath_softc *sc, 2348 struct ath_descdma *dd, ath_bufhead *head) 2349 { 2350 struct ath_buf *bf; 2351 struct ieee80211_node *ni; 2352 2353 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2354 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2355 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2356 bus_dma_tag_destroy(dd->dd_dmat); 2357 2358 STAILQ_FOREACH(bf, head, bf_list) { 2359 if (bf->bf_m) { 2360 m_freem(bf->bf_m); 2361 bf->bf_m = NULL; 2362 } 2363 if (bf->bf_dmamap != NULL) { 2364 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2365 bf->bf_dmamap = NULL; 2366 } 2367 ni = bf->bf_node; 2368 bf->bf_node = NULL; 2369 if (ni != NULL) { 2370 /* 2371 * Reclaim node reference. 2372 */ 2373 ieee80211_free_node(ni); 2374 } 2375 } 2376 2377 STAILQ_INIT(head); 2378 free(dd->dd_bufptr, M_ATHDEV); 2379 memset(dd, 0, sizeof(*dd)); 2380 } 2381 2382 static int 2383 ath_desc_alloc(struct ath_softc *sc) 2384 { 2385 int error; 2386 2387 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2388 "rx", ATH_RXBUF, 1); 2389 if (error != 0) 2390 return error; 2391 2392 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2393 "tx", ATH_TXBUF, ATH_TXDESC); 2394 if (error != 0) { 2395 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2396 return error; 2397 } 2398 2399 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2400 "beacon", 1, 1); 2401 if (error != 0) { 2402 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2403 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2404 return error; 2405 } 2406 return 0; 2407 } 2408 2409 static void 2410 ath_desc_free(struct ath_softc *sc) 2411 { 2412 2413 if (sc->sc_bdma.dd_desc_len != 0) 2414 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2415 if (sc->sc_txdma.dd_desc_len != 0) 2416 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2417 if (sc->sc_rxdma.dd_desc_len != 0) 2418 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2419 } 2420 2421 static struct ieee80211_node * 2422 ath_node_alloc(struct ieee80211_node_table *nt) 2423 { 2424 struct ieee80211com *ic = nt->nt_ic; 2425 struct ath_softc *sc = ic->ic_ifp->if_softc; 2426 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2427 struct ath_node *an; 2428 2429 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2430 if (an == NULL) { 2431 /* XXX stat+msg */ 2432 return NULL; 2433 } 2434 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2435 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 2436 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 2437 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 2438 ath_rate_node_init(sc, an); 2439 2440 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2441 return &an->an_node; 2442 } 2443 2444 static void 2445 ath_node_free(struct ieee80211_node *ni) 2446 { 2447 struct ieee80211com *ic = ni->ni_ic; 2448 struct ath_softc *sc = ic->ic_ifp->if_softc; 2449 2450 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2451 2452 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2453 sc->sc_node_free(ni); 2454 } 2455 2456 static u_int8_t 2457 ath_node_getrssi(const struct ieee80211_node *ni) 2458 { 2459 #define HAL_EP_RND(x, mul) \ 2460 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2461 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2462 int32_t rssi; 2463 2464 /* 2465 * When only one frame is received there will be no state in 2466 * avgrssi so fallback on the value recorded by the 802.11 layer. 2467 */ 2468 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2469 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2470 else 2471 rssi = ni->ni_rssi; 2472 /* NB: theoretically we shouldn't need this, but be paranoid */ 2473 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2474 #undef HAL_EP_RND 2475 } 2476 2477 static int 2478 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2479 { 2480 struct ath_hal *ah = sc->sc_ah; 2481 int error; 2482 struct mbuf *m; 2483 struct ath_desc *ds; 2484 2485 m = bf->bf_m; 2486 if (m == NULL) { 2487 /* 2488 * NB: by assigning a page to the rx dma buffer we 2489 * implicitly satisfy the Atheros requirement that 2490 * this buffer be cache-line-aligned and sized to be 2491 * multiple of the cache line size. Not doing this 2492 * causes weird stuff to happen (for the 5210 at least). 2493 */ 2494 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2495 if (m == NULL) { 2496 DPRINTF(sc, ATH_DEBUG_ANY, 2497 "%s: no mbuf/cluster\n", __func__); 2498 sc->sc_stats.ast_rx_nombuf++; 2499 return ENOMEM; 2500 } 2501 bf->bf_m = m; 2502 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2503 2504 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 2505 bf->bf_dmamap, m, 2506 bf->bf_segs, &bf->bf_nseg, 2507 BUS_DMA_NOWAIT); 2508 if (error != 0) { 2509 DPRINTF(sc, ATH_DEBUG_ANY, 2510 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 2511 __func__, error); 2512 sc->sc_stats.ast_rx_busdma++; 2513 return error; 2514 } 2515 KASSERT(bf->bf_nseg == 1, 2516 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2517 } 2518 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 2519 2520 /* 2521 * Setup descriptors. For receive we always terminate 2522 * the descriptor list with a self-linked entry so we'll 2523 * not get overrun under high load (as can happen with a 2524 * 5212 when ANI processing enables PHY error frames). 2525 * 2526 * To insure the last descriptor is self-linked we create 2527 * each descriptor as self-linked and add it to the end. As 2528 * each additional descriptor is added the previous self-linked 2529 * entry is ``fixed'' naturally. This should be safe even 2530 * if DMA is happening. When processing RX interrupts we 2531 * never remove/process the last, self-linked, entry on the 2532 * descriptor list. This insures the hardware always has 2533 * someplace to write a new frame. 2534 */ 2535 ds = bf->bf_desc; 2536 ds->ds_link = bf->bf_daddr; /* link to self */ 2537 ds->ds_data = bf->bf_segs[0].ds_addr; 2538 ath_hal_setuprxdesc(ah, ds 2539 , m->m_len /* buffer size */ 2540 , 0 2541 ); 2542 2543 if (sc->sc_rxlink != NULL) 2544 *sc->sc_rxlink = bf->bf_daddr; 2545 sc->sc_rxlink = &ds->ds_link; 2546 return 0; 2547 } 2548 2549 /* 2550 * Extend 15-bit time stamp from rx descriptor to 2551 * a full 64-bit TSF using the current h/w TSF. 2552 */ 2553 static __inline u_int64_t 2554 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp) 2555 { 2556 u_int64_t tsf; 2557 2558 tsf = ath_hal_gettsf64(ah); 2559 if ((tsf & 0x7fff) < rstamp) 2560 tsf -= 0x8000; 2561 return ((tsf &~ 0x7fff) | rstamp); 2562 } 2563 2564 /* 2565 * Intercept management frames to collect beacon rssi data 2566 * and to do ibss merges. 2567 */ 2568 static void 2569 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2570 struct ieee80211_node *ni, 2571 int subtype, int rssi, u_int32_t rstamp) 2572 { 2573 struct ath_softc *sc = ic->ic_ifp->if_softc; 2574 2575 /* 2576 * Call up first so subsequent work can use information 2577 * potentially stored in the node (e.g. for ibss merge). 2578 */ 2579 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2580 switch (subtype) { 2581 case IEEE80211_FC0_SUBTYPE_BEACON: 2582 /* update rssi statistics for use by the hal */ 2583 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi); 2584 /* fall thru... */ 2585 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2586 if (ic->ic_opmode == IEEE80211_M_IBSS && 2587 ic->ic_state == IEEE80211_S_RUN) { 2588 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp); 2589 /* 2590 * Handle ibss merge as needed; check the tsf on the 2591 * frame before attempting the merge. The 802.11 spec 2592 * says the station should change it's bssid to match 2593 * the oldest station with the same ssid, where oldest 2594 * is determined by the tsf. Note that hardware 2595 * reconfiguration happens through callback to 2596 * ath_newstate as the state machine will go from 2597 * RUN -> RUN when this happens. 2598 */ 2599 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2600 DPRINTF(sc, ATH_DEBUG_STATE, 2601 "ibss merge, rstamp %u tsf %ju " 2602 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2603 (uintmax_t)ni->ni_tstamp.tsf); 2604 (void) ieee80211_ibss_merge(ic, ni); 2605 } 2606 } 2607 break; 2608 } 2609 } 2610 2611 /* 2612 * Set the default antenna. 2613 */ 2614 static void 2615 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2616 { 2617 struct ath_hal *ah = sc->sc_ah; 2618 2619 /* XXX block beacon interrupts */ 2620 ath_hal_setdefantenna(ah, antenna); 2621 if (sc->sc_defant != antenna) 2622 sc->sc_stats.ast_ant_defswitch++; 2623 sc->sc_defant = antenna; 2624 sc->sc_rxotherant = 0; 2625 } 2626 2627 static void 2628 ath_rx_proc(void *arg, int npending) 2629 { 2630 #define PA2DESC(_sc, _pa) \ 2631 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 2632 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2633 struct ath_softc *sc = arg; 2634 struct ath_buf *bf; 2635 struct ieee80211com *ic = &sc->sc_ic; 2636 struct ifnet *ifp = sc->sc_ifp; 2637 struct ath_hal *ah = sc->sc_ah; 2638 struct ath_desc *ds; 2639 struct mbuf *m; 2640 struct ieee80211_node *ni; 2641 struct ath_node *an; 2642 int len, type; 2643 u_int phyerr; 2644 HAL_STATUS status; 2645 2646 NET_LOCK_GIANT(); /* XXX */ 2647 2648 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 2649 do { 2650 bf = STAILQ_FIRST(&sc->sc_rxbuf); 2651 if (bf == NULL) { /* NB: shouldn't happen */ 2652 if_printf(ifp, "%s: no buffer!\n", __func__); 2653 break; 2654 } 2655 ds = bf->bf_desc; 2656 if (ds->ds_link == bf->bf_daddr) { 2657 /* NB: never process the self-linked entry at the end */ 2658 break; 2659 } 2660 m = bf->bf_m; 2661 if (m == NULL) { /* NB: shouldn't happen */ 2662 if_printf(ifp, "%s: no mbuf!\n", __func__); 2663 continue; 2664 } 2665 /* XXX sync descriptor memory */ 2666 /* 2667 * Must provide the virtual address of the current 2668 * descriptor, the physical address, and the virtual 2669 * address of the next descriptor in the h/w chain. 2670 * This allows the HAL to look ahead to see if the 2671 * hardware is done with a descriptor by checking the 2672 * done bit in the following descriptor and the address 2673 * of the current descriptor the DMA engine is working 2674 * on. All this is necessary because of our use of 2675 * a self-linked list to avoid rx overruns. 2676 */ 2677 status = ath_hal_rxprocdesc(ah, ds, 2678 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2679 #ifdef AR_DEBUG 2680 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 2681 ath_printrxbuf(bf, status == HAL_OK); 2682 #endif 2683 if (status == HAL_EINPROGRESS) 2684 break; 2685 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 2686 if (ds->ds_rxstat.rs_more) { 2687 /* 2688 * Frame spans multiple descriptors; this 2689 * cannot happen yet as we don't support 2690 * jumbograms. If not in monitor mode, 2691 * discard the frame. 2692 */ 2693 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2694 sc->sc_stats.ast_rx_toobig++; 2695 goto rx_next; 2696 } 2697 /* fall thru for monitor mode handling... */ 2698 } else if (ds->ds_rxstat.rs_status != 0) { 2699 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2700 sc->sc_stats.ast_rx_crcerr++; 2701 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2702 sc->sc_stats.ast_rx_fifoerr++; 2703 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2704 sc->sc_stats.ast_rx_phyerr++; 2705 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2706 sc->sc_stats.ast_rx_phy[phyerr]++; 2707 goto rx_next; 2708 } 2709 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 2710 /* 2711 * Decrypt error. If the error occurred 2712 * because there was no hardware key, then 2713 * let the frame through so the upper layers 2714 * can process it. This is necessary for 5210 2715 * parts which have no way to setup a ``clear'' 2716 * key cache entry. 2717 * 2718 * XXX do key cache faulting 2719 */ 2720 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 2721 goto rx_accept; 2722 sc->sc_stats.ast_rx_badcrypt++; 2723 } 2724 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 2725 sc->sc_stats.ast_rx_badmic++; 2726 /* 2727 * Do minimal work required to hand off 2728 * the 802.11 header for notifcation. 2729 */ 2730 /* XXX frag's and qos frames */ 2731 len = ds->ds_rxstat.rs_datalen; 2732 if (len >= sizeof (struct ieee80211_frame)) { 2733 bus_dmamap_sync(sc->sc_dmat, 2734 bf->bf_dmamap, 2735 BUS_DMASYNC_POSTREAD); 2736 ieee80211_notify_michael_failure(ic, 2737 mtod(m, struct ieee80211_frame *), 2738 sc->sc_splitmic ? 2739 ds->ds_rxstat.rs_keyix-32 : 2740 ds->ds_rxstat.rs_keyix 2741 ); 2742 } 2743 } 2744 ifp->if_ierrors++; 2745 /* 2746 * Reject error frames, we normally don't want 2747 * to see them in monitor mode (in monitor mode 2748 * allow through packets that have crypto problems). 2749 */ 2750 if ((ds->ds_rxstat.rs_status &~ 2751 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) || 2752 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 2753 goto rx_next; 2754 } 2755 rx_accept: 2756 /* 2757 * Sync and unmap the frame. At this point we're 2758 * committed to passing the mbuf somewhere so clear 2759 * bf_m; this means a new sk_buff must be allocated 2760 * when the rx descriptor is setup again to receive 2761 * another frame. 2762 */ 2763 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2764 BUS_DMASYNC_POSTREAD); 2765 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2766 bf->bf_m = NULL; 2767 2768 m->m_pkthdr.rcvif = ifp; 2769 len = ds->ds_rxstat.rs_datalen; 2770 m->m_pkthdr.len = m->m_len = len; 2771 2772 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 2773 2774 if (sc->sc_drvbpf) { 2775 u_int8_t rix; 2776 2777 /* 2778 * Discard anything shorter than an ack or cts. 2779 */ 2780 if (len < IEEE80211_ACK_LEN) { 2781 DPRINTF(sc, ATH_DEBUG_RECV, 2782 "%s: runt packet %d\n", 2783 __func__, len); 2784 sc->sc_stats.ast_rx_tooshort++; 2785 m_freem(m); 2786 goto rx_next; 2787 } 2788 rix = ds->ds_rxstat.rs_rate; 2789 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 2790 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 2791 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 2792 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 2793 /* XXX TSF */ 2794 2795 bpf_mtap2(sc->sc_drvbpf, 2796 &sc->sc_rx_th, sc->sc_rx_th_len, m); 2797 } 2798 2799 /* 2800 * From this point on we assume the frame is at least 2801 * as large as ieee80211_frame_min; verify that. 2802 */ 2803 if (len < IEEE80211_MIN_LEN) { 2804 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 2805 __func__, len); 2806 sc->sc_stats.ast_rx_tooshort++; 2807 m_freem(m); 2808 goto rx_next; 2809 } 2810 2811 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 2812 ieee80211_dump_pkt(mtod(m, caddr_t), len, 2813 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 2814 ds->ds_rxstat.rs_rssi); 2815 } 2816 2817 m_adj(m, -IEEE80211_CRC_LEN); 2818 2819 /* 2820 * Locate the node for sender, track state, and then 2821 * pass the (referenced) node up to the 802.11 layer 2822 * for its use. If the sender is unknown spam the 2823 * frame; it'll be dropped where it's not wanted. 2824 */ 2825 if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID && 2826 (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) { 2827 /* 2828 * Fast path: node is present in the key map; 2829 * grab a reference for processing the frame. 2830 */ 2831 an = ATH_NODE(ieee80211_ref_node(ni)); 2832 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 2833 type = ieee80211_input(ic, m, ni, 2834 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2835 } else { 2836 /* 2837 * Locate the node for sender, track state, and then 2838 * pass the (referenced) node up to the 802.11 layer 2839 * for its use. 2840 */ 2841 ni = ieee80211_find_rxnode(ic, 2842 mtod(m, const struct ieee80211_frame_min *)); 2843 /* 2844 * Track rx rssi and do any rx antenna management. 2845 */ 2846 an = ATH_NODE(ni); 2847 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 2848 /* 2849 * Send frame up for processing. 2850 */ 2851 type = ieee80211_input(ic, m, ni, 2852 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2853 if (ni != ic->ic_bss) { 2854 u_int16_t keyix; 2855 /* 2856 * If the station has a key cache slot assigned 2857 * update the key->node mapping table. 2858 */ 2859 keyix = ni->ni_ucastkey.wk_keyix; 2860 if (keyix != IEEE80211_KEYIX_NONE && 2861 sc->sc_keyixmap[keyix] == NULL) 2862 sc->sc_keyixmap[keyix] = 2863 ieee80211_ref_node(ni); 2864 } 2865 } 2866 ieee80211_free_node(ni); 2867 if (sc->sc_diversity) { 2868 /* 2869 * When using fast diversity, change the default rx 2870 * antenna if diversity chooses the other antenna 3 2871 * times in a row. 2872 */ 2873 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 2874 if (++sc->sc_rxotherant >= 3) 2875 ath_setdefantenna(sc, 2876 ds->ds_rxstat.rs_antenna); 2877 } else 2878 sc->sc_rxotherant = 0; 2879 } 2880 if (sc->sc_softled) { 2881 /* 2882 * Blink for any data frame. Otherwise do a 2883 * heartbeat-style blink when idle. The latter 2884 * is mainly for station mode where we depend on 2885 * periodic beacon frames to trigger the poll event. 2886 */ 2887 if (type == IEEE80211_FC0_TYPE_DATA) { 2888 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 2889 ath_led_event(sc, ATH_LED_RX); 2890 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 2891 ath_led_event(sc, ATH_LED_POLL); 2892 } 2893 rx_next: 2894 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2895 } while (ath_rxbuf_init(sc, bf) == 0); 2896 2897 /* rx signal state monitoring */ 2898 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats); 2899 2900 NET_UNLOCK_GIANT(); /* XXX */ 2901 #undef PA2DESC 2902 } 2903 2904 /* 2905 * Setup a h/w transmit queue. 2906 */ 2907 static struct ath_txq * 2908 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 2909 { 2910 #define N(a) (sizeof(a)/sizeof(a[0])) 2911 struct ath_hal *ah = sc->sc_ah; 2912 HAL_TXQ_INFO qi; 2913 int qnum; 2914 2915 memset(&qi, 0, sizeof(qi)); 2916 qi.tqi_subtype = subtype; 2917 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2918 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2919 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2920 /* 2921 * Enable interrupts only for EOL and DESC conditions. 2922 * We mark tx descriptors to receive a DESC interrupt 2923 * when a tx queue gets deep; otherwise waiting for the 2924 * EOL to reap descriptors. Note that this is done to 2925 * reduce interrupt load and this only defers reaping 2926 * descriptors, never transmitting frames. Aside from 2927 * reducing interrupts this also permits more concurrency. 2928 * The only potential downside is if the tx queue backs 2929 * up in which case the top half of the kernel may backup 2930 * due to a lack of tx descriptors. 2931 */ 2932 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; 2933 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 2934 if (qnum == -1) { 2935 /* 2936 * NB: don't print a message, this happens 2937 * normally on parts with too few tx queues 2938 */ 2939 return NULL; 2940 } 2941 if (qnum >= N(sc->sc_txq)) { 2942 device_printf(sc->sc_dev, 2943 "hal qnum %u out of range, max %zu!\n", 2944 qnum, N(sc->sc_txq)); 2945 ath_hal_releasetxqueue(ah, qnum); 2946 return NULL; 2947 } 2948 if (!ATH_TXQ_SETUP(sc, qnum)) { 2949 struct ath_txq *txq = &sc->sc_txq[qnum]; 2950 2951 txq->axq_qnum = qnum; 2952 txq->axq_depth = 0; 2953 txq->axq_intrcnt = 0; 2954 txq->axq_link = NULL; 2955 STAILQ_INIT(&txq->axq_q); 2956 ATH_TXQ_LOCK_INIT(sc, txq); 2957 sc->sc_txqsetup |= 1<<qnum; 2958 } 2959 return &sc->sc_txq[qnum]; 2960 #undef N 2961 } 2962 2963 /* 2964 * Setup a hardware data transmit queue for the specified 2965 * access control. The hal may not support all requested 2966 * queues in which case it will return a reference to a 2967 * previously setup queue. We record the mapping from ac's 2968 * to h/w queues for use by ath_tx_start and also track 2969 * the set of h/w queues being used to optimize work in the 2970 * transmit interrupt handler and related routines. 2971 */ 2972 static int 2973 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 2974 { 2975 #define N(a) (sizeof(a)/sizeof(a[0])) 2976 struct ath_txq *txq; 2977 2978 if (ac >= N(sc->sc_ac2q)) { 2979 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 2980 ac, N(sc->sc_ac2q)); 2981 return 0; 2982 } 2983 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 2984 if (txq != NULL) { 2985 sc->sc_ac2q[ac] = txq; 2986 return 1; 2987 } else 2988 return 0; 2989 #undef N 2990 } 2991 2992 /* 2993 * Update WME parameters for a transmit queue. 2994 */ 2995 static int 2996 ath_txq_update(struct ath_softc *sc, int ac) 2997 { 2998 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 2999 #define ATH_TXOP_TO_US(v) (v<<5) 3000 struct ieee80211com *ic = &sc->sc_ic; 3001 struct ath_txq *txq = sc->sc_ac2q[ac]; 3002 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3003 struct ath_hal *ah = sc->sc_ah; 3004 HAL_TXQ_INFO qi; 3005 3006 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3007 qi.tqi_aifs = wmep->wmep_aifsn; 3008 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3009 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3010 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3011 3012 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3013 device_printf(sc->sc_dev, "unable to update hardware queue " 3014 "parameters for %s traffic!\n", 3015 ieee80211_wme_acnames[ac]); 3016 return 0; 3017 } else { 3018 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3019 return 1; 3020 } 3021 #undef ATH_TXOP_TO_US 3022 #undef ATH_EXPONENT_TO_VALUE 3023 } 3024 3025 /* 3026 * Callback from the 802.11 layer to update WME parameters. 3027 */ 3028 static int 3029 ath_wme_update(struct ieee80211com *ic) 3030 { 3031 struct ath_softc *sc = ic->ic_ifp->if_softc; 3032 3033 return !ath_txq_update(sc, WME_AC_BE) || 3034 !ath_txq_update(sc, WME_AC_BK) || 3035 !ath_txq_update(sc, WME_AC_VI) || 3036 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3037 } 3038 3039 /* 3040 * Reclaim resources for a setup queue. 3041 */ 3042 static void 3043 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3044 { 3045 3046 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3047 ATH_TXQ_LOCK_DESTROY(txq); 3048 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3049 } 3050 3051 /* 3052 * Reclaim all tx queue resources. 3053 */ 3054 static void 3055 ath_tx_cleanup(struct ath_softc *sc) 3056 { 3057 int i; 3058 3059 ATH_TXBUF_LOCK_DESTROY(sc); 3060 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3061 if (ATH_TXQ_SETUP(sc, i)) 3062 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3063 } 3064 3065 /* 3066 * Defragment an mbuf chain, returning at most maxfrags separate 3067 * mbufs+clusters. If this is not possible NULL is returned and 3068 * the original mbuf chain is left in it's present (potentially 3069 * modified) state. We use two techniques: collapsing consecutive 3070 * mbufs and replacing consecutive mbufs by a cluster. 3071 */ 3072 static struct mbuf * 3073 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3074 { 3075 struct mbuf *m, *n, *n2, **prev; 3076 u_int curfrags; 3077 3078 /* 3079 * Calculate the current number of frags. 3080 */ 3081 curfrags = 0; 3082 for (m = m0; m != NULL; m = m->m_next) 3083 curfrags++; 3084 /* 3085 * First, try to collapse mbufs. Note that we always collapse 3086 * towards the front so we don't need to deal with moving the 3087 * pkthdr. This may be suboptimal if the first mbuf has much 3088 * less data than the following. 3089 */ 3090 m = m0; 3091 again: 3092 for (;;) { 3093 n = m->m_next; 3094 if (n == NULL) 3095 break; 3096 if ((m->m_flags & M_RDONLY) == 0 && 3097 n->m_len < M_TRAILINGSPACE(m)) { 3098 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 3099 n->m_len); 3100 m->m_len += n->m_len; 3101 m->m_next = n->m_next; 3102 m_free(n); 3103 if (--curfrags <= maxfrags) 3104 return m0; 3105 } else 3106 m = n; 3107 } 3108 KASSERT(maxfrags > 1, 3109 ("maxfrags %u, but normal collapse failed", maxfrags)); 3110 /* 3111 * Collapse consecutive mbufs to a cluster. 3112 */ 3113 prev = &m0->m_next; /* NB: not the first mbuf */ 3114 while ((n = *prev) != NULL) { 3115 if ((n2 = n->m_next) != NULL && 3116 n->m_len + n2->m_len < MCLBYTES) { 3117 m = m_getcl(how, MT_DATA, 0); 3118 if (m == NULL) 3119 goto bad; 3120 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3121 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3122 n2->m_len); 3123 m->m_len = n->m_len + n2->m_len; 3124 m->m_next = n2->m_next; 3125 *prev = m; 3126 m_free(n); 3127 m_free(n2); 3128 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3129 return m0; 3130 /* 3131 * Still not there, try the normal collapse 3132 * again before we allocate another cluster. 3133 */ 3134 goto again; 3135 } 3136 prev = &n->m_next; 3137 } 3138 /* 3139 * No place where we can collapse to a cluster; punt. 3140 * This can occur if, for example, you request 2 frags 3141 * but the packet requires that both be clusters (we 3142 * never reallocate the first mbuf to avoid moving the 3143 * packet header). 3144 */ 3145 bad: 3146 return NULL; 3147 } 3148 3149 static int 3150 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3151 struct mbuf *m0) 3152 { 3153 #define CTS_DURATION \ 3154 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE) 3155 #define updateCTSForBursting(_ah, _ds, _txq) \ 3156 ath_hal_updateCTSForBursting(_ah, _ds, \ 3157 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \ 3158 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \ 3159 txopLimit, CTS_DURATION) 3160 struct ieee80211com *ic = &sc->sc_ic; 3161 struct ath_hal *ah = sc->sc_ah; 3162 struct ifnet *ifp = sc->sc_ifp; 3163 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3164 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0; 3165 u_int8_t rix, txrate, ctsrate; 3166 u_int8_t cix = 0xff; /* NB: silence compiler */ 3167 struct ath_desc *ds, *ds0; 3168 struct ath_txq *txq; 3169 struct ieee80211_frame *wh; 3170 u_int subtype, flags, ctsduration; 3171 HAL_PKT_TYPE atype; 3172 const HAL_RATE_TABLE *rt; 3173 HAL_BOOL shortPreamble; 3174 struct ath_node *an; 3175 struct mbuf *m; 3176 u_int pri; 3177 3178 wh = mtod(m0, struct ieee80211_frame *); 3179 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3180 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3181 hdrlen = ieee80211_anyhdrsize(wh); 3182 /* 3183 * Packet length must not include any 3184 * pad bytes; deduct them here. 3185 */ 3186 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 3187 3188 if (iswep) { 3189 const struct ieee80211_cipher *cip; 3190 struct ieee80211_key *k; 3191 3192 /* 3193 * Construct the 802.11 header+trailer for an encrypted 3194 * frame. The only reason this can fail is because of an 3195 * unknown or unsupported cipher/key type. 3196 */ 3197 k = ieee80211_crypto_encap(ic, ni, m0); 3198 if (k == NULL) { 3199 /* 3200 * This can happen when the key is yanked after the 3201 * frame was queued. Just discard the frame; the 3202 * 802.11 layer counts failures and provides 3203 * debugging/diagnostics. 3204 */ 3205 m_freem(m0); 3206 return EIO; 3207 } 3208 /* 3209 * Adjust the packet + header lengths for the crypto 3210 * additions and calculate the h/w key index. When 3211 * a s/w mic is done the frame will have had any mic 3212 * added to it prior to entry so skb->len above will 3213 * account for it. Otherwise we need to add it to the 3214 * packet length. 3215 */ 3216 cip = k->wk_cipher; 3217 hdrlen += cip->ic_header; 3218 pktlen += cip->ic_header + cip->ic_trailer; 3219 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0) 3220 pktlen += cip->ic_miclen; 3221 keyix = k->wk_keyix; 3222 3223 /* packet header may have moved, reset our local pointer */ 3224 wh = mtod(m0, struct ieee80211_frame *); 3225 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3226 /* 3227 * Use station key cache slot, if assigned. 3228 */ 3229 keyix = ni->ni_ucastkey.wk_keyix; 3230 if (keyix == IEEE80211_KEYIX_NONE) 3231 keyix = HAL_TXKEYIX_INVALID; 3232 } else 3233 keyix = HAL_TXKEYIX_INVALID; 3234 3235 pktlen += IEEE80211_CRC_LEN; 3236 3237 /* 3238 * Load the DMA map so any coalescing is done. This 3239 * also calculates the number of descriptors we need. 3240 */ 3241 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 3242 bf->bf_segs, &bf->bf_nseg, 3243 BUS_DMA_NOWAIT); 3244 if (error == EFBIG) { 3245 /* XXX packet requires too many descriptors */ 3246 bf->bf_nseg = ATH_TXDESC+1; 3247 } else if (error != 0) { 3248 sc->sc_stats.ast_tx_busdma++; 3249 m_freem(m0); 3250 return error; 3251 } 3252 /* 3253 * Discard null packets and check for packets that 3254 * require too many TX descriptors. We try to convert 3255 * the latter to a cluster. 3256 */ 3257 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 3258 sc->sc_stats.ast_tx_linear++; 3259 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3260 if (m == NULL) { 3261 m_freem(m0); 3262 sc->sc_stats.ast_tx_nombuf++; 3263 return ENOMEM; 3264 } 3265 m0 = m; 3266 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 3267 bf->bf_segs, &bf->bf_nseg, 3268 BUS_DMA_NOWAIT); 3269 if (error != 0) { 3270 sc->sc_stats.ast_tx_busdma++; 3271 m_freem(m0); 3272 return error; 3273 } 3274 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3275 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3276 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3277 sc->sc_stats.ast_tx_nodata++; 3278 m_freem(m0); 3279 return EIO; 3280 } 3281 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3282 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3283 bf->bf_m = m0; 3284 bf->bf_node = ni; /* NB: held reference */ 3285 3286 /* setup descriptors */ 3287 ds = bf->bf_desc; 3288 rt = sc->sc_currates; 3289 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3290 3291 /* 3292 * NB: the 802.11 layer marks whether or not we should 3293 * use short preamble based on the current mode and 3294 * negotiated parameters. 3295 */ 3296 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3297 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 3298 shortPreamble = AH_TRUE; 3299 sc->sc_stats.ast_tx_shortpre++; 3300 } else { 3301 shortPreamble = AH_FALSE; 3302 } 3303 3304 an = ATH_NODE(ni); 3305 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3306 /* 3307 * Calculate Atheros packet type from IEEE80211 packet header, 3308 * setup for rate calculations, and select h/w transmit queue. 3309 */ 3310 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3311 case IEEE80211_FC0_TYPE_MGT: 3312 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3313 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3314 atype = HAL_PKT_TYPE_BEACON; 3315 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3316 atype = HAL_PKT_TYPE_PROBE_RESP; 3317 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3318 atype = HAL_PKT_TYPE_ATIM; 3319 else 3320 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3321 rix = 0; /* XXX lowest rate */ 3322 try0 = ATH_TXMAXTRY; 3323 if (shortPreamble) 3324 txrate = an->an_tx_mgtratesp; 3325 else 3326 txrate = an->an_tx_mgtrate; 3327 /* NB: force all management frames to highest queue */ 3328 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3329 /* NB: force all management frames to highest queue */ 3330 pri = WME_AC_VO; 3331 } else 3332 pri = WME_AC_BE; 3333 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3334 break; 3335 case IEEE80211_FC0_TYPE_CTL: 3336 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3337 rix = 0; /* XXX lowest rate */ 3338 try0 = ATH_TXMAXTRY; 3339 if (shortPreamble) 3340 txrate = an->an_tx_mgtratesp; 3341 else 3342 txrate = an->an_tx_mgtrate; 3343 /* NB: force all ctl frames to highest queue */ 3344 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3345 /* NB: force all ctl frames to highest queue */ 3346 pri = WME_AC_VO; 3347 } else 3348 pri = WME_AC_BE; 3349 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3350 break; 3351 case IEEE80211_FC0_TYPE_DATA: 3352 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3353 /* 3354 * Data frames; consult the rate control module. 3355 */ 3356 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3357 &rix, &try0, &txrate); 3358 sc->sc_txrate = txrate; /* for LED blinking */ 3359 /* 3360 * Default all non-QoS traffic to the background queue. 3361 */ 3362 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 3363 pri = M_WME_GETAC(m0); 3364 if (cap->cap_wmeParams[pri].wmep_noackPolicy) { 3365 flags |= HAL_TXDESC_NOACK; 3366 sc->sc_stats.ast_tx_noack++; 3367 } 3368 } else 3369 pri = WME_AC_BE; 3370 break; 3371 default: 3372 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3373 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3374 /* XXX statistic */ 3375 m_freem(m0); 3376 return EIO; 3377 } 3378 txq = sc->sc_ac2q[pri]; 3379 3380 /* 3381 * When servicing one or more stations in power-save mode 3382 * multicast frames must be buffered until after the beacon. 3383 * We use the CAB queue for that. 3384 */ 3385 if (ismcast && ic->ic_ps_sta) { 3386 txq = sc->sc_cabq; 3387 /* XXX? more bit in 802.11 frame header */ 3388 } 3389 3390 /* 3391 * Calculate miscellaneous flags. 3392 */ 3393 if (ismcast) { 3394 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3395 sc->sc_stats.ast_tx_noack++; 3396 } else if (pktlen > ic->ic_rtsthreshold) { 3397 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3398 cix = rt->info[rix].controlRate; 3399 sc->sc_stats.ast_tx_rts++; 3400 } 3401 3402 /* 3403 * If 802.11g protection is enabled, determine whether 3404 * to use RTS/CTS or just CTS. Note that this is only 3405 * done for OFDM unicast frames. 3406 */ 3407 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3408 rt->info[rix].phy == IEEE80211_T_OFDM && 3409 (flags & HAL_TXDESC_NOACK) == 0) { 3410 /* XXX fragments must use CCK rates w/ protection */ 3411 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3412 flags |= HAL_TXDESC_RTSENA; 3413 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3414 flags |= HAL_TXDESC_CTSENA; 3415 cix = rt->info[sc->sc_protrix].controlRate; 3416 sc->sc_stats.ast_tx_protect++; 3417 } 3418 3419 /* 3420 * Calculate duration. This logically belongs in the 802.11 3421 * layer but it lacks sufficient information to calculate it. 3422 */ 3423 if ((flags & HAL_TXDESC_NOACK) == 0 && 3424 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3425 u_int16_t dur; 3426 /* 3427 * XXX not right with fragmentation. 3428 */ 3429 if (shortPreamble) 3430 dur = rt->info[rix].spAckDuration; 3431 else 3432 dur = rt->info[rix].lpAckDuration; 3433 *(u_int16_t *)wh->i_dur = htole16(dur); 3434 } 3435 3436 /* 3437 * Calculate RTS/CTS rate and duration if needed. 3438 */ 3439 ctsduration = 0; 3440 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3441 /* 3442 * CTS transmit rate is derived from the transmit rate 3443 * by looking in the h/w rate table. We must also factor 3444 * in whether or not a short preamble is to be used. 3445 */ 3446 /* NB: cix is set above where RTS/CTS is enabled */ 3447 KASSERT(cix != 0xff, ("cix not setup")); 3448 ctsrate = rt->info[cix].rateCode; 3449 /* 3450 * Compute the transmit duration based on the frame 3451 * size and the size of an ACK frame. We call into the 3452 * HAL to do the computation since it depends on the 3453 * characteristics of the actual PHY being used. 3454 * 3455 * NB: CTS is assumed the same size as an ACK so we can 3456 * use the precalculated ACK durations. 3457 */ 3458 if (shortPreamble) { 3459 ctsrate |= rt->info[cix].shortPreamble; 3460 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3461 ctsduration += rt->info[cix].spAckDuration; 3462 ctsduration += ath_hal_computetxtime(ah, 3463 rt, pktlen, rix, AH_TRUE); 3464 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3465 ctsduration += rt->info[cix].spAckDuration; 3466 } else { 3467 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3468 ctsduration += rt->info[cix].lpAckDuration; 3469 ctsduration += ath_hal_computetxtime(ah, 3470 rt, pktlen, rix, AH_FALSE); 3471 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3472 ctsduration += rt->info[cix].lpAckDuration; 3473 } 3474 /* 3475 * Must disable multi-rate retry when using RTS/CTS. 3476 */ 3477 try0 = ATH_TXMAXTRY; 3478 } else 3479 ctsrate = 0; 3480 3481 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3482 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len, 3483 sc->sc_hwmap[txrate].ieeerate, -1); 3484 3485 if (ic->ic_rawbpf) 3486 bpf_mtap(ic->ic_rawbpf, m0); 3487 if (sc->sc_drvbpf) { 3488 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3489 if (iswep) 3490 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3491 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3492 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3493 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3494 3495 bpf_mtap2(sc->sc_drvbpf, 3496 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3497 } 3498 3499 /* 3500 * Determine if a tx interrupt should be generated for 3501 * this descriptor. We take a tx interrupt to reap 3502 * descriptors when the h/w hits an EOL condition or 3503 * when the descriptor is specifically marked to generate 3504 * an interrupt. We periodically mark descriptors in this 3505 * way to insure timely replenishing of the supply needed 3506 * for sending frames. Defering interrupts reduces system 3507 * load and potentially allows more concurrent work to be 3508 * done but if done to aggressively can cause senders to 3509 * backup. 3510 * 3511 * NB: use >= to deal with sc_txintrperiod changing 3512 * dynamically through sysctl. 3513 */ 3514 if (flags & HAL_TXDESC_INTREQ) { 3515 txq->axq_intrcnt = 0; 3516 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3517 flags |= HAL_TXDESC_INTREQ; 3518 txq->axq_intrcnt = 0; 3519 } 3520 3521 /* 3522 * Formulate first tx descriptor with tx controls. 3523 */ 3524 /* XXX check return value? */ 3525 ath_hal_setuptxdesc(ah, ds 3526 , pktlen /* packet length */ 3527 , hdrlen /* header length */ 3528 , atype /* Atheros packet type */ 3529 , ni->ni_txpower /* txpower */ 3530 , txrate, try0 /* series 0 rate/tries */ 3531 , keyix /* key cache index */ 3532 , sc->sc_txantenna /* antenna mode */ 3533 , flags /* flags */ 3534 , ctsrate /* rts/cts rate */ 3535 , ctsduration /* rts/cts duration */ 3536 ); 3537 /* 3538 * Setup the multi-rate retry state only when we're 3539 * going to use it. This assumes ath_hal_setuptxdesc 3540 * initializes the descriptors (so we don't have to) 3541 * when the hardware supports multi-rate retry and 3542 * we don't use it. 3543 */ 3544 if (try0 != ATH_TXMAXTRY) 3545 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 3546 3547 /* 3548 * Fillin the remainder of the descriptor info. 3549 */ 3550 ds0 = ds; 3551 for (i = 0; i < bf->bf_nseg; i++, ds++) { 3552 ds->ds_data = bf->bf_segs[i].ds_addr; 3553 if (i == bf->bf_nseg - 1) 3554 ds->ds_link = 0; 3555 else 3556 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 3557 ath_hal_filltxdesc(ah, ds 3558 , bf->bf_segs[i].ds_len /* segment length */ 3559 , i == 0 /* first segment */ 3560 , i == bf->bf_nseg - 1 /* last segment */ 3561 , ds0 /* first descriptor */ 3562 ); 3563 DPRINTF(sc, ATH_DEBUG_XMIT, 3564 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 3565 __func__, i, ds->ds_link, ds->ds_data, 3566 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 3567 } 3568 /* 3569 * Insert the frame on the outbound list and 3570 * pass it on to the hardware. 3571 */ 3572 ATH_TXQ_LOCK(txq); 3573 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { 3574 u_int32_t txopLimit = IEEE80211_TXOP_TO_US( 3575 cap->cap_wmeParams[pri].wmep_txopLimit); 3576 /* 3577 * When bursting, potentially extend the CTS duration 3578 * of a previously queued frame to cover this frame 3579 * and not exceed the txopLimit. If that can be done 3580 * then disable RTS/CTS on this frame since it's now 3581 * covered (burst extension). Otherwise we must terminate 3582 * the burst before this frame goes out so as not to 3583 * violate the WME parameters. All this is complicated 3584 * as we need to update the state of packets on the 3585 * (live) hardware queue. The logic is buried in the hal 3586 * because it's highly chip-specific. 3587 */ 3588 if (txopLimit != 0) { 3589 sc->sc_stats.ast_tx_ctsburst++; 3590 if (updateCTSForBursting(ah, ds0, txq) == 0) { 3591 /* 3592 * This frame was not covered by RTS/CTS from 3593 * the previous frame in the burst; update the 3594 * descriptor pointers so this frame is now 3595 * treated as the last frame for extending a 3596 * burst. 3597 */ 3598 txq->axq_lastdsWithCTS = ds0; 3599 /* set gating Desc to final desc */ 3600 txq->axq_gatingds = 3601 (struct ath_desc *)txq->axq_link; 3602 } else 3603 sc->sc_stats.ast_tx_ctsext++; 3604 } 3605 } 3606 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 3607 if (txq->axq_link == NULL) { 3608 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 3609 DPRINTF(sc, ATH_DEBUG_XMIT, 3610 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, 3611 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, 3612 txq->axq_depth); 3613 } else { 3614 *txq->axq_link = bf->bf_daddr; 3615 DPRINTF(sc, ATH_DEBUG_XMIT, 3616 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 3617 txq->axq_qnum, txq->axq_link, 3618 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 3619 } 3620 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 3621 /* 3622 * The CAB queue is started from the SWBA handler since 3623 * frames only go out on DTIM and to avoid possible races. 3624 */ 3625 if (txq != sc->sc_cabq) 3626 ath_hal_txstart(ah, txq->axq_qnum); 3627 ATH_TXQ_UNLOCK(txq); 3628 3629 return 0; 3630 #undef updateCTSForBursting 3631 #undef CTS_DURATION 3632 } 3633 3634 /* 3635 * Process completed xmit descriptors from the specified queue. 3636 */ 3637 static void 3638 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 3639 { 3640 struct ath_hal *ah = sc->sc_ah; 3641 struct ieee80211com *ic = &sc->sc_ic; 3642 struct ath_buf *bf; 3643 struct ath_desc *ds, *ds0; 3644 struct ieee80211_node *ni; 3645 struct ath_node *an; 3646 int sr, lr, pri; 3647 HAL_STATUS status; 3648 3649 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3650 __func__, txq->axq_qnum, 3651 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3652 txq->axq_link); 3653 for (;;) { 3654 ATH_TXQ_LOCK(txq); 3655 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3656 bf = STAILQ_FIRST(&txq->axq_q); 3657 if (bf == NULL) { 3658 txq->axq_link = NULL; 3659 ATH_TXQ_UNLOCK(txq); 3660 break; 3661 } 3662 ds0 = &bf->bf_desc[0]; 3663 ds = &bf->bf_desc[bf->bf_nseg - 1]; 3664 status = ath_hal_txprocdesc(ah, ds); 3665 #ifdef AR_DEBUG 3666 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3667 ath_printtxbuf(bf, status == HAL_OK); 3668 #endif 3669 if (status == HAL_EINPROGRESS) { 3670 ATH_TXQ_UNLOCK(txq); 3671 break; 3672 } 3673 if (ds0 == txq->axq_lastdsWithCTS) 3674 txq->axq_lastdsWithCTS = NULL; 3675 if (ds == txq->axq_gatingds) 3676 txq->axq_gatingds = NULL; 3677 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3678 ATH_TXQ_UNLOCK(txq); 3679 3680 ni = bf->bf_node; 3681 if (ni != NULL) { 3682 an = ATH_NODE(ni); 3683 if (ds->ds_txstat.ts_status == 0) { 3684 u_int8_t txant = ds->ds_txstat.ts_antenna; 3685 sc->sc_stats.ast_ant_tx[txant]++; 3686 sc->sc_ant_tx[txant]++; 3687 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 3688 sc->sc_stats.ast_tx_altrate++; 3689 sc->sc_stats.ast_tx_rssi = 3690 ds->ds_txstat.ts_rssi; 3691 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi, 3692 ds->ds_txstat.ts_rssi); 3693 pri = M_WME_GETAC(bf->bf_m); 3694 if (pri >= WME_AC_VO) 3695 ic->ic_wme.wme_hipri_traffic++; 3696 ni->ni_inact = ni->ni_inact_reload; 3697 } else { 3698 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 3699 sc->sc_stats.ast_tx_xretries++; 3700 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 3701 sc->sc_stats.ast_tx_fifoerr++; 3702 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 3703 sc->sc_stats.ast_tx_filtered++; 3704 } 3705 sr = ds->ds_txstat.ts_shortretry; 3706 lr = ds->ds_txstat.ts_longretry; 3707 sc->sc_stats.ast_tx_shortretry += sr; 3708 sc->sc_stats.ast_tx_longretry += lr; 3709 /* 3710 * Hand the descriptor to the rate control algorithm. 3711 */ 3712 ath_rate_tx_complete(sc, an, ds, ds0); 3713 /* 3714 * Reclaim reference to node. 3715 * 3716 * NB: the node may be reclaimed here if, for example 3717 * this is a DEAUTH message that was sent and the 3718 * node was timed out due to inactivity. 3719 */ 3720 ieee80211_free_node(ni); 3721 } 3722 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3723 BUS_DMASYNC_POSTWRITE); 3724 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3725 m_freem(bf->bf_m); 3726 bf->bf_m = NULL; 3727 bf->bf_node = NULL; 3728 3729 ATH_TXBUF_LOCK(sc); 3730 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3731 ATH_TXBUF_UNLOCK(sc); 3732 } 3733 } 3734 3735 /* 3736 * Deferred processing of transmit interrupt; special-cased 3737 * for a single hardware transmit queue (e.g. 5210 and 5211). 3738 */ 3739 static void 3740 ath_tx_proc_q0(void *arg, int npending) 3741 { 3742 struct ath_softc *sc = arg; 3743 struct ifnet *ifp = sc->sc_ifp; 3744 3745 ath_tx_processq(sc, &sc->sc_txq[0]); 3746 ath_tx_processq(sc, sc->sc_cabq); 3747 ifp->if_flags &= ~IFF_OACTIVE; 3748 sc->sc_tx_timer = 0; 3749 3750 if (sc->sc_softled) 3751 ath_led_event(sc, ATH_LED_TX); 3752 3753 ath_start(ifp); 3754 } 3755 3756 /* 3757 * Deferred processing of transmit interrupt; special-cased 3758 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3759 */ 3760 static void 3761 ath_tx_proc_q0123(void *arg, int npending) 3762 { 3763 struct ath_softc *sc = arg; 3764 struct ifnet *ifp = sc->sc_ifp; 3765 3766 /* 3767 * Process each active queue. 3768 */ 3769 ath_tx_processq(sc, &sc->sc_txq[0]); 3770 ath_tx_processq(sc, &sc->sc_txq[1]); 3771 ath_tx_processq(sc, &sc->sc_txq[2]); 3772 ath_tx_processq(sc, &sc->sc_txq[3]); 3773 ath_tx_processq(sc, sc->sc_cabq); 3774 3775 ifp->if_flags &= ~IFF_OACTIVE; 3776 sc->sc_tx_timer = 0; 3777 3778 if (sc->sc_softled) 3779 ath_led_event(sc, ATH_LED_TX); 3780 3781 ath_start(ifp); 3782 } 3783 3784 /* 3785 * Deferred processing of transmit interrupt. 3786 */ 3787 static void 3788 ath_tx_proc(void *arg, int npending) 3789 { 3790 struct ath_softc *sc = arg; 3791 struct ifnet *ifp = sc->sc_ifp; 3792 int i; 3793 3794 /* 3795 * Process each active queue. 3796 */ 3797 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */ 3798 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3799 if (ATH_TXQ_SETUP(sc, i)) 3800 ath_tx_processq(sc, &sc->sc_txq[i]); 3801 3802 ifp->if_flags &= ~IFF_OACTIVE; 3803 sc->sc_tx_timer = 0; 3804 3805 if (sc->sc_softled) 3806 ath_led_event(sc, ATH_LED_TX); 3807 3808 ath_start(ifp); 3809 } 3810 3811 static void 3812 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3813 { 3814 struct ath_hal *ah = sc->sc_ah; 3815 struct ieee80211_node *ni; 3816 struct ath_buf *bf; 3817 3818 /* 3819 * NB: this assumes output has been stopped and 3820 * we do not need to block ath_tx_tasklet 3821 */ 3822 for (;;) { 3823 ATH_TXQ_LOCK(txq); 3824 bf = STAILQ_FIRST(&txq->axq_q); 3825 if (bf == NULL) { 3826 txq->axq_link = NULL; 3827 ATH_TXQ_UNLOCK(txq); 3828 break; 3829 } 3830 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3831 ATH_TXQ_UNLOCK(txq); 3832 #ifdef AR_DEBUG 3833 if (sc->sc_debug & ATH_DEBUG_RESET) 3834 ath_printtxbuf(bf, 3835 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 3836 #endif /* AR_DEBUG */ 3837 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3838 m_freem(bf->bf_m); 3839 bf->bf_m = NULL; 3840 ni = bf->bf_node; 3841 bf->bf_node = NULL; 3842 if (ni != NULL) { 3843 /* 3844 * Reclaim node reference. 3845 */ 3846 ieee80211_free_node(ni); 3847 } 3848 ATH_TXBUF_LOCK(sc); 3849 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3850 ATH_TXBUF_UNLOCK(sc); 3851 } 3852 } 3853 3854 static void 3855 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 3856 { 3857 struct ath_hal *ah = sc->sc_ah; 3858 3859 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 3860 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3861 __func__, txq->axq_qnum, 3862 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 3863 txq->axq_link); 3864 } 3865 3866 /* 3867 * Drain the transmit queues and reclaim resources. 3868 */ 3869 static void 3870 ath_draintxq(struct ath_softc *sc) 3871 { 3872 struct ath_hal *ah = sc->sc_ah; 3873 struct ifnet *ifp = sc->sc_ifp; 3874 int i; 3875 3876 /* XXX return value */ 3877 if (!sc->sc_invalid) { 3878 /* don't touch the hardware if marked invalid */ 3879 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 3880 DPRINTF(sc, ATH_DEBUG_RESET, 3881 "%s: beacon queue %p\n", __func__, 3882 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 3883 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3884 if (ATH_TXQ_SETUP(sc, i)) 3885 ath_tx_stopdma(sc, &sc->sc_txq[i]); 3886 } 3887 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3888 if (ATH_TXQ_SETUP(sc, i)) 3889 ath_tx_draintxq(sc, &sc->sc_txq[i]); 3890 ifp->if_flags &= ~IFF_OACTIVE; 3891 sc->sc_tx_timer = 0; 3892 } 3893 3894 /* 3895 * Disable the receive h/w in preparation for a reset. 3896 */ 3897 static void 3898 ath_stoprecv(struct ath_softc *sc) 3899 { 3900 #define PA2DESC(_sc, _pa) \ 3901 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3902 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3903 struct ath_hal *ah = sc->sc_ah; 3904 3905 ath_hal_stoppcurecv(ah); /* disable PCU */ 3906 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 3907 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 3908 DELAY(3000); /* 3ms is long enough for 1 frame */ 3909 #ifdef AR_DEBUG 3910 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 3911 struct ath_buf *bf; 3912 3913 printf("%s: rx queue %p, link %p\n", __func__, 3914 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 3915 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3916 struct ath_desc *ds = bf->bf_desc; 3917 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 3918 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 3919 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 3920 ath_printrxbuf(bf, status == HAL_OK); 3921 } 3922 } 3923 #endif 3924 sc->sc_rxlink = NULL; /* just in case */ 3925 #undef PA2DESC 3926 } 3927 3928 /* 3929 * Enable the receive h/w following a reset. 3930 */ 3931 static int 3932 ath_startrecv(struct ath_softc *sc) 3933 { 3934 struct ath_hal *ah = sc->sc_ah; 3935 struct ath_buf *bf; 3936 3937 sc->sc_rxlink = NULL; 3938 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3939 int error = ath_rxbuf_init(sc, bf); 3940 if (error != 0) { 3941 DPRINTF(sc, ATH_DEBUG_RECV, 3942 "%s: ath_rxbuf_init failed %d\n", 3943 __func__, error); 3944 return error; 3945 } 3946 } 3947 3948 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3949 ath_hal_putrxbuf(ah, bf->bf_daddr); 3950 ath_hal_rxena(ah); /* enable recv descriptors */ 3951 ath_mode_init(sc); /* set filters, etc. */ 3952 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 3953 return 0; 3954 } 3955 3956 /* 3957 * Update internal state after a channel change. 3958 */ 3959 static void 3960 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 3961 { 3962 struct ieee80211com *ic = &sc->sc_ic; 3963 enum ieee80211_phymode mode; 3964 u_int16_t flags; 3965 3966 /* 3967 * Change channels and update the h/w rate map 3968 * if we're switching; e.g. 11a to 11b/g. 3969 */ 3970 mode = ieee80211_chan2mode(ic, chan); 3971 if (mode != sc->sc_curmode) 3972 ath_setcurmode(sc, mode); 3973 /* 3974 * Update BPF state. NB: ethereal et. al. don't handle 3975 * merged flags well so pick a unique mode for their use. 3976 */ 3977 if (IEEE80211_IS_CHAN_A(chan)) 3978 flags = IEEE80211_CHAN_A; 3979 /* XXX 11g schizophrenia */ 3980 else if (IEEE80211_IS_CHAN_G(chan) || 3981 IEEE80211_IS_CHAN_PUREG(chan)) 3982 flags = IEEE80211_CHAN_G; 3983 else 3984 flags = IEEE80211_CHAN_B; 3985 if (IEEE80211_IS_CHAN_T(chan)) 3986 flags |= IEEE80211_CHAN_TURBO; 3987 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 3988 htole16(chan->ic_freq); 3989 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 3990 htole16(flags); 3991 } 3992 3993 /* 3994 * Set/change channels. If the channel is really being changed, 3995 * it's done by reseting the chip. To accomplish this we must 3996 * first cleanup any pending DMA, then restart stuff after a la 3997 * ath_init. 3998 */ 3999 static int 4000 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4001 { 4002 struct ath_hal *ah = sc->sc_ah; 4003 struct ieee80211com *ic = &sc->sc_ic; 4004 HAL_CHANNEL hchan; 4005 4006 /* 4007 * Convert to a HAL channel description with 4008 * the flags constrained to reflect the current 4009 * operating mode. 4010 */ 4011 hchan.channel = chan->ic_freq; 4012 hchan.channelFlags = ath_chan2flags(ic, chan); 4013 4014 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n", 4015 __func__, 4016 ath_hal_mhz2ieee(sc->sc_curchan.channel, 4017 sc->sc_curchan.channelFlags), 4018 sc->sc_curchan.channel, 4019 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel); 4020 if (hchan.channel != sc->sc_curchan.channel || 4021 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4022 HAL_STATUS status; 4023 4024 /* 4025 * To switch channels clear any pending DMA operations; 4026 * wait long enough for the RX fifo to drain, reset the 4027 * hardware at the new frequency, and then re-enable 4028 * the relevant bits of the h/w. 4029 */ 4030 ath_hal_intrset(ah, 0); /* disable interrupts */ 4031 ath_draintxq(sc); /* clear pending tx frames */ 4032 ath_stoprecv(sc); /* turn off frame recv */ 4033 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4034 if_printf(ic->ic_ifp, "ath_chan_set: unable to reset " 4035 "channel %u (%u Mhz)\n", 4036 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 4037 return EIO; 4038 } 4039 sc->sc_curchan = hchan; 4040 ath_update_txpow(sc); /* update tx power state */ 4041 4042 /* 4043 * Re-enable rx framework. 4044 */ 4045 if (ath_startrecv(sc) != 0) { 4046 if_printf(ic->ic_ifp, 4047 "ath_chan_set: unable to restart recv logic\n"); 4048 return EIO; 4049 } 4050 4051 /* 4052 * Change channels and update the h/w rate map 4053 * if we're switching; e.g. 11a to 11b/g. 4054 */ 4055 ic->ic_ibss_chan = chan; 4056 ath_chan_change(sc, chan); 4057 4058 /* 4059 * Re-enable interrupts. 4060 */ 4061 ath_hal_intrset(ah, sc->sc_imask); 4062 } 4063 return 0; 4064 } 4065 4066 static void 4067 ath_next_scan(void *arg) 4068 { 4069 struct ath_softc *sc = arg; 4070 struct ieee80211com *ic = &sc->sc_ic; 4071 4072 if (ic->ic_state == IEEE80211_S_SCAN) 4073 ieee80211_next_scan(ic); 4074 } 4075 4076 /* 4077 * Periodically recalibrate the PHY to account 4078 * for temperature/environment changes. 4079 */ 4080 static void 4081 ath_calibrate(void *arg) 4082 { 4083 struct ath_softc *sc = arg; 4084 struct ath_hal *ah = sc->sc_ah; 4085 4086 sc->sc_stats.ast_per_cal++; 4087 4088 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n", 4089 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags); 4090 4091 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4092 /* 4093 * Rfgain is out of bounds, reset the chip 4094 * to load new gain values. 4095 */ 4096 sc->sc_stats.ast_per_rfgain++; 4097 ath_reset(sc->sc_ifp); 4098 } 4099 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) { 4100 DPRINTF(sc, ATH_DEBUG_ANY, 4101 "%s: calibration of channel %u failed\n", 4102 __func__, sc->sc_curchan.channel); 4103 sc->sc_stats.ast_per_calfail++; 4104 } 4105 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc); 4106 } 4107 4108 static int 4109 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4110 { 4111 struct ifnet *ifp = ic->ic_ifp; 4112 struct ath_softc *sc = ifp->if_softc; 4113 struct ath_hal *ah = sc->sc_ah; 4114 struct ieee80211_node *ni; 4115 int i, error; 4116 const u_int8_t *bssid; 4117 u_int32_t rfilt; 4118 static const HAL_LED_STATE leds[] = { 4119 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4120 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4121 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4122 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4123 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4124 }; 4125 4126 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4127 ieee80211_state_name[ic->ic_state], 4128 ieee80211_state_name[nstate]); 4129 4130 callout_stop(&sc->sc_scan_ch); 4131 callout_stop(&sc->sc_cal_ch); 4132 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4133 4134 if (nstate == IEEE80211_S_INIT) { 4135 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4136 /* 4137 * NB: disable interrupts so we don't rx frames. 4138 */ 4139 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4140 /* 4141 * Notify the rate control algorithm. 4142 */ 4143 ath_rate_newstate(sc, nstate); 4144 goto done; 4145 } 4146 ni = ic->ic_bss; 4147 error = ath_chan_set(sc, ni->ni_chan); 4148 if (error != 0) 4149 goto bad; 4150 rfilt = ath_calcrxfilter(sc, nstate); 4151 if (nstate == IEEE80211_S_SCAN) 4152 bssid = ifp->if_broadcastaddr; 4153 else 4154 bssid = ni->ni_bssid; 4155 ath_hal_setrxfilter(ah, rfilt); 4156 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4157 __func__, rfilt, ether_sprintf(bssid)); 4158 4159 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4160 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4161 else 4162 ath_hal_setassocid(ah, bssid, 0); 4163 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4164 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4165 if (ath_hal_keyisvalid(ah, i)) 4166 ath_hal_keysetmac(ah, i, bssid); 4167 } 4168 4169 /* 4170 * Notify the rate control algorithm so rates 4171 * are setup should ath_beacon_alloc be called. 4172 */ 4173 ath_rate_newstate(sc, nstate); 4174 4175 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4176 /* nothing to do */; 4177 } else if (nstate == IEEE80211_S_RUN) { 4178 DPRINTF(sc, ATH_DEBUG_STATE, 4179 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4180 "capinfo=0x%04x chan=%d\n" 4181 , __func__ 4182 , ic->ic_flags 4183 , ni->ni_intval 4184 , ether_sprintf(ni->ni_bssid) 4185 , ni->ni_capinfo 4186 , ieee80211_chan2ieee(ic, ni->ni_chan)); 4187 4188 switch (ic->ic_opmode) { 4189 case IEEE80211_M_HOSTAP: 4190 case IEEE80211_M_IBSS: 4191 /* 4192 * Allocate and setup the beacon frame. 4193 * 4194 * Stop any previous beacon DMA. This may be 4195 * necessary, for example, when an ibss merge 4196 * causes reconfiguration; there will be a state 4197 * transition from RUN->RUN that means we may 4198 * be called with beacon transmission active. 4199 */ 4200 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4201 ath_beacon_free(sc); 4202 error = ath_beacon_alloc(sc, ni); 4203 if (error != 0) 4204 goto bad; 4205 break; 4206 case IEEE80211_M_STA: 4207 /* 4208 * Allocate a key cache slot to the station. 4209 */ 4210 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4211 sc->sc_hasclrkey && 4212 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4213 ath_setup_stationkey(ni); 4214 break; 4215 default: 4216 break; 4217 } 4218 4219 /* 4220 * Configure the beacon and sleep timers. 4221 */ 4222 ath_beacon_config(sc); 4223 } else { 4224 ath_hal_intrset(ah, 4225 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4226 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4227 } 4228 done: 4229 /* 4230 * Invoke the parent method to complete the work. 4231 */ 4232 error = sc->sc_newstate(ic, nstate, arg); 4233 /* 4234 * Finally, start any timers. 4235 */ 4236 if (nstate == IEEE80211_S_RUN) { 4237 /* start periodic recalibration timer */ 4238 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, 4239 ath_calibrate, sc); 4240 } else if (nstate == IEEE80211_S_SCAN) { 4241 /* start ap/neighbor scan timer */ 4242 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4243 ath_next_scan, sc); 4244 } 4245 bad: 4246 return error; 4247 } 4248 4249 /* 4250 * Allocate a key cache slot to the station so we can 4251 * setup a mapping from key index to node. The key cache 4252 * slot is needed for managing antenna state and for 4253 * compression when stations do not use crypto. We do 4254 * it uniliaterally here; if crypto is employed this slot 4255 * will be reassigned. 4256 */ 4257 static void 4258 ath_setup_stationkey(struct ieee80211_node *ni) 4259 { 4260 struct ieee80211com *ic = ni->ni_ic; 4261 struct ath_softc *sc = ic->ic_ifp->if_softc; 4262 u_int16_t keyix; 4263 4264 keyix = ath_key_alloc(ic, &ni->ni_ucastkey); 4265 if (keyix == IEEE80211_KEYIX_NONE) { 4266 /* 4267 * Key cache is full; we'll fall back to doing 4268 * the more expensive lookup in software. Note 4269 * this also means no h/w compression. 4270 */ 4271 /* XXX msg+statistic */ 4272 } else { 4273 ni->ni_ucastkey.wk_keyix = keyix; 4274 /* NB: this will create a pass-thru key entry */ 4275 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4276 } 4277 } 4278 4279 /* 4280 * Setup driver-specific state for a newly associated node. 4281 * Note that we're called also on a re-associate, the isnew 4282 * param tells us if this is the first time or not. 4283 */ 4284 static void 4285 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 4286 { 4287 struct ath_softc *sc = ic->ic_ifp->if_softc; 4288 4289 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4290 if (isnew && 4291 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4292 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4293 ("new assoc with a unicast key already setup (keyix %u)", 4294 ni->ni_ucastkey.wk_keyix)); 4295 ath_setup_stationkey(ni); 4296 } 4297 } 4298 4299 static int 4300 ath_getchannels(struct ath_softc *sc, u_int cc, 4301 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4302 { 4303 struct ieee80211com *ic = &sc->sc_ic; 4304 struct ifnet *ifp = sc->sc_ifp; 4305 struct ath_hal *ah = sc->sc_ah; 4306 HAL_CHANNEL *chans; 4307 int i, ix, nchan; 4308 4309 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4310 M_TEMP, M_NOWAIT); 4311 if (chans == NULL) { 4312 if_printf(ifp, "unable to allocate channel table\n"); 4313 return ENOMEM; 4314 } 4315 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4316 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4317 u_int32_t rd; 4318 4319 ath_hal_getregdomain(ah, &rd); 4320 if_printf(ifp, "unable to collect channel list from hal; " 4321 "regdomain likely %u country code %u\n", rd, cc); 4322 free(chans, M_TEMP); 4323 return EINVAL; 4324 } 4325 4326 /* 4327 * Convert HAL channels to ieee80211 ones and insert 4328 * them in the table according to their channel number. 4329 */ 4330 for (i = 0; i < nchan; i++) { 4331 HAL_CHANNEL *c = &chans[i]; 4332 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 4333 if (ix > IEEE80211_CHAN_MAX) { 4334 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 4335 ix, c->channel, c->channelFlags); 4336 continue; 4337 } 4338 /* NB: flags are known to be compatible */ 4339 if (ic->ic_channels[ix].ic_freq == 0) { 4340 ic->ic_channels[ix].ic_freq = c->channel; 4341 ic->ic_channels[ix].ic_flags = c->channelFlags; 4342 } else { 4343 /* channels overlap; e.g. 11g and 11b */ 4344 ic->ic_channels[ix].ic_flags |= c->channelFlags; 4345 } 4346 } 4347 free(chans, M_TEMP); 4348 return 0; 4349 } 4350 4351 static void 4352 ath_led_done(void *arg) 4353 { 4354 struct ath_softc *sc = arg; 4355 4356 sc->sc_blinking = 0; 4357 } 4358 4359 /* 4360 * Turn the LED off: flip the pin and then set a timer so no 4361 * update will happen for the specified duration. 4362 */ 4363 static void 4364 ath_led_off(void *arg) 4365 { 4366 struct ath_softc *sc = arg; 4367 4368 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4369 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4370 } 4371 4372 /* 4373 * Blink the LED according to the specified on/off times. 4374 */ 4375 static void 4376 ath_led_blink(struct ath_softc *sc, int on, int off) 4377 { 4378 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4379 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4380 sc->sc_blinking = 1; 4381 sc->sc_ledoff = off; 4382 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4383 } 4384 4385 static void 4386 ath_led_event(struct ath_softc *sc, int event) 4387 { 4388 4389 sc->sc_ledevent = ticks; /* time of last event */ 4390 if (sc->sc_blinking) /* don't interrupt active blink */ 4391 return; 4392 switch (event) { 4393 case ATH_LED_POLL: 4394 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4395 sc->sc_hwmap[0].ledoff); 4396 break; 4397 case ATH_LED_TX: 4398 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4399 sc->sc_hwmap[sc->sc_txrate].ledoff); 4400 break; 4401 case ATH_LED_RX: 4402 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 4403 sc->sc_hwmap[sc->sc_rxrate].ledoff); 4404 break; 4405 } 4406 } 4407 4408 static void 4409 ath_update_txpow(struct ath_softc *sc) 4410 { 4411 struct ieee80211com *ic = &sc->sc_ic; 4412 struct ath_hal *ah = sc->sc_ah; 4413 u_int32_t txpow; 4414 4415 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 4416 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 4417 /* read back in case value is clamped */ 4418 ath_hal_gettxpowlimit(ah, &txpow); 4419 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 4420 } 4421 /* 4422 * Fetch max tx power level for status requests. 4423 */ 4424 ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 4425 ic->ic_bss->ni_txpower = txpow; 4426 } 4427 4428 static int 4429 ath_rate_setup(struct ath_softc *sc, u_int mode) 4430 { 4431 struct ath_hal *ah = sc->sc_ah; 4432 struct ieee80211com *ic = &sc->sc_ic; 4433 const HAL_RATE_TABLE *rt; 4434 struct ieee80211_rateset *rs; 4435 int i, maxrates; 4436 4437 switch (mode) { 4438 case IEEE80211_MODE_11A: 4439 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 4440 break; 4441 case IEEE80211_MODE_11B: 4442 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 4443 break; 4444 case IEEE80211_MODE_11G: 4445 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 4446 break; 4447 case IEEE80211_MODE_TURBO_A: 4448 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4449 break; 4450 case IEEE80211_MODE_TURBO_G: 4451 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G); 4452 break; 4453 default: 4454 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4455 __func__, mode); 4456 return 0; 4457 } 4458 rt = sc->sc_rates[mode]; 4459 if (rt == NULL) 4460 return 0; 4461 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 4462 DPRINTF(sc, ATH_DEBUG_ANY, 4463 "%s: rate table too small (%u > %u)\n", 4464 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 4465 maxrates = IEEE80211_RATE_MAXSIZE; 4466 } else 4467 maxrates = rt->rateCount; 4468 rs = &ic->ic_sup_rates[mode]; 4469 for (i = 0; i < maxrates; i++) 4470 rs->rs_rates[i] = rt->info[i].dot11Rate; 4471 rs->rs_nrates = maxrates; 4472 return 1; 4473 } 4474 4475 static void 4476 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4477 { 4478 #define N(a) (sizeof(a)/sizeof(a[0])) 4479 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4480 static const struct { 4481 u_int rate; /* tx/rx 802.11 rate */ 4482 u_int16_t timeOn; /* LED on time (ms) */ 4483 u_int16_t timeOff; /* LED off time (ms) */ 4484 } blinkrates[] = { 4485 { 108, 40, 10 }, 4486 { 96, 44, 11 }, 4487 { 72, 50, 13 }, 4488 { 48, 57, 14 }, 4489 { 36, 67, 16 }, 4490 { 24, 80, 20 }, 4491 { 22, 100, 25 }, 4492 { 18, 133, 34 }, 4493 { 12, 160, 40 }, 4494 { 10, 200, 50 }, 4495 { 6, 240, 58 }, 4496 { 4, 267, 66 }, 4497 { 2, 400, 100 }, 4498 { 0, 500, 130 }, 4499 }; 4500 const HAL_RATE_TABLE *rt; 4501 int i, j; 4502 4503 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4504 rt = sc->sc_rates[mode]; 4505 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4506 for (i = 0; i < rt->rateCount; i++) 4507 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 4508 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4509 for (i = 0; i < 32; i++) { 4510 u_int8_t ix = rt->rateCodeToIndex[i]; 4511 if (ix == 0xff) { 4512 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4513 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4514 continue; 4515 } 4516 sc->sc_hwmap[i].ieeerate = 4517 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 4518 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4519 if (rt->info[ix].shortPreamble || 4520 rt->info[ix].phy == IEEE80211_T_OFDM) 4521 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4522 /* NB: receive frames include FCS */ 4523 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 4524 IEEE80211_RADIOTAP_F_FCS; 4525 /* setup blink rate table to avoid per-packet lookup */ 4526 for (j = 0; j < N(blinkrates)-1; j++) 4527 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4528 break; 4529 /* NB: this uses the last entry if the rate isn't found */ 4530 /* XXX beware of overlow */ 4531 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4532 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4533 } 4534 sc->sc_currates = rt; 4535 sc->sc_curmode = mode; 4536 /* 4537 * All protection frames are transmited at 2Mb/s for 4538 * 11g, otherwise at 1Mb/s. 4539 * XXX select protection rate index from rate table. 4540 */ 4541 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0); 4542 /* NB: caller is responsible for reseting rate control state */ 4543 #undef N 4544 } 4545 4546 #ifdef AR_DEBUG 4547 static void 4548 ath_printrxbuf(struct ath_buf *bf, int done) 4549 { 4550 struct ath_desc *ds; 4551 int i; 4552 4553 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4554 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 4555 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4556 ds->ds_link, ds->ds_data, 4557 ds->ds_ctl0, ds->ds_ctl1, 4558 ds->ds_hw[0], ds->ds_hw[1], 4559 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 4560 } 4561 } 4562 4563 static void 4564 ath_printtxbuf(struct ath_buf *bf, int done) 4565 { 4566 struct ath_desc *ds; 4567 int i; 4568 4569 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4570 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 4571 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4572 ds->ds_link, ds->ds_data, 4573 ds->ds_ctl0, ds->ds_ctl1, 4574 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 4575 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 4576 } 4577 } 4578 #endif /* AR_DEBUG */ 4579 4580 static void 4581 ath_watchdog(struct ifnet *ifp) 4582 { 4583 struct ath_softc *sc = ifp->if_softc; 4584 struct ieee80211com *ic = &sc->sc_ic; 4585 4586 ifp->if_timer = 0; 4587 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 4588 return; 4589 if (sc->sc_tx_timer) { 4590 if (--sc->sc_tx_timer == 0) { 4591 if_printf(ifp, "device timeout\n"); 4592 ath_reset(ifp); 4593 ifp->if_oerrors++; 4594 sc->sc_stats.ast_watchdog++; 4595 } else 4596 ifp->if_timer = 1; 4597 } 4598 ieee80211_watchdog(ic); 4599 } 4600 4601 /* 4602 * Diagnostic interface to the HAL. This is used by various 4603 * tools to do things like retrieve register contents for 4604 * debugging. The mechanism is intentionally opaque so that 4605 * it can change frequently w/o concern for compatiblity. 4606 */ 4607 static int 4608 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4609 { 4610 struct ath_hal *ah = sc->sc_ah; 4611 u_int id = ad->ad_id & ATH_DIAG_ID; 4612 void *indata = NULL; 4613 void *outdata = NULL; 4614 u_int32_t insize = ad->ad_in_size; 4615 u_int32_t outsize = ad->ad_out_size; 4616 int error = 0; 4617 4618 if (ad->ad_id & ATH_DIAG_IN) { 4619 /* 4620 * Copy in data. 4621 */ 4622 indata = malloc(insize, M_TEMP, M_NOWAIT); 4623 if (indata == NULL) { 4624 error = ENOMEM; 4625 goto bad; 4626 } 4627 error = copyin(ad->ad_in_data, indata, insize); 4628 if (error) 4629 goto bad; 4630 } 4631 if (ad->ad_id & ATH_DIAG_DYN) { 4632 /* 4633 * Allocate a buffer for the results (otherwise the HAL 4634 * returns a pointer to a buffer where we can read the 4635 * results). Note that we depend on the HAL leaving this 4636 * pointer for us to use below in reclaiming the buffer; 4637 * may want to be more defensive. 4638 */ 4639 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4640 if (outdata == NULL) { 4641 error = ENOMEM; 4642 goto bad; 4643 } 4644 } 4645 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4646 if (outsize < ad->ad_out_size) 4647 ad->ad_out_size = outsize; 4648 if (outdata != NULL) 4649 error = copyout(outdata, ad->ad_out_data, 4650 ad->ad_out_size); 4651 } else { 4652 error = EINVAL; 4653 } 4654 bad: 4655 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4656 free(indata, M_TEMP); 4657 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4658 free(outdata, M_TEMP); 4659 return error; 4660 } 4661 4662 static int 4663 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4664 { 4665 #define IS_RUNNING(ifp) \ 4666 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) 4667 struct ath_softc *sc = ifp->if_softc; 4668 struct ieee80211com *ic = &sc->sc_ic; 4669 struct ifreq *ifr = (struct ifreq *)data; 4670 int error = 0; 4671 4672 ATH_LOCK(sc); 4673 switch (cmd) { 4674 case SIOCSIFFLAGS: 4675 if (IS_RUNNING(ifp)) { 4676 /* 4677 * To avoid rescanning another access point, 4678 * do not call ath_init() here. Instead, 4679 * only reflect promisc mode settings. 4680 */ 4681 ath_mode_init(sc); 4682 } else if (ifp->if_flags & IFF_UP) { 4683 /* 4684 * Beware of being called during attach/detach 4685 * to reset promiscuous mode. In that case we 4686 * will still be marked UP but not RUNNING. 4687 * However trying to re-init the interface 4688 * is the wrong thing to do as we've already 4689 * torn down much of our state. There's 4690 * probably a better way to deal with this. 4691 */ 4692 if (!sc->sc_invalid && ic->ic_bss != NULL) 4693 ath_init(sc); /* XXX lose error */ 4694 } else 4695 ath_stop_locked(ifp); 4696 break; 4697 case SIOCADDMULTI: 4698 case SIOCDELMULTI: 4699 /* 4700 * The upper layer has already installed/removed 4701 * the multicast address(es), just recalculate the 4702 * multicast filter for the card. 4703 */ 4704 if (ifp->if_flags & IFF_RUNNING) 4705 ath_mode_init(sc); 4706 break; 4707 case SIOCGATHSTATS: 4708 /* NB: embed these numbers to get a consistent view */ 4709 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4710 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4711 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 4712 ATH_UNLOCK(sc); 4713 /* 4714 * NB: Drop the softc lock in case of a page fault; 4715 * we'll accept any potential inconsisentcy in the 4716 * statistics. The alternative is to copy the data 4717 * to a local structure. 4718 */ 4719 return copyout(&sc->sc_stats, 4720 ifr->ifr_data, sizeof (sc->sc_stats)); 4721 case SIOCGATHDIAG: 4722 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 4723 break; 4724 default: 4725 error = ieee80211_ioctl(ic, cmd, data); 4726 if (error == ENETRESET) { 4727 if (IS_RUNNING(ifp) && 4728 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 4729 ath_init(sc); /* XXX lose error */ 4730 error = 0; 4731 } 4732 if (error == ERESTART) 4733 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0; 4734 break; 4735 } 4736 ATH_UNLOCK(sc); 4737 return error; 4738 #undef IS_RUNNING 4739 } 4740 4741 static int 4742 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS) 4743 { 4744 struct ath_softc *sc = arg1; 4745 u_int slottime = ath_hal_getslottime(sc->sc_ah); 4746 int error; 4747 4748 error = sysctl_handle_int(oidp, &slottime, 0, req); 4749 if (error || !req->newptr) 4750 return error; 4751 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0; 4752 } 4753 4754 static int 4755 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS) 4756 { 4757 struct ath_softc *sc = arg1; 4758 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah); 4759 int error; 4760 4761 error = sysctl_handle_int(oidp, &acktimeout, 0, req); 4762 if (error || !req->newptr) 4763 return error; 4764 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0; 4765 } 4766 4767 static int 4768 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS) 4769 { 4770 struct ath_softc *sc = arg1; 4771 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah); 4772 int error; 4773 4774 error = sysctl_handle_int(oidp, &ctstimeout, 0, req); 4775 if (error || !req->newptr) 4776 return error; 4777 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0; 4778 } 4779 4780 static int 4781 ath_sysctl_softled(SYSCTL_HANDLER_ARGS) 4782 { 4783 struct ath_softc *sc = arg1; 4784 int softled = sc->sc_softled; 4785 int error; 4786 4787 error = sysctl_handle_int(oidp, &softled, 0, req); 4788 if (error || !req->newptr) 4789 return error; 4790 softled = (softled != 0); 4791 if (softled != sc->sc_softled) { 4792 if (softled) { 4793 /* NB: handle any sc_ledpin change */ 4794 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 4795 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 4796 !sc->sc_ledon); 4797 } 4798 sc->sc_softled = softled; 4799 } 4800 return 0; 4801 } 4802 4803 static int 4804 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS) 4805 { 4806 struct ath_softc *sc = arg1; 4807 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah); 4808 int error; 4809 4810 error = sysctl_handle_int(oidp, &defantenna, 0, req); 4811 if (!error && req->newptr) 4812 ath_hal_setdefantenna(sc->sc_ah, defantenna); 4813 return error; 4814 } 4815 4816 static int 4817 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS) 4818 { 4819 struct ath_softc *sc = arg1; 4820 u_int diversity = sc->sc_diversity; 4821 int error; 4822 4823 error = sysctl_handle_int(oidp, &diversity, 0, req); 4824 if (error || !req->newptr) 4825 return error; 4826 sc->sc_diversity = diversity; 4827 return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0; 4828 } 4829 4830 static int 4831 ath_sysctl_diag(SYSCTL_HANDLER_ARGS) 4832 { 4833 struct ath_softc *sc = arg1; 4834 u_int32_t diag; 4835 int error; 4836 4837 if (!ath_hal_getdiag(sc->sc_ah, &diag)) 4838 return EINVAL; 4839 error = sysctl_handle_int(oidp, &diag, 0, req); 4840 if (error || !req->newptr) 4841 return error; 4842 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0; 4843 } 4844 4845 static int 4846 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS) 4847 { 4848 struct ath_softc *sc = arg1; 4849 struct ifnet *ifp = sc->sc_ifp; 4850 u_int32_t scale; 4851 int error; 4852 4853 ath_hal_gettpscale(sc->sc_ah, &scale); 4854 error = sysctl_handle_int(oidp, &scale, 0, req); 4855 if (error || !req->newptr) 4856 return error; 4857 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp); 4858 } 4859 4860 static int 4861 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS) 4862 { 4863 struct ath_softc *sc = arg1; 4864 u_int tpc = ath_hal_gettpc(sc->sc_ah); 4865 int error; 4866 4867 error = sysctl_handle_int(oidp, &tpc, 0, req); 4868 if (error || !req->newptr) 4869 return error; 4870 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0; 4871 } 4872 4873 static void 4874 ath_sysctlattach(struct ath_softc *sc) 4875 { 4876 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 4877 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 4878 4879 ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode); 4880 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4881 "countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0, 4882 "EEPROM country code"); 4883 ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain); 4884 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4885 "regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0, 4886 "EEPROM regdomain code"); 4887 sc->sc_debug = ath_debug; 4888 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4889 "debug", CTLFLAG_RW, &sc->sc_debug, 0, 4890 "control debugging printfs"); 4891 4892 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4893 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4894 ath_sysctl_slottime, "I", "802.11 slot time (us)"); 4895 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4896 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4897 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)"); 4898 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4899 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4900 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)"); 4901 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4902 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4903 ath_sysctl_softled, "I", "enable/disable software LED support"); 4904 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4905 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 4906 "GPIO pin connected to LED"); 4907 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4908 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0, 4909 "setting to turn LED on"); 4910 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4911 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 4912 "idle time for inactivity LED (ticks)"); 4913 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4914 "txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0, 4915 "tx antenna (0=auto)"); 4916 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4917 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4918 ath_sysctl_rxantenna, "I", "default/rx antenna"); 4919 if (sc->sc_hasdiversity) 4920 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4921 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4922 ath_sysctl_diversity, "I", "antenna diversity"); 4923 sc->sc_txintrperiod = ATH_TXINTR_PERIOD; 4924 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4925 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0, 4926 "tx descriptor batching"); 4927 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4928 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4929 ath_sysctl_diag, "I", "h/w diagnostic control"); 4930 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4931 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4932 ath_sysctl_tpscale, "I", "tx power scaling"); 4933 if (sc->sc_hastpc) 4934 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4935 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4936 ath_sysctl_tpc, "I", "enable/disable per-packet TPC"); 4937 } 4938 4939 static void 4940 ath_bpfattach(struct ath_softc *sc) 4941 { 4942 struct ifnet *ifp = sc->sc_ifp; 4943 4944 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 4945 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 4946 &sc->sc_drvbpf); 4947 /* 4948 * Initialize constant fields. 4949 * XXX make header lengths a multiple of 32-bits so subsequent 4950 * headers are properly aligned; this is a kludge to keep 4951 * certain applications happy. 4952 * 4953 * NB: the channel is setup each time we transition to the 4954 * RUN state to avoid filling it in for each frame. 4955 */ 4956 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 4957 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 4958 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 4959 4960 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 4961 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 4962 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 4963 } 4964 4965 /* 4966 * Announce various information on device/driver attach. 4967 */ 4968 static void 4969 ath_announce(struct ath_softc *sc) 4970 { 4971 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 4972 struct ifnet *ifp = sc->sc_ifp; 4973 struct ath_hal *ah = sc->sc_ah; 4974 u_int modes, cc; 4975 4976 if_printf(ifp, "mac %d.%d phy %d.%d", 4977 ah->ah_macVersion, ah->ah_macRev, 4978 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 4979 /* 4980 * Print radio revision(s). We check the wireless modes 4981 * to avoid falsely printing revs for inoperable parts. 4982 * Dual-band radio revs are returned in the 5Ghz rev number. 4983 */ 4984 ath_hal_getcountrycode(ah, &cc); 4985 modes = ath_hal_getwirelessmodes(ah, cc); 4986 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 4987 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 4988 printf(" 5ghz radio %d.%d 2ghz radio %d.%d", 4989 ah->ah_analog5GhzRev >> 4, 4990 ah->ah_analog5GhzRev & 0xf, 4991 ah->ah_analog2GhzRev >> 4, 4992 ah->ah_analog2GhzRev & 0xf); 4993 else 4994 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4995 ah->ah_analog5GhzRev & 0xf); 4996 } else 4997 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4998 ah->ah_analog5GhzRev & 0xf); 4999 printf("\n"); 5000 if (bootverbose) { 5001 int i; 5002 for (i = 0; i <= WME_AC_VO; i++) { 5003 struct ath_txq *txq = sc->sc_ac2q[i]; 5004 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5005 txq->axq_qnum, ieee80211_wme_acnames[i]); 5006 } 5007 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5008 sc->sc_cabq->axq_qnum); 5009 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5010 } 5011 #undef HAL_MODE_DUALBAND 5012 } 5013