xref: /freebsd/sys/dev/ath/if_ath.c (revision d429ea332342fcb98d27a350d0c4944bf9aec3f9)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_types.h>
70 #include <net/if_arp.h>
71 #include <net/ethernet.h>
72 #include <net/if_llc.h>
73 
74 #include <net80211/ieee80211_var.h>
75 
76 #include <net/bpf.h>
77 
78 #ifdef INET
79 #include <netinet/in.h>
80 #include <netinet/if_ether.h>
81 #endif
82 
83 #define	AR_DEBUG
84 #include <dev/ath/if_athvar.h>
85 #include <contrib/dev/ath/ah_desc.h>
86 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
87 
88 /* unaligned little endian access */
89 #define LE_READ_2(p)							\
90 	((u_int16_t)							\
91 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
92 #define LE_READ_4(p)							\
93 	((u_int32_t)							\
94 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
95 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
96 
97 enum {
98 	ATH_LED_TX,
99 	ATH_LED_RX,
100 	ATH_LED_POLL,
101 };
102 
103 static void	ath_init(void *);
104 static void	ath_stop_locked(struct ifnet *);
105 static void	ath_stop(struct ifnet *);
106 static void	ath_start(struct ifnet *);
107 static int	ath_reset(struct ifnet *);
108 static int	ath_media_change(struct ifnet *);
109 static void	ath_watchdog(struct ifnet *);
110 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
111 static void	ath_fatal_proc(void *, int);
112 static void	ath_rxorn_proc(void *, int);
113 static void	ath_bmiss_proc(void *, int);
114 static int	ath_key_alloc(struct ieee80211com *,
115 			const struct ieee80211_key *);
116 static int	ath_key_delete(struct ieee80211com *,
117 			const struct ieee80211_key *);
118 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120 static void	ath_key_update_begin(struct ieee80211com *);
121 static void	ath_key_update_end(struct ieee80211com *);
122 static void	ath_mode_init(struct ath_softc *);
123 static void	ath_setslottime(struct ath_softc *);
124 static void	ath_updateslot(struct ifnet *);
125 static int	ath_beaconq_setup(struct ath_hal *);
126 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128 static void	ath_beacon_proc(void *, int);
129 static void	ath_bstuck_proc(void *, int);
130 static void	ath_beacon_free(struct ath_softc *);
131 static void	ath_beacon_config(struct ath_softc *);
132 static void	ath_descdma_cleanup(struct ath_softc *sc,
133 			struct ath_descdma *, ath_bufhead *);
134 static int	ath_desc_alloc(struct ath_softc *);
135 static void	ath_desc_free(struct ath_softc *);
136 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137 static void	ath_node_free(struct ieee80211_node *);
138 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
139 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141 			struct ieee80211_node *ni,
142 			int subtype, int rssi, u_int32_t rstamp);
143 static void	ath_setdefantenna(struct ath_softc *, u_int);
144 static void	ath_rx_proc(void *, int);
145 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146 static int	ath_tx_setup(struct ath_softc *, int, int);
147 static int	ath_wme_update(struct ieee80211com *);
148 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149 static void	ath_tx_cleanup(struct ath_softc *);
150 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151 			     struct ath_buf *, struct mbuf *);
152 static void	ath_tx_proc_q0(void *, int);
153 static void	ath_tx_proc_q0123(void *, int);
154 static void	ath_tx_proc(void *, int);
155 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156 static void	ath_draintxq(struct ath_softc *);
157 static void	ath_stoprecv(struct ath_softc *);
158 static int	ath_startrecv(struct ath_softc *);
159 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160 static void	ath_next_scan(void *);
161 static void	ath_calibrate(void *);
162 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163 static void	ath_setup_stationkey(struct ieee80211_node *);
164 static void	ath_newassoc(struct ieee80211com *,
165 			struct ieee80211_node *, int);
166 static int	ath_getchannels(struct ath_softc *, u_int cc,
167 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
168 static void	ath_led_event(struct ath_softc *, int);
169 static void	ath_update_txpow(struct ath_softc *);
170 
171 static int	ath_rate_setup(struct ath_softc *, u_int mode);
172 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
173 
174 static void	ath_sysctlattach(struct ath_softc *);
175 static void	ath_bpfattach(struct ath_softc *);
176 static void	ath_announce(struct ath_softc *);
177 
178 SYSCTL_DECL(_hw_ath);
179 
180 /* XXX validate sysctl values */
181 static	int ath_dwelltime = 200;		/* 5 channels/second */
182 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
183 	    0, "channel dwell time (ms) for AP/station scanning");
184 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
185 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
186 	    0, "chip calibration interval (secs)");
187 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
188 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
189 	    0, "outdoor operation");
190 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
191 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
192 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
193 	    0, "extended channel mode");
194 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
195 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197 	    0, "country code");
198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199 static	int ath_regdomain = 0;			/* regulatory domain */
200 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
201 	    0, "regulatory domain");
202 
203 #ifdef AR_DEBUG
204 static	int ath_debug = 0;
205 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
206 	    0, "control debugging printfs");
207 TUNABLE_INT("hw.ath.debug", &ath_debug);
208 enum {
209 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
210 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
211 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
212 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
213 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
214 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
215 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
216 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
217 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
218 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
219 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
220 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
221 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
222 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
223 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
224 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
225 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
226 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
227 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
228 	ATH_DEBUG_ANY		= 0xffffffff
229 };
230 #define	IFF_DUMPPKTS(sc, m) \
231 	((sc->sc_debug & (m)) || \
232 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
233 #define	DPRINTF(sc, m, fmt, ...) do {				\
234 	if (sc->sc_debug & (m))					\
235 		printf(fmt, __VA_ARGS__);			\
236 } while (0)
237 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
238 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
239 		ath_keyprint(__func__, ix, hk, mac);		\
240 } while (0)
241 static	void ath_printrxbuf(struct ath_buf *bf, int);
242 static	void ath_printtxbuf(struct ath_buf *bf, int);
243 #else
244 #define	IFF_DUMPPKTS(sc, m) \
245 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
246 #define	DPRINTF(m, fmt, ...)
247 #define	KEYPRINTF(sc, k, ix, mac)
248 #endif
249 
250 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
251 
252 int
253 ath_attach(u_int16_t devid, struct ath_softc *sc)
254 {
255 	struct ifnet *ifp;
256 	struct ieee80211com *ic = &sc->sc_ic;
257 	struct ath_hal *ah = NULL;
258 	HAL_STATUS status;
259 	int error = 0, i;
260 
261 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
262 
263 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
264 	if (ifp == NULL) {
265 		device_printf(sc->sc_dev, "can not if_alloc()\n");
266 		error = ENOSPC;
267 		goto bad;
268 	}
269 
270 	/* set these up early for if_printf use */
271 	if_initname(ifp, device_get_name(sc->sc_dev),
272 		device_get_unit(sc->sc_dev));
273 
274 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
275 	if (ah == NULL) {
276 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
277 			status);
278 		error = ENXIO;
279 		goto bad;
280 	}
281 	if (ah->ah_abi != HAL_ABI_VERSION) {
282 		if_printf(ifp, "HAL ABI mismatch detected "
283 			"(HAL:0x%x != driver:0x%x)\n",
284 			ah->ah_abi, HAL_ABI_VERSION);
285 		error = ENXIO;
286 		goto bad;
287 	}
288 	sc->sc_ah = ah;
289 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
290 
291 	/*
292 	 * Check if the MAC has multi-rate retry support.
293 	 * We do this by trying to setup a fake extended
294 	 * descriptor.  MAC's that don't have support will
295 	 * return false w/o doing anything.  MAC's that do
296 	 * support it will return true w/o doing anything.
297 	 */
298 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299 
300 	/*
301 	 * Check if the device has hardware counters for PHY
302 	 * errors.  If so we need to enable the MIB interrupt
303 	 * so we can act on stat triggers.
304 	 */
305 	if (ath_hal_hwphycounters(ah))
306 		sc->sc_needmib = 1;
307 
308 	/*
309 	 * Get the hardware key cache size.
310 	 */
311 	sc->sc_keymax = ath_hal_keycachesize(ah);
312 	if (sc->sc_keymax > ATH_KEYMAX) {
313 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314 			ATH_KEYMAX, sc->sc_keymax);
315 		sc->sc_keymax = ATH_KEYMAX;
316 	}
317 	/*
318 	 * Reset the key cache since some parts do not
319 	 * reset the contents on initial power up.
320 	 */
321 	for (i = 0; i < sc->sc_keymax; i++)
322 		ath_hal_keyreset(ah, i);
323 	/*
324 	 * Mark key cache slots associated with global keys
325 	 * as in use.  If we knew TKIP was not to be used we
326 	 * could leave the +32, +64, and +32+64 slots free.
327 	 * XXX only for splitmic.
328 	 */
329 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330 		setbit(sc->sc_keymap, i);
331 		setbit(sc->sc_keymap, i+32);
332 		setbit(sc->sc_keymap, i+64);
333 		setbit(sc->sc_keymap, i+32+64);
334 	}
335 
336 	/*
337 	 * Collect the channel list using the default country
338 	 * code and including outdoor channels.  The 802.11 layer
339 	 * is resposible for filtering this list based on settings
340 	 * like the phy mode.
341 	 */
342 	error = ath_getchannels(sc, ath_countrycode,
343 			ath_outdoor, ath_xchanmode);
344 	if (error != 0)
345 		goto bad;
346 	/*
347 	 * Setup dynamic sysctl's now that country code and
348 	 * regdomain are available from the hal.
349 	 */
350 	ath_sysctlattach(sc);
351 
352 	/*
353 	 * Setup rate tables for all potential media types.
354 	 */
355 	ath_rate_setup(sc, IEEE80211_MODE_11A);
356 	ath_rate_setup(sc, IEEE80211_MODE_11B);
357 	ath_rate_setup(sc, IEEE80211_MODE_11G);
358 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
359 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
360 	/* NB: setup here so ath_rate_update is happy */
361 	ath_setcurmode(sc, IEEE80211_MODE_11A);
362 
363 	/*
364 	 * Allocate tx+rx descriptors and populate the lists.
365 	 */
366 	error = ath_desc_alloc(sc);
367 	if (error != 0) {
368 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
369 		goto bad;
370 	}
371 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
372 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
373 
374 	ATH_TXBUF_LOCK_INIT(sc);
375 
376 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
377 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
378 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
379 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
380 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
381 
382 	/*
383 	 * Allocate hardware transmit queues: one queue for
384 	 * beacon frames and one data queue for each QoS
385 	 * priority.  Note that the hal handles reseting
386 	 * these queues at the needed time.
387 	 *
388 	 * XXX PS-Poll
389 	 */
390 	sc->sc_bhalq = ath_beaconq_setup(ah);
391 	if (sc->sc_bhalq == (u_int) -1) {
392 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
393 		error = EIO;
394 		goto bad2;
395 	}
396 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
397 	if (sc->sc_cabq == NULL) {
398 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
399 		error = EIO;
400 		goto bad2;
401 	}
402 	/* NB: insure BK queue is the lowest priority h/w queue */
403 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
404 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
405 			ieee80211_wme_acnames[WME_AC_BK]);
406 		error = EIO;
407 		goto bad2;
408 	}
409 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
410 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
411 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
412 		/*
413 		 * Not enough hardware tx queues to properly do WME;
414 		 * just punt and assign them all to the same h/w queue.
415 		 * We could do a better job of this if, for example,
416 		 * we allocate queues when we switch from station to
417 		 * AP mode.
418 		 */
419 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
420 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
421 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
422 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
423 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
424 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
425 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
426 	}
427 
428 	/*
429 	 * Special case certain configurations.  Note the
430 	 * CAB queue is handled by these specially so don't
431 	 * include them when checking the txq setup mask.
432 	 */
433 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
434 	case 0x01:
435 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
436 		break;
437 	case 0x0f:
438 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
439 		break;
440 	default:
441 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
442 		break;
443 	}
444 
445 	/*
446 	 * Setup rate control.  Some rate control modules
447 	 * call back to change the anntena state so expose
448 	 * the necessary entry points.
449 	 * XXX maybe belongs in struct ath_ratectrl?
450 	 */
451 	sc->sc_setdefantenna = ath_setdefantenna;
452 	sc->sc_rc = ath_rate_attach(sc);
453 	if (sc->sc_rc == NULL) {
454 		error = EIO;
455 		goto bad2;
456 	}
457 
458 	sc->sc_blinking = 0;
459 	sc->sc_ledstate = 1;
460 	sc->sc_ledon = 0;			/* low true */
461 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
462 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
463 	/*
464 	 * Auto-enable soft led processing for IBM cards and for
465 	 * 5211 minipci cards.  Users can also manually enable/disable
466 	 * support with a sysctl.
467 	 */
468 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
469 	if (sc->sc_softled) {
470 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
471 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
472 	}
473 
474 	ifp->if_softc = sc;
475 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
476 	ifp->if_start = ath_start;
477 	ifp->if_watchdog = ath_watchdog;
478 	ifp->if_ioctl = ath_ioctl;
479 	ifp->if_init = ath_init;
480 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
481 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
482 	IFQ_SET_READY(&ifp->if_snd);
483 
484 	ic->ic_ifp = ifp;
485 	ic->ic_reset = ath_reset;
486 	ic->ic_newassoc = ath_newassoc;
487 	ic->ic_updateslot = ath_updateslot;
488 	ic->ic_wme.wme_update = ath_wme_update;
489 	/* XXX not right but it's not used anywhere important */
490 	ic->ic_phytype = IEEE80211_T_OFDM;
491 	ic->ic_opmode = IEEE80211_M_STA;
492 	ic->ic_caps =
493 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
494 		| IEEE80211_C_HOSTAP		/* hostap mode */
495 		| IEEE80211_C_MONITOR		/* monitor mode */
496 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
497 		| IEEE80211_C_SHSLOT		/* short slot time supported */
498 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
499 		;
500 	/*
501 	 * Query the hal to figure out h/w crypto support.
502 	 */
503 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
504 		ic->ic_caps |= IEEE80211_C_WEP;
505 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
506 		ic->ic_caps |= IEEE80211_C_AES;
507 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
508 		ic->ic_caps |= IEEE80211_C_AES_CCM;
509 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
510 		ic->ic_caps |= IEEE80211_C_CKIP;
511 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
512 		ic->ic_caps |= IEEE80211_C_TKIP;
513 		/*
514 		 * Check if h/w does the MIC and/or whether the
515 		 * separate key cache entries are required to
516 		 * handle both tx+rx MIC keys.
517 		 */
518 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
519 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
520 		if (ath_hal_tkipsplit(ah))
521 			sc->sc_splitmic = 1;
522 	}
523 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
524 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
525 	/*
526 	 * TPC support can be done either with a global cap or
527 	 * per-packet support.  The latter is not available on
528 	 * all parts.  We're a bit pedantic here as all parts
529 	 * support a global cap.
530 	 */
531 	sc->sc_hastpc = ath_hal_hastpc(ah);
532 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
533 		ic->ic_caps |= IEEE80211_C_TXPMGT;
534 
535 	/*
536 	 * Mark WME capability only if we have sufficient
537 	 * hardware queues to do proper priority scheduling.
538 	 */
539 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
540 		ic->ic_caps |= IEEE80211_C_WME;
541 	/*
542 	 * Check for misc other capabilities.
543 	 */
544 	if (ath_hal_hasbursting(ah))
545 		ic->ic_caps |= IEEE80211_C_BURST;
546 
547 	/*
548 	 * Indicate we need the 802.11 header padded to a
549 	 * 32-bit boundary for 4-address and QoS frames.
550 	 */
551 	ic->ic_flags |= IEEE80211_F_DATAPAD;
552 
553 	/*
554 	 * Query the hal about antenna support.
555 	 */
556 	if (ath_hal_hasdiversity(ah)) {
557 		sc->sc_hasdiversity = 1;
558 		sc->sc_diversity = ath_hal_getdiversity(ah);
559 	}
560 	sc->sc_defant = ath_hal_getdefantenna(ah);
561 
562 	/*
563 	 * Not all chips have the VEOL support we want to
564 	 * use with IBSS beacons; check here for it.
565 	 */
566 	sc->sc_hasveol = ath_hal_hasveol(ah);
567 
568 	/* get mac address from hardware */
569 	ath_hal_getmac(ah, ic->ic_myaddr);
570 
571 	/* call MI attach routine. */
572 	ieee80211_ifattach(ic);
573 	/* override default methods */
574 	ic->ic_node_alloc = ath_node_alloc;
575 	sc->sc_node_free = ic->ic_node_free;
576 	ic->ic_node_free = ath_node_free;
577 	ic->ic_node_getrssi = ath_node_getrssi;
578 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
579 	ic->ic_recv_mgmt = ath_recv_mgmt;
580 	sc->sc_newstate = ic->ic_newstate;
581 	ic->ic_newstate = ath_newstate;
582 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
583 	ic->ic_crypto.cs_key_delete = ath_key_delete;
584 	ic->ic_crypto.cs_key_set = ath_key_set;
585 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
586 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
587 	/* complete initialization */
588 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
589 
590 	ath_bpfattach(sc);
591 
592 	if (bootverbose)
593 		ieee80211_announce(ic);
594 	ath_announce(sc);
595 	return 0;
596 bad2:
597 	ath_tx_cleanup(sc);
598 	ath_desc_free(sc);
599 bad:
600 	if (ah)
601 		ath_hal_detach(ah);
602 	if (ifp != NULL)
603 		if_free(ifp);
604 	sc->sc_invalid = 1;
605 	return error;
606 }
607 
608 int
609 ath_detach(struct ath_softc *sc)
610 {
611 	struct ifnet *ifp = sc->sc_ifp;
612 
613 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
614 		__func__, ifp->if_flags);
615 
616 	ath_stop(ifp);
617 	bpfdetach(ifp);
618 	/*
619 	 * NB: the order of these is important:
620 	 * o call the 802.11 layer before detaching the hal to
621 	 *   insure callbacks into the driver to delete global
622 	 *   key cache entries can be handled
623 	 * o reclaim the tx queue data structures after calling
624 	 *   the 802.11 layer as we'll get called back to reclaim
625 	 *   node state and potentially want to use them
626 	 * o to cleanup the tx queues the hal is called, so detach
627 	 *   it last
628 	 * Other than that, it's straightforward...
629 	 */
630 	ieee80211_ifdetach(&sc->sc_ic);
631 	ath_rate_detach(sc->sc_rc);
632 	ath_desc_free(sc);
633 	ath_tx_cleanup(sc);
634 	ath_hal_detach(sc->sc_ah);
635 
636 	return 0;
637 }
638 
639 void
640 ath_suspend(struct ath_softc *sc)
641 {
642 	struct ifnet *ifp = sc->sc_ifp;
643 
644 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645 		__func__, ifp->if_flags);
646 
647 	ath_stop(ifp);
648 }
649 
650 void
651 ath_resume(struct ath_softc *sc)
652 {
653 	struct ifnet *ifp = sc->sc_ifp;
654 
655 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
656 		__func__, ifp->if_flags);
657 
658 	if (ifp->if_flags & IFF_UP) {
659 		ath_init(sc);
660 		if (ifp->if_flags & IFF_RUNNING)
661 			ath_start(ifp);
662 	}
663 	if (sc->sc_softled) {
664 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
665 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
666 	}
667 }
668 
669 void
670 ath_shutdown(struct ath_softc *sc)
671 {
672 	struct ifnet *ifp = sc->sc_ifp;
673 
674 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
675 		__func__, ifp->if_flags);
676 
677 	ath_stop(ifp);
678 }
679 
680 /*
681  * Interrupt handler.  Most of the actual processing is deferred.
682  */
683 void
684 ath_intr(void *arg)
685 {
686 	struct ath_softc *sc = arg;
687 	struct ifnet *ifp = sc->sc_ifp;
688 	struct ath_hal *ah = sc->sc_ah;
689 	HAL_INT status;
690 
691 	if (sc->sc_invalid) {
692 		/*
693 		 * The hardware is not ready/present, don't touch anything.
694 		 * Note this can happen early on if the IRQ is shared.
695 		 */
696 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
697 		return;
698 	}
699 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
700 		return;
701 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
702 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
703 			__func__, ifp->if_flags);
704 		ath_hal_getisr(ah, &status);	/* clear ISR */
705 		ath_hal_intrset(ah, 0);		/* disable further intr's */
706 		return;
707 	}
708 	/*
709 	 * Figure out the reason(s) for the interrupt.  Note
710 	 * that the hal returns a pseudo-ISR that may include
711 	 * bits we haven't explicitly enabled so we mask the
712 	 * value to insure we only process bits we requested.
713 	 */
714 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
715 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
716 	status &= sc->sc_imask;			/* discard unasked for bits */
717 	if (status & HAL_INT_FATAL) {
718 		/*
719 		 * Fatal errors are unrecoverable.  Typically
720 		 * these are caused by DMA errors.  Unfortunately
721 		 * the exact reason is not (presently) returned
722 		 * by the hal.
723 		 */
724 		sc->sc_stats.ast_hardware++;
725 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
726 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
727 	} else if (status & HAL_INT_RXORN) {
728 		sc->sc_stats.ast_rxorn++;
729 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
730 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
731 	} else {
732 		if (status & HAL_INT_SWBA) {
733 			/*
734 			 * Software beacon alert--time to send a beacon.
735 			 * Handle beacon transmission directly; deferring
736 			 * this is too slow to meet timing constraints
737 			 * under load.
738 			 */
739 			ath_beacon_proc(sc, 0);
740 		}
741 		if (status & HAL_INT_RXEOL) {
742 			/*
743 			 * NB: the hardware should re-read the link when
744 			 *     RXE bit is written, but it doesn't work at
745 			 *     least on older hardware revs.
746 			 */
747 			sc->sc_stats.ast_rxeol++;
748 			sc->sc_rxlink = NULL;
749 		}
750 		if (status & HAL_INT_TXURN) {
751 			sc->sc_stats.ast_txurn++;
752 			/* bump tx trigger level */
753 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
754 		}
755 		if (status & HAL_INT_RX)
756 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
757 		if (status & HAL_INT_TX)
758 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
759 		if (status & HAL_INT_BMISS) {
760 			sc->sc_stats.ast_bmiss++;
761 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
762 		}
763 		if (status & HAL_INT_MIB) {
764 			sc->sc_stats.ast_mib++;
765 			/*
766 			 * Disable interrupts until we service the MIB
767 			 * interrupt; otherwise it will continue to fire.
768 			 */
769 			ath_hal_intrset(ah, 0);
770 			/*
771 			 * Let the hal handle the event.  We assume it will
772 			 * clear whatever condition caused the interrupt.
773 			 */
774 			ath_hal_mibevent(ah,
775 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
776 			ath_hal_intrset(ah, sc->sc_imask);
777 		}
778 	}
779 }
780 
781 static void
782 ath_fatal_proc(void *arg, int pending)
783 {
784 	struct ath_softc *sc = arg;
785 	struct ifnet *ifp = sc->sc_ifp;
786 
787 	if_printf(ifp, "hardware error; resetting\n");
788 	ath_reset(ifp);
789 }
790 
791 static void
792 ath_rxorn_proc(void *arg, int pending)
793 {
794 	struct ath_softc *sc = arg;
795 	struct ifnet *ifp = sc->sc_ifp;
796 
797 	if_printf(ifp, "rx FIFO overrun; resetting\n");
798 	ath_reset(ifp);
799 }
800 
801 static void
802 ath_bmiss_proc(void *arg, int pending)
803 {
804 	struct ath_softc *sc = arg;
805 	struct ieee80211com *ic = &sc->sc_ic;
806 
807 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
808 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
809 		("unexpect operating mode %u", ic->ic_opmode));
810 	if (ic->ic_state == IEEE80211_S_RUN) {
811 		/*
812 		 * Rather than go directly to scan state, try to
813 		 * reassociate first.  If that fails then the state
814 		 * machine will drop us into scanning after timing
815 		 * out waiting for a probe response.
816 		 */
817 		NET_LOCK_GIANT();
818 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
819 		NET_UNLOCK_GIANT();
820 	}
821 }
822 
823 static u_int
824 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
825 {
826 #define	N(a)	(sizeof(a) / sizeof(a[0]))
827 	static const u_int modeflags[] = {
828 		0,			/* IEEE80211_MODE_AUTO */
829 		CHANNEL_A,		/* IEEE80211_MODE_11A */
830 		CHANNEL_B,		/* IEEE80211_MODE_11B */
831 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
832 		0,			/* IEEE80211_MODE_FH */
833 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
834 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
835 	};
836 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
837 
838 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
839 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
840 	return modeflags[mode];
841 #undef N
842 }
843 
844 static void
845 ath_init(void *arg)
846 {
847 	struct ath_softc *sc = (struct ath_softc *) arg;
848 	struct ieee80211com *ic = &sc->sc_ic;
849 	struct ifnet *ifp = sc->sc_ifp;
850 	struct ieee80211_node *ni;
851 	struct ath_hal *ah = sc->sc_ah;
852 	HAL_STATUS status;
853 
854 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
855 		__func__, ifp->if_flags);
856 
857 	ATH_LOCK(sc);
858 	/*
859 	 * Stop anything previously setup.  This is safe
860 	 * whether this is the first time through or not.
861 	 */
862 	ath_stop_locked(ifp);
863 
864 	/*
865 	 * The basic interface to setting the hardware in a good
866 	 * state is ``reset''.  On return the hardware is known to
867 	 * be powered up and with interrupts disabled.  This must
868 	 * be followed by initialization of the appropriate bits
869 	 * and then setup of the interrupt mask.
870 	 */
871 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
872 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
873 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
874 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
875 			status);
876 		goto done;
877 	}
878 
879 	/*
880 	 * This is needed only to setup initial state
881 	 * but it's best done after a reset.
882 	 */
883 	ath_update_txpow(sc);
884 
885 	/*
886 	 * Setup the hardware after reset: the key cache
887 	 * is filled as needed and the receive engine is
888 	 * set going.  Frame transmit is handled entirely
889 	 * in the frame output path; there's nothing to do
890 	 * here except setup the interrupt mask.
891 	 */
892 	if (ath_startrecv(sc) != 0) {
893 		if_printf(ifp, "unable to start recv logic\n");
894 		goto done;
895 	}
896 
897 	/*
898 	 * Enable interrupts.
899 	 */
900 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
901 		  | HAL_INT_RXEOL | HAL_INT_RXORN
902 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
903 	/*
904 	 * Enable MIB interrupts when there are hardware phy counters.
905 	 * Note we only do this (at the moment) for station mode.
906 	 */
907 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
908 		sc->sc_imask |= HAL_INT_MIB;
909 	ath_hal_intrset(ah, sc->sc_imask);
910 
911 	ifp->if_flags |= IFF_RUNNING;
912 	ic->ic_state = IEEE80211_S_INIT;
913 
914 	/*
915 	 * The hardware should be ready to go now so it's safe
916 	 * to kick the 802.11 state machine as it's likely to
917 	 * immediately call back to us to send mgmt frames.
918 	 */
919 	ni = ic->ic_bss;
920 	ni->ni_chan = ic->ic_ibss_chan;
921 	ath_chan_change(sc, ni->ni_chan);
922 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
923 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
924 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
925 	} else
926 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
927 done:
928 	ATH_UNLOCK(sc);
929 }
930 
931 static void
932 ath_stop_locked(struct ifnet *ifp)
933 {
934 	struct ath_softc *sc = ifp->if_softc;
935 	struct ieee80211com *ic = &sc->sc_ic;
936 	struct ath_hal *ah = sc->sc_ah;
937 
938 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
939 		__func__, sc->sc_invalid, ifp->if_flags);
940 
941 	ATH_LOCK_ASSERT(sc);
942 	if (ifp->if_flags & IFF_RUNNING) {
943 		/*
944 		 * Shutdown the hardware and driver:
945 		 *    reset 802.11 state machine
946 		 *    turn off timers
947 		 *    disable interrupts
948 		 *    turn off the radio
949 		 *    clear transmit machinery
950 		 *    clear receive machinery
951 		 *    drain and release tx queues
952 		 *    reclaim beacon resources
953 		 *    power down hardware
954 		 *
955 		 * Note that some of this work is not possible if the
956 		 * hardware is gone (invalid).
957 		 */
958 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
959 		ifp->if_flags &= ~IFF_RUNNING;
960 		ifp->if_timer = 0;
961 		if (!sc->sc_invalid) {
962 			if (sc->sc_softled) {
963 				callout_stop(&sc->sc_ledtimer);
964 				ath_hal_gpioset(ah, sc->sc_ledpin,
965 					!sc->sc_ledon);
966 				sc->sc_blinking = 0;
967 			}
968 			ath_hal_intrset(ah, 0);
969 		}
970 		ath_draintxq(sc);
971 		if (!sc->sc_invalid) {
972 			ath_stoprecv(sc);
973 			ath_hal_phydisable(ah);
974 		} else
975 			sc->sc_rxlink = NULL;
976 		IFQ_DRV_PURGE(&ifp->if_snd);
977 		ath_beacon_free(sc);
978 	}
979 }
980 
981 static void
982 ath_stop(struct ifnet *ifp)
983 {
984 	struct ath_softc *sc = ifp->if_softc;
985 
986 	ATH_LOCK(sc);
987 	ath_stop_locked(ifp);
988 	if (!sc->sc_invalid) {
989 		/*
990 		 * Set the chip in full sleep mode.  Note that we are
991 		 * careful to do this only when bringing the interface
992 		 * completely to a stop.  When the chip is in this state
993 		 * it must be carefully woken up or references to
994 		 * registers in the PCI clock domain may freeze the bus
995 		 * (and system).  This varies by chip and is mostly an
996 		 * issue with newer parts that go to sleep more quickly.
997 		 */
998 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
999 	}
1000 	ATH_UNLOCK(sc);
1001 }
1002 
1003 /*
1004  * Reset the hardware w/o losing operational state.  This is
1005  * basically a more efficient way of doing ath_stop, ath_init,
1006  * followed by state transitions to the current 802.11
1007  * operational state.  Used to recover from various errors and
1008  * to reset or reload hardware state.
1009  */
1010 static int
1011 ath_reset(struct ifnet *ifp)
1012 {
1013 	struct ath_softc *sc = ifp->if_softc;
1014 	struct ieee80211com *ic = &sc->sc_ic;
1015 	struct ath_hal *ah = sc->sc_ah;
1016 	struct ieee80211_channel *c;
1017 	HAL_STATUS status;
1018 
1019 	/*
1020 	 * Convert to a HAL channel description with the flags
1021 	 * constrained to reflect the current operating mode.
1022 	 */
1023 	c = ic->ic_ibss_chan;
1024 	sc->sc_curchan.channel = c->ic_freq;
1025 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1026 
1027 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1028 	ath_draintxq(sc);		/* stop xmit side */
1029 	ath_stoprecv(sc);		/* stop recv side */
1030 	/* NB: indicate channel change so we do a full reset */
1031 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1032 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1033 			__func__, status);
1034 	ath_update_txpow(sc);		/* update tx power state */
1035 	if (ath_startrecv(sc) != 0)	/* restart recv */
1036 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1037 	/*
1038 	 * We may be doing a reset in response to an ioctl
1039 	 * that changes the channel so update any state that
1040 	 * might change as a result.
1041 	 */
1042 	ath_chan_change(sc, c);
1043 	if (ic->ic_state == IEEE80211_S_RUN)
1044 		ath_beacon_config(sc);	/* restart beacons */
1045 	ath_hal_intrset(ah, sc->sc_imask);
1046 
1047 	ath_start(ifp);			/* restart xmit */
1048 	return 0;
1049 }
1050 
1051 static void
1052 ath_start(struct ifnet *ifp)
1053 {
1054 	struct ath_softc *sc = ifp->if_softc;
1055 	struct ath_hal *ah = sc->sc_ah;
1056 	struct ieee80211com *ic = &sc->sc_ic;
1057 	struct ieee80211_node *ni;
1058 	struct ath_buf *bf;
1059 	struct mbuf *m;
1060 	struct ieee80211_frame *wh;
1061 	struct ether_header *eh;
1062 
1063 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1064 		return;
1065 	for (;;) {
1066 		/*
1067 		 * Grab a TX buffer and associated resources.
1068 		 */
1069 		ATH_TXBUF_LOCK(sc);
1070 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1071 		if (bf != NULL)
1072 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1073 		ATH_TXBUF_UNLOCK(sc);
1074 		if (bf == NULL) {
1075 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1076 				__func__);
1077 			sc->sc_stats.ast_tx_qstop++;
1078 			ifp->if_flags |= IFF_OACTIVE;
1079 			break;
1080 		}
1081 		/*
1082 		 * Poll the management queue for frames; they
1083 		 * have priority over normal data frames.
1084 		 */
1085 		IF_DEQUEUE(&ic->ic_mgtq, m);
1086 		if (m == NULL) {
1087 			/*
1088 			 * No data frames go out unless we're associated.
1089 			 */
1090 			if (ic->ic_state != IEEE80211_S_RUN) {
1091 				DPRINTF(sc, ATH_DEBUG_ANY,
1092 					"%s: ignore data packet, state %u\n",
1093 					__func__, ic->ic_state);
1094 				sc->sc_stats.ast_tx_discard++;
1095 				ATH_TXBUF_LOCK(sc);
1096 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1097 				ATH_TXBUF_UNLOCK(sc);
1098 				break;
1099 			}
1100 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1101 			if (m == NULL) {
1102 				ATH_TXBUF_LOCK(sc);
1103 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1104 				ATH_TXBUF_UNLOCK(sc);
1105 				break;
1106 			}
1107 			/*
1108 			 * Find the node for the destination so we can do
1109 			 * things like power save and fast frames aggregation.
1110 			 */
1111 			if (m->m_len < sizeof(struct ether_header) &&
1112 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1113 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1114 				ni = NULL;
1115 				goto bad;
1116 			}
1117 			eh = mtod(m, struct ether_header *);
1118 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1119 			if (ni == NULL) {
1120 				/* NB: ieee80211_find_txnode does stat+msg */
1121 				m_freem(m);
1122 				goto bad;
1123 			}
1124 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1125 			    (m->m_flags & M_PWR_SAV) == 0) {
1126 				/*
1127 				 * Station in power save mode; pass the frame
1128 				 * to the 802.11 layer and continue.  We'll get
1129 				 * the frame back when the time is right.
1130 				 */
1131 				ieee80211_pwrsave(ic, ni, m);
1132 				goto reclaim;
1133 			}
1134 			/* calculate priority so we can find the tx queue */
1135 			if (ieee80211_classify(ic, m, ni)) {
1136 				DPRINTF(sc, ATH_DEBUG_XMIT,
1137 					"%s: discard, classification failure\n",
1138 					__func__);
1139 				m_freem(m);
1140 				goto bad;
1141 			}
1142 			ifp->if_opackets++;
1143 			BPF_MTAP(ifp, m);
1144 			/*
1145 			 * Encapsulate the packet in prep for transmission.
1146 			 */
1147 			m = ieee80211_encap(ic, m, ni);
1148 			if (m == NULL) {
1149 				DPRINTF(sc, ATH_DEBUG_ANY,
1150 					"%s: encapsulation failure\n",
1151 					__func__);
1152 				sc->sc_stats.ast_tx_encap++;
1153 				goto bad;
1154 			}
1155 		} else {
1156 			/*
1157 			 * Hack!  The referenced node pointer is in the
1158 			 * rcvif field of the packet header.  This is
1159 			 * placed there by ieee80211_mgmt_output because
1160 			 * we need to hold the reference with the frame
1161 			 * and there's no other way (other than packet
1162 			 * tags which we consider too expensive to use)
1163 			 * to pass it along.
1164 			 */
1165 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1166 			m->m_pkthdr.rcvif = NULL;
1167 
1168 			wh = mtod(m, struct ieee80211_frame *);
1169 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1170 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1171 				/* fill time stamp */
1172 				u_int64_t tsf;
1173 				u_int32_t *tstamp;
1174 
1175 				tsf = ath_hal_gettsf64(ah);
1176 				/* XXX: adjust 100us delay to xmit */
1177 				tsf += 100;
1178 				tstamp = (u_int32_t *)&wh[1];
1179 				tstamp[0] = htole32(tsf & 0xffffffff);
1180 				tstamp[1] = htole32(tsf >> 32);
1181 			}
1182 			sc->sc_stats.ast_tx_mgmt++;
1183 		}
1184 
1185 		if (ath_tx_start(sc, ni, bf, m)) {
1186 	bad:
1187 			ifp->if_oerrors++;
1188 	reclaim:
1189 			ATH_TXBUF_LOCK(sc);
1190 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1191 			ATH_TXBUF_UNLOCK(sc);
1192 			if (ni != NULL)
1193 				ieee80211_free_node(ni);
1194 			continue;
1195 		}
1196 
1197 		sc->sc_tx_timer = 5;
1198 		ifp->if_timer = 1;
1199 	}
1200 }
1201 
1202 static int
1203 ath_media_change(struct ifnet *ifp)
1204 {
1205 #define	IS_UP(ifp) \
1206 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1207 	int error;
1208 
1209 	error = ieee80211_media_change(ifp);
1210 	if (error == ENETRESET) {
1211 		if (IS_UP(ifp))
1212 			ath_init(ifp->if_softc);	/* XXX lose error */
1213 		error = 0;
1214 	}
1215 	return error;
1216 #undef IS_UP
1217 }
1218 
1219 #ifdef AR_DEBUG
1220 static void
1221 ath_keyprint(const char *tag, u_int ix,
1222 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1223 {
1224 	static const char *ciphers[] = {
1225 		"WEP",
1226 		"AES-OCB",
1227 		"AES-CCM",
1228 		"CKIP",
1229 		"TKIP",
1230 		"CLR",
1231 	};
1232 	int i, n;
1233 
1234 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1235 	for (i = 0, n = hk->kv_len; i < n; i++)
1236 		printf("%02x", hk->kv_val[i]);
1237 	printf(" mac %s", ether_sprintf(mac));
1238 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1239 		printf(" mic ");
1240 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1241 			printf("%02x", hk->kv_mic[i]);
1242 	}
1243 	printf("\n");
1244 }
1245 #endif
1246 
1247 /*
1248  * Set a TKIP key into the hardware.  This handles the
1249  * potential distribution of key state to multiple key
1250  * cache slots for TKIP.
1251  */
1252 static int
1253 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1254 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1255 {
1256 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1257 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1258 	struct ath_hal *ah = sc->sc_ah;
1259 
1260 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1261 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1262 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1263 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1264 		/*
1265 		 * TX key goes at first index, RX key at +32.
1266 		 * The hal handles the MIC keys at index+64.
1267 		 */
1268 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1269 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1270 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1271 			return 0;
1272 
1273 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1274 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1275 		/* XXX delete tx key on failure? */
1276 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1277 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1278 		/*
1279 		 * TX/RX key goes at first index.
1280 		 * The hal handles the MIC keys are index+64.
1281 		 */
1282 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1283 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1284 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1285 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1286 	}
1287 	return 0;
1288 #undef IEEE80211_KEY_XR
1289 }
1290 
1291 /*
1292  * Set a net80211 key into the hardware.  This handles the
1293  * potential distribution of key state to multiple key
1294  * cache slots for TKIP with hardware MIC support.
1295  */
1296 static int
1297 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1298 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1299 	struct ieee80211_node *bss)
1300 {
1301 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1302 	static const u_int8_t ciphermap[] = {
1303 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1304 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1305 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1306 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1307 		(u_int8_t) -1,		/* 4 is not allocated */
1308 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1309 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1310 	};
1311 	struct ath_hal *ah = sc->sc_ah;
1312 	const struct ieee80211_cipher *cip = k->wk_cipher;
1313 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1314 	const u_int8_t *mac;
1315 	HAL_KEYVAL hk;
1316 
1317 	memset(&hk, 0, sizeof(hk));
1318 	/*
1319 	 * Software crypto uses a "clear key" so non-crypto
1320 	 * state kept in the key cache are maintained and
1321 	 * so that rx frames have an entry to match.
1322 	 */
1323 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1324 		KASSERT(cip->ic_cipher < N(ciphermap),
1325 			("invalid cipher type %u", cip->ic_cipher));
1326 		hk.kv_type = ciphermap[cip->ic_cipher];
1327 		hk.kv_len = k->wk_keylen;
1328 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1329 	} else
1330 		hk.kv_type = HAL_CIPHER_CLR;
1331 
1332 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1333 		/*
1334 		 * Group keys on hardware that supports multicast frame
1335 		 * key search use a mac that is the sender's address with
1336 		 * the high bit set instead of the app-specified address.
1337 		 */
1338 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1339 		gmac[0] |= 0x80;
1340 		mac = gmac;
1341 	} else
1342 		mac = mac0;
1343 
1344 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1345 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1346 	    sc->sc_splitmic) {
1347 		return ath_keyset_tkip(sc, k, &hk, mac);
1348 	} else {
1349 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1350 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1351 	}
1352 #undef N
1353 }
1354 
1355 /*
1356  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1357  * each key, one for decrypt/encrypt and the other for the MIC.
1358  */
1359 static u_int16_t
1360 key_alloc_2pair(struct ath_softc *sc)
1361 {
1362 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1363 	u_int i, keyix;
1364 
1365 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1366 	/* XXX could optimize */
1367 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1368 		u_int8_t b = sc->sc_keymap[i];
1369 		if (b != 0xff) {
1370 			/*
1371 			 * One or more slots in this byte are free.
1372 			 */
1373 			keyix = i*NBBY;
1374 			while (b & 1) {
1375 		again:
1376 				keyix++;
1377 				b >>= 1;
1378 			}
1379 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1380 			if (isset(sc->sc_keymap, keyix+32) ||
1381 			    isset(sc->sc_keymap, keyix+64) ||
1382 			    isset(sc->sc_keymap, keyix+32+64)) {
1383 				/* full pair unavailable */
1384 				/* XXX statistic */
1385 				if (keyix == (i+1)*NBBY) {
1386 					/* no slots were appropriate, advance */
1387 					continue;
1388 				}
1389 				goto again;
1390 			}
1391 			setbit(sc->sc_keymap, keyix);
1392 			setbit(sc->sc_keymap, keyix+64);
1393 			setbit(sc->sc_keymap, keyix+32);
1394 			setbit(sc->sc_keymap, keyix+32+64);
1395 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1396 				"%s: key pair %u,%u %u,%u\n",
1397 				__func__, keyix, keyix+64,
1398 				keyix+32, keyix+32+64);
1399 			return keyix;
1400 		}
1401 	}
1402 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1403 	return IEEE80211_KEYIX_NONE;
1404 #undef N
1405 }
1406 
1407 /*
1408  * Allocate a single key cache slot.
1409  */
1410 static u_int16_t
1411 key_alloc_single(struct ath_softc *sc)
1412 {
1413 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1414 	u_int i, keyix;
1415 
1416 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1417 	for (i = 0; i < N(sc->sc_keymap); i++) {
1418 		u_int8_t b = sc->sc_keymap[i];
1419 		if (b != 0xff) {
1420 			/*
1421 			 * One or more slots are free.
1422 			 */
1423 			keyix = i*NBBY;
1424 			while (b & 1)
1425 				keyix++, b >>= 1;
1426 			setbit(sc->sc_keymap, keyix);
1427 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1428 				__func__, keyix);
1429 			return keyix;
1430 		}
1431 	}
1432 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1433 	return IEEE80211_KEYIX_NONE;
1434 #undef N
1435 }
1436 
1437 /*
1438  * Allocate one or more key cache slots for a uniacst key.  The
1439  * key itself is needed only to identify the cipher.  For hardware
1440  * TKIP with split cipher+MIC keys we allocate two key cache slot
1441  * pairs so that we can setup separate TX and RX MIC keys.  Note
1442  * that the MIC key for a TKIP key at slot i is assumed by the
1443  * hardware to be at slot i+64.  This limits TKIP keys to the first
1444  * 64 entries.
1445  */
1446 static int
1447 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1448 {
1449 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1450 
1451 	/*
1452 	 * Group key allocation must be handled specially for
1453 	 * parts that do not support multicast key cache search
1454 	 * functionality.  For those parts the key id must match
1455 	 * the h/w key index so lookups find the right key.  On
1456 	 * parts w/ the key search facility we install the sender's
1457 	 * mac address (with the high bit set) and let the hardware
1458 	 * find the key w/o using the key id.  This is preferred as
1459 	 * it permits us to support multiple users for adhoc and/or
1460 	 * multi-station operation.
1461 	 */
1462 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1463 		u_int keyix;
1464 
1465 		if (!(&ic->ic_nw_keys[0] <= k &&
1466 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1467 			/* should not happen */
1468 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1469 				"%s: bogus group key\n", __func__);
1470 			return IEEE80211_KEYIX_NONE;
1471 		}
1472 		keyix = k - ic->ic_nw_keys;
1473 		/*
1474 		 * XXX we pre-allocate the global keys so
1475 		 * have no way to check if they've already been allocated.
1476 		 */
1477 		return keyix;
1478 	}
1479 
1480 	/*
1481 	 * We allocate two pair for TKIP when using the h/w to do
1482 	 * the MIC.  For everything else, including software crypto,
1483 	 * we allocate a single entry.  Note that s/w crypto requires
1484 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1485 	 * not support pass-through cache entries and we map all
1486 	 * those requests to slot 0.
1487 	 */
1488 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1489 		return key_alloc_single(sc);
1490 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1491 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1492 		return key_alloc_2pair(sc);
1493 	} else {
1494 		return key_alloc_single(sc);
1495 	}
1496 }
1497 
1498 /*
1499  * Delete an entry in the key cache allocated by ath_key_alloc.
1500  */
1501 static int
1502 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1503 {
1504 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1505 	struct ath_hal *ah = sc->sc_ah;
1506 	const struct ieee80211_cipher *cip = k->wk_cipher;
1507 	struct ieee80211_node *ni;
1508 	u_int keyix = k->wk_keyix;
1509 
1510 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1511 
1512 	ath_hal_keyreset(ah, keyix);
1513 	/*
1514 	 * Check the key->node map and flush any ref.
1515 	 */
1516 	ni = sc->sc_keyixmap[keyix];
1517 	if (ni != NULL) {
1518 		ieee80211_free_node(ni);
1519 		sc->sc_keyixmap[keyix] = NULL;
1520 	}
1521 	/*
1522 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1523 	 */
1524 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1525 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1526 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1527 		ni = sc->sc_keyixmap[keyix+32];
1528 		if (ni != NULL) {			/* as above... */
1529 			ieee80211_free_node(ni);
1530 			sc->sc_keyixmap[keyix+32] = NULL;
1531 		}
1532 	}
1533 	if (keyix >= IEEE80211_WEP_NKID) {
1534 		/*
1535 		 * Don't touch keymap entries for global keys so
1536 		 * they are never considered for dynamic allocation.
1537 		 */
1538 		clrbit(sc->sc_keymap, keyix);
1539 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1540 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1541 		    sc->sc_splitmic) {
1542 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1543 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1544 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1545 		}
1546 	}
1547 	return 1;
1548 }
1549 
1550 /*
1551  * Set the key cache contents for the specified key.  Key cache
1552  * slot(s) must already have been allocated by ath_key_alloc.
1553  */
1554 static int
1555 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1556 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1557 {
1558 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1559 
1560 	return ath_keyset(sc, k, mac, ic->ic_bss);
1561 }
1562 
1563 /*
1564  * Block/unblock tx+rx processing while a key change is done.
1565  * We assume the caller serializes key management operations
1566  * so we only need to worry about synchronization with other
1567  * uses that originate in the driver.
1568  */
1569 static void
1570 ath_key_update_begin(struct ieee80211com *ic)
1571 {
1572 	struct ifnet *ifp = ic->ic_ifp;
1573 	struct ath_softc *sc = ifp->if_softc;
1574 
1575 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1576 #if 0
1577 	tasklet_disable(&sc->sc_rxtq);
1578 #endif
1579 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1580 }
1581 
1582 static void
1583 ath_key_update_end(struct ieee80211com *ic)
1584 {
1585 	struct ifnet *ifp = ic->ic_ifp;
1586 	struct ath_softc *sc = ifp->if_softc;
1587 
1588 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1589 	IF_UNLOCK(&ifp->if_snd);
1590 #if 0
1591 	tasklet_enable(&sc->sc_rxtq);
1592 #endif
1593 }
1594 
1595 /*
1596  * Calculate the receive filter according to the
1597  * operating mode and state:
1598  *
1599  * o always accept unicast, broadcast, and multicast traffic
1600  * o maintain current state of phy error reception (the hal
1601  *   may enable phy error frames for noise immunity work)
1602  * o probe request frames are accepted only when operating in
1603  *   hostap, adhoc, or monitor modes
1604  * o enable promiscuous mode according to the interface state
1605  * o accept beacons:
1606  *   - when operating in adhoc mode so the 802.11 layer creates
1607  *     node table entries for peers,
1608  *   - when operating in station mode for collecting rssi data when
1609  *     the station is otherwise quiet, or
1610  *   - when scanning
1611  */
1612 static u_int32_t
1613 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1614 {
1615 	struct ieee80211com *ic = &sc->sc_ic;
1616 	struct ath_hal *ah = sc->sc_ah;
1617 	struct ifnet *ifp = sc->sc_ifp;
1618 	u_int32_t rfilt;
1619 
1620 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1621 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1622 	if (ic->ic_opmode != IEEE80211_M_STA)
1623 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1624 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1625 	    (ifp->if_flags & IFF_PROMISC))
1626 		rfilt |= HAL_RX_FILTER_PROM;
1627 	if (ic->ic_opmode == IEEE80211_M_STA ||
1628 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1629 	    state == IEEE80211_S_SCAN)
1630 		rfilt |= HAL_RX_FILTER_BEACON;
1631 	return rfilt;
1632 }
1633 
1634 static void
1635 ath_mode_init(struct ath_softc *sc)
1636 {
1637 	struct ieee80211com *ic = &sc->sc_ic;
1638 	struct ath_hal *ah = sc->sc_ah;
1639 	struct ifnet *ifp = sc->sc_ifp;
1640 	u_int32_t rfilt, mfilt[2], val;
1641 	u_int8_t pos;
1642 	struct ifmultiaddr *ifma;
1643 
1644 	/* configure rx filter */
1645 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1646 	ath_hal_setrxfilter(ah, rfilt);
1647 
1648 	/* configure operational mode */
1649 	ath_hal_setopmode(ah);
1650 
1651 	/*
1652 	 * Handle any link-level address change.  Note that we only
1653 	 * need to force ic_myaddr; any other addresses are handled
1654 	 * as a byproduct of the ifnet code marking the interface
1655 	 * down then up.
1656 	 *
1657 	 * XXX should get from lladdr instead of arpcom but that's more work
1658 	 */
1659 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2ENADDR(ifp));
1660 	ath_hal_setmac(ah, ic->ic_myaddr);
1661 
1662 	/* calculate and install multicast filter */
1663 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1664 		mfilt[0] = mfilt[1] = 0;
1665 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1666 			caddr_t dl;
1667 
1668 			/* calculate XOR of eight 6bit values */
1669 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1670 			val = LE_READ_4(dl + 0);
1671 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1672 			val = LE_READ_4(dl + 3);
1673 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1674 			pos &= 0x3f;
1675 			mfilt[pos / 32] |= (1 << (pos % 32));
1676 		}
1677 	} else {
1678 		mfilt[0] = mfilt[1] = ~0;
1679 	}
1680 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1681 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1682 		__func__, rfilt, mfilt[0], mfilt[1]);
1683 }
1684 
1685 /*
1686  * Set the slot time based on the current setting.
1687  */
1688 static void
1689 ath_setslottime(struct ath_softc *sc)
1690 {
1691 	struct ieee80211com *ic = &sc->sc_ic;
1692 	struct ath_hal *ah = sc->sc_ah;
1693 
1694 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1695 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1696 	else
1697 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1698 	sc->sc_updateslot = OK;
1699 }
1700 
1701 /*
1702  * Callback from the 802.11 layer to update the
1703  * slot time based on the current setting.
1704  */
1705 static void
1706 ath_updateslot(struct ifnet *ifp)
1707 {
1708 	struct ath_softc *sc = ifp->if_softc;
1709 	struct ieee80211com *ic = &sc->sc_ic;
1710 
1711 	/*
1712 	 * When not coordinating the BSS, change the hardware
1713 	 * immediately.  For other operation we defer the change
1714 	 * until beacon updates have propagated to the stations.
1715 	 */
1716 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1717 		sc->sc_updateslot = UPDATE;
1718 	else
1719 		ath_setslottime(sc);
1720 }
1721 
1722 /*
1723  * Setup a h/w transmit queue for beacons.
1724  */
1725 static int
1726 ath_beaconq_setup(struct ath_hal *ah)
1727 {
1728 	HAL_TXQ_INFO qi;
1729 
1730 	memset(&qi, 0, sizeof(qi));
1731 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1732 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1733 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1734 	/* NB: for dynamic turbo, don't enable any other interrupts */
1735 	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1736 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1737 }
1738 
1739 /*
1740  * Setup the transmit queue parameters for the beacon queue.
1741  */
1742 static int
1743 ath_beaconq_config(struct ath_softc *sc)
1744 {
1745 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1746 	struct ieee80211com *ic = &sc->sc_ic;
1747 	struct ath_hal *ah = sc->sc_ah;
1748 	HAL_TXQ_INFO qi;
1749 
1750 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1751 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1752 		/*
1753 		 * Always burst out beacon and CAB traffic.
1754 		 */
1755 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1756 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1757 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1758 	} else {
1759 		struct wmeParams *wmep =
1760 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1761 		/*
1762 		 * Adhoc mode; important thing is to use 2x cwmin.
1763 		 */
1764 		qi.tqi_aifs = wmep->wmep_aifsn;
1765 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1766 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1767 	}
1768 
1769 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1770 		device_printf(sc->sc_dev, "unable to update parameters for "
1771 			"beacon hardware queue!\n");
1772 		return 0;
1773 	} else {
1774 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1775 		return 1;
1776 	}
1777 #undef ATH_EXPONENT_TO_VALUE
1778 }
1779 
1780 /*
1781  * Allocate and setup an initial beacon frame.
1782  */
1783 static int
1784 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1785 {
1786 	struct ieee80211com *ic = ni->ni_ic;
1787 	struct ath_buf *bf;
1788 	struct mbuf *m;
1789 	int error;
1790 
1791 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1792 	if (bf == NULL) {
1793 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1794 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1795 		return ENOMEM;			/* XXX */
1796 	}
1797 	/*
1798 	 * NB: the beacon data buffer must be 32-bit aligned;
1799 	 * we assume the mbuf routines will return us something
1800 	 * with this alignment (perhaps should assert).
1801 	 */
1802 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1803 	if (m == NULL) {
1804 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1805 			__func__);
1806 		sc->sc_stats.ast_be_nombuf++;
1807 		return ENOMEM;
1808 	}
1809 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1810 				     bf->bf_segs, &bf->bf_nseg,
1811 				     BUS_DMA_NOWAIT);
1812 	if (error == 0) {
1813 		bf->bf_m = m;
1814 		bf->bf_node = ieee80211_ref_node(ni);
1815 	} else {
1816 		m_freem(m);
1817 	}
1818 	return error;
1819 }
1820 
1821 /*
1822  * Setup the beacon frame for transmit.
1823  */
1824 static void
1825 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1826 {
1827 #define	USE_SHPREAMBLE(_ic) \
1828 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1829 		== IEEE80211_F_SHPREAMBLE)
1830 	struct ieee80211_node *ni = bf->bf_node;
1831 	struct ieee80211com *ic = ni->ni_ic;
1832 	struct mbuf *m = bf->bf_m;
1833 	struct ath_hal *ah = sc->sc_ah;
1834 	struct ath_node *an = ATH_NODE(ni);
1835 	struct ath_desc *ds;
1836 	int flags, antenna;
1837 	u_int8_t rate;
1838 
1839 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1840 		__func__, m, m->m_len);
1841 
1842 	/* setup descriptors */
1843 	ds = bf->bf_desc;
1844 
1845 	flags = HAL_TXDESC_NOACK;
1846 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1847 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1848 		flags |= HAL_TXDESC_VEOL;
1849 		/*
1850 		 * Let hardware handle antenna switching.
1851 		 */
1852 		antenna = 0;
1853 	} else {
1854 		ds->ds_link = 0;
1855 		/*
1856 		 * Switch antenna every 4 beacons.
1857 		 * XXX assumes two antenna
1858 		 */
1859 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1860 	}
1861 
1862 	KASSERT(bf->bf_nseg == 1,
1863 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1864 	ds->ds_data = bf->bf_segs[0].ds_addr;
1865 	/*
1866 	 * Calculate rate code.
1867 	 * XXX everything at min xmit rate
1868 	 */
1869 	if (USE_SHPREAMBLE(ic))
1870 		rate = an->an_tx_mgtratesp;
1871 	else
1872 		rate = an->an_tx_mgtrate;
1873 	ath_hal_setuptxdesc(ah, ds
1874 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1875 		, sizeof(struct ieee80211_frame)/* header length */
1876 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1877 		, ni->ni_txpower		/* txpower XXX */
1878 		, rate, 1			/* series 0 rate/tries */
1879 		, HAL_TXKEYIX_INVALID		/* no encryption */
1880 		, antenna			/* antenna mode */
1881 		, flags				/* no ack, veol for beacons */
1882 		, 0				/* rts/cts rate */
1883 		, 0				/* rts/cts duration */
1884 	);
1885 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1886 	ath_hal_filltxdesc(ah, ds
1887 		, roundup(m->m_len, 4)		/* buffer length */
1888 		, AH_TRUE			/* first segment */
1889 		, AH_TRUE			/* last segment */
1890 		, ds				/* first descriptor */
1891 	);
1892 #undef USE_SHPREAMBLE
1893 }
1894 
1895 /*
1896  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1897  * frame contents are done as needed and the slot time is
1898  * also adjusted based on current state.
1899  */
1900 static void
1901 ath_beacon_proc(void *arg, int pending)
1902 {
1903 	struct ath_softc *sc = arg;
1904 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1905 	struct ieee80211_node *ni = bf->bf_node;
1906 	struct ieee80211com *ic = ni->ni_ic;
1907 	struct ath_hal *ah = sc->sc_ah;
1908 	struct mbuf *m;
1909 	int ncabq, error, otherant;
1910 
1911 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1912 		__func__, pending);
1913 
1914 	if (ic->ic_opmode == IEEE80211_M_STA ||
1915 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1916 	    bf == NULL || bf->bf_m == NULL) {
1917 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1918 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1919 		return;
1920 	}
1921 	/*
1922 	 * Check if the previous beacon has gone out.  If
1923 	 * not don't don't try to post another, skip this
1924 	 * period and wait for the next.  Missed beacons
1925 	 * indicate a problem and should not occur.  If we
1926 	 * miss too many consecutive beacons reset the device.
1927 	 */
1928 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1929 		sc->sc_bmisscount++;
1930 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1931 			"%s: missed %u consecutive beacons\n",
1932 			__func__, sc->sc_bmisscount);
1933 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1934 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1935 		return;
1936 	}
1937 	if (sc->sc_bmisscount != 0) {
1938 		DPRINTF(sc, ATH_DEBUG_BEACON,
1939 			"%s: resume beacon xmit after %u misses\n",
1940 			__func__, sc->sc_bmisscount);
1941 		sc->sc_bmisscount = 0;
1942 	}
1943 
1944 	/*
1945 	 * Update dynamic beacon contents.  If this returns
1946 	 * non-zero then we need to remap the memory because
1947 	 * the beacon frame changed size (probably because
1948 	 * of the TIM bitmap).
1949 	 */
1950 	m = bf->bf_m;
1951 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1952 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1953 		/* XXX too conservative? */
1954 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1955 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1956 					     bf->bf_segs, &bf->bf_nseg,
1957 					     BUS_DMA_NOWAIT);
1958 		if (error != 0) {
1959 			if_printf(ic->ic_ifp,
1960 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1961 			    __func__, error);
1962 			return;
1963 		}
1964 	}
1965 
1966 	/*
1967 	 * Handle slot time change when a non-ERP station joins/leaves
1968 	 * an 11g network.  The 802.11 layer notifies us via callback,
1969 	 * we mark updateslot, then wait one beacon before effecting
1970 	 * the change.  This gives associated stations at least one
1971 	 * beacon interval to note the state change.
1972 	 */
1973 	/* XXX locking */
1974 	if (sc->sc_updateslot == UPDATE)
1975 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1976 	else if (sc->sc_updateslot == COMMIT)
1977 		ath_setslottime(sc);		/* commit change to h/w */
1978 
1979 	/*
1980 	 * Check recent per-antenna transmit statistics and flip
1981 	 * the default antenna if noticeably more frames went out
1982 	 * on the non-default antenna.
1983 	 * XXX assumes 2 anntenae
1984 	 */
1985 	otherant = sc->sc_defant & 1 ? 2 : 1;
1986 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1987 		ath_setdefantenna(sc, otherant);
1988 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1989 
1990 	/*
1991 	 * Construct tx descriptor.
1992 	 */
1993 	ath_beacon_setup(sc, bf);
1994 
1995 	/*
1996 	 * Stop any current dma and put the new frame on the queue.
1997 	 * This should never fail since we check above that no frames
1998 	 * are still pending on the queue.
1999 	 */
2000 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2001 		DPRINTF(sc, ATH_DEBUG_ANY,
2002 			"%s: beacon queue %u did not stop?\n",
2003 			__func__, sc->sc_bhalq);
2004 	}
2005 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2006 
2007 	/*
2008 	 * Enable the CAB queue before the beacon queue to
2009 	 * insure cab frames are triggered by this beacon.
2010 	 */
2011 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2012 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2013 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2014 	ath_hal_txstart(ah, sc->sc_bhalq);
2015 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2016 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2017 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2018 
2019 	sc->sc_stats.ast_be_xmit++;
2020 }
2021 
2022 /*
2023  * Reset the hardware after detecting beacons have stopped.
2024  */
2025 static void
2026 ath_bstuck_proc(void *arg, int pending)
2027 {
2028 	struct ath_softc *sc = arg;
2029 	struct ifnet *ifp = sc->sc_ifp;
2030 
2031 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2032 		sc->sc_bmisscount);
2033 	ath_reset(ifp);
2034 }
2035 
2036 /*
2037  * Reclaim beacon resources.
2038  */
2039 static void
2040 ath_beacon_free(struct ath_softc *sc)
2041 {
2042 	struct ath_buf *bf;
2043 
2044 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2045 		if (bf->bf_m != NULL) {
2046 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2047 			m_freem(bf->bf_m);
2048 			bf->bf_m = NULL;
2049 		}
2050 		if (bf->bf_node != NULL) {
2051 			ieee80211_free_node(bf->bf_node);
2052 			bf->bf_node = NULL;
2053 		}
2054 	}
2055 }
2056 
2057 /*
2058  * Configure the beacon and sleep timers.
2059  *
2060  * When operating as an AP this resets the TSF and sets
2061  * up the hardware to notify us when we need to issue beacons.
2062  *
2063  * When operating in station mode this sets up the beacon
2064  * timers according to the timestamp of the last received
2065  * beacon and the current TSF, configures PCF and DTIM
2066  * handling, programs the sleep registers so the hardware
2067  * will wakeup in time to receive beacons, and configures
2068  * the beacon miss handling so we'll receive a BMISS
2069  * interrupt when we stop seeing beacons from the AP
2070  * we've associated with.
2071  */
2072 static void
2073 ath_beacon_config(struct ath_softc *sc)
2074 {
2075 #define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
2076 	struct ath_hal *ah = sc->sc_ah;
2077 	struct ieee80211com *ic = &sc->sc_ic;
2078 	struct ieee80211_node *ni = ic->ic_bss;
2079 	u_int32_t nexttbtt, intval;
2080 
2081 	/* extract tstamp from last beacon and convert to TU */
2082 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2083 			     LE_READ_4(ni->ni_tstamp.data));
2084 	/* NB: the beacon interval is kept internally in TU's */
2085 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2086 	if (nexttbtt == 0)		/* e.g. for ap mode */
2087 		nexttbtt = intval;
2088 	else if (intval)		/* NB: can be 0 for monitor mode */
2089 		nexttbtt = roundup(nexttbtt, intval);
2090 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2091 		__func__, nexttbtt, intval, ni->ni_intval);
2092 	if (ic->ic_opmode == IEEE80211_M_STA) {
2093 		HAL_BEACON_STATE bs;
2094 		u_int64_t tsf;
2095 		u_int32_t tsftu;
2096 		int dtimperiod, dtimcount;
2097 		int cfpperiod, cfpcount;
2098 
2099 		/*
2100 		 * Setup dtim and cfp parameters according to
2101 		 * last beacon we received (which may be none).
2102 		 */
2103 		dtimperiod = ni->ni_dtim_period;
2104 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2105 			dtimperiod = 1;
2106 		dtimcount = ni->ni_dtim_count;
2107 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2108 			dtimcount = 0;		/* XXX? */
2109 		cfpperiod = 1;			/* NB: no PCF support yet */
2110 		cfpcount = 0;
2111 #define	FUDGE	2
2112 		/*
2113 		 * Pull nexttbtt forward to reflect the current
2114 		 * TSF and calculate dtim+cfp state for the result.
2115 		 */
2116 		tsf = ath_hal_gettsf64(ah);
2117 		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2118 		do {
2119 			nexttbtt += intval;
2120 			if (--dtimcount < 0) {
2121 				dtimcount = dtimperiod - 1;
2122 				if (--cfpcount < 0)
2123 					cfpcount = cfpperiod - 1;
2124 			}
2125 		} while (nexttbtt < tsftu);
2126 #undef FUDGE
2127 		memset(&bs, 0, sizeof(bs));
2128 		bs.bs_intval = intval;
2129 		bs.bs_nexttbtt = nexttbtt;
2130 		bs.bs_dtimperiod = dtimperiod*intval;
2131 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2132 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2133 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2134 		bs.bs_cfpmaxduration = 0;
2135 #if 0
2136 		/*
2137 		 * The 802.11 layer records the offset to the DTIM
2138 		 * bitmap while receiving beacons; use it here to
2139 		 * enable h/w detection of our AID being marked in
2140 		 * the bitmap vector (to indicate frames for us are
2141 		 * pending at the AP).
2142 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2143 		 * XXX enable based on h/w rev for newer chips
2144 		 */
2145 		bs.bs_timoffset = ni->ni_timoff;
2146 #endif
2147 		/*
2148 		 * Calculate the number of consecutive beacons to miss
2149 		 * before taking a BMISS interrupt.  The configuration
2150 		 * is specified in ms, so we need to convert that to
2151 		 * TU's and then calculate based on the beacon interval.
2152 		 * Note that we clamp the result to at most 10 beacons.
2153 		 */
2154 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2155 		if (bs.bs_bmissthreshold > 10)
2156 			bs.bs_bmissthreshold = 10;
2157 		else if (bs.bs_bmissthreshold <= 0)
2158 			bs.bs_bmissthreshold = 1;
2159 
2160 		/*
2161 		 * Calculate sleep duration.  The configuration is
2162 		 * given in ms.  We insure a multiple of the beacon
2163 		 * period is used.  Also, if the sleep duration is
2164 		 * greater than the DTIM period then it makes senses
2165 		 * to make it a multiple of that.
2166 		 *
2167 		 * XXX fixed at 100ms
2168 		 */
2169 		bs.bs_sleepduration =
2170 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2171 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2172 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2173 
2174 		DPRINTF(sc, ATH_DEBUG_BEACON,
2175 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2176 			, __func__
2177 			, tsf, tsftu
2178 			, bs.bs_intval
2179 			, bs.bs_nexttbtt
2180 			, bs.bs_dtimperiod
2181 			, bs.bs_nextdtim
2182 			, bs.bs_bmissthreshold
2183 			, bs.bs_sleepduration
2184 			, bs.bs_cfpperiod
2185 			, bs.bs_cfpmaxduration
2186 			, bs.bs_cfpnext
2187 			, bs.bs_timoffset
2188 		);
2189 		ath_hal_intrset(ah, 0);
2190 		ath_hal_beacontimers(ah, &bs);
2191 		sc->sc_imask |= HAL_INT_BMISS;
2192 		ath_hal_intrset(ah, sc->sc_imask);
2193 	} else {
2194 		ath_hal_intrset(ah, 0);
2195 		if (nexttbtt == intval)
2196 			intval |= HAL_BEACON_RESET_TSF;
2197 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2198 			/*
2199 			 * In IBSS mode enable the beacon timers but only
2200 			 * enable SWBA interrupts if we need to manually
2201 			 * prepare beacon frames.  Otherwise we use a
2202 			 * self-linked tx descriptor and let the hardware
2203 			 * deal with things.
2204 			 */
2205 			intval |= HAL_BEACON_ENA;
2206 			if (!sc->sc_hasveol)
2207 				sc->sc_imask |= HAL_INT_SWBA;
2208 			ath_beaconq_config(sc);
2209 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2210 			/*
2211 			 * In AP mode we enable the beacon timers and
2212 			 * SWBA interrupts to prepare beacon frames.
2213 			 */
2214 			intval |= HAL_BEACON_ENA;
2215 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2216 			ath_beaconq_config(sc);
2217 		}
2218 		ath_hal_beaconinit(ah, nexttbtt, intval);
2219 		sc->sc_bmisscount = 0;
2220 		ath_hal_intrset(ah, sc->sc_imask);
2221 		/*
2222 		 * When using a self-linked beacon descriptor in
2223 		 * ibss mode load it once here.
2224 		 */
2225 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2226 			ath_beacon_proc(sc, 0);
2227 	}
2228 #undef TSF_TO_TU
2229 }
2230 
2231 static void
2232 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2233 {
2234 	bus_addr_t *paddr = (bus_addr_t*) arg;
2235 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2236 	*paddr = segs->ds_addr;
2237 }
2238 
2239 static int
2240 ath_descdma_setup(struct ath_softc *sc,
2241 	struct ath_descdma *dd, ath_bufhead *head,
2242 	const char *name, int nbuf, int ndesc)
2243 {
2244 #define	DS2PHYS(_dd, _ds) \
2245 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2246 	struct ifnet *ifp = sc->sc_ifp;
2247 	struct ath_desc *ds;
2248 	struct ath_buf *bf;
2249 	int i, bsize, error;
2250 
2251 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2252 	    __func__, name, nbuf, ndesc);
2253 
2254 	dd->dd_name = name;
2255 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2256 
2257 	/*
2258 	 * Setup DMA descriptor area.
2259 	 */
2260 	error = bus_dma_tag_create(NULL,	/* parent */
2261 		       PAGE_SIZE, 0,		/* alignment, bounds */
2262 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2263 		       BUS_SPACE_MAXADDR,	/* highaddr */
2264 		       NULL, NULL,		/* filter, filterarg */
2265 		       dd->dd_desc_len,		/* maxsize */
2266 		       1,			/* nsegments */
2267 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2268 		       BUS_DMA_ALLOCNOW,	/* flags */
2269 		       NULL,			/* lockfunc */
2270 		       NULL,			/* lockarg */
2271 		       &dd->dd_dmat);
2272 	if (error != 0) {
2273 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2274 		return error;
2275 	}
2276 
2277 	/* allocate descriptors */
2278 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2279 	if (error != 0) {
2280 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2281 			"error %u\n", dd->dd_name, error);
2282 		goto fail0;
2283 	}
2284 
2285 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2286 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2287 	if (error != 0) {
2288 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2289 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2290 		goto fail1;
2291 	}
2292 
2293 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2294 				dd->dd_desc, dd->dd_desc_len,
2295 				ath_load_cb, &dd->dd_desc_paddr,
2296 				BUS_DMA_NOWAIT);
2297 	if (error != 0) {
2298 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2299 			dd->dd_name, error);
2300 		goto fail2;
2301 	}
2302 
2303 	ds = dd->dd_desc;
2304 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2305 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2306 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2307 
2308 	/* allocate rx buffers */
2309 	bsize = sizeof(struct ath_buf) * nbuf;
2310 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2311 	if (bf == NULL) {
2312 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2313 			dd->dd_name, bsize);
2314 		goto fail3;
2315 	}
2316 	dd->dd_bufptr = bf;
2317 
2318 	STAILQ_INIT(head);
2319 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2320 		bf->bf_desc = ds;
2321 		bf->bf_daddr = DS2PHYS(dd, ds);
2322 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2323 				&bf->bf_dmamap);
2324 		if (error != 0) {
2325 			if_printf(ifp, "unable to create dmamap for %s "
2326 				"buffer %u, error %u\n", dd->dd_name, i, error);
2327 			ath_descdma_cleanup(sc, dd, head);
2328 			return error;
2329 		}
2330 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2331 	}
2332 	return 0;
2333 fail3:
2334 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2335 fail2:
2336 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2337 fail1:
2338 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2339 fail0:
2340 	bus_dma_tag_destroy(dd->dd_dmat);
2341 	memset(dd, 0, sizeof(*dd));
2342 	return error;
2343 #undef DS2PHYS
2344 }
2345 
2346 static void
2347 ath_descdma_cleanup(struct ath_softc *sc,
2348 	struct ath_descdma *dd, ath_bufhead *head)
2349 {
2350 	struct ath_buf *bf;
2351 	struct ieee80211_node *ni;
2352 
2353 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2354 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2355 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2356 	bus_dma_tag_destroy(dd->dd_dmat);
2357 
2358 	STAILQ_FOREACH(bf, head, bf_list) {
2359 		if (bf->bf_m) {
2360 			m_freem(bf->bf_m);
2361 			bf->bf_m = NULL;
2362 		}
2363 		if (bf->bf_dmamap != NULL) {
2364 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2365 			bf->bf_dmamap = NULL;
2366 		}
2367 		ni = bf->bf_node;
2368 		bf->bf_node = NULL;
2369 		if (ni != NULL) {
2370 			/*
2371 			 * Reclaim node reference.
2372 			 */
2373 			ieee80211_free_node(ni);
2374 		}
2375 	}
2376 
2377 	STAILQ_INIT(head);
2378 	free(dd->dd_bufptr, M_ATHDEV);
2379 	memset(dd, 0, sizeof(*dd));
2380 }
2381 
2382 static int
2383 ath_desc_alloc(struct ath_softc *sc)
2384 {
2385 	int error;
2386 
2387 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2388 			"rx", ATH_RXBUF, 1);
2389 	if (error != 0)
2390 		return error;
2391 
2392 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2393 			"tx", ATH_TXBUF, ATH_TXDESC);
2394 	if (error != 0) {
2395 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2396 		return error;
2397 	}
2398 
2399 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2400 			"beacon", 1, 1);
2401 	if (error != 0) {
2402 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2403 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2404 		return error;
2405 	}
2406 	return 0;
2407 }
2408 
2409 static void
2410 ath_desc_free(struct ath_softc *sc)
2411 {
2412 
2413 	if (sc->sc_bdma.dd_desc_len != 0)
2414 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2415 	if (sc->sc_txdma.dd_desc_len != 0)
2416 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2417 	if (sc->sc_rxdma.dd_desc_len != 0)
2418 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2419 }
2420 
2421 static struct ieee80211_node *
2422 ath_node_alloc(struct ieee80211_node_table *nt)
2423 {
2424 	struct ieee80211com *ic = nt->nt_ic;
2425 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2426 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2427 	struct ath_node *an;
2428 
2429 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2430 	if (an == NULL) {
2431 		/* XXX stat+msg */
2432 		return NULL;
2433 	}
2434 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2435 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2436 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2437 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2438 	ath_rate_node_init(sc, an);
2439 
2440 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2441 	return &an->an_node;
2442 }
2443 
2444 static void
2445 ath_node_free(struct ieee80211_node *ni)
2446 {
2447 	struct ieee80211com *ic = ni->ni_ic;
2448         struct ath_softc *sc = ic->ic_ifp->if_softc;
2449 
2450 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2451 
2452 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2453 	sc->sc_node_free(ni);
2454 }
2455 
2456 static u_int8_t
2457 ath_node_getrssi(const struct ieee80211_node *ni)
2458 {
2459 #define	HAL_EP_RND(x, mul) \
2460 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2461 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2462 	int32_t rssi;
2463 
2464 	/*
2465 	 * When only one frame is received there will be no state in
2466 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2467 	 */
2468 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2469 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2470 	else
2471 		rssi = ni->ni_rssi;
2472 	/* NB: theoretically we shouldn't need this, but be paranoid */
2473 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2474 #undef HAL_EP_RND
2475 }
2476 
2477 static int
2478 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2479 {
2480 	struct ath_hal *ah = sc->sc_ah;
2481 	int error;
2482 	struct mbuf *m;
2483 	struct ath_desc *ds;
2484 
2485 	m = bf->bf_m;
2486 	if (m == NULL) {
2487 		/*
2488 		 * NB: by assigning a page to the rx dma buffer we
2489 		 * implicitly satisfy the Atheros requirement that
2490 		 * this buffer be cache-line-aligned and sized to be
2491 		 * multiple of the cache line size.  Not doing this
2492 		 * causes weird stuff to happen (for the 5210 at least).
2493 		 */
2494 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2495 		if (m == NULL) {
2496 			DPRINTF(sc, ATH_DEBUG_ANY,
2497 				"%s: no mbuf/cluster\n", __func__);
2498 			sc->sc_stats.ast_rx_nombuf++;
2499 			return ENOMEM;
2500 		}
2501 		bf->bf_m = m;
2502 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2503 
2504 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2505 					     bf->bf_dmamap, m,
2506 					     bf->bf_segs, &bf->bf_nseg,
2507 					     BUS_DMA_NOWAIT);
2508 		if (error != 0) {
2509 			DPRINTF(sc, ATH_DEBUG_ANY,
2510 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2511 			    __func__, error);
2512 			sc->sc_stats.ast_rx_busdma++;
2513 			return error;
2514 		}
2515 		KASSERT(bf->bf_nseg == 1,
2516 			("multi-segment packet; nseg %u", bf->bf_nseg));
2517 	}
2518 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2519 
2520 	/*
2521 	 * Setup descriptors.  For receive we always terminate
2522 	 * the descriptor list with a self-linked entry so we'll
2523 	 * not get overrun under high load (as can happen with a
2524 	 * 5212 when ANI processing enables PHY error frames).
2525 	 *
2526 	 * To insure the last descriptor is self-linked we create
2527 	 * each descriptor as self-linked and add it to the end.  As
2528 	 * each additional descriptor is added the previous self-linked
2529 	 * entry is ``fixed'' naturally.  This should be safe even
2530 	 * if DMA is happening.  When processing RX interrupts we
2531 	 * never remove/process the last, self-linked, entry on the
2532 	 * descriptor list.  This insures the hardware always has
2533 	 * someplace to write a new frame.
2534 	 */
2535 	ds = bf->bf_desc;
2536 	ds->ds_link = bf->bf_daddr;	/* link to self */
2537 	ds->ds_data = bf->bf_segs[0].ds_addr;
2538 	ath_hal_setuprxdesc(ah, ds
2539 		, m->m_len		/* buffer size */
2540 		, 0
2541 	);
2542 
2543 	if (sc->sc_rxlink != NULL)
2544 		*sc->sc_rxlink = bf->bf_daddr;
2545 	sc->sc_rxlink = &ds->ds_link;
2546 	return 0;
2547 }
2548 
2549 /*
2550  * Extend 15-bit time stamp from rx descriptor to
2551  * a full 64-bit TSF using the current h/w TSF.
2552  */
2553 static __inline u_int64_t
2554 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2555 {
2556 	u_int64_t tsf;
2557 
2558 	tsf = ath_hal_gettsf64(ah);
2559 	if ((tsf & 0x7fff) < rstamp)
2560 		tsf -= 0x8000;
2561 	return ((tsf &~ 0x7fff) | rstamp);
2562 }
2563 
2564 /*
2565  * Intercept management frames to collect beacon rssi data
2566  * and to do ibss merges.
2567  */
2568 static void
2569 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2570 	struct ieee80211_node *ni,
2571 	int subtype, int rssi, u_int32_t rstamp)
2572 {
2573 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2574 
2575 	/*
2576 	 * Call up first so subsequent work can use information
2577 	 * potentially stored in the node (e.g. for ibss merge).
2578 	 */
2579 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2580 	switch (subtype) {
2581 	case IEEE80211_FC0_SUBTYPE_BEACON:
2582 		/* update rssi statistics for use by the hal */
2583 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2584 		/* fall thru... */
2585 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2586 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2587 		    ic->ic_state == IEEE80211_S_RUN) {
2588 			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2589 			/*
2590 			 * Handle ibss merge as needed; check the tsf on the
2591 			 * frame before attempting the merge.  The 802.11 spec
2592 			 * says the station should change it's bssid to match
2593 			 * the oldest station with the same ssid, where oldest
2594 			 * is determined by the tsf.  Note that hardware
2595 			 * reconfiguration happens through callback to
2596 			 * ath_newstate as the state machine will go from
2597 			 * RUN -> RUN when this happens.
2598 			 */
2599 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2600 				DPRINTF(sc, ATH_DEBUG_STATE,
2601 				    "ibss merge, rstamp %u tsf %ju "
2602 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2603 				    (uintmax_t)ni->ni_tstamp.tsf);
2604 				(void) ieee80211_ibss_merge(ic, ni);
2605 			}
2606 		}
2607 		break;
2608 	}
2609 }
2610 
2611 /*
2612  * Set the default antenna.
2613  */
2614 static void
2615 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2616 {
2617 	struct ath_hal *ah = sc->sc_ah;
2618 
2619 	/* XXX block beacon interrupts */
2620 	ath_hal_setdefantenna(ah, antenna);
2621 	if (sc->sc_defant != antenna)
2622 		sc->sc_stats.ast_ant_defswitch++;
2623 	sc->sc_defant = antenna;
2624 	sc->sc_rxotherant = 0;
2625 }
2626 
2627 static void
2628 ath_rx_proc(void *arg, int npending)
2629 {
2630 #define	PA2DESC(_sc, _pa) \
2631 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2632 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2633 	struct ath_softc *sc = arg;
2634 	struct ath_buf *bf;
2635 	struct ieee80211com *ic = &sc->sc_ic;
2636 	struct ifnet *ifp = sc->sc_ifp;
2637 	struct ath_hal *ah = sc->sc_ah;
2638 	struct ath_desc *ds;
2639 	struct mbuf *m;
2640 	struct ieee80211_node *ni;
2641 	struct ath_node *an;
2642 	int len, type;
2643 	u_int phyerr;
2644 	HAL_STATUS status;
2645 
2646 	NET_LOCK_GIANT();		/* XXX */
2647 
2648 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2649 	do {
2650 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2651 		if (bf == NULL) {		/* NB: shouldn't happen */
2652 			if_printf(ifp, "%s: no buffer!\n", __func__);
2653 			break;
2654 		}
2655 		ds = bf->bf_desc;
2656 		if (ds->ds_link == bf->bf_daddr) {
2657 			/* NB: never process the self-linked entry at the end */
2658 			break;
2659 		}
2660 		m = bf->bf_m;
2661 		if (m == NULL) {		/* NB: shouldn't happen */
2662 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2663 			continue;
2664 		}
2665 		/* XXX sync descriptor memory */
2666 		/*
2667 		 * Must provide the virtual address of the current
2668 		 * descriptor, the physical address, and the virtual
2669 		 * address of the next descriptor in the h/w chain.
2670 		 * This allows the HAL to look ahead to see if the
2671 		 * hardware is done with a descriptor by checking the
2672 		 * done bit in the following descriptor and the address
2673 		 * of the current descriptor the DMA engine is working
2674 		 * on.  All this is necessary because of our use of
2675 		 * a self-linked list to avoid rx overruns.
2676 		 */
2677 		status = ath_hal_rxprocdesc(ah, ds,
2678 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2679 #ifdef AR_DEBUG
2680 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2681 			ath_printrxbuf(bf, status == HAL_OK);
2682 #endif
2683 		if (status == HAL_EINPROGRESS)
2684 			break;
2685 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2686 		if (ds->ds_rxstat.rs_more) {
2687 			/*
2688 			 * Frame spans multiple descriptors; this
2689 			 * cannot happen yet as we don't support
2690 			 * jumbograms.  If not in monitor mode,
2691 			 * discard the frame.
2692 			 */
2693 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2694 				sc->sc_stats.ast_rx_toobig++;
2695 				goto rx_next;
2696 			}
2697 			/* fall thru for monitor mode handling... */
2698 		} else if (ds->ds_rxstat.rs_status != 0) {
2699 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2700 				sc->sc_stats.ast_rx_crcerr++;
2701 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2702 				sc->sc_stats.ast_rx_fifoerr++;
2703 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2704 				sc->sc_stats.ast_rx_phyerr++;
2705 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2706 				sc->sc_stats.ast_rx_phy[phyerr]++;
2707 				goto rx_next;
2708 			}
2709 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2710 				/*
2711 				 * Decrypt error.  If the error occurred
2712 				 * because there was no hardware key, then
2713 				 * let the frame through so the upper layers
2714 				 * can process it.  This is necessary for 5210
2715 				 * parts which have no way to setup a ``clear''
2716 				 * key cache entry.
2717 				 *
2718 				 * XXX do key cache faulting
2719 				 */
2720 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2721 					goto rx_accept;
2722 				sc->sc_stats.ast_rx_badcrypt++;
2723 			}
2724 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2725 				sc->sc_stats.ast_rx_badmic++;
2726 				/*
2727 				 * Do minimal work required to hand off
2728 				 * the 802.11 header for notifcation.
2729 				 */
2730 				/* XXX frag's and qos frames */
2731 				len = ds->ds_rxstat.rs_datalen;
2732 				if (len >= sizeof (struct ieee80211_frame)) {
2733 					bus_dmamap_sync(sc->sc_dmat,
2734 					    bf->bf_dmamap,
2735 					    BUS_DMASYNC_POSTREAD);
2736 					ieee80211_notify_michael_failure(ic,
2737 					    mtod(m, struct ieee80211_frame *),
2738 					    sc->sc_splitmic ?
2739 					        ds->ds_rxstat.rs_keyix-32 :
2740 					        ds->ds_rxstat.rs_keyix
2741 					);
2742 				}
2743 			}
2744 			ifp->if_ierrors++;
2745 			/*
2746 			 * Reject error frames, we normally don't want
2747 			 * to see them in monitor mode (in monitor mode
2748 			 * allow through packets that have crypto problems).
2749 			 */
2750 			if ((ds->ds_rxstat.rs_status &~
2751 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2752 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2753 				goto rx_next;
2754 		}
2755 rx_accept:
2756 		/*
2757 		 * Sync and unmap the frame.  At this point we're
2758 		 * committed to passing the mbuf somewhere so clear
2759 		 * bf_m; this means a new sk_buff must be allocated
2760 		 * when the rx descriptor is setup again to receive
2761 		 * another frame.
2762 		 */
2763 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2764 		    BUS_DMASYNC_POSTREAD);
2765 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2766 		bf->bf_m = NULL;
2767 
2768 		m->m_pkthdr.rcvif = ifp;
2769 		len = ds->ds_rxstat.rs_datalen;
2770 		m->m_pkthdr.len = m->m_len = len;
2771 
2772 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2773 
2774 		if (sc->sc_drvbpf) {
2775 			u_int8_t rix;
2776 
2777 			/*
2778 			 * Discard anything shorter than an ack or cts.
2779 			 */
2780 			if (len < IEEE80211_ACK_LEN) {
2781 				DPRINTF(sc, ATH_DEBUG_RECV,
2782 					"%s: runt packet %d\n",
2783 					__func__, len);
2784 				sc->sc_stats.ast_rx_tooshort++;
2785 				m_freem(m);
2786 				goto rx_next;
2787 			}
2788 			rix = ds->ds_rxstat.rs_rate;
2789 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2790 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2791 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2792 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2793 			/* XXX TSF */
2794 
2795 			bpf_mtap2(sc->sc_drvbpf,
2796 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2797 		}
2798 
2799 		/*
2800 		 * From this point on we assume the frame is at least
2801 		 * as large as ieee80211_frame_min; verify that.
2802 		 */
2803 		if (len < IEEE80211_MIN_LEN) {
2804 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2805 				__func__, len);
2806 			sc->sc_stats.ast_rx_tooshort++;
2807 			m_freem(m);
2808 			goto rx_next;
2809 		}
2810 
2811 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2812 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2813 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2814 				   ds->ds_rxstat.rs_rssi);
2815 		}
2816 
2817 		m_adj(m, -IEEE80211_CRC_LEN);
2818 
2819 		/*
2820 		 * Locate the node for sender, track state, and then
2821 		 * pass the (referenced) node up to the 802.11 layer
2822 		 * for its use.  If the sender is unknown spam the
2823 		 * frame; it'll be dropped where it's not wanted.
2824 		 */
2825 		if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
2826 		    (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
2827 			/*
2828 			 * Fast path: node is present in the key map;
2829 			 * grab a reference for processing the frame.
2830 			 */
2831 			an = ATH_NODE(ieee80211_ref_node(ni));
2832 			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2833 			type = ieee80211_input(ic, m, ni,
2834 				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2835 		} else {
2836 			/*
2837 			 * Locate the node for sender, track state, and then
2838 			 * pass the (referenced) node up to the 802.11 layer
2839 			 * for its use.
2840 			 */
2841 			ni = ieee80211_find_rxnode(ic,
2842 				mtod(m, const struct ieee80211_frame_min *));
2843 			/*
2844 			 * Track rx rssi and do any rx antenna management.
2845 			 */
2846 			an = ATH_NODE(ni);
2847 			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2848 			/*
2849 			 * Send frame up for processing.
2850 			 */
2851 			type = ieee80211_input(ic, m, ni,
2852 				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2853 			if (ni != ic->ic_bss) {
2854 				u_int16_t keyix;
2855 				/*
2856 				 * If the station has a key cache slot assigned
2857 				 * update the key->node mapping table.
2858 				 */
2859 				keyix = ni->ni_ucastkey.wk_keyix;
2860 				if (keyix != IEEE80211_KEYIX_NONE &&
2861 				    sc->sc_keyixmap[keyix] == NULL)
2862 					sc->sc_keyixmap[keyix] =
2863 						ieee80211_ref_node(ni);
2864 			}
2865 		}
2866 		ieee80211_free_node(ni);
2867 		if (sc->sc_diversity) {
2868 			/*
2869 			 * When using fast diversity, change the default rx
2870 			 * antenna if diversity chooses the other antenna 3
2871 			 * times in a row.
2872 			 */
2873 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2874 				if (++sc->sc_rxotherant >= 3)
2875 					ath_setdefantenna(sc,
2876 						ds->ds_rxstat.rs_antenna);
2877 			} else
2878 				sc->sc_rxotherant = 0;
2879 		}
2880 		if (sc->sc_softled) {
2881 			/*
2882 			 * Blink for any data frame.  Otherwise do a
2883 			 * heartbeat-style blink when idle.  The latter
2884 			 * is mainly for station mode where we depend on
2885 			 * periodic beacon frames to trigger the poll event.
2886 			 */
2887 			if (type == IEEE80211_FC0_TYPE_DATA) {
2888 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2889 				ath_led_event(sc, ATH_LED_RX);
2890 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2891 				ath_led_event(sc, ATH_LED_POLL);
2892 		}
2893 rx_next:
2894 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2895 	} while (ath_rxbuf_init(sc, bf) == 0);
2896 
2897 	/* rx signal state monitoring */
2898 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2899 
2900 	NET_UNLOCK_GIANT();		/* XXX */
2901 #undef PA2DESC
2902 }
2903 
2904 /*
2905  * Setup a h/w transmit queue.
2906  */
2907 static struct ath_txq *
2908 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2909 {
2910 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2911 	struct ath_hal *ah = sc->sc_ah;
2912 	HAL_TXQ_INFO qi;
2913 	int qnum;
2914 
2915 	memset(&qi, 0, sizeof(qi));
2916 	qi.tqi_subtype = subtype;
2917 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2918 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2919 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2920 	/*
2921 	 * Enable interrupts only for EOL and DESC conditions.
2922 	 * We mark tx descriptors to receive a DESC interrupt
2923 	 * when a tx queue gets deep; otherwise waiting for the
2924 	 * EOL to reap descriptors.  Note that this is done to
2925 	 * reduce interrupt load and this only defers reaping
2926 	 * descriptors, never transmitting frames.  Aside from
2927 	 * reducing interrupts this also permits more concurrency.
2928 	 * The only potential downside is if the tx queue backs
2929 	 * up in which case the top half of the kernel may backup
2930 	 * due to a lack of tx descriptors.
2931 	 */
2932 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2933 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2934 	if (qnum == -1) {
2935 		/*
2936 		 * NB: don't print a message, this happens
2937 		 * normally on parts with too few tx queues
2938 		 */
2939 		return NULL;
2940 	}
2941 	if (qnum >= N(sc->sc_txq)) {
2942 		device_printf(sc->sc_dev,
2943 			"hal qnum %u out of range, max %zu!\n",
2944 			qnum, N(sc->sc_txq));
2945 		ath_hal_releasetxqueue(ah, qnum);
2946 		return NULL;
2947 	}
2948 	if (!ATH_TXQ_SETUP(sc, qnum)) {
2949 		struct ath_txq *txq = &sc->sc_txq[qnum];
2950 
2951 		txq->axq_qnum = qnum;
2952 		txq->axq_depth = 0;
2953 		txq->axq_intrcnt = 0;
2954 		txq->axq_link = NULL;
2955 		STAILQ_INIT(&txq->axq_q);
2956 		ATH_TXQ_LOCK_INIT(sc, txq);
2957 		sc->sc_txqsetup |= 1<<qnum;
2958 	}
2959 	return &sc->sc_txq[qnum];
2960 #undef N
2961 }
2962 
2963 /*
2964  * Setup a hardware data transmit queue for the specified
2965  * access control.  The hal may not support all requested
2966  * queues in which case it will return a reference to a
2967  * previously setup queue.  We record the mapping from ac's
2968  * to h/w queues for use by ath_tx_start and also track
2969  * the set of h/w queues being used to optimize work in the
2970  * transmit interrupt handler and related routines.
2971  */
2972 static int
2973 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2974 {
2975 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2976 	struct ath_txq *txq;
2977 
2978 	if (ac >= N(sc->sc_ac2q)) {
2979 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2980 			ac, N(sc->sc_ac2q));
2981 		return 0;
2982 	}
2983 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2984 	if (txq != NULL) {
2985 		sc->sc_ac2q[ac] = txq;
2986 		return 1;
2987 	} else
2988 		return 0;
2989 #undef N
2990 }
2991 
2992 /*
2993  * Update WME parameters for a transmit queue.
2994  */
2995 static int
2996 ath_txq_update(struct ath_softc *sc, int ac)
2997 {
2998 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2999 #define	ATH_TXOP_TO_US(v)		(v<<5)
3000 	struct ieee80211com *ic = &sc->sc_ic;
3001 	struct ath_txq *txq = sc->sc_ac2q[ac];
3002 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3003 	struct ath_hal *ah = sc->sc_ah;
3004 	HAL_TXQ_INFO qi;
3005 
3006 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3007 	qi.tqi_aifs = wmep->wmep_aifsn;
3008 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3009 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3010 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3011 
3012 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3013 		device_printf(sc->sc_dev, "unable to update hardware queue "
3014 			"parameters for %s traffic!\n",
3015 			ieee80211_wme_acnames[ac]);
3016 		return 0;
3017 	} else {
3018 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3019 		return 1;
3020 	}
3021 #undef ATH_TXOP_TO_US
3022 #undef ATH_EXPONENT_TO_VALUE
3023 }
3024 
3025 /*
3026  * Callback from the 802.11 layer to update WME parameters.
3027  */
3028 static int
3029 ath_wme_update(struct ieee80211com *ic)
3030 {
3031 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3032 
3033 	return !ath_txq_update(sc, WME_AC_BE) ||
3034 	    !ath_txq_update(sc, WME_AC_BK) ||
3035 	    !ath_txq_update(sc, WME_AC_VI) ||
3036 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3037 }
3038 
3039 /*
3040  * Reclaim resources for a setup queue.
3041  */
3042 static void
3043 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3044 {
3045 
3046 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3047 	ATH_TXQ_LOCK_DESTROY(txq);
3048 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3049 }
3050 
3051 /*
3052  * Reclaim all tx queue resources.
3053  */
3054 static void
3055 ath_tx_cleanup(struct ath_softc *sc)
3056 {
3057 	int i;
3058 
3059 	ATH_TXBUF_LOCK_DESTROY(sc);
3060 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3061 		if (ATH_TXQ_SETUP(sc, i))
3062 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3063 }
3064 
3065 /*
3066  * Defragment an mbuf chain, returning at most maxfrags separate
3067  * mbufs+clusters.  If this is not possible NULL is returned and
3068  * the original mbuf chain is left in it's present (potentially
3069  * modified) state.  We use two techniques: collapsing consecutive
3070  * mbufs and replacing consecutive mbufs by a cluster.
3071  */
3072 static struct mbuf *
3073 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3074 {
3075 	struct mbuf *m, *n, *n2, **prev;
3076 	u_int curfrags;
3077 
3078 	/*
3079 	 * Calculate the current number of frags.
3080 	 */
3081 	curfrags = 0;
3082 	for (m = m0; m != NULL; m = m->m_next)
3083 		curfrags++;
3084 	/*
3085 	 * First, try to collapse mbufs.  Note that we always collapse
3086 	 * towards the front so we don't need to deal with moving the
3087 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3088 	 * less data than the following.
3089 	 */
3090 	m = m0;
3091 again:
3092 	for (;;) {
3093 		n = m->m_next;
3094 		if (n == NULL)
3095 			break;
3096 		if ((m->m_flags & M_RDONLY) == 0 &&
3097 		    n->m_len < M_TRAILINGSPACE(m)) {
3098 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3099 				n->m_len);
3100 			m->m_len += n->m_len;
3101 			m->m_next = n->m_next;
3102 			m_free(n);
3103 			if (--curfrags <= maxfrags)
3104 				return m0;
3105 		} else
3106 			m = n;
3107 	}
3108 	KASSERT(maxfrags > 1,
3109 		("maxfrags %u, but normal collapse failed", maxfrags));
3110 	/*
3111 	 * Collapse consecutive mbufs to a cluster.
3112 	 */
3113 	prev = &m0->m_next;		/* NB: not the first mbuf */
3114 	while ((n = *prev) != NULL) {
3115 		if ((n2 = n->m_next) != NULL &&
3116 		    n->m_len + n2->m_len < MCLBYTES) {
3117 			m = m_getcl(how, MT_DATA, 0);
3118 			if (m == NULL)
3119 				goto bad;
3120 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3121 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3122 				n2->m_len);
3123 			m->m_len = n->m_len + n2->m_len;
3124 			m->m_next = n2->m_next;
3125 			*prev = m;
3126 			m_free(n);
3127 			m_free(n2);
3128 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3129 				return m0;
3130 			/*
3131 			 * Still not there, try the normal collapse
3132 			 * again before we allocate another cluster.
3133 			 */
3134 			goto again;
3135 		}
3136 		prev = &n->m_next;
3137 	}
3138 	/*
3139 	 * No place where we can collapse to a cluster; punt.
3140 	 * This can occur if, for example, you request 2 frags
3141 	 * but the packet requires that both be clusters (we
3142 	 * never reallocate the first mbuf to avoid moving the
3143 	 * packet header).
3144 	 */
3145 bad:
3146 	return NULL;
3147 }
3148 
3149 static int
3150 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3151     struct mbuf *m0)
3152 {
3153 #define	CTS_DURATION \
3154 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3155 #define	updateCTSForBursting(_ah, _ds, _txq) \
3156 	ath_hal_updateCTSForBursting(_ah, _ds, \
3157 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3158 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3159 	    txopLimit, CTS_DURATION)
3160 	struct ieee80211com *ic = &sc->sc_ic;
3161 	struct ath_hal *ah = sc->sc_ah;
3162 	struct ifnet *ifp = sc->sc_ifp;
3163 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3164 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3165 	u_int8_t rix, txrate, ctsrate;
3166 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3167 	struct ath_desc *ds, *ds0;
3168 	struct ath_txq *txq;
3169 	struct ieee80211_frame *wh;
3170 	u_int subtype, flags, ctsduration;
3171 	HAL_PKT_TYPE atype;
3172 	const HAL_RATE_TABLE *rt;
3173 	HAL_BOOL shortPreamble;
3174 	struct ath_node *an;
3175 	struct mbuf *m;
3176 	u_int pri;
3177 
3178 	wh = mtod(m0, struct ieee80211_frame *);
3179 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3180 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3181 	hdrlen = ieee80211_anyhdrsize(wh);
3182 	/*
3183 	 * Packet length must not include any
3184 	 * pad bytes; deduct them here.
3185 	 */
3186 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3187 
3188 	if (iswep) {
3189 		const struct ieee80211_cipher *cip;
3190 		struct ieee80211_key *k;
3191 
3192 		/*
3193 		 * Construct the 802.11 header+trailer for an encrypted
3194 		 * frame. The only reason this can fail is because of an
3195 		 * unknown or unsupported cipher/key type.
3196 		 */
3197 		k = ieee80211_crypto_encap(ic, ni, m0);
3198 		if (k == NULL) {
3199 			/*
3200 			 * This can happen when the key is yanked after the
3201 			 * frame was queued.  Just discard the frame; the
3202 			 * 802.11 layer counts failures and provides
3203 			 * debugging/diagnostics.
3204 			 */
3205 			m_freem(m0);
3206 			return EIO;
3207 		}
3208 		/*
3209 		 * Adjust the packet + header lengths for the crypto
3210 		 * additions and calculate the h/w key index.  When
3211 		 * a s/w mic is done the frame will have had any mic
3212 		 * added to it prior to entry so skb->len above will
3213 		 * account for it. Otherwise we need to add it to the
3214 		 * packet length.
3215 		 */
3216 		cip = k->wk_cipher;
3217 		hdrlen += cip->ic_header;
3218 		pktlen += cip->ic_header + cip->ic_trailer;
3219 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3220 			pktlen += cip->ic_miclen;
3221 		keyix = k->wk_keyix;
3222 
3223 		/* packet header may have moved, reset our local pointer */
3224 		wh = mtod(m0, struct ieee80211_frame *);
3225 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3226 		/*
3227 		 * Use station key cache slot, if assigned.
3228 		 */
3229 		keyix = ni->ni_ucastkey.wk_keyix;
3230 		if (keyix == IEEE80211_KEYIX_NONE)
3231 			keyix = HAL_TXKEYIX_INVALID;
3232 	} else
3233 		keyix = HAL_TXKEYIX_INVALID;
3234 
3235 	pktlen += IEEE80211_CRC_LEN;
3236 
3237 	/*
3238 	 * Load the DMA map so any coalescing is done.  This
3239 	 * also calculates the number of descriptors we need.
3240 	 */
3241 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3242 				     bf->bf_segs, &bf->bf_nseg,
3243 				     BUS_DMA_NOWAIT);
3244 	if (error == EFBIG) {
3245 		/* XXX packet requires too many descriptors */
3246 		bf->bf_nseg = ATH_TXDESC+1;
3247 	} else if (error != 0) {
3248 		sc->sc_stats.ast_tx_busdma++;
3249 		m_freem(m0);
3250 		return error;
3251 	}
3252 	/*
3253 	 * Discard null packets and check for packets that
3254 	 * require too many TX descriptors.  We try to convert
3255 	 * the latter to a cluster.
3256 	 */
3257 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3258 		sc->sc_stats.ast_tx_linear++;
3259 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3260 		if (m == NULL) {
3261 			m_freem(m0);
3262 			sc->sc_stats.ast_tx_nombuf++;
3263 			return ENOMEM;
3264 		}
3265 		m0 = m;
3266 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3267 					     bf->bf_segs, &bf->bf_nseg,
3268 					     BUS_DMA_NOWAIT);
3269 		if (error != 0) {
3270 			sc->sc_stats.ast_tx_busdma++;
3271 			m_freem(m0);
3272 			return error;
3273 		}
3274 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3275 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3276 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3277 		sc->sc_stats.ast_tx_nodata++;
3278 		m_freem(m0);
3279 		return EIO;
3280 	}
3281 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3282 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3283 	bf->bf_m = m0;
3284 	bf->bf_node = ni;			/* NB: held reference */
3285 
3286 	/* setup descriptors */
3287 	ds = bf->bf_desc;
3288 	rt = sc->sc_currates;
3289 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3290 
3291 	/*
3292 	 * NB: the 802.11 layer marks whether or not we should
3293 	 * use short preamble based on the current mode and
3294 	 * negotiated parameters.
3295 	 */
3296 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3297 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3298 		shortPreamble = AH_TRUE;
3299 		sc->sc_stats.ast_tx_shortpre++;
3300 	} else {
3301 		shortPreamble = AH_FALSE;
3302 	}
3303 
3304 	an = ATH_NODE(ni);
3305 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3306 	/*
3307 	 * Calculate Atheros packet type from IEEE80211 packet header,
3308 	 * setup for rate calculations, and select h/w transmit queue.
3309 	 */
3310 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3311 	case IEEE80211_FC0_TYPE_MGT:
3312 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3313 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3314 			atype = HAL_PKT_TYPE_BEACON;
3315 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3316 			atype = HAL_PKT_TYPE_PROBE_RESP;
3317 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3318 			atype = HAL_PKT_TYPE_ATIM;
3319 		else
3320 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3321 		rix = 0;			/* XXX lowest rate */
3322 		try0 = ATH_TXMAXTRY;
3323 		if (shortPreamble)
3324 			txrate = an->an_tx_mgtratesp;
3325 		else
3326 			txrate = an->an_tx_mgtrate;
3327 		/* NB: force all management frames to highest queue */
3328 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3329 			/* NB: force all management frames to highest queue */
3330 			pri = WME_AC_VO;
3331 		} else
3332 			pri = WME_AC_BE;
3333 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3334 		break;
3335 	case IEEE80211_FC0_TYPE_CTL:
3336 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3337 		rix = 0;			/* XXX lowest rate */
3338 		try0 = ATH_TXMAXTRY;
3339 		if (shortPreamble)
3340 			txrate = an->an_tx_mgtratesp;
3341 		else
3342 			txrate = an->an_tx_mgtrate;
3343 		/* NB: force all ctl frames to highest queue */
3344 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3345 			/* NB: force all ctl frames to highest queue */
3346 			pri = WME_AC_VO;
3347 		} else
3348 			pri = WME_AC_BE;
3349 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3350 		break;
3351 	case IEEE80211_FC0_TYPE_DATA:
3352 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3353 		/*
3354 		 * Data frames; consult the rate control module.
3355 		 */
3356 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3357 			&rix, &try0, &txrate);
3358 		sc->sc_txrate = txrate;			/* for LED blinking */
3359 		/*
3360 		 * Default all non-QoS traffic to the background queue.
3361 		 */
3362 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3363 			pri = M_WME_GETAC(m0);
3364 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3365 				flags |= HAL_TXDESC_NOACK;
3366 				sc->sc_stats.ast_tx_noack++;
3367 			}
3368 		} else
3369 			pri = WME_AC_BE;
3370 		break;
3371 	default:
3372 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3373 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3374 		/* XXX statistic */
3375 		m_freem(m0);
3376 		return EIO;
3377 	}
3378 	txq = sc->sc_ac2q[pri];
3379 
3380 	/*
3381 	 * When servicing one or more stations in power-save mode
3382 	 * multicast frames must be buffered until after the beacon.
3383 	 * We use the CAB queue for that.
3384 	 */
3385 	if (ismcast && ic->ic_ps_sta) {
3386 		txq = sc->sc_cabq;
3387 		/* XXX? more bit in 802.11 frame header */
3388 	}
3389 
3390 	/*
3391 	 * Calculate miscellaneous flags.
3392 	 */
3393 	if (ismcast) {
3394 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3395 		sc->sc_stats.ast_tx_noack++;
3396 	} else if (pktlen > ic->ic_rtsthreshold) {
3397 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3398 		cix = rt->info[rix].controlRate;
3399 		sc->sc_stats.ast_tx_rts++;
3400 	}
3401 
3402 	/*
3403 	 * If 802.11g protection is enabled, determine whether
3404 	 * to use RTS/CTS or just CTS.  Note that this is only
3405 	 * done for OFDM unicast frames.
3406 	 */
3407 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3408 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3409 	    (flags & HAL_TXDESC_NOACK) == 0) {
3410 		/* XXX fragments must use CCK rates w/ protection */
3411 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3412 			flags |= HAL_TXDESC_RTSENA;
3413 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3414 			flags |= HAL_TXDESC_CTSENA;
3415 		cix = rt->info[sc->sc_protrix].controlRate;
3416 		sc->sc_stats.ast_tx_protect++;
3417 	}
3418 
3419 	/*
3420 	 * Calculate duration.  This logically belongs in the 802.11
3421 	 * layer but it lacks sufficient information to calculate it.
3422 	 */
3423 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3424 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3425 		u_int16_t dur;
3426 		/*
3427 		 * XXX not right with fragmentation.
3428 		 */
3429 		if (shortPreamble)
3430 			dur = rt->info[rix].spAckDuration;
3431 		else
3432 			dur = rt->info[rix].lpAckDuration;
3433 		*(u_int16_t *)wh->i_dur = htole16(dur);
3434 	}
3435 
3436 	/*
3437 	 * Calculate RTS/CTS rate and duration if needed.
3438 	 */
3439 	ctsduration = 0;
3440 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3441 		/*
3442 		 * CTS transmit rate is derived from the transmit rate
3443 		 * by looking in the h/w rate table.  We must also factor
3444 		 * in whether or not a short preamble is to be used.
3445 		 */
3446 		/* NB: cix is set above where RTS/CTS is enabled */
3447 		KASSERT(cix != 0xff, ("cix not setup"));
3448 		ctsrate = rt->info[cix].rateCode;
3449 		/*
3450 		 * Compute the transmit duration based on the frame
3451 		 * size and the size of an ACK frame.  We call into the
3452 		 * HAL to do the computation since it depends on the
3453 		 * characteristics of the actual PHY being used.
3454 		 *
3455 		 * NB: CTS is assumed the same size as an ACK so we can
3456 		 *     use the precalculated ACK durations.
3457 		 */
3458 		if (shortPreamble) {
3459 			ctsrate |= rt->info[cix].shortPreamble;
3460 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3461 				ctsduration += rt->info[cix].spAckDuration;
3462 			ctsduration += ath_hal_computetxtime(ah,
3463 				rt, pktlen, rix, AH_TRUE);
3464 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3465 				ctsduration += rt->info[cix].spAckDuration;
3466 		} else {
3467 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3468 				ctsduration += rt->info[cix].lpAckDuration;
3469 			ctsduration += ath_hal_computetxtime(ah,
3470 				rt, pktlen, rix, AH_FALSE);
3471 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3472 				ctsduration += rt->info[cix].lpAckDuration;
3473 		}
3474 		/*
3475 		 * Must disable multi-rate retry when using RTS/CTS.
3476 		 */
3477 		try0 = ATH_TXMAXTRY;
3478 	} else
3479 		ctsrate = 0;
3480 
3481 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3482 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3483 			sc->sc_hwmap[txrate].ieeerate, -1);
3484 
3485 	if (ic->ic_rawbpf)
3486 		bpf_mtap(ic->ic_rawbpf, m0);
3487 	if (sc->sc_drvbpf) {
3488 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3489 		if (iswep)
3490 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3491 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3492 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3493 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3494 
3495 		bpf_mtap2(sc->sc_drvbpf,
3496 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3497 	}
3498 
3499 	/*
3500 	 * Determine if a tx interrupt should be generated for
3501 	 * this descriptor.  We take a tx interrupt to reap
3502 	 * descriptors when the h/w hits an EOL condition or
3503 	 * when the descriptor is specifically marked to generate
3504 	 * an interrupt.  We periodically mark descriptors in this
3505 	 * way to insure timely replenishing of the supply needed
3506 	 * for sending frames.  Defering interrupts reduces system
3507 	 * load and potentially allows more concurrent work to be
3508 	 * done but if done to aggressively can cause senders to
3509 	 * backup.
3510 	 *
3511 	 * NB: use >= to deal with sc_txintrperiod changing
3512 	 *     dynamically through sysctl.
3513 	 */
3514 	if (flags & HAL_TXDESC_INTREQ) {
3515 		txq->axq_intrcnt = 0;
3516 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3517 		flags |= HAL_TXDESC_INTREQ;
3518 		txq->axq_intrcnt = 0;
3519 	}
3520 
3521 	/*
3522 	 * Formulate first tx descriptor with tx controls.
3523 	 */
3524 	/* XXX check return value? */
3525 	ath_hal_setuptxdesc(ah, ds
3526 		, pktlen		/* packet length */
3527 		, hdrlen		/* header length */
3528 		, atype			/* Atheros packet type */
3529 		, ni->ni_txpower	/* txpower */
3530 		, txrate, try0		/* series 0 rate/tries */
3531 		, keyix			/* key cache index */
3532 		, sc->sc_txantenna	/* antenna mode */
3533 		, flags			/* flags */
3534 		, ctsrate		/* rts/cts rate */
3535 		, ctsduration		/* rts/cts duration */
3536 	);
3537 	/*
3538 	 * Setup the multi-rate retry state only when we're
3539 	 * going to use it.  This assumes ath_hal_setuptxdesc
3540 	 * initializes the descriptors (so we don't have to)
3541 	 * when the hardware supports multi-rate retry and
3542 	 * we don't use it.
3543 	 */
3544 	if (try0 != ATH_TXMAXTRY)
3545 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3546 
3547 	/*
3548 	 * Fillin the remainder of the descriptor info.
3549 	 */
3550 	ds0 = ds;
3551 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3552 		ds->ds_data = bf->bf_segs[i].ds_addr;
3553 		if (i == bf->bf_nseg - 1)
3554 			ds->ds_link = 0;
3555 		else
3556 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3557 		ath_hal_filltxdesc(ah, ds
3558 			, bf->bf_segs[i].ds_len	/* segment length */
3559 			, i == 0		/* first segment */
3560 			, i == bf->bf_nseg - 1	/* last segment */
3561 			, ds0			/* first descriptor */
3562 		);
3563 		DPRINTF(sc, ATH_DEBUG_XMIT,
3564 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3565 			__func__, i, ds->ds_link, ds->ds_data,
3566 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3567 	}
3568 	/*
3569 	 * Insert the frame on the outbound list and
3570 	 * pass it on to the hardware.
3571 	 */
3572 	ATH_TXQ_LOCK(txq);
3573 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3574 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3575 			cap->cap_wmeParams[pri].wmep_txopLimit);
3576 		/*
3577 		 * When bursting, potentially extend the CTS duration
3578 		 * of a previously queued frame to cover this frame
3579 		 * and not exceed the txopLimit.  If that can be done
3580 		 * then disable RTS/CTS on this frame since it's now
3581 		 * covered (burst extension).  Otherwise we must terminate
3582 		 * the burst before this frame goes out so as not to
3583 		 * violate the WME parameters.  All this is complicated
3584 		 * as we need to update the state of packets on the
3585 		 * (live) hardware queue.  The logic is buried in the hal
3586 		 * because it's highly chip-specific.
3587 		 */
3588 		if (txopLimit != 0) {
3589 			sc->sc_stats.ast_tx_ctsburst++;
3590 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
3591 				/*
3592 				 * This frame was not covered by RTS/CTS from
3593 				 * the previous frame in the burst; update the
3594 				 * descriptor pointers so this frame is now
3595 				 * treated as the last frame for extending a
3596 				 * burst.
3597 				 */
3598 				txq->axq_lastdsWithCTS = ds0;
3599 				/* set gating Desc to final desc */
3600 				txq->axq_gatingds =
3601 					(struct ath_desc *)txq->axq_link;
3602 			} else
3603 				sc->sc_stats.ast_tx_ctsext++;
3604 		}
3605 	}
3606 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3607 	if (txq->axq_link == NULL) {
3608 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3609 		DPRINTF(sc, ATH_DEBUG_XMIT,
3610 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3611 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3612 			txq->axq_depth);
3613 	} else {
3614 		*txq->axq_link = bf->bf_daddr;
3615 		DPRINTF(sc, ATH_DEBUG_XMIT,
3616 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3617 			txq->axq_qnum, txq->axq_link,
3618 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3619 	}
3620 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3621 	/*
3622 	 * The CAB queue is started from the SWBA handler since
3623 	 * frames only go out on DTIM and to avoid possible races.
3624 	 */
3625 	if (txq != sc->sc_cabq)
3626 		ath_hal_txstart(ah, txq->axq_qnum);
3627 	ATH_TXQ_UNLOCK(txq);
3628 
3629 	return 0;
3630 #undef updateCTSForBursting
3631 #undef CTS_DURATION
3632 }
3633 
3634 /*
3635  * Process completed xmit descriptors from the specified queue.
3636  */
3637 static void
3638 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3639 {
3640 	struct ath_hal *ah = sc->sc_ah;
3641 	struct ieee80211com *ic = &sc->sc_ic;
3642 	struct ath_buf *bf;
3643 	struct ath_desc *ds, *ds0;
3644 	struct ieee80211_node *ni;
3645 	struct ath_node *an;
3646 	int sr, lr, pri;
3647 	HAL_STATUS status;
3648 
3649 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3650 		__func__, txq->axq_qnum,
3651 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3652 		txq->axq_link);
3653 	for (;;) {
3654 		ATH_TXQ_LOCK(txq);
3655 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3656 		bf = STAILQ_FIRST(&txq->axq_q);
3657 		if (bf == NULL) {
3658 			txq->axq_link = NULL;
3659 			ATH_TXQ_UNLOCK(txq);
3660 			break;
3661 		}
3662 		ds0 = &bf->bf_desc[0];
3663 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3664 		status = ath_hal_txprocdesc(ah, ds);
3665 #ifdef AR_DEBUG
3666 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3667 			ath_printtxbuf(bf, status == HAL_OK);
3668 #endif
3669 		if (status == HAL_EINPROGRESS) {
3670 			ATH_TXQ_UNLOCK(txq);
3671 			break;
3672 		}
3673 		if (ds0 == txq->axq_lastdsWithCTS)
3674 			txq->axq_lastdsWithCTS = NULL;
3675 		if (ds == txq->axq_gatingds)
3676 			txq->axq_gatingds = NULL;
3677 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3678 		ATH_TXQ_UNLOCK(txq);
3679 
3680 		ni = bf->bf_node;
3681 		if (ni != NULL) {
3682 			an = ATH_NODE(ni);
3683 			if (ds->ds_txstat.ts_status == 0) {
3684 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3685 				sc->sc_stats.ast_ant_tx[txant]++;
3686 				sc->sc_ant_tx[txant]++;
3687 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3688 					sc->sc_stats.ast_tx_altrate++;
3689 				sc->sc_stats.ast_tx_rssi =
3690 					ds->ds_txstat.ts_rssi;
3691 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3692 					ds->ds_txstat.ts_rssi);
3693 				pri = M_WME_GETAC(bf->bf_m);
3694 				if (pri >= WME_AC_VO)
3695 					ic->ic_wme.wme_hipri_traffic++;
3696 				ni->ni_inact = ni->ni_inact_reload;
3697 			} else {
3698 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3699 					sc->sc_stats.ast_tx_xretries++;
3700 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3701 					sc->sc_stats.ast_tx_fifoerr++;
3702 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3703 					sc->sc_stats.ast_tx_filtered++;
3704 			}
3705 			sr = ds->ds_txstat.ts_shortretry;
3706 			lr = ds->ds_txstat.ts_longretry;
3707 			sc->sc_stats.ast_tx_shortretry += sr;
3708 			sc->sc_stats.ast_tx_longretry += lr;
3709 			/*
3710 			 * Hand the descriptor to the rate control algorithm.
3711 			 */
3712 			ath_rate_tx_complete(sc, an, ds, ds0);
3713 			/*
3714 			 * Reclaim reference to node.
3715 			 *
3716 			 * NB: the node may be reclaimed here if, for example
3717 			 *     this is a DEAUTH message that was sent and the
3718 			 *     node was timed out due to inactivity.
3719 			 */
3720 			ieee80211_free_node(ni);
3721 		}
3722 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3723 		    BUS_DMASYNC_POSTWRITE);
3724 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3725 		m_freem(bf->bf_m);
3726 		bf->bf_m = NULL;
3727 		bf->bf_node = NULL;
3728 
3729 		ATH_TXBUF_LOCK(sc);
3730 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3731 		ATH_TXBUF_UNLOCK(sc);
3732 	}
3733 }
3734 
3735 /*
3736  * Deferred processing of transmit interrupt; special-cased
3737  * for a single hardware transmit queue (e.g. 5210 and 5211).
3738  */
3739 static void
3740 ath_tx_proc_q0(void *arg, int npending)
3741 {
3742 	struct ath_softc *sc = arg;
3743 	struct ifnet *ifp = sc->sc_ifp;
3744 
3745 	ath_tx_processq(sc, &sc->sc_txq[0]);
3746 	ath_tx_processq(sc, sc->sc_cabq);
3747 	ifp->if_flags &= ~IFF_OACTIVE;
3748 	sc->sc_tx_timer = 0;
3749 
3750 	if (sc->sc_softled)
3751 		ath_led_event(sc, ATH_LED_TX);
3752 
3753 	ath_start(ifp);
3754 }
3755 
3756 /*
3757  * Deferred processing of transmit interrupt; special-cased
3758  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3759  */
3760 static void
3761 ath_tx_proc_q0123(void *arg, int npending)
3762 {
3763 	struct ath_softc *sc = arg;
3764 	struct ifnet *ifp = sc->sc_ifp;
3765 
3766 	/*
3767 	 * Process each active queue.
3768 	 */
3769 	ath_tx_processq(sc, &sc->sc_txq[0]);
3770 	ath_tx_processq(sc, &sc->sc_txq[1]);
3771 	ath_tx_processq(sc, &sc->sc_txq[2]);
3772 	ath_tx_processq(sc, &sc->sc_txq[3]);
3773 	ath_tx_processq(sc, sc->sc_cabq);
3774 
3775 	ifp->if_flags &= ~IFF_OACTIVE;
3776 	sc->sc_tx_timer = 0;
3777 
3778 	if (sc->sc_softled)
3779 		ath_led_event(sc, ATH_LED_TX);
3780 
3781 	ath_start(ifp);
3782 }
3783 
3784 /*
3785  * Deferred processing of transmit interrupt.
3786  */
3787 static void
3788 ath_tx_proc(void *arg, int npending)
3789 {
3790 	struct ath_softc *sc = arg;
3791 	struct ifnet *ifp = sc->sc_ifp;
3792 	int i;
3793 
3794 	/*
3795 	 * Process each active queue.
3796 	 */
3797 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3798 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3799 		if (ATH_TXQ_SETUP(sc, i))
3800 			ath_tx_processq(sc, &sc->sc_txq[i]);
3801 
3802 	ifp->if_flags &= ~IFF_OACTIVE;
3803 	sc->sc_tx_timer = 0;
3804 
3805 	if (sc->sc_softled)
3806 		ath_led_event(sc, ATH_LED_TX);
3807 
3808 	ath_start(ifp);
3809 }
3810 
3811 static void
3812 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3813 {
3814 	struct ath_hal *ah = sc->sc_ah;
3815 	struct ieee80211_node *ni;
3816 	struct ath_buf *bf;
3817 
3818 	/*
3819 	 * NB: this assumes output has been stopped and
3820 	 *     we do not need to block ath_tx_tasklet
3821 	 */
3822 	for (;;) {
3823 		ATH_TXQ_LOCK(txq);
3824 		bf = STAILQ_FIRST(&txq->axq_q);
3825 		if (bf == NULL) {
3826 			txq->axq_link = NULL;
3827 			ATH_TXQ_UNLOCK(txq);
3828 			break;
3829 		}
3830 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3831 		ATH_TXQ_UNLOCK(txq);
3832 #ifdef AR_DEBUG
3833 		if (sc->sc_debug & ATH_DEBUG_RESET)
3834 			ath_printtxbuf(bf,
3835 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3836 #endif /* AR_DEBUG */
3837 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3838 		m_freem(bf->bf_m);
3839 		bf->bf_m = NULL;
3840 		ni = bf->bf_node;
3841 		bf->bf_node = NULL;
3842 		if (ni != NULL) {
3843 			/*
3844 			 * Reclaim node reference.
3845 			 */
3846 			ieee80211_free_node(ni);
3847 		}
3848 		ATH_TXBUF_LOCK(sc);
3849 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3850 		ATH_TXBUF_UNLOCK(sc);
3851 	}
3852 }
3853 
3854 static void
3855 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3856 {
3857 	struct ath_hal *ah = sc->sc_ah;
3858 
3859 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3860 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3861 	    __func__, txq->axq_qnum,
3862 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3863 	    txq->axq_link);
3864 }
3865 
3866 /*
3867  * Drain the transmit queues and reclaim resources.
3868  */
3869 static void
3870 ath_draintxq(struct ath_softc *sc)
3871 {
3872 	struct ath_hal *ah = sc->sc_ah;
3873 	struct ifnet *ifp = sc->sc_ifp;
3874 	int i;
3875 
3876 	/* XXX return value */
3877 	if (!sc->sc_invalid) {
3878 		/* don't touch the hardware if marked invalid */
3879 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3880 		DPRINTF(sc, ATH_DEBUG_RESET,
3881 		    "%s: beacon queue %p\n", __func__,
3882 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3883 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3884 			if (ATH_TXQ_SETUP(sc, i))
3885 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3886 	}
3887 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3888 		if (ATH_TXQ_SETUP(sc, i))
3889 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3890 	ifp->if_flags &= ~IFF_OACTIVE;
3891 	sc->sc_tx_timer = 0;
3892 }
3893 
3894 /*
3895  * Disable the receive h/w in preparation for a reset.
3896  */
3897 static void
3898 ath_stoprecv(struct ath_softc *sc)
3899 {
3900 #define	PA2DESC(_sc, _pa) \
3901 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3902 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3903 	struct ath_hal *ah = sc->sc_ah;
3904 
3905 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3906 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3907 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3908 	DELAY(3000);			/* 3ms is long enough for 1 frame */
3909 #ifdef AR_DEBUG
3910 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3911 		struct ath_buf *bf;
3912 
3913 		printf("%s: rx queue %p, link %p\n", __func__,
3914 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3915 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3916 			struct ath_desc *ds = bf->bf_desc;
3917 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3918 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3919 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3920 				ath_printrxbuf(bf, status == HAL_OK);
3921 		}
3922 	}
3923 #endif
3924 	sc->sc_rxlink = NULL;		/* just in case */
3925 #undef PA2DESC
3926 }
3927 
3928 /*
3929  * Enable the receive h/w following a reset.
3930  */
3931 static int
3932 ath_startrecv(struct ath_softc *sc)
3933 {
3934 	struct ath_hal *ah = sc->sc_ah;
3935 	struct ath_buf *bf;
3936 
3937 	sc->sc_rxlink = NULL;
3938 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3939 		int error = ath_rxbuf_init(sc, bf);
3940 		if (error != 0) {
3941 			DPRINTF(sc, ATH_DEBUG_RECV,
3942 				"%s: ath_rxbuf_init failed %d\n",
3943 				__func__, error);
3944 			return error;
3945 		}
3946 	}
3947 
3948 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3949 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3950 	ath_hal_rxena(ah);		/* enable recv descriptors */
3951 	ath_mode_init(sc);		/* set filters, etc. */
3952 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3953 	return 0;
3954 }
3955 
3956 /*
3957  * Update internal state after a channel change.
3958  */
3959 static void
3960 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3961 {
3962 	struct ieee80211com *ic = &sc->sc_ic;
3963 	enum ieee80211_phymode mode;
3964 	u_int16_t flags;
3965 
3966 	/*
3967 	 * Change channels and update the h/w rate map
3968 	 * if we're switching; e.g. 11a to 11b/g.
3969 	 */
3970 	mode = ieee80211_chan2mode(ic, chan);
3971 	if (mode != sc->sc_curmode)
3972 		ath_setcurmode(sc, mode);
3973 	/*
3974 	 * Update BPF state.  NB: ethereal et. al. don't handle
3975 	 * merged flags well so pick a unique mode for their use.
3976 	 */
3977 	if (IEEE80211_IS_CHAN_A(chan))
3978 		flags = IEEE80211_CHAN_A;
3979 	/* XXX 11g schizophrenia */
3980 	else if (IEEE80211_IS_CHAN_G(chan) ||
3981 	    IEEE80211_IS_CHAN_PUREG(chan))
3982 		flags = IEEE80211_CHAN_G;
3983 	else
3984 		flags = IEEE80211_CHAN_B;
3985 	if (IEEE80211_IS_CHAN_T(chan))
3986 		flags |= IEEE80211_CHAN_TURBO;
3987 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3988 		htole16(chan->ic_freq);
3989 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3990 		htole16(flags);
3991 }
3992 
3993 /*
3994  * Set/change channels.  If the channel is really being changed,
3995  * it's done by reseting the chip.  To accomplish this we must
3996  * first cleanup any pending DMA, then restart stuff after a la
3997  * ath_init.
3998  */
3999 static int
4000 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4001 {
4002 	struct ath_hal *ah = sc->sc_ah;
4003 	struct ieee80211com *ic = &sc->sc_ic;
4004 	HAL_CHANNEL hchan;
4005 
4006 	/*
4007 	 * Convert to a HAL channel description with
4008 	 * the flags constrained to reflect the current
4009 	 * operating mode.
4010 	 */
4011 	hchan.channel = chan->ic_freq;
4012 	hchan.channelFlags = ath_chan2flags(ic, chan);
4013 
4014 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4015 	    __func__,
4016 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
4017 		sc->sc_curchan.channelFlags),
4018 	    	sc->sc_curchan.channel,
4019 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4020 	if (hchan.channel != sc->sc_curchan.channel ||
4021 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4022 		HAL_STATUS status;
4023 
4024 		/*
4025 		 * To switch channels clear any pending DMA operations;
4026 		 * wait long enough for the RX fifo to drain, reset the
4027 		 * hardware at the new frequency, and then re-enable
4028 		 * the relevant bits of the h/w.
4029 		 */
4030 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4031 		ath_draintxq(sc);		/* clear pending tx frames */
4032 		ath_stoprecv(sc);		/* turn off frame recv */
4033 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4034 			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
4035 				"channel %u (%u Mhz)\n",
4036 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4037 			return EIO;
4038 		}
4039 		sc->sc_curchan = hchan;
4040 		ath_update_txpow(sc);		/* update tx power state */
4041 
4042 		/*
4043 		 * Re-enable rx framework.
4044 		 */
4045 		if (ath_startrecv(sc) != 0) {
4046 			if_printf(ic->ic_ifp,
4047 				"ath_chan_set: unable to restart recv logic\n");
4048 			return EIO;
4049 		}
4050 
4051 		/*
4052 		 * Change channels and update the h/w rate map
4053 		 * if we're switching; e.g. 11a to 11b/g.
4054 		 */
4055 		ic->ic_ibss_chan = chan;
4056 		ath_chan_change(sc, chan);
4057 
4058 		/*
4059 		 * Re-enable interrupts.
4060 		 */
4061 		ath_hal_intrset(ah, sc->sc_imask);
4062 	}
4063 	return 0;
4064 }
4065 
4066 static void
4067 ath_next_scan(void *arg)
4068 {
4069 	struct ath_softc *sc = arg;
4070 	struct ieee80211com *ic = &sc->sc_ic;
4071 
4072 	if (ic->ic_state == IEEE80211_S_SCAN)
4073 		ieee80211_next_scan(ic);
4074 }
4075 
4076 /*
4077  * Periodically recalibrate the PHY to account
4078  * for temperature/environment changes.
4079  */
4080 static void
4081 ath_calibrate(void *arg)
4082 {
4083 	struct ath_softc *sc = arg;
4084 	struct ath_hal *ah = sc->sc_ah;
4085 
4086 	sc->sc_stats.ast_per_cal++;
4087 
4088 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4089 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4090 
4091 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4092 		/*
4093 		 * Rfgain is out of bounds, reset the chip
4094 		 * to load new gain values.
4095 		 */
4096 		sc->sc_stats.ast_per_rfgain++;
4097 		ath_reset(sc->sc_ifp);
4098 	}
4099 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4100 		DPRINTF(sc, ATH_DEBUG_ANY,
4101 			"%s: calibration of channel %u failed\n",
4102 			__func__, sc->sc_curchan.channel);
4103 		sc->sc_stats.ast_per_calfail++;
4104 	}
4105 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4106 }
4107 
4108 static int
4109 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4110 {
4111 	struct ifnet *ifp = ic->ic_ifp;
4112 	struct ath_softc *sc = ifp->if_softc;
4113 	struct ath_hal *ah = sc->sc_ah;
4114 	struct ieee80211_node *ni;
4115 	int i, error;
4116 	const u_int8_t *bssid;
4117 	u_int32_t rfilt;
4118 	static const HAL_LED_STATE leds[] = {
4119 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4120 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4121 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4122 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4123 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4124 	};
4125 
4126 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4127 		ieee80211_state_name[ic->ic_state],
4128 		ieee80211_state_name[nstate]);
4129 
4130 	callout_stop(&sc->sc_scan_ch);
4131 	callout_stop(&sc->sc_cal_ch);
4132 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4133 
4134 	if (nstate == IEEE80211_S_INIT) {
4135 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4136 		/*
4137 		 * NB: disable interrupts so we don't rx frames.
4138 		 */
4139 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4140 		/*
4141 		 * Notify the rate control algorithm.
4142 		 */
4143 		ath_rate_newstate(sc, nstate);
4144 		goto done;
4145 	}
4146 	ni = ic->ic_bss;
4147 	error = ath_chan_set(sc, ni->ni_chan);
4148 	if (error != 0)
4149 		goto bad;
4150 	rfilt = ath_calcrxfilter(sc, nstate);
4151 	if (nstate == IEEE80211_S_SCAN)
4152 		bssid = ifp->if_broadcastaddr;
4153 	else
4154 		bssid = ni->ni_bssid;
4155 	ath_hal_setrxfilter(ah, rfilt);
4156 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4157 		 __func__, rfilt, ether_sprintf(bssid));
4158 
4159 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4160 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4161 	else
4162 		ath_hal_setassocid(ah, bssid, 0);
4163 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4164 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4165 			if (ath_hal_keyisvalid(ah, i))
4166 				ath_hal_keysetmac(ah, i, bssid);
4167 	}
4168 
4169 	/*
4170 	 * Notify the rate control algorithm so rates
4171 	 * are setup should ath_beacon_alloc be called.
4172 	 */
4173 	ath_rate_newstate(sc, nstate);
4174 
4175 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4176 		/* nothing to do */;
4177 	} else if (nstate == IEEE80211_S_RUN) {
4178 		DPRINTF(sc, ATH_DEBUG_STATE,
4179 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4180 			"capinfo=0x%04x chan=%d\n"
4181 			 , __func__
4182 			 , ic->ic_flags
4183 			 , ni->ni_intval
4184 			 , ether_sprintf(ni->ni_bssid)
4185 			 , ni->ni_capinfo
4186 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
4187 
4188 		switch (ic->ic_opmode) {
4189 		case IEEE80211_M_HOSTAP:
4190 		case IEEE80211_M_IBSS:
4191 			/*
4192 			 * Allocate and setup the beacon frame.
4193 			 *
4194 			 * Stop any previous beacon DMA.  This may be
4195 			 * necessary, for example, when an ibss merge
4196 			 * causes reconfiguration; there will be a state
4197 			 * transition from RUN->RUN that means we may
4198 			 * be called with beacon transmission active.
4199 			 */
4200 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4201 			ath_beacon_free(sc);
4202 			error = ath_beacon_alloc(sc, ni);
4203 			if (error != 0)
4204 				goto bad;
4205 			break;
4206 		case IEEE80211_M_STA:
4207 			/*
4208 			 * Allocate a key cache slot to the station.
4209 			 */
4210 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4211 			    sc->sc_hasclrkey &&
4212 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4213 				ath_setup_stationkey(ni);
4214 			break;
4215 		default:
4216 			break;
4217 		}
4218 
4219 		/*
4220 		 * Configure the beacon and sleep timers.
4221 		 */
4222 		ath_beacon_config(sc);
4223 	} else {
4224 		ath_hal_intrset(ah,
4225 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4226 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4227 	}
4228 done:
4229 	/*
4230 	 * Invoke the parent method to complete the work.
4231 	 */
4232 	error = sc->sc_newstate(ic, nstate, arg);
4233 	/*
4234 	 * Finally, start any timers.
4235 	 */
4236 	if (nstate == IEEE80211_S_RUN) {
4237 		/* start periodic recalibration timer */
4238 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4239 			ath_calibrate, sc);
4240 	} else if (nstate == IEEE80211_S_SCAN) {
4241 		/* start ap/neighbor scan timer */
4242 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4243 			ath_next_scan, sc);
4244 	}
4245 bad:
4246 	return error;
4247 }
4248 
4249 /*
4250  * Allocate a key cache slot to the station so we can
4251  * setup a mapping from key index to node. The key cache
4252  * slot is needed for managing antenna state and for
4253  * compression when stations do not use crypto.  We do
4254  * it uniliaterally here; if crypto is employed this slot
4255  * will be reassigned.
4256  */
4257 static void
4258 ath_setup_stationkey(struct ieee80211_node *ni)
4259 {
4260 	struct ieee80211com *ic = ni->ni_ic;
4261 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4262 	u_int16_t keyix;
4263 
4264 	keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
4265 	if (keyix == IEEE80211_KEYIX_NONE) {
4266 		/*
4267 		 * Key cache is full; we'll fall back to doing
4268 		 * the more expensive lookup in software.  Note
4269 		 * this also means no h/w compression.
4270 		 */
4271 		/* XXX msg+statistic */
4272 	} else {
4273 		ni->ni_ucastkey.wk_keyix = keyix;
4274 		/* NB: this will create a pass-thru key entry */
4275 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4276 	}
4277 }
4278 
4279 /*
4280  * Setup driver-specific state for a newly associated node.
4281  * Note that we're called also on a re-associate, the isnew
4282  * param tells us if this is the first time or not.
4283  */
4284 static void
4285 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4286 {
4287 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4288 
4289 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4290 	if (isnew &&
4291 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4292 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4293 		    ("new assoc with a unicast key already setup (keyix %u)",
4294 		    ni->ni_ucastkey.wk_keyix));
4295 		ath_setup_stationkey(ni);
4296 	}
4297 }
4298 
4299 static int
4300 ath_getchannels(struct ath_softc *sc, u_int cc,
4301 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4302 {
4303 	struct ieee80211com *ic = &sc->sc_ic;
4304 	struct ifnet *ifp = sc->sc_ifp;
4305 	struct ath_hal *ah = sc->sc_ah;
4306 	HAL_CHANNEL *chans;
4307 	int i, ix, nchan;
4308 
4309 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4310 			M_TEMP, M_NOWAIT);
4311 	if (chans == NULL) {
4312 		if_printf(ifp, "unable to allocate channel table\n");
4313 		return ENOMEM;
4314 	}
4315 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4316 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4317 		u_int32_t rd;
4318 
4319 		ath_hal_getregdomain(ah, &rd);
4320 		if_printf(ifp, "unable to collect channel list from hal; "
4321 			"regdomain likely %u country code %u\n", rd, cc);
4322 		free(chans, M_TEMP);
4323 		return EINVAL;
4324 	}
4325 
4326 	/*
4327 	 * Convert HAL channels to ieee80211 ones and insert
4328 	 * them in the table according to their channel number.
4329 	 */
4330 	for (i = 0; i < nchan; i++) {
4331 		HAL_CHANNEL *c = &chans[i];
4332 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4333 		if (ix > IEEE80211_CHAN_MAX) {
4334 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4335 				ix, c->channel, c->channelFlags);
4336 			continue;
4337 		}
4338 		/* NB: flags are known to be compatible */
4339 		if (ic->ic_channels[ix].ic_freq == 0) {
4340 			ic->ic_channels[ix].ic_freq = c->channel;
4341 			ic->ic_channels[ix].ic_flags = c->channelFlags;
4342 		} else {
4343 			/* channels overlap; e.g. 11g and 11b */
4344 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4345 		}
4346 	}
4347 	free(chans, M_TEMP);
4348 	return 0;
4349 }
4350 
4351 static void
4352 ath_led_done(void *arg)
4353 {
4354 	struct ath_softc *sc = arg;
4355 
4356 	sc->sc_blinking = 0;
4357 }
4358 
4359 /*
4360  * Turn the LED off: flip the pin and then set a timer so no
4361  * update will happen for the specified duration.
4362  */
4363 static void
4364 ath_led_off(void *arg)
4365 {
4366 	struct ath_softc *sc = arg;
4367 
4368 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4369 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4370 }
4371 
4372 /*
4373  * Blink the LED according to the specified on/off times.
4374  */
4375 static void
4376 ath_led_blink(struct ath_softc *sc, int on, int off)
4377 {
4378 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4379 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4380 	sc->sc_blinking = 1;
4381 	sc->sc_ledoff = off;
4382 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4383 }
4384 
4385 static void
4386 ath_led_event(struct ath_softc *sc, int event)
4387 {
4388 
4389 	sc->sc_ledevent = ticks;	/* time of last event */
4390 	if (sc->sc_blinking)		/* don't interrupt active blink */
4391 		return;
4392 	switch (event) {
4393 	case ATH_LED_POLL:
4394 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4395 			sc->sc_hwmap[0].ledoff);
4396 		break;
4397 	case ATH_LED_TX:
4398 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4399 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4400 		break;
4401 	case ATH_LED_RX:
4402 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4403 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4404 		break;
4405 	}
4406 }
4407 
4408 static void
4409 ath_update_txpow(struct ath_softc *sc)
4410 {
4411 	struct ieee80211com *ic = &sc->sc_ic;
4412 	struct ath_hal *ah = sc->sc_ah;
4413 	u_int32_t txpow;
4414 
4415 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4416 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4417 		/* read back in case value is clamped */
4418 		ath_hal_gettxpowlimit(ah, &txpow);
4419 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4420 	}
4421 	/*
4422 	 * Fetch max tx power level for status requests.
4423 	 */
4424 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4425 	ic->ic_bss->ni_txpower = txpow;
4426 }
4427 
4428 static int
4429 ath_rate_setup(struct ath_softc *sc, u_int mode)
4430 {
4431 	struct ath_hal *ah = sc->sc_ah;
4432 	struct ieee80211com *ic = &sc->sc_ic;
4433 	const HAL_RATE_TABLE *rt;
4434 	struct ieee80211_rateset *rs;
4435 	int i, maxrates;
4436 
4437 	switch (mode) {
4438 	case IEEE80211_MODE_11A:
4439 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4440 		break;
4441 	case IEEE80211_MODE_11B:
4442 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4443 		break;
4444 	case IEEE80211_MODE_11G:
4445 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4446 		break;
4447 	case IEEE80211_MODE_TURBO_A:
4448 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4449 		break;
4450 	case IEEE80211_MODE_TURBO_G:
4451 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4452 		break;
4453 	default:
4454 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4455 			__func__, mode);
4456 		return 0;
4457 	}
4458 	rt = sc->sc_rates[mode];
4459 	if (rt == NULL)
4460 		return 0;
4461 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4462 		DPRINTF(sc, ATH_DEBUG_ANY,
4463 			"%s: rate table too small (%u > %u)\n",
4464 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4465 		maxrates = IEEE80211_RATE_MAXSIZE;
4466 	} else
4467 		maxrates = rt->rateCount;
4468 	rs = &ic->ic_sup_rates[mode];
4469 	for (i = 0; i < maxrates; i++)
4470 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4471 	rs->rs_nrates = maxrates;
4472 	return 1;
4473 }
4474 
4475 static void
4476 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4477 {
4478 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4479 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4480 	static const struct {
4481 		u_int		rate;		/* tx/rx 802.11 rate */
4482 		u_int16_t	timeOn;		/* LED on time (ms) */
4483 		u_int16_t	timeOff;	/* LED off time (ms) */
4484 	} blinkrates[] = {
4485 		{ 108,  40,  10 },
4486 		{  96,  44,  11 },
4487 		{  72,  50,  13 },
4488 		{  48,  57,  14 },
4489 		{  36,  67,  16 },
4490 		{  24,  80,  20 },
4491 		{  22, 100,  25 },
4492 		{  18, 133,  34 },
4493 		{  12, 160,  40 },
4494 		{  10, 200,  50 },
4495 		{   6, 240,  58 },
4496 		{   4, 267,  66 },
4497 		{   2, 400, 100 },
4498 		{   0, 500, 130 },
4499 	};
4500 	const HAL_RATE_TABLE *rt;
4501 	int i, j;
4502 
4503 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4504 	rt = sc->sc_rates[mode];
4505 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4506 	for (i = 0; i < rt->rateCount; i++)
4507 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4508 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4509 	for (i = 0; i < 32; i++) {
4510 		u_int8_t ix = rt->rateCodeToIndex[i];
4511 		if (ix == 0xff) {
4512 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4513 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4514 			continue;
4515 		}
4516 		sc->sc_hwmap[i].ieeerate =
4517 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4518 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4519 		if (rt->info[ix].shortPreamble ||
4520 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4521 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4522 		/* NB: receive frames include FCS */
4523 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4524 			IEEE80211_RADIOTAP_F_FCS;
4525 		/* setup blink rate table to avoid per-packet lookup */
4526 		for (j = 0; j < N(blinkrates)-1; j++)
4527 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4528 				break;
4529 		/* NB: this uses the last entry if the rate isn't found */
4530 		/* XXX beware of overlow */
4531 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4532 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4533 	}
4534 	sc->sc_currates = rt;
4535 	sc->sc_curmode = mode;
4536 	/*
4537 	 * All protection frames are transmited at 2Mb/s for
4538 	 * 11g, otherwise at 1Mb/s.
4539 	 * XXX select protection rate index from rate table.
4540 	 */
4541 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4542 	/* NB: caller is responsible for reseting rate control state */
4543 #undef N
4544 }
4545 
4546 #ifdef AR_DEBUG
4547 static void
4548 ath_printrxbuf(struct ath_buf *bf, int done)
4549 {
4550 	struct ath_desc *ds;
4551 	int i;
4552 
4553 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4554 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4555 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4556 		    ds->ds_link, ds->ds_data,
4557 		    ds->ds_ctl0, ds->ds_ctl1,
4558 		    ds->ds_hw[0], ds->ds_hw[1],
4559 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4560 	}
4561 }
4562 
4563 static void
4564 ath_printtxbuf(struct ath_buf *bf, int done)
4565 {
4566 	struct ath_desc *ds;
4567 	int i;
4568 
4569 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4570 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4571 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4572 		    ds->ds_link, ds->ds_data,
4573 		    ds->ds_ctl0, ds->ds_ctl1,
4574 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4575 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4576 	}
4577 }
4578 #endif /* AR_DEBUG */
4579 
4580 static void
4581 ath_watchdog(struct ifnet *ifp)
4582 {
4583 	struct ath_softc *sc = ifp->if_softc;
4584 	struct ieee80211com *ic = &sc->sc_ic;
4585 
4586 	ifp->if_timer = 0;
4587 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4588 		return;
4589 	if (sc->sc_tx_timer) {
4590 		if (--sc->sc_tx_timer == 0) {
4591 			if_printf(ifp, "device timeout\n");
4592 			ath_reset(ifp);
4593 			ifp->if_oerrors++;
4594 			sc->sc_stats.ast_watchdog++;
4595 		} else
4596 			ifp->if_timer = 1;
4597 	}
4598 	ieee80211_watchdog(ic);
4599 }
4600 
4601 /*
4602  * Diagnostic interface to the HAL.  This is used by various
4603  * tools to do things like retrieve register contents for
4604  * debugging.  The mechanism is intentionally opaque so that
4605  * it can change frequently w/o concern for compatiblity.
4606  */
4607 static int
4608 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4609 {
4610 	struct ath_hal *ah = sc->sc_ah;
4611 	u_int id = ad->ad_id & ATH_DIAG_ID;
4612 	void *indata = NULL;
4613 	void *outdata = NULL;
4614 	u_int32_t insize = ad->ad_in_size;
4615 	u_int32_t outsize = ad->ad_out_size;
4616 	int error = 0;
4617 
4618 	if (ad->ad_id & ATH_DIAG_IN) {
4619 		/*
4620 		 * Copy in data.
4621 		 */
4622 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4623 		if (indata == NULL) {
4624 			error = ENOMEM;
4625 			goto bad;
4626 		}
4627 		error = copyin(ad->ad_in_data, indata, insize);
4628 		if (error)
4629 			goto bad;
4630 	}
4631 	if (ad->ad_id & ATH_DIAG_DYN) {
4632 		/*
4633 		 * Allocate a buffer for the results (otherwise the HAL
4634 		 * returns a pointer to a buffer where we can read the
4635 		 * results).  Note that we depend on the HAL leaving this
4636 		 * pointer for us to use below in reclaiming the buffer;
4637 		 * may want to be more defensive.
4638 		 */
4639 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4640 		if (outdata == NULL) {
4641 			error = ENOMEM;
4642 			goto bad;
4643 		}
4644 	}
4645 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4646 		if (outsize < ad->ad_out_size)
4647 			ad->ad_out_size = outsize;
4648 		if (outdata != NULL)
4649 			error = copyout(outdata, ad->ad_out_data,
4650 					ad->ad_out_size);
4651 	} else {
4652 		error = EINVAL;
4653 	}
4654 bad:
4655 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4656 		free(indata, M_TEMP);
4657 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4658 		free(outdata, M_TEMP);
4659 	return error;
4660 }
4661 
4662 static int
4663 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4664 {
4665 #define	IS_RUNNING(ifp) \
4666 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4667 	struct ath_softc *sc = ifp->if_softc;
4668 	struct ieee80211com *ic = &sc->sc_ic;
4669 	struct ifreq *ifr = (struct ifreq *)data;
4670 	int error = 0;
4671 
4672 	ATH_LOCK(sc);
4673 	switch (cmd) {
4674 	case SIOCSIFFLAGS:
4675 		if (IS_RUNNING(ifp)) {
4676 			/*
4677 			 * To avoid rescanning another access point,
4678 			 * do not call ath_init() here.  Instead,
4679 			 * only reflect promisc mode settings.
4680 			 */
4681 			ath_mode_init(sc);
4682 		} else if (ifp->if_flags & IFF_UP) {
4683 			/*
4684 			 * Beware of being called during attach/detach
4685 			 * to reset promiscuous mode.  In that case we
4686 			 * will still be marked UP but not RUNNING.
4687 			 * However trying to re-init the interface
4688 			 * is the wrong thing to do as we've already
4689 			 * torn down much of our state.  There's
4690 			 * probably a better way to deal with this.
4691 			 */
4692 			if (!sc->sc_invalid && ic->ic_bss != NULL)
4693 				ath_init(sc);	/* XXX lose error */
4694 		} else
4695 			ath_stop_locked(ifp);
4696 		break;
4697 	case SIOCADDMULTI:
4698 	case SIOCDELMULTI:
4699 		/*
4700 		 * The upper layer has already installed/removed
4701 		 * the multicast address(es), just recalculate the
4702 		 * multicast filter for the card.
4703 		 */
4704 		if (ifp->if_flags & IFF_RUNNING)
4705 			ath_mode_init(sc);
4706 		break;
4707 	case SIOCGATHSTATS:
4708 		/* NB: embed these numbers to get a consistent view */
4709 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4710 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4711 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4712 		ATH_UNLOCK(sc);
4713 		/*
4714 		 * NB: Drop the softc lock in case of a page fault;
4715 		 * we'll accept any potential inconsisentcy in the
4716 		 * statistics.  The alternative is to copy the data
4717 		 * to a local structure.
4718 		 */
4719 		return copyout(&sc->sc_stats,
4720 				ifr->ifr_data, sizeof (sc->sc_stats));
4721 	case SIOCGATHDIAG:
4722 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4723 		break;
4724 	default:
4725 		error = ieee80211_ioctl(ic, cmd, data);
4726 		if (error == ENETRESET) {
4727 			if (IS_RUNNING(ifp) &&
4728 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4729 				ath_init(sc);	/* XXX lose error */
4730 			error = 0;
4731 		}
4732 		if (error == ERESTART)
4733 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4734 		break;
4735 	}
4736 	ATH_UNLOCK(sc);
4737 	return error;
4738 #undef IS_RUNNING
4739 }
4740 
4741 static int
4742 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4743 {
4744 	struct ath_softc *sc = arg1;
4745 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4746 	int error;
4747 
4748 	error = sysctl_handle_int(oidp, &slottime, 0, req);
4749 	if (error || !req->newptr)
4750 		return error;
4751 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4752 }
4753 
4754 static int
4755 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4756 {
4757 	struct ath_softc *sc = arg1;
4758 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4759 	int error;
4760 
4761 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4762 	if (error || !req->newptr)
4763 		return error;
4764 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4765 }
4766 
4767 static int
4768 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4769 {
4770 	struct ath_softc *sc = arg1;
4771 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4772 	int error;
4773 
4774 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4775 	if (error || !req->newptr)
4776 		return error;
4777 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4778 }
4779 
4780 static int
4781 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4782 {
4783 	struct ath_softc *sc = arg1;
4784 	int softled = sc->sc_softled;
4785 	int error;
4786 
4787 	error = sysctl_handle_int(oidp, &softled, 0, req);
4788 	if (error || !req->newptr)
4789 		return error;
4790 	softled = (softled != 0);
4791 	if (softled != sc->sc_softled) {
4792 		if (softled) {
4793 			/* NB: handle any sc_ledpin change */
4794 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4795 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4796 				!sc->sc_ledon);
4797 		}
4798 		sc->sc_softled = softled;
4799 	}
4800 	return 0;
4801 }
4802 
4803 static int
4804 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4805 {
4806 	struct ath_softc *sc = arg1;
4807 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4808 	int error;
4809 
4810 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4811 	if (!error && req->newptr)
4812 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4813 	return error;
4814 }
4815 
4816 static int
4817 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4818 {
4819 	struct ath_softc *sc = arg1;
4820 	u_int diversity = sc->sc_diversity;
4821 	int error;
4822 
4823 	error = sysctl_handle_int(oidp, &diversity, 0, req);
4824 	if (error || !req->newptr)
4825 		return error;
4826 	sc->sc_diversity = diversity;
4827 	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4828 }
4829 
4830 static int
4831 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4832 {
4833 	struct ath_softc *sc = arg1;
4834 	u_int32_t diag;
4835 	int error;
4836 
4837 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4838 		return EINVAL;
4839 	error = sysctl_handle_int(oidp, &diag, 0, req);
4840 	if (error || !req->newptr)
4841 		return error;
4842 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4843 }
4844 
4845 static int
4846 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4847 {
4848 	struct ath_softc *sc = arg1;
4849 	struct ifnet *ifp = sc->sc_ifp;
4850 	u_int32_t scale;
4851 	int error;
4852 
4853 	ath_hal_gettpscale(sc->sc_ah, &scale);
4854 	error = sysctl_handle_int(oidp, &scale, 0, req);
4855 	if (error || !req->newptr)
4856 		return error;
4857 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4858 }
4859 
4860 static int
4861 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4862 {
4863 	struct ath_softc *sc = arg1;
4864 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4865 	int error;
4866 
4867 	error = sysctl_handle_int(oidp, &tpc, 0, req);
4868 	if (error || !req->newptr)
4869 		return error;
4870 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4871 }
4872 
4873 static void
4874 ath_sysctlattach(struct ath_softc *sc)
4875 {
4876 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4877 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4878 
4879 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4880 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4881 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4882 		"EEPROM country code");
4883 	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4884 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4885 		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4886 		"EEPROM regdomain code");
4887 	sc->sc_debug = ath_debug;
4888 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4889 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4890 		"control debugging printfs");
4891 
4892 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4893 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4894 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4895 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4896 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4897 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4898 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4899 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4900 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4901 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4902 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4903 		ath_sysctl_softled, "I", "enable/disable software LED support");
4904 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4905 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4906 		"GPIO pin connected to LED");
4907 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4908 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4909 		"setting to turn LED on");
4910 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4911 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4912 		"idle time for inactivity LED (ticks)");
4913 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4914 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4915 		"tx antenna (0=auto)");
4916 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4917 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4918 		ath_sysctl_rxantenna, "I", "default/rx antenna");
4919 	if (sc->sc_hasdiversity)
4920 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4921 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4922 			ath_sysctl_diversity, "I", "antenna diversity");
4923 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4924 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4925 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4926 		"tx descriptor batching");
4927 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4928 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4929 		ath_sysctl_diag, "I", "h/w diagnostic control");
4930 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4931 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4932 		ath_sysctl_tpscale, "I", "tx power scaling");
4933 	if (sc->sc_hastpc)
4934 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4935 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4936 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4937 }
4938 
4939 static void
4940 ath_bpfattach(struct ath_softc *sc)
4941 {
4942 	struct ifnet *ifp = sc->sc_ifp;
4943 
4944 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4945 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4946 		&sc->sc_drvbpf);
4947 	/*
4948 	 * Initialize constant fields.
4949 	 * XXX make header lengths a multiple of 32-bits so subsequent
4950 	 *     headers are properly aligned; this is a kludge to keep
4951 	 *     certain applications happy.
4952 	 *
4953 	 * NB: the channel is setup each time we transition to the
4954 	 *     RUN state to avoid filling it in for each frame.
4955 	 */
4956 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4957 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4958 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4959 
4960 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4961 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4962 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4963 }
4964 
4965 /*
4966  * Announce various information on device/driver attach.
4967  */
4968 static void
4969 ath_announce(struct ath_softc *sc)
4970 {
4971 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4972 	struct ifnet *ifp = sc->sc_ifp;
4973 	struct ath_hal *ah = sc->sc_ah;
4974 	u_int modes, cc;
4975 
4976 	if_printf(ifp, "mac %d.%d phy %d.%d",
4977 		ah->ah_macVersion, ah->ah_macRev,
4978 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4979 	/*
4980 	 * Print radio revision(s).  We check the wireless modes
4981 	 * to avoid falsely printing revs for inoperable parts.
4982 	 * Dual-band radio revs are returned in the 5Ghz rev number.
4983 	 */
4984 	ath_hal_getcountrycode(ah, &cc);
4985 	modes = ath_hal_getwirelessmodes(ah, cc);
4986 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4987 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4988 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4989 				ah->ah_analog5GhzRev >> 4,
4990 				ah->ah_analog5GhzRev & 0xf,
4991 				ah->ah_analog2GhzRev >> 4,
4992 				ah->ah_analog2GhzRev & 0xf);
4993 		else
4994 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4995 				ah->ah_analog5GhzRev & 0xf);
4996 	} else
4997 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4998 			ah->ah_analog5GhzRev & 0xf);
4999 	printf("\n");
5000 	if (bootverbose) {
5001 		int i;
5002 		for (i = 0; i <= WME_AC_VO; i++) {
5003 			struct ath_txq *txq = sc->sc_ac2q[i];
5004 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5005 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5006 		}
5007 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5008 			sc->sc_cabq->axq_qnum);
5009 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5010 	}
5011 #undef HAL_MODE_DUALBAND
5012 }
5013