xref: /freebsd/sys/dev/ath/if_ath.c (revision d2b2128a286a00ee53d79cb88b4e59bf42525cf9)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/priv.h>
60 
61 #include <machine/bus.h>
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_arp.h>
68 #include <net/ethernet.h>
69 #include <net/if_llc.h>
70 
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_regdomain.h>
73 #ifdef ATH_SUPPORT_TDMA
74 #include <net80211/ieee80211_tdma.h>
75 #endif
76 
77 #include <net/bpf.h>
78 
79 #ifdef INET
80 #include <netinet/in.h>
81 #include <netinet/if_ether.h>
82 #endif
83 
84 #include <dev/ath/if_athvar.h>
85 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
86 
87 #ifdef ATH_TX99_DIAG
88 #include <dev/ath/ath_tx99/ath_tx99.h>
89 #endif
90 
91 /*
92  * ATH_BCBUF determines the number of vap's that can transmit
93  * beacons and also (currently) the number of vap's that can
94  * have unique mac addresses/bssid.  When staggering beacons
95  * 4 is probably a good max as otherwise the beacons become
96  * very closely spaced and there is limited time for cab q traffic
97  * to go out.  You can burst beacons instead but that is not good
98  * for stations in power save and at some point you really want
99  * another radio (and channel).
100  *
101  * The limit on the number of mac addresses is tied to our use of
102  * the U/L bit and tracking addresses in a byte; it would be
103  * worthwhile to allow more for applications like proxy sta.
104  */
105 CTASSERT(ATH_BCBUF <= 8);
106 
107 /* unaligned little endian access */
108 #define LE_READ_2(p)							\
109 	((u_int16_t)							\
110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
111 #define LE_READ_4(p)							\
112 	((u_int32_t)							\
113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
114 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
115 
116 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
117 		    const char name[IFNAMSIZ], int unit, int opmode,
118 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
119 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
120 static void	ath_vap_delete(struct ieee80211vap *);
121 static void	ath_init(void *);
122 static void	ath_stop_locked(struct ifnet *);
123 static void	ath_stop(struct ifnet *);
124 static void	ath_start(struct ifnet *);
125 static int	ath_reset(struct ifnet *);
126 static int	ath_reset_vap(struct ieee80211vap *, u_long);
127 static int	ath_media_change(struct ifnet *);
128 static void	ath_watchdog(void *);
129 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
130 static void	ath_fatal_proc(void *, int);
131 static void	ath_bmiss_vap(struct ieee80211vap *);
132 static void	ath_bmiss_proc(void *, int);
133 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
134 			struct ieee80211_node *);
135 static int	ath_key_alloc(struct ieee80211vap *,
136 			struct ieee80211_key *,
137 			ieee80211_keyix *, ieee80211_keyix *);
138 static int	ath_key_delete(struct ieee80211vap *,
139 			const struct ieee80211_key *);
140 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
141 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
142 static void	ath_key_update_begin(struct ieee80211vap *);
143 static void	ath_key_update_end(struct ieee80211vap *);
144 static void	ath_update_mcast(struct ifnet *);
145 static void	ath_update_promisc(struct ifnet *);
146 static void	ath_mode_init(struct ath_softc *);
147 static void	ath_setslottime(struct ath_softc *);
148 static void	ath_updateslot(struct ifnet *);
149 static int	ath_beaconq_setup(struct ath_hal *);
150 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
151 static void	ath_beacon_update(struct ieee80211vap *, int item);
152 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
153 static void	ath_beacon_proc(void *, int);
154 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
155 			struct ieee80211vap *);
156 static void	ath_bstuck_proc(void *, int);
157 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
158 static void	ath_beacon_free(struct ath_softc *);
159 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
160 static void	ath_descdma_cleanup(struct ath_softc *sc,
161 			struct ath_descdma *, ath_bufhead *);
162 static int	ath_desc_alloc(struct ath_softc *);
163 static void	ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
165 			const uint8_t [IEEE80211_ADDR_LEN]);
166 static void	ath_node_free(struct ieee80211_node *);
167 static void	ath_node_getsignal(const struct ieee80211_node *,
168 			int8_t *, int8_t *);
169 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
171 			int subtype, int rssi, int noise, u_int32_t rstamp);
172 static void	ath_setdefantenna(struct ath_softc *, u_int);
173 static void	ath_rx_proc(void *, int);
174 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176 static int	ath_tx_setup(struct ath_softc *, int, int);
177 static int	ath_wme_update(struct ieee80211com *);
178 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179 static void	ath_tx_cleanup(struct ath_softc *);
180 static void	ath_freetx(struct mbuf *);
181 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
182 			     struct ath_buf *, struct mbuf *);
183 static void	ath_tx_proc_q0(void *, int);
184 static void	ath_tx_proc_q0123(void *, int);
185 static void	ath_tx_proc(void *, int);
186 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
187 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
188 static void	ath_draintxq(struct ath_softc *);
189 static void	ath_stoprecv(struct ath_softc *);
190 static int	ath_startrecv(struct ath_softc *);
191 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
192 static void	ath_scan_start(struct ieee80211com *);
193 static void	ath_scan_end(struct ieee80211com *);
194 static void	ath_set_channel(struct ieee80211com *);
195 static void	ath_calibrate(void *);
196 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
197 static void	ath_setup_stationkey(struct ieee80211_node *);
198 static void	ath_newassoc(struct ieee80211_node *, int);
199 static int	ath_setregdomain(struct ieee80211com *,
200 		    struct ieee80211_regdomain *, int,
201 		    struct ieee80211_channel []);
202 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
203 		    struct ieee80211_channel []);
204 static int	ath_getchannels(struct ath_softc *);
205 static void	ath_led_event(struct ath_softc *, int);
206 
207 static int	ath_rate_setup(struct ath_softc *, u_int mode);
208 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
209 
210 static void	ath_sysctlattach(struct ath_softc *);
211 static int	ath_raw_xmit(struct ieee80211_node *,
212 			struct mbuf *, const struct ieee80211_bpf_params *);
213 static void	ath_bpfattach(struct ath_softc *);
214 static void	ath_announce(struct ath_softc *);
215 
216 #ifdef ATH_SUPPORT_TDMA
217 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
218 		    u_int32_t bintval);
219 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
220 		    const struct ieee80211_tdma_state *tdma);
221 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
222 static void	ath_tdma_update(struct ieee80211_node *ni,
223 		    const struct ieee80211_tdma_param *tdma, int);
224 static void	ath_tdma_beacon_send(struct ath_softc *sc,
225 		    struct ieee80211vap *vap);
226 
227 static __inline void
228 ath_hal_setcca(struct ath_hal *ah, int ena)
229 {
230 	/*
231 	 * NB: fill me in; this is not provided by default because disabling
232 	 *     CCA in most locales violates regulatory.
233 	 */
234 }
235 
236 static __inline int
237 ath_hal_getcca(struct ath_hal *ah)
238 {
239 	u_int32_t diag;
240 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
241 		return 1;
242 	return ((diag & 0x500000) == 0);
243 }
244 
245 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
246 #define	TDMA_LPF_LEN		6
247 #define	TDMA_DUMMY_MARKER	0x127
248 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
249 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
250 #define	TDMA_LPF(x, y, len) \
251     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
252 #define	TDMA_SAMPLE(x, y) do {					\
253 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
254 } while (0)
255 #define	TDMA_EP_RND(x,mul) \
256 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
257 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
258 #endif /* ATH_SUPPORT_TDMA */
259 
260 SYSCTL_DECL(_hw_ath);
261 
262 /* XXX validate sysctl values */
263 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
264 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
265 	    0, "long chip calibration interval (secs)");
266 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
267 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
268 	    0, "short chip calibration interval (msecs)");
269 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
270 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
271 	    0, "reset chip calibration results (secs)");
272 
273 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
274 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
275 	    0, "rx buffers allocated");
276 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
277 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
278 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
279 	    0, "tx buffers allocated");
280 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
281 
282 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
283 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
284 	    0, "max missed beacon xmits before chip reset");
285 
286 #ifdef ATH_DEBUG
287 enum {
288 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
289 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
290 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
291 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
292 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
293 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
294 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
295 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
296 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
297 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
298 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
299 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
300 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
301 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
302 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
303 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
304 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
305 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
306 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
307 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
308 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
309 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
310 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
311 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
312 	ATH_DEBUG_ANY		= 0xffffffff
313 };
314 static	int ath_debug = 0;
315 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
316 	    0, "control debugging printfs");
317 TUNABLE_INT("hw.ath.debug", &ath_debug);
318 
319 #define	IFF_DUMPPKTS(sc, m) \
320 	((sc->sc_debug & (m)) || \
321 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
322 #define	DPRINTF(sc, m, fmt, ...) do {				\
323 	if (sc->sc_debug & (m))					\
324 		printf(fmt, __VA_ARGS__);			\
325 } while (0)
326 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
327 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
328 		ath_keyprint(sc, __func__, ix, hk, mac);	\
329 } while (0)
330 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
331 	u_int ix, int);
332 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
333 	u_int qnum, u_int ix, int done);
334 #else
335 #define	IFF_DUMPPKTS(sc, m) \
336 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
337 #define	DPRINTF(sc, m, fmt, ...) do {				\
338 	(void) sc;						\
339 } while (0)
340 #define	KEYPRINTF(sc, k, ix, mac) do {				\
341 	(void) sc;						\
342 } while (0)
343 #endif
344 
345 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
346 
347 int
348 ath_attach(u_int16_t devid, struct ath_softc *sc)
349 {
350 	struct ifnet *ifp;
351 	struct ieee80211com *ic;
352 	struct ath_hal *ah = NULL;
353 	HAL_STATUS status;
354 	int error = 0, i;
355 	u_int wmodes;
356 
357 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
358 
359 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
360 	if (ifp == NULL) {
361 		device_printf(sc->sc_dev, "can not if_alloc()\n");
362 		error = ENOSPC;
363 		goto bad;
364 	}
365 	ic = ifp->if_l2com;
366 
367 	/* set these up early for if_printf use */
368 	if_initname(ifp, device_get_name(sc->sc_dev),
369 		device_get_unit(sc->sc_dev));
370 
371 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
372 	if (ah == NULL) {
373 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
374 			status);
375 		error = ENXIO;
376 		goto bad;
377 	}
378 	sc->sc_ah = ah;
379 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
380 #ifdef	ATH_DEBUG
381 	sc->sc_debug = ath_debug;
382 #endif
383 
384 	/*
385 	 * Check if the MAC has multi-rate retry support.
386 	 * We do this by trying to setup a fake extended
387 	 * descriptor.  MAC's that don't have support will
388 	 * return false w/o doing anything.  MAC's that do
389 	 * support it will return true w/o doing anything.
390 	 */
391 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
392 
393 	/*
394 	 * Check if the device has hardware counters for PHY
395 	 * errors.  If so we need to enable the MIB interrupt
396 	 * so we can act on stat triggers.
397 	 */
398 	if (ath_hal_hwphycounters(ah))
399 		sc->sc_needmib = 1;
400 
401 	/*
402 	 * Get the hardware key cache size.
403 	 */
404 	sc->sc_keymax = ath_hal_keycachesize(ah);
405 	if (sc->sc_keymax > ATH_KEYMAX) {
406 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
407 			ATH_KEYMAX, sc->sc_keymax);
408 		sc->sc_keymax = ATH_KEYMAX;
409 	}
410 	/*
411 	 * Reset the key cache since some parts do not
412 	 * reset the contents on initial power up.
413 	 */
414 	for (i = 0; i < sc->sc_keymax; i++)
415 		ath_hal_keyreset(ah, i);
416 
417 	/*
418 	 * Collect the default channel list.
419 	 */
420 	error = ath_getchannels(sc);
421 	if (error != 0)
422 		goto bad;
423 
424 	/*
425 	 * Setup rate tables for all potential media types.
426 	 */
427 	ath_rate_setup(sc, IEEE80211_MODE_11A);
428 	ath_rate_setup(sc, IEEE80211_MODE_11B);
429 	ath_rate_setup(sc, IEEE80211_MODE_11G);
430 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
431 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
432 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
433 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
434 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
435 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
436 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
437 
438 	/* NB: setup here so ath_rate_update is happy */
439 	ath_setcurmode(sc, IEEE80211_MODE_11A);
440 
441 	/*
442 	 * Allocate tx+rx descriptors and populate the lists.
443 	 */
444 	error = ath_desc_alloc(sc);
445 	if (error != 0) {
446 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
447 		goto bad;
448 	}
449 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
450 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
451 
452 	ATH_TXBUF_LOCK_INIT(sc);
453 
454 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
455 		taskqueue_thread_enqueue, &sc->sc_tq);
456 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
457 		"%s taskq", ifp->if_xname);
458 
459 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
460 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
461 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
462 
463 	/*
464 	 * Allocate hardware transmit queues: one queue for
465 	 * beacon frames and one data queue for each QoS
466 	 * priority.  Note that the hal handles reseting
467 	 * these queues at the needed time.
468 	 *
469 	 * XXX PS-Poll
470 	 */
471 	sc->sc_bhalq = ath_beaconq_setup(ah);
472 	if (sc->sc_bhalq == (u_int) -1) {
473 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
474 		error = EIO;
475 		goto bad2;
476 	}
477 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
478 	if (sc->sc_cabq == NULL) {
479 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
480 		error = EIO;
481 		goto bad2;
482 	}
483 	/* NB: insure BK queue is the lowest priority h/w queue */
484 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
485 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
486 			ieee80211_wme_acnames[WME_AC_BK]);
487 		error = EIO;
488 		goto bad2;
489 	}
490 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
491 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
492 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
493 		/*
494 		 * Not enough hardware tx queues to properly do WME;
495 		 * just punt and assign them all to the same h/w queue.
496 		 * We could do a better job of this if, for example,
497 		 * we allocate queues when we switch from station to
498 		 * AP mode.
499 		 */
500 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
501 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
502 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
503 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
504 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
505 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
506 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
507 	}
508 
509 	/*
510 	 * Special case certain configurations.  Note the
511 	 * CAB queue is handled by these specially so don't
512 	 * include them when checking the txq setup mask.
513 	 */
514 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
515 	case 0x01:
516 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
517 		break;
518 	case 0x0f:
519 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
520 		break;
521 	default:
522 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
523 		break;
524 	}
525 
526 	/*
527 	 * Setup rate control.  Some rate control modules
528 	 * call back to change the anntena state so expose
529 	 * the necessary entry points.
530 	 * XXX maybe belongs in struct ath_ratectrl?
531 	 */
532 	sc->sc_setdefantenna = ath_setdefantenna;
533 	sc->sc_rc = ath_rate_attach(sc);
534 	if (sc->sc_rc == NULL) {
535 		error = EIO;
536 		goto bad2;
537 	}
538 
539 	sc->sc_blinking = 0;
540 	sc->sc_ledstate = 1;
541 	sc->sc_ledon = 0;			/* low true */
542 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
543 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
544 	/*
545 	 * Auto-enable soft led processing for IBM cards and for
546 	 * 5211 minipci cards.  Users can also manually enable/disable
547 	 * support with a sysctl.
548 	 */
549 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
550 	if (sc->sc_softled) {
551 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
552 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
553 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
554 	}
555 
556 	ifp->if_softc = sc;
557 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
558 	ifp->if_start = ath_start;
559 	ifp->if_watchdog = NULL;
560 	ifp->if_ioctl = ath_ioctl;
561 	ifp->if_init = ath_init;
562 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
563 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
564 	IFQ_SET_READY(&ifp->if_snd);
565 
566 	ic->ic_ifp = ifp;
567 	/* XXX not right but it's not used anywhere important */
568 	ic->ic_phytype = IEEE80211_T_OFDM;
569 	ic->ic_opmode = IEEE80211_M_STA;
570 	ic->ic_caps =
571 		  IEEE80211_C_STA		/* station mode */
572 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
573 		| IEEE80211_C_HOSTAP		/* hostap mode */
574 		| IEEE80211_C_MONITOR		/* monitor mode */
575 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
576 		| IEEE80211_C_WDS		/* 4-address traffic works */
577 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
578 		| IEEE80211_C_SHSLOT		/* short slot time supported */
579 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
580 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
581 		| IEEE80211_C_TXFRAG		/* handle tx frags */
582 		;
583 	/*
584 	 * Query the hal to figure out h/w crypto support.
585 	 */
586 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
587 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
588 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
589 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
590 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
591 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
592 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
593 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
594 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
595 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
596 		/*
597 		 * Check if h/w does the MIC and/or whether the
598 		 * separate key cache entries are required to
599 		 * handle both tx+rx MIC keys.
600 		 */
601 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
602 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
603 		/*
604 		 * If the h/w supports storing tx+rx MIC keys
605 		 * in one cache slot automatically enable use.
606 		 */
607 		if (ath_hal_hastkipsplit(ah) ||
608 		    !ath_hal_settkipsplit(ah, AH_FALSE))
609 			sc->sc_splitmic = 1;
610 		/*
611 		 * If the h/w can do TKIP MIC together with WME then
612 		 * we use it; otherwise we force the MIC to be done
613 		 * in software by the net80211 layer.
614 		 */
615 		if (ath_hal_haswmetkipmic(ah))
616 			sc->sc_wmetkipmic = 1;
617 	}
618 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
619 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
620 	/*
621 	 * Mark key cache slots associated with global keys
622 	 * as in use.  If we knew TKIP was not to be used we
623 	 * could leave the +32, +64, and +32+64 slots free.
624 	 */
625 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
626 		setbit(sc->sc_keymap, i);
627 		setbit(sc->sc_keymap, i+64);
628 		if (sc->sc_splitmic) {
629 			setbit(sc->sc_keymap, i+32);
630 			setbit(sc->sc_keymap, i+32+64);
631 		}
632 	}
633 	/*
634 	 * TPC support can be done either with a global cap or
635 	 * per-packet support.  The latter is not available on
636 	 * all parts.  We're a bit pedantic here as all parts
637 	 * support a global cap.
638 	 */
639 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
640 		ic->ic_caps |= IEEE80211_C_TXPMGT;
641 
642 	/*
643 	 * Mark WME capability only if we have sufficient
644 	 * hardware queues to do proper priority scheduling.
645 	 */
646 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
647 		ic->ic_caps |= IEEE80211_C_WME;
648 	/*
649 	 * Check for misc other capabilities.
650 	 */
651 	if (ath_hal_hasbursting(ah))
652 		ic->ic_caps |= IEEE80211_C_BURST;
653 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
654 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
655 	if (ath_hal_hasfastframes(ah))
656 		ic->ic_caps |= IEEE80211_C_FF;
657 	wmodes = ath_hal_getwirelessmodes(ah);
658 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
659 		ic->ic_caps |= IEEE80211_C_TURBOP;
660 #ifdef ATH_SUPPORT_TDMA
661 	if (ath_hal_macversion(ah) > 0x78) {
662 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
663 		ic->ic_tdma_update = ath_tdma_update;
664 	}
665 #endif
666 	/*
667 	 * Indicate we need the 802.11 header padded to a
668 	 * 32-bit boundary for 4-address and QoS frames.
669 	 */
670 	ic->ic_flags |= IEEE80211_F_DATAPAD;
671 
672 	/*
673 	 * Query the hal about antenna support.
674 	 */
675 	sc->sc_defant = ath_hal_getdefantenna(ah);
676 
677 	/*
678 	 * Not all chips have the VEOL support we want to
679 	 * use with IBSS beacons; check here for it.
680 	 */
681 	sc->sc_hasveol = ath_hal_hasveol(ah);
682 
683 	/* get mac address from hardware */
684 	ath_hal_getmac(ah, ic->ic_myaddr);
685 	if (sc->sc_hasbmask)
686 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
687 
688 	/* NB: used to size node table key mapping array */
689 	ic->ic_max_keyix = sc->sc_keymax;
690 	/* call MI attach routine. */
691 	ieee80211_ifattach(ic);
692 	ic->ic_setregdomain = ath_setregdomain;
693 	ic->ic_getradiocaps = ath_getradiocaps;
694 	sc->sc_opmode = HAL_M_STA;
695 
696 	/* override default methods */
697 	ic->ic_newassoc = ath_newassoc;
698 	ic->ic_updateslot = ath_updateslot;
699 	ic->ic_wme.wme_update = ath_wme_update;
700 	ic->ic_vap_create = ath_vap_create;
701 	ic->ic_vap_delete = ath_vap_delete;
702 	ic->ic_raw_xmit = ath_raw_xmit;
703 	ic->ic_update_mcast = ath_update_mcast;
704 	ic->ic_update_promisc = ath_update_promisc;
705 	ic->ic_node_alloc = ath_node_alloc;
706 	sc->sc_node_free = ic->ic_node_free;
707 	ic->ic_node_free = ath_node_free;
708 	ic->ic_node_getsignal = ath_node_getsignal;
709 	ic->ic_scan_start = ath_scan_start;
710 	ic->ic_scan_end = ath_scan_end;
711 	ic->ic_set_channel = ath_set_channel;
712 
713 	ath_bpfattach(sc);
714 	/*
715 	 * Setup dynamic sysctl's now that country code and
716 	 * regdomain are available from the hal.
717 	 */
718 	ath_sysctlattach(sc);
719 
720 	if (bootverbose)
721 		ieee80211_announce(ic);
722 	ath_announce(sc);
723 	return 0;
724 bad2:
725 	ath_tx_cleanup(sc);
726 	ath_desc_free(sc);
727 bad:
728 	if (ah)
729 		ath_hal_detach(ah);
730 	if (ifp != NULL)
731 		if_free(ifp);
732 	sc->sc_invalid = 1;
733 	return error;
734 }
735 
736 int
737 ath_detach(struct ath_softc *sc)
738 {
739 	struct ifnet *ifp = sc->sc_ifp;
740 
741 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
742 		__func__, ifp->if_flags);
743 
744 	/*
745 	 * NB: the order of these is important:
746 	 * o stop the chip so no more interrupts will fire
747 	 * o call the 802.11 layer before detaching the hal to
748 	 *   insure callbacks into the driver to delete global
749 	 *   key cache entries can be handled
750 	 * o free the taskqueue which drains any pending tasks
751 	 * o reclaim the bpf tap now that we know nothing will use
752 	 *   it (e.g. rx processing from the task q thread)
753 	 * o reclaim the tx queue data structures after calling
754 	 *   the 802.11 layer as we'll get called back to reclaim
755 	 *   node state and potentially want to use them
756 	 * o to cleanup the tx queues the hal is called, so detach
757 	 *   it last
758 	 * Other than that, it's straightforward...
759 	 */
760 	ath_stop(ifp);
761 	ieee80211_ifdetach(ifp->if_l2com);
762 	taskqueue_free(sc->sc_tq);
763 	bpfdetach(ifp);
764 #ifdef ATH_TX99_DIAG
765 	if (sc->sc_tx99 != NULL)
766 		sc->sc_tx99->detach(sc->sc_tx99);
767 #endif
768 	ath_rate_detach(sc->sc_rc);
769 	ath_desc_free(sc);
770 	ath_tx_cleanup(sc);
771 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
772 	if_free(ifp);
773 
774 	return 0;
775 }
776 
777 /*
778  * MAC address handling for multiple BSS on the same radio.
779  * The first vap uses the MAC address from the EEPROM.  For
780  * subsequent vap's we set the U/L bit (bit 1) in the MAC
781  * address and use the next six bits as an index.
782  */
783 static void
784 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
785 {
786 	int i;
787 
788 	if (clone && sc->sc_hasbmask) {
789 		/* NB: we only do this if h/w supports multiple bssid */
790 		for (i = 0; i < 8; i++)
791 			if ((sc->sc_bssidmask & (1<<i)) == 0)
792 				break;
793 		if (i != 0)
794 			mac[0] |= (i << 2)|0x2;
795 	} else
796 		i = 0;
797 	sc->sc_bssidmask |= 1<<i;
798 	sc->sc_hwbssidmask[0] &= ~mac[0];
799 	if (i == 0)
800 		sc->sc_nbssid0++;
801 }
802 
803 static void
804 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
805 {
806 	int i = mac[0] >> 2;
807 	uint8_t mask;
808 
809 	if (i != 0 || --sc->sc_nbssid0 == 0) {
810 		sc->sc_bssidmask &= ~(1<<i);
811 		/* recalculate bssid mask from remaining addresses */
812 		mask = 0xff;
813 		for (i = 1; i < 8; i++)
814 			if (sc->sc_bssidmask & (1<<i))
815 				mask &= ~((i<<2)|0x2);
816 		sc->sc_hwbssidmask[0] |= mask;
817 	}
818 }
819 
820 /*
821  * Assign a beacon xmit slot.  We try to space out
822  * assignments so when beacons are staggered the
823  * traffic coming out of the cab q has maximal time
824  * to go out before the next beacon is scheduled.
825  */
826 static int
827 assign_bslot(struct ath_softc *sc)
828 {
829 	u_int slot, free;
830 
831 	free = 0;
832 	for (slot = 0; slot < ATH_BCBUF; slot++)
833 		if (sc->sc_bslot[slot] == NULL) {
834 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
835 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
836 				return slot;
837 			free = slot;
838 			/* NB: keep looking for a double slot */
839 		}
840 	return free;
841 }
842 
843 static struct ieee80211vap *
844 ath_vap_create(struct ieee80211com *ic,
845 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
846 	const uint8_t bssid[IEEE80211_ADDR_LEN],
847 	const uint8_t mac0[IEEE80211_ADDR_LEN])
848 {
849 	struct ath_softc *sc = ic->ic_ifp->if_softc;
850 	struct ath_vap *avp;
851 	struct ieee80211vap *vap;
852 	uint8_t mac[IEEE80211_ADDR_LEN];
853 	int ic_opmode, needbeacon, error;
854 
855 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
856 	    M_80211_VAP, M_WAITOK | M_ZERO);
857 	needbeacon = 0;
858 	IEEE80211_ADDR_COPY(mac, mac0);
859 
860 	ATH_LOCK(sc);
861 	switch (opmode) {
862 	case IEEE80211_M_STA:
863 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 sta for now */
864 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
865 			goto bad;
866 		}
867 		if (sc->sc_nvaps) {
868 			/*
869 			 * When there are multiple vaps we must fall
870 			 * back to s/w beacon miss handling.
871 			 */
872 			flags |= IEEE80211_CLONE_NOBEACONS;
873 		}
874 		if (flags & IEEE80211_CLONE_NOBEACONS)
875 			ic_opmode = IEEE80211_M_HOSTAP;
876 		else
877 			ic_opmode = opmode;
878 		break;
879 	case IEEE80211_M_IBSS:
880 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
881 			device_printf(sc->sc_dev,
882 			    "only 1 ibss vap supported\n");
883 			goto bad;
884 		}
885 		ic_opmode = opmode;
886 		needbeacon = 1;
887 		break;
888 	case IEEE80211_M_AHDEMO:
889 #ifdef ATH_SUPPORT_TDMA
890 		if (flags & IEEE80211_CLONE_TDMA) {
891 			needbeacon = 1;
892 			flags |= IEEE80211_CLONE_NOBEACONS;
893 		}
894 		/* fall thru... */
895 #endif
896 	case IEEE80211_M_MONITOR:
897 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
898 			/* XXX not right for monitor mode */
899 			ic_opmode = ic->ic_opmode;
900 		} else
901 			ic_opmode = opmode;
902 		break;
903 	case IEEE80211_M_HOSTAP:
904 		needbeacon = 1;
905 		/* fall thru... */
906 	case IEEE80211_M_WDS:
907 		if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
908 			device_printf(sc->sc_dev,
909 			    "wds not supported in sta mode\n");
910 			goto bad;
911 		}
912 		if (opmode == IEEE80211_M_WDS) {
913 			/*
914 			 * Silently remove any request for a unique
915 			 * bssid; WDS vap's always share the local
916 			 * mac address.
917 			 */
918 			flags &= ~IEEE80211_CLONE_BSSID;
919 		}
920 		ic_opmode = IEEE80211_M_HOSTAP;
921 		break;
922 	default:
923 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
924 		goto bad;
925 	}
926 	/*
927 	 * Check that a beacon buffer is available; the code below assumes it.
928 	 */
929 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
930 		device_printf(sc->sc_dev, "no beacon buffer available\n");
931 		goto bad;
932 	}
933 
934 	/* STA, AHDEMO? */
935 	if (opmode == IEEE80211_M_HOSTAP) {
936 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
937 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
938 	}
939 
940 	vap = &avp->av_vap;
941 	/* XXX can't hold mutex across if_alloc */
942 	ATH_UNLOCK(sc);
943 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
944 	    bssid, mac);
945 	ATH_LOCK(sc);
946 	if (error != 0) {
947 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
948 		    __func__, error);
949 		goto bad2;
950 	}
951 
952 	/* h/w crypto support */
953 	vap->iv_key_alloc = ath_key_alloc;
954 	vap->iv_key_delete = ath_key_delete;
955 	vap->iv_key_set = ath_key_set;
956 	vap->iv_key_update_begin = ath_key_update_begin;
957 	vap->iv_key_update_end = ath_key_update_end;
958 
959 	/* override various methods */
960 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
961 	vap->iv_recv_mgmt = ath_recv_mgmt;
962 	vap->iv_reset = ath_reset_vap;
963 	vap->iv_update_beacon = ath_beacon_update;
964 	avp->av_newstate = vap->iv_newstate;
965 	vap->iv_newstate = ath_newstate;
966 	avp->av_bmiss = vap->iv_bmiss;
967 	vap->iv_bmiss = ath_bmiss_vap;
968 
969 	avp->av_bslot = -1;
970 	if (needbeacon) {
971 		/*
972 		 * Allocate beacon state and setup the q for buffered
973 		 * multicast frames.  We know a beacon buffer is
974 		 * available because we checked above.
975 		 */
976 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
977 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
978 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
979 			/*
980 			 * Assign the vap to a beacon xmit slot.  As above
981 			 * this cannot fail to find a free one.
982 			 */
983 			avp->av_bslot = assign_bslot(sc);
984 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
985 			    ("beacon slot %u not empty", avp->av_bslot));
986 			sc->sc_bslot[avp->av_bslot] = vap;
987 			sc->sc_nbcnvaps++;
988 		}
989 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
990 			/*
991 			 * Multple vaps are to transmit beacons and we
992 			 * have h/w support for TSF adjusting; enable
993 			 * use of staggered beacons.
994 			 */
995 			sc->sc_stagbeacons = 1;
996 		}
997 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
998 	}
999 
1000 	ic->ic_opmode = ic_opmode;
1001 	if (opmode != IEEE80211_M_WDS) {
1002 		sc->sc_nvaps++;
1003 		if (opmode == IEEE80211_M_STA)
1004 			sc->sc_nstavaps++;
1005 	}
1006 	switch (ic_opmode) {
1007 	case IEEE80211_M_IBSS:
1008 		sc->sc_opmode = HAL_M_IBSS;
1009 		break;
1010 	case IEEE80211_M_STA:
1011 		sc->sc_opmode = HAL_M_STA;
1012 		break;
1013 	case IEEE80211_M_AHDEMO:
1014 #ifdef ATH_SUPPORT_TDMA
1015 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1016 			sc->sc_tdma = 1;
1017 			/* NB: disable tsf adjust */
1018 			sc->sc_stagbeacons = 0;
1019 		}
1020 		/*
1021 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1022 		 * just ap mode.
1023 		 */
1024 		/* fall thru... */
1025 #endif
1026 	case IEEE80211_M_HOSTAP:
1027 		sc->sc_opmode = HAL_M_HOSTAP;
1028 		break;
1029 	case IEEE80211_M_MONITOR:
1030 		sc->sc_opmode = HAL_M_MONITOR;
1031 		break;
1032 	default:
1033 		/* XXX should not happen */
1034 		break;
1035 	}
1036 	if (sc->sc_hastsfadd) {
1037 		/*
1038 		 * Configure whether or not TSF adjust should be done.
1039 		 */
1040 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1041 	}
1042 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1043 		/*
1044 		 * Enable s/w beacon miss handling.
1045 		 */
1046 		sc->sc_swbmiss = 1;
1047 	}
1048 	ATH_UNLOCK(sc);
1049 
1050 	/* complete setup */
1051 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1052 	return vap;
1053 bad2:
1054 	reclaim_address(sc, mac);
1055 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1056 bad:
1057 	free(avp, M_80211_VAP);
1058 	ATH_UNLOCK(sc);
1059 	return NULL;
1060 }
1061 
1062 static void
1063 ath_vap_delete(struct ieee80211vap *vap)
1064 {
1065 	struct ieee80211com *ic = vap->iv_ic;
1066 	struct ifnet *ifp = ic->ic_ifp;
1067 	struct ath_softc *sc = ifp->if_softc;
1068 	struct ath_hal *ah = sc->sc_ah;
1069 	struct ath_vap *avp = ATH_VAP(vap);
1070 
1071 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1072 		/*
1073 		 * Quiesce the hardware while we remove the vap.  In
1074 		 * particular we need to reclaim all references to
1075 		 * the vap state by any frames pending on the tx queues.
1076 		 */
1077 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1078 		ath_draintxq(sc);		/* stop xmit side */
1079 		ath_stoprecv(sc);		/* stop recv side */
1080 	}
1081 
1082 	ieee80211_vap_detach(vap);
1083 	ATH_LOCK(sc);
1084 	/*
1085 	 * Reclaim beacon state.  Note this must be done before
1086 	 * the vap instance is reclaimed as we may have a reference
1087 	 * to it in the buffer for the beacon frame.
1088 	 */
1089 	if (avp->av_bcbuf != NULL) {
1090 		if (avp->av_bslot != -1) {
1091 			sc->sc_bslot[avp->av_bslot] = NULL;
1092 			sc->sc_nbcnvaps--;
1093 		}
1094 		ath_beacon_return(sc, avp->av_bcbuf);
1095 		avp->av_bcbuf = NULL;
1096 		if (sc->sc_nbcnvaps == 0) {
1097 			sc->sc_stagbeacons = 0;
1098 			if (sc->sc_hastsfadd)
1099 				ath_hal_settsfadjust(sc->sc_ah, 0);
1100 		}
1101 		/*
1102 		 * Reclaim any pending mcast frames for the vap.
1103 		 */
1104 		ath_tx_draintxq(sc, &avp->av_mcastq);
1105 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1106 	}
1107 	/*
1108 	 * Update bookkeeping.
1109 	 */
1110 	if (vap->iv_opmode == IEEE80211_M_STA) {
1111 		sc->sc_nstavaps--;
1112 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1113 			sc->sc_swbmiss = 0;
1114 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1115 		reclaim_address(sc, vap->iv_myaddr);
1116 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1117 	}
1118 	if (vap->iv_opmode != IEEE80211_M_WDS)
1119 		sc->sc_nvaps--;
1120 #ifdef ATH_SUPPORT_TDMA
1121 	/* TDMA operation ceases when the last vap is destroyed */
1122 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1123 		sc->sc_tdma = 0;
1124 		sc->sc_swbmiss = 0;
1125 	}
1126 #endif
1127 	ATH_UNLOCK(sc);
1128 	free(avp, M_80211_VAP);
1129 
1130 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1131 		/*
1132 		 * Restart rx+tx machines if still running (RUNNING will
1133 		 * be reset if we just destroyed the last vap).
1134 		 */
1135 		if (ath_startrecv(sc) != 0)
1136 			if_printf(ifp, "%s: unable to restart recv logic\n",
1137 			    __func__);
1138 		if (sc->sc_beacons)
1139 			ath_beacon_config(sc, NULL);
1140 		ath_hal_intrset(ah, sc->sc_imask);
1141 	}
1142 }
1143 
1144 void
1145 ath_suspend(struct ath_softc *sc)
1146 {
1147 	struct ifnet *ifp = sc->sc_ifp;
1148 	struct ieee80211com *ic = ifp->if_l2com;
1149 
1150 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1151 		__func__, ifp->if_flags);
1152 
1153 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1154 	if (ic->ic_opmode == IEEE80211_M_STA)
1155 		ath_stop(ifp);
1156 	else
1157 		ieee80211_suspend_all(ic);
1158 	/*
1159 	 * NB: don't worry about putting the chip in low power
1160 	 * mode; pci will power off our socket on suspend and
1161 	 * cardbus detaches the device.
1162 	 */
1163 }
1164 
1165 /*
1166  * Reset the key cache since some parts do not reset the
1167  * contents on resume.  First we clear all entries, then
1168  * re-load keys that the 802.11 layer assumes are setup
1169  * in h/w.
1170  */
1171 static void
1172 ath_reset_keycache(struct ath_softc *sc)
1173 {
1174 	struct ifnet *ifp = sc->sc_ifp;
1175 	struct ieee80211com *ic = ifp->if_l2com;
1176 	struct ath_hal *ah = sc->sc_ah;
1177 	int i;
1178 
1179 	for (i = 0; i < sc->sc_keymax; i++)
1180 		ath_hal_keyreset(ah, i);
1181 	ieee80211_crypto_reload_keys(ic);
1182 }
1183 
1184 void
1185 ath_resume(struct ath_softc *sc)
1186 {
1187 	struct ifnet *ifp = sc->sc_ifp;
1188 	struct ieee80211com *ic = ifp->if_l2com;
1189 	struct ath_hal *ah = sc->sc_ah;
1190 	HAL_STATUS status;
1191 
1192 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1193 		__func__, ifp->if_flags);
1194 
1195 	/*
1196 	 * Must reset the chip before we reload the
1197 	 * keycache as we were powered down on suspend.
1198 	 */
1199 	ath_hal_reset(ah, sc->sc_opmode,
1200 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1201 	    AH_FALSE, &status);
1202 	ath_reset_keycache(sc);
1203 	if (sc->sc_resume_up) {
1204 		if (ic->ic_opmode == IEEE80211_M_STA) {
1205 			ath_init(sc);
1206 			ieee80211_beacon_miss(ic);
1207 		} else
1208 			ieee80211_resume_all(ic);
1209 	}
1210 	if (sc->sc_softled) {
1211 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1212 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1213 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1214 	}
1215 }
1216 
1217 void
1218 ath_shutdown(struct ath_softc *sc)
1219 {
1220 	struct ifnet *ifp = sc->sc_ifp;
1221 
1222 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1223 		__func__, ifp->if_flags);
1224 
1225 	ath_stop(ifp);
1226 	/* NB: no point powering down chip as we're about to reboot */
1227 }
1228 
1229 /*
1230  * Interrupt handler.  Most of the actual processing is deferred.
1231  */
1232 void
1233 ath_intr(void *arg)
1234 {
1235 	struct ath_softc *sc = arg;
1236 	struct ifnet *ifp = sc->sc_ifp;
1237 	struct ath_hal *ah = sc->sc_ah;
1238 	HAL_INT status;
1239 
1240 	if (sc->sc_invalid) {
1241 		/*
1242 		 * The hardware is not ready/present, don't touch anything.
1243 		 * Note this can happen early on if the IRQ is shared.
1244 		 */
1245 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1246 		return;
1247 	}
1248 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1249 		return;
1250 	if ((ifp->if_flags & IFF_UP) == 0 ||
1251 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1252 		HAL_INT status;
1253 
1254 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1255 			__func__, ifp->if_flags);
1256 		ath_hal_getisr(ah, &status);	/* clear ISR */
1257 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1258 		return;
1259 	}
1260 	/*
1261 	 * Figure out the reason(s) for the interrupt.  Note
1262 	 * that the hal returns a pseudo-ISR that may include
1263 	 * bits we haven't explicitly enabled so we mask the
1264 	 * value to insure we only process bits we requested.
1265 	 */
1266 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1267 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1268 	status &= sc->sc_imask;			/* discard unasked for bits */
1269 	if (status & HAL_INT_FATAL) {
1270 		sc->sc_stats.ast_hardware++;
1271 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1272 		ath_fatal_proc(sc, 0);
1273 	} else {
1274 		if (status & HAL_INT_SWBA) {
1275 			/*
1276 			 * Software beacon alert--time to send a beacon.
1277 			 * Handle beacon transmission directly; deferring
1278 			 * this is too slow to meet timing constraints
1279 			 * under load.
1280 			 */
1281 #ifdef ATH_SUPPORT_TDMA
1282 			if (sc->sc_tdma) {
1283 				if (sc->sc_tdmaswba == 0) {
1284 					struct ieee80211com *ic = ifp->if_l2com;
1285 					struct ieee80211vap *vap =
1286 					    TAILQ_FIRST(&ic->ic_vaps);
1287 					ath_tdma_beacon_send(sc, vap);
1288 					sc->sc_tdmaswba =
1289 					    vap->iv_tdma->tdma_bintval;
1290 				} else
1291 					sc->sc_tdmaswba--;
1292 			} else
1293 #endif
1294 				ath_beacon_proc(sc, 0);
1295 		}
1296 		if (status & HAL_INT_RXEOL) {
1297 			/*
1298 			 * NB: the hardware should re-read the link when
1299 			 *     RXE bit is written, but it doesn't work at
1300 			 *     least on older hardware revs.
1301 			 */
1302 			sc->sc_stats.ast_rxeol++;
1303 			sc->sc_rxlink = NULL;
1304 		}
1305 		if (status & HAL_INT_TXURN) {
1306 			sc->sc_stats.ast_txurn++;
1307 			/* bump tx trigger level */
1308 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1309 		}
1310 		if (status & HAL_INT_RX)
1311 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1312 		if (status & HAL_INT_TX)
1313 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1314 		if (status & HAL_INT_BMISS) {
1315 			sc->sc_stats.ast_bmiss++;
1316 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1317 		}
1318 		if (status & HAL_INT_MIB) {
1319 			sc->sc_stats.ast_mib++;
1320 			/*
1321 			 * Disable interrupts until we service the MIB
1322 			 * interrupt; otherwise it will continue to fire.
1323 			 */
1324 			ath_hal_intrset(ah, 0);
1325 			/*
1326 			 * Let the hal handle the event.  We assume it will
1327 			 * clear whatever condition caused the interrupt.
1328 			 */
1329 			ath_hal_mibevent(ah, &sc->sc_halstats);
1330 			ath_hal_intrset(ah, sc->sc_imask);
1331 		}
1332 		if (status & HAL_INT_RXORN) {
1333 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1334 			sc->sc_stats.ast_rxorn++;
1335 		}
1336 	}
1337 }
1338 
1339 static void
1340 ath_fatal_proc(void *arg, int pending)
1341 {
1342 	struct ath_softc *sc = arg;
1343 	struct ifnet *ifp = sc->sc_ifp;
1344 	u_int32_t *state;
1345 	u_int32_t len;
1346 	void *sp;
1347 
1348 	if_printf(ifp, "hardware error; resetting\n");
1349 	/*
1350 	 * Fatal errors are unrecoverable.  Typically these
1351 	 * are caused by DMA errors.  Collect h/w state from
1352 	 * the hal so we can diagnose what's going on.
1353 	 */
1354 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1355 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1356 		state = sp;
1357 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1358 		    state[0], state[1] , state[2], state[3],
1359 		    state[4], state[5]);
1360 	}
1361 	ath_reset(ifp);
1362 }
1363 
1364 static void
1365 ath_bmiss_vap(struct ieee80211vap *vap)
1366 {
1367 	/*
1368 	 * Workaround phantom bmiss interrupts by sanity-checking
1369 	 * the time of our last rx'd frame.  If it is within the
1370 	 * beacon miss interval then ignore the interrupt.  If it's
1371 	 * truly a bmiss we'll get another interrupt soon and that'll
1372 	 * be dispatched up for processing.  Note this applies only
1373 	 * for h/w beacon miss events.
1374 	 */
1375 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1376 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1377 		struct ath_softc *sc = ifp->if_softc;
1378 		u_int64_t lastrx = sc->sc_lastrx;
1379 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1380 		u_int bmisstimeout =
1381 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1382 
1383 		DPRINTF(sc, ATH_DEBUG_BEACON,
1384 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1385 		    __func__, (unsigned long long) tsf,
1386 		    (unsigned long long)(tsf - lastrx),
1387 		    (unsigned long long) lastrx, bmisstimeout);
1388 
1389 		if (tsf - lastrx <= bmisstimeout) {
1390 			sc->sc_stats.ast_bmiss_phantom++;
1391 			return;
1392 		}
1393 	}
1394 	ATH_VAP(vap)->av_bmiss(vap);
1395 }
1396 
1397 static int
1398 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1399 {
1400 	uint32_t rsize;
1401 	void *sp;
1402 
1403 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(&mask), &sp, &rsize))
1404 		return 0;
1405 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1406 	*hangs = *(uint32_t *)sp;
1407 	return 1;
1408 }
1409 
1410 static void
1411 ath_bmiss_proc(void *arg, int pending)
1412 {
1413 	struct ath_softc *sc = arg;
1414 	struct ifnet *ifp = sc->sc_ifp;
1415 	uint32_t hangs;
1416 
1417 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1418 
1419 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1420 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1421 		ath_reset(ifp);
1422 	} else
1423 		ieee80211_beacon_miss(ifp->if_l2com);
1424 }
1425 
1426 /*
1427  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1428  * calcs together with WME.  If necessary disable the crypto
1429  * hardware and mark the 802.11 state so keys will be setup
1430  * with the MIC work done in software.
1431  */
1432 static void
1433 ath_settkipmic(struct ath_softc *sc)
1434 {
1435 	struct ifnet *ifp = sc->sc_ifp;
1436 	struct ieee80211com *ic = ifp->if_l2com;
1437 
1438 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1439 		if (ic->ic_flags & IEEE80211_F_WME) {
1440 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1441 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1442 		} else {
1443 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1444 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1445 		}
1446 	}
1447 }
1448 
1449 static void
1450 ath_init(void *arg)
1451 {
1452 	struct ath_softc *sc = (struct ath_softc *) arg;
1453 	struct ifnet *ifp = sc->sc_ifp;
1454 	struct ieee80211com *ic = ifp->if_l2com;
1455 	struct ath_hal *ah = sc->sc_ah;
1456 	HAL_STATUS status;
1457 
1458 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1459 		__func__, ifp->if_flags);
1460 
1461 	ATH_LOCK(sc);
1462 	/*
1463 	 * Stop anything previously setup.  This is safe
1464 	 * whether this is the first time through or not.
1465 	 */
1466 	ath_stop_locked(ifp);
1467 
1468 	/*
1469 	 * The basic interface to setting the hardware in a good
1470 	 * state is ``reset''.  On return the hardware is known to
1471 	 * be powered up and with interrupts disabled.  This must
1472 	 * be followed by initialization of the appropriate bits
1473 	 * and then setup of the interrupt mask.
1474 	 */
1475 	ath_settkipmic(sc);
1476 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1477 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1478 			status);
1479 		ATH_UNLOCK(sc);
1480 		return;
1481 	}
1482 	ath_chan_change(sc, ic->ic_curchan);
1483 
1484 	/*
1485 	 * Likewise this is set during reset so update
1486 	 * state cached in the driver.
1487 	 */
1488 	sc->sc_diversity = ath_hal_getdiversity(ah);
1489 	sc->sc_lastlongcal = 0;
1490 	sc->sc_resetcal = 1;
1491 	sc->sc_lastcalreset = 0;
1492 
1493 	/*
1494 	 * Setup the hardware after reset: the key cache
1495 	 * is filled as needed and the receive engine is
1496 	 * set going.  Frame transmit is handled entirely
1497 	 * in the frame output path; there's nothing to do
1498 	 * here except setup the interrupt mask.
1499 	 */
1500 	if (ath_startrecv(sc) != 0) {
1501 		if_printf(ifp, "unable to start recv logic\n");
1502 		ATH_UNLOCK(sc);
1503 		return;
1504 	}
1505 
1506 	/*
1507 	 * Enable interrupts.
1508 	 */
1509 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1510 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1511 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1512 	/*
1513 	 * Enable MIB interrupts when there are hardware phy counters.
1514 	 * Note we only do this (at the moment) for station mode.
1515 	 */
1516 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1517 		sc->sc_imask |= HAL_INT_MIB;
1518 
1519 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1520 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1521 	ath_hal_intrset(ah, sc->sc_imask);
1522 
1523 	ATH_UNLOCK(sc);
1524 
1525 #ifdef ATH_TX99_DIAG
1526 	if (sc->sc_tx99 != NULL)
1527 		sc->sc_tx99->start(sc->sc_tx99);
1528 	else
1529 #endif
1530 	ieee80211_start_all(ic);		/* start all vap's */
1531 }
1532 
1533 static void
1534 ath_stop_locked(struct ifnet *ifp)
1535 {
1536 	struct ath_softc *sc = ifp->if_softc;
1537 	struct ath_hal *ah = sc->sc_ah;
1538 
1539 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1540 		__func__, sc->sc_invalid, ifp->if_flags);
1541 
1542 	ATH_LOCK_ASSERT(sc);
1543 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1544 		/*
1545 		 * Shutdown the hardware and driver:
1546 		 *    reset 802.11 state machine
1547 		 *    turn off timers
1548 		 *    disable interrupts
1549 		 *    turn off the radio
1550 		 *    clear transmit machinery
1551 		 *    clear receive machinery
1552 		 *    drain and release tx queues
1553 		 *    reclaim beacon resources
1554 		 *    power down hardware
1555 		 *
1556 		 * Note that some of this work is not possible if the
1557 		 * hardware is gone (invalid).
1558 		 */
1559 #ifdef ATH_TX99_DIAG
1560 		if (sc->sc_tx99 != NULL)
1561 			sc->sc_tx99->stop(sc->sc_tx99);
1562 #endif
1563 		callout_stop(&sc->sc_wd_ch);
1564 		sc->sc_wd_timer = 0;
1565 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1566 		if (!sc->sc_invalid) {
1567 			if (sc->sc_softled) {
1568 				callout_stop(&sc->sc_ledtimer);
1569 				ath_hal_gpioset(ah, sc->sc_ledpin,
1570 					!sc->sc_ledon);
1571 				sc->sc_blinking = 0;
1572 			}
1573 			ath_hal_intrset(ah, 0);
1574 		}
1575 		ath_draintxq(sc);
1576 		if (!sc->sc_invalid) {
1577 			ath_stoprecv(sc);
1578 			ath_hal_phydisable(ah);
1579 		} else
1580 			sc->sc_rxlink = NULL;
1581 		ath_beacon_free(sc);	/* XXX not needed */
1582 	}
1583 }
1584 
1585 static void
1586 ath_stop(struct ifnet *ifp)
1587 {
1588 	struct ath_softc *sc = ifp->if_softc;
1589 
1590 	ATH_LOCK(sc);
1591 	ath_stop_locked(ifp);
1592 	ATH_UNLOCK(sc);
1593 }
1594 
1595 /*
1596  * Reset the hardware w/o losing operational state.  This is
1597  * basically a more efficient way of doing ath_stop, ath_init,
1598  * followed by state transitions to the current 802.11
1599  * operational state.  Used to recover from various errors and
1600  * to reset or reload hardware state.
1601  */
1602 static int
1603 ath_reset(struct ifnet *ifp)
1604 {
1605 	struct ath_softc *sc = ifp->if_softc;
1606 	struct ieee80211com *ic = ifp->if_l2com;
1607 	struct ath_hal *ah = sc->sc_ah;
1608 	HAL_STATUS status;
1609 
1610 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1611 	ath_draintxq(sc);		/* stop xmit side */
1612 	ath_stoprecv(sc);		/* stop recv side */
1613 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1614 	/* NB: indicate channel change so we do a full reset */
1615 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1616 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1617 			__func__, status);
1618 	sc->sc_diversity = ath_hal_getdiversity(ah);
1619 	if (ath_startrecv(sc) != 0)	/* restart recv */
1620 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1621 	/*
1622 	 * We may be doing a reset in response to an ioctl
1623 	 * that changes the channel so update any state that
1624 	 * might change as a result.
1625 	 */
1626 	ath_chan_change(sc, ic->ic_curchan);
1627 	if (sc->sc_beacons) {
1628 #ifdef ATH_SUPPORT_TDMA
1629 		if (sc->sc_tdma)
1630 			ath_tdma_config(sc, NULL);
1631 		else
1632 #endif
1633 			ath_beacon_config(sc, NULL);	/* restart beacons */
1634 	}
1635 	ath_hal_intrset(ah, sc->sc_imask);
1636 
1637 	ath_start(ifp);			/* restart xmit */
1638 	return 0;
1639 }
1640 
1641 static int
1642 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1643 {
1644 	struct ieee80211com *ic = vap->iv_ic;
1645 	struct ifnet *ifp = ic->ic_ifp;
1646 	struct ath_softc *sc = ifp->if_softc;
1647 	struct ath_hal *ah = sc->sc_ah;
1648 
1649 	switch (cmd) {
1650 	case IEEE80211_IOC_TXPOWER:
1651 		/*
1652 		 * If per-packet TPC is enabled, then we have nothing
1653 		 * to do; otherwise we need to force the global limit.
1654 		 * All this can happen directly; no need to reset.
1655 		 */
1656 		if (!ath_hal_gettpc(ah))
1657 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1658 		return 0;
1659 	}
1660 	return ath_reset(ifp);
1661 }
1662 
1663 static int
1664 ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1665 {
1666 	return 0;
1667 }
1668 
1669 #if 0
1670 static int
1671 ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1672 {
1673 	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1674 }
1675 #endif
1676 
1677 /*
1678  * Flush FF staging queue.
1679  */
1680 static void
1681 ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1682 	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1683 {
1684 	struct ath_buf *bf;
1685 	struct ieee80211_node *ni;
1686 	int pktlen, pri;
1687 
1688 	for (;;) {
1689 		ATH_TXQ_LOCK(txq);
1690 		/*
1691 		 * Go from the back (oldest) to front so we can
1692 		 * stop early based on the age of the entry.
1693 		 */
1694 		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1695 		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1696 			ATH_TXQ_UNLOCK(txq);
1697 			break;
1698 		}
1699 
1700 		ni = bf->bf_node;
1701 		pri = M_WME_GETAC(bf->bf_m);
1702 		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1703 			("no bf on staging queue %p", bf));
1704 		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1705 		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1706 
1707 		ATH_TXQ_UNLOCK(txq);
1708 
1709 		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1710 			__func__, bf->bf_age);
1711 
1712 		sc->sc_stats.ast_ff_flush++;
1713 
1714 		/* encap and xmit */
1715 		bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1716 		if (bf->bf_m == NULL) {
1717 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1718 				"%s: discard, encapsulation failure\n",
1719 				__func__);
1720 			sc->sc_stats.ast_tx_encap++;
1721 			goto bad;
1722 		}
1723 		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1724 		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1725 #if 0 /*XXX*/
1726 			ifp->if_opackets++;
1727 #endif
1728 			continue;
1729 		}
1730 	bad:
1731 		if (ni != NULL)
1732 			ieee80211_free_node(ni);
1733 		bf->bf_node = NULL;
1734 		if (bf->bf_m != NULL) {
1735 			m_freem(bf->bf_m);
1736 			bf->bf_m = NULL;
1737 		}
1738 
1739 		ATH_TXBUF_LOCK(sc);
1740 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1741 		ATH_TXBUF_UNLOCK(sc);
1742 	}
1743 }
1744 
1745 static __inline u_int32_t
1746 ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1747 {
1748 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1749 	u_int32_t framelen;
1750 	struct ath_buf *bf;
1751 
1752 	/*
1753 	 * Approximate the frame length to be transmitted. A swag to add
1754 	 * the following maximal values to the skb payload:
1755 	 *   - 32: 802.11 encap + CRC
1756 	 *   - 24: encryption overhead (if wep bit)
1757 	 *   - 4 + 6: fast-frame header and padding
1758 	 *   - 16: 2 LLC FF tunnel headers
1759 	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1760 	 */
1761 	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1762 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1763 		framelen += 24;
1764 	bf = an->an_ff_buf[M_WME_GETAC(m)];
1765 	if (bf != NULL)
1766 		framelen += bf->bf_m->m_pkthdr.len;
1767 	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1768 			sc->sc_lastdatarix, AH_FALSE);
1769 }
1770 
1771 /*
1772  * Determine if a data frame may be aggregated via ff tunnelling.
1773  * Note the caller is responsible for checking if the destination
1774  * supports fast frames.
1775  *
1776  *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1777  *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1778  *      be aggregated with other types of frames when encryption is on?
1779  *
1780  *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1781  */
1782 static __inline int
1783 ath_ff_can_aggregate(struct ath_softc *sc,
1784 	struct ath_node *an, struct mbuf *m, int *flushq)
1785 {
1786 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1787 	struct ath_txq *txq;
1788 	u_int32_t txoplimit;
1789 	u_int pri;
1790 
1791 	*flushq = 0;
1792 
1793 	/*
1794 	 * If there is no frame to combine with and the txq has
1795 	 * fewer frames than the minimum required; then do not
1796 	 * attempt to aggregate this frame.
1797 	 */
1798 	pri = M_WME_GETAC(m);
1799 	txq = sc->sc_ac2q[pri];
1800 	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1801 		return 0;
1802 	/*
1803 	 * When not in station mode never aggregate a multicast
1804 	 * frame; this insures, for example, that a combined frame
1805 	 * does not require multiple encryption keys when using
1806 	 * 802.1x/WPA.
1807 	 */
1808 	if (ic->ic_opmode != IEEE80211_M_STA &&
1809 	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1810 		return 0;
1811 	/*
1812 	 * Consult the max bursting interval to insure a combined
1813 	 * frame fits within the TxOp window.
1814 	 */
1815 	txoplimit = IEEE80211_TXOP_TO_US(
1816 		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1817 	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1818 		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1819 			"%s: FF TxOp violation\n", __func__);
1820 		if (an->an_ff_buf[pri] != NULL)
1821 			*flushq = 1;
1822 		return 0;
1823 	}
1824 	return 1;		/* try to aggregate */
1825 }
1826 
1827 /*
1828  * Check if the supplied frame can be partnered with an existing
1829  * or pending frame.  Return a reference to any frame that should be
1830  * sent on return; otherwise return NULL.
1831  */
1832 static struct mbuf *
1833 ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1834 	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1835 {
1836 	struct ath_node *an = ATH_NODE(ni);
1837 	struct ath_buf *bfstaged;
1838 	int ff_flush, pri;
1839 
1840 	/*
1841 	 * Check if the supplied frame can be aggregated.
1842 	 *
1843 	 * NB: we use the txq lock to protect references to
1844 	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1845 	 */
1846 	ATH_TXQ_LOCK(txq);
1847 	pri = M_WME_GETAC(m);
1848 	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1849 		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1850 		if (bfstaged != NULL) {
1851 			/*
1852 			 * A frame is available for partnering; remove
1853 			 * it, chain it to this one, and encapsulate.
1854 			 */
1855 			an->an_ff_buf[pri] = NULL;
1856 			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1857 			ATH_TXQ_UNLOCK(txq);
1858 
1859 			/*
1860 			 * Chain mbufs and add FF magic.
1861 			 */
1862 			DPRINTF(sc, ATH_DEBUG_FF,
1863 				"[%s] aggregate fast-frame, age %u\n",
1864 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1865 			m->m_nextpkt = NULL;
1866 			bfstaged->bf_m->m_nextpkt = m;
1867 			m = bfstaged->bf_m;
1868 			bfstaged->bf_m = NULL;
1869 			m->m_flags |= M_FF;
1870 			/*
1871 			 * Release the node reference held while
1872 			 * the packet sat on an_ff_buf[]
1873 			 */
1874 			bfstaged->bf_node = NULL;
1875 			ieee80211_free_node(ni);
1876 
1877 			/*
1878 			 * Return bfstaged to the free list.
1879 			 */
1880 			ATH_TXBUF_LOCK(sc);
1881 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1882 			ATH_TXBUF_UNLOCK(sc);
1883 
1884 			return m;		/* ready to go */
1885 		} else {
1886 			/*
1887 			 * No frame available, queue this frame to wait
1888 			 * for a partner.  Note that we hold the buffer
1889 			 * and a reference to the node; we need the
1890 			 * buffer in particular so we're certain we
1891 			 * can flush the frame at a later time.
1892 			 */
1893 			DPRINTF(sc, ATH_DEBUG_FF,
1894 				"[%s] stage fast-frame, age %u\n",
1895 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1896 
1897 			bf->bf_m = m;
1898 			bf->bf_node = ni;	/* NB: held reference */
1899 			bf->bf_age = txq->axq_curage;
1900 			an->an_ff_buf[pri] = bf;
1901 			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1902 			ATH_TXQ_UNLOCK(txq);
1903 
1904 			return NULL;		/* consumed */
1905 		}
1906 	}
1907 	/*
1908 	 * Frame could not be aggregated, it needs to be returned
1909 	 * to the caller for immediate transmission.  In addition
1910 	 * we check if we should first flush a frame from the
1911 	 * staging queue before sending this one.
1912 	 *
1913 	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1914 	 *     is present to flush.
1915 	 */
1916 	if (ff_flush) {
1917 		int pktlen;
1918 
1919 		bfstaged = an->an_ff_buf[pri];
1920 		an->an_ff_buf[pri] = NULL;
1921 		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1922 		ATH_TXQ_UNLOCK(txq);
1923 
1924 		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1925 			ether_sprintf(an->an_node.ni_macaddr));
1926 
1927 		/* encap and xmit */
1928 		bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1929 		if (bfstaged->bf_m == NULL) {
1930 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1931 				"%s: discard, encap failure\n", __func__);
1932 			sc->sc_stats.ast_tx_encap++;
1933 			goto ff_flushbad;
1934 		}
1935 		pktlen = bfstaged->bf_m->m_pkthdr.len;
1936 		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1937 			DPRINTF(sc, ATH_DEBUG_XMIT,
1938 				"%s: discard, xmit failure\n", __func__);
1939 	ff_flushbad:
1940 			/*
1941 			 * Unable to transmit frame that was on the staging
1942 			 * queue.  Reclaim the node reference and other
1943 			 * resources.
1944 			 */
1945 			if (ni != NULL)
1946 				ieee80211_free_node(ni);
1947 			bfstaged->bf_node = NULL;
1948 			if (bfstaged->bf_m != NULL) {
1949 				m_freem(bfstaged->bf_m);
1950 				bfstaged->bf_m = NULL;
1951 			}
1952 
1953 			ATH_TXBUF_LOCK(sc);
1954 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1955 			ATH_TXBUF_UNLOCK(sc);
1956 		} else {
1957 #if 0
1958 			ifp->if_opackets++;
1959 #endif
1960 		}
1961 	} else {
1962 		if (an->an_ff_buf[pri] != NULL) {
1963 			/*
1964 			 * XXX: out-of-order condition only occurs for AP
1965 			 * mode and multicast.  There may be no valid way
1966 			 * to get this condition.
1967 			 */
1968 			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1969 				ether_sprintf(an->an_node.ni_macaddr));
1970 			/* XXX stat */
1971 		}
1972 		ATH_TXQ_UNLOCK(txq);
1973 	}
1974 	return m;
1975 }
1976 
1977 static struct ath_buf *
1978 _ath_getbuf_locked(struct ath_softc *sc)
1979 {
1980 	struct ath_buf *bf;
1981 
1982 	ATH_TXBUF_LOCK_ASSERT(sc);
1983 
1984 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1985 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1986 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1987 	else
1988 		bf = NULL;
1989 	if (bf == NULL) {
1990 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1991 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1992 			"out of xmit buffers" : "xmit buffer busy");
1993 		sc->sc_stats.ast_tx_nobuf++;
1994 	}
1995 	return bf;
1996 }
1997 
1998 static struct ath_buf *
1999 ath_getbuf(struct ath_softc *sc)
2000 {
2001 	struct ath_buf *bf;
2002 
2003 	ATH_TXBUF_LOCK(sc);
2004 	bf = _ath_getbuf_locked(sc);
2005 	if (bf == NULL) {
2006 		struct ifnet *ifp = sc->sc_ifp;
2007 
2008 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2009 		sc->sc_stats.ast_tx_qstop++;
2010 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2011 	}
2012 	ATH_TXBUF_UNLOCK(sc);
2013 	return bf;
2014 }
2015 
2016 /*
2017  * Cleanup driver resources when we run out of buffers
2018  * while processing fragments; return the tx buffers
2019  * allocated and drop node references.
2020  */
2021 static void
2022 ath_txfrag_cleanup(struct ath_softc *sc,
2023 	ath_bufhead *frags, struct ieee80211_node *ni)
2024 {
2025 	struct ath_buf *bf, *next;
2026 
2027 	ATH_TXBUF_LOCK_ASSERT(sc);
2028 
2029 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
2030 		/* NB: bf assumed clean */
2031 		STAILQ_REMOVE_HEAD(frags, bf_list);
2032 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2033 		ieee80211_node_decref(ni);
2034 	}
2035 }
2036 
2037 /*
2038  * Setup xmit of a fragmented frame.  Allocate a buffer
2039  * for each frag and bump the node reference count to
2040  * reflect the held reference to be setup by ath_tx_start.
2041  */
2042 static int
2043 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
2044 	struct mbuf *m0, struct ieee80211_node *ni)
2045 {
2046 	struct mbuf *m;
2047 	struct ath_buf *bf;
2048 
2049 	ATH_TXBUF_LOCK(sc);
2050 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
2051 		bf = _ath_getbuf_locked(sc);
2052 		if (bf == NULL) {	/* out of buffers, cleanup */
2053 			ath_txfrag_cleanup(sc, frags, ni);
2054 			break;
2055 		}
2056 		ieee80211_node_incref(ni);
2057 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
2058 	}
2059 	ATH_TXBUF_UNLOCK(sc);
2060 
2061 	return !STAILQ_EMPTY(frags);
2062 }
2063 
2064 static void
2065 ath_start(struct ifnet *ifp)
2066 {
2067 	struct ath_softc *sc = ifp->if_softc;
2068 	struct ieee80211_node *ni;
2069 	struct ath_buf *bf;
2070 	struct mbuf *m, *next;
2071 	struct ath_txq *txq;
2072 	ath_bufhead frags;
2073 	int pri;
2074 
2075 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2076 		return;
2077 	for (;;) {
2078 		/*
2079 		 * Grab a TX buffer and associated resources.
2080 		 */
2081 		bf = ath_getbuf(sc);
2082 		if (bf == NULL)
2083 			break;
2084 
2085 		IFQ_DEQUEUE(&ifp->if_snd, m);
2086 		if (m == NULL) {
2087 			ATH_TXBUF_LOCK(sc);
2088 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2089 			ATH_TXBUF_UNLOCK(sc);
2090 			break;
2091 		}
2092 		STAILQ_INIT(&frags);
2093 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2094 		pri = M_WME_GETAC(m);
2095 		txq = sc->sc_ac2q[pri];
2096 		if (IEEE80211_ATH_CAP(ni->ni_vap, ni, IEEE80211_NODE_FF)) {
2097 			/*
2098 			 * Check queue length; if too deep drop this
2099 			 * frame (tail drop considered good).
2100 			 */
2101 			if (txq->axq_depth >= sc->sc_fftxqmax) {
2102 				DPRINTF(sc, ATH_DEBUG_FF,
2103 				    "[%s] tail drop on q %u depth %u\n",
2104 				    ether_sprintf(ni->ni_macaddr),
2105 				    txq->axq_qnum, txq->axq_depth);
2106 				sc->sc_stats.ast_tx_qfull++;
2107 				m_freem(m);
2108 				goto reclaim;
2109 			}
2110 			m = ath_ff_check(sc, txq, bf, m, ni);
2111 			if (m == NULL) {
2112 				/* NB: ni ref & bf held on stageq */
2113 				continue;
2114 			}
2115 		}
2116 		ifp->if_opackets++;
2117 		/*
2118 		 * Encapsulate the packet in prep for transmission.
2119 		 */
2120 		m = ieee80211_encap(ni, m);
2121 		if (m == NULL) {
2122 			DPRINTF(sc, ATH_DEBUG_XMIT,
2123 			    "%s: encapsulation failure\n", __func__);
2124 			sc->sc_stats.ast_tx_encap++;
2125 			goto bad;
2126 		}
2127 		/*
2128 		 * Check for fragmentation.  If this frame
2129 		 * has been broken up verify we have enough
2130 		 * buffers to send all the fragments so all
2131 		 * go out or none...
2132 		 */
2133 		if ((m->m_flags & M_FRAG) &&
2134 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2135 			DPRINTF(sc, ATH_DEBUG_XMIT,
2136 			    "%s: out of txfrag buffers\n", __func__);
2137 			sc->sc_stats.ast_tx_nofrag++;
2138 			ath_freetx(m);
2139 			goto bad;
2140 		}
2141 	nextfrag:
2142 		/*
2143 		 * Pass the frame to the h/w for transmission.
2144 		 * Fragmented frames have each frag chained together
2145 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2146 		 * to send all the frags because of work done by
2147 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2148 		 * calling ath_tx_start so it can use it to extend the
2149 		 * the tx duration to cover the subsequent frag and
2150 		 * so it can reclaim all the mbufs in case of an error;
2151 		 * ath_tx_start clears m_nextpkt once it commits to
2152 		 * handing the frame to the hardware.
2153 		 */
2154 		next = m->m_nextpkt;
2155 		if (ath_tx_start(sc, ni, bf, m)) {
2156 	bad:
2157 			ifp->if_oerrors++;
2158 	reclaim:
2159 			bf->bf_m = NULL;
2160 			bf->bf_node = NULL;
2161 			ATH_TXBUF_LOCK(sc);
2162 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2163 			ath_txfrag_cleanup(sc, &frags, ni);
2164 			ATH_TXBUF_UNLOCK(sc);
2165 			if (ni != NULL)
2166 				ieee80211_free_node(ni);
2167 			continue;
2168 		}
2169 		if (next != NULL) {
2170 			/*
2171 			 * Beware of state changing between frags.
2172 			 * XXX check sta power-save state?
2173 			 */
2174 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2175 				DPRINTF(sc, ATH_DEBUG_XMIT,
2176 				    "%s: flush fragmented packet, state %s\n",
2177 				    __func__,
2178 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2179 				ath_freetx(next);
2180 				goto reclaim;
2181 			}
2182 			m = next;
2183 			bf = STAILQ_FIRST(&frags);
2184 			KASSERT(bf != NULL, ("no buf for txfrag"));
2185 			STAILQ_REMOVE_HEAD(&frags, bf_list);
2186 			goto nextfrag;
2187 		}
2188 
2189 		sc->sc_wd_timer = 5;
2190 #if 0
2191 		/*
2192 		 * Flush stale frames from the fast-frame staging queue.
2193 		 */
2194 		if (ic->ic_opmode != IEEE80211_M_STA)
2195 			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2196 #endif
2197 	}
2198 }
2199 
2200 static int
2201 ath_media_change(struct ifnet *ifp)
2202 {
2203 	int error = ieee80211_media_change(ifp);
2204 	/* NB: only the fixed rate can change and that doesn't need a reset */
2205 	return (error == ENETRESET ? 0 : error);
2206 }
2207 
2208 #ifdef ATH_DEBUG
2209 static void
2210 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2211 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2212 {
2213 	static const char *ciphers[] = {
2214 		"WEP",
2215 		"AES-OCB",
2216 		"AES-CCM",
2217 		"CKIP",
2218 		"TKIP",
2219 		"CLR",
2220 	};
2221 	int i, n;
2222 
2223 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2224 	for (i = 0, n = hk->kv_len; i < n; i++)
2225 		printf("%02x", hk->kv_val[i]);
2226 	printf(" mac %s", ether_sprintf(mac));
2227 	if (hk->kv_type == HAL_CIPHER_TKIP) {
2228 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2229 		for (i = 0; i < sizeof(hk->kv_mic); i++)
2230 			printf("%02x", hk->kv_mic[i]);
2231 		if (!sc->sc_splitmic) {
2232 			printf(" txmic ");
2233 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
2234 				printf("%02x", hk->kv_txmic[i]);
2235 		}
2236 	}
2237 	printf("\n");
2238 }
2239 #endif
2240 
2241 /*
2242  * Set a TKIP key into the hardware.  This handles the
2243  * potential distribution of key state to multiple key
2244  * cache slots for TKIP.
2245  */
2246 static int
2247 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2248 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2249 {
2250 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2251 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2252 	struct ath_hal *ah = sc->sc_ah;
2253 
2254 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2255 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2256 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2257 		if (sc->sc_splitmic) {
2258 			/*
2259 			 * TX key goes at first index, RX key at the rx index.
2260 			 * The hal handles the MIC keys at index+64.
2261 			 */
2262 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2263 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2264 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2265 				return 0;
2266 
2267 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2268 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2269 			/* XXX delete tx key on failure? */
2270 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2271 		} else {
2272 			/*
2273 			 * Room for both TX+RX MIC keys in one key cache
2274 			 * slot, just set key at the first index; the hal
2275 			 * will handle the rest.
2276 			 */
2277 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2278 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2279 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
2280 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2281 		}
2282 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2283 		if (sc->sc_splitmic) {
2284 			/*
2285 			 * NB: must pass MIC key in expected location when
2286 			 * the keycache only holds one MIC key per entry.
2287 			 */
2288 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
2289 		} else
2290 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2291 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2292 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2293 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
2294 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2295 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2296 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2297 	}
2298 	return 0;
2299 #undef IEEE80211_KEY_XR
2300 }
2301 
2302 /*
2303  * Set a net80211 key into the hardware.  This handles the
2304  * potential distribution of key state to multiple key
2305  * cache slots for TKIP with hardware MIC support.
2306  */
2307 static int
2308 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2309 	struct ieee80211_node *bss)
2310 {
2311 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2312 	static const u_int8_t ciphermap[] = {
2313 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2314 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2315 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2316 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2317 		(u_int8_t) -1,		/* 4 is not allocated */
2318 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2319 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2320 	};
2321 	struct ath_hal *ah = sc->sc_ah;
2322 	const struct ieee80211_cipher *cip = k->wk_cipher;
2323 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2324 	const u_int8_t *mac;
2325 	HAL_KEYVAL hk;
2326 
2327 	memset(&hk, 0, sizeof(hk));
2328 	/*
2329 	 * Software crypto uses a "clear key" so non-crypto
2330 	 * state kept in the key cache are maintained and
2331 	 * so that rx frames have an entry to match.
2332 	 */
2333 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2334 		KASSERT(cip->ic_cipher < N(ciphermap),
2335 			("invalid cipher type %u", cip->ic_cipher));
2336 		hk.kv_type = ciphermap[cip->ic_cipher];
2337 		hk.kv_len = k->wk_keylen;
2338 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2339 	} else
2340 		hk.kv_type = HAL_CIPHER_CLR;
2341 
2342 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2343 		/*
2344 		 * Group keys on hardware that supports multicast frame
2345 		 * key search use a mac that is the sender's address with
2346 		 * the high bit set instead of the app-specified address.
2347 		 */
2348 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2349 		gmac[0] |= 0x80;
2350 		mac = gmac;
2351 	} else
2352 		mac = k->wk_macaddr;
2353 
2354 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2355 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2356 		return ath_keyset_tkip(sc, k, &hk, mac);
2357 	} else {
2358 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2359 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2360 	}
2361 #undef N
2362 }
2363 
2364 /*
2365  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2366  * each key, one for decrypt/encrypt and the other for the MIC.
2367  */
2368 static u_int16_t
2369 key_alloc_2pair(struct ath_softc *sc,
2370 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2371 {
2372 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2373 	u_int i, keyix;
2374 
2375 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2376 	/* XXX could optimize */
2377 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2378 		u_int8_t b = sc->sc_keymap[i];
2379 		if (b != 0xff) {
2380 			/*
2381 			 * One or more slots in this byte are free.
2382 			 */
2383 			keyix = i*NBBY;
2384 			while (b & 1) {
2385 		again:
2386 				keyix++;
2387 				b >>= 1;
2388 			}
2389 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2390 			if (isset(sc->sc_keymap, keyix+32) ||
2391 			    isset(sc->sc_keymap, keyix+64) ||
2392 			    isset(sc->sc_keymap, keyix+32+64)) {
2393 				/* full pair unavailable */
2394 				/* XXX statistic */
2395 				if (keyix == (i+1)*NBBY) {
2396 					/* no slots were appropriate, advance */
2397 					continue;
2398 				}
2399 				goto again;
2400 			}
2401 			setbit(sc->sc_keymap, keyix);
2402 			setbit(sc->sc_keymap, keyix+64);
2403 			setbit(sc->sc_keymap, keyix+32);
2404 			setbit(sc->sc_keymap, keyix+32+64);
2405 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2406 				"%s: key pair %u,%u %u,%u\n",
2407 				__func__, keyix, keyix+64,
2408 				keyix+32, keyix+32+64);
2409 			*txkeyix = keyix;
2410 			*rxkeyix = keyix+32;
2411 			return 1;
2412 		}
2413 	}
2414 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2415 	return 0;
2416 #undef N
2417 }
2418 
2419 /*
2420  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2421  * each key, one for decrypt/encrypt and the other for the MIC.
2422  */
2423 static u_int16_t
2424 key_alloc_pair(struct ath_softc *sc,
2425 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2426 {
2427 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2428 	u_int i, keyix;
2429 
2430 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2431 	/* XXX could optimize */
2432 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2433 		u_int8_t b = sc->sc_keymap[i];
2434 		if (b != 0xff) {
2435 			/*
2436 			 * One or more slots in this byte are free.
2437 			 */
2438 			keyix = i*NBBY;
2439 			while (b & 1) {
2440 		again:
2441 				keyix++;
2442 				b >>= 1;
2443 			}
2444 			if (isset(sc->sc_keymap, keyix+64)) {
2445 				/* full pair unavailable */
2446 				/* XXX statistic */
2447 				if (keyix == (i+1)*NBBY) {
2448 					/* no slots were appropriate, advance */
2449 					continue;
2450 				}
2451 				goto again;
2452 			}
2453 			setbit(sc->sc_keymap, keyix);
2454 			setbit(sc->sc_keymap, keyix+64);
2455 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2456 				"%s: key pair %u,%u\n",
2457 				__func__, keyix, keyix+64);
2458 			*txkeyix = *rxkeyix = keyix;
2459 			return 1;
2460 		}
2461 	}
2462 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2463 	return 0;
2464 #undef N
2465 }
2466 
2467 /*
2468  * Allocate a single key cache slot.
2469  */
2470 static int
2471 key_alloc_single(struct ath_softc *sc,
2472 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2473 {
2474 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2475 	u_int i, keyix;
2476 
2477 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2478 	for (i = 0; i < N(sc->sc_keymap); i++) {
2479 		u_int8_t b = sc->sc_keymap[i];
2480 		if (b != 0xff) {
2481 			/*
2482 			 * One or more slots are free.
2483 			 */
2484 			keyix = i*NBBY;
2485 			while (b & 1)
2486 				keyix++, b >>= 1;
2487 			setbit(sc->sc_keymap, keyix);
2488 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2489 				__func__, keyix);
2490 			*txkeyix = *rxkeyix = keyix;
2491 			return 1;
2492 		}
2493 	}
2494 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2495 	return 0;
2496 #undef N
2497 }
2498 
2499 /*
2500  * Allocate one or more key cache slots for a uniacst key.  The
2501  * key itself is needed only to identify the cipher.  For hardware
2502  * TKIP with split cipher+MIC keys we allocate two key cache slot
2503  * pairs so that we can setup separate TX and RX MIC keys.  Note
2504  * that the MIC key for a TKIP key at slot i is assumed by the
2505  * hardware to be at slot i+64.  This limits TKIP keys to the first
2506  * 64 entries.
2507  */
2508 static int
2509 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2510 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2511 {
2512 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2513 
2514 	/*
2515 	 * Group key allocation must be handled specially for
2516 	 * parts that do not support multicast key cache search
2517 	 * functionality.  For those parts the key id must match
2518 	 * the h/w key index so lookups find the right key.  On
2519 	 * parts w/ the key search facility we install the sender's
2520 	 * mac address (with the high bit set) and let the hardware
2521 	 * find the key w/o using the key id.  This is preferred as
2522 	 * it permits us to support multiple users for adhoc and/or
2523 	 * multi-station operation.
2524 	 */
2525 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||	/* global key */
2526 	    ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2527 		if (!(&vap->iv_nw_keys[0] <= k &&
2528 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2529 			/* should not happen */
2530 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2531 				"%s: bogus group key\n", __func__);
2532 			return 0;
2533 		}
2534 		/*
2535 		 * XXX we pre-allocate the global keys so
2536 		 * have no way to check if they've already been allocated.
2537 		 */
2538 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2539 		return 1;
2540 	}
2541 
2542 	/*
2543 	 * We allocate two pair for TKIP when using the h/w to do
2544 	 * the MIC.  For everything else, including software crypto,
2545 	 * we allocate a single entry.  Note that s/w crypto requires
2546 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2547 	 * not support pass-through cache entries and we map all
2548 	 * those requests to slot 0.
2549 	 */
2550 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2551 		return key_alloc_single(sc, keyix, rxkeyix);
2552 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2553 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2554 		if (sc->sc_splitmic)
2555 			return key_alloc_2pair(sc, keyix, rxkeyix);
2556 		else
2557 			return key_alloc_pair(sc, keyix, rxkeyix);
2558 	} else {
2559 		return key_alloc_single(sc, keyix, rxkeyix);
2560 	}
2561 }
2562 
2563 /*
2564  * Delete an entry in the key cache allocated by ath_key_alloc.
2565  */
2566 static int
2567 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2568 {
2569 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2570 	struct ath_hal *ah = sc->sc_ah;
2571 	const struct ieee80211_cipher *cip = k->wk_cipher;
2572 	u_int keyix = k->wk_keyix;
2573 
2574 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2575 
2576 	ath_hal_keyreset(ah, keyix);
2577 	/*
2578 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2579 	 */
2580 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2581 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2582 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2583 	if (keyix >= IEEE80211_WEP_NKID) {
2584 		/*
2585 		 * Don't touch keymap entries for global keys so
2586 		 * they are never considered for dynamic allocation.
2587 		 */
2588 		clrbit(sc->sc_keymap, keyix);
2589 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2590 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2591 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2592 			if (sc->sc_splitmic) {
2593 				/* +32 for RX key, +32+64 for RX key MIC */
2594 				clrbit(sc->sc_keymap, keyix+32);
2595 				clrbit(sc->sc_keymap, keyix+32+64);
2596 			}
2597 		}
2598 	}
2599 	return 1;
2600 }
2601 
2602 /*
2603  * Set the key cache contents for the specified key.  Key cache
2604  * slot(s) must already have been allocated by ath_key_alloc.
2605  */
2606 static int
2607 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2608 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2609 {
2610 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2611 
2612 	return ath_keyset(sc, k, vap->iv_bss);
2613 }
2614 
2615 /*
2616  * Block/unblock tx+rx processing while a key change is done.
2617  * We assume the caller serializes key management operations
2618  * so we only need to worry about synchronization with other
2619  * uses that originate in the driver.
2620  */
2621 static void
2622 ath_key_update_begin(struct ieee80211vap *vap)
2623 {
2624 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2625 	struct ath_softc *sc = ifp->if_softc;
2626 
2627 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2628 	taskqueue_block(sc->sc_tq);
2629 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2630 }
2631 
2632 static void
2633 ath_key_update_end(struct ieee80211vap *vap)
2634 {
2635 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2636 	struct ath_softc *sc = ifp->if_softc;
2637 
2638 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2639 	IF_UNLOCK(&ifp->if_snd);
2640 	taskqueue_unblock(sc->sc_tq);
2641 }
2642 
2643 /*
2644  * Calculate the receive filter according to the
2645  * operating mode and state:
2646  *
2647  * o always accept unicast, broadcast, and multicast traffic
2648  * o accept PHY error frames when hardware doesn't have MIB support
2649  *   to count and we need them for ANI (sta mode only until recently)
2650  *   and we are not scanning (ANI is disabled)
2651  *   NB: older hal's add rx filter bits out of sight and we need to
2652  *	 blindly preserve them
2653  * o probe request frames are accepted only when operating in
2654  *   hostap, adhoc, or monitor modes
2655  * o enable promiscuous mode
2656  *   - when in monitor mode
2657  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2658  * o accept beacons:
2659  *   - when operating in station mode for collecting rssi data when
2660  *     the station is otherwise quiet, or
2661  *   - when operating in adhoc mode so the 802.11 layer creates
2662  *     node table entries for peers,
2663  *   - when scanning
2664  *   - when doing s/w beacon miss (e.g. for ap+sta)
2665  *   - when operating in ap mode in 11g to detect overlapping bss that
2666  *     require protection
2667  * o accept control frames:
2668  *   - when in monitor mode
2669  * XXX BAR frames for 11n
2670  * XXX HT protection for 11n
2671  */
2672 static u_int32_t
2673 ath_calcrxfilter(struct ath_softc *sc)
2674 {
2675 	struct ifnet *ifp = sc->sc_ifp;
2676 	struct ieee80211com *ic = ifp->if_l2com;
2677 	u_int32_t rfilt;
2678 
2679 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2680 	if (!sc->sc_needmib && !sc->sc_scanning)
2681 		rfilt |= HAL_RX_FILTER_PHYERR;
2682 	if (ic->ic_opmode != IEEE80211_M_STA)
2683 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2684 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2685 		rfilt |= HAL_RX_FILTER_PROM;
2686 	if (ic->ic_opmode == IEEE80211_M_STA ||
2687 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2688 	    sc->sc_swbmiss || sc->sc_scanning)
2689 		rfilt |= HAL_RX_FILTER_BEACON;
2690 	/*
2691 	 * NB: We don't recalculate the rx filter when
2692 	 * ic_protmode changes; otherwise we could do
2693 	 * this only when ic_protmode != NONE.
2694 	 */
2695 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2696 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2697 		rfilt |= HAL_RX_FILTER_BEACON;
2698 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2699 		rfilt |= HAL_RX_FILTER_CONTROL;
2700 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2701 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2702 	return rfilt;
2703 }
2704 
2705 static void
2706 ath_update_promisc(struct ifnet *ifp)
2707 {
2708 	struct ath_softc *sc = ifp->if_softc;
2709 	u_int32_t rfilt;
2710 
2711 	/* configure rx filter */
2712 	rfilt = ath_calcrxfilter(sc);
2713 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2714 
2715 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2716 }
2717 
2718 static void
2719 ath_update_mcast(struct ifnet *ifp)
2720 {
2721 	struct ath_softc *sc = ifp->if_softc;
2722 	u_int32_t mfilt[2];
2723 
2724 	/* calculate and install multicast filter */
2725 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2726 		struct ifmultiaddr *ifma;
2727 		/*
2728 		 * Merge multicast addresses to form the hardware filter.
2729 		 */
2730 		mfilt[0] = mfilt[1] = 0;
2731 		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2732 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2733 			caddr_t dl;
2734 			u_int32_t val;
2735 			u_int8_t pos;
2736 
2737 			/* calculate XOR of eight 6bit values */
2738 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2739 			val = LE_READ_4(dl + 0);
2740 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2741 			val = LE_READ_4(dl + 3);
2742 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2743 			pos &= 0x3f;
2744 			mfilt[pos / 32] |= (1 << (pos % 32));
2745 		}
2746 		IF_ADDR_UNLOCK(ifp);
2747 	} else
2748 		mfilt[0] = mfilt[1] = ~0;
2749 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2750 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2751 		__func__, mfilt[0], mfilt[1]);
2752 }
2753 
2754 static void
2755 ath_mode_init(struct ath_softc *sc)
2756 {
2757 	struct ifnet *ifp = sc->sc_ifp;
2758 	struct ieee80211com *ic = ifp->if_l2com;
2759 	struct ath_hal *ah = sc->sc_ah;
2760 	u_int32_t rfilt;
2761 
2762 	/* configure rx filter */
2763 	rfilt = ath_calcrxfilter(sc);
2764 	ath_hal_setrxfilter(ah, rfilt);
2765 
2766 	/* configure operational mode */
2767 	ath_hal_setopmode(ah);
2768 
2769 	/*
2770 	 * Handle any link-level address change.  Note that we only
2771 	 * need to force ic_myaddr; any other addresses are handled
2772 	 * as a byproduct of the ifnet code marking the interface
2773 	 * down then up.
2774 	 *
2775 	 * XXX should get from lladdr instead of arpcom but that's more work
2776 	 */
2777 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2778 	ath_hal_setmac(ah, ic->ic_myaddr);
2779 
2780 	/* calculate and install multicast filter */
2781 	ath_update_mcast(ifp);
2782 }
2783 
2784 /*
2785  * Set the slot time based on the current setting.
2786  */
2787 static void
2788 ath_setslottime(struct ath_softc *sc)
2789 {
2790 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2791 	struct ath_hal *ah = sc->sc_ah;
2792 	u_int usec;
2793 
2794 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2795 		usec = 13;
2796 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2797 		usec = 21;
2798 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2799 		/* honor short/long slot time only in 11g */
2800 		/* XXX shouldn't honor on pure g or turbo g channel */
2801 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2802 			usec = HAL_SLOT_TIME_9;
2803 		else
2804 			usec = HAL_SLOT_TIME_20;
2805 	} else
2806 		usec = HAL_SLOT_TIME_9;
2807 
2808 	DPRINTF(sc, ATH_DEBUG_RESET,
2809 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2810 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2811 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2812 
2813 	ath_hal_setslottime(ah, usec);
2814 	sc->sc_updateslot = OK;
2815 }
2816 
2817 /*
2818  * Callback from the 802.11 layer to update the
2819  * slot time based on the current setting.
2820  */
2821 static void
2822 ath_updateslot(struct ifnet *ifp)
2823 {
2824 	struct ath_softc *sc = ifp->if_softc;
2825 	struct ieee80211com *ic = ifp->if_l2com;
2826 
2827 	/*
2828 	 * When not coordinating the BSS, change the hardware
2829 	 * immediately.  For other operation we defer the change
2830 	 * until beacon updates have propagated to the stations.
2831 	 */
2832 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2833 		sc->sc_updateslot = UPDATE;
2834 	else
2835 		ath_setslottime(sc);
2836 }
2837 
2838 /*
2839  * Setup a h/w transmit queue for beacons.
2840  */
2841 static int
2842 ath_beaconq_setup(struct ath_hal *ah)
2843 {
2844 	HAL_TXQ_INFO qi;
2845 
2846 	memset(&qi, 0, sizeof(qi));
2847 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2848 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2849 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2850 	/* NB: for dynamic turbo, don't enable any other interrupts */
2851 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2852 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2853 }
2854 
2855 /*
2856  * Setup the transmit queue parameters for the beacon queue.
2857  */
2858 static int
2859 ath_beaconq_config(struct ath_softc *sc)
2860 {
2861 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2862 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2863 	struct ath_hal *ah = sc->sc_ah;
2864 	HAL_TXQ_INFO qi;
2865 
2866 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2867 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2868 		/*
2869 		 * Always burst out beacon and CAB traffic.
2870 		 */
2871 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2872 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2873 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2874 	} else {
2875 		struct wmeParams *wmep =
2876 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2877 		/*
2878 		 * Adhoc mode; important thing is to use 2x cwmin.
2879 		 */
2880 		qi.tqi_aifs = wmep->wmep_aifsn;
2881 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2882 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2883 	}
2884 
2885 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2886 		device_printf(sc->sc_dev, "unable to update parameters for "
2887 			"beacon hardware queue!\n");
2888 		return 0;
2889 	} else {
2890 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2891 		return 1;
2892 	}
2893 #undef ATH_EXPONENT_TO_VALUE
2894 }
2895 
2896 /*
2897  * Allocate and setup an initial beacon frame.
2898  */
2899 static int
2900 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2901 {
2902 	struct ieee80211vap *vap = ni->ni_vap;
2903 	struct ath_vap *avp = ATH_VAP(vap);
2904 	struct ath_buf *bf;
2905 	struct mbuf *m;
2906 	int error;
2907 
2908 	bf = avp->av_bcbuf;
2909 	if (bf->bf_m != NULL) {
2910 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2911 		m_freem(bf->bf_m);
2912 		bf->bf_m = NULL;
2913 	}
2914 	if (bf->bf_node != NULL) {
2915 		ieee80211_free_node(bf->bf_node);
2916 		bf->bf_node = NULL;
2917 	}
2918 
2919 	/*
2920 	 * NB: the beacon data buffer must be 32-bit aligned;
2921 	 * we assume the mbuf routines will return us something
2922 	 * with this alignment (perhaps should assert).
2923 	 */
2924 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2925 	if (m == NULL) {
2926 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2927 		sc->sc_stats.ast_be_nombuf++;
2928 		return ENOMEM;
2929 	}
2930 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2931 				     bf->bf_segs, &bf->bf_nseg,
2932 				     BUS_DMA_NOWAIT);
2933 	if (error != 0) {
2934 		device_printf(sc->sc_dev,
2935 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2936 		    __func__, error);
2937 		m_freem(m);
2938 		return error;
2939 	}
2940 
2941 	/*
2942 	 * Calculate a TSF adjustment factor required for staggered
2943 	 * beacons.  Note that we assume the format of the beacon
2944 	 * frame leaves the tstamp field immediately following the
2945 	 * header.
2946 	 */
2947 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2948 		uint64_t tsfadjust;
2949 		struct ieee80211_frame *wh;
2950 
2951 		/*
2952 		 * The beacon interval is in TU's; the TSF is in usecs.
2953 		 * We figure out how many TU's to add to align the timestamp
2954 		 * then convert to TSF units and handle byte swapping before
2955 		 * inserting it in the frame.  The hardware will then add this
2956 		 * each time a beacon frame is sent.  Note that we align vap's
2957 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2958 		 * timestamp in one beacon interval while the others get a
2959 		 * timstamp aligned to the next interval.
2960 		 */
2961 		tsfadjust = ni->ni_intval *
2962 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2963 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2964 
2965 		DPRINTF(sc, ATH_DEBUG_BEACON,
2966 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2967 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2968 		    avp->av_bslot, ni->ni_intval,
2969 		    (long long unsigned) le64toh(tsfadjust));
2970 
2971 		wh = mtod(m, struct ieee80211_frame *);
2972 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2973 	}
2974 	bf->bf_m = m;
2975 	bf->bf_node = ieee80211_ref_node(ni);
2976 
2977 	return 0;
2978 }
2979 
2980 /*
2981  * Setup the beacon frame for transmit.
2982  */
2983 static void
2984 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2985 {
2986 #define	USE_SHPREAMBLE(_ic) \
2987 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2988 		== IEEE80211_F_SHPREAMBLE)
2989 	struct ieee80211_node *ni = bf->bf_node;
2990 	struct ieee80211com *ic = ni->ni_ic;
2991 	struct mbuf *m = bf->bf_m;
2992 	struct ath_hal *ah = sc->sc_ah;
2993 	struct ath_desc *ds;
2994 	int flags, antenna;
2995 	const HAL_RATE_TABLE *rt;
2996 	u_int8_t rix, rate;
2997 
2998 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2999 		__func__, m, m->m_len);
3000 
3001 	/* setup descriptors */
3002 	ds = bf->bf_desc;
3003 
3004 	flags = HAL_TXDESC_NOACK;
3005 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
3006 		ds->ds_link = bf->bf_daddr;	/* self-linked */
3007 		flags |= HAL_TXDESC_VEOL;
3008 		/*
3009 		 * Let hardware handle antenna switching.
3010 		 */
3011 		antenna = sc->sc_txantenna;
3012 	} else {
3013 		ds->ds_link = 0;
3014 		/*
3015 		 * Switch antenna every 4 beacons.
3016 		 * XXX assumes two antenna
3017 		 */
3018 		if (sc->sc_txantenna != 0)
3019 			antenna = sc->sc_txantenna;
3020 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
3021 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
3022 		else
3023 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
3024 	}
3025 
3026 	KASSERT(bf->bf_nseg == 1,
3027 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
3028 	ds->ds_data = bf->bf_segs[0].ds_addr;
3029 	/*
3030 	 * Calculate rate code.
3031 	 * XXX everything at min xmit rate
3032 	 */
3033 	rix = 0;
3034 	rt = sc->sc_currates;
3035 	rate = rt->info[rix].rateCode;
3036 	if (USE_SHPREAMBLE(ic))
3037 		rate |= rt->info[rix].shortPreamble;
3038 	ath_hal_setuptxdesc(ah, ds
3039 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
3040 		, sizeof(struct ieee80211_frame)/* header length */
3041 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
3042 		, ni->ni_txpower		/* txpower XXX */
3043 		, rate, 1			/* series 0 rate/tries */
3044 		, HAL_TXKEYIX_INVALID		/* no encryption */
3045 		, antenna			/* antenna mode */
3046 		, flags				/* no ack, veol for beacons */
3047 		, 0				/* rts/cts rate */
3048 		, 0				/* rts/cts duration */
3049 	);
3050 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
3051 	ath_hal_filltxdesc(ah, ds
3052 		, roundup(m->m_len, 4)		/* buffer length */
3053 		, AH_TRUE			/* first segment */
3054 		, AH_TRUE			/* last segment */
3055 		, ds				/* first descriptor */
3056 	);
3057 #if 0
3058 	ath_desc_swap(ds);
3059 #endif
3060 #undef USE_SHPREAMBLE
3061 }
3062 
3063 static void
3064 ath_beacon_update(struct ieee80211vap *vap, int item)
3065 {
3066 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
3067 
3068 	setbit(bo->bo_flags, item);
3069 }
3070 
3071 /*
3072  * Append the contents of src to dst; both queues
3073  * are assumed to be locked.
3074  */
3075 static void
3076 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3077 {
3078 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
3079 	dst->axq_link = src->axq_link;
3080 	src->axq_link = NULL;
3081 	dst->axq_depth += src->axq_depth;
3082 	src->axq_depth = 0;
3083 }
3084 
3085 /*
3086  * Transmit a beacon frame at SWBA.  Dynamic updates to the
3087  * frame contents are done as needed and the slot time is
3088  * also adjusted based on current state.
3089  */
3090 static void
3091 ath_beacon_proc(void *arg, int pending)
3092 {
3093 	struct ath_softc *sc = arg;
3094 	struct ath_hal *ah = sc->sc_ah;
3095 	struct ieee80211vap *vap;
3096 	struct ath_buf *bf;
3097 	int slot, otherant;
3098 	uint32_t bfaddr;
3099 
3100 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
3101 		__func__, pending);
3102 	/*
3103 	 * Check if the previous beacon has gone out.  If
3104 	 * not don't try to post another, skip this period
3105 	 * and wait for the next.  Missed beacons indicate
3106 	 * a problem and should not occur.  If we miss too
3107 	 * many consecutive beacons reset the device.
3108 	 */
3109 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
3110 		sc->sc_bmisscount++;
3111 		DPRINTF(sc, ATH_DEBUG_BEACON,
3112 			"%s: missed %u consecutive beacons\n",
3113 			__func__, sc->sc_bmisscount);
3114 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
3115 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
3116 		return;
3117 	}
3118 	if (sc->sc_bmisscount != 0) {
3119 		DPRINTF(sc, ATH_DEBUG_BEACON,
3120 			"%s: resume beacon xmit after %u misses\n",
3121 			__func__, sc->sc_bmisscount);
3122 		sc->sc_bmisscount = 0;
3123 	}
3124 
3125 	if (sc->sc_stagbeacons) {			/* staggered beacons */
3126 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3127 		uint32_t tsftu;
3128 
3129 		tsftu = ath_hal_gettsf32(ah) >> 10;
3130 		/* XXX lintval */
3131 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3132 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3133 		bfaddr = 0;
3134 		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3135 			bf = ath_beacon_generate(sc, vap);
3136 			if (bf != NULL)
3137 				bfaddr = bf->bf_daddr;
3138 		}
3139 	} else {					/* burst'd beacons */
3140 		uint32_t *bflink = &bfaddr;
3141 
3142 		for (slot = 0; slot < ATH_BCBUF; slot++) {
3143 			vap = sc->sc_bslot[slot];
3144 			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3145 				bf = ath_beacon_generate(sc, vap);
3146 				if (bf != NULL) {
3147 					*bflink = bf->bf_daddr;
3148 					bflink = &bf->bf_desc->ds_link;
3149 				}
3150 			}
3151 		}
3152 		*bflink = 0;				/* terminate list */
3153 	}
3154 
3155 	/*
3156 	 * Handle slot time change when a non-ERP station joins/leaves
3157 	 * an 11g network.  The 802.11 layer notifies us via callback,
3158 	 * we mark updateslot, then wait one beacon before effecting
3159 	 * the change.  This gives associated stations at least one
3160 	 * beacon interval to note the state change.
3161 	 */
3162 	/* XXX locking */
3163 	if (sc->sc_updateslot == UPDATE) {
3164 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3165 		sc->sc_slotupdate = slot;
3166 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3167 		ath_setslottime(sc);		/* commit change to h/w */
3168 
3169 	/*
3170 	 * Check recent per-antenna transmit statistics and flip
3171 	 * the default antenna if noticeably more frames went out
3172 	 * on the non-default antenna.
3173 	 * XXX assumes 2 anntenae
3174 	 */
3175 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3176 		otherant = sc->sc_defant & 1 ? 2 : 1;
3177 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3178 			ath_setdefantenna(sc, otherant);
3179 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3180 	}
3181 
3182 	if (bfaddr != 0) {
3183 		/*
3184 		 * Stop any current dma and put the new frame on the queue.
3185 		 * This should never fail since we check above that no frames
3186 		 * are still pending on the queue.
3187 		 */
3188 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3189 			DPRINTF(sc, ATH_DEBUG_ANY,
3190 				"%s: beacon queue %u did not stop?\n",
3191 				__func__, sc->sc_bhalq);
3192 		}
3193 		/* NB: cabq traffic should already be queued and primed */
3194 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3195 		ath_hal_txstart(ah, sc->sc_bhalq);
3196 
3197 		sc->sc_stats.ast_be_xmit++;
3198 	}
3199 }
3200 
3201 static struct ath_buf *
3202 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3203 {
3204 	struct ath_vap *avp = ATH_VAP(vap);
3205 	struct ath_txq *cabq = sc->sc_cabq;
3206 	struct ath_buf *bf;
3207 	struct mbuf *m;
3208 	int nmcastq, error;
3209 
3210 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
3211 	    ("not running, state %d", vap->iv_state));
3212 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3213 
3214 	/*
3215 	 * Update dynamic beacon contents.  If this returns
3216 	 * non-zero then we need to remap the memory because
3217 	 * the beacon frame changed size (probably because
3218 	 * of the TIM bitmap).
3219 	 */
3220 	bf = avp->av_bcbuf;
3221 	m = bf->bf_m;
3222 	nmcastq = avp->av_mcastq.axq_depth;
3223 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3224 		/* XXX too conservative? */
3225 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3226 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3227 					     bf->bf_segs, &bf->bf_nseg,
3228 					     BUS_DMA_NOWAIT);
3229 		if (error != 0) {
3230 			if_printf(vap->iv_ifp,
3231 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3232 			    __func__, error);
3233 			return NULL;
3234 		}
3235 	}
3236 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3237 		DPRINTF(sc, ATH_DEBUG_BEACON,
3238 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3239 		    __func__, nmcastq, cabq->axq_depth);
3240 		sc->sc_stats.ast_cabq_busy++;
3241 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3242 			/*
3243 			 * CABQ traffic from a previous vap is still pending.
3244 			 * We must drain the q before this beacon frame goes
3245 			 * out as otherwise this vap's stations will get cab
3246 			 * frames from a different vap.
3247 			 * XXX could be slow causing us to miss DBA
3248 			 */
3249 			ath_tx_draintxq(sc, cabq);
3250 		}
3251 	}
3252 	ath_beacon_setup(sc, bf);
3253 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3254 
3255 	/*
3256 	 * Enable the CAB queue before the beacon queue to
3257 	 * insure cab frames are triggered by this beacon.
3258 	 */
3259 	if (avp->av_boff.bo_tim[4] & 1) {
3260 		struct ath_hal *ah = sc->sc_ah;
3261 
3262 		/* NB: only at DTIM */
3263 		ATH_TXQ_LOCK(cabq);
3264 		ATH_TXQ_LOCK(&avp->av_mcastq);
3265 		if (nmcastq) {
3266 			struct ath_buf *bfm;
3267 
3268 			/*
3269 			 * Move frames from the s/w mcast q to the h/w cab q.
3270 			 * XXX MORE_DATA bit
3271 			 */
3272 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3273 			if (cabq->axq_link != NULL) {
3274 				*cabq->axq_link = bfm->bf_daddr;
3275 			} else
3276 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3277 					bfm->bf_daddr);
3278 			ath_txqmove(cabq, &avp->av_mcastq);
3279 
3280 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3281 		}
3282 		/* NB: gated by beacon so safe to start here */
3283 		ath_hal_txstart(ah, cabq->axq_qnum);
3284 		ATH_TXQ_UNLOCK(cabq);
3285 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3286 	}
3287 	return bf;
3288 }
3289 
3290 static void
3291 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3292 {
3293 	struct ath_vap *avp = ATH_VAP(vap);
3294 	struct ath_hal *ah = sc->sc_ah;
3295 	struct ath_buf *bf;
3296 	struct mbuf *m;
3297 	int error;
3298 
3299 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3300 
3301 	/*
3302 	 * Update dynamic beacon contents.  If this returns
3303 	 * non-zero then we need to remap the memory because
3304 	 * the beacon frame changed size (probably because
3305 	 * of the TIM bitmap).
3306 	 */
3307 	bf = avp->av_bcbuf;
3308 	m = bf->bf_m;
3309 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3310 		/* XXX too conservative? */
3311 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3312 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3313 					     bf->bf_segs, &bf->bf_nseg,
3314 					     BUS_DMA_NOWAIT);
3315 		if (error != 0) {
3316 			if_printf(vap->iv_ifp,
3317 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3318 			    __func__, error);
3319 			return;
3320 		}
3321 	}
3322 	ath_beacon_setup(sc, bf);
3323 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3324 
3325 	/* NB: caller is known to have already stopped tx dma */
3326 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3327 	ath_hal_txstart(ah, sc->sc_bhalq);
3328 }
3329 
3330 /*
3331  * Reset the hardware after detecting beacons have stopped.
3332  */
3333 static void
3334 ath_bstuck_proc(void *arg, int pending)
3335 {
3336 	struct ath_softc *sc = arg;
3337 	struct ifnet *ifp = sc->sc_ifp;
3338 
3339 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3340 		sc->sc_bmisscount);
3341 	sc->sc_stats.ast_bstuck++;
3342 	ath_reset(ifp);
3343 }
3344 
3345 /*
3346  * Reclaim beacon resources and return buffer to the pool.
3347  */
3348 static void
3349 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3350 {
3351 
3352 	if (bf->bf_m != NULL) {
3353 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3354 		m_freem(bf->bf_m);
3355 		bf->bf_m = NULL;
3356 	}
3357 	if (bf->bf_node != NULL) {
3358 		ieee80211_free_node(bf->bf_node);
3359 		bf->bf_node = NULL;
3360 	}
3361 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3362 }
3363 
3364 /*
3365  * Reclaim beacon resources.
3366  */
3367 static void
3368 ath_beacon_free(struct ath_softc *sc)
3369 {
3370 	struct ath_buf *bf;
3371 
3372 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3373 		if (bf->bf_m != NULL) {
3374 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3375 			m_freem(bf->bf_m);
3376 			bf->bf_m = NULL;
3377 		}
3378 		if (bf->bf_node != NULL) {
3379 			ieee80211_free_node(bf->bf_node);
3380 			bf->bf_node = NULL;
3381 		}
3382 	}
3383 }
3384 
3385 /*
3386  * Configure the beacon and sleep timers.
3387  *
3388  * When operating as an AP this resets the TSF and sets
3389  * up the hardware to notify us when we need to issue beacons.
3390  *
3391  * When operating in station mode this sets up the beacon
3392  * timers according to the timestamp of the last received
3393  * beacon and the current TSF, configures PCF and DTIM
3394  * handling, programs the sleep registers so the hardware
3395  * will wakeup in time to receive beacons, and configures
3396  * the beacon miss handling so we'll receive a BMISS
3397  * interrupt when we stop seeing beacons from the AP
3398  * we've associated with.
3399  */
3400 static void
3401 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3402 {
3403 #define	TSF_TO_TU(_h,_l) \
3404 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3405 #define	FUDGE	2
3406 	struct ath_hal *ah = sc->sc_ah;
3407 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3408 	struct ieee80211_node *ni;
3409 	u_int32_t nexttbtt, intval, tsftu;
3410 	u_int64_t tsf;
3411 
3412 	if (vap == NULL)
3413 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3414 	ni = vap->iv_bss;
3415 
3416 	/* extract tstamp from last beacon and convert to TU */
3417 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3418 			     LE_READ_4(ni->ni_tstamp.data));
3419 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3420 		/*
3421 		 * For multi-bss ap support beacons are either staggered
3422 		 * evenly over N slots or burst together.  For the former
3423 		 * arrange for the SWBA to be delivered for each slot.
3424 		 * Slots that are not occupied will generate nothing.
3425 		 */
3426 		/* NB: the beacon interval is kept internally in TU's */
3427 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3428 		if (sc->sc_stagbeacons)
3429 			intval /= ATH_BCBUF;
3430 	} else {
3431 		/* NB: the beacon interval is kept internally in TU's */
3432 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3433 	}
3434 	if (nexttbtt == 0)		/* e.g. for ap mode */
3435 		nexttbtt = intval;
3436 	else if (intval)		/* NB: can be 0 for monitor mode */
3437 		nexttbtt = roundup(nexttbtt, intval);
3438 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3439 		__func__, nexttbtt, intval, ni->ni_intval);
3440 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3441 		HAL_BEACON_STATE bs;
3442 		int dtimperiod, dtimcount;
3443 		int cfpperiod, cfpcount;
3444 
3445 		/*
3446 		 * Setup dtim and cfp parameters according to
3447 		 * last beacon we received (which may be none).
3448 		 */
3449 		dtimperiod = ni->ni_dtim_period;
3450 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3451 			dtimperiod = 1;
3452 		dtimcount = ni->ni_dtim_count;
3453 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3454 			dtimcount = 0;		/* XXX? */
3455 		cfpperiod = 1;			/* NB: no PCF support yet */
3456 		cfpcount = 0;
3457 		/*
3458 		 * Pull nexttbtt forward to reflect the current
3459 		 * TSF and calculate dtim+cfp state for the result.
3460 		 */
3461 		tsf = ath_hal_gettsf64(ah);
3462 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3463 		do {
3464 			nexttbtt += intval;
3465 			if (--dtimcount < 0) {
3466 				dtimcount = dtimperiod - 1;
3467 				if (--cfpcount < 0)
3468 					cfpcount = cfpperiod - 1;
3469 			}
3470 		} while (nexttbtt < tsftu);
3471 		memset(&bs, 0, sizeof(bs));
3472 		bs.bs_intval = intval;
3473 		bs.bs_nexttbtt = nexttbtt;
3474 		bs.bs_dtimperiod = dtimperiod*intval;
3475 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3476 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3477 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3478 		bs.bs_cfpmaxduration = 0;
3479 #if 0
3480 		/*
3481 		 * The 802.11 layer records the offset to the DTIM
3482 		 * bitmap while receiving beacons; use it here to
3483 		 * enable h/w detection of our AID being marked in
3484 		 * the bitmap vector (to indicate frames for us are
3485 		 * pending at the AP).
3486 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3487 		 * XXX enable based on h/w rev for newer chips
3488 		 */
3489 		bs.bs_timoffset = ni->ni_timoff;
3490 #endif
3491 		/*
3492 		 * Calculate the number of consecutive beacons to miss
3493 		 * before taking a BMISS interrupt.
3494 		 * Note that we clamp the result to at most 10 beacons.
3495 		 */
3496 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3497 		if (bs.bs_bmissthreshold > 10)
3498 			bs.bs_bmissthreshold = 10;
3499 		else if (bs.bs_bmissthreshold <= 0)
3500 			bs.bs_bmissthreshold = 1;
3501 
3502 		/*
3503 		 * Calculate sleep duration.  The configuration is
3504 		 * given in ms.  We insure a multiple of the beacon
3505 		 * period is used.  Also, if the sleep duration is
3506 		 * greater than the DTIM period then it makes senses
3507 		 * to make it a multiple of that.
3508 		 *
3509 		 * XXX fixed at 100ms
3510 		 */
3511 		bs.bs_sleepduration =
3512 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3513 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3514 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3515 
3516 		DPRINTF(sc, ATH_DEBUG_BEACON,
3517 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3518 			, __func__
3519 			, tsf, tsftu
3520 			, bs.bs_intval
3521 			, bs.bs_nexttbtt
3522 			, bs.bs_dtimperiod
3523 			, bs.bs_nextdtim
3524 			, bs.bs_bmissthreshold
3525 			, bs.bs_sleepduration
3526 			, bs.bs_cfpperiod
3527 			, bs.bs_cfpmaxduration
3528 			, bs.bs_cfpnext
3529 			, bs.bs_timoffset
3530 		);
3531 		ath_hal_intrset(ah, 0);
3532 		ath_hal_beacontimers(ah, &bs);
3533 		sc->sc_imask |= HAL_INT_BMISS;
3534 		ath_hal_intrset(ah, sc->sc_imask);
3535 	} else {
3536 		ath_hal_intrset(ah, 0);
3537 		if (nexttbtt == intval)
3538 			intval |= HAL_BEACON_RESET_TSF;
3539 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3540 			/*
3541 			 * In IBSS mode enable the beacon timers but only
3542 			 * enable SWBA interrupts if we need to manually
3543 			 * prepare beacon frames.  Otherwise we use a
3544 			 * self-linked tx descriptor and let the hardware
3545 			 * deal with things.
3546 			 */
3547 			intval |= HAL_BEACON_ENA;
3548 			if (!sc->sc_hasveol)
3549 				sc->sc_imask |= HAL_INT_SWBA;
3550 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3551 				/*
3552 				 * Pull nexttbtt forward to reflect
3553 				 * the current TSF.
3554 				 */
3555 				tsf = ath_hal_gettsf64(ah);
3556 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3557 				do {
3558 					nexttbtt += intval;
3559 				} while (nexttbtt < tsftu);
3560 			}
3561 			ath_beaconq_config(sc);
3562 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3563 			/*
3564 			 * In AP mode we enable the beacon timers and
3565 			 * SWBA interrupts to prepare beacon frames.
3566 			 */
3567 			intval |= HAL_BEACON_ENA;
3568 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3569 			ath_beaconq_config(sc);
3570 		}
3571 		ath_hal_beaconinit(ah, nexttbtt, intval);
3572 		sc->sc_bmisscount = 0;
3573 		ath_hal_intrset(ah, sc->sc_imask);
3574 		/*
3575 		 * When using a self-linked beacon descriptor in
3576 		 * ibss mode load it once here.
3577 		 */
3578 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3579 			ath_beacon_start_adhoc(sc, vap);
3580 	}
3581 	sc->sc_syncbeacon = 0;
3582 #undef FUDGE
3583 #undef TSF_TO_TU
3584 }
3585 
3586 static void
3587 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3588 {
3589 	bus_addr_t *paddr = (bus_addr_t*) arg;
3590 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3591 	*paddr = segs->ds_addr;
3592 }
3593 
3594 static int
3595 ath_descdma_setup(struct ath_softc *sc,
3596 	struct ath_descdma *dd, ath_bufhead *head,
3597 	const char *name, int nbuf, int ndesc)
3598 {
3599 #define	DS2PHYS(_dd, _ds) \
3600 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3601 	struct ifnet *ifp = sc->sc_ifp;
3602 	struct ath_desc *ds;
3603 	struct ath_buf *bf;
3604 	int i, bsize, error;
3605 
3606 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3607 	    __func__, name, nbuf, ndesc);
3608 
3609 	dd->dd_name = name;
3610 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3611 
3612 	/*
3613 	 * Setup DMA descriptor area.
3614 	 */
3615 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3616 		       PAGE_SIZE, 0,		/* alignment, bounds */
3617 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3618 		       BUS_SPACE_MAXADDR,	/* highaddr */
3619 		       NULL, NULL,		/* filter, filterarg */
3620 		       dd->dd_desc_len,		/* maxsize */
3621 		       1,			/* nsegments */
3622 		       dd->dd_desc_len,		/* maxsegsize */
3623 		       BUS_DMA_ALLOCNOW,	/* flags */
3624 		       NULL,			/* lockfunc */
3625 		       NULL,			/* lockarg */
3626 		       &dd->dd_dmat);
3627 	if (error != 0) {
3628 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3629 		return error;
3630 	}
3631 
3632 	/* allocate descriptors */
3633 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3634 	if (error != 0) {
3635 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3636 			"error %u\n", dd->dd_name, error);
3637 		goto fail0;
3638 	}
3639 
3640 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3641 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3642 				 &dd->dd_dmamap);
3643 	if (error != 0) {
3644 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3645 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3646 		goto fail1;
3647 	}
3648 
3649 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3650 				dd->dd_desc, dd->dd_desc_len,
3651 				ath_load_cb, &dd->dd_desc_paddr,
3652 				BUS_DMA_NOWAIT);
3653 	if (error != 0) {
3654 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3655 			dd->dd_name, error);
3656 		goto fail2;
3657 	}
3658 
3659 	ds = dd->dd_desc;
3660 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3661 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3662 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3663 
3664 	/* allocate rx buffers */
3665 	bsize = sizeof(struct ath_buf) * nbuf;
3666 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3667 	if (bf == NULL) {
3668 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3669 			dd->dd_name, bsize);
3670 		goto fail3;
3671 	}
3672 	dd->dd_bufptr = bf;
3673 
3674 	STAILQ_INIT(head);
3675 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3676 		bf->bf_desc = ds;
3677 		bf->bf_daddr = DS2PHYS(dd, ds);
3678 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3679 				&bf->bf_dmamap);
3680 		if (error != 0) {
3681 			if_printf(ifp, "unable to create dmamap for %s "
3682 				"buffer %u, error %u\n", dd->dd_name, i, error);
3683 			ath_descdma_cleanup(sc, dd, head);
3684 			return error;
3685 		}
3686 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3687 	}
3688 	return 0;
3689 fail3:
3690 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3691 fail2:
3692 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3693 fail1:
3694 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3695 fail0:
3696 	bus_dma_tag_destroy(dd->dd_dmat);
3697 	memset(dd, 0, sizeof(*dd));
3698 	return error;
3699 #undef DS2PHYS
3700 }
3701 
3702 static void
3703 ath_descdma_cleanup(struct ath_softc *sc,
3704 	struct ath_descdma *dd, ath_bufhead *head)
3705 {
3706 	struct ath_buf *bf;
3707 	struct ieee80211_node *ni;
3708 
3709 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3710 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3711 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3712 	bus_dma_tag_destroy(dd->dd_dmat);
3713 
3714 	STAILQ_FOREACH(bf, head, bf_list) {
3715 		if (bf->bf_m) {
3716 			m_freem(bf->bf_m);
3717 			bf->bf_m = NULL;
3718 		}
3719 		if (bf->bf_dmamap != NULL) {
3720 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3721 			bf->bf_dmamap = NULL;
3722 		}
3723 		ni = bf->bf_node;
3724 		bf->bf_node = NULL;
3725 		if (ni != NULL) {
3726 			/*
3727 			 * Reclaim node reference.
3728 			 */
3729 			ieee80211_free_node(ni);
3730 		}
3731 	}
3732 
3733 	STAILQ_INIT(head);
3734 	free(dd->dd_bufptr, M_ATHDEV);
3735 	memset(dd, 0, sizeof(*dd));
3736 }
3737 
3738 static int
3739 ath_desc_alloc(struct ath_softc *sc)
3740 {
3741 	int error;
3742 
3743 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3744 			"rx", ath_rxbuf, 1);
3745 	if (error != 0)
3746 		return error;
3747 
3748 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3749 			"tx", ath_txbuf, ATH_TXDESC);
3750 	if (error != 0) {
3751 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3752 		return error;
3753 	}
3754 
3755 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3756 			"beacon", ATH_BCBUF, 1);
3757 	if (error != 0) {
3758 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3759 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3760 		return error;
3761 	}
3762 	return 0;
3763 }
3764 
3765 static void
3766 ath_desc_free(struct ath_softc *sc)
3767 {
3768 
3769 	if (sc->sc_bdma.dd_desc_len != 0)
3770 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3771 	if (sc->sc_txdma.dd_desc_len != 0)
3772 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3773 	if (sc->sc_rxdma.dd_desc_len != 0)
3774 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3775 }
3776 
3777 static struct ieee80211_node *
3778 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3779 {
3780 	struct ieee80211com *ic = vap->iv_ic;
3781 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3782 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3783 	struct ath_node *an;
3784 
3785 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3786 	if (an == NULL) {
3787 		/* XXX stat+msg */
3788 		return NULL;
3789 	}
3790 	ath_rate_node_init(sc, an);
3791 
3792 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3793 	return &an->an_node;
3794 }
3795 
3796 static void
3797 ath_node_free(struct ieee80211_node *ni)
3798 {
3799 	struct ieee80211com *ic = ni->ni_ic;
3800         struct ath_softc *sc = ic->ic_ifp->if_softc;
3801 
3802 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3803 
3804 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3805 	sc->sc_node_free(ni);
3806 }
3807 
3808 static void
3809 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3810 {
3811 	struct ieee80211com *ic = ni->ni_ic;
3812 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3813 	struct ath_hal *ah = sc->sc_ah;
3814 
3815 	*rssi = ic->ic_node_getrssi(ni);
3816 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3817 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3818 	else
3819 		*noise = -95;		/* nominally correct */
3820 }
3821 
3822 static int
3823 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3824 {
3825 	struct ath_hal *ah = sc->sc_ah;
3826 	int error;
3827 	struct mbuf *m;
3828 	struct ath_desc *ds;
3829 
3830 	m = bf->bf_m;
3831 	if (m == NULL) {
3832 		/*
3833 		 * NB: by assigning a page to the rx dma buffer we
3834 		 * implicitly satisfy the Atheros requirement that
3835 		 * this buffer be cache-line-aligned and sized to be
3836 		 * multiple of the cache line size.  Not doing this
3837 		 * causes weird stuff to happen (for the 5210 at least).
3838 		 */
3839 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3840 		if (m == NULL) {
3841 			DPRINTF(sc, ATH_DEBUG_ANY,
3842 				"%s: no mbuf/cluster\n", __func__);
3843 			sc->sc_stats.ast_rx_nombuf++;
3844 			return ENOMEM;
3845 		}
3846 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3847 
3848 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3849 					     bf->bf_dmamap, m,
3850 					     bf->bf_segs, &bf->bf_nseg,
3851 					     BUS_DMA_NOWAIT);
3852 		if (error != 0) {
3853 			DPRINTF(sc, ATH_DEBUG_ANY,
3854 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3855 			    __func__, error);
3856 			sc->sc_stats.ast_rx_busdma++;
3857 			m_freem(m);
3858 			return error;
3859 		}
3860 		KASSERT(bf->bf_nseg == 1,
3861 			("multi-segment packet; nseg %u", bf->bf_nseg));
3862 		bf->bf_m = m;
3863 	}
3864 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3865 
3866 	/*
3867 	 * Setup descriptors.  For receive we always terminate
3868 	 * the descriptor list with a self-linked entry so we'll
3869 	 * not get overrun under high load (as can happen with a
3870 	 * 5212 when ANI processing enables PHY error frames).
3871 	 *
3872 	 * To insure the last descriptor is self-linked we create
3873 	 * each descriptor as self-linked and add it to the end.  As
3874 	 * each additional descriptor is added the previous self-linked
3875 	 * entry is ``fixed'' naturally.  This should be safe even
3876 	 * if DMA is happening.  When processing RX interrupts we
3877 	 * never remove/process the last, self-linked, entry on the
3878 	 * descriptor list.  This insures the hardware always has
3879 	 * someplace to write a new frame.
3880 	 */
3881 	ds = bf->bf_desc;
3882 	ds->ds_link = bf->bf_daddr;	/* link to self */
3883 	ds->ds_data = bf->bf_segs[0].ds_addr;
3884 	ath_hal_setuprxdesc(ah, ds
3885 		, m->m_len		/* buffer size */
3886 		, 0
3887 	);
3888 
3889 	if (sc->sc_rxlink != NULL)
3890 		*sc->sc_rxlink = bf->bf_daddr;
3891 	sc->sc_rxlink = &ds->ds_link;
3892 	return 0;
3893 }
3894 
3895 /*
3896  * Extend 15-bit time stamp from rx descriptor to
3897  * a full 64-bit TSF using the specified TSF.
3898  */
3899 static __inline u_int64_t
3900 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3901 {
3902 	if ((tsf & 0x7fff) < rstamp)
3903 		tsf -= 0x8000;
3904 	return ((tsf &~ 0x7fff) | rstamp);
3905 }
3906 
3907 /*
3908  * Intercept management frames to collect beacon rssi data
3909  * and to do ibss merges.
3910  */
3911 static void
3912 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3913 	int subtype, int rssi, int noise, u_int32_t rstamp)
3914 {
3915 	struct ieee80211vap *vap = ni->ni_vap;
3916 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3917 
3918 	/*
3919 	 * Call up first so subsequent work can use information
3920 	 * potentially stored in the node (e.g. for ibss merge).
3921 	 */
3922 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3923 	switch (subtype) {
3924 	case IEEE80211_FC0_SUBTYPE_BEACON:
3925 		/* update rssi statistics for use by the hal */
3926 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3927 		if (sc->sc_syncbeacon &&
3928 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3929 			/*
3930 			 * Resync beacon timers using the tsf of the beacon
3931 			 * frame we just received.
3932 			 */
3933 			ath_beacon_config(sc, vap);
3934 		}
3935 		/* fall thru... */
3936 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3937 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3938 		    vap->iv_state == IEEE80211_S_RUN) {
3939 			u_int64_t tsf = ath_extend_tsf(rstamp,
3940 				ath_hal_gettsf64(sc->sc_ah));
3941 			/*
3942 			 * Handle ibss merge as needed; check the tsf on the
3943 			 * frame before attempting the merge.  The 802.11 spec
3944 			 * says the station should change it's bssid to match
3945 			 * the oldest station with the same ssid, where oldest
3946 			 * is determined by the tsf.  Note that hardware
3947 			 * reconfiguration happens through callback to
3948 			 * ath_newstate as the state machine will go from
3949 			 * RUN -> RUN when this happens.
3950 			 */
3951 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3952 				DPRINTF(sc, ATH_DEBUG_STATE,
3953 				    "ibss merge, rstamp %u tsf %ju "
3954 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3955 				    (uintmax_t)ni->ni_tstamp.tsf);
3956 				(void) ieee80211_ibss_merge(ni);
3957 			}
3958 		}
3959 		break;
3960 	}
3961 }
3962 
3963 /*
3964  * Set the default antenna.
3965  */
3966 static void
3967 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3968 {
3969 	struct ath_hal *ah = sc->sc_ah;
3970 
3971 	/* XXX block beacon interrupts */
3972 	ath_hal_setdefantenna(ah, antenna);
3973 	if (sc->sc_defant != antenna)
3974 		sc->sc_stats.ast_ant_defswitch++;
3975 	sc->sc_defant = antenna;
3976 	sc->sc_rxotherant = 0;
3977 }
3978 
3979 static int
3980 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3981 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3982 {
3983 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3984 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3985 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3986 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3987 	struct ath_softc *sc = ifp->if_softc;
3988 	const HAL_RATE_TABLE *rt;
3989 	uint8_t rix;
3990 
3991 	/*
3992 	 * Discard anything shorter than an ack or cts.
3993 	 */
3994 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
3995 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
3996 			__func__, m->m_pkthdr.len);
3997 		sc->sc_stats.ast_rx_tooshort++;
3998 		return 0;
3999 	}
4000 	rt = sc->sc_currates;
4001 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4002 	rix = rt->rateCodeToIndex[rs->rs_rate];
4003 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
4004 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
4005 #ifdef AH_SUPPORT_AR5416
4006 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
4007 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
4008 		struct ieee80211com *ic = ifp->if_l2com;
4009 
4010 		if ((rs->rs_flags & HAL_RX_2040) == 0)
4011 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
4012 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
4013 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
4014 		else
4015 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
4016 		if ((rs->rs_flags & HAL_RX_GI) == 0)
4017 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
4018 	}
4019 #endif
4020 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
4021 	if (rs->rs_status & HAL_RXERR_CRC)
4022 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
4023 	/* XXX propagate other error flags from descriptor */
4024 	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
4025 	sc->sc_rx_th.wr_antnoise = nf;
4026 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
4027 
4028 	bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
4029 
4030 	return 1;
4031 #undef CHAN_HT
4032 #undef CHAN_HT20
4033 #undef CHAN_HT40U
4034 #undef CHAN_HT40D
4035 }
4036 
4037 static void
4038 ath_handle_micerror(struct ieee80211com *ic,
4039 	struct ieee80211_frame *wh, int keyix)
4040 {
4041 	struct ieee80211_node *ni;
4042 
4043 	/* XXX recheck MIC to deal w/ chips that lie */
4044 	/* XXX discard MIC errors on !data frames */
4045 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
4046 	if (ni != NULL) {
4047 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
4048 		ieee80211_free_node(ni);
4049 	}
4050 }
4051 
4052 static void
4053 ath_rx_proc(void *arg, int npending)
4054 {
4055 #define	PA2DESC(_sc, _pa) \
4056 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4057 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4058 	struct ath_softc *sc = arg;
4059 	struct ath_buf *bf;
4060 	struct ifnet *ifp = sc->sc_ifp;
4061 	struct ieee80211com *ic = ifp->if_l2com;
4062 	struct ath_hal *ah = sc->sc_ah;
4063 	struct ath_desc *ds;
4064 	struct ath_rx_status *rs;
4065 	struct mbuf *m;
4066 	struct ieee80211_node *ni;
4067 	int len, type, ngood;
4068 	u_int phyerr;
4069 	HAL_STATUS status;
4070 	int16_t nf;
4071 	u_int64_t tsf;
4072 
4073 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
4074 	ngood = 0;
4075 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
4076 	sc->sc_stats.ast_rx_noise = nf;
4077 	tsf = ath_hal_gettsf64(ah);
4078 	do {
4079 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
4080 		if (bf == NULL) {		/* NB: shouldn't happen */
4081 			if_printf(ifp, "%s: no buffer!\n", __func__);
4082 			break;
4083 		}
4084 		m = bf->bf_m;
4085 		if (m == NULL) {		/* NB: shouldn't happen */
4086 			/*
4087 			 * If mbuf allocation failed previously there
4088 			 * will be no mbuf; try again to re-populate it.
4089 			 */
4090 			/* XXX make debug msg */
4091 			if_printf(ifp, "%s: no mbuf!\n", __func__);
4092 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4093 			goto rx_next;
4094 		}
4095 		ds = bf->bf_desc;
4096 		if (ds->ds_link == bf->bf_daddr) {
4097 			/* NB: never process the self-linked entry at the end */
4098 			break;
4099 		}
4100 		/* XXX sync descriptor memory */
4101 		/*
4102 		 * Must provide the virtual address of the current
4103 		 * descriptor, the physical address, and the virtual
4104 		 * address of the next descriptor in the h/w chain.
4105 		 * This allows the HAL to look ahead to see if the
4106 		 * hardware is done with a descriptor by checking the
4107 		 * done bit in the following descriptor and the address
4108 		 * of the current descriptor the DMA engine is working
4109 		 * on.  All this is necessary because of our use of
4110 		 * a self-linked list to avoid rx overruns.
4111 		 */
4112 		rs = &bf->bf_status.ds_rxstat;
4113 		status = ath_hal_rxprocdesc(ah, ds,
4114 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4115 #ifdef ATH_DEBUG
4116 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4117 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4118 #endif
4119 		if (status == HAL_EINPROGRESS)
4120 			break;
4121 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4122 		if (rs->rs_status != 0) {
4123 			if (rs->rs_status & HAL_RXERR_CRC)
4124 				sc->sc_stats.ast_rx_crcerr++;
4125 			if (rs->rs_status & HAL_RXERR_FIFO)
4126 				sc->sc_stats.ast_rx_fifoerr++;
4127 			if (rs->rs_status & HAL_RXERR_PHY) {
4128 				sc->sc_stats.ast_rx_phyerr++;
4129 				phyerr = rs->rs_phyerr & 0x1f;
4130 				sc->sc_stats.ast_rx_phy[phyerr]++;
4131 				goto rx_error;	/* NB: don't count in ierrors */
4132 			}
4133 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4134 				/*
4135 				 * Decrypt error.  If the error occurred
4136 				 * because there was no hardware key, then
4137 				 * let the frame through so the upper layers
4138 				 * can process it.  This is necessary for 5210
4139 				 * parts which have no way to setup a ``clear''
4140 				 * key cache entry.
4141 				 *
4142 				 * XXX do key cache faulting
4143 				 */
4144 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4145 					goto rx_accept;
4146 				sc->sc_stats.ast_rx_badcrypt++;
4147 			}
4148 			if (rs->rs_status & HAL_RXERR_MIC) {
4149 				sc->sc_stats.ast_rx_badmic++;
4150 				/*
4151 				 * Do minimal work required to hand off
4152 				 * the 802.11 header for notifcation.
4153 				 */
4154 				/* XXX frag's and qos frames */
4155 				len = rs->rs_datalen;
4156 				if (len >= sizeof (struct ieee80211_frame)) {
4157 					bus_dmamap_sync(sc->sc_dmat,
4158 					    bf->bf_dmamap,
4159 					    BUS_DMASYNC_POSTREAD);
4160 					ath_handle_micerror(ic,
4161 					    mtod(m, struct ieee80211_frame *),
4162 					    sc->sc_splitmic ?
4163 						rs->rs_keyix-32 : rs->rs_keyix);
4164 				}
4165 			}
4166 			ifp->if_ierrors++;
4167 rx_error:
4168 			/*
4169 			 * Cleanup any pending partial frame.
4170 			 */
4171 			if (sc->sc_rxpending != NULL) {
4172 				m_freem(sc->sc_rxpending);
4173 				sc->sc_rxpending = NULL;
4174 			}
4175 			/*
4176 			 * When a tap is present pass error frames
4177 			 * that have been requested.  By default we
4178 			 * pass decrypt+mic errors but others may be
4179 			 * interesting (e.g. crc).
4180 			 */
4181 			if (bpf_peers_present(ifp->if_bpf) &&
4182 			    (rs->rs_status & sc->sc_monpass)) {
4183 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4184 				    BUS_DMASYNC_POSTREAD);
4185 				/* NB: bpf needs the mbuf length setup */
4186 				len = rs->rs_datalen;
4187 				m->m_pkthdr.len = m->m_len = len;
4188 				(void) ath_rx_tap(ifp, m, rs, tsf, nf);
4189 			}
4190 			/* XXX pass MIC errors up for s/w reclaculation */
4191 			goto rx_next;
4192 		}
4193 rx_accept:
4194 		/*
4195 		 * Sync and unmap the frame.  At this point we're
4196 		 * committed to passing the mbuf somewhere so clear
4197 		 * bf_m; this means a new mbuf must be allocated
4198 		 * when the rx descriptor is setup again to receive
4199 		 * another frame.
4200 		 */
4201 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4202 		    BUS_DMASYNC_POSTREAD);
4203 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4204 		bf->bf_m = NULL;
4205 
4206 		len = rs->rs_datalen;
4207 		m->m_len = len;
4208 
4209 		if (rs->rs_more) {
4210 			/*
4211 			 * Frame spans multiple descriptors; save
4212 			 * it for the next completed descriptor, it
4213 			 * will be used to construct a jumbogram.
4214 			 */
4215 			if (sc->sc_rxpending != NULL) {
4216 				/* NB: max frame size is currently 2 clusters */
4217 				sc->sc_stats.ast_rx_toobig++;
4218 				m_freem(sc->sc_rxpending);
4219 			}
4220 			m->m_pkthdr.rcvif = ifp;
4221 			m->m_pkthdr.len = len;
4222 			sc->sc_rxpending = m;
4223 			goto rx_next;
4224 		} else if (sc->sc_rxpending != NULL) {
4225 			/*
4226 			 * This is the second part of a jumbogram,
4227 			 * chain it to the first mbuf, adjust the
4228 			 * frame length, and clear the rxpending state.
4229 			 */
4230 			sc->sc_rxpending->m_next = m;
4231 			sc->sc_rxpending->m_pkthdr.len += len;
4232 			m = sc->sc_rxpending;
4233 			sc->sc_rxpending = NULL;
4234 		} else {
4235 			/*
4236 			 * Normal single-descriptor receive; setup
4237 			 * the rcvif and packet length.
4238 			 */
4239 			m->m_pkthdr.rcvif = ifp;
4240 			m->m_pkthdr.len = len;
4241 		}
4242 
4243 		ifp->if_ipackets++;
4244 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4245 
4246 		if (bpf_peers_present(ifp->if_bpf) &&
4247 		    !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4248 			m_freem(m);		/* XXX reclaim */
4249 			goto rx_next;
4250 		}
4251 
4252 		/*
4253 		 * From this point on we assume the frame is at least
4254 		 * as large as ieee80211_frame_min; verify that.
4255 		 */
4256 		if (len < IEEE80211_MIN_LEN) {
4257 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4258 				__func__, len);
4259 			sc->sc_stats.ast_rx_tooshort++;
4260 			m_freem(m);
4261 			goto rx_next;
4262 		}
4263 
4264 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4265 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4266 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4267 
4268 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4269 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4270 		}
4271 
4272 		m_adj(m, -IEEE80211_CRC_LEN);
4273 
4274 		/*
4275 		 * Locate the node for sender, track state, and then
4276 		 * pass the (referenced) node up to the 802.11 layer
4277 		 * for its use.
4278 		 */
4279 		ni = ieee80211_find_rxnode_withkey(ic,
4280 			mtod(m, const struct ieee80211_frame_min *),
4281 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4282 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4283 		if (ni != NULL) {
4284 			/*
4285 			 * Sending station is known, dispatch directly.
4286 			 */
4287 #ifdef ATH_SUPPORT_TDMA
4288 			sc->sc_tdmars = rs;
4289 #endif
4290 			type = ieee80211_input(ni, m,
4291 			    rs->rs_rssi, nf, rs->rs_tstamp);
4292 			ieee80211_free_node(ni);
4293 			/*
4294 			 * Arrange to update the last rx timestamp only for
4295 			 * frames from our ap when operating in station mode.
4296 			 * This assumes the rx key is always setup when
4297 			 * associated.
4298 			 */
4299 			if (ic->ic_opmode == IEEE80211_M_STA &&
4300 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4301 				ngood++;
4302 		} else {
4303 			type = ieee80211_input_all(ic, m,
4304 			    rs->rs_rssi, nf, rs->rs_tstamp);
4305 		}
4306 		/*
4307 		 * Track rx rssi and do any rx antenna management.
4308 		 */
4309 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4310 		if (sc->sc_diversity) {
4311 			/*
4312 			 * When using fast diversity, change the default rx
4313 			 * antenna if diversity chooses the other antenna 3
4314 			 * times in a row.
4315 			 */
4316 			if (sc->sc_defant != rs->rs_antenna) {
4317 				if (++sc->sc_rxotherant >= 3)
4318 					ath_setdefantenna(sc, rs->rs_antenna);
4319 			} else
4320 				sc->sc_rxotherant = 0;
4321 		}
4322 		if (sc->sc_softled) {
4323 			/*
4324 			 * Blink for any data frame.  Otherwise do a
4325 			 * heartbeat-style blink when idle.  The latter
4326 			 * is mainly for station mode where we depend on
4327 			 * periodic beacon frames to trigger the poll event.
4328 			 */
4329 			if (type == IEEE80211_FC0_TYPE_DATA) {
4330 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4331 				ath_led_event(sc,
4332 				    rt->rateCodeToIndex[rs->rs_rate]);
4333 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4334 				ath_led_event(sc, 0);
4335 		}
4336 rx_next:
4337 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4338 	} while (ath_rxbuf_init(sc, bf) == 0);
4339 
4340 	/* rx signal state monitoring */
4341 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4342 	if (ngood)
4343 		sc->sc_lastrx = tsf;
4344 
4345 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4346 	    !IFQ_IS_EMPTY(&ifp->if_snd))
4347 		ath_start(ifp);
4348 
4349 #undef PA2DESC
4350 }
4351 
4352 static void
4353 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4354 {
4355 	txq->axq_qnum = qnum;
4356 	txq->axq_depth = 0;
4357 	txq->axq_intrcnt = 0;
4358 	txq->axq_link = NULL;
4359 	STAILQ_INIT(&txq->axq_q);
4360 	ATH_TXQ_LOCK_INIT(sc, txq);
4361 	TAILQ_INIT(&txq->axq_stageq);
4362 	txq->axq_curage = 0;
4363 }
4364 
4365 /*
4366  * Setup a h/w transmit queue.
4367  */
4368 static struct ath_txq *
4369 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4370 {
4371 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4372 	struct ath_hal *ah = sc->sc_ah;
4373 	HAL_TXQ_INFO qi;
4374 	int qnum;
4375 
4376 	memset(&qi, 0, sizeof(qi));
4377 	qi.tqi_subtype = subtype;
4378 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4379 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4380 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4381 	/*
4382 	 * Enable interrupts only for EOL and DESC conditions.
4383 	 * We mark tx descriptors to receive a DESC interrupt
4384 	 * when a tx queue gets deep; otherwise waiting for the
4385 	 * EOL to reap descriptors.  Note that this is done to
4386 	 * reduce interrupt load and this only defers reaping
4387 	 * descriptors, never transmitting frames.  Aside from
4388 	 * reducing interrupts this also permits more concurrency.
4389 	 * The only potential downside is if the tx queue backs
4390 	 * up in which case the top half of the kernel may backup
4391 	 * due to a lack of tx descriptors.
4392 	 */
4393 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4394 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4395 	if (qnum == -1) {
4396 		/*
4397 		 * NB: don't print a message, this happens
4398 		 * normally on parts with too few tx queues
4399 		 */
4400 		return NULL;
4401 	}
4402 	if (qnum >= N(sc->sc_txq)) {
4403 		device_printf(sc->sc_dev,
4404 			"hal qnum %u out of range, max %zu!\n",
4405 			qnum, N(sc->sc_txq));
4406 		ath_hal_releasetxqueue(ah, qnum);
4407 		return NULL;
4408 	}
4409 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4410 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4411 		sc->sc_txqsetup |= 1<<qnum;
4412 	}
4413 	return &sc->sc_txq[qnum];
4414 #undef N
4415 }
4416 
4417 /*
4418  * Setup a hardware data transmit queue for the specified
4419  * access control.  The hal may not support all requested
4420  * queues in which case it will return a reference to a
4421  * previously setup queue.  We record the mapping from ac's
4422  * to h/w queues for use by ath_tx_start and also track
4423  * the set of h/w queues being used to optimize work in the
4424  * transmit interrupt handler and related routines.
4425  */
4426 static int
4427 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4428 {
4429 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4430 	struct ath_txq *txq;
4431 
4432 	if (ac >= N(sc->sc_ac2q)) {
4433 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4434 			ac, N(sc->sc_ac2q));
4435 		return 0;
4436 	}
4437 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4438 	if (txq != NULL) {
4439 		sc->sc_ac2q[ac] = txq;
4440 		return 1;
4441 	} else
4442 		return 0;
4443 #undef N
4444 }
4445 
4446 /*
4447  * Update WME parameters for a transmit queue.
4448  */
4449 static int
4450 ath_txq_update(struct ath_softc *sc, int ac)
4451 {
4452 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4453 #define	ATH_TXOP_TO_US(v)		(v<<5)
4454 	struct ifnet *ifp = sc->sc_ifp;
4455 	struct ieee80211com *ic = ifp->if_l2com;
4456 	struct ath_txq *txq = sc->sc_ac2q[ac];
4457 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4458 	struct ath_hal *ah = sc->sc_ah;
4459 	HAL_TXQ_INFO qi;
4460 
4461 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4462 #ifdef ATH_SUPPORT_TDMA
4463 	if (sc->sc_tdma) {
4464 		/*
4465 		 * AIFS is zero so there's no pre-transmit wait.  The
4466 		 * burst time defines the slot duration and is configured
4467 		 * via sysctl.  The QCU is setup to not do post-xmit
4468 		 * back off, lockout all lower-priority QCU's, and fire
4469 		 * off the DMA beacon alert timer which is setup based
4470 		 * on the slot configuration.
4471 		 */
4472 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4473 			      | HAL_TXQ_TXERRINT_ENABLE
4474 			      | HAL_TXQ_TXURNINT_ENABLE
4475 			      | HAL_TXQ_TXEOLINT_ENABLE
4476 			      | HAL_TXQ_DBA_GATED
4477 			      | HAL_TXQ_BACKOFF_DISABLE
4478 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4479 			      ;
4480 		qi.tqi_aifs = 0;
4481 		/* XXX +dbaprep? */
4482 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4483 		qi.tqi_burstTime = qi.tqi_readyTime;
4484 	} else {
4485 #endif
4486 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4487 			      | HAL_TXQ_TXERRINT_ENABLE
4488 			      | HAL_TXQ_TXDESCINT_ENABLE
4489 			      | HAL_TXQ_TXURNINT_ENABLE
4490 			      ;
4491 		qi.tqi_aifs = wmep->wmep_aifsn;
4492 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4493 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4494 		qi.tqi_readyTime = 0;
4495 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4496 #ifdef ATH_SUPPORT_TDMA
4497 	}
4498 #endif
4499 
4500 	DPRINTF(sc, ATH_DEBUG_RESET,
4501 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4502 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4503 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4504 
4505 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4506 		if_printf(ifp, "unable to update hardware queue "
4507 			"parameters for %s traffic!\n",
4508 			ieee80211_wme_acnames[ac]);
4509 		return 0;
4510 	} else {
4511 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4512 		return 1;
4513 	}
4514 #undef ATH_TXOP_TO_US
4515 #undef ATH_EXPONENT_TO_VALUE
4516 }
4517 
4518 /*
4519  * Callback from the 802.11 layer to update WME parameters.
4520  */
4521 static int
4522 ath_wme_update(struct ieee80211com *ic)
4523 {
4524 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4525 
4526 	return !ath_txq_update(sc, WME_AC_BE) ||
4527 	    !ath_txq_update(sc, WME_AC_BK) ||
4528 	    !ath_txq_update(sc, WME_AC_VI) ||
4529 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4530 }
4531 
4532 /*
4533  * Reclaim resources for a setup queue.
4534  */
4535 static void
4536 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4537 {
4538 
4539 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4540 	ATH_TXQ_LOCK_DESTROY(txq);
4541 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4542 }
4543 
4544 /*
4545  * Reclaim all tx queue resources.
4546  */
4547 static void
4548 ath_tx_cleanup(struct ath_softc *sc)
4549 {
4550 	int i;
4551 
4552 	ATH_TXBUF_LOCK_DESTROY(sc);
4553 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4554 		if (ATH_TXQ_SETUP(sc, i))
4555 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4556 }
4557 
4558 /*
4559  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4560  */
4561 static int
4562 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4563 {
4564 	int i;
4565 
4566 	for (i = 0; i < rt->rateCount; i++)
4567 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4568 			return i;
4569 	return 0;		/* NB: lowest rate */
4570 }
4571 
4572 /*
4573  * Reclaim mbuf resources.  For fragmented frames we
4574  * need to claim each frag chained with m_nextpkt.
4575  */
4576 static void
4577 ath_freetx(struct mbuf *m)
4578 {
4579 	struct mbuf *next;
4580 
4581 	do {
4582 		next = m->m_nextpkt;
4583 		m->m_nextpkt = NULL;
4584 		m_freem(m);
4585 	} while ((m = next) != NULL);
4586 }
4587 
4588 static int
4589 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4590 {
4591 	struct mbuf *m;
4592 	int error;
4593 
4594 	/*
4595 	 * Load the DMA map so any coalescing is done.  This
4596 	 * also calculates the number of descriptors we need.
4597 	 */
4598 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4599 				     bf->bf_segs, &bf->bf_nseg,
4600 				     BUS_DMA_NOWAIT);
4601 	if (error == EFBIG) {
4602 		/* XXX packet requires too many descriptors */
4603 		bf->bf_nseg = ATH_TXDESC+1;
4604 	} else if (error != 0) {
4605 		sc->sc_stats.ast_tx_busdma++;
4606 		ath_freetx(m0);
4607 		return error;
4608 	}
4609 	/*
4610 	 * Discard null packets and check for packets that
4611 	 * require too many TX descriptors.  We try to convert
4612 	 * the latter to a cluster.
4613 	 */
4614 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4615 		sc->sc_stats.ast_tx_linear++;
4616 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4617 		if (m == NULL) {
4618 			ath_freetx(m0);
4619 			sc->sc_stats.ast_tx_nombuf++;
4620 			return ENOMEM;
4621 		}
4622 		m0 = m;
4623 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4624 					     bf->bf_segs, &bf->bf_nseg,
4625 					     BUS_DMA_NOWAIT);
4626 		if (error != 0) {
4627 			sc->sc_stats.ast_tx_busdma++;
4628 			ath_freetx(m0);
4629 			return error;
4630 		}
4631 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4632 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4633 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4634 		sc->sc_stats.ast_tx_nodata++;
4635 		ath_freetx(m0);
4636 		return EIO;
4637 	}
4638 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4639 		__func__, m0, m0->m_pkthdr.len);
4640 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4641 	bf->bf_m = m0;
4642 
4643 	return 0;
4644 }
4645 
4646 static void
4647 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4648 {
4649 	struct ath_hal *ah = sc->sc_ah;
4650 	struct ath_desc *ds, *ds0;
4651 	int i;
4652 
4653 	/*
4654 	 * Fillin the remainder of the descriptor info.
4655 	 */
4656 	ds0 = ds = bf->bf_desc;
4657 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4658 		ds->ds_data = bf->bf_segs[i].ds_addr;
4659 		if (i == bf->bf_nseg - 1)
4660 			ds->ds_link = 0;
4661 		else
4662 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4663 		ath_hal_filltxdesc(ah, ds
4664 			, bf->bf_segs[i].ds_len	/* segment length */
4665 			, i == 0		/* first segment */
4666 			, i == bf->bf_nseg - 1	/* last segment */
4667 			, ds0			/* first descriptor */
4668 		);
4669 		DPRINTF(sc, ATH_DEBUG_XMIT,
4670 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4671 			__func__, i, ds->ds_link, ds->ds_data,
4672 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4673 	}
4674 	/*
4675 	 * Insert the frame on the outbound list and pass it on
4676 	 * to the hardware.  Multicast frames buffered for power
4677 	 * save stations and transmit from the CAB queue are stored
4678 	 * on a s/w only queue and loaded on to the CAB queue in
4679 	 * the SWBA handler since frames only go out on DTIM and
4680 	 * to avoid possible races.
4681 	 */
4682 	ATH_TXQ_LOCK(txq);
4683 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4684 	     ("busy status 0x%x", bf->bf_flags));
4685 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4686 #ifdef ATH_SUPPORT_TDMA
4687 		int qbusy;
4688 
4689 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4690 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4691 		if (txq->axq_link == NULL) {
4692 			/*
4693 			 * Be careful writing the address to TXDP.  If
4694 			 * the tx q is enabled then this write will be
4695 			 * ignored.  Normally this is not an issue but
4696 			 * when tdma is in use and the q is beacon gated
4697 			 * this race can occur.  If the q is busy then
4698 			 * defer the work to later--either when another
4699 			 * packet comes along or when we prepare a beacon
4700 			 * frame at SWBA.
4701 			 */
4702 			if (!qbusy) {
4703 				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4704 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4705 				DPRINTF(sc, ATH_DEBUG_XMIT,
4706 				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4707 				    __func__, txq->axq_qnum,
4708 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4709 				    txq->axq_depth);
4710 			} else {
4711 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4712 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4713 				    "%s: Q%u busy, defer enable\n", __func__,
4714 				    txq->axq_qnum);
4715 			}
4716 		} else {
4717 			*txq->axq_link = bf->bf_daddr;
4718 			DPRINTF(sc, ATH_DEBUG_XMIT,
4719 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4720 			    txq->axq_qnum, txq->axq_link,
4721 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4722 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4723 				/*
4724 				 * The q was busy when we previously tried
4725 				 * to write the address of the first buffer
4726 				 * in the chain.  Since it's not busy now
4727 				 * handle this chore.  We are certain the
4728 				 * buffer at the front is the right one since
4729 				 * axq_link is NULL only when the buffer list
4730 				 * is/was empty.
4731 				 */
4732 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4733 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4734 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4735 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4736 				    "%s: Q%u restarted\n", __func__,
4737 				    txq->axq_qnum);
4738 			}
4739 		}
4740 #else
4741 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4742 		if (txq->axq_link == NULL) {
4743 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4744 			DPRINTF(sc, ATH_DEBUG_XMIT,
4745 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4746 			    __func__, txq->axq_qnum,
4747 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4748 			    txq->axq_depth);
4749 		} else {
4750 			*txq->axq_link = bf->bf_daddr;
4751 			DPRINTF(sc, ATH_DEBUG_XMIT,
4752 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4753 			    txq->axq_qnum, txq->axq_link,
4754 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4755 		}
4756 #endif /* ATH_SUPPORT_TDMA */
4757 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4758 		ath_hal_txstart(ah, txq->axq_qnum);
4759 	} else {
4760 		if (txq->axq_link != NULL) {
4761 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4762 			struct ieee80211_frame *wh;
4763 
4764 			/* mark previous frame */
4765 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4766 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4767 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4768 			    BUS_DMASYNC_PREWRITE);
4769 
4770 			/* link descriptor */
4771 			*txq->axq_link = bf->bf_daddr;
4772 		}
4773 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4774 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4775 	}
4776 	ATH_TXQ_UNLOCK(txq);
4777 }
4778 
4779 static int
4780 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4781     struct mbuf *m0)
4782 {
4783 	struct ieee80211vap *vap = ni->ni_vap;
4784 	struct ath_vap *avp = ATH_VAP(vap);
4785 	struct ath_hal *ah = sc->sc_ah;
4786 	struct ifnet *ifp = sc->sc_ifp;
4787 	struct ieee80211com *ic = ifp->if_l2com;
4788 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4789 	int error, iswep, ismcast, isfrag, ismrr;
4790 	int keyix, hdrlen, pktlen, try0;
4791 	u_int8_t rix, txrate, ctsrate;
4792 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4793 	struct ath_desc *ds;
4794 	struct ath_txq *txq;
4795 	struct ieee80211_frame *wh;
4796 	u_int subtype, flags, ctsduration;
4797 	HAL_PKT_TYPE atype;
4798 	const HAL_RATE_TABLE *rt;
4799 	HAL_BOOL shortPreamble;
4800 	struct ath_node *an;
4801 	u_int pri;
4802 
4803 	wh = mtod(m0, struct ieee80211_frame *);
4804 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4805 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4806 	isfrag = m0->m_flags & M_FRAG;
4807 	hdrlen = ieee80211_anyhdrsize(wh);
4808 	/*
4809 	 * Packet length must not include any
4810 	 * pad bytes; deduct them here.
4811 	 */
4812 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4813 
4814 	if (iswep) {
4815 		const struct ieee80211_cipher *cip;
4816 		struct ieee80211_key *k;
4817 
4818 		/*
4819 		 * Construct the 802.11 header+trailer for an encrypted
4820 		 * frame. The only reason this can fail is because of an
4821 		 * unknown or unsupported cipher/key type.
4822 		 */
4823 		k = ieee80211_crypto_encap(ni, m0);
4824 		if (k == NULL) {
4825 			/*
4826 			 * This can happen when the key is yanked after the
4827 			 * frame was queued.  Just discard the frame; the
4828 			 * 802.11 layer counts failures and provides
4829 			 * debugging/diagnostics.
4830 			 */
4831 			ath_freetx(m0);
4832 			return EIO;
4833 		}
4834 		/*
4835 		 * Adjust the packet + header lengths for the crypto
4836 		 * additions and calculate the h/w key index.  When
4837 		 * a s/w mic is done the frame will have had any mic
4838 		 * added to it prior to entry so m0->m_pkthdr.len will
4839 		 * account for it. Otherwise we need to add it to the
4840 		 * packet length.
4841 		 */
4842 		cip = k->wk_cipher;
4843 		hdrlen += cip->ic_header;
4844 		pktlen += cip->ic_header + cip->ic_trailer;
4845 		/* NB: frags always have any TKIP MIC done in s/w */
4846 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4847 			pktlen += cip->ic_miclen;
4848 		keyix = k->wk_keyix;
4849 
4850 		/* packet header may have moved, reset our local pointer */
4851 		wh = mtod(m0, struct ieee80211_frame *);
4852 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4853 		/*
4854 		 * Use station key cache slot, if assigned.
4855 		 */
4856 		keyix = ni->ni_ucastkey.wk_keyix;
4857 		if (keyix == IEEE80211_KEYIX_NONE)
4858 			keyix = HAL_TXKEYIX_INVALID;
4859 	} else
4860 		keyix = HAL_TXKEYIX_INVALID;
4861 
4862 	pktlen += IEEE80211_CRC_LEN;
4863 
4864 	/*
4865 	 * Load the DMA map so any coalescing is done.  This
4866 	 * also calculates the number of descriptors we need.
4867 	 */
4868 	error = ath_tx_dmasetup(sc, bf, m0);
4869 	if (error != 0)
4870 		return error;
4871 	bf->bf_node = ni;			/* NB: held reference */
4872 	m0 = bf->bf_m;				/* NB: may have changed */
4873 	wh = mtod(m0, struct ieee80211_frame *);
4874 
4875 	/* setup descriptors */
4876 	ds = bf->bf_desc;
4877 	rt = sc->sc_currates;
4878 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4879 
4880 	/*
4881 	 * NB: the 802.11 layer marks whether or not we should
4882 	 * use short preamble based on the current mode and
4883 	 * negotiated parameters.
4884 	 */
4885 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4886 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4887 		shortPreamble = AH_TRUE;
4888 		sc->sc_stats.ast_tx_shortpre++;
4889 	} else {
4890 		shortPreamble = AH_FALSE;
4891 	}
4892 
4893 	an = ATH_NODE(ni);
4894 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4895 	ismrr = 0;				/* default no multi-rate retry*/
4896 	pri = M_WME_GETAC(m0);			/* honor classification */
4897 	/* XXX use txparams instead of fixed values */
4898 	/*
4899 	 * Calculate Atheros packet type from IEEE80211 packet header,
4900 	 * setup for rate calculations, and select h/w transmit queue.
4901 	 */
4902 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4903 	case IEEE80211_FC0_TYPE_MGT:
4904 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4905 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4906 			atype = HAL_PKT_TYPE_BEACON;
4907 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4908 			atype = HAL_PKT_TYPE_PROBE_RESP;
4909 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4910 			atype = HAL_PKT_TYPE_ATIM;
4911 		else
4912 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4913 		rix = an->an_mgmtrix;
4914 		txrate = rt->info[rix].rateCode;
4915 		if (shortPreamble)
4916 			txrate |= rt->info[rix].shortPreamble;
4917 		try0 = ATH_TXMGTTRY;
4918 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4919 		break;
4920 	case IEEE80211_FC0_TYPE_CTL:
4921 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4922 		rix = an->an_mgmtrix;
4923 		txrate = rt->info[rix].rateCode;
4924 		if (shortPreamble)
4925 			txrate |= rt->info[rix].shortPreamble;
4926 		try0 = ATH_TXMGTTRY;
4927 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4928 		break;
4929 	case IEEE80211_FC0_TYPE_DATA:
4930 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4931 		/*
4932 		 * Data frames: multicast frames go out at a fixed rate,
4933 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4934 		 * the rate control module for the rate to use.
4935 		 */
4936 		if (ismcast) {
4937 			rix = an->an_mcastrix;
4938 			txrate = rt->info[rix].rateCode;
4939 			if (shortPreamble)
4940 				txrate |= rt->info[rix].shortPreamble;
4941 			try0 = 1;
4942 		} else if (m0->m_flags & M_EAPOL) {
4943 			/* XXX? maybe always use long preamble? */
4944 			rix = an->an_mgmtrix;
4945 			txrate = rt->info[rix].rateCode;
4946 			if (shortPreamble)
4947 				txrate |= rt->info[rix].shortPreamble;
4948 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4949 		} else {
4950 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4951 				&rix, &try0, &txrate);
4952 			sc->sc_txrix = rix;		/* for LED blinking */
4953 			sc->sc_lastdatarix = rix;	/* for fast frames */
4954 			if (try0 != ATH_TXMAXTRY)
4955 				ismrr = 1;
4956 		}
4957 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4958 			flags |= HAL_TXDESC_NOACK;
4959 		break;
4960 	default:
4961 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4962 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4963 		/* XXX statistic */
4964 		ath_freetx(m0);
4965 		return EIO;
4966 	}
4967 	txq = sc->sc_ac2q[pri];
4968 
4969 	/*
4970 	 * When servicing one or more stations in power-save mode
4971 	 * (or) if there is some mcast data waiting on the mcast
4972 	 * queue (to prevent out of order delivery) multicast
4973 	 * frames must be buffered until after the beacon.
4974 	 */
4975 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4976 		txq = &avp->av_mcastq;
4977 
4978 	/*
4979 	 * Calculate miscellaneous flags.
4980 	 */
4981 	if (ismcast) {
4982 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4983 	} else if (pktlen > vap->iv_rtsthreshold &&
4984 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4985 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4986 		cix = rt->info[rix].controlRate;
4987 		sc->sc_stats.ast_tx_rts++;
4988 	}
4989 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4990 		sc->sc_stats.ast_tx_noack++;
4991 #ifdef ATH_SUPPORT_TDMA
4992 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4993 		DPRINTF(sc, ATH_DEBUG_TDMA,
4994 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4995 		sc->sc_stats.ast_tdma_ack++;
4996 		ath_freetx(m0);
4997 		return EIO;
4998 	}
4999 #endif
5000 
5001 	/*
5002 	 * If 802.11g protection is enabled, determine whether
5003 	 * to use RTS/CTS or just CTS.  Note that this is only
5004 	 * done for OFDM unicast frames.
5005 	 */
5006 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
5007 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
5008 	    (flags & HAL_TXDESC_NOACK) == 0) {
5009 		/* XXX fragments must use CCK rates w/ protection */
5010 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
5011 			flags |= HAL_TXDESC_RTSENA;
5012 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
5013 			flags |= HAL_TXDESC_CTSENA;
5014 		if (isfrag) {
5015 			/*
5016 			 * For frags it would be desirable to use the
5017 			 * highest CCK rate for RTS/CTS.  But stations
5018 			 * farther away may detect it at a lower CCK rate
5019 			 * so use the configured protection rate instead
5020 			 * (for now).
5021 			 */
5022 			cix = rt->info[sc->sc_protrix].controlRate;
5023 		} else
5024 			cix = rt->info[sc->sc_protrix].controlRate;
5025 		sc->sc_stats.ast_tx_protect++;
5026 	}
5027 
5028 	/*
5029 	 * Calculate duration.  This logically belongs in the 802.11
5030 	 * layer but it lacks sufficient information to calculate it.
5031 	 */
5032 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
5033 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
5034 		u_int16_t dur;
5035 		if (shortPreamble)
5036 			dur = rt->info[rix].spAckDuration;
5037 		else
5038 			dur = rt->info[rix].lpAckDuration;
5039 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
5040 			dur += dur;		/* additional SIFS+ACK */
5041 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
5042 			/*
5043 			 * Include the size of next fragment so NAV is
5044 			 * updated properly.  The last fragment uses only
5045 			 * the ACK duration
5046 			 */
5047 			dur += ath_hal_computetxtime(ah, rt,
5048 					m0->m_nextpkt->m_pkthdr.len,
5049 					rix, shortPreamble);
5050 		}
5051 		if (isfrag) {
5052 			/*
5053 			 * Force hardware to use computed duration for next
5054 			 * fragment by disabling multi-rate retry which updates
5055 			 * duration based on the multi-rate duration table.
5056 			 */
5057 			ismrr = 0;
5058 			try0 = ATH_TXMGTTRY;	/* XXX? */
5059 		}
5060 		*(u_int16_t *)wh->i_dur = htole16(dur);
5061 	}
5062 
5063 	/*
5064 	 * Calculate RTS/CTS rate and duration if needed.
5065 	 */
5066 	ctsduration = 0;
5067 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
5068 		/*
5069 		 * CTS transmit rate is derived from the transmit rate
5070 		 * by looking in the h/w rate table.  We must also factor
5071 		 * in whether or not a short preamble is to be used.
5072 		 */
5073 		/* NB: cix is set above where RTS/CTS is enabled */
5074 		KASSERT(cix != 0xff, ("cix not setup"));
5075 		ctsrate = rt->info[cix].rateCode;
5076 		/*
5077 		 * Compute the transmit duration based on the frame
5078 		 * size and the size of an ACK frame.  We call into the
5079 		 * HAL to do the computation since it depends on the
5080 		 * characteristics of the actual PHY being used.
5081 		 *
5082 		 * NB: CTS is assumed the same size as an ACK so we can
5083 		 *     use the precalculated ACK durations.
5084 		 */
5085 		if (shortPreamble) {
5086 			ctsrate |= rt->info[cix].shortPreamble;
5087 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5088 				ctsduration += rt->info[cix].spAckDuration;
5089 			ctsduration += ath_hal_computetxtime(ah,
5090 				rt, pktlen, rix, AH_TRUE);
5091 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5092 				ctsduration += rt->info[rix].spAckDuration;
5093 		} else {
5094 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5095 				ctsduration += rt->info[cix].lpAckDuration;
5096 			ctsduration += ath_hal_computetxtime(ah,
5097 				rt, pktlen, rix, AH_FALSE);
5098 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5099 				ctsduration += rt->info[rix].lpAckDuration;
5100 		}
5101 		/*
5102 		 * Must disable multi-rate retry when using RTS/CTS.
5103 		 */
5104 		ismrr = 0;
5105 		try0 = ATH_TXMGTTRY;		/* XXX */
5106 	} else
5107 		ctsrate = 0;
5108 
5109 	/*
5110 	 * At this point we are committed to sending the frame
5111 	 * and we don't need to look at m_nextpkt; clear it in
5112 	 * case this frame is part of frag chain.
5113 	 */
5114 	m0->m_nextpkt = NULL;
5115 
5116 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
5117 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
5118 			sc->sc_hwmap[rix].ieeerate, -1);
5119 
5120 	if (bpf_peers_present(ifp->if_bpf)) {
5121 		u_int64_t tsf = ath_hal_gettsf64(ah);
5122 
5123 		sc->sc_tx_th.wt_tsf = htole64(tsf);
5124 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
5125 		if (iswep)
5126 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
5127 		if (isfrag)
5128 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
5129 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
5130 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
5131 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
5132 
5133 		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
5134 	}
5135 
5136 	/*
5137 	 * Determine if a tx interrupt should be generated for
5138 	 * this descriptor.  We take a tx interrupt to reap
5139 	 * descriptors when the h/w hits an EOL condition or
5140 	 * when the descriptor is specifically marked to generate
5141 	 * an interrupt.  We periodically mark descriptors in this
5142 	 * way to insure timely replenishing of the supply needed
5143 	 * for sending frames.  Defering interrupts reduces system
5144 	 * load and potentially allows more concurrent work to be
5145 	 * done but if done to aggressively can cause senders to
5146 	 * backup.
5147 	 *
5148 	 * NB: use >= to deal with sc_txintrperiod changing
5149 	 *     dynamically through sysctl.
5150 	 */
5151 	if (flags & HAL_TXDESC_INTREQ) {
5152 		txq->axq_intrcnt = 0;
5153 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
5154 		flags |= HAL_TXDESC_INTREQ;
5155 		txq->axq_intrcnt = 0;
5156 	}
5157 
5158 	/*
5159 	 * Formulate first tx descriptor with tx controls.
5160 	 */
5161 	/* XXX check return value? */
5162 	ath_hal_setuptxdesc(ah, ds
5163 		, pktlen		/* packet length */
5164 		, hdrlen		/* header length */
5165 		, atype			/* Atheros packet type */
5166 		, ni->ni_txpower	/* txpower */
5167 		, txrate, try0		/* series 0 rate/tries */
5168 		, keyix			/* key cache index */
5169 		, sc->sc_txantenna	/* antenna mode */
5170 		, flags			/* flags */
5171 		, ctsrate		/* rts/cts rate */
5172 		, ctsduration		/* rts/cts duration */
5173 	);
5174 	bf->bf_txflags = flags;
5175 	/*
5176 	 * Setup the multi-rate retry state only when we're
5177 	 * going to use it.  This assumes ath_hal_setuptxdesc
5178 	 * initializes the descriptors (so we don't have to)
5179 	 * when the hardware supports multi-rate retry and
5180 	 * we don't use it.
5181 	 */
5182 	if (ismrr)
5183 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
5184 
5185 	ath_tx_handoff(sc, txq, bf);
5186 	return 0;
5187 }
5188 
5189 /*
5190  * Process completed xmit descriptors from the specified queue.
5191  */
5192 static int
5193 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
5194 {
5195 	struct ath_hal *ah = sc->sc_ah;
5196 	struct ifnet *ifp = sc->sc_ifp;
5197 	struct ieee80211com *ic = ifp->if_l2com;
5198 	struct ath_buf *bf, *last;
5199 	struct ath_desc *ds, *ds0;
5200 	struct ath_tx_status *ts;
5201 	struct ieee80211_node *ni;
5202 	struct ath_node *an;
5203 	int sr, lr, pri, nacked;
5204 	HAL_STATUS status;
5205 
5206 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
5207 		__func__, txq->axq_qnum,
5208 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
5209 		txq->axq_link);
5210 	nacked = 0;
5211 	for (;;) {
5212 		ATH_TXQ_LOCK(txq);
5213 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
5214 		bf = STAILQ_FIRST(&txq->axq_q);
5215 		if (bf == NULL) {
5216 			ATH_TXQ_UNLOCK(txq);
5217 			break;
5218 		}
5219 		ds0 = &bf->bf_desc[0];
5220 		ds = &bf->bf_desc[bf->bf_nseg - 1];
5221 		ts = &bf->bf_status.ds_txstat;
5222 		status = ath_hal_txprocdesc(ah, ds, ts);
5223 #ifdef ATH_DEBUG
5224 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
5225 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
5226 			    status == HAL_OK);
5227 #endif
5228 		if (status == HAL_EINPROGRESS) {
5229 			ATH_TXQ_UNLOCK(txq);
5230 			break;
5231 		}
5232 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5233 #ifdef ATH_SUPPORT_TDMA
5234 		if (txq->axq_depth > 0) {
5235 			/*
5236 			 * More frames follow.  Mark the buffer busy
5237 			 * so it's not re-used while the hardware may
5238 			 * still re-read the link field in the descriptor.
5239 			 */
5240 			bf->bf_flags |= ATH_BUF_BUSY;
5241 		} else
5242 #else
5243 		if (txq->axq_depth == 0)
5244 #endif
5245 			txq->axq_link = NULL;
5246 		ATH_TXQ_UNLOCK(txq);
5247 
5248 		ni = bf->bf_node;
5249 		if (ni != NULL) {
5250 			an = ATH_NODE(ni);
5251 			if (ts->ts_status == 0) {
5252 				u_int8_t txant = ts->ts_antenna;
5253 				sc->sc_stats.ast_ant_tx[txant]++;
5254 				sc->sc_ant_tx[txant]++;
5255 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
5256 					sc->sc_stats.ast_tx_altrate++;
5257 				pri = M_WME_GETAC(bf->bf_m);
5258 				if (pri >= WME_AC_VO)
5259 					ic->ic_wme.wme_hipri_traffic++;
5260 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
5261 					ni->ni_inact = ni->ni_inact_reload;
5262 			} else {
5263 				if (ts->ts_status & HAL_TXERR_XRETRY)
5264 					sc->sc_stats.ast_tx_xretries++;
5265 				if (ts->ts_status & HAL_TXERR_FIFO)
5266 					sc->sc_stats.ast_tx_fifoerr++;
5267 				if (ts->ts_status & HAL_TXERR_FILT)
5268 					sc->sc_stats.ast_tx_filtered++;
5269 				if (bf->bf_m->m_flags & M_FF)
5270 					sc->sc_stats.ast_ff_txerr++;
5271 			}
5272 			sr = ts->ts_shortretry;
5273 			lr = ts->ts_longretry;
5274 			sc->sc_stats.ast_tx_shortretry += sr;
5275 			sc->sc_stats.ast_tx_longretry += lr;
5276 			/*
5277 			 * Hand the descriptor to the rate control algorithm.
5278 			 */
5279 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
5280 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
5281 				/*
5282 				 * If frame was ack'd update statistics,
5283 				 * including the last rx time used to
5284 				 * workaround phantom bmiss interrupts.
5285 				 */
5286 				if (ts->ts_status == 0) {
5287 					nacked++;
5288 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5289 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5290 						ts->ts_rssi);
5291 				}
5292 				ath_rate_tx_complete(sc, an, bf);
5293 			}
5294 			/*
5295 			 * Do any tx complete callback.  Note this must
5296 			 * be done before releasing the node reference.
5297 			 */
5298 			if (bf->bf_m->m_flags & M_TXCB)
5299 				ieee80211_process_callback(ni, bf->bf_m,
5300 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5301 				        ts->ts_status : HAL_TXERR_XRETRY);
5302 			/*
5303 			 * Reclaim reference to node.
5304 			 *
5305 			 * NB: the node may be reclaimed here if, for example
5306 			 *     this is a DEAUTH message that was sent and the
5307 			 *     node was timed out due to inactivity.
5308 			 */
5309 			ieee80211_free_node(ni);
5310 		}
5311 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5312 		    BUS_DMASYNC_POSTWRITE);
5313 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5314 
5315 		m_freem(bf->bf_m);
5316 		bf->bf_m = NULL;
5317 		bf->bf_node = NULL;
5318 
5319 		ATH_TXBUF_LOCK(sc);
5320 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5321 		if (last != NULL)
5322 			last->bf_flags &= ~ATH_BUF_BUSY;
5323 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5324 		ATH_TXBUF_UNLOCK(sc);
5325 	}
5326 	/*
5327 	 * Flush fast-frame staging queue when traffic slows.
5328 	 */
5329 	if (txq->axq_depth <= 1)
5330 		ath_ff_stageq_flush(sc, txq, ath_ff_always);
5331 	return nacked;
5332 }
5333 
5334 static __inline int
5335 txqactive(struct ath_hal *ah, int qnum)
5336 {
5337 	u_int32_t txqs = 1<<qnum;
5338 	ath_hal_gettxintrtxqs(ah, &txqs);
5339 	return (txqs & (1<<qnum));
5340 }
5341 
5342 /*
5343  * Deferred processing of transmit interrupt; special-cased
5344  * for a single hardware transmit queue (e.g. 5210 and 5211).
5345  */
5346 static void
5347 ath_tx_proc_q0(void *arg, int npending)
5348 {
5349 	struct ath_softc *sc = arg;
5350 	struct ifnet *ifp = sc->sc_ifp;
5351 
5352 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5353 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5354 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5355 		ath_tx_processq(sc, sc->sc_cabq);
5356 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5357 	sc->sc_wd_timer = 0;
5358 
5359 	if (sc->sc_softled)
5360 		ath_led_event(sc, sc->sc_txrix);
5361 
5362 	ath_start(ifp);
5363 }
5364 
5365 /*
5366  * Deferred processing of transmit interrupt; special-cased
5367  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5368  */
5369 static void
5370 ath_tx_proc_q0123(void *arg, int npending)
5371 {
5372 	struct ath_softc *sc = arg;
5373 	struct ifnet *ifp = sc->sc_ifp;
5374 	int nacked;
5375 
5376 	/*
5377 	 * Process each active queue.
5378 	 */
5379 	nacked = 0;
5380 	if (txqactive(sc->sc_ah, 0))
5381 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5382 	if (txqactive(sc->sc_ah, 1))
5383 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5384 	if (txqactive(sc->sc_ah, 2))
5385 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5386 	if (txqactive(sc->sc_ah, 3))
5387 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5388 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5389 		ath_tx_processq(sc, sc->sc_cabq);
5390 	if (nacked)
5391 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5392 
5393 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5394 	sc->sc_wd_timer = 0;
5395 
5396 	if (sc->sc_softled)
5397 		ath_led_event(sc, sc->sc_txrix);
5398 
5399 	ath_start(ifp);
5400 }
5401 
5402 /*
5403  * Deferred processing of transmit interrupt.
5404  */
5405 static void
5406 ath_tx_proc(void *arg, int npending)
5407 {
5408 	struct ath_softc *sc = arg;
5409 	struct ifnet *ifp = sc->sc_ifp;
5410 	int i, nacked;
5411 
5412 	/*
5413 	 * Process each active queue.
5414 	 */
5415 	nacked = 0;
5416 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5417 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5418 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5419 	if (nacked)
5420 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5421 
5422 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5423 	sc->sc_wd_timer = 0;
5424 
5425 	if (sc->sc_softled)
5426 		ath_led_event(sc, sc->sc_txrix);
5427 
5428 	ath_start(ifp);
5429 }
5430 
5431 static void
5432 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5433 {
5434 #ifdef ATH_DEBUG
5435 	struct ath_hal *ah = sc->sc_ah;
5436 #endif
5437 	struct ieee80211_node *ni;
5438 	struct ath_buf *bf;
5439 	u_int ix;
5440 
5441 	/*
5442 	 * NB: this assumes output has been stopped and
5443 	 *     we do not need to block ath_tx_proc
5444 	 */
5445 	ATH_TXBUF_LOCK(sc);
5446 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5447 	if (bf != NULL)
5448 		bf->bf_flags &= ~ATH_BUF_BUSY;
5449 	ATH_TXBUF_UNLOCK(sc);
5450 	for (ix = 0;; ix++) {
5451 		ATH_TXQ_LOCK(txq);
5452 		bf = STAILQ_FIRST(&txq->axq_q);
5453 		if (bf == NULL) {
5454 			txq->axq_link = NULL;
5455 			ATH_TXQ_UNLOCK(txq);
5456 			break;
5457 		}
5458 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5459 		ATH_TXQ_UNLOCK(txq);
5460 #ifdef ATH_DEBUG
5461 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5462 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5463 
5464 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5465 				ath_hal_txprocdesc(ah, bf->bf_desc,
5466 				    &bf->bf_status.ds_txstat) == HAL_OK);
5467 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5468 				bf->bf_m->m_len, 0, -1);
5469 		}
5470 #endif /* ATH_DEBUG */
5471 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5472 		ni = bf->bf_node;
5473 		bf->bf_node = NULL;
5474 		if (ni != NULL) {
5475 			/*
5476 			 * Do any callback and reclaim the node reference.
5477 			 */
5478 			if (bf->bf_m->m_flags & M_TXCB)
5479 				ieee80211_process_callback(ni, bf->bf_m, -1);
5480 			ieee80211_free_node(ni);
5481 		}
5482 		m_freem(bf->bf_m);
5483 		bf->bf_m = NULL;
5484 		bf->bf_flags &= ~ATH_BUF_BUSY;
5485 
5486 		ATH_TXBUF_LOCK(sc);
5487 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5488 		ATH_TXBUF_UNLOCK(sc);
5489 	}
5490 }
5491 
5492 static void
5493 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5494 {
5495 	struct ath_hal *ah = sc->sc_ah;
5496 
5497 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5498 	    __func__, txq->axq_qnum,
5499 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5500 	    txq->axq_link);
5501 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5502 }
5503 
5504 /*
5505  * Drain the transmit queues and reclaim resources.
5506  */
5507 static void
5508 ath_draintxq(struct ath_softc *sc)
5509 {
5510 	struct ath_hal *ah = sc->sc_ah;
5511 	struct ifnet *ifp = sc->sc_ifp;
5512 	int i;
5513 
5514 	/* XXX return value */
5515 	if (!sc->sc_invalid) {
5516 		/* don't touch the hardware if marked invalid */
5517 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5518 		    __func__, sc->sc_bhalq,
5519 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5520 		    NULL);
5521 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5522 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5523 			if (ATH_TXQ_SETUP(sc, i))
5524 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5525 	}
5526 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5527 		if (ATH_TXQ_SETUP(sc, i))
5528 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5529 #ifdef ATH_DEBUG
5530 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5531 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5532 		if (bf != NULL && bf->bf_m != NULL) {
5533 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5534 				ath_hal_txprocdesc(ah, bf->bf_desc,
5535 				    &bf->bf_status.ds_txstat) == HAL_OK);
5536 			ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5537 				bf->bf_m->m_len, 0, -1);
5538 		}
5539 	}
5540 #endif /* ATH_DEBUG */
5541 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5542 	sc->sc_wd_timer = 0;
5543 }
5544 
5545 /*
5546  * Disable the receive h/w in preparation for a reset.
5547  */
5548 static void
5549 ath_stoprecv(struct ath_softc *sc)
5550 {
5551 #define	PA2DESC(_sc, _pa) \
5552 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5553 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5554 	struct ath_hal *ah = sc->sc_ah;
5555 
5556 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5557 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5558 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5559 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5560 #ifdef ATH_DEBUG
5561 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5562 		struct ath_buf *bf;
5563 		u_int ix;
5564 
5565 		printf("%s: rx queue %p, link %p\n", __func__,
5566 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5567 		ix = 0;
5568 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5569 			struct ath_desc *ds = bf->bf_desc;
5570 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5571 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5572 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5573 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5574 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5575 			ix++;
5576 		}
5577 	}
5578 #endif
5579 	if (sc->sc_rxpending != NULL) {
5580 		m_freem(sc->sc_rxpending);
5581 		sc->sc_rxpending = NULL;
5582 	}
5583 	sc->sc_rxlink = NULL;		/* just in case */
5584 #undef PA2DESC
5585 }
5586 
5587 /*
5588  * Enable the receive h/w following a reset.
5589  */
5590 static int
5591 ath_startrecv(struct ath_softc *sc)
5592 {
5593 	struct ath_hal *ah = sc->sc_ah;
5594 	struct ath_buf *bf;
5595 
5596 	sc->sc_rxlink = NULL;
5597 	sc->sc_rxpending = NULL;
5598 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5599 		int error = ath_rxbuf_init(sc, bf);
5600 		if (error != 0) {
5601 			DPRINTF(sc, ATH_DEBUG_RECV,
5602 				"%s: ath_rxbuf_init failed %d\n",
5603 				__func__, error);
5604 			return error;
5605 		}
5606 	}
5607 
5608 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5609 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5610 	ath_hal_rxena(ah);		/* enable recv descriptors */
5611 	ath_mode_init(sc);		/* set filters, etc. */
5612 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5613 	return 0;
5614 }
5615 
5616 /*
5617  * Update internal state after a channel change.
5618  */
5619 static void
5620 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5621 {
5622 	enum ieee80211_phymode mode;
5623 
5624 	/*
5625 	 * Change channels and update the h/w rate map
5626 	 * if we're switching; e.g. 11a to 11b/g.
5627 	 */
5628 	mode = ieee80211_chan2mode(chan);
5629 	if (mode != sc->sc_curmode)
5630 		ath_setcurmode(sc, mode);
5631 	sc->sc_curchan = chan;
5632 
5633 	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5634 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5635 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5636 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5637 	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5638 	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5639 	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5640 	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5641 }
5642 
5643 /*
5644  * Set/change channels.  If the channel is really being changed,
5645  * it's done by reseting the chip.  To accomplish this we must
5646  * first cleanup any pending DMA, then restart stuff after a la
5647  * ath_init.
5648  */
5649 static int
5650 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5651 {
5652 	struct ifnet *ifp = sc->sc_ifp;
5653 	struct ieee80211com *ic = ifp->if_l2com;
5654 	struct ath_hal *ah = sc->sc_ah;
5655 
5656 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5657 	    __func__, ieee80211_chan2ieee(ic, chan),
5658 	    chan->ic_freq, chan->ic_flags);
5659 	if (chan != sc->sc_curchan) {
5660 		HAL_STATUS status;
5661 		/*
5662 		 * To switch channels clear any pending DMA operations;
5663 		 * wait long enough for the RX fifo to drain, reset the
5664 		 * hardware at the new frequency, and then re-enable
5665 		 * the relevant bits of the h/w.
5666 		 */
5667 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5668 		ath_draintxq(sc);		/* clear pending tx frames */
5669 		ath_stoprecv(sc);		/* turn off frame recv */
5670 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5671 			if_printf(ifp, "%s: unable to reset "
5672 			    "channel %u (%u Mhz, flags 0x%x), hal status %u\n",
5673 			    __func__, ieee80211_chan2ieee(ic, chan),
5674 			    chan->ic_freq, chan->ic_flags, status);
5675 			return EIO;
5676 		}
5677 		sc->sc_diversity = ath_hal_getdiversity(ah);
5678 
5679 		/*
5680 		 * Re-enable rx framework.
5681 		 */
5682 		if (ath_startrecv(sc) != 0) {
5683 			if_printf(ifp, "%s: unable to restart recv logic\n",
5684 			    __func__);
5685 			return EIO;
5686 		}
5687 
5688 		/*
5689 		 * Change channels and update the h/w rate map
5690 		 * if we're switching; e.g. 11a to 11b/g.
5691 		 */
5692 		ath_chan_change(sc, chan);
5693 
5694 		/*
5695 		 * Re-enable interrupts.
5696 		 */
5697 		ath_hal_intrset(ah, sc->sc_imask);
5698 	}
5699 	return 0;
5700 }
5701 
5702 /*
5703  * Periodically recalibrate the PHY to account
5704  * for temperature/environment changes.
5705  */
5706 static void
5707 ath_calibrate(void *arg)
5708 {
5709 	struct ath_softc *sc = arg;
5710 	struct ath_hal *ah = sc->sc_ah;
5711 	struct ifnet *ifp = sc->sc_ifp;
5712 	struct ieee80211com *ic = ifp->if_l2com;
5713 	HAL_BOOL longCal, isCalDone;
5714 	int nextcal;
5715 
5716 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5717 		goto restart;
5718 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5719 	if (longCal) {
5720 		sc->sc_stats.ast_per_cal++;
5721 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5722 			/*
5723 			 * Rfgain is out of bounds, reset the chip
5724 			 * to load new gain values.
5725 			 */
5726 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5727 				"%s: rfgain change\n", __func__);
5728 			sc->sc_stats.ast_per_rfgain++;
5729 			ath_reset(ifp);
5730 		}
5731 		/*
5732 		 * If this long cal is after an idle period, then
5733 		 * reset the data collection state so we start fresh.
5734 		 */
5735 		if (sc->sc_resetcal) {
5736 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5737 			sc->sc_lastcalreset = ticks;
5738 			sc->sc_resetcal = 0;
5739 		}
5740 	}
5741 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5742 		if (longCal) {
5743 			/*
5744 			 * Calibrate noise floor data again in case of change.
5745 			 */
5746 			ath_hal_process_noisefloor(ah);
5747 		}
5748 	} else {
5749 		DPRINTF(sc, ATH_DEBUG_ANY,
5750 			"%s: calibration of channel %u failed\n",
5751 			__func__, sc->sc_curchan->ic_freq);
5752 		sc->sc_stats.ast_per_calfail++;
5753 	}
5754 	if (!isCalDone) {
5755 restart:
5756 		/*
5757 		 * Use a shorter interval to potentially collect multiple
5758 		 * data samples required to complete calibration.  Once
5759 		 * we're told the work is done we drop back to a longer
5760 		 * interval between requests.  We're more aggressive doing
5761 		 * work when operating as an AP to improve operation right
5762 		 * after startup.
5763 		 */
5764 		nextcal = (1000*ath_shortcalinterval)/hz;
5765 		if (sc->sc_opmode != HAL_M_HOSTAP)
5766 			nextcal *= 10;
5767 	} else {
5768 		nextcal = ath_longcalinterval*hz;
5769 		sc->sc_lastlongcal = ticks;
5770 		if (sc->sc_lastcalreset == 0)
5771 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5772 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5773 			sc->sc_resetcal = 1;	/* setup reset next trip */
5774 	}
5775 
5776 	if (nextcal != 0) {
5777 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5778 		    __func__, nextcal, isCalDone ? "" : "!");
5779 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5780 	} else {
5781 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5782 		    __func__);
5783 		/* NB: don't rearm timer */
5784 	}
5785 }
5786 
5787 static void
5788 ath_scan_start(struct ieee80211com *ic)
5789 {
5790 	struct ifnet *ifp = ic->ic_ifp;
5791 	struct ath_softc *sc = ifp->if_softc;
5792 	struct ath_hal *ah = sc->sc_ah;
5793 	u_int32_t rfilt;
5794 
5795 	/* XXX calibration timer? */
5796 
5797 	sc->sc_scanning = 1;
5798 	sc->sc_syncbeacon = 0;
5799 	rfilt = ath_calcrxfilter(sc);
5800 	ath_hal_setrxfilter(ah, rfilt);
5801 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5802 
5803 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5804 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5805 }
5806 
5807 static void
5808 ath_scan_end(struct ieee80211com *ic)
5809 {
5810 	struct ifnet *ifp = ic->ic_ifp;
5811 	struct ath_softc *sc = ifp->if_softc;
5812 	struct ath_hal *ah = sc->sc_ah;
5813 	u_int32_t rfilt;
5814 
5815 	sc->sc_scanning = 0;
5816 	rfilt = ath_calcrxfilter(sc);
5817 	ath_hal_setrxfilter(ah, rfilt);
5818 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5819 
5820 	ath_hal_process_noisefloor(ah);
5821 
5822 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5823 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5824 		 sc->sc_curaid);
5825 }
5826 
5827 static void
5828 ath_set_channel(struct ieee80211com *ic)
5829 {
5830 	struct ifnet *ifp = ic->ic_ifp;
5831 	struct ath_softc *sc = ifp->if_softc;
5832 
5833 	(void) ath_chan_set(sc, ic->ic_curchan);
5834 	/*
5835 	 * If we are returning to our bss channel then mark state
5836 	 * so the next recv'd beacon's tsf will be used to sync the
5837 	 * beacon timers.  Note that since we only hear beacons in
5838 	 * sta/ibss mode this has no effect in other operating modes.
5839 	 */
5840 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5841 		sc->sc_syncbeacon = 1;
5842 }
5843 
5844 /*
5845  * Walk the vap list and check if there any vap's in RUN state.
5846  */
5847 static int
5848 ath_isanyrunningvaps(struct ieee80211vap *this)
5849 {
5850 	struct ieee80211com *ic = this->iv_ic;
5851 	struct ieee80211vap *vap;
5852 
5853 	IEEE80211_LOCK_ASSERT(ic);
5854 
5855 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5856 		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5857 			return 1;
5858 	}
5859 	return 0;
5860 }
5861 
5862 static int
5863 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5864 {
5865 	struct ieee80211com *ic = vap->iv_ic;
5866 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5867 	struct ath_vap *avp = ATH_VAP(vap);
5868 	struct ath_hal *ah = sc->sc_ah;
5869 	struct ieee80211_node *ni = NULL;
5870 	int i, error, stamode;
5871 	u_int32_t rfilt;
5872 	static const HAL_LED_STATE leds[] = {
5873 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5874 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5875 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5876 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5877 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5878 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5879 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5880 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5881 	};
5882 
5883 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5884 		ieee80211_state_name[vap->iv_state],
5885 		ieee80211_state_name[nstate]);
5886 
5887 	callout_drain(&sc->sc_cal_ch);
5888 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5889 
5890 	if (nstate == IEEE80211_S_SCAN) {
5891 		/*
5892 		 * Scanning: turn off beacon miss and don't beacon.
5893 		 * Mark beacon state so when we reach RUN state we'll
5894 		 * [re]setup beacons.  Unblock the task q thread so
5895 		 * deferred interrupt processing is done.
5896 		 */
5897 		ath_hal_intrset(ah,
5898 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5899 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5900 		sc->sc_beacons = 0;
5901 		taskqueue_unblock(sc->sc_tq);
5902 	}
5903 
5904 	ni = vap->iv_bss;
5905 	rfilt = ath_calcrxfilter(sc);
5906 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5907 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5908 		   vap->iv_opmode == IEEE80211_M_IBSS);
5909 	if (stamode && nstate == IEEE80211_S_RUN) {
5910 		sc->sc_curaid = ni->ni_associd;
5911 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5912 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5913 	}
5914 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5915 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5916 	ath_hal_setrxfilter(ah, rfilt);
5917 
5918 	/* XXX is this to restore keycache on resume? */
5919 	if (vap->iv_opmode != IEEE80211_M_STA &&
5920 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5921 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5922 			if (ath_hal_keyisvalid(ah, i))
5923 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5924 	}
5925 
5926 	/*
5927 	 * Invoke the parent method to do net80211 work.
5928 	 */
5929 	error = avp->av_newstate(vap, nstate, arg);
5930 	if (error != 0)
5931 		goto bad;
5932 
5933 	if (nstate == IEEE80211_S_RUN) {
5934 		/* NB: collect bss node again, it may have changed */
5935 		ni = vap->iv_bss;
5936 
5937 		DPRINTF(sc, ATH_DEBUG_STATE,
5938 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5939 		    "capinfo 0x%04x chan %d\n", __func__,
5940 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5941 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5942 
5943 		switch (vap->iv_opmode) {
5944 #ifdef ATH_SUPPORT_TDMA
5945 		case IEEE80211_M_AHDEMO:
5946 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5947 				break;
5948 			/* fall thru... */
5949 #endif
5950 		case IEEE80211_M_HOSTAP:
5951 		case IEEE80211_M_IBSS:
5952 			/*
5953 			 * Allocate and setup the beacon frame.
5954 			 *
5955 			 * Stop any previous beacon DMA.  This may be
5956 			 * necessary, for example, when an ibss merge
5957 			 * causes reconfiguration; there will be a state
5958 			 * transition from RUN->RUN that means we may
5959 			 * be called with beacon transmission active.
5960 			 */
5961 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5962 
5963 			error = ath_beacon_alloc(sc, ni);
5964 			if (error != 0)
5965 				goto bad;
5966 			/*
5967 			 * If joining an adhoc network defer beacon timer
5968 			 * configuration to the next beacon frame so we
5969 			 * have a current TSF to use.  Otherwise we're
5970 			 * starting an ibss/bss so there's no need to delay;
5971 			 * if this is the first vap moving to RUN state, then
5972 			 * beacon state needs to be [re]configured.
5973 			 */
5974 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5975 			    ni->ni_tstamp.tsf != 0) {
5976 				sc->sc_syncbeacon = 1;
5977 			} else if (!sc->sc_beacons) {
5978 #ifdef ATH_SUPPORT_TDMA
5979 				if (vap->iv_caps & IEEE80211_C_TDMA)
5980 					ath_tdma_config(sc, vap);
5981 				else
5982 #endif
5983 					ath_beacon_config(sc, vap);
5984 				sc->sc_beacons = 1;
5985 			}
5986 			break;
5987 		case IEEE80211_M_STA:
5988 			/*
5989 			 * Defer beacon timer configuration to the next
5990 			 * beacon frame so we have a current TSF to use
5991 			 * (any TSF collected when scanning is likely old).
5992 			 */
5993 			sc->sc_syncbeacon = 1;
5994 			break;
5995 		case IEEE80211_M_MONITOR:
5996 			/*
5997 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5998 			 * transitions so we must re-enable interrupts here to
5999 			 * handle the case of a single monitor mode vap.
6000 			 */
6001 			ath_hal_intrset(ah, sc->sc_imask);
6002 			break;
6003 		case IEEE80211_M_WDS:
6004 			break;
6005 		default:
6006 			break;
6007 		}
6008 		/*
6009 		 * Let the hal process statistics collected during a
6010 		 * scan so it can provide calibrated noise floor data.
6011 		 */
6012 		ath_hal_process_noisefloor(ah);
6013 		/*
6014 		 * Reset rssi stats; maybe not the best place...
6015 		 */
6016 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6017 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6018 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6019 		/*
6020 		 * Finally, start any timers and the task q thread
6021 		 * (in case we didn't go through SCAN state).
6022 		 */
6023 		if (ath_longcalinterval != 0) {
6024 			/* start periodic recalibration timer */
6025 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6026 		} else {
6027 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6028 			    "%s: calibration disabled\n", __func__);
6029 		}
6030 		taskqueue_unblock(sc->sc_tq);
6031 	} else if (nstate == IEEE80211_S_INIT) {
6032 		/*
6033 		 * If there are no vaps left in RUN state then
6034 		 * shutdown host/driver operation:
6035 		 * o disable interrupts
6036 		 * o disable the task queue thread
6037 		 * o mark beacon processing as stopped
6038 		 */
6039 		if (!ath_isanyrunningvaps(vap)) {
6040 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6041 			/* disable interrupts  */
6042 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6043 			taskqueue_block(sc->sc_tq);
6044 			sc->sc_beacons = 0;
6045 		}
6046 #ifdef ATH_SUPPORT_TDMA
6047 		ath_hal_setcca(ah, AH_TRUE);
6048 #endif
6049 	}
6050 bad:
6051 	return error;
6052 }
6053 
6054 /*
6055  * Allocate a key cache slot to the station so we can
6056  * setup a mapping from key index to node. The key cache
6057  * slot is needed for managing antenna state and for
6058  * compression when stations do not use crypto.  We do
6059  * it uniliaterally here; if crypto is employed this slot
6060  * will be reassigned.
6061  */
6062 static void
6063 ath_setup_stationkey(struct ieee80211_node *ni)
6064 {
6065 	struct ieee80211vap *vap = ni->ni_vap;
6066 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6067 	ieee80211_keyix keyix, rxkeyix;
6068 
6069 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6070 		/*
6071 		 * Key cache is full; we'll fall back to doing
6072 		 * the more expensive lookup in software.  Note
6073 		 * this also means no h/w compression.
6074 		 */
6075 		/* XXX msg+statistic */
6076 	} else {
6077 		/* XXX locking? */
6078 		ni->ni_ucastkey.wk_keyix = keyix;
6079 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6080 		/* NB: must mark device key to get called back on delete */
6081 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6082 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6083 		/* NB: this will create a pass-thru key entry */
6084 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
6085 	}
6086 }
6087 
6088 /*
6089  * Setup driver-specific state for a newly associated node.
6090  * Note that we're called also on a re-associate, the isnew
6091  * param tells us if this is the first time or not.
6092  */
6093 static void
6094 ath_newassoc(struct ieee80211_node *ni, int isnew)
6095 {
6096 	struct ath_node *an = ATH_NODE(ni);
6097 	struct ieee80211vap *vap = ni->ni_vap;
6098 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6099 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6100 
6101 	an->an_mcastrix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
6102 	an->an_mgmtrix = ath_tx_findrix(sc->sc_currates, tp->mgmtrate);
6103 
6104 	ath_rate_newassoc(sc, an, isnew);
6105 	if (isnew &&
6106 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6107 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6108 		ath_setup_stationkey(ni);
6109 }
6110 
6111 static int
6112 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6113 	int nchans, struct ieee80211_channel chans[])
6114 {
6115 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6116 	struct ath_hal *ah = sc->sc_ah;
6117 	HAL_STATUS status;
6118 
6119 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6120 	    "%s: rd %u cc %u location %c%s\n",
6121 	    __func__, reg->regdomain, reg->country, reg->location,
6122 	    reg->ecm ? " ecm" : "");
6123 
6124 	status = ath_hal_set_channels(ah, chans, nchans,
6125 	    reg->country, reg->regdomain);
6126 	if (status != HAL_OK) {
6127 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6128 		    __func__, status);
6129 		return EINVAL;		/* XXX */
6130 	}
6131 	return 0;
6132 }
6133 
6134 static void
6135 ath_getradiocaps(struct ieee80211com *ic,
6136 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6137 {
6138 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6139 	struct ath_hal *ah = sc->sc_ah;
6140 
6141 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6142 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6143 
6144 	/* XXX check return */
6145 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6146 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6147 
6148 }
6149 
6150 static int
6151 ath_getchannels(struct ath_softc *sc)
6152 {
6153 	struct ifnet *ifp = sc->sc_ifp;
6154 	struct ieee80211com *ic = ifp->if_l2com;
6155 	struct ath_hal *ah = sc->sc_ah;
6156 	HAL_STATUS status;
6157 
6158 	/*
6159 	 * Collect channel set based on EEPROM contents.
6160 	 */
6161 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6162 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6163 	if (status != HAL_OK) {
6164 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6165 		    "status %d\n", __func__, status);
6166 		return EINVAL;
6167 	}
6168 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6169 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6170 	/* XXX map Atheros sku's to net80211 SKU's */
6171 	/* XXX net80211 types too small */
6172 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6173 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6174 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6175 	ic->ic_regdomain.isocc[1] = ' ';
6176 
6177 	ic->ic_regdomain.ecm = 1;
6178 	ic->ic_regdomain.location = 'I';
6179 
6180 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6181 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6182 	    __func__, sc->sc_eerd, sc->sc_eecc,
6183 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6184 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6185 	return 0;
6186 }
6187 
6188 static void
6189 ath_led_done(void *arg)
6190 {
6191 	struct ath_softc *sc = arg;
6192 
6193 	sc->sc_blinking = 0;
6194 }
6195 
6196 /*
6197  * Turn the LED off: flip the pin and then set a timer so no
6198  * update will happen for the specified duration.
6199  */
6200 static void
6201 ath_led_off(void *arg)
6202 {
6203 	struct ath_softc *sc = arg;
6204 
6205 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
6206 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
6207 }
6208 
6209 /*
6210  * Blink the LED according to the specified on/off times.
6211  */
6212 static void
6213 ath_led_blink(struct ath_softc *sc, int on, int off)
6214 {
6215 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
6216 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
6217 	sc->sc_blinking = 1;
6218 	sc->sc_ledoff = off;
6219 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
6220 }
6221 
6222 static void
6223 ath_led_event(struct ath_softc *sc, int rix)
6224 {
6225 	sc->sc_ledevent = ticks;	/* time of last event */
6226 	if (sc->sc_blinking)		/* don't interrupt active blink */
6227 		return;
6228 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
6229 }
6230 
6231 static int
6232 ath_rate_setup(struct ath_softc *sc, u_int mode)
6233 {
6234 	struct ath_hal *ah = sc->sc_ah;
6235 	const HAL_RATE_TABLE *rt;
6236 
6237 	switch (mode) {
6238 	case IEEE80211_MODE_11A:
6239 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6240 		break;
6241 	case IEEE80211_MODE_HALF:
6242 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6243 		break;
6244 	case IEEE80211_MODE_QUARTER:
6245 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6246 		break;
6247 	case IEEE80211_MODE_11B:
6248 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6249 		break;
6250 	case IEEE80211_MODE_11G:
6251 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6252 		break;
6253 	case IEEE80211_MODE_TURBO_A:
6254 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6255 		break;
6256 	case IEEE80211_MODE_TURBO_G:
6257 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6258 		break;
6259 	case IEEE80211_MODE_STURBO_A:
6260 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6261 		break;
6262 	case IEEE80211_MODE_11NA:
6263 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6264 		break;
6265 	case IEEE80211_MODE_11NG:
6266 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6267 		break;
6268 	default:
6269 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6270 			__func__, mode);
6271 		return 0;
6272 	}
6273 	sc->sc_rates[mode] = rt;
6274 	return (rt != NULL);
6275 }
6276 
6277 static void
6278 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6279 {
6280 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6281 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6282 	static const struct {
6283 		u_int		rate;		/* tx/rx 802.11 rate */
6284 		u_int16_t	timeOn;		/* LED on time (ms) */
6285 		u_int16_t	timeOff;	/* LED off time (ms) */
6286 	} blinkrates[] = {
6287 		{ 108,  40,  10 },
6288 		{  96,  44,  11 },
6289 		{  72,  50,  13 },
6290 		{  48,  57,  14 },
6291 		{  36,  67,  16 },
6292 		{  24,  80,  20 },
6293 		{  22, 100,  25 },
6294 		{  18, 133,  34 },
6295 		{  12, 160,  40 },
6296 		{  10, 200,  50 },
6297 		{   6, 240,  58 },
6298 		{   4, 267,  66 },
6299 		{   2, 400, 100 },
6300 		{   0, 500, 130 },
6301 		/* XXX half/quarter rates */
6302 	};
6303 	const HAL_RATE_TABLE *rt;
6304 	int i, j;
6305 
6306 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6307 	rt = sc->sc_rates[mode];
6308 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6309 	for (i = 0; i < rt->rateCount; i++) {
6310 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6311 		if (rt->info[i].phy != IEEE80211_T_HT)
6312 			sc->sc_rixmap[ieeerate] = i;
6313 		else
6314 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6315 	}
6316 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6317 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6318 		if (i >= rt->rateCount) {
6319 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6320 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6321 			continue;
6322 		}
6323 		sc->sc_hwmap[i].ieeerate =
6324 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6325 		if (rt->info[i].phy == IEEE80211_T_HT)
6326 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6327 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6328 		if (rt->info[i].shortPreamble ||
6329 		    rt->info[i].phy == IEEE80211_T_OFDM)
6330 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6331 		/* NB: receive frames include FCS */
6332 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6333 			IEEE80211_RADIOTAP_F_FCS;
6334 		/* setup blink rate table to avoid per-packet lookup */
6335 		for (j = 0; j < N(blinkrates)-1; j++)
6336 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6337 				break;
6338 		/* NB: this uses the last entry if the rate isn't found */
6339 		/* XXX beware of overlow */
6340 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6341 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6342 	}
6343 	sc->sc_currates = rt;
6344 	sc->sc_curmode = mode;
6345 	/*
6346 	 * All protection frames are transmited at 2Mb/s for
6347 	 * 11g, otherwise at 1Mb/s.
6348 	 */
6349 	if (mode == IEEE80211_MODE_11G)
6350 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6351 	else
6352 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6353 	/* NB: caller is responsible for reseting rate control state */
6354 #undef N
6355 }
6356 
6357 #ifdef ATH_DEBUG
6358 static void
6359 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6360 	u_int ix, int done)
6361 {
6362 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6363 	struct ath_hal *ah = sc->sc_ah;
6364 	const struct ath_desc *ds;
6365 	int i;
6366 
6367 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6368 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6369 		       "      %08x %08x %08x %08x\n",
6370 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6371 		    ds->ds_link, ds->ds_data,
6372 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6373 		    ds->ds_ctl0, ds->ds_ctl1,
6374 		    ds->ds_hw[0], ds->ds_hw[1]);
6375 		if (ah->ah_magic == 0x20065416) {
6376 			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6377 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6378 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6379 			    ds->ds_hw[8]);
6380 		}
6381 	}
6382 }
6383 
6384 static void
6385 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6386 	u_int qnum, u_int ix, int done)
6387 {
6388 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6389 	struct ath_hal *ah = sc->sc_ah;
6390 	const struct ath_desc *ds;
6391 	int i;
6392 
6393 	printf("Q%u[%3u]", qnum, ix);
6394 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6395 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6396 		       "        %08x %08x %08x %08x %08x %08x\n",
6397 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6398 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6399 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6400 		    ds->ds_ctl0, ds->ds_ctl1,
6401 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6402 		if (ah->ah_magic == 0x20065416) {
6403 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6404 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6405 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6406 			    ds->ds_hw[10],ds->ds_hw[11]);
6407 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6408 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6409 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6410 			    ds->ds_hw[18], ds->ds_hw[19]);
6411 		}
6412 	}
6413 }
6414 #endif /* ATH_DEBUG */
6415 
6416 static void
6417 ath_watchdog(void *arg)
6418 {
6419 	struct ath_softc *sc = arg;
6420 
6421 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6422 		struct ifnet *ifp = sc->sc_ifp;
6423 		uint32_t hangs;
6424 
6425 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6426 		    hangs != 0) {
6427 			if_printf(ifp, "%s hang detected (0x%x)\n",
6428 			    hangs & 0xff ? "bb" : "mac", hangs);
6429 		} else
6430 			if_printf(ifp, "device timeout\n");
6431 		ath_reset(ifp);
6432 		ifp->if_oerrors++;
6433 		sc->sc_stats.ast_watchdog++;
6434 	}
6435 	callout_schedule(&sc->sc_wd_ch, hz);
6436 }
6437 
6438 #ifdef ATH_DIAGAPI
6439 /*
6440  * Diagnostic interface to the HAL.  This is used by various
6441  * tools to do things like retrieve register contents for
6442  * debugging.  The mechanism is intentionally opaque so that
6443  * it can change frequently w/o concern for compatiblity.
6444  */
6445 static int
6446 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6447 {
6448 	struct ath_hal *ah = sc->sc_ah;
6449 	u_int id = ad->ad_id & ATH_DIAG_ID;
6450 	void *indata = NULL;
6451 	void *outdata = NULL;
6452 	u_int32_t insize = ad->ad_in_size;
6453 	u_int32_t outsize = ad->ad_out_size;
6454 	int error = 0;
6455 
6456 	if (ad->ad_id & ATH_DIAG_IN) {
6457 		/*
6458 		 * Copy in data.
6459 		 */
6460 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6461 		if (indata == NULL) {
6462 			error = ENOMEM;
6463 			goto bad;
6464 		}
6465 		error = copyin(ad->ad_in_data, indata, insize);
6466 		if (error)
6467 			goto bad;
6468 	}
6469 	if (ad->ad_id & ATH_DIAG_DYN) {
6470 		/*
6471 		 * Allocate a buffer for the results (otherwise the HAL
6472 		 * returns a pointer to a buffer where we can read the
6473 		 * results).  Note that we depend on the HAL leaving this
6474 		 * pointer for us to use below in reclaiming the buffer;
6475 		 * may want to be more defensive.
6476 		 */
6477 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6478 		if (outdata == NULL) {
6479 			error = ENOMEM;
6480 			goto bad;
6481 		}
6482 	}
6483 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6484 		if (outsize < ad->ad_out_size)
6485 			ad->ad_out_size = outsize;
6486 		if (outdata != NULL)
6487 			error = copyout(outdata, ad->ad_out_data,
6488 					ad->ad_out_size);
6489 	} else {
6490 		error = EINVAL;
6491 	}
6492 bad:
6493 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6494 		free(indata, M_TEMP);
6495 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6496 		free(outdata, M_TEMP);
6497 	return error;
6498 }
6499 #endif /* ATH_DIAGAPI */
6500 
6501 static int
6502 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6503 {
6504 #define	IS_RUNNING(ifp) \
6505 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6506 	struct ath_softc *sc = ifp->if_softc;
6507 	struct ieee80211com *ic = ifp->if_l2com;
6508 	struct ifreq *ifr = (struct ifreq *)data;
6509 	const HAL_RATE_TABLE *rt;
6510 	int error = 0;
6511 
6512 	switch (cmd) {
6513 	case SIOCSIFFLAGS:
6514 		ATH_LOCK(sc);
6515 		if (IS_RUNNING(ifp)) {
6516 			/*
6517 			 * To avoid rescanning another access point,
6518 			 * do not call ath_init() here.  Instead,
6519 			 * only reflect promisc mode settings.
6520 			 */
6521 			ath_mode_init(sc);
6522 		} else if (ifp->if_flags & IFF_UP) {
6523 			/*
6524 			 * Beware of being called during attach/detach
6525 			 * to reset promiscuous mode.  In that case we
6526 			 * will still be marked UP but not RUNNING.
6527 			 * However trying to re-init the interface
6528 			 * is the wrong thing to do as we've already
6529 			 * torn down much of our state.  There's
6530 			 * probably a better way to deal with this.
6531 			 */
6532 			if (!sc->sc_invalid)
6533 				ath_init(sc);	/* XXX lose error */
6534 		} else {
6535 			ath_stop_locked(ifp);
6536 #ifdef notyet
6537 			/* XXX must wakeup in places like ath_vap_delete */
6538 			if (!sc->sc_invalid)
6539 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6540 #endif
6541 		}
6542 		ATH_UNLOCK(sc);
6543 		break;
6544 	case SIOCGIFMEDIA:
6545 	case SIOCSIFMEDIA:
6546 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6547 		break;
6548 	case SIOCGATHSTATS:
6549 		/* NB: embed these numbers to get a consistent view */
6550 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6551 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6552 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6553 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6554 #ifdef ATH_SUPPORT_TDMA
6555 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6556 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6557 #endif
6558 		rt = sc->sc_currates;
6559 		/* XXX HT rates */
6560 		sc->sc_stats.ast_tx_rate =
6561 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6562 		return copyout(&sc->sc_stats,
6563 		    ifr->ifr_data, sizeof (sc->sc_stats));
6564 	case SIOCZATHSTATS:
6565 		error = priv_check(curthread, PRIV_DRIVER);
6566 		if (error == 0)
6567 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6568 		break;
6569 #ifdef ATH_DIAGAPI
6570 	case SIOCGATHDIAG:
6571 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6572 		break;
6573 #endif
6574 	case SIOCGIFADDR:
6575 		error = ether_ioctl(ifp, cmd, data);
6576 		break;
6577 	default:
6578 		error = EINVAL;
6579 		break;
6580 	}
6581 	return error;
6582 #undef IS_RUNNING
6583 }
6584 
6585 static int
6586 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6587 {
6588 	struct ath_softc *sc = arg1;
6589 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6590 	int error;
6591 
6592 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6593 	if (error || !req->newptr)
6594 		return error;
6595 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6596 }
6597 
6598 static int
6599 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6600 {
6601 	struct ath_softc *sc = arg1;
6602 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6603 	int error;
6604 
6605 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6606 	if (error || !req->newptr)
6607 		return error;
6608 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6609 }
6610 
6611 static int
6612 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6613 {
6614 	struct ath_softc *sc = arg1;
6615 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6616 	int error;
6617 
6618 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6619 	if (error || !req->newptr)
6620 		return error;
6621 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6622 }
6623 
6624 static int
6625 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6626 {
6627 	struct ath_softc *sc = arg1;
6628 	int softled = sc->sc_softled;
6629 	int error;
6630 
6631 	error = sysctl_handle_int(oidp, &softled, 0, req);
6632 	if (error || !req->newptr)
6633 		return error;
6634 	softled = (softled != 0);
6635 	if (softled != sc->sc_softled) {
6636 		if (softled) {
6637 			/* NB: handle any sc_ledpin change */
6638 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6639 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6640 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6641 				!sc->sc_ledon);
6642 		}
6643 		sc->sc_softled = softled;
6644 	}
6645 	return 0;
6646 }
6647 
6648 static int
6649 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6650 {
6651 	struct ath_softc *sc = arg1;
6652 	int ledpin = sc->sc_ledpin;
6653 	int error;
6654 
6655 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6656 	if (error || !req->newptr)
6657 		return error;
6658 	if (ledpin != sc->sc_ledpin) {
6659 		sc->sc_ledpin = ledpin;
6660 		if (sc->sc_softled) {
6661 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6662 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6663 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6664 				!sc->sc_ledon);
6665 		}
6666 	}
6667 	return 0;
6668 }
6669 
6670 static int
6671 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6672 {
6673 	struct ath_softc *sc = arg1;
6674 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6675 	int error;
6676 
6677 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6678 	if (!error && req->newptr) {
6679 		/* XXX assumes 2 antenna ports */
6680 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6681 			return EINVAL;
6682 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6683 		/*
6684 		 * NB: with the switch locked this isn't meaningful,
6685 		 *     but set it anyway so things like radiotap get
6686 		 *     consistent info in their data.
6687 		 */
6688 		sc->sc_txantenna = txantenna;
6689 	}
6690 	return error;
6691 }
6692 
6693 static int
6694 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6695 {
6696 	struct ath_softc *sc = arg1;
6697 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6698 	int error;
6699 
6700 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6701 	if (!error && req->newptr)
6702 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6703 	return error;
6704 }
6705 
6706 static int
6707 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6708 {
6709 	struct ath_softc *sc = arg1;
6710 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6711 	int error;
6712 
6713 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6714 	if (error || !req->newptr)
6715 		return error;
6716 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6717 		return EINVAL;
6718 	sc->sc_diversity = diversity;
6719 	return 0;
6720 }
6721 
6722 static int
6723 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6724 {
6725 	struct ath_softc *sc = arg1;
6726 	u_int32_t diag;
6727 	int error;
6728 
6729 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6730 		return EINVAL;
6731 	error = sysctl_handle_int(oidp, &diag, 0, req);
6732 	if (error || !req->newptr)
6733 		return error;
6734 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6735 }
6736 
6737 static int
6738 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6739 {
6740 	struct ath_softc *sc = arg1;
6741 	struct ifnet *ifp = sc->sc_ifp;
6742 	u_int32_t scale;
6743 	int error;
6744 
6745 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6746 	error = sysctl_handle_int(oidp, &scale, 0, req);
6747 	if (error || !req->newptr)
6748 		return error;
6749 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6750 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6751 }
6752 
6753 static int
6754 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6755 {
6756 	struct ath_softc *sc = arg1;
6757 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6758 	int error;
6759 
6760 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6761 	if (error || !req->newptr)
6762 		return error;
6763 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6764 }
6765 
6766 static int
6767 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6768 {
6769 	struct ath_softc *sc = arg1;
6770 	struct ifnet *ifp = sc->sc_ifp;
6771 	struct ath_hal *ah = sc->sc_ah;
6772 	u_int rfkill = ath_hal_getrfkill(ah);
6773 	int error;
6774 
6775 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6776 	if (error || !req->newptr)
6777 		return error;
6778 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6779 		return 0;
6780 	if (!ath_hal_setrfkill(ah, rfkill))
6781 		return EINVAL;
6782 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6783 }
6784 
6785 static int
6786 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6787 {
6788 	struct ath_softc *sc = arg1;
6789 	u_int rfsilent;
6790 	int error;
6791 
6792 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6793 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6794 	if (error || !req->newptr)
6795 		return error;
6796 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6797 		return EINVAL;
6798 	sc->sc_rfsilentpin = rfsilent & 0x1c;
6799 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6800 	return 0;
6801 }
6802 
6803 static int
6804 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6805 {
6806 	struct ath_softc *sc = arg1;
6807 	u_int32_t tpack;
6808 	int error;
6809 
6810 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6811 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6812 	if (error || !req->newptr)
6813 		return error;
6814 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6815 }
6816 
6817 static int
6818 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6819 {
6820 	struct ath_softc *sc = arg1;
6821 	u_int32_t tpcts;
6822 	int error;
6823 
6824 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6825 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6826 	if (error || !req->newptr)
6827 		return error;
6828 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6829 }
6830 
6831 static int
6832 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6833 {
6834 	struct ath_softc *sc = arg1;
6835 	int intmit, error;
6836 
6837 	intmit = ath_hal_getintmit(sc->sc_ah);
6838 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6839 	if (error || !req->newptr)
6840 		return error;
6841 	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6842 }
6843 
6844 #ifdef ATH_SUPPORT_TDMA
6845 static int
6846 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6847 {
6848 	struct ath_softc *sc = arg1;
6849 	int setcca, error;
6850 
6851 	setcca = sc->sc_setcca;
6852 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6853 	if (error || !req->newptr)
6854 		return error;
6855 	sc->sc_setcca = (setcca != 0);
6856 	return 0;
6857 }
6858 #endif /* ATH_SUPPORT_TDMA */
6859 
6860 static void
6861 ath_sysctlattach(struct ath_softc *sc)
6862 {
6863 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6864 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6865 	struct ath_hal *ah = sc->sc_ah;
6866 
6867 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6868 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6869 		"EEPROM country code");
6870 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6871 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6872 		"EEPROM regdomain code");
6873 #ifdef	ATH_DEBUG
6874 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6875 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6876 		"control debugging printfs");
6877 #endif
6878 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6879 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6880 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6881 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6882 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6883 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6884 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6885 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6886 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6887 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6888 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6889 		ath_sysctl_softled, "I", "enable/disable software LED support");
6890 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6891 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6892 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6893 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6894 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6895 		"setting to turn LED on");
6896 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6897 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6898 		"idle time for inactivity LED (ticks)");
6899 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6900 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6901 		ath_sysctl_txantenna, "I", "antenna switch");
6902 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6903 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6904 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6905 	if (ath_hal_hasdiversity(ah))
6906 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6907 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6908 			ath_sysctl_diversity, "I", "antenna diversity");
6909 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6910 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6911 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6912 		"tx descriptor batching");
6913 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6914 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6915 		ath_sysctl_diag, "I", "h/w diagnostic control");
6916 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6917 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6918 		ath_sysctl_tpscale, "I", "tx power scaling");
6919 	if (ath_hal_hastpc(ah)) {
6920 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6921 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6922 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6923 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6924 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6925 			ath_sysctl_tpack, "I", "tx power for ack frames");
6926 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6927 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6928 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6929 	}
6930 	if (ath_hal_hasfastframes(sc->sc_ah)) {
6931 		sc->sc_fftxqmin = ATH_FF_TXQMIN;
6932 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6933 			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6934 			"min frames before fast-frame staging");
6935 		sc->sc_fftxqmax = ATH_FF_TXQMAX;
6936 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6937 			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6938 			"max queued frames before tail drop");
6939 	}
6940 	if (ath_hal_hasrfsilent(ah)) {
6941 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6942 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6943 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6944 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6945 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6946 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6947 	}
6948 	if (ath_hal_hasintmit(ah)) {
6949 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6950 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6951 			ath_sysctl_intmit, "I", "interference mitigation");
6952 	}
6953 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6954 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6955 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6956 		"mask of error frames to pass when monitoring");
6957 #ifdef ATH_SUPPORT_TDMA
6958 	if (ath_hal_macversion(ah) > 0x78) {
6959 		sc->sc_tdmadbaprep = 2;
6960 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6961 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6962 			"TDMA DBA preparation time");
6963 		sc->sc_tdmaswbaprep = 10;
6964 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6965 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6966 			"TDMA SWBA preparation time");
6967 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6968 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6969 			"TDMA slot guard time");
6970 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6971 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6972 			"TDMA calculated super frame");
6973 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6974 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6975 			ath_sysctl_setcca, "I", "enable CCA control");
6976 	}
6977 #endif
6978 }
6979 
6980 static void
6981 ath_bpfattach(struct ath_softc *sc)
6982 {
6983 	struct ifnet *ifp = sc->sc_ifp;
6984 
6985 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
6986 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
6987 	/*
6988 	 * Initialize constant fields.
6989 	 * XXX make header lengths a multiple of 32-bits so subsequent
6990 	 *     headers are properly aligned; this is a kludge to keep
6991 	 *     certain applications happy.
6992 	 *
6993 	 * NB: the channel is setup each time we transition to the
6994 	 *     RUN state to avoid filling it in for each frame.
6995 	 */
6996 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
6997 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
6998 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
6999 
7000 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
7001 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
7002 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
7003 }
7004 
7005 static int
7006 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
7007 	struct ath_buf *bf, struct mbuf *m0,
7008 	const struct ieee80211_bpf_params *params)
7009 {
7010 	struct ifnet *ifp = sc->sc_ifp;
7011 	struct ieee80211com *ic = ifp->if_l2com;
7012 	struct ath_hal *ah = sc->sc_ah;
7013 	int error, ismcast, ismrr;
7014 	int keyix, hdrlen, pktlen, try0, txantenna;
7015 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
7016 	struct ieee80211_frame *wh;
7017 	u_int flags, ctsduration;
7018 	HAL_PKT_TYPE atype;
7019 	const HAL_RATE_TABLE *rt;
7020 	struct ath_desc *ds;
7021 	u_int pri;
7022 
7023 	wh = mtod(m0, struct ieee80211_frame *);
7024 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
7025 	hdrlen = ieee80211_anyhdrsize(wh);
7026 	/*
7027 	 * Packet length must not include any
7028 	 * pad bytes; deduct them here.
7029 	 */
7030 	/* XXX honor IEEE80211_BPF_DATAPAD */
7031 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
7032 
7033 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
7034 		const struct ieee80211_cipher *cip;
7035 		struct ieee80211_key *k;
7036 
7037 		/*
7038 		 * Construct the 802.11 header+trailer for an encrypted
7039 		 * frame. The only reason this can fail is because of an
7040 		 * unknown or unsupported cipher/key type.
7041 		 */
7042 		k = ieee80211_crypto_encap(ni, m0);
7043 		if (k == NULL) {
7044 			/*
7045 			 * This can happen when the key is yanked after the
7046 			 * frame was queued.  Just discard the frame; the
7047 			 * 802.11 layer counts failures and provides
7048 			 * debugging/diagnostics.
7049 			 */
7050 			ath_freetx(m0);
7051 			return EIO;
7052 		}
7053 		/*
7054 		 * Adjust the packet + header lengths for the crypto
7055 		 * additions and calculate the h/w key index.  When
7056 		 * a s/w mic is done the frame will have had any mic
7057 		 * added to it prior to entry so m0->m_pkthdr.len will
7058 		 * account for it. Otherwise we need to add it to the
7059 		 * packet length.
7060 		 */
7061 		cip = k->wk_cipher;
7062 		hdrlen += cip->ic_header;
7063 		pktlen += cip->ic_header + cip->ic_trailer;
7064 		/* NB: frags always have any TKIP MIC done in s/w */
7065 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
7066 			pktlen += cip->ic_miclen;
7067 		keyix = k->wk_keyix;
7068 
7069 		/* packet header may have moved, reset our local pointer */
7070 		wh = mtod(m0, struct ieee80211_frame *);
7071 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
7072 		/*
7073 		 * Use station key cache slot, if assigned.
7074 		 */
7075 		keyix = ni->ni_ucastkey.wk_keyix;
7076 		if (keyix == IEEE80211_KEYIX_NONE)
7077 			keyix = HAL_TXKEYIX_INVALID;
7078 	} else
7079 		keyix = HAL_TXKEYIX_INVALID;
7080 
7081 	error = ath_tx_dmasetup(sc, bf, m0);
7082 	if (error != 0)
7083 		return error;
7084 	m0 = bf->bf_m;				/* NB: may have changed */
7085 	wh = mtod(m0, struct ieee80211_frame *);
7086 	bf->bf_node = ni;			/* NB: held reference */
7087 
7088 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
7089 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
7090 	if (params->ibp_flags & IEEE80211_BPF_RTS)
7091 		flags |= HAL_TXDESC_RTSENA;
7092 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
7093 		flags |= HAL_TXDESC_CTSENA;
7094 	/* XXX leave ismcast to injector? */
7095 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
7096 		flags |= HAL_TXDESC_NOACK;
7097 
7098 	rt = sc->sc_currates;
7099 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
7100 	rix = ath_tx_findrix(rt, params->ibp_rate0);
7101 	txrate = rt->info[rix].rateCode;
7102 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7103 		txrate |= rt->info[rix].shortPreamble;
7104 	sc->sc_txrix = rix;
7105 	try0 = params->ibp_try0;
7106 	ismrr = (params->ibp_try1 != 0);
7107 	txantenna = params->ibp_pri >> 2;
7108 	if (txantenna == 0)			/* XXX? */
7109 		txantenna = sc->sc_txantenna;
7110 	ctsduration = 0;
7111 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
7112 		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
7113 		ctsrate = rt->info[cix].rateCode;
7114 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
7115 			ctsrate |= rt->info[cix].shortPreamble;
7116 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
7117 				ctsduration += rt->info[cix].spAckDuration;
7118 			ctsduration += ath_hal_computetxtime(ah,
7119 				rt, pktlen, rix, AH_TRUE);
7120 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
7121 				ctsduration += rt->info[rix].spAckDuration;
7122 		} else {
7123 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
7124 				ctsduration += rt->info[cix].lpAckDuration;
7125 			ctsduration += ath_hal_computetxtime(ah,
7126 				rt, pktlen, rix, AH_FALSE);
7127 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
7128 				ctsduration += rt->info[rix].lpAckDuration;
7129 		}
7130 		ismrr = 0;			/* XXX */
7131 	} else
7132 		ctsrate = 0;
7133 	pri = params->ibp_pri & 3;
7134 	/*
7135 	 * NB: we mark all packets as type PSPOLL so the h/w won't
7136 	 * set the sequence number, duration, etc.
7137 	 */
7138 	atype = HAL_PKT_TYPE_PSPOLL;
7139 
7140 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
7141 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
7142 			sc->sc_hwmap[rix].ieeerate, -1);
7143 
7144 	if (bpf_peers_present(ifp->if_bpf)) {
7145 		u_int64_t tsf = ath_hal_gettsf64(ah);
7146 
7147 		sc->sc_tx_th.wt_tsf = htole64(tsf);
7148 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
7149 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
7150 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
7151 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
7152 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
7153 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
7154 
7155 		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
7156 	}
7157 
7158 	/*
7159 	 * Formulate first tx descriptor with tx controls.
7160 	 */
7161 	ds = bf->bf_desc;
7162 	/* XXX check return value? */
7163 	ath_hal_setuptxdesc(ah, ds
7164 		, pktlen		/* packet length */
7165 		, hdrlen		/* header length */
7166 		, atype			/* Atheros packet type */
7167 		, params->ibp_power	/* txpower */
7168 		, txrate, try0		/* series 0 rate/tries */
7169 		, keyix			/* key cache index */
7170 		, txantenna		/* antenna mode */
7171 		, flags			/* flags */
7172 		, ctsrate		/* rts/cts rate */
7173 		, ctsduration		/* rts/cts duration */
7174 	);
7175 	bf->bf_txflags = flags;
7176 
7177 	if (ismrr) {
7178 		rix = ath_tx_findrix(rt, params->ibp_rate1);
7179 		rate1 = rt->info[rix].rateCode;
7180 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7181 			rate1 |= rt->info[rix].shortPreamble;
7182 		if (params->ibp_try2) {
7183 			rix = ath_tx_findrix(rt, params->ibp_rate2);
7184 			rate2 = rt->info[rix].rateCode;
7185 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7186 				rate2 |= rt->info[rix].shortPreamble;
7187 		} else
7188 			rate2 = 0;
7189 		if (params->ibp_try3) {
7190 			rix = ath_tx_findrix(rt, params->ibp_rate3);
7191 			rate3 = rt->info[rix].rateCode;
7192 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7193 				rate3 |= rt->info[rix].shortPreamble;
7194 		} else
7195 			rate3 = 0;
7196 		ath_hal_setupxtxdesc(ah, ds
7197 			, rate1, params->ibp_try1	/* series 1 */
7198 			, rate2, params->ibp_try2	/* series 2 */
7199 			, rate3, params->ibp_try3	/* series 3 */
7200 		);
7201 	}
7202 
7203 	/* NB: no buffered multicast in power save support */
7204 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
7205 	return 0;
7206 }
7207 
7208 static int
7209 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
7210 	const struct ieee80211_bpf_params *params)
7211 {
7212 	struct ieee80211com *ic = ni->ni_ic;
7213 	struct ifnet *ifp = ic->ic_ifp;
7214 	struct ath_softc *sc = ifp->if_softc;
7215 	struct ath_buf *bf;
7216 
7217 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
7218 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
7219 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
7220 			"!running" : "invalid");
7221 		sc->sc_stats.ast_tx_raw_fail++;
7222 		ieee80211_free_node(ni);
7223 		m_freem(m);
7224 		return ENETDOWN;
7225 	}
7226 	/*
7227 	 * Grab a TX buffer and associated resources.
7228 	 */
7229 	bf = ath_getbuf(sc);
7230 	if (bf == NULL) {
7231 		/* NB: ath_getbuf handles stat+msg */
7232 		ieee80211_free_node(ni);
7233 		m_freem(m);
7234 		return ENOBUFS;
7235 	}
7236 
7237 	ifp->if_opackets++;
7238 	sc->sc_stats.ast_tx_raw++;
7239 
7240 	if (params == NULL) {
7241 		/*
7242 		 * Legacy path; interpret frame contents to decide
7243 		 * precisely how to send the frame.
7244 		 */
7245 		if (ath_tx_start(sc, ni, bf, m))
7246 			goto bad;
7247 	} else {
7248 		/*
7249 		 * Caller supplied explicit parameters to use in
7250 		 * sending the frame.
7251 		 */
7252 		if (ath_tx_raw_start(sc, ni, bf, m, params))
7253 			goto bad;
7254 	}
7255 	sc->sc_wd_timer = 5;
7256 
7257 	return 0;
7258 bad:
7259 	ifp->if_oerrors++;
7260 	ATH_TXBUF_LOCK(sc);
7261 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
7262 	ATH_TXBUF_UNLOCK(sc);
7263 	ieee80211_free_node(ni);
7264 	return EIO;		/* XXX */
7265 }
7266 
7267 /*
7268  * Announce various information on device/driver attach.
7269  */
7270 static void
7271 ath_announce(struct ath_softc *sc)
7272 {
7273 	struct ifnet *ifp = sc->sc_ifp;
7274 	struct ath_hal *ah = sc->sc_ah;
7275 
7276 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
7277 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
7278 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7279 	if (bootverbose) {
7280 		int i;
7281 		for (i = 0; i <= WME_AC_VO; i++) {
7282 			struct ath_txq *txq = sc->sc_ac2q[i];
7283 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7284 				txq->axq_qnum, ieee80211_wme_acnames[i]);
7285 		}
7286 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7287 			sc->sc_cabq->axq_qnum);
7288 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7289 	}
7290 	if (ath_rxbuf != ATH_RXBUF)
7291 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7292 	if (ath_txbuf != ATH_TXBUF)
7293 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7294 }
7295 
7296 #ifdef ATH_SUPPORT_TDMA
7297 static __inline uint32_t
7298 ath_hal_getnexttbtt(struct ath_hal *ah)
7299 {
7300 #define	AR_TIMER0	0x8028
7301 	return OS_REG_READ(ah, AR_TIMER0);
7302 }
7303 
7304 static __inline void
7305 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7306 {
7307 	/* XXX handle wrap/overflow */
7308 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7309 }
7310 
7311 static void
7312 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7313 {
7314 	struct ath_hal *ah = sc->sc_ah;
7315 	HAL_BEACON_TIMERS bt;
7316 
7317 	bt.bt_intval = bintval | HAL_BEACON_ENA;
7318 	bt.bt_nexttbtt = nexttbtt;
7319 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7320 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7321 	bt.bt_nextatim = nexttbtt+1;
7322 	ath_hal_beaconsettimers(ah, &bt);
7323 }
7324 
7325 /*
7326  * Calculate the beacon interval.  This is periodic in the
7327  * superframe for the bss.  We assume each station is configured
7328  * identically wrt transmit rate so the guard time we calculate
7329  * above will be the same on all stations.  Note we need to
7330  * factor in the xmit time because the hardware will schedule
7331  * a frame for transmit if the start of the frame is within
7332  * the burst time.  When we get hardware that properly kills
7333  * frames in the PCU we can reduce/eliminate the guard time.
7334  *
7335  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7336  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7337  * with 1us timer granularity should allow us to reduce/eliminate
7338  * this.
7339  */
7340 static void
7341 ath_tdma_bintvalsetup(struct ath_softc *sc,
7342 	const struct ieee80211_tdma_state *tdma)
7343 {
7344 	/* copy from vap state (XXX check all vaps have same value?) */
7345 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7346 	sc->sc_tdmabintcnt = tdma->tdma_bintval;
7347 
7348 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7349 		tdma->tdma_slotcnt, 1024);
7350 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7351 	if (sc->sc_tdmabintval & 1)
7352 		sc->sc_tdmabintval++;
7353 
7354 	if (tdma->tdma_slot == 0) {
7355 		/*
7356 		 * Only slot 0 beacons; other slots respond.
7357 		 */
7358 		sc->sc_imask |= HAL_INT_SWBA;
7359 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7360 	} else {
7361 		/* XXX all vaps must be slot 0 or slot !0 */
7362 		sc->sc_imask &= ~HAL_INT_SWBA;
7363 	}
7364 }
7365 
7366 /*
7367  * Max 802.11 overhead.  This assumes no 4-address frames and
7368  * the encapsulation done by ieee80211_encap (llc).  We also
7369  * include potential crypto overhead.
7370  */
7371 #define	IEEE80211_MAXOVERHEAD \
7372 	(sizeof(struct ieee80211_qosframe) \
7373 	 + sizeof(struct llc) \
7374 	 + IEEE80211_ADDR_LEN \
7375 	 + IEEE80211_WEP_IVLEN \
7376 	 + IEEE80211_WEP_KIDLEN \
7377 	 + IEEE80211_WEP_CRCLEN \
7378 	 + IEEE80211_WEP_MICLEN \
7379 	 + IEEE80211_CRC_LEN)
7380 
7381 /*
7382  * Setup initially for tdma operation.  Start the beacon
7383  * timers and enable SWBA if we are slot 0.  Otherwise
7384  * we wait for slot 0 to arrive so we can sync up before
7385  * starting to transmit.
7386  */
7387 static void
7388 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7389 {
7390 	struct ath_hal *ah = sc->sc_ah;
7391 	struct ifnet *ifp = sc->sc_ifp;
7392 	struct ieee80211com *ic = ifp->if_l2com;
7393 	const struct ieee80211_txparam *tp;
7394 	const struct ieee80211_tdma_state *tdma = NULL;
7395 	int rix;
7396 
7397 	if (vap == NULL) {
7398 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7399 		if (vap == NULL) {
7400 			if_printf(ifp, "%s: no vaps?\n", __func__);
7401 			return;
7402 		}
7403 	}
7404 	tp = vap->iv_bss->ni_txparms;
7405 	/*
7406 	 * Calculate the guard time for each slot.  This is the
7407 	 * time to send a maximal-size frame according to the
7408 	 * fixed/lowest transmit rate.  Note that the interface
7409 	 * mtu does not include the 802.11 overhead so we must
7410 	 * tack that on (ath_hal_computetxtime includes the
7411 	 * preamble and plcp in it's calculation).
7412 	 */
7413 	tdma = vap->iv_tdma;
7414 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7415 		rix = ath_tx_findrix(sc->sc_currates, tp->ucastrate);
7416 	else
7417 		rix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
7418 	/* XXX short preamble assumed */
7419 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7420 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7421 
7422 	ath_hal_intrset(ah, 0);
7423 
7424 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7425 	if (sc->sc_setcca)
7426 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7427 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7428 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7429 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7430 	sc->sc_syncbeacon = 0;
7431 
7432 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7433 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7434 
7435 	ath_hal_intrset(ah, sc->sc_imask);
7436 
7437 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7438 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7439 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7440 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7441 	    sc->sc_tdmadbaprep);
7442 }
7443 
7444 /*
7445  * Update tdma operation.  Called from the 802.11 layer
7446  * when a beacon is received from the TDMA station operating
7447  * in the slot immediately preceding us in the bss.  Use
7448  * the rx timestamp for the beacon frame to update our
7449  * beacon timers so we follow their schedule.  Note that
7450  * by using the rx timestamp we implicitly include the
7451  * propagation delay in our schedule.
7452  */
7453 static void
7454 ath_tdma_update(struct ieee80211_node *ni,
7455 	const struct ieee80211_tdma_param *tdma, int changed)
7456 {
7457 #define	TSF_TO_TU(_h,_l) \
7458 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7459 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7460 	struct ieee80211vap *vap = ni->ni_vap;
7461 	struct ieee80211com *ic = ni->ni_ic;
7462 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7463 	struct ath_hal *ah = sc->sc_ah;
7464 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7465 	u_int64_t tsf, rstamp, nextslot;
7466 	u_int32_t txtime, nextslottu, timer0;
7467 	int32_t tudelta, tsfdelta;
7468 	const struct ath_rx_status *rs;
7469 	int rix;
7470 
7471 	sc->sc_stats.ast_tdma_update++;
7472 
7473 	/*
7474 	 * Check for and adopt configuration changes.
7475 	 */
7476 	if (changed != 0) {
7477 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7478 
7479 		ath_tdma_bintvalsetup(sc, ts);
7480 
7481 		DPRINTF(sc, ATH_DEBUG_TDMA,
7482 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7483 		    "bintval %u TU\n", __func__,
7484 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7485 		    sc->sc_tdmabintval);
7486 
7487 		ath_beaconq_config(sc);
7488 		/* XXX right? */
7489 		ath_hal_intrset(ah, sc->sc_imask);
7490 		/* NB: beacon timers programmed below */
7491 	}
7492 
7493 	/* extend rx timestamp to 64 bits */
7494 	tsf = ath_hal_gettsf64(ah);
7495 	rstamp = ath_extend_tsf(ni->ni_rstamp, tsf);
7496 	/*
7497 	 * The rx timestamp is set by the hardware on completing
7498 	 * reception (at the point where the rx descriptor is DMA'd
7499 	 * to the host).  To find the start of our next slot we
7500 	 * must adjust this time by the time required to send
7501 	 * the packet just received.
7502 	 */
7503 	rs = sc->sc_tdmars;
7504 	rix = rt->rateCodeToIndex[rs->rs_rate];
7505 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7506 	    rt->info[rix].shortPreamble);
7507 	/* NB: << 9 is to cvt to TU and /2 */
7508 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7509 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7510 
7511 	/*
7512 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7513 	 * to usecs and calculate the difference between what the
7514 	 * other station thinks and what we have programmed.  This
7515 	 * lets us figure how to adjust our timers to match.  The
7516 	 * adjustments are done by pulling the TSF forward and possibly
7517 	 * rewriting the beacon timers.
7518 	 */
7519 	timer0 = ath_hal_getnexttbtt(ah);
7520 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7521 
7522 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7523 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7524 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7525 
7526 	if (tsfdelta < 0) {
7527 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7528 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7529 		tsfdelta = -tsfdelta % 1024;
7530 		nextslottu++;
7531 	} else if (tsfdelta > 0) {
7532 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7533 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7534 		tsfdelta = 1024 - (tsfdelta % 1024);
7535 		nextslottu++;
7536 	} else {
7537 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7538 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7539 	}
7540 	tudelta = nextslottu - timer0;
7541 
7542 	/*
7543 	 * Copy sender's timetstamp into tdma ie so they can
7544 	 * calculate roundtrip time.  We submit a beacon frame
7545 	 * below after any timer adjustment.  The frame goes out
7546 	 * at the next TBTT so the sender can calculate the
7547 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7548 	 *
7549 	 * NB: This tstamp is subtlely preserved when
7550 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7551 	 *     slot position changes) because ieee80211_add_tdma
7552 	 *     skips over the data.
7553 	 */
7554 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7555 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7556 		&ni->ni_tstamp.data, 8);
7557 #if 0
7558 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7559 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7560 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7561 	    (int)(nextslot - tsf), tsfdelta,
7562 	    nextslottu, timer0, tudelta);
7563 #endif
7564 	/*
7565 	 * Adjust the beacon timers only when pulling them forward
7566 	 * or when going back by less than the beacon interval.
7567 	 * Negative jumps larger than the beacon interval seem to
7568 	 * cause the timers to stop and generally cause instability.
7569 	 * This basically filters out jumps due to missed beacons.
7570 	 */
7571 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7572 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7573 		sc->sc_stats.ast_tdma_timers++;
7574 	}
7575 	if (tsfdelta > 0) {
7576 		ath_hal_adjusttsf(ah, tsfdelta);
7577 		sc->sc_stats.ast_tdma_tsf++;
7578 	}
7579 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7580 #undef TU_TO_TSF
7581 #undef TSF_TO_TU
7582 }
7583 
7584 /*
7585  * Transmit a beacon frame at SWBA.  Dynamic updates
7586  * to the frame contents are done as needed.
7587  */
7588 static void
7589 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7590 {
7591 	struct ath_hal *ah = sc->sc_ah;
7592 	struct ath_buf *bf;
7593 	int otherant;
7594 
7595 	/*
7596 	 * Check if the previous beacon has gone out.  If
7597 	 * not don't try to post another, skip this period
7598 	 * and wait for the next.  Missed beacons indicate
7599 	 * a problem and should not occur.  If we miss too
7600 	 * many consecutive beacons reset the device.
7601 	 */
7602 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7603 		sc->sc_bmisscount++;
7604 		DPRINTF(sc, ATH_DEBUG_BEACON,
7605 			"%s: missed %u consecutive beacons\n",
7606 			__func__, sc->sc_bmisscount);
7607 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7608 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7609 		return;
7610 	}
7611 	if (sc->sc_bmisscount != 0) {
7612 		DPRINTF(sc, ATH_DEBUG_BEACON,
7613 			"%s: resume beacon xmit after %u misses\n",
7614 			__func__, sc->sc_bmisscount);
7615 		sc->sc_bmisscount = 0;
7616 	}
7617 
7618 	/*
7619 	 * Check recent per-antenna transmit statistics and flip
7620 	 * the default antenna if noticeably more frames went out
7621 	 * on the non-default antenna.
7622 	 * XXX assumes 2 anntenae
7623 	 */
7624 	if (!sc->sc_diversity) {
7625 		otherant = sc->sc_defant & 1 ? 2 : 1;
7626 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7627 			ath_setdefantenna(sc, otherant);
7628 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7629 	}
7630 
7631 	bf = ath_beacon_generate(sc, vap);
7632 	if (bf != NULL) {
7633 		/*
7634 		 * Stop any current dma and put the new frame on the queue.
7635 		 * This should never fail since we check above that no frames
7636 		 * are still pending on the queue.
7637 		 */
7638 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7639 			DPRINTF(sc, ATH_DEBUG_ANY,
7640 				"%s: beacon queue %u did not stop?\n",
7641 				__func__, sc->sc_bhalq);
7642 			/* NB: the HAL still stops DMA, so proceed */
7643 		}
7644 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7645 		ath_hal_txstart(ah, sc->sc_bhalq);
7646 
7647 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7648 
7649 		/*
7650 		 * Record local TSF for our last send for use
7651 		 * in arbitrating slot collisions.
7652 		 */
7653 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7654 	}
7655 }
7656 #endif /* ATH_SUPPORT_TDMA */
7657