xref: /freebsd/sys/dev/ath/if_ath.c (revision d184218c18d067f8fd47203f54ab02a7b2ed9b11)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_ath_spectral.h>
115 #include <dev/ath/if_athdfs.h>
116 
117 #ifdef ATH_TX99_DIAG
118 #include <dev/ath/ath_tx99/ath_tx99.h>
119 #endif
120 
121 #ifdef	ATH_DEBUG_ALQ
122 #include <dev/ath/if_ath_alq.h>
123 #endif
124 
125 /*
126  * Only enable this if you're working on PS-POLL support.
127  */
128 #undef	ATH_SW_PSQ
129 
130 /*
131  * ATH_BCBUF determines the number of vap's that can transmit
132  * beacons and also (currently) the number of vap's that can
133  * have unique mac addresses/bssid.  When staggering beacons
134  * 4 is probably a good max as otherwise the beacons become
135  * very closely spaced and there is limited time for cab q traffic
136  * to go out.  You can burst beacons instead but that is not good
137  * for stations in power save and at some point you really want
138  * another radio (and channel).
139  *
140  * The limit on the number of mac addresses is tied to our use of
141  * the U/L bit and tracking addresses in a byte; it would be
142  * worthwhile to allow more for applications like proxy sta.
143  */
144 CTASSERT(ATH_BCBUF <= 8);
145 
146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
147 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
148 		    const uint8_t [IEEE80211_ADDR_LEN],
149 		    const uint8_t [IEEE80211_ADDR_LEN]);
150 static void	ath_vap_delete(struct ieee80211vap *);
151 static void	ath_init(void *);
152 static void	ath_stop_locked(struct ifnet *);
153 static void	ath_stop(struct ifnet *);
154 static int	ath_reset_vap(struct ieee80211vap *, u_long);
155 static void	ath_start_queue(struct ifnet *ifp);
156 static int	ath_media_change(struct ifnet *);
157 static void	ath_watchdog(void *);
158 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
159 static void	ath_fatal_proc(void *, int);
160 static void	ath_bmiss_vap(struct ieee80211vap *);
161 static void	ath_bmiss_proc(void *, int);
162 static void	ath_key_update_begin(struct ieee80211vap *);
163 static void	ath_key_update_end(struct ieee80211vap *);
164 static void	ath_update_mcast(struct ifnet *);
165 static void	ath_update_promisc(struct ifnet *);
166 static void	ath_updateslot(struct ifnet *);
167 static void	ath_bstuck_proc(void *, int);
168 static void	ath_reset_proc(void *, int);
169 static int	ath_desc_alloc(struct ath_softc *);
170 static void	ath_desc_free(struct ath_softc *);
171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
172 			const uint8_t [IEEE80211_ADDR_LEN]);
173 static void	ath_node_cleanup(struct ieee80211_node *);
174 static void	ath_node_free(struct ieee80211_node *);
175 static void	ath_node_getsignal(const struct ieee80211_node *,
176 			int8_t *, int8_t *);
177 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
179 static int	ath_tx_setup(struct ath_softc *, int, int);
180 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
181 static void	ath_tx_cleanup(struct ath_softc *);
182 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
183 		    int dosched);
184 static void	ath_tx_proc_q0(void *, int);
185 static void	ath_tx_proc_q0123(void *, int);
186 static void	ath_tx_proc(void *, int);
187 static void	ath_txq_sched_tasklet(void *, int);
188 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void	ath_scan_start(struct ieee80211com *);
191 static void	ath_scan_end(struct ieee80211com *);
192 static void	ath_set_channel(struct ieee80211com *);
193 #ifdef	ATH_ENABLE_11N
194 static void	ath_update_chw(struct ieee80211com *);
195 #endif	/* ATH_ENABLE_11N */
196 static void	ath_calibrate(void *);
197 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	ath_setup_stationkey(struct ieee80211_node *);
199 static void	ath_newassoc(struct ieee80211_node *, int);
200 static int	ath_setregdomain(struct ieee80211com *,
201 		    struct ieee80211_regdomain *, int,
202 		    struct ieee80211_channel []);
203 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204 		    struct ieee80211_channel []);
205 static int	ath_getchannels(struct ath_softc *);
206 
207 static int	ath_rate_setup(struct ath_softc *, u_int mode);
208 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
209 
210 static void	ath_announce(struct ath_softc *);
211 
212 static void	ath_dfs_tasklet(void *, int);
213 static void	ath_node_powersave(struct ieee80211_node *, int);
214 static int	ath_node_set_tim(struct ieee80211_node *, int);
215 
216 #ifdef IEEE80211_SUPPORT_TDMA
217 #include <dev/ath/if_ath_tdma.h>
218 #endif
219 
220 SYSCTL_DECL(_hw_ath);
221 
222 /* XXX validate sysctl values */
223 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
225 	    0, "long chip calibration interval (secs)");
226 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
228 	    0, "short chip calibration interval (msecs)");
229 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
231 	    0, "reset chip calibration results (secs)");
232 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
234 	    0, "ANI calibration (msecs)");
235 
236 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
238 	    0, "rx buffers allocated");
239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
240 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
242 	    0, "tx buffers allocated");
243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
246 	    0, "tx (mgmt) buffers allocated");
247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
248 
249 int ath_bstuck_threshold = 4;		/* max missed beacons */
250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
251 	    0, "max missed beacon xmits before chip reset");
252 
253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
254 
255 void
256 ath_legacy_attach_comp_func(struct ath_softc *sc)
257 {
258 
259 	/*
260 	 * Special case certain configurations.  Note the
261 	 * CAB queue is handled by these specially so don't
262 	 * include them when checking the txq setup mask.
263 	 */
264 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
265 	case 0x01:
266 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
267 		break;
268 	case 0x0f:
269 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
270 		break;
271 	default:
272 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
273 		break;
274 	}
275 }
276 
277 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
278 #define	HAL_MODE_HT40 \
279 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
280 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
281 int
282 ath_attach(u_int16_t devid, struct ath_softc *sc)
283 {
284 	struct ifnet *ifp;
285 	struct ieee80211com *ic;
286 	struct ath_hal *ah = NULL;
287 	HAL_STATUS status;
288 	int error = 0, i;
289 	u_int wmodes;
290 	uint8_t macaddr[IEEE80211_ADDR_LEN];
291 	int rx_chainmask, tx_chainmask;
292 
293 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
294 
295 	CURVNET_SET(vnet0);
296 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
297 	if (ifp == NULL) {
298 		device_printf(sc->sc_dev, "can not if_alloc()\n");
299 		error = ENOSPC;
300 		CURVNET_RESTORE();
301 		goto bad;
302 	}
303 	ic = ifp->if_l2com;
304 
305 	/* set these up early for if_printf use */
306 	if_initname(ifp, device_get_name(sc->sc_dev),
307 		device_get_unit(sc->sc_dev));
308 	CURVNET_RESTORE();
309 
310 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
311 	    sc->sc_eepromdata, &status);
312 	if (ah == NULL) {
313 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314 			status);
315 		error = ENXIO;
316 		goto bad;
317 	}
318 	sc->sc_ah = ah;
319 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
320 #ifdef	ATH_DEBUG
321 	sc->sc_debug = ath_debug;
322 #endif
323 
324 	/*
325 	 * Setup the DMA/EDMA functions based on the current
326 	 * hardware support.
327 	 *
328 	 * This is required before the descriptors are allocated.
329 	 */
330 	if (ath_hal_hasedma(sc->sc_ah)) {
331 		sc->sc_isedma = 1;
332 		ath_recv_setup_edma(sc);
333 		ath_xmit_setup_edma(sc);
334 	} else {
335 		ath_recv_setup_legacy(sc);
336 		ath_xmit_setup_legacy(sc);
337 	}
338 
339 	/*
340 	 * Check if the MAC has multi-rate retry support.
341 	 * We do this by trying to setup a fake extended
342 	 * descriptor.  MAC's that don't have support will
343 	 * return false w/o doing anything.  MAC's that do
344 	 * support it will return true w/o doing anything.
345 	 */
346 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
347 
348 	/*
349 	 * Check if the device has hardware counters for PHY
350 	 * errors.  If so we need to enable the MIB interrupt
351 	 * so we can act on stat triggers.
352 	 */
353 	if (ath_hal_hwphycounters(ah))
354 		sc->sc_needmib = 1;
355 
356 	/*
357 	 * Get the hardware key cache size.
358 	 */
359 	sc->sc_keymax = ath_hal_keycachesize(ah);
360 	if (sc->sc_keymax > ATH_KEYMAX) {
361 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
362 			ATH_KEYMAX, sc->sc_keymax);
363 		sc->sc_keymax = ATH_KEYMAX;
364 	}
365 	/*
366 	 * Reset the key cache since some parts do not
367 	 * reset the contents on initial power up.
368 	 */
369 	for (i = 0; i < sc->sc_keymax; i++)
370 		ath_hal_keyreset(ah, i);
371 
372 	/*
373 	 * Collect the default channel list.
374 	 */
375 	error = ath_getchannels(sc);
376 	if (error != 0)
377 		goto bad;
378 
379 	/*
380 	 * Setup rate tables for all potential media types.
381 	 */
382 	ath_rate_setup(sc, IEEE80211_MODE_11A);
383 	ath_rate_setup(sc, IEEE80211_MODE_11B);
384 	ath_rate_setup(sc, IEEE80211_MODE_11G);
385 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
386 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
387 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
388 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
389 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
390 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
391 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
392 
393 	/* NB: setup here so ath_rate_update is happy */
394 	ath_setcurmode(sc, IEEE80211_MODE_11A);
395 
396 	/*
397 	 * Allocate TX descriptors and populate the lists.
398 	 */
399 	error = ath_desc_alloc(sc);
400 	if (error != 0) {
401 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
402 		    error);
403 		goto bad;
404 	}
405 	error = ath_txdma_setup(sc);
406 	if (error != 0) {
407 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
408 		    error);
409 		goto bad;
410 	}
411 
412 	/*
413 	 * Allocate RX descriptors and populate the lists.
414 	 */
415 	error = ath_rxdma_setup(sc);
416 	if (error != 0) {
417 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
418 		    error);
419 		goto bad;
420 	}
421 
422 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
423 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
424 
425 	ATH_TXBUF_LOCK_INIT(sc);
426 
427 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
428 		taskqueue_thread_enqueue, &sc->sc_tq);
429 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
430 		"%s taskq", ifp->if_xname);
431 
432 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
433 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
434 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
435 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
436 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
437 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
438 
439 	/* XXX make this a higher priority taskqueue? */
440 	TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc);
441 
442 	/*
443 	 * Allocate hardware transmit queues: one queue for
444 	 * beacon frames and one data queue for each QoS
445 	 * priority.  Note that the hal handles resetting
446 	 * these queues at the needed time.
447 	 *
448 	 * XXX PS-Poll
449 	 */
450 	sc->sc_bhalq = ath_beaconq_setup(sc);
451 	if (sc->sc_bhalq == (u_int) -1) {
452 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
453 		error = EIO;
454 		goto bad2;
455 	}
456 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
457 	if (sc->sc_cabq == NULL) {
458 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
459 		error = EIO;
460 		goto bad2;
461 	}
462 	/* NB: insure BK queue is the lowest priority h/w queue */
463 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
464 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
465 			ieee80211_wme_acnames[WME_AC_BK]);
466 		error = EIO;
467 		goto bad2;
468 	}
469 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
470 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
471 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
472 		/*
473 		 * Not enough hardware tx queues to properly do WME;
474 		 * just punt and assign them all to the same h/w queue.
475 		 * We could do a better job of this if, for example,
476 		 * we allocate queues when we switch from station to
477 		 * AP mode.
478 		 */
479 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
480 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
481 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
482 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
483 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
484 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
485 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
486 	}
487 
488 	/*
489 	 * Attach the TX completion function.
490 	 *
491 	 * The non-EDMA chips may have some special case optimisations;
492 	 * this method gives everyone a chance to attach cleanly.
493 	 */
494 	sc->sc_tx.xmit_attach_comp_func(sc);
495 
496 	/*
497 	 * Setup rate control.  Some rate control modules
498 	 * call back to change the anntena state so expose
499 	 * the necessary entry points.
500 	 * XXX maybe belongs in struct ath_ratectrl?
501 	 */
502 	sc->sc_setdefantenna = ath_setdefantenna;
503 	sc->sc_rc = ath_rate_attach(sc);
504 	if (sc->sc_rc == NULL) {
505 		error = EIO;
506 		goto bad2;
507 	}
508 
509 	/* Attach DFS module */
510 	if (! ath_dfs_attach(sc)) {
511 		device_printf(sc->sc_dev,
512 		    "%s: unable to attach DFS\n", __func__);
513 		error = EIO;
514 		goto bad2;
515 	}
516 
517 	/* Attach spectral module */
518 	if (ath_spectral_attach(sc) < 0) {
519 		device_printf(sc->sc_dev,
520 		    "%s: unable to attach spectral\n", __func__);
521 		error = EIO;
522 		goto bad2;
523 	}
524 
525 	/* Start DFS processing tasklet */
526 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
527 
528 	/* Configure LED state */
529 	sc->sc_blinking = 0;
530 	sc->sc_ledstate = 1;
531 	sc->sc_ledon = 0;			/* low true */
532 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
533 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
534 
535 	/*
536 	 * Don't setup hardware-based blinking.
537 	 *
538 	 * Although some NICs may have this configured in the
539 	 * default reset register values, the user may wish
540 	 * to alter which pins have which function.
541 	 *
542 	 * The reference driver attaches the MAC network LED to GPIO1 and
543 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
544 	 * NIC has these reversed.
545 	 */
546 	sc->sc_hardled = (1 == 0);
547 	sc->sc_led_net_pin = -1;
548 	sc->sc_led_pwr_pin = -1;
549 	/*
550 	 * Auto-enable soft led processing for IBM cards and for
551 	 * 5211 minipci cards.  Users can also manually enable/disable
552 	 * support with a sysctl.
553 	 */
554 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
555 	ath_led_config(sc);
556 	ath_hal_setledstate(ah, HAL_LED_INIT);
557 
558 	ifp->if_softc = sc;
559 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
560 	ifp->if_start = ath_start_queue;
561 	ifp->if_ioctl = ath_ioctl;
562 	ifp->if_init = ath_init;
563 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
564 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
565 	IFQ_SET_READY(&ifp->if_snd);
566 
567 	ic->ic_ifp = ifp;
568 	/* XXX not right but it's not used anywhere important */
569 	ic->ic_phytype = IEEE80211_T_OFDM;
570 	ic->ic_opmode = IEEE80211_M_STA;
571 	ic->ic_caps =
572 		  IEEE80211_C_STA		/* station mode */
573 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
574 		| IEEE80211_C_HOSTAP		/* hostap mode */
575 		| IEEE80211_C_MONITOR		/* monitor mode */
576 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
577 		| IEEE80211_C_WDS		/* 4-address traffic works */
578 		| IEEE80211_C_MBSS		/* mesh point link mode */
579 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580 		| IEEE80211_C_SHSLOT		/* short slot time supported */
581 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
582 #ifndef	ATH_ENABLE_11N
583 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
584 #endif
585 		| IEEE80211_C_TXFRAG		/* handle tx frags */
586 #ifdef	ATH_ENABLE_DFS
587 		| IEEE80211_C_DFS		/* Enable radar detection */
588 #endif
589 		;
590 	/*
591 	 * Query the hal to figure out h/w crypto support.
592 	 */
593 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
594 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
595 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
596 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
597 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
598 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
599 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
600 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
601 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
602 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
603 		/*
604 		 * Check if h/w does the MIC and/or whether the
605 		 * separate key cache entries are required to
606 		 * handle both tx+rx MIC keys.
607 		 */
608 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
609 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
610 		/*
611 		 * If the h/w supports storing tx+rx MIC keys
612 		 * in one cache slot automatically enable use.
613 		 */
614 		if (ath_hal_hastkipsplit(ah) ||
615 		    !ath_hal_settkipsplit(ah, AH_FALSE))
616 			sc->sc_splitmic = 1;
617 		/*
618 		 * If the h/w can do TKIP MIC together with WME then
619 		 * we use it; otherwise we force the MIC to be done
620 		 * in software by the net80211 layer.
621 		 */
622 		if (ath_hal_haswmetkipmic(ah))
623 			sc->sc_wmetkipmic = 1;
624 	}
625 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
626 	/*
627 	 * Check for multicast key search support.
628 	 */
629 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
630 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
631 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
632 	}
633 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
634 	/*
635 	 * Mark key cache slots associated with global keys
636 	 * as in use.  If we knew TKIP was not to be used we
637 	 * could leave the +32, +64, and +32+64 slots free.
638 	 */
639 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
640 		setbit(sc->sc_keymap, i);
641 		setbit(sc->sc_keymap, i+64);
642 		if (sc->sc_splitmic) {
643 			setbit(sc->sc_keymap, i+32);
644 			setbit(sc->sc_keymap, i+32+64);
645 		}
646 	}
647 	/*
648 	 * TPC support can be done either with a global cap or
649 	 * per-packet support.  The latter is not available on
650 	 * all parts.  We're a bit pedantic here as all parts
651 	 * support a global cap.
652 	 */
653 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
654 		ic->ic_caps |= IEEE80211_C_TXPMGT;
655 
656 	/*
657 	 * Mark WME capability only if we have sufficient
658 	 * hardware queues to do proper priority scheduling.
659 	 */
660 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
661 		ic->ic_caps |= IEEE80211_C_WME;
662 	/*
663 	 * Check for misc other capabilities.
664 	 */
665 	if (ath_hal_hasbursting(ah))
666 		ic->ic_caps |= IEEE80211_C_BURST;
667 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
668 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
669 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
670 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
671 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
672 	if (ath_hal_hasfastframes(ah))
673 		ic->ic_caps |= IEEE80211_C_FF;
674 	wmodes = ath_hal_getwirelessmodes(ah);
675 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
676 		ic->ic_caps |= IEEE80211_C_TURBOP;
677 #ifdef IEEE80211_SUPPORT_TDMA
678 	if (ath_hal_macversion(ah) > 0x78) {
679 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
680 		ic->ic_tdma_update = ath_tdma_update;
681 	}
682 #endif
683 
684 	/*
685 	 * TODO: enforce that at least this many frames are available
686 	 * in the txbuf list before allowing data frames (raw or
687 	 * otherwise) to be transmitted.
688 	 */
689 	sc->sc_txq_data_minfree = 10;
690 	/*
691 	 * Leave this as default to maintain legacy behaviour.
692 	 * Shortening the cabq/mcastq may end up causing some
693 	 * undesirable behaviour.
694 	 */
695 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
696 
697 	/* Enable CABQ by default */
698 	sc->sc_cabq_enable = 1;
699 
700 	/*
701 	 * Allow the TX and RX chainmasks to be overridden by
702 	 * environment variables and/or device.hints.
703 	 *
704 	 * This must be done early - before the hardware is
705 	 * calibrated or before the 802.11n stream calculation
706 	 * is done.
707 	 */
708 	if (resource_int_value(device_get_name(sc->sc_dev),
709 	    device_get_unit(sc->sc_dev), "rx_chainmask",
710 	    &rx_chainmask) == 0) {
711 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
712 		    rx_chainmask);
713 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
714 	}
715 	if (resource_int_value(device_get_name(sc->sc_dev),
716 	    device_get_unit(sc->sc_dev), "tx_chainmask",
717 	    &tx_chainmask) == 0) {
718 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
719 		    tx_chainmask);
720 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
721 	}
722 
723 	/*
724 	 * Disable MRR with protected frames by default.
725 	 * Only 802.11n series NICs can handle this.
726 	 */
727 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
728 
729 	/*
730 	 * Query the enterprise mode information the HAL.
731 	 */
732 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
733 	    &sc->sc_ent_cfg) == HAL_OK)
734 		sc->sc_use_ent = 1;
735 
736 #ifdef	ATH_ENABLE_11N
737 	/*
738 	 * Query HT capabilities
739 	 */
740 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
741 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
742 		int rxs, txs;
743 
744 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
745 
746 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
747 
748 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
749 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
750 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
751 			    | IEEE80211_HTCAP_MAXAMSDU_3839
752 			    				/* max A-MSDU length */
753 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
754 			;
755 
756 		/*
757 		 * Enable short-GI for HT20 only if the hardware
758 		 * advertises support.
759 		 * Notably, anything earlier than the AR9287 doesn't.
760 		 */
761 		if ((ath_hal_getcapability(ah,
762 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
763 		    (wmodes & HAL_MODE_HT20)) {
764 			device_printf(sc->sc_dev,
765 			    "[HT] enabling short-GI in 20MHz mode\n");
766 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
767 		}
768 
769 		if (wmodes & HAL_MODE_HT40)
770 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
771 			    |  IEEE80211_HTCAP_SHORTGI40;
772 
773 		/*
774 		 * TX/RX streams need to be taken into account when
775 		 * negotiating which MCS rates it'll receive and
776 		 * what MCS rates are available for TX.
777 		 */
778 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
779 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
780 
781 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
782 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
783 
784 		ic->ic_txstream = txs;
785 		ic->ic_rxstream = rxs;
786 
787 		/*
788 		 * Setup TX and RX STBC based on what the HAL allows and
789 		 * the currently configured chainmask set.
790 		 * Ie - don't enable STBC TX if only one chain is enabled.
791 		 * STBC RX is fine on a single RX chain; it just won't
792 		 * provide any real benefit.
793 		 */
794 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
795 		    NULL) == HAL_OK) {
796 			sc->sc_rx_stbc = 1;
797 			device_printf(sc->sc_dev,
798 			    "[HT] 1 stream STBC receive enabled\n");
799 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
800 		}
801 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
802 		    NULL) == HAL_OK) {
803 			sc->sc_tx_stbc = 1;
804 			device_printf(sc->sc_dev,
805 			    "[HT] 1 stream STBC transmit enabled\n");
806 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
807 		}
808 
809 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
810 		    &sc->sc_rts_aggr_limit);
811 		if (sc->sc_rts_aggr_limit != (64 * 1024))
812 			device_printf(sc->sc_dev,
813 			    "[HT] RTS aggregates limited to %d KiB\n",
814 			    sc->sc_rts_aggr_limit / 1024);
815 
816 		device_printf(sc->sc_dev,
817 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
818 	}
819 #endif
820 
821 	/*
822 	 * Initial aggregation settings.
823 	 */
824 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
825 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
826 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
827 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
828 	sc->sc_delim_min_pad = 0;
829 
830 	/*
831 	 * Check if the hardware requires PCI register serialisation.
832 	 * Some of the Owl based MACs require this.
833 	 */
834 	if (mp_ncpus > 1 &&
835 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
836 	     0, NULL) == HAL_OK) {
837 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
838 		device_printf(sc->sc_dev,
839 		    "Enabling register serialisation\n");
840 	}
841 
842 	/*
843 	 * Initialise the deferred completed RX buffer list.
844 	 */
845 	TAILQ_INIT(&sc->sc_rx_rxlist);
846 
847 	/*
848 	 * Indicate we need the 802.11 header padded to a
849 	 * 32-bit boundary for 4-address and QoS frames.
850 	 */
851 	ic->ic_flags |= IEEE80211_F_DATAPAD;
852 
853 	/*
854 	 * Query the hal about antenna support.
855 	 */
856 	sc->sc_defant = ath_hal_getdefantenna(ah);
857 
858 	/*
859 	 * Not all chips have the VEOL support we want to
860 	 * use with IBSS beacons; check here for it.
861 	 */
862 	sc->sc_hasveol = ath_hal_hasveol(ah);
863 
864 	/* get mac address from hardware */
865 	ath_hal_getmac(ah, macaddr);
866 	if (sc->sc_hasbmask)
867 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
868 
869 	/* NB: used to size node table key mapping array */
870 	ic->ic_max_keyix = sc->sc_keymax;
871 	/* call MI attach routine. */
872 	ieee80211_ifattach(ic, macaddr);
873 	ic->ic_setregdomain = ath_setregdomain;
874 	ic->ic_getradiocaps = ath_getradiocaps;
875 	sc->sc_opmode = HAL_M_STA;
876 
877 	/* override default methods */
878 	ic->ic_newassoc = ath_newassoc;
879 	ic->ic_updateslot = ath_updateslot;
880 	ic->ic_wme.wme_update = ath_wme_update;
881 	ic->ic_vap_create = ath_vap_create;
882 	ic->ic_vap_delete = ath_vap_delete;
883 	ic->ic_raw_xmit = ath_raw_xmit;
884 	ic->ic_update_mcast = ath_update_mcast;
885 	ic->ic_update_promisc = ath_update_promisc;
886 	ic->ic_node_alloc = ath_node_alloc;
887 	sc->sc_node_free = ic->ic_node_free;
888 	ic->ic_node_free = ath_node_free;
889 	sc->sc_node_cleanup = ic->ic_node_cleanup;
890 	ic->ic_node_cleanup = ath_node_cleanup;
891 	ic->ic_node_getsignal = ath_node_getsignal;
892 	ic->ic_scan_start = ath_scan_start;
893 	ic->ic_scan_end = ath_scan_end;
894 	ic->ic_set_channel = ath_set_channel;
895 #ifdef	ATH_ENABLE_11N
896 	/* 802.11n specific - but just override anyway */
897 	sc->sc_addba_request = ic->ic_addba_request;
898 	sc->sc_addba_response = ic->ic_addba_response;
899 	sc->sc_addba_stop = ic->ic_addba_stop;
900 	sc->sc_bar_response = ic->ic_bar_response;
901 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
902 
903 	ic->ic_addba_request = ath_addba_request;
904 	ic->ic_addba_response = ath_addba_response;
905 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
906 	ic->ic_addba_stop = ath_addba_stop;
907 	ic->ic_bar_response = ath_bar_response;
908 
909 	ic->ic_update_chw = ath_update_chw;
910 #endif	/* ATH_ENABLE_11N */
911 
912 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
913 	/*
914 	 * There's one vendor bitmap entry in the RX radiotap
915 	 * header; make sure that's taken into account.
916 	 */
917 	ieee80211_radiotap_attachv(ic,
918 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
919 		ATH_TX_RADIOTAP_PRESENT,
920 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
921 		ATH_RX_RADIOTAP_PRESENT);
922 #else
923 	/*
924 	 * No vendor bitmap/extensions are present.
925 	 */
926 	ieee80211_radiotap_attach(ic,
927 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
928 		ATH_TX_RADIOTAP_PRESENT,
929 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
930 		ATH_RX_RADIOTAP_PRESENT);
931 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
932 
933 	/*
934 	 * Setup the ALQ logging if required
935 	 */
936 #ifdef	ATH_DEBUG_ALQ
937 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
938 	if_ath_alq_setcfg(&sc->sc_alq,
939 	    sc->sc_ah->ah_macVersion,
940 	    sc->sc_ah->ah_macRev,
941 	    sc->sc_ah->ah_phyRev,
942 	    sc->sc_ah->ah_magic);
943 #endif
944 
945 	/*
946 	 * Setup dynamic sysctl's now that country code and
947 	 * regdomain are available from the hal.
948 	 */
949 	ath_sysctlattach(sc);
950 	ath_sysctl_stats_attach(sc);
951 	ath_sysctl_hal_attach(sc);
952 
953 	if (bootverbose)
954 		ieee80211_announce(ic);
955 	ath_announce(sc);
956 	return 0;
957 bad2:
958 	ath_tx_cleanup(sc);
959 	ath_desc_free(sc);
960 	ath_txdma_teardown(sc);
961 	ath_rxdma_teardown(sc);
962 bad:
963 	if (ah)
964 		ath_hal_detach(ah);
965 
966 	/*
967 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
968 	 */
969 	if (ifp != NULL && ifp->if_vnet) {
970 		CURVNET_SET(ifp->if_vnet);
971 		if_free(ifp);
972 		CURVNET_RESTORE();
973 	} else if (ifp != NULL)
974 		if_free(ifp);
975 	sc->sc_invalid = 1;
976 	return error;
977 }
978 
979 int
980 ath_detach(struct ath_softc *sc)
981 {
982 	struct ifnet *ifp = sc->sc_ifp;
983 
984 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
985 		__func__, ifp->if_flags);
986 
987 	/*
988 	 * NB: the order of these is important:
989 	 * o stop the chip so no more interrupts will fire
990 	 * o call the 802.11 layer before detaching the hal to
991 	 *   insure callbacks into the driver to delete global
992 	 *   key cache entries can be handled
993 	 * o free the taskqueue which drains any pending tasks
994 	 * o reclaim the tx queue data structures after calling
995 	 *   the 802.11 layer as we'll get called back to reclaim
996 	 *   node state and potentially want to use them
997 	 * o to cleanup the tx queues the hal is called, so detach
998 	 *   it last
999 	 * Other than that, it's straightforward...
1000 	 */
1001 	ath_stop(ifp);
1002 	ieee80211_ifdetach(ifp->if_l2com);
1003 	taskqueue_free(sc->sc_tq);
1004 #ifdef ATH_TX99_DIAG
1005 	if (sc->sc_tx99 != NULL)
1006 		sc->sc_tx99->detach(sc->sc_tx99);
1007 #endif
1008 	ath_rate_detach(sc->sc_rc);
1009 #ifdef	ATH_DEBUG_ALQ
1010 	if_ath_alq_tidyup(&sc->sc_alq);
1011 #endif
1012 	ath_spectral_detach(sc);
1013 	ath_dfs_detach(sc);
1014 	ath_desc_free(sc);
1015 	ath_txdma_teardown(sc);
1016 	ath_rxdma_teardown(sc);
1017 	ath_tx_cleanup(sc);
1018 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1019 
1020 	CURVNET_SET(ifp->if_vnet);
1021 	if_free(ifp);
1022 	CURVNET_RESTORE();
1023 
1024 	return 0;
1025 }
1026 
1027 /*
1028  * MAC address handling for multiple BSS on the same radio.
1029  * The first vap uses the MAC address from the EEPROM.  For
1030  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1031  * address and use the next six bits as an index.
1032  */
1033 static void
1034 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1035 {
1036 	int i;
1037 
1038 	if (clone && sc->sc_hasbmask) {
1039 		/* NB: we only do this if h/w supports multiple bssid */
1040 		for (i = 0; i < 8; i++)
1041 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1042 				break;
1043 		if (i != 0)
1044 			mac[0] |= (i << 2)|0x2;
1045 	} else
1046 		i = 0;
1047 	sc->sc_bssidmask |= 1<<i;
1048 	sc->sc_hwbssidmask[0] &= ~mac[0];
1049 	if (i == 0)
1050 		sc->sc_nbssid0++;
1051 }
1052 
1053 static void
1054 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1055 {
1056 	int i = mac[0] >> 2;
1057 	uint8_t mask;
1058 
1059 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1060 		sc->sc_bssidmask &= ~(1<<i);
1061 		/* recalculate bssid mask from remaining addresses */
1062 		mask = 0xff;
1063 		for (i = 1; i < 8; i++)
1064 			if (sc->sc_bssidmask & (1<<i))
1065 				mask &= ~((i<<2)|0x2);
1066 		sc->sc_hwbssidmask[0] |= mask;
1067 	}
1068 }
1069 
1070 /*
1071  * Assign a beacon xmit slot.  We try to space out
1072  * assignments so when beacons are staggered the
1073  * traffic coming out of the cab q has maximal time
1074  * to go out before the next beacon is scheduled.
1075  */
1076 static int
1077 assign_bslot(struct ath_softc *sc)
1078 {
1079 	u_int slot, free;
1080 
1081 	free = 0;
1082 	for (slot = 0; slot < ATH_BCBUF; slot++)
1083 		if (sc->sc_bslot[slot] == NULL) {
1084 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1085 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1086 				return slot;
1087 			free = slot;
1088 			/* NB: keep looking for a double slot */
1089 		}
1090 	return free;
1091 }
1092 
1093 static struct ieee80211vap *
1094 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1095     enum ieee80211_opmode opmode, int flags,
1096     const uint8_t bssid[IEEE80211_ADDR_LEN],
1097     const uint8_t mac0[IEEE80211_ADDR_LEN])
1098 {
1099 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1100 	struct ath_vap *avp;
1101 	struct ieee80211vap *vap;
1102 	uint8_t mac[IEEE80211_ADDR_LEN];
1103 	int needbeacon, error;
1104 	enum ieee80211_opmode ic_opmode;
1105 
1106 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1107 	    M_80211_VAP, M_WAITOK | M_ZERO);
1108 	needbeacon = 0;
1109 	IEEE80211_ADDR_COPY(mac, mac0);
1110 
1111 	ATH_LOCK(sc);
1112 	ic_opmode = opmode;		/* default to opmode of new vap */
1113 	switch (opmode) {
1114 	case IEEE80211_M_STA:
1115 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1116 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1117 			goto bad;
1118 		}
1119 		if (sc->sc_nvaps) {
1120 			/*
1121 			 * With multiple vaps we must fall back
1122 			 * to s/w beacon miss handling.
1123 			 */
1124 			flags |= IEEE80211_CLONE_NOBEACONS;
1125 		}
1126 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1127 			/*
1128 			 * Station mode w/o beacons are implemented w/ AP mode.
1129 			 */
1130 			ic_opmode = IEEE80211_M_HOSTAP;
1131 		}
1132 		break;
1133 	case IEEE80211_M_IBSS:
1134 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1135 			device_printf(sc->sc_dev,
1136 			    "only 1 ibss vap supported\n");
1137 			goto bad;
1138 		}
1139 		needbeacon = 1;
1140 		break;
1141 	case IEEE80211_M_AHDEMO:
1142 #ifdef IEEE80211_SUPPORT_TDMA
1143 		if (flags & IEEE80211_CLONE_TDMA) {
1144 			if (sc->sc_nvaps != 0) {
1145 				device_printf(sc->sc_dev,
1146 				    "only 1 tdma vap supported\n");
1147 				goto bad;
1148 			}
1149 			needbeacon = 1;
1150 			flags |= IEEE80211_CLONE_NOBEACONS;
1151 		}
1152 		/* fall thru... */
1153 #endif
1154 	case IEEE80211_M_MONITOR:
1155 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1156 			/*
1157 			 * Adopt existing mode.  Adding a monitor or ahdemo
1158 			 * vap to an existing configuration is of dubious
1159 			 * value but should be ok.
1160 			 */
1161 			/* XXX not right for monitor mode */
1162 			ic_opmode = ic->ic_opmode;
1163 		}
1164 		break;
1165 	case IEEE80211_M_HOSTAP:
1166 	case IEEE80211_M_MBSS:
1167 		needbeacon = 1;
1168 		break;
1169 	case IEEE80211_M_WDS:
1170 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1171 			device_printf(sc->sc_dev,
1172 			    "wds not supported in sta mode\n");
1173 			goto bad;
1174 		}
1175 		/*
1176 		 * Silently remove any request for a unique
1177 		 * bssid; WDS vap's always share the local
1178 		 * mac address.
1179 		 */
1180 		flags &= ~IEEE80211_CLONE_BSSID;
1181 		if (sc->sc_nvaps == 0)
1182 			ic_opmode = IEEE80211_M_HOSTAP;
1183 		else
1184 			ic_opmode = ic->ic_opmode;
1185 		break;
1186 	default:
1187 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1188 		goto bad;
1189 	}
1190 	/*
1191 	 * Check that a beacon buffer is available; the code below assumes it.
1192 	 */
1193 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1194 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1195 		goto bad;
1196 	}
1197 
1198 	/* STA, AHDEMO? */
1199 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1200 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1201 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1202 	}
1203 
1204 	vap = &avp->av_vap;
1205 	/* XXX can't hold mutex across if_alloc */
1206 	ATH_UNLOCK(sc);
1207 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1208 	    bssid, mac);
1209 	ATH_LOCK(sc);
1210 	if (error != 0) {
1211 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1212 		    __func__, error);
1213 		goto bad2;
1214 	}
1215 
1216 	/* h/w crypto support */
1217 	vap->iv_key_alloc = ath_key_alloc;
1218 	vap->iv_key_delete = ath_key_delete;
1219 	vap->iv_key_set = ath_key_set;
1220 	vap->iv_key_update_begin = ath_key_update_begin;
1221 	vap->iv_key_update_end = ath_key_update_end;
1222 
1223 	/* override various methods */
1224 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1225 	vap->iv_recv_mgmt = ath_recv_mgmt;
1226 	vap->iv_reset = ath_reset_vap;
1227 	vap->iv_update_beacon = ath_beacon_update;
1228 	avp->av_newstate = vap->iv_newstate;
1229 	vap->iv_newstate = ath_newstate;
1230 	avp->av_bmiss = vap->iv_bmiss;
1231 	vap->iv_bmiss = ath_bmiss_vap;
1232 
1233 	avp->av_node_ps = vap->iv_node_ps;
1234 	vap->iv_node_ps = ath_node_powersave;
1235 
1236 	avp->av_set_tim = vap->iv_set_tim;
1237 	vap->iv_set_tim = ath_node_set_tim;
1238 
1239 	/* Set default parameters */
1240 
1241 	/*
1242 	 * Anything earlier than some AR9300 series MACs don't
1243 	 * support a smaller MPDU density.
1244 	 */
1245 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1246 	/*
1247 	 * All NICs can handle the maximum size, however
1248 	 * AR5416 based MACs can only TX aggregates w/ RTS
1249 	 * protection when the total aggregate size is <= 8k.
1250 	 * However, for now that's enforced by the TX path.
1251 	 */
1252 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1253 
1254 	avp->av_bslot = -1;
1255 	if (needbeacon) {
1256 		/*
1257 		 * Allocate beacon state and setup the q for buffered
1258 		 * multicast frames.  We know a beacon buffer is
1259 		 * available because we checked above.
1260 		 */
1261 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1262 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1263 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1264 			/*
1265 			 * Assign the vap to a beacon xmit slot.  As above
1266 			 * this cannot fail to find a free one.
1267 			 */
1268 			avp->av_bslot = assign_bslot(sc);
1269 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1270 			    ("beacon slot %u not empty", avp->av_bslot));
1271 			sc->sc_bslot[avp->av_bslot] = vap;
1272 			sc->sc_nbcnvaps++;
1273 		}
1274 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1275 			/*
1276 			 * Multple vaps are to transmit beacons and we
1277 			 * have h/w support for TSF adjusting; enable
1278 			 * use of staggered beacons.
1279 			 */
1280 			sc->sc_stagbeacons = 1;
1281 		}
1282 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1283 	}
1284 
1285 	ic->ic_opmode = ic_opmode;
1286 	if (opmode != IEEE80211_M_WDS) {
1287 		sc->sc_nvaps++;
1288 		if (opmode == IEEE80211_M_STA)
1289 			sc->sc_nstavaps++;
1290 		if (opmode == IEEE80211_M_MBSS)
1291 			sc->sc_nmeshvaps++;
1292 	}
1293 	switch (ic_opmode) {
1294 	case IEEE80211_M_IBSS:
1295 		sc->sc_opmode = HAL_M_IBSS;
1296 		break;
1297 	case IEEE80211_M_STA:
1298 		sc->sc_opmode = HAL_M_STA;
1299 		break;
1300 	case IEEE80211_M_AHDEMO:
1301 #ifdef IEEE80211_SUPPORT_TDMA
1302 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1303 			sc->sc_tdma = 1;
1304 			/* NB: disable tsf adjust */
1305 			sc->sc_stagbeacons = 0;
1306 		}
1307 		/*
1308 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1309 		 * just ap mode.
1310 		 */
1311 		/* fall thru... */
1312 #endif
1313 	case IEEE80211_M_HOSTAP:
1314 	case IEEE80211_M_MBSS:
1315 		sc->sc_opmode = HAL_M_HOSTAP;
1316 		break;
1317 	case IEEE80211_M_MONITOR:
1318 		sc->sc_opmode = HAL_M_MONITOR;
1319 		break;
1320 	default:
1321 		/* XXX should not happen */
1322 		break;
1323 	}
1324 	if (sc->sc_hastsfadd) {
1325 		/*
1326 		 * Configure whether or not TSF adjust should be done.
1327 		 */
1328 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1329 	}
1330 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1331 		/*
1332 		 * Enable s/w beacon miss handling.
1333 		 */
1334 		sc->sc_swbmiss = 1;
1335 	}
1336 	ATH_UNLOCK(sc);
1337 
1338 	/* complete setup */
1339 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1340 	return vap;
1341 bad2:
1342 	reclaim_address(sc, mac);
1343 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1344 bad:
1345 	free(avp, M_80211_VAP);
1346 	ATH_UNLOCK(sc);
1347 	return NULL;
1348 }
1349 
1350 static void
1351 ath_vap_delete(struct ieee80211vap *vap)
1352 {
1353 	struct ieee80211com *ic = vap->iv_ic;
1354 	struct ifnet *ifp = ic->ic_ifp;
1355 	struct ath_softc *sc = ifp->if_softc;
1356 	struct ath_hal *ah = sc->sc_ah;
1357 	struct ath_vap *avp = ATH_VAP(vap);
1358 
1359 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1360 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1361 		/*
1362 		 * Quiesce the hardware while we remove the vap.  In
1363 		 * particular we need to reclaim all references to
1364 		 * the vap state by any frames pending on the tx queues.
1365 		 */
1366 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1367 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1368 		/* XXX Do all frames from all vaps/nodes need draining here? */
1369 		ath_stoprecv(sc, 1);		/* stop recv side */
1370 	}
1371 
1372 	ieee80211_vap_detach(vap);
1373 
1374 	/*
1375 	 * XXX Danger Will Robinson! Danger!
1376 	 *
1377 	 * Because ieee80211_vap_detach() can queue a frame (the station
1378 	 * diassociate message?) after we've drained the TXQ and
1379 	 * flushed the software TXQ, we will end up with a frame queued
1380 	 * to a node whose vap is about to be freed.
1381 	 *
1382 	 * To work around this, flush the hardware/software again.
1383 	 * This may be racy - the ath task may be running and the packet
1384 	 * may be being scheduled between sw->hw txq. Tsk.
1385 	 *
1386 	 * TODO: figure out why a new node gets allocated somewhere around
1387 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1388 	 * call!)
1389 	 */
1390 
1391 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1392 
1393 	ATH_LOCK(sc);
1394 	/*
1395 	 * Reclaim beacon state.  Note this must be done before
1396 	 * the vap instance is reclaimed as we may have a reference
1397 	 * to it in the buffer for the beacon frame.
1398 	 */
1399 	if (avp->av_bcbuf != NULL) {
1400 		if (avp->av_bslot != -1) {
1401 			sc->sc_bslot[avp->av_bslot] = NULL;
1402 			sc->sc_nbcnvaps--;
1403 		}
1404 		ath_beacon_return(sc, avp->av_bcbuf);
1405 		avp->av_bcbuf = NULL;
1406 		if (sc->sc_nbcnvaps == 0) {
1407 			sc->sc_stagbeacons = 0;
1408 			if (sc->sc_hastsfadd)
1409 				ath_hal_settsfadjust(sc->sc_ah, 0);
1410 		}
1411 		/*
1412 		 * Reclaim any pending mcast frames for the vap.
1413 		 */
1414 		ath_tx_draintxq(sc, &avp->av_mcastq);
1415 	}
1416 	/*
1417 	 * Update bookkeeping.
1418 	 */
1419 	if (vap->iv_opmode == IEEE80211_M_STA) {
1420 		sc->sc_nstavaps--;
1421 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1422 			sc->sc_swbmiss = 0;
1423 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1424 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1425 		reclaim_address(sc, vap->iv_myaddr);
1426 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1427 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1428 			sc->sc_nmeshvaps--;
1429 	}
1430 	if (vap->iv_opmode != IEEE80211_M_WDS)
1431 		sc->sc_nvaps--;
1432 #ifdef IEEE80211_SUPPORT_TDMA
1433 	/* TDMA operation ceases when the last vap is destroyed */
1434 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1435 		sc->sc_tdma = 0;
1436 		sc->sc_swbmiss = 0;
1437 	}
1438 #endif
1439 	free(avp, M_80211_VAP);
1440 
1441 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1442 		/*
1443 		 * Restart rx+tx machines if still running (RUNNING will
1444 		 * be reset if we just destroyed the last vap).
1445 		 */
1446 		if (ath_startrecv(sc) != 0)
1447 			if_printf(ifp, "%s: unable to restart recv logic\n",
1448 			    __func__);
1449 		if (sc->sc_beacons) {		/* restart beacons */
1450 #ifdef IEEE80211_SUPPORT_TDMA
1451 			if (sc->sc_tdma)
1452 				ath_tdma_config(sc, NULL);
1453 			else
1454 #endif
1455 				ath_beacon_config(sc, NULL);
1456 		}
1457 		ath_hal_intrset(ah, sc->sc_imask);
1458 	}
1459 	ATH_UNLOCK(sc);
1460 }
1461 
1462 void
1463 ath_suspend(struct ath_softc *sc)
1464 {
1465 	struct ifnet *ifp = sc->sc_ifp;
1466 	struct ieee80211com *ic = ifp->if_l2com;
1467 
1468 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1469 		__func__, ifp->if_flags);
1470 
1471 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1472 
1473 	ieee80211_suspend_all(ic);
1474 	/*
1475 	 * NB: don't worry about putting the chip in low power
1476 	 * mode; pci will power off our socket on suspend and
1477 	 * CardBus detaches the device.
1478 	 */
1479 
1480 	/*
1481 	 * XXX ensure none of the taskqueues are running
1482 	 * XXX ensure sc_invalid is 1
1483 	 * XXX ensure the calibration callout is disabled
1484 	 */
1485 
1486 	/* Disable the PCIe PHY, complete with workarounds */
1487 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1488 }
1489 
1490 /*
1491  * Reset the key cache since some parts do not reset the
1492  * contents on resume.  First we clear all entries, then
1493  * re-load keys that the 802.11 layer assumes are setup
1494  * in h/w.
1495  */
1496 static void
1497 ath_reset_keycache(struct ath_softc *sc)
1498 {
1499 	struct ifnet *ifp = sc->sc_ifp;
1500 	struct ieee80211com *ic = ifp->if_l2com;
1501 	struct ath_hal *ah = sc->sc_ah;
1502 	int i;
1503 
1504 	for (i = 0; i < sc->sc_keymax; i++)
1505 		ath_hal_keyreset(ah, i);
1506 	ieee80211_crypto_reload_keys(ic);
1507 }
1508 
1509 /*
1510  * Fetch the current chainmask configuration based on the current
1511  * operating channel and options.
1512  */
1513 static void
1514 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1515 {
1516 
1517 	/*
1518 	 * Set TX chainmask to the currently configured chainmask;
1519 	 * the TX chainmask depends upon the current operating mode.
1520 	 */
1521 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1522 	if (IEEE80211_IS_CHAN_HT(chan)) {
1523 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1524 	} else {
1525 		sc->sc_cur_txchainmask = 1;
1526 	}
1527 }
1528 
1529 void
1530 ath_resume(struct ath_softc *sc)
1531 {
1532 	struct ifnet *ifp = sc->sc_ifp;
1533 	struct ieee80211com *ic = ifp->if_l2com;
1534 	struct ath_hal *ah = sc->sc_ah;
1535 	HAL_STATUS status;
1536 
1537 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1538 		__func__, ifp->if_flags);
1539 
1540 	/* Re-enable PCIe, re-enable the PCIe bus */
1541 	ath_hal_enablepcie(ah, 0, 0);
1542 
1543 	/*
1544 	 * Must reset the chip before we reload the
1545 	 * keycache as we were powered down on suspend.
1546 	 */
1547 	ath_update_chainmasks(sc,
1548 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1549 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1550 	    sc->sc_cur_rxchainmask);
1551 	ath_hal_reset(ah, sc->sc_opmode,
1552 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1553 	    AH_FALSE, &status);
1554 	ath_reset_keycache(sc);
1555 
1556 	/* Let DFS at it in case it's a DFS channel */
1557 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1558 
1559 	/* Let spectral at in case spectral is enabled */
1560 	ath_spectral_enable(sc, ic->ic_curchan);
1561 
1562 	/* Restore the LED configuration */
1563 	ath_led_config(sc);
1564 	ath_hal_setledstate(ah, HAL_LED_INIT);
1565 
1566 	if (sc->sc_resume_up)
1567 		ieee80211_resume_all(ic);
1568 
1569 	/* XXX beacons ? */
1570 }
1571 
1572 void
1573 ath_shutdown(struct ath_softc *sc)
1574 {
1575 	struct ifnet *ifp = sc->sc_ifp;
1576 
1577 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1578 		__func__, ifp->if_flags);
1579 
1580 	ath_stop(ifp);
1581 	/* NB: no point powering down chip as we're about to reboot */
1582 }
1583 
1584 /*
1585  * Interrupt handler.  Most of the actual processing is deferred.
1586  */
1587 void
1588 ath_intr(void *arg)
1589 {
1590 	struct ath_softc *sc = arg;
1591 	struct ifnet *ifp = sc->sc_ifp;
1592 	struct ath_hal *ah = sc->sc_ah;
1593 	HAL_INT status = 0;
1594 	uint32_t txqs;
1595 
1596 	/*
1597 	 * If we're inside a reset path, just print a warning and
1598 	 * clear the ISR. The reset routine will finish it for us.
1599 	 */
1600 	ATH_PCU_LOCK(sc);
1601 	if (sc->sc_inreset_cnt) {
1602 		HAL_INT status;
1603 		ath_hal_getisr(ah, &status);	/* clear ISR */
1604 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1605 		DPRINTF(sc, ATH_DEBUG_ANY,
1606 		    "%s: in reset, ignoring: status=0x%x\n",
1607 		    __func__, status);
1608 		ATH_PCU_UNLOCK(sc);
1609 		return;
1610 	}
1611 
1612 	if (sc->sc_invalid) {
1613 		/*
1614 		 * The hardware is not ready/present, don't touch anything.
1615 		 * Note this can happen early on if the IRQ is shared.
1616 		 */
1617 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1618 		ATH_PCU_UNLOCK(sc);
1619 		return;
1620 	}
1621 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1622 		ATH_PCU_UNLOCK(sc);
1623 		return;
1624 	}
1625 
1626 	if ((ifp->if_flags & IFF_UP) == 0 ||
1627 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1628 		HAL_INT status;
1629 
1630 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1631 			__func__, ifp->if_flags);
1632 		ath_hal_getisr(ah, &status);	/* clear ISR */
1633 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1634 		ATH_PCU_UNLOCK(sc);
1635 		return;
1636 	}
1637 
1638 	/*
1639 	 * Figure out the reason(s) for the interrupt.  Note
1640 	 * that the hal returns a pseudo-ISR that may include
1641 	 * bits we haven't explicitly enabled so we mask the
1642 	 * value to insure we only process bits we requested.
1643 	 */
1644 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1645 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1646 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1647 #ifdef	ATH_DEBUG_ALQ
1648 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1649 	    ah->ah_syncstate);
1650 #endif	/* ATH_DEBUG_ALQ */
1651 #ifdef	ATH_KTR_INTR_DEBUG
1652 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1653 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1654 	    ah->ah_intrstate[0],
1655 	    ah->ah_intrstate[1],
1656 	    ah->ah_intrstate[2],
1657 	    ah->ah_intrstate[3],
1658 	    ah->ah_intrstate[6]);
1659 #endif
1660 
1661 	/* Squirrel away SYNC interrupt debugging */
1662 	if (ah->ah_syncstate != 0) {
1663 		int i;
1664 		for (i = 0; i < 32; i++)
1665 			if (ah->ah_syncstate & (i << i))
1666 				sc->sc_intr_stats.sync_intr[i]++;
1667 	}
1668 
1669 	status &= sc->sc_imask;			/* discard unasked for bits */
1670 
1671 	/* Short-circuit un-handled interrupts */
1672 	if (status == 0x0) {
1673 		ATH_PCU_UNLOCK(sc);
1674 		return;
1675 	}
1676 
1677 	/*
1678 	 * Take a note that we're inside the interrupt handler, so
1679 	 * the reset routines know to wait.
1680 	 */
1681 	sc->sc_intr_cnt++;
1682 	ATH_PCU_UNLOCK(sc);
1683 
1684 	/*
1685 	 * Handle the interrupt. We won't run concurrent with the reset
1686 	 * or channel change routines as they'll wait for sc_intr_cnt
1687 	 * to be 0 before continuing.
1688 	 */
1689 	if (status & HAL_INT_FATAL) {
1690 		sc->sc_stats.ast_hardware++;
1691 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1692 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1693 	} else {
1694 		if (status & HAL_INT_SWBA) {
1695 			/*
1696 			 * Software beacon alert--time to send a beacon.
1697 			 * Handle beacon transmission directly; deferring
1698 			 * this is too slow to meet timing constraints
1699 			 * under load.
1700 			 */
1701 #ifdef IEEE80211_SUPPORT_TDMA
1702 			if (sc->sc_tdma) {
1703 				if (sc->sc_tdmaswba == 0) {
1704 					struct ieee80211com *ic = ifp->if_l2com;
1705 					struct ieee80211vap *vap =
1706 					    TAILQ_FIRST(&ic->ic_vaps);
1707 					ath_tdma_beacon_send(sc, vap);
1708 					sc->sc_tdmaswba =
1709 					    vap->iv_tdma->tdma_bintval;
1710 				} else
1711 					sc->sc_tdmaswba--;
1712 			} else
1713 #endif
1714 			{
1715 				ath_beacon_proc(sc, 0);
1716 #ifdef IEEE80211_SUPPORT_SUPERG
1717 				/*
1718 				 * Schedule the rx taskq in case there's no
1719 				 * traffic so any frames held on the staging
1720 				 * queue are aged and potentially flushed.
1721 				 */
1722 				sc->sc_rx.recv_sched(sc, 1);
1723 #endif
1724 			}
1725 		}
1726 		if (status & HAL_INT_RXEOL) {
1727 			int imask;
1728 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1729 			ATH_PCU_LOCK(sc);
1730 			/*
1731 			 * NB: the hardware should re-read the link when
1732 			 *     RXE bit is written, but it doesn't work at
1733 			 *     least on older hardware revs.
1734 			 */
1735 			sc->sc_stats.ast_rxeol++;
1736 			/*
1737 			 * Disable RXEOL/RXORN - prevent an interrupt
1738 			 * storm until the PCU logic can be reset.
1739 			 * In case the interface is reset some other
1740 			 * way before "sc_kickpcu" is called, don't
1741 			 * modify sc_imask - that way if it is reset
1742 			 * by a call to ath_reset() somehow, the
1743 			 * interrupt mask will be correctly reprogrammed.
1744 			 */
1745 			imask = sc->sc_imask;
1746 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1747 			ath_hal_intrset(ah, imask);
1748 			/*
1749 			 * Only blank sc_rxlink if we've not yet kicked
1750 			 * the PCU.
1751 			 *
1752 			 * This isn't entirely correct - the correct solution
1753 			 * would be to have a PCU lock and engage that for
1754 			 * the duration of the PCU fiddling; which would include
1755 			 * running the RX process. Otherwise we could end up
1756 			 * messing up the RX descriptor chain and making the
1757 			 * RX desc list much shorter.
1758 			 */
1759 			if (! sc->sc_kickpcu)
1760 				sc->sc_rxlink = NULL;
1761 			sc->sc_kickpcu = 1;
1762 			ATH_PCU_UNLOCK(sc);
1763 			/*
1764 			 * Enqueue an RX proc, to handled whatever
1765 			 * is in the RX queue.
1766 			 * This will then kick the PCU.
1767 			 */
1768 			sc->sc_rx.recv_sched(sc, 1);
1769 		}
1770 		if (status & HAL_INT_TXURN) {
1771 			sc->sc_stats.ast_txurn++;
1772 			/* bump tx trigger level */
1773 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1774 		}
1775 		/*
1776 		 * Handle both the legacy and RX EDMA interrupt bits.
1777 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1778 		 */
1779 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1780 			sc->sc_stats.ast_rx_intr++;
1781 			sc->sc_rx.recv_sched(sc, 1);
1782 		}
1783 		if (status & HAL_INT_TX) {
1784 			sc->sc_stats.ast_tx_intr++;
1785 			/*
1786 			 * Grab all the currently set bits in the HAL txq bitmap
1787 			 * and blank them. This is the only place we should be
1788 			 * doing this.
1789 			 */
1790 			if (! sc->sc_isedma) {
1791 				ATH_PCU_LOCK(sc);
1792 				txqs = 0xffffffff;
1793 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1794 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1795 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1796 				    txqs,
1797 				    sc->sc_txq_active,
1798 				    sc->sc_txq_active | txqs);
1799 				sc->sc_txq_active |= txqs;
1800 				ATH_PCU_UNLOCK(sc);
1801 			}
1802 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1803 		}
1804 		if (status & HAL_INT_BMISS) {
1805 			sc->sc_stats.ast_bmiss++;
1806 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1807 		}
1808 		if (status & HAL_INT_GTT)
1809 			sc->sc_stats.ast_tx_timeout++;
1810 		if (status & HAL_INT_CST)
1811 			sc->sc_stats.ast_tx_cst++;
1812 		if (status & HAL_INT_MIB) {
1813 			sc->sc_stats.ast_mib++;
1814 			ATH_PCU_LOCK(sc);
1815 			/*
1816 			 * Disable interrupts until we service the MIB
1817 			 * interrupt; otherwise it will continue to fire.
1818 			 */
1819 			ath_hal_intrset(ah, 0);
1820 			/*
1821 			 * Let the hal handle the event.  We assume it will
1822 			 * clear whatever condition caused the interrupt.
1823 			 */
1824 			ath_hal_mibevent(ah, &sc->sc_halstats);
1825 			/*
1826 			 * Don't reset the interrupt if we've just
1827 			 * kicked the PCU, or we may get a nested
1828 			 * RXEOL before the rxproc has had a chance
1829 			 * to run.
1830 			 */
1831 			if (sc->sc_kickpcu == 0)
1832 				ath_hal_intrset(ah, sc->sc_imask);
1833 			ATH_PCU_UNLOCK(sc);
1834 		}
1835 		if (status & HAL_INT_RXORN) {
1836 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1837 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1838 			sc->sc_stats.ast_rxorn++;
1839 		}
1840 	}
1841 	ATH_PCU_LOCK(sc);
1842 	sc->sc_intr_cnt--;
1843 	ATH_PCU_UNLOCK(sc);
1844 }
1845 
1846 static void
1847 ath_fatal_proc(void *arg, int pending)
1848 {
1849 	struct ath_softc *sc = arg;
1850 	struct ifnet *ifp = sc->sc_ifp;
1851 	u_int32_t *state;
1852 	u_int32_t len;
1853 	void *sp;
1854 
1855 	if_printf(ifp, "hardware error; resetting\n");
1856 	/*
1857 	 * Fatal errors are unrecoverable.  Typically these
1858 	 * are caused by DMA errors.  Collect h/w state from
1859 	 * the hal so we can diagnose what's going on.
1860 	 */
1861 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1862 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1863 		state = sp;
1864 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1865 		    state[0], state[1] , state[2], state[3],
1866 		    state[4], state[5]);
1867 	}
1868 	ath_reset(ifp, ATH_RESET_NOLOSS);
1869 }
1870 
1871 static void
1872 ath_bmiss_vap(struct ieee80211vap *vap)
1873 {
1874 	/*
1875 	 * Workaround phantom bmiss interrupts by sanity-checking
1876 	 * the time of our last rx'd frame.  If it is within the
1877 	 * beacon miss interval then ignore the interrupt.  If it's
1878 	 * truly a bmiss we'll get another interrupt soon and that'll
1879 	 * be dispatched up for processing.  Note this applies only
1880 	 * for h/w beacon miss events.
1881 	 */
1882 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1883 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1884 		struct ath_softc *sc = ifp->if_softc;
1885 		u_int64_t lastrx = sc->sc_lastrx;
1886 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1887 		/* XXX should take a locked ref to iv_bss */
1888 		u_int bmisstimeout =
1889 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1890 
1891 		DPRINTF(sc, ATH_DEBUG_BEACON,
1892 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1893 		    __func__, (unsigned long long) tsf,
1894 		    (unsigned long long)(tsf - lastrx),
1895 		    (unsigned long long) lastrx, bmisstimeout);
1896 
1897 		if (tsf - lastrx <= bmisstimeout) {
1898 			sc->sc_stats.ast_bmiss_phantom++;
1899 			return;
1900 		}
1901 	}
1902 	ATH_VAP(vap)->av_bmiss(vap);
1903 }
1904 
1905 int
1906 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1907 {
1908 	uint32_t rsize;
1909 	void *sp;
1910 
1911 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1912 		return 0;
1913 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1914 	*hangs = *(uint32_t *)sp;
1915 	return 1;
1916 }
1917 
1918 static void
1919 ath_bmiss_proc(void *arg, int pending)
1920 {
1921 	struct ath_softc *sc = arg;
1922 	struct ifnet *ifp = sc->sc_ifp;
1923 	uint32_t hangs;
1924 
1925 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1926 
1927 	/*
1928 	 * Do a reset upon any becaon miss event.
1929 	 *
1930 	 * It may be a non-recognised RX clear hang which needs a reset
1931 	 * to clear.
1932 	 */
1933 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1934 		ath_reset(ifp, ATH_RESET_NOLOSS);
1935 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1936 	} else {
1937 		ath_reset(ifp, ATH_RESET_NOLOSS);
1938 		ieee80211_beacon_miss(ifp->if_l2com);
1939 	}
1940 }
1941 
1942 /*
1943  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1944  * calcs together with WME.  If necessary disable the crypto
1945  * hardware and mark the 802.11 state so keys will be setup
1946  * with the MIC work done in software.
1947  */
1948 static void
1949 ath_settkipmic(struct ath_softc *sc)
1950 {
1951 	struct ifnet *ifp = sc->sc_ifp;
1952 	struct ieee80211com *ic = ifp->if_l2com;
1953 
1954 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1955 		if (ic->ic_flags & IEEE80211_F_WME) {
1956 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1957 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1958 		} else {
1959 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1960 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1961 		}
1962 	}
1963 }
1964 
1965 static void
1966 ath_init(void *arg)
1967 {
1968 	struct ath_softc *sc = (struct ath_softc *) arg;
1969 	struct ifnet *ifp = sc->sc_ifp;
1970 	struct ieee80211com *ic = ifp->if_l2com;
1971 	struct ath_hal *ah = sc->sc_ah;
1972 	HAL_STATUS status;
1973 
1974 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1975 		__func__, ifp->if_flags);
1976 
1977 	ATH_LOCK(sc);
1978 	/*
1979 	 * Stop anything previously setup.  This is safe
1980 	 * whether this is the first time through or not.
1981 	 */
1982 	ath_stop_locked(ifp);
1983 
1984 	/*
1985 	 * The basic interface to setting the hardware in a good
1986 	 * state is ``reset''.  On return the hardware is known to
1987 	 * be powered up and with interrupts disabled.  This must
1988 	 * be followed by initialization of the appropriate bits
1989 	 * and then setup of the interrupt mask.
1990 	 */
1991 	ath_settkipmic(sc);
1992 	ath_update_chainmasks(sc, ic->ic_curchan);
1993 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1994 	    sc->sc_cur_rxchainmask);
1995 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1996 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1997 			status);
1998 		ATH_UNLOCK(sc);
1999 		return;
2000 	}
2001 	ath_chan_change(sc, ic->ic_curchan);
2002 
2003 	/* Let DFS at it in case it's a DFS channel */
2004 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2005 
2006 	/* Let spectral at in case spectral is enabled */
2007 	ath_spectral_enable(sc, ic->ic_curchan);
2008 
2009 	/*
2010 	 * Likewise this is set during reset so update
2011 	 * state cached in the driver.
2012 	 */
2013 	sc->sc_diversity = ath_hal_getdiversity(ah);
2014 	sc->sc_lastlongcal = 0;
2015 	sc->sc_resetcal = 1;
2016 	sc->sc_lastcalreset = 0;
2017 	sc->sc_lastani = 0;
2018 	sc->sc_lastshortcal = 0;
2019 	sc->sc_doresetcal = AH_FALSE;
2020 	/*
2021 	 * Beacon timers were cleared here; give ath_newstate()
2022 	 * a hint that the beacon timers should be poked when
2023 	 * things transition to the RUN state.
2024 	 */
2025 	sc->sc_beacons = 0;
2026 
2027 	/*
2028 	 * Setup the hardware after reset: the key cache
2029 	 * is filled as needed and the receive engine is
2030 	 * set going.  Frame transmit is handled entirely
2031 	 * in the frame output path; there's nothing to do
2032 	 * here except setup the interrupt mask.
2033 	 */
2034 	if (ath_startrecv(sc) != 0) {
2035 		if_printf(ifp, "unable to start recv logic\n");
2036 		ATH_UNLOCK(sc);
2037 		return;
2038 	}
2039 
2040 	/*
2041 	 * Enable interrupts.
2042 	 */
2043 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2044 		  | HAL_INT_RXEOL | HAL_INT_RXORN
2045 		  | HAL_INT_TXURN
2046 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2047 
2048 	/*
2049 	 * Enable RX EDMA bits.  Note these overlap with
2050 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2051 	 */
2052 	if (sc->sc_isedma)
2053 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2054 
2055 	/*
2056 	 * Enable MIB interrupts when there are hardware phy counters.
2057 	 * Note we only do this (at the moment) for station mode.
2058 	 */
2059 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2060 		sc->sc_imask |= HAL_INT_MIB;
2061 
2062 	/* Enable global TX timeout and carrier sense timeout if available */
2063 	if (ath_hal_gtxto_supported(ah))
2064 		sc->sc_imask |= HAL_INT_GTT;
2065 
2066 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2067 		__func__, sc->sc_imask);
2068 
2069 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2070 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2071 	ath_hal_intrset(ah, sc->sc_imask);
2072 
2073 	ATH_UNLOCK(sc);
2074 
2075 #ifdef ATH_TX99_DIAG
2076 	if (sc->sc_tx99 != NULL)
2077 		sc->sc_tx99->start(sc->sc_tx99);
2078 	else
2079 #endif
2080 	ieee80211_start_all(ic);		/* start all vap's */
2081 }
2082 
2083 static void
2084 ath_stop_locked(struct ifnet *ifp)
2085 {
2086 	struct ath_softc *sc = ifp->if_softc;
2087 	struct ath_hal *ah = sc->sc_ah;
2088 
2089 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2090 		__func__, sc->sc_invalid, ifp->if_flags);
2091 
2092 	ATH_LOCK_ASSERT(sc);
2093 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2094 		/*
2095 		 * Shutdown the hardware and driver:
2096 		 *    reset 802.11 state machine
2097 		 *    turn off timers
2098 		 *    disable interrupts
2099 		 *    turn off the radio
2100 		 *    clear transmit machinery
2101 		 *    clear receive machinery
2102 		 *    drain and release tx queues
2103 		 *    reclaim beacon resources
2104 		 *    power down hardware
2105 		 *
2106 		 * Note that some of this work is not possible if the
2107 		 * hardware is gone (invalid).
2108 		 */
2109 #ifdef ATH_TX99_DIAG
2110 		if (sc->sc_tx99 != NULL)
2111 			sc->sc_tx99->stop(sc->sc_tx99);
2112 #endif
2113 		callout_stop(&sc->sc_wd_ch);
2114 		sc->sc_wd_timer = 0;
2115 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2116 		if (!sc->sc_invalid) {
2117 			if (sc->sc_softled) {
2118 				callout_stop(&sc->sc_ledtimer);
2119 				ath_hal_gpioset(ah, sc->sc_ledpin,
2120 					!sc->sc_ledon);
2121 				sc->sc_blinking = 0;
2122 			}
2123 			ath_hal_intrset(ah, 0);
2124 		}
2125 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2126 		if (!sc->sc_invalid) {
2127 			ath_stoprecv(sc, 1);
2128 			ath_hal_phydisable(ah);
2129 		} else
2130 			sc->sc_rxlink = NULL;
2131 		ath_beacon_free(sc);	/* XXX not needed */
2132 	}
2133 }
2134 
2135 #define	MAX_TXRX_ITERATIONS	1000
2136 static void
2137 ath_txrx_stop_locked(struct ath_softc *sc)
2138 {
2139 	int i = MAX_TXRX_ITERATIONS;
2140 
2141 	ATH_UNLOCK_ASSERT(sc);
2142 	ATH_PCU_LOCK_ASSERT(sc);
2143 
2144 	/*
2145 	 * Sleep until all the pending operations have completed.
2146 	 *
2147 	 * The caller must ensure that reset has been incremented
2148 	 * or the pending operations may continue being queued.
2149 	 */
2150 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2151 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2152 		if (i <= 0)
2153 			break;
2154 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2155 		i--;
2156 	}
2157 
2158 	if (i <= 0)
2159 		device_printf(sc->sc_dev,
2160 		    "%s: didn't finish after %d iterations\n",
2161 		    __func__, MAX_TXRX_ITERATIONS);
2162 }
2163 #undef	MAX_TXRX_ITERATIONS
2164 
2165 #if 0
2166 static void
2167 ath_txrx_stop(struct ath_softc *sc)
2168 {
2169 	ATH_UNLOCK_ASSERT(sc);
2170 	ATH_PCU_UNLOCK_ASSERT(sc);
2171 
2172 	ATH_PCU_LOCK(sc);
2173 	ath_txrx_stop_locked(sc);
2174 	ATH_PCU_UNLOCK(sc);
2175 }
2176 #endif
2177 
2178 static void
2179 ath_txrx_start(struct ath_softc *sc)
2180 {
2181 
2182 	taskqueue_unblock(sc->sc_tq);
2183 }
2184 
2185 /*
2186  * Grab the reset lock, and wait around until noone else
2187  * is trying to do anything with it.
2188  *
2189  * This is totally horrible but we can't hold this lock for
2190  * long enough to do TX/RX or we end up with net80211/ip stack
2191  * LORs and eventual deadlock.
2192  *
2193  * "dowait" signals whether to spin, waiting for the reset
2194  * lock count to reach 0. This should (for now) only be used
2195  * during the reset path, as the rest of the code may not
2196  * be locking-reentrant enough to behave correctly.
2197  *
2198  * Another, cleaner way should be found to serialise all of
2199  * these operations.
2200  */
2201 #define	MAX_RESET_ITERATIONS	10
2202 static int
2203 ath_reset_grablock(struct ath_softc *sc, int dowait)
2204 {
2205 	int w = 0;
2206 	int i = MAX_RESET_ITERATIONS;
2207 
2208 	ATH_PCU_LOCK_ASSERT(sc);
2209 	do {
2210 		if (sc->sc_inreset_cnt == 0) {
2211 			w = 1;
2212 			break;
2213 		}
2214 		if (dowait == 0) {
2215 			w = 0;
2216 			break;
2217 		}
2218 		ATH_PCU_UNLOCK(sc);
2219 		pause("ath_reset_grablock", 1);
2220 		i--;
2221 		ATH_PCU_LOCK(sc);
2222 	} while (i > 0);
2223 
2224 	/*
2225 	 * We always increment the refcounter, regardless
2226 	 * of whether we succeeded to get it in an exclusive
2227 	 * way.
2228 	 */
2229 	sc->sc_inreset_cnt++;
2230 
2231 	if (i <= 0)
2232 		device_printf(sc->sc_dev,
2233 		    "%s: didn't finish after %d iterations\n",
2234 		    __func__, MAX_RESET_ITERATIONS);
2235 
2236 	if (w == 0)
2237 		device_printf(sc->sc_dev,
2238 		    "%s: warning, recursive reset path!\n",
2239 		    __func__);
2240 
2241 	return w;
2242 }
2243 #undef MAX_RESET_ITERATIONS
2244 
2245 /*
2246  * XXX TODO: write ath_reset_releaselock
2247  */
2248 
2249 static void
2250 ath_stop(struct ifnet *ifp)
2251 {
2252 	struct ath_softc *sc = ifp->if_softc;
2253 
2254 	ATH_LOCK(sc);
2255 	ath_stop_locked(ifp);
2256 	ATH_UNLOCK(sc);
2257 }
2258 
2259 /*
2260  * Reset the hardware w/o losing operational state.  This is
2261  * basically a more efficient way of doing ath_stop, ath_init,
2262  * followed by state transitions to the current 802.11
2263  * operational state.  Used to recover from various errors and
2264  * to reset or reload hardware state.
2265  */
2266 int
2267 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2268 {
2269 	struct ath_softc *sc = ifp->if_softc;
2270 	struct ieee80211com *ic = ifp->if_l2com;
2271 	struct ath_hal *ah = sc->sc_ah;
2272 	HAL_STATUS status;
2273 	int i;
2274 
2275 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2276 
2277 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2278 	ATH_PCU_UNLOCK_ASSERT(sc);
2279 	ATH_UNLOCK_ASSERT(sc);
2280 
2281 	/* Try to (stop any further TX/RX from occuring */
2282 	taskqueue_block(sc->sc_tq);
2283 
2284 	ATH_PCU_LOCK(sc);
2285 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2286 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2287 	if (ath_reset_grablock(sc, 1) == 0) {
2288 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2289 		    __func__);
2290 	}
2291 	ATH_PCU_UNLOCK(sc);
2292 
2293 	/*
2294 	 * Should now wait for pending TX/RX to complete
2295 	 * and block future ones from occuring. This needs to be
2296 	 * done before the TX queue is drained.
2297 	 */
2298 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2299 
2300 	/*
2301 	 * Regardless of whether we're doing a no-loss flush or
2302 	 * not, stop the PCU and handle what's in the RX queue.
2303 	 * That way frames aren't dropped which shouldn't be.
2304 	 */
2305 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2306 	ath_rx_flush(sc);
2307 
2308 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2309 	/* NB: indicate channel change so we do a full reset */
2310 	ath_update_chainmasks(sc, ic->ic_curchan);
2311 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2312 	    sc->sc_cur_rxchainmask);
2313 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2314 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2315 			__func__, status);
2316 	sc->sc_diversity = ath_hal_getdiversity(ah);
2317 
2318 	/* Let DFS at it in case it's a DFS channel */
2319 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2320 
2321 	/* Let spectral at in case spectral is enabled */
2322 	ath_spectral_enable(sc, ic->ic_curchan);
2323 
2324 	if (ath_startrecv(sc) != 0)	/* restart recv */
2325 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2326 	/*
2327 	 * We may be doing a reset in response to an ioctl
2328 	 * that changes the channel so update any state that
2329 	 * might change as a result.
2330 	 */
2331 	ath_chan_change(sc, ic->ic_curchan);
2332 	if (sc->sc_beacons) {		/* restart beacons */
2333 #ifdef IEEE80211_SUPPORT_TDMA
2334 		if (sc->sc_tdma)
2335 			ath_tdma_config(sc, NULL);
2336 		else
2337 #endif
2338 			ath_beacon_config(sc, NULL);
2339 	}
2340 
2341 	/*
2342 	 * Release the reset lock and re-enable interrupts here.
2343 	 * If an interrupt was being processed in ath_intr(),
2344 	 * it would disable interrupts at this point. So we have
2345 	 * to atomically enable interrupts and decrement the
2346 	 * reset counter - this way ath_intr() doesn't end up
2347 	 * disabling interrupts without a corresponding enable
2348 	 * in the rest or channel change path.
2349 	 */
2350 	ATH_PCU_LOCK(sc);
2351 	sc->sc_inreset_cnt--;
2352 	/* XXX only do this if sc_inreset_cnt == 0? */
2353 	ath_hal_intrset(ah, sc->sc_imask);
2354 	ATH_PCU_UNLOCK(sc);
2355 
2356 	/*
2357 	 * TX and RX can be started here. If it were started with
2358 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2359 	 * Thus if this is a nested call through the reset or
2360 	 * channel change code, TX completion will occur but
2361 	 * RX completion and ath_start / ath_tx_start will not
2362 	 * run.
2363 	 */
2364 
2365 	/* Restart TX/RX as needed */
2366 	ath_txrx_start(sc);
2367 
2368 	/* Restart TX completion and pending TX */
2369 	if (reset_type == ATH_RESET_NOLOSS) {
2370 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2371 			if (ATH_TXQ_SETUP(sc, i)) {
2372 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2373 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2374 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2375 
2376 				ATH_TX_LOCK(sc);
2377 				ath_txq_sched(sc, &sc->sc_txq[i]);
2378 				ATH_TX_UNLOCK(sc);
2379 			}
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * This may have been set during an ath_start() call which
2385 	 * set this once it detected a concurrent TX was going on.
2386 	 * So, clear it.
2387 	 */
2388 	IF_LOCK(&ifp->if_snd);
2389 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2390 	IF_UNLOCK(&ifp->if_snd);
2391 
2392 	/* Handle any frames in the TX queue */
2393 	/*
2394 	 * XXX should this be done by the caller, rather than
2395 	 * ath_reset() ?
2396 	 */
2397 	ath_tx_kick(sc);		/* restart xmit */
2398 	return 0;
2399 }
2400 
2401 static int
2402 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2403 {
2404 	struct ieee80211com *ic = vap->iv_ic;
2405 	struct ifnet *ifp = ic->ic_ifp;
2406 	struct ath_softc *sc = ifp->if_softc;
2407 	struct ath_hal *ah = sc->sc_ah;
2408 
2409 	switch (cmd) {
2410 	case IEEE80211_IOC_TXPOWER:
2411 		/*
2412 		 * If per-packet TPC is enabled, then we have nothing
2413 		 * to do; otherwise we need to force the global limit.
2414 		 * All this can happen directly; no need to reset.
2415 		 */
2416 		if (!ath_hal_gettpc(ah))
2417 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2418 		return 0;
2419 	}
2420 	/* XXX? Full or NOLOSS? */
2421 	return ath_reset(ifp, ATH_RESET_FULL);
2422 }
2423 
2424 struct ath_buf *
2425 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2426 {
2427 	struct ath_buf *bf;
2428 
2429 	ATH_TXBUF_LOCK_ASSERT(sc);
2430 
2431 	if (btype == ATH_BUFTYPE_MGMT)
2432 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2433 	else
2434 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2435 
2436 	if (bf == NULL) {
2437 		sc->sc_stats.ast_tx_getnobuf++;
2438 	} else {
2439 		if (bf->bf_flags & ATH_BUF_BUSY) {
2440 			sc->sc_stats.ast_tx_getbusybuf++;
2441 			bf = NULL;
2442 		}
2443 	}
2444 
2445 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2446 		if (btype == ATH_BUFTYPE_MGMT)
2447 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2448 		else {
2449 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2450 			sc->sc_txbuf_cnt--;
2451 
2452 			/*
2453 			 * This shuldn't happen; however just to be
2454 			 * safe print a warning and fudge the txbuf
2455 			 * count.
2456 			 */
2457 			if (sc->sc_txbuf_cnt < 0) {
2458 				device_printf(sc->sc_dev,
2459 				    "%s: sc_txbuf_cnt < 0?\n",
2460 				    __func__);
2461 				sc->sc_txbuf_cnt = 0;
2462 			}
2463 		}
2464 	} else
2465 		bf = NULL;
2466 
2467 	if (bf == NULL) {
2468 		/* XXX should check which list, mgmt or otherwise */
2469 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2470 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2471 			"out of xmit buffers" : "xmit buffer busy");
2472 		return NULL;
2473 	}
2474 
2475 	/* XXX TODO: should do this at buffer list initialisation */
2476 	/* XXX (then, ensure the buffer has the right flag set) */
2477 	bf->bf_flags = 0;
2478 	if (btype == ATH_BUFTYPE_MGMT)
2479 		bf->bf_flags |= ATH_BUF_MGMT;
2480 	else
2481 		bf->bf_flags &= (~ATH_BUF_MGMT);
2482 
2483 	/* Valid bf here; clear some basic fields */
2484 	bf->bf_next = NULL;	/* XXX just to be sure */
2485 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2486 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2487 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2488 
2489 	/*
2490 	 * Track the descriptor ID only if doing EDMA
2491 	 */
2492 	if (sc->sc_isedma) {
2493 		bf->bf_descid = sc->sc_txbuf_descid;
2494 		sc->sc_txbuf_descid++;
2495 	}
2496 
2497 	return bf;
2498 }
2499 
2500 /*
2501  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2502  * can't be thrown back on the queue as they could still be
2503  * in use by the hardware.
2504  *
2505  * This duplicates the buffer, or returns NULL.
2506  *
2507  * The descriptor is also copied but the link pointers and
2508  * the DMA segments aren't copied; this frame should thus
2509  * be again passed through the descriptor setup/chain routines
2510  * so the link is correct.
2511  *
2512  * The caller must free the buffer using ath_freebuf().
2513  */
2514 struct ath_buf *
2515 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2516 {
2517 	struct ath_buf *tbf;
2518 
2519 	tbf = ath_getbuf(sc,
2520 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2521 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2522 	if (tbf == NULL)
2523 		return NULL;	/* XXX failure? Why? */
2524 
2525 	/* Copy basics */
2526 	tbf->bf_next = NULL;
2527 	tbf->bf_nseg = bf->bf_nseg;
2528 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2529 	tbf->bf_status = bf->bf_status;
2530 	tbf->bf_m = bf->bf_m;
2531 	tbf->bf_node = bf->bf_node;
2532 	/* will be setup by the chain/setup function */
2533 	tbf->bf_lastds = NULL;
2534 	/* for now, last == self */
2535 	tbf->bf_last = tbf;
2536 	tbf->bf_comp = bf->bf_comp;
2537 
2538 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2539 
2540 	/* The caller has to re-init the descriptor + links */
2541 
2542 	/*
2543 	 * Free the DMA mapping here, before we NULL the mbuf.
2544 	 * We must only call bus_dmamap_unload() once per mbuf chain
2545 	 * or behaviour is undefined.
2546 	 */
2547 	if (bf->bf_m != NULL) {
2548 		/*
2549 		 * XXX is this POSTWRITE call required?
2550 		 */
2551 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2552 		    BUS_DMASYNC_POSTWRITE);
2553 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2554 	}
2555 
2556 	bf->bf_m = NULL;
2557 	bf->bf_node = NULL;
2558 
2559 	/* Copy state */
2560 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2561 
2562 	return tbf;
2563 }
2564 
2565 struct ath_buf *
2566 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2567 {
2568 	struct ath_buf *bf;
2569 
2570 	ATH_TXBUF_LOCK(sc);
2571 	bf = _ath_getbuf_locked(sc, btype);
2572 	/*
2573 	 * If a mgmt buffer was requested but we're out of those,
2574 	 * try requesting a normal one.
2575 	 */
2576 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2577 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2578 	ATH_TXBUF_UNLOCK(sc);
2579 	if (bf == NULL) {
2580 		struct ifnet *ifp = sc->sc_ifp;
2581 
2582 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2583 		sc->sc_stats.ast_tx_qstop++;
2584 		IF_LOCK(&ifp->if_snd);
2585 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2586 		IF_UNLOCK(&ifp->if_snd);
2587 	}
2588 	return bf;
2589 }
2590 
2591 static void
2592 ath_start_queue(struct ifnet *ifp)
2593 {
2594 	struct ath_softc *sc = ifp->if_softc;
2595 
2596 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
2597 	ath_tx_kick(sc);
2598 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
2599 }
2600 
2601 void
2602 ath_start_task(void *arg, int npending)
2603 {
2604 	struct ath_softc *sc = (struct ath_softc *) arg;
2605 	struct ifnet *ifp = sc->sc_ifp;
2606 
2607 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
2608 
2609 	/* XXX is it ok to hold the ATH_LOCK here? */
2610 	ATH_PCU_LOCK(sc);
2611 	if (sc->sc_inreset_cnt > 0) {
2612 		device_printf(sc->sc_dev,
2613 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2614 		ATH_PCU_UNLOCK(sc);
2615 		IF_LOCK(&ifp->if_snd);
2616 		sc->sc_stats.ast_tx_qstop++;
2617 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2618 		IF_UNLOCK(&ifp->if_snd);
2619 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2620 		return;
2621 	}
2622 	sc->sc_txstart_cnt++;
2623 	ATH_PCU_UNLOCK(sc);
2624 
2625 	ATH_TX_LOCK(sc);
2626 	ath_start(sc->sc_ifp);
2627 	ATH_TX_UNLOCK(sc);
2628 
2629 	ATH_PCU_LOCK(sc);
2630 	sc->sc_txstart_cnt--;
2631 	ATH_PCU_UNLOCK(sc);
2632 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
2633 }
2634 
2635 void
2636 ath_start(struct ifnet *ifp)
2637 {
2638 	struct ath_softc *sc = ifp->if_softc;
2639 	struct ieee80211_node *ni;
2640 	struct ath_buf *bf;
2641 	struct mbuf *m, *next;
2642 	ath_bufhead frags;
2643 	int npkts = 0;
2644 
2645 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2646 		return;
2647 
2648 	ATH_TX_LOCK_ASSERT(sc);
2649 
2650 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
2651 
2652 	for (;;) {
2653 		ATH_TXBUF_LOCK(sc);
2654 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2655 			/* XXX increment counter? */
2656 			ATH_TXBUF_UNLOCK(sc);
2657 			IF_LOCK(&ifp->if_snd);
2658 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2659 			IF_UNLOCK(&ifp->if_snd);
2660 			break;
2661 		}
2662 		ATH_TXBUF_UNLOCK(sc);
2663 
2664 		/*
2665 		 * Grab a TX buffer and associated resources.
2666 		 */
2667 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2668 		if (bf == NULL)
2669 			break;
2670 
2671 		IFQ_DEQUEUE(&ifp->if_snd, m);
2672 		if (m == NULL) {
2673 			ATH_TXBUF_LOCK(sc);
2674 			ath_returnbuf_head(sc, bf);
2675 			ATH_TXBUF_UNLOCK(sc);
2676 			break;
2677 		}
2678 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2679 		npkts ++;
2680 		/*
2681 		 * Check for fragmentation.  If this frame
2682 		 * has been broken up verify we have enough
2683 		 * buffers to send all the fragments so all
2684 		 * go out or none...
2685 		 */
2686 		TAILQ_INIT(&frags);
2687 		if ((m->m_flags & M_FRAG) &&
2688 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2689 			DPRINTF(sc, ATH_DEBUG_XMIT,
2690 			    "%s: out of txfrag buffers\n", __func__);
2691 			sc->sc_stats.ast_tx_nofrag++;
2692 			ifp->if_oerrors++;
2693 			ath_freetx(m);
2694 			goto bad;
2695 		}
2696 		ifp->if_opackets++;
2697 	nextfrag:
2698 		/*
2699 		 * Pass the frame to the h/w for transmission.
2700 		 * Fragmented frames have each frag chained together
2701 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2702 		 * to send all the frags because of work done by
2703 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2704 		 * calling ath_tx_start so it can use it to extend the
2705 		 * the tx duration to cover the subsequent frag and
2706 		 * so it can reclaim all the mbufs in case of an error;
2707 		 * ath_tx_start clears m_nextpkt once it commits to
2708 		 * handing the frame to the hardware.
2709 		 */
2710 		next = m->m_nextpkt;
2711 		if (ath_tx_start(sc, ni, bf, m)) {
2712 	bad:
2713 			ifp->if_oerrors++;
2714 	reclaim:
2715 			bf->bf_m = NULL;
2716 			bf->bf_node = NULL;
2717 			ATH_TXBUF_LOCK(sc);
2718 			ath_returnbuf_head(sc, bf);
2719 			ath_txfrag_cleanup(sc, &frags, ni);
2720 			ATH_TXBUF_UNLOCK(sc);
2721 			/*
2722 			 * XXX todo, free the node outside of
2723 			 * the TX lock context!
2724 			 */
2725 			if (ni != NULL)
2726 				ieee80211_free_node(ni);
2727 			continue;
2728 		}
2729 
2730 		/*
2731 		 * Check here if the node is in power save state.
2732 		 */
2733 		ath_tx_update_tim(sc, ni, 1);
2734 
2735 		if (next != NULL) {
2736 			/*
2737 			 * Beware of state changing between frags.
2738 			 * XXX check sta power-save state?
2739 			 */
2740 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2741 				DPRINTF(sc, ATH_DEBUG_XMIT,
2742 				    "%s: flush fragmented packet, state %s\n",
2743 				    __func__,
2744 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2745 				/* XXX dmamap */
2746 				ath_freetx(next);
2747 				goto reclaim;
2748 			}
2749 			m = next;
2750 			bf = TAILQ_FIRST(&frags);
2751 			KASSERT(bf != NULL, ("no buf for txfrag"));
2752 			TAILQ_REMOVE(&frags, bf, bf_list);
2753 			goto nextfrag;
2754 		}
2755 
2756 		sc->sc_wd_timer = 5;
2757 	}
2758 	ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
2759 }
2760 static int
2761 ath_media_change(struct ifnet *ifp)
2762 {
2763 	int error = ieee80211_media_change(ifp);
2764 	/* NB: only the fixed rate can change and that doesn't need a reset */
2765 	return (error == ENETRESET ? 0 : error);
2766 }
2767 
2768 /*
2769  * Block/unblock tx+rx processing while a key change is done.
2770  * We assume the caller serializes key management operations
2771  * so we only need to worry about synchronization with other
2772  * uses that originate in the driver.
2773  */
2774 static void
2775 ath_key_update_begin(struct ieee80211vap *vap)
2776 {
2777 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2778 	struct ath_softc *sc = ifp->if_softc;
2779 
2780 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2781 	taskqueue_block(sc->sc_tq);
2782 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2783 }
2784 
2785 static void
2786 ath_key_update_end(struct ieee80211vap *vap)
2787 {
2788 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2789 	struct ath_softc *sc = ifp->if_softc;
2790 
2791 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2792 	IF_UNLOCK(&ifp->if_snd);
2793 	taskqueue_unblock(sc->sc_tq);
2794 }
2795 
2796 static void
2797 ath_update_promisc(struct ifnet *ifp)
2798 {
2799 	struct ath_softc *sc = ifp->if_softc;
2800 	u_int32_t rfilt;
2801 
2802 	/* configure rx filter */
2803 	rfilt = ath_calcrxfilter(sc);
2804 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2805 
2806 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2807 }
2808 
2809 static void
2810 ath_update_mcast(struct ifnet *ifp)
2811 {
2812 	struct ath_softc *sc = ifp->if_softc;
2813 	u_int32_t mfilt[2];
2814 
2815 	/* calculate and install multicast filter */
2816 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2817 		struct ifmultiaddr *ifma;
2818 		/*
2819 		 * Merge multicast addresses to form the hardware filter.
2820 		 */
2821 		mfilt[0] = mfilt[1] = 0;
2822 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2823 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2824 			caddr_t dl;
2825 			u_int32_t val;
2826 			u_int8_t pos;
2827 
2828 			/* calculate XOR of eight 6bit values */
2829 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2830 			val = LE_READ_4(dl + 0);
2831 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2832 			val = LE_READ_4(dl + 3);
2833 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2834 			pos &= 0x3f;
2835 			mfilt[pos / 32] |= (1 << (pos % 32));
2836 		}
2837 		if_maddr_runlock(ifp);
2838 	} else
2839 		mfilt[0] = mfilt[1] = ~0;
2840 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2841 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2842 		__func__, mfilt[0], mfilt[1]);
2843 }
2844 
2845 void
2846 ath_mode_init(struct ath_softc *sc)
2847 {
2848 	struct ifnet *ifp = sc->sc_ifp;
2849 	struct ath_hal *ah = sc->sc_ah;
2850 	u_int32_t rfilt;
2851 
2852 	/* configure rx filter */
2853 	rfilt = ath_calcrxfilter(sc);
2854 	ath_hal_setrxfilter(ah, rfilt);
2855 
2856 	/* configure operational mode */
2857 	ath_hal_setopmode(ah);
2858 
2859 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2860 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2861 	    __func__,
2862 	    ah,
2863 	    ifp,
2864 	    (ifp == NULL) ? NULL : ifp->if_addr);
2865 
2866 	/* handle any link-level address change */
2867 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2868 
2869 	/* calculate and install multicast filter */
2870 	ath_update_mcast(ifp);
2871 }
2872 
2873 /*
2874  * Set the slot time based on the current setting.
2875  */
2876 void
2877 ath_setslottime(struct ath_softc *sc)
2878 {
2879 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2880 	struct ath_hal *ah = sc->sc_ah;
2881 	u_int usec;
2882 
2883 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2884 		usec = 13;
2885 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2886 		usec = 21;
2887 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2888 		/* honor short/long slot time only in 11g */
2889 		/* XXX shouldn't honor on pure g or turbo g channel */
2890 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2891 			usec = HAL_SLOT_TIME_9;
2892 		else
2893 			usec = HAL_SLOT_TIME_20;
2894 	} else
2895 		usec = HAL_SLOT_TIME_9;
2896 
2897 	DPRINTF(sc, ATH_DEBUG_RESET,
2898 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2899 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2900 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2901 
2902 	ath_hal_setslottime(ah, usec);
2903 	sc->sc_updateslot = OK;
2904 }
2905 
2906 /*
2907  * Callback from the 802.11 layer to update the
2908  * slot time based on the current setting.
2909  */
2910 static void
2911 ath_updateslot(struct ifnet *ifp)
2912 {
2913 	struct ath_softc *sc = ifp->if_softc;
2914 	struct ieee80211com *ic = ifp->if_l2com;
2915 
2916 	/*
2917 	 * When not coordinating the BSS, change the hardware
2918 	 * immediately.  For other operation we defer the change
2919 	 * until beacon updates have propagated to the stations.
2920 	 */
2921 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2922 	    ic->ic_opmode == IEEE80211_M_MBSS)
2923 		sc->sc_updateslot = UPDATE;
2924 	else
2925 		ath_setslottime(sc);
2926 }
2927 
2928 /*
2929  * Append the contents of src to dst; both queues
2930  * are assumed to be locked.
2931  */
2932 void
2933 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2934 {
2935 
2936 	ATH_TXQ_LOCK_ASSERT(src);
2937 	ATH_TXQ_LOCK_ASSERT(dst);
2938 
2939 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2940 	dst->axq_link = src->axq_link;
2941 	src->axq_link = NULL;
2942 	dst->axq_depth += src->axq_depth;
2943 	dst->axq_aggr_depth += src->axq_aggr_depth;
2944 	src->axq_depth = 0;
2945 	src->axq_aggr_depth = 0;
2946 }
2947 
2948 /*
2949  * Reset the hardware, with no loss.
2950  *
2951  * This can't be used for a general case reset.
2952  */
2953 static void
2954 ath_reset_proc(void *arg, int pending)
2955 {
2956 	struct ath_softc *sc = arg;
2957 	struct ifnet *ifp = sc->sc_ifp;
2958 
2959 #if 0
2960 	if_printf(ifp, "%s: resetting\n", __func__);
2961 #endif
2962 	ath_reset(ifp, ATH_RESET_NOLOSS);
2963 }
2964 
2965 /*
2966  * Reset the hardware after detecting beacons have stopped.
2967  */
2968 static void
2969 ath_bstuck_proc(void *arg, int pending)
2970 {
2971 	struct ath_softc *sc = arg;
2972 	struct ifnet *ifp = sc->sc_ifp;
2973 	uint32_t hangs = 0;
2974 
2975 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2976 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2977 
2978 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2979 		sc->sc_bmisscount);
2980 	sc->sc_stats.ast_bstuck++;
2981 	/*
2982 	 * This assumes that there's no simultaneous channel mode change
2983 	 * occuring.
2984 	 */
2985 	ath_reset(ifp, ATH_RESET_NOLOSS);
2986 }
2987 
2988 static void
2989 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2990 {
2991 	bus_addr_t *paddr = (bus_addr_t*) arg;
2992 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2993 	*paddr = segs->ds_addr;
2994 }
2995 
2996 /*
2997  * Allocate the descriptors and appropriate DMA tag/setup.
2998  *
2999  * For some situations (eg EDMA TX completion), there isn't a requirement
3000  * for the ath_buf entries to be allocated.
3001  */
3002 int
3003 ath_descdma_alloc_desc(struct ath_softc *sc,
3004 	struct ath_descdma *dd, ath_bufhead *head,
3005 	const char *name, int ds_size, int ndesc)
3006 {
3007 #define	DS2PHYS(_dd, _ds) \
3008 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3009 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3010 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3011 	struct ifnet *ifp = sc->sc_ifp;
3012 	int error;
3013 
3014 	dd->dd_descsize = ds_size;
3015 
3016 	DPRINTF(sc, ATH_DEBUG_RESET,
3017 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3018 	    __func__, name, ndesc, dd->dd_descsize);
3019 
3020 	dd->dd_name = name;
3021 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3022 
3023 	/*
3024 	 * Merlin work-around:
3025 	 * Descriptors that cross the 4KB boundary can't be used.
3026 	 * Assume one skipped descriptor per 4KB page.
3027 	 */
3028 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3029 		int numpages = dd->dd_desc_len / 4096;
3030 		dd->dd_desc_len += ds_size * numpages;
3031 	}
3032 
3033 	/*
3034 	 * Setup DMA descriptor area.
3035 	 *
3036 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3037 	 * buffers for the descriptors themselves.
3038 	 */
3039 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3040 		       PAGE_SIZE, 0,		/* alignment, bounds */
3041 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3042 		       BUS_SPACE_MAXADDR,	/* highaddr */
3043 		       NULL, NULL,		/* filter, filterarg */
3044 		       dd->dd_desc_len,		/* maxsize */
3045 		       1,			/* nsegments */
3046 		       dd->dd_desc_len,		/* maxsegsize */
3047 		       0,			/* flags */
3048 		       NULL,			/* lockfunc */
3049 		       NULL,			/* lockarg */
3050 		       &dd->dd_dmat);
3051 	if (error != 0) {
3052 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3053 		return error;
3054 	}
3055 
3056 	/* allocate descriptors */
3057 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3058 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3059 				 &dd->dd_dmamap);
3060 	if (error != 0) {
3061 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3062 			"error %u\n", ndesc, dd->dd_name, error);
3063 		goto fail1;
3064 	}
3065 
3066 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3067 				dd->dd_desc, dd->dd_desc_len,
3068 				ath_load_cb, &dd->dd_desc_paddr,
3069 				BUS_DMA_NOWAIT);
3070 	if (error != 0) {
3071 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3072 			dd->dd_name, error);
3073 		goto fail2;
3074 	}
3075 
3076 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3077 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3078 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3079 	    /*XXX*/ (u_long) dd->dd_desc_len);
3080 
3081 	return (0);
3082 
3083 fail2:
3084 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3085 fail1:
3086 	bus_dma_tag_destroy(dd->dd_dmat);
3087 	memset(dd, 0, sizeof(*dd));
3088 	return error;
3089 #undef DS2PHYS
3090 #undef ATH_DESC_4KB_BOUND_CHECK
3091 }
3092 
3093 int
3094 ath_descdma_setup(struct ath_softc *sc,
3095 	struct ath_descdma *dd, ath_bufhead *head,
3096 	const char *name, int ds_size, int nbuf, int ndesc)
3097 {
3098 #define	DS2PHYS(_dd, _ds) \
3099 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3100 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3101 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3102 	struct ifnet *ifp = sc->sc_ifp;
3103 	uint8_t *ds;
3104 	struct ath_buf *bf;
3105 	int i, bsize, error;
3106 
3107 	/* Allocate descriptors */
3108 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3109 	    nbuf * ndesc);
3110 
3111 	/* Assume any errors during allocation were dealt with */
3112 	if (error != 0) {
3113 		return (error);
3114 	}
3115 
3116 	ds = (uint8_t *) dd->dd_desc;
3117 
3118 	/* allocate rx buffers */
3119 	bsize = sizeof(struct ath_buf) * nbuf;
3120 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3121 	if (bf == NULL) {
3122 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3123 			dd->dd_name, bsize);
3124 		goto fail3;
3125 	}
3126 	dd->dd_bufptr = bf;
3127 
3128 	TAILQ_INIT(head);
3129 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3130 		bf->bf_desc = (struct ath_desc *) ds;
3131 		bf->bf_daddr = DS2PHYS(dd, ds);
3132 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3133 			/*
3134 			 * Merlin WAR: Skip descriptor addresses which
3135 			 * cause 4KB boundary crossing along any point
3136 			 * in the descriptor.
3137 			 */
3138 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3139 			     dd->dd_descsize)) {
3140 				/* Start at the next page */
3141 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3142 				bf->bf_desc = (struct ath_desc *) ds;
3143 				bf->bf_daddr = DS2PHYS(dd, ds);
3144 			}
3145 		}
3146 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3147 				&bf->bf_dmamap);
3148 		if (error != 0) {
3149 			if_printf(ifp, "unable to create dmamap for %s "
3150 				"buffer %u, error %u\n", dd->dd_name, i, error);
3151 			ath_descdma_cleanup(sc, dd, head);
3152 			return error;
3153 		}
3154 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3155 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3156 	}
3157 
3158 	/*
3159 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3160 	 * allocation otherwise weird stuff will occur and crash your
3161 	 * machine.
3162 	 */
3163 	return 0;
3164 	/* XXX this should likely just call ath_descdma_cleanup() */
3165 fail3:
3166 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3167 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3168 	bus_dma_tag_destroy(dd->dd_dmat);
3169 	memset(dd, 0, sizeof(*dd));
3170 	return error;
3171 #undef DS2PHYS
3172 #undef ATH_DESC_4KB_BOUND_CHECK
3173 }
3174 
3175 /*
3176  * Allocate ath_buf entries but no descriptor contents.
3177  *
3178  * This is for RX EDMA where the descriptors are the header part of
3179  * the RX buffer.
3180  */
3181 int
3182 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3183 	struct ath_descdma *dd, ath_bufhead *head,
3184 	const char *name, int nbuf, int rx_status_len)
3185 {
3186 	struct ifnet *ifp = sc->sc_ifp;
3187 	struct ath_buf *bf;
3188 	int i, bsize, error;
3189 
3190 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3191 	    __func__, name, nbuf);
3192 
3193 	dd->dd_name = name;
3194 	/*
3195 	 * This is (mostly) purely for show.  We're not allocating any actual
3196 	 * descriptors here as EDMA RX has the descriptor be part
3197 	 * of the RX buffer.
3198 	 *
3199 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3200 	 * whether we have already freed this DMA mapping.
3201 	 */
3202 	dd->dd_desc_len = rx_status_len * nbuf;
3203 	dd->dd_descsize = rx_status_len;
3204 
3205 	/* allocate rx buffers */
3206 	bsize = sizeof(struct ath_buf) * nbuf;
3207 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3208 	if (bf == NULL) {
3209 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3210 			dd->dd_name, bsize);
3211 		error = ENOMEM;
3212 		goto fail3;
3213 	}
3214 	dd->dd_bufptr = bf;
3215 
3216 	TAILQ_INIT(head);
3217 	for (i = 0; i < nbuf; i++, bf++) {
3218 		bf->bf_desc = NULL;
3219 		bf->bf_daddr = 0;
3220 		bf->bf_lastds = NULL;	/* Just an initial value */
3221 
3222 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3223 				&bf->bf_dmamap);
3224 		if (error != 0) {
3225 			if_printf(ifp, "unable to create dmamap for %s "
3226 				"buffer %u, error %u\n", dd->dd_name, i, error);
3227 			ath_descdma_cleanup(sc, dd, head);
3228 			return error;
3229 		}
3230 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3231 	}
3232 	return 0;
3233 fail3:
3234 	memset(dd, 0, sizeof(*dd));
3235 	return error;
3236 }
3237 
3238 void
3239 ath_descdma_cleanup(struct ath_softc *sc,
3240 	struct ath_descdma *dd, ath_bufhead *head)
3241 {
3242 	struct ath_buf *bf;
3243 	struct ieee80211_node *ni;
3244 	int do_warning = 0;
3245 
3246 	if (dd->dd_dmamap != 0) {
3247 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3248 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3249 		bus_dma_tag_destroy(dd->dd_dmat);
3250 	}
3251 
3252 	if (head != NULL) {
3253 		TAILQ_FOREACH(bf, head, bf_list) {
3254 			if (bf->bf_m) {
3255 				/*
3256 				 * XXX warn if there's buffers here.
3257 				 * XXX it should have been freed by the
3258 				 * owner!
3259 				 */
3260 
3261 				if (do_warning == 0) {
3262 					do_warning = 1;
3263 					device_printf(sc->sc_dev,
3264 					    "%s: %s: mbuf should've been"
3265 					    " unmapped/freed!\n",
3266 					    __func__,
3267 					    dd->dd_name);
3268 				}
3269 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3270 				    BUS_DMASYNC_POSTREAD);
3271 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3272 				m_freem(bf->bf_m);
3273 				bf->bf_m = NULL;
3274 			}
3275 			if (bf->bf_dmamap != NULL) {
3276 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3277 				bf->bf_dmamap = NULL;
3278 			}
3279 			ni = bf->bf_node;
3280 			bf->bf_node = NULL;
3281 			if (ni != NULL) {
3282 				/*
3283 				 * Reclaim node reference.
3284 				 */
3285 				ieee80211_free_node(ni);
3286 			}
3287 		}
3288 	}
3289 
3290 	if (head != NULL)
3291 		TAILQ_INIT(head);
3292 
3293 	if (dd->dd_bufptr != NULL)
3294 		free(dd->dd_bufptr, M_ATHDEV);
3295 	memset(dd, 0, sizeof(*dd));
3296 }
3297 
3298 static int
3299 ath_desc_alloc(struct ath_softc *sc)
3300 {
3301 	int error;
3302 
3303 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3304 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3305 	if (error != 0) {
3306 		return error;
3307 	}
3308 	sc->sc_txbuf_cnt = ath_txbuf;
3309 
3310 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3311 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3312 		    ATH_TXDESC);
3313 	if (error != 0) {
3314 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3315 		return error;
3316 	}
3317 
3318 	/*
3319 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3320 	 * flag doesn't have to be set in ath_getbuf_locked().
3321 	 */
3322 
3323 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3324 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3325 	if (error != 0) {
3326 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3327 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3328 		    &sc->sc_txbuf_mgmt);
3329 		return error;
3330 	}
3331 	return 0;
3332 }
3333 
3334 static void
3335 ath_desc_free(struct ath_softc *sc)
3336 {
3337 
3338 	if (sc->sc_bdma.dd_desc_len != 0)
3339 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3340 	if (sc->sc_txdma.dd_desc_len != 0)
3341 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3342 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3343 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3344 		    &sc->sc_txbuf_mgmt);
3345 }
3346 
3347 static struct ieee80211_node *
3348 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3349 {
3350 	struct ieee80211com *ic = vap->iv_ic;
3351 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3352 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3353 	struct ath_node *an;
3354 
3355 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3356 	if (an == NULL) {
3357 		/* XXX stat+msg */
3358 		return NULL;
3359 	}
3360 	ath_rate_node_init(sc, an);
3361 
3362 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3363 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3364 	    device_get_nameunit(sc->sc_dev), an);
3365 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3366 
3367 	/* XXX setup ath_tid */
3368 	ath_tx_tid_init(sc, an);
3369 
3370 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3371 	return &an->an_node;
3372 }
3373 
3374 static void
3375 ath_node_cleanup(struct ieee80211_node *ni)
3376 {
3377 	struct ieee80211com *ic = ni->ni_ic;
3378 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3379 
3380 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3381 	ath_tx_node_flush(sc, ATH_NODE(ni));
3382 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3383 	sc->sc_node_cleanup(ni);
3384 }
3385 
3386 static void
3387 ath_node_free(struct ieee80211_node *ni)
3388 {
3389 	struct ieee80211com *ic = ni->ni_ic;
3390 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3391 
3392 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3393 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3394 	sc->sc_node_free(ni);
3395 }
3396 
3397 static void
3398 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3399 {
3400 	struct ieee80211com *ic = ni->ni_ic;
3401 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3402 	struct ath_hal *ah = sc->sc_ah;
3403 
3404 	*rssi = ic->ic_node_getrssi(ni);
3405 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3406 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3407 	else
3408 		*noise = -95;		/* nominally correct */
3409 }
3410 
3411 /*
3412  * Set the default antenna.
3413  */
3414 void
3415 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3416 {
3417 	struct ath_hal *ah = sc->sc_ah;
3418 
3419 	/* XXX block beacon interrupts */
3420 	ath_hal_setdefantenna(ah, antenna);
3421 	if (sc->sc_defant != antenna)
3422 		sc->sc_stats.ast_ant_defswitch++;
3423 	sc->sc_defant = antenna;
3424 	sc->sc_rxotherant = 0;
3425 }
3426 
3427 static void
3428 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3429 {
3430 	txq->axq_qnum = qnum;
3431 	txq->axq_ac = 0;
3432 	txq->axq_depth = 0;
3433 	txq->axq_aggr_depth = 0;
3434 	txq->axq_intrcnt = 0;
3435 	txq->axq_link = NULL;
3436 	txq->axq_softc = sc;
3437 	TAILQ_INIT(&txq->axq_q);
3438 	TAILQ_INIT(&txq->axq_tidq);
3439 	TAILQ_INIT(&txq->fifo.axq_q);
3440 	ATH_TXQ_LOCK_INIT(sc, txq);
3441 }
3442 
3443 /*
3444  * Setup a h/w transmit queue.
3445  */
3446 static struct ath_txq *
3447 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3448 {
3449 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3450 	struct ath_hal *ah = sc->sc_ah;
3451 	HAL_TXQ_INFO qi;
3452 	int qnum;
3453 
3454 	memset(&qi, 0, sizeof(qi));
3455 	qi.tqi_subtype = subtype;
3456 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3457 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3458 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3459 	/*
3460 	 * Enable interrupts only for EOL and DESC conditions.
3461 	 * We mark tx descriptors to receive a DESC interrupt
3462 	 * when a tx queue gets deep; otherwise waiting for the
3463 	 * EOL to reap descriptors.  Note that this is done to
3464 	 * reduce interrupt load and this only defers reaping
3465 	 * descriptors, never transmitting frames.  Aside from
3466 	 * reducing interrupts this also permits more concurrency.
3467 	 * The only potential downside is if the tx queue backs
3468 	 * up in which case the top half of the kernel may backup
3469 	 * due to a lack of tx descriptors.
3470 	 */
3471 	if (sc->sc_isedma)
3472 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3473 		    HAL_TXQ_TXOKINT_ENABLE;
3474 	else
3475 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3476 		    HAL_TXQ_TXDESCINT_ENABLE;
3477 
3478 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3479 	if (qnum == -1) {
3480 		/*
3481 		 * NB: don't print a message, this happens
3482 		 * normally on parts with too few tx queues
3483 		 */
3484 		return NULL;
3485 	}
3486 	if (qnum >= N(sc->sc_txq)) {
3487 		device_printf(sc->sc_dev,
3488 			"hal qnum %u out of range, max %zu!\n",
3489 			qnum, N(sc->sc_txq));
3490 		ath_hal_releasetxqueue(ah, qnum);
3491 		return NULL;
3492 	}
3493 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3494 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3495 		sc->sc_txqsetup |= 1<<qnum;
3496 	}
3497 	return &sc->sc_txq[qnum];
3498 #undef N
3499 }
3500 
3501 /*
3502  * Setup a hardware data transmit queue for the specified
3503  * access control.  The hal may not support all requested
3504  * queues in which case it will return a reference to a
3505  * previously setup queue.  We record the mapping from ac's
3506  * to h/w queues for use by ath_tx_start and also track
3507  * the set of h/w queues being used to optimize work in the
3508  * transmit interrupt handler and related routines.
3509  */
3510 static int
3511 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3512 {
3513 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3514 	struct ath_txq *txq;
3515 
3516 	if (ac >= N(sc->sc_ac2q)) {
3517 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3518 			ac, N(sc->sc_ac2q));
3519 		return 0;
3520 	}
3521 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3522 	if (txq != NULL) {
3523 		txq->axq_ac = ac;
3524 		sc->sc_ac2q[ac] = txq;
3525 		return 1;
3526 	} else
3527 		return 0;
3528 #undef N
3529 }
3530 
3531 /*
3532  * Update WME parameters for a transmit queue.
3533  */
3534 static int
3535 ath_txq_update(struct ath_softc *sc, int ac)
3536 {
3537 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3538 #define	ATH_TXOP_TO_US(v)		(v<<5)
3539 	struct ifnet *ifp = sc->sc_ifp;
3540 	struct ieee80211com *ic = ifp->if_l2com;
3541 	struct ath_txq *txq = sc->sc_ac2q[ac];
3542 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3543 	struct ath_hal *ah = sc->sc_ah;
3544 	HAL_TXQ_INFO qi;
3545 
3546 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3547 #ifdef IEEE80211_SUPPORT_TDMA
3548 	if (sc->sc_tdma) {
3549 		/*
3550 		 * AIFS is zero so there's no pre-transmit wait.  The
3551 		 * burst time defines the slot duration and is configured
3552 		 * through net80211.  The QCU is setup to not do post-xmit
3553 		 * back off, lockout all lower-priority QCU's, and fire
3554 		 * off the DMA beacon alert timer which is setup based
3555 		 * on the slot configuration.
3556 		 */
3557 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3558 			      | HAL_TXQ_TXERRINT_ENABLE
3559 			      | HAL_TXQ_TXURNINT_ENABLE
3560 			      | HAL_TXQ_TXEOLINT_ENABLE
3561 			      | HAL_TXQ_DBA_GATED
3562 			      | HAL_TXQ_BACKOFF_DISABLE
3563 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3564 			      ;
3565 		qi.tqi_aifs = 0;
3566 		/* XXX +dbaprep? */
3567 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3568 		qi.tqi_burstTime = qi.tqi_readyTime;
3569 	} else {
3570 #endif
3571 		/*
3572 		 * XXX shouldn't this just use the default flags
3573 		 * used in the previous queue setup?
3574 		 */
3575 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3576 			      | HAL_TXQ_TXERRINT_ENABLE
3577 			      | HAL_TXQ_TXDESCINT_ENABLE
3578 			      | HAL_TXQ_TXURNINT_ENABLE
3579 			      | HAL_TXQ_TXEOLINT_ENABLE
3580 			      ;
3581 		qi.tqi_aifs = wmep->wmep_aifsn;
3582 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3583 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3584 		qi.tqi_readyTime = 0;
3585 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3586 #ifdef IEEE80211_SUPPORT_TDMA
3587 	}
3588 #endif
3589 
3590 	DPRINTF(sc, ATH_DEBUG_RESET,
3591 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3592 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3593 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3594 
3595 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3596 		if_printf(ifp, "unable to update hardware queue "
3597 			"parameters for %s traffic!\n",
3598 			ieee80211_wme_acnames[ac]);
3599 		return 0;
3600 	} else {
3601 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3602 		return 1;
3603 	}
3604 #undef ATH_TXOP_TO_US
3605 #undef ATH_EXPONENT_TO_VALUE
3606 }
3607 
3608 /*
3609  * Callback from the 802.11 layer to update WME parameters.
3610  */
3611 int
3612 ath_wme_update(struct ieee80211com *ic)
3613 {
3614 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3615 
3616 	return !ath_txq_update(sc, WME_AC_BE) ||
3617 	    !ath_txq_update(sc, WME_AC_BK) ||
3618 	    !ath_txq_update(sc, WME_AC_VI) ||
3619 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3620 }
3621 
3622 /*
3623  * Reclaim resources for a setup queue.
3624  */
3625 static void
3626 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3627 {
3628 
3629 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3630 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3631 	ATH_TXQ_LOCK_DESTROY(txq);
3632 }
3633 
3634 /*
3635  * Reclaim all tx queue resources.
3636  */
3637 static void
3638 ath_tx_cleanup(struct ath_softc *sc)
3639 {
3640 	int i;
3641 
3642 	ATH_TXBUF_LOCK_DESTROY(sc);
3643 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3644 		if (ATH_TXQ_SETUP(sc, i))
3645 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3646 }
3647 
3648 /*
3649  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3650  * using the current rates in sc_rixmap.
3651  */
3652 int
3653 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3654 {
3655 	int rix = sc->sc_rixmap[rate];
3656 	/* NB: return lowest rix for invalid rate */
3657 	return (rix == 0xff ? 0 : rix);
3658 }
3659 
3660 static void
3661 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3662     struct ath_buf *bf)
3663 {
3664 	struct ieee80211_node *ni = bf->bf_node;
3665 	struct ifnet *ifp = sc->sc_ifp;
3666 	struct ieee80211com *ic = ifp->if_l2com;
3667 	int sr, lr, pri;
3668 
3669 	if (ts->ts_status == 0) {
3670 		u_int8_t txant = ts->ts_antenna;
3671 		sc->sc_stats.ast_ant_tx[txant]++;
3672 		sc->sc_ant_tx[txant]++;
3673 		if (ts->ts_finaltsi != 0)
3674 			sc->sc_stats.ast_tx_altrate++;
3675 		pri = M_WME_GETAC(bf->bf_m);
3676 		if (pri >= WME_AC_VO)
3677 			ic->ic_wme.wme_hipri_traffic++;
3678 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3679 			ni->ni_inact = ni->ni_inact_reload;
3680 	} else {
3681 		if (ts->ts_status & HAL_TXERR_XRETRY)
3682 			sc->sc_stats.ast_tx_xretries++;
3683 		if (ts->ts_status & HAL_TXERR_FIFO)
3684 			sc->sc_stats.ast_tx_fifoerr++;
3685 		if (ts->ts_status & HAL_TXERR_FILT)
3686 			sc->sc_stats.ast_tx_filtered++;
3687 		if (ts->ts_status & HAL_TXERR_XTXOP)
3688 			sc->sc_stats.ast_tx_xtxop++;
3689 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3690 			sc->sc_stats.ast_tx_timerexpired++;
3691 
3692 		if (bf->bf_m->m_flags & M_FF)
3693 			sc->sc_stats.ast_ff_txerr++;
3694 	}
3695 	/* XXX when is this valid? */
3696 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
3697 		sc->sc_stats.ast_tx_desccfgerr++;
3698 	/*
3699 	 * This can be valid for successful frame transmission!
3700 	 * If there's a TX FIFO underrun during aggregate transmission,
3701 	 * the MAC will pad the rest of the aggregate with delimiters.
3702 	 * If a BA is returned, the frame is marked as "OK" and it's up
3703 	 * to the TX completion code to notice which frames weren't
3704 	 * successfully transmitted.
3705 	 */
3706 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
3707 		sc->sc_stats.ast_tx_data_underrun++;
3708 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
3709 		sc->sc_stats.ast_tx_delim_underrun++;
3710 
3711 	sr = ts->ts_shortretry;
3712 	lr = ts->ts_longretry;
3713 	sc->sc_stats.ast_tx_shortretry += sr;
3714 	sc->sc_stats.ast_tx_longretry += lr;
3715 
3716 }
3717 
3718 /*
3719  * The default completion. If fail is 1, this means
3720  * "please don't retry the frame, and just return -1 status
3721  * to the net80211 stack.
3722  */
3723 void
3724 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3725 {
3726 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3727 	int st;
3728 
3729 	if (fail == 1)
3730 		st = -1;
3731 	else
3732 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3733 		    ts->ts_status : HAL_TXERR_XRETRY;
3734 
3735 #if 0
3736 	if (bf->bf_state.bfs_dobaw)
3737 		device_printf(sc->sc_dev,
3738 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3739 		    __func__,
3740 		    bf,
3741 		    SEQNO(bf->bf_state.bfs_seqno));
3742 #endif
3743 	if (bf->bf_next != NULL)
3744 		device_printf(sc->sc_dev,
3745 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3746 		    __func__,
3747 		    bf,
3748 		    SEQNO(bf->bf_state.bfs_seqno));
3749 
3750 	/*
3751 	 * Check if the node software queue is empty; if so
3752 	 * then clear the TIM.
3753 	 *
3754 	 * This needs to be done before the buffer is freed as
3755 	 * otherwise the node reference will have been released
3756 	 * and the node may not actually exist any longer.
3757 	 *
3758 	 * XXX I don't like this belonging here, but it's cleaner
3759 	 * to do it here right now then all the other places
3760 	 * where ath_tx_default_comp() is called.
3761 	 *
3762 	 * XXX TODO: during drain, ensure that the callback is
3763 	 * being called so we get a chance to update the TIM.
3764 	 */
3765 	if (bf->bf_node)
3766 		ath_tx_update_tim(sc, bf->bf_node, 0);
3767 
3768 	/*
3769 	 * Do any tx complete callback.  Note this must
3770 	 * be done before releasing the node reference.
3771 	 * This will free the mbuf, release the net80211
3772 	 * node and recycle the ath_buf.
3773 	 */
3774 	ath_tx_freebuf(sc, bf, st);
3775 }
3776 
3777 /*
3778  * Update rate control with the given completion status.
3779  */
3780 void
3781 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3782     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3783     int nframes, int nbad)
3784 {
3785 	struct ath_node *an;
3786 
3787 	/* Only for unicast frames */
3788 	if (ni == NULL)
3789 		return;
3790 
3791 	an = ATH_NODE(ni);
3792 	ATH_NODE_UNLOCK_ASSERT(an);
3793 
3794 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3795 		ATH_NODE_LOCK(an);
3796 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3797 		ATH_NODE_UNLOCK(an);
3798 	}
3799 }
3800 
3801 /*
3802  * Process the completion of the given buffer.
3803  *
3804  * This calls the rate control update and then the buffer completion.
3805  * This will either free the buffer or requeue it.  In any case, the
3806  * bf pointer should be treated as invalid after this function is called.
3807  */
3808 void
3809 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3810     struct ath_tx_status *ts, struct ath_buf *bf)
3811 {
3812 	struct ieee80211_node *ni = bf->bf_node;
3813 	struct ath_node *an = NULL;
3814 
3815 	ATH_TX_UNLOCK_ASSERT(sc);
3816 
3817 	/* If unicast frame, update general statistics */
3818 	if (ni != NULL) {
3819 		an = ATH_NODE(ni);
3820 		/* update statistics */
3821 		ath_tx_update_stats(sc, ts, bf);
3822 	}
3823 
3824 	/*
3825 	 * Call the completion handler.
3826 	 * The completion handler is responsible for
3827 	 * calling the rate control code.
3828 	 *
3829 	 * Frames with no completion handler get the
3830 	 * rate control code called here.
3831 	 */
3832 	if (bf->bf_comp == NULL) {
3833 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3834 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3835 			/*
3836 			 * XXX assume this isn't an aggregate
3837 			 * frame.
3838 			 */
3839 			ath_tx_update_ratectrl(sc, ni,
3840 			     bf->bf_state.bfs_rc, ts,
3841 			    bf->bf_state.bfs_pktlen, 1,
3842 			    (ts->ts_status == 0 ? 0 : 1));
3843 		}
3844 		ath_tx_default_comp(sc, bf, 0);
3845 	} else
3846 		bf->bf_comp(sc, bf, 0);
3847 }
3848 
3849 
3850 
3851 /*
3852  * Process completed xmit descriptors from the specified queue.
3853  * Kick the packet scheduler if needed. This can occur from this
3854  * particular task.
3855  */
3856 static int
3857 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3858 {
3859 	struct ath_hal *ah = sc->sc_ah;
3860 	struct ath_buf *bf;
3861 	struct ath_desc *ds;
3862 	struct ath_tx_status *ts;
3863 	struct ieee80211_node *ni;
3864 #ifdef	IEEE80211_SUPPORT_SUPERG
3865 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3866 #endif	/* IEEE80211_SUPPORT_SUPERG */
3867 	int nacked;
3868 	HAL_STATUS status;
3869 
3870 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3871 		__func__, txq->axq_qnum,
3872 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3873 		txq->axq_link);
3874 
3875 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3876 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3877 	    txq->axq_qnum,
3878 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3879 	    txq->axq_link,
3880 	    txq->axq_depth);
3881 
3882 	nacked = 0;
3883 	for (;;) {
3884 		ATH_TXQ_LOCK(txq);
3885 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3886 		bf = TAILQ_FIRST(&txq->axq_q);
3887 		if (bf == NULL) {
3888 			ATH_TXQ_UNLOCK(txq);
3889 			break;
3890 		}
3891 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3892 		ts = &bf->bf_status.ds_txstat;
3893 
3894 		status = ath_hal_txprocdesc(ah, ds, ts);
3895 #ifdef ATH_DEBUG
3896 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3897 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3898 			    status == HAL_OK);
3899 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3900 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3901 			    status == HAL_OK);
3902 #endif
3903 #ifdef	ATH_DEBUG_ALQ
3904 		if (if_ath_alq_checkdebug(&sc->sc_alq,
3905 		    ATH_ALQ_EDMA_TXSTATUS)) {
3906 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
3907 			sc->sc_tx_statuslen,
3908 			(char *) ds);
3909 		}
3910 #endif
3911 
3912 		if (status == HAL_EINPROGRESS) {
3913 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3914 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3915 			    txq->axq_qnum, bf, ds);
3916 			ATH_TXQ_UNLOCK(txq);
3917 			break;
3918 		}
3919 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3920 		if (txq->axq_depth > 0) {
3921 			/*
3922 			 * More frames follow.  Mark the buffer busy
3923 			 * so it's not re-used while the hardware may
3924 			 * still re-read the link field in the descriptor.
3925 			 *
3926 			 * Use the last buffer in an aggregate as that
3927 			 * is where the hardware may be - intermediate
3928 			 * descriptors won't be "busy".
3929 			 */
3930 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3931 		} else
3932 			txq->axq_link = NULL;
3933 		if (bf->bf_state.bfs_aggr)
3934 			txq->axq_aggr_depth--;
3935 
3936 		ni = bf->bf_node;
3937 
3938 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
3939 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
3940 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
3941 		/*
3942 		 * If unicast frame was ack'd update RSSI,
3943 		 * including the last rx time used to
3944 		 * workaround phantom bmiss interrupts.
3945 		 */
3946 		if (ni != NULL && ts->ts_status == 0 &&
3947 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3948 			nacked++;
3949 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3950 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3951 				ts->ts_rssi);
3952 		}
3953 		ATH_TXQ_UNLOCK(txq);
3954 
3955 		/*
3956 		 * Update statistics and call completion
3957 		 */
3958 		ath_tx_process_buf_completion(sc, txq, ts, bf);
3959 
3960 		/* XXX at this point, bf and ni may be totally invalid */
3961 	}
3962 #ifdef IEEE80211_SUPPORT_SUPERG
3963 	/*
3964 	 * Flush fast-frame staging queue when traffic slows.
3965 	 */
3966 	if (txq->axq_depth <= 1)
3967 		ieee80211_ff_flush(ic, txq->axq_ac);
3968 #endif
3969 
3970 	/* Kick the software TXQ scheduler */
3971 	if (dosched) {
3972 		ATH_TX_LOCK(sc);
3973 		ath_txq_sched(sc, txq);
3974 		ATH_TX_UNLOCK(sc);
3975 	}
3976 
3977 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3978 	    "ath_tx_processq: txq=%u: done",
3979 	    txq->axq_qnum);
3980 
3981 	return nacked;
3982 }
3983 
3984 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3985 
3986 /*
3987  * Deferred processing of transmit interrupt; special-cased
3988  * for a single hardware transmit queue (e.g. 5210 and 5211).
3989  */
3990 static void
3991 ath_tx_proc_q0(void *arg, int npending)
3992 {
3993 	struct ath_softc *sc = arg;
3994 	struct ifnet *ifp = sc->sc_ifp;
3995 	uint32_t txqs;
3996 
3997 	ATH_PCU_LOCK(sc);
3998 	sc->sc_txproc_cnt++;
3999 	txqs = sc->sc_txq_active;
4000 	sc->sc_txq_active &= ~txqs;
4001 	ATH_PCU_UNLOCK(sc);
4002 
4003 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4004 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4005 
4006 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4007 		/* XXX why is lastrx updated in tx code? */
4008 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4009 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4010 		ath_tx_processq(sc, sc->sc_cabq, 1);
4011 	IF_LOCK(&ifp->if_snd);
4012 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4013 	IF_UNLOCK(&ifp->if_snd);
4014 	sc->sc_wd_timer = 0;
4015 
4016 	if (sc->sc_softled)
4017 		ath_led_event(sc, sc->sc_txrix);
4018 
4019 	ATH_PCU_LOCK(sc);
4020 	sc->sc_txproc_cnt--;
4021 	ATH_PCU_UNLOCK(sc);
4022 
4023 	ath_tx_kick(sc);
4024 }
4025 
4026 /*
4027  * Deferred processing of transmit interrupt; special-cased
4028  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4029  */
4030 static void
4031 ath_tx_proc_q0123(void *arg, int npending)
4032 {
4033 	struct ath_softc *sc = arg;
4034 	struct ifnet *ifp = sc->sc_ifp;
4035 	int nacked;
4036 	uint32_t txqs;
4037 
4038 	ATH_PCU_LOCK(sc);
4039 	sc->sc_txproc_cnt++;
4040 	txqs = sc->sc_txq_active;
4041 	sc->sc_txq_active &= ~txqs;
4042 	ATH_PCU_UNLOCK(sc);
4043 
4044 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4045 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4046 
4047 	/*
4048 	 * Process each active queue.
4049 	 */
4050 	nacked = 0;
4051 	if (TXQACTIVE(txqs, 0))
4052 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4053 	if (TXQACTIVE(txqs, 1))
4054 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4055 	if (TXQACTIVE(txqs, 2))
4056 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4057 	if (TXQACTIVE(txqs, 3))
4058 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4059 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4060 		ath_tx_processq(sc, sc->sc_cabq, 1);
4061 	if (nacked)
4062 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4063 
4064 	IF_LOCK(&ifp->if_snd);
4065 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4066 	IF_UNLOCK(&ifp->if_snd);
4067 	sc->sc_wd_timer = 0;
4068 
4069 	if (sc->sc_softled)
4070 		ath_led_event(sc, sc->sc_txrix);
4071 
4072 	ATH_PCU_LOCK(sc);
4073 	sc->sc_txproc_cnt--;
4074 	ATH_PCU_UNLOCK(sc);
4075 
4076 	ath_tx_kick(sc);
4077 }
4078 
4079 /*
4080  * Deferred processing of transmit interrupt.
4081  */
4082 static void
4083 ath_tx_proc(void *arg, int npending)
4084 {
4085 	struct ath_softc *sc = arg;
4086 	struct ifnet *ifp = sc->sc_ifp;
4087 	int i, nacked;
4088 	uint32_t txqs;
4089 
4090 	ATH_PCU_LOCK(sc);
4091 	sc->sc_txproc_cnt++;
4092 	txqs = sc->sc_txq_active;
4093 	sc->sc_txq_active &= ~txqs;
4094 	ATH_PCU_UNLOCK(sc);
4095 
4096 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4097 
4098 	/*
4099 	 * Process each active queue.
4100 	 */
4101 	nacked = 0;
4102 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4103 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4104 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4105 	if (nacked)
4106 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4107 
4108 	/* XXX check this inside of IF_LOCK? */
4109 	IF_LOCK(&ifp->if_snd);
4110 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4111 	IF_UNLOCK(&ifp->if_snd);
4112 	sc->sc_wd_timer = 0;
4113 
4114 	if (sc->sc_softled)
4115 		ath_led_event(sc, sc->sc_txrix);
4116 
4117 	ATH_PCU_LOCK(sc);
4118 	sc->sc_txproc_cnt--;
4119 	ATH_PCU_UNLOCK(sc);
4120 
4121 	ath_tx_kick(sc);
4122 }
4123 #undef	TXQACTIVE
4124 
4125 /*
4126  * Deferred processing of TXQ rescheduling.
4127  */
4128 static void
4129 ath_txq_sched_tasklet(void *arg, int npending)
4130 {
4131 	struct ath_softc *sc = arg;
4132 	int i;
4133 
4134 	/* XXX is skipping ok? */
4135 	ATH_PCU_LOCK(sc);
4136 #if 0
4137 	if (sc->sc_inreset_cnt > 0) {
4138 		device_printf(sc->sc_dev,
4139 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4140 		ATH_PCU_UNLOCK(sc);
4141 		return;
4142 	}
4143 #endif
4144 	sc->sc_txproc_cnt++;
4145 	ATH_PCU_UNLOCK(sc);
4146 
4147 	ATH_TX_LOCK(sc);
4148 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4149 		if (ATH_TXQ_SETUP(sc, i)) {
4150 			ath_txq_sched(sc, &sc->sc_txq[i]);
4151 		}
4152 	}
4153 	ATH_TX_UNLOCK(sc);
4154 
4155 	ATH_PCU_LOCK(sc);
4156 	sc->sc_txproc_cnt--;
4157 	ATH_PCU_UNLOCK(sc);
4158 }
4159 
4160 void
4161 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4162 {
4163 
4164 	ATH_TXBUF_LOCK_ASSERT(sc);
4165 
4166 	if (bf->bf_flags & ATH_BUF_MGMT)
4167 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4168 	else {
4169 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4170 		sc->sc_txbuf_cnt++;
4171 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4172 			device_printf(sc->sc_dev,
4173 			    "%s: sc_txbuf_cnt > %d?\n",
4174 			    __func__,
4175 			    ath_txbuf);
4176 			sc->sc_txbuf_cnt = ath_txbuf;
4177 		}
4178 	}
4179 }
4180 
4181 void
4182 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4183 {
4184 
4185 	ATH_TXBUF_LOCK_ASSERT(sc);
4186 
4187 	if (bf->bf_flags & ATH_BUF_MGMT)
4188 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4189 	else {
4190 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4191 		sc->sc_txbuf_cnt++;
4192 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4193 			device_printf(sc->sc_dev,
4194 			    "%s: sc_txbuf_cnt > %d?\n",
4195 			    __func__,
4196 			    ATH_TXBUF);
4197 			sc->sc_txbuf_cnt = ATH_TXBUF;
4198 		}
4199 	}
4200 }
4201 
4202 /*
4203  * Free the holding buffer if it exists
4204  */
4205 void
4206 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4207 {
4208 	ATH_TXBUF_LOCK_ASSERT(sc);
4209 
4210 	if (txq->axq_holdingbf == NULL)
4211 		return;
4212 
4213 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4214 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4215 	txq->axq_holdingbf = NULL;
4216 }
4217 
4218 /*
4219  * Add this buffer to the holding queue, freeing the previous
4220  * one if it exists.
4221  */
4222 static void
4223 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4224 {
4225 	struct ath_txq *txq;
4226 
4227 	ATH_TXBUF_LOCK_ASSERT(sc);
4228 
4229 	/* XXX assert ATH_BUF_BUSY is set */
4230 
4231 	/* XXX assert the tx queue is under the max number */
4232 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4233 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4234 		    __func__,
4235 		    bf,
4236 		    bf->bf_state.bfs_tx_queue);
4237 		bf->bf_flags &= ~ATH_BUF_BUSY;
4238 		ath_returnbuf_tail(sc, bf);
4239 		return;
4240 	}
4241 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4242 	ath_txq_freeholdingbuf(sc, txq);
4243 	txq->axq_holdingbf = bf;
4244 }
4245 
4246 /*
4247  * Return a buffer to the pool and update the 'busy' flag on the
4248  * previous 'tail' entry.
4249  *
4250  * This _must_ only be called when the buffer is involved in a completed
4251  * TX. The logic is that if it was part of an active TX, the previous
4252  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4253  * for restart (eg for TDMA.)
4254  *
4255  * The caller must free the mbuf and recycle the node reference.
4256  */
4257 void
4258 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4259 {
4260 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4261 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4262 
4263 	/*
4264 	 * If this buffer is busy, push it onto the holding queue
4265 	 */
4266 	if (bf->bf_flags & ATH_BUF_BUSY) {
4267 		ATH_TXBUF_LOCK(sc);
4268 		ath_txq_addholdingbuf(sc, bf);
4269 		ATH_TXBUF_UNLOCK(sc);
4270 		return;
4271 	}
4272 
4273 	/*
4274 	 * Not a busy buffer, so free normally
4275 	 */
4276 	ATH_TXBUF_LOCK(sc);
4277 	ath_returnbuf_tail(sc, bf);
4278 	ATH_TXBUF_UNLOCK(sc);
4279 }
4280 
4281 /*
4282  * This is currently used by ath_tx_draintxq() and
4283  * ath_tx_tid_free_pkts().
4284  *
4285  * It recycles a single ath_buf.
4286  */
4287 void
4288 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4289 {
4290 	struct ieee80211_node *ni = bf->bf_node;
4291 	struct mbuf *m0 = bf->bf_m;
4292 
4293 	/*
4294 	 * Make sure that we only sync/unload if there's an mbuf.
4295 	 * If not (eg we cloned a buffer), the unload will have already
4296 	 * occured.
4297 	 */
4298 	if (bf->bf_m != NULL) {
4299 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4300 		    BUS_DMASYNC_POSTWRITE);
4301 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4302 	}
4303 
4304 	bf->bf_node = NULL;
4305 	bf->bf_m = NULL;
4306 
4307 	/* Free the buffer, it's not needed any longer */
4308 	ath_freebuf(sc, bf);
4309 
4310 	if (ni != NULL) {
4311 		/*
4312 		 * Do any callback and reclaim the node reference.
4313 		 */
4314 		if (m0->m_flags & M_TXCB)
4315 			ieee80211_process_callback(ni, m0, status);
4316 		ieee80211_free_node(ni);
4317 	}
4318 
4319 	/* Finally, we don't need this mbuf any longer */
4320 	m_freem(m0);
4321 }
4322 
4323 static struct ath_buf *
4324 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4325 {
4326 	struct ath_buf *bf;
4327 
4328 	ATH_TXQ_LOCK_ASSERT(txq);
4329 
4330 	/*
4331 	 * Drain the FIFO queue first, then if it's
4332 	 * empty, move to the normal frame queue.
4333 	 */
4334 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4335 	if (bf != NULL) {
4336 		/*
4337 		 * Is it the last buffer in this set?
4338 		 * Decrement the FIFO counter.
4339 		 */
4340 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4341 			if (txq->axq_fifo_depth == 0) {
4342 				device_printf(sc->sc_dev,
4343 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4344 				    __func__,
4345 				    txq->axq_qnum,
4346 				    txq->fifo.axq_depth);
4347 			} else
4348 				txq->axq_fifo_depth--;
4349 		}
4350 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4351 		return (bf);
4352 	}
4353 
4354 	/*
4355 	 * Debugging!
4356 	 */
4357 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4358 		device_printf(sc->sc_dev,
4359 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4360 		    __func__,
4361 		    txq->axq_qnum,
4362 		    txq->axq_fifo_depth,
4363 		    txq->fifo.axq_depth);
4364 	}
4365 
4366 	/*
4367 	 * Now drain the pending queue.
4368 	 */
4369 	bf = TAILQ_FIRST(&txq->axq_q);
4370 	if (bf == NULL) {
4371 		txq->axq_link = NULL;
4372 		return (NULL);
4373 	}
4374 	ATH_TXQ_REMOVE(txq, bf, bf_list);
4375 	return (bf);
4376 }
4377 
4378 void
4379 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4380 {
4381 #ifdef ATH_DEBUG
4382 	struct ath_hal *ah = sc->sc_ah;
4383 #endif
4384 	struct ath_buf *bf;
4385 	u_int ix;
4386 
4387 	/*
4388 	 * NB: this assumes output has been stopped and
4389 	 *     we do not need to block ath_tx_proc
4390 	 */
4391 	for (ix = 0;; ix++) {
4392 		ATH_TXQ_LOCK(txq);
4393 		bf = ath_tx_draintxq_get_one(sc, txq);
4394 		if (bf == NULL) {
4395 			ATH_TXQ_UNLOCK(txq);
4396 			break;
4397 		}
4398 		if (bf->bf_state.bfs_aggr)
4399 			txq->axq_aggr_depth--;
4400 #ifdef ATH_DEBUG
4401 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4402 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4403 			int status = 0;
4404 
4405 			/*
4406 			 * EDMA operation has a TX completion FIFO
4407 			 * separate from the TX descriptor, so this
4408 			 * method of checking the "completion" status
4409 			 * is wrong.
4410 			 */
4411 			if (! sc->sc_isedma) {
4412 				status = (ath_hal_txprocdesc(ah,
4413 				    bf->bf_lastds,
4414 				    &bf->bf_status.ds_txstat) == HAL_OK);
4415 			}
4416 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4417 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4418 			    bf->bf_m->m_len, 0, -1);
4419 		}
4420 #endif /* ATH_DEBUG */
4421 		/*
4422 		 * Since we're now doing magic in the completion
4423 		 * functions, we -must- call it for aggregation
4424 		 * destinations or BAW tracking will get upset.
4425 		 */
4426 		/*
4427 		 * Clear ATH_BUF_BUSY; the completion handler
4428 		 * will free the buffer.
4429 		 */
4430 		ATH_TXQ_UNLOCK(txq);
4431 		bf->bf_flags &= ~ATH_BUF_BUSY;
4432 		if (bf->bf_comp)
4433 			bf->bf_comp(sc, bf, 1);
4434 		else
4435 			ath_tx_default_comp(sc, bf, 1);
4436 	}
4437 
4438 	/*
4439 	 * Free the holding buffer if it exists
4440 	 */
4441 	ATH_TXBUF_LOCK(sc);
4442 	ath_txq_freeholdingbuf(sc, txq);
4443 	ATH_TXBUF_UNLOCK(sc);
4444 
4445 	/*
4446 	 * Drain software queued frames which are on
4447 	 * active TIDs.
4448 	 */
4449 	ath_tx_txq_drain(sc, txq);
4450 }
4451 
4452 static void
4453 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4454 {
4455 	struct ath_hal *ah = sc->sc_ah;
4456 
4457 	DPRINTF(sc, ATH_DEBUG_RESET,
4458 	    "%s: tx queue [%u] %p, flags 0x%08x, link %p\n",
4459 	    __func__,
4460 	    txq->axq_qnum,
4461 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4462 	    txq->axq_flags,
4463 	    txq->axq_link);
4464 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4465 }
4466 
4467 int
4468 ath_stoptxdma(struct ath_softc *sc)
4469 {
4470 	struct ath_hal *ah = sc->sc_ah;
4471 	int i;
4472 
4473 	/* XXX return value */
4474 	if (sc->sc_invalid)
4475 		return 0;
4476 
4477 	if (!sc->sc_invalid) {
4478 		/* don't touch the hardware if marked invalid */
4479 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4480 		    __func__, sc->sc_bhalq,
4481 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4482 		    NULL);
4483 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4484 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4485 			if (ATH_TXQ_SETUP(sc, i))
4486 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4487 	}
4488 
4489 	return 1;
4490 }
4491 
4492 /*
4493  * Drain the transmit queues and reclaim resources.
4494  */
4495 void
4496 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4497 {
4498 #ifdef	ATH_DEBUG
4499 	struct ath_hal *ah = sc->sc_ah;
4500 #endif
4501 	struct ifnet *ifp = sc->sc_ifp;
4502 	int i;
4503 
4504 	(void) ath_stoptxdma(sc);
4505 
4506 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4507 		/*
4508 		 * XXX TODO: should we just handle the completed TX frames
4509 		 * here, whether or not the reset is a full one or not?
4510 		 */
4511 		if (ATH_TXQ_SETUP(sc, i)) {
4512 			if (reset_type == ATH_RESET_NOLOSS)
4513 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4514 			else
4515 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4516 		}
4517 	}
4518 #ifdef ATH_DEBUG
4519 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4520 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4521 		if (bf != NULL && bf->bf_m != NULL) {
4522 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4523 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4524 				    &bf->bf_status.ds_txstat) == HAL_OK);
4525 			ieee80211_dump_pkt(ifp->if_l2com,
4526 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4527 			    0, -1);
4528 		}
4529 	}
4530 #endif /* ATH_DEBUG */
4531 	IF_LOCK(&ifp->if_snd);
4532 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4533 	IF_UNLOCK(&ifp->if_snd);
4534 	sc->sc_wd_timer = 0;
4535 }
4536 
4537 /*
4538  * Update internal state after a channel change.
4539  */
4540 static void
4541 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4542 {
4543 	enum ieee80211_phymode mode;
4544 
4545 	/*
4546 	 * Change channels and update the h/w rate map
4547 	 * if we're switching; e.g. 11a to 11b/g.
4548 	 */
4549 	mode = ieee80211_chan2mode(chan);
4550 	if (mode != sc->sc_curmode)
4551 		ath_setcurmode(sc, mode);
4552 	sc->sc_curchan = chan;
4553 }
4554 
4555 /*
4556  * Set/change channels.  If the channel is really being changed,
4557  * it's done by resetting the chip.  To accomplish this we must
4558  * first cleanup any pending DMA, then restart stuff after a la
4559  * ath_init.
4560  */
4561 static int
4562 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4563 {
4564 	struct ifnet *ifp = sc->sc_ifp;
4565 	struct ieee80211com *ic = ifp->if_l2com;
4566 	struct ath_hal *ah = sc->sc_ah;
4567 	int ret = 0;
4568 
4569 	/* Treat this as an interface reset */
4570 	ATH_PCU_UNLOCK_ASSERT(sc);
4571 	ATH_UNLOCK_ASSERT(sc);
4572 
4573 	/* (Try to) stop TX/RX from occuring */
4574 	taskqueue_block(sc->sc_tq);
4575 
4576 	ATH_PCU_LOCK(sc);
4577 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4578 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4579 	if (ath_reset_grablock(sc, 1) == 0) {
4580 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4581 		    __func__);
4582 	}
4583 	ATH_PCU_UNLOCK(sc);
4584 
4585 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4586 	    __func__, ieee80211_chan2ieee(ic, chan),
4587 	    chan->ic_freq, chan->ic_flags);
4588 	if (chan != sc->sc_curchan) {
4589 		HAL_STATUS status;
4590 		/*
4591 		 * To switch channels clear any pending DMA operations;
4592 		 * wait long enough for the RX fifo to drain, reset the
4593 		 * hardware at the new frequency, and then re-enable
4594 		 * the relevant bits of the h/w.
4595 		 */
4596 #if 0
4597 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4598 #endif
4599 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4600 		/*
4601 		 * First, handle completed TX/RX frames.
4602 		 */
4603 		ath_rx_flush(sc);
4604 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4605 		/*
4606 		 * Next, flush the non-scheduled frames.
4607 		 */
4608 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4609 
4610 		ath_update_chainmasks(sc, chan);
4611 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
4612 		    sc->sc_cur_rxchainmask);
4613 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4614 			if_printf(ifp, "%s: unable to reset "
4615 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4616 			    __func__, ieee80211_chan2ieee(ic, chan),
4617 			    chan->ic_freq, chan->ic_flags, status);
4618 			ret = EIO;
4619 			goto finish;
4620 		}
4621 		sc->sc_diversity = ath_hal_getdiversity(ah);
4622 
4623 		/* Let DFS at it in case it's a DFS channel */
4624 		ath_dfs_radar_enable(sc, chan);
4625 
4626 		/* Let spectral at in case spectral is enabled */
4627 		ath_spectral_enable(sc, chan);
4628 
4629 		/*
4630 		 * Re-enable rx framework.
4631 		 */
4632 		if (ath_startrecv(sc) != 0) {
4633 			if_printf(ifp, "%s: unable to restart recv logic\n",
4634 			    __func__);
4635 			ret = EIO;
4636 			goto finish;
4637 		}
4638 
4639 		/*
4640 		 * Change channels and update the h/w rate map
4641 		 * if we're switching; e.g. 11a to 11b/g.
4642 		 */
4643 		ath_chan_change(sc, chan);
4644 
4645 		/*
4646 		 * Reset clears the beacon timers; reset them
4647 		 * here if needed.
4648 		 */
4649 		if (sc->sc_beacons) {		/* restart beacons */
4650 #ifdef IEEE80211_SUPPORT_TDMA
4651 			if (sc->sc_tdma)
4652 				ath_tdma_config(sc, NULL);
4653 			else
4654 #endif
4655 			ath_beacon_config(sc, NULL);
4656 		}
4657 
4658 		/*
4659 		 * Re-enable interrupts.
4660 		 */
4661 #if 0
4662 		ath_hal_intrset(ah, sc->sc_imask);
4663 #endif
4664 	}
4665 
4666 finish:
4667 	ATH_PCU_LOCK(sc);
4668 	sc->sc_inreset_cnt--;
4669 	/* XXX only do this if sc_inreset_cnt == 0? */
4670 	ath_hal_intrset(ah, sc->sc_imask);
4671 	ATH_PCU_UNLOCK(sc);
4672 
4673 	IF_LOCK(&ifp->if_snd);
4674 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4675 	IF_UNLOCK(&ifp->if_snd);
4676 	ath_txrx_start(sc);
4677 	/* XXX ath_start? */
4678 
4679 	return ret;
4680 }
4681 
4682 /*
4683  * Periodically recalibrate the PHY to account
4684  * for temperature/environment changes.
4685  */
4686 static void
4687 ath_calibrate(void *arg)
4688 {
4689 	struct ath_softc *sc = arg;
4690 	struct ath_hal *ah = sc->sc_ah;
4691 	struct ifnet *ifp = sc->sc_ifp;
4692 	struct ieee80211com *ic = ifp->if_l2com;
4693 	HAL_BOOL longCal, isCalDone = AH_TRUE;
4694 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4695 	int nextcal;
4696 
4697 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4698 		goto restart;
4699 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4700 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4701 	if (sc->sc_doresetcal)
4702 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4703 
4704 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4705 	if (aniCal) {
4706 		sc->sc_stats.ast_ani_cal++;
4707 		sc->sc_lastani = ticks;
4708 		ath_hal_ani_poll(ah, sc->sc_curchan);
4709 	}
4710 
4711 	if (longCal) {
4712 		sc->sc_stats.ast_per_cal++;
4713 		sc->sc_lastlongcal = ticks;
4714 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4715 			/*
4716 			 * Rfgain is out of bounds, reset the chip
4717 			 * to load new gain values.
4718 			 */
4719 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4720 				"%s: rfgain change\n", __func__);
4721 			sc->sc_stats.ast_per_rfgain++;
4722 			sc->sc_resetcal = 0;
4723 			sc->sc_doresetcal = AH_TRUE;
4724 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4725 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4726 			return;
4727 		}
4728 		/*
4729 		 * If this long cal is after an idle period, then
4730 		 * reset the data collection state so we start fresh.
4731 		 */
4732 		if (sc->sc_resetcal) {
4733 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4734 			sc->sc_lastcalreset = ticks;
4735 			sc->sc_lastshortcal = ticks;
4736 			sc->sc_resetcal = 0;
4737 			sc->sc_doresetcal = AH_TRUE;
4738 		}
4739 	}
4740 
4741 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4742 	if (shortCal || longCal) {
4743 		isCalDone = AH_FALSE;
4744 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4745 			if (longCal) {
4746 				/*
4747 				 * Calibrate noise floor data again in case of change.
4748 				 */
4749 				ath_hal_process_noisefloor(ah);
4750 			}
4751 		} else {
4752 			DPRINTF(sc, ATH_DEBUG_ANY,
4753 				"%s: calibration of channel %u failed\n",
4754 				__func__, sc->sc_curchan->ic_freq);
4755 			sc->sc_stats.ast_per_calfail++;
4756 		}
4757 		if (shortCal)
4758 			sc->sc_lastshortcal = ticks;
4759 	}
4760 	if (!isCalDone) {
4761 restart:
4762 		/*
4763 		 * Use a shorter interval to potentially collect multiple
4764 		 * data samples required to complete calibration.  Once
4765 		 * we're told the work is done we drop back to a longer
4766 		 * interval between requests.  We're more aggressive doing
4767 		 * work when operating as an AP to improve operation right
4768 		 * after startup.
4769 		 */
4770 		sc->sc_lastshortcal = ticks;
4771 		nextcal = ath_shortcalinterval*hz/1000;
4772 		if (sc->sc_opmode != HAL_M_HOSTAP)
4773 			nextcal *= 10;
4774 		sc->sc_doresetcal = AH_TRUE;
4775 	} else {
4776 		/* nextcal should be the shortest time for next event */
4777 		nextcal = ath_longcalinterval*hz;
4778 		if (sc->sc_lastcalreset == 0)
4779 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4780 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4781 			sc->sc_resetcal = 1;	/* setup reset next trip */
4782 		sc->sc_doresetcal = AH_FALSE;
4783 	}
4784 	/* ANI calibration may occur more often than short/long/resetcal */
4785 	if (ath_anicalinterval > 0)
4786 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4787 
4788 	if (nextcal != 0) {
4789 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4790 		    __func__, nextcal, isCalDone ? "" : "!");
4791 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4792 	} else {
4793 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4794 		    __func__);
4795 		/* NB: don't rearm timer */
4796 	}
4797 }
4798 
4799 static void
4800 ath_scan_start(struct ieee80211com *ic)
4801 {
4802 	struct ifnet *ifp = ic->ic_ifp;
4803 	struct ath_softc *sc = ifp->if_softc;
4804 	struct ath_hal *ah = sc->sc_ah;
4805 	u_int32_t rfilt;
4806 
4807 	/* XXX calibration timer? */
4808 
4809 	ATH_LOCK(sc);
4810 	sc->sc_scanning = 1;
4811 	sc->sc_syncbeacon = 0;
4812 	rfilt = ath_calcrxfilter(sc);
4813 	ATH_UNLOCK(sc);
4814 
4815 	ATH_PCU_LOCK(sc);
4816 	ath_hal_setrxfilter(ah, rfilt);
4817 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4818 	ATH_PCU_UNLOCK(sc);
4819 
4820 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4821 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4822 }
4823 
4824 static void
4825 ath_scan_end(struct ieee80211com *ic)
4826 {
4827 	struct ifnet *ifp = ic->ic_ifp;
4828 	struct ath_softc *sc = ifp->if_softc;
4829 	struct ath_hal *ah = sc->sc_ah;
4830 	u_int32_t rfilt;
4831 
4832 	ATH_LOCK(sc);
4833 	sc->sc_scanning = 0;
4834 	rfilt = ath_calcrxfilter(sc);
4835 	ATH_UNLOCK(sc);
4836 
4837 	ATH_PCU_LOCK(sc);
4838 	ath_hal_setrxfilter(ah, rfilt);
4839 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4840 
4841 	ath_hal_process_noisefloor(ah);
4842 	ATH_PCU_UNLOCK(sc);
4843 
4844 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4845 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4846 		 sc->sc_curaid);
4847 }
4848 
4849 #ifdef	ATH_ENABLE_11N
4850 /*
4851  * For now, just do a channel change.
4852  *
4853  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4854  * control state and resetting the hardware without dropping frames out
4855  * of the queue.
4856  *
4857  * The unfortunate trouble here is making absolutely sure that the
4858  * channel width change has propagated enough so the hardware
4859  * absolutely isn't handed bogus frames for it's current operating
4860  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4861  * does occur in parallel, we need to make certain we've blocked
4862  * any further ongoing TX (and RX, that can cause raw TX)
4863  * before we do this.
4864  */
4865 static void
4866 ath_update_chw(struct ieee80211com *ic)
4867 {
4868 	struct ifnet *ifp = ic->ic_ifp;
4869 	struct ath_softc *sc = ifp->if_softc;
4870 
4871 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4872 	ath_set_channel(ic);
4873 }
4874 #endif	/* ATH_ENABLE_11N */
4875 
4876 static void
4877 ath_set_channel(struct ieee80211com *ic)
4878 {
4879 	struct ifnet *ifp = ic->ic_ifp;
4880 	struct ath_softc *sc = ifp->if_softc;
4881 
4882 	(void) ath_chan_set(sc, ic->ic_curchan);
4883 	/*
4884 	 * If we are returning to our bss channel then mark state
4885 	 * so the next recv'd beacon's tsf will be used to sync the
4886 	 * beacon timers.  Note that since we only hear beacons in
4887 	 * sta/ibss mode this has no effect in other operating modes.
4888 	 */
4889 	ATH_LOCK(sc);
4890 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4891 		sc->sc_syncbeacon = 1;
4892 	ATH_UNLOCK(sc);
4893 }
4894 
4895 /*
4896  * Walk the vap list and check if there any vap's in RUN state.
4897  */
4898 static int
4899 ath_isanyrunningvaps(struct ieee80211vap *this)
4900 {
4901 	struct ieee80211com *ic = this->iv_ic;
4902 	struct ieee80211vap *vap;
4903 
4904 	IEEE80211_LOCK_ASSERT(ic);
4905 
4906 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4907 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4908 			return 1;
4909 	}
4910 	return 0;
4911 }
4912 
4913 static int
4914 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4915 {
4916 	struct ieee80211com *ic = vap->iv_ic;
4917 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4918 	struct ath_vap *avp = ATH_VAP(vap);
4919 	struct ath_hal *ah = sc->sc_ah;
4920 	struct ieee80211_node *ni = NULL;
4921 	int i, error, stamode;
4922 	u_int32_t rfilt;
4923 	int csa_run_transition = 0;
4924 
4925 	static const HAL_LED_STATE leds[] = {
4926 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4927 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4928 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4929 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4930 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4931 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4932 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4933 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4934 	};
4935 
4936 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4937 		ieee80211_state_name[vap->iv_state],
4938 		ieee80211_state_name[nstate]);
4939 
4940 	/*
4941 	 * net80211 _should_ have the comlock asserted at this point.
4942 	 * There are some comments around the calls to vap->iv_newstate
4943 	 * which indicate that it (newstate) may end up dropping the
4944 	 * lock.  This and the subsequent lock assert check after newstate
4945 	 * are an attempt to catch these and figure out how/why.
4946 	 */
4947 	IEEE80211_LOCK_ASSERT(ic);
4948 
4949 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4950 		csa_run_transition = 1;
4951 
4952 	callout_drain(&sc->sc_cal_ch);
4953 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4954 
4955 	if (nstate == IEEE80211_S_SCAN) {
4956 		/*
4957 		 * Scanning: turn off beacon miss and don't beacon.
4958 		 * Mark beacon state so when we reach RUN state we'll
4959 		 * [re]setup beacons.  Unblock the task q thread so
4960 		 * deferred interrupt processing is done.
4961 		 */
4962 		ath_hal_intrset(ah,
4963 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4964 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4965 		sc->sc_beacons = 0;
4966 		taskqueue_unblock(sc->sc_tq);
4967 	}
4968 
4969 	ni = ieee80211_ref_node(vap->iv_bss);
4970 	rfilt = ath_calcrxfilter(sc);
4971 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4972 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4973 		   vap->iv_opmode == IEEE80211_M_IBSS);
4974 	if (stamode && nstate == IEEE80211_S_RUN) {
4975 		sc->sc_curaid = ni->ni_associd;
4976 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4977 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4978 	}
4979 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4980 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4981 	ath_hal_setrxfilter(ah, rfilt);
4982 
4983 	/* XXX is this to restore keycache on resume? */
4984 	if (vap->iv_opmode != IEEE80211_M_STA &&
4985 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4986 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4987 			if (ath_hal_keyisvalid(ah, i))
4988 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4989 	}
4990 
4991 	/*
4992 	 * Invoke the parent method to do net80211 work.
4993 	 */
4994 	error = avp->av_newstate(vap, nstate, arg);
4995 	if (error != 0)
4996 		goto bad;
4997 
4998 	/*
4999 	 * See above: ensure av_newstate() doesn't drop the lock
5000 	 * on us.
5001 	 */
5002 	IEEE80211_LOCK_ASSERT(ic);
5003 
5004 	if (nstate == IEEE80211_S_RUN) {
5005 		/* NB: collect bss node again, it may have changed */
5006 		ieee80211_free_node(ni);
5007 		ni = ieee80211_ref_node(vap->iv_bss);
5008 
5009 		DPRINTF(sc, ATH_DEBUG_STATE,
5010 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5011 		    "capinfo 0x%04x chan %d\n", __func__,
5012 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5013 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5014 
5015 		switch (vap->iv_opmode) {
5016 #ifdef IEEE80211_SUPPORT_TDMA
5017 		case IEEE80211_M_AHDEMO:
5018 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5019 				break;
5020 			/* fall thru... */
5021 #endif
5022 		case IEEE80211_M_HOSTAP:
5023 		case IEEE80211_M_IBSS:
5024 		case IEEE80211_M_MBSS:
5025 			/*
5026 			 * Allocate and setup the beacon frame.
5027 			 *
5028 			 * Stop any previous beacon DMA.  This may be
5029 			 * necessary, for example, when an ibss merge
5030 			 * causes reconfiguration; there will be a state
5031 			 * transition from RUN->RUN that means we may
5032 			 * be called with beacon transmission active.
5033 			 */
5034 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5035 
5036 			error = ath_beacon_alloc(sc, ni);
5037 			if (error != 0)
5038 				goto bad;
5039 			/*
5040 			 * If joining an adhoc network defer beacon timer
5041 			 * configuration to the next beacon frame so we
5042 			 * have a current TSF to use.  Otherwise we're
5043 			 * starting an ibss/bss so there's no need to delay;
5044 			 * if this is the first vap moving to RUN state, then
5045 			 * beacon state needs to be [re]configured.
5046 			 */
5047 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5048 			    ni->ni_tstamp.tsf != 0) {
5049 				sc->sc_syncbeacon = 1;
5050 			} else if (!sc->sc_beacons) {
5051 #ifdef IEEE80211_SUPPORT_TDMA
5052 				if (vap->iv_caps & IEEE80211_C_TDMA)
5053 					ath_tdma_config(sc, vap);
5054 				else
5055 #endif
5056 					ath_beacon_config(sc, vap);
5057 				sc->sc_beacons = 1;
5058 			}
5059 			break;
5060 		case IEEE80211_M_STA:
5061 			/*
5062 			 * Defer beacon timer configuration to the next
5063 			 * beacon frame so we have a current TSF to use
5064 			 * (any TSF collected when scanning is likely old).
5065 			 * However if it's due to a CSA -> RUN transition,
5066 			 * force a beacon update so we pick up a lack of
5067 			 * beacons from an AP in CAC and thus force a
5068 			 * scan.
5069 			 *
5070 			 * And, there's also corner cases here where
5071 			 * after a scan, the AP may have disappeared.
5072 			 * In that case, we may not receive an actual
5073 			 * beacon to update the beacon timer and thus we
5074 			 * won't get notified of the missing beacons.
5075 			 */
5076 			sc->sc_syncbeacon = 1;
5077 #if 0
5078 			if (csa_run_transition)
5079 #endif
5080 				ath_beacon_config(sc, vap);
5081 
5082 			/*
5083 			 * PR: kern/175227
5084 			 *
5085 			 * Reconfigure beacons during reset; as otherwise
5086 			 * we won't get the beacon timers reprogrammed
5087 			 * after a reset and thus we won't pick up a
5088 			 * beacon miss interrupt.
5089 			 *
5090 			 * Hopefully we'll see a beacon before the BMISS
5091 			 * timer fires (too often), leading to a STA
5092 			 * disassociation.
5093 			 */
5094 			sc->sc_beacons = 1;
5095 			break;
5096 		case IEEE80211_M_MONITOR:
5097 			/*
5098 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5099 			 * transitions so we must re-enable interrupts here to
5100 			 * handle the case of a single monitor mode vap.
5101 			 */
5102 			ath_hal_intrset(ah, sc->sc_imask);
5103 			break;
5104 		case IEEE80211_M_WDS:
5105 			break;
5106 		default:
5107 			break;
5108 		}
5109 		/*
5110 		 * Let the hal process statistics collected during a
5111 		 * scan so it can provide calibrated noise floor data.
5112 		 */
5113 		ath_hal_process_noisefloor(ah);
5114 		/*
5115 		 * Reset rssi stats; maybe not the best place...
5116 		 */
5117 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5118 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5119 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5120 		/*
5121 		 * Finally, start any timers and the task q thread
5122 		 * (in case we didn't go through SCAN state).
5123 		 */
5124 		if (ath_longcalinterval != 0) {
5125 			/* start periodic recalibration timer */
5126 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5127 		} else {
5128 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5129 			    "%s: calibration disabled\n", __func__);
5130 		}
5131 		taskqueue_unblock(sc->sc_tq);
5132 	} else if (nstate == IEEE80211_S_INIT) {
5133 		/*
5134 		 * If there are no vaps left in RUN state then
5135 		 * shutdown host/driver operation:
5136 		 * o disable interrupts
5137 		 * o disable the task queue thread
5138 		 * o mark beacon processing as stopped
5139 		 */
5140 		if (!ath_isanyrunningvaps(vap)) {
5141 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5142 			/* disable interrupts  */
5143 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5144 			taskqueue_block(sc->sc_tq);
5145 			sc->sc_beacons = 0;
5146 		}
5147 #ifdef IEEE80211_SUPPORT_TDMA
5148 		ath_hal_setcca(ah, AH_TRUE);
5149 #endif
5150 	}
5151 bad:
5152 	ieee80211_free_node(ni);
5153 	return error;
5154 }
5155 
5156 /*
5157  * Allocate a key cache slot to the station so we can
5158  * setup a mapping from key index to node. The key cache
5159  * slot is needed for managing antenna state and for
5160  * compression when stations do not use crypto.  We do
5161  * it uniliaterally here; if crypto is employed this slot
5162  * will be reassigned.
5163  */
5164 static void
5165 ath_setup_stationkey(struct ieee80211_node *ni)
5166 {
5167 	struct ieee80211vap *vap = ni->ni_vap;
5168 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5169 	ieee80211_keyix keyix, rxkeyix;
5170 
5171 	/* XXX should take a locked ref to vap->iv_bss */
5172 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5173 		/*
5174 		 * Key cache is full; we'll fall back to doing
5175 		 * the more expensive lookup in software.  Note
5176 		 * this also means no h/w compression.
5177 		 */
5178 		/* XXX msg+statistic */
5179 	} else {
5180 		/* XXX locking? */
5181 		ni->ni_ucastkey.wk_keyix = keyix;
5182 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5183 		/* NB: must mark device key to get called back on delete */
5184 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5185 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5186 		/* NB: this will create a pass-thru key entry */
5187 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5188 	}
5189 }
5190 
5191 /*
5192  * Setup driver-specific state for a newly associated node.
5193  * Note that we're called also on a re-associate, the isnew
5194  * param tells us if this is the first time or not.
5195  */
5196 static void
5197 ath_newassoc(struct ieee80211_node *ni, int isnew)
5198 {
5199 	struct ath_node *an = ATH_NODE(ni);
5200 	struct ieee80211vap *vap = ni->ni_vap;
5201 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5202 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5203 
5204 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5205 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5206 
5207 	ath_rate_newassoc(sc, an, isnew);
5208 	if (isnew &&
5209 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5210 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5211 		ath_setup_stationkey(ni);
5212 }
5213 
5214 static int
5215 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5216 	int nchans, struct ieee80211_channel chans[])
5217 {
5218 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5219 	struct ath_hal *ah = sc->sc_ah;
5220 	HAL_STATUS status;
5221 
5222 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5223 	    "%s: rd %u cc %u location %c%s\n",
5224 	    __func__, reg->regdomain, reg->country, reg->location,
5225 	    reg->ecm ? " ecm" : "");
5226 
5227 	status = ath_hal_set_channels(ah, chans, nchans,
5228 	    reg->country, reg->regdomain);
5229 	if (status != HAL_OK) {
5230 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5231 		    __func__, status);
5232 		return EINVAL;		/* XXX */
5233 	}
5234 
5235 	return 0;
5236 }
5237 
5238 static void
5239 ath_getradiocaps(struct ieee80211com *ic,
5240 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5241 {
5242 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5243 	struct ath_hal *ah = sc->sc_ah;
5244 
5245 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5246 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5247 
5248 	/* XXX check return */
5249 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5250 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5251 
5252 }
5253 
5254 static int
5255 ath_getchannels(struct ath_softc *sc)
5256 {
5257 	struct ifnet *ifp = sc->sc_ifp;
5258 	struct ieee80211com *ic = ifp->if_l2com;
5259 	struct ath_hal *ah = sc->sc_ah;
5260 	HAL_STATUS status;
5261 
5262 	/*
5263 	 * Collect channel set based on EEPROM contents.
5264 	 */
5265 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5266 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5267 	if (status != HAL_OK) {
5268 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5269 		    "status %d\n", __func__, status);
5270 		return EINVAL;
5271 	}
5272 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5273 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5274 	/* XXX map Atheros sku's to net80211 SKU's */
5275 	/* XXX net80211 types too small */
5276 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5277 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5278 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5279 	ic->ic_regdomain.isocc[1] = ' ';
5280 
5281 	ic->ic_regdomain.ecm = 1;
5282 	ic->ic_regdomain.location = 'I';
5283 
5284 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5285 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5286 	    __func__, sc->sc_eerd, sc->sc_eecc,
5287 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5288 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5289 	return 0;
5290 }
5291 
5292 static int
5293 ath_rate_setup(struct ath_softc *sc, u_int mode)
5294 {
5295 	struct ath_hal *ah = sc->sc_ah;
5296 	const HAL_RATE_TABLE *rt;
5297 
5298 	switch (mode) {
5299 	case IEEE80211_MODE_11A:
5300 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5301 		break;
5302 	case IEEE80211_MODE_HALF:
5303 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5304 		break;
5305 	case IEEE80211_MODE_QUARTER:
5306 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5307 		break;
5308 	case IEEE80211_MODE_11B:
5309 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5310 		break;
5311 	case IEEE80211_MODE_11G:
5312 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5313 		break;
5314 	case IEEE80211_MODE_TURBO_A:
5315 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5316 		break;
5317 	case IEEE80211_MODE_TURBO_G:
5318 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5319 		break;
5320 	case IEEE80211_MODE_STURBO_A:
5321 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5322 		break;
5323 	case IEEE80211_MODE_11NA:
5324 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5325 		break;
5326 	case IEEE80211_MODE_11NG:
5327 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5328 		break;
5329 	default:
5330 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5331 			__func__, mode);
5332 		return 0;
5333 	}
5334 	sc->sc_rates[mode] = rt;
5335 	return (rt != NULL);
5336 }
5337 
5338 static void
5339 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5340 {
5341 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5342 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5343 	static const struct {
5344 		u_int		rate;		/* tx/rx 802.11 rate */
5345 		u_int16_t	timeOn;		/* LED on time (ms) */
5346 		u_int16_t	timeOff;	/* LED off time (ms) */
5347 	} blinkrates[] = {
5348 		{ 108,  40,  10 },
5349 		{  96,  44,  11 },
5350 		{  72,  50,  13 },
5351 		{  48,  57,  14 },
5352 		{  36,  67,  16 },
5353 		{  24,  80,  20 },
5354 		{  22, 100,  25 },
5355 		{  18, 133,  34 },
5356 		{  12, 160,  40 },
5357 		{  10, 200,  50 },
5358 		{   6, 240,  58 },
5359 		{   4, 267,  66 },
5360 		{   2, 400, 100 },
5361 		{   0, 500, 130 },
5362 		/* XXX half/quarter rates */
5363 	};
5364 	const HAL_RATE_TABLE *rt;
5365 	int i, j;
5366 
5367 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5368 	rt = sc->sc_rates[mode];
5369 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5370 	for (i = 0; i < rt->rateCount; i++) {
5371 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5372 		if (rt->info[i].phy != IEEE80211_T_HT)
5373 			sc->sc_rixmap[ieeerate] = i;
5374 		else
5375 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5376 	}
5377 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5378 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5379 		if (i >= rt->rateCount) {
5380 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5381 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5382 			continue;
5383 		}
5384 		sc->sc_hwmap[i].ieeerate =
5385 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5386 		if (rt->info[i].phy == IEEE80211_T_HT)
5387 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5388 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5389 		if (rt->info[i].shortPreamble ||
5390 		    rt->info[i].phy == IEEE80211_T_OFDM)
5391 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5392 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5393 		for (j = 0; j < N(blinkrates)-1; j++)
5394 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5395 				break;
5396 		/* NB: this uses the last entry if the rate isn't found */
5397 		/* XXX beware of overlow */
5398 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5399 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5400 	}
5401 	sc->sc_currates = rt;
5402 	sc->sc_curmode = mode;
5403 	/*
5404 	 * All protection frames are transmited at 2Mb/s for
5405 	 * 11g, otherwise at 1Mb/s.
5406 	 */
5407 	if (mode == IEEE80211_MODE_11G)
5408 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5409 	else
5410 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5411 	/* NB: caller is responsible for resetting rate control state */
5412 #undef N
5413 }
5414 
5415 static void
5416 ath_watchdog(void *arg)
5417 {
5418 	struct ath_softc *sc = arg;
5419 	int do_reset = 0;
5420 
5421 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5422 		struct ifnet *ifp = sc->sc_ifp;
5423 		uint32_t hangs;
5424 
5425 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5426 		    hangs != 0) {
5427 			if_printf(ifp, "%s hang detected (0x%x)\n",
5428 			    hangs & 0xff ? "bb" : "mac", hangs);
5429 		} else
5430 			if_printf(ifp, "device timeout\n");
5431 		do_reset = 1;
5432 		ifp->if_oerrors++;
5433 		sc->sc_stats.ast_watchdog++;
5434 	}
5435 
5436 	/*
5437 	 * We can't hold the lock across the ath_reset() call.
5438 	 *
5439 	 * And since this routine can't hold a lock and sleep,
5440 	 * do the reset deferred.
5441 	 */
5442 	if (do_reset) {
5443 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5444 	}
5445 
5446 	callout_schedule(&sc->sc_wd_ch, hz);
5447 }
5448 
5449 /*
5450  * Fetch the rate control statistics for the given node.
5451  */
5452 static int
5453 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5454 {
5455 	struct ath_node *an;
5456 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5457 	struct ieee80211_node *ni;
5458 	int error = 0;
5459 
5460 	/* Perform a lookup on the given node */
5461 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5462 	if (ni == NULL) {
5463 		error = EINVAL;
5464 		goto bad;
5465 	}
5466 
5467 	/* Lock the ath_node */
5468 	an = ATH_NODE(ni);
5469 	ATH_NODE_LOCK(an);
5470 
5471 	/* Fetch the rate control stats for this node */
5472 	error = ath_rate_fetch_node_stats(sc, an, rs);
5473 
5474 	/* No matter what happens here, just drop through */
5475 
5476 	/* Unlock the ath_node */
5477 	ATH_NODE_UNLOCK(an);
5478 
5479 	/* Unref the node */
5480 	ieee80211_node_decref(ni);
5481 
5482 bad:
5483 	return (error);
5484 }
5485 
5486 #ifdef ATH_DIAGAPI
5487 /*
5488  * Diagnostic interface to the HAL.  This is used by various
5489  * tools to do things like retrieve register contents for
5490  * debugging.  The mechanism is intentionally opaque so that
5491  * it can change frequently w/o concern for compatiblity.
5492  */
5493 static int
5494 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5495 {
5496 	struct ath_hal *ah = sc->sc_ah;
5497 	u_int id = ad->ad_id & ATH_DIAG_ID;
5498 	void *indata = NULL;
5499 	void *outdata = NULL;
5500 	u_int32_t insize = ad->ad_in_size;
5501 	u_int32_t outsize = ad->ad_out_size;
5502 	int error = 0;
5503 
5504 	if (ad->ad_id & ATH_DIAG_IN) {
5505 		/*
5506 		 * Copy in data.
5507 		 */
5508 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5509 		if (indata == NULL) {
5510 			error = ENOMEM;
5511 			goto bad;
5512 		}
5513 		error = copyin(ad->ad_in_data, indata, insize);
5514 		if (error)
5515 			goto bad;
5516 	}
5517 	if (ad->ad_id & ATH_DIAG_DYN) {
5518 		/*
5519 		 * Allocate a buffer for the results (otherwise the HAL
5520 		 * returns a pointer to a buffer where we can read the
5521 		 * results).  Note that we depend on the HAL leaving this
5522 		 * pointer for us to use below in reclaiming the buffer;
5523 		 * may want to be more defensive.
5524 		 */
5525 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5526 		if (outdata == NULL) {
5527 			error = ENOMEM;
5528 			goto bad;
5529 		}
5530 	}
5531 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5532 		if (outsize < ad->ad_out_size)
5533 			ad->ad_out_size = outsize;
5534 		if (outdata != NULL)
5535 			error = copyout(outdata, ad->ad_out_data,
5536 					ad->ad_out_size);
5537 	} else {
5538 		error = EINVAL;
5539 	}
5540 bad:
5541 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5542 		free(indata, M_TEMP);
5543 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5544 		free(outdata, M_TEMP);
5545 	return error;
5546 }
5547 #endif /* ATH_DIAGAPI */
5548 
5549 static int
5550 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5551 {
5552 #define	IS_RUNNING(ifp) \
5553 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5554 	struct ath_softc *sc = ifp->if_softc;
5555 	struct ieee80211com *ic = ifp->if_l2com;
5556 	struct ifreq *ifr = (struct ifreq *)data;
5557 	const HAL_RATE_TABLE *rt;
5558 	int error = 0;
5559 
5560 	switch (cmd) {
5561 	case SIOCSIFFLAGS:
5562 		ATH_LOCK(sc);
5563 		if (IS_RUNNING(ifp)) {
5564 			/*
5565 			 * To avoid rescanning another access point,
5566 			 * do not call ath_init() here.  Instead,
5567 			 * only reflect promisc mode settings.
5568 			 */
5569 			ath_mode_init(sc);
5570 		} else if (ifp->if_flags & IFF_UP) {
5571 			/*
5572 			 * Beware of being called during attach/detach
5573 			 * to reset promiscuous mode.  In that case we
5574 			 * will still be marked UP but not RUNNING.
5575 			 * However trying to re-init the interface
5576 			 * is the wrong thing to do as we've already
5577 			 * torn down much of our state.  There's
5578 			 * probably a better way to deal with this.
5579 			 */
5580 			if (!sc->sc_invalid)
5581 				ath_init(sc);	/* XXX lose error */
5582 		} else {
5583 			ath_stop_locked(ifp);
5584 #ifdef notyet
5585 			/* XXX must wakeup in places like ath_vap_delete */
5586 			if (!sc->sc_invalid)
5587 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5588 #endif
5589 		}
5590 		ATH_UNLOCK(sc);
5591 		break;
5592 	case SIOCGIFMEDIA:
5593 	case SIOCSIFMEDIA:
5594 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5595 		break;
5596 	case SIOCGATHSTATS:
5597 		/* NB: embed these numbers to get a consistent view */
5598 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5599 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5600 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5601 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5602 #ifdef IEEE80211_SUPPORT_TDMA
5603 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5604 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5605 #endif
5606 		rt = sc->sc_currates;
5607 		sc->sc_stats.ast_tx_rate =
5608 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5609 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5610 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5611 		return copyout(&sc->sc_stats,
5612 		    ifr->ifr_data, sizeof (sc->sc_stats));
5613 	case SIOCGATHAGSTATS:
5614 		return copyout(&sc->sc_aggr_stats,
5615 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5616 	case SIOCZATHSTATS:
5617 		error = priv_check(curthread, PRIV_DRIVER);
5618 		if (error == 0) {
5619 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5620 			memset(&sc->sc_aggr_stats, 0,
5621 			    sizeof(sc->sc_aggr_stats));
5622 			memset(&sc->sc_intr_stats, 0,
5623 			    sizeof(sc->sc_intr_stats));
5624 		}
5625 		break;
5626 #ifdef ATH_DIAGAPI
5627 	case SIOCGATHDIAG:
5628 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5629 		break;
5630 	case SIOCGATHPHYERR:
5631 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5632 		break;
5633 #endif
5634 	case SIOCGATHSPECTRAL:
5635 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
5636 		break;
5637 	case SIOCGATHNODERATESTATS:
5638 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5639 		break;
5640 	case SIOCGIFADDR:
5641 		error = ether_ioctl(ifp, cmd, data);
5642 		break;
5643 	default:
5644 		error = EINVAL;
5645 		break;
5646 	}
5647 	return error;
5648 #undef IS_RUNNING
5649 }
5650 
5651 /*
5652  * Announce various information on device/driver attach.
5653  */
5654 static void
5655 ath_announce(struct ath_softc *sc)
5656 {
5657 	struct ifnet *ifp = sc->sc_ifp;
5658 	struct ath_hal *ah = sc->sc_ah;
5659 
5660 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5661 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5662 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5663 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5664 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5665 	if (bootverbose) {
5666 		int i;
5667 		for (i = 0; i <= WME_AC_VO; i++) {
5668 			struct ath_txq *txq = sc->sc_ac2q[i];
5669 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5670 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5671 		}
5672 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5673 			sc->sc_cabq->axq_qnum);
5674 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5675 	}
5676 	if (ath_rxbuf != ATH_RXBUF)
5677 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5678 	if (ath_txbuf != ATH_TXBUF)
5679 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5680 	if (sc->sc_mcastkey && bootverbose)
5681 		if_printf(ifp, "using multicast key search\n");
5682 }
5683 
5684 static void
5685 ath_dfs_tasklet(void *p, int npending)
5686 {
5687 	struct ath_softc *sc = (struct ath_softc *) p;
5688 	struct ifnet *ifp = sc->sc_ifp;
5689 	struct ieee80211com *ic = ifp->if_l2com;
5690 
5691 	/*
5692 	 * If previous processing has found a radar event,
5693 	 * signal this to the net80211 layer to begin DFS
5694 	 * processing.
5695 	 */
5696 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5697 		/* DFS event found, initiate channel change */
5698 		/*
5699 		 * XXX doesn't currently tell us whether the event
5700 		 * XXX was found in the primary or extension
5701 		 * XXX channel!
5702 		 */
5703 		IEEE80211_LOCK(ic);
5704 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5705 		IEEE80211_UNLOCK(ic);
5706 	}
5707 }
5708 
5709 /*
5710  * Enable/disable power save.  This must be called with
5711  * no TX driver locks currently held, so it should only
5712  * be called from the RX path (which doesn't hold any
5713  * TX driver locks.)
5714  */
5715 static void
5716 ath_node_powersave(struct ieee80211_node *ni, int enable)
5717 {
5718 #ifdef	ATH_SW_PSQ
5719 	struct ath_node *an = ATH_NODE(ni);
5720 	struct ieee80211com *ic = ni->ni_ic;
5721 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5722 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5723 
5724 	ATH_NODE_UNLOCK_ASSERT(an);
5725 	/* XXX and no TXQ locks should be held here */
5726 
5727 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5728 	    __func__, ni, enable);
5729 
5730 	/* Suspend or resume software queue handling */
5731 	if (enable)
5732 		ath_tx_node_sleep(sc, an);
5733 	else
5734 		ath_tx_node_wakeup(sc, an);
5735 
5736 	/* Update net80211 state */
5737 	avp->av_node_ps(ni, enable);
5738 #else
5739 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5740 
5741 	/* Update net80211 state */
5742 	avp->av_node_ps(ni, enable);
5743 #endif/* ATH_SW_PSQ */
5744 }
5745 
5746 /*
5747  * Notification from net80211 that the powersave queue state has
5748  * changed.
5749  *
5750  * Since the software queue also may have some frames:
5751  *
5752  * + if the node software queue has frames and the TID state
5753  *   is 0, we set the TIM;
5754  * + if the node and the stack are both empty, we clear the TIM bit.
5755  * + If the stack tries to set the bit, always set it.
5756  * + If the stack tries to clear the bit, only clear it if the
5757  *   software queue in question is also cleared.
5758  *
5759  * TODO: this is called during node teardown; so let's ensure this
5760  * is all correctly handled and that the TIM bit is cleared.
5761  * It may be that the node flush is called _AFTER_ the net80211
5762  * stack clears the TIM.
5763  *
5764  * Here is the racy part.  Since it's possible >1 concurrent,
5765  * overlapping TXes will appear complete with a TX completion in
5766  * another thread, it's possible that the concurrent TIM calls will
5767  * clash.  We can't hold the node lock here because setting the
5768  * TIM grabs the net80211 comlock and this may cause a LOR.
5769  * The solution is either to totally serialise _everything_ at
5770  * this point (ie, all TX, completion and any reset/flush go into
5771  * one taskqueue) or a new "ath TIM lock" needs to be created that
5772  * just wraps the driver state change and this call to avp->av_set_tim().
5773  *
5774  * The same race exists in the net80211 power save queue handling
5775  * as well.  Since multiple transmitting threads may queue frames
5776  * into the driver, as well as ps-poll and the driver transmitting
5777  * frames (and thus clearing the psq), it's quite possible that
5778  * a packet entering the PSQ and a ps-poll being handled will
5779  * race, causing the TIM to be cleared and not re-set.
5780  */
5781 static int
5782 ath_node_set_tim(struct ieee80211_node *ni, int enable)
5783 {
5784 #ifdef	ATH_SW_PSQ
5785 	struct ieee80211com *ic = ni->ni_ic;
5786 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5787 	struct ath_node *an = ATH_NODE(ni);
5788 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5789 	int changed = 0;
5790 
5791 	ATH_NODE_UNLOCK_ASSERT(an);
5792 
5793 	/*
5794 	 * For now, just track and then update the TIM.
5795 	 */
5796 	ATH_NODE_LOCK(an);
5797 	an->an_stack_psq = enable;
5798 
5799 	/*
5800 	 * This will get called for all operating modes,
5801 	 * even if avp->av_set_tim is unset.
5802 	 * It's currently set for hostap/ibss modes; but
5803 	 * the same infrastructure is used for both STA
5804 	 * and AP/IBSS node power save.
5805 	 */
5806 	if (avp->av_set_tim == NULL) {
5807 		ATH_NODE_UNLOCK(an);
5808 		return (0);
5809 	}
5810 
5811 	/*
5812 	 * If setting the bit, always set it here.
5813 	 * If clearing the bit, only clear it if the
5814 	 * software queue is also empty.
5815 	 *
5816 	 * If the node has left power save, just clear the TIM
5817 	 * bit regardless of the state of the power save queue.
5818 	 *
5819 	 * XXX TODO: although atomics are used, it's quite possible
5820 	 * that a race will occur between this and setting/clearing
5821 	 * in another thread.  TX completion will occur always in
5822 	 * one thread, however setting/clearing the TIM bit can come
5823 	 * from a variety of different process contexts!
5824 	 */
5825 	if (enable && an->an_tim_set == 1) {
5826 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5827 		    "%s: an=%p, enable=%d, tim_set=1, ignoring\n",
5828 		    __func__, an, enable);
5829 		ATH_NODE_UNLOCK(an);
5830 	} else if (enable) {
5831 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5832 		    "%s: an=%p, enable=%d, enabling TIM\n",
5833 		    __func__, an, enable);
5834 		an->an_tim_set = 1;
5835 		ATH_NODE_UNLOCK(an);
5836 		changed = avp->av_set_tim(ni, enable);
5837 	} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
5838 		/* disable */
5839 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5840 		    "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
5841 		    __func__, an, enable);
5842 		an->an_tim_set = 0;
5843 		ATH_NODE_UNLOCK(an);
5844 		changed = avp->av_set_tim(ni, enable);
5845 	} else if (! an->an_is_powersave) {
5846 		/*
5847 		 * disable regardless; the node isn't in powersave now
5848 		 */
5849 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5850 		    "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
5851 		    __func__, an, enable);
5852 		an->an_tim_set = 0;
5853 		ATH_NODE_UNLOCK(an);
5854 		changed = avp->av_set_tim(ni, enable);
5855 	} else {
5856 		/*
5857 		 * psq disable, node is currently in powersave, node
5858 		 * software queue isn't empty, so don't clear the TIM bit
5859 		 * for now.
5860 		 */
5861 		ATH_NODE_UNLOCK(an);
5862 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5863 		    "%s: enable=%d, an_swq_depth > 0, ignoring\n",
5864 		    __func__, enable);
5865 		changed = 0;
5866 	}
5867 
5868 	return (changed);
5869 #else
5870 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5871 
5872 	/*
5873 	 * Some operating modes don't set av_set_tim(), so don't
5874 	 * update it here.
5875 	 */
5876 	if (avp->av_set_tim == NULL)
5877 		return (0);
5878 
5879 	return (avp->av_set_tim(ni, enable));
5880 #endif /* ATH_SW_PSQ */
5881 }
5882 
5883 /*
5884  * Set or update the TIM from the software queue.
5885  *
5886  * Check the software queue depth before attempting to do lock
5887  * anything; that avoids trying to obtain the lock.  Then,
5888  * re-check afterwards to ensure nothing has changed in the
5889  * meantime.
5890  *
5891  * set:   This is designed to be called from the TX path, after
5892  *        a frame has been queued; to see if the swq > 0.
5893  *
5894  * clear: This is designed to be called from the buffer completion point
5895  *        (right now it's ath_tx_default_comp()) where the state of
5896  *        a software queue has changed.
5897  *
5898  * It makes sense to place it at buffer free / completion rather
5899  * than after each software queue operation, as there's no real
5900  * point in churning the TIM bit as the last frames in the software
5901  * queue are transmitted.  If they fail and we retry them, we'd
5902  * just be setting the TIM bit again anyway.
5903  */
5904 void
5905 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
5906      int enable)
5907 {
5908 #ifdef	ATH_SW_PSQ
5909 	struct ath_node *an;
5910 	struct ath_vap *avp;
5911 
5912 	/* Don't do this for broadcast/etc frames */
5913 	if (ni == NULL)
5914 		return;
5915 
5916 	an = ATH_NODE(ni);
5917 	avp = ATH_VAP(ni->ni_vap);
5918 
5919 	/*
5920 	 * And for operating modes without the TIM handler set, let's
5921 	 * just skip those.
5922 	 */
5923 	if (avp->av_set_tim == NULL)
5924 		return;
5925 
5926 	ATH_NODE_UNLOCK_ASSERT(an);
5927 
5928 	if (enable) {
5929 		/*
5930 		 * Don't bother grabbing the lock unless the queue is not
5931 		 * empty.
5932 		 */
5933 		if (atomic_load_acq_int(&an->an_swq_depth) == 0)
5934 			return;
5935 
5936 		ATH_NODE_LOCK(an);
5937 		if (an->an_is_powersave &&
5938 		    an->an_tim_set == 0 &&
5939 		    atomic_load_acq_int(&an->an_swq_depth) != 0) {
5940 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5941 			    "%s: an=%p, swq_depth>0, tim_set=0, set!\n",
5942 			    __func__, an);
5943 			an->an_tim_set = 1;
5944 			ATH_NODE_UNLOCK(an);
5945 			(void) avp->av_set_tim(ni, 1);
5946 		} else {
5947 			ATH_NODE_UNLOCK(an);
5948 		}
5949 	} else {
5950 		/*
5951 		 * Don't bother grabbing the lock unless the queue is empty.
5952 		 */
5953 		if (atomic_load_acq_int(&an->an_swq_depth) != 0)
5954 			return;
5955 
5956 		ATH_NODE_LOCK(an);
5957 		if (an->an_is_powersave &&
5958 		    an->an_stack_psq == 0 &&
5959 		    an->an_tim_set == 1 &&
5960 		    atomic_load_acq_int(&an->an_swq_depth) == 0) {
5961 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5962 			    "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
5963 			    " clear!\n",
5964 			    __func__, an);
5965 			an->an_tim_set = 0;
5966 			ATH_NODE_UNLOCK(an);
5967 			(void) avp->av_set_tim(ni, 0);
5968 		} else {
5969 			ATH_NODE_UNLOCK(an);
5970 		}
5971 	}
5972 #else
5973 	return;
5974 #endif	/* ATH_SW_PSQ */
5975 }
5976 
5977 MODULE_VERSION(if_ath, 1);
5978 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5979 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5980 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5981 #endif
5982