1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_spectral.h> 115 #include <dev/ath/if_athdfs.h> 116 117 #ifdef ATH_TX99_DIAG 118 #include <dev/ath/ath_tx99/ath_tx99.h> 119 #endif 120 121 #ifdef ATH_DEBUG_ALQ 122 #include <dev/ath/if_ath_alq.h> 123 #endif 124 125 /* 126 * Only enable this if you're working on PS-POLL support. 127 */ 128 #undef ATH_SW_PSQ 129 130 /* 131 * ATH_BCBUF determines the number of vap's that can transmit 132 * beacons and also (currently) the number of vap's that can 133 * have unique mac addresses/bssid. When staggering beacons 134 * 4 is probably a good max as otherwise the beacons become 135 * very closely spaced and there is limited time for cab q traffic 136 * to go out. You can burst beacons instead but that is not good 137 * for stations in power save and at some point you really want 138 * another radio (and channel). 139 * 140 * The limit on the number of mac addresses is tied to our use of 141 * the U/L bit and tracking addresses in a byte; it would be 142 * worthwhile to allow more for applications like proxy sta. 143 */ 144 CTASSERT(ATH_BCBUF <= 8); 145 146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 147 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 148 const uint8_t [IEEE80211_ADDR_LEN], 149 const uint8_t [IEEE80211_ADDR_LEN]); 150 static void ath_vap_delete(struct ieee80211vap *); 151 static void ath_init(void *); 152 static void ath_stop_locked(struct ifnet *); 153 static void ath_stop(struct ifnet *); 154 static int ath_reset_vap(struct ieee80211vap *, u_long); 155 static void ath_start_queue(struct ifnet *ifp); 156 static int ath_media_change(struct ifnet *); 157 static void ath_watchdog(void *); 158 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 159 static void ath_fatal_proc(void *, int); 160 static void ath_bmiss_vap(struct ieee80211vap *); 161 static void ath_bmiss_proc(void *, int); 162 static void ath_key_update_begin(struct ieee80211vap *); 163 static void ath_key_update_end(struct ieee80211vap *); 164 static void ath_update_mcast(struct ifnet *); 165 static void ath_update_promisc(struct ifnet *); 166 static void ath_updateslot(struct ifnet *); 167 static void ath_bstuck_proc(void *, int); 168 static void ath_reset_proc(void *, int); 169 static int ath_desc_alloc(struct ath_softc *); 170 static void ath_desc_free(struct ath_softc *); 171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 172 const uint8_t [IEEE80211_ADDR_LEN]); 173 static void ath_node_cleanup(struct ieee80211_node *); 174 static void ath_node_free(struct ieee80211_node *); 175 static void ath_node_getsignal(const struct ieee80211_node *, 176 int8_t *, int8_t *); 177 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 179 static int ath_tx_setup(struct ath_softc *, int, int); 180 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 181 static void ath_tx_cleanup(struct ath_softc *); 182 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 183 int dosched); 184 static void ath_tx_proc_q0(void *, int); 185 static void ath_tx_proc_q0123(void *, int); 186 static void ath_tx_proc(void *, int); 187 static void ath_txq_sched_tasklet(void *, int); 188 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_scan_start(struct ieee80211com *); 191 static void ath_scan_end(struct ieee80211com *); 192 static void ath_set_channel(struct ieee80211com *); 193 #ifdef ATH_ENABLE_11N 194 static void ath_update_chw(struct ieee80211com *); 195 #endif /* ATH_ENABLE_11N */ 196 static void ath_calibrate(void *); 197 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void ath_setup_stationkey(struct ieee80211_node *); 199 static void ath_newassoc(struct ieee80211_node *, int); 200 static int ath_setregdomain(struct ieee80211com *, 201 struct ieee80211_regdomain *, int, 202 struct ieee80211_channel []); 203 static void ath_getradiocaps(struct ieee80211com *, int, int *, 204 struct ieee80211_channel []); 205 static int ath_getchannels(struct ath_softc *); 206 207 static int ath_rate_setup(struct ath_softc *, u_int mode); 208 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 209 210 static void ath_announce(struct ath_softc *); 211 212 static void ath_dfs_tasklet(void *, int); 213 static void ath_node_powersave(struct ieee80211_node *, int); 214 static int ath_node_set_tim(struct ieee80211_node *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 #include <dev/ath/if_ath_tdma.h> 218 #endif 219 220 SYSCTL_DECL(_hw_ath); 221 222 /* XXX validate sysctl values */ 223 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 225 0, "long chip calibration interval (secs)"); 226 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 228 0, "short chip calibration interval (msecs)"); 229 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 231 0, "reset chip calibration results (secs)"); 232 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 234 0, "ANI calibration (msecs)"); 235 236 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 238 0, "rx buffers allocated"); 239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 240 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 242 0, "tx buffers allocated"); 243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 246 0, "tx (mgmt) buffers allocated"); 247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 248 249 int ath_bstuck_threshold = 4; /* max missed beacons */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 251 0, "max missed beacon xmits before chip reset"); 252 253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 254 255 void 256 ath_legacy_attach_comp_func(struct ath_softc *sc) 257 { 258 259 /* 260 * Special case certain configurations. Note the 261 * CAB queue is handled by these specially so don't 262 * include them when checking the txq setup mask. 263 */ 264 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 265 case 0x01: 266 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 267 break; 268 case 0x0f: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 270 break; 271 default: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 273 break; 274 } 275 } 276 277 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 278 #define HAL_MODE_HT40 \ 279 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 280 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 281 int 282 ath_attach(u_int16_t devid, struct ath_softc *sc) 283 { 284 struct ifnet *ifp; 285 struct ieee80211com *ic; 286 struct ath_hal *ah = NULL; 287 HAL_STATUS status; 288 int error = 0, i; 289 u_int wmodes; 290 uint8_t macaddr[IEEE80211_ADDR_LEN]; 291 int rx_chainmask, tx_chainmask; 292 293 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 294 295 CURVNET_SET(vnet0); 296 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 297 if (ifp == NULL) { 298 device_printf(sc->sc_dev, "can not if_alloc()\n"); 299 error = ENOSPC; 300 CURVNET_RESTORE(); 301 goto bad; 302 } 303 ic = ifp->if_l2com; 304 305 /* set these up early for if_printf use */ 306 if_initname(ifp, device_get_name(sc->sc_dev), 307 device_get_unit(sc->sc_dev)); 308 CURVNET_RESTORE(); 309 310 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 311 sc->sc_eepromdata, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 sc->sc_ah = ah; 319 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 320 #ifdef ATH_DEBUG 321 sc->sc_debug = ath_debug; 322 #endif 323 324 /* 325 * Setup the DMA/EDMA functions based on the current 326 * hardware support. 327 * 328 * This is required before the descriptors are allocated. 329 */ 330 if (ath_hal_hasedma(sc->sc_ah)) { 331 sc->sc_isedma = 1; 332 ath_recv_setup_edma(sc); 333 ath_xmit_setup_edma(sc); 334 } else { 335 ath_recv_setup_legacy(sc); 336 ath_xmit_setup_legacy(sc); 337 } 338 339 /* 340 * Check if the MAC has multi-rate retry support. 341 * We do this by trying to setup a fake extended 342 * descriptor. MAC's that don't have support will 343 * return false w/o doing anything. MAC's that do 344 * support it will return true w/o doing anything. 345 */ 346 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 347 348 /* 349 * Check if the device has hardware counters for PHY 350 * errors. If so we need to enable the MIB interrupt 351 * so we can act on stat triggers. 352 */ 353 if (ath_hal_hwphycounters(ah)) 354 sc->sc_needmib = 1; 355 356 /* 357 * Get the hardware key cache size. 358 */ 359 sc->sc_keymax = ath_hal_keycachesize(ah); 360 if (sc->sc_keymax > ATH_KEYMAX) { 361 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 362 ATH_KEYMAX, sc->sc_keymax); 363 sc->sc_keymax = ATH_KEYMAX; 364 } 365 /* 366 * Reset the key cache since some parts do not 367 * reset the contents on initial power up. 368 */ 369 for (i = 0; i < sc->sc_keymax; i++) 370 ath_hal_keyreset(ah, i); 371 372 /* 373 * Collect the default channel list. 374 */ 375 error = ath_getchannels(sc); 376 if (error != 0) 377 goto bad; 378 379 /* 380 * Setup rate tables for all potential media types. 381 */ 382 ath_rate_setup(sc, IEEE80211_MODE_11A); 383 ath_rate_setup(sc, IEEE80211_MODE_11B); 384 ath_rate_setup(sc, IEEE80211_MODE_11G); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 386 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 387 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 388 ath_rate_setup(sc, IEEE80211_MODE_11NA); 389 ath_rate_setup(sc, IEEE80211_MODE_11NG); 390 ath_rate_setup(sc, IEEE80211_MODE_HALF); 391 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 392 393 /* NB: setup here so ath_rate_update is happy */ 394 ath_setcurmode(sc, IEEE80211_MODE_11A); 395 396 /* 397 * Allocate TX descriptors and populate the lists. 398 */ 399 error = ath_desc_alloc(sc); 400 if (error != 0) { 401 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 402 error); 403 goto bad; 404 } 405 error = ath_txdma_setup(sc); 406 if (error != 0) { 407 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 408 error); 409 goto bad; 410 } 411 412 /* 413 * Allocate RX descriptors and populate the lists. 414 */ 415 error = ath_rxdma_setup(sc); 416 if (error != 0) { 417 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 418 error); 419 goto bad; 420 } 421 422 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 423 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 424 425 ATH_TXBUF_LOCK_INIT(sc); 426 427 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 428 taskqueue_thread_enqueue, &sc->sc_tq); 429 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 430 "%s taskq", ifp->if_xname); 431 432 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 433 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 434 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 435 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 436 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 437 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 438 439 /* XXX make this a higher priority taskqueue? */ 440 TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc); 441 442 /* 443 * Allocate hardware transmit queues: one queue for 444 * beacon frames and one data queue for each QoS 445 * priority. Note that the hal handles resetting 446 * these queues at the needed time. 447 * 448 * XXX PS-Poll 449 */ 450 sc->sc_bhalq = ath_beaconq_setup(sc); 451 if (sc->sc_bhalq == (u_int) -1) { 452 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 453 error = EIO; 454 goto bad2; 455 } 456 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 457 if (sc->sc_cabq == NULL) { 458 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 459 error = EIO; 460 goto bad2; 461 } 462 /* NB: insure BK queue is the lowest priority h/w queue */ 463 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 464 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 465 ieee80211_wme_acnames[WME_AC_BK]); 466 error = EIO; 467 goto bad2; 468 } 469 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 470 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 471 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 472 /* 473 * Not enough hardware tx queues to properly do WME; 474 * just punt and assign them all to the same h/w queue. 475 * We could do a better job of this if, for example, 476 * we allocate queues when we switch from station to 477 * AP mode. 478 */ 479 if (sc->sc_ac2q[WME_AC_VI] != NULL) 480 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 481 if (sc->sc_ac2q[WME_AC_BE] != NULL) 482 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 483 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 484 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 485 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 486 } 487 488 /* 489 * Attach the TX completion function. 490 * 491 * The non-EDMA chips may have some special case optimisations; 492 * this method gives everyone a chance to attach cleanly. 493 */ 494 sc->sc_tx.xmit_attach_comp_func(sc); 495 496 /* 497 * Setup rate control. Some rate control modules 498 * call back to change the anntena state so expose 499 * the necessary entry points. 500 * XXX maybe belongs in struct ath_ratectrl? 501 */ 502 sc->sc_setdefantenna = ath_setdefantenna; 503 sc->sc_rc = ath_rate_attach(sc); 504 if (sc->sc_rc == NULL) { 505 error = EIO; 506 goto bad2; 507 } 508 509 /* Attach DFS module */ 510 if (! ath_dfs_attach(sc)) { 511 device_printf(sc->sc_dev, 512 "%s: unable to attach DFS\n", __func__); 513 error = EIO; 514 goto bad2; 515 } 516 517 /* Attach spectral module */ 518 if (ath_spectral_attach(sc) < 0) { 519 device_printf(sc->sc_dev, 520 "%s: unable to attach spectral\n", __func__); 521 error = EIO; 522 goto bad2; 523 } 524 525 /* Start DFS processing tasklet */ 526 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 527 528 /* Configure LED state */ 529 sc->sc_blinking = 0; 530 sc->sc_ledstate = 1; 531 sc->sc_ledon = 0; /* low true */ 532 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 533 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 534 535 /* 536 * Don't setup hardware-based blinking. 537 * 538 * Although some NICs may have this configured in the 539 * default reset register values, the user may wish 540 * to alter which pins have which function. 541 * 542 * The reference driver attaches the MAC network LED to GPIO1 and 543 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 544 * NIC has these reversed. 545 */ 546 sc->sc_hardled = (1 == 0); 547 sc->sc_led_net_pin = -1; 548 sc->sc_led_pwr_pin = -1; 549 /* 550 * Auto-enable soft led processing for IBM cards and for 551 * 5211 minipci cards. Users can also manually enable/disable 552 * support with a sysctl. 553 */ 554 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 555 ath_led_config(sc); 556 ath_hal_setledstate(ah, HAL_LED_INIT); 557 558 ifp->if_softc = sc; 559 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 560 ifp->if_start = ath_start_queue; 561 ifp->if_ioctl = ath_ioctl; 562 ifp->if_init = ath_init; 563 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 564 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 565 IFQ_SET_READY(&ifp->if_snd); 566 567 ic->ic_ifp = ifp; 568 /* XXX not right but it's not used anywhere important */ 569 ic->ic_phytype = IEEE80211_T_OFDM; 570 ic->ic_opmode = IEEE80211_M_STA; 571 ic->ic_caps = 572 IEEE80211_C_STA /* station mode */ 573 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 574 | IEEE80211_C_HOSTAP /* hostap mode */ 575 | IEEE80211_C_MONITOR /* monitor mode */ 576 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 577 | IEEE80211_C_WDS /* 4-address traffic works */ 578 | IEEE80211_C_MBSS /* mesh point link mode */ 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 | IEEE80211_C_SHSLOT /* short slot time supported */ 581 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 582 #ifndef ATH_ENABLE_11N 583 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 584 #endif 585 | IEEE80211_C_TXFRAG /* handle tx frags */ 586 #ifdef ATH_ENABLE_DFS 587 | IEEE80211_C_DFS /* Enable radar detection */ 588 #endif 589 ; 590 /* 591 * Query the hal to figure out h/w crypto support. 592 */ 593 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 594 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 595 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 596 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 597 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 598 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 599 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 600 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 601 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 602 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 603 /* 604 * Check if h/w does the MIC and/or whether the 605 * separate key cache entries are required to 606 * handle both tx+rx MIC keys. 607 */ 608 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 609 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 610 /* 611 * If the h/w supports storing tx+rx MIC keys 612 * in one cache slot automatically enable use. 613 */ 614 if (ath_hal_hastkipsplit(ah) || 615 !ath_hal_settkipsplit(ah, AH_FALSE)) 616 sc->sc_splitmic = 1; 617 /* 618 * If the h/w can do TKIP MIC together with WME then 619 * we use it; otherwise we force the MIC to be done 620 * in software by the net80211 layer. 621 */ 622 if (ath_hal_haswmetkipmic(ah)) 623 sc->sc_wmetkipmic = 1; 624 } 625 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 626 /* 627 * Check for multicast key search support. 628 */ 629 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 630 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 631 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 632 } 633 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 634 /* 635 * Mark key cache slots associated with global keys 636 * as in use. If we knew TKIP was not to be used we 637 * could leave the +32, +64, and +32+64 slots free. 638 */ 639 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 640 setbit(sc->sc_keymap, i); 641 setbit(sc->sc_keymap, i+64); 642 if (sc->sc_splitmic) { 643 setbit(sc->sc_keymap, i+32); 644 setbit(sc->sc_keymap, i+32+64); 645 } 646 } 647 /* 648 * TPC support can be done either with a global cap or 649 * per-packet support. The latter is not available on 650 * all parts. We're a bit pedantic here as all parts 651 * support a global cap. 652 */ 653 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 654 ic->ic_caps |= IEEE80211_C_TXPMGT; 655 656 /* 657 * Mark WME capability only if we have sufficient 658 * hardware queues to do proper priority scheduling. 659 */ 660 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 661 ic->ic_caps |= IEEE80211_C_WME; 662 /* 663 * Check for misc other capabilities. 664 */ 665 if (ath_hal_hasbursting(ah)) 666 ic->ic_caps |= IEEE80211_C_BURST; 667 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 668 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 669 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 670 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 671 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 672 if (ath_hal_hasfastframes(ah)) 673 ic->ic_caps |= IEEE80211_C_FF; 674 wmodes = ath_hal_getwirelessmodes(ah); 675 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 676 ic->ic_caps |= IEEE80211_C_TURBOP; 677 #ifdef IEEE80211_SUPPORT_TDMA 678 if (ath_hal_macversion(ah) > 0x78) { 679 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 680 ic->ic_tdma_update = ath_tdma_update; 681 } 682 #endif 683 684 /* 685 * TODO: enforce that at least this many frames are available 686 * in the txbuf list before allowing data frames (raw or 687 * otherwise) to be transmitted. 688 */ 689 sc->sc_txq_data_minfree = 10; 690 /* 691 * Leave this as default to maintain legacy behaviour. 692 * Shortening the cabq/mcastq may end up causing some 693 * undesirable behaviour. 694 */ 695 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 696 697 /* Enable CABQ by default */ 698 sc->sc_cabq_enable = 1; 699 700 /* 701 * Allow the TX and RX chainmasks to be overridden by 702 * environment variables and/or device.hints. 703 * 704 * This must be done early - before the hardware is 705 * calibrated or before the 802.11n stream calculation 706 * is done. 707 */ 708 if (resource_int_value(device_get_name(sc->sc_dev), 709 device_get_unit(sc->sc_dev), "rx_chainmask", 710 &rx_chainmask) == 0) { 711 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 712 rx_chainmask); 713 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 714 } 715 if (resource_int_value(device_get_name(sc->sc_dev), 716 device_get_unit(sc->sc_dev), "tx_chainmask", 717 &tx_chainmask) == 0) { 718 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 719 tx_chainmask); 720 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 721 } 722 723 /* 724 * Disable MRR with protected frames by default. 725 * Only 802.11n series NICs can handle this. 726 */ 727 sc->sc_mrrprot = 0; /* XXX should be a capability */ 728 729 /* 730 * Query the enterprise mode information the HAL. 731 */ 732 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 733 &sc->sc_ent_cfg) == HAL_OK) 734 sc->sc_use_ent = 1; 735 736 #ifdef ATH_ENABLE_11N 737 /* 738 * Query HT capabilities 739 */ 740 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 741 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 742 int rxs, txs; 743 744 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 745 746 sc->sc_mrrprot = 1; /* XXX should be a capability */ 747 748 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 749 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 750 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 751 | IEEE80211_HTCAP_MAXAMSDU_3839 752 /* max A-MSDU length */ 753 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 754 ; 755 756 /* 757 * Enable short-GI for HT20 only if the hardware 758 * advertises support. 759 * Notably, anything earlier than the AR9287 doesn't. 760 */ 761 if ((ath_hal_getcapability(ah, 762 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 763 (wmodes & HAL_MODE_HT20)) { 764 device_printf(sc->sc_dev, 765 "[HT] enabling short-GI in 20MHz mode\n"); 766 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 767 } 768 769 if (wmodes & HAL_MODE_HT40) 770 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 771 | IEEE80211_HTCAP_SHORTGI40; 772 773 /* 774 * TX/RX streams need to be taken into account when 775 * negotiating which MCS rates it'll receive and 776 * what MCS rates are available for TX. 777 */ 778 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 779 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 780 781 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 782 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 783 784 ic->ic_txstream = txs; 785 ic->ic_rxstream = rxs; 786 787 /* 788 * Setup TX and RX STBC based on what the HAL allows and 789 * the currently configured chainmask set. 790 * Ie - don't enable STBC TX if only one chain is enabled. 791 * STBC RX is fine on a single RX chain; it just won't 792 * provide any real benefit. 793 */ 794 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 795 NULL) == HAL_OK) { 796 sc->sc_rx_stbc = 1; 797 device_printf(sc->sc_dev, 798 "[HT] 1 stream STBC receive enabled\n"); 799 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 800 } 801 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 802 NULL) == HAL_OK) { 803 sc->sc_tx_stbc = 1; 804 device_printf(sc->sc_dev, 805 "[HT] 1 stream STBC transmit enabled\n"); 806 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 807 } 808 809 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 810 &sc->sc_rts_aggr_limit); 811 if (sc->sc_rts_aggr_limit != (64 * 1024)) 812 device_printf(sc->sc_dev, 813 "[HT] RTS aggregates limited to %d KiB\n", 814 sc->sc_rts_aggr_limit / 1024); 815 816 device_printf(sc->sc_dev, 817 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 818 } 819 #endif 820 821 /* 822 * Initial aggregation settings. 823 */ 824 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 825 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 826 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 827 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 828 sc->sc_delim_min_pad = 0; 829 830 /* 831 * Check if the hardware requires PCI register serialisation. 832 * Some of the Owl based MACs require this. 833 */ 834 if (mp_ncpus > 1 && 835 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 836 0, NULL) == HAL_OK) { 837 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 838 device_printf(sc->sc_dev, 839 "Enabling register serialisation\n"); 840 } 841 842 /* 843 * Initialise the deferred completed RX buffer list. 844 */ 845 TAILQ_INIT(&sc->sc_rx_rxlist); 846 847 /* 848 * Indicate we need the 802.11 header padded to a 849 * 32-bit boundary for 4-address and QoS frames. 850 */ 851 ic->ic_flags |= IEEE80211_F_DATAPAD; 852 853 /* 854 * Query the hal about antenna support. 855 */ 856 sc->sc_defant = ath_hal_getdefantenna(ah); 857 858 /* 859 * Not all chips have the VEOL support we want to 860 * use with IBSS beacons; check here for it. 861 */ 862 sc->sc_hasveol = ath_hal_hasveol(ah); 863 864 /* get mac address from hardware */ 865 ath_hal_getmac(ah, macaddr); 866 if (sc->sc_hasbmask) 867 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 868 869 /* NB: used to size node table key mapping array */ 870 ic->ic_max_keyix = sc->sc_keymax; 871 /* call MI attach routine. */ 872 ieee80211_ifattach(ic, macaddr); 873 ic->ic_setregdomain = ath_setregdomain; 874 ic->ic_getradiocaps = ath_getradiocaps; 875 sc->sc_opmode = HAL_M_STA; 876 877 /* override default methods */ 878 ic->ic_newassoc = ath_newassoc; 879 ic->ic_updateslot = ath_updateslot; 880 ic->ic_wme.wme_update = ath_wme_update; 881 ic->ic_vap_create = ath_vap_create; 882 ic->ic_vap_delete = ath_vap_delete; 883 ic->ic_raw_xmit = ath_raw_xmit; 884 ic->ic_update_mcast = ath_update_mcast; 885 ic->ic_update_promisc = ath_update_promisc; 886 ic->ic_node_alloc = ath_node_alloc; 887 sc->sc_node_free = ic->ic_node_free; 888 ic->ic_node_free = ath_node_free; 889 sc->sc_node_cleanup = ic->ic_node_cleanup; 890 ic->ic_node_cleanup = ath_node_cleanup; 891 ic->ic_node_getsignal = ath_node_getsignal; 892 ic->ic_scan_start = ath_scan_start; 893 ic->ic_scan_end = ath_scan_end; 894 ic->ic_set_channel = ath_set_channel; 895 #ifdef ATH_ENABLE_11N 896 /* 802.11n specific - but just override anyway */ 897 sc->sc_addba_request = ic->ic_addba_request; 898 sc->sc_addba_response = ic->ic_addba_response; 899 sc->sc_addba_stop = ic->ic_addba_stop; 900 sc->sc_bar_response = ic->ic_bar_response; 901 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 902 903 ic->ic_addba_request = ath_addba_request; 904 ic->ic_addba_response = ath_addba_response; 905 ic->ic_addba_response_timeout = ath_addba_response_timeout; 906 ic->ic_addba_stop = ath_addba_stop; 907 ic->ic_bar_response = ath_bar_response; 908 909 ic->ic_update_chw = ath_update_chw; 910 #endif /* ATH_ENABLE_11N */ 911 912 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 913 /* 914 * There's one vendor bitmap entry in the RX radiotap 915 * header; make sure that's taken into account. 916 */ 917 ieee80211_radiotap_attachv(ic, 918 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 919 ATH_TX_RADIOTAP_PRESENT, 920 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 921 ATH_RX_RADIOTAP_PRESENT); 922 #else 923 /* 924 * No vendor bitmap/extensions are present. 925 */ 926 ieee80211_radiotap_attach(ic, 927 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 928 ATH_TX_RADIOTAP_PRESENT, 929 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 930 ATH_RX_RADIOTAP_PRESENT); 931 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 932 933 /* 934 * Setup the ALQ logging if required 935 */ 936 #ifdef ATH_DEBUG_ALQ 937 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 938 if_ath_alq_setcfg(&sc->sc_alq, 939 sc->sc_ah->ah_macVersion, 940 sc->sc_ah->ah_macRev, 941 sc->sc_ah->ah_phyRev, 942 sc->sc_ah->ah_magic); 943 #endif 944 945 /* 946 * Setup dynamic sysctl's now that country code and 947 * regdomain are available from the hal. 948 */ 949 ath_sysctlattach(sc); 950 ath_sysctl_stats_attach(sc); 951 ath_sysctl_hal_attach(sc); 952 953 if (bootverbose) 954 ieee80211_announce(ic); 955 ath_announce(sc); 956 return 0; 957 bad2: 958 ath_tx_cleanup(sc); 959 ath_desc_free(sc); 960 ath_txdma_teardown(sc); 961 ath_rxdma_teardown(sc); 962 bad: 963 if (ah) 964 ath_hal_detach(ah); 965 966 /* 967 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 968 */ 969 if (ifp != NULL && ifp->if_vnet) { 970 CURVNET_SET(ifp->if_vnet); 971 if_free(ifp); 972 CURVNET_RESTORE(); 973 } else if (ifp != NULL) 974 if_free(ifp); 975 sc->sc_invalid = 1; 976 return error; 977 } 978 979 int 980 ath_detach(struct ath_softc *sc) 981 { 982 struct ifnet *ifp = sc->sc_ifp; 983 984 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 985 __func__, ifp->if_flags); 986 987 /* 988 * NB: the order of these is important: 989 * o stop the chip so no more interrupts will fire 990 * o call the 802.11 layer before detaching the hal to 991 * insure callbacks into the driver to delete global 992 * key cache entries can be handled 993 * o free the taskqueue which drains any pending tasks 994 * o reclaim the tx queue data structures after calling 995 * the 802.11 layer as we'll get called back to reclaim 996 * node state and potentially want to use them 997 * o to cleanup the tx queues the hal is called, so detach 998 * it last 999 * Other than that, it's straightforward... 1000 */ 1001 ath_stop(ifp); 1002 ieee80211_ifdetach(ifp->if_l2com); 1003 taskqueue_free(sc->sc_tq); 1004 #ifdef ATH_TX99_DIAG 1005 if (sc->sc_tx99 != NULL) 1006 sc->sc_tx99->detach(sc->sc_tx99); 1007 #endif 1008 ath_rate_detach(sc->sc_rc); 1009 #ifdef ATH_DEBUG_ALQ 1010 if_ath_alq_tidyup(&sc->sc_alq); 1011 #endif 1012 ath_spectral_detach(sc); 1013 ath_dfs_detach(sc); 1014 ath_desc_free(sc); 1015 ath_txdma_teardown(sc); 1016 ath_rxdma_teardown(sc); 1017 ath_tx_cleanup(sc); 1018 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1019 1020 CURVNET_SET(ifp->if_vnet); 1021 if_free(ifp); 1022 CURVNET_RESTORE(); 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * MAC address handling for multiple BSS on the same radio. 1029 * The first vap uses the MAC address from the EEPROM. For 1030 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1031 * address and use the next six bits as an index. 1032 */ 1033 static void 1034 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1035 { 1036 int i; 1037 1038 if (clone && sc->sc_hasbmask) { 1039 /* NB: we only do this if h/w supports multiple bssid */ 1040 for (i = 0; i < 8; i++) 1041 if ((sc->sc_bssidmask & (1<<i)) == 0) 1042 break; 1043 if (i != 0) 1044 mac[0] |= (i << 2)|0x2; 1045 } else 1046 i = 0; 1047 sc->sc_bssidmask |= 1<<i; 1048 sc->sc_hwbssidmask[0] &= ~mac[0]; 1049 if (i == 0) 1050 sc->sc_nbssid0++; 1051 } 1052 1053 static void 1054 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1055 { 1056 int i = mac[0] >> 2; 1057 uint8_t mask; 1058 1059 if (i != 0 || --sc->sc_nbssid0 == 0) { 1060 sc->sc_bssidmask &= ~(1<<i); 1061 /* recalculate bssid mask from remaining addresses */ 1062 mask = 0xff; 1063 for (i = 1; i < 8; i++) 1064 if (sc->sc_bssidmask & (1<<i)) 1065 mask &= ~((i<<2)|0x2); 1066 sc->sc_hwbssidmask[0] |= mask; 1067 } 1068 } 1069 1070 /* 1071 * Assign a beacon xmit slot. We try to space out 1072 * assignments so when beacons are staggered the 1073 * traffic coming out of the cab q has maximal time 1074 * to go out before the next beacon is scheduled. 1075 */ 1076 static int 1077 assign_bslot(struct ath_softc *sc) 1078 { 1079 u_int slot, free; 1080 1081 free = 0; 1082 for (slot = 0; slot < ATH_BCBUF; slot++) 1083 if (sc->sc_bslot[slot] == NULL) { 1084 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1085 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1086 return slot; 1087 free = slot; 1088 /* NB: keep looking for a double slot */ 1089 } 1090 return free; 1091 } 1092 1093 static struct ieee80211vap * 1094 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1095 enum ieee80211_opmode opmode, int flags, 1096 const uint8_t bssid[IEEE80211_ADDR_LEN], 1097 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1098 { 1099 struct ath_softc *sc = ic->ic_ifp->if_softc; 1100 struct ath_vap *avp; 1101 struct ieee80211vap *vap; 1102 uint8_t mac[IEEE80211_ADDR_LEN]; 1103 int needbeacon, error; 1104 enum ieee80211_opmode ic_opmode; 1105 1106 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1107 M_80211_VAP, M_WAITOK | M_ZERO); 1108 needbeacon = 0; 1109 IEEE80211_ADDR_COPY(mac, mac0); 1110 1111 ATH_LOCK(sc); 1112 ic_opmode = opmode; /* default to opmode of new vap */ 1113 switch (opmode) { 1114 case IEEE80211_M_STA: 1115 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1116 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1117 goto bad; 1118 } 1119 if (sc->sc_nvaps) { 1120 /* 1121 * With multiple vaps we must fall back 1122 * to s/w beacon miss handling. 1123 */ 1124 flags |= IEEE80211_CLONE_NOBEACONS; 1125 } 1126 if (flags & IEEE80211_CLONE_NOBEACONS) { 1127 /* 1128 * Station mode w/o beacons are implemented w/ AP mode. 1129 */ 1130 ic_opmode = IEEE80211_M_HOSTAP; 1131 } 1132 break; 1133 case IEEE80211_M_IBSS: 1134 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1135 device_printf(sc->sc_dev, 1136 "only 1 ibss vap supported\n"); 1137 goto bad; 1138 } 1139 needbeacon = 1; 1140 break; 1141 case IEEE80211_M_AHDEMO: 1142 #ifdef IEEE80211_SUPPORT_TDMA 1143 if (flags & IEEE80211_CLONE_TDMA) { 1144 if (sc->sc_nvaps != 0) { 1145 device_printf(sc->sc_dev, 1146 "only 1 tdma vap supported\n"); 1147 goto bad; 1148 } 1149 needbeacon = 1; 1150 flags |= IEEE80211_CLONE_NOBEACONS; 1151 } 1152 /* fall thru... */ 1153 #endif 1154 case IEEE80211_M_MONITOR: 1155 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1156 /* 1157 * Adopt existing mode. Adding a monitor or ahdemo 1158 * vap to an existing configuration is of dubious 1159 * value but should be ok. 1160 */ 1161 /* XXX not right for monitor mode */ 1162 ic_opmode = ic->ic_opmode; 1163 } 1164 break; 1165 case IEEE80211_M_HOSTAP: 1166 case IEEE80211_M_MBSS: 1167 needbeacon = 1; 1168 break; 1169 case IEEE80211_M_WDS: 1170 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1171 device_printf(sc->sc_dev, 1172 "wds not supported in sta mode\n"); 1173 goto bad; 1174 } 1175 /* 1176 * Silently remove any request for a unique 1177 * bssid; WDS vap's always share the local 1178 * mac address. 1179 */ 1180 flags &= ~IEEE80211_CLONE_BSSID; 1181 if (sc->sc_nvaps == 0) 1182 ic_opmode = IEEE80211_M_HOSTAP; 1183 else 1184 ic_opmode = ic->ic_opmode; 1185 break; 1186 default: 1187 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1188 goto bad; 1189 } 1190 /* 1191 * Check that a beacon buffer is available; the code below assumes it. 1192 */ 1193 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1194 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1195 goto bad; 1196 } 1197 1198 /* STA, AHDEMO? */ 1199 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1200 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1201 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1202 } 1203 1204 vap = &avp->av_vap; 1205 /* XXX can't hold mutex across if_alloc */ 1206 ATH_UNLOCK(sc); 1207 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1208 bssid, mac); 1209 ATH_LOCK(sc); 1210 if (error != 0) { 1211 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1212 __func__, error); 1213 goto bad2; 1214 } 1215 1216 /* h/w crypto support */ 1217 vap->iv_key_alloc = ath_key_alloc; 1218 vap->iv_key_delete = ath_key_delete; 1219 vap->iv_key_set = ath_key_set; 1220 vap->iv_key_update_begin = ath_key_update_begin; 1221 vap->iv_key_update_end = ath_key_update_end; 1222 1223 /* override various methods */ 1224 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1225 vap->iv_recv_mgmt = ath_recv_mgmt; 1226 vap->iv_reset = ath_reset_vap; 1227 vap->iv_update_beacon = ath_beacon_update; 1228 avp->av_newstate = vap->iv_newstate; 1229 vap->iv_newstate = ath_newstate; 1230 avp->av_bmiss = vap->iv_bmiss; 1231 vap->iv_bmiss = ath_bmiss_vap; 1232 1233 avp->av_node_ps = vap->iv_node_ps; 1234 vap->iv_node_ps = ath_node_powersave; 1235 1236 avp->av_set_tim = vap->iv_set_tim; 1237 vap->iv_set_tim = ath_node_set_tim; 1238 1239 /* Set default parameters */ 1240 1241 /* 1242 * Anything earlier than some AR9300 series MACs don't 1243 * support a smaller MPDU density. 1244 */ 1245 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1246 /* 1247 * All NICs can handle the maximum size, however 1248 * AR5416 based MACs can only TX aggregates w/ RTS 1249 * protection when the total aggregate size is <= 8k. 1250 * However, for now that's enforced by the TX path. 1251 */ 1252 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1253 1254 avp->av_bslot = -1; 1255 if (needbeacon) { 1256 /* 1257 * Allocate beacon state and setup the q for buffered 1258 * multicast frames. We know a beacon buffer is 1259 * available because we checked above. 1260 */ 1261 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1262 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1263 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1264 /* 1265 * Assign the vap to a beacon xmit slot. As above 1266 * this cannot fail to find a free one. 1267 */ 1268 avp->av_bslot = assign_bslot(sc); 1269 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1270 ("beacon slot %u not empty", avp->av_bslot)); 1271 sc->sc_bslot[avp->av_bslot] = vap; 1272 sc->sc_nbcnvaps++; 1273 } 1274 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1275 /* 1276 * Multple vaps are to transmit beacons and we 1277 * have h/w support for TSF adjusting; enable 1278 * use of staggered beacons. 1279 */ 1280 sc->sc_stagbeacons = 1; 1281 } 1282 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1283 } 1284 1285 ic->ic_opmode = ic_opmode; 1286 if (opmode != IEEE80211_M_WDS) { 1287 sc->sc_nvaps++; 1288 if (opmode == IEEE80211_M_STA) 1289 sc->sc_nstavaps++; 1290 if (opmode == IEEE80211_M_MBSS) 1291 sc->sc_nmeshvaps++; 1292 } 1293 switch (ic_opmode) { 1294 case IEEE80211_M_IBSS: 1295 sc->sc_opmode = HAL_M_IBSS; 1296 break; 1297 case IEEE80211_M_STA: 1298 sc->sc_opmode = HAL_M_STA; 1299 break; 1300 case IEEE80211_M_AHDEMO: 1301 #ifdef IEEE80211_SUPPORT_TDMA 1302 if (vap->iv_caps & IEEE80211_C_TDMA) { 1303 sc->sc_tdma = 1; 1304 /* NB: disable tsf adjust */ 1305 sc->sc_stagbeacons = 0; 1306 } 1307 /* 1308 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1309 * just ap mode. 1310 */ 1311 /* fall thru... */ 1312 #endif 1313 case IEEE80211_M_HOSTAP: 1314 case IEEE80211_M_MBSS: 1315 sc->sc_opmode = HAL_M_HOSTAP; 1316 break; 1317 case IEEE80211_M_MONITOR: 1318 sc->sc_opmode = HAL_M_MONITOR; 1319 break; 1320 default: 1321 /* XXX should not happen */ 1322 break; 1323 } 1324 if (sc->sc_hastsfadd) { 1325 /* 1326 * Configure whether or not TSF adjust should be done. 1327 */ 1328 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1329 } 1330 if (flags & IEEE80211_CLONE_NOBEACONS) { 1331 /* 1332 * Enable s/w beacon miss handling. 1333 */ 1334 sc->sc_swbmiss = 1; 1335 } 1336 ATH_UNLOCK(sc); 1337 1338 /* complete setup */ 1339 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1340 return vap; 1341 bad2: 1342 reclaim_address(sc, mac); 1343 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1344 bad: 1345 free(avp, M_80211_VAP); 1346 ATH_UNLOCK(sc); 1347 return NULL; 1348 } 1349 1350 static void 1351 ath_vap_delete(struct ieee80211vap *vap) 1352 { 1353 struct ieee80211com *ic = vap->iv_ic; 1354 struct ifnet *ifp = ic->ic_ifp; 1355 struct ath_softc *sc = ifp->if_softc; 1356 struct ath_hal *ah = sc->sc_ah; 1357 struct ath_vap *avp = ATH_VAP(vap); 1358 1359 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1360 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1361 /* 1362 * Quiesce the hardware while we remove the vap. In 1363 * particular we need to reclaim all references to 1364 * the vap state by any frames pending on the tx queues. 1365 */ 1366 ath_hal_intrset(ah, 0); /* disable interrupts */ 1367 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1368 /* XXX Do all frames from all vaps/nodes need draining here? */ 1369 ath_stoprecv(sc, 1); /* stop recv side */ 1370 } 1371 1372 ieee80211_vap_detach(vap); 1373 1374 /* 1375 * XXX Danger Will Robinson! Danger! 1376 * 1377 * Because ieee80211_vap_detach() can queue a frame (the station 1378 * diassociate message?) after we've drained the TXQ and 1379 * flushed the software TXQ, we will end up with a frame queued 1380 * to a node whose vap is about to be freed. 1381 * 1382 * To work around this, flush the hardware/software again. 1383 * This may be racy - the ath task may be running and the packet 1384 * may be being scheduled between sw->hw txq. Tsk. 1385 * 1386 * TODO: figure out why a new node gets allocated somewhere around 1387 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1388 * call!) 1389 */ 1390 1391 ath_draintxq(sc, ATH_RESET_DEFAULT); 1392 1393 ATH_LOCK(sc); 1394 /* 1395 * Reclaim beacon state. Note this must be done before 1396 * the vap instance is reclaimed as we may have a reference 1397 * to it in the buffer for the beacon frame. 1398 */ 1399 if (avp->av_bcbuf != NULL) { 1400 if (avp->av_bslot != -1) { 1401 sc->sc_bslot[avp->av_bslot] = NULL; 1402 sc->sc_nbcnvaps--; 1403 } 1404 ath_beacon_return(sc, avp->av_bcbuf); 1405 avp->av_bcbuf = NULL; 1406 if (sc->sc_nbcnvaps == 0) { 1407 sc->sc_stagbeacons = 0; 1408 if (sc->sc_hastsfadd) 1409 ath_hal_settsfadjust(sc->sc_ah, 0); 1410 } 1411 /* 1412 * Reclaim any pending mcast frames for the vap. 1413 */ 1414 ath_tx_draintxq(sc, &avp->av_mcastq); 1415 } 1416 /* 1417 * Update bookkeeping. 1418 */ 1419 if (vap->iv_opmode == IEEE80211_M_STA) { 1420 sc->sc_nstavaps--; 1421 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1422 sc->sc_swbmiss = 0; 1423 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1424 vap->iv_opmode == IEEE80211_M_MBSS) { 1425 reclaim_address(sc, vap->iv_myaddr); 1426 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1427 if (vap->iv_opmode == IEEE80211_M_MBSS) 1428 sc->sc_nmeshvaps--; 1429 } 1430 if (vap->iv_opmode != IEEE80211_M_WDS) 1431 sc->sc_nvaps--; 1432 #ifdef IEEE80211_SUPPORT_TDMA 1433 /* TDMA operation ceases when the last vap is destroyed */ 1434 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1435 sc->sc_tdma = 0; 1436 sc->sc_swbmiss = 0; 1437 } 1438 #endif 1439 free(avp, M_80211_VAP); 1440 1441 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1442 /* 1443 * Restart rx+tx machines if still running (RUNNING will 1444 * be reset if we just destroyed the last vap). 1445 */ 1446 if (ath_startrecv(sc) != 0) 1447 if_printf(ifp, "%s: unable to restart recv logic\n", 1448 __func__); 1449 if (sc->sc_beacons) { /* restart beacons */ 1450 #ifdef IEEE80211_SUPPORT_TDMA 1451 if (sc->sc_tdma) 1452 ath_tdma_config(sc, NULL); 1453 else 1454 #endif 1455 ath_beacon_config(sc, NULL); 1456 } 1457 ath_hal_intrset(ah, sc->sc_imask); 1458 } 1459 ATH_UNLOCK(sc); 1460 } 1461 1462 void 1463 ath_suspend(struct ath_softc *sc) 1464 { 1465 struct ifnet *ifp = sc->sc_ifp; 1466 struct ieee80211com *ic = ifp->if_l2com; 1467 1468 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1469 __func__, ifp->if_flags); 1470 1471 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1472 1473 ieee80211_suspend_all(ic); 1474 /* 1475 * NB: don't worry about putting the chip in low power 1476 * mode; pci will power off our socket on suspend and 1477 * CardBus detaches the device. 1478 */ 1479 1480 /* 1481 * XXX ensure none of the taskqueues are running 1482 * XXX ensure sc_invalid is 1 1483 * XXX ensure the calibration callout is disabled 1484 */ 1485 1486 /* Disable the PCIe PHY, complete with workarounds */ 1487 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1488 } 1489 1490 /* 1491 * Reset the key cache since some parts do not reset the 1492 * contents on resume. First we clear all entries, then 1493 * re-load keys that the 802.11 layer assumes are setup 1494 * in h/w. 1495 */ 1496 static void 1497 ath_reset_keycache(struct ath_softc *sc) 1498 { 1499 struct ifnet *ifp = sc->sc_ifp; 1500 struct ieee80211com *ic = ifp->if_l2com; 1501 struct ath_hal *ah = sc->sc_ah; 1502 int i; 1503 1504 for (i = 0; i < sc->sc_keymax; i++) 1505 ath_hal_keyreset(ah, i); 1506 ieee80211_crypto_reload_keys(ic); 1507 } 1508 1509 /* 1510 * Fetch the current chainmask configuration based on the current 1511 * operating channel and options. 1512 */ 1513 static void 1514 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1515 { 1516 1517 /* 1518 * Set TX chainmask to the currently configured chainmask; 1519 * the TX chainmask depends upon the current operating mode. 1520 */ 1521 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1522 if (IEEE80211_IS_CHAN_HT(chan)) { 1523 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1524 } else { 1525 sc->sc_cur_txchainmask = 1; 1526 } 1527 } 1528 1529 void 1530 ath_resume(struct ath_softc *sc) 1531 { 1532 struct ifnet *ifp = sc->sc_ifp; 1533 struct ieee80211com *ic = ifp->if_l2com; 1534 struct ath_hal *ah = sc->sc_ah; 1535 HAL_STATUS status; 1536 1537 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1538 __func__, ifp->if_flags); 1539 1540 /* Re-enable PCIe, re-enable the PCIe bus */ 1541 ath_hal_enablepcie(ah, 0, 0); 1542 1543 /* 1544 * Must reset the chip before we reload the 1545 * keycache as we were powered down on suspend. 1546 */ 1547 ath_update_chainmasks(sc, 1548 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1549 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1550 sc->sc_cur_rxchainmask); 1551 ath_hal_reset(ah, sc->sc_opmode, 1552 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1553 AH_FALSE, &status); 1554 ath_reset_keycache(sc); 1555 1556 /* Let DFS at it in case it's a DFS channel */ 1557 ath_dfs_radar_enable(sc, ic->ic_curchan); 1558 1559 /* Let spectral at in case spectral is enabled */ 1560 ath_spectral_enable(sc, ic->ic_curchan); 1561 1562 /* Restore the LED configuration */ 1563 ath_led_config(sc); 1564 ath_hal_setledstate(ah, HAL_LED_INIT); 1565 1566 if (sc->sc_resume_up) 1567 ieee80211_resume_all(ic); 1568 1569 /* XXX beacons ? */ 1570 } 1571 1572 void 1573 ath_shutdown(struct ath_softc *sc) 1574 { 1575 struct ifnet *ifp = sc->sc_ifp; 1576 1577 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1578 __func__, ifp->if_flags); 1579 1580 ath_stop(ifp); 1581 /* NB: no point powering down chip as we're about to reboot */ 1582 } 1583 1584 /* 1585 * Interrupt handler. Most of the actual processing is deferred. 1586 */ 1587 void 1588 ath_intr(void *arg) 1589 { 1590 struct ath_softc *sc = arg; 1591 struct ifnet *ifp = sc->sc_ifp; 1592 struct ath_hal *ah = sc->sc_ah; 1593 HAL_INT status = 0; 1594 uint32_t txqs; 1595 1596 /* 1597 * If we're inside a reset path, just print a warning and 1598 * clear the ISR. The reset routine will finish it for us. 1599 */ 1600 ATH_PCU_LOCK(sc); 1601 if (sc->sc_inreset_cnt) { 1602 HAL_INT status; 1603 ath_hal_getisr(ah, &status); /* clear ISR */ 1604 ath_hal_intrset(ah, 0); /* disable further intr's */ 1605 DPRINTF(sc, ATH_DEBUG_ANY, 1606 "%s: in reset, ignoring: status=0x%x\n", 1607 __func__, status); 1608 ATH_PCU_UNLOCK(sc); 1609 return; 1610 } 1611 1612 if (sc->sc_invalid) { 1613 /* 1614 * The hardware is not ready/present, don't touch anything. 1615 * Note this can happen early on if the IRQ is shared. 1616 */ 1617 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1618 ATH_PCU_UNLOCK(sc); 1619 return; 1620 } 1621 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1622 ATH_PCU_UNLOCK(sc); 1623 return; 1624 } 1625 1626 if ((ifp->if_flags & IFF_UP) == 0 || 1627 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1628 HAL_INT status; 1629 1630 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1631 __func__, ifp->if_flags); 1632 ath_hal_getisr(ah, &status); /* clear ISR */ 1633 ath_hal_intrset(ah, 0); /* disable further intr's */ 1634 ATH_PCU_UNLOCK(sc); 1635 return; 1636 } 1637 1638 /* 1639 * Figure out the reason(s) for the interrupt. Note 1640 * that the hal returns a pseudo-ISR that may include 1641 * bits we haven't explicitly enabled so we mask the 1642 * value to insure we only process bits we requested. 1643 */ 1644 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1645 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1646 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1647 #ifdef ATH_DEBUG_ALQ 1648 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1649 ah->ah_syncstate); 1650 #endif /* ATH_DEBUG_ALQ */ 1651 #ifdef ATH_KTR_INTR_DEBUG 1652 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1653 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1654 ah->ah_intrstate[0], 1655 ah->ah_intrstate[1], 1656 ah->ah_intrstate[2], 1657 ah->ah_intrstate[3], 1658 ah->ah_intrstate[6]); 1659 #endif 1660 1661 /* Squirrel away SYNC interrupt debugging */ 1662 if (ah->ah_syncstate != 0) { 1663 int i; 1664 for (i = 0; i < 32; i++) 1665 if (ah->ah_syncstate & (i << i)) 1666 sc->sc_intr_stats.sync_intr[i]++; 1667 } 1668 1669 status &= sc->sc_imask; /* discard unasked for bits */ 1670 1671 /* Short-circuit un-handled interrupts */ 1672 if (status == 0x0) { 1673 ATH_PCU_UNLOCK(sc); 1674 return; 1675 } 1676 1677 /* 1678 * Take a note that we're inside the interrupt handler, so 1679 * the reset routines know to wait. 1680 */ 1681 sc->sc_intr_cnt++; 1682 ATH_PCU_UNLOCK(sc); 1683 1684 /* 1685 * Handle the interrupt. We won't run concurrent with the reset 1686 * or channel change routines as they'll wait for sc_intr_cnt 1687 * to be 0 before continuing. 1688 */ 1689 if (status & HAL_INT_FATAL) { 1690 sc->sc_stats.ast_hardware++; 1691 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1692 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1693 } else { 1694 if (status & HAL_INT_SWBA) { 1695 /* 1696 * Software beacon alert--time to send a beacon. 1697 * Handle beacon transmission directly; deferring 1698 * this is too slow to meet timing constraints 1699 * under load. 1700 */ 1701 #ifdef IEEE80211_SUPPORT_TDMA 1702 if (sc->sc_tdma) { 1703 if (sc->sc_tdmaswba == 0) { 1704 struct ieee80211com *ic = ifp->if_l2com; 1705 struct ieee80211vap *vap = 1706 TAILQ_FIRST(&ic->ic_vaps); 1707 ath_tdma_beacon_send(sc, vap); 1708 sc->sc_tdmaswba = 1709 vap->iv_tdma->tdma_bintval; 1710 } else 1711 sc->sc_tdmaswba--; 1712 } else 1713 #endif 1714 { 1715 ath_beacon_proc(sc, 0); 1716 #ifdef IEEE80211_SUPPORT_SUPERG 1717 /* 1718 * Schedule the rx taskq in case there's no 1719 * traffic so any frames held on the staging 1720 * queue are aged and potentially flushed. 1721 */ 1722 sc->sc_rx.recv_sched(sc, 1); 1723 #endif 1724 } 1725 } 1726 if (status & HAL_INT_RXEOL) { 1727 int imask; 1728 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1729 ATH_PCU_LOCK(sc); 1730 /* 1731 * NB: the hardware should re-read the link when 1732 * RXE bit is written, but it doesn't work at 1733 * least on older hardware revs. 1734 */ 1735 sc->sc_stats.ast_rxeol++; 1736 /* 1737 * Disable RXEOL/RXORN - prevent an interrupt 1738 * storm until the PCU logic can be reset. 1739 * In case the interface is reset some other 1740 * way before "sc_kickpcu" is called, don't 1741 * modify sc_imask - that way if it is reset 1742 * by a call to ath_reset() somehow, the 1743 * interrupt mask will be correctly reprogrammed. 1744 */ 1745 imask = sc->sc_imask; 1746 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1747 ath_hal_intrset(ah, imask); 1748 /* 1749 * Only blank sc_rxlink if we've not yet kicked 1750 * the PCU. 1751 * 1752 * This isn't entirely correct - the correct solution 1753 * would be to have a PCU lock and engage that for 1754 * the duration of the PCU fiddling; which would include 1755 * running the RX process. Otherwise we could end up 1756 * messing up the RX descriptor chain and making the 1757 * RX desc list much shorter. 1758 */ 1759 if (! sc->sc_kickpcu) 1760 sc->sc_rxlink = NULL; 1761 sc->sc_kickpcu = 1; 1762 ATH_PCU_UNLOCK(sc); 1763 /* 1764 * Enqueue an RX proc, to handled whatever 1765 * is in the RX queue. 1766 * This will then kick the PCU. 1767 */ 1768 sc->sc_rx.recv_sched(sc, 1); 1769 } 1770 if (status & HAL_INT_TXURN) { 1771 sc->sc_stats.ast_txurn++; 1772 /* bump tx trigger level */ 1773 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1774 } 1775 /* 1776 * Handle both the legacy and RX EDMA interrupt bits. 1777 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1778 */ 1779 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1780 sc->sc_stats.ast_rx_intr++; 1781 sc->sc_rx.recv_sched(sc, 1); 1782 } 1783 if (status & HAL_INT_TX) { 1784 sc->sc_stats.ast_tx_intr++; 1785 /* 1786 * Grab all the currently set bits in the HAL txq bitmap 1787 * and blank them. This is the only place we should be 1788 * doing this. 1789 */ 1790 if (! sc->sc_isedma) { 1791 ATH_PCU_LOCK(sc); 1792 txqs = 0xffffffff; 1793 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1794 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1795 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1796 txqs, 1797 sc->sc_txq_active, 1798 sc->sc_txq_active | txqs); 1799 sc->sc_txq_active |= txqs; 1800 ATH_PCU_UNLOCK(sc); 1801 } 1802 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1803 } 1804 if (status & HAL_INT_BMISS) { 1805 sc->sc_stats.ast_bmiss++; 1806 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1807 } 1808 if (status & HAL_INT_GTT) 1809 sc->sc_stats.ast_tx_timeout++; 1810 if (status & HAL_INT_CST) 1811 sc->sc_stats.ast_tx_cst++; 1812 if (status & HAL_INT_MIB) { 1813 sc->sc_stats.ast_mib++; 1814 ATH_PCU_LOCK(sc); 1815 /* 1816 * Disable interrupts until we service the MIB 1817 * interrupt; otherwise it will continue to fire. 1818 */ 1819 ath_hal_intrset(ah, 0); 1820 /* 1821 * Let the hal handle the event. We assume it will 1822 * clear whatever condition caused the interrupt. 1823 */ 1824 ath_hal_mibevent(ah, &sc->sc_halstats); 1825 /* 1826 * Don't reset the interrupt if we've just 1827 * kicked the PCU, or we may get a nested 1828 * RXEOL before the rxproc has had a chance 1829 * to run. 1830 */ 1831 if (sc->sc_kickpcu == 0) 1832 ath_hal_intrset(ah, sc->sc_imask); 1833 ATH_PCU_UNLOCK(sc); 1834 } 1835 if (status & HAL_INT_RXORN) { 1836 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1837 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1838 sc->sc_stats.ast_rxorn++; 1839 } 1840 } 1841 ATH_PCU_LOCK(sc); 1842 sc->sc_intr_cnt--; 1843 ATH_PCU_UNLOCK(sc); 1844 } 1845 1846 static void 1847 ath_fatal_proc(void *arg, int pending) 1848 { 1849 struct ath_softc *sc = arg; 1850 struct ifnet *ifp = sc->sc_ifp; 1851 u_int32_t *state; 1852 u_int32_t len; 1853 void *sp; 1854 1855 if_printf(ifp, "hardware error; resetting\n"); 1856 /* 1857 * Fatal errors are unrecoverable. Typically these 1858 * are caused by DMA errors. Collect h/w state from 1859 * the hal so we can diagnose what's going on. 1860 */ 1861 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1862 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1863 state = sp; 1864 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1865 state[0], state[1] , state[2], state[3], 1866 state[4], state[5]); 1867 } 1868 ath_reset(ifp, ATH_RESET_NOLOSS); 1869 } 1870 1871 static void 1872 ath_bmiss_vap(struct ieee80211vap *vap) 1873 { 1874 /* 1875 * Workaround phantom bmiss interrupts by sanity-checking 1876 * the time of our last rx'd frame. If it is within the 1877 * beacon miss interval then ignore the interrupt. If it's 1878 * truly a bmiss we'll get another interrupt soon and that'll 1879 * be dispatched up for processing. Note this applies only 1880 * for h/w beacon miss events. 1881 */ 1882 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1883 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1884 struct ath_softc *sc = ifp->if_softc; 1885 u_int64_t lastrx = sc->sc_lastrx; 1886 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1887 /* XXX should take a locked ref to iv_bss */ 1888 u_int bmisstimeout = 1889 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1890 1891 DPRINTF(sc, ATH_DEBUG_BEACON, 1892 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1893 __func__, (unsigned long long) tsf, 1894 (unsigned long long)(tsf - lastrx), 1895 (unsigned long long) lastrx, bmisstimeout); 1896 1897 if (tsf - lastrx <= bmisstimeout) { 1898 sc->sc_stats.ast_bmiss_phantom++; 1899 return; 1900 } 1901 } 1902 ATH_VAP(vap)->av_bmiss(vap); 1903 } 1904 1905 int 1906 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1907 { 1908 uint32_t rsize; 1909 void *sp; 1910 1911 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1912 return 0; 1913 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1914 *hangs = *(uint32_t *)sp; 1915 return 1; 1916 } 1917 1918 static void 1919 ath_bmiss_proc(void *arg, int pending) 1920 { 1921 struct ath_softc *sc = arg; 1922 struct ifnet *ifp = sc->sc_ifp; 1923 uint32_t hangs; 1924 1925 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1926 1927 /* 1928 * Do a reset upon any becaon miss event. 1929 * 1930 * It may be a non-recognised RX clear hang which needs a reset 1931 * to clear. 1932 */ 1933 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1934 ath_reset(ifp, ATH_RESET_NOLOSS); 1935 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1936 } else { 1937 ath_reset(ifp, ATH_RESET_NOLOSS); 1938 ieee80211_beacon_miss(ifp->if_l2com); 1939 } 1940 } 1941 1942 /* 1943 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1944 * calcs together with WME. If necessary disable the crypto 1945 * hardware and mark the 802.11 state so keys will be setup 1946 * with the MIC work done in software. 1947 */ 1948 static void 1949 ath_settkipmic(struct ath_softc *sc) 1950 { 1951 struct ifnet *ifp = sc->sc_ifp; 1952 struct ieee80211com *ic = ifp->if_l2com; 1953 1954 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1955 if (ic->ic_flags & IEEE80211_F_WME) { 1956 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1957 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1958 } else { 1959 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1960 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1961 } 1962 } 1963 } 1964 1965 static void 1966 ath_init(void *arg) 1967 { 1968 struct ath_softc *sc = (struct ath_softc *) arg; 1969 struct ifnet *ifp = sc->sc_ifp; 1970 struct ieee80211com *ic = ifp->if_l2com; 1971 struct ath_hal *ah = sc->sc_ah; 1972 HAL_STATUS status; 1973 1974 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1975 __func__, ifp->if_flags); 1976 1977 ATH_LOCK(sc); 1978 /* 1979 * Stop anything previously setup. This is safe 1980 * whether this is the first time through or not. 1981 */ 1982 ath_stop_locked(ifp); 1983 1984 /* 1985 * The basic interface to setting the hardware in a good 1986 * state is ``reset''. On return the hardware is known to 1987 * be powered up and with interrupts disabled. This must 1988 * be followed by initialization of the appropriate bits 1989 * and then setup of the interrupt mask. 1990 */ 1991 ath_settkipmic(sc); 1992 ath_update_chainmasks(sc, ic->ic_curchan); 1993 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1994 sc->sc_cur_rxchainmask); 1995 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1996 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1997 status); 1998 ATH_UNLOCK(sc); 1999 return; 2000 } 2001 ath_chan_change(sc, ic->ic_curchan); 2002 2003 /* Let DFS at it in case it's a DFS channel */ 2004 ath_dfs_radar_enable(sc, ic->ic_curchan); 2005 2006 /* Let spectral at in case spectral is enabled */ 2007 ath_spectral_enable(sc, ic->ic_curchan); 2008 2009 /* 2010 * Likewise this is set during reset so update 2011 * state cached in the driver. 2012 */ 2013 sc->sc_diversity = ath_hal_getdiversity(ah); 2014 sc->sc_lastlongcal = 0; 2015 sc->sc_resetcal = 1; 2016 sc->sc_lastcalreset = 0; 2017 sc->sc_lastani = 0; 2018 sc->sc_lastshortcal = 0; 2019 sc->sc_doresetcal = AH_FALSE; 2020 /* 2021 * Beacon timers were cleared here; give ath_newstate() 2022 * a hint that the beacon timers should be poked when 2023 * things transition to the RUN state. 2024 */ 2025 sc->sc_beacons = 0; 2026 2027 /* 2028 * Setup the hardware after reset: the key cache 2029 * is filled as needed and the receive engine is 2030 * set going. Frame transmit is handled entirely 2031 * in the frame output path; there's nothing to do 2032 * here except setup the interrupt mask. 2033 */ 2034 if (ath_startrecv(sc) != 0) { 2035 if_printf(ifp, "unable to start recv logic\n"); 2036 ATH_UNLOCK(sc); 2037 return; 2038 } 2039 2040 /* 2041 * Enable interrupts. 2042 */ 2043 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2044 | HAL_INT_RXEOL | HAL_INT_RXORN 2045 | HAL_INT_TXURN 2046 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2047 2048 /* 2049 * Enable RX EDMA bits. Note these overlap with 2050 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2051 */ 2052 if (sc->sc_isedma) 2053 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2054 2055 /* 2056 * Enable MIB interrupts when there are hardware phy counters. 2057 * Note we only do this (at the moment) for station mode. 2058 */ 2059 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2060 sc->sc_imask |= HAL_INT_MIB; 2061 2062 /* Enable global TX timeout and carrier sense timeout if available */ 2063 if (ath_hal_gtxto_supported(ah)) 2064 sc->sc_imask |= HAL_INT_GTT; 2065 2066 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2067 __func__, sc->sc_imask); 2068 2069 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2070 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2071 ath_hal_intrset(ah, sc->sc_imask); 2072 2073 ATH_UNLOCK(sc); 2074 2075 #ifdef ATH_TX99_DIAG 2076 if (sc->sc_tx99 != NULL) 2077 sc->sc_tx99->start(sc->sc_tx99); 2078 else 2079 #endif 2080 ieee80211_start_all(ic); /* start all vap's */ 2081 } 2082 2083 static void 2084 ath_stop_locked(struct ifnet *ifp) 2085 { 2086 struct ath_softc *sc = ifp->if_softc; 2087 struct ath_hal *ah = sc->sc_ah; 2088 2089 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2090 __func__, sc->sc_invalid, ifp->if_flags); 2091 2092 ATH_LOCK_ASSERT(sc); 2093 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2094 /* 2095 * Shutdown the hardware and driver: 2096 * reset 802.11 state machine 2097 * turn off timers 2098 * disable interrupts 2099 * turn off the radio 2100 * clear transmit machinery 2101 * clear receive machinery 2102 * drain and release tx queues 2103 * reclaim beacon resources 2104 * power down hardware 2105 * 2106 * Note that some of this work is not possible if the 2107 * hardware is gone (invalid). 2108 */ 2109 #ifdef ATH_TX99_DIAG 2110 if (sc->sc_tx99 != NULL) 2111 sc->sc_tx99->stop(sc->sc_tx99); 2112 #endif 2113 callout_stop(&sc->sc_wd_ch); 2114 sc->sc_wd_timer = 0; 2115 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2116 if (!sc->sc_invalid) { 2117 if (sc->sc_softled) { 2118 callout_stop(&sc->sc_ledtimer); 2119 ath_hal_gpioset(ah, sc->sc_ledpin, 2120 !sc->sc_ledon); 2121 sc->sc_blinking = 0; 2122 } 2123 ath_hal_intrset(ah, 0); 2124 } 2125 ath_draintxq(sc, ATH_RESET_DEFAULT); 2126 if (!sc->sc_invalid) { 2127 ath_stoprecv(sc, 1); 2128 ath_hal_phydisable(ah); 2129 } else 2130 sc->sc_rxlink = NULL; 2131 ath_beacon_free(sc); /* XXX not needed */ 2132 } 2133 } 2134 2135 #define MAX_TXRX_ITERATIONS 1000 2136 static void 2137 ath_txrx_stop_locked(struct ath_softc *sc) 2138 { 2139 int i = MAX_TXRX_ITERATIONS; 2140 2141 ATH_UNLOCK_ASSERT(sc); 2142 ATH_PCU_LOCK_ASSERT(sc); 2143 2144 /* 2145 * Sleep until all the pending operations have completed. 2146 * 2147 * The caller must ensure that reset has been incremented 2148 * or the pending operations may continue being queued. 2149 */ 2150 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2151 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2152 if (i <= 0) 2153 break; 2154 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2155 i--; 2156 } 2157 2158 if (i <= 0) 2159 device_printf(sc->sc_dev, 2160 "%s: didn't finish after %d iterations\n", 2161 __func__, MAX_TXRX_ITERATIONS); 2162 } 2163 #undef MAX_TXRX_ITERATIONS 2164 2165 #if 0 2166 static void 2167 ath_txrx_stop(struct ath_softc *sc) 2168 { 2169 ATH_UNLOCK_ASSERT(sc); 2170 ATH_PCU_UNLOCK_ASSERT(sc); 2171 2172 ATH_PCU_LOCK(sc); 2173 ath_txrx_stop_locked(sc); 2174 ATH_PCU_UNLOCK(sc); 2175 } 2176 #endif 2177 2178 static void 2179 ath_txrx_start(struct ath_softc *sc) 2180 { 2181 2182 taskqueue_unblock(sc->sc_tq); 2183 } 2184 2185 /* 2186 * Grab the reset lock, and wait around until noone else 2187 * is trying to do anything with it. 2188 * 2189 * This is totally horrible but we can't hold this lock for 2190 * long enough to do TX/RX or we end up with net80211/ip stack 2191 * LORs and eventual deadlock. 2192 * 2193 * "dowait" signals whether to spin, waiting for the reset 2194 * lock count to reach 0. This should (for now) only be used 2195 * during the reset path, as the rest of the code may not 2196 * be locking-reentrant enough to behave correctly. 2197 * 2198 * Another, cleaner way should be found to serialise all of 2199 * these operations. 2200 */ 2201 #define MAX_RESET_ITERATIONS 10 2202 static int 2203 ath_reset_grablock(struct ath_softc *sc, int dowait) 2204 { 2205 int w = 0; 2206 int i = MAX_RESET_ITERATIONS; 2207 2208 ATH_PCU_LOCK_ASSERT(sc); 2209 do { 2210 if (sc->sc_inreset_cnt == 0) { 2211 w = 1; 2212 break; 2213 } 2214 if (dowait == 0) { 2215 w = 0; 2216 break; 2217 } 2218 ATH_PCU_UNLOCK(sc); 2219 pause("ath_reset_grablock", 1); 2220 i--; 2221 ATH_PCU_LOCK(sc); 2222 } while (i > 0); 2223 2224 /* 2225 * We always increment the refcounter, regardless 2226 * of whether we succeeded to get it in an exclusive 2227 * way. 2228 */ 2229 sc->sc_inreset_cnt++; 2230 2231 if (i <= 0) 2232 device_printf(sc->sc_dev, 2233 "%s: didn't finish after %d iterations\n", 2234 __func__, MAX_RESET_ITERATIONS); 2235 2236 if (w == 0) 2237 device_printf(sc->sc_dev, 2238 "%s: warning, recursive reset path!\n", 2239 __func__); 2240 2241 return w; 2242 } 2243 #undef MAX_RESET_ITERATIONS 2244 2245 /* 2246 * XXX TODO: write ath_reset_releaselock 2247 */ 2248 2249 static void 2250 ath_stop(struct ifnet *ifp) 2251 { 2252 struct ath_softc *sc = ifp->if_softc; 2253 2254 ATH_LOCK(sc); 2255 ath_stop_locked(ifp); 2256 ATH_UNLOCK(sc); 2257 } 2258 2259 /* 2260 * Reset the hardware w/o losing operational state. This is 2261 * basically a more efficient way of doing ath_stop, ath_init, 2262 * followed by state transitions to the current 802.11 2263 * operational state. Used to recover from various errors and 2264 * to reset or reload hardware state. 2265 */ 2266 int 2267 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2268 { 2269 struct ath_softc *sc = ifp->if_softc; 2270 struct ieee80211com *ic = ifp->if_l2com; 2271 struct ath_hal *ah = sc->sc_ah; 2272 HAL_STATUS status; 2273 int i; 2274 2275 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2276 2277 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2278 ATH_PCU_UNLOCK_ASSERT(sc); 2279 ATH_UNLOCK_ASSERT(sc); 2280 2281 /* Try to (stop any further TX/RX from occuring */ 2282 taskqueue_block(sc->sc_tq); 2283 2284 ATH_PCU_LOCK(sc); 2285 ath_hal_intrset(ah, 0); /* disable interrupts */ 2286 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2287 if (ath_reset_grablock(sc, 1) == 0) { 2288 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2289 __func__); 2290 } 2291 ATH_PCU_UNLOCK(sc); 2292 2293 /* 2294 * Should now wait for pending TX/RX to complete 2295 * and block future ones from occuring. This needs to be 2296 * done before the TX queue is drained. 2297 */ 2298 ath_draintxq(sc, reset_type); /* stop xmit side */ 2299 2300 /* 2301 * Regardless of whether we're doing a no-loss flush or 2302 * not, stop the PCU and handle what's in the RX queue. 2303 * That way frames aren't dropped which shouldn't be. 2304 */ 2305 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2306 ath_rx_flush(sc); 2307 2308 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2309 /* NB: indicate channel change so we do a full reset */ 2310 ath_update_chainmasks(sc, ic->ic_curchan); 2311 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2312 sc->sc_cur_rxchainmask); 2313 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2314 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2315 __func__, status); 2316 sc->sc_diversity = ath_hal_getdiversity(ah); 2317 2318 /* Let DFS at it in case it's a DFS channel */ 2319 ath_dfs_radar_enable(sc, ic->ic_curchan); 2320 2321 /* Let spectral at in case spectral is enabled */ 2322 ath_spectral_enable(sc, ic->ic_curchan); 2323 2324 if (ath_startrecv(sc) != 0) /* restart recv */ 2325 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2326 /* 2327 * We may be doing a reset in response to an ioctl 2328 * that changes the channel so update any state that 2329 * might change as a result. 2330 */ 2331 ath_chan_change(sc, ic->ic_curchan); 2332 if (sc->sc_beacons) { /* restart beacons */ 2333 #ifdef IEEE80211_SUPPORT_TDMA 2334 if (sc->sc_tdma) 2335 ath_tdma_config(sc, NULL); 2336 else 2337 #endif 2338 ath_beacon_config(sc, NULL); 2339 } 2340 2341 /* 2342 * Release the reset lock and re-enable interrupts here. 2343 * If an interrupt was being processed in ath_intr(), 2344 * it would disable interrupts at this point. So we have 2345 * to atomically enable interrupts and decrement the 2346 * reset counter - this way ath_intr() doesn't end up 2347 * disabling interrupts without a corresponding enable 2348 * in the rest or channel change path. 2349 */ 2350 ATH_PCU_LOCK(sc); 2351 sc->sc_inreset_cnt--; 2352 /* XXX only do this if sc_inreset_cnt == 0? */ 2353 ath_hal_intrset(ah, sc->sc_imask); 2354 ATH_PCU_UNLOCK(sc); 2355 2356 /* 2357 * TX and RX can be started here. If it were started with 2358 * sc_inreset_cnt > 0, the TX and RX path would abort. 2359 * Thus if this is a nested call through the reset or 2360 * channel change code, TX completion will occur but 2361 * RX completion and ath_start / ath_tx_start will not 2362 * run. 2363 */ 2364 2365 /* Restart TX/RX as needed */ 2366 ath_txrx_start(sc); 2367 2368 /* Restart TX completion and pending TX */ 2369 if (reset_type == ATH_RESET_NOLOSS) { 2370 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2371 if (ATH_TXQ_SETUP(sc, i)) { 2372 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2373 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2374 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2375 2376 ATH_TX_LOCK(sc); 2377 ath_txq_sched(sc, &sc->sc_txq[i]); 2378 ATH_TX_UNLOCK(sc); 2379 } 2380 } 2381 } 2382 2383 /* 2384 * This may have been set during an ath_start() call which 2385 * set this once it detected a concurrent TX was going on. 2386 * So, clear it. 2387 */ 2388 IF_LOCK(&ifp->if_snd); 2389 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2390 IF_UNLOCK(&ifp->if_snd); 2391 2392 /* Handle any frames in the TX queue */ 2393 /* 2394 * XXX should this be done by the caller, rather than 2395 * ath_reset() ? 2396 */ 2397 ath_tx_kick(sc); /* restart xmit */ 2398 return 0; 2399 } 2400 2401 static int 2402 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2403 { 2404 struct ieee80211com *ic = vap->iv_ic; 2405 struct ifnet *ifp = ic->ic_ifp; 2406 struct ath_softc *sc = ifp->if_softc; 2407 struct ath_hal *ah = sc->sc_ah; 2408 2409 switch (cmd) { 2410 case IEEE80211_IOC_TXPOWER: 2411 /* 2412 * If per-packet TPC is enabled, then we have nothing 2413 * to do; otherwise we need to force the global limit. 2414 * All this can happen directly; no need to reset. 2415 */ 2416 if (!ath_hal_gettpc(ah)) 2417 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2418 return 0; 2419 } 2420 /* XXX? Full or NOLOSS? */ 2421 return ath_reset(ifp, ATH_RESET_FULL); 2422 } 2423 2424 struct ath_buf * 2425 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2426 { 2427 struct ath_buf *bf; 2428 2429 ATH_TXBUF_LOCK_ASSERT(sc); 2430 2431 if (btype == ATH_BUFTYPE_MGMT) 2432 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2433 else 2434 bf = TAILQ_FIRST(&sc->sc_txbuf); 2435 2436 if (bf == NULL) { 2437 sc->sc_stats.ast_tx_getnobuf++; 2438 } else { 2439 if (bf->bf_flags & ATH_BUF_BUSY) { 2440 sc->sc_stats.ast_tx_getbusybuf++; 2441 bf = NULL; 2442 } 2443 } 2444 2445 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2446 if (btype == ATH_BUFTYPE_MGMT) 2447 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2448 else { 2449 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2450 sc->sc_txbuf_cnt--; 2451 2452 /* 2453 * This shuldn't happen; however just to be 2454 * safe print a warning and fudge the txbuf 2455 * count. 2456 */ 2457 if (sc->sc_txbuf_cnt < 0) { 2458 device_printf(sc->sc_dev, 2459 "%s: sc_txbuf_cnt < 0?\n", 2460 __func__); 2461 sc->sc_txbuf_cnt = 0; 2462 } 2463 } 2464 } else 2465 bf = NULL; 2466 2467 if (bf == NULL) { 2468 /* XXX should check which list, mgmt or otherwise */ 2469 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2470 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2471 "out of xmit buffers" : "xmit buffer busy"); 2472 return NULL; 2473 } 2474 2475 /* XXX TODO: should do this at buffer list initialisation */ 2476 /* XXX (then, ensure the buffer has the right flag set) */ 2477 bf->bf_flags = 0; 2478 if (btype == ATH_BUFTYPE_MGMT) 2479 bf->bf_flags |= ATH_BUF_MGMT; 2480 else 2481 bf->bf_flags &= (~ATH_BUF_MGMT); 2482 2483 /* Valid bf here; clear some basic fields */ 2484 bf->bf_next = NULL; /* XXX just to be sure */ 2485 bf->bf_last = NULL; /* XXX again, just to be sure */ 2486 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2487 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2488 2489 /* 2490 * Track the descriptor ID only if doing EDMA 2491 */ 2492 if (sc->sc_isedma) { 2493 bf->bf_descid = sc->sc_txbuf_descid; 2494 sc->sc_txbuf_descid++; 2495 } 2496 2497 return bf; 2498 } 2499 2500 /* 2501 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2502 * can't be thrown back on the queue as they could still be 2503 * in use by the hardware. 2504 * 2505 * This duplicates the buffer, or returns NULL. 2506 * 2507 * The descriptor is also copied but the link pointers and 2508 * the DMA segments aren't copied; this frame should thus 2509 * be again passed through the descriptor setup/chain routines 2510 * so the link is correct. 2511 * 2512 * The caller must free the buffer using ath_freebuf(). 2513 */ 2514 struct ath_buf * 2515 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2516 { 2517 struct ath_buf *tbf; 2518 2519 tbf = ath_getbuf(sc, 2520 (bf->bf_flags & ATH_BUF_MGMT) ? 2521 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2522 if (tbf == NULL) 2523 return NULL; /* XXX failure? Why? */ 2524 2525 /* Copy basics */ 2526 tbf->bf_next = NULL; 2527 tbf->bf_nseg = bf->bf_nseg; 2528 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2529 tbf->bf_status = bf->bf_status; 2530 tbf->bf_m = bf->bf_m; 2531 tbf->bf_node = bf->bf_node; 2532 /* will be setup by the chain/setup function */ 2533 tbf->bf_lastds = NULL; 2534 /* for now, last == self */ 2535 tbf->bf_last = tbf; 2536 tbf->bf_comp = bf->bf_comp; 2537 2538 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2539 2540 /* The caller has to re-init the descriptor + links */ 2541 2542 /* 2543 * Free the DMA mapping here, before we NULL the mbuf. 2544 * We must only call bus_dmamap_unload() once per mbuf chain 2545 * or behaviour is undefined. 2546 */ 2547 if (bf->bf_m != NULL) { 2548 /* 2549 * XXX is this POSTWRITE call required? 2550 */ 2551 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2552 BUS_DMASYNC_POSTWRITE); 2553 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2554 } 2555 2556 bf->bf_m = NULL; 2557 bf->bf_node = NULL; 2558 2559 /* Copy state */ 2560 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2561 2562 return tbf; 2563 } 2564 2565 struct ath_buf * 2566 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2567 { 2568 struct ath_buf *bf; 2569 2570 ATH_TXBUF_LOCK(sc); 2571 bf = _ath_getbuf_locked(sc, btype); 2572 /* 2573 * If a mgmt buffer was requested but we're out of those, 2574 * try requesting a normal one. 2575 */ 2576 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2577 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2578 ATH_TXBUF_UNLOCK(sc); 2579 if (bf == NULL) { 2580 struct ifnet *ifp = sc->sc_ifp; 2581 2582 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2583 sc->sc_stats.ast_tx_qstop++; 2584 IF_LOCK(&ifp->if_snd); 2585 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2586 IF_UNLOCK(&ifp->if_snd); 2587 } 2588 return bf; 2589 } 2590 2591 static void 2592 ath_start_queue(struct ifnet *ifp) 2593 { 2594 struct ath_softc *sc = ifp->if_softc; 2595 2596 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2597 ath_tx_kick(sc); 2598 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2599 } 2600 2601 void 2602 ath_start_task(void *arg, int npending) 2603 { 2604 struct ath_softc *sc = (struct ath_softc *) arg; 2605 struct ifnet *ifp = sc->sc_ifp; 2606 2607 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2608 2609 /* XXX is it ok to hold the ATH_LOCK here? */ 2610 ATH_PCU_LOCK(sc); 2611 if (sc->sc_inreset_cnt > 0) { 2612 device_printf(sc->sc_dev, 2613 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2614 ATH_PCU_UNLOCK(sc); 2615 IF_LOCK(&ifp->if_snd); 2616 sc->sc_stats.ast_tx_qstop++; 2617 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2618 IF_UNLOCK(&ifp->if_snd); 2619 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2620 return; 2621 } 2622 sc->sc_txstart_cnt++; 2623 ATH_PCU_UNLOCK(sc); 2624 2625 ATH_TX_LOCK(sc); 2626 ath_start(sc->sc_ifp); 2627 ATH_TX_UNLOCK(sc); 2628 2629 ATH_PCU_LOCK(sc); 2630 sc->sc_txstart_cnt--; 2631 ATH_PCU_UNLOCK(sc); 2632 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2633 } 2634 2635 void 2636 ath_start(struct ifnet *ifp) 2637 { 2638 struct ath_softc *sc = ifp->if_softc; 2639 struct ieee80211_node *ni; 2640 struct ath_buf *bf; 2641 struct mbuf *m, *next; 2642 ath_bufhead frags; 2643 int npkts = 0; 2644 2645 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2646 return; 2647 2648 ATH_TX_LOCK_ASSERT(sc); 2649 2650 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2651 2652 for (;;) { 2653 ATH_TXBUF_LOCK(sc); 2654 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2655 /* XXX increment counter? */ 2656 ATH_TXBUF_UNLOCK(sc); 2657 IF_LOCK(&ifp->if_snd); 2658 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2659 IF_UNLOCK(&ifp->if_snd); 2660 break; 2661 } 2662 ATH_TXBUF_UNLOCK(sc); 2663 2664 /* 2665 * Grab a TX buffer and associated resources. 2666 */ 2667 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2668 if (bf == NULL) 2669 break; 2670 2671 IFQ_DEQUEUE(&ifp->if_snd, m); 2672 if (m == NULL) { 2673 ATH_TXBUF_LOCK(sc); 2674 ath_returnbuf_head(sc, bf); 2675 ATH_TXBUF_UNLOCK(sc); 2676 break; 2677 } 2678 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2679 npkts ++; 2680 /* 2681 * Check for fragmentation. If this frame 2682 * has been broken up verify we have enough 2683 * buffers to send all the fragments so all 2684 * go out or none... 2685 */ 2686 TAILQ_INIT(&frags); 2687 if ((m->m_flags & M_FRAG) && 2688 !ath_txfrag_setup(sc, &frags, m, ni)) { 2689 DPRINTF(sc, ATH_DEBUG_XMIT, 2690 "%s: out of txfrag buffers\n", __func__); 2691 sc->sc_stats.ast_tx_nofrag++; 2692 ifp->if_oerrors++; 2693 ath_freetx(m); 2694 goto bad; 2695 } 2696 ifp->if_opackets++; 2697 nextfrag: 2698 /* 2699 * Pass the frame to the h/w for transmission. 2700 * Fragmented frames have each frag chained together 2701 * with m_nextpkt. We know there are sufficient ath_buf's 2702 * to send all the frags because of work done by 2703 * ath_txfrag_setup. We leave m_nextpkt set while 2704 * calling ath_tx_start so it can use it to extend the 2705 * the tx duration to cover the subsequent frag and 2706 * so it can reclaim all the mbufs in case of an error; 2707 * ath_tx_start clears m_nextpkt once it commits to 2708 * handing the frame to the hardware. 2709 */ 2710 next = m->m_nextpkt; 2711 if (ath_tx_start(sc, ni, bf, m)) { 2712 bad: 2713 ifp->if_oerrors++; 2714 reclaim: 2715 bf->bf_m = NULL; 2716 bf->bf_node = NULL; 2717 ATH_TXBUF_LOCK(sc); 2718 ath_returnbuf_head(sc, bf); 2719 ath_txfrag_cleanup(sc, &frags, ni); 2720 ATH_TXBUF_UNLOCK(sc); 2721 /* 2722 * XXX todo, free the node outside of 2723 * the TX lock context! 2724 */ 2725 if (ni != NULL) 2726 ieee80211_free_node(ni); 2727 continue; 2728 } 2729 2730 /* 2731 * Check here if the node is in power save state. 2732 */ 2733 ath_tx_update_tim(sc, ni, 1); 2734 2735 if (next != NULL) { 2736 /* 2737 * Beware of state changing between frags. 2738 * XXX check sta power-save state? 2739 */ 2740 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2741 DPRINTF(sc, ATH_DEBUG_XMIT, 2742 "%s: flush fragmented packet, state %s\n", 2743 __func__, 2744 ieee80211_state_name[ni->ni_vap->iv_state]); 2745 /* XXX dmamap */ 2746 ath_freetx(next); 2747 goto reclaim; 2748 } 2749 m = next; 2750 bf = TAILQ_FIRST(&frags); 2751 KASSERT(bf != NULL, ("no buf for txfrag")); 2752 TAILQ_REMOVE(&frags, bf, bf_list); 2753 goto nextfrag; 2754 } 2755 2756 sc->sc_wd_timer = 5; 2757 } 2758 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2759 } 2760 static int 2761 ath_media_change(struct ifnet *ifp) 2762 { 2763 int error = ieee80211_media_change(ifp); 2764 /* NB: only the fixed rate can change and that doesn't need a reset */ 2765 return (error == ENETRESET ? 0 : error); 2766 } 2767 2768 /* 2769 * Block/unblock tx+rx processing while a key change is done. 2770 * We assume the caller serializes key management operations 2771 * so we only need to worry about synchronization with other 2772 * uses that originate in the driver. 2773 */ 2774 static void 2775 ath_key_update_begin(struct ieee80211vap *vap) 2776 { 2777 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2778 struct ath_softc *sc = ifp->if_softc; 2779 2780 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2781 taskqueue_block(sc->sc_tq); 2782 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2783 } 2784 2785 static void 2786 ath_key_update_end(struct ieee80211vap *vap) 2787 { 2788 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2789 struct ath_softc *sc = ifp->if_softc; 2790 2791 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2792 IF_UNLOCK(&ifp->if_snd); 2793 taskqueue_unblock(sc->sc_tq); 2794 } 2795 2796 static void 2797 ath_update_promisc(struct ifnet *ifp) 2798 { 2799 struct ath_softc *sc = ifp->if_softc; 2800 u_int32_t rfilt; 2801 2802 /* configure rx filter */ 2803 rfilt = ath_calcrxfilter(sc); 2804 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2805 2806 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2807 } 2808 2809 static void 2810 ath_update_mcast(struct ifnet *ifp) 2811 { 2812 struct ath_softc *sc = ifp->if_softc; 2813 u_int32_t mfilt[2]; 2814 2815 /* calculate and install multicast filter */ 2816 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2817 struct ifmultiaddr *ifma; 2818 /* 2819 * Merge multicast addresses to form the hardware filter. 2820 */ 2821 mfilt[0] = mfilt[1] = 0; 2822 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2823 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2824 caddr_t dl; 2825 u_int32_t val; 2826 u_int8_t pos; 2827 2828 /* calculate XOR of eight 6bit values */ 2829 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2830 val = LE_READ_4(dl + 0); 2831 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2832 val = LE_READ_4(dl + 3); 2833 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2834 pos &= 0x3f; 2835 mfilt[pos / 32] |= (1 << (pos % 32)); 2836 } 2837 if_maddr_runlock(ifp); 2838 } else 2839 mfilt[0] = mfilt[1] = ~0; 2840 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2841 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2842 __func__, mfilt[0], mfilt[1]); 2843 } 2844 2845 void 2846 ath_mode_init(struct ath_softc *sc) 2847 { 2848 struct ifnet *ifp = sc->sc_ifp; 2849 struct ath_hal *ah = sc->sc_ah; 2850 u_int32_t rfilt; 2851 2852 /* configure rx filter */ 2853 rfilt = ath_calcrxfilter(sc); 2854 ath_hal_setrxfilter(ah, rfilt); 2855 2856 /* configure operational mode */ 2857 ath_hal_setopmode(ah); 2858 2859 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2860 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2861 __func__, 2862 ah, 2863 ifp, 2864 (ifp == NULL) ? NULL : ifp->if_addr); 2865 2866 /* handle any link-level address change */ 2867 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2868 2869 /* calculate and install multicast filter */ 2870 ath_update_mcast(ifp); 2871 } 2872 2873 /* 2874 * Set the slot time based on the current setting. 2875 */ 2876 void 2877 ath_setslottime(struct ath_softc *sc) 2878 { 2879 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2880 struct ath_hal *ah = sc->sc_ah; 2881 u_int usec; 2882 2883 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2884 usec = 13; 2885 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2886 usec = 21; 2887 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2888 /* honor short/long slot time only in 11g */ 2889 /* XXX shouldn't honor on pure g or turbo g channel */ 2890 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2891 usec = HAL_SLOT_TIME_9; 2892 else 2893 usec = HAL_SLOT_TIME_20; 2894 } else 2895 usec = HAL_SLOT_TIME_9; 2896 2897 DPRINTF(sc, ATH_DEBUG_RESET, 2898 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2899 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2900 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2901 2902 ath_hal_setslottime(ah, usec); 2903 sc->sc_updateslot = OK; 2904 } 2905 2906 /* 2907 * Callback from the 802.11 layer to update the 2908 * slot time based on the current setting. 2909 */ 2910 static void 2911 ath_updateslot(struct ifnet *ifp) 2912 { 2913 struct ath_softc *sc = ifp->if_softc; 2914 struct ieee80211com *ic = ifp->if_l2com; 2915 2916 /* 2917 * When not coordinating the BSS, change the hardware 2918 * immediately. For other operation we defer the change 2919 * until beacon updates have propagated to the stations. 2920 */ 2921 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2922 ic->ic_opmode == IEEE80211_M_MBSS) 2923 sc->sc_updateslot = UPDATE; 2924 else 2925 ath_setslottime(sc); 2926 } 2927 2928 /* 2929 * Append the contents of src to dst; both queues 2930 * are assumed to be locked. 2931 */ 2932 void 2933 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2934 { 2935 2936 ATH_TXQ_LOCK_ASSERT(src); 2937 ATH_TXQ_LOCK_ASSERT(dst); 2938 2939 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2940 dst->axq_link = src->axq_link; 2941 src->axq_link = NULL; 2942 dst->axq_depth += src->axq_depth; 2943 dst->axq_aggr_depth += src->axq_aggr_depth; 2944 src->axq_depth = 0; 2945 src->axq_aggr_depth = 0; 2946 } 2947 2948 /* 2949 * Reset the hardware, with no loss. 2950 * 2951 * This can't be used for a general case reset. 2952 */ 2953 static void 2954 ath_reset_proc(void *arg, int pending) 2955 { 2956 struct ath_softc *sc = arg; 2957 struct ifnet *ifp = sc->sc_ifp; 2958 2959 #if 0 2960 if_printf(ifp, "%s: resetting\n", __func__); 2961 #endif 2962 ath_reset(ifp, ATH_RESET_NOLOSS); 2963 } 2964 2965 /* 2966 * Reset the hardware after detecting beacons have stopped. 2967 */ 2968 static void 2969 ath_bstuck_proc(void *arg, int pending) 2970 { 2971 struct ath_softc *sc = arg; 2972 struct ifnet *ifp = sc->sc_ifp; 2973 uint32_t hangs = 0; 2974 2975 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2976 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2977 2978 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2979 sc->sc_bmisscount); 2980 sc->sc_stats.ast_bstuck++; 2981 /* 2982 * This assumes that there's no simultaneous channel mode change 2983 * occuring. 2984 */ 2985 ath_reset(ifp, ATH_RESET_NOLOSS); 2986 } 2987 2988 static void 2989 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2990 { 2991 bus_addr_t *paddr = (bus_addr_t*) arg; 2992 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2993 *paddr = segs->ds_addr; 2994 } 2995 2996 /* 2997 * Allocate the descriptors and appropriate DMA tag/setup. 2998 * 2999 * For some situations (eg EDMA TX completion), there isn't a requirement 3000 * for the ath_buf entries to be allocated. 3001 */ 3002 int 3003 ath_descdma_alloc_desc(struct ath_softc *sc, 3004 struct ath_descdma *dd, ath_bufhead *head, 3005 const char *name, int ds_size, int ndesc) 3006 { 3007 #define DS2PHYS(_dd, _ds) \ 3008 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3009 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3010 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3011 struct ifnet *ifp = sc->sc_ifp; 3012 int error; 3013 3014 dd->dd_descsize = ds_size; 3015 3016 DPRINTF(sc, ATH_DEBUG_RESET, 3017 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3018 __func__, name, ndesc, dd->dd_descsize); 3019 3020 dd->dd_name = name; 3021 dd->dd_desc_len = dd->dd_descsize * ndesc; 3022 3023 /* 3024 * Merlin work-around: 3025 * Descriptors that cross the 4KB boundary can't be used. 3026 * Assume one skipped descriptor per 4KB page. 3027 */ 3028 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3029 int numpages = dd->dd_desc_len / 4096; 3030 dd->dd_desc_len += ds_size * numpages; 3031 } 3032 3033 /* 3034 * Setup DMA descriptor area. 3035 * 3036 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3037 * buffers for the descriptors themselves. 3038 */ 3039 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3040 PAGE_SIZE, 0, /* alignment, bounds */ 3041 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3042 BUS_SPACE_MAXADDR, /* highaddr */ 3043 NULL, NULL, /* filter, filterarg */ 3044 dd->dd_desc_len, /* maxsize */ 3045 1, /* nsegments */ 3046 dd->dd_desc_len, /* maxsegsize */ 3047 0, /* flags */ 3048 NULL, /* lockfunc */ 3049 NULL, /* lockarg */ 3050 &dd->dd_dmat); 3051 if (error != 0) { 3052 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3053 return error; 3054 } 3055 3056 /* allocate descriptors */ 3057 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3058 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3059 &dd->dd_dmamap); 3060 if (error != 0) { 3061 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3062 "error %u\n", ndesc, dd->dd_name, error); 3063 goto fail1; 3064 } 3065 3066 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3067 dd->dd_desc, dd->dd_desc_len, 3068 ath_load_cb, &dd->dd_desc_paddr, 3069 BUS_DMA_NOWAIT); 3070 if (error != 0) { 3071 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3072 dd->dd_name, error); 3073 goto fail2; 3074 } 3075 3076 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3077 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3078 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3079 /*XXX*/ (u_long) dd->dd_desc_len); 3080 3081 return (0); 3082 3083 fail2: 3084 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3085 fail1: 3086 bus_dma_tag_destroy(dd->dd_dmat); 3087 memset(dd, 0, sizeof(*dd)); 3088 return error; 3089 #undef DS2PHYS 3090 #undef ATH_DESC_4KB_BOUND_CHECK 3091 } 3092 3093 int 3094 ath_descdma_setup(struct ath_softc *sc, 3095 struct ath_descdma *dd, ath_bufhead *head, 3096 const char *name, int ds_size, int nbuf, int ndesc) 3097 { 3098 #define DS2PHYS(_dd, _ds) \ 3099 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3100 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3101 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3102 struct ifnet *ifp = sc->sc_ifp; 3103 uint8_t *ds; 3104 struct ath_buf *bf; 3105 int i, bsize, error; 3106 3107 /* Allocate descriptors */ 3108 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3109 nbuf * ndesc); 3110 3111 /* Assume any errors during allocation were dealt with */ 3112 if (error != 0) { 3113 return (error); 3114 } 3115 3116 ds = (uint8_t *) dd->dd_desc; 3117 3118 /* allocate rx buffers */ 3119 bsize = sizeof(struct ath_buf) * nbuf; 3120 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3121 if (bf == NULL) { 3122 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3123 dd->dd_name, bsize); 3124 goto fail3; 3125 } 3126 dd->dd_bufptr = bf; 3127 3128 TAILQ_INIT(head); 3129 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3130 bf->bf_desc = (struct ath_desc *) ds; 3131 bf->bf_daddr = DS2PHYS(dd, ds); 3132 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3133 /* 3134 * Merlin WAR: Skip descriptor addresses which 3135 * cause 4KB boundary crossing along any point 3136 * in the descriptor. 3137 */ 3138 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3139 dd->dd_descsize)) { 3140 /* Start at the next page */ 3141 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3142 bf->bf_desc = (struct ath_desc *) ds; 3143 bf->bf_daddr = DS2PHYS(dd, ds); 3144 } 3145 } 3146 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3147 &bf->bf_dmamap); 3148 if (error != 0) { 3149 if_printf(ifp, "unable to create dmamap for %s " 3150 "buffer %u, error %u\n", dd->dd_name, i, error); 3151 ath_descdma_cleanup(sc, dd, head); 3152 return error; 3153 } 3154 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3155 TAILQ_INSERT_TAIL(head, bf, bf_list); 3156 } 3157 3158 /* 3159 * XXX TODO: ensure that ds doesn't overflow the descriptor 3160 * allocation otherwise weird stuff will occur and crash your 3161 * machine. 3162 */ 3163 return 0; 3164 /* XXX this should likely just call ath_descdma_cleanup() */ 3165 fail3: 3166 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3167 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3168 bus_dma_tag_destroy(dd->dd_dmat); 3169 memset(dd, 0, sizeof(*dd)); 3170 return error; 3171 #undef DS2PHYS 3172 #undef ATH_DESC_4KB_BOUND_CHECK 3173 } 3174 3175 /* 3176 * Allocate ath_buf entries but no descriptor contents. 3177 * 3178 * This is for RX EDMA where the descriptors are the header part of 3179 * the RX buffer. 3180 */ 3181 int 3182 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3183 struct ath_descdma *dd, ath_bufhead *head, 3184 const char *name, int nbuf, int rx_status_len) 3185 { 3186 struct ifnet *ifp = sc->sc_ifp; 3187 struct ath_buf *bf; 3188 int i, bsize, error; 3189 3190 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3191 __func__, name, nbuf); 3192 3193 dd->dd_name = name; 3194 /* 3195 * This is (mostly) purely for show. We're not allocating any actual 3196 * descriptors here as EDMA RX has the descriptor be part 3197 * of the RX buffer. 3198 * 3199 * However, dd_desc_len is used by ath_descdma_free() to determine 3200 * whether we have already freed this DMA mapping. 3201 */ 3202 dd->dd_desc_len = rx_status_len * nbuf; 3203 dd->dd_descsize = rx_status_len; 3204 3205 /* allocate rx buffers */ 3206 bsize = sizeof(struct ath_buf) * nbuf; 3207 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3208 if (bf == NULL) { 3209 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3210 dd->dd_name, bsize); 3211 error = ENOMEM; 3212 goto fail3; 3213 } 3214 dd->dd_bufptr = bf; 3215 3216 TAILQ_INIT(head); 3217 for (i = 0; i < nbuf; i++, bf++) { 3218 bf->bf_desc = NULL; 3219 bf->bf_daddr = 0; 3220 bf->bf_lastds = NULL; /* Just an initial value */ 3221 3222 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3223 &bf->bf_dmamap); 3224 if (error != 0) { 3225 if_printf(ifp, "unable to create dmamap for %s " 3226 "buffer %u, error %u\n", dd->dd_name, i, error); 3227 ath_descdma_cleanup(sc, dd, head); 3228 return error; 3229 } 3230 TAILQ_INSERT_TAIL(head, bf, bf_list); 3231 } 3232 return 0; 3233 fail3: 3234 memset(dd, 0, sizeof(*dd)); 3235 return error; 3236 } 3237 3238 void 3239 ath_descdma_cleanup(struct ath_softc *sc, 3240 struct ath_descdma *dd, ath_bufhead *head) 3241 { 3242 struct ath_buf *bf; 3243 struct ieee80211_node *ni; 3244 int do_warning = 0; 3245 3246 if (dd->dd_dmamap != 0) { 3247 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3248 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3249 bus_dma_tag_destroy(dd->dd_dmat); 3250 } 3251 3252 if (head != NULL) { 3253 TAILQ_FOREACH(bf, head, bf_list) { 3254 if (bf->bf_m) { 3255 /* 3256 * XXX warn if there's buffers here. 3257 * XXX it should have been freed by the 3258 * owner! 3259 */ 3260 3261 if (do_warning == 0) { 3262 do_warning = 1; 3263 device_printf(sc->sc_dev, 3264 "%s: %s: mbuf should've been" 3265 " unmapped/freed!\n", 3266 __func__, 3267 dd->dd_name); 3268 } 3269 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3270 BUS_DMASYNC_POSTREAD); 3271 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3272 m_freem(bf->bf_m); 3273 bf->bf_m = NULL; 3274 } 3275 if (bf->bf_dmamap != NULL) { 3276 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3277 bf->bf_dmamap = NULL; 3278 } 3279 ni = bf->bf_node; 3280 bf->bf_node = NULL; 3281 if (ni != NULL) { 3282 /* 3283 * Reclaim node reference. 3284 */ 3285 ieee80211_free_node(ni); 3286 } 3287 } 3288 } 3289 3290 if (head != NULL) 3291 TAILQ_INIT(head); 3292 3293 if (dd->dd_bufptr != NULL) 3294 free(dd->dd_bufptr, M_ATHDEV); 3295 memset(dd, 0, sizeof(*dd)); 3296 } 3297 3298 static int 3299 ath_desc_alloc(struct ath_softc *sc) 3300 { 3301 int error; 3302 3303 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3304 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3305 if (error != 0) { 3306 return error; 3307 } 3308 sc->sc_txbuf_cnt = ath_txbuf; 3309 3310 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3311 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3312 ATH_TXDESC); 3313 if (error != 0) { 3314 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3315 return error; 3316 } 3317 3318 /* 3319 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3320 * flag doesn't have to be set in ath_getbuf_locked(). 3321 */ 3322 3323 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3324 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3325 if (error != 0) { 3326 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3327 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3328 &sc->sc_txbuf_mgmt); 3329 return error; 3330 } 3331 return 0; 3332 } 3333 3334 static void 3335 ath_desc_free(struct ath_softc *sc) 3336 { 3337 3338 if (sc->sc_bdma.dd_desc_len != 0) 3339 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3340 if (sc->sc_txdma.dd_desc_len != 0) 3341 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3342 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3343 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3344 &sc->sc_txbuf_mgmt); 3345 } 3346 3347 static struct ieee80211_node * 3348 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3349 { 3350 struct ieee80211com *ic = vap->iv_ic; 3351 struct ath_softc *sc = ic->ic_ifp->if_softc; 3352 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3353 struct ath_node *an; 3354 3355 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3356 if (an == NULL) { 3357 /* XXX stat+msg */ 3358 return NULL; 3359 } 3360 ath_rate_node_init(sc, an); 3361 3362 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3363 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3364 device_get_nameunit(sc->sc_dev), an); 3365 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3366 3367 /* XXX setup ath_tid */ 3368 ath_tx_tid_init(sc, an); 3369 3370 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3371 return &an->an_node; 3372 } 3373 3374 static void 3375 ath_node_cleanup(struct ieee80211_node *ni) 3376 { 3377 struct ieee80211com *ic = ni->ni_ic; 3378 struct ath_softc *sc = ic->ic_ifp->if_softc; 3379 3380 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3381 ath_tx_node_flush(sc, ATH_NODE(ni)); 3382 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3383 sc->sc_node_cleanup(ni); 3384 } 3385 3386 static void 3387 ath_node_free(struct ieee80211_node *ni) 3388 { 3389 struct ieee80211com *ic = ni->ni_ic; 3390 struct ath_softc *sc = ic->ic_ifp->if_softc; 3391 3392 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3393 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3394 sc->sc_node_free(ni); 3395 } 3396 3397 static void 3398 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3399 { 3400 struct ieee80211com *ic = ni->ni_ic; 3401 struct ath_softc *sc = ic->ic_ifp->if_softc; 3402 struct ath_hal *ah = sc->sc_ah; 3403 3404 *rssi = ic->ic_node_getrssi(ni); 3405 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3406 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3407 else 3408 *noise = -95; /* nominally correct */ 3409 } 3410 3411 /* 3412 * Set the default antenna. 3413 */ 3414 void 3415 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3416 { 3417 struct ath_hal *ah = sc->sc_ah; 3418 3419 /* XXX block beacon interrupts */ 3420 ath_hal_setdefantenna(ah, antenna); 3421 if (sc->sc_defant != antenna) 3422 sc->sc_stats.ast_ant_defswitch++; 3423 sc->sc_defant = antenna; 3424 sc->sc_rxotherant = 0; 3425 } 3426 3427 static void 3428 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3429 { 3430 txq->axq_qnum = qnum; 3431 txq->axq_ac = 0; 3432 txq->axq_depth = 0; 3433 txq->axq_aggr_depth = 0; 3434 txq->axq_intrcnt = 0; 3435 txq->axq_link = NULL; 3436 txq->axq_softc = sc; 3437 TAILQ_INIT(&txq->axq_q); 3438 TAILQ_INIT(&txq->axq_tidq); 3439 TAILQ_INIT(&txq->fifo.axq_q); 3440 ATH_TXQ_LOCK_INIT(sc, txq); 3441 } 3442 3443 /* 3444 * Setup a h/w transmit queue. 3445 */ 3446 static struct ath_txq * 3447 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3448 { 3449 #define N(a) (sizeof(a)/sizeof(a[0])) 3450 struct ath_hal *ah = sc->sc_ah; 3451 HAL_TXQ_INFO qi; 3452 int qnum; 3453 3454 memset(&qi, 0, sizeof(qi)); 3455 qi.tqi_subtype = subtype; 3456 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3457 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3458 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3459 /* 3460 * Enable interrupts only for EOL and DESC conditions. 3461 * We mark tx descriptors to receive a DESC interrupt 3462 * when a tx queue gets deep; otherwise waiting for the 3463 * EOL to reap descriptors. Note that this is done to 3464 * reduce interrupt load and this only defers reaping 3465 * descriptors, never transmitting frames. Aside from 3466 * reducing interrupts this also permits more concurrency. 3467 * The only potential downside is if the tx queue backs 3468 * up in which case the top half of the kernel may backup 3469 * due to a lack of tx descriptors. 3470 */ 3471 if (sc->sc_isedma) 3472 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3473 HAL_TXQ_TXOKINT_ENABLE; 3474 else 3475 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3476 HAL_TXQ_TXDESCINT_ENABLE; 3477 3478 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3479 if (qnum == -1) { 3480 /* 3481 * NB: don't print a message, this happens 3482 * normally on parts with too few tx queues 3483 */ 3484 return NULL; 3485 } 3486 if (qnum >= N(sc->sc_txq)) { 3487 device_printf(sc->sc_dev, 3488 "hal qnum %u out of range, max %zu!\n", 3489 qnum, N(sc->sc_txq)); 3490 ath_hal_releasetxqueue(ah, qnum); 3491 return NULL; 3492 } 3493 if (!ATH_TXQ_SETUP(sc, qnum)) { 3494 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3495 sc->sc_txqsetup |= 1<<qnum; 3496 } 3497 return &sc->sc_txq[qnum]; 3498 #undef N 3499 } 3500 3501 /* 3502 * Setup a hardware data transmit queue for the specified 3503 * access control. The hal may not support all requested 3504 * queues in which case it will return a reference to a 3505 * previously setup queue. We record the mapping from ac's 3506 * to h/w queues for use by ath_tx_start and also track 3507 * the set of h/w queues being used to optimize work in the 3508 * transmit interrupt handler and related routines. 3509 */ 3510 static int 3511 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3512 { 3513 #define N(a) (sizeof(a)/sizeof(a[0])) 3514 struct ath_txq *txq; 3515 3516 if (ac >= N(sc->sc_ac2q)) { 3517 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3518 ac, N(sc->sc_ac2q)); 3519 return 0; 3520 } 3521 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3522 if (txq != NULL) { 3523 txq->axq_ac = ac; 3524 sc->sc_ac2q[ac] = txq; 3525 return 1; 3526 } else 3527 return 0; 3528 #undef N 3529 } 3530 3531 /* 3532 * Update WME parameters for a transmit queue. 3533 */ 3534 static int 3535 ath_txq_update(struct ath_softc *sc, int ac) 3536 { 3537 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3538 #define ATH_TXOP_TO_US(v) (v<<5) 3539 struct ifnet *ifp = sc->sc_ifp; 3540 struct ieee80211com *ic = ifp->if_l2com; 3541 struct ath_txq *txq = sc->sc_ac2q[ac]; 3542 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3543 struct ath_hal *ah = sc->sc_ah; 3544 HAL_TXQ_INFO qi; 3545 3546 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3547 #ifdef IEEE80211_SUPPORT_TDMA 3548 if (sc->sc_tdma) { 3549 /* 3550 * AIFS is zero so there's no pre-transmit wait. The 3551 * burst time defines the slot duration and is configured 3552 * through net80211. The QCU is setup to not do post-xmit 3553 * back off, lockout all lower-priority QCU's, and fire 3554 * off the DMA beacon alert timer which is setup based 3555 * on the slot configuration. 3556 */ 3557 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3558 | HAL_TXQ_TXERRINT_ENABLE 3559 | HAL_TXQ_TXURNINT_ENABLE 3560 | HAL_TXQ_TXEOLINT_ENABLE 3561 | HAL_TXQ_DBA_GATED 3562 | HAL_TXQ_BACKOFF_DISABLE 3563 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3564 ; 3565 qi.tqi_aifs = 0; 3566 /* XXX +dbaprep? */ 3567 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3568 qi.tqi_burstTime = qi.tqi_readyTime; 3569 } else { 3570 #endif 3571 /* 3572 * XXX shouldn't this just use the default flags 3573 * used in the previous queue setup? 3574 */ 3575 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3576 | HAL_TXQ_TXERRINT_ENABLE 3577 | HAL_TXQ_TXDESCINT_ENABLE 3578 | HAL_TXQ_TXURNINT_ENABLE 3579 | HAL_TXQ_TXEOLINT_ENABLE 3580 ; 3581 qi.tqi_aifs = wmep->wmep_aifsn; 3582 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3583 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3584 qi.tqi_readyTime = 0; 3585 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3586 #ifdef IEEE80211_SUPPORT_TDMA 3587 } 3588 #endif 3589 3590 DPRINTF(sc, ATH_DEBUG_RESET, 3591 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3592 __func__, txq->axq_qnum, qi.tqi_qflags, 3593 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3594 3595 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3596 if_printf(ifp, "unable to update hardware queue " 3597 "parameters for %s traffic!\n", 3598 ieee80211_wme_acnames[ac]); 3599 return 0; 3600 } else { 3601 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3602 return 1; 3603 } 3604 #undef ATH_TXOP_TO_US 3605 #undef ATH_EXPONENT_TO_VALUE 3606 } 3607 3608 /* 3609 * Callback from the 802.11 layer to update WME parameters. 3610 */ 3611 int 3612 ath_wme_update(struct ieee80211com *ic) 3613 { 3614 struct ath_softc *sc = ic->ic_ifp->if_softc; 3615 3616 return !ath_txq_update(sc, WME_AC_BE) || 3617 !ath_txq_update(sc, WME_AC_BK) || 3618 !ath_txq_update(sc, WME_AC_VI) || 3619 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3620 } 3621 3622 /* 3623 * Reclaim resources for a setup queue. 3624 */ 3625 static void 3626 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3627 { 3628 3629 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3630 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3631 ATH_TXQ_LOCK_DESTROY(txq); 3632 } 3633 3634 /* 3635 * Reclaim all tx queue resources. 3636 */ 3637 static void 3638 ath_tx_cleanup(struct ath_softc *sc) 3639 { 3640 int i; 3641 3642 ATH_TXBUF_LOCK_DESTROY(sc); 3643 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3644 if (ATH_TXQ_SETUP(sc, i)) 3645 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3646 } 3647 3648 /* 3649 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3650 * using the current rates in sc_rixmap. 3651 */ 3652 int 3653 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3654 { 3655 int rix = sc->sc_rixmap[rate]; 3656 /* NB: return lowest rix for invalid rate */ 3657 return (rix == 0xff ? 0 : rix); 3658 } 3659 3660 static void 3661 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3662 struct ath_buf *bf) 3663 { 3664 struct ieee80211_node *ni = bf->bf_node; 3665 struct ifnet *ifp = sc->sc_ifp; 3666 struct ieee80211com *ic = ifp->if_l2com; 3667 int sr, lr, pri; 3668 3669 if (ts->ts_status == 0) { 3670 u_int8_t txant = ts->ts_antenna; 3671 sc->sc_stats.ast_ant_tx[txant]++; 3672 sc->sc_ant_tx[txant]++; 3673 if (ts->ts_finaltsi != 0) 3674 sc->sc_stats.ast_tx_altrate++; 3675 pri = M_WME_GETAC(bf->bf_m); 3676 if (pri >= WME_AC_VO) 3677 ic->ic_wme.wme_hipri_traffic++; 3678 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3679 ni->ni_inact = ni->ni_inact_reload; 3680 } else { 3681 if (ts->ts_status & HAL_TXERR_XRETRY) 3682 sc->sc_stats.ast_tx_xretries++; 3683 if (ts->ts_status & HAL_TXERR_FIFO) 3684 sc->sc_stats.ast_tx_fifoerr++; 3685 if (ts->ts_status & HAL_TXERR_FILT) 3686 sc->sc_stats.ast_tx_filtered++; 3687 if (ts->ts_status & HAL_TXERR_XTXOP) 3688 sc->sc_stats.ast_tx_xtxop++; 3689 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3690 sc->sc_stats.ast_tx_timerexpired++; 3691 3692 if (bf->bf_m->m_flags & M_FF) 3693 sc->sc_stats.ast_ff_txerr++; 3694 } 3695 /* XXX when is this valid? */ 3696 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 3697 sc->sc_stats.ast_tx_desccfgerr++; 3698 /* 3699 * This can be valid for successful frame transmission! 3700 * If there's a TX FIFO underrun during aggregate transmission, 3701 * the MAC will pad the rest of the aggregate with delimiters. 3702 * If a BA is returned, the frame is marked as "OK" and it's up 3703 * to the TX completion code to notice which frames weren't 3704 * successfully transmitted. 3705 */ 3706 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 3707 sc->sc_stats.ast_tx_data_underrun++; 3708 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 3709 sc->sc_stats.ast_tx_delim_underrun++; 3710 3711 sr = ts->ts_shortretry; 3712 lr = ts->ts_longretry; 3713 sc->sc_stats.ast_tx_shortretry += sr; 3714 sc->sc_stats.ast_tx_longretry += lr; 3715 3716 } 3717 3718 /* 3719 * The default completion. If fail is 1, this means 3720 * "please don't retry the frame, and just return -1 status 3721 * to the net80211 stack. 3722 */ 3723 void 3724 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3725 { 3726 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3727 int st; 3728 3729 if (fail == 1) 3730 st = -1; 3731 else 3732 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3733 ts->ts_status : HAL_TXERR_XRETRY; 3734 3735 #if 0 3736 if (bf->bf_state.bfs_dobaw) 3737 device_printf(sc->sc_dev, 3738 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3739 __func__, 3740 bf, 3741 SEQNO(bf->bf_state.bfs_seqno)); 3742 #endif 3743 if (bf->bf_next != NULL) 3744 device_printf(sc->sc_dev, 3745 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3746 __func__, 3747 bf, 3748 SEQNO(bf->bf_state.bfs_seqno)); 3749 3750 /* 3751 * Check if the node software queue is empty; if so 3752 * then clear the TIM. 3753 * 3754 * This needs to be done before the buffer is freed as 3755 * otherwise the node reference will have been released 3756 * and the node may not actually exist any longer. 3757 * 3758 * XXX I don't like this belonging here, but it's cleaner 3759 * to do it here right now then all the other places 3760 * where ath_tx_default_comp() is called. 3761 * 3762 * XXX TODO: during drain, ensure that the callback is 3763 * being called so we get a chance to update the TIM. 3764 */ 3765 if (bf->bf_node) 3766 ath_tx_update_tim(sc, bf->bf_node, 0); 3767 3768 /* 3769 * Do any tx complete callback. Note this must 3770 * be done before releasing the node reference. 3771 * This will free the mbuf, release the net80211 3772 * node and recycle the ath_buf. 3773 */ 3774 ath_tx_freebuf(sc, bf, st); 3775 } 3776 3777 /* 3778 * Update rate control with the given completion status. 3779 */ 3780 void 3781 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3782 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3783 int nframes, int nbad) 3784 { 3785 struct ath_node *an; 3786 3787 /* Only for unicast frames */ 3788 if (ni == NULL) 3789 return; 3790 3791 an = ATH_NODE(ni); 3792 ATH_NODE_UNLOCK_ASSERT(an); 3793 3794 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3795 ATH_NODE_LOCK(an); 3796 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3797 ATH_NODE_UNLOCK(an); 3798 } 3799 } 3800 3801 /* 3802 * Process the completion of the given buffer. 3803 * 3804 * This calls the rate control update and then the buffer completion. 3805 * This will either free the buffer or requeue it. In any case, the 3806 * bf pointer should be treated as invalid after this function is called. 3807 */ 3808 void 3809 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3810 struct ath_tx_status *ts, struct ath_buf *bf) 3811 { 3812 struct ieee80211_node *ni = bf->bf_node; 3813 struct ath_node *an = NULL; 3814 3815 ATH_TX_UNLOCK_ASSERT(sc); 3816 3817 /* If unicast frame, update general statistics */ 3818 if (ni != NULL) { 3819 an = ATH_NODE(ni); 3820 /* update statistics */ 3821 ath_tx_update_stats(sc, ts, bf); 3822 } 3823 3824 /* 3825 * Call the completion handler. 3826 * The completion handler is responsible for 3827 * calling the rate control code. 3828 * 3829 * Frames with no completion handler get the 3830 * rate control code called here. 3831 */ 3832 if (bf->bf_comp == NULL) { 3833 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3834 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3835 /* 3836 * XXX assume this isn't an aggregate 3837 * frame. 3838 */ 3839 ath_tx_update_ratectrl(sc, ni, 3840 bf->bf_state.bfs_rc, ts, 3841 bf->bf_state.bfs_pktlen, 1, 3842 (ts->ts_status == 0 ? 0 : 1)); 3843 } 3844 ath_tx_default_comp(sc, bf, 0); 3845 } else 3846 bf->bf_comp(sc, bf, 0); 3847 } 3848 3849 3850 3851 /* 3852 * Process completed xmit descriptors from the specified queue. 3853 * Kick the packet scheduler if needed. This can occur from this 3854 * particular task. 3855 */ 3856 static int 3857 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3858 { 3859 struct ath_hal *ah = sc->sc_ah; 3860 struct ath_buf *bf; 3861 struct ath_desc *ds; 3862 struct ath_tx_status *ts; 3863 struct ieee80211_node *ni; 3864 #ifdef IEEE80211_SUPPORT_SUPERG 3865 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3866 #endif /* IEEE80211_SUPPORT_SUPERG */ 3867 int nacked; 3868 HAL_STATUS status; 3869 3870 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3871 __func__, txq->axq_qnum, 3872 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3873 txq->axq_link); 3874 3875 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3876 "ath_tx_processq: txq=%u head %p link %p depth %p", 3877 txq->axq_qnum, 3878 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3879 txq->axq_link, 3880 txq->axq_depth); 3881 3882 nacked = 0; 3883 for (;;) { 3884 ATH_TXQ_LOCK(txq); 3885 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3886 bf = TAILQ_FIRST(&txq->axq_q); 3887 if (bf == NULL) { 3888 ATH_TXQ_UNLOCK(txq); 3889 break; 3890 } 3891 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3892 ts = &bf->bf_status.ds_txstat; 3893 3894 status = ath_hal_txprocdesc(ah, ds, ts); 3895 #ifdef ATH_DEBUG 3896 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3897 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3898 status == HAL_OK); 3899 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3900 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3901 status == HAL_OK); 3902 #endif 3903 #ifdef ATH_DEBUG_ALQ 3904 if (if_ath_alq_checkdebug(&sc->sc_alq, 3905 ATH_ALQ_EDMA_TXSTATUS)) { 3906 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 3907 sc->sc_tx_statuslen, 3908 (char *) ds); 3909 } 3910 #endif 3911 3912 if (status == HAL_EINPROGRESS) { 3913 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3914 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3915 txq->axq_qnum, bf, ds); 3916 ATH_TXQ_UNLOCK(txq); 3917 break; 3918 } 3919 ATH_TXQ_REMOVE(txq, bf, bf_list); 3920 if (txq->axq_depth > 0) { 3921 /* 3922 * More frames follow. Mark the buffer busy 3923 * so it's not re-used while the hardware may 3924 * still re-read the link field in the descriptor. 3925 * 3926 * Use the last buffer in an aggregate as that 3927 * is where the hardware may be - intermediate 3928 * descriptors won't be "busy". 3929 */ 3930 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3931 } else 3932 txq->axq_link = NULL; 3933 if (bf->bf_state.bfs_aggr) 3934 txq->axq_aggr_depth--; 3935 3936 ni = bf->bf_node; 3937 3938 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3939 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3940 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3941 /* 3942 * If unicast frame was ack'd update RSSI, 3943 * including the last rx time used to 3944 * workaround phantom bmiss interrupts. 3945 */ 3946 if (ni != NULL && ts->ts_status == 0 && 3947 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3948 nacked++; 3949 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3950 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3951 ts->ts_rssi); 3952 } 3953 ATH_TXQ_UNLOCK(txq); 3954 3955 /* 3956 * Update statistics and call completion 3957 */ 3958 ath_tx_process_buf_completion(sc, txq, ts, bf); 3959 3960 /* XXX at this point, bf and ni may be totally invalid */ 3961 } 3962 #ifdef IEEE80211_SUPPORT_SUPERG 3963 /* 3964 * Flush fast-frame staging queue when traffic slows. 3965 */ 3966 if (txq->axq_depth <= 1) 3967 ieee80211_ff_flush(ic, txq->axq_ac); 3968 #endif 3969 3970 /* Kick the software TXQ scheduler */ 3971 if (dosched) { 3972 ATH_TX_LOCK(sc); 3973 ath_txq_sched(sc, txq); 3974 ATH_TX_UNLOCK(sc); 3975 } 3976 3977 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3978 "ath_tx_processq: txq=%u: done", 3979 txq->axq_qnum); 3980 3981 return nacked; 3982 } 3983 3984 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3985 3986 /* 3987 * Deferred processing of transmit interrupt; special-cased 3988 * for a single hardware transmit queue (e.g. 5210 and 5211). 3989 */ 3990 static void 3991 ath_tx_proc_q0(void *arg, int npending) 3992 { 3993 struct ath_softc *sc = arg; 3994 struct ifnet *ifp = sc->sc_ifp; 3995 uint32_t txqs; 3996 3997 ATH_PCU_LOCK(sc); 3998 sc->sc_txproc_cnt++; 3999 txqs = sc->sc_txq_active; 4000 sc->sc_txq_active &= ~txqs; 4001 ATH_PCU_UNLOCK(sc); 4002 4003 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4004 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4005 4006 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4007 /* XXX why is lastrx updated in tx code? */ 4008 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4009 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4010 ath_tx_processq(sc, sc->sc_cabq, 1); 4011 IF_LOCK(&ifp->if_snd); 4012 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4013 IF_UNLOCK(&ifp->if_snd); 4014 sc->sc_wd_timer = 0; 4015 4016 if (sc->sc_softled) 4017 ath_led_event(sc, sc->sc_txrix); 4018 4019 ATH_PCU_LOCK(sc); 4020 sc->sc_txproc_cnt--; 4021 ATH_PCU_UNLOCK(sc); 4022 4023 ath_tx_kick(sc); 4024 } 4025 4026 /* 4027 * Deferred processing of transmit interrupt; special-cased 4028 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4029 */ 4030 static void 4031 ath_tx_proc_q0123(void *arg, int npending) 4032 { 4033 struct ath_softc *sc = arg; 4034 struct ifnet *ifp = sc->sc_ifp; 4035 int nacked; 4036 uint32_t txqs; 4037 4038 ATH_PCU_LOCK(sc); 4039 sc->sc_txproc_cnt++; 4040 txqs = sc->sc_txq_active; 4041 sc->sc_txq_active &= ~txqs; 4042 ATH_PCU_UNLOCK(sc); 4043 4044 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4045 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4046 4047 /* 4048 * Process each active queue. 4049 */ 4050 nacked = 0; 4051 if (TXQACTIVE(txqs, 0)) 4052 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4053 if (TXQACTIVE(txqs, 1)) 4054 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4055 if (TXQACTIVE(txqs, 2)) 4056 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4057 if (TXQACTIVE(txqs, 3)) 4058 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4059 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4060 ath_tx_processq(sc, sc->sc_cabq, 1); 4061 if (nacked) 4062 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4063 4064 IF_LOCK(&ifp->if_snd); 4065 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4066 IF_UNLOCK(&ifp->if_snd); 4067 sc->sc_wd_timer = 0; 4068 4069 if (sc->sc_softled) 4070 ath_led_event(sc, sc->sc_txrix); 4071 4072 ATH_PCU_LOCK(sc); 4073 sc->sc_txproc_cnt--; 4074 ATH_PCU_UNLOCK(sc); 4075 4076 ath_tx_kick(sc); 4077 } 4078 4079 /* 4080 * Deferred processing of transmit interrupt. 4081 */ 4082 static void 4083 ath_tx_proc(void *arg, int npending) 4084 { 4085 struct ath_softc *sc = arg; 4086 struct ifnet *ifp = sc->sc_ifp; 4087 int i, nacked; 4088 uint32_t txqs; 4089 4090 ATH_PCU_LOCK(sc); 4091 sc->sc_txproc_cnt++; 4092 txqs = sc->sc_txq_active; 4093 sc->sc_txq_active &= ~txqs; 4094 ATH_PCU_UNLOCK(sc); 4095 4096 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4097 4098 /* 4099 * Process each active queue. 4100 */ 4101 nacked = 0; 4102 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4103 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4104 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4105 if (nacked) 4106 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4107 4108 /* XXX check this inside of IF_LOCK? */ 4109 IF_LOCK(&ifp->if_snd); 4110 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4111 IF_UNLOCK(&ifp->if_snd); 4112 sc->sc_wd_timer = 0; 4113 4114 if (sc->sc_softled) 4115 ath_led_event(sc, sc->sc_txrix); 4116 4117 ATH_PCU_LOCK(sc); 4118 sc->sc_txproc_cnt--; 4119 ATH_PCU_UNLOCK(sc); 4120 4121 ath_tx_kick(sc); 4122 } 4123 #undef TXQACTIVE 4124 4125 /* 4126 * Deferred processing of TXQ rescheduling. 4127 */ 4128 static void 4129 ath_txq_sched_tasklet(void *arg, int npending) 4130 { 4131 struct ath_softc *sc = arg; 4132 int i; 4133 4134 /* XXX is skipping ok? */ 4135 ATH_PCU_LOCK(sc); 4136 #if 0 4137 if (sc->sc_inreset_cnt > 0) { 4138 device_printf(sc->sc_dev, 4139 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4140 ATH_PCU_UNLOCK(sc); 4141 return; 4142 } 4143 #endif 4144 sc->sc_txproc_cnt++; 4145 ATH_PCU_UNLOCK(sc); 4146 4147 ATH_TX_LOCK(sc); 4148 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4149 if (ATH_TXQ_SETUP(sc, i)) { 4150 ath_txq_sched(sc, &sc->sc_txq[i]); 4151 } 4152 } 4153 ATH_TX_UNLOCK(sc); 4154 4155 ATH_PCU_LOCK(sc); 4156 sc->sc_txproc_cnt--; 4157 ATH_PCU_UNLOCK(sc); 4158 } 4159 4160 void 4161 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4162 { 4163 4164 ATH_TXBUF_LOCK_ASSERT(sc); 4165 4166 if (bf->bf_flags & ATH_BUF_MGMT) 4167 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4168 else { 4169 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4170 sc->sc_txbuf_cnt++; 4171 if (sc->sc_txbuf_cnt > ath_txbuf) { 4172 device_printf(sc->sc_dev, 4173 "%s: sc_txbuf_cnt > %d?\n", 4174 __func__, 4175 ath_txbuf); 4176 sc->sc_txbuf_cnt = ath_txbuf; 4177 } 4178 } 4179 } 4180 4181 void 4182 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4183 { 4184 4185 ATH_TXBUF_LOCK_ASSERT(sc); 4186 4187 if (bf->bf_flags & ATH_BUF_MGMT) 4188 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4189 else { 4190 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4191 sc->sc_txbuf_cnt++; 4192 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4193 device_printf(sc->sc_dev, 4194 "%s: sc_txbuf_cnt > %d?\n", 4195 __func__, 4196 ATH_TXBUF); 4197 sc->sc_txbuf_cnt = ATH_TXBUF; 4198 } 4199 } 4200 } 4201 4202 /* 4203 * Free the holding buffer if it exists 4204 */ 4205 void 4206 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4207 { 4208 ATH_TXBUF_LOCK_ASSERT(sc); 4209 4210 if (txq->axq_holdingbf == NULL) 4211 return; 4212 4213 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4214 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4215 txq->axq_holdingbf = NULL; 4216 } 4217 4218 /* 4219 * Add this buffer to the holding queue, freeing the previous 4220 * one if it exists. 4221 */ 4222 static void 4223 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4224 { 4225 struct ath_txq *txq; 4226 4227 ATH_TXBUF_LOCK_ASSERT(sc); 4228 4229 /* XXX assert ATH_BUF_BUSY is set */ 4230 4231 /* XXX assert the tx queue is under the max number */ 4232 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4233 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4234 __func__, 4235 bf, 4236 bf->bf_state.bfs_tx_queue); 4237 bf->bf_flags &= ~ATH_BUF_BUSY; 4238 ath_returnbuf_tail(sc, bf); 4239 return; 4240 } 4241 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4242 ath_txq_freeholdingbuf(sc, txq); 4243 txq->axq_holdingbf = bf; 4244 } 4245 4246 /* 4247 * Return a buffer to the pool and update the 'busy' flag on the 4248 * previous 'tail' entry. 4249 * 4250 * This _must_ only be called when the buffer is involved in a completed 4251 * TX. The logic is that if it was part of an active TX, the previous 4252 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4253 * for restart (eg for TDMA.) 4254 * 4255 * The caller must free the mbuf and recycle the node reference. 4256 */ 4257 void 4258 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4259 { 4260 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4261 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4262 4263 /* 4264 * If this buffer is busy, push it onto the holding queue 4265 */ 4266 if (bf->bf_flags & ATH_BUF_BUSY) { 4267 ATH_TXBUF_LOCK(sc); 4268 ath_txq_addholdingbuf(sc, bf); 4269 ATH_TXBUF_UNLOCK(sc); 4270 return; 4271 } 4272 4273 /* 4274 * Not a busy buffer, so free normally 4275 */ 4276 ATH_TXBUF_LOCK(sc); 4277 ath_returnbuf_tail(sc, bf); 4278 ATH_TXBUF_UNLOCK(sc); 4279 } 4280 4281 /* 4282 * This is currently used by ath_tx_draintxq() and 4283 * ath_tx_tid_free_pkts(). 4284 * 4285 * It recycles a single ath_buf. 4286 */ 4287 void 4288 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4289 { 4290 struct ieee80211_node *ni = bf->bf_node; 4291 struct mbuf *m0 = bf->bf_m; 4292 4293 /* 4294 * Make sure that we only sync/unload if there's an mbuf. 4295 * If not (eg we cloned a buffer), the unload will have already 4296 * occured. 4297 */ 4298 if (bf->bf_m != NULL) { 4299 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4300 BUS_DMASYNC_POSTWRITE); 4301 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4302 } 4303 4304 bf->bf_node = NULL; 4305 bf->bf_m = NULL; 4306 4307 /* Free the buffer, it's not needed any longer */ 4308 ath_freebuf(sc, bf); 4309 4310 if (ni != NULL) { 4311 /* 4312 * Do any callback and reclaim the node reference. 4313 */ 4314 if (m0->m_flags & M_TXCB) 4315 ieee80211_process_callback(ni, m0, status); 4316 ieee80211_free_node(ni); 4317 } 4318 4319 /* Finally, we don't need this mbuf any longer */ 4320 m_freem(m0); 4321 } 4322 4323 static struct ath_buf * 4324 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4325 { 4326 struct ath_buf *bf; 4327 4328 ATH_TXQ_LOCK_ASSERT(txq); 4329 4330 /* 4331 * Drain the FIFO queue first, then if it's 4332 * empty, move to the normal frame queue. 4333 */ 4334 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4335 if (bf != NULL) { 4336 /* 4337 * Is it the last buffer in this set? 4338 * Decrement the FIFO counter. 4339 */ 4340 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4341 if (txq->axq_fifo_depth == 0) { 4342 device_printf(sc->sc_dev, 4343 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4344 __func__, 4345 txq->axq_qnum, 4346 txq->fifo.axq_depth); 4347 } else 4348 txq->axq_fifo_depth--; 4349 } 4350 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4351 return (bf); 4352 } 4353 4354 /* 4355 * Debugging! 4356 */ 4357 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4358 device_printf(sc->sc_dev, 4359 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4360 __func__, 4361 txq->axq_qnum, 4362 txq->axq_fifo_depth, 4363 txq->fifo.axq_depth); 4364 } 4365 4366 /* 4367 * Now drain the pending queue. 4368 */ 4369 bf = TAILQ_FIRST(&txq->axq_q); 4370 if (bf == NULL) { 4371 txq->axq_link = NULL; 4372 return (NULL); 4373 } 4374 ATH_TXQ_REMOVE(txq, bf, bf_list); 4375 return (bf); 4376 } 4377 4378 void 4379 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4380 { 4381 #ifdef ATH_DEBUG 4382 struct ath_hal *ah = sc->sc_ah; 4383 #endif 4384 struct ath_buf *bf; 4385 u_int ix; 4386 4387 /* 4388 * NB: this assumes output has been stopped and 4389 * we do not need to block ath_tx_proc 4390 */ 4391 for (ix = 0;; ix++) { 4392 ATH_TXQ_LOCK(txq); 4393 bf = ath_tx_draintxq_get_one(sc, txq); 4394 if (bf == NULL) { 4395 ATH_TXQ_UNLOCK(txq); 4396 break; 4397 } 4398 if (bf->bf_state.bfs_aggr) 4399 txq->axq_aggr_depth--; 4400 #ifdef ATH_DEBUG 4401 if (sc->sc_debug & ATH_DEBUG_RESET) { 4402 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4403 int status = 0; 4404 4405 /* 4406 * EDMA operation has a TX completion FIFO 4407 * separate from the TX descriptor, so this 4408 * method of checking the "completion" status 4409 * is wrong. 4410 */ 4411 if (! sc->sc_isedma) { 4412 status = (ath_hal_txprocdesc(ah, 4413 bf->bf_lastds, 4414 &bf->bf_status.ds_txstat) == HAL_OK); 4415 } 4416 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4417 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4418 bf->bf_m->m_len, 0, -1); 4419 } 4420 #endif /* ATH_DEBUG */ 4421 /* 4422 * Since we're now doing magic in the completion 4423 * functions, we -must- call it for aggregation 4424 * destinations or BAW tracking will get upset. 4425 */ 4426 /* 4427 * Clear ATH_BUF_BUSY; the completion handler 4428 * will free the buffer. 4429 */ 4430 ATH_TXQ_UNLOCK(txq); 4431 bf->bf_flags &= ~ATH_BUF_BUSY; 4432 if (bf->bf_comp) 4433 bf->bf_comp(sc, bf, 1); 4434 else 4435 ath_tx_default_comp(sc, bf, 1); 4436 } 4437 4438 /* 4439 * Free the holding buffer if it exists 4440 */ 4441 ATH_TXBUF_LOCK(sc); 4442 ath_txq_freeholdingbuf(sc, txq); 4443 ATH_TXBUF_UNLOCK(sc); 4444 4445 /* 4446 * Drain software queued frames which are on 4447 * active TIDs. 4448 */ 4449 ath_tx_txq_drain(sc, txq); 4450 } 4451 4452 static void 4453 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4454 { 4455 struct ath_hal *ah = sc->sc_ah; 4456 4457 DPRINTF(sc, ATH_DEBUG_RESET, 4458 "%s: tx queue [%u] %p, flags 0x%08x, link %p\n", 4459 __func__, 4460 txq->axq_qnum, 4461 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4462 txq->axq_flags, 4463 txq->axq_link); 4464 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4465 } 4466 4467 int 4468 ath_stoptxdma(struct ath_softc *sc) 4469 { 4470 struct ath_hal *ah = sc->sc_ah; 4471 int i; 4472 4473 /* XXX return value */ 4474 if (sc->sc_invalid) 4475 return 0; 4476 4477 if (!sc->sc_invalid) { 4478 /* don't touch the hardware if marked invalid */ 4479 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4480 __func__, sc->sc_bhalq, 4481 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4482 NULL); 4483 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4484 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4485 if (ATH_TXQ_SETUP(sc, i)) 4486 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4487 } 4488 4489 return 1; 4490 } 4491 4492 /* 4493 * Drain the transmit queues and reclaim resources. 4494 */ 4495 void 4496 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4497 { 4498 #ifdef ATH_DEBUG 4499 struct ath_hal *ah = sc->sc_ah; 4500 #endif 4501 struct ifnet *ifp = sc->sc_ifp; 4502 int i; 4503 4504 (void) ath_stoptxdma(sc); 4505 4506 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4507 /* 4508 * XXX TODO: should we just handle the completed TX frames 4509 * here, whether or not the reset is a full one or not? 4510 */ 4511 if (ATH_TXQ_SETUP(sc, i)) { 4512 if (reset_type == ATH_RESET_NOLOSS) 4513 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4514 else 4515 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4516 } 4517 } 4518 #ifdef ATH_DEBUG 4519 if (sc->sc_debug & ATH_DEBUG_RESET) { 4520 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4521 if (bf != NULL && bf->bf_m != NULL) { 4522 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4523 ath_hal_txprocdesc(ah, bf->bf_lastds, 4524 &bf->bf_status.ds_txstat) == HAL_OK); 4525 ieee80211_dump_pkt(ifp->if_l2com, 4526 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4527 0, -1); 4528 } 4529 } 4530 #endif /* ATH_DEBUG */ 4531 IF_LOCK(&ifp->if_snd); 4532 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4533 IF_UNLOCK(&ifp->if_snd); 4534 sc->sc_wd_timer = 0; 4535 } 4536 4537 /* 4538 * Update internal state after a channel change. 4539 */ 4540 static void 4541 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4542 { 4543 enum ieee80211_phymode mode; 4544 4545 /* 4546 * Change channels and update the h/w rate map 4547 * if we're switching; e.g. 11a to 11b/g. 4548 */ 4549 mode = ieee80211_chan2mode(chan); 4550 if (mode != sc->sc_curmode) 4551 ath_setcurmode(sc, mode); 4552 sc->sc_curchan = chan; 4553 } 4554 4555 /* 4556 * Set/change channels. If the channel is really being changed, 4557 * it's done by resetting the chip. To accomplish this we must 4558 * first cleanup any pending DMA, then restart stuff after a la 4559 * ath_init. 4560 */ 4561 static int 4562 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4563 { 4564 struct ifnet *ifp = sc->sc_ifp; 4565 struct ieee80211com *ic = ifp->if_l2com; 4566 struct ath_hal *ah = sc->sc_ah; 4567 int ret = 0; 4568 4569 /* Treat this as an interface reset */ 4570 ATH_PCU_UNLOCK_ASSERT(sc); 4571 ATH_UNLOCK_ASSERT(sc); 4572 4573 /* (Try to) stop TX/RX from occuring */ 4574 taskqueue_block(sc->sc_tq); 4575 4576 ATH_PCU_LOCK(sc); 4577 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4578 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4579 if (ath_reset_grablock(sc, 1) == 0) { 4580 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4581 __func__); 4582 } 4583 ATH_PCU_UNLOCK(sc); 4584 4585 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4586 __func__, ieee80211_chan2ieee(ic, chan), 4587 chan->ic_freq, chan->ic_flags); 4588 if (chan != sc->sc_curchan) { 4589 HAL_STATUS status; 4590 /* 4591 * To switch channels clear any pending DMA operations; 4592 * wait long enough for the RX fifo to drain, reset the 4593 * hardware at the new frequency, and then re-enable 4594 * the relevant bits of the h/w. 4595 */ 4596 #if 0 4597 ath_hal_intrset(ah, 0); /* disable interrupts */ 4598 #endif 4599 ath_stoprecv(sc, 1); /* turn off frame recv */ 4600 /* 4601 * First, handle completed TX/RX frames. 4602 */ 4603 ath_rx_flush(sc); 4604 ath_draintxq(sc, ATH_RESET_NOLOSS); 4605 /* 4606 * Next, flush the non-scheduled frames. 4607 */ 4608 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4609 4610 ath_update_chainmasks(sc, chan); 4611 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 4612 sc->sc_cur_rxchainmask); 4613 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4614 if_printf(ifp, "%s: unable to reset " 4615 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4616 __func__, ieee80211_chan2ieee(ic, chan), 4617 chan->ic_freq, chan->ic_flags, status); 4618 ret = EIO; 4619 goto finish; 4620 } 4621 sc->sc_diversity = ath_hal_getdiversity(ah); 4622 4623 /* Let DFS at it in case it's a DFS channel */ 4624 ath_dfs_radar_enable(sc, chan); 4625 4626 /* Let spectral at in case spectral is enabled */ 4627 ath_spectral_enable(sc, chan); 4628 4629 /* 4630 * Re-enable rx framework. 4631 */ 4632 if (ath_startrecv(sc) != 0) { 4633 if_printf(ifp, "%s: unable to restart recv logic\n", 4634 __func__); 4635 ret = EIO; 4636 goto finish; 4637 } 4638 4639 /* 4640 * Change channels and update the h/w rate map 4641 * if we're switching; e.g. 11a to 11b/g. 4642 */ 4643 ath_chan_change(sc, chan); 4644 4645 /* 4646 * Reset clears the beacon timers; reset them 4647 * here if needed. 4648 */ 4649 if (sc->sc_beacons) { /* restart beacons */ 4650 #ifdef IEEE80211_SUPPORT_TDMA 4651 if (sc->sc_tdma) 4652 ath_tdma_config(sc, NULL); 4653 else 4654 #endif 4655 ath_beacon_config(sc, NULL); 4656 } 4657 4658 /* 4659 * Re-enable interrupts. 4660 */ 4661 #if 0 4662 ath_hal_intrset(ah, sc->sc_imask); 4663 #endif 4664 } 4665 4666 finish: 4667 ATH_PCU_LOCK(sc); 4668 sc->sc_inreset_cnt--; 4669 /* XXX only do this if sc_inreset_cnt == 0? */ 4670 ath_hal_intrset(ah, sc->sc_imask); 4671 ATH_PCU_UNLOCK(sc); 4672 4673 IF_LOCK(&ifp->if_snd); 4674 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4675 IF_UNLOCK(&ifp->if_snd); 4676 ath_txrx_start(sc); 4677 /* XXX ath_start? */ 4678 4679 return ret; 4680 } 4681 4682 /* 4683 * Periodically recalibrate the PHY to account 4684 * for temperature/environment changes. 4685 */ 4686 static void 4687 ath_calibrate(void *arg) 4688 { 4689 struct ath_softc *sc = arg; 4690 struct ath_hal *ah = sc->sc_ah; 4691 struct ifnet *ifp = sc->sc_ifp; 4692 struct ieee80211com *ic = ifp->if_l2com; 4693 HAL_BOOL longCal, isCalDone = AH_TRUE; 4694 HAL_BOOL aniCal, shortCal = AH_FALSE; 4695 int nextcal; 4696 4697 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4698 goto restart; 4699 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4700 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4701 if (sc->sc_doresetcal) 4702 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4703 4704 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4705 if (aniCal) { 4706 sc->sc_stats.ast_ani_cal++; 4707 sc->sc_lastani = ticks; 4708 ath_hal_ani_poll(ah, sc->sc_curchan); 4709 } 4710 4711 if (longCal) { 4712 sc->sc_stats.ast_per_cal++; 4713 sc->sc_lastlongcal = ticks; 4714 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4715 /* 4716 * Rfgain is out of bounds, reset the chip 4717 * to load new gain values. 4718 */ 4719 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4720 "%s: rfgain change\n", __func__); 4721 sc->sc_stats.ast_per_rfgain++; 4722 sc->sc_resetcal = 0; 4723 sc->sc_doresetcal = AH_TRUE; 4724 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4725 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4726 return; 4727 } 4728 /* 4729 * If this long cal is after an idle period, then 4730 * reset the data collection state so we start fresh. 4731 */ 4732 if (sc->sc_resetcal) { 4733 (void) ath_hal_calreset(ah, sc->sc_curchan); 4734 sc->sc_lastcalreset = ticks; 4735 sc->sc_lastshortcal = ticks; 4736 sc->sc_resetcal = 0; 4737 sc->sc_doresetcal = AH_TRUE; 4738 } 4739 } 4740 4741 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4742 if (shortCal || longCal) { 4743 isCalDone = AH_FALSE; 4744 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4745 if (longCal) { 4746 /* 4747 * Calibrate noise floor data again in case of change. 4748 */ 4749 ath_hal_process_noisefloor(ah); 4750 } 4751 } else { 4752 DPRINTF(sc, ATH_DEBUG_ANY, 4753 "%s: calibration of channel %u failed\n", 4754 __func__, sc->sc_curchan->ic_freq); 4755 sc->sc_stats.ast_per_calfail++; 4756 } 4757 if (shortCal) 4758 sc->sc_lastshortcal = ticks; 4759 } 4760 if (!isCalDone) { 4761 restart: 4762 /* 4763 * Use a shorter interval to potentially collect multiple 4764 * data samples required to complete calibration. Once 4765 * we're told the work is done we drop back to a longer 4766 * interval between requests. We're more aggressive doing 4767 * work when operating as an AP to improve operation right 4768 * after startup. 4769 */ 4770 sc->sc_lastshortcal = ticks; 4771 nextcal = ath_shortcalinterval*hz/1000; 4772 if (sc->sc_opmode != HAL_M_HOSTAP) 4773 nextcal *= 10; 4774 sc->sc_doresetcal = AH_TRUE; 4775 } else { 4776 /* nextcal should be the shortest time for next event */ 4777 nextcal = ath_longcalinterval*hz; 4778 if (sc->sc_lastcalreset == 0) 4779 sc->sc_lastcalreset = sc->sc_lastlongcal; 4780 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4781 sc->sc_resetcal = 1; /* setup reset next trip */ 4782 sc->sc_doresetcal = AH_FALSE; 4783 } 4784 /* ANI calibration may occur more often than short/long/resetcal */ 4785 if (ath_anicalinterval > 0) 4786 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4787 4788 if (nextcal != 0) { 4789 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4790 __func__, nextcal, isCalDone ? "" : "!"); 4791 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4792 } else { 4793 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4794 __func__); 4795 /* NB: don't rearm timer */ 4796 } 4797 } 4798 4799 static void 4800 ath_scan_start(struct ieee80211com *ic) 4801 { 4802 struct ifnet *ifp = ic->ic_ifp; 4803 struct ath_softc *sc = ifp->if_softc; 4804 struct ath_hal *ah = sc->sc_ah; 4805 u_int32_t rfilt; 4806 4807 /* XXX calibration timer? */ 4808 4809 ATH_LOCK(sc); 4810 sc->sc_scanning = 1; 4811 sc->sc_syncbeacon = 0; 4812 rfilt = ath_calcrxfilter(sc); 4813 ATH_UNLOCK(sc); 4814 4815 ATH_PCU_LOCK(sc); 4816 ath_hal_setrxfilter(ah, rfilt); 4817 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4818 ATH_PCU_UNLOCK(sc); 4819 4820 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4821 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4822 } 4823 4824 static void 4825 ath_scan_end(struct ieee80211com *ic) 4826 { 4827 struct ifnet *ifp = ic->ic_ifp; 4828 struct ath_softc *sc = ifp->if_softc; 4829 struct ath_hal *ah = sc->sc_ah; 4830 u_int32_t rfilt; 4831 4832 ATH_LOCK(sc); 4833 sc->sc_scanning = 0; 4834 rfilt = ath_calcrxfilter(sc); 4835 ATH_UNLOCK(sc); 4836 4837 ATH_PCU_LOCK(sc); 4838 ath_hal_setrxfilter(ah, rfilt); 4839 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4840 4841 ath_hal_process_noisefloor(ah); 4842 ATH_PCU_UNLOCK(sc); 4843 4844 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4845 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4846 sc->sc_curaid); 4847 } 4848 4849 #ifdef ATH_ENABLE_11N 4850 /* 4851 * For now, just do a channel change. 4852 * 4853 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4854 * control state and resetting the hardware without dropping frames out 4855 * of the queue. 4856 * 4857 * The unfortunate trouble here is making absolutely sure that the 4858 * channel width change has propagated enough so the hardware 4859 * absolutely isn't handed bogus frames for it's current operating 4860 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4861 * does occur in parallel, we need to make certain we've blocked 4862 * any further ongoing TX (and RX, that can cause raw TX) 4863 * before we do this. 4864 */ 4865 static void 4866 ath_update_chw(struct ieee80211com *ic) 4867 { 4868 struct ifnet *ifp = ic->ic_ifp; 4869 struct ath_softc *sc = ifp->if_softc; 4870 4871 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4872 ath_set_channel(ic); 4873 } 4874 #endif /* ATH_ENABLE_11N */ 4875 4876 static void 4877 ath_set_channel(struct ieee80211com *ic) 4878 { 4879 struct ifnet *ifp = ic->ic_ifp; 4880 struct ath_softc *sc = ifp->if_softc; 4881 4882 (void) ath_chan_set(sc, ic->ic_curchan); 4883 /* 4884 * If we are returning to our bss channel then mark state 4885 * so the next recv'd beacon's tsf will be used to sync the 4886 * beacon timers. Note that since we only hear beacons in 4887 * sta/ibss mode this has no effect in other operating modes. 4888 */ 4889 ATH_LOCK(sc); 4890 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4891 sc->sc_syncbeacon = 1; 4892 ATH_UNLOCK(sc); 4893 } 4894 4895 /* 4896 * Walk the vap list and check if there any vap's in RUN state. 4897 */ 4898 static int 4899 ath_isanyrunningvaps(struct ieee80211vap *this) 4900 { 4901 struct ieee80211com *ic = this->iv_ic; 4902 struct ieee80211vap *vap; 4903 4904 IEEE80211_LOCK_ASSERT(ic); 4905 4906 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4907 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4908 return 1; 4909 } 4910 return 0; 4911 } 4912 4913 static int 4914 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4915 { 4916 struct ieee80211com *ic = vap->iv_ic; 4917 struct ath_softc *sc = ic->ic_ifp->if_softc; 4918 struct ath_vap *avp = ATH_VAP(vap); 4919 struct ath_hal *ah = sc->sc_ah; 4920 struct ieee80211_node *ni = NULL; 4921 int i, error, stamode; 4922 u_int32_t rfilt; 4923 int csa_run_transition = 0; 4924 4925 static const HAL_LED_STATE leds[] = { 4926 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4927 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4928 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4929 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4930 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4931 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4932 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4933 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4934 }; 4935 4936 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4937 ieee80211_state_name[vap->iv_state], 4938 ieee80211_state_name[nstate]); 4939 4940 /* 4941 * net80211 _should_ have the comlock asserted at this point. 4942 * There are some comments around the calls to vap->iv_newstate 4943 * which indicate that it (newstate) may end up dropping the 4944 * lock. This and the subsequent lock assert check after newstate 4945 * are an attempt to catch these and figure out how/why. 4946 */ 4947 IEEE80211_LOCK_ASSERT(ic); 4948 4949 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4950 csa_run_transition = 1; 4951 4952 callout_drain(&sc->sc_cal_ch); 4953 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4954 4955 if (nstate == IEEE80211_S_SCAN) { 4956 /* 4957 * Scanning: turn off beacon miss and don't beacon. 4958 * Mark beacon state so when we reach RUN state we'll 4959 * [re]setup beacons. Unblock the task q thread so 4960 * deferred interrupt processing is done. 4961 */ 4962 ath_hal_intrset(ah, 4963 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4964 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4965 sc->sc_beacons = 0; 4966 taskqueue_unblock(sc->sc_tq); 4967 } 4968 4969 ni = ieee80211_ref_node(vap->iv_bss); 4970 rfilt = ath_calcrxfilter(sc); 4971 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4972 vap->iv_opmode == IEEE80211_M_AHDEMO || 4973 vap->iv_opmode == IEEE80211_M_IBSS); 4974 if (stamode && nstate == IEEE80211_S_RUN) { 4975 sc->sc_curaid = ni->ni_associd; 4976 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4977 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4978 } 4979 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4980 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4981 ath_hal_setrxfilter(ah, rfilt); 4982 4983 /* XXX is this to restore keycache on resume? */ 4984 if (vap->iv_opmode != IEEE80211_M_STA && 4985 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4986 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4987 if (ath_hal_keyisvalid(ah, i)) 4988 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4989 } 4990 4991 /* 4992 * Invoke the parent method to do net80211 work. 4993 */ 4994 error = avp->av_newstate(vap, nstate, arg); 4995 if (error != 0) 4996 goto bad; 4997 4998 /* 4999 * See above: ensure av_newstate() doesn't drop the lock 5000 * on us. 5001 */ 5002 IEEE80211_LOCK_ASSERT(ic); 5003 5004 if (nstate == IEEE80211_S_RUN) { 5005 /* NB: collect bss node again, it may have changed */ 5006 ieee80211_free_node(ni); 5007 ni = ieee80211_ref_node(vap->iv_bss); 5008 5009 DPRINTF(sc, ATH_DEBUG_STATE, 5010 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5011 "capinfo 0x%04x chan %d\n", __func__, 5012 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5013 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5014 5015 switch (vap->iv_opmode) { 5016 #ifdef IEEE80211_SUPPORT_TDMA 5017 case IEEE80211_M_AHDEMO: 5018 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5019 break; 5020 /* fall thru... */ 5021 #endif 5022 case IEEE80211_M_HOSTAP: 5023 case IEEE80211_M_IBSS: 5024 case IEEE80211_M_MBSS: 5025 /* 5026 * Allocate and setup the beacon frame. 5027 * 5028 * Stop any previous beacon DMA. This may be 5029 * necessary, for example, when an ibss merge 5030 * causes reconfiguration; there will be a state 5031 * transition from RUN->RUN that means we may 5032 * be called with beacon transmission active. 5033 */ 5034 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5035 5036 error = ath_beacon_alloc(sc, ni); 5037 if (error != 0) 5038 goto bad; 5039 /* 5040 * If joining an adhoc network defer beacon timer 5041 * configuration to the next beacon frame so we 5042 * have a current TSF to use. Otherwise we're 5043 * starting an ibss/bss so there's no need to delay; 5044 * if this is the first vap moving to RUN state, then 5045 * beacon state needs to be [re]configured. 5046 */ 5047 if (vap->iv_opmode == IEEE80211_M_IBSS && 5048 ni->ni_tstamp.tsf != 0) { 5049 sc->sc_syncbeacon = 1; 5050 } else if (!sc->sc_beacons) { 5051 #ifdef IEEE80211_SUPPORT_TDMA 5052 if (vap->iv_caps & IEEE80211_C_TDMA) 5053 ath_tdma_config(sc, vap); 5054 else 5055 #endif 5056 ath_beacon_config(sc, vap); 5057 sc->sc_beacons = 1; 5058 } 5059 break; 5060 case IEEE80211_M_STA: 5061 /* 5062 * Defer beacon timer configuration to the next 5063 * beacon frame so we have a current TSF to use 5064 * (any TSF collected when scanning is likely old). 5065 * However if it's due to a CSA -> RUN transition, 5066 * force a beacon update so we pick up a lack of 5067 * beacons from an AP in CAC and thus force a 5068 * scan. 5069 * 5070 * And, there's also corner cases here where 5071 * after a scan, the AP may have disappeared. 5072 * In that case, we may not receive an actual 5073 * beacon to update the beacon timer and thus we 5074 * won't get notified of the missing beacons. 5075 */ 5076 sc->sc_syncbeacon = 1; 5077 #if 0 5078 if (csa_run_transition) 5079 #endif 5080 ath_beacon_config(sc, vap); 5081 5082 /* 5083 * PR: kern/175227 5084 * 5085 * Reconfigure beacons during reset; as otherwise 5086 * we won't get the beacon timers reprogrammed 5087 * after a reset and thus we won't pick up a 5088 * beacon miss interrupt. 5089 * 5090 * Hopefully we'll see a beacon before the BMISS 5091 * timer fires (too often), leading to a STA 5092 * disassociation. 5093 */ 5094 sc->sc_beacons = 1; 5095 break; 5096 case IEEE80211_M_MONITOR: 5097 /* 5098 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5099 * transitions so we must re-enable interrupts here to 5100 * handle the case of a single monitor mode vap. 5101 */ 5102 ath_hal_intrset(ah, sc->sc_imask); 5103 break; 5104 case IEEE80211_M_WDS: 5105 break; 5106 default: 5107 break; 5108 } 5109 /* 5110 * Let the hal process statistics collected during a 5111 * scan so it can provide calibrated noise floor data. 5112 */ 5113 ath_hal_process_noisefloor(ah); 5114 /* 5115 * Reset rssi stats; maybe not the best place... 5116 */ 5117 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5118 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5119 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5120 /* 5121 * Finally, start any timers and the task q thread 5122 * (in case we didn't go through SCAN state). 5123 */ 5124 if (ath_longcalinterval != 0) { 5125 /* start periodic recalibration timer */ 5126 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5127 } else { 5128 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5129 "%s: calibration disabled\n", __func__); 5130 } 5131 taskqueue_unblock(sc->sc_tq); 5132 } else if (nstate == IEEE80211_S_INIT) { 5133 /* 5134 * If there are no vaps left in RUN state then 5135 * shutdown host/driver operation: 5136 * o disable interrupts 5137 * o disable the task queue thread 5138 * o mark beacon processing as stopped 5139 */ 5140 if (!ath_isanyrunningvaps(vap)) { 5141 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5142 /* disable interrupts */ 5143 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5144 taskqueue_block(sc->sc_tq); 5145 sc->sc_beacons = 0; 5146 } 5147 #ifdef IEEE80211_SUPPORT_TDMA 5148 ath_hal_setcca(ah, AH_TRUE); 5149 #endif 5150 } 5151 bad: 5152 ieee80211_free_node(ni); 5153 return error; 5154 } 5155 5156 /* 5157 * Allocate a key cache slot to the station so we can 5158 * setup a mapping from key index to node. The key cache 5159 * slot is needed for managing antenna state and for 5160 * compression when stations do not use crypto. We do 5161 * it uniliaterally here; if crypto is employed this slot 5162 * will be reassigned. 5163 */ 5164 static void 5165 ath_setup_stationkey(struct ieee80211_node *ni) 5166 { 5167 struct ieee80211vap *vap = ni->ni_vap; 5168 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5169 ieee80211_keyix keyix, rxkeyix; 5170 5171 /* XXX should take a locked ref to vap->iv_bss */ 5172 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5173 /* 5174 * Key cache is full; we'll fall back to doing 5175 * the more expensive lookup in software. Note 5176 * this also means no h/w compression. 5177 */ 5178 /* XXX msg+statistic */ 5179 } else { 5180 /* XXX locking? */ 5181 ni->ni_ucastkey.wk_keyix = keyix; 5182 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5183 /* NB: must mark device key to get called back on delete */ 5184 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5185 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5186 /* NB: this will create a pass-thru key entry */ 5187 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5188 } 5189 } 5190 5191 /* 5192 * Setup driver-specific state for a newly associated node. 5193 * Note that we're called also on a re-associate, the isnew 5194 * param tells us if this is the first time or not. 5195 */ 5196 static void 5197 ath_newassoc(struct ieee80211_node *ni, int isnew) 5198 { 5199 struct ath_node *an = ATH_NODE(ni); 5200 struct ieee80211vap *vap = ni->ni_vap; 5201 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5202 const struct ieee80211_txparam *tp = ni->ni_txparms; 5203 5204 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5205 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5206 5207 ath_rate_newassoc(sc, an, isnew); 5208 if (isnew && 5209 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5210 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5211 ath_setup_stationkey(ni); 5212 } 5213 5214 static int 5215 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5216 int nchans, struct ieee80211_channel chans[]) 5217 { 5218 struct ath_softc *sc = ic->ic_ifp->if_softc; 5219 struct ath_hal *ah = sc->sc_ah; 5220 HAL_STATUS status; 5221 5222 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5223 "%s: rd %u cc %u location %c%s\n", 5224 __func__, reg->regdomain, reg->country, reg->location, 5225 reg->ecm ? " ecm" : ""); 5226 5227 status = ath_hal_set_channels(ah, chans, nchans, 5228 reg->country, reg->regdomain); 5229 if (status != HAL_OK) { 5230 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5231 __func__, status); 5232 return EINVAL; /* XXX */ 5233 } 5234 5235 return 0; 5236 } 5237 5238 static void 5239 ath_getradiocaps(struct ieee80211com *ic, 5240 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5241 { 5242 struct ath_softc *sc = ic->ic_ifp->if_softc; 5243 struct ath_hal *ah = sc->sc_ah; 5244 5245 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5246 __func__, SKU_DEBUG, CTRY_DEFAULT); 5247 5248 /* XXX check return */ 5249 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5250 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5251 5252 } 5253 5254 static int 5255 ath_getchannels(struct ath_softc *sc) 5256 { 5257 struct ifnet *ifp = sc->sc_ifp; 5258 struct ieee80211com *ic = ifp->if_l2com; 5259 struct ath_hal *ah = sc->sc_ah; 5260 HAL_STATUS status; 5261 5262 /* 5263 * Collect channel set based on EEPROM contents. 5264 */ 5265 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5266 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5267 if (status != HAL_OK) { 5268 if_printf(ifp, "%s: unable to collect channel list from hal, " 5269 "status %d\n", __func__, status); 5270 return EINVAL; 5271 } 5272 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5273 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5274 /* XXX map Atheros sku's to net80211 SKU's */ 5275 /* XXX net80211 types too small */ 5276 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5277 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5278 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5279 ic->ic_regdomain.isocc[1] = ' '; 5280 5281 ic->ic_regdomain.ecm = 1; 5282 ic->ic_regdomain.location = 'I'; 5283 5284 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5285 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5286 __func__, sc->sc_eerd, sc->sc_eecc, 5287 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5288 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5289 return 0; 5290 } 5291 5292 static int 5293 ath_rate_setup(struct ath_softc *sc, u_int mode) 5294 { 5295 struct ath_hal *ah = sc->sc_ah; 5296 const HAL_RATE_TABLE *rt; 5297 5298 switch (mode) { 5299 case IEEE80211_MODE_11A: 5300 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5301 break; 5302 case IEEE80211_MODE_HALF: 5303 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5304 break; 5305 case IEEE80211_MODE_QUARTER: 5306 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5307 break; 5308 case IEEE80211_MODE_11B: 5309 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5310 break; 5311 case IEEE80211_MODE_11G: 5312 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5313 break; 5314 case IEEE80211_MODE_TURBO_A: 5315 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5316 break; 5317 case IEEE80211_MODE_TURBO_G: 5318 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5319 break; 5320 case IEEE80211_MODE_STURBO_A: 5321 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5322 break; 5323 case IEEE80211_MODE_11NA: 5324 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5325 break; 5326 case IEEE80211_MODE_11NG: 5327 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5328 break; 5329 default: 5330 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5331 __func__, mode); 5332 return 0; 5333 } 5334 sc->sc_rates[mode] = rt; 5335 return (rt != NULL); 5336 } 5337 5338 static void 5339 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5340 { 5341 #define N(a) (sizeof(a)/sizeof(a[0])) 5342 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5343 static const struct { 5344 u_int rate; /* tx/rx 802.11 rate */ 5345 u_int16_t timeOn; /* LED on time (ms) */ 5346 u_int16_t timeOff; /* LED off time (ms) */ 5347 } blinkrates[] = { 5348 { 108, 40, 10 }, 5349 { 96, 44, 11 }, 5350 { 72, 50, 13 }, 5351 { 48, 57, 14 }, 5352 { 36, 67, 16 }, 5353 { 24, 80, 20 }, 5354 { 22, 100, 25 }, 5355 { 18, 133, 34 }, 5356 { 12, 160, 40 }, 5357 { 10, 200, 50 }, 5358 { 6, 240, 58 }, 5359 { 4, 267, 66 }, 5360 { 2, 400, 100 }, 5361 { 0, 500, 130 }, 5362 /* XXX half/quarter rates */ 5363 }; 5364 const HAL_RATE_TABLE *rt; 5365 int i, j; 5366 5367 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5368 rt = sc->sc_rates[mode]; 5369 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5370 for (i = 0; i < rt->rateCount; i++) { 5371 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5372 if (rt->info[i].phy != IEEE80211_T_HT) 5373 sc->sc_rixmap[ieeerate] = i; 5374 else 5375 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5376 } 5377 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5378 for (i = 0; i < N(sc->sc_hwmap); i++) { 5379 if (i >= rt->rateCount) { 5380 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5381 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5382 continue; 5383 } 5384 sc->sc_hwmap[i].ieeerate = 5385 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5386 if (rt->info[i].phy == IEEE80211_T_HT) 5387 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5388 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5389 if (rt->info[i].shortPreamble || 5390 rt->info[i].phy == IEEE80211_T_OFDM) 5391 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5392 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5393 for (j = 0; j < N(blinkrates)-1; j++) 5394 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5395 break; 5396 /* NB: this uses the last entry if the rate isn't found */ 5397 /* XXX beware of overlow */ 5398 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5399 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5400 } 5401 sc->sc_currates = rt; 5402 sc->sc_curmode = mode; 5403 /* 5404 * All protection frames are transmited at 2Mb/s for 5405 * 11g, otherwise at 1Mb/s. 5406 */ 5407 if (mode == IEEE80211_MODE_11G) 5408 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5409 else 5410 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5411 /* NB: caller is responsible for resetting rate control state */ 5412 #undef N 5413 } 5414 5415 static void 5416 ath_watchdog(void *arg) 5417 { 5418 struct ath_softc *sc = arg; 5419 int do_reset = 0; 5420 5421 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5422 struct ifnet *ifp = sc->sc_ifp; 5423 uint32_t hangs; 5424 5425 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5426 hangs != 0) { 5427 if_printf(ifp, "%s hang detected (0x%x)\n", 5428 hangs & 0xff ? "bb" : "mac", hangs); 5429 } else 5430 if_printf(ifp, "device timeout\n"); 5431 do_reset = 1; 5432 ifp->if_oerrors++; 5433 sc->sc_stats.ast_watchdog++; 5434 } 5435 5436 /* 5437 * We can't hold the lock across the ath_reset() call. 5438 * 5439 * And since this routine can't hold a lock and sleep, 5440 * do the reset deferred. 5441 */ 5442 if (do_reset) { 5443 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5444 } 5445 5446 callout_schedule(&sc->sc_wd_ch, hz); 5447 } 5448 5449 /* 5450 * Fetch the rate control statistics for the given node. 5451 */ 5452 static int 5453 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5454 { 5455 struct ath_node *an; 5456 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5457 struct ieee80211_node *ni; 5458 int error = 0; 5459 5460 /* Perform a lookup on the given node */ 5461 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5462 if (ni == NULL) { 5463 error = EINVAL; 5464 goto bad; 5465 } 5466 5467 /* Lock the ath_node */ 5468 an = ATH_NODE(ni); 5469 ATH_NODE_LOCK(an); 5470 5471 /* Fetch the rate control stats for this node */ 5472 error = ath_rate_fetch_node_stats(sc, an, rs); 5473 5474 /* No matter what happens here, just drop through */ 5475 5476 /* Unlock the ath_node */ 5477 ATH_NODE_UNLOCK(an); 5478 5479 /* Unref the node */ 5480 ieee80211_node_decref(ni); 5481 5482 bad: 5483 return (error); 5484 } 5485 5486 #ifdef ATH_DIAGAPI 5487 /* 5488 * Diagnostic interface to the HAL. This is used by various 5489 * tools to do things like retrieve register contents for 5490 * debugging. The mechanism is intentionally opaque so that 5491 * it can change frequently w/o concern for compatiblity. 5492 */ 5493 static int 5494 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5495 { 5496 struct ath_hal *ah = sc->sc_ah; 5497 u_int id = ad->ad_id & ATH_DIAG_ID; 5498 void *indata = NULL; 5499 void *outdata = NULL; 5500 u_int32_t insize = ad->ad_in_size; 5501 u_int32_t outsize = ad->ad_out_size; 5502 int error = 0; 5503 5504 if (ad->ad_id & ATH_DIAG_IN) { 5505 /* 5506 * Copy in data. 5507 */ 5508 indata = malloc(insize, M_TEMP, M_NOWAIT); 5509 if (indata == NULL) { 5510 error = ENOMEM; 5511 goto bad; 5512 } 5513 error = copyin(ad->ad_in_data, indata, insize); 5514 if (error) 5515 goto bad; 5516 } 5517 if (ad->ad_id & ATH_DIAG_DYN) { 5518 /* 5519 * Allocate a buffer for the results (otherwise the HAL 5520 * returns a pointer to a buffer where we can read the 5521 * results). Note that we depend on the HAL leaving this 5522 * pointer for us to use below in reclaiming the buffer; 5523 * may want to be more defensive. 5524 */ 5525 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5526 if (outdata == NULL) { 5527 error = ENOMEM; 5528 goto bad; 5529 } 5530 } 5531 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5532 if (outsize < ad->ad_out_size) 5533 ad->ad_out_size = outsize; 5534 if (outdata != NULL) 5535 error = copyout(outdata, ad->ad_out_data, 5536 ad->ad_out_size); 5537 } else { 5538 error = EINVAL; 5539 } 5540 bad: 5541 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5542 free(indata, M_TEMP); 5543 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5544 free(outdata, M_TEMP); 5545 return error; 5546 } 5547 #endif /* ATH_DIAGAPI */ 5548 5549 static int 5550 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5551 { 5552 #define IS_RUNNING(ifp) \ 5553 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5554 struct ath_softc *sc = ifp->if_softc; 5555 struct ieee80211com *ic = ifp->if_l2com; 5556 struct ifreq *ifr = (struct ifreq *)data; 5557 const HAL_RATE_TABLE *rt; 5558 int error = 0; 5559 5560 switch (cmd) { 5561 case SIOCSIFFLAGS: 5562 ATH_LOCK(sc); 5563 if (IS_RUNNING(ifp)) { 5564 /* 5565 * To avoid rescanning another access point, 5566 * do not call ath_init() here. Instead, 5567 * only reflect promisc mode settings. 5568 */ 5569 ath_mode_init(sc); 5570 } else if (ifp->if_flags & IFF_UP) { 5571 /* 5572 * Beware of being called during attach/detach 5573 * to reset promiscuous mode. In that case we 5574 * will still be marked UP but not RUNNING. 5575 * However trying to re-init the interface 5576 * is the wrong thing to do as we've already 5577 * torn down much of our state. There's 5578 * probably a better way to deal with this. 5579 */ 5580 if (!sc->sc_invalid) 5581 ath_init(sc); /* XXX lose error */ 5582 } else { 5583 ath_stop_locked(ifp); 5584 #ifdef notyet 5585 /* XXX must wakeup in places like ath_vap_delete */ 5586 if (!sc->sc_invalid) 5587 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5588 #endif 5589 } 5590 ATH_UNLOCK(sc); 5591 break; 5592 case SIOCGIFMEDIA: 5593 case SIOCSIFMEDIA: 5594 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5595 break; 5596 case SIOCGATHSTATS: 5597 /* NB: embed these numbers to get a consistent view */ 5598 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5599 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5600 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5601 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5602 #ifdef IEEE80211_SUPPORT_TDMA 5603 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5604 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5605 #endif 5606 rt = sc->sc_currates; 5607 sc->sc_stats.ast_tx_rate = 5608 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5609 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5610 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5611 return copyout(&sc->sc_stats, 5612 ifr->ifr_data, sizeof (sc->sc_stats)); 5613 case SIOCGATHAGSTATS: 5614 return copyout(&sc->sc_aggr_stats, 5615 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5616 case SIOCZATHSTATS: 5617 error = priv_check(curthread, PRIV_DRIVER); 5618 if (error == 0) { 5619 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5620 memset(&sc->sc_aggr_stats, 0, 5621 sizeof(sc->sc_aggr_stats)); 5622 memset(&sc->sc_intr_stats, 0, 5623 sizeof(sc->sc_intr_stats)); 5624 } 5625 break; 5626 #ifdef ATH_DIAGAPI 5627 case SIOCGATHDIAG: 5628 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5629 break; 5630 case SIOCGATHPHYERR: 5631 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5632 break; 5633 #endif 5634 case SIOCGATHSPECTRAL: 5635 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 5636 break; 5637 case SIOCGATHNODERATESTATS: 5638 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5639 break; 5640 case SIOCGIFADDR: 5641 error = ether_ioctl(ifp, cmd, data); 5642 break; 5643 default: 5644 error = EINVAL; 5645 break; 5646 } 5647 return error; 5648 #undef IS_RUNNING 5649 } 5650 5651 /* 5652 * Announce various information on device/driver attach. 5653 */ 5654 static void 5655 ath_announce(struct ath_softc *sc) 5656 { 5657 struct ifnet *ifp = sc->sc_ifp; 5658 struct ath_hal *ah = sc->sc_ah; 5659 5660 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5661 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5662 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5663 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5664 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5665 if (bootverbose) { 5666 int i; 5667 for (i = 0; i <= WME_AC_VO; i++) { 5668 struct ath_txq *txq = sc->sc_ac2q[i]; 5669 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5670 txq->axq_qnum, ieee80211_wme_acnames[i]); 5671 } 5672 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5673 sc->sc_cabq->axq_qnum); 5674 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5675 } 5676 if (ath_rxbuf != ATH_RXBUF) 5677 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5678 if (ath_txbuf != ATH_TXBUF) 5679 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5680 if (sc->sc_mcastkey && bootverbose) 5681 if_printf(ifp, "using multicast key search\n"); 5682 } 5683 5684 static void 5685 ath_dfs_tasklet(void *p, int npending) 5686 { 5687 struct ath_softc *sc = (struct ath_softc *) p; 5688 struct ifnet *ifp = sc->sc_ifp; 5689 struct ieee80211com *ic = ifp->if_l2com; 5690 5691 /* 5692 * If previous processing has found a radar event, 5693 * signal this to the net80211 layer to begin DFS 5694 * processing. 5695 */ 5696 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5697 /* DFS event found, initiate channel change */ 5698 /* 5699 * XXX doesn't currently tell us whether the event 5700 * XXX was found in the primary or extension 5701 * XXX channel! 5702 */ 5703 IEEE80211_LOCK(ic); 5704 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5705 IEEE80211_UNLOCK(ic); 5706 } 5707 } 5708 5709 /* 5710 * Enable/disable power save. This must be called with 5711 * no TX driver locks currently held, so it should only 5712 * be called from the RX path (which doesn't hold any 5713 * TX driver locks.) 5714 */ 5715 static void 5716 ath_node_powersave(struct ieee80211_node *ni, int enable) 5717 { 5718 #ifdef ATH_SW_PSQ 5719 struct ath_node *an = ATH_NODE(ni); 5720 struct ieee80211com *ic = ni->ni_ic; 5721 struct ath_softc *sc = ic->ic_ifp->if_softc; 5722 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5723 5724 ATH_NODE_UNLOCK_ASSERT(an); 5725 /* XXX and no TXQ locks should be held here */ 5726 5727 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5728 __func__, ni, enable); 5729 5730 /* Suspend or resume software queue handling */ 5731 if (enable) 5732 ath_tx_node_sleep(sc, an); 5733 else 5734 ath_tx_node_wakeup(sc, an); 5735 5736 /* Update net80211 state */ 5737 avp->av_node_ps(ni, enable); 5738 #else 5739 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5740 5741 /* Update net80211 state */ 5742 avp->av_node_ps(ni, enable); 5743 #endif/* ATH_SW_PSQ */ 5744 } 5745 5746 /* 5747 * Notification from net80211 that the powersave queue state has 5748 * changed. 5749 * 5750 * Since the software queue also may have some frames: 5751 * 5752 * + if the node software queue has frames and the TID state 5753 * is 0, we set the TIM; 5754 * + if the node and the stack are both empty, we clear the TIM bit. 5755 * + If the stack tries to set the bit, always set it. 5756 * + If the stack tries to clear the bit, only clear it if the 5757 * software queue in question is also cleared. 5758 * 5759 * TODO: this is called during node teardown; so let's ensure this 5760 * is all correctly handled and that the TIM bit is cleared. 5761 * It may be that the node flush is called _AFTER_ the net80211 5762 * stack clears the TIM. 5763 * 5764 * Here is the racy part. Since it's possible >1 concurrent, 5765 * overlapping TXes will appear complete with a TX completion in 5766 * another thread, it's possible that the concurrent TIM calls will 5767 * clash. We can't hold the node lock here because setting the 5768 * TIM grabs the net80211 comlock and this may cause a LOR. 5769 * The solution is either to totally serialise _everything_ at 5770 * this point (ie, all TX, completion and any reset/flush go into 5771 * one taskqueue) or a new "ath TIM lock" needs to be created that 5772 * just wraps the driver state change and this call to avp->av_set_tim(). 5773 * 5774 * The same race exists in the net80211 power save queue handling 5775 * as well. Since multiple transmitting threads may queue frames 5776 * into the driver, as well as ps-poll and the driver transmitting 5777 * frames (and thus clearing the psq), it's quite possible that 5778 * a packet entering the PSQ and a ps-poll being handled will 5779 * race, causing the TIM to be cleared and not re-set. 5780 */ 5781 static int 5782 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5783 { 5784 #ifdef ATH_SW_PSQ 5785 struct ieee80211com *ic = ni->ni_ic; 5786 struct ath_softc *sc = ic->ic_ifp->if_softc; 5787 struct ath_node *an = ATH_NODE(ni); 5788 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5789 int changed = 0; 5790 5791 ATH_NODE_UNLOCK_ASSERT(an); 5792 5793 /* 5794 * For now, just track and then update the TIM. 5795 */ 5796 ATH_NODE_LOCK(an); 5797 an->an_stack_psq = enable; 5798 5799 /* 5800 * This will get called for all operating modes, 5801 * even if avp->av_set_tim is unset. 5802 * It's currently set for hostap/ibss modes; but 5803 * the same infrastructure is used for both STA 5804 * and AP/IBSS node power save. 5805 */ 5806 if (avp->av_set_tim == NULL) { 5807 ATH_NODE_UNLOCK(an); 5808 return (0); 5809 } 5810 5811 /* 5812 * If setting the bit, always set it here. 5813 * If clearing the bit, only clear it if the 5814 * software queue is also empty. 5815 * 5816 * If the node has left power save, just clear the TIM 5817 * bit regardless of the state of the power save queue. 5818 * 5819 * XXX TODO: although atomics are used, it's quite possible 5820 * that a race will occur between this and setting/clearing 5821 * in another thread. TX completion will occur always in 5822 * one thread, however setting/clearing the TIM bit can come 5823 * from a variety of different process contexts! 5824 */ 5825 if (enable && an->an_tim_set == 1) { 5826 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5827 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5828 __func__, an, enable); 5829 ATH_NODE_UNLOCK(an); 5830 } else if (enable) { 5831 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5832 "%s: an=%p, enable=%d, enabling TIM\n", 5833 __func__, an, enable); 5834 an->an_tim_set = 1; 5835 ATH_NODE_UNLOCK(an); 5836 changed = avp->av_set_tim(ni, enable); 5837 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5838 /* disable */ 5839 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5840 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5841 __func__, an, enable); 5842 an->an_tim_set = 0; 5843 ATH_NODE_UNLOCK(an); 5844 changed = avp->av_set_tim(ni, enable); 5845 } else if (! an->an_is_powersave) { 5846 /* 5847 * disable regardless; the node isn't in powersave now 5848 */ 5849 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5850 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5851 __func__, an, enable); 5852 an->an_tim_set = 0; 5853 ATH_NODE_UNLOCK(an); 5854 changed = avp->av_set_tim(ni, enable); 5855 } else { 5856 /* 5857 * psq disable, node is currently in powersave, node 5858 * software queue isn't empty, so don't clear the TIM bit 5859 * for now. 5860 */ 5861 ATH_NODE_UNLOCK(an); 5862 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5863 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5864 __func__, enable); 5865 changed = 0; 5866 } 5867 5868 return (changed); 5869 #else 5870 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5871 5872 /* 5873 * Some operating modes don't set av_set_tim(), so don't 5874 * update it here. 5875 */ 5876 if (avp->av_set_tim == NULL) 5877 return (0); 5878 5879 return (avp->av_set_tim(ni, enable)); 5880 #endif /* ATH_SW_PSQ */ 5881 } 5882 5883 /* 5884 * Set or update the TIM from the software queue. 5885 * 5886 * Check the software queue depth before attempting to do lock 5887 * anything; that avoids trying to obtain the lock. Then, 5888 * re-check afterwards to ensure nothing has changed in the 5889 * meantime. 5890 * 5891 * set: This is designed to be called from the TX path, after 5892 * a frame has been queued; to see if the swq > 0. 5893 * 5894 * clear: This is designed to be called from the buffer completion point 5895 * (right now it's ath_tx_default_comp()) where the state of 5896 * a software queue has changed. 5897 * 5898 * It makes sense to place it at buffer free / completion rather 5899 * than after each software queue operation, as there's no real 5900 * point in churning the TIM bit as the last frames in the software 5901 * queue are transmitted. If they fail and we retry them, we'd 5902 * just be setting the TIM bit again anyway. 5903 */ 5904 void 5905 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5906 int enable) 5907 { 5908 #ifdef ATH_SW_PSQ 5909 struct ath_node *an; 5910 struct ath_vap *avp; 5911 5912 /* Don't do this for broadcast/etc frames */ 5913 if (ni == NULL) 5914 return; 5915 5916 an = ATH_NODE(ni); 5917 avp = ATH_VAP(ni->ni_vap); 5918 5919 /* 5920 * And for operating modes without the TIM handler set, let's 5921 * just skip those. 5922 */ 5923 if (avp->av_set_tim == NULL) 5924 return; 5925 5926 ATH_NODE_UNLOCK_ASSERT(an); 5927 5928 if (enable) { 5929 /* 5930 * Don't bother grabbing the lock unless the queue is not 5931 * empty. 5932 */ 5933 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5934 return; 5935 5936 ATH_NODE_LOCK(an); 5937 if (an->an_is_powersave && 5938 an->an_tim_set == 0 && 5939 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5940 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5941 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5942 __func__, an); 5943 an->an_tim_set = 1; 5944 ATH_NODE_UNLOCK(an); 5945 (void) avp->av_set_tim(ni, 1); 5946 } else { 5947 ATH_NODE_UNLOCK(an); 5948 } 5949 } else { 5950 /* 5951 * Don't bother grabbing the lock unless the queue is empty. 5952 */ 5953 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5954 return; 5955 5956 ATH_NODE_LOCK(an); 5957 if (an->an_is_powersave && 5958 an->an_stack_psq == 0 && 5959 an->an_tim_set == 1 && 5960 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5961 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5962 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5963 " clear!\n", 5964 __func__, an); 5965 an->an_tim_set = 0; 5966 ATH_NODE_UNLOCK(an); 5967 (void) avp->av_set_tim(ni, 0); 5968 } else { 5969 ATH_NODE_UNLOCK(an); 5970 } 5971 } 5972 #else 5973 return; 5974 #endif /* ATH_SW_PSQ */ 5975 } 5976 5977 MODULE_VERSION(if_ath, 1); 5978 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5979 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5980 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5981 #endif 5982