xref: /freebsd/sys/dev/ath/if_ath.c (revision d1328898eb700b0a8438a7532aa720d975744570)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_beacon.h>
112 #include <dev/ath/if_athdfs.h>
113 
114 #ifdef ATH_TX99_DIAG
115 #include <dev/ath/ath_tx99/ath_tx99.h>
116 #endif
117 
118 #define	ATH_KTR_INTR	KTR_SPARE4
119 #define	ATH_KTR_ERR	KTR_SPARE3
120 
121 /*
122  * ATH_BCBUF determines the number of vap's that can transmit
123  * beacons and also (currently) the number of vap's that can
124  * have unique mac addresses/bssid.  When staggering beacons
125  * 4 is probably a good max as otherwise the beacons become
126  * very closely spaced and there is limited time for cab q traffic
127  * to go out.  You can burst beacons instead but that is not good
128  * for stations in power save and at some point you really want
129  * another radio (and channel).
130  *
131  * The limit on the number of mac addresses is tied to our use of
132  * the U/L bit and tracking addresses in a byte; it would be
133  * worthwhile to allow more for applications like proxy sta.
134  */
135 CTASSERT(ATH_BCBUF <= 8);
136 
137 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
138 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
139 		    const uint8_t [IEEE80211_ADDR_LEN],
140 		    const uint8_t [IEEE80211_ADDR_LEN]);
141 static void	ath_vap_delete(struct ieee80211vap *);
142 static void	ath_init(void *);
143 static void	ath_stop_locked(struct ifnet *);
144 static void	ath_stop(struct ifnet *);
145 static int	ath_reset_vap(struct ieee80211vap *, u_long);
146 static int	ath_media_change(struct ifnet *);
147 static void	ath_watchdog(void *);
148 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
149 static void	ath_fatal_proc(void *, int);
150 static void	ath_bmiss_vap(struct ieee80211vap *);
151 static void	ath_bmiss_proc(void *, int);
152 static void	ath_key_update_begin(struct ieee80211vap *);
153 static void	ath_key_update_end(struct ieee80211vap *);
154 static void	ath_update_mcast(struct ifnet *);
155 static void	ath_update_promisc(struct ifnet *);
156 static void	ath_updateslot(struct ifnet *);
157 static void	ath_bstuck_proc(void *, int);
158 static void	ath_reset_proc(void *, int);
159 static void	ath_descdma_cleanup(struct ath_softc *sc,
160 			struct ath_descdma *, ath_bufhead *);
161 static int	ath_desc_alloc(struct ath_softc *);
162 static void	ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
164 			const uint8_t [IEEE80211_ADDR_LEN]);
165 static void	ath_node_cleanup(struct ieee80211_node *);
166 static void	ath_node_free(struct ieee80211_node *);
167 static void	ath_node_getsignal(const struct ieee80211_node *,
168 			int8_t *, int8_t *);
169 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
170 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
171 static int	ath_tx_setup(struct ath_softc *, int, int);
172 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
173 static void	ath_tx_cleanup(struct ath_softc *);
174 static void	ath_tx_proc_q0(void *, int);
175 static void	ath_tx_proc_q0123(void *, int);
176 static void	ath_tx_proc(void *, int);
177 static void	ath_txq_sched_tasklet(void *, int);
178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
180 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181 static void	ath_scan_start(struct ieee80211com *);
182 static void	ath_scan_end(struct ieee80211com *);
183 static void	ath_set_channel(struct ieee80211com *);
184 #ifdef	ATH_ENABLE_11N
185 static void	ath_update_chw(struct ieee80211com *);
186 #endif	/* ATH_ENABLE_11N */
187 static void	ath_calibrate(void *);
188 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189 static void	ath_setup_stationkey(struct ieee80211_node *);
190 static void	ath_newassoc(struct ieee80211_node *, int);
191 static int	ath_setregdomain(struct ieee80211com *,
192 		    struct ieee80211_regdomain *, int,
193 		    struct ieee80211_channel []);
194 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
195 		    struct ieee80211_channel []);
196 static int	ath_getchannels(struct ath_softc *);
197 
198 static int	ath_rate_setup(struct ath_softc *, u_int mode);
199 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
200 
201 static void	ath_announce(struct ath_softc *);
202 
203 static void	ath_dfs_tasklet(void *, int);
204 
205 #ifdef IEEE80211_SUPPORT_TDMA
206 #include <dev/ath/if_ath_tdma.h>
207 #endif
208 
209 #if 0
210 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
211 #define	TDMA_LPF_LEN		6
212 #define	TDMA_DUMMY_MARKER	0x127
213 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
214 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
215 #define	TDMA_LPF(x, y, len) \
216     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
217 #define	TDMA_SAMPLE(x, y) do {					\
218 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
219 } while (0)
220 #define	TDMA_EP_RND(x,mul) \
221 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
222 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
223 #endif /* IEEE80211_SUPPORT_TDMA */
224 
225 SYSCTL_DECL(_hw_ath);
226 
227 /* XXX validate sysctl values */
228 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
229 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
230 	    0, "long chip calibration interval (secs)");
231 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
232 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
233 	    0, "short chip calibration interval (msecs)");
234 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
235 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
236 	    0, "reset chip calibration results (secs)");
237 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
238 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
239 	    0, "ANI calibration (msecs)");
240 
241 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
242 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
243 	    0, "rx buffers allocated");
244 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
245 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
247 	    0, "tx buffers allocated");
248 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
249 static	int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
251 	    0, "tx (mgmt) buffers allocated");
252 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
253 
254 int ath_bstuck_threshold = 4;		/* max missed beacons */
255 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
256 	    0, "max missed beacon xmits before chip reset");
257 
258 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
259 
260 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
261 #define	HAL_MODE_HT40 \
262 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
263 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
264 int
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
266 {
267 	struct ifnet *ifp;
268 	struct ieee80211com *ic;
269 	struct ath_hal *ah = NULL;
270 	HAL_STATUS status;
271 	int error = 0, i;
272 	u_int wmodes;
273 	uint8_t macaddr[IEEE80211_ADDR_LEN];
274 	int rx_chainmask, tx_chainmask;
275 
276 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
277 
278 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
279 	if (ifp == NULL) {
280 		device_printf(sc->sc_dev, "can not if_alloc()\n");
281 		error = ENOSPC;
282 		goto bad;
283 	}
284 	ic = ifp->if_l2com;
285 
286 	/* set these up early for if_printf use */
287 	if_initname(ifp, device_get_name(sc->sc_dev),
288 		device_get_unit(sc->sc_dev));
289 
290 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
291 	    sc->sc_eepromdata, &status);
292 	if (ah == NULL) {
293 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
294 			status);
295 		error = ENXIO;
296 		goto bad;
297 	}
298 	sc->sc_ah = ah;
299 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
300 #ifdef	ATH_DEBUG
301 	sc->sc_debug = ath_debug;
302 #endif
303 
304 	/*
305 	 * Check if the MAC has multi-rate retry support.
306 	 * We do this by trying to setup a fake extended
307 	 * descriptor.  MAC's that don't have support will
308 	 * return false w/o doing anything.  MAC's that do
309 	 * support it will return true w/o doing anything.
310 	 */
311 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
312 
313 	/*
314 	 * Check if the device has hardware counters for PHY
315 	 * errors.  If so we need to enable the MIB interrupt
316 	 * so we can act on stat triggers.
317 	 */
318 	if (ath_hal_hwphycounters(ah))
319 		sc->sc_needmib = 1;
320 
321 	/*
322 	 * Get the hardware key cache size.
323 	 */
324 	sc->sc_keymax = ath_hal_keycachesize(ah);
325 	if (sc->sc_keymax > ATH_KEYMAX) {
326 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
327 			ATH_KEYMAX, sc->sc_keymax);
328 		sc->sc_keymax = ATH_KEYMAX;
329 	}
330 	/*
331 	 * Reset the key cache since some parts do not
332 	 * reset the contents on initial power up.
333 	 */
334 	for (i = 0; i < sc->sc_keymax; i++)
335 		ath_hal_keyreset(ah, i);
336 
337 	/*
338 	 * Collect the default channel list.
339 	 */
340 	error = ath_getchannels(sc);
341 	if (error != 0)
342 		goto bad;
343 
344 	/*
345 	 * Setup rate tables for all potential media types.
346 	 */
347 	ath_rate_setup(sc, IEEE80211_MODE_11A);
348 	ath_rate_setup(sc, IEEE80211_MODE_11B);
349 	ath_rate_setup(sc, IEEE80211_MODE_11G);
350 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
351 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
352 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
353 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
354 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
355 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
356 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
357 
358 	/* NB: setup here so ath_rate_update is happy */
359 	ath_setcurmode(sc, IEEE80211_MODE_11A);
360 
361 	/*
362 	 * Allocate tx+rx descriptors and populate the lists.
363 	 */
364 	error = ath_desc_alloc(sc);
365 	if (error != 0) {
366 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
367 		goto bad;
368 	}
369 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
370 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
371 
372 	ATH_TXBUF_LOCK_INIT(sc);
373 
374 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
375 		taskqueue_thread_enqueue, &sc->sc_tq);
376 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
377 		"%s taskq", ifp->if_xname);
378 
379 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
380 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
381 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
382 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
383 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
384 	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
385 
386 	/*
387 	 * Allocate hardware transmit queues: one queue for
388 	 * beacon frames and one data queue for each QoS
389 	 * priority.  Note that the hal handles resetting
390 	 * these queues at the needed time.
391 	 *
392 	 * XXX PS-Poll
393 	 */
394 	sc->sc_bhalq = ath_beaconq_setup(ah);
395 	if (sc->sc_bhalq == (u_int) -1) {
396 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
397 		error = EIO;
398 		goto bad2;
399 	}
400 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
401 	if (sc->sc_cabq == NULL) {
402 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
403 		error = EIO;
404 		goto bad2;
405 	}
406 	/* NB: insure BK queue is the lowest priority h/w queue */
407 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
408 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
409 			ieee80211_wme_acnames[WME_AC_BK]);
410 		error = EIO;
411 		goto bad2;
412 	}
413 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
414 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
415 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
416 		/*
417 		 * Not enough hardware tx queues to properly do WME;
418 		 * just punt and assign them all to the same h/w queue.
419 		 * We could do a better job of this if, for example,
420 		 * we allocate queues when we switch from station to
421 		 * AP mode.
422 		 */
423 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
424 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
425 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
426 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
427 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
428 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
429 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
430 	}
431 
432 	/*
433 	 * Special case certain configurations.  Note the
434 	 * CAB queue is handled by these specially so don't
435 	 * include them when checking the txq setup mask.
436 	 */
437 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
438 	case 0x01:
439 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
440 		break;
441 	case 0x0f:
442 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
443 		break;
444 	default:
445 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
446 		break;
447 	}
448 
449 	/*
450 	 * Setup rate control.  Some rate control modules
451 	 * call back to change the anntena state so expose
452 	 * the necessary entry points.
453 	 * XXX maybe belongs in struct ath_ratectrl?
454 	 */
455 	sc->sc_setdefantenna = ath_setdefantenna;
456 	sc->sc_rc = ath_rate_attach(sc);
457 	if (sc->sc_rc == NULL) {
458 		error = EIO;
459 		goto bad2;
460 	}
461 
462 	/* Attach DFS module */
463 	if (! ath_dfs_attach(sc)) {
464 		device_printf(sc->sc_dev,
465 		    "%s: unable to attach DFS\n", __func__);
466 		error = EIO;
467 		goto bad2;
468 	}
469 
470 	/* Start DFS processing tasklet */
471 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
472 
473 	/* Configure LED state */
474 	sc->sc_blinking = 0;
475 	sc->sc_ledstate = 1;
476 	sc->sc_ledon = 0;			/* low true */
477 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
478 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
479 
480 	/*
481 	 * Don't setup hardware-based blinking.
482 	 *
483 	 * Although some NICs may have this configured in the
484 	 * default reset register values, the user may wish
485 	 * to alter which pins have which function.
486 	 *
487 	 * The reference driver attaches the MAC network LED to GPIO1 and
488 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
489 	 * NIC has these reversed.
490 	 */
491 	sc->sc_hardled = (1 == 0);
492 	sc->sc_led_net_pin = -1;
493 	sc->sc_led_pwr_pin = -1;
494 	/*
495 	 * Auto-enable soft led processing for IBM cards and for
496 	 * 5211 minipci cards.  Users can also manually enable/disable
497 	 * support with a sysctl.
498 	 */
499 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
500 	ath_led_config(sc);
501 	ath_hal_setledstate(ah, HAL_LED_INIT);
502 
503 	ifp->if_softc = sc;
504 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
505 	ifp->if_start = ath_start;
506 	ifp->if_ioctl = ath_ioctl;
507 	ifp->if_init = ath_init;
508 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
509 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
510 	IFQ_SET_READY(&ifp->if_snd);
511 
512 	ic->ic_ifp = ifp;
513 	/* XXX not right but it's not used anywhere important */
514 	ic->ic_phytype = IEEE80211_T_OFDM;
515 	ic->ic_opmode = IEEE80211_M_STA;
516 	ic->ic_caps =
517 		  IEEE80211_C_STA		/* station mode */
518 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
519 		| IEEE80211_C_HOSTAP		/* hostap mode */
520 		| IEEE80211_C_MONITOR		/* monitor mode */
521 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
522 		| IEEE80211_C_WDS		/* 4-address traffic works */
523 		| IEEE80211_C_MBSS		/* mesh point link mode */
524 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
525 		| IEEE80211_C_SHSLOT		/* short slot time supported */
526 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
527 #ifndef	ATH_ENABLE_11N
528 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
529 #endif
530 		| IEEE80211_C_TXFRAG		/* handle tx frags */
531 #ifdef	ATH_ENABLE_DFS
532 		| IEEE80211_C_DFS		/* Enable radar detection */
533 #endif
534 		;
535 	/*
536 	 * Query the hal to figure out h/w crypto support.
537 	 */
538 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
539 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
540 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
541 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
542 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
543 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
544 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
545 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
546 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
547 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
548 		/*
549 		 * Check if h/w does the MIC and/or whether the
550 		 * separate key cache entries are required to
551 		 * handle both tx+rx MIC keys.
552 		 */
553 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
554 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
555 		/*
556 		 * If the h/w supports storing tx+rx MIC keys
557 		 * in one cache slot automatically enable use.
558 		 */
559 		if (ath_hal_hastkipsplit(ah) ||
560 		    !ath_hal_settkipsplit(ah, AH_FALSE))
561 			sc->sc_splitmic = 1;
562 		/*
563 		 * If the h/w can do TKIP MIC together with WME then
564 		 * we use it; otherwise we force the MIC to be done
565 		 * in software by the net80211 layer.
566 		 */
567 		if (ath_hal_haswmetkipmic(ah))
568 			sc->sc_wmetkipmic = 1;
569 	}
570 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
571 	/*
572 	 * Check for multicast key search support.
573 	 */
574 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
575 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
576 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
577 	}
578 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
579 	/*
580 	 * Mark key cache slots associated with global keys
581 	 * as in use.  If we knew TKIP was not to be used we
582 	 * could leave the +32, +64, and +32+64 slots free.
583 	 */
584 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
585 		setbit(sc->sc_keymap, i);
586 		setbit(sc->sc_keymap, i+64);
587 		if (sc->sc_splitmic) {
588 			setbit(sc->sc_keymap, i+32);
589 			setbit(sc->sc_keymap, i+32+64);
590 		}
591 	}
592 	/*
593 	 * TPC support can be done either with a global cap or
594 	 * per-packet support.  The latter is not available on
595 	 * all parts.  We're a bit pedantic here as all parts
596 	 * support a global cap.
597 	 */
598 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
599 		ic->ic_caps |= IEEE80211_C_TXPMGT;
600 
601 	/*
602 	 * Mark WME capability only if we have sufficient
603 	 * hardware queues to do proper priority scheduling.
604 	 */
605 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
606 		ic->ic_caps |= IEEE80211_C_WME;
607 	/*
608 	 * Check for misc other capabilities.
609 	 */
610 	if (ath_hal_hasbursting(ah))
611 		ic->ic_caps |= IEEE80211_C_BURST;
612 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
613 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
614 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
615 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
616 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
617 	if (ath_hal_hasfastframes(ah))
618 		ic->ic_caps |= IEEE80211_C_FF;
619 	wmodes = ath_hal_getwirelessmodes(ah);
620 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
621 		ic->ic_caps |= IEEE80211_C_TURBOP;
622 #ifdef IEEE80211_SUPPORT_TDMA
623 	if (ath_hal_macversion(ah) > 0x78) {
624 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
625 		ic->ic_tdma_update = ath_tdma_update;
626 	}
627 #endif
628 
629 	/*
630 	 * TODO: enforce that at least this many frames are available
631 	 * in the txbuf list before allowing data frames (raw or
632 	 * otherwise) to be transmitted.
633 	 */
634 	sc->sc_txq_data_minfree = 10;
635 	/*
636 	 * Leave this as default to maintain legacy behaviour.
637 	 * Shortening the cabq/mcastq may end up causing some
638 	 * undesirable behaviour.
639 	 */
640 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
641 
642 	/*
643 	 * Allow the TX and RX chainmasks to be overridden by
644 	 * environment variables and/or device.hints.
645 	 *
646 	 * This must be done early - before the hardware is
647 	 * calibrated or before the 802.11n stream calculation
648 	 * is done.
649 	 */
650 	if (resource_int_value(device_get_name(sc->sc_dev),
651 	    device_get_unit(sc->sc_dev), "rx_chainmask",
652 	    &rx_chainmask) == 0) {
653 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
654 		    rx_chainmask);
655 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
656 	}
657 	if (resource_int_value(device_get_name(sc->sc_dev),
658 	    device_get_unit(sc->sc_dev), "tx_chainmask",
659 	    &tx_chainmask) == 0) {
660 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
661 		    tx_chainmask);
662 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
663 	}
664 
665 #ifdef	ATH_ENABLE_11N
666 	/*
667 	 * Query HT capabilities
668 	 */
669 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
670 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
671 		int rxs, txs;
672 
673 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
674 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
675 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
676 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
677 			    | IEEE80211_HTCAP_MAXAMSDU_3839
678 			    				/* max A-MSDU length */
679 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
680 			;
681 
682 		/*
683 		 * Enable short-GI for HT20 only if the hardware
684 		 * advertises support.
685 		 * Notably, anything earlier than the AR9287 doesn't.
686 		 */
687 		if ((ath_hal_getcapability(ah,
688 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
689 		    (wmodes & HAL_MODE_HT20)) {
690 			device_printf(sc->sc_dev,
691 			    "[HT] enabling short-GI in 20MHz mode\n");
692 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
693 		}
694 
695 		if (wmodes & HAL_MODE_HT40)
696 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
697 			    |  IEEE80211_HTCAP_SHORTGI40;
698 
699 		/*
700 		 * TX/RX streams need to be taken into account when
701 		 * negotiating which MCS rates it'll receive and
702 		 * what MCS rates are available for TX.
703 		 */
704 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
705 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
706 
707 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
708 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
709 
710 		ic->ic_txstream = txs;
711 		ic->ic_rxstream = rxs;
712 
713 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
714 		    &sc->sc_rts_aggr_limit);
715 		if (sc->sc_rts_aggr_limit != (64 * 1024))
716 			device_printf(sc->sc_dev,
717 			    "[HT] RTS aggregates limited to %d KiB\n",
718 			    sc->sc_rts_aggr_limit / 1024);
719 
720 		device_printf(sc->sc_dev,
721 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
722 	}
723 #endif
724 
725 	/*
726 	 * Check if the hardware requires PCI register serialisation.
727 	 * Some of the Owl based MACs require this.
728 	 */
729 	if (mp_ncpus > 1 &&
730 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
731 	     0, NULL) == HAL_OK) {
732 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
733 		device_printf(sc->sc_dev,
734 		    "Enabling register serialisation\n");
735 	}
736 
737 	/*
738 	 * Indicate we need the 802.11 header padded to a
739 	 * 32-bit boundary for 4-address and QoS frames.
740 	 */
741 	ic->ic_flags |= IEEE80211_F_DATAPAD;
742 
743 	/*
744 	 * Query the hal about antenna support.
745 	 */
746 	sc->sc_defant = ath_hal_getdefantenna(ah);
747 
748 	/*
749 	 * Not all chips have the VEOL support we want to
750 	 * use with IBSS beacons; check here for it.
751 	 */
752 	sc->sc_hasveol = ath_hal_hasveol(ah);
753 
754 	/* get mac address from hardware */
755 	ath_hal_getmac(ah, macaddr);
756 	if (sc->sc_hasbmask)
757 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
758 
759 	/* NB: used to size node table key mapping array */
760 	ic->ic_max_keyix = sc->sc_keymax;
761 	/* call MI attach routine. */
762 	ieee80211_ifattach(ic, macaddr);
763 	ic->ic_setregdomain = ath_setregdomain;
764 	ic->ic_getradiocaps = ath_getradiocaps;
765 	sc->sc_opmode = HAL_M_STA;
766 
767 	/* override default methods */
768 	ic->ic_newassoc = ath_newassoc;
769 	ic->ic_updateslot = ath_updateslot;
770 	ic->ic_wme.wme_update = ath_wme_update;
771 	ic->ic_vap_create = ath_vap_create;
772 	ic->ic_vap_delete = ath_vap_delete;
773 	ic->ic_raw_xmit = ath_raw_xmit;
774 	ic->ic_update_mcast = ath_update_mcast;
775 	ic->ic_update_promisc = ath_update_promisc;
776 	ic->ic_node_alloc = ath_node_alloc;
777 	sc->sc_node_free = ic->ic_node_free;
778 	ic->ic_node_free = ath_node_free;
779 	sc->sc_node_cleanup = ic->ic_node_cleanup;
780 	ic->ic_node_cleanup = ath_node_cleanup;
781 	ic->ic_node_getsignal = ath_node_getsignal;
782 	ic->ic_scan_start = ath_scan_start;
783 	ic->ic_scan_end = ath_scan_end;
784 	ic->ic_set_channel = ath_set_channel;
785 #ifdef	ATH_ENABLE_11N
786 	/* 802.11n specific - but just override anyway */
787 	sc->sc_addba_request = ic->ic_addba_request;
788 	sc->sc_addba_response = ic->ic_addba_response;
789 	sc->sc_addba_stop = ic->ic_addba_stop;
790 	sc->sc_bar_response = ic->ic_bar_response;
791 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
792 
793 	ic->ic_addba_request = ath_addba_request;
794 	ic->ic_addba_response = ath_addba_response;
795 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
796 	ic->ic_addba_stop = ath_addba_stop;
797 	ic->ic_bar_response = ath_bar_response;
798 
799 	ic->ic_update_chw = ath_update_chw;
800 #endif	/* ATH_ENABLE_11N */
801 
802 	ieee80211_radiotap_attach(ic,
803 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
804 		ATH_TX_RADIOTAP_PRESENT,
805 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
806 		ATH_RX_RADIOTAP_PRESENT);
807 
808 	/*
809 	 * Setup dynamic sysctl's now that country code and
810 	 * regdomain are available from the hal.
811 	 */
812 	ath_sysctlattach(sc);
813 	ath_sysctl_stats_attach(sc);
814 	ath_sysctl_hal_attach(sc);
815 
816 	if (bootverbose)
817 		ieee80211_announce(ic);
818 	ath_announce(sc);
819 	return 0;
820 bad2:
821 	ath_tx_cleanup(sc);
822 	ath_desc_free(sc);
823 bad:
824 	if (ah)
825 		ath_hal_detach(ah);
826 	if (ifp != NULL)
827 		if_free(ifp);
828 	sc->sc_invalid = 1;
829 	return error;
830 }
831 
832 int
833 ath_detach(struct ath_softc *sc)
834 {
835 	struct ifnet *ifp = sc->sc_ifp;
836 
837 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
838 		__func__, ifp->if_flags);
839 
840 	/*
841 	 * NB: the order of these is important:
842 	 * o stop the chip so no more interrupts will fire
843 	 * o call the 802.11 layer before detaching the hal to
844 	 *   insure callbacks into the driver to delete global
845 	 *   key cache entries can be handled
846 	 * o free the taskqueue which drains any pending tasks
847 	 * o reclaim the tx queue data structures after calling
848 	 *   the 802.11 layer as we'll get called back to reclaim
849 	 *   node state and potentially want to use them
850 	 * o to cleanup the tx queues the hal is called, so detach
851 	 *   it last
852 	 * Other than that, it's straightforward...
853 	 */
854 	ath_stop(ifp);
855 	ieee80211_ifdetach(ifp->if_l2com);
856 	taskqueue_free(sc->sc_tq);
857 #ifdef ATH_TX99_DIAG
858 	if (sc->sc_tx99 != NULL)
859 		sc->sc_tx99->detach(sc->sc_tx99);
860 #endif
861 	ath_rate_detach(sc->sc_rc);
862 
863 	ath_dfs_detach(sc);
864 	ath_desc_free(sc);
865 	ath_tx_cleanup(sc);
866 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
867 	if_free(ifp);
868 
869 	return 0;
870 }
871 
872 /*
873  * MAC address handling for multiple BSS on the same radio.
874  * The first vap uses the MAC address from the EEPROM.  For
875  * subsequent vap's we set the U/L bit (bit 1) in the MAC
876  * address and use the next six bits as an index.
877  */
878 static void
879 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
880 {
881 	int i;
882 
883 	if (clone && sc->sc_hasbmask) {
884 		/* NB: we only do this if h/w supports multiple bssid */
885 		for (i = 0; i < 8; i++)
886 			if ((sc->sc_bssidmask & (1<<i)) == 0)
887 				break;
888 		if (i != 0)
889 			mac[0] |= (i << 2)|0x2;
890 	} else
891 		i = 0;
892 	sc->sc_bssidmask |= 1<<i;
893 	sc->sc_hwbssidmask[0] &= ~mac[0];
894 	if (i == 0)
895 		sc->sc_nbssid0++;
896 }
897 
898 static void
899 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
900 {
901 	int i = mac[0] >> 2;
902 	uint8_t mask;
903 
904 	if (i != 0 || --sc->sc_nbssid0 == 0) {
905 		sc->sc_bssidmask &= ~(1<<i);
906 		/* recalculate bssid mask from remaining addresses */
907 		mask = 0xff;
908 		for (i = 1; i < 8; i++)
909 			if (sc->sc_bssidmask & (1<<i))
910 				mask &= ~((i<<2)|0x2);
911 		sc->sc_hwbssidmask[0] |= mask;
912 	}
913 }
914 
915 /*
916  * Assign a beacon xmit slot.  We try to space out
917  * assignments so when beacons are staggered the
918  * traffic coming out of the cab q has maximal time
919  * to go out before the next beacon is scheduled.
920  */
921 static int
922 assign_bslot(struct ath_softc *sc)
923 {
924 	u_int slot, free;
925 
926 	free = 0;
927 	for (slot = 0; slot < ATH_BCBUF; slot++)
928 		if (sc->sc_bslot[slot] == NULL) {
929 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
930 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
931 				return slot;
932 			free = slot;
933 			/* NB: keep looking for a double slot */
934 		}
935 	return free;
936 }
937 
938 static struct ieee80211vap *
939 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
940     enum ieee80211_opmode opmode, int flags,
941     const uint8_t bssid[IEEE80211_ADDR_LEN],
942     const uint8_t mac0[IEEE80211_ADDR_LEN])
943 {
944 	struct ath_softc *sc = ic->ic_ifp->if_softc;
945 	struct ath_vap *avp;
946 	struct ieee80211vap *vap;
947 	uint8_t mac[IEEE80211_ADDR_LEN];
948 	int needbeacon, error;
949 	enum ieee80211_opmode ic_opmode;
950 
951 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
952 	    M_80211_VAP, M_WAITOK | M_ZERO);
953 	needbeacon = 0;
954 	IEEE80211_ADDR_COPY(mac, mac0);
955 
956 	ATH_LOCK(sc);
957 	ic_opmode = opmode;		/* default to opmode of new vap */
958 	switch (opmode) {
959 	case IEEE80211_M_STA:
960 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
961 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
962 			goto bad;
963 		}
964 		if (sc->sc_nvaps) {
965 			/*
966 			 * With multiple vaps we must fall back
967 			 * to s/w beacon miss handling.
968 			 */
969 			flags |= IEEE80211_CLONE_NOBEACONS;
970 		}
971 		if (flags & IEEE80211_CLONE_NOBEACONS) {
972 			/*
973 			 * Station mode w/o beacons are implemented w/ AP mode.
974 			 */
975 			ic_opmode = IEEE80211_M_HOSTAP;
976 		}
977 		break;
978 	case IEEE80211_M_IBSS:
979 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
980 			device_printf(sc->sc_dev,
981 			    "only 1 ibss vap supported\n");
982 			goto bad;
983 		}
984 		needbeacon = 1;
985 		break;
986 	case IEEE80211_M_AHDEMO:
987 #ifdef IEEE80211_SUPPORT_TDMA
988 		if (flags & IEEE80211_CLONE_TDMA) {
989 			if (sc->sc_nvaps != 0) {
990 				device_printf(sc->sc_dev,
991 				    "only 1 tdma vap supported\n");
992 				goto bad;
993 			}
994 			needbeacon = 1;
995 			flags |= IEEE80211_CLONE_NOBEACONS;
996 		}
997 		/* fall thru... */
998 #endif
999 	case IEEE80211_M_MONITOR:
1000 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1001 			/*
1002 			 * Adopt existing mode.  Adding a monitor or ahdemo
1003 			 * vap to an existing configuration is of dubious
1004 			 * value but should be ok.
1005 			 */
1006 			/* XXX not right for monitor mode */
1007 			ic_opmode = ic->ic_opmode;
1008 		}
1009 		break;
1010 	case IEEE80211_M_HOSTAP:
1011 	case IEEE80211_M_MBSS:
1012 		needbeacon = 1;
1013 		break;
1014 	case IEEE80211_M_WDS:
1015 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1016 			device_printf(sc->sc_dev,
1017 			    "wds not supported in sta mode\n");
1018 			goto bad;
1019 		}
1020 		/*
1021 		 * Silently remove any request for a unique
1022 		 * bssid; WDS vap's always share the local
1023 		 * mac address.
1024 		 */
1025 		flags &= ~IEEE80211_CLONE_BSSID;
1026 		if (sc->sc_nvaps == 0)
1027 			ic_opmode = IEEE80211_M_HOSTAP;
1028 		else
1029 			ic_opmode = ic->ic_opmode;
1030 		break;
1031 	default:
1032 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1033 		goto bad;
1034 	}
1035 	/*
1036 	 * Check that a beacon buffer is available; the code below assumes it.
1037 	 */
1038 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1039 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1040 		goto bad;
1041 	}
1042 
1043 	/* STA, AHDEMO? */
1044 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1045 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1046 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1047 	}
1048 
1049 	vap = &avp->av_vap;
1050 	/* XXX can't hold mutex across if_alloc */
1051 	ATH_UNLOCK(sc);
1052 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1053 	    bssid, mac);
1054 	ATH_LOCK(sc);
1055 	if (error != 0) {
1056 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1057 		    __func__, error);
1058 		goto bad2;
1059 	}
1060 
1061 	/* h/w crypto support */
1062 	vap->iv_key_alloc = ath_key_alloc;
1063 	vap->iv_key_delete = ath_key_delete;
1064 	vap->iv_key_set = ath_key_set;
1065 	vap->iv_key_update_begin = ath_key_update_begin;
1066 	vap->iv_key_update_end = ath_key_update_end;
1067 
1068 	/* override various methods */
1069 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1070 	vap->iv_recv_mgmt = ath_recv_mgmt;
1071 	vap->iv_reset = ath_reset_vap;
1072 	vap->iv_update_beacon = ath_beacon_update;
1073 	avp->av_newstate = vap->iv_newstate;
1074 	vap->iv_newstate = ath_newstate;
1075 	avp->av_bmiss = vap->iv_bmiss;
1076 	vap->iv_bmiss = ath_bmiss_vap;
1077 
1078 	/* Set default parameters */
1079 
1080 	/*
1081 	 * Anything earlier than some AR9300 series MACs don't
1082 	 * support a smaller MPDU density.
1083 	 */
1084 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1085 	/*
1086 	 * All NICs can handle the maximum size, however
1087 	 * AR5416 based MACs can only TX aggregates w/ RTS
1088 	 * protection when the total aggregate size is <= 8k.
1089 	 * However, for now that's enforced by the TX path.
1090 	 */
1091 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1092 
1093 	avp->av_bslot = -1;
1094 	if (needbeacon) {
1095 		/*
1096 		 * Allocate beacon state and setup the q for buffered
1097 		 * multicast frames.  We know a beacon buffer is
1098 		 * available because we checked above.
1099 		 */
1100 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1101 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1102 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1103 			/*
1104 			 * Assign the vap to a beacon xmit slot.  As above
1105 			 * this cannot fail to find a free one.
1106 			 */
1107 			avp->av_bslot = assign_bslot(sc);
1108 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1109 			    ("beacon slot %u not empty", avp->av_bslot));
1110 			sc->sc_bslot[avp->av_bslot] = vap;
1111 			sc->sc_nbcnvaps++;
1112 		}
1113 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1114 			/*
1115 			 * Multple vaps are to transmit beacons and we
1116 			 * have h/w support for TSF adjusting; enable
1117 			 * use of staggered beacons.
1118 			 */
1119 			sc->sc_stagbeacons = 1;
1120 		}
1121 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1122 	}
1123 
1124 	ic->ic_opmode = ic_opmode;
1125 	if (opmode != IEEE80211_M_WDS) {
1126 		sc->sc_nvaps++;
1127 		if (opmode == IEEE80211_M_STA)
1128 			sc->sc_nstavaps++;
1129 		if (opmode == IEEE80211_M_MBSS)
1130 			sc->sc_nmeshvaps++;
1131 	}
1132 	switch (ic_opmode) {
1133 	case IEEE80211_M_IBSS:
1134 		sc->sc_opmode = HAL_M_IBSS;
1135 		break;
1136 	case IEEE80211_M_STA:
1137 		sc->sc_opmode = HAL_M_STA;
1138 		break;
1139 	case IEEE80211_M_AHDEMO:
1140 #ifdef IEEE80211_SUPPORT_TDMA
1141 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1142 			sc->sc_tdma = 1;
1143 			/* NB: disable tsf adjust */
1144 			sc->sc_stagbeacons = 0;
1145 		}
1146 		/*
1147 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1148 		 * just ap mode.
1149 		 */
1150 		/* fall thru... */
1151 #endif
1152 	case IEEE80211_M_HOSTAP:
1153 	case IEEE80211_M_MBSS:
1154 		sc->sc_opmode = HAL_M_HOSTAP;
1155 		break;
1156 	case IEEE80211_M_MONITOR:
1157 		sc->sc_opmode = HAL_M_MONITOR;
1158 		break;
1159 	default:
1160 		/* XXX should not happen */
1161 		break;
1162 	}
1163 	if (sc->sc_hastsfadd) {
1164 		/*
1165 		 * Configure whether or not TSF adjust should be done.
1166 		 */
1167 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1168 	}
1169 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1170 		/*
1171 		 * Enable s/w beacon miss handling.
1172 		 */
1173 		sc->sc_swbmiss = 1;
1174 	}
1175 	ATH_UNLOCK(sc);
1176 
1177 	/* complete setup */
1178 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1179 	return vap;
1180 bad2:
1181 	reclaim_address(sc, mac);
1182 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1183 bad:
1184 	free(avp, M_80211_VAP);
1185 	ATH_UNLOCK(sc);
1186 	return NULL;
1187 }
1188 
1189 static void
1190 ath_vap_delete(struct ieee80211vap *vap)
1191 {
1192 	struct ieee80211com *ic = vap->iv_ic;
1193 	struct ifnet *ifp = ic->ic_ifp;
1194 	struct ath_softc *sc = ifp->if_softc;
1195 	struct ath_hal *ah = sc->sc_ah;
1196 	struct ath_vap *avp = ATH_VAP(vap);
1197 
1198 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1199 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1200 		/*
1201 		 * Quiesce the hardware while we remove the vap.  In
1202 		 * particular we need to reclaim all references to
1203 		 * the vap state by any frames pending on the tx queues.
1204 		 */
1205 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1206 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1207 		/* XXX Do all frames from all vaps/nodes need draining here? */
1208 		ath_stoprecv(sc, 1);		/* stop recv side */
1209 	}
1210 
1211 	ieee80211_vap_detach(vap);
1212 
1213 	/*
1214 	 * XXX Danger Will Robinson! Danger!
1215 	 *
1216 	 * Because ieee80211_vap_detach() can queue a frame (the station
1217 	 * diassociate message?) after we've drained the TXQ and
1218 	 * flushed the software TXQ, we will end up with a frame queued
1219 	 * to a node whose vap is about to be freed.
1220 	 *
1221 	 * To work around this, flush the hardware/software again.
1222 	 * This may be racy - the ath task may be running and the packet
1223 	 * may be being scheduled between sw->hw txq. Tsk.
1224 	 *
1225 	 * TODO: figure out why a new node gets allocated somewhere around
1226 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1227 	 * call!)
1228 	 */
1229 
1230 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1231 
1232 	ATH_LOCK(sc);
1233 	/*
1234 	 * Reclaim beacon state.  Note this must be done before
1235 	 * the vap instance is reclaimed as we may have a reference
1236 	 * to it in the buffer for the beacon frame.
1237 	 */
1238 	if (avp->av_bcbuf != NULL) {
1239 		if (avp->av_bslot != -1) {
1240 			sc->sc_bslot[avp->av_bslot] = NULL;
1241 			sc->sc_nbcnvaps--;
1242 		}
1243 		ath_beacon_return(sc, avp->av_bcbuf);
1244 		avp->av_bcbuf = NULL;
1245 		if (sc->sc_nbcnvaps == 0) {
1246 			sc->sc_stagbeacons = 0;
1247 			if (sc->sc_hastsfadd)
1248 				ath_hal_settsfadjust(sc->sc_ah, 0);
1249 		}
1250 		/*
1251 		 * Reclaim any pending mcast frames for the vap.
1252 		 */
1253 		ath_tx_draintxq(sc, &avp->av_mcastq);
1254 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1255 	}
1256 	/*
1257 	 * Update bookkeeping.
1258 	 */
1259 	if (vap->iv_opmode == IEEE80211_M_STA) {
1260 		sc->sc_nstavaps--;
1261 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1262 			sc->sc_swbmiss = 0;
1263 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1264 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1265 		reclaim_address(sc, vap->iv_myaddr);
1266 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1267 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1268 			sc->sc_nmeshvaps--;
1269 	}
1270 	if (vap->iv_opmode != IEEE80211_M_WDS)
1271 		sc->sc_nvaps--;
1272 #ifdef IEEE80211_SUPPORT_TDMA
1273 	/* TDMA operation ceases when the last vap is destroyed */
1274 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1275 		sc->sc_tdma = 0;
1276 		sc->sc_swbmiss = 0;
1277 	}
1278 #endif
1279 	free(avp, M_80211_VAP);
1280 
1281 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1282 		/*
1283 		 * Restart rx+tx machines if still running (RUNNING will
1284 		 * be reset if we just destroyed the last vap).
1285 		 */
1286 		if (ath_startrecv(sc) != 0)
1287 			if_printf(ifp, "%s: unable to restart recv logic\n",
1288 			    __func__);
1289 		if (sc->sc_beacons) {		/* restart beacons */
1290 #ifdef IEEE80211_SUPPORT_TDMA
1291 			if (sc->sc_tdma)
1292 				ath_tdma_config(sc, NULL);
1293 			else
1294 #endif
1295 				ath_beacon_config(sc, NULL);
1296 		}
1297 		ath_hal_intrset(ah, sc->sc_imask);
1298 	}
1299 	ATH_UNLOCK(sc);
1300 }
1301 
1302 void
1303 ath_suspend(struct ath_softc *sc)
1304 {
1305 	struct ifnet *ifp = sc->sc_ifp;
1306 	struct ieee80211com *ic = ifp->if_l2com;
1307 
1308 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1309 		__func__, ifp->if_flags);
1310 
1311 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1312 
1313 	ieee80211_suspend_all(ic);
1314 	/*
1315 	 * NB: don't worry about putting the chip in low power
1316 	 * mode; pci will power off our socket on suspend and
1317 	 * CardBus detaches the device.
1318 	 */
1319 
1320 	/*
1321 	 * XXX ensure none of the taskqueues are running
1322 	 * XXX ensure sc_invalid is 1
1323 	 * XXX ensure the calibration callout is disabled
1324 	 */
1325 
1326 	/* Disable the PCIe PHY, complete with workarounds */
1327 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1328 }
1329 
1330 /*
1331  * Reset the key cache since some parts do not reset the
1332  * contents on resume.  First we clear all entries, then
1333  * re-load keys that the 802.11 layer assumes are setup
1334  * in h/w.
1335  */
1336 static void
1337 ath_reset_keycache(struct ath_softc *sc)
1338 {
1339 	struct ifnet *ifp = sc->sc_ifp;
1340 	struct ieee80211com *ic = ifp->if_l2com;
1341 	struct ath_hal *ah = sc->sc_ah;
1342 	int i;
1343 
1344 	for (i = 0; i < sc->sc_keymax; i++)
1345 		ath_hal_keyreset(ah, i);
1346 	ieee80211_crypto_reload_keys(ic);
1347 }
1348 
1349 void
1350 ath_resume(struct ath_softc *sc)
1351 {
1352 	struct ifnet *ifp = sc->sc_ifp;
1353 	struct ieee80211com *ic = ifp->if_l2com;
1354 	struct ath_hal *ah = sc->sc_ah;
1355 	HAL_STATUS status;
1356 
1357 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1358 		__func__, ifp->if_flags);
1359 
1360 	/* Re-enable PCIe, re-enable the PCIe bus */
1361 	ath_hal_enablepcie(ah, 0, 0);
1362 
1363 	/*
1364 	 * Must reset the chip before we reload the
1365 	 * keycache as we were powered down on suspend.
1366 	 */
1367 	ath_hal_reset(ah, sc->sc_opmode,
1368 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1369 	    AH_FALSE, &status);
1370 	ath_reset_keycache(sc);
1371 
1372 	/* Let DFS at it in case it's a DFS channel */
1373 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1374 
1375 	/* Restore the LED configuration */
1376 	ath_led_config(sc);
1377 	ath_hal_setledstate(ah, HAL_LED_INIT);
1378 
1379 	if (sc->sc_resume_up)
1380 		ieee80211_resume_all(ic);
1381 
1382 	/* XXX beacons ? */
1383 }
1384 
1385 void
1386 ath_shutdown(struct ath_softc *sc)
1387 {
1388 	struct ifnet *ifp = sc->sc_ifp;
1389 
1390 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1391 		__func__, ifp->if_flags);
1392 
1393 	ath_stop(ifp);
1394 	/* NB: no point powering down chip as we're about to reboot */
1395 }
1396 
1397 /*
1398  * Interrupt handler.  Most of the actual processing is deferred.
1399  */
1400 void
1401 ath_intr(void *arg)
1402 {
1403 	struct ath_softc *sc = arg;
1404 	struct ifnet *ifp = sc->sc_ifp;
1405 	struct ath_hal *ah = sc->sc_ah;
1406 	HAL_INT status = 0;
1407 	uint32_t txqs;
1408 
1409 	/*
1410 	 * If we're inside a reset path, just print a warning and
1411 	 * clear the ISR. The reset routine will finish it for us.
1412 	 */
1413 	ATH_PCU_LOCK(sc);
1414 	if (sc->sc_inreset_cnt) {
1415 		HAL_INT status;
1416 		ath_hal_getisr(ah, &status);	/* clear ISR */
1417 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1418 		DPRINTF(sc, ATH_DEBUG_ANY,
1419 		    "%s: in reset, ignoring: status=0x%x\n",
1420 		    __func__, status);
1421 		ATH_PCU_UNLOCK(sc);
1422 		return;
1423 	}
1424 
1425 	if (sc->sc_invalid) {
1426 		/*
1427 		 * The hardware is not ready/present, don't touch anything.
1428 		 * Note this can happen early on if the IRQ is shared.
1429 		 */
1430 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1431 		ATH_PCU_UNLOCK(sc);
1432 		return;
1433 	}
1434 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1435 		ATH_PCU_UNLOCK(sc);
1436 		return;
1437 	}
1438 
1439 	if ((ifp->if_flags & IFF_UP) == 0 ||
1440 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1441 		HAL_INT status;
1442 
1443 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1444 			__func__, ifp->if_flags);
1445 		ath_hal_getisr(ah, &status);	/* clear ISR */
1446 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1447 		ATH_PCU_UNLOCK(sc);
1448 		return;
1449 	}
1450 
1451 	/*
1452 	 * Figure out the reason(s) for the interrupt.  Note
1453 	 * that the hal returns a pseudo-ISR that may include
1454 	 * bits we haven't explicitly enabled so we mask the
1455 	 * value to insure we only process bits we requested.
1456 	 */
1457 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1458 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1459 	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1460 #ifdef	ATH_KTR_INTR_DEBUG
1461 	CTR5(ATH_KTR_INTR,
1462 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1463 	    ah->ah_intrstate[0],
1464 	    ah->ah_intrstate[1],
1465 	    ah->ah_intrstate[2],
1466 	    ah->ah_intrstate[3],
1467 	    ah->ah_intrstate[6]);
1468 #endif
1469 
1470 	/* Squirrel away SYNC interrupt debugging */
1471 	if (ah->ah_syncstate != 0) {
1472 		int i;
1473 		for (i = 0; i < 32; i++)
1474 			if (ah->ah_syncstate & (i << i))
1475 				sc->sc_intr_stats.sync_intr[i]++;
1476 	}
1477 
1478 	status &= sc->sc_imask;			/* discard unasked for bits */
1479 
1480 	/* Short-circuit un-handled interrupts */
1481 	if (status == 0x0) {
1482 		ATH_PCU_UNLOCK(sc);
1483 		return;
1484 	}
1485 
1486 	/*
1487 	 * Take a note that we're inside the interrupt handler, so
1488 	 * the reset routines know to wait.
1489 	 */
1490 	sc->sc_intr_cnt++;
1491 	ATH_PCU_UNLOCK(sc);
1492 
1493 	/*
1494 	 * Handle the interrupt. We won't run concurrent with the reset
1495 	 * or channel change routines as they'll wait for sc_intr_cnt
1496 	 * to be 0 before continuing.
1497 	 */
1498 	if (status & HAL_INT_FATAL) {
1499 		sc->sc_stats.ast_hardware++;
1500 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1501 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1502 	} else {
1503 		if (status & HAL_INT_SWBA) {
1504 			/*
1505 			 * Software beacon alert--time to send a beacon.
1506 			 * Handle beacon transmission directly; deferring
1507 			 * this is too slow to meet timing constraints
1508 			 * under load.
1509 			 */
1510 #ifdef IEEE80211_SUPPORT_TDMA
1511 			if (sc->sc_tdma) {
1512 				if (sc->sc_tdmaswba == 0) {
1513 					struct ieee80211com *ic = ifp->if_l2com;
1514 					struct ieee80211vap *vap =
1515 					    TAILQ_FIRST(&ic->ic_vaps);
1516 					ath_tdma_beacon_send(sc, vap);
1517 					sc->sc_tdmaswba =
1518 					    vap->iv_tdma->tdma_bintval;
1519 				} else
1520 					sc->sc_tdmaswba--;
1521 			} else
1522 #endif
1523 			{
1524 				ath_beacon_proc(sc, 0);
1525 #ifdef IEEE80211_SUPPORT_SUPERG
1526 				/*
1527 				 * Schedule the rx taskq in case there's no
1528 				 * traffic so any frames held on the staging
1529 				 * queue are aged and potentially flushed.
1530 				 */
1531 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1532 #endif
1533 			}
1534 		}
1535 		if (status & HAL_INT_RXEOL) {
1536 			int imask;
1537 			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1538 			ATH_PCU_LOCK(sc);
1539 			/*
1540 			 * NB: the hardware should re-read the link when
1541 			 *     RXE bit is written, but it doesn't work at
1542 			 *     least on older hardware revs.
1543 			 */
1544 			sc->sc_stats.ast_rxeol++;
1545 			/*
1546 			 * Disable RXEOL/RXORN - prevent an interrupt
1547 			 * storm until the PCU logic can be reset.
1548 			 * In case the interface is reset some other
1549 			 * way before "sc_kickpcu" is called, don't
1550 			 * modify sc_imask - that way if it is reset
1551 			 * by a call to ath_reset() somehow, the
1552 			 * interrupt mask will be correctly reprogrammed.
1553 			 */
1554 			imask = sc->sc_imask;
1555 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1556 			ath_hal_intrset(ah, imask);
1557 			/*
1558 			 * Only blank sc_rxlink if we've not yet kicked
1559 			 * the PCU.
1560 			 *
1561 			 * This isn't entirely correct - the correct solution
1562 			 * would be to have a PCU lock and engage that for
1563 			 * the duration of the PCU fiddling; which would include
1564 			 * running the RX process. Otherwise we could end up
1565 			 * messing up the RX descriptor chain and making the
1566 			 * RX desc list much shorter.
1567 			 */
1568 			if (! sc->sc_kickpcu)
1569 				sc->sc_rxlink = NULL;
1570 			sc->sc_kickpcu = 1;
1571 			/*
1572 			 * Enqueue an RX proc, to handled whatever
1573 			 * is in the RX queue.
1574 			 * This will then kick the PCU.
1575 			 */
1576 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1577 			ATH_PCU_UNLOCK(sc);
1578 		}
1579 		if (status & HAL_INT_TXURN) {
1580 			sc->sc_stats.ast_txurn++;
1581 			/* bump tx trigger level */
1582 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1583 		}
1584 		if (status & HAL_INT_RX) {
1585 			sc->sc_stats.ast_rx_intr++;
1586 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1587 		}
1588 		if (status & HAL_INT_TX) {
1589 			sc->sc_stats.ast_tx_intr++;
1590 			/*
1591 			 * Grab all the currently set bits in the HAL txq bitmap
1592 			 * and blank them. This is the only place we should be
1593 			 * doing this.
1594 			 */
1595 			ATH_PCU_LOCK(sc);
1596 			txqs = 0xffffffff;
1597 			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1598 			sc->sc_txq_active |= txqs;
1599 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1600 			ATH_PCU_UNLOCK(sc);
1601 		}
1602 		if (status & HAL_INT_BMISS) {
1603 			sc->sc_stats.ast_bmiss++;
1604 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1605 		}
1606 		if (status & HAL_INT_GTT)
1607 			sc->sc_stats.ast_tx_timeout++;
1608 		if (status & HAL_INT_CST)
1609 			sc->sc_stats.ast_tx_cst++;
1610 		if (status & HAL_INT_MIB) {
1611 			sc->sc_stats.ast_mib++;
1612 			ATH_PCU_LOCK(sc);
1613 			/*
1614 			 * Disable interrupts until we service the MIB
1615 			 * interrupt; otherwise it will continue to fire.
1616 			 */
1617 			ath_hal_intrset(ah, 0);
1618 			/*
1619 			 * Let the hal handle the event.  We assume it will
1620 			 * clear whatever condition caused the interrupt.
1621 			 */
1622 			ath_hal_mibevent(ah, &sc->sc_halstats);
1623 			/*
1624 			 * Don't reset the interrupt if we've just
1625 			 * kicked the PCU, or we may get a nested
1626 			 * RXEOL before the rxproc has had a chance
1627 			 * to run.
1628 			 */
1629 			if (sc->sc_kickpcu == 0)
1630 				ath_hal_intrset(ah, sc->sc_imask);
1631 			ATH_PCU_UNLOCK(sc);
1632 		}
1633 		if (status & HAL_INT_RXORN) {
1634 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1635 			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1636 			sc->sc_stats.ast_rxorn++;
1637 		}
1638 	}
1639 	ATH_PCU_LOCK(sc);
1640 	sc->sc_intr_cnt--;
1641 	ATH_PCU_UNLOCK(sc);
1642 }
1643 
1644 static void
1645 ath_fatal_proc(void *arg, int pending)
1646 {
1647 	struct ath_softc *sc = arg;
1648 	struct ifnet *ifp = sc->sc_ifp;
1649 	u_int32_t *state;
1650 	u_int32_t len;
1651 	void *sp;
1652 
1653 	if_printf(ifp, "hardware error; resetting\n");
1654 	/*
1655 	 * Fatal errors are unrecoverable.  Typically these
1656 	 * are caused by DMA errors.  Collect h/w state from
1657 	 * the hal so we can diagnose what's going on.
1658 	 */
1659 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1660 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1661 		state = sp;
1662 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1663 		    state[0], state[1] , state[2], state[3],
1664 		    state[4], state[5]);
1665 	}
1666 	ath_reset(ifp, ATH_RESET_NOLOSS);
1667 }
1668 
1669 static void
1670 ath_bmiss_vap(struct ieee80211vap *vap)
1671 {
1672 	/*
1673 	 * Workaround phantom bmiss interrupts by sanity-checking
1674 	 * the time of our last rx'd frame.  If it is within the
1675 	 * beacon miss interval then ignore the interrupt.  If it's
1676 	 * truly a bmiss we'll get another interrupt soon and that'll
1677 	 * be dispatched up for processing.  Note this applies only
1678 	 * for h/w beacon miss events.
1679 	 */
1680 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1681 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1682 		struct ath_softc *sc = ifp->if_softc;
1683 		u_int64_t lastrx = sc->sc_lastrx;
1684 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1685 		/* XXX should take a locked ref to iv_bss */
1686 		u_int bmisstimeout =
1687 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1688 
1689 		DPRINTF(sc, ATH_DEBUG_BEACON,
1690 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1691 		    __func__, (unsigned long long) tsf,
1692 		    (unsigned long long)(tsf - lastrx),
1693 		    (unsigned long long) lastrx, bmisstimeout);
1694 
1695 		if (tsf - lastrx <= bmisstimeout) {
1696 			sc->sc_stats.ast_bmiss_phantom++;
1697 			return;
1698 		}
1699 	}
1700 	ATH_VAP(vap)->av_bmiss(vap);
1701 }
1702 
1703 static int
1704 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1705 {
1706 	uint32_t rsize;
1707 	void *sp;
1708 
1709 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1710 		return 0;
1711 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1712 	*hangs = *(uint32_t *)sp;
1713 	return 1;
1714 }
1715 
1716 static void
1717 ath_bmiss_proc(void *arg, int pending)
1718 {
1719 	struct ath_softc *sc = arg;
1720 	struct ifnet *ifp = sc->sc_ifp;
1721 	uint32_t hangs;
1722 
1723 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1724 
1725 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1726 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1727 		ath_reset(ifp, ATH_RESET_NOLOSS);
1728 	} else
1729 		ieee80211_beacon_miss(ifp->if_l2com);
1730 }
1731 
1732 /*
1733  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1734  * calcs together with WME.  If necessary disable the crypto
1735  * hardware and mark the 802.11 state so keys will be setup
1736  * with the MIC work done in software.
1737  */
1738 static void
1739 ath_settkipmic(struct ath_softc *sc)
1740 {
1741 	struct ifnet *ifp = sc->sc_ifp;
1742 	struct ieee80211com *ic = ifp->if_l2com;
1743 
1744 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1745 		if (ic->ic_flags & IEEE80211_F_WME) {
1746 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1747 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1748 		} else {
1749 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1750 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1751 		}
1752 	}
1753 }
1754 
1755 static void
1756 ath_init(void *arg)
1757 {
1758 	struct ath_softc *sc = (struct ath_softc *) arg;
1759 	struct ifnet *ifp = sc->sc_ifp;
1760 	struct ieee80211com *ic = ifp->if_l2com;
1761 	struct ath_hal *ah = sc->sc_ah;
1762 	HAL_STATUS status;
1763 
1764 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1765 		__func__, ifp->if_flags);
1766 
1767 	ATH_LOCK(sc);
1768 	/*
1769 	 * Stop anything previously setup.  This is safe
1770 	 * whether this is the first time through or not.
1771 	 */
1772 	ath_stop_locked(ifp);
1773 
1774 	/*
1775 	 * The basic interface to setting the hardware in a good
1776 	 * state is ``reset''.  On return the hardware is known to
1777 	 * be powered up and with interrupts disabled.  This must
1778 	 * be followed by initialization of the appropriate bits
1779 	 * and then setup of the interrupt mask.
1780 	 */
1781 	ath_settkipmic(sc);
1782 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1783 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1784 			status);
1785 		ATH_UNLOCK(sc);
1786 		return;
1787 	}
1788 	ath_chan_change(sc, ic->ic_curchan);
1789 
1790 	/* Let DFS at it in case it's a DFS channel */
1791 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1792 
1793 	/*
1794 	 * Likewise this is set during reset so update
1795 	 * state cached in the driver.
1796 	 */
1797 	sc->sc_diversity = ath_hal_getdiversity(ah);
1798 	sc->sc_lastlongcal = 0;
1799 	sc->sc_resetcal = 1;
1800 	sc->sc_lastcalreset = 0;
1801 	sc->sc_lastani = 0;
1802 	sc->sc_lastshortcal = 0;
1803 	sc->sc_doresetcal = AH_FALSE;
1804 	/*
1805 	 * Beacon timers were cleared here; give ath_newstate()
1806 	 * a hint that the beacon timers should be poked when
1807 	 * things transition to the RUN state.
1808 	 */
1809 	sc->sc_beacons = 0;
1810 
1811 	/*
1812 	 * Initial aggregation settings.
1813 	 */
1814 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1815 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1816 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1817 
1818 	/*
1819 	 * Setup the hardware after reset: the key cache
1820 	 * is filled as needed and the receive engine is
1821 	 * set going.  Frame transmit is handled entirely
1822 	 * in the frame output path; there's nothing to do
1823 	 * here except setup the interrupt mask.
1824 	 */
1825 	if (ath_startrecv(sc) != 0) {
1826 		if_printf(ifp, "unable to start recv logic\n");
1827 		ATH_UNLOCK(sc);
1828 		return;
1829 	}
1830 
1831 	/*
1832 	 * Enable interrupts.
1833 	 */
1834 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1835 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1836 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1837 	/*
1838 	 * Enable MIB interrupts when there are hardware phy counters.
1839 	 * Note we only do this (at the moment) for station mode.
1840 	 */
1841 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1842 		sc->sc_imask |= HAL_INT_MIB;
1843 
1844 	/* Enable global TX timeout and carrier sense timeout if available */
1845 	if (ath_hal_gtxto_supported(ah))
1846 		sc->sc_imask |= HAL_INT_GTT;
1847 
1848 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1849 		__func__, sc->sc_imask);
1850 
1851 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1852 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1853 	ath_hal_intrset(ah, sc->sc_imask);
1854 
1855 	ATH_UNLOCK(sc);
1856 
1857 #ifdef ATH_TX99_DIAG
1858 	if (sc->sc_tx99 != NULL)
1859 		sc->sc_tx99->start(sc->sc_tx99);
1860 	else
1861 #endif
1862 	ieee80211_start_all(ic);		/* start all vap's */
1863 }
1864 
1865 static void
1866 ath_stop_locked(struct ifnet *ifp)
1867 {
1868 	struct ath_softc *sc = ifp->if_softc;
1869 	struct ath_hal *ah = sc->sc_ah;
1870 
1871 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1872 		__func__, sc->sc_invalid, ifp->if_flags);
1873 
1874 	ATH_LOCK_ASSERT(sc);
1875 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1876 		/*
1877 		 * Shutdown the hardware and driver:
1878 		 *    reset 802.11 state machine
1879 		 *    turn off timers
1880 		 *    disable interrupts
1881 		 *    turn off the radio
1882 		 *    clear transmit machinery
1883 		 *    clear receive machinery
1884 		 *    drain and release tx queues
1885 		 *    reclaim beacon resources
1886 		 *    power down hardware
1887 		 *
1888 		 * Note that some of this work is not possible if the
1889 		 * hardware is gone (invalid).
1890 		 */
1891 #ifdef ATH_TX99_DIAG
1892 		if (sc->sc_tx99 != NULL)
1893 			sc->sc_tx99->stop(sc->sc_tx99);
1894 #endif
1895 		callout_stop(&sc->sc_wd_ch);
1896 		sc->sc_wd_timer = 0;
1897 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1898 		if (!sc->sc_invalid) {
1899 			if (sc->sc_softled) {
1900 				callout_stop(&sc->sc_ledtimer);
1901 				ath_hal_gpioset(ah, sc->sc_ledpin,
1902 					!sc->sc_ledon);
1903 				sc->sc_blinking = 0;
1904 			}
1905 			ath_hal_intrset(ah, 0);
1906 		}
1907 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1908 		if (!sc->sc_invalid) {
1909 			ath_stoprecv(sc, 1);
1910 			ath_hal_phydisable(ah);
1911 		} else
1912 			sc->sc_rxlink = NULL;
1913 		ath_beacon_free(sc);	/* XXX not needed */
1914 	}
1915 }
1916 
1917 #define	MAX_TXRX_ITERATIONS	1000
1918 static void
1919 ath_txrx_stop_locked(struct ath_softc *sc)
1920 {
1921 	int i = MAX_TXRX_ITERATIONS;
1922 
1923 	ATH_UNLOCK_ASSERT(sc);
1924 	ATH_PCU_LOCK_ASSERT(sc);
1925 
1926 	/*
1927 	 * Sleep until all the pending operations have completed.
1928 	 *
1929 	 * The caller must ensure that reset has been incremented
1930 	 * or the pending operations may continue being queued.
1931 	 */
1932 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1933 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1934 		if (i <= 0)
1935 			break;
1936 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1937 		i--;
1938 	}
1939 
1940 	if (i <= 0)
1941 		device_printf(sc->sc_dev,
1942 		    "%s: didn't finish after %d iterations\n",
1943 		    __func__, MAX_TXRX_ITERATIONS);
1944 }
1945 #undef	MAX_TXRX_ITERATIONS
1946 
1947 #if 0
1948 static void
1949 ath_txrx_stop(struct ath_softc *sc)
1950 {
1951 	ATH_UNLOCK_ASSERT(sc);
1952 	ATH_PCU_UNLOCK_ASSERT(sc);
1953 
1954 	ATH_PCU_LOCK(sc);
1955 	ath_txrx_stop_locked(sc);
1956 	ATH_PCU_UNLOCK(sc);
1957 }
1958 #endif
1959 
1960 static void
1961 ath_txrx_start(struct ath_softc *sc)
1962 {
1963 
1964 	taskqueue_unblock(sc->sc_tq);
1965 }
1966 
1967 /*
1968  * Grab the reset lock, and wait around until noone else
1969  * is trying to do anything with it.
1970  *
1971  * This is totally horrible but we can't hold this lock for
1972  * long enough to do TX/RX or we end up with net80211/ip stack
1973  * LORs and eventual deadlock.
1974  *
1975  * "dowait" signals whether to spin, waiting for the reset
1976  * lock count to reach 0. This should (for now) only be used
1977  * during the reset path, as the rest of the code may not
1978  * be locking-reentrant enough to behave correctly.
1979  *
1980  * Another, cleaner way should be found to serialise all of
1981  * these operations.
1982  */
1983 #define	MAX_RESET_ITERATIONS	10
1984 static int
1985 ath_reset_grablock(struct ath_softc *sc, int dowait)
1986 {
1987 	int w = 0;
1988 	int i = MAX_RESET_ITERATIONS;
1989 
1990 	ATH_PCU_LOCK_ASSERT(sc);
1991 	do {
1992 		if (sc->sc_inreset_cnt == 0) {
1993 			w = 1;
1994 			break;
1995 		}
1996 		if (dowait == 0) {
1997 			w = 0;
1998 			break;
1999 		}
2000 		ATH_PCU_UNLOCK(sc);
2001 		pause("ath_reset_grablock", 1);
2002 		i--;
2003 		ATH_PCU_LOCK(sc);
2004 	} while (i > 0);
2005 
2006 	/*
2007 	 * We always increment the refcounter, regardless
2008 	 * of whether we succeeded to get it in an exclusive
2009 	 * way.
2010 	 */
2011 	sc->sc_inreset_cnt++;
2012 
2013 	if (i <= 0)
2014 		device_printf(sc->sc_dev,
2015 		    "%s: didn't finish after %d iterations\n",
2016 		    __func__, MAX_RESET_ITERATIONS);
2017 
2018 	if (w == 0)
2019 		device_printf(sc->sc_dev,
2020 		    "%s: warning, recursive reset path!\n",
2021 		    __func__);
2022 
2023 	return w;
2024 }
2025 #undef MAX_RESET_ITERATIONS
2026 
2027 /*
2028  * XXX TODO: write ath_reset_releaselock
2029  */
2030 
2031 static void
2032 ath_stop(struct ifnet *ifp)
2033 {
2034 	struct ath_softc *sc = ifp->if_softc;
2035 
2036 	ATH_LOCK(sc);
2037 	ath_stop_locked(ifp);
2038 	ATH_UNLOCK(sc);
2039 }
2040 
2041 /*
2042  * Reset the hardware w/o losing operational state.  This is
2043  * basically a more efficient way of doing ath_stop, ath_init,
2044  * followed by state transitions to the current 802.11
2045  * operational state.  Used to recover from various errors and
2046  * to reset or reload hardware state.
2047  */
2048 int
2049 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2050 {
2051 	struct ath_softc *sc = ifp->if_softc;
2052 	struct ieee80211com *ic = ifp->if_l2com;
2053 	struct ath_hal *ah = sc->sc_ah;
2054 	HAL_STATUS status;
2055 	int i;
2056 
2057 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2058 
2059 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2060 	ATH_PCU_UNLOCK_ASSERT(sc);
2061 	ATH_UNLOCK_ASSERT(sc);
2062 
2063 	/* Try to (stop any further TX/RX from occuring */
2064 	taskqueue_block(sc->sc_tq);
2065 
2066 	ATH_PCU_LOCK(sc);
2067 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2068 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2069 	if (ath_reset_grablock(sc, 1) == 0) {
2070 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2071 		    __func__);
2072 	}
2073 	ATH_PCU_UNLOCK(sc);
2074 
2075 	/*
2076 	 * Should now wait for pending TX/RX to complete
2077 	 * and block future ones from occuring. This needs to be
2078 	 * done before the TX queue is drained.
2079 	 */
2080 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2081 
2082 	/*
2083 	 * Regardless of whether we're doing a no-loss flush or
2084 	 * not, stop the PCU and handle what's in the RX queue.
2085 	 * That way frames aren't dropped which shouldn't be.
2086 	 */
2087 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2088 	ath_rx_proc(sc, 0);
2089 
2090 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2091 	/* NB: indicate channel change so we do a full reset */
2092 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2093 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2094 			__func__, status);
2095 	sc->sc_diversity = ath_hal_getdiversity(ah);
2096 
2097 	/* Let DFS at it in case it's a DFS channel */
2098 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2099 
2100 	if (ath_startrecv(sc) != 0)	/* restart recv */
2101 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2102 	/*
2103 	 * We may be doing a reset in response to an ioctl
2104 	 * that changes the channel so update any state that
2105 	 * might change as a result.
2106 	 */
2107 	ath_chan_change(sc, ic->ic_curchan);
2108 	if (sc->sc_beacons) {		/* restart beacons */
2109 #ifdef IEEE80211_SUPPORT_TDMA
2110 		if (sc->sc_tdma)
2111 			ath_tdma_config(sc, NULL);
2112 		else
2113 #endif
2114 			ath_beacon_config(sc, NULL);
2115 	}
2116 
2117 	/*
2118 	 * Release the reset lock and re-enable interrupts here.
2119 	 * If an interrupt was being processed in ath_intr(),
2120 	 * it would disable interrupts at this point. So we have
2121 	 * to atomically enable interrupts and decrement the
2122 	 * reset counter - this way ath_intr() doesn't end up
2123 	 * disabling interrupts without a corresponding enable
2124 	 * in the rest or channel change path.
2125 	 */
2126 	ATH_PCU_LOCK(sc);
2127 	sc->sc_inreset_cnt--;
2128 	/* XXX only do this if sc_inreset_cnt == 0? */
2129 	ath_hal_intrset(ah, sc->sc_imask);
2130 	ATH_PCU_UNLOCK(sc);
2131 
2132 	/*
2133 	 * TX and RX can be started here. If it were started with
2134 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2135 	 * Thus if this is a nested call through the reset or
2136 	 * channel change code, TX completion will occur but
2137 	 * RX completion and ath_start / ath_tx_start will not
2138 	 * run.
2139 	 */
2140 
2141 	/* Restart TX/RX as needed */
2142 	ath_txrx_start(sc);
2143 
2144 	/* XXX Restart TX completion and pending TX */
2145 	if (reset_type == ATH_RESET_NOLOSS) {
2146 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2147 			if (ATH_TXQ_SETUP(sc, i)) {
2148 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2149 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2150 				ath_txq_sched(sc, &sc->sc_txq[i]);
2151 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2152 			}
2153 		}
2154 	}
2155 
2156 	/*
2157 	 * This may have been set during an ath_start() call which
2158 	 * set this once it detected a concurrent TX was going on.
2159 	 * So, clear it.
2160 	 */
2161 	IF_LOCK(&ifp->if_snd);
2162 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2163 	IF_UNLOCK(&ifp->if_snd);
2164 
2165 	/* Handle any frames in the TX queue */
2166 	/*
2167 	 * XXX should this be done by the caller, rather than
2168 	 * ath_reset() ?
2169 	 */
2170 	ath_start(ifp);			/* restart xmit */
2171 	return 0;
2172 }
2173 
2174 static int
2175 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2176 {
2177 	struct ieee80211com *ic = vap->iv_ic;
2178 	struct ifnet *ifp = ic->ic_ifp;
2179 	struct ath_softc *sc = ifp->if_softc;
2180 	struct ath_hal *ah = sc->sc_ah;
2181 
2182 	switch (cmd) {
2183 	case IEEE80211_IOC_TXPOWER:
2184 		/*
2185 		 * If per-packet TPC is enabled, then we have nothing
2186 		 * to do; otherwise we need to force the global limit.
2187 		 * All this can happen directly; no need to reset.
2188 		 */
2189 		if (!ath_hal_gettpc(ah))
2190 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2191 		return 0;
2192 	}
2193 	/* XXX? Full or NOLOSS? */
2194 	return ath_reset(ifp, ATH_RESET_FULL);
2195 }
2196 
2197 struct ath_buf *
2198 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2199 {
2200 	struct ath_buf *bf;
2201 
2202 	ATH_TXBUF_LOCK_ASSERT(sc);
2203 
2204 	if (btype == ATH_BUFTYPE_MGMT)
2205 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2206 	else
2207 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2208 
2209 	if (bf == NULL) {
2210 		sc->sc_stats.ast_tx_getnobuf++;
2211 	} else {
2212 		if (bf->bf_flags & ATH_BUF_BUSY) {
2213 			sc->sc_stats.ast_tx_getbusybuf++;
2214 			bf = NULL;
2215 		}
2216 	}
2217 
2218 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2219 		if (btype == ATH_BUFTYPE_MGMT)
2220 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2221 		else {
2222 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2223 			sc->sc_txbuf_cnt--;
2224 
2225 			/*
2226 			 * This shuldn't happen; however just to be
2227 			 * safe print a warning and fudge the txbuf
2228 			 * count.
2229 			 */
2230 			if (sc->sc_txbuf_cnt < 0) {
2231 				device_printf(sc->sc_dev,
2232 				    "%s: sc_txbuf_cnt < 0?\n",
2233 				    __func__);
2234 				sc->sc_txbuf_cnt = 0;
2235 			}
2236 		}
2237 	} else
2238 		bf = NULL;
2239 
2240 	if (bf == NULL) {
2241 		/* XXX should check which list, mgmt or otherwise */
2242 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2243 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2244 			"out of xmit buffers" : "xmit buffer busy");
2245 		return NULL;
2246 	}
2247 
2248 	/* XXX TODO: should do this at buffer list initialisation */
2249 	/* XXX (then, ensure the buffer has the right flag set) */
2250 	if (btype == ATH_BUFTYPE_MGMT)
2251 		bf->bf_flags |= ATH_BUF_MGMT;
2252 	else
2253 		bf->bf_flags &= (~ATH_BUF_MGMT);
2254 
2255 	/* Valid bf here; clear some basic fields */
2256 	bf->bf_next = NULL;	/* XXX just to be sure */
2257 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2258 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2259 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2260 
2261 	return bf;
2262 }
2263 
2264 /*
2265  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2266  * can't be thrown back on the queue as they could still be
2267  * in use by the hardware.
2268  *
2269  * This duplicates the buffer, or returns NULL.
2270  *
2271  * The descriptor is also copied but the link pointers and
2272  * the DMA segments aren't copied; this frame should thus
2273  * be again passed through the descriptor setup/chain routines
2274  * so the link is correct.
2275  *
2276  * The caller must free the buffer using ath_freebuf().
2277  *
2278  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2279  * XXX in the TX pathway when retries are needed.
2280  * XXX Figure out how to keep some buffers free, or factor the
2281  * XXX number of busy buffers into the xmit path (ath_start())
2282  * XXX so we don't over-commit.
2283  */
2284 struct ath_buf *
2285 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2286 {
2287 	struct ath_buf *tbf;
2288 
2289 	tbf = ath_getbuf(sc,
2290 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2291 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2292 	if (tbf == NULL)
2293 		return NULL;	/* XXX failure? Why? */
2294 
2295 	/* Copy basics */
2296 	tbf->bf_next = NULL;
2297 	tbf->bf_nseg = bf->bf_nseg;
2298 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2299 	tbf->bf_status = bf->bf_status;
2300 	tbf->bf_m = bf->bf_m;
2301 	tbf->bf_node = bf->bf_node;
2302 	/* will be setup by the chain/setup function */
2303 	tbf->bf_lastds = NULL;
2304 	/* for now, last == self */
2305 	tbf->bf_last = tbf;
2306 	tbf->bf_comp = bf->bf_comp;
2307 
2308 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2309 
2310 	/* The caller has to re-init the descriptor + links */
2311 
2312 	/* Copy state */
2313 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2314 
2315 	return tbf;
2316 }
2317 
2318 struct ath_buf *
2319 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2320 {
2321 	struct ath_buf *bf;
2322 
2323 	ATH_TXBUF_LOCK(sc);
2324 	bf = _ath_getbuf_locked(sc, btype);
2325 	/*
2326 	 * If a mgmt buffer was requested but we're out of those,
2327 	 * try requesting a normal one.
2328 	 */
2329 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2330 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2331 	ATH_TXBUF_UNLOCK(sc);
2332 	if (bf == NULL) {
2333 		struct ifnet *ifp = sc->sc_ifp;
2334 
2335 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2336 		sc->sc_stats.ast_tx_qstop++;
2337 		IF_LOCK(&ifp->if_snd);
2338 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2339 		IF_UNLOCK(&ifp->if_snd);
2340 	}
2341 	return bf;
2342 }
2343 
2344 void
2345 ath_start(struct ifnet *ifp)
2346 {
2347 	struct ath_softc *sc = ifp->if_softc;
2348 	struct ieee80211_node *ni;
2349 	struct ath_buf *bf;
2350 	struct mbuf *m, *next;
2351 	ath_bufhead frags;
2352 
2353 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2354 		return;
2355 
2356 	/* XXX is it ok to hold the ATH_LOCK here? */
2357 	ATH_PCU_LOCK(sc);
2358 	if (sc->sc_inreset_cnt > 0) {
2359 		device_printf(sc->sc_dev,
2360 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2361 		ATH_PCU_UNLOCK(sc);
2362 		IF_LOCK(&ifp->if_snd);
2363 		sc->sc_stats.ast_tx_qstop++;
2364 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2365 		IF_UNLOCK(&ifp->if_snd);
2366 		return;
2367 	}
2368 	sc->sc_txstart_cnt++;
2369 	ATH_PCU_UNLOCK(sc);
2370 
2371 	for (;;) {
2372 		ATH_TXBUF_LOCK(sc);
2373 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2374 			/* XXX increment counter? */
2375 			ATH_TXBUF_UNLOCK(sc);
2376 			IF_LOCK(&ifp->if_snd);
2377 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2378 			IF_UNLOCK(&ifp->if_snd);
2379 			break;
2380 		}
2381 		ATH_TXBUF_UNLOCK(sc);
2382 
2383 		/*
2384 		 * Grab a TX buffer and associated resources.
2385 		 */
2386 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2387 		if (bf == NULL)
2388 			break;
2389 
2390 		IFQ_DEQUEUE(&ifp->if_snd, m);
2391 		if (m == NULL) {
2392 			ATH_TXBUF_LOCK(sc);
2393 			ath_returnbuf_head(sc, bf);
2394 			ATH_TXBUF_UNLOCK(sc);
2395 			break;
2396 		}
2397 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2398 		/*
2399 		 * Check for fragmentation.  If this frame
2400 		 * has been broken up verify we have enough
2401 		 * buffers to send all the fragments so all
2402 		 * go out or none...
2403 		 */
2404 		TAILQ_INIT(&frags);
2405 		if ((m->m_flags & M_FRAG) &&
2406 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2407 			DPRINTF(sc, ATH_DEBUG_XMIT,
2408 			    "%s: out of txfrag buffers\n", __func__);
2409 			sc->sc_stats.ast_tx_nofrag++;
2410 			ifp->if_oerrors++;
2411 			ath_freetx(m);
2412 			goto bad;
2413 		}
2414 		ifp->if_opackets++;
2415 	nextfrag:
2416 		/*
2417 		 * Pass the frame to the h/w for transmission.
2418 		 * Fragmented frames have each frag chained together
2419 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2420 		 * to send all the frags because of work done by
2421 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2422 		 * calling ath_tx_start so it can use it to extend the
2423 		 * the tx duration to cover the subsequent frag and
2424 		 * so it can reclaim all the mbufs in case of an error;
2425 		 * ath_tx_start clears m_nextpkt once it commits to
2426 		 * handing the frame to the hardware.
2427 		 */
2428 		next = m->m_nextpkt;
2429 		if (ath_tx_start(sc, ni, bf, m)) {
2430 	bad:
2431 			ifp->if_oerrors++;
2432 	reclaim:
2433 			bf->bf_m = NULL;
2434 			bf->bf_node = NULL;
2435 			ATH_TXBUF_LOCK(sc);
2436 			ath_returnbuf_head(sc, bf);
2437 			ath_txfrag_cleanup(sc, &frags, ni);
2438 			ATH_TXBUF_UNLOCK(sc);
2439 			if (ni != NULL)
2440 				ieee80211_free_node(ni);
2441 			continue;
2442 		}
2443 		if (next != NULL) {
2444 			/*
2445 			 * Beware of state changing between frags.
2446 			 * XXX check sta power-save state?
2447 			 */
2448 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2449 				DPRINTF(sc, ATH_DEBUG_XMIT,
2450 				    "%s: flush fragmented packet, state %s\n",
2451 				    __func__,
2452 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2453 				ath_freetx(next);
2454 				goto reclaim;
2455 			}
2456 			m = next;
2457 			bf = TAILQ_FIRST(&frags);
2458 			KASSERT(bf != NULL, ("no buf for txfrag"));
2459 			TAILQ_REMOVE(&frags, bf, bf_list);
2460 			goto nextfrag;
2461 		}
2462 
2463 		sc->sc_wd_timer = 5;
2464 	}
2465 
2466 	ATH_PCU_LOCK(sc);
2467 	sc->sc_txstart_cnt--;
2468 	ATH_PCU_UNLOCK(sc);
2469 }
2470 
2471 static int
2472 ath_media_change(struct ifnet *ifp)
2473 {
2474 	int error = ieee80211_media_change(ifp);
2475 	/* NB: only the fixed rate can change and that doesn't need a reset */
2476 	return (error == ENETRESET ? 0 : error);
2477 }
2478 
2479 /*
2480  * Block/unblock tx+rx processing while a key change is done.
2481  * We assume the caller serializes key management operations
2482  * so we only need to worry about synchronization with other
2483  * uses that originate in the driver.
2484  */
2485 static void
2486 ath_key_update_begin(struct ieee80211vap *vap)
2487 {
2488 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2489 	struct ath_softc *sc = ifp->if_softc;
2490 
2491 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2492 	taskqueue_block(sc->sc_tq);
2493 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2494 }
2495 
2496 static void
2497 ath_key_update_end(struct ieee80211vap *vap)
2498 {
2499 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2500 	struct ath_softc *sc = ifp->if_softc;
2501 
2502 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2503 	IF_UNLOCK(&ifp->if_snd);
2504 	taskqueue_unblock(sc->sc_tq);
2505 }
2506 
2507 static void
2508 ath_update_promisc(struct ifnet *ifp)
2509 {
2510 	struct ath_softc *sc = ifp->if_softc;
2511 	u_int32_t rfilt;
2512 
2513 	/* configure rx filter */
2514 	rfilt = ath_calcrxfilter(sc);
2515 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2516 
2517 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2518 }
2519 
2520 static void
2521 ath_update_mcast(struct ifnet *ifp)
2522 {
2523 	struct ath_softc *sc = ifp->if_softc;
2524 	u_int32_t mfilt[2];
2525 
2526 	/* calculate and install multicast filter */
2527 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2528 		struct ifmultiaddr *ifma;
2529 		/*
2530 		 * Merge multicast addresses to form the hardware filter.
2531 		 */
2532 		mfilt[0] = mfilt[1] = 0;
2533 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2534 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2535 			caddr_t dl;
2536 			u_int32_t val;
2537 			u_int8_t pos;
2538 
2539 			/* calculate XOR of eight 6bit values */
2540 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2541 			val = LE_READ_4(dl + 0);
2542 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2543 			val = LE_READ_4(dl + 3);
2544 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2545 			pos &= 0x3f;
2546 			mfilt[pos / 32] |= (1 << (pos % 32));
2547 		}
2548 		if_maddr_runlock(ifp);
2549 	} else
2550 		mfilt[0] = mfilt[1] = ~0;
2551 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2552 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2553 		__func__, mfilt[0], mfilt[1]);
2554 }
2555 
2556 void
2557 ath_mode_init(struct ath_softc *sc)
2558 {
2559 	struct ifnet *ifp = sc->sc_ifp;
2560 	struct ath_hal *ah = sc->sc_ah;
2561 	u_int32_t rfilt;
2562 
2563 	/* configure rx filter */
2564 	rfilt = ath_calcrxfilter(sc);
2565 	ath_hal_setrxfilter(ah, rfilt);
2566 
2567 	/* configure operational mode */
2568 	ath_hal_setopmode(ah);
2569 
2570 	/* handle any link-level address change */
2571 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2572 
2573 	/* calculate and install multicast filter */
2574 	ath_update_mcast(ifp);
2575 }
2576 
2577 /*
2578  * Set the slot time based on the current setting.
2579  */
2580 void
2581 ath_setslottime(struct ath_softc *sc)
2582 {
2583 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2584 	struct ath_hal *ah = sc->sc_ah;
2585 	u_int usec;
2586 
2587 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2588 		usec = 13;
2589 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2590 		usec = 21;
2591 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2592 		/* honor short/long slot time only in 11g */
2593 		/* XXX shouldn't honor on pure g or turbo g channel */
2594 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2595 			usec = HAL_SLOT_TIME_9;
2596 		else
2597 			usec = HAL_SLOT_TIME_20;
2598 	} else
2599 		usec = HAL_SLOT_TIME_9;
2600 
2601 	DPRINTF(sc, ATH_DEBUG_RESET,
2602 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2603 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2604 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2605 
2606 	ath_hal_setslottime(ah, usec);
2607 	sc->sc_updateslot = OK;
2608 }
2609 
2610 /*
2611  * Callback from the 802.11 layer to update the
2612  * slot time based on the current setting.
2613  */
2614 static void
2615 ath_updateslot(struct ifnet *ifp)
2616 {
2617 	struct ath_softc *sc = ifp->if_softc;
2618 	struct ieee80211com *ic = ifp->if_l2com;
2619 
2620 	/*
2621 	 * When not coordinating the BSS, change the hardware
2622 	 * immediately.  For other operation we defer the change
2623 	 * until beacon updates have propagated to the stations.
2624 	 */
2625 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2626 	    ic->ic_opmode == IEEE80211_M_MBSS)
2627 		sc->sc_updateslot = UPDATE;
2628 	else
2629 		ath_setslottime(sc);
2630 }
2631 
2632 /*
2633  * Append the contents of src to dst; both queues
2634  * are assumed to be locked.
2635  */
2636 void
2637 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2638 {
2639 
2640 	ATH_TXQ_LOCK_ASSERT(dst);
2641 	ATH_TXQ_LOCK_ASSERT(src);
2642 
2643 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2644 	dst->axq_link = src->axq_link;
2645 	src->axq_link = NULL;
2646 	dst->axq_depth += src->axq_depth;
2647 	dst->axq_aggr_depth += src->axq_aggr_depth;
2648 	src->axq_depth = 0;
2649 	src->axq_aggr_depth = 0;
2650 }
2651 
2652 /*
2653  * Reset the hardware, with no loss.
2654  *
2655  * This can't be used for a general case reset.
2656  */
2657 static void
2658 ath_reset_proc(void *arg, int pending)
2659 {
2660 	struct ath_softc *sc = arg;
2661 	struct ifnet *ifp = sc->sc_ifp;
2662 
2663 #if 0
2664 	if_printf(ifp, "%s: resetting\n", __func__);
2665 #endif
2666 	ath_reset(ifp, ATH_RESET_NOLOSS);
2667 }
2668 
2669 /*
2670  * Reset the hardware after detecting beacons have stopped.
2671  */
2672 static void
2673 ath_bstuck_proc(void *arg, int pending)
2674 {
2675 	struct ath_softc *sc = arg;
2676 	struct ifnet *ifp = sc->sc_ifp;
2677 	uint32_t hangs = 0;
2678 
2679 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2680 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2681 
2682 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2683 		sc->sc_bmisscount);
2684 	sc->sc_stats.ast_bstuck++;
2685 	/*
2686 	 * This assumes that there's no simultaneous channel mode change
2687 	 * occuring.
2688 	 */
2689 	ath_reset(ifp, ATH_RESET_NOLOSS);
2690 }
2691 
2692 static void
2693 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2694 {
2695 	bus_addr_t *paddr = (bus_addr_t*) arg;
2696 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2697 	*paddr = segs->ds_addr;
2698 }
2699 
2700 static int
2701 ath_descdma_setup(struct ath_softc *sc,
2702 	struct ath_descdma *dd, ath_bufhead *head,
2703 	const char *name, int nbuf, int ndesc)
2704 {
2705 #define	DS2PHYS(_dd, _ds) \
2706 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2707 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2708 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2709 	struct ifnet *ifp = sc->sc_ifp;
2710 	uint8_t *ds;
2711 	struct ath_buf *bf;
2712 	int i, bsize, error;
2713 	int desc_len;
2714 
2715 	desc_len = sizeof(struct ath_desc);
2716 
2717 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2718 	    __func__, name, nbuf, ndesc);
2719 
2720 	dd->dd_name = name;
2721 	dd->dd_desc_len = desc_len * nbuf * ndesc;
2722 
2723 	/*
2724 	 * Merlin work-around:
2725 	 * Descriptors that cross the 4KB boundary can't be used.
2726 	 * Assume one skipped descriptor per 4KB page.
2727 	 */
2728 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2729 		int numdescpage = 4096 / (desc_len * ndesc);
2730 		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
2731 	}
2732 
2733 	/*
2734 	 * Setup DMA descriptor area.
2735 	 */
2736 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2737 		       PAGE_SIZE, 0,		/* alignment, bounds */
2738 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2739 		       BUS_SPACE_MAXADDR,	/* highaddr */
2740 		       NULL, NULL,		/* filter, filterarg */
2741 		       dd->dd_desc_len,		/* maxsize */
2742 		       1,			/* nsegments */
2743 		       dd->dd_desc_len,		/* maxsegsize */
2744 		       BUS_DMA_ALLOCNOW,	/* flags */
2745 		       NULL,			/* lockfunc */
2746 		       NULL,			/* lockarg */
2747 		       &dd->dd_dmat);
2748 	if (error != 0) {
2749 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2750 		return error;
2751 	}
2752 
2753 	/* allocate descriptors */
2754 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2755 	if (error != 0) {
2756 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2757 			"error %u\n", dd->dd_name, error);
2758 		goto fail0;
2759 	}
2760 
2761 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2762 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2763 				 &dd->dd_dmamap);
2764 	if (error != 0) {
2765 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2766 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2767 		goto fail1;
2768 	}
2769 
2770 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2771 				dd->dd_desc, dd->dd_desc_len,
2772 				ath_load_cb, &dd->dd_desc_paddr,
2773 				BUS_DMA_NOWAIT);
2774 	if (error != 0) {
2775 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2776 			dd->dd_name, error);
2777 		goto fail2;
2778 	}
2779 
2780 	ds = (uint8_t *) dd->dd_desc;
2781 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2782 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2783 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2784 
2785 	/* allocate rx buffers */
2786 	bsize = sizeof(struct ath_buf) * nbuf;
2787 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2788 	if (bf == NULL) {
2789 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2790 			dd->dd_name, bsize);
2791 		goto fail3;
2792 	}
2793 	dd->dd_bufptr = bf;
2794 
2795 	TAILQ_INIT(head);
2796 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
2797 		bf->bf_desc = (struct ath_desc *) ds;
2798 		bf->bf_daddr = DS2PHYS(dd, ds);
2799 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
2800 			/*
2801 			 * Merlin WAR: Skip descriptor addresses which
2802 			 * cause 4KB boundary crossing along any point
2803 			 * in the descriptor.
2804 			 */
2805 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
2806 			     desc_len * ndesc)) {
2807 				/* Start at the next page */
2808 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
2809 				bf->bf_desc = (struct ath_desc *) ds;
2810 				bf->bf_daddr = DS2PHYS(dd, ds);
2811 			}
2812 		}
2813 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2814 				&bf->bf_dmamap);
2815 		if (error != 0) {
2816 			if_printf(ifp, "unable to create dmamap for %s "
2817 				"buffer %u, error %u\n", dd->dd_name, i, error);
2818 			ath_descdma_cleanup(sc, dd, head);
2819 			return error;
2820 		}
2821 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
2822 		TAILQ_INSERT_TAIL(head, bf, bf_list);
2823 	}
2824 	return 0;
2825 fail3:
2826 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2827 fail2:
2828 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2829 fail1:
2830 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2831 fail0:
2832 	bus_dma_tag_destroy(dd->dd_dmat);
2833 	memset(dd, 0, sizeof(*dd));
2834 	return error;
2835 #undef DS2PHYS
2836 #undef ATH_DESC_4KB_BOUND_CHECK
2837 }
2838 
2839 static void
2840 ath_descdma_cleanup(struct ath_softc *sc,
2841 	struct ath_descdma *dd, ath_bufhead *head)
2842 {
2843 	struct ath_buf *bf;
2844 	struct ieee80211_node *ni;
2845 
2846 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2847 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2848 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2849 	bus_dma_tag_destroy(dd->dd_dmat);
2850 
2851 	TAILQ_FOREACH(bf, head, bf_list) {
2852 		if (bf->bf_m) {
2853 			m_freem(bf->bf_m);
2854 			bf->bf_m = NULL;
2855 		}
2856 		if (bf->bf_dmamap != NULL) {
2857 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2858 			bf->bf_dmamap = NULL;
2859 		}
2860 		ni = bf->bf_node;
2861 		bf->bf_node = NULL;
2862 		if (ni != NULL) {
2863 			/*
2864 			 * Reclaim node reference.
2865 			 */
2866 			ieee80211_free_node(ni);
2867 		}
2868 	}
2869 
2870 	TAILQ_INIT(head);
2871 	free(dd->dd_bufptr, M_ATHDEV);
2872 	memset(dd, 0, sizeof(*dd));
2873 }
2874 
2875 static int
2876 ath_desc_alloc(struct ath_softc *sc)
2877 {
2878 	int error;
2879 
2880 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2881 			"rx", ath_rxbuf, 1);
2882 	if (error != 0)
2883 		return error;
2884 
2885 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2886 			"tx", ath_txbuf, ATH_TXDESC);
2887 	if (error != 0) {
2888 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2889 		return error;
2890 	}
2891 	sc->sc_txbuf_cnt = ath_txbuf;
2892 
2893 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
2894 			"tx_mgmt", ath_txbuf_mgmt, ATH_TXDESC);
2895 	if (error != 0) {
2896 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2897 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2898 		return error;
2899 	}
2900 
2901 	/*
2902 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
2903 	 * flag doesn't have to be set in ath_getbuf_locked().
2904 	 */
2905 
2906 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2907 			"beacon", ATH_BCBUF, 1);
2908 	if (error != 0) {
2909 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2910 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2911 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
2912 		    &sc->sc_txbuf_mgmt);
2913 		return error;
2914 	}
2915 	return 0;
2916 }
2917 
2918 static void
2919 ath_desc_free(struct ath_softc *sc)
2920 {
2921 
2922 	if (sc->sc_bdma.dd_desc_len != 0)
2923 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2924 	if (sc->sc_txdma.dd_desc_len != 0)
2925 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2926 	if (sc->sc_rxdma.dd_desc_len != 0)
2927 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2928 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
2929 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
2930 		    &sc->sc_txbuf_mgmt);
2931 }
2932 
2933 static struct ieee80211_node *
2934 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2935 {
2936 	struct ieee80211com *ic = vap->iv_ic;
2937 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2938 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2939 	struct ath_node *an;
2940 
2941 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2942 	if (an == NULL) {
2943 		/* XXX stat+msg */
2944 		return NULL;
2945 	}
2946 	ath_rate_node_init(sc, an);
2947 
2948 	/* Setup the mutex - there's no associd yet so set the name to NULL */
2949 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
2950 	    device_get_nameunit(sc->sc_dev), an);
2951 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
2952 
2953 	/* XXX setup ath_tid */
2954 	ath_tx_tid_init(sc, an);
2955 
2956 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2957 	return &an->an_node;
2958 }
2959 
2960 static void
2961 ath_node_cleanup(struct ieee80211_node *ni)
2962 {
2963 	struct ieee80211com *ic = ni->ni_ic;
2964 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2965 
2966 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
2967 	ath_tx_node_flush(sc, ATH_NODE(ni));
2968 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2969 	sc->sc_node_cleanup(ni);
2970 }
2971 
2972 static void
2973 ath_node_free(struct ieee80211_node *ni)
2974 {
2975 	struct ieee80211com *ic = ni->ni_ic;
2976 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2977 
2978 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2979 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
2980 	sc->sc_node_free(ni);
2981 }
2982 
2983 static void
2984 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2985 {
2986 	struct ieee80211com *ic = ni->ni_ic;
2987 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2988 	struct ath_hal *ah = sc->sc_ah;
2989 
2990 	*rssi = ic->ic_node_getrssi(ni);
2991 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
2992 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
2993 	else
2994 		*noise = -95;		/* nominally correct */
2995 }
2996 
2997 /*
2998  * Set the default antenna.
2999  */
3000 void
3001 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3002 {
3003 	struct ath_hal *ah = sc->sc_ah;
3004 
3005 	/* XXX block beacon interrupts */
3006 	ath_hal_setdefantenna(ah, antenna);
3007 	if (sc->sc_defant != antenna)
3008 		sc->sc_stats.ast_ant_defswitch++;
3009 	sc->sc_defant = antenna;
3010 	sc->sc_rxotherant = 0;
3011 }
3012 
3013 static void
3014 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3015 {
3016 	txq->axq_qnum = qnum;
3017 	txq->axq_ac = 0;
3018 	txq->axq_depth = 0;
3019 	txq->axq_aggr_depth = 0;
3020 	txq->axq_intrcnt = 0;
3021 	txq->axq_link = NULL;
3022 	txq->axq_softc = sc;
3023 	TAILQ_INIT(&txq->axq_q);
3024 	TAILQ_INIT(&txq->axq_tidq);
3025 	ATH_TXQ_LOCK_INIT(sc, txq);
3026 }
3027 
3028 /*
3029  * Setup a h/w transmit queue.
3030  */
3031 static struct ath_txq *
3032 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3033 {
3034 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3035 	struct ath_hal *ah = sc->sc_ah;
3036 	HAL_TXQ_INFO qi;
3037 	int qnum;
3038 
3039 	memset(&qi, 0, sizeof(qi));
3040 	qi.tqi_subtype = subtype;
3041 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3042 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3043 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3044 	/*
3045 	 * Enable interrupts only for EOL and DESC conditions.
3046 	 * We mark tx descriptors to receive a DESC interrupt
3047 	 * when a tx queue gets deep; otherwise waiting for the
3048 	 * EOL to reap descriptors.  Note that this is done to
3049 	 * reduce interrupt load and this only defers reaping
3050 	 * descriptors, never transmitting frames.  Aside from
3051 	 * reducing interrupts this also permits more concurrency.
3052 	 * The only potential downside is if the tx queue backs
3053 	 * up in which case the top half of the kernel may backup
3054 	 * due to a lack of tx descriptors.
3055 	 */
3056 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3057 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3058 	if (qnum == -1) {
3059 		/*
3060 		 * NB: don't print a message, this happens
3061 		 * normally on parts with too few tx queues
3062 		 */
3063 		return NULL;
3064 	}
3065 	if (qnum >= N(sc->sc_txq)) {
3066 		device_printf(sc->sc_dev,
3067 			"hal qnum %u out of range, max %zu!\n",
3068 			qnum, N(sc->sc_txq));
3069 		ath_hal_releasetxqueue(ah, qnum);
3070 		return NULL;
3071 	}
3072 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3073 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3074 		sc->sc_txqsetup |= 1<<qnum;
3075 	}
3076 	return &sc->sc_txq[qnum];
3077 #undef N
3078 }
3079 
3080 /*
3081  * Setup a hardware data transmit queue for the specified
3082  * access control.  The hal may not support all requested
3083  * queues in which case it will return a reference to a
3084  * previously setup queue.  We record the mapping from ac's
3085  * to h/w queues for use by ath_tx_start and also track
3086  * the set of h/w queues being used to optimize work in the
3087  * transmit interrupt handler and related routines.
3088  */
3089 static int
3090 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3091 {
3092 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3093 	struct ath_txq *txq;
3094 
3095 	if (ac >= N(sc->sc_ac2q)) {
3096 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3097 			ac, N(sc->sc_ac2q));
3098 		return 0;
3099 	}
3100 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3101 	if (txq != NULL) {
3102 		txq->axq_ac = ac;
3103 		sc->sc_ac2q[ac] = txq;
3104 		return 1;
3105 	} else
3106 		return 0;
3107 #undef N
3108 }
3109 
3110 /*
3111  * Update WME parameters for a transmit queue.
3112  */
3113 static int
3114 ath_txq_update(struct ath_softc *sc, int ac)
3115 {
3116 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3117 #define	ATH_TXOP_TO_US(v)		(v<<5)
3118 	struct ifnet *ifp = sc->sc_ifp;
3119 	struct ieee80211com *ic = ifp->if_l2com;
3120 	struct ath_txq *txq = sc->sc_ac2q[ac];
3121 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3122 	struct ath_hal *ah = sc->sc_ah;
3123 	HAL_TXQ_INFO qi;
3124 
3125 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3126 #ifdef IEEE80211_SUPPORT_TDMA
3127 	if (sc->sc_tdma) {
3128 		/*
3129 		 * AIFS is zero so there's no pre-transmit wait.  The
3130 		 * burst time defines the slot duration and is configured
3131 		 * through net80211.  The QCU is setup to not do post-xmit
3132 		 * back off, lockout all lower-priority QCU's, and fire
3133 		 * off the DMA beacon alert timer which is setup based
3134 		 * on the slot configuration.
3135 		 */
3136 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3137 			      | HAL_TXQ_TXERRINT_ENABLE
3138 			      | HAL_TXQ_TXURNINT_ENABLE
3139 			      | HAL_TXQ_TXEOLINT_ENABLE
3140 			      | HAL_TXQ_DBA_GATED
3141 			      | HAL_TXQ_BACKOFF_DISABLE
3142 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3143 			      ;
3144 		qi.tqi_aifs = 0;
3145 		/* XXX +dbaprep? */
3146 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3147 		qi.tqi_burstTime = qi.tqi_readyTime;
3148 	} else {
3149 #endif
3150 		/*
3151 		 * XXX shouldn't this just use the default flags
3152 		 * used in the previous queue setup?
3153 		 */
3154 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3155 			      | HAL_TXQ_TXERRINT_ENABLE
3156 			      | HAL_TXQ_TXDESCINT_ENABLE
3157 			      | HAL_TXQ_TXURNINT_ENABLE
3158 			      | HAL_TXQ_TXEOLINT_ENABLE
3159 			      ;
3160 		qi.tqi_aifs = wmep->wmep_aifsn;
3161 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3162 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3163 		qi.tqi_readyTime = 0;
3164 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3165 #ifdef IEEE80211_SUPPORT_TDMA
3166 	}
3167 #endif
3168 
3169 	DPRINTF(sc, ATH_DEBUG_RESET,
3170 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3171 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3172 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3173 
3174 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3175 		if_printf(ifp, "unable to update hardware queue "
3176 			"parameters for %s traffic!\n",
3177 			ieee80211_wme_acnames[ac]);
3178 		return 0;
3179 	} else {
3180 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3181 		return 1;
3182 	}
3183 #undef ATH_TXOP_TO_US
3184 #undef ATH_EXPONENT_TO_VALUE
3185 }
3186 
3187 /*
3188  * Callback from the 802.11 layer to update WME parameters.
3189  */
3190 int
3191 ath_wme_update(struct ieee80211com *ic)
3192 {
3193 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3194 
3195 	return !ath_txq_update(sc, WME_AC_BE) ||
3196 	    !ath_txq_update(sc, WME_AC_BK) ||
3197 	    !ath_txq_update(sc, WME_AC_VI) ||
3198 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3199 }
3200 
3201 /*
3202  * Reclaim resources for a setup queue.
3203  */
3204 static void
3205 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3206 {
3207 
3208 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3209 	ATH_TXQ_LOCK_DESTROY(txq);
3210 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3211 }
3212 
3213 /*
3214  * Reclaim all tx queue resources.
3215  */
3216 static void
3217 ath_tx_cleanup(struct ath_softc *sc)
3218 {
3219 	int i;
3220 
3221 	ATH_TXBUF_LOCK_DESTROY(sc);
3222 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3223 		if (ATH_TXQ_SETUP(sc, i))
3224 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3225 }
3226 
3227 /*
3228  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3229  * using the current rates in sc_rixmap.
3230  */
3231 int
3232 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3233 {
3234 	int rix = sc->sc_rixmap[rate];
3235 	/* NB: return lowest rix for invalid rate */
3236 	return (rix == 0xff ? 0 : rix);
3237 }
3238 
3239 static void
3240 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3241     struct ath_buf *bf)
3242 {
3243 	struct ieee80211_node *ni = bf->bf_node;
3244 	struct ifnet *ifp = sc->sc_ifp;
3245 	struct ieee80211com *ic = ifp->if_l2com;
3246 	int sr, lr, pri;
3247 
3248 	if (ts->ts_status == 0) {
3249 		u_int8_t txant = ts->ts_antenna;
3250 		sc->sc_stats.ast_ant_tx[txant]++;
3251 		sc->sc_ant_tx[txant]++;
3252 		if (ts->ts_finaltsi != 0)
3253 			sc->sc_stats.ast_tx_altrate++;
3254 		pri = M_WME_GETAC(bf->bf_m);
3255 		if (pri >= WME_AC_VO)
3256 			ic->ic_wme.wme_hipri_traffic++;
3257 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3258 			ni->ni_inact = ni->ni_inact_reload;
3259 	} else {
3260 		if (ts->ts_status & HAL_TXERR_XRETRY)
3261 			sc->sc_stats.ast_tx_xretries++;
3262 		if (ts->ts_status & HAL_TXERR_FIFO)
3263 			sc->sc_stats.ast_tx_fifoerr++;
3264 		if (ts->ts_status & HAL_TXERR_FILT)
3265 			sc->sc_stats.ast_tx_filtered++;
3266 		if (ts->ts_status & HAL_TXERR_XTXOP)
3267 			sc->sc_stats.ast_tx_xtxop++;
3268 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3269 			sc->sc_stats.ast_tx_timerexpired++;
3270 
3271 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3272 			sc->sc_stats.ast_tx_data_underrun++;
3273 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3274 			sc->sc_stats.ast_tx_delim_underrun++;
3275 
3276 		if (bf->bf_m->m_flags & M_FF)
3277 			sc->sc_stats.ast_ff_txerr++;
3278 	}
3279 	/* XXX when is this valid? */
3280 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3281 		sc->sc_stats.ast_tx_desccfgerr++;
3282 
3283 	sr = ts->ts_shortretry;
3284 	lr = ts->ts_longretry;
3285 	sc->sc_stats.ast_tx_shortretry += sr;
3286 	sc->sc_stats.ast_tx_longretry += lr;
3287 
3288 }
3289 
3290 /*
3291  * The default completion. If fail is 1, this means
3292  * "please don't retry the frame, and just return -1 status
3293  * to the net80211 stack.
3294  */
3295 void
3296 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3297 {
3298 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3299 	int st;
3300 
3301 	if (fail == 1)
3302 		st = -1;
3303 	else
3304 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3305 		    ts->ts_status : HAL_TXERR_XRETRY;
3306 
3307 	if (bf->bf_state.bfs_dobaw)
3308 		device_printf(sc->sc_dev,
3309 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3310 		    __func__,
3311 		    bf,
3312 		    SEQNO(bf->bf_state.bfs_seqno));
3313 	if (bf->bf_next != NULL)
3314 		device_printf(sc->sc_dev,
3315 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3316 		    __func__,
3317 		    bf,
3318 		    SEQNO(bf->bf_state.bfs_seqno));
3319 
3320 	/*
3321 	 * Do any tx complete callback.  Note this must
3322 	 * be done before releasing the node reference.
3323 	 * This will free the mbuf, release the net80211
3324 	 * node and recycle the ath_buf.
3325 	 */
3326 	ath_tx_freebuf(sc, bf, st);
3327 }
3328 
3329 /*
3330  * Update rate control with the given completion status.
3331  */
3332 void
3333 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3334     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3335     int nframes, int nbad)
3336 {
3337 	struct ath_node *an;
3338 
3339 	/* Only for unicast frames */
3340 	if (ni == NULL)
3341 		return;
3342 
3343 	an = ATH_NODE(ni);
3344 
3345 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3346 		ATH_NODE_LOCK(an);
3347 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3348 		ATH_NODE_UNLOCK(an);
3349 	}
3350 }
3351 
3352 /*
3353  * Update the busy status of the last frame on the free list.
3354  * When doing TDMA, the busy flag tracks whether the hardware
3355  * currently points to this buffer or not, and thus gated DMA
3356  * may restart by re-reading the last descriptor in this
3357  * buffer.
3358  *
3359  * This should be called in the completion function once one
3360  * of the buffers has been used.
3361  */
3362 static void
3363 ath_tx_update_busy(struct ath_softc *sc)
3364 {
3365 	struct ath_buf *last;
3366 
3367 	/*
3368 	 * Since the last frame may still be marked
3369 	 * as ATH_BUF_BUSY, unmark it here before
3370 	 * finishing the frame processing.
3371 	 * Since we've completed a frame (aggregate
3372 	 * or otherwise), the hardware has moved on
3373 	 * and is no longer referencing the previous
3374 	 * descriptor.
3375 	 */
3376 	ATH_TXBUF_LOCK_ASSERT(sc);
3377 	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3378 	if (last != NULL)
3379 		last->bf_flags &= ~ATH_BUF_BUSY;
3380 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3381 	if (last != NULL)
3382 		last->bf_flags &= ~ATH_BUF_BUSY;
3383 }
3384 
3385 /*
3386  * Process completed xmit descriptors from the specified queue.
3387  * Kick the packet scheduler if needed. This can occur from this
3388  * particular task.
3389  */
3390 static int
3391 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3392 {
3393 	struct ath_hal *ah = sc->sc_ah;
3394 	struct ath_buf *bf;
3395 	struct ath_desc *ds;
3396 	struct ath_tx_status *ts;
3397 	struct ieee80211_node *ni;
3398 	struct ath_node *an;
3399 #ifdef	IEEE80211_SUPPORT_SUPERG
3400 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3401 #endif	/* IEEE80211_SUPPORT_SUPERG */
3402 	int nacked;
3403 	HAL_STATUS status;
3404 
3405 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3406 		__func__, txq->axq_qnum,
3407 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3408 		txq->axq_link);
3409 	nacked = 0;
3410 	for (;;) {
3411 		ATH_TXQ_LOCK(txq);
3412 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3413 		bf = TAILQ_FIRST(&txq->axq_q);
3414 		if (bf == NULL) {
3415 			ATH_TXQ_UNLOCK(txq);
3416 			break;
3417 		}
3418 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3419 		ts = &bf->bf_status.ds_txstat;
3420 		status = ath_hal_txprocdesc(ah, ds, ts);
3421 #ifdef ATH_DEBUG
3422 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3423 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3424 			    status == HAL_OK);
3425 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) {
3426 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3427 			    status == HAL_OK);
3428 		}
3429 #endif
3430 		if (status == HAL_EINPROGRESS) {
3431 			ATH_TXQ_UNLOCK(txq);
3432 			break;
3433 		}
3434 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3435 #ifdef IEEE80211_SUPPORT_TDMA
3436 		if (txq->axq_depth > 0) {
3437 			/*
3438 			 * More frames follow.  Mark the buffer busy
3439 			 * so it's not re-used while the hardware may
3440 			 * still re-read the link field in the descriptor.
3441 			 *
3442 			 * Use the last buffer in an aggregate as that
3443 			 * is where the hardware may be - intermediate
3444 			 * descriptors won't be "busy".
3445 			 */
3446 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3447 		} else
3448 #else
3449 		if (txq->axq_depth == 0)
3450 #endif
3451 			txq->axq_link = NULL;
3452 		if (bf->bf_state.bfs_aggr)
3453 			txq->axq_aggr_depth--;
3454 
3455 		ni = bf->bf_node;
3456 		/*
3457 		 * If unicast frame was ack'd update RSSI,
3458 		 * including the last rx time used to
3459 		 * workaround phantom bmiss interrupts.
3460 		 */
3461 		if (ni != NULL && ts->ts_status == 0 &&
3462 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3463 			nacked++;
3464 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3465 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3466 				ts->ts_rssi);
3467 		}
3468 		ATH_TXQ_UNLOCK(txq);
3469 
3470 		/* If unicast frame, update general statistics */
3471 		if (ni != NULL) {
3472 			an = ATH_NODE(ni);
3473 			/* update statistics */
3474 			ath_tx_update_stats(sc, ts, bf);
3475 		}
3476 
3477 		/*
3478 		 * Call the completion handler.
3479 		 * The completion handler is responsible for
3480 		 * calling the rate control code.
3481 		 *
3482 		 * Frames with no completion handler get the
3483 		 * rate control code called here.
3484 		 */
3485 		if (bf->bf_comp == NULL) {
3486 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3487 			    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3488 				/*
3489 				 * XXX assume this isn't an aggregate
3490 				 * frame.
3491 				 */
3492 				ath_tx_update_ratectrl(sc, ni,
3493 				     bf->bf_state.bfs_rc, ts,
3494 				    bf->bf_state.bfs_pktlen, 1,
3495 				    (ts->ts_status == 0 ? 0 : 1));
3496 			}
3497 			ath_tx_default_comp(sc, bf, 0);
3498 		} else
3499 			bf->bf_comp(sc, bf, 0);
3500 	}
3501 #ifdef IEEE80211_SUPPORT_SUPERG
3502 	/*
3503 	 * Flush fast-frame staging queue when traffic slows.
3504 	 */
3505 	if (txq->axq_depth <= 1)
3506 		ieee80211_ff_flush(ic, txq->axq_ac);
3507 #endif
3508 
3509 	/* Kick the TXQ scheduler */
3510 	if (dosched) {
3511 		ATH_TXQ_LOCK(txq);
3512 		ath_txq_sched(sc, txq);
3513 		ATH_TXQ_UNLOCK(txq);
3514 	}
3515 
3516 	return nacked;
3517 }
3518 
3519 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3520 
3521 /*
3522  * Deferred processing of transmit interrupt; special-cased
3523  * for a single hardware transmit queue (e.g. 5210 and 5211).
3524  */
3525 static void
3526 ath_tx_proc_q0(void *arg, int npending)
3527 {
3528 	struct ath_softc *sc = arg;
3529 	struct ifnet *ifp = sc->sc_ifp;
3530 	uint32_t txqs;
3531 
3532 	ATH_PCU_LOCK(sc);
3533 	sc->sc_txproc_cnt++;
3534 	txqs = sc->sc_txq_active;
3535 	sc->sc_txq_active &= ~txqs;
3536 	ATH_PCU_UNLOCK(sc);
3537 
3538 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3539 		/* XXX why is lastrx updated in tx code? */
3540 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3541 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3542 		ath_tx_processq(sc, sc->sc_cabq, 1);
3543 	IF_LOCK(&ifp->if_snd);
3544 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3545 	IF_UNLOCK(&ifp->if_snd);
3546 	sc->sc_wd_timer = 0;
3547 
3548 	if (sc->sc_softled)
3549 		ath_led_event(sc, sc->sc_txrix);
3550 
3551 	ATH_PCU_LOCK(sc);
3552 	sc->sc_txproc_cnt--;
3553 	ATH_PCU_UNLOCK(sc);
3554 
3555 	ath_tx_kick(sc);
3556 }
3557 
3558 /*
3559  * Deferred processing of transmit interrupt; special-cased
3560  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3561  */
3562 static void
3563 ath_tx_proc_q0123(void *arg, int npending)
3564 {
3565 	struct ath_softc *sc = arg;
3566 	struct ifnet *ifp = sc->sc_ifp;
3567 	int nacked;
3568 	uint32_t txqs;
3569 
3570 	ATH_PCU_LOCK(sc);
3571 	sc->sc_txproc_cnt++;
3572 	txqs = sc->sc_txq_active;
3573 	sc->sc_txq_active &= ~txqs;
3574 	ATH_PCU_UNLOCK(sc);
3575 
3576 	/*
3577 	 * Process each active queue.
3578 	 */
3579 	nacked = 0;
3580 	if (TXQACTIVE(txqs, 0))
3581 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3582 	if (TXQACTIVE(txqs, 1))
3583 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3584 	if (TXQACTIVE(txqs, 2))
3585 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3586 	if (TXQACTIVE(txqs, 3))
3587 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3588 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3589 		ath_tx_processq(sc, sc->sc_cabq, 1);
3590 	if (nacked)
3591 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3592 
3593 	IF_LOCK(&ifp->if_snd);
3594 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3595 	IF_UNLOCK(&ifp->if_snd);
3596 	sc->sc_wd_timer = 0;
3597 
3598 	if (sc->sc_softled)
3599 		ath_led_event(sc, sc->sc_txrix);
3600 
3601 	ATH_PCU_LOCK(sc);
3602 	sc->sc_txproc_cnt--;
3603 	ATH_PCU_UNLOCK(sc);
3604 
3605 	ath_tx_kick(sc);
3606 }
3607 
3608 /*
3609  * Deferred processing of transmit interrupt.
3610  */
3611 static void
3612 ath_tx_proc(void *arg, int npending)
3613 {
3614 	struct ath_softc *sc = arg;
3615 	struct ifnet *ifp = sc->sc_ifp;
3616 	int i, nacked;
3617 	uint32_t txqs;
3618 
3619 	ATH_PCU_LOCK(sc);
3620 	sc->sc_txproc_cnt++;
3621 	txqs = sc->sc_txq_active;
3622 	sc->sc_txq_active &= ~txqs;
3623 	ATH_PCU_UNLOCK(sc);
3624 
3625 	/*
3626 	 * Process each active queue.
3627 	 */
3628 	nacked = 0;
3629 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3630 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3631 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3632 	if (nacked)
3633 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3634 
3635 	/* XXX check this inside of IF_LOCK? */
3636 	IF_LOCK(&ifp->if_snd);
3637 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3638 	IF_UNLOCK(&ifp->if_snd);
3639 	sc->sc_wd_timer = 0;
3640 
3641 	if (sc->sc_softled)
3642 		ath_led_event(sc, sc->sc_txrix);
3643 
3644 	ATH_PCU_LOCK(sc);
3645 	sc->sc_txproc_cnt--;
3646 	ATH_PCU_UNLOCK(sc);
3647 
3648 	ath_tx_kick(sc);
3649 }
3650 #undef	TXQACTIVE
3651 
3652 /*
3653  * Deferred processing of TXQ rescheduling.
3654  */
3655 static void
3656 ath_txq_sched_tasklet(void *arg, int npending)
3657 {
3658 	struct ath_softc *sc = arg;
3659 	int i;
3660 
3661 	/* XXX is skipping ok? */
3662 	ATH_PCU_LOCK(sc);
3663 #if 0
3664 	if (sc->sc_inreset_cnt > 0) {
3665 		device_printf(sc->sc_dev,
3666 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3667 		ATH_PCU_UNLOCK(sc);
3668 		return;
3669 	}
3670 #endif
3671 	sc->sc_txproc_cnt++;
3672 	ATH_PCU_UNLOCK(sc);
3673 
3674 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3675 		if (ATH_TXQ_SETUP(sc, i)) {
3676 			ATH_TXQ_LOCK(&sc->sc_txq[i]);
3677 			ath_txq_sched(sc, &sc->sc_txq[i]);
3678 			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3679 		}
3680 	}
3681 
3682 	ATH_PCU_LOCK(sc);
3683 	sc->sc_txproc_cnt--;
3684 	ATH_PCU_UNLOCK(sc);
3685 }
3686 
3687 void
3688 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
3689 {
3690 
3691 	ATH_TXBUF_LOCK_ASSERT(sc);
3692 
3693 	if (bf->bf_flags & ATH_BUF_MGMT)
3694 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
3695 	else {
3696 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3697 		sc->sc_txbuf_cnt++;
3698 		if (sc->sc_txbuf_cnt > ath_txbuf) {
3699 			device_printf(sc->sc_dev,
3700 			    "%s: sc_txbuf_cnt > %d?\n",
3701 			    __func__,
3702 			    ath_txbuf);
3703 			sc->sc_txbuf_cnt = ath_txbuf;
3704 		}
3705 	}
3706 }
3707 
3708 void
3709 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
3710 {
3711 
3712 	ATH_TXBUF_LOCK_ASSERT(sc);
3713 
3714 	if (bf->bf_flags & ATH_BUF_MGMT)
3715 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
3716 	else {
3717 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
3718 		sc->sc_txbuf_cnt++;
3719 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
3720 			device_printf(sc->sc_dev,
3721 			    "%s: sc_txbuf_cnt > %d?\n",
3722 			    __func__,
3723 			    ATH_TXBUF);
3724 			sc->sc_txbuf_cnt = ATH_TXBUF;
3725 		}
3726 	}
3727 }
3728 
3729 /*
3730  * Return a buffer to the pool and update the 'busy' flag on the
3731  * previous 'tail' entry.
3732  *
3733  * This _must_ only be called when the buffer is involved in a completed
3734  * TX. The logic is that if it was part of an active TX, the previous
3735  * buffer on the list is now not involved in a halted TX DMA queue, waiting
3736  * for restart (eg for TDMA.)
3737  *
3738  * The caller must free the mbuf and recycle the node reference.
3739  */
3740 void
3741 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
3742 {
3743 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3744 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
3745 
3746 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
3747 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
3748 
3749 	ATH_TXBUF_LOCK(sc);
3750 	ath_tx_update_busy(sc);
3751 	ath_returnbuf_tail(sc, bf);
3752 	ATH_TXBUF_UNLOCK(sc);
3753 }
3754 
3755 /*
3756  * This is currently used by ath_tx_draintxq() and
3757  * ath_tx_tid_free_pkts().
3758  *
3759  * It recycles a single ath_buf.
3760  */
3761 void
3762 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
3763 {
3764 	struct ieee80211_node *ni = bf->bf_node;
3765 	struct mbuf *m0 = bf->bf_m;
3766 
3767 	bf->bf_node = NULL;
3768 	bf->bf_m = NULL;
3769 
3770 	/* Free the buffer, it's not needed any longer */
3771 	ath_freebuf(sc, bf);
3772 
3773 	if (ni != NULL) {
3774 		/*
3775 		 * Do any callback and reclaim the node reference.
3776 		 */
3777 		if (m0->m_flags & M_TXCB)
3778 			ieee80211_process_callback(ni, m0, status);
3779 		ieee80211_free_node(ni);
3780 	}
3781 	m_freem(m0);
3782 
3783 	/*
3784 	 * XXX the buffer used to be freed -after-, but the DMA map was
3785 	 * freed where ath_freebuf() now is. I've no idea what this
3786 	 * will do.
3787 	 */
3788 }
3789 
3790 void
3791 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3792 {
3793 #ifdef ATH_DEBUG
3794 	struct ath_hal *ah = sc->sc_ah;
3795 #endif
3796 	struct ath_buf *bf;
3797 	u_int ix;
3798 
3799 	/*
3800 	 * NB: this assumes output has been stopped and
3801 	 *     we do not need to block ath_tx_proc
3802 	 */
3803 	ATH_TXBUF_LOCK(sc);
3804 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3805 	if (bf != NULL)
3806 		bf->bf_flags &= ~ATH_BUF_BUSY;
3807 	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3808 	if (bf != NULL)
3809 		bf->bf_flags &= ~ATH_BUF_BUSY;
3810 	ATH_TXBUF_UNLOCK(sc);
3811 
3812 	for (ix = 0;; ix++) {
3813 		ATH_TXQ_LOCK(txq);
3814 		bf = TAILQ_FIRST(&txq->axq_q);
3815 		if (bf == NULL) {
3816 			txq->axq_link = NULL;
3817 			ATH_TXQ_UNLOCK(txq);
3818 			break;
3819 		}
3820 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3821 		if (bf->bf_state.bfs_aggr)
3822 			txq->axq_aggr_depth--;
3823 #ifdef ATH_DEBUG
3824 		if (sc->sc_debug & ATH_DEBUG_RESET) {
3825 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3826 
3827 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
3828 				ath_hal_txprocdesc(ah, bf->bf_lastds,
3829 				    &bf->bf_status.ds_txstat) == HAL_OK);
3830 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
3831 			    bf->bf_m->m_len, 0, -1);
3832 		}
3833 #endif /* ATH_DEBUG */
3834 		/*
3835 		 * Since we're now doing magic in the completion
3836 		 * functions, we -must- call it for aggregation
3837 		 * destinations or BAW tracking will get upset.
3838 		 */
3839 		/*
3840 		 * Clear ATH_BUF_BUSY; the completion handler
3841 		 * will free the buffer.
3842 		 */
3843 		ATH_TXQ_UNLOCK(txq);
3844 		bf->bf_flags &= ~ATH_BUF_BUSY;
3845 		if (bf->bf_comp)
3846 			bf->bf_comp(sc, bf, 1);
3847 		else
3848 			ath_tx_default_comp(sc, bf, 1);
3849 	}
3850 
3851 	/*
3852 	 * Drain software queued frames which are on
3853 	 * active TIDs.
3854 	 */
3855 	ath_tx_txq_drain(sc, txq);
3856 }
3857 
3858 static void
3859 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3860 {
3861 	struct ath_hal *ah = sc->sc_ah;
3862 
3863 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3864 	    __func__, txq->axq_qnum,
3865 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3866 	    txq->axq_link);
3867 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3868 }
3869 
3870 static int
3871 ath_stoptxdma(struct ath_softc *sc)
3872 {
3873 	struct ath_hal *ah = sc->sc_ah;
3874 	int i;
3875 
3876 	/* XXX return value */
3877 	if (sc->sc_invalid)
3878 		return 0;
3879 
3880 	if (!sc->sc_invalid) {
3881 		/* don't touch the hardware if marked invalid */
3882 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3883 		    __func__, sc->sc_bhalq,
3884 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
3885 		    NULL);
3886 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3887 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3888 			if (ATH_TXQ_SETUP(sc, i))
3889 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3890 	}
3891 
3892 	return 1;
3893 }
3894 
3895 /*
3896  * Drain the transmit queues and reclaim resources.
3897  */
3898 static void
3899 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
3900 {
3901 #ifdef	ATH_DEBUG
3902 	struct ath_hal *ah = sc->sc_ah;
3903 #endif
3904 	struct ifnet *ifp = sc->sc_ifp;
3905 	int i;
3906 
3907 	(void) ath_stoptxdma(sc);
3908 
3909 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3910 		/*
3911 		 * XXX TODO: should we just handle the completed TX frames
3912 		 * here, whether or not the reset is a full one or not?
3913 		 */
3914 		if (ATH_TXQ_SETUP(sc, i)) {
3915 			if (reset_type == ATH_RESET_NOLOSS)
3916 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
3917 			else
3918 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
3919 		}
3920 	}
3921 #ifdef ATH_DEBUG
3922 	if (sc->sc_debug & ATH_DEBUG_RESET) {
3923 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
3924 		if (bf != NULL && bf->bf_m != NULL) {
3925 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
3926 				ath_hal_txprocdesc(ah, bf->bf_lastds,
3927 				    &bf->bf_status.ds_txstat) == HAL_OK);
3928 			ieee80211_dump_pkt(ifp->if_l2com,
3929 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
3930 			    0, -1);
3931 		}
3932 	}
3933 #endif /* ATH_DEBUG */
3934 	IF_LOCK(&ifp->if_snd);
3935 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3936 	IF_UNLOCK(&ifp->if_snd);
3937 	sc->sc_wd_timer = 0;
3938 }
3939 
3940 /*
3941  * Update internal state after a channel change.
3942  */
3943 static void
3944 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3945 {
3946 	enum ieee80211_phymode mode;
3947 
3948 	/*
3949 	 * Change channels and update the h/w rate map
3950 	 * if we're switching; e.g. 11a to 11b/g.
3951 	 */
3952 	mode = ieee80211_chan2mode(chan);
3953 	if (mode != sc->sc_curmode)
3954 		ath_setcurmode(sc, mode);
3955 	sc->sc_curchan = chan;
3956 }
3957 
3958 /*
3959  * Set/change channels.  If the channel is really being changed,
3960  * it's done by resetting the chip.  To accomplish this we must
3961  * first cleanup any pending DMA, then restart stuff after a la
3962  * ath_init.
3963  */
3964 static int
3965 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3966 {
3967 	struct ifnet *ifp = sc->sc_ifp;
3968 	struct ieee80211com *ic = ifp->if_l2com;
3969 	struct ath_hal *ah = sc->sc_ah;
3970 	int ret = 0;
3971 
3972 	/* Treat this as an interface reset */
3973 	ATH_PCU_UNLOCK_ASSERT(sc);
3974 	ATH_UNLOCK_ASSERT(sc);
3975 
3976 	/* (Try to) stop TX/RX from occuring */
3977 	taskqueue_block(sc->sc_tq);
3978 
3979 	ATH_PCU_LOCK(sc);
3980 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
3981 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
3982 	if (ath_reset_grablock(sc, 1) == 0) {
3983 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
3984 		    __func__);
3985 	}
3986 	ATH_PCU_UNLOCK(sc);
3987 
3988 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
3989 	    __func__, ieee80211_chan2ieee(ic, chan),
3990 	    chan->ic_freq, chan->ic_flags);
3991 	if (chan != sc->sc_curchan) {
3992 		HAL_STATUS status;
3993 		/*
3994 		 * To switch channels clear any pending DMA operations;
3995 		 * wait long enough for the RX fifo to drain, reset the
3996 		 * hardware at the new frequency, and then re-enable
3997 		 * the relevant bits of the h/w.
3998 		 */
3999 #if 0
4000 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4001 #endif
4002 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4003 		/*
4004 		 * First, handle completed TX/RX frames.
4005 		 */
4006 		ath_rx_proc(sc, 0);
4007 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4008 		/*
4009 		 * Next, flush the non-scheduled frames.
4010 		 */
4011 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4012 
4013 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4014 			if_printf(ifp, "%s: unable to reset "
4015 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4016 			    __func__, ieee80211_chan2ieee(ic, chan),
4017 			    chan->ic_freq, chan->ic_flags, status);
4018 			ret = EIO;
4019 			goto finish;
4020 		}
4021 		sc->sc_diversity = ath_hal_getdiversity(ah);
4022 
4023 		/* Let DFS at it in case it's a DFS channel */
4024 		ath_dfs_radar_enable(sc, chan);
4025 
4026 		/*
4027 		 * Re-enable rx framework.
4028 		 */
4029 		if (ath_startrecv(sc) != 0) {
4030 			if_printf(ifp, "%s: unable to restart recv logic\n",
4031 			    __func__);
4032 			ret = EIO;
4033 			goto finish;
4034 		}
4035 
4036 		/*
4037 		 * Change channels and update the h/w rate map
4038 		 * if we're switching; e.g. 11a to 11b/g.
4039 		 */
4040 		ath_chan_change(sc, chan);
4041 
4042 		/*
4043 		 * Reset clears the beacon timers; reset them
4044 		 * here if needed.
4045 		 */
4046 		if (sc->sc_beacons) {		/* restart beacons */
4047 #ifdef IEEE80211_SUPPORT_TDMA
4048 			if (sc->sc_tdma)
4049 				ath_tdma_config(sc, NULL);
4050 			else
4051 #endif
4052 			ath_beacon_config(sc, NULL);
4053 		}
4054 
4055 		/*
4056 		 * Re-enable interrupts.
4057 		 */
4058 #if 0
4059 		ath_hal_intrset(ah, sc->sc_imask);
4060 #endif
4061 	}
4062 
4063 finish:
4064 	ATH_PCU_LOCK(sc);
4065 	sc->sc_inreset_cnt--;
4066 	/* XXX only do this if sc_inreset_cnt == 0? */
4067 	ath_hal_intrset(ah, sc->sc_imask);
4068 	ATH_PCU_UNLOCK(sc);
4069 
4070 	IF_LOCK(&ifp->if_snd);
4071 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4072 	IF_UNLOCK(&ifp->if_snd);
4073 	ath_txrx_start(sc);
4074 	/* XXX ath_start? */
4075 
4076 	return ret;
4077 }
4078 
4079 /*
4080  * Periodically recalibrate the PHY to account
4081  * for temperature/environment changes.
4082  */
4083 static void
4084 ath_calibrate(void *arg)
4085 {
4086 	struct ath_softc *sc = arg;
4087 	struct ath_hal *ah = sc->sc_ah;
4088 	struct ifnet *ifp = sc->sc_ifp;
4089 	struct ieee80211com *ic = ifp->if_l2com;
4090 	HAL_BOOL longCal, isCalDone;
4091 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4092 	int nextcal;
4093 
4094 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4095 		goto restart;
4096 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4097 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4098 	if (sc->sc_doresetcal)
4099 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4100 
4101 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4102 	if (aniCal) {
4103 		sc->sc_stats.ast_ani_cal++;
4104 		sc->sc_lastani = ticks;
4105 		ath_hal_ani_poll(ah, sc->sc_curchan);
4106 	}
4107 
4108 	if (longCal) {
4109 		sc->sc_stats.ast_per_cal++;
4110 		sc->sc_lastlongcal = ticks;
4111 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4112 			/*
4113 			 * Rfgain is out of bounds, reset the chip
4114 			 * to load new gain values.
4115 			 */
4116 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4117 				"%s: rfgain change\n", __func__);
4118 			sc->sc_stats.ast_per_rfgain++;
4119 			sc->sc_resetcal = 0;
4120 			sc->sc_doresetcal = AH_TRUE;
4121 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4122 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4123 			return;
4124 		}
4125 		/*
4126 		 * If this long cal is after an idle period, then
4127 		 * reset the data collection state so we start fresh.
4128 		 */
4129 		if (sc->sc_resetcal) {
4130 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4131 			sc->sc_lastcalreset = ticks;
4132 			sc->sc_lastshortcal = ticks;
4133 			sc->sc_resetcal = 0;
4134 			sc->sc_doresetcal = AH_TRUE;
4135 		}
4136 	}
4137 
4138 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4139 	if (shortCal || longCal) {
4140 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4141 			if (longCal) {
4142 				/*
4143 				 * Calibrate noise floor data again in case of change.
4144 				 */
4145 				ath_hal_process_noisefloor(ah);
4146 			}
4147 		} else {
4148 			DPRINTF(sc, ATH_DEBUG_ANY,
4149 				"%s: calibration of channel %u failed\n",
4150 				__func__, sc->sc_curchan->ic_freq);
4151 			sc->sc_stats.ast_per_calfail++;
4152 		}
4153 		if (shortCal)
4154 			sc->sc_lastshortcal = ticks;
4155 	}
4156 	if (!isCalDone) {
4157 restart:
4158 		/*
4159 		 * Use a shorter interval to potentially collect multiple
4160 		 * data samples required to complete calibration.  Once
4161 		 * we're told the work is done we drop back to a longer
4162 		 * interval between requests.  We're more aggressive doing
4163 		 * work when operating as an AP to improve operation right
4164 		 * after startup.
4165 		 */
4166 		sc->sc_lastshortcal = ticks;
4167 		nextcal = ath_shortcalinterval*hz/1000;
4168 		if (sc->sc_opmode != HAL_M_HOSTAP)
4169 			nextcal *= 10;
4170 		sc->sc_doresetcal = AH_TRUE;
4171 	} else {
4172 		/* nextcal should be the shortest time for next event */
4173 		nextcal = ath_longcalinterval*hz;
4174 		if (sc->sc_lastcalreset == 0)
4175 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4176 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4177 			sc->sc_resetcal = 1;	/* setup reset next trip */
4178 		sc->sc_doresetcal = AH_FALSE;
4179 	}
4180 	/* ANI calibration may occur more often than short/long/resetcal */
4181 	if (ath_anicalinterval > 0)
4182 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4183 
4184 	if (nextcal != 0) {
4185 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4186 		    __func__, nextcal, isCalDone ? "" : "!");
4187 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4188 	} else {
4189 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4190 		    __func__);
4191 		/* NB: don't rearm timer */
4192 	}
4193 }
4194 
4195 static void
4196 ath_scan_start(struct ieee80211com *ic)
4197 {
4198 	struct ifnet *ifp = ic->ic_ifp;
4199 	struct ath_softc *sc = ifp->if_softc;
4200 	struct ath_hal *ah = sc->sc_ah;
4201 	u_int32_t rfilt;
4202 
4203 	/* XXX calibration timer? */
4204 
4205 	ATH_LOCK(sc);
4206 	sc->sc_scanning = 1;
4207 	sc->sc_syncbeacon = 0;
4208 	rfilt = ath_calcrxfilter(sc);
4209 	ATH_UNLOCK(sc);
4210 
4211 	ATH_PCU_LOCK(sc);
4212 	ath_hal_setrxfilter(ah, rfilt);
4213 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4214 	ATH_PCU_UNLOCK(sc);
4215 
4216 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4217 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4218 }
4219 
4220 static void
4221 ath_scan_end(struct ieee80211com *ic)
4222 {
4223 	struct ifnet *ifp = ic->ic_ifp;
4224 	struct ath_softc *sc = ifp->if_softc;
4225 	struct ath_hal *ah = sc->sc_ah;
4226 	u_int32_t rfilt;
4227 
4228 	ATH_LOCK(sc);
4229 	sc->sc_scanning = 0;
4230 	rfilt = ath_calcrxfilter(sc);
4231 	ATH_UNLOCK(sc);
4232 
4233 	ATH_PCU_LOCK(sc);
4234 	ath_hal_setrxfilter(ah, rfilt);
4235 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4236 
4237 	ath_hal_process_noisefloor(ah);
4238 	ATH_PCU_UNLOCK(sc);
4239 
4240 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4241 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4242 		 sc->sc_curaid);
4243 }
4244 
4245 #ifdef	ATH_ENABLE_11N
4246 /*
4247  * For now, just do a channel change.
4248  *
4249  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4250  * control state and resetting the hardware without dropping frames out
4251  * of the queue.
4252  *
4253  * The unfortunate trouble here is making absolutely sure that the
4254  * channel width change has propagated enough so the hardware
4255  * absolutely isn't handed bogus frames for it's current operating
4256  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4257  * does occur in parallel, we need to make certain we've blocked
4258  * any further ongoing TX (and RX, that can cause raw TX)
4259  * before we do this.
4260  */
4261 static void
4262 ath_update_chw(struct ieee80211com *ic)
4263 {
4264 	struct ifnet *ifp = ic->ic_ifp;
4265 	struct ath_softc *sc = ifp->if_softc;
4266 
4267 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4268 	ath_set_channel(ic);
4269 }
4270 #endif	/* ATH_ENABLE_11N */
4271 
4272 static void
4273 ath_set_channel(struct ieee80211com *ic)
4274 {
4275 	struct ifnet *ifp = ic->ic_ifp;
4276 	struct ath_softc *sc = ifp->if_softc;
4277 
4278 	(void) ath_chan_set(sc, ic->ic_curchan);
4279 	/*
4280 	 * If we are returning to our bss channel then mark state
4281 	 * so the next recv'd beacon's tsf will be used to sync the
4282 	 * beacon timers.  Note that since we only hear beacons in
4283 	 * sta/ibss mode this has no effect in other operating modes.
4284 	 */
4285 	ATH_LOCK(sc);
4286 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4287 		sc->sc_syncbeacon = 1;
4288 	ATH_UNLOCK(sc);
4289 }
4290 
4291 /*
4292  * Walk the vap list and check if there any vap's in RUN state.
4293  */
4294 static int
4295 ath_isanyrunningvaps(struct ieee80211vap *this)
4296 {
4297 	struct ieee80211com *ic = this->iv_ic;
4298 	struct ieee80211vap *vap;
4299 
4300 	IEEE80211_LOCK_ASSERT(ic);
4301 
4302 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4303 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4304 			return 1;
4305 	}
4306 	return 0;
4307 }
4308 
4309 static int
4310 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4311 {
4312 	struct ieee80211com *ic = vap->iv_ic;
4313 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4314 	struct ath_vap *avp = ATH_VAP(vap);
4315 	struct ath_hal *ah = sc->sc_ah;
4316 	struct ieee80211_node *ni = NULL;
4317 	int i, error, stamode;
4318 	u_int32_t rfilt;
4319 	int csa_run_transition = 0;
4320 	static const HAL_LED_STATE leds[] = {
4321 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4322 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4323 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4324 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4325 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4326 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4327 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4328 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4329 	};
4330 
4331 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4332 		ieee80211_state_name[vap->iv_state],
4333 		ieee80211_state_name[nstate]);
4334 
4335 	/*
4336 	 * net80211 _should_ have the comlock asserted at this point.
4337 	 * There are some comments around the calls to vap->iv_newstate
4338 	 * which indicate that it (newstate) may end up dropping the
4339 	 * lock.  This and the subsequent lock assert check after newstate
4340 	 * are an attempt to catch these and figure out how/why.
4341 	 */
4342 	IEEE80211_LOCK_ASSERT(ic);
4343 
4344 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4345 		csa_run_transition = 1;
4346 
4347 	callout_drain(&sc->sc_cal_ch);
4348 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4349 
4350 	if (nstate == IEEE80211_S_SCAN) {
4351 		/*
4352 		 * Scanning: turn off beacon miss and don't beacon.
4353 		 * Mark beacon state so when we reach RUN state we'll
4354 		 * [re]setup beacons.  Unblock the task q thread so
4355 		 * deferred interrupt processing is done.
4356 		 */
4357 		ath_hal_intrset(ah,
4358 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4359 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4360 		sc->sc_beacons = 0;
4361 		taskqueue_unblock(sc->sc_tq);
4362 	}
4363 
4364 	ni = ieee80211_ref_node(vap->iv_bss);
4365 	rfilt = ath_calcrxfilter(sc);
4366 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4367 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4368 		   vap->iv_opmode == IEEE80211_M_IBSS);
4369 	if (stamode && nstate == IEEE80211_S_RUN) {
4370 		sc->sc_curaid = ni->ni_associd;
4371 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4372 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4373 	}
4374 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4375 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4376 	ath_hal_setrxfilter(ah, rfilt);
4377 
4378 	/* XXX is this to restore keycache on resume? */
4379 	if (vap->iv_opmode != IEEE80211_M_STA &&
4380 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4381 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4382 			if (ath_hal_keyisvalid(ah, i))
4383 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4384 	}
4385 
4386 	/*
4387 	 * Invoke the parent method to do net80211 work.
4388 	 */
4389 	error = avp->av_newstate(vap, nstate, arg);
4390 	if (error != 0)
4391 		goto bad;
4392 
4393 	/*
4394 	 * See above: ensure av_newstate() doesn't drop the lock
4395 	 * on us.
4396 	 */
4397 	IEEE80211_LOCK_ASSERT(ic);
4398 
4399 	if (nstate == IEEE80211_S_RUN) {
4400 		/* NB: collect bss node again, it may have changed */
4401 		ieee80211_free_node(ni);
4402 		ni = ieee80211_ref_node(vap->iv_bss);
4403 
4404 		DPRINTF(sc, ATH_DEBUG_STATE,
4405 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4406 		    "capinfo 0x%04x chan %d\n", __func__,
4407 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4408 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4409 
4410 		switch (vap->iv_opmode) {
4411 #ifdef IEEE80211_SUPPORT_TDMA
4412 		case IEEE80211_M_AHDEMO:
4413 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4414 				break;
4415 			/* fall thru... */
4416 #endif
4417 		case IEEE80211_M_HOSTAP:
4418 		case IEEE80211_M_IBSS:
4419 		case IEEE80211_M_MBSS:
4420 			/*
4421 			 * Allocate and setup the beacon frame.
4422 			 *
4423 			 * Stop any previous beacon DMA.  This may be
4424 			 * necessary, for example, when an ibss merge
4425 			 * causes reconfiguration; there will be a state
4426 			 * transition from RUN->RUN that means we may
4427 			 * be called with beacon transmission active.
4428 			 */
4429 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4430 
4431 			error = ath_beacon_alloc(sc, ni);
4432 			if (error != 0)
4433 				goto bad;
4434 			/*
4435 			 * If joining an adhoc network defer beacon timer
4436 			 * configuration to the next beacon frame so we
4437 			 * have a current TSF to use.  Otherwise we're
4438 			 * starting an ibss/bss so there's no need to delay;
4439 			 * if this is the first vap moving to RUN state, then
4440 			 * beacon state needs to be [re]configured.
4441 			 */
4442 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4443 			    ni->ni_tstamp.tsf != 0) {
4444 				sc->sc_syncbeacon = 1;
4445 			} else if (!sc->sc_beacons) {
4446 #ifdef IEEE80211_SUPPORT_TDMA
4447 				if (vap->iv_caps & IEEE80211_C_TDMA)
4448 					ath_tdma_config(sc, vap);
4449 				else
4450 #endif
4451 					ath_beacon_config(sc, vap);
4452 				sc->sc_beacons = 1;
4453 			}
4454 			break;
4455 		case IEEE80211_M_STA:
4456 			/*
4457 			 * Defer beacon timer configuration to the next
4458 			 * beacon frame so we have a current TSF to use
4459 			 * (any TSF collected when scanning is likely old).
4460 			 * However if it's due to a CSA -> RUN transition,
4461 			 * force a beacon update so we pick up a lack of
4462 			 * beacons from an AP in CAC and thus force a
4463 			 * scan.
4464 			 */
4465 			sc->sc_syncbeacon = 1;
4466 			if (csa_run_transition)
4467 				ath_beacon_config(sc, vap);
4468 			break;
4469 		case IEEE80211_M_MONITOR:
4470 			/*
4471 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4472 			 * transitions so we must re-enable interrupts here to
4473 			 * handle the case of a single monitor mode vap.
4474 			 */
4475 			ath_hal_intrset(ah, sc->sc_imask);
4476 			break;
4477 		case IEEE80211_M_WDS:
4478 			break;
4479 		default:
4480 			break;
4481 		}
4482 		/*
4483 		 * Let the hal process statistics collected during a
4484 		 * scan so it can provide calibrated noise floor data.
4485 		 */
4486 		ath_hal_process_noisefloor(ah);
4487 		/*
4488 		 * Reset rssi stats; maybe not the best place...
4489 		 */
4490 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4491 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4492 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4493 		/*
4494 		 * Finally, start any timers and the task q thread
4495 		 * (in case we didn't go through SCAN state).
4496 		 */
4497 		if (ath_longcalinterval != 0) {
4498 			/* start periodic recalibration timer */
4499 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4500 		} else {
4501 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4502 			    "%s: calibration disabled\n", __func__);
4503 		}
4504 		taskqueue_unblock(sc->sc_tq);
4505 	} else if (nstate == IEEE80211_S_INIT) {
4506 		/*
4507 		 * If there are no vaps left in RUN state then
4508 		 * shutdown host/driver operation:
4509 		 * o disable interrupts
4510 		 * o disable the task queue thread
4511 		 * o mark beacon processing as stopped
4512 		 */
4513 		if (!ath_isanyrunningvaps(vap)) {
4514 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4515 			/* disable interrupts  */
4516 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4517 			taskqueue_block(sc->sc_tq);
4518 			sc->sc_beacons = 0;
4519 		}
4520 #ifdef IEEE80211_SUPPORT_TDMA
4521 		ath_hal_setcca(ah, AH_TRUE);
4522 #endif
4523 	}
4524 bad:
4525 	ieee80211_free_node(ni);
4526 	return error;
4527 }
4528 
4529 /*
4530  * Allocate a key cache slot to the station so we can
4531  * setup a mapping from key index to node. The key cache
4532  * slot is needed for managing antenna state and for
4533  * compression when stations do not use crypto.  We do
4534  * it uniliaterally here; if crypto is employed this slot
4535  * will be reassigned.
4536  */
4537 static void
4538 ath_setup_stationkey(struct ieee80211_node *ni)
4539 {
4540 	struct ieee80211vap *vap = ni->ni_vap;
4541 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4542 	ieee80211_keyix keyix, rxkeyix;
4543 
4544 	/* XXX should take a locked ref to vap->iv_bss */
4545 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4546 		/*
4547 		 * Key cache is full; we'll fall back to doing
4548 		 * the more expensive lookup in software.  Note
4549 		 * this also means no h/w compression.
4550 		 */
4551 		/* XXX msg+statistic */
4552 	} else {
4553 		/* XXX locking? */
4554 		ni->ni_ucastkey.wk_keyix = keyix;
4555 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4556 		/* NB: must mark device key to get called back on delete */
4557 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4558 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4559 		/* NB: this will create a pass-thru key entry */
4560 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4561 	}
4562 }
4563 
4564 /*
4565  * Setup driver-specific state for a newly associated node.
4566  * Note that we're called also on a re-associate, the isnew
4567  * param tells us if this is the first time or not.
4568  */
4569 static void
4570 ath_newassoc(struct ieee80211_node *ni, int isnew)
4571 {
4572 	struct ath_node *an = ATH_NODE(ni);
4573 	struct ieee80211vap *vap = ni->ni_vap;
4574 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4575 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4576 
4577 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4578 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4579 
4580 	ath_rate_newassoc(sc, an, isnew);
4581 	if (isnew &&
4582 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4583 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4584 		ath_setup_stationkey(ni);
4585 }
4586 
4587 static int
4588 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4589 	int nchans, struct ieee80211_channel chans[])
4590 {
4591 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4592 	struct ath_hal *ah = sc->sc_ah;
4593 	HAL_STATUS status;
4594 
4595 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4596 	    "%s: rd %u cc %u location %c%s\n",
4597 	    __func__, reg->regdomain, reg->country, reg->location,
4598 	    reg->ecm ? " ecm" : "");
4599 
4600 	status = ath_hal_set_channels(ah, chans, nchans,
4601 	    reg->country, reg->regdomain);
4602 	if (status != HAL_OK) {
4603 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4604 		    __func__, status);
4605 		return EINVAL;		/* XXX */
4606 	}
4607 
4608 	return 0;
4609 }
4610 
4611 static void
4612 ath_getradiocaps(struct ieee80211com *ic,
4613 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4614 {
4615 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4616 	struct ath_hal *ah = sc->sc_ah;
4617 
4618 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4619 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4620 
4621 	/* XXX check return */
4622 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4623 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4624 
4625 }
4626 
4627 static int
4628 ath_getchannels(struct ath_softc *sc)
4629 {
4630 	struct ifnet *ifp = sc->sc_ifp;
4631 	struct ieee80211com *ic = ifp->if_l2com;
4632 	struct ath_hal *ah = sc->sc_ah;
4633 	HAL_STATUS status;
4634 
4635 	/*
4636 	 * Collect channel set based on EEPROM contents.
4637 	 */
4638 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4639 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4640 	if (status != HAL_OK) {
4641 		if_printf(ifp, "%s: unable to collect channel list from hal, "
4642 		    "status %d\n", __func__, status);
4643 		return EINVAL;
4644 	}
4645 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4646 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4647 	/* XXX map Atheros sku's to net80211 SKU's */
4648 	/* XXX net80211 types too small */
4649 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4650 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4651 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4652 	ic->ic_regdomain.isocc[1] = ' ';
4653 
4654 	ic->ic_regdomain.ecm = 1;
4655 	ic->ic_regdomain.location = 'I';
4656 
4657 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4658 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4659 	    __func__, sc->sc_eerd, sc->sc_eecc,
4660 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4661 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4662 	return 0;
4663 }
4664 
4665 static int
4666 ath_rate_setup(struct ath_softc *sc, u_int mode)
4667 {
4668 	struct ath_hal *ah = sc->sc_ah;
4669 	const HAL_RATE_TABLE *rt;
4670 
4671 	switch (mode) {
4672 	case IEEE80211_MODE_11A:
4673 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4674 		break;
4675 	case IEEE80211_MODE_HALF:
4676 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4677 		break;
4678 	case IEEE80211_MODE_QUARTER:
4679 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4680 		break;
4681 	case IEEE80211_MODE_11B:
4682 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4683 		break;
4684 	case IEEE80211_MODE_11G:
4685 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4686 		break;
4687 	case IEEE80211_MODE_TURBO_A:
4688 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4689 		break;
4690 	case IEEE80211_MODE_TURBO_G:
4691 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4692 		break;
4693 	case IEEE80211_MODE_STURBO_A:
4694 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4695 		break;
4696 	case IEEE80211_MODE_11NA:
4697 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4698 		break;
4699 	case IEEE80211_MODE_11NG:
4700 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4701 		break;
4702 	default:
4703 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4704 			__func__, mode);
4705 		return 0;
4706 	}
4707 	sc->sc_rates[mode] = rt;
4708 	return (rt != NULL);
4709 }
4710 
4711 static void
4712 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4713 {
4714 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4715 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4716 	static const struct {
4717 		u_int		rate;		/* tx/rx 802.11 rate */
4718 		u_int16_t	timeOn;		/* LED on time (ms) */
4719 		u_int16_t	timeOff;	/* LED off time (ms) */
4720 	} blinkrates[] = {
4721 		{ 108,  40,  10 },
4722 		{  96,  44,  11 },
4723 		{  72,  50,  13 },
4724 		{  48,  57,  14 },
4725 		{  36,  67,  16 },
4726 		{  24,  80,  20 },
4727 		{  22, 100,  25 },
4728 		{  18, 133,  34 },
4729 		{  12, 160,  40 },
4730 		{  10, 200,  50 },
4731 		{   6, 240,  58 },
4732 		{   4, 267,  66 },
4733 		{   2, 400, 100 },
4734 		{   0, 500, 130 },
4735 		/* XXX half/quarter rates */
4736 	};
4737 	const HAL_RATE_TABLE *rt;
4738 	int i, j;
4739 
4740 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4741 	rt = sc->sc_rates[mode];
4742 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4743 	for (i = 0; i < rt->rateCount; i++) {
4744 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4745 		if (rt->info[i].phy != IEEE80211_T_HT)
4746 			sc->sc_rixmap[ieeerate] = i;
4747 		else
4748 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
4749 	}
4750 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4751 	for (i = 0; i < N(sc->sc_hwmap); i++) {
4752 		if (i >= rt->rateCount) {
4753 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4754 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4755 			continue;
4756 		}
4757 		sc->sc_hwmap[i].ieeerate =
4758 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4759 		if (rt->info[i].phy == IEEE80211_T_HT)
4760 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
4761 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4762 		if (rt->info[i].shortPreamble ||
4763 		    rt->info[i].phy == IEEE80211_T_OFDM)
4764 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4765 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
4766 		for (j = 0; j < N(blinkrates)-1; j++)
4767 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4768 				break;
4769 		/* NB: this uses the last entry if the rate isn't found */
4770 		/* XXX beware of overlow */
4771 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4772 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4773 	}
4774 	sc->sc_currates = rt;
4775 	sc->sc_curmode = mode;
4776 	/*
4777 	 * All protection frames are transmited at 2Mb/s for
4778 	 * 11g, otherwise at 1Mb/s.
4779 	 */
4780 	if (mode == IEEE80211_MODE_11G)
4781 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
4782 	else
4783 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
4784 	/* NB: caller is responsible for resetting rate control state */
4785 #undef N
4786 }
4787 
4788 static void
4789 ath_watchdog(void *arg)
4790 {
4791 	struct ath_softc *sc = arg;
4792 	int do_reset = 0;
4793 
4794 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
4795 		struct ifnet *ifp = sc->sc_ifp;
4796 		uint32_t hangs;
4797 
4798 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
4799 		    hangs != 0) {
4800 			if_printf(ifp, "%s hang detected (0x%x)\n",
4801 			    hangs & 0xff ? "bb" : "mac", hangs);
4802 		} else
4803 			if_printf(ifp, "device timeout\n");
4804 		do_reset = 1;
4805 		ifp->if_oerrors++;
4806 		sc->sc_stats.ast_watchdog++;
4807 	}
4808 
4809 	/*
4810 	 * We can't hold the lock across the ath_reset() call.
4811 	 *
4812 	 * And since this routine can't hold a lock and sleep,
4813 	 * do the reset deferred.
4814 	 */
4815 	if (do_reset) {
4816 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4817 	}
4818 
4819 	callout_schedule(&sc->sc_wd_ch, hz);
4820 }
4821 
4822 #ifdef ATH_DIAGAPI
4823 /*
4824  * Diagnostic interface to the HAL.  This is used by various
4825  * tools to do things like retrieve register contents for
4826  * debugging.  The mechanism is intentionally opaque so that
4827  * it can change frequently w/o concern for compatiblity.
4828  */
4829 static int
4830 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4831 {
4832 	struct ath_hal *ah = sc->sc_ah;
4833 	u_int id = ad->ad_id & ATH_DIAG_ID;
4834 	void *indata = NULL;
4835 	void *outdata = NULL;
4836 	u_int32_t insize = ad->ad_in_size;
4837 	u_int32_t outsize = ad->ad_out_size;
4838 	int error = 0;
4839 
4840 	if (ad->ad_id & ATH_DIAG_IN) {
4841 		/*
4842 		 * Copy in data.
4843 		 */
4844 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4845 		if (indata == NULL) {
4846 			error = ENOMEM;
4847 			goto bad;
4848 		}
4849 		error = copyin(ad->ad_in_data, indata, insize);
4850 		if (error)
4851 			goto bad;
4852 	}
4853 	if (ad->ad_id & ATH_DIAG_DYN) {
4854 		/*
4855 		 * Allocate a buffer for the results (otherwise the HAL
4856 		 * returns a pointer to a buffer where we can read the
4857 		 * results).  Note that we depend on the HAL leaving this
4858 		 * pointer for us to use below in reclaiming the buffer;
4859 		 * may want to be more defensive.
4860 		 */
4861 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4862 		if (outdata == NULL) {
4863 			error = ENOMEM;
4864 			goto bad;
4865 		}
4866 	}
4867 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4868 		if (outsize < ad->ad_out_size)
4869 			ad->ad_out_size = outsize;
4870 		if (outdata != NULL)
4871 			error = copyout(outdata, ad->ad_out_data,
4872 					ad->ad_out_size);
4873 	} else {
4874 		error = EINVAL;
4875 	}
4876 bad:
4877 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4878 		free(indata, M_TEMP);
4879 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4880 		free(outdata, M_TEMP);
4881 	return error;
4882 }
4883 #endif /* ATH_DIAGAPI */
4884 
4885 static int
4886 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4887 {
4888 #define	IS_RUNNING(ifp) \
4889 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4890 	struct ath_softc *sc = ifp->if_softc;
4891 	struct ieee80211com *ic = ifp->if_l2com;
4892 	struct ifreq *ifr = (struct ifreq *)data;
4893 	const HAL_RATE_TABLE *rt;
4894 	int error = 0;
4895 
4896 	switch (cmd) {
4897 	case SIOCSIFFLAGS:
4898 		ATH_LOCK(sc);
4899 		if (IS_RUNNING(ifp)) {
4900 			/*
4901 			 * To avoid rescanning another access point,
4902 			 * do not call ath_init() here.  Instead,
4903 			 * only reflect promisc mode settings.
4904 			 */
4905 			ath_mode_init(sc);
4906 		} else if (ifp->if_flags & IFF_UP) {
4907 			/*
4908 			 * Beware of being called during attach/detach
4909 			 * to reset promiscuous mode.  In that case we
4910 			 * will still be marked UP but not RUNNING.
4911 			 * However trying to re-init the interface
4912 			 * is the wrong thing to do as we've already
4913 			 * torn down much of our state.  There's
4914 			 * probably a better way to deal with this.
4915 			 */
4916 			if (!sc->sc_invalid)
4917 				ath_init(sc);	/* XXX lose error */
4918 		} else {
4919 			ath_stop_locked(ifp);
4920 #ifdef notyet
4921 			/* XXX must wakeup in places like ath_vap_delete */
4922 			if (!sc->sc_invalid)
4923 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
4924 #endif
4925 		}
4926 		ATH_UNLOCK(sc);
4927 		break;
4928 	case SIOCGIFMEDIA:
4929 	case SIOCSIFMEDIA:
4930 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4931 		break;
4932 	case SIOCGATHSTATS:
4933 		/* NB: embed these numbers to get a consistent view */
4934 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4935 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4936 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
4937 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
4938 #ifdef IEEE80211_SUPPORT_TDMA
4939 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
4940 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
4941 #endif
4942 		rt = sc->sc_currates;
4943 		sc->sc_stats.ast_tx_rate =
4944 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
4945 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
4946 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
4947 		return copyout(&sc->sc_stats,
4948 		    ifr->ifr_data, sizeof (sc->sc_stats));
4949 	case SIOCGATHAGSTATS:
4950 		return copyout(&sc->sc_aggr_stats,
4951 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
4952 	case SIOCZATHSTATS:
4953 		error = priv_check(curthread, PRIV_DRIVER);
4954 		if (error == 0) {
4955 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
4956 			memset(&sc->sc_aggr_stats, 0,
4957 			    sizeof(sc->sc_aggr_stats));
4958 			memset(&sc->sc_intr_stats, 0,
4959 			    sizeof(sc->sc_intr_stats));
4960 		}
4961 		break;
4962 #ifdef ATH_DIAGAPI
4963 	case SIOCGATHDIAG:
4964 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4965 		break;
4966 	case SIOCGATHPHYERR:
4967 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
4968 		break;
4969 #endif
4970 	case SIOCGIFADDR:
4971 		error = ether_ioctl(ifp, cmd, data);
4972 		break;
4973 	default:
4974 		error = EINVAL;
4975 		break;
4976 	}
4977 	return error;
4978 #undef IS_RUNNING
4979 }
4980 
4981 /*
4982  * Announce various information on device/driver attach.
4983  */
4984 static void
4985 ath_announce(struct ath_softc *sc)
4986 {
4987 	struct ifnet *ifp = sc->sc_ifp;
4988 	struct ath_hal *ah = sc->sc_ah;
4989 
4990 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
4991 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
4992 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4993 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
4994 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
4995 	if (bootverbose) {
4996 		int i;
4997 		for (i = 0; i <= WME_AC_VO; i++) {
4998 			struct ath_txq *txq = sc->sc_ac2q[i];
4999 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5000 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5001 		}
5002 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5003 			sc->sc_cabq->axq_qnum);
5004 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5005 	}
5006 	if (ath_rxbuf != ATH_RXBUF)
5007 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5008 	if (ath_txbuf != ATH_TXBUF)
5009 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5010 	if (sc->sc_mcastkey && bootverbose)
5011 		if_printf(ifp, "using multicast key search\n");
5012 }
5013 
5014 static void
5015 ath_dfs_tasklet(void *p, int npending)
5016 {
5017 	struct ath_softc *sc = (struct ath_softc *) p;
5018 	struct ifnet *ifp = sc->sc_ifp;
5019 	struct ieee80211com *ic = ifp->if_l2com;
5020 
5021 	/*
5022 	 * If previous processing has found a radar event,
5023 	 * signal this to the net80211 layer to begin DFS
5024 	 * processing.
5025 	 */
5026 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5027 		/* DFS event found, initiate channel change */
5028 		/*
5029 		 * XXX doesn't currently tell us whether the event
5030 		 * XXX was found in the primary or extension
5031 		 * XXX channel!
5032 		 */
5033 		IEEE80211_LOCK(ic);
5034 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5035 		IEEE80211_UNLOCK(ic);
5036 	}
5037 }
5038 
5039 MODULE_VERSION(if_ath, 1);
5040 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5041 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5042 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5043 #endif
5044