xref: /freebsd/sys/dev/ath/if_ath.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
86 
87 /* unalligned little endian access */
88 #define LE_READ_2(p)							\
89 	((u_int16_t)							\
90 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
91 #define LE_READ_4(p)							\
92 	((u_int32_t)							\
93 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
94 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95 
96 enum {
97 	ATH_LED_TX,
98 	ATH_LED_RX,
99 	ATH_LED_POLL,
100 };
101 
102 static void	ath_init(void *);
103 static void	ath_stop_locked(struct ifnet *);
104 static void	ath_stop(struct ifnet *);
105 static void	ath_start(struct ifnet *);
106 static int	ath_reset(struct ifnet *);
107 static int	ath_media_change(struct ifnet *);
108 static void	ath_watchdog(struct ifnet *);
109 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
110 static void	ath_fatal_proc(void *, int);
111 static void	ath_rxorn_proc(void *, int);
112 static void	ath_bmiss_proc(void *, int);
113 static void	ath_initkeytable(struct ath_softc *);
114 static int	ath_key_alloc(struct ieee80211com *,
115 			const struct ieee80211_key *);
116 static int	ath_key_delete(struct ieee80211com *,
117 			const struct ieee80211_key *);
118 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120 static void	ath_key_update_begin(struct ieee80211com *);
121 static void	ath_key_update_end(struct ieee80211com *);
122 static void	ath_mode_init(struct ath_softc *);
123 static void	ath_setslottime(struct ath_softc *);
124 static void	ath_updateslot(struct ifnet *);
125 static int	ath_beaconq_setup(struct ath_hal *);
126 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128 static void	ath_beacon_proc(void *, int);
129 static void	ath_bstuck_proc(void *, int);
130 static void	ath_beacon_free(struct ath_softc *);
131 static void	ath_beacon_config(struct ath_softc *);
132 static void	ath_descdma_cleanup(struct ath_softc *sc,
133 			struct ath_descdma *, ath_bufhead *);
134 static int	ath_desc_alloc(struct ath_softc *);
135 static void	ath_desc_free(struct ath_softc *);
136 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137 static void	ath_node_free(struct ieee80211_node *);
138 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
139 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141 			struct ieee80211_node *ni,
142 			int subtype, int rssi, u_int32_t rstamp);
143 static void	ath_setdefantenna(struct ath_softc *, u_int);
144 static void	ath_rx_proc(void *, int);
145 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146 static int	ath_tx_setup(struct ath_softc *, int, int);
147 static int	ath_wme_update(struct ieee80211com *);
148 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149 static void	ath_tx_cleanup(struct ath_softc *);
150 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151 			     struct ath_buf *, struct mbuf *);
152 static void	ath_tx_proc_q0(void *, int);
153 static void	ath_tx_proc_q0123(void *, int);
154 static void	ath_tx_proc(void *, int);
155 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156 static void	ath_draintxq(struct ath_softc *);
157 static void	ath_stoprecv(struct ath_softc *);
158 static int	ath_startrecv(struct ath_softc *);
159 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160 static void	ath_next_scan(void *);
161 static void	ath_calibrate(void *);
162 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163 static void	ath_newassoc(struct ieee80211com *,
164 			struct ieee80211_node *, int);
165 static int	ath_getchannels(struct ath_softc *, u_int cc,
166 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
167 static void	ath_led_event(struct ath_softc *, int);
168 static void	ath_update_txpow(struct ath_softc *);
169 
170 static int	ath_rate_setup(struct ath_softc *, u_int mode);
171 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
172 
173 static void	ath_sysctlattach(struct ath_softc *);
174 static void	ath_bpfattach(struct ath_softc *);
175 static void	ath_announce(struct ath_softc *);
176 
177 SYSCTL_DECL(_hw_ath);
178 
179 /* XXX validate sysctl values */
180 static	int ath_dwelltime = 200;		/* 5 channels/second */
181 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
182 	    0, "channel dwell time (ms) for AP/station scanning");
183 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
184 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185 	    0, "chip calibration interval (secs)");
186 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
187 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
188 	    0, "outdoor operation");
189 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
190 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
191 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
192 	    0, "extended channel mode");
193 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
194 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
195 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
196 	    0, "country code");
197 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
198 static	int ath_regdomain = 0;			/* regulatory domain */
199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200 	    0, "regulatory domain");
201 
202 #ifdef AR_DEBUG
203 static	int ath_debug = 0;
204 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
205 	    0, "control debugging printfs");
206 TUNABLE_INT("hw.ath.debug", &ath_debug);
207 enum {
208 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
209 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
210 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
211 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
212 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
213 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
214 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
215 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
216 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
217 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
218 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
219 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
220 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
221 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
222 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
223 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
224 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
225 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
226 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
227 	ATH_DEBUG_ANY		= 0xffffffff
228 };
229 #define	IFF_DUMPPKTS(sc, m) \
230 	((sc->sc_debug & (m)) || \
231 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232 #define	DPRINTF(sc, m, fmt, ...) do {				\
233 	if (sc->sc_debug & (m))					\
234 		printf(fmt, __VA_ARGS__);			\
235 } while (0)
236 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
237 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
238 		ath_keyprint(__func__, ix, hk, mac);		\
239 } while (0)
240 static	void ath_printrxbuf(struct ath_buf *bf, int);
241 static	void ath_printtxbuf(struct ath_buf *bf, int);
242 #else
243 #define	IFF_DUMPPKTS(sc, m) \
244 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define	DPRINTF(m, fmt, ...)
246 #define	KEYPRINTF(sc, k, ix, mac)
247 #endif
248 
249 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
250 
251 int
252 ath_attach(u_int16_t devid, struct ath_softc *sc)
253 {
254 	struct ifnet *ifp = &sc->sc_if;
255 	struct ieee80211com *ic = &sc->sc_ic;
256 	struct ath_hal *ah;
257 	HAL_STATUS status;
258 	int error = 0, i;
259 
260 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
261 
262 	/* set these up early for if_printf use */
263 	if_initname(ifp, device_get_name(sc->sc_dev),
264 		device_get_unit(sc->sc_dev));
265 
266 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
267 	if (ah == NULL) {
268 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
269 			status);
270 		error = ENXIO;
271 		goto bad;
272 	}
273 	if (ah->ah_abi != HAL_ABI_VERSION) {
274 		if_printf(ifp, "HAL ABI mismatch detected "
275 			"(HAL:0x%x != driver:0x%x)\n",
276 			ah->ah_abi, HAL_ABI_VERSION);
277 		error = ENXIO;
278 		goto bad;
279 	}
280 	sc->sc_ah = ah;
281 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
282 
283 	/*
284 	 * Check if the MAC has multi-rate retry support.
285 	 * We do this by trying to setup a fake extended
286 	 * descriptor.  MAC's that don't have support will
287 	 * return false w/o doing anything.  MAC's that do
288 	 * support it will return true w/o doing anything.
289 	 */
290 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
291 
292 	/*
293 	 * Check if the device has hardware counters for PHY
294 	 * errors.  If so we need to enable the MIB interrupt
295 	 * so we can act on stat triggers.
296 	 */
297 	if (ath_hal_hwphycounters(ah))
298 		sc->sc_needmib = 1;
299 
300 	/*
301 	 * Get the hardware key cache size.
302 	 */
303 	sc->sc_keymax = ath_hal_keycachesize(ah);
304 	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
305 		if_printf(ifp,
306 			"Warning, using only %zu of %u key cache slots\n",
307 			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
308 		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
309 	}
310 	/*
311 	 * Reset the key cache since some parts do not
312 	 * reset the contents on initial power up.
313 	 */
314 	for (i = 0; i < sc->sc_keymax; i++)
315 		ath_hal_keyreset(ah, i);
316 	/*
317 	 * Mark key cache slots associated with global keys
318 	 * as in use.  If we knew TKIP was not to be used we
319 	 * could leave the +32, +64, and +32+64 slots free.
320 	 * XXX only for splitmic.
321 	 */
322 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
323 		setbit(sc->sc_keymap, i);
324 		setbit(sc->sc_keymap, i+32);
325 		setbit(sc->sc_keymap, i+64);
326 		setbit(sc->sc_keymap, i+32+64);
327 	}
328 
329 	/*
330 	 * Collect the channel list using the default country
331 	 * code and including outdoor channels.  The 802.11 layer
332 	 * is resposible for filtering this list based on settings
333 	 * like the phy mode.
334 	 */
335 	error = ath_getchannels(sc, ath_countrycode,
336 			ath_outdoor, ath_xchanmode);
337 	if (error != 0)
338 		goto bad;
339 	/*
340 	 * Setup dynamic sysctl's now that country code and
341 	 * regdomain are available from the hal.
342 	 */
343 	ath_sysctlattach(sc);
344 
345 	/*
346 	 * Setup rate tables for all potential media types.
347 	 */
348 	ath_rate_setup(sc, IEEE80211_MODE_11A);
349 	ath_rate_setup(sc, IEEE80211_MODE_11B);
350 	ath_rate_setup(sc, IEEE80211_MODE_11G);
351 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
352 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
353 	/* NB: setup here so ath_rate_update is happy */
354 	ath_setcurmode(sc, IEEE80211_MODE_11A);
355 
356 	/*
357 	 * Allocate tx+rx descriptors and populate the lists.
358 	 */
359 	error = ath_desc_alloc(sc);
360 	if (error != 0) {
361 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
362 		goto bad;
363 	}
364 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
365 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
366 
367 	ATH_TXBUF_LOCK_INIT(sc);
368 
369 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
370 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
371 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
372 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
373 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
374 
375 	/*
376 	 * Allocate hardware transmit queues: one queue for
377 	 * beacon frames and one data queue for each QoS
378 	 * priority.  Note that the hal handles reseting
379 	 * these queues at the needed time.
380 	 *
381 	 * XXX PS-Poll
382 	 */
383 	sc->sc_bhalq = ath_beaconq_setup(ah);
384 	if (sc->sc_bhalq == (u_int) -1) {
385 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
386 		error = EIO;
387 		goto bad2;
388 	}
389 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
390 	if (sc->sc_cabq == NULL) {
391 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
392 		error = EIO;
393 		goto bad2;
394 	}
395 	/* NB: insure BK queue is the lowest priority h/w queue */
396 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
397 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
398 			ieee80211_wme_acnames[WME_AC_BK]);
399 		error = EIO;
400 		goto bad2;
401 	}
402 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
403 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
404 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
405 		/*
406 		 * Not enough hardware tx queues to properly do WME;
407 		 * just punt and assign them all to the same h/w queue.
408 		 * We could do a better job of this if, for example,
409 		 * we allocate queues when we switch from station to
410 		 * AP mode.
411 		 */
412 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
413 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
414 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
415 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
416 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
417 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
418 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
419 	}
420 
421 	/*
422 	 * Special case certain configurations.  Note the
423 	 * CAB queue is handled by these specially so don't
424 	 * include them when checking the txq setup mask.
425 	 */
426 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
427 	case 0x01:
428 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
429 		break;
430 	case 0x0f:
431 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
432 		break;
433 	default:
434 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
435 		break;
436 	}
437 
438 	/*
439 	 * Setup rate control.  Some rate control modules
440 	 * call back to change the anntena state so expose
441 	 * the necessary entry points.
442 	 * XXX maybe belongs in struct ath_ratectrl?
443 	 */
444 	sc->sc_setdefantenna = ath_setdefantenna;
445 	sc->sc_rc = ath_rate_attach(sc);
446 	if (sc->sc_rc == NULL) {
447 		error = EIO;
448 		goto bad2;
449 	}
450 
451 	sc->sc_blinking = 0;
452 	sc->sc_ledstate = 1;
453 	sc->sc_ledon = 0;			/* low true */
454 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
455 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
456 	/*
457 	 * Auto-enable soft led processing for IBM cards and for
458 	 * 5211 minipci cards.  Users can also manually enable/disable
459 	 * support with a sysctl.
460 	 */
461 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
462 	if (sc->sc_softled) {
463 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
464 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
465 	}
466 
467 	ifp->if_softc = sc;
468 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
469 	ifp->if_start = ath_start;
470 	ifp->if_watchdog = ath_watchdog;
471 	ifp->if_ioctl = ath_ioctl;
472 	ifp->if_init = ath_init;
473 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
474 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
475 	IFQ_SET_READY(&ifp->if_snd);
476 
477 	ic->ic_ifp = ifp;
478 	ic->ic_reset = ath_reset;
479 	ic->ic_newassoc = ath_newassoc;
480 	ic->ic_updateslot = ath_updateslot;
481 	ic->ic_wme.wme_update = ath_wme_update;
482 	/* XXX not right but it's not used anywhere important */
483 	ic->ic_phytype = IEEE80211_T_OFDM;
484 	ic->ic_opmode = IEEE80211_M_STA;
485 	ic->ic_caps =
486 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
487 		| IEEE80211_C_HOSTAP		/* hostap mode */
488 		| IEEE80211_C_MONITOR		/* monitor mode */
489 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
490 		| IEEE80211_C_SHSLOT		/* short slot time supported */
491 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
492 		;
493 	/*
494 	 * Query the hal to figure out h/w crypto support.
495 	 */
496 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
497 		ic->ic_caps |= IEEE80211_C_WEP;
498 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
499 		ic->ic_caps |= IEEE80211_C_AES;
500 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
501 		ic->ic_caps |= IEEE80211_C_AES_CCM;
502 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
503 		ic->ic_caps |= IEEE80211_C_CKIP;
504 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
505 		ic->ic_caps |= IEEE80211_C_TKIP;
506 		/*
507 		 * Check if h/w does the MIC and/or whether the
508 		 * separate key cache entries are required to
509 		 * handle both tx+rx MIC keys.
510 		 */
511 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
512 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
513 		if (ath_hal_tkipsplit(ah))
514 			sc->sc_splitmic = 1;
515 	}
516 	/*
517 	 * TPC support can be done either with a global cap or
518 	 * per-packet support.  The latter is not available on
519 	 * all parts.  We're a bit pedantic here as all parts
520 	 * support a global cap.
521 	 */
522 	sc->sc_hastpc = ath_hal_hastpc(ah);
523 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
524 		ic->ic_caps |= IEEE80211_C_TXPMGT;
525 
526 	/*
527 	 * Mark WME capability only if we have sufficient
528 	 * hardware queues to do proper priority scheduling.
529 	 */
530 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
531 		ic->ic_caps |= IEEE80211_C_WME;
532 	/*
533 	 * Check for frame bursting capability.
534 	 */
535 	if (ath_hal_hasbursting(ah))
536 		ic->ic_caps |= IEEE80211_C_BURST;
537 
538 	/*
539 	 * Indicate we need the 802.11 header padded to a
540 	 * 32-bit boundary for 4-address and QoS frames.
541 	 */
542 	ic->ic_flags |= IEEE80211_F_DATAPAD;
543 
544 	/*
545 	 * Query the hal about antenna support.
546 	 */
547 	if (ath_hal_hasdiversity(ah)) {
548 		sc->sc_hasdiversity = 1;
549 		sc->sc_diversity = ath_hal_getdiversity(ah);
550 	}
551 	sc->sc_defant = ath_hal_getdefantenna(ah);
552 
553 	/*
554 	 * Not all chips have the VEOL support we want to
555 	 * use with IBSS beacons; check here for it.
556 	 */
557 	sc->sc_hasveol = ath_hal_hasveol(ah);
558 
559 	/* get mac address from hardware */
560 	ath_hal_getmac(ah, ic->ic_myaddr);
561 
562 	/* call MI attach routine. */
563 	ieee80211_ifattach(ic);
564 	/* override default methods */
565 	ic->ic_node_alloc = ath_node_alloc;
566 	sc->sc_node_free = ic->ic_node_free;
567 	ic->ic_node_free = ath_node_free;
568 	ic->ic_node_getrssi = ath_node_getrssi;
569 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
570 	ic->ic_recv_mgmt = ath_recv_mgmt;
571 	sc->sc_newstate = ic->ic_newstate;
572 	ic->ic_newstate = ath_newstate;
573 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574 	ic->ic_crypto.cs_key_delete = ath_key_delete;
575 	ic->ic_crypto.cs_key_set = ath_key_set;
576 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578 	/* complete initialization */
579 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580 
581 	ath_bpfattach(sc);
582 
583 	if (bootverbose)
584 		ieee80211_announce(ic);
585 	ath_announce(sc);
586 	return 0;
587 bad2:
588 	ath_tx_cleanup(sc);
589 	ath_desc_free(sc);
590 bad:
591 	if (ah)
592 		ath_hal_detach(ah);
593 	sc->sc_invalid = 1;
594 	return error;
595 }
596 
597 int
598 ath_detach(struct ath_softc *sc)
599 {
600 	struct ifnet *ifp = &sc->sc_if;
601 
602 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
603 		__func__, ifp->if_flags);
604 
605 	ath_stop(ifp);
606 	bpfdetach(ifp);
607 	/*
608 	 * NB: the order of these is important:
609 	 * o call the 802.11 layer before detaching the hal to
610 	 *   insure callbacks into the driver to delete global
611 	 *   key cache entries can be handled
612 	 * o reclaim the tx queue data structures after calling
613 	 *   the 802.11 layer as we'll get called back to reclaim
614 	 *   node state and potentially want to use them
615 	 * o to cleanup the tx queues the hal is called, so detach
616 	 *   it last
617 	 * Other than that, it's straightforward...
618 	 */
619 	ieee80211_ifdetach(&sc->sc_ic);
620 	ath_rate_detach(sc->sc_rc);
621 	ath_desc_free(sc);
622 	ath_tx_cleanup(sc);
623 	ath_hal_detach(sc->sc_ah);
624 
625 	return 0;
626 }
627 
628 void
629 ath_suspend(struct ath_softc *sc)
630 {
631 	struct ifnet *ifp = &sc->sc_if;
632 
633 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
634 		__func__, ifp->if_flags);
635 
636 	ath_stop(ifp);
637 }
638 
639 void
640 ath_resume(struct ath_softc *sc)
641 {
642 	struct ifnet *ifp = &sc->sc_if;
643 
644 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645 		__func__, ifp->if_flags);
646 
647 	if (ifp->if_flags & IFF_UP) {
648 		ath_init(ifp);
649 		if (ifp->if_flags & IFF_RUNNING)
650 			ath_start(ifp);
651 	}
652 }
653 
654 void
655 ath_shutdown(struct ath_softc *sc)
656 {
657 	struct ifnet *ifp = &sc->sc_if;
658 
659 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
660 		__func__, ifp->if_flags);
661 
662 	ath_stop(ifp);
663 }
664 
665 /*
666  * Interrupt handler.  Most of the actual processing is deferred.
667  */
668 void
669 ath_intr(void *arg)
670 {
671 	struct ath_softc *sc = arg;
672 	struct ifnet *ifp = &sc->sc_if;
673 	struct ath_hal *ah = sc->sc_ah;
674 	HAL_INT status;
675 
676 	if (sc->sc_invalid) {
677 		/*
678 		 * The hardware is not ready/present, don't touch anything.
679 		 * Note this can happen early on if the IRQ is shared.
680 		 */
681 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
682 		return;
683 	}
684 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
685 		return;
686 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
687 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
688 			__func__, ifp->if_flags);
689 		ath_hal_getisr(ah, &status);	/* clear ISR */
690 		ath_hal_intrset(ah, 0);		/* disable further intr's */
691 		return;
692 	}
693 	/*
694 	 * Figure out the reason(s) for the interrupt.  Note
695 	 * that the hal returns a pseudo-ISR that may include
696 	 * bits we haven't explicitly enabled so we mask the
697 	 * value to insure we only process bits we requested.
698 	 */
699 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
700 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
701 	status &= sc->sc_imask;			/* discard unasked for bits */
702 	if (status & HAL_INT_FATAL) {
703 		/*
704 		 * Fatal errors are unrecoverable.  Typically
705 		 * these are caused by DMA errors.  Unfortunately
706 		 * the exact reason is not (presently) returned
707 		 * by the hal.
708 		 */
709 		sc->sc_stats.ast_hardware++;
710 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
711 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
712 	} else if (status & HAL_INT_RXORN) {
713 		sc->sc_stats.ast_rxorn++;
714 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
715 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
716 	} else {
717 		if (status & HAL_INT_SWBA) {
718 			/*
719 			 * Software beacon alert--time to send a beacon.
720 			 * Handle beacon transmission directly; deferring
721 			 * this is too slow to meet timing constraints
722 			 * under load.
723 			 */
724 			ath_beacon_proc(sc, 0);
725 		}
726 		if (status & HAL_INT_RXEOL) {
727 			/*
728 			 * NB: the hardware should re-read the link when
729 			 *     RXE bit is written, but it doesn't work at
730 			 *     least on older hardware revs.
731 			 */
732 			sc->sc_stats.ast_rxeol++;
733 			sc->sc_rxlink = NULL;
734 		}
735 		if (status & HAL_INT_TXURN) {
736 			sc->sc_stats.ast_txurn++;
737 			/* bump tx trigger level */
738 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
739 		}
740 		if (status & HAL_INT_RX)
741 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
742 		if (status & HAL_INT_TX)
743 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
744 		if (status & HAL_INT_BMISS) {
745 			sc->sc_stats.ast_bmiss++;
746 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
747 		}
748 		if (status & HAL_INT_MIB) {
749 			sc->sc_stats.ast_mib++;
750 			/*
751 			 * Disable interrupts until we service the MIB
752 			 * interrupt; otherwise it will continue to fire.
753 			 */
754 			ath_hal_intrset(ah, 0);
755 			/*
756 			 * Let the hal handle the event.  We assume it will
757 			 * clear whatever condition caused the interrupt.
758 			 */
759 			ath_hal_mibevent(ah,
760 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
761 			ath_hal_intrset(ah, sc->sc_imask);
762 		}
763 	}
764 }
765 
766 static void
767 ath_fatal_proc(void *arg, int pending)
768 {
769 	struct ath_softc *sc = arg;
770 	struct ifnet *ifp = &sc->sc_if;
771 
772 	if_printf(ifp, "hardware error; resetting\n");
773 	ath_reset(ifp);
774 }
775 
776 static void
777 ath_rxorn_proc(void *arg, int pending)
778 {
779 	struct ath_softc *sc = arg;
780 	struct ifnet *ifp = &sc->sc_if;
781 
782 	if_printf(ifp, "rx FIFO overrun; resetting\n");
783 	ath_reset(ifp);
784 }
785 
786 static void
787 ath_bmiss_proc(void *arg, int pending)
788 {
789 	struct ath_softc *sc = arg;
790 	struct ieee80211com *ic = &sc->sc_ic;
791 
792 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
793 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
794 		("unexpect operating mode %u", ic->ic_opmode));
795 	if (ic->ic_state == IEEE80211_S_RUN) {
796 		/*
797 		 * Rather than go directly to scan state, try to
798 		 * reassociate first.  If that fails then the state
799 		 * machine will drop us into scanning after timing
800 		 * out waiting for a probe response.
801 		 */
802 		NET_LOCK_GIANT();
803 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
804 		NET_UNLOCK_GIANT();
805 	}
806 }
807 
808 static u_int
809 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
810 {
811 #define	N(a)	(sizeof(a) / sizeof(a[0]))
812 	static const u_int modeflags[] = {
813 		0,			/* IEEE80211_MODE_AUTO */
814 		CHANNEL_A,		/* IEEE80211_MODE_11A */
815 		CHANNEL_B,		/* IEEE80211_MODE_11B */
816 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
817 		0,			/* IEEE80211_MODE_FH */
818 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
819 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
820 	};
821 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
822 
823 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
824 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
825 	return modeflags[mode];
826 #undef N
827 }
828 
829 static void
830 ath_init(void *arg)
831 {
832 	struct ath_softc *sc = (struct ath_softc *) arg;
833 	struct ieee80211com *ic = &sc->sc_ic;
834 	struct ifnet *ifp = &sc->sc_if;
835 	struct ieee80211_node *ni;
836 	struct ath_hal *ah = sc->sc_ah;
837 	HAL_STATUS status;
838 
839 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
840 		__func__, ifp->if_flags);
841 
842 	ATH_LOCK(sc);
843 	/*
844 	 * Stop anything previously setup.  This is safe
845 	 * whether this is the first time through or not.
846 	 */
847 	ath_stop_locked(ifp);
848 
849 	/*
850 	 * The basic interface to setting the hardware in a good
851 	 * state is ``reset''.  On return the hardware is known to
852 	 * be powered up and with interrupts disabled.  This must
853 	 * be followed by initialization of the appropriate bits
854 	 * and then setup of the interrupt mask.
855 	 */
856 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
857 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
858 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
859 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
860 			status);
861 		goto done;
862 	}
863 
864 	/*
865 	 * This is needed only to setup initial state
866 	 * but it's best done after a reset.
867 	 */
868 	ath_update_txpow(sc);
869 
870 	/*
871 	 * Setup the hardware after reset: the key cache
872 	 * is filled as needed and the receive engine is
873 	 * set going.  Frame transmit is handled entirely
874 	 * in the frame output path; there's nothing to do
875 	 * here except setup the interrupt mask.
876 	 */
877 	ath_initkeytable(sc);		/* XXX still needed? */
878 	if (ath_startrecv(sc) != 0) {
879 		if_printf(ifp, "unable to start recv logic\n");
880 		goto done;
881 	}
882 
883 	/*
884 	 * Enable interrupts.
885 	 */
886 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
887 		  | HAL_INT_RXEOL | HAL_INT_RXORN
888 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
889 	/*
890 	 * Enable MIB interrupts when there are hardware phy counters.
891 	 * Note we only do this (at the moment) for station mode.
892 	 */
893 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
894 		sc->sc_imask |= HAL_INT_MIB;
895 	ath_hal_intrset(ah, sc->sc_imask);
896 
897 	ifp->if_flags |= IFF_RUNNING;
898 	ic->ic_state = IEEE80211_S_INIT;
899 
900 	/*
901 	 * The hardware should be ready to go now so it's safe
902 	 * to kick the 802.11 state machine as it's likely to
903 	 * immediately call back to us to send mgmt frames.
904 	 */
905 	ni = ic->ic_bss;
906 	ni->ni_chan = ic->ic_ibss_chan;
907 	ath_chan_change(sc, ni->ni_chan);
908 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
909 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
910 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
911 	} else
912 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
913 done:
914 	ATH_UNLOCK(sc);
915 }
916 
917 static void
918 ath_stop_locked(struct ifnet *ifp)
919 {
920 	struct ath_softc *sc = ifp->if_softc;
921 	struct ieee80211com *ic = &sc->sc_ic;
922 	struct ath_hal *ah = sc->sc_ah;
923 
924 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
925 		__func__, sc->sc_invalid, ifp->if_flags);
926 
927 	ATH_LOCK_ASSERT(sc);
928 	if (ifp->if_flags & IFF_RUNNING) {
929 		/*
930 		 * Shutdown the hardware and driver:
931 		 *    reset 802.11 state machine
932 		 *    turn off timers
933 		 *    disable interrupts
934 		 *    turn off the radio
935 		 *    clear transmit machinery
936 		 *    clear receive machinery
937 		 *    drain and release tx queues
938 		 *    reclaim beacon resources
939 		 *    power down hardware
940 		 *
941 		 * Note that some of this work is not possible if the
942 		 * hardware is gone (invalid).
943 		 */
944 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
945 		ifp->if_flags &= ~IFF_RUNNING;
946 		ifp->if_timer = 0;
947 		if (!sc->sc_invalid) {
948 			if (sc->sc_softled) {
949 				callout_stop(&sc->sc_ledtimer);
950 				ath_hal_gpioset(ah, sc->sc_ledpin,
951 					!sc->sc_ledon);
952 				sc->sc_blinking = 0;
953 			}
954 			ath_hal_intrset(ah, 0);
955 		}
956 		ath_draintxq(sc);
957 		if (!sc->sc_invalid) {
958 			ath_stoprecv(sc);
959 			ath_hal_phydisable(ah);
960 		} else
961 			sc->sc_rxlink = NULL;
962 		IFQ_DRV_PURGE(&ifp->if_snd);
963 		ath_beacon_free(sc);
964 	}
965 }
966 
967 static void
968 ath_stop(struct ifnet *ifp)
969 {
970 	struct ath_softc *sc = ifp->if_softc;
971 
972 	ATH_LOCK(sc);
973 	ath_stop_locked(ifp);
974 	if (!sc->sc_invalid) {
975 		/*
976 		 * Set the chip in full sleep mode.  Note that we are
977 		 * careful to do this only when bringing the interface
978 		 * completely to a stop.  When the chip is in this state
979 		 * it must be carefully woken up or references to
980 		 * registers in the PCI clock domain may freeze the bus
981 		 * (and system).  This varies by chip and is mostly an
982 		 * issue with newer parts that go to sleep more quickly.
983 		 */
984 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
985 	}
986 	ATH_UNLOCK(sc);
987 }
988 
989 /*
990  * Reset the hardware w/o losing operational state.  This is
991  * basically a more efficient way of doing ath_stop, ath_init,
992  * followed by state transitions to the current 802.11
993  * operational state.  Used to recover from various errors and
994  * to reset or reload hardware state.
995  */
996 static int
997 ath_reset(struct ifnet *ifp)
998 {
999 	struct ath_softc *sc = ifp->if_softc;
1000 	struct ieee80211com *ic = &sc->sc_ic;
1001 	struct ath_hal *ah = sc->sc_ah;
1002 	struct ieee80211_channel *c;
1003 	HAL_STATUS status;
1004 
1005 	/*
1006 	 * Convert to a HAL channel description with the flags
1007 	 * constrained to reflect the current operating mode.
1008 	 */
1009 	c = ic->ic_ibss_chan;
1010 	sc->sc_curchan.channel = c->ic_freq;
1011 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1012 
1013 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1014 	ath_draintxq(sc);		/* stop xmit side */
1015 	ath_stoprecv(sc);		/* stop recv side */
1016 	/* NB: indicate channel change so we do a full reset */
1017 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1018 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1019 			__func__, status);
1020 	ath_update_txpow(sc);		/* update tx power state */
1021 	if (ath_startrecv(sc) != 0)	/* restart recv */
1022 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1023 	/*
1024 	 * We may be doing a reset in response to an ioctl
1025 	 * that changes the channel so update any state that
1026 	 * might change as a result.
1027 	 */
1028 	ath_chan_change(sc, c);
1029 	if (ic->ic_state == IEEE80211_S_RUN)
1030 		ath_beacon_config(sc);	/* restart beacons */
1031 	ath_hal_intrset(ah, sc->sc_imask);
1032 
1033 	ath_start(ifp);			/* restart xmit */
1034 	return 0;
1035 }
1036 
1037 static void
1038 ath_start(struct ifnet *ifp)
1039 {
1040 	struct ath_softc *sc = ifp->if_softc;
1041 	struct ath_hal *ah = sc->sc_ah;
1042 	struct ieee80211com *ic = &sc->sc_ic;
1043 	struct ieee80211_node *ni;
1044 	struct ath_buf *bf;
1045 	struct mbuf *m;
1046 	struct ieee80211_frame *wh;
1047 	struct ether_header *eh;
1048 
1049 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1050 		return;
1051 	for (;;) {
1052 		/*
1053 		 * Grab a TX buffer and associated resources.
1054 		 */
1055 		ATH_TXBUF_LOCK(sc);
1056 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1057 		if (bf != NULL)
1058 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1059 		ATH_TXBUF_UNLOCK(sc);
1060 		if (bf == NULL) {
1061 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1062 				__func__);
1063 			sc->sc_stats.ast_tx_qstop++;
1064 			ifp->if_flags |= IFF_OACTIVE;
1065 			break;
1066 		}
1067 		/*
1068 		 * Poll the management queue for frames; they
1069 		 * have priority over normal data frames.
1070 		 */
1071 		IF_DEQUEUE(&ic->ic_mgtq, m);
1072 		if (m == NULL) {
1073 			/*
1074 			 * No data frames go out unless we're associated.
1075 			 */
1076 			if (ic->ic_state != IEEE80211_S_RUN) {
1077 				DPRINTF(sc, ATH_DEBUG_ANY,
1078 					"%s: ignore data packet, state %u\n",
1079 					__func__, ic->ic_state);
1080 				sc->sc_stats.ast_tx_discard++;
1081 				ATH_TXBUF_LOCK(sc);
1082 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1083 				ATH_TXBUF_UNLOCK(sc);
1084 				break;
1085 			}
1086 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1087 			if (m == NULL) {
1088 				ATH_TXBUF_LOCK(sc);
1089 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1090 				ATH_TXBUF_UNLOCK(sc);
1091 				break;
1092 			}
1093 			/*
1094 			 * Find the node for the destination so we can do
1095 			 * things like power save and fast frames aggregation.
1096 			 */
1097 			if (m->m_len < sizeof(struct ether_header) &&
1098 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1099 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1100 				ni = NULL;
1101 				goto bad;
1102 			}
1103 			eh = mtod(m, struct ether_header *);
1104 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1105 			if (ni == NULL) {
1106 				/* NB: ieee80211_find_txnode does stat+msg */
1107 				m_freem(m);
1108 				goto bad;
1109 			}
1110 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1111 			    (m->m_flags & M_PWR_SAV) == 0) {
1112 				/*
1113 				 * Station in power save mode; pass the frame
1114 				 * to the 802.11 layer and continue.  We'll get
1115 				 * the frame back when the time is right.
1116 				 */
1117 				ieee80211_pwrsave(ic, ni, m);
1118 				goto reclaim;
1119 			}
1120 			/* calculate priority so we can find the tx queue */
1121 			if (ieee80211_classify(ic, m, ni)) {
1122 				DPRINTF(sc, ATH_DEBUG_XMIT,
1123 					"%s: discard, classification failure\n",
1124 					__func__);
1125 				m_freem(m);
1126 				goto bad;
1127 			}
1128 			ifp->if_opackets++;
1129 			BPF_MTAP(ifp, m);
1130 			/*
1131 			 * Encapsulate the packet in prep for transmission.
1132 			 */
1133 			m = ieee80211_encap(ic, m, ni);
1134 			if (m == NULL) {
1135 				DPRINTF(sc, ATH_DEBUG_ANY,
1136 					"%s: encapsulation failure\n",
1137 					__func__);
1138 				sc->sc_stats.ast_tx_encap++;
1139 				goto bad;
1140 			}
1141 		} else {
1142 			/*
1143 			 * Hack!  The referenced node pointer is in the
1144 			 * rcvif field of the packet header.  This is
1145 			 * placed there by ieee80211_mgmt_output because
1146 			 * we need to hold the reference with the frame
1147 			 * and there's no other way (other than packet
1148 			 * tags which we consider too expensive to use)
1149 			 * to pass it along.
1150 			 */
1151 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1152 			m->m_pkthdr.rcvif = NULL;
1153 
1154 			wh = mtod(m, struct ieee80211_frame *);
1155 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1156 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1157 				/* fill time stamp */
1158 				u_int64_t tsf;
1159 				u_int32_t *tstamp;
1160 
1161 				tsf = ath_hal_gettsf64(ah);
1162 				/* XXX: adjust 100us delay to xmit */
1163 				tsf += 100;
1164 				tstamp = (u_int32_t *)&wh[1];
1165 				tstamp[0] = htole32(tsf & 0xffffffff);
1166 				tstamp[1] = htole32(tsf >> 32);
1167 			}
1168 			sc->sc_stats.ast_tx_mgmt++;
1169 		}
1170 
1171 		if (ath_tx_start(sc, ni, bf, m)) {
1172 	bad:
1173 			ifp->if_oerrors++;
1174 	reclaim:
1175 			ATH_TXBUF_LOCK(sc);
1176 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1177 			ATH_TXBUF_UNLOCK(sc);
1178 			if (ni != NULL)
1179 				ieee80211_free_node(ni);
1180 			continue;
1181 		}
1182 
1183 		sc->sc_tx_timer = 5;
1184 		ifp->if_timer = 1;
1185 	}
1186 }
1187 
1188 static int
1189 ath_media_change(struct ifnet *ifp)
1190 {
1191 #define	IS_UP(ifp) \
1192 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1193 	int error;
1194 
1195 	error = ieee80211_media_change(ifp);
1196 	if (error == ENETRESET) {
1197 		if (IS_UP(ifp))
1198 			ath_init(ifp);		/* XXX lose error */
1199 		error = 0;
1200 	}
1201 	return error;
1202 #undef IS_UP
1203 }
1204 
1205 #ifdef AR_DEBUG
1206 static void
1207 ath_keyprint(const char *tag, u_int ix,
1208 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1209 {
1210 	static const char *ciphers[] = {
1211 		"WEP",
1212 		"AES-OCB",
1213 		"AES-CCM",
1214 		"CKIP",
1215 		"TKIP",
1216 		"CLR",
1217 	};
1218 	int i, n;
1219 
1220 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1221 	for (i = 0, n = hk->kv_len; i < n; i++)
1222 		printf("%02x", hk->kv_val[i]);
1223 	printf(" mac %s", ether_sprintf(mac));
1224 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1225 		printf(" mic ");
1226 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1227 			printf("%02x", hk->kv_mic[i]);
1228 	}
1229 	printf("\n");
1230 }
1231 #endif
1232 
1233 /*
1234  * Set a TKIP key into the hardware.  This handles the
1235  * potential distribution of key state to multiple key
1236  * cache slots for TKIP.
1237  */
1238 static int
1239 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1240 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1241 {
1242 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1243 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1244 	struct ath_hal *ah = sc->sc_ah;
1245 
1246 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1247 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1248 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1249 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1250 		/*
1251 		 * TX key goes at first index, RX key at +32.
1252 		 * The hal handles the MIC keys at index+64.
1253 		 */
1254 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1255 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1256 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1257 			return 0;
1258 
1259 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1260 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1261 		/* XXX delete tx key on failure? */
1262 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1263 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1264 		/*
1265 		 * TX/RX key goes at first index.
1266 		 * The hal handles the MIC keys are index+64.
1267 		 */
1268 		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1269 			("group key at index %u", k->wk_keyix));
1270 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1271 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1272 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1273 		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1274 	}
1275 	/* XXX key w/o xmit/recv; need this for compression? */
1276 	return 0;
1277 #undef IEEE80211_KEY_XR
1278 }
1279 
1280 /*
1281  * Set a net80211 key into the hardware.  This handles the
1282  * potential distribution of key state to multiple key
1283  * cache slots for TKIP with hardware MIC support.
1284  */
1285 static int
1286 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1287 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1288 {
1289 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1290 	static const u_int8_t ciphermap[] = {
1291 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1292 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1293 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1294 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1295 		(u_int8_t) -1,		/* 4 is not allocated */
1296 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1297 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1298 	};
1299 	struct ath_hal *ah = sc->sc_ah;
1300 	const struct ieee80211_cipher *cip = k->wk_cipher;
1301 	HAL_KEYVAL hk;
1302 
1303 	memset(&hk, 0, sizeof(hk));
1304 	/*
1305 	 * Software crypto uses a "clear key" so non-crypto
1306 	 * state kept in the key cache are maintained and
1307 	 * so that rx frames have an entry to match.
1308 	 */
1309 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1310 		KASSERT(cip->ic_cipher < N(ciphermap),
1311 			("invalid cipher type %u", cip->ic_cipher));
1312 		hk.kv_type = ciphermap[cip->ic_cipher];
1313 		hk.kv_len = k->wk_keylen;
1314 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1315 	} else
1316 		hk.kv_type = HAL_CIPHER_CLR;
1317 
1318 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1319 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1320 	    sc->sc_splitmic) {
1321 		return ath_keyset_tkip(sc, k, &hk, mac);
1322 	} else {
1323 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1324 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1325 	}
1326 #undef N
1327 }
1328 
1329 /*
1330  * Fill the hardware key cache with key entries.
1331  */
1332 static void
1333 ath_initkeytable(struct ath_softc *sc)
1334 {
1335 	struct ieee80211com *ic = &sc->sc_ic;
1336 	struct ifnet *ifp = &sc->sc_if;
1337 	struct ath_hal *ah = sc->sc_ah;
1338 	const u_int8_t *bssid;
1339 	int i;
1340 
1341 	/* XXX maybe should reset all keys when !PRIVACY */
1342 	if (ic->ic_state == IEEE80211_S_SCAN)
1343 		bssid = ifp->if_broadcastaddr;
1344 	else
1345 		bssid = ic->ic_bss->ni_bssid;
1346 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1347 		struct ieee80211_key *k = &ic->ic_nw_keys[i];
1348 
1349 		if (k->wk_keylen == 0) {
1350 			ath_hal_keyreset(ah, i);
1351 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1352 				__func__, i);
1353 		} else {
1354 			ath_keyset(sc, k, bssid);
1355 		}
1356 	}
1357 }
1358 
1359 /*
1360  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1361  * each key, one for decrypt/encrypt and the other for the MIC.
1362  */
1363 static u_int16_t
1364 key_alloc_2pair(struct ath_softc *sc)
1365 {
1366 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1367 	u_int i, keyix;
1368 
1369 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1370 	/* XXX could optimize */
1371 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1372 		u_int8_t b = sc->sc_keymap[i];
1373 		if (b != 0xff) {
1374 			/*
1375 			 * One or more slots in this byte are free.
1376 			 */
1377 			keyix = i*NBBY;
1378 			while (b & 1) {
1379 		again:
1380 				keyix++;
1381 				b >>= 1;
1382 			}
1383 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1384 			if (isset(sc->sc_keymap, keyix+32) ||
1385 			    isset(sc->sc_keymap, keyix+64) ||
1386 			    isset(sc->sc_keymap, keyix+32+64)) {
1387 				/* full pair unavailable */
1388 				/* XXX statistic */
1389 				if (keyix == (i+1)*NBBY) {
1390 					/* no slots were appropriate, advance */
1391 					continue;
1392 				}
1393 				goto again;
1394 			}
1395 			setbit(sc->sc_keymap, keyix);
1396 			setbit(sc->sc_keymap, keyix+64);
1397 			setbit(sc->sc_keymap, keyix+32);
1398 			setbit(sc->sc_keymap, keyix+32+64);
1399 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1400 				"%s: key pair %u,%u %u,%u\n",
1401 				__func__, keyix, keyix+64,
1402 				keyix+32, keyix+32+64);
1403 			return keyix;
1404 		}
1405 	}
1406 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1407 	return IEEE80211_KEYIX_NONE;
1408 #undef N
1409 }
1410 
1411 /*
1412  * Allocate a single key cache slot.
1413  */
1414 static u_int16_t
1415 key_alloc_single(struct ath_softc *sc)
1416 {
1417 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1418 	u_int i, keyix;
1419 
1420 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1421 	for (i = 0; i < N(sc->sc_keymap); i++) {
1422 		u_int8_t b = sc->sc_keymap[i];
1423 		if (b != 0xff) {
1424 			/*
1425 			 * One or more slots are free.
1426 			 */
1427 			keyix = i*NBBY;
1428 			while (b & 1)
1429 				keyix++, b >>= 1;
1430 			setbit(sc->sc_keymap, keyix);
1431 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1432 				__func__, keyix);
1433 			return keyix;
1434 		}
1435 	}
1436 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1437 	return IEEE80211_KEYIX_NONE;
1438 #undef N
1439 }
1440 
1441 /*
1442  * Allocate one or more key cache slots for a uniacst key.  The
1443  * key itself is needed only to identify the cipher.  For hardware
1444  * TKIP with split cipher+MIC keys we allocate two key cache slot
1445  * pairs so that we can setup separate TX and RX MIC keys.  Note
1446  * that the MIC key for a TKIP key at slot i is assumed by the
1447  * hardware to be at slot i+64.  This limits TKIP keys to the first
1448  * 64 entries.
1449  */
1450 static int
1451 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1452 {
1453 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1454 
1455 	/*
1456 	 * Group key allocation must be handled specially for
1457 	 * parts that do not support multicast key cache search
1458 	 * functionality.  For those parts the key id must match
1459 	 * the h/w key index so lookups find the right key.  On
1460 	 * parts w/ the key search facility we install the sender's
1461 	 * mac address (with the high bit set) and let the hardware
1462 	 * find the key w/o using the key id.  This is preferred as
1463 	 * it permits us to support multiple users for adhoc and/or
1464 	 * multi-station operation.
1465 	 */
1466 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1467 		u_int keyix;
1468 
1469 		if (!(&ic->ic_nw_keys[0] <= k &&
1470 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1471 			/* should not happen */
1472 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1473 				"%s: bogus group key\n", __func__);
1474 			return IEEE80211_KEYIX_NONE;
1475 		}
1476 		keyix = k - ic->ic_nw_keys;
1477 		/*
1478 		 * XXX we pre-allocate the global keys so
1479 		 * have no way to check if they've already been allocated.
1480 		 */
1481 		return keyix;
1482 	}
1483 
1484 	/*
1485 	 * We allocate two pair for TKIP when using the h/w to do
1486 	 * the MIC.  For everything else, including software crypto,
1487 	 * we allocate a single entry.  Note that s/w crypto requires
1488 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1489 	 * not support pass-through cache entries and we map all
1490 	 * those requests to slot 0.
1491 	 */
1492 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1493 		return key_alloc_single(sc);
1494 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1495 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1496 		return key_alloc_2pair(sc);
1497 	} else {
1498 		return key_alloc_single(sc);
1499 	}
1500 }
1501 
1502 /*
1503  * Delete an entry in the key cache allocated by ath_key_alloc.
1504  */
1505 static int
1506 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1507 {
1508 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1509 	struct ath_hal *ah = sc->sc_ah;
1510 	const struct ieee80211_cipher *cip = k->wk_cipher;
1511 	u_int keyix = k->wk_keyix;
1512 
1513 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1514 
1515 	ath_hal_keyreset(ah, keyix);
1516 	/*
1517 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1518 	 */
1519 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1520 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1521 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1522 	if (keyix >= IEEE80211_WEP_NKID) {
1523 		/*
1524 		 * Don't touch keymap entries for global keys so
1525 		 * they are never considered for dynamic allocation.
1526 		 */
1527 		clrbit(sc->sc_keymap, keyix);
1528 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1529 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1530 		    sc->sc_splitmic) {
1531 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1532 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1533 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1534 		}
1535 	}
1536 	return 1;
1537 }
1538 
1539 /*
1540  * Set the key cache contents for the specified key.  Key cache
1541  * slot(s) must already have been allocated by ath_key_alloc.
1542  */
1543 static int
1544 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1545 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1546 {
1547 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1548 
1549 	return ath_keyset(sc, k, mac);
1550 }
1551 
1552 /*
1553  * Block/unblock tx+rx processing while a key change is done.
1554  * We assume the caller serializes key management operations
1555  * so we only need to worry about synchronization with other
1556  * uses that originate in the driver.
1557  */
1558 static void
1559 ath_key_update_begin(struct ieee80211com *ic)
1560 {
1561 	struct ifnet *ifp = ic->ic_ifp;
1562 	struct ath_softc *sc = ifp->if_softc;
1563 
1564 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1565 #if 0
1566 	tasklet_disable(&sc->sc_rxtq);
1567 #endif
1568 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1569 }
1570 
1571 static void
1572 ath_key_update_end(struct ieee80211com *ic)
1573 {
1574 	struct ifnet *ifp = ic->ic_ifp;
1575 	struct ath_softc *sc = ifp->if_softc;
1576 
1577 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1578 	IF_UNLOCK(&ifp->if_snd);
1579 #if 0
1580 	tasklet_enable(&sc->sc_rxtq);
1581 #endif
1582 }
1583 
1584 /*
1585  * Calculate the receive filter according to the
1586  * operating mode and state:
1587  *
1588  * o always accept unicast, broadcast, and multicast traffic
1589  * o maintain current state of phy error reception (the hal
1590  *   may enable phy error frames for noise immunity work)
1591  * o probe request frames are accepted only when operating in
1592  *   hostap, adhoc, or monitor modes
1593  * o enable promiscuous mode according to the interface state
1594  * o accept beacons:
1595  *   - when operating in adhoc mode so the 802.11 layer creates
1596  *     node table entries for peers,
1597  *   - when operating in station mode for collecting rssi data when
1598  *     the station is otherwise quiet, or
1599  *   - when scanning
1600  */
1601 static u_int32_t
1602 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1603 {
1604 	struct ieee80211com *ic = &sc->sc_ic;
1605 	struct ath_hal *ah = sc->sc_ah;
1606 	struct ifnet *ifp = &sc->sc_if;
1607 	u_int32_t rfilt;
1608 
1609 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1610 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1611 	if (ic->ic_opmode != IEEE80211_M_STA)
1612 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1613 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1614 	    (ifp->if_flags & IFF_PROMISC))
1615 		rfilt |= HAL_RX_FILTER_PROM;
1616 	if (ic->ic_opmode == IEEE80211_M_STA ||
1617 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1618 	    state == IEEE80211_S_SCAN)
1619 		rfilt |= HAL_RX_FILTER_BEACON;
1620 	return rfilt;
1621 }
1622 
1623 static void
1624 ath_mode_init(struct ath_softc *sc)
1625 {
1626 	struct ieee80211com *ic = &sc->sc_ic;
1627 	struct ath_hal *ah = sc->sc_ah;
1628 	struct ifnet *ifp = &sc->sc_if;
1629 	u_int32_t rfilt, mfilt[2], val;
1630 	u_int8_t pos;
1631 	struct ifmultiaddr *ifma;
1632 
1633 	/* configure rx filter */
1634 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1635 	ath_hal_setrxfilter(ah, rfilt);
1636 
1637 	/* configure operational mode */
1638 	ath_hal_setopmode(ah);
1639 
1640 	/*
1641 	 * Handle any link-level address change.  Note that we only
1642 	 * need to force ic_myaddr; any other addresses are handled
1643 	 * as a byproduct of the ifnet code marking the interface
1644 	 * down then up.
1645 	 *
1646 	 * XXX should get from lladdr instead of arpcom but that's more work
1647 	 */
1648 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr);
1649 	ath_hal_setmac(ah, ic->ic_myaddr);
1650 
1651 	/* calculate and install multicast filter */
1652 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1653 		mfilt[0] = mfilt[1] = 0;
1654 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1655 			caddr_t dl;
1656 
1657 			/* calculate XOR of eight 6bit values */
1658 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1659 			val = LE_READ_4(dl + 0);
1660 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1661 			val = LE_READ_4(dl + 3);
1662 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1663 			pos &= 0x3f;
1664 			mfilt[pos / 32] |= (1 << (pos % 32));
1665 		}
1666 	} else {
1667 		mfilt[0] = mfilt[1] = ~0;
1668 	}
1669 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1670 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1671 		__func__, rfilt, mfilt[0], mfilt[1]);
1672 }
1673 
1674 /*
1675  * Set the slot time based on the current setting.
1676  */
1677 static void
1678 ath_setslottime(struct ath_softc *sc)
1679 {
1680 	struct ieee80211com *ic = &sc->sc_ic;
1681 	struct ath_hal *ah = sc->sc_ah;
1682 
1683 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1684 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1685 	else
1686 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1687 	sc->sc_updateslot = OK;
1688 }
1689 
1690 /*
1691  * Callback from the 802.11 layer to update the
1692  * slot time based on the current setting.
1693  */
1694 static void
1695 ath_updateslot(struct ifnet *ifp)
1696 {
1697 	struct ath_softc *sc = ifp->if_softc;
1698 	struct ieee80211com *ic = &sc->sc_ic;
1699 
1700 	/*
1701 	 * When not coordinating the BSS, change the hardware
1702 	 * immediately.  For other operation we defer the change
1703 	 * until beacon updates have propagated to the stations.
1704 	 */
1705 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1706 		sc->sc_updateslot = UPDATE;
1707 	else
1708 		ath_setslottime(sc);
1709 }
1710 
1711 /*
1712  * Setup a h/w transmit queue for beacons.
1713  */
1714 static int
1715 ath_beaconq_setup(struct ath_hal *ah)
1716 {
1717 	HAL_TXQ_INFO qi;
1718 
1719 	memset(&qi, 0, sizeof(qi));
1720 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1721 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1722 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1723 	/* NB: don't enable any interrupts */
1724 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1725 }
1726 
1727 /*
1728  * Allocate and setup an initial beacon frame.
1729  */
1730 static int
1731 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1732 {
1733 	struct ieee80211com *ic = ni->ni_ic;
1734 	struct ath_buf *bf;
1735 	struct mbuf *m;
1736 	int error;
1737 
1738 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1739 	if (bf == NULL) {
1740 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1741 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1742 		return ENOMEM;			/* XXX */
1743 	}
1744 	/*
1745 	 * NB: the beacon data buffer must be 32-bit aligned;
1746 	 * we assume the mbuf routines will return us something
1747 	 * with this alignment (perhaps should assert).
1748 	 */
1749 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1750 	if (m == NULL) {
1751 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1752 			__func__);
1753 		sc->sc_stats.ast_be_nombuf++;
1754 		return ENOMEM;
1755 	}
1756 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1757 				     bf->bf_segs, &bf->bf_nseg,
1758 				     BUS_DMA_NOWAIT);
1759 	if (error == 0) {
1760 		bf->bf_m = m;
1761 		bf->bf_node = ieee80211_ref_node(ni);
1762 	} else {
1763 		m_freem(m);
1764 	}
1765 	return error;
1766 }
1767 
1768 /*
1769  * Setup the beacon frame for transmit.
1770  */
1771 static void
1772 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1773 {
1774 #define	USE_SHPREAMBLE(_ic) \
1775 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1776 		== IEEE80211_F_SHPREAMBLE)
1777 	struct ieee80211_node *ni = bf->bf_node;
1778 	struct ieee80211com *ic = ni->ni_ic;
1779 	struct mbuf *m = bf->bf_m;
1780 	struct ath_hal *ah = sc->sc_ah;
1781 	struct ath_node *an = ATH_NODE(ni);
1782 	struct ath_desc *ds;
1783 	int flags, antenna;
1784 	u_int8_t rate;
1785 
1786 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1787 		__func__, m, m->m_len);
1788 
1789 	/* setup descriptors */
1790 	ds = bf->bf_desc;
1791 
1792 	flags = HAL_TXDESC_NOACK;
1793 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1794 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1795 		flags |= HAL_TXDESC_VEOL;
1796 		/*
1797 		 * Let hardware handle antenna switching.
1798 		 */
1799 		antenna = 0;
1800 	} else {
1801 		ds->ds_link = 0;
1802 		/*
1803 		 * Switch antenna every 4 beacons.
1804 		 * XXX assumes two antenna
1805 		 */
1806 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1807 	}
1808 
1809 	KASSERT(bf->bf_nseg == 1,
1810 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1811 	ds->ds_data = bf->bf_segs[0].ds_addr;
1812 	/*
1813 	 * Calculate rate code.
1814 	 * XXX everything at min xmit rate
1815 	 */
1816 	if (USE_SHPREAMBLE(ic))
1817 		rate = an->an_tx_mgtratesp;
1818 	else
1819 		rate = an->an_tx_mgtrate;
1820 	ath_hal_setuptxdesc(ah, ds
1821 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1822 		, sizeof(struct ieee80211_frame)/* header length */
1823 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1824 		, ni->ni_txpower		/* txpower XXX */
1825 		, rate, 1			/* series 0 rate/tries */
1826 		, HAL_TXKEYIX_INVALID		/* no encryption */
1827 		, antenna			/* antenna mode */
1828 		, flags				/* no ack, veol for beacons */
1829 		, 0				/* rts/cts rate */
1830 		, 0				/* rts/cts duration */
1831 	);
1832 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1833 	ath_hal_filltxdesc(ah, ds
1834 		, roundup(m->m_len, 4)		/* buffer length */
1835 		, AH_TRUE			/* first segment */
1836 		, AH_TRUE			/* last segment */
1837 		, ds				/* first descriptor */
1838 	);
1839 #undef USE_SHPREAMBLE
1840 }
1841 
1842 /*
1843  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1844  * frame contents are done as needed and the slot time is
1845  * also adjusted based on current state.
1846  */
1847 static void
1848 ath_beacon_proc(void *arg, int pending)
1849 {
1850 	struct ath_softc *sc = arg;
1851 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1852 	struct ieee80211_node *ni = bf->bf_node;
1853 	struct ieee80211com *ic = ni->ni_ic;
1854 	struct ath_hal *ah = sc->sc_ah;
1855 	struct mbuf *m;
1856 	int ncabq, error, otherant;
1857 
1858 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1859 		__func__, pending);
1860 
1861 	if (ic->ic_opmode == IEEE80211_M_STA ||
1862 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1863 	    bf == NULL || bf->bf_m == NULL) {
1864 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1865 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1866 		return;
1867 	}
1868 	/*
1869 	 * Check if the previous beacon has gone out.  If
1870 	 * not don't don't try to post another, skip this
1871 	 * period and wait for the next.  Missed beacons
1872 	 * indicate a problem and should not occur.  If we
1873 	 * miss too many consecutive beacons reset the device.
1874 	 */
1875 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1876 		sc->sc_bmisscount++;
1877 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1878 			"%s: missed %u consecutive beacons\n",
1879 			__func__, sc->sc_bmisscount);
1880 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1881 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1882 		return;
1883 	}
1884 	if (sc->sc_bmisscount != 0) {
1885 		DPRINTF(sc, ATH_DEBUG_BEACON,
1886 			"%s: resume beacon xmit after %u misses\n",
1887 			__func__, sc->sc_bmisscount);
1888 		sc->sc_bmisscount = 0;
1889 	}
1890 
1891 	/*
1892 	 * Update dynamic beacon contents.  If this returns
1893 	 * non-zero then we need to remap the memory because
1894 	 * the beacon frame changed size (probably because
1895 	 * of the TIM bitmap).
1896 	 */
1897 	m = bf->bf_m;
1898 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1899 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1900 		/* XXX too conservative? */
1901 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1902 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1903 					     bf->bf_segs, &bf->bf_nseg,
1904 					     BUS_DMA_NOWAIT);
1905 		if (error != 0) {
1906 			if_printf(ic->ic_ifp,
1907 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1908 			    __func__, error);
1909 			return;
1910 		}
1911 	}
1912 
1913 	/*
1914 	 * Handle slot time change when a non-ERP station joins/leaves
1915 	 * an 11g network.  The 802.11 layer notifies us via callback,
1916 	 * we mark updateslot, then wait one beacon before effecting
1917 	 * the change.  This gives associated stations at least one
1918 	 * beacon interval to note the state change.
1919 	 */
1920 	/* XXX locking */
1921 	if (sc->sc_updateslot == UPDATE)
1922 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1923 	else if (sc->sc_updateslot == COMMIT)
1924 		ath_setslottime(sc);		/* commit change to h/w */
1925 
1926 	/*
1927 	 * Check recent per-antenna transmit statistics and flip
1928 	 * the default antenna if noticeably more frames went out
1929 	 * on the non-default antenna.
1930 	 * XXX assumes 2 anntenae
1931 	 */
1932 	otherant = sc->sc_defant & 1 ? 2 : 1;
1933 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1934 		ath_setdefantenna(sc, otherant);
1935 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1936 
1937 	/*
1938 	 * Construct tx descriptor.
1939 	 */
1940 	ath_beacon_setup(sc, bf);
1941 
1942 	/*
1943 	 * Stop any current dma and put the new frame on the queue.
1944 	 * This should never fail since we check above that no frames
1945 	 * are still pending on the queue.
1946 	 */
1947 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1948 		DPRINTF(sc, ATH_DEBUG_ANY,
1949 			"%s: beacon queue %u did not stop?\n",
1950 			__func__, sc->sc_bhalq);
1951 	}
1952 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1953 
1954 	/*
1955 	 * Enable the CAB queue before the beacon queue to
1956 	 * insure cab frames are triggered by this beacon.
1957 	 */
1958 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
1959 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
1960 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1961 	ath_hal_txstart(ah, sc->sc_bhalq);
1962 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1963 		"%s: TXDP[%u] = %p (%p)\n", __func__,
1964 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
1965 
1966 	sc->sc_stats.ast_be_xmit++;
1967 }
1968 
1969 /*
1970  * Reset the hardware after detecting beacons have stopped.
1971  */
1972 static void
1973 ath_bstuck_proc(void *arg, int pending)
1974 {
1975 	struct ath_softc *sc = arg;
1976 	struct ifnet *ifp = &sc->sc_if;
1977 
1978 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
1979 		sc->sc_bmisscount);
1980 	ath_reset(ifp);
1981 }
1982 
1983 /*
1984  * Reclaim beacon resources.
1985  */
1986 static void
1987 ath_beacon_free(struct ath_softc *sc)
1988 {
1989 	struct ath_buf *bf;
1990 
1991 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
1992 		if (bf->bf_m != NULL) {
1993 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1994 			m_freem(bf->bf_m);
1995 			bf->bf_m = NULL;
1996 		}
1997 		if (bf->bf_node != NULL) {
1998 			ieee80211_free_node(bf->bf_node);
1999 			bf->bf_node = NULL;
2000 		}
2001 	}
2002 }
2003 
2004 /*
2005  * Configure the beacon and sleep timers.
2006  *
2007  * When operating as an AP this resets the TSF and sets
2008  * up the hardware to notify us when we need to issue beacons.
2009  *
2010  * When operating in station mode this sets up the beacon
2011  * timers according to the timestamp of the last received
2012  * beacon and the current TSF, configures PCF and DTIM
2013  * handling, programs the sleep registers so the hardware
2014  * will wakeup in time to receive beacons, and configures
2015  * the beacon miss handling so we'll receive a BMISS
2016  * interrupt when we stop seeing beacons from the AP
2017  * we've associated with.
2018  */
2019 static void
2020 ath_beacon_config(struct ath_softc *sc)
2021 {
2022 	struct ath_hal *ah = sc->sc_ah;
2023 	struct ieee80211com *ic = &sc->sc_ic;
2024 	struct ieee80211_node *ni = ic->ic_bss;
2025 	u_int32_t nexttbtt, intval;
2026 
2027 	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
2028 	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
2029 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2030 	if (nexttbtt == 0)		/* e.g. for ap mode */
2031 		nexttbtt = intval;
2032 	else if (intval)		/* NB: can be 0 for monitor mode */
2033 		nexttbtt = roundup(nexttbtt, intval);
2034 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2035 		__func__, nexttbtt, intval, ni->ni_intval);
2036 	if (ic->ic_opmode == IEEE80211_M_STA) {
2037 		HAL_BEACON_STATE bs;
2038 
2039 		/* NB: no PCF support right now */
2040 		memset(&bs, 0, sizeof(bs));
2041 		bs.bs_intval = intval;
2042 		bs.bs_nexttbtt = nexttbtt;
2043 		bs.bs_dtimperiod = bs.bs_intval;
2044 		bs.bs_nextdtim = nexttbtt;
2045 		/*
2046 		 * The 802.11 layer records the offset to the DTIM
2047 		 * bitmap while receiving beacons; use it here to
2048 		 * enable h/w detection of our AID being marked in
2049 		 * the bitmap vector (to indicate frames for us are
2050 		 * pending at the AP).
2051 		 */
2052 		bs.bs_timoffset = ni->ni_timoff;
2053 		/*
2054 		 * Calculate the number of consecutive beacons to miss
2055 		 * before taking a BMISS interrupt.  The configuration
2056 		 * is specified in ms, so we need to convert that to
2057 		 * TU's and then calculate based on the beacon interval.
2058 		 * Note that we clamp the result to at most 10 beacons.
2059 		 */
2060 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2061 		if (bs.bs_bmissthreshold > 10)
2062 			bs.bs_bmissthreshold = 10;
2063 		else if (bs.bs_bmissthreshold <= 0)
2064 			bs.bs_bmissthreshold = 1;
2065 
2066 		/*
2067 		 * Calculate sleep duration.  The configuration is
2068 		 * given in ms.  We insure a multiple of the beacon
2069 		 * period is used.  Also, if the sleep duration is
2070 		 * greater than the DTIM period then it makes senses
2071 		 * to make it a multiple of that.
2072 		 *
2073 		 * XXX fixed at 100ms
2074 		 */
2075 		bs.bs_sleepduration =
2076 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2077 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2078 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2079 
2080 		DPRINTF(sc, ATH_DEBUG_BEACON,
2081 			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2082 			, __func__
2083 			, bs.bs_intval
2084 			, bs.bs_nexttbtt
2085 			, bs.bs_dtimperiod
2086 			, bs.bs_nextdtim
2087 			, bs.bs_bmissthreshold
2088 			, bs.bs_sleepduration
2089 			, bs.bs_cfpperiod
2090 			, bs.bs_cfpmaxduration
2091 			, bs.bs_cfpnext
2092 			, bs.bs_timoffset
2093 		);
2094 		ath_hal_intrset(ah, 0);
2095 		ath_hal_beacontimers(ah, &bs);
2096 		sc->sc_imask |= HAL_INT_BMISS;
2097 		ath_hal_intrset(ah, sc->sc_imask);
2098 	} else {
2099 		ath_hal_intrset(ah, 0);
2100 		if (nexttbtt == intval)
2101 			intval |= HAL_BEACON_RESET_TSF;
2102 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2103 			/*
2104 			 * In IBSS mode enable the beacon timers but only
2105 			 * enable SWBA interrupts if we need to manually
2106 			 * prepare beacon frames.  Otherwise we use a
2107 			 * self-linked tx descriptor and let the hardware
2108 			 * deal with things.
2109 			 */
2110 			intval |= HAL_BEACON_ENA;
2111 			if (!sc->sc_hasveol)
2112 				sc->sc_imask |= HAL_INT_SWBA;
2113 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2114 			/*
2115 			 * In AP mode we enable the beacon timers and
2116 			 * SWBA interrupts to prepare beacon frames.
2117 			 */
2118 			intval |= HAL_BEACON_ENA;
2119 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2120 		}
2121 		ath_hal_beaconinit(ah, nexttbtt, intval);
2122 		sc->sc_bmisscount = 0;
2123 		ath_hal_intrset(ah, sc->sc_imask);
2124 		/*
2125 		 * When using a self-linked beacon descriptor in
2126 		 * ibss mode load it once here.
2127 		 */
2128 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2129 			ath_beacon_proc(sc, 0);
2130 	}
2131 }
2132 
2133 static void
2134 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2135 {
2136 	bus_addr_t *paddr = (bus_addr_t*) arg;
2137 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2138 	*paddr = segs->ds_addr;
2139 }
2140 
2141 static int
2142 ath_descdma_setup(struct ath_softc *sc,
2143 	struct ath_descdma *dd, ath_bufhead *head,
2144 	const char *name, int nbuf, int ndesc)
2145 {
2146 #define	DS2PHYS(_dd, _ds) \
2147 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2148 	struct ifnet *ifp = &sc->sc_if;
2149 	struct ath_desc *ds;
2150 	struct ath_buf *bf;
2151 	int i, bsize, error;
2152 
2153 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2154 	    __func__, name, nbuf, ndesc);
2155 
2156 	dd->dd_name = name;
2157 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2158 
2159 	/*
2160 	 * Setup DMA descriptor area.
2161 	 */
2162 	error = bus_dma_tag_create(NULL,	/* parent */
2163 		       PAGE_SIZE, 0,		/* alignment, bounds */
2164 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2165 		       BUS_SPACE_MAXADDR,	/* highaddr */
2166 		       NULL, NULL,		/* filter, filterarg */
2167 		       dd->dd_desc_len,		/* maxsize */
2168 		       1,			/* nsegments */
2169 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2170 		       BUS_DMA_ALLOCNOW,	/* flags */
2171 		       NULL,			/* lockfunc */
2172 		       NULL,			/* lockarg */
2173 		       &dd->dd_dmat);
2174 	if (error != 0) {
2175 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2176 		return error;
2177 	}
2178 
2179 	/* allocate descriptors */
2180 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2181 	if (error != 0) {
2182 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2183 			"error %u\n", dd->dd_name, error);
2184 		goto fail0;
2185 	}
2186 
2187 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2188 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2189 	if (error != 0) {
2190 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2191 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2192 		goto fail1;
2193 	}
2194 
2195 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2196 				dd->dd_desc, dd->dd_desc_len,
2197 				ath_load_cb, &dd->dd_desc_paddr,
2198 				BUS_DMA_NOWAIT);
2199 	if (error != 0) {
2200 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2201 			dd->dd_name, error);
2202 		goto fail2;
2203 	}
2204 
2205 	ds = dd->dd_desc;
2206 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2207 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2208 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2209 
2210 	/* allocate rx buffers */
2211 	bsize = sizeof(struct ath_buf) * nbuf;
2212 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2213 	if (bf == NULL) {
2214 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2215 			dd->dd_name, bsize);
2216 		goto fail3;
2217 	}
2218 	dd->dd_bufptr = bf;
2219 
2220 	STAILQ_INIT(head);
2221 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2222 		bf->bf_desc = ds;
2223 		bf->bf_daddr = DS2PHYS(dd, ds);
2224 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2225 				&bf->bf_dmamap);
2226 		if (error != 0) {
2227 			if_printf(ifp, "unable to create dmamap for %s "
2228 				"buffer %u, error %u\n", dd->dd_name, i, error);
2229 			ath_descdma_cleanup(sc, dd, head);
2230 			return error;
2231 		}
2232 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2233 	}
2234 	return 0;
2235 fail3:
2236 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2237 fail2:
2238 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2239 fail1:
2240 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2241 fail0:
2242 	bus_dma_tag_destroy(dd->dd_dmat);
2243 	memset(dd, 0, sizeof(*dd));
2244 	return error;
2245 #undef DS2PHYS
2246 }
2247 
2248 static void
2249 ath_descdma_cleanup(struct ath_softc *sc,
2250 	struct ath_descdma *dd, ath_bufhead *head)
2251 {
2252 	struct ath_buf *bf;
2253 	struct ieee80211_node *ni;
2254 
2255 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2256 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2257 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2258 	bus_dma_tag_destroy(dd->dd_dmat);
2259 
2260 	STAILQ_FOREACH(bf, head, bf_list) {
2261 		if (bf->bf_m) {
2262 			m_freem(bf->bf_m);
2263 			bf->bf_m = NULL;
2264 		}
2265 		if (bf->bf_dmamap != NULL) {
2266 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2267 			bf->bf_dmamap = NULL;
2268 		}
2269 		ni = bf->bf_node;
2270 		bf->bf_node = NULL;
2271 		if (ni != NULL) {
2272 			/*
2273 			 * Reclaim node reference.
2274 			 */
2275 			ieee80211_free_node(ni);
2276 		}
2277 	}
2278 
2279 	STAILQ_INIT(head);
2280 	free(dd->dd_bufptr, M_ATHDEV);
2281 	memset(dd, 0, sizeof(*dd));
2282 }
2283 
2284 static int
2285 ath_desc_alloc(struct ath_softc *sc)
2286 {
2287 	int error;
2288 
2289 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2290 			"rx", ATH_RXBUF, 1);
2291 	if (error != 0)
2292 		return error;
2293 
2294 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2295 			"tx", ATH_TXBUF, ATH_TXDESC);
2296 	if (error != 0) {
2297 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2298 		return error;
2299 	}
2300 
2301 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2302 			"beacon", 1, 1);
2303 	if (error != 0) {
2304 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2305 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2306 		return error;
2307 	}
2308 	return 0;
2309 }
2310 
2311 static void
2312 ath_desc_free(struct ath_softc *sc)
2313 {
2314 
2315 	if (sc->sc_bdma.dd_desc_len != 0)
2316 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2317 	if (sc->sc_txdma.dd_desc_len != 0)
2318 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2319 	if (sc->sc_rxdma.dd_desc_len != 0)
2320 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2321 }
2322 
2323 static struct ieee80211_node *
2324 ath_node_alloc(struct ieee80211_node_table *nt)
2325 {
2326 	struct ieee80211com *ic = nt->nt_ic;
2327 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2328 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2329 	struct ath_node *an;
2330 
2331 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2332 	if (an == NULL) {
2333 		/* XXX stat+msg */
2334 		return NULL;
2335 	}
2336 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2337 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2338 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2339 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2340 	ath_rate_node_init(sc, an);
2341 
2342 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2343 	return &an->an_node;
2344 }
2345 
2346 static void
2347 ath_node_free(struct ieee80211_node *ni)
2348 {
2349 	struct ieee80211com *ic = ni->ni_ic;
2350         struct ath_softc *sc = ic->ic_ifp->if_softc;
2351 
2352 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2353 
2354 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2355 	sc->sc_node_free(ni);
2356 }
2357 
2358 static u_int8_t
2359 ath_node_getrssi(const struct ieee80211_node *ni)
2360 {
2361 #define	HAL_EP_RND(x, mul) \
2362 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2363 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2364 	int32_t rssi;
2365 
2366 	/*
2367 	 * When only one frame is received there will be no state in
2368 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2369 	 */
2370 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2371 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2372 	else
2373 		rssi = ni->ni_rssi;
2374 	/* NB: theoretically we shouldn't need this, but be paranoid */
2375 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2376 #undef HAL_EP_RND
2377 }
2378 
2379 static int
2380 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2381 {
2382 	struct ath_hal *ah = sc->sc_ah;
2383 	int error;
2384 	struct mbuf *m;
2385 	struct ath_desc *ds;
2386 
2387 	m = bf->bf_m;
2388 	if (m == NULL) {
2389 		/*
2390 		 * NB: by assigning a page to the rx dma buffer we
2391 		 * implicitly satisfy the Atheros requirement that
2392 		 * this buffer be cache-line-aligned and sized to be
2393 		 * multiple of the cache line size.  Not doing this
2394 		 * causes weird stuff to happen (for the 5210 at least).
2395 		 */
2396 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2397 		if (m == NULL) {
2398 			DPRINTF(sc, ATH_DEBUG_ANY,
2399 				"%s: no mbuf/cluster\n", __func__);
2400 			sc->sc_stats.ast_rx_nombuf++;
2401 			return ENOMEM;
2402 		}
2403 		bf->bf_m = m;
2404 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2405 
2406 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2407 					     bf->bf_dmamap, m,
2408 					     bf->bf_segs, &bf->bf_nseg,
2409 					     BUS_DMA_NOWAIT);
2410 		if (error != 0) {
2411 			DPRINTF(sc, ATH_DEBUG_ANY,
2412 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2413 			    __func__, error);
2414 			sc->sc_stats.ast_rx_busdma++;
2415 			return error;
2416 		}
2417 		KASSERT(bf->bf_nseg == 1,
2418 			("multi-segment packet; nseg %u", bf->bf_nseg));
2419 	}
2420 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2421 
2422 	/*
2423 	 * Setup descriptors.  For receive we always terminate
2424 	 * the descriptor list with a self-linked entry so we'll
2425 	 * not get overrun under high load (as can happen with a
2426 	 * 5212 when ANI processing enables PHY error frames).
2427 	 *
2428 	 * To insure the last descriptor is self-linked we create
2429 	 * each descriptor as self-linked and add it to the end.  As
2430 	 * each additional descriptor is added the previous self-linked
2431 	 * entry is ``fixed'' naturally.  This should be safe even
2432 	 * if DMA is happening.  When processing RX interrupts we
2433 	 * never remove/process the last, self-linked, entry on the
2434 	 * descriptor list.  This insures the hardware always has
2435 	 * someplace to write a new frame.
2436 	 */
2437 	ds = bf->bf_desc;
2438 	ds->ds_link = bf->bf_daddr;	/* link to self */
2439 	ds->ds_data = bf->bf_segs[0].ds_addr;
2440 	ath_hal_setuprxdesc(ah, ds
2441 		, m->m_len		/* buffer size */
2442 		, 0
2443 	);
2444 
2445 	if (sc->sc_rxlink != NULL)
2446 		*sc->sc_rxlink = bf->bf_daddr;
2447 	sc->sc_rxlink = &ds->ds_link;
2448 	return 0;
2449 }
2450 
2451 /*
2452  * Extend 15-bit time stamp from rx descriptor to
2453  * a full 64-bit TSF using the current h/w TSF.
2454  */
2455 static __inline u_int64_t
2456 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2457 {
2458 	u_int64_t tsf;
2459 
2460 	tsf = ath_hal_gettsf64(ah);
2461 	if ((tsf & 0x7fff) < rstamp)
2462 		tsf -= 0x8000;
2463 	return ((tsf &~ 0x7fff) | rstamp);
2464 }
2465 
2466 /*
2467  * Intercept management frames to collect beacon rssi data
2468  * and to do ibss merges.
2469  */
2470 static void
2471 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2472 	struct ieee80211_node *ni,
2473 	int subtype, int rssi, u_int32_t rstamp)
2474 {
2475 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2476 
2477 	/*
2478 	 * Call up first so subsequent work can use information
2479 	 * potentially stored in the node (e.g. for ibss merge).
2480 	 */
2481 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2482 	switch (subtype) {
2483 	case IEEE80211_FC0_SUBTYPE_BEACON:
2484 		/* update rssi statistics for use by the hal */
2485 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2486 		/* fall thru... */
2487 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2488 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2489 		    ic->ic_state == IEEE80211_S_RUN) {
2490 			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2491 			/*
2492 			 * Handle ibss merge as needed; check the tsf on the
2493 			 * frame before attempting the merge.  The 802.11 spec
2494 			 * says the station should change it's bssid to match
2495 			 * the oldest station with the same ssid, where oldest
2496 			 * is determined by the tsf.  Note that hardware
2497 			 * reconfiguration happens through callback to
2498 			 * ath_newstate as the state machine will go from
2499 			 * RUN -> RUN when this happens.
2500 			 */
2501 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2502 				DPRINTF(sc, ATH_DEBUG_STATE,
2503 				    "ibss merge, rstamp %u tsf %ju "
2504 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2505 				    (uintmax_t)ni->ni_tstamp.tsf);
2506 				(void) ieee80211_ibss_merge(ic, ni);
2507 			}
2508 		}
2509 		break;
2510 	}
2511 }
2512 
2513 /*
2514  * Set the default antenna.
2515  */
2516 static void
2517 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2518 {
2519 	struct ath_hal *ah = sc->sc_ah;
2520 
2521 	/* XXX block beacon interrupts */
2522 	ath_hal_setdefantenna(ah, antenna);
2523 	if (sc->sc_defant != antenna)
2524 		sc->sc_stats.ast_ant_defswitch++;
2525 	sc->sc_defant = antenna;
2526 	sc->sc_rxotherant = 0;
2527 }
2528 
2529 static void
2530 ath_rx_proc(void *arg, int npending)
2531 {
2532 #define	PA2DESC(_sc, _pa) \
2533 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2534 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2535 	struct ath_softc *sc = arg;
2536 	struct ath_buf *bf;
2537 	struct ieee80211com *ic = &sc->sc_ic;
2538 	struct ifnet *ifp = &sc->sc_if;
2539 	struct ath_hal *ah = sc->sc_ah;
2540 	struct ath_desc *ds;
2541 	struct mbuf *m;
2542 	struct ieee80211_node *ni;
2543 	struct ath_node *an;
2544 	int len, type;
2545 	u_int phyerr;
2546 	HAL_STATUS status;
2547 
2548 	NET_LOCK_GIANT();		/* XXX */
2549 
2550 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2551 	do {
2552 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2553 		if (bf == NULL) {		/* NB: shouldn't happen */
2554 			if_printf(ifp, "%s: no buffer!\n", __func__);
2555 			break;
2556 		}
2557 		ds = bf->bf_desc;
2558 		if (ds->ds_link == bf->bf_daddr) {
2559 			/* NB: never process the self-linked entry at the end */
2560 			break;
2561 		}
2562 		m = bf->bf_m;
2563 		if (m == NULL) {		/* NB: shouldn't happen */
2564 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2565 			continue;
2566 		}
2567 		/* XXX sync descriptor memory */
2568 		/*
2569 		 * Must provide the virtual address of the current
2570 		 * descriptor, the physical address, and the virtual
2571 		 * address of the next descriptor in the h/w chain.
2572 		 * This allows the HAL to look ahead to see if the
2573 		 * hardware is done with a descriptor by checking the
2574 		 * done bit in the following descriptor and the address
2575 		 * of the current descriptor the DMA engine is working
2576 		 * on.  All this is necessary because of our use of
2577 		 * a self-linked list to avoid rx overruns.
2578 		 */
2579 		status = ath_hal_rxprocdesc(ah, ds,
2580 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2581 #ifdef AR_DEBUG
2582 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2583 			ath_printrxbuf(bf, status == HAL_OK);
2584 #endif
2585 		if (status == HAL_EINPROGRESS)
2586 			break;
2587 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2588 		if (ds->ds_rxstat.rs_more) {
2589 			/*
2590 			 * Frame spans multiple descriptors; this
2591 			 * cannot happen yet as we don't support
2592 			 * jumbograms.  If not in monitor mode,
2593 			 * discard the frame.
2594 			 */
2595 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2596 				sc->sc_stats.ast_rx_toobig++;
2597 				goto rx_next;
2598 			}
2599 			/* fall thru for monitor mode handling... */
2600 		} else if (ds->ds_rxstat.rs_status != 0) {
2601 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2602 				sc->sc_stats.ast_rx_crcerr++;
2603 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2604 				sc->sc_stats.ast_rx_fifoerr++;
2605 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2606 				sc->sc_stats.ast_rx_phyerr++;
2607 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2608 				sc->sc_stats.ast_rx_phy[phyerr]++;
2609 				goto rx_next;
2610 			}
2611 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2612 				/*
2613 				 * Decrypt error.  If the error occurred
2614 				 * because there was no hardware key, then
2615 				 * let the frame through so the upper layers
2616 				 * can process it.  This is necessary for 5210
2617 				 * parts which have no way to setup a ``clear''
2618 				 * key cache entry.
2619 				 *
2620 				 * XXX do key cache faulting
2621 				 */
2622 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2623 					goto rx_accept;
2624 				sc->sc_stats.ast_rx_badcrypt++;
2625 			}
2626 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2627 				sc->sc_stats.ast_rx_badmic++;
2628 				/*
2629 				 * Do minimal work required to hand off
2630 				 * the 802.11 header for notifcation.
2631 				 */
2632 				/* XXX frag's and qos frames */
2633 				len = ds->ds_rxstat.rs_datalen;
2634 				if (len >= sizeof (struct ieee80211_frame)) {
2635 					bus_dmamap_sync(sc->sc_dmat,
2636 					    bf->bf_dmamap,
2637 					    BUS_DMASYNC_POSTREAD);
2638 					ieee80211_notify_michael_failure(ic,
2639 					    mtod(m, struct ieee80211_frame *),
2640 					    sc->sc_splitmic ?
2641 					        ds->ds_rxstat.rs_keyix-32 :
2642 					        ds->ds_rxstat.rs_keyix
2643 					);
2644 				}
2645 			}
2646 			ifp->if_ierrors++;
2647 			/*
2648 			 * Reject error frames, we normally don't want
2649 			 * to see them in monitor mode (in monitor mode
2650 			 * allow through packets that have crypto problems).
2651 			 */
2652 			if ((ds->ds_rxstat.rs_status &~
2653 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2654 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2655 				goto rx_next;
2656 		}
2657 rx_accept:
2658 		/*
2659 		 * Sync and unmap the frame.  At this point we're
2660 		 * committed to passing the mbuf somewhere so clear
2661 		 * bf_m; this means a new sk_buff must be allocated
2662 		 * when the rx descriptor is setup again to receive
2663 		 * another frame.
2664 		 */
2665 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2666 		    BUS_DMASYNC_POSTREAD);
2667 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2668 		bf->bf_m = NULL;
2669 
2670 		m->m_pkthdr.rcvif = ifp;
2671 		len = ds->ds_rxstat.rs_datalen;
2672 		m->m_pkthdr.len = m->m_len = len;
2673 
2674 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2675 
2676 		if (sc->sc_drvbpf) {
2677 			u_int8_t rix;
2678 
2679 			/*
2680 			 * Discard anything shorter than an ack or cts.
2681 			 */
2682 			if (len < IEEE80211_ACK_LEN) {
2683 				DPRINTF(sc, ATH_DEBUG_RECV,
2684 					"%s: runt packet %d\n",
2685 					__func__, len);
2686 				sc->sc_stats.ast_rx_tooshort++;
2687 				m_freem(m);
2688 				goto rx_next;
2689 			}
2690 			rix = ds->ds_rxstat.rs_rate;
2691 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2692 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2693 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2694 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2695 			/* XXX TSF */
2696 
2697 			bpf_mtap2(sc->sc_drvbpf,
2698 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2699 		}
2700 
2701 		/*
2702 		 * From this point on we assume the frame is at least
2703 		 * as large as ieee80211_frame_min; verify that.
2704 		 */
2705 		if (len < IEEE80211_MIN_LEN) {
2706 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2707 				__func__, len);
2708 			sc->sc_stats.ast_rx_tooshort++;
2709 			m_freem(m);
2710 			goto rx_next;
2711 		}
2712 
2713 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2714 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2715 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2716 				   ds->ds_rxstat.rs_rssi);
2717 		}
2718 
2719 		m_adj(m, -IEEE80211_CRC_LEN);
2720 
2721 		/*
2722 		 * Locate the node for sender, track state, and then
2723 		 * pass the (referenced) node up to the 802.11 layer
2724 		 * for its use.
2725 		 */
2726 		ni = ieee80211_find_rxnode(ic,
2727 			mtod(m, const struct ieee80211_frame_min *));
2728 
2729 		/*
2730 		 * Track rx rssi and do any rx antenna management.
2731 		 */
2732 		an = ATH_NODE(ni);
2733 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2734 		if (sc->sc_diversity) {
2735 			/*
2736 			 * When using fast diversity, change the default rx
2737 			 * antenna if diversity chooses the other antenna 3
2738 			 * times in a row.
2739 			 */
2740 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2741 				if (++sc->sc_rxotherant >= 3)
2742 					ath_setdefantenna(sc,
2743 						ds->ds_rxstat.rs_antenna);
2744 			} else
2745 				sc->sc_rxotherant = 0;
2746 		}
2747 
2748 		/*
2749 		 * Send frame up for processing.
2750 		 */
2751 		type = ieee80211_input(ic, m, ni,
2752 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2753 
2754 		if (sc->sc_softled) {
2755 			/*
2756 			 * Blink for any data frame.  Otherwise do a
2757 			 * heartbeat-style blink when idle.  The latter
2758 			 * is mainly for station mode where we depend on
2759 			 * periodic beacon frames to trigger the poll event.
2760 			 */
2761 			if (type == IEEE80211_FC0_TYPE_DATA) {
2762 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2763 				ath_led_event(sc, ATH_LED_RX);
2764 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2765 				ath_led_event(sc, ATH_LED_POLL);
2766 		}
2767 
2768 		/*
2769 		 * Reclaim node reference.
2770 		 */
2771 		ieee80211_free_node(ni);
2772 rx_next:
2773 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2774 	} while (ath_rxbuf_init(sc, bf) == 0);
2775 
2776 	/* rx signal state monitoring */
2777 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2778 
2779 	NET_UNLOCK_GIANT();		/* XXX */
2780 #undef PA2DESC
2781 }
2782 
2783 /*
2784  * Setup a h/w transmit queue.
2785  */
2786 static struct ath_txq *
2787 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2788 {
2789 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2790 	struct ath_hal *ah = sc->sc_ah;
2791 	HAL_TXQ_INFO qi;
2792 	int qnum;
2793 
2794 	memset(&qi, 0, sizeof(qi));
2795 	qi.tqi_subtype = subtype;
2796 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2797 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2798 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2799 	/*
2800 	 * Enable interrupts only for EOL and DESC conditions.
2801 	 * We mark tx descriptors to receive a DESC interrupt
2802 	 * when a tx queue gets deep; otherwise waiting for the
2803 	 * EOL to reap descriptors.  Note that this is done to
2804 	 * reduce interrupt load and this only defers reaping
2805 	 * descriptors, never transmitting frames.  Aside from
2806 	 * reducing interrupts this also permits more concurrency.
2807 	 * The only potential downside is if the tx queue backs
2808 	 * up in which case the top half of the kernel may backup
2809 	 * due to a lack of tx descriptors.
2810 	 */
2811 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2812 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2813 	if (qnum == -1) {
2814 		/*
2815 		 * NB: don't print a message, this happens
2816 		 * normally on parts with too few tx queues
2817 		 */
2818 		return NULL;
2819 	}
2820 	if (qnum >= N(sc->sc_txq)) {
2821 		device_printf(sc->sc_dev,
2822 			"hal qnum %u out of range, max %zu!\n",
2823 			qnum, N(sc->sc_txq));
2824 		ath_hal_releasetxqueue(ah, qnum);
2825 		return NULL;
2826 	}
2827 	if (!ATH_TXQ_SETUP(sc, qnum)) {
2828 		struct ath_txq *txq = &sc->sc_txq[qnum];
2829 
2830 		txq->axq_qnum = qnum;
2831 		txq->axq_depth = 0;
2832 		txq->axq_intrcnt = 0;
2833 		txq->axq_link = NULL;
2834 		STAILQ_INIT(&txq->axq_q);
2835 		ATH_TXQ_LOCK_INIT(sc, txq);
2836 		sc->sc_txqsetup |= 1<<qnum;
2837 	}
2838 	return &sc->sc_txq[qnum];
2839 #undef N
2840 }
2841 
2842 /*
2843  * Setup a hardware data transmit queue for the specified
2844  * access control.  The hal may not support all requested
2845  * queues in which case it will return a reference to a
2846  * previously setup queue.  We record the mapping from ac's
2847  * to h/w queues for use by ath_tx_start and also track
2848  * the set of h/w queues being used to optimize work in the
2849  * transmit interrupt handler and related routines.
2850  */
2851 static int
2852 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2853 {
2854 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2855 	struct ath_txq *txq;
2856 
2857 	if (ac >= N(sc->sc_ac2q)) {
2858 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2859 			ac, N(sc->sc_ac2q));
2860 		return 0;
2861 	}
2862 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2863 	if (txq != NULL) {
2864 		sc->sc_ac2q[ac] = txq;
2865 		return 1;
2866 	} else
2867 		return 0;
2868 #undef N
2869 }
2870 
2871 /*
2872  * Update WME parameters for a transmit queue.
2873  */
2874 static int
2875 ath_txq_update(struct ath_softc *sc, int ac)
2876 {
2877 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2878 #define	ATH_TXOP_TO_US(v)		(v<<5)
2879 	struct ieee80211com *ic = &sc->sc_ic;
2880 	struct ath_txq *txq = sc->sc_ac2q[ac];
2881 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2882 	struct ath_hal *ah = sc->sc_ah;
2883 	HAL_TXQ_INFO qi;
2884 
2885 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2886 	qi.tqi_aifs = wmep->wmep_aifsn;
2887 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2888 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2889 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2890 
2891 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2892 		device_printf(sc->sc_dev, "unable to update hardware queue "
2893 			"parameters for %s traffic!\n",
2894 			ieee80211_wme_acnames[ac]);
2895 		return 0;
2896 	} else {
2897 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2898 		return 1;
2899 	}
2900 #undef ATH_TXOP_TO_US
2901 #undef ATH_EXPONENT_TO_VALUE
2902 }
2903 
2904 /*
2905  * Callback from the 802.11 layer to update WME parameters.
2906  */
2907 static int
2908 ath_wme_update(struct ieee80211com *ic)
2909 {
2910 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2911 
2912 	return !ath_txq_update(sc, WME_AC_BE) ||
2913 	    !ath_txq_update(sc, WME_AC_BK) ||
2914 	    !ath_txq_update(sc, WME_AC_VI) ||
2915 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
2916 }
2917 
2918 /*
2919  * Reclaim resources for a setup queue.
2920  */
2921 static void
2922 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2923 {
2924 
2925 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2926 	ATH_TXQ_LOCK_DESTROY(txq);
2927 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2928 }
2929 
2930 /*
2931  * Reclaim all tx queue resources.
2932  */
2933 static void
2934 ath_tx_cleanup(struct ath_softc *sc)
2935 {
2936 	int i;
2937 
2938 	ATH_TXBUF_LOCK_DESTROY(sc);
2939 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2940 		if (ATH_TXQ_SETUP(sc, i))
2941 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
2942 }
2943 
2944 /*
2945  * Defragment an mbuf chain, returning at most maxfrags separate
2946  * mbufs+clusters.  If this is not possible NULL is returned and
2947  * the original mbuf chain is left in it's present (potentially
2948  * modified) state.  We use two techniques: collapsing consecutive
2949  * mbufs and replacing consecutive mbufs by a cluster.
2950  */
2951 static struct mbuf *
2952 ath_defrag(struct mbuf *m0, int how, int maxfrags)
2953 {
2954 	struct mbuf *m, *n, *n2, **prev;
2955 	u_int curfrags;
2956 
2957 	/*
2958 	 * Calculate the current number of frags.
2959 	 */
2960 	curfrags = 0;
2961 	for (m = m0; m != NULL; m = m->m_next)
2962 		curfrags++;
2963 	/*
2964 	 * First, try to collapse mbufs.  Note that we always collapse
2965 	 * towards the front so we don't need to deal with moving the
2966 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2967 	 * less data than the following.
2968 	 */
2969 	m = m0;
2970 again:
2971 	for (;;) {
2972 		n = m->m_next;
2973 		if (n == NULL)
2974 			break;
2975 		if ((m->m_flags & M_RDONLY) == 0 &&
2976 		    n->m_len < M_TRAILINGSPACE(m)) {
2977 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2978 				n->m_len);
2979 			m->m_len += n->m_len;
2980 			m->m_next = n->m_next;
2981 			m_free(n);
2982 			if (--curfrags <= maxfrags)
2983 				return m0;
2984 		} else
2985 			m = n;
2986 	}
2987 	KASSERT(maxfrags > 1,
2988 		("maxfrags %u, but normal collapse failed", maxfrags));
2989 	/*
2990 	 * Collapse consecutive mbufs to a cluster.
2991 	 */
2992 	prev = &m0->m_next;		/* NB: not the first mbuf */
2993 	while ((n = *prev) != NULL) {
2994 		if ((n2 = n->m_next) != NULL &&
2995 		    n->m_len + n2->m_len < MCLBYTES) {
2996 			m = m_getcl(how, MT_DATA, 0);
2997 			if (m == NULL)
2998 				goto bad;
2999 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3000 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3001 				n2->m_len);
3002 			m->m_len = n->m_len + n2->m_len;
3003 			m->m_next = n2->m_next;
3004 			*prev = m;
3005 			m_free(n);
3006 			m_free(n2);
3007 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3008 				return m0;
3009 			/*
3010 			 * Still not there, try the normal collapse
3011 			 * again before we allocate another cluster.
3012 			 */
3013 			goto again;
3014 		}
3015 		prev = &n->m_next;
3016 	}
3017 	/*
3018 	 * No place where we can collapse to a cluster; punt.
3019 	 * This can occur if, for example, you request 2 frags
3020 	 * but the packet requires that both be clusters (we
3021 	 * never reallocate the first mbuf to avoid moving the
3022 	 * packet header).
3023 	 */
3024 bad:
3025 	return NULL;
3026 }
3027 
3028 static int
3029 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3030     struct mbuf *m0)
3031 {
3032 #define	CTS_DURATION \
3033 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3034 #define	updateCTSForBursting(_ah, _ds, _txq) \
3035 	ath_hal_updateCTSForBursting(_ah, _ds, \
3036 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3037 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3038 	    txopLimit, CTS_DURATION)
3039 	struct ieee80211com *ic = &sc->sc_ic;
3040 	struct ath_hal *ah = sc->sc_ah;
3041 	struct ifnet *ifp = &sc->sc_if;
3042 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3043 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3044 	u_int8_t rix, txrate, ctsrate;
3045 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3046 	struct ath_desc *ds, *ds0;
3047 	struct ath_txq *txq;
3048 	struct ieee80211_frame *wh;
3049 	u_int subtype, flags, ctsduration;
3050 	HAL_PKT_TYPE atype;
3051 	const HAL_RATE_TABLE *rt;
3052 	HAL_BOOL shortPreamble;
3053 	struct ath_node *an;
3054 	struct mbuf *m;
3055 	u_int pri;
3056 
3057 	wh = mtod(m0, struct ieee80211_frame *);
3058 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3059 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3060 	hdrlen = ieee80211_anyhdrsize(wh);
3061 	/*
3062 	 * Packet length must not include any
3063 	 * pad bytes; deduct them here.
3064 	 */
3065 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3066 
3067 	if (iswep) {
3068 		const struct ieee80211_cipher *cip;
3069 		struct ieee80211_key *k;
3070 
3071 		/*
3072 		 * Construct the 802.11 header+trailer for an encrypted
3073 		 * frame. The only reason this can fail is because of an
3074 		 * unknown or unsupported cipher/key type.
3075 		 */
3076 		k = ieee80211_crypto_encap(ic, ni, m0);
3077 		if (k == NULL) {
3078 			/*
3079 			 * This can happen when the key is yanked after the
3080 			 * frame was queued.  Just discard the frame; the
3081 			 * 802.11 layer counts failures and provides
3082 			 * debugging/diagnostics.
3083 			 */
3084 			m_freem(m0);
3085 			return EIO;
3086 		}
3087 		/*
3088 		 * Adjust the packet + header lengths for the crypto
3089 		 * additions and calculate the h/w key index.  When
3090 		 * a s/w mic is done the frame will have had any mic
3091 		 * added to it prior to entry so skb->len above will
3092 		 * account for it. Otherwise we need to add it to the
3093 		 * packet length.
3094 		 */
3095 		cip = k->wk_cipher;
3096 		hdrlen += cip->ic_header;
3097 		pktlen += cip->ic_header + cip->ic_trailer;
3098 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3099 			pktlen += cip->ic_miclen;
3100 		keyix = k->wk_keyix;
3101 
3102 		/* packet header may have moved, reset our local pointer */
3103 		wh = mtod(m0, struct ieee80211_frame *);
3104 	} else
3105 		keyix = HAL_TXKEYIX_INVALID;
3106 
3107 	pktlen += IEEE80211_CRC_LEN;
3108 
3109 	/*
3110 	 * Load the DMA map so any coalescing is done.  This
3111 	 * also calculates the number of descriptors we need.
3112 	 */
3113 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3114 				     bf->bf_segs, &bf->bf_nseg,
3115 				     BUS_DMA_NOWAIT);
3116 	if (error == EFBIG) {
3117 		/* XXX packet requires too many descriptors */
3118 		bf->bf_nseg = ATH_TXDESC+1;
3119 	} else if (error != 0) {
3120 		sc->sc_stats.ast_tx_busdma++;
3121 		m_freem(m0);
3122 		return error;
3123 	}
3124 	/*
3125 	 * Discard null packets and check for packets that
3126 	 * require too many TX descriptors.  We try to convert
3127 	 * the latter to a cluster.
3128 	 */
3129 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3130 		sc->sc_stats.ast_tx_linear++;
3131 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3132 		if (m == NULL) {
3133 			m_freem(m0);
3134 			sc->sc_stats.ast_tx_nombuf++;
3135 			return ENOMEM;
3136 		}
3137 		m0 = m;
3138 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3139 					     bf->bf_segs, &bf->bf_nseg,
3140 					     BUS_DMA_NOWAIT);
3141 		if (error != 0) {
3142 			sc->sc_stats.ast_tx_busdma++;
3143 			m_freem(m0);
3144 			return error;
3145 		}
3146 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3147 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3148 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3149 		sc->sc_stats.ast_tx_nodata++;
3150 		m_freem(m0);
3151 		return EIO;
3152 	}
3153 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3154 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3155 	bf->bf_m = m0;
3156 	bf->bf_node = ni;			/* NB: held reference */
3157 
3158 	/* setup descriptors */
3159 	ds = bf->bf_desc;
3160 	rt = sc->sc_currates;
3161 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3162 
3163 	/*
3164 	 * NB: the 802.11 layer marks whether or not we should
3165 	 * use short preamble based on the current mode and
3166 	 * negotiated parameters.
3167 	 */
3168 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3169 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3170 		shortPreamble = AH_TRUE;
3171 		sc->sc_stats.ast_tx_shortpre++;
3172 	} else {
3173 		shortPreamble = AH_FALSE;
3174 	}
3175 
3176 	an = ATH_NODE(ni);
3177 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3178 	/*
3179 	 * Calculate Atheros packet type from IEEE80211 packet header,
3180 	 * setup for rate calculations, and select h/w transmit queue.
3181 	 */
3182 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3183 	case IEEE80211_FC0_TYPE_MGT:
3184 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3185 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3186 			atype = HAL_PKT_TYPE_BEACON;
3187 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3188 			atype = HAL_PKT_TYPE_PROBE_RESP;
3189 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3190 			atype = HAL_PKT_TYPE_ATIM;
3191 		else
3192 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3193 		rix = 0;			/* XXX lowest rate */
3194 		try0 = ATH_TXMAXTRY;
3195 		if (shortPreamble)
3196 			txrate = an->an_tx_mgtratesp;
3197 		else
3198 			txrate = an->an_tx_mgtrate;
3199 		/* NB: force all management frames to highest queue */
3200 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3201 			/* NB: force all management frames to highest queue */
3202 			pri = WME_AC_VO;
3203 		} else
3204 			pri = WME_AC_BE;
3205 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3206 		break;
3207 	case IEEE80211_FC0_TYPE_CTL:
3208 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3209 		rix = 0;			/* XXX lowest rate */
3210 		try0 = ATH_TXMAXTRY;
3211 		if (shortPreamble)
3212 			txrate = an->an_tx_mgtratesp;
3213 		else
3214 			txrate = an->an_tx_mgtrate;
3215 		/* NB: force all ctl frames to highest queue */
3216 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3217 			/* NB: force all ctl frames to highest queue */
3218 			pri = WME_AC_VO;
3219 		} else
3220 			pri = WME_AC_BE;
3221 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3222 		break;
3223 	case IEEE80211_FC0_TYPE_DATA:
3224 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3225 		/*
3226 		 * Data frames; consult the rate control module.
3227 		 */
3228 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3229 			&rix, &try0, &txrate);
3230 		sc->sc_txrate = txrate;			/* for LED blinking */
3231 		/*
3232 		 * Default all non-QoS traffic to the background queue.
3233 		 */
3234 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3235 			pri = M_WME_GETAC(m0);
3236 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3237 				flags |= HAL_TXDESC_NOACK;
3238 				sc->sc_stats.ast_tx_noack++;
3239 			}
3240 		} else
3241 			pri = WME_AC_BE;
3242 		break;
3243 	default:
3244 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3245 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3246 		/* XXX statistic */
3247 		m_freem(m0);
3248 		return EIO;
3249 	}
3250 	txq = sc->sc_ac2q[pri];
3251 
3252 	/*
3253 	 * When servicing one or more stations in power-save mode
3254 	 * multicast frames must be buffered until after the beacon.
3255 	 * We use the CAB queue for that.
3256 	 */
3257 	if (ismcast && ic->ic_ps_sta) {
3258 		txq = sc->sc_cabq;
3259 		/* XXX? more bit in 802.11 frame header */
3260 	}
3261 
3262 	/*
3263 	 * Calculate miscellaneous flags.
3264 	 */
3265 	if (ismcast) {
3266 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3267 		sc->sc_stats.ast_tx_noack++;
3268 	} else if (pktlen > ic->ic_rtsthreshold) {
3269 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3270 		cix = rt->info[rix].controlRate;
3271 		sc->sc_stats.ast_tx_rts++;
3272 	}
3273 
3274 	/*
3275 	 * If 802.11g protection is enabled, determine whether
3276 	 * to use RTS/CTS or just CTS.  Note that this is only
3277 	 * done for OFDM unicast frames.
3278 	 */
3279 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3280 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3281 	    (flags & HAL_TXDESC_NOACK) == 0) {
3282 		/* XXX fragments must use CCK rates w/ protection */
3283 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3284 			flags |= HAL_TXDESC_RTSENA;
3285 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3286 			flags |= HAL_TXDESC_CTSENA;
3287 		cix = rt->info[sc->sc_protrix].controlRate;
3288 		sc->sc_stats.ast_tx_protect++;
3289 	}
3290 
3291 	/*
3292 	 * Calculate duration.  This logically belongs in the 802.11
3293 	 * layer but it lacks sufficient information to calculate it.
3294 	 */
3295 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3296 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3297 		u_int16_t dur;
3298 		/*
3299 		 * XXX not right with fragmentation.
3300 		 */
3301 		if (shortPreamble)
3302 			dur = rt->info[rix].spAckDuration;
3303 		else
3304 			dur = rt->info[rix].lpAckDuration;
3305 		*(u_int16_t *)wh->i_dur = htole16(dur);
3306 	}
3307 
3308 	/*
3309 	 * Calculate RTS/CTS rate and duration if needed.
3310 	 */
3311 	ctsduration = 0;
3312 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3313 		/*
3314 		 * CTS transmit rate is derived from the transmit rate
3315 		 * by looking in the h/w rate table.  We must also factor
3316 		 * in whether or not a short preamble is to be used.
3317 		 */
3318 		/* NB: cix is set above where RTS/CTS is enabled */
3319 		KASSERT(cix != 0xff, ("cix not setup"));
3320 		ctsrate = rt->info[cix].rateCode;
3321 		/*
3322 		 * Compute the transmit duration based on the frame
3323 		 * size and the size of an ACK frame.  We call into the
3324 		 * HAL to do the computation since it depends on the
3325 		 * characteristics of the actual PHY being used.
3326 		 *
3327 		 * NB: CTS is assumed the same size as an ACK so we can
3328 		 *     use the precalculated ACK durations.
3329 		 */
3330 		if (shortPreamble) {
3331 			ctsrate |= rt->info[cix].shortPreamble;
3332 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3333 				ctsduration += rt->info[cix].spAckDuration;
3334 			ctsduration += ath_hal_computetxtime(ah,
3335 				rt, pktlen, rix, AH_TRUE);
3336 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3337 				ctsduration += rt->info[cix].spAckDuration;
3338 		} else {
3339 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3340 				ctsduration += rt->info[cix].lpAckDuration;
3341 			ctsduration += ath_hal_computetxtime(ah,
3342 				rt, pktlen, rix, AH_FALSE);
3343 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3344 				ctsduration += rt->info[cix].lpAckDuration;
3345 		}
3346 		/*
3347 		 * Must disable multi-rate retry when using RTS/CTS.
3348 		 */
3349 		try0 = ATH_TXMAXTRY;
3350 	} else
3351 		ctsrate = 0;
3352 
3353 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3354 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3355 			sc->sc_hwmap[txrate].ieeerate, -1);
3356 
3357 	if (ic->ic_rawbpf)
3358 		bpf_mtap(ic->ic_rawbpf, m0);
3359 	if (sc->sc_drvbpf) {
3360 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3361 		if (iswep)
3362 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3363 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3364 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3365 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3366 
3367 		bpf_mtap2(sc->sc_drvbpf,
3368 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3369 	}
3370 
3371 	/*
3372 	 * Determine if a tx interrupt should be generated for
3373 	 * this descriptor.  We take a tx interrupt to reap
3374 	 * descriptors when the h/w hits an EOL condition or
3375 	 * when the descriptor is specifically marked to generate
3376 	 * an interrupt.  We periodically mark descriptors in this
3377 	 * way to insure timely replenishing of the supply needed
3378 	 * for sending frames.  Defering interrupts reduces system
3379 	 * load and potentially allows more concurrent work to be
3380 	 * done but if done to aggressively can cause senders to
3381 	 * backup.
3382 	 *
3383 	 * NB: use >= to deal with sc_txintrperiod changing
3384 	 *     dynamically through sysctl.
3385 	 */
3386 	if (flags & HAL_TXDESC_INTREQ) {
3387 		txq->axq_intrcnt = 0;
3388 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3389 		flags |= HAL_TXDESC_INTREQ;
3390 		txq->axq_intrcnt = 0;
3391 	}
3392 
3393 	/*
3394 	 * Formulate first tx descriptor with tx controls.
3395 	 */
3396 	/* XXX check return value? */
3397 	ath_hal_setuptxdesc(ah, ds
3398 		, pktlen		/* packet length */
3399 		, hdrlen		/* header length */
3400 		, atype			/* Atheros packet type */
3401 		, ni->ni_txpower	/* txpower */
3402 		, txrate, try0		/* series 0 rate/tries */
3403 		, keyix			/* key cache index */
3404 		, sc->sc_txantenna	/* antenna mode */
3405 		, flags			/* flags */
3406 		, ctsrate		/* rts/cts rate */
3407 		, ctsduration		/* rts/cts duration */
3408 	);
3409 	/*
3410 	 * Setup the multi-rate retry state only when we're
3411 	 * going to use it.  This assumes ath_hal_setuptxdesc
3412 	 * initializes the descriptors (so we don't have to)
3413 	 * when the hardware supports multi-rate retry and
3414 	 * we don't use it.
3415 	 */
3416 	if (try0 != ATH_TXMAXTRY)
3417 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3418 
3419 	/*
3420 	 * Fillin the remainder of the descriptor info.
3421 	 */
3422 	ds0 = ds;
3423 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3424 		ds->ds_data = bf->bf_segs[i].ds_addr;
3425 		if (i == bf->bf_nseg - 1)
3426 			ds->ds_link = 0;
3427 		else
3428 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3429 		ath_hal_filltxdesc(ah, ds
3430 			, bf->bf_segs[i].ds_len	/* segment length */
3431 			, i == 0		/* first segment */
3432 			, i == bf->bf_nseg - 1	/* last segment */
3433 			, ds0			/* first descriptor */
3434 		);
3435 		DPRINTF(sc, ATH_DEBUG_XMIT,
3436 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3437 			__func__, i, ds->ds_link, ds->ds_data,
3438 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3439 	}
3440 	/*
3441 	 * Insert the frame on the outbound list and
3442 	 * pass it on to the hardware.
3443 	 */
3444 	ATH_TXQ_LOCK(txq);
3445 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3446 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3447 			cap->cap_wmeParams[pri].wmep_txopLimit);
3448 		/*
3449 		 * When bursting, potentially extend the CTS duration
3450 		 * of a previously queued frame to cover this frame
3451 		 * and not exceed the txopLimit.  If that can be done
3452 		 * then disable RTS/CTS on this frame since it's now
3453 		 * covered (burst extension).  Otherwise we must terminate
3454 		 * the burst before this frame goes out so as not to
3455 		 * violate the WME parameters.  All this is complicated
3456 		 * as we need to update the state of packets on the
3457 		 * (live) hardware queue.  The logic is buried in the hal
3458 		 * because it's highly chip-specific.
3459 		 */
3460 		if (txopLimit != 0) {
3461 			sc->sc_stats.ast_tx_ctsburst++;
3462 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
3463 				/*
3464 				 * This frame was not covered by RTS/CTS from
3465 				 * the previous frame in the burst; update the
3466 				 * descriptor pointers so this frame is now
3467 				 * treated as the last frame for extending a
3468 				 * burst.
3469 				 */
3470 				txq->axq_lastdsWithCTS = ds0;
3471 				/* set gating Desc to final desc */
3472 				txq->axq_gatingds =
3473 					(struct ath_desc *)txq->axq_link;
3474 			} else
3475 				sc->sc_stats.ast_tx_ctsext++;
3476 		}
3477 	}
3478 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3479 	if (txq->axq_link == NULL) {
3480 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3481 		DPRINTF(sc, ATH_DEBUG_XMIT,
3482 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3483 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3484 			txq->axq_depth);
3485 	} else {
3486 		*txq->axq_link = bf->bf_daddr;
3487 		DPRINTF(sc, ATH_DEBUG_XMIT,
3488 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3489 			txq->axq_qnum, txq->axq_link,
3490 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3491 	}
3492 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3493 	/*
3494 	 * The CAB queue is started from the SWBA handler since
3495 	 * frames only go out on DTIM and to avoid possible races.
3496 	 */
3497 	if (txq != sc->sc_cabq)
3498 		ath_hal_txstart(ah, txq->axq_qnum);
3499 	ATH_TXQ_UNLOCK(txq);
3500 
3501 	return 0;
3502 #undef updateCTSForBursting
3503 #undef CTS_DURATION
3504 }
3505 
3506 /*
3507  * Process completed xmit descriptors from the specified queue.
3508  */
3509 static void
3510 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3511 {
3512 	struct ath_hal *ah = sc->sc_ah;
3513 	struct ieee80211com *ic = &sc->sc_ic;
3514 	struct ath_buf *bf;
3515 	struct ath_desc *ds, *ds0;
3516 	struct ieee80211_node *ni;
3517 	struct ath_node *an;
3518 	int sr, lr, pri;
3519 	HAL_STATUS status;
3520 
3521 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3522 		__func__, txq->axq_qnum,
3523 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3524 		txq->axq_link);
3525 	for (;;) {
3526 		ATH_TXQ_LOCK(txq);
3527 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3528 		bf = STAILQ_FIRST(&txq->axq_q);
3529 		if (bf == NULL) {
3530 			txq->axq_link = NULL;
3531 			ATH_TXQ_UNLOCK(txq);
3532 			break;
3533 		}
3534 		ds0 = &bf->bf_desc[0];
3535 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3536 		status = ath_hal_txprocdesc(ah, ds);
3537 #ifdef AR_DEBUG
3538 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3539 			ath_printtxbuf(bf, status == HAL_OK);
3540 #endif
3541 		if (status == HAL_EINPROGRESS) {
3542 			ATH_TXQ_UNLOCK(txq);
3543 			break;
3544 		}
3545 		if (ds0 == txq->axq_lastdsWithCTS)
3546 			txq->axq_lastdsWithCTS = NULL;
3547 		if (ds == txq->axq_gatingds)
3548 			txq->axq_gatingds = NULL;
3549 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3550 		ATH_TXQ_UNLOCK(txq);
3551 
3552 		ni = bf->bf_node;
3553 		if (ni != NULL) {
3554 			an = ATH_NODE(ni);
3555 			if (ds->ds_txstat.ts_status == 0) {
3556 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3557 				sc->sc_stats.ast_ant_tx[txant]++;
3558 				sc->sc_ant_tx[txant]++;
3559 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3560 					sc->sc_stats.ast_tx_altrate++;
3561 				sc->sc_stats.ast_tx_rssi =
3562 					ds->ds_txstat.ts_rssi;
3563 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3564 					ds->ds_txstat.ts_rssi);
3565 				pri = M_WME_GETAC(bf->bf_m);
3566 				if (pri >= WME_AC_VO)
3567 					ic->ic_wme.wme_hipri_traffic++;
3568 				ni->ni_inact = ni->ni_inact_reload;
3569 			} else {
3570 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3571 					sc->sc_stats.ast_tx_xretries++;
3572 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3573 					sc->sc_stats.ast_tx_fifoerr++;
3574 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3575 					sc->sc_stats.ast_tx_filtered++;
3576 			}
3577 			sr = ds->ds_txstat.ts_shortretry;
3578 			lr = ds->ds_txstat.ts_longretry;
3579 			sc->sc_stats.ast_tx_shortretry += sr;
3580 			sc->sc_stats.ast_tx_longretry += lr;
3581 			/*
3582 			 * Hand the descriptor to the rate control algorithm.
3583 			 */
3584 			ath_rate_tx_complete(sc, an, ds, ds0);
3585 			/*
3586 			 * Reclaim reference to node.
3587 			 *
3588 			 * NB: the node may be reclaimed here if, for example
3589 			 *     this is a DEAUTH message that was sent and the
3590 			 *     node was timed out due to inactivity.
3591 			 */
3592 			ieee80211_free_node(ni);
3593 		}
3594 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3595 		    BUS_DMASYNC_POSTWRITE);
3596 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3597 		m_freem(bf->bf_m);
3598 		bf->bf_m = NULL;
3599 		bf->bf_node = NULL;
3600 
3601 		ATH_TXBUF_LOCK(sc);
3602 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3603 		ATH_TXBUF_UNLOCK(sc);
3604 	}
3605 }
3606 
3607 /*
3608  * Deferred processing of transmit interrupt; special-cased
3609  * for a single hardware transmit queue (e.g. 5210 and 5211).
3610  */
3611 static void
3612 ath_tx_proc_q0(void *arg, int npending)
3613 {
3614 	struct ath_softc *sc = arg;
3615 	struct ifnet *ifp = &sc->sc_if;
3616 
3617 	ath_tx_processq(sc, &sc->sc_txq[0]);
3618 	ath_tx_processq(sc, sc->sc_cabq);
3619 	ifp->if_flags &= ~IFF_OACTIVE;
3620 	sc->sc_tx_timer = 0;
3621 
3622 	if (sc->sc_softled)
3623 		ath_led_event(sc, ATH_LED_TX);
3624 
3625 	ath_start(ifp);
3626 }
3627 
3628 /*
3629  * Deferred processing of transmit interrupt; special-cased
3630  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3631  */
3632 static void
3633 ath_tx_proc_q0123(void *arg, int npending)
3634 {
3635 	struct ath_softc *sc = arg;
3636 	struct ifnet *ifp = &sc->sc_if;
3637 
3638 	/*
3639 	 * Process each active queue.
3640 	 */
3641 	ath_tx_processq(sc, &sc->sc_txq[0]);
3642 	ath_tx_processq(sc, &sc->sc_txq[1]);
3643 	ath_tx_processq(sc, &sc->sc_txq[2]);
3644 	ath_tx_processq(sc, &sc->sc_txq[3]);
3645 	ath_tx_processq(sc, sc->sc_cabq);
3646 
3647 	ifp->if_flags &= ~IFF_OACTIVE;
3648 	sc->sc_tx_timer = 0;
3649 
3650 	if (sc->sc_softled)
3651 		ath_led_event(sc, ATH_LED_TX);
3652 
3653 	ath_start(ifp);
3654 }
3655 
3656 /*
3657  * Deferred processing of transmit interrupt.
3658  */
3659 static void
3660 ath_tx_proc(void *arg, int npending)
3661 {
3662 	struct ath_softc *sc = arg;
3663 	struct ifnet *ifp = &sc->sc_if;
3664 	int i;
3665 
3666 	/*
3667 	 * Process each active queue.
3668 	 */
3669 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3670 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3671 		if (ATH_TXQ_SETUP(sc, i))
3672 			ath_tx_processq(sc, &sc->sc_txq[i]);
3673 
3674 	ifp->if_flags &= ~IFF_OACTIVE;
3675 	sc->sc_tx_timer = 0;
3676 
3677 	if (sc->sc_softled)
3678 		ath_led_event(sc, ATH_LED_TX);
3679 
3680 	ath_start(ifp);
3681 }
3682 
3683 static void
3684 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3685 {
3686 	struct ath_hal *ah = sc->sc_ah;
3687 	struct ieee80211_node *ni;
3688 	struct ath_buf *bf;
3689 
3690 	/*
3691 	 * NB: this assumes output has been stopped and
3692 	 *     we do not need to block ath_tx_tasklet
3693 	 */
3694 	for (;;) {
3695 		ATH_TXQ_LOCK(txq);
3696 		bf = STAILQ_FIRST(&txq->axq_q);
3697 		if (bf == NULL) {
3698 			txq->axq_link = NULL;
3699 			ATH_TXQ_UNLOCK(txq);
3700 			break;
3701 		}
3702 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3703 		ATH_TXQ_UNLOCK(txq);
3704 #ifdef AR_DEBUG
3705 		if (sc->sc_debug & ATH_DEBUG_RESET)
3706 			ath_printtxbuf(bf,
3707 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3708 #endif /* AR_DEBUG */
3709 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3710 		m_freem(bf->bf_m);
3711 		bf->bf_m = NULL;
3712 		ni = bf->bf_node;
3713 		bf->bf_node = NULL;
3714 		if (ni != NULL) {
3715 			/*
3716 			 * Reclaim node reference.
3717 			 */
3718 			ieee80211_free_node(ni);
3719 		}
3720 		ATH_TXBUF_LOCK(sc);
3721 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3722 		ATH_TXBUF_UNLOCK(sc);
3723 	}
3724 }
3725 
3726 static void
3727 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3728 {
3729 	struct ath_hal *ah = sc->sc_ah;
3730 
3731 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3732 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3733 	    __func__, txq->axq_qnum,
3734 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3735 	    txq->axq_link);
3736 }
3737 
3738 /*
3739  * Drain the transmit queues and reclaim resources.
3740  */
3741 static void
3742 ath_draintxq(struct ath_softc *sc)
3743 {
3744 	struct ath_hal *ah = sc->sc_ah;
3745 	struct ifnet *ifp = &sc->sc_if;
3746 	int i;
3747 
3748 	/* XXX return value */
3749 	if (!sc->sc_invalid) {
3750 		/* don't touch the hardware if marked invalid */
3751 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3752 		DPRINTF(sc, ATH_DEBUG_RESET,
3753 		    "%s: beacon queue %p\n", __func__,
3754 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3755 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3756 			if (ATH_TXQ_SETUP(sc, i))
3757 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3758 	}
3759 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3760 		if (ATH_TXQ_SETUP(sc, i))
3761 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3762 	ifp->if_flags &= ~IFF_OACTIVE;
3763 	sc->sc_tx_timer = 0;
3764 }
3765 
3766 /*
3767  * Disable the receive h/w in preparation for a reset.
3768  */
3769 static void
3770 ath_stoprecv(struct ath_softc *sc)
3771 {
3772 #define	PA2DESC(_sc, _pa) \
3773 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3774 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3775 	struct ath_hal *ah = sc->sc_ah;
3776 
3777 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3778 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3779 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3780 	DELAY(3000);			/* 3ms is long enough for 1 frame */
3781 #ifdef AR_DEBUG
3782 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3783 		struct ath_buf *bf;
3784 
3785 		printf("%s: rx queue %p, link %p\n", __func__,
3786 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3787 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3788 			struct ath_desc *ds = bf->bf_desc;
3789 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3790 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3791 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3792 				ath_printrxbuf(bf, status == HAL_OK);
3793 		}
3794 	}
3795 #endif
3796 	sc->sc_rxlink = NULL;		/* just in case */
3797 #undef PA2DESC
3798 }
3799 
3800 /*
3801  * Enable the receive h/w following a reset.
3802  */
3803 static int
3804 ath_startrecv(struct ath_softc *sc)
3805 {
3806 	struct ath_hal *ah = sc->sc_ah;
3807 	struct ath_buf *bf;
3808 
3809 	sc->sc_rxlink = NULL;
3810 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3811 		int error = ath_rxbuf_init(sc, bf);
3812 		if (error != 0) {
3813 			DPRINTF(sc, ATH_DEBUG_RECV,
3814 				"%s: ath_rxbuf_init failed %d\n",
3815 				__func__, error);
3816 			return error;
3817 		}
3818 	}
3819 
3820 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3821 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3822 	ath_hal_rxena(ah);		/* enable recv descriptors */
3823 	ath_mode_init(sc);		/* set filters, etc. */
3824 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3825 	return 0;
3826 }
3827 
3828 /*
3829  * Update internal state after a channel change.
3830  */
3831 static void
3832 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3833 {
3834 	struct ieee80211com *ic = &sc->sc_ic;
3835 	enum ieee80211_phymode mode;
3836 	u_int16_t flags;
3837 
3838 	/*
3839 	 * Change channels and update the h/w rate map
3840 	 * if we're switching; e.g. 11a to 11b/g.
3841 	 */
3842 	mode = ieee80211_chan2mode(ic, chan);
3843 	if (mode != sc->sc_curmode)
3844 		ath_setcurmode(sc, mode);
3845 	/*
3846 	 * Update BPF state.  NB: ethereal et. al. don't handle
3847 	 * merged flags well so pick a unique mode for their use.
3848 	 */
3849 	if (IEEE80211_IS_CHAN_A(chan))
3850 		flags = IEEE80211_CHAN_A;
3851 	/* XXX 11g schizophrenia */
3852 	else if (IEEE80211_IS_CHAN_G(chan) ||
3853 	    IEEE80211_IS_CHAN_PUREG(chan))
3854 		flags = IEEE80211_CHAN_G;
3855 	else
3856 		flags = IEEE80211_CHAN_B;
3857 	if (IEEE80211_IS_CHAN_T(chan))
3858 		flags |= IEEE80211_CHAN_TURBO;
3859 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3860 		htole16(chan->ic_freq);
3861 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3862 		htole16(flags);
3863 }
3864 
3865 /*
3866  * Set/change channels.  If the channel is really being changed,
3867  * it's done by reseting the chip.  To accomplish this we must
3868  * first cleanup any pending DMA, then restart stuff after a la
3869  * ath_init.
3870  */
3871 static int
3872 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3873 {
3874 	struct ath_hal *ah = sc->sc_ah;
3875 	struct ieee80211com *ic = &sc->sc_ic;
3876 	HAL_CHANNEL hchan;
3877 
3878 	/*
3879 	 * Convert to a HAL channel description with
3880 	 * the flags constrained to reflect the current
3881 	 * operating mode.
3882 	 */
3883 	hchan.channel = chan->ic_freq;
3884 	hchan.channelFlags = ath_chan2flags(ic, chan);
3885 
3886 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3887 	    __func__,
3888 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3889 		sc->sc_curchan.channelFlags),
3890 	    	sc->sc_curchan.channel,
3891 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3892 	if (hchan.channel != sc->sc_curchan.channel ||
3893 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3894 		HAL_STATUS status;
3895 
3896 		/*
3897 		 * To switch channels clear any pending DMA operations;
3898 		 * wait long enough for the RX fifo to drain, reset the
3899 		 * hardware at the new frequency, and then re-enable
3900 		 * the relevant bits of the h/w.
3901 		 */
3902 		ath_hal_intrset(ah, 0);		/* disable interrupts */
3903 		ath_draintxq(sc);		/* clear pending tx frames */
3904 		ath_stoprecv(sc);		/* turn off frame recv */
3905 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3906 			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3907 				"channel %u (%u Mhz)\n",
3908 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3909 			return EIO;
3910 		}
3911 		sc->sc_curchan = hchan;
3912 		ath_update_txpow(sc);		/* update tx power state */
3913 
3914 		/*
3915 		 * Re-enable rx framework.
3916 		 */
3917 		if (ath_startrecv(sc) != 0) {
3918 			if_printf(ic->ic_ifp,
3919 				"ath_chan_set: unable to restart recv logic\n");
3920 			return EIO;
3921 		}
3922 
3923 		/*
3924 		 * Change channels and update the h/w rate map
3925 		 * if we're switching; e.g. 11a to 11b/g.
3926 		 */
3927 		ic->ic_ibss_chan = chan;
3928 		ath_chan_change(sc, chan);
3929 
3930 		/*
3931 		 * Re-enable interrupts.
3932 		 */
3933 		ath_hal_intrset(ah, sc->sc_imask);
3934 	}
3935 	return 0;
3936 }
3937 
3938 static void
3939 ath_next_scan(void *arg)
3940 {
3941 	struct ath_softc *sc = arg;
3942 	struct ieee80211com *ic = &sc->sc_ic;
3943 
3944 	if (ic->ic_state == IEEE80211_S_SCAN)
3945 		ieee80211_next_scan(ic);
3946 }
3947 
3948 /*
3949  * Periodically recalibrate the PHY to account
3950  * for temperature/environment changes.
3951  */
3952 static void
3953 ath_calibrate(void *arg)
3954 {
3955 	struct ath_softc *sc = arg;
3956 	struct ath_hal *ah = sc->sc_ah;
3957 
3958 	sc->sc_stats.ast_per_cal++;
3959 
3960 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
3961 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
3962 
3963 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3964 		/*
3965 		 * Rfgain is out of bounds, reset the chip
3966 		 * to load new gain values.
3967 		 */
3968 		sc->sc_stats.ast_per_rfgain++;
3969 		ath_reset(&sc->sc_if);
3970 	}
3971 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
3972 		DPRINTF(sc, ATH_DEBUG_ANY,
3973 			"%s: calibration of channel %u failed\n",
3974 			__func__, sc->sc_curchan.channel);
3975 		sc->sc_stats.ast_per_calfail++;
3976 	}
3977 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
3978 }
3979 
3980 static int
3981 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3982 {
3983 	struct ifnet *ifp = ic->ic_ifp;
3984 	struct ath_softc *sc = ifp->if_softc;
3985 	struct ath_hal *ah = sc->sc_ah;
3986 	struct ieee80211_node *ni;
3987 	int i, error;
3988 	const u_int8_t *bssid;
3989 	u_int32_t rfilt;
3990 	static const HAL_LED_STATE leds[] = {
3991 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
3992 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
3993 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
3994 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
3995 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
3996 	};
3997 
3998 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
3999 		ieee80211_state_name[ic->ic_state],
4000 		ieee80211_state_name[nstate]);
4001 
4002 	callout_stop(&sc->sc_scan_ch);
4003 	callout_stop(&sc->sc_cal_ch);
4004 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4005 
4006 	if (nstate == IEEE80211_S_INIT) {
4007 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4008 		/*
4009 		 * NB: disable interrupts so we don't rx frames.
4010 		 */
4011 		ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL);
4012 		/*
4013 		 * Notify the rate control algorithm.
4014 		 */
4015 		ath_rate_newstate(sc, nstate);
4016 		goto done;
4017 	}
4018 	ni = ic->ic_bss;
4019 	error = ath_chan_set(sc, ni->ni_chan);
4020 	if (error != 0)
4021 		goto bad;
4022 	rfilt = ath_calcrxfilter(sc, nstate);
4023 	if (nstate == IEEE80211_S_SCAN)
4024 		bssid = ifp->if_broadcastaddr;
4025 	else
4026 		bssid = ni->ni_bssid;
4027 	ath_hal_setrxfilter(ah, rfilt);
4028 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4029 		 __func__, rfilt, ether_sprintf(bssid));
4030 
4031 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4032 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4033 	else
4034 		ath_hal_setassocid(ah, bssid, 0);
4035 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4036 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4037 			if (ath_hal_keyisvalid(ah, i))
4038 				ath_hal_keysetmac(ah, i, bssid);
4039 	}
4040 
4041 	/*
4042 	 * Notify the rate control algorithm so rates
4043 	 * are setup should ath_beacon_alloc be called.
4044 	 */
4045 	ath_rate_newstate(sc, nstate);
4046 
4047 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4048 		/* nothing to do */;
4049 	} else if (nstate == IEEE80211_S_RUN) {
4050 		DPRINTF(sc, ATH_DEBUG_STATE,
4051 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4052 			"capinfo=0x%04x chan=%d\n"
4053 			 , __func__
4054 			 , ic->ic_flags
4055 			 , ni->ni_intval
4056 			 , ether_sprintf(ni->ni_bssid)
4057 			 , ni->ni_capinfo
4058 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
4059 
4060 		/*
4061 		 * Allocate and setup the beacon frame for AP or adhoc mode.
4062 		 */
4063 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4064 		    ic->ic_opmode == IEEE80211_M_IBSS) {
4065 			/*
4066 			 * Stop any previous beacon DMA.  This may be
4067 			 * necessary, for example, when an ibss merge
4068 			 * causes reconfiguration; there will be a state
4069 			 * transition from RUN->RUN that means we may
4070 			 * be called with beacon transmission active.
4071 			 */
4072 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4073 			ath_beacon_free(sc);
4074 			error = ath_beacon_alloc(sc, ni);
4075 			if (error != 0)
4076 				goto bad;
4077 		}
4078 
4079 		/*
4080 		 * Configure the beacon and sleep timers.
4081 		 */
4082 		ath_beacon_config(sc);
4083 	} else {
4084 		ath_hal_intrset(ah,
4085 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4086 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4087 	}
4088 done:
4089 	/*
4090 	 * Invoke the parent method to complete the work.
4091 	 */
4092 	error = sc->sc_newstate(ic, nstate, arg);
4093 	/*
4094 	 * Finally, start any timers.
4095 	 */
4096 	if (nstate == IEEE80211_S_RUN) {
4097 		/* start periodic recalibration timer */
4098 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4099 			ath_calibrate, sc);
4100 	} else if (nstate == IEEE80211_S_SCAN) {
4101 		/* start ap/neighbor scan timer */
4102 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4103 			ath_next_scan, sc);
4104 	}
4105 bad:
4106 	return error;
4107 }
4108 
4109 /*
4110  * Setup driver-specific state for a newly associated node.
4111  * Note that we're called also on a re-associate, the isnew
4112  * param tells us if this is the first time or not.
4113  */
4114 static void
4115 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4116 {
4117 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4118 
4119 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4120 }
4121 
4122 static int
4123 ath_getchannels(struct ath_softc *sc, u_int cc,
4124 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4125 {
4126 	struct ieee80211com *ic = &sc->sc_ic;
4127 	struct ifnet *ifp = &sc->sc_if;
4128 	struct ath_hal *ah = sc->sc_ah;
4129 	HAL_CHANNEL *chans;
4130 	int i, ix, nchan;
4131 
4132 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4133 			M_TEMP, M_NOWAIT);
4134 	if (chans == NULL) {
4135 		if_printf(ifp, "unable to allocate channel table\n");
4136 		return ENOMEM;
4137 	}
4138 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4139 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4140 		u_int32_t rd;
4141 
4142 		ath_hal_getregdomain(ah, &rd);
4143 		if_printf(ifp, "unable to collect channel list from hal; "
4144 			"regdomain likely %u country code %u\n", rd, cc);
4145 		free(chans, M_TEMP);
4146 		return EINVAL;
4147 	}
4148 
4149 	/*
4150 	 * Convert HAL channels to ieee80211 ones and insert
4151 	 * them in the table according to their channel number.
4152 	 */
4153 	for (i = 0; i < nchan; i++) {
4154 		HAL_CHANNEL *c = &chans[i];
4155 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4156 		if (ix > IEEE80211_CHAN_MAX) {
4157 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4158 				ix, c->channel, c->channelFlags);
4159 			continue;
4160 		}
4161 		/* NB: flags are known to be compatible */
4162 		if (ic->ic_channels[ix].ic_freq == 0) {
4163 			ic->ic_channels[ix].ic_freq = c->channel;
4164 			ic->ic_channels[ix].ic_flags = c->channelFlags;
4165 		} else {
4166 			/* channels overlap; e.g. 11g and 11b */
4167 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4168 		}
4169 	}
4170 	free(chans, M_TEMP);
4171 	return 0;
4172 }
4173 
4174 static void
4175 ath_led_done(void *arg)
4176 {
4177 	struct ath_softc *sc = arg;
4178 
4179 	sc->sc_blinking = 0;
4180 }
4181 
4182 /*
4183  * Turn the LED off: flip the pin and then set a timer so no
4184  * update will happen for the specified duration.
4185  */
4186 static void
4187 ath_led_off(void *arg)
4188 {
4189 	struct ath_softc *sc = arg;
4190 
4191 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4192 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4193 }
4194 
4195 /*
4196  * Blink the LED according to the specified on/off times.
4197  */
4198 static void
4199 ath_led_blink(struct ath_softc *sc, int on, int off)
4200 {
4201 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4202 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4203 	sc->sc_blinking = 1;
4204 	sc->sc_ledoff = off;
4205 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4206 }
4207 
4208 static void
4209 ath_led_event(struct ath_softc *sc, int event)
4210 {
4211 
4212 	sc->sc_ledevent = ticks;	/* time of last event */
4213 	if (sc->sc_blinking)		/* don't interrupt active blink */
4214 		return;
4215 	switch (event) {
4216 	case ATH_LED_POLL:
4217 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4218 			sc->sc_hwmap[0].ledoff);
4219 		break;
4220 	case ATH_LED_TX:
4221 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4222 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4223 		break;
4224 	case ATH_LED_RX:
4225 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4226 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4227 		break;
4228 	}
4229 }
4230 
4231 static void
4232 ath_update_txpow(struct ath_softc *sc)
4233 {
4234 	struct ieee80211com *ic = &sc->sc_ic;
4235 	struct ath_hal *ah = sc->sc_ah;
4236 	u_int32_t txpow;
4237 
4238 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4239 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4240 		/* read back in case value is clamped */
4241 		ath_hal_gettxpowlimit(ah, &txpow);
4242 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4243 	}
4244 	/*
4245 	 * Fetch max tx power level for status requests.
4246 	 */
4247 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4248 	ic->ic_bss->ni_txpower = txpow;
4249 }
4250 
4251 static int
4252 ath_rate_setup(struct ath_softc *sc, u_int mode)
4253 {
4254 	struct ath_hal *ah = sc->sc_ah;
4255 	struct ieee80211com *ic = &sc->sc_ic;
4256 	const HAL_RATE_TABLE *rt;
4257 	struct ieee80211_rateset *rs;
4258 	int i, maxrates;
4259 
4260 	switch (mode) {
4261 	case IEEE80211_MODE_11A:
4262 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4263 		break;
4264 	case IEEE80211_MODE_11B:
4265 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4266 		break;
4267 	case IEEE80211_MODE_11G:
4268 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4269 		break;
4270 	case IEEE80211_MODE_TURBO_A:
4271 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4272 		break;
4273 	case IEEE80211_MODE_TURBO_G:
4274 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4275 		break;
4276 	default:
4277 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4278 			__func__, mode);
4279 		return 0;
4280 	}
4281 	rt = sc->sc_rates[mode];
4282 	if (rt == NULL)
4283 		return 0;
4284 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4285 		DPRINTF(sc, ATH_DEBUG_ANY,
4286 			"%s: rate table too small (%u > %u)\n",
4287 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4288 		maxrates = IEEE80211_RATE_MAXSIZE;
4289 	} else
4290 		maxrates = rt->rateCount;
4291 	rs = &ic->ic_sup_rates[mode];
4292 	for (i = 0; i < maxrates; i++)
4293 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4294 	rs->rs_nrates = maxrates;
4295 	return 1;
4296 }
4297 
4298 static void
4299 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4300 {
4301 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4302 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4303 	static const struct {
4304 		u_int		rate;		/* tx/rx 802.11 rate */
4305 		u_int16_t	timeOn;		/* LED on time (ms) */
4306 		u_int16_t	timeOff;	/* LED off time (ms) */
4307 	} blinkrates[] = {
4308 		{ 108,  40,  10 },
4309 		{  96,  44,  11 },
4310 		{  72,  50,  13 },
4311 		{  48,  57,  14 },
4312 		{  36,  67,  16 },
4313 		{  24,  80,  20 },
4314 		{  22, 100,  25 },
4315 		{  18, 133,  34 },
4316 		{  12, 160,  40 },
4317 		{  10, 200,  50 },
4318 		{   6, 240,  58 },
4319 		{   4, 267,  66 },
4320 		{   2, 400, 100 },
4321 		{   0, 500, 130 },
4322 	};
4323 	const HAL_RATE_TABLE *rt;
4324 	int i, j;
4325 
4326 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4327 	rt = sc->sc_rates[mode];
4328 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4329 	for (i = 0; i < rt->rateCount; i++)
4330 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4331 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4332 	for (i = 0; i < 32; i++) {
4333 		u_int8_t ix = rt->rateCodeToIndex[i];
4334 		if (ix == 0xff) {
4335 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4336 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4337 			continue;
4338 		}
4339 		sc->sc_hwmap[i].ieeerate =
4340 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4341 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4342 		if (rt->info[ix].shortPreamble ||
4343 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4344 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4345 		/* NB: receive frames include FCS */
4346 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4347 			IEEE80211_RADIOTAP_F_FCS;
4348 		/* setup blink rate table to avoid per-packet lookup */
4349 		for (j = 0; j < N(blinkrates)-1; j++)
4350 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4351 				break;
4352 		/* NB: this uses the last entry if the rate isn't found */
4353 		/* XXX beware of overlow */
4354 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4355 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4356 	}
4357 	sc->sc_currates = rt;
4358 	sc->sc_curmode = mode;
4359 	/*
4360 	 * All protection frames are transmited at 2Mb/s for
4361 	 * 11g, otherwise at 1Mb/s.
4362 	 * XXX select protection rate index from rate table.
4363 	 */
4364 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4365 	/* NB: caller is responsible for reseting rate control state */
4366 #undef N
4367 }
4368 
4369 #ifdef AR_DEBUG
4370 static void
4371 ath_printrxbuf(struct ath_buf *bf, int done)
4372 {
4373 	struct ath_desc *ds;
4374 	int i;
4375 
4376 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4377 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4378 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4379 		    ds->ds_link, ds->ds_data,
4380 		    ds->ds_ctl0, ds->ds_ctl1,
4381 		    ds->ds_hw[0], ds->ds_hw[1],
4382 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4383 	}
4384 }
4385 
4386 static void
4387 ath_printtxbuf(struct ath_buf *bf, int done)
4388 {
4389 	struct ath_desc *ds;
4390 	int i;
4391 
4392 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4393 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4394 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4395 		    ds->ds_link, ds->ds_data,
4396 		    ds->ds_ctl0, ds->ds_ctl1,
4397 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4398 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4399 	}
4400 }
4401 #endif /* AR_DEBUG */
4402 
4403 static void
4404 ath_watchdog(struct ifnet *ifp)
4405 {
4406 	struct ath_softc *sc = ifp->if_softc;
4407 	struct ieee80211com *ic = &sc->sc_ic;
4408 
4409 	ifp->if_timer = 0;
4410 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4411 		return;
4412 	if (sc->sc_tx_timer) {
4413 		if (--sc->sc_tx_timer == 0) {
4414 			if_printf(ifp, "device timeout\n");
4415 			ath_reset(ifp);
4416 			ifp->if_oerrors++;
4417 			sc->sc_stats.ast_watchdog++;
4418 		} else
4419 			ifp->if_timer = 1;
4420 	}
4421 	ieee80211_watchdog(ic);
4422 }
4423 
4424 /*
4425  * Diagnostic interface to the HAL.  This is used by various
4426  * tools to do things like retrieve register contents for
4427  * debugging.  The mechanism is intentionally opaque so that
4428  * it can change frequently w/o concern for compatiblity.
4429  */
4430 static int
4431 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4432 {
4433 	struct ath_hal *ah = sc->sc_ah;
4434 	u_int id = ad->ad_id & ATH_DIAG_ID;
4435 	void *indata = NULL;
4436 	void *outdata = NULL;
4437 	u_int32_t insize = ad->ad_in_size;
4438 	u_int32_t outsize = ad->ad_out_size;
4439 	int error = 0;
4440 
4441 	if (ad->ad_id & ATH_DIAG_IN) {
4442 		/*
4443 		 * Copy in data.
4444 		 */
4445 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4446 		if (indata == NULL) {
4447 			error = ENOMEM;
4448 			goto bad;
4449 		}
4450 		error = copyin(ad->ad_in_data, indata, insize);
4451 		if (error)
4452 			goto bad;
4453 	}
4454 	if (ad->ad_id & ATH_DIAG_DYN) {
4455 		/*
4456 		 * Allocate a buffer for the results (otherwise the HAL
4457 		 * returns a pointer to a buffer where we can read the
4458 		 * results).  Note that we depend on the HAL leaving this
4459 		 * pointer for us to use below in reclaiming the buffer;
4460 		 * may want to be more defensive.
4461 		 */
4462 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4463 		if (outdata == NULL) {
4464 			error = ENOMEM;
4465 			goto bad;
4466 		}
4467 	}
4468 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4469 		if (outsize < ad->ad_out_size)
4470 			ad->ad_out_size = outsize;
4471 		if (outdata != NULL)
4472 			error = copyout(outdata, ad->ad_out_data,
4473 					ad->ad_out_size);
4474 	} else {
4475 		error = EINVAL;
4476 	}
4477 bad:
4478 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4479 		free(indata, M_TEMP);
4480 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4481 		free(outdata, M_TEMP);
4482 	return error;
4483 }
4484 
4485 static int
4486 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4487 {
4488 #define	IS_RUNNING(ifp) \
4489 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4490 	struct ath_softc *sc = ifp->if_softc;
4491 	struct ieee80211com *ic = &sc->sc_ic;
4492 	struct ifreq *ifr = (struct ifreq *)data;
4493 	int error = 0;
4494 
4495 	ATH_LOCK(sc);
4496 	switch (cmd) {
4497 	case SIOCSIFFLAGS:
4498 		if (IS_RUNNING(ifp)) {
4499 			/*
4500 			 * To avoid rescanning another access point,
4501 			 * do not call ath_init() here.  Instead,
4502 			 * only reflect promisc mode settings.
4503 			 */
4504 			ath_mode_init(sc);
4505 		} else if (ifp->if_flags & IFF_UP) {
4506 			/*
4507 			 * Beware of being called during attach/detach
4508 			 * to reset promiscuous mode.  In that case we
4509 			 * will still be marked UP but not RUNNING.
4510 			 * However trying to re-init the interface
4511 			 * is the wrong thing to do as we've already
4512 			 * torn down much of our state.  There's
4513 			 * probably a better way to deal with this.
4514 			 */
4515 			if (!sc->sc_invalid && ic->ic_bss != NULL)
4516 				ath_init(ifp);	/* XXX lose error */
4517 		} else
4518 			ath_stop_locked(ifp);
4519 		break;
4520 	case SIOCADDMULTI:
4521 	case SIOCDELMULTI:
4522 		/*
4523 		 * The upper layer has already installed/removed
4524 		 * the multicast address(es), just recalculate the
4525 		 * multicast filter for the card.
4526 		 */
4527 		if (ifp->if_flags & IFF_RUNNING)
4528 			ath_mode_init(sc);
4529 		break;
4530 	case SIOCGATHSTATS:
4531 		/* NB: embed these numbers to get a consistent view */
4532 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4533 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4534 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4535 		ATH_UNLOCK(sc);
4536 		/*
4537 		 * NB: Drop the softc lock in case of a page fault;
4538 		 * we'll accept any potential inconsisentcy in the
4539 		 * statistics.  The alternative is to copy the data
4540 		 * to a local structure.
4541 		 */
4542 		return copyout(&sc->sc_stats,
4543 				ifr->ifr_data, sizeof (sc->sc_stats));
4544 	case SIOCGATHDIAG:
4545 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4546 		break;
4547 	default:
4548 		error = ieee80211_ioctl(ic, cmd, data);
4549 		if (error == ENETRESET) {
4550 			if (IS_RUNNING(ifp) &&
4551 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4552 				ath_init(ifp);	/* XXX lose error */
4553 			error = 0;
4554 		}
4555 		if (error == ERESTART)
4556 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4557 		break;
4558 	}
4559 	ATH_UNLOCK(sc);
4560 	return error;
4561 #undef IS_RUNNING
4562 }
4563 
4564 static int
4565 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4566 {
4567 	struct ath_softc *sc = arg1;
4568 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4569 	int error;
4570 
4571 	error = sysctl_handle_int(oidp, &slottime, 0, req);
4572 	if (error || !req->newptr)
4573 		return error;
4574 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4575 }
4576 
4577 static int
4578 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4579 {
4580 	struct ath_softc *sc = arg1;
4581 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4582 	int error;
4583 
4584 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4585 	if (error || !req->newptr)
4586 		return error;
4587 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4588 }
4589 
4590 static int
4591 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4592 {
4593 	struct ath_softc *sc = arg1;
4594 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4595 	int error;
4596 
4597 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4598 	if (error || !req->newptr)
4599 		return error;
4600 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4601 }
4602 
4603 static int
4604 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4605 {
4606 	struct ath_softc *sc = arg1;
4607 	int softled = sc->sc_softled;
4608 	int error;
4609 
4610 	error = sysctl_handle_int(oidp, &softled, 0, req);
4611 	if (error || !req->newptr)
4612 		return error;
4613 	softled = (softled != 0);
4614 	if (softled != sc->sc_softled) {
4615 		if (softled) {
4616 			/* NB: handle any sc_ledpin change */
4617 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4618 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4619 				!sc->sc_ledon);
4620 		}
4621 		sc->sc_softled = softled;
4622 	}
4623 	return 0;
4624 }
4625 
4626 static int
4627 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4628 {
4629 	struct ath_softc *sc = arg1;
4630 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4631 	int error;
4632 
4633 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4634 	if (!error && req->newptr)
4635 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4636 	return error;
4637 }
4638 
4639 static int
4640 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4641 {
4642 	struct ath_softc *sc = arg1;
4643 	u_int diversity = sc->sc_diversity;
4644 	int error;
4645 
4646 	error = sysctl_handle_int(oidp, &diversity, 0, req);
4647 	if (error || !req->newptr)
4648 		return error;
4649 	sc->sc_diversity = diversity;
4650 	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4651 }
4652 
4653 static int
4654 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4655 {
4656 	struct ath_softc *sc = arg1;
4657 	u_int32_t diag;
4658 	int error;
4659 
4660 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4661 		return EINVAL;
4662 	error = sysctl_handle_int(oidp, &diag, 0, req);
4663 	if (error || !req->newptr)
4664 		return error;
4665 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4666 }
4667 
4668 static int
4669 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4670 {
4671 	struct ath_softc *sc = arg1;
4672 	struct ifnet *ifp = &sc->sc_if;
4673 	u_int32_t scale;
4674 	int error;
4675 
4676 	ath_hal_gettpscale(sc->sc_ah, &scale);
4677 	error = sysctl_handle_int(oidp, &scale, 0, req);
4678 	if (error || !req->newptr)
4679 		return error;
4680 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4681 }
4682 
4683 static int
4684 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4685 {
4686 	struct ath_softc *sc = arg1;
4687 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4688 	int error;
4689 
4690 	error = sysctl_handle_int(oidp, &tpc, 0, req);
4691 	if (error || !req->newptr)
4692 		return error;
4693 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4694 }
4695 
4696 static void
4697 ath_sysctlattach(struct ath_softc *sc)
4698 {
4699 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4700 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4701 
4702 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4703 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4704 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4705 		"EEPROM country code");
4706 	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4707 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4708 		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4709 		"EEPROM regdomain code");
4710 	sc->sc_debug = ath_debug;
4711 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4712 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4713 		"control debugging printfs");
4714 
4715 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4716 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4717 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4718 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4719 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4720 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4721 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4722 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4723 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4724 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4725 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4726 		ath_sysctl_softled, "I", "enable/disable software LED support");
4727 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4728 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4729 		"GPIO pin connected to LED");
4730 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4731 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4732 		"setting to turn LED on");
4733 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4734 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4735 		"idle time for inactivity LED (ticks)");
4736 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4737 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4738 		"tx antenna (0=auto)");
4739 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4740 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4741 		ath_sysctl_rxantenna, "I", "default/rx antenna");
4742 	if (sc->sc_hasdiversity)
4743 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4744 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4745 			ath_sysctl_diversity, "I", "antenna diversity");
4746 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4747 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4748 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4749 		"tx descriptor batching");
4750 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4751 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4752 		ath_sysctl_diag, "I", "h/w diagnostic control");
4753 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4754 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4755 		ath_sysctl_tpscale, "I", "tx power scaling");
4756 	if (sc->sc_hastpc)
4757 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4758 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4759 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4760 }
4761 
4762 static void
4763 ath_bpfattach(struct ath_softc *sc)
4764 {
4765 	struct ifnet *ifp = &sc->sc_if;
4766 
4767 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4768 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4769 		&sc->sc_drvbpf);
4770 	/*
4771 	 * Initialize constant fields.
4772 	 * XXX make header lengths a multiple of 32-bits so subsequent
4773 	 *     headers are properly aligned; this is a kludge to keep
4774 	 *     certain applications happy.
4775 	 *
4776 	 * NB: the channel is setup each time we transition to the
4777 	 *     RUN state to avoid filling it in for each frame.
4778 	 */
4779 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4780 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4781 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4782 
4783 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4784 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4785 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4786 }
4787 
4788 /*
4789  * Announce various information on device/driver attach.
4790  */
4791 static void
4792 ath_announce(struct ath_softc *sc)
4793 {
4794 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4795 	struct ifnet *ifp = &sc->sc_if;
4796 	struct ath_hal *ah = sc->sc_ah;
4797 	u_int modes, cc;
4798 
4799 	if_printf(ifp, "mac %d.%d phy %d.%d",
4800 		ah->ah_macVersion, ah->ah_macRev,
4801 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4802 	/*
4803 	 * Print radio revision(s).  We check the wireless modes
4804 	 * to avoid falsely printing revs for inoperable parts.
4805 	 * Dual-band radio revs are returned in the 5Ghz rev number.
4806 	 */
4807 	ath_hal_getcountrycode(ah, &cc);
4808 	modes = ath_hal_getwirelessmodes(ah, cc);
4809 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4810 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4811 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4812 				ah->ah_analog5GhzRev >> 4,
4813 				ah->ah_analog5GhzRev & 0xf,
4814 				ah->ah_analog2GhzRev >> 4,
4815 				ah->ah_analog2GhzRev & 0xf);
4816 		else
4817 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4818 				ah->ah_analog5GhzRev & 0xf);
4819 	} else
4820 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4821 			ah->ah_analog5GhzRev & 0xf);
4822 	printf("\n");
4823 	if (bootverbose) {
4824 		int i;
4825 		for (i = 0; i <= WME_AC_VO; i++) {
4826 			struct ath_txq *txq = sc->sc_ac2q[i];
4827 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4828 				txq->axq_qnum, ieee80211_wme_acnames[i]);
4829 		}
4830 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4831 			sc->sc_cabq->axq_qnum);
4832 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4833 	}
4834 #undef HAL_MODE_DUALBAND
4835 }
4836