xref: /freebsd/sys/dev/ath/if_ath.c (revision ce46e2059e16557a44be599f86de42c0e1a13220)
1 /*-
2  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 
86 /* unalligned little endian access */
87 #define LE_READ_2(p)							\
88 	((u_int16_t)							\
89 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
90 #define LE_READ_4(p)							\
91 	((u_int32_t)							\
92 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
93 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
94 
95 static void	ath_init(void *);
96 static void	ath_stop(struct ifnet *);
97 static void	ath_start(struct ifnet *);
98 static void	ath_reset(struct ath_softc *);
99 static int	ath_media_change(struct ifnet *);
100 static void	ath_watchdog(struct ifnet *);
101 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
102 static void	ath_fatal_proc(void *, int);
103 static void	ath_rxorn_proc(void *, int);
104 static void	ath_bmiss_proc(void *, int);
105 static void	ath_initkeytable(struct ath_softc *);
106 static void	ath_mode_init(struct ath_softc *);
107 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
108 static void	ath_beacon_proc(void *, int);
109 static void	ath_beacon_free(struct ath_softc *);
110 static void	ath_beacon_config(struct ath_softc *);
111 static int	ath_desc_alloc(struct ath_softc *);
112 static void	ath_desc_free(struct ath_softc *);
113 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
114 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
115 static void	ath_node_copy(struct ieee80211com *,
116 			struct ieee80211_node *, const struct ieee80211_node *);
117 static u_int8_t	ath_node_getrssi(struct ieee80211com *,
118 			struct ieee80211_node *);
119 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
120 static void	ath_rx_proc(void *, int);
121 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
122 			     struct ath_buf *, struct mbuf *);
123 static void	ath_tx_proc(void *, int);
124 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
125 static void	ath_draintxq(struct ath_softc *);
126 static void	ath_stoprecv(struct ath_softc *);
127 static int	ath_startrecv(struct ath_softc *);
128 static void	ath_next_scan(void *);
129 static void	ath_calibrate(void *);
130 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
131 static void	ath_newassoc(struct ieee80211com *,
132 			struct ieee80211_node *, int);
133 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
134 
135 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
136 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
137 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
138 static void	ath_rate_ctl(void *, struct ieee80211_node *);
139 
140 SYSCTL_DECL(_hw_ath);
141 
142 /* XXX validate sysctl values */
143 static	int ath_dwelltime = 200;		/* 5 channels/second */
144 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
145 	    0, "channel dwell time (ms) for AP/station scanning");
146 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
147 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
148 	    0, "chip calibration interval (secs)");
149 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
150 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
151 	    0, "enable/disable outdoor operation");
152 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
153 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
154 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
155 	    0, "country code");
156 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
157 static	int ath_regdomain = 0;			/* regulatory domain */
158 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
159 	    0, "regulatory domain");
160 
161 #ifdef AR_DEBUG
162 int	ath_debug = 0;
163 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
164 	    0, "control debugging printfs");
165 TUNABLE_INT("hw.ath.debug", &ath_debug);
166 #define	IFF_DUMPPKTS(_ifp, _m) \
167 	((ath_debug & _m) || \
168 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
169 static	void ath_printrxbuf(struct ath_buf *bf, int);
170 static	void ath_printtxbuf(struct ath_buf *bf, int);
171 enum {
172 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
173 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
174 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
175 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
176 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
177 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
178 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
179 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
180 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
181 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
182 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
183 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
184 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
185 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
186 	ATH_DEBUG_ANY		= 0xffffffff
187 };
188 #define	DPRINTF(_m,X)	if (ath_debug & _m) printf X
189 #else
190 #define	IFF_DUMPPKTS(_ifp, _m) \
191 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
192 #define	DPRINTF(_m, X)
193 #endif
194 
195 int
196 ath_attach(u_int16_t devid, struct ath_softc *sc)
197 {
198 	struct ieee80211com *ic = &sc->sc_ic;
199 	struct ifnet *ifp = &ic->ic_if;
200 	struct ath_hal *ah;
201 	HAL_STATUS status;
202 	int error = 0;
203 
204 	DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
205 
206 	/* set these up early for if_printf use */
207 	if_initname(ifp, device_get_name(sc->sc_dev),
208 	    device_get_unit(sc->sc_dev));
209 
210 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
211 	if (ah == NULL) {
212 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
213 			status);
214 		error = ENXIO;
215 		goto bad;
216 	}
217 	if (ah->ah_abi != HAL_ABI_VERSION) {
218 		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
219 			ah->ah_abi, HAL_ABI_VERSION);
220 		error = ENXIO;
221 		goto bad;
222 	}
223 	if_printf(ifp, "mac %d.%d phy %d.%d",
224 		ah->ah_macVersion, ah->ah_macRev,
225 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
226 	if (ah->ah_analog5GhzRev)
227 		printf(" 5ghz radio %d.%d",
228 			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
229 	if (ah->ah_analog2GhzRev)
230 		printf(" 2ghz radio %d.%d",
231 			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
232 	printf("\n");
233 	sc->sc_ah = ah;
234 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
235 
236 	/*
237 	 * Collect the channel list using the default country
238 	 * code and including outdoor channels.  The 802.11 layer
239 	 * is resposible for filtering this list based on settings
240 	 * like the phy mode.
241 	 */
242 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
243 	if (error != 0)
244 		goto bad;
245 	/*
246 	 * Copy these back; they are set as a side effect
247 	 * of constructing the channel list.
248 	 */
249 	ath_regdomain = ath_hal_getregdomain(ah);
250 	ath_countrycode = ath_hal_getcountrycode(ah);
251 
252 	/*
253 	 * Setup rate tables for all potential media types.
254 	 */
255 	ath_rate_setup(sc, IEEE80211_MODE_11A);
256 	ath_rate_setup(sc, IEEE80211_MODE_11B);
257 	ath_rate_setup(sc, IEEE80211_MODE_11G);
258 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
259 
260 	error = ath_desc_alloc(sc);
261 	if (error != 0) {
262 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
263 		goto bad;
264 	}
265 	callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE);
266 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
267 
268 	ATH_TXBUF_LOCK_INIT(sc);
269 	ATH_TXQ_LOCK_INIT(sc);
270 
271 	TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
272 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
273 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
274 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
275 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
276 
277 	/*
278 	 * For now just pre-allocate one data queue and one
279 	 * beacon queue.  Note that the HAL handles resetting
280 	 * them at the needed time.  Eventually we'll want to
281 	 * allocate more tx queues for splitting management
282 	 * frames and for QOS support.
283 	 */
284 	sc->sc_txhalq = ath_hal_setuptxqueue(ah,
285 		HAL_TX_QUEUE_DATA,
286 		AH_TRUE			/* enable interrupts */
287 	);
288 	if (sc->sc_txhalq == (u_int) -1) {
289 		if_printf(ifp, "unable to setup a data xmit queue!\n");
290 		goto bad2;
291 	}
292 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,
293 		HAL_TX_QUEUE_BEACON,
294 		AH_TRUE			/* enable interrupts */
295 	);
296 	if (sc->sc_bhalq == (u_int) -1) {
297 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
298 		goto bad2;
299 	}
300 
301 	ifp->if_softc = sc;
302 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
303 	ifp->if_start = ath_start;
304 	ifp->if_watchdog = ath_watchdog;
305 	ifp->if_ioctl = ath_ioctl;
306 	ifp->if_init = ath_init;
307 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
308 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
309 	IFQ_SET_READY(&ifp->if_snd);
310 
311 	ic->ic_softc = sc;
312 	ic->ic_newassoc = ath_newassoc;
313 	/* XXX not right but it's not used anywhere important */
314 	ic->ic_phytype = IEEE80211_T_OFDM;
315 	ic->ic_opmode = IEEE80211_M_STA;
316 	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
317 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
318 		| IEEE80211_C_HOSTAP		/* hostap mode */
319 		| IEEE80211_C_MONITOR		/* monitor mode */
320 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
321 		;
322 
323 	/* get mac address from hardware */
324 	ath_hal_getmac(ah, ic->ic_myaddr);
325 
326 	/* call MI attach routine. */
327 	ieee80211_ifattach(ifp);
328 	/* override default methods */
329 	ic->ic_node_alloc = ath_node_alloc;
330 	sc->sc_node_free = ic->ic_node_free;
331 	ic->ic_node_free = ath_node_free;
332 	sc->sc_node_copy = ic->ic_node_copy;
333 	ic->ic_node_copy = ath_node_copy;
334 	ic->ic_node_getrssi = ath_node_getrssi;
335 	sc->sc_newstate = ic->ic_newstate;
336 	ic->ic_newstate = ath_newstate;
337 	/* complete initialization */
338 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
339 
340 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
341 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
342 		&sc->sc_drvbpf);
343 	/*
344 	 * Initialize constant fields.
345 	 * XXX make header lengths a multiple of 32-bits so subsequent
346 	 *     headers are properly aligned; this is a kludge to keep
347 	 *     certain applications happy.
348 	 *
349 	 * NB: the channel is setup each time we transition to the
350 	 *     RUN state to avoid filling it in for each frame.
351 	 */
352 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
353 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
354 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
355 
356 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
357 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
358 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
359 
360 	return 0;
361 bad2:
362 	ath_desc_free(sc);
363 bad:
364 	if (ah)
365 		ath_hal_detach(ah);
366 	sc->sc_invalid = 1;
367 	return error;
368 }
369 
370 int
371 ath_detach(struct ath_softc *sc)
372 {
373 	struct ifnet *ifp = &sc->sc_ic.ic_if;
374 
375 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
376 
377 	ath_stop(ifp);
378 	bpfdetach(ifp);
379 	ath_desc_free(sc);
380 	ath_hal_detach(sc->sc_ah);
381 	ieee80211_ifdetach(ifp);
382 
383 	ATH_TXBUF_LOCK_DESTROY(sc);
384 	ATH_TXQ_LOCK_DESTROY(sc);
385 
386 	return 0;
387 }
388 
389 void
390 ath_suspend(struct ath_softc *sc)
391 {
392 	struct ifnet *ifp = &sc->sc_ic.ic_if;
393 
394 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
395 
396 	ath_stop(ifp);
397 }
398 
399 void
400 ath_resume(struct ath_softc *sc)
401 {
402 	struct ifnet *ifp = &sc->sc_ic.ic_if;
403 
404 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
405 
406 	if (ifp->if_flags & IFF_UP) {
407 		ath_init(ifp);
408 		if (ifp->if_flags & IFF_RUNNING)
409 			ath_start(ifp);
410 	}
411 }
412 
413 void
414 ath_shutdown(struct ath_softc *sc)
415 {
416 	struct ifnet *ifp = &sc->sc_ic.ic_if;
417 
418 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
419 
420 	ath_stop(ifp);
421 }
422 
423 void
424 ath_intr(void *arg)
425 {
426 	struct ath_softc *sc = arg;
427 	struct ieee80211com *ic = &sc->sc_ic;
428 	struct ifnet *ifp = &ic->ic_if;
429 	struct ath_hal *ah = sc->sc_ah;
430 	HAL_INT status;
431 
432 	if (sc->sc_invalid) {
433 		/*
434 		 * The hardware is not ready/present, don't touch anything.
435 		 * Note this can happen early on if the IRQ is shared.
436 		 */
437 		DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
438 		return;
439 	}
440 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
441 		return;
442 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
443 		DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
444 			__func__, ifp->if_flags));
445 		ath_hal_getisr(ah, &status);	/* clear ISR */
446 		ath_hal_intrset(ah, 0);		/* disable further intr's */
447 		return;
448 	}
449 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
450 	DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
451 #ifdef AR_DEBUG
452 	if (ath_debug &&
453 	    (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
454 		if_printf(ifp, "ath_intr: status 0x%x\n", status);
455 		ath_hal_dumpstate(ah);
456 	}
457 #endif /* AR_DEBUG */
458 	status &= sc->sc_imask;			/* discard unasked for bits */
459 	if (status & HAL_INT_FATAL) {
460 		sc->sc_stats.ast_hardware++;
461 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
462 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
463 	} else if (status & HAL_INT_RXORN) {
464 		sc->sc_stats.ast_rxorn++;
465 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
466 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
467 	} else {
468 		if (status & HAL_INT_RXEOL) {
469 			/*
470 			 * NB: the hardware should re-read the link when
471 			 *     RXE bit is written, but it doesn't work at
472 			 *     least on older hardware revs.
473 			 */
474 			sc->sc_stats.ast_rxeol++;
475 			sc->sc_rxlink = NULL;
476 		}
477 		if (status & HAL_INT_TXURN) {
478 			sc->sc_stats.ast_txurn++;
479 			/* bump tx trigger level */
480 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
481 		}
482 		if (status & HAL_INT_RX)
483 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
484 		if (status & HAL_INT_TX)
485 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
486 		if (status & HAL_INT_SWBA) {
487 			/*
488 			 * Handle beacon transmission directly; deferring
489 			 * this is too slow to meet timing constraints
490 			 * under load.
491 			 */
492 			ath_beacon_proc(sc, 0);
493 		}
494 		if (status & HAL_INT_BMISS) {
495 			sc->sc_stats.ast_bmiss++;
496 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
497 		}
498 	}
499 }
500 
501 static void
502 ath_fatal_proc(void *arg, int pending)
503 {
504 	struct ath_softc *sc = arg;
505 
506 	device_printf(sc->sc_dev, "hardware error; resetting\n");
507 	ath_reset(sc);
508 }
509 
510 static void
511 ath_rxorn_proc(void *arg, int pending)
512 {
513 	struct ath_softc *sc = arg;
514 
515 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
516 	ath_reset(sc);
517 }
518 
519 static void
520 ath_bmiss_proc(void *arg, int pending)
521 {
522 	struct ath_softc *sc = arg;
523 	struct ieee80211com *ic = &sc->sc_ic;
524 
525 	DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
526 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
527 		("unexpect operating mode %u", ic->ic_opmode));
528 	if (ic->ic_state == IEEE80211_S_RUN) {
529 		/*
530 		 * Rather than go directly to scan state, try to
531 		 * reassociate first.  If that fails then the state
532 		 * machine will drop us into scanning after timing
533 		 * out waiting for a probe response.
534 		 */
535 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
536 	}
537 }
538 
539 static u_int
540 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
541 {
542 	static const u_int modeflags[] = {
543 		0,			/* IEEE80211_MODE_AUTO */
544 		CHANNEL_A,		/* IEEE80211_MODE_11A */
545 		CHANNEL_B,		/* IEEE80211_MODE_11B */
546 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
547 		CHANNEL_T		/* IEEE80211_MODE_TURBO */
548 	};
549 	return modeflags[ieee80211_chan2mode(ic, chan)];
550 }
551 
552 static void
553 ath_init(void *arg)
554 {
555 	struct ath_softc *sc = (struct ath_softc *) arg;
556 	struct ieee80211com *ic = &sc->sc_ic;
557 	struct ifnet *ifp = &ic->ic_if;
558 	struct ieee80211_node *ni;
559 	enum ieee80211_phymode mode;
560 	struct ath_hal *ah = sc->sc_ah;
561 	HAL_STATUS status;
562 	HAL_CHANNEL hchan;
563 
564 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
565 		__func__, ifp->if_flags));
566 
567 	ATH_LOCK(sc);
568 	/*
569 	 * Stop anything previously setup.  This is safe
570 	 * whether this is the first time through or not.
571 	 */
572 	ath_stop(ifp);
573 
574 	/*
575 	 * The basic interface to setting the hardware in a good
576 	 * state is ``reset''.  On return the hardware is known to
577 	 * be powered up and with interrupts disabled.  This must
578 	 * be followed by initialization of the appropriate bits
579 	 * and then setup of the interrupt mask.
580 	 */
581 	hchan.channel = ic->ic_ibss_chan->ic_freq;
582 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
583 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
584 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
585 			status);
586 		goto done;
587 	}
588 
589 	/*
590 	 * Setup the hardware after reset: the key cache
591 	 * is filled as needed and the receive engine is
592 	 * set going.  Frame transmit is handled entirely
593 	 * in the frame output path; there's nothing to do
594 	 * here except setup the interrupt mask.
595 	 */
596 	if (ic->ic_flags & IEEE80211_F_WEPON)
597 		ath_initkeytable(sc);
598 	if (ath_startrecv(sc) != 0) {
599 		if_printf(ifp, "unable to start recv logic\n");
600 		goto done;
601 	}
602 
603 	/*
604 	 * Enable interrupts.
605 	 */
606 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
607 		  | HAL_INT_RXEOL | HAL_INT_RXORN
608 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
609 	ath_hal_intrset(ah, sc->sc_imask);
610 
611 	ifp->if_flags |= IFF_RUNNING;
612 	ic->ic_state = IEEE80211_S_INIT;
613 
614 	/*
615 	 * The hardware should be ready to go now so it's safe
616 	 * to kick the 802.11 state machine as it's likely to
617 	 * immediately call back to us to send mgmt frames.
618 	 */
619 	ni = ic->ic_bss;
620 	ni->ni_chan = ic->ic_ibss_chan;
621 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
622 	if (mode != sc->sc_curmode)
623 		ath_setcurmode(sc, mode);
624 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
625 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
626 	else
627 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
628 done:
629 	ATH_UNLOCK(sc);
630 }
631 
632 static void
633 ath_stop(struct ifnet *ifp)
634 {
635 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
636 	struct ath_softc *sc = ifp->if_softc;
637 	struct ath_hal *ah = sc->sc_ah;
638 
639 	DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
640 		__func__, sc->sc_invalid, ifp->if_flags));
641 
642 	ATH_LOCK(sc);
643 	if (ifp->if_flags & IFF_RUNNING) {
644 		/*
645 		 * Shutdown the hardware and driver:
646 		 *    disable interrupts
647 		 *    turn off timers
648 		 *    clear transmit machinery
649 		 *    clear receive machinery
650 		 *    drain and release tx queues
651 		 *    reclaim beacon resources
652 		 *    reset 802.11 state machine
653 		 *    power down hardware
654 		 *
655 		 * Note that some of this work is not possible if the
656 		 * hardware is gone (invalid).
657 		 */
658 		ifp->if_flags &= ~IFF_RUNNING;
659 		ifp->if_timer = 0;
660 		if (!sc->sc_invalid)
661 			ath_hal_intrset(ah, 0);
662 		ath_draintxq(sc);
663 		if (!sc->sc_invalid)
664 			ath_stoprecv(sc);
665 		else
666 			sc->sc_rxlink = NULL;
667 		IFQ_DRV_PURGE(&ifp->if_snd);
668 		ath_beacon_free(sc);
669 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
670 		if (!sc->sc_invalid)
671 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
672 	}
673 	ATH_UNLOCK(sc);
674 }
675 
676 /*
677  * Reset the hardware w/o losing operational state.  This is
678  * basically a more efficient way of doing ath_stop, ath_init,
679  * followed by state transitions to the current 802.11
680  * operational state.  Used to recover from errors rx overrun
681  * and to reset the hardware when rf gain settings must be reset.
682  */
683 static void
684 ath_reset(struct ath_softc *sc)
685 {
686 	struct ieee80211com *ic = &sc->sc_ic;
687 	struct ifnet *ifp = &ic->ic_if;
688 	struct ath_hal *ah = sc->sc_ah;
689 	struct ieee80211_channel *c;
690 	HAL_STATUS status;
691 	HAL_CHANNEL hchan;
692 
693 	/*
694 	 * Convert to a HAL channel description with the flags
695 	 * constrained to reflect the current operating mode.
696 	 */
697 	c = ic->ic_ibss_chan;
698 	hchan.channel = c->ic_freq;
699 	hchan.channelFlags = ath_chan2flags(ic, c);
700 
701 	ath_hal_intrset(ah, 0);		/* disable interrupts */
702 	ath_draintxq(sc);		/* stop xmit side */
703 	ath_stoprecv(sc);		/* stop recv side */
704 	/* NB: indicate channel change so we do a full reset */
705 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
706 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
707 			__func__, status);
708 	ath_hal_intrset(ah, sc->sc_imask);
709 	if (ath_startrecv(sc) != 0)	/* restart recv */
710 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
711 	ath_start(ifp);			/* restart xmit */
712 	if (ic->ic_state == IEEE80211_S_RUN)
713 		ath_beacon_config(sc);	/* restart beacons */
714 }
715 
716 static void
717 ath_start(struct ifnet *ifp)
718 {
719 	struct ath_softc *sc = ifp->if_softc;
720 	struct ath_hal *ah = sc->sc_ah;
721 	struct ieee80211com *ic = &sc->sc_ic;
722 	struct ieee80211_node *ni;
723 	struct ath_buf *bf;
724 	struct mbuf *m;
725 	struct ieee80211_frame *wh;
726 
727 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
728 		return;
729 	for (;;) {
730 		/*
731 		 * Grab a TX buffer and associated resources.
732 		 */
733 		ATH_TXBUF_LOCK(sc);
734 		bf = TAILQ_FIRST(&sc->sc_txbuf);
735 		if (bf != NULL)
736 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
737 		ATH_TXBUF_UNLOCK(sc);
738 		if (bf == NULL) {
739 			DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
740 				__func__));
741 			sc->sc_stats.ast_tx_qstop++;
742 			ifp->if_flags |= IFF_OACTIVE;
743 			break;
744 		}
745 		/*
746 		 * Poll the management queue for frames; they
747 		 * have priority over normal data frames.
748 		 */
749 		IF_DEQUEUE(&ic->ic_mgtq, m);
750 		if (m == NULL) {
751 			/*
752 			 * No data frames go out unless we're associated.
753 			 */
754 			if (ic->ic_state != IEEE80211_S_RUN) {
755 				DPRINTF(ATH_DEBUG_ANY,
756 					("%s: ignore data packet, state %u\n",
757 					__func__, ic->ic_state));
758 				sc->sc_stats.ast_tx_discard++;
759 				ATH_TXBUF_LOCK(sc);
760 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
761 				ATH_TXBUF_UNLOCK(sc);
762 				break;
763 			}
764 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
765 			if (m == NULL) {
766 				ATH_TXBUF_LOCK(sc);
767 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
768 				ATH_TXBUF_UNLOCK(sc);
769 				break;
770 			}
771 			ifp->if_opackets++;
772 			BPF_MTAP(ifp, m);
773 			/*
774 			 * Encapsulate the packet in prep for transmission.
775 			 */
776 			m = ieee80211_encap(ifp, m, &ni);
777 			if (m == NULL) {
778 				DPRINTF(ATH_DEBUG_ANY,
779 					("%s: encapsulation failure\n",
780 					__func__));
781 				sc->sc_stats.ast_tx_encap++;
782 				goto bad;
783 			}
784 			wh = mtod(m, struct ieee80211_frame *);
785 			if (ic->ic_flags & IEEE80211_F_WEPON)
786 				wh->i_fc[1] |= IEEE80211_FC1_WEP;
787 		} else {
788 			/*
789 			 * Hack!  The referenced node pointer is in the
790 			 * rcvif field of the packet header.  This is
791 			 * placed there by ieee80211_mgmt_output because
792 			 * we need to hold the reference with the frame
793 			 * and there's no other way (other than packet
794 			 * tags which we consider too expensive to use)
795 			 * to pass it along.
796 			 */
797 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
798 			m->m_pkthdr.rcvif = NULL;
799 
800 			wh = mtod(m, struct ieee80211_frame *);
801 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
802 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
803 				/* fill time stamp */
804 				u_int64_t tsf;
805 				u_int32_t *tstamp;
806 
807 				tsf = ath_hal_gettsf64(ah);
808 				/* XXX: adjust 100us delay to xmit */
809 				tsf += 100;
810 				tstamp = (u_int32_t *)&wh[1];
811 				tstamp[0] = htole32(tsf & 0xffffffff);
812 				tstamp[1] = htole32(tsf >> 32);
813 			}
814 			sc->sc_stats.ast_tx_mgmt++;
815 		}
816 
817 		if (ath_tx_start(sc, ni, bf, m)) {
818 	bad:
819 			ATH_TXBUF_LOCK(sc);
820 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
821 			ATH_TXBUF_UNLOCK(sc);
822 			ifp->if_oerrors++;
823 			if (ni && ni != ic->ic_bss)
824 				ieee80211_free_node(ic, ni);
825 			continue;
826 		}
827 
828 		sc->sc_tx_timer = 5;
829 		ifp->if_timer = 1;
830 	}
831 }
832 
833 static int
834 ath_media_change(struct ifnet *ifp)
835 {
836 	int error;
837 
838 	error = ieee80211_media_change(ifp);
839 	if (error == ENETRESET) {
840 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
841 		    (IFF_RUNNING|IFF_UP))
842 			ath_init(ifp);		/* XXX lose error */
843 		error = 0;
844 	}
845 	return error;
846 }
847 
848 static void
849 ath_watchdog(struct ifnet *ifp)
850 {
851 	struct ath_softc *sc = ifp->if_softc;
852 	struct ieee80211com *ic = &sc->sc_ic;
853 
854 	ifp->if_timer = 0;
855 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
856 		return;
857 	if (sc->sc_tx_timer) {
858 		if (--sc->sc_tx_timer == 0) {
859 			if_printf(ifp, "device timeout\n");
860 #ifdef AR_DEBUG
861 			if (ath_debug & ATH_DEBUG_WATCHDOG)
862 				ath_hal_dumpstate(sc->sc_ah);
863 #endif /* AR_DEBUG */
864 			ath_reset(sc);
865 			ifp->if_oerrors++;
866 			sc->sc_stats.ast_watchdog++;
867 			return;
868 		}
869 		ifp->if_timer = 1;
870 	}
871 	if (ic->ic_fixed_rate == -1) {
872 		/*
873 		 * Run the rate control algorithm if we're not
874 		 * locked at a fixed rate.
875 		 */
876 		if (ic->ic_opmode == IEEE80211_M_STA)
877 			ath_rate_ctl(sc, ic->ic_bss);
878 		else
879 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
880 	}
881 	ieee80211_watchdog(ifp);
882 }
883 
884 static int
885 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
886 {
887 	struct ath_softc *sc = ifp->if_softc;
888 	struct ifreq *ifr = (struct ifreq *)data;
889 	int error = 0;
890 
891 	ATH_LOCK(sc);
892 	switch (cmd) {
893 	case SIOCSIFFLAGS:
894 		if (ifp->if_flags & IFF_UP) {
895 			if (ifp->if_flags & IFF_RUNNING) {
896 				/*
897 				 * To avoid rescanning another access point,
898 				 * do not call ath_init() here.  Instead,
899 				 * only reflect promisc mode settings.
900 				 */
901 				ath_mode_init(sc);
902 			} else {
903 				/*
904 				 * Beware of being called during detach to
905 				 * reset promiscuous mode.  In that case we
906 				 * will still be marked UP but not RUNNING.
907 				 * However trying to re-init the interface
908 				 * is the wrong thing to do as we've already
909 				 * torn down much of our state.  There's
910 				 * probably a better way to deal with this.
911 				 */
912 				if (!sc->sc_invalid)
913 					ath_init(ifp);	/* XXX lose error */
914 			}
915 		} else
916 			ath_stop(ifp);
917 		break;
918 	case SIOCADDMULTI:
919 	case SIOCDELMULTI:
920 		/*
921 		 * The upper layer has already installed/removed
922 		 * the multicast address(es), just recalculate the
923 		 * multicast filter for the card.
924 		 */
925 		if (ifp->if_flags & IFF_RUNNING)
926 			ath_mode_init(sc);
927 		break;
928 	case SIOCGATHSTATS:
929 		error = copyout(&sc->sc_stats,
930 				ifr->ifr_data, sizeof (sc->sc_stats));
931 		break;
932 	case SIOCGATHDIAG: {
933 		struct ath_diag *ad = (struct ath_diag *)data;
934 		struct ath_hal *ah = sc->sc_ah;
935 		void *data;
936 		u_int size;
937 
938 		if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
939 			if (size < ad->ad_size)
940 				ad->ad_size = size;
941 			if (data)
942 				error = copyout(data, ad->ad_data, ad->ad_size);
943 		} else
944 			error = EINVAL;
945 		break;
946 	}
947 	default:
948 		error = ieee80211_ioctl(ifp, cmd, data);
949 		if (error == ENETRESET) {
950 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
951 			    (IFF_RUNNING|IFF_UP))
952 				ath_init(ifp);		/* XXX lose error */
953 			error = 0;
954 		}
955 		break;
956 	}
957 	ATH_UNLOCK(sc);
958 	return error;
959 }
960 
961 /*
962  * Fill the hardware key cache with key entries.
963  */
964 static void
965 ath_initkeytable(struct ath_softc *sc)
966 {
967 	struct ieee80211com *ic = &sc->sc_ic;
968 	struct ath_hal *ah = sc->sc_ah;
969 	int i;
970 
971 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
972 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
973 		if (k->wk_len == 0)
974 			ath_hal_keyreset(ah, i);
975 		else
976 			/* XXX return value */
977 			/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
978 			ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
979 	}
980 }
981 
982 /*
983  * Calculate the receive filter according to the
984  * operating mode and state:
985  *
986  * o always accept unicast, broadcast, and multicast traffic
987  * o maintain current state of phy error reception
988  * o probe request frames are accepted only when operating in
989  *   hostap, adhoc, or monitor modes
990  * o enable promiscuous mode according to the interface state
991  * o accept beacons:
992  *   - when operating in adhoc mode so the 802.11 layer creates
993  *     node table entries for peers,
994  *   - when operating in station mode for collecting rssi data when
995  *     the station is otherwise quiet, or
996  *   - when scanning
997  */
998 static u_int32_t
999 ath_calcrxfilter(struct ath_softc *sc)
1000 {
1001 	struct ieee80211com *ic = &sc->sc_ic;
1002 	struct ath_hal *ah = sc->sc_ah;
1003 	struct ifnet *ifp = &ic->ic_if;
1004 	u_int32_t rfilt;
1005 
1006 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1007 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1008 	if (ic->ic_opmode != IEEE80211_M_STA)
1009 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1010 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1011 	    (ifp->if_flags & IFF_PROMISC))
1012 		rfilt |= HAL_RX_FILTER_PROM;
1013 	if (ic->ic_opmode == IEEE80211_M_STA ||
1014 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1015 	    ic->ic_state == IEEE80211_S_SCAN)
1016 		rfilt |= HAL_RX_FILTER_BEACON;
1017 	return rfilt;
1018 }
1019 
1020 static void
1021 ath_mode_init(struct ath_softc *sc)
1022 {
1023 	struct ieee80211com *ic = &sc->sc_ic;
1024 	struct ath_hal *ah = sc->sc_ah;
1025 	struct ifnet *ifp = &ic->ic_if;
1026 	u_int32_t rfilt, mfilt[2], val;
1027 	u_int8_t pos;
1028 	struct ifmultiaddr *ifma;
1029 
1030 	/* configure rx filter */
1031 	rfilt = ath_calcrxfilter(sc);
1032 	ath_hal_setrxfilter(ah, rfilt);
1033 
1034 	/* configure operational mode */
1035 	ath_hal_setopmode(ah, ic->ic_opmode);
1036 
1037 	/* calculate and install multicast filter */
1038 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1039 		mfilt[0] = mfilt[1] = 0;
1040 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1041 			caddr_t dl;
1042 
1043 			/* calculate XOR of eight 6bit values */
1044 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1045 			val = LE_READ_4(dl + 0);
1046 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1047 			val = LE_READ_4(dl + 3);
1048 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1049 			pos &= 0x3f;
1050 			mfilt[pos / 32] |= (1 << (pos % 32));
1051 		}
1052 	} else {
1053 		mfilt[0] = mfilt[1] = ~0;
1054 	}
1055 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1056 	DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1057 		__func__, rfilt, mfilt[0], mfilt[1]));
1058 }
1059 
1060 static void
1061 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1062 {
1063 	struct ath_buf *bf = arg;
1064 
1065 	KASSERT(nseg <= ATH_MAX_SCATTER,
1066 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1067 	bf->bf_mapsize = mapsize;
1068 	bf->bf_nseg = nseg;
1069 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1070 }
1071 
1072 static int
1073 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1074 {
1075 	struct ieee80211com *ic = &sc->sc_ic;
1076 	struct ifnet *ifp = &ic->ic_if;
1077 	struct ath_hal *ah = sc->sc_ah;
1078 	struct ieee80211_frame *wh;
1079 	struct ath_buf *bf;
1080 	struct ath_desc *ds;
1081 	struct mbuf *m;
1082 	int error, pktlen;
1083 	u_int8_t *frm, rate;
1084 	u_int16_t capinfo;
1085 	struct ieee80211_rateset *rs;
1086 	const HAL_RATE_TABLE *rt;
1087 
1088 	bf = sc->sc_bcbuf;
1089 	if (bf->bf_m != NULL) {
1090 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1091 		m_freem(bf->bf_m);
1092 		bf->bf_m = NULL;
1093 		bf->bf_node = NULL;
1094 	}
1095 	/*
1096 	 * NB: the beacon data buffer must be 32-bit aligned;
1097 	 * we assume the mbuf routines will return us something
1098 	 * with this alignment (perhaps should assert).
1099 	 */
1100 	rs = &ni->ni_rates;
1101 	pktlen = sizeof (struct ieee80211_frame)
1102 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1103 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1104 		pktlen += 2;
1105 	if (pktlen <= MHLEN)
1106 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1107 	else
1108 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1109 	if (m == NULL) {
1110 		DPRINTF(ATH_DEBUG_BEACON,
1111 			("%s: cannot get mbuf/cluster; size %u\n",
1112 			__func__, pktlen));
1113 		sc->sc_stats.ast_be_nombuf++;
1114 		return ENOMEM;
1115 	}
1116 
1117 	wh = mtod(m, struct ieee80211_frame *);
1118 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1119 	    IEEE80211_FC0_SUBTYPE_BEACON;
1120 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1121 	*(u_int16_t *)wh->i_dur = 0;
1122 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1123 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1124 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1125 	*(u_int16_t *)wh->i_seq = 0;
1126 
1127 	/*
1128 	 * beacon frame format
1129 	 *	[8] time stamp
1130 	 *	[2] beacon interval
1131 	 *	[2] cabability information
1132 	 *	[tlv] ssid
1133 	 *	[tlv] supported rates
1134 	 *	[tlv] parameter set (IBSS)
1135 	 *	[tlv] extended supported rates
1136 	 */
1137 	frm = (u_int8_t *)&wh[1];
1138 	memset(frm, 0, 8);	/* timestamp is set by hardware */
1139 	frm += 8;
1140 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1141 	frm += 2;
1142 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1143 		capinfo = IEEE80211_CAPINFO_IBSS;
1144 	else
1145 		capinfo = IEEE80211_CAPINFO_ESS;
1146 	if (ic->ic_flags & IEEE80211_F_WEPON)
1147 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1148 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1149 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1150 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1151 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1152 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1153 	*(u_int16_t *)frm = htole16(capinfo);
1154 	frm += 2;
1155 	*frm++ = IEEE80211_ELEMID_SSID;
1156 	*frm++ = ni->ni_esslen;
1157 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1158 	frm += ni->ni_esslen;
1159 	frm = ieee80211_add_rates(frm, rs);
1160 	*frm++ = IEEE80211_ELEMID_DSPARMS;
1161 	*frm++ = 1;
1162 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1163 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1164 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1165 		*frm++ = 2;
1166 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1167 	} else {
1168 		/* TODO: TIM */
1169 		*frm++ = IEEE80211_ELEMID_TIM;
1170 		*frm++ = 4;	/* length */
1171 		*frm++ = 0;	/* DTIM count */
1172 		*frm++ = 1;	/* DTIM period */
1173 		*frm++ = 0;	/* bitmap control */
1174 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1175 	}
1176 	frm = ieee80211_add_xrates(frm, rs);
1177 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1178 	KASSERT(m->m_pkthdr.len <= pktlen,
1179 		("beacon bigger than expected, len %u calculated %u",
1180 		m->m_pkthdr.len, pktlen));
1181 
1182 	DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1183 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1184 				     ath_mbuf_load_cb, bf,
1185 				     BUS_DMA_NOWAIT);
1186 	if (error != 0) {
1187 		m_freem(m);
1188 		return error;
1189 	}
1190 	KASSERT(bf->bf_nseg == 1,
1191 		("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1192 	bf->bf_m = m;
1193 
1194 	/* setup descriptors */
1195 	ds = bf->bf_desc;
1196 
1197 	ds->ds_link = 0;
1198 	ds->ds_data = bf->bf_segs[0].ds_addr;
1199 	/*
1200 	 * Calculate rate code.
1201 	 * XXX everything at min xmit rate
1202 	 */
1203 	rt = sc->sc_currates;
1204 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1205 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1206 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1207 	else
1208 		rate = rt->info[0].rateCode;
1209 	ath_hal_setuptxdesc(ah, ds
1210 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1211 		, sizeof(struct ieee80211_frame)	/* header length */
1212 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1213 		, 0x20				/* txpower XXX */
1214 		, rate, 1			/* series 0 rate/tries */
1215 		, HAL_TXKEYIX_INVALID		/* no encryption */
1216 		, 0				/* antenna mode */
1217 		, HAL_TXDESC_NOACK		/* no ack for beacons */
1218 		, 0				/* rts/cts rate */
1219 		, 0				/* rts/cts duration */
1220 	);
1221 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1222 	/* XXX verify mbuf data area covers this roundup */
1223 	ath_hal_filltxdesc(ah, ds
1224 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1225 		, AH_TRUE				/* first segment */
1226 		, AH_TRUE				/* last segment */
1227 	);
1228 
1229 	return 0;
1230 }
1231 
1232 static void
1233 ath_beacon_proc(void *arg, int pending)
1234 {
1235 	struct ath_softc *sc = arg;
1236 	struct ieee80211com *ic = &sc->sc_ic;
1237 	struct ath_buf *bf = sc->sc_bcbuf;
1238 	struct ath_hal *ah = sc->sc_ah;
1239 
1240 	DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1241 	if (ic->ic_opmode == IEEE80211_M_STA ||
1242 	    bf == NULL || bf->bf_m == NULL) {
1243 		DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1244 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1245 		return;
1246 	}
1247 	/* TODO: update beacon to reflect PS poll state */
1248 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1249 		DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1250 			__func__, sc->sc_bhalq));
1251 		/* NB: the HAL still stops DMA, so proceed */
1252 	}
1253 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1254 
1255 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1256 	ath_hal_txstart(ah, sc->sc_bhalq);
1257 	DPRINTF(ATH_DEBUG_BEACON_PROC,
1258 		("%s: TXDP%u = %p (%p)\n", __func__,
1259 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1260 }
1261 
1262 static void
1263 ath_beacon_free(struct ath_softc *sc)
1264 {
1265 	struct ath_buf *bf = sc->sc_bcbuf;
1266 
1267 	if (bf->bf_m != NULL) {
1268 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1269 		m_freem(bf->bf_m);
1270 		bf->bf_m = NULL;
1271 		bf->bf_node = NULL;
1272 	}
1273 }
1274 
1275 /*
1276  * Configure the beacon and sleep timers.
1277  *
1278  * When operating as an AP this resets the TSF and sets
1279  * up the hardware to notify us when we need to issue beacons.
1280  *
1281  * When operating in station mode this sets up the beacon
1282  * timers according to the timestamp of the last received
1283  * beacon and the current TSF, configures PCF and DTIM
1284  * handling, programs the sleep registers so the hardware
1285  * will wakeup in time to receive beacons, and configures
1286  * the beacon miss handling so we'll receive a BMISS
1287  * interrupt when we stop seeing beacons from the AP
1288  * we've associated with.
1289  */
1290 static void
1291 ath_beacon_config(struct ath_softc *sc)
1292 {
1293 	struct ath_hal *ah = sc->sc_ah;
1294 	struct ieee80211com *ic = &sc->sc_ic;
1295 	struct ieee80211_node *ni = ic->ic_bss;
1296 	u_int32_t nexttbtt;
1297 
1298 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1299 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1300 	DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
1301 	nexttbtt += ni->ni_intval;
1302 	if (ic->ic_opmode == IEEE80211_M_STA) {
1303 		HAL_BEACON_STATE bs;
1304 		u_int32_t bmisstime;
1305 
1306 		/* NB: no PCF support right now */
1307 		memset(&bs, 0, sizeof(bs));
1308 		bs.bs_intval = ni->ni_intval;
1309 		bs.bs_nexttbtt = nexttbtt;
1310 		bs.bs_dtimperiod = bs.bs_intval;
1311 		bs.bs_nextdtim = nexttbtt;
1312 		/*
1313 		 * Calculate the number of consecutive beacons to miss
1314 		 * before taking a BMISS interrupt.  The configuration
1315 		 * is specified in ms, so we need to convert that to
1316 		 * TU's and then calculate based on the beacon interval.
1317 		 * Note that we clamp the result to at most 10 beacons.
1318 		 */
1319 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1320 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1321 		if (bs.bs_bmissthreshold > 10)
1322 			bs.bs_bmissthreshold = 10;
1323 		else if (bs.bs_bmissthreshold <= 0)
1324 			bs.bs_bmissthreshold = 1;
1325 
1326 		/*
1327 		 * Calculate sleep duration.  The configuration is
1328 		 * given in ms.  We insure a multiple of the beacon
1329 		 * period is used.  Also, if the sleep duration is
1330 		 * greater than the DTIM period then it makes senses
1331 		 * to make it a multiple of that.
1332 		 *
1333 		 * XXX fixed at 100ms
1334 		 */
1335 		bs.bs_sleepduration =
1336 			roundup((100 * 1000) / 1024, bs.bs_intval);
1337 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1338 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1339 
1340 		DPRINTF(ATH_DEBUG_BEACON,
1341 			("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1342 			, __func__
1343 			, bs.bs_intval
1344 			, bs.bs_nexttbtt
1345 			, bs.bs_dtimperiod
1346 			, bs.bs_nextdtim
1347 			, bs.bs_bmissthreshold
1348 			, bs.bs_sleepduration
1349 		));
1350 		ath_hal_intrset(ah, 0);
1351 		/*
1352 		 * Reset our tsf so the hardware will update the
1353 		 * tsf register to reflect timestamps found in
1354 		 * received beacons.
1355 		 */
1356 		ath_hal_resettsf(ah);
1357 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1358 		sc->sc_imask |= HAL_INT_BMISS;
1359 		ath_hal_intrset(ah, sc->sc_imask);
1360 	} else {
1361 		DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1362 			__func__, ni->ni_intval, nexttbtt));
1363 		ath_hal_intrset(ah, 0);
1364 		ath_hal_beaconinit(ah, ic->ic_opmode,
1365 			nexttbtt, ni->ni_intval);
1366 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1367 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1368 		ath_hal_intrset(ah, sc->sc_imask);
1369 	}
1370 }
1371 
1372 static void
1373 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1374 {
1375 	bus_addr_t *paddr = (bus_addr_t*) arg;
1376 	*paddr = segs->ds_addr;
1377 }
1378 
1379 static int
1380 ath_desc_alloc(struct ath_softc *sc)
1381 {
1382 	int i, bsize, error;
1383 	struct ath_desc *ds;
1384 	struct ath_buf *bf;
1385 
1386 	/* allocate descriptors */
1387 	sc->sc_desc_len = sizeof(struct ath_desc) *
1388 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1389 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1390 	if (error != 0)
1391 		return error;
1392 
1393 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1394 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1395 	if (error != 0)
1396 		goto fail0;
1397 
1398 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1399 				sc->sc_desc, sc->sc_desc_len,
1400 				ath_load_cb, &sc->sc_desc_paddr,
1401 				BUS_DMA_NOWAIT);
1402 	if (error != 0)
1403 		goto fail1;
1404 
1405 	ds = sc->sc_desc;
1406 	DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
1407 	    __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
1408 	    /*XXX*/ (u_long) sc->sc_desc_len));
1409 
1410 	/* allocate buffers */
1411 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1412 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1413 	if (bf == NULL)
1414 		goto fail2;
1415 	sc->sc_bufptr = bf;
1416 
1417 	TAILQ_INIT(&sc->sc_rxbuf);
1418 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1419 		bf->bf_desc = ds;
1420 		bf->bf_daddr = sc->sc_desc_paddr +
1421 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1422 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1423 					  &bf->bf_dmamap);
1424 		if (error != 0)
1425 			break;
1426 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1427 	}
1428 
1429 	TAILQ_INIT(&sc->sc_txbuf);
1430 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1431 		bf->bf_desc = ds;
1432 		bf->bf_daddr = sc->sc_desc_paddr +
1433 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1434 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1435 					  &bf->bf_dmamap);
1436 		if (error != 0)
1437 			break;
1438 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1439 	}
1440 	TAILQ_INIT(&sc->sc_txq);
1441 
1442 	/* beacon buffer */
1443 	bf->bf_desc = ds;
1444 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1445 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1446 	if (error != 0)
1447 		return error;
1448 	sc->sc_bcbuf = bf;
1449 	return 0;
1450 
1451 fail2:
1452 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1453 fail1:
1454 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1455 fail0:
1456 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1457 	sc->sc_ddmamap = NULL;
1458 	return error;
1459 }
1460 
1461 static void
1462 ath_desc_free(struct ath_softc *sc)
1463 {
1464 	struct ath_buf *bf;
1465 
1466 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1467 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1468 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1469 
1470 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1471 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1472 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1473 		m_freem(bf->bf_m);
1474 	}
1475 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1476 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1477 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1478 		if (bf->bf_m) {
1479 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1480 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1481 			m_freem(bf->bf_m);
1482 			bf->bf_m = NULL;
1483 		}
1484 	}
1485 	if (sc->sc_bcbuf != NULL) {
1486 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1487 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1488 		sc->sc_bcbuf = NULL;
1489 	}
1490 
1491 	TAILQ_INIT(&sc->sc_rxbuf);
1492 	TAILQ_INIT(&sc->sc_txbuf);
1493 	TAILQ_INIT(&sc->sc_txq);
1494 	free(sc->sc_bufptr, M_DEVBUF);
1495 	sc->sc_bufptr = NULL;
1496 }
1497 
1498 static struct ieee80211_node *
1499 ath_node_alloc(struct ieee80211com *ic)
1500 {
1501 	struct ath_node *an =
1502 		malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
1503 	if (an) {
1504 		int i;
1505 		for (i = 0; i < ATH_RHIST_SIZE; i++)
1506 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1507 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1508 		return &an->an_node;
1509 	} else
1510 		return NULL;
1511 }
1512 
1513 static void
1514 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1515 {
1516         struct ath_softc *sc = ic->ic_if.if_softc;
1517 	struct ath_buf *bf;
1518 
1519 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1520 		if (bf->bf_node == ni)
1521 			bf->bf_node = NULL;
1522 	}
1523 	(*sc->sc_node_free)(ic, ni);
1524 }
1525 
1526 static void
1527 ath_node_copy(struct ieee80211com *ic,
1528 	struct ieee80211_node *dst, const struct ieee80211_node *src)
1529 {
1530         struct ath_softc *sc = ic->ic_if.if_softc;
1531 
1532 	memcpy(&dst[1], &src[1],
1533 		sizeof(struct ath_node) - sizeof(struct ieee80211_node));
1534 	(*sc->sc_node_copy)(ic, dst, src);
1535 }
1536 
1537 
1538 static u_int8_t
1539 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
1540 {
1541 	struct ath_node *an = ATH_NODE(ni);
1542 	int i, now, nsamples, rssi;
1543 
1544 	/*
1545 	 * Calculate the average over the last second of sampled data.
1546 	 */
1547 	now = ticks;
1548 	nsamples = 0;
1549 	rssi = 0;
1550 	i = an->an_rx_hist_next;
1551 	do {
1552 		struct ath_recv_hist *rh = &an->an_rx_hist[i];
1553 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
1554 			goto done;
1555 		if (now - rh->arh_ticks > hz)
1556 			goto done;
1557 		rssi += rh->arh_rssi;
1558 		nsamples++;
1559 		if (i == 0)
1560 			i = ATH_RHIST_SIZE-1;
1561 		else
1562 			i--;
1563 	} while (i != an->an_rx_hist_next);
1564 done:
1565 	/*
1566 	 * Return either the average or the last known
1567 	 * value if there is no recent data.
1568 	 */
1569 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
1570 }
1571 
1572 static int
1573 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1574 {
1575 	struct ath_hal *ah = sc->sc_ah;
1576 	int error;
1577 	struct mbuf *m;
1578 	struct ath_desc *ds;
1579 
1580 	m = bf->bf_m;
1581 	if (m == NULL) {
1582 		/*
1583 		 * NB: by assigning a page to the rx dma buffer we
1584 		 * implicitly satisfy the Atheros requirement that
1585 		 * this buffer be cache-line-aligned and sized to be
1586 		 * multiple of the cache line size.  Not doing this
1587 		 * causes weird stuff to happen (for the 5210 at least).
1588 		 */
1589 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1590 		if (m == NULL) {
1591 			DPRINTF(ATH_DEBUG_ANY,
1592 				("%s: no mbuf/cluster\n", __func__));
1593 			sc->sc_stats.ast_rx_nombuf++;
1594 			return ENOMEM;
1595 		}
1596 		bf->bf_m = m;
1597 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1598 
1599 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1600 					     ath_mbuf_load_cb, bf,
1601 					     BUS_DMA_NOWAIT);
1602 		if (error != 0) {
1603 			DPRINTF(ATH_DEBUG_ANY,
1604 				("%s: bus_dmamap_load_mbuf failed; error %d\n",
1605 				__func__, error));
1606 			sc->sc_stats.ast_rx_busdma++;
1607 			return error;
1608 		}
1609 		KASSERT(bf->bf_nseg == 1,
1610 			("ath_rxbuf_init: multi-segment packet; nseg %u",
1611 			bf->bf_nseg));
1612 	}
1613 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
1614 
1615 	/*
1616 	 * Setup descriptors.  For receive we always terminate
1617 	 * the descriptor list with a self-linked entry so we'll
1618 	 * not get overrun under high load (as can happen with a
1619 	 * 5212 when ANI processing enables PHY errors).
1620 	 *
1621 	 * To insure the last descriptor is self-linked we create
1622 	 * each descriptor as self-linked and add it to the end.  As
1623 	 * each additional descriptor is added the previous self-linked
1624 	 * entry is ``fixed'' naturally.  This should be safe even
1625 	 * if DMA is happening.  When processing RX interrupts we
1626 	 * never remove/process the last, self-linked, entry on the
1627 	 * descriptor list.  This insures the hardware always has
1628 	 * someplace to write a new frame.
1629 	 */
1630 	ds = bf->bf_desc;
1631 	ds->ds_link = bf->bf_daddr;	/* link to self */
1632 	ds->ds_data = bf->bf_segs[0].ds_addr;
1633 	ath_hal_setuprxdesc(ah, ds
1634 		, m->m_len		/* buffer size */
1635 		, 0
1636 	);
1637 
1638 	if (sc->sc_rxlink != NULL)
1639 		*sc->sc_rxlink = bf->bf_daddr;
1640 	sc->sc_rxlink = &ds->ds_link;
1641 	return 0;
1642 }
1643 
1644 static void
1645 ath_rx_proc(void *arg, int npending)
1646 {
1647 #define	PA2DESC(_sc, _pa) \
1648 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
1649 		((_pa) - (_sc)->sc_desc_paddr)))
1650 	struct ath_softc *sc = arg;
1651 	struct ath_buf *bf;
1652 	struct ieee80211com *ic = &sc->sc_ic;
1653 	struct ifnet *ifp = &ic->ic_if;
1654 	struct ath_hal *ah = sc->sc_ah;
1655 	struct ath_desc *ds;
1656 	struct mbuf *m;
1657 	struct ieee80211_frame *wh, whbuf;
1658 	struct ieee80211_node *ni;
1659 	struct ath_node *an;
1660 	struct ath_recv_hist *rh;
1661 	int len;
1662 	u_int phyerr;
1663 	HAL_STATUS status;
1664 
1665 	DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
1666 	do {
1667 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1668 		if (bf == NULL) {		/* NB: shouldn't happen */
1669 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
1670 			break;
1671 		}
1672 		ds = bf->bf_desc;
1673 		if (ds->ds_link == bf->bf_daddr) {
1674 			/* NB: never process the self-linked entry at the end */
1675 			break;
1676 		}
1677 		m = bf->bf_m;
1678 		if (m == NULL) {		/* NB: shouldn't happen */
1679 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1680 			continue;
1681 		}
1682 		/* XXX sync descriptor memory */
1683 		/*
1684 		 * Must provide the virtual address of the current
1685 		 * descriptor, the physical address, and the virtual
1686 		 * address of the next descriptor in the h/w chain.
1687 		 * This allows the HAL to look ahead to see if the
1688 		 * hardware is done with a descriptor by checking the
1689 		 * done bit in the following descriptor and the address
1690 		 * of the current descriptor the DMA engine is working
1691 		 * on.  All this is necessary because of our use of
1692 		 * a self-linked list to avoid rx overruns.
1693 		 */
1694 		status = ath_hal_rxprocdesc(ah, ds,
1695 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
1696 #ifdef AR_DEBUG
1697 		if (ath_debug & ATH_DEBUG_RECV_DESC)
1698 			ath_printrxbuf(bf, status == HAL_OK);
1699 #endif
1700 		if (status == HAL_EINPROGRESS)
1701 			break;
1702 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1703 		if (ds->ds_rxstat.rs_status != 0) {
1704 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1705 				sc->sc_stats.ast_rx_crcerr++;
1706 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1707 				sc->sc_stats.ast_rx_fifoerr++;
1708 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1709 				sc->sc_stats.ast_rx_badcrypt++;
1710 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1711 				sc->sc_stats.ast_rx_phyerr++;
1712 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1713 				sc->sc_stats.ast_rx_phy[phyerr]++;
1714 			} else {
1715 				/*
1716 				 * NB: don't count PHY errors as input errors;
1717 				 * we enable them on the 5212 to collect info
1718 				 * about environmental noise and, in that
1719 				 * setting, they don't really reflect tx/rx
1720 				 * errors.
1721 				 */
1722 				ifp->if_ierrors++;
1723 			}
1724 			goto rx_next;
1725 		}
1726 
1727 		len = ds->ds_rxstat.rs_datalen;
1728 		if (len < IEEE80211_MIN_LEN) {
1729 			DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
1730 				__func__, len));
1731 			sc->sc_stats.ast_rx_tooshort++;
1732 			goto rx_next;
1733 		}
1734 
1735 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
1736 		    BUS_DMASYNC_POSTREAD);
1737 
1738 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1739 		bf->bf_m = NULL;
1740 		m->m_pkthdr.rcvif = ifp;
1741 		m->m_pkthdr.len = m->m_len = len;
1742 
1743 		if (sc->sc_drvbpf) {
1744 			sc->sc_rx_th.wr_rate =
1745 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
1746 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
1747 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
1748 			/* XXX TSF */
1749 
1750 			bpf_mtap2(sc->sc_drvbpf,
1751 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
1752 		}
1753 
1754 		m_adj(m, -IEEE80211_CRC_LEN);
1755 		wh = mtod(m, struct ieee80211_frame *);
1756 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1757 			/*
1758 			 * WEP is decrypted by hardware. Clear WEP bit
1759 			 * and trim WEP header for ieee80211_input().
1760 			 */
1761 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1762 			memcpy(&whbuf, wh, sizeof(whbuf));
1763 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1764 			wh = mtod(m, struct ieee80211_frame *);
1765 			memcpy(wh, &whbuf, sizeof(whbuf));
1766 			/*
1767 			 * Also trim WEP ICV from the tail.
1768 			 */
1769 			m_adj(m, -IEEE80211_WEP_CRCLEN);
1770 		}
1771 
1772 		/*
1773 		 * Locate the node for sender, track state, and
1774 		 * then pass this node (referenced) up to the 802.11
1775 		 * layer for its use.  We are required to pass
1776 		 * something so we fall back to ic_bss when this frame
1777 		 * is from an unknown sender.
1778 		 */
1779 		if (ic->ic_opmode != IEEE80211_M_STA) {
1780 			ni = ieee80211_find_node(ic, wh->i_addr2);
1781 			if (ni == NULL)
1782 				ni = ieee80211_ref_node(ic->ic_bss);
1783 		} else
1784 			ni = ieee80211_ref_node(ic->ic_bss);
1785 
1786 		/*
1787 		 * Record driver-specific state.
1788 		 */
1789 		an = ATH_NODE(ni);
1790 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
1791 			an->an_rx_hist_next = 0;
1792 		rh = &an->an_rx_hist[an->an_rx_hist_next];
1793 		rh->arh_ticks = ticks;
1794 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
1795 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
1796 
1797 		/*
1798 		 * Send frame up for processing.
1799 		 */
1800 		ieee80211_input(ifp, m, ni,
1801 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
1802 
1803 		/*
1804 		 * The frame may have caused the node to be marked for
1805 		 * reclamation (e.g. in response to a DEAUTH message)
1806 		 * so use free_node here instead of unref_node.
1807 		 */
1808 		if (ni == ic->ic_bss)
1809 			ieee80211_unref_node(&ni);
1810 		else
1811 			ieee80211_free_node(ic, ni);
1812   rx_next:
1813 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1814 	} while (ath_rxbuf_init(sc, bf) == 0);
1815 
1816 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
1817 	ath_hal_rxena(ah);			/* in case of RXEOL */
1818 #undef PA2DESC
1819 }
1820 
1821 /*
1822  * XXX Size of an ACK control frame in bytes.
1823  */
1824 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
1825 
1826 static int
1827 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
1828     struct mbuf *m0)
1829 {
1830 	struct ieee80211com *ic = &sc->sc_ic;
1831 	struct ath_hal *ah = sc->sc_ah;
1832 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1833 	int i, error, iswep, hdrlen, pktlen;
1834 	u_int8_t rix, cix, txrate, ctsrate;
1835 	struct ath_desc *ds;
1836 	struct mbuf *m;
1837 	struct ieee80211_frame *wh;
1838 	u_int32_t iv;
1839 	u_int8_t *ivp;
1840 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
1841 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
1842 	u_int subtype, flags, ctsduration, antenna;
1843 	HAL_PKT_TYPE atype;
1844 	const HAL_RATE_TABLE *rt;
1845 	HAL_BOOL shortPreamble;
1846 	struct ath_node *an;
1847 
1848 	wh = mtod(m0, struct ieee80211_frame *);
1849 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1850 	hdrlen = sizeof(struct ieee80211_frame);
1851 	pktlen = m0->m_pkthdr.len;
1852 
1853 	if (iswep) {
1854 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
1855 		m_adj(m0, hdrlen);
1856 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
1857 		if (m0 == NULL) {
1858 			sc->sc_stats.ast_tx_nombuf++;
1859 			return ENOMEM;
1860 		}
1861 		ivp = hdrbuf + hdrlen;
1862 		wh = mtod(m0, struct ieee80211_frame *);
1863 		/*
1864 		 * XXX
1865 		 * IV must not duplicate during the lifetime of the key.
1866 		 * But no mechanism to renew keys is defined in IEEE 802.11
1867 		 * WEP.  And IV may be duplicated between other stations
1868 		 * because of the session key itself is shared.
1869 		 * So we use pseudo random IV for now, though it is not the
1870 		 * right way.
1871 		 */
1872                 iv = ic->ic_iv;
1873 		/*
1874 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
1875 		 * (B, 255, N) with 3 <= B < 8
1876 		 */
1877 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1878 			iv += 0x000100;
1879 		ic->ic_iv = iv + 1;
1880 		for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
1881 			ivp[i] = iv;
1882 			iv >>= 8;
1883 		}
1884 		ivp[i] = sc->sc_ic.ic_wep_txkey << 6;	/* Key ID and pad */
1885 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
1886 		/*
1887 		 * The ICV length must be included into hdrlen and pktlen.
1888 		 */
1889 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
1890 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
1891 	}
1892 	pktlen += IEEE80211_CRC_LEN;
1893 
1894 	/*
1895 	 * Load the DMA map so any coalescing is done.  This
1896 	 * also calculates the number of descriptors we need.
1897 	 */
1898 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1899 				     ath_mbuf_load_cb, bf,
1900 				     BUS_DMA_NOWAIT);
1901 	if (error == EFBIG) {
1902 		/* XXX packet requires too many descriptors */
1903 		bf->bf_nseg = ATH_TXDESC+1;
1904 	} else if (error != 0) {
1905 		sc->sc_stats.ast_tx_busdma++;
1906 		m_freem(m0);
1907 		return error;
1908 	}
1909 	/*
1910 	 * Discard null packets and check for packets that
1911 	 * require too many TX descriptors.  We try to convert
1912 	 * the latter to a cluster.
1913 	 */
1914 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
1915 		sc->sc_stats.ast_tx_linear++;
1916 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1917 		if (m == NULL) {
1918 			sc->sc_stats.ast_tx_nombuf++;
1919 			m_freem(m0);
1920 			return ENOMEM;
1921 		}
1922 		M_MOVE_PKTHDR(m, m0);
1923 		MCLGET(m, M_DONTWAIT);
1924 		if ((m->m_flags & M_EXT) == 0) {
1925 			sc->sc_stats.ast_tx_nomcl++;
1926 			m_freem(m0);
1927 			m_free(m);
1928 			return ENOMEM;
1929 		}
1930 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1931 		m_freem(m0);
1932 		m->m_len = m->m_pkthdr.len;
1933 		m0 = m;
1934 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1935 					     ath_mbuf_load_cb, bf,
1936 					     BUS_DMA_NOWAIT);
1937 		if (error != 0) {
1938 			sc->sc_stats.ast_tx_busdma++;
1939 			m_freem(m0);
1940 			return error;
1941 		}
1942 		KASSERT(bf->bf_nseg == 1,
1943 			("ath_tx_start: packet not one segment; nseg %u",
1944 			bf->bf_nseg));
1945 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
1946 		sc->sc_stats.ast_tx_nodata++;
1947 		m_freem(m0);
1948 		return EIO;
1949 	}
1950 	DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
1951 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1952 	bf->bf_m = m0;
1953 	bf->bf_node = ni;			/* NB: held reference */
1954 
1955 	/* setup descriptors */
1956 	ds = bf->bf_desc;
1957 	rt = sc->sc_currates;
1958 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1959 
1960 	/*
1961 	 * Calculate Atheros packet type from IEEE80211 packet header
1962 	 * and setup for rate calculations.
1963 	 */
1964 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
1965 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1966 	case IEEE80211_FC0_TYPE_MGT:
1967 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1968 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1969 			atype = HAL_PKT_TYPE_BEACON;
1970 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1971 			atype = HAL_PKT_TYPE_PROBE_RESP;
1972 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1973 			atype = HAL_PKT_TYPE_ATIM;
1974 		rix = 0;			/* XXX lowest rate */
1975 		break;
1976 	case IEEE80211_FC0_TYPE_CTL:
1977 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1978 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
1979 			atype = HAL_PKT_TYPE_PSPOLL;
1980 		rix = 0;			/* XXX lowest rate */
1981 		break;
1982 	default:
1983 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
1984 				IEEE80211_RATE_VAL];
1985 		if (rix == 0xff) {
1986 			if_printf(ifp, "bogus xmit rate 0x%x\n",
1987 				ni->ni_rates.rs_rates[ni->ni_txrate]);
1988 			sc->sc_stats.ast_tx_badrate++;
1989 			m_freem(m0);
1990 			return EIO;
1991 		}
1992 		break;
1993 	}
1994 	/*
1995 	 * NB: the 802.11 layer marks whether or not we should
1996 	 * use short preamble based on the current mode and
1997 	 * negotiated parameters.
1998 	 */
1999 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2000 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2001 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2002 		shortPreamble = AH_TRUE;
2003 		sc->sc_stats.ast_tx_shortpre++;
2004 	} else {
2005 		txrate = rt->info[rix].rateCode;
2006 		shortPreamble = AH_FALSE;
2007 	}
2008 
2009 	/*
2010 	 * Calculate miscellaneous flags.
2011 	 */
2012 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
2013 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2014 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
2015 		sc->sc_stats.ast_tx_noack++;
2016 	} else if (pktlen > ic->ic_rtsthreshold) {
2017 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
2018 		sc->sc_stats.ast_tx_rts++;
2019 	}
2020 
2021 	/*
2022 	 * Calculate duration.  This logically belongs in the 802.11
2023 	 * layer but it lacks sufficient information to calculate it.
2024 	 */
2025 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
2026 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2027 		u_int16_t dur;
2028 		/*
2029 		 * XXX not right with fragmentation.
2030 		 */
2031 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2032 				rix, shortPreamble);
2033 		*((u_int16_t*) wh->i_dur) = htole16(dur);
2034 	}
2035 
2036 	/*
2037 	 * Calculate RTS/CTS rate and duration if needed.
2038 	 */
2039 	ctsduration = 0;
2040 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2041 		/*
2042 		 * CTS transmit rate is derived from the transmit rate
2043 		 * by looking in the h/w rate table.  We must also factor
2044 		 * in whether or not a short preamble is to be used.
2045 		 */
2046 		cix = rt->info[rix].controlRate;
2047 		ctsrate = rt->info[cix].rateCode;
2048 		if (shortPreamble)
2049 			ctsrate |= rt->info[cix].shortPreamble;
2050 		/*
2051 		 * Compute the transmit duration based on the size
2052 		 * of an ACK frame.  We call into the HAL to do the
2053 		 * computation since it depends on the characteristics
2054 		 * of the actual PHY being used.
2055 		 */
2056 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
2057 			ctsduration += ath_hal_computetxtime(ah,
2058 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2059 		}
2060 		/* SIFS + data */
2061 		ctsduration += ath_hal_computetxtime(ah,
2062 			rt, pktlen, rix, shortPreamble);
2063 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
2064 			ctsduration += ath_hal_computetxtime(ah,
2065 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2066 		}
2067 	} else
2068 		ctsrate = 0;
2069 
2070 	/*
2071 	 * For now use the antenna on which the last good
2072 	 * frame was received on.  We assume this field is
2073 	 * initialized to 0 which gives us ``auto'' or the
2074 	 * ``default'' antenna.
2075 	 */
2076 	an = (struct ath_node *) ni;
2077 	if (an->an_tx_antenna)
2078 		antenna = an->an_tx_antenna;
2079 	else
2080 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2081 
2082 	if (ic->ic_rawbpf)
2083 		bpf_mtap(ic->ic_rawbpf, m0);
2084 	if (sc->sc_drvbpf) {
2085 		sc->sc_tx_th.wt_flags = 0;
2086 		if (shortPreamble)
2087 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2088 		if (iswep)
2089 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2090 		sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2091 		sc->sc_tx_th.wt_txpower = 60/2;		/* XXX */
2092 		sc->sc_tx_th.wt_antenna = antenna;
2093 
2094 		bpf_mtap2(sc->sc_drvbpf,
2095 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
2096 	}
2097 
2098 	/*
2099 	 * Formulate first tx descriptor with tx controls.
2100 	 */
2101 	/* XXX check return value? */
2102 	ath_hal_setuptxdesc(ah, ds
2103 		, pktlen		/* packet length */
2104 		, hdrlen		/* header length */
2105 		, atype			/* Atheros packet type */
2106 		, 60			/* txpower XXX */
2107 		, txrate, 1+10		/* series 0 rate/tries */
2108 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2109 		, antenna		/* antenna mode */
2110 		, flags			/* flags */
2111 		, ctsrate		/* rts/cts rate */
2112 		, ctsduration		/* rts/cts duration */
2113 	);
2114 #ifdef notyet
2115 	ath_hal_setupxtxdesc(ah, ds
2116 		, AH_FALSE		/* short preamble */
2117 		, 0, 0			/* series 1 rate/tries */
2118 		, 0, 0			/* series 2 rate/tries */
2119 		, 0, 0			/* series 3 rate/tries */
2120 	);
2121 #endif
2122 	/*
2123 	 * Fillin the remainder of the descriptor info.
2124 	 */
2125 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2126 		ds->ds_data = bf->bf_segs[i].ds_addr;
2127 		if (i == bf->bf_nseg - 1)
2128 			ds->ds_link = 0;
2129 		else
2130 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2131 		ath_hal_filltxdesc(ah, ds
2132 			, bf->bf_segs[i].ds_len	/* segment length */
2133 			, i == 0		/* first segment */
2134 			, i == bf->bf_nseg - 1	/* last segment */
2135 		);
2136 		DPRINTF(ATH_DEBUG_XMIT,
2137 			("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2138 			__func__, i, ds->ds_link, ds->ds_data,
2139 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2140 	}
2141 
2142 	/*
2143 	 * Insert the frame on the outbound list and
2144 	 * pass it on to the hardware.
2145 	 */
2146 	ATH_TXQ_LOCK(sc);
2147 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2148 	if (sc->sc_txlink == NULL) {
2149 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2150 		DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2151 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2152 	} else {
2153 		*sc->sc_txlink = bf->bf_daddr;
2154 		DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2155 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2156 	}
2157 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2158 	ATH_TXQ_UNLOCK(sc);
2159 
2160 	ath_hal_txstart(ah, sc->sc_txhalq);
2161 	return 0;
2162 }
2163 
2164 static void
2165 ath_tx_proc(void *arg, int npending)
2166 {
2167 	struct ath_softc *sc = arg;
2168 	struct ath_hal *ah = sc->sc_ah;
2169 	struct ath_buf *bf;
2170 	struct ieee80211com *ic = &sc->sc_ic;
2171 	struct ifnet *ifp = &ic->ic_if;
2172 	struct ath_desc *ds;
2173 	struct ieee80211_node *ni;
2174 	struct ath_node *an;
2175 	int sr, lr;
2176 	HAL_STATUS status;
2177 
2178 	DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
2179 		__func__, npending,
2180 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2181 		sc->sc_txlink));
2182 	for (;;) {
2183 		ATH_TXQ_LOCK(sc);
2184 		bf = TAILQ_FIRST(&sc->sc_txq);
2185 		if (bf == NULL) {
2186 			sc->sc_txlink = NULL;
2187 			ATH_TXQ_UNLOCK(sc);
2188 			break;
2189 		}
2190 		/* only the last descriptor is needed */
2191 		ds = &bf->bf_desc[bf->bf_nseg - 1];
2192 		status = ath_hal_txprocdesc(ah, ds);
2193 #ifdef AR_DEBUG
2194 		if (ath_debug & ATH_DEBUG_XMIT_DESC)
2195 			ath_printtxbuf(bf, status == HAL_OK);
2196 #endif
2197 		if (status == HAL_EINPROGRESS) {
2198 			ATH_TXQ_UNLOCK(sc);
2199 			break;
2200 		}
2201 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2202 		ATH_TXQ_UNLOCK(sc);
2203 
2204 		ni = bf->bf_node;
2205 		if (ni != NULL) {
2206 			an = (struct ath_node *) ni;
2207 			if (ds->ds_txstat.ts_status == 0) {
2208 				an->an_tx_ok++;
2209 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2210 			} else {
2211 				an->an_tx_err++;
2212 				ifp->if_oerrors++;
2213 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2214 					sc->sc_stats.ast_tx_xretries++;
2215 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2216 					sc->sc_stats.ast_tx_fifoerr++;
2217 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2218 					sc->sc_stats.ast_tx_filtered++;
2219 				an->an_tx_antenna = 0;	/* invalidate */
2220 			}
2221 			sr = ds->ds_txstat.ts_shortretry;
2222 			lr = ds->ds_txstat.ts_longretry;
2223 			sc->sc_stats.ast_tx_shortretry += sr;
2224 			sc->sc_stats.ast_tx_longretry += lr;
2225 			if (sr + lr)
2226 				an->an_tx_retr++;
2227 			/*
2228 			 * Reclaim reference to node.
2229 			 *
2230 			 * NB: the node may be reclaimed here if, for example
2231 			 *     this is a DEAUTH message that was sent and the
2232 			 *     node was timed out due to inactivity.
2233 			 */
2234 			if (ni != ic->ic_bss)
2235 				ieee80211_free_node(ic, ni);
2236 		}
2237 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2238 		    BUS_DMASYNC_POSTWRITE);
2239 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2240 		m_freem(bf->bf_m);
2241 		bf->bf_m = NULL;
2242 		bf->bf_node = NULL;
2243 
2244 		ATH_TXBUF_LOCK(sc);
2245 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2246 		ATH_TXBUF_UNLOCK(sc);
2247 	}
2248 	ifp->if_flags &= ~IFF_OACTIVE;
2249 	sc->sc_tx_timer = 0;
2250 
2251 	ath_start(ifp);
2252 }
2253 
2254 /*
2255  * Drain the transmit queue and reclaim resources.
2256  */
2257 static void
2258 ath_draintxq(struct ath_softc *sc)
2259 {
2260 	struct ath_hal *ah = sc->sc_ah;
2261 	struct ieee80211com *ic = &sc->sc_ic;
2262 	struct ifnet *ifp = &ic->ic_if;
2263 	struct ieee80211_node *ni;
2264 	struct ath_buf *bf;
2265 
2266 	/* XXX return value */
2267 	if (!sc->sc_invalid) {
2268 		/* don't touch the hardware if marked invalid */
2269 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2270 		DPRINTF(ATH_DEBUG_RESET,
2271 		    ("%s: tx queue %p, link %p\n", __func__,
2272 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2273 		    sc->sc_txlink));
2274 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2275 		DPRINTF(ATH_DEBUG_RESET,
2276 		    ("%s: beacon queue %p\n", __func__,
2277 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2278 	}
2279 	for (;;) {
2280 		ATH_TXQ_LOCK(sc);
2281 		bf = TAILQ_FIRST(&sc->sc_txq);
2282 		if (bf == NULL) {
2283 			sc->sc_txlink = NULL;
2284 			ATH_TXQ_UNLOCK(sc);
2285 			break;
2286 		}
2287 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2288 		ATH_TXQ_UNLOCK(sc);
2289 #ifdef AR_DEBUG
2290 		if (ath_debug & ATH_DEBUG_RESET)
2291 			ath_printtxbuf(bf,
2292 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2293 #endif /* AR_DEBUG */
2294 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2295 		m_freem(bf->bf_m);
2296 		bf->bf_m = NULL;
2297 		ni = bf->bf_node;
2298 		bf->bf_node = NULL;
2299 		if (ni != NULL && ni != ic->ic_bss) {
2300 			/*
2301 			 * Reclaim node reference.
2302 			 */
2303 			ieee80211_free_node(ic, ni);
2304 		}
2305 		ATH_TXBUF_LOCK(sc);
2306 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2307 		ATH_TXBUF_UNLOCK(sc);
2308 	}
2309 	ifp->if_flags &= ~IFF_OACTIVE;
2310 	sc->sc_tx_timer = 0;
2311 }
2312 
2313 /*
2314  * Disable the receive h/w in preparation for a reset.
2315  */
2316 static void
2317 ath_stoprecv(struct ath_softc *sc)
2318 {
2319 #define	PA2DESC(_sc, _pa) \
2320 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2321 		((_pa) - (_sc)->sc_desc_paddr)))
2322 	struct ath_hal *ah = sc->sc_ah;
2323 
2324 	ath_hal_stoppcurecv(ah);	/* disable PCU */
2325 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
2326 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
2327 	DELAY(3000);			/* long enough for 1 frame */
2328 #ifdef AR_DEBUG
2329 	if (ath_debug & ATH_DEBUG_RESET) {
2330 		struct ath_buf *bf;
2331 
2332 		printf("%s: rx queue %p, link %p\n", __func__,
2333 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
2334 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2335 			struct ath_desc *ds = bf->bf_desc;
2336 			if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2337 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
2338 				ath_printrxbuf(bf, 1);
2339 		}
2340 	}
2341 #endif
2342 	sc->sc_rxlink = NULL;		/* just in case */
2343 #undef PA2DESC
2344 }
2345 
2346 /*
2347  * Enable the receive h/w following a reset.
2348  */
2349 static int
2350 ath_startrecv(struct ath_softc *sc)
2351 {
2352 	struct ath_hal *ah = sc->sc_ah;
2353 	struct ath_buf *bf;
2354 
2355 	sc->sc_rxlink = NULL;
2356 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2357 		int error = ath_rxbuf_init(sc, bf);
2358 		if (error != 0) {
2359 			DPRINTF(ATH_DEBUG_RECV,
2360 				("%s: ath_rxbuf_init failed %d\n",
2361 				__func__, error));
2362 			return error;
2363 		}
2364 	}
2365 
2366 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
2367 	ath_hal_putrxbuf(ah, bf->bf_daddr);
2368 	ath_hal_rxena(ah);		/* enable recv descriptors */
2369 	ath_mode_init(sc);		/* set filters, etc. */
2370 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
2371 	return 0;
2372 }
2373 
2374 /*
2375  * Set/change channels.  If the channel is really being changed,
2376  * it's done by resetting the chip.  To accomplish this we must
2377  * first cleanup any pending DMA, then restart stuff after a la
2378  * ath_init.
2379  */
2380 static int
2381 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2382 {
2383 	struct ath_hal *ah = sc->sc_ah;
2384 	struct ieee80211com *ic = &sc->sc_ic;
2385 
2386 	DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
2387 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2388 		ic->ic_ibss_chan->ic_freq,
2389 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2390 	if (chan != ic->ic_ibss_chan) {
2391 		HAL_STATUS status;
2392 		HAL_CHANNEL hchan;
2393 		enum ieee80211_phymode mode;
2394 
2395 		/*
2396 		 * To switch channels clear any pending DMA operations;
2397 		 * wait long enough for the RX fifo to drain, reset the
2398 		 * hardware at the new frequency, and then re-enable
2399 		 * the relevant bits of the h/w.
2400 		 */
2401 		ath_hal_intrset(ah, 0);		/* disable interrupts */
2402 		ath_draintxq(sc);		/* clear pending tx frames */
2403 		ath_stoprecv(sc);		/* turn off frame recv */
2404 		/*
2405 		 * Convert to a HAL channel description with
2406 		 * the flags constrained to reflect the current
2407 		 * operating mode.
2408 		 */
2409 		hchan.channel = chan->ic_freq;
2410 		hchan.channelFlags = ath_chan2flags(ic, chan);
2411 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2412 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2413 				"channel %u (%u Mhz)\n",
2414 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2415 			return EIO;
2416 		}
2417 		/*
2418 		 * Re-enable rx framework.
2419 		 */
2420 		if (ath_startrecv(sc) != 0) {
2421 			if_printf(&ic->ic_if,
2422 				"ath_chan_set: unable to restart recv logic\n");
2423 			return EIO;
2424 		}
2425 
2426 		/*
2427 		 * Update BPF state.
2428 		 */
2429 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2430 			htole16(chan->ic_freq);
2431 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2432 			htole16(chan->ic_flags);
2433 
2434 		/*
2435 		 * Change channels and update the h/w rate map
2436 		 * if we're switching; e.g. 11a to 11b/g.
2437 		 */
2438 		ic->ic_ibss_chan = chan;
2439 		mode = ieee80211_chan2mode(ic, chan);
2440 		if (mode != sc->sc_curmode)
2441 			ath_setcurmode(sc, mode);
2442 
2443 		/*
2444 		 * Re-enable interrupts.
2445 		 */
2446 		ath_hal_intrset(ah, sc->sc_imask);
2447 	}
2448 	return 0;
2449 }
2450 
2451 static void
2452 ath_next_scan(void *arg)
2453 {
2454 	struct ath_softc *sc = arg;
2455 	struct ieee80211com *ic = &sc->sc_ic;
2456 	struct ifnet *ifp = &ic->ic_if;
2457 
2458 	if (ic->ic_state == IEEE80211_S_SCAN)
2459 		ieee80211_next_scan(ifp);
2460 }
2461 
2462 /*
2463  * Periodically recalibrate the PHY to account
2464  * for temperature/environment changes.
2465  */
2466 static void
2467 ath_calibrate(void *arg)
2468 {
2469 	struct ath_softc *sc = arg;
2470 	struct ath_hal *ah = sc->sc_ah;
2471 	struct ieee80211com *ic = &sc->sc_ic;
2472 	struct ieee80211_channel *c;
2473 	HAL_CHANNEL hchan;
2474 
2475 	sc->sc_stats.ast_per_cal++;
2476 
2477 	/*
2478 	 * Convert to a HAL channel description with the flags
2479 	 * constrained to reflect the current operating mode.
2480 	 */
2481 	c = ic->ic_ibss_chan;
2482 	hchan.channel = c->ic_freq;
2483 	hchan.channelFlags = ath_chan2flags(ic, c);
2484 
2485 	DPRINTF(ATH_DEBUG_CALIBRATE,
2486 		("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2487 
2488 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2489 		/*
2490 		 * Rfgain is out of bounds, reset the chip
2491 		 * to load new gain values.
2492 		 */
2493 		sc->sc_stats.ast_per_rfgain++;
2494 		ath_reset(sc);
2495 	}
2496 	if (!ath_hal_calibrate(ah, &hchan)) {
2497 		DPRINTF(ATH_DEBUG_ANY,
2498 			("%s: calibration of channel %u failed\n",
2499 			__func__, c->ic_freq));
2500 		sc->sc_stats.ast_per_calfail++;
2501 	}
2502 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2503 }
2504 
2505 static int
2506 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2507 {
2508 	struct ifnet *ifp = &ic->ic_if;
2509 	struct ath_softc *sc = ifp->if_softc;
2510 	struct ath_hal *ah = sc->sc_ah;
2511 	struct ieee80211_node *ni;
2512 	int i, error;
2513 	const u_int8_t *bssid;
2514 	u_int32_t rfilt;
2515 	static const HAL_LED_STATE leds[] = {
2516 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
2517 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
2518 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
2519 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
2520 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
2521 	};
2522 
2523 	DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
2524 		ieee80211_state_name[ic->ic_state],
2525 		ieee80211_state_name[nstate]));
2526 
2527 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
2528 
2529 	if (nstate == IEEE80211_S_INIT) {
2530 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2531 		ath_hal_intrset(ah, sc->sc_imask);
2532 		callout_stop(&sc->sc_scan_ch);
2533 		callout_stop(&sc->sc_cal_ch);
2534 		return (*sc->sc_newstate)(ic, nstate, arg);
2535 	}
2536 	ni = ic->ic_bss;
2537 	error = ath_chan_set(sc, ni->ni_chan);
2538 	if (error != 0)
2539 		goto bad;
2540 	rfilt = ath_calcrxfilter(sc);
2541 	if (nstate == IEEE80211_S_SCAN) {
2542 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2543 			ath_next_scan, sc);
2544 		bssid = ifp->if_broadcastaddr;
2545 	} else {
2546 		callout_stop(&sc->sc_scan_ch);
2547 		bssid = ni->ni_bssid;
2548 	}
2549 	ath_hal_setrxfilter(ah, rfilt);
2550 	DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
2551 		 __func__, rfilt, ether_sprintf(bssid)));
2552 
2553 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2554 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
2555 	else
2556 		ath_hal_setassocid(ah, bssid, 0);
2557 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2558 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2559 			if (ath_hal_keyisvalid(ah, i))
2560 				ath_hal_keysetmac(ah, i, bssid);
2561 	}
2562 
2563 	if (nstate == IEEE80211_S_RUN) {
2564 		DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2565 			"capinfo=0x%04x chan=%d\n"
2566 			 , __func__
2567 			 , ic->ic_flags
2568 			 , ni->ni_intval
2569 			 , ether_sprintf(ni->ni_bssid)
2570 			 , ni->ni_capinfo
2571 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2572 
2573 		/*
2574 		 * Allocate and setup the beacon frame for AP or adhoc mode.
2575 		 */
2576 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2577 		    ic->ic_opmode == IEEE80211_M_IBSS) {
2578 			error = ath_beacon_alloc(sc, ni);
2579 			if (error != 0)
2580 				goto bad;
2581 		}
2582 
2583 		/*
2584 		 * Configure the beacon and sleep timers.
2585 		 */
2586 		ath_beacon_config(sc);
2587 
2588 		/* start periodic recalibration timer */
2589 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2590 			ath_calibrate, sc);
2591 	} else {
2592 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2593 		ath_hal_intrset(ah, sc->sc_imask);
2594 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
2595 	}
2596 	/*
2597 	 * Reset the rate control state.
2598 	 */
2599 	ath_rate_ctl_reset(sc, nstate);
2600 	/*
2601 	 * Invoke the parent method to complete the work.
2602 	 */
2603 	return (*sc->sc_newstate)(ic, nstate, arg);
2604 bad:
2605 	callout_stop(&sc->sc_scan_ch);
2606 	callout_stop(&sc->sc_cal_ch);
2607 	/* NB: do not invoke the parent */
2608 	return error;
2609 }
2610 
2611 /*
2612  * Setup driver-specific state for a newly associated node.
2613  * Note that we're called also on a re-associate, the isnew
2614  * param tells us if this is the first time or not.
2615  */
2616 static void
2617 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2618 {
2619 	if (isnew) {
2620 		struct ath_node *an = (struct ath_node *) ni;
2621 
2622 		an->an_tx_ok = an->an_tx_err =
2623 			an->an_tx_retr = an->an_tx_upper = 0;
2624 		/* start with highest negotiated rate */
2625 		/*
2626 		 * XXX should do otherwise but only when
2627 		 * the rate control algorithm is better.
2628 		 */
2629 		KASSERT(ni->ni_rates.rs_nrates > 0,
2630 			("new association w/ no rates!"));
2631 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2632 	}
2633 }
2634 
2635 static int
2636 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2637 {
2638 	struct ieee80211com *ic = &sc->sc_ic;
2639 	struct ifnet *ifp = &ic->ic_if;
2640 	struct ath_hal *ah = sc->sc_ah;
2641 	HAL_CHANNEL *chans;
2642 	int i, ix, nchan;
2643 
2644 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2645 			M_TEMP, M_NOWAIT);
2646 	if (chans == NULL) {
2647 		if_printf(ifp, "unable to allocate channel table\n");
2648 		return ENOMEM;
2649 	}
2650 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2651 	    cc, HAL_MODE_ALL, outdoor)) {
2652 		if_printf(ifp, "unable to collect channel list from hal\n");
2653 		free(chans, M_TEMP);
2654 		return EINVAL;
2655 	}
2656 
2657 	/*
2658 	 * Convert HAL channels to ieee80211 ones and insert
2659 	 * them in the table according to their channel number.
2660 	 */
2661 	for (i = 0; i < nchan; i++) {
2662 		HAL_CHANNEL *c = &chans[i];
2663 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2664 		if (ix > IEEE80211_CHAN_MAX) {
2665 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2666 				ix, c->channel, c->channelFlags);
2667 			continue;
2668 		}
2669 		/* NB: flags are known to be compatible */
2670 		if (ic->ic_channels[ix].ic_freq == 0) {
2671 			ic->ic_channels[ix].ic_freq = c->channel;
2672 			ic->ic_channels[ix].ic_flags = c->channelFlags;
2673 		} else {
2674 			/* channels overlap; e.g. 11g and 11b */
2675 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
2676 		}
2677 	}
2678 	free(chans, M_TEMP);
2679 	return 0;
2680 }
2681 
2682 static int
2683 ath_rate_setup(struct ath_softc *sc, u_int mode)
2684 {
2685 	struct ath_hal *ah = sc->sc_ah;
2686 	struct ieee80211com *ic = &sc->sc_ic;
2687 	const HAL_RATE_TABLE *rt;
2688 	struct ieee80211_rateset *rs;
2689 	int i, maxrates;
2690 
2691 	switch (mode) {
2692 	case IEEE80211_MODE_11A:
2693 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2694 		break;
2695 	case IEEE80211_MODE_11B:
2696 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2697 		break;
2698 	case IEEE80211_MODE_11G:
2699 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2700 		break;
2701 	case IEEE80211_MODE_TURBO:
2702 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2703 		break;
2704 	default:
2705 		DPRINTF(ATH_DEBUG_ANY,
2706 			("%s: invalid mode %u\n", __func__, mode));
2707 		return 0;
2708 	}
2709 	rt = sc->sc_rates[mode];
2710 	if (rt == NULL)
2711 		return 0;
2712 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2713 		DPRINTF(ATH_DEBUG_ANY,
2714 			("%s: rate table too small (%u > %u)\n",
2715 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2716 		maxrates = IEEE80211_RATE_MAXSIZE;
2717 	} else
2718 		maxrates = rt->rateCount;
2719 	rs = &ic->ic_sup_rates[mode];
2720 	for (i = 0; i < maxrates; i++)
2721 		rs->rs_rates[i] = rt->info[i].dot11Rate;
2722 	rs->rs_nrates = maxrates;
2723 	return 1;
2724 }
2725 
2726 static void
2727 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2728 {
2729 	const HAL_RATE_TABLE *rt;
2730 	int i;
2731 
2732 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2733 	rt = sc->sc_rates[mode];
2734 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2735 	for (i = 0; i < rt->rateCount; i++)
2736 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2737 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2738 	for (i = 0; i < 32; i++)
2739 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2740 	sc->sc_currates = rt;
2741 	sc->sc_curmode = mode;
2742 }
2743 
2744 /*
2745  * Reset the rate control state for each 802.11 state transition.
2746  */
2747 static void
2748 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2749 {
2750 	struct ieee80211com *ic = &sc->sc_ic;
2751 	struct ieee80211_node *ni;
2752 	struct ath_node *an;
2753 
2754 	if (ic->ic_opmode != IEEE80211_M_STA) {
2755 		/*
2756 		 * When operating as a station the node table holds
2757 		 * the AP's that were discovered during scanning.
2758 		 * For any other operating mode we want to reset the
2759 		 * tx rate state of each node.
2760 		 */
2761 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
2762 			ni->ni_txrate = 0;		/* use lowest rate */
2763 			an = (struct ath_node *) ni;
2764 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
2765 			    an->an_tx_upper = 0;
2766 		}
2767 	}
2768 	/*
2769 	 * Reset local xmit state; this is really only meaningful
2770 	 * when operating in station or adhoc mode.
2771 	 */
2772 	ni = ic->ic_bss;
2773 	an = (struct ath_node *) ni;
2774 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
2775 	if (state == IEEE80211_S_RUN) {
2776 		/* start with highest negotiated rate */
2777 		KASSERT(ni->ni_rates.rs_nrates > 0,
2778 			("transition to RUN state w/ no rates!"));
2779 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2780 	} else {
2781 		/* use lowest rate */
2782 		ni->ni_txrate = 0;
2783 	}
2784 }
2785 
2786 /*
2787  * Examine and potentially adjust the transmit rate.
2788  */
2789 static void
2790 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
2791 {
2792 	struct ath_softc *sc = arg;
2793 	struct ath_node *an = (struct ath_node *) ni;
2794 	struct ieee80211_rateset *rs = &ni->ni_rates;
2795 	int mod = 0, orate, enough;
2796 
2797 	/*
2798 	 * Rate control
2799 	 * XXX: very primitive version.
2800 	 */
2801 	sc->sc_stats.ast_rate_calls++;
2802 
2803 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
2804 
2805 	/* no packet reached -> down */
2806 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
2807 		mod = -1;
2808 
2809 	/* all packets needs retry in average -> down */
2810 	if (enough && an->an_tx_ok < an->an_tx_retr)
2811 		mod = -1;
2812 
2813 	/* no error and less than 10% of packets needs retry -> up */
2814 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
2815 		mod = 1;
2816 
2817 	orate = ni->ni_txrate;
2818 	switch (mod) {
2819 	case 0:
2820 		if (enough && an->an_tx_upper > 0)
2821 			an->an_tx_upper--;
2822 		break;
2823 	case -1:
2824 		if (ni->ni_txrate > 0) {
2825 			ni->ni_txrate--;
2826 			sc->sc_stats.ast_rate_drop++;
2827 		}
2828 		an->an_tx_upper = 0;
2829 		break;
2830 	case 1:
2831 		if (++an->an_tx_upper < 2)
2832 			break;
2833 		an->an_tx_upper = 0;
2834 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
2835 			ni->ni_txrate++;
2836 			sc->sc_stats.ast_rate_raise++;
2837 		}
2838 		break;
2839 	}
2840 
2841 	if (ni->ni_txrate != orate) {
2842 		DPRINTF(ATH_DEBUG_RATE,
2843 		    ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
2844 		    __func__,
2845 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
2846 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
2847 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
2848 	}
2849 	if (ni->ni_txrate != orate || enough)
2850 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2851 }
2852 
2853 #ifdef AR_DEBUG
2854 static int
2855 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
2856 {
2857 	char dmode[64];
2858 	int error;
2859 
2860 	strncpy(dmode, "", sizeof(dmode) - 1);
2861 	dmode[sizeof(dmode) - 1] = '\0';
2862 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2863 
2864 	if (error == 0 && req->newptr != NULL) {
2865 		struct ifnet *ifp;
2866 		struct ath_softc *sc;
2867 
2868 		ifp = ifunit("ath0");		/* XXX */
2869 		if (!ifp)
2870 			return EINVAL;
2871 		sc = ifp->if_softc;
2872 		if (strcmp(dmode, "hal") == 0)
2873 			ath_hal_dumpstate(sc->sc_ah);
2874 		else
2875 			return EINVAL;
2876 	}
2877 	return error;
2878 }
2879 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2880 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
2881 
2882 static void
2883 ath_printrxbuf(struct ath_buf *bf, int done)
2884 {
2885 	struct ath_desc *ds;
2886 	int i;
2887 
2888 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2889 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
2890 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2891 		    ds->ds_link, ds->ds_data,
2892 		    ds->ds_ctl0, ds->ds_ctl1,
2893 		    ds->ds_hw[0], ds->ds_hw[1],
2894 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
2895 	}
2896 }
2897 
2898 static void
2899 ath_printtxbuf(struct ath_buf *bf, int done)
2900 {
2901 	struct ath_desc *ds;
2902 	int i;
2903 
2904 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2905 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
2906 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2907 		    ds->ds_link, ds->ds_data,
2908 		    ds->ds_ctl0, ds->ds_ctl1,
2909 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
2910 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
2911 	}
2912 }
2913 #endif /* AR_DEBUG */
2914