1 /*- 2 * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 3. Neither the names of the above-listed copyright holders nor the names 16 * of any contributors may be used to endorse or promote products derived 17 * from this software without specific prior written permission. 18 * 19 * Alternatively, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") version 2 as published by the Free 21 * Software Foundation. 22 * 23 * NO WARRANTY 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 34 * THE POSSIBILITY OF SUCH DAMAGES. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /* 41 * Driver for the Atheros Wireless LAN controller. 42 * 43 * This software is derived from work of Atsushi Onoe; his contribution 44 * is greatly appreciated. 45 */ 46 47 #include "opt_inet.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 64 #include <machine/bus.h> 65 66 #include <net/if.h> 67 #include <net/if_dl.h> 68 #include <net/if_media.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 75 #include <net/bpf.h> 76 77 #ifdef INET 78 #include <netinet/in.h> 79 #include <netinet/if_ether.h> 80 #endif 81 82 #define AR_DEBUG 83 #include <dev/ath/if_athvar.h> 84 #include <contrib/dev/ath/ah_desc.h> 85 86 /* unalligned little endian access */ 87 #define LE_READ_2(p) \ 88 ((u_int16_t) \ 89 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 90 #define LE_READ_4(p) \ 91 ((u_int32_t) \ 92 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 93 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 94 95 static void ath_init(void *); 96 static void ath_stop(struct ifnet *); 97 static void ath_start(struct ifnet *); 98 static void ath_reset(struct ath_softc *); 99 static int ath_media_change(struct ifnet *); 100 static void ath_watchdog(struct ifnet *); 101 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 102 static void ath_fatal_proc(void *, int); 103 static void ath_rxorn_proc(void *, int); 104 static void ath_bmiss_proc(void *, int); 105 static void ath_initkeytable(struct ath_softc *); 106 static void ath_mode_init(struct ath_softc *); 107 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 108 static void ath_beacon_proc(void *, int); 109 static void ath_beacon_free(struct ath_softc *); 110 static void ath_beacon_config(struct ath_softc *); 111 static int ath_desc_alloc(struct ath_softc *); 112 static void ath_desc_free(struct ath_softc *); 113 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *); 114 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *); 115 static void ath_node_copy(struct ieee80211com *, 116 struct ieee80211_node *, const struct ieee80211_node *); 117 static u_int8_t ath_node_getrssi(struct ieee80211com *, 118 struct ieee80211_node *); 119 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 120 static void ath_rx_proc(void *, int); 121 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 122 struct ath_buf *, struct mbuf *); 123 static void ath_tx_proc(void *, int); 124 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 125 static void ath_draintxq(struct ath_softc *); 126 static void ath_stoprecv(struct ath_softc *); 127 static int ath_startrecv(struct ath_softc *); 128 static void ath_next_scan(void *); 129 static void ath_calibrate(void *); 130 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 131 static void ath_newassoc(struct ieee80211com *, 132 struct ieee80211_node *, int); 133 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor); 134 135 static int ath_rate_setup(struct ath_softc *sc, u_int mode); 136 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 137 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state); 138 static void ath_rate_ctl(void *, struct ieee80211_node *); 139 140 SYSCTL_DECL(_hw_ath); 141 142 /* XXX validate sysctl values */ 143 static int ath_dwelltime = 200; /* 5 channels/second */ 144 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime, 145 0, "channel dwell time (ms) for AP/station scanning"); 146 static int ath_calinterval = 30; /* calibrate every 30 secs */ 147 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 148 0, "chip calibration interval (secs)"); 149 static int ath_outdoor = AH_TRUE; /* outdoor operation */ 150 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor, 151 0, "enable/disable outdoor operation"); 152 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor); 153 static int ath_countrycode = CTRY_DEFAULT; /* country code */ 154 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode, 155 0, "country code"); 156 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode); 157 static int ath_regdomain = 0; /* regulatory domain */ 158 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain, 159 0, "regulatory domain"); 160 161 #ifdef AR_DEBUG 162 int ath_debug = 0; 163 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 164 0, "control debugging printfs"); 165 TUNABLE_INT("hw.ath.debug", &ath_debug); 166 #define IFF_DUMPPKTS(_ifp, _m) \ 167 ((ath_debug & _m) || \ 168 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 169 static void ath_printrxbuf(struct ath_buf *bf, int); 170 static void ath_printtxbuf(struct ath_buf *bf, int); 171 enum { 172 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 173 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 174 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 175 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 176 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 177 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 178 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 179 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 180 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 181 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 182 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 183 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 184 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 185 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 186 ATH_DEBUG_ANY = 0xffffffff 187 }; 188 #define DPRINTF(_m,X) if (ath_debug & _m) printf X 189 #else 190 #define IFF_DUMPPKTS(_ifp, _m) \ 191 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 192 #define DPRINTF(_m, X) 193 #endif 194 195 int 196 ath_attach(u_int16_t devid, struct ath_softc *sc) 197 { 198 struct ieee80211com *ic = &sc->sc_ic; 199 struct ifnet *ifp = &ic->ic_if; 200 struct ath_hal *ah; 201 HAL_STATUS status; 202 int error = 0; 203 204 DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid)); 205 206 /* set these up early for if_printf use */ 207 if_initname(ifp, device_get_name(sc->sc_dev), 208 device_get_unit(sc->sc_dev)); 209 210 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 211 if (ah == NULL) { 212 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 213 status); 214 error = ENXIO; 215 goto bad; 216 } 217 if (ah->ah_abi != HAL_ABI_VERSION) { 218 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n", 219 ah->ah_abi, HAL_ABI_VERSION); 220 error = ENXIO; 221 goto bad; 222 } 223 if_printf(ifp, "mac %d.%d phy %d.%d", 224 ah->ah_macVersion, ah->ah_macRev, 225 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 226 if (ah->ah_analog5GhzRev) 227 printf(" 5ghz radio %d.%d", 228 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf); 229 if (ah->ah_analog2GhzRev) 230 printf(" 2ghz radio %d.%d", 231 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf); 232 printf("\n"); 233 sc->sc_ah = ah; 234 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 235 236 /* 237 * Collect the channel list using the default country 238 * code and including outdoor channels. The 802.11 layer 239 * is resposible for filtering this list based on settings 240 * like the phy mode. 241 */ 242 error = ath_getchannels(sc, ath_countrycode, ath_outdoor); 243 if (error != 0) 244 goto bad; 245 /* 246 * Copy these back; they are set as a side effect 247 * of constructing the channel list. 248 */ 249 ath_regdomain = ath_hal_getregdomain(ah); 250 ath_countrycode = ath_hal_getcountrycode(ah); 251 252 /* 253 * Setup rate tables for all potential media types. 254 */ 255 ath_rate_setup(sc, IEEE80211_MODE_11A); 256 ath_rate_setup(sc, IEEE80211_MODE_11B); 257 ath_rate_setup(sc, IEEE80211_MODE_11G); 258 ath_rate_setup(sc, IEEE80211_MODE_TURBO); 259 260 error = ath_desc_alloc(sc); 261 if (error != 0) { 262 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 263 goto bad; 264 } 265 callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE); 266 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE); 267 268 ATH_TXBUF_LOCK_INIT(sc); 269 ATH_TXQ_LOCK_INIT(sc); 270 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 272 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 273 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 274 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 275 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 276 277 /* 278 * For now just pre-allocate one data queue and one 279 * beacon queue. Note that the HAL handles resetting 280 * them at the needed time. Eventually we'll want to 281 * allocate more tx queues for splitting management 282 * frames and for QOS support. 283 */ 284 sc->sc_txhalq = ath_hal_setuptxqueue(ah, 285 HAL_TX_QUEUE_DATA, 286 AH_TRUE /* enable interrupts */ 287 ); 288 if (sc->sc_txhalq == (u_int) -1) { 289 if_printf(ifp, "unable to setup a data xmit queue!\n"); 290 goto bad2; 291 } 292 sc->sc_bhalq = ath_hal_setuptxqueue(ah, 293 HAL_TX_QUEUE_BEACON, 294 AH_TRUE /* enable interrupts */ 295 ); 296 if (sc->sc_bhalq == (u_int) -1) { 297 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 298 goto bad2; 299 } 300 301 ifp->if_softc = sc; 302 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 303 ifp->if_start = ath_start; 304 ifp->if_watchdog = ath_watchdog; 305 ifp->if_ioctl = ath_ioctl; 306 ifp->if_init = ath_init; 307 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 308 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 309 IFQ_SET_READY(&ifp->if_snd); 310 311 ic->ic_softc = sc; 312 ic->ic_newassoc = ath_newassoc; 313 /* XXX not right but it's not used anywhere important */ 314 ic->ic_phytype = IEEE80211_T_OFDM; 315 ic->ic_opmode = IEEE80211_M_STA; 316 ic->ic_caps = IEEE80211_C_WEP /* wep supported */ 317 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 318 | IEEE80211_C_HOSTAP /* hostap mode */ 319 | IEEE80211_C_MONITOR /* monitor mode */ 320 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 321 ; 322 323 /* get mac address from hardware */ 324 ath_hal_getmac(ah, ic->ic_myaddr); 325 326 /* call MI attach routine. */ 327 ieee80211_ifattach(ifp); 328 /* override default methods */ 329 ic->ic_node_alloc = ath_node_alloc; 330 sc->sc_node_free = ic->ic_node_free; 331 ic->ic_node_free = ath_node_free; 332 sc->sc_node_copy = ic->ic_node_copy; 333 ic->ic_node_copy = ath_node_copy; 334 ic->ic_node_getrssi = ath_node_getrssi; 335 sc->sc_newstate = ic->ic_newstate; 336 ic->ic_newstate = ath_newstate; 337 /* complete initialization */ 338 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status); 339 340 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 341 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 342 &sc->sc_drvbpf); 343 /* 344 * Initialize constant fields. 345 * XXX make header lengths a multiple of 32-bits so subsequent 346 * headers are properly aligned; this is a kludge to keep 347 * certain applications happy. 348 * 349 * NB: the channel is setup each time we transition to the 350 * RUN state to avoid filling it in for each frame. 351 */ 352 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 353 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 354 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 355 356 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 357 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 358 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 359 360 return 0; 361 bad2: 362 ath_desc_free(sc); 363 bad: 364 if (ah) 365 ath_hal_detach(ah); 366 sc->sc_invalid = 1; 367 return error; 368 } 369 370 int 371 ath_detach(struct ath_softc *sc) 372 { 373 struct ifnet *ifp = &sc->sc_ic.ic_if; 374 375 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 376 377 ath_stop(ifp); 378 bpfdetach(ifp); 379 ath_desc_free(sc); 380 ath_hal_detach(sc->sc_ah); 381 ieee80211_ifdetach(ifp); 382 383 ATH_TXBUF_LOCK_DESTROY(sc); 384 ATH_TXQ_LOCK_DESTROY(sc); 385 386 return 0; 387 } 388 389 void 390 ath_suspend(struct ath_softc *sc) 391 { 392 struct ifnet *ifp = &sc->sc_ic.ic_if; 393 394 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 395 396 ath_stop(ifp); 397 } 398 399 void 400 ath_resume(struct ath_softc *sc) 401 { 402 struct ifnet *ifp = &sc->sc_ic.ic_if; 403 404 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 405 406 if (ifp->if_flags & IFF_UP) { 407 ath_init(ifp); 408 if (ifp->if_flags & IFF_RUNNING) 409 ath_start(ifp); 410 } 411 } 412 413 void 414 ath_shutdown(struct ath_softc *sc) 415 { 416 struct ifnet *ifp = &sc->sc_ic.ic_if; 417 418 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 419 420 ath_stop(ifp); 421 } 422 423 void 424 ath_intr(void *arg) 425 { 426 struct ath_softc *sc = arg; 427 struct ieee80211com *ic = &sc->sc_ic; 428 struct ifnet *ifp = &ic->ic_if; 429 struct ath_hal *ah = sc->sc_ah; 430 HAL_INT status; 431 432 if (sc->sc_invalid) { 433 /* 434 * The hardware is not ready/present, don't touch anything. 435 * Note this can happen early on if the IRQ is shared. 436 */ 437 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__)); 438 return; 439 } 440 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 441 return; 442 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 443 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 444 __func__, ifp->if_flags)); 445 ath_hal_getisr(ah, &status); /* clear ISR */ 446 ath_hal_intrset(ah, 0); /* disable further intr's */ 447 return; 448 } 449 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 450 DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status)); 451 #ifdef AR_DEBUG 452 if (ath_debug && 453 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) { 454 if_printf(ifp, "ath_intr: status 0x%x\n", status); 455 ath_hal_dumpstate(ah); 456 } 457 #endif /* AR_DEBUG */ 458 status &= sc->sc_imask; /* discard unasked for bits */ 459 if (status & HAL_INT_FATAL) { 460 sc->sc_stats.ast_hardware++; 461 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 462 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask); 463 } else if (status & HAL_INT_RXORN) { 464 sc->sc_stats.ast_rxorn++; 465 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 466 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask); 467 } else { 468 if (status & HAL_INT_RXEOL) { 469 /* 470 * NB: the hardware should re-read the link when 471 * RXE bit is written, but it doesn't work at 472 * least on older hardware revs. 473 */ 474 sc->sc_stats.ast_rxeol++; 475 sc->sc_rxlink = NULL; 476 } 477 if (status & HAL_INT_TXURN) { 478 sc->sc_stats.ast_txurn++; 479 /* bump tx trigger level */ 480 ath_hal_updatetxtriglevel(ah, AH_TRUE); 481 } 482 if (status & HAL_INT_RX) 483 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask); 484 if (status & HAL_INT_TX) 485 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask); 486 if (status & HAL_INT_SWBA) { 487 /* 488 * Handle beacon transmission directly; deferring 489 * this is too slow to meet timing constraints 490 * under load. 491 */ 492 ath_beacon_proc(sc, 0); 493 } 494 if (status & HAL_INT_BMISS) { 495 sc->sc_stats.ast_bmiss++; 496 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask); 497 } 498 } 499 } 500 501 static void 502 ath_fatal_proc(void *arg, int pending) 503 { 504 struct ath_softc *sc = arg; 505 506 device_printf(sc->sc_dev, "hardware error; resetting\n"); 507 ath_reset(sc); 508 } 509 510 static void 511 ath_rxorn_proc(void *arg, int pending) 512 { 513 struct ath_softc *sc = arg; 514 515 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n"); 516 ath_reset(sc); 517 } 518 519 static void 520 ath_bmiss_proc(void *arg, int pending) 521 { 522 struct ath_softc *sc = arg; 523 struct ieee80211com *ic = &sc->sc_ic; 524 525 DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending)); 526 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 527 ("unexpect operating mode %u", ic->ic_opmode)); 528 if (ic->ic_state == IEEE80211_S_RUN) { 529 /* 530 * Rather than go directly to scan state, try to 531 * reassociate first. If that fails then the state 532 * machine will drop us into scanning after timing 533 * out waiting for a probe response. 534 */ 535 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 536 } 537 } 538 539 static u_int 540 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 541 { 542 static const u_int modeflags[] = { 543 0, /* IEEE80211_MODE_AUTO */ 544 CHANNEL_A, /* IEEE80211_MODE_11A */ 545 CHANNEL_B, /* IEEE80211_MODE_11B */ 546 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 547 CHANNEL_T /* IEEE80211_MODE_TURBO */ 548 }; 549 return modeflags[ieee80211_chan2mode(ic, chan)]; 550 } 551 552 static void 553 ath_init(void *arg) 554 { 555 struct ath_softc *sc = (struct ath_softc *) arg; 556 struct ieee80211com *ic = &sc->sc_ic; 557 struct ifnet *ifp = &ic->ic_if; 558 struct ieee80211_node *ni; 559 enum ieee80211_phymode mode; 560 struct ath_hal *ah = sc->sc_ah; 561 HAL_STATUS status; 562 HAL_CHANNEL hchan; 563 564 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 565 __func__, ifp->if_flags)); 566 567 ATH_LOCK(sc); 568 /* 569 * Stop anything previously setup. This is safe 570 * whether this is the first time through or not. 571 */ 572 ath_stop(ifp); 573 574 /* 575 * The basic interface to setting the hardware in a good 576 * state is ``reset''. On return the hardware is known to 577 * be powered up and with interrupts disabled. This must 578 * be followed by initialization of the appropriate bits 579 * and then setup of the interrupt mask. 580 */ 581 hchan.channel = ic->ic_ibss_chan->ic_freq; 582 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); 583 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) { 584 if_printf(ifp, "unable to reset hardware; hal status %u\n", 585 status); 586 goto done; 587 } 588 589 /* 590 * Setup the hardware after reset: the key cache 591 * is filled as needed and the receive engine is 592 * set going. Frame transmit is handled entirely 593 * in the frame output path; there's nothing to do 594 * here except setup the interrupt mask. 595 */ 596 if (ic->ic_flags & IEEE80211_F_WEPON) 597 ath_initkeytable(sc); 598 if (ath_startrecv(sc) != 0) { 599 if_printf(ifp, "unable to start recv logic\n"); 600 goto done; 601 } 602 603 /* 604 * Enable interrupts. 605 */ 606 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 607 | HAL_INT_RXEOL | HAL_INT_RXORN 608 | HAL_INT_FATAL | HAL_INT_GLOBAL; 609 ath_hal_intrset(ah, sc->sc_imask); 610 611 ifp->if_flags |= IFF_RUNNING; 612 ic->ic_state = IEEE80211_S_INIT; 613 614 /* 615 * The hardware should be ready to go now so it's safe 616 * to kick the 802.11 state machine as it's likely to 617 * immediately call back to us to send mgmt frames. 618 */ 619 ni = ic->ic_bss; 620 ni->ni_chan = ic->ic_ibss_chan; 621 mode = ieee80211_chan2mode(ic, ni->ni_chan); 622 if (mode != sc->sc_curmode) 623 ath_setcurmode(sc, mode); 624 if (ic->ic_opmode != IEEE80211_M_MONITOR) 625 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 626 else 627 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 628 done: 629 ATH_UNLOCK(sc); 630 } 631 632 static void 633 ath_stop(struct ifnet *ifp) 634 { 635 struct ieee80211com *ic = (struct ieee80211com *) ifp; 636 struct ath_softc *sc = ifp->if_softc; 637 struct ath_hal *ah = sc->sc_ah; 638 639 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n", 640 __func__, sc->sc_invalid, ifp->if_flags)); 641 642 ATH_LOCK(sc); 643 if (ifp->if_flags & IFF_RUNNING) { 644 /* 645 * Shutdown the hardware and driver: 646 * disable interrupts 647 * turn off timers 648 * clear transmit machinery 649 * clear receive machinery 650 * drain and release tx queues 651 * reclaim beacon resources 652 * reset 802.11 state machine 653 * power down hardware 654 * 655 * Note that some of this work is not possible if the 656 * hardware is gone (invalid). 657 */ 658 ifp->if_flags &= ~IFF_RUNNING; 659 ifp->if_timer = 0; 660 if (!sc->sc_invalid) 661 ath_hal_intrset(ah, 0); 662 ath_draintxq(sc); 663 if (!sc->sc_invalid) 664 ath_stoprecv(sc); 665 else 666 sc->sc_rxlink = NULL; 667 IFQ_DRV_PURGE(&ifp->if_snd); 668 ath_beacon_free(sc); 669 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 670 if (!sc->sc_invalid) 671 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0); 672 } 673 ATH_UNLOCK(sc); 674 } 675 676 /* 677 * Reset the hardware w/o losing operational state. This is 678 * basically a more efficient way of doing ath_stop, ath_init, 679 * followed by state transitions to the current 802.11 680 * operational state. Used to recover from errors rx overrun 681 * and to reset the hardware when rf gain settings must be reset. 682 */ 683 static void 684 ath_reset(struct ath_softc *sc) 685 { 686 struct ieee80211com *ic = &sc->sc_ic; 687 struct ifnet *ifp = &ic->ic_if; 688 struct ath_hal *ah = sc->sc_ah; 689 struct ieee80211_channel *c; 690 HAL_STATUS status; 691 HAL_CHANNEL hchan; 692 693 /* 694 * Convert to a HAL channel description with the flags 695 * constrained to reflect the current operating mode. 696 */ 697 c = ic->ic_ibss_chan; 698 hchan.channel = c->ic_freq; 699 hchan.channelFlags = ath_chan2flags(ic, c); 700 701 ath_hal_intrset(ah, 0); /* disable interrupts */ 702 ath_draintxq(sc); /* stop xmit side */ 703 ath_stoprecv(sc); /* stop recv side */ 704 /* NB: indicate channel change so we do a full reset */ 705 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) 706 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 707 __func__, status); 708 ath_hal_intrset(ah, sc->sc_imask); 709 if (ath_startrecv(sc) != 0) /* restart recv */ 710 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 711 ath_start(ifp); /* restart xmit */ 712 if (ic->ic_state == IEEE80211_S_RUN) 713 ath_beacon_config(sc); /* restart beacons */ 714 } 715 716 static void 717 ath_start(struct ifnet *ifp) 718 { 719 struct ath_softc *sc = ifp->if_softc; 720 struct ath_hal *ah = sc->sc_ah; 721 struct ieee80211com *ic = &sc->sc_ic; 722 struct ieee80211_node *ni; 723 struct ath_buf *bf; 724 struct mbuf *m; 725 struct ieee80211_frame *wh; 726 727 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 728 return; 729 for (;;) { 730 /* 731 * Grab a TX buffer and associated resources. 732 */ 733 ATH_TXBUF_LOCK(sc); 734 bf = TAILQ_FIRST(&sc->sc_txbuf); 735 if (bf != NULL) 736 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 737 ATH_TXBUF_UNLOCK(sc); 738 if (bf == NULL) { 739 DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n", 740 __func__)); 741 sc->sc_stats.ast_tx_qstop++; 742 ifp->if_flags |= IFF_OACTIVE; 743 break; 744 } 745 /* 746 * Poll the management queue for frames; they 747 * have priority over normal data frames. 748 */ 749 IF_DEQUEUE(&ic->ic_mgtq, m); 750 if (m == NULL) { 751 /* 752 * No data frames go out unless we're associated. 753 */ 754 if (ic->ic_state != IEEE80211_S_RUN) { 755 DPRINTF(ATH_DEBUG_ANY, 756 ("%s: ignore data packet, state %u\n", 757 __func__, ic->ic_state)); 758 sc->sc_stats.ast_tx_discard++; 759 ATH_TXBUF_LOCK(sc); 760 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 761 ATH_TXBUF_UNLOCK(sc); 762 break; 763 } 764 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 765 if (m == NULL) { 766 ATH_TXBUF_LOCK(sc); 767 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 768 ATH_TXBUF_UNLOCK(sc); 769 break; 770 } 771 ifp->if_opackets++; 772 BPF_MTAP(ifp, m); 773 /* 774 * Encapsulate the packet in prep for transmission. 775 */ 776 m = ieee80211_encap(ifp, m, &ni); 777 if (m == NULL) { 778 DPRINTF(ATH_DEBUG_ANY, 779 ("%s: encapsulation failure\n", 780 __func__)); 781 sc->sc_stats.ast_tx_encap++; 782 goto bad; 783 } 784 wh = mtod(m, struct ieee80211_frame *); 785 if (ic->ic_flags & IEEE80211_F_WEPON) 786 wh->i_fc[1] |= IEEE80211_FC1_WEP; 787 } else { 788 /* 789 * Hack! The referenced node pointer is in the 790 * rcvif field of the packet header. This is 791 * placed there by ieee80211_mgmt_output because 792 * we need to hold the reference with the frame 793 * and there's no other way (other than packet 794 * tags which we consider too expensive to use) 795 * to pass it along. 796 */ 797 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 798 m->m_pkthdr.rcvif = NULL; 799 800 wh = mtod(m, struct ieee80211_frame *); 801 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 802 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 803 /* fill time stamp */ 804 u_int64_t tsf; 805 u_int32_t *tstamp; 806 807 tsf = ath_hal_gettsf64(ah); 808 /* XXX: adjust 100us delay to xmit */ 809 tsf += 100; 810 tstamp = (u_int32_t *)&wh[1]; 811 tstamp[0] = htole32(tsf & 0xffffffff); 812 tstamp[1] = htole32(tsf >> 32); 813 } 814 sc->sc_stats.ast_tx_mgmt++; 815 } 816 817 if (ath_tx_start(sc, ni, bf, m)) { 818 bad: 819 ATH_TXBUF_LOCK(sc); 820 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 821 ATH_TXBUF_UNLOCK(sc); 822 ifp->if_oerrors++; 823 if (ni && ni != ic->ic_bss) 824 ieee80211_free_node(ic, ni); 825 continue; 826 } 827 828 sc->sc_tx_timer = 5; 829 ifp->if_timer = 1; 830 } 831 } 832 833 static int 834 ath_media_change(struct ifnet *ifp) 835 { 836 int error; 837 838 error = ieee80211_media_change(ifp); 839 if (error == ENETRESET) { 840 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 841 (IFF_RUNNING|IFF_UP)) 842 ath_init(ifp); /* XXX lose error */ 843 error = 0; 844 } 845 return error; 846 } 847 848 static void 849 ath_watchdog(struct ifnet *ifp) 850 { 851 struct ath_softc *sc = ifp->if_softc; 852 struct ieee80211com *ic = &sc->sc_ic; 853 854 ifp->if_timer = 0; 855 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 856 return; 857 if (sc->sc_tx_timer) { 858 if (--sc->sc_tx_timer == 0) { 859 if_printf(ifp, "device timeout\n"); 860 #ifdef AR_DEBUG 861 if (ath_debug & ATH_DEBUG_WATCHDOG) 862 ath_hal_dumpstate(sc->sc_ah); 863 #endif /* AR_DEBUG */ 864 ath_reset(sc); 865 ifp->if_oerrors++; 866 sc->sc_stats.ast_watchdog++; 867 return; 868 } 869 ifp->if_timer = 1; 870 } 871 if (ic->ic_fixed_rate == -1) { 872 /* 873 * Run the rate control algorithm if we're not 874 * locked at a fixed rate. 875 */ 876 if (ic->ic_opmode == IEEE80211_M_STA) 877 ath_rate_ctl(sc, ic->ic_bss); 878 else 879 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc); 880 } 881 ieee80211_watchdog(ifp); 882 } 883 884 static int 885 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 886 { 887 struct ath_softc *sc = ifp->if_softc; 888 struct ifreq *ifr = (struct ifreq *)data; 889 int error = 0; 890 891 ATH_LOCK(sc); 892 switch (cmd) { 893 case SIOCSIFFLAGS: 894 if (ifp->if_flags & IFF_UP) { 895 if (ifp->if_flags & IFF_RUNNING) { 896 /* 897 * To avoid rescanning another access point, 898 * do not call ath_init() here. Instead, 899 * only reflect promisc mode settings. 900 */ 901 ath_mode_init(sc); 902 } else { 903 /* 904 * Beware of being called during detach to 905 * reset promiscuous mode. In that case we 906 * will still be marked UP but not RUNNING. 907 * However trying to re-init the interface 908 * is the wrong thing to do as we've already 909 * torn down much of our state. There's 910 * probably a better way to deal with this. 911 */ 912 if (!sc->sc_invalid) 913 ath_init(ifp); /* XXX lose error */ 914 } 915 } else 916 ath_stop(ifp); 917 break; 918 case SIOCADDMULTI: 919 case SIOCDELMULTI: 920 /* 921 * The upper layer has already installed/removed 922 * the multicast address(es), just recalculate the 923 * multicast filter for the card. 924 */ 925 if (ifp->if_flags & IFF_RUNNING) 926 ath_mode_init(sc); 927 break; 928 case SIOCGATHSTATS: 929 error = copyout(&sc->sc_stats, 930 ifr->ifr_data, sizeof (sc->sc_stats)); 931 break; 932 case SIOCGATHDIAG: { 933 struct ath_diag *ad = (struct ath_diag *)data; 934 struct ath_hal *ah = sc->sc_ah; 935 void *data; 936 u_int size; 937 938 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) { 939 if (size < ad->ad_size) 940 ad->ad_size = size; 941 if (data) 942 error = copyout(data, ad->ad_data, ad->ad_size); 943 } else 944 error = EINVAL; 945 break; 946 } 947 default: 948 error = ieee80211_ioctl(ifp, cmd, data); 949 if (error == ENETRESET) { 950 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 951 (IFF_RUNNING|IFF_UP)) 952 ath_init(ifp); /* XXX lose error */ 953 error = 0; 954 } 955 break; 956 } 957 ATH_UNLOCK(sc); 958 return error; 959 } 960 961 /* 962 * Fill the hardware key cache with key entries. 963 */ 964 static void 965 ath_initkeytable(struct ath_softc *sc) 966 { 967 struct ieee80211com *ic = &sc->sc_ic; 968 struct ath_hal *ah = sc->sc_ah; 969 int i; 970 971 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 972 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i]; 973 if (k->wk_len == 0) 974 ath_hal_keyreset(ah, i); 975 else 976 /* XXX return value */ 977 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */ 978 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k); 979 } 980 } 981 982 /* 983 * Calculate the receive filter according to the 984 * operating mode and state: 985 * 986 * o always accept unicast, broadcast, and multicast traffic 987 * o maintain current state of phy error reception 988 * o probe request frames are accepted only when operating in 989 * hostap, adhoc, or monitor modes 990 * o enable promiscuous mode according to the interface state 991 * o accept beacons: 992 * - when operating in adhoc mode so the 802.11 layer creates 993 * node table entries for peers, 994 * - when operating in station mode for collecting rssi data when 995 * the station is otherwise quiet, or 996 * - when scanning 997 */ 998 static u_int32_t 999 ath_calcrxfilter(struct ath_softc *sc) 1000 { 1001 struct ieee80211com *ic = &sc->sc_ic; 1002 struct ath_hal *ah = sc->sc_ah; 1003 struct ifnet *ifp = &ic->ic_if; 1004 u_int32_t rfilt; 1005 1006 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1007 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1008 if (ic->ic_opmode != IEEE80211_M_STA) 1009 rfilt |= HAL_RX_FILTER_PROBEREQ; 1010 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1011 (ifp->if_flags & IFF_PROMISC)) 1012 rfilt |= HAL_RX_FILTER_PROM; 1013 if (ic->ic_opmode == IEEE80211_M_STA || 1014 ic->ic_opmode == IEEE80211_M_IBSS || 1015 ic->ic_state == IEEE80211_S_SCAN) 1016 rfilt |= HAL_RX_FILTER_BEACON; 1017 return rfilt; 1018 } 1019 1020 static void 1021 ath_mode_init(struct ath_softc *sc) 1022 { 1023 struct ieee80211com *ic = &sc->sc_ic; 1024 struct ath_hal *ah = sc->sc_ah; 1025 struct ifnet *ifp = &ic->ic_if; 1026 u_int32_t rfilt, mfilt[2], val; 1027 u_int8_t pos; 1028 struct ifmultiaddr *ifma; 1029 1030 /* configure rx filter */ 1031 rfilt = ath_calcrxfilter(sc); 1032 ath_hal_setrxfilter(ah, rfilt); 1033 1034 /* configure operational mode */ 1035 ath_hal_setopmode(ah, ic->ic_opmode); 1036 1037 /* calculate and install multicast filter */ 1038 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1039 mfilt[0] = mfilt[1] = 0; 1040 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1041 caddr_t dl; 1042 1043 /* calculate XOR of eight 6bit values */ 1044 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1045 val = LE_READ_4(dl + 0); 1046 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1047 val = LE_READ_4(dl + 3); 1048 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1049 pos &= 0x3f; 1050 mfilt[pos / 32] |= (1 << (pos % 32)); 1051 } 1052 } else { 1053 mfilt[0] = mfilt[1] = ~0; 1054 } 1055 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1056 DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n", 1057 __func__, rfilt, mfilt[0], mfilt[1])); 1058 } 1059 1060 static void 1061 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error) 1062 { 1063 struct ath_buf *bf = arg; 1064 1065 KASSERT(nseg <= ATH_MAX_SCATTER, 1066 ("ath_mbuf_load_cb: too many DMA segments %u", nseg)); 1067 bf->bf_mapsize = mapsize; 1068 bf->bf_nseg = nseg; 1069 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0])); 1070 } 1071 1072 static int 1073 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1074 { 1075 struct ieee80211com *ic = &sc->sc_ic; 1076 struct ifnet *ifp = &ic->ic_if; 1077 struct ath_hal *ah = sc->sc_ah; 1078 struct ieee80211_frame *wh; 1079 struct ath_buf *bf; 1080 struct ath_desc *ds; 1081 struct mbuf *m; 1082 int error, pktlen; 1083 u_int8_t *frm, rate; 1084 u_int16_t capinfo; 1085 struct ieee80211_rateset *rs; 1086 const HAL_RATE_TABLE *rt; 1087 1088 bf = sc->sc_bcbuf; 1089 if (bf->bf_m != NULL) { 1090 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1091 m_freem(bf->bf_m); 1092 bf->bf_m = NULL; 1093 bf->bf_node = NULL; 1094 } 1095 /* 1096 * NB: the beacon data buffer must be 32-bit aligned; 1097 * we assume the mbuf routines will return us something 1098 * with this alignment (perhaps should assert). 1099 */ 1100 rs = &ni->ni_rates; 1101 pktlen = sizeof (struct ieee80211_frame) 1102 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6; 1103 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 1104 pktlen += 2; 1105 if (pktlen <= MHLEN) 1106 MGETHDR(m, M_DONTWAIT, MT_DATA); 1107 else 1108 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1109 if (m == NULL) { 1110 DPRINTF(ATH_DEBUG_BEACON, 1111 ("%s: cannot get mbuf/cluster; size %u\n", 1112 __func__, pktlen)); 1113 sc->sc_stats.ast_be_nombuf++; 1114 return ENOMEM; 1115 } 1116 1117 wh = mtod(m, struct ieee80211_frame *); 1118 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1119 IEEE80211_FC0_SUBTYPE_BEACON; 1120 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1121 *(u_int16_t *)wh->i_dur = 0; 1122 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN); 1123 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN); 1124 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN); 1125 *(u_int16_t *)wh->i_seq = 0; 1126 1127 /* 1128 * beacon frame format 1129 * [8] time stamp 1130 * [2] beacon interval 1131 * [2] cabability information 1132 * [tlv] ssid 1133 * [tlv] supported rates 1134 * [tlv] parameter set (IBSS) 1135 * [tlv] extended supported rates 1136 */ 1137 frm = (u_int8_t *)&wh[1]; 1138 memset(frm, 0, 8); /* timestamp is set by hardware */ 1139 frm += 8; 1140 *(u_int16_t *)frm = htole16(ni->ni_intval); 1141 frm += 2; 1142 if (ic->ic_opmode == IEEE80211_M_IBSS) 1143 capinfo = IEEE80211_CAPINFO_IBSS; 1144 else 1145 capinfo = IEEE80211_CAPINFO_ESS; 1146 if (ic->ic_flags & IEEE80211_F_WEPON) 1147 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1148 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1149 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1150 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1151 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1152 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1153 *(u_int16_t *)frm = htole16(capinfo); 1154 frm += 2; 1155 *frm++ = IEEE80211_ELEMID_SSID; 1156 *frm++ = ni->ni_esslen; 1157 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1158 frm += ni->ni_esslen; 1159 frm = ieee80211_add_rates(frm, rs); 1160 *frm++ = IEEE80211_ELEMID_DSPARMS; 1161 *frm++ = 1; 1162 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1163 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1164 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1165 *frm++ = 2; 1166 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1167 } else { 1168 /* TODO: TIM */ 1169 *frm++ = IEEE80211_ELEMID_TIM; 1170 *frm++ = 4; /* length */ 1171 *frm++ = 0; /* DTIM count */ 1172 *frm++ = 1; /* DTIM period */ 1173 *frm++ = 0; /* bitmap control */ 1174 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */ 1175 } 1176 frm = ieee80211_add_xrates(frm, rs); 1177 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1178 KASSERT(m->m_pkthdr.len <= pktlen, 1179 ("beacon bigger than expected, len %u calculated %u", 1180 m->m_pkthdr.len, pktlen)); 1181 1182 DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len)); 1183 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1184 ath_mbuf_load_cb, bf, 1185 BUS_DMA_NOWAIT); 1186 if (error != 0) { 1187 m_freem(m); 1188 return error; 1189 } 1190 KASSERT(bf->bf_nseg == 1, 1191 ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg)); 1192 bf->bf_m = m; 1193 1194 /* setup descriptors */ 1195 ds = bf->bf_desc; 1196 1197 ds->ds_link = 0; 1198 ds->ds_data = bf->bf_segs[0].ds_addr; 1199 /* 1200 * Calculate rate code. 1201 * XXX everything at min xmit rate 1202 */ 1203 rt = sc->sc_currates; 1204 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1205 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1206 rate = rt->info[0].rateCode | rt->info[0].shortPreamble; 1207 else 1208 rate = rt->info[0].rateCode; 1209 ath_hal_setuptxdesc(ah, ds 1210 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */ 1211 , sizeof(struct ieee80211_frame) /* header length */ 1212 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1213 , 0x20 /* txpower XXX */ 1214 , rate, 1 /* series 0 rate/tries */ 1215 , HAL_TXKEYIX_INVALID /* no encryption */ 1216 , 0 /* antenna mode */ 1217 , HAL_TXDESC_NOACK /* no ack for beacons */ 1218 , 0 /* rts/cts rate */ 1219 , 0 /* rts/cts duration */ 1220 ); 1221 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1222 /* XXX verify mbuf data area covers this roundup */ 1223 ath_hal_filltxdesc(ah, ds 1224 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */ 1225 , AH_TRUE /* first segment */ 1226 , AH_TRUE /* last segment */ 1227 ); 1228 1229 return 0; 1230 } 1231 1232 static void 1233 ath_beacon_proc(void *arg, int pending) 1234 { 1235 struct ath_softc *sc = arg; 1236 struct ieee80211com *ic = &sc->sc_ic; 1237 struct ath_buf *bf = sc->sc_bcbuf; 1238 struct ath_hal *ah = sc->sc_ah; 1239 1240 DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending)); 1241 if (ic->ic_opmode == IEEE80211_M_STA || 1242 bf == NULL || bf->bf_m == NULL) { 1243 DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n", 1244 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL)); 1245 return; 1246 } 1247 /* TODO: update beacon to reflect PS poll state */ 1248 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 1249 DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n", 1250 __func__, sc->sc_bhalq)); 1251 /* NB: the HAL still stops DMA, so proceed */ 1252 } 1253 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 1254 1255 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 1256 ath_hal_txstart(ah, sc->sc_bhalq); 1257 DPRINTF(ATH_DEBUG_BEACON_PROC, 1258 ("%s: TXDP%u = %p (%p)\n", __func__, 1259 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc)); 1260 } 1261 1262 static void 1263 ath_beacon_free(struct ath_softc *sc) 1264 { 1265 struct ath_buf *bf = sc->sc_bcbuf; 1266 1267 if (bf->bf_m != NULL) { 1268 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1269 m_freem(bf->bf_m); 1270 bf->bf_m = NULL; 1271 bf->bf_node = NULL; 1272 } 1273 } 1274 1275 /* 1276 * Configure the beacon and sleep timers. 1277 * 1278 * When operating as an AP this resets the TSF and sets 1279 * up the hardware to notify us when we need to issue beacons. 1280 * 1281 * When operating in station mode this sets up the beacon 1282 * timers according to the timestamp of the last received 1283 * beacon and the current TSF, configures PCF and DTIM 1284 * handling, programs the sleep registers so the hardware 1285 * will wakeup in time to receive beacons, and configures 1286 * the beacon miss handling so we'll receive a BMISS 1287 * interrupt when we stop seeing beacons from the AP 1288 * we've associated with. 1289 */ 1290 static void 1291 ath_beacon_config(struct ath_softc *sc) 1292 { 1293 struct ath_hal *ah = sc->sc_ah; 1294 struct ieee80211com *ic = &sc->sc_ic; 1295 struct ieee80211_node *ni = ic->ic_bss; 1296 u_int32_t nexttbtt; 1297 1298 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) | 1299 (LE_READ_4(ni->ni_tstamp) >> 10); 1300 DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt)); 1301 nexttbtt += ni->ni_intval; 1302 if (ic->ic_opmode == IEEE80211_M_STA) { 1303 HAL_BEACON_STATE bs; 1304 u_int32_t bmisstime; 1305 1306 /* NB: no PCF support right now */ 1307 memset(&bs, 0, sizeof(bs)); 1308 bs.bs_intval = ni->ni_intval; 1309 bs.bs_nexttbtt = nexttbtt; 1310 bs.bs_dtimperiod = bs.bs_intval; 1311 bs.bs_nextdtim = nexttbtt; 1312 /* 1313 * Calculate the number of consecutive beacons to miss 1314 * before taking a BMISS interrupt. The configuration 1315 * is specified in ms, so we need to convert that to 1316 * TU's and then calculate based on the beacon interval. 1317 * Note that we clamp the result to at most 10 beacons. 1318 */ 1319 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024; 1320 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval); 1321 if (bs.bs_bmissthreshold > 10) 1322 bs.bs_bmissthreshold = 10; 1323 else if (bs.bs_bmissthreshold <= 0) 1324 bs.bs_bmissthreshold = 1; 1325 1326 /* 1327 * Calculate sleep duration. The configuration is 1328 * given in ms. We insure a multiple of the beacon 1329 * period is used. Also, if the sleep duration is 1330 * greater than the DTIM period then it makes senses 1331 * to make it a multiple of that. 1332 * 1333 * XXX fixed at 100ms 1334 */ 1335 bs.bs_sleepduration = 1336 roundup((100 * 1000) / 1024, bs.bs_intval); 1337 if (bs.bs_sleepduration > bs.bs_dtimperiod) 1338 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 1339 1340 DPRINTF(ATH_DEBUG_BEACON, 1341 ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n" 1342 , __func__ 1343 , bs.bs_intval 1344 , bs.bs_nexttbtt 1345 , bs.bs_dtimperiod 1346 , bs.bs_nextdtim 1347 , bs.bs_bmissthreshold 1348 , bs.bs_sleepduration 1349 )); 1350 ath_hal_intrset(ah, 0); 1351 /* 1352 * Reset our tsf so the hardware will update the 1353 * tsf register to reflect timestamps found in 1354 * received beacons. 1355 */ 1356 ath_hal_resettsf(ah); 1357 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0); 1358 sc->sc_imask |= HAL_INT_BMISS; 1359 ath_hal_intrset(ah, sc->sc_imask); 1360 } else { 1361 DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n", 1362 __func__, ni->ni_intval, nexttbtt)); 1363 ath_hal_intrset(ah, 0); 1364 ath_hal_beaconinit(ah, ic->ic_opmode, 1365 nexttbtt, ni->ni_intval); 1366 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1367 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 1368 ath_hal_intrset(ah, sc->sc_imask); 1369 } 1370 } 1371 1372 static void 1373 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1374 { 1375 bus_addr_t *paddr = (bus_addr_t*) arg; 1376 *paddr = segs->ds_addr; 1377 } 1378 1379 static int 1380 ath_desc_alloc(struct ath_softc *sc) 1381 { 1382 int i, bsize, error; 1383 struct ath_desc *ds; 1384 struct ath_buf *bf; 1385 1386 /* allocate descriptors */ 1387 sc->sc_desc_len = sizeof(struct ath_desc) * 1388 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1); 1389 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap); 1390 if (error != 0) 1391 return error; 1392 1393 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc, 1394 BUS_DMA_NOWAIT, &sc->sc_ddmamap); 1395 if (error != 0) 1396 goto fail0; 1397 1398 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, 1399 sc->sc_desc, sc->sc_desc_len, 1400 ath_load_cb, &sc->sc_desc_paddr, 1401 BUS_DMA_NOWAIT); 1402 if (error != 0) 1403 goto fail1; 1404 1405 ds = sc->sc_desc; 1406 DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n", 1407 __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr, 1408 /*XXX*/ (u_long) sc->sc_desc_len)); 1409 1410 /* allocate buffers */ 1411 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1); 1412 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO); 1413 if (bf == NULL) 1414 goto fail2; 1415 sc->sc_bufptr = bf; 1416 1417 TAILQ_INIT(&sc->sc_rxbuf); 1418 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) { 1419 bf->bf_desc = ds; 1420 bf->bf_daddr = sc->sc_desc_paddr + 1421 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1422 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 1423 &bf->bf_dmamap); 1424 if (error != 0) 1425 break; 1426 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1427 } 1428 1429 TAILQ_INIT(&sc->sc_txbuf); 1430 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) { 1431 bf->bf_desc = ds; 1432 bf->bf_daddr = sc->sc_desc_paddr + 1433 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1434 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 1435 &bf->bf_dmamap); 1436 if (error != 0) 1437 break; 1438 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1439 } 1440 TAILQ_INIT(&sc->sc_txq); 1441 1442 /* beacon buffer */ 1443 bf->bf_desc = ds; 1444 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); 1445 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); 1446 if (error != 0) 1447 return error; 1448 sc->sc_bcbuf = bf; 1449 return 0; 1450 1451 fail2: 1452 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 1453 fail1: 1454 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap); 1455 fail0: 1456 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 1457 sc->sc_ddmamap = NULL; 1458 return error; 1459 } 1460 1461 static void 1462 ath_desc_free(struct ath_softc *sc) 1463 { 1464 struct ath_buf *bf; 1465 1466 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 1467 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap); 1468 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 1469 1470 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 1471 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1472 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1473 m_freem(bf->bf_m); 1474 } 1475 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list) 1476 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1477 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 1478 if (bf->bf_m) { 1479 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1480 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1481 m_freem(bf->bf_m); 1482 bf->bf_m = NULL; 1483 } 1484 } 1485 if (sc->sc_bcbuf != NULL) { 1486 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 1487 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 1488 sc->sc_bcbuf = NULL; 1489 } 1490 1491 TAILQ_INIT(&sc->sc_rxbuf); 1492 TAILQ_INIT(&sc->sc_txbuf); 1493 TAILQ_INIT(&sc->sc_txq); 1494 free(sc->sc_bufptr, M_DEVBUF); 1495 sc->sc_bufptr = NULL; 1496 } 1497 1498 static struct ieee80211_node * 1499 ath_node_alloc(struct ieee80211com *ic) 1500 { 1501 struct ath_node *an = 1502 malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO); 1503 if (an) { 1504 int i; 1505 for (i = 0; i < ATH_RHIST_SIZE; i++) 1506 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME; 1507 an->an_rx_hist_next = ATH_RHIST_SIZE-1; 1508 return &an->an_node; 1509 } else 1510 return NULL; 1511 } 1512 1513 static void 1514 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) 1515 { 1516 struct ath_softc *sc = ic->ic_if.if_softc; 1517 struct ath_buf *bf; 1518 1519 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 1520 if (bf->bf_node == ni) 1521 bf->bf_node = NULL; 1522 } 1523 (*sc->sc_node_free)(ic, ni); 1524 } 1525 1526 static void 1527 ath_node_copy(struct ieee80211com *ic, 1528 struct ieee80211_node *dst, const struct ieee80211_node *src) 1529 { 1530 struct ath_softc *sc = ic->ic_if.if_softc; 1531 1532 memcpy(&dst[1], &src[1], 1533 sizeof(struct ath_node) - sizeof(struct ieee80211_node)); 1534 (*sc->sc_node_copy)(ic, dst, src); 1535 } 1536 1537 1538 static u_int8_t 1539 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni) 1540 { 1541 struct ath_node *an = ATH_NODE(ni); 1542 int i, now, nsamples, rssi; 1543 1544 /* 1545 * Calculate the average over the last second of sampled data. 1546 */ 1547 now = ticks; 1548 nsamples = 0; 1549 rssi = 0; 1550 i = an->an_rx_hist_next; 1551 do { 1552 struct ath_recv_hist *rh = &an->an_rx_hist[i]; 1553 if (rh->arh_ticks == ATH_RHIST_NOTIME) 1554 goto done; 1555 if (now - rh->arh_ticks > hz) 1556 goto done; 1557 rssi += rh->arh_rssi; 1558 nsamples++; 1559 if (i == 0) 1560 i = ATH_RHIST_SIZE-1; 1561 else 1562 i--; 1563 } while (i != an->an_rx_hist_next); 1564 done: 1565 /* 1566 * Return either the average or the last known 1567 * value if there is no recent data. 1568 */ 1569 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi); 1570 } 1571 1572 static int 1573 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 1574 { 1575 struct ath_hal *ah = sc->sc_ah; 1576 int error; 1577 struct mbuf *m; 1578 struct ath_desc *ds; 1579 1580 m = bf->bf_m; 1581 if (m == NULL) { 1582 /* 1583 * NB: by assigning a page to the rx dma buffer we 1584 * implicitly satisfy the Atheros requirement that 1585 * this buffer be cache-line-aligned and sized to be 1586 * multiple of the cache line size. Not doing this 1587 * causes weird stuff to happen (for the 5210 at least). 1588 */ 1589 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1590 if (m == NULL) { 1591 DPRINTF(ATH_DEBUG_ANY, 1592 ("%s: no mbuf/cluster\n", __func__)); 1593 sc->sc_stats.ast_rx_nombuf++; 1594 return ENOMEM; 1595 } 1596 bf->bf_m = m; 1597 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 1598 1599 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1600 ath_mbuf_load_cb, bf, 1601 BUS_DMA_NOWAIT); 1602 if (error != 0) { 1603 DPRINTF(ATH_DEBUG_ANY, 1604 ("%s: bus_dmamap_load_mbuf failed; error %d\n", 1605 __func__, error)); 1606 sc->sc_stats.ast_rx_busdma++; 1607 return error; 1608 } 1609 KASSERT(bf->bf_nseg == 1, 1610 ("ath_rxbuf_init: multi-segment packet; nseg %u", 1611 bf->bf_nseg)); 1612 } 1613 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 1614 1615 /* 1616 * Setup descriptors. For receive we always terminate 1617 * the descriptor list with a self-linked entry so we'll 1618 * not get overrun under high load (as can happen with a 1619 * 5212 when ANI processing enables PHY errors). 1620 * 1621 * To insure the last descriptor is self-linked we create 1622 * each descriptor as self-linked and add it to the end. As 1623 * each additional descriptor is added the previous self-linked 1624 * entry is ``fixed'' naturally. This should be safe even 1625 * if DMA is happening. When processing RX interrupts we 1626 * never remove/process the last, self-linked, entry on the 1627 * descriptor list. This insures the hardware always has 1628 * someplace to write a new frame. 1629 */ 1630 ds = bf->bf_desc; 1631 ds->ds_link = bf->bf_daddr; /* link to self */ 1632 ds->ds_data = bf->bf_segs[0].ds_addr; 1633 ath_hal_setuprxdesc(ah, ds 1634 , m->m_len /* buffer size */ 1635 , 0 1636 ); 1637 1638 if (sc->sc_rxlink != NULL) 1639 *sc->sc_rxlink = bf->bf_daddr; 1640 sc->sc_rxlink = &ds->ds_link; 1641 return 0; 1642 } 1643 1644 static void 1645 ath_rx_proc(void *arg, int npending) 1646 { 1647 #define PA2DESC(_sc, _pa) \ 1648 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 1649 ((_pa) - (_sc)->sc_desc_paddr))) 1650 struct ath_softc *sc = arg; 1651 struct ath_buf *bf; 1652 struct ieee80211com *ic = &sc->sc_ic; 1653 struct ifnet *ifp = &ic->ic_if; 1654 struct ath_hal *ah = sc->sc_ah; 1655 struct ath_desc *ds; 1656 struct mbuf *m; 1657 struct ieee80211_frame *wh, whbuf; 1658 struct ieee80211_node *ni; 1659 struct ath_node *an; 1660 struct ath_recv_hist *rh; 1661 int len; 1662 u_int phyerr; 1663 HAL_STATUS status; 1664 1665 DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending)); 1666 do { 1667 bf = TAILQ_FIRST(&sc->sc_rxbuf); 1668 if (bf == NULL) { /* NB: shouldn't happen */ 1669 if_printf(ifp, "ath_rx_proc: no buffer!\n"); 1670 break; 1671 } 1672 ds = bf->bf_desc; 1673 if (ds->ds_link == bf->bf_daddr) { 1674 /* NB: never process the self-linked entry at the end */ 1675 break; 1676 } 1677 m = bf->bf_m; 1678 if (m == NULL) { /* NB: shouldn't happen */ 1679 if_printf(ifp, "ath_rx_proc: no mbuf!\n"); 1680 continue; 1681 } 1682 /* XXX sync descriptor memory */ 1683 /* 1684 * Must provide the virtual address of the current 1685 * descriptor, the physical address, and the virtual 1686 * address of the next descriptor in the h/w chain. 1687 * This allows the HAL to look ahead to see if the 1688 * hardware is done with a descriptor by checking the 1689 * done bit in the following descriptor and the address 1690 * of the current descriptor the DMA engine is working 1691 * on. All this is necessary because of our use of 1692 * a self-linked list to avoid rx overruns. 1693 */ 1694 status = ath_hal_rxprocdesc(ah, ds, 1695 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 1696 #ifdef AR_DEBUG 1697 if (ath_debug & ATH_DEBUG_RECV_DESC) 1698 ath_printrxbuf(bf, status == HAL_OK); 1699 #endif 1700 if (status == HAL_EINPROGRESS) 1701 break; 1702 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 1703 if (ds->ds_rxstat.rs_status != 0) { 1704 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 1705 sc->sc_stats.ast_rx_crcerr++; 1706 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 1707 sc->sc_stats.ast_rx_fifoerr++; 1708 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) 1709 sc->sc_stats.ast_rx_badcrypt++; 1710 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 1711 sc->sc_stats.ast_rx_phyerr++; 1712 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 1713 sc->sc_stats.ast_rx_phy[phyerr]++; 1714 } else { 1715 /* 1716 * NB: don't count PHY errors as input errors; 1717 * we enable them on the 5212 to collect info 1718 * about environmental noise and, in that 1719 * setting, they don't really reflect tx/rx 1720 * errors. 1721 */ 1722 ifp->if_ierrors++; 1723 } 1724 goto rx_next; 1725 } 1726 1727 len = ds->ds_rxstat.rs_datalen; 1728 if (len < IEEE80211_MIN_LEN) { 1729 DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n", 1730 __func__, len)); 1731 sc->sc_stats.ast_rx_tooshort++; 1732 goto rx_next; 1733 } 1734 1735 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 1736 BUS_DMASYNC_POSTREAD); 1737 1738 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1739 bf->bf_m = NULL; 1740 m->m_pkthdr.rcvif = ifp; 1741 m->m_pkthdr.len = m->m_len = len; 1742 1743 if (sc->sc_drvbpf) { 1744 sc->sc_rx_th.wr_rate = 1745 sc->sc_hwmap[ds->ds_rxstat.rs_rate]; 1746 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 1747 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 1748 /* XXX TSF */ 1749 1750 bpf_mtap2(sc->sc_drvbpf, 1751 &sc->sc_rx_th, sc->sc_rx_th_len, m); 1752 } 1753 1754 m_adj(m, -IEEE80211_CRC_LEN); 1755 wh = mtod(m, struct ieee80211_frame *); 1756 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1757 /* 1758 * WEP is decrypted by hardware. Clear WEP bit 1759 * and trim WEP header for ieee80211_input(). 1760 */ 1761 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1762 memcpy(&whbuf, wh, sizeof(whbuf)); 1763 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN); 1764 wh = mtod(m, struct ieee80211_frame *); 1765 memcpy(wh, &whbuf, sizeof(whbuf)); 1766 /* 1767 * Also trim WEP ICV from the tail. 1768 */ 1769 m_adj(m, -IEEE80211_WEP_CRCLEN); 1770 } 1771 1772 /* 1773 * Locate the node for sender, track state, and 1774 * then pass this node (referenced) up to the 802.11 1775 * layer for its use. We are required to pass 1776 * something so we fall back to ic_bss when this frame 1777 * is from an unknown sender. 1778 */ 1779 if (ic->ic_opmode != IEEE80211_M_STA) { 1780 ni = ieee80211_find_node(ic, wh->i_addr2); 1781 if (ni == NULL) 1782 ni = ieee80211_ref_node(ic->ic_bss); 1783 } else 1784 ni = ieee80211_ref_node(ic->ic_bss); 1785 1786 /* 1787 * Record driver-specific state. 1788 */ 1789 an = ATH_NODE(ni); 1790 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE) 1791 an->an_rx_hist_next = 0; 1792 rh = &an->an_rx_hist[an->an_rx_hist_next]; 1793 rh->arh_ticks = ticks; 1794 rh->arh_rssi = ds->ds_rxstat.rs_rssi; 1795 rh->arh_antenna = ds->ds_rxstat.rs_antenna; 1796 1797 /* 1798 * Send frame up for processing. 1799 */ 1800 ieee80211_input(ifp, m, ni, 1801 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 1802 1803 /* 1804 * The frame may have caused the node to be marked for 1805 * reclamation (e.g. in response to a DEAUTH message) 1806 * so use free_node here instead of unref_node. 1807 */ 1808 if (ni == ic->ic_bss) 1809 ieee80211_unref_node(&ni); 1810 else 1811 ieee80211_free_node(ic, ni); 1812 rx_next: 1813 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1814 } while (ath_rxbuf_init(sc, bf) == 0); 1815 1816 ath_hal_rxmonitor(ah); /* rx signal state monitoring */ 1817 ath_hal_rxena(ah); /* in case of RXEOL */ 1818 #undef PA2DESC 1819 } 1820 1821 /* 1822 * XXX Size of an ACK control frame in bytes. 1823 */ 1824 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4) 1825 1826 static int 1827 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 1828 struct mbuf *m0) 1829 { 1830 struct ieee80211com *ic = &sc->sc_ic; 1831 struct ath_hal *ah = sc->sc_ah; 1832 struct ifnet *ifp = &sc->sc_ic.ic_if; 1833 int i, error, iswep, hdrlen, pktlen; 1834 u_int8_t rix, cix, txrate, ctsrate; 1835 struct ath_desc *ds; 1836 struct mbuf *m; 1837 struct ieee80211_frame *wh; 1838 u_int32_t iv; 1839 u_int8_t *ivp; 1840 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) + 1841 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN]; 1842 u_int subtype, flags, ctsduration, antenna; 1843 HAL_PKT_TYPE atype; 1844 const HAL_RATE_TABLE *rt; 1845 HAL_BOOL shortPreamble; 1846 struct ath_node *an; 1847 1848 wh = mtod(m0, struct ieee80211_frame *); 1849 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1850 hdrlen = sizeof(struct ieee80211_frame); 1851 pktlen = m0->m_pkthdr.len; 1852 1853 if (iswep) { 1854 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen); 1855 m_adj(m0, hdrlen); 1856 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT); 1857 if (m0 == NULL) { 1858 sc->sc_stats.ast_tx_nombuf++; 1859 return ENOMEM; 1860 } 1861 ivp = hdrbuf + hdrlen; 1862 wh = mtod(m0, struct ieee80211_frame *); 1863 /* 1864 * XXX 1865 * IV must not duplicate during the lifetime of the key. 1866 * But no mechanism to renew keys is defined in IEEE 802.11 1867 * WEP. And IV may be duplicated between other stations 1868 * because of the session key itself is shared. 1869 * So we use pseudo random IV for now, though it is not the 1870 * right way. 1871 */ 1872 iv = ic->ic_iv; 1873 /* 1874 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: 1875 * (B, 255, N) with 3 <= B < 8 1876 */ 1877 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00) 1878 iv += 0x000100; 1879 ic->ic_iv = iv + 1; 1880 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) { 1881 ivp[i] = iv; 1882 iv >>= 8; 1883 } 1884 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */ 1885 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf)); 1886 /* 1887 * The ICV length must be included into hdrlen and pktlen. 1888 */ 1889 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN; 1890 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN; 1891 } 1892 pktlen += IEEE80211_CRC_LEN; 1893 1894 /* 1895 * Load the DMA map so any coalescing is done. This 1896 * also calculates the number of descriptors we need. 1897 */ 1898 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 1899 ath_mbuf_load_cb, bf, 1900 BUS_DMA_NOWAIT); 1901 if (error == EFBIG) { 1902 /* XXX packet requires too many descriptors */ 1903 bf->bf_nseg = ATH_TXDESC+1; 1904 } else if (error != 0) { 1905 sc->sc_stats.ast_tx_busdma++; 1906 m_freem(m0); 1907 return error; 1908 } 1909 /* 1910 * Discard null packets and check for packets that 1911 * require too many TX descriptors. We try to convert 1912 * the latter to a cluster. 1913 */ 1914 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 1915 sc->sc_stats.ast_tx_linear++; 1916 MGETHDR(m, M_DONTWAIT, MT_DATA); 1917 if (m == NULL) { 1918 sc->sc_stats.ast_tx_nombuf++; 1919 m_freem(m0); 1920 return ENOMEM; 1921 } 1922 M_MOVE_PKTHDR(m, m0); 1923 MCLGET(m, M_DONTWAIT); 1924 if ((m->m_flags & M_EXT) == 0) { 1925 sc->sc_stats.ast_tx_nomcl++; 1926 m_freem(m0); 1927 m_free(m); 1928 return ENOMEM; 1929 } 1930 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 1931 m_freem(m0); 1932 m->m_len = m->m_pkthdr.len; 1933 m0 = m; 1934 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 1935 ath_mbuf_load_cb, bf, 1936 BUS_DMA_NOWAIT); 1937 if (error != 0) { 1938 sc->sc_stats.ast_tx_busdma++; 1939 m_freem(m0); 1940 return error; 1941 } 1942 KASSERT(bf->bf_nseg == 1, 1943 ("ath_tx_start: packet not one segment; nseg %u", 1944 bf->bf_nseg)); 1945 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 1946 sc->sc_stats.ast_tx_nodata++; 1947 m_freem(m0); 1948 return EIO; 1949 } 1950 DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen)); 1951 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 1952 bf->bf_m = m0; 1953 bf->bf_node = ni; /* NB: held reference */ 1954 1955 /* setup descriptors */ 1956 ds = bf->bf_desc; 1957 rt = sc->sc_currates; 1958 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1959 1960 /* 1961 * Calculate Atheros packet type from IEEE80211 packet header 1962 * and setup for rate calculations. 1963 */ 1964 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1965 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1966 case IEEE80211_FC0_TYPE_MGT: 1967 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1968 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1969 atype = HAL_PKT_TYPE_BEACON; 1970 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1971 atype = HAL_PKT_TYPE_PROBE_RESP; 1972 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1973 atype = HAL_PKT_TYPE_ATIM; 1974 rix = 0; /* XXX lowest rate */ 1975 break; 1976 case IEEE80211_FC0_TYPE_CTL: 1977 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1978 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL) 1979 atype = HAL_PKT_TYPE_PSPOLL; 1980 rix = 0; /* XXX lowest rate */ 1981 break; 1982 default: 1983 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] & 1984 IEEE80211_RATE_VAL]; 1985 if (rix == 0xff) { 1986 if_printf(ifp, "bogus xmit rate 0x%x\n", 1987 ni->ni_rates.rs_rates[ni->ni_txrate]); 1988 sc->sc_stats.ast_tx_badrate++; 1989 m_freem(m0); 1990 return EIO; 1991 } 1992 break; 1993 } 1994 /* 1995 * NB: the 802.11 layer marks whether or not we should 1996 * use short preamble based on the current mode and 1997 * negotiated parameters. 1998 */ 1999 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2000 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 2001 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble; 2002 shortPreamble = AH_TRUE; 2003 sc->sc_stats.ast_tx_shortpre++; 2004 } else { 2005 txrate = rt->info[rix].rateCode; 2006 shortPreamble = AH_FALSE; 2007 } 2008 2009 /* 2010 * Calculate miscellaneous flags. 2011 */ 2012 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */ 2013 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2014 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 2015 sc->sc_stats.ast_tx_noack++; 2016 } else if (pktlen > ic->ic_rtsthreshold) { 2017 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 2018 sc->sc_stats.ast_tx_rts++; 2019 } 2020 2021 /* 2022 * Calculate duration. This logically belongs in the 802.11 2023 * layer but it lacks sufficient information to calculate it. 2024 */ 2025 if ((flags & HAL_TXDESC_NOACK) == 0 && 2026 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 2027 u_int16_t dur; 2028 /* 2029 * XXX not right with fragmentation. 2030 */ 2031 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE, 2032 rix, shortPreamble); 2033 *((u_int16_t*) wh->i_dur) = htole16(dur); 2034 } 2035 2036 /* 2037 * Calculate RTS/CTS rate and duration if needed. 2038 */ 2039 ctsduration = 0; 2040 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 2041 /* 2042 * CTS transmit rate is derived from the transmit rate 2043 * by looking in the h/w rate table. We must also factor 2044 * in whether or not a short preamble is to be used. 2045 */ 2046 cix = rt->info[rix].controlRate; 2047 ctsrate = rt->info[cix].rateCode; 2048 if (shortPreamble) 2049 ctsrate |= rt->info[cix].shortPreamble; 2050 /* 2051 * Compute the transmit duration based on the size 2052 * of an ACK frame. We call into the HAL to do the 2053 * computation since it depends on the characteristics 2054 * of the actual PHY being used. 2055 */ 2056 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */ 2057 ctsduration += ath_hal_computetxtime(ah, 2058 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2059 } 2060 /* SIFS + data */ 2061 ctsduration += ath_hal_computetxtime(ah, 2062 rt, pktlen, rix, shortPreamble); 2063 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */ 2064 ctsduration += ath_hal_computetxtime(ah, 2065 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2066 } 2067 } else 2068 ctsrate = 0; 2069 2070 /* 2071 * For now use the antenna on which the last good 2072 * frame was received on. We assume this field is 2073 * initialized to 0 which gives us ``auto'' or the 2074 * ``default'' antenna. 2075 */ 2076 an = (struct ath_node *) ni; 2077 if (an->an_tx_antenna) 2078 antenna = an->an_tx_antenna; 2079 else 2080 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna; 2081 2082 if (ic->ic_rawbpf) 2083 bpf_mtap(ic->ic_rawbpf, m0); 2084 if (sc->sc_drvbpf) { 2085 sc->sc_tx_th.wt_flags = 0; 2086 if (shortPreamble) 2087 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2088 if (iswep) 2089 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2090 sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2091 sc->sc_tx_th.wt_txpower = 60/2; /* XXX */ 2092 sc->sc_tx_th.wt_antenna = antenna; 2093 2094 bpf_mtap2(sc->sc_drvbpf, 2095 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 2096 } 2097 2098 /* 2099 * Formulate first tx descriptor with tx controls. 2100 */ 2101 /* XXX check return value? */ 2102 ath_hal_setuptxdesc(ah, ds 2103 , pktlen /* packet length */ 2104 , hdrlen /* header length */ 2105 , atype /* Atheros packet type */ 2106 , 60 /* txpower XXX */ 2107 , txrate, 1+10 /* series 0 rate/tries */ 2108 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID 2109 , antenna /* antenna mode */ 2110 , flags /* flags */ 2111 , ctsrate /* rts/cts rate */ 2112 , ctsduration /* rts/cts duration */ 2113 ); 2114 #ifdef notyet 2115 ath_hal_setupxtxdesc(ah, ds 2116 , AH_FALSE /* short preamble */ 2117 , 0, 0 /* series 1 rate/tries */ 2118 , 0, 0 /* series 2 rate/tries */ 2119 , 0, 0 /* series 3 rate/tries */ 2120 ); 2121 #endif 2122 /* 2123 * Fillin the remainder of the descriptor info. 2124 */ 2125 for (i = 0; i < bf->bf_nseg; i++, ds++) { 2126 ds->ds_data = bf->bf_segs[i].ds_addr; 2127 if (i == bf->bf_nseg - 1) 2128 ds->ds_link = 0; 2129 else 2130 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 2131 ath_hal_filltxdesc(ah, ds 2132 , bf->bf_segs[i].ds_len /* segment length */ 2133 , i == 0 /* first segment */ 2134 , i == bf->bf_nseg - 1 /* last segment */ 2135 ); 2136 DPRINTF(ATH_DEBUG_XMIT, 2137 ("%s: %d: %08x %08x %08x %08x %08x %08x\n", 2138 __func__, i, ds->ds_link, ds->ds_data, 2139 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1])); 2140 } 2141 2142 /* 2143 * Insert the frame on the outbound list and 2144 * pass it on to the hardware. 2145 */ 2146 ATH_TXQ_LOCK(sc); 2147 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list); 2148 if (sc->sc_txlink == NULL) { 2149 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr); 2150 DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__, 2151 (caddr_t)bf->bf_daddr, bf->bf_desc)); 2152 } else { 2153 *sc->sc_txlink = bf->bf_daddr; 2154 DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__, 2155 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc)); 2156 } 2157 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 2158 ATH_TXQ_UNLOCK(sc); 2159 2160 ath_hal_txstart(ah, sc->sc_txhalq); 2161 return 0; 2162 } 2163 2164 static void 2165 ath_tx_proc(void *arg, int npending) 2166 { 2167 struct ath_softc *sc = arg; 2168 struct ath_hal *ah = sc->sc_ah; 2169 struct ath_buf *bf; 2170 struct ieee80211com *ic = &sc->sc_ic; 2171 struct ifnet *ifp = &ic->ic_if; 2172 struct ath_desc *ds; 2173 struct ieee80211_node *ni; 2174 struct ath_node *an; 2175 int sr, lr; 2176 HAL_STATUS status; 2177 2178 DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n", 2179 __func__, npending, 2180 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq), 2181 sc->sc_txlink)); 2182 for (;;) { 2183 ATH_TXQ_LOCK(sc); 2184 bf = TAILQ_FIRST(&sc->sc_txq); 2185 if (bf == NULL) { 2186 sc->sc_txlink = NULL; 2187 ATH_TXQ_UNLOCK(sc); 2188 break; 2189 } 2190 /* only the last descriptor is needed */ 2191 ds = &bf->bf_desc[bf->bf_nseg - 1]; 2192 status = ath_hal_txprocdesc(ah, ds); 2193 #ifdef AR_DEBUG 2194 if (ath_debug & ATH_DEBUG_XMIT_DESC) 2195 ath_printtxbuf(bf, status == HAL_OK); 2196 #endif 2197 if (status == HAL_EINPROGRESS) { 2198 ATH_TXQ_UNLOCK(sc); 2199 break; 2200 } 2201 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2202 ATH_TXQ_UNLOCK(sc); 2203 2204 ni = bf->bf_node; 2205 if (ni != NULL) { 2206 an = (struct ath_node *) ni; 2207 if (ds->ds_txstat.ts_status == 0) { 2208 an->an_tx_ok++; 2209 an->an_tx_antenna = ds->ds_txstat.ts_antenna; 2210 } else { 2211 an->an_tx_err++; 2212 ifp->if_oerrors++; 2213 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 2214 sc->sc_stats.ast_tx_xretries++; 2215 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 2216 sc->sc_stats.ast_tx_fifoerr++; 2217 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 2218 sc->sc_stats.ast_tx_filtered++; 2219 an->an_tx_antenna = 0; /* invalidate */ 2220 } 2221 sr = ds->ds_txstat.ts_shortretry; 2222 lr = ds->ds_txstat.ts_longretry; 2223 sc->sc_stats.ast_tx_shortretry += sr; 2224 sc->sc_stats.ast_tx_longretry += lr; 2225 if (sr + lr) 2226 an->an_tx_retr++; 2227 /* 2228 * Reclaim reference to node. 2229 * 2230 * NB: the node may be reclaimed here if, for example 2231 * this is a DEAUTH message that was sent and the 2232 * node was timed out due to inactivity. 2233 */ 2234 if (ni != ic->ic_bss) 2235 ieee80211_free_node(ic, ni); 2236 } 2237 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2238 BUS_DMASYNC_POSTWRITE); 2239 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2240 m_freem(bf->bf_m); 2241 bf->bf_m = NULL; 2242 bf->bf_node = NULL; 2243 2244 ATH_TXBUF_LOCK(sc); 2245 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2246 ATH_TXBUF_UNLOCK(sc); 2247 } 2248 ifp->if_flags &= ~IFF_OACTIVE; 2249 sc->sc_tx_timer = 0; 2250 2251 ath_start(ifp); 2252 } 2253 2254 /* 2255 * Drain the transmit queue and reclaim resources. 2256 */ 2257 static void 2258 ath_draintxq(struct ath_softc *sc) 2259 { 2260 struct ath_hal *ah = sc->sc_ah; 2261 struct ieee80211com *ic = &sc->sc_ic; 2262 struct ifnet *ifp = &ic->ic_if; 2263 struct ieee80211_node *ni; 2264 struct ath_buf *bf; 2265 2266 /* XXX return value */ 2267 if (!sc->sc_invalid) { 2268 /* don't touch the hardware if marked invalid */ 2269 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq); 2270 DPRINTF(ATH_DEBUG_RESET, 2271 ("%s: tx queue %p, link %p\n", __func__, 2272 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq), 2273 sc->sc_txlink)); 2274 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 2275 DPRINTF(ATH_DEBUG_RESET, 2276 ("%s: beacon queue %p\n", __func__, 2277 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq))); 2278 } 2279 for (;;) { 2280 ATH_TXQ_LOCK(sc); 2281 bf = TAILQ_FIRST(&sc->sc_txq); 2282 if (bf == NULL) { 2283 sc->sc_txlink = NULL; 2284 ATH_TXQ_UNLOCK(sc); 2285 break; 2286 } 2287 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2288 ATH_TXQ_UNLOCK(sc); 2289 #ifdef AR_DEBUG 2290 if (ath_debug & ATH_DEBUG_RESET) 2291 ath_printtxbuf(bf, 2292 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 2293 #endif /* AR_DEBUG */ 2294 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2295 m_freem(bf->bf_m); 2296 bf->bf_m = NULL; 2297 ni = bf->bf_node; 2298 bf->bf_node = NULL; 2299 if (ni != NULL && ni != ic->ic_bss) { 2300 /* 2301 * Reclaim node reference. 2302 */ 2303 ieee80211_free_node(ic, ni); 2304 } 2305 ATH_TXBUF_LOCK(sc); 2306 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2307 ATH_TXBUF_UNLOCK(sc); 2308 } 2309 ifp->if_flags &= ~IFF_OACTIVE; 2310 sc->sc_tx_timer = 0; 2311 } 2312 2313 /* 2314 * Disable the receive h/w in preparation for a reset. 2315 */ 2316 static void 2317 ath_stoprecv(struct ath_softc *sc) 2318 { 2319 #define PA2DESC(_sc, _pa) \ 2320 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 2321 ((_pa) - (_sc)->sc_desc_paddr))) 2322 struct ath_hal *ah = sc->sc_ah; 2323 2324 ath_hal_stoppcurecv(ah); /* disable PCU */ 2325 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 2326 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 2327 DELAY(3000); /* long enough for 1 frame */ 2328 #ifdef AR_DEBUG 2329 if (ath_debug & ATH_DEBUG_RESET) { 2330 struct ath_buf *bf; 2331 2332 printf("%s: rx queue %p, link %p\n", __func__, 2333 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 2334 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 2335 struct ath_desc *ds = bf->bf_desc; 2336 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr, 2337 PA2DESC(sc, ds->ds_link)) == HAL_OK) 2338 ath_printrxbuf(bf, 1); 2339 } 2340 } 2341 #endif 2342 sc->sc_rxlink = NULL; /* just in case */ 2343 #undef PA2DESC 2344 } 2345 2346 /* 2347 * Enable the receive h/w following a reset. 2348 */ 2349 static int 2350 ath_startrecv(struct ath_softc *sc) 2351 { 2352 struct ath_hal *ah = sc->sc_ah; 2353 struct ath_buf *bf; 2354 2355 sc->sc_rxlink = NULL; 2356 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 2357 int error = ath_rxbuf_init(sc, bf); 2358 if (error != 0) { 2359 DPRINTF(ATH_DEBUG_RECV, 2360 ("%s: ath_rxbuf_init failed %d\n", 2361 __func__, error)); 2362 return error; 2363 } 2364 } 2365 2366 bf = TAILQ_FIRST(&sc->sc_rxbuf); 2367 ath_hal_putrxbuf(ah, bf->bf_daddr); 2368 ath_hal_rxena(ah); /* enable recv descriptors */ 2369 ath_mode_init(sc); /* set filters, etc. */ 2370 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 2371 return 0; 2372 } 2373 2374 /* 2375 * Set/change channels. If the channel is really being changed, 2376 * it's done by resetting the chip. To accomplish this we must 2377 * first cleanup any pending DMA, then restart stuff after a la 2378 * ath_init. 2379 */ 2380 static int 2381 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 2382 { 2383 struct ath_hal *ah = sc->sc_ah; 2384 struct ieee80211com *ic = &sc->sc_ic; 2385 2386 DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__, 2387 ieee80211_chan2ieee(ic, ic->ic_ibss_chan), 2388 ic->ic_ibss_chan->ic_freq, 2389 ieee80211_chan2ieee(ic, chan), chan->ic_freq)); 2390 if (chan != ic->ic_ibss_chan) { 2391 HAL_STATUS status; 2392 HAL_CHANNEL hchan; 2393 enum ieee80211_phymode mode; 2394 2395 /* 2396 * To switch channels clear any pending DMA operations; 2397 * wait long enough for the RX fifo to drain, reset the 2398 * hardware at the new frequency, and then re-enable 2399 * the relevant bits of the h/w. 2400 */ 2401 ath_hal_intrset(ah, 0); /* disable interrupts */ 2402 ath_draintxq(sc); /* clear pending tx frames */ 2403 ath_stoprecv(sc); /* turn off frame recv */ 2404 /* 2405 * Convert to a HAL channel description with 2406 * the flags constrained to reflect the current 2407 * operating mode. 2408 */ 2409 hchan.channel = chan->ic_freq; 2410 hchan.channelFlags = ath_chan2flags(ic, chan); 2411 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 2412 if_printf(&ic->ic_if, "ath_chan_set: unable to reset " 2413 "channel %u (%u Mhz)\n", 2414 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 2415 return EIO; 2416 } 2417 /* 2418 * Re-enable rx framework. 2419 */ 2420 if (ath_startrecv(sc) != 0) { 2421 if_printf(&ic->ic_if, 2422 "ath_chan_set: unable to restart recv logic\n"); 2423 return EIO; 2424 } 2425 2426 /* 2427 * Update BPF state. 2428 */ 2429 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 2430 htole16(chan->ic_freq); 2431 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 2432 htole16(chan->ic_flags); 2433 2434 /* 2435 * Change channels and update the h/w rate map 2436 * if we're switching; e.g. 11a to 11b/g. 2437 */ 2438 ic->ic_ibss_chan = chan; 2439 mode = ieee80211_chan2mode(ic, chan); 2440 if (mode != sc->sc_curmode) 2441 ath_setcurmode(sc, mode); 2442 2443 /* 2444 * Re-enable interrupts. 2445 */ 2446 ath_hal_intrset(ah, sc->sc_imask); 2447 } 2448 return 0; 2449 } 2450 2451 static void 2452 ath_next_scan(void *arg) 2453 { 2454 struct ath_softc *sc = arg; 2455 struct ieee80211com *ic = &sc->sc_ic; 2456 struct ifnet *ifp = &ic->ic_if; 2457 2458 if (ic->ic_state == IEEE80211_S_SCAN) 2459 ieee80211_next_scan(ifp); 2460 } 2461 2462 /* 2463 * Periodically recalibrate the PHY to account 2464 * for temperature/environment changes. 2465 */ 2466 static void 2467 ath_calibrate(void *arg) 2468 { 2469 struct ath_softc *sc = arg; 2470 struct ath_hal *ah = sc->sc_ah; 2471 struct ieee80211com *ic = &sc->sc_ic; 2472 struct ieee80211_channel *c; 2473 HAL_CHANNEL hchan; 2474 2475 sc->sc_stats.ast_per_cal++; 2476 2477 /* 2478 * Convert to a HAL channel description with the flags 2479 * constrained to reflect the current operating mode. 2480 */ 2481 c = ic->ic_ibss_chan; 2482 hchan.channel = c->ic_freq; 2483 hchan.channelFlags = ath_chan2flags(ic, c); 2484 2485 DPRINTF(ATH_DEBUG_CALIBRATE, 2486 ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags)); 2487 2488 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 2489 /* 2490 * Rfgain is out of bounds, reset the chip 2491 * to load new gain values. 2492 */ 2493 sc->sc_stats.ast_per_rfgain++; 2494 ath_reset(sc); 2495 } 2496 if (!ath_hal_calibrate(ah, &hchan)) { 2497 DPRINTF(ATH_DEBUG_ANY, 2498 ("%s: calibration of channel %u failed\n", 2499 __func__, c->ic_freq)); 2500 sc->sc_stats.ast_per_calfail++; 2501 } 2502 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc); 2503 } 2504 2505 static int 2506 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2507 { 2508 struct ifnet *ifp = &ic->ic_if; 2509 struct ath_softc *sc = ifp->if_softc; 2510 struct ath_hal *ah = sc->sc_ah; 2511 struct ieee80211_node *ni; 2512 int i, error; 2513 const u_int8_t *bssid; 2514 u_int32_t rfilt; 2515 static const HAL_LED_STATE leds[] = { 2516 HAL_LED_INIT, /* IEEE80211_S_INIT */ 2517 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 2518 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 2519 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 2520 HAL_LED_RUN, /* IEEE80211_S_RUN */ 2521 }; 2522 2523 DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__, 2524 ieee80211_state_name[ic->ic_state], 2525 ieee80211_state_name[nstate])); 2526 2527 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 2528 2529 if (nstate == IEEE80211_S_INIT) { 2530 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 2531 ath_hal_intrset(ah, sc->sc_imask); 2532 callout_stop(&sc->sc_scan_ch); 2533 callout_stop(&sc->sc_cal_ch); 2534 return (*sc->sc_newstate)(ic, nstate, arg); 2535 } 2536 ni = ic->ic_bss; 2537 error = ath_chan_set(sc, ni->ni_chan); 2538 if (error != 0) 2539 goto bad; 2540 rfilt = ath_calcrxfilter(sc); 2541 if (nstate == IEEE80211_S_SCAN) { 2542 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000, 2543 ath_next_scan, sc); 2544 bssid = ifp->if_broadcastaddr; 2545 } else { 2546 callout_stop(&sc->sc_scan_ch); 2547 bssid = ni->ni_bssid; 2548 } 2549 ath_hal_setrxfilter(ah, rfilt); 2550 DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n", 2551 __func__, rfilt, ether_sprintf(bssid))); 2552 2553 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 2554 ath_hal_setassocid(ah, bssid, ni->ni_associd); 2555 else 2556 ath_hal_setassocid(ah, bssid, 0); 2557 if (ic->ic_flags & IEEE80211_F_WEPON) { 2558 for (i = 0; i < IEEE80211_WEP_NKID; i++) 2559 if (ath_hal_keyisvalid(ah, i)) 2560 ath_hal_keysetmac(ah, i, bssid); 2561 } 2562 2563 if (nstate == IEEE80211_S_RUN) { 2564 DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 2565 "capinfo=0x%04x chan=%d\n" 2566 , __func__ 2567 , ic->ic_flags 2568 , ni->ni_intval 2569 , ether_sprintf(ni->ni_bssid) 2570 , ni->ni_capinfo 2571 , ieee80211_chan2ieee(ic, ni->ni_chan))); 2572 2573 /* 2574 * Allocate and setup the beacon frame for AP or adhoc mode. 2575 */ 2576 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2577 ic->ic_opmode == IEEE80211_M_IBSS) { 2578 error = ath_beacon_alloc(sc, ni); 2579 if (error != 0) 2580 goto bad; 2581 } 2582 2583 /* 2584 * Configure the beacon and sleep timers. 2585 */ 2586 ath_beacon_config(sc); 2587 2588 /* start periodic recalibration timer */ 2589 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, 2590 ath_calibrate, sc); 2591 } else { 2592 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 2593 ath_hal_intrset(ah, sc->sc_imask); 2594 callout_stop(&sc->sc_cal_ch); /* no calibration */ 2595 } 2596 /* 2597 * Reset the rate control state. 2598 */ 2599 ath_rate_ctl_reset(sc, nstate); 2600 /* 2601 * Invoke the parent method to complete the work. 2602 */ 2603 return (*sc->sc_newstate)(ic, nstate, arg); 2604 bad: 2605 callout_stop(&sc->sc_scan_ch); 2606 callout_stop(&sc->sc_cal_ch); 2607 /* NB: do not invoke the parent */ 2608 return error; 2609 } 2610 2611 /* 2612 * Setup driver-specific state for a newly associated node. 2613 * Note that we're called also on a re-associate, the isnew 2614 * param tells us if this is the first time or not. 2615 */ 2616 static void 2617 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2618 { 2619 if (isnew) { 2620 struct ath_node *an = (struct ath_node *) ni; 2621 2622 an->an_tx_ok = an->an_tx_err = 2623 an->an_tx_retr = an->an_tx_upper = 0; 2624 /* start with highest negotiated rate */ 2625 /* 2626 * XXX should do otherwise but only when 2627 * the rate control algorithm is better. 2628 */ 2629 KASSERT(ni->ni_rates.rs_nrates > 0, 2630 ("new association w/ no rates!")); 2631 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 2632 } 2633 } 2634 2635 static int 2636 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor) 2637 { 2638 struct ieee80211com *ic = &sc->sc_ic; 2639 struct ifnet *ifp = &ic->ic_if; 2640 struct ath_hal *ah = sc->sc_ah; 2641 HAL_CHANNEL *chans; 2642 int i, ix, nchan; 2643 2644 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 2645 M_TEMP, M_NOWAIT); 2646 if (chans == NULL) { 2647 if_printf(ifp, "unable to allocate channel table\n"); 2648 return ENOMEM; 2649 } 2650 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 2651 cc, HAL_MODE_ALL, outdoor)) { 2652 if_printf(ifp, "unable to collect channel list from hal\n"); 2653 free(chans, M_TEMP); 2654 return EINVAL; 2655 } 2656 2657 /* 2658 * Convert HAL channels to ieee80211 ones and insert 2659 * them in the table according to their channel number. 2660 */ 2661 for (i = 0; i < nchan; i++) { 2662 HAL_CHANNEL *c = &chans[i]; 2663 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 2664 if (ix > IEEE80211_CHAN_MAX) { 2665 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 2666 ix, c->channel, c->channelFlags); 2667 continue; 2668 } 2669 /* NB: flags are known to be compatible */ 2670 if (ic->ic_channels[ix].ic_freq == 0) { 2671 ic->ic_channels[ix].ic_freq = c->channel; 2672 ic->ic_channels[ix].ic_flags = c->channelFlags; 2673 } else { 2674 /* channels overlap; e.g. 11g and 11b */ 2675 ic->ic_channels[ix].ic_flags |= c->channelFlags; 2676 } 2677 } 2678 free(chans, M_TEMP); 2679 return 0; 2680 } 2681 2682 static int 2683 ath_rate_setup(struct ath_softc *sc, u_int mode) 2684 { 2685 struct ath_hal *ah = sc->sc_ah; 2686 struct ieee80211com *ic = &sc->sc_ic; 2687 const HAL_RATE_TABLE *rt; 2688 struct ieee80211_rateset *rs; 2689 int i, maxrates; 2690 2691 switch (mode) { 2692 case IEEE80211_MODE_11A: 2693 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 2694 break; 2695 case IEEE80211_MODE_11B: 2696 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 2697 break; 2698 case IEEE80211_MODE_11G: 2699 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 2700 break; 2701 case IEEE80211_MODE_TURBO: 2702 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 2703 break; 2704 default: 2705 DPRINTF(ATH_DEBUG_ANY, 2706 ("%s: invalid mode %u\n", __func__, mode)); 2707 return 0; 2708 } 2709 rt = sc->sc_rates[mode]; 2710 if (rt == NULL) 2711 return 0; 2712 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 2713 DPRINTF(ATH_DEBUG_ANY, 2714 ("%s: rate table too small (%u > %u)\n", 2715 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE)); 2716 maxrates = IEEE80211_RATE_MAXSIZE; 2717 } else 2718 maxrates = rt->rateCount; 2719 rs = &ic->ic_sup_rates[mode]; 2720 for (i = 0; i < maxrates; i++) 2721 rs->rs_rates[i] = rt->info[i].dot11Rate; 2722 rs->rs_nrates = maxrates; 2723 return 1; 2724 } 2725 2726 static void 2727 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 2728 { 2729 const HAL_RATE_TABLE *rt; 2730 int i; 2731 2732 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 2733 rt = sc->sc_rates[mode]; 2734 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 2735 for (i = 0; i < rt->rateCount; i++) 2736 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 2737 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 2738 for (i = 0; i < 32; i++) 2739 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate; 2740 sc->sc_currates = rt; 2741 sc->sc_curmode = mode; 2742 } 2743 2744 /* 2745 * Reset the rate control state for each 802.11 state transition. 2746 */ 2747 static void 2748 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state) 2749 { 2750 struct ieee80211com *ic = &sc->sc_ic; 2751 struct ieee80211_node *ni; 2752 struct ath_node *an; 2753 2754 if (ic->ic_opmode != IEEE80211_M_STA) { 2755 /* 2756 * When operating as a station the node table holds 2757 * the AP's that were discovered during scanning. 2758 * For any other operating mode we want to reset the 2759 * tx rate state of each node. 2760 */ 2761 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) { 2762 ni->ni_txrate = 0; /* use lowest rate */ 2763 an = (struct ath_node *) ni; 2764 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 2765 an->an_tx_upper = 0; 2766 } 2767 } 2768 /* 2769 * Reset local xmit state; this is really only meaningful 2770 * when operating in station or adhoc mode. 2771 */ 2772 ni = ic->ic_bss; 2773 an = (struct ath_node *) ni; 2774 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; 2775 if (state == IEEE80211_S_RUN) { 2776 /* start with highest negotiated rate */ 2777 KASSERT(ni->ni_rates.rs_nrates > 0, 2778 ("transition to RUN state w/ no rates!")); 2779 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 2780 } else { 2781 /* use lowest rate */ 2782 ni->ni_txrate = 0; 2783 } 2784 } 2785 2786 /* 2787 * Examine and potentially adjust the transmit rate. 2788 */ 2789 static void 2790 ath_rate_ctl(void *arg, struct ieee80211_node *ni) 2791 { 2792 struct ath_softc *sc = arg; 2793 struct ath_node *an = (struct ath_node *) ni; 2794 struct ieee80211_rateset *rs = &ni->ni_rates; 2795 int mod = 0, orate, enough; 2796 2797 /* 2798 * Rate control 2799 * XXX: very primitive version. 2800 */ 2801 sc->sc_stats.ast_rate_calls++; 2802 2803 enough = (an->an_tx_ok + an->an_tx_err >= 10); 2804 2805 /* no packet reached -> down */ 2806 if (an->an_tx_err > 0 && an->an_tx_ok == 0) 2807 mod = -1; 2808 2809 /* all packets needs retry in average -> down */ 2810 if (enough && an->an_tx_ok < an->an_tx_retr) 2811 mod = -1; 2812 2813 /* no error and less than 10% of packets needs retry -> up */ 2814 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10) 2815 mod = 1; 2816 2817 orate = ni->ni_txrate; 2818 switch (mod) { 2819 case 0: 2820 if (enough && an->an_tx_upper > 0) 2821 an->an_tx_upper--; 2822 break; 2823 case -1: 2824 if (ni->ni_txrate > 0) { 2825 ni->ni_txrate--; 2826 sc->sc_stats.ast_rate_drop++; 2827 } 2828 an->an_tx_upper = 0; 2829 break; 2830 case 1: 2831 if (++an->an_tx_upper < 2) 2832 break; 2833 an->an_tx_upper = 0; 2834 if (ni->ni_txrate + 1 < rs->rs_nrates) { 2835 ni->ni_txrate++; 2836 sc->sc_stats.ast_rate_raise++; 2837 } 2838 break; 2839 } 2840 2841 if (ni->ni_txrate != orate) { 2842 DPRINTF(ATH_DEBUG_RATE, 2843 ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n", 2844 __func__, 2845 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2, 2846 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2, 2847 an->an_tx_ok, an->an_tx_err, an->an_tx_retr)); 2848 } 2849 if (ni->ni_txrate != orate || enough) 2850 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0; 2851 } 2852 2853 #ifdef AR_DEBUG 2854 static int 2855 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS) 2856 { 2857 char dmode[64]; 2858 int error; 2859 2860 strncpy(dmode, "", sizeof(dmode) - 1); 2861 dmode[sizeof(dmode) - 1] = '\0'; 2862 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req); 2863 2864 if (error == 0 && req->newptr != NULL) { 2865 struct ifnet *ifp; 2866 struct ath_softc *sc; 2867 2868 ifp = ifunit("ath0"); /* XXX */ 2869 if (!ifp) 2870 return EINVAL; 2871 sc = ifp->if_softc; 2872 if (strcmp(dmode, "hal") == 0) 2873 ath_hal_dumpstate(sc->sc_ah); 2874 else 2875 return EINVAL; 2876 } 2877 return error; 2878 } 2879 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW, 2880 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state"); 2881 2882 static void 2883 ath_printrxbuf(struct ath_buf *bf, int done) 2884 { 2885 struct ath_desc *ds; 2886 int i; 2887 2888 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 2889 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 2890 i, ds, (struct ath_desc *)bf->bf_daddr + i, 2891 ds->ds_link, ds->ds_data, 2892 ds->ds_ctl0, ds->ds_ctl1, 2893 ds->ds_hw[0], ds->ds_hw[1], 2894 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 2895 } 2896 } 2897 2898 static void 2899 ath_printtxbuf(struct ath_buf *bf, int done) 2900 { 2901 struct ath_desc *ds; 2902 int i; 2903 2904 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 2905 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 2906 i, ds, (struct ath_desc *)bf->bf_daddr + i, 2907 ds->ds_link, ds->ds_data, 2908 ds->ds_ctl0, ds->ds_ctl1, 2909 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 2910 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 2911 } 2912 } 2913 #endif /* AR_DEBUG */ 2914