1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_btcoex_mci.h> 117 #include <dev/ath/if_ath_spectral.h> 118 #include <dev/ath/if_ath_lna_div.h> 119 #include <dev/ath/if_athdfs.h> 120 #include <dev/ath/if_ath_ioctl.h> 121 #include <dev/ath/if_ath_descdma.h> 122 123 #ifdef ATH_TX99_DIAG 124 #include <dev/ath/ath_tx99/ath_tx99.h> 125 #endif 126 127 #ifdef ATH_DEBUG_ALQ 128 #include <dev/ath/if_ath_alq.h> 129 #endif 130 131 /* 132 * Only enable this if you're working on PS-POLL support. 133 */ 134 #define ATH_SW_PSQ 135 136 /* 137 * ATH_BCBUF determines the number of vap's that can transmit 138 * beacons and also (currently) the number of vap's that can 139 * have unique mac addresses/bssid. When staggering beacons 140 * 4 is probably a good max as otherwise the beacons become 141 * very closely spaced and there is limited time for cab q traffic 142 * to go out. You can burst beacons instead but that is not good 143 * for stations in power save and at some point you really want 144 * another radio (and channel). 145 * 146 * The limit on the number of mac addresses is tied to our use of 147 * the U/L bit and tracking addresses in a byte; it would be 148 * worthwhile to allow more for applications like proxy sta. 149 */ 150 CTASSERT(ATH_BCBUF <= 8); 151 152 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 153 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 154 const uint8_t [IEEE80211_ADDR_LEN], 155 const uint8_t [IEEE80211_ADDR_LEN]); 156 static void ath_vap_delete(struct ieee80211vap *); 157 static int ath_init(struct ath_softc *); 158 static void ath_stop(struct ath_softc *); 159 static int ath_reset_vap(struct ieee80211vap *, u_long); 160 static int ath_transmit(struct ieee80211com *, struct mbuf *); 161 static int ath_media_change(struct ifnet *); 162 static void ath_watchdog(void *); 163 static void ath_parent(struct ieee80211com *); 164 static void ath_fatal_proc(void *, int); 165 static void ath_bmiss_vap(struct ieee80211vap *); 166 static void ath_bmiss_proc(void *, int); 167 static void ath_key_update_begin(struct ieee80211vap *); 168 static void ath_key_update_end(struct ieee80211vap *); 169 static void ath_update_mcast_hw(struct ath_softc *); 170 static void ath_update_mcast(struct ieee80211com *); 171 static void ath_update_promisc(struct ieee80211com *); 172 static void ath_updateslot(struct ieee80211com *); 173 static void ath_bstuck_proc(void *, int); 174 static void ath_reset_proc(void *, int); 175 static int ath_desc_alloc(struct ath_softc *); 176 static void ath_desc_free(struct ath_softc *); 177 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 178 const uint8_t [IEEE80211_ADDR_LEN]); 179 static void ath_node_cleanup(struct ieee80211_node *); 180 static void ath_node_free(struct ieee80211_node *); 181 static void ath_node_getsignal(const struct ieee80211_node *, 182 int8_t *, int8_t *); 183 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 184 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 185 static int ath_tx_setup(struct ath_softc *, int, int); 186 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 187 static void ath_tx_cleanup(struct ath_softc *); 188 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 189 int dosched); 190 static void ath_tx_proc_q0(void *, int); 191 static void ath_tx_proc_q0123(void *, int); 192 static void ath_tx_proc(void *, int); 193 static void ath_txq_sched_tasklet(void *, int); 194 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_scan_start(struct ieee80211com *); 197 static void ath_scan_end(struct ieee80211com *); 198 static void ath_set_channel(struct ieee80211com *); 199 #ifdef ATH_ENABLE_11N 200 static void ath_update_chw(struct ieee80211com *); 201 #endif /* ATH_ENABLE_11N */ 202 static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *); 203 static void ath_calibrate(void *); 204 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 205 static void ath_setup_stationkey(struct ieee80211_node *); 206 static void ath_newassoc(struct ieee80211_node *, int); 207 static int ath_setregdomain(struct ieee80211com *, 208 struct ieee80211_regdomain *, int, 209 struct ieee80211_channel []); 210 static void ath_getradiocaps(struct ieee80211com *, int, int *, 211 struct ieee80211_channel []); 212 static int ath_getchannels(struct ath_softc *); 213 214 static int ath_rate_setup(struct ath_softc *, u_int mode); 215 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 216 217 static void ath_announce(struct ath_softc *); 218 219 static void ath_dfs_tasklet(void *, int); 220 static void ath_node_powersave(struct ieee80211_node *, int); 221 static int ath_node_set_tim(struct ieee80211_node *, int); 222 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 223 224 #ifdef IEEE80211_SUPPORT_TDMA 225 #include <dev/ath/if_ath_tdma.h> 226 #endif 227 228 SYSCTL_DECL(_hw_ath); 229 230 /* XXX validate sysctl values */ 231 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 233 0, "long chip calibration interval (secs)"); 234 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 236 0, "short chip calibration interval (msecs)"); 237 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 239 0, "reset chip calibration results (secs)"); 240 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 242 0, "ANI calibration (msecs)"); 243 244 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 246 0, "rx buffers allocated"); 247 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 249 0, "tx buffers allocated"); 250 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 251 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 252 0, "tx (mgmt) buffers allocated"); 253 254 int ath_bstuck_threshold = 4; /* max missed beacons */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 256 0, "max missed beacon xmits before chip reset"); 257 258 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 259 260 void 261 ath_legacy_attach_comp_func(struct ath_softc *sc) 262 { 263 264 /* 265 * Special case certain configurations. Note the 266 * CAB queue is handled by these specially so don't 267 * include them when checking the txq setup mask. 268 */ 269 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 270 case 0x01: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 272 break; 273 case 0x0f: 274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 275 break; 276 default: 277 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 278 break; 279 } 280 } 281 282 /* 283 * Set the target power mode. 284 * 285 * If this is called during a point in time where 286 * the hardware is being programmed elsewhere, it will 287 * simply store it away and update it when all current 288 * uses of the hardware are completed. 289 * 290 * If the chip is going into network sleep or power off, then 291 * we will wait until all uses of the chip are done before 292 * going into network sleep or power off. 293 * 294 * If the chip is being programmed full-awake, then immediately 295 * program it full-awake so we can actually stay awake rather than 296 * the chip potentially going to sleep underneath us. 297 */ 298 void 299 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 300 const char *file, int line) 301 { 302 ATH_LOCK_ASSERT(sc); 303 304 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 305 __func__, 306 file, 307 line, 308 power_state, 309 sc->sc_powersave_refcnt, 310 sc->sc_target_powerstate, 311 sc->sc_cur_powerstate); 312 313 sc->sc_target_powerstate = power_state; 314 315 /* 316 * Don't program the chip into network sleep if the chip 317 * is being programmed elsewhere. 318 * 319 * However, if the chip is being programmed /awake/, force 320 * the chip awake so we stay awake. 321 */ 322 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 323 power_state != sc->sc_cur_powerstate) { 324 sc->sc_cur_powerstate = power_state; 325 ath_hal_setpower(sc->sc_ah, power_state); 326 327 /* 328 * If the NIC is force-awake, then set the 329 * self-gen frame state appropriately. 330 * 331 * If the nic is in network sleep or full-sleep, 332 * we let the above call leave the self-gen 333 * state as "sleep". 334 */ 335 if (selfgen && 336 sc->sc_cur_powerstate == HAL_PM_AWAKE && 337 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 338 ath_hal_setselfgenpower(sc->sc_ah, 339 sc->sc_target_selfgen_state); 340 } 341 } 342 } 343 344 /* 345 * Set the current self-generated frames state. 346 * 347 * This is separate from the target power mode. The chip may be 348 * awake but the desired state is "sleep", so frames sent to the 349 * destination has PWRMGT=1 in the 802.11 header. The NIC also 350 * needs to know to set PWRMGT=1 in self-generated frames. 351 */ 352 void 353 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 354 { 355 356 ATH_LOCK_ASSERT(sc); 357 358 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 359 __func__, 360 file, 361 line, 362 power_state, 363 sc->sc_target_selfgen_state); 364 365 sc->sc_target_selfgen_state = power_state; 366 367 /* 368 * If the NIC is force-awake, then set the power state. 369 * Network-state and full-sleep will already transition it to 370 * mark self-gen frames as sleeping - and we can't 371 * guarantee the NIC is awake to program the self-gen frame 372 * setting anyway. 373 */ 374 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 375 ath_hal_setselfgenpower(sc->sc_ah, power_state); 376 } 377 } 378 379 /* 380 * Set the hardware power mode and take a reference. 381 * 382 * This doesn't update the target power mode in the driver; 383 * it just updates the hardware power state. 384 * 385 * XXX it should only ever force the hardware awake; it should 386 * never be called to set it asleep. 387 */ 388 void 389 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 390 { 391 ATH_LOCK_ASSERT(sc); 392 393 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 394 __func__, 395 file, 396 line, 397 power_state, 398 sc->sc_powersave_refcnt); 399 400 sc->sc_powersave_refcnt++; 401 402 /* 403 * Only do the power state change if we're not programming 404 * it elsewhere. 405 */ 406 if (power_state != sc->sc_cur_powerstate) { 407 ath_hal_setpower(sc->sc_ah, power_state); 408 sc->sc_cur_powerstate = power_state; 409 /* 410 * Adjust the self-gen powerstate if appropriate. 411 */ 412 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 413 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 414 ath_hal_setselfgenpower(sc->sc_ah, 415 sc->sc_target_selfgen_state); 416 } 417 } 418 } 419 420 /* 421 * Restore the power save mode to what it once was. 422 * 423 * This will decrement the reference counter and once it hits 424 * zero, it'll restore the powersave state. 425 */ 426 void 427 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 428 { 429 430 ATH_LOCK_ASSERT(sc); 431 432 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 433 __func__, 434 file, 435 line, 436 sc->sc_powersave_refcnt, 437 sc->sc_target_powerstate); 438 439 if (sc->sc_powersave_refcnt == 0) 440 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 441 else 442 sc->sc_powersave_refcnt--; 443 444 if (sc->sc_powersave_refcnt == 0 && 445 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 446 sc->sc_cur_powerstate = sc->sc_target_powerstate; 447 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 448 } 449 450 /* 451 * Adjust the self-gen powerstate if appropriate. 452 */ 453 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 454 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 455 ath_hal_setselfgenpower(sc->sc_ah, 456 sc->sc_target_selfgen_state); 457 } 458 459 } 460 461 /* 462 * Configure the initial HAL configuration values based on bus 463 * specific parameters. 464 * 465 * Some PCI IDs and other information may need tweaking. 466 * 467 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 468 * if BT antenna diversity isn't enabled. 469 * 470 * So, let's also figure out how to enable BT diversity for AR9485. 471 */ 472 static void 473 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 474 { 475 /* XXX TODO: only for PCI devices? */ 476 477 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 478 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 479 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 480 ah_config->ath_hal_min_gainidx = AH_TRUE; 481 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 482 /* XXX low_rssi_thresh */ 483 /* XXX fast_div_bias */ 484 device_printf(sc->sc_dev, "configuring for %s\n", 485 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 486 "CUS198" : "CUS230"); 487 } 488 489 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 490 device_printf(sc->sc_dev, "CUS217 card detected\n"); 491 492 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 493 device_printf(sc->sc_dev, "CUS252 card detected\n"); 494 495 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 496 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 497 498 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 499 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 500 501 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 502 device_printf(sc->sc_dev, 503 "Bluetooth Antenna Diversity card detected\n"); 504 505 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 506 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 507 508 #if 0 509 /* 510 * Some WB335 cards do not support antenna diversity. Since 511 * we use a hardcoded value for AR9565 instead of using the 512 * EEPROM/OTP data, remove the combining feature from 513 * the HW capabilities bitmap. 514 */ 515 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 516 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 517 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 518 } 519 520 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 521 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 522 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 523 } 524 #endif 525 526 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 527 ah_config->ath_hal_pcie_waen = 0x0040473b; 528 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 529 } 530 531 #if 0 532 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 533 ah->config.no_pll_pwrsave = true; 534 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 535 } 536 #endif 537 538 } 539 540 /* 541 * Attempt to fetch the MAC address from the kernel environment. 542 * 543 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 544 */ 545 static int 546 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 547 { 548 char devid_str[32]; 549 int local_mac = 0; 550 char *local_macstr; 551 552 /* 553 * Fetch from the kenv rather than using hints. 554 * 555 * Hints would be nice but the transition to dynamic 556 * hints/kenv doesn't happen early enough for this 557 * to work reliably (eg on anything embedded.) 558 */ 559 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 560 device_get_name(sc->sc_dev), 561 device_get_unit(sc->sc_dev)); 562 563 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 564 uint32_t tmpmac[ETHER_ADDR_LEN]; 565 int count; 566 int i; 567 568 /* Have a MAC address; should use it */ 569 device_printf(sc->sc_dev, 570 "Overriding MAC address from environment: '%s'\n", 571 local_macstr); 572 573 /* Extract out the MAC address */ 574 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 575 &tmpmac[0], &tmpmac[1], 576 &tmpmac[2], &tmpmac[3], 577 &tmpmac[4], &tmpmac[5]); 578 if (count == 6) { 579 /* Valid! */ 580 local_mac = 1; 581 for (i = 0; i < ETHER_ADDR_LEN; i++) 582 macaddr[i] = tmpmac[i]; 583 } 584 /* Done! */ 585 freeenv(local_macstr); 586 local_macstr = NULL; 587 } 588 589 if (local_mac) 590 return (0); 591 return (-1); 592 } 593 594 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 595 #define HAL_MODE_HT40 \ 596 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 597 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 598 int 599 ath_attach(u_int16_t devid, struct ath_softc *sc) 600 { 601 struct ieee80211com *ic = &sc->sc_ic; 602 struct ath_hal *ah = NULL; 603 HAL_STATUS status; 604 int error = 0, i; 605 u_int wmodes; 606 int rx_chainmask, tx_chainmask; 607 HAL_OPS_CONFIG ah_config; 608 609 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 610 611 ic->ic_softc = sc; 612 ic->ic_name = device_get_nameunit(sc->sc_dev); 613 614 /* 615 * Configure the initial configuration data. 616 * 617 * This is stuff that may be needed early during attach 618 * rather than done via configuration calls later. 619 */ 620 bzero(&ah_config, sizeof(ah_config)); 621 ath_setup_hal_config(sc, &ah_config); 622 623 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 624 sc->sc_eepromdata, &ah_config, &status); 625 if (ah == NULL) { 626 device_printf(sc->sc_dev, 627 "unable to attach hardware; HAL status %u\n", status); 628 error = ENXIO; 629 goto bad; 630 } 631 sc->sc_ah = ah; 632 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 633 #ifdef ATH_DEBUG 634 sc->sc_debug = ath_debug; 635 #endif 636 637 /* 638 * Force the chip awake during setup, just to keep 639 * the HAL/driver power tracking happy. 640 * 641 * There are some methods (eg ath_hal_setmac()) 642 * that poke the hardware. 643 */ 644 ATH_LOCK(sc); 645 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 646 ATH_UNLOCK(sc); 647 648 /* 649 * Setup the DMA/EDMA functions based on the current 650 * hardware support. 651 * 652 * This is required before the descriptors are allocated. 653 */ 654 if (ath_hal_hasedma(sc->sc_ah)) { 655 sc->sc_isedma = 1; 656 ath_recv_setup_edma(sc); 657 ath_xmit_setup_edma(sc); 658 } else { 659 ath_recv_setup_legacy(sc); 660 ath_xmit_setup_legacy(sc); 661 } 662 663 if (ath_hal_hasmybeacon(sc->sc_ah)) { 664 sc->sc_do_mybeacon = 1; 665 } 666 667 /* 668 * Check if the MAC has multi-rate retry support. 669 * We do this by trying to setup a fake extended 670 * descriptor. MAC's that don't have support will 671 * return false w/o doing anything. MAC's that do 672 * support it will return true w/o doing anything. 673 */ 674 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 675 676 /* 677 * Check if the device has hardware counters for PHY 678 * errors. If so we need to enable the MIB interrupt 679 * so we can act on stat triggers. 680 */ 681 if (ath_hal_hwphycounters(ah)) 682 sc->sc_needmib = 1; 683 684 /* 685 * Get the hardware key cache size. 686 */ 687 sc->sc_keymax = ath_hal_keycachesize(ah); 688 if (sc->sc_keymax > ATH_KEYMAX) { 689 device_printf(sc->sc_dev, 690 "Warning, using only %u of %u key cache slots\n", 691 ATH_KEYMAX, sc->sc_keymax); 692 sc->sc_keymax = ATH_KEYMAX; 693 } 694 /* 695 * Reset the key cache since some parts do not 696 * reset the contents on initial power up. 697 */ 698 for (i = 0; i < sc->sc_keymax; i++) 699 ath_hal_keyreset(ah, i); 700 701 /* 702 * Collect the default channel list. 703 */ 704 error = ath_getchannels(sc); 705 if (error != 0) 706 goto bad; 707 708 /* 709 * Setup rate tables for all potential media types. 710 */ 711 ath_rate_setup(sc, IEEE80211_MODE_11A); 712 ath_rate_setup(sc, IEEE80211_MODE_11B); 713 ath_rate_setup(sc, IEEE80211_MODE_11G); 714 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 715 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 716 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 717 ath_rate_setup(sc, IEEE80211_MODE_11NA); 718 ath_rate_setup(sc, IEEE80211_MODE_11NG); 719 ath_rate_setup(sc, IEEE80211_MODE_HALF); 720 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 721 722 /* NB: setup here so ath_rate_update is happy */ 723 ath_setcurmode(sc, IEEE80211_MODE_11A); 724 725 /* 726 * Allocate TX descriptors and populate the lists. 727 */ 728 error = ath_desc_alloc(sc); 729 if (error != 0) { 730 device_printf(sc->sc_dev, 731 "failed to allocate TX descriptors: %d\n", error); 732 goto bad; 733 } 734 error = ath_txdma_setup(sc); 735 if (error != 0) { 736 device_printf(sc->sc_dev, 737 "failed to allocate TX descriptors: %d\n", error); 738 goto bad; 739 } 740 741 /* 742 * Allocate RX descriptors and populate the lists. 743 */ 744 error = ath_rxdma_setup(sc); 745 if (error != 0) { 746 device_printf(sc->sc_dev, 747 "failed to allocate RX descriptors: %d\n", error); 748 goto bad; 749 } 750 751 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 752 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 753 754 ATH_TXBUF_LOCK_INIT(sc); 755 756 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 757 taskqueue_thread_enqueue, &sc->sc_tq); 758 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 759 device_get_nameunit(sc->sc_dev)); 760 761 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 762 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 763 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 764 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 765 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 766 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 767 768 /* 769 * Allocate hardware transmit queues: one queue for 770 * beacon frames and one data queue for each QoS 771 * priority. Note that the hal handles resetting 772 * these queues at the needed time. 773 * 774 * XXX PS-Poll 775 */ 776 sc->sc_bhalq = ath_beaconq_setup(sc); 777 if (sc->sc_bhalq == (u_int) -1) { 778 device_printf(sc->sc_dev, 779 "unable to setup a beacon xmit queue!\n"); 780 error = EIO; 781 goto bad2; 782 } 783 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 784 if (sc->sc_cabq == NULL) { 785 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 786 error = EIO; 787 goto bad2; 788 } 789 /* NB: insure BK queue is the lowest priority h/w queue */ 790 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 791 device_printf(sc->sc_dev, 792 "unable to setup xmit queue for %s traffic!\n", 793 ieee80211_wme_acnames[WME_AC_BK]); 794 error = EIO; 795 goto bad2; 796 } 797 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 798 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 799 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 800 /* 801 * Not enough hardware tx queues to properly do WME; 802 * just punt and assign them all to the same h/w queue. 803 * We could do a better job of this if, for example, 804 * we allocate queues when we switch from station to 805 * AP mode. 806 */ 807 if (sc->sc_ac2q[WME_AC_VI] != NULL) 808 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 809 if (sc->sc_ac2q[WME_AC_BE] != NULL) 810 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 811 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 812 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 813 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 814 } 815 816 /* 817 * Attach the TX completion function. 818 * 819 * The non-EDMA chips may have some special case optimisations; 820 * this method gives everyone a chance to attach cleanly. 821 */ 822 sc->sc_tx.xmit_attach_comp_func(sc); 823 824 /* 825 * Setup rate control. Some rate control modules 826 * call back to change the anntena state so expose 827 * the necessary entry points. 828 * XXX maybe belongs in struct ath_ratectrl? 829 */ 830 sc->sc_setdefantenna = ath_setdefantenna; 831 sc->sc_rc = ath_rate_attach(sc); 832 if (sc->sc_rc == NULL) { 833 error = EIO; 834 goto bad2; 835 } 836 837 /* Attach DFS module */ 838 if (! ath_dfs_attach(sc)) { 839 device_printf(sc->sc_dev, 840 "%s: unable to attach DFS\n", __func__); 841 error = EIO; 842 goto bad2; 843 } 844 845 /* Attach spectral module */ 846 if (ath_spectral_attach(sc) < 0) { 847 device_printf(sc->sc_dev, 848 "%s: unable to attach spectral\n", __func__); 849 error = EIO; 850 goto bad2; 851 } 852 853 /* Attach bluetooth coexistence module */ 854 if (ath_btcoex_attach(sc) < 0) { 855 device_printf(sc->sc_dev, 856 "%s: unable to attach bluetooth coexistence\n", __func__); 857 error = EIO; 858 goto bad2; 859 } 860 861 /* Attach LNA diversity module */ 862 if (ath_lna_div_attach(sc) < 0) { 863 device_printf(sc->sc_dev, 864 "%s: unable to attach LNA diversity\n", __func__); 865 error = EIO; 866 goto bad2; 867 } 868 869 /* Start DFS processing tasklet */ 870 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 871 872 /* Configure LED state */ 873 sc->sc_blinking = 0; 874 sc->sc_ledstate = 1; 875 sc->sc_ledon = 0; /* low true */ 876 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 877 callout_init(&sc->sc_ledtimer, 1); 878 879 /* 880 * Don't setup hardware-based blinking. 881 * 882 * Although some NICs may have this configured in the 883 * default reset register values, the user may wish 884 * to alter which pins have which function. 885 * 886 * The reference driver attaches the MAC network LED to GPIO1 and 887 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 888 * NIC has these reversed. 889 */ 890 sc->sc_hardled = (1 == 0); 891 sc->sc_led_net_pin = -1; 892 sc->sc_led_pwr_pin = -1; 893 /* 894 * Auto-enable soft led processing for IBM cards and for 895 * 5211 minipci cards. Users can also manually enable/disable 896 * support with a sysctl. 897 */ 898 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 899 ath_led_config(sc); 900 ath_hal_setledstate(ah, HAL_LED_INIT); 901 902 /* XXX not right but it's not used anywhere important */ 903 ic->ic_phytype = IEEE80211_T_OFDM; 904 ic->ic_opmode = IEEE80211_M_STA; 905 ic->ic_caps = 906 IEEE80211_C_STA /* station mode */ 907 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 908 | IEEE80211_C_HOSTAP /* hostap mode */ 909 | IEEE80211_C_MONITOR /* monitor mode */ 910 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 911 | IEEE80211_C_WDS /* 4-address traffic works */ 912 | IEEE80211_C_MBSS /* mesh point link mode */ 913 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 914 | IEEE80211_C_SHSLOT /* short slot time supported */ 915 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 916 #ifndef ATH_ENABLE_11N 917 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 918 #endif 919 | IEEE80211_C_TXFRAG /* handle tx frags */ 920 #ifdef ATH_ENABLE_DFS 921 | IEEE80211_C_DFS /* Enable radar detection */ 922 #endif 923 | IEEE80211_C_PMGT /* Station side power mgmt */ 924 | IEEE80211_C_SWSLEEP 925 ; 926 /* 927 * Query the hal to figure out h/w crypto support. 928 */ 929 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 930 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 931 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 932 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 933 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 934 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 935 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 936 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 937 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 938 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 939 /* 940 * Check if h/w does the MIC and/or whether the 941 * separate key cache entries are required to 942 * handle both tx+rx MIC keys. 943 */ 944 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 945 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 946 /* 947 * If the h/w supports storing tx+rx MIC keys 948 * in one cache slot automatically enable use. 949 */ 950 if (ath_hal_hastkipsplit(ah) || 951 !ath_hal_settkipsplit(ah, AH_FALSE)) 952 sc->sc_splitmic = 1; 953 /* 954 * If the h/w can do TKIP MIC together with WME then 955 * we use it; otherwise we force the MIC to be done 956 * in software by the net80211 layer. 957 */ 958 if (ath_hal_haswmetkipmic(ah)) 959 sc->sc_wmetkipmic = 1; 960 } 961 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 962 /* 963 * Check for multicast key search support. 964 */ 965 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 966 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 967 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 968 } 969 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 970 /* 971 * Mark key cache slots associated with global keys 972 * as in use. If we knew TKIP was not to be used we 973 * could leave the +32, +64, and +32+64 slots free. 974 */ 975 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 976 setbit(sc->sc_keymap, i); 977 setbit(sc->sc_keymap, i+64); 978 if (sc->sc_splitmic) { 979 setbit(sc->sc_keymap, i+32); 980 setbit(sc->sc_keymap, i+32+64); 981 } 982 } 983 /* 984 * TPC support can be done either with a global cap or 985 * per-packet support. The latter is not available on 986 * all parts. We're a bit pedantic here as all parts 987 * support a global cap. 988 */ 989 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 990 ic->ic_caps |= IEEE80211_C_TXPMGT; 991 992 /* 993 * Mark WME capability only if we have sufficient 994 * hardware queues to do proper priority scheduling. 995 */ 996 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 997 ic->ic_caps |= IEEE80211_C_WME; 998 /* 999 * Check for misc other capabilities. 1000 */ 1001 if (ath_hal_hasbursting(ah)) 1002 ic->ic_caps |= IEEE80211_C_BURST; 1003 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 1004 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 1005 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 1006 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 1007 1008 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 1009 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 1010 if (i == 32) { 1011 sc->sc_rxtsf32 = 1; 1012 } 1013 if (bootverbose) 1014 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1015 } 1016 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1017 if (bootverbose) 1018 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1019 } 1020 1021 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1022 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1023 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1024 1025 /* 1026 * Some WB335 cards do not support antenna diversity. Since 1027 * we use a hardcoded value for AR9565 instead of using the 1028 * EEPROM/OTP data, remove the combining feature from 1029 * the HW capabilities bitmap. 1030 */ 1031 /* 1032 * XXX TODO: check reference driver and ath9k for what to do 1033 * here for WB335. I think we have to actually disable the 1034 * LNA div processing in the HAL and instead use the hard 1035 * coded values; and then use BT diversity. 1036 * 1037 * .. but also need to setup MCI too for WB335.. 1038 */ 1039 #if 0 1040 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 1041 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n", 1042 __func__); 1043 sc->sc_dolnadiv = 0; 1044 } 1045 #endif 1046 1047 if (ath_hal_hasfastframes(ah)) 1048 ic->ic_caps |= IEEE80211_C_FF; 1049 wmodes = ath_hal_getwirelessmodes(ah); 1050 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1051 ic->ic_caps |= IEEE80211_C_TURBOP; 1052 #ifdef IEEE80211_SUPPORT_TDMA 1053 if (ath_hal_macversion(ah) > 0x78) { 1054 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1055 ic->ic_tdma_update = ath_tdma_update; 1056 } 1057 #endif 1058 1059 /* 1060 * TODO: enforce that at least this many frames are available 1061 * in the txbuf list before allowing data frames (raw or 1062 * otherwise) to be transmitted. 1063 */ 1064 sc->sc_txq_data_minfree = 10; 1065 1066 /* 1067 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1068 * is smaller. 1069 * 1070 * Anything bigger can potentially see the cabq consume 1071 * almost all buffers, starving everything else, only to 1072 * see most fail to transmit in the given beacon interval. 1073 */ 1074 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1075 1076 /* 1077 * How deep can the node software TX queue get whilst it's asleep. 1078 */ 1079 sc->sc_txq_node_psq_maxdepth = 16; 1080 1081 /* 1082 * Default the maximum queue to to 1/4'th the TX buffers, or 1083 * 64, whichever is smaller. 1084 */ 1085 sc->sc_txq_node_maxdepth = MIN(64, ath_txbuf / 4); 1086 1087 /* Enable CABQ by default */ 1088 sc->sc_cabq_enable = 1; 1089 1090 /* 1091 * Allow the TX and RX chainmasks to be overridden by 1092 * environment variables and/or device.hints. 1093 * 1094 * This must be done early - before the hardware is 1095 * calibrated or before the 802.11n stream calculation 1096 * is done. 1097 */ 1098 if (resource_int_value(device_get_name(sc->sc_dev), 1099 device_get_unit(sc->sc_dev), "rx_chainmask", 1100 &rx_chainmask) == 0) { 1101 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1102 rx_chainmask); 1103 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1104 } 1105 if (resource_int_value(device_get_name(sc->sc_dev), 1106 device_get_unit(sc->sc_dev), "tx_chainmask", 1107 &tx_chainmask) == 0) { 1108 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1109 tx_chainmask); 1110 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1111 } 1112 1113 /* 1114 * Query the TX/RX chainmask configuration. 1115 * 1116 * This is only relevant for 11n devices. 1117 */ 1118 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1119 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1120 1121 /* 1122 * Disable MRR with protected frames by default. 1123 * Only 802.11n series NICs can handle this. 1124 */ 1125 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1126 1127 /* 1128 * Query the enterprise mode information the HAL. 1129 */ 1130 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1131 &sc->sc_ent_cfg) == HAL_OK) 1132 sc->sc_use_ent = 1; 1133 1134 #ifdef ATH_ENABLE_11N 1135 /* 1136 * Query HT capabilities 1137 */ 1138 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1139 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1140 uint32_t rxs, txs; 1141 uint32_t ldpc; 1142 1143 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1144 1145 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1146 1147 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1148 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1149 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1150 | IEEE80211_HTCAP_MAXAMSDU_3839 1151 /* max A-MSDU length */ 1152 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1153 1154 /* 1155 * Enable short-GI for HT20 only if the hardware 1156 * advertises support. 1157 * Notably, anything earlier than the AR9287 doesn't. 1158 */ 1159 if ((ath_hal_getcapability(ah, 1160 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1161 (wmodes & HAL_MODE_HT20)) { 1162 device_printf(sc->sc_dev, 1163 "[HT] enabling short-GI in 20MHz mode\n"); 1164 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1165 } 1166 1167 if (wmodes & HAL_MODE_HT40) 1168 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1169 | IEEE80211_HTCAP_SHORTGI40; 1170 1171 /* 1172 * TX/RX streams need to be taken into account when 1173 * negotiating which MCS rates it'll receive and 1174 * what MCS rates are available for TX. 1175 */ 1176 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1177 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1178 ic->ic_txstream = txs; 1179 ic->ic_rxstream = rxs; 1180 1181 /* 1182 * Setup TX and RX STBC based on what the HAL allows and 1183 * the currently configured chainmask set. 1184 * Ie - don't enable STBC TX if only one chain is enabled. 1185 * STBC RX is fine on a single RX chain; it just won't 1186 * provide any real benefit. 1187 */ 1188 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1189 NULL) == HAL_OK) { 1190 sc->sc_rx_stbc = 1; 1191 device_printf(sc->sc_dev, 1192 "[HT] 1 stream STBC receive enabled\n"); 1193 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1194 } 1195 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1196 NULL) == HAL_OK) { 1197 sc->sc_tx_stbc = 1; 1198 device_printf(sc->sc_dev, 1199 "[HT] 1 stream STBC transmit enabled\n"); 1200 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1201 } 1202 1203 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1204 &sc->sc_rts_aggr_limit); 1205 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1206 device_printf(sc->sc_dev, 1207 "[HT] RTS aggregates limited to %d KiB\n", 1208 sc->sc_rts_aggr_limit / 1024); 1209 1210 /* 1211 * LDPC 1212 */ 1213 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1214 == HAL_OK && (ldpc == 1)) { 1215 sc->sc_has_ldpc = 1; 1216 device_printf(sc->sc_dev, 1217 "[HT] LDPC transmit/receive enabled\n"); 1218 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1219 IEEE80211_HTC_TXLDPC; 1220 } 1221 1222 1223 device_printf(sc->sc_dev, 1224 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1225 } 1226 #endif 1227 1228 /* 1229 * Initial aggregation settings. 1230 */ 1231 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1232 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1233 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1234 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1235 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1236 sc->sc_delim_min_pad = 0; 1237 1238 /* 1239 * Check if the hardware requires PCI register serialisation. 1240 * Some of the Owl based MACs require this. 1241 */ 1242 if (mp_ncpus > 1 && 1243 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1244 0, NULL) == HAL_OK) { 1245 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1246 device_printf(sc->sc_dev, 1247 "Enabling register serialisation\n"); 1248 } 1249 1250 /* 1251 * Initialise the deferred completed RX buffer list. 1252 */ 1253 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1254 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1255 1256 /* 1257 * Indicate we need the 802.11 header padded to a 1258 * 32-bit boundary for 4-address and QoS frames. 1259 */ 1260 ic->ic_flags |= IEEE80211_F_DATAPAD; 1261 1262 /* 1263 * Query the hal about antenna support. 1264 */ 1265 sc->sc_defant = ath_hal_getdefantenna(ah); 1266 1267 /* 1268 * Not all chips have the VEOL support we want to 1269 * use with IBSS beacons; check here for it. 1270 */ 1271 sc->sc_hasveol = ath_hal_hasveol(ah); 1272 1273 /* get mac address from kenv first, then hardware */ 1274 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1275 /* Tell the HAL now about the new MAC */ 1276 ath_hal_setmac(ah, ic->ic_macaddr); 1277 } else { 1278 ath_hal_getmac(ah, ic->ic_macaddr); 1279 } 1280 1281 if (sc->sc_hasbmask) 1282 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1283 1284 /* NB: used to size node table key mapping array */ 1285 ic->ic_max_keyix = sc->sc_keymax; 1286 /* call MI attach routine. */ 1287 ieee80211_ifattach(ic); 1288 ic->ic_setregdomain = ath_setregdomain; 1289 ic->ic_getradiocaps = ath_getradiocaps; 1290 sc->sc_opmode = HAL_M_STA; 1291 1292 /* override default methods */ 1293 ic->ic_ioctl = ath_ioctl; 1294 ic->ic_parent = ath_parent; 1295 ic->ic_transmit = ath_transmit; 1296 ic->ic_newassoc = ath_newassoc; 1297 ic->ic_updateslot = ath_updateslot; 1298 ic->ic_wme.wme_update = ath_wme_update; 1299 ic->ic_vap_create = ath_vap_create; 1300 ic->ic_vap_delete = ath_vap_delete; 1301 ic->ic_raw_xmit = ath_raw_xmit; 1302 ic->ic_update_mcast = ath_update_mcast; 1303 ic->ic_update_promisc = ath_update_promisc; 1304 ic->ic_node_alloc = ath_node_alloc; 1305 sc->sc_node_free = ic->ic_node_free; 1306 ic->ic_node_free = ath_node_free; 1307 sc->sc_node_cleanup = ic->ic_node_cleanup; 1308 ic->ic_node_cleanup = ath_node_cleanup; 1309 ic->ic_node_getsignal = ath_node_getsignal; 1310 ic->ic_scan_start = ath_scan_start; 1311 ic->ic_scan_end = ath_scan_end; 1312 ic->ic_set_channel = ath_set_channel; 1313 #ifdef ATH_ENABLE_11N 1314 /* 802.11n specific - but just override anyway */ 1315 sc->sc_addba_request = ic->ic_addba_request; 1316 sc->sc_addba_response = ic->ic_addba_response; 1317 sc->sc_addba_stop = ic->ic_addba_stop; 1318 sc->sc_bar_response = ic->ic_bar_response; 1319 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1320 1321 ic->ic_addba_request = ath_addba_request; 1322 ic->ic_addba_response = ath_addba_response; 1323 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1324 ic->ic_addba_stop = ath_addba_stop; 1325 ic->ic_bar_response = ath_bar_response; 1326 1327 ic->ic_update_chw = ath_update_chw; 1328 #endif /* ATH_ENABLE_11N */ 1329 ic->ic_set_quiet = ath_set_quiet_ie; 1330 1331 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1332 /* 1333 * There's one vendor bitmap entry in the RX radiotap 1334 * header; make sure that's taken into account. 1335 */ 1336 ieee80211_radiotap_attachv(ic, 1337 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1338 ATH_TX_RADIOTAP_PRESENT, 1339 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1340 ATH_RX_RADIOTAP_PRESENT); 1341 #else 1342 /* 1343 * No vendor bitmap/extensions are present. 1344 */ 1345 ieee80211_radiotap_attach(ic, 1346 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1347 ATH_TX_RADIOTAP_PRESENT, 1348 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1349 ATH_RX_RADIOTAP_PRESENT); 1350 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1351 1352 /* 1353 * Setup the ALQ logging if required 1354 */ 1355 #ifdef ATH_DEBUG_ALQ 1356 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1357 if_ath_alq_setcfg(&sc->sc_alq, 1358 sc->sc_ah->ah_macVersion, 1359 sc->sc_ah->ah_macRev, 1360 sc->sc_ah->ah_phyRev, 1361 sc->sc_ah->ah_magic); 1362 #endif 1363 1364 /* 1365 * Setup dynamic sysctl's now that country code and 1366 * regdomain are available from the hal. 1367 */ 1368 ath_sysctlattach(sc); 1369 ath_sysctl_stats_attach(sc); 1370 ath_sysctl_hal_attach(sc); 1371 1372 if (bootverbose) 1373 ieee80211_announce(ic); 1374 ath_announce(sc); 1375 1376 /* 1377 * Put it to sleep for now. 1378 */ 1379 ATH_LOCK(sc); 1380 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1381 ATH_UNLOCK(sc); 1382 1383 return 0; 1384 bad2: 1385 ath_tx_cleanup(sc); 1386 ath_desc_free(sc); 1387 ath_txdma_teardown(sc); 1388 ath_rxdma_teardown(sc); 1389 1390 bad: 1391 if (ah) 1392 ath_hal_detach(ah); 1393 sc->sc_invalid = 1; 1394 return error; 1395 } 1396 1397 int 1398 ath_detach(struct ath_softc *sc) 1399 { 1400 1401 /* 1402 * NB: the order of these is important: 1403 * o stop the chip so no more interrupts will fire 1404 * o call the 802.11 layer before detaching the hal to 1405 * insure callbacks into the driver to delete global 1406 * key cache entries can be handled 1407 * o free the taskqueue which drains any pending tasks 1408 * o reclaim the tx queue data structures after calling 1409 * the 802.11 layer as we'll get called back to reclaim 1410 * node state and potentially want to use them 1411 * o to cleanup the tx queues the hal is called, so detach 1412 * it last 1413 * Other than that, it's straightforward... 1414 */ 1415 1416 /* 1417 * XXX Wake the hardware up first. ath_stop() will still 1418 * wake it up first, but I'd rather do it here just to 1419 * ensure it's awake. 1420 */ 1421 ATH_LOCK(sc); 1422 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1423 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1424 1425 /* 1426 * Stop things cleanly. 1427 */ 1428 ath_stop(sc); 1429 ATH_UNLOCK(sc); 1430 1431 ieee80211_ifdetach(&sc->sc_ic); 1432 taskqueue_free(sc->sc_tq); 1433 #ifdef ATH_TX99_DIAG 1434 if (sc->sc_tx99 != NULL) 1435 sc->sc_tx99->detach(sc->sc_tx99); 1436 #endif 1437 ath_rate_detach(sc->sc_rc); 1438 #ifdef ATH_DEBUG_ALQ 1439 if_ath_alq_tidyup(&sc->sc_alq); 1440 #endif 1441 ath_lna_div_detach(sc); 1442 ath_btcoex_detach(sc); 1443 ath_spectral_detach(sc); 1444 ath_dfs_detach(sc); 1445 ath_desc_free(sc); 1446 ath_txdma_teardown(sc); 1447 ath_rxdma_teardown(sc); 1448 ath_tx_cleanup(sc); 1449 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1450 1451 return 0; 1452 } 1453 1454 /* 1455 * MAC address handling for multiple BSS on the same radio. 1456 * The first vap uses the MAC address from the EEPROM. For 1457 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1458 * address and use the next six bits as an index. 1459 */ 1460 static void 1461 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1462 { 1463 int i; 1464 1465 if (clone && sc->sc_hasbmask) { 1466 /* NB: we only do this if h/w supports multiple bssid */ 1467 for (i = 0; i < 8; i++) 1468 if ((sc->sc_bssidmask & (1<<i)) == 0) 1469 break; 1470 if (i != 0) 1471 mac[0] |= (i << 2)|0x2; 1472 } else 1473 i = 0; 1474 sc->sc_bssidmask |= 1<<i; 1475 sc->sc_hwbssidmask[0] &= ~mac[0]; 1476 if (i == 0) 1477 sc->sc_nbssid0++; 1478 } 1479 1480 static void 1481 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1482 { 1483 int i = mac[0] >> 2; 1484 uint8_t mask; 1485 1486 if (i != 0 || --sc->sc_nbssid0 == 0) { 1487 sc->sc_bssidmask &= ~(1<<i); 1488 /* recalculate bssid mask from remaining addresses */ 1489 mask = 0xff; 1490 for (i = 1; i < 8; i++) 1491 if (sc->sc_bssidmask & (1<<i)) 1492 mask &= ~((i<<2)|0x2); 1493 sc->sc_hwbssidmask[0] |= mask; 1494 } 1495 } 1496 1497 /* 1498 * Assign a beacon xmit slot. We try to space out 1499 * assignments so when beacons are staggered the 1500 * traffic coming out of the cab q has maximal time 1501 * to go out before the next beacon is scheduled. 1502 */ 1503 static int 1504 assign_bslot(struct ath_softc *sc) 1505 { 1506 u_int slot, free; 1507 1508 free = 0; 1509 for (slot = 0; slot < ATH_BCBUF; slot++) 1510 if (sc->sc_bslot[slot] == NULL) { 1511 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1512 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1513 return slot; 1514 free = slot; 1515 /* NB: keep looking for a double slot */ 1516 } 1517 return free; 1518 } 1519 1520 static struct ieee80211vap * 1521 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1522 enum ieee80211_opmode opmode, int flags, 1523 const uint8_t bssid[IEEE80211_ADDR_LEN], 1524 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1525 { 1526 struct ath_softc *sc = ic->ic_softc; 1527 struct ath_vap *avp; 1528 struct ieee80211vap *vap; 1529 uint8_t mac[IEEE80211_ADDR_LEN]; 1530 int needbeacon, error; 1531 enum ieee80211_opmode ic_opmode; 1532 1533 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1534 needbeacon = 0; 1535 IEEE80211_ADDR_COPY(mac, mac0); 1536 1537 ATH_LOCK(sc); 1538 ic_opmode = opmode; /* default to opmode of new vap */ 1539 switch (opmode) { 1540 case IEEE80211_M_STA: 1541 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1542 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1543 goto bad; 1544 } 1545 if (sc->sc_nvaps) { 1546 /* 1547 * With multiple vaps we must fall back 1548 * to s/w beacon miss handling. 1549 */ 1550 flags |= IEEE80211_CLONE_NOBEACONS; 1551 } 1552 if (flags & IEEE80211_CLONE_NOBEACONS) { 1553 /* 1554 * Station mode w/o beacons are implemented w/ AP mode. 1555 */ 1556 ic_opmode = IEEE80211_M_HOSTAP; 1557 } 1558 break; 1559 case IEEE80211_M_IBSS: 1560 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1561 device_printf(sc->sc_dev, 1562 "only 1 ibss vap supported\n"); 1563 goto bad; 1564 } 1565 needbeacon = 1; 1566 break; 1567 case IEEE80211_M_AHDEMO: 1568 #ifdef IEEE80211_SUPPORT_TDMA 1569 if (flags & IEEE80211_CLONE_TDMA) { 1570 if (sc->sc_nvaps != 0) { 1571 device_printf(sc->sc_dev, 1572 "only 1 tdma vap supported\n"); 1573 goto bad; 1574 } 1575 needbeacon = 1; 1576 flags |= IEEE80211_CLONE_NOBEACONS; 1577 } 1578 /* fall thru... */ 1579 #endif 1580 case IEEE80211_M_MONITOR: 1581 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1582 /* 1583 * Adopt existing mode. Adding a monitor or ahdemo 1584 * vap to an existing configuration is of dubious 1585 * value but should be ok. 1586 */ 1587 /* XXX not right for monitor mode */ 1588 ic_opmode = ic->ic_opmode; 1589 } 1590 break; 1591 case IEEE80211_M_HOSTAP: 1592 case IEEE80211_M_MBSS: 1593 needbeacon = 1; 1594 break; 1595 case IEEE80211_M_WDS: 1596 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1597 device_printf(sc->sc_dev, 1598 "wds not supported in sta mode\n"); 1599 goto bad; 1600 } 1601 /* 1602 * Silently remove any request for a unique 1603 * bssid; WDS vap's always share the local 1604 * mac address. 1605 */ 1606 flags &= ~IEEE80211_CLONE_BSSID; 1607 if (sc->sc_nvaps == 0) 1608 ic_opmode = IEEE80211_M_HOSTAP; 1609 else 1610 ic_opmode = ic->ic_opmode; 1611 break; 1612 default: 1613 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1614 goto bad; 1615 } 1616 /* 1617 * Check that a beacon buffer is available; the code below assumes it. 1618 */ 1619 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1620 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1621 goto bad; 1622 } 1623 1624 /* STA, AHDEMO? */ 1625 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1626 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1627 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1628 } 1629 1630 vap = &avp->av_vap; 1631 /* XXX can't hold mutex across if_alloc */ 1632 ATH_UNLOCK(sc); 1633 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1634 ATH_LOCK(sc); 1635 if (error != 0) { 1636 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1637 __func__, error); 1638 goto bad2; 1639 } 1640 1641 /* h/w crypto support */ 1642 vap->iv_key_alloc = ath_key_alloc; 1643 vap->iv_key_delete = ath_key_delete; 1644 vap->iv_key_set = ath_key_set; 1645 vap->iv_key_update_begin = ath_key_update_begin; 1646 vap->iv_key_update_end = ath_key_update_end; 1647 1648 /* override various methods */ 1649 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1650 vap->iv_recv_mgmt = ath_recv_mgmt; 1651 vap->iv_reset = ath_reset_vap; 1652 vap->iv_update_beacon = ath_beacon_update; 1653 avp->av_newstate = vap->iv_newstate; 1654 vap->iv_newstate = ath_newstate; 1655 avp->av_bmiss = vap->iv_bmiss; 1656 vap->iv_bmiss = ath_bmiss_vap; 1657 1658 avp->av_node_ps = vap->iv_node_ps; 1659 vap->iv_node_ps = ath_node_powersave; 1660 1661 avp->av_set_tim = vap->iv_set_tim; 1662 vap->iv_set_tim = ath_node_set_tim; 1663 1664 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1665 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1666 1667 /* Set default parameters */ 1668 1669 /* 1670 * Anything earlier than some AR9300 series MACs don't 1671 * support a smaller MPDU density. 1672 */ 1673 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1674 /* 1675 * All NICs can handle the maximum size, however 1676 * AR5416 based MACs can only TX aggregates w/ RTS 1677 * protection when the total aggregate size is <= 8k. 1678 * However, for now that's enforced by the TX path. 1679 */ 1680 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1681 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1682 1683 avp->av_bslot = -1; 1684 if (needbeacon) { 1685 /* 1686 * Allocate beacon state and setup the q for buffered 1687 * multicast frames. We know a beacon buffer is 1688 * available because we checked above. 1689 */ 1690 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1691 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1692 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1693 /* 1694 * Assign the vap to a beacon xmit slot. As above 1695 * this cannot fail to find a free one. 1696 */ 1697 avp->av_bslot = assign_bslot(sc); 1698 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1699 ("beacon slot %u not empty", avp->av_bslot)); 1700 sc->sc_bslot[avp->av_bslot] = vap; 1701 sc->sc_nbcnvaps++; 1702 } 1703 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1704 /* 1705 * Multple vaps are to transmit beacons and we 1706 * have h/w support for TSF adjusting; enable 1707 * use of staggered beacons. 1708 */ 1709 sc->sc_stagbeacons = 1; 1710 } 1711 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1712 } 1713 1714 ic->ic_opmode = ic_opmode; 1715 if (opmode != IEEE80211_M_WDS) { 1716 sc->sc_nvaps++; 1717 if (opmode == IEEE80211_M_STA) 1718 sc->sc_nstavaps++; 1719 if (opmode == IEEE80211_M_MBSS) 1720 sc->sc_nmeshvaps++; 1721 } 1722 switch (ic_opmode) { 1723 case IEEE80211_M_IBSS: 1724 sc->sc_opmode = HAL_M_IBSS; 1725 break; 1726 case IEEE80211_M_STA: 1727 sc->sc_opmode = HAL_M_STA; 1728 break; 1729 case IEEE80211_M_AHDEMO: 1730 #ifdef IEEE80211_SUPPORT_TDMA 1731 if (vap->iv_caps & IEEE80211_C_TDMA) { 1732 sc->sc_tdma = 1; 1733 /* NB: disable tsf adjust */ 1734 sc->sc_stagbeacons = 0; 1735 } 1736 /* 1737 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1738 * just ap mode. 1739 */ 1740 /* fall thru... */ 1741 #endif 1742 case IEEE80211_M_HOSTAP: 1743 case IEEE80211_M_MBSS: 1744 sc->sc_opmode = HAL_M_HOSTAP; 1745 break; 1746 case IEEE80211_M_MONITOR: 1747 sc->sc_opmode = HAL_M_MONITOR; 1748 break; 1749 default: 1750 /* XXX should not happen */ 1751 break; 1752 } 1753 if (sc->sc_hastsfadd) { 1754 /* 1755 * Configure whether or not TSF adjust should be done. 1756 */ 1757 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1758 } 1759 if (flags & IEEE80211_CLONE_NOBEACONS) { 1760 /* 1761 * Enable s/w beacon miss handling. 1762 */ 1763 sc->sc_swbmiss = 1; 1764 } 1765 ATH_UNLOCK(sc); 1766 1767 /* complete setup */ 1768 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1769 mac); 1770 return vap; 1771 bad2: 1772 reclaim_address(sc, mac); 1773 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1774 bad: 1775 free(avp, M_80211_VAP); 1776 ATH_UNLOCK(sc); 1777 return NULL; 1778 } 1779 1780 static void 1781 ath_vap_delete(struct ieee80211vap *vap) 1782 { 1783 struct ieee80211com *ic = vap->iv_ic; 1784 struct ath_softc *sc = ic->ic_softc; 1785 struct ath_hal *ah = sc->sc_ah; 1786 struct ath_vap *avp = ATH_VAP(vap); 1787 1788 ATH_LOCK(sc); 1789 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1790 ATH_UNLOCK(sc); 1791 1792 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1793 if (sc->sc_running) { 1794 /* 1795 * Quiesce the hardware while we remove the vap. In 1796 * particular we need to reclaim all references to 1797 * the vap state by any frames pending on the tx queues. 1798 */ 1799 ath_hal_intrset(ah, 0); /* disable interrupts */ 1800 /* XXX Do all frames from all vaps/nodes need draining here? */ 1801 ath_stoprecv(sc, 1); /* stop recv side */ 1802 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1803 } 1804 1805 /* .. leave the hardware awake for now. */ 1806 1807 ieee80211_vap_detach(vap); 1808 1809 /* 1810 * XXX Danger Will Robinson! Danger! 1811 * 1812 * Because ieee80211_vap_detach() can queue a frame (the station 1813 * diassociate message?) after we've drained the TXQ and 1814 * flushed the software TXQ, we will end up with a frame queued 1815 * to a node whose vap is about to be freed. 1816 * 1817 * To work around this, flush the hardware/software again. 1818 * This may be racy - the ath task may be running and the packet 1819 * may be being scheduled between sw->hw txq. Tsk. 1820 * 1821 * TODO: figure out why a new node gets allocated somewhere around 1822 * here (after the ath_tx_swq() call; and after an ath_stop() 1823 * call!) 1824 */ 1825 1826 ath_draintxq(sc, ATH_RESET_DEFAULT); 1827 1828 ATH_LOCK(sc); 1829 /* 1830 * Reclaim beacon state. Note this must be done before 1831 * the vap instance is reclaimed as we may have a reference 1832 * to it in the buffer for the beacon frame. 1833 */ 1834 if (avp->av_bcbuf != NULL) { 1835 if (avp->av_bslot != -1) { 1836 sc->sc_bslot[avp->av_bslot] = NULL; 1837 sc->sc_nbcnvaps--; 1838 } 1839 ath_beacon_return(sc, avp->av_bcbuf); 1840 avp->av_bcbuf = NULL; 1841 if (sc->sc_nbcnvaps == 0) { 1842 sc->sc_stagbeacons = 0; 1843 if (sc->sc_hastsfadd) 1844 ath_hal_settsfadjust(sc->sc_ah, 0); 1845 } 1846 /* 1847 * Reclaim any pending mcast frames for the vap. 1848 */ 1849 ath_tx_draintxq(sc, &avp->av_mcastq); 1850 } 1851 /* 1852 * Update bookkeeping. 1853 */ 1854 if (vap->iv_opmode == IEEE80211_M_STA) { 1855 sc->sc_nstavaps--; 1856 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1857 sc->sc_swbmiss = 0; 1858 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1859 vap->iv_opmode == IEEE80211_M_MBSS) { 1860 reclaim_address(sc, vap->iv_myaddr); 1861 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1862 if (vap->iv_opmode == IEEE80211_M_MBSS) 1863 sc->sc_nmeshvaps--; 1864 } 1865 if (vap->iv_opmode != IEEE80211_M_WDS) 1866 sc->sc_nvaps--; 1867 #ifdef IEEE80211_SUPPORT_TDMA 1868 /* TDMA operation ceases when the last vap is destroyed */ 1869 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1870 sc->sc_tdma = 0; 1871 sc->sc_swbmiss = 0; 1872 } 1873 #endif 1874 free(avp, M_80211_VAP); 1875 1876 if (sc->sc_running) { 1877 /* 1878 * Restart rx+tx machines if still running (RUNNING will 1879 * be reset if we just destroyed the last vap). 1880 */ 1881 if (ath_startrecv(sc) != 0) 1882 device_printf(sc->sc_dev, 1883 "%s: unable to restart recv logic\n", __func__); 1884 if (sc->sc_beacons) { /* restart beacons */ 1885 #ifdef IEEE80211_SUPPORT_TDMA 1886 if (sc->sc_tdma) 1887 ath_tdma_config(sc, NULL); 1888 else 1889 #endif 1890 ath_beacon_config(sc, NULL); 1891 } 1892 ath_hal_intrset(ah, sc->sc_imask); 1893 } 1894 1895 /* Ok, let the hardware asleep. */ 1896 ath_power_restore_power_state(sc); 1897 ATH_UNLOCK(sc); 1898 } 1899 1900 void 1901 ath_suspend(struct ath_softc *sc) 1902 { 1903 struct ieee80211com *ic = &sc->sc_ic; 1904 1905 sc->sc_resume_up = ic->ic_nrunning != 0; 1906 1907 ieee80211_suspend_all(ic); 1908 /* 1909 * NB: don't worry about putting the chip in low power 1910 * mode; pci will power off our socket on suspend and 1911 * CardBus detaches the device. 1912 * 1913 * XXX TODO: well, that's great, except for non-cardbus 1914 * devices! 1915 */ 1916 1917 /* 1918 * XXX This doesn't wait until all pending taskqueue 1919 * items and parallel transmit/receive/other threads 1920 * are running! 1921 */ 1922 ath_hal_intrset(sc->sc_ah, 0); 1923 taskqueue_block(sc->sc_tq); 1924 1925 ATH_LOCK(sc); 1926 callout_stop(&sc->sc_cal_ch); 1927 ATH_UNLOCK(sc); 1928 1929 /* 1930 * XXX ensure sc_invalid is 1 1931 */ 1932 1933 /* Disable the PCIe PHY, complete with workarounds */ 1934 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1935 } 1936 1937 /* 1938 * Reset the key cache since some parts do not reset the 1939 * contents on resume. First we clear all entries, then 1940 * re-load keys that the 802.11 layer assumes are setup 1941 * in h/w. 1942 */ 1943 static void 1944 ath_reset_keycache(struct ath_softc *sc) 1945 { 1946 struct ieee80211com *ic = &sc->sc_ic; 1947 struct ath_hal *ah = sc->sc_ah; 1948 int i; 1949 1950 ATH_LOCK(sc); 1951 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1952 for (i = 0; i < sc->sc_keymax; i++) 1953 ath_hal_keyreset(ah, i); 1954 ath_power_restore_power_state(sc); 1955 ATH_UNLOCK(sc); 1956 ieee80211_crypto_reload_keys(ic); 1957 } 1958 1959 /* 1960 * Fetch the current chainmask configuration based on the current 1961 * operating channel and options. 1962 */ 1963 static void 1964 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1965 { 1966 1967 /* 1968 * Set TX chainmask to the currently configured chainmask; 1969 * the TX chainmask depends upon the current operating mode. 1970 */ 1971 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1972 if (IEEE80211_IS_CHAN_HT(chan)) { 1973 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1974 } else { 1975 sc->sc_cur_txchainmask = 1; 1976 } 1977 1978 DPRINTF(sc, ATH_DEBUG_RESET, 1979 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1980 __func__, 1981 sc->sc_cur_txchainmask, 1982 sc->sc_cur_rxchainmask); 1983 } 1984 1985 void 1986 ath_resume(struct ath_softc *sc) 1987 { 1988 struct ieee80211com *ic = &sc->sc_ic; 1989 struct ath_hal *ah = sc->sc_ah; 1990 HAL_STATUS status; 1991 1992 ath_hal_enablepcie(ah, 0, 0); 1993 1994 /* 1995 * Must reset the chip before we reload the 1996 * keycache as we were powered down on suspend. 1997 */ 1998 ath_update_chainmasks(sc, 1999 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 2000 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2001 sc->sc_cur_rxchainmask); 2002 2003 /* Ensure we set the current power state to on */ 2004 ATH_LOCK(sc); 2005 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2006 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2007 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2008 ATH_UNLOCK(sc); 2009 2010 ath_hal_reset(ah, sc->sc_opmode, 2011 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 2012 AH_FALSE, HAL_RESET_NORMAL, &status); 2013 ath_reset_keycache(sc); 2014 2015 ATH_RX_LOCK(sc); 2016 sc->sc_rx_stopped = 1; 2017 sc->sc_rx_resetted = 1; 2018 ATH_RX_UNLOCK(sc); 2019 2020 /* Let DFS at it in case it's a DFS channel */ 2021 ath_dfs_radar_enable(sc, ic->ic_curchan); 2022 2023 /* Let spectral at in case spectral is enabled */ 2024 ath_spectral_enable(sc, ic->ic_curchan); 2025 2026 /* 2027 * Let bluetooth coexistence at in case it's needed for this channel 2028 */ 2029 ath_btcoex_enable(sc, ic->ic_curchan); 2030 2031 /* 2032 * If we're doing TDMA, enforce the TXOP limitation for chips that 2033 * support it. 2034 */ 2035 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2036 ath_hal_setenforcetxop(sc->sc_ah, 1); 2037 else 2038 ath_hal_setenforcetxop(sc->sc_ah, 0); 2039 2040 /* Restore the LED configuration */ 2041 ath_led_config(sc); 2042 ath_hal_setledstate(ah, HAL_LED_INIT); 2043 2044 if (sc->sc_resume_up) 2045 ieee80211_resume_all(ic); 2046 2047 ATH_LOCK(sc); 2048 ath_power_restore_power_state(sc); 2049 ATH_UNLOCK(sc); 2050 2051 /* XXX beacons ? */ 2052 } 2053 2054 void 2055 ath_shutdown(struct ath_softc *sc) 2056 { 2057 2058 ATH_LOCK(sc); 2059 ath_stop(sc); 2060 ATH_UNLOCK(sc); 2061 /* NB: no point powering down chip as we're about to reboot */ 2062 } 2063 2064 /* 2065 * Interrupt handler. Most of the actual processing is deferred. 2066 */ 2067 void 2068 ath_intr(void *arg) 2069 { 2070 struct ath_softc *sc = arg; 2071 struct ath_hal *ah = sc->sc_ah; 2072 HAL_INT status = 0; 2073 uint32_t txqs; 2074 2075 /* 2076 * If we're inside a reset path, just print a warning and 2077 * clear the ISR. The reset routine will finish it for us. 2078 */ 2079 ATH_PCU_LOCK(sc); 2080 if (sc->sc_inreset_cnt) { 2081 HAL_INT status; 2082 ath_hal_getisr(ah, &status); /* clear ISR */ 2083 ath_hal_intrset(ah, 0); /* disable further intr's */ 2084 DPRINTF(sc, ATH_DEBUG_ANY, 2085 "%s: in reset, ignoring: status=0x%x\n", 2086 __func__, status); 2087 ATH_PCU_UNLOCK(sc); 2088 return; 2089 } 2090 2091 if (sc->sc_invalid) { 2092 /* 2093 * The hardware is not ready/present, don't touch anything. 2094 * Note this can happen early on if the IRQ is shared. 2095 */ 2096 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2097 ATH_PCU_UNLOCK(sc); 2098 return; 2099 } 2100 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2101 ATH_PCU_UNLOCK(sc); 2102 return; 2103 } 2104 2105 ATH_LOCK(sc); 2106 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2107 ATH_UNLOCK(sc); 2108 2109 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2110 HAL_INT status; 2111 2112 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2113 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2114 ath_hal_getisr(ah, &status); /* clear ISR */ 2115 ath_hal_intrset(ah, 0); /* disable further intr's */ 2116 ATH_PCU_UNLOCK(sc); 2117 2118 ATH_LOCK(sc); 2119 ath_power_restore_power_state(sc); 2120 ATH_UNLOCK(sc); 2121 return; 2122 } 2123 2124 /* 2125 * Figure out the reason(s) for the interrupt. Note 2126 * that the hal returns a pseudo-ISR that may include 2127 * bits we haven't explicitly enabled so we mask the 2128 * value to insure we only process bits we requested. 2129 */ 2130 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2131 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2132 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2133 #ifdef ATH_DEBUG_ALQ 2134 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2135 ah->ah_syncstate); 2136 #endif /* ATH_DEBUG_ALQ */ 2137 #ifdef ATH_KTR_INTR_DEBUG 2138 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2139 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2140 ah->ah_intrstate[0], 2141 ah->ah_intrstate[1], 2142 ah->ah_intrstate[2], 2143 ah->ah_intrstate[3], 2144 ah->ah_intrstate[6]); 2145 #endif 2146 2147 /* Squirrel away SYNC interrupt debugging */ 2148 if (ah->ah_syncstate != 0) { 2149 int i; 2150 for (i = 0; i < 32; i++) 2151 if (ah->ah_syncstate & (i << i)) 2152 sc->sc_intr_stats.sync_intr[i]++; 2153 } 2154 2155 status &= sc->sc_imask; /* discard unasked for bits */ 2156 2157 /* Short-circuit un-handled interrupts */ 2158 if (status == 0x0) { 2159 ATH_PCU_UNLOCK(sc); 2160 2161 ATH_LOCK(sc); 2162 ath_power_restore_power_state(sc); 2163 ATH_UNLOCK(sc); 2164 2165 return; 2166 } 2167 2168 /* 2169 * Take a note that we're inside the interrupt handler, so 2170 * the reset routines know to wait. 2171 */ 2172 sc->sc_intr_cnt++; 2173 ATH_PCU_UNLOCK(sc); 2174 2175 /* 2176 * Handle the interrupt. We won't run concurrent with the reset 2177 * or channel change routines as they'll wait for sc_intr_cnt 2178 * to be 0 before continuing. 2179 */ 2180 if (status & HAL_INT_FATAL) { 2181 sc->sc_stats.ast_hardware++; 2182 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2183 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2184 } else { 2185 if (status & HAL_INT_SWBA) { 2186 /* 2187 * Software beacon alert--time to send a beacon. 2188 * Handle beacon transmission directly; deferring 2189 * this is too slow to meet timing constraints 2190 * under load. 2191 */ 2192 #ifdef IEEE80211_SUPPORT_TDMA 2193 if (sc->sc_tdma) { 2194 if (sc->sc_tdmaswba == 0) { 2195 struct ieee80211com *ic = &sc->sc_ic; 2196 struct ieee80211vap *vap = 2197 TAILQ_FIRST(&ic->ic_vaps); 2198 ath_tdma_beacon_send(sc, vap); 2199 sc->sc_tdmaswba = 2200 vap->iv_tdma->tdma_bintval; 2201 } else 2202 sc->sc_tdmaswba--; 2203 } else 2204 #endif 2205 { 2206 ath_beacon_proc(sc, 0); 2207 #ifdef IEEE80211_SUPPORT_SUPERG 2208 /* 2209 * Schedule the rx taskq in case there's no 2210 * traffic so any frames held on the staging 2211 * queue are aged and potentially flushed. 2212 */ 2213 sc->sc_rx.recv_sched(sc, 1); 2214 #endif 2215 } 2216 } 2217 if (status & HAL_INT_RXEOL) { 2218 int imask; 2219 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2220 if (! sc->sc_isedma) { 2221 ATH_PCU_LOCK(sc); 2222 /* 2223 * NB: the hardware should re-read the link when 2224 * RXE bit is written, but it doesn't work at 2225 * least on older hardware revs. 2226 */ 2227 sc->sc_stats.ast_rxeol++; 2228 /* 2229 * Disable RXEOL/RXORN - prevent an interrupt 2230 * storm until the PCU logic can be reset. 2231 * In case the interface is reset some other 2232 * way before "sc_kickpcu" is called, don't 2233 * modify sc_imask - that way if it is reset 2234 * by a call to ath_reset() somehow, the 2235 * interrupt mask will be correctly reprogrammed. 2236 */ 2237 imask = sc->sc_imask; 2238 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2239 ath_hal_intrset(ah, imask); 2240 /* 2241 * Only blank sc_rxlink if we've not yet kicked 2242 * the PCU. 2243 * 2244 * This isn't entirely correct - the correct solution 2245 * would be to have a PCU lock and engage that for 2246 * the duration of the PCU fiddling; which would include 2247 * running the RX process. Otherwise we could end up 2248 * messing up the RX descriptor chain and making the 2249 * RX desc list much shorter. 2250 */ 2251 if (! sc->sc_kickpcu) 2252 sc->sc_rxlink = NULL; 2253 sc->sc_kickpcu = 1; 2254 ATH_PCU_UNLOCK(sc); 2255 } 2256 /* 2257 * Enqueue an RX proc to handle whatever 2258 * is in the RX queue. 2259 * This will then kick the PCU if required. 2260 */ 2261 sc->sc_rx.recv_sched(sc, 1); 2262 } 2263 if (status & HAL_INT_TXURN) { 2264 sc->sc_stats.ast_txurn++; 2265 /* bump tx trigger level */ 2266 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2267 } 2268 /* 2269 * Handle both the legacy and RX EDMA interrupt bits. 2270 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2271 */ 2272 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2273 sc->sc_stats.ast_rx_intr++; 2274 sc->sc_rx.recv_sched(sc, 1); 2275 } 2276 if (status & HAL_INT_TX) { 2277 sc->sc_stats.ast_tx_intr++; 2278 /* 2279 * Grab all the currently set bits in the HAL txq bitmap 2280 * and blank them. This is the only place we should be 2281 * doing this. 2282 */ 2283 if (! sc->sc_isedma) { 2284 ATH_PCU_LOCK(sc); 2285 txqs = 0xffffffff; 2286 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2287 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2288 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2289 txqs, 2290 sc->sc_txq_active, 2291 sc->sc_txq_active | txqs); 2292 sc->sc_txq_active |= txqs; 2293 ATH_PCU_UNLOCK(sc); 2294 } 2295 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2296 } 2297 if (status & HAL_INT_BMISS) { 2298 sc->sc_stats.ast_bmiss++; 2299 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2300 } 2301 if (status & HAL_INT_GTT) 2302 sc->sc_stats.ast_tx_timeout++; 2303 if (status & HAL_INT_CST) 2304 sc->sc_stats.ast_tx_cst++; 2305 if (status & HAL_INT_MIB) { 2306 sc->sc_stats.ast_mib++; 2307 ATH_PCU_LOCK(sc); 2308 /* 2309 * Disable interrupts until we service the MIB 2310 * interrupt; otherwise it will continue to fire. 2311 */ 2312 ath_hal_intrset(ah, 0); 2313 /* 2314 * Let the hal handle the event. We assume it will 2315 * clear whatever condition caused the interrupt. 2316 */ 2317 ath_hal_mibevent(ah, &sc->sc_halstats); 2318 /* 2319 * Don't reset the interrupt if we've just 2320 * kicked the PCU, or we may get a nested 2321 * RXEOL before the rxproc has had a chance 2322 * to run. 2323 */ 2324 if (sc->sc_kickpcu == 0) 2325 ath_hal_intrset(ah, sc->sc_imask); 2326 ATH_PCU_UNLOCK(sc); 2327 } 2328 if (status & HAL_INT_RXORN) { 2329 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2330 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2331 sc->sc_stats.ast_rxorn++; 2332 } 2333 if (status & HAL_INT_TSFOOR) { 2334 /* out of range beacon - wake the chip up, 2335 * but don't modify self-gen frame config */ 2336 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2337 sc->sc_syncbeacon = 1; 2338 ATH_LOCK(sc); 2339 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2340 ATH_UNLOCK(sc); 2341 } 2342 if (status & HAL_INT_MCI) { 2343 ath_btcoex_mci_intr(sc); 2344 } 2345 } 2346 ATH_PCU_LOCK(sc); 2347 sc->sc_intr_cnt--; 2348 ATH_PCU_UNLOCK(sc); 2349 2350 ATH_LOCK(sc); 2351 ath_power_restore_power_state(sc); 2352 ATH_UNLOCK(sc); 2353 } 2354 2355 static void 2356 ath_fatal_proc(void *arg, int pending) 2357 { 2358 struct ath_softc *sc = arg; 2359 u_int32_t *state; 2360 u_int32_t len; 2361 void *sp; 2362 2363 if (sc->sc_invalid) 2364 return; 2365 2366 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2367 /* 2368 * Fatal errors are unrecoverable. Typically these 2369 * are caused by DMA errors. Collect h/w state from 2370 * the hal so we can diagnose what's going on. 2371 */ 2372 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2373 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2374 state = sp; 2375 device_printf(sc->sc_dev, 2376 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2377 state[1] , state[2], state[3], state[4], state[5]); 2378 } 2379 ath_reset(sc, ATH_RESET_NOLOSS); 2380 } 2381 2382 static void 2383 ath_bmiss_vap(struct ieee80211vap *vap) 2384 { 2385 struct ath_softc *sc = vap->iv_ic->ic_softc; 2386 2387 /* 2388 * Workaround phantom bmiss interrupts by sanity-checking 2389 * the time of our last rx'd frame. If it is within the 2390 * beacon miss interval then ignore the interrupt. If it's 2391 * truly a bmiss we'll get another interrupt soon and that'll 2392 * be dispatched up for processing. Note this applies only 2393 * for h/w beacon miss events. 2394 */ 2395 2396 /* 2397 * XXX TODO: Just read the TSF during the interrupt path; 2398 * that way we don't have to wake up again just to read it 2399 * again. 2400 */ 2401 ATH_LOCK(sc); 2402 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2403 ATH_UNLOCK(sc); 2404 2405 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2406 u_int64_t lastrx = sc->sc_lastrx; 2407 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2408 /* XXX should take a locked ref to iv_bss */ 2409 u_int bmisstimeout = 2410 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2411 2412 DPRINTF(sc, ATH_DEBUG_BEACON, 2413 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2414 __func__, (unsigned long long) tsf, 2415 (unsigned long long)(tsf - lastrx), 2416 (unsigned long long) lastrx, bmisstimeout); 2417 2418 if (tsf - lastrx <= bmisstimeout) { 2419 sc->sc_stats.ast_bmiss_phantom++; 2420 2421 ATH_LOCK(sc); 2422 ath_power_restore_power_state(sc); 2423 ATH_UNLOCK(sc); 2424 2425 return; 2426 } 2427 } 2428 2429 /* 2430 * Keep the hardware awake if it's asleep (and leave self-gen 2431 * frame config alone) until the next beacon, so we can resync 2432 * against the next beacon. 2433 * 2434 * This handles three common beacon miss cases in STA powersave mode - 2435 * (a) the beacon TBTT isnt a multiple of bintval; 2436 * (b) the beacon was missed; and 2437 * (c) the beacons are being delayed because the AP is busy and 2438 * isn't reliably able to meet its TBTT. 2439 */ 2440 ATH_LOCK(sc); 2441 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2442 ath_power_restore_power_state(sc); 2443 ATH_UNLOCK(sc); 2444 DPRINTF(sc, ATH_DEBUG_BEACON, 2445 "%s: forced awake; force syncbeacon=1\n", __func__); 2446 2447 /* 2448 * Attempt to force a beacon resync. 2449 */ 2450 sc->sc_syncbeacon = 1; 2451 2452 ATH_VAP(vap)->av_bmiss(vap); 2453 } 2454 2455 /* XXX this needs a force wakeup! */ 2456 int 2457 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2458 { 2459 uint32_t rsize; 2460 void *sp; 2461 2462 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2463 return 0; 2464 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2465 *hangs = *(uint32_t *)sp; 2466 return 1; 2467 } 2468 2469 static void 2470 ath_bmiss_proc(void *arg, int pending) 2471 { 2472 struct ath_softc *sc = arg; 2473 uint32_t hangs; 2474 2475 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2476 2477 ATH_LOCK(sc); 2478 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2479 ATH_UNLOCK(sc); 2480 2481 ath_beacon_miss(sc); 2482 2483 /* 2484 * Do a reset upon any becaon miss event. 2485 * 2486 * It may be a non-recognised RX clear hang which needs a reset 2487 * to clear. 2488 */ 2489 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2490 ath_reset(sc, ATH_RESET_NOLOSS); 2491 device_printf(sc->sc_dev, 2492 "bb hang detected (0x%x), resetting\n", hangs); 2493 } else { 2494 ath_reset(sc, ATH_RESET_NOLOSS); 2495 ieee80211_beacon_miss(&sc->sc_ic); 2496 } 2497 2498 /* Force a beacon resync, in case they've drifted */ 2499 sc->sc_syncbeacon = 1; 2500 2501 ATH_LOCK(sc); 2502 ath_power_restore_power_state(sc); 2503 ATH_UNLOCK(sc); 2504 } 2505 2506 /* 2507 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2508 * calcs together with WME. If necessary disable the crypto 2509 * hardware and mark the 802.11 state so keys will be setup 2510 * with the MIC work done in software. 2511 */ 2512 static void 2513 ath_settkipmic(struct ath_softc *sc) 2514 { 2515 struct ieee80211com *ic = &sc->sc_ic; 2516 2517 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2518 if (ic->ic_flags & IEEE80211_F_WME) { 2519 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2520 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2521 } else { 2522 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2523 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2524 } 2525 } 2526 } 2527 2528 static void 2529 ath_vap_clear_quiet_ie(struct ath_softc *sc) 2530 { 2531 struct ieee80211com *ic = &sc->sc_ic; 2532 struct ieee80211vap *vap; 2533 struct ath_vap *avp; 2534 2535 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2536 avp = ATH_VAP(vap); 2537 /* Quiet time handling - ensure we resync */ 2538 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 2539 } 2540 } 2541 2542 static int 2543 ath_init(struct ath_softc *sc) 2544 { 2545 struct ieee80211com *ic = &sc->sc_ic; 2546 struct ath_hal *ah = sc->sc_ah; 2547 HAL_STATUS status; 2548 2549 ATH_LOCK_ASSERT(sc); 2550 2551 /* 2552 * Force the sleep state awake. 2553 */ 2554 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2555 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2556 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2557 2558 /* 2559 * Stop anything previously setup. This is safe 2560 * whether this is the first time through or not. 2561 */ 2562 ath_stop(sc); 2563 2564 /* 2565 * The basic interface to setting the hardware in a good 2566 * state is ``reset''. On return the hardware is known to 2567 * be powered up and with interrupts disabled. This must 2568 * be followed by initialization of the appropriate bits 2569 * and then setup of the interrupt mask. 2570 */ 2571 ath_settkipmic(sc); 2572 ath_update_chainmasks(sc, ic->ic_curchan); 2573 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2574 sc->sc_cur_rxchainmask); 2575 2576 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2577 HAL_RESET_NORMAL, &status)) { 2578 device_printf(sc->sc_dev, 2579 "unable to reset hardware; hal status %u\n", status); 2580 return (ENODEV); 2581 } 2582 2583 ATH_RX_LOCK(sc); 2584 sc->sc_rx_stopped = 1; 2585 sc->sc_rx_resetted = 1; 2586 ATH_RX_UNLOCK(sc); 2587 2588 /* Clear quiet IE state for each VAP */ 2589 ath_vap_clear_quiet_ie(sc); 2590 2591 ath_chan_change(sc, ic->ic_curchan); 2592 2593 /* Let DFS at it in case it's a DFS channel */ 2594 ath_dfs_radar_enable(sc, ic->ic_curchan); 2595 2596 /* Let spectral at in case spectral is enabled */ 2597 ath_spectral_enable(sc, ic->ic_curchan); 2598 2599 /* 2600 * Let bluetooth coexistence at in case it's needed for this channel 2601 */ 2602 ath_btcoex_enable(sc, ic->ic_curchan); 2603 2604 /* 2605 * If we're doing TDMA, enforce the TXOP limitation for chips that 2606 * support it. 2607 */ 2608 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2609 ath_hal_setenforcetxop(sc->sc_ah, 1); 2610 else 2611 ath_hal_setenforcetxop(sc->sc_ah, 0); 2612 2613 /* 2614 * Likewise this is set during reset so update 2615 * state cached in the driver. 2616 */ 2617 sc->sc_diversity = ath_hal_getdiversity(ah); 2618 sc->sc_lastlongcal = ticks; 2619 sc->sc_resetcal = 1; 2620 sc->sc_lastcalreset = 0; 2621 sc->sc_lastani = ticks; 2622 sc->sc_lastshortcal = ticks; 2623 sc->sc_doresetcal = AH_FALSE; 2624 /* 2625 * Beacon timers were cleared here; give ath_newstate() 2626 * a hint that the beacon timers should be poked when 2627 * things transition to the RUN state. 2628 */ 2629 sc->sc_beacons = 0; 2630 2631 /* 2632 * Setup the hardware after reset: the key cache 2633 * is filled as needed and the receive engine is 2634 * set going. Frame transmit is handled entirely 2635 * in the frame output path; there's nothing to do 2636 * here except setup the interrupt mask. 2637 */ 2638 if (ath_startrecv(sc) != 0) { 2639 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2640 ath_power_restore_power_state(sc); 2641 return (ENODEV); 2642 } 2643 2644 /* 2645 * Enable interrupts. 2646 */ 2647 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2648 | HAL_INT_RXORN | HAL_INT_TXURN 2649 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2650 2651 /* 2652 * Enable RX EDMA bits. Note these overlap with 2653 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2654 */ 2655 if (sc->sc_isedma) 2656 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2657 2658 /* 2659 * If we're an EDMA NIC, we don't care about RXEOL. 2660 * Writing a new descriptor in will simply restart 2661 * RX DMA. 2662 */ 2663 if (! sc->sc_isedma) 2664 sc->sc_imask |= HAL_INT_RXEOL; 2665 2666 /* 2667 * Enable MCI interrupt for MCI devices. 2668 */ 2669 if (sc->sc_btcoex_mci) 2670 sc->sc_imask |= HAL_INT_MCI; 2671 2672 /* 2673 * Enable MIB interrupts when there are hardware phy counters. 2674 * Note we only do this (at the moment) for station mode. 2675 */ 2676 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2677 sc->sc_imask |= HAL_INT_MIB; 2678 2679 /* 2680 * XXX add capability for this. 2681 * 2682 * If we're in STA mode (and maybe IBSS?) then register for 2683 * TSFOOR interrupts. 2684 */ 2685 if (ic->ic_opmode == IEEE80211_M_STA) 2686 sc->sc_imask |= HAL_INT_TSFOOR; 2687 2688 /* Enable global TX timeout and carrier sense timeout if available */ 2689 if (ath_hal_gtxto_supported(ah)) 2690 sc->sc_imask |= HAL_INT_GTT; 2691 2692 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2693 __func__, sc->sc_imask); 2694 2695 sc->sc_running = 1; 2696 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2697 ath_hal_intrset(ah, sc->sc_imask); 2698 2699 ath_power_restore_power_state(sc); 2700 2701 return (0); 2702 } 2703 2704 static void 2705 ath_stop(struct ath_softc *sc) 2706 { 2707 struct ath_hal *ah = sc->sc_ah; 2708 2709 ATH_LOCK_ASSERT(sc); 2710 2711 /* 2712 * Wake the hardware up before fiddling with it. 2713 */ 2714 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2715 2716 if (sc->sc_running) { 2717 /* 2718 * Shutdown the hardware and driver: 2719 * reset 802.11 state machine 2720 * turn off timers 2721 * disable interrupts 2722 * turn off the radio 2723 * clear transmit machinery 2724 * clear receive machinery 2725 * drain and release tx queues 2726 * reclaim beacon resources 2727 * power down hardware 2728 * 2729 * Note that some of this work is not possible if the 2730 * hardware is gone (invalid). 2731 */ 2732 #ifdef ATH_TX99_DIAG 2733 if (sc->sc_tx99 != NULL) 2734 sc->sc_tx99->stop(sc->sc_tx99); 2735 #endif 2736 callout_stop(&sc->sc_wd_ch); 2737 sc->sc_wd_timer = 0; 2738 sc->sc_running = 0; 2739 if (!sc->sc_invalid) { 2740 if (sc->sc_softled) { 2741 callout_stop(&sc->sc_ledtimer); 2742 ath_hal_gpioset(ah, sc->sc_ledpin, 2743 !sc->sc_ledon); 2744 sc->sc_blinking = 0; 2745 } 2746 ath_hal_intrset(ah, 0); 2747 } 2748 /* XXX we should stop RX regardless of whether it's valid */ 2749 if (!sc->sc_invalid) { 2750 ath_stoprecv(sc, 1); 2751 ath_hal_phydisable(ah); 2752 } else 2753 sc->sc_rxlink = NULL; 2754 ath_draintxq(sc, ATH_RESET_DEFAULT); 2755 ath_beacon_free(sc); /* XXX not needed */ 2756 } 2757 2758 /* And now, restore the current power state */ 2759 ath_power_restore_power_state(sc); 2760 } 2761 2762 /* 2763 * Wait until all pending TX/RX has completed. 2764 * 2765 * This waits until all existing transmit, receive and interrupts 2766 * have completed. It's assumed that the caller has first 2767 * grabbed the reset lock so it doesn't try to do overlapping 2768 * chip resets. 2769 */ 2770 #define MAX_TXRX_ITERATIONS 100 2771 static void 2772 ath_txrx_stop_locked(struct ath_softc *sc) 2773 { 2774 int i = MAX_TXRX_ITERATIONS; 2775 2776 ATH_UNLOCK_ASSERT(sc); 2777 ATH_PCU_LOCK_ASSERT(sc); 2778 2779 /* 2780 * Sleep until all the pending operations have completed. 2781 * 2782 * The caller must ensure that reset has been incremented 2783 * or the pending operations may continue being queued. 2784 */ 2785 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2786 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2787 if (i <= 0) 2788 break; 2789 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2790 msecs_to_ticks(10)); 2791 i--; 2792 } 2793 2794 if (i <= 0) 2795 device_printf(sc->sc_dev, 2796 "%s: didn't finish after %d iterations\n", 2797 __func__, MAX_TXRX_ITERATIONS); 2798 } 2799 #undef MAX_TXRX_ITERATIONS 2800 2801 #if 0 2802 static void 2803 ath_txrx_stop(struct ath_softc *sc) 2804 { 2805 ATH_UNLOCK_ASSERT(sc); 2806 ATH_PCU_UNLOCK_ASSERT(sc); 2807 2808 ATH_PCU_LOCK(sc); 2809 ath_txrx_stop_locked(sc); 2810 ATH_PCU_UNLOCK(sc); 2811 } 2812 #endif 2813 2814 static void 2815 ath_txrx_start(struct ath_softc *sc) 2816 { 2817 2818 taskqueue_unblock(sc->sc_tq); 2819 } 2820 2821 /* 2822 * Grab the reset lock, and wait around until no one else 2823 * is trying to do anything with it. 2824 * 2825 * This is totally horrible but we can't hold this lock for 2826 * long enough to do TX/RX or we end up with net80211/ip stack 2827 * LORs and eventual deadlock. 2828 * 2829 * "dowait" signals whether to spin, waiting for the reset 2830 * lock count to reach 0. This should (for now) only be used 2831 * during the reset path, as the rest of the code may not 2832 * be locking-reentrant enough to behave correctly. 2833 * 2834 * Another, cleaner way should be found to serialise all of 2835 * these operations. 2836 */ 2837 #define MAX_RESET_ITERATIONS 25 2838 static int 2839 ath_reset_grablock(struct ath_softc *sc, int dowait) 2840 { 2841 int w = 0; 2842 int i = MAX_RESET_ITERATIONS; 2843 2844 ATH_PCU_LOCK_ASSERT(sc); 2845 do { 2846 if (sc->sc_inreset_cnt == 0) { 2847 w = 1; 2848 break; 2849 } 2850 if (dowait == 0) { 2851 w = 0; 2852 break; 2853 } 2854 ATH_PCU_UNLOCK(sc); 2855 /* 2856 * 1 tick is likely not enough time for long calibrations 2857 * to complete. So we should wait quite a while. 2858 */ 2859 pause("ath_reset_grablock", msecs_to_ticks(100)); 2860 i--; 2861 ATH_PCU_LOCK(sc); 2862 } while (i > 0); 2863 2864 /* 2865 * We always increment the refcounter, regardless 2866 * of whether we succeeded to get it in an exclusive 2867 * way. 2868 */ 2869 sc->sc_inreset_cnt++; 2870 2871 if (i <= 0) 2872 device_printf(sc->sc_dev, 2873 "%s: didn't finish after %d iterations\n", 2874 __func__, MAX_RESET_ITERATIONS); 2875 2876 if (w == 0) 2877 device_printf(sc->sc_dev, 2878 "%s: warning, recursive reset path!\n", 2879 __func__); 2880 2881 return w; 2882 } 2883 #undef MAX_RESET_ITERATIONS 2884 2885 /* 2886 * Reset the hardware w/o losing operational state. This is 2887 * basically a more efficient way of doing ath_stop, ath_init, 2888 * followed by state transitions to the current 802.11 2889 * operational state. Used to recover from various errors and 2890 * to reset or reload hardware state. 2891 */ 2892 int 2893 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2894 { 2895 struct ieee80211com *ic = &sc->sc_ic; 2896 struct ath_hal *ah = sc->sc_ah; 2897 HAL_STATUS status; 2898 int i; 2899 2900 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2901 2902 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2903 ATH_PCU_UNLOCK_ASSERT(sc); 2904 ATH_UNLOCK_ASSERT(sc); 2905 2906 /* Try to (stop any further TX/RX from occurring */ 2907 taskqueue_block(sc->sc_tq); 2908 2909 /* 2910 * Wake the hardware up. 2911 */ 2912 ATH_LOCK(sc); 2913 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2914 ATH_UNLOCK(sc); 2915 2916 ATH_PCU_LOCK(sc); 2917 2918 /* 2919 * Grab the reset lock before TX/RX is stopped. 2920 * 2921 * This is needed to ensure that when the TX/RX actually does finish, 2922 * no further TX/RX/reset runs in parallel with this. 2923 */ 2924 if (ath_reset_grablock(sc, 1) == 0) { 2925 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2926 __func__); 2927 } 2928 2929 /* disable interrupts */ 2930 ath_hal_intrset(ah, 0); 2931 2932 /* 2933 * Now, ensure that any in progress TX/RX completes before we 2934 * continue. 2935 */ 2936 ath_txrx_stop_locked(sc); 2937 2938 ATH_PCU_UNLOCK(sc); 2939 2940 /* 2941 * Regardless of whether we're doing a no-loss flush or 2942 * not, stop the PCU and handle what's in the RX queue. 2943 * That way frames aren't dropped which shouldn't be. 2944 */ 2945 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2946 ath_rx_flush(sc); 2947 2948 /* 2949 * Should now wait for pending TX/RX to complete 2950 * and block future ones from occurring. This needs to be 2951 * done before the TX queue is drained. 2952 */ 2953 ath_draintxq(sc, reset_type); /* stop xmit side */ 2954 2955 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2956 /* NB: indicate channel change so we do a full reset */ 2957 ath_update_chainmasks(sc, ic->ic_curchan); 2958 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2959 sc->sc_cur_rxchainmask); 2960 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2961 HAL_RESET_NORMAL, &status)) 2962 device_printf(sc->sc_dev, 2963 "%s: unable to reset hardware; hal status %u\n", 2964 __func__, status); 2965 sc->sc_diversity = ath_hal_getdiversity(ah); 2966 2967 ATH_RX_LOCK(sc); 2968 sc->sc_rx_stopped = 1; 2969 sc->sc_rx_resetted = 1; 2970 ATH_RX_UNLOCK(sc); 2971 2972 /* Quiet time handling - ensure we resync */ 2973 ath_vap_clear_quiet_ie(sc); 2974 2975 /* Let DFS at it in case it's a DFS channel */ 2976 ath_dfs_radar_enable(sc, ic->ic_curchan); 2977 2978 /* Let spectral at in case spectral is enabled */ 2979 ath_spectral_enable(sc, ic->ic_curchan); 2980 2981 /* 2982 * Let bluetooth coexistence at in case it's needed for this channel 2983 */ 2984 ath_btcoex_enable(sc, ic->ic_curchan); 2985 2986 /* 2987 * If we're doing TDMA, enforce the TXOP limitation for chips that 2988 * support it. 2989 */ 2990 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2991 ath_hal_setenforcetxop(sc->sc_ah, 1); 2992 else 2993 ath_hal_setenforcetxop(sc->sc_ah, 0); 2994 2995 if (ath_startrecv(sc) != 0) /* restart recv */ 2996 device_printf(sc->sc_dev, 2997 "%s: unable to start recv logic\n", __func__); 2998 /* 2999 * We may be doing a reset in response to an ioctl 3000 * that changes the channel so update any state that 3001 * might change as a result. 3002 */ 3003 ath_chan_change(sc, ic->ic_curchan); 3004 if (sc->sc_beacons) { /* restart beacons */ 3005 #ifdef IEEE80211_SUPPORT_TDMA 3006 if (sc->sc_tdma) 3007 ath_tdma_config(sc, NULL); 3008 else 3009 #endif 3010 ath_beacon_config(sc, NULL); 3011 } 3012 3013 /* 3014 * Release the reset lock and re-enable interrupts here. 3015 * If an interrupt was being processed in ath_intr(), 3016 * it would disable interrupts at this point. So we have 3017 * to atomically enable interrupts and decrement the 3018 * reset counter - this way ath_intr() doesn't end up 3019 * disabling interrupts without a corresponding enable 3020 * in the rest or channel change path. 3021 * 3022 * Grab the TX reference in case we need to transmit. 3023 * That way a parallel transmit doesn't. 3024 */ 3025 ATH_PCU_LOCK(sc); 3026 sc->sc_inreset_cnt--; 3027 sc->sc_txstart_cnt++; 3028 /* XXX only do this if sc_inreset_cnt == 0? */ 3029 ath_hal_intrset(ah, sc->sc_imask); 3030 ATH_PCU_UNLOCK(sc); 3031 3032 /* 3033 * TX and RX can be started here. If it were started with 3034 * sc_inreset_cnt > 0, the TX and RX path would abort. 3035 * Thus if this is a nested call through the reset or 3036 * channel change code, TX completion will occur but 3037 * RX completion and ath_start / ath_tx_start will not 3038 * run. 3039 */ 3040 3041 /* Restart TX/RX as needed */ 3042 ath_txrx_start(sc); 3043 3044 /* XXX TODO: we need to hold the tx refcount here! */ 3045 3046 /* Restart TX completion and pending TX */ 3047 if (reset_type == ATH_RESET_NOLOSS) { 3048 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3049 if (ATH_TXQ_SETUP(sc, i)) { 3050 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3051 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 3052 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3053 3054 ATH_TX_LOCK(sc); 3055 ath_txq_sched(sc, &sc->sc_txq[i]); 3056 ATH_TX_UNLOCK(sc); 3057 } 3058 } 3059 } 3060 3061 ATH_LOCK(sc); 3062 ath_power_restore_power_state(sc); 3063 ATH_UNLOCK(sc); 3064 3065 ATH_PCU_LOCK(sc); 3066 sc->sc_txstart_cnt--; 3067 ATH_PCU_UNLOCK(sc); 3068 3069 /* Handle any frames in the TX queue */ 3070 /* 3071 * XXX should this be done by the caller, rather than 3072 * ath_reset() ? 3073 */ 3074 ath_tx_kick(sc); /* restart xmit */ 3075 return 0; 3076 } 3077 3078 static int 3079 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3080 { 3081 struct ieee80211com *ic = vap->iv_ic; 3082 struct ath_softc *sc = ic->ic_softc; 3083 struct ath_hal *ah = sc->sc_ah; 3084 3085 switch (cmd) { 3086 case IEEE80211_IOC_TXPOWER: 3087 /* 3088 * If per-packet TPC is enabled, then we have nothing 3089 * to do; otherwise we need to force the global limit. 3090 * All this can happen directly; no need to reset. 3091 */ 3092 if (!ath_hal_gettpc(ah)) 3093 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3094 return 0; 3095 } 3096 /* XXX? Full or NOLOSS? */ 3097 return ath_reset(sc, ATH_RESET_FULL); 3098 } 3099 3100 struct ath_buf * 3101 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3102 { 3103 struct ath_buf *bf; 3104 3105 ATH_TXBUF_LOCK_ASSERT(sc); 3106 3107 if (btype == ATH_BUFTYPE_MGMT) 3108 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3109 else 3110 bf = TAILQ_FIRST(&sc->sc_txbuf); 3111 3112 if (bf == NULL) { 3113 sc->sc_stats.ast_tx_getnobuf++; 3114 } else { 3115 if (bf->bf_flags & ATH_BUF_BUSY) { 3116 sc->sc_stats.ast_tx_getbusybuf++; 3117 bf = NULL; 3118 } 3119 } 3120 3121 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3122 if (btype == ATH_BUFTYPE_MGMT) 3123 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3124 else { 3125 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3126 sc->sc_txbuf_cnt--; 3127 3128 /* 3129 * This shuldn't happen; however just to be 3130 * safe print a warning and fudge the txbuf 3131 * count. 3132 */ 3133 if (sc->sc_txbuf_cnt < 0) { 3134 device_printf(sc->sc_dev, 3135 "%s: sc_txbuf_cnt < 0?\n", 3136 __func__); 3137 sc->sc_txbuf_cnt = 0; 3138 } 3139 } 3140 } else 3141 bf = NULL; 3142 3143 if (bf == NULL) { 3144 /* XXX should check which list, mgmt or otherwise */ 3145 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3146 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3147 "out of xmit buffers" : "xmit buffer busy"); 3148 return NULL; 3149 } 3150 3151 /* XXX TODO: should do this at buffer list initialisation */ 3152 /* XXX (then, ensure the buffer has the right flag set) */ 3153 bf->bf_flags = 0; 3154 if (btype == ATH_BUFTYPE_MGMT) 3155 bf->bf_flags |= ATH_BUF_MGMT; 3156 else 3157 bf->bf_flags &= (~ATH_BUF_MGMT); 3158 3159 /* Valid bf here; clear some basic fields */ 3160 bf->bf_next = NULL; /* XXX just to be sure */ 3161 bf->bf_last = NULL; /* XXX again, just to be sure */ 3162 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3163 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3164 3165 /* 3166 * Track the descriptor ID only if doing EDMA 3167 */ 3168 if (sc->sc_isedma) { 3169 bf->bf_descid = sc->sc_txbuf_descid; 3170 sc->sc_txbuf_descid++; 3171 } 3172 3173 return bf; 3174 } 3175 3176 /* 3177 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3178 * can't be thrown back on the queue as they could still be 3179 * in use by the hardware. 3180 * 3181 * This duplicates the buffer, or returns NULL. 3182 * 3183 * The descriptor is also copied but the link pointers and 3184 * the DMA segments aren't copied; this frame should thus 3185 * be again passed through the descriptor setup/chain routines 3186 * so the link is correct. 3187 * 3188 * The caller must free the buffer using ath_freebuf(). 3189 */ 3190 struct ath_buf * 3191 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3192 { 3193 struct ath_buf *tbf; 3194 3195 tbf = ath_getbuf(sc, 3196 (bf->bf_flags & ATH_BUF_MGMT) ? 3197 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3198 if (tbf == NULL) 3199 return NULL; /* XXX failure? Why? */ 3200 3201 /* Copy basics */ 3202 tbf->bf_next = NULL; 3203 tbf->bf_nseg = bf->bf_nseg; 3204 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3205 tbf->bf_status = bf->bf_status; 3206 tbf->bf_m = bf->bf_m; 3207 tbf->bf_node = bf->bf_node; 3208 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3209 /* will be setup by the chain/setup function */ 3210 tbf->bf_lastds = NULL; 3211 /* for now, last == self */ 3212 tbf->bf_last = tbf; 3213 tbf->bf_comp = bf->bf_comp; 3214 3215 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3216 3217 /* The caller has to re-init the descriptor + links */ 3218 3219 /* 3220 * Free the DMA mapping here, before we NULL the mbuf. 3221 * We must only call bus_dmamap_unload() once per mbuf chain 3222 * or behaviour is undefined. 3223 */ 3224 if (bf->bf_m != NULL) { 3225 /* 3226 * XXX is this POSTWRITE call required? 3227 */ 3228 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3229 BUS_DMASYNC_POSTWRITE); 3230 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3231 } 3232 3233 bf->bf_m = NULL; 3234 bf->bf_node = NULL; 3235 3236 /* Copy state */ 3237 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3238 3239 return tbf; 3240 } 3241 3242 struct ath_buf * 3243 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3244 { 3245 struct ath_buf *bf; 3246 3247 ATH_TXBUF_LOCK(sc); 3248 bf = _ath_getbuf_locked(sc, btype); 3249 /* 3250 * If a mgmt buffer was requested but we're out of those, 3251 * try requesting a normal one. 3252 */ 3253 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3254 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3255 ATH_TXBUF_UNLOCK(sc); 3256 if (bf == NULL) { 3257 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3258 sc->sc_stats.ast_tx_qstop++; 3259 } 3260 return bf; 3261 } 3262 3263 /* 3264 * Transmit a single frame. 3265 * 3266 * net80211 will free the node reference if the transmit 3267 * fails, so don't free the node reference here. 3268 */ 3269 static int 3270 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3271 { 3272 struct ath_softc *sc = ic->ic_softc; 3273 struct ieee80211_node *ni; 3274 struct mbuf *next; 3275 struct ath_buf *bf; 3276 ath_bufhead frags; 3277 int retval = 0; 3278 3279 /* 3280 * Tell the reset path that we're currently transmitting. 3281 */ 3282 ATH_PCU_LOCK(sc); 3283 if (sc->sc_inreset_cnt > 0) { 3284 DPRINTF(sc, ATH_DEBUG_XMIT, 3285 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3286 ATH_PCU_UNLOCK(sc); 3287 sc->sc_stats.ast_tx_qstop++; 3288 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3289 return (ENOBUFS); /* XXX should be EINVAL or? */ 3290 } 3291 sc->sc_txstart_cnt++; 3292 ATH_PCU_UNLOCK(sc); 3293 3294 /* Wake the hardware up already */ 3295 ATH_LOCK(sc); 3296 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3297 ATH_UNLOCK(sc); 3298 3299 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3300 /* 3301 * Grab the TX lock - it's ok to do this here; we haven't 3302 * yet started transmitting. 3303 */ 3304 ATH_TX_LOCK(sc); 3305 3306 /* 3307 * Node reference, if there's one. 3308 */ 3309 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3310 3311 /* 3312 * Enforce how deep a node queue can get. 3313 * 3314 * XXX it would be nicer if we kept an mbuf queue per 3315 * node and only whacked them into ath_bufs when we 3316 * are ready to schedule some traffic from them. 3317 * .. that may come later. 3318 * 3319 * XXX we should also track the per-node hardware queue 3320 * depth so it is easy to limit the _SUM_ of the swq and 3321 * hwq frames. Since we only schedule two HWQ frames 3322 * at a time, this should be OK for now. 3323 */ 3324 if ((!(m->m_flags & M_EAPOL)) && 3325 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3326 sc->sc_stats.ast_tx_nodeq_overflow++; 3327 retval = ENOBUFS; 3328 goto finish; 3329 } 3330 3331 /* 3332 * Check how many TX buffers are available. 3333 * 3334 * If this is for non-EAPOL traffic, just leave some 3335 * space free in order for buffer cloning and raw 3336 * frame transmission to occur. 3337 * 3338 * If it's for EAPOL traffic, ignore this for now. 3339 * Management traffic will be sent via the raw transmit 3340 * method which bypasses this check. 3341 * 3342 * This is needed to ensure that EAPOL frames during 3343 * (re) keying have a chance to go out. 3344 * 3345 * See kern/138379 for more information. 3346 */ 3347 if ((!(m->m_flags & M_EAPOL)) && 3348 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3349 sc->sc_stats.ast_tx_nobuf++; 3350 retval = ENOBUFS; 3351 goto finish; 3352 } 3353 3354 /* 3355 * Grab a TX buffer and associated resources. 3356 * 3357 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3358 * That way even with temporary buffer exhaustion due to 3359 * the data path doesn't leave us without the ability 3360 * to transmit management frames. 3361 * 3362 * Otherwise allocate a normal buffer. 3363 */ 3364 if (m->m_flags & M_EAPOL) 3365 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3366 else 3367 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3368 3369 if (bf == NULL) { 3370 /* 3371 * If we failed to allocate a buffer, fail. 3372 * 3373 * We shouldn't fail normally, due to the check 3374 * above. 3375 */ 3376 sc->sc_stats.ast_tx_nobuf++; 3377 retval = ENOBUFS; 3378 goto finish; 3379 } 3380 3381 /* 3382 * At this point we have a buffer; so we need to free it 3383 * if we hit any error conditions. 3384 */ 3385 3386 /* 3387 * Check for fragmentation. If this frame 3388 * has been broken up verify we have enough 3389 * buffers to send all the fragments so all 3390 * go out or none... 3391 */ 3392 TAILQ_INIT(&frags); 3393 if ((m->m_flags & M_FRAG) && 3394 !ath_txfrag_setup(sc, &frags, m, ni)) { 3395 DPRINTF(sc, ATH_DEBUG_XMIT, 3396 "%s: out of txfrag buffers\n", __func__); 3397 sc->sc_stats.ast_tx_nofrag++; 3398 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3399 /* 3400 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3401 * we shouldn't free it but return back. 3402 */ 3403 ieee80211_free_mbuf(m); 3404 m = NULL; 3405 goto bad; 3406 } 3407 3408 /* 3409 * At this point if we have any TX fragments, then we will 3410 * have bumped the node reference once for each of those. 3411 */ 3412 3413 /* 3414 * XXX Is there anything actually _enforcing_ that the 3415 * fragments are being transmitted in one hit, rather than 3416 * being interleaved with other transmissions on that 3417 * hardware queue? 3418 * 3419 * The ATH TX output lock is the only thing serialising this 3420 * right now. 3421 */ 3422 3423 /* 3424 * Calculate the "next fragment" length field in ath_buf 3425 * in order to let the transmit path know enough about 3426 * what to next write to the hardware. 3427 */ 3428 if (m->m_flags & M_FRAG) { 3429 struct ath_buf *fbf = bf; 3430 struct ath_buf *n_fbf = NULL; 3431 struct mbuf *fm = m->m_nextpkt; 3432 3433 /* 3434 * We need to walk the list of fragments and set 3435 * the next size to the following buffer. 3436 * However, the first buffer isn't in the frag 3437 * list, so we have to do some gymnastics here. 3438 */ 3439 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3440 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3441 fbf = n_fbf; 3442 fm = fm->m_nextpkt; 3443 } 3444 } 3445 3446 nextfrag: 3447 /* 3448 * Pass the frame to the h/w for transmission. 3449 * Fragmented frames have each frag chained together 3450 * with m_nextpkt. We know there are sufficient ath_buf's 3451 * to send all the frags because of work done by 3452 * ath_txfrag_setup. We leave m_nextpkt set while 3453 * calling ath_tx_start so it can use it to extend the 3454 * the tx duration to cover the subsequent frag and 3455 * so it can reclaim all the mbufs in case of an error; 3456 * ath_tx_start clears m_nextpkt once it commits to 3457 * handing the frame to the hardware. 3458 * 3459 * Note: if this fails, then the mbufs are freed but 3460 * not the node reference. 3461 * 3462 * So, we now have to free the node reference ourselves here 3463 * and return OK up to the stack. 3464 */ 3465 next = m->m_nextpkt; 3466 if (ath_tx_start(sc, ni, bf, m)) { 3467 bad: 3468 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3469 reclaim: 3470 bf->bf_m = NULL; 3471 bf->bf_node = NULL; 3472 ATH_TXBUF_LOCK(sc); 3473 ath_returnbuf_head(sc, bf); 3474 /* 3475 * Free the rest of the node references and 3476 * buffers for the fragment list. 3477 */ 3478 ath_txfrag_cleanup(sc, &frags, ni); 3479 ATH_TXBUF_UNLOCK(sc); 3480 3481 /* 3482 * XXX: And free the node/return OK; ath_tx_start() may have 3483 * modified the buffer. We currently have no way to 3484 * signify that the mbuf was freed but there was an error. 3485 */ 3486 ieee80211_free_node(ni); 3487 retval = 0; 3488 goto finish; 3489 } 3490 3491 /* 3492 * Check here if the node is in power save state. 3493 */ 3494 ath_tx_update_tim(sc, ni, 1); 3495 3496 if (next != NULL) { 3497 /* 3498 * Beware of state changing between frags. 3499 * XXX check sta power-save state? 3500 */ 3501 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3502 DPRINTF(sc, ATH_DEBUG_XMIT, 3503 "%s: flush fragmented packet, state %s\n", 3504 __func__, 3505 ieee80211_state_name[ni->ni_vap->iv_state]); 3506 /* XXX dmamap */ 3507 ieee80211_free_mbuf(next); 3508 goto reclaim; 3509 } 3510 m = next; 3511 bf = TAILQ_FIRST(&frags); 3512 KASSERT(bf != NULL, ("no buf for txfrag")); 3513 TAILQ_REMOVE(&frags, bf, bf_list); 3514 goto nextfrag; 3515 } 3516 3517 /* 3518 * Bump watchdog timer. 3519 */ 3520 sc->sc_wd_timer = 5; 3521 3522 finish: 3523 ATH_TX_UNLOCK(sc); 3524 3525 /* 3526 * Finished transmitting! 3527 */ 3528 ATH_PCU_LOCK(sc); 3529 sc->sc_txstart_cnt--; 3530 ATH_PCU_UNLOCK(sc); 3531 3532 /* Sleep the hardware if required */ 3533 ATH_LOCK(sc); 3534 ath_power_restore_power_state(sc); 3535 ATH_UNLOCK(sc); 3536 3537 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3538 3539 return (retval); 3540 } 3541 3542 static int 3543 ath_media_change(struct ifnet *ifp) 3544 { 3545 int error = ieee80211_media_change(ifp); 3546 /* NB: only the fixed rate can change and that doesn't need a reset */ 3547 return (error == ENETRESET ? 0 : error); 3548 } 3549 3550 /* 3551 * Block/unblock tx+rx processing while a key change is done. 3552 * We assume the caller serializes key management operations 3553 * so we only need to worry about synchronization with other 3554 * uses that originate in the driver. 3555 */ 3556 static void 3557 ath_key_update_begin(struct ieee80211vap *vap) 3558 { 3559 struct ath_softc *sc = vap->iv_ic->ic_softc; 3560 3561 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3562 taskqueue_block(sc->sc_tq); 3563 } 3564 3565 static void 3566 ath_key_update_end(struct ieee80211vap *vap) 3567 { 3568 struct ath_softc *sc = vap->iv_ic->ic_softc; 3569 3570 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3571 taskqueue_unblock(sc->sc_tq); 3572 } 3573 3574 static void 3575 ath_update_promisc(struct ieee80211com *ic) 3576 { 3577 struct ath_softc *sc = ic->ic_softc; 3578 u_int32_t rfilt; 3579 3580 /* configure rx filter */ 3581 ATH_LOCK(sc); 3582 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3583 rfilt = ath_calcrxfilter(sc); 3584 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3585 ath_power_restore_power_state(sc); 3586 ATH_UNLOCK(sc); 3587 3588 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3589 } 3590 3591 /* 3592 * Driver-internal mcast update call. 3593 * 3594 * Assumes the hardware is already awake. 3595 */ 3596 static void 3597 ath_update_mcast_hw(struct ath_softc *sc) 3598 { 3599 struct ieee80211com *ic = &sc->sc_ic; 3600 u_int32_t mfilt[2]; 3601 3602 /* calculate and install multicast filter */ 3603 if (ic->ic_allmulti == 0) { 3604 struct ieee80211vap *vap; 3605 struct ifnet *ifp; 3606 struct ifmultiaddr *ifma; 3607 3608 /* 3609 * Merge multicast addresses to form the hardware filter. 3610 */ 3611 mfilt[0] = mfilt[1] = 0; 3612 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3613 ifp = vap->iv_ifp; 3614 if_maddr_rlock(ifp); 3615 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3616 caddr_t dl; 3617 uint32_t val; 3618 uint8_t pos; 3619 3620 /* calculate XOR of eight 6bit values */ 3621 dl = LLADDR((struct sockaddr_dl *) 3622 ifma->ifma_addr); 3623 val = le32dec(dl + 0); 3624 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3625 val; 3626 val = le32dec(dl + 3); 3627 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3628 val; 3629 pos &= 0x3f; 3630 mfilt[pos / 32] |= (1 << (pos % 32)); 3631 } 3632 if_maddr_runlock(ifp); 3633 } 3634 } else 3635 mfilt[0] = mfilt[1] = ~0; 3636 3637 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3638 3639 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3640 __func__, mfilt[0], mfilt[1]); 3641 } 3642 3643 /* 3644 * Called from the net80211 layer - force the hardware 3645 * awake before operating. 3646 */ 3647 static void 3648 ath_update_mcast(struct ieee80211com *ic) 3649 { 3650 struct ath_softc *sc = ic->ic_softc; 3651 3652 ATH_LOCK(sc); 3653 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3654 ATH_UNLOCK(sc); 3655 3656 ath_update_mcast_hw(sc); 3657 3658 ATH_LOCK(sc); 3659 ath_power_restore_power_state(sc); 3660 ATH_UNLOCK(sc); 3661 } 3662 3663 void 3664 ath_mode_init(struct ath_softc *sc) 3665 { 3666 struct ieee80211com *ic = &sc->sc_ic; 3667 struct ath_hal *ah = sc->sc_ah; 3668 u_int32_t rfilt; 3669 3670 /* XXX power state? */ 3671 3672 /* configure rx filter */ 3673 rfilt = ath_calcrxfilter(sc); 3674 ath_hal_setrxfilter(ah, rfilt); 3675 3676 /* configure operational mode */ 3677 ath_hal_setopmode(ah); 3678 3679 /* handle any link-level address change */ 3680 ath_hal_setmac(ah, ic->ic_macaddr); 3681 3682 /* calculate and install multicast filter */ 3683 ath_update_mcast_hw(sc); 3684 } 3685 3686 /* 3687 * Set the slot time based on the current setting. 3688 */ 3689 void 3690 ath_setslottime(struct ath_softc *sc) 3691 { 3692 struct ieee80211com *ic = &sc->sc_ic; 3693 struct ath_hal *ah = sc->sc_ah; 3694 u_int usec; 3695 3696 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3697 usec = 13; 3698 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3699 usec = 21; 3700 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3701 /* honor short/long slot time only in 11g */ 3702 /* XXX shouldn't honor on pure g or turbo g channel */ 3703 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3704 usec = HAL_SLOT_TIME_9; 3705 else 3706 usec = HAL_SLOT_TIME_20; 3707 } else 3708 usec = HAL_SLOT_TIME_9; 3709 3710 DPRINTF(sc, ATH_DEBUG_RESET, 3711 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3712 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3713 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3714 3715 /* Wake up the hardware first before updating the slot time */ 3716 ATH_LOCK(sc); 3717 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3718 ath_hal_setslottime(ah, usec); 3719 ath_power_restore_power_state(sc); 3720 sc->sc_updateslot = OK; 3721 ATH_UNLOCK(sc); 3722 } 3723 3724 /* 3725 * Callback from the 802.11 layer to update the 3726 * slot time based on the current setting. 3727 */ 3728 static void 3729 ath_updateslot(struct ieee80211com *ic) 3730 { 3731 struct ath_softc *sc = ic->ic_softc; 3732 3733 /* 3734 * When not coordinating the BSS, change the hardware 3735 * immediately. For other operation we defer the change 3736 * until beacon updates have propagated to the stations. 3737 * 3738 * XXX sc_updateslot isn't changed behind a lock? 3739 */ 3740 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3741 ic->ic_opmode == IEEE80211_M_MBSS) 3742 sc->sc_updateslot = UPDATE; 3743 else 3744 ath_setslottime(sc); 3745 } 3746 3747 /* 3748 * Append the contents of src to dst; both queues 3749 * are assumed to be locked. 3750 */ 3751 void 3752 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3753 { 3754 3755 ATH_TXQ_LOCK_ASSERT(src); 3756 ATH_TXQ_LOCK_ASSERT(dst); 3757 3758 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3759 dst->axq_link = src->axq_link; 3760 src->axq_link = NULL; 3761 dst->axq_depth += src->axq_depth; 3762 dst->axq_aggr_depth += src->axq_aggr_depth; 3763 src->axq_depth = 0; 3764 src->axq_aggr_depth = 0; 3765 } 3766 3767 /* 3768 * Reset the hardware, with no loss. 3769 * 3770 * This can't be used for a general case reset. 3771 */ 3772 static void 3773 ath_reset_proc(void *arg, int pending) 3774 { 3775 struct ath_softc *sc = arg; 3776 3777 #if 0 3778 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3779 #endif 3780 ath_reset(sc, ATH_RESET_NOLOSS); 3781 } 3782 3783 /* 3784 * Reset the hardware after detecting beacons have stopped. 3785 */ 3786 static void 3787 ath_bstuck_proc(void *arg, int pending) 3788 { 3789 struct ath_softc *sc = arg; 3790 uint32_t hangs = 0; 3791 3792 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3793 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3794 3795 #ifdef ATH_DEBUG_ALQ 3796 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3797 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3798 #endif 3799 3800 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3801 sc->sc_bmisscount); 3802 sc->sc_stats.ast_bstuck++; 3803 /* 3804 * This assumes that there's no simultaneous channel mode change 3805 * occurring. 3806 */ 3807 ath_reset(sc, ATH_RESET_NOLOSS); 3808 } 3809 3810 static int 3811 ath_desc_alloc(struct ath_softc *sc) 3812 { 3813 int error; 3814 3815 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3816 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3817 if (error != 0) { 3818 return error; 3819 } 3820 sc->sc_txbuf_cnt = ath_txbuf; 3821 3822 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3823 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3824 ATH_TXDESC); 3825 if (error != 0) { 3826 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3827 return error; 3828 } 3829 3830 /* 3831 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3832 * flag doesn't have to be set in ath_getbuf_locked(). 3833 */ 3834 3835 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3836 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3837 if (error != 0) { 3838 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3839 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3840 &sc->sc_txbuf_mgmt); 3841 return error; 3842 } 3843 return 0; 3844 } 3845 3846 static void 3847 ath_desc_free(struct ath_softc *sc) 3848 { 3849 3850 if (sc->sc_bdma.dd_desc_len != 0) 3851 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3852 if (sc->sc_txdma.dd_desc_len != 0) 3853 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3854 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3855 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3856 &sc->sc_txbuf_mgmt); 3857 } 3858 3859 static struct ieee80211_node * 3860 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3861 { 3862 struct ieee80211com *ic = vap->iv_ic; 3863 struct ath_softc *sc = ic->ic_softc; 3864 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3865 struct ath_node *an; 3866 3867 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3868 if (an == NULL) { 3869 /* XXX stat+msg */ 3870 return NULL; 3871 } 3872 ath_rate_node_init(sc, an); 3873 3874 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3875 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3876 device_get_nameunit(sc->sc_dev), an); 3877 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3878 3879 /* XXX setup ath_tid */ 3880 ath_tx_tid_init(sc, an); 3881 3882 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3883 return &an->an_node; 3884 } 3885 3886 static void 3887 ath_node_cleanup(struct ieee80211_node *ni) 3888 { 3889 struct ieee80211com *ic = ni->ni_ic; 3890 struct ath_softc *sc = ic->ic_softc; 3891 3892 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3893 ni->ni_macaddr, ":", ATH_NODE(ni)); 3894 3895 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3896 ath_tx_node_flush(sc, ATH_NODE(ni)); 3897 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3898 sc->sc_node_cleanup(ni); 3899 } 3900 3901 static void 3902 ath_node_free(struct ieee80211_node *ni) 3903 { 3904 struct ieee80211com *ic = ni->ni_ic; 3905 struct ath_softc *sc = ic->ic_softc; 3906 3907 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3908 ni->ni_macaddr, ":", ATH_NODE(ni)); 3909 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3910 sc->sc_node_free(ni); 3911 } 3912 3913 static void 3914 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3915 { 3916 struct ieee80211com *ic = ni->ni_ic; 3917 struct ath_softc *sc = ic->ic_softc; 3918 struct ath_hal *ah = sc->sc_ah; 3919 3920 *rssi = ic->ic_node_getrssi(ni); 3921 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3922 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3923 else 3924 *noise = -95; /* nominally correct */ 3925 } 3926 3927 /* 3928 * Set the default antenna. 3929 */ 3930 void 3931 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3932 { 3933 struct ath_hal *ah = sc->sc_ah; 3934 3935 /* XXX block beacon interrupts */ 3936 ath_hal_setdefantenna(ah, antenna); 3937 if (sc->sc_defant != antenna) 3938 sc->sc_stats.ast_ant_defswitch++; 3939 sc->sc_defant = antenna; 3940 sc->sc_rxotherant = 0; 3941 } 3942 3943 static void 3944 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3945 { 3946 txq->axq_qnum = qnum; 3947 txq->axq_ac = 0; 3948 txq->axq_depth = 0; 3949 txq->axq_aggr_depth = 0; 3950 txq->axq_intrcnt = 0; 3951 txq->axq_link = NULL; 3952 txq->axq_softc = sc; 3953 TAILQ_INIT(&txq->axq_q); 3954 TAILQ_INIT(&txq->axq_tidq); 3955 TAILQ_INIT(&txq->fifo.axq_q); 3956 ATH_TXQ_LOCK_INIT(sc, txq); 3957 } 3958 3959 /* 3960 * Setup a h/w transmit queue. 3961 */ 3962 static struct ath_txq * 3963 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3964 { 3965 struct ath_hal *ah = sc->sc_ah; 3966 HAL_TXQ_INFO qi; 3967 int qnum; 3968 3969 memset(&qi, 0, sizeof(qi)); 3970 qi.tqi_subtype = subtype; 3971 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3972 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3973 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3974 /* 3975 * Enable interrupts only for EOL and DESC conditions. 3976 * We mark tx descriptors to receive a DESC interrupt 3977 * when a tx queue gets deep; otherwise waiting for the 3978 * EOL to reap descriptors. Note that this is done to 3979 * reduce interrupt load and this only defers reaping 3980 * descriptors, never transmitting frames. Aside from 3981 * reducing interrupts this also permits more concurrency. 3982 * The only potential downside is if the tx queue backs 3983 * up in which case the top half of the kernel may backup 3984 * due to a lack of tx descriptors. 3985 */ 3986 if (sc->sc_isedma) 3987 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3988 HAL_TXQ_TXOKINT_ENABLE; 3989 else 3990 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3991 HAL_TXQ_TXDESCINT_ENABLE; 3992 3993 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3994 if (qnum == -1) { 3995 /* 3996 * NB: don't print a message, this happens 3997 * normally on parts with too few tx queues 3998 */ 3999 return NULL; 4000 } 4001 if (qnum >= nitems(sc->sc_txq)) { 4002 device_printf(sc->sc_dev, 4003 "hal qnum %u out of range, max %zu!\n", 4004 qnum, nitems(sc->sc_txq)); 4005 ath_hal_releasetxqueue(ah, qnum); 4006 return NULL; 4007 } 4008 if (!ATH_TXQ_SETUP(sc, qnum)) { 4009 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4010 sc->sc_txqsetup |= 1<<qnum; 4011 } 4012 return &sc->sc_txq[qnum]; 4013 } 4014 4015 /* 4016 * Setup a hardware data transmit queue for the specified 4017 * access control. The hal may not support all requested 4018 * queues in which case it will return a reference to a 4019 * previously setup queue. We record the mapping from ac's 4020 * to h/w queues for use by ath_tx_start and also track 4021 * the set of h/w queues being used to optimize work in the 4022 * transmit interrupt handler and related routines. 4023 */ 4024 static int 4025 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4026 { 4027 struct ath_txq *txq; 4028 4029 if (ac >= nitems(sc->sc_ac2q)) { 4030 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4031 ac, nitems(sc->sc_ac2q)); 4032 return 0; 4033 } 4034 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4035 if (txq != NULL) { 4036 txq->axq_ac = ac; 4037 sc->sc_ac2q[ac] = txq; 4038 return 1; 4039 } else 4040 return 0; 4041 } 4042 4043 /* 4044 * Update WME parameters for a transmit queue. 4045 */ 4046 static int 4047 ath_txq_update(struct ath_softc *sc, int ac) 4048 { 4049 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4050 struct ieee80211com *ic = &sc->sc_ic; 4051 struct ath_txq *txq = sc->sc_ac2q[ac]; 4052 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4053 struct ath_hal *ah = sc->sc_ah; 4054 HAL_TXQ_INFO qi; 4055 4056 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4057 #ifdef IEEE80211_SUPPORT_TDMA 4058 if (sc->sc_tdma) { 4059 /* 4060 * AIFS is zero so there's no pre-transmit wait. The 4061 * burst time defines the slot duration and is configured 4062 * through net80211. The QCU is setup to not do post-xmit 4063 * back off, lockout all lower-priority QCU's, and fire 4064 * off the DMA beacon alert timer which is setup based 4065 * on the slot configuration. 4066 */ 4067 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4068 | HAL_TXQ_TXERRINT_ENABLE 4069 | HAL_TXQ_TXURNINT_ENABLE 4070 | HAL_TXQ_TXEOLINT_ENABLE 4071 | HAL_TXQ_DBA_GATED 4072 | HAL_TXQ_BACKOFF_DISABLE 4073 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4074 ; 4075 qi.tqi_aifs = 0; 4076 /* XXX +dbaprep? */ 4077 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4078 qi.tqi_burstTime = qi.tqi_readyTime; 4079 } else { 4080 #endif 4081 /* 4082 * XXX shouldn't this just use the default flags 4083 * used in the previous queue setup? 4084 */ 4085 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4086 | HAL_TXQ_TXERRINT_ENABLE 4087 | HAL_TXQ_TXDESCINT_ENABLE 4088 | HAL_TXQ_TXURNINT_ENABLE 4089 | HAL_TXQ_TXEOLINT_ENABLE 4090 ; 4091 qi.tqi_aifs = wmep->wmep_aifsn; 4092 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4093 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4094 qi.tqi_readyTime = 0; 4095 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4096 #ifdef IEEE80211_SUPPORT_TDMA 4097 } 4098 #endif 4099 4100 DPRINTF(sc, ATH_DEBUG_RESET, 4101 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4102 __func__, txq->axq_qnum, qi.tqi_qflags, 4103 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4104 4105 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4106 device_printf(sc->sc_dev, "unable to update hardware queue " 4107 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4108 return 0; 4109 } else { 4110 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4111 return 1; 4112 } 4113 #undef ATH_EXPONENT_TO_VALUE 4114 } 4115 4116 /* 4117 * Callback from the 802.11 layer to update WME parameters. 4118 */ 4119 int 4120 ath_wme_update(struct ieee80211com *ic) 4121 { 4122 struct ath_softc *sc = ic->ic_softc; 4123 4124 return !ath_txq_update(sc, WME_AC_BE) || 4125 !ath_txq_update(sc, WME_AC_BK) || 4126 !ath_txq_update(sc, WME_AC_VI) || 4127 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4128 } 4129 4130 /* 4131 * Reclaim resources for a setup queue. 4132 */ 4133 static void 4134 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4135 { 4136 4137 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4138 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4139 ATH_TXQ_LOCK_DESTROY(txq); 4140 } 4141 4142 /* 4143 * Reclaim all tx queue resources. 4144 */ 4145 static void 4146 ath_tx_cleanup(struct ath_softc *sc) 4147 { 4148 int i; 4149 4150 ATH_TXBUF_LOCK_DESTROY(sc); 4151 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4152 if (ATH_TXQ_SETUP(sc, i)) 4153 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4154 } 4155 4156 /* 4157 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4158 * using the current rates in sc_rixmap. 4159 */ 4160 int 4161 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4162 { 4163 int rix = sc->sc_rixmap[rate]; 4164 /* NB: return lowest rix for invalid rate */ 4165 return (rix == 0xff ? 0 : rix); 4166 } 4167 4168 static void 4169 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4170 struct ath_buf *bf) 4171 { 4172 struct ieee80211_node *ni = bf->bf_node; 4173 struct ieee80211com *ic = &sc->sc_ic; 4174 int sr, lr, pri; 4175 4176 if (ts->ts_status == 0) { 4177 u_int8_t txant = ts->ts_antenna; 4178 sc->sc_stats.ast_ant_tx[txant]++; 4179 sc->sc_ant_tx[txant]++; 4180 if (ts->ts_finaltsi != 0) 4181 sc->sc_stats.ast_tx_altrate++; 4182 4183 /* XXX TODO: should do per-pri conuters */ 4184 pri = M_WME_GETAC(bf->bf_m); 4185 if (pri >= WME_AC_VO) 4186 ic->ic_wme.wme_hipri_traffic++; 4187 4188 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4189 ni->ni_inact = ni->ni_inact_reload; 4190 } else { 4191 if (ts->ts_status & HAL_TXERR_XRETRY) 4192 sc->sc_stats.ast_tx_xretries++; 4193 if (ts->ts_status & HAL_TXERR_FIFO) 4194 sc->sc_stats.ast_tx_fifoerr++; 4195 if (ts->ts_status & HAL_TXERR_FILT) 4196 sc->sc_stats.ast_tx_filtered++; 4197 if (ts->ts_status & HAL_TXERR_XTXOP) 4198 sc->sc_stats.ast_tx_xtxop++; 4199 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4200 sc->sc_stats.ast_tx_timerexpired++; 4201 4202 if (bf->bf_m->m_flags & M_FF) 4203 sc->sc_stats.ast_ff_txerr++; 4204 } 4205 /* XXX when is this valid? */ 4206 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4207 sc->sc_stats.ast_tx_desccfgerr++; 4208 /* 4209 * This can be valid for successful frame transmission! 4210 * If there's a TX FIFO underrun during aggregate transmission, 4211 * the MAC will pad the rest of the aggregate with delimiters. 4212 * If a BA is returned, the frame is marked as "OK" and it's up 4213 * to the TX completion code to notice which frames weren't 4214 * successfully transmitted. 4215 */ 4216 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4217 sc->sc_stats.ast_tx_data_underrun++; 4218 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4219 sc->sc_stats.ast_tx_delim_underrun++; 4220 4221 sr = ts->ts_shortretry; 4222 lr = ts->ts_longretry; 4223 sc->sc_stats.ast_tx_shortretry += sr; 4224 sc->sc_stats.ast_tx_longretry += lr; 4225 4226 } 4227 4228 /* 4229 * The default completion. If fail is 1, this means 4230 * "please don't retry the frame, and just return -1 status 4231 * to the net80211 stack. 4232 */ 4233 void 4234 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4235 { 4236 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4237 int st; 4238 4239 if (fail == 1) 4240 st = -1; 4241 else 4242 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4243 ts->ts_status : HAL_TXERR_XRETRY; 4244 4245 #if 0 4246 if (bf->bf_state.bfs_dobaw) 4247 device_printf(sc->sc_dev, 4248 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4249 __func__, 4250 bf, 4251 SEQNO(bf->bf_state.bfs_seqno)); 4252 #endif 4253 if (bf->bf_next != NULL) 4254 device_printf(sc->sc_dev, 4255 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4256 __func__, 4257 bf, 4258 SEQNO(bf->bf_state.bfs_seqno)); 4259 4260 /* 4261 * Check if the node software queue is empty; if so 4262 * then clear the TIM. 4263 * 4264 * This needs to be done before the buffer is freed as 4265 * otherwise the node reference will have been released 4266 * and the node may not actually exist any longer. 4267 * 4268 * XXX I don't like this belonging here, but it's cleaner 4269 * to do it here right now then all the other places 4270 * where ath_tx_default_comp() is called. 4271 * 4272 * XXX TODO: during drain, ensure that the callback is 4273 * being called so we get a chance to update the TIM. 4274 */ 4275 if (bf->bf_node) { 4276 ATH_TX_LOCK(sc); 4277 ath_tx_update_tim(sc, bf->bf_node, 0); 4278 ATH_TX_UNLOCK(sc); 4279 } 4280 4281 /* 4282 * Do any tx complete callback. Note this must 4283 * be done before releasing the node reference. 4284 * This will free the mbuf, release the net80211 4285 * node and recycle the ath_buf. 4286 */ 4287 ath_tx_freebuf(sc, bf, st); 4288 } 4289 4290 /* 4291 * Update rate control with the given completion status. 4292 */ 4293 void 4294 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4295 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4296 int nframes, int nbad) 4297 { 4298 struct ath_node *an; 4299 4300 /* Only for unicast frames */ 4301 if (ni == NULL) 4302 return; 4303 4304 an = ATH_NODE(ni); 4305 ATH_NODE_UNLOCK_ASSERT(an); 4306 4307 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4308 ATH_NODE_LOCK(an); 4309 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4310 ATH_NODE_UNLOCK(an); 4311 } 4312 } 4313 4314 /* 4315 * Process the completion of the given buffer. 4316 * 4317 * This calls the rate control update and then the buffer completion. 4318 * This will either free the buffer or requeue it. In any case, the 4319 * bf pointer should be treated as invalid after this function is called. 4320 */ 4321 void 4322 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4323 struct ath_tx_status *ts, struct ath_buf *bf) 4324 { 4325 struct ieee80211_node *ni = bf->bf_node; 4326 4327 ATH_TX_UNLOCK_ASSERT(sc); 4328 ATH_TXQ_UNLOCK_ASSERT(txq); 4329 4330 /* If unicast frame, update general statistics */ 4331 if (ni != NULL) { 4332 /* update statistics */ 4333 ath_tx_update_stats(sc, ts, bf); 4334 } 4335 4336 /* 4337 * Call the completion handler. 4338 * The completion handler is responsible for 4339 * calling the rate control code. 4340 * 4341 * Frames with no completion handler get the 4342 * rate control code called here. 4343 */ 4344 if (bf->bf_comp == NULL) { 4345 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4346 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4347 /* 4348 * XXX assume this isn't an aggregate 4349 * frame. 4350 */ 4351 ath_tx_update_ratectrl(sc, ni, 4352 bf->bf_state.bfs_rc, ts, 4353 bf->bf_state.bfs_pktlen, 1, 4354 (ts->ts_status == 0 ? 0 : 1)); 4355 } 4356 ath_tx_default_comp(sc, bf, 0); 4357 } else 4358 bf->bf_comp(sc, bf, 0); 4359 } 4360 4361 4362 4363 /* 4364 * Process completed xmit descriptors from the specified queue. 4365 * Kick the packet scheduler if needed. This can occur from this 4366 * particular task. 4367 */ 4368 static int 4369 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4370 { 4371 struct ath_hal *ah = sc->sc_ah; 4372 struct ath_buf *bf; 4373 struct ath_desc *ds; 4374 struct ath_tx_status *ts; 4375 struct ieee80211_node *ni; 4376 #ifdef IEEE80211_SUPPORT_SUPERG 4377 struct ieee80211com *ic = &sc->sc_ic; 4378 #endif /* IEEE80211_SUPPORT_SUPERG */ 4379 int nacked; 4380 HAL_STATUS status; 4381 4382 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4383 __func__, txq->axq_qnum, 4384 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4385 txq->axq_link); 4386 4387 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4388 "ath_tx_processq: txq=%u head %p link %p depth %p", 4389 txq->axq_qnum, 4390 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4391 txq->axq_link, 4392 txq->axq_depth); 4393 4394 nacked = 0; 4395 for (;;) { 4396 ATH_TXQ_LOCK(txq); 4397 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4398 bf = TAILQ_FIRST(&txq->axq_q); 4399 if (bf == NULL) { 4400 ATH_TXQ_UNLOCK(txq); 4401 break; 4402 } 4403 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4404 ts = &bf->bf_status.ds_txstat; 4405 4406 status = ath_hal_txprocdesc(ah, ds, ts); 4407 #ifdef ATH_DEBUG 4408 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4409 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4410 status == HAL_OK); 4411 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4412 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4413 status == HAL_OK); 4414 #endif 4415 #ifdef ATH_DEBUG_ALQ 4416 if (if_ath_alq_checkdebug(&sc->sc_alq, 4417 ATH_ALQ_EDMA_TXSTATUS)) { 4418 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4419 sc->sc_tx_statuslen, 4420 (char *) ds); 4421 } 4422 #endif 4423 4424 if (status == HAL_EINPROGRESS) { 4425 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4426 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4427 txq->axq_qnum, bf, ds); 4428 ATH_TXQ_UNLOCK(txq); 4429 break; 4430 } 4431 ATH_TXQ_REMOVE(txq, bf, bf_list); 4432 4433 /* 4434 * Sanity check. 4435 */ 4436 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4437 device_printf(sc->sc_dev, 4438 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4439 __func__, 4440 txq->axq_qnum, 4441 bf, 4442 bf->bf_state.bfs_tx_queue); 4443 } 4444 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4445 device_printf(sc->sc_dev, 4446 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4447 __func__, 4448 txq->axq_qnum, 4449 bf->bf_last, 4450 bf->bf_last->bf_state.bfs_tx_queue); 4451 } 4452 4453 #if 0 4454 if (txq->axq_depth > 0) { 4455 /* 4456 * More frames follow. Mark the buffer busy 4457 * so it's not re-used while the hardware may 4458 * still re-read the link field in the descriptor. 4459 * 4460 * Use the last buffer in an aggregate as that 4461 * is where the hardware may be - intermediate 4462 * descriptors won't be "busy". 4463 */ 4464 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4465 } else 4466 txq->axq_link = NULL; 4467 #else 4468 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4469 #endif 4470 if (bf->bf_state.bfs_aggr) 4471 txq->axq_aggr_depth--; 4472 4473 ni = bf->bf_node; 4474 4475 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4476 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4477 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4478 /* 4479 * If unicast frame was ack'd update RSSI, 4480 * including the last rx time used to 4481 * workaround phantom bmiss interrupts. 4482 */ 4483 if (ni != NULL && ts->ts_status == 0 && 4484 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4485 nacked++; 4486 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4487 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4488 ts->ts_rssi); 4489 } 4490 ATH_TXQ_UNLOCK(txq); 4491 4492 /* 4493 * Update statistics and call completion 4494 */ 4495 ath_tx_process_buf_completion(sc, txq, ts, bf); 4496 4497 /* XXX at this point, bf and ni may be totally invalid */ 4498 } 4499 #ifdef IEEE80211_SUPPORT_SUPERG 4500 /* 4501 * Flush fast-frame staging queue when traffic slows. 4502 */ 4503 if (txq->axq_depth <= 1) 4504 ieee80211_ff_flush(ic, txq->axq_ac); 4505 #endif 4506 4507 /* Kick the software TXQ scheduler */ 4508 if (dosched) { 4509 ATH_TX_LOCK(sc); 4510 ath_txq_sched(sc, txq); 4511 ATH_TX_UNLOCK(sc); 4512 } 4513 4514 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4515 "ath_tx_processq: txq=%u: done", 4516 txq->axq_qnum); 4517 4518 return nacked; 4519 } 4520 4521 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4522 4523 /* 4524 * Deferred processing of transmit interrupt; special-cased 4525 * for a single hardware transmit queue (e.g. 5210 and 5211). 4526 */ 4527 static void 4528 ath_tx_proc_q0(void *arg, int npending) 4529 { 4530 struct ath_softc *sc = arg; 4531 uint32_t txqs; 4532 4533 ATH_PCU_LOCK(sc); 4534 sc->sc_txproc_cnt++; 4535 txqs = sc->sc_txq_active; 4536 sc->sc_txq_active &= ~txqs; 4537 ATH_PCU_UNLOCK(sc); 4538 4539 ATH_LOCK(sc); 4540 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4541 ATH_UNLOCK(sc); 4542 4543 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4544 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4545 4546 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4547 /* XXX why is lastrx updated in tx code? */ 4548 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4549 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4550 ath_tx_processq(sc, sc->sc_cabq, 1); 4551 sc->sc_wd_timer = 0; 4552 4553 if (sc->sc_softled) 4554 ath_led_event(sc, sc->sc_txrix); 4555 4556 ATH_PCU_LOCK(sc); 4557 sc->sc_txproc_cnt--; 4558 ATH_PCU_UNLOCK(sc); 4559 4560 ATH_LOCK(sc); 4561 ath_power_restore_power_state(sc); 4562 ATH_UNLOCK(sc); 4563 4564 ath_tx_kick(sc); 4565 } 4566 4567 /* 4568 * Deferred processing of transmit interrupt; special-cased 4569 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4570 */ 4571 static void 4572 ath_tx_proc_q0123(void *arg, int npending) 4573 { 4574 struct ath_softc *sc = arg; 4575 int nacked; 4576 uint32_t txqs; 4577 4578 ATH_PCU_LOCK(sc); 4579 sc->sc_txproc_cnt++; 4580 txqs = sc->sc_txq_active; 4581 sc->sc_txq_active &= ~txqs; 4582 ATH_PCU_UNLOCK(sc); 4583 4584 ATH_LOCK(sc); 4585 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4586 ATH_UNLOCK(sc); 4587 4588 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4589 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4590 4591 /* 4592 * Process each active queue. 4593 */ 4594 nacked = 0; 4595 if (TXQACTIVE(txqs, 0)) 4596 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4597 if (TXQACTIVE(txqs, 1)) 4598 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4599 if (TXQACTIVE(txqs, 2)) 4600 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4601 if (TXQACTIVE(txqs, 3)) 4602 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4603 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4604 ath_tx_processq(sc, sc->sc_cabq, 1); 4605 if (nacked) 4606 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4607 4608 sc->sc_wd_timer = 0; 4609 4610 if (sc->sc_softled) 4611 ath_led_event(sc, sc->sc_txrix); 4612 4613 ATH_PCU_LOCK(sc); 4614 sc->sc_txproc_cnt--; 4615 ATH_PCU_UNLOCK(sc); 4616 4617 ATH_LOCK(sc); 4618 ath_power_restore_power_state(sc); 4619 ATH_UNLOCK(sc); 4620 4621 ath_tx_kick(sc); 4622 } 4623 4624 /* 4625 * Deferred processing of transmit interrupt. 4626 */ 4627 static void 4628 ath_tx_proc(void *arg, int npending) 4629 { 4630 struct ath_softc *sc = arg; 4631 int i, nacked; 4632 uint32_t txqs; 4633 4634 ATH_PCU_LOCK(sc); 4635 sc->sc_txproc_cnt++; 4636 txqs = sc->sc_txq_active; 4637 sc->sc_txq_active &= ~txqs; 4638 ATH_PCU_UNLOCK(sc); 4639 4640 ATH_LOCK(sc); 4641 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4642 ATH_UNLOCK(sc); 4643 4644 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4645 4646 /* 4647 * Process each active queue. 4648 */ 4649 nacked = 0; 4650 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4651 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4652 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4653 if (nacked) 4654 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4655 4656 sc->sc_wd_timer = 0; 4657 4658 if (sc->sc_softled) 4659 ath_led_event(sc, sc->sc_txrix); 4660 4661 ATH_PCU_LOCK(sc); 4662 sc->sc_txproc_cnt--; 4663 ATH_PCU_UNLOCK(sc); 4664 4665 ATH_LOCK(sc); 4666 ath_power_restore_power_state(sc); 4667 ATH_UNLOCK(sc); 4668 4669 ath_tx_kick(sc); 4670 } 4671 #undef TXQACTIVE 4672 4673 /* 4674 * Deferred processing of TXQ rescheduling. 4675 */ 4676 static void 4677 ath_txq_sched_tasklet(void *arg, int npending) 4678 { 4679 struct ath_softc *sc = arg; 4680 int i; 4681 4682 /* XXX is skipping ok? */ 4683 ATH_PCU_LOCK(sc); 4684 #if 0 4685 if (sc->sc_inreset_cnt > 0) { 4686 device_printf(sc->sc_dev, 4687 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4688 ATH_PCU_UNLOCK(sc); 4689 return; 4690 } 4691 #endif 4692 sc->sc_txproc_cnt++; 4693 ATH_PCU_UNLOCK(sc); 4694 4695 ATH_LOCK(sc); 4696 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4697 ATH_UNLOCK(sc); 4698 4699 ATH_TX_LOCK(sc); 4700 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4701 if (ATH_TXQ_SETUP(sc, i)) { 4702 ath_txq_sched(sc, &sc->sc_txq[i]); 4703 } 4704 } 4705 ATH_TX_UNLOCK(sc); 4706 4707 ATH_LOCK(sc); 4708 ath_power_restore_power_state(sc); 4709 ATH_UNLOCK(sc); 4710 4711 ATH_PCU_LOCK(sc); 4712 sc->sc_txproc_cnt--; 4713 ATH_PCU_UNLOCK(sc); 4714 } 4715 4716 void 4717 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4718 { 4719 4720 ATH_TXBUF_LOCK_ASSERT(sc); 4721 4722 if (bf->bf_flags & ATH_BUF_MGMT) 4723 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4724 else { 4725 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4726 sc->sc_txbuf_cnt++; 4727 if (sc->sc_txbuf_cnt > ath_txbuf) { 4728 device_printf(sc->sc_dev, 4729 "%s: sc_txbuf_cnt > %d?\n", 4730 __func__, 4731 ath_txbuf); 4732 sc->sc_txbuf_cnt = ath_txbuf; 4733 } 4734 } 4735 } 4736 4737 void 4738 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4739 { 4740 4741 ATH_TXBUF_LOCK_ASSERT(sc); 4742 4743 if (bf->bf_flags & ATH_BUF_MGMT) 4744 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4745 else { 4746 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4747 sc->sc_txbuf_cnt++; 4748 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4749 device_printf(sc->sc_dev, 4750 "%s: sc_txbuf_cnt > %d?\n", 4751 __func__, 4752 ATH_TXBUF); 4753 sc->sc_txbuf_cnt = ATH_TXBUF; 4754 } 4755 } 4756 } 4757 4758 /* 4759 * Free the holding buffer if it exists 4760 */ 4761 void 4762 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4763 { 4764 ATH_TXBUF_UNLOCK_ASSERT(sc); 4765 ATH_TXQ_LOCK_ASSERT(txq); 4766 4767 if (txq->axq_holdingbf == NULL) 4768 return; 4769 4770 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4771 4772 ATH_TXBUF_LOCK(sc); 4773 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4774 ATH_TXBUF_UNLOCK(sc); 4775 4776 txq->axq_holdingbf = NULL; 4777 } 4778 4779 /* 4780 * Add this buffer to the holding queue, freeing the previous 4781 * one if it exists. 4782 */ 4783 static void 4784 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4785 { 4786 struct ath_txq *txq; 4787 4788 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4789 4790 ATH_TXBUF_UNLOCK_ASSERT(sc); 4791 ATH_TXQ_LOCK_ASSERT(txq); 4792 4793 /* XXX assert ATH_BUF_BUSY is set */ 4794 4795 /* XXX assert the tx queue is under the max number */ 4796 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4797 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4798 __func__, 4799 bf, 4800 bf->bf_state.bfs_tx_queue); 4801 bf->bf_flags &= ~ATH_BUF_BUSY; 4802 ath_returnbuf_tail(sc, bf); 4803 return; 4804 } 4805 ath_txq_freeholdingbuf(sc, txq); 4806 txq->axq_holdingbf = bf; 4807 } 4808 4809 /* 4810 * Return a buffer to the pool and update the 'busy' flag on the 4811 * previous 'tail' entry. 4812 * 4813 * This _must_ only be called when the buffer is involved in a completed 4814 * TX. The logic is that if it was part of an active TX, the previous 4815 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4816 * for restart (eg for TDMA.) 4817 * 4818 * The caller must free the mbuf and recycle the node reference. 4819 * 4820 * XXX This method of handling busy / holding buffers is insanely stupid. 4821 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4822 * be much nicer if buffers in the processq() methods would instead be 4823 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4824 * exactly what hardware queue they came from in the first place. 4825 */ 4826 void 4827 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4828 { 4829 struct ath_txq *txq; 4830 4831 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4832 4833 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4834 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4835 4836 /* 4837 * If this buffer is busy, push it onto the holding queue. 4838 */ 4839 if (bf->bf_flags & ATH_BUF_BUSY) { 4840 ATH_TXQ_LOCK(txq); 4841 ath_txq_addholdingbuf(sc, bf); 4842 ATH_TXQ_UNLOCK(txq); 4843 return; 4844 } 4845 4846 /* 4847 * Not a busy buffer, so free normally 4848 */ 4849 ATH_TXBUF_LOCK(sc); 4850 ath_returnbuf_tail(sc, bf); 4851 ATH_TXBUF_UNLOCK(sc); 4852 } 4853 4854 /* 4855 * This is currently used by ath_tx_draintxq() and 4856 * ath_tx_tid_free_pkts(). 4857 * 4858 * It recycles a single ath_buf. 4859 */ 4860 void 4861 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4862 { 4863 struct ieee80211_node *ni = bf->bf_node; 4864 struct mbuf *m0 = bf->bf_m; 4865 4866 /* 4867 * Make sure that we only sync/unload if there's an mbuf. 4868 * If not (eg we cloned a buffer), the unload will have already 4869 * occurred. 4870 */ 4871 if (bf->bf_m != NULL) { 4872 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4873 BUS_DMASYNC_POSTWRITE); 4874 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4875 } 4876 4877 bf->bf_node = NULL; 4878 bf->bf_m = NULL; 4879 4880 /* Free the buffer, it's not needed any longer */ 4881 ath_freebuf(sc, bf); 4882 4883 /* Pass the buffer back to net80211 - completing it */ 4884 ieee80211_tx_complete(ni, m0, status); 4885 } 4886 4887 static struct ath_buf * 4888 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4889 { 4890 struct ath_buf *bf; 4891 4892 ATH_TXQ_LOCK_ASSERT(txq); 4893 4894 /* 4895 * Drain the FIFO queue first, then if it's 4896 * empty, move to the normal frame queue. 4897 */ 4898 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4899 if (bf != NULL) { 4900 /* 4901 * Is it the last buffer in this set? 4902 * Decrement the FIFO counter. 4903 */ 4904 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4905 if (txq->axq_fifo_depth == 0) { 4906 device_printf(sc->sc_dev, 4907 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4908 __func__, 4909 txq->axq_qnum, 4910 txq->fifo.axq_depth); 4911 } else 4912 txq->axq_fifo_depth--; 4913 } 4914 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4915 return (bf); 4916 } 4917 4918 /* 4919 * Debugging! 4920 */ 4921 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4922 device_printf(sc->sc_dev, 4923 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4924 __func__, 4925 txq->axq_qnum, 4926 txq->axq_fifo_depth, 4927 txq->fifo.axq_depth); 4928 } 4929 4930 /* 4931 * Now drain the pending queue. 4932 */ 4933 bf = TAILQ_FIRST(&txq->axq_q); 4934 if (bf == NULL) { 4935 txq->axq_link = NULL; 4936 return (NULL); 4937 } 4938 ATH_TXQ_REMOVE(txq, bf, bf_list); 4939 return (bf); 4940 } 4941 4942 void 4943 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4944 { 4945 #ifdef ATH_DEBUG 4946 struct ath_hal *ah = sc->sc_ah; 4947 #endif 4948 struct ath_buf *bf; 4949 u_int ix; 4950 4951 /* 4952 * NB: this assumes output has been stopped and 4953 * we do not need to block ath_tx_proc 4954 */ 4955 for (ix = 0;; ix++) { 4956 ATH_TXQ_LOCK(txq); 4957 bf = ath_tx_draintxq_get_one(sc, txq); 4958 if (bf == NULL) { 4959 ATH_TXQ_UNLOCK(txq); 4960 break; 4961 } 4962 if (bf->bf_state.bfs_aggr) 4963 txq->axq_aggr_depth--; 4964 #ifdef ATH_DEBUG 4965 if (sc->sc_debug & ATH_DEBUG_RESET) { 4966 struct ieee80211com *ic = &sc->sc_ic; 4967 int status = 0; 4968 4969 /* 4970 * EDMA operation has a TX completion FIFO 4971 * separate from the TX descriptor, so this 4972 * method of checking the "completion" status 4973 * is wrong. 4974 */ 4975 if (! sc->sc_isedma) { 4976 status = (ath_hal_txprocdesc(ah, 4977 bf->bf_lastds, 4978 &bf->bf_status.ds_txstat) == HAL_OK); 4979 } 4980 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4981 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4982 bf->bf_m->m_len, 0, -1); 4983 } 4984 #endif /* ATH_DEBUG */ 4985 /* 4986 * Since we're now doing magic in the completion 4987 * functions, we -must- call it for aggregation 4988 * destinations or BAW tracking will get upset. 4989 */ 4990 /* 4991 * Clear ATH_BUF_BUSY; the completion handler 4992 * will free the buffer. 4993 */ 4994 ATH_TXQ_UNLOCK(txq); 4995 bf->bf_flags &= ~ATH_BUF_BUSY; 4996 if (bf->bf_comp) 4997 bf->bf_comp(sc, bf, 1); 4998 else 4999 ath_tx_default_comp(sc, bf, 1); 5000 } 5001 5002 /* 5003 * Free the holding buffer if it exists 5004 */ 5005 ATH_TXQ_LOCK(txq); 5006 ath_txq_freeholdingbuf(sc, txq); 5007 ATH_TXQ_UNLOCK(txq); 5008 5009 /* 5010 * Drain software queued frames which are on 5011 * active TIDs. 5012 */ 5013 ath_tx_txq_drain(sc, txq); 5014 } 5015 5016 static void 5017 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5018 { 5019 struct ath_hal *ah = sc->sc_ah; 5020 5021 ATH_TXQ_LOCK_ASSERT(txq); 5022 5023 DPRINTF(sc, ATH_DEBUG_RESET, 5024 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5025 "link %p, holdingbf=%p\n", 5026 __func__, 5027 txq->axq_qnum, 5028 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5029 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5030 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5031 txq->axq_flags, 5032 txq->axq_link, 5033 txq->axq_holdingbf); 5034 5035 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5036 /* We've stopped TX DMA, so mark this as stopped. */ 5037 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5038 5039 #ifdef ATH_DEBUG 5040 if ((sc->sc_debug & ATH_DEBUG_RESET) 5041 && (txq->axq_holdingbf != NULL)) { 5042 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5043 } 5044 #endif 5045 } 5046 5047 int 5048 ath_stoptxdma(struct ath_softc *sc) 5049 { 5050 struct ath_hal *ah = sc->sc_ah; 5051 int i; 5052 5053 /* XXX return value */ 5054 if (sc->sc_invalid) 5055 return 0; 5056 5057 if (!sc->sc_invalid) { 5058 /* don't touch the hardware if marked invalid */ 5059 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5060 __func__, sc->sc_bhalq, 5061 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5062 NULL); 5063 5064 /* stop the beacon queue */ 5065 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5066 5067 /* Stop the data queues */ 5068 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5069 if (ATH_TXQ_SETUP(sc, i)) { 5070 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5071 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5072 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5073 } 5074 } 5075 } 5076 5077 return 1; 5078 } 5079 5080 #ifdef ATH_DEBUG 5081 void 5082 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5083 { 5084 struct ath_hal *ah = sc->sc_ah; 5085 struct ath_buf *bf; 5086 int i = 0; 5087 5088 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5089 return; 5090 5091 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5092 __func__, txq->axq_qnum); 5093 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5094 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5095 ath_hal_txprocdesc(ah, bf->bf_lastds, 5096 &bf->bf_status.ds_txstat) == HAL_OK); 5097 i++; 5098 } 5099 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5100 __func__, txq->axq_qnum); 5101 } 5102 #endif /* ATH_DEBUG */ 5103 5104 /* 5105 * Drain the transmit queues and reclaim resources. 5106 */ 5107 void 5108 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5109 { 5110 struct ath_hal *ah = sc->sc_ah; 5111 struct ath_buf *bf_last; 5112 int i; 5113 5114 (void) ath_stoptxdma(sc); 5115 5116 /* 5117 * Dump the queue contents 5118 */ 5119 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5120 /* 5121 * XXX TODO: should we just handle the completed TX frames 5122 * here, whether or not the reset is a full one or not? 5123 */ 5124 if (ATH_TXQ_SETUP(sc, i)) { 5125 #ifdef ATH_DEBUG 5126 if (sc->sc_debug & ATH_DEBUG_RESET) 5127 ath_tx_dump(sc, &sc->sc_txq[i]); 5128 #endif /* ATH_DEBUG */ 5129 if (reset_type == ATH_RESET_NOLOSS) { 5130 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5131 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5132 /* 5133 * Free the holding buffer; DMA is now 5134 * stopped. 5135 */ 5136 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5137 /* 5138 * Setup the link pointer to be the 5139 * _last_ buffer/descriptor in the list. 5140 * If there's nothing in the list, set it 5141 * to NULL. 5142 */ 5143 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5144 axq_q_s); 5145 if (bf_last != NULL) { 5146 ath_hal_gettxdesclinkptr(ah, 5147 bf_last->bf_lastds, 5148 &sc->sc_txq[i].axq_link); 5149 } else { 5150 sc->sc_txq[i].axq_link = NULL; 5151 } 5152 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5153 } else 5154 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5155 } 5156 } 5157 #ifdef ATH_DEBUG 5158 if (sc->sc_debug & ATH_DEBUG_RESET) { 5159 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5160 if (bf != NULL && bf->bf_m != NULL) { 5161 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5162 ath_hal_txprocdesc(ah, bf->bf_lastds, 5163 &bf->bf_status.ds_txstat) == HAL_OK); 5164 ieee80211_dump_pkt(&sc->sc_ic, 5165 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5166 0, -1); 5167 } 5168 } 5169 #endif /* ATH_DEBUG */ 5170 sc->sc_wd_timer = 0; 5171 } 5172 5173 /* 5174 * Update internal state after a channel change. 5175 */ 5176 static void 5177 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5178 { 5179 enum ieee80211_phymode mode; 5180 5181 /* 5182 * Change channels and update the h/w rate map 5183 * if we're switching; e.g. 11a to 11b/g. 5184 */ 5185 mode = ieee80211_chan2mode(chan); 5186 if (mode != sc->sc_curmode) 5187 ath_setcurmode(sc, mode); 5188 sc->sc_curchan = chan; 5189 } 5190 5191 /* 5192 * Set/change channels. If the channel is really being changed, 5193 * it's done by resetting the chip. To accomplish this we must 5194 * first cleanup any pending DMA, then restart stuff after a la 5195 * ath_init. 5196 */ 5197 static int 5198 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5199 { 5200 struct ieee80211com *ic = &sc->sc_ic; 5201 struct ath_hal *ah = sc->sc_ah; 5202 int ret = 0; 5203 5204 /* Treat this as an interface reset */ 5205 ATH_PCU_UNLOCK_ASSERT(sc); 5206 ATH_UNLOCK_ASSERT(sc); 5207 5208 /* (Try to) stop TX/RX from occurring */ 5209 taskqueue_block(sc->sc_tq); 5210 5211 ATH_PCU_LOCK(sc); 5212 5213 /* Disable interrupts */ 5214 ath_hal_intrset(ah, 0); 5215 5216 /* Stop new RX/TX/interrupt completion */ 5217 if (ath_reset_grablock(sc, 1) == 0) { 5218 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5219 __func__); 5220 } 5221 5222 /* Stop pending RX/TX completion */ 5223 ath_txrx_stop_locked(sc); 5224 5225 ATH_PCU_UNLOCK(sc); 5226 5227 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5228 __func__, ieee80211_chan2ieee(ic, chan), 5229 chan->ic_freq, chan->ic_flags); 5230 if (chan != sc->sc_curchan) { 5231 HAL_STATUS status; 5232 /* 5233 * To switch channels clear any pending DMA operations; 5234 * wait long enough for the RX fifo to drain, reset the 5235 * hardware at the new frequency, and then re-enable 5236 * the relevant bits of the h/w. 5237 */ 5238 #if 0 5239 ath_hal_intrset(ah, 0); /* disable interrupts */ 5240 #endif 5241 ath_stoprecv(sc, 1); /* turn off frame recv */ 5242 /* 5243 * First, handle completed TX/RX frames. 5244 */ 5245 ath_rx_flush(sc); 5246 ath_draintxq(sc, ATH_RESET_NOLOSS); 5247 /* 5248 * Next, flush the non-scheduled frames. 5249 */ 5250 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5251 5252 ath_update_chainmasks(sc, chan); 5253 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5254 sc->sc_cur_rxchainmask); 5255 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5256 HAL_RESET_NORMAL, &status)) { 5257 device_printf(sc->sc_dev, "%s: unable to reset " 5258 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5259 __func__, ieee80211_chan2ieee(ic, chan), 5260 chan->ic_freq, chan->ic_flags, status); 5261 ret = EIO; 5262 goto finish; 5263 } 5264 sc->sc_diversity = ath_hal_getdiversity(ah); 5265 5266 ATH_RX_LOCK(sc); 5267 sc->sc_rx_stopped = 1; 5268 sc->sc_rx_resetted = 1; 5269 ATH_RX_UNLOCK(sc); 5270 5271 /* Quiet time handling - ensure we resync */ 5272 ath_vap_clear_quiet_ie(sc); 5273 5274 /* Let DFS at it in case it's a DFS channel */ 5275 ath_dfs_radar_enable(sc, chan); 5276 5277 /* Let spectral at in case spectral is enabled */ 5278 ath_spectral_enable(sc, chan); 5279 5280 /* 5281 * Let bluetooth coexistence at in case it's needed for this 5282 * channel 5283 */ 5284 ath_btcoex_enable(sc, ic->ic_curchan); 5285 5286 /* 5287 * If we're doing TDMA, enforce the TXOP limitation for chips 5288 * that support it. 5289 */ 5290 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5291 ath_hal_setenforcetxop(sc->sc_ah, 1); 5292 else 5293 ath_hal_setenforcetxop(sc->sc_ah, 0); 5294 5295 /* 5296 * Re-enable rx framework. 5297 */ 5298 if (ath_startrecv(sc) != 0) { 5299 device_printf(sc->sc_dev, 5300 "%s: unable to restart recv logic\n", __func__); 5301 ret = EIO; 5302 goto finish; 5303 } 5304 5305 /* 5306 * Change channels and update the h/w rate map 5307 * if we're switching; e.g. 11a to 11b/g. 5308 */ 5309 ath_chan_change(sc, chan); 5310 5311 /* 5312 * Reset clears the beacon timers; reset them 5313 * here if needed. 5314 */ 5315 if (sc->sc_beacons) { /* restart beacons */ 5316 #ifdef IEEE80211_SUPPORT_TDMA 5317 if (sc->sc_tdma) 5318 ath_tdma_config(sc, NULL); 5319 else 5320 #endif 5321 ath_beacon_config(sc, NULL); 5322 } 5323 5324 /* 5325 * Re-enable interrupts. 5326 */ 5327 #if 0 5328 ath_hal_intrset(ah, sc->sc_imask); 5329 #endif 5330 } 5331 5332 finish: 5333 ATH_PCU_LOCK(sc); 5334 sc->sc_inreset_cnt--; 5335 /* XXX only do this if sc_inreset_cnt == 0? */ 5336 ath_hal_intrset(ah, sc->sc_imask); 5337 ATH_PCU_UNLOCK(sc); 5338 5339 ath_txrx_start(sc); 5340 /* XXX ath_start? */ 5341 5342 return ret; 5343 } 5344 5345 /* 5346 * Periodically recalibrate the PHY to account 5347 * for temperature/environment changes. 5348 */ 5349 static void 5350 ath_calibrate(void *arg) 5351 { 5352 struct ath_softc *sc = arg; 5353 struct ath_hal *ah = sc->sc_ah; 5354 struct ieee80211com *ic = &sc->sc_ic; 5355 HAL_BOOL longCal, isCalDone = AH_TRUE; 5356 HAL_BOOL aniCal, shortCal = AH_FALSE; 5357 int nextcal; 5358 5359 ATH_LOCK_ASSERT(sc); 5360 5361 /* 5362 * Force the hardware awake for ANI work. 5363 */ 5364 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5365 5366 /* Skip trying to do this if we're in reset */ 5367 if (sc->sc_inreset_cnt) 5368 goto restart; 5369 5370 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5371 goto restart; 5372 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5373 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5374 if (sc->sc_doresetcal) 5375 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5376 5377 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5378 if (aniCal) { 5379 sc->sc_stats.ast_ani_cal++; 5380 sc->sc_lastani = ticks; 5381 ath_hal_ani_poll(ah, sc->sc_curchan); 5382 } 5383 5384 if (longCal) { 5385 sc->sc_stats.ast_per_cal++; 5386 sc->sc_lastlongcal = ticks; 5387 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5388 /* 5389 * Rfgain is out of bounds, reset the chip 5390 * to load new gain values. 5391 */ 5392 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5393 "%s: rfgain change\n", __func__); 5394 sc->sc_stats.ast_per_rfgain++; 5395 sc->sc_resetcal = 0; 5396 sc->sc_doresetcal = AH_TRUE; 5397 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5398 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5399 ath_power_restore_power_state(sc); 5400 return; 5401 } 5402 /* 5403 * If this long cal is after an idle period, then 5404 * reset the data collection state so we start fresh. 5405 */ 5406 if (sc->sc_resetcal) { 5407 (void) ath_hal_calreset(ah, sc->sc_curchan); 5408 sc->sc_lastcalreset = ticks; 5409 sc->sc_lastshortcal = ticks; 5410 sc->sc_resetcal = 0; 5411 sc->sc_doresetcal = AH_TRUE; 5412 } 5413 } 5414 5415 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5416 if (shortCal || longCal) { 5417 isCalDone = AH_FALSE; 5418 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5419 if (longCal) { 5420 /* 5421 * Calibrate noise floor data again in case of change. 5422 */ 5423 ath_hal_process_noisefloor(ah); 5424 } 5425 } else { 5426 DPRINTF(sc, ATH_DEBUG_ANY, 5427 "%s: calibration of channel %u failed\n", 5428 __func__, sc->sc_curchan->ic_freq); 5429 sc->sc_stats.ast_per_calfail++; 5430 } 5431 if (shortCal) 5432 sc->sc_lastshortcal = ticks; 5433 } 5434 if (!isCalDone) { 5435 restart: 5436 /* 5437 * Use a shorter interval to potentially collect multiple 5438 * data samples required to complete calibration. Once 5439 * we're told the work is done we drop back to a longer 5440 * interval between requests. We're more aggressive doing 5441 * work when operating as an AP to improve operation right 5442 * after startup. 5443 */ 5444 sc->sc_lastshortcal = ticks; 5445 nextcal = ath_shortcalinterval*hz/1000; 5446 if (sc->sc_opmode != HAL_M_HOSTAP) 5447 nextcal *= 10; 5448 sc->sc_doresetcal = AH_TRUE; 5449 } else { 5450 /* nextcal should be the shortest time for next event */ 5451 nextcal = ath_longcalinterval*hz; 5452 if (sc->sc_lastcalreset == 0) 5453 sc->sc_lastcalreset = sc->sc_lastlongcal; 5454 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5455 sc->sc_resetcal = 1; /* setup reset next trip */ 5456 sc->sc_doresetcal = AH_FALSE; 5457 } 5458 /* ANI calibration may occur more often than short/long/resetcal */ 5459 if (ath_anicalinterval > 0) 5460 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5461 5462 if (nextcal != 0) { 5463 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5464 __func__, nextcal, isCalDone ? "" : "!"); 5465 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5466 } else { 5467 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5468 __func__); 5469 /* NB: don't rearm timer */ 5470 } 5471 /* 5472 * Restore power state now that we're done. 5473 */ 5474 ath_power_restore_power_state(sc); 5475 } 5476 5477 static void 5478 ath_scan_start(struct ieee80211com *ic) 5479 { 5480 struct ath_softc *sc = ic->ic_softc; 5481 struct ath_hal *ah = sc->sc_ah; 5482 u_int32_t rfilt; 5483 5484 /* XXX calibration timer? */ 5485 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5486 5487 ATH_LOCK(sc); 5488 sc->sc_scanning = 1; 5489 sc->sc_syncbeacon = 0; 5490 rfilt = ath_calcrxfilter(sc); 5491 ATH_UNLOCK(sc); 5492 5493 ATH_PCU_LOCK(sc); 5494 ath_hal_setrxfilter(ah, rfilt); 5495 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5496 ATH_PCU_UNLOCK(sc); 5497 5498 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5499 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5500 } 5501 5502 static void 5503 ath_scan_end(struct ieee80211com *ic) 5504 { 5505 struct ath_softc *sc = ic->ic_softc; 5506 struct ath_hal *ah = sc->sc_ah; 5507 u_int32_t rfilt; 5508 5509 ATH_LOCK(sc); 5510 sc->sc_scanning = 0; 5511 rfilt = ath_calcrxfilter(sc); 5512 ATH_UNLOCK(sc); 5513 5514 ATH_PCU_LOCK(sc); 5515 ath_hal_setrxfilter(ah, rfilt); 5516 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5517 5518 ath_hal_process_noisefloor(ah); 5519 ATH_PCU_UNLOCK(sc); 5520 5521 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5522 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5523 sc->sc_curaid); 5524 } 5525 5526 #ifdef ATH_ENABLE_11N 5527 /* 5528 * For now, just do a channel change. 5529 * 5530 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5531 * control state and resetting the hardware without dropping frames out 5532 * of the queue. 5533 * 5534 * The unfortunate trouble here is making absolutely sure that the 5535 * channel width change has propagated enough so the hardware 5536 * absolutely isn't handed bogus frames for it's current operating 5537 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5538 * does occur in parallel, we need to make certain we've blocked 5539 * any further ongoing TX (and RX, that can cause raw TX) 5540 * before we do this. 5541 */ 5542 static void 5543 ath_update_chw(struct ieee80211com *ic) 5544 { 5545 struct ath_softc *sc = ic->ic_softc; 5546 5547 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5548 device_printf(sc->sc_dev, "%s: called\n", __func__); 5549 5550 /* 5551 * XXX TODO: schedule a tasklet that stops things without freeing, 5552 * walks the now stopped TX queue(s) looking for frames to retry 5553 * as if we TX filtered them (whch may mean dropping non-ampdu frames!) 5554 * but okay) then place them back on the software queue so they 5555 * can have the rate control lookup done again. 5556 */ 5557 ath_set_channel(ic); 5558 } 5559 #endif /* ATH_ENABLE_11N */ 5560 5561 /* 5562 * This is called by the beacon parsing routine in the receive 5563 * path to update the current quiet time information provided by 5564 * an AP. 5565 * 5566 * This is STA specific, it doesn't take the AP TBTT/beacon slot 5567 * offset into account. 5568 * 5569 * The quiet IE doesn't control the /now/ beacon interval - it 5570 * controls the upcoming beacon interval. So, when tbtt=1, 5571 * the quiet element programming shall be for the next beacon 5572 * interval. There's no tbtt=0 behaviour defined, so don't. 5573 * 5574 * Since we're programming the next quiet interval, we have 5575 * to keep in mind what we will see when the next beacon 5576 * is received with potentially a quiet IE. For example, if 5577 * quiet_period is 1, then we are always getting a quiet interval 5578 * each TBTT - so if we just program it in upon each beacon received, 5579 * it will constantly reflect the "next" TBTT and we will never 5580 * let the counter stay programmed correctly. 5581 * 5582 * So: 5583 * + the first time we see the quiet IE, program it and store 5584 * the details somewhere; 5585 * + if the quiet parameters don't change (ie, period/duration/offset) 5586 * then just leave the programming enabled; 5587 * + (we can "skip" beacons, so don't try to enforce tbttcount unless 5588 * you're willing to also do the skipped beacon math); 5589 * + if the quiet IE is removed, then halt quiet time. 5590 */ 5591 static int 5592 ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie) 5593 { 5594 struct ieee80211_quiet_ie *q; 5595 struct ieee80211vap *vap = ni->ni_vap; 5596 struct ath_vap *avp = ATH_VAP(vap); 5597 struct ieee80211com *ic = vap->iv_ic; 5598 struct ath_softc *sc = ic->ic_softc; 5599 5600 if (vap->iv_opmode != IEEE80211_M_STA) 5601 return (0); 5602 5603 /* Verify we have a quiet time IE */ 5604 if (ie == NULL) { 5605 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5606 "%s: called; NULL IE, disabling\n", __func__); 5607 5608 ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE); 5609 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 5610 return (0); 5611 } 5612 5613 /* If we do, verify it's actually legit */ 5614 if (ie[0] != IEEE80211_ELEMID_QUIET) 5615 return 0; 5616 if (ie[1] != 6) 5617 return 0; 5618 5619 /* Note: this belongs in net80211, parsed out and everything */ 5620 q = (void *) ie; 5621 5622 /* 5623 * Compare what we have stored to what we last saw. 5624 * If they're the same then don't program in anything. 5625 */ 5626 if ((q->period == avp->quiet_ie.period) && 5627 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) && 5628 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset))) 5629 return (0); 5630 5631 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5632 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n", 5633 __func__, 5634 (int) q->tbttcount, 5635 (int) q->period, 5636 (int) le16dec(&q->duration), 5637 (int) le16dec(&q->offset)); 5638 5639 /* 5640 * Don't program in garbage values. 5641 */ 5642 if ((le16dec(&q->duration) == 0) || 5643 (le16dec(&q->duration) >= ni->ni_intval)) { 5644 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5645 "%s: invalid duration (%d)\n", __func__, 5646 le16dec(&q->duration)); 5647 return (0); 5648 } 5649 /* 5650 * Can have a 0 offset, but not a duration - so just check 5651 * they don't exceed the intval. 5652 */ 5653 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) { 5654 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5655 "%s: invalid duration + offset (%d+%d)\n", __func__, 5656 le16dec(&q->duration), 5657 le16dec(&q->offset)); 5658 return (0); 5659 } 5660 if (q->tbttcount == 0) { 5661 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5662 "%s: invalid tbttcount (0)\n", __func__); 5663 return (0); 5664 } 5665 if (q->period == 0) { 5666 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5667 "%s: invalid period (0)\n", __func__); 5668 return (0); 5669 } 5670 5671 /* 5672 * This is a new quiet time IE config, so wait until tbttcount 5673 * is equal to 1, and program it in. 5674 */ 5675 if (q->tbttcount == 1) { 5676 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5677 "%s: programming\n", __func__); 5678 ath_hal_set_quiet(sc->sc_ah, 5679 q->period * ni->ni_intval, /* convert to TU */ 5680 le16dec(&q->duration), /* already in TU */ 5681 le16dec(&q->offset) + ni->ni_intval, 5682 HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF); 5683 /* 5684 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for 5685 * STA mode 5686 */ 5687 5688 /* Update local state */ 5689 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie)); 5690 } 5691 5692 return (0); 5693 } 5694 5695 static void 5696 ath_set_channel(struct ieee80211com *ic) 5697 { 5698 struct ath_softc *sc = ic->ic_softc; 5699 5700 ATH_LOCK(sc); 5701 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5702 ATH_UNLOCK(sc); 5703 5704 (void) ath_chan_set(sc, ic->ic_curchan); 5705 /* 5706 * If we are returning to our bss channel then mark state 5707 * so the next recv'd beacon's tsf will be used to sync the 5708 * beacon timers. Note that since we only hear beacons in 5709 * sta/ibss mode this has no effect in other operating modes. 5710 */ 5711 ATH_LOCK(sc); 5712 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5713 sc->sc_syncbeacon = 1; 5714 ath_power_restore_power_state(sc); 5715 ATH_UNLOCK(sc); 5716 } 5717 5718 /* 5719 * Walk the vap list and check if there any vap's in RUN state. 5720 */ 5721 static int 5722 ath_isanyrunningvaps(struct ieee80211vap *this) 5723 { 5724 struct ieee80211com *ic = this->iv_ic; 5725 struct ieee80211vap *vap; 5726 5727 IEEE80211_LOCK_ASSERT(ic); 5728 5729 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5730 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5731 return 1; 5732 } 5733 return 0; 5734 } 5735 5736 static int 5737 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5738 { 5739 struct ieee80211com *ic = vap->iv_ic; 5740 struct ath_softc *sc = ic->ic_softc; 5741 struct ath_vap *avp = ATH_VAP(vap); 5742 struct ath_hal *ah = sc->sc_ah; 5743 struct ieee80211_node *ni = NULL; 5744 int i, error, stamode; 5745 u_int32_t rfilt; 5746 int csa_run_transition = 0; 5747 enum ieee80211_state ostate = vap->iv_state; 5748 5749 static const HAL_LED_STATE leds[] = { 5750 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5751 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5752 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5753 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5754 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5755 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5756 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5757 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5758 }; 5759 5760 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5761 ieee80211_state_name[ostate], 5762 ieee80211_state_name[nstate]); 5763 5764 /* 5765 * net80211 _should_ have the comlock asserted at this point. 5766 * There are some comments around the calls to vap->iv_newstate 5767 * which indicate that it (newstate) may end up dropping the 5768 * lock. This and the subsequent lock assert check after newstate 5769 * are an attempt to catch these and figure out how/why. 5770 */ 5771 IEEE80211_LOCK_ASSERT(ic); 5772 5773 /* Before we touch the hardware - wake it up */ 5774 ATH_LOCK(sc); 5775 /* 5776 * If the NIC is in anything other than SLEEP state, 5777 * we need to ensure that self-generated frames are 5778 * set for PWRMGT=0. Otherwise we may end up with 5779 * strange situations. 5780 * 5781 * XXX TODO: is this actually the case? :-) 5782 */ 5783 if (nstate != IEEE80211_S_SLEEP) 5784 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5785 5786 /* 5787 * Now, wake the thing up. 5788 */ 5789 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5790 5791 /* 5792 * And stop the calibration callout whilst we have 5793 * ATH_LOCK held. 5794 */ 5795 callout_stop(&sc->sc_cal_ch); 5796 ATH_UNLOCK(sc); 5797 5798 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5799 csa_run_transition = 1; 5800 5801 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5802 5803 if (nstate == IEEE80211_S_SCAN) { 5804 /* 5805 * Scanning: turn off beacon miss and don't beacon. 5806 * Mark beacon state so when we reach RUN state we'll 5807 * [re]setup beacons. Unblock the task q thread so 5808 * deferred interrupt processing is done. 5809 */ 5810 5811 /* Ensure we stay awake during scan */ 5812 ATH_LOCK(sc); 5813 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5814 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5815 ATH_UNLOCK(sc); 5816 5817 ath_hal_intrset(ah, 5818 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5819 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5820 sc->sc_beacons = 0; 5821 taskqueue_unblock(sc->sc_tq); 5822 } 5823 5824 ni = ieee80211_ref_node(vap->iv_bss); 5825 rfilt = ath_calcrxfilter(sc); 5826 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5827 vap->iv_opmode == IEEE80211_M_AHDEMO || 5828 vap->iv_opmode == IEEE80211_M_IBSS); 5829 5830 /* 5831 * XXX Dont need to do this (and others) if we've transitioned 5832 * from SLEEP->RUN. 5833 */ 5834 if (stamode && nstate == IEEE80211_S_RUN) { 5835 sc->sc_curaid = ni->ni_associd; 5836 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5837 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5838 } 5839 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5840 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5841 ath_hal_setrxfilter(ah, rfilt); 5842 5843 /* XXX is this to restore keycache on resume? */ 5844 if (vap->iv_opmode != IEEE80211_M_STA && 5845 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5846 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5847 if (ath_hal_keyisvalid(ah, i)) 5848 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5849 } 5850 5851 /* 5852 * Invoke the parent method to do net80211 work. 5853 */ 5854 error = avp->av_newstate(vap, nstate, arg); 5855 if (error != 0) 5856 goto bad; 5857 5858 /* 5859 * See above: ensure av_newstate() doesn't drop the lock 5860 * on us. 5861 */ 5862 IEEE80211_LOCK_ASSERT(ic); 5863 5864 /* 5865 * XXX TODO: if nstate is _S_CAC, then we should disable 5866 * ACK processing until CAC is completed. 5867 */ 5868 5869 /* 5870 * XXX TODO: if we're on a passive channel, then we should 5871 * not allow any ACKs or self-generated frames until we hear 5872 * a beacon. Unfortunately there isn't a notification from 5873 * net80211 so perhaps we could slot that particular check 5874 * into the mgmt receive path and just ensure that we clear 5875 * it on RX of beacons in passive mode (and only clear it 5876 * once, obviously.) 5877 */ 5878 5879 /* 5880 * XXX TODO: net80211 should be tracking whether channels 5881 * have heard beacons and are thus considered "OK" for 5882 * transmitting - and then inform the driver about this 5883 * state change. That way if we hear an AP go quiet 5884 * (and nothing else is beaconing on a channel) the 5885 * channel can go back to being passive until another 5886 * beacon is heard. 5887 */ 5888 5889 /* 5890 * XXX TODO: if nstate is _S_CAC, then we should disable 5891 * ACK processing until CAC is completed. 5892 */ 5893 5894 /* 5895 * XXX TODO: if we're on a passive channel, then we should 5896 * not allow any ACKs or self-generated frames until we hear 5897 * a beacon. Unfortunately there isn't a notification from 5898 * net80211 so perhaps we could slot that particular check 5899 * into the mgmt receive path and just ensure that we clear 5900 * it on RX of beacons in passive mode (and only clear it 5901 * once, obviously.) 5902 */ 5903 5904 /* 5905 * XXX TODO: net80211 should be tracking whether channels 5906 * have heard beacons and are thus considered "OK" for 5907 * transmitting - and then inform the driver about this 5908 * state change. That way if we hear an AP go quiet 5909 * (and nothing else is beaconing on a channel) the 5910 * channel can go back to being passive until another 5911 * beacon is heard. 5912 */ 5913 5914 if (nstate == IEEE80211_S_RUN) { 5915 /* NB: collect bss node again, it may have changed */ 5916 ieee80211_free_node(ni); 5917 ni = ieee80211_ref_node(vap->iv_bss); 5918 5919 DPRINTF(sc, ATH_DEBUG_STATE, 5920 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5921 "capinfo 0x%04x chan %d\n", __func__, 5922 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5923 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5924 5925 switch (vap->iv_opmode) { 5926 #ifdef IEEE80211_SUPPORT_TDMA 5927 case IEEE80211_M_AHDEMO: 5928 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5929 break; 5930 /* fall thru... */ 5931 #endif 5932 case IEEE80211_M_HOSTAP: 5933 case IEEE80211_M_IBSS: 5934 case IEEE80211_M_MBSS: 5935 5936 /* 5937 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.) 5938 * For channels that are in CAC, we may have disabled 5939 * this during CAC to ensure we don't ACK frames 5940 * sent to us. 5941 */ 5942 5943 /* 5944 * Allocate and setup the beacon frame. 5945 * 5946 * Stop any previous beacon DMA. This may be 5947 * necessary, for example, when an ibss merge 5948 * causes reconfiguration; there will be a state 5949 * transition from RUN->RUN that means we may 5950 * be called with beacon transmission active. 5951 */ 5952 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5953 5954 error = ath_beacon_alloc(sc, ni); 5955 if (error != 0) 5956 goto bad; 5957 /* 5958 * If joining an adhoc network defer beacon timer 5959 * configuration to the next beacon frame so we 5960 * have a current TSF to use. Otherwise we're 5961 * starting an ibss/bss so there's no need to delay; 5962 * if this is the first vap moving to RUN state, then 5963 * beacon state needs to be [re]configured. 5964 */ 5965 if (vap->iv_opmode == IEEE80211_M_IBSS && 5966 ni->ni_tstamp.tsf != 0) { 5967 sc->sc_syncbeacon = 1; 5968 } else if (!sc->sc_beacons) { 5969 #ifdef IEEE80211_SUPPORT_TDMA 5970 if (vap->iv_caps & IEEE80211_C_TDMA) 5971 ath_tdma_config(sc, vap); 5972 else 5973 #endif 5974 ath_beacon_config(sc, vap); 5975 sc->sc_beacons = 1; 5976 } 5977 break; 5978 case IEEE80211_M_STA: 5979 /* 5980 * Defer beacon timer configuration to the next 5981 * beacon frame so we have a current TSF to use 5982 * (any TSF collected when scanning is likely old). 5983 * However if it's due to a CSA -> RUN transition, 5984 * force a beacon update so we pick up a lack of 5985 * beacons from an AP in CAC and thus force a 5986 * scan. 5987 * 5988 * And, there's also corner cases here where 5989 * after a scan, the AP may have disappeared. 5990 * In that case, we may not receive an actual 5991 * beacon to update the beacon timer and thus we 5992 * won't get notified of the missing beacons. 5993 */ 5994 if (ostate != IEEE80211_S_RUN && 5995 ostate != IEEE80211_S_SLEEP) { 5996 DPRINTF(sc, ATH_DEBUG_BEACON, 5997 "%s: STA; syncbeacon=1\n", __func__); 5998 sc->sc_syncbeacon = 1; 5999 6000 /* Quiet time handling - ensure we resync */ 6001 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6002 6003 if (csa_run_transition) 6004 ath_beacon_config(sc, vap); 6005 6006 /* 6007 * PR: kern/175227 6008 * 6009 * Reconfigure beacons during reset; as otherwise 6010 * we won't get the beacon timers reprogrammed 6011 * after a reset and thus we won't pick up a 6012 * beacon miss interrupt. 6013 * 6014 * Hopefully we'll see a beacon before the BMISS 6015 * timer fires (too often), leading to a STA 6016 * disassociation. 6017 */ 6018 sc->sc_beacons = 1; 6019 } 6020 break; 6021 case IEEE80211_M_MONITOR: 6022 /* 6023 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6024 * transitions so we must re-enable interrupts here to 6025 * handle the case of a single monitor mode vap. 6026 */ 6027 ath_hal_intrset(ah, sc->sc_imask); 6028 break; 6029 case IEEE80211_M_WDS: 6030 break; 6031 default: 6032 break; 6033 } 6034 /* 6035 * Let the hal process statistics collected during a 6036 * scan so it can provide calibrated noise floor data. 6037 */ 6038 ath_hal_process_noisefloor(ah); 6039 /* 6040 * Reset rssi stats; maybe not the best place... 6041 */ 6042 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6043 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6044 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6045 6046 /* 6047 * Force awake for RUN mode. 6048 */ 6049 ATH_LOCK(sc); 6050 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6051 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 6052 6053 /* 6054 * Finally, start any timers and the task q thread 6055 * (in case we didn't go through SCAN state). 6056 */ 6057 if (ath_longcalinterval != 0) { 6058 /* start periodic recalibration timer */ 6059 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6060 } else { 6061 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6062 "%s: calibration disabled\n", __func__); 6063 } 6064 ATH_UNLOCK(sc); 6065 6066 taskqueue_unblock(sc->sc_tq); 6067 } else if (nstate == IEEE80211_S_INIT) { 6068 6069 /* Quiet time handling - ensure we resync */ 6070 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6071 6072 /* 6073 * If there are no vaps left in RUN state then 6074 * shutdown host/driver operation: 6075 * o disable interrupts 6076 * o disable the task queue thread 6077 * o mark beacon processing as stopped 6078 */ 6079 if (!ath_isanyrunningvaps(vap)) { 6080 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6081 /* disable interrupts */ 6082 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6083 taskqueue_block(sc->sc_tq); 6084 sc->sc_beacons = 0; 6085 } 6086 #ifdef IEEE80211_SUPPORT_TDMA 6087 ath_hal_setcca(ah, AH_TRUE); 6088 #endif 6089 } else if (nstate == IEEE80211_S_SLEEP) { 6090 /* We're going to sleep, so transition appropriately */ 6091 /* For now, only do this if we're a single STA vap */ 6092 if (sc->sc_nvaps == 1 && 6093 vap->iv_opmode == IEEE80211_M_STA) { 6094 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6095 ATH_LOCK(sc); 6096 /* 6097 * Always at least set the self-generated 6098 * frame config to set PWRMGT=1. 6099 */ 6100 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6101 6102 /* 6103 * If we're not syncing beacons, transition 6104 * to NETWORK_SLEEP. 6105 * 6106 * We stay awake if syncbeacon > 0 in case 6107 * we need to listen for some beacons otherwise 6108 * our beacon timer config may be wrong. 6109 */ 6110 if (sc->sc_syncbeacon == 0) { 6111 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 6112 } 6113 ATH_UNLOCK(sc); 6114 } 6115 } else if (nstate == IEEE80211_S_SCAN) { 6116 /* Quiet time handling - ensure we resync */ 6117 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6118 } 6119 bad: 6120 ieee80211_free_node(ni); 6121 6122 /* 6123 * Restore the power state - either to what it was, or 6124 * to network_sleep if it's alright. 6125 */ 6126 ATH_LOCK(sc); 6127 ath_power_restore_power_state(sc); 6128 ATH_UNLOCK(sc); 6129 return error; 6130 } 6131 6132 /* 6133 * Allocate a key cache slot to the station so we can 6134 * setup a mapping from key index to node. The key cache 6135 * slot is needed for managing antenna state and for 6136 * compression when stations do not use crypto. We do 6137 * it uniliaterally here; if crypto is employed this slot 6138 * will be reassigned. 6139 */ 6140 static void 6141 ath_setup_stationkey(struct ieee80211_node *ni) 6142 { 6143 struct ieee80211vap *vap = ni->ni_vap; 6144 struct ath_softc *sc = vap->iv_ic->ic_softc; 6145 ieee80211_keyix keyix, rxkeyix; 6146 6147 /* XXX should take a locked ref to vap->iv_bss */ 6148 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6149 /* 6150 * Key cache is full; we'll fall back to doing 6151 * the more expensive lookup in software. Note 6152 * this also means no h/w compression. 6153 */ 6154 /* XXX msg+statistic */ 6155 } else { 6156 /* XXX locking? */ 6157 ni->ni_ucastkey.wk_keyix = keyix; 6158 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6159 /* NB: must mark device key to get called back on delete */ 6160 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6161 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6162 /* NB: this will create a pass-thru key entry */ 6163 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6164 } 6165 } 6166 6167 /* 6168 * Setup driver-specific state for a newly associated node. 6169 * Note that we're called also on a re-associate, the isnew 6170 * param tells us if this is the first time or not. 6171 */ 6172 static void 6173 ath_newassoc(struct ieee80211_node *ni, int isnew) 6174 { 6175 struct ath_node *an = ATH_NODE(ni); 6176 struct ieee80211vap *vap = ni->ni_vap; 6177 struct ath_softc *sc = vap->iv_ic->ic_softc; 6178 const struct ieee80211_txparam *tp = ni->ni_txparms; 6179 6180 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6181 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6182 6183 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6184 __func__, 6185 ni->ni_macaddr, 6186 ":", 6187 isnew, 6188 an->an_is_powersave); 6189 6190 ATH_NODE_LOCK(an); 6191 ath_rate_newassoc(sc, an, isnew); 6192 ATH_NODE_UNLOCK(an); 6193 6194 if (isnew && 6195 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6196 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6197 ath_setup_stationkey(ni); 6198 6199 /* 6200 * If we're reassociating, make sure that any paused queues 6201 * get unpaused. 6202 * 6203 * Now, we may have frames in the hardware queue for this node. 6204 * So if we are reassociating and there are frames in the queue, 6205 * we need to go through the cleanup path to ensure that they're 6206 * marked as non-aggregate. 6207 */ 6208 if (! isnew) { 6209 DPRINTF(sc, ATH_DEBUG_NODE, 6210 "%s: %6D: reassoc; is_powersave=%d\n", 6211 __func__, 6212 ni->ni_macaddr, 6213 ":", 6214 an->an_is_powersave); 6215 6216 /* XXX for now, we can't hold the lock across assoc */ 6217 ath_tx_node_reassoc(sc, an); 6218 6219 /* XXX for now, we can't hold the lock across wakeup */ 6220 if (an->an_is_powersave) 6221 ath_tx_node_wakeup(sc, an); 6222 } 6223 } 6224 6225 static int 6226 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6227 int nchans, struct ieee80211_channel chans[]) 6228 { 6229 struct ath_softc *sc = ic->ic_softc; 6230 struct ath_hal *ah = sc->sc_ah; 6231 HAL_STATUS status; 6232 6233 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6234 "%s: rd %u cc %u location %c%s\n", 6235 __func__, reg->regdomain, reg->country, reg->location, 6236 reg->ecm ? " ecm" : ""); 6237 6238 status = ath_hal_set_channels(ah, chans, nchans, 6239 reg->country, reg->regdomain); 6240 if (status != HAL_OK) { 6241 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6242 __func__, status); 6243 return EINVAL; /* XXX */ 6244 } 6245 6246 return 0; 6247 } 6248 6249 static void 6250 ath_getradiocaps(struct ieee80211com *ic, 6251 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6252 { 6253 struct ath_softc *sc = ic->ic_softc; 6254 struct ath_hal *ah = sc->sc_ah; 6255 6256 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6257 __func__, SKU_DEBUG, CTRY_DEFAULT); 6258 6259 /* XXX check return */ 6260 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6261 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6262 6263 } 6264 6265 static int 6266 ath_getchannels(struct ath_softc *sc) 6267 { 6268 struct ieee80211com *ic = &sc->sc_ic; 6269 struct ath_hal *ah = sc->sc_ah; 6270 HAL_STATUS status; 6271 6272 /* 6273 * Collect channel set based on EEPROM contents. 6274 */ 6275 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6276 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6277 if (status != HAL_OK) { 6278 device_printf(sc->sc_dev, 6279 "%s: unable to collect channel list from hal, status %d\n", 6280 __func__, status); 6281 return EINVAL; 6282 } 6283 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6284 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6285 /* XXX map Atheros sku's to net80211 SKU's */ 6286 /* XXX net80211 types too small */ 6287 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6288 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6289 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6290 ic->ic_regdomain.isocc[1] = ' '; 6291 6292 ic->ic_regdomain.ecm = 1; 6293 ic->ic_regdomain.location = 'I'; 6294 6295 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6296 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6297 __func__, sc->sc_eerd, sc->sc_eecc, 6298 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6299 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6300 return 0; 6301 } 6302 6303 static int 6304 ath_rate_setup(struct ath_softc *sc, u_int mode) 6305 { 6306 struct ath_hal *ah = sc->sc_ah; 6307 const HAL_RATE_TABLE *rt; 6308 6309 switch (mode) { 6310 case IEEE80211_MODE_11A: 6311 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6312 break; 6313 case IEEE80211_MODE_HALF: 6314 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6315 break; 6316 case IEEE80211_MODE_QUARTER: 6317 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6318 break; 6319 case IEEE80211_MODE_11B: 6320 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6321 break; 6322 case IEEE80211_MODE_11G: 6323 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6324 break; 6325 case IEEE80211_MODE_TURBO_A: 6326 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6327 break; 6328 case IEEE80211_MODE_TURBO_G: 6329 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6330 break; 6331 case IEEE80211_MODE_STURBO_A: 6332 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6333 break; 6334 case IEEE80211_MODE_11NA: 6335 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6336 break; 6337 case IEEE80211_MODE_11NG: 6338 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6339 break; 6340 default: 6341 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6342 __func__, mode); 6343 return 0; 6344 } 6345 sc->sc_rates[mode] = rt; 6346 return (rt != NULL); 6347 } 6348 6349 static void 6350 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6351 { 6352 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6353 static const struct { 6354 u_int rate; /* tx/rx 802.11 rate */ 6355 u_int16_t timeOn; /* LED on time (ms) */ 6356 u_int16_t timeOff; /* LED off time (ms) */ 6357 } blinkrates[] = { 6358 { 108, 40, 10 }, 6359 { 96, 44, 11 }, 6360 { 72, 50, 13 }, 6361 { 48, 57, 14 }, 6362 { 36, 67, 16 }, 6363 { 24, 80, 20 }, 6364 { 22, 100, 25 }, 6365 { 18, 133, 34 }, 6366 { 12, 160, 40 }, 6367 { 10, 200, 50 }, 6368 { 6, 240, 58 }, 6369 { 4, 267, 66 }, 6370 { 2, 400, 100 }, 6371 { 0, 500, 130 }, 6372 /* XXX half/quarter rates */ 6373 }; 6374 const HAL_RATE_TABLE *rt; 6375 int i, j; 6376 6377 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6378 rt = sc->sc_rates[mode]; 6379 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6380 for (i = 0; i < rt->rateCount; i++) { 6381 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6382 if (rt->info[i].phy != IEEE80211_T_HT) 6383 sc->sc_rixmap[ieeerate] = i; 6384 else 6385 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6386 } 6387 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6388 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6389 if (i >= rt->rateCount) { 6390 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6391 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6392 continue; 6393 } 6394 sc->sc_hwmap[i].ieeerate = 6395 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6396 if (rt->info[i].phy == IEEE80211_T_HT) 6397 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6398 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6399 if (rt->info[i].shortPreamble || 6400 rt->info[i].phy == IEEE80211_T_OFDM) 6401 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6402 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6403 for (j = 0; j < nitems(blinkrates)-1; j++) 6404 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6405 break; 6406 /* NB: this uses the last entry if the rate isn't found */ 6407 /* XXX beware of overlow */ 6408 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6409 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6410 } 6411 sc->sc_currates = rt; 6412 sc->sc_curmode = mode; 6413 /* 6414 * All protection frames are transmitted at 2Mb/s for 6415 * 11g, otherwise at 1Mb/s. 6416 */ 6417 if (mode == IEEE80211_MODE_11G) 6418 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6419 else 6420 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6421 /* NB: caller is responsible for resetting rate control state */ 6422 } 6423 6424 static void 6425 ath_watchdog(void *arg) 6426 { 6427 struct ath_softc *sc = arg; 6428 struct ieee80211com *ic = &sc->sc_ic; 6429 int do_reset = 0; 6430 6431 ATH_LOCK_ASSERT(sc); 6432 6433 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6434 uint32_t hangs; 6435 6436 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6437 6438 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6439 hangs != 0) { 6440 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6441 hangs & 0xff ? "bb" : "mac", hangs); 6442 } else 6443 device_printf(sc->sc_dev, "device timeout\n"); 6444 do_reset = 1; 6445 counter_u64_add(ic->ic_oerrors, 1); 6446 sc->sc_stats.ast_watchdog++; 6447 6448 ath_power_restore_power_state(sc); 6449 } 6450 6451 /* 6452 * We can't hold the lock across the ath_reset() call. 6453 * 6454 * And since this routine can't hold a lock and sleep, 6455 * do the reset deferred. 6456 */ 6457 if (do_reset) { 6458 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6459 } 6460 6461 callout_schedule(&sc->sc_wd_ch, hz); 6462 } 6463 6464 static void 6465 ath_parent(struct ieee80211com *ic) 6466 { 6467 struct ath_softc *sc = ic->ic_softc; 6468 int error = EDOOFUS; 6469 6470 ATH_LOCK(sc); 6471 if (ic->ic_nrunning > 0) { 6472 /* 6473 * To avoid rescanning another access point, 6474 * do not call ath_init() here. Instead, 6475 * only reflect promisc mode settings. 6476 */ 6477 if (sc->sc_running) { 6478 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6479 ath_mode_init(sc); 6480 ath_power_restore_power_state(sc); 6481 } else if (!sc->sc_invalid) { 6482 /* 6483 * Beware of being called during attach/detach 6484 * to reset promiscuous mode. In that case we 6485 * will still be marked UP but not RUNNING. 6486 * However trying to re-init the interface 6487 * is the wrong thing to do as we've already 6488 * torn down much of our state. There's 6489 * probably a better way to deal with this. 6490 */ 6491 error = ath_init(sc); 6492 } 6493 } else { 6494 ath_stop(sc); 6495 if (!sc->sc_invalid) 6496 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6497 } 6498 ATH_UNLOCK(sc); 6499 6500 if (error == 0) { 6501 #ifdef ATH_TX99_DIAG 6502 if (sc->sc_tx99 != NULL) 6503 sc->sc_tx99->start(sc->sc_tx99); 6504 else 6505 #endif 6506 ieee80211_start_all(ic); 6507 } 6508 } 6509 6510 /* 6511 * Announce various information on device/driver attach. 6512 */ 6513 static void 6514 ath_announce(struct ath_softc *sc) 6515 { 6516 struct ath_hal *ah = sc->sc_ah; 6517 6518 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6519 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6520 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6521 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6522 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6523 if (bootverbose) { 6524 int i; 6525 for (i = 0; i <= WME_AC_VO; i++) { 6526 struct ath_txq *txq = sc->sc_ac2q[i]; 6527 device_printf(sc->sc_dev, 6528 "Use hw queue %u for %s traffic\n", 6529 txq->axq_qnum, ieee80211_wme_acnames[i]); 6530 } 6531 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6532 sc->sc_cabq->axq_qnum); 6533 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6534 sc->sc_bhalq); 6535 } 6536 if (ath_rxbuf != ATH_RXBUF) 6537 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6538 if (ath_txbuf != ATH_TXBUF) 6539 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6540 if (sc->sc_mcastkey && bootverbose) 6541 device_printf(sc->sc_dev, "using multicast key search\n"); 6542 } 6543 6544 static void 6545 ath_dfs_tasklet(void *p, int npending) 6546 { 6547 struct ath_softc *sc = (struct ath_softc *) p; 6548 struct ieee80211com *ic = &sc->sc_ic; 6549 6550 /* 6551 * If previous processing has found a radar event, 6552 * signal this to the net80211 layer to begin DFS 6553 * processing. 6554 */ 6555 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6556 /* DFS event found, initiate channel change */ 6557 6558 /* 6559 * XXX TODO: immediately disable ACK processing 6560 * on the current channel. This would be done 6561 * by setting AR_DIAG_ACK_DIS (AR5212; may be 6562 * different for others) until we are out of 6563 * CAC. 6564 */ 6565 6566 /* 6567 * XXX doesn't currently tell us whether the event 6568 * XXX was found in the primary or extension 6569 * XXX channel! 6570 */ 6571 IEEE80211_LOCK(ic); 6572 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6573 IEEE80211_UNLOCK(ic); 6574 } 6575 } 6576 6577 /* 6578 * Enable/disable power save. This must be called with 6579 * no TX driver locks currently held, so it should only 6580 * be called from the RX path (which doesn't hold any 6581 * TX driver locks.) 6582 */ 6583 static void 6584 ath_node_powersave(struct ieee80211_node *ni, int enable) 6585 { 6586 #ifdef ATH_SW_PSQ 6587 struct ath_node *an = ATH_NODE(ni); 6588 struct ieee80211com *ic = ni->ni_ic; 6589 struct ath_softc *sc = ic->ic_softc; 6590 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6591 6592 /* XXX and no TXQ locks should be held here */ 6593 6594 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6595 __func__, 6596 ni->ni_macaddr, 6597 ":", 6598 !! enable); 6599 6600 /* Suspend or resume software queue handling */ 6601 if (enable) 6602 ath_tx_node_sleep(sc, an); 6603 else 6604 ath_tx_node_wakeup(sc, an); 6605 6606 /* Update net80211 state */ 6607 avp->av_node_ps(ni, enable); 6608 #else 6609 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6610 6611 /* Update net80211 state */ 6612 avp->av_node_ps(ni, enable); 6613 #endif/* ATH_SW_PSQ */ 6614 } 6615 6616 /* 6617 * Notification from net80211 that the powersave queue state has 6618 * changed. 6619 * 6620 * Since the software queue also may have some frames: 6621 * 6622 * + if the node software queue has frames and the TID state 6623 * is 0, we set the TIM; 6624 * + if the node and the stack are both empty, we clear the TIM bit. 6625 * + If the stack tries to set the bit, always set it. 6626 * + If the stack tries to clear the bit, only clear it if the 6627 * software queue in question is also cleared. 6628 * 6629 * TODO: this is called during node teardown; so let's ensure this 6630 * is all correctly handled and that the TIM bit is cleared. 6631 * It may be that the node flush is called _AFTER_ the net80211 6632 * stack clears the TIM. 6633 * 6634 * Here is the racy part. Since it's possible >1 concurrent, 6635 * overlapping TXes will appear complete with a TX completion in 6636 * another thread, it's possible that the concurrent TIM calls will 6637 * clash. We can't hold the node lock here because setting the 6638 * TIM grabs the net80211 comlock and this may cause a LOR. 6639 * The solution is either to totally serialise _everything_ at 6640 * this point (ie, all TX, completion and any reset/flush go into 6641 * one taskqueue) or a new "ath TIM lock" needs to be created that 6642 * just wraps the driver state change and this call to avp->av_set_tim(). 6643 * 6644 * The same race exists in the net80211 power save queue handling 6645 * as well. Since multiple transmitting threads may queue frames 6646 * into the driver, as well as ps-poll and the driver transmitting 6647 * frames (and thus clearing the psq), it's quite possible that 6648 * a packet entering the PSQ and a ps-poll being handled will 6649 * race, causing the TIM to be cleared and not re-set. 6650 */ 6651 static int 6652 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6653 { 6654 #ifdef ATH_SW_PSQ 6655 struct ieee80211com *ic = ni->ni_ic; 6656 struct ath_softc *sc = ic->ic_softc; 6657 struct ath_node *an = ATH_NODE(ni); 6658 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6659 int changed = 0; 6660 6661 ATH_TX_LOCK(sc); 6662 an->an_stack_psq = enable; 6663 6664 /* 6665 * This will get called for all operating modes, 6666 * even if avp->av_set_tim is unset. 6667 * It's currently set for hostap/ibss modes; but 6668 * the same infrastructure is used for both STA 6669 * and AP/IBSS node power save. 6670 */ 6671 if (avp->av_set_tim == NULL) { 6672 ATH_TX_UNLOCK(sc); 6673 return (0); 6674 } 6675 6676 /* 6677 * If setting the bit, always set it here. 6678 * If clearing the bit, only clear it if the 6679 * software queue is also empty. 6680 * 6681 * If the node has left power save, just clear the TIM 6682 * bit regardless of the state of the power save queue. 6683 * 6684 * XXX TODO: although atomics are used, it's quite possible 6685 * that a race will occur between this and setting/clearing 6686 * in another thread. TX completion will occur always in 6687 * one thread, however setting/clearing the TIM bit can come 6688 * from a variety of different process contexts! 6689 */ 6690 if (enable && an->an_tim_set == 1) { 6691 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6692 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6693 __func__, 6694 ni->ni_macaddr, 6695 ":", 6696 enable); 6697 ATH_TX_UNLOCK(sc); 6698 } else if (enable) { 6699 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6700 "%s: %6D: enable=%d, enabling TIM\n", 6701 __func__, 6702 ni->ni_macaddr, 6703 ":", 6704 enable); 6705 an->an_tim_set = 1; 6706 ATH_TX_UNLOCK(sc); 6707 changed = avp->av_set_tim(ni, enable); 6708 } else if (an->an_swq_depth == 0) { 6709 /* disable */ 6710 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6711 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6712 __func__, 6713 ni->ni_macaddr, 6714 ":", 6715 enable); 6716 an->an_tim_set = 0; 6717 ATH_TX_UNLOCK(sc); 6718 changed = avp->av_set_tim(ni, enable); 6719 } else if (! an->an_is_powersave) { 6720 /* 6721 * disable regardless; the node isn't in powersave now 6722 */ 6723 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6724 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6725 __func__, 6726 ni->ni_macaddr, 6727 ":", 6728 enable); 6729 an->an_tim_set = 0; 6730 ATH_TX_UNLOCK(sc); 6731 changed = avp->av_set_tim(ni, enable); 6732 } else { 6733 /* 6734 * psq disable, node is currently in powersave, node 6735 * software queue isn't empty, so don't clear the TIM bit 6736 * for now. 6737 */ 6738 ATH_TX_UNLOCK(sc); 6739 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6740 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6741 __func__, 6742 ni->ni_macaddr, 6743 ":", 6744 enable); 6745 changed = 0; 6746 } 6747 6748 return (changed); 6749 #else 6750 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6751 6752 /* 6753 * Some operating modes don't set av_set_tim(), so don't 6754 * update it here. 6755 */ 6756 if (avp->av_set_tim == NULL) 6757 return (0); 6758 6759 return (avp->av_set_tim(ni, enable)); 6760 #endif /* ATH_SW_PSQ */ 6761 } 6762 6763 /* 6764 * Set or update the TIM from the software queue. 6765 * 6766 * Check the software queue depth before attempting to do lock 6767 * anything; that avoids trying to obtain the lock. Then, 6768 * re-check afterwards to ensure nothing has changed in the 6769 * meantime. 6770 * 6771 * set: This is designed to be called from the TX path, after 6772 * a frame has been queued; to see if the swq > 0. 6773 * 6774 * clear: This is designed to be called from the buffer completion point 6775 * (right now it's ath_tx_default_comp()) where the state of 6776 * a software queue has changed. 6777 * 6778 * It makes sense to place it at buffer free / completion rather 6779 * than after each software queue operation, as there's no real 6780 * point in churning the TIM bit as the last frames in the software 6781 * queue are transmitted. If they fail and we retry them, we'd 6782 * just be setting the TIM bit again anyway. 6783 */ 6784 void 6785 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6786 int enable) 6787 { 6788 #ifdef ATH_SW_PSQ 6789 struct ath_node *an; 6790 struct ath_vap *avp; 6791 6792 /* Don't do this for broadcast/etc frames */ 6793 if (ni == NULL) 6794 return; 6795 6796 an = ATH_NODE(ni); 6797 avp = ATH_VAP(ni->ni_vap); 6798 6799 /* 6800 * And for operating modes without the TIM handler set, let's 6801 * just skip those. 6802 */ 6803 if (avp->av_set_tim == NULL) 6804 return; 6805 6806 ATH_TX_LOCK_ASSERT(sc); 6807 6808 if (enable) { 6809 if (an->an_is_powersave && 6810 an->an_tim_set == 0 && 6811 an->an_swq_depth != 0) { 6812 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6813 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6814 __func__, 6815 ni->ni_macaddr, 6816 ":"); 6817 an->an_tim_set = 1; 6818 (void) avp->av_set_tim(ni, 1); 6819 } 6820 } else { 6821 /* 6822 * Don't bother grabbing the lock unless the queue is empty. 6823 */ 6824 if (an->an_swq_depth != 0) 6825 return; 6826 6827 if (an->an_is_powersave && 6828 an->an_stack_psq == 0 && 6829 an->an_tim_set == 1 && 6830 an->an_swq_depth == 0) { 6831 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6832 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6833 " clear!\n", 6834 __func__, 6835 ni->ni_macaddr, 6836 ":"); 6837 an->an_tim_set = 0; 6838 (void) avp->av_set_tim(ni, 0); 6839 } 6840 } 6841 #else 6842 return; 6843 #endif /* ATH_SW_PSQ */ 6844 } 6845 6846 /* 6847 * Received a ps-poll frame from net80211. 6848 * 6849 * Here we get a chance to serve out a software-queued frame ourselves 6850 * before we punt it to net80211 to transmit us one itself - either 6851 * because there's traffic in the net80211 psq, or a NULL frame to 6852 * indicate there's nothing else. 6853 */ 6854 static void 6855 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6856 { 6857 #ifdef ATH_SW_PSQ 6858 struct ath_node *an; 6859 struct ath_vap *avp; 6860 struct ieee80211com *ic = ni->ni_ic; 6861 struct ath_softc *sc = ic->ic_softc; 6862 int tid; 6863 6864 /* Just paranoia */ 6865 if (ni == NULL) 6866 return; 6867 6868 /* 6869 * Unassociated (temporary node) station. 6870 */ 6871 if (ni->ni_associd == 0) 6872 return; 6873 6874 /* 6875 * We do have an active node, so let's begin looking into it. 6876 */ 6877 an = ATH_NODE(ni); 6878 avp = ATH_VAP(ni->ni_vap); 6879 6880 /* 6881 * For now, we just call the original ps-poll method. 6882 * Once we're ready to flip this on: 6883 * 6884 * + Set leak to 1, as no matter what we're going to have 6885 * to send a frame; 6886 * + Check the software queue and if there's something in it, 6887 * schedule the highest TID thas has traffic from this node. 6888 * Then make sure we schedule the software scheduler to 6889 * run so it picks up said frame. 6890 * 6891 * That way whatever happens, we'll at least send _a_ frame 6892 * to the given node. 6893 * 6894 * Again, yes, it's crappy QoS if the node has multiple 6895 * TIDs worth of traffic - but let's get it working first 6896 * before we optimise it. 6897 * 6898 * Also yes, there's definitely latency here - we're not 6899 * direct dispatching to the hardware in this path (and 6900 * we're likely being called from the packet receive path, 6901 * so going back into TX may be a little hairy!) but again 6902 * I'd like to get this working first before optimising 6903 * turn-around time. 6904 */ 6905 6906 ATH_TX_LOCK(sc); 6907 6908 /* 6909 * Legacy - we're called and the node isn't asleep. 6910 * Immediately punt. 6911 */ 6912 if (! an->an_is_powersave) { 6913 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6914 "%s: %6D: not in powersave?\n", 6915 __func__, 6916 ni->ni_macaddr, 6917 ":"); 6918 ATH_TX_UNLOCK(sc); 6919 avp->av_recv_pspoll(ni, m); 6920 return; 6921 } 6922 6923 /* 6924 * We're in powersave. 6925 * 6926 * Leak a frame. 6927 */ 6928 an->an_leak_count = 1; 6929 6930 /* 6931 * Now, if there's no frames in the node, just punt to 6932 * recv_pspoll. 6933 * 6934 * Don't bother checking if the TIM bit is set, we really 6935 * only care if there are any frames here! 6936 */ 6937 if (an->an_swq_depth == 0) { 6938 ATH_TX_UNLOCK(sc); 6939 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6940 "%s: %6D: SWQ empty; punting to net80211\n", 6941 __func__, 6942 ni->ni_macaddr, 6943 ":"); 6944 avp->av_recv_pspoll(ni, m); 6945 return; 6946 } 6947 6948 /* 6949 * Ok, let's schedule the highest TID that has traffic 6950 * and then schedule something. 6951 */ 6952 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6953 struct ath_tid *atid = &an->an_tid[tid]; 6954 /* 6955 * No frames? Skip. 6956 */ 6957 if (atid->axq_depth == 0) 6958 continue; 6959 ath_tx_tid_sched(sc, atid); 6960 /* 6961 * XXX we could do a direct call to the TXQ 6962 * scheduler code here to optimise latency 6963 * at the expense of a REALLY deep callstack. 6964 */ 6965 ATH_TX_UNLOCK(sc); 6966 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6967 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6968 "%s: %6D: leaking frame to TID %d\n", 6969 __func__, 6970 ni->ni_macaddr, 6971 ":", 6972 tid); 6973 return; 6974 } 6975 6976 ATH_TX_UNLOCK(sc); 6977 6978 /* 6979 * XXX nothing in the TIDs at this point? Eek. 6980 */ 6981 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6982 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6983 __func__, 6984 ni->ni_macaddr, 6985 ":"); 6986 avp->av_recv_pspoll(ni, m); 6987 #else 6988 avp->av_recv_pspoll(ni, m); 6989 #endif /* ATH_SW_PSQ */ 6990 } 6991 6992 MODULE_VERSION(if_ath, 1); 6993 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6994 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 6995 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6996 #endif 6997