xref: /freebsd/sys/dev/ath/if_ath.c (revision c757049235edc6ecca32c6c584f7d5582aaeb74a)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_athdfs.h>
115 
116 #ifdef ATH_TX99_DIAG
117 #include <dev/ath/ath_tx99/ath_tx99.h>
118 #endif
119 
120 #ifdef	ATH_DEBUG_ALQ
121 #include <dev/ath/if_ath_alq.h>
122 #endif
123 
124 /*
125  * Only enable this if you're working on PS-POLL support.
126  */
127 #undef	ATH_SW_PSQ
128 
129 /*
130  * ATH_BCBUF determines the number of vap's that can transmit
131  * beacons and also (currently) the number of vap's that can
132  * have unique mac addresses/bssid.  When staggering beacons
133  * 4 is probably a good max as otherwise the beacons become
134  * very closely spaced and there is limited time for cab q traffic
135  * to go out.  You can burst beacons instead but that is not good
136  * for stations in power save and at some point you really want
137  * another radio (and channel).
138  *
139  * The limit on the number of mac addresses is tied to our use of
140  * the U/L bit and tracking addresses in a byte; it would be
141  * worthwhile to allow more for applications like proxy sta.
142  */
143 CTASSERT(ATH_BCBUF <= 8);
144 
145 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
146 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
147 		    const uint8_t [IEEE80211_ADDR_LEN],
148 		    const uint8_t [IEEE80211_ADDR_LEN]);
149 static void	ath_vap_delete(struct ieee80211vap *);
150 static void	ath_init(void *);
151 static void	ath_stop_locked(struct ifnet *);
152 static void	ath_stop(struct ifnet *);
153 static int	ath_reset_vap(struct ieee80211vap *, u_long);
154 static void	ath_start_queue(struct ifnet *ifp);
155 static int	ath_media_change(struct ifnet *);
156 static void	ath_watchdog(void *);
157 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
158 static void	ath_fatal_proc(void *, int);
159 static void	ath_bmiss_vap(struct ieee80211vap *);
160 static void	ath_bmiss_proc(void *, int);
161 static void	ath_key_update_begin(struct ieee80211vap *);
162 static void	ath_key_update_end(struct ieee80211vap *);
163 static void	ath_update_mcast(struct ifnet *);
164 static void	ath_update_promisc(struct ifnet *);
165 static void	ath_updateslot(struct ifnet *);
166 static void	ath_bstuck_proc(void *, int);
167 static void	ath_reset_proc(void *, int);
168 static int	ath_desc_alloc(struct ath_softc *);
169 static void	ath_desc_free(struct ath_softc *);
170 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
171 			const uint8_t [IEEE80211_ADDR_LEN]);
172 static void	ath_node_cleanup(struct ieee80211_node *);
173 static void	ath_node_free(struct ieee80211_node *);
174 static void	ath_node_getsignal(const struct ieee80211_node *,
175 			int8_t *, int8_t *);
176 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
177 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
178 static int	ath_tx_setup(struct ath_softc *, int, int);
179 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
180 static void	ath_tx_cleanup(struct ath_softc *);
181 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
182 		    int dosched);
183 static void	ath_tx_proc_q0(void *, int);
184 static void	ath_tx_proc_q0123(void *, int);
185 static void	ath_tx_proc(void *, int);
186 static void	ath_txq_sched_tasklet(void *, int);
187 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
188 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_scan_start(struct ieee80211com *);
190 static void	ath_scan_end(struct ieee80211com *);
191 static void	ath_set_channel(struct ieee80211com *);
192 #ifdef	ATH_ENABLE_11N
193 static void	ath_update_chw(struct ieee80211com *);
194 #endif	/* ATH_ENABLE_11N */
195 static void	ath_calibrate(void *);
196 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
197 static void	ath_setup_stationkey(struct ieee80211_node *);
198 static void	ath_newassoc(struct ieee80211_node *, int);
199 static int	ath_setregdomain(struct ieee80211com *,
200 		    struct ieee80211_regdomain *, int,
201 		    struct ieee80211_channel []);
202 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
203 		    struct ieee80211_channel []);
204 static int	ath_getchannels(struct ath_softc *);
205 
206 static int	ath_rate_setup(struct ath_softc *, u_int mode);
207 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
208 
209 static void	ath_announce(struct ath_softc *);
210 
211 static void	ath_dfs_tasklet(void *, int);
212 static void	ath_node_powersave(struct ieee80211_node *, int);
213 static int	ath_node_set_tim(struct ieee80211_node *, int);
214 
215 #ifdef IEEE80211_SUPPORT_TDMA
216 #include <dev/ath/if_ath_tdma.h>
217 #endif
218 
219 SYSCTL_DECL(_hw_ath);
220 
221 /* XXX validate sysctl values */
222 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
223 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
224 	    0, "long chip calibration interval (secs)");
225 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
226 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
227 	    0, "short chip calibration interval (msecs)");
228 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
229 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
230 	    0, "reset chip calibration results (secs)");
231 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
232 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
233 	    0, "ANI calibration (msecs)");
234 
235 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
236 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
237 	    0, "rx buffers allocated");
238 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
239 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
240 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
241 	    0, "tx buffers allocated");
242 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
243 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
244 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
245 	    0, "tx (mgmt) buffers allocated");
246 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
247 
248 int ath_bstuck_threshold = 4;		/* max missed beacons */
249 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
250 	    0, "max missed beacon xmits before chip reset");
251 
252 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
253 
254 void
255 ath_legacy_attach_comp_func(struct ath_softc *sc)
256 {
257 
258 	/*
259 	 * Special case certain configurations.  Note the
260 	 * CAB queue is handled by these specially so don't
261 	 * include them when checking the txq setup mask.
262 	 */
263 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
264 	case 0x01:
265 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
266 		break;
267 	case 0x0f:
268 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
269 		break;
270 	default:
271 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
272 		break;
273 	}
274 }
275 
276 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
277 #define	HAL_MODE_HT40 \
278 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
279 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
280 int
281 ath_attach(u_int16_t devid, struct ath_softc *sc)
282 {
283 	struct ifnet *ifp;
284 	struct ieee80211com *ic;
285 	struct ath_hal *ah = NULL;
286 	HAL_STATUS status;
287 	int error = 0, i;
288 	u_int wmodes;
289 	uint8_t macaddr[IEEE80211_ADDR_LEN];
290 	int rx_chainmask, tx_chainmask;
291 
292 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
293 
294 	CURVNET_SET(vnet0);
295 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
296 	if (ifp == NULL) {
297 		device_printf(sc->sc_dev, "can not if_alloc()\n");
298 		error = ENOSPC;
299 		goto bad;
300 	}
301 	ic = ifp->if_l2com;
302 
303 	/* set these up early for if_printf use */
304 	if_initname(ifp, device_get_name(sc->sc_dev),
305 		device_get_unit(sc->sc_dev));
306 	CURVNET_RESTORE();
307 
308 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
309 	    sc->sc_eepromdata, &status);
310 	if (ah == NULL) {
311 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
312 			status);
313 		error = ENXIO;
314 		goto bad;
315 	}
316 	sc->sc_ah = ah;
317 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
318 #ifdef	ATH_DEBUG
319 	sc->sc_debug = ath_debug;
320 #endif
321 
322 	/*
323 	 * Setup the DMA/EDMA functions based on the current
324 	 * hardware support.
325 	 *
326 	 * This is required before the descriptors are allocated.
327 	 */
328 	if (ath_hal_hasedma(sc->sc_ah)) {
329 		sc->sc_isedma = 1;
330 		ath_recv_setup_edma(sc);
331 		ath_xmit_setup_edma(sc);
332 	} else {
333 		ath_recv_setup_legacy(sc);
334 		ath_xmit_setup_legacy(sc);
335 	}
336 
337 	/*
338 	 * Check if the MAC has multi-rate retry support.
339 	 * We do this by trying to setup a fake extended
340 	 * descriptor.  MAC's that don't have support will
341 	 * return false w/o doing anything.  MAC's that do
342 	 * support it will return true w/o doing anything.
343 	 */
344 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
345 
346 	/*
347 	 * Check if the device has hardware counters for PHY
348 	 * errors.  If so we need to enable the MIB interrupt
349 	 * so we can act on stat triggers.
350 	 */
351 	if (ath_hal_hwphycounters(ah))
352 		sc->sc_needmib = 1;
353 
354 	/*
355 	 * Get the hardware key cache size.
356 	 */
357 	sc->sc_keymax = ath_hal_keycachesize(ah);
358 	if (sc->sc_keymax > ATH_KEYMAX) {
359 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
360 			ATH_KEYMAX, sc->sc_keymax);
361 		sc->sc_keymax = ATH_KEYMAX;
362 	}
363 	/*
364 	 * Reset the key cache since some parts do not
365 	 * reset the contents on initial power up.
366 	 */
367 	for (i = 0; i < sc->sc_keymax; i++)
368 		ath_hal_keyreset(ah, i);
369 
370 	/*
371 	 * Collect the default channel list.
372 	 */
373 	error = ath_getchannels(sc);
374 	if (error != 0)
375 		goto bad;
376 
377 	/*
378 	 * Setup rate tables for all potential media types.
379 	 */
380 	ath_rate_setup(sc, IEEE80211_MODE_11A);
381 	ath_rate_setup(sc, IEEE80211_MODE_11B);
382 	ath_rate_setup(sc, IEEE80211_MODE_11G);
383 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
384 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
385 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
386 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
387 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
388 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
389 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
390 
391 	/* NB: setup here so ath_rate_update is happy */
392 	ath_setcurmode(sc, IEEE80211_MODE_11A);
393 
394 	/*
395 	 * Allocate TX descriptors and populate the lists.
396 	 */
397 	error = ath_desc_alloc(sc);
398 	if (error != 0) {
399 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
400 		    error);
401 		goto bad;
402 	}
403 	error = ath_txdma_setup(sc);
404 	if (error != 0) {
405 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
406 		    error);
407 		goto bad;
408 	}
409 
410 	/*
411 	 * Allocate RX descriptors and populate the lists.
412 	 */
413 	error = ath_rxdma_setup(sc);
414 	if (error != 0) {
415 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
416 		    error);
417 		goto bad;
418 	}
419 
420 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
421 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
422 
423 	ATH_TXBUF_LOCK_INIT(sc);
424 
425 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
426 		taskqueue_thread_enqueue, &sc->sc_tq);
427 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
428 		"%s taskq", ifp->if_xname);
429 
430 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
431 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
432 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
433 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
434 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
435 	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
436 
437 	/*
438 	 * Allocate hardware transmit queues: one queue for
439 	 * beacon frames and one data queue for each QoS
440 	 * priority.  Note that the hal handles resetting
441 	 * these queues at the needed time.
442 	 *
443 	 * XXX PS-Poll
444 	 */
445 	sc->sc_bhalq = ath_beaconq_setup(sc);
446 	if (sc->sc_bhalq == (u_int) -1) {
447 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
448 		error = EIO;
449 		goto bad2;
450 	}
451 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
452 	if (sc->sc_cabq == NULL) {
453 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
454 		error = EIO;
455 		goto bad2;
456 	}
457 	/* NB: insure BK queue is the lowest priority h/w queue */
458 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
459 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
460 			ieee80211_wme_acnames[WME_AC_BK]);
461 		error = EIO;
462 		goto bad2;
463 	}
464 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
465 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
466 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
467 		/*
468 		 * Not enough hardware tx queues to properly do WME;
469 		 * just punt and assign them all to the same h/w queue.
470 		 * We could do a better job of this if, for example,
471 		 * we allocate queues when we switch from station to
472 		 * AP mode.
473 		 */
474 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
475 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
476 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
477 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
478 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
479 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
480 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
481 	}
482 
483 	/*
484 	 * Attach the TX completion function.
485 	 *
486 	 * The non-EDMA chips may have some special case optimisations;
487 	 * this method gives everyone a chance to attach cleanly.
488 	 */
489 	sc->sc_tx.xmit_attach_comp_func(sc);
490 
491 	/*
492 	 * Setup rate control.  Some rate control modules
493 	 * call back to change the anntena state so expose
494 	 * the necessary entry points.
495 	 * XXX maybe belongs in struct ath_ratectrl?
496 	 */
497 	sc->sc_setdefantenna = ath_setdefantenna;
498 	sc->sc_rc = ath_rate_attach(sc);
499 	if (sc->sc_rc == NULL) {
500 		error = EIO;
501 		goto bad2;
502 	}
503 
504 	/* Attach DFS module */
505 	if (! ath_dfs_attach(sc)) {
506 		device_printf(sc->sc_dev,
507 		    "%s: unable to attach DFS\n", __func__);
508 		error = EIO;
509 		goto bad2;
510 	}
511 
512 	/* Start DFS processing tasklet */
513 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
514 
515 	/* Configure LED state */
516 	sc->sc_blinking = 0;
517 	sc->sc_ledstate = 1;
518 	sc->sc_ledon = 0;			/* low true */
519 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
520 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
521 
522 	/*
523 	 * Don't setup hardware-based blinking.
524 	 *
525 	 * Although some NICs may have this configured in the
526 	 * default reset register values, the user may wish
527 	 * to alter which pins have which function.
528 	 *
529 	 * The reference driver attaches the MAC network LED to GPIO1 and
530 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
531 	 * NIC has these reversed.
532 	 */
533 	sc->sc_hardled = (1 == 0);
534 	sc->sc_led_net_pin = -1;
535 	sc->sc_led_pwr_pin = -1;
536 	/*
537 	 * Auto-enable soft led processing for IBM cards and for
538 	 * 5211 minipci cards.  Users can also manually enable/disable
539 	 * support with a sysctl.
540 	 */
541 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
542 	ath_led_config(sc);
543 	ath_hal_setledstate(ah, HAL_LED_INIT);
544 
545 	ifp->if_softc = sc;
546 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
547 	ifp->if_start = ath_start_queue;
548 	ifp->if_ioctl = ath_ioctl;
549 	ifp->if_init = ath_init;
550 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
551 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
552 	IFQ_SET_READY(&ifp->if_snd);
553 
554 	ic->ic_ifp = ifp;
555 	/* XXX not right but it's not used anywhere important */
556 	ic->ic_phytype = IEEE80211_T_OFDM;
557 	ic->ic_opmode = IEEE80211_M_STA;
558 	ic->ic_caps =
559 		  IEEE80211_C_STA		/* station mode */
560 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
561 		| IEEE80211_C_HOSTAP		/* hostap mode */
562 		| IEEE80211_C_MONITOR		/* monitor mode */
563 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
564 		| IEEE80211_C_WDS		/* 4-address traffic works */
565 		| IEEE80211_C_MBSS		/* mesh point link mode */
566 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
567 		| IEEE80211_C_SHSLOT		/* short slot time supported */
568 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
569 #ifndef	ATH_ENABLE_11N
570 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
571 #endif
572 		| IEEE80211_C_TXFRAG		/* handle tx frags */
573 #ifdef	ATH_ENABLE_DFS
574 		| IEEE80211_C_DFS		/* Enable radar detection */
575 #endif
576 		;
577 	/*
578 	 * Query the hal to figure out h/w crypto support.
579 	 */
580 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
581 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
582 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
583 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
584 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
585 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
586 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
587 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
588 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
589 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
590 		/*
591 		 * Check if h/w does the MIC and/or whether the
592 		 * separate key cache entries are required to
593 		 * handle both tx+rx MIC keys.
594 		 */
595 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
596 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
597 		/*
598 		 * If the h/w supports storing tx+rx MIC keys
599 		 * in one cache slot automatically enable use.
600 		 */
601 		if (ath_hal_hastkipsplit(ah) ||
602 		    !ath_hal_settkipsplit(ah, AH_FALSE))
603 			sc->sc_splitmic = 1;
604 		/*
605 		 * If the h/w can do TKIP MIC together with WME then
606 		 * we use it; otherwise we force the MIC to be done
607 		 * in software by the net80211 layer.
608 		 */
609 		if (ath_hal_haswmetkipmic(ah))
610 			sc->sc_wmetkipmic = 1;
611 	}
612 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
613 	/*
614 	 * Check for multicast key search support.
615 	 */
616 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
617 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
618 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
619 	}
620 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
621 	/*
622 	 * Mark key cache slots associated with global keys
623 	 * as in use.  If we knew TKIP was not to be used we
624 	 * could leave the +32, +64, and +32+64 slots free.
625 	 */
626 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
627 		setbit(sc->sc_keymap, i);
628 		setbit(sc->sc_keymap, i+64);
629 		if (sc->sc_splitmic) {
630 			setbit(sc->sc_keymap, i+32);
631 			setbit(sc->sc_keymap, i+32+64);
632 		}
633 	}
634 	/*
635 	 * TPC support can be done either with a global cap or
636 	 * per-packet support.  The latter is not available on
637 	 * all parts.  We're a bit pedantic here as all parts
638 	 * support a global cap.
639 	 */
640 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
641 		ic->ic_caps |= IEEE80211_C_TXPMGT;
642 
643 	/*
644 	 * Mark WME capability only if we have sufficient
645 	 * hardware queues to do proper priority scheduling.
646 	 */
647 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
648 		ic->ic_caps |= IEEE80211_C_WME;
649 	/*
650 	 * Check for misc other capabilities.
651 	 */
652 	if (ath_hal_hasbursting(ah))
653 		ic->ic_caps |= IEEE80211_C_BURST;
654 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
655 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
656 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
657 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
658 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
659 	if (ath_hal_hasfastframes(ah))
660 		ic->ic_caps |= IEEE80211_C_FF;
661 	wmodes = ath_hal_getwirelessmodes(ah);
662 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
663 		ic->ic_caps |= IEEE80211_C_TURBOP;
664 #ifdef IEEE80211_SUPPORT_TDMA
665 	if (ath_hal_macversion(ah) > 0x78) {
666 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
667 		ic->ic_tdma_update = ath_tdma_update;
668 	}
669 #endif
670 
671 	/*
672 	 * TODO: enforce that at least this many frames are available
673 	 * in the txbuf list before allowing data frames (raw or
674 	 * otherwise) to be transmitted.
675 	 */
676 	sc->sc_txq_data_minfree = 10;
677 	/*
678 	 * Leave this as default to maintain legacy behaviour.
679 	 * Shortening the cabq/mcastq may end up causing some
680 	 * undesirable behaviour.
681 	 */
682 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
683 
684 	/*
685 	 * Allow the TX and RX chainmasks to be overridden by
686 	 * environment variables and/or device.hints.
687 	 *
688 	 * This must be done early - before the hardware is
689 	 * calibrated or before the 802.11n stream calculation
690 	 * is done.
691 	 */
692 	if (resource_int_value(device_get_name(sc->sc_dev),
693 	    device_get_unit(sc->sc_dev), "rx_chainmask",
694 	    &rx_chainmask) == 0) {
695 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
696 		    rx_chainmask);
697 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
698 	}
699 	if (resource_int_value(device_get_name(sc->sc_dev),
700 	    device_get_unit(sc->sc_dev), "tx_chainmask",
701 	    &tx_chainmask) == 0) {
702 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
703 		    tx_chainmask);
704 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
705 	}
706 
707 	/*
708 	 * Disable MRR with protected frames by default.
709 	 * Only 802.11n series NICs can handle this.
710 	 */
711 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
712 
713 	/*
714 	 * Query the enterprise mode information the HAL.
715 	 */
716 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
717 	    &sc->sc_ent_cfg) == HAL_OK)
718 		sc->sc_use_ent = 1;
719 
720 #ifdef	ATH_ENABLE_11N
721 	/*
722 	 * Query HT capabilities
723 	 */
724 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
725 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
726 		int rxs, txs;
727 
728 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
729 
730 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
731 
732 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
733 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
734 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
735 			    | IEEE80211_HTCAP_MAXAMSDU_3839
736 			    				/* max A-MSDU length */
737 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
738 			;
739 
740 		/*
741 		 * Enable short-GI for HT20 only if the hardware
742 		 * advertises support.
743 		 * Notably, anything earlier than the AR9287 doesn't.
744 		 */
745 		if ((ath_hal_getcapability(ah,
746 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
747 		    (wmodes & HAL_MODE_HT20)) {
748 			device_printf(sc->sc_dev,
749 			    "[HT] enabling short-GI in 20MHz mode\n");
750 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
751 		}
752 
753 		if (wmodes & HAL_MODE_HT40)
754 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
755 			    |  IEEE80211_HTCAP_SHORTGI40;
756 
757 		/*
758 		 * TX/RX streams need to be taken into account when
759 		 * negotiating which MCS rates it'll receive and
760 		 * what MCS rates are available for TX.
761 		 */
762 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
763 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
764 
765 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
766 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
767 
768 		ic->ic_txstream = txs;
769 		ic->ic_rxstream = rxs;
770 
771 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
772 		    &sc->sc_rts_aggr_limit);
773 		if (sc->sc_rts_aggr_limit != (64 * 1024))
774 			device_printf(sc->sc_dev,
775 			    "[HT] RTS aggregates limited to %d KiB\n",
776 			    sc->sc_rts_aggr_limit / 1024);
777 
778 		device_printf(sc->sc_dev,
779 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
780 	}
781 #endif
782 
783 	/*
784 	 * Initial aggregation settings.
785 	 */
786 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
787 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
788 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
789 
790 	/*
791 	 * Check if the hardware requires PCI register serialisation.
792 	 * Some of the Owl based MACs require this.
793 	 */
794 	if (mp_ncpus > 1 &&
795 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
796 	     0, NULL) == HAL_OK) {
797 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
798 		device_printf(sc->sc_dev,
799 		    "Enabling register serialisation\n");
800 	}
801 
802 	/*
803 	 * Indicate we need the 802.11 header padded to a
804 	 * 32-bit boundary for 4-address and QoS frames.
805 	 */
806 	ic->ic_flags |= IEEE80211_F_DATAPAD;
807 
808 	/*
809 	 * Query the hal about antenna support.
810 	 */
811 	sc->sc_defant = ath_hal_getdefantenna(ah);
812 
813 	/*
814 	 * Not all chips have the VEOL support we want to
815 	 * use with IBSS beacons; check here for it.
816 	 */
817 	sc->sc_hasveol = ath_hal_hasveol(ah);
818 
819 	/* get mac address from hardware */
820 	ath_hal_getmac(ah, macaddr);
821 	if (sc->sc_hasbmask)
822 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
823 
824 	/* NB: used to size node table key mapping array */
825 	ic->ic_max_keyix = sc->sc_keymax;
826 	/* call MI attach routine. */
827 	ieee80211_ifattach(ic, macaddr);
828 	ic->ic_setregdomain = ath_setregdomain;
829 	ic->ic_getradiocaps = ath_getradiocaps;
830 	sc->sc_opmode = HAL_M_STA;
831 
832 	/* override default methods */
833 	ic->ic_newassoc = ath_newassoc;
834 	ic->ic_updateslot = ath_updateslot;
835 	ic->ic_wme.wme_update = ath_wme_update;
836 	ic->ic_vap_create = ath_vap_create;
837 	ic->ic_vap_delete = ath_vap_delete;
838 	ic->ic_raw_xmit = ath_raw_xmit;
839 	ic->ic_update_mcast = ath_update_mcast;
840 	ic->ic_update_promisc = ath_update_promisc;
841 	ic->ic_node_alloc = ath_node_alloc;
842 	sc->sc_node_free = ic->ic_node_free;
843 	ic->ic_node_free = ath_node_free;
844 	sc->sc_node_cleanup = ic->ic_node_cleanup;
845 	ic->ic_node_cleanup = ath_node_cleanup;
846 	ic->ic_node_getsignal = ath_node_getsignal;
847 	ic->ic_scan_start = ath_scan_start;
848 	ic->ic_scan_end = ath_scan_end;
849 	ic->ic_set_channel = ath_set_channel;
850 #ifdef	ATH_ENABLE_11N
851 	/* 802.11n specific - but just override anyway */
852 	sc->sc_addba_request = ic->ic_addba_request;
853 	sc->sc_addba_response = ic->ic_addba_response;
854 	sc->sc_addba_stop = ic->ic_addba_stop;
855 	sc->sc_bar_response = ic->ic_bar_response;
856 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
857 
858 	ic->ic_addba_request = ath_addba_request;
859 	ic->ic_addba_response = ath_addba_response;
860 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
861 	ic->ic_addba_stop = ath_addba_stop;
862 	ic->ic_bar_response = ath_bar_response;
863 
864 	ic->ic_update_chw = ath_update_chw;
865 #endif	/* ATH_ENABLE_11N */
866 
867 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
868 	/*
869 	 * There's one vendor bitmap entry in the RX radiotap
870 	 * header; make sure that's taken into account.
871 	 */
872 	ieee80211_radiotap_attachv(ic,
873 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
874 		ATH_TX_RADIOTAP_PRESENT,
875 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
876 		ATH_RX_RADIOTAP_PRESENT);
877 #else
878 	/*
879 	 * No vendor bitmap/extensions are present.
880 	 */
881 	ieee80211_radiotap_attach(ic,
882 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
883 		ATH_TX_RADIOTAP_PRESENT,
884 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
885 		ATH_RX_RADIOTAP_PRESENT);
886 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
887 
888 	/*
889 	 * Setup the ALQ logging if required
890 	 */
891 #ifdef	ATH_DEBUG_ALQ
892 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
893 #endif
894 
895 	/*
896 	 * Setup dynamic sysctl's now that country code and
897 	 * regdomain are available from the hal.
898 	 */
899 	ath_sysctlattach(sc);
900 	ath_sysctl_stats_attach(sc);
901 	ath_sysctl_hal_attach(sc);
902 
903 	if (bootverbose)
904 		ieee80211_announce(ic);
905 	ath_announce(sc);
906 	return 0;
907 bad2:
908 	ath_tx_cleanup(sc);
909 	ath_desc_free(sc);
910 	ath_txdma_teardown(sc);
911 	ath_rxdma_teardown(sc);
912 bad:
913 	if (ah)
914 		ath_hal_detach(ah);
915 	if (ifp != NULL) {
916 		CURVNET_SET(ifp->if_vnet);
917 		if_free(ifp);
918 		CURVNET_RESTORE();
919 	}
920 	sc->sc_invalid = 1;
921 	return error;
922 }
923 
924 int
925 ath_detach(struct ath_softc *sc)
926 {
927 	struct ifnet *ifp = sc->sc_ifp;
928 
929 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
930 		__func__, ifp->if_flags);
931 
932 	/*
933 	 * NB: the order of these is important:
934 	 * o stop the chip so no more interrupts will fire
935 	 * o call the 802.11 layer before detaching the hal to
936 	 *   insure callbacks into the driver to delete global
937 	 *   key cache entries can be handled
938 	 * o free the taskqueue which drains any pending tasks
939 	 * o reclaim the tx queue data structures after calling
940 	 *   the 802.11 layer as we'll get called back to reclaim
941 	 *   node state and potentially want to use them
942 	 * o to cleanup the tx queues the hal is called, so detach
943 	 *   it last
944 	 * Other than that, it's straightforward...
945 	 */
946 	ath_stop(ifp);
947 	ieee80211_ifdetach(ifp->if_l2com);
948 	taskqueue_free(sc->sc_tq);
949 #ifdef ATH_TX99_DIAG
950 	if (sc->sc_tx99 != NULL)
951 		sc->sc_tx99->detach(sc->sc_tx99);
952 #endif
953 	ath_rate_detach(sc->sc_rc);
954 
955 #ifdef	ATH_DEBUG_ALQ
956 	if_ath_alq_tidyup(&sc->sc_alq);
957 #endif
958 
959 	ath_dfs_detach(sc);
960 	ath_desc_free(sc);
961 	ath_txdma_teardown(sc);
962 	ath_rxdma_teardown(sc);
963 	ath_tx_cleanup(sc);
964 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
965 
966 	CURVNET_SET(ifp->if_vnet);
967 	if_free(ifp);
968 	CURVNET_RESTORE();
969 
970 	return 0;
971 }
972 
973 /*
974  * MAC address handling for multiple BSS on the same radio.
975  * The first vap uses the MAC address from the EEPROM.  For
976  * subsequent vap's we set the U/L bit (bit 1) in the MAC
977  * address and use the next six bits as an index.
978  */
979 static void
980 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
981 {
982 	int i;
983 
984 	if (clone && sc->sc_hasbmask) {
985 		/* NB: we only do this if h/w supports multiple bssid */
986 		for (i = 0; i < 8; i++)
987 			if ((sc->sc_bssidmask & (1<<i)) == 0)
988 				break;
989 		if (i != 0)
990 			mac[0] |= (i << 2)|0x2;
991 	} else
992 		i = 0;
993 	sc->sc_bssidmask |= 1<<i;
994 	sc->sc_hwbssidmask[0] &= ~mac[0];
995 	if (i == 0)
996 		sc->sc_nbssid0++;
997 }
998 
999 static void
1000 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1001 {
1002 	int i = mac[0] >> 2;
1003 	uint8_t mask;
1004 
1005 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1006 		sc->sc_bssidmask &= ~(1<<i);
1007 		/* recalculate bssid mask from remaining addresses */
1008 		mask = 0xff;
1009 		for (i = 1; i < 8; i++)
1010 			if (sc->sc_bssidmask & (1<<i))
1011 				mask &= ~((i<<2)|0x2);
1012 		sc->sc_hwbssidmask[0] |= mask;
1013 	}
1014 }
1015 
1016 /*
1017  * Assign a beacon xmit slot.  We try to space out
1018  * assignments so when beacons are staggered the
1019  * traffic coming out of the cab q has maximal time
1020  * to go out before the next beacon is scheduled.
1021  */
1022 static int
1023 assign_bslot(struct ath_softc *sc)
1024 {
1025 	u_int slot, free;
1026 
1027 	free = 0;
1028 	for (slot = 0; slot < ATH_BCBUF; slot++)
1029 		if (sc->sc_bslot[slot] == NULL) {
1030 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1031 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1032 				return slot;
1033 			free = slot;
1034 			/* NB: keep looking for a double slot */
1035 		}
1036 	return free;
1037 }
1038 
1039 static struct ieee80211vap *
1040 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1041     enum ieee80211_opmode opmode, int flags,
1042     const uint8_t bssid[IEEE80211_ADDR_LEN],
1043     const uint8_t mac0[IEEE80211_ADDR_LEN])
1044 {
1045 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1046 	struct ath_vap *avp;
1047 	struct ieee80211vap *vap;
1048 	uint8_t mac[IEEE80211_ADDR_LEN];
1049 	int needbeacon, error;
1050 	enum ieee80211_opmode ic_opmode;
1051 
1052 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1053 	    M_80211_VAP, M_WAITOK | M_ZERO);
1054 	needbeacon = 0;
1055 	IEEE80211_ADDR_COPY(mac, mac0);
1056 
1057 	ATH_LOCK(sc);
1058 	ic_opmode = opmode;		/* default to opmode of new vap */
1059 	switch (opmode) {
1060 	case IEEE80211_M_STA:
1061 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1062 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1063 			goto bad;
1064 		}
1065 		if (sc->sc_nvaps) {
1066 			/*
1067 			 * With multiple vaps we must fall back
1068 			 * to s/w beacon miss handling.
1069 			 */
1070 			flags |= IEEE80211_CLONE_NOBEACONS;
1071 		}
1072 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1073 			/*
1074 			 * Station mode w/o beacons are implemented w/ AP mode.
1075 			 */
1076 			ic_opmode = IEEE80211_M_HOSTAP;
1077 		}
1078 		break;
1079 	case IEEE80211_M_IBSS:
1080 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1081 			device_printf(sc->sc_dev,
1082 			    "only 1 ibss vap supported\n");
1083 			goto bad;
1084 		}
1085 		needbeacon = 1;
1086 		break;
1087 	case IEEE80211_M_AHDEMO:
1088 #ifdef IEEE80211_SUPPORT_TDMA
1089 		if (flags & IEEE80211_CLONE_TDMA) {
1090 			if (sc->sc_nvaps != 0) {
1091 				device_printf(sc->sc_dev,
1092 				    "only 1 tdma vap supported\n");
1093 				goto bad;
1094 			}
1095 			needbeacon = 1;
1096 			flags |= IEEE80211_CLONE_NOBEACONS;
1097 		}
1098 		/* fall thru... */
1099 #endif
1100 	case IEEE80211_M_MONITOR:
1101 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1102 			/*
1103 			 * Adopt existing mode.  Adding a monitor or ahdemo
1104 			 * vap to an existing configuration is of dubious
1105 			 * value but should be ok.
1106 			 */
1107 			/* XXX not right for monitor mode */
1108 			ic_opmode = ic->ic_opmode;
1109 		}
1110 		break;
1111 	case IEEE80211_M_HOSTAP:
1112 	case IEEE80211_M_MBSS:
1113 		needbeacon = 1;
1114 		break;
1115 	case IEEE80211_M_WDS:
1116 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1117 			device_printf(sc->sc_dev,
1118 			    "wds not supported in sta mode\n");
1119 			goto bad;
1120 		}
1121 		/*
1122 		 * Silently remove any request for a unique
1123 		 * bssid; WDS vap's always share the local
1124 		 * mac address.
1125 		 */
1126 		flags &= ~IEEE80211_CLONE_BSSID;
1127 		if (sc->sc_nvaps == 0)
1128 			ic_opmode = IEEE80211_M_HOSTAP;
1129 		else
1130 			ic_opmode = ic->ic_opmode;
1131 		break;
1132 	default:
1133 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1134 		goto bad;
1135 	}
1136 	/*
1137 	 * Check that a beacon buffer is available; the code below assumes it.
1138 	 */
1139 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1140 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1141 		goto bad;
1142 	}
1143 
1144 	/* STA, AHDEMO? */
1145 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1146 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1147 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1148 	}
1149 
1150 	vap = &avp->av_vap;
1151 	/* XXX can't hold mutex across if_alloc */
1152 	ATH_UNLOCK(sc);
1153 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1154 	    bssid, mac);
1155 	ATH_LOCK(sc);
1156 	if (error != 0) {
1157 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1158 		    __func__, error);
1159 		goto bad2;
1160 	}
1161 
1162 	/* h/w crypto support */
1163 	vap->iv_key_alloc = ath_key_alloc;
1164 	vap->iv_key_delete = ath_key_delete;
1165 	vap->iv_key_set = ath_key_set;
1166 	vap->iv_key_update_begin = ath_key_update_begin;
1167 	vap->iv_key_update_end = ath_key_update_end;
1168 
1169 	/* override various methods */
1170 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1171 	vap->iv_recv_mgmt = ath_recv_mgmt;
1172 	vap->iv_reset = ath_reset_vap;
1173 	vap->iv_update_beacon = ath_beacon_update;
1174 	avp->av_newstate = vap->iv_newstate;
1175 	vap->iv_newstate = ath_newstate;
1176 	avp->av_bmiss = vap->iv_bmiss;
1177 	vap->iv_bmiss = ath_bmiss_vap;
1178 
1179 	avp->av_node_ps = vap->iv_node_ps;
1180 	vap->iv_node_ps = ath_node_powersave;
1181 
1182 	avp->av_set_tim = vap->iv_set_tim;
1183 	vap->iv_set_tim = ath_node_set_tim;
1184 
1185 	/* Set default parameters */
1186 
1187 	/*
1188 	 * Anything earlier than some AR9300 series MACs don't
1189 	 * support a smaller MPDU density.
1190 	 */
1191 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1192 	/*
1193 	 * All NICs can handle the maximum size, however
1194 	 * AR5416 based MACs can only TX aggregates w/ RTS
1195 	 * protection when the total aggregate size is <= 8k.
1196 	 * However, for now that's enforced by the TX path.
1197 	 */
1198 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1199 
1200 	avp->av_bslot = -1;
1201 	if (needbeacon) {
1202 		/*
1203 		 * Allocate beacon state and setup the q for buffered
1204 		 * multicast frames.  We know a beacon buffer is
1205 		 * available because we checked above.
1206 		 */
1207 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1208 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1209 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1210 			/*
1211 			 * Assign the vap to a beacon xmit slot.  As above
1212 			 * this cannot fail to find a free one.
1213 			 */
1214 			avp->av_bslot = assign_bslot(sc);
1215 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1216 			    ("beacon slot %u not empty", avp->av_bslot));
1217 			sc->sc_bslot[avp->av_bslot] = vap;
1218 			sc->sc_nbcnvaps++;
1219 		}
1220 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1221 			/*
1222 			 * Multple vaps are to transmit beacons and we
1223 			 * have h/w support for TSF adjusting; enable
1224 			 * use of staggered beacons.
1225 			 */
1226 			sc->sc_stagbeacons = 1;
1227 		}
1228 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1229 	}
1230 
1231 	ic->ic_opmode = ic_opmode;
1232 	if (opmode != IEEE80211_M_WDS) {
1233 		sc->sc_nvaps++;
1234 		if (opmode == IEEE80211_M_STA)
1235 			sc->sc_nstavaps++;
1236 		if (opmode == IEEE80211_M_MBSS)
1237 			sc->sc_nmeshvaps++;
1238 	}
1239 	switch (ic_opmode) {
1240 	case IEEE80211_M_IBSS:
1241 		sc->sc_opmode = HAL_M_IBSS;
1242 		break;
1243 	case IEEE80211_M_STA:
1244 		sc->sc_opmode = HAL_M_STA;
1245 		break;
1246 	case IEEE80211_M_AHDEMO:
1247 #ifdef IEEE80211_SUPPORT_TDMA
1248 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1249 			sc->sc_tdma = 1;
1250 			/* NB: disable tsf adjust */
1251 			sc->sc_stagbeacons = 0;
1252 		}
1253 		/*
1254 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1255 		 * just ap mode.
1256 		 */
1257 		/* fall thru... */
1258 #endif
1259 	case IEEE80211_M_HOSTAP:
1260 	case IEEE80211_M_MBSS:
1261 		sc->sc_opmode = HAL_M_HOSTAP;
1262 		break;
1263 	case IEEE80211_M_MONITOR:
1264 		sc->sc_opmode = HAL_M_MONITOR;
1265 		break;
1266 	default:
1267 		/* XXX should not happen */
1268 		break;
1269 	}
1270 	if (sc->sc_hastsfadd) {
1271 		/*
1272 		 * Configure whether or not TSF adjust should be done.
1273 		 */
1274 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1275 	}
1276 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1277 		/*
1278 		 * Enable s/w beacon miss handling.
1279 		 */
1280 		sc->sc_swbmiss = 1;
1281 	}
1282 	ATH_UNLOCK(sc);
1283 
1284 	/* complete setup */
1285 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1286 	return vap;
1287 bad2:
1288 	reclaim_address(sc, mac);
1289 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1290 bad:
1291 	free(avp, M_80211_VAP);
1292 	ATH_UNLOCK(sc);
1293 	return NULL;
1294 }
1295 
1296 static void
1297 ath_vap_delete(struct ieee80211vap *vap)
1298 {
1299 	struct ieee80211com *ic = vap->iv_ic;
1300 	struct ifnet *ifp = ic->ic_ifp;
1301 	struct ath_softc *sc = ifp->if_softc;
1302 	struct ath_hal *ah = sc->sc_ah;
1303 	struct ath_vap *avp = ATH_VAP(vap);
1304 
1305 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1306 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1307 		/*
1308 		 * Quiesce the hardware while we remove the vap.  In
1309 		 * particular we need to reclaim all references to
1310 		 * the vap state by any frames pending on the tx queues.
1311 		 */
1312 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1313 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1314 		/* XXX Do all frames from all vaps/nodes need draining here? */
1315 		ath_stoprecv(sc, 1);		/* stop recv side */
1316 	}
1317 
1318 	ieee80211_vap_detach(vap);
1319 
1320 	/*
1321 	 * XXX Danger Will Robinson! Danger!
1322 	 *
1323 	 * Because ieee80211_vap_detach() can queue a frame (the station
1324 	 * diassociate message?) after we've drained the TXQ and
1325 	 * flushed the software TXQ, we will end up with a frame queued
1326 	 * to a node whose vap is about to be freed.
1327 	 *
1328 	 * To work around this, flush the hardware/software again.
1329 	 * This may be racy - the ath task may be running and the packet
1330 	 * may be being scheduled between sw->hw txq. Tsk.
1331 	 *
1332 	 * TODO: figure out why a new node gets allocated somewhere around
1333 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1334 	 * call!)
1335 	 */
1336 
1337 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1338 
1339 	ATH_LOCK(sc);
1340 	/*
1341 	 * Reclaim beacon state.  Note this must be done before
1342 	 * the vap instance is reclaimed as we may have a reference
1343 	 * to it in the buffer for the beacon frame.
1344 	 */
1345 	if (avp->av_bcbuf != NULL) {
1346 		if (avp->av_bslot != -1) {
1347 			sc->sc_bslot[avp->av_bslot] = NULL;
1348 			sc->sc_nbcnvaps--;
1349 		}
1350 		ath_beacon_return(sc, avp->av_bcbuf);
1351 		avp->av_bcbuf = NULL;
1352 		if (sc->sc_nbcnvaps == 0) {
1353 			sc->sc_stagbeacons = 0;
1354 			if (sc->sc_hastsfadd)
1355 				ath_hal_settsfadjust(sc->sc_ah, 0);
1356 		}
1357 		/*
1358 		 * Reclaim any pending mcast frames for the vap.
1359 		 */
1360 		ath_tx_draintxq(sc, &avp->av_mcastq);
1361 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1362 	}
1363 	/*
1364 	 * Update bookkeeping.
1365 	 */
1366 	if (vap->iv_opmode == IEEE80211_M_STA) {
1367 		sc->sc_nstavaps--;
1368 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1369 			sc->sc_swbmiss = 0;
1370 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1371 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1372 		reclaim_address(sc, vap->iv_myaddr);
1373 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1374 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1375 			sc->sc_nmeshvaps--;
1376 	}
1377 	if (vap->iv_opmode != IEEE80211_M_WDS)
1378 		sc->sc_nvaps--;
1379 #ifdef IEEE80211_SUPPORT_TDMA
1380 	/* TDMA operation ceases when the last vap is destroyed */
1381 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1382 		sc->sc_tdma = 0;
1383 		sc->sc_swbmiss = 0;
1384 	}
1385 #endif
1386 	free(avp, M_80211_VAP);
1387 
1388 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1389 		/*
1390 		 * Restart rx+tx machines if still running (RUNNING will
1391 		 * be reset if we just destroyed the last vap).
1392 		 */
1393 		if (ath_startrecv(sc) != 0)
1394 			if_printf(ifp, "%s: unable to restart recv logic\n",
1395 			    __func__);
1396 		if (sc->sc_beacons) {		/* restart beacons */
1397 #ifdef IEEE80211_SUPPORT_TDMA
1398 			if (sc->sc_tdma)
1399 				ath_tdma_config(sc, NULL);
1400 			else
1401 #endif
1402 				ath_beacon_config(sc, NULL);
1403 		}
1404 		ath_hal_intrset(ah, sc->sc_imask);
1405 	}
1406 	ATH_UNLOCK(sc);
1407 }
1408 
1409 void
1410 ath_suspend(struct ath_softc *sc)
1411 {
1412 	struct ifnet *ifp = sc->sc_ifp;
1413 	struct ieee80211com *ic = ifp->if_l2com;
1414 
1415 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1416 		__func__, ifp->if_flags);
1417 
1418 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1419 
1420 	ieee80211_suspend_all(ic);
1421 	/*
1422 	 * NB: don't worry about putting the chip in low power
1423 	 * mode; pci will power off our socket on suspend and
1424 	 * CardBus detaches the device.
1425 	 */
1426 
1427 	/*
1428 	 * XXX ensure none of the taskqueues are running
1429 	 * XXX ensure sc_invalid is 1
1430 	 * XXX ensure the calibration callout is disabled
1431 	 */
1432 
1433 	/* Disable the PCIe PHY, complete with workarounds */
1434 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1435 }
1436 
1437 /*
1438  * Reset the key cache since some parts do not reset the
1439  * contents on resume.  First we clear all entries, then
1440  * re-load keys that the 802.11 layer assumes are setup
1441  * in h/w.
1442  */
1443 static void
1444 ath_reset_keycache(struct ath_softc *sc)
1445 {
1446 	struct ifnet *ifp = sc->sc_ifp;
1447 	struct ieee80211com *ic = ifp->if_l2com;
1448 	struct ath_hal *ah = sc->sc_ah;
1449 	int i;
1450 
1451 	for (i = 0; i < sc->sc_keymax; i++)
1452 		ath_hal_keyreset(ah, i);
1453 	ieee80211_crypto_reload_keys(ic);
1454 }
1455 
1456 void
1457 ath_resume(struct ath_softc *sc)
1458 {
1459 	struct ifnet *ifp = sc->sc_ifp;
1460 	struct ieee80211com *ic = ifp->if_l2com;
1461 	struct ath_hal *ah = sc->sc_ah;
1462 	HAL_STATUS status;
1463 
1464 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1465 		__func__, ifp->if_flags);
1466 
1467 	/* Re-enable PCIe, re-enable the PCIe bus */
1468 	ath_hal_enablepcie(ah, 0, 0);
1469 
1470 	/*
1471 	 * Must reset the chip before we reload the
1472 	 * keycache as we were powered down on suspend.
1473 	 */
1474 	ath_hal_reset(ah, sc->sc_opmode,
1475 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1476 	    AH_FALSE, &status);
1477 	ath_reset_keycache(sc);
1478 
1479 	/* Let DFS at it in case it's a DFS channel */
1480 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1481 
1482 	/* Restore the LED configuration */
1483 	ath_led_config(sc);
1484 	ath_hal_setledstate(ah, HAL_LED_INIT);
1485 
1486 	if (sc->sc_resume_up)
1487 		ieee80211_resume_all(ic);
1488 
1489 	/* XXX beacons ? */
1490 }
1491 
1492 void
1493 ath_shutdown(struct ath_softc *sc)
1494 {
1495 	struct ifnet *ifp = sc->sc_ifp;
1496 
1497 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1498 		__func__, ifp->if_flags);
1499 
1500 	ath_stop(ifp);
1501 	/* NB: no point powering down chip as we're about to reboot */
1502 }
1503 
1504 /*
1505  * Interrupt handler.  Most of the actual processing is deferred.
1506  */
1507 void
1508 ath_intr(void *arg)
1509 {
1510 	struct ath_softc *sc = arg;
1511 	struct ifnet *ifp = sc->sc_ifp;
1512 	struct ath_hal *ah = sc->sc_ah;
1513 	HAL_INT status = 0;
1514 	uint32_t txqs;
1515 
1516 	/*
1517 	 * If we're inside a reset path, just print a warning and
1518 	 * clear the ISR. The reset routine will finish it for us.
1519 	 */
1520 	ATH_PCU_LOCK(sc);
1521 	if (sc->sc_inreset_cnt) {
1522 		HAL_INT status;
1523 		ath_hal_getisr(ah, &status);	/* clear ISR */
1524 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1525 		DPRINTF(sc, ATH_DEBUG_ANY,
1526 		    "%s: in reset, ignoring: status=0x%x\n",
1527 		    __func__, status);
1528 		ATH_PCU_UNLOCK(sc);
1529 		return;
1530 	}
1531 
1532 	if (sc->sc_invalid) {
1533 		/*
1534 		 * The hardware is not ready/present, don't touch anything.
1535 		 * Note this can happen early on if the IRQ is shared.
1536 		 */
1537 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1538 		ATH_PCU_UNLOCK(sc);
1539 		return;
1540 	}
1541 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1542 		ATH_PCU_UNLOCK(sc);
1543 		return;
1544 	}
1545 
1546 	if ((ifp->if_flags & IFF_UP) == 0 ||
1547 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1548 		HAL_INT status;
1549 
1550 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1551 			__func__, ifp->if_flags);
1552 		ath_hal_getisr(ah, &status);	/* clear ISR */
1553 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1554 		ATH_PCU_UNLOCK(sc);
1555 		return;
1556 	}
1557 
1558 	/*
1559 	 * Figure out the reason(s) for the interrupt.  Note
1560 	 * that the hal returns a pseudo-ISR that may include
1561 	 * bits we haven't explicitly enabled so we mask the
1562 	 * value to insure we only process bits we requested.
1563 	 */
1564 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1565 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1566 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1567 #ifdef	ATH_KTR_INTR_DEBUG
1568 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1569 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1570 	    ah->ah_intrstate[0],
1571 	    ah->ah_intrstate[1],
1572 	    ah->ah_intrstate[2],
1573 	    ah->ah_intrstate[3],
1574 	    ah->ah_intrstate[6]);
1575 #endif
1576 
1577 	/* Squirrel away SYNC interrupt debugging */
1578 	if (ah->ah_syncstate != 0) {
1579 		int i;
1580 		for (i = 0; i < 32; i++)
1581 			if (ah->ah_syncstate & (i << i))
1582 				sc->sc_intr_stats.sync_intr[i]++;
1583 	}
1584 
1585 	status &= sc->sc_imask;			/* discard unasked for bits */
1586 
1587 	/* Short-circuit un-handled interrupts */
1588 	if (status == 0x0) {
1589 		ATH_PCU_UNLOCK(sc);
1590 		return;
1591 	}
1592 
1593 	/*
1594 	 * Take a note that we're inside the interrupt handler, so
1595 	 * the reset routines know to wait.
1596 	 */
1597 	sc->sc_intr_cnt++;
1598 	ATH_PCU_UNLOCK(sc);
1599 
1600 	/*
1601 	 * Handle the interrupt. We won't run concurrent with the reset
1602 	 * or channel change routines as they'll wait for sc_intr_cnt
1603 	 * to be 0 before continuing.
1604 	 */
1605 	if (status & HAL_INT_FATAL) {
1606 		sc->sc_stats.ast_hardware++;
1607 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1608 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1609 	} else {
1610 		if (status & HAL_INT_SWBA) {
1611 			/*
1612 			 * Software beacon alert--time to send a beacon.
1613 			 * Handle beacon transmission directly; deferring
1614 			 * this is too slow to meet timing constraints
1615 			 * under load.
1616 			 */
1617 #ifdef IEEE80211_SUPPORT_TDMA
1618 			if (sc->sc_tdma) {
1619 				if (sc->sc_tdmaswba == 0) {
1620 					struct ieee80211com *ic = ifp->if_l2com;
1621 					struct ieee80211vap *vap =
1622 					    TAILQ_FIRST(&ic->ic_vaps);
1623 					ath_tdma_beacon_send(sc, vap);
1624 					sc->sc_tdmaswba =
1625 					    vap->iv_tdma->tdma_bintval;
1626 				} else
1627 					sc->sc_tdmaswba--;
1628 			} else
1629 #endif
1630 			{
1631 				ath_beacon_proc(sc, 0);
1632 #ifdef IEEE80211_SUPPORT_SUPERG
1633 				/*
1634 				 * Schedule the rx taskq in case there's no
1635 				 * traffic so any frames held on the staging
1636 				 * queue are aged and potentially flushed.
1637 				 */
1638 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1639 #endif
1640 			}
1641 		}
1642 		if (status & HAL_INT_RXEOL) {
1643 			int imask;
1644 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1645 			ATH_PCU_LOCK(sc);
1646 			/*
1647 			 * NB: the hardware should re-read the link when
1648 			 *     RXE bit is written, but it doesn't work at
1649 			 *     least on older hardware revs.
1650 			 */
1651 			sc->sc_stats.ast_rxeol++;
1652 			/*
1653 			 * Disable RXEOL/RXORN - prevent an interrupt
1654 			 * storm until the PCU logic can be reset.
1655 			 * In case the interface is reset some other
1656 			 * way before "sc_kickpcu" is called, don't
1657 			 * modify sc_imask - that way if it is reset
1658 			 * by a call to ath_reset() somehow, the
1659 			 * interrupt mask will be correctly reprogrammed.
1660 			 */
1661 			imask = sc->sc_imask;
1662 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1663 			ath_hal_intrset(ah, imask);
1664 			/*
1665 			 * Only blank sc_rxlink if we've not yet kicked
1666 			 * the PCU.
1667 			 *
1668 			 * This isn't entirely correct - the correct solution
1669 			 * would be to have a PCU lock and engage that for
1670 			 * the duration of the PCU fiddling; which would include
1671 			 * running the RX process. Otherwise we could end up
1672 			 * messing up the RX descriptor chain and making the
1673 			 * RX desc list much shorter.
1674 			 */
1675 			if (! sc->sc_kickpcu)
1676 				sc->sc_rxlink = NULL;
1677 			sc->sc_kickpcu = 1;
1678 			/*
1679 			 * Enqueue an RX proc, to handled whatever
1680 			 * is in the RX queue.
1681 			 * This will then kick the PCU.
1682 			 */
1683 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1684 			ATH_PCU_UNLOCK(sc);
1685 		}
1686 		if (status & HAL_INT_TXURN) {
1687 			sc->sc_stats.ast_txurn++;
1688 			/* bump tx trigger level */
1689 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1690 		}
1691 		/*
1692 		 * Handle both the legacy and RX EDMA interrupt bits.
1693 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1694 		 */
1695 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1696 			sc->sc_stats.ast_rx_intr++;
1697 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1698 		}
1699 		if (status & HAL_INT_TX) {
1700 			sc->sc_stats.ast_tx_intr++;
1701 			/*
1702 			 * Grab all the currently set bits in the HAL txq bitmap
1703 			 * and blank them. This is the only place we should be
1704 			 * doing this.
1705 			 */
1706 			if (! sc->sc_isedma) {
1707 				ATH_PCU_LOCK(sc);
1708 				txqs = 0xffffffff;
1709 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1710 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1711 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1712 				    txqs,
1713 				    sc->sc_txq_active,
1714 				    sc->sc_txq_active | txqs);
1715 				sc->sc_txq_active |= txqs;
1716 				ATH_PCU_UNLOCK(sc);
1717 			}
1718 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1719 		}
1720 		if (status & HAL_INT_BMISS) {
1721 			sc->sc_stats.ast_bmiss++;
1722 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1723 		}
1724 		if (status & HAL_INT_GTT)
1725 			sc->sc_stats.ast_tx_timeout++;
1726 		if (status & HAL_INT_CST)
1727 			sc->sc_stats.ast_tx_cst++;
1728 		if (status & HAL_INT_MIB) {
1729 			sc->sc_stats.ast_mib++;
1730 			ATH_PCU_LOCK(sc);
1731 			/*
1732 			 * Disable interrupts until we service the MIB
1733 			 * interrupt; otherwise it will continue to fire.
1734 			 */
1735 			ath_hal_intrset(ah, 0);
1736 			/*
1737 			 * Let the hal handle the event.  We assume it will
1738 			 * clear whatever condition caused the interrupt.
1739 			 */
1740 			ath_hal_mibevent(ah, &sc->sc_halstats);
1741 			/*
1742 			 * Don't reset the interrupt if we've just
1743 			 * kicked the PCU, or we may get a nested
1744 			 * RXEOL before the rxproc has had a chance
1745 			 * to run.
1746 			 */
1747 			if (sc->sc_kickpcu == 0)
1748 				ath_hal_intrset(ah, sc->sc_imask);
1749 			ATH_PCU_UNLOCK(sc);
1750 		}
1751 		if (status & HAL_INT_RXORN) {
1752 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1753 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1754 			sc->sc_stats.ast_rxorn++;
1755 		}
1756 	}
1757 	ATH_PCU_LOCK(sc);
1758 	sc->sc_intr_cnt--;
1759 	ATH_PCU_UNLOCK(sc);
1760 }
1761 
1762 static void
1763 ath_fatal_proc(void *arg, int pending)
1764 {
1765 	struct ath_softc *sc = arg;
1766 	struct ifnet *ifp = sc->sc_ifp;
1767 	u_int32_t *state;
1768 	u_int32_t len;
1769 	void *sp;
1770 
1771 	if_printf(ifp, "hardware error; resetting\n");
1772 	/*
1773 	 * Fatal errors are unrecoverable.  Typically these
1774 	 * are caused by DMA errors.  Collect h/w state from
1775 	 * the hal so we can diagnose what's going on.
1776 	 */
1777 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1778 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1779 		state = sp;
1780 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1781 		    state[0], state[1] , state[2], state[3],
1782 		    state[4], state[5]);
1783 	}
1784 	ath_reset(ifp, ATH_RESET_NOLOSS);
1785 }
1786 
1787 static void
1788 ath_bmiss_vap(struct ieee80211vap *vap)
1789 {
1790 	/*
1791 	 * Workaround phantom bmiss interrupts by sanity-checking
1792 	 * the time of our last rx'd frame.  If it is within the
1793 	 * beacon miss interval then ignore the interrupt.  If it's
1794 	 * truly a bmiss we'll get another interrupt soon and that'll
1795 	 * be dispatched up for processing.  Note this applies only
1796 	 * for h/w beacon miss events.
1797 	 */
1798 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1799 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1800 		struct ath_softc *sc = ifp->if_softc;
1801 		u_int64_t lastrx = sc->sc_lastrx;
1802 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1803 		/* XXX should take a locked ref to iv_bss */
1804 		u_int bmisstimeout =
1805 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1806 
1807 		DPRINTF(sc, ATH_DEBUG_BEACON,
1808 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1809 		    __func__, (unsigned long long) tsf,
1810 		    (unsigned long long)(tsf - lastrx),
1811 		    (unsigned long long) lastrx, bmisstimeout);
1812 
1813 		if (tsf - lastrx <= bmisstimeout) {
1814 			sc->sc_stats.ast_bmiss_phantom++;
1815 			return;
1816 		}
1817 	}
1818 	ATH_VAP(vap)->av_bmiss(vap);
1819 }
1820 
1821 static int
1822 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1823 {
1824 	uint32_t rsize;
1825 	void *sp;
1826 
1827 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1828 		return 0;
1829 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1830 	*hangs = *(uint32_t *)sp;
1831 	return 1;
1832 }
1833 
1834 static void
1835 ath_bmiss_proc(void *arg, int pending)
1836 {
1837 	struct ath_softc *sc = arg;
1838 	struct ifnet *ifp = sc->sc_ifp;
1839 	uint32_t hangs;
1840 
1841 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1842 
1843 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1844 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1845 		ath_reset(ifp, ATH_RESET_NOLOSS);
1846 	} else
1847 		ieee80211_beacon_miss(ifp->if_l2com);
1848 }
1849 
1850 /*
1851  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1852  * calcs together with WME.  If necessary disable the crypto
1853  * hardware and mark the 802.11 state so keys will be setup
1854  * with the MIC work done in software.
1855  */
1856 static void
1857 ath_settkipmic(struct ath_softc *sc)
1858 {
1859 	struct ifnet *ifp = sc->sc_ifp;
1860 	struct ieee80211com *ic = ifp->if_l2com;
1861 
1862 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1863 		if (ic->ic_flags & IEEE80211_F_WME) {
1864 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1865 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1866 		} else {
1867 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1868 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1869 		}
1870 	}
1871 }
1872 
1873 static void
1874 ath_init(void *arg)
1875 {
1876 	struct ath_softc *sc = (struct ath_softc *) arg;
1877 	struct ifnet *ifp = sc->sc_ifp;
1878 	struct ieee80211com *ic = ifp->if_l2com;
1879 	struct ath_hal *ah = sc->sc_ah;
1880 	HAL_STATUS status;
1881 
1882 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1883 		__func__, ifp->if_flags);
1884 
1885 	ATH_LOCK(sc);
1886 	/*
1887 	 * Stop anything previously setup.  This is safe
1888 	 * whether this is the first time through or not.
1889 	 */
1890 	ath_stop_locked(ifp);
1891 
1892 	/*
1893 	 * The basic interface to setting the hardware in a good
1894 	 * state is ``reset''.  On return the hardware is known to
1895 	 * be powered up and with interrupts disabled.  This must
1896 	 * be followed by initialization of the appropriate bits
1897 	 * and then setup of the interrupt mask.
1898 	 */
1899 	ath_settkipmic(sc);
1900 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1901 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1902 			status);
1903 		ATH_UNLOCK(sc);
1904 		return;
1905 	}
1906 	ath_chan_change(sc, ic->ic_curchan);
1907 
1908 	/* Let DFS at it in case it's a DFS channel */
1909 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1910 
1911 	/*
1912 	 * Likewise this is set during reset so update
1913 	 * state cached in the driver.
1914 	 */
1915 	sc->sc_diversity = ath_hal_getdiversity(ah);
1916 	sc->sc_lastlongcal = 0;
1917 	sc->sc_resetcal = 1;
1918 	sc->sc_lastcalreset = 0;
1919 	sc->sc_lastani = 0;
1920 	sc->sc_lastshortcal = 0;
1921 	sc->sc_doresetcal = AH_FALSE;
1922 	/*
1923 	 * Beacon timers were cleared here; give ath_newstate()
1924 	 * a hint that the beacon timers should be poked when
1925 	 * things transition to the RUN state.
1926 	 */
1927 	sc->sc_beacons = 0;
1928 
1929 	/*
1930 	 * Setup the hardware after reset: the key cache
1931 	 * is filled as needed and the receive engine is
1932 	 * set going.  Frame transmit is handled entirely
1933 	 * in the frame output path; there's nothing to do
1934 	 * here except setup the interrupt mask.
1935 	 */
1936 	if (ath_startrecv(sc) != 0) {
1937 		if_printf(ifp, "unable to start recv logic\n");
1938 		ATH_UNLOCK(sc);
1939 		return;
1940 	}
1941 
1942 	/*
1943 	 * Enable interrupts.
1944 	 */
1945 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1946 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1947 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1948 
1949 	/*
1950 	 * Enable RX EDMA bits.  Note these overlap with
1951 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
1952 	 */
1953 	if (sc->sc_isedma)
1954 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
1955 
1956 	/*
1957 	 * Enable MIB interrupts when there are hardware phy counters.
1958 	 * Note we only do this (at the moment) for station mode.
1959 	 */
1960 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1961 		sc->sc_imask |= HAL_INT_MIB;
1962 
1963 	/* Enable global TX timeout and carrier sense timeout if available */
1964 	if (ath_hal_gtxto_supported(ah))
1965 		sc->sc_imask |= HAL_INT_GTT;
1966 
1967 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1968 		__func__, sc->sc_imask);
1969 
1970 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1971 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1972 	ath_hal_intrset(ah, sc->sc_imask);
1973 
1974 	ATH_UNLOCK(sc);
1975 
1976 #ifdef ATH_TX99_DIAG
1977 	if (sc->sc_tx99 != NULL)
1978 		sc->sc_tx99->start(sc->sc_tx99);
1979 	else
1980 #endif
1981 	ieee80211_start_all(ic);		/* start all vap's */
1982 }
1983 
1984 static void
1985 ath_stop_locked(struct ifnet *ifp)
1986 {
1987 	struct ath_softc *sc = ifp->if_softc;
1988 	struct ath_hal *ah = sc->sc_ah;
1989 
1990 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1991 		__func__, sc->sc_invalid, ifp->if_flags);
1992 
1993 	ATH_LOCK_ASSERT(sc);
1994 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1995 		/*
1996 		 * Shutdown the hardware and driver:
1997 		 *    reset 802.11 state machine
1998 		 *    turn off timers
1999 		 *    disable interrupts
2000 		 *    turn off the radio
2001 		 *    clear transmit machinery
2002 		 *    clear receive machinery
2003 		 *    drain and release tx queues
2004 		 *    reclaim beacon resources
2005 		 *    power down hardware
2006 		 *
2007 		 * Note that some of this work is not possible if the
2008 		 * hardware is gone (invalid).
2009 		 */
2010 #ifdef ATH_TX99_DIAG
2011 		if (sc->sc_tx99 != NULL)
2012 			sc->sc_tx99->stop(sc->sc_tx99);
2013 #endif
2014 		callout_stop(&sc->sc_wd_ch);
2015 		sc->sc_wd_timer = 0;
2016 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2017 		if (!sc->sc_invalid) {
2018 			if (sc->sc_softled) {
2019 				callout_stop(&sc->sc_ledtimer);
2020 				ath_hal_gpioset(ah, sc->sc_ledpin,
2021 					!sc->sc_ledon);
2022 				sc->sc_blinking = 0;
2023 			}
2024 			ath_hal_intrset(ah, 0);
2025 		}
2026 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2027 		if (!sc->sc_invalid) {
2028 			ath_stoprecv(sc, 1);
2029 			ath_hal_phydisable(ah);
2030 		} else
2031 			sc->sc_rxlink = NULL;
2032 		ath_beacon_free(sc);	/* XXX not needed */
2033 	}
2034 }
2035 
2036 #define	MAX_TXRX_ITERATIONS	1000
2037 static void
2038 ath_txrx_stop_locked(struct ath_softc *sc)
2039 {
2040 	int i = MAX_TXRX_ITERATIONS;
2041 
2042 	ATH_UNLOCK_ASSERT(sc);
2043 	ATH_PCU_LOCK_ASSERT(sc);
2044 
2045 	/*
2046 	 * Sleep until all the pending operations have completed.
2047 	 *
2048 	 * The caller must ensure that reset has been incremented
2049 	 * or the pending operations may continue being queued.
2050 	 */
2051 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2052 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2053 		if (i <= 0)
2054 			break;
2055 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2056 		i--;
2057 	}
2058 
2059 	if (i <= 0)
2060 		device_printf(sc->sc_dev,
2061 		    "%s: didn't finish after %d iterations\n",
2062 		    __func__, MAX_TXRX_ITERATIONS);
2063 }
2064 #undef	MAX_TXRX_ITERATIONS
2065 
2066 #if 0
2067 static void
2068 ath_txrx_stop(struct ath_softc *sc)
2069 {
2070 	ATH_UNLOCK_ASSERT(sc);
2071 	ATH_PCU_UNLOCK_ASSERT(sc);
2072 
2073 	ATH_PCU_LOCK(sc);
2074 	ath_txrx_stop_locked(sc);
2075 	ATH_PCU_UNLOCK(sc);
2076 }
2077 #endif
2078 
2079 static void
2080 ath_txrx_start(struct ath_softc *sc)
2081 {
2082 
2083 	taskqueue_unblock(sc->sc_tq);
2084 }
2085 
2086 /*
2087  * Grab the reset lock, and wait around until noone else
2088  * is trying to do anything with it.
2089  *
2090  * This is totally horrible but we can't hold this lock for
2091  * long enough to do TX/RX or we end up with net80211/ip stack
2092  * LORs and eventual deadlock.
2093  *
2094  * "dowait" signals whether to spin, waiting for the reset
2095  * lock count to reach 0. This should (for now) only be used
2096  * during the reset path, as the rest of the code may not
2097  * be locking-reentrant enough to behave correctly.
2098  *
2099  * Another, cleaner way should be found to serialise all of
2100  * these operations.
2101  */
2102 #define	MAX_RESET_ITERATIONS	10
2103 static int
2104 ath_reset_grablock(struct ath_softc *sc, int dowait)
2105 {
2106 	int w = 0;
2107 	int i = MAX_RESET_ITERATIONS;
2108 
2109 	ATH_PCU_LOCK_ASSERT(sc);
2110 	do {
2111 		if (sc->sc_inreset_cnt == 0) {
2112 			w = 1;
2113 			break;
2114 		}
2115 		if (dowait == 0) {
2116 			w = 0;
2117 			break;
2118 		}
2119 		ATH_PCU_UNLOCK(sc);
2120 		pause("ath_reset_grablock", 1);
2121 		i--;
2122 		ATH_PCU_LOCK(sc);
2123 	} while (i > 0);
2124 
2125 	/*
2126 	 * We always increment the refcounter, regardless
2127 	 * of whether we succeeded to get it in an exclusive
2128 	 * way.
2129 	 */
2130 	sc->sc_inreset_cnt++;
2131 
2132 	if (i <= 0)
2133 		device_printf(sc->sc_dev,
2134 		    "%s: didn't finish after %d iterations\n",
2135 		    __func__, MAX_RESET_ITERATIONS);
2136 
2137 	if (w == 0)
2138 		device_printf(sc->sc_dev,
2139 		    "%s: warning, recursive reset path!\n",
2140 		    __func__);
2141 
2142 	return w;
2143 }
2144 #undef MAX_RESET_ITERATIONS
2145 
2146 /*
2147  * XXX TODO: write ath_reset_releaselock
2148  */
2149 
2150 static void
2151 ath_stop(struct ifnet *ifp)
2152 {
2153 	struct ath_softc *sc = ifp->if_softc;
2154 
2155 	ATH_LOCK(sc);
2156 	ath_stop_locked(ifp);
2157 	ATH_UNLOCK(sc);
2158 }
2159 
2160 /*
2161  * Reset the hardware w/o losing operational state.  This is
2162  * basically a more efficient way of doing ath_stop, ath_init,
2163  * followed by state transitions to the current 802.11
2164  * operational state.  Used to recover from various errors and
2165  * to reset or reload hardware state.
2166  */
2167 int
2168 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2169 {
2170 	struct ath_softc *sc = ifp->if_softc;
2171 	struct ieee80211com *ic = ifp->if_l2com;
2172 	struct ath_hal *ah = sc->sc_ah;
2173 	HAL_STATUS status;
2174 	int i;
2175 
2176 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2177 
2178 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2179 	ATH_PCU_UNLOCK_ASSERT(sc);
2180 	ATH_UNLOCK_ASSERT(sc);
2181 
2182 	/* Try to (stop any further TX/RX from occuring */
2183 	taskqueue_block(sc->sc_tq);
2184 
2185 	ATH_PCU_LOCK(sc);
2186 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2187 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2188 	if (ath_reset_grablock(sc, 1) == 0) {
2189 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2190 		    __func__);
2191 	}
2192 	ATH_PCU_UNLOCK(sc);
2193 
2194 	/*
2195 	 * Should now wait for pending TX/RX to complete
2196 	 * and block future ones from occuring. This needs to be
2197 	 * done before the TX queue is drained.
2198 	 */
2199 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2200 
2201 	/*
2202 	 * Regardless of whether we're doing a no-loss flush or
2203 	 * not, stop the PCU and handle what's in the RX queue.
2204 	 * That way frames aren't dropped which shouldn't be.
2205 	 */
2206 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2207 	ath_rx_flush(sc);
2208 
2209 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2210 	/* NB: indicate channel change so we do a full reset */
2211 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2212 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2213 			__func__, status);
2214 	sc->sc_diversity = ath_hal_getdiversity(ah);
2215 
2216 	/* Let DFS at it in case it's a DFS channel */
2217 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2218 
2219 	if (ath_startrecv(sc) != 0)	/* restart recv */
2220 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2221 	/*
2222 	 * We may be doing a reset in response to an ioctl
2223 	 * that changes the channel so update any state that
2224 	 * might change as a result.
2225 	 */
2226 	ath_chan_change(sc, ic->ic_curchan);
2227 	if (sc->sc_beacons) {		/* restart beacons */
2228 #ifdef IEEE80211_SUPPORT_TDMA
2229 		if (sc->sc_tdma)
2230 			ath_tdma_config(sc, NULL);
2231 		else
2232 #endif
2233 			ath_beacon_config(sc, NULL);
2234 	}
2235 
2236 	/*
2237 	 * Release the reset lock and re-enable interrupts here.
2238 	 * If an interrupt was being processed in ath_intr(),
2239 	 * it would disable interrupts at this point. So we have
2240 	 * to atomically enable interrupts and decrement the
2241 	 * reset counter - this way ath_intr() doesn't end up
2242 	 * disabling interrupts without a corresponding enable
2243 	 * in the rest or channel change path.
2244 	 */
2245 	ATH_PCU_LOCK(sc);
2246 	sc->sc_inreset_cnt--;
2247 	/* XXX only do this if sc_inreset_cnt == 0? */
2248 	ath_hal_intrset(ah, sc->sc_imask);
2249 	ATH_PCU_UNLOCK(sc);
2250 
2251 	/*
2252 	 * TX and RX can be started here. If it were started with
2253 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2254 	 * Thus if this is a nested call through the reset or
2255 	 * channel change code, TX completion will occur but
2256 	 * RX completion and ath_start / ath_tx_start will not
2257 	 * run.
2258 	 */
2259 
2260 	/* Restart TX/RX as needed */
2261 	ath_txrx_start(sc);
2262 
2263 	/* XXX Restart TX completion and pending TX */
2264 	if (reset_type == ATH_RESET_NOLOSS) {
2265 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2266 			if (ATH_TXQ_SETUP(sc, i)) {
2267 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2268 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2269 				ath_txq_sched(sc, &sc->sc_txq[i]);
2270 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2271 			}
2272 		}
2273 	}
2274 
2275 	/*
2276 	 * This may have been set during an ath_start() call which
2277 	 * set this once it detected a concurrent TX was going on.
2278 	 * So, clear it.
2279 	 */
2280 	IF_LOCK(&ifp->if_snd);
2281 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2282 	IF_UNLOCK(&ifp->if_snd);
2283 
2284 	/* Handle any frames in the TX queue */
2285 	/*
2286 	 * XXX should this be done by the caller, rather than
2287 	 * ath_reset() ?
2288 	 */
2289 	ath_tx_kick(sc);		/* restart xmit */
2290 	return 0;
2291 }
2292 
2293 static int
2294 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2295 {
2296 	struct ieee80211com *ic = vap->iv_ic;
2297 	struct ifnet *ifp = ic->ic_ifp;
2298 	struct ath_softc *sc = ifp->if_softc;
2299 	struct ath_hal *ah = sc->sc_ah;
2300 
2301 	switch (cmd) {
2302 	case IEEE80211_IOC_TXPOWER:
2303 		/*
2304 		 * If per-packet TPC is enabled, then we have nothing
2305 		 * to do; otherwise we need to force the global limit.
2306 		 * All this can happen directly; no need to reset.
2307 		 */
2308 		if (!ath_hal_gettpc(ah))
2309 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2310 		return 0;
2311 	}
2312 	/* XXX? Full or NOLOSS? */
2313 	return ath_reset(ifp, ATH_RESET_FULL);
2314 }
2315 
2316 struct ath_buf *
2317 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2318 {
2319 	struct ath_buf *bf;
2320 
2321 	ATH_TXBUF_LOCK_ASSERT(sc);
2322 
2323 	if (btype == ATH_BUFTYPE_MGMT)
2324 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2325 	else
2326 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2327 
2328 	if (bf == NULL) {
2329 		sc->sc_stats.ast_tx_getnobuf++;
2330 	} else {
2331 		if (bf->bf_flags & ATH_BUF_BUSY) {
2332 			sc->sc_stats.ast_tx_getbusybuf++;
2333 			bf = NULL;
2334 		}
2335 	}
2336 
2337 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2338 		if (btype == ATH_BUFTYPE_MGMT)
2339 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2340 		else {
2341 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2342 			sc->sc_txbuf_cnt--;
2343 
2344 			/*
2345 			 * This shuldn't happen; however just to be
2346 			 * safe print a warning and fudge the txbuf
2347 			 * count.
2348 			 */
2349 			if (sc->sc_txbuf_cnt < 0) {
2350 				device_printf(sc->sc_dev,
2351 				    "%s: sc_txbuf_cnt < 0?\n",
2352 				    __func__);
2353 				sc->sc_txbuf_cnt = 0;
2354 			}
2355 		}
2356 	} else
2357 		bf = NULL;
2358 
2359 	if (bf == NULL) {
2360 		/* XXX should check which list, mgmt or otherwise */
2361 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2362 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2363 			"out of xmit buffers" : "xmit buffer busy");
2364 		return NULL;
2365 	}
2366 
2367 	/* XXX TODO: should do this at buffer list initialisation */
2368 	/* XXX (then, ensure the buffer has the right flag set) */
2369 	if (btype == ATH_BUFTYPE_MGMT)
2370 		bf->bf_flags |= ATH_BUF_MGMT;
2371 	else
2372 		bf->bf_flags &= (~ATH_BUF_MGMT);
2373 
2374 	/* Valid bf here; clear some basic fields */
2375 	bf->bf_next = NULL;	/* XXX just to be sure */
2376 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2377 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2378 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2379 
2380 	/*
2381 	 * Track the descriptor ID only if doing EDMA
2382 	 */
2383 	if (sc->sc_isedma) {
2384 		bf->bf_descid = sc->sc_txbuf_descid;
2385 		sc->sc_txbuf_descid++;
2386 	}
2387 
2388 	return bf;
2389 }
2390 
2391 /*
2392  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2393  * can't be thrown back on the queue as they could still be
2394  * in use by the hardware.
2395  *
2396  * This duplicates the buffer, or returns NULL.
2397  *
2398  * The descriptor is also copied but the link pointers and
2399  * the DMA segments aren't copied; this frame should thus
2400  * be again passed through the descriptor setup/chain routines
2401  * so the link is correct.
2402  *
2403  * The caller must free the buffer using ath_freebuf().
2404  *
2405  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2406  * XXX in the TX pathway when retries are needed.
2407  * XXX Figure out how to keep some buffers free, or factor the
2408  * XXX number of busy buffers into the xmit path (ath_start())
2409  * XXX so we don't over-commit.
2410  */
2411 struct ath_buf *
2412 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2413 {
2414 	struct ath_buf *tbf;
2415 
2416 	tbf = ath_getbuf(sc,
2417 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2418 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2419 	if (tbf == NULL)
2420 		return NULL;	/* XXX failure? Why? */
2421 
2422 	/* Copy basics */
2423 	tbf->bf_next = NULL;
2424 	tbf->bf_nseg = bf->bf_nseg;
2425 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2426 	tbf->bf_status = bf->bf_status;
2427 	tbf->bf_m = bf->bf_m;
2428 	tbf->bf_node = bf->bf_node;
2429 	/* will be setup by the chain/setup function */
2430 	tbf->bf_lastds = NULL;
2431 	/* for now, last == self */
2432 	tbf->bf_last = tbf;
2433 	tbf->bf_comp = bf->bf_comp;
2434 
2435 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2436 
2437 	/* The caller has to re-init the descriptor + links */
2438 
2439 	/* Copy state */
2440 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2441 
2442 	return tbf;
2443 }
2444 
2445 struct ath_buf *
2446 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2447 {
2448 	struct ath_buf *bf;
2449 
2450 	ATH_TXBUF_LOCK(sc);
2451 	bf = _ath_getbuf_locked(sc, btype);
2452 	/*
2453 	 * If a mgmt buffer was requested but we're out of those,
2454 	 * try requesting a normal one.
2455 	 */
2456 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2457 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2458 	ATH_TXBUF_UNLOCK(sc);
2459 	if (bf == NULL) {
2460 		struct ifnet *ifp = sc->sc_ifp;
2461 
2462 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2463 		sc->sc_stats.ast_tx_qstop++;
2464 		IF_LOCK(&ifp->if_snd);
2465 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2466 		IF_UNLOCK(&ifp->if_snd);
2467 	}
2468 	return bf;
2469 }
2470 
2471 static void
2472 ath_start_queue(struct ifnet *ifp)
2473 {
2474 	struct ath_softc *sc = ifp->if_softc;
2475 
2476 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
2477 	ath_tx_kick(sc);
2478 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
2479 }
2480 
2481 void
2482 ath_start_task(void *arg, int npending)
2483 {
2484 	struct ath_softc *sc = (struct ath_softc *) arg;
2485 	struct ifnet *ifp = sc->sc_ifp;
2486 
2487 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
2488 
2489 	/* XXX is it ok to hold the ATH_LOCK here? */
2490 	ATH_PCU_LOCK(sc);
2491 	if (sc->sc_inreset_cnt > 0) {
2492 		device_printf(sc->sc_dev,
2493 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2494 		ATH_PCU_UNLOCK(sc);
2495 		IF_LOCK(&ifp->if_snd);
2496 		sc->sc_stats.ast_tx_qstop++;
2497 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2498 		IF_UNLOCK(&ifp->if_snd);
2499 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2500 		return;
2501 	}
2502 	sc->sc_txstart_cnt++;
2503 	ATH_PCU_UNLOCK(sc);
2504 
2505 	ath_start(sc->sc_ifp);
2506 
2507 	ATH_PCU_LOCK(sc);
2508 	sc->sc_txstart_cnt--;
2509 	ATH_PCU_UNLOCK(sc);
2510 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
2511 }
2512 
2513 void
2514 ath_start(struct ifnet *ifp)
2515 {
2516 	struct ath_softc *sc = ifp->if_softc;
2517 	struct ieee80211_node *ni;
2518 	struct ath_buf *bf;
2519 	struct mbuf *m, *next;
2520 	ath_bufhead frags;
2521 	int npkts = 0;
2522 
2523 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2524 		return;
2525 
2526 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
2527 
2528 	for (;;) {
2529 		ATH_TXBUF_LOCK(sc);
2530 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2531 			/* XXX increment counter? */
2532 			ATH_TXBUF_UNLOCK(sc);
2533 			IF_LOCK(&ifp->if_snd);
2534 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2535 			IF_UNLOCK(&ifp->if_snd);
2536 			break;
2537 		}
2538 		ATH_TXBUF_UNLOCK(sc);
2539 
2540 		/*
2541 		 * Grab a TX buffer and associated resources.
2542 		 */
2543 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2544 		if (bf == NULL)
2545 			break;
2546 
2547 		IFQ_DEQUEUE(&ifp->if_snd, m);
2548 		if (m == NULL) {
2549 			ATH_TXBUF_LOCK(sc);
2550 			ath_returnbuf_head(sc, bf);
2551 			ATH_TXBUF_UNLOCK(sc);
2552 			break;
2553 		}
2554 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2555 		npkts ++;
2556 		/*
2557 		 * Check for fragmentation.  If this frame
2558 		 * has been broken up verify we have enough
2559 		 * buffers to send all the fragments so all
2560 		 * go out or none...
2561 		 */
2562 		TAILQ_INIT(&frags);
2563 		if ((m->m_flags & M_FRAG) &&
2564 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2565 			DPRINTF(sc, ATH_DEBUG_XMIT,
2566 			    "%s: out of txfrag buffers\n", __func__);
2567 			sc->sc_stats.ast_tx_nofrag++;
2568 			ifp->if_oerrors++;
2569 			ath_freetx(m);
2570 			goto bad;
2571 		}
2572 		ifp->if_opackets++;
2573 	nextfrag:
2574 		/*
2575 		 * Pass the frame to the h/w for transmission.
2576 		 * Fragmented frames have each frag chained together
2577 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2578 		 * to send all the frags because of work done by
2579 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2580 		 * calling ath_tx_start so it can use it to extend the
2581 		 * the tx duration to cover the subsequent frag and
2582 		 * so it can reclaim all the mbufs in case of an error;
2583 		 * ath_tx_start clears m_nextpkt once it commits to
2584 		 * handing the frame to the hardware.
2585 		 */
2586 		next = m->m_nextpkt;
2587 		if (ath_tx_start(sc, ni, bf, m)) {
2588 	bad:
2589 			ifp->if_oerrors++;
2590 	reclaim:
2591 			bf->bf_m = NULL;
2592 			bf->bf_node = NULL;
2593 			ATH_TXBUF_LOCK(sc);
2594 			ath_returnbuf_head(sc, bf);
2595 			ath_txfrag_cleanup(sc, &frags, ni);
2596 			ATH_TXBUF_UNLOCK(sc);
2597 			if (ni != NULL)
2598 				ieee80211_free_node(ni);
2599 			continue;
2600 		}
2601 
2602 		/*
2603 		 * Check here if the node is in power save state.
2604 		 */
2605 		ath_tx_update_tim(sc, ni, 1);
2606 
2607 		if (next != NULL) {
2608 			/*
2609 			 * Beware of state changing between frags.
2610 			 * XXX check sta power-save state?
2611 			 */
2612 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2613 				DPRINTF(sc, ATH_DEBUG_XMIT,
2614 				    "%s: flush fragmented packet, state %s\n",
2615 				    __func__,
2616 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2617 				ath_freetx(next);
2618 				goto reclaim;
2619 			}
2620 			m = next;
2621 			bf = TAILQ_FIRST(&frags);
2622 			KASSERT(bf != NULL, ("no buf for txfrag"));
2623 			TAILQ_REMOVE(&frags, bf, bf_list);
2624 			goto nextfrag;
2625 		}
2626 
2627 		sc->sc_wd_timer = 5;
2628 	}
2629 	ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
2630 }
2631 
2632 static int
2633 ath_media_change(struct ifnet *ifp)
2634 {
2635 	int error = ieee80211_media_change(ifp);
2636 	/* NB: only the fixed rate can change and that doesn't need a reset */
2637 	return (error == ENETRESET ? 0 : error);
2638 }
2639 
2640 /*
2641  * Block/unblock tx+rx processing while a key change is done.
2642  * We assume the caller serializes key management operations
2643  * so we only need to worry about synchronization with other
2644  * uses that originate in the driver.
2645  */
2646 static void
2647 ath_key_update_begin(struct ieee80211vap *vap)
2648 {
2649 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2650 	struct ath_softc *sc = ifp->if_softc;
2651 
2652 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2653 	taskqueue_block(sc->sc_tq);
2654 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2655 }
2656 
2657 static void
2658 ath_key_update_end(struct ieee80211vap *vap)
2659 {
2660 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2661 	struct ath_softc *sc = ifp->if_softc;
2662 
2663 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2664 	IF_UNLOCK(&ifp->if_snd);
2665 	taskqueue_unblock(sc->sc_tq);
2666 }
2667 
2668 static void
2669 ath_update_promisc(struct ifnet *ifp)
2670 {
2671 	struct ath_softc *sc = ifp->if_softc;
2672 	u_int32_t rfilt;
2673 
2674 	/* configure rx filter */
2675 	rfilt = ath_calcrxfilter(sc);
2676 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2677 
2678 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2679 }
2680 
2681 static void
2682 ath_update_mcast(struct ifnet *ifp)
2683 {
2684 	struct ath_softc *sc = ifp->if_softc;
2685 	u_int32_t mfilt[2];
2686 
2687 	/* calculate and install multicast filter */
2688 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2689 		struct ifmultiaddr *ifma;
2690 		/*
2691 		 * Merge multicast addresses to form the hardware filter.
2692 		 */
2693 		mfilt[0] = mfilt[1] = 0;
2694 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2695 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2696 			caddr_t dl;
2697 			u_int32_t val;
2698 			u_int8_t pos;
2699 
2700 			/* calculate XOR of eight 6bit values */
2701 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2702 			val = LE_READ_4(dl + 0);
2703 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2704 			val = LE_READ_4(dl + 3);
2705 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2706 			pos &= 0x3f;
2707 			mfilt[pos / 32] |= (1 << (pos % 32));
2708 		}
2709 		if_maddr_runlock(ifp);
2710 	} else
2711 		mfilt[0] = mfilt[1] = ~0;
2712 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2713 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2714 		__func__, mfilt[0], mfilt[1]);
2715 }
2716 
2717 void
2718 ath_mode_init(struct ath_softc *sc)
2719 {
2720 	struct ifnet *ifp = sc->sc_ifp;
2721 	struct ath_hal *ah = sc->sc_ah;
2722 	u_int32_t rfilt;
2723 
2724 	/* configure rx filter */
2725 	rfilt = ath_calcrxfilter(sc);
2726 	ath_hal_setrxfilter(ah, rfilt);
2727 
2728 	/* configure operational mode */
2729 	ath_hal_setopmode(ah);
2730 
2731 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2732 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2733 	    __func__,
2734 	    ah,
2735 	    ifp,
2736 	    (ifp == NULL) ? NULL : ifp->if_addr);
2737 
2738 	/* handle any link-level address change */
2739 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2740 
2741 	/* calculate and install multicast filter */
2742 	ath_update_mcast(ifp);
2743 }
2744 
2745 /*
2746  * Set the slot time based on the current setting.
2747  */
2748 void
2749 ath_setslottime(struct ath_softc *sc)
2750 {
2751 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2752 	struct ath_hal *ah = sc->sc_ah;
2753 	u_int usec;
2754 
2755 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2756 		usec = 13;
2757 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2758 		usec = 21;
2759 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2760 		/* honor short/long slot time only in 11g */
2761 		/* XXX shouldn't honor on pure g or turbo g channel */
2762 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2763 			usec = HAL_SLOT_TIME_9;
2764 		else
2765 			usec = HAL_SLOT_TIME_20;
2766 	} else
2767 		usec = HAL_SLOT_TIME_9;
2768 
2769 	DPRINTF(sc, ATH_DEBUG_RESET,
2770 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2771 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2772 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2773 
2774 	ath_hal_setslottime(ah, usec);
2775 	sc->sc_updateslot = OK;
2776 }
2777 
2778 /*
2779  * Callback from the 802.11 layer to update the
2780  * slot time based on the current setting.
2781  */
2782 static void
2783 ath_updateslot(struct ifnet *ifp)
2784 {
2785 	struct ath_softc *sc = ifp->if_softc;
2786 	struct ieee80211com *ic = ifp->if_l2com;
2787 
2788 	/*
2789 	 * When not coordinating the BSS, change the hardware
2790 	 * immediately.  For other operation we defer the change
2791 	 * until beacon updates have propagated to the stations.
2792 	 */
2793 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2794 	    ic->ic_opmode == IEEE80211_M_MBSS)
2795 		sc->sc_updateslot = UPDATE;
2796 	else
2797 		ath_setslottime(sc);
2798 }
2799 
2800 /*
2801  * Append the contents of src to dst; both queues
2802  * are assumed to be locked.
2803  */
2804 void
2805 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2806 {
2807 
2808 	ATH_TXQ_LOCK_ASSERT(dst);
2809 	ATH_TXQ_LOCK_ASSERT(src);
2810 
2811 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2812 	dst->axq_link = src->axq_link;
2813 	src->axq_link = NULL;
2814 	dst->axq_depth += src->axq_depth;
2815 	dst->axq_aggr_depth += src->axq_aggr_depth;
2816 	src->axq_depth = 0;
2817 	src->axq_aggr_depth = 0;
2818 }
2819 
2820 /*
2821  * Reset the hardware, with no loss.
2822  *
2823  * This can't be used for a general case reset.
2824  */
2825 static void
2826 ath_reset_proc(void *arg, int pending)
2827 {
2828 	struct ath_softc *sc = arg;
2829 	struct ifnet *ifp = sc->sc_ifp;
2830 
2831 #if 0
2832 	if_printf(ifp, "%s: resetting\n", __func__);
2833 #endif
2834 	ath_reset(ifp, ATH_RESET_NOLOSS);
2835 }
2836 
2837 /*
2838  * Reset the hardware after detecting beacons have stopped.
2839  */
2840 static void
2841 ath_bstuck_proc(void *arg, int pending)
2842 {
2843 	struct ath_softc *sc = arg;
2844 	struct ifnet *ifp = sc->sc_ifp;
2845 	uint32_t hangs = 0;
2846 
2847 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2848 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2849 
2850 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2851 		sc->sc_bmisscount);
2852 	sc->sc_stats.ast_bstuck++;
2853 	/*
2854 	 * This assumes that there's no simultaneous channel mode change
2855 	 * occuring.
2856 	 */
2857 	ath_reset(ifp, ATH_RESET_NOLOSS);
2858 }
2859 
2860 static void
2861 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2862 {
2863 	bus_addr_t *paddr = (bus_addr_t*) arg;
2864 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2865 	*paddr = segs->ds_addr;
2866 }
2867 
2868 /*
2869  * Allocate the descriptors and appropriate DMA tag/setup.
2870  *
2871  * For some situations (eg EDMA TX completion), there isn't a requirement
2872  * for the ath_buf entries to be allocated.
2873  */
2874 int
2875 ath_descdma_alloc_desc(struct ath_softc *sc,
2876 	struct ath_descdma *dd, ath_bufhead *head,
2877 	const char *name, int ds_size, int ndesc)
2878 {
2879 #define	DS2PHYS(_dd, _ds) \
2880 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2881 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2882 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2883 	struct ifnet *ifp = sc->sc_ifp;
2884 	int error;
2885 
2886 	dd->dd_descsize = ds_size;
2887 
2888 	DPRINTF(sc, ATH_DEBUG_RESET,
2889 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
2890 	    __func__, name, ndesc, dd->dd_descsize);
2891 
2892 	dd->dd_name = name;
2893 	dd->dd_desc_len = dd->dd_descsize * ndesc;
2894 
2895 	/*
2896 	 * Merlin work-around:
2897 	 * Descriptors that cross the 4KB boundary can't be used.
2898 	 * Assume one skipped descriptor per 4KB page.
2899 	 */
2900 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2901 		int numpages = dd->dd_desc_len / 4096;
2902 		dd->dd_desc_len += ds_size * numpages;
2903 	}
2904 
2905 	/*
2906 	 * Setup DMA descriptor area.
2907 	 */
2908 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2909 		       PAGE_SIZE, 0,		/* alignment, bounds */
2910 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2911 		       BUS_SPACE_MAXADDR,	/* highaddr */
2912 		       NULL, NULL,		/* filter, filterarg */
2913 		       dd->dd_desc_len,		/* maxsize */
2914 		       1,			/* nsegments */
2915 		       dd->dd_desc_len,		/* maxsegsize */
2916 		       BUS_DMA_ALLOCNOW,	/* flags */
2917 		       NULL,			/* lockfunc */
2918 		       NULL,			/* lockarg */
2919 		       &dd->dd_dmat);
2920 	if (error != 0) {
2921 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2922 		return error;
2923 	}
2924 
2925 	/* allocate descriptors */
2926 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2927 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2928 				 &dd->dd_dmamap);
2929 	if (error != 0) {
2930 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2931 			"error %u\n", ndesc, dd->dd_name, error);
2932 		goto fail1;
2933 	}
2934 
2935 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2936 				dd->dd_desc, dd->dd_desc_len,
2937 				ath_load_cb, &dd->dd_desc_paddr,
2938 				BUS_DMA_NOWAIT);
2939 	if (error != 0) {
2940 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2941 			dd->dd_name, error);
2942 		goto fail2;
2943 	}
2944 
2945 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2946 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
2947 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
2948 	    /*XXX*/ (u_long) dd->dd_desc_len);
2949 
2950 	return (0);
2951 
2952 fail2:
2953 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2954 fail1:
2955 	bus_dma_tag_destroy(dd->dd_dmat);
2956 	memset(dd, 0, sizeof(*dd));
2957 	return error;
2958 #undef DS2PHYS
2959 #undef ATH_DESC_4KB_BOUND_CHECK
2960 }
2961 
2962 int
2963 ath_descdma_setup(struct ath_softc *sc,
2964 	struct ath_descdma *dd, ath_bufhead *head,
2965 	const char *name, int ds_size, int nbuf, int ndesc)
2966 {
2967 #define	DS2PHYS(_dd, _ds) \
2968 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2969 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2970 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2971 	struct ifnet *ifp = sc->sc_ifp;
2972 	uint8_t *ds;
2973 	struct ath_buf *bf;
2974 	int i, bsize, error;
2975 
2976 	/* Allocate descriptors */
2977 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
2978 	    nbuf * ndesc);
2979 
2980 	/* Assume any errors during allocation were dealt with */
2981 	if (error != 0) {
2982 		return (error);
2983 	}
2984 
2985 	ds = (uint8_t *) dd->dd_desc;
2986 
2987 	/* allocate rx buffers */
2988 	bsize = sizeof(struct ath_buf) * nbuf;
2989 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2990 	if (bf == NULL) {
2991 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2992 			dd->dd_name, bsize);
2993 		goto fail3;
2994 	}
2995 	dd->dd_bufptr = bf;
2996 
2997 	TAILQ_INIT(head);
2998 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
2999 		bf->bf_desc = (struct ath_desc *) ds;
3000 		bf->bf_daddr = DS2PHYS(dd, ds);
3001 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3002 			/*
3003 			 * Merlin WAR: Skip descriptor addresses which
3004 			 * cause 4KB boundary crossing along any point
3005 			 * in the descriptor.
3006 			 */
3007 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3008 			     dd->dd_descsize)) {
3009 				/* Start at the next page */
3010 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3011 				bf->bf_desc = (struct ath_desc *) ds;
3012 				bf->bf_daddr = DS2PHYS(dd, ds);
3013 			}
3014 		}
3015 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3016 				&bf->bf_dmamap);
3017 		if (error != 0) {
3018 			if_printf(ifp, "unable to create dmamap for %s "
3019 				"buffer %u, error %u\n", dd->dd_name, i, error);
3020 			ath_descdma_cleanup(sc, dd, head);
3021 			return error;
3022 		}
3023 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3024 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3025 	}
3026 
3027 	/*
3028 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3029 	 * allocation otherwise weird stuff will occur and crash your
3030 	 * machine.
3031 	 */
3032 	return 0;
3033 	/* XXX this should likely just call ath_descdma_cleanup() */
3034 fail3:
3035 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3036 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3037 	bus_dma_tag_destroy(dd->dd_dmat);
3038 	memset(dd, 0, sizeof(*dd));
3039 	return error;
3040 #undef DS2PHYS
3041 #undef ATH_DESC_4KB_BOUND_CHECK
3042 }
3043 
3044 /*
3045  * Allocate ath_buf entries but no descriptor contents.
3046  *
3047  * This is for RX EDMA where the descriptors are the header part of
3048  * the RX buffer.
3049  */
3050 int
3051 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3052 	struct ath_descdma *dd, ath_bufhead *head,
3053 	const char *name, int nbuf, int rx_status_len)
3054 {
3055 	struct ifnet *ifp = sc->sc_ifp;
3056 	struct ath_buf *bf;
3057 	int i, bsize, error;
3058 
3059 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3060 	    __func__, name, nbuf);
3061 
3062 	dd->dd_name = name;
3063 	/*
3064 	 * This is (mostly) purely for show.  We're not allocating any actual
3065 	 * descriptors here as EDMA RX has the descriptor be part
3066 	 * of the RX buffer.
3067 	 *
3068 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3069 	 * whether we have already freed this DMA mapping.
3070 	 */
3071 	dd->dd_desc_len = rx_status_len * nbuf;
3072 	dd->dd_descsize = rx_status_len;
3073 
3074 	/* allocate rx buffers */
3075 	bsize = sizeof(struct ath_buf) * nbuf;
3076 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3077 	if (bf == NULL) {
3078 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3079 			dd->dd_name, bsize);
3080 		error = ENOMEM;
3081 		goto fail3;
3082 	}
3083 	dd->dd_bufptr = bf;
3084 
3085 	TAILQ_INIT(head);
3086 	for (i = 0; i < nbuf; i++, bf++) {
3087 		bf->bf_desc = NULL;
3088 		bf->bf_daddr = 0;
3089 		bf->bf_lastds = NULL;	/* Just an initial value */
3090 
3091 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3092 				&bf->bf_dmamap);
3093 		if (error != 0) {
3094 			if_printf(ifp, "unable to create dmamap for %s "
3095 				"buffer %u, error %u\n", dd->dd_name, i, error);
3096 			ath_descdma_cleanup(sc, dd, head);
3097 			return error;
3098 		}
3099 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3100 	}
3101 	return 0;
3102 fail3:
3103 	memset(dd, 0, sizeof(*dd));
3104 	return error;
3105 }
3106 
3107 void
3108 ath_descdma_cleanup(struct ath_softc *sc,
3109 	struct ath_descdma *dd, ath_bufhead *head)
3110 {
3111 	struct ath_buf *bf;
3112 	struct ieee80211_node *ni;
3113 
3114 	if (dd->dd_dmamap != 0) {
3115 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3116 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3117 		bus_dma_tag_destroy(dd->dd_dmat);
3118 	}
3119 
3120 	if (head != NULL) {
3121 		TAILQ_FOREACH(bf, head, bf_list) {
3122 			if (bf->bf_m) {
3123 				m_freem(bf->bf_m);
3124 				bf->bf_m = NULL;
3125 			}
3126 			if (bf->bf_dmamap != NULL) {
3127 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3128 				bf->bf_dmamap = NULL;
3129 			}
3130 			ni = bf->bf_node;
3131 			bf->bf_node = NULL;
3132 			if (ni != NULL) {
3133 				/*
3134 				 * Reclaim node reference.
3135 				 */
3136 				ieee80211_free_node(ni);
3137 			}
3138 		}
3139 	}
3140 
3141 	if (head != NULL)
3142 		TAILQ_INIT(head);
3143 
3144 	if (dd->dd_bufptr != NULL)
3145 		free(dd->dd_bufptr, M_ATHDEV);
3146 	memset(dd, 0, sizeof(*dd));
3147 }
3148 
3149 static int
3150 ath_desc_alloc(struct ath_softc *sc)
3151 {
3152 	int error;
3153 
3154 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3155 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
3156 	if (error != 0) {
3157 		return error;
3158 	}
3159 	sc->sc_txbuf_cnt = ath_txbuf;
3160 
3161 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3162 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3163 		    ATH_TXDESC);
3164 	if (error != 0) {
3165 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3166 		return error;
3167 	}
3168 
3169 	/*
3170 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3171 	 * flag doesn't have to be set in ath_getbuf_locked().
3172 	 */
3173 
3174 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3175 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3176 	if (error != 0) {
3177 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3178 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3179 		    &sc->sc_txbuf_mgmt);
3180 		return error;
3181 	}
3182 	return 0;
3183 }
3184 
3185 static void
3186 ath_desc_free(struct ath_softc *sc)
3187 {
3188 
3189 	if (sc->sc_bdma.dd_desc_len != 0)
3190 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3191 	if (sc->sc_txdma.dd_desc_len != 0)
3192 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3193 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3194 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3195 		    &sc->sc_txbuf_mgmt);
3196 }
3197 
3198 static struct ieee80211_node *
3199 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3200 {
3201 	struct ieee80211com *ic = vap->iv_ic;
3202 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3203 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3204 	struct ath_node *an;
3205 
3206 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3207 	if (an == NULL) {
3208 		/* XXX stat+msg */
3209 		return NULL;
3210 	}
3211 	ath_rate_node_init(sc, an);
3212 
3213 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3214 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3215 	    device_get_nameunit(sc->sc_dev), an);
3216 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3217 
3218 	/* XXX setup ath_tid */
3219 	ath_tx_tid_init(sc, an);
3220 
3221 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3222 	return &an->an_node;
3223 }
3224 
3225 static void
3226 ath_node_cleanup(struct ieee80211_node *ni)
3227 {
3228 	struct ieee80211com *ic = ni->ni_ic;
3229 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3230 
3231 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3232 	ath_tx_node_flush(sc, ATH_NODE(ni));
3233 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3234 	sc->sc_node_cleanup(ni);
3235 }
3236 
3237 static void
3238 ath_node_free(struct ieee80211_node *ni)
3239 {
3240 	struct ieee80211com *ic = ni->ni_ic;
3241 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3242 
3243 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3244 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3245 	sc->sc_node_free(ni);
3246 }
3247 
3248 static void
3249 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3250 {
3251 	struct ieee80211com *ic = ni->ni_ic;
3252 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3253 	struct ath_hal *ah = sc->sc_ah;
3254 
3255 	*rssi = ic->ic_node_getrssi(ni);
3256 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3257 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3258 	else
3259 		*noise = -95;		/* nominally correct */
3260 }
3261 
3262 /*
3263  * Set the default antenna.
3264  */
3265 void
3266 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3267 {
3268 	struct ath_hal *ah = sc->sc_ah;
3269 
3270 	/* XXX block beacon interrupts */
3271 	ath_hal_setdefantenna(ah, antenna);
3272 	if (sc->sc_defant != antenna)
3273 		sc->sc_stats.ast_ant_defswitch++;
3274 	sc->sc_defant = antenna;
3275 	sc->sc_rxotherant = 0;
3276 }
3277 
3278 static void
3279 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3280 {
3281 	txq->axq_qnum = qnum;
3282 	txq->axq_ac = 0;
3283 	txq->axq_depth = 0;
3284 	txq->axq_aggr_depth = 0;
3285 	txq->axq_intrcnt = 0;
3286 	txq->axq_link = NULL;
3287 	txq->axq_softc = sc;
3288 	TAILQ_INIT(&txq->axq_q);
3289 	TAILQ_INIT(&txq->axq_tidq);
3290 	ATH_TXQ_LOCK_INIT(sc, txq);
3291 }
3292 
3293 /*
3294  * Setup a h/w transmit queue.
3295  */
3296 static struct ath_txq *
3297 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3298 {
3299 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3300 	struct ath_hal *ah = sc->sc_ah;
3301 	HAL_TXQ_INFO qi;
3302 	int qnum;
3303 
3304 	memset(&qi, 0, sizeof(qi));
3305 	qi.tqi_subtype = subtype;
3306 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3307 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3308 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3309 	/*
3310 	 * Enable interrupts only for EOL and DESC conditions.
3311 	 * We mark tx descriptors to receive a DESC interrupt
3312 	 * when a tx queue gets deep; otherwise waiting for the
3313 	 * EOL to reap descriptors.  Note that this is done to
3314 	 * reduce interrupt load and this only defers reaping
3315 	 * descriptors, never transmitting frames.  Aside from
3316 	 * reducing interrupts this also permits more concurrency.
3317 	 * The only potential downside is if the tx queue backs
3318 	 * up in which case the top half of the kernel may backup
3319 	 * due to a lack of tx descriptors.
3320 	 */
3321 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3322 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3323 	if (qnum == -1) {
3324 		/*
3325 		 * NB: don't print a message, this happens
3326 		 * normally on parts with too few tx queues
3327 		 */
3328 		return NULL;
3329 	}
3330 	if (qnum >= N(sc->sc_txq)) {
3331 		device_printf(sc->sc_dev,
3332 			"hal qnum %u out of range, max %zu!\n",
3333 			qnum, N(sc->sc_txq));
3334 		ath_hal_releasetxqueue(ah, qnum);
3335 		return NULL;
3336 	}
3337 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3338 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3339 		sc->sc_txqsetup |= 1<<qnum;
3340 	}
3341 	return &sc->sc_txq[qnum];
3342 #undef N
3343 }
3344 
3345 /*
3346  * Setup a hardware data transmit queue for the specified
3347  * access control.  The hal may not support all requested
3348  * queues in which case it will return a reference to a
3349  * previously setup queue.  We record the mapping from ac's
3350  * to h/w queues for use by ath_tx_start and also track
3351  * the set of h/w queues being used to optimize work in the
3352  * transmit interrupt handler and related routines.
3353  */
3354 static int
3355 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3356 {
3357 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3358 	struct ath_txq *txq;
3359 
3360 	if (ac >= N(sc->sc_ac2q)) {
3361 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3362 			ac, N(sc->sc_ac2q));
3363 		return 0;
3364 	}
3365 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3366 	if (txq != NULL) {
3367 		txq->axq_ac = ac;
3368 		sc->sc_ac2q[ac] = txq;
3369 		return 1;
3370 	} else
3371 		return 0;
3372 #undef N
3373 }
3374 
3375 /*
3376  * Update WME parameters for a transmit queue.
3377  */
3378 static int
3379 ath_txq_update(struct ath_softc *sc, int ac)
3380 {
3381 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3382 #define	ATH_TXOP_TO_US(v)		(v<<5)
3383 	struct ifnet *ifp = sc->sc_ifp;
3384 	struct ieee80211com *ic = ifp->if_l2com;
3385 	struct ath_txq *txq = sc->sc_ac2q[ac];
3386 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3387 	struct ath_hal *ah = sc->sc_ah;
3388 	HAL_TXQ_INFO qi;
3389 
3390 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3391 #ifdef IEEE80211_SUPPORT_TDMA
3392 	if (sc->sc_tdma) {
3393 		/*
3394 		 * AIFS is zero so there's no pre-transmit wait.  The
3395 		 * burst time defines the slot duration and is configured
3396 		 * through net80211.  The QCU is setup to not do post-xmit
3397 		 * back off, lockout all lower-priority QCU's, and fire
3398 		 * off the DMA beacon alert timer which is setup based
3399 		 * on the slot configuration.
3400 		 */
3401 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3402 			      | HAL_TXQ_TXERRINT_ENABLE
3403 			      | HAL_TXQ_TXURNINT_ENABLE
3404 			      | HAL_TXQ_TXEOLINT_ENABLE
3405 			      | HAL_TXQ_DBA_GATED
3406 			      | HAL_TXQ_BACKOFF_DISABLE
3407 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3408 			      ;
3409 		qi.tqi_aifs = 0;
3410 		/* XXX +dbaprep? */
3411 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3412 		qi.tqi_burstTime = qi.tqi_readyTime;
3413 	} else {
3414 #endif
3415 		/*
3416 		 * XXX shouldn't this just use the default flags
3417 		 * used in the previous queue setup?
3418 		 */
3419 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3420 			      | HAL_TXQ_TXERRINT_ENABLE
3421 			      | HAL_TXQ_TXDESCINT_ENABLE
3422 			      | HAL_TXQ_TXURNINT_ENABLE
3423 			      | HAL_TXQ_TXEOLINT_ENABLE
3424 			      ;
3425 		qi.tqi_aifs = wmep->wmep_aifsn;
3426 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3427 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3428 		qi.tqi_readyTime = 0;
3429 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3430 #ifdef IEEE80211_SUPPORT_TDMA
3431 	}
3432 #endif
3433 
3434 	DPRINTF(sc, ATH_DEBUG_RESET,
3435 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3436 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3437 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3438 
3439 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3440 		if_printf(ifp, "unable to update hardware queue "
3441 			"parameters for %s traffic!\n",
3442 			ieee80211_wme_acnames[ac]);
3443 		return 0;
3444 	} else {
3445 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3446 		return 1;
3447 	}
3448 #undef ATH_TXOP_TO_US
3449 #undef ATH_EXPONENT_TO_VALUE
3450 }
3451 
3452 /*
3453  * Callback from the 802.11 layer to update WME parameters.
3454  */
3455 int
3456 ath_wme_update(struct ieee80211com *ic)
3457 {
3458 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3459 
3460 	return !ath_txq_update(sc, WME_AC_BE) ||
3461 	    !ath_txq_update(sc, WME_AC_BK) ||
3462 	    !ath_txq_update(sc, WME_AC_VI) ||
3463 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3464 }
3465 
3466 /*
3467  * Reclaim resources for a setup queue.
3468  */
3469 static void
3470 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3471 {
3472 
3473 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3474 	ATH_TXQ_LOCK_DESTROY(txq);
3475 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3476 }
3477 
3478 /*
3479  * Reclaim all tx queue resources.
3480  */
3481 static void
3482 ath_tx_cleanup(struct ath_softc *sc)
3483 {
3484 	int i;
3485 
3486 	ATH_TXBUF_LOCK_DESTROY(sc);
3487 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3488 		if (ATH_TXQ_SETUP(sc, i))
3489 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3490 }
3491 
3492 /*
3493  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3494  * using the current rates in sc_rixmap.
3495  */
3496 int
3497 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3498 {
3499 	int rix = sc->sc_rixmap[rate];
3500 	/* NB: return lowest rix for invalid rate */
3501 	return (rix == 0xff ? 0 : rix);
3502 }
3503 
3504 static void
3505 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3506     struct ath_buf *bf)
3507 {
3508 	struct ieee80211_node *ni = bf->bf_node;
3509 	struct ifnet *ifp = sc->sc_ifp;
3510 	struct ieee80211com *ic = ifp->if_l2com;
3511 	int sr, lr, pri;
3512 
3513 	if (ts->ts_status == 0) {
3514 		u_int8_t txant = ts->ts_antenna;
3515 		sc->sc_stats.ast_ant_tx[txant]++;
3516 		sc->sc_ant_tx[txant]++;
3517 		if (ts->ts_finaltsi != 0)
3518 			sc->sc_stats.ast_tx_altrate++;
3519 		pri = M_WME_GETAC(bf->bf_m);
3520 		if (pri >= WME_AC_VO)
3521 			ic->ic_wme.wme_hipri_traffic++;
3522 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3523 			ni->ni_inact = ni->ni_inact_reload;
3524 	} else {
3525 		if (ts->ts_status & HAL_TXERR_XRETRY)
3526 			sc->sc_stats.ast_tx_xretries++;
3527 		if (ts->ts_status & HAL_TXERR_FIFO)
3528 			sc->sc_stats.ast_tx_fifoerr++;
3529 		if (ts->ts_status & HAL_TXERR_FILT)
3530 			sc->sc_stats.ast_tx_filtered++;
3531 		if (ts->ts_status & HAL_TXERR_XTXOP)
3532 			sc->sc_stats.ast_tx_xtxop++;
3533 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3534 			sc->sc_stats.ast_tx_timerexpired++;
3535 
3536 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3537 			sc->sc_stats.ast_tx_data_underrun++;
3538 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3539 			sc->sc_stats.ast_tx_delim_underrun++;
3540 
3541 		if (bf->bf_m->m_flags & M_FF)
3542 			sc->sc_stats.ast_ff_txerr++;
3543 	}
3544 	/* XXX when is this valid? */
3545 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3546 		sc->sc_stats.ast_tx_desccfgerr++;
3547 
3548 	sr = ts->ts_shortretry;
3549 	lr = ts->ts_longretry;
3550 	sc->sc_stats.ast_tx_shortretry += sr;
3551 	sc->sc_stats.ast_tx_longretry += lr;
3552 
3553 }
3554 
3555 /*
3556  * The default completion. If fail is 1, this means
3557  * "please don't retry the frame, and just return -1 status
3558  * to the net80211 stack.
3559  */
3560 void
3561 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3562 {
3563 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3564 	int st;
3565 
3566 	if (fail == 1)
3567 		st = -1;
3568 	else
3569 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3570 		    ts->ts_status : HAL_TXERR_XRETRY;
3571 
3572 	if (bf->bf_state.bfs_dobaw)
3573 		device_printf(sc->sc_dev,
3574 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3575 		    __func__,
3576 		    bf,
3577 		    SEQNO(bf->bf_state.bfs_seqno));
3578 	if (bf->bf_next != NULL)
3579 		device_printf(sc->sc_dev,
3580 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3581 		    __func__,
3582 		    bf,
3583 		    SEQNO(bf->bf_state.bfs_seqno));
3584 
3585 	/*
3586 	 * Check if the node software queue is empty; if so
3587 	 * then clear the TIM.
3588 	 *
3589 	 * This needs to be done before the buffer is freed as
3590 	 * otherwise the node reference will have been released
3591 	 * and the node may not actually exist any longer.
3592 	 *
3593 	 * XXX I don't like this belonging here, but it's cleaner
3594 	 * to do it here right now then all the other places
3595 	 * where ath_tx_default_comp() is called.
3596 	 *
3597 	 * XXX TODO: during drain, ensure that the callback is
3598 	 * being called so we get a chance to update the TIM.
3599 	 */
3600 	if (bf->bf_node)
3601 		ath_tx_update_tim(sc, bf->bf_node, 0);
3602 
3603 	/*
3604 	 * Do any tx complete callback.  Note this must
3605 	 * be done before releasing the node reference.
3606 	 * This will free the mbuf, release the net80211
3607 	 * node and recycle the ath_buf.
3608 	 */
3609 	ath_tx_freebuf(sc, bf, st);
3610 }
3611 
3612 /*
3613  * Update rate control with the given completion status.
3614  */
3615 void
3616 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3617     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3618     int nframes, int nbad)
3619 {
3620 	struct ath_node *an;
3621 
3622 	/* Only for unicast frames */
3623 	if (ni == NULL)
3624 		return;
3625 
3626 	an = ATH_NODE(ni);
3627 	ATH_NODE_UNLOCK_ASSERT(an);
3628 
3629 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3630 		ATH_NODE_LOCK(an);
3631 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3632 		ATH_NODE_UNLOCK(an);
3633 	}
3634 }
3635 
3636 /*
3637  * Update the busy status of the last frame on the free list.
3638  * When doing TDMA, the busy flag tracks whether the hardware
3639  * currently points to this buffer or not, and thus gated DMA
3640  * may restart by re-reading the last descriptor in this
3641  * buffer.
3642  *
3643  * This should be called in the completion function once one
3644  * of the buffers has been used.
3645  */
3646 static void
3647 ath_tx_update_busy(struct ath_softc *sc)
3648 {
3649 	struct ath_buf *last;
3650 
3651 	/*
3652 	 * Since the last frame may still be marked
3653 	 * as ATH_BUF_BUSY, unmark it here before
3654 	 * finishing the frame processing.
3655 	 * Since we've completed a frame (aggregate
3656 	 * or otherwise), the hardware has moved on
3657 	 * and is no longer referencing the previous
3658 	 * descriptor.
3659 	 */
3660 	ATH_TXBUF_LOCK_ASSERT(sc);
3661 	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3662 	if (last != NULL)
3663 		last->bf_flags &= ~ATH_BUF_BUSY;
3664 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3665 	if (last != NULL)
3666 		last->bf_flags &= ~ATH_BUF_BUSY;
3667 }
3668 
3669 /*
3670  * Process the completion of the given buffer.
3671  *
3672  * This calls the rate control update and then the buffer completion.
3673  * This will either free the buffer or requeue it.  In any case, the
3674  * bf pointer should be treated as invalid after this function is called.
3675  */
3676 void
3677 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3678     struct ath_tx_status *ts, struct ath_buf *bf)
3679 {
3680 	struct ieee80211_node *ni = bf->bf_node;
3681 	struct ath_node *an = NULL;
3682 
3683 	ATH_TXQ_UNLOCK_ASSERT(txq);
3684 
3685 	/* If unicast frame, update general statistics */
3686 	if (ni != NULL) {
3687 		an = ATH_NODE(ni);
3688 		/* update statistics */
3689 		ath_tx_update_stats(sc, ts, bf);
3690 	}
3691 
3692 	/*
3693 	 * Call the completion handler.
3694 	 * The completion handler is responsible for
3695 	 * calling the rate control code.
3696 	 *
3697 	 * Frames with no completion handler get the
3698 	 * rate control code called here.
3699 	 */
3700 	if (bf->bf_comp == NULL) {
3701 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3702 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3703 			/*
3704 			 * XXX assume this isn't an aggregate
3705 			 * frame.
3706 			 */
3707 			ath_tx_update_ratectrl(sc, ni,
3708 			     bf->bf_state.bfs_rc, ts,
3709 			    bf->bf_state.bfs_pktlen, 1,
3710 			    (ts->ts_status == 0 ? 0 : 1));
3711 		}
3712 		ath_tx_default_comp(sc, bf, 0);
3713 	} else
3714 		bf->bf_comp(sc, bf, 0);
3715 }
3716 
3717 
3718 
3719 /*
3720  * Process completed xmit descriptors from the specified queue.
3721  * Kick the packet scheduler if needed. This can occur from this
3722  * particular task.
3723  */
3724 static int
3725 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3726 {
3727 	struct ath_hal *ah = sc->sc_ah;
3728 	struct ath_buf *bf;
3729 	struct ath_desc *ds;
3730 	struct ath_tx_status *ts;
3731 	struct ieee80211_node *ni;
3732 #ifdef	IEEE80211_SUPPORT_SUPERG
3733 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3734 #endif	/* IEEE80211_SUPPORT_SUPERG */
3735 	int nacked;
3736 	HAL_STATUS status;
3737 
3738 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3739 		__func__, txq->axq_qnum,
3740 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3741 		txq->axq_link);
3742 
3743 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3744 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3745 	    txq->axq_qnum,
3746 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3747 	    txq->axq_link,
3748 	    txq->axq_depth);
3749 
3750 	nacked = 0;
3751 	for (;;) {
3752 		ATH_TXQ_LOCK(txq);
3753 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3754 		bf = TAILQ_FIRST(&txq->axq_q);
3755 		if (bf == NULL) {
3756 			ATH_TXQ_UNLOCK(txq);
3757 			break;
3758 		}
3759 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3760 		ts = &bf->bf_status.ds_txstat;
3761 
3762 		status = ath_hal_txprocdesc(ah, ds, ts);
3763 #ifdef ATH_DEBUG
3764 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3765 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3766 			    status == HAL_OK);
3767 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3768 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3769 			    status == HAL_OK);
3770 #endif
3771 
3772 		if (status == HAL_EINPROGRESS) {
3773 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3774 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3775 			    txq->axq_qnum, bf, ds);
3776 			ATH_TXQ_UNLOCK(txq);
3777 			break;
3778 		}
3779 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3780 #ifdef IEEE80211_SUPPORT_TDMA
3781 		if (txq->axq_depth > 0) {
3782 			/*
3783 			 * More frames follow.  Mark the buffer busy
3784 			 * so it's not re-used while the hardware may
3785 			 * still re-read the link field in the descriptor.
3786 			 *
3787 			 * Use the last buffer in an aggregate as that
3788 			 * is where the hardware may be - intermediate
3789 			 * descriptors won't be "busy".
3790 			 */
3791 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3792 		} else
3793 #else
3794 		if (txq->axq_depth == 0)
3795 #endif
3796 			txq->axq_link = NULL;
3797 		if (bf->bf_state.bfs_aggr)
3798 			txq->axq_aggr_depth--;
3799 
3800 		ni = bf->bf_node;
3801 
3802 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
3803 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
3804 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
3805 		/*
3806 		 * If unicast frame was ack'd update RSSI,
3807 		 * including the last rx time used to
3808 		 * workaround phantom bmiss interrupts.
3809 		 */
3810 		if (ni != NULL && ts->ts_status == 0 &&
3811 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3812 			nacked++;
3813 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3814 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3815 				ts->ts_rssi);
3816 		}
3817 		ATH_TXQ_UNLOCK(txq);
3818 
3819 		/*
3820 		 * Update statistics and call completion
3821 		 */
3822 		ath_tx_process_buf_completion(sc, txq, ts, bf);
3823 
3824 		/* XXX at this point, bf and ni may be totally invalid */
3825 	}
3826 #ifdef IEEE80211_SUPPORT_SUPERG
3827 	/*
3828 	 * Flush fast-frame staging queue when traffic slows.
3829 	 */
3830 	if (txq->axq_depth <= 1)
3831 		ieee80211_ff_flush(ic, txq->axq_ac);
3832 #endif
3833 
3834 	/* Kick the TXQ scheduler */
3835 	if (dosched) {
3836 		ATH_TXQ_LOCK(txq);
3837 		ath_txq_sched(sc, txq);
3838 		ATH_TXQ_UNLOCK(txq);
3839 	}
3840 
3841 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3842 	    "ath_tx_processq: txq=%u: done",
3843 	    txq->axq_qnum);
3844 
3845 	return nacked;
3846 }
3847 
3848 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3849 
3850 /*
3851  * Deferred processing of transmit interrupt; special-cased
3852  * for a single hardware transmit queue (e.g. 5210 and 5211).
3853  */
3854 static void
3855 ath_tx_proc_q0(void *arg, int npending)
3856 {
3857 	struct ath_softc *sc = arg;
3858 	struct ifnet *ifp = sc->sc_ifp;
3859 	uint32_t txqs;
3860 
3861 	ATH_PCU_LOCK(sc);
3862 	sc->sc_txproc_cnt++;
3863 	txqs = sc->sc_txq_active;
3864 	sc->sc_txq_active &= ~txqs;
3865 	ATH_PCU_UNLOCK(sc);
3866 
3867 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3868 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
3869 
3870 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3871 		/* XXX why is lastrx updated in tx code? */
3872 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3873 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3874 		ath_tx_processq(sc, sc->sc_cabq, 1);
3875 	IF_LOCK(&ifp->if_snd);
3876 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3877 	IF_UNLOCK(&ifp->if_snd);
3878 	sc->sc_wd_timer = 0;
3879 
3880 	if (sc->sc_softled)
3881 		ath_led_event(sc, sc->sc_txrix);
3882 
3883 	ATH_PCU_LOCK(sc);
3884 	sc->sc_txproc_cnt--;
3885 	ATH_PCU_UNLOCK(sc);
3886 
3887 	ath_tx_kick(sc);
3888 }
3889 
3890 /*
3891  * Deferred processing of transmit interrupt; special-cased
3892  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3893  */
3894 static void
3895 ath_tx_proc_q0123(void *arg, int npending)
3896 {
3897 	struct ath_softc *sc = arg;
3898 	struct ifnet *ifp = sc->sc_ifp;
3899 	int nacked;
3900 	uint32_t txqs;
3901 
3902 	ATH_PCU_LOCK(sc);
3903 	sc->sc_txproc_cnt++;
3904 	txqs = sc->sc_txq_active;
3905 	sc->sc_txq_active &= ~txqs;
3906 	ATH_PCU_UNLOCK(sc);
3907 
3908 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3909 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
3910 
3911 	/*
3912 	 * Process each active queue.
3913 	 */
3914 	nacked = 0;
3915 	if (TXQACTIVE(txqs, 0))
3916 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3917 	if (TXQACTIVE(txqs, 1))
3918 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3919 	if (TXQACTIVE(txqs, 2))
3920 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3921 	if (TXQACTIVE(txqs, 3))
3922 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3923 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3924 		ath_tx_processq(sc, sc->sc_cabq, 1);
3925 	if (nacked)
3926 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3927 
3928 	IF_LOCK(&ifp->if_snd);
3929 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3930 	IF_UNLOCK(&ifp->if_snd);
3931 	sc->sc_wd_timer = 0;
3932 
3933 	if (sc->sc_softled)
3934 		ath_led_event(sc, sc->sc_txrix);
3935 
3936 	ATH_PCU_LOCK(sc);
3937 	sc->sc_txproc_cnt--;
3938 	ATH_PCU_UNLOCK(sc);
3939 
3940 	ath_tx_kick(sc);
3941 }
3942 
3943 /*
3944  * Deferred processing of transmit interrupt.
3945  */
3946 static void
3947 ath_tx_proc(void *arg, int npending)
3948 {
3949 	struct ath_softc *sc = arg;
3950 	struct ifnet *ifp = sc->sc_ifp;
3951 	int i, nacked;
3952 	uint32_t txqs;
3953 
3954 	ATH_PCU_LOCK(sc);
3955 	sc->sc_txproc_cnt++;
3956 	txqs = sc->sc_txq_active;
3957 	sc->sc_txq_active &= ~txqs;
3958 	ATH_PCU_UNLOCK(sc);
3959 
3960 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
3961 
3962 	/*
3963 	 * Process each active queue.
3964 	 */
3965 	nacked = 0;
3966 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3967 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3968 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3969 	if (nacked)
3970 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3971 
3972 	/* XXX check this inside of IF_LOCK? */
3973 	IF_LOCK(&ifp->if_snd);
3974 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3975 	IF_UNLOCK(&ifp->if_snd);
3976 	sc->sc_wd_timer = 0;
3977 
3978 	if (sc->sc_softled)
3979 		ath_led_event(sc, sc->sc_txrix);
3980 
3981 	ATH_PCU_LOCK(sc);
3982 	sc->sc_txproc_cnt--;
3983 	ATH_PCU_UNLOCK(sc);
3984 
3985 	ath_tx_kick(sc);
3986 }
3987 #undef	TXQACTIVE
3988 
3989 /*
3990  * Deferred processing of TXQ rescheduling.
3991  */
3992 static void
3993 ath_txq_sched_tasklet(void *arg, int npending)
3994 {
3995 	struct ath_softc *sc = arg;
3996 	int i;
3997 
3998 	/* XXX is skipping ok? */
3999 	ATH_PCU_LOCK(sc);
4000 #if 0
4001 	if (sc->sc_inreset_cnt > 0) {
4002 		device_printf(sc->sc_dev,
4003 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4004 		ATH_PCU_UNLOCK(sc);
4005 		return;
4006 	}
4007 #endif
4008 	sc->sc_txproc_cnt++;
4009 	ATH_PCU_UNLOCK(sc);
4010 
4011 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4012 		if (ATH_TXQ_SETUP(sc, i)) {
4013 			ATH_TXQ_LOCK(&sc->sc_txq[i]);
4014 			ath_txq_sched(sc, &sc->sc_txq[i]);
4015 			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4016 		}
4017 	}
4018 
4019 	ATH_PCU_LOCK(sc);
4020 	sc->sc_txproc_cnt--;
4021 	ATH_PCU_UNLOCK(sc);
4022 }
4023 
4024 void
4025 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4026 {
4027 
4028 	ATH_TXBUF_LOCK_ASSERT(sc);
4029 
4030 	if (bf->bf_flags & ATH_BUF_MGMT)
4031 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4032 	else {
4033 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4034 		sc->sc_txbuf_cnt++;
4035 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4036 			device_printf(sc->sc_dev,
4037 			    "%s: sc_txbuf_cnt > %d?\n",
4038 			    __func__,
4039 			    ath_txbuf);
4040 			sc->sc_txbuf_cnt = ath_txbuf;
4041 		}
4042 	}
4043 }
4044 
4045 void
4046 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4047 {
4048 
4049 	ATH_TXBUF_LOCK_ASSERT(sc);
4050 
4051 	if (bf->bf_flags & ATH_BUF_MGMT)
4052 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4053 	else {
4054 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4055 		sc->sc_txbuf_cnt++;
4056 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4057 			device_printf(sc->sc_dev,
4058 			    "%s: sc_txbuf_cnt > %d?\n",
4059 			    __func__,
4060 			    ATH_TXBUF);
4061 			sc->sc_txbuf_cnt = ATH_TXBUF;
4062 		}
4063 	}
4064 }
4065 
4066 /*
4067  * Return a buffer to the pool and update the 'busy' flag on the
4068  * previous 'tail' entry.
4069  *
4070  * This _must_ only be called when the buffer is involved in a completed
4071  * TX. The logic is that if it was part of an active TX, the previous
4072  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4073  * for restart (eg for TDMA.)
4074  *
4075  * The caller must free the mbuf and recycle the node reference.
4076  */
4077 void
4078 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4079 {
4080 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4081 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
4082 
4083 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4084 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4085 
4086 	ATH_TXBUF_LOCK(sc);
4087 	ath_tx_update_busy(sc);
4088 	ath_returnbuf_tail(sc, bf);
4089 	ATH_TXBUF_UNLOCK(sc);
4090 }
4091 
4092 /*
4093  * This is currently used by ath_tx_draintxq() and
4094  * ath_tx_tid_free_pkts().
4095  *
4096  * It recycles a single ath_buf.
4097  */
4098 void
4099 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4100 {
4101 	struct ieee80211_node *ni = bf->bf_node;
4102 	struct mbuf *m0 = bf->bf_m;
4103 
4104 	bf->bf_node = NULL;
4105 	bf->bf_m = NULL;
4106 
4107 	/* Free the buffer, it's not needed any longer */
4108 	ath_freebuf(sc, bf);
4109 
4110 	if (ni != NULL) {
4111 		/*
4112 		 * Do any callback and reclaim the node reference.
4113 		 */
4114 		if (m0->m_flags & M_TXCB)
4115 			ieee80211_process_callback(ni, m0, status);
4116 		ieee80211_free_node(ni);
4117 	}
4118 	m_freem(m0);
4119 
4120 	/*
4121 	 * XXX the buffer used to be freed -after-, but the DMA map was
4122 	 * freed where ath_freebuf() now is. I've no idea what this
4123 	 * will do.
4124 	 */
4125 }
4126 
4127 void
4128 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4129 {
4130 #ifdef ATH_DEBUG
4131 	struct ath_hal *ah = sc->sc_ah;
4132 #endif
4133 	struct ath_buf *bf;
4134 	u_int ix;
4135 
4136 	/*
4137 	 * NB: this assumes output has been stopped and
4138 	 *     we do not need to block ath_tx_proc
4139 	 */
4140 	ATH_TXBUF_LOCK(sc);
4141 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4142 	if (bf != NULL)
4143 		bf->bf_flags &= ~ATH_BUF_BUSY;
4144 	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
4145 	if (bf != NULL)
4146 		bf->bf_flags &= ~ATH_BUF_BUSY;
4147 	ATH_TXBUF_UNLOCK(sc);
4148 
4149 	for (ix = 0;; ix++) {
4150 		ATH_TXQ_LOCK(txq);
4151 		bf = TAILQ_FIRST(&txq->axq_q);
4152 		if (bf == NULL) {
4153 			txq->axq_link = NULL;
4154 			/*
4155 			 * There's currently no flag that indicates
4156 			 * a buffer is on the FIFO.  So until that
4157 			 * occurs, just clear the FIFO counter here.
4158 			 *
4159 			 * Yes, this means that if something in parallel
4160 			 * is pushing things onto this TXQ and pushing
4161 			 * _that_ into the hardware, things will get
4162 			 * very fruity very quickly.
4163 			 */
4164 			txq->axq_fifo_depth = 0;
4165 			ATH_TXQ_UNLOCK(txq);
4166 			break;
4167 		}
4168 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4169 		if (bf->bf_state.bfs_aggr)
4170 			txq->axq_aggr_depth--;
4171 #ifdef ATH_DEBUG
4172 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4173 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4174 			int status = 0;
4175 
4176 			/*
4177 			 * EDMA operation has a TX completion FIFO
4178 			 * separate from the TX descriptor, so this
4179 			 * method of checking the "completion" status
4180 			 * is wrong.
4181 			 */
4182 			if (! sc->sc_isedma) {
4183 				status = (ath_hal_txprocdesc(ah,
4184 				    bf->bf_lastds,
4185 				    &bf->bf_status.ds_txstat) == HAL_OK);
4186 			}
4187 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4188 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4189 			    bf->bf_m->m_len, 0, -1);
4190 		}
4191 #endif /* ATH_DEBUG */
4192 		/*
4193 		 * Since we're now doing magic in the completion
4194 		 * functions, we -must- call it for aggregation
4195 		 * destinations or BAW tracking will get upset.
4196 		 */
4197 		/*
4198 		 * Clear ATH_BUF_BUSY; the completion handler
4199 		 * will free the buffer.
4200 		 */
4201 		ATH_TXQ_UNLOCK(txq);
4202 		bf->bf_flags &= ~ATH_BUF_BUSY;
4203 		if (bf->bf_comp)
4204 			bf->bf_comp(sc, bf, 1);
4205 		else
4206 			ath_tx_default_comp(sc, bf, 1);
4207 	}
4208 
4209 	/*
4210 	 * Drain software queued frames which are on
4211 	 * active TIDs.
4212 	 */
4213 	ath_tx_txq_drain(sc, txq);
4214 }
4215 
4216 static void
4217 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4218 {
4219 	struct ath_hal *ah = sc->sc_ah;
4220 
4221 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4222 	    __func__, txq->axq_qnum,
4223 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4224 	    txq->axq_link);
4225 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4226 }
4227 
4228 int
4229 ath_stoptxdma(struct ath_softc *sc)
4230 {
4231 	struct ath_hal *ah = sc->sc_ah;
4232 	int i;
4233 
4234 	/* XXX return value */
4235 	if (sc->sc_invalid)
4236 		return 0;
4237 
4238 	if (!sc->sc_invalid) {
4239 		/* don't touch the hardware if marked invalid */
4240 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4241 		    __func__, sc->sc_bhalq,
4242 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4243 		    NULL);
4244 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4245 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4246 			if (ATH_TXQ_SETUP(sc, i))
4247 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4248 	}
4249 
4250 	return 1;
4251 }
4252 
4253 /*
4254  * Drain the transmit queues and reclaim resources.
4255  */
4256 void
4257 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4258 {
4259 #ifdef	ATH_DEBUG
4260 	struct ath_hal *ah = sc->sc_ah;
4261 #endif
4262 	struct ifnet *ifp = sc->sc_ifp;
4263 	int i;
4264 
4265 	(void) ath_stoptxdma(sc);
4266 
4267 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4268 		/*
4269 		 * XXX TODO: should we just handle the completed TX frames
4270 		 * here, whether or not the reset is a full one or not?
4271 		 */
4272 		if (ATH_TXQ_SETUP(sc, i)) {
4273 			if (reset_type == ATH_RESET_NOLOSS)
4274 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4275 			else
4276 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4277 		}
4278 	}
4279 #ifdef ATH_DEBUG
4280 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4281 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4282 		if (bf != NULL && bf->bf_m != NULL) {
4283 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4284 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4285 				    &bf->bf_status.ds_txstat) == HAL_OK);
4286 			ieee80211_dump_pkt(ifp->if_l2com,
4287 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4288 			    0, -1);
4289 		}
4290 	}
4291 #endif /* ATH_DEBUG */
4292 	IF_LOCK(&ifp->if_snd);
4293 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4294 	IF_UNLOCK(&ifp->if_snd);
4295 	sc->sc_wd_timer = 0;
4296 }
4297 
4298 /*
4299  * Update internal state after a channel change.
4300  */
4301 static void
4302 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4303 {
4304 	enum ieee80211_phymode mode;
4305 
4306 	/*
4307 	 * Change channels and update the h/w rate map
4308 	 * if we're switching; e.g. 11a to 11b/g.
4309 	 */
4310 	mode = ieee80211_chan2mode(chan);
4311 	if (mode != sc->sc_curmode)
4312 		ath_setcurmode(sc, mode);
4313 	sc->sc_curchan = chan;
4314 }
4315 
4316 /*
4317  * Set/change channels.  If the channel is really being changed,
4318  * it's done by resetting the chip.  To accomplish this we must
4319  * first cleanup any pending DMA, then restart stuff after a la
4320  * ath_init.
4321  */
4322 static int
4323 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4324 {
4325 	struct ifnet *ifp = sc->sc_ifp;
4326 	struct ieee80211com *ic = ifp->if_l2com;
4327 	struct ath_hal *ah = sc->sc_ah;
4328 	int ret = 0;
4329 
4330 	/* Treat this as an interface reset */
4331 	ATH_PCU_UNLOCK_ASSERT(sc);
4332 	ATH_UNLOCK_ASSERT(sc);
4333 
4334 	/* (Try to) stop TX/RX from occuring */
4335 	taskqueue_block(sc->sc_tq);
4336 
4337 	ATH_PCU_LOCK(sc);
4338 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4339 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4340 	if (ath_reset_grablock(sc, 1) == 0) {
4341 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4342 		    __func__);
4343 	}
4344 	ATH_PCU_UNLOCK(sc);
4345 
4346 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4347 	    __func__, ieee80211_chan2ieee(ic, chan),
4348 	    chan->ic_freq, chan->ic_flags);
4349 	if (chan != sc->sc_curchan) {
4350 		HAL_STATUS status;
4351 		/*
4352 		 * To switch channels clear any pending DMA operations;
4353 		 * wait long enough for the RX fifo to drain, reset the
4354 		 * hardware at the new frequency, and then re-enable
4355 		 * the relevant bits of the h/w.
4356 		 */
4357 #if 0
4358 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4359 #endif
4360 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4361 		/*
4362 		 * First, handle completed TX/RX frames.
4363 		 */
4364 		ath_rx_flush(sc);
4365 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4366 		/*
4367 		 * Next, flush the non-scheduled frames.
4368 		 */
4369 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4370 
4371 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4372 			if_printf(ifp, "%s: unable to reset "
4373 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4374 			    __func__, ieee80211_chan2ieee(ic, chan),
4375 			    chan->ic_freq, chan->ic_flags, status);
4376 			ret = EIO;
4377 			goto finish;
4378 		}
4379 		sc->sc_diversity = ath_hal_getdiversity(ah);
4380 
4381 		/* Let DFS at it in case it's a DFS channel */
4382 		ath_dfs_radar_enable(sc, chan);
4383 
4384 		/*
4385 		 * Re-enable rx framework.
4386 		 */
4387 		if (ath_startrecv(sc) != 0) {
4388 			if_printf(ifp, "%s: unable to restart recv logic\n",
4389 			    __func__);
4390 			ret = EIO;
4391 			goto finish;
4392 		}
4393 
4394 		/*
4395 		 * Change channels and update the h/w rate map
4396 		 * if we're switching; e.g. 11a to 11b/g.
4397 		 */
4398 		ath_chan_change(sc, chan);
4399 
4400 		/*
4401 		 * Reset clears the beacon timers; reset them
4402 		 * here if needed.
4403 		 */
4404 		if (sc->sc_beacons) {		/* restart beacons */
4405 #ifdef IEEE80211_SUPPORT_TDMA
4406 			if (sc->sc_tdma)
4407 				ath_tdma_config(sc, NULL);
4408 			else
4409 #endif
4410 			ath_beacon_config(sc, NULL);
4411 		}
4412 
4413 		/*
4414 		 * Re-enable interrupts.
4415 		 */
4416 #if 0
4417 		ath_hal_intrset(ah, sc->sc_imask);
4418 #endif
4419 	}
4420 
4421 finish:
4422 	ATH_PCU_LOCK(sc);
4423 	sc->sc_inreset_cnt--;
4424 	/* XXX only do this if sc_inreset_cnt == 0? */
4425 	ath_hal_intrset(ah, sc->sc_imask);
4426 	ATH_PCU_UNLOCK(sc);
4427 
4428 	IF_LOCK(&ifp->if_snd);
4429 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4430 	IF_UNLOCK(&ifp->if_snd);
4431 	ath_txrx_start(sc);
4432 	/* XXX ath_start? */
4433 
4434 	return ret;
4435 }
4436 
4437 /*
4438  * Periodically recalibrate the PHY to account
4439  * for temperature/environment changes.
4440  */
4441 static void
4442 ath_calibrate(void *arg)
4443 {
4444 	struct ath_softc *sc = arg;
4445 	struct ath_hal *ah = sc->sc_ah;
4446 	struct ifnet *ifp = sc->sc_ifp;
4447 	struct ieee80211com *ic = ifp->if_l2com;
4448 	HAL_BOOL longCal, isCalDone = AH_TRUE;
4449 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4450 	int nextcal;
4451 
4452 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4453 		goto restart;
4454 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4455 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4456 	if (sc->sc_doresetcal)
4457 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4458 
4459 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4460 	if (aniCal) {
4461 		sc->sc_stats.ast_ani_cal++;
4462 		sc->sc_lastani = ticks;
4463 		ath_hal_ani_poll(ah, sc->sc_curchan);
4464 	}
4465 
4466 	if (longCal) {
4467 		sc->sc_stats.ast_per_cal++;
4468 		sc->sc_lastlongcal = ticks;
4469 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4470 			/*
4471 			 * Rfgain is out of bounds, reset the chip
4472 			 * to load new gain values.
4473 			 */
4474 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4475 				"%s: rfgain change\n", __func__);
4476 			sc->sc_stats.ast_per_rfgain++;
4477 			sc->sc_resetcal = 0;
4478 			sc->sc_doresetcal = AH_TRUE;
4479 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4480 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4481 			return;
4482 		}
4483 		/*
4484 		 * If this long cal is after an idle period, then
4485 		 * reset the data collection state so we start fresh.
4486 		 */
4487 		if (sc->sc_resetcal) {
4488 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4489 			sc->sc_lastcalreset = ticks;
4490 			sc->sc_lastshortcal = ticks;
4491 			sc->sc_resetcal = 0;
4492 			sc->sc_doresetcal = AH_TRUE;
4493 		}
4494 	}
4495 
4496 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4497 	if (shortCal || longCal) {
4498 		isCalDone = AH_FALSE;
4499 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4500 			if (longCal) {
4501 				/*
4502 				 * Calibrate noise floor data again in case of change.
4503 				 */
4504 				ath_hal_process_noisefloor(ah);
4505 			}
4506 		} else {
4507 			DPRINTF(sc, ATH_DEBUG_ANY,
4508 				"%s: calibration of channel %u failed\n",
4509 				__func__, sc->sc_curchan->ic_freq);
4510 			sc->sc_stats.ast_per_calfail++;
4511 		}
4512 		if (shortCal)
4513 			sc->sc_lastshortcal = ticks;
4514 	}
4515 	if (!isCalDone) {
4516 restart:
4517 		/*
4518 		 * Use a shorter interval to potentially collect multiple
4519 		 * data samples required to complete calibration.  Once
4520 		 * we're told the work is done we drop back to a longer
4521 		 * interval between requests.  We're more aggressive doing
4522 		 * work when operating as an AP to improve operation right
4523 		 * after startup.
4524 		 */
4525 		sc->sc_lastshortcal = ticks;
4526 		nextcal = ath_shortcalinterval*hz/1000;
4527 		if (sc->sc_opmode != HAL_M_HOSTAP)
4528 			nextcal *= 10;
4529 		sc->sc_doresetcal = AH_TRUE;
4530 	} else {
4531 		/* nextcal should be the shortest time for next event */
4532 		nextcal = ath_longcalinterval*hz;
4533 		if (sc->sc_lastcalreset == 0)
4534 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4535 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4536 			sc->sc_resetcal = 1;	/* setup reset next trip */
4537 		sc->sc_doresetcal = AH_FALSE;
4538 	}
4539 	/* ANI calibration may occur more often than short/long/resetcal */
4540 	if (ath_anicalinterval > 0)
4541 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4542 
4543 	if (nextcal != 0) {
4544 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4545 		    __func__, nextcal, isCalDone ? "" : "!");
4546 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4547 	} else {
4548 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4549 		    __func__);
4550 		/* NB: don't rearm timer */
4551 	}
4552 }
4553 
4554 static void
4555 ath_scan_start(struct ieee80211com *ic)
4556 {
4557 	struct ifnet *ifp = ic->ic_ifp;
4558 	struct ath_softc *sc = ifp->if_softc;
4559 	struct ath_hal *ah = sc->sc_ah;
4560 	u_int32_t rfilt;
4561 
4562 	/* XXX calibration timer? */
4563 
4564 	ATH_LOCK(sc);
4565 	sc->sc_scanning = 1;
4566 	sc->sc_syncbeacon = 0;
4567 	rfilt = ath_calcrxfilter(sc);
4568 	ATH_UNLOCK(sc);
4569 
4570 	ATH_PCU_LOCK(sc);
4571 	ath_hal_setrxfilter(ah, rfilt);
4572 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4573 	ATH_PCU_UNLOCK(sc);
4574 
4575 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4576 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4577 }
4578 
4579 static void
4580 ath_scan_end(struct ieee80211com *ic)
4581 {
4582 	struct ifnet *ifp = ic->ic_ifp;
4583 	struct ath_softc *sc = ifp->if_softc;
4584 	struct ath_hal *ah = sc->sc_ah;
4585 	u_int32_t rfilt;
4586 
4587 	ATH_LOCK(sc);
4588 	sc->sc_scanning = 0;
4589 	rfilt = ath_calcrxfilter(sc);
4590 	ATH_UNLOCK(sc);
4591 
4592 	ATH_PCU_LOCK(sc);
4593 	ath_hal_setrxfilter(ah, rfilt);
4594 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4595 
4596 	ath_hal_process_noisefloor(ah);
4597 	ATH_PCU_UNLOCK(sc);
4598 
4599 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4600 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4601 		 sc->sc_curaid);
4602 }
4603 
4604 #ifdef	ATH_ENABLE_11N
4605 /*
4606  * For now, just do a channel change.
4607  *
4608  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4609  * control state and resetting the hardware without dropping frames out
4610  * of the queue.
4611  *
4612  * The unfortunate trouble here is making absolutely sure that the
4613  * channel width change has propagated enough so the hardware
4614  * absolutely isn't handed bogus frames for it's current operating
4615  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4616  * does occur in parallel, we need to make certain we've blocked
4617  * any further ongoing TX (and RX, that can cause raw TX)
4618  * before we do this.
4619  */
4620 static void
4621 ath_update_chw(struct ieee80211com *ic)
4622 {
4623 	struct ifnet *ifp = ic->ic_ifp;
4624 	struct ath_softc *sc = ifp->if_softc;
4625 
4626 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4627 	ath_set_channel(ic);
4628 }
4629 #endif	/* ATH_ENABLE_11N */
4630 
4631 static void
4632 ath_set_channel(struct ieee80211com *ic)
4633 {
4634 	struct ifnet *ifp = ic->ic_ifp;
4635 	struct ath_softc *sc = ifp->if_softc;
4636 
4637 	(void) ath_chan_set(sc, ic->ic_curchan);
4638 	/*
4639 	 * If we are returning to our bss channel then mark state
4640 	 * so the next recv'd beacon's tsf will be used to sync the
4641 	 * beacon timers.  Note that since we only hear beacons in
4642 	 * sta/ibss mode this has no effect in other operating modes.
4643 	 */
4644 	ATH_LOCK(sc);
4645 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4646 		sc->sc_syncbeacon = 1;
4647 	ATH_UNLOCK(sc);
4648 }
4649 
4650 /*
4651  * Walk the vap list and check if there any vap's in RUN state.
4652  */
4653 static int
4654 ath_isanyrunningvaps(struct ieee80211vap *this)
4655 {
4656 	struct ieee80211com *ic = this->iv_ic;
4657 	struct ieee80211vap *vap;
4658 
4659 	IEEE80211_LOCK_ASSERT(ic);
4660 
4661 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4662 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4663 			return 1;
4664 	}
4665 	return 0;
4666 }
4667 
4668 static int
4669 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4670 {
4671 	struct ieee80211com *ic = vap->iv_ic;
4672 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4673 	struct ath_vap *avp = ATH_VAP(vap);
4674 	struct ath_hal *ah = sc->sc_ah;
4675 	struct ieee80211_node *ni = NULL;
4676 	int i, error, stamode;
4677 	u_int32_t rfilt;
4678 	int csa_run_transition = 0;
4679 	static const HAL_LED_STATE leds[] = {
4680 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4681 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4682 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4683 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4684 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4685 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4686 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4687 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4688 	};
4689 
4690 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4691 		ieee80211_state_name[vap->iv_state],
4692 		ieee80211_state_name[nstate]);
4693 
4694 	/*
4695 	 * net80211 _should_ have the comlock asserted at this point.
4696 	 * There are some comments around the calls to vap->iv_newstate
4697 	 * which indicate that it (newstate) may end up dropping the
4698 	 * lock.  This and the subsequent lock assert check after newstate
4699 	 * are an attempt to catch these and figure out how/why.
4700 	 */
4701 	IEEE80211_LOCK_ASSERT(ic);
4702 
4703 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4704 		csa_run_transition = 1;
4705 
4706 	callout_drain(&sc->sc_cal_ch);
4707 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4708 
4709 	if (nstate == IEEE80211_S_SCAN) {
4710 		/*
4711 		 * Scanning: turn off beacon miss and don't beacon.
4712 		 * Mark beacon state so when we reach RUN state we'll
4713 		 * [re]setup beacons.  Unblock the task q thread so
4714 		 * deferred interrupt processing is done.
4715 		 */
4716 		ath_hal_intrset(ah,
4717 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4718 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4719 		sc->sc_beacons = 0;
4720 		taskqueue_unblock(sc->sc_tq);
4721 	}
4722 
4723 	ni = ieee80211_ref_node(vap->iv_bss);
4724 	rfilt = ath_calcrxfilter(sc);
4725 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4726 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4727 		   vap->iv_opmode == IEEE80211_M_IBSS);
4728 	if (stamode && nstate == IEEE80211_S_RUN) {
4729 		sc->sc_curaid = ni->ni_associd;
4730 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4731 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4732 	}
4733 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4734 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4735 	ath_hal_setrxfilter(ah, rfilt);
4736 
4737 	/* XXX is this to restore keycache on resume? */
4738 	if (vap->iv_opmode != IEEE80211_M_STA &&
4739 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4740 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4741 			if (ath_hal_keyisvalid(ah, i))
4742 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4743 	}
4744 
4745 	/*
4746 	 * Invoke the parent method to do net80211 work.
4747 	 */
4748 	error = avp->av_newstate(vap, nstate, arg);
4749 	if (error != 0)
4750 		goto bad;
4751 
4752 	/*
4753 	 * See above: ensure av_newstate() doesn't drop the lock
4754 	 * on us.
4755 	 */
4756 	IEEE80211_LOCK_ASSERT(ic);
4757 
4758 	if (nstate == IEEE80211_S_RUN) {
4759 		/* NB: collect bss node again, it may have changed */
4760 		ieee80211_free_node(ni);
4761 		ni = ieee80211_ref_node(vap->iv_bss);
4762 
4763 		DPRINTF(sc, ATH_DEBUG_STATE,
4764 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4765 		    "capinfo 0x%04x chan %d\n", __func__,
4766 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4767 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4768 
4769 		switch (vap->iv_opmode) {
4770 #ifdef IEEE80211_SUPPORT_TDMA
4771 		case IEEE80211_M_AHDEMO:
4772 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4773 				break;
4774 			/* fall thru... */
4775 #endif
4776 		case IEEE80211_M_HOSTAP:
4777 		case IEEE80211_M_IBSS:
4778 		case IEEE80211_M_MBSS:
4779 			/*
4780 			 * Allocate and setup the beacon frame.
4781 			 *
4782 			 * Stop any previous beacon DMA.  This may be
4783 			 * necessary, for example, when an ibss merge
4784 			 * causes reconfiguration; there will be a state
4785 			 * transition from RUN->RUN that means we may
4786 			 * be called with beacon transmission active.
4787 			 */
4788 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4789 
4790 			error = ath_beacon_alloc(sc, ni);
4791 			if (error != 0)
4792 				goto bad;
4793 			/*
4794 			 * If joining an adhoc network defer beacon timer
4795 			 * configuration to the next beacon frame so we
4796 			 * have a current TSF to use.  Otherwise we're
4797 			 * starting an ibss/bss so there's no need to delay;
4798 			 * if this is the first vap moving to RUN state, then
4799 			 * beacon state needs to be [re]configured.
4800 			 */
4801 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4802 			    ni->ni_tstamp.tsf != 0) {
4803 				sc->sc_syncbeacon = 1;
4804 			} else if (!sc->sc_beacons) {
4805 #ifdef IEEE80211_SUPPORT_TDMA
4806 				if (vap->iv_caps & IEEE80211_C_TDMA)
4807 					ath_tdma_config(sc, vap);
4808 				else
4809 #endif
4810 					ath_beacon_config(sc, vap);
4811 				sc->sc_beacons = 1;
4812 			}
4813 			break;
4814 		case IEEE80211_M_STA:
4815 			/*
4816 			 * Defer beacon timer configuration to the next
4817 			 * beacon frame so we have a current TSF to use
4818 			 * (any TSF collected when scanning is likely old).
4819 			 * However if it's due to a CSA -> RUN transition,
4820 			 * force a beacon update so we pick up a lack of
4821 			 * beacons from an AP in CAC and thus force a
4822 			 * scan.
4823 			 */
4824 			sc->sc_syncbeacon = 1;
4825 			if (csa_run_transition)
4826 				ath_beacon_config(sc, vap);
4827 			break;
4828 		case IEEE80211_M_MONITOR:
4829 			/*
4830 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4831 			 * transitions so we must re-enable interrupts here to
4832 			 * handle the case of a single monitor mode vap.
4833 			 */
4834 			ath_hal_intrset(ah, sc->sc_imask);
4835 			break;
4836 		case IEEE80211_M_WDS:
4837 			break;
4838 		default:
4839 			break;
4840 		}
4841 		/*
4842 		 * Let the hal process statistics collected during a
4843 		 * scan so it can provide calibrated noise floor data.
4844 		 */
4845 		ath_hal_process_noisefloor(ah);
4846 		/*
4847 		 * Reset rssi stats; maybe not the best place...
4848 		 */
4849 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4850 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4851 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4852 		/*
4853 		 * Finally, start any timers and the task q thread
4854 		 * (in case we didn't go through SCAN state).
4855 		 */
4856 		if (ath_longcalinterval != 0) {
4857 			/* start periodic recalibration timer */
4858 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4859 		} else {
4860 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4861 			    "%s: calibration disabled\n", __func__);
4862 		}
4863 		taskqueue_unblock(sc->sc_tq);
4864 	} else if (nstate == IEEE80211_S_INIT) {
4865 		/*
4866 		 * If there are no vaps left in RUN state then
4867 		 * shutdown host/driver operation:
4868 		 * o disable interrupts
4869 		 * o disable the task queue thread
4870 		 * o mark beacon processing as stopped
4871 		 */
4872 		if (!ath_isanyrunningvaps(vap)) {
4873 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4874 			/* disable interrupts  */
4875 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4876 			taskqueue_block(sc->sc_tq);
4877 			sc->sc_beacons = 0;
4878 		}
4879 #ifdef IEEE80211_SUPPORT_TDMA
4880 		ath_hal_setcca(ah, AH_TRUE);
4881 #endif
4882 	}
4883 bad:
4884 	ieee80211_free_node(ni);
4885 	return error;
4886 }
4887 
4888 /*
4889  * Allocate a key cache slot to the station so we can
4890  * setup a mapping from key index to node. The key cache
4891  * slot is needed for managing antenna state and for
4892  * compression when stations do not use crypto.  We do
4893  * it uniliaterally here; if crypto is employed this slot
4894  * will be reassigned.
4895  */
4896 static void
4897 ath_setup_stationkey(struct ieee80211_node *ni)
4898 {
4899 	struct ieee80211vap *vap = ni->ni_vap;
4900 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4901 	ieee80211_keyix keyix, rxkeyix;
4902 
4903 	/* XXX should take a locked ref to vap->iv_bss */
4904 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4905 		/*
4906 		 * Key cache is full; we'll fall back to doing
4907 		 * the more expensive lookup in software.  Note
4908 		 * this also means no h/w compression.
4909 		 */
4910 		/* XXX msg+statistic */
4911 	} else {
4912 		/* XXX locking? */
4913 		ni->ni_ucastkey.wk_keyix = keyix;
4914 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4915 		/* NB: must mark device key to get called back on delete */
4916 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4917 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4918 		/* NB: this will create a pass-thru key entry */
4919 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4920 	}
4921 }
4922 
4923 /*
4924  * Setup driver-specific state for a newly associated node.
4925  * Note that we're called also on a re-associate, the isnew
4926  * param tells us if this is the first time or not.
4927  */
4928 static void
4929 ath_newassoc(struct ieee80211_node *ni, int isnew)
4930 {
4931 	struct ath_node *an = ATH_NODE(ni);
4932 	struct ieee80211vap *vap = ni->ni_vap;
4933 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4934 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4935 
4936 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4937 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4938 
4939 	ath_rate_newassoc(sc, an, isnew);
4940 	if (isnew &&
4941 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4942 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4943 		ath_setup_stationkey(ni);
4944 }
4945 
4946 static int
4947 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4948 	int nchans, struct ieee80211_channel chans[])
4949 {
4950 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4951 	struct ath_hal *ah = sc->sc_ah;
4952 	HAL_STATUS status;
4953 
4954 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4955 	    "%s: rd %u cc %u location %c%s\n",
4956 	    __func__, reg->regdomain, reg->country, reg->location,
4957 	    reg->ecm ? " ecm" : "");
4958 
4959 	status = ath_hal_set_channels(ah, chans, nchans,
4960 	    reg->country, reg->regdomain);
4961 	if (status != HAL_OK) {
4962 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4963 		    __func__, status);
4964 		return EINVAL;		/* XXX */
4965 	}
4966 
4967 	return 0;
4968 }
4969 
4970 static void
4971 ath_getradiocaps(struct ieee80211com *ic,
4972 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4973 {
4974 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4975 	struct ath_hal *ah = sc->sc_ah;
4976 
4977 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4978 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4979 
4980 	/* XXX check return */
4981 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4982 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4983 
4984 }
4985 
4986 static int
4987 ath_getchannels(struct ath_softc *sc)
4988 {
4989 	struct ifnet *ifp = sc->sc_ifp;
4990 	struct ieee80211com *ic = ifp->if_l2com;
4991 	struct ath_hal *ah = sc->sc_ah;
4992 	HAL_STATUS status;
4993 
4994 	/*
4995 	 * Collect channel set based on EEPROM contents.
4996 	 */
4997 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4998 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4999 	if (status != HAL_OK) {
5000 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5001 		    "status %d\n", __func__, status);
5002 		return EINVAL;
5003 	}
5004 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5005 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5006 	/* XXX map Atheros sku's to net80211 SKU's */
5007 	/* XXX net80211 types too small */
5008 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5009 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5010 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5011 	ic->ic_regdomain.isocc[1] = ' ';
5012 
5013 	ic->ic_regdomain.ecm = 1;
5014 	ic->ic_regdomain.location = 'I';
5015 
5016 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5017 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5018 	    __func__, sc->sc_eerd, sc->sc_eecc,
5019 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5020 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5021 	return 0;
5022 }
5023 
5024 static int
5025 ath_rate_setup(struct ath_softc *sc, u_int mode)
5026 {
5027 	struct ath_hal *ah = sc->sc_ah;
5028 	const HAL_RATE_TABLE *rt;
5029 
5030 	switch (mode) {
5031 	case IEEE80211_MODE_11A:
5032 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5033 		break;
5034 	case IEEE80211_MODE_HALF:
5035 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5036 		break;
5037 	case IEEE80211_MODE_QUARTER:
5038 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5039 		break;
5040 	case IEEE80211_MODE_11B:
5041 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5042 		break;
5043 	case IEEE80211_MODE_11G:
5044 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5045 		break;
5046 	case IEEE80211_MODE_TURBO_A:
5047 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5048 		break;
5049 	case IEEE80211_MODE_TURBO_G:
5050 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5051 		break;
5052 	case IEEE80211_MODE_STURBO_A:
5053 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5054 		break;
5055 	case IEEE80211_MODE_11NA:
5056 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5057 		break;
5058 	case IEEE80211_MODE_11NG:
5059 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5060 		break;
5061 	default:
5062 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5063 			__func__, mode);
5064 		return 0;
5065 	}
5066 	sc->sc_rates[mode] = rt;
5067 	return (rt != NULL);
5068 }
5069 
5070 static void
5071 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5072 {
5073 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5074 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5075 	static const struct {
5076 		u_int		rate;		/* tx/rx 802.11 rate */
5077 		u_int16_t	timeOn;		/* LED on time (ms) */
5078 		u_int16_t	timeOff;	/* LED off time (ms) */
5079 	} blinkrates[] = {
5080 		{ 108,  40,  10 },
5081 		{  96,  44,  11 },
5082 		{  72,  50,  13 },
5083 		{  48,  57,  14 },
5084 		{  36,  67,  16 },
5085 		{  24,  80,  20 },
5086 		{  22, 100,  25 },
5087 		{  18, 133,  34 },
5088 		{  12, 160,  40 },
5089 		{  10, 200,  50 },
5090 		{   6, 240,  58 },
5091 		{   4, 267,  66 },
5092 		{   2, 400, 100 },
5093 		{   0, 500, 130 },
5094 		/* XXX half/quarter rates */
5095 	};
5096 	const HAL_RATE_TABLE *rt;
5097 	int i, j;
5098 
5099 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5100 	rt = sc->sc_rates[mode];
5101 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5102 	for (i = 0; i < rt->rateCount; i++) {
5103 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5104 		if (rt->info[i].phy != IEEE80211_T_HT)
5105 			sc->sc_rixmap[ieeerate] = i;
5106 		else
5107 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5108 	}
5109 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5110 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5111 		if (i >= rt->rateCount) {
5112 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5113 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5114 			continue;
5115 		}
5116 		sc->sc_hwmap[i].ieeerate =
5117 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5118 		if (rt->info[i].phy == IEEE80211_T_HT)
5119 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5120 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5121 		if (rt->info[i].shortPreamble ||
5122 		    rt->info[i].phy == IEEE80211_T_OFDM)
5123 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5124 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5125 		for (j = 0; j < N(blinkrates)-1; j++)
5126 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5127 				break;
5128 		/* NB: this uses the last entry if the rate isn't found */
5129 		/* XXX beware of overlow */
5130 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5131 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5132 	}
5133 	sc->sc_currates = rt;
5134 	sc->sc_curmode = mode;
5135 	/*
5136 	 * All protection frames are transmited at 2Mb/s for
5137 	 * 11g, otherwise at 1Mb/s.
5138 	 */
5139 	if (mode == IEEE80211_MODE_11G)
5140 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5141 	else
5142 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5143 	/* NB: caller is responsible for resetting rate control state */
5144 #undef N
5145 }
5146 
5147 static void
5148 ath_watchdog(void *arg)
5149 {
5150 	struct ath_softc *sc = arg;
5151 	int do_reset = 0;
5152 
5153 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5154 		struct ifnet *ifp = sc->sc_ifp;
5155 		uint32_t hangs;
5156 
5157 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5158 		    hangs != 0) {
5159 			if_printf(ifp, "%s hang detected (0x%x)\n",
5160 			    hangs & 0xff ? "bb" : "mac", hangs);
5161 		} else
5162 			if_printf(ifp, "device timeout\n");
5163 		do_reset = 1;
5164 		ifp->if_oerrors++;
5165 		sc->sc_stats.ast_watchdog++;
5166 	}
5167 
5168 	/*
5169 	 * We can't hold the lock across the ath_reset() call.
5170 	 *
5171 	 * And since this routine can't hold a lock and sleep,
5172 	 * do the reset deferred.
5173 	 */
5174 	if (do_reset) {
5175 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5176 	}
5177 
5178 	callout_schedule(&sc->sc_wd_ch, hz);
5179 }
5180 
5181 /*
5182  * Fetch the rate control statistics for the given node.
5183  */
5184 static int
5185 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5186 {
5187 	struct ath_node *an;
5188 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5189 	struct ieee80211_node *ni;
5190 	int error = 0;
5191 
5192 	/* Perform a lookup on the given node */
5193 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5194 	if (ni == NULL) {
5195 		error = EINVAL;
5196 		goto bad;
5197 	}
5198 
5199 	/* Lock the ath_node */
5200 	an = ATH_NODE(ni);
5201 	ATH_NODE_LOCK(an);
5202 
5203 	/* Fetch the rate control stats for this node */
5204 	error = ath_rate_fetch_node_stats(sc, an, rs);
5205 
5206 	/* No matter what happens here, just drop through */
5207 
5208 	/* Unlock the ath_node */
5209 	ATH_NODE_UNLOCK(an);
5210 
5211 	/* Unref the node */
5212 	ieee80211_node_decref(ni);
5213 
5214 bad:
5215 	return (error);
5216 }
5217 
5218 #ifdef ATH_DIAGAPI
5219 /*
5220  * Diagnostic interface to the HAL.  This is used by various
5221  * tools to do things like retrieve register contents for
5222  * debugging.  The mechanism is intentionally opaque so that
5223  * it can change frequently w/o concern for compatiblity.
5224  */
5225 static int
5226 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5227 {
5228 	struct ath_hal *ah = sc->sc_ah;
5229 	u_int id = ad->ad_id & ATH_DIAG_ID;
5230 	void *indata = NULL;
5231 	void *outdata = NULL;
5232 	u_int32_t insize = ad->ad_in_size;
5233 	u_int32_t outsize = ad->ad_out_size;
5234 	int error = 0;
5235 
5236 	if (ad->ad_id & ATH_DIAG_IN) {
5237 		/*
5238 		 * Copy in data.
5239 		 */
5240 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5241 		if (indata == NULL) {
5242 			error = ENOMEM;
5243 			goto bad;
5244 		}
5245 		error = copyin(ad->ad_in_data, indata, insize);
5246 		if (error)
5247 			goto bad;
5248 	}
5249 	if (ad->ad_id & ATH_DIAG_DYN) {
5250 		/*
5251 		 * Allocate a buffer for the results (otherwise the HAL
5252 		 * returns a pointer to a buffer where we can read the
5253 		 * results).  Note that we depend on the HAL leaving this
5254 		 * pointer for us to use below in reclaiming the buffer;
5255 		 * may want to be more defensive.
5256 		 */
5257 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5258 		if (outdata == NULL) {
5259 			error = ENOMEM;
5260 			goto bad;
5261 		}
5262 	}
5263 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5264 		if (outsize < ad->ad_out_size)
5265 			ad->ad_out_size = outsize;
5266 		if (outdata != NULL)
5267 			error = copyout(outdata, ad->ad_out_data,
5268 					ad->ad_out_size);
5269 	} else {
5270 		error = EINVAL;
5271 	}
5272 bad:
5273 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5274 		free(indata, M_TEMP);
5275 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5276 		free(outdata, M_TEMP);
5277 	return error;
5278 }
5279 #endif /* ATH_DIAGAPI */
5280 
5281 static int
5282 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5283 {
5284 #define	IS_RUNNING(ifp) \
5285 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5286 	struct ath_softc *sc = ifp->if_softc;
5287 	struct ieee80211com *ic = ifp->if_l2com;
5288 	struct ifreq *ifr = (struct ifreq *)data;
5289 	const HAL_RATE_TABLE *rt;
5290 	int error = 0;
5291 
5292 	switch (cmd) {
5293 	case SIOCSIFFLAGS:
5294 		ATH_LOCK(sc);
5295 		if (IS_RUNNING(ifp)) {
5296 			/*
5297 			 * To avoid rescanning another access point,
5298 			 * do not call ath_init() here.  Instead,
5299 			 * only reflect promisc mode settings.
5300 			 */
5301 			ath_mode_init(sc);
5302 		} else if (ifp->if_flags & IFF_UP) {
5303 			/*
5304 			 * Beware of being called during attach/detach
5305 			 * to reset promiscuous mode.  In that case we
5306 			 * will still be marked UP but not RUNNING.
5307 			 * However trying to re-init the interface
5308 			 * is the wrong thing to do as we've already
5309 			 * torn down much of our state.  There's
5310 			 * probably a better way to deal with this.
5311 			 */
5312 			if (!sc->sc_invalid)
5313 				ath_init(sc);	/* XXX lose error */
5314 		} else {
5315 			ath_stop_locked(ifp);
5316 #ifdef notyet
5317 			/* XXX must wakeup in places like ath_vap_delete */
5318 			if (!sc->sc_invalid)
5319 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5320 #endif
5321 		}
5322 		ATH_UNLOCK(sc);
5323 		break;
5324 	case SIOCGIFMEDIA:
5325 	case SIOCSIFMEDIA:
5326 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5327 		break;
5328 	case SIOCGATHSTATS:
5329 		/* NB: embed these numbers to get a consistent view */
5330 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5331 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5332 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5333 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5334 #ifdef IEEE80211_SUPPORT_TDMA
5335 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5336 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5337 #endif
5338 		rt = sc->sc_currates;
5339 		sc->sc_stats.ast_tx_rate =
5340 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5341 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5342 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5343 		return copyout(&sc->sc_stats,
5344 		    ifr->ifr_data, sizeof (sc->sc_stats));
5345 	case SIOCGATHAGSTATS:
5346 		return copyout(&sc->sc_aggr_stats,
5347 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5348 	case SIOCZATHSTATS:
5349 		error = priv_check(curthread, PRIV_DRIVER);
5350 		if (error == 0) {
5351 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5352 			memset(&sc->sc_aggr_stats, 0,
5353 			    sizeof(sc->sc_aggr_stats));
5354 			memset(&sc->sc_intr_stats, 0,
5355 			    sizeof(sc->sc_intr_stats));
5356 		}
5357 		break;
5358 #ifdef ATH_DIAGAPI
5359 	case SIOCGATHDIAG:
5360 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5361 		break;
5362 	case SIOCGATHPHYERR:
5363 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5364 		break;
5365 #endif
5366 	case SIOCGATHNODERATESTATS:
5367 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5368 		break;
5369 	case SIOCGIFADDR:
5370 		error = ether_ioctl(ifp, cmd, data);
5371 		break;
5372 	default:
5373 		error = EINVAL;
5374 		break;
5375 	}
5376 	return error;
5377 #undef IS_RUNNING
5378 }
5379 
5380 /*
5381  * Announce various information on device/driver attach.
5382  */
5383 static void
5384 ath_announce(struct ath_softc *sc)
5385 {
5386 	struct ifnet *ifp = sc->sc_ifp;
5387 	struct ath_hal *ah = sc->sc_ah;
5388 
5389 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5390 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5391 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5392 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5393 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5394 	if (bootverbose) {
5395 		int i;
5396 		for (i = 0; i <= WME_AC_VO; i++) {
5397 			struct ath_txq *txq = sc->sc_ac2q[i];
5398 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5399 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5400 		}
5401 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5402 			sc->sc_cabq->axq_qnum);
5403 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5404 	}
5405 	if (ath_rxbuf != ATH_RXBUF)
5406 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5407 	if (ath_txbuf != ATH_TXBUF)
5408 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5409 	if (sc->sc_mcastkey && bootverbose)
5410 		if_printf(ifp, "using multicast key search\n");
5411 }
5412 
5413 static void
5414 ath_dfs_tasklet(void *p, int npending)
5415 {
5416 	struct ath_softc *sc = (struct ath_softc *) p;
5417 	struct ifnet *ifp = sc->sc_ifp;
5418 	struct ieee80211com *ic = ifp->if_l2com;
5419 
5420 	/*
5421 	 * If previous processing has found a radar event,
5422 	 * signal this to the net80211 layer to begin DFS
5423 	 * processing.
5424 	 */
5425 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5426 		/* DFS event found, initiate channel change */
5427 		/*
5428 		 * XXX doesn't currently tell us whether the event
5429 		 * XXX was found in the primary or extension
5430 		 * XXX channel!
5431 		 */
5432 		IEEE80211_LOCK(ic);
5433 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5434 		IEEE80211_UNLOCK(ic);
5435 	}
5436 }
5437 
5438 /*
5439  * Enable/disable power save.  This must be called with
5440  * no TX driver locks currently held, so it should only
5441  * be called from the RX path (which doesn't hold any
5442  * TX driver locks.)
5443  */
5444 static void
5445 ath_node_powersave(struct ieee80211_node *ni, int enable)
5446 {
5447 #ifdef	ATH_SW_PSQ
5448 	struct ath_node *an = ATH_NODE(ni);
5449 	struct ieee80211com *ic = ni->ni_ic;
5450 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5451 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5452 
5453 	ATH_NODE_UNLOCK_ASSERT(an);
5454 	/* XXX and no TXQ locks should be held here */
5455 
5456 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5457 	    __func__, ni, enable);
5458 
5459 	/* Suspend or resume software queue handling */
5460 	if (enable)
5461 		ath_tx_node_sleep(sc, an);
5462 	else
5463 		ath_tx_node_wakeup(sc, an);
5464 
5465 	/* Update net80211 state */
5466 	avp->av_node_ps(ni, enable);
5467 #else
5468 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5469 
5470 	/* Update net80211 state */
5471 	avp->av_node_ps(ni, enable);
5472 #endif/* ATH_SW_PSQ */
5473 }
5474 
5475 /*
5476  * Notification from net80211 that the powersave queue state has
5477  * changed.
5478  *
5479  * Since the software queue also may have some frames:
5480  *
5481  * + if the node software queue has frames and the TID state
5482  *   is 0, we set the TIM;
5483  * + if the node and the stack are both empty, we clear the TIM bit.
5484  * + If the stack tries to set the bit, always set it.
5485  * + If the stack tries to clear the bit, only clear it if the
5486  *   software queue in question is also cleared.
5487  *
5488  * TODO: this is called during node teardown; so let's ensure this
5489  * is all correctly handled and that the TIM bit is cleared.
5490  * It may be that the node flush is called _AFTER_ the net80211
5491  * stack clears the TIM.
5492  *
5493  * Here is the racy part.  Since it's possible >1 concurrent,
5494  * overlapping TXes will appear complete with a TX completion in
5495  * another thread, it's possible that the concurrent TIM calls will
5496  * clash.  We can't hold the node lock here because setting the
5497  * TIM grabs the net80211 comlock and this may cause a LOR.
5498  * The solution is either to totally serialise _everything_ at
5499  * this point (ie, all TX, completion and any reset/flush go into
5500  * one taskqueue) or a new "ath TIM lock" needs to be created that
5501  * just wraps the driver state change and this call to avp->av_set_tim().
5502  *
5503  * The same race exists in the net80211 power save queue handling
5504  * as well.  Since multiple transmitting threads may queue frames
5505  * into the driver, as well as ps-poll and the driver transmitting
5506  * frames (and thus clearing the psq), it's quite possible that
5507  * a packet entering the PSQ and a ps-poll being handled will
5508  * race, causing the TIM to be cleared and not re-set.
5509  */
5510 static int
5511 ath_node_set_tim(struct ieee80211_node *ni, int enable)
5512 {
5513 #ifdef	ATH_SW_PSQ
5514 	struct ieee80211com *ic = ni->ni_ic;
5515 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5516 	struct ath_node *an = ATH_NODE(ni);
5517 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5518 	int changed = 0;
5519 
5520 	ATH_NODE_UNLOCK_ASSERT(an);
5521 
5522 	/*
5523 	 * For now, just track and then update the TIM.
5524 	 */
5525 	ATH_NODE_LOCK(an);
5526 	an->an_stack_psq = enable;
5527 
5528 	/*
5529 	 * This will get called for all operating modes,
5530 	 * even if avp->av_set_tim is unset.
5531 	 * It's currently set for hostap/ibss modes; but
5532 	 * the same infrastructure is used for both STA
5533 	 * and AP/IBSS node power save.
5534 	 */
5535 	if (avp->av_set_tim == NULL) {
5536 		ATH_NODE_UNLOCK(an);
5537 		return (0);
5538 	}
5539 
5540 	/*
5541 	 * If setting the bit, always set it here.
5542 	 * If clearing the bit, only clear it if the
5543 	 * software queue is also empty.
5544 	 *
5545 	 * If the node has left power save, just clear the TIM
5546 	 * bit regardless of the state of the power save queue.
5547 	 *
5548 	 * XXX TODO: although atomics are used, it's quite possible
5549 	 * that a race will occur between this and setting/clearing
5550 	 * in another thread.  TX completion will occur always in
5551 	 * one thread, however setting/clearing the TIM bit can come
5552 	 * from a variety of different process contexts!
5553 	 */
5554 	if (enable && an->an_tim_set == 1) {
5555 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5556 		    "%s: an=%p, enable=%d, tim_set=1, ignoring\n",
5557 		    __func__, an, enable);
5558 		ATH_NODE_UNLOCK(an);
5559 	} else if (enable) {
5560 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5561 		    "%s: an=%p, enable=%d, enabling TIM\n",
5562 		    __func__, an, enable);
5563 		an->an_tim_set = 1;
5564 		ATH_NODE_UNLOCK(an);
5565 		changed = avp->av_set_tim(ni, enable);
5566 	} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
5567 		/* disable */
5568 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5569 		    "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
5570 		    __func__, an, enable);
5571 		an->an_tim_set = 0;
5572 		ATH_NODE_UNLOCK(an);
5573 		changed = avp->av_set_tim(ni, enable);
5574 	} else if (! an->an_is_powersave) {
5575 		/*
5576 		 * disable regardless; the node isn't in powersave now
5577 		 */
5578 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5579 		    "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
5580 		    __func__, an, enable);
5581 		an->an_tim_set = 0;
5582 		ATH_NODE_UNLOCK(an);
5583 		changed = avp->av_set_tim(ni, enable);
5584 	} else {
5585 		/*
5586 		 * psq disable, node is currently in powersave, node
5587 		 * software queue isn't empty, so don't clear the TIM bit
5588 		 * for now.
5589 		 */
5590 		ATH_NODE_UNLOCK(an);
5591 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5592 		    "%s: enable=%d, an_swq_depth > 0, ignoring\n",
5593 		    __func__, enable);
5594 		changed = 0;
5595 	}
5596 
5597 	return (changed);
5598 #else
5599 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5600 
5601 	return (avp->av_set_tim(ni, enable));
5602 #endif /* ATH_SW_PSQ */
5603 }
5604 
5605 /*
5606  * Set or update the TIM from the software queue.
5607  *
5608  * Check the software queue depth before attempting to do lock
5609  * anything; that avoids trying to obtain the lock.  Then,
5610  * re-check afterwards to ensure nothing has changed in the
5611  * meantime.
5612  *
5613  * set:   This is designed to be called from the TX path, after
5614  *        a frame has been queued; to see if the swq > 0.
5615  *
5616  * clear: This is designed to be called from the buffer completion point
5617  *        (right now it's ath_tx_default_comp()) where the state of
5618  *        a software queue has changed.
5619  *
5620  * It makes sense to place it at buffer free / completion rather
5621  * than after each software queue operation, as there's no real
5622  * point in churning the TIM bit as the last frames in the software
5623  * queue are transmitted.  If they fail and we retry them, we'd
5624  * just be setting the TIM bit again anyway.
5625  */
5626 void
5627 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
5628      int enable)
5629 {
5630 #ifdef	ATH_SW_PSQ
5631 	struct ath_node *an;
5632 	struct ath_vap *avp;
5633 
5634 	/* Don't do this for broadcast/etc frames */
5635 	if (ni == NULL)
5636 		return;
5637 
5638 	an = ATH_NODE(ni);
5639 	avp = ATH_VAP(ni->ni_vap);
5640 
5641 	/*
5642 	 * And for operating modes without the TIM handler set, let's
5643 	 * just skip those.
5644 	 */
5645 	if (avp->av_set_tim == NULL)
5646 		return;
5647 
5648 	ATH_NODE_UNLOCK_ASSERT(an);
5649 
5650 	if (enable) {
5651 		/*
5652 		 * Don't bother grabbing the lock unless the queue is not
5653 		 * empty.
5654 		 */
5655 		if (atomic_load_acq_int(&an->an_swq_depth) == 0)
5656 			return;
5657 
5658 		ATH_NODE_LOCK(an);
5659 		if (an->an_is_powersave &&
5660 		    an->an_tim_set == 0 &&
5661 		    atomic_load_acq_int(&an->an_swq_depth) != 0) {
5662 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5663 			    "%s: an=%p, swq_depth>0, tim_set=0, set!\n",
5664 			    __func__, an);
5665 			an->an_tim_set = 1;
5666 			ATH_NODE_UNLOCK(an);
5667 			(void) avp->av_set_tim(ni, 1);
5668 		} else {
5669 			ATH_NODE_UNLOCK(an);
5670 		}
5671 	} else {
5672 		/*
5673 		 * Don't bother grabbing the lock unless the queue is empty.
5674 		 */
5675 		if (atomic_load_acq_int(&an->an_swq_depth) != 0)
5676 			return;
5677 
5678 		ATH_NODE_LOCK(an);
5679 		if (an->an_is_powersave &&
5680 		    an->an_stack_psq == 0 &&
5681 		    an->an_tim_set == 1 &&
5682 		    atomic_load_acq_int(&an->an_swq_depth) == 0) {
5683 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5684 			    "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
5685 			    " clear!\n",
5686 			    __func__, an);
5687 			an->an_tim_set = 0;
5688 			ATH_NODE_UNLOCK(an);
5689 			(void) avp->av_set_tim(ni, 0);
5690 		} else {
5691 			ATH_NODE_UNLOCK(an);
5692 		}
5693 	}
5694 #else
5695 	return;
5696 #endif	/* ATH_SW_PSQ */
5697 }
5698 
5699 MODULE_VERSION(if_ath, 1);
5700 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5701 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5702 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5703 #endif
5704