xref: /freebsd/sys/dev/ath/if_ath.c (revision c74c7b73a005e689b922dfcfe5b94804669b595b)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 
60 #include <machine/bus.h>
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_llc.h>
69 
70 #include <net80211/ieee80211_var.h>
71 #ifdef ATH_SUPPORT_TDMA
72 #include <net80211/ieee80211_tdma.h>
73 #endif
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #include <dev/ath/if_athvar.h>
83 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
84 
85 #ifdef ATH_TX99_DIAG
86 #include <dev/ath/ath_tx99/ath_tx99.h>
87 #endif
88 
89 /*
90  * We require a HAL w/ the changes for split tx/rx MIC.
91  */
92 CTASSERT(HAL_ABI_VERSION > 0x06052200);
93 
94 /*
95  * ATH_BCBUF determines the number of vap's that can transmit
96  * beacons and also (currently) the number of vap's that can
97  * have unique mac addresses/bssid.  When staggering beacons
98  * 4 is probably a good max as otherwise the beacons become
99  * very closely spaced and there is limited time for cab q traffic
100  * to go out.  You can burst beacons instead but that is not good
101  * for stations in power save and at some point you really want
102  * another radio (and channel).
103  *
104  * The limit on the number of mac addresses is tied to our use of
105  * the U/L bit and tracking addresses in a byte; it would be
106  * worthwhile to allow more for applications like proxy sta.
107  */
108 CTASSERT(ATH_BCBUF <= 8);
109 
110 /* unaligned little endian access */
111 #define LE_READ_2(p)							\
112 	((u_int16_t)							\
113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
114 #define LE_READ_4(p)							\
115 	((u_int32_t)							\
116 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
117 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
118 
119 #define	CTRY_XR9	5001		/* Ubiquiti XR9 */
120 #define	CTRY_GZ901	5002		/* ZComax GZ-901 */
121 
122 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
123 		    const char name[IFNAMSIZ], int unit, int opmode,
124 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
125 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
126 static void	ath_vap_delete(struct ieee80211vap *);
127 static void	ath_init(void *);
128 static void	ath_stop_locked(struct ifnet *);
129 static void	ath_stop(struct ifnet *);
130 static void	ath_start(struct ifnet *);
131 static int	ath_reset(struct ifnet *);
132 static int	ath_reset_vap(struct ieee80211vap *, u_long);
133 static int	ath_media_change(struct ifnet *);
134 static void	ath_watchdog(struct ifnet *);
135 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
136 static void	ath_fatal_proc(void *, int);
137 static void	ath_bmiss_vap(struct ieee80211vap *);
138 static void	ath_bmiss_proc(void *, int);
139 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
140 			struct ieee80211_node *);
141 static int	ath_key_alloc(struct ieee80211vap *,
142 			struct ieee80211_key *,
143 			ieee80211_keyix *, ieee80211_keyix *);
144 static int	ath_key_delete(struct ieee80211vap *,
145 			const struct ieee80211_key *);
146 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void	ath_key_update_begin(struct ieee80211vap *);
149 static void	ath_key_update_end(struct ieee80211vap *);
150 static void	ath_update_mcast(struct ifnet *);
151 static void	ath_update_promisc(struct ifnet *);
152 static void	ath_mode_init(struct ath_softc *);
153 static void	ath_setslottime(struct ath_softc *);
154 static void	ath_updateslot(struct ifnet *);
155 static int	ath_beaconq_setup(struct ath_hal *);
156 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
157 static void	ath_beacon_update(struct ieee80211vap *, int item);
158 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
159 static void	ath_beacon_proc(void *, int);
160 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
161 			struct ieee80211vap *);
162 static void	ath_bstuck_proc(void *, int);
163 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
164 static void	ath_beacon_free(struct ath_softc *);
165 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
166 static void	ath_descdma_cleanup(struct ath_softc *sc,
167 			struct ath_descdma *, ath_bufhead *);
168 static int	ath_desc_alloc(struct ath_softc *);
169 static void	ath_desc_free(struct ath_softc *);
170 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
171 			const uint8_t [IEEE80211_ADDR_LEN]);
172 static void	ath_node_free(struct ieee80211_node *);
173 static void	ath_node_getsignal(const struct ieee80211_node *,
174 			int8_t *, int8_t *);
175 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
176 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
177 			int subtype, int rssi, int noise, u_int32_t rstamp);
178 static void	ath_setdefantenna(struct ath_softc *, u_int);
179 static void	ath_rx_proc(void *, int);
180 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
182 static int	ath_tx_setup(struct ath_softc *, int, int);
183 static int	ath_wme_update(struct ieee80211com *);
184 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
185 static void	ath_tx_cleanup(struct ath_softc *);
186 static void	ath_freetx(struct mbuf *);
187 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
188 			     struct ath_buf *, struct mbuf *);
189 static void	ath_tx_proc_q0(void *, int);
190 static void	ath_tx_proc_q0123(void *, int);
191 static void	ath_tx_proc(void *, int);
192 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
193 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
194 static void	ath_draintxq(struct ath_softc *);
195 static void	ath_stoprecv(struct ath_softc *);
196 static int	ath_startrecv(struct ath_softc *);
197 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
198 static void	ath_scan_start(struct ieee80211com *);
199 static void	ath_scan_end(struct ieee80211com *);
200 static void	ath_set_channel(struct ieee80211com *);
201 static void	ath_calibrate(void *);
202 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
203 static void	ath_setup_stationkey(struct ieee80211_node *);
204 static void	ath_newassoc(struct ieee80211_node *, int);
205 static int	ath_setregdomain(struct ieee80211com *,
206 		    struct ieee80211_regdomain *, int,
207 		    struct ieee80211_channel []);
208 static void	ath_getradiocaps(struct ieee80211com *, int *,
209 		    struct ieee80211_channel []);
210 static int	ath_getchannels(struct ath_softc *);
211 static void	ath_led_event(struct ath_softc *, int);
212 
213 static int	ath_rate_setup(struct ath_softc *, u_int mode);
214 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
215 
216 static void	ath_sysctlattach(struct ath_softc *);
217 static int	ath_raw_xmit(struct ieee80211_node *,
218 			struct mbuf *, const struct ieee80211_bpf_params *);
219 static void	ath_bpfattach(struct ath_softc *);
220 static void	ath_announce(struct ath_softc *);
221 
222 #ifdef ATH_SUPPORT_TDMA
223 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
224 		    u_int32_t bintval);
225 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
226 		    const struct ieee80211_tdma_state *tdma);
227 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
228 static void	ath_tdma_update(struct ieee80211_node *ni,
229 		    const struct ieee80211_tdma_param *tdma);
230 static void	ath_tdma_beacon_send(struct ath_softc *sc,
231 		    struct ieee80211vap *vap);
232 
233 static __inline void
234 ath_hal_setcca(struct ath_hal *ah, int ena)
235 {
236 	/*
237 	 * NB: fill me in; this is not provided by default because disabling
238 	 *     CCA in most locales violates regulatory.
239 	 */
240 }
241 
242 static __inline int
243 ath_hal_getcca(struct ath_hal *ah)
244 {
245 	u_int32_t diag;
246 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
247 		return 1;
248 	return ((diag & 0x500000) == 0);
249 }
250 
251 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
252 #define	TDMA_LPF_LEN		6
253 #define	TDMA_DUMMY_MARKER	0x127
254 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
255 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
256 #define	TDMA_LPF(x, y, len) \
257     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
258 #define	TDMA_SAMPLE(x, y) do {					\
259 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
260 } while (0)
261 #define	TDMA_EP_RND(x,mul) \
262 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
263 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
264 #endif /* ATH_SUPPORT_TDMA */
265 
266 SYSCTL_DECL(_hw_ath);
267 
268 /* XXX validate sysctl values */
269 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
270 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
271 	    0, "long chip calibration interval (secs)");
272 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
273 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
274 	    0, "short chip calibration interval (msecs)");
275 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
276 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
277 	    0, "reset chip calibration results (secs)");
278 
279 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
280 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
281 	    0, "rx buffers allocated");
282 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
283 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
284 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
285 	    0, "tx buffers allocated");
286 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
287 
288 #ifdef ATH_DEBUG
289 enum {
290 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
291 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
292 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
293 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
294 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
295 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
296 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
297 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
298 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
299 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
300 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
301 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
302 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
303 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
304 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
305 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
306 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
307 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
308 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
309 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
310 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
311 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
312 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
313 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
314 	ATH_DEBUG_ANY		= 0xffffffff
315 };
316 static	int ath_debug = 0;
317 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
318 	    0, "control debugging printfs");
319 TUNABLE_INT("hw.ath.debug", &ath_debug);
320 
321 #define	IFF_DUMPPKTS(sc, m) \
322 	((sc->sc_debug & (m)) || \
323 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
324 #define	DPRINTF(sc, m, fmt, ...) do {				\
325 	if (sc->sc_debug & (m))					\
326 		printf(fmt, __VA_ARGS__);			\
327 } while (0)
328 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
329 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
330 		ath_keyprint(sc, __func__, ix, hk, mac);	\
331 } while (0)
332 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
333 	u_int ix, int);
334 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
335 	u_int qnum, u_int ix, int done);
336 #else
337 #define	IFF_DUMPPKTS(sc, m) \
338 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
339 #define	DPRINTF(sc, m, fmt, ...) do {				\
340 	(void) sc;						\
341 } while (0)
342 #define	KEYPRINTF(sc, k, ix, mac) do {				\
343 	(void) sc;						\
344 } while (0)
345 #endif
346 
347 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
348 
349 int
350 ath_attach(u_int16_t devid, struct ath_softc *sc)
351 {
352 	struct ifnet *ifp;
353 	struct ieee80211com *ic;
354 	struct ath_hal *ah = NULL;
355 	HAL_STATUS status;
356 	int error = 0, i;
357 	u_int wmodes;
358 
359 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
360 
361 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
362 	if (ifp == NULL) {
363 		device_printf(sc->sc_dev, "can not if_alloc()\n");
364 		error = ENOSPC;
365 		goto bad;
366 	}
367 	ic = ifp->if_l2com;
368 
369 	/* set these up early for if_printf use */
370 	if_initname(ifp, device_get_name(sc->sc_dev),
371 		device_get_unit(sc->sc_dev));
372 
373 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
374 	if (ah == NULL) {
375 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
376 			status);
377 		error = ENXIO;
378 		goto bad;
379 	}
380 	if (ah->ah_abi != HAL_ABI_VERSION) {
381 		if_printf(ifp, "HAL ABI mismatch detected "
382 			"(HAL:0x%x != driver:0x%x)\n",
383 			ah->ah_abi, HAL_ABI_VERSION);
384 		error = ENXIO;
385 		goto bad;
386 	}
387 	sc->sc_ah = ah;
388 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
389 #ifdef	ATH_DEBUG
390 	sc->sc_debug = ath_debug;
391 #endif
392 
393 	/*
394 	 * Check if the MAC has multi-rate retry support.
395 	 * We do this by trying to setup a fake extended
396 	 * descriptor.  MAC's that don't have support will
397 	 * return false w/o doing anything.  MAC's that do
398 	 * support it will return true w/o doing anything.
399 	 */
400 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
401 
402 	/*
403 	 * Check if the device has hardware counters for PHY
404 	 * errors.  If so we need to enable the MIB interrupt
405 	 * so we can act on stat triggers.
406 	 */
407 	if (ath_hal_hwphycounters(ah))
408 		sc->sc_needmib = 1;
409 
410 	/*
411 	 * Get the hardware key cache size.
412 	 */
413 	sc->sc_keymax = ath_hal_keycachesize(ah);
414 	if (sc->sc_keymax > ATH_KEYMAX) {
415 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
416 			ATH_KEYMAX, sc->sc_keymax);
417 		sc->sc_keymax = ATH_KEYMAX;
418 	}
419 	/*
420 	 * Reset the key cache since some parts do not
421 	 * reset the contents on initial power up.
422 	 */
423 	for (i = 0; i < sc->sc_keymax; i++)
424 		ath_hal_keyreset(ah, i);
425 
426 	/*
427 	 * Collect the default channel list.
428 	 */
429 	error = ath_getchannels(sc);
430 	if (error != 0)
431 		goto bad;
432 
433 	/*
434 	 * Setup rate tables for all potential media types.
435 	 */
436 	ath_rate_setup(sc, IEEE80211_MODE_11A);
437 	ath_rate_setup(sc, IEEE80211_MODE_11B);
438 	ath_rate_setup(sc, IEEE80211_MODE_11G);
439 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
440 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
441 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
442 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
443 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
444 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
445 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
446 
447 	/* NB: setup here so ath_rate_update is happy */
448 	ath_setcurmode(sc, IEEE80211_MODE_11A);
449 
450 	/*
451 	 * Allocate tx+rx descriptors and populate the lists.
452 	 */
453 	error = ath_desc_alloc(sc);
454 	if (error != 0) {
455 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
456 		goto bad;
457 	}
458 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
459 
460 	ATH_TXBUF_LOCK_INIT(sc);
461 
462 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
463 		taskqueue_thread_enqueue, &sc->sc_tq);
464 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
465 		"%s taskq", ifp->if_xname);
466 
467 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
468 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
469 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
470 
471 	/*
472 	 * Allocate hardware transmit queues: one queue for
473 	 * beacon frames and one data queue for each QoS
474 	 * priority.  Note that the hal handles reseting
475 	 * these queues at the needed time.
476 	 *
477 	 * XXX PS-Poll
478 	 */
479 	sc->sc_bhalq = ath_beaconq_setup(ah);
480 	if (sc->sc_bhalq == (u_int) -1) {
481 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
482 		error = EIO;
483 		goto bad2;
484 	}
485 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
486 	if (sc->sc_cabq == NULL) {
487 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
488 		error = EIO;
489 		goto bad2;
490 	}
491 	/* NB: insure BK queue is the lowest priority h/w queue */
492 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
493 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
494 			ieee80211_wme_acnames[WME_AC_BK]);
495 		error = EIO;
496 		goto bad2;
497 	}
498 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
499 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
500 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
501 		/*
502 		 * Not enough hardware tx queues to properly do WME;
503 		 * just punt and assign them all to the same h/w queue.
504 		 * We could do a better job of this if, for example,
505 		 * we allocate queues when we switch from station to
506 		 * AP mode.
507 		 */
508 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
509 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
510 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
511 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
512 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
513 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
514 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
515 	}
516 
517 	/*
518 	 * Special case certain configurations.  Note the
519 	 * CAB queue is handled by these specially so don't
520 	 * include them when checking the txq setup mask.
521 	 */
522 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
523 	case 0x01:
524 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
525 		break;
526 	case 0x0f:
527 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
528 		break;
529 	default:
530 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
531 		break;
532 	}
533 
534 	/*
535 	 * Setup rate control.  Some rate control modules
536 	 * call back to change the anntena state so expose
537 	 * the necessary entry points.
538 	 * XXX maybe belongs in struct ath_ratectrl?
539 	 */
540 	sc->sc_setdefantenna = ath_setdefantenna;
541 	sc->sc_rc = ath_rate_attach(sc);
542 	if (sc->sc_rc == NULL) {
543 		error = EIO;
544 		goto bad2;
545 	}
546 
547 	sc->sc_blinking = 0;
548 	sc->sc_ledstate = 1;
549 	sc->sc_ledon = 0;			/* low true */
550 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
551 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
552 	/*
553 	 * Auto-enable soft led processing for IBM cards and for
554 	 * 5211 minipci cards.  Users can also manually enable/disable
555 	 * support with a sysctl.
556 	 */
557 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
558 	if (sc->sc_softled) {
559 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
560 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
561 	}
562 
563 	ifp->if_softc = sc;
564 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
565 	ifp->if_start = ath_start;
566 	ifp->if_watchdog = ath_watchdog;
567 	ifp->if_ioctl = ath_ioctl;
568 	ifp->if_init = ath_init;
569 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
570 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
571 	IFQ_SET_READY(&ifp->if_snd);
572 
573 	ic->ic_ifp = ifp;
574 	/* XXX not right but it's not used anywhere important */
575 	ic->ic_phytype = IEEE80211_T_OFDM;
576 	ic->ic_opmode = IEEE80211_M_STA;
577 	ic->ic_caps =
578 		  IEEE80211_C_STA		/* station mode */
579 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
580 		| IEEE80211_C_HOSTAP		/* hostap mode */
581 		| IEEE80211_C_MONITOR		/* monitor mode */
582 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
583 		| IEEE80211_C_WDS		/* 4-address traffic works */
584 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
585 		| IEEE80211_C_SHSLOT		/* short slot time supported */
586 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
587 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
588 		| IEEE80211_C_TXFRAG		/* handle tx frags */
589 		;
590 	/*
591 	 * Query the hal to figure out h/w crypto support.
592 	 */
593 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
594 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
595 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
596 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
597 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
598 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
599 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
600 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
601 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
602 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
603 		/*
604 		 * Check if h/w does the MIC and/or whether the
605 		 * separate key cache entries are required to
606 		 * handle both tx+rx MIC keys.
607 		 */
608 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
609 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
610 		/*
611 		 * If the h/w supports storing tx+rx MIC keys
612 		 * in one cache slot automatically enable use.
613 		 */
614 		if (ath_hal_hastkipsplit(ah) ||
615 		    !ath_hal_settkipsplit(ah, AH_FALSE))
616 			sc->sc_splitmic = 1;
617 		/*
618 		 * If the h/w can do TKIP MIC together with WME then
619 		 * we use it; otherwise we force the MIC to be done
620 		 * in software by the net80211 layer.
621 		 */
622 		if (ath_hal_haswmetkipmic(ah))
623 			sc->sc_wmetkipmic = 1;
624 	}
625 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
626 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
627 	/*
628 	 * Mark key cache slots associated with global keys
629 	 * as in use.  If we knew TKIP was not to be used we
630 	 * could leave the +32, +64, and +32+64 slots free.
631 	 */
632 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
633 		setbit(sc->sc_keymap, i);
634 		setbit(sc->sc_keymap, i+64);
635 		if (sc->sc_splitmic) {
636 			setbit(sc->sc_keymap, i+32);
637 			setbit(sc->sc_keymap, i+32+64);
638 		}
639 	}
640 	/*
641 	 * TPC support can be done either with a global cap or
642 	 * per-packet support.  The latter is not available on
643 	 * all parts.  We're a bit pedantic here as all parts
644 	 * support a global cap.
645 	 */
646 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
647 		ic->ic_caps |= IEEE80211_C_TXPMGT;
648 
649 	/*
650 	 * Mark WME capability only if we have sufficient
651 	 * hardware queues to do proper priority scheduling.
652 	 */
653 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
654 		ic->ic_caps |= IEEE80211_C_WME;
655 	/*
656 	 * Check for misc other capabilities.
657 	 */
658 	if (ath_hal_hasbursting(ah))
659 		ic->ic_caps |= IEEE80211_C_BURST;
660 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
661 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
662 	if (ath_hal_hasfastframes(ah))
663 		ic->ic_caps |= IEEE80211_C_FF;
664 	wmodes = ath_hal_getwirelessmodes(ah, ic->ic_regdomain.country);
665 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
666 		ic->ic_caps |= IEEE80211_C_TURBOP;
667 #ifdef ATH_SUPPORT_TDMA
668 	if (ath_hal_macversion(ah) > 0x78) {
669 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
670 		ic->ic_tdma_update = ath_tdma_update;
671 	}
672 #endif
673 	/*
674 	 * Indicate we need the 802.11 header padded to a
675 	 * 32-bit boundary for 4-address and QoS frames.
676 	 */
677 	ic->ic_flags |= IEEE80211_F_DATAPAD;
678 
679 	/*
680 	 * Query the hal about antenna support.
681 	 */
682 	sc->sc_defant = ath_hal_getdefantenna(ah);
683 
684 	/*
685 	 * Not all chips have the VEOL support we want to
686 	 * use with IBSS beacons; check here for it.
687 	 */
688 	sc->sc_hasveol = ath_hal_hasveol(ah);
689 
690 	/* get mac address from hardware */
691 	ath_hal_getmac(ah, ic->ic_myaddr);
692 	if (sc->sc_hasbmask)
693 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
694 
695 	/* NB: used to size node table key mapping array */
696 	ic->ic_max_keyix = sc->sc_keymax;
697 	/* call MI attach routine. */
698 	ieee80211_ifattach(ic);
699 	ic->ic_setregdomain = ath_setregdomain;
700 	ic->ic_getradiocaps = ath_getradiocaps;
701 	sc->sc_opmode = HAL_M_STA;
702 
703 	/* override default methods */
704 	ic->ic_newassoc = ath_newassoc;
705 	ic->ic_updateslot = ath_updateslot;
706 	ic->ic_wme.wme_update = ath_wme_update;
707 	ic->ic_vap_create = ath_vap_create;
708 	ic->ic_vap_delete = ath_vap_delete;
709 	ic->ic_raw_xmit = ath_raw_xmit;
710 	ic->ic_update_mcast = ath_update_mcast;
711 	ic->ic_update_promisc = ath_update_promisc;
712 	ic->ic_node_alloc = ath_node_alloc;
713 	sc->sc_node_free = ic->ic_node_free;
714 	ic->ic_node_free = ath_node_free;
715 	ic->ic_node_getsignal = ath_node_getsignal;
716 	ic->ic_scan_start = ath_scan_start;
717 	ic->ic_scan_end = ath_scan_end;
718 	ic->ic_set_channel = ath_set_channel;
719 
720 	ath_bpfattach(sc);
721 	/*
722 	 * Setup dynamic sysctl's now that country code and
723 	 * regdomain are available from the hal.
724 	 */
725 	ath_sysctlattach(sc);
726 
727 	if (bootverbose)
728 		ieee80211_announce(ic);
729 	ath_announce(sc);
730 	return 0;
731 bad2:
732 	ath_tx_cleanup(sc);
733 	ath_desc_free(sc);
734 bad:
735 	if (ah)
736 		ath_hal_detach(ah);
737 	if (ifp != NULL)
738 		if_free(ifp);
739 	sc->sc_invalid = 1;
740 	return error;
741 }
742 
743 int
744 ath_detach(struct ath_softc *sc)
745 {
746 	struct ifnet *ifp = sc->sc_ifp;
747 
748 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
749 		__func__, ifp->if_flags);
750 
751 	/*
752 	 * NB: the order of these is important:
753 	 * o stop the chip so no more interrupts will fire
754 	 * o call the 802.11 layer before detaching the hal to
755 	 *   insure callbacks into the driver to delete global
756 	 *   key cache entries can be handled
757 	 * o free the taskqueue which drains any pending tasks
758 	 * o reclaim the bpf tap now that we know nothing will use
759 	 *   it (e.g. rx processing from the task q thread)
760 	 * o reclaim the tx queue data structures after calling
761 	 *   the 802.11 layer as we'll get called back to reclaim
762 	 *   node state and potentially want to use them
763 	 * o to cleanup the tx queues the hal is called, so detach
764 	 *   it last
765 	 * Other than that, it's straightforward...
766 	 */
767 	ath_stop(ifp);
768 	ieee80211_ifdetach(ifp->if_l2com);
769 	taskqueue_free(sc->sc_tq);
770 	bpfdetach(ifp);
771 #ifdef ATH_TX99_DIAG
772 	if (sc->sc_tx99 != NULL)
773 		sc->sc_tx99->detach(sc->sc_tx99);
774 #endif
775 	ath_rate_detach(sc->sc_rc);
776 	ath_desc_free(sc);
777 	ath_tx_cleanup(sc);
778 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
779 	if_free(ifp);
780 
781 	return 0;
782 }
783 
784 /*
785  * MAC address handling for multiple BSS on the same radio.
786  * The first vap uses the MAC address from the EEPROM.  For
787  * subsequent vap's we set the U/L bit (bit 1) in the MAC
788  * address and use the next six bits as an index.
789  */
790 static void
791 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
792 {
793 	int i;
794 
795 	if (clone && sc->sc_hasbmask) {
796 		/* NB: we only do this if h/w supports multiple bssid */
797 		for (i = 0; i < 8; i++)
798 			if ((sc->sc_bssidmask & (1<<i)) == 0)
799 				break;
800 		if (i != 0)
801 			mac[0] |= (i << 2)|0x2;
802 	} else
803 		i = 0;
804 	sc->sc_bssidmask |= 1<<i;
805 	sc->sc_hwbssidmask[0] &= ~mac[0];
806 	if (i == 0)
807 		sc->sc_nbssid0++;
808 }
809 
810 static void
811 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
812 {
813 	int i = mac[0] >> 2;
814 	uint8_t mask;
815 
816 	if (i != 0 || --sc->sc_nbssid0 == 0) {
817 		sc->sc_bssidmask &= ~(1<<i);
818 		/* recalculate bssid mask from remaining addresses */
819 		mask = 0xff;
820 		for (i = 1; i < 8; i++)
821 			if (sc->sc_bssidmask & (1<<i))
822 				mask &= ~((i<<2)|0x2);
823 		sc->sc_hwbssidmask[0] |= mask;
824 	}
825 }
826 
827 /*
828  * Assign a beacon xmit slot.  We try to space out
829  * assignments so when beacons are staggered the
830  * traffic coming out of the cab q has maximal time
831  * to go out before the next beacon is scheduled.
832  */
833 static int
834 assign_bslot(struct ath_softc *sc)
835 {
836 	u_int slot, free;
837 
838 	free = 0;
839 	for (slot = 0; slot < ATH_BCBUF; slot++)
840 		if (sc->sc_bslot[slot] == NULL) {
841 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
842 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
843 				return slot;
844 			free = slot;
845 			/* NB: keep looking for a double slot */
846 		}
847 	return free;
848 }
849 
850 static struct ieee80211vap *
851 ath_vap_create(struct ieee80211com *ic,
852 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
853 	const uint8_t bssid[IEEE80211_ADDR_LEN],
854 	const uint8_t mac0[IEEE80211_ADDR_LEN])
855 {
856 	struct ath_softc *sc = ic->ic_ifp->if_softc;
857 	struct ath_vap *avp;
858 	struct ieee80211vap *vap;
859 	uint8_t mac[IEEE80211_ADDR_LEN];
860 	int ic_opmode, needbeacon, error;
861 
862 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
863 	    M_80211_VAP, M_WAITOK | M_ZERO);
864 	needbeacon = 0;
865 	IEEE80211_ADDR_COPY(mac, mac0);
866 
867 	ATH_LOCK(sc);
868 	switch (opmode) {
869 	case IEEE80211_M_STA:
870 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 sta for now */
871 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
872 			goto bad;
873 		}
874 		if (sc->sc_nvaps) {
875 			/*
876 			 * When there are multiple vaps we must fall
877 			 * back to s/w beacon miss handling.
878 			 */
879 			flags |= IEEE80211_CLONE_NOBEACONS;
880 		}
881 		if (flags & IEEE80211_CLONE_NOBEACONS)
882 			ic_opmode = IEEE80211_M_HOSTAP;
883 		else
884 			ic_opmode = opmode;
885 		break;
886 	case IEEE80211_M_IBSS:
887 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
888 			device_printf(sc->sc_dev,
889 			    "only 1 ibss vap supported\n");
890 			goto bad;
891 		}
892 		ic_opmode = opmode;
893 		needbeacon = 1;
894 		break;
895 	case IEEE80211_M_AHDEMO:
896 #ifdef ATH_SUPPORT_TDMA
897 		if (flags & IEEE80211_CLONE_TDMA) {
898 			needbeacon = 1;
899 			flags |= IEEE80211_CLONE_NOBEACONS;
900 		}
901 		/* fall thru... */
902 #endif
903 	case IEEE80211_M_MONITOR:
904 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
905 			/* XXX not right for monitor mode */
906 			ic_opmode = ic->ic_opmode;
907 		} else
908 			ic_opmode = opmode;
909 		break;
910 	case IEEE80211_M_HOSTAP:
911 		needbeacon = 1;
912 		/* fall thru... */
913 	case IEEE80211_M_WDS:
914 		if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
915 			device_printf(sc->sc_dev,
916 			    "wds not supported in sta mode\n");
917 			goto bad;
918 		}
919 		if (opmode == IEEE80211_M_WDS) {
920 			/*
921 			 * Silently remove any request for a unique
922 			 * bssid; WDS vap's always share the local
923 			 * mac address.
924 			 */
925 			flags &= ~IEEE80211_CLONE_BSSID;
926 		}
927 		ic_opmode = IEEE80211_M_HOSTAP;
928 		break;
929 	default:
930 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
931 		goto bad;
932 	}
933 	/*
934 	 * Check that a beacon buffer is available; the code below assumes it.
935 	 */
936 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
937 		device_printf(sc->sc_dev, "no beacon buffer available\n");
938 		goto bad;
939 	}
940 
941 	/* STA, AHDEMO? */
942 	if (opmode == IEEE80211_M_HOSTAP) {
943 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
944 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
945 	}
946 
947 	vap = &avp->av_vap;
948 	/* XXX can't hold mutex across if_alloc */
949 	ATH_UNLOCK(sc);
950 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
951 	    bssid, mac);
952 	ATH_LOCK(sc);
953 	if (error != 0) {
954 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
955 		    __func__, error);
956 		goto bad2;
957 	}
958 
959 	/* h/w crypto support */
960 	vap->iv_key_alloc = ath_key_alloc;
961 	vap->iv_key_delete = ath_key_delete;
962 	vap->iv_key_set = ath_key_set;
963 	vap->iv_key_update_begin = ath_key_update_begin;
964 	vap->iv_key_update_end = ath_key_update_end;
965 
966 	/* override various methods */
967 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
968 	vap->iv_recv_mgmt = ath_recv_mgmt;
969 	vap->iv_reset = ath_reset_vap;
970 	vap->iv_update_beacon = ath_beacon_update;
971 	avp->av_newstate = vap->iv_newstate;
972 	vap->iv_newstate = ath_newstate;
973 	avp->av_bmiss = vap->iv_bmiss;
974 	vap->iv_bmiss = ath_bmiss_vap;
975 
976 	avp->av_bslot = -1;
977 	if (needbeacon) {
978 		/*
979 		 * Allocate beacon state and setup the q for buffered
980 		 * multicast frames.  We know a beacon buffer is
981 		 * available because we checked above.
982 		 */
983 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
984 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
985 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
986 			/*
987 			 * Assign the vap to a beacon xmit slot.  As above
988 			 * this cannot fail to find a free one.
989 			 */
990 			avp->av_bslot = assign_bslot(sc);
991 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
992 			    ("beacon slot %u not empty", avp->av_bslot));
993 			sc->sc_bslot[avp->av_bslot] = vap;
994 			sc->sc_nbcnvaps++;
995 		}
996 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
997 			/*
998 			 * Multple vaps are to transmit beacons and we
999 			 * have h/w support for TSF adjusting; enable
1000 			 * use of staggered beacons.
1001 			 */
1002 			sc->sc_stagbeacons = 1;
1003 		}
1004 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1005 	}
1006 
1007 	ic->ic_opmode = ic_opmode;
1008 	if (opmode != IEEE80211_M_WDS) {
1009 		sc->sc_nvaps++;
1010 		if (opmode == IEEE80211_M_STA)
1011 			sc->sc_nstavaps++;
1012 	}
1013 	switch (ic_opmode) {
1014 	case IEEE80211_M_IBSS:
1015 		sc->sc_opmode = HAL_M_IBSS;
1016 		break;
1017 	case IEEE80211_M_STA:
1018 		sc->sc_opmode = HAL_M_STA;
1019 		break;
1020 	case IEEE80211_M_AHDEMO:
1021 #ifdef ATH_SUPPORT_TDMA
1022 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1023 			sc->sc_tdma = 1;
1024 			/* NB: disable tsf adjust */
1025 			sc->sc_stagbeacons = 0;
1026 		}
1027 		/*
1028 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1029 		 * just ap mode.
1030 		 */
1031 		/* fall thru... */
1032 #endif
1033 	case IEEE80211_M_HOSTAP:
1034 		sc->sc_opmode = HAL_M_HOSTAP;
1035 		break;
1036 	case IEEE80211_M_MONITOR:
1037 		sc->sc_opmode = HAL_M_MONITOR;
1038 		break;
1039 	default:
1040 		/* XXX should not happen */
1041 		break;
1042 	}
1043 	if (sc->sc_hastsfadd) {
1044 		/*
1045 		 * Configure whether or not TSF adjust should be done.
1046 		 */
1047 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1048 	}
1049 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1050 		/*
1051 		 * Enable s/w beacon miss handling.
1052 		 */
1053 		sc->sc_swbmiss = 1;
1054 	}
1055 	ATH_UNLOCK(sc);
1056 
1057 	/* complete setup */
1058 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1059 	return vap;
1060 bad2:
1061 	reclaim_address(sc, mac);
1062 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1063 bad:
1064 	free(avp, M_80211_VAP);
1065 	ATH_UNLOCK(sc);
1066 	return NULL;
1067 }
1068 
1069 static void
1070 ath_vap_delete(struct ieee80211vap *vap)
1071 {
1072 	struct ieee80211com *ic = vap->iv_ic;
1073 	struct ifnet *ifp = ic->ic_ifp;
1074 	struct ath_softc *sc = ifp->if_softc;
1075 	struct ath_hal *ah = sc->sc_ah;
1076 	struct ath_vap *avp = ATH_VAP(vap);
1077 
1078 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1079 		/*
1080 		 * Quiesce the hardware while we remove the vap.  In
1081 		 * particular we need to reclaim all references to
1082 		 * the vap state by any frames pending on the tx queues.
1083 		 */
1084 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1085 		ath_draintxq(sc);		/* stop xmit side */
1086 		ath_stoprecv(sc);		/* stop recv side */
1087 	}
1088 
1089 	ieee80211_vap_detach(vap);
1090 	ATH_LOCK(sc);
1091 	/*
1092 	 * Reclaim beacon state.  Note this must be done before
1093 	 * the vap instance is reclaimed as we may have a reference
1094 	 * to it in the buffer for the beacon frame.
1095 	 */
1096 	if (avp->av_bcbuf != NULL) {
1097 		if (avp->av_bslot != -1) {
1098 			sc->sc_bslot[avp->av_bslot] = NULL;
1099 			sc->sc_nbcnvaps--;
1100 		}
1101 		ath_beacon_return(sc, avp->av_bcbuf);
1102 		avp->av_bcbuf = NULL;
1103 		if (sc->sc_nbcnvaps == 0) {
1104 			sc->sc_stagbeacons = 0;
1105 			if (sc->sc_hastsfadd)
1106 				ath_hal_settsfadjust(sc->sc_ah, 0);
1107 		}
1108 		/*
1109 		 * Reclaim any pending mcast frames for the vap.
1110 		 */
1111 		ath_tx_draintxq(sc, &avp->av_mcastq);
1112 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1113 	}
1114 	/*
1115 	 * Update bookkeeping.
1116 	 */
1117 	if (vap->iv_opmode == IEEE80211_M_STA) {
1118 		sc->sc_nstavaps--;
1119 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1120 			sc->sc_swbmiss = 0;
1121 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1122 		reclaim_address(sc, vap->iv_myaddr);
1123 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1124 	}
1125 	if (vap->iv_opmode != IEEE80211_M_WDS)
1126 		sc->sc_nvaps--;
1127 #ifdef ATH_SUPPORT_TDMA
1128 	/* TDMA operation ceases when the last vap is destroyed */
1129 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1130 		sc->sc_tdma = 0;
1131 		sc->sc_swbmiss = 0;
1132 	}
1133 #endif
1134 	ATH_UNLOCK(sc);
1135 	free(avp, M_80211_VAP);
1136 
1137 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1138 		/*
1139 		 * Restart rx+tx machines if still running (RUNNING will
1140 		 * be reset if we just destroyed the last vap).
1141 		 */
1142 		if (ath_startrecv(sc) != 0)
1143 			if_printf(ifp, "%s: unable to restart recv logic\n",
1144 			    __func__);
1145 		if (sc->sc_beacons)
1146 			ath_beacon_config(sc, NULL);
1147 		ath_hal_intrset(ah, sc->sc_imask);
1148 	}
1149 }
1150 
1151 void
1152 ath_suspend(struct ath_softc *sc)
1153 {
1154 	struct ifnet *ifp = sc->sc_ifp;
1155 	struct ieee80211com *ic = ifp->if_l2com;
1156 
1157 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1158 		__func__, ifp->if_flags);
1159 
1160 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1161 	if (ic->ic_opmode == IEEE80211_M_STA)
1162 		ath_stop(ifp);
1163 	else
1164 		ieee80211_suspend_all(ic);
1165 	/*
1166 	 * NB: don't worry about putting the chip in low power
1167 	 * mode; pci will power off our socket on suspend and
1168 	 * cardbus detaches the device.
1169 	 */
1170 }
1171 
1172 /*
1173  * Reset the key cache since some parts do not reset the
1174  * contents on resume.  First we clear all entries, then
1175  * re-load keys that the 802.11 layer assumes are setup
1176  * in h/w.
1177  */
1178 static void
1179 ath_reset_keycache(struct ath_softc *sc)
1180 {
1181 	struct ifnet *ifp = sc->sc_ifp;
1182 	struct ieee80211com *ic = ifp->if_l2com;
1183 	struct ath_hal *ah = sc->sc_ah;
1184 	int i;
1185 
1186 	for (i = 0; i < sc->sc_keymax; i++)
1187 		ath_hal_keyreset(ah, i);
1188 	ieee80211_crypto_reload_keys(ic);
1189 }
1190 
1191 void
1192 ath_resume(struct ath_softc *sc)
1193 {
1194 	struct ifnet *ifp = sc->sc_ifp;
1195 	struct ieee80211com *ic = ifp->if_l2com;
1196 	struct ath_hal *ah = sc->sc_ah;
1197 	HAL_STATUS status;
1198 
1199 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1200 		__func__, ifp->if_flags);
1201 
1202 	/*
1203 	 * Must reset the chip before we reload the
1204 	 * keycache as we were powered down on suspend.
1205 	 */
1206 	ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status);
1207 	ath_reset_keycache(sc);
1208 	if (sc->sc_resume_up) {
1209 		if (ic->ic_opmode == IEEE80211_M_STA) {
1210 			ath_init(sc);
1211 			ieee80211_beacon_miss(ic);
1212 		} else
1213 			ieee80211_resume_all(ic);
1214 	}
1215 	if (sc->sc_softled) {
1216 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
1217 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1218 	}
1219 }
1220 
1221 void
1222 ath_shutdown(struct ath_softc *sc)
1223 {
1224 	struct ifnet *ifp = sc->sc_ifp;
1225 
1226 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1227 		__func__, ifp->if_flags);
1228 
1229 	ath_stop(ifp);
1230 	/* NB: no point powering down chip as we're about to reboot */
1231 }
1232 
1233 /*
1234  * Interrupt handler.  Most of the actual processing is deferred.
1235  */
1236 void
1237 ath_intr(void *arg)
1238 {
1239 	struct ath_softc *sc = arg;
1240 	struct ifnet *ifp = sc->sc_ifp;
1241 	struct ath_hal *ah = sc->sc_ah;
1242 	HAL_INT status;
1243 
1244 	if (sc->sc_invalid) {
1245 		/*
1246 		 * The hardware is not ready/present, don't touch anything.
1247 		 * Note this can happen early on if the IRQ is shared.
1248 		 */
1249 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1250 		return;
1251 	}
1252 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1253 		return;
1254 	if ((ifp->if_flags & IFF_UP) == 0 ||
1255 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1256 		HAL_INT status;
1257 
1258 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1259 			__func__, ifp->if_flags);
1260 		ath_hal_getisr(ah, &status);	/* clear ISR */
1261 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1262 		return;
1263 	}
1264 	/*
1265 	 * Figure out the reason(s) for the interrupt.  Note
1266 	 * that the hal returns a pseudo-ISR that may include
1267 	 * bits we haven't explicitly enabled so we mask the
1268 	 * value to insure we only process bits we requested.
1269 	 */
1270 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1271 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1272 	status &= sc->sc_imask;			/* discard unasked for bits */
1273 	if (status & HAL_INT_FATAL) {
1274 		sc->sc_stats.ast_hardware++;
1275 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1276 		ath_fatal_proc(sc, 0);
1277 	} else {
1278 		if (status & HAL_INT_SWBA) {
1279 			/*
1280 			 * Software beacon alert--time to send a beacon.
1281 			 * Handle beacon transmission directly; deferring
1282 			 * this is too slow to meet timing constraints
1283 			 * under load.
1284 			 */
1285 #ifdef ATH_SUPPORT_TDMA
1286 			if (sc->sc_tdma) {
1287 				if (sc->sc_tdmaswba == 0) {
1288 					struct ieee80211com *ic = ifp->if_l2com;
1289 					struct ieee80211vap *vap =
1290 					    TAILQ_FIRST(&ic->ic_vaps);
1291 					ath_tdma_beacon_send(sc, vap);
1292 					sc->sc_tdmaswba =
1293 					    vap->iv_tdma->tdma_bintval;
1294 				} else
1295 					sc->sc_tdmaswba--;
1296 			} else
1297 #endif
1298 				ath_beacon_proc(sc, 0);
1299 		}
1300 		if (status & HAL_INT_RXEOL) {
1301 			/*
1302 			 * NB: the hardware should re-read the link when
1303 			 *     RXE bit is written, but it doesn't work at
1304 			 *     least on older hardware revs.
1305 			 */
1306 			sc->sc_stats.ast_rxeol++;
1307 			sc->sc_rxlink = NULL;
1308 		}
1309 		if (status & HAL_INT_TXURN) {
1310 			sc->sc_stats.ast_txurn++;
1311 			/* bump tx trigger level */
1312 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1313 		}
1314 		if (status & HAL_INT_RX)
1315 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1316 		if (status & HAL_INT_TX)
1317 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1318 		if (status & HAL_INT_BMISS) {
1319 			sc->sc_stats.ast_bmiss++;
1320 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1321 		}
1322 		if (status & HAL_INT_MIB) {
1323 			sc->sc_stats.ast_mib++;
1324 			/*
1325 			 * Disable interrupts until we service the MIB
1326 			 * interrupt; otherwise it will continue to fire.
1327 			 */
1328 			ath_hal_intrset(ah, 0);
1329 			/*
1330 			 * Let the hal handle the event.  We assume it will
1331 			 * clear whatever condition caused the interrupt.
1332 			 */
1333 			ath_hal_mibevent(ah, &sc->sc_halstats);
1334 			ath_hal_intrset(ah, sc->sc_imask);
1335 		}
1336 		if (status & HAL_INT_RXORN) {
1337 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1338 			sc->sc_stats.ast_rxorn++;
1339 		}
1340 	}
1341 }
1342 
1343 static void
1344 ath_fatal_proc(void *arg, int pending)
1345 {
1346 	struct ath_softc *sc = arg;
1347 	struct ifnet *ifp = sc->sc_ifp;
1348 	u_int32_t *state;
1349 	u_int32_t len;
1350 	void *sp;
1351 
1352 	if_printf(ifp, "hardware error; resetting\n");
1353 	/*
1354 	 * Fatal errors are unrecoverable.  Typically these
1355 	 * are caused by DMA errors.  Collect h/w state from
1356 	 * the hal so we can diagnose what's going on.
1357 	 */
1358 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1359 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1360 		state = sp;
1361 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1362 		    state[0], state[1] , state[2], state[3],
1363 		    state[4], state[5]);
1364 	}
1365 	ath_reset(ifp);
1366 }
1367 
1368 static void
1369 ath_bmiss_vap(struct ieee80211vap *vap)
1370 {
1371 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1372 	struct ath_softc *sc = ifp->if_softc;
1373 	u_int64_t lastrx = sc->sc_lastrx;
1374 	u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1375 	u_int bmisstimeout =
1376 		vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1377 
1378 	DPRINTF(sc, ATH_DEBUG_BEACON,
1379 	    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1380 	    __func__, (unsigned long long) tsf,
1381 	    (unsigned long long)(tsf - lastrx),
1382 	    (unsigned long long) lastrx, bmisstimeout);
1383 	/*
1384 	 * Workaround phantom bmiss interrupts by sanity-checking
1385 	 * the time of our last rx'd frame.  If it is within the
1386 	 * beacon miss interval then ignore the interrupt.  If it's
1387 	 * truly a bmiss we'll get another interrupt soon and that'll
1388 	 * be dispatched up for processing.
1389 	 */
1390 	if (tsf - lastrx > bmisstimeout)
1391 		ATH_VAP(vap)->av_bmiss(vap);
1392 	else
1393 		sc->sc_stats.ast_bmiss_phantom++;
1394 }
1395 
1396 static int
1397 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1398 {
1399 	uint32_t rsize;
1400 	void *sp;
1401 
1402 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(&mask), &sp, &rsize))
1403 		return 0;
1404 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1405 	*hangs = *(uint32_t *)sp;
1406 	return 1;
1407 }
1408 
1409 static void
1410 ath_bmiss_proc(void *arg, int pending)
1411 {
1412 	struct ath_softc *sc = arg;
1413 	struct ifnet *ifp = sc->sc_ifp;
1414 	uint32_t hangs;
1415 
1416 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1417 
1418 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1419 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1420 		ath_reset(ifp);
1421 	} else
1422 		ieee80211_beacon_miss(ifp->if_l2com);
1423 }
1424 
1425 /*
1426  * Convert net80211 channel to a HAL channel with the flags
1427  * constrained to reflect the current operating mode and
1428  * the frequency possibly mapped for GSM channels.
1429  */
1430 static void
1431 ath_mapchan(const struct ieee80211com *ic,
1432 	HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
1433 {
1434 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1435 	static const u_int modeflags[IEEE80211_MODE_MAX] = {
1436 		0,			/* IEEE80211_MODE_AUTO */
1437 		CHANNEL_A,		/* IEEE80211_MODE_11A */
1438 		CHANNEL_B,		/* IEEE80211_MODE_11B */
1439 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
1440 		0,			/* IEEE80211_MODE_FH */
1441 		CHANNEL_108A,		/* IEEE80211_MODE_TURBO_A */
1442 		CHANNEL_108G,		/* IEEE80211_MODE_TURBO_G */
1443 		CHANNEL_ST,		/* IEEE80211_MODE_STURBO_A */
1444 		CHANNEL_A,		/* IEEE80211_MODE_11NA */
1445 		CHANNEL_PUREG,		/* IEEE80211_MODE_11NG */
1446 	};
1447 	enum ieee80211_phymode mode = ieee80211_chan2mode(chan);
1448 
1449 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
1450 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
1451 	hc->channelFlags = modeflags[mode];
1452 	if (IEEE80211_IS_CHAN_HALF(chan))
1453 		hc->channelFlags |= CHANNEL_HALF;
1454 	if (IEEE80211_IS_CHAN_QUARTER(chan))
1455 		hc->channelFlags |= CHANNEL_QUARTER;
1456 	if (IEEE80211_IS_CHAN_HT20(chan))
1457 		hc->channelFlags |= CHANNEL_HT20;
1458 	if (IEEE80211_IS_CHAN_HT40D(chan))
1459 		hc->channelFlags |= CHANNEL_HT40MINUS;
1460 	if (IEEE80211_IS_CHAN_HT40U(chan))
1461 		hc->channelFlags |= CHANNEL_HT40PLUS;
1462 
1463 	if (IEEE80211_IS_CHAN_GSM(chan)) {
1464 		if (ic->ic_regdomain.country == CTRY_XR9)
1465 			hc->channel = 1520 + chan->ic_freq;
1466 		else if (ic->ic_regdomain.country == CTRY_GZ901)
1467 			hc->channel = 1544 + chan->ic_freq;
1468 		else
1469 			hc->channel = 3344 - chan->ic_freq;
1470 	} else
1471 		hc->channel = chan->ic_freq;
1472 #undef N
1473 }
1474 
1475 /*
1476  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1477  * calcs together with WME.  If necessary disable the crypto
1478  * hardware and mark the 802.11 state so keys will be setup
1479  * with the MIC work done in software.
1480  */
1481 static void
1482 ath_settkipmic(struct ath_softc *sc)
1483 {
1484 	struct ifnet *ifp = sc->sc_ifp;
1485 	struct ieee80211com *ic = ifp->if_l2com;
1486 
1487 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1488 		if (ic->ic_flags & IEEE80211_F_WME) {
1489 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1490 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1491 		} else {
1492 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1493 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1494 		}
1495 	}
1496 }
1497 
1498 static void
1499 ath_init(void *arg)
1500 {
1501 	struct ath_softc *sc = (struct ath_softc *) arg;
1502 	struct ifnet *ifp = sc->sc_ifp;
1503 	struct ieee80211com *ic = ifp->if_l2com;
1504 	struct ath_hal *ah = sc->sc_ah;
1505 	HAL_STATUS status;
1506 
1507 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1508 		__func__, ifp->if_flags);
1509 
1510 	ATH_LOCK(sc);
1511 	/*
1512 	 * Stop anything previously setup.  This is safe
1513 	 * whether this is the first time through or not.
1514 	 */
1515 	ath_stop_locked(ifp);
1516 
1517 	/*
1518 	 * The basic interface to setting the hardware in a good
1519 	 * state is ``reset''.  On return the hardware is known to
1520 	 * be powered up and with interrupts disabled.  This must
1521 	 * be followed by initialization of the appropriate bits
1522 	 * and then setup of the interrupt mask.
1523 	 */
1524 	ath_mapchan(ic, &sc->sc_curchan, ic->ic_curchan);
1525 	ath_settkipmic(sc);
1526 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1527 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1528 			status);
1529 		ATH_UNLOCK(sc);
1530 		return;
1531 	}
1532 	ath_chan_change(sc, ic->ic_curchan);
1533 
1534 	/*
1535 	 * Likewise this is set during reset so update
1536 	 * state cached in the driver.
1537 	 */
1538 	sc->sc_diversity = ath_hal_getdiversity(ah);
1539 	sc->sc_lastlongcal = 0;
1540 	sc->sc_resetcal = 1;
1541 	sc->sc_lastcalreset = 0;
1542 
1543 	/*
1544 	 * Setup the hardware after reset: the key cache
1545 	 * is filled as needed and the receive engine is
1546 	 * set going.  Frame transmit is handled entirely
1547 	 * in the frame output path; there's nothing to do
1548 	 * here except setup the interrupt mask.
1549 	 */
1550 	if (ath_startrecv(sc) != 0) {
1551 		if_printf(ifp, "unable to start recv logic\n");
1552 		ATH_UNLOCK(sc);
1553 		return;
1554 	}
1555 
1556 	/*
1557 	 * Enable interrupts.
1558 	 */
1559 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1560 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1561 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1562 	/*
1563 	 * Enable MIB interrupts when there are hardware phy counters.
1564 	 * Note we only do this (at the moment) for station mode.
1565 	 */
1566 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1567 		sc->sc_imask |= HAL_INT_MIB;
1568 
1569 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1570 	ath_hal_intrset(ah, sc->sc_imask);
1571 
1572 	ATH_UNLOCK(sc);
1573 
1574 #ifdef ATH_TX99_DIAG
1575 	if (sc->sc_tx99 != NULL)
1576 		sc->sc_tx99->start(sc->sc_tx99);
1577 	else
1578 #endif
1579 	ieee80211_start_all(ic);		/* start all vap's */
1580 }
1581 
1582 static void
1583 ath_stop_locked(struct ifnet *ifp)
1584 {
1585 	struct ath_softc *sc = ifp->if_softc;
1586 	struct ath_hal *ah = sc->sc_ah;
1587 
1588 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1589 		__func__, sc->sc_invalid, ifp->if_flags);
1590 
1591 	ATH_LOCK_ASSERT(sc);
1592 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1593 		/*
1594 		 * Shutdown the hardware and driver:
1595 		 *    reset 802.11 state machine
1596 		 *    turn off timers
1597 		 *    disable interrupts
1598 		 *    turn off the radio
1599 		 *    clear transmit machinery
1600 		 *    clear receive machinery
1601 		 *    drain and release tx queues
1602 		 *    reclaim beacon resources
1603 		 *    power down hardware
1604 		 *
1605 		 * Note that some of this work is not possible if the
1606 		 * hardware is gone (invalid).
1607 		 */
1608 #ifdef ATH_TX99_DIAG
1609 		if (sc->sc_tx99 != NULL)
1610 			sc->sc_tx99->stop(sc->sc_tx99);
1611 #endif
1612 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1613 		ifp->if_timer = 0;
1614 		if (!sc->sc_invalid) {
1615 			if (sc->sc_softled) {
1616 				callout_stop(&sc->sc_ledtimer);
1617 				ath_hal_gpioset(ah, sc->sc_ledpin,
1618 					!sc->sc_ledon);
1619 				sc->sc_blinking = 0;
1620 			}
1621 			ath_hal_intrset(ah, 0);
1622 		}
1623 		ath_draintxq(sc);
1624 		if (!sc->sc_invalid) {
1625 			ath_stoprecv(sc);
1626 			ath_hal_phydisable(ah);
1627 		} else
1628 			sc->sc_rxlink = NULL;
1629 		ath_beacon_free(sc);	/* XXX not needed */
1630 	}
1631 }
1632 
1633 static void
1634 ath_stop(struct ifnet *ifp)
1635 {
1636 	struct ath_softc *sc = ifp->if_softc;
1637 
1638 	ATH_LOCK(sc);
1639 	ath_stop_locked(ifp);
1640 	ATH_UNLOCK(sc);
1641 }
1642 
1643 /*
1644  * Reset the hardware w/o losing operational state.  This is
1645  * basically a more efficient way of doing ath_stop, ath_init,
1646  * followed by state transitions to the current 802.11
1647  * operational state.  Used to recover from various errors and
1648  * to reset or reload hardware state.
1649  */
1650 static int
1651 ath_reset(struct ifnet *ifp)
1652 {
1653 	struct ath_softc *sc = ifp->if_softc;
1654 	struct ieee80211com *ic = ifp->if_l2com;
1655 	struct ath_hal *ah = sc->sc_ah;
1656 	HAL_STATUS status;
1657 
1658 	/*
1659 	 * Convert to a HAL channel description with the flags
1660 	 * constrained to reflect the current operating mode.
1661 	 */
1662 	ath_mapchan(ic, &sc->sc_curchan, ic->ic_curchan);
1663 
1664 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1665 	ath_draintxq(sc);		/* stop xmit side */
1666 	ath_stoprecv(sc);		/* stop recv side */
1667 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1668 	/* NB: indicate channel change so we do a full reset */
1669 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1670 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1671 			__func__, status);
1672 	sc->sc_diversity = ath_hal_getdiversity(ah);
1673 	if (ath_startrecv(sc) != 0)	/* restart recv */
1674 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1675 	/*
1676 	 * We may be doing a reset in response to an ioctl
1677 	 * that changes the channel so update any state that
1678 	 * might change as a result.
1679 	 */
1680 	ath_chan_change(sc, ic->ic_curchan);
1681 	if (sc->sc_beacons) {
1682 #ifdef ATH_SUPPORT_TDMA
1683 		if (sc->sc_tdma)
1684 			ath_tdma_config(sc, NULL);
1685 		else
1686 #endif
1687 			ath_beacon_config(sc, NULL);	/* restart beacons */
1688 	}
1689 	ath_hal_intrset(ah, sc->sc_imask);
1690 
1691 	ath_start(ifp);			/* restart xmit */
1692 	return 0;
1693 }
1694 
1695 static int
1696 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1697 {
1698 	struct ieee80211com *ic = vap->iv_ic;
1699 	struct ifnet *ifp = ic->ic_ifp;
1700 	struct ath_softc *sc = ifp->if_softc;
1701 	struct ath_hal *ah = sc->sc_ah;
1702 
1703 	switch (cmd) {
1704 	case IEEE80211_IOC_TXPOWER:
1705 		/*
1706 		 * If per-packet TPC is enabled, then we have nothing
1707 		 * to do; otherwise we need to force the global limit.
1708 		 * All this can happen directly; no need to reset.
1709 		 */
1710 		if (!ath_hal_gettpc(ah))
1711 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1712 		return 0;
1713 	}
1714 	return ath_reset(ifp);
1715 }
1716 
1717 static int
1718 ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1719 {
1720 	return 0;
1721 }
1722 
1723 #if 0
1724 static int
1725 ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1726 {
1727 	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1728 }
1729 #endif
1730 
1731 /*
1732  * Flush FF staging queue.
1733  */
1734 static void
1735 ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1736 	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1737 {
1738 	struct ath_buf *bf;
1739 	struct ieee80211_node *ni;
1740 	int pktlen, pri;
1741 
1742 	for (;;) {
1743 		ATH_TXQ_LOCK(txq);
1744 		/*
1745 		 * Go from the back (oldest) to front so we can
1746 		 * stop early based on the age of the entry.
1747 		 */
1748 		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1749 		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1750 			ATH_TXQ_UNLOCK(txq);
1751 			break;
1752 		}
1753 
1754 		ni = bf->bf_node;
1755 		pri = M_WME_GETAC(bf->bf_m);
1756 		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1757 			("no bf on staging queue %p", bf));
1758 		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1759 		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1760 
1761 		ATH_TXQ_UNLOCK(txq);
1762 
1763 		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1764 			__func__, bf->bf_age);
1765 
1766 		sc->sc_stats.ast_ff_flush++;
1767 
1768 		/* encap and xmit */
1769 		bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1770 		if (bf->bf_m == NULL) {
1771 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1772 				"%s: discard, encapsulation failure\n",
1773 				__func__);
1774 			sc->sc_stats.ast_tx_encap++;
1775 			goto bad;
1776 		}
1777 		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1778 		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1779 #if 0 /*XXX*/
1780 			ifp->if_opackets++;
1781 #endif
1782 			continue;
1783 		}
1784 	bad:
1785 		if (ni != NULL)
1786 			ieee80211_free_node(ni);
1787 		bf->bf_node = NULL;
1788 		if (bf->bf_m != NULL) {
1789 			m_freem(bf->bf_m);
1790 			bf->bf_m = NULL;
1791 		}
1792 
1793 		ATH_TXBUF_LOCK(sc);
1794 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1795 		ATH_TXBUF_UNLOCK(sc);
1796 	}
1797 }
1798 
1799 static __inline u_int32_t
1800 ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1801 {
1802 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1803 	u_int32_t framelen;
1804 	struct ath_buf *bf;
1805 
1806 	/*
1807 	 * Approximate the frame length to be transmitted. A swag to add
1808 	 * the following maximal values to the skb payload:
1809 	 *   - 32: 802.11 encap + CRC
1810 	 *   - 24: encryption overhead (if wep bit)
1811 	 *   - 4 + 6: fast-frame header and padding
1812 	 *   - 16: 2 LLC FF tunnel headers
1813 	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1814 	 */
1815 	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1816 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1817 		framelen += 24;
1818 	bf = an->an_ff_buf[M_WME_GETAC(m)];
1819 	if (bf != NULL)
1820 		framelen += bf->bf_m->m_pkthdr.len;
1821 	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1822 			sc->sc_lastdatarix, AH_FALSE);
1823 }
1824 
1825 /*
1826  * Determine if a data frame may be aggregated via ff tunnelling.
1827  * Note the caller is responsible for checking if the destination
1828  * supports fast frames.
1829  *
1830  *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1831  *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1832  *      be aggregated with other types of frames when encryption is on?
1833  *
1834  *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1835  */
1836 static __inline int
1837 ath_ff_can_aggregate(struct ath_softc *sc,
1838 	struct ath_node *an, struct mbuf *m, int *flushq)
1839 {
1840 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1841 	struct ath_txq *txq;
1842 	u_int32_t txoplimit;
1843 	u_int pri;
1844 
1845 	*flushq = 0;
1846 
1847 	/*
1848 	 * If there is no frame to combine with and the txq has
1849 	 * fewer frames than the minimum required; then do not
1850 	 * attempt to aggregate this frame.
1851 	 */
1852 	pri = M_WME_GETAC(m);
1853 	txq = sc->sc_ac2q[pri];
1854 	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1855 		return 0;
1856 	/*
1857 	 * When not in station mode never aggregate a multicast
1858 	 * frame; this insures, for example, that a combined frame
1859 	 * does not require multiple encryption keys when using
1860 	 * 802.1x/WPA.
1861 	 */
1862 	if (ic->ic_opmode != IEEE80211_M_STA &&
1863 	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1864 		return 0;
1865 	/*
1866 	 * Consult the max bursting interval to insure a combined
1867 	 * frame fits within the TxOp window.
1868 	 */
1869 	txoplimit = IEEE80211_TXOP_TO_US(
1870 		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1871 	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1872 		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1873 			"%s: FF TxOp violation\n", __func__);
1874 		if (an->an_ff_buf[pri] != NULL)
1875 			*flushq = 1;
1876 		return 0;
1877 	}
1878 	return 1;		/* try to aggregate */
1879 }
1880 
1881 /*
1882  * Check if the supplied frame can be partnered with an existing
1883  * or pending frame.  Return a reference to any frame that should be
1884  * sent on return; otherwise return NULL.
1885  */
1886 static struct mbuf *
1887 ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1888 	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1889 {
1890 	struct ath_node *an = ATH_NODE(ni);
1891 	struct ath_buf *bfstaged;
1892 	int ff_flush, pri;
1893 
1894 	/*
1895 	 * Check if the supplied frame can be aggregated.
1896 	 *
1897 	 * NB: we use the txq lock to protect references to
1898 	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1899 	 */
1900 	ATH_TXQ_LOCK(txq);
1901 	pri = M_WME_GETAC(m);
1902 	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1903 		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1904 		if (bfstaged != NULL) {
1905 			/*
1906 			 * A frame is available for partnering; remove
1907 			 * it, chain it to this one, and encapsulate.
1908 			 */
1909 			an->an_ff_buf[pri] = NULL;
1910 			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1911 			ATH_TXQ_UNLOCK(txq);
1912 
1913 			/*
1914 			 * Chain mbufs and add FF magic.
1915 			 */
1916 			DPRINTF(sc, ATH_DEBUG_FF,
1917 				"[%s] aggregate fast-frame, age %u\n",
1918 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1919 			m->m_nextpkt = NULL;
1920 			bfstaged->bf_m->m_nextpkt = m;
1921 			m = bfstaged->bf_m;
1922 			bfstaged->bf_m = NULL;
1923 			m->m_flags |= M_FF;
1924 			/*
1925 			 * Release the node reference held while
1926 			 * the packet sat on an_ff_buf[]
1927 			 */
1928 			bfstaged->bf_node = NULL;
1929 			ieee80211_free_node(ni);
1930 
1931 			/*
1932 			 * Return bfstaged to the free list.
1933 			 */
1934 			ATH_TXBUF_LOCK(sc);
1935 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1936 			ATH_TXBUF_UNLOCK(sc);
1937 
1938 			return m;		/* ready to go */
1939 		} else {
1940 			/*
1941 			 * No frame available, queue this frame to wait
1942 			 * for a partner.  Note that we hold the buffer
1943 			 * and a reference to the node; we need the
1944 			 * buffer in particular so we're certain we
1945 			 * can flush the frame at a later time.
1946 			 */
1947 			DPRINTF(sc, ATH_DEBUG_FF,
1948 				"[%s] stage fast-frame, age %u\n",
1949 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1950 
1951 			bf->bf_m = m;
1952 			bf->bf_node = ni;	/* NB: held reference */
1953 			bf->bf_age = txq->axq_curage;
1954 			an->an_ff_buf[pri] = bf;
1955 			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1956 			ATH_TXQ_UNLOCK(txq);
1957 
1958 			return NULL;		/* consumed */
1959 		}
1960 	}
1961 	/*
1962 	 * Frame could not be aggregated, it needs to be returned
1963 	 * to the caller for immediate transmission.  In addition
1964 	 * we check if we should first flush a frame from the
1965 	 * staging queue before sending this one.
1966 	 *
1967 	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1968 	 *     is present to flush.
1969 	 */
1970 	if (ff_flush) {
1971 		int pktlen;
1972 
1973 		bfstaged = an->an_ff_buf[pri];
1974 		an->an_ff_buf[pri] = NULL;
1975 		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1976 		ATH_TXQ_UNLOCK(txq);
1977 
1978 		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1979 			ether_sprintf(an->an_node.ni_macaddr));
1980 
1981 		/* encap and xmit */
1982 		bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1983 		if (bfstaged->bf_m == NULL) {
1984 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1985 				"%s: discard, encap failure\n", __func__);
1986 			sc->sc_stats.ast_tx_encap++;
1987 			goto ff_flushbad;
1988 		}
1989 		pktlen = bfstaged->bf_m->m_pkthdr.len;
1990 		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1991 			DPRINTF(sc, ATH_DEBUG_XMIT,
1992 				"%s: discard, xmit failure\n", __func__);
1993 	ff_flushbad:
1994 			/*
1995 			 * Unable to transmit frame that was on the staging
1996 			 * queue.  Reclaim the node reference and other
1997 			 * resources.
1998 			 */
1999 			if (ni != NULL)
2000 				ieee80211_free_node(ni);
2001 			bfstaged->bf_node = NULL;
2002 			if (bfstaged->bf_m != NULL) {
2003 				m_freem(bfstaged->bf_m);
2004 				bfstaged->bf_m = NULL;
2005 			}
2006 
2007 			ATH_TXBUF_LOCK(sc);
2008 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
2009 			ATH_TXBUF_UNLOCK(sc);
2010 		} else {
2011 #if 0
2012 			ifp->if_opackets++;
2013 #endif
2014 		}
2015 	} else {
2016 		if (an->an_ff_buf[pri] != NULL) {
2017 			/*
2018 			 * XXX: out-of-order condition only occurs for AP
2019 			 * mode and multicast.  There may be no valid way
2020 			 * to get this condition.
2021 			 */
2022 			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
2023 				ether_sprintf(an->an_node.ni_macaddr));
2024 			/* XXX stat */
2025 		}
2026 		ATH_TXQ_UNLOCK(txq);
2027 	}
2028 	return m;
2029 }
2030 
2031 static struct ath_buf *
2032 _ath_getbuf_locked(struct ath_softc *sc)
2033 {
2034 	struct ath_buf *bf;
2035 
2036 	ATH_TXBUF_LOCK_ASSERT(sc);
2037 
2038 	bf = STAILQ_FIRST(&sc->sc_txbuf);
2039 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
2040 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
2041 	else
2042 		bf = NULL;
2043 	if (bf == NULL) {
2044 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2045 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2046 			"out of xmit buffers" : "xmit buffer busy");
2047 		sc->sc_stats.ast_tx_nobuf++;
2048 	}
2049 	return bf;
2050 }
2051 
2052 static struct ath_buf *
2053 ath_getbuf(struct ath_softc *sc)
2054 {
2055 	struct ath_buf *bf;
2056 
2057 	ATH_TXBUF_LOCK(sc);
2058 	bf = _ath_getbuf_locked(sc);
2059 	if (bf == NULL) {
2060 		struct ifnet *ifp = sc->sc_ifp;
2061 
2062 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2063 		sc->sc_stats.ast_tx_qstop++;
2064 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2065 	}
2066 	ATH_TXBUF_UNLOCK(sc);
2067 	return bf;
2068 }
2069 
2070 /*
2071  * Cleanup driver resources when we run out of buffers
2072  * while processing fragments; return the tx buffers
2073  * allocated and drop node references.
2074  */
2075 static void
2076 ath_txfrag_cleanup(struct ath_softc *sc,
2077 	ath_bufhead *frags, struct ieee80211_node *ni)
2078 {
2079 	struct ath_buf *bf, *next;
2080 
2081 	ATH_TXBUF_LOCK_ASSERT(sc);
2082 
2083 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
2084 		/* NB: bf assumed clean */
2085 		STAILQ_REMOVE_HEAD(frags, bf_list);
2086 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2087 		ieee80211_node_decref(ni);
2088 	}
2089 }
2090 
2091 /*
2092  * Setup xmit of a fragmented frame.  Allocate a buffer
2093  * for each frag and bump the node reference count to
2094  * reflect the held reference to be setup by ath_tx_start.
2095  */
2096 static int
2097 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
2098 	struct mbuf *m0, struct ieee80211_node *ni)
2099 {
2100 	struct mbuf *m;
2101 	struct ath_buf *bf;
2102 
2103 	ATH_TXBUF_LOCK(sc);
2104 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
2105 		bf = _ath_getbuf_locked(sc);
2106 		if (bf == NULL) {	/* out of buffers, cleanup */
2107 			ath_txfrag_cleanup(sc, frags, ni);
2108 			break;
2109 		}
2110 		ieee80211_node_incref(ni);
2111 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
2112 	}
2113 	ATH_TXBUF_UNLOCK(sc);
2114 
2115 	return !STAILQ_EMPTY(frags);
2116 }
2117 
2118 static void
2119 ath_start(struct ifnet *ifp)
2120 {
2121 	struct ath_softc *sc = ifp->if_softc;
2122 	struct ieee80211com *ic = ifp->if_l2com;
2123 	struct ieee80211_node *ni;
2124 	struct ath_buf *bf;
2125 	struct mbuf *m, *next;
2126 	struct ath_txq *txq;
2127 	ath_bufhead frags;
2128 	int pri;
2129 
2130 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2131 		return;
2132 	for (;;) {
2133 		/*
2134 		 * Grab a TX buffer and associated resources.
2135 		 */
2136 		bf = ath_getbuf(sc);
2137 		if (bf == NULL)
2138 			break;
2139 
2140 		IFQ_DEQUEUE(&ifp->if_snd, m);
2141 		if (m == NULL) {
2142 			ATH_TXBUF_LOCK(sc);
2143 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2144 			ATH_TXBUF_UNLOCK(sc);
2145 			break;
2146 		}
2147 		STAILQ_INIT(&frags);
2148 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2149 		pri = M_WME_GETAC(m);
2150 		txq = sc->sc_ac2q[pri];
2151 		if (IEEE80211_ATH_CAP(ni->ni_vap, ni, IEEE80211_NODE_FF)) {
2152 			/*
2153 			 * Check queue length; if too deep drop this
2154 			 * frame (tail drop considered good).
2155 			 */
2156 			if (txq->axq_depth >= sc->sc_fftxqmax) {
2157 				DPRINTF(sc, ATH_DEBUG_FF,
2158 				    "[%s] tail drop on q %u depth %u\n",
2159 				    ether_sprintf(ni->ni_macaddr),
2160 				    txq->axq_qnum, txq->axq_depth);
2161 				sc->sc_stats.ast_tx_qfull++;
2162 				m_freem(m);
2163 				goto reclaim;
2164 			}
2165 			m = ath_ff_check(sc, txq, bf, m, ni);
2166 			if (m == NULL) {
2167 				/* NB: ni ref & bf held on stageq */
2168 				continue;
2169 			}
2170 		}
2171 		ifp->if_opackets++;
2172 		/*
2173 		 * Encapsulate the packet in prep for transmission.
2174 		 */
2175 		m = ieee80211_encap(ni, m);
2176 		if (m == NULL) {
2177 			DPRINTF(sc, ATH_DEBUG_XMIT,
2178 			    "%s: encapsulation failure\n", __func__);
2179 			sc->sc_stats.ast_tx_encap++;
2180 			goto bad;
2181 		}
2182 		/*
2183 		 * Check for fragmentation.  If this frame
2184 		 * has been broken up verify we have enough
2185 		 * buffers to send all the fragments so all
2186 		 * go out or none...
2187 		 */
2188 		if ((m->m_flags & M_FRAG) &&
2189 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2190 			DPRINTF(sc, ATH_DEBUG_XMIT,
2191 			    "%s: out of txfrag buffers\n", __func__);
2192 			ic->ic_stats.is_tx_nobuf++;	/* XXX */
2193 			ath_freetx(m);
2194 			goto bad;
2195 		}
2196 	nextfrag:
2197 		/*
2198 		 * Pass the frame to the h/w for transmission.
2199 		 * Fragmented frames have each frag chained together
2200 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2201 		 * to send all the frags because of work done by
2202 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2203 		 * calling ath_tx_start so it can use it to extend the
2204 		 * the tx duration to cover the subsequent frag and
2205 		 * so it can reclaim all the mbufs in case of an error;
2206 		 * ath_tx_start clears m_nextpkt once it commits to
2207 		 * handing the frame to the hardware.
2208 		 */
2209 		next = m->m_nextpkt;
2210 		if (ath_tx_start(sc, ni, bf, m)) {
2211 	bad:
2212 			ifp->if_oerrors++;
2213 	reclaim:
2214 			bf->bf_m = NULL;
2215 			bf->bf_node = NULL;
2216 			ATH_TXBUF_LOCK(sc);
2217 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2218 			ath_txfrag_cleanup(sc, &frags, ni);
2219 			ATH_TXBUF_UNLOCK(sc);
2220 			if (ni != NULL)
2221 				ieee80211_free_node(ni);
2222 			continue;
2223 		}
2224 		if (next != NULL) {
2225 			/*
2226 			 * Beware of state changing between frags.
2227 			 * XXX check sta power-save state?
2228 			 */
2229 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2230 				DPRINTF(sc, ATH_DEBUG_XMIT,
2231 				    "%s: flush fragmented packet, state %s\n",
2232 				    __func__,
2233 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2234 				ath_freetx(next);
2235 				goto reclaim;
2236 			}
2237 			m = next;
2238 			bf = STAILQ_FIRST(&frags);
2239 			KASSERT(bf != NULL, ("no buf for txfrag"));
2240 			STAILQ_REMOVE_HEAD(&frags, bf_list);
2241 			goto nextfrag;
2242 		}
2243 
2244 		ifp->if_timer = 5;
2245 #if 0
2246 		/*
2247 		 * Flush stale frames from the fast-frame staging queue.
2248 		 */
2249 		if (ic->ic_opmode != IEEE80211_M_STA)
2250 			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2251 #endif
2252 	}
2253 }
2254 
2255 static int
2256 ath_media_change(struct ifnet *ifp)
2257 {
2258 	int error = ieee80211_media_change(ifp);
2259 	/* NB: only the fixed rate can change and that doesn't need a reset */
2260 	return (error == ENETRESET ? 0 : error);
2261 }
2262 
2263 #ifdef ATH_DEBUG
2264 static void
2265 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2266 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2267 {
2268 	static const char *ciphers[] = {
2269 		"WEP",
2270 		"AES-OCB",
2271 		"AES-CCM",
2272 		"CKIP",
2273 		"TKIP",
2274 		"CLR",
2275 	};
2276 	int i, n;
2277 
2278 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2279 	for (i = 0, n = hk->kv_len; i < n; i++)
2280 		printf("%02x", hk->kv_val[i]);
2281 	printf(" mac %s", ether_sprintf(mac));
2282 	if (hk->kv_type == HAL_CIPHER_TKIP) {
2283 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2284 		for (i = 0; i < sizeof(hk->kv_mic); i++)
2285 			printf("%02x", hk->kv_mic[i]);
2286 		if (!sc->sc_splitmic) {
2287 			printf(" txmic ");
2288 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
2289 				printf("%02x", hk->kv_txmic[i]);
2290 		}
2291 	}
2292 	printf("\n");
2293 }
2294 #endif
2295 
2296 /*
2297  * Set a TKIP key into the hardware.  This handles the
2298  * potential distribution of key state to multiple key
2299  * cache slots for TKIP.
2300  */
2301 static int
2302 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2303 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2304 {
2305 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2306 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2307 	struct ath_hal *ah = sc->sc_ah;
2308 
2309 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2310 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2311 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2312 		if (sc->sc_splitmic) {
2313 			/*
2314 			 * TX key goes at first index, RX key at the rx index.
2315 			 * The hal handles the MIC keys at index+64.
2316 			 */
2317 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2318 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2319 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2320 				return 0;
2321 
2322 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2323 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2324 			/* XXX delete tx key on failure? */
2325 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2326 		} else {
2327 			/*
2328 			 * Room for both TX+RX MIC keys in one key cache
2329 			 * slot, just set key at the first index; the hal
2330 			 * will handle the rest.
2331 			 */
2332 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2333 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2334 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
2335 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2336 		}
2337 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2338 		if (sc->sc_splitmic) {
2339 			/*
2340 			 * NB: must pass MIC key in expected location when
2341 			 * the keycache only holds one MIC key per entry.
2342 			 */
2343 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
2344 		} else
2345 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2346 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2347 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2348 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
2349 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2350 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2351 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2352 	}
2353 	return 0;
2354 #undef IEEE80211_KEY_XR
2355 }
2356 
2357 /*
2358  * Set a net80211 key into the hardware.  This handles the
2359  * potential distribution of key state to multiple key
2360  * cache slots for TKIP with hardware MIC support.
2361  */
2362 static int
2363 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2364 	struct ieee80211_node *bss)
2365 {
2366 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2367 	static const u_int8_t ciphermap[] = {
2368 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2369 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2370 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2371 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2372 		(u_int8_t) -1,		/* 4 is not allocated */
2373 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2374 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2375 	};
2376 	struct ath_hal *ah = sc->sc_ah;
2377 	const struct ieee80211_cipher *cip = k->wk_cipher;
2378 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2379 	const u_int8_t *mac;
2380 	HAL_KEYVAL hk;
2381 
2382 	memset(&hk, 0, sizeof(hk));
2383 	/*
2384 	 * Software crypto uses a "clear key" so non-crypto
2385 	 * state kept in the key cache are maintained and
2386 	 * so that rx frames have an entry to match.
2387 	 */
2388 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2389 		KASSERT(cip->ic_cipher < N(ciphermap),
2390 			("invalid cipher type %u", cip->ic_cipher));
2391 		hk.kv_type = ciphermap[cip->ic_cipher];
2392 		hk.kv_len = k->wk_keylen;
2393 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2394 	} else
2395 		hk.kv_type = HAL_CIPHER_CLR;
2396 
2397 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2398 		/*
2399 		 * Group keys on hardware that supports multicast frame
2400 		 * key search use a mac that is the sender's address with
2401 		 * the high bit set instead of the app-specified address.
2402 		 */
2403 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2404 		gmac[0] |= 0x80;
2405 		mac = gmac;
2406 	} else
2407 		mac = k->wk_macaddr;
2408 
2409 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2410 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2411 		return ath_keyset_tkip(sc, k, &hk, mac);
2412 	} else {
2413 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2414 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2415 	}
2416 #undef N
2417 }
2418 
2419 /*
2420  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2421  * each key, one for decrypt/encrypt and the other for the MIC.
2422  */
2423 static u_int16_t
2424 key_alloc_2pair(struct ath_softc *sc,
2425 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2426 {
2427 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2428 	u_int i, keyix;
2429 
2430 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2431 	/* XXX could optimize */
2432 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2433 		u_int8_t b = sc->sc_keymap[i];
2434 		if (b != 0xff) {
2435 			/*
2436 			 * One or more slots in this byte are free.
2437 			 */
2438 			keyix = i*NBBY;
2439 			while (b & 1) {
2440 		again:
2441 				keyix++;
2442 				b >>= 1;
2443 			}
2444 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2445 			if (isset(sc->sc_keymap, keyix+32) ||
2446 			    isset(sc->sc_keymap, keyix+64) ||
2447 			    isset(sc->sc_keymap, keyix+32+64)) {
2448 				/* full pair unavailable */
2449 				/* XXX statistic */
2450 				if (keyix == (i+1)*NBBY) {
2451 					/* no slots were appropriate, advance */
2452 					continue;
2453 				}
2454 				goto again;
2455 			}
2456 			setbit(sc->sc_keymap, keyix);
2457 			setbit(sc->sc_keymap, keyix+64);
2458 			setbit(sc->sc_keymap, keyix+32);
2459 			setbit(sc->sc_keymap, keyix+32+64);
2460 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2461 				"%s: key pair %u,%u %u,%u\n",
2462 				__func__, keyix, keyix+64,
2463 				keyix+32, keyix+32+64);
2464 			*txkeyix = keyix;
2465 			*rxkeyix = keyix+32;
2466 			return 1;
2467 		}
2468 	}
2469 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2470 	return 0;
2471 #undef N
2472 }
2473 
2474 /*
2475  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2476  * each key, one for decrypt/encrypt and the other for the MIC.
2477  */
2478 static u_int16_t
2479 key_alloc_pair(struct ath_softc *sc,
2480 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2481 {
2482 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2483 	u_int i, keyix;
2484 
2485 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2486 	/* XXX could optimize */
2487 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2488 		u_int8_t b = sc->sc_keymap[i];
2489 		if (b != 0xff) {
2490 			/*
2491 			 * One or more slots in this byte are free.
2492 			 */
2493 			keyix = i*NBBY;
2494 			while (b & 1) {
2495 		again:
2496 				keyix++;
2497 				b >>= 1;
2498 			}
2499 			if (isset(sc->sc_keymap, keyix+64)) {
2500 				/* full pair unavailable */
2501 				/* XXX statistic */
2502 				if (keyix == (i+1)*NBBY) {
2503 					/* no slots were appropriate, advance */
2504 					continue;
2505 				}
2506 				goto again;
2507 			}
2508 			setbit(sc->sc_keymap, keyix);
2509 			setbit(sc->sc_keymap, keyix+64);
2510 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2511 				"%s: key pair %u,%u\n",
2512 				__func__, keyix, keyix+64);
2513 			*txkeyix = *rxkeyix = keyix;
2514 			return 1;
2515 		}
2516 	}
2517 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2518 	return 0;
2519 #undef N
2520 }
2521 
2522 /*
2523  * Allocate a single key cache slot.
2524  */
2525 static int
2526 key_alloc_single(struct ath_softc *sc,
2527 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2528 {
2529 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2530 	u_int i, keyix;
2531 
2532 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2533 	for (i = 0; i < N(sc->sc_keymap); i++) {
2534 		u_int8_t b = sc->sc_keymap[i];
2535 		if (b != 0xff) {
2536 			/*
2537 			 * One or more slots are free.
2538 			 */
2539 			keyix = i*NBBY;
2540 			while (b & 1)
2541 				keyix++, b >>= 1;
2542 			setbit(sc->sc_keymap, keyix);
2543 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2544 				__func__, keyix);
2545 			*txkeyix = *rxkeyix = keyix;
2546 			return 1;
2547 		}
2548 	}
2549 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2550 	return 0;
2551 #undef N
2552 }
2553 
2554 /*
2555  * Allocate one or more key cache slots for a uniacst key.  The
2556  * key itself is needed only to identify the cipher.  For hardware
2557  * TKIP with split cipher+MIC keys we allocate two key cache slot
2558  * pairs so that we can setup separate TX and RX MIC keys.  Note
2559  * that the MIC key for a TKIP key at slot i is assumed by the
2560  * hardware to be at slot i+64.  This limits TKIP keys to the first
2561  * 64 entries.
2562  */
2563 static int
2564 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2565 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2566 {
2567 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2568 
2569 	/*
2570 	 * Group key allocation must be handled specially for
2571 	 * parts that do not support multicast key cache search
2572 	 * functionality.  For those parts the key id must match
2573 	 * the h/w key index so lookups find the right key.  On
2574 	 * parts w/ the key search facility we install the sender's
2575 	 * mac address (with the high bit set) and let the hardware
2576 	 * find the key w/o using the key id.  This is preferred as
2577 	 * it permits us to support multiple users for adhoc and/or
2578 	 * multi-station operation.
2579 	 */
2580 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||	/* global key */
2581 	    ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2582 		if (!(&vap->iv_nw_keys[0] <= k &&
2583 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2584 			/* should not happen */
2585 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2586 				"%s: bogus group key\n", __func__);
2587 			return 0;
2588 		}
2589 		/*
2590 		 * XXX we pre-allocate the global keys so
2591 		 * have no way to check if they've already been allocated.
2592 		 */
2593 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2594 		return 1;
2595 	}
2596 
2597 	/*
2598 	 * We allocate two pair for TKIP when using the h/w to do
2599 	 * the MIC.  For everything else, including software crypto,
2600 	 * we allocate a single entry.  Note that s/w crypto requires
2601 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2602 	 * not support pass-through cache entries and we map all
2603 	 * those requests to slot 0.
2604 	 */
2605 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2606 		return key_alloc_single(sc, keyix, rxkeyix);
2607 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2608 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2609 		if (sc->sc_splitmic)
2610 			return key_alloc_2pair(sc, keyix, rxkeyix);
2611 		else
2612 			return key_alloc_pair(sc, keyix, rxkeyix);
2613 	} else {
2614 		return key_alloc_single(sc, keyix, rxkeyix);
2615 	}
2616 }
2617 
2618 /*
2619  * Delete an entry in the key cache allocated by ath_key_alloc.
2620  */
2621 static int
2622 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2623 {
2624 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2625 	struct ath_hal *ah = sc->sc_ah;
2626 	const struct ieee80211_cipher *cip = k->wk_cipher;
2627 	u_int keyix = k->wk_keyix;
2628 
2629 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2630 
2631 	ath_hal_keyreset(ah, keyix);
2632 	/*
2633 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2634 	 */
2635 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2636 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2637 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2638 	if (keyix >= IEEE80211_WEP_NKID) {
2639 		/*
2640 		 * Don't touch keymap entries for global keys so
2641 		 * they are never considered for dynamic allocation.
2642 		 */
2643 		clrbit(sc->sc_keymap, keyix);
2644 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2645 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2646 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2647 			if (sc->sc_splitmic) {
2648 				/* +32 for RX key, +32+64 for RX key MIC */
2649 				clrbit(sc->sc_keymap, keyix+32);
2650 				clrbit(sc->sc_keymap, keyix+32+64);
2651 			}
2652 		}
2653 	}
2654 	return 1;
2655 }
2656 
2657 /*
2658  * Set the key cache contents for the specified key.  Key cache
2659  * slot(s) must already have been allocated by ath_key_alloc.
2660  */
2661 static int
2662 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2663 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2664 {
2665 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2666 
2667 	return ath_keyset(sc, k, vap->iv_bss);
2668 }
2669 
2670 /*
2671  * Block/unblock tx+rx processing while a key change is done.
2672  * We assume the caller serializes key management operations
2673  * so we only need to worry about synchronization with other
2674  * uses that originate in the driver.
2675  */
2676 static void
2677 ath_key_update_begin(struct ieee80211vap *vap)
2678 {
2679 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2680 	struct ath_softc *sc = ifp->if_softc;
2681 
2682 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2683 	taskqueue_block(sc->sc_tq);
2684 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2685 }
2686 
2687 static void
2688 ath_key_update_end(struct ieee80211vap *vap)
2689 {
2690 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2691 	struct ath_softc *sc = ifp->if_softc;
2692 
2693 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2694 	IF_UNLOCK(&ifp->if_snd);
2695 	taskqueue_unblock(sc->sc_tq);
2696 }
2697 
2698 /*
2699  * Calculate the receive filter according to the
2700  * operating mode and state:
2701  *
2702  * o always accept unicast, broadcast, and multicast traffic
2703  * o accept PHY error frames when hardware doesn't have MIB support
2704  *   to count and we need them for ANI (sta mode only until recently)
2705  *   and we are not scanning (ANI is disabled)
2706  *   NB: older hal's add rx filter bits out of sight and we need to
2707  *	 blindly preserve them
2708  * o probe request frames are accepted only when operating in
2709  *   hostap, adhoc, or monitor modes
2710  * o enable promiscuous mode
2711  *   - when in monitor mode
2712  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2713  * o accept beacons:
2714  *   - when operating in station mode for collecting rssi data when
2715  *     the station is otherwise quiet, or
2716  *   - when operating in adhoc mode so the 802.11 layer creates
2717  *     node table entries for peers,
2718  *   - when scanning
2719  *   - when doing s/w beacon miss (e.g. for ap+sta)
2720  *   - when operating in ap mode in 11g to detect overlapping bss that
2721  *     require protection
2722  * o accept control frames:
2723  *   - when in monitor mode
2724  * XXX BAR frames for 11n
2725  * XXX HT protection for 11n
2726  */
2727 static u_int32_t
2728 ath_calcrxfilter(struct ath_softc *sc)
2729 {
2730 	struct ifnet *ifp = sc->sc_ifp;
2731 	struct ieee80211com *ic = ifp->if_l2com;
2732 	u_int32_t rfilt;
2733 
2734 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2735 #if HAL_ABI_VERSION < 0x08011600
2736 	rfilt |= (ath_hal_getrxfilter(sc->sc_ah) &
2737 		(HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR));
2738 #elif HAL_ABI_VERSION < 0x08060100
2739 	if (ic->ic_opmode == IEEE80211_M_STA &&
2740 	    !sc->sc_needmib && !sc->sc_scanning)
2741 		rfilt |= HAL_RX_FILTER_PHYERR;
2742 #else
2743 	if (!sc->sc_needmib && !sc->sc_scanning)
2744 		rfilt |= HAL_RX_FILTER_PHYERR;
2745 #endif
2746 	if (ic->ic_opmode != IEEE80211_M_STA)
2747 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2748 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2749 		rfilt |= HAL_RX_FILTER_PROM;
2750 	if (ic->ic_opmode == IEEE80211_M_STA ||
2751 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2752 	    sc->sc_swbmiss || sc->sc_scanning)
2753 		rfilt |= HAL_RX_FILTER_BEACON;
2754 	/*
2755 	 * NB: We don't recalculate the rx filter when
2756 	 * ic_protmode changes; otherwise we could do
2757 	 * this only when ic_protmode != NONE.
2758 	 */
2759 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2760 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2761 		rfilt |= HAL_RX_FILTER_BEACON;
2762 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2763 		rfilt |= HAL_RX_FILTER_CONTROL;
2764 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2765 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2766 	return rfilt;
2767 }
2768 
2769 static void
2770 ath_update_promisc(struct ifnet *ifp)
2771 {
2772 	struct ath_softc *sc = ifp->if_softc;
2773 	u_int32_t rfilt;
2774 
2775 	/* configure rx filter */
2776 	rfilt = ath_calcrxfilter(sc);
2777 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2778 
2779 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2780 }
2781 
2782 static void
2783 ath_update_mcast(struct ifnet *ifp)
2784 {
2785 	struct ath_softc *sc = ifp->if_softc;
2786 	u_int32_t mfilt[2];
2787 
2788 	/* calculate and install multicast filter */
2789 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2790 		struct ifmultiaddr *ifma;
2791 		/*
2792 		 * Merge multicast addresses to form the hardware filter.
2793 		 */
2794 		mfilt[0] = mfilt[1] = 0;
2795 		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2796 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2797 			caddr_t dl;
2798 			u_int32_t val;
2799 			u_int8_t pos;
2800 
2801 			/* calculate XOR of eight 6bit values */
2802 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2803 			val = LE_READ_4(dl + 0);
2804 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2805 			val = LE_READ_4(dl + 3);
2806 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2807 			pos &= 0x3f;
2808 			mfilt[pos / 32] |= (1 << (pos % 32));
2809 		}
2810 		IF_ADDR_UNLOCK(ifp);
2811 	} else
2812 		mfilt[0] = mfilt[1] = ~0;
2813 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2814 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2815 		__func__, mfilt[0], mfilt[1]);
2816 }
2817 
2818 static void
2819 ath_mode_init(struct ath_softc *sc)
2820 {
2821 	struct ifnet *ifp = sc->sc_ifp;
2822 	struct ieee80211com *ic = ifp->if_l2com;
2823 	struct ath_hal *ah = sc->sc_ah;
2824 	u_int32_t rfilt;
2825 
2826 	/* configure rx filter */
2827 	rfilt = ath_calcrxfilter(sc);
2828 	ath_hal_setrxfilter(ah, rfilt);
2829 
2830 	/* configure operational mode */
2831 	ath_hal_setopmode(ah);
2832 
2833 	/*
2834 	 * Handle any link-level address change.  Note that we only
2835 	 * need to force ic_myaddr; any other addresses are handled
2836 	 * as a byproduct of the ifnet code marking the interface
2837 	 * down then up.
2838 	 *
2839 	 * XXX should get from lladdr instead of arpcom but that's more work
2840 	 */
2841 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2842 	ath_hal_setmac(ah, ic->ic_myaddr);
2843 
2844 	/* calculate and install multicast filter */
2845 	ath_update_mcast(ifp);
2846 }
2847 
2848 /*
2849  * Set the slot time based on the current setting.
2850  */
2851 static void
2852 ath_setslottime(struct ath_softc *sc)
2853 {
2854 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2855 	struct ath_hal *ah = sc->sc_ah;
2856 	u_int usec;
2857 
2858 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2859 		usec = 13;
2860 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2861 		usec = 21;
2862 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2863 		/* honor short/long slot time only in 11g */
2864 		/* XXX shouldn't honor on pure g or turbo g channel */
2865 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2866 			usec = HAL_SLOT_TIME_9;
2867 		else
2868 			usec = HAL_SLOT_TIME_20;
2869 	} else
2870 		usec = HAL_SLOT_TIME_9;
2871 
2872 	DPRINTF(sc, ATH_DEBUG_RESET,
2873 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2874 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2875 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2876 
2877 	ath_hal_setslottime(ah, usec);
2878 	sc->sc_updateslot = OK;
2879 }
2880 
2881 /*
2882  * Callback from the 802.11 layer to update the
2883  * slot time based on the current setting.
2884  */
2885 static void
2886 ath_updateslot(struct ifnet *ifp)
2887 {
2888 	struct ath_softc *sc = ifp->if_softc;
2889 	struct ieee80211com *ic = ifp->if_l2com;
2890 
2891 	/*
2892 	 * When not coordinating the BSS, change the hardware
2893 	 * immediately.  For other operation we defer the change
2894 	 * until beacon updates have propagated to the stations.
2895 	 */
2896 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2897 		sc->sc_updateslot = UPDATE;
2898 	else
2899 		ath_setslottime(sc);
2900 }
2901 
2902 /*
2903  * Setup a h/w transmit queue for beacons.
2904  */
2905 static int
2906 ath_beaconq_setup(struct ath_hal *ah)
2907 {
2908 	HAL_TXQ_INFO qi;
2909 
2910 	memset(&qi, 0, sizeof(qi));
2911 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2912 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2913 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2914 	/* NB: for dynamic turbo, don't enable any other interrupts */
2915 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2916 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2917 }
2918 
2919 /*
2920  * Setup the transmit queue parameters for the beacon queue.
2921  */
2922 static int
2923 ath_beaconq_config(struct ath_softc *sc)
2924 {
2925 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2926 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2927 	struct ath_hal *ah = sc->sc_ah;
2928 	HAL_TXQ_INFO qi;
2929 
2930 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2931 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2932 		/*
2933 		 * Always burst out beacon and CAB traffic.
2934 		 */
2935 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2936 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2937 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2938 	} else {
2939 		struct wmeParams *wmep =
2940 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2941 		/*
2942 		 * Adhoc mode; important thing is to use 2x cwmin.
2943 		 */
2944 		qi.tqi_aifs = wmep->wmep_aifsn;
2945 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2946 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2947 	}
2948 
2949 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2950 		device_printf(sc->sc_dev, "unable to update parameters for "
2951 			"beacon hardware queue!\n");
2952 		return 0;
2953 	} else {
2954 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2955 		return 1;
2956 	}
2957 #undef ATH_EXPONENT_TO_VALUE
2958 }
2959 
2960 /*
2961  * Allocate and setup an initial beacon frame.
2962  */
2963 static int
2964 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2965 {
2966 	struct ieee80211vap *vap = ni->ni_vap;
2967 	struct ath_vap *avp = ATH_VAP(vap);
2968 	struct ath_buf *bf;
2969 	struct mbuf *m;
2970 	int error;
2971 
2972 	bf = avp->av_bcbuf;
2973 	if (bf->bf_m != NULL) {
2974 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2975 		m_freem(bf->bf_m);
2976 		bf->bf_m = NULL;
2977 	}
2978 	if (bf->bf_node != NULL) {
2979 		ieee80211_free_node(bf->bf_node);
2980 		bf->bf_node = NULL;
2981 	}
2982 
2983 	/*
2984 	 * NB: the beacon data buffer must be 32-bit aligned;
2985 	 * we assume the mbuf routines will return us something
2986 	 * with this alignment (perhaps should assert).
2987 	 */
2988 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2989 	if (m == NULL) {
2990 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2991 		sc->sc_stats.ast_be_nombuf++;
2992 		return ENOMEM;
2993 	}
2994 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2995 				     bf->bf_segs, &bf->bf_nseg,
2996 				     BUS_DMA_NOWAIT);
2997 	if (error != 0) {
2998 		device_printf(sc->sc_dev,
2999 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
3000 		    __func__, error);
3001 		m_freem(m);
3002 		return error;
3003 	}
3004 
3005 	/*
3006 	 * Calculate a TSF adjustment factor required for staggered
3007 	 * beacons.  Note that we assume the format of the beacon
3008 	 * frame leaves the tstamp field immediately following the
3009 	 * header.
3010 	 */
3011 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
3012 		uint64_t tsfadjust;
3013 		struct ieee80211_frame *wh;
3014 
3015 		/*
3016 		 * The beacon interval is in TU's; the TSF is in usecs.
3017 		 * We figure out how many TU's to add to align the timestamp
3018 		 * then convert to TSF units and handle byte swapping before
3019 		 * inserting it in the frame.  The hardware will then add this
3020 		 * each time a beacon frame is sent.  Note that we align vap's
3021 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
3022 		 * timestamp in one beacon interval while the others get a
3023 		 * timstamp aligned to the next interval.
3024 		 */
3025 		tsfadjust = ni->ni_intval *
3026 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
3027 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
3028 
3029 		DPRINTF(sc, ATH_DEBUG_BEACON,
3030 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
3031 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
3032 		    avp->av_bslot, ni->ni_intval,
3033 		    (long long unsigned) le64toh(tsfadjust));
3034 
3035 		wh = mtod(m, struct ieee80211_frame *);
3036 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
3037 	}
3038 	bf->bf_m = m;
3039 	bf->bf_node = ieee80211_ref_node(ni);
3040 
3041 	return 0;
3042 }
3043 
3044 /*
3045  * Setup the beacon frame for transmit.
3046  */
3047 static void
3048 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
3049 {
3050 #define	USE_SHPREAMBLE(_ic) \
3051 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
3052 		== IEEE80211_F_SHPREAMBLE)
3053 	struct ieee80211_node *ni = bf->bf_node;
3054 	struct ieee80211com *ic = ni->ni_ic;
3055 	struct mbuf *m = bf->bf_m;
3056 	struct ath_hal *ah = sc->sc_ah;
3057 	struct ath_desc *ds;
3058 	int flags, antenna;
3059 	const HAL_RATE_TABLE *rt;
3060 	u_int8_t rix, rate;
3061 
3062 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
3063 		__func__, m, m->m_len);
3064 
3065 	/* setup descriptors */
3066 	ds = bf->bf_desc;
3067 
3068 	flags = HAL_TXDESC_NOACK;
3069 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
3070 		ds->ds_link = bf->bf_daddr;	/* self-linked */
3071 		flags |= HAL_TXDESC_VEOL;
3072 		/*
3073 		 * Let hardware handle antenna switching.
3074 		 */
3075 		antenna = sc->sc_txantenna;
3076 	} else {
3077 		ds->ds_link = 0;
3078 		/*
3079 		 * Switch antenna every 4 beacons.
3080 		 * XXX assumes two antenna
3081 		 */
3082 		if (sc->sc_txantenna != 0)
3083 			antenna = sc->sc_txantenna;
3084 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
3085 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
3086 		else
3087 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
3088 	}
3089 
3090 	KASSERT(bf->bf_nseg == 1,
3091 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
3092 	ds->ds_data = bf->bf_segs[0].ds_addr;
3093 	/*
3094 	 * Calculate rate code.
3095 	 * XXX everything at min xmit rate
3096 	 */
3097 	rix = 0;
3098 	rt = sc->sc_currates;
3099 	rate = rt->info[rix].rateCode;
3100 	if (USE_SHPREAMBLE(ic))
3101 		rate |= rt->info[rix].shortPreamble;
3102 	ath_hal_setuptxdesc(ah, ds
3103 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
3104 		, sizeof(struct ieee80211_frame)/* header length */
3105 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
3106 		, ni->ni_txpower		/* txpower XXX */
3107 		, rate, 1			/* series 0 rate/tries */
3108 		, HAL_TXKEYIX_INVALID		/* no encryption */
3109 		, antenna			/* antenna mode */
3110 		, flags				/* no ack, veol for beacons */
3111 		, 0				/* rts/cts rate */
3112 		, 0				/* rts/cts duration */
3113 	);
3114 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
3115 	ath_hal_filltxdesc(ah, ds
3116 		, roundup(m->m_len, 4)		/* buffer length */
3117 		, AH_TRUE			/* first segment */
3118 		, AH_TRUE			/* last segment */
3119 		, ds				/* first descriptor */
3120 	);
3121 #if 0
3122 	ath_desc_swap(ds);
3123 #endif
3124 #undef USE_SHPREAMBLE
3125 }
3126 
3127 static void
3128 ath_beacon_update(struct ieee80211vap *vap, int item)
3129 {
3130 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
3131 
3132 	setbit(bo->bo_flags, item);
3133 }
3134 
3135 /*
3136  * Append the contents of src to dst; both queues
3137  * are assumed to be locked.
3138  */
3139 static void
3140 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3141 {
3142 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
3143 	dst->axq_link = src->axq_link;
3144 	src->axq_link = NULL;
3145 	dst->axq_depth += src->axq_depth;
3146 	src->axq_depth = 0;
3147 }
3148 
3149 /*
3150  * Transmit a beacon frame at SWBA.  Dynamic updates to the
3151  * frame contents are done as needed and the slot time is
3152  * also adjusted based on current state.
3153  */
3154 static void
3155 ath_beacon_proc(void *arg, int pending)
3156 {
3157 	struct ath_softc *sc = arg;
3158 	struct ath_hal *ah = sc->sc_ah;
3159 	struct ieee80211vap *vap;
3160 	struct ath_buf *bf;
3161 	int slot, otherant;
3162 	uint32_t bfaddr;
3163 
3164 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
3165 		__func__, pending);
3166 	/*
3167 	 * Check if the previous beacon has gone out.  If
3168 	 * not don't try to post another, skip this period
3169 	 * and wait for the next.  Missed beacons indicate
3170 	 * a problem and should not occur.  If we miss too
3171 	 * many consecutive beacons reset the device.
3172 	 */
3173 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
3174 		sc->sc_bmisscount++;
3175 		DPRINTF(sc, ATH_DEBUG_BEACON,
3176 			"%s: missed %u consecutive beacons\n",
3177 			__func__, sc->sc_bmisscount);
3178 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
3179 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
3180 		return;
3181 	}
3182 	if (sc->sc_bmisscount != 0) {
3183 		DPRINTF(sc, ATH_DEBUG_BEACON,
3184 			"%s: resume beacon xmit after %u misses\n",
3185 			__func__, sc->sc_bmisscount);
3186 		sc->sc_bmisscount = 0;
3187 	}
3188 
3189 	if (sc->sc_stagbeacons) {			/* staggered beacons */
3190 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3191 		uint32_t tsftu;
3192 
3193 		tsftu = ath_hal_gettsf32(ah) >> 10;
3194 		/* XXX lintval */
3195 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3196 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3197 		bfaddr = 0;
3198 		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3199 			bf = ath_beacon_generate(sc, vap);
3200 			if (bf != NULL)
3201 				bfaddr = bf->bf_daddr;
3202 		}
3203 	} else {					/* burst'd beacons */
3204 		uint32_t *bflink = &bfaddr;
3205 
3206 		for (slot = 0; slot < ATH_BCBUF; slot++) {
3207 			vap = sc->sc_bslot[slot];
3208 			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3209 				bf = ath_beacon_generate(sc, vap);
3210 				if (bf != NULL) {
3211 					*bflink = bf->bf_daddr;
3212 					bflink = &bf->bf_desc->ds_link;
3213 				}
3214 			}
3215 		}
3216 		*bflink = 0;				/* terminate list */
3217 	}
3218 
3219 	/*
3220 	 * Handle slot time change when a non-ERP station joins/leaves
3221 	 * an 11g network.  The 802.11 layer notifies us via callback,
3222 	 * we mark updateslot, then wait one beacon before effecting
3223 	 * the change.  This gives associated stations at least one
3224 	 * beacon interval to note the state change.
3225 	 */
3226 	/* XXX locking */
3227 	if (sc->sc_updateslot == UPDATE) {
3228 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3229 		sc->sc_slotupdate = slot;
3230 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3231 		ath_setslottime(sc);		/* commit change to h/w */
3232 
3233 	/*
3234 	 * Check recent per-antenna transmit statistics and flip
3235 	 * the default antenna if noticeably more frames went out
3236 	 * on the non-default antenna.
3237 	 * XXX assumes 2 anntenae
3238 	 */
3239 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3240 		otherant = sc->sc_defant & 1 ? 2 : 1;
3241 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3242 			ath_setdefantenna(sc, otherant);
3243 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3244 	}
3245 
3246 	if (bfaddr != 0) {
3247 		/*
3248 		 * Stop any current dma and put the new frame on the queue.
3249 		 * This should never fail since we check above that no frames
3250 		 * are still pending on the queue.
3251 		 */
3252 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3253 			DPRINTF(sc, ATH_DEBUG_ANY,
3254 				"%s: beacon queue %u did not stop?\n",
3255 				__func__, sc->sc_bhalq);
3256 		}
3257 		/* NB: cabq traffic should already be queued and primed */
3258 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3259 		ath_hal_txstart(ah, sc->sc_bhalq);
3260 
3261 		sc->sc_stats.ast_be_xmit++;
3262 	}
3263 }
3264 
3265 static struct ath_buf *
3266 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3267 {
3268 	struct ath_vap *avp = ATH_VAP(vap);
3269 	struct ath_txq *cabq = sc->sc_cabq;
3270 	struct ath_buf *bf;
3271 	struct mbuf *m;
3272 	int nmcastq, error;
3273 
3274 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
3275 	    ("not running, state %d", vap->iv_state));
3276 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3277 
3278 	/*
3279 	 * Update dynamic beacon contents.  If this returns
3280 	 * non-zero then we need to remap the memory because
3281 	 * the beacon frame changed size (probably because
3282 	 * of the TIM bitmap).
3283 	 */
3284 	bf = avp->av_bcbuf;
3285 	m = bf->bf_m;
3286 	nmcastq = avp->av_mcastq.axq_depth;
3287 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3288 		/* XXX too conservative? */
3289 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3290 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3291 					     bf->bf_segs, &bf->bf_nseg,
3292 					     BUS_DMA_NOWAIT);
3293 		if (error != 0) {
3294 			if_printf(vap->iv_ifp,
3295 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3296 			    __func__, error);
3297 			return NULL;
3298 		}
3299 	}
3300 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3301 		DPRINTF(sc, ATH_DEBUG_BEACON,
3302 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3303 		    __func__, nmcastq, cabq->axq_depth);
3304 		sc->sc_stats.ast_cabq_busy++;
3305 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3306 			/*
3307 			 * CABQ traffic from a previous vap is still pending.
3308 			 * We must drain the q before this beacon frame goes
3309 			 * out as otherwise this vap's stations will get cab
3310 			 * frames from a different vap.
3311 			 * XXX could be slow causing us to miss DBA
3312 			 */
3313 			ath_tx_draintxq(sc, cabq);
3314 		}
3315 	}
3316 	ath_beacon_setup(sc, bf);
3317 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3318 
3319 	/*
3320 	 * Enable the CAB queue before the beacon queue to
3321 	 * insure cab frames are triggered by this beacon.
3322 	 */
3323 	if (avp->av_boff.bo_tim[4] & 1) {
3324 		struct ath_hal *ah = sc->sc_ah;
3325 
3326 		/* NB: only at DTIM */
3327 		ATH_TXQ_LOCK(cabq);
3328 		ATH_TXQ_LOCK(&avp->av_mcastq);
3329 		if (nmcastq) {
3330 			struct ath_buf *bfm;
3331 
3332 			/*
3333 			 * Move frames from the s/w mcast q to the h/w cab q.
3334 			 * XXX MORE_DATA bit
3335 			 */
3336 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3337 			if (cabq->axq_link != NULL) {
3338 				*cabq->axq_link = bfm->bf_daddr;
3339 			} else
3340 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3341 					bfm->bf_daddr);
3342 			ath_txqmove(cabq, &avp->av_mcastq);
3343 
3344 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3345 		}
3346 		/* NB: gated by beacon so safe to start here */
3347 		ath_hal_txstart(ah, cabq->axq_qnum);
3348 		ATH_TXQ_UNLOCK(cabq);
3349 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3350 	}
3351 	return bf;
3352 }
3353 
3354 static void
3355 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3356 {
3357 	struct ath_vap *avp = ATH_VAP(vap);
3358 	struct ath_hal *ah = sc->sc_ah;
3359 	struct ath_buf *bf;
3360 	struct mbuf *m;
3361 	int error;
3362 
3363 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3364 
3365 	/*
3366 	 * Update dynamic beacon contents.  If this returns
3367 	 * non-zero then we need to remap the memory because
3368 	 * the beacon frame changed size (probably because
3369 	 * of the TIM bitmap).
3370 	 */
3371 	bf = avp->av_bcbuf;
3372 	m = bf->bf_m;
3373 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3374 		/* XXX too conservative? */
3375 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3376 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3377 					     bf->bf_segs, &bf->bf_nseg,
3378 					     BUS_DMA_NOWAIT);
3379 		if (error != 0) {
3380 			if_printf(vap->iv_ifp,
3381 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3382 			    __func__, error);
3383 			return;
3384 		}
3385 	}
3386 	ath_beacon_setup(sc, bf);
3387 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3388 
3389 	/* NB: caller is known to have already stopped tx dma */
3390 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3391 	ath_hal_txstart(ah, sc->sc_bhalq);
3392 }
3393 
3394 /*
3395  * Reset the hardware after detecting beacons have stopped.
3396  */
3397 static void
3398 ath_bstuck_proc(void *arg, int pending)
3399 {
3400 	struct ath_softc *sc = arg;
3401 	struct ifnet *ifp = sc->sc_ifp;
3402 
3403 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3404 		sc->sc_bmisscount);
3405 	ath_reset(ifp);
3406 }
3407 
3408 /*
3409  * Reclaim beacon resources and return buffer to the pool.
3410  */
3411 static void
3412 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3413 {
3414 
3415 	if (bf->bf_m != NULL) {
3416 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3417 		m_freem(bf->bf_m);
3418 		bf->bf_m = NULL;
3419 	}
3420 	if (bf->bf_node != NULL) {
3421 		ieee80211_free_node(bf->bf_node);
3422 		bf->bf_node = NULL;
3423 	}
3424 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3425 }
3426 
3427 /*
3428  * Reclaim beacon resources.
3429  */
3430 static void
3431 ath_beacon_free(struct ath_softc *sc)
3432 {
3433 	struct ath_buf *bf;
3434 
3435 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3436 		if (bf->bf_m != NULL) {
3437 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3438 			m_freem(bf->bf_m);
3439 			bf->bf_m = NULL;
3440 		}
3441 		if (bf->bf_node != NULL) {
3442 			ieee80211_free_node(bf->bf_node);
3443 			bf->bf_node = NULL;
3444 		}
3445 	}
3446 }
3447 
3448 /*
3449  * Configure the beacon and sleep timers.
3450  *
3451  * When operating as an AP this resets the TSF and sets
3452  * up the hardware to notify us when we need to issue beacons.
3453  *
3454  * When operating in station mode this sets up the beacon
3455  * timers according to the timestamp of the last received
3456  * beacon and the current TSF, configures PCF and DTIM
3457  * handling, programs the sleep registers so the hardware
3458  * will wakeup in time to receive beacons, and configures
3459  * the beacon miss handling so we'll receive a BMISS
3460  * interrupt when we stop seeing beacons from the AP
3461  * we've associated with.
3462  */
3463 static void
3464 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3465 {
3466 #define	TSF_TO_TU(_h,_l) \
3467 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3468 #define	FUDGE	2
3469 	struct ath_hal *ah = sc->sc_ah;
3470 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3471 	struct ieee80211_node *ni;
3472 	u_int32_t nexttbtt, intval, tsftu;
3473 	u_int64_t tsf;
3474 
3475 	if (vap == NULL)
3476 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3477 	ni = vap->iv_bss;
3478 
3479 	/* extract tstamp from last beacon and convert to TU */
3480 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3481 			     LE_READ_4(ni->ni_tstamp.data));
3482 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3483 		/*
3484 		 * For multi-bss ap support beacons are either staggered
3485 		 * evenly over N slots or burst together.  For the former
3486 		 * arrange for the SWBA to be delivered for each slot.
3487 		 * Slots that are not occupied will generate nothing.
3488 		 */
3489 		/* NB: the beacon interval is kept internally in TU's */
3490 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3491 		if (sc->sc_stagbeacons)
3492 			intval /= ATH_BCBUF;
3493 	} else {
3494 		/* NB: the beacon interval is kept internally in TU's */
3495 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3496 	}
3497 	if (nexttbtt == 0)		/* e.g. for ap mode */
3498 		nexttbtt = intval;
3499 	else if (intval)		/* NB: can be 0 for monitor mode */
3500 		nexttbtt = roundup(nexttbtt, intval);
3501 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3502 		__func__, nexttbtt, intval, ni->ni_intval);
3503 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3504 		HAL_BEACON_STATE bs;
3505 		int dtimperiod, dtimcount;
3506 		int cfpperiod, cfpcount;
3507 
3508 		/*
3509 		 * Setup dtim and cfp parameters according to
3510 		 * last beacon we received (which may be none).
3511 		 */
3512 		dtimperiod = ni->ni_dtim_period;
3513 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3514 			dtimperiod = 1;
3515 		dtimcount = ni->ni_dtim_count;
3516 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3517 			dtimcount = 0;		/* XXX? */
3518 		cfpperiod = 1;			/* NB: no PCF support yet */
3519 		cfpcount = 0;
3520 		/*
3521 		 * Pull nexttbtt forward to reflect the current
3522 		 * TSF and calculate dtim+cfp state for the result.
3523 		 */
3524 		tsf = ath_hal_gettsf64(ah);
3525 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3526 		do {
3527 			nexttbtt += intval;
3528 			if (--dtimcount < 0) {
3529 				dtimcount = dtimperiod - 1;
3530 				if (--cfpcount < 0)
3531 					cfpcount = cfpperiod - 1;
3532 			}
3533 		} while (nexttbtt < tsftu);
3534 		memset(&bs, 0, sizeof(bs));
3535 		bs.bs_intval = intval;
3536 		bs.bs_nexttbtt = nexttbtt;
3537 		bs.bs_dtimperiod = dtimperiod*intval;
3538 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3539 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3540 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3541 		bs.bs_cfpmaxduration = 0;
3542 #if 0
3543 		/*
3544 		 * The 802.11 layer records the offset to the DTIM
3545 		 * bitmap while receiving beacons; use it here to
3546 		 * enable h/w detection of our AID being marked in
3547 		 * the bitmap vector (to indicate frames for us are
3548 		 * pending at the AP).
3549 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3550 		 * XXX enable based on h/w rev for newer chips
3551 		 */
3552 		bs.bs_timoffset = ni->ni_timoff;
3553 #endif
3554 		/*
3555 		 * Calculate the number of consecutive beacons to miss
3556 		 * before taking a BMISS interrupt.
3557 		 * Note that we clamp the result to at most 10 beacons.
3558 		 */
3559 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3560 		if (bs.bs_bmissthreshold > 10)
3561 			bs.bs_bmissthreshold = 10;
3562 		else if (bs.bs_bmissthreshold <= 0)
3563 			bs.bs_bmissthreshold = 1;
3564 
3565 		/*
3566 		 * Calculate sleep duration.  The configuration is
3567 		 * given in ms.  We insure a multiple of the beacon
3568 		 * period is used.  Also, if the sleep duration is
3569 		 * greater than the DTIM period then it makes senses
3570 		 * to make it a multiple of that.
3571 		 *
3572 		 * XXX fixed at 100ms
3573 		 */
3574 		bs.bs_sleepduration =
3575 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3576 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3577 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3578 
3579 		DPRINTF(sc, ATH_DEBUG_BEACON,
3580 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3581 			, __func__
3582 			, tsf, tsftu
3583 			, bs.bs_intval
3584 			, bs.bs_nexttbtt
3585 			, bs.bs_dtimperiod
3586 			, bs.bs_nextdtim
3587 			, bs.bs_bmissthreshold
3588 			, bs.bs_sleepduration
3589 			, bs.bs_cfpperiod
3590 			, bs.bs_cfpmaxduration
3591 			, bs.bs_cfpnext
3592 			, bs.bs_timoffset
3593 		);
3594 		ath_hal_intrset(ah, 0);
3595 		ath_hal_beacontimers(ah, &bs);
3596 		sc->sc_imask |= HAL_INT_BMISS;
3597 		ath_hal_intrset(ah, sc->sc_imask);
3598 	} else {
3599 		ath_hal_intrset(ah, 0);
3600 		if (nexttbtt == intval)
3601 			intval |= HAL_BEACON_RESET_TSF;
3602 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3603 			/*
3604 			 * In IBSS mode enable the beacon timers but only
3605 			 * enable SWBA interrupts if we need to manually
3606 			 * prepare beacon frames.  Otherwise we use a
3607 			 * self-linked tx descriptor and let the hardware
3608 			 * deal with things.
3609 			 */
3610 			intval |= HAL_BEACON_ENA;
3611 			if (!sc->sc_hasveol)
3612 				sc->sc_imask |= HAL_INT_SWBA;
3613 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3614 				/*
3615 				 * Pull nexttbtt forward to reflect
3616 				 * the current TSF.
3617 				 */
3618 				tsf = ath_hal_gettsf64(ah);
3619 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3620 				do {
3621 					nexttbtt += intval;
3622 				} while (nexttbtt < tsftu);
3623 			}
3624 			ath_beaconq_config(sc);
3625 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3626 			/*
3627 			 * In AP mode we enable the beacon timers and
3628 			 * SWBA interrupts to prepare beacon frames.
3629 			 */
3630 			intval |= HAL_BEACON_ENA;
3631 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3632 			ath_beaconq_config(sc);
3633 		}
3634 		ath_hal_beaconinit(ah, nexttbtt, intval);
3635 		sc->sc_bmisscount = 0;
3636 		ath_hal_intrset(ah, sc->sc_imask);
3637 		/*
3638 		 * When using a self-linked beacon descriptor in
3639 		 * ibss mode load it once here.
3640 		 */
3641 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3642 			ath_beacon_start_adhoc(sc, vap);
3643 	}
3644 	sc->sc_syncbeacon = 0;
3645 #undef FUDGE
3646 #undef TSF_TO_TU
3647 }
3648 
3649 static void
3650 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3651 {
3652 	bus_addr_t *paddr = (bus_addr_t*) arg;
3653 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3654 	*paddr = segs->ds_addr;
3655 }
3656 
3657 static int
3658 ath_descdma_setup(struct ath_softc *sc,
3659 	struct ath_descdma *dd, ath_bufhead *head,
3660 	const char *name, int nbuf, int ndesc)
3661 {
3662 #define	DS2PHYS(_dd, _ds) \
3663 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3664 	struct ifnet *ifp = sc->sc_ifp;
3665 	struct ath_desc *ds;
3666 	struct ath_buf *bf;
3667 	int i, bsize, error;
3668 
3669 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3670 	    __func__, name, nbuf, ndesc);
3671 
3672 	dd->dd_name = name;
3673 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3674 
3675 	/*
3676 	 * Setup DMA descriptor area.
3677 	 */
3678 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3679 		       PAGE_SIZE, 0,		/* alignment, bounds */
3680 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3681 		       BUS_SPACE_MAXADDR,	/* highaddr */
3682 		       NULL, NULL,		/* filter, filterarg */
3683 		       dd->dd_desc_len,		/* maxsize */
3684 		       1,			/* nsegments */
3685 		       dd->dd_desc_len,		/* maxsegsize */
3686 		       BUS_DMA_ALLOCNOW,	/* flags */
3687 		       NULL,			/* lockfunc */
3688 		       NULL,			/* lockarg */
3689 		       &dd->dd_dmat);
3690 	if (error != 0) {
3691 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3692 		return error;
3693 	}
3694 
3695 	/* allocate descriptors */
3696 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3697 	if (error != 0) {
3698 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3699 			"error %u\n", dd->dd_name, error);
3700 		goto fail0;
3701 	}
3702 
3703 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3704 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3705 				 &dd->dd_dmamap);
3706 	if (error != 0) {
3707 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3708 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3709 		goto fail1;
3710 	}
3711 
3712 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3713 				dd->dd_desc, dd->dd_desc_len,
3714 				ath_load_cb, &dd->dd_desc_paddr,
3715 				BUS_DMA_NOWAIT);
3716 	if (error != 0) {
3717 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3718 			dd->dd_name, error);
3719 		goto fail2;
3720 	}
3721 
3722 	ds = dd->dd_desc;
3723 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3724 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3725 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3726 
3727 	/* allocate rx buffers */
3728 	bsize = sizeof(struct ath_buf) * nbuf;
3729 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3730 	if (bf == NULL) {
3731 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3732 			dd->dd_name, bsize);
3733 		goto fail3;
3734 	}
3735 	dd->dd_bufptr = bf;
3736 
3737 	STAILQ_INIT(head);
3738 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3739 		bf->bf_desc = ds;
3740 		bf->bf_daddr = DS2PHYS(dd, ds);
3741 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3742 				&bf->bf_dmamap);
3743 		if (error != 0) {
3744 			if_printf(ifp, "unable to create dmamap for %s "
3745 				"buffer %u, error %u\n", dd->dd_name, i, error);
3746 			ath_descdma_cleanup(sc, dd, head);
3747 			return error;
3748 		}
3749 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3750 	}
3751 	return 0;
3752 fail3:
3753 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3754 fail2:
3755 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3756 fail1:
3757 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3758 fail0:
3759 	bus_dma_tag_destroy(dd->dd_dmat);
3760 	memset(dd, 0, sizeof(*dd));
3761 	return error;
3762 #undef DS2PHYS
3763 }
3764 
3765 static void
3766 ath_descdma_cleanup(struct ath_softc *sc,
3767 	struct ath_descdma *dd, ath_bufhead *head)
3768 {
3769 	struct ath_buf *bf;
3770 	struct ieee80211_node *ni;
3771 
3772 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3773 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3774 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3775 	bus_dma_tag_destroy(dd->dd_dmat);
3776 
3777 	STAILQ_FOREACH(bf, head, bf_list) {
3778 		if (bf->bf_m) {
3779 			m_freem(bf->bf_m);
3780 			bf->bf_m = NULL;
3781 		}
3782 		if (bf->bf_dmamap != NULL) {
3783 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3784 			bf->bf_dmamap = NULL;
3785 		}
3786 		ni = bf->bf_node;
3787 		bf->bf_node = NULL;
3788 		if (ni != NULL) {
3789 			/*
3790 			 * Reclaim node reference.
3791 			 */
3792 			ieee80211_free_node(ni);
3793 		}
3794 	}
3795 
3796 	STAILQ_INIT(head);
3797 	free(dd->dd_bufptr, M_ATHDEV);
3798 	memset(dd, 0, sizeof(*dd));
3799 }
3800 
3801 static int
3802 ath_desc_alloc(struct ath_softc *sc)
3803 {
3804 	int error;
3805 
3806 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3807 			"rx", ath_rxbuf, 1);
3808 	if (error != 0)
3809 		return error;
3810 
3811 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3812 			"tx", ath_txbuf, ATH_TXDESC);
3813 	if (error != 0) {
3814 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3815 		return error;
3816 	}
3817 
3818 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3819 			"beacon", ATH_BCBUF, 1);
3820 	if (error != 0) {
3821 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3822 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3823 		return error;
3824 	}
3825 	return 0;
3826 }
3827 
3828 static void
3829 ath_desc_free(struct ath_softc *sc)
3830 {
3831 
3832 	if (sc->sc_bdma.dd_desc_len != 0)
3833 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3834 	if (sc->sc_txdma.dd_desc_len != 0)
3835 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3836 	if (sc->sc_rxdma.dd_desc_len != 0)
3837 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3838 }
3839 
3840 static struct ieee80211_node *
3841 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3842 {
3843 	struct ieee80211com *ic = vap->iv_ic;
3844 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3845 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3846 	struct ath_node *an;
3847 
3848 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3849 	if (an == NULL) {
3850 		/* XXX stat+msg */
3851 		return NULL;
3852 	}
3853 	ath_rate_node_init(sc, an);
3854 
3855 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3856 	return &an->an_node;
3857 }
3858 
3859 static void
3860 ath_node_free(struct ieee80211_node *ni)
3861 {
3862 	struct ieee80211com *ic = ni->ni_ic;
3863         struct ath_softc *sc = ic->ic_ifp->if_softc;
3864 
3865 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3866 
3867 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3868 	sc->sc_node_free(ni);
3869 }
3870 
3871 static void
3872 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3873 {
3874 	struct ieee80211com *ic = ni->ni_ic;
3875 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3876 	struct ath_hal *ah = sc->sc_ah;
3877 	HAL_CHANNEL hchan;
3878 
3879 	*rssi = ic->ic_node_getrssi(ni);
3880 	if (ni->ni_chan != IEEE80211_CHAN_ANYC) {
3881 		ath_mapchan(ic, &hchan, ni->ni_chan);
3882 		*noise = ath_hal_getchannoise(ah, &hchan);
3883 	} else
3884 		*noise = -95;		/* nominally correct */
3885 }
3886 
3887 static int
3888 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3889 {
3890 	struct ath_hal *ah = sc->sc_ah;
3891 	int error;
3892 	struct mbuf *m;
3893 	struct ath_desc *ds;
3894 
3895 	m = bf->bf_m;
3896 	if (m == NULL) {
3897 		/*
3898 		 * NB: by assigning a page to the rx dma buffer we
3899 		 * implicitly satisfy the Atheros requirement that
3900 		 * this buffer be cache-line-aligned and sized to be
3901 		 * multiple of the cache line size.  Not doing this
3902 		 * causes weird stuff to happen (for the 5210 at least).
3903 		 */
3904 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3905 		if (m == NULL) {
3906 			DPRINTF(sc, ATH_DEBUG_ANY,
3907 				"%s: no mbuf/cluster\n", __func__);
3908 			sc->sc_stats.ast_rx_nombuf++;
3909 			return ENOMEM;
3910 		}
3911 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3912 
3913 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3914 					     bf->bf_dmamap, m,
3915 					     bf->bf_segs, &bf->bf_nseg,
3916 					     BUS_DMA_NOWAIT);
3917 		if (error != 0) {
3918 			DPRINTF(sc, ATH_DEBUG_ANY,
3919 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3920 			    __func__, error);
3921 			sc->sc_stats.ast_rx_busdma++;
3922 			m_freem(m);
3923 			return error;
3924 		}
3925 		KASSERT(bf->bf_nseg == 1,
3926 			("multi-segment packet; nseg %u", bf->bf_nseg));
3927 		bf->bf_m = m;
3928 	}
3929 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3930 
3931 	/*
3932 	 * Setup descriptors.  For receive we always terminate
3933 	 * the descriptor list with a self-linked entry so we'll
3934 	 * not get overrun under high load (as can happen with a
3935 	 * 5212 when ANI processing enables PHY error frames).
3936 	 *
3937 	 * To insure the last descriptor is self-linked we create
3938 	 * each descriptor as self-linked and add it to the end.  As
3939 	 * each additional descriptor is added the previous self-linked
3940 	 * entry is ``fixed'' naturally.  This should be safe even
3941 	 * if DMA is happening.  When processing RX interrupts we
3942 	 * never remove/process the last, self-linked, entry on the
3943 	 * descriptor list.  This insures the hardware always has
3944 	 * someplace to write a new frame.
3945 	 */
3946 	ds = bf->bf_desc;
3947 	ds->ds_link = bf->bf_daddr;	/* link to self */
3948 	ds->ds_data = bf->bf_segs[0].ds_addr;
3949 	ath_hal_setuprxdesc(ah, ds
3950 		, m->m_len		/* buffer size */
3951 		, 0
3952 	);
3953 
3954 	if (sc->sc_rxlink != NULL)
3955 		*sc->sc_rxlink = bf->bf_daddr;
3956 	sc->sc_rxlink = &ds->ds_link;
3957 	return 0;
3958 }
3959 
3960 /*
3961  * Extend 15-bit time stamp from rx descriptor to
3962  * a full 64-bit TSF using the specified TSF.
3963  */
3964 static __inline u_int64_t
3965 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3966 {
3967 	if ((tsf & 0x7fff) < rstamp)
3968 		tsf -= 0x8000;
3969 	return ((tsf &~ 0x7fff) | rstamp);
3970 }
3971 
3972 /*
3973  * Intercept management frames to collect beacon rssi data
3974  * and to do ibss merges.
3975  */
3976 static void
3977 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3978 	int subtype, int rssi, int noise, u_int32_t rstamp)
3979 {
3980 	struct ieee80211vap *vap = ni->ni_vap;
3981 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3982 
3983 	/*
3984 	 * Call up first so subsequent work can use information
3985 	 * potentially stored in the node (e.g. for ibss merge).
3986 	 */
3987 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3988 	switch (subtype) {
3989 	case IEEE80211_FC0_SUBTYPE_BEACON:
3990 		/* update rssi statistics for use by the hal */
3991 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3992 		if (sc->sc_syncbeacon &&
3993 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3994 			/*
3995 			 * Resync beacon timers using the tsf of the beacon
3996 			 * frame we just received.
3997 			 */
3998 			ath_beacon_config(sc, vap);
3999 		}
4000 		/* fall thru... */
4001 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
4002 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
4003 		    vap->iv_state == IEEE80211_S_RUN) {
4004 			u_int64_t tsf = ath_extend_tsf(rstamp,
4005 				ath_hal_gettsf64(sc->sc_ah));
4006 			/*
4007 			 * Handle ibss merge as needed; check the tsf on the
4008 			 * frame before attempting the merge.  The 802.11 spec
4009 			 * says the station should change it's bssid to match
4010 			 * the oldest station with the same ssid, where oldest
4011 			 * is determined by the tsf.  Note that hardware
4012 			 * reconfiguration happens through callback to
4013 			 * ath_newstate as the state machine will go from
4014 			 * RUN -> RUN when this happens.
4015 			 */
4016 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
4017 				DPRINTF(sc, ATH_DEBUG_STATE,
4018 				    "ibss merge, rstamp %u tsf %ju "
4019 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
4020 				    (uintmax_t)ni->ni_tstamp.tsf);
4021 				(void) ieee80211_ibss_merge(ni);
4022 			}
4023 		}
4024 		break;
4025 	}
4026 }
4027 
4028 /*
4029  * Set the default antenna.
4030  */
4031 static void
4032 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4033 {
4034 	struct ath_hal *ah = sc->sc_ah;
4035 
4036 	/* XXX block beacon interrupts */
4037 	ath_hal_setdefantenna(ah, antenna);
4038 	if (sc->sc_defant != antenna)
4039 		sc->sc_stats.ast_ant_defswitch++;
4040 	sc->sc_defant = antenna;
4041 	sc->sc_rxotherant = 0;
4042 }
4043 
4044 static int
4045 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
4046 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
4047 {
4048 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
4049 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
4050 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
4051 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
4052 	struct ath_softc *sc = ifp->if_softc;
4053 	const HAL_RATE_TABLE *rt;
4054 	uint8_t rix;
4055 
4056 	/*
4057 	 * Discard anything shorter than an ack or cts.
4058 	 */
4059 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
4060 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
4061 			__func__, m->m_pkthdr.len);
4062 		sc->sc_stats.ast_rx_tooshort++;
4063 		return 0;
4064 	}
4065 	rt = sc->sc_currates;
4066 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4067 	rix = rt->rateCodeToIndex[rs->rs_rate];
4068 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
4069 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
4070 #ifdef AH_SUPPORT_AR5416
4071 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
4072 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
4073 		if ((rs->rs_flags & HAL_RX_2040) == 0)
4074 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
4075 		else if (sc->sc_curchan.channelFlags & CHANNEL_HT40PLUS)
4076 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
4077 		else
4078 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
4079 		if ((rs->rs_flags & HAL_RX_GI) == 0)
4080 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
4081 	}
4082 #endif
4083 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
4084 	if (rs->rs_status & HAL_RXERR_CRC)
4085 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
4086 	/* XXX propagate other error flags from descriptor */
4087 	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
4088 	sc->sc_rx_th.wr_antnoise = nf;
4089 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
4090 
4091 	bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
4092 
4093 	return 1;
4094 #undef CHAN_HT
4095 #undef CHAN_HT20
4096 #undef CHAN_HT40U
4097 #undef CHAN_HT40D
4098 }
4099 
4100 static void
4101 ath_handle_micerror(struct ieee80211com *ic,
4102 	struct ieee80211_frame *wh, int keyix)
4103 {
4104 	struct ieee80211_node *ni;
4105 
4106 	/* XXX recheck MIC to deal w/ chips that lie */
4107 	/* XXX discard MIC errors on !data frames */
4108 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
4109 	if (ni != NULL) {
4110 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
4111 		ieee80211_free_node(ni);
4112 	}
4113 }
4114 
4115 static void
4116 ath_rx_proc(void *arg, int npending)
4117 {
4118 #define	PA2DESC(_sc, _pa) \
4119 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4120 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4121 	struct ath_softc *sc = arg;
4122 	struct ath_buf *bf;
4123 	struct ifnet *ifp = sc->sc_ifp;
4124 	struct ieee80211com *ic = ifp->if_l2com;
4125 	struct ath_hal *ah = sc->sc_ah;
4126 	struct ath_desc *ds;
4127 	struct ath_rx_status *rs;
4128 	struct mbuf *m;
4129 	struct ieee80211_node *ni;
4130 	int len, type, ngood;
4131 	u_int phyerr;
4132 	HAL_STATUS status;
4133 	int16_t nf;
4134 	u_int64_t tsf;
4135 
4136 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
4137 	ngood = 0;
4138 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
4139 	sc->sc_stats.ast_rx_noise = nf;
4140 	tsf = ath_hal_gettsf64(ah);
4141 	do {
4142 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
4143 		if (bf == NULL) {		/* NB: shouldn't happen */
4144 			if_printf(ifp, "%s: no buffer!\n", __func__);
4145 			break;
4146 		}
4147 		m = bf->bf_m;
4148 		if (m == NULL) {		/* NB: shouldn't happen */
4149 			/*
4150 			 * If mbuf allocation failed previously there
4151 			 * will be no mbuf; try again to re-populate it.
4152 			 */
4153 			/* XXX make debug msg */
4154 			if_printf(ifp, "%s: no mbuf!\n", __func__);
4155 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4156 			goto rx_next;
4157 		}
4158 		ds = bf->bf_desc;
4159 		if (ds->ds_link == bf->bf_daddr) {
4160 			/* NB: never process the self-linked entry at the end */
4161 			break;
4162 		}
4163 		/* XXX sync descriptor memory */
4164 		/*
4165 		 * Must provide the virtual address of the current
4166 		 * descriptor, the physical address, and the virtual
4167 		 * address of the next descriptor in the h/w chain.
4168 		 * This allows the HAL to look ahead to see if the
4169 		 * hardware is done with a descriptor by checking the
4170 		 * done bit in the following descriptor and the address
4171 		 * of the current descriptor the DMA engine is working
4172 		 * on.  All this is necessary because of our use of
4173 		 * a self-linked list to avoid rx overruns.
4174 		 */
4175 		rs = &bf->bf_status.ds_rxstat;
4176 		status = ath_hal_rxprocdesc(ah, ds,
4177 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4178 #ifdef ATH_DEBUG
4179 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4180 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4181 #endif
4182 		if (status == HAL_EINPROGRESS)
4183 			break;
4184 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4185 		if (rs->rs_status != 0) {
4186 			if (rs->rs_status & HAL_RXERR_CRC)
4187 				sc->sc_stats.ast_rx_crcerr++;
4188 			if (rs->rs_status & HAL_RXERR_FIFO)
4189 				sc->sc_stats.ast_rx_fifoerr++;
4190 			if (rs->rs_status & HAL_RXERR_PHY) {
4191 				sc->sc_stats.ast_rx_phyerr++;
4192 				phyerr = rs->rs_phyerr & 0x1f;
4193 				sc->sc_stats.ast_rx_phy[phyerr]++;
4194 				goto rx_error;	/* NB: don't count in ierrors */
4195 			}
4196 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4197 				/*
4198 				 * Decrypt error.  If the error occurred
4199 				 * because there was no hardware key, then
4200 				 * let the frame through so the upper layers
4201 				 * can process it.  This is necessary for 5210
4202 				 * parts which have no way to setup a ``clear''
4203 				 * key cache entry.
4204 				 *
4205 				 * XXX do key cache faulting
4206 				 */
4207 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4208 					goto rx_accept;
4209 				sc->sc_stats.ast_rx_badcrypt++;
4210 			}
4211 			if (rs->rs_status & HAL_RXERR_MIC) {
4212 				sc->sc_stats.ast_rx_badmic++;
4213 				/*
4214 				 * Do minimal work required to hand off
4215 				 * the 802.11 header for notifcation.
4216 				 */
4217 				/* XXX frag's and qos frames */
4218 				len = rs->rs_datalen;
4219 				if (len >= sizeof (struct ieee80211_frame)) {
4220 					bus_dmamap_sync(sc->sc_dmat,
4221 					    bf->bf_dmamap,
4222 					    BUS_DMASYNC_POSTREAD);
4223 					ath_handle_micerror(ic,
4224 					    mtod(m, struct ieee80211_frame *),
4225 					    sc->sc_splitmic ?
4226 						rs->rs_keyix-32 : rs->rs_keyix);
4227 				}
4228 			}
4229 			ifp->if_ierrors++;
4230 rx_error:
4231 			/*
4232 			 * Cleanup any pending partial frame.
4233 			 */
4234 			if (sc->sc_rxpending != NULL) {
4235 				m_freem(sc->sc_rxpending);
4236 				sc->sc_rxpending = NULL;
4237 			}
4238 			/*
4239 			 * When a tap is present pass error frames
4240 			 * that have been requested.  By default we
4241 			 * pass decrypt+mic errors but others may be
4242 			 * interesting (e.g. crc).
4243 			 */
4244 			if (bpf_peers_present(ifp->if_bpf) &&
4245 			    (rs->rs_status & sc->sc_monpass)) {
4246 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4247 				    BUS_DMASYNC_POSTREAD);
4248 				/* NB: bpf needs the mbuf length setup */
4249 				len = rs->rs_datalen;
4250 				m->m_pkthdr.len = m->m_len = len;
4251 				(void) ath_rx_tap(ifp, m, rs, tsf, nf);
4252 			}
4253 			/* XXX pass MIC errors up for s/w reclaculation */
4254 			goto rx_next;
4255 		}
4256 rx_accept:
4257 		/*
4258 		 * Sync and unmap the frame.  At this point we're
4259 		 * committed to passing the mbuf somewhere so clear
4260 		 * bf_m; this means a new mbuf must be allocated
4261 		 * when the rx descriptor is setup again to receive
4262 		 * another frame.
4263 		 */
4264 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4265 		    BUS_DMASYNC_POSTREAD);
4266 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4267 		bf->bf_m = NULL;
4268 
4269 		len = rs->rs_datalen;
4270 		m->m_len = len;
4271 
4272 		if (rs->rs_more) {
4273 			/*
4274 			 * Frame spans multiple descriptors; save
4275 			 * it for the next completed descriptor, it
4276 			 * will be used to construct a jumbogram.
4277 			 */
4278 			if (sc->sc_rxpending != NULL) {
4279 				/* NB: max frame size is currently 2 clusters */
4280 				sc->sc_stats.ast_rx_toobig++;
4281 				m_freem(sc->sc_rxpending);
4282 			}
4283 			m->m_pkthdr.rcvif = ifp;
4284 			m->m_pkthdr.len = len;
4285 			sc->sc_rxpending = m;
4286 			goto rx_next;
4287 		} else if (sc->sc_rxpending != NULL) {
4288 			/*
4289 			 * This is the second part of a jumbogram,
4290 			 * chain it to the first mbuf, adjust the
4291 			 * frame length, and clear the rxpending state.
4292 			 */
4293 			sc->sc_rxpending->m_next = m;
4294 			sc->sc_rxpending->m_pkthdr.len += len;
4295 			m = sc->sc_rxpending;
4296 			sc->sc_rxpending = NULL;
4297 		} else {
4298 			/*
4299 			 * Normal single-descriptor receive; setup
4300 			 * the rcvif and packet length.
4301 			 */
4302 			m->m_pkthdr.rcvif = ifp;
4303 			m->m_pkthdr.len = len;
4304 		}
4305 
4306 		ifp->if_ipackets++;
4307 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4308 
4309 		if (bpf_peers_present(ifp->if_bpf) &&
4310 		    !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4311 			m_freem(m);		/* XXX reclaim */
4312 			goto rx_next;
4313 		}
4314 
4315 		/*
4316 		 * From this point on we assume the frame is at least
4317 		 * as large as ieee80211_frame_min; verify that.
4318 		 */
4319 		if (len < IEEE80211_MIN_LEN) {
4320 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4321 				__func__, len);
4322 			sc->sc_stats.ast_rx_tooshort++;
4323 			m_freem(m);
4324 			goto rx_next;
4325 		}
4326 
4327 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4328 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4329 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4330 
4331 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4332 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4333 		}
4334 
4335 		m_adj(m, -IEEE80211_CRC_LEN);
4336 
4337 		/*
4338 		 * Locate the node for sender, track state, and then
4339 		 * pass the (referenced) node up to the 802.11 layer
4340 		 * for its use.
4341 		 */
4342 		ni = ieee80211_find_rxnode_withkey(ic,
4343 			mtod(m, const struct ieee80211_frame_min *),
4344 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4345 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4346 		if (ni != NULL) {
4347 			/*
4348 			 * Sending station is known, dispatch directly.
4349 			 */
4350 #ifdef ATH_SUPPORT_TDMA
4351 			sc->sc_tdmars = rs;
4352 #endif
4353 			type = ieee80211_input(ni, m,
4354 			    rs->rs_rssi, nf, rs->rs_tstamp);
4355 			ieee80211_free_node(ni);
4356 			/*
4357 			 * Arrange to update the last rx timestamp only for
4358 			 * frames from our ap when operating in station mode.
4359 			 * This assumes the rx key is always setup when
4360 			 * associated.
4361 			 */
4362 			if (ic->ic_opmode == IEEE80211_M_STA &&
4363 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4364 				ngood++;
4365 		} else {
4366 			type = ieee80211_input_all(ic, m,
4367 			    rs->rs_rssi, nf, rs->rs_tstamp);
4368 		}
4369 		/*
4370 		 * Track rx rssi and do any rx antenna management.
4371 		 */
4372 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4373 		if (sc->sc_diversity) {
4374 			/*
4375 			 * When using fast diversity, change the default rx
4376 			 * antenna if diversity chooses the other antenna 3
4377 			 * times in a row.
4378 			 */
4379 			if (sc->sc_defant != rs->rs_antenna) {
4380 				if (++sc->sc_rxotherant >= 3)
4381 					ath_setdefantenna(sc, rs->rs_antenna);
4382 			} else
4383 				sc->sc_rxotherant = 0;
4384 		}
4385 		if (sc->sc_softled) {
4386 			/*
4387 			 * Blink for any data frame.  Otherwise do a
4388 			 * heartbeat-style blink when idle.  The latter
4389 			 * is mainly for station mode where we depend on
4390 			 * periodic beacon frames to trigger the poll event.
4391 			 */
4392 			if (type == IEEE80211_FC0_TYPE_DATA) {
4393 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4394 				ath_led_event(sc,
4395 				    rt->rateCodeToIndex[rs->rs_rate]);
4396 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4397 				ath_led_event(sc, 0);
4398 		}
4399 rx_next:
4400 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4401 	} while (ath_rxbuf_init(sc, bf) == 0);
4402 
4403 	/* rx signal state monitoring */
4404 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
4405 	if (ngood)
4406 		sc->sc_lastrx = tsf;
4407 
4408 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4409 	    !IFQ_IS_EMPTY(&ifp->if_snd))
4410 		ath_start(ifp);
4411 
4412 #undef PA2DESC
4413 }
4414 
4415 static void
4416 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4417 {
4418 	txq->axq_qnum = qnum;
4419 	txq->axq_depth = 0;
4420 	txq->axq_intrcnt = 0;
4421 	txq->axq_link = NULL;
4422 	STAILQ_INIT(&txq->axq_q);
4423 	ATH_TXQ_LOCK_INIT(sc, txq);
4424 	TAILQ_INIT(&txq->axq_stageq);
4425 	txq->axq_curage = 0;
4426 }
4427 
4428 /*
4429  * Setup a h/w transmit queue.
4430  */
4431 static struct ath_txq *
4432 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4433 {
4434 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4435 	struct ath_hal *ah = sc->sc_ah;
4436 	HAL_TXQ_INFO qi;
4437 	int qnum;
4438 
4439 	memset(&qi, 0, sizeof(qi));
4440 	qi.tqi_subtype = subtype;
4441 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4442 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4443 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4444 	/*
4445 	 * Enable interrupts only for EOL and DESC conditions.
4446 	 * We mark tx descriptors to receive a DESC interrupt
4447 	 * when a tx queue gets deep; otherwise waiting for the
4448 	 * EOL to reap descriptors.  Note that this is done to
4449 	 * reduce interrupt load and this only defers reaping
4450 	 * descriptors, never transmitting frames.  Aside from
4451 	 * reducing interrupts this also permits more concurrency.
4452 	 * The only potential downside is if the tx queue backs
4453 	 * up in which case the top half of the kernel may backup
4454 	 * due to a lack of tx descriptors.
4455 	 */
4456 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4457 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4458 	if (qnum == -1) {
4459 		/*
4460 		 * NB: don't print a message, this happens
4461 		 * normally on parts with too few tx queues
4462 		 */
4463 		return NULL;
4464 	}
4465 	if (qnum >= N(sc->sc_txq)) {
4466 		device_printf(sc->sc_dev,
4467 			"hal qnum %u out of range, max %zu!\n",
4468 			qnum, N(sc->sc_txq));
4469 		ath_hal_releasetxqueue(ah, qnum);
4470 		return NULL;
4471 	}
4472 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4473 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4474 		sc->sc_txqsetup |= 1<<qnum;
4475 	}
4476 	return &sc->sc_txq[qnum];
4477 #undef N
4478 }
4479 
4480 /*
4481  * Setup a hardware data transmit queue for the specified
4482  * access control.  The hal may not support all requested
4483  * queues in which case it will return a reference to a
4484  * previously setup queue.  We record the mapping from ac's
4485  * to h/w queues for use by ath_tx_start and also track
4486  * the set of h/w queues being used to optimize work in the
4487  * transmit interrupt handler and related routines.
4488  */
4489 static int
4490 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4491 {
4492 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4493 	struct ath_txq *txq;
4494 
4495 	if (ac >= N(sc->sc_ac2q)) {
4496 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4497 			ac, N(sc->sc_ac2q));
4498 		return 0;
4499 	}
4500 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4501 	if (txq != NULL) {
4502 		sc->sc_ac2q[ac] = txq;
4503 		return 1;
4504 	} else
4505 		return 0;
4506 #undef N
4507 }
4508 
4509 /*
4510  * Update WME parameters for a transmit queue.
4511  */
4512 static int
4513 ath_txq_update(struct ath_softc *sc, int ac)
4514 {
4515 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4516 #define	ATH_TXOP_TO_US(v)		(v<<5)
4517 	struct ifnet *ifp = sc->sc_ifp;
4518 	struct ieee80211com *ic = ifp->if_l2com;
4519 	struct ath_txq *txq = sc->sc_ac2q[ac];
4520 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4521 	struct ath_hal *ah = sc->sc_ah;
4522 	HAL_TXQ_INFO qi;
4523 
4524 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4525 #ifdef ATH_SUPPORT_TDMA
4526 	if (sc->sc_tdma) {
4527 		/*
4528 		 * AIFS is zero so there's no pre-transmit wait.  The
4529 		 * burst time defines the slot duration and is configured
4530 		 * via sysctl.  The QCU is setup to not do post-xmit
4531 		 * back off, lockout all lower-priority QCU's, and fire
4532 		 * off the DMA beacon alert timer which is setup based
4533 		 * on the slot configuration.
4534 		 */
4535 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4536 			      | HAL_TXQ_TXERRINT_ENABLE
4537 			      | HAL_TXQ_TXURNINT_ENABLE
4538 			      | HAL_TXQ_TXEOLINT_ENABLE
4539 			      | HAL_TXQ_DBA_GATED
4540 			      | HAL_TXQ_BACKOFF_DISABLE
4541 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4542 			      ;
4543 		qi.tqi_aifs = 0;
4544 		/* XXX +dbaprep? */
4545 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4546 		qi.tqi_burstTime = qi.tqi_readyTime;
4547 	} else {
4548 #endif
4549 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4550 			      | HAL_TXQ_TXERRINT_ENABLE
4551 			      | HAL_TXQ_TXDESCINT_ENABLE
4552 			      | HAL_TXQ_TXURNINT_ENABLE
4553 			      ;
4554 		qi.tqi_aifs = wmep->wmep_aifsn;
4555 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4556 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4557 		qi.tqi_readyTime = 0;
4558 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4559 #ifdef ATH_SUPPORT_TDMA
4560 	}
4561 #endif
4562 
4563 	DPRINTF(sc, ATH_DEBUG_RESET,
4564 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4565 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4566 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4567 
4568 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4569 		if_printf(ifp, "unable to update hardware queue "
4570 			"parameters for %s traffic!\n",
4571 			ieee80211_wme_acnames[ac]);
4572 		return 0;
4573 	} else {
4574 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4575 		return 1;
4576 	}
4577 #undef ATH_TXOP_TO_US
4578 #undef ATH_EXPONENT_TO_VALUE
4579 }
4580 
4581 /*
4582  * Callback from the 802.11 layer to update WME parameters.
4583  */
4584 static int
4585 ath_wme_update(struct ieee80211com *ic)
4586 {
4587 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4588 
4589 	return !ath_txq_update(sc, WME_AC_BE) ||
4590 	    !ath_txq_update(sc, WME_AC_BK) ||
4591 	    !ath_txq_update(sc, WME_AC_VI) ||
4592 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4593 }
4594 
4595 /*
4596  * Reclaim resources for a setup queue.
4597  */
4598 static void
4599 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4600 {
4601 
4602 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4603 	ATH_TXQ_LOCK_DESTROY(txq);
4604 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4605 }
4606 
4607 /*
4608  * Reclaim all tx queue resources.
4609  */
4610 static void
4611 ath_tx_cleanup(struct ath_softc *sc)
4612 {
4613 	int i;
4614 
4615 	ATH_TXBUF_LOCK_DESTROY(sc);
4616 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4617 		if (ATH_TXQ_SETUP(sc, i))
4618 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4619 }
4620 
4621 /*
4622  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4623  */
4624 static int
4625 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4626 {
4627 	int i;
4628 
4629 	for (i = 0; i < rt->rateCount; i++)
4630 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4631 			return i;
4632 	return 0;		/* NB: lowest rate */
4633 }
4634 
4635 /*
4636  * Reclaim mbuf resources.  For fragmented frames we
4637  * need to claim each frag chained with m_nextpkt.
4638  */
4639 static void
4640 ath_freetx(struct mbuf *m)
4641 {
4642 	struct mbuf *next;
4643 
4644 	do {
4645 		next = m->m_nextpkt;
4646 		m->m_nextpkt = NULL;
4647 		m_freem(m);
4648 	} while ((m = next) != NULL);
4649 }
4650 
4651 static int
4652 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4653 {
4654 	struct mbuf *m;
4655 	int error;
4656 
4657 	/*
4658 	 * Load the DMA map so any coalescing is done.  This
4659 	 * also calculates the number of descriptors we need.
4660 	 */
4661 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4662 				     bf->bf_segs, &bf->bf_nseg,
4663 				     BUS_DMA_NOWAIT);
4664 	if (error == EFBIG) {
4665 		/* XXX packet requires too many descriptors */
4666 		bf->bf_nseg = ATH_TXDESC+1;
4667 	} else if (error != 0) {
4668 		sc->sc_stats.ast_tx_busdma++;
4669 		ath_freetx(m0);
4670 		return error;
4671 	}
4672 	/*
4673 	 * Discard null packets and check for packets that
4674 	 * require too many TX descriptors.  We try to convert
4675 	 * the latter to a cluster.
4676 	 */
4677 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4678 		sc->sc_stats.ast_tx_linear++;
4679 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4680 		if (m == NULL) {
4681 			ath_freetx(m0);
4682 			sc->sc_stats.ast_tx_nombuf++;
4683 			return ENOMEM;
4684 		}
4685 		m0 = m;
4686 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4687 					     bf->bf_segs, &bf->bf_nseg,
4688 					     BUS_DMA_NOWAIT);
4689 		if (error != 0) {
4690 			sc->sc_stats.ast_tx_busdma++;
4691 			ath_freetx(m0);
4692 			return error;
4693 		}
4694 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4695 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4696 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4697 		sc->sc_stats.ast_tx_nodata++;
4698 		ath_freetx(m0);
4699 		return EIO;
4700 	}
4701 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4702 		__func__, m0, m0->m_pkthdr.len);
4703 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4704 	bf->bf_m = m0;
4705 
4706 	return 0;
4707 }
4708 
4709 static void
4710 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4711 {
4712 	struct ath_hal *ah = sc->sc_ah;
4713 	struct ath_desc *ds, *ds0;
4714 	int i;
4715 
4716 	/*
4717 	 * Fillin the remainder of the descriptor info.
4718 	 */
4719 	ds0 = ds = bf->bf_desc;
4720 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4721 		ds->ds_data = bf->bf_segs[i].ds_addr;
4722 		if (i == bf->bf_nseg - 1)
4723 			ds->ds_link = 0;
4724 		else
4725 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4726 		ath_hal_filltxdesc(ah, ds
4727 			, bf->bf_segs[i].ds_len	/* segment length */
4728 			, i == 0		/* first segment */
4729 			, i == bf->bf_nseg - 1	/* last segment */
4730 			, ds0			/* first descriptor */
4731 		);
4732 		DPRINTF(sc, ATH_DEBUG_XMIT,
4733 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4734 			__func__, i, ds->ds_link, ds->ds_data,
4735 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4736 	}
4737 	/*
4738 	 * Insert the frame on the outbound list and pass it on
4739 	 * to the hardware.  Multicast frames buffered for power
4740 	 * save stations and transmit from the CAB queue are stored
4741 	 * on a s/w only queue and loaded on to the CAB queue in
4742 	 * the SWBA handler since frames only go out on DTIM and
4743 	 * to avoid possible races.
4744 	 */
4745 	ATH_TXQ_LOCK(txq);
4746 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4747 	     ("busy status 0x%x", bf->bf_flags));
4748 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4749 #ifdef ATH_SUPPORT_TDMA
4750 		int qbusy;
4751 
4752 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4753 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4754 		if (txq->axq_link == NULL) {
4755 			/*
4756 			 * Be careful writing the address to TXDP.  If
4757 			 * the tx q is enabled then this write will be
4758 			 * ignored.  Normally this is not an issue but
4759 			 * when tdma is in use and the q is beacon gated
4760 			 * this race can occur.  If the q is busy then
4761 			 * defer the work to later--either when another
4762 			 * packet comes along or when we prepare a beacon
4763 			 * frame at SWBA.
4764 			 */
4765 			if (!qbusy) {
4766 				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4767 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4768 				DPRINTF(sc, ATH_DEBUG_XMIT,
4769 				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4770 				    __func__, txq->axq_qnum,
4771 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4772 				    txq->axq_depth);
4773 			} else {
4774 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4775 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4776 				    "%s: Q%u busy, defer enable\n", __func__,
4777 				    txq->axq_qnum);
4778 			}
4779 		} else {
4780 			*txq->axq_link = bf->bf_daddr;
4781 			DPRINTF(sc, ATH_DEBUG_XMIT,
4782 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4783 			    txq->axq_qnum, txq->axq_link,
4784 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4785 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4786 				/*
4787 				 * The q was busy when we previously tried
4788 				 * to write the address of the first buffer
4789 				 * in the chain.  Since it's not busy now
4790 				 * handle this chore.  We are certain the
4791 				 * buffer at the front is the right one since
4792 				 * axq_link is NULL only when the buffer list
4793 				 * is/was empty.
4794 				 */
4795 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4796 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4797 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4798 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4799 				    "%s: Q%u restarted\n", __func__,
4800 				    txq->axq_qnum);
4801 			}
4802 		}
4803 #else
4804 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4805 		if (txq->axq_link == NULL) {
4806 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4807 			DPRINTF(sc, ATH_DEBUG_XMIT,
4808 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4809 			    __func__, txq->axq_qnum,
4810 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4811 			    txq->axq_depth);
4812 		} else {
4813 			*txq->axq_link = bf->bf_daddr;
4814 			DPRINTF(sc, ATH_DEBUG_XMIT,
4815 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4816 			    txq->axq_qnum, txq->axq_link,
4817 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4818 		}
4819 #endif /* ATH_SUPPORT_TDMA */
4820 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4821 		ath_hal_txstart(ah, txq->axq_qnum);
4822 	} else {
4823 		if (txq->axq_link != NULL) {
4824 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4825 			struct ieee80211_frame *wh;
4826 
4827 			/* mark previous frame */
4828 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4829 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4830 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4831 			    BUS_DMASYNC_PREWRITE);
4832 
4833 			/* link descriptor */
4834 			*txq->axq_link = bf->bf_daddr;
4835 		}
4836 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4837 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4838 	}
4839 	ATH_TXQ_UNLOCK(txq);
4840 }
4841 
4842 static int
4843 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4844     struct mbuf *m0)
4845 {
4846 	struct ieee80211vap *vap = ni->ni_vap;
4847 	struct ath_vap *avp = ATH_VAP(vap);
4848 	struct ath_hal *ah = sc->sc_ah;
4849 	struct ifnet *ifp = sc->sc_ifp;
4850 	struct ieee80211com *ic = ifp->if_l2com;
4851 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4852 	int error, iswep, ismcast, isfrag, ismrr;
4853 	int keyix, hdrlen, pktlen, try0;
4854 	u_int8_t rix, txrate, ctsrate;
4855 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4856 	struct ath_desc *ds;
4857 	struct ath_txq *txq;
4858 	struct ieee80211_frame *wh;
4859 	u_int subtype, flags, ctsduration;
4860 	HAL_PKT_TYPE atype;
4861 	const HAL_RATE_TABLE *rt;
4862 	HAL_BOOL shortPreamble;
4863 	struct ath_node *an;
4864 	u_int pri;
4865 
4866 	wh = mtod(m0, struct ieee80211_frame *);
4867 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4868 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4869 	isfrag = m0->m_flags & M_FRAG;
4870 	hdrlen = ieee80211_anyhdrsize(wh);
4871 	/*
4872 	 * Packet length must not include any
4873 	 * pad bytes; deduct them here.
4874 	 */
4875 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4876 
4877 	if (iswep) {
4878 		const struct ieee80211_cipher *cip;
4879 		struct ieee80211_key *k;
4880 
4881 		/*
4882 		 * Construct the 802.11 header+trailer for an encrypted
4883 		 * frame. The only reason this can fail is because of an
4884 		 * unknown or unsupported cipher/key type.
4885 		 */
4886 		k = ieee80211_crypto_encap(ni, m0);
4887 		if (k == NULL) {
4888 			/*
4889 			 * This can happen when the key is yanked after the
4890 			 * frame was queued.  Just discard the frame; the
4891 			 * 802.11 layer counts failures and provides
4892 			 * debugging/diagnostics.
4893 			 */
4894 			ath_freetx(m0);
4895 			return EIO;
4896 		}
4897 		/*
4898 		 * Adjust the packet + header lengths for the crypto
4899 		 * additions and calculate the h/w key index.  When
4900 		 * a s/w mic is done the frame will have had any mic
4901 		 * added to it prior to entry so m0->m_pkthdr.len will
4902 		 * account for it. Otherwise we need to add it to the
4903 		 * packet length.
4904 		 */
4905 		cip = k->wk_cipher;
4906 		hdrlen += cip->ic_header;
4907 		pktlen += cip->ic_header + cip->ic_trailer;
4908 		/* NB: frags always have any TKIP MIC done in s/w */
4909 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4910 			pktlen += cip->ic_miclen;
4911 		keyix = k->wk_keyix;
4912 
4913 		/* packet header may have moved, reset our local pointer */
4914 		wh = mtod(m0, struct ieee80211_frame *);
4915 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4916 		/*
4917 		 * Use station key cache slot, if assigned.
4918 		 */
4919 		keyix = ni->ni_ucastkey.wk_keyix;
4920 		if (keyix == IEEE80211_KEYIX_NONE)
4921 			keyix = HAL_TXKEYIX_INVALID;
4922 	} else
4923 		keyix = HAL_TXKEYIX_INVALID;
4924 
4925 	pktlen += IEEE80211_CRC_LEN;
4926 
4927 	/*
4928 	 * Load the DMA map so any coalescing is done.  This
4929 	 * also calculates the number of descriptors we need.
4930 	 */
4931 	error = ath_tx_dmasetup(sc, bf, m0);
4932 	if (error != 0)
4933 		return error;
4934 	bf->bf_node = ni;			/* NB: held reference */
4935 	m0 = bf->bf_m;				/* NB: may have changed */
4936 	wh = mtod(m0, struct ieee80211_frame *);
4937 
4938 	/* setup descriptors */
4939 	ds = bf->bf_desc;
4940 	rt = sc->sc_currates;
4941 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4942 
4943 	/*
4944 	 * NB: the 802.11 layer marks whether or not we should
4945 	 * use short preamble based on the current mode and
4946 	 * negotiated parameters.
4947 	 */
4948 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4949 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4950 		shortPreamble = AH_TRUE;
4951 		sc->sc_stats.ast_tx_shortpre++;
4952 	} else {
4953 		shortPreamble = AH_FALSE;
4954 	}
4955 
4956 	an = ATH_NODE(ni);
4957 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4958 	ismrr = 0;				/* default no multi-rate retry*/
4959 	pri = M_WME_GETAC(m0);			/* honor classification */
4960 	/* XXX use txparams instead of fixed values */
4961 	/*
4962 	 * Calculate Atheros packet type from IEEE80211 packet header,
4963 	 * setup for rate calculations, and select h/w transmit queue.
4964 	 */
4965 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4966 	case IEEE80211_FC0_TYPE_MGT:
4967 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4968 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4969 			atype = HAL_PKT_TYPE_BEACON;
4970 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4971 			atype = HAL_PKT_TYPE_PROBE_RESP;
4972 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4973 			atype = HAL_PKT_TYPE_ATIM;
4974 		else
4975 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4976 		rix = an->an_mgmtrix;
4977 		txrate = rt->info[rix].rateCode;
4978 		if (shortPreamble)
4979 			txrate |= rt->info[rix].shortPreamble;
4980 		try0 = ATH_TXMGTTRY;
4981 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4982 		break;
4983 	case IEEE80211_FC0_TYPE_CTL:
4984 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4985 		rix = an->an_mgmtrix;
4986 		txrate = rt->info[rix].rateCode;
4987 		if (shortPreamble)
4988 			txrate |= rt->info[rix].shortPreamble;
4989 		try0 = ATH_TXMGTTRY;
4990 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4991 		break;
4992 	case IEEE80211_FC0_TYPE_DATA:
4993 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4994 		/*
4995 		 * Data frames: multicast frames go out at a fixed rate,
4996 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4997 		 * the rate control module for the rate to use.
4998 		 */
4999 		if (ismcast) {
5000 			rix = an->an_mcastrix;
5001 			txrate = rt->info[rix].rateCode;
5002 			if (shortPreamble)
5003 				txrate |= rt->info[rix].shortPreamble;
5004 			try0 = 1;
5005 		} else if (m0->m_flags & M_EAPOL) {
5006 			/* XXX? maybe always use long preamble? */
5007 			rix = an->an_mgmtrix;
5008 			txrate = rt->info[rix].rateCode;
5009 			if (shortPreamble)
5010 				txrate |= rt->info[rix].shortPreamble;
5011 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
5012 		} else {
5013 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
5014 				&rix, &try0, &txrate);
5015 			sc->sc_txrix = rix;		/* for LED blinking */
5016 			sc->sc_lastdatarix = rix;	/* for fast frames */
5017 			if (try0 != ATH_TXMAXTRY)
5018 				ismrr = 1;
5019 		}
5020 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
5021 			flags |= HAL_TXDESC_NOACK;
5022 		break;
5023 	default:
5024 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
5025 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
5026 		/* XXX statistic */
5027 		ath_freetx(m0);
5028 		return EIO;
5029 	}
5030 	txq = sc->sc_ac2q[pri];
5031 
5032 	/*
5033 	 * When servicing one or more stations in power-save mode
5034 	 * (or) if there is some mcast data waiting on the mcast
5035 	 * queue (to prevent out of order delivery) multicast
5036 	 * frames must be buffered until after the beacon.
5037 	 */
5038 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
5039 		txq = &avp->av_mcastq;
5040 
5041 	/*
5042 	 * Calculate miscellaneous flags.
5043 	 */
5044 	if (ismcast) {
5045 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
5046 	} else if (pktlen > vap->iv_rtsthreshold &&
5047 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
5048 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
5049 		cix = rt->info[rix].controlRate;
5050 		sc->sc_stats.ast_tx_rts++;
5051 	}
5052 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
5053 		sc->sc_stats.ast_tx_noack++;
5054 #ifdef ATH_SUPPORT_TDMA
5055 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
5056 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: ACK required w/ TDMA\n",
5057 		    __func__);
5058 		/* XXX statistic */
5059 		ath_freetx(m0);
5060 		return EIO;
5061 	}
5062 #endif
5063 
5064 	/*
5065 	 * If 802.11g protection is enabled, determine whether
5066 	 * to use RTS/CTS or just CTS.  Note that this is only
5067 	 * done for OFDM unicast frames.
5068 	 */
5069 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
5070 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
5071 	    (flags & HAL_TXDESC_NOACK) == 0) {
5072 		/* XXX fragments must use CCK rates w/ protection */
5073 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
5074 			flags |= HAL_TXDESC_RTSENA;
5075 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
5076 			flags |= HAL_TXDESC_CTSENA;
5077 		if (isfrag) {
5078 			/*
5079 			 * For frags it would be desirable to use the
5080 			 * highest CCK rate for RTS/CTS.  But stations
5081 			 * farther away may detect it at a lower CCK rate
5082 			 * so use the configured protection rate instead
5083 			 * (for now).
5084 			 */
5085 			cix = rt->info[sc->sc_protrix].controlRate;
5086 		} else
5087 			cix = rt->info[sc->sc_protrix].controlRate;
5088 		sc->sc_stats.ast_tx_protect++;
5089 	}
5090 
5091 	/*
5092 	 * Calculate duration.  This logically belongs in the 802.11
5093 	 * layer but it lacks sufficient information to calculate it.
5094 	 */
5095 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
5096 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
5097 		u_int16_t dur;
5098 		if (shortPreamble)
5099 			dur = rt->info[rix].spAckDuration;
5100 		else
5101 			dur = rt->info[rix].lpAckDuration;
5102 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
5103 			dur += dur;		/* additional SIFS+ACK */
5104 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
5105 			/*
5106 			 * Include the size of next fragment so NAV is
5107 			 * updated properly.  The last fragment uses only
5108 			 * the ACK duration
5109 			 */
5110 			dur += ath_hal_computetxtime(ah, rt,
5111 					m0->m_nextpkt->m_pkthdr.len,
5112 					rix, shortPreamble);
5113 		}
5114 		if (isfrag) {
5115 			/*
5116 			 * Force hardware to use computed duration for next
5117 			 * fragment by disabling multi-rate retry which updates
5118 			 * duration based on the multi-rate duration table.
5119 			 */
5120 			ismrr = 0;
5121 			try0 = ATH_TXMGTTRY;	/* XXX? */
5122 		}
5123 		*(u_int16_t *)wh->i_dur = htole16(dur);
5124 	}
5125 
5126 	/*
5127 	 * Calculate RTS/CTS rate and duration if needed.
5128 	 */
5129 	ctsduration = 0;
5130 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
5131 		/*
5132 		 * CTS transmit rate is derived from the transmit rate
5133 		 * by looking in the h/w rate table.  We must also factor
5134 		 * in whether or not a short preamble is to be used.
5135 		 */
5136 		/* NB: cix is set above where RTS/CTS is enabled */
5137 		KASSERT(cix != 0xff, ("cix not setup"));
5138 		ctsrate = rt->info[cix].rateCode;
5139 		/*
5140 		 * Compute the transmit duration based on the frame
5141 		 * size and the size of an ACK frame.  We call into the
5142 		 * HAL to do the computation since it depends on the
5143 		 * characteristics of the actual PHY being used.
5144 		 *
5145 		 * NB: CTS is assumed the same size as an ACK so we can
5146 		 *     use the precalculated ACK durations.
5147 		 */
5148 		if (shortPreamble) {
5149 			ctsrate |= rt->info[cix].shortPreamble;
5150 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5151 				ctsduration += rt->info[cix].spAckDuration;
5152 			ctsduration += ath_hal_computetxtime(ah,
5153 				rt, pktlen, rix, AH_TRUE);
5154 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5155 				ctsduration += rt->info[rix].spAckDuration;
5156 		} else {
5157 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5158 				ctsduration += rt->info[cix].lpAckDuration;
5159 			ctsduration += ath_hal_computetxtime(ah,
5160 				rt, pktlen, rix, AH_FALSE);
5161 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5162 				ctsduration += rt->info[rix].lpAckDuration;
5163 		}
5164 		/*
5165 		 * Must disable multi-rate retry when using RTS/CTS.
5166 		 */
5167 		ismrr = 0;
5168 		try0 = ATH_TXMGTTRY;		/* XXX */
5169 	} else
5170 		ctsrate = 0;
5171 
5172 	/*
5173 	 * At this point we are committed to sending the frame
5174 	 * and we don't need to look at m_nextpkt; clear it in
5175 	 * case this frame is part of frag chain.
5176 	 */
5177 	m0->m_nextpkt = NULL;
5178 
5179 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
5180 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
5181 			sc->sc_hwmap[rix].ieeerate, -1);
5182 
5183 	if (bpf_peers_present(ifp->if_bpf)) {
5184 		u_int64_t tsf = ath_hal_gettsf64(ah);
5185 
5186 		sc->sc_tx_th.wt_tsf = htole64(tsf);
5187 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
5188 		if (iswep)
5189 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
5190 		if (isfrag)
5191 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
5192 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
5193 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
5194 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
5195 
5196 		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
5197 	}
5198 
5199 	/*
5200 	 * Determine if a tx interrupt should be generated for
5201 	 * this descriptor.  We take a tx interrupt to reap
5202 	 * descriptors when the h/w hits an EOL condition or
5203 	 * when the descriptor is specifically marked to generate
5204 	 * an interrupt.  We periodically mark descriptors in this
5205 	 * way to insure timely replenishing of the supply needed
5206 	 * for sending frames.  Defering interrupts reduces system
5207 	 * load and potentially allows more concurrent work to be
5208 	 * done but if done to aggressively can cause senders to
5209 	 * backup.
5210 	 *
5211 	 * NB: use >= to deal with sc_txintrperiod changing
5212 	 *     dynamically through sysctl.
5213 	 */
5214 	if (flags & HAL_TXDESC_INTREQ) {
5215 		txq->axq_intrcnt = 0;
5216 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
5217 		flags |= HAL_TXDESC_INTREQ;
5218 		txq->axq_intrcnt = 0;
5219 	}
5220 
5221 	/*
5222 	 * Formulate first tx descriptor with tx controls.
5223 	 */
5224 	/* XXX check return value? */
5225 	ath_hal_setuptxdesc(ah, ds
5226 		, pktlen		/* packet length */
5227 		, hdrlen		/* header length */
5228 		, atype			/* Atheros packet type */
5229 		, ni->ni_txpower	/* txpower */
5230 		, txrate, try0		/* series 0 rate/tries */
5231 		, keyix			/* key cache index */
5232 		, sc->sc_txantenna	/* antenna mode */
5233 		, flags			/* flags */
5234 		, ctsrate		/* rts/cts rate */
5235 		, ctsduration		/* rts/cts duration */
5236 	);
5237 	bf->bf_txflags = flags;
5238 	/*
5239 	 * Setup the multi-rate retry state only when we're
5240 	 * going to use it.  This assumes ath_hal_setuptxdesc
5241 	 * initializes the descriptors (so we don't have to)
5242 	 * when the hardware supports multi-rate retry and
5243 	 * we don't use it.
5244 	 */
5245 	if (ismrr)
5246 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
5247 
5248 	ath_tx_handoff(sc, txq, bf);
5249 	return 0;
5250 }
5251 
5252 /*
5253  * Process completed xmit descriptors from the specified queue.
5254  */
5255 static int
5256 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
5257 {
5258 	struct ath_hal *ah = sc->sc_ah;
5259 	struct ifnet *ifp = sc->sc_ifp;
5260 	struct ieee80211com *ic = ifp->if_l2com;
5261 	struct ath_buf *bf, *last;
5262 	struct ath_desc *ds, *ds0;
5263 	struct ath_tx_status *ts;
5264 	struct ieee80211_node *ni;
5265 	struct ath_node *an;
5266 	int sr, lr, pri, nacked;
5267 	HAL_STATUS status;
5268 
5269 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
5270 		__func__, txq->axq_qnum,
5271 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
5272 		txq->axq_link);
5273 	nacked = 0;
5274 	for (;;) {
5275 		ATH_TXQ_LOCK(txq);
5276 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
5277 		bf = STAILQ_FIRST(&txq->axq_q);
5278 		if (bf == NULL) {
5279 			ATH_TXQ_UNLOCK(txq);
5280 			break;
5281 		}
5282 		ds0 = &bf->bf_desc[0];
5283 		ds = &bf->bf_desc[bf->bf_nseg - 1];
5284 		ts = &bf->bf_status.ds_txstat;
5285 		status = ath_hal_txprocdesc(ah, ds, ts);
5286 #ifdef ATH_DEBUG
5287 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
5288 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
5289 			    status == HAL_OK);
5290 #endif
5291 		if (status == HAL_EINPROGRESS) {
5292 			ATH_TXQ_UNLOCK(txq);
5293 			break;
5294 		}
5295 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5296 #ifdef ATH_SUPPORT_TDMA
5297 		if (txq->axq_depth > 0) {
5298 			/*
5299 			 * More frames follow.  Mark the buffer busy
5300 			 * so it's not re-used while the hardware may
5301 			 * still re-read the link field in the descriptor.
5302 			 */
5303 			bf->bf_flags |= ATH_BUF_BUSY;
5304 		} else
5305 #else
5306 		if (txq->axq_depth == 0)
5307 #endif
5308 			txq->axq_link = NULL;
5309 		ATH_TXQ_UNLOCK(txq);
5310 
5311 		ni = bf->bf_node;
5312 		if (ni != NULL) {
5313 			an = ATH_NODE(ni);
5314 			if (ts->ts_status == 0) {
5315 				u_int8_t txant = ts->ts_antenna;
5316 				sc->sc_stats.ast_ant_tx[txant]++;
5317 				sc->sc_ant_tx[txant]++;
5318 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
5319 					sc->sc_stats.ast_tx_altrate++;
5320 				pri = M_WME_GETAC(bf->bf_m);
5321 				if (pri >= WME_AC_VO)
5322 					ic->ic_wme.wme_hipri_traffic++;
5323 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
5324 					ni->ni_inact = ni->ni_inact_reload;
5325 			} else {
5326 				if (ts->ts_status & HAL_TXERR_XRETRY)
5327 					sc->sc_stats.ast_tx_xretries++;
5328 				if (ts->ts_status & HAL_TXERR_FIFO)
5329 					sc->sc_stats.ast_tx_fifoerr++;
5330 				if (ts->ts_status & HAL_TXERR_FILT)
5331 					sc->sc_stats.ast_tx_filtered++;
5332 				if (bf->bf_m->m_flags & M_FF)
5333 					sc->sc_stats.ast_ff_txerr++;
5334 			}
5335 			sr = ts->ts_shortretry;
5336 			lr = ts->ts_longretry;
5337 			sc->sc_stats.ast_tx_shortretry += sr;
5338 			sc->sc_stats.ast_tx_longretry += lr;
5339 			/*
5340 			 * Hand the descriptor to the rate control algorithm.
5341 			 */
5342 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
5343 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
5344 				/*
5345 				 * If frame was ack'd update statistics,
5346 				 * including the last rx time used to
5347 				 * workaround phantom bmiss interrupts.
5348 				 */
5349 				if (ts->ts_status == 0) {
5350 					nacked++;
5351 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5352 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5353 						ts->ts_rssi);
5354 				}
5355 				ath_rate_tx_complete(sc, an, bf);
5356 			}
5357 			/*
5358 			 * Do any tx complete callback.  Note this must
5359 			 * be done before releasing the node reference.
5360 			 */
5361 			if (bf->bf_m->m_flags & M_TXCB)
5362 				ieee80211_process_callback(ni, bf->bf_m,
5363 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5364 				        ts->ts_status : HAL_TXERR_XRETRY);
5365 			/*
5366 			 * Reclaim reference to node.
5367 			 *
5368 			 * NB: the node may be reclaimed here if, for example
5369 			 *     this is a DEAUTH message that was sent and the
5370 			 *     node was timed out due to inactivity.
5371 			 */
5372 			ieee80211_free_node(ni);
5373 		}
5374 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5375 		    BUS_DMASYNC_POSTWRITE);
5376 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5377 
5378 		m_freem(bf->bf_m);
5379 		bf->bf_m = NULL;
5380 		bf->bf_node = NULL;
5381 
5382 		ATH_TXBUF_LOCK(sc);
5383 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5384 		if (last != NULL)
5385 			last->bf_flags &= ~ATH_BUF_BUSY;
5386 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5387 		ATH_TXBUF_UNLOCK(sc);
5388 	}
5389 	/*
5390 	 * Flush fast-frame staging queue when traffic slows.
5391 	 */
5392 	if (txq->axq_depth <= 1)
5393 		ath_ff_stageq_flush(sc, txq, ath_ff_always);
5394 	return nacked;
5395 }
5396 
5397 static __inline int
5398 txqactive(struct ath_hal *ah, int qnum)
5399 {
5400 	u_int32_t txqs = 1<<qnum;
5401 	ath_hal_gettxintrtxqs(ah, &txqs);
5402 	return (txqs & (1<<qnum));
5403 }
5404 
5405 /*
5406  * Deferred processing of transmit interrupt; special-cased
5407  * for a single hardware transmit queue (e.g. 5210 and 5211).
5408  */
5409 static void
5410 ath_tx_proc_q0(void *arg, int npending)
5411 {
5412 	struct ath_softc *sc = arg;
5413 	struct ifnet *ifp = sc->sc_ifp;
5414 
5415 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5416 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5417 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5418 		ath_tx_processq(sc, sc->sc_cabq);
5419 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5420 	ifp->if_timer = 0;
5421 
5422 	if (sc->sc_softled)
5423 		ath_led_event(sc, sc->sc_txrix);
5424 
5425 	ath_start(ifp);
5426 }
5427 
5428 /*
5429  * Deferred processing of transmit interrupt; special-cased
5430  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5431  */
5432 static void
5433 ath_tx_proc_q0123(void *arg, int npending)
5434 {
5435 	struct ath_softc *sc = arg;
5436 	struct ifnet *ifp = sc->sc_ifp;
5437 	int nacked;
5438 
5439 	/*
5440 	 * Process each active queue.
5441 	 */
5442 	nacked = 0;
5443 	if (txqactive(sc->sc_ah, 0))
5444 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5445 	if (txqactive(sc->sc_ah, 1))
5446 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5447 	if (txqactive(sc->sc_ah, 2))
5448 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5449 	if (txqactive(sc->sc_ah, 3))
5450 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5451 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5452 		ath_tx_processq(sc, sc->sc_cabq);
5453 	if (nacked)
5454 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5455 
5456 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5457 	ifp->if_timer = 0;
5458 
5459 	if (sc->sc_softled)
5460 		ath_led_event(sc, sc->sc_txrix);
5461 
5462 	ath_start(ifp);
5463 }
5464 
5465 /*
5466  * Deferred processing of transmit interrupt.
5467  */
5468 static void
5469 ath_tx_proc(void *arg, int npending)
5470 {
5471 	struct ath_softc *sc = arg;
5472 	struct ifnet *ifp = sc->sc_ifp;
5473 	int i, nacked;
5474 
5475 	/*
5476 	 * Process each active queue.
5477 	 */
5478 	nacked = 0;
5479 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5480 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5481 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5482 	if (nacked)
5483 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5484 
5485 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5486 	ifp->if_timer = 0;
5487 
5488 	if (sc->sc_softled)
5489 		ath_led_event(sc, sc->sc_txrix);
5490 
5491 	ath_start(ifp);
5492 }
5493 
5494 static void
5495 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5496 {
5497 #ifdef ATH_DEBUG
5498 	struct ath_hal *ah = sc->sc_ah;
5499 #endif
5500 	struct ieee80211_node *ni;
5501 	struct ath_buf *bf;
5502 	u_int ix;
5503 
5504 	/*
5505 	 * NB: this assumes output has been stopped and
5506 	 *     we do not need to block ath_tx_proc
5507 	 */
5508 	ATH_TXBUF_LOCK(sc);
5509 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5510 	if (bf != NULL)
5511 		bf->bf_flags &= ~ATH_BUF_BUSY;
5512 	ATH_TXBUF_UNLOCK(sc);
5513 	for (ix = 0;; ix++) {
5514 		ATH_TXQ_LOCK(txq);
5515 		bf = STAILQ_FIRST(&txq->axq_q);
5516 		if (bf == NULL) {
5517 			txq->axq_link = NULL;
5518 			ATH_TXQ_UNLOCK(txq);
5519 			break;
5520 		}
5521 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5522 		ATH_TXQ_UNLOCK(txq);
5523 #ifdef ATH_DEBUG
5524 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5525 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5526 
5527 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5528 				ath_hal_txprocdesc(ah, bf->bf_desc,
5529 				    &bf->bf_status.ds_txstat) == HAL_OK);
5530 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5531 				bf->bf_m->m_len, 0, -1);
5532 		}
5533 #endif /* ATH_DEBUG */
5534 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5535 		ni = bf->bf_node;
5536 		bf->bf_node = NULL;
5537 		if (ni != NULL) {
5538 			/*
5539 			 * Do any callback and reclaim the node reference.
5540 			 */
5541 			if (bf->bf_m->m_flags & M_TXCB)
5542 				ieee80211_process_callback(ni, bf->bf_m, -1);
5543 			ieee80211_free_node(ni);
5544 		}
5545 		m_freem(bf->bf_m);
5546 		bf->bf_m = NULL;
5547 		bf->bf_flags &= ~ATH_BUF_BUSY;
5548 
5549 		ATH_TXBUF_LOCK(sc);
5550 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5551 		ATH_TXBUF_UNLOCK(sc);
5552 	}
5553 }
5554 
5555 static void
5556 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5557 {
5558 	struct ath_hal *ah = sc->sc_ah;
5559 
5560 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5561 	    __func__, txq->axq_qnum,
5562 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5563 	    txq->axq_link);
5564 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5565 }
5566 
5567 /*
5568  * Drain the transmit queues and reclaim resources.
5569  */
5570 static void
5571 ath_draintxq(struct ath_softc *sc)
5572 {
5573 	struct ath_hal *ah = sc->sc_ah;
5574 	struct ifnet *ifp = sc->sc_ifp;
5575 	int i;
5576 
5577 	/* XXX return value */
5578 	if (!sc->sc_invalid) {
5579 		/* don't touch the hardware if marked invalid */
5580 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5581 		    __func__, sc->sc_bhalq,
5582 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5583 		    NULL);
5584 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5585 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5586 			if (ATH_TXQ_SETUP(sc, i))
5587 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5588 	}
5589 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5590 		if (ATH_TXQ_SETUP(sc, i))
5591 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5592 #ifdef ATH_DEBUG
5593 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5594 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5595 		if (bf != NULL && bf->bf_m != NULL) {
5596 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5597 				ath_hal_txprocdesc(ah, bf->bf_desc,
5598 				    &bf->bf_status.ds_txstat) == HAL_OK);
5599 			ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5600 				bf->bf_m->m_len, 0, -1);
5601 		}
5602 	}
5603 #endif /* ATH_DEBUG */
5604 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5605 	ifp->if_timer = 0;
5606 }
5607 
5608 /*
5609  * Disable the receive h/w in preparation for a reset.
5610  */
5611 static void
5612 ath_stoprecv(struct ath_softc *sc)
5613 {
5614 #define	PA2DESC(_sc, _pa) \
5615 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5616 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5617 	struct ath_hal *ah = sc->sc_ah;
5618 
5619 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5620 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5621 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5622 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5623 #ifdef ATH_DEBUG
5624 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5625 		struct ath_buf *bf;
5626 		u_int ix;
5627 
5628 		printf("%s: rx queue %p, link %p\n", __func__,
5629 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5630 		ix = 0;
5631 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5632 			struct ath_desc *ds = bf->bf_desc;
5633 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5634 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5635 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5636 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5637 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5638 			ix++;
5639 		}
5640 	}
5641 #endif
5642 	if (sc->sc_rxpending != NULL) {
5643 		m_freem(sc->sc_rxpending);
5644 		sc->sc_rxpending = NULL;
5645 	}
5646 	sc->sc_rxlink = NULL;		/* just in case */
5647 #undef PA2DESC
5648 }
5649 
5650 /*
5651  * Enable the receive h/w following a reset.
5652  */
5653 static int
5654 ath_startrecv(struct ath_softc *sc)
5655 {
5656 	struct ath_hal *ah = sc->sc_ah;
5657 	struct ath_buf *bf;
5658 
5659 	sc->sc_rxlink = NULL;
5660 	sc->sc_rxpending = NULL;
5661 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5662 		int error = ath_rxbuf_init(sc, bf);
5663 		if (error != 0) {
5664 			DPRINTF(sc, ATH_DEBUG_RECV,
5665 				"%s: ath_rxbuf_init failed %d\n",
5666 				__func__, error);
5667 			return error;
5668 		}
5669 	}
5670 
5671 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5672 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5673 	ath_hal_rxena(ah);		/* enable recv descriptors */
5674 	ath_mode_init(sc);		/* set filters, etc. */
5675 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5676 	return 0;
5677 }
5678 
5679 /*
5680  * Update internal state after a channel change.
5681  */
5682 static void
5683 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5684 {
5685 	enum ieee80211_phymode mode;
5686 
5687 	/*
5688 	 * Change channels and update the h/w rate map
5689 	 * if we're switching; e.g. 11a to 11b/g.
5690 	 */
5691 	if (IEEE80211_IS_CHAN_HALF(chan))
5692 		mode = IEEE80211_MODE_HALF;
5693 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
5694 		mode = IEEE80211_MODE_QUARTER;
5695 	else
5696 		mode = ieee80211_chan2mode(chan);
5697 	if (mode != sc->sc_curmode)
5698 		ath_setcurmode(sc, mode);
5699 
5700 	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5701 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5702 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5703 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5704 	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5705 	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5706 	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5707 	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5708 }
5709 
5710 /*
5711  * Set/change channels.  If the channel is really being changed,
5712  * it's done by reseting the chip.  To accomplish this we must
5713  * first cleanup any pending DMA, then restart stuff after a la
5714  * ath_init.
5715  */
5716 static int
5717 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5718 {
5719 	struct ifnet *ifp = sc->sc_ifp;
5720 	struct ieee80211com *ic = ifp->if_l2com;
5721 	struct ath_hal *ah = sc->sc_ah;
5722 	HAL_CHANNEL hchan;
5723 
5724 	/*
5725 	 * Convert to a HAL channel description with
5726 	 * the flags constrained to reflect the current
5727 	 * operating mode.
5728 	 */
5729 	ath_mapchan(ic, &hchan, chan);
5730 
5731 	DPRINTF(sc, ATH_DEBUG_RESET,
5732 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
5733 	    __func__,
5734 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
5735 		sc->sc_curchan.channelFlags),
5736 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
5737 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
5738 	        hchan.channel, hchan.channelFlags);
5739 	if (hchan.channel != sc->sc_curchan.channel ||
5740 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
5741 		HAL_STATUS status;
5742 
5743 		/*
5744 		 * To switch channels clear any pending DMA operations;
5745 		 * wait long enough for the RX fifo to drain, reset the
5746 		 * hardware at the new frequency, and then re-enable
5747 		 * the relevant bits of the h/w.
5748 		 */
5749 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5750 		ath_draintxq(sc);		/* clear pending tx frames */
5751 		ath_stoprecv(sc);		/* turn off frame recv */
5752 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
5753 			if_printf(ifp, "%s: unable to reset "
5754 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x), "
5755 			    "hal status %u\n", __func__,
5756 			    ieee80211_chan2ieee(ic, chan), chan->ic_freq,
5757 			    chan->ic_flags, hchan.channelFlags, status);
5758 			return EIO;
5759 		}
5760 		sc->sc_curchan = hchan;
5761 		sc->sc_diversity = ath_hal_getdiversity(ah);
5762 
5763 		/*
5764 		 * Re-enable rx framework.
5765 		 */
5766 		if (ath_startrecv(sc) != 0) {
5767 			if_printf(ifp, "%s: unable to restart recv logic\n",
5768 			    __func__);
5769 			return EIO;
5770 		}
5771 
5772 		/*
5773 		 * Change channels and update the h/w rate map
5774 		 * if we're switching; e.g. 11a to 11b/g.
5775 		 */
5776 		ath_chan_change(sc, chan);
5777 
5778 		/*
5779 		 * Re-enable interrupts.
5780 		 */
5781 		ath_hal_intrset(ah, sc->sc_imask);
5782 	}
5783 	return 0;
5784 }
5785 
5786 /*
5787  * Periodically recalibrate the PHY to account
5788  * for temperature/environment changes.
5789  */
5790 static void
5791 ath_calibrate(void *arg)
5792 {
5793 	struct ath_softc *sc = arg;
5794 	struct ath_hal *ah = sc->sc_ah;
5795 	struct ifnet *ifp = sc->sc_ifp;
5796 	HAL_BOOL longCal, isCalDone;
5797 	int nextcal;
5798 
5799 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5800 	if (longCal) {
5801 		sc->sc_stats.ast_per_cal++;
5802 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5803 			/*
5804 			 * Rfgain is out of bounds, reset the chip
5805 			 * to load new gain values.
5806 			 */
5807 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5808 				"%s: rfgain change\n", __func__);
5809 			sc->sc_stats.ast_per_rfgain++;
5810 			ath_reset(ifp);
5811 		}
5812 		/*
5813 		 * If this long cal is after an idle period, then
5814 		 * reset the data collection state so we start fresh.
5815 		 */
5816 		if (sc->sc_resetcal) {
5817 			(void) ath_hal_calreset(ah, &sc->sc_curchan);
5818 			sc->sc_lastcalreset = ticks;
5819 			sc->sc_resetcal = 0;
5820 		}
5821 	}
5822 	if (ath_hal_calibrateN(ah, &sc->sc_curchan, longCal, &isCalDone)) {
5823 		if (longCal) {
5824 			/*
5825 			 * Calibrate noise floor data again in case of change.
5826 			 */
5827 			ath_hal_process_noisefloor(ah);
5828 		}
5829 	} else {
5830 		DPRINTF(sc, ATH_DEBUG_ANY,
5831 			"%s: calibration of channel %u failed\n",
5832 			__func__, sc->sc_curchan.channel);
5833 		sc->sc_stats.ast_per_calfail++;
5834 	}
5835 	if (!isCalDone) {
5836 		/*
5837 		 * Use a shorter interval to potentially collect multiple
5838 		 * data samples required to complete calibration.  Once
5839 		 * we're told the work is done we drop back to a longer
5840 		 * interval between requests.  We're more aggressive doing
5841 		 * work when operating as an AP to improve operation right
5842 		 * after startup.
5843 		 */
5844 		nextcal = (1000*ath_shortcalinterval)/hz;
5845 		if (sc->sc_opmode != HAL_M_HOSTAP)
5846 			nextcal *= 10;
5847 	} else {
5848 		nextcal = ath_longcalinterval*hz;
5849 		sc->sc_lastlongcal = ticks;
5850 		if (sc->sc_lastcalreset == 0)
5851 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5852 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5853 			sc->sc_resetcal = 1;	/* setup reset next trip */
5854 	}
5855 
5856 	if (nextcal != 0) {
5857 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5858 		    __func__, nextcal, isCalDone ? "" : "!");
5859 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5860 	} else {
5861 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5862 		    __func__);
5863 		/* NB: don't rearm timer */
5864 	}
5865 }
5866 
5867 static void
5868 ath_scan_start(struct ieee80211com *ic)
5869 {
5870 	struct ifnet *ifp = ic->ic_ifp;
5871 	struct ath_softc *sc = ifp->if_softc;
5872 	struct ath_hal *ah = sc->sc_ah;
5873 	u_int32_t rfilt;
5874 
5875 	/* XXX calibration timer? */
5876 
5877 	sc->sc_scanning = 1;
5878 	sc->sc_syncbeacon = 0;
5879 	rfilt = ath_calcrxfilter(sc);
5880 	ath_hal_setrxfilter(ah, rfilt);
5881 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5882 
5883 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5884 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5885 }
5886 
5887 static void
5888 ath_scan_end(struct ieee80211com *ic)
5889 {
5890 	struct ifnet *ifp = ic->ic_ifp;
5891 	struct ath_softc *sc = ifp->if_softc;
5892 	struct ath_hal *ah = sc->sc_ah;
5893 	u_int32_t rfilt;
5894 
5895 	sc->sc_scanning = 0;
5896 	rfilt = ath_calcrxfilter(sc);
5897 	ath_hal_setrxfilter(ah, rfilt);
5898 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5899 
5900 	ath_hal_process_noisefloor(ah);
5901 
5902 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5903 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5904 		 sc->sc_curaid);
5905 }
5906 
5907 static void
5908 ath_set_channel(struct ieee80211com *ic)
5909 {
5910 	struct ifnet *ifp = ic->ic_ifp;
5911 	struct ath_softc *sc = ifp->if_softc;
5912 
5913 	(void) ath_chan_set(sc, ic->ic_curchan);
5914 	/*
5915 	 * If we are returning to our bss channel then mark state
5916 	 * so the next recv'd beacon's tsf will be used to sync the
5917 	 * beacon timers.  Note that since we only hear beacons in
5918 	 * sta/ibss mode this has no effect in other operating modes.
5919 	 */
5920 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5921 		sc->sc_syncbeacon = 1;
5922 }
5923 
5924 /*
5925  * Walk the vap list and check if there any vap's in RUN state.
5926  */
5927 static int
5928 ath_isanyrunningvaps(struct ieee80211vap *this)
5929 {
5930 	struct ieee80211com *ic = this->iv_ic;
5931 	struct ieee80211vap *vap;
5932 
5933 	IEEE80211_LOCK_ASSERT(ic);
5934 
5935 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5936 		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5937 			return 1;
5938 	}
5939 	return 0;
5940 }
5941 
5942 static int
5943 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5944 {
5945 	struct ieee80211com *ic = vap->iv_ic;
5946 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5947 	struct ath_vap *avp = ATH_VAP(vap);
5948 	struct ath_hal *ah = sc->sc_ah;
5949 	struct ieee80211_node *ni = NULL;
5950 	int i, error, stamode;
5951 	u_int32_t rfilt;
5952 	static const HAL_LED_STATE leds[] = {
5953 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5954 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5955 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5956 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5957 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5958 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5959 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5960 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5961 	};
5962 
5963 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5964 		ieee80211_state_name[vap->iv_state],
5965 		ieee80211_state_name[nstate]);
5966 
5967 	callout_stop(&sc->sc_cal_ch);
5968 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5969 
5970 	if (nstate == IEEE80211_S_SCAN) {
5971 		/*
5972 		 * Scanning: turn off beacon miss and don't beacon.
5973 		 * Mark beacon state so when we reach RUN state we'll
5974 		 * [re]setup beacons.  Unblock the task q thread so
5975 		 * deferred interrupt processing is done.
5976 		 */
5977 		ath_hal_intrset(ah,
5978 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5979 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5980 		sc->sc_beacons = 0;
5981 		taskqueue_unblock(sc->sc_tq);
5982 	}
5983 
5984 	ni = vap->iv_bss;
5985 	rfilt = ath_calcrxfilter(sc);
5986 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5987 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5988 		   vap->iv_opmode == IEEE80211_M_IBSS);
5989 	if (stamode && nstate == IEEE80211_S_RUN) {
5990 		sc->sc_curaid = ni->ni_associd;
5991 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5992 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5993 	}
5994 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5995 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5996 	ath_hal_setrxfilter(ah, rfilt);
5997 
5998 	/* XXX is this to restore keycache on resume? */
5999 	if (vap->iv_opmode != IEEE80211_M_STA &&
6000 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
6001 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
6002 			if (ath_hal_keyisvalid(ah, i))
6003 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
6004 	}
6005 
6006 	/*
6007 	 * Invoke the parent method to do net80211 work.
6008 	 */
6009 	error = avp->av_newstate(vap, nstate, arg);
6010 	if (error != 0)
6011 		goto bad;
6012 
6013 	if (nstate == IEEE80211_S_RUN) {
6014 		/* NB: collect bss node again, it may have changed */
6015 		ni = vap->iv_bss;
6016 
6017 		DPRINTF(sc, ATH_DEBUG_STATE,
6018 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
6019 		    "capinfo 0x%04x chan %d\n", __func__,
6020 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6021 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6022 
6023 		switch (vap->iv_opmode) {
6024 #ifdef ATH_SUPPORT_TDMA
6025 		case IEEE80211_M_AHDEMO:
6026 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6027 				break;
6028 			/* fall thru... */
6029 #endif
6030 		case IEEE80211_M_HOSTAP:
6031 		case IEEE80211_M_IBSS:
6032 			/*
6033 			 * Allocate and setup the beacon frame.
6034 			 *
6035 			 * Stop any previous beacon DMA.  This may be
6036 			 * necessary, for example, when an ibss merge
6037 			 * causes reconfiguration; there will be a state
6038 			 * transition from RUN->RUN that means we may
6039 			 * be called with beacon transmission active.
6040 			 */
6041 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
6042 
6043 			error = ath_beacon_alloc(sc, ni);
6044 			if (error != 0)
6045 				goto bad;
6046 			/*
6047 			 * If joining an adhoc network defer beacon timer
6048 			 * configuration to the next beacon frame so we
6049 			 * have a current TSF to use.  Otherwise we're
6050 			 * starting an ibss/bss so there's no need to delay;
6051 			 * if this is the first vap moving to RUN state, then
6052 			 * beacon state needs to be [re]configured.
6053 			 */
6054 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
6055 			    ni->ni_tstamp.tsf != 0) {
6056 				sc->sc_syncbeacon = 1;
6057 			} else if (!sc->sc_beacons) {
6058 #ifdef ATH_SUPPORT_TDMA
6059 				if (vap->iv_caps & IEEE80211_C_TDMA)
6060 					ath_tdma_config(sc, vap);
6061 				else
6062 #endif
6063 					ath_beacon_config(sc, vap);
6064 				sc->sc_beacons = 1;
6065 			}
6066 			break;
6067 		case IEEE80211_M_STA:
6068 			/*
6069 			 * Defer beacon timer configuration to the next
6070 			 * beacon frame so we have a current TSF to use
6071 			 * (any TSF collected when scanning is likely old).
6072 			 */
6073 			sc->sc_syncbeacon = 1;
6074 			break;
6075 		case IEEE80211_M_MONITOR:
6076 			/*
6077 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6078 			 * transitions so we must re-enable interrupts here to
6079 			 * handle the case of a single monitor mode vap.
6080 			 */
6081 			ath_hal_intrset(ah, sc->sc_imask);
6082 			break;
6083 		case IEEE80211_M_WDS:
6084 			break;
6085 		default:
6086 			break;
6087 		}
6088 		/*
6089 		 * Let the hal process statistics collected during a
6090 		 * scan so it can provide calibrated noise floor data.
6091 		 */
6092 		ath_hal_process_noisefloor(ah);
6093 		/*
6094 		 * Reset rssi stats; maybe not the best place...
6095 		 */
6096 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6097 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6098 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6099 		/*
6100 		 * Finally, start any timers and the task q thread
6101 		 * (in case we didn't go through SCAN state).
6102 		 */
6103 		if (ath_longcalinterval != 0) {
6104 			/* start periodic recalibration timer */
6105 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6106 		} else {
6107 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6108 			    "%s: calibration disabled\n", __func__);
6109 		}
6110 		taskqueue_unblock(sc->sc_tq);
6111 	} else if (nstate == IEEE80211_S_INIT) {
6112 		/*
6113 		 * If there are no vaps left in RUN state then
6114 		 * shutdown host/driver operation:
6115 		 * o disable interrupts
6116 		 * o disable the task queue thread
6117 		 * o mark beacon processing as stopped
6118 		 */
6119 		if (!ath_isanyrunningvaps(vap)) {
6120 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6121 			/* disable interrupts  */
6122 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6123 			taskqueue_block(sc->sc_tq);
6124 			sc->sc_beacons = 0;
6125 		}
6126 #ifdef ATH_SUPPORT_TDMA
6127 		ath_hal_setcca(ah, AH_TRUE);
6128 #endif
6129 	}
6130 bad:
6131 	return error;
6132 }
6133 
6134 /*
6135  * Allocate a key cache slot to the station so we can
6136  * setup a mapping from key index to node. The key cache
6137  * slot is needed for managing antenna state and for
6138  * compression when stations do not use crypto.  We do
6139  * it uniliaterally here; if crypto is employed this slot
6140  * will be reassigned.
6141  */
6142 static void
6143 ath_setup_stationkey(struct ieee80211_node *ni)
6144 {
6145 	struct ieee80211vap *vap = ni->ni_vap;
6146 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6147 	ieee80211_keyix keyix, rxkeyix;
6148 
6149 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6150 		/*
6151 		 * Key cache is full; we'll fall back to doing
6152 		 * the more expensive lookup in software.  Note
6153 		 * this also means no h/w compression.
6154 		 */
6155 		/* XXX msg+statistic */
6156 	} else {
6157 		/* XXX locking? */
6158 		ni->ni_ucastkey.wk_keyix = keyix;
6159 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6160 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6161 		/* NB: this will create a pass-thru key entry */
6162 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
6163 	}
6164 }
6165 
6166 /*
6167  * Setup driver-specific state for a newly associated node.
6168  * Note that we're called also on a re-associate, the isnew
6169  * param tells us if this is the first time or not.
6170  */
6171 static void
6172 ath_newassoc(struct ieee80211_node *ni, int isnew)
6173 {
6174 	struct ath_node *an = ATH_NODE(ni);
6175 	struct ieee80211vap *vap = ni->ni_vap;
6176 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6177 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6178 
6179 	an->an_mcastrix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
6180 	an->an_mgmtrix = ath_tx_findrix(sc->sc_currates, tp->mgmtrate);
6181 
6182 	ath_rate_newassoc(sc, an, isnew);
6183 	if (isnew &&
6184 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6185 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6186 		ath_setup_stationkey(ni);
6187 }
6188 
6189 static int
6190 getchannels(struct ath_softc *sc, int *nchans, struct ieee80211_channel chans[],
6191 	int cc, int ecm, int outdoor)
6192 {
6193 	struct ath_hal *ah = sc->sc_ah;
6194 	HAL_CHANNEL *halchans;
6195 	int i, nhalchans, error;
6196 
6197 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: cc %u outdoor %u ecm %u\n",
6198 	    __func__, cc, outdoor, ecm);
6199 
6200 	halchans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
6201 			M_TEMP, M_NOWAIT | M_ZERO);
6202 	if (halchans == NULL) {
6203 		device_printf(sc->sc_dev,
6204 		    "%s: unable to allocate channel table\n", __func__);
6205 		return ENOMEM;
6206 	}
6207 	error = 0;
6208 	if (!ath_hal_init_channels(ah, halchans, IEEE80211_CHAN_MAX, &nhalchans,
6209 	    NULL, 0, NULL, cc, HAL_MODE_ALL, outdoor, ecm)) {
6210 		u_int32_t rd;
6211 		(void) ath_hal_getregdomain(ah, &rd);
6212 		device_printf(sc->sc_dev, "ath_hal_init_channels failed, "
6213 		    "rd %d cc %u outdoor %u ecm %u\n", rd, cc, outdoor, ecm);
6214 		error = EINVAL;
6215 		goto done;
6216 	}
6217 	if (nchans == NULL)		/* no table requested */
6218 		goto done;
6219 
6220 	/*
6221 	 * Convert HAL channels to ieee80211 ones.
6222 	 */
6223 	for (i = 0; i < nhalchans; i++) {
6224 		HAL_CHANNEL *c = &halchans[i];
6225 		struct ieee80211_channel *ichan = &chans[i];
6226 
6227 		ichan->ic_ieee = ath_hal_mhz2ieee(ah, c->channel,
6228 					c->channelFlags);
6229 		if (bootverbose)
6230 			device_printf(sc->sc_dev, "hal channel %u/%x -> %u "
6231 			    "maxpow %d minpow %d maxreg %d\n",
6232 			    c->channel, c->channelFlags, ichan->ic_ieee,
6233 			    c->maxTxPower, c->minTxPower, c->maxRegTxPower);
6234 		ichan->ic_freq = c->channel;
6235 
6236 		if ((c->channelFlags & CHANNEL_PUREG) == CHANNEL_PUREG) {
6237 			/*
6238 			 * Except for AR5211, HAL's PUREG means mixed
6239 			 * DSSS and OFDM.
6240 			 */
6241 			ichan->ic_flags = c->channelFlags &~ CHANNEL_PUREG;
6242 			ichan->ic_flags |= IEEE80211_CHAN_G;
6243 		} else {
6244 			ichan->ic_flags = c->channelFlags;
6245 		}
6246 
6247 		if (ath_hal_isgsmsku(ah)) {
6248 			/*
6249 			 * Remap to true frequencies: Ubiquiti XR9 cards use a
6250 			 * frequency mapping different from their SR9 cards.
6251 			 * We define special country codes to deal with this.
6252 			 */
6253 			if (cc == CTRY_XR9)
6254 				ichan->ic_freq = ichan->ic_freq - 1520;
6255 			else if (cc == CTRY_GZ901)
6256 				ichan->ic_freq = ichan->ic_freq - 1544;
6257 			else
6258 				ichan->ic_freq = 3344 - ichan->ic_freq;
6259 			ichan->ic_flags |= IEEE80211_CHAN_GSM;
6260 			ichan->ic_ieee = ieee80211_mhz2ieee(ichan->ic_freq,
6261 						    ichan->ic_flags);
6262 		}
6263 		ichan->ic_maxregpower = c->maxRegTxPower;	/* dBm */
6264 		/* XXX: old hal's don't provide maxTxPower for some parts */
6265 		ichan->ic_maxpower = (c->maxTxPower != 0) ?
6266 		    c->maxTxPower : 2*c->maxRegTxPower;		/* 1/2 dBm */
6267 		ichan->ic_minpower = c->minTxPower;		/* 1/2 dBm */
6268 	}
6269 	*nchans = nhalchans;
6270 done:
6271 	free(halchans, M_TEMP);
6272 	return error;
6273 }
6274 
6275 /* XXX hard to include ieee80211_regdomain.h right now */
6276 #define	SKU_DEBUG	0x1ff
6277 
6278 static void
6279 ath_maprd(const struct ieee80211_regdomain *rd,
6280 	u_int32_t *ath_rd, u_int32_t *ath_cc)
6281 {
6282 	/* map SKU's to Atheros sku's */
6283 	switch (rd->regdomain) {
6284 	case SKU_DEBUG:
6285 		if (rd->country == 0) {
6286 			*ath_rd = 0;
6287 			*ath_cc = CTRY_DEBUG;
6288 			return;
6289 		}
6290 		break;
6291 	}
6292 	*ath_rd = rd->regdomain;
6293 	*ath_cc = rd->country;
6294 }
6295 
6296 static int
6297 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6298 	int nchans, struct ieee80211_channel chans[])
6299 {
6300 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6301 	struct ath_hal *ah = sc->sc_ah;
6302 	u_int32_t ord, regdomain, cc;
6303 	int error;
6304 
6305 	(void) ath_hal_getregdomain(ah, &ord);
6306 	ath_maprd(rd, &regdomain, &cc);
6307 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6308 	    "%s: rd %u cc %u location %c ecm %u (mapped rd %u cc %u)\n",
6309 	    __func__, rd->regdomain, rd->country, rd->location, rd->ecm,
6310 	    regdomain, cc);
6311 	ath_hal_setregdomain(ah, regdomain);
6312 
6313 	error = getchannels(sc, &nchans, chans, cc,
6314 	     rd->ecm ? AH_TRUE : AH_FALSE,
6315 	     rd->location != 'I' ? AH_TRUE : AH_FALSE);
6316 	if (error != 0) {
6317 		/*
6318 		 * Restore previous state.
6319 		 */
6320 		ath_hal_setregdomain(ah, ord);
6321 		(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
6322 		     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
6323 		     ic->ic_regdomain.location != 'I' ? AH_TRUE : AH_FALSE);
6324 		return error;
6325 	}
6326 	return 0;
6327 }
6328 
6329 static void
6330 ath_getradiocaps(struct ieee80211com *ic,
6331 	int *nchans, struct ieee80211_channel chans[])
6332 {
6333 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6334 	struct ath_hal *ah = sc->sc_ah;
6335 	u_int32_t ord;
6336 
6337 	(void) ath_hal_getregdomain(ah, &ord);
6338 
6339 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d, ord %u\n",
6340 	    __func__, 0, CTRY_DEBUG, ord);
6341 
6342 	ath_hal_setregdomain(ah, 0);
6343 	/* XXX not quite right but close enough for now */
6344 	getchannels(sc, nchans, chans, CTRY_DEBUG, AH_TRUE, AH_FALSE);
6345 
6346 	/* NB: restore previous state */
6347 	ath_hal_setregdomain(ah, ord);
6348 	(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
6349 	     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
6350 	     ic->ic_regdomain.location != 'I' ? AH_TRUE : AH_FALSE);
6351 }
6352 
6353 static void
6354 ath_mapsku(u_int32_t ath_rd, u_int32_t ath_cc, struct ieee80211_regdomain *rd)
6355 {
6356 	rd->isocc[0] = ' ';	/* XXX don't know */
6357 	rd->isocc[1] = ' ';
6358 
6359 	/* map Atheros sku's to SKU's */
6360 	switch (ath_rd) {
6361 	case 0:
6362 		if (ath_cc == CTRY_DEBUG) {
6363 			rd->regdomain = SKU_DEBUG;
6364 			rd->country = 0;
6365 			return;
6366 		}
6367 		break;
6368 	}
6369 	/* XXX net80211 types too small */
6370 	rd->regdomain = (uint16_t) ath_rd;
6371 	rd->country = (uint16_t) ath_cc;
6372 }
6373 
6374 static int
6375 ath_getchannels(struct ath_softc *sc)
6376 {
6377 	struct ifnet *ifp = sc->sc_ifp;
6378 	struct ieee80211com *ic = ifp->if_l2com;
6379 	struct ath_hal *ah = sc->sc_ah;
6380 	int error;
6381 
6382 	/*
6383 	 * Convert HAL channels to ieee80211 ones.
6384 	 */
6385 	error = getchannels(sc, &ic->ic_nchans, ic->ic_channels,
6386 	    CTRY_DEFAULT, AH_TRUE, AH_FALSE);
6387 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6388 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6389 	if (error) {
6390 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6391 		    "error %d\n", __func__, error);
6392 		if (error == EINVAL) {
6393 			if_printf(ifp, "%s: regdomain likely %u country code %u\n",
6394 			    __func__, sc->sc_eerd, sc->sc_eecc);
6395 		}
6396 		return error;
6397 	}
6398 	ic->ic_regdomain.ecm = 1;
6399 	ic->ic_regdomain.location = 'I';
6400 	ath_mapsku(sc->sc_eerd, sc->sc_eecc, &ic->ic_regdomain);
6401 
6402 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6403 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c ecm %u\n",
6404 	    __func__, sc->sc_eerd, sc->sc_eecc,
6405 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6406 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm);
6407 	return 0;
6408 }
6409 
6410 static void
6411 ath_led_done(void *arg)
6412 {
6413 	struct ath_softc *sc = arg;
6414 
6415 	sc->sc_blinking = 0;
6416 }
6417 
6418 /*
6419  * Turn the LED off: flip the pin and then set a timer so no
6420  * update will happen for the specified duration.
6421  */
6422 static void
6423 ath_led_off(void *arg)
6424 {
6425 	struct ath_softc *sc = arg;
6426 
6427 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
6428 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
6429 }
6430 
6431 /*
6432  * Blink the LED according to the specified on/off times.
6433  */
6434 static void
6435 ath_led_blink(struct ath_softc *sc, int on, int off)
6436 {
6437 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
6438 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
6439 	sc->sc_blinking = 1;
6440 	sc->sc_ledoff = off;
6441 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
6442 }
6443 
6444 static void
6445 ath_led_event(struct ath_softc *sc, int rix)
6446 {
6447 	sc->sc_ledevent = ticks;	/* time of last event */
6448 	if (sc->sc_blinking)		/* don't interrupt active blink */
6449 		return;
6450 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
6451 }
6452 
6453 static int
6454 ath_rate_setup(struct ath_softc *sc, u_int mode)
6455 {
6456 	struct ath_hal *ah = sc->sc_ah;
6457 	const HAL_RATE_TABLE *rt;
6458 
6459 	switch (mode) {
6460 	case IEEE80211_MODE_11A:
6461 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6462 		break;
6463 	case IEEE80211_MODE_HALF:
6464 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6465 		break;
6466 	case IEEE80211_MODE_QUARTER:
6467 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6468 		break;
6469 	case IEEE80211_MODE_11B:
6470 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6471 		break;
6472 	case IEEE80211_MODE_11G:
6473 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6474 		break;
6475 	case IEEE80211_MODE_TURBO_A:
6476 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6477 #if HAL_ABI_VERSION < 0x07013100
6478 		if (rt == NULL)		/* XXX bandaid for old hal's */
6479 			rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6480 #endif
6481 		break;
6482 	case IEEE80211_MODE_TURBO_G:
6483 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6484 		break;
6485 	case IEEE80211_MODE_STURBO_A:
6486 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6487 		break;
6488 	case IEEE80211_MODE_11NA:
6489 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6490 		break;
6491 	case IEEE80211_MODE_11NG:
6492 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6493 		break;
6494 	default:
6495 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6496 			__func__, mode);
6497 		return 0;
6498 	}
6499 	sc->sc_rates[mode] = rt;
6500 	return (rt != NULL);
6501 }
6502 
6503 static void
6504 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6505 {
6506 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6507 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6508 	static const struct {
6509 		u_int		rate;		/* tx/rx 802.11 rate */
6510 		u_int16_t	timeOn;		/* LED on time (ms) */
6511 		u_int16_t	timeOff;	/* LED off time (ms) */
6512 	} blinkrates[] = {
6513 		{ 108,  40,  10 },
6514 		{  96,  44,  11 },
6515 		{  72,  50,  13 },
6516 		{  48,  57,  14 },
6517 		{  36,  67,  16 },
6518 		{  24,  80,  20 },
6519 		{  22, 100,  25 },
6520 		{  18, 133,  34 },
6521 		{  12, 160,  40 },
6522 		{  10, 200,  50 },
6523 		{   6, 240,  58 },
6524 		{   4, 267,  66 },
6525 		{   2, 400, 100 },
6526 		{   0, 500, 130 },
6527 		/* XXX half/quarter rates */
6528 	};
6529 	const HAL_RATE_TABLE *rt;
6530 	int i, j;
6531 
6532 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6533 	rt = sc->sc_rates[mode];
6534 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6535 	for (i = 0; i < rt->rateCount; i++) {
6536 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6537 		if (rt->info[i].phy != IEEE80211_T_HT)
6538 			sc->sc_rixmap[ieeerate] = i;
6539 		else
6540 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6541 	}
6542 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6543 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6544 		if (i >= rt->rateCount) {
6545 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6546 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6547 			continue;
6548 		}
6549 		sc->sc_hwmap[i].ieeerate =
6550 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6551 		if (rt->info[i].phy == IEEE80211_T_HT)
6552 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6553 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6554 		if (rt->info[i].shortPreamble ||
6555 		    rt->info[i].phy == IEEE80211_T_OFDM)
6556 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6557 		/* NB: receive frames include FCS */
6558 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6559 			IEEE80211_RADIOTAP_F_FCS;
6560 		/* setup blink rate table to avoid per-packet lookup */
6561 		for (j = 0; j < N(blinkrates)-1; j++)
6562 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6563 				break;
6564 		/* NB: this uses the last entry if the rate isn't found */
6565 		/* XXX beware of overlow */
6566 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6567 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6568 	}
6569 	sc->sc_currates = rt;
6570 	sc->sc_curmode = mode;
6571 	/*
6572 	 * All protection frames are transmited at 2Mb/s for
6573 	 * 11g, otherwise at 1Mb/s.
6574 	 */
6575 	if (mode == IEEE80211_MODE_11G)
6576 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6577 	else
6578 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6579 	/* NB: caller is responsible for reseting rate control state */
6580 #undef N
6581 }
6582 
6583 #ifdef ATH_DEBUG
6584 static void
6585 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6586 	u_int ix, int done)
6587 {
6588 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6589 	struct ath_hal *ah = sc->sc_ah;
6590 	const struct ath_desc *ds;
6591 	int i;
6592 
6593 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6594 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6595 		       "      %08x %08x %08x %08x\n",
6596 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6597 		    ds->ds_link, ds->ds_data,
6598 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6599 		    ds->ds_ctl0, ds->ds_ctl1,
6600 		    ds->ds_hw[0], ds->ds_hw[1]);
6601 		if (ah->ah_magic == 0x20065416) {
6602 			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6603 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6604 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6605 			    ds->ds_hw[8]);
6606 		}
6607 	}
6608 }
6609 
6610 static void
6611 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6612 	u_int qnum, u_int ix, int done)
6613 {
6614 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6615 	struct ath_hal *ah = sc->sc_ah;
6616 	const struct ath_desc *ds;
6617 	int i;
6618 
6619 	printf("Q%u[%3u]", qnum, ix);
6620 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6621 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6622 		       "        %08x %08x %08x %08x %08x %08x\n",
6623 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6624 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6625 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6626 		    ds->ds_ctl0, ds->ds_ctl1,
6627 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6628 		if (ah->ah_magic == 0x20065416) {
6629 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6630 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6631 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6632 			    ds->ds_hw[10],ds->ds_hw[11]);
6633 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6634 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6635 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6636 			    ds->ds_hw[18], ds->ds_hw[19]);
6637 		}
6638 	}
6639 }
6640 #endif /* ATH_DEBUG */
6641 
6642 static void
6643 ath_watchdog(struct ifnet *ifp)
6644 {
6645 	struct ath_softc *sc = ifp->if_softc;
6646 
6647 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
6648 		uint32_t hangs;
6649 
6650 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6651 		    hangs != 0) {
6652 			if_printf(ifp, "%s hang detected (0x%x)\n",
6653 			    hangs & 0xff ? "bb" : "mac", hangs);
6654 		} else
6655 			if_printf(ifp, "device timeout\n");
6656 		ath_reset(ifp);
6657 		ifp->if_oerrors++;
6658 		sc->sc_stats.ast_watchdog++;
6659 	}
6660 }
6661 
6662 #ifdef ATH_DIAGAPI
6663 /*
6664  * Diagnostic interface to the HAL.  This is used by various
6665  * tools to do things like retrieve register contents for
6666  * debugging.  The mechanism is intentionally opaque so that
6667  * it can change frequently w/o concern for compatiblity.
6668  */
6669 static int
6670 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6671 {
6672 	struct ath_hal *ah = sc->sc_ah;
6673 	u_int id = ad->ad_id & ATH_DIAG_ID;
6674 	void *indata = NULL;
6675 	void *outdata = NULL;
6676 	u_int32_t insize = ad->ad_in_size;
6677 	u_int32_t outsize = ad->ad_out_size;
6678 	int error = 0;
6679 
6680 	if (ad->ad_id & ATH_DIAG_IN) {
6681 		/*
6682 		 * Copy in data.
6683 		 */
6684 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6685 		if (indata == NULL) {
6686 			error = ENOMEM;
6687 			goto bad;
6688 		}
6689 		error = copyin(ad->ad_in_data, indata, insize);
6690 		if (error)
6691 			goto bad;
6692 	}
6693 	if (ad->ad_id & ATH_DIAG_DYN) {
6694 		/*
6695 		 * Allocate a buffer for the results (otherwise the HAL
6696 		 * returns a pointer to a buffer where we can read the
6697 		 * results).  Note that we depend on the HAL leaving this
6698 		 * pointer for us to use below in reclaiming the buffer;
6699 		 * may want to be more defensive.
6700 		 */
6701 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6702 		if (outdata == NULL) {
6703 			error = ENOMEM;
6704 			goto bad;
6705 		}
6706 	}
6707 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6708 		if (outsize < ad->ad_out_size)
6709 			ad->ad_out_size = outsize;
6710 		if (outdata != NULL)
6711 			error = copyout(outdata, ad->ad_out_data,
6712 					ad->ad_out_size);
6713 	} else {
6714 		error = EINVAL;
6715 	}
6716 bad:
6717 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6718 		free(indata, M_TEMP);
6719 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6720 		free(outdata, M_TEMP);
6721 	return error;
6722 }
6723 #endif /* ATH_DIAGAPI */
6724 
6725 static int
6726 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6727 {
6728 #define	IS_RUNNING(ifp) \
6729 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6730 	struct ath_softc *sc = ifp->if_softc;
6731 	struct ieee80211com *ic = ifp->if_l2com;
6732 	struct ifreq *ifr = (struct ifreq *)data;
6733 	const HAL_RATE_TABLE *rt;
6734 	int error = 0;
6735 
6736 	switch (cmd) {
6737 	case SIOCSIFFLAGS:
6738 		ATH_LOCK(sc);
6739 		if (IS_RUNNING(ifp)) {
6740 			/*
6741 			 * To avoid rescanning another access point,
6742 			 * do not call ath_init() here.  Instead,
6743 			 * only reflect promisc mode settings.
6744 			 */
6745 			ath_mode_init(sc);
6746 		} else if (ifp->if_flags & IFF_UP) {
6747 			/*
6748 			 * Beware of being called during attach/detach
6749 			 * to reset promiscuous mode.  In that case we
6750 			 * will still be marked UP but not RUNNING.
6751 			 * However trying to re-init the interface
6752 			 * is the wrong thing to do as we've already
6753 			 * torn down much of our state.  There's
6754 			 * probably a better way to deal with this.
6755 			 */
6756 			if (!sc->sc_invalid)
6757 				ath_init(sc);	/* XXX lose error */
6758 		} else {
6759 			ath_stop_locked(ifp);
6760 #ifdef notyet
6761 			/* XXX must wakeup in places like ath_vap_delete */
6762 			if (!sc->sc_invalid)
6763 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6764 #endif
6765 		}
6766 		ATH_UNLOCK(sc);
6767 		break;
6768 	case SIOCGIFMEDIA:
6769 	case SIOCSIFMEDIA:
6770 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6771 		break;
6772 	case SIOCGATHSTATS:
6773 		/* NB: embed these numbers to get a consistent view */
6774 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6775 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6776 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6777 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6778 #ifdef ATH_SUPPORT_TDMA
6779 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6780 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6781 #endif
6782 		rt = sc->sc_currates;
6783 		/* XXX HT rates */
6784 		sc->sc_stats.ast_tx_rate =
6785 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6786 		return copyout(&sc->sc_stats,
6787 		    ifr->ifr_data, sizeof (sc->sc_stats));
6788 #ifdef ATH_DIAGAPI
6789 	case SIOCGATHDIAG:
6790 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6791 		break;
6792 #endif
6793 	case SIOCGIFADDR:
6794 		error = ether_ioctl(ifp, cmd, data);
6795 		break;
6796 	default:
6797 		error = EINVAL;
6798 		break;
6799 	}
6800 	return error;
6801 #undef IS_RUNNING
6802 }
6803 
6804 static int
6805 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6806 {
6807 	struct ath_softc *sc = arg1;
6808 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6809 	int error;
6810 
6811 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6812 	if (error || !req->newptr)
6813 		return error;
6814 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6815 }
6816 
6817 static int
6818 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6819 {
6820 	struct ath_softc *sc = arg1;
6821 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6822 	int error;
6823 
6824 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6825 	if (error || !req->newptr)
6826 		return error;
6827 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6828 }
6829 
6830 static int
6831 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6832 {
6833 	struct ath_softc *sc = arg1;
6834 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6835 	int error;
6836 
6837 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6838 	if (error || !req->newptr)
6839 		return error;
6840 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6841 }
6842 
6843 static int
6844 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6845 {
6846 	struct ath_softc *sc = arg1;
6847 	int softled = sc->sc_softled;
6848 	int error;
6849 
6850 	error = sysctl_handle_int(oidp, &softled, 0, req);
6851 	if (error || !req->newptr)
6852 		return error;
6853 	softled = (softled != 0);
6854 	if (softled != sc->sc_softled) {
6855 		if (softled) {
6856 			/* NB: handle any sc_ledpin change */
6857 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6858 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6859 				!sc->sc_ledon);
6860 		}
6861 		sc->sc_softled = softled;
6862 	}
6863 	return 0;
6864 }
6865 
6866 static int
6867 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6868 {
6869 	struct ath_softc *sc = arg1;
6870 	int ledpin = sc->sc_ledpin;
6871 	int error;
6872 
6873 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6874 	if (error || !req->newptr)
6875 		return error;
6876 	if (ledpin != sc->sc_ledpin) {
6877 		sc->sc_ledpin = ledpin;
6878 		if (sc->sc_softled) {
6879 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6880 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6881 				!sc->sc_ledon);
6882 		}
6883 	}
6884 	return 0;
6885 }
6886 
6887 static int
6888 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6889 {
6890 	struct ath_softc *sc = arg1;
6891 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6892 	int error;
6893 
6894 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6895 	if (!error && req->newptr) {
6896 		/* XXX assumes 2 antenna ports */
6897 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6898 			return EINVAL;
6899 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6900 		/*
6901 		 * NB: with the switch locked this isn't meaningful,
6902 		 *     but set it anyway so things like radiotap get
6903 		 *     consistent info in their data.
6904 		 */
6905 		sc->sc_txantenna = txantenna;
6906 	}
6907 	return error;
6908 }
6909 
6910 static int
6911 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6912 {
6913 	struct ath_softc *sc = arg1;
6914 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6915 	int error;
6916 
6917 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6918 	if (!error && req->newptr)
6919 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6920 	return error;
6921 }
6922 
6923 static int
6924 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6925 {
6926 	struct ath_softc *sc = arg1;
6927 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6928 	int error;
6929 
6930 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6931 	if (error || !req->newptr)
6932 		return error;
6933 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6934 		return EINVAL;
6935 	sc->sc_diversity = diversity;
6936 	return 0;
6937 }
6938 
6939 static int
6940 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6941 {
6942 	struct ath_softc *sc = arg1;
6943 	u_int32_t diag;
6944 	int error;
6945 
6946 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6947 		return EINVAL;
6948 	error = sysctl_handle_int(oidp, &diag, 0, req);
6949 	if (error || !req->newptr)
6950 		return error;
6951 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6952 }
6953 
6954 static int
6955 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6956 {
6957 	struct ath_softc *sc = arg1;
6958 	struct ifnet *ifp = sc->sc_ifp;
6959 	u_int32_t scale;
6960 	int error;
6961 
6962 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6963 	error = sysctl_handle_int(oidp, &scale, 0, req);
6964 	if (error || !req->newptr)
6965 		return error;
6966 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6967 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6968 }
6969 
6970 static int
6971 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6972 {
6973 	struct ath_softc *sc = arg1;
6974 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6975 	int error;
6976 
6977 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6978 	if (error || !req->newptr)
6979 		return error;
6980 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6981 }
6982 
6983 static int
6984 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6985 {
6986 	struct ath_softc *sc = arg1;
6987 	struct ifnet *ifp = sc->sc_ifp;
6988 	struct ath_hal *ah = sc->sc_ah;
6989 	u_int rfkill = ath_hal_getrfkill(ah);
6990 	int error;
6991 
6992 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6993 	if (error || !req->newptr)
6994 		return error;
6995 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6996 		return 0;
6997 	if (!ath_hal_setrfkill(ah, rfkill))
6998 		return EINVAL;
6999 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
7000 }
7001 
7002 static int
7003 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
7004 {
7005 	struct ath_softc *sc = arg1;
7006 	u_int rfsilent;
7007 	int error;
7008 
7009 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
7010 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
7011 	if (error || !req->newptr)
7012 		return error;
7013 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
7014 		return EINVAL;
7015 	sc->sc_rfsilentpin = rfsilent & 0x1c;
7016 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
7017 	return 0;
7018 }
7019 
7020 static int
7021 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
7022 {
7023 	struct ath_softc *sc = arg1;
7024 	u_int32_t tpack;
7025 	int error;
7026 
7027 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
7028 	error = sysctl_handle_int(oidp, &tpack, 0, req);
7029 	if (error || !req->newptr)
7030 		return error;
7031 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
7032 }
7033 
7034 static int
7035 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
7036 {
7037 	struct ath_softc *sc = arg1;
7038 	u_int32_t tpcts;
7039 	int error;
7040 
7041 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
7042 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
7043 	if (error || !req->newptr)
7044 		return error;
7045 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
7046 }
7047 
7048 static int
7049 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
7050 {
7051 	struct ath_softc *sc = arg1;
7052 	int intmit, error;
7053 
7054 	intmit = ath_hal_getintmit(sc->sc_ah);
7055 	error = sysctl_handle_int(oidp, &intmit, 0, req);
7056 	if (error || !req->newptr)
7057 		return error;
7058 	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
7059 }
7060 
7061 static void
7062 ath_sysctlattach(struct ath_softc *sc)
7063 {
7064 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
7065 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
7066 	struct ath_hal *ah = sc->sc_ah;
7067 
7068 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7069 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
7070 		"EEPROM country code");
7071 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7072 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
7073 		"EEPROM regdomain code");
7074 #ifdef	ATH_DEBUG
7075 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7076 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
7077 		"control debugging printfs");
7078 #endif
7079 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7080 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7081 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
7082 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7083 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7084 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
7085 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7086 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7087 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
7088 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7089 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7090 		ath_sysctl_softled, "I", "enable/disable software LED support");
7091 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7092 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7093 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
7094 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7095 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
7096 		"setting to turn LED on");
7097 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7098 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
7099 		"idle time for inactivity LED (ticks)");
7100 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7101 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7102 		ath_sysctl_txantenna, "I", "antenna switch");
7103 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7104 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7105 		ath_sysctl_rxantenna, "I", "default/rx antenna");
7106 	if (ath_hal_hasdiversity(ah))
7107 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7108 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7109 			ath_sysctl_diversity, "I", "antenna diversity");
7110 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
7111 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7112 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
7113 		"tx descriptor batching");
7114 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7115 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7116 		ath_sysctl_diag, "I", "h/w diagnostic control");
7117 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7118 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7119 		ath_sysctl_tpscale, "I", "tx power scaling");
7120 	if (ath_hal_hastpc(ah)) {
7121 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7122 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7123 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
7124 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7125 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7126 			ath_sysctl_tpack, "I", "tx power for ack frames");
7127 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7128 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7129 			ath_sysctl_tpcts, "I", "tx power for cts frames");
7130 	}
7131 	if (ath_hal_hasfastframes(sc->sc_ah)) {
7132 		sc->sc_fftxqmin = ATH_FF_TXQMIN;
7133 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7134 			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
7135 			"min frames before fast-frame staging");
7136 		sc->sc_fftxqmax = ATH_FF_TXQMAX;
7137 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7138 			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
7139 			"max queued frames before tail drop");
7140 	}
7141 	if (ath_hal_hasrfsilent(ah)) {
7142 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7143 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7144 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
7145 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7146 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7147 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
7148 	}
7149 	if (ath_hal_hasintmit(ah)) {
7150 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7151 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7152 			ath_sysctl_intmit, "I", "interference mitigation");
7153 	}
7154 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
7155 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7156 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
7157 		"mask of error frames to pass when monitoring");
7158 #ifdef ATH_SUPPORT_TDMA
7159 	if (ath_hal_macversion(ah) > 0x78) {
7160 		sc->sc_tdmadbaprep = 2;
7161 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7162 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
7163 			"TDMA DBA preparation time");
7164 		sc->sc_tdmaswbaprep = 10;
7165 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7166 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
7167 			"TDMA SWBA preparation time");
7168 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7169 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
7170 			"TDMA slot guard time");
7171 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7172 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
7173 			"TDMA calculated super frame");
7174 	}
7175 #endif
7176 }
7177 
7178 static void
7179 ath_bpfattach(struct ath_softc *sc)
7180 {
7181 	struct ifnet *ifp = sc->sc_ifp;
7182 
7183 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
7184 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
7185 	/*
7186 	 * Initialize constant fields.
7187 	 * XXX make header lengths a multiple of 32-bits so subsequent
7188 	 *     headers are properly aligned; this is a kludge to keep
7189 	 *     certain applications happy.
7190 	 *
7191 	 * NB: the channel is setup each time we transition to the
7192 	 *     RUN state to avoid filling it in for each frame.
7193 	 */
7194 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
7195 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
7196 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
7197 
7198 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
7199 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
7200 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
7201 }
7202 
7203 static int
7204 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
7205 	struct ath_buf *bf, struct mbuf *m0,
7206 	const struct ieee80211_bpf_params *params)
7207 {
7208 	struct ifnet *ifp = sc->sc_ifp;
7209 	struct ieee80211com *ic = ifp->if_l2com;
7210 	struct ath_hal *ah = sc->sc_ah;
7211 	int error, ismcast, ismrr;
7212 	int keyix, hdrlen, pktlen, try0, txantenna;
7213 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
7214 	struct ieee80211_frame *wh;
7215 	u_int flags, ctsduration;
7216 	HAL_PKT_TYPE atype;
7217 	const HAL_RATE_TABLE *rt;
7218 	struct ath_desc *ds;
7219 	u_int pri;
7220 
7221 	wh = mtod(m0, struct ieee80211_frame *);
7222 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
7223 	hdrlen = ieee80211_anyhdrsize(wh);
7224 	/*
7225 	 * Packet length must not include any
7226 	 * pad bytes; deduct them here.
7227 	 */
7228 	/* XXX honor IEEE80211_BPF_DATAPAD */
7229 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
7230 
7231 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
7232 		const struct ieee80211_cipher *cip;
7233 		struct ieee80211_key *k;
7234 
7235 		/*
7236 		 * Construct the 802.11 header+trailer for an encrypted
7237 		 * frame. The only reason this can fail is because of an
7238 		 * unknown or unsupported cipher/key type.
7239 		 */
7240 		k = ieee80211_crypto_encap(ni, m0);
7241 		if (k == NULL) {
7242 			/*
7243 			 * This can happen when the key is yanked after the
7244 			 * frame was queued.  Just discard the frame; the
7245 			 * 802.11 layer counts failures and provides
7246 			 * debugging/diagnostics.
7247 			 */
7248 			ath_freetx(m0);
7249 			return EIO;
7250 		}
7251 		/*
7252 		 * Adjust the packet + header lengths for the crypto
7253 		 * additions and calculate the h/w key index.  When
7254 		 * a s/w mic is done the frame will have had any mic
7255 		 * added to it prior to entry so m0->m_pkthdr.len will
7256 		 * account for it. Otherwise we need to add it to the
7257 		 * packet length.
7258 		 */
7259 		cip = k->wk_cipher;
7260 		hdrlen += cip->ic_header;
7261 		pktlen += cip->ic_header + cip->ic_trailer;
7262 		/* NB: frags always have any TKIP MIC done in s/w */
7263 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
7264 			pktlen += cip->ic_miclen;
7265 		keyix = k->wk_keyix;
7266 
7267 		/* packet header may have moved, reset our local pointer */
7268 		wh = mtod(m0, struct ieee80211_frame *);
7269 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
7270 		/*
7271 		 * Use station key cache slot, if assigned.
7272 		 */
7273 		keyix = ni->ni_ucastkey.wk_keyix;
7274 		if (keyix == IEEE80211_KEYIX_NONE)
7275 			keyix = HAL_TXKEYIX_INVALID;
7276 	} else
7277 		keyix = HAL_TXKEYIX_INVALID;
7278 
7279 	error = ath_tx_dmasetup(sc, bf, m0);
7280 	if (error != 0)
7281 		return error;
7282 	m0 = bf->bf_m;				/* NB: may have changed */
7283 	wh = mtod(m0, struct ieee80211_frame *);
7284 	bf->bf_node = ni;			/* NB: held reference */
7285 
7286 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
7287 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
7288 	if (params->ibp_flags & IEEE80211_BPF_RTS)
7289 		flags |= HAL_TXDESC_RTSENA;
7290 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
7291 		flags |= HAL_TXDESC_CTSENA;
7292 	/* XXX leave ismcast to injector? */
7293 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
7294 		flags |= HAL_TXDESC_NOACK;
7295 
7296 	rt = sc->sc_currates;
7297 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
7298 	rix = ath_tx_findrix(rt, params->ibp_rate0);
7299 	txrate = rt->info[rix].rateCode;
7300 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7301 		txrate |= rt->info[rix].shortPreamble;
7302 	sc->sc_txrix = rix;
7303 	try0 = params->ibp_try0;
7304 	ismrr = (params->ibp_try1 != 0);
7305 	txantenna = params->ibp_pri >> 2;
7306 	if (txantenna == 0)			/* XXX? */
7307 		txantenna = sc->sc_txantenna;
7308 	ctsduration = 0;
7309 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
7310 		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
7311 		ctsrate = rt->info[cix].rateCode;
7312 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
7313 			ctsrate |= rt->info[cix].shortPreamble;
7314 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
7315 				ctsduration += rt->info[cix].spAckDuration;
7316 			ctsduration += ath_hal_computetxtime(ah,
7317 				rt, pktlen, rix, AH_TRUE);
7318 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
7319 				ctsduration += rt->info[rix].spAckDuration;
7320 		} else {
7321 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
7322 				ctsduration += rt->info[cix].lpAckDuration;
7323 			ctsduration += ath_hal_computetxtime(ah,
7324 				rt, pktlen, rix, AH_FALSE);
7325 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
7326 				ctsduration += rt->info[rix].lpAckDuration;
7327 		}
7328 		ismrr = 0;			/* XXX */
7329 	} else
7330 		ctsrate = 0;
7331 	pri = params->ibp_pri & 3;
7332 	/*
7333 	 * NB: we mark all packets as type PSPOLL so the h/w won't
7334 	 * set the sequence number, duration, etc.
7335 	 */
7336 	atype = HAL_PKT_TYPE_PSPOLL;
7337 
7338 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
7339 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
7340 			sc->sc_hwmap[rix].ieeerate, -1);
7341 
7342 	if (bpf_peers_present(ifp->if_bpf)) {
7343 		u_int64_t tsf = ath_hal_gettsf64(ah);
7344 
7345 		sc->sc_tx_th.wt_tsf = htole64(tsf);
7346 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
7347 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
7348 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
7349 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
7350 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
7351 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
7352 
7353 		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
7354 	}
7355 
7356 	/*
7357 	 * Formulate first tx descriptor with tx controls.
7358 	 */
7359 	ds = bf->bf_desc;
7360 	/* XXX check return value? */
7361 	ath_hal_setuptxdesc(ah, ds
7362 		, pktlen		/* packet length */
7363 		, hdrlen		/* header length */
7364 		, atype			/* Atheros packet type */
7365 		, params->ibp_power	/* txpower */
7366 		, txrate, try0		/* series 0 rate/tries */
7367 		, keyix			/* key cache index */
7368 		, txantenna		/* antenna mode */
7369 		, flags			/* flags */
7370 		, ctsrate		/* rts/cts rate */
7371 		, ctsduration		/* rts/cts duration */
7372 	);
7373 	bf->bf_txflags = flags;
7374 
7375 	if (ismrr) {
7376 		rix = ath_tx_findrix(rt, params->ibp_rate1);
7377 		rate1 = rt->info[rix].rateCode;
7378 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7379 			rate1 |= rt->info[rix].shortPreamble;
7380 		if (params->ibp_try2) {
7381 			rix = ath_tx_findrix(rt, params->ibp_rate2);
7382 			rate2 = rt->info[rix].rateCode;
7383 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7384 				rate2 |= rt->info[rix].shortPreamble;
7385 		} else
7386 			rate2 = 0;
7387 		if (params->ibp_try3) {
7388 			rix = ath_tx_findrix(rt, params->ibp_rate3);
7389 			rate3 = rt->info[rix].rateCode;
7390 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7391 				rate3 |= rt->info[rix].shortPreamble;
7392 		} else
7393 			rate3 = 0;
7394 		ath_hal_setupxtxdesc(ah, ds
7395 			, rate1, params->ibp_try1	/* series 1 */
7396 			, rate2, params->ibp_try2	/* series 2 */
7397 			, rate3, params->ibp_try3	/* series 3 */
7398 		);
7399 	}
7400 
7401 	/* NB: no buffered multicast in power save support */
7402 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
7403 	return 0;
7404 }
7405 
7406 static int
7407 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
7408 	const struct ieee80211_bpf_params *params)
7409 {
7410 	struct ieee80211com *ic = ni->ni_ic;
7411 	struct ifnet *ifp = ic->ic_ifp;
7412 	struct ath_softc *sc = ifp->if_softc;
7413 	struct ath_buf *bf;
7414 
7415 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
7416 		ieee80211_free_node(ni);
7417 		m_freem(m);
7418 		return ENETDOWN;
7419 	}
7420 	/*
7421 	 * Grab a TX buffer and associated resources.
7422 	 */
7423 	bf = ath_getbuf(sc);
7424 	if (bf == NULL) {
7425 		ieee80211_free_node(ni);
7426 		m_freem(m);
7427 		return ENOBUFS;
7428 	}
7429 
7430 	ifp->if_opackets++;
7431 	sc->sc_stats.ast_tx_raw++;
7432 
7433 	if (params == NULL) {
7434 		/*
7435 		 * Legacy path; interpret frame contents to decide
7436 		 * precisely how to send the frame.
7437 		 */
7438 		if (ath_tx_start(sc, ni, bf, m))
7439 			goto bad;
7440 	} else {
7441 		/*
7442 		 * Caller supplied explicit parameters to use in
7443 		 * sending the frame.
7444 		 */
7445 		if (ath_tx_raw_start(sc, ni, bf, m, params))
7446 			goto bad;
7447 	}
7448 	ifp->if_timer = 5;
7449 
7450 	return 0;
7451 bad:
7452 	ifp->if_oerrors++;
7453 	ATH_TXBUF_LOCK(sc);
7454 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
7455 	ATH_TXBUF_UNLOCK(sc);
7456 	ieee80211_free_node(ni);
7457 	return EIO;		/* XXX */
7458 }
7459 
7460 /*
7461  * Announce various information on device/driver attach.
7462  */
7463 static void
7464 ath_announce(struct ath_softc *sc)
7465 {
7466 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
7467 	struct ifnet *ifp = sc->sc_ifp;
7468 	struct ath_hal *ah = sc->sc_ah;
7469 	u_int modes, cc;
7470 
7471 	if_printf(ifp, "mac %d.%d phy %d.%d",
7472 		ah->ah_macVersion, ah->ah_macRev,
7473 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7474 	/*
7475 	 * Print radio revision(s).  We check the wireless modes
7476 	 * to avoid falsely printing revs for inoperable parts.
7477 	 * Dual-band radio revs are returned in the 5Ghz rev number.
7478 	 */
7479 	ath_hal_getcountrycode(ah, &cc);
7480 	modes = ath_hal_getwirelessmodes(ah, cc);
7481 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
7482 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
7483 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
7484 				ah->ah_analog5GhzRev >> 4,
7485 				ah->ah_analog5GhzRev & 0xf,
7486 				ah->ah_analog2GhzRev >> 4,
7487 				ah->ah_analog2GhzRev & 0xf);
7488 		else
7489 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
7490 				ah->ah_analog5GhzRev & 0xf);
7491 	} else
7492 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
7493 			ah->ah_analog5GhzRev & 0xf);
7494 	printf("\n");
7495 	if (bootverbose) {
7496 		int i;
7497 		for (i = 0; i <= WME_AC_VO; i++) {
7498 			struct ath_txq *txq = sc->sc_ac2q[i];
7499 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7500 				txq->axq_qnum, ieee80211_wme_acnames[i]);
7501 		}
7502 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7503 			sc->sc_cabq->axq_qnum);
7504 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7505 	}
7506 	if (ath_rxbuf != ATH_RXBUF)
7507 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7508 	if (ath_txbuf != ATH_TXBUF)
7509 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7510 #undef HAL_MODE_DUALBAND
7511 }
7512 
7513 #ifdef ATH_SUPPORT_TDMA
7514 static __inline uint32_t
7515 ath_hal_getnexttbtt(struct ath_hal *ah)
7516 {
7517 #define	AR_TIMER0	0x8028
7518 	return OS_REG_READ(ah, AR_TIMER0);
7519 }
7520 
7521 static __inline void
7522 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7523 {
7524 	/* XXX handle wrap/overflow */
7525 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7526 }
7527 
7528 static void
7529 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7530 {
7531 	struct ath_hal *ah = sc->sc_ah;
7532 	HAL_BEACON_TIMERS bt;
7533 
7534 	bt.bt_intval = bintval | HAL_BEACON_ENA;
7535 	bt.bt_nexttbtt = nexttbtt;
7536 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7537 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7538 	bt.bt_nextatim = nexttbtt+1;
7539 	ath_hal_beaconsettimers(ah, &bt);
7540 }
7541 
7542 /*
7543  * Calculate the beacon interval.  This is periodic in the
7544  * superframe for the bss.  We assume each station is configured
7545  * identically wrt transmit rate so the guard time we calculate
7546  * above will be the same on all stations.  Note we need to
7547  * factor in the xmit time because the hardware will schedule
7548  * a frame for transmit if the start of the frame is within
7549  * the burst time.  When we get hardware that properly kills
7550  * frames in the PCU we can reduce/eliminate the guard time.
7551  *
7552  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7553  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7554  * with 1us timer granularity should allow us to reduce/eliminate
7555  * this.
7556  */
7557 static void
7558 ath_tdma_bintvalsetup(struct ath_softc *sc,
7559 	const struct ieee80211_tdma_state *tdma)
7560 {
7561 	/* copy from vap state (XXX check all vaps have same value?) */
7562 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7563 	sc->sc_tdmabintcnt = tdma->tdma_bintval;
7564 
7565 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7566 		tdma->tdma_slotcnt, 1024);
7567 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7568 	if (sc->sc_tdmabintval & 1)
7569 		sc->sc_tdmabintval++;
7570 
7571 	if (tdma->tdma_slot == 0) {
7572 		/*
7573 		 * Only slot 0 beacons; other slots respond.
7574 		 */
7575 		sc->sc_imask |= HAL_INT_SWBA;
7576 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7577 	} else {
7578 		/* XXX all vaps must be slot 0 or slot !0 */
7579 		sc->sc_imask &= ~HAL_INT_SWBA;
7580 	}
7581 }
7582 
7583 /*
7584  * Max 802.11 overhead.  This assumes no 4-address frames and
7585  * the encapsulation done by ieee80211_encap (llc).  We also
7586  * include potential crypto overhead.
7587  */
7588 #define	IEEE80211_MAXOVERHEAD \
7589 	(sizeof(struct ieee80211_qosframe) \
7590 	 + sizeof(struct llc) \
7591 	 + IEEE80211_ADDR_LEN \
7592 	 + IEEE80211_WEP_IVLEN \
7593 	 + IEEE80211_WEP_KIDLEN \
7594 	 + IEEE80211_WEP_CRCLEN \
7595 	 + IEEE80211_WEP_MICLEN \
7596 	 + IEEE80211_CRC_LEN)
7597 
7598 /*
7599  * Setup initially for tdma operation.  Start the beacon
7600  * timers and enable SWBA if we are slot 0.  Otherwise
7601  * we wait for slot 0 to arrive so we can sync up before
7602  * starting to transmit.
7603  */
7604 static void
7605 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7606 {
7607 	struct ath_hal *ah = sc->sc_ah;
7608 	struct ifnet *ifp = sc->sc_ifp;
7609 	struct ieee80211com *ic = ifp->if_l2com;
7610 	const struct ieee80211_txparam *tp;
7611 	const struct ieee80211_tdma_state *tdma = NULL;
7612 	int rix;
7613 
7614 	if (vap == NULL) {
7615 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7616 		if (vap == NULL) {
7617 			if_printf(ifp, "%s: no vaps?\n", __func__);
7618 			return;
7619 		}
7620 	}
7621 	tp = vap->iv_bss->ni_txparms;
7622 	/*
7623 	 * Calculate the guard time for each slot.  This is the
7624 	 * time to send a maximal-size frame according to the
7625 	 * fixed/lowest transmit rate.  Note that the interface
7626 	 * mtu does not include the 802.11 overhead so we must
7627 	 * tack that on (ath_hal_computetxtime includes the
7628 	 * preamble and plcp in it's calculation).
7629 	 */
7630 	tdma = vap->iv_tdma;
7631 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7632 		rix = ath_tx_findrix(sc->sc_currates, tp->ucastrate);
7633 	else
7634 		rix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
7635 	/* XXX short preamble assumed */
7636 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7637 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7638 
7639 	ath_hal_intrset(ah, 0);
7640 
7641 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7642 	ath_hal_setcca(ah, AH_FALSE);		/* disable CCA */
7643 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7644 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7645 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7646 	sc->sc_syncbeacon = 0;
7647 
7648 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7649 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7650 
7651 	ath_hal_intrset(ah, sc->sc_imask);
7652 
7653 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7654 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7655 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7656 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7657 	    sc->sc_tdmadbaprep);
7658 }
7659 
7660 /*
7661  * Update tdma operation.  Called from the 802.11 layer
7662  * when a beacon is received from the TDMA station operating
7663  * in the slot immediately preceding us in the bss.  Use
7664  * the rx timestamp for the beacon frame to update our
7665  * beacon timers so we follow their schedule.  Note that
7666  * by using the rx timestamp we implicitly include the
7667  * propagation delay in our schedule.
7668  */
7669 static void
7670 ath_tdma_update(struct ieee80211_node *ni,
7671 	const struct ieee80211_tdma_param *tdma)
7672 {
7673 #define	TSF_TO_TU(_h,_l) \
7674 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7675 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7676 	struct ieee80211vap *vap = ni->ni_vap;
7677 	struct ieee80211com *ic = ni->ni_ic;
7678 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7679 	struct ath_hal *ah = sc->sc_ah;
7680 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7681 	u_int64_t tsf, rstamp, nextslot;
7682 	u_int32_t txtime, nextslottu, timer0;
7683 	int32_t tudelta, tsfdelta;
7684 	const struct ath_rx_status *rs;
7685 	int rix;
7686 
7687 	sc->sc_stats.ast_tdma_update++;
7688 
7689 	/*
7690 	 * Check for and adopt configuration changes.
7691 	 */
7692 	if (isset(ATH_VAP(vap)->av_boff.bo_flags, IEEE80211_BEACON_TDMA)) {
7693 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7694 
7695 		ath_tdma_bintvalsetup(sc, ts);
7696 
7697 		DPRINTF(sc, ATH_DEBUG_TDMA,
7698 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7699 		    "bintval %u TU\n", __func__,
7700 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7701 		    sc->sc_tdmabintval);
7702 
7703 		ath_beaconq_config(sc);
7704 		/* XXX right? */
7705 		ath_hal_intrset(ah, sc->sc_imask);
7706 		/* NB: beacon timers programmed below */
7707 	}
7708 
7709 	/* extend rx timestamp to 64 bits */
7710 	tsf = ath_hal_gettsf64(ah);
7711 	rstamp = ath_extend_tsf(ni->ni_rstamp, tsf);
7712 	/*
7713 	 * The rx timestamp is set by the hardware on completing
7714 	 * reception (at the point where the rx descriptor is DMA'd
7715 	 * to the host).  To find the start of our next slot we
7716 	 * must adjust this time by the time required to send
7717 	 * the packet just received.
7718 	 */
7719 	rs = sc->sc_tdmars;
7720 	rix = rt->rateCodeToIndex[rs->rs_rate];
7721 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7722 	    rt->info[rix].shortPreamble);
7723 	/* NB: << 9 is to cvt to TU and /2 */
7724 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7725 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7726 
7727 	/*
7728 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7729 	 * to usecs and calculate the difference between what the
7730 	 * other station thinks and what we have programmed.  This
7731 	 * lets us figure how to adjust our timers to match.  The
7732 	 * adjustments are done by pulling the TSF forward and possibly
7733 	 * rewriting the beacon timers.
7734 	 */
7735 	timer0 = ath_hal_getnexttbtt(ah);
7736 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7737 
7738 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7739 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7740 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7741 
7742 	if (tsfdelta < 0) {
7743 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7744 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7745 		tsfdelta = -tsfdelta % 1024;
7746 		nextslottu++;
7747 	} else if (tsfdelta > 0) {
7748 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7749 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7750 		tsfdelta = 1024 - (tsfdelta % 1024);
7751 		nextslottu++;
7752 	} else {
7753 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7754 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7755 	}
7756 	tudelta = nextslottu - timer0;
7757 
7758 	/*
7759 	 * Copy sender's timetstamp into tdma ie so they can
7760 	 * calculate roundtrip time.  We submit a beacon frame
7761 	 * below after any timer adjustment.  The frame goes out
7762 	 * at the next TBTT so the sender can calculate the
7763 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7764 	 *
7765 	 * NB: This tstamp is subtlely preserved when
7766 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7767 	 *     slot position changes) because ieee80211_add_tdma
7768 	 *     skips over the data.
7769 	 */
7770 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7771 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7772 		&ni->ni_tstamp.data, 8);
7773 #if 0
7774 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7775 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7776 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7777 	    (int)(nextslot - tsf), tsfdelta,
7778 	    nextslottu, timer0, tudelta);
7779 #endif
7780 	/*
7781 	 * Adjust the beacon timers only when pulling them forward
7782 	 * or when going back by less than the beacon interval.
7783 	 * Negative jumps larger than the beacon interval seem to
7784 	 * cause the timers to stop and generally cause instability.
7785 	 * This basically filters out jumps due to missed beacons.
7786 	 */
7787 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7788 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7789 		sc->sc_stats.ast_tdma_timers++;
7790 	}
7791 	if (tsfdelta > 0) {
7792 		ath_hal_adjusttsf(ah, tsfdelta);
7793 		sc->sc_stats.ast_tdma_tsf++;
7794 	}
7795 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7796 #undef TU_TO_TSF
7797 #undef TSF_TO_TU
7798 }
7799 
7800 /*
7801  * Transmit a beacon frame at SWBA.  Dynamic updates
7802  * to the frame contents are done as needed.
7803  */
7804 static void
7805 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7806 {
7807 	struct ath_hal *ah = sc->sc_ah;
7808 	struct ath_buf *bf;
7809 	int otherant;
7810 
7811 	/*
7812 	 * Check if the previous beacon has gone out.  If
7813 	 * not don't try to post another, skip this period
7814 	 * and wait for the next.  Missed beacons indicate
7815 	 * a problem and should not occur.  If we miss too
7816 	 * many consecutive beacons reset the device.
7817 	 */
7818 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7819 		sc->sc_bmisscount++;
7820 		DPRINTF(sc, ATH_DEBUG_BEACON,
7821 			"%s: missed %u consecutive beacons\n",
7822 			__func__, sc->sc_bmisscount);
7823 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
7824 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7825 		return;
7826 	}
7827 	if (sc->sc_bmisscount != 0) {
7828 		DPRINTF(sc, ATH_DEBUG_BEACON,
7829 			"%s: resume beacon xmit after %u misses\n",
7830 			__func__, sc->sc_bmisscount);
7831 		sc->sc_bmisscount = 0;
7832 	}
7833 
7834 	/*
7835 	 * Check recent per-antenna transmit statistics and flip
7836 	 * the default antenna if noticeably more frames went out
7837 	 * on the non-default antenna.
7838 	 * XXX assumes 2 anntenae
7839 	 */
7840 	if (!sc->sc_diversity) {
7841 		otherant = sc->sc_defant & 1 ? 2 : 1;
7842 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7843 			ath_setdefantenna(sc, otherant);
7844 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7845 	}
7846 
7847 	bf = ath_beacon_generate(sc, vap);
7848 	if (bf != NULL) {
7849 		/*
7850 		 * Stop any current dma and put the new frame on the queue.
7851 		 * This should never fail since we check above that no frames
7852 		 * are still pending on the queue.
7853 		 */
7854 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7855 			DPRINTF(sc, ATH_DEBUG_ANY,
7856 				"%s: beacon queue %u did not stop?\n",
7857 				__func__, sc->sc_bhalq);
7858 			/* NB: the HAL still stops DMA, so proceed */
7859 		}
7860 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7861 		ath_hal_txstart(ah, sc->sc_bhalq);
7862 
7863 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7864 
7865 		/*
7866 		 * Record local TSF for our last send for use
7867 		 * in arbitrating slot collisions.
7868 		 */
7869 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7870 	}
7871 }
7872 #endif /* ATH_SUPPORT_TDMA */
7873