1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 /* 121 * ATH_BCBUF determines the number of vap's that can transmit 122 * beacons and also (currently) the number of vap's that can 123 * have unique mac addresses/bssid. When staggering beacons 124 * 4 is probably a good max as otherwise the beacons become 125 * very closely spaced and there is limited time for cab q traffic 126 * to go out. You can burst beacons instead but that is not good 127 * for stations in power save and at some point you really want 128 * another radio (and channel). 129 * 130 * The limit on the number of mac addresses is tied to our use of 131 * the U/L bit and tracking addresses in a byte; it would be 132 * worthwhile to allow more for applications like proxy sta. 133 */ 134 CTASSERT(ATH_BCBUF <= 8); 135 136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 137 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 138 const uint8_t [IEEE80211_ADDR_LEN], 139 const uint8_t [IEEE80211_ADDR_LEN]); 140 static void ath_vap_delete(struct ieee80211vap *); 141 static void ath_init(void *); 142 static void ath_stop_locked(struct ifnet *); 143 static void ath_stop(struct ifnet *); 144 static int ath_reset_vap(struct ieee80211vap *, u_long); 145 static int ath_media_change(struct ifnet *); 146 static void ath_watchdog(void *); 147 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 148 static void ath_fatal_proc(void *, int); 149 static void ath_bmiss_vap(struct ieee80211vap *); 150 static void ath_bmiss_proc(void *, int); 151 static void ath_key_update_begin(struct ieee80211vap *); 152 static void ath_key_update_end(struct ieee80211vap *); 153 static void ath_update_mcast(struct ifnet *); 154 static void ath_update_promisc(struct ifnet *); 155 static void ath_updateslot(struct ifnet *); 156 static void ath_bstuck_proc(void *, int); 157 static void ath_reset_proc(void *, int); 158 static int ath_desc_alloc(struct ath_softc *); 159 static void ath_desc_free(struct ath_softc *); 160 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void ath_node_cleanup(struct ieee80211_node *); 163 static void ath_node_free(struct ieee80211_node *); 164 static void ath_node_getsignal(const struct ieee80211_node *, 165 int8_t *, int8_t *); 166 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 167 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 168 static int ath_tx_setup(struct ath_softc *, int, int); 169 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 170 static void ath_tx_cleanup(struct ath_softc *); 171 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 172 int dosched); 173 static void ath_tx_proc_q0(void *, int); 174 static void ath_tx_proc_q0123(void *, int); 175 static void ath_tx_proc(void *, int); 176 static void ath_txq_sched_tasklet(void *, int); 177 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 178 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_scan_start(struct ieee80211com *); 180 static void ath_scan_end(struct ieee80211com *); 181 static void ath_set_channel(struct ieee80211com *); 182 #ifdef ATH_ENABLE_11N 183 static void ath_update_chw(struct ieee80211com *); 184 #endif /* ATH_ENABLE_11N */ 185 static void ath_calibrate(void *); 186 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 187 static void ath_setup_stationkey(struct ieee80211_node *); 188 static void ath_newassoc(struct ieee80211_node *, int); 189 static int ath_setregdomain(struct ieee80211com *, 190 struct ieee80211_regdomain *, int, 191 struct ieee80211_channel []); 192 static void ath_getradiocaps(struct ieee80211com *, int, int *, 193 struct ieee80211_channel []); 194 static int ath_getchannels(struct ath_softc *); 195 196 static int ath_rate_setup(struct ath_softc *, u_int mode); 197 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 198 199 static void ath_announce(struct ath_softc *); 200 201 static void ath_dfs_tasklet(void *, int); 202 203 #ifdef IEEE80211_SUPPORT_TDMA 204 #include <dev/ath/if_ath_tdma.h> 205 #endif 206 207 #if 0 208 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 209 #define TDMA_LPF_LEN 6 210 #define TDMA_DUMMY_MARKER 0x127 211 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 212 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 213 #define TDMA_LPF(x, y, len) \ 214 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 215 #define TDMA_SAMPLE(x, y) do { \ 216 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 217 } while (0) 218 #define TDMA_EP_RND(x,mul) \ 219 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 220 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 221 #endif /* IEEE80211_SUPPORT_TDMA */ 222 223 SYSCTL_DECL(_hw_ath); 224 225 /* XXX validate sysctl values */ 226 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 228 0, "long chip calibration interval (secs)"); 229 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 231 0, "short chip calibration interval (msecs)"); 232 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 234 0, "reset chip calibration results (secs)"); 235 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 237 0, "ANI calibration (msecs)"); 238 239 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 241 0, "rx buffers allocated"); 242 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 243 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 244 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 245 0, "tx buffers allocated"); 246 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 247 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 249 0, "tx (mgmt) buffers allocated"); 250 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 251 252 int ath_bstuck_threshold = 4; /* max missed beacons */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 254 0, "max missed beacon xmits before chip reset"); 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 void 259 ath_legacy_attach_comp_func(struct ath_softc *sc) 260 { 261 262 /* 263 * Special case certain configurations. Note the 264 * CAB queue is handled by these specially so don't 265 * include them when checking the txq setup mask. 266 */ 267 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 268 case 0x01: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 270 break; 271 case 0x0f: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 273 break; 274 default: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 276 break; 277 } 278 } 279 280 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 281 #define HAL_MODE_HT40 \ 282 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 283 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 284 int 285 ath_attach(u_int16_t devid, struct ath_softc *sc) 286 { 287 struct ifnet *ifp; 288 struct ieee80211com *ic; 289 struct ath_hal *ah = NULL; 290 HAL_STATUS status; 291 int error = 0, i; 292 u_int wmodes; 293 uint8_t macaddr[IEEE80211_ADDR_LEN]; 294 int rx_chainmask, tx_chainmask; 295 296 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 297 298 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 299 if (ifp == NULL) { 300 device_printf(sc->sc_dev, "can not if_alloc()\n"); 301 error = ENOSPC; 302 goto bad; 303 } 304 ic = ifp->if_l2com; 305 306 /* set these up early for if_printf use */ 307 if_initname(ifp, device_get_name(sc->sc_dev), 308 device_get_unit(sc->sc_dev)); 309 310 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 311 sc->sc_eepromdata, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 sc->sc_ah = ah; 319 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 320 #ifdef ATH_DEBUG 321 sc->sc_debug = ath_debug; 322 #endif 323 324 /* 325 * Setup the DMA/EDMA functions based on the current 326 * hardware support. 327 * 328 * This is required before the descriptors are allocated. 329 */ 330 if (ath_hal_hasedma(sc->sc_ah)) { 331 sc->sc_isedma = 1; 332 ath_recv_setup_edma(sc); 333 ath_xmit_setup_edma(sc); 334 } else { 335 ath_recv_setup_legacy(sc); 336 ath_xmit_setup_legacy(sc); 337 } 338 339 /* 340 * Check if the MAC has multi-rate retry support. 341 * We do this by trying to setup a fake extended 342 * descriptor. MAC's that don't have support will 343 * return false w/o doing anything. MAC's that do 344 * support it will return true w/o doing anything. 345 */ 346 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 347 348 /* 349 * Check if the device has hardware counters for PHY 350 * errors. If so we need to enable the MIB interrupt 351 * so we can act on stat triggers. 352 */ 353 if (ath_hal_hwphycounters(ah)) 354 sc->sc_needmib = 1; 355 356 /* 357 * Get the hardware key cache size. 358 */ 359 sc->sc_keymax = ath_hal_keycachesize(ah); 360 if (sc->sc_keymax > ATH_KEYMAX) { 361 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 362 ATH_KEYMAX, sc->sc_keymax); 363 sc->sc_keymax = ATH_KEYMAX; 364 } 365 /* 366 * Reset the key cache since some parts do not 367 * reset the contents on initial power up. 368 */ 369 for (i = 0; i < sc->sc_keymax; i++) 370 ath_hal_keyreset(ah, i); 371 372 /* 373 * Collect the default channel list. 374 */ 375 error = ath_getchannels(sc); 376 if (error != 0) 377 goto bad; 378 379 /* 380 * Setup rate tables for all potential media types. 381 */ 382 ath_rate_setup(sc, IEEE80211_MODE_11A); 383 ath_rate_setup(sc, IEEE80211_MODE_11B); 384 ath_rate_setup(sc, IEEE80211_MODE_11G); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 386 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 387 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 388 ath_rate_setup(sc, IEEE80211_MODE_11NA); 389 ath_rate_setup(sc, IEEE80211_MODE_11NG); 390 ath_rate_setup(sc, IEEE80211_MODE_HALF); 391 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 392 393 /* NB: setup here so ath_rate_update is happy */ 394 ath_setcurmode(sc, IEEE80211_MODE_11A); 395 396 /* 397 * Allocate TX descriptors and populate the lists. 398 */ 399 error = ath_desc_alloc(sc); 400 if (error != 0) { 401 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 402 error); 403 goto bad; 404 } 405 error = ath_txdma_setup(sc); 406 if (error != 0) { 407 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 408 error); 409 goto bad; 410 } 411 412 /* 413 * Allocate RX descriptors and populate the lists. 414 */ 415 error = ath_rxdma_setup(sc); 416 if (error != 0) { 417 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 418 error); 419 goto bad; 420 } 421 422 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 423 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 424 425 ATH_TXBUF_LOCK_INIT(sc); 426 427 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 428 taskqueue_thread_enqueue, &sc->sc_tq); 429 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 430 "%s taskq", ifp->if_xname); 431 432 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 433 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 434 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 435 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 436 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 437 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 438 439 /* 440 * Allocate hardware transmit queues: one queue for 441 * beacon frames and one data queue for each QoS 442 * priority. Note that the hal handles resetting 443 * these queues at the needed time. 444 * 445 * XXX PS-Poll 446 */ 447 sc->sc_bhalq = ath_beaconq_setup(sc); 448 if (sc->sc_bhalq == (u_int) -1) { 449 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 450 error = EIO; 451 goto bad2; 452 } 453 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 454 if (sc->sc_cabq == NULL) { 455 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 456 error = EIO; 457 goto bad2; 458 } 459 /* NB: insure BK queue is the lowest priority h/w queue */ 460 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 461 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 462 ieee80211_wme_acnames[WME_AC_BK]); 463 error = EIO; 464 goto bad2; 465 } 466 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 467 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 468 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 469 /* 470 * Not enough hardware tx queues to properly do WME; 471 * just punt and assign them all to the same h/w queue. 472 * We could do a better job of this if, for example, 473 * we allocate queues when we switch from station to 474 * AP mode. 475 */ 476 if (sc->sc_ac2q[WME_AC_VI] != NULL) 477 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 478 if (sc->sc_ac2q[WME_AC_BE] != NULL) 479 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 480 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 481 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 482 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 483 } 484 485 /* 486 * Attach the TX completion function. 487 * 488 * The non-EDMA chips may have some special case optimisations; 489 * this method gives everyone a chance to attach cleanly. 490 */ 491 sc->sc_tx.xmit_attach_comp_func(sc); 492 493 /* 494 * Setup rate control. Some rate control modules 495 * call back to change the anntena state so expose 496 * the necessary entry points. 497 * XXX maybe belongs in struct ath_ratectrl? 498 */ 499 sc->sc_setdefantenna = ath_setdefantenna; 500 sc->sc_rc = ath_rate_attach(sc); 501 if (sc->sc_rc == NULL) { 502 error = EIO; 503 goto bad2; 504 } 505 506 /* Attach DFS module */ 507 if (! ath_dfs_attach(sc)) { 508 device_printf(sc->sc_dev, 509 "%s: unable to attach DFS\n", __func__); 510 error = EIO; 511 goto bad2; 512 } 513 514 /* Start DFS processing tasklet */ 515 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 516 517 /* Configure LED state */ 518 sc->sc_blinking = 0; 519 sc->sc_ledstate = 1; 520 sc->sc_ledon = 0; /* low true */ 521 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 522 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 523 524 /* 525 * Don't setup hardware-based blinking. 526 * 527 * Although some NICs may have this configured in the 528 * default reset register values, the user may wish 529 * to alter which pins have which function. 530 * 531 * The reference driver attaches the MAC network LED to GPIO1 and 532 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 533 * NIC has these reversed. 534 */ 535 sc->sc_hardled = (1 == 0); 536 sc->sc_led_net_pin = -1; 537 sc->sc_led_pwr_pin = -1; 538 /* 539 * Auto-enable soft led processing for IBM cards and for 540 * 5211 minipci cards. Users can also manually enable/disable 541 * support with a sysctl. 542 */ 543 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 544 ath_led_config(sc); 545 ath_hal_setledstate(ah, HAL_LED_INIT); 546 547 ifp->if_softc = sc; 548 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 549 ifp->if_start = ath_start; 550 ifp->if_ioctl = ath_ioctl; 551 ifp->if_init = ath_init; 552 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 553 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 554 IFQ_SET_READY(&ifp->if_snd); 555 556 ic->ic_ifp = ifp; 557 /* XXX not right but it's not used anywhere important */ 558 ic->ic_phytype = IEEE80211_T_OFDM; 559 ic->ic_opmode = IEEE80211_M_STA; 560 ic->ic_caps = 561 IEEE80211_C_STA /* station mode */ 562 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 563 | IEEE80211_C_HOSTAP /* hostap mode */ 564 | IEEE80211_C_MONITOR /* monitor mode */ 565 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 566 | IEEE80211_C_WDS /* 4-address traffic works */ 567 | IEEE80211_C_MBSS /* mesh point link mode */ 568 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 569 | IEEE80211_C_SHSLOT /* short slot time supported */ 570 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 571 #ifndef ATH_ENABLE_11N 572 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 573 #endif 574 | IEEE80211_C_TXFRAG /* handle tx frags */ 575 #ifdef ATH_ENABLE_DFS 576 | IEEE80211_C_DFS /* Enable radar detection */ 577 #endif 578 ; 579 /* 580 * Query the hal to figure out h/w crypto support. 581 */ 582 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 583 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 584 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 585 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 586 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 587 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 588 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 589 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 590 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 591 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 592 /* 593 * Check if h/w does the MIC and/or whether the 594 * separate key cache entries are required to 595 * handle both tx+rx MIC keys. 596 */ 597 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 598 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 599 /* 600 * If the h/w supports storing tx+rx MIC keys 601 * in one cache slot automatically enable use. 602 */ 603 if (ath_hal_hastkipsplit(ah) || 604 !ath_hal_settkipsplit(ah, AH_FALSE)) 605 sc->sc_splitmic = 1; 606 /* 607 * If the h/w can do TKIP MIC together with WME then 608 * we use it; otherwise we force the MIC to be done 609 * in software by the net80211 layer. 610 */ 611 if (ath_hal_haswmetkipmic(ah)) 612 sc->sc_wmetkipmic = 1; 613 } 614 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 615 /* 616 * Check for multicast key search support. 617 */ 618 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 619 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 620 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 621 } 622 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 623 /* 624 * Mark key cache slots associated with global keys 625 * as in use. If we knew TKIP was not to be used we 626 * could leave the +32, +64, and +32+64 slots free. 627 */ 628 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 629 setbit(sc->sc_keymap, i); 630 setbit(sc->sc_keymap, i+64); 631 if (sc->sc_splitmic) { 632 setbit(sc->sc_keymap, i+32); 633 setbit(sc->sc_keymap, i+32+64); 634 } 635 } 636 /* 637 * TPC support can be done either with a global cap or 638 * per-packet support. The latter is not available on 639 * all parts. We're a bit pedantic here as all parts 640 * support a global cap. 641 */ 642 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 643 ic->ic_caps |= IEEE80211_C_TXPMGT; 644 645 /* 646 * Mark WME capability only if we have sufficient 647 * hardware queues to do proper priority scheduling. 648 */ 649 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 650 ic->ic_caps |= IEEE80211_C_WME; 651 /* 652 * Check for misc other capabilities. 653 */ 654 if (ath_hal_hasbursting(ah)) 655 ic->ic_caps |= IEEE80211_C_BURST; 656 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 657 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 658 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 659 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 660 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 661 if (ath_hal_hasfastframes(ah)) 662 ic->ic_caps |= IEEE80211_C_FF; 663 wmodes = ath_hal_getwirelessmodes(ah); 664 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 665 ic->ic_caps |= IEEE80211_C_TURBOP; 666 #ifdef IEEE80211_SUPPORT_TDMA 667 if (ath_hal_macversion(ah) > 0x78) { 668 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 669 ic->ic_tdma_update = ath_tdma_update; 670 } 671 #endif 672 673 /* 674 * TODO: enforce that at least this many frames are available 675 * in the txbuf list before allowing data frames (raw or 676 * otherwise) to be transmitted. 677 */ 678 sc->sc_txq_data_minfree = 10; 679 /* 680 * Leave this as default to maintain legacy behaviour. 681 * Shortening the cabq/mcastq may end up causing some 682 * undesirable behaviour. 683 */ 684 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 685 686 /* 687 * Allow the TX and RX chainmasks to be overridden by 688 * environment variables and/or device.hints. 689 * 690 * This must be done early - before the hardware is 691 * calibrated or before the 802.11n stream calculation 692 * is done. 693 */ 694 if (resource_int_value(device_get_name(sc->sc_dev), 695 device_get_unit(sc->sc_dev), "rx_chainmask", 696 &rx_chainmask) == 0) { 697 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 698 rx_chainmask); 699 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 700 } 701 if (resource_int_value(device_get_name(sc->sc_dev), 702 device_get_unit(sc->sc_dev), "tx_chainmask", 703 &tx_chainmask) == 0) { 704 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 705 tx_chainmask); 706 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 707 } 708 709 /* 710 * Disable MRR with protected frames by default. 711 * Only 802.11n series NICs can handle this. 712 */ 713 sc->sc_mrrprot = 0; /* XXX should be a capability */ 714 715 #ifdef ATH_ENABLE_11N 716 /* 717 * Query HT capabilities 718 */ 719 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 720 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 721 int rxs, txs; 722 723 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 724 725 sc->sc_mrrprot = 1; /* XXX should be a capability */ 726 727 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 728 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 729 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 730 | IEEE80211_HTCAP_MAXAMSDU_3839 731 /* max A-MSDU length */ 732 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 733 ; 734 735 /* 736 * Enable short-GI for HT20 only if the hardware 737 * advertises support. 738 * Notably, anything earlier than the AR9287 doesn't. 739 */ 740 if ((ath_hal_getcapability(ah, 741 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 742 (wmodes & HAL_MODE_HT20)) { 743 device_printf(sc->sc_dev, 744 "[HT] enabling short-GI in 20MHz mode\n"); 745 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 746 } 747 748 if (wmodes & HAL_MODE_HT40) 749 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 750 | IEEE80211_HTCAP_SHORTGI40; 751 752 /* 753 * TX/RX streams need to be taken into account when 754 * negotiating which MCS rates it'll receive and 755 * what MCS rates are available for TX. 756 */ 757 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 758 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 759 760 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 761 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 762 763 ic->ic_txstream = txs; 764 ic->ic_rxstream = rxs; 765 766 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 767 &sc->sc_rts_aggr_limit); 768 if (sc->sc_rts_aggr_limit != (64 * 1024)) 769 device_printf(sc->sc_dev, 770 "[HT] RTS aggregates limited to %d KiB\n", 771 sc->sc_rts_aggr_limit / 1024); 772 773 device_printf(sc->sc_dev, 774 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 775 } 776 #endif 777 778 /* 779 * Initial aggregation settings. 780 */ 781 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 782 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 783 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 784 785 /* 786 * Check if the hardware requires PCI register serialisation. 787 * Some of the Owl based MACs require this. 788 */ 789 if (mp_ncpus > 1 && 790 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 791 0, NULL) == HAL_OK) { 792 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 793 device_printf(sc->sc_dev, 794 "Enabling register serialisation\n"); 795 } 796 797 /* 798 * Indicate we need the 802.11 header padded to a 799 * 32-bit boundary for 4-address and QoS frames. 800 */ 801 ic->ic_flags |= IEEE80211_F_DATAPAD; 802 803 /* 804 * Query the hal about antenna support. 805 */ 806 sc->sc_defant = ath_hal_getdefantenna(ah); 807 808 /* 809 * Not all chips have the VEOL support we want to 810 * use with IBSS beacons; check here for it. 811 */ 812 sc->sc_hasveol = ath_hal_hasveol(ah); 813 814 /* get mac address from hardware */ 815 ath_hal_getmac(ah, macaddr); 816 if (sc->sc_hasbmask) 817 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 818 819 /* NB: used to size node table key mapping array */ 820 ic->ic_max_keyix = sc->sc_keymax; 821 /* call MI attach routine. */ 822 ieee80211_ifattach(ic, macaddr); 823 ic->ic_setregdomain = ath_setregdomain; 824 ic->ic_getradiocaps = ath_getradiocaps; 825 sc->sc_opmode = HAL_M_STA; 826 827 /* override default methods */ 828 ic->ic_newassoc = ath_newassoc; 829 ic->ic_updateslot = ath_updateslot; 830 ic->ic_wme.wme_update = ath_wme_update; 831 ic->ic_vap_create = ath_vap_create; 832 ic->ic_vap_delete = ath_vap_delete; 833 ic->ic_raw_xmit = ath_raw_xmit; 834 ic->ic_update_mcast = ath_update_mcast; 835 ic->ic_update_promisc = ath_update_promisc; 836 ic->ic_node_alloc = ath_node_alloc; 837 sc->sc_node_free = ic->ic_node_free; 838 ic->ic_node_free = ath_node_free; 839 sc->sc_node_cleanup = ic->ic_node_cleanup; 840 ic->ic_node_cleanup = ath_node_cleanup; 841 ic->ic_node_getsignal = ath_node_getsignal; 842 ic->ic_scan_start = ath_scan_start; 843 ic->ic_scan_end = ath_scan_end; 844 ic->ic_set_channel = ath_set_channel; 845 #ifdef ATH_ENABLE_11N 846 /* 802.11n specific - but just override anyway */ 847 sc->sc_addba_request = ic->ic_addba_request; 848 sc->sc_addba_response = ic->ic_addba_response; 849 sc->sc_addba_stop = ic->ic_addba_stop; 850 sc->sc_bar_response = ic->ic_bar_response; 851 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 852 853 ic->ic_addba_request = ath_addba_request; 854 ic->ic_addba_response = ath_addba_response; 855 ic->ic_addba_response_timeout = ath_addba_response_timeout; 856 ic->ic_addba_stop = ath_addba_stop; 857 ic->ic_bar_response = ath_bar_response; 858 859 ic->ic_update_chw = ath_update_chw; 860 #endif /* ATH_ENABLE_11N */ 861 862 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 863 /* 864 * There's one vendor bitmap entry in the RX radiotap 865 * header; make sure that's taken into account. 866 */ 867 ieee80211_radiotap_attachv(ic, 868 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 869 ATH_TX_RADIOTAP_PRESENT, 870 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 871 ATH_RX_RADIOTAP_PRESENT); 872 #else 873 /* 874 * No vendor bitmap/extensions are present. 875 */ 876 ieee80211_radiotap_attach(ic, 877 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 878 ATH_TX_RADIOTAP_PRESENT, 879 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 880 ATH_RX_RADIOTAP_PRESENT); 881 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 882 883 /* 884 * Setup dynamic sysctl's now that country code and 885 * regdomain are available from the hal. 886 */ 887 ath_sysctlattach(sc); 888 ath_sysctl_stats_attach(sc); 889 ath_sysctl_hal_attach(sc); 890 891 if (bootverbose) 892 ieee80211_announce(ic); 893 ath_announce(sc); 894 return 0; 895 bad2: 896 ath_tx_cleanup(sc); 897 ath_desc_free(sc); 898 ath_txdma_teardown(sc); 899 ath_rxdma_teardown(sc); 900 bad: 901 if (ah) 902 ath_hal_detach(ah); 903 if (ifp != NULL) 904 if_free(ifp); 905 sc->sc_invalid = 1; 906 return error; 907 } 908 909 int 910 ath_detach(struct ath_softc *sc) 911 { 912 struct ifnet *ifp = sc->sc_ifp; 913 914 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 915 __func__, ifp->if_flags); 916 917 /* 918 * NB: the order of these is important: 919 * o stop the chip so no more interrupts will fire 920 * o call the 802.11 layer before detaching the hal to 921 * insure callbacks into the driver to delete global 922 * key cache entries can be handled 923 * o free the taskqueue which drains any pending tasks 924 * o reclaim the tx queue data structures after calling 925 * the 802.11 layer as we'll get called back to reclaim 926 * node state and potentially want to use them 927 * o to cleanup the tx queues the hal is called, so detach 928 * it last 929 * Other than that, it's straightforward... 930 */ 931 ath_stop(ifp); 932 ieee80211_ifdetach(ifp->if_l2com); 933 taskqueue_free(sc->sc_tq); 934 #ifdef ATH_TX99_DIAG 935 if (sc->sc_tx99 != NULL) 936 sc->sc_tx99->detach(sc->sc_tx99); 937 #endif 938 ath_rate_detach(sc->sc_rc); 939 940 ath_dfs_detach(sc); 941 ath_desc_free(sc); 942 ath_txdma_teardown(sc); 943 ath_rxdma_teardown(sc); 944 ath_tx_cleanup(sc); 945 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 946 if_free(ifp); 947 948 return 0; 949 } 950 951 /* 952 * MAC address handling for multiple BSS on the same radio. 953 * The first vap uses the MAC address from the EEPROM. For 954 * subsequent vap's we set the U/L bit (bit 1) in the MAC 955 * address and use the next six bits as an index. 956 */ 957 static void 958 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 959 { 960 int i; 961 962 if (clone && sc->sc_hasbmask) { 963 /* NB: we only do this if h/w supports multiple bssid */ 964 for (i = 0; i < 8; i++) 965 if ((sc->sc_bssidmask & (1<<i)) == 0) 966 break; 967 if (i != 0) 968 mac[0] |= (i << 2)|0x2; 969 } else 970 i = 0; 971 sc->sc_bssidmask |= 1<<i; 972 sc->sc_hwbssidmask[0] &= ~mac[0]; 973 if (i == 0) 974 sc->sc_nbssid0++; 975 } 976 977 static void 978 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 979 { 980 int i = mac[0] >> 2; 981 uint8_t mask; 982 983 if (i != 0 || --sc->sc_nbssid0 == 0) { 984 sc->sc_bssidmask &= ~(1<<i); 985 /* recalculate bssid mask from remaining addresses */ 986 mask = 0xff; 987 for (i = 1; i < 8; i++) 988 if (sc->sc_bssidmask & (1<<i)) 989 mask &= ~((i<<2)|0x2); 990 sc->sc_hwbssidmask[0] |= mask; 991 } 992 } 993 994 /* 995 * Assign a beacon xmit slot. We try to space out 996 * assignments so when beacons are staggered the 997 * traffic coming out of the cab q has maximal time 998 * to go out before the next beacon is scheduled. 999 */ 1000 static int 1001 assign_bslot(struct ath_softc *sc) 1002 { 1003 u_int slot, free; 1004 1005 free = 0; 1006 for (slot = 0; slot < ATH_BCBUF; slot++) 1007 if (sc->sc_bslot[slot] == NULL) { 1008 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1009 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1010 return slot; 1011 free = slot; 1012 /* NB: keep looking for a double slot */ 1013 } 1014 return free; 1015 } 1016 1017 static struct ieee80211vap * 1018 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1019 enum ieee80211_opmode opmode, int flags, 1020 const uint8_t bssid[IEEE80211_ADDR_LEN], 1021 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1022 { 1023 struct ath_softc *sc = ic->ic_ifp->if_softc; 1024 struct ath_vap *avp; 1025 struct ieee80211vap *vap; 1026 uint8_t mac[IEEE80211_ADDR_LEN]; 1027 int needbeacon, error; 1028 enum ieee80211_opmode ic_opmode; 1029 1030 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1031 M_80211_VAP, M_WAITOK | M_ZERO); 1032 needbeacon = 0; 1033 IEEE80211_ADDR_COPY(mac, mac0); 1034 1035 ATH_LOCK(sc); 1036 ic_opmode = opmode; /* default to opmode of new vap */ 1037 switch (opmode) { 1038 case IEEE80211_M_STA: 1039 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1040 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1041 goto bad; 1042 } 1043 if (sc->sc_nvaps) { 1044 /* 1045 * With multiple vaps we must fall back 1046 * to s/w beacon miss handling. 1047 */ 1048 flags |= IEEE80211_CLONE_NOBEACONS; 1049 } 1050 if (flags & IEEE80211_CLONE_NOBEACONS) { 1051 /* 1052 * Station mode w/o beacons are implemented w/ AP mode. 1053 */ 1054 ic_opmode = IEEE80211_M_HOSTAP; 1055 } 1056 break; 1057 case IEEE80211_M_IBSS: 1058 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1059 device_printf(sc->sc_dev, 1060 "only 1 ibss vap supported\n"); 1061 goto bad; 1062 } 1063 needbeacon = 1; 1064 break; 1065 case IEEE80211_M_AHDEMO: 1066 #ifdef IEEE80211_SUPPORT_TDMA 1067 if (flags & IEEE80211_CLONE_TDMA) { 1068 if (sc->sc_nvaps != 0) { 1069 device_printf(sc->sc_dev, 1070 "only 1 tdma vap supported\n"); 1071 goto bad; 1072 } 1073 needbeacon = 1; 1074 flags |= IEEE80211_CLONE_NOBEACONS; 1075 } 1076 /* fall thru... */ 1077 #endif 1078 case IEEE80211_M_MONITOR: 1079 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1080 /* 1081 * Adopt existing mode. Adding a monitor or ahdemo 1082 * vap to an existing configuration is of dubious 1083 * value but should be ok. 1084 */ 1085 /* XXX not right for monitor mode */ 1086 ic_opmode = ic->ic_opmode; 1087 } 1088 break; 1089 case IEEE80211_M_HOSTAP: 1090 case IEEE80211_M_MBSS: 1091 needbeacon = 1; 1092 break; 1093 case IEEE80211_M_WDS: 1094 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1095 device_printf(sc->sc_dev, 1096 "wds not supported in sta mode\n"); 1097 goto bad; 1098 } 1099 /* 1100 * Silently remove any request for a unique 1101 * bssid; WDS vap's always share the local 1102 * mac address. 1103 */ 1104 flags &= ~IEEE80211_CLONE_BSSID; 1105 if (sc->sc_nvaps == 0) 1106 ic_opmode = IEEE80211_M_HOSTAP; 1107 else 1108 ic_opmode = ic->ic_opmode; 1109 break; 1110 default: 1111 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1112 goto bad; 1113 } 1114 /* 1115 * Check that a beacon buffer is available; the code below assumes it. 1116 */ 1117 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1118 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1119 goto bad; 1120 } 1121 1122 /* STA, AHDEMO? */ 1123 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1124 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1125 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1126 } 1127 1128 vap = &avp->av_vap; 1129 /* XXX can't hold mutex across if_alloc */ 1130 ATH_UNLOCK(sc); 1131 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1132 bssid, mac); 1133 ATH_LOCK(sc); 1134 if (error != 0) { 1135 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1136 __func__, error); 1137 goto bad2; 1138 } 1139 1140 /* h/w crypto support */ 1141 vap->iv_key_alloc = ath_key_alloc; 1142 vap->iv_key_delete = ath_key_delete; 1143 vap->iv_key_set = ath_key_set; 1144 vap->iv_key_update_begin = ath_key_update_begin; 1145 vap->iv_key_update_end = ath_key_update_end; 1146 1147 /* override various methods */ 1148 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1149 vap->iv_recv_mgmt = ath_recv_mgmt; 1150 vap->iv_reset = ath_reset_vap; 1151 vap->iv_update_beacon = ath_beacon_update; 1152 avp->av_newstate = vap->iv_newstate; 1153 vap->iv_newstate = ath_newstate; 1154 avp->av_bmiss = vap->iv_bmiss; 1155 vap->iv_bmiss = ath_bmiss_vap; 1156 1157 /* Set default parameters */ 1158 1159 /* 1160 * Anything earlier than some AR9300 series MACs don't 1161 * support a smaller MPDU density. 1162 */ 1163 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1164 /* 1165 * All NICs can handle the maximum size, however 1166 * AR5416 based MACs can only TX aggregates w/ RTS 1167 * protection when the total aggregate size is <= 8k. 1168 * However, for now that's enforced by the TX path. 1169 */ 1170 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1171 1172 avp->av_bslot = -1; 1173 if (needbeacon) { 1174 /* 1175 * Allocate beacon state and setup the q for buffered 1176 * multicast frames. We know a beacon buffer is 1177 * available because we checked above. 1178 */ 1179 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1180 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1181 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1182 /* 1183 * Assign the vap to a beacon xmit slot. As above 1184 * this cannot fail to find a free one. 1185 */ 1186 avp->av_bslot = assign_bslot(sc); 1187 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1188 ("beacon slot %u not empty", avp->av_bslot)); 1189 sc->sc_bslot[avp->av_bslot] = vap; 1190 sc->sc_nbcnvaps++; 1191 } 1192 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1193 /* 1194 * Multple vaps are to transmit beacons and we 1195 * have h/w support for TSF adjusting; enable 1196 * use of staggered beacons. 1197 */ 1198 sc->sc_stagbeacons = 1; 1199 } 1200 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1201 } 1202 1203 ic->ic_opmode = ic_opmode; 1204 if (opmode != IEEE80211_M_WDS) { 1205 sc->sc_nvaps++; 1206 if (opmode == IEEE80211_M_STA) 1207 sc->sc_nstavaps++; 1208 if (opmode == IEEE80211_M_MBSS) 1209 sc->sc_nmeshvaps++; 1210 } 1211 switch (ic_opmode) { 1212 case IEEE80211_M_IBSS: 1213 sc->sc_opmode = HAL_M_IBSS; 1214 break; 1215 case IEEE80211_M_STA: 1216 sc->sc_opmode = HAL_M_STA; 1217 break; 1218 case IEEE80211_M_AHDEMO: 1219 #ifdef IEEE80211_SUPPORT_TDMA 1220 if (vap->iv_caps & IEEE80211_C_TDMA) { 1221 sc->sc_tdma = 1; 1222 /* NB: disable tsf adjust */ 1223 sc->sc_stagbeacons = 0; 1224 } 1225 /* 1226 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1227 * just ap mode. 1228 */ 1229 /* fall thru... */ 1230 #endif 1231 case IEEE80211_M_HOSTAP: 1232 case IEEE80211_M_MBSS: 1233 sc->sc_opmode = HAL_M_HOSTAP; 1234 break; 1235 case IEEE80211_M_MONITOR: 1236 sc->sc_opmode = HAL_M_MONITOR; 1237 break; 1238 default: 1239 /* XXX should not happen */ 1240 break; 1241 } 1242 if (sc->sc_hastsfadd) { 1243 /* 1244 * Configure whether or not TSF adjust should be done. 1245 */ 1246 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1247 } 1248 if (flags & IEEE80211_CLONE_NOBEACONS) { 1249 /* 1250 * Enable s/w beacon miss handling. 1251 */ 1252 sc->sc_swbmiss = 1; 1253 } 1254 ATH_UNLOCK(sc); 1255 1256 /* complete setup */ 1257 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1258 return vap; 1259 bad2: 1260 reclaim_address(sc, mac); 1261 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1262 bad: 1263 free(avp, M_80211_VAP); 1264 ATH_UNLOCK(sc); 1265 return NULL; 1266 } 1267 1268 static void 1269 ath_vap_delete(struct ieee80211vap *vap) 1270 { 1271 struct ieee80211com *ic = vap->iv_ic; 1272 struct ifnet *ifp = ic->ic_ifp; 1273 struct ath_softc *sc = ifp->if_softc; 1274 struct ath_hal *ah = sc->sc_ah; 1275 struct ath_vap *avp = ATH_VAP(vap); 1276 1277 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1278 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1279 /* 1280 * Quiesce the hardware while we remove the vap. In 1281 * particular we need to reclaim all references to 1282 * the vap state by any frames pending on the tx queues. 1283 */ 1284 ath_hal_intrset(ah, 0); /* disable interrupts */ 1285 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1286 /* XXX Do all frames from all vaps/nodes need draining here? */ 1287 ath_stoprecv(sc, 1); /* stop recv side */ 1288 } 1289 1290 ieee80211_vap_detach(vap); 1291 1292 /* 1293 * XXX Danger Will Robinson! Danger! 1294 * 1295 * Because ieee80211_vap_detach() can queue a frame (the station 1296 * diassociate message?) after we've drained the TXQ and 1297 * flushed the software TXQ, we will end up with a frame queued 1298 * to a node whose vap is about to be freed. 1299 * 1300 * To work around this, flush the hardware/software again. 1301 * This may be racy - the ath task may be running and the packet 1302 * may be being scheduled between sw->hw txq. Tsk. 1303 * 1304 * TODO: figure out why a new node gets allocated somewhere around 1305 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1306 * call!) 1307 */ 1308 1309 ath_draintxq(sc, ATH_RESET_DEFAULT); 1310 1311 ATH_LOCK(sc); 1312 /* 1313 * Reclaim beacon state. Note this must be done before 1314 * the vap instance is reclaimed as we may have a reference 1315 * to it in the buffer for the beacon frame. 1316 */ 1317 if (avp->av_bcbuf != NULL) { 1318 if (avp->av_bslot != -1) { 1319 sc->sc_bslot[avp->av_bslot] = NULL; 1320 sc->sc_nbcnvaps--; 1321 } 1322 ath_beacon_return(sc, avp->av_bcbuf); 1323 avp->av_bcbuf = NULL; 1324 if (sc->sc_nbcnvaps == 0) { 1325 sc->sc_stagbeacons = 0; 1326 if (sc->sc_hastsfadd) 1327 ath_hal_settsfadjust(sc->sc_ah, 0); 1328 } 1329 /* 1330 * Reclaim any pending mcast frames for the vap. 1331 */ 1332 ath_tx_draintxq(sc, &avp->av_mcastq); 1333 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1334 } 1335 /* 1336 * Update bookkeeping. 1337 */ 1338 if (vap->iv_opmode == IEEE80211_M_STA) { 1339 sc->sc_nstavaps--; 1340 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1341 sc->sc_swbmiss = 0; 1342 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1343 vap->iv_opmode == IEEE80211_M_MBSS) { 1344 reclaim_address(sc, vap->iv_myaddr); 1345 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1346 if (vap->iv_opmode == IEEE80211_M_MBSS) 1347 sc->sc_nmeshvaps--; 1348 } 1349 if (vap->iv_opmode != IEEE80211_M_WDS) 1350 sc->sc_nvaps--; 1351 #ifdef IEEE80211_SUPPORT_TDMA 1352 /* TDMA operation ceases when the last vap is destroyed */ 1353 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1354 sc->sc_tdma = 0; 1355 sc->sc_swbmiss = 0; 1356 } 1357 #endif 1358 free(avp, M_80211_VAP); 1359 1360 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1361 /* 1362 * Restart rx+tx machines if still running (RUNNING will 1363 * be reset if we just destroyed the last vap). 1364 */ 1365 if (ath_startrecv(sc) != 0) 1366 if_printf(ifp, "%s: unable to restart recv logic\n", 1367 __func__); 1368 if (sc->sc_beacons) { /* restart beacons */ 1369 #ifdef IEEE80211_SUPPORT_TDMA 1370 if (sc->sc_tdma) 1371 ath_tdma_config(sc, NULL); 1372 else 1373 #endif 1374 ath_beacon_config(sc, NULL); 1375 } 1376 ath_hal_intrset(ah, sc->sc_imask); 1377 } 1378 ATH_UNLOCK(sc); 1379 } 1380 1381 void 1382 ath_suspend(struct ath_softc *sc) 1383 { 1384 struct ifnet *ifp = sc->sc_ifp; 1385 struct ieee80211com *ic = ifp->if_l2com; 1386 1387 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1388 __func__, ifp->if_flags); 1389 1390 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1391 1392 ieee80211_suspend_all(ic); 1393 /* 1394 * NB: don't worry about putting the chip in low power 1395 * mode; pci will power off our socket on suspend and 1396 * CardBus detaches the device. 1397 */ 1398 1399 /* 1400 * XXX ensure none of the taskqueues are running 1401 * XXX ensure sc_invalid is 1 1402 * XXX ensure the calibration callout is disabled 1403 */ 1404 1405 /* Disable the PCIe PHY, complete with workarounds */ 1406 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1407 } 1408 1409 /* 1410 * Reset the key cache since some parts do not reset the 1411 * contents on resume. First we clear all entries, then 1412 * re-load keys that the 802.11 layer assumes are setup 1413 * in h/w. 1414 */ 1415 static void 1416 ath_reset_keycache(struct ath_softc *sc) 1417 { 1418 struct ifnet *ifp = sc->sc_ifp; 1419 struct ieee80211com *ic = ifp->if_l2com; 1420 struct ath_hal *ah = sc->sc_ah; 1421 int i; 1422 1423 for (i = 0; i < sc->sc_keymax; i++) 1424 ath_hal_keyreset(ah, i); 1425 ieee80211_crypto_reload_keys(ic); 1426 } 1427 1428 void 1429 ath_resume(struct ath_softc *sc) 1430 { 1431 struct ifnet *ifp = sc->sc_ifp; 1432 struct ieee80211com *ic = ifp->if_l2com; 1433 struct ath_hal *ah = sc->sc_ah; 1434 HAL_STATUS status; 1435 1436 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1437 __func__, ifp->if_flags); 1438 1439 /* Re-enable PCIe, re-enable the PCIe bus */ 1440 ath_hal_enablepcie(ah, 0, 0); 1441 1442 /* 1443 * Must reset the chip before we reload the 1444 * keycache as we were powered down on suspend. 1445 */ 1446 ath_hal_reset(ah, sc->sc_opmode, 1447 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1448 AH_FALSE, &status); 1449 ath_reset_keycache(sc); 1450 1451 /* Let DFS at it in case it's a DFS channel */ 1452 ath_dfs_radar_enable(sc, ic->ic_curchan); 1453 1454 /* Restore the LED configuration */ 1455 ath_led_config(sc); 1456 ath_hal_setledstate(ah, HAL_LED_INIT); 1457 1458 if (sc->sc_resume_up) 1459 ieee80211_resume_all(ic); 1460 1461 /* XXX beacons ? */ 1462 } 1463 1464 void 1465 ath_shutdown(struct ath_softc *sc) 1466 { 1467 struct ifnet *ifp = sc->sc_ifp; 1468 1469 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1470 __func__, ifp->if_flags); 1471 1472 ath_stop(ifp); 1473 /* NB: no point powering down chip as we're about to reboot */ 1474 } 1475 1476 /* 1477 * Interrupt handler. Most of the actual processing is deferred. 1478 */ 1479 void 1480 ath_intr(void *arg) 1481 { 1482 struct ath_softc *sc = arg; 1483 struct ifnet *ifp = sc->sc_ifp; 1484 struct ath_hal *ah = sc->sc_ah; 1485 HAL_INT status = 0; 1486 uint32_t txqs; 1487 1488 /* 1489 * If we're inside a reset path, just print a warning and 1490 * clear the ISR. The reset routine will finish it for us. 1491 */ 1492 ATH_PCU_LOCK(sc); 1493 if (sc->sc_inreset_cnt) { 1494 HAL_INT status; 1495 ath_hal_getisr(ah, &status); /* clear ISR */ 1496 ath_hal_intrset(ah, 0); /* disable further intr's */ 1497 DPRINTF(sc, ATH_DEBUG_ANY, 1498 "%s: in reset, ignoring: status=0x%x\n", 1499 __func__, status); 1500 ATH_PCU_UNLOCK(sc); 1501 return; 1502 } 1503 1504 if (sc->sc_invalid) { 1505 /* 1506 * The hardware is not ready/present, don't touch anything. 1507 * Note this can happen early on if the IRQ is shared. 1508 */ 1509 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1510 ATH_PCU_UNLOCK(sc); 1511 return; 1512 } 1513 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1514 ATH_PCU_UNLOCK(sc); 1515 return; 1516 } 1517 1518 if ((ifp->if_flags & IFF_UP) == 0 || 1519 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1520 HAL_INT status; 1521 1522 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1523 __func__, ifp->if_flags); 1524 ath_hal_getisr(ah, &status); /* clear ISR */ 1525 ath_hal_intrset(ah, 0); /* disable further intr's */ 1526 ATH_PCU_UNLOCK(sc); 1527 return; 1528 } 1529 1530 /* 1531 * Figure out the reason(s) for the interrupt. Note 1532 * that the hal returns a pseudo-ISR that may include 1533 * bits we haven't explicitly enabled so we mask the 1534 * value to insure we only process bits we requested. 1535 */ 1536 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1537 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1538 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1539 #ifdef ATH_KTR_INTR_DEBUG 1540 CTR5(ATH_KTR_INTR, 1541 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1542 ah->ah_intrstate[0], 1543 ah->ah_intrstate[1], 1544 ah->ah_intrstate[2], 1545 ah->ah_intrstate[3], 1546 ah->ah_intrstate[6]); 1547 #endif 1548 1549 /* Squirrel away SYNC interrupt debugging */ 1550 if (ah->ah_syncstate != 0) { 1551 int i; 1552 for (i = 0; i < 32; i++) 1553 if (ah->ah_syncstate & (i << i)) 1554 sc->sc_intr_stats.sync_intr[i]++; 1555 } 1556 1557 status &= sc->sc_imask; /* discard unasked for bits */ 1558 1559 /* Short-circuit un-handled interrupts */ 1560 if (status == 0x0) { 1561 ATH_PCU_UNLOCK(sc); 1562 return; 1563 } 1564 1565 /* 1566 * Take a note that we're inside the interrupt handler, so 1567 * the reset routines know to wait. 1568 */ 1569 sc->sc_intr_cnt++; 1570 ATH_PCU_UNLOCK(sc); 1571 1572 /* 1573 * Handle the interrupt. We won't run concurrent with the reset 1574 * or channel change routines as they'll wait for sc_intr_cnt 1575 * to be 0 before continuing. 1576 */ 1577 if (status & HAL_INT_FATAL) { 1578 sc->sc_stats.ast_hardware++; 1579 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1580 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1581 } else { 1582 if (status & HAL_INT_SWBA) { 1583 /* 1584 * Software beacon alert--time to send a beacon. 1585 * Handle beacon transmission directly; deferring 1586 * this is too slow to meet timing constraints 1587 * under load. 1588 */ 1589 #ifdef IEEE80211_SUPPORT_TDMA 1590 if (sc->sc_tdma) { 1591 if (sc->sc_tdmaswba == 0) { 1592 struct ieee80211com *ic = ifp->if_l2com; 1593 struct ieee80211vap *vap = 1594 TAILQ_FIRST(&ic->ic_vaps); 1595 ath_tdma_beacon_send(sc, vap); 1596 sc->sc_tdmaswba = 1597 vap->iv_tdma->tdma_bintval; 1598 } else 1599 sc->sc_tdmaswba--; 1600 } else 1601 #endif 1602 { 1603 ath_beacon_proc(sc, 0); 1604 #ifdef IEEE80211_SUPPORT_SUPERG 1605 /* 1606 * Schedule the rx taskq in case there's no 1607 * traffic so any frames held on the staging 1608 * queue are aged and potentially flushed. 1609 */ 1610 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1611 #endif 1612 } 1613 } 1614 if (status & HAL_INT_RXEOL) { 1615 int imask; 1616 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1617 ATH_PCU_LOCK(sc); 1618 /* 1619 * NB: the hardware should re-read the link when 1620 * RXE bit is written, but it doesn't work at 1621 * least on older hardware revs. 1622 */ 1623 sc->sc_stats.ast_rxeol++; 1624 /* 1625 * Disable RXEOL/RXORN - prevent an interrupt 1626 * storm until the PCU logic can be reset. 1627 * In case the interface is reset some other 1628 * way before "sc_kickpcu" is called, don't 1629 * modify sc_imask - that way if it is reset 1630 * by a call to ath_reset() somehow, the 1631 * interrupt mask will be correctly reprogrammed. 1632 */ 1633 imask = sc->sc_imask; 1634 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1635 ath_hal_intrset(ah, imask); 1636 /* 1637 * Only blank sc_rxlink if we've not yet kicked 1638 * the PCU. 1639 * 1640 * This isn't entirely correct - the correct solution 1641 * would be to have a PCU lock and engage that for 1642 * the duration of the PCU fiddling; which would include 1643 * running the RX process. Otherwise we could end up 1644 * messing up the RX descriptor chain and making the 1645 * RX desc list much shorter. 1646 */ 1647 if (! sc->sc_kickpcu) 1648 sc->sc_rxlink = NULL; 1649 sc->sc_kickpcu = 1; 1650 /* 1651 * Enqueue an RX proc, to handled whatever 1652 * is in the RX queue. 1653 * This will then kick the PCU. 1654 */ 1655 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1656 ATH_PCU_UNLOCK(sc); 1657 } 1658 if (status & HAL_INT_TXURN) { 1659 sc->sc_stats.ast_txurn++; 1660 /* bump tx trigger level */ 1661 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1662 } 1663 /* 1664 * Handle both the legacy and RX EDMA interrupt bits. 1665 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1666 */ 1667 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1668 sc->sc_stats.ast_rx_intr++; 1669 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1670 } 1671 if (status & HAL_INT_TX) { 1672 sc->sc_stats.ast_tx_intr++; 1673 /* 1674 * Grab all the currently set bits in the HAL txq bitmap 1675 * and blank them. This is the only place we should be 1676 * doing this. 1677 */ 1678 if (! sc->sc_isedma) { 1679 ATH_PCU_LOCK(sc); 1680 txqs = 0xffffffff; 1681 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1682 sc->sc_txq_active |= txqs; 1683 ATH_PCU_UNLOCK(sc); 1684 } 1685 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1686 } 1687 if (status & HAL_INT_BMISS) { 1688 sc->sc_stats.ast_bmiss++; 1689 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1690 } 1691 if (status & HAL_INT_GTT) 1692 sc->sc_stats.ast_tx_timeout++; 1693 if (status & HAL_INT_CST) 1694 sc->sc_stats.ast_tx_cst++; 1695 if (status & HAL_INT_MIB) { 1696 sc->sc_stats.ast_mib++; 1697 ATH_PCU_LOCK(sc); 1698 /* 1699 * Disable interrupts until we service the MIB 1700 * interrupt; otherwise it will continue to fire. 1701 */ 1702 ath_hal_intrset(ah, 0); 1703 /* 1704 * Let the hal handle the event. We assume it will 1705 * clear whatever condition caused the interrupt. 1706 */ 1707 ath_hal_mibevent(ah, &sc->sc_halstats); 1708 /* 1709 * Don't reset the interrupt if we've just 1710 * kicked the PCU, or we may get a nested 1711 * RXEOL before the rxproc has had a chance 1712 * to run. 1713 */ 1714 if (sc->sc_kickpcu == 0) 1715 ath_hal_intrset(ah, sc->sc_imask); 1716 ATH_PCU_UNLOCK(sc); 1717 } 1718 if (status & HAL_INT_RXORN) { 1719 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1720 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1721 sc->sc_stats.ast_rxorn++; 1722 } 1723 } 1724 ATH_PCU_LOCK(sc); 1725 sc->sc_intr_cnt--; 1726 ATH_PCU_UNLOCK(sc); 1727 } 1728 1729 static void 1730 ath_fatal_proc(void *arg, int pending) 1731 { 1732 struct ath_softc *sc = arg; 1733 struct ifnet *ifp = sc->sc_ifp; 1734 u_int32_t *state; 1735 u_int32_t len; 1736 void *sp; 1737 1738 if_printf(ifp, "hardware error; resetting\n"); 1739 /* 1740 * Fatal errors are unrecoverable. Typically these 1741 * are caused by DMA errors. Collect h/w state from 1742 * the hal so we can diagnose what's going on. 1743 */ 1744 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1745 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1746 state = sp; 1747 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1748 state[0], state[1] , state[2], state[3], 1749 state[4], state[5]); 1750 } 1751 ath_reset(ifp, ATH_RESET_NOLOSS); 1752 } 1753 1754 static void 1755 ath_bmiss_vap(struct ieee80211vap *vap) 1756 { 1757 /* 1758 * Workaround phantom bmiss interrupts by sanity-checking 1759 * the time of our last rx'd frame. If it is within the 1760 * beacon miss interval then ignore the interrupt. If it's 1761 * truly a bmiss we'll get another interrupt soon and that'll 1762 * be dispatched up for processing. Note this applies only 1763 * for h/w beacon miss events. 1764 */ 1765 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1766 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1767 struct ath_softc *sc = ifp->if_softc; 1768 u_int64_t lastrx = sc->sc_lastrx; 1769 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1770 /* XXX should take a locked ref to iv_bss */ 1771 u_int bmisstimeout = 1772 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1773 1774 DPRINTF(sc, ATH_DEBUG_BEACON, 1775 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1776 __func__, (unsigned long long) tsf, 1777 (unsigned long long)(tsf - lastrx), 1778 (unsigned long long) lastrx, bmisstimeout); 1779 1780 if (tsf - lastrx <= bmisstimeout) { 1781 sc->sc_stats.ast_bmiss_phantom++; 1782 return; 1783 } 1784 } 1785 ATH_VAP(vap)->av_bmiss(vap); 1786 } 1787 1788 static int 1789 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1790 { 1791 uint32_t rsize; 1792 void *sp; 1793 1794 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1795 return 0; 1796 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1797 *hangs = *(uint32_t *)sp; 1798 return 1; 1799 } 1800 1801 static void 1802 ath_bmiss_proc(void *arg, int pending) 1803 { 1804 struct ath_softc *sc = arg; 1805 struct ifnet *ifp = sc->sc_ifp; 1806 uint32_t hangs; 1807 1808 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1809 1810 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1811 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1812 ath_reset(ifp, ATH_RESET_NOLOSS); 1813 } else 1814 ieee80211_beacon_miss(ifp->if_l2com); 1815 } 1816 1817 /* 1818 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1819 * calcs together with WME. If necessary disable the crypto 1820 * hardware and mark the 802.11 state so keys will be setup 1821 * with the MIC work done in software. 1822 */ 1823 static void 1824 ath_settkipmic(struct ath_softc *sc) 1825 { 1826 struct ifnet *ifp = sc->sc_ifp; 1827 struct ieee80211com *ic = ifp->if_l2com; 1828 1829 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1830 if (ic->ic_flags & IEEE80211_F_WME) { 1831 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1832 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1833 } else { 1834 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1835 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1836 } 1837 } 1838 } 1839 1840 static void 1841 ath_init(void *arg) 1842 { 1843 struct ath_softc *sc = (struct ath_softc *) arg; 1844 struct ifnet *ifp = sc->sc_ifp; 1845 struct ieee80211com *ic = ifp->if_l2com; 1846 struct ath_hal *ah = sc->sc_ah; 1847 HAL_STATUS status; 1848 1849 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1850 __func__, ifp->if_flags); 1851 1852 ATH_LOCK(sc); 1853 /* 1854 * Stop anything previously setup. This is safe 1855 * whether this is the first time through or not. 1856 */ 1857 ath_stop_locked(ifp); 1858 1859 /* 1860 * The basic interface to setting the hardware in a good 1861 * state is ``reset''. On return the hardware is known to 1862 * be powered up and with interrupts disabled. This must 1863 * be followed by initialization of the appropriate bits 1864 * and then setup of the interrupt mask. 1865 */ 1866 ath_settkipmic(sc); 1867 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1868 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1869 status); 1870 ATH_UNLOCK(sc); 1871 return; 1872 } 1873 ath_chan_change(sc, ic->ic_curchan); 1874 1875 /* Let DFS at it in case it's a DFS channel */ 1876 ath_dfs_radar_enable(sc, ic->ic_curchan); 1877 1878 /* 1879 * Likewise this is set during reset so update 1880 * state cached in the driver. 1881 */ 1882 sc->sc_diversity = ath_hal_getdiversity(ah); 1883 sc->sc_lastlongcal = 0; 1884 sc->sc_resetcal = 1; 1885 sc->sc_lastcalreset = 0; 1886 sc->sc_lastani = 0; 1887 sc->sc_lastshortcal = 0; 1888 sc->sc_doresetcal = AH_FALSE; 1889 /* 1890 * Beacon timers were cleared here; give ath_newstate() 1891 * a hint that the beacon timers should be poked when 1892 * things transition to the RUN state. 1893 */ 1894 sc->sc_beacons = 0; 1895 1896 /* 1897 * Setup the hardware after reset: the key cache 1898 * is filled as needed and the receive engine is 1899 * set going. Frame transmit is handled entirely 1900 * in the frame output path; there's nothing to do 1901 * here except setup the interrupt mask. 1902 */ 1903 if (ath_startrecv(sc) != 0) { 1904 if_printf(ifp, "unable to start recv logic\n"); 1905 ATH_UNLOCK(sc); 1906 return; 1907 } 1908 1909 /* 1910 * Enable interrupts. 1911 */ 1912 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1913 | HAL_INT_RXEOL | HAL_INT_RXORN 1914 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1915 1916 /* 1917 * Enable RX EDMA bits. Note these overlap with 1918 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1919 */ 1920 if (sc->sc_isedma) 1921 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1922 1923 /* 1924 * Enable MIB interrupts when there are hardware phy counters. 1925 * Note we only do this (at the moment) for station mode. 1926 */ 1927 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1928 sc->sc_imask |= HAL_INT_MIB; 1929 1930 /* Enable global TX timeout and carrier sense timeout if available */ 1931 if (ath_hal_gtxto_supported(ah)) 1932 sc->sc_imask |= HAL_INT_GTT; 1933 1934 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1935 __func__, sc->sc_imask); 1936 1937 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1938 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1939 ath_hal_intrset(ah, sc->sc_imask); 1940 1941 ATH_UNLOCK(sc); 1942 1943 #ifdef ATH_TX99_DIAG 1944 if (sc->sc_tx99 != NULL) 1945 sc->sc_tx99->start(sc->sc_tx99); 1946 else 1947 #endif 1948 ieee80211_start_all(ic); /* start all vap's */ 1949 } 1950 1951 static void 1952 ath_stop_locked(struct ifnet *ifp) 1953 { 1954 struct ath_softc *sc = ifp->if_softc; 1955 struct ath_hal *ah = sc->sc_ah; 1956 1957 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1958 __func__, sc->sc_invalid, ifp->if_flags); 1959 1960 ATH_LOCK_ASSERT(sc); 1961 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1962 /* 1963 * Shutdown the hardware and driver: 1964 * reset 802.11 state machine 1965 * turn off timers 1966 * disable interrupts 1967 * turn off the radio 1968 * clear transmit machinery 1969 * clear receive machinery 1970 * drain and release tx queues 1971 * reclaim beacon resources 1972 * power down hardware 1973 * 1974 * Note that some of this work is not possible if the 1975 * hardware is gone (invalid). 1976 */ 1977 #ifdef ATH_TX99_DIAG 1978 if (sc->sc_tx99 != NULL) 1979 sc->sc_tx99->stop(sc->sc_tx99); 1980 #endif 1981 callout_stop(&sc->sc_wd_ch); 1982 sc->sc_wd_timer = 0; 1983 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1984 if (!sc->sc_invalid) { 1985 if (sc->sc_softled) { 1986 callout_stop(&sc->sc_ledtimer); 1987 ath_hal_gpioset(ah, sc->sc_ledpin, 1988 !sc->sc_ledon); 1989 sc->sc_blinking = 0; 1990 } 1991 ath_hal_intrset(ah, 0); 1992 } 1993 ath_draintxq(sc, ATH_RESET_DEFAULT); 1994 if (!sc->sc_invalid) { 1995 ath_stoprecv(sc, 1); 1996 ath_hal_phydisable(ah); 1997 } else 1998 sc->sc_rxlink = NULL; 1999 ath_beacon_free(sc); /* XXX not needed */ 2000 } 2001 } 2002 2003 #define MAX_TXRX_ITERATIONS 1000 2004 static void 2005 ath_txrx_stop_locked(struct ath_softc *sc) 2006 { 2007 int i = MAX_TXRX_ITERATIONS; 2008 2009 ATH_UNLOCK_ASSERT(sc); 2010 ATH_PCU_LOCK_ASSERT(sc); 2011 2012 /* 2013 * Sleep until all the pending operations have completed. 2014 * 2015 * The caller must ensure that reset has been incremented 2016 * or the pending operations may continue being queued. 2017 */ 2018 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2019 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2020 if (i <= 0) 2021 break; 2022 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2023 i--; 2024 } 2025 2026 if (i <= 0) 2027 device_printf(sc->sc_dev, 2028 "%s: didn't finish after %d iterations\n", 2029 __func__, MAX_TXRX_ITERATIONS); 2030 } 2031 #undef MAX_TXRX_ITERATIONS 2032 2033 #if 0 2034 static void 2035 ath_txrx_stop(struct ath_softc *sc) 2036 { 2037 ATH_UNLOCK_ASSERT(sc); 2038 ATH_PCU_UNLOCK_ASSERT(sc); 2039 2040 ATH_PCU_LOCK(sc); 2041 ath_txrx_stop_locked(sc); 2042 ATH_PCU_UNLOCK(sc); 2043 } 2044 #endif 2045 2046 static void 2047 ath_txrx_start(struct ath_softc *sc) 2048 { 2049 2050 taskqueue_unblock(sc->sc_tq); 2051 } 2052 2053 /* 2054 * Grab the reset lock, and wait around until noone else 2055 * is trying to do anything with it. 2056 * 2057 * This is totally horrible but we can't hold this lock for 2058 * long enough to do TX/RX or we end up with net80211/ip stack 2059 * LORs and eventual deadlock. 2060 * 2061 * "dowait" signals whether to spin, waiting for the reset 2062 * lock count to reach 0. This should (for now) only be used 2063 * during the reset path, as the rest of the code may not 2064 * be locking-reentrant enough to behave correctly. 2065 * 2066 * Another, cleaner way should be found to serialise all of 2067 * these operations. 2068 */ 2069 #define MAX_RESET_ITERATIONS 10 2070 static int 2071 ath_reset_grablock(struct ath_softc *sc, int dowait) 2072 { 2073 int w = 0; 2074 int i = MAX_RESET_ITERATIONS; 2075 2076 ATH_PCU_LOCK_ASSERT(sc); 2077 do { 2078 if (sc->sc_inreset_cnt == 0) { 2079 w = 1; 2080 break; 2081 } 2082 if (dowait == 0) { 2083 w = 0; 2084 break; 2085 } 2086 ATH_PCU_UNLOCK(sc); 2087 pause("ath_reset_grablock", 1); 2088 i--; 2089 ATH_PCU_LOCK(sc); 2090 } while (i > 0); 2091 2092 /* 2093 * We always increment the refcounter, regardless 2094 * of whether we succeeded to get it in an exclusive 2095 * way. 2096 */ 2097 sc->sc_inreset_cnt++; 2098 2099 if (i <= 0) 2100 device_printf(sc->sc_dev, 2101 "%s: didn't finish after %d iterations\n", 2102 __func__, MAX_RESET_ITERATIONS); 2103 2104 if (w == 0) 2105 device_printf(sc->sc_dev, 2106 "%s: warning, recursive reset path!\n", 2107 __func__); 2108 2109 return w; 2110 } 2111 #undef MAX_RESET_ITERATIONS 2112 2113 /* 2114 * XXX TODO: write ath_reset_releaselock 2115 */ 2116 2117 static void 2118 ath_stop(struct ifnet *ifp) 2119 { 2120 struct ath_softc *sc = ifp->if_softc; 2121 2122 ATH_LOCK(sc); 2123 ath_stop_locked(ifp); 2124 ATH_UNLOCK(sc); 2125 } 2126 2127 /* 2128 * Reset the hardware w/o losing operational state. This is 2129 * basically a more efficient way of doing ath_stop, ath_init, 2130 * followed by state transitions to the current 802.11 2131 * operational state. Used to recover from various errors and 2132 * to reset or reload hardware state. 2133 */ 2134 int 2135 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2136 { 2137 struct ath_softc *sc = ifp->if_softc; 2138 struct ieee80211com *ic = ifp->if_l2com; 2139 struct ath_hal *ah = sc->sc_ah; 2140 HAL_STATUS status; 2141 int i; 2142 2143 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2144 2145 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2146 ATH_PCU_UNLOCK_ASSERT(sc); 2147 ATH_UNLOCK_ASSERT(sc); 2148 2149 /* Try to (stop any further TX/RX from occuring */ 2150 taskqueue_block(sc->sc_tq); 2151 2152 ATH_PCU_LOCK(sc); 2153 ath_hal_intrset(ah, 0); /* disable interrupts */ 2154 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2155 if (ath_reset_grablock(sc, 1) == 0) { 2156 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2157 __func__); 2158 } 2159 ATH_PCU_UNLOCK(sc); 2160 2161 /* 2162 * Should now wait for pending TX/RX to complete 2163 * and block future ones from occuring. This needs to be 2164 * done before the TX queue is drained. 2165 */ 2166 ath_draintxq(sc, reset_type); /* stop xmit side */ 2167 2168 /* 2169 * Regardless of whether we're doing a no-loss flush or 2170 * not, stop the PCU and handle what's in the RX queue. 2171 * That way frames aren't dropped which shouldn't be. 2172 */ 2173 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2174 ath_rx_flush(sc); 2175 2176 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2177 /* NB: indicate channel change so we do a full reset */ 2178 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2179 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2180 __func__, status); 2181 sc->sc_diversity = ath_hal_getdiversity(ah); 2182 2183 /* Let DFS at it in case it's a DFS channel */ 2184 ath_dfs_radar_enable(sc, ic->ic_curchan); 2185 2186 if (ath_startrecv(sc) != 0) /* restart recv */ 2187 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2188 /* 2189 * We may be doing a reset in response to an ioctl 2190 * that changes the channel so update any state that 2191 * might change as a result. 2192 */ 2193 ath_chan_change(sc, ic->ic_curchan); 2194 if (sc->sc_beacons) { /* restart beacons */ 2195 #ifdef IEEE80211_SUPPORT_TDMA 2196 if (sc->sc_tdma) 2197 ath_tdma_config(sc, NULL); 2198 else 2199 #endif 2200 ath_beacon_config(sc, NULL); 2201 } 2202 2203 /* 2204 * Release the reset lock and re-enable interrupts here. 2205 * If an interrupt was being processed in ath_intr(), 2206 * it would disable interrupts at this point. So we have 2207 * to atomically enable interrupts and decrement the 2208 * reset counter - this way ath_intr() doesn't end up 2209 * disabling interrupts without a corresponding enable 2210 * in the rest or channel change path. 2211 */ 2212 ATH_PCU_LOCK(sc); 2213 sc->sc_inreset_cnt--; 2214 /* XXX only do this if sc_inreset_cnt == 0? */ 2215 ath_hal_intrset(ah, sc->sc_imask); 2216 ATH_PCU_UNLOCK(sc); 2217 2218 /* 2219 * TX and RX can be started here. If it were started with 2220 * sc_inreset_cnt > 0, the TX and RX path would abort. 2221 * Thus if this is a nested call through the reset or 2222 * channel change code, TX completion will occur but 2223 * RX completion and ath_start / ath_tx_start will not 2224 * run. 2225 */ 2226 2227 /* Restart TX/RX as needed */ 2228 ath_txrx_start(sc); 2229 2230 /* XXX Restart TX completion and pending TX */ 2231 if (reset_type == ATH_RESET_NOLOSS) { 2232 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2233 if (ATH_TXQ_SETUP(sc, i)) { 2234 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2235 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2236 ath_txq_sched(sc, &sc->sc_txq[i]); 2237 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2238 } 2239 } 2240 } 2241 2242 /* 2243 * This may have been set during an ath_start() call which 2244 * set this once it detected a concurrent TX was going on. 2245 * So, clear it. 2246 */ 2247 IF_LOCK(&ifp->if_snd); 2248 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2249 IF_UNLOCK(&ifp->if_snd); 2250 2251 /* Handle any frames in the TX queue */ 2252 /* 2253 * XXX should this be done by the caller, rather than 2254 * ath_reset() ? 2255 */ 2256 ath_start(ifp); /* restart xmit */ 2257 return 0; 2258 } 2259 2260 static int 2261 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2262 { 2263 struct ieee80211com *ic = vap->iv_ic; 2264 struct ifnet *ifp = ic->ic_ifp; 2265 struct ath_softc *sc = ifp->if_softc; 2266 struct ath_hal *ah = sc->sc_ah; 2267 2268 switch (cmd) { 2269 case IEEE80211_IOC_TXPOWER: 2270 /* 2271 * If per-packet TPC is enabled, then we have nothing 2272 * to do; otherwise we need to force the global limit. 2273 * All this can happen directly; no need to reset. 2274 */ 2275 if (!ath_hal_gettpc(ah)) 2276 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2277 return 0; 2278 } 2279 /* XXX? Full or NOLOSS? */ 2280 return ath_reset(ifp, ATH_RESET_FULL); 2281 } 2282 2283 struct ath_buf * 2284 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2285 { 2286 struct ath_buf *bf; 2287 2288 ATH_TXBUF_LOCK_ASSERT(sc); 2289 2290 if (btype == ATH_BUFTYPE_MGMT) 2291 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2292 else 2293 bf = TAILQ_FIRST(&sc->sc_txbuf); 2294 2295 if (bf == NULL) { 2296 sc->sc_stats.ast_tx_getnobuf++; 2297 } else { 2298 if (bf->bf_flags & ATH_BUF_BUSY) { 2299 sc->sc_stats.ast_tx_getbusybuf++; 2300 bf = NULL; 2301 } 2302 } 2303 2304 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2305 if (btype == ATH_BUFTYPE_MGMT) 2306 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2307 else { 2308 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2309 sc->sc_txbuf_cnt--; 2310 2311 /* 2312 * This shuldn't happen; however just to be 2313 * safe print a warning and fudge the txbuf 2314 * count. 2315 */ 2316 if (sc->sc_txbuf_cnt < 0) { 2317 device_printf(sc->sc_dev, 2318 "%s: sc_txbuf_cnt < 0?\n", 2319 __func__); 2320 sc->sc_txbuf_cnt = 0; 2321 } 2322 } 2323 } else 2324 bf = NULL; 2325 2326 if (bf == NULL) { 2327 /* XXX should check which list, mgmt or otherwise */ 2328 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2329 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2330 "out of xmit buffers" : "xmit buffer busy"); 2331 return NULL; 2332 } 2333 2334 /* XXX TODO: should do this at buffer list initialisation */ 2335 /* XXX (then, ensure the buffer has the right flag set) */ 2336 if (btype == ATH_BUFTYPE_MGMT) 2337 bf->bf_flags |= ATH_BUF_MGMT; 2338 else 2339 bf->bf_flags &= (~ATH_BUF_MGMT); 2340 2341 /* Valid bf here; clear some basic fields */ 2342 bf->bf_next = NULL; /* XXX just to be sure */ 2343 bf->bf_last = NULL; /* XXX again, just to be sure */ 2344 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2345 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2346 2347 /* 2348 * Track the descriptor ID only if doing EDMA 2349 */ 2350 if (sc->sc_isedma) { 2351 bf->bf_descid = sc->sc_txbuf_descid; 2352 sc->sc_txbuf_descid++; 2353 } 2354 2355 return bf; 2356 } 2357 2358 /* 2359 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2360 * can't be thrown back on the queue as they could still be 2361 * in use by the hardware. 2362 * 2363 * This duplicates the buffer, or returns NULL. 2364 * 2365 * The descriptor is also copied but the link pointers and 2366 * the DMA segments aren't copied; this frame should thus 2367 * be again passed through the descriptor setup/chain routines 2368 * so the link is correct. 2369 * 2370 * The caller must free the buffer using ath_freebuf(). 2371 * 2372 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2373 * XXX in the TX pathway when retries are needed. 2374 * XXX Figure out how to keep some buffers free, or factor the 2375 * XXX number of busy buffers into the xmit path (ath_start()) 2376 * XXX so we don't over-commit. 2377 */ 2378 struct ath_buf * 2379 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2380 { 2381 struct ath_buf *tbf; 2382 2383 tbf = ath_getbuf(sc, 2384 (bf->bf_flags & ATH_BUF_MGMT) ? 2385 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2386 if (tbf == NULL) 2387 return NULL; /* XXX failure? Why? */ 2388 2389 /* Copy basics */ 2390 tbf->bf_next = NULL; 2391 tbf->bf_nseg = bf->bf_nseg; 2392 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2393 tbf->bf_status = bf->bf_status; 2394 tbf->bf_m = bf->bf_m; 2395 tbf->bf_node = bf->bf_node; 2396 /* will be setup by the chain/setup function */ 2397 tbf->bf_lastds = NULL; 2398 /* for now, last == self */ 2399 tbf->bf_last = tbf; 2400 tbf->bf_comp = bf->bf_comp; 2401 2402 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2403 2404 /* The caller has to re-init the descriptor + links */ 2405 2406 /* Copy state */ 2407 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2408 2409 return tbf; 2410 } 2411 2412 struct ath_buf * 2413 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2414 { 2415 struct ath_buf *bf; 2416 2417 ATH_TXBUF_LOCK(sc); 2418 bf = _ath_getbuf_locked(sc, btype); 2419 /* 2420 * If a mgmt buffer was requested but we're out of those, 2421 * try requesting a normal one. 2422 */ 2423 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2424 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2425 ATH_TXBUF_UNLOCK(sc); 2426 if (bf == NULL) { 2427 struct ifnet *ifp = sc->sc_ifp; 2428 2429 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2430 sc->sc_stats.ast_tx_qstop++; 2431 IF_LOCK(&ifp->if_snd); 2432 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2433 IF_UNLOCK(&ifp->if_snd); 2434 } 2435 return bf; 2436 } 2437 2438 void 2439 ath_start(struct ifnet *ifp) 2440 { 2441 struct ath_softc *sc = ifp->if_softc; 2442 struct ieee80211_node *ni; 2443 struct ath_buf *bf; 2444 struct mbuf *m, *next; 2445 ath_bufhead frags; 2446 2447 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2448 return; 2449 2450 /* XXX is it ok to hold the ATH_LOCK here? */ 2451 ATH_PCU_LOCK(sc); 2452 if (sc->sc_inreset_cnt > 0) { 2453 device_printf(sc->sc_dev, 2454 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2455 ATH_PCU_UNLOCK(sc); 2456 IF_LOCK(&ifp->if_snd); 2457 sc->sc_stats.ast_tx_qstop++; 2458 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2459 IF_UNLOCK(&ifp->if_snd); 2460 return; 2461 } 2462 sc->sc_txstart_cnt++; 2463 ATH_PCU_UNLOCK(sc); 2464 2465 for (;;) { 2466 ATH_TXBUF_LOCK(sc); 2467 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2468 /* XXX increment counter? */ 2469 ATH_TXBUF_UNLOCK(sc); 2470 IF_LOCK(&ifp->if_snd); 2471 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2472 IF_UNLOCK(&ifp->if_snd); 2473 break; 2474 } 2475 ATH_TXBUF_UNLOCK(sc); 2476 2477 /* 2478 * Grab a TX buffer and associated resources. 2479 */ 2480 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2481 if (bf == NULL) 2482 break; 2483 2484 IFQ_DEQUEUE(&ifp->if_snd, m); 2485 if (m == NULL) { 2486 ATH_TXBUF_LOCK(sc); 2487 ath_returnbuf_head(sc, bf); 2488 ATH_TXBUF_UNLOCK(sc); 2489 break; 2490 } 2491 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2492 /* 2493 * Check for fragmentation. If this frame 2494 * has been broken up verify we have enough 2495 * buffers to send all the fragments so all 2496 * go out or none... 2497 */ 2498 TAILQ_INIT(&frags); 2499 if ((m->m_flags & M_FRAG) && 2500 !ath_txfrag_setup(sc, &frags, m, ni)) { 2501 DPRINTF(sc, ATH_DEBUG_XMIT, 2502 "%s: out of txfrag buffers\n", __func__); 2503 sc->sc_stats.ast_tx_nofrag++; 2504 ifp->if_oerrors++; 2505 ath_freetx(m); 2506 goto bad; 2507 } 2508 ifp->if_opackets++; 2509 nextfrag: 2510 /* 2511 * Pass the frame to the h/w for transmission. 2512 * Fragmented frames have each frag chained together 2513 * with m_nextpkt. We know there are sufficient ath_buf's 2514 * to send all the frags because of work done by 2515 * ath_txfrag_setup. We leave m_nextpkt set while 2516 * calling ath_tx_start so it can use it to extend the 2517 * the tx duration to cover the subsequent frag and 2518 * so it can reclaim all the mbufs in case of an error; 2519 * ath_tx_start clears m_nextpkt once it commits to 2520 * handing the frame to the hardware. 2521 */ 2522 next = m->m_nextpkt; 2523 if (ath_tx_start(sc, ni, bf, m)) { 2524 bad: 2525 ifp->if_oerrors++; 2526 reclaim: 2527 bf->bf_m = NULL; 2528 bf->bf_node = NULL; 2529 ATH_TXBUF_LOCK(sc); 2530 ath_returnbuf_head(sc, bf); 2531 ath_txfrag_cleanup(sc, &frags, ni); 2532 ATH_TXBUF_UNLOCK(sc); 2533 if (ni != NULL) 2534 ieee80211_free_node(ni); 2535 continue; 2536 } 2537 if (next != NULL) { 2538 /* 2539 * Beware of state changing between frags. 2540 * XXX check sta power-save state? 2541 */ 2542 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2543 DPRINTF(sc, ATH_DEBUG_XMIT, 2544 "%s: flush fragmented packet, state %s\n", 2545 __func__, 2546 ieee80211_state_name[ni->ni_vap->iv_state]); 2547 ath_freetx(next); 2548 goto reclaim; 2549 } 2550 m = next; 2551 bf = TAILQ_FIRST(&frags); 2552 KASSERT(bf != NULL, ("no buf for txfrag")); 2553 TAILQ_REMOVE(&frags, bf, bf_list); 2554 goto nextfrag; 2555 } 2556 2557 sc->sc_wd_timer = 5; 2558 } 2559 2560 ATH_PCU_LOCK(sc); 2561 sc->sc_txstart_cnt--; 2562 ATH_PCU_UNLOCK(sc); 2563 } 2564 2565 static int 2566 ath_media_change(struct ifnet *ifp) 2567 { 2568 int error = ieee80211_media_change(ifp); 2569 /* NB: only the fixed rate can change and that doesn't need a reset */ 2570 return (error == ENETRESET ? 0 : error); 2571 } 2572 2573 /* 2574 * Block/unblock tx+rx processing while a key change is done. 2575 * We assume the caller serializes key management operations 2576 * so we only need to worry about synchronization with other 2577 * uses that originate in the driver. 2578 */ 2579 static void 2580 ath_key_update_begin(struct ieee80211vap *vap) 2581 { 2582 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2583 struct ath_softc *sc = ifp->if_softc; 2584 2585 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2586 taskqueue_block(sc->sc_tq); 2587 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2588 } 2589 2590 static void 2591 ath_key_update_end(struct ieee80211vap *vap) 2592 { 2593 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2594 struct ath_softc *sc = ifp->if_softc; 2595 2596 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2597 IF_UNLOCK(&ifp->if_snd); 2598 taskqueue_unblock(sc->sc_tq); 2599 } 2600 2601 static void 2602 ath_update_promisc(struct ifnet *ifp) 2603 { 2604 struct ath_softc *sc = ifp->if_softc; 2605 u_int32_t rfilt; 2606 2607 /* configure rx filter */ 2608 rfilt = ath_calcrxfilter(sc); 2609 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2610 2611 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2612 } 2613 2614 static void 2615 ath_update_mcast(struct ifnet *ifp) 2616 { 2617 struct ath_softc *sc = ifp->if_softc; 2618 u_int32_t mfilt[2]; 2619 2620 /* calculate and install multicast filter */ 2621 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2622 struct ifmultiaddr *ifma; 2623 /* 2624 * Merge multicast addresses to form the hardware filter. 2625 */ 2626 mfilt[0] = mfilt[1] = 0; 2627 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2628 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2629 caddr_t dl; 2630 u_int32_t val; 2631 u_int8_t pos; 2632 2633 /* calculate XOR of eight 6bit values */ 2634 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2635 val = LE_READ_4(dl + 0); 2636 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2637 val = LE_READ_4(dl + 3); 2638 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2639 pos &= 0x3f; 2640 mfilt[pos / 32] |= (1 << (pos % 32)); 2641 } 2642 if_maddr_runlock(ifp); 2643 } else 2644 mfilt[0] = mfilt[1] = ~0; 2645 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2646 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2647 __func__, mfilt[0], mfilt[1]); 2648 } 2649 2650 void 2651 ath_mode_init(struct ath_softc *sc) 2652 { 2653 struct ifnet *ifp = sc->sc_ifp; 2654 struct ath_hal *ah = sc->sc_ah; 2655 u_int32_t rfilt; 2656 2657 /* configure rx filter */ 2658 rfilt = ath_calcrxfilter(sc); 2659 ath_hal_setrxfilter(ah, rfilt); 2660 2661 /* configure operational mode */ 2662 ath_hal_setopmode(ah); 2663 2664 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2665 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2666 __func__, 2667 ah, 2668 ifp, 2669 (ifp == NULL) ? NULL : ifp->if_addr); 2670 2671 /* handle any link-level address change */ 2672 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2673 2674 /* calculate and install multicast filter */ 2675 ath_update_mcast(ifp); 2676 } 2677 2678 /* 2679 * Set the slot time based on the current setting. 2680 */ 2681 void 2682 ath_setslottime(struct ath_softc *sc) 2683 { 2684 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2685 struct ath_hal *ah = sc->sc_ah; 2686 u_int usec; 2687 2688 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2689 usec = 13; 2690 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2691 usec = 21; 2692 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2693 /* honor short/long slot time only in 11g */ 2694 /* XXX shouldn't honor on pure g or turbo g channel */ 2695 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2696 usec = HAL_SLOT_TIME_9; 2697 else 2698 usec = HAL_SLOT_TIME_20; 2699 } else 2700 usec = HAL_SLOT_TIME_9; 2701 2702 DPRINTF(sc, ATH_DEBUG_RESET, 2703 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2704 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2705 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2706 2707 ath_hal_setslottime(ah, usec); 2708 sc->sc_updateslot = OK; 2709 } 2710 2711 /* 2712 * Callback from the 802.11 layer to update the 2713 * slot time based on the current setting. 2714 */ 2715 static void 2716 ath_updateslot(struct ifnet *ifp) 2717 { 2718 struct ath_softc *sc = ifp->if_softc; 2719 struct ieee80211com *ic = ifp->if_l2com; 2720 2721 /* 2722 * When not coordinating the BSS, change the hardware 2723 * immediately. For other operation we defer the change 2724 * until beacon updates have propagated to the stations. 2725 */ 2726 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2727 ic->ic_opmode == IEEE80211_M_MBSS) 2728 sc->sc_updateslot = UPDATE; 2729 else 2730 ath_setslottime(sc); 2731 } 2732 2733 /* 2734 * Append the contents of src to dst; both queues 2735 * are assumed to be locked. 2736 */ 2737 void 2738 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2739 { 2740 2741 ATH_TXQ_LOCK_ASSERT(dst); 2742 ATH_TXQ_LOCK_ASSERT(src); 2743 2744 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2745 dst->axq_link = src->axq_link; 2746 src->axq_link = NULL; 2747 dst->axq_depth += src->axq_depth; 2748 dst->axq_aggr_depth += src->axq_aggr_depth; 2749 src->axq_depth = 0; 2750 src->axq_aggr_depth = 0; 2751 } 2752 2753 /* 2754 * Reset the hardware, with no loss. 2755 * 2756 * This can't be used for a general case reset. 2757 */ 2758 static void 2759 ath_reset_proc(void *arg, int pending) 2760 { 2761 struct ath_softc *sc = arg; 2762 struct ifnet *ifp = sc->sc_ifp; 2763 2764 #if 0 2765 if_printf(ifp, "%s: resetting\n", __func__); 2766 #endif 2767 ath_reset(ifp, ATH_RESET_NOLOSS); 2768 } 2769 2770 /* 2771 * Reset the hardware after detecting beacons have stopped. 2772 */ 2773 static void 2774 ath_bstuck_proc(void *arg, int pending) 2775 { 2776 struct ath_softc *sc = arg; 2777 struct ifnet *ifp = sc->sc_ifp; 2778 uint32_t hangs = 0; 2779 2780 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2781 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2782 2783 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2784 sc->sc_bmisscount); 2785 sc->sc_stats.ast_bstuck++; 2786 /* 2787 * This assumes that there's no simultaneous channel mode change 2788 * occuring. 2789 */ 2790 ath_reset(ifp, ATH_RESET_NOLOSS); 2791 } 2792 2793 static void 2794 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2795 { 2796 bus_addr_t *paddr = (bus_addr_t*) arg; 2797 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2798 *paddr = segs->ds_addr; 2799 } 2800 2801 /* 2802 * Allocate the descriptors and appropriate DMA tag/setup. 2803 * 2804 * For some situations (eg EDMA TX completion), there isn't a requirement 2805 * for the ath_buf entries to be allocated. 2806 */ 2807 int 2808 ath_descdma_alloc_desc(struct ath_softc *sc, 2809 struct ath_descdma *dd, ath_bufhead *head, 2810 const char *name, int ds_size, int ndesc) 2811 { 2812 #define DS2PHYS(_dd, _ds) \ 2813 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2814 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2815 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2816 struct ifnet *ifp = sc->sc_ifp; 2817 int error; 2818 2819 dd->dd_descsize = ds_size; 2820 2821 DPRINTF(sc, ATH_DEBUG_RESET, 2822 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2823 __func__, name, ndesc, dd->dd_descsize); 2824 2825 dd->dd_name = name; 2826 dd->dd_desc_len = dd->dd_descsize * ndesc; 2827 2828 /* 2829 * Merlin work-around: 2830 * Descriptors that cross the 4KB boundary can't be used. 2831 * Assume one skipped descriptor per 4KB page. 2832 */ 2833 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2834 int numpages = dd->dd_desc_len / 4096; 2835 dd->dd_desc_len += ds_size * numpages; 2836 } 2837 2838 /* 2839 * Setup DMA descriptor area. 2840 */ 2841 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2842 PAGE_SIZE, 0, /* alignment, bounds */ 2843 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2844 BUS_SPACE_MAXADDR, /* highaddr */ 2845 NULL, NULL, /* filter, filterarg */ 2846 dd->dd_desc_len, /* maxsize */ 2847 1, /* nsegments */ 2848 dd->dd_desc_len, /* maxsegsize */ 2849 BUS_DMA_ALLOCNOW, /* flags */ 2850 NULL, /* lockfunc */ 2851 NULL, /* lockarg */ 2852 &dd->dd_dmat); 2853 if (error != 0) { 2854 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2855 return error; 2856 } 2857 2858 /* allocate descriptors */ 2859 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2860 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2861 &dd->dd_dmamap); 2862 if (error != 0) { 2863 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2864 "error %u\n", ndesc, dd->dd_name, error); 2865 goto fail1; 2866 } 2867 2868 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2869 dd->dd_desc, dd->dd_desc_len, 2870 ath_load_cb, &dd->dd_desc_paddr, 2871 BUS_DMA_NOWAIT); 2872 if (error != 0) { 2873 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2874 dd->dd_name, error); 2875 goto fail2; 2876 } 2877 2878 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2879 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2880 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2881 /*XXX*/ (u_long) dd->dd_desc_len); 2882 2883 return (0); 2884 2885 fail2: 2886 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2887 fail1: 2888 bus_dma_tag_destroy(dd->dd_dmat); 2889 memset(dd, 0, sizeof(*dd)); 2890 return error; 2891 #undef DS2PHYS 2892 #undef ATH_DESC_4KB_BOUND_CHECK 2893 } 2894 2895 int 2896 ath_descdma_setup(struct ath_softc *sc, 2897 struct ath_descdma *dd, ath_bufhead *head, 2898 const char *name, int ds_size, int nbuf, int ndesc) 2899 { 2900 #define DS2PHYS(_dd, _ds) \ 2901 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2902 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2903 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2904 struct ifnet *ifp = sc->sc_ifp; 2905 uint8_t *ds; 2906 struct ath_buf *bf; 2907 int i, bsize, error; 2908 2909 /* Allocate descriptors */ 2910 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2911 nbuf * ndesc); 2912 2913 /* Assume any errors during allocation were dealt with */ 2914 if (error != 0) { 2915 return (error); 2916 } 2917 2918 ds = (uint8_t *) dd->dd_desc; 2919 2920 /* allocate rx buffers */ 2921 bsize = sizeof(struct ath_buf) * nbuf; 2922 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2923 if (bf == NULL) { 2924 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2925 dd->dd_name, bsize); 2926 goto fail3; 2927 } 2928 dd->dd_bufptr = bf; 2929 2930 TAILQ_INIT(head); 2931 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 2932 bf->bf_desc = (struct ath_desc *) ds; 2933 bf->bf_daddr = DS2PHYS(dd, ds); 2934 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2935 /* 2936 * Merlin WAR: Skip descriptor addresses which 2937 * cause 4KB boundary crossing along any point 2938 * in the descriptor. 2939 */ 2940 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2941 dd->dd_descsize)) { 2942 /* Start at the next page */ 2943 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2944 bf->bf_desc = (struct ath_desc *) ds; 2945 bf->bf_daddr = DS2PHYS(dd, ds); 2946 } 2947 } 2948 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2949 &bf->bf_dmamap); 2950 if (error != 0) { 2951 if_printf(ifp, "unable to create dmamap for %s " 2952 "buffer %u, error %u\n", dd->dd_name, i, error); 2953 ath_descdma_cleanup(sc, dd, head); 2954 return error; 2955 } 2956 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2957 TAILQ_INSERT_TAIL(head, bf, bf_list); 2958 } 2959 2960 /* 2961 * XXX TODO: ensure that ds doesn't overflow the descriptor 2962 * allocation otherwise weird stuff will occur and crash your 2963 * machine. 2964 */ 2965 return 0; 2966 /* XXX this should likely just call ath_descdma_cleanup() */ 2967 fail3: 2968 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2969 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2970 bus_dma_tag_destroy(dd->dd_dmat); 2971 memset(dd, 0, sizeof(*dd)); 2972 return error; 2973 #undef DS2PHYS 2974 #undef ATH_DESC_4KB_BOUND_CHECK 2975 } 2976 2977 /* 2978 * Allocate ath_buf entries but no descriptor contents. 2979 * 2980 * This is for RX EDMA where the descriptors are the header part of 2981 * the RX buffer. 2982 */ 2983 int 2984 ath_descdma_setup_rx_edma(struct ath_softc *sc, 2985 struct ath_descdma *dd, ath_bufhead *head, 2986 const char *name, int nbuf, int rx_status_len) 2987 { 2988 struct ifnet *ifp = sc->sc_ifp; 2989 struct ath_buf *bf; 2990 int i, bsize, error; 2991 2992 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 2993 __func__, name, nbuf); 2994 2995 dd->dd_name = name; 2996 /* 2997 * This is (mostly) purely for show. We're not allocating any actual 2998 * descriptors here as EDMA RX has the descriptor be part 2999 * of the RX buffer. 3000 * 3001 * However, dd_desc_len is used by ath_descdma_free() to determine 3002 * whether we have already freed this DMA mapping. 3003 */ 3004 dd->dd_desc_len = rx_status_len * nbuf; 3005 dd->dd_descsize = rx_status_len; 3006 3007 /* allocate rx buffers */ 3008 bsize = sizeof(struct ath_buf) * nbuf; 3009 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3010 if (bf == NULL) { 3011 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3012 dd->dd_name, bsize); 3013 error = ENOMEM; 3014 goto fail3; 3015 } 3016 dd->dd_bufptr = bf; 3017 3018 TAILQ_INIT(head); 3019 for (i = 0; i < nbuf; i++, bf++) { 3020 bf->bf_desc = NULL; 3021 bf->bf_daddr = 0; 3022 bf->bf_lastds = NULL; /* Just an initial value */ 3023 3024 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3025 &bf->bf_dmamap); 3026 if (error != 0) { 3027 if_printf(ifp, "unable to create dmamap for %s " 3028 "buffer %u, error %u\n", dd->dd_name, i, error); 3029 ath_descdma_cleanup(sc, dd, head); 3030 return error; 3031 } 3032 TAILQ_INSERT_TAIL(head, bf, bf_list); 3033 } 3034 return 0; 3035 fail3: 3036 memset(dd, 0, sizeof(*dd)); 3037 return error; 3038 } 3039 3040 void 3041 ath_descdma_cleanup(struct ath_softc *sc, 3042 struct ath_descdma *dd, ath_bufhead *head) 3043 { 3044 struct ath_buf *bf; 3045 struct ieee80211_node *ni; 3046 3047 if (dd->dd_dmamap != 0) { 3048 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3049 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3050 bus_dma_tag_destroy(dd->dd_dmat); 3051 } 3052 3053 if (head != NULL) { 3054 TAILQ_FOREACH(bf, head, bf_list) { 3055 if (bf->bf_m) { 3056 m_freem(bf->bf_m); 3057 bf->bf_m = NULL; 3058 } 3059 if (bf->bf_dmamap != NULL) { 3060 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3061 bf->bf_dmamap = NULL; 3062 } 3063 ni = bf->bf_node; 3064 bf->bf_node = NULL; 3065 if (ni != NULL) { 3066 /* 3067 * Reclaim node reference. 3068 */ 3069 ieee80211_free_node(ni); 3070 } 3071 } 3072 } 3073 3074 if (head != NULL) 3075 TAILQ_INIT(head); 3076 3077 if (dd->dd_bufptr != NULL) 3078 free(dd->dd_bufptr, M_ATHDEV); 3079 memset(dd, 0, sizeof(*dd)); 3080 } 3081 3082 static int 3083 ath_desc_alloc(struct ath_softc *sc) 3084 { 3085 int error; 3086 3087 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3088 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3089 if (error != 0) { 3090 return error; 3091 } 3092 sc->sc_txbuf_cnt = ath_txbuf; 3093 3094 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3095 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3096 ATH_TXDESC); 3097 if (error != 0) { 3098 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3099 return error; 3100 } 3101 3102 /* 3103 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3104 * flag doesn't have to be set in ath_getbuf_locked(). 3105 */ 3106 3107 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3108 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3109 if (error != 0) { 3110 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3111 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3112 &sc->sc_txbuf_mgmt); 3113 return error; 3114 } 3115 return 0; 3116 } 3117 3118 static void 3119 ath_desc_free(struct ath_softc *sc) 3120 { 3121 3122 if (sc->sc_bdma.dd_desc_len != 0) 3123 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3124 if (sc->sc_txdma.dd_desc_len != 0) 3125 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3126 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3127 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3128 &sc->sc_txbuf_mgmt); 3129 } 3130 3131 static struct ieee80211_node * 3132 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3133 { 3134 struct ieee80211com *ic = vap->iv_ic; 3135 struct ath_softc *sc = ic->ic_ifp->if_softc; 3136 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3137 struct ath_node *an; 3138 3139 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3140 if (an == NULL) { 3141 /* XXX stat+msg */ 3142 return NULL; 3143 } 3144 ath_rate_node_init(sc, an); 3145 3146 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3147 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3148 device_get_nameunit(sc->sc_dev), an); 3149 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3150 3151 /* XXX setup ath_tid */ 3152 ath_tx_tid_init(sc, an); 3153 3154 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3155 return &an->an_node; 3156 } 3157 3158 static void 3159 ath_node_cleanup(struct ieee80211_node *ni) 3160 { 3161 struct ieee80211com *ic = ni->ni_ic; 3162 struct ath_softc *sc = ic->ic_ifp->if_softc; 3163 3164 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3165 ath_tx_node_flush(sc, ATH_NODE(ni)); 3166 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3167 sc->sc_node_cleanup(ni); 3168 } 3169 3170 static void 3171 ath_node_free(struct ieee80211_node *ni) 3172 { 3173 struct ieee80211com *ic = ni->ni_ic; 3174 struct ath_softc *sc = ic->ic_ifp->if_softc; 3175 3176 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3177 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3178 sc->sc_node_free(ni); 3179 } 3180 3181 static void 3182 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3183 { 3184 struct ieee80211com *ic = ni->ni_ic; 3185 struct ath_softc *sc = ic->ic_ifp->if_softc; 3186 struct ath_hal *ah = sc->sc_ah; 3187 3188 *rssi = ic->ic_node_getrssi(ni); 3189 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3190 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3191 else 3192 *noise = -95; /* nominally correct */ 3193 } 3194 3195 /* 3196 * Set the default antenna. 3197 */ 3198 void 3199 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3200 { 3201 struct ath_hal *ah = sc->sc_ah; 3202 3203 /* XXX block beacon interrupts */ 3204 ath_hal_setdefantenna(ah, antenna); 3205 if (sc->sc_defant != antenna) 3206 sc->sc_stats.ast_ant_defswitch++; 3207 sc->sc_defant = antenna; 3208 sc->sc_rxotherant = 0; 3209 } 3210 3211 static void 3212 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3213 { 3214 txq->axq_qnum = qnum; 3215 txq->axq_ac = 0; 3216 txq->axq_depth = 0; 3217 txq->axq_aggr_depth = 0; 3218 txq->axq_intrcnt = 0; 3219 txq->axq_link = NULL; 3220 txq->axq_softc = sc; 3221 TAILQ_INIT(&txq->axq_q); 3222 TAILQ_INIT(&txq->axq_tidq); 3223 ATH_TXQ_LOCK_INIT(sc, txq); 3224 } 3225 3226 /* 3227 * Setup a h/w transmit queue. 3228 */ 3229 static struct ath_txq * 3230 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3231 { 3232 #define N(a) (sizeof(a)/sizeof(a[0])) 3233 struct ath_hal *ah = sc->sc_ah; 3234 HAL_TXQ_INFO qi; 3235 int qnum; 3236 3237 memset(&qi, 0, sizeof(qi)); 3238 qi.tqi_subtype = subtype; 3239 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3240 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3241 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3242 /* 3243 * Enable interrupts only for EOL and DESC conditions. 3244 * We mark tx descriptors to receive a DESC interrupt 3245 * when a tx queue gets deep; otherwise waiting for the 3246 * EOL to reap descriptors. Note that this is done to 3247 * reduce interrupt load and this only defers reaping 3248 * descriptors, never transmitting frames. Aside from 3249 * reducing interrupts this also permits more concurrency. 3250 * The only potential downside is if the tx queue backs 3251 * up in which case the top half of the kernel may backup 3252 * due to a lack of tx descriptors. 3253 */ 3254 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3255 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3256 if (qnum == -1) { 3257 /* 3258 * NB: don't print a message, this happens 3259 * normally on parts with too few tx queues 3260 */ 3261 return NULL; 3262 } 3263 if (qnum >= N(sc->sc_txq)) { 3264 device_printf(sc->sc_dev, 3265 "hal qnum %u out of range, max %zu!\n", 3266 qnum, N(sc->sc_txq)); 3267 ath_hal_releasetxqueue(ah, qnum); 3268 return NULL; 3269 } 3270 if (!ATH_TXQ_SETUP(sc, qnum)) { 3271 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3272 sc->sc_txqsetup |= 1<<qnum; 3273 } 3274 return &sc->sc_txq[qnum]; 3275 #undef N 3276 } 3277 3278 /* 3279 * Setup a hardware data transmit queue for the specified 3280 * access control. The hal may not support all requested 3281 * queues in which case it will return a reference to a 3282 * previously setup queue. We record the mapping from ac's 3283 * to h/w queues for use by ath_tx_start and also track 3284 * the set of h/w queues being used to optimize work in the 3285 * transmit interrupt handler and related routines. 3286 */ 3287 static int 3288 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3289 { 3290 #define N(a) (sizeof(a)/sizeof(a[0])) 3291 struct ath_txq *txq; 3292 3293 if (ac >= N(sc->sc_ac2q)) { 3294 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3295 ac, N(sc->sc_ac2q)); 3296 return 0; 3297 } 3298 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3299 if (txq != NULL) { 3300 txq->axq_ac = ac; 3301 sc->sc_ac2q[ac] = txq; 3302 return 1; 3303 } else 3304 return 0; 3305 #undef N 3306 } 3307 3308 /* 3309 * Update WME parameters for a transmit queue. 3310 */ 3311 static int 3312 ath_txq_update(struct ath_softc *sc, int ac) 3313 { 3314 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3315 #define ATH_TXOP_TO_US(v) (v<<5) 3316 struct ifnet *ifp = sc->sc_ifp; 3317 struct ieee80211com *ic = ifp->if_l2com; 3318 struct ath_txq *txq = sc->sc_ac2q[ac]; 3319 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3320 struct ath_hal *ah = sc->sc_ah; 3321 HAL_TXQ_INFO qi; 3322 3323 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3324 #ifdef IEEE80211_SUPPORT_TDMA 3325 if (sc->sc_tdma) { 3326 /* 3327 * AIFS is zero so there's no pre-transmit wait. The 3328 * burst time defines the slot duration and is configured 3329 * through net80211. The QCU is setup to not do post-xmit 3330 * back off, lockout all lower-priority QCU's, and fire 3331 * off the DMA beacon alert timer which is setup based 3332 * on the slot configuration. 3333 */ 3334 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3335 | HAL_TXQ_TXERRINT_ENABLE 3336 | HAL_TXQ_TXURNINT_ENABLE 3337 | HAL_TXQ_TXEOLINT_ENABLE 3338 | HAL_TXQ_DBA_GATED 3339 | HAL_TXQ_BACKOFF_DISABLE 3340 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3341 ; 3342 qi.tqi_aifs = 0; 3343 /* XXX +dbaprep? */ 3344 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3345 qi.tqi_burstTime = qi.tqi_readyTime; 3346 } else { 3347 #endif 3348 /* 3349 * XXX shouldn't this just use the default flags 3350 * used in the previous queue setup? 3351 */ 3352 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3353 | HAL_TXQ_TXERRINT_ENABLE 3354 | HAL_TXQ_TXDESCINT_ENABLE 3355 | HAL_TXQ_TXURNINT_ENABLE 3356 | HAL_TXQ_TXEOLINT_ENABLE 3357 ; 3358 qi.tqi_aifs = wmep->wmep_aifsn; 3359 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3360 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3361 qi.tqi_readyTime = 0; 3362 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3363 #ifdef IEEE80211_SUPPORT_TDMA 3364 } 3365 #endif 3366 3367 DPRINTF(sc, ATH_DEBUG_RESET, 3368 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3369 __func__, txq->axq_qnum, qi.tqi_qflags, 3370 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3371 3372 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3373 if_printf(ifp, "unable to update hardware queue " 3374 "parameters for %s traffic!\n", 3375 ieee80211_wme_acnames[ac]); 3376 return 0; 3377 } else { 3378 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3379 return 1; 3380 } 3381 #undef ATH_TXOP_TO_US 3382 #undef ATH_EXPONENT_TO_VALUE 3383 } 3384 3385 /* 3386 * Callback from the 802.11 layer to update WME parameters. 3387 */ 3388 int 3389 ath_wme_update(struct ieee80211com *ic) 3390 { 3391 struct ath_softc *sc = ic->ic_ifp->if_softc; 3392 3393 return !ath_txq_update(sc, WME_AC_BE) || 3394 !ath_txq_update(sc, WME_AC_BK) || 3395 !ath_txq_update(sc, WME_AC_VI) || 3396 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3397 } 3398 3399 /* 3400 * Reclaim resources for a setup queue. 3401 */ 3402 static void 3403 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3404 { 3405 3406 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3407 ATH_TXQ_LOCK_DESTROY(txq); 3408 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3409 } 3410 3411 /* 3412 * Reclaim all tx queue resources. 3413 */ 3414 static void 3415 ath_tx_cleanup(struct ath_softc *sc) 3416 { 3417 int i; 3418 3419 ATH_TXBUF_LOCK_DESTROY(sc); 3420 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3421 if (ATH_TXQ_SETUP(sc, i)) 3422 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3423 } 3424 3425 /* 3426 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3427 * using the current rates in sc_rixmap. 3428 */ 3429 int 3430 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3431 { 3432 int rix = sc->sc_rixmap[rate]; 3433 /* NB: return lowest rix for invalid rate */ 3434 return (rix == 0xff ? 0 : rix); 3435 } 3436 3437 static void 3438 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3439 struct ath_buf *bf) 3440 { 3441 struct ieee80211_node *ni = bf->bf_node; 3442 struct ifnet *ifp = sc->sc_ifp; 3443 struct ieee80211com *ic = ifp->if_l2com; 3444 int sr, lr, pri; 3445 3446 if (ts->ts_status == 0) { 3447 u_int8_t txant = ts->ts_antenna; 3448 sc->sc_stats.ast_ant_tx[txant]++; 3449 sc->sc_ant_tx[txant]++; 3450 if (ts->ts_finaltsi != 0) 3451 sc->sc_stats.ast_tx_altrate++; 3452 pri = M_WME_GETAC(bf->bf_m); 3453 if (pri >= WME_AC_VO) 3454 ic->ic_wme.wme_hipri_traffic++; 3455 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3456 ni->ni_inact = ni->ni_inact_reload; 3457 } else { 3458 if (ts->ts_status & HAL_TXERR_XRETRY) 3459 sc->sc_stats.ast_tx_xretries++; 3460 if (ts->ts_status & HAL_TXERR_FIFO) 3461 sc->sc_stats.ast_tx_fifoerr++; 3462 if (ts->ts_status & HAL_TXERR_FILT) 3463 sc->sc_stats.ast_tx_filtered++; 3464 if (ts->ts_status & HAL_TXERR_XTXOP) 3465 sc->sc_stats.ast_tx_xtxop++; 3466 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3467 sc->sc_stats.ast_tx_timerexpired++; 3468 3469 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3470 sc->sc_stats.ast_tx_data_underrun++; 3471 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3472 sc->sc_stats.ast_tx_delim_underrun++; 3473 3474 if (bf->bf_m->m_flags & M_FF) 3475 sc->sc_stats.ast_ff_txerr++; 3476 } 3477 /* XXX when is this valid? */ 3478 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3479 sc->sc_stats.ast_tx_desccfgerr++; 3480 3481 sr = ts->ts_shortretry; 3482 lr = ts->ts_longretry; 3483 sc->sc_stats.ast_tx_shortretry += sr; 3484 sc->sc_stats.ast_tx_longretry += lr; 3485 3486 } 3487 3488 /* 3489 * The default completion. If fail is 1, this means 3490 * "please don't retry the frame, and just return -1 status 3491 * to the net80211 stack. 3492 */ 3493 void 3494 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3495 { 3496 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3497 int st; 3498 3499 if (fail == 1) 3500 st = -1; 3501 else 3502 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3503 ts->ts_status : HAL_TXERR_XRETRY; 3504 3505 if (bf->bf_state.bfs_dobaw) 3506 device_printf(sc->sc_dev, 3507 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3508 __func__, 3509 bf, 3510 SEQNO(bf->bf_state.bfs_seqno)); 3511 if (bf->bf_next != NULL) 3512 device_printf(sc->sc_dev, 3513 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3514 __func__, 3515 bf, 3516 SEQNO(bf->bf_state.bfs_seqno)); 3517 3518 /* 3519 * Do any tx complete callback. Note this must 3520 * be done before releasing the node reference. 3521 * This will free the mbuf, release the net80211 3522 * node and recycle the ath_buf. 3523 */ 3524 ath_tx_freebuf(sc, bf, st); 3525 } 3526 3527 /* 3528 * Update rate control with the given completion status. 3529 */ 3530 void 3531 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3532 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3533 int nframes, int nbad) 3534 { 3535 struct ath_node *an; 3536 3537 /* Only for unicast frames */ 3538 if (ni == NULL) 3539 return; 3540 3541 an = ATH_NODE(ni); 3542 3543 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3544 ATH_NODE_LOCK(an); 3545 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3546 ATH_NODE_UNLOCK(an); 3547 } 3548 } 3549 3550 /* 3551 * Update the busy status of the last frame on the free list. 3552 * When doing TDMA, the busy flag tracks whether the hardware 3553 * currently points to this buffer or not, and thus gated DMA 3554 * may restart by re-reading the last descriptor in this 3555 * buffer. 3556 * 3557 * This should be called in the completion function once one 3558 * of the buffers has been used. 3559 */ 3560 static void 3561 ath_tx_update_busy(struct ath_softc *sc) 3562 { 3563 struct ath_buf *last; 3564 3565 /* 3566 * Since the last frame may still be marked 3567 * as ATH_BUF_BUSY, unmark it here before 3568 * finishing the frame processing. 3569 * Since we've completed a frame (aggregate 3570 * or otherwise), the hardware has moved on 3571 * and is no longer referencing the previous 3572 * descriptor. 3573 */ 3574 ATH_TXBUF_LOCK_ASSERT(sc); 3575 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3576 if (last != NULL) 3577 last->bf_flags &= ~ATH_BUF_BUSY; 3578 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3579 if (last != NULL) 3580 last->bf_flags &= ~ATH_BUF_BUSY; 3581 } 3582 3583 /* 3584 * Process the completion of the given buffer. 3585 * 3586 * This calls the rate control update and then the buffer completion. 3587 * This will either free the buffer or requeue it. In any case, the 3588 * bf pointer should be treated as invalid after this function is called. 3589 */ 3590 void 3591 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3592 struct ath_tx_status *ts, struct ath_buf *bf) 3593 { 3594 struct ieee80211_node *ni = bf->bf_node; 3595 struct ath_node *an = NULL; 3596 3597 ATH_TXQ_UNLOCK_ASSERT(txq); 3598 3599 /* If unicast frame, update general statistics */ 3600 if (ni != NULL) { 3601 an = ATH_NODE(ni); 3602 /* update statistics */ 3603 ath_tx_update_stats(sc, ts, bf); 3604 } 3605 3606 /* 3607 * Call the completion handler. 3608 * The completion handler is responsible for 3609 * calling the rate control code. 3610 * 3611 * Frames with no completion handler get the 3612 * rate control code called here. 3613 */ 3614 if (bf->bf_comp == NULL) { 3615 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3616 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3617 /* 3618 * XXX assume this isn't an aggregate 3619 * frame. 3620 */ 3621 ath_tx_update_ratectrl(sc, ni, 3622 bf->bf_state.bfs_rc, ts, 3623 bf->bf_state.bfs_pktlen, 1, 3624 (ts->ts_status == 0 ? 0 : 1)); 3625 } 3626 ath_tx_default_comp(sc, bf, 0); 3627 } else 3628 bf->bf_comp(sc, bf, 0); 3629 } 3630 3631 3632 3633 /* 3634 * Process completed xmit descriptors from the specified queue. 3635 * Kick the packet scheduler if needed. This can occur from this 3636 * particular task. 3637 */ 3638 static int 3639 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3640 { 3641 struct ath_hal *ah = sc->sc_ah; 3642 struct ath_buf *bf; 3643 struct ath_desc *ds; 3644 struct ath_tx_status *ts; 3645 struct ieee80211_node *ni; 3646 #ifdef IEEE80211_SUPPORT_SUPERG 3647 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3648 #endif /* IEEE80211_SUPPORT_SUPERG */ 3649 int nacked; 3650 HAL_STATUS status; 3651 3652 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3653 __func__, txq->axq_qnum, 3654 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3655 txq->axq_link); 3656 nacked = 0; 3657 for (;;) { 3658 ATH_TXQ_LOCK(txq); 3659 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3660 bf = TAILQ_FIRST(&txq->axq_q); 3661 if (bf == NULL) { 3662 ATH_TXQ_UNLOCK(txq); 3663 break; 3664 } 3665 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3666 ts = &bf->bf_status.ds_txstat; 3667 status = ath_hal_txprocdesc(ah, ds, ts); 3668 #ifdef ATH_DEBUG 3669 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3670 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3671 status == HAL_OK); 3672 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 3673 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3674 status == HAL_OK); 3675 } 3676 #endif 3677 if (status == HAL_EINPROGRESS) { 3678 ATH_TXQ_UNLOCK(txq); 3679 break; 3680 } 3681 ATH_TXQ_REMOVE(txq, bf, bf_list); 3682 #ifdef IEEE80211_SUPPORT_TDMA 3683 if (txq->axq_depth > 0) { 3684 /* 3685 * More frames follow. Mark the buffer busy 3686 * so it's not re-used while the hardware may 3687 * still re-read the link field in the descriptor. 3688 * 3689 * Use the last buffer in an aggregate as that 3690 * is where the hardware may be - intermediate 3691 * descriptors won't be "busy". 3692 */ 3693 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3694 } else 3695 #else 3696 if (txq->axq_depth == 0) 3697 #endif 3698 txq->axq_link = NULL; 3699 if (bf->bf_state.bfs_aggr) 3700 txq->axq_aggr_depth--; 3701 3702 ni = bf->bf_node; 3703 /* 3704 * If unicast frame was ack'd update RSSI, 3705 * including the last rx time used to 3706 * workaround phantom bmiss interrupts. 3707 */ 3708 if (ni != NULL && ts->ts_status == 0 && 3709 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3710 nacked++; 3711 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3712 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3713 ts->ts_rssi); 3714 } 3715 ATH_TXQ_UNLOCK(txq); 3716 3717 /* 3718 * Update statistics and call completion 3719 */ 3720 ath_tx_process_buf_completion(sc, txq, ts, bf); 3721 3722 3723 } 3724 #ifdef IEEE80211_SUPPORT_SUPERG 3725 /* 3726 * Flush fast-frame staging queue when traffic slows. 3727 */ 3728 if (txq->axq_depth <= 1) 3729 ieee80211_ff_flush(ic, txq->axq_ac); 3730 #endif 3731 3732 /* Kick the TXQ scheduler */ 3733 if (dosched) { 3734 ATH_TXQ_LOCK(txq); 3735 ath_txq_sched(sc, txq); 3736 ATH_TXQ_UNLOCK(txq); 3737 } 3738 3739 return nacked; 3740 } 3741 3742 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3743 3744 /* 3745 * Deferred processing of transmit interrupt; special-cased 3746 * for a single hardware transmit queue (e.g. 5210 and 5211). 3747 */ 3748 static void 3749 ath_tx_proc_q0(void *arg, int npending) 3750 { 3751 struct ath_softc *sc = arg; 3752 struct ifnet *ifp = sc->sc_ifp; 3753 uint32_t txqs; 3754 3755 ATH_PCU_LOCK(sc); 3756 sc->sc_txproc_cnt++; 3757 txqs = sc->sc_txq_active; 3758 sc->sc_txq_active &= ~txqs; 3759 ATH_PCU_UNLOCK(sc); 3760 3761 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3762 /* XXX why is lastrx updated in tx code? */ 3763 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3764 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3765 ath_tx_processq(sc, sc->sc_cabq, 1); 3766 IF_LOCK(&ifp->if_snd); 3767 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3768 IF_UNLOCK(&ifp->if_snd); 3769 sc->sc_wd_timer = 0; 3770 3771 if (sc->sc_softled) 3772 ath_led_event(sc, sc->sc_txrix); 3773 3774 ATH_PCU_LOCK(sc); 3775 sc->sc_txproc_cnt--; 3776 ATH_PCU_UNLOCK(sc); 3777 3778 ath_tx_kick(sc); 3779 } 3780 3781 /* 3782 * Deferred processing of transmit interrupt; special-cased 3783 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3784 */ 3785 static void 3786 ath_tx_proc_q0123(void *arg, int npending) 3787 { 3788 struct ath_softc *sc = arg; 3789 struct ifnet *ifp = sc->sc_ifp; 3790 int nacked; 3791 uint32_t txqs; 3792 3793 ATH_PCU_LOCK(sc); 3794 sc->sc_txproc_cnt++; 3795 txqs = sc->sc_txq_active; 3796 sc->sc_txq_active &= ~txqs; 3797 ATH_PCU_UNLOCK(sc); 3798 3799 /* 3800 * Process each active queue. 3801 */ 3802 nacked = 0; 3803 if (TXQACTIVE(txqs, 0)) 3804 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3805 if (TXQACTIVE(txqs, 1)) 3806 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3807 if (TXQACTIVE(txqs, 2)) 3808 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3809 if (TXQACTIVE(txqs, 3)) 3810 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3811 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3812 ath_tx_processq(sc, sc->sc_cabq, 1); 3813 if (nacked) 3814 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3815 3816 IF_LOCK(&ifp->if_snd); 3817 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3818 IF_UNLOCK(&ifp->if_snd); 3819 sc->sc_wd_timer = 0; 3820 3821 if (sc->sc_softled) 3822 ath_led_event(sc, sc->sc_txrix); 3823 3824 ATH_PCU_LOCK(sc); 3825 sc->sc_txproc_cnt--; 3826 ATH_PCU_UNLOCK(sc); 3827 3828 ath_tx_kick(sc); 3829 } 3830 3831 /* 3832 * Deferred processing of transmit interrupt. 3833 */ 3834 static void 3835 ath_tx_proc(void *arg, int npending) 3836 { 3837 struct ath_softc *sc = arg; 3838 struct ifnet *ifp = sc->sc_ifp; 3839 int i, nacked; 3840 uint32_t txqs; 3841 3842 ATH_PCU_LOCK(sc); 3843 sc->sc_txproc_cnt++; 3844 txqs = sc->sc_txq_active; 3845 sc->sc_txq_active &= ~txqs; 3846 ATH_PCU_UNLOCK(sc); 3847 3848 /* 3849 * Process each active queue. 3850 */ 3851 nacked = 0; 3852 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3853 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3854 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3855 if (nacked) 3856 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3857 3858 /* XXX check this inside of IF_LOCK? */ 3859 IF_LOCK(&ifp->if_snd); 3860 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3861 IF_UNLOCK(&ifp->if_snd); 3862 sc->sc_wd_timer = 0; 3863 3864 if (sc->sc_softled) 3865 ath_led_event(sc, sc->sc_txrix); 3866 3867 ATH_PCU_LOCK(sc); 3868 sc->sc_txproc_cnt--; 3869 ATH_PCU_UNLOCK(sc); 3870 3871 ath_tx_kick(sc); 3872 } 3873 #undef TXQACTIVE 3874 3875 /* 3876 * Deferred processing of TXQ rescheduling. 3877 */ 3878 static void 3879 ath_txq_sched_tasklet(void *arg, int npending) 3880 { 3881 struct ath_softc *sc = arg; 3882 int i; 3883 3884 /* XXX is skipping ok? */ 3885 ATH_PCU_LOCK(sc); 3886 #if 0 3887 if (sc->sc_inreset_cnt > 0) { 3888 device_printf(sc->sc_dev, 3889 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3890 ATH_PCU_UNLOCK(sc); 3891 return; 3892 } 3893 #endif 3894 sc->sc_txproc_cnt++; 3895 ATH_PCU_UNLOCK(sc); 3896 3897 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3898 if (ATH_TXQ_SETUP(sc, i)) { 3899 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3900 ath_txq_sched(sc, &sc->sc_txq[i]); 3901 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3902 } 3903 } 3904 3905 ATH_PCU_LOCK(sc); 3906 sc->sc_txproc_cnt--; 3907 ATH_PCU_UNLOCK(sc); 3908 } 3909 3910 void 3911 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3912 { 3913 3914 ATH_TXBUF_LOCK_ASSERT(sc); 3915 3916 if (bf->bf_flags & ATH_BUF_MGMT) 3917 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 3918 else { 3919 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3920 sc->sc_txbuf_cnt++; 3921 if (sc->sc_txbuf_cnt > ath_txbuf) { 3922 device_printf(sc->sc_dev, 3923 "%s: sc_txbuf_cnt > %d?\n", 3924 __func__, 3925 ath_txbuf); 3926 sc->sc_txbuf_cnt = ath_txbuf; 3927 } 3928 } 3929 } 3930 3931 void 3932 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 3933 { 3934 3935 ATH_TXBUF_LOCK_ASSERT(sc); 3936 3937 if (bf->bf_flags & ATH_BUF_MGMT) 3938 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 3939 else { 3940 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 3941 sc->sc_txbuf_cnt++; 3942 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 3943 device_printf(sc->sc_dev, 3944 "%s: sc_txbuf_cnt > %d?\n", 3945 __func__, 3946 ATH_TXBUF); 3947 sc->sc_txbuf_cnt = ATH_TXBUF; 3948 } 3949 } 3950 } 3951 3952 /* 3953 * Return a buffer to the pool and update the 'busy' flag on the 3954 * previous 'tail' entry. 3955 * 3956 * This _must_ only be called when the buffer is involved in a completed 3957 * TX. The logic is that if it was part of an active TX, the previous 3958 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3959 * for restart (eg for TDMA.) 3960 * 3961 * The caller must free the mbuf and recycle the node reference. 3962 */ 3963 void 3964 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3965 { 3966 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3967 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3968 3969 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3970 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3971 3972 ATH_TXBUF_LOCK(sc); 3973 ath_tx_update_busy(sc); 3974 ath_returnbuf_tail(sc, bf); 3975 ATH_TXBUF_UNLOCK(sc); 3976 } 3977 3978 /* 3979 * This is currently used by ath_tx_draintxq() and 3980 * ath_tx_tid_free_pkts(). 3981 * 3982 * It recycles a single ath_buf. 3983 */ 3984 void 3985 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 3986 { 3987 struct ieee80211_node *ni = bf->bf_node; 3988 struct mbuf *m0 = bf->bf_m; 3989 3990 bf->bf_node = NULL; 3991 bf->bf_m = NULL; 3992 3993 /* Free the buffer, it's not needed any longer */ 3994 ath_freebuf(sc, bf); 3995 3996 if (ni != NULL) { 3997 /* 3998 * Do any callback and reclaim the node reference. 3999 */ 4000 if (m0->m_flags & M_TXCB) 4001 ieee80211_process_callback(ni, m0, status); 4002 ieee80211_free_node(ni); 4003 } 4004 m_freem(m0); 4005 4006 /* 4007 * XXX the buffer used to be freed -after-, but the DMA map was 4008 * freed where ath_freebuf() now is. I've no idea what this 4009 * will do. 4010 */ 4011 } 4012 4013 void 4014 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4015 { 4016 #ifdef ATH_DEBUG 4017 struct ath_hal *ah = sc->sc_ah; 4018 #endif 4019 struct ath_buf *bf; 4020 u_int ix; 4021 4022 /* 4023 * NB: this assumes output has been stopped and 4024 * we do not need to block ath_tx_proc 4025 */ 4026 ATH_TXBUF_LOCK(sc); 4027 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4028 if (bf != NULL) 4029 bf->bf_flags &= ~ATH_BUF_BUSY; 4030 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4031 if (bf != NULL) 4032 bf->bf_flags &= ~ATH_BUF_BUSY; 4033 ATH_TXBUF_UNLOCK(sc); 4034 4035 for (ix = 0;; ix++) { 4036 ATH_TXQ_LOCK(txq); 4037 bf = TAILQ_FIRST(&txq->axq_q); 4038 if (bf == NULL) { 4039 txq->axq_link = NULL; 4040 /* 4041 * There's currently no flag that indicates 4042 * a buffer is on the FIFO. So until that 4043 * occurs, just clear the FIFO counter here. 4044 * 4045 * Yes, this means that if something in parallel 4046 * is pushing things onto this TXQ and pushing 4047 * _that_ into the hardware, things will get 4048 * very fruity very quickly. 4049 */ 4050 txq->axq_fifo_depth = 0; 4051 ATH_TXQ_UNLOCK(txq); 4052 break; 4053 } 4054 ATH_TXQ_REMOVE(txq, bf, bf_list); 4055 if (bf->bf_state.bfs_aggr) 4056 txq->axq_aggr_depth--; 4057 #ifdef ATH_DEBUG 4058 if (sc->sc_debug & ATH_DEBUG_RESET) { 4059 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4060 int status = 0; 4061 4062 /* 4063 * EDMA operation has a TX completion FIFO 4064 * separate from the TX descriptor, so this 4065 * method of checking the "completion" status 4066 * is wrong. 4067 */ 4068 if (! sc->sc_isedma) { 4069 status = (ath_hal_txprocdesc(ah, 4070 bf->bf_lastds, 4071 &bf->bf_status.ds_txstat) == HAL_OK); 4072 } 4073 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4074 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4075 bf->bf_m->m_len, 0, -1); 4076 } 4077 #endif /* ATH_DEBUG */ 4078 /* 4079 * Since we're now doing magic in the completion 4080 * functions, we -must- call it for aggregation 4081 * destinations or BAW tracking will get upset. 4082 */ 4083 /* 4084 * Clear ATH_BUF_BUSY; the completion handler 4085 * will free the buffer. 4086 */ 4087 ATH_TXQ_UNLOCK(txq); 4088 bf->bf_flags &= ~ATH_BUF_BUSY; 4089 if (bf->bf_comp) 4090 bf->bf_comp(sc, bf, 1); 4091 else 4092 ath_tx_default_comp(sc, bf, 1); 4093 } 4094 4095 /* 4096 * Drain software queued frames which are on 4097 * active TIDs. 4098 */ 4099 ath_tx_txq_drain(sc, txq); 4100 } 4101 4102 static void 4103 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4104 { 4105 struct ath_hal *ah = sc->sc_ah; 4106 4107 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4108 __func__, txq->axq_qnum, 4109 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4110 txq->axq_link); 4111 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4112 } 4113 4114 int 4115 ath_stoptxdma(struct ath_softc *sc) 4116 { 4117 struct ath_hal *ah = sc->sc_ah; 4118 int i; 4119 4120 /* XXX return value */ 4121 if (sc->sc_invalid) 4122 return 0; 4123 4124 if (!sc->sc_invalid) { 4125 /* don't touch the hardware if marked invalid */ 4126 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4127 __func__, sc->sc_bhalq, 4128 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4129 NULL); 4130 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4131 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4132 if (ATH_TXQ_SETUP(sc, i)) 4133 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4134 } 4135 4136 return 1; 4137 } 4138 4139 /* 4140 * Drain the transmit queues and reclaim resources. 4141 */ 4142 void 4143 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4144 { 4145 #ifdef ATH_DEBUG 4146 struct ath_hal *ah = sc->sc_ah; 4147 #endif 4148 struct ifnet *ifp = sc->sc_ifp; 4149 int i; 4150 4151 (void) ath_stoptxdma(sc); 4152 4153 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4154 /* 4155 * XXX TODO: should we just handle the completed TX frames 4156 * here, whether or not the reset is a full one or not? 4157 */ 4158 if (ATH_TXQ_SETUP(sc, i)) { 4159 if (reset_type == ATH_RESET_NOLOSS) 4160 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4161 else 4162 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4163 } 4164 } 4165 #ifdef ATH_DEBUG 4166 if (sc->sc_debug & ATH_DEBUG_RESET) { 4167 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4168 if (bf != NULL && bf->bf_m != NULL) { 4169 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4170 ath_hal_txprocdesc(ah, bf->bf_lastds, 4171 &bf->bf_status.ds_txstat) == HAL_OK); 4172 ieee80211_dump_pkt(ifp->if_l2com, 4173 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4174 0, -1); 4175 } 4176 } 4177 #endif /* ATH_DEBUG */ 4178 IF_LOCK(&ifp->if_snd); 4179 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4180 IF_UNLOCK(&ifp->if_snd); 4181 sc->sc_wd_timer = 0; 4182 } 4183 4184 /* 4185 * Update internal state after a channel change. 4186 */ 4187 static void 4188 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4189 { 4190 enum ieee80211_phymode mode; 4191 4192 /* 4193 * Change channels and update the h/w rate map 4194 * if we're switching; e.g. 11a to 11b/g. 4195 */ 4196 mode = ieee80211_chan2mode(chan); 4197 if (mode != sc->sc_curmode) 4198 ath_setcurmode(sc, mode); 4199 sc->sc_curchan = chan; 4200 } 4201 4202 /* 4203 * Set/change channels. If the channel is really being changed, 4204 * it's done by resetting the chip. To accomplish this we must 4205 * first cleanup any pending DMA, then restart stuff after a la 4206 * ath_init. 4207 */ 4208 static int 4209 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4210 { 4211 struct ifnet *ifp = sc->sc_ifp; 4212 struct ieee80211com *ic = ifp->if_l2com; 4213 struct ath_hal *ah = sc->sc_ah; 4214 int ret = 0; 4215 4216 /* Treat this as an interface reset */ 4217 ATH_PCU_UNLOCK_ASSERT(sc); 4218 ATH_UNLOCK_ASSERT(sc); 4219 4220 /* (Try to) stop TX/RX from occuring */ 4221 taskqueue_block(sc->sc_tq); 4222 4223 ATH_PCU_LOCK(sc); 4224 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4225 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4226 if (ath_reset_grablock(sc, 1) == 0) { 4227 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4228 __func__); 4229 } 4230 ATH_PCU_UNLOCK(sc); 4231 4232 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4233 __func__, ieee80211_chan2ieee(ic, chan), 4234 chan->ic_freq, chan->ic_flags); 4235 if (chan != sc->sc_curchan) { 4236 HAL_STATUS status; 4237 /* 4238 * To switch channels clear any pending DMA operations; 4239 * wait long enough for the RX fifo to drain, reset the 4240 * hardware at the new frequency, and then re-enable 4241 * the relevant bits of the h/w. 4242 */ 4243 #if 0 4244 ath_hal_intrset(ah, 0); /* disable interrupts */ 4245 #endif 4246 ath_stoprecv(sc, 1); /* turn off frame recv */ 4247 /* 4248 * First, handle completed TX/RX frames. 4249 */ 4250 ath_rx_flush(sc); 4251 ath_draintxq(sc, ATH_RESET_NOLOSS); 4252 /* 4253 * Next, flush the non-scheduled frames. 4254 */ 4255 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4256 4257 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4258 if_printf(ifp, "%s: unable to reset " 4259 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4260 __func__, ieee80211_chan2ieee(ic, chan), 4261 chan->ic_freq, chan->ic_flags, status); 4262 ret = EIO; 4263 goto finish; 4264 } 4265 sc->sc_diversity = ath_hal_getdiversity(ah); 4266 4267 /* Let DFS at it in case it's a DFS channel */ 4268 ath_dfs_radar_enable(sc, chan); 4269 4270 /* 4271 * Re-enable rx framework. 4272 */ 4273 if (ath_startrecv(sc) != 0) { 4274 if_printf(ifp, "%s: unable to restart recv logic\n", 4275 __func__); 4276 ret = EIO; 4277 goto finish; 4278 } 4279 4280 /* 4281 * Change channels and update the h/w rate map 4282 * if we're switching; e.g. 11a to 11b/g. 4283 */ 4284 ath_chan_change(sc, chan); 4285 4286 /* 4287 * Reset clears the beacon timers; reset them 4288 * here if needed. 4289 */ 4290 if (sc->sc_beacons) { /* restart beacons */ 4291 #ifdef IEEE80211_SUPPORT_TDMA 4292 if (sc->sc_tdma) 4293 ath_tdma_config(sc, NULL); 4294 else 4295 #endif 4296 ath_beacon_config(sc, NULL); 4297 } 4298 4299 /* 4300 * Re-enable interrupts. 4301 */ 4302 #if 0 4303 ath_hal_intrset(ah, sc->sc_imask); 4304 #endif 4305 } 4306 4307 finish: 4308 ATH_PCU_LOCK(sc); 4309 sc->sc_inreset_cnt--; 4310 /* XXX only do this if sc_inreset_cnt == 0? */ 4311 ath_hal_intrset(ah, sc->sc_imask); 4312 ATH_PCU_UNLOCK(sc); 4313 4314 IF_LOCK(&ifp->if_snd); 4315 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4316 IF_UNLOCK(&ifp->if_snd); 4317 ath_txrx_start(sc); 4318 /* XXX ath_start? */ 4319 4320 return ret; 4321 } 4322 4323 /* 4324 * Periodically recalibrate the PHY to account 4325 * for temperature/environment changes. 4326 */ 4327 static void 4328 ath_calibrate(void *arg) 4329 { 4330 struct ath_softc *sc = arg; 4331 struct ath_hal *ah = sc->sc_ah; 4332 struct ifnet *ifp = sc->sc_ifp; 4333 struct ieee80211com *ic = ifp->if_l2com; 4334 HAL_BOOL longCal, isCalDone; 4335 HAL_BOOL aniCal, shortCal = AH_FALSE; 4336 int nextcal; 4337 4338 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4339 goto restart; 4340 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4341 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4342 if (sc->sc_doresetcal) 4343 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4344 4345 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4346 if (aniCal) { 4347 sc->sc_stats.ast_ani_cal++; 4348 sc->sc_lastani = ticks; 4349 ath_hal_ani_poll(ah, sc->sc_curchan); 4350 } 4351 4352 if (longCal) { 4353 sc->sc_stats.ast_per_cal++; 4354 sc->sc_lastlongcal = ticks; 4355 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4356 /* 4357 * Rfgain is out of bounds, reset the chip 4358 * to load new gain values. 4359 */ 4360 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4361 "%s: rfgain change\n", __func__); 4362 sc->sc_stats.ast_per_rfgain++; 4363 sc->sc_resetcal = 0; 4364 sc->sc_doresetcal = AH_TRUE; 4365 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4366 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4367 return; 4368 } 4369 /* 4370 * If this long cal is after an idle period, then 4371 * reset the data collection state so we start fresh. 4372 */ 4373 if (sc->sc_resetcal) { 4374 (void) ath_hal_calreset(ah, sc->sc_curchan); 4375 sc->sc_lastcalreset = ticks; 4376 sc->sc_lastshortcal = ticks; 4377 sc->sc_resetcal = 0; 4378 sc->sc_doresetcal = AH_TRUE; 4379 } 4380 } 4381 4382 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4383 if (shortCal || longCal) { 4384 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4385 if (longCal) { 4386 /* 4387 * Calibrate noise floor data again in case of change. 4388 */ 4389 ath_hal_process_noisefloor(ah); 4390 } 4391 } else { 4392 DPRINTF(sc, ATH_DEBUG_ANY, 4393 "%s: calibration of channel %u failed\n", 4394 __func__, sc->sc_curchan->ic_freq); 4395 sc->sc_stats.ast_per_calfail++; 4396 } 4397 if (shortCal) 4398 sc->sc_lastshortcal = ticks; 4399 } 4400 if (!isCalDone) { 4401 restart: 4402 /* 4403 * Use a shorter interval to potentially collect multiple 4404 * data samples required to complete calibration. Once 4405 * we're told the work is done we drop back to a longer 4406 * interval between requests. We're more aggressive doing 4407 * work when operating as an AP to improve operation right 4408 * after startup. 4409 */ 4410 sc->sc_lastshortcal = ticks; 4411 nextcal = ath_shortcalinterval*hz/1000; 4412 if (sc->sc_opmode != HAL_M_HOSTAP) 4413 nextcal *= 10; 4414 sc->sc_doresetcal = AH_TRUE; 4415 } else { 4416 /* nextcal should be the shortest time for next event */ 4417 nextcal = ath_longcalinterval*hz; 4418 if (sc->sc_lastcalreset == 0) 4419 sc->sc_lastcalreset = sc->sc_lastlongcal; 4420 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4421 sc->sc_resetcal = 1; /* setup reset next trip */ 4422 sc->sc_doresetcal = AH_FALSE; 4423 } 4424 /* ANI calibration may occur more often than short/long/resetcal */ 4425 if (ath_anicalinterval > 0) 4426 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4427 4428 if (nextcal != 0) { 4429 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4430 __func__, nextcal, isCalDone ? "" : "!"); 4431 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4432 } else { 4433 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4434 __func__); 4435 /* NB: don't rearm timer */ 4436 } 4437 } 4438 4439 static void 4440 ath_scan_start(struct ieee80211com *ic) 4441 { 4442 struct ifnet *ifp = ic->ic_ifp; 4443 struct ath_softc *sc = ifp->if_softc; 4444 struct ath_hal *ah = sc->sc_ah; 4445 u_int32_t rfilt; 4446 4447 /* XXX calibration timer? */ 4448 4449 ATH_LOCK(sc); 4450 sc->sc_scanning = 1; 4451 sc->sc_syncbeacon = 0; 4452 rfilt = ath_calcrxfilter(sc); 4453 ATH_UNLOCK(sc); 4454 4455 ATH_PCU_LOCK(sc); 4456 ath_hal_setrxfilter(ah, rfilt); 4457 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4458 ATH_PCU_UNLOCK(sc); 4459 4460 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4461 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4462 } 4463 4464 static void 4465 ath_scan_end(struct ieee80211com *ic) 4466 { 4467 struct ifnet *ifp = ic->ic_ifp; 4468 struct ath_softc *sc = ifp->if_softc; 4469 struct ath_hal *ah = sc->sc_ah; 4470 u_int32_t rfilt; 4471 4472 ATH_LOCK(sc); 4473 sc->sc_scanning = 0; 4474 rfilt = ath_calcrxfilter(sc); 4475 ATH_UNLOCK(sc); 4476 4477 ATH_PCU_LOCK(sc); 4478 ath_hal_setrxfilter(ah, rfilt); 4479 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4480 4481 ath_hal_process_noisefloor(ah); 4482 ATH_PCU_UNLOCK(sc); 4483 4484 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4485 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4486 sc->sc_curaid); 4487 } 4488 4489 #ifdef ATH_ENABLE_11N 4490 /* 4491 * For now, just do a channel change. 4492 * 4493 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4494 * control state and resetting the hardware without dropping frames out 4495 * of the queue. 4496 * 4497 * The unfortunate trouble here is making absolutely sure that the 4498 * channel width change has propagated enough so the hardware 4499 * absolutely isn't handed bogus frames for it's current operating 4500 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4501 * does occur in parallel, we need to make certain we've blocked 4502 * any further ongoing TX (and RX, that can cause raw TX) 4503 * before we do this. 4504 */ 4505 static void 4506 ath_update_chw(struct ieee80211com *ic) 4507 { 4508 struct ifnet *ifp = ic->ic_ifp; 4509 struct ath_softc *sc = ifp->if_softc; 4510 4511 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4512 ath_set_channel(ic); 4513 } 4514 #endif /* ATH_ENABLE_11N */ 4515 4516 static void 4517 ath_set_channel(struct ieee80211com *ic) 4518 { 4519 struct ifnet *ifp = ic->ic_ifp; 4520 struct ath_softc *sc = ifp->if_softc; 4521 4522 (void) ath_chan_set(sc, ic->ic_curchan); 4523 /* 4524 * If we are returning to our bss channel then mark state 4525 * so the next recv'd beacon's tsf will be used to sync the 4526 * beacon timers. Note that since we only hear beacons in 4527 * sta/ibss mode this has no effect in other operating modes. 4528 */ 4529 ATH_LOCK(sc); 4530 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4531 sc->sc_syncbeacon = 1; 4532 ATH_UNLOCK(sc); 4533 } 4534 4535 /* 4536 * Walk the vap list and check if there any vap's in RUN state. 4537 */ 4538 static int 4539 ath_isanyrunningvaps(struct ieee80211vap *this) 4540 { 4541 struct ieee80211com *ic = this->iv_ic; 4542 struct ieee80211vap *vap; 4543 4544 IEEE80211_LOCK_ASSERT(ic); 4545 4546 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4547 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4548 return 1; 4549 } 4550 return 0; 4551 } 4552 4553 static int 4554 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4555 { 4556 struct ieee80211com *ic = vap->iv_ic; 4557 struct ath_softc *sc = ic->ic_ifp->if_softc; 4558 struct ath_vap *avp = ATH_VAP(vap); 4559 struct ath_hal *ah = sc->sc_ah; 4560 struct ieee80211_node *ni = NULL; 4561 int i, error, stamode; 4562 u_int32_t rfilt; 4563 int csa_run_transition = 0; 4564 static const HAL_LED_STATE leds[] = { 4565 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4566 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4567 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4568 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4569 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4570 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4571 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4572 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4573 }; 4574 4575 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4576 ieee80211_state_name[vap->iv_state], 4577 ieee80211_state_name[nstate]); 4578 4579 /* 4580 * net80211 _should_ have the comlock asserted at this point. 4581 * There are some comments around the calls to vap->iv_newstate 4582 * which indicate that it (newstate) may end up dropping the 4583 * lock. This and the subsequent lock assert check after newstate 4584 * are an attempt to catch these and figure out how/why. 4585 */ 4586 IEEE80211_LOCK_ASSERT(ic); 4587 4588 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4589 csa_run_transition = 1; 4590 4591 callout_drain(&sc->sc_cal_ch); 4592 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4593 4594 if (nstate == IEEE80211_S_SCAN) { 4595 /* 4596 * Scanning: turn off beacon miss and don't beacon. 4597 * Mark beacon state so when we reach RUN state we'll 4598 * [re]setup beacons. Unblock the task q thread so 4599 * deferred interrupt processing is done. 4600 */ 4601 ath_hal_intrset(ah, 4602 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4603 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4604 sc->sc_beacons = 0; 4605 taskqueue_unblock(sc->sc_tq); 4606 } 4607 4608 ni = ieee80211_ref_node(vap->iv_bss); 4609 rfilt = ath_calcrxfilter(sc); 4610 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4611 vap->iv_opmode == IEEE80211_M_AHDEMO || 4612 vap->iv_opmode == IEEE80211_M_IBSS); 4613 if (stamode && nstate == IEEE80211_S_RUN) { 4614 sc->sc_curaid = ni->ni_associd; 4615 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4616 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4617 } 4618 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4619 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4620 ath_hal_setrxfilter(ah, rfilt); 4621 4622 /* XXX is this to restore keycache on resume? */ 4623 if (vap->iv_opmode != IEEE80211_M_STA && 4624 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4625 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4626 if (ath_hal_keyisvalid(ah, i)) 4627 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4628 } 4629 4630 /* 4631 * Invoke the parent method to do net80211 work. 4632 */ 4633 error = avp->av_newstate(vap, nstate, arg); 4634 if (error != 0) 4635 goto bad; 4636 4637 /* 4638 * See above: ensure av_newstate() doesn't drop the lock 4639 * on us. 4640 */ 4641 IEEE80211_LOCK_ASSERT(ic); 4642 4643 if (nstate == IEEE80211_S_RUN) { 4644 /* NB: collect bss node again, it may have changed */ 4645 ieee80211_free_node(ni); 4646 ni = ieee80211_ref_node(vap->iv_bss); 4647 4648 DPRINTF(sc, ATH_DEBUG_STATE, 4649 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4650 "capinfo 0x%04x chan %d\n", __func__, 4651 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4652 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4653 4654 switch (vap->iv_opmode) { 4655 #ifdef IEEE80211_SUPPORT_TDMA 4656 case IEEE80211_M_AHDEMO: 4657 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4658 break; 4659 /* fall thru... */ 4660 #endif 4661 case IEEE80211_M_HOSTAP: 4662 case IEEE80211_M_IBSS: 4663 case IEEE80211_M_MBSS: 4664 /* 4665 * Allocate and setup the beacon frame. 4666 * 4667 * Stop any previous beacon DMA. This may be 4668 * necessary, for example, when an ibss merge 4669 * causes reconfiguration; there will be a state 4670 * transition from RUN->RUN that means we may 4671 * be called with beacon transmission active. 4672 */ 4673 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4674 4675 error = ath_beacon_alloc(sc, ni); 4676 if (error != 0) 4677 goto bad; 4678 /* 4679 * If joining an adhoc network defer beacon timer 4680 * configuration to the next beacon frame so we 4681 * have a current TSF to use. Otherwise we're 4682 * starting an ibss/bss so there's no need to delay; 4683 * if this is the first vap moving to RUN state, then 4684 * beacon state needs to be [re]configured. 4685 */ 4686 if (vap->iv_opmode == IEEE80211_M_IBSS && 4687 ni->ni_tstamp.tsf != 0) { 4688 sc->sc_syncbeacon = 1; 4689 } else if (!sc->sc_beacons) { 4690 #ifdef IEEE80211_SUPPORT_TDMA 4691 if (vap->iv_caps & IEEE80211_C_TDMA) 4692 ath_tdma_config(sc, vap); 4693 else 4694 #endif 4695 ath_beacon_config(sc, vap); 4696 sc->sc_beacons = 1; 4697 } 4698 break; 4699 case IEEE80211_M_STA: 4700 /* 4701 * Defer beacon timer configuration to the next 4702 * beacon frame so we have a current TSF to use 4703 * (any TSF collected when scanning is likely old). 4704 * However if it's due to a CSA -> RUN transition, 4705 * force a beacon update so we pick up a lack of 4706 * beacons from an AP in CAC and thus force a 4707 * scan. 4708 */ 4709 sc->sc_syncbeacon = 1; 4710 if (csa_run_transition) 4711 ath_beacon_config(sc, vap); 4712 break; 4713 case IEEE80211_M_MONITOR: 4714 /* 4715 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4716 * transitions so we must re-enable interrupts here to 4717 * handle the case of a single monitor mode vap. 4718 */ 4719 ath_hal_intrset(ah, sc->sc_imask); 4720 break; 4721 case IEEE80211_M_WDS: 4722 break; 4723 default: 4724 break; 4725 } 4726 /* 4727 * Let the hal process statistics collected during a 4728 * scan so it can provide calibrated noise floor data. 4729 */ 4730 ath_hal_process_noisefloor(ah); 4731 /* 4732 * Reset rssi stats; maybe not the best place... 4733 */ 4734 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4735 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4736 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4737 /* 4738 * Finally, start any timers and the task q thread 4739 * (in case we didn't go through SCAN state). 4740 */ 4741 if (ath_longcalinterval != 0) { 4742 /* start periodic recalibration timer */ 4743 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4744 } else { 4745 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4746 "%s: calibration disabled\n", __func__); 4747 } 4748 taskqueue_unblock(sc->sc_tq); 4749 } else if (nstate == IEEE80211_S_INIT) { 4750 /* 4751 * If there are no vaps left in RUN state then 4752 * shutdown host/driver operation: 4753 * o disable interrupts 4754 * o disable the task queue thread 4755 * o mark beacon processing as stopped 4756 */ 4757 if (!ath_isanyrunningvaps(vap)) { 4758 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4759 /* disable interrupts */ 4760 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4761 taskqueue_block(sc->sc_tq); 4762 sc->sc_beacons = 0; 4763 } 4764 #ifdef IEEE80211_SUPPORT_TDMA 4765 ath_hal_setcca(ah, AH_TRUE); 4766 #endif 4767 } 4768 bad: 4769 ieee80211_free_node(ni); 4770 return error; 4771 } 4772 4773 /* 4774 * Allocate a key cache slot to the station so we can 4775 * setup a mapping from key index to node. The key cache 4776 * slot is needed for managing antenna state and for 4777 * compression when stations do not use crypto. We do 4778 * it uniliaterally here; if crypto is employed this slot 4779 * will be reassigned. 4780 */ 4781 static void 4782 ath_setup_stationkey(struct ieee80211_node *ni) 4783 { 4784 struct ieee80211vap *vap = ni->ni_vap; 4785 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4786 ieee80211_keyix keyix, rxkeyix; 4787 4788 /* XXX should take a locked ref to vap->iv_bss */ 4789 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4790 /* 4791 * Key cache is full; we'll fall back to doing 4792 * the more expensive lookup in software. Note 4793 * this also means no h/w compression. 4794 */ 4795 /* XXX msg+statistic */ 4796 } else { 4797 /* XXX locking? */ 4798 ni->ni_ucastkey.wk_keyix = keyix; 4799 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4800 /* NB: must mark device key to get called back on delete */ 4801 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4802 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4803 /* NB: this will create a pass-thru key entry */ 4804 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4805 } 4806 } 4807 4808 /* 4809 * Setup driver-specific state for a newly associated node. 4810 * Note that we're called also on a re-associate, the isnew 4811 * param tells us if this is the first time or not. 4812 */ 4813 static void 4814 ath_newassoc(struct ieee80211_node *ni, int isnew) 4815 { 4816 struct ath_node *an = ATH_NODE(ni); 4817 struct ieee80211vap *vap = ni->ni_vap; 4818 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4819 const struct ieee80211_txparam *tp = ni->ni_txparms; 4820 4821 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4822 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4823 4824 ath_rate_newassoc(sc, an, isnew); 4825 if (isnew && 4826 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4827 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4828 ath_setup_stationkey(ni); 4829 } 4830 4831 static int 4832 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4833 int nchans, struct ieee80211_channel chans[]) 4834 { 4835 struct ath_softc *sc = ic->ic_ifp->if_softc; 4836 struct ath_hal *ah = sc->sc_ah; 4837 HAL_STATUS status; 4838 4839 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4840 "%s: rd %u cc %u location %c%s\n", 4841 __func__, reg->regdomain, reg->country, reg->location, 4842 reg->ecm ? " ecm" : ""); 4843 4844 status = ath_hal_set_channels(ah, chans, nchans, 4845 reg->country, reg->regdomain); 4846 if (status != HAL_OK) { 4847 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4848 __func__, status); 4849 return EINVAL; /* XXX */ 4850 } 4851 4852 return 0; 4853 } 4854 4855 static void 4856 ath_getradiocaps(struct ieee80211com *ic, 4857 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4858 { 4859 struct ath_softc *sc = ic->ic_ifp->if_softc; 4860 struct ath_hal *ah = sc->sc_ah; 4861 4862 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4863 __func__, SKU_DEBUG, CTRY_DEFAULT); 4864 4865 /* XXX check return */ 4866 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4867 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4868 4869 } 4870 4871 static int 4872 ath_getchannels(struct ath_softc *sc) 4873 { 4874 struct ifnet *ifp = sc->sc_ifp; 4875 struct ieee80211com *ic = ifp->if_l2com; 4876 struct ath_hal *ah = sc->sc_ah; 4877 HAL_STATUS status; 4878 4879 /* 4880 * Collect channel set based on EEPROM contents. 4881 */ 4882 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4883 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4884 if (status != HAL_OK) { 4885 if_printf(ifp, "%s: unable to collect channel list from hal, " 4886 "status %d\n", __func__, status); 4887 return EINVAL; 4888 } 4889 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4890 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4891 /* XXX map Atheros sku's to net80211 SKU's */ 4892 /* XXX net80211 types too small */ 4893 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4894 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4895 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4896 ic->ic_regdomain.isocc[1] = ' '; 4897 4898 ic->ic_regdomain.ecm = 1; 4899 ic->ic_regdomain.location = 'I'; 4900 4901 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4902 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4903 __func__, sc->sc_eerd, sc->sc_eecc, 4904 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4905 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4906 return 0; 4907 } 4908 4909 static int 4910 ath_rate_setup(struct ath_softc *sc, u_int mode) 4911 { 4912 struct ath_hal *ah = sc->sc_ah; 4913 const HAL_RATE_TABLE *rt; 4914 4915 switch (mode) { 4916 case IEEE80211_MODE_11A: 4917 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4918 break; 4919 case IEEE80211_MODE_HALF: 4920 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4921 break; 4922 case IEEE80211_MODE_QUARTER: 4923 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4924 break; 4925 case IEEE80211_MODE_11B: 4926 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4927 break; 4928 case IEEE80211_MODE_11G: 4929 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4930 break; 4931 case IEEE80211_MODE_TURBO_A: 4932 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4933 break; 4934 case IEEE80211_MODE_TURBO_G: 4935 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4936 break; 4937 case IEEE80211_MODE_STURBO_A: 4938 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4939 break; 4940 case IEEE80211_MODE_11NA: 4941 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4942 break; 4943 case IEEE80211_MODE_11NG: 4944 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4945 break; 4946 default: 4947 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4948 __func__, mode); 4949 return 0; 4950 } 4951 sc->sc_rates[mode] = rt; 4952 return (rt != NULL); 4953 } 4954 4955 static void 4956 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4957 { 4958 #define N(a) (sizeof(a)/sizeof(a[0])) 4959 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4960 static const struct { 4961 u_int rate; /* tx/rx 802.11 rate */ 4962 u_int16_t timeOn; /* LED on time (ms) */ 4963 u_int16_t timeOff; /* LED off time (ms) */ 4964 } blinkrates[] = { 4965 { 108, 40, 10 }, 4966 { 96, 44, 11 }, 4967 { 72, 50, 13 }, 4968 { 48, 57, 14 }, 4969 { 36, 67, 16 }, 4970 { 24, 80, 20 }, 4971 { 22, 100, 25 }, 4972 { 18, 133, 34 }, 4973 { 12, 160, 40 }, 4974 { 10, 200, 50 }, 4975 { 6, 240, 58 }, 4976 { 4, 267, 66 }, 4977 { 2, 400, 100 }, 4978 { 0, 500, 130 }, 4979 /* XXX half/quarter rates */ 4980 }; 4981 const HAL_RATE_TABLE *rt; 4982 int i, j; 4983 4984 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4985 rt = sc->sc_rates[mode]; 4986 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4987 for (i = 0; i < rt->rateCount; i++) { 4988 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4989 if (rt->info[i].phy != IEEE80211_T_HT) 4990 sc->sc_rixmap[ieeerate] = i; 4991 else 4992 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 4993 } 4994 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4995 for (i = 0; i < N(sc->sc_hwmap); i++) { 4996 if (i >= rt->rateCount) { 4997 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4998 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4999 continue; 5000 } 5001 sc->sc_hwmap[i].ieeerate = 5002 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5003 if (rt->info[i].phy == IEEE80211_T_HT) 5004 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5005 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5006 if (rt->info[i].shortPreamble || 5007 rt->info[i].phy == IEEE80211_T_OFDM) 5008 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5009 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5010 for (j = 0; j < N(blinkrates)-1; j++) 5011 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5012 break; 5013 /* NB: this uses the last entry if the rate isn't found */ 5014 /* XXX beware of overlow */ 5015 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5016 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5017 } 5018 sc->sc_currates = rt; 5019 sc->sc_curmode = mode; 5020 /* 5021 * All protection frames are transmited at 2Mb/s for 5022 * 11g, otherwise at 1Mb/s. 5023 */ 5024 if (mode == IEEE80211_MODE_11G) 5025 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5026 else 5027 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5028 /* NB: caller is responsible for resetting rate control state */ 5029 #undef N 5030 } 5031 5032 static void 5033 ath_watchdog(void *arg) 5034 { 5035 struct ath_softc *sc = arg; 5036 int do_reset = 0; 5037 5038 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5039 struct ifnet *ifp = sc->sc_ifp; 5040 uint32_t hangs; 5041 5042 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5043 hangs != 0) { 5044 if_printf(ifp, "%s hang detected (0x%x)\n", 5045 hangs & 0xff ? "bb" : "mac", hangs); 5046 } else 5047 if_printf(ifp, "device timeout\n"); 5048 do_reset = 1; 5049 ifp->if_oerrors++; 5050 sc->sc_stats.ast_watchdog++; 5051 } 5052 5053 /* 5054 * We can't hold the lock across the ath_reset() call. 5055 * 5056 * And since this routine can't hold a lock and sleep, 5057 * do the reset deferred. 5058 */ 5059 if (do_reset) { 5060 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5061 } 5062 5063 callout_schedule(&sc->sc_wd_ch, hz); 5064 } 5065 5066 /* 5067 * Fetch the rate control statistics for the given node. 5068 */ 5069 static int 5070 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5071 { 5072 struct ath_node *an; 5073 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5074 struct ieee80211_node *ni; 5075 int error = 0; 5076 5077 /* Perform a lookup on the given node */ 5078 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5079 if (ni == NULL) { 5080 error = EINVAL; 5081 goto bad; 5082 } 5083 5084 /* Lock the ath_node */ 5085 an = ATH_NODE(ni); 5086 ATH_NODE_LOCK(an); 5087 5088 /* Fetch the rate control stats for this node */ 5089 error = ath_rate_fetch_node_stats(sc, an, rs); 5090 5091 /* No matter what happens here, just drop through */ 5092 5093 /* Unlock the ath_node */ 5094 ATH_NODE_UNLOCK(an); 5095 5096 /* Unref the node */ 5097 ieee80211_node_decref(ni); 5098 5099 bad: 5100 return (error); 5101 } 5102 5103 #ifdef ATH_DIAGAPI 5104 /* 5105 * Diagnostic interface to the HAL. This is used by various 5106 * tools to do things like retrieve register contents for 5107 * debugging. The mechanism is intentionally opaque so that 5108 * it can change frequently w/o concern for compatiblity. 5109 */ 5110 static int 5111 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5112 { 5113 struct ath_hal *ah = sc->sc_ah; 5114 u_int id = ad->ad_id & ATH_DIAG_ID; 5115 void *indata = NULL; 5116 void *outdata = NULL; 5117 u_int32_t insize = ad->ad_in_size; 5118 u_int32_t outsize = ad->ad_out_size; 5119 int error = 0; 5120 5121 if (ad->ad_id & ATH_DIAG_IN) { 5122 /* 5123 * Copy in data. 5124 */ 5125 indata = malloc(insize, M_TEMP, M_NOWAIT); 5126 if (indata == NULL) { 5127 error = ENOMEM; 5128 goto bad; 5129 } 5130 error = copyin(ad->ad_in_data, indata, insize); 5131 if (error) 5132 goto bad; 5133 } 5134 if (ad->ad_id & ATH_DIAG_DYN) { 5135 /* 5136 * Allocate a buffer for the results (otherwise the HAL 5137 * returns a pointer to a buffer where we can read the 5138 * results). Note that we depend on the HAL leaving this 5139 * pointer for us to use below in reclaiming the buffer; 5140 * may want to be more defensive. 5141 */ 5142 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5143 if (outdata == NULL) { 5144 error = ENOMEM; 5145 goto bad; 5146 } 5147 } 5148 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5149 if (outsize < ad->ad_out_size) 5150 ad->ad_out_size = outsize; 5151 if (outdata != NULL) 5152 error = copyout(outdata, ad->ad_out_data, 5153 ad->ad_out_size); 5154 } else { 5155 error = EINVAL; 5156 } 5157 bad: 5158 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5159 free(indata, M_TEMP); 5160 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5161 free(outdata, M_TEMP); 5162 return error; 5163 } 5164 #endif /* ATH_DIAGAPI */ 5165 5166 static int 5167 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5168 { 5169 #define IS_RUNNING(ifp) \ 5170 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5171 struct ath_softc *sc = ifp->if_softc; 5172 struct ieee80211com *ic = ifp->if_l2com; 5173 struct ifreq *ifr = (struct ifreq *)data; 5174 const HAL_RATE_TABLE *rt; 5175 int error = 0; 5176 5177 switch (cmd) { 5178 case SIOCSIFFLAGS: 5179 ATH_LOCK(sc); 5180 if (IS_RUNNING(ifp)) { 5181 /* 5182 * To avoid rescanning another access point, 5183 * do not call ath_init() here. Instead, 5184 * only reflect promisc mode settings. 5185 */ 5186 ath_mode_init(sc); 5187 } else if (ifp->if_flags & IFF_UP) { 5188 /* 5189 * Beware of being called during attach/detach 5190 * to reset promiscuous mode. In that case we 5191 * will still be marked UP but not RUNNING. 5192 * However trying to re-init the interface 5193 * is the wrong thing to do as we've already 5194 * torn down much of our state. There's 5195 * probably a better way to deal with this. 5196 */ 5197 if (!sc->sc_invalid) 5198 ath_init(sc); /* XXX lose error */ 5199 } else { 5200 ath_stop_locked(ifp); 5201 #ifdef notyet 5202 /* XXX must wakeup in places like ath_vap_delete */ 5203 if (!sc->sc_invalid) 5204 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5205 #endif 5206 } 5207 ATH_UNLOCK(sc); 5208 break; 5209 case SIOCGIFMEDIA: 5210 case SIOCSIFMEDIA: 5211 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5212 break; 5213 case SIOCGATHSTATS: 5214 /* NB: embed these numbers to get a consistent view */ 5215 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5216 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5217 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5218 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5219 #ifdef IEEE80211_SUPPORT_TDMA 5220 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5221 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5222 #endif 5223 rt = sc->sc_currates; 5224 sc->sc_stats.ast_tx_rate = 5225 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5226 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5227 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5228 return copyout(&sc->sc_stats, 5229 ifr->ifr_data, sizeof (sc->sc_stats)); 5230 case SIOCGATHAGSTATS: 5231 return copyout(&sc->sc_aggr_stats, 5232 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5233 case SIOCZATHSTATS: 5234 error = priv_check(curthread, PRIV_DRIVER); 5235 if (error == 0) { 5236 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5237 memset(&sc->sc_aggr_stats, 0, 5238 sizeof(sc->sc_aggr_stats)); 5239 memset(&sc->sc_intr_stats, 0, 5240 sizeof(sc->sc_intr_stats)); 5241 } 5242 break; 5243 #ifdef ATH_DIAGAPI 5244 case SIOCGATHDIAG: 5245 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5246 break; 5247 case SIOCGATHPHYERR: 5248 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5249 break; 5250 #endif 5251 case SIOCGATHNODERATESTATS: 5252 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5253 break; 5254 case SIOCGIFADDR: 5255 error = ether_ioctl(ifp, cmd, data); 5256 break; 5257 default: 5258 error = EINVAL; 5259 break; 5260 } 5261 return error; 5262 #undef IS_RUNNING 5263 } 5264 5265 /* 5266 * Announce various information on device/driver attach. 5267 */ 5268 static void 5269 ath_announce(struct ath_softc *sc) 5270 { 5271 struct ifnet *ifp = sc->sc_ifp; 5272 struct ath_hal *ah = sc->sc_ah; 5273 5274 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5275 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5276 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5277 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5278 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5279 if (bootverbose) { 5280 int i; 5281 for (i = 0; i <= WME_AC_VO; i++) { 5282 struct ath_txq *txq = sc->sc_ac2q[i]; 5283 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5284 txq->axq_qnum, ieee80211_wme_acnames[i]); 5285 } 5286 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5287 sc->sc_cabq->axq_qnum); 5288 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5289 } 5290 if (ath_rxbuf != ATH_RXBUF) 5291 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5292 if (ath_txbuf != ATH_TXBUF) 5293 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5294 if (sc->sc_mcastkey && bootverbose) 5295 if_printf(ifp, "using multicast key search\n"); 5296 } 5297 5298 static void 5299 ath_dfs_tasklet(void *p, int npending) 5300 { 5301 struct ath_softc *sc = (struct ath_softc *) p; 5302 struct ifnet *ifp = sc->sc_ifp; 5303 struct ieee80211com *ic = ifp->if_l2com; 5304 5305 /* 5306 * If previous processing has found a radar event, 5307 * signal this to the net80211 layer to begin DFS 5308 * processing. 5309 */ 5310 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5311 /* DFS event found, initiate channel change */ 5312 /* 5313 * XXX doesn't currently tell us whether the event 5314 * XXX was found in the primary or extension 5315 * XXX channel! 5316 */ 5317 IEEE80211_LOCK(ic); 5318 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5319 IEEE80211_UNLOCK(ic); 5320 } 5321 } 5322 5323 MODULE_VERSION(if_ath, 1); 5324 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5325 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5326 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5327 #endif 5328