1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_beacon.h> 113 #include <dev/ath/if_athdfs.h> 114 115 #ifdef ATH_TX99_DIAG 116 #include <dev/ath/ath_tx99/ath_tx99.h> 117 #endif 118 119 /* 120 * ATH_BCBUF determines the number of vap's that can transmit 121 * beacons and also (currently) the number of vap's that can 122 * have unique mac addresses/bssid. When staggering beacons 123 * 4 is probably a good max as otherwise the beacons become 124 * very closely spaced and there is limited time for cab q traffic 125 * to go out. You can burst beacons instead but that is not good 126 * for stations in power save and at some point you really want 127 * another radio (and channel). 128 * 129 * The limit on the number of mac addresses is tied to our use of 130 * the U/L bit and tracking addresses in a byte; it would be 131 * worthwhile to allow more for applications like proxy sta. 132 */ 133 CTASSERT(ATH_BCBUF <= 8); 134 135 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 136 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 137 const uint8_t [IEEE80211_ADDR_LEN], 138 const uint8_t [IEEE80211_ADDR_LEN]); 139 static void ath_vap_delete(struct ieee80211vap *); 140 static void ath_init(void *); 141 static void ath_stop_locked(struct ifnet *); 142 static void ath_stop(struct ifnet *); 143 static int ath_reset_vap(struct ieee80211vap *, u_long); 144 static int ath_media_change(struct ifnet *); 145 static void ath_watchdog(void *); 146 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 147 static void ath_fatal_proc(void *, int); 148 static void ath_bmiss_vap(struct ieee80211vap *); 149 static void ath_bmiss_proc(void *, int); 150 static void ath_key_update_begin(struct ieee80211vap *); 151 static void ath_key_update_end(struct ieee80211vap *); 152 static void ath_update_mcast(struct ifnet *); 153 static void ath_update_promisc(struct ifnet *); 154 static void ath_updateslot(struct ifnet *); 155 static void ath_bstuck_proc(void *, int); 156 static void ath_reset_proc(void *, int); 157 static int ath_desc_alloc(struct ath_softc *); 158 static void ath_desc_free(struct ath_softc *); 159 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 160 const uint8_t [IEEE80211_ADDR_LEN]); 161 static void ath_node_cleanup(struct ieee80211_node *); 162 static void ath_node_free(struct ieee80211_node *); 163 static void ath_node_getsignal(const struct ieee80211_node *, 164 int8_t *, int8_t *); 165 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 166 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 167 static int ath_tx_setup(struct ath_softc *, int, int); 168 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 169 static void ath_tx_cleanup(struct ath_softc *); 170 static void ath_tx_proc_q0(void *, int); 171 static void ath_tx_proc_q0123(void *, int); 172 static void ath_tx_proc(void *, int); 173 static void ath_txq_sched_tasklet(void *, int); 174 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 175 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 176 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 177 static void ath_scan_start(struct ieee80211com *); 178 static void ath_scan_end(struct ieee80211com *); 179 static void ath_set_channel(struct ieee80211com *); 180 #ifdef ATH_ENABLE_11N 181 static void ath_update_chw(struct ieee80211com *); 182 #endif /* ATH_ENABLE_11N */ 183 static void ath_calibrate(void *); 184 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 185 static void ath_setup_stationkey(struct ieee80211_node *); 186 static void ath_newassoc(struct ieee80211_node *, int); 187 static int ath_setregdomain(struct ieee80211com *, 188 struct ieee80211_regdomain *, int, 189 struct ieee80211_channel []); 190 static void ath_getradiocaps(struct ieee80211com *, int, int *, 191 struct ieee80211_channel []); 192 static int ath_getchannels(struct ath_softc *); 193 194 static int ath_rate_setup(struct ath_softc *, u_int mode); 195 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 196 197 static void ath_announce(struct ath_softc *); 198 199 static void ath_dfs_tasklet(void *, int); 200 201 #ifdef IEEE80211_SUPPORT_TDMA 202 #include <dev/ath/if_ath_tdma.h> 203 #endif 204 205 #if 0 206 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 207 #define TDMA_LPF_LEN 6 208 #define TDMA_DUMMY_MARKER 0x127 209 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 210 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 211 #define TDMA_LPF(x, y, len) \ 212 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 213 #define TDMA_SAMPLE(x, y) do { \ 214 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 215 } while (0) 216 #define TDMA_EP_RND(x,mul) \ 217 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 218 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 219 #endif /* IEEE80211_SUPPORT_TDMA */ 220 221 SYSCTL_DECL(_hw_ath); 222 223 /* XXX validate sysctl values */ 224 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 225 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 226 0, "long chip calibration interval (secs)"); 227 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 228 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 229 0, "short chip calibration interval (msecs)"); 230 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 232 0, "reset chip calibration results (secs)"); 233 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 235 0, "ANI calibration (msecs)"); 236 237 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 239 0, "rx buffers allocated"); 240 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 241 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 242 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 243 0, "tx buffers allocated"); 244 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 245 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 247 0, "tx (mgmt) buffers allocated"); 248 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 249 250 int ath_bstuck_threshold = 4; /* max missed beacons */ 251 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 252 0, "max missed beacon xmits before chip reset"); 253 254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 255 256 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 257 #define HAL_MODE_HT40 \ 258 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 259 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 260 int 261 ath_attach(u_int16_t devid, struct ath_softc *sc) 262 { 263 struct ifnet *ifp; 264 struct ieee80211com *ic; 265 struct ath_hal *ah = NULL; 266 HAL_STATUS status; 267 int error = 0, i; 268 u_int wmodes; 269 uint8_t macaddr[IEEE80211_ADDR_LEN]; 270 int rx_chainmask, tx_chainmask; 271 272 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 273 274 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 275 if (ifp == NULL) { 276 device_printf(sc->sc_dev, "can not if_alloc()\n"); 277 error = ENOSPC; 278 goto bad; 279 } 280 ic = ifp->if_l2com; 281 282 /* set these up early for if_printf use */ 283 if_initname(ifp, device_get_name(sc->sc_dev), 284 device_get_unit(sc->sc_dev)); 285 286 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 287 sc->sc_eepromdata, &status); 288 if (ah == NULL) { 289 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 290 status); 291 error = ENXIO; 292 goto bad; 293 } 294 sc->sc_ah = ah; 295 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 296 #ifdef ATH_DEBUG 297 sc->sc_debug = ath_debug; 298 #endif 299 300 /* 301 * Setup the DMA/EDMA functions based on the current 302 * hardware support. 303 * 304 * This is required before the descriptors are allocated. 305 */ 306 if (ath_hal_hasedma(sc->sc_ah)) { 307 sc->sc_isedma = 1; 308 ath_recv_setup_edma(sc); 309 } else 310 ath_recv_setup_legacy(sc); 311 312 /* 313 * Check if the MAC has multi-rate retry support. 314 * We do this by trying to setup a fake extended 315 * descriptor. MAC's that don't have support will 316 * return false w/o doing anything. MAC's that do 317 * support it will return true w/o doing anything. 318 */ 319 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 320 321 /* 322 * Check if the device has hardware counters for PHY 323 * errors. If so we need to enable the MIB interrupt 324 * so we can act on stat triggers. 325 */ 326 if (ath_hal_hwphycounters(ah)) 327 sc->sc_needmib = 1; 328 329 /* 330 * Get the hardware key cache size. 331 */ 332 sc->sc_keymax = ath_hal_keycachesize(ah); 333 if (sc->sc_keymax > ATH_KEYMAX) { 334 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 335 ATH_KEYMAX, sc->sc_keymax); 336 sc->sc_keymax = ATH_KEYMAX; 337 } 338 /* 339 * Reset the key cache since some parts do not 340 * reset the contents on initial power up. 341 */ 342 for (i = 0; i < sc->sc_keymax; i++) 343 ath_hal_keyreset(ah, i); 344 345 /* 346 * Collect the default channel list. 347 */ 348 error = ath_getchannels(sc); 349 if (error != 0) 350 goto bad; 351 352 /* 353 * Setup rate tables for all potential media types. 354 */ 355 ath_rate_setup(sc, IEEE80211_MODE_11A); 356 ath_rate_setup(sc, IEEE80211_MODE_11B); 357 ath_rate_setup(sc, IEEE80211_MODE_11G); 358 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 359 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 360 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 361 ath_rate_setup(sc, IEEE80211_MODE_11NA); 362 ath_rate_setup(sc, IEEE80211_MODE_11NG); 363 ath_rate_setup(sc, IEEE80211_MODE_HALF); 364 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 365 366 /* NB: setup here so ath_rate_update is happy */ 367 ath_setcurmode(sc, IEEE80211_MODE_11A); 368 369 /* 370 * Allocate tx+rx descriptors and populate the lists. 371 */ 372 error = ath_desc_alloc(sc); 373 if (error != 0) { 374 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 375 goto bad; 376 } 377 378 error = ath_rxdma_setup(sc); 379 if (error != 0) { 380 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 381 error); 382 goto bad; 383 } 384 385 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 386 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 387 388 ATH_TXBUF_LOCK_INIT(sc); 389 390 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 391 taskqueue_thread_enqueue, &sc->sc_tq); 392 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 393 "%s taskq", ifp->if_xname); 394 395 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 396 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 397 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 398 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 399 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 400 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 401 402 /* 403 * Allocate hardware transmit queues: one queue for 404 * beacon frames and one data queue for each QoS 405 * priority. Note that the hal handles resetting 406 * these queues at the needed time. 407 * 408 * XXX PS-Poll 409 */ 410 sc->sc_bhalq = ath_beaconq_setup(ah); 411 if (sc->sc_bhalq == (u_int) -1) { 412 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 413 error = EIO; 414 goto bad2; 415 } 416 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 417 if (sc->sc_cabq == NULL) { 418 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 419 error = EIO; 420 goto bad2; 421 } 422 /* NB: insure BK queue is the lowest priority h/w queue */ 423 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 424 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 425 ieee80211_wme_acnames[WME_AC_BK]); 426 error = EIO; 427 goto bad2; 428 } 429 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 430 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 431 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 432 /* 433 * Not enough hardware tx queues to properly do WME; 434 * just punt and assign them all to the same h/w queue. 435 * We could do a better job of this if, for example, 436 * we allocate queues when we switch from station to 437 * AP mode. 438 */ 439 if (sc->sc_ac2q[WME_AC_VI] != NULL) 440 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 441 if (sc->sc_ac2q[WME_AC_BE] != NULL) 442 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 443 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 444 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 445 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 446 } 447 448 /* 449 * Special case certain configurations. Note the 450 * CAB queue is handled by these specially so don't 451 * include them when checking the txq setup mask. 452 */ 453 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 454 case 0x01: 455 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 456 break; 457 case 0x0f: 458 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 459 break; 460 default: 461 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 462 break; 463 } 464 465 /* 466 * Setup rate control. Some rate control modules 467 * call back to change the anntena state so expose 468 * the necessary entry points. 469 * XXX maybe belongs in struct ath_ratectrl? 470 */ 471 sc->sc_setdefantenna = ath_setdefantenna; 472 sc->sc_rc = ath_rate_attach(sc); 473 if (sc->sc_rc == NULL) { 474 error = EIO; 475 goto bad2; 476 } 477 478 /* Attach DFS module */ 479 if (! ath_dfs_attach(sc)) { 480 device_printf(sc->sc_dev, 481 "%s: unable to attach DFS\n", __func__); 482 error = EIO; 483 goto bad2; 484 } 485 486 /* Start DFS processing tasklet */ 487 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 488 489 /* Configure LED state */ 490 sc->sc_blinking = 0; 491 sc->sc_ledstate = 1; 492 sc->sc_ledon = 0; /* low true */ 493 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 494 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 495 496 /* 497 * Don't setup hardware-based blinking. 498 * 499 * Although some NICs may have this configured in the 500 * default reset register values, the user may wish 501 * to alter which pins have which function. 502 * 503 * The reference driver attaches the MAC network LED to GPIO1 and 504 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 505 * NIC has these reversed. 506 */ 507 sc->sc_hardled = (1 == 0); 508 sc->sc_led_net_pin = -1; 509 sc->sc_led_pwr_pin = -1; 510 /* 511 * Auto-enable soft led processing for IBM cards and for 512 * 5211 minipci cards. Users can also manually enable/disable 513 * support with a sysctl. 514 */ 515 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 516 ath_led_config(sc); 517 ath_hal_setledstate(ah, HAL_LED_INIT); 518 519 ifp->if_softc = sc; 520 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 521 ifp->if_start = ath_start; 522 ifp->if_ioctl = ath_ioctl; 523 ifp->if_init = ath_init; 524 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 525 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 526 IFQ_SET_READY(&ifp->if_snd); 527 528 ic->ic_ifp = ifp; 529 /* XXX not right but it's not used anywhere important */ 530 ic->ic_phytype = IEEE80211_T_OFDM; 531 ic->ic_opmode = IEEE80211_M_STA; 532 ic->ic_caps = 533 IEEE80211_C_STA /* station mode */ 534 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 535 | IEEE80211_C_HOSTAP /* hostap mode */ 536 | IEEE80211_C_MONITOR /* monitor mode */ 537 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 538 | IEEE80211_C_WDS /* 4-address traffic works */ 539 | IEEE80211_C_MBSS /* mesh point link mode */ 540 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 541 | IEEE80211_C_SHSLOT /* short slot time supported */ 542 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 543 #ifndef ATH_ENABLE_11N 544 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 545 #endif 546 | IEEE80211_C_TXFRAG /* handle tx frags */ 547 #ifdef ATH_ENABLE_DFS 548 | IEEE80211_C_DFS /* Enable radar detection */ 549 #endif 550 ; 551 /* 552 * Query the hal to figure out h/w crypto support. 553 */ 554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 555 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 556 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 557 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 558 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 559 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 561 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 562 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 563 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 564 /* 565 * Check if h/w does the MIC and/or whether the 566 * separate key cache entries are required to 567 * handle both tx+rx MIC keys. 568 */ 569 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 570 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 571 /* 572 * If the h/w supports storing tx+rx MIC keys 573 * in one cache slot automatically enable use. 574 */ 575 if (ath_hal_hastkipsplit(ah) || 576 !ath_hal_settkipsplit(ah, AH_FALSE)) 577 sc->sc_splitmic = 1; 578 /* 579 * If the h/w can do TKIP MIC together with WME then 580 * we use it; otherwise we force the MIC to be done 581 * in software by the net80211 layer. 582 */ 583 if (ath_hal_haswmetkipmic(ah)) 584 sc->sc_wmetkipmic = 1; 585 } 586 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 587 /* 588 * Check for multicast key search support. 589 */ 590 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 591 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 592 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 593 } 594 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 595 /* 596 * Mark key cache slots associated with global keys 597 * as in use. If we knew TKIP was not to be used we 598 * could leave the +32, +64, and +32+64 slots free. 599 */ 600 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 601 setbit(sc->sc_keymap, i); 602 setbit(sc->sc_keymap, i+64); 603 if (sc->sc_splitmic) { 604 setbit(sc->sc_keymap, i+32); 605 setbit(sc->sc_keymap, i+32+64); 606 } 607 } 608 /* 609 * TPC support can be done either with a global cap or 610 * per-packet support. The latter is not available on 611 * all parts. We're a bit pedantic here as all parts 612 * support a global cap. 613 */ 614 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 615 ic->ic_caps |= IEEE80211_C_TXPMGT; 616 617 /* 618 * Mark WME capability only if we have sufficient 619 * hardware queues to do proper priority scheduling. 620 */ 621 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 622 ic->ic_caps |= IEEE80211_C_WME; 623 /* 624 * Check for misc other capabilities. 625 */ 626 if (ath_hal_hasbursting(ah)) 627 ic->ic_caps |= IEEE80211_C_BURST; 628 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 629 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 630 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 631 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 632 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 633 if (ath_hal_hasfastframes(ah)) 634 ic->ic_caps |= IEEE80211_C_FF; 635 wmodes = ath_hal_getwirelessmodes(ah); 636 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 637 ic->ic_caps |= IEEE80211_C_TURBOP; 638 #ifdef IEEE80211_SUPPORT_TDMA 639 if (ath_hal_macversion(ah) > 0x78) { 640 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 641 ic->ic_tdma_update = ath_tdma_update; 642 } 643 #endif 644 645 /* 646 * TODO: enforce that at least this many frames are available 647 * in the txbuf list before allowing data frames (raw or 648 * otherwise) to be transmitted. 649 */ 650 sc->sc_txq_data_minfree = 10; 651 /* 652 * Leave this as default to maintain legacy behaviour. 653 * Shortening the cabq/mcastq may end up causing some 654 * undesirable behaviour. 655 */ 656 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 657 658 /* 659 * Allow the TX and RX chainmasks to be overridden by 660 * environment variables and/or device.hints. 661 * 662 * This must be done early - before the hardware is 663 * calibrated or before the 802.11n stream calculation 664 * is done. 665 */ 666 if (resource_int_value(device_get_name(sc->sc_dev), 667 device_get_unit(sc->sc_dev), "rx_chainmask", 668 &rx_chainmask) == 0) { 669 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 670 rx_chainmask); 671 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 672 } 673 if (resource_int_value(device_get_name(sc->sc_dev), 674 device_get_unit(sc->sc_dev), "tx_chainmask", 675 &tx_chainmask) == 0) { 676 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 677 tx_chainmask); 678 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 679 } 680 681 #ifdef ATH_ENABLE_11N 682 /* 683 * Query HT capabilities 684 */ 685 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 686 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 687 int rxs, txs; 688 689 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 690 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 691 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 692 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 693 | IEEE80211_HTCAP_MAXAMSDU_3839 694 /* max A-MSDU length */ 695 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 696 ; 697 698 /* 699 * Enable short-GI for HT20 only if the hardware 700 * advertises support. 701 * Notably, anything earlier than the AR9287 doesn't. 702 */ 703 if ((ath_hal_getcapability(ah, 704 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 705 (wmodes & HAL_MODE_HT20)) { 706 device_printf(sc->sc_dev, 707 "[HT] enabling short-GI in 20MHz mode\n"); 708 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 709 } 710 711 if (wmodes & HAL_MODE_HT40) 712 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 713 | IEEE80211_HTCAP_SHORTGI40; 714 715 /* 716 * TX/RX streams need to be taken into account when 717 * negotiating which MCS rates it'll receive and 718 * what MCS rates are available for TX. 719 */ 720 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 721 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 722 723 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 724 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 725 726 ic->ic_txstream = txs; 727 ic->ic_rxstream = rxs; 728 729 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 730 &sc->sc_rts_aggr_limit); 731 if (sc->sc_rts_aggr_limit != (64 * 1024)) 732 device_printf(sc->sc_dev, 733 "[HT] RTS aggregates limited to %d KiB\n", 734 sc->sc_rts_aggr_limit / 1024); 735 736 device_printf(sc->sc_dev, 737 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 738 } 739 #endif 740 741 /* 742 * Initial aggregation settings. 743 */ 744 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 745 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 746 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 747 748 /* 749 * Check if the hardware requires PCI register serialisation. 750 * Some of the Owl based MACs require this. 751 */ 752 if (mp_ncpus > 1 && 753 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 754 0, NULL) == HAL_OK) { 755 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 756 device_printf(sc->sc_dev, 757 "Enabling register serialisation\n"); 758 } 759 760 /* 761 * Indicate we need the 802.11 header padded to a 762 * 32-bit boundary for 4-address and QoS frames. 763 */ 764 ic->ic_flags |= IEEE80211_F_DATAPAD; 765 766 /* 767 * Query the hal about antenna support. 768 */ 769 sc->sc_defant = ath_hal_getdefantenna(ah); 770 771 /* 772 * Not all chips have the VEOL support we want to 773 * use with IBSS beacons; check here for it. 774 */ 775 sc->sc_hasveol = ath_hal_hasveol(ah); 776 777 /* get mac address from hardware */ 778 ath_hal_getmac(ah, macaddr); 779 if (sc->sc_hasbmask) 780 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 781 782 /* NB: used to size node table key mapping array */ 783 ic->ic_max_keyix = sc->sc_keymax; 784 /* call MI attach routine. */ 785 ieee80211_ifattach(ic, macaddr); 786 ic->ic_setregdomain = ath_setregdomain; 787 ic->ic_getradiocaps = ath_getradiocaps; 788 sc->sc_opmode = HAL_M_STA; 789 790 /* override default methods */ 791 ic->ic_newassoc = ath_newassoc; 792 ic->ic_updateslot = ath_updateslot; 793 ic->ic_wme.wme_update = ath_wme_update; 794 ic->ic_vap_create = ath_vap_create; 795 ic->ic_vap_delete = ath_vap_delete; 796 ic->ic_raw_xmit = ath_raw_xmit; 797 ic->ic_update_mcast = ath_update_mcast; 798 ic->ic_update_promisc = ath_update_promisc; 799 ic->ic_node_alloc = ath_node_alloc; 800 sc->sc_node_free = ic->ic_node_free; 801 ic->ic_node_free = ath_node_free; 802 sc->sc_node_cleanup = ic->ic_node_cleanup; 803 ic->ic_node_cleanup = ath_node_cleanup; 804 ic->ic_node_getsignal = ath_node_getsignal; 805 ic->ic_scan_start = ath_scan_start; 806 ic->ic_scan_end = ath_scan_end; 807 ic->ic_set_channel = ath_set_channel; 808 #ifdef ATH_ENABLE_11N 809 /* 802.11n specific - but just override anyway */ 810 sc->sc_addba_request = ic->ic_addba_request; 811 sc->sc_addba_response = ic->ic_addba_response; 812 sc->sc_addba_stop = ic->ic_addba_stop; 813 sc->sc_bar_response = ic->ic_bar_response; 814 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 815 816 ic->ic_addba_request = ath_addba_request; 817 ic->ic_addba_response = ath_addba_response; 818 ic->ic_addba_response_timeout = ath_addba_response_timeout; 819 ic->ic_addba_stop = ath_addba_stop; 820 ic->ic_bar_response = ath_bar_response; 821 822 ic->ic_update_chw = ath_update_chw; 823 #endif /* ATH_ENABLE_11N */ 824 825 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 826 /* 827 * There's one vendor bitmap entry in the RX radiotap 828 * header; make sure that's taken into account. 829 */ 830 ieee80211_radiotap_attachv(ic, 831 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 832 ATH_TX_RADIOTAP_PRESENT, 833 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 834 ATH_RX_RADIOTAP_PRESENT); 835 #else 836 /* 837 * No vendor bitmap/extensions are present. 838 */ 839 ieee80211_radiotap_attach(ic, 840 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 841 ATH_TX_RADIOTAP_PRESENT, 842 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 843 ATH_RX_RADIOTAP_PRESENT); 844 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 845 846 /* 847 * Setup dynamic sysctl's now that country code and 848 * regdomain are available from the hal. 849 */ 850 ath_sysctlattach(sc); 851 ath_sysctl_stats_attach(sc); 852 ath_sysctl_hal_attach(sc); 853 854 if (bootverbose) 855 ieee80211_announce(ic); 856 ath_announce(sc); 857 return 0; 858 bad2: 859 ath_tx_cleanup(sc); 860 ath_desc_free(sc); 861 ath_rxdma_teardown(sc); 862 bad: 863 if (ah) 864 ath_hal_detach(ah); 865 if (ifp != NULL) 866 if_free(ifp); 867 sc->sc_invalid = 1; 868 return error; 869 } 870 871 int 872 ath_detach(struct ath_softc *sc) 873 { 874 struct ifnet *ifp = sc->sc_ifp; 875 876 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 877 __func__, ifp->if_flags); 878 879 /* 880 * NB: the order of these is important: 881 * o stop the chip so no more interrupts will fire 882 * o call the 802.11 layer before detaching the hal to 883 * insure callbacks into the driver to delete global 884 * key cache entries can be handled 885 * o free the taskqueue which drains any pending tasks 886 * o reclaim the tx queue data structures after calling 887 * the 802.11 layer as we'll get called back to reclaim 888 * node state and potentially want to use them 889 * o to cleanup the tx queues the hal is called, so detach 890 * it last 891 * Other than that, it's straightforward... 892 */ 893 ath_stop(ifp); 894 ieee80211_ifdetach(ifp->if_l2com); 895 taskqueue_free(sc->sc_tq); 896 #ifdef ATH_TX99_DIAG 897 if (sc->sc_tx99 != NULL) 898 sc->sc_tx99->detach(sc->sc_tx99); 899 #endif 900 ath_rate_detach(sc->sc_rc); 901 902 ath_dfs_detach(sc); 903 ath_desc_free(sc); 904 ath_rxdma_teardown(sc); 905 ath_tx_cleanup(sc); 906 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 907 if_free(ifp); 908 909 return 0; 910 } 911 912 /* 913 * MAC address handling for multiple BSS on the same radio. 914 * The first vap uses the MAC address from the EEPROM. For 915 * subsequent vap's we set the U/L bit (bit 1) in the MAC 916 * address and use the next six bits as an index. 917 */ 918 static void 919 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 920 { 921 int i; 922 923 if (clone && sc->sc_hasbmask) { 924 /* NB: we only do this if h/w supports multiple bssid */ 925 for (i = 0; i < 8; i++) 926 if ((sc->sc_bssidmask & (1<<i)) == 0) 927 break; 928 if (i != 0) 929 mac[0] |= (i << 2)|0x2; 930 } else 931 i = 0; 932 sc->sc_bssidmask |= 1<<i; 933 sc->sc_hwbssidmask[0] &= ~mac[0]; 934 if (i == 0) 935 sc->sc_nbssid0++; 936 } 937 938 static void 939 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 940 { 941 int i = mac[0] >> 2; 942 uint8_t mask; 943 944 if (i != 0 || --sc->sc_nbssid0 == 0) { 945 sc->sc_bssidmask &= ~(1<<i); 946 /* recalculate bssid mask from remaining addresses */ 947 mask = 0xff; 948 for (i = 1; i < 8; i++) 949 if (sc->sc_bssidmask & (1<<i)) 950 mask &= ~((i<<2)|0x2); 951 sc->sc_hwbssidmask[0] |= mask; 952 } 953 } 954 955 /* 956 * Assign a beacon xmit slot. We try to space out 957 * assignments so when beacons are staggered the 958 * traffic coming out of the cab q has maximal time 959 * to go out before the next beacon is scheduled. 960 */ 961 static int 962 assign_bslot(struct ath_softc *sc) 963 { 964 u_int slot, free; 965 966 free = 0; 967 for (slot = 0; slot < ATH_BCBUF; slot++) 968 if (sc->sc_bslot[slot] == NULL) { 969 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 970 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 971 return slot; 972 free = slot; 973 /* NB: keep looking for a double slot */ 974 } 975 return free; 976 } 977 978 static struct ieee80211vap * 979 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 980 enum ieee80211_opmode opmode, int flags, 981 const uint8_t bssid[IEEE80211_ADDR_LEN], 982 const uint8_t mac0[IEEE80211_ADDR_LEN]) 983 { 984 struct ath_softc *sc = ic->ic_ifp->if_softc; 985 struct ath_vap *avp; 986 struct ieee80211vap *vap; 987 uint8_t mac[IEEE80211_ADDR_LEN]; 988 int needbeacon, error; 989 enum ieee80211_opmode ic_opmode; 990 991 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 992 M_80211_VAP, M_WAITOK | M_ZERO); 993 needbeacon = 0; 994 IEEE80211_ADDR_COPY(mac, mac0); 995 996 ATH_LOCK(sc); 997 ic_opmode = opmode; /* default to opmode of new vap */ 998 switch (opmode) { 999 case IEEE80211_M_STA: 1000 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1001 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1002 goto bad; 1003 } 1004 if (sc->sc_nvaps) { 1005 /* 1006 * With multiple vaps we must fall back 1007 * to s/w beacon miss handling. 1008 */ 1009 flags |= IEEE80211_CLONE_NOBEACONS; 1010 } 1011 if (flags & IEEE80211_CLONE_NOBEACONS) { 1012 /* 1013 * Station mode w/o beacons are implemented w/ AP mode. 1014 */ 1015 ic_opmode = IEEE80211_M_HOSTAP; 1016 } 1017 break; 1018 case IEEE80211_M_IBSS: 1019 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1020 device_printf(sc->sc_dev, 1021 "only 1 ibss vap supported\n"); 1022 goto bad; 1023 } 1024 needbeacon = 1; 1025 break; 1026 case IEEE80211_M_AHDEMO: 1027 #ifdef IEEE80211_SUPPORT_TDMA 1028 if (flags & IEEE80211_CLONE_TDMA) { 1029 if (sc->sc_nvaps != 0) { 1030 device_printf(sc->sc_dev, 1031 "only 1 tdma vap supported\n"); 1032 goto bad; 1033 } 1034 needbeacon = 1; 1035 flags |= IEEE80211_CLONE_NOBEACONS; 1036 } 1037 /* fall thru... */ 1038 #endif 1039 case IEEE80211_M_MONITOR: 1040 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1041 /* 1042 * Adopt existing mode. Adding a monitor or ahdemo 1043 * vap to an existing configuration is of dubious 1044 * value but should be ok. 1045 */ 1046 /* XXX not right for monitor mode */ 1047 ic_opmode = ic->ic_opmode; 1048 } 1049 break; 1050 case IEEE80211_M_HOSTAP: 1051 case IEEE80211_M_MBSS: 1052 needbeacon = 1; 1053 break; 1054 case IEEE80211_M_WDS: 1055 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1056 device_printf(sc->sc_dev, 1057 "wds not supported in sta mode\n"); 1058 goto bad; 1059 } 1060 /* 1061 * Silently remove any request for a unique 1062 * bssid; WDS vap's always share the local 1063 * mac address. 1064 */ 1065 flags &= ~IEEE80211_CLONE_BSSID; 1066 if (sc->sc_nvaps == 0) 1067 ic_opmode = IEEE80211_M_HOSTAP; 1068 else 1069 ic_opmode = ic->ic_opmode; 1070 break; 1071 default: 1072 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1073 goto bad; 1074 } 1075 /* 1076 * Check that a beacon buffer is available; the code below assumes it. 1077 */ 1078 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1079 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1080 goto bad; 1081 } 1082 1083 /* STA, AHDEMO? */ 1084 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1085 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1086 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1087 } 1088 1089 vap = &avp->av_vap; 1090 /* XXX can't hold mutex across if_alloc */ 1091 ATH_UNLOCK(sc); 1092 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1093 bssid, mac); 1094 ATH_LOCK(sc); 1095 if (error != 0) { 1096 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1097 __func__, error); 1098 goto bad2; 1099 } 1100 1101 /* h/w crypto support */ 1102 vap->iv_key_alloc = ath_key_alloc; 1103 vap->iv_key_delete = ath_key_delete; 1104 vap->iv_key_set = ath_key_set; 1105 vap->iv_key_update_begin = ath_key_update_begin; 1106 vap->iv_key_update_end = ath_key_update_end; 1107 1108 /* override various methods */ 1109 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1110 vap->iv_recv_mgmt = ath_recv_mgmt; 1111 vap->iv_reset = ath_reset_vap; 1112 vap->iv_update_beacon = ath_beacon_update; 1113 avp->av_newstate = vap->iv_newstate; 1114 vap->iv_newstate = ath_newstate; 1115 avp->av_bmiss = vap->iv_bmiss; 1116 vap->iv_bmiss = ath_bmiss_vap; 1117 1118 /* Set default parameters */ 1119 1120 /* 1121 * Anything earlier than some AR9300 series MACs don't 1122 * support a smaller MPDU density. 1123 */ 1124 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1125 /* 1126 * All NICs can handle the maximum size, however 1127 * AR5416 based MACs can only TX aggregates w/ RTS 1128 * protection when the total aggregate size is <= 8k. 1129 * However, for now that's enforced by the TX path. 1130 */ 1131 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1132 1133 avp->av_bslot = -1; 1134 if (needbeacon) { 1135 /* 1136 * Allocate beacon state and setup the q for buffered 1137 * multicast frames. We know a beacon buffer is 1138 * available because we checked above. 1139 */ 1140 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1141 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1142 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1143 /* 1144 * Assign the vap to a beacon xmit slot. As above 1145 * this cannot fail to find a free one. 1146 */ 1147 avp->av_bslot = assign_bslot(sc); 1148 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1149 ("beacon slot %u not empty", avp->av_bslot)); 1150 sc->sc_bslot[avp->av_bslot] = vap; 1151 sc->sc_nbcnvaps++; 1152 } 1153 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1154 /* 1155 * Multple vaps are to transmit beacons and we 1156 * have h/w support for TSF adjusting; enable 1157 * use of staggered beacons. 1158 */ 1159 sc->sc_stagbeacons = 1; 1160 } 1161 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1162 } 1163 1164 ic->ic_opmode = ic_opmode; 1165 if (opmode != IEEE80211_M_WDS) { 1166 sc->sc_nvaps++; 1167 if (opmode == IEEE80211_M_STA) 1168 sc->sc_nstavaps++; 1169 if (opmode == IEEE80211_M_MBSS) 1170 sc->sc_nmeshvaps++; 1171 } 1172 switch (ic_opmode) { 1173 case IEEE80211_M_IBSS: 1174 sc->sc_opmode = HAL_M_IBSS; 1175 break; 1176 case IEEE80211_M_STA: 1177 sc->sc_opmode = HAL_M_STA; 1178 break; 1179 case IEEE80211_M_AHDEMO: 1180 #ifdef IEEE80211_SUPPORT_TDMA 1181 if (vap->iv_caps & IEEE80211_C_TDMA) { 1182 sc->sc_tdma = 1; 1183 /* NB: disable tsf adjust */ 1184 sc->sc_stagbeacons = 0; 1185 } 1186 /* 1187 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1188 * just ap mode. 1189 */ 1190 /* fall thru... */ 1191 #endif 1192 case IEEE80211_M_HOSTAP: 1193 case IEEE80211_M_MBSS: 1194 sc->sc_opmode = HAL_M_HOSTAP; 1195 break; 1196 case IEEE80211_M_MONITOR: 1197 sc->sc_opmode = HAL_M_MONITOR; 1198 break; 1199 default: 1200 /* XXX should not happen */ 1201 break; 1202 } 1203 if (sc->sc_hastsfadd) { 1204 /* 1205 * Configure whether or not TSF adjust should be done. 1206 */ 1207 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1208 } 1209 if (flags & IEEE80211_CLONE_NOBEACONS) { 1210 /* 1211 * Enable s/w beacon miss handling. 1212 */ 1213 sc->sc_swbmiss = 1; 1214 } 1215 ATH_UNLOCK(sc); 1216 1217 /* complete setup */ 1218 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1219 return vap; 1220 bad2: 1221 reclaim_address(sc, mac); 1222 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1223 bad: 1224 free(avp, M_80211_VAP); 1225 ATH_UNLOCK(sc); 1226 return NULL; 1227 } 1228 1229 static void 1230 ath_vap_delete(struct ieee80211vap *vap) 1231 { 1232 struct ieee80211com *ic = vap->iv_ic; 1233 struct ifnet *ifp = ic->ic_ifp; 1234 struct ath_softc *sc = ifp->if_softc; 1235 struct ath_hal *ah = sc->sc_ah; 1236 struct ath_vap *avp = ATH_VAP(vap); 1237 1238 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1239 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1240 /* 1241 * Quiesce the hardware while we remove the vap. In 1242 * particular we need to reclaim all references to 1243 * the vap state by any frames pending on the tx queues. 1244 */ 1245 ath_hal_intrset(ah, 0); /* disable interrupts */ 1246 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1247 /* XXX Do all frames from all vaps/nodes need draining here? */ 1248 ath_stoprecv(sc, 1); /* stop recv side */ 1249 } 1250 1251 ieee80211_vap_detach(vap); 1252 1253 /* 1254 * XXX Danger Will Robinson! Danger! 1255 * 1256 * Because ieee80211_vap_detach() can queue a frame (the station 1257 * diassociate message?) after we've drained the TXQ and 1258 * flushed the software TXQ, we will end up with a frame queued 1259 * to a node whose vap is about to be freed. 1260 * 1261 * To work around this, flush the hardware/software again. 1262 * This may be racy - the ath task may be running and the packet 1263 * may be being scheduled between sw->hw txq. Tsk. 1264 * 1265 * TODO: figure out why a new node gets allocated somewhere around 1266 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1267 * call!) 1268 */ 1269 1270 ath_draintxq(sc, ATH_RESET_DEFAULT); 1271 1272 ATH_LOCK(sc); 1273 /* 1274 * Reclaim beacon state. Note this must be done before 1275 * the vap instance is reclaimed as we may have a reference 1276 * to it in the buffer for the beacon frame. 1277 */ 1278 if (avp->av_bcbuf != NULL) { 1279 if (avp->av_bslot != -1) { 1280 sc->sc_bslot[avp->av_bslot] = NULL; 1281 sc->sc_nbcnvaps--; 1282 } 1283 ath_beacon_return(sc, avp->av_bcbuf); 1284 avp->av_bcbuf = NULL; 1285 if (sc->sc_nbcnvaps == 0) { 1286 sc->sc_stagbeacons = 0; 1287 if (sc->sc_hastsfadd) 1288 ath_hal_settsfadjust(sc->sc_ah, 0); 1289 } 1290 /* 1291 * Reclaim any pending mcast frames for the vap. 1292 */ 1293 ath_tx_draintxq(sc, &avp->av_mcastq); 1294 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1295 } 1296 /* 1297 * Update bookkeeping. 1298 */ 1299 if (vap->iv_opmode == IEEE80211_M_STA) { 1300 sc->sc_nstavaps--; 1301 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1302 sc->sc_swbmiss = 0; 1303 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1304 vap->iv_opmode == IEEE80211_M_MBSS) { 1305 reclaim_address(sc, vap->iv_myaddr); 1306 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1307 if (vap->iv_opmode == IEEE80211_M_MBSS) 1308 sc->sc_nmeshvaps--; 1309 } 1310 if (vap->iv_opmode != IEEE80211_M_WDS) 1311 sc->sc_nvaps--; 1312 #ifdef IEEE80211_SUPPORT_TDMA 1313 /* TDMA operation ceases when the last vap is destroyed */ 1314 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1315 sc->sc_tdma = 0; 1316 sc->sc_swbmiss = 0; 1317 } 1318 #endif 1319 free(avp, M_80211_VAP); 1320 1321 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1322 /* 1323 * Restart rx+tx machines if still running (RUNNING will 1324 * be reset if we just destroyed the last vap). 1325 */ 1326 if (ath_startrecv(sc) != 0) 1327 if_printf(ifp, "%s: unable to restart recv logic\n", 1328 __func__); 1329 if (sc->sc_beacons) { /* restart beacons */ 1330 #ifdef IEEE80211_SUPPORT_TDMA 1331 if (sc->sc_tdma) 1332 ath_tdma_config(sc, NULL); 1333 else 1334 #endif 1335 ath_beacon_config(sc, NULL); 1336 } 1337 ath_hal_intrset(ah, sc->sc_imask); 1338 } 1339 ATH_UNLOCK(sc); 1340 } 1341 1342 void 1343 ath_suspend(struct ath_softc *sc) 1344 { 1345 struct ifnet *ifp = sc->sc_ifp; 1346 struct ieee80211com *ic = ifp->if_l2com; 1347 1348 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1349 __func__, ifp->if_flags); 1350 1351 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1352 1353 ieee80211_suspend_all(ic); 1354 /* 1355 * NB: don't worry about putting the chip in low power 1356 * mode; pci will power off our socket on suspend and 1357 * CardBus detaches the device. 1358 */ 1359 1360 /* 1361 * XXX ensure none of the taskqueues are running 1362 * XXX ensure sc_invalid is 1 1363 * XXX ensure the calibration callout is disabled 1364 */ 1365 1366 /* Disable the PCIe PHY, complete with workarounds */ 1367 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1368 } 1369 1370 /* 1371 * Reset the key cache since some parts do not reset the 1372 * contents on resume. First we clear all entries, then 1373 * re-load keys that the 802.11 layer assumes are setup 1374 * in h/w. 1375 */ 1376 static void 1377 ath_reset_keycache(struct ath_softc *sc) 1378 { 1379 struct ifnet *ifp = sc->sc_ifp; 1380 struct ieee80211com *ic = ifp->if_l2com; 1381 struct ath_hal *ah = sc->sc_ah; 1382 int i; 1383 1384 for (i = 0; i < sc->sc_keymax; i++) 1385 ath_hal_keyreset(ah, i); 1386 ieee80211_crypto_reload_keys(ic); 1387 } 1388 1389 void 1390 ath_resume(struct ath_softc *sc) 1391 { 1392 struct ifnet *ifp = sc->sc_ifp; 1393 struct ieee80211com *ic = ifp->if_l2com; 1394 struct ath_hal *ah = sc->sc_ah; 1395 HAL_STATUS status; 1396 1397 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1398 __func__, ifp->if_flags); 1399 1400 /* Re-enable PCIe, re-enable the PCIe bus */ 1401 ath_hal_enablepcie(ah, 0, 0); 1402 1403 /* 1404 * Must reset the chip before we reload the 1405 * keycache as we were powered down on suspend. 1406 */ 1407 ath_hal_reset(ah, sc->sc_opmode, 1408 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1409 AH_FALSE, &status); 1410 ath_reset_keycache(sc); 1411 1412 /* Let DFS at it in case it's a DFS channel */ 1413 ath_dfs_radar_enable(sc, ic->ic_curchan); 1414 1415 /* Restore the LED configuration */ 1416 ath_led_config(sc); 1417 ath_hal_setledstate(ah, HAL_LED_INIT); 1418 1419 if (sc->sc_resume_up) 1420 ieee80211_resume_all(ic); 1421 1422 /* XXX beacons ? */ 1423 } 1424 1425 void 1426 ath_shutdown(struct ath_softc *sc) 1427 { 1428 struct ifnet *ifp = sc->sc_ifp; 1429 1430 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1431 __func__, ifp->if_flags); 1432 1433 ath_stop(ifp); 1434 /* NB: no point powering down chip as we're about to reboot */ 1435 } 1436 1437 /* 1438 * Interrupt handler. Most of the actual processing is deferred. 1439 */ 1440 void 1441 ath_intr(void *arg) 1442 { 1443 struct ath_softc *sc = arg; 1444 struct ifnet *ifp = sc->sc_ifp; 1445 struct ath_hal *ah = sc->sc_ah; 1446 HAL_INT status = 0; 1447 uint32_t txqs; 1448 1449 /* 1450 * If we're inside a reset path, just print a warning and 1451 * clear the ISR. The reset routine will finish it for us. 1452 */ 1453 ATH_PCU_LOCK(sc); 1454 if (sc->sc_inreset_cnt) { 1455 HAL_INT status; 1456 ath_hal_getisr(ah, &status); /* clear ISR */ 1457 ath_hal_intrset(ah, 0); /* disable further intr's */ 1458 DPRINTF(sc, ATH_DEBUG_ANY, 1459 "%s: in reset, ignoring: status=0x%x\n", 1460 __func__, status); 1461 ATH_PCU_UNLOCK(sc); 1462 return; 1463 } 1464 1465 if (sc->sc_invalid) { 1466 /* 1467 * The hardware is not ready/present, don't touch anything. 1468 * Note this can happen early on if the IRQ is shared. 1469 */ 1470 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1471 ATH_PCU_UNLOCK(sc); 1472 return; 1473 } 1474 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1475 ATH_PCU_UNLOCK(sc); 1476 return; 1477 } 1478 1479 if ((ifp->if_flags & IFF_UP) == 0 || 1480 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1481 HAL_INT status; 1482 1483 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1484 __func__, ifp->if_flags); 1485 ath_hal_getisr(ah, &status); /* clear ISR */ 1486 ath_hal_intrset(ah, 0); /* disable further intr's */ 1487 ATH_PCU_UNLOCK(sc); 1488 return; 1489 } 1490 1491 /* 1492 * Figure out the reason(s) for the interrupt. Note 1493 * that the hal returns a pseudo-ISR that may include 1494 * bits we haven't explicitly enabled so we mask the 1495 * value to insure we only process bits we requested. 1496 */ 1497 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1498 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1499 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1500 #ifdef ATH_KTR_INTR_DEBUG 1501 CTR5(ATH_KTR_INTR, 1502 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1503 ah->ah_intrstate[0], 1504 ah->ah_intrstate[1], 1505 ah->ah_intrstate[2], 1506 ah->ah_intrstate[3], 1507 ah->ah_intrstate[6]); 1508 #endif 1509 1510 /* Squirrel away SYNC interrupt debugging */ 1511 if (ah->ah_syncstate != 0) { 1512 int i; 1513 for (i = 0; i < 32; i++) 1514 if (ah->ah_syncstate & (i << i)) 1515 sc->sc_intr_stats.sync_intr[i]++; 1516 } 1517 1518 status &= sc->sc_imask; /* discard unasked for bits */ 1519 1520 /* Short-circuit un-handled interrupts */ 1521 if (status == 0x0) { 1522 ATH_PCU_UNLOCK(sc); 1523 return; 1524 } 1525 1526 /* 1527 * Take a note that we're inside the interrupt handler, so 1528 * the reset routines know to wait. 1529 */ 1530 sc->sc_intr_cnt++; 1531 ATH_PCU_UNLOCK(sc); 1532 1533 /* 1534 * Handle the interrupt. We won't run concurrent with the reset 1535 * or channel change routines as they'll wait for sc_intr_cnt 1536 * to be 0 before continuing. 1537 */ 1538 if (status & HAL_INT_FATAL) { 1539 sc->sc_stats.ast_hardware++; 1540 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1541 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1542 } else { 1543 if (status & HAL_INT_SWBA) { 1544 /* 1545 * Software beacon alert--time to send a beacon. 1546 * Handle beacon transmission directly; deferring 1547 * this is too slow to meet timing constraints 1548 * under load. 1549 */ 1550 #ifdef IEEE80211_SUPPORT_TDMA 1551 if (sc->sc_tdma) { 1552 if (sc->sc_tdmaswba == 0) { 1553 struct ieee80211com *ic = ifp->if_l2com; 1554 struct ieee80211vap *vap = 1555 TAILQ_FIRST(&ic->ic_vaps); 1556 ath_tdma_beacon_send(sc, vap); 1557 sc->sc_tdmaswba = 1558 vap->iv_tdma->tdma_bintval; 1559 } else 1560 sc->sc_tdmaswba--; 1561 } else 1562 #endif 1563 { 1564 ath_beacon_proc(sc, 0); 1565 #ifdef IEEE80211_SUPPORT_SUPERG 1566 /* 1567 * Schedule the rx taskq in case there's no 1568 * traffic so any frames held on the staging 1569 * queue are aged and potentially flushed. 1570 */ 1571 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1572 #endif 1573 } 1574 } 1575 if (status & HAL_INT_RXEOL) { 1576 int imask; 1577 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1578 ATH_PCU_LOCK(sc); 1579 /* 1580 * NB: the hardware should re-read the link when 1581 * RXE bit is written, but it doesn't work at 1582 * least on older hardware revs. 1583 */ 1584 sc->sc_stats.ast_rxeol++; 1585 /* 1586 * Disable RXEOL/RXORN - prevent an interrupt 1587 * storm until the PCU logic can be reset. 1588 * In case the interface is reset some other 1589 * way before "sc_kickpcu" is called, don't 1590 * modify sc_imask - that way if it is reset 1591 * by a call to ath_reset() somehow, the 1592 * interrupt mask will be correctly reprogrammed. 1593 */ 1594 imask = sc->sc_imask; 1595 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1596 ath_hal_intrset(ah, imask); 1597 /* 1598 * Only blank sc_rxlink if we've not yet kicked 1599 * the PCU. 1600 * 1601 * This isn't entirely correct - the correct solution 1602 * would be to have a PCU lock and engage that for 1603 * the duration of the PCU fiddling; which would include 1604 * running the RX process. Otherwise we could end up 1605 * messing up the RX descriptor chain and making the 1606 * RX desc list much shorter. 1607 */ 1608 if (! sc->sc_kickpcu) 1609 sc->sc_rxlink = NULL; 1610 sc->sc_kickpcu = 1; 1611 /* 1612 * Enqueue an RX proc, to handled whatever 1613 * is in the RX queue. 1614 * This will then kick the PCU. 1615 */ 1616 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1617 ATH_PCU_UNLOCK(sc); 1618 } 1619 if (status & HAL_INT_TXURN) { 1620 sc->sc_stats.ast_txurn++; 1621 /* bump tx trigger level */ 1622 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1623 } 1624 /* 1625 * Handle both the legacy and RX EDMA interrupt bits. 1626 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1627 */ 1628 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1629 sc->sc_stats.ast_rx_intr++; 1630 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1631 } 1632 if (status & HAL_INT_TX) { 1633 sc->sc_stats.ast_tx_intr++; 1634 /* 1635 * Grab all the currently set bits in the HAL txq bitmap 1636 * and blank them. This is the only place we should be 1637 * doing this. 1638 */ 1639 ATH_PCU_LOCK(sc); 1640 txqs = 0xffffffff; 1641 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1642 sc->sc_txq_active |= txqs; 1643 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1644 ATH_PCU_UNLOCK(sc); 1645 } 1646 if (status & HAL_INT_BMISS) { 1647 sc->sc_stats.ast_bmiss++; 1648 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1649 } 1650 if (status & HAL_INT_GTT) 1651 sc->sc_stats.ast_tx_timeout++; 1652 if (status & HAL_INT_CST) 1653 sc->sc_stats.ast_tx_cst++; 1654 if (status & HAL_INT_MIB) { 1655 sc->sc_stats.ast_mib++; 1656 ATH_PCU_LOCK(sc); 1657 /* 1658 * Disable interrupts until we service the MIB 1659 * interrupt; otherwise it will continue to fire. 1660 */ 1661 ath_hal_intrset(ah, 0); 1662 /* 1663 * Let the hal handle the event. We assume it will 1664 * clear whatever condition caused the interrupt. 1665 */ 1666 ath_hal_mibevent(ah, &sc->sc_halstats); 1667 /* 1668 * Don't reset the interrupt if we've just 1669 * kicked the PCU, or we may get a nested 1670 * RXEOL before the rxproc has had a chance 1671 * to run. 1672 */ 1673 if (sc->sc_kickpcu == 0) 1674 ath_hal_intrset(ah, sc->sc_imask); 1675 ATH_PCU_UNLOCK(sc); 1676 } 1677 if (status & HAL_INT_RXORN) { 1678 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1679 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1680 sc->sc_stats.ast_rxorn++; 1681 } 1682 } 1683 ATH_PCU_LOCK(sc); 1684 sc->sc_intr_cnt--; 1685 ATH_PCU_UNLOCK(sc); 1686 } 1687 1688 static void 1689 ath_fatal_proc(void *arg, int pending) 1690 { 1691 struct ath_softc *sc = arg; 1692 struct ifnet *ifp = sc->sc_ifp; 1693 u_int32_t *state; 1694 u_int32_t len; 1695 void *sp; 1696 1697 if_printf(ifp, "hardware error; resetting\n"); 1698 /* 1699 * Fatal errors are unrecoverable. Typically these 1700 * are caused by DMA errors. Collect h/w state from 1701 * the hal so we can diagnose what's going on. 1702 */ 1703 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1704 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1705 state = sp; 1706 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1707 state[0], state[1] , state[2], state[3], 1708 state[4], state[5]); 1709 } 1710 ath_reset(ifp, ATH_RESET_NOLOSS); 1711 } 1712 1713 static void 1714 ath_bmiss_vap(struct ieee80211vap *vap) 1715 { 1716 /* 1717 * Workaround phantom bmiss interrupts by sanity-checking 1718 * the time of our last rx'd frame. If it is within the 1719 * beacon miss interval then ignore the interrupt. If it's 1720 * truly a bmiss we'll get another interrupt soon and that'll 1721 * be dispatched up for processing. Note this applies only 1722 * for h/w beacon miss events. 1723 */ 1724 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1725 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1726 struct ath_softc *sc = ifp->if_softc; 1727 u_int64_t lastrx = sc->sc_lastrx; 1728 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1729 /* XXX should take a locked ref to iv_bss */ 1730 u_int bmisstimeout = 1731 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1732 1733 DPRINTF(sc, ATH_DEBUG_BEACON, 1734 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1735 __func__, (unsigned long long) tsf, 1736 (unsigned long long)(tsf - lastrx), 1737 (unsigned long long) lastrx, bmisstimeout); 1738 1739 if (tsf - lastrx <= bmisstimeout) { 1740 sc->sc_stats.ast_bmiss_phantom++; 1741 return; 1742 } 1743 } 1744 ATH_VAP(vap)->av_bmiss(vap); 1745 } 1746 1747 static int 1748 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1749 { 1750 uint32_t rsize; 1751 void *sp; 1752 1753 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1754 return 0; 1755 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1756 *hangs = *(uint32_t *)sp; 1757 return 1; 1758 } 1759 1760 static void 1761 ath_bmiss_proc(void *arg, int pending) 1762 { 1763 struct ath_softc *sc = arg; 1764 struct ifnet *ifp = sc->sc_ifp; 1765 uint32_t hangs; 1766 1767 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1768 1769 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1770 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1771 ath_reset(ifp, ATH_RESET_NOLOSS); 1772 } else 1773 ieee80211_beacon_miss(ifp->if_l2com); 1774 } 1775 1776 /* 1777 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1778 * calcs together with WME. If necessary disable the crypto 1779 * hardware and mark the 802.11 state so keys will be setup 1780 * with the MIC work done in software. 1781 */ 1782 static void 1783 ath_settkipmic(struct ath_softc *sc) 1784 { 1785 struct ifnet *ifp = sc->sc_ifp; 1786 struct ieee80211com *ic = ifp->if_l2com; 1787 1788 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1789 if (ic->ic_flags & IEEE80211_F_WME) { 1790 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1791 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1792 } else { 1793 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1794 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1795 } 1796 } 1797 } 1798 1799 static void 1800 ath_init(void *arg) 1801 { 1802 struct ath_softc *sc = (struct ath_softc *) arg; 1803 struct ifnet *ifp = sc->sc_ifp; 1804 struct ieee80211com *ic = ifp->if_l2com; 1805 struct ath_hal *ah = sc->sc_ah; 1806 HAL_STATUS status; 1807 1808 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1809 __func__, ifp->if_flags); 1810 1811 ATH_LOCK(sc); 1812 /* 1813 * Stop anything previously setup. This is safe 1814 * whether this is the first time through or not. 1815 */ 1816 ath_stop_locked(ifp); 1817 1818 /* 1819 * The basic interface to setting the hardware in a good 1820 * state is ``reset''. On return the hardware is known to 1821 * be powered up and with interrupts disabled. This must 1822 * be followed by initialization of the appropriate bits 1823 * and then setup of the interrupt mask. 1824 */ 1825 ath_settkipmic(sc); 1826 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1827 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1828 status); 1829 ATH_UNLOCK(sc); 1830 return; 1831 } 1832 ath_chan_change(sc, ic->ic_curchan); 1833 1834 /* Let DFS at it in case it's a DFS channel */ 1835 ath_dfs_radar_enable(sc, ic->ic_curchan); 1836 1837 /* 1838 * Likewise this is set during reset so update 1839 * state cached in the driver. 1840 */ 1841 sc->sc_diversity = ath_hal_getdiversity(ah); 1842 sc->sc_lastlongcal = 0; 1843 sc->sc_resetcal = 1; 1844 sc->sc_lastcalreset = 0; 1845 sc->sc_lastani = 0; 1846 sc->sc_lastshortcal = 0; 1847 sc->sc_doresetcal = AH_FALSE; 1848 /* 1849 * Beacon timers were cleared here; give ath_newstate() 1850 * a hint that the beacon timers should be poked when 1851 * things transition to the RUN state. 1852 */ 1853 sc->sc_beacons = 0; 1854 1855 /* 1856 * Setup the hardware after reset: the key cache 1857 * is filled as needed and the receive engine is 1858 * set going. Frame transmit is handled entirely 1859 * in the frame output path; there's nothing to do 1860 * here except setup the interrupt mask. 1861 */ 1862 if (ath_startrecv(sc) != 0) { 1863 if_printf(ifp, "unable to start recv logic\n"); 1864 ATH_UNLOCK(sc); 1865 return; 1866 } 1867 1868 /* 1869 * Enable interrupts. 1870 */ 1871 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1872 | HAL_INT_RXEOL | HAL_INT_RXORN 1873 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1874 1875 /* 1876 * Enable RX EDMA bits. Note these overlap with 1877 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1878 */ 1879 if (sc->sc_isedma) 1880 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1881 1882 /* 1883 * Enable MIB interrupts when there are hardware phy counters. 1884 * Note we only do this (at the moment) for station mode. 1885 */ 1886 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1887 sc->sc_imask |= HAL_INT_MIB; 1888 1889 /* Enable global TX timeout and carrier sense timeout if available */ 1890 if (ath_hal_gtxto_supported(ah)) 1891 sc->sc_imask |= HAL_INT_GTT; 1892 1893 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1894 __func__, sc->sc_imask); 1895 1896 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1897 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1898 ath_hal_intrset(ah, sc->sc_imask); 1899 1900 ATH_UNLOCK(sc); 1901 1902 #ifdef ATH_TX99_DIAG 1903 if (sc->sc_tx99 != NULL) 1904 sc->sc_tx99->start(sc->sc_tx99); 1905 else 1906 #endif 1907 ieee80211_start_all(ic); /* start all vap's */ 1908 } 1909 1910 static void 1911 ath_stop_locked(struct ifnet *ifp) 1912 { 1913 struct ath_softc *sc = ifp->if_softc; 1914 struct ath_hal *ah = sc->sc_ah; 1915 1916 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1917 __func__, sc->sc_invalid, ifp->if_flags); 1918 1919 ATH_LOCK_ASSERT(sc); 1920 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1921 /* 1922 * Shutdown the hardware and driver: 1923 * reset 802.11 state machine 1924 * turn off timers 1925 * disable interrupts 1926 * turn off the radio 1927 * clear transmit machinery 1928 * clear receive machinery 1929 * drain and release tx queues 1930 * reclaim beacon resources 1931 * power down hardware 1932 * 1933 * Note that some of this work is not possible if the 1934 * hardware is gone (invalid). 1935 */ 1936 #ifdef ATH_TX99_DIAG 1937 if (sc->sc_tx99 != NULL) 1938 sc->sc_tx99->stop(sc->sc_tx99); 1939 #endif 1940 callout_stop(&sc->sc_wd_ch); 1941 sc->sc_wd_timer = 0; 1942 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1943 if (!sc->sc_invalid) { 1944 if (sc->sc_softled) { 1945 callout_stop(&sc->sc_ledtimer); 1946 ath_hal_gpioset(ah, sc->sc_ledpin, 1947 !sc->sc_ledon); 1948 sc->sc_blinking = 0; 1949 } 1950 ath_hal_intrset(ah, 0); 1951 } 1952 ath_draintxq(sc, ATH_RESET_DEFAULT); 1953 if (!sc->sc_invalid) { 1954 ath_stoprecv(sc, 1); 1955 ath_hal_phydisable(ah); 1956 } else 1957 sc->sc_rxlink = NULL; 1958 ath_beacon_free(sc); /* XXX not needed */ 1959 } 1960 } 1961 1962 #define MAX_TXRX_ITERATIONS 1000 1963 static void 1964 ath_txrx_stop_locked(struct ath_softc *sc) 1965 { 1966 int i = MAX_TXRX_ITERATIONS; 1967 1968 ATH_UNLOCK_ASSERT(sc); 1969 ATH_PCU_LOCK_ASSERT(sc); 1970 1971 /* 1972 * Sleep until all the pending operations have completed. 1973 * 1974 * The caller must ensure that reset has been incremented 1975 * or the pending operations may continue being queued. 1976 */ 1977 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1978 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1979 if (i <= 0) 1980 break; 1981 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1982 i--; 1983 } 1984 1985 if (i <= 0) 1986 device_printf(sc->sc_dev, 1987 "%s: didn't finish after %d iterations\n", 1988 __func__, MAX_TXRX_ITERATIONS); 1989 } 1990 #undef MAX_TXRX_ITERATIONS 1991 1992 #if 0 1993 static void 1994 ath_txrx_stop(struct ath_softc *sc) 1995 { 1996 ATH_UNLOCK_ASSERT(sc); 1997 ATH_PCU_UNLOCK_ASSERT(sc); 1998 1999 ATH_PCU_LOCK(sc); 2000 ath_txrx_stop_locked(sc); 2001 ATH_PCU_UNLOCK(sc); 2002 } 2003 #endif 2004 2005 static void 2006 ath_txrx_start(struct ath_softc *sc) 2007 { 2008 2009 taskqueue_unblock(sc->sc_tq); 2010 } 2011 2012 /* 2013 * Grab the reset lock, and wait around until noone else 2014 * is trying to do anything with it. 2015 * 2016 * This is totally horrible but we can't hold this lock for 2017 * long enough to do TX/RX or we end up with net80211/ip stack 2018 * LORs and eventual deadlock. 2019 * 2020 * "dowait" signals whether to spin, waiting for the reset 2021 * lock count to reach 0. This should (for now) only be used 2022 * during the reset path, as the rest of the code may not 2023 * be locking-reentrant enough to behave correctly. 2024 * 2025 * Another, cleaner way should be found to serialise all of 2026 * these operations. 2027 */ 2028 #define MAX_RESET_ITERATIONS 10 2029 static int 2030 ath_reset_grablock(struct ath_softc *sc, int dowait) 2031 { 2032 int w = 0; 2033 int i = MAX_RESET_ITERATIONS; 2034 2035 ATH_PCU_LOCK_ASSERT(sc); 2036 do { 2037 if (sc->sc_inreset_cnt == 0) { 2038 w = 1; 2039 break; 2040 } 2041 if (dowait == 0) { 2042 w = 0; 2043 break; 2044 } 2045 ATH_PCU_UNLOCK(sc); 2046 pause("ath_reset_grablock", 1); 2047 i--; 2048 ATH_PCU_LOCK(sc); 2049 } while (i > 0); 2050 2051 /* 2052 * We always increment the refcounter, regardless 2053 * of whether we succeeded to get it in an exclusive 2054 * way. 2055 */ 2056 sc->sc_inreset_cnt++; 2057 2058 if (i <= 0) 2059 device_printf(sc->sc_dev, 2060 "%s: didn't finish after %d iterations\n", 2061 __func__, MAX_RESET_ITERATIONS); 2062 2063 if (w == 0) 2064 device_printf(sc->sc_dev, 2065 "%s: warning, recursive reset path!\n", 2066 __func__); 2067 2068 return w; 2069 } 2070 #undef MAX_RESET_ITERATIONS 2071 2072 /* 2073 * XXX TODO: write ath_reset_releaselock 2074 */ 2075 2076 static void 2077 ath_stop(struct ifnet *ifp) 2078 { 2079 struct ath_softc *sc = ifp->if_softc; 2080 2081 ATH_LOCK(sc); 2082 ath_stop_locked(ifp); 2083 ATH_UNLOCK(sc); 2084 } 2085 2086 /* 2087 * Reset the hardware w/o losing operational state. This is 2088 * basically a more efficient way of doing ath_stop, ath_init, 2089 * followed by state transitions to the current 802.11 2090 * operational state. Used to recover from various errors and 2091 * to reset or reload hardware state. 2092 */ 2093 int 2094 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2095 { 2096 struct ath_softc *sc = ifp->if_softc; 2097 struct ieee80211com *ic = ifp->if_l2com; 2098 struct ath_hal *ah = sc->sc_ah; 2099 HAL_STATUS status; 2100 int i; 2101 2102 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2103 2104 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2105 ATH_PCU_UNLOCK_ASSERT(sc); 2106 ATH_UNLOCK_ASSERT(sc); 2107 2108 /* Try to (stop any further TX/RX from occuring */ 2109 taskqueue_block(sc->sc_tq); 2110 2111 ATH_PCU_LOCK(sc); 2112 ath_hal_intrset(ah, 0); /* disable interrupts */ 2113 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2114 if (ath_reset_grablock(sc, 1) == 0) { 2115 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2116 __func__); 2117 } 2118 ATH_PCU_UNLOCK(sc); 2119 2120 /* 2121 * Should now wait for pending TX/RX to complete 2122 * and block future ones from occuring. This needs to be 2123 * done before the TX queue is drained. 2124 */ 2125 ath_draintxq(sc, reset_type); /* stop xmit side */ 2126 2127 /* 2128 * Regardless of whether we're doing a no-loss flush or 2129 * not, stop the PCU and handle what's in the RX queue. 2130 * That way frames aren't dropped which shouldn't be. 2131 */ 2132 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2133 ath_rx_flush(sc); 2134 2135 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2136 /* NB: indicate channel change so we do a full reset */ 2137 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2138 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2139 __func__, status); 2140 sc->sc_diversity = ath_hal_getdiversity(ah); 2141 2142 /* Let DFS at it in case it's a DFS channel */ 2143 ath_dfs_radar_enable(sc, ic->ic_curchan); 2144 2145 if (ath_startrecv(sc) != 0) /* restart recv */ 2146 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2147 /* 2148 * We may be doing a reset in response to an ioctl 2149 * that changes the channel so update any state that 2150 * might change as a result. 2151 */ 2152 ath_chan_change(sc, ic->ic_curchan); 2153 if (sc->sc_beacons) { /* restart beacons */ 2154 #ifdef IEEE80211_SUPPORT_TDMA 2155 if (sc->sc_tdma) 2156 ath_tdma_config(sc, NULL); 2157 else 2158 #endif 2159 ath_beacon_config(sc, NULL); 2160 } 2161 2162 /* 2163 * Release the reset lock and re-enable interrupts here. 2164 * If an interrupt was being processed in ath_intr(), 2165 * it would disable interrupts at this point. So we have 2166 * to atomically enable interrupts and decrement the 2167 * reset counter - this way ath_intr() doesn't end up 2168 * disabling interrupts without a corresponding enable 2169 * in the rest or channel change path. 2170 */ 2171 ATH_PCU_LOCK(sc); 2172 sc->sc_inreset_cnt--; 2173 /* XXX only do this if sc_inreset_cnt == 0? */ 2174 ath_hal_intrset(ah, sc->sc_imask); 2175 ATH_PCU_UNLOCK(sc); 2176 2177 /* 2178 * TX and RX can be started here. If it were started with 2179 * sc_inreset_cnt > 0, the TX and RX path would abort. 2180 * Thus if this is a nested call through the reset or 2181 * channel change code, TX completion will occur but 2182 * RX completion and ath_start / ath_tx_start will not 2183 * run. 2184 */ 2185 2186 /* Restart TX/RX as needed */ 2187 ath_txrx_start(sc); 2188 2189 /* XXX Restart TX completion and pending TX */ 2190 if (reset_type == ATH_RESET_NOLOSS) { 2191 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2192 if (ATH_TXQ_SETUP(sc, i)) { 2193 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2194 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2195 ath_txq_sched(sc, &sc->sc_txq[i]); 2196 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2197 } 2198 } 2199 } 2200 2201 /* 2202 * This may have been set during an ath_start() call which 2203 * set this once it detected a concurrent TX was going on. 2204 * So, clear it. 2205 */ 2206 IF_LOCK(&ifp->if_snd); 2207 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2208 IF_UNLOCK(&ifp->if_snd); 2209 2210 /* Handle any frames in the TX queue */ 2211 /* 2212 * XXX should this be done by the caller, rather than 2213 * ath_reset() ? 2214 */ 2215 ath_start(ifp); /* restart xmit */ 2216 return 0; 2217 } 2218 2219 static int 2220 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2221 { 2222 struct ieee80211com *ic = vap->iv_ic; 2223 struct ifnet *ifp = ic->ic_ifp; 2224 struct ath_softc *sc = ifp->if_softc; 2225 struct ath_hal *ah = sc->sc_ah; 2226 2227 switch (cmd) { 2228 case IEEE80211_IOC_TXPOWER: 2229 /* 2230 * If per-packet TPC is enabled, then we have nothing 2231 * to do; otherwise we need to force the global limit. 2232 * All this can happen directly; no need to reset. 2233 */ 2234 if (!ath_hal_gettpc(ah)) 2235 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2236 return 0; 2237 } 2238 /* XXX? Full or NOLOSS? */ 2239 return ath_reset(ifp, ATH_RESET_FULL); 2240 } 2241 2242 struct ath_buf * 2243 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2244 { 2245 struct ath_buf *bf; 2246 2247 ATH_TXBUF_LOCK_ASSERT(sc); 2248 2249 if (btype == ATH_BUFTYPE_MGMT) 2250 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2251 else 2252 bf = TAILQ_FIRST(&sc->sc_txbuf); 2253 2254 if (bf == NULL) { 2255 sc->sc_stats.ast_tx_getnobuf++; 2256 } else { 2257 if (bf->bf_flags & ATH_BUF_BUSY) { 2258 sc->sc_stats.ast_tx_getbusybuf++; 2259 bf = NULL; 2260 } 2261 } 2262 2263 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2264 if (btype == ATH_BUFTYPE_MGMT) 2265 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2266 else { 2267 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2268 sc->sc_txbuf_cnt--; 2269 2270 /* 2271 * This shuldn't happen; however just to be 2272 * safe print a warning and fudge the txbuf 2273 * count. 2274 */ 2275 if (sc->sc_txbuf_cnt < 0) { 2276 device_printf(sc->sc_dev, 2277 "%s: sc_txbuf_cnt < 0?\n", 2278 __func__); 2279 sc->sc_txbuf_cnt = 0; 2280 } 2281 } 2282 } else 2283 bf = NULL; 2284 2285 if (bf == NULL) { 2286 /* XXX should check which list, mgmt or otherwise */ 2287 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2288 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2289 "out of xmit buffers" : "xmit buffer busy"); 2290 return NULL; 2291 } 2292 2293 /* XXX TODO: should do this at buffer list initialisation */ 2294 /* XXX (then, ensure the buffer has the right flag set) */ 2295 if (btype == ATH_BUFTYPE_MGMT) 2296 bf->bf_flags |= ATH_BUF_MGMT; 2297 else 2298 bf->bf_flags &= (~ATH_BUF_MGMT); 2299 2300 /* Valid bf here; clear some basic fields */ 2301 bf->bf_next = NULL; /* XXX just to be sure */ 2302 bf->bf_last = NULL; /* XXX again, just to be sure */ 2303 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2304 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2305 2306 return bf; 2307 } 2308 2309 /* 2310 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2311 * can't be thrown back on the queue as they could still be 2312 * in use by the hardware. 2313 * 2314 * This duplicates the buffer, or returns NULL. 2315 * 2316 * The descriptor is also copied but the link pointers and 2317 * the DMA segments aren't copied; this frame should thus 2318 * be again passed through the descriptor setup/chain routines 2319 * so the link is correct. 2320 * 2321 * The caller must free the buffer using ath_freebuf(). 2322 * 2323 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2324 * XXX in the TX pathway when retries are needed. 2325 * XXX Figure out how to keep some buffers free, or factor the 2326 * XXX number of busy buffers into the xmit path (ath_start()) 2327 * XXX so we don't over-commit. 2328 */ 2329 struct ath_buf * 2330 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2331 { 2332 struct ath_buf *tbf; 2333 2334 tbf = ath_getbuf(sc, 2335 (bf->bf_flags & ATH_BUF_MGMT) ? 2336 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2337 if (tbf == NULL) 2338 return NULL; /* XXX failure? Why? */ 2339 2340 /* Copy basics */ 2341 tbf->bf_next = NULL; 2342 tbf->bf_nseg = bf->bf_nseg; 2343 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2344 tbf->bf_status = bf->bf_status; 2345 tbf->bf_m = bf->bf_m; 2346 tbf->bf_node = bf->bf_node; 2347 /* will be setup by the chain/setup function */ 2348 tbf->bf_lastds = NULL; 2349 /* for now, last == self */ 2350 tbf->bf_last = tbf; 2351 tbf->bf_comp = bf->bf_comp; 2352 2353 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2354 2355 /* The caller has to re-init the descriptor + links */ 2356 2357 /* Copy state */ 2358 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2359 2360 return tbf; 2361 } 2362 2363 struct ath_buf * 2364 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2365 { 2366 struct ath_buf *bf; 2367 2368 ATH_TXBUF_LOCK(sc); 2369 bf = _ath_getbuf_locked(sc, btype); 2370 /* 2371 * If a mgmt buffer was requested but we're out of those, 2372 * try requesting a normal one. 2373 */ 2374 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2375 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2376 ATH_TXBUF_UNLOCK(sc); 2377 if (bf == NULL) { 2378 struct ifnet *ifp = sc->sc_ifp; 2379 2380 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2381 sc->sc_stats.ast_tx_qstop++; 2382 IF_LOCK(&ifp->if_snd); 2383 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2384 IF_UNLOCK(&ifp->if_snd); 2385 } 2386 return bf; 2387 } 2388 2389 void 2390 ath_start(struct ifnet *ifp) 2391 { 2392 struct ath_softc *sc = ifp->if_softc; 2393 struct ieee80211_node *ni; 2394 struct ath_buf *bf; 2395 struct mbuf *m, *next; 2396 ath_bufhead frags; 2397 2398 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2399 return; 2400 2401 /* XXX is it ok to hold the ATH_LOCK here? */ 2402 ATH_PCU_LOCK(sc); 2403 if (sc->sc_inreset_cnt > 0) { 2404 device_printf(sc->sc_dev, 2405 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2406 ATH_PCU_UNLOCK(sc); 2407 IF_LOCK(&ifp->if_snd); 2408 sc->sc_stats.ast_tx_qstop++; 2409 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2410 IF_UNLOCK(&ifp->if_snd); 2411 return; 2412 } 2413 sc->sc_txstart_cnt++; 2414 ATH_PCU_UNLOCK(sc); 2415 2416 for (;;) { 2417 ATH_TXBUF_LOCK(sc); 2418 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2419 /* XXX increment counter? */ 2420 ATH_TXBUF_UNLOCK(sc); 2421 IF_LOCK(&ifp->if_snd); 2422 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2423 IF_UNLOCK(&ifp->if_snd); 2424 break; 2425 } 2426 ATH_TXBUF_UNLOCK(sc); 2427 2428 /* 2429 * Grab a TX buffer and associated resources. 2430 */ 2431 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2432 if (bf == NULL) 2433 break; 2434 2435 IFQ_DEQUEUE(&ifp->if_snd, m); 2436 if (m == NULL) { 2437 ATH_TXBUF_LOCK(sc); 2438 ath_returnbuf_head(sc, bf); 2439 ATH_TXBUF_UNLOCK(sc); 2440 break; 2441 } 2442 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2443 /* 2444 * Check for fragmentation. If this frame 2445 * has been broken up verify we have enough 2446 * buffers to send all the fragments so all 2447 * go out or none... 2448 */ 2449 TAILQ_INIT(&frags); 2450 if ((m->m_flags & M_FRAG) && 2451 !ath_txfrag_setup(sc, &frags, m, ni)) { 2452 DPRINTF(sc, ATH_DEBUG_XMIT, 2453 "%s: out of txfrag buffers\n", __func__); 2454 sc->sc_stats.ast_tx_nofrag++; 2455 ifp->if_oerrors++; 2456 ath_freetx(m); 2457 goto bad; 2458 } 2459 ifp->if_opackets++; 2460 nextfrag: 2461 /* 2462 * Pass the frame to the h/w for transmission. 2463 * Fragmented frames have each frag chained together 2464 * with m_nextpkt. We know there are sufficient ath_buf's 2465 * to send all the frags because of work done by 2466 * ath_txfrag_setup. We leave m_nextpkt set while 2467 * calling ath_tx_start so it can use it to extend the 2468 * the tx duration to cover the subsequent frag and 2469 * so it can reclaim all the mbufs in case of an error; 2470 * ath_tx_start clears m_nextpkt once it commits to 2471 * handing the frame to the hardware. 2472 */ 2473 next = m->m_nextpkt; 2474 if (ath_tx_start(sc, ni, bf, m)) { 2475 bad: 2476 ifp->if_oerrors++; 2477 reclaim: 2478 bf->bf_m = NULL; 2479 bf->bf_node = NULL; 2480 ATH_TXBUF_LOCK(sc); 2481 ath_returnbuf_head(sc, bf); 2482 ath_txfrag_cleanup(sc, &frags, ni); 2483 ATH_TXBUF_UNLOCK(sc); 2484 if (ni != NULL) 2485 ieee80211_free_node(ni); 2486 continue; 2487 } 2488 if (next != NULL) { 2489 /* 2490 * Beware of state changing between frags. 2491 * XXX check sta power-save state? 2492 */ 2493 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2494 DPRINTF(sc, ATH_DEBUG_XMIT, 2495 "%s: flush fragmented packet, state %s\n", 2496 __func__, 2497 ieee80211_state_name[ni->ni_vap->iv_state]); 2498 ath_freetx(next); 2499 goto reclaim; 2500 } 2501 m = next; 2502 bf = TAILQ_FIRST(&frags); 2503 KASSERT(bf != NULL, ("no buf for txfrag")); 2504 TAILQ_REMOVE(&frags, bf, bf_list); 2505 goto nextfrag; 2506 } 2507 2508 sc->sc_wd_timer = 5; 2509 } 2510 2511 ATH_PCU_LOCK(sc); 2512 sc->sc_txstart_cnt--; 2513 ATH_PCU_UNLOCK(sc); 2514 } 2515 2516 static int 2517 ath_media_change(struct ifnet *ifp) 2518 { 2519 int error = ieee80211_media_change(ifp); 2520 /* NB: only the fixed rate can change and that doesn't need a reset */ 2521 return (error == ENETRESET ? 0 : error); 2522 } 2523 2524 /* 2525 * Block/unblock tx+rx processing while a key change is done. 2526 * We assume the caller serializes key management operations 2527 * so we only need to worry about synchronization with other 2528 * uses that originate in the driver. 2529 */ 2530 static void 2531 ath_key_update_begin(struct ieee80211vap *vap) 2532 { 2533 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2534 struct ath_softc *sc = ifp->if_softc; 2535 2536 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2537 taskqueue_block(sc->sc_tq); 2538 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2539 } 2540 2541 static void 2542 ath_key_update_end(struct ieee80211vap *vap) 2543 { 2544 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2545 struct ath_softc *sc = ifp->if_softc; 2546 2547 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2548 IF_UNLOCK(&ifp->if_snd); 2549 taskqueue_unblock(sc->sc_tq); 2550 } 2551 2552 static void 2553 ath_update_promisc(struct ifnet *ifp) 2554 { 2555 struct ath_softc *sc = ifp->if_softc; 2556 u_int32_t rfilt; 2557 2558 /* configure rx filter */ 2559 rfilt = ath_calcrxfilter(sc); 2560 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2561 2562 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2563 } 2564 2565 static void 2566 ath_update_mcast(struct ifnet *ifp) 2567 { 2568 struct ath_softc *sc = ifp->if_softc; 2569 u_int32_t mfilt[2]; 2570 2571 /* calculate and install multicast filter */ 2572 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2573 struct ifmultiaddr *ifma; 2574 /* 2575 * Merge multicast addresses to form the hardware filter. 2576 */ 2577 mfilt[0] = mfilt[1] = 0; 2578 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2579 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2580 caddr_t dl; 2581 u_int32_t val; 2582 u_int8_t pos; 2583 2584 /* calculate XOR of eight 6bit values */ 2585 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2586 val = LE_READ_4(dl + 0); 2587 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2588 val = LE_READ_4(dl + 3); 2589 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2590 pos &= 0x3f; 2591 mfilt[pos / 32] |= (1 << (pos % 32)); 2592 } 2593 if_maddr_runlock(ifp); 2594 } else 2595 mfilt[0] = mfilt[1] = ~0; 2596 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2597 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2598 __func__, mfilt[0], mfilt[1]); 2599 } 2600 2601 void 2602 ath_mode_init(struct ath_softc *sc) 2603 { 2604 struct ifnet *ifp = sc->sc_ifp; 2605 struct ath_hal *ah = sc->sc_ah; 2606 u_int32_t rfilt; 2607 2608 /* configure rx filter */ 2609 rfilt = ath_calcrxfilter(sc); 2610 ath_hal_setrxfilter(ah, rfilt); 2611 2612 /* configure operational mode */ 2613 ath_hal_setopmode(ah); 2614 2615 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2616 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2617 __func__, 2618 ah, 2619 ifp, 2620 (ifp == NULL) ? NULL : ifp->if_addr); 2621 2622 /* handle any link-level address change */ 2623 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2624 2625 /* calculate and install multicast filter */ 2626 ath_update_mcast(ifp); 2627 } 2628 2629 /* 2630 * Set the slot time based on the current setting. 2631 */ 2632 void 2633 ath_setslottime(struct ath_softc *sc) 2634 { 2635 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2636 struct ath_hal *ah = sc->sc_ah; 2637 u_int usec; 2638 2639 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2640 usec = 13; 2641 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2642 usec = 21; 2643 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2644 /* honor short/long slot time only in 11g */ 2645 /* XXX shouldn't honor on pure g or turbo g channel */ 2646 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2647 usec = HAL_SLOT_TIME_9; 2648 else 2649 usec = HAL_SLOT_TIME_20; 2650 } else 2651 usec = HAL_SLOT_TIME_9; 2652 2653 DPRINTF(sc, ATH_DEBUG_RESET, 2654 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2655 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2656 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2657 2658 ath_hal_setslottime(ah, usec); 2659 sc->sc_updateslot = OK; 2660 } 2661 2662 /* 2663 * Callback from the 802.11 layer to update the 2664 * slot time based on the current setting. 2665 */ 2666 static void 2667 ath_updateslot(struct ifnet *ifp) 2668 { 2669 struct ath_softc *sc = ifp->if_softc; 2670 struct ieee80211com *ic = ifp->if_l2com; 2671 2672 /* 2673 * When not coordinating the BSS, change the hardware 2674 * immediately. For other operation we defer the change 2675 * until beacon updates have propagated to the stations. 2676 */ 2677 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2678 ic->ic_opmode == IEEE80211_M_MBSS) 2679 sc->sc_updateslot = UPDATE; 2680 else 2681 ath_setslottime(sc); 2682 } 2683 2684 /* 2685 * Append the contents of src to dst; both queues 2686 * are assumed to be locked. 2687 */ 2688 void 2689 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2690 { 2691 2692 ATH_TXQ_LOCK_ASSERT(dst); 2693 ATH_TXQ_LOCK_ASSERT(src); 2694 2695 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2696 dst->axq_link = src->axq_link; 2697 src->axq_link = NULL; 2698 dst->axq_depth += src->axq_depth; 2699 dst->axq_aggr_depth += src->axq_aggr_depth; 2700 src->axq_depth = 0; 2701 src->axq_aggr_depth = 0; 2702 } 2703 2704 /* 2705 * Reset the hardware, with no loss. 2706 * 2707 * This can't be used for a general case reset. 2708 */ 2709 static void 2710 ath_reset_proc(void *arg, int pending) 2711 { 2712 struct ath_softc *sc = arg; 2713 struct ifnet *ifp = sc->sc_ifp; 2714 2715 #if 0 2716 if_printf(ifp, "%s: resetting\n", __func__); 2717 #endif 2718 ath_reset(ifp, ATH_RESET_NOLOSS); 2719 } 2720 2721 /* 2722 * Reset the hardware after detecting beacons have stopped. 2723 */ 2724 static void 2725 ath_bstuck_proc(void *arg, int pending) 2726 { 2727 struct ath_softc *sc = arg; 2728 struct ifnet *ifp = sc->sc_ifp; 2729 uint32_t hangs = 0; 2730 2731 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2732 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2733 2734 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2735 sc->sc_bmisscount); 2736 sc->sc_stats.ast_bstuck++; 2737 /* 2738 * This assumes that there's no simultaneous channel mode change 2739 * occuring. 2740 */ 2741 ath_reset(ifp, ATH_RESET_NOLOSS); 2742 } 2743 2744 static void 2745 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2746 { 2747 bus_addr_t *paddr = (bus_addr_t*) arg; 2748 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2749 *paddr = segs->ds_addr; 2750 } 2751 2752 int 2753 ath_descdma_setup(struct ath_softc *sc, 2754 struct ath_descdma *dd, ath_bufhead *head, 2755 const char *name, int nbuf, int ndesc) 2756 { 2757 #define DS2PHYS(_dd, _ds) \ 2758 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2759 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2760 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2761 struct ifnet *ifp = sc->sc_ifp; 2762 uint8_t *ds; 2763 struct ath_buf *bf; 2764 int i, bsize, error; 2765 int desc_len; 2766 2767 desc_len = sizeof(struct ath_desc); 2768 2769 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2770 __func__, name, nbuf, ndesc); 2771 2772 dd->dd_name = name; 2773 dd->dd_desc_len = desc_len * nbuf * ndesc; 2774 2775 /* 2776 * Merlin work-around: 2777 * Descriptors that cross the 4KB boundary can't be used. 2778 * Assume one skipped descriptor per 4KB page. 2779 */ 2780 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2781 int numdescpage = 4096 / (desc_len * ndesc); 2782 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 2783 } 2784 2785 /* 2786 * Setup DMA descriptor area. 2787 */ 2788 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2789 PAGE_SIZE, 0, /* alignment, bounds */ 2790 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2791 BUS_SPACE_MAXADDR, /* highaddr */ 2792 NULL, NULL, /* filter, filterarg */ 2793 dd->dd_desc_len, /* maxsize */ 2794 1, /* nsegments */ 2795 dd->dd_desc_len, /* maxsegsize */ 2796 BUS_DMA_ALLOCNOW, /* flags */ 2797 NULL, /* lockfunc */ 2798 NULL, /* lockarg */ 2799 &dd->dd_dmat); 2800 if (error != 0) { 2801 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2802 return error; 2803 } 2804 2805 /* allocate descriptors */ 2806 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2807 if (error != 0) { 2808 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2809 "error %u\n", dd->dd_name, error); 2810 goto fail0; 2811 } 2812 2813 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2814 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2815 &dd->dd_dmamap); 2816 if (error != 0) { 2817 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2818 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2819 goto fail1; 2820 } 2821 2822 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2823 dd->dd_desc, dd->dd_desc_len, 2824 ath_load_cb, &dd->dd_desc_paddr, 2825 BUS_DMA_NOWAIT); 2826 if (error != 0) { 2827 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2828 dd->dd_name, error); 2829 goto fail2; 2830 } 2831 2832 ds = (uint8_t *) dd->dd_desc; 2833 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2834 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2835 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2836 2837 /* allocate rx buffers */ 2838 bsize = sizeof(struct ath_buf) * nbuf; 2839 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2840 if (bf == NULL) { 2841 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2842 dd->dd_name, bsize); 2843 goto fail3; 2844 } 2845 dd->dd_bufptr = bf; 2846 2847 TAILQ_INIT(head); 2848 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 2849 bf->bf_desc = (struct ath_desc *) ds; 2850 bf->bf_daddr = DS2PHYS(dd, ds); 2851 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2852 /* 2853 * Merlin WAR: Skip descriptor addresses which 2854 * cause 4KB boundary crossing along any point 2855 * in the descriptor. 2856 */ 2857 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2858 desc_len * ndesc)) { 2859 /* Start at the next page */ 2860 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2861 bf->bf_desc = (struct ath_desc *) ds; 2862 bf->bf_daddr = DS2PHYS(dd, ds); 2863 } 2864 } 2865 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2866 &bf->bf_dmamap); 2867 if (error != 0) { 2868 if_printf(ifp, "unable to create dmamap for %s " 2869 "buffer %u, error %u\n", dd->dd_name, i, error); 2870 ath_descdma_cleanup(sc, dd, head); 2871 return error; 2872 } 2873 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2874 TAILQ_INSERT_TAIL(head, bf, bf_list); 2875 } 2876 return 0; 2877 fail3: 2878 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2879 fail2: 2880 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2881 fail1: 2882 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2883 fail0: 2884 bus_dma_tag_destroy(dd->dd_dmat); 2885 memset(dd, 0, sizeof(*dd)); 2886 return error; 2887 #undef DS2PHYS 2888 #undef ATH_DESC_4KB_BOUND_CHECK 2889 } 2890 2891 void 2892 ath_descdma_cleanup(struct ath_softc *sc, 2893 struct ath_descdma *dd, ath_bufhead *head) 2894 { 2895 struct ath_buf *bf; 2896 struct ieee80211_node *ni; 2897 2898 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2899 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2900 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2901 bus_dma_tag_destroy(dd->dd_dmat); 2902 2903 TAILQ_FOREACH(bf, head, bf_list) { 2904 if (bf->bf_m) { 2905 m_freem(bf->bf_m); 2906 bf->bf_m = NULL; 2907 } 2908 if (bf->bf_dmamap != NULL) { 2909 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2910 bf->bf_dmamap = NULL; 2911 } 2912 ni = bf->bf_node; 2913 bf->bf_node = NULL; 2914 if (ni != NULL) { 2915 /* 2916 * Reclaim node reference. 2917 */ 2918 ieee80211_free_node(ni); 2919 } 2920 } 2921 2922 TAILQ_INIT(head); 2923 free(dd->dd_bufptr, M_ATHDEV); 2924 memset(dd, 0, sizeof(*dd)); 2925 } 2926 2927 static int 2928 ath_desc_alloc(struct ath_softc *sc) 2929 { 2930 int error; 2931 2932 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2933 "tx", ath_txbuf, ATH_TXDESC); 2934 if (error != 0) { 2935 return error; 2936 } 2937 sc->sc_txbuf_cnt = ath_txbuf; 2938 2939 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 2940 "tx_mgmt", ath_txbuf_mgmt, ATH_TXDESC); 2941 if (error != 0) { 2942 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2943 return error; 2944 } 2945 2946 /* 2947 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 2948 * flag doesn't have to be set in ath_getbuf_locked(). 2949 */ 2950 2951 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2952 "beacon", ATH_BCBUF, 1); 2953 if (error != 0) { 2954 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2955 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 2956 &sc->sc_txbuf_mgmt); 2957 return error; 2958 } 2959 return 0; 2960 } 2961 2962 static void 2963 ath_desc_free(struct ath_softc *sc) 2964 { 2965 2966 if (sc->sc_bdma.dd_desc_len != 0) 2967 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2968 if (sc->sc_txdma.dd_desc_len != 0) 2969 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2970 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 2971 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 2972 &sc->sc_txbuf_mgmt); 2973 } 2974 2975 static struct ieee80211_node * 2976 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2977 { 2978 struct ieee80211com *ic = vap->iv_ic; 2979 struct ath_softc *sc = ic->ic_ifp->if_softc; 2980 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2981 struct ath_node *an; 2982 2983 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2984 if (an == NULL) { 2985 /* XXX stat+msg */ 2986 return NULL; 2987 } 2988 ath_rate_node_init(sc, an); 2989 2990 /* Setup the mutex - there's no associd yet so set the name to NULL */ 2991 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 2992 device_get_nameunit(sc->sc_dev), an); 2993 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 2994 2995 /* XXX setup ath_tid */ 2996 ath_tx_tid_init(sc, an); 2997 2998 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2999 return &an->an_node; 3000 } 3001 3002 static void 3003 ath_node_cleanup(struct ieee80211_node *ni) 3004 { 3005 struct ieee80211com *ic = ni->ni_ic; 3006 struct ath_softc *sc = ic->ic_ifp->if_softc; 3007 3008 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3009 ath_tx_node_flush(sc, ATH_NODE(ni)); 3010 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3011 sc->sc_node_cleanup(ni); 3012 } 3013 3014 static void 3015 ath_node_free(struct ieee80211_node *ni) 3016 { 3017 struct ieee80211com *ic = ni->ni_ic; 3018 struct ath_softc *sc = ic->ic_ifp->if_softc; 3019 3020 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3021 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3022 sc->sc_node_free(ni); 3023 } 3024 3025 static void 3026 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3027 { 3028 struct ieee80211com *ic = ni->ni_ic; 3029 struct ath_softc *sc = ic->ic_ifp->if_softc; 3030 struct ath_hal *ah = sc->sc_ah; 3031 3032 *rssi = ic->ic_node_getrssi(ni); 3033 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3034 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3035 else 3036 *noise = -95; /* nominally correct */ 3037 } 3038 3039 /* 3040 * Set the default antenna. 3041 */ 3042 void 3043 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3044 { 3045 struct ath_hal *ah = sc->sc_ah; 3046 3047 /* XXX block beacon interrupts */ 3048 ath_hal_setdefantenna(ah, antenna); 3049 if (sc->sc_defant != antenna) 3050 sc->sc_stats.ast_ant_defswitch++; 3051 sc->sc_defant = antenna; 3052 sc->sc_rxotherant = 0; 3053 } 3054 3055 static void 3056 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3057 { 3058 txq->axq_qnum = qnum; 3059 txq->axq_ac = 0; 3060 txq->axq_depth = 0; 3061 txq->axq_aggr_depth = 0; 3062 txq->axq_intrcnt = 0; 3063 txq->axq_link = NULL; 3064 txq->axq_softc = sc; 3065 TAILQ_INIT(&txq->axq_q); 3066 TAILQ_INIT(&txq->axq_tidq); 3067 ATH_TXQ_LOCK_INIT(sc, txq); 3068 } 3069 3070 /* 3071 * Setup a h/w transmit queue. 3072 */ 3073 static struct ath_txq * 3074 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3075 { 3076 #define N(a) (sizeof(a)/sizeof(a[0])) 3077 struct ath_hal *ah = sc->sc_ah; 3078 HAL_TXQ_INFO qi; 3079 int qnum; 3080 3081 memset(&qi, 0, sizeof(qi)); 3082 qi.tqi_subtype = subtype; 3083 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3084 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3085 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3086 /* 3087 * Enable interrupts only for EOL and DESC conditions. 3088 * We mark tx descriptors to receive a DESC interrupt 3089 * when a tx queue gets deep; otherwise waiting for the 3090 * EOL to reap descriptors. Note that this is done to 3091 * reduce interrupt load and this only defers reaping 3092 * descriptors, never transmitting frames. Aside from 3093 * reducing interrupts this also permits more concurrency. 3094 * The only potential downside is if the tx queue backs 3095 * up in which case the top half of the kernel may backup 3096 * due to a lack of tx descriptors. 3097 */ 3098 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3099 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3100 if (qnum == -1) { 3101 /* 3102 * NB: don't print a message, this happens 3103 * normally on parts with too few tx queues 3104 */ 3105 return NULL; 3106 } 3107 if (qnum >= N(sc->sc_txq)) { 3108 device_printf(sc->sc_dev, 3109 "hal qnum %u out of range, max %zu!\n", 3110 qnum, N(sc->sc_txq)); 3111 ath_hal_releasetxqueue(ah, qnum); 3112 return NULL; 3113 } 3114 if (!ATH_TXQ_SETUP(sc, qnum)) { 3115 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3116 sc->sc_txqsetup |= 1<<qnum; 3117 } 3118 return &sc->sc_txq[qnum]; 3119 #undef N 3120 } 3121 3122 /* 3123 * Setup a hardware data transmit queue for the specified 3124 * access control. The hal may not support all requested 3125 * queues in which case it will return a reference to a 3126 * previously setup queue. We record the mapping from ac's 3127 * to h/w queues for use by ath_tx_start and also track 3128 * the set of h/w queues being used to optimize work in the 3129 * transmit interrupt handler and related routines. 3130 */ 3131 static int 3132 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3133 { 3134 #define N(a) (sizeof(a)/sizeof(a[0])) 3135 struct ath_txq *txq; 3136 3137 if (ac >= N(sc->sc_ac2q)) { 3138 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3139 ac, N(sc->sc_ac2q)); 3140 return 0; 3141 } 3142 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3143 if (txq != NULL) { 3144 txq->axq_ac = ac; 3145 sc->sc_ac2q[ac] = txq; 3146 return 1; 3147 } else 3148 return 0; 3149 #undef N 3150 } 3151 3152 /* 3153 * Update WME parameters for a transmit queue. 3154 */ 3155 static int 3156 ath_txq_update(struct ath_softc *sc, int ac) 3157 { 3158 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3159 #define ATH_TXOP_TO_US(v) (v<<5) 3160 struct ifnet *ifp = sc->sc_ifp; 3161 struct ieee80211com *ic = ifp->if_l2com; 3162 struct ath_txq *txq = sc->sc_ac2q[ac]; 3163 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3164 struct ath_hal *ah = sc->sc_ah; 3165 HAL_TXQ_INFO qi; 3166 3167 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3168 #ifdef IEEE80211_SUPPORT_TDMA 3169 if (sc->sc_tdma) { 3170 /* 3171 * AIFS is zero so there's no pre-transmit wait. The 3172 * burst time defines the slot duration and is configured 3173 * through net80211. The QCU is setup to not do post-xmit 3174 * back off, lockout all lower-priority QCU's, and fire 3175 * off the DMA beacon alert timer which is setup based 3176 * on the slot configuration. 3177 */ 3178 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3179 | HAL_TXQ_TXERRINT_ENABLE 3180 | HAL_TXQ_TXURNINT_ENABLE 3181 | HAL_TXQ_TXEOLINT_ENABLE 3182 | HAL_TXQ_DBA_GATED 3183 | HAL_TXQ_BACKOFF_DISABLE 3184 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3185 ; 3186 qi.tqi_aifs = 0; 3187 /* XXX +dbaprep? */ 3188 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3189 qi.tqi_burstTime = qi.tqi_readyTime; 3190 } else { 3191 #endif 3192 /* 3193 * XXX shouldn't this just use the default flags 3194 * used in the previous queue setup? 3195 */ 3196 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3197 | HAL_TXQ_TXERRINT_ENABLE 3198 | HAL_TXQ_TXDESCINT_ENABLE 3199 | HAL_TXQ_TXURNINT_ENABLE 3200 | HAL_TXQ_TXEOLINT_ENABLE 3201 ; 3202 qi.tqi_aifs = wmep->wmep_aifsn; 3203 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3204 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3205 qi.tqi_readyTime = 0; 3206 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3207 #ifdef IEEE80211_SUPPORT_TDMA 3208 } 3209 #endif 3210 3211 DPRINTF(sc, ATH_DEBUG_RESET, 3212 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3213 __func__, txq->axq_qnum, qi.tqi_qflags, 3214 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3215 3216 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3217 if_printf(ifp, "unable to update hardware queue " 3218 "parameters for %s traffic!\n", 3219 ieee80211_wme_acnames[ac]); 3220 return 0; 3221 } else { 3222 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3223 return 1; 3224 } 3225 #undef ATH_TXOP_TO_US 3226 #undef ATH_EXPONENT_TO_VALUE 3227 } 3228 3229 /* 3230 * Callback from the 802.11 layer to update WME parameters. 3231 */ 3232 int 3233 ath_wme_update(struct ieee80211com *ic) 3234 { 3235 struct ath_softc *sc = ic->ic_ifp->if_softc; 3236 3237 return !ath_txq_update(sc, WME_AC_BE) || 3238 !ath_txq_update(sc, WME_AC_BK) || 3239 !ath_txq_update(sc, WME_AC_VI) || 3240 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3241 } 3242 3243 /* 3244 * Reclaim resources for a setup queue. 3245 */ 3246 static void 3247 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3248 { 3249 3250 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3251 ATH_TXQ_LOCK_DESTROY(txq); 3252 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3253 } 3254 3255 /* 3256 * Reclaim all tx queue resources. 3257 */ 3258 static void 3259 ath_tx_cleanup(struct ath_softc *sc) 3260 { 3261 int i; 3262 3263 ATH_TXBUF_LOCK_DESTROY(sc); 3264 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3265 if (ATH_TXQ_SETUP(sc, i)) 3266 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3267 } 3268 3269 /* 3270 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3271 * using the current rates in sc_rixmap. 3272 */ 3273 int 3274 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3275 { 3276 int rix = sc->sc_rixmap[rate]; 3277 /* NB: return lowest rix for invalid rate */ 3278 return (rix == 0xff ? 0 : rix); 3279 } 3280 3281 static void 3282 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3283 struct ath_buf *bf) 3284 { 3285 struct ieee80211_node *ni = bf->bf_node; 3286 struct ifnet *ifp = sc->sc_ifp; 3287 struct ieee80211com *ic = ifp->if_l2com; 3288 int sr, lr, pri; 3289 3290 if (ts->ts_status == 0) { 3291 u_int8_t txant = ts->ts_antenna; 3292 sc->sc_stats.ast_ant_tx[txant]++; 3293 sc->sc_ant_tx[txant]++; 3294 if (ts->ts_finaltsi != 0) 3295 sc->sc_stats.ast_tx_altrate++; 3296 pri = M_WME_GETAC(bf->bf_m); 3297 if (pri >= WME_AC_VO) 3298 ic->ic_wme.wme_hipri_traffic++; 3299 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3300 ni->ni_inact = ni->ni_inact_reload; 3301 } else { 3302 if (ts->ts_status & HAL_TXERR_XRETRY) 3303 sc->sc_stats.ast_tx_xretries++; 3304 if (ts->ts_status & HAL_TXERR_FIFO) 3305 sc->sc_stats.ast_tx_fifoerr++; 3306 if (ts->ts_status & HAL_TXERR_FILT) 3307 sc->sc_stats.ast_tx_filtered++; 3308 if (ts->ts_status & HAL_TXERR_XTXOP) 3309 sc->sc_stats.ast_tx_xtxop++; 3310 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3311 sc->sc_stats.ast_tx_timerexpired++; 3312 3313 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3314 sc->sc_stats.ast_tx_data_underrun++; 3315 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3316 sc->sc_stats.ast_tx_delim_underrun++; 3317 3318 if (bf->bf_m->m_flags & M_FF) 3319 sc->sc_stats.ast_ff_txerr++; 3320 } 3321 /* XXX when is this valid? */ 3322 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3323 sc->sc_stats.ast_tx_desccfgerr++; 3324 3325 sr = ts->ts_shortretry; 3326 lr = ts->ts_longretry; 3327 sc->sc_stats.ast_tx_shortretry += sr; 3328 sc->sc_stats.ast_tx_longretry += lr; 3329 3330 } 3331 3332 /* 3333 * The default completion. If fail is 1, this means 3334 * "please don't retry the frame, and just return -1 status 3335 * to the net80211 stack. 3336 */ 3337 void 3338 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3339 { 3340 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3341 int st; 3342 3343 if (fail == 1) 3344 st = -1; 3345 else 3346 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3347 ts->ts_status : HAL_TXERR_XRETRY; 3348 3349 if (bf->bf_state.bfs_dobaw) 3350 device_printf(sc->sc_dev, 3351 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3352 __func__, 3353 bf, 3354 SEQNO(bf->bf_state.bfs_seqno)); 3355 if (bf->bf_next != NULL) 3356 device_printf(sc->sc_dev, 3357 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3358 __func__, 3359 bf, 3360 SEQNO(bf->bf_state.bfs_seqno)); 3361 3362 /* 3363 * Do any tx complete callback. Note this must 3364 * be done before releasing the node reference. 3365 * This will free the mbuf, release the net80211 3366 * node and recycle the ath_buf. 3367 */ 3368 ath_tx_freebuf(sc, bf, st); 3369 } 3370 3371 /* 3372 * Update rate control with the given completion status. 3373 */ 3374 void 3375 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3376 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3377 int nframes, int nbad) 3378 { 3379 struct ath_node *an; 3380 3381 /* Only for unicast frames */ 3382 if (ni == NULL) 3383 return; 3384 3385 an = ATH_NODE(ni); 3386 3387 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3388 ATH_NODE_LOCK(an); 3389 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3390 ATH_NODE_UNLOCK(an); 3391 } 3392 } 3393 3394 /* 3395 * Update the busy status of the last frame on the free list. 3396 * When doing TDMA, the busy flag tracks whether the hardware 3397 * currently points to this buffer or not, and thus gated DMA 3398 * may restart by re-reading the last descriptor in this 3399 * buffer. 3400 * 3401 * This should be called in the completion function once one 3402 * of the buffers has been used. 3403 */ 3404 static void 3405 ath_tx_update_busy(struct ath_softc *sc) 3406 { 3407 struct ath_buf *last; 3408 3409 /* 3410 * Since the last frame may still be marked 3411 * as ATH_BUF_BUSY, unmark it here before 3412 * finishing the frame processing. 3413 * Since we've completed a frame (aggregate 3414 * or otherwise), the hardware has moved on 3415 * and is no longer referencing the previous 3416 * descriptor. 3417 */ 3418 ATH_TXBUF_LOCK_ASSERT(sc); 3419 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3420 if (last != NULL) 3421 last->bf_flags &= ~ATH_BUF_BUSY; 3422 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3423 if (last != NULL) 3424 last->bf_flags &= ~ATH_BUF_BUSY; 3425 } 3426 3427 /* 3428 * Process completed xmit descriptors from the specified queue. 3429 * Kick the packet scheduler if needed. This can occur from this 3430 * particular task. 3431 */ 3432 static int 3433 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3434 { 3435 struct ath_hal *ah = sc->sc_ah; 3436 struct ath_buf *bf; 3437 struct ath_desc *ds; 3438 struct ath_tx_status *ts; 3439 struct ieee80211_node *ni; 3440 struct ath_node *an; 3441 #ifdef IEEE80211_SUPPORT_SUPERG 3442 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3443 #endif /* IEEE80211_SUPPORT_SUPERG */ 3444 int nacked; 3445 HAL_STATUS status; 3446 3447 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3448 __func__, txq->axq_qnum, 3449 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3450 txq->axq_link); 3451 nacked = 0; 3452 for (;;) { 3453 ATH_TXQ_LOCK(txq); 3454 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3455 bf = TAILQ_FIRST(&txq->axq_q); 3456 if (bf == NULL) { 3457 ATH_TXQ_UNLOCK(txq); 3458 break; 3459 } 3460 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3461 ts = &bf->bf_status.ds_txstat; 3462 status = ath_hal_txprocdesc(ah, ds, ts); 3463 #ifdef ATH_DEBUG 3464 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3465 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3466 status == HAL_OK); 3467 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) { 3468 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3469 status == HAL_OK); 3470 } 3471 #endif 3472 if (status == HAL_EINPROGRESS) { 3473 ATH_TXQ_UNLOCK(txq); 3474 break; 3475 } 3476 ATH_TXQ_REMOVE(txq, bf, bf_list); 3477 #ifdef IEEE80211_SUPPORT_TDMA 3478 if (txq->axq_depth > 0) { 3479 /* 3480 * More frames follow. Mark the buffer busy 3481 * so it's not re-used while the hardware may 3482 * still re-read the link field in the descriptor. 3483 * 3484 * Use the last buffer in an aggregate as that 3485 * is where the hardware may be - intermediate 3486 * descriptors won't be "busy". 3487 */ 3488 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3489 } else 3490 #else 3491 if (txq->axq_depth == 0) 3492 #endif 3493 txq->axq_link = NULL; 3494 if (bf->bf_state.bfs_aggr) 3495 txq->axq_aggr_depth--; 3496 3497 ni = bf->bf_node; 3498 /* 3499 * If unicast frame was ack'd update RSSI, 3500 * including the last rx time used to 3501 * workaround phantom bmiss interrupts. 3502 */ 3503 if (ni != NULL && ts->ts_status == 0 && 3504 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3505 nacked++; 3506 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3507 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3508 ts->ts_rssi); 3509 } 3510 ATH_TXQ_UNLOCK(txq); 3511 3512 /* If unicast frame, update general statistics */ 3513 if (ni != NULL) { 3514 an = ATH_NODE(ni); 3515 /* update statistics */ 3516 ath_tx_update_stats(sc, ts, bf); 3517 } 3518 3519 /* 3520 * Call the completion handler. 3521 * The completion handler is responsible for 3522 * calling the rate control code. 3523 * 3524 * Frames with no completion handler get the 3525 * rate control code called here. 3526 */ 3527 if (bf->bf_comp == NULL) { 3528 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3529 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3530 /* 3531 * XXX assume this isn't an aggregate 3532 * frame. 3533 */ 3534 ath_tx_update_ratectrl(sc, ni, 3535 bf->bf_state.bfs_rc, ts, 3536 bf->bf_state.bfs_pktlen, 1, 3537 (ts->ts_status == 0 ? 0 : 1)); 3538 } 3539 ath_tx_default_comp(sc, bf, 0); 3540 } else 3541 bf->bf_comp(sc, bf, 0); 3542 } 3543 #ifdef IEEE80211_SUPPORT_SUPERG 3544 /* 3545 * Flush fast-frame staging queue when traffic slows. 3546 */ 3547 if (txq->axq_depth <= 1) 3548 ieee80211_ff_flush(ic, txq->axq_ac); 3549 #endif 3550 3551 /* Kick the TXQ scheduler */ 3552 if (dosched) { 3553 ATH_TXQ_LOCK(txq); 3554 ath_txq_sched(sc, txq); 3555 ATH_TXQ_UNLOCK(txq); 3556 } 3557 3558 return nacked; 3559 } 3560 3561 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3562 3563 /* 3564 * Deferred processing of transmit interrupt; special-cased 3565 * for a single hardware transmit queue (e.g. 5210 and 5211). 3566 */ 3567 static void 3568 ath_tx_proc_q0(void *arg, int npending) 3569 { 3570 struct ath_softc *sc = arg; 3571 struct ifnet *ifp = sc->sc_ifp; 3572 uint32_t txqs; 3573 3574 ATH_PCU_LOCK(sc); 3575 sc->sc_txproc_cnt++; 3576 txqs = sc->sc_txq_active; 3577 sc->sc_txq_active &= ~txqs; 3578 ATH_PCU_UNLOCK(sc); 3579 3580 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3581 /* XXX why is lastrx updated in tx code? */ 3582 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3583 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3584 ath_tx_processq(sc, sc->sc_cabq, 1); 3585 IF_LOCK(&ifp->if_snd); 3586 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3587 IF_UNLOCK(&ifp->if_snd); 3588 sc->sc_wd_timer = 0; 3589 3590 if (sc->sc_softled) 3591 ath_led_event(sc, sc->sc_txrix); 3592 3593 ATH_PCU_LOCK(sc); 3594 sc->sc_txproc_cnt--; 3595 ATH_PCU_UNLOCK(sc); 3596 3597 ath_tx_kick(sc); 3598 } 3599 3600 /* 3601 * Deferred processing of transmit interrupt; special-cased 3602 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3603 */ 3604 static void 3605 ath_tx_proc_q0123(void *arg, int npending) 3606 { 3607 struct ath_softc *sc = arg; 3608 struct ifnet *ifp = sc->sc_ifp; 3609 int nacked; 3610 uint32_t txqs; 3611 3612 ATH_PCU_LOCK(sc); 3613 sc->sc_txproc_cnt++; 3614 txqs = sc->sc_txq_active; 3615 sc->sc_txq_active &= ~txqs; 3616 ATH_PCU_UNLOCK(sc); 3617 3618 /* 3619 * Process each active queue. 3620 */ 3621 nacked = 0; 3622 if (TXQACTIVE(txqs, 0)) 3623 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3624 if (TXQACTIVE(txqs, 1)) 3625 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3626 if (TXQACTIVE(txqs, 2)) 3627 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3628 if (TXQACTIVE(txqs, 3)) 3629 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3630 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3631 ath_tx_processq(sc, sc->sc_cabq, 1); 3632 if (nacked) 3633 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3634 3635 IF_LOCK(&ifp->if_snd); 3636 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3637 IF_UNLOCK(&ifp->if_snd); 3638 sc->sc_wd_timer = 0; 3639 3640 if (sc->sc_softled) 3641 ath_led_event(sc, sc->sc_txrix); 3642 3643 ATH_PCU_LOCK(sc); 3644 sc->sc_txproc_cnt--; 3645 ATH_PCU_UNLOCK(sc); 3646 3647 ath_tx_kick(sc); 3648 } 3649 3650 /* 3651 * Deferred processing of transmit interrupt. 3652 */ 3653 static void 3654 ath_tx_proc(void *arg, int npending) 3655 { 3656 struct ath_softc *sc = arg; 3657 struct ifnet *ifp = sc->sc_ifp; 3658 int i, nacked; 3659 uint32_t txqs; 3660 3661 ATH_PCU_LOCK(sc); 3662 sc->sc_txproc_cnt++; 3663 txqs = sc->sc_txq_active; 3664 sc->sc_txq_active &= ~txqs; 3665 ATH_PCU_UNLOCK(sc); 3666 3667 /* 3668 * Process each active queue. 3669 */ 3670 nacked = 0; 3671 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3672 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3673 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3674 if (nacked) 3675 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3676 3677 /* XXX check this inside of IF_LOCK? */ 3678 IF_LOCK(&ifp->if_snd); 3679 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3680 IF_UNLOCK(&ifp->if_snd); 3681 sc->sc_wd_timer = 0; 3682 3683 if (sc->sc_softled) 3684 ath_led_event(sc, sc->sc_txrix); 3685 3686 ATH_PCU_LOCK(sc); 3687 sc->sc_txproc_cnt--; 3688 ATH_PCU_UNLOCK(sc); 3689 3690 ath_tx_kick(sc); 3691 } 3692 #undef TXQACTIVE 3693 3694 /* 3695 * Deferred processing of TXQ rescheduling. 3696 */ 3697 static void 3698 ath_txq_sched_tasklet(void *arg, int npending) 3699 { 3700 struct ath_softc *sc = arg; 3701 int i; 3702 3703 /* XXX is skipping ok? */ 3704 ATH_PCU_LOCK(sc); 3705 #if 0 3706 if (sc->sc_inreset_cnt > 0) { 3707 device_printf(sc->sc_dev, 3708 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3709 ATH_PCU_UNLOCK(sc); 3710 return; 3711 } 3712 #endif 3713 sc->sc_txproc_cnt++; 3714 ATH_PCU_UNLOCK(sc); 3715 3716 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3717 if (ATH_TXQ_SETUP(sc, i)) { 3718 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3719 ath_txq_sched(sc, &sc->sc_txq[i]); 3720 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3721 } 3722 } 3723 3724 ATH_PCU_LOCK(sc); 3725 sc->sc_txproc_cnt--; 3726 ATH_PCU_UNLOCK(sc); 3727 } 3728 3729 void 3730 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3731 { 3732 3733 ATH_TXBUF_LOCK_ASSERT(sc); 3734 3735 if (bf->bf_flags & ATH_BUF_MGMT) 3736 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 3737 else { 3738 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3739 sc->sc_txbuf_cnt++; 3740 if (sc->sc_txbuf_cnt > ath_txbuf) { 3741 device_printf(sc->sc_dev, 3742 "%s: sc_txbuf_cnt > %d?\n", 3743 __func__, 3744 ath_txbuf); 3745 sc->sc_txbuf_cnt = ath_txbuf; 3746 } 3747 } 3748 } 3749 3750 void 3751 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 3752 { 3753 3754 ATH_TXBUF_LOCK_ASSERT(sc); 3755 3756 if (bf->bf_flags & ATH_BUF_MGMT) 3757 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 3758 else { 3759 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 3760 sc->sc_txbuf_cnt++; 3761 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 3762 device_printf(sc->sc_dev, 3763 "%s: sc_txbuf_cnt > %d?\n", 3764 __func__, 3765 ATH_TXBUF); 3766 sc->sc_txbuf_cnt = ATH_TXBUF; 3767 } 3768 } 3769 } 3770 3771 /* 3772 * Return a buffer to the pool and update the 'busy' flag on the 3773 * previous 'tail' entry. 3774 * 3775 * This _must_ only be called when the buffer is involved in a completed 3776 * TX. The logic is that if it was part of an active TX, the previous 3777 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3778 * for restart (eg for TDMA.) 3779 * 3780 * The caller must free the mbuf and recycle the node reference. 3781 */ 3782 void 3783 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3784 { 3785 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3786 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3787 3788 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3789 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3790 3791 ATH_TXBUF_LOCK(sc); 3792 ath_tx_update_busy(sc); 3793 ath_returnbuf_tail(sc, bf); 3794 ATH_TXBUF_UNLOCK(sc); 3795 } 3796 3797 /* 3798 * This is currently used by ath_tx_draintxq() and 3799 * ath_tx_tid_free_pkts(). 3800 * 3801 * It recycles a single ath_buf. 3802 */ 3803 void 3804 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 3805 { 3806 struct ieee80211_node *ni = bf->bf_node; 3807 struct mbuf *m0 = bf->bf_m; 3808 3809 bf->bf_node = NULL; 3810 bf->bf_m = NULL; 3811 3812 /* Free the buffer, it's not needed any longer */ 3813 ath_freebuf(sc, bf); 3814 3815 if (ni != NULL) { 3816 /* 3817 * Do any callback and reclaim the node reference. 3818 */ 3819 if (m0->m_flags & M_TXCB) 3820 ieee80211_process_callback(ni, m0, status); 3821 ieee80211_free_node(ni); 3822 } 3823 m_freem(m0); 3824 3825 /* 3826 * XXX the buffer used to be freed -after-, but the DMA map was 3827 * freed where ath_freebuf() now is. I've no idea what this 3828 * will do. 3829 */ 3830 } 3831 3832 void 3833 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3834 { 3835 #ifdef ATH_DEBUG 3836 struct ath_hal *ah = sc->sc_ah; 3837 #endif 3838 struct ath_buf *bf; 3839 u_int ix; 3840 3841 /* 3842 * NB: this assumes output has been stopped and 3843 * we do not need to block ath_tx_proc 3844 */ 3845 ATH_TXBUF_LOCK(sc); 3846 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3847 if (bf != NULL) 3848 bf->bf_flags &= ~ATH_BUF_BUSY; 3849 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3850 if (bf != NULL) 3851 bf->bf_flags &= ~ATH_BUF_BUSY; 3852 ATH_TXBUF_UNLOCK(sc); 3853 3854 for (ix = 0;; ix++) { 3855 ATH_TXQ_LOCK(txq); 3856 bf = TAILQ_FIRST(&txq->axq_q); 3857 if (bf == NULL) { 3858 txq->axq_link = NULL; 3859 ATH_TXQ_UNLOCK(txq); 3860 break; 3861 } 3862 ATH_TXQ_REMOVE(txq, bf, bf_list); 3863 if (bf->bf_state.bfs_aggr) 3864 txq->axq_aggr_depth--; 3865 #ifdef ATH_DEBUG 3866 if (sc->sc_debug & ATH_DEBUG_RESET) { 3867 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3868 3869 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 3870 ath_hal_txprocdesc(ah, bf->bf_lastds, 3871 &bf->bf_status.ds_txstat) == HAL_OK); 3872 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 3873 bf->bf_m->m_len, 0, -1); 3874 } 3875 #endif /* ATH_DEBUG */ 3876 /* 3877 * Since we're now doing magic in the completion 3878 * functions, we -must- call it for aggregation 3879 * destinations or BAW tracking will get upset. 3880 */ 3881 /* 3882 * Clear ATH_BUF_BUSY; the completion handler 3883 * will free the buffer. 3884 */ 3885 ATH_TXQ_UNLOCK(txq); 3886 bf->bf_flags &= ~ATH_BUF_BUSY; 3887 if (bf->bf_comp) 3888 bf->bf_comp(sc, bf, 1); 3889 else 3890 ath_tx_default_comp(sc, bf, 1); 3891 } 3892 3893 /* 3894 * Drain software queued frames which are on 3895 * active TIDs. 3896 */ 3897 ath_tx_txq_drain(sc, txq); 3898 } 3899 3900 static void 3901 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 3902 { 3903 struct ath_hal *ah = sc->sc_ah; 3904 3905 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3906 __func__, txq->axq_qnum, 3907 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 3908 txq->axq_link); 3909 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 3910 } 3911 3912 static int 3913 ath_stoptxdma(struct ath_softc *sc) 3914 { 3915 struct ath_hal *ah = sc->sc_ah; 3916 int i; 3917 3918 /* XXX return value */ 3919 if (sc->sc_invalid) 3920 return 0; 3921 3922 if (!sc->sc_invalid) { 3923 /* don't touch the hardware if marked invalid */ 3924 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3925 __func__, sc->sc_bhalq, 3926 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 3927 NULL); 3928 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 3929 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3930 if (ATH_TXQ_SETUP(sc, i)) 3931 ath_tx_stopdma(sc, &sc->sc_txq[i]); 3932 } 3933 3934 return 1; 3935 } 3936 3937 /* 3938 * Drain the transmit queues and reclaim resources. 3939 */ 3940 static void 3941 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 3942 { 3943 #ifdef ATH_DEBUG 3944 struct ath_hal *ah = sc->sc_ah; 3945 #endif 3946 struct ifnet *ifp = sc->sc_ifp; 3947 int i; 3948 3949 (void) ath_stoptxdma(sc); 3950 3951 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3952 /* 3953 * XXX TODO: should we just handle the completed TX frames 3954 * here, whether or not the reset is a full one or not? 3955 */ 3956 if (ATH_TXQ_SETUP(sc, i)) { 3957 if (reset_type == ATH_RESET_NOLOSS) 3958 ath_tx_processq(sc, &sc->sc_txq[i], 0); 3959 else 3960 ath_tx_draintxq(sc, &sc->sc_txq[i]); 3961 } 3962 } 3963 #ifdef ATH_DEBUG 3964 if (sc->sc_debug & ATH_DEBUG_RESET) { 3965 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 3966 if (bf != NULL && bf->bf_m != NULL) { 3967 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 3968 ath_hal_txprocdesc(ah, bf->bf_lastds, 3969 &bf->bf_status.ds_txstat) == HAL_OK); 3970 ieee80211_dump_pkt(ifp->if_l2com, 3971 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 3972 0, -1); 3973 } 3974 } 3975 #endif /* ATH_DEBUG */ 3976 IF_LOCK(&ifp->if_snd); 3977 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3978 IF_UNLOCK(&ifp->if_snd); 3979 sc->sc_wd_timer = 0; 3980 } 3981 3982 /* 3983 * Update internal state after a channel change. 3984 */ 3985 static void 3986 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 3987 { 3988 enum ieee80211_phymode mode; 3989 3990 /* 3991 * Change channels and update the h/w rate map 3992 * if we're switching; e.g. 11a to 11b/g. 3993 */ 3994 mode = ieee80211_chan2mode(chan); 3995 if (mode != sc->sc_curmode) 3996 ath_setcurmode(sc, mode); 3997 sc->sc_curchan = chan; 3998 } 3999 4000 /* 4001 * Set/change channels. If the channel is really being changed, 4002 * it's done by resetting the chip. To accomplish this we must 4003 * first cleanup any pending DMA, then restart stuff after a la 4004 * ath_init. 4005 */ 4006 static int 4007 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4008 { 4009 struct ifnet *ifp = sc->sc_ifp; 4010 struct ieee80211com *ic = ifp->if_l2com; 4011 struct ath_hal *ah = sc->sc_ah; 4012 int ret = 0; 4013 4014 /* Treat this as an interface reset */ 4015 ATH_PCU_UNLOCK_ASSERT(sc); 4016 ATH_UNLOCK_ASSERT(sc); 4017 4018 /* (Try to) stop TX/RX from occuring */ 4019 taskqueue_block(sc->sc_tq); 4020 4021 ATH_PCU_LOCK(sc); 4022 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4023 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4024 if (ath_reset_grablock(sc, 1) == 0) { 4025 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4026 __func__); 4027 } 4028 ATH_PCU_UNLOCK(sc); 4029 4030 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4031 __func__, ieee80211_chan2ieee(ic, chan), 4032 chan->ic_freq, chan->ic_flags); 4033 if (chan != sc->sc_curchan) { 4034 HAL_STATUS status; 4035 /* 4036 * To switch channels clear any pending DMA operations; 4037 * wait long enough for the RX fifo to drain, reset the 4038 * hardware at the new frequency, and then re-enable 4039 * the relevant bits of the h/w. 4040 */ 4041 #if 0 4042 ath_hal_intrset(ah, 0); /* disable interrupts */ 4043 #endif 4044 ath_stoprecv(sc, 1); /* turn off frame recv */ 4045 /* 4046 * First, handle completed TX/RX frames. 4047 */ 4048 ath_rx_flush(sc); 4049 ath_draintxq(sc, ATH_RESET_NOLOSS); 4050 /* 4051 * Next, flush the non-scheduled frames. 4052 */ 4053 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4054 4055 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4056 if_printf(ifp, "%s: unable to reset " 4057 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4058 __func__, ieee80211_chan2ieee(ic, chan), 4059 chan->ic_freq, chan->ic_flags, status); 4060 ret = EIO; 4061 goto finish; 4062 } 4063 sc->sc_diversity = ath_hal_getdiversity(ah); 4064 4065 /* Let DFS at it in case it's a DFS channel */ 4066 ath_dfs_radar_enable(sc, chan); 4067 4068 /* 4069 * Re-enable rx framework. 4070 */ 4071 if (ath_startrecv(sc) != 0) { 4072 if_printf(ifp, "%s: unable to restart recv logic\n", 4073 __func__); 4074 ret = EIO; 4075 goto finish; 4076 } 4077 4078 /* 4079 * Change channels and update the h/w rate map 4080 * if we're switching; e.g. 11a to 11b/g. 4081 */ 4082 ath_chan_change(sc, chan); 4083 4084 /* 4085 * Reset clears the beacon timers; reset them 4086 * here if needed. 4087 */ 4088 if (sc->sc_beacons) { /* restart beacons */ 4089 #ifdef IEEE80211_SUPPORT_TDMA 4090 if (sc->sc_tdma) 4091 ath_tdma_config(sc, NULL); 4092 else 4093 #endif 4094 ath_beacon_config(sc, NULL); 4095 } 4096 4097 /* 4098 * Re-enable interrupts. 4099 */ 4100 #if 0 4101 ath_hal_intrset(ah, sc->sc_imask); 4102 #endif 4103 } 4104 4105 finish: 4106 ATH_PCU_LOCK(sc); 4107 sc->sc_inreset_cnt--; 4108 /* XXX only do this if sc_inreset_cnt == 0? */ 4109 ath_hal_intrset(ah, sc->sc_imask); 4110 ATH_PCU_UNLOCK(sc); 4111 4112 IF_LOCK(&ifp->if_snd); 4113 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4114 IF_UNLOCK(&ifp->if_snd); 4115 ath_txrx_start(sc); 4116 /* XXX ath_start? */ 4117 4118 return ret; 4119 } 4120 4121 /* 4122 * Periodically recalibrate the PHY to account 4123 * for temperature/environment changes. 4124 */ 4125 static void 4126 ath_calibrate(void *arg) 4127 { 4128 struct ath_softc *sc = arg; 4129 struct ath_hal *ah = sc->sc_ah; 4130 struct ifnet *ifp = sc->sc_ifp; 4131 struct ieee80211com *ic = ifp->if_l2com; 4132 HAL_BOOL longCal, isCalDone; 4133 HAL_BOOL aniCal, shortCal = AH_FALSE; 4134 int nextcal; 4135 4136 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4137 goto restart; 4138 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4139 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4140 if (sc->sc_doresetcal) 4141 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4142 4143 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4144 if (aniCal) { 4145 sc->sc_stats.ast_ani_cal++; 4146 sc->sc_lastani = ticks; 4147 ath_hal_ani_poll(ah, sc->sc_curchan); 4148 } 4149 4150 if (longCal) { 4151 sc->sc_stats.ast_per_cal++; 4152 sc->sc_lastlongcal = ticks; 4153 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4154 /* 4155 * Rfgain is out of bounds, reset the chip 4156 * to load new gain values. 4157 */ 4158 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4159 "%s: rfgain change\n", __func__); 4160 sc->sc_stats.ast_per_rfgain++; 4161 sc->sc_resetcal = 0; 4162 sc->sc_doresetcal = AH_TRUE; 4163 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4164 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4165 return; 4166 } 4167 /* 4168 * If this long cal is after an idle period, then 4169 * reset the data collection state so we start fresh. 4170 */ 4171 if (sc->sc_resetcal) { 4172 (void) ath_hal_calreset(ah, sc->sc_curchan); 4173 sc->sc_lastcalreset = ticks; 4174 sc->sc_lastshortcal = ticks; 4175 sc->sc_resetcal = 0; 4176 sc->sc_doresetcal = AH_TRUE; 4177 } 4178 } 4179 4180 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4181 if (shortCal || longCal) { 4182 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4183 if (longCal) { 4184 /* 4185 * Calibrate noise floor data again in case of change. 4186 */ 4187 ath_hal_process_noisefloor(ah); 4188 } 4189 } else { 4190 DPRINTF(sc, ATH_DEBUG_ANY, 4191 "%s: calibration of channel %u failed\n", 4192 __func__, sc->sc_curchan->ic_freq); 4193 sc->sc_stats.ast_per_calfail++; 4194 } 4195 if (shortCal) 4196 sc->sc_lastshortcal = ticks; 4197 } 4198 if (!isCalDone) { 4199 restart: 4200 /* 4201 * Use a shorter interval to potentially collect multiple 4202 * data samples required to complete calibration. Once 4203 * we're told the work is done we drop back to a longer 4204 * interval between requests. We're more aggressive doing 4205 * work when operating as an AP to improve operation right 4206 * after startup. 4207 */ 4208 sc->sc_lastshortcal = ticks; 4209 nextcal = ath_shortcalinterval*hz/1000; 4210 if (sc->sc_opmode != HAL_M_HOSTAP) 4211 nextcal *= 10; 4212 sc->sc_doresetcal = AH_TRUE; 4213 } else { 4214 /* nextcal should be the shortest time for next event */ 4215 nextcal = ath_longcalinterval*hz; 4216 if (sc->sc_lastcalreset == 0) 4217 sc->sc_lastcalreset = sc->sc_lastlongcal; 4218 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4219 sc->sc_resetcal = 1; /* setup reset next trip */ 4220 sc->sc_doresetcal = AH_FALSE; 4221 } 4222 /* ANI calibration may occur more often than short/long/resetcal */ 4223 if (ath_anicalinterval > 0) 4224 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4225 4226 if (nextcal != 0) { 4227 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4228 __func__, nextcal, isCalDone ? "" : "!"); 4229 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4230 } else { 4231 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4232 __func__); 4233 /* NB: don't rearm timer */ 4234 } 4235 } 4236 4237 static void 4238 ath_scan_start(struct ieee80211com *ic) 4239 { 4240 struct ifnet *ifp = ic->ic_ifp; 4241 struct ath_softc *sc = ifp->if_softc; 4242 struct ath_hal *ah = sc->sc_ah; 4243 u_int32_t rfilt; 4244 4245 /* XXX calibration timer? */ 4246 4247 ATH_LOCK(sc); 4248 sc->sc_scanning = 1; 4249 sc->sc_syncbeacon = 0; 4250 rfilt = ath_calcrxfilter(sc); 4251 ATH_UNLOCK(sc); 4252 4253 ATH_PCU_LOCK(sc); 4254 ath_hal_setrxfilter(ah, rfilt); 4255 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4256 ATH_PCU_UNLOCK(sc); 4257 4258 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4259 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4260 } 4261 4262 static void 4263 ath_scan_end(struct ieee80211com *ic) 4264 { 4265 struct ifnet *ifp = ic->ic_ifp; 4266 struct ath_softc *sc = ifp->if_softc; 4267 struct ath_hal *ah = sc->sc_ah; 4268 u_int32_t rfilt; 4269 4270 ATH_LOCK(sc); 4271 sc->sc_scanning = 0; 4272 rfilt = ath_calcrxfilter(sc); 4273 ATH_UNLOCK(sc); 4274 4275 ATH_PCU_LOCK(sc); 4276 ath_hal_setrxfilter(ah, rfilt); 4277 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4278 4279 ath_hal_process_noisefloor(ah); 4280 ATH_PCU_UNLOCK(sc); 4281 4282 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4283 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4284 sc->sc_curaid); 4285 } 4286 4287 #ifdef ATH_ENABLE_11N 4288 /* 4289 * For now, just do a channel change. 4290 * 4291 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4292 * control state and resetting the hardware without dropping frames out 4293 * of the queue. 4294 * 4295 * The unfortunate trouble here is making absolutely sure that the 4296 * channel width change has propagated enough so the hardware 4297 * absolutely isn't handed bogus frames for it's current operating 4298 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4299 * does occur in parallel, we need to make certain we've blocked 4300 * any further ongoing TX (and RX, that can cause raw TX) 4301 * before we do this. 4302 */ 4303 static void 4304 ath_update_chw(struct ieee80211com *ic) 4305 { 4306 struct ifnet *ifp = ic->ic_ifp; 4307 struct ath_softc *sc = ifp->if_softc; 4308 4309 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4310 ath_set_channel(ic); 4311 } 4312 #endif /* ATH_ENABLE_11N */ 4313 4314 static void 4315 ath_set_channel(struct ieee80211com *ic) 4316 { 4317 struct ifnet *ifp = ic->ic_ifp; 4318 struct ath_softc *sc = ifp->if_softc; 4319 4320 (void) ath_chan_set(sc, ic->ic_curchan); 4321 /* 4322 * If we are returning to our bss channel then mark state 4323 * so the next recv'd beacon's tsf will be used to sync the 4324 * beacon timers. Note that since we only hear beacons in 4325 * sta/ibss mode this has no effect in other operating modes. 4326 */ 4327 ATH_LOCK(sc); 4328 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4329 sc->sc_syncbeacon = 1; 4330 ATH_UNLOCK(sc); 4331 } 4332 4333 /* 4334 * Walk the vap list and check if there any vap's in RUN state. 4335 */ 4336 static int 4337 ath_isanyrunningvaps(struct ieee80211vap *this) 4338 { 4339 struct ieee80211com *ic = this->iv_ic; 4340 struct ieee80211vap *vap; 4341 4342 IEEE80211_LOCK_ASSERT(ic); 4343 4344 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4345 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4346 return 1; 4347 } 4348 return 0; 4349 } 4350 4351 static int 4352 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4353 { 4354 struct ieee80211com *ic = vap->iv_ic; 4355 struct ath_softc *sc = ic->ic_ifp->if_softc; 4356 struct ath_vap *avp = ATH_VAP(vap); 4357 struct ath_hal *ah = sc->sc_ah; 4358 struct ieee80211_node *ni = NULL; 4359 int i, error, stamode; 4360 u_int32_t rfilt; 4361 int csa_run_transition = 0; 4362 static const HAL_LED_STATE leds[] = { 4363 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4364 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4365 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4366 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4367 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4368 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4369 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4370 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4371 }; 4372 4373 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4374 ieee80211_state_name[vap->iv_state], 4375 ieee80211_state_name[nstate]); 4376 4377 /* 4378 * net80211 _should_ have the comlock asserted at this point. 4379 * There are some comments around the calls to vap->iv_newstate 4380 * which indicate that it (newstate) may end up dropping the 4381 * lock. This and the subsequent lock assert check after newstate 4382 * are an attempt to catch these and figure out how/why. 4383 */ 4384 IEEE80211_LOCK_ASSERT(ic); 4385 4386 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4387 csa_run_transition = 1; 4388 4389 callout_drain(&sc->sc_cal_ch); 4390 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4391 4392 if (nstate == IEEE80211_S_SCAN) { 4393 /* 4394 * Scanning: turn off beacon miss and don't beacon. 4395 * Mark beacon state so when we reach RUN state we'll 4396 * [re]setup beacons. Unblock the task q thread so 4397 * deferred interrupt processing is done. 4398 */ 4399 ath_hal_intrset(ah, 4400 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4401 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4402 sc->sc_beacons = 0; 4403 taskqueue_unblock(sc->sc_tq); 4404 } 4405 4406 ni = ieee80211_ref_node(vap->iv_bss); 4407 rfilt = ath_calcrxfilter(sc); 4408 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4409 vap->iv_opmode == IEEE80211_M_AHDEMO || 4410 vap->iv_opmode == IEEE80211_M_IBSS); 4411 if (stamode && nstate == IEEE80211_S_RUN) { 4412 sc->sc_curaid = ni->ni_associd; 4413 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4414 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4415 } 4416 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4417 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4418 ath_hal_setrxfilter(ah, rfilt); 4419 4420 /* XXX is this to restore keycache on resume? */ 4421 if (vap->iv_opmode != IEEE80211_M_STA && 4422 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4423 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4424 if (ath_hal_keyisvalid(ah, i)) 4425 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4426 } 4427 4428 /* 4429 * Invoke the parent method to do net80211 work. 4430 */ 4431 error = avp->av_newstate(vap, nstate, arg); 4432 if (error != 0) 4433 goto bad; 4434 4435 /* 4436 * See above: ensure av_newstate() doesn't drop the lock 4437 * on us. 4438 */ 4439 IEEE80211_LOCK_ASSERT(ic); 4440 4441 if (nstate == IEEE80211_S_RUN) { 4442 /* NB: collect bss node again, it may have changed */ 4443 ieee80211_free_node(ni); 4444 ni = ieee80211_ref_node(vap->iv_bss); 4445 4446 DPRINTF(sc, ATH_DEBUG_STATE, 4447 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4448 "capinfo 0x%04x chan %d\n", __func__, 4449 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4450 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4451 4452 switch (vap->iv_opmode) { 4453 #ifdef IEEE80211_SUPPORT_TDMA 4454 case IEEE80211_M_AHDEMO: 4455 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4456 break; 4457 /* fall thru... */ 4458 #endif 4459 case IEEE80211_M_HOSTAP: 4460 case IEEE80211_M_IBSS: 4461 case IEEE80211_M_MBSS: 4462 /* 4463 * Allocate and setup the beacon frame. 4464 * 4465 * Stop any previous beacon DMA. This may be 4466 * necessary, for example, when an ibss merge 4467 * causes reconfiguration; there will be a state 4468 * transition from RUN->RUN that means we may 4469 * be called with beacon transmission active. 4470 */ 4471 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4472 4473 error = ath_beacon_alloc(sc, ni); 4474 if (error != 0) 4475 goto bad; 4476 /* 4477 * If joining an adhoc network defer beacon timer 4478 * configuration to the next beacon frame so we 4479 * have a current TSF to use. Otherwise we're 4480 * starting an ibss/bss so there's no need to delay; 4481 * if this is the first vap moving to RUN state, then 4482 * beacon state needs to be [re]configured. 4483 */ 4484 if (vap->iv_opmode == IEEE80211_M_IBSS && 4485 ni->ni_tstamp.tsf != 0) { 4486 sc->sc_syncbeacon = 1; 4487 } else if (!sc->sc_beacons) { 4488 #ifdef IEEE80211_SUPPORT_TDMA 4489 if (vap->iv_caps & IEEE80211_C_TDMA) 4490 ath_tdma_config(sc, vap); 4491 else 4492 #endif 4493 ath_beacon_config(sc, vap); 4494 sc->sc_beacons = 1; 4495 } 4496 break; 4497 case IEEE80211_M_STA: 4498 /* 4499 * Defer beacon timer configuration to the next 4500 * beacon frame so we have a current TSF to use 4501 * (any TSF collected when scanning is likely old). 4502 * However if it's due to a CSA -> RUN transition, 4503 * force a beacon update so we pick up a lack of 4504 * beacons from an AP in CAC and thus force a 4505 * scan. 4506 */ 4507 sc->sc_syncbeacon = 1; 4508 if (csa_run_transition) 4509 ath_beacon_config(sc, vap); 4510 break; 4511 case IEEE80211_M_MONITOR: 4512 /* 4513 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4514 * transitions so we must re-enable interrupts here to 4515 * handle the case of a single monitor mode vap. 4516 */ 4517 ath_hal_intrset(ah, sc->sc_imask); 4518 break; 4519 case IEEE80211_M_WDS: 4520 break; 4521 default: 4522 break; 4523 } 4524 /* 4525 * Let the hal process statistics collected during a 4526 * scan so it can provide calibrated noise floor data. 4527 */ 4528 ath_hal_process_noisefloor(ah); 4529 /* 4530 * Reset rssi stats; maybe not the best place... 4531 */ 4532 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4533 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4534 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4535 /* 4536 * Finally, start any timers and the task q thread 4537 * (in case we didn't go through SCAN state). 4538 */ 4539 if (ath_longcalinterval != 0) { 4540 /* start periodic recalibration timer */ 4541 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4542 } else { 4543 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4544 "%s: calibration disabled\n", __func__); 4545 } 4546 taskqueue_unblock(sc->sc_tq); 4547 } else if (nstate == IEEE80211_S_INIT) { 4548 /* 4549 * If there are no vaps left in RUN state then 4550 * shutdown host/driver operation: 4551 * o disable interrupts 4552 * o disable the task queue thread 4553 * o mark beacon processing as stopped 4554 */ 4555 if (!ath_isanyrunningvaps(vap)) { 4556 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4557 /* disable interrupts */ 4558 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4559 taskqueue_block(sc->sc_tq); 4560 sc->sc_beacons = 0; 4561 } 4562 #ifdef IEEE80211_SUPPORT_TDMA 4563 ath_hal_setcca(ah, AH_TRUE); 4564 #endif 4565 } 4566 bad: 4567 ieee80211_free_node(ni); 4568 return error; 4569 } 4570 4571 /* 4572 * Allocate a key cache slot to the station so we can 4573 * setup a mapping from key index to node. The key cache 4574 * slot is needed for managing antenna state and for 4575 * compression when stations do not use crypto. We do 4576 * it uniliaterally here; if crypto is employed this slot 4577 * will be reassigned. 4578 */ 4579 static void 4580 ath_setup_stationkey(struct ieee80211_node *ni) 4581 { 4582 struct ieee80211vap *vap = ni->ni_vap; 4583 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4584 ieee80211_keyix keyix, rxkeyix; 4585 4586 /* XXX should take a locked ref to vap->iv_bss */ 4587 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4588 /* 4589 * Key cache is full; we'll fall back to doing 4590 * the more expensive lookup in software. Note 4591 * this also means no h/w compression. 4592 */ 4593 /* XXX msg+statistic */ 4594 } else { 4595 /* XXX locking? */ 4596 ni->ni_ucastkey.wk_keyix = keyix; 4597 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4598 /* NB: must mark device key to get called back on delete */ 4599 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4600 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4601 /* NB: this will create a pass-thru key entry */ 4602 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4603 } 4604 } 4605 4606 /* 4607 * Setup driver-specific state for a newly associated node. 4608 * Note that we're called also on a re-associate, the isnew 4609 * param tells us if this is the first time or not. 4610 */ 4611 static void 4612 ath_newassoc(struct ieee80211_node *ni, int isnew) 4613 { 4614 struct ath_node *an = ATH_NODE(ni); 4615 struct ieee80211vap *vap = ni->ni_vap; 4616 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4617 const struct ieee80211_txparam *tp = ni->ni_txparms; 4618 4619 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4620 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4621 4622 ath_rate_newassoc(sc, an, isnew); 4623 if (isnew && 4624 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4625 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4626 ath_setup_stationkey(ni); 4627 } 4628 4629 static int 4630 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4631 int nchans, struct ieee80211_channel chans[]) 4632 { 4633 struct ath_softc *sc = ic->ic_ifp->if_softc; 4634 struct ath_hal *ah = sc->sc_ah; 4635 HAL_STATUS status; 4636 4637 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4638 "%s: rd %u cc %u location %c%s\n", 4639 __func__, reg->regdomain, reg->country, reg->location, 4640 reg->ecm ? " ecm" : ""); 4641 4642 status = ath_hal_set_channels(ah, chans, nchans, 4643 reg->country, reg->regdomain); 4644 if (status != HAL_OK) { 4645 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4646 __func__, status); 4647 return EINVAL; /* XXX */ 4648 } 4649 4650 return 0; 4651 } 4652 4653 static void 4654 ath_getradiocaps(struct ieee80211com *ic, 4655 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4656 { 4657 struct ath_softc *sc = ic->ic_ifp->if_softc; 4658 struct ath_hal *ah = sc->sc_ah; 4659 4660 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4661 __func__, SKU_DEBUG, CTRY_DEFAULT); 4662 4663 /* XXX check return */ 4664 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4665 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4666 4667 } 4668 4669 static int 4670 ath_getchannels(struct ath_softc *sc) 4671 { 4672 struct ifnet *ifp = sc->sc_ifp; 4673 struct ieee80211com *ic = ifp->if_l2com; 4674 struct ath_hal *ah = sc->sc_ah; 4675 HAL_STATUS status; 4676 4677 /* 4678 * Collect channel set based on EEPROM contents. 4679 */ 4680 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4681 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4682 if (status != HAL_OK) { 4683 if_printf(ifp, "%s: unable to collect channel list from hal, " 4684 "status %d\n", __func__, status); 4685 return EINVAL; 4686 } 4687 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4688 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4689 /* XXX map Atheros sku's to net80211 SKU's */ 4690 /* XXX net80211 types too small */ 4691 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4692 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4693 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4694 ic->ic_regdomain.isocc[1] = ' '; 4695 4696 ic->ic_regdomain.ecm = 1; 4697 ic->ic_regdomain.location = 'I'; 4698 4699 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4700 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4701 __func__, sc->sc_eerd, sc->sc_eecc, 4702 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4703 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4704 return 0; 4705 } 4706 4707 static int 4708 ath_rate_setup(struct ath_softc *sc, u_int mode) 4709 { 4710 struct ath_hal *ah = sc->sc_ah; 4711 const HAL_RATE_TABLE *rt; 4712 4713 switch (mode) { 4714 case IEEE80211_MODE_11A: 4715 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4716 break; 4717 case IEEE80211_MODE_HALF: 4718 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4719 break; 4720 case IEEE80211_MODE_QUARTER: 4721 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4722 break; 4723 case IEEE80211_MODE_11B: 4724 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4725 break; 4726 case IEEE80211_MODE_11G: 4727 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4728 break; 4729 case IEEE80211_MODE_TURBO_A: 4730 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4731 break; 4732 case IEEE80211_MODE_TURBO_G: 4733 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4734 break; 4735 case IEEE80211_MODE_STURBO_A: 4736 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4737 break; 4738 case IEEE80211_MODE_11NA: 4739 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4740 break; 4741 case IEEE80211_MODE_11NG: 4742 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4743 break; 4744 default: 4745 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4746 __func__, mode); 4747 return 0; 4748 } 4749 sc->sc_rates[mode] = rt; 4750 return (rt != NULL); 4751 } 4752 4753 static void 4754 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4755 { 4756 #define N(a) (sizeof(a)/sizeof(a[0])) 4757 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4758 static const struct { 4759 u_int rate; /* tx/rx 802.11 rate */ 4760 u_int16_t timeOn; /* LED on time (ms) */ 4761 u_int16_t timeOff; /* LED off time (ms) */ 4762 } blinkrates[] = { 4763 { 108, 40, 10 }, 4764 { 96, 44, 11 }, 4765 { 72, 50, 13 }, 4766 { 48, 57, 14 }, 4767 { 36, 67, 16 }, 4768 { 24, 80, 20 }, 4769 { 22, 100, 25 }, 4770 { 18, 133, 34 }, 4771 { 12, 160, 40 }, 4772 { 10, 200, 50 }, 4773 { 6, 240, 58 }, 4774 { 4, 267, 66 }, 4775 { 2, 400, 100 }, 4776 { 0, 500, 130 }, 4777 /* XXX half/quarter rates */ 4778 }; 4779 const HAL_RATE_TABLE *rt; 4780 int i, j; 4781 4782 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4783 rt = sc->sc_rates[mode]; 4784 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4785 for (i = 0; i < rt->rateCount; i++) { 4786 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4787 if (rt->info[i].phy != IEEE80211_T_HT) 4788 sc->sc_rixmap[ieeerate] = i; 4789 else 4790 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 4791 } 4792 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4793 for (i = 0; i < N(sc->sc_hwmap); i++) { 4794 if (i >= rt->rateCount) { 4795 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4796 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4797 continue; 4798 } 4799 sc->sc_hwmap[i].ieeerate = 4800 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 4801 if (rt->info[i].phy == IEEE80211_T_HT) 4802 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 4803 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4804 if (rt->info[i].shortPreamble || 4805 rt->info[i].phy == IEEE80211_T_OFDM) 4806 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4807 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 4808 for (j = 0; j < N(blinkrates)-1; j++) 4809 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4810 break; 4811 /* NB: this uses the last entry if the rate isn't found */ 4812 /* XXX beware of overlow */ 4813 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4814 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4815 } 4816 sc->sc_currates = rt; 4817 sc->sc_curmode = mode; 4818 /* 4819 * All protection frames are transmited at 2Mb/s for 4820 * 11g, otherwise at 1Mb/s. 4821 */ 4822 if (mode == IEEE80211_MODE_11G) 4823 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 4824 else 4825 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 4826 /* NB: caller is responsible for resetting rate control state */ 4827 #undef N 4828 } 4829 4830 static void 4831 ath_watchdog(void *arg) 4832 { 4833 struct ath_softc *sc = arg; 4834 int do_reset = 0; 4835 4836 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 4837 struct ifnet *ifp = sc->sc_ifp; 4838 uint32_t hangs; 4839 4840 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 4841 hangs != 0) { 4842 if_printf(ifp, "%s hang detected (0x%x)\n", 4843 hangs & 0xff ? "bb" : "mac", hangs); 4844 } else 4845 if_printf(ifp, "device timeout\n"); 4846 do_reset = 1; 4847 ifp->if_oerrors++; 4848 sc->sc_stats.ast_watchdog++; 4849 } 4850 4851 /* 4852 * We can't hold the lock across the ath_reset() call. 4853 * 4854 * And since this routine can't hold a lock and sleep, 4855 * do the reset deferred. 4856 */ 4857 if (do_reset) { 4858 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4859 } 4860 4861 callout_schedule(&sc->sc_wd_ch, hz); 4862 } 4863 4864 #ifdef ATH_DIAGAPI 4865 /* 4866 * Diagnostic interface to the HAL. This is used by various 4867 * tools to do things like retrieve register contents for 4868 * debugging. The mechanism is intentionally opaque so that 4869 * it can change frequently w/o concern for compatiblity. 4870 */ 4871 static int 4872 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4873 { 4874 struct ath_hal *ah = sc->sc_ah; 4875 u_int id = ad->ad_id & ATH_DIAG_ID; 4876 void *indata = NULL; 4877 void *outdata = NULL; 4878 u_int32_t insize = ad->ad_in_size; 4879 u_int32_t outsize = ad->ad_out_size; 4880 int error = 0; 4881 4882 if (ad->ad_id & ATH_DIAG_IN) { 4883 /* 4884 * Copy in data. 4885 */ 4886 indata = malloc(insize, M_TEMP, M_NOWAIT); 4887 if (indata == NULL) { 4888 error = ENOMEM; 4889 goto bad; 4890 } 4891 error = copyin(ad->ad_in_data, indata, insize); 4892 if (error) 4893 goto bad; 4894 } 4895 if (ad->ad_id & ATH_DIAG_DYN) { 4896 /* 4897 * Allocate a buffer for the results (otherwise the HAL 4898 * returns a pointer to a buffer where we can read the 4899 * results). Note that we depend on the HAL leaving this 4900 * pointer for us to use below in reclaiming the buffer; 4901 * may want to be more defensive. 4902 */ 4903 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4904 if (outdata == NULL) { 4905 error = ENOMEM; 4906 goto bad; 4907 } 4908 } 4909 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4910 if (outsize < ad->ad_out_size) 4911 ad->ad_out_size = outsize; 4912 if (outdata != NULL) 4913 error = copyout(outdata, ad->ad_out_data, 4914 ad->ad_out_size); 4915 } else { 4916 error = EINVAL; 4917 } 4918 bad: 4919 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4920 free(indata, M_TEMP); 4921 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4922 free(outdata, M_TEMP); 4923 return error; 4924 } 4925 #endif /* ATH_DIAGAPI */ 4926 4927 static int 4928 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4929 { 4930 #define IS_RUNNING(ifp) \ 4931 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 4932 struct ath_softc *sc = ifp->if_softc; 4933 struct ieee80211com *ic = ifp->if_l2com; 4934 struct ifreq *ifr = (struct ifreq *)data; 4935 const HAL_RATE_TABLE *rt; 4936 int error = 0; 4937 4938 switch (cmd) { 4939 case SIOCSIFFLAGS: 4940 ATH_LOCK(sc); 4941 if (IS_RUNNING(ifp)) { 4942 /* 4943 * To avoid rescanning another access point, 4944 * do not call ath_init() here. Instead, 4945 * only reflect promisc mode settings. 4946 */ 4947 ath_mode_init(sc); 4948 } else if (ifp->if_flags & IFF_UP) { 4949 /* 4950 * Beware of being called during attach/detach 4951 * to reset promiscuous mode. In that case we 4952 * will still be marked UP but not RUNNING. 4953 * However trying to re-init the interface 4954 * is the wrong thing to do as we've already 4955 * torn down much of our state. There's 4956 * probably a better way to deal with this. 4957 */ 4958 if (!sc->sc_invalid) 4959 ath_init(sc); /* XXX lose error */ 4960 } else { 4961 ath_stop_locked(ifp); 4962 #ifdef notyet 4963 /* XXX must wakeup in places like ath_vap_delete */ 4964 if (!sc->sc_invalid) 4965 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 4966 #endif 4967 } 4968 ATH_UNLOCK(sc); 4969 break; 4970 case SIOCGIFMEDIA: 4971 case SIOCSIFMEDIA: 4972 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 4973 break; 4974 case SIOCGATHSTATS: 4975 /* NB: embed these numbers to get a consistent view */ 4976 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4977 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4978 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 4979 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 4980 #ifdef IEEE80211_SUPPORT_TDMA 4981 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 4982 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 4983 #endif 4984 rt = sc->sc_currates; 4985 sc->sc_stats.ast_tx_rate = 4986 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 4987 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 4988 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 4989 return copyout(&sc->sc_stats, 4990 ifr->ifr_data, sizeof (sc->sc_stats)); 4991 case SIOCGATHAGSTATS: 4992 return copyout(&sc->sc_aggr_stats, 4993 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 4994 case SIOCZATHSTATS: 4995 error = priv_check(curthread, PRIV_DRIVER); 4996 if (error == 0) { 4997 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 4998 memset(&sc->sc_aggr_stats, 0, 4999 sizeof(sc->sc_aggr_stats)); 5000 memset(&sc->sc_intr_stats, 0, 5001 sizeof(sc->sc_intr_stats)); 5002 } 5003 break; 5004 #ifdef ATH_DIAGAPI 5005 case SIOCGATHDIAG: 5006 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5007 break; 5008 case SIOCGATHPHYERR: 5009 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5010 break; 5011 #endif 5012 case SIOCGIFADDR: 5013 error = ether_ioctl(ifp, cmd, data); 5014 break; 5015 default: 5016 error = EINVAL; 5017 break; 5018 } 5019 return error; 5020 #undef IS_RUNNING 5021 } 5022 5023 /* 5024 * Announce various information on device/driver attach. 5025 */ 5026 static void 5027 ath_announce(struct ath_softc *sc) 5028 { 5029 struct ifnet *ifp = sc->sc_ifp; 5030 struct ath_hal *ah = sc->sc_ah; 5031 5032 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5033 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5034 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5035 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5036 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5037 if (bootverbose) { 5038 int i; 5039 for (i = 0; i <= WME_AC_VO; i++) { 5040 struct ath_txq *txq = sc->sc_ac2q[i]; 5041 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5042 txq->axq_qnum, ieee80211_wme_acnames[i]); 5043 } 5044 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5045 sc->sc_cabq->axq_qnum); 5046 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5047 } 5048 if (ath_rxbuf != ATH_RXBUF) 5049 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5050 if (ath_txbuf != ATH_TXBUF) 5051 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5052 if (sc->sc_mcastkey && bootverbose) 5053 if_printf(ifp, "using multicast key search\n"); 5054 } 5055 5056 static void 5057 ath_dfs_tasklet(void *p, int npending) 5058 { 5059 struct ath_softc *sc = (struct ath_softc *) p; 5060 struct ifnet *ifp = sc->sc_ifp; 5061 struct ieee80211com *ic = ifp->if_l2com; 5062 5063 /* 5064 * If previous processing has found a radar event, 5065 * signal this to the net80211 layer to begin DFS 5066 * processing. 5067 */ 5068 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5069 /* DFS event found, initiate channel change */ 5070 /* 5071 * XXX doesn't currently tell us whether the event 5072 * XXX was found in the primary or extension 5073 * XXX channel! 5074 */ 5075 IEEE80211_LOCK(ic); 5076 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5077 IEEE80211_UNLOCK(ic); 5078 } 5079 } 5080 5081 MODULE_VERSION(if_ath, 1); 5082 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5083 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5084 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5085 #endif 5086