1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 120 #ifdef ATH_TX99_DIAG 121 #include <dev/ath/ath_tx99/ath_tx99.h> 122 #endif 123 124 #ifdef ATH_DEBUG_ALQ 125 #include <dev/ath/if_ath_alq.h> 126 #endif 127 128 /* 129 * Only enable this if you're working on PS-POLL support. 130 */ 131 #define ATH_SW_PSQ 132 133 /* 134 * ATH_BCBUF determines the number of vap's that can transmit 135 * beacons and also (currently) the number of vap's that can 136 * have unique mac addresses/bssid. When staggering beacons 137 * 4 is probably a good max as otherwise the beacons become 138 * very closely spaced and there is limited time for cab q traffic 139 * to go out. You can burst beacons instead but that is not good 140 * for stations in power save and at some point you really want 141 * another radio (and channel). 142 * 143 * The limit on the number of mac addresses is tied to our use of 144 * the U/L bit and tracking addresses in a byte; it would be 145 * worthwhile to allow more for applications like proxy sta. 146 */ 147 CTASSERT(ATH_BCBUF <= 8); 148 149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 150 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 151 const uint8_t [IEEE80211_ADDR_LEN], 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void ath_vap_delete(struct ieee80211vap *); 154 static int ath_init(struct ath_softc *); 155 static void ath_stop(struct ath_softc *); 156 static int ath_reset_vap(struct ieee80211vap *, u_long); 157 static int ath_transmit(struct ieee80211com *, struct mbuf *); 158 static int ath_media_change(struct ifnet *); 159 static void ath_watchdog(void *); 160 static int ath_ioctl(struct ieee80211com *, u_long, void *); 161 static void ath_parent(struct ieee80211com *); 162 static void ath_fatal_proc(void *, int); 163 static void ath_bmiss_vap(struct ieee80211vap *); 164 static void ath_bmiss_proc(void *, int); 165 static void ath_key_update_begin(struct ieee80211vap *); 166 static void ath_key_update_end(struct ieee80211vap *); 167 static void ath_update_mcast_hw(struct ath_softc *); 168 static void ath_update_mcast(struct ieee80211com *); 169 static void ath_update_promisc(struct ieee80211com *); 170 static void ath_updateslot(struct ieee80211com *); 171 static void ath_bstuck_proc(void *, int); 172 static void ath_reset_proc(void *, int); 173 static int ath_desc_alloc(struct ath_softc *); 174 static void ath_desc_free(struct ath_softc *); 175 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 176 const uint8_t [IEEE80211_ADDR_LEN]); 177 static void ath_node_cleanup(struct ieee80211_node *); 178 static void ath_node_free(struct ieee80211_node *); 179 static void ath_node_getsignal(const struct ieee80211_node *, 180 int8_t *, int8_t *); 181 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 182 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 183 static int ath_tx_setup(struct ath_softc *, int, int); 184 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 185 static void ath_tx_cleanup(struct ath_softc *); 186 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 187 int dosched); 188 static void ath_tx_proc_q0(void *, int); 189 static void ath_tx_proc_q0123(void *, int); 190 static void ath_tx_proc(void *, int); 191 static void ath_txq_sched_tasklet(void *, int); 192 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 193 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_scan_start(struct ieee80211com *); 195 static void ath_scan_end(struct ieee80211com *); 196 static void ath_set_channel(struct ieee80211com *); 197 #ifdef ATH_ENABLE_11N 198 static void ath_update_chw(struct ieee80211com *); 199 #endif /* ATH_ENABLE_11N */ 200 static void ath_calibrate(void *); 201 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 202 static void ath_setup_stationkey(struct ieee80211_node *); 203 static void ath_newassoc(struct ieee80211_node *, int); 204 static int ath_setregdomain(struct ieee80211com *, 205 struct ieee80211_regdomain *, int, 206 struct ieee80211_channel []); 207 static void ath_getradiocaps(struct ieee80211com *, int, int *, 208 struct ieee80211_channel []); 209 static int ath_getchannels(struct ath_softc *); 210 211 static int ath_rate_setup(struct ath_softc *, u_int mode); 212 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 213 214 static void ath_announce(struct ath_softc *); 215 216 static void ath_dfs_tasklet(void *, int); 217 static void ath_node_powersave(struct ieee80211_node *, int); 218 static int ath_node_set_tim(struct ieee80211_node *, int); 219 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 220 221 #ifdef IEEE80211_SUPPORT_TDMA 222 #include <dev/ath/if_ath_tdma.h> 223 #endif 224 225 SYSCTL_DECL(_hw_ath); 226 227 /* XXX validate sysctl values */ 228 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 230 0, "long chip calibration interval (secs)"); 231 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 233 0, "short chip calibration interval (msecs)"); 234 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 236 0, "reset chip calibration results (secs)"); 237 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 239 0, "ANI calibration (msecs)"); 240 241 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 242 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 243 0, "rx buffers allocated"); 244 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 246 0, "tx buffers allocated"); 247 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 249 0, "tx (mgmt) buffers allocated"); 250 251 int ath_bstuck_threshold = 4; /* max missed beacons */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 253 0, "max missed beacon xmits before chip reset"); 254 255 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 256 257 void 258 ath_legacy_attach_comp_func(struct ath_softc *sc) 259 { 260 261 /* 262 * Special case certain configurations. Note the 263 * CAB queue is handled by these specially so don't 264 * include them when checking the txq setup mask. 265 */ 266 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 267 case 0x01: 268 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 269 break; 270 case 0x0f: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 272 break; 273 default: 274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 275 break; 276 } 277 } 278 279 /* 280 * Set the target power mode. 281 * 282 * If this is called during a point in time where 283 * the hardware is being programmed elsewhere, it will 284 * simply store it away and update it when all current 285 * uses of the hardware are completed. 286 */ 287 void 288 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 289 { 290 ATH_LOCK_ASSERT(sc); 291 292 sc->sc_target_powerstate = power_state; 293 294 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 295 __func__, 296 file, 297 line, 298 power_state, 299 sc->sc_powersave_refcnt); 300 301 if (sc->sc_powersave_refcnt == 0 && 302 power_state != sc->sc_cur_powerstate) { 303 sc->sc_cur_powerstate = power_state; 304 ath_hal_setpower(sc->sc_ah, power_state); 305 306 /* 307 * If the NIC is force-awake, then set the 308 * self-gen frame state appropriately. 309 * 310 * If the nic is in network sleep or full-sleep, 311 * we let the above call leave the self-gen 312 * state as "sleep". 313 */ 314 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 315 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 316 ath_hal_setselfgenpower(sc->sc_ah, 317 sc->sc_target_selfgen_state); 318 } 319 } 320 } 321 322 /* 323 * Set the current self-generated frames state. 324 * 325 * This is separate from the target power mode. The chip may be 326 * awake but the desired state is "sleep", so frames sent to the 327 * destination has PWRMGT=1 in the 802.11 header. The NIC also 328 * needs to know to set PWRMGT=1 in self-generated frames. 329 */ 330 void 331 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 332 { 333 334 ATH_LOCK_ASSERT(sc); 335 336 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 337 __func__, 338 file, 339 line, 340 power_state, 341 sc->sc_target_selfgen_state); 342 343 sc->sc_target_selfgen_state = power_state; 344 345 /* 346 * If the NIC is force-awake, then set the power state. 347 * Network-state and full-sleep will already transition it to 348 * mark self-gen frames as sleeping - and we can't 349 * guarantee the NIC is awake to program the self-gen frame 350 * setting anyway. 351 */ 352 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 353 ath_hal_setselfgenpower(sc->sc_ah, power_state); 354 } 355 } 356 357 /* 358 * Set the hardware power mode and take a reference. 359 * 360 * This doesn't update the target power mode in the driver; 361 * it just updates the hardware power state. 362 * 363 * XXX it should only ever force the hardware awake; it should 364 * never be called to set it asleep. 365 */ 366 void 367 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 368 { 369 ATH_LOCK_ASSERT(sc); 370 371 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 372 __func__, 373 file, 374 line, 375 power_state, 376 sc->sc_powersave_refcnt); 377 378 sc->sc_powersave_refcnt++; 379 380 if (power_state != sc->sc_cur_powerstate) { 381 ath_hal_setpower(sc->sc_ah, power_state); 382 sc->sc_cur_powerstate = power_state; 383 384 /* 385 * Adjust the self-gen powerstate if appropriate. 386 */ 387 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 388 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 389 ath_hal_setselfgenpower(sc->sc_ah, 390 sc->sc_target_selfgen_state); 391 } 392 393 } 394 } 395 396 /* 397 * Restore the power save mode to what it once was. 398 * 399 * This will decrement the reference counter and once it hits 400 * zero, it'll restore the powersave state. 401 */ 402 void 403 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 404 { 405 406 ATH_LOCK_ASSERT(sc); 407 408 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 409 __func__, 410 file, 411 line, 412 sc->sc_powersave_refcnt, 413 sc->sc_target_powerstate); 414 415 if (sc->sc_powersave_refcnt == 0) 416 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 417 else 418 sc->sc_powersave_refcnt--; 419 420 if (sc->sc_powersave_refcnt == 0 && 421 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 422 sc->sc_cur_powerstate = sc->sc_target_powerstate; 423 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 424 } 425 426 /* 427 * Adjust the self-gen powerstate if appropriate. 428 */ 429 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 430 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 431 ath_hal_setselfgenpower(sc->sc_ah, 432 sc->sc_target_selfgen_state); 433 } 434 435 } 436 437 /* 438 * Configure the initial HAL configuration values based on bus 439 * specific parameters. 440 * 441 * Some PCI IDs and other information may need tweaking. 442 * 443 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 444 * if BT antenna diversity isn't enabled. 445 * 446 * So, let's also figure out how to enable BT diversity for AR9485. 447 */ 448 static void 449 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 450 { 451 /* XXX TODO: only for PCI devices? */ 452 453 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 454 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 455 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 456 ah_config->ath_hal_min_gainidx = AH_TRUE; 457 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 458 /* XXX low_rssi_thresh */ 459 /* XXX fast_div_bias */ 460 device_printf(sc->sc_dev, "configuring for %s\n", 461 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 462 "CUS198" : "CUS230"); 463 } 464 465 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 466 device_printf(sc->sc_dev, "CUS217 card detected\n"); 467 468 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 469 device_printf(sc->sc_dev, "CUS252 card detected\n"); 470 471 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 472 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 473 474 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 475 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 476 477 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 478 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 479 480 #if 0 481 /* 482 * Some WB335 cards do not support antenna diversity. Since 483 * we use a hardcoded value for AR9565 instead of using the 484 * EEPROM/OTP data, remove the combining feature from 485 * the HW capabilities bitmap. 486 */ 487 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 488 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 489 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 490 } 491 492 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 493 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 494 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 495 } 496 #endif 497 498 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 499 ah_config->ath_hal_pcie_waen = 0x0040473b; 500 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 501 } 502 503 #if 0 504 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 505 ah->config.no_pll_pwrsave = true; 506 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 507 } 508 #endif 509 510 } 511 512 /* 513 * Attempt to fetch the MAC address from the kernel environment. 514 * 515 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 516 */ 517 static int 518 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 519 { 520 char devid_str[32]; 521 int local_mac = 0; 522 char *local_macstr; 523 524 /* 525 * Fetch from the kenv rather than using hints. 526 * 527 * Hints would be nice but the transition to dynamic 528 * hints/kenv doesn't happen early enough for this 529 * to work reliably (eg on anything embedded.) 530 */ 531 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 532 device_get_name(sc->sc_dev), 533 device_get_unit(sc->sc_dev)); 534 535 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 536 uint32_t tmpmac[ETHER_ADDR_LEN]; 537 int count; 538 int i; 539 540 /* Have a MAC address; should use it */ 541 device_printf(sc->sc_dev, 542 "Overriding MAC address from environment: '%s'\n", 543 local_macstr); 544 545 /* Extract out the MAC address */ 546 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 547 &tmpmac[0], &tmpmac[1], 548 &tmpmac[2], &tmpmac[3], 549 &tmpmac[4], &tmpmac[5]); 550 if (count == 6) { 551 /* Valid! */ 552 local_mac = 1; 553 for (i = 0; i < ETHER_ADDR_LEN; i++) 554 macaddr[i] = tmpmac[i]; 555 } 556 /* Done! */ 557 freeenv(local_macstr); 558 local_macstr = NULL; 559 } 560 561 if (local_mac) 562 return (0); 563 return (-1); 564 } 565 566 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 567 #define HAL_MODE_HT40 \ 568 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 569 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 570 int 571 ath_attach(u_int16_t devid, struct ath_softc *sc) 572 { 573 struct ieee80211com *ic = &sc->sc_ic; 574 struct ath_hal *ah = NULL; 575 HAL_STATUS status; 576 int error = 0, i; 577 u_int wmodes; 578 int rx_chainmask, tx_chainmask; 579 HAL_OPS_CONFIG ah_config; 580 581 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 582 583 ic->ic_softc = sc; 584 ic->ic_name = device_get_nameunit(sc->sc_dev); 585 586 /* 587 * Configure the initial configuration data. 588 * 589 * This is stuff that may be needed early during attach 590 * rather than done via configuration calls later. 591 */ 592 bzero(&ah_config, sizeof(ah_config)); 593 ath_setup_hal_config(sc, &ah_config); 594 595 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 596 sc->sc_eepromdata, &ah_config, &status); 597 if (ah == NULL) { 598 device_printf(sc->sc_dev, 599 "unable to attach hardware; HAL status %u\n", status); 600 error = ENXIO; 601 goto bad; 602 } 603 sc->sc_ah = ah; 604 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 605 #ifdef ATH_DEBUG 606 sc->sc_debug = ath_debug; 607 #endif 608 609 /* 610 * Setup the DMA/EDMA functions based on the current 611 * hardware support. 612 * 613 * This is required before the descriptors are allocated. 614 */ 615 if (ath_hal_hasedma(sc->sc_ah)) { 616 sc->sc_isedma = 1; 617 ath_recv_setup_edma(sc); 618 ath_xmit_setup_edma(sc); 619 } else { 620 ath_recv_setup_legacy(sc); 621 ath_xmit_setup_legacy(sc); 622 } 623 624 if (ath_hal_hasmybeacon(sc->sc_ah)) { 625 sc->sc_do_mybeacon = 1; 626 } 627 628 /* 629 * Check if the MAC has multi-rate retry support. 630 * We do this by trying to setup a fake extended 631 * descriptor. MAC's that don't have support will 632 * return false w/o doing anything. MAC's that do 633 * support it will return true w/o doing anything. 634 */ 635 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 636 637 /* 638 * Check if the device has hardware counters for PHY 639 * errors. If so we need to enable the MIB interrupt 640 * so we can act on stat triggers. 641 */ 642 if (ath_hal_hwphycounters(ah)) 643 sc->sc_needmib = 1; 644 645 /* 646 * Get the hardware key cache size. 647 */ 648 sc->sc_keymax = ath_hal_keycachesize(ah); 649 if (sc->sc_keymax > ATH_KEYMAX) { 650 device_printf(sc->sc_dev, 651 "Warning, using only %u of %u key cache slots\n", 652 ATH_KEYMAX, sc->sc_keymax); 653 sc->sc_keymax = ATH_KEYMAX; 654 } 655 /* 656 * Reset the key cache since some parts do not 657 * reset the contents on initial power up. 658 */ 659 for (i = 0; i < sc->sc_keymax; i++) 660 ath_hal_keyreset(ah, i); 661 662 /* 663 * Collect the default channel list. 664 */ 665 error = ath_getchannels(sc); 666 if (error != 0) 667 goto bad; 668 669 /* 670 * Setup rate tables for all potential media types. 671 */ 672 ath_rate_setup(sc, IEEE80211_MODE_11A); 673 ath_rate_setup(sc, IEEE80211_MODE_11B); 674 ath_rate_setup(sc, IEEE80211_MODE_11G); 675 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 676 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 677 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 678 ath_rate_setup(sc, IEEE80211_MODE_11NA); 679 ath_rate_setup(sc, IEEE80211_MODE_11NG); 680 ath_rate_setup(sc, IEEE80211_MODE_HALF); 681 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 682 683 /* NB: setup here so ath_rate_update is happy */ 684 ath_setcurmode(sc, IEEE80211_MODE_11A); 685 686 /* 687 * Allocate TX descriptors and populate the lists. 688 */ 689 error = ath_desc_alloc(sc); 690 if (error != 0) { 691 device_printf(sc->sc_dev, 692 "failed to allocate TX descriptors: %d\n", error); 693 goto bad; 694 } 695 error = ath_txdma_setup(sc); 696 if (error != 0) { 697 device_printf(sc->sc_dev, 698 "failed to allocate TX descriptors: %d\n", error); 699 goto bad; 700 } 701 702 /* 703 * Allocate RX descriptors and populate the lists. 704 */ 705 error = ath_rxdma_setup(sc); 706 if (error != 0) { 707 device_printf(sc->sc_dev, 708 "failed to allocate RX descriptors: %d\n", error); 709 goto bad; 710 } 711 712 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 713 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 714 715 ATH_TXBUF_LOCK_INIT(sc); 716 717 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 718 taskqueue_thread_enqueue, &sc->sc_tq); 719 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 720 device_get_nameunit(sc->sc_dev)); 721 722 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 723 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 724 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 725 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 726 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 727 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 728 729 /* 730 * Allocate hardware transmit queues: one queue for 731 * beacon frames and one data queue for each QoS 732 * priority. Note that the hal handles resetting 733 * these queues at the needed time. 734 * 735 * XXX PS-Poll 736 */ 737 sc->sc_bhalq = ath_beaconq_setup(sc); 738 if (sc->sc_bhalq == (u_int) -1) { 739 device_printf(sc->sc_dev, 740 "unable to setup a beacon xmit queue!\n"); 741 error = EIO; 742 goto bad2; 743 } 744 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 745 if (sc->sc_cabq == NULL) { 746 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 747 error = EIO; 748 goto bad2; 749 } 750 /* NB: insure BK queue is the lowest priority h/w queue */ 751 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 752 device_printf(sc->sc_dev, 753 "unable to setup xmit queue for %s traffic!\n", 754 ieee80211_wme_acnames[WME_AC_BK]); 755 error = EIO; 756 goto bad2; 757 } 758 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 759 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 760 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 761 /* 762 * Not enough hardware tx queues to properly do WME; 763 * just punt and assign them all to the same h/w queue. 764 * We could do a better job of this if, for example, 765 * we allocate queues when we switch from station to 766 * AP mode. 767 */ 768 if (sc->sc_ac2q[WME_AC_VI] != NULL) 769 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 770 if (sc->sc_ac2q[WME_AC_BE] != NULL) 771 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 772 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 773 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 774 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 775 } 776 777 /* 778 * Attach the TX completion function. 779 * 780 * The non-EDMA chips may have some special case optimisations; 781 * this method gives everyone a chance to attach cleanly. 782 */ 783 sc->sc_tx.xmit_attach_comp_func(sc); 784 785 /* 786 * Setup rate control. Some rate control modules 787 * call back to change the anntena state so expose 788 * the necessary entry points. 789 * XXX maybe belongs in struct ath_ratectrl? 790 */ 791 sc->sc_setdefantenna = ath_setdefantenna; 792 sc->sc_rc = ath_rate_attach(sc); 793 if (sc->sc_rc == NULL) { 794 error = EIO; 795 goto bad2; 796 } 797 798 /* Attach DFS module */ 799 if (! ath_dfs_attach(sc)) { 800 device_printf(sc->sc_dev, 801 "%s: unable to attach DFS\n", __func__); 802 error = EIO; 803 goto bad2; 804 } 805 806 /* Attach spectral module */ 807 if (ath_spectral_attach(sc) < 0) { 808 device_printf(sc->sc_dev, 809 "%s: unable to attach spectral\n", __func__); 810 error = EIO; 811 goto bad2; 812 } 813 814 /* Attach bluetooth coexistence module */ 815 if (ath_btcoex_attach(sc) < 0) { 816 device_printf(sc->sc_dev, 817 "%s: unable to attach bluetooth coexistence\n", __func__); 818 error = EIO; 819 goto bad2; 820 } 821 822 /* Attach LNA diversity module */ 823 if (ath_lna_div_attach(sc) < 0) { 824 device_printf(sc->sc_dev, 825 "%s: unable to attach LNA diversity\n", __func__); 826 error = EIO; 827 goto bad2; 828 } 829 830 /* Start DFS processing tasklet */ 831 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 832 833 /* Configure LED state */ 834 sc->sc_blinking = 0; 835 sc->sc_ledstate = 1; 836 sc->sc_ledon = 0; /* low true */ 837 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 838 callout_init(&sc->sc_ledtimer, 1); 839 840 /* 841 * Don't setup hardware-based blinking. 842 * 843 * Although some NICs may have this configured in the 844 * default reset register values, the user may wish 845 * to alter which pins have which function. 846 * 847 * The reference driver attaches the MAC network LED to GPIO1 and 848 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 849 * NIC has these reversed. 850 */ 851 sc->sc_hardled = (1 == 0); 852 sc->sc_led_net_pin = -1; 853 sc->sc_led_pwr_pin = -1; 854 /* 855 * Auto-enable soft led processing for IBM cards and for 856 * 5211 minipci cards. Users can also manually enable/disable 857 * support with a sysctl. 858 */ 859 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 860 ath_led_config(sc); 861 ath_hal_setledstate(ah, HAL_LED_INIT); 862 863 /* XXX not right but it's not used anywhere important */ 864 ic->ic_phytype = IEEE80211_T_OFDM; 865 ic->ic_opmode = IEEE80211_M_STA; 866 ic->ic_caps = 867 IEEE80211_C_STA /* station mode */ 868 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 869 | IEEE80211_C_HOSTAP /* hostap mode */ 870 | IEEE80211_C_MONITOR /* monitor mode */ 871 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 872 | IEEE80211_C_WDS /* 4-address traffic works */ 873 | IEEE80211_C_MBSS /* mesh point link mode */ 874 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 875 | IEEE80211_C_SHSLOT /* short slot time supported */ 876 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 877 #ifndef ATH_ENABLE_11N 878 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 879 #endif 880 | IEEE80211_C_TXFRAG /* handle tx frags */ 881 #ifdef ATH_ENABLE_DFS 882 | IEEE80211_C_DFS /* Enable radar detection */ 883 #endif 884 | IEEE80211_C_PMGT /* Station side power mgmt */ 885 | IEEE80211_C_SWSLEEP 886 ; 887 /* 888 * Query the hal to figure out h/w crypto support. 889 */ 890 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 891 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 892 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 893 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 894 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 895 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 896 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 897 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 898 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 899 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 900 /* 901 * Check if h/w does the MIC and/or whether the 902 * separate key cache entries are required to 903 * handle both tx+rx MIC keys. 904 */ 905 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 906 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 907 /* 908 * If the h/w supports storing tx+rx MIC keys 909 * in one cache slot automatically enable use. 910 */ 911 if (ath_hal_hastkipsplit(ah) || 912 !ath_hal_settkipsplit(ah, AH_FALSE)) 913 sc->sc_splitmic = 1; 914 /* 915 * If the h/w can do TKIP MIC together with WME then 916 * we use it; otherwise we force the MIC to be done 917 * in software by the net80211 layer. 918 */ 919 if (ath_hal_haswmetkipmic(ah)) 920 sc->sc_wmetkipmic = 1; 921 } 922 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 923 /* 924 * Check for multicast key search support. 925 */ 926 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 927 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 928 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 929 } 930 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 931 /* 932 * Mark key cache slots associated with global keys 933 * as in use. If we knew TKIP was not to be used we 934 * could leave the +32, +64, and +32+64 slots free. 935 */ 936 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 937 setbit(sc->sc_keymap, i); 938 setbit(sc->sc_keymap, i+64); 939 if (sc->sc_splitmic) { 940 setbit(sc->sc_keymap, i+32); 941 setbit(sc->sc_keymap, i+32+64); 942 } 943 } 944 /* 945 * TPC support can be done either with a global cap or 946 * per-packet support. The latter is not available on 947 * all parts. We're a bit pedantic here as all parts 948 * support a global cap. 949 */ 950 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 951 ic->ic_caps |= IEEE80211_C_TXPMGT; 952 953 /* 954 * Mark WME capability only if we have sufficient 955 * hardware queues to do proper priority scheduling. 956 */ 957 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 958 ic->ic_caps |= IEEE80211_C_WME; 959 /* 960 * Check for misc other capabilities. 961 */ 962 if (ath_hal_hasbursting(ah)) 963 ic->ic_caps |= IEEE80211_C_BURST; 964 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 965 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 966 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 967 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 968 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 969 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 970 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 971 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 972 973 if (ath_hal_hasfastframes(ah)) 974 ic->ic_caps |= IEEE80211_C_FF; 975 wmodes = ath_hal_getwirelessmodes(ah); 976 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 977 ic->ic_caps |= IEEE80211_C_TURBOP; 978 #ifdef IEEE80211_SUPPORT_TDMA 979 if (ath_hal_macversion(ah) > 0x78) { 980 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 981 ic->ic_tdma_update = ath_tdma_update; 982 } 983 #endif 984 985 /* 986 * TODO: enforce that at least this many frames are available 987 * in the txbuf list before allowing data frames (raw or 988 * otherwise) to be transmitted. 989 */ 990 sc->sc_txq_data_minfree = 10; 991 /* 992 * Leave this as default to maintain legacy behaviour. 993 * Shortening the cabq/mcastq may end up causing some 994 * undesirable behaviour. 995 */ 996 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 997 998 /* 999 * How deep can the node software TX queue get whilst it's asleep. 1000 */ 1001 sc->sc_txq_node_psq_maxdepth = 16; 1002 1003 /* 1004 * Default the maximum queue depth for a given node 1005 * to 1/4'th the TX buffers, or 64, whichever 1006 * is larger. 1007 */ 1008 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 1009 1010 /* Enable CABQ by default */ 1011 sc->sc_cabq_enable = 1; 1012 1013 /* 1014 * Allow the TX and RX chainmasks to be overridden by 1015 * environment variables and/or device.hints. 1016 * 1017 * This must be done early - before the hardware is 1018 * calibrated or before the 802.11n stream calculation 1019 * is done. 1020 */ 1021 if (resource_int_value(device_get_name(sc->sc_dev), 1022 device_get_unit(sc->sc_dev), "rx_chainmask", 1023 &rx_chainmask) == 0) { 1024 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1025 rx_chainmask); 1026 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1027 } 1028 if (resource_int_value(device_get_name(sc->sc_dev), 1029 device_get_unit(sc->sc_dev), "tx_chainmask", 1030 &tx_chainmask) == 0) { 1031 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1032 tx_chainmask); 1033 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1034 } 1035 1036 /* 1037 * Query the TX/RX chainmask configuration. 1038 * 1039 * This is only relevant for 11n devices. 1040 */ 1041 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1042 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1043 1044 /* 1045 * Disable MRR with protected frames by default. 1046 * Only 802.11n series NICs can handle this. 1047 */ 1048 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1049 1050 /* 1051 * Query the enterprise mode information the HAL. 1052 */ 1053 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1054 &sc->sc_ent_cfg) == HAL_OK) 1055 sc->sc_use_ent = 1; 1056 1057 #ifdef ATH_ENABLE_11N 1058 /* 1059 * Query HT capabilities 1060 */ 1061 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1062 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1063 uint32_t rxs, txs; 1064 1065 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1066 1067 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1068 1069 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1070 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1071 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1072 | IEEE80211_HTCAP_MAXAMSDU_3839 1073 /* max A-MSDU length */ 1074 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1075 ; 1076 1077 /* 1078 * Enable short-GI for HT20 only if the hardware 1079 * advertises support. 1080 * Notably, anything earlier than the AR9287 doesn't. 1081 */ 1082 if ((ath_hal_getcapability(ah, 1083 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1084 (wmodes & HAL_MODE_HT20)) { 1085 device_printf(sc->sc_dev, 1086 "[HT] enabling short-GI in 20MHz mode\n"); 1087 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1088 } 1089 1090 if (wmodes & HAL_MODE_HT40) 1091 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1092 | IEEE80211_HTCAP_SHORTGI40; 1093 1094 /* 1095 * TX/RX streams need to be taken into account when 1096 * negotiating which MCS rates it'll receive and 1097 * what MCS rates are available for TX. 1098 */ 1099 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1100 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1101 ic->ic_txstream = txs; 1102 ic->ic_rxstream = rxs; 1103 1104 /* 1105 * Setup TX and RX STBC based on what the HAL allows and 1106 * the currently configured chainmask set. 1107 * Ie - don't enable STBC TX if only one chain is enabled. 1108 * STBC RX is fine on a single RX chain; it just won't 1109 * provide any real benefit. 1110 */ 1111 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1112 NULL) == HAL_OK) { 1113 sc->sc_rx_stbc = 1; 1114 device_printf(sc->sc_dev, 1115 "[HT] 1 stream STBC receive enabled\n"); 1116 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1117 } 1118 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1119 NULL) == HAL_OK) { 1120 sc->sc_tx_stbc = 1; 1121 device_printf(sc->sc_dev, 1122 "[HT] 1 stream STBC transmit enabled\n"); 1123 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1124 } 1125 1126 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1127 &sc->sc_rts_aggr_limit); 1128 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1129 device_printf(sc->sc_dev, 1130 "[HT] RTS aggregates limited to %d KiB\n", 1131 sc->sc_rts_aggr_limit / 1024); 1132 1133 device_printf(sc->sc_dev, 1134 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1135 } 1136 #endif 1137 1138 /* 1139 * Initial aggregation settings. 1140 */ 1141 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1142 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1143 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1144 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1145 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1146 sc->sc_delim_min_pad = 0; 1147 1148 /* 1149 * Check if the hardware requires PCI register serialisation. 1150 * Some of the Owl based MACs require this. 1151 */ 1152 if (mp_ncpus > 1 && 1153 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1154 0, NULL) == HAL_OK) { 1155 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1156 device_printf(sc->sc_dev, 1157 "Enabling register serialisation\n"); 1158 } 1159 1160 /* 1161 * Initialise the deferred completed RX buffer list. 1162 */ 1163 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1164 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1165 1166 /* 1167 * Indicate we need the 802.11 header padded to a 1168 * 32-bit boundary for 4-address and QoS frames. 1169 */ 1170 ic->ic_flags |= IEEE80211_F_DATAPAD; 1171 1172 /* 1173 * Query the hal about antenna support. 1174 */ 1175 sc->sc_defant = ath_hal_getdefantenna(ah); 1176 1177 /* 1178 * Not all chips have the VEOL support we want to 1179 * use with IBSS beacons; check here for it. 1180 */ 1181 sc->sc_hasveol = ath_hal_hasveol(ah); 1182 1183 /* get mac address from kenv first, then hardware */ 1184 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1185 /* Tell the HAL now about the new MAC */ 1186 ath_hal_setmac(ah, ic->ic_macaddr); 1187 } else { 1188 ath_hal_getmac(ah, ic->ic_macaddr); 1189 } 1190 1191 if (sc->sc_hasbmask) 1192 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1193 1194 /* NB: used to size node table key mapping array */ 1195 ic->ic_max_keyix = sc->sc_keymax; 1196 /* call MI attach routine. */ 1197 ieee80211_ifattach(ic); 1198 ic->ic_setregdomain = ath_setregdomain; 1199 ic->ic_getradiocaps = ath_getradiocaps; 1200 sc->sc_opmode = HAL_M_STA; 1201 1202 /* override default methods */ 1203 ic->ic_ioctl = ath_ioctl; 1204 ic->ic_parent = ath_parent; 1205 ic->ic_transmit = ath_transmit; 1206 ic->ic_newassoc = ath_newassoc; 1207 ic->ic_updateslot = ath_updateslot; 1208 ic->ic_wme.wme_update = ath_wme_update; 1209 ic->ic_vap_create = ath_vap_create; 1210 ic->ic_vap_delete = ath_vap_delete; 1211 ic->ic_raw_xmit = ath_raw_xmit; 1212 ic->ic_update_mcast = ath_update_mcast; 1213 ic->ic_update_promisc = ath_update_promisc; 1214 ic->ic_node_alloc = ath_node_alloc; 1215 sc->sc_node_free = ic->ic_node_free; 1216 ic->ic_node_free = ath_node_free; 1217 sc->sc_node_cleanup = ic->ic_node_cleanup; 1218 ic->ic_node_cleanup = ath_node_cleanup; 1219 ic->ic_node_getsignal = ath_node_getsignal; 1220 ic->ic_scan_start = ath_scan_start; 1221 ic->ic_scan_end = ath_scan_end; 1222 ic->ic_set_channel = ath_set_channel; 1223 #ifdef ATH_ENABLE_11N 1224 /* 802.11n specific - but just override anyway */ 1225 sc->sc_addba_request = ic->ic_addba_request; 1226 sc->sc_addba_response = ic->ic_addba_response; 1227 sc->sc_addba_stop = ic->ic_addba_stop; 1228 sc->sc_bar_response = ic->ic_bar_response; 1229 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1230 1231 ic->ic_addba_request = ath_addba_request; 1232 ic->ic_addba_response = ath_addba_response; 1233 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1234 ic->ic_addba_stop = ath_addba_stop; 1235 ic->ic_bar_response = ath_bar_response; 1236 1237 ic->ic_update_chw = ath_update_chw; 1238 #endif /* ATH_ENABLE_11N */ 1239 1240 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1241 /* 1242 * There's one vendor bitmap entry in the RX radiotap 1243 * header; make sure that's taken into account. 1244 */ 1245 ieee80211_radiotap_attachv(ic, 1246 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1247 ATH_TX_RADIOTAP_PRESENT, 1248 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1249 ATH_RX_RADIOTAP_PRESENT); 1250 #else 1251 /* 1252 * No vendor bitmap/extensions are present. 1253 */ 1254 ieee80211_radiotap_attach(ic, 1255 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1256 ATH_TX_RADIOTAP_PRESENT, 1257 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1258 ATH_RX_RADIOTAP_PRESENT); 1259 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1260 1261 /* 1262 * Setup the ALQ logging if required 1263 */ 1264 #ifdef ATH_DEBUG_ALQ 1265 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1266 if_ath_alq_setcfg(&sc->sc_alq, 1267 sc->sc_ah->ah_macVersion, 1268 sc->sc_ah->ah_macRev, 1269 sc->sc_ah->ah_phyRev, 1270 sc->sc_ah->ah_magic); 1271 #endif 1272 1273 /* 1274 * Setup dynamic sysctl's now that country code and 1275 * regdomain are available from the hal. 1276 */ 1277 ath_sysctlattach(sc); 1278 ath_sysctl_stats_attach(sc); 1279 ath_sysctl_hal_attach(sc); 1280 1281 if (bootverbose) 1282 ieee80211_announce(ic); 1283 ath_announce(sc); 1284 1285 /* 1286 * Put it to sleep for now. 1287 */ 1288 ATH_LOCK(sc); 1289 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1290 ATH_UNLOCK(sc); 1291 1292 return 0; 1293 bad2: 1294 ath_tx_cleanup(sc); 1295 ath_desc_free(sc); 1296 ath_txdma_teardown(sc); 1297 ath_rxdma_teardown(sc); 1298 bad: 1299 if (ah) 1300 ath_hal_detach(ah); 1301 sc->sc_invalid = 1; 1302 return error; 1303 } 1304 1305 int 1306 ath_detach(struct ath_softc *sc) 1307 { 1308 1309 /* 1310 * NB: the order of these is important: 1311 * o stop the chip so no more interrupts will fire 1312 * o call the 802.11 layer before detaching the hal to 1313 * insure callbacks into the driver to delete global 1314 * key cache entries can be handled 1315 * o free the taskqueue which drains any pending tasks 1316 * o reclaim the tx queue data structures after calling 1317 * the 802.11 layer as we'll get called back to reclaim 1318 * node state and potentially want to use them 1319 * o to cleanup the tx queues the hal is called, so detach 1320 * it last 1321 * Other than that, it's straightforward... 1322 */ 1323 1324 /* 1325 * XXX Wake the hardware up first. ath_stop() will still 1326 * wake it up first, but I'd rather do it here just to 1327 * ensure it's awake. 1328 */ 1329 ATH_LOCK(sc); 1330 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1331 ath_power_setpower(sc, HAL_PM_AWAKE); 1332 1333 /* 1334 * Stop things cleanly. 1335 */ 1336 ath_stop(sc); 1337 ATH_UNLOCK(sc); 1338 1339 ieee80211_ifdetach(&sc->sc_ic); 1340 taskqueue_free(sc->sc_tq); 1341 #ifdef ATH_TX99_DIAG 1342 if (sc->sc_tx99 != NULL) 1343 sc->sc_tx99->detach(sc->sc_tx99); 1344 #endif 1345 ath_rate_detach(sc->sc_rc); 1346 #ifdef ATH_DEBUG_ALQ 1347 if_ath_alq_tidyup(&sc->sc_alq); 1348 #endif 1349 ath_lna_div_detach(sc); 1350 ath_btcoex_detach(sc); 1351 ath_spectral_detach(sc); 1352 ath_dfs_detach(sc); 1353 ath_desc_free(sc); 1354 ath_txdma_teardown(sc); 1355 ath_rxdma_teardown(sc); 1356 ath_tx_cleanup(sc); 1357 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1358 1359 return 0; 1360 } 1361 1362 /* 1363 * MAC address handling for multiple BSS on the same radio. 1364 * The first vap uses the MAC address from the EEPROM. For 1365 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1366 * address and use the next six bits as an index. 1367 */ 1368 static void 1369 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1370 { 1371 int i; 1372 1373 if (clone && sc->sc_hasbmask) { 1374 /* NB: we only do this if h/w supports multiple bssid */ 1375 for (i = 0; i < 8; i++) 1376 if ((sc->sc_bssidmask & (1<<i)) == 0) 1377 break; 1378 if (i != 0) 1379 mac[0] |= (i << 2)|0x2; 1380 } else 1381 i = 0; 1382 sc->sc_bssidmask |= 1<<i; 1383 sc->sc_hwbssidmask[0] &= ~mac[0]; 1384 if (i == 0) 1385 sc->sc_nbssid0++; 1386 } 1387 1388 static void 1389 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1390 { 1391 int i = mac[0] >> 2; 1392 uint8_t mask; 1393 1394 if (i != 0 || --sc->sc_nbssid0 == 0) { 1395 sc->sc_bssidmask &= ~(1<<i); 1396 /* recalculate bssid mask from remaining addresses */ 1397 mask = 0xff; 1398 for (i = 1; i < 8; i++) 1399 if (sc->sc_bssidmask & (1<<i)) 1400 mask &= ~((i<<2)|0x2); 1401 sc->sc_hwbssidmask[0] |= mask; 1402 } 1403 } 1404 1405 /* 1406 * Assign a beacon xmit slot. We try to space out 1407 * assignments so when beacons are staggered the 1408 * traffic coming out of the cab q has maximal time 1409 * to go out before the next beacon is scheduled. 1410 */ 1411 static int 1412 assign_bslot(struct ath_softc *sc) 1413 { 1414 u_int slot, free; 1415 1416 free = 0; 1417 for (slot = 0; slot < ATH_BCBUF; slot++) 1418 if (sc->sc_bslot[slot] == NULL) { 1419 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1420 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1421 return slot; 1422 free = slot; 1423 /* NB: keep looking for a double slot */ 1424 } 1425 return free; 1426 } 1427 1428 static struct ieee80211vap * 1429 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1430 enum ieee80211_opmode opmode, int flags, 1431 const uint8_t bssid[IEEE80211_ADDR_LEN], 1432 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1433 { 1434 struct ath_softc *sc = ic->ic_softc; 1435 struct ath_vap *avp; 1436 struct ieee80211vap *vap; 1437 uint8_t mac[IEEE80211_ADDR_LEN]; 1438 int needbeacon, error; 1439 enum ieee80211_opmode ic_opmode; 1440 1441 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1442 needbeacon = 0; 1443 IEEE80211_ADDR_COPY(mac, mac0); 1444 1445 ATH_LOCK(sc); 1446 ic_opmode = opmode; /* default to opmode of new vap */ 1447 switch (opmode) { 1448 case IEEE80211_M_STA: 1449 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1450 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1451 goto bad; 1452 } 1453 if (sc->sc_nvaps) { 1454 /* 1455 * With multiple vaps we must fall back 1456 * to s/w beacon miss handling. 1457 */ 1458 flags |= IEEE80211_CLONE_NOBEACONS; 1459 } 1460 if (flags & IEEE80211_CLONE_NOBEACONS) { 1461 /* 1462 * Station mode w/o beacons are implemented w/ AP mode. 1463 */ 1464 ic_opmode = IEEE80211_M_HOSTAP; 1465 } 1466 break; 1467 case IEEE80211_M_IBSS: 1468 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1469 device_printf(sc->sc_dev, 1470 "only 1 ibss vap supported\n"); 1471 goto bad; 1472 } 1473 needbeacon = 1; 1474 break; 1475 case IEEE80211_M_AHDEMO: 1476 #ifdef IEEE80211_SUPPORT_TDMA 1477 if (flags & IEEE80211_CLONE_TDMA) { 1478 if (sc->sc_nvaps != 0) { 1479 device_printf(sc->sc_dev, 1480 "only 1 tdma vap supported\n"); 1481 goto bad; 1482 } 1483 needbeacon = 1; 1484 flags |= IEEE80211_CLONE_NOBEACONS; 1485 } 1486 /* fall thru... */ 1487 #endif 1488 case IEEE80211_M_MONITOR: 1489 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1490 /* 1491 * Adopt existing mode. Adding a monitor or ahdemo 1492 * vap to an existing configuration is of dubious 1493 * value but should be ok. 1494 */ 1495 /* XXX not right for monitor mode */ 1496 ic_opmode = ic->ic_opmode; 1497 } 1498 break; 1499 case IEEE80211_M_HOSTAP: 1500 case IEEE80211_M_MBSS: 1501 needbeacon = 1; 1502 break; 1503 case IEEE80211_M_WDS: 1504 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1505 device_printf(sc->sc_dev, 1506 "wds not supported in sta mode\n"); 1507 goto bad; 1508 } 1509 /* 1510 * Silently remove any request for a unique 1511 * bssid; WDS vap's always share the local 1512 * mac address. 1513 */ 1514 flags &= ~IEEE80211_CLONE_BSSID; 1515 if (sc->sc_nvaps == 0) 1516 ic_opmode = IEEE80211_M_HOSTAP; 1517 else 1518 ic_opmode = ic->ic_opmode; 1519 break; 1520 default: 1521 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1522 goto bad; 1523 } 1524 /* 1525 * Check that a beacon buffer is available; the code below assumes it. 1526 */ 1527 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1528 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1529 goto bad; 1530 } 1531 1532 /* STA, AHDEMO? */ 1533 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1534 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1535 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1536 } 1537 1538 vap = &avp->av_vap; 1539 /* XXX can't hold mutex across if_alloc */ 1540 ATH_UNLOCK(sc); 1541 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1542 ATH_LOCK(sc); 1543 if (error != 0) { 1544 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1545 __func__, error); 1546 goto bad2; 1547 } 1548 1549 /* h/w crypto support */ 1550 vap->iv_key_alloc = ath_key_alloc; 1551 vap->iv_key_delete = ath_key_delete; 1552 vap->iv_key_set = ath_key_set; 1553 vap->iv_key_update_begin = ath_key_update_begin; 1554 vap->iv_key_update_end = ath_key_update_end; 1555 1556 /* override various methods */ 1557 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1558 vap->iv_recv_mgmt = ath_recv_mgmt; 1559 vap->iv_reset = ath_reset_vap; 1560 vap->iv_update_beacon = ath_beacon_update; 1561 avp->av_newstate = vap->iv_newstate; 1562 vap->iv_newstate = ath_newstate; 1563 avp->av_bmiss = vap->iv_bmiss; 1564 vap->iv_bmiss = ath_bmiss_vap; 1565 1566 avp->av_node_ps = vap->iv_node_ps; 1567 vap->iv_node_ps = ath_node_powersave; 1568 1569 avp->av_set_tim = vap->iv_set_tim; 1570 vap->iv_set_tim = ath_node_set_tim; 1571 1572 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1573 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1574 1575 /* Set default parameters */ 1576 1577 /* 1578 * Anything earlier than some AR9300 series MACs don't 1579 * support a smaller MPDU density. 1580 */ 1581 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1582 /* 1583 * All NICs can handle the maximum size, however 1584 * AR5416 based MACs can only TX aggregates w/ RTS 1585 * protection when the total aggregate size is <= 8k. 1586 * However, for now that's enforced by the TX path. 1587 */ 1588 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1589 1590 avp->av_bslot = -1; 1591 if (needbeacon) { 1592 /* 1593 * Allocate beacon state and setup the q for buffered 1594 * multicast frames. We know a beacon buffer is 1595 * available because we checked above. 1596 */ 1597 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1598 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1599 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1600 /* 1601 * Assign the vap to a beacon xmit slot. As above 1602 * this cannot fail to find a free one. 1603 */ 1604 avp->av_bslot = assign_bslot(sc); 1605 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1606 ("beacon slot %u not empty", avp->av_bslot)); 1607 sc->sc_bslot[avp->av_bslot] = vap; 1608 sc->sc_nbcnvaps++; 1609 } 1610 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1611 /* 1612 * Multple vaps are to transmit beacons and we 1613 * have h/w support for TSF adjusting; enable 1614 * use of staggered beacons. 1615 */ 1616 sc->sc_stagbeacons = 1; 1617 } 1618 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1619 } 1620 1621 ic->ic_opmode = ic_opmode; 1622 if (opmode != IEEE80211_M_WDS) { 1623 sc->sc_nvaps++; 1624 if (opmode == IEEE80211_M_STA) 1625 sc->sc_nstavaps++; 1626 if (opmode == IEEE80211_M_MBSS) 1627 sc->sc_nmeshvaps++; 1628 } 1629 switch (ic_opmode) { 1630 case IEEE80211_M_IBSS: 1631 sc->sc_opmode = HAL_M_IBSS; 1632 break; 1633 case IEEE80211_M_STA: 1634 sc->sc_opmode = HAL_M_STA; 1635 break; 1636 case IEEE80211_M_AHDEMO: 1637 #ifdef IEEE80211_SUPPORT_TDMA 1638 if (vap->iv_caps & IEEE80211_C_TDMA) { 1639 sc->sc_tdma = 1; 1640 /* NB: disable tsf adjust */ 1641 sc->sc_stagbeacons = 0; 1642 } 1643 /* 1644 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1645 * just ap mode. 1646 */ 1647 /* fall thru... */ 1648 #endif 1649 case IEEE80211_M_HOSTAP: 1650 case IEEE80211_M_MBSS: 1651 sc->sc_opmode = HAL_M_HOSTAP; 1652 break; 1653 case IEEE80211_M_MONITOR: 1654 sc->sc_opmode = HAL_M_MONITOR; 1655 break; 1656 default: 1657 /* XXX should not happen */ 1658 break; 1659 } 1660 if (sc->sc_hastsfadd) { 1661 /* 1662 * Configure whether or not TSF adjust should be done. 1663 */ 1664 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1665 } 1666 if (flags & IEEE80211_CLONE_NOBEACONS) { 1667 /* 1668 * Enable s/w beacon miss handling. 1669 */ 1670 sc->sc_swbmiss = 1; 1671 } 1672 ATH_UNLOCK(sc); 1673 1674 /* complete setup */ 1675 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1676 mac); 1677 return vap; 1678 bad2: 1679 reclaim_address(sc, mac); 1680 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1681 bad: 1682 free(avp, M_80211_VAP); 1683 ATH_UNLOCK(sc); 1684 return NULL; 1685 } 1686 1687 static void 1688 ath_vap_delete(struct ieee80211vap *vap) 1689 { 1690 struct ieee80211com *ic = vap->iv_ic; 1691 struct ath_softc *sc = ic->ic_softc; 1692 struct ath_hal *ah = sc->sc_ah; 1693 struct ath_vap *avp = ATH_VAP(vap); 1694 1695 ATH_LOCK(sc); 1696 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1697 ATH_UNLOCK(sc); 1698 1699 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1700 if (sc->sc_running) { 1701 /* 1702 * Quiesce the hardware while we remove the vap. In 1703 * particular we need to reclaim all references to 1704 * the vap state by any frames pending on the tx queues. 1705 */ 1706 ath_hal_intrset(ah, 0); /* disable interrupts */ 1707 /* XXX Do all frames from all vaps/nodes need draining here? */ 1708 ath_stoprecv(sc, 1); /* stop recv side */ 1709 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1710 } 1711 1712 /* .. leave the hardware awake for now. */ 1713 1714 ieee80211_vap_detach(vap); 1715 1716 /* 1717 * XXX Danger Will Robinson! Danger! 1718 * 1719 * Because ieee80211_vap_detach() can queue a frame (the station 1720 * diassociate message?) after we've drained the TXQ and 1721 * flushed the software TXQ, we will end up with a frame queued 1722 * to a node whose vap is about to be freed. 1723 * 1724 * To work around this, flush the hardware/software again. 1725 * This may be racy - the ath task may be running and the packet 1726 * may be being scheduled between sw->hw txq. Tsk. 1727 * 1728 * TODO: figure out why a new node gets allocated somewhere around 1729 * here (after the ath_tx_swq() call; and after an ath_stop() 1730 * call!) 1731 */ 1732 1733 ath_draintxq(sc, ATH_RESET_DEFAULT); 1734 1735 ATH_LOCK(sc); 1736 /* 1737 * Reclaim beacon state. Note this must be done before 1738 * the vap instance is reclaimed as we may have a reference 1739 * to it in the buffer for the beacon frame. 1740 */ 1741 if (avp->av_bcbuf != NULL) { 1742 if (avp->av_bslot != -1) { 1743 sc->sc_bslot[avp->av_bslot] = NULL; 1744 sc->sc_nbcnvaps--; 1745 } 1746 ath_beacon_return(sc, avp->av_bcbuf); 1747 avp->av_bcbuf = NULL; 1748 if (sc->sc_nbcnvaps == 0) { 1749 sc->sc_stagbeacons = 0; 1750 if (sc->sc_hastsfadd) 1751 ath_hal_settsfadjust(sc->sc_ah, 0); 1752 } 1753 /* 1754 * Reclaim any pending mcast frames for the vap. 1755 */ 1756 ath_tx_draintxq(sc, &avp->av_mcastq); 1757 } 1758 /* 1759 * Update bookkeeping. 1760 */ 1761 if (vap->iv_opmode == IEEE80211_M_STA) { 1762 sc->sc_nstavaps--; 1763 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1764 sc->sc_swbmiss = 0; 1765 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1766 vap->iv_opmode == IEEE80211_M_MBSS) { 1767 reclaim_address(sc, vap->iv_myaddr); 1768 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1769 if (vap->iv_opmode == IEEE80211_M_MBSS) 1770 sc->sc_nmeshvaps--; 1771 } 1772 if (vap->iv_opmode != IEEE80211_M_WDS) 1773 sc->sc_nvaps--; 1774 #ifdef IEEE80211_SUPPORT_TDMA 1775 /* TDMA operation ceases when the last vap is destroyed */ 1776 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1777 sc->sc_tdma = 0; 1778 sc->sc_swbmiss = 0; 1779 } 1780 #endif 1781 free(avp, M_80211_VAP); 1782 1783 if (sc->sc_running) { 1784 /* 1785 * Restart rx+tx machines if still running (RUNNING will 1786 * be reset if we just destroyed the last vap). 1787 */ 1788 if (ath_startrecv(sc) != 0) 1789 device_printf(sc->sc_dev, 1790 "%s: unable to restart recv logic\n", __func__); 1791 if (sc->sc_beacons) { /* restart beacons */ 1792 #ifdef IEEE80211_SUPPORT_TDMA 1793 if (sc->sc_tdma) 1794 ath_tdma_config(sc, NULL); 1795 else 1796 #endif 1797 ath_beacon_config(sc, NULL); 1798 } 1799 ath_hal_intrset(ah, sc->sc_imask); 1800 } 1801 1802 /* Ok, let the hardware asleep. */ 1803 ath_power_restore_power_state(sc); 1804 ATH_UNLOCK(sc); 1805 } 1806 1807 void 1808 ath_suspend(struct ath_softc *sc) 1809 { 1810 struct ieee80211com *ic = &sc->sc_ic; 1811 1812 sc->sc_resume_up = ic->ic_nrunning != 0; 1813 1814 ieee80211_suspend_all(ic); 1815 /* 1816 * NB: don't worry about putting the chip in low power 1817 * mode; pci will power off our socket on suspend and 1818 * CardBus detaches the device. 1819 * 1820 * XXX TODO: well, that's great, except for non-cardbus 1821 * devices! 1822 */ 1823 1824 /* 1825 * XXX This doesn't wait until all pending taskqueue 1826 * items and parallel transmit/receive/other threads 1827 * are running! 1828 */ 1829 ath_hal_intrset(sc->sc_ah, 0); 1830 taskqueue_block(sc->sc_tq); 1831 1832 ATH_LOCK(sc); 1833 callout_stop(&sc->sc_cal_ch); 1834 ATH_UNLOCK(sc); 1835 1836 /* 1837 * XXX ensure sc_invalid is 1 1838 */ 1839 1840 /* Disable the PCIe PHY, complete with workarounds */ 1841 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1842 } 1843 1844 /* 1845 * Reset the key cache since some parts do not reset the 1846 * contents on resume. First we clear all entries, then 1847 * re-load keys that the 802.11 layer assumes are setup 1848 * in h/w. 1849 */ 1850 static void 1851 ath_reset_keycache(struct ath_softc *sc) 1852 { 1853 struct ieee80211com *ic = &sc->sc_ic; 1854 struct ath_hal *ah = sc->sc_ah; 1855 int i; 1856 1857 ATH_LOCK(sc); 1858 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1859 for (i = 0; i < sc->sc_keymax; i++) 1860 ath_hal_keyreset(ah, i); 1861 ath_power_restore_power_state(sc); 1862 ATH_UNLOCK(sc); 1863 ieee80211_crypto_reload_keys(ic); 1864 } 1865 1866 /* 1867 * Fetch the current chainmask configuration based on the current 1868 * operating channel and options. 1869 */ 1870 static void 1871 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1872 { 1873 1874 /* 1875 * Set TX chainmask to the currently configured chainmask; 1876 * the TX chainmask depends upon the current operating mode. 1877 */ 1878 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1879 if (IEEE80211_IS_CHAN_HT(chan)) { 1880 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1881 } else { 1882 sc->sc_cur_txchainmask = 1; 1883 } 1884 1885 DPRINTF(sc, ATH_DEBUG_RESET, 1886 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1887 __func__, 1888 sc->sc_cur_txchainmask, 1889 sc->sc_cur_rxchainmask); 1890 } 1891 1892 void 1893 ath_resume(struct ath_softc *sc) 1894 { 1895 struct ieee80211com *ic = &sc->sc_ic; 1896 struct ath_hal *ah = sc->sc_ah; 1897 HAL_STATUS status; 1898 1899 ath_hal_enablepcie(ah, 0, 0); 1900 1901 /* 1902 * Must reset the chip before we reload the 1903 * keycache as we were powered down on suspend. 1904 */ 1905 ath_update_chainmasks(sc, 1906 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1907 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1908 sc->sc_cur_rxchainmask); 1909 1910 /* Ensure we set the current power state to on */ 1911 ATH_LOCK(sc); 1912 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1913 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1914 ath_power_setpower(sc, HAL_PM_AWAKE); 1915 ATH_UNLOCK(sc); 1916 1917 ath_hal_reset(ah, sc->sc_opmode, 1918 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1919 AH_FALSE, &status); 1920 ath_reset_keycache(sc); 1921 1922 ATH_RX_LOCK(sc); 1923 sc->sc_rx_stopped = 1; 1924 sc->sc_rx_resetted = 1; 1925 ATH_RX_UNLOCK(sc); 1926 1927 /* Let DFS at it in case it's a DFS channel */ 1928 ath_dfs_radar_enable(sc, ic->ic_curchan); 1929 1930 /* Let spectral at in case spectral is enabled */ 1931 ath_spectral_enable(sc, ic->ic_curchan); 1932 1933 /* 1934 * Let bluetooth coexistence at in case it's needed for this channel 1935 */ 1936 ath_btcoex_enable(sc, ic->ic_curchan); 1937 1938 /* 1939 * If we're doing TDMA, enforce the TXOP limitation for chips that 1940 * support it. 1941 */ 1942 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1943 ath_hal_setenforcetxop(sc->sc_ah, 1); 1944 else 1945 ath_hal_setenforcetxop(sc->sc_ah, 0); 1946 1947 /* Restore the LED configuration */ 1948 ath_led_config(sc); 1949 ath_hal_setledstate(ah, HAL_LED_INIT); 1950 1951 if (sc->sc_resume_up) 1952 ieee80211_resume_all(ic); 1953 1954 ATH_LOCK(sc); 1955 ath_power_restore_power_state(sc); 1956 ATH_UNLOCK(sc); 1957 1958 /* XXX beacons ? */ 1959 } 1960 1961 void 1962 ath_shutdown(struct ath_softc *sc) 1963 { 1964 1965 ATH_LOCK(sc); 1966 ath_stop(sc); 1967 ATH_UNLOCK(sc); 1968 /* NB: no point powering down chip as we're about to reboot */ 1969 } 1970 1971 /* 1972 * Interrupt handler. Most of the actual processing is deferred. 1973 */ 1974 void 1975 ath_intr(void *arg) 1976 { 1977 struct ath_softc *sc = arg; 1978 struct ath_hal *ah = sc->sc_ah; 1979 HAL_INT status = 0; 1980 uint32_t txqs; 1981 1982 /* 1983 * If we're inside a reset path, just print a warning and 1984 * clear the ISR. The reset routine will finish it for us. 1985 */ 1986 ATH_PCU_LOCK(sc); 1987 if (sc->sc_inreset_cnt) { 1988 HAL_INT status; 1989 ath_hal_getisr(ah, &status); /* clear ISR */ 1990 ath_hal_intrset(ah, 0); /* disable further intr's */ 1991 DPRINTF(sc, ATH_DEBUG_ANY, 1992 "%s: in reset, ignoring: status=0x%x\n", 1993 __func__, status); 1994 ATH_PCU_UNLOCK(sc); 1995 return; 1996 } 1997 1998 if (sc->sc_invalid) { 1999 /* 2000 * The hardware is not ready/present, don't touch anything. 2001 * Note this can happen early on if the IRQ is shared. 2002 */ 2003 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2004 ATH_PCU_UNLOCK(sc); 2005 return; 2006 } 2007 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2008 ATH_PCU_UNLOCK(sc); 2009 return; 2010 } 2011 2012 ATH_LOCK(sc); 2013 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2014 ATH_UNLOCK(sc); 2015 2016 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2017 HAL_INT status; 2018 2019 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2020 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2021 ath_hal_getisr(ah, &status); /* clear ISR */ 2022 ath_hal_intrset(ah, 0); /* disable further intr's */ 2023 ATH_PCU_UNLOCK(sc); 2024 2025 ATH_LOCK(sc); 2026 ath_power_restore_power_state(sc); 2027 ATH_UNLOCK(sc); 2028 return; 2029 } 2030 2031 /* 2032 * Figure out the reason(s) for the interrupt. Note 2033 * that the hal returns a pseudo-ISR that may include 2034 * bits we haven't explicitly enabled so we mask the 2035 * value to insure we only process bits we requested. 2036 */ 2037 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2038 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2039 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2040 #ifdef ATH_DEBUG_ALQ 2041 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2042 ah->ah_syncstate); 2043 #endif /* ATH_DEBUG_ALQ */ 2044 #ifdef ATH_KTR_INTR_DEBUG 2045 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2046 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2047 ah->ah_intrstate[0], 2048 ah->ah_intrstate[1], 2049 ah->ah_intrstate[2], 2050 ah->ah_intrstate[3], 2051 ah->ah_intrstate[6]); 2052 #endif 2053 2054 /* Squirrel away SYNC interrupt debugging */ 2055 if (ah->ah_syncstate != 0) { 2056 int i; 2057 for (i = 0; i < 32; i++) 2058 if (ah->ah_syncstate & (i << i)) 2059 sc->sc_intr_stats.sync_intr[i]++; 2060 } 2061 2062 status &= sc->sc_imask; /* discard unasked for bits */ 2063 2064 /* Short-circuit un-handled interrupts */ 2065 if (status == 0x0) { 2066 ATH_PCU_UNLOCK(sc); 2067 2068 ATH_LOCK(sc); 2069 ath_power_restore_power_state(sc); 2070 ATH_UNLOCK(sc); 2071 2072 return; 2073 } 2074 2075 /* 2076 * Take a note that we're inside the interrupt handler, so 2077 * the reset routines know to wait. 2078 */ 2079 sc->sc_intr_cnt++; 2080 ATH_PCU_UNLOCK(sc); 2081 2082 /* 2083 * Handle the interrupt. We won't run concurrent with the reset 2084 * or channel change routines as they'll wait for sc_intr_cnt 2085 * to be 0 before continuing. 2086 */ 2087 if (status & HAL_INT_FATAL) { 2088 sc->sc_stats.ast_hardware++; 2089 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2090 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2091 } else { 2092 if (status & HAL_INT_SWBA) { 2093 /* 2094 * Software beacon alert--time to send a beacon. 2095 * Handle beacon transmission directly; deferring 2096 * this is too slow to meet timing constraints 2097 * under load. 2098 */ 2099 #ifdef IEEE80211_SUPPORT_TDMA 2100 if (sc->sc_tdma) { 2101 if (sc->sc_tdmaswba == 0) { 2102 struct ieee80211com *ic = &sc->sc_ic; 2103 struct ieee80211vap *vap = 2104 TAILQ_FIRST(&ic->ic_vaps); 2105 ath_tdma_beacon_send(sc, vap); 2106 sc->sc_tdmaswba = 2107 vap->iv_tdma->tdma_bintval; 2108 } else 2109 sc->sc_tdmaswba--; 2110 } else 2111 #endif 2112 { 2113 ath_beacon_proc(sc, 0); 2114 #ifdef IEEE80211_SUPPORT_SUPERG 2115 /* 2116 * Schedule the rx taskq in case there's no 2117 * traffic so any frames held on the staging 2118 * queue are aged and potentially flushed. 2119 */ 2120 sc->sc_rx.recv_sched(sc, 1); 2121 #endif 2122 } 2123 } 2124 if (status & HAL_INT_RXEOL) { 2125 int imask; 2126 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2127 if (! sc->sc_isedma) { 2128 ATH_PCU_LOCK(sc); 2129 /* 2130 * NB: the hardware should re-read the link when 2131 * RXE bit is written, but it doesn't work at 2132 * least on older hardware revs. 2133 */ 2134 sc->sc_stats.ast_rxeol++; 2135 /* 2136 * Disable RXEOL/RXORN - prevent an interrupt 2137 * storm until the PCU logic can be reset. 2138 * In case the interface is reset some other 2139 * way before "sc_kickpcu" is called, don't 2140 * modify sc_imask - that way if it is reset 2141 * by a call to ath_reset() somehow, the 2142 * interrupt mask will be correctly reprogrammed. 2143 */ 2144 imask = sc->sc_imask; 2145 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2146 ath_hal_intrset(ah, imask); 2147 /* 2148 * Only blank sc_rxlink if we've not yet kicked 2149 * the PCU. 2150 * 2151 * This isn't entirely correct - the correct solution 2152 * would be to have a PCU lock and engage that for 2153 * the duration of the PCU fiddling; which would include 2154 * running the RX process. Otherwise we could end up 2155 * messing up the RX descriptor chain and making the 2156 * RX desc list much shorter. 2157 */ 2158 if (! sc->sc_kickpcu) 2159 sc->sc_rxlink = NULL; 2160 sc->sc_kickpcu = 1; 2161 ATH_PCU_UNLOCK(sc); 2162 } 2163 /* 2164 * Enqueue an RX proc to handle whatever 2165 * is in the RX queue. 2166 * This will then kick the PCU if required. 2167 */ 2168 sc->sc_rx.recv_sched(sc, 1); 2169 } 2170 if (status & HAL_INT_TXURN) { 2171 sc->sc_stats.ast_txurn++; 2172 /* bump tx trigger level */ 2173 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2174 } 2175 /* 2176 * Handle both the legacy and RX EDMA interrupt bits. 2177 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2178 */ 2179 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2180 sc->sc_stats.ast_rx_intr++; 2181 sc->sc_rx.recv_sched(sc, 1); 2182 } 2183 if (status & HAL_INT_TX) { 2184 sc->sc_stats.ast_tx_intr++; 2185 /* 2186 * Grab all the currently set bits in the HAL txq bitmap 2187 * and blank them. This is the only place we should be 2188 * doing this. 2189 */ 2190 if (! sc->sc_isedma) { 2191 ATH_PCU_LOCK(sc); 2192 txqs = 0xffffffff; 2193 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2194 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2195 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2196 txqs, 2197 sc->sc_txq_active, 2198 sc->sc_txq_active | txqs); 2199 sc->sc_txq_active |= txqs; 2200 ATH_PCU_UNLOCK(sc); 2201 } 2202 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2203 } 2204 if (status & HAL_INT_BMISS) { 2205 sc->sc_stats.ast_bmiss++; 2206 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2207 } 2208 if (status & HAL_INT_GTT) 2209 sc->sc_stats.ast_tx_timeout++; 2210 if (status & HAL_INT_CST) 2211 sc->sc_stats.ast_tx_cst++; 2212 if (status & HAL_INT_MIB) { 2213 sc->sc_stats.ast_mib++; 2214 ATH_PCU_LOCK(sc); 2215 /* 2216 * Disable interrupts until we service the MIB 2217 * interrupt; otherwise it will continue to fire. 2218 */ 2219 ath_hal_intrset(ah, 0); 2220 /* 2221 * Let the hal handle the event. We assume it will 2222 * clear whatever condition caused the interrupt. 2223 */ 2224 ath_hal_mibevent(ah, &sc->sc_halstats); 2225 /* 2226 * Don't reset the interrupt if we've just 2227 * kicked the PCU, or we may get a nested 2228 * RXEOL before the rxproc has had a chance 2229 * to run. 2230 */ 2231 if (sc->sc_kickpcu == 0) 2232 ath_hal_intrset(ah, sc->sc_imask); 2233 ATH_PCU_UNLOCK(sc); 2234 } 2235 if (status & HAL_INT_RXORN) { 2236 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2237 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2238 sc->sc_stats.ast_rxorn++; 2239 } 2240 if (status & HAL_INT_TSFOOR) { 2241 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2242 sc->sc_syncbeacon = 1; 2243 } 2244 } 2245 ATH_PCU_LOCK(sc); 2246 sc->sc_intr_cnt--; 2247 ATH_PCU_UNLOCK(sc); 2248 2249 ATH_LOCK(sc); 2250 ath_power_restore_power_state(sc); 2251 ATH_UNLOCK(sc); 2252 } 2253 2254 static void 2255 ath_fatal_proc(void *arg, int pending) 2256 { 2257 struct ath_softc *sc = arg; 2258 u_int32_t *state; 2259 u_int32_t len; 2260 void *sp; 2261 2262 if (sc->sc_invalid) 2263 return; 2264 2265 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2266 /* 2267 * Fatal errors are unrecoverable. Typically these 2268 * are caused by DMA errors. Collect h/w state from 2269 * the hal so we can diagnose what's going on. 2270 */ 2271 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2272 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2273 state = sp; 2274 device_printf(sc->sc_dev, 2275 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2276 state[1] , state[2], state[3], state[4], state[5]); 2277 } 2278 ath_reset(sc, ATH_RESET_NOLOSS); 2279 } 2280 2281 static void 2282 ath_bmiss_vap(struct ieee80211vap *vap) 2283 { 2284 struct ath_softc *sc = vap->iv_ic->ic_softc; 2285 2286 /* 2287 * Workaround phantom bmiss interrupts by sanity-checking 2288 * the time of our last rx'd frame. If it is within the 2289 * beacon miss interval then ignore the interrupt. If it's 2290 * truly a bmiss we'll get another interrupt soon and that'll 2291 * be dispatched up for processing. Note this applies only 2292 * for h/w beacon miss events. 2293 */ 2294 2295 /* 2296 * XXX TODO: Just read the TSF during the interrupt path; 2297 * that way we don't have to wake up again just to read it 2298 * again. 2299 */ 2300 ATH_LOCK(sc); 2301 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2302 ATH_UNLOCK(sc); 2303 2304 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2305 u_int64_t lastrx = sc->sc_lastrx; 2306 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2307 /* XXX should take a locked ref to iv_bss */ 2308 u_int bmisstimeout = 2309 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2310 2311 DPRINTF(sc, ATH_DEBUG_BEACON, 2312 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2313 __func__, (unsigned long long) tsf, 2314 (unsigned long long)(tsf - lastrx), 2315 (unsigned long long) lastrx, bmisstimeout); 2316 2317 if (tsf - lastrx <= bmisstimeout) { 2318 sc->sc_stats.ast_bmiss_phantom++; 2319 2320 ATH_LOCK(sc); 2321 ath_power_restore_power_state(sc); 2322 ATH_UNLOCK(sc); 2323 2324 return; 2325 } 2326 } 2327 2328 /* 2329 * There's no need to keep the hardware awake during the call 2330 * to av_bmiss(). 2331 */ 2332 ATH_LOCK(sc); 2333 ath_power_restore_power_state(sc); 2334 ATH_UNLOCK(sc); 2335 2336 /* 2337 * Attempt to force a beacon resync. 2338 */ 2339 sc->sc_syncbeacon = 1; 2340 2341 ATH_VAP(vap)->av_bmiss(vap); 2342 } 2343 2344 /* XXX this needs a force wakeup! */ 2345 int 2346 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2347 { 2348 uint32_t rsize; 2349 void *sp; 2350 2351 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2352 return 0; 2353 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2354 *hangs = *(uint32_t *)sp; 2355 return 1; 2356 } 2357 2358 static void 2359 ath_bmiss_proc(void *arg, int pending) 2360 { 2361 struct ath_softc *sc = arg; 2362 uint32_t hangs; 2363 2364 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2365 2366 ATH_LOCK(sc); 2367 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2368 ATH_UNLOCK(sc); 2369 2370 ath_beacon_miss(sc); 2371 2372 /* 2373 * Do a reset upon any becaon miss event. 2374 * 2375 * It may be a non-recognised RX clear hang which needs a reset 2376 * to clear. 2377 */ 2378 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2379 ath_reset(sc, ATH_RESET_NOLOSS); 2380 device_printf(sc->sc_dev, 2381 "bb hang detected (0x%x), resetting\n", hangs); 2382 } else { 2383 ath_reset(sc, ATH_RESET_NOLOSS); 2384 ieee80211_beacon_miss(&sc->sc_ic); 2385 } 2386 2387 /* Force a beacon resync, in case they've drifted */ 2388 sc->sc_syncbeacon = 1; 2389 2390 ATH_LOCK(sc); 2391 ath_power_restore_power_state(sc); 2392 ATH_UNLOCK(sc); 2393 } 2394 2395 /* 2396 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2397 * calcs together with WME. If necessary disable the crypto 2398 * hardware and mark the 802.11 state so keys will be setup 2399 * with the MIC work done in software. 2400 */ 2401 static void 2402 ath_settkipmic(struct ath_softc *sc) 2403 { 2404 struct ieee80211com *ic = &sc->sc_ic; 2405 2406 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2407 if (ic->ic_flags & IEEE80211_F_WME) { 2408 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2409 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2410 } else { 2411 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2412 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2413 } 2414 } 2415 } 2416 2417 static int 2418 ath_init(struct ath_softc *sc) 2419 { 2420 struct ieee80211com *ic = &sc->sc_ic; 2421 struct ath_hal *ah = sc->sc_ah; 2422 HAL_STATUS status; 2423 2424 ATH_LOCK_ASSERT(sc); 2425 2426 /* 2427 * Force the sleep state awake. 2428 */ 2429 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2430 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2431 ath_power_setpower(sc, HAL_PM_AWAKE); 2432 2433 /* 2434 * Stop anything previously setup. This is safe 2435 * whether this is the first time through or not. 2436 */ 2437 ath_stop(sc); 2438 2439 /* 2440 * The basic interface to setting the hardware in a good 2441 * state is ``reset''. On return the hardware is known to 2442 * be powered up and with interrupts disabled. This must 2443 * be followed by initialization of the appropriate bits 2444 * and then setup of the interrupt mask. 2445 */ 2446 ath_settkipmic(sc); 2447 ath_update_chainmasks(sc, ic->ic_curchan); 2448 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2449 sc->sc_cur_rxchainmask); 2450 2451 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2452 &status)) { 2453 device_printf(sc->sc_dev, 2454 "unable to reset hardware; hal status %u\n", status); 2455 return (ENODEV); 2456 } 2457 2458 ATH_RX_LOCK(sc); 2459 sc->sc_rx_stopped = 1; 2460 sc->sc_rx_resetted = 1; 2461 ATH_RX_UNLOCK(sc); 2462 2463 ath_chan_change(sc, ic->ic_curchan); 2464 2465 /* Let DFS at it in case it's a DFS channel */ 2466 ath_dfs_radar_enable(sc, ic->ic_curchan); 2467 2468 /* Let spectral at in case spectral is enabled */ 2469 ath_spectral_enable(sc, ic->ic_curchan); 2470 2471 /* 2472 * Let bluetooth coexistence at in case it's needed for this channel 2473 */ 2474 ath_btcoex_enable(sc, ic->ic_curchan); 2475 2476 /* 2477 * If we're doing TDMA, enforce the TXOP limitation for chips that 2478 * support it. 2479 */ 2480 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2481 ath_hal_setenforcetxop(sc->sc_ah, 1); 2482 else 2483 ath_hal_setenforcetxop(sc->sc_ah, 0); 2484 2485 /* 2486 * Likewise this is set during reset so update 2487 * state cached in the driver. 2488 */ 2489 sc->sc_diversity = ath_hal_getdiversity(ah); 2490 sc->sc_lastlongcal = ticks; 2491 sc->sc_resetcal = 1; 2492 sc->sc_lastcalreset = 0; 2493 sc->sc_lastani = ticks; 2494 sc->sc_lastshortcal = ticks; 2495 sc->sc_doresetcal = AH_FALSE; 2496 /* 2497 * Beacon timers were cleared here; give ath_newstate() 2498 * a hint that the beacon timers should be poked when 2499 * things transition to the RUN state. 2500 */ 2501 sc->sc_beacons = 0; 2502 2503 /* 2504 * Setup the hardware after reset: the key cache 2505 * is filled as needed and the receive engine is 2506 * set going. Frame transmit is handled entirely 2507 * in the frame output path; there's nothing to do 2508 * here except setup the interrupt mask. 2509 */ 2510 if (ath_startrecv(sc) != 0) { 2511 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2512 ath_power_restore_power_state(sc); 2513 return (ENODEV); 2514 } 2515 2516 /* 2517 * Enable interrupts. 2518 */ 2519 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2520 | HAL_INT_RXORN | HAL_INT_TXURN 2521 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2522 2523 /* 2524 * Enable RX EDMA bits. Note these overlap with 2525 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2526 */ 2527 if (sc->sc_isedma) 2528 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2529 2530 /* 2531 * If we're an EDMA NIC, we don't care about RXEOL. 2532 * Writing a new descriptor in will simply restart 2533 * RX DMA. 2534 */ 2535 if (! sc->sc_isedma) 2536 sc->sc_imask |= HAL_INT_RXEOL; 2537 2538 /* 2539 * Enable MIB interrupts when there are hardware phy counters. 2540 * Note we only do this (at the moment) for station mode. 2541 */ 2542 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2543 sc->sc_imask |= HAL_INT_MIB; 2544 2545 /* 2546 * XXX add capability for this. 2547 * 2548 * If we're in STA mode (and maybe IBSS?) then register for 2549 * TSFOOR interrupts. 2550 */ 2551 if (ic->ic_opmode == IEEE80211_M_STA) 2552 sc->sc_imask |= HAL_INT_TSFOOR; 2553 2554 /* Enable global TX timeout and carrier sense timeout if available */ 2555 if (ath_hal_gtxto_supported(ah)) 2556 sc->sc_imask |= HAL_INT_GTT; 2557 2558 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2559 __func__, sc->sc_imask); 2560 2561 sc->sc_running = 1; 2562 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2563 ath_hal_intrset(ah, sc->sc_imask); 2564 2565 ath_power_restore_power_state(sc); 2566 2567 return (0); 2568 } 2569 2570 static void 2571 ath_stop(struct ath_softc *sc) 2572 { 2573 struct ath_hal *ah = sc->sc_ah; 2574 2575 ATH_LOCK_ASSERT(sc); 2576 2577 /* 2578 * Wake the hardware up before fiddling with it. 2579 */ 2580 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2581 2582 if (sc->sc_running) { 2583 /* 2584 * Shutdown the hardware and driver: 2585 * reset 802.11 state machine 2586 * turn off timers 2587 * disable interrupts 2588 * turn off the radio 2589 * clear transmit machinery 2590 * clear receive machinery 2591 * drain and release tx queues 2592 * reclaim beacon resources 2593 * power down hardware 2594 * 2595 * Note that some of this work is not possible if the 2596 * hardware is gone (invalid). 2597 */ 2598 #ifdef ATH_TX99_DIAG 2599 if (sc->sc_tx99 != NULL) 2600 sc->sc_tx99->stop(sc->sc_tx99); 2601 #endif 2602 callout_stop(&sc->sc_wd_ch); 2603 sc->sc_wd_timer = 0; 2604 sc->sc_running = 0; 2605 if (!sc->sc_invalid) { 2606 if (sc->sc_softled) { 2607 callout_stop(&sc->sc_ledtimer); 2608 ath_hal_gpioset(ah, sc->sc_ledpin, 2609 !sc->sc_ledon); 2610 sc->sc_blinking = 0; 2611 } 2612 ath_hal_intrset(ah, 0); 2613 } 2614 /* XXX we should stop RX regardless of whether it's valid */ 2615 if (!sc->sc_invalid) { 2616 ath_stoprecv(sc, 1); 2617 ath_hal_phydisable(ah); 2618 } else 2619 sc->sc_rxlink = NULL; 2620 ath_draintxq(sc, ATH_RESET_DEFAULT); 2621 ath_beacon_free(sc); /* XXX not needed */ 2622 } 2623 2624 /* And now, restore the current power state */ 2625 ath_power_restore_power_state(sc); 2626 } 2627 2628 /* 2629 * Wait until all pending TX/RX has completed. 2630 * 2631 * This waits until all existing transmit, receive and interrupts 2632 * have completed. It's assumed that the caller has first 2633 * grabbed the reset lock so it doesn't try to do overlapping 2634 * chip resets. 2635 */ 2636 #define MAX_TXRX_ITERATIONS 100 2637 static void 2638 ath_txrx_stop_locked(struct ath_softc *sc) 2639 { 2640 int i = MAX_TXRX_ITERATIONS; 2641 2642 ATH_UNLOCK_ASSERT(sc); 2643 ATH_PCU_LOCK_ASSERT(sc); 2644 2645 /* 2646 * Sleep until all the pending operations have completed. 2647 * 2648 * The caller must ensure that reset has been incremented 2649 * or the pending operations may continue being queued. 2650 */ 2651 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2652 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2653 if (i <= 0) 2654 break; 2655 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2656 msecs_to_ticks(10)); 2657 i--; 2658 } 2659 2660 if (i <= 0) 2661 device_printf(sc->sc_dev, 2662 "%s: didn't finish after %d iterations\n", 2663 __func__, MAX_TXRX_ITERATIONS); 2664 } 2665 #undef MAX_TXRX_ITERATIONS 2666 2667 #if 0 2668 static void 2669 ath_txrx_stop(struct ath_softc *sc) 2670 { 2671 ATH_UNLOCK_ASSERT(sc); 2672 ATH_PCU_UNLOCK_ASSERT(sc); 2673 2674 ATH_PCU_LOCK(sc); 2675 ath_txrx_stop_locked(sc); 2676 ATH_PCU_UNLOCK(sc); 2677 } 2678 #endif 2679 2680 static void 2681 ath_txrx_start(struct ath_softc *sc) 2682 { 2683 2684 taskqueue_unblock(sc->sc_tq); 2685 } 2686 2687 /* 2688 * Grab the reset lock, and wait around until noone else 2689 * is trying to do anything with it. 2690 * 2691 * This is totally horrible but we can't hold this lock for 2692 * long enough to do TX/RX or we end up with net80211/ip stack 2693 * LORs and eventual deadlock. 2694 * 2695 * "dowait" signals whether to spin, waiting for the reset 2696 * lock count to reach 0. This should (for now) only be used 2697 * during the reset path, as the rest of the code may not 2698 * be locking-reentrant enough to behave correctly. 2699 * 2700 * Another, cleaner way should be found to serialise all of 2701 * these operations. 2702 */ 2703 #define MAX_RESET_ITERATIONS 25 2704 static int 2705 ath_reset_grablock(struct ath_softc *sc, int dowait) 2706 { 2707 int w = 0; 2708 int i = MAX_RESET_ITERATIONS; 2709 2710 ATH_PCU_LOCK_ASSERT(sc); 2711 do { 2712 if (sc->sc_inreset_cnt == 0) { 2713 w = 1; 2714 break; 2715 } 2716 if (dowait == 0) { 2717 w = 0; 2718 break; 2719 } 2720 ATH_PCU_UNLOCK(sc); 2721 /* 2722 * 1 tick is likely not enough time for long calibrations 2723 * to complete. So we should wait quite a while. 2724 */ 2725 pause("ath_reset_grablock", msecs_to_ticks(100)); 2726 i--; 2727 ATH_PCU_LOCK(sc); 2728 } while (i > 0); 2729 2730 /* 2731 * We always increment the refcounter, regardless 2732 * of whether we succeeded to get it in an exclusive 2733 * way. 2734 */ 2735 sc->sc_inreset_cnt++; 2736 2737 if (i <= 0) 2738 device_printf(sc->sc_dev, 2739 "%s: didn't finish after %d iterations\n", 2740 __func__, MAX_RESET_ITERATIONS); 2741 2742 if (w == 0) 2743 device_printf(sc->sc_dev, 2744 "%s: warning, recursive reset path!\n", 2745 __func__); 2746 2747 return w; 2748 } 2749 #undef MAX_RESET_ITERATIONS 2750 2751 /* 2752 * Reset the hardware w/o losing operational state. This is 2753 * basically a more efficient way of doing ath_stop, ath_init, 2754 * followed by state transitions to the current 802.11 2755 * operational state. Used to recover from various errors and 2756 * to reset or reload hardware state. 2757 */ 2758 int 2759 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2760 { 2761 struct ieee80211com *ic = &sc->sc_ic; 2762 struct ath_hal *ah = sc->sc_ah; 2763 HAL_STATUS status; 2764 int i; 2765 2766 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2767 2768 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2769 ATH_PCU_UNLOCK_ASSERT(sc); 2770 ATH_UNLOCK_ASSERT(sc); 2771 2772 /* Try to (stop any further TX/RX from occuring */ 2773 taskqueue_block(sc->sc_tq); 2774 2775 /* 2776 * Wake the hardware up. 2777 */ 2778 ATH_LOCK(sc); 2779 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2780 ATH_UNLOCK(sc); 2781 2782 ATH_PCU_LOCK(sc); 2783 2784 /* 2785 * Grab the reset lock before TX/RX is stopped. 2786 * 2787 * This is needed to ensure that when the TX/RX actually does finish, 2788 * no further TX/RX/reset runs in parallel with this. 2789 */ 2790 if (ath_reset_grablock(sc, 1) == 0) { 2791 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2792 __func__); 2793 } 2794 2795 /* disable interrupts */ 2796 ath_hal_intrset(ah, 0); 2797 2798 /* 2799 * Now, ensure that any in progress TX/RX completes before we 2800 * continue. 2801 */ 2802 ath_txrx_stop_locked(sc); 2803 2804 ATH_PCU_UNLOCK(sc); 2805 2806 /* 2807 * Regardless of whether we're doing a no-loss flush or 2808 * not, stop the PCU and handle what's in the RX queue. 2809 * That way frames aren't dropped which shouldn't be. 2810 */ 2811 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2812 ath_rx_flush(sc); 2813 2814 /* 2815 * Should now wait for pending TX/RX to complete 2816 * and block future ones from occuring. This needs to be 2817 * done before the TX queue is drained. 2818 */ 2819 ath_draintxq(sc, reset_type); /* stop xmit side */ 2820 2821 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2822 /* NB: indicate channel change so we do a full reset */ 2823 ath_update_chainmasks(sc, ic->ic_curchan); 2824 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2825 sc->sc_cur_rxchainmask); 2826 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2827 device_printf(sc->sc_dev, 2828 "%s: unable to reset hardware; hal status %u\n", 2829 __func__, status); 2830 sc->sc_diversity = ath_hal_getdiversity(ah); 2831 2832 ATH_RX_LOCK(sc); 2833 sc->sc_rx_stopped = 1; 2834 sc->sc_rx_resetted = 1; 2835 ATH_RX_UNLOCK(sc); 2836 2837 /* Let DFS at it in case it's a DFS channel */ 2838 ath_dfs_radar_enable(sc, ic->ic_curchan); 2839 2840 /* Let spectral at in case spectral is enabled */ 2841 ath_spectral_enable(sc, ic->ic_curchan); 2842 2843 /* 2844 * Let bluetooth coexistence at in case it's needed for this channel 2845 */ 2846 ath_btcoex_enable(sc, ic->ic_curchan); 2847 2848 /* 2849 * If we're doing TDMA, enforce the TXOP limitation for chips that 2850 * support it. 2851 */ 2852 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2853 ath_hal_setenforcetxop(sc->sc_ah, 1); 2854 else 2855 ath_hal_setenforcetxop(sc->sc_ah, 0); 2856 2857 if (ath_startrecv(sc) != 0) /* restart recv */ 2858 device_printf(sc->sc_dev, 2859 "%s: unable to start recv logic\n", __func__); 2860 /* 2861 * We may be doing a reset in response to an ioctl 2862 * that changes the channel so update any state that 2863 * might change as a result. 2864 */ 2865 ath_chan_change(sc, ic->ic_curchan); 2866 if (sc->sc_beacons) { /* restart beacons */ 2867 #ifdef IEEE80211_SUPPORT_TDMA 2868 if (sc->sc_tdma) 2869 ath_tdma_config(sc, NULL); 2870 else 2871 #endif 2872 ath_beacon_config(sc, NULL); 2873 } 2874 2875 /* 2876 * Release the reset lock and re-enable interrupts here. 2877 * If an interrupt was being processed in ath_intr(), 2878 * it would disable interrupts at this point. So we have 2879 * to atomically enable interrupts and decrement the 2880 * reset counter - this way ath_intr() doesn't end up 2881 * disabling interrupts without a corresponding enable 2882 * in the rest or channel change path. 2883 * 2884 * Grab the TX reference in case we need to transmit. 2885 * That way a parallel transmit doesn't. 2886 */ 2887 ATH_PCU_LOCK(sc); 2888 sc->sc_inreset_cnt--; 2889 sc->sc_txstart_cnt++; 2890 /* XXX only do this if sc_inreset_cnt == 0? */ 2891 ath_hal_intrset(ah, sc->sc_imask); 2892 ATH_PCU_UNLOCK(sc); 2893 2894 /* 2895 * TX and RX can be started here. If it were started with 2896 * sc_inreset_cnt > 0, the TX and RX path would abort. 2897 * Thus if this is a nested call through the reset or 2898 * channel change code, TX completion will occur but 2899 * RX completion and ath_start / ath_tx_start will not 2900 * run. 2901 */ 2902 2903 /* Restart TX/RX as needed */ 2904 ath_txrx_start(sc); 2905 2906 /* XXX TODO: we need to hold the tx refcount here! */ 2907 2908 /* Restart TX completion and pending TX */ 2909 if (reset_type == ATH_RESET_NOLOSS) { 2910 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2911 if (ATH_TXQ_SETUP(sc, i)) { 2912 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2913 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2914 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2915 2916 ATH_TX_LOCK(sc); 2917 ath_txq_sched(sc, &sc->sc_txq[i]); 2918 ATH_TX_UNLOCK(sc); 2919 } 2920 } 2921 } 2922 2923 ATH_LOCK(sc); 2924 ath_power_restore_power_state(sc); 2925 ATH_UNLOCK(sc); 2926 2927 ATH_PCU_LOCK(sc); 2928 sc->sc_txstart_cnt--; 2929 ATH_PCU_UNLOCK(sc); 2930 2931 /* Handle any frames in the TX queue */ 2932 /* 2933 * XXX should this be done by the caller, rather than 2934 * ath_reset() ? 2935 */ 2936 ath_tx_kick(sc); /* restart xmit */ 2937 return 0; 2938 } 2939 2940 static int 2941 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2942 { 2943 struct ieee80211com *ic = vap->iv_ic; 2944 struct ath_softc *sc = ic->ic_softc; 2945 struct ath_hal *ah = sc->sc_ah; 2946 2947 switch (cmd) { 2948 case IEEE80211_IOC_TXPOWER: 2949 /* 2950 * If per-packet TPC is enabled, then we have nothing 2951 * to do; otherwise we need to force the global limit. 2952 * All this can happen directly; no need to reset. 2953 */ 2954 if (!ath_hal_gettpc(ah)) 2955 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2956 return 0; 2957 } 2958 /* XXX? Full or NOLOSS? */ 2959 return ath_reset(sc, ATH_RESET_FULL); 2960 } 2961 2962 struct ath_buf * 2963 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2964 { 2965 struct ath_buf *bf; 2966 2967 ATH_TXBUF_LOCK_ASSERT(sc); 2968 2969 if (btype == ATH_BUFTYPE_MGMT) 2970 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2971 else 2972 bf = TAILQ_FIRST(&sc->sc_txbuf); 2973 2974 if (bf == NULL) { 2975 sc->sc_stats.ast_tx_getnobuf++; 2976 } else { 2977 if (bf->bf_flags & ATH_BUF_BUSY) { 2978 sc->sc_stats.ast_tx_getbusybuf++; 2979 bf = NULL; 2980 } 2981 } 2982 2983 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2984 if (btype == ATH_BUFTYPE_MGMT) 2985 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2986 else { 2987 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2988 sc->sc_txbuf_cnt--; 2989 2990 /* 2991 * This shuldn't happen; however just to be 2992 * safe print a warning and fudge the txbuf 2993 * count. 2994 */ 2995 if (sc->sc_txbuf_cnt < 0) { 2996 device_printf(sc->sc_dev, 2997 "%s: sc_txbuf_cnt < 0?\n", 2998 __func__); 2999 sc->sc_txbuf_cnt = 0; 3000 } 3001 } 3002 } else 3003 bf = NULL; 3004 3005 if (bf == NULL) { 3006 /* XXX should check which list, mgmt or otherwise */ 3007 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3008 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3009 "out of xmit buffers" : "xmit buffer busy"); 3010 return NULL; 3011 } 3012 3013 /* XXX TODO: should do this at buffer list initialisation */ 3014 /* XXX (then, ensure the buffer has the right flag set) */ 3015 bf->bf_flags = 0; 3016 if (btype == ATH_BUFTYPE_MGMT) 3017 bf->bf_flags |= ATH_BUF_MGMT; 3018 else 3019 bf->bf_flags &= (~ATH_BUF_MGMT); 3020 3021 /* Valid bf here; clear some basic fields */ 3022 bf->bf_next = NULL; /* XXX just to be sure */ 3023 bf->bf_last = NULL; /* XXX again, just to be sure */ 3024 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3025 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3026 3027 /* 3028 * Track the descriptor ID only if doing EDMA 3029 */ 3030 if (sc->sc_isedma) { 3031 bf->bf_descid = sc->sc_txbuf_descid; 3032 sc->sc_txbuf_descid++; 3033 } 3034 3035 return bf; 3036 } 3037 3038 /* 3039 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3040 * can't be thrown back on the queue as they could still be 3041 * in use by the hardware. 3042 * 3043 * This duplicates the buffer, or returns NULL. 3044 * 3045 * The descriptor is also copied but the link pointers and 3046 * the DMA segments aren't copied; this frame should thus 3047 * be again passed through the descriptor setup/chain routines 3048 * so the link is correct. 3049 * 3050 * The caller must free the buffer using ath_freebuf(). 3051 */ 3052 struct ath_buf * 3053 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3054 { 3055 struct ath_buf *tbf; 3056 3057 tbf = ath_getbuf(sc, 3058 (bf->bf_flags & ATH_BUF_MGMT) ? 3059 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3060 if (tbf == NULL) 3061 return NULL; /* XXX failure? Why? */ 3062 3063 /* Copy basics */ 3064 tbf->bf_next = NULL; 3065 tbf->bf_nseg = bf->bf_nseg; 3066 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3067 tbf->bf_status = bf->bf_status; 3068 tbf->bf_m = bf->bf_m; 3069 tbf->bf_node = bf->bf_node; 3070 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3071 /* will be setup by the chain/setup function */ 3072 tbf->bf_lastds = NULL; 3073 /* for now, last == self */ 3074 tbf->bf_last = tbf; 3075 tbf->bf_comp = bf->bf_comp; 3076 3077 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3078 3079 /* The caller has to re-init the descriptor + links */ 3080 3081 /* 3082 * Free the DMA mapping here, before we NULL the mbuf. 3083 * We must only call bus_dmamap_unload() once per mbuf chain 3084 * or behaviour is undefined. 3085 */ 3086 if (bf->bf_m != NULL) { 3087 /* 3088 * XXX is this POSTWRITE call required? 3089 */ 3090 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3091 BUS_DMASYNC_POSTWRITE); 3092 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3093 } 3094 3095 bf->bf_m = NULL; 3096 bf->bf_node = NULL; 3097 3098 /* Copy state */ 3099 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3100 3101 return tbf; 3102 } 3103 3104 struct ath_buf * 3105 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3106 { 3107 struct ath_buf *bf; 3108 3109 ATH_TXBUF_LOCK(sc); 3110 bf = _ath_getbuf_locked(sc, btype); 3111 /* 3112 * If a mgmt buffer was requested but we're out of those, 3113 * try requesting a normal one. 3114 */ 3115 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3116 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3117 ATH_TXBUF_UNLOCK(sc); 3118 if (bf == NULL) { 3119 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3120 sc->sc_stats.ast_tx_qstop++; 3121 } 3122 return bf; 3123 } 3124 3125 /* 3126 * Transmit a single frame. 3127 * 3128 * net80211 will free the node reference if the transmit 3129 * fails, so don't free the node reference here. 3130 */ 3131 static int 3132 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3133 { 3134 struct ath_softc *sc = ic->ic_softc; 3135 struct ieee80211_node *ni; 3136 struct mbuf *next; 3137 struct ath_buf *bf; 3138 ath_bufhead frags; 3139 int retval = 0; 3140 3141 /* 3142 * Tell the reset path that we're currently transmitting. 3143 */ 3144 ATH_PCU_LOCK(sc); 3145 if (sc->sc_inreset_cnt > 0) { 3146 DPRINTF(sc, ATH_DEBUG_XMIT, 3147 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3148 ATH_PCU_UNLOCK(sc); 3149 sc->sc_stats.ast_tx_qstop++; 3150 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3151 return (ENOBUFS); /* XXX should be EINVAL or? */ 3152 } 3153 sc->sc_txstart_cnt++; 3154 ATH_PCU_UNLOCK(sc); 3155 3156 /* Wake the hardware up already */ 3157 ATH_LOCK(sc); 3158 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3159 ATH_UNLOCK(sc); 3160 3161 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3162 /* 3163 * Grab the TX lock - it's ok to do this here; we haven't 3164 * yet started transmitting. 3165 */ 3166 ATH_TX_LOCK(sc); 3167 3168 /* 3169 * Node reference, if there's one. 3170 */ 3171 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3172 3173 /* 3174 * Enforce how deep a node queue can get. 3175 * 3176 * XXX it would be nicer if we kept an mbuf queue per 3177 * node and only whacked them into ath_bufs when we 3178 * are ready to schedule some traffic from them. 3179 * .. that may come later. 3180 * 3181 * XXX we should also track the per-node hardware queue 3182 * depth so it is easy to limit the _SUM_ of the swq and 3183 * hwq frames. Since we only schedule two HWQ frames 3184 * at a time, this should be OK for now. 3185 */ 3186 if ((!(m->m_flags & M_EAPOL)) && 3187 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3188 sc->sc_stats.ast_tx_nodeq_overflow++; 3189 retval = ENOBUFS; 3190 goto finish; 3191 } 3192 3193 /* 3194 * Check how many TX buffers are available. 3195 * 3196 * If this is for non-EAPOL traffic, just leave some 3197 * space free in order for buffer cloning and raw 3198 * frame transmission to occur. 3199 * 3200 * If it's for EAPOL traffic, ignore this for now. 3201 * Management traffic will be sent via the raw transmit 3202 * method which bypasses this check. 3203 * 3204 * This is needed to ensure that EAPOL frames during 3205 * (re) keying have a chance to go out. 3206 * 3207 * See kern/138379 for more information. 3208 */ 3209 if ((!(m->m_flags & M_EAPOL)) && 3210 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3211 sc->sc_stats.ast_tx_nobuf++; 3212 retval = ENOBUFS; 3213 goto finish; 3214 } 3215 3216 /* 3217 * Grab a TX buffer and associated resources. 3218 * 3219 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3220 * That way even with temporary buffer exhaustion due to 3221 * the data path doesn't leave us without the ability 3222 * to transmit management frames. 3223 * 3224 * Otherwise allocate a normal buffer. 3225 */ 3226 if (m->m_flags & M_EAPOL) 3227 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3228 else 3229 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3230 3231 if (bf == NULL) { 3232 /* 3233 * If we failed to allocate a buffer, fail. 3234 * 3235 * We shouldn't fail normally, due to the check 3236 * above. 3237 */ 3238 sc->sc_stats.ast_tx_nobuf++; 3239 retval = ENOBUFS; 3240 goto finish; 3241 } 3242 3243 /* 3244 * At this point we have a buffer; so we need to free it 3245 * if we hit any error conditions. 3246 */ 3247 3248 /* 3249 * Check for fragmentation. If this frame 3250 * has been broken up verify we have enough 3251 * buffers to send all the fragments so all 3252 * go out or none... 3253 */ 3254 TAILQ_INIT(&frags); 3255 if ((m->m_flags & M_FRAG) && 3256 !ath_txfrag_setup(sc, &frags, m, ni)) { 3257 DPRINTF(sc, ATH_DEBUG_XMIT, 3258 "%s: out of txfrag buffers\n", __func__); 3259 sc->sc_stats.ast_tx_nofrag++; 3260 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3261 /* 3262 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3263 * we shouldn't free it but return back. 3264 */ 3265 ieee80211_free_mbuf(m); 3266 m = NULL; 3267 goto bad; 3268 } 3269 3270 /* 3271 * At this point if we have any TX fragments, then we will 3272 * have bumped the node reference once for each of those. 3273 */ 3274 3275 /* 3276 * XXX Is there anything actually _enforcing_ that the 3277 * fragments are being transmitted in one hit, rather than 3278 * being interleaved with other transmissions on that 3279 * hardware queue? 3280 * 3281 * The ATH TX output lock is the only thing serialising this 3282 * right now. 3283 */ 3284 3285 /* 3286 * Calculate the "next fragment" length field in ath_buf 3287 * in order to let the transmit path know enough about 3288 * what to next write to the hardware. 3289 */ 3290 if (m->m_flags & M_FRAG) { 3291 struct ath_buf *fbf = bf; 3292 struct ath_buf *n_fbf = NULL; 3293 struct mbuf *fm = m->m_nextpkt; 3294 3295 /* 3296 * We need to walk the list of fragments and set 3297 * the next size to the following buffer. 3298 * However, the first buffer isn't in the frag 3299 * list, so we have to do some gymnastics here. 3300 */ 3301 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3302 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3303 fbf = n_fbf; 3304 fm = fm->m_nextpkt; 3305 } 3306 } 3307 3308 nextfrag: 3309 /* 3310 * Pass the frame to the h/w for transmission. 3311 * Fragmented frames have each frag chained together 3312 * with m_nextpkt. We know there are sufficient ath_buf's 3313 * to send all the frags because of work done by 3314 * ath_txfrag_setup. We leave m_nextpkt set while 3315 * calling ath_tx_start so it can use it to extend the 3316 * the tx duration to cover the subsequent frag and 3317 * so it can reclaim all the mbufs in case of an error; 3318 * ath_tx_start clears m_nextpkt once it commits to 3319 * handing the frame to the hardware. 3320 * 3321 * Note: if this fails, then the mbufs are freed but 3322 * not the node reference. 3323 */ 3324 next = m->m_nextpkt; 3325 if (ath_tx_start(sc, ni, bf, m)) { 3326 bad: 3327 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3328 reclaim: 3329 bf->bf_m = NULL; 3330 bf->bf_node = NULL; 3331 ATH_TXBUF_LOCK(sc); 3332 ath_returnbuf_head(sc, bf); 3333 /* 3334 * Free the rest of the node references and 3335 * buffers for the fragment list. 3336 */ 3337 ath_txfrag_cleanup(sc, &frags, ni); 3338 ATH_TXBUF_UNLOCK(sc); 3339 retval = ENOBUFS; 3340 goto finish; 3341 } 3342 3343 /* 3344 * Check here if the node is in power save state. 3345 */ 3346 ath_tx_update_tim(sc, ni, 1); 3347 3348 if (next != NULL) { 3349 /* 3350 * Beware of state changing between frags. 3351 * XXX check sta power-save state? 3352 */ 3353 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3354 DPRINTF(sc, ATH_DEBUG_XMIT, 3355 "%s: flush fragmented packet, state %s\n", 3356 __func__, 3357 ieee80211_state_name[ni->ni_vap->iv_state]); 3358 /* XXX dmamap */ 3359 ieee80211_free_mbuf(next); 3360 goto reclaim; 3361 } 3362 m = next; 3363 bf = TAILQ_FIRST(&frags); 3364 KASSERT(bf != NULL, ("no buf for txfrag")); 3365 TAILQ_REMOVE(&frags, bf, bf_list); 3366 goto nextfrag; 3367 } 3368 3369 /* 3370 * Bump watchdog timer. 3371 */ 3372 sc->sc_wd_timer = 5; 3373 3374 finish: 3375 ATH_TX_UNLOCK(sc); 3376 3377 /* 3378 * Finished transmitting! 3379 */ 3380 ATH_PCU_LOCK(sc); 3381 sc->sc_txstart_cnt--; 3382 ATH_PCU_UNLOCK(sc); 3383 3384 /* Sleep the hardware if required */ 3385 ATH_LOCK(sc); 3386 ath_power_restore_power_state(sc); 3387 ATH_UNLOCK(sc); 3388 3389 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3390 3391 return (retval); 3392 } 3393 3394 static int 3395 ath_media_change(struct ifnet *ifp) 3396 { 3397 int error = ieee80211_media_change(ifp); 3398 /* NB: only the fixed rate can change and that doesn't need a reset */ 3399 return (error == ENETRESET ? 0 : error); 3400 } 3401 3402 /* 3403 * Block/unblock tx+rx processing while a key change is done. 3404 * We assume the caller serializes key management operations 3405 * so we only need to worry about synchronization with other 3406 * uses that originate in the driver. 3407 */ 3408 static void 3409 ath_key_update_begin(struct ieee80211vap *vap) 3410 { 3411 struct ath_softc *sc = vap->iv_ic->ic_softc; 3412 3413 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3414 taskqueue_block(sc->sc_tq); 3415 } 3416 3417 static void 3418 ath_key_update_end(struct ieee80211vap *vap) 3419 { 3420 struct ath_softc *sc = vap->iv_ic->ic_softc; 3421 3422 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3423 taskqueue_unblock(sc->sc_tq); 3424 } 3425 3426 static void 3427 ath_update_promisc(struct ieee80211com *ic) 3428 { 3429 struct ath_softc *sc = ic->ic_softc; 3430 u_int32_t rfilt; 3431 3432 /* configure rx filter */ 3433 ATH_LOCK(sc); 3434 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3435 rfilt = ath_calcrxfilter(sc); 3436 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3437 ath_power_restore_power_state(sc); 3438 ATH_UNLOCK(sc); 3439 3440 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3441 } 3442 3443 /* 3444 * Driver-internal mcast update call. 3445 * 3446 * Assumes the hardware is already awake. 3447 */ 3448 static void 3449 ath_update_mcast_hw(struct ath_softc *sc) 3450 { 3451 struct ieee80211com *ic = &sc->sc_ic; 3452 u_int32_t mfilt[2]; 3453 3454 /* calculate and install multicast filter */ 3455 if (ic->ic_allmulti == 0) { 3456 struct ieee80211vap *vap; 3457 struct ifnet *ifp; 3458 struct ifmultiaddr *ifma; 3459 3460 /* 3461 * Merge multicast addresses to form the hardware filter. 3462 */ 3463 mfilt[0] = mfilt[1] = 0; 3464 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3465 ifp = vap->iv_ifp; 3466 if_maddr_rlock(ifp); 3467 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3468 caddr_t dl; 3469 uint32_t val; 3470 uint8_t pos; 3471 3472 /* calculate XOR of eight 6bit values */ 3473 dl = LLADDR((struct sockaddr_dl *) 3474 ifma->ifma_addr); 3475 val = LE_READ_4(dl + 0); 3476 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3477 val; 3478 val = LE_READ_4(dl + 3); 3479 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3480 val; 3481 pos &= 0x3f; 3482 mfilt[pos / 32] |= (1 << (pos % 32)); 3483 } 3484 if_maddr_runlock(ifp); 3485 } 3486 } else 3487 mfilt[0] = mfilt[1] = ~0; 3488 3489 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3490 3491 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3492 __func__, mfilt[0], mfilt[1]); 3493 } 3494 3495 /* 3496 * Called from the net80211 layer - force the hardware 3497 * awake before operating. 3498 */ 3499 static void 3500 ath_update_mcast(struct ieee80211com *ic) 3501 { 3502 struct ath_softc *sc = ic->ic_softc; 3503 3504 ATH_LOCK(sc); 3505 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3506 ATH_UNLOCK(sc); 3507 3508 ath_update_mcast_hw(sc); 3509 3510 ATH_LOCK(sc); 3511 ath_power_restore_power_state(sc); 3512 ATH_UNLOCK(sc); 3513 } 3514 3515 void 3516 ath_mode_init(struct ath_softc *sc) 3517 { 3518 struct ieee80211com *ic = &sc->sc_ic; 3519 struct ath_hal *ah = sc->sc_ah; 3520 u_int32_t rfilt; 3521 3522 /* configure rx filter */ 3523 rfilt = ath_calcrxfilter(sc); 3524 ath_hal_setrxfilter(ah, rfilt); 3525 3526 /* configure operational mode */ 3527 ath_hal_setopmode(ah); 3528 3529 /* handle any link-level address change */ 3530 ath_hal_setmac(ah, ic->ic_macaddr); 3531 3532 /* calculate and install multicast filter */ 3533 ath_update_mcast_hw(sc); 3534 } 3535 3536 /* 3537 * Set the slot time based on the current setting. 3538 */ 3539 void 3540 ath_setslottime(struct ath_softc *sc) 3541 { 3542 struct ieee80211com *ic = &sc->sc_ic; 3543 struct ath_hal *ah = sc->sc_ah; 3544 u_int usec; 3545 3546 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3547 usec = 13; 3548 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3549 usec = 21; 3550 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3551 /* honor short/long slot time only in 11g */ 3552 /* XXX shouldn't honor on pure g or turbo g channel */ 3553 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3554 usec = HAL_SLOT_TIME_9; 3555 else 3556 usec = HAL_SLOT_TIME_20; 3557 } else 3558 usec = HAL_SLOT_TIME_9; 3559 3560 DPRINTF(sc, ATH_DEBUG_RESET, 3561 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3562 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3563 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3564 3565 /* Wake up the hardware first before updating the slot time */ 3566 ATH_LOCK(sc); 3567 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3568 ath_hal_setslottime(ah, usec); 3569 ath_power_restore_power_state(sc); 3570 sc->sc_updateslot = OK; 3571 ATH_UNLOCK(sc); 3572 } 3573 3574 /* 3575 * Callback from the 802.11 layer to update the 3576 * slot time based on the current setting. 3577 */ 3578 static void 3579 ath_updateslot(struct ieee80211com *ic) 3580 { 3581 struct ath_softc *sc = ic->ic_softc; 3582 3583 /* 3584 * When not coordinating the BSS, change the hardware 3585 * immediately. For other operation we defer the change 3586 * until beacon updates have propagated to the stations. 3587 * 3588 * XXX sc_updateslot isn't changed behind a lock? 3589 */ 3590 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3591 ic->ic_opmode == IEEE80211_M_MBSS) 3592 sc->sc_updateslot = UPDATE; 3593 else 3594 ath_setslottime(sc); 3595 } 3596 3597 /* 3598 * Append the contents of src to dst; both queues 3599 * are assumed to be locked. 3600 */ 3601 void 3602 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3603 { 3604 3605 ATH_TXQ_LOCK_ASSERT(src); 3606 ATH_TXQ_LOCK_ASSERT(dst); 3607 3608 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3609 dst->axq_link = src->axq_link; 3610 src->axq_link = NULL; 3611 dst->axq_depth += src->axq_depth; 3612 dst->axq_aggr_depth += src->axq_aggr_depth; 3613 src->axq_depth = 0; 3614 src->axq_aggr_depth = 0; 3615 } 3616 3617 /* 3618 * Reset the hardware, with no loss. 3619 * 3620 * This can't be used for a general case reset. 3621 */ 3622 static void 3623 ath_reset_proc(void *arg, int pending) 3624 { 3625 struct ath_softc *sc = arg; 3626 3627 #if 0 3628 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3629 #endif 3630 ath_reset(sc, ATH_RESET_NOLOSS); 3631 } 3632 3633 /* 3634 * Reset the hardware after detecting beacons have stopped. 3635 */ 3636 static void 3637 ath_bstuck_proc(void *arg, int pending) 3638 { 3639 struct ath_softc *sc = arg; 3640 uint32_t hangs = 0; 3641 3642 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3643 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3644 3645 #ifdef ATH_DEBUG_ALQ 3646 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3647 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3648 #endif 3649 3650 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3651 sc->sc_bmisscount); 3652 sc->sc_stats.ast_bstuck++; 3653 /* 3654 * This assumes that there's no simultaneous channel mode change 3655 * occuring. 3656 */ 3657 ath_reset(sc, ATH_RESET_NOLOSS); 3658 } 3659 3660 static void 3661 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3662 { 3663 bus_addr_t *paddr = (bus_addr_t*) arg; 3664 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3665 *paddr = segs->ds_addr; 3666 } 3667 3668 /* 3669 * Allocate the descriptors and appropriate DMA tag/setup. 3670 * 3671 * For some situations (eg EDMA TX completion), there isn't a requirement 3672 * for the ath_buf entries to be allocated. 3673 */ 3674 int 3675 ath_descdma_alloc_desc(struct ath_softc *sc, 3676 struct ath_descdma *dd, ath_bufhead *head, 3677 const char *name, int ds_size, int ndesc) 3678 { 3679 #define DS2PHYS(_dd, _ds) \ 3680 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3681 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3682 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3683 int error; 3684 3685 dd->dd_descsize = ds_size; 3686 3687 DPRINTF(sc, ATH_DEBUG_RESET, 3688 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3689 __func__, name, ndesc, dd->dd_descsize); 3690 3691 dd->dd_name = name; 3692 dd->dd_desc_len = dd->dd_descsize * ndesc; 3693 3694 /* 3695 * Merlin work-around: 3696 * Descriptors that cross the 4KB boundary can't be used. 3697 * Assume one skipped descriptor per 4KB page. 3698 */ 3699 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3700 int numpages = dd->dd_desc_len / 4096; 3701 dd->dd_desc_len += ds_size * numpages; 3702 } 3703 3704 /* 3705 * Setup DMA descriptor area. 3706 * 3707 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3708 * buffers for the descriptors themselves. 3709 */ 3710 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3711 PAGE_SIZE, 0, /* alignment, bounds */ 3712 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3713 BUS_SPACE_MAXADDR, /* highaddr */ 3714 NULL, NULL, /* filter, filterarg */ 3715 dd->dd_desc_len, /* maxsize */ 3716 1, /* nsegments */ 3717 dd->dd_desc_len, /* maxsegsize */ 3718 0, /* flags */ 3719 NULL, /* lockfunc */ 3720 NULL, /* lockarg */ 3721 &dd->dd_dmat); 3722 if (error != 0) { 3723 device_printf(sc->sc_dev, 3724 "cannot allocate %s DMA tag\n", dd->dd_name); 3725 return error; 3726 } 3727 3728 /* allocate descriptors */ 3729 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3730 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3731 &dd->dd_dmamap); 3732 if (error != 0) { 3733 device_printf(sc->sc_dev, 3734 "unable to alloc memory for %u %s descriptors, error %u\n", 3735 ndesc, dd->dd_name, error); 3736 goto fail1; 3737 } 3738 3739 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3740 dd->dd_desc, dd->dd_desc_len, 3741 ath_load_cb, &dd->dd_desc_paddr, 3742 BUS_DMA_NOWAIT); 3743 if (error != 0) { 3744 device_printf(sc->sc_dev, 3745 "unable to map %s descriptors, error %u\n", 3746 dd->dd_name, error); 3747 goto fail2; 3748 } 3749 3750 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3751 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3752 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3753 /*XXX*/ (u_long) dd->dd_desc_len); 3754 3755 return (0); 3756 3757 fail2: 3758 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3759 fail1: 3760 bus_dma_tag_destroy(dd->dd_dmat); 3761 memset(dd, 0, sizeof(*dd)); 3762 return error; 3763 #undef DS2PHYS 3764 #undef ATH_DESC_4KB_BOUND_CHECK 3765 } 3766 3767 int 3768 ath_descdma_setup(struct ath_softc *sc, 3769 struct ath_descdma *dd, ath_bufhead *head, 3770 const char *name, int ds_size, int nbuf, int ndesc) 3771 { 3772 #define DS2PHYS(_dd, _ds) \ 3773 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3774 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3775 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3776 uint8_t *ds; 3777 struct ath_buf *bf; 3778 int i, bsize, error; 3779 3780 /* Allocate descriptors */ 3781 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3782 nbuf * ndesc); 3783 3784 /* Assume any errors during allocation were dealt with */ 3785 if (error != 0) { 3786 return (error); 3787 } 3788 3789 ds = (uint8_t *) dd->dd_desc; 3790 3791 /* allocate rx buffers */ 3792 bsize = sizeof(struct ath_buf) * nbuf; 3793 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3794 if (bf == NULL) { 3795 device_printf(sc->sc_dev, 3796 "malloc of %s buffers failed, size %u\n", 3797 dd->dd_name, bsize); 3798 goto fail3; 3799 } 3800 dd->dd_bufptr = bf; 3801 3802 TAILQ_INIT(head); 3803 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3804 bf->bf_desc = (struct ath_desc *) ds; 3805 bf->bf_daddr = DS2PHYS(dd, ds); 3806 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3807 /* 3808 * Merlin WAR: Skip descriptor addresses which 3809 * cause 4KB boundary crossing along any point 3810 * in the descriptor. 3811 */ 3812 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3813 dd->dd_descsize)) { 3814 /* Start at the next page */ 3815 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3816 bf->bf_desc = (struct ath_desc *) ds; 3817 bf->bf_daddr = DS2PHYS(dd, ds); 3818 } 3819 } 3820 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3821 &bf->bf_dmamap); 3822 if (error != 0) { 3823 device_printf(sc->sc_dev, "unable to create dmamap " 3824 "for %s buffer %u, error %u\n", 3825 dd->dd_name, i, error); 3826 ath_descdma_cleanup(sc, dd, head); 3827 return error; 3828 } 3829 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3830 TAILQ_INSERT_TAIL(head, bf, bf_list); 3831 } 3832 3833 /* 3834 * XXX TODO: ensure that ds doesn't overflow the descriptor 3835 * allocation otherwise weird stuff will occur and crash your 3836 * machine. 3837 */ 3838 return 0; 3839 /* XXX this should likely just call ath_descdma_cleanup() */ 3840 fail3: 3841 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3842 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3843 bus_dma_tag_destroy(dd->dd_dmat); 3844 memset(dd, 0, sizeof(*dd)); 3845 return error; 3846 #undef DS2PHYS 3847 #undef ATH_DESC_4KB_BOUND_CHECK 3848 } 3849 3850 /* 3851 * Allocate ath_buf entries but no descriptor contents. 3852 * 3853 * This is for RX EDMA where the descriptors are the header part of 3854 * the RX buffer. 3855 */ 3856 int 3857 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3858 struct ath_descdma *dd, ath_bufhead *head, 3859 const char *name, int nbuf, int rx_status_len) 3860 { 3861 struct ath_buf *bf; 3862 int i, bsize, error; 3863 3864 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3865 __func__, name, nbuf); 3866 3867 dd->dd_name = name; 3868 /* 3869 * This is (mostly) purely for show. We're not allocating any actual 3870 * descriptors here as EDMA RX has the descriptor be part 3871 * of the RX buffer. 3872 * 3873 * However, dd_desc_len is used by ath_descdma_free() to determine 3874 * whether we have already freed this DMA mapping. 3875 */ 3876 dd->dd_desc_len = rx_status_len * nbuf; 3877 dd->dd_descsize = rx_status_len; 3878 3879 /* allocate rx buffers */ 3880 bsize = sizeof(struct ath_buf) * nbuf; 3881 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3882 if (bf == NULL) { 3883 device_printf(sc->sc_dev, 3884 "malloc of %s buffers failed, size %u\n", 3885 dd->dd_name, bsize); 3886 error = ENOMEM; 3887 goto fail3; 3888 } 3889 dd->dd_bufptr = bf; 3890 3891 TAILQ_INIT(head); 3892 for (i = 0; i < nbuf; i++, bf++) { 3893 bf->bf_desc = NULL; 3894 bf->bf_daddr = 0; 3895 bf->bf_lastds = NULL; /* Just an initial value */ 3896 3897 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3898 &bf->bf_dmamap); 3899 if (error != 0) { 3900 device_printf(sc->sc_dev, "unable to create dmamap " 3901 "for %s buffer %u, error %u\n", 3902 dd->dd_name, i, error); 3903 ath_descdma_cleanup(sc, dd, head); 3904 return error; 3905 } 3906 TAILQ_INSERT_TAIL(head, bf, bf_list); 3907 } 3908 return 0; 3909 fail3: 3910 memset(dd, 0, sizeof(*dd)); 3911 return error; 3912 } 3913 3914 void 3915 ath_descdma_cleanup(struct ath_softc *sc, 3916 struct ath_descdma *dd, ath_bufhead *head) 3917 { 3918 struct ath_buf *bf; 3919 struct ieee80211_node *ni; 3920 int do_warning = 0; 3921 3922 if (dd->dd_dmamap != 0) { 3923 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3924 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3925 bus_dma_tag_destroy(dd->dd_dmat); 3926 } 3927 3928 if (head != NULL) { 3929 TAILQ_FOREACH(bf, head, bf_list) { 3930 if (bf->bf_m) { 3931 /* 3932 * XXX warn if there's buffers here. 3933 * XXX it should have been freed by the 3934 * owner! 3935 */ 3936 3937 if (do_warning == 0) { 3938 do_warning = 1; 3939 device_printf(sc->sc_dev, 3940 "%s: %s: mbuf should've been" 3941 " unmapped/freed!\n", 3942 __func__, 3943 dd->dd_name); 3944 } 3945 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3946 BUS_DMASYNC_POSTREAD); 3947 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3948 m_freem(bf->bf_m); 3949 bf->bf_m = NULL; 3950 } 3951 if (bf->bf_dmamap != NULL) { 3952 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3953 bf->bf_dmamap = NULL; 3954 } 3955 ni = bf->bf_node; 3956 bf->bf_node = NULL; 3957 if (ni != NULL) { 3958 /* 3959 * Reclaim node reference. 3960 */ 3961 ieee80211_free_node(ni); 3962 } 3963 } 3964 } 3965 3966 if (head != NULL) 3967 TAILQ_INIT(head); 3968 3969 if (dd->dd_bufptr != NULL) 3970 free(dd->dd_bufptr, M_ATHDEV); 3971 memset(dd, 0, sizeof(*dd)); 3972 } 3973 3974 static int 3975 ath_desc_alloc(struct ath_softc *sc) 3976 { 3977 int error; 3978 3979 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3980 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3981 if (error != 0) { 3982 return error; 3983 } 3984 sc->sc_txbuf_cnt = ath_txbuf; 3985 3986 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3987 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3988 ATH_TXDESC); 3989 if (error != 0) { 3990 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3991 return error; 3992 } 3993 3994 /* 3995 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3996 * flag doesn't have to be set in ath_getbuf_locked(). 3997 */ 3998 3999 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 4000 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 4001 if (error != 0) { 4002 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4003 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 4004 &sc->sc_txbuf_mgmt); 4005 return error; 4006 } 4007 return 0; 4008 } 4009 4010 static void 4011 ath_desc_free(struct ath_softc *sc) 4012 { 4013 4014 if (sc->sc_bdma.dd_desc_len != 0) 4015 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 4016 if (sc->sc_txdma.dd_desc_len != 0) 4017 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4018 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 4019 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 4020 &sc->sc_txbuf_mgmt); 4021 } 4022 4023 static struct ieee80211_node * 4024 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 4025 { 4026 struct ieee80211com *ic = vap->iv_ic; 4027 struct ath_softc *sc = ic->ic_softc; 4028 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 4029 struct ath_node *an; 4030 4031 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 4032 if (an == NULL) { 4033 /* XXX stat+msg */ 4034 return NULL; 4035 } 4036 ath_rate_node_init(sc, an); 4037 4038 /* Setup the mutex - there's no associd yet so set the name to NULL */ 4039 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 4040 device_get_nameunit(sc->sc_dev), an); 4041 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 4042 4043 /* XXX setup ath_tid */ 4044 ath_tx_tid_init(sc, an); 4045 4046 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 4047 return &an->an_node; 4048 } 4049 4050 static void 4051 ath_node_cleanup(struct ieee80211_node *ni) 4052 { 4053 struct ieee80211com *ic = ni->ni_ic; 4054 struct ath_softc *sc = ic->ic_softc; 4055 4056 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4057 ni->ni_macaddr, ":", ATH_NODE(ni)); 4058 4059 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 4060 ath_tx_node_flush(sc, ATH_NODE(ni)); 4061 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 4062 sc->sc_node_cleanup(ni); 4063 } 4064 4065 static void 4066 ath_node_free(struct ieee80211_node *ni) 4067 { 4068 struct ieee80211com *ic = ni->ni_ic; 4069 struct ath_softc *sc = ic->ic_softc; 4070 4071 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4072 ni->ni_macaddr, ":", ATH_NODE(ni)); 4073 mtx_destroy(&ATH_NODE(ni)->an_mtx); 4074 sc->sc_node_free(ni); 4075 } 4076 4077 static void 4078 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 4079 { 4080 struct ieee80211com *ic = ni->ni_ic; 4081 struct ath_softc *sc = ic->ic_softc; 4082 struct ath_hal *ah = sc->sc_ah; 4083 4084 *rssi = ic->ic_node_getrssi(ni); 4085 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 4086 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 4087 else 4088 *noise = -95; /* nominally correct */ 4089 } 4090 4091 /* 4092 * Set the default antenna. 4093 */ 4094 void 4095 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 4096 { 4097 struct ath_hal *ah = sc->sc_ah; 4098 4099 /* XXX block beacon interrupts */ 4100 ath_hal_setdefantenna(ah, antenna); 4101 if (sc->sc_defant != antenna) 4102 sc->sc_stats.ast_ant_defswitch++; 4103 sc->sc_defant = antenna; 4104 sc->sc_rxotherant = 0; 4105 } 4106 4107 static void 4108 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4109 { 4110 txq->axq_qnum = qnum; 4111 txq->axq_ac = 0; 4112 txq->axq_depth = 0; 4113 txq->axq_aggr_depth = 0; 4114 txq->axq_intrcnt = 0; 4115 txq->axq_link = NULL; 4116 txq->axq_softc = sc; 4117 TAILQ_INIT(&txq->axq_q); 4118 TAILQ_INIT(&txq->axq_tidq); 4119 TAILQ_INIT(&txq->fifo.axq_q); 4120 ATH_TXQ_LOCK_INIT(sc, txq); 4121 } 4122 4123 /* 4124 * Setup a h/w transmit queue. 4125 */ 4126 static struct ath_txq * 4127 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4128 { 4129 struct ath_hal *ah = sc->sc_ah; 4130 HAL_TXQ_INFO qi; 4131 int qnum; 4132 4133 memset(&qi, 0, sizeof(qi)); 4134 qi.tqi_subtype = subtype; 4135 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4136 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4137 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4138 /* 4139 * Enable interrupts only for EOL and DESC conditions. 4140 * We mark tx descriptors to receive a DESC interrupt 4141 * when a tx queue gets deep; otherwise waiting for the 4142 * EOL to reap descriptors. Note that this is done to 4143 * reduce interrupt load and this only defers reaping 4144 * descriptors, never transmitting frames. Aside from 4145 * reducing interrupts this also permits more concurrency. 4146 * The only potential downside is if the tx queue backs 4147 * up in which case the top half of the kernel may backup 4148 * due to a lack of tx descriptors. 4149 */ 4150 if (sc->sc_isedma) 4151 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4152 HAL_TXQ_TXOKINT_ENABLE; 4153 else 4154 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4155 HAL_TXQ_TXDESCINT_ENABLE; 4156 4157 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4158 if (qnum == -1) { 4159 /* 4160 * NB: don't print a message, this happens 4161 * normally on parts with too few tx queues 4162 */ 4163 return NULL; 4164 } 4165 if (qnum >= nitems(sc->sc_txq)) { 4166 device_printf(sc->sc_dev, 4167 "hal qnum %u out of range, max %zu!\n", 4168 qnum, nitems(sc->sc_txq)); 4169 ath_hal_releasetxqueue(ah, qnum); 4170 return NULL; 4171 } 4172 if (!ATH_TXQ_SETUP(sc, qnum)) { 4173 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4174 sc->sc_txqsetup |= 1<<qnum; 4175 } 4176 return &sc->sc_txq[qnum]; 4177 } 4178 4179 /* 4180 * Setup a hardware data transmit queue for the specified 4181 * access control. The hal may not support all requested 4182 * queues in which case it will return a reference to a 4183 * previously setup queue. We record the mapping from ac's 4184 * to h/w queues for use by ath_tx_start and also track 4185 * the set of h/w queues being used to optimize work in the 4186 * transmit interrupt handler and related routines. 4187 */ 4188 static int 4189 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4190 { 4191 struct ath_txq *txq; 4192 4193 if (ac >= nitems(sc->sc_ac2q)) { 4194 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4195 ac, nitems(sc->sc_ac2q)); 4196 return 0; 4197 } 4198 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4199 if (txq != NULL) { 4200 txq->axq_ac = ac; 4201 sc->sc_ac2q[ac] = txq; 4202 return 1; 4203 } else 4204 return 0; 4205 } 4206 4207 /* 4208 * Update WME parameters for a transmit queue. 4209 */ 4210 static int 4211 ath_txq_update(struct ath_softc *sc, int ac) 4212 { 4213 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4214 struct ieee80211com *ic = &sc->sc_ic; 4215 struct ath_txq *txq = sc->sc_ac2q[ac]; 4216 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4217 struct ath_hal *ah = sc->sc_ah; 4218 HAL_TXQ_INFO qi; 4219 4220 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4221 #ifdef IEEE80211_SUPPORT_TDMA 4222 if (sc->sc_tdma) { 4223 /* 4224 * AIFS is zero so there's no pre-transmit wait. The 4225 * burst time defines the slot duration and is configured 4226 * through net80211. The QCU is setup to not do post-xmit 4227 * back off, lockout all lower-priority QCU's, and fire 4228 * off the DMA beacon alert timer which is setup based 4229 * on the slot configuration. 4230 */ 4231 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4232 | HAL_TXQ_TXERRINT_ENABLE 4233 | HAL_TXQ_TXURNINT_ENABLE 4234 | HAL_TXQ_TXEOLINT_ENABLE 4235 | HAL_TXQ_DBA_GATED 4236 | HAL_TXQ_BACKOFF_DISABLE 4237 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4238 ; 4239 qi.tqi_aifs = 0; 4240 /* XXX +dbaprep? */ 4241 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4242 qi.tqi_burstTime = qi.tqi_readyTime; 4243 } else { 4244 #endif 4245 /* 4246 * XXX shouldn't this just use the default flags 4247 * used in the previous queue setup? 4248 */ 4249 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4250 | HAL_TXQ_TXERRINT_ENABLE 4251 | HAL_TXQ_TXDESCINT_ENABLE 4252 | HAL_TXQ_TXURNINT_ENABLE 4253 | HAL_TXQ_TXEOLINT_ENABLE 4254 ; 4255 qi.tqi_aifs = wmep->wmep_aifsn; 4256 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4257 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4258 qi.tqi_readyTime = 0; 4259 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4260 #ifdef IEEE80211_SUPPORT_TDMA 4261 } 4262 #endif 4263 4264 DPRINTF(sc, ATH_DEBUG_RESET, 4265 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4266 __func__, txq->axq_qnum, qi.tqi_qflags, 4267 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4268 4269 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4270 device_printf(sc->sc_dev, "unable to update hardware queue " 4271 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4272 return 0; 4273 } else { 4274 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4275 return 1; 4276 } 4277 #undef ATH_EXPONENT_TO_VALUE 4278 } 4279 4280 /* 4281 * Callback from the 802.11 layer to update WME parameters. 4282 */ 4283 int 4284 ath_wme_update(struct ieee80211com *ic) 4285 { 4286 struct ath_softc *sc = ic->ic_softc; 4287 4288 return !ath_txq_update(sc, WME_AC_BE) || 4289 !ath_txq_update(sc, WME_AC_BK) || 4290 !ath_txq_update(sc, WME_AC_VI) || 4291 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4292 } 4293 4294 /* 4295 * Reclaim resources for a setup queue. 4296 */ 4297 static void 4298 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4299 { 4300 4301 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4302 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4303 ATH_TXQ_LOCK_DESTROY(txq); 4304 } 4305 4306 /* 4307 * Reclaim all tx queue resources. 4308 */ 4309 static void 4310 ath_tx_cleanup(struct ath_softc *sc) 4311 { 4312 int i; 4313 4314 ATH_TXBUF_LOCK_DESTROY(sc); 4315 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4316 if (ATH_TXQ_SETUP(sc, i)) 4317 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4318 } 4319 4320 /* 4321 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4322 * using the current rates in sc_rixmap. 4323 */ 4324 int 4325 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4326 { 4327 int rix = sc->sc_rixmap[rate]; 4328 /* NB: return lowest rix for invalid rate */ 4329 return (rix == 0xff ? 0 : rix); 4330 } 4331 4332 static void 4333 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4334 struct ath_buf *bf) 4335 { 4336 struct ieee80211_node *ni = bf->bf_node; 4337 struct ieee80211com *ic = &sc->sc_ic; 4338 int sr, lr, pri; 4339 4340 if (ts->ts_status == 0) { 4341 u_int8_t txant = ts->ts_antenna; 4342 sc->sc_stats.ast_ant_tx[txant]++; 4343 sc->sc_ant_tx[txant]++; 4344 if (ts->ts_finaltsi != 0) 4345 sc->sc_stats.ast_tx_altrate++; 4346 pri = M_WME_GETAC(bf->bf_m); 4347 if (pri >= WME_AC_VO) 4348 ic->ic_wme.wme_hipri_traffic++; 4349 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4350 ni->ni_inact = ni->ni_inact_reload; 4351 } else { 4352 if (ts->ts_status & HAL_TXERR_XRETRY) 4353 sc->sc_stats.ast_tx_xretries++; 4354 if (ts->ts_status & HAL_TXERR_FIFO) 4355 sc->sc_stats.ast_tx_fifoerr++; 4356 if (ts->ts_status & HAL_TXERR_FILT) 4357 sc->sc_stats.ast_tx_filtered++; 4358 if (ts->ts_status & HAL_TXERR_XTXOP) 4359 sc->sc_stats.ast_tx_xtxop++; 4360 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4361 sc->sc_stats.ast_tx_timerexpired++; 4362 4363 if (bf->bf_m->m_flags & M_FF) 4364 sc->sc_stats.ast_ff_txerr++; 4365 } 4366 /* XXX when is this valid? */ 4367 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4368 sc->sc_stats.ast_tx_desccfgerr++; 4369 /* 4370 * This can be valid for successful frame transmission! 4371 * If there's a TX FIFO underrun during aggregate transmission, 4372 * the MAC will pad the rest of the aggregate with delimiters. 4373 * If a BA is returned, the frame is marked as "OK" and it's up 4374 * to the TX completion code to notice which frames weren't 4375 * successfully transmitted. 4376 */ 4377 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4378 sc->sc_stats.ast_tx_data_underrun++; 4379 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4380 sc->sc_stats.ast_tx_delim_underrun++; 4381 4382 sr = ts->ts_shortretry; 4383 lr = ts->ts_longretry; 4384 sc->sc_stats.ast_tx_shortretry += sr; 4385 sc->sc_stats.ast_tx_longretry += lr; 4386 4387 } 4388 4389 /* 4390 * The default completion. If fail is 1, this means 4391 * "please don't retry the frame, and just return -1 status 4392 * to the net80211 stack. 4393 */ 4394 void 4395 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4396 { 4397 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4398 int st; 4399 4400 if (fail == 1) 4401 st = -1; 4402 else 4403 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4404 ts->ts_status : HAL_TXERR_XRETRY; 4405 4406 #if 0 4407 if (bf->bf_state.bfs_dobaw) 4408 device_printf(sc->sc_dev, 4409 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4410 __func__, 4411 bf, 4412 SEQNO(bf->bf_state.bfs_seqno)); 4413 #endif 4414 if (bf->bf_next != NULL) 4415 device_printf(sc->sc_dev, 4416 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4417 __func__, 4418 bf, 4419 SEQNO(bf->bf_state.bfs_seqno)); 4420 4421 /* 4422 * Check if the node software queue is empty; if so 4423 * then clear the TIM. 4424 * 4425 * This needs to be done before the buffer is freed as 4426 * otherwise the node reference will have been released 4427 * and the node may not actually exist any longer. 4428 * 4429 * XXX I don't like this belonging here, but it's cleaner 4430 * to do it here right now then all the other places 4431 * where ath_tx_default_comp() is called. 4432 * 4433 * XXX TODO: during drain, ensure that the callback is 4434 * being called so we get a chance to update the TIM. 4435 */ 4436 if (bf->bf_node) { 4437 ATH_TX_LOCK(sc); 4438 ath_tx_update_tim(sc, bf->bf_node, 0); 4439 ATH_TX_UNLOCK(sc); 4440 } 4441 4442 /* 4443 * Do any tx complete callback. Note this must 4444 * be done before releasing the node reference. 4445 * This will free the mbuf, release the net80211 4446 * node and recycle the ath_buf. 4447 */ 4448 ath_tx_freebuf(sc, bf, st); 4449 } 4450 4451 /* 4452 * Update rate control with the given completion status. 4453 */ 4454 void 4455 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4456 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4457 int nframes, int nbad) 4458 { 4459 struct ath_node *an; 4460 4461 /* Only for unicast frames */ 4462 if (ni == NULL) 4463 return; 4464 4465 an = ATH_NODE(ni); 4466 ATH_NODE_UNLOCK_ASSERT(an); 4467 4468 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4469 ATH_NODE_LOCK(an); 4470 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4471 ATH_NODE_UNLOCK(an); 4472 } 4473 } 4474 4475 /* 4476 * Process the completion of the given buffer. 4477 * 4478 * This calls the rate control update and then the buffer completion. 4479 * This will either free the buffer or requeue it. In any case, the 4480 * bf pointer should be treated as invalid after this function is called. 4481 */ 4482 void 4483 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4484 struct ath_tx_status *ts, struct ath_buf *bf) 4485 { 4486 struct ieee80211_node *ni = bf->bf_node; 4487 4488 ATH_TX_UNLOCK_ASSERT(sc); 4489 ATH_TXQ_UNLOCK_ASSERT(txq); 4490 4491 /* If unicast frame, update general statistics */ 4492 if (ni != NULL) { 4493 /* update statistics */ 4494 ath_tx_update_stats(sc, ts, bf); 4495 } 4496 4497 /* 4498 * Call the completion handler. 4499 * The completion handler is responsible for 4500 * calling the rate control code. 4501 * 4502 * Frames with no completion handler get the 4503 * rate control code called here. 4504 */ 4505 if (bf->bf_comp == NULL) { 4506 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4507 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4508 /* 4509 * XXX assume this isn't an aggregate 4510 * frame. 4511 */ 4512 ath_tx_update_ratectrl(sc, ni, 4513 bf->bf_state.bfs_rc, ts, 4514 bf->bf_state.bfs_pktlen, 1, 4515 (ts->ts_status == 0 ? 0 : 1)); 4516 } 4517 ath_tx_default_comp(sc, bf, 0); 4518 } else 4519 bf->bf_comp(sc, bf, 0); 4520 } 4521 4522 4523 4524 /* 4525 * Process completed xmit descriptors from the specified queue. 4526 * Kick the packet scheduler if needed. This can occur from this 4527 * particular task. 4528 */ 4529 static int 4530 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4531 { 4532 struct ath_hal *ah = sc->sc_ah; 4533 struct ath_buf *bf; 4534 struct ath_desc *ds; 4535 struct ath_tx_status *ts; 4536 struct ieee80211_node *ni; 4537 #ifdef IEEE80211_SUPPORT_SUPERG 4538 struct ieee80211com *ic = &sc->sc_ic; 4539 #endif /* IEEE80211_SUPPORT_SUPERG */ 4540 int nacked; 4541 HAL_STATUS status; 4542 4543 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4544 __func__, txq->axq_qnum, 4545 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4546 txq->axq_link); 4547 4548 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4549 "ath_tx_processq: txq=%u head %p link %p depth %p", 4550 txq->axq_qnum, 4551 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4552 txq->axq_link, 4553 txq->axq_depth); 4554 4555 nacked = 0; 4556 for (;;) { 4557 ATH_TXQ_LOCK(txq); 4558 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4559 bf = TAILQ_FIRST(&txq->axq_q); 4560 if (bf == NULL) { 4561 ATH_TXQ_UNLOCK(txq); 4562 break; 4563 } 4564 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4565 ts = &bf->bf_status.ds_txstat; 4566 4567 status = ath_hal_txprocdesc(ah, ds, ts); 4568 #ifdef ATH_DEBUG 4569 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4570 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4571 status == HAL_OK); 4572 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4573 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4574 status == HAL_OK); 4575 #endif 4576 #ifdef ATH_DEBUG_ALQ 4577 if (if_ath_alq_checkdebug(&sc->sc_alq, 4578 ATH_ALQ_EDMA_TXSTATUS)) { 4579 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4580 sc->sc_tx_statuslen, 4581 (char *) ds); 4582 } 4583 #endif 4584 4585 if (status == HAL_EINPROGRESS) { 4586 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4587 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4588 txq->axq_qnum, bf, ds); 4589 ATH_TXQ_UNLOCK(txq); 4590 break; 4591 } 4592 ATH_TXQ_REMOVE(txq, bf, bf_list); 4593 4594 /* 4595 * Sanity check. 4596 */ 4597 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4598 device_printf(sc->sc_dev, 4599 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4600 __func__, 4601 txq->axq_qnum, 4602 bf, 4603 bf->bf_state.bfs_tx_queue); 4604 } 4605 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4606 device_printf(sc->sc_dev, 4607 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4608 __func__, 4609 txq->axq_qnum, 4610 bf->bf_last, 4611 bf->bf_last->bf_state.bfs_tx_queue); 4612 } 4613 4614 #if 0 4615 if (txq->axq_depth > 0) { 4616 /* 4617 * More frames follow. Mark the buffer busy 4618 * so it's not re-used while the hardware may 4619 * still re-read the link field in the descriptor. 4620 * 4621 * Use the last buffer in an aggregate as that 4622 * is where the hardware may be - intermediate 4623 * descriptors won't be "busy". 4624 */ 4625 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4626 } else 4627 txq->axq_link = NULL; 4628 #else 4629 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4630 #endif 4631 if (bf->bf_state.bfs_aggr) 4632 txq->axq_aggr_depth--; 4633 4634 ni = bf->bf_node; 4635 4636 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4637 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4638 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4639 /* 4640 * If unicast frame was ack'd update RSSI, 4641 * including the last rx time used to 4642 * workaround phantom bmiss interrupts. 4643 */ 4644 if (ni != NULL && ts->ts_status == 0 && 4645 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4646 nacked++; 4647 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4648 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4649 ts->ts_rssi); 4650 } 4651 ATH_TXQ_UNLOCK(txq); 4652 4653 /* 4654 * Update statistics and call completion 4655 */ 4656 ath_tx_process_buf_completion(sc, txq, ts, bf); 4657 4658 /* XXX at this point, bf and ni may be totally invalid */ 4659 } 4660 #ifdef IEEE80211_SUPPORT_SUPERG 4661 /* 4662 * Flush fast-frame staging queue when traffic slows. 4663 */ 4664 if (txq->axq_depth <= 1) 4665 ieee80211_ff_flush(ic, txq->axq_ac); 4666 #endif 4667 4668 /* Kick the software TXQ scheduler */ 4669 if (dosched) { 4670 ATH_TX_LOCK(sc); 4671 ath_txq_sched(sc, txq); 4672 ATH_TX_UNLOCK(sc); 4673 } 4674 4675 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4676 "ath_tx_processq: txq=%u: done", 4677 txq->axq_qnum); 4678 4679 return nacked; 4680 } 4681 4682 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4683 4684 /* 4685 * Deferred processing of transmit interrupt; special-cased 4686 * for a single hardware transmit queue (e.g. 5210 and 5211). 4687 */ 4688 static void 4689 ath_tx_proc_q0(void *arg, int npending) 4690 { 4691 struct ath_softc *sc = arg; 4692 uint32_t txqs; 4693 4694 ATH_PCU_LOCK(sc); 4695 sc->sc_txproc_cnt++; 4696 txqs = sc->sc_txq_active; 4697 sc->sc_txq_active &= ~txqs; 4698 ATH_PCU_UNLOCK(sc); 4699 4700 ATH_LOCK(sc); 4701 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4702 ATH_UNLOCK(sc); 4703 4704 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4705 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4706 4707 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4708 /* XXX why is lastrx updated in tx code? */ 4709 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4710 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4711 ath_tx_processq(sc, sc->sc_cabq, 1); 4712 sc->sc_wd_timer = 0; 4713 4714 if (sc->sc_softled) 4715 ath_led_event(sc, sc->sc_txrix); 4716 4717 ATH_PCU_LOCK(sc); 4718 sc->sc_txproc_cnt--; 4719 ATH_PCU_UNLOCK(sc); 4720 4721 ATH_LOCK(sc); 4722 ath_power_restore_power_state(sc); 4723 ATH_UNLOCK(sc); 4724 4725 ath_tx_kick(sc); 4726 } 4727 4728 /* 4729 * Deferred processing of transmit interrupt; special-cased 4730 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4731 */ 4732 static void 4733 ath_tx_proc_q0123(void *arg, int npending) 4734 { 4735 struct ath_softc *sc = arg; 4736 int nacked; 4737 uint32_t txqs; 4738 4739 ATH_PCU_LOCK(sc); 4740 sc->sc_txproc_cnt++; 4741 txqs = sc->sc_txq_active; 4742 sc->sc_txq_active &= ~txqs; 4743 ATH_PCU_UNLOCK(sc); 4744 4745 ATH_LOCK(sc); 4746 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4747 ATH_UNLOCK(sc); 4748 4749 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4750 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4751 4752 /* 4753 * Process each active queue. 4754 */ 4755 nacked = 0; 4756 if (TXQACTIVE(txqs, 0)) 4757 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4758 if (TXQACTIVE(txqs, 1)) 4759 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4760 if (TXQACTIVE(txqs, 2)) 4761 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4762 if (TXQACTIVE(txqs, 3)) 4763 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4764 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4765 ath_tx_processq(sc, sc->sc_cabq, 1); 4766 if (nacked) 4767 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4768 4769 sc->sc_wd_timer = 0; 4770 4771 if (sc->sc_softled) 4772 ath_led_event(sc, sc->sc_txrix); 4773 4774 ATH_PCU_LOCK(sc); 4775 sc->sc_txproc_cnt--; 4776 ATH_PCU_UNLOCK(sc); 4777 4778 ATH_LOCK(sc); 4779 ath_power_restore_power_state(sc); 4780 ATH_UNLOCK(sc); 4781 4782 ath_tx_kick(sc); 4783 } 4784 4785 /* 4786 * Deferred processing of transmit interrupt. 4787 */ 4788 static void 4789 ath_tx_proc(void *arg, int npending) 4790 { 4791 struct ath_softc *sc = arg; 4792 int i, nacked; 4793 uint32_t txqs; 4794 4795 ATH_PCU_LOCK(sc); 4796 sc->sc_txproc_cnt++; 4797 txqs = sc->sc_txq_active; 4798 sc->sc_txq_active &= ~txqs; 4799 ATH_PCU_UNLOCK(sc); 4800 4801 ATH_LOCK(sc); 4802 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4803 ATH_UNLOCK(sc); 4804 4805 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4806 4807 /* 4808 * Process each active queue. 4809 */ 4810 nacked = 0; 4811 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4812 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4813 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4814 if (nacked) 4815 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4816 4817 sc->sc_wd_timer = 0; 4818 4819 if (sc->sc_softled) 4820 ath_led_event(sc, sc->sc_txrix); 4821 4822 ATH_PCU_LOCK(sc); 4823 sc->sc_txproc_cnt--; 4824 ATH_PCU_UNLOCK(sc); 4825 4826 ATH_LOCK(sc); 4827 ath_power_restore_power_state(sc); 4828 ATH_UNLOCK(sc); 4829 4830 ath_tx_kick(sc); 4831 } 4832 #undef TXQACTIVE 4833 4834 /* 4835 * Deferred processing of TXQ rescheduling. 4836 */ 4837 static void 4838 ath_txq_sched_tasklet(void *arg, int npending) 4839 { 4840 struct ath_softc *sc = arg; 4841 int i; 4842 4843 /* XXX is skipping ok? */ 4844 ATH_PCU_LOCK(sc); 4845 #if 0 4846 if (sc->sc_inreset_cnt > 0) { 4847 device_printf(sc->sc_dev, 4848 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4849 ATH_PCU_UNLOCK(sc); 4850 return; 4851 } 4852 #endif 4853 sc->sc_txproc_cnt++; 4854 ATH_PCU_UNLOCK(sc); 4855 4856 ATH_LOCK(sc); 4857 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4858 ATH_UNLOCK(sc); 4859 4860 ATH_TX_LOCK(sc); 4861 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4862 if (ATH_TXQ_SETUP(sc, i)) { 4863 ath_txq_sched(sc, &sc->sc_txq[i]); 4864 } 4865 } 4866 ATH_TX_UNLOCK(sc); 4867 4868 ATH_LOCK(sc); 4869 ath_power_restore_power_state(sc); 4870 ATH_UNLOCK(sc); 4871 4872 ATH_PCU_LOCK(sc); 4873 sc->sc_txproc_cnt--; 4874 ATH_PCU_UNLOCK(sc); 4875 } 4876 4877 void 4878 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4879 { 4880 4881 ATH_TXBUF_LOCK_ASSERT(sc); 4882 4883 if (bf->bf_flags & ATH_BUF_MGMT) 4884 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4885 else { 4886 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4887 sc->sc_txbuf_cnt++; 4888 if (sc->sc_txbuf_cnt > ath_txbuf) { 4889 device_printf(sc->sc_dev, 4890 "%s: sc_txbuf_cnt > %d?\n", 4891 __func__, 4892 ath_txbuf); 4893 sc->sc_txbuf_cnt = ath_txbuf; 4894 } 4895 } 4896 } 4897 4898 void 4899 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4900 { 4901 4902 ATH_TXBUF_LOCK_ASSERT(sc); 4903 4904 if (bf->bf_flags & ATH_BUF_MGMT) 4905 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4906 else { 4907 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4908 sc->sc_txbuf_cnt++; 4909 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4910 device_printf(sc->sc_dev, 4911 "%s: sc_txbuf_cnt > %d?\n", 4912 __func__, 4913 ATH_TXBUF); 4914 sc->sc_txbuf_cnt = ATH_TXBUF; 4915 } 4916 } 4917 } 4918 4919 /* 4920 * Free the holding buffer if it exists 4921 */ 4922 void 4923 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4924 { 4925 ATH_TXBUF_UNLOCK_ASSERT(sc); 4926 ATH_TXQ_LOCK_ASSERT(txq); 4927 4928 if (txq->axq_holdingbf == NULL) 4929 return; 4930 4931 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4932 4933 ATH_TXBUF_LOCK(sc); 4934 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4935 ATH_TXBUF_UNLOCK(sc); 4936 4937 txq->axq_holdingbf = NULL; 4938 } 4939 4940 /* 4941 * Add this buffer to the holding queue, freeing the previous 4942 * one if it exists. 4943 */ 4944 static void 4945 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4946 { 4947 struct ath_txq *txq; 4948 4949 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4950 4951 ATH_TXBUF_UNLOCK_ASSERT(sc); 4952 ATH_TXQ_LOCK_ASSERT(txq); 4953 4954 /* XXX assert ATH_BUF_BUSY is set */ 4955 4956 /* XXX assert the tx queue is under the max number */ 4957 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4958 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4959 __func__, 4960 bf, 4961 bf->bf_state.bfs_tx_queue); 4962 bf->bf_flags &= ~ATH_BUF_BUSY; 4963 ath_returnbuf_tail(sc, bf); 4964 return; 4965 } 4966 ath_txq_freeholdingbuf(sc, txq); 4967 txq->axq_holdingbf = bf; 4968 } 4969 4970 /* 4971 * Return a buffer to the pool and update the 'busy' flag on the 4972 * previous 'tail' entry. 4973 * 4974 * This _must_ only be called when the buffer is involved in a completed 4975 * TX. The logic is that if it was part of an active TX, the previous 4976 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4977 * for restart (eg for TDMA.) 4978 * 4979 * The caller must free the mbuf and recycle the node reference. 4980 * 4981 * XXX This method of handling busy / holding buffers is insanely stupid. 4982 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4983 * be much nicer if buffers in the processq() methods would instead be 4984 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4985 * exactly what hardware queue they came from in the first place. 4986 */ 4987 void 4988 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4989 { 4990 struct ath_txq *txq; 4991 4992 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4993 4994 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4995 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4996 4997 /* 4998 * If this buffer is busy, push it onto the holding queue. 4999 */ 5000 if (bf->bf_flags & ATH_BUF_BUSY) { 5001 ATH_TXQ_LOCK(txq); 5002 ath_txq_addholdingbuf(sc, bf); 5003 ATH_TXQ_UNLOCK(txq); 5004 return; 5005 } 5006 5007 /* 5008 * Not a busy buffer, so free normally 5009 */ 5010 ATH_TXBUF_LOCK(sc); 5011 ath_returnbuf_tail(sc, bf); 5012 ATH_TXBUF_UNLOCK(sc); 5013 } 5014 5015 /* 5016 * This is currently used by ath_tx_draintxq() and 5017 * ath_tx_tid_free_pkts(). 5018 * 5019 * It recycles a single ath_buf. 5020 */ 5021 void 5022 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5023 { 5024 struct ieee80211_node *ni = bf->bf_node; 5025 struct mbuf *m0 = bf->bf_m; 5026 5027 /* 5028 * Make sure that we only sync/unload if there's an mbuf. 5029 * If not (eg we cloned a buffer), the unload will have already 5030 * occured. 5031 */ 5032 if (bf->bf_m != NULL) { 5033 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 5034 BUS_DMASYNC_POSTWRITE); 5035 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5036 } 5037 5038 bf->bf_node = NULL; 5039 bf->bf_m = NULL; 5040 5041 /* Free the buffer, it's not needed any longer */ 5042 ath_freebuf(sc, bf); 5043 5044 /* Pass the buffer back to net80211 - completing it */ 5045 ieee80211_tx_complete(ni, m0, status); 5046 } 5047 5048 static struct ath_buf * 5049 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 5050 { 5051 struct ath_buf *bf; 5052 5053 ATH_TXQ_LOCK_ASSERT(txq); 5054 5055 /* 5056 * Drain the FIFO queue first, then if it's 5057 * empty, move to the normal frame queue. 5058 */ 5059 bf = TAILQ_FIRST(&txq->fifo.axq_q); 5060 if (bf != NULL) { 5061 /* 5062 * Is it the last buffer in this set? 5063 * Decrement the FIFO counter. 5064 */ 5065 if (bf->bf_flags & ATH_BUF_FIFOEND) { 5066 if (txq->axq_fifo_depth == 0) { 5067 device_printf(sc->sc_dev, 5068 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 5069 __func__, 5070 txq->axq_qnum, 5071 txq->fifo.axq_depth); 5072 } else 5073 txq->axq_fifo_depth--; 5074 } 5075 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 5076 return (bf); 5077 } 5078 5079 /* 5080 * Debugging! 5081 */ 5082 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 5083 device_printf(sc->sc_dev, 5084 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 5085 __func__, 5086 txq->axq_qnum, 5087 txq->axq_fifo_depth, 5088 txq->fifo.axq_depth); 5089 } 5090 5091 /* 5092 * Now drain the pending queue. 5093 */ 5094 bf = TAILQ_FIRST(&txq->axq_q); 5095 if (bf == NULL) { 5096 txq->axq_link = NULL; 5097 return (NULL); 5098 } 5099 ATH_TXQ_REMOVE(txq, bf, bf_list); 5100 return (bf); 5101 } 5102 5103 void 5104 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5105 { 5106 #ifdef ATH_DEBUG 5107 struct ath_hal *ah = sc->sc_ah; 5108 #endif 5109 struct ath_buf *bf; 5110 u_int ix; 5111 5112 /* 5113 * NB: this assumes output has been stopped and 5114 * we do not need to block ath_tx_proc 5115 */ 5116 for (ix = 0;; ix++) { 5117 ATH_TXQ_LOCK(txq); 5118 bf = ath_tx_draintxq_get_one(sc, txq); 5119 if (bf == NULL) { 5120 ATH_TXQ_UNLOCK(txq); 5121 break; 5122 } 5123 if (bf->bf_state.bfs_aggr) 5124 txq->axq_aggr_depth--; 5125 #ifdef ATH_DEBUG 5126 if (sc->sc_debug & ATH_DEBUG_RESET) { 5127 struct ieee80211com *ic = &sc->sc_ic; 5128 int status = 0; 5129 5130 /* 5131 * EDMA operation has a TX completion FIFO 5132 * separate from the TX descriptor, so this 5133 * method of checking the "completion" status 5134 * is wrong. 5135 */ 5136 if (! sc->sc_isedma) { 5137 status = (ath_hal_txprocdesc(ah, 5138 bf->bf_lastds, 5139 &bf->bf_status.ds_txstat) == HAL_OK); 5140 } 5141 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5142 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5143 bf->bf_m->m_len, 0, -1); 5144 } 5145 #endif /* ATH_DEBUG */ 5146 /* 5147 * Since we're now doing magic in the completion 5148 * functions, we -must- call it for aggregation 5149 * destinations or BAW tracking will get upset. 5150 */ 5151 /* 5152 * Clear ATH_BUF_BUSY; the completion handler 5153 * will free the buffer. 5154 */ 5155 ATH_TXQ_UNLOCK(txq); 5156 bf->bf_flags &= ~ATH_BUF_BUSY; 5157 if (bf->bf_comp) 5158 bf->bf_comp(sc, bf, 1); 5159 else 5160 ath_tx_default_comp(sc, bf, 1); 5161 } 5162 5163 /* 5164 * Free the holding buffer if it exists 5165 */ 5166 ATH_TXQ_LOCK(txq); 5167 ath_txq_freeholdingbuf(sc, txq); 5168 ATH_TXQ_UNLOCK(txq); 5169 5170 /* 5171 * Drain software queued frames which are on 5172 * active TIDs. 5173 */ 5174 ath_tx_txq_drain(sc, txq); 5175 } 5176 5177 static void 5178 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5179 { 5180 struct ath_hal *ah = sc->sc_ah; 5181 5182 ATH_TXQ_LOCK_ASSERT(txq); 5183 5184 DPRINTF(sc, ATH_DEBUG_RESET, 5185 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5186 "link %p, holdingbf=%p\n", 5187 __func__, 5188 txq->axq_qnum, 5189 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5190 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5191 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5192 txq->axq_flags, 5193 txq->axq_link, 5194 txq->axq_holdingbf); 5195 5196 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5197 /* We've stopped TX DMA, so mark this as stopped. */ 5198 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5199 5200 #ifdef ATH_DEBUG 5201 if ((sc->sc_debug & ATH_DEBUG_RESET) 5202 && (txq->axq_holdingbf != NULL)) { 5203 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5204 } 5205 #endif 5206 } 5207 5208 int 5209 ath_stoptxdma(struct ath_softc *sc) 5210 { 5211 struct ath_hal *ah = sc->sc_ah; 5212 int i; 5213 5214 /* XXX return value */ 5215 if (sc->sc_invalid) 5216 return 0; 5217 5218 if (!sc->sc_invalid) { 5219 /* don't touch the hardware if marked invalid */ 5220 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5221 __func__, sc->sc_bhalq, 5222 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5223 NULL); 5224 5225 /* stop the beacon queue */ 5226 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5227 5228 /* Stop the data queues */ 5229 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5230 if (ATH_TXQ_SETUP(sc, i)) { 5231 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5232 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5233 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5234 } 5235 } 5236 } 5237 5238 return 1; 5239 } 5240 5241 #ifdef ATH_DEBUG 5242 void 5243 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5244 { 5245 struct ath_hal *ah = sc->sc_ah; 5246 struct ath_buf *bf; 5247 int i = 0; 5248 5249 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5250 return; 5251 5252 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5253 __func__, txq->axq_qnum); 5254 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5255 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5256 ath_hal_txprocdesc(ah, bf->bf_lastds, 5257 &bf->bf_status.ds_txstat) == HAL_OK); 5258 i++; 5259 } 5260 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5261 __func__, txq->axq_qnum); 5262 } 5263 #endif /* ATH_DEBUG */ 5264 5265 /* 5266 * Drain the transmit queues and reclaim resources. 5267 */ 5268 void 5269 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5270 { 5271 struct ath_hal *ah = sc->sc_ah; 5272 struct ath_buf *bf_last; 5273 int i; 5274 5275 (void) ath_stoptxdma(sc); 5276 5277 /* 5278 * Dump the queue contents 5279 */ 5280 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5281 /* 5282 * XXX TODO: should we just handle the completed TX frames 5283 * here, whether or not the reset is a full one or not? 5284 */ 5285 if (ATH_TXQ_SETUP(sc, i)) { 5286 #ifdef ATH_DEBUG 5287 if (sc->sc_debug & ATH_DEBUG_RESET) 5288 ath_tx_dump(sc, &sc->sc_txq[i]); 5289 #endif /* ATH_DEBUG */ 5290 if (reset_type == ATH_RESET_NOLOSS) { 5291 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5292 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5293 /* 5294 * Free the holding buffer; DMA is now 5295 * stopped. 5296 */ 5297 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5298 /* 5299 * Setup the link pointer to be the 5300 * _last_ buffer/descriptor in the list. 5301 * If there's nothing in the list, set it 5302 * to NULL. 5303 */ 5304 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5305 axq_q_s); 5306 if (bf_last != NULL) { 5307 ath_hal_gettxdesclinkptr(ah, 5308 bf_last->bf_lastds, 5309 &sc->sc_txq[i].axq_link); 5310 } else { 5311 sc->sc_txq[i].axq_link = NULL; 5312 } 5313 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5314 } else 5315 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5316 } 5317 } 5318 #ifdef ATH_DEBUG 5319 if (sc->sc_debug & ATH_DEBUG_RESET) { 5320 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5321 if (bf != NULL && bf->bf_m != NULL) { 5322 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5323 ath_hal_txprocdesc(ah, bf->bf_lastds, 5324 &bf->bf_status.ds_txstat) == HAL_OK); 5325 ieee80211_dump_pkt(&sc->sc_ic, 5326 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5327 0, -1); 5328 } 5329 } 5330 #endif /* ATH_DEBUG */ 5331 sc->sc_wd_timer = 0; 5332 } 5333 5334 /* 5335 * Update internal state after a channel change. 5336 */ 5337 static void 5338 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5339 { 5340 enum ieee80211_phymode mode; 5341 5342 /* 5343 * Change channels and update the h/w rate map 5344 * if we're switching; e.g. 11a to 11b/g. 5345 */ 5346 mode = ieee80211_chan2mode(chan); 5347 if (mode != sc->sc_curmode) 5348 ath_setcurmode(sc, mode); 5349 sc->sc_curchan = chan; 5350 } 5351 5352 /* 5353 * Set/change channels. If the channel is really being changed, 5354 * it's done by resetting the chip. To accomplish this we must 5355 * first cleanup any pending DMA, then restart stuff after a la 5356 * ath_init. 5357 */ 5358 static int 5359 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5360 { 5361 struct ieee80211com *ic = &sc->sc_ic; 5362 struct ath_hal *ah = sc->sc_ah; 5363 int ret = 0; 5364 5365 /* Treat this as an interface reset */ 5366 ATH_PCU_UNLOCK_ASSERT(sc); 5367 ATH_UNLOCK_ASSERT(sc); 5368 5369 /* (Try to) stop TX/RX from occuring */ 5370 taskqueue_block(sc->sc_tq); 5371 5372 ATH_PCU_LOCK(sc); 5373 5374 /* Disable interrupts */ 5375 ath_hal_intrset(ah, 0); 5376 5377 /* Stop new RX/TX/interrupt completion */ 5378 if (ath_reset_grablock(sc, 1) == 0) { 5379 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5380 __func__); 5381 } 5382 5383 /* Stop pending RX/TX completion */ 5384 ath_txrx_stop_locked(sc); 5385 5386 ATH_PCU_UNLOCK(sc); 5387 5388 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5389 __func__, ieee80211_chan2ieee(ic, chan), 5390 chan->ic_freq, chan->ic_flags); 5391 if (chan != sc->sc_curchan) { 5392 HAL_STATUS status; 5393 /* 5394 * To switch channels clear any pending DMA operations; 5395 * wait long enough for the RX fifo to drain, reset the 5396 * hardware at the new frequency, and then re-enable 5397 * the relevant bits of the h/w. 5398 */ 5399 #if 0 5400 ath_hal_intrset(ah, 0); /* disable interrupts */ 5401 #endif 5402 ath_stoprecv(sc, 1); /* turn off frame recv */ 5403 /* 5404 * First, handle completed TX/RX frames. 5405 */ 5406 ath_rx_flush(sc); 5407 ath_draintxq(sc, ATH_RESET_NOLOSS); 5408 /* 5409 * Next, flush the non-scheduled frames. 5410 */ 5411 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5412 5413 ath_update_chainmasks(sc, chan); 5414 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5415 sc->sc_cur_rxchainmask); 5416 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5417 device_printf(sc->sc_dev, "%s: unable to reset " 5418 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5419 __func__, ieee80211_chan2ieee(ic, chan), 5420 chan->ic_freq, chan->ic_flags, status); 5421 ret = EIO; 5422 goto finish; 5423 } 5424 sc->sc_diversity = ath_hal_getdiversity(ah); 5425 5426 ATH_RX_LOCK(sc); 5427 sc->sc_rx_stopped = 1; 5428 sc->sc_rx_resetted = 1; 5429 ATH_RX_UNLOCK(sc); 5430 5431 /* Let DFS at it in case it's a DFS channel */ 5432 ath_dfs_radar_enable(sc, chan); 5433 5434 /* Let spectral at in case spectral is enabled */ 5435 ath_spectral_enable(sc, chan); 5436 5437 /* 5438 * Let bluetooth coexistence at in case it's needed for this 5439 * channel 5440 */ 5441 ath_btcoex_enable(sc, ic->ic_curchan); 5442 5443 /* 5444 * If we're doing TDMA, enforce the TXOP limitation for chips 5445 * that support it. 5446 */ 5447 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5448 ath_hal_setenforcetxop(sc->sc_ah, 1); 5449 else 5450 ath_hal_setenforcetxop(sc->sc_ah, 0); 5451 5452 /* 5453 * Re-enable rx framework. 5454 */ 5455 if (ath_startrecv(sc) != 0) { 5456 device_printf(sc->sc_dev, 5457 "%s: unable to restart recv logic\n", __func__); 5458 ret = EIO; 5459 goto finish; 5460 } 5461 5462 /* 5463 * Change channels and update the h/w rate map 5464 * if we're switching; e.g. 11a to 11b/g. 5465 */ 5466 ath_chan_change(sc, chan); 5467 5468 /* 5469 * Reset clears the beacon timers; reset them 5470 * here if needed. 5471 */ 5472 if (sc->sc_beacons) { /* restart beacons */ 5473 #ifdef IEEE80211_SUPPORT_TDMA 5474 if (sc->sc_tdma) 5475 ath_tdma_config(sc, NULL); 5476 else 5477 #endif 5478 ath_beacon_config(sc, NULL); 5479 } 5480 5481 /* 5482 * Re-enable interrupts. 5483 */ 5484 #if 0 5485 ath_hal_intrset(ah, sc->sc_imask); 5486 #endif 5487 } 5488 5489 finish: 5490 ATH_PCU_LOCK(sc); 5491 sc->sc_inreset_cnt--; 5492 /* XXX only do this if sc_inreset_cnt == 0? */ 5493 ath_hal_intrset(ah, sc->sc_imask); 5494 ATH_PCU_UNLOCK(sc); 5495 5496 ath_txrx_start(sc); 5497 /* XXX ath_start? */ 5498 5499 return ret; 5500 } 5501 5502 /* 5503 * Periodically recalibrate the PHY to account 5504 * for temperature/environment changes. 5505 */ 5506 static void 5507 ath_calibrate(void *arg) 5508 { 5509 struct ath_softc *sc = arg; 5510 struct ath_hal *ah = sc->sc_ah; 5511 struct ieee80211com *ic = &sc->sc_ic; 5512 HAL_BOOL longCal, isCalDone = AH_TRUE; 5513 HAL_BOOL aniCal, shortCal = AH_FALSE; 5514 int nextcal; 5515 5516 ATH_LOCK_ASSERT(sc); 5517 5518 /* 5519 * Force the hardware awake for ANI work. 5520 */ 5521 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5522 5523 /* Skip trying to do this if we're in reset */ 5524 if (sc->sc_inreset_cnt) 5525 goto restart; 5526 5527 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5528 goto restart; 5529 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5530 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5531 if (sc->sc_doresetcal) 5532 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5533 5534 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5535 if (aniCal) { 5536 sc->sc_stats.ast_ani_cal++; 5537 sc->sc_lastani = ticks; 5538 ath_hal_ani_poll(ah, sc->sc_curchan); 5539 } 5540 5541 if (longCal) { 5542 sc->sc_stats.ast_per_cal++; 5543 sc->sc_lastlongcal = ticks; 5544 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5545 /* 5546 * Rfgain is out of bounds, reset the chip 5547 * to load new gain values. 5548 */ 5549 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5550 "%s: rfgain change\n", __func__); 5551 sc->sc_stats.ast_per_rfgain++; 5552 sc->sc_resetcal = 0; 5553 sc->sc_doresetcal = AH_TRUE; 5554 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5555 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5556 ath_power_restore_power_state(sc); 5557 return; 5558 } 5559 /* 5560 * If this long cal is after an idle period, then 5561 * reset the data collection state so we start fresh. 5562 */ 5563 if (sc->sc_resetcal) { 5564 (void) ath_hal_calreset(ah, sc->sc_curchan); 5565 sc->sc_lastcalreset = ticks; 5566 sc->sc_lastshortcal = ticks; 5567 sc->sc_resetcal = 0; 5568 sc->sc_doresetcal = AH_TRUE; 5569 } 5570 } 5571 5572 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5573 if (shortCal || longCal) { 5574 isCalDone = AH_FALSE; 5575 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5576 if (longCal) { 5577 /* 5578 * Calibrate noise floor data again in case of change. 5579 */ 5580 ath_hal_process_noisefloor(ah); 5581 } 5582 } else { 5583 DPRINTF(sc, ATH_DEBUG_ANY, 5584 "%s: calibration of channel %u failed\n", 5585 __func__, sc->sc_curchan->ic_freq); 5586 sc->sc_stats.ast_per_calfail++; 5587 } 5588 if (shortCal) 5589 sc->sc_lastshortcal = ticks; 5590 } 5591 if (!isCalDone) { 5592 restart: 5593 /* 5594 * Use a shorter interval to potentially collect multiple 5595 * data samples required to complete calibration. Once 5596 * we're told the work is done we drop back to a longer 5597 * interval between requests. We're more aggressive doing 5598 * work when operating as an AP to improve operation right 5599 * after startup. 5600 */ 5601 sc->sc_lastshortcal = ticks; 5602 nextcal = ath_shortcalinterval*hz/1000; 5603 if (sc->sc_opmode != HAL_M_HOSTAP) 5604 nextcal *= 10; 5605 sc->sc_doresetcal = AH_TRUE; 5606 } else { 5607 /* nextcal should be the shortest time for next event */ 5608 nextcal = ath_longcalinterval*hz; 5609 if (sc->sc_lastcalreset == 0) 5610 sc->sc_lastcalreset = sc->sc_lastlongcal; 5611 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5612 sc->sc_resetcal = 1; /* setup reset next trip */ 5613 sc->sc_doresetcal = AH_FALSE; 5614 } 5615 /* ANI calibration may occur more often than short/long/resetcal */ 5616 if (ath_anicalinterval > 0) 5617 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5618 5619 if (nextcal != 0) { 5620 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5621 __func__, nextcal, isCalDone ? "" : "!"); 5622 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5623 } else { 5624 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5625 __func__); 5626 /* NB: don't rearm timer */ 5627 } 5628 /* 5629 * Restore power state now that we're done. 5630 */ 5631 ath_power_restore_power_state(sc); 5632 } 5633 5634 static void 5635 ath_scan_start(struct ieee80211com *ic) 5636 { 5637 struct ath_softc *sc = ic->ic_softc; 5638 struct ath_hal *ah = sc->sc_ah; 5639 u_int32_t rfilt; 5640 5641 /* XXX calibration timer? */ 5642 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5643 5644 ATH_LOCK(sc); 5645 sc->sc_scanning = 1; 5646 sc->sc_syncbeacon = 0; 5647 rfilt = ath_calcrxfilter(sc); 5648 ATH_UNLOCK(sc); 5649 5650 ATH_PCU_LOCK(sc); 5651 ath_hal_setrxfilter(ah, rfilt); 5652 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5653 ATH_PCU_UNLOCK(sc); 5654 5655 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5656 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5657 } 5658 5659 static void 5660 ath_scan_end(struct ieee80211com *ic) 5661 { 5662 struct ath_softc *sc = ic->ic_softc; 5663 struct ath_hal *ah = sc->sc_ah; 5664 u_int32_t rfilt; 5665 5666 ATH_LOCK(sc); 5667 sc->sc_scanning = 0; 5668 rfilt = ath_calcrxfilter(sc); 5669 ATH_UNLOCK(sc); 5670 5671 ATH_PCU_LOCK(sc); 5672 ath_hal_setrxfilter(ah, rfilt); 5673 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5674 5675 ath_hal_process_noisefloor(ah); 5676 ATH_PCU_UNLOCK(sc); 5677 5678 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5679 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5680 sc->sc_curaid); 5681 } 5682 5683 #ifdef ATH_ENABLE_11N 5684 /* 5685 * For now, just do a channel change. 5686 * 5687 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5688 * control state and resetting the hardware without dropping frames out 5689 * of the queue. 5690 * 5691 * The unfortunate trouble here is making absolutely sure that the 5692 * channel width change has propagated enough so the hardware 5693 * absolutely isn't handed bogus frames for it's current operating 5694 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5695 * does occur in parallel, we need to make certain we've blocked 5696 * any further ongoing TX (and RX, that can cause raw TX) 5697 * before we do this. 5698 */ 5699 static void 5700 ath_update_chw(struct ieee80211com *ic) 5701 { 5702 struct ath_softc *sc = ic->ic_softc; 5703 5704 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5705 ath_set_channel(ic); 5706 } 5707 #endif /* ATH_ENABLE_11N */ 5708 5709 static void 5710 ath_set_channel(struct ieee80211com *ic) 5711 { 5712 struct ath_softc *sc = ic->ic_softc; 5713 5714 ATH_LOCK(sc); 5715 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5716 ATH_UNLOCK(sc); 5717 5718 (void) ath_chan_set(sc, ic->ic_curchan); 5719 /* 5720 * If we are returning to our bss channel then mark state 5721 * so the next recv'd beacon's tsf will be used to sync the 5722 * beacon timers. Note that since we only hear beacons in 5723 * sta/ibss mode this has no effect in other operating modes. 5724 */ 5725 ATH_LOCK(sc); 5726 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5727 sc->sc_syncbeacon = 1; 5728 ath_power_restore_power_state(sc); 5729 ATH_UNLOCK(sc); 5730 } 5731 5732 /* 5733 * Walk the vap list and check if there any vap's in RUN state. 5734 */ 5735 static int 5736 ath_isanyrunningvaps(struct ieee80211vap *this) 5737 { 5738 struct ieee80211com *ic = this->iv_ic; 5739 struct ieee80211vap *vap; 5740 5741 IEEE80211_LOCK_ASSERT(ic); 5742 5743 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5744 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5745 return 1; 5746 } 5747 return 0; 5748 } 5749 5750 static int 5751 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5752 { 5753 struct ieee80211com *ic = vap->iv_ic; 5754 struct ath_softc *sc = ic->ic_softc; 5755 struct ath_vap *avp = ATH_VAP(vap); 5756 struct ath_hal *ah = sc->sc_ah; 5757 struct ieee80211_node *ni = NULL; 5758 int i, error, stamode; 5759 u_int32_t rfilt; 5760 int csa_run_transition = 0; 5761 enum ieee80211_state ostate = vap->iv_state; 5762 5763 static const HAL_LED_STATE leds[] = { 5764 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5765 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5766 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5767 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5768 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5769 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5770 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5771 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5772 }; 5773 5774 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5775 ieee80211_state_name[ostate], 5776 ieee80211_state_name[nstate]); 5777 5778 /* 5779 * net80211 _should_ have the comlock asserted at this point. 5780 * There are some comments around the calls to vap->iv_newstate 5781 * which indicate that it (newstate) may end up dropping the 5782 * lock. This and the subsequent lock assert check after newstate 5783 * are an attempt to catch these and figure out how/why. 5784 */ 5785 IEEE80211_LOCK_ASSERT(ic); 5786 5787 /* Before we touch the hardware - wake it up */ 5788 ATH_LOCK(sc); 5789 /* 5790 * If the NIC is in anything other than SLEEP state, 5791 * we need to ensure that self-generated frames are 5792 * set for PWRMGT=0. Otherwise we may end up with 5793 * strange situations. 5794 * 5795 * XXX TODO: is this actually the case? :-) 5796 */ 5797 if (nstate != IEEE80211_S_SLEEP) 5798 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5799 5800 /* 5801 * Now, wake the thing up. 5802 */ 5803 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5804 5805 /* 5806 * And stop the calibration callout whilst we have 5807 * ATH_LOCK held. 5808 */ 5809 callout_stop(&sc->sc_cal_ch); 5810 ATH_UNLOCK(sc); 5811 5812 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5813 csa_run_transition = 1; 5814 5815 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5816 5817 if (nstate == IEEE80211_S_SCAN) { 5818 /* 5819 * Scanning: turn off beacon miss and don't beacon. 5820 * Mark beacon state so when we reach RUN state we'll 5821 * [re]setup beacons. Unblock the task q thread so 5822 * deferred interrupt processing is done. 5823 */ 5824 5825 /* Ensure we stay awake during scan */ 5826 ATH_LOCK(sc); 5827 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5828 ath_power_setpower(sc, HAL_PM_AWAKE); 5829 ATH_UNLOCK(sc); 5830 5831 ath_hal_intrset(ah, 5832 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5833 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5834 sc->sc_beacons = 0; 5835 taskqueue_unblock(sc->sc_tq); 5836 } 5837 5838 ni = ieee80211_ref_node(vap->iv_bss); 5839 rfilt = ath_calcrxfilter(sc); 5840 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5841 vap->iv_opmode == IEEE80211_M_AHDEMO || 5842 vap->iv_opmode == IEEE80211_M_IBSS); 5843 5844 /* 5845 * XXX Dont need to do this (and others) if we've transitioned 5846 * from SLEEP->RUN. 5847 */ 5848 if (stamode && nstate == IEEE80211_S_RUN) { 5849 sc->sc_curaid = ni->ni_associd; 5850 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5851 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5852 } 5853 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5854 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5855 ath_hal_setrxfilter(ah, rfilt); 5856 5857 /* XXX is this to restore keycache on resume? */ 5858 if (vap->iv_opmode != IEEE80211_M_STA && 5859 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5860 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5861 if (ath_hal_keyisvalid(ah, i)) 5862 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5863 } 5864 5865 /* 5866 * Invoke the parent method to do net80211 work. 5867 */ 5868 error = avp->av_newstate(vap, nstate, arg); 5869 if (error != 0) 5870 goto bad; 5871 5872 /* 5873 * See above: ensure av_newstate() doesn't drop the lock 5874 * on us. 5875 */ 5876 IEEE80211_LOCK_ASSERT(ic); 5877 5878 if (nstate == IEEE80211_S_RUN) { 5879 /* NB: collect bss node again, it may have changed */ 5880 ieee80211_free_node(ni); 5881 ni = ieee80211_ref_node(vap->iv_bss); 5882 5883 DPRINTF(sc, ATH_DEBUG_STATE, 5884 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5885 "capinfo 0x%04x chan %d\n", __func__, 5886 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5887 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5888 5889 switch (vap->iv_opmode) { 5890 #ifdef IEEE80211_SUPPORT_TDMA 5891 case IEEE80211_M_AHDEMO: 5892 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5893 break; 5894 /* fall thru... */ 5895 #endif 5896 case IEEE80211_M_HOSTAP: 5897 case IEEE80211_M_IBSS: 5898 case IEEE80211_M_MBSS: 5899 /* 5900 * Allocate and setup the beacon frame. 5901 * 5902 * Stop any previous beacon DMA. This may be 5903 * necessary, for example, when an ibss merge 5904 * causes reconfiguration; there will be a state 5905 * transition from RUN->RUN that means we may 5906 * be called with beacon transmission active. 5907 */ 5908 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5909 5910 error = ath_beacon_alloc(sc, ni); 5911 if (error != 0) 5912 goto bad; 5913 /* 5914 * If joining an adhoc network defer beacon timer 5915 * configuration to the next beacon frame so we 5916 * have a current TSF to use. Otherwise we're 5917 * starting an ibss/bss so there's no need to delay; 5918 * if this is the first vap moving to RUN state, then 5919 * beacon state needs to be [re]configured. 5920 */ 5921 if (vap->iv_opmode == IEEE80211_M_IBSS && 5922 ni->ni_tstamp.tsf != 0) { 5923 sc->sc_syncbeacon = 1; 5924 } else if (!sc->sc_beacons) { 5925 #ifdef IEEE80211_SUPPORT_TDMA 5926 if (vap->iv_caps & IEEE80211_C_TDMA) 5927 ath_tdma_config(sc, vap); 5928 else 5929 #endif 5930 ath_beacon_config(sc, vap); 5931 sc->sc_beacons = 1; 5932 } 5933 break; 5934 case IEEE80211_M_STA: 5935 /* 5936 * Defer beacon timer configuration to the next 5937 * beacon frame so we have a current TSF to use 5938 * (any TSF collected when scanning is likely old). 5939 * However if it's due to a CSA -> RUN transition, 5940 * force a beacon update so we pick up a lack of 5941 * beacons from an AP in CAC and thus force a 5942 * scan. 5943 * 5944 * And, there's also corner cases here where 5945 * after a scan, the AP may have disappeared. 5946 * In that case, we may not receive an actual 5947 * beacon to update the beacon timer and thus we 5948 * won't get notified of the missing beacons. 5949 */ 5950 if (ostate != IEEE80211_S_RUN && 5951 ostate != IEEE80211_S_SLEEP) { 5952 DPRINTF(sc, ATH_DEBUG_BEACON, 5953 "%s: STA; syncbeacon=1\n", __func__); 5954 sc->sc_syncbeacon = 1; 5955 5956 if (csa_run_transition) 5957 ath_beacon_config(sc, vap); 5958 5959 /* 5960 * PR: kern/175227 5961 * 5962 * Reconfigure beacons during reset; as otherwise 5963 * we won't get the beacon timers reprogrammed 5964 * after a reset and thus we won't pick up a 5965 * beacon miss interrupt. 5966 * 5967 * Hopefully we'll see a beacon before the BMISS 5968 * timer fires (too often), leading to a STA 5969 * disassociation. 5970 */ 5971 sc->sc_beacons = 1; 5972 } 5973 break; 5974 case IEEE80211_M_MONITOR: 5975 /* 5976 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5977 * transitions so we must re-enable interrupts here to 5978 * handle the case of a single monitor mode vap. 5979 */ 5980 ath_hal_intrset(ah, sc->sc_imask); 5981 break; 5982 case IEEE80211_M_WDS: 5983 break; 5984 default: 5985 break; 5986 } 5987 /* 5988 * Let the hal process statistics collected during a 5989 * scan so it can provide calibrated noise floor data. 5990 */ 5991 ath_hal_process_noisefloor(ah); 5992 /* 5993 * Reset rssi stats; maybe not the best place... 5994 */ 5995 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5996 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5997 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5998 5999 /* 6000 * Force awake for RUN mode. 6001 */ 6002 ATH_LOCK(sc); 6003 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6004 ath_power_setpower(sc, HAL_PM_AWAKE); 6005 6006 /* 6007 * Finally, start any timers and the task q thread 6008 * (in case we didn't go through SCAN state). 6009 */ 6010 if (ath_longcalinterval != 0) { 6011 /* start periodic recalibration timer */ 6012 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6013 } else { 6014 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6015 "%s: calibration disabled\n", __func__); 6016 } 6017 ATH_UNLOCK(sc); 6018 6019 taskqueue_unblock(sc->sc_tq); 6020 } else if (nstate == IEEE80211_S_INIT) { 6021 /* 6022 * If there are no vaps left in RUN state then 6023 * shutdown host/driver operation: 6024 * o disable interrupts 6025 * o disable the task queue thread 6026 * o mark beacon processing as stopped 6027 */ 6028 if (!ath_isanyrunningvaps(vap)) { 6029 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6030 /* disable interrupts */ 6031 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6032 taskqueue_block(sc->sc_tq); 6033 sc->sc_beacons = 0; 6034 } 6035 #ifdef IEEE80211_SUPPORT_TDMA 6036 ath_hal_setcca(ah, AH_TRUE); 6037 #endif 6038 } else if (nstate == IEEE80211_S_SLEEP) { 6039 /* We're going to sleep, so transition appropriately */ 6040 /* For now, only do this if we're a single STA vap */ 6041 if (sc->sc_nvaps == 1 && 6042 vap->iv_opmode == IEEE80211_M_STA) { 6043 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6044 ATH_LOCK(sc); 6045 /* 6046 * Always at least set the self-generated 6047 * frame config to set PWRMGT=1. 6048 */ 6049 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6050 6051 /* 6052 * If we're not syncing beacons, transition 6053 * to NETWORK_SLEEP. 6054 * 6055 * We stay awake if syncbeacon > 0 in case 6056 * we need to listen for some beacons otherwise 6057 * our beacon timer config may be wrong. 6058 */ 6059 if (sc->sc_syncbeacon == 0) { 6060 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 6061 } 6062 ATH_UNLOCK(sc); 6063 } 6064 } 6065 bad: 6066 ieee80211_free_node(ni); 6067 6068 /* 6069 * Restore the power state - either to what it was, or 6070 * to network_sleep if it's alright. 6071 */ 6072 ATH_LOCK(sc); 6073 ath_power_restore_power_state(sc); 6074 ATH_UNLOCK(sc); 6075 return error; 6076 } 6077 6078 /* 6079 * Allocate a key cache slot to the station so we can 6080 * setup a mapping from key index to node. The key cache 6081 * slot is needed for managing antenna state and for 6082 * compression when stations do not use crypto. We do 6083 * it uniliaterally here; if crypto is employed this slot 6084 * will be reassigned. 6085 */ 6086 static void 6087 ath_setup_stationkey(struct ieee80211_node *ni) 6088 { 6089 struct ieee80211vap *vap = ni->ni_vap; 6090 struct ath_softc *sc = vap->iv_ic->ic_softc; 6091 ieee80211_keyix keyix, rxkeyix; 6092 6093 /* XXX should take a locked ref to vap->iv_bss */ 6094 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6095 /* 6096 * Key cache is full; we'll fall back to doing 6097 * the more expensive lookup in software. Note 6098 * this also means no h/w compression. 6099 */ 6100 /* XXX msg+statistic */ 6101 } else { 6102 /* XXX locking? */ 6103 ni->ni_ucastkey.wk_keyix = keyix; 6104 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6105 /* NB: must mark device key to get called back on delete */ 6106 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6107 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6108 /* NB: this will create a pass-thru key entry */ 6109 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6110 } 6111 } 6112 6113 /* 6114 * Setup driver-specific state for a newly associated node. 6115 * Note that we're called also on a re-associate, the isnew 6116 * param tells us if this is the first time or not. 6117 */ 6118 static void 6119 ath_newassoc(struct ieee80211_node *ni, int isnew) 6120 { 6121 struct ath_node *an = ATH_NODE(ni); 6122 struct ieee80211vap *vap = ni->ni_vap; 6123 struct ath_softc *sc = vap->iv_ic->ic_softc; 6124 const struct ieee80211_txparam *tp = ni->ni_txparms; 6125 6126 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6127 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6128 6129 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6130 __func__, 6131 ni->ni_macaddr, 6132 ":", 6133 isnew, 6134 an->an_is_powersave); 6135 6136 ATH_NODE_LOCK(an); 6137 ath_rate_newassoc(sc, an, isnew); 6138 ATH_NODE_UNLOCK(an); 6139 6140 if (isnew && 6141 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6142 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6143 ath_setup_stationkey(ni); 6144 6145 /* 6146 * If we're reassociating, make sure that any paused queues 6147 * get unpaused. 6148 * 6149 * Now, we may hvae frames in the hardware queue for this node. 6150 * So if we are reassociating and there are frames in the queue, 6151 * we need to go through the cleanup path to ensure that they're 6152 * marked as non-aggregate. 6153 */ 6154 if (! isnew) { 6155 DPRINTF(sc, ATH_DEBUG_NODE, 6156 "%s: %6D: reassoc; is_powersave=%d\n", 6157 __func__, 6158 ni->ni_macaddr, 6159 ":", 6160 an->an_is_powersave); 6161 6162 /* XXX for now, we can't hold the lock across assoc */ 6163 ath_tx_node_reassoc(sc, an); 6164 6165 /* XXX for now, we can't hold the lock across wakeup */ 6166 if (an->an_is_powersave) 6167 ath_tx_node_wakeup(sc, an); 6168 } 6169 } 6170 6171 static int 6172 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6173 int nchans, struct ieee80211_channel chans[]) 6174 { 6175 struct ath_softc *sc = ic->ic_softc; 6176 struct ath_hal *ah = sc->sc_ah; 6177 HAL_STATUS status; 6178 6179 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6180 "%s: rd %u cc %u location %c%s\n", 6181 __func__, reg->regdomain, reg->country, reg->location, 6182 reg->ecm ? " ecm" : ""); 6183 6184 status = ath_hal_set_channels(ah, chans, nchans, 6185 reg->country, reg->regdomain); 6186 if (status != HAL_OK) { 6187 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6188 __func__, status); 6189 return EINVAL; /* XXX */ 6190 } 6191 6192 return 0; 6193 } 6194 6195 static void 6196 ath_getradiocaps(struct ieee80211com *ic, 6197 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6198 { 6199 struct ath_softc *sc = ic->ic_softc; 6200 struct ath_hal *ah = sc->sc_ah; 6201 6202 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6203 __func__, SKU_DEBUG, CTRY_DEFAULT); 6204 6205 /* XXX check return */ 6206 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6207 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6208 6209 } 6210 6211 static int 6212 ath_getchannels(struct ath_softc *sc) 6213 { 6214 struct ieee80211com *ic = &sc->sc_ic; 6215 struct ath_hal *ah = sc->sc_ah; 6216 HAL_STATUS status; 6217 6218 /* 6219 * Collect channel set based on EEPROM contents. 6220 */ 6221 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6222 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6223 if (status != HAL_OK) { 6224 device_printf(sc->sc_dev, 6225 "%s: unable to collect channel list from hal, status %d\n", 6226 __func__, status); 6227 return EINVAL; 6228 } 6229 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6230 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6231 /* XXX map Atheros sku's to net80211 SKU's */ 6232 /* XXX net80211 types too small */ 6233 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6234 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6235 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6236 ic->ic_regdomain.isocc[1] = ' '; 6237 6238 ic->ic_regdomain.ecm = 1; 6239 ic->ic_regdomain.location = 'I'; 6240 6241 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6242 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6243 __func__, sc->sc_eerd, sc->sc_eecc, 6244 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6245 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6246 return 0; 6247 } 6248 6249 static int 6250 ath_rate_setup(struct ath_softc *sc, u_int mode) 6251 { 6252 struct ath_hal *ah = sc->sc_ah; 6253 const HAL_RATE_TABLE *rt; 6254 6255 switch (mode) { 6256 case IEEE80211_MODE_11A: 6257 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6258 break; 6259 case IEEE80211_MODE_HALF: 6260 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6261 break; 6262 case IEEE80211_MODE_QUARTER: 6263 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6264 break; 6265 case IEEE80211_MODE_11B: 6266 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6267 break; 6268 case IEEE80211_MODE_11G: 6269 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6270 break; 6271 case IEEE80211_MODE_TURBO_A: 6272 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6273 break; 6274 case IEEE80211_MODE_TURBO_G: 6275 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6276 break; 6277 case IEEE80211_MODE_STURBO_A: 6278 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6279 break; 6280 case IEEE80211_MODE_11NA: 6281 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6282 break; 6283 case IEEE80211_MODE_11NG: 6284 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6285 break; 6286 default: 6287 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6288 __func__, mode); 6289 return 0; 6290 } 6291 sc->sc_rates[mode] = rt; 6292 return (rt != NULL); 6293 } 6294 6295 static void 6296 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6297 { 6298 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6299 static const struct { 6300 u_int rate; /* tx/rx 802.11 rate */ 6301 u_int16_t timeOn; /* LED on time (ms) */ 6302 u_int16_t timeOff; /* LED off time (ms) */ 6303 } blinkrates[] = { 6304 { 108, 40, 10 }, 6305 { 96, 44, 11 }, 6306 { 72, 50, 13 }, 6307 { 48, 57, 14 }, 6308 { 36, 67, 16 }, 6309 { 24, 80, 20 }, 6310 { 22, 100, 25 }, 6311 { 18, 133, 34 }, 6312 { 12, 160, 40 }, 6313 { 10, 200, 50 }, 6314 { 6, 240, 58 }, 6315 { 4, 267, 66 }, 6316 { 2, 400, 100 }, 6317 { 0, 500, 130 }, 6318 /* XXX half/quarter rates */ 6319 }; 6320 const HAL_RATE_TABLE *rt; 6321 int i, j; 6322 6323 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6324 rt = sc->sc_rates[mode]; 6325 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6326 for (i = 0; i < rt->rateCount; i++) { 6327 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6328 if (rt->info[i].phy != IEEE80211_T_HT) 6329 sc->sc_rixmap[ieeerate] = i; 6330 else 6331 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6332 } 6333 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6334 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6335 if (i >= rt->rateCount) { 6336 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6337 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6338 continue; 6339 } 6340 sc->sc_hwmap[i].ieeerate = 6341 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6342 if (rt->info[i].phy == IEEE80211_T_HT) 6343 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6344 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6345 if (rt->info[i].shortPreamble || 6346 rt->info[i].phy == IEEE80211_T_OFDM) 6347 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6348 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6349 for (j = 0; j < nitems(blinkrates)-1; j++) 6350 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6351 break; 6352 /* NB: this uses the last entry if the rate isn't found */ 6353 /* XXX beware of overlow */ 6354 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6355 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6356 } 6357 sc->sc_currates = rt; 6358 sc->sc_curmode = mode; 6359 /* 6360 * All protection frames are transmited at 2Mb/s for 6361 * 11g, otherwise at 1Mb/s. 6362 */ 6363 if (mode == IEEE80211_MODE_11G) 6364 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6365 else 6366 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6367 /* NB: caller is responsible for resetting rate control state */ 6368 } 6369 6370 static void 6371 ath_watchdog(void *arg) 6372 { 6373 struct ath_softc *sc = arg; 6374 struct ieee80211com *ic = &sc->sc_ic; 6375 int do_reset = 0; 6376 6377 ATH_LOCK_ASSERT(sc); 6378 6379 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6380 uint32_t hangs; 6381 6382 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6383 6384 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6385 hangs != 0) { 6386 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6387 hangs & 0xff ? "bb" : "mac", hangs); 6388 } else 6389 device_printf(sc->sc_dev, "device timeout\n"); 6390 do_reset = 1; 6391 counter_u64_add(ic->ic_oerrors, 1); 6392 sc->sc_stats.ast_watchdog++; 6393 6394 ath_power_restore_power_state(sc); 6395 } 6396 6397 /* 6398 * We can't hold the lock across the ath_reset() call. 6399 * 6400 * And since this routine can't hold a lock and sleep, 6401 * do the reset deferred. 6402 */ 6403 if (do_reset) { 6404 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6405 } 6406 6407 callout_schedule(&sc->sc_wd_ch, hz); 6408 } 6409 6410 /* 6411 * Fetch the rate control statistics for the given node. 6412 */ 6413 static int 6414 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 6415 { 6416 struct ath_node *an; 6417 struct ieee80211com *ic = &sc->sc_ic; 6418 struct ieee80211_node *ni; 6419 int error = 0; 6420 6421 /* Perform a lookup on the given node */ 6422 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 6423 if (ni == NULL) { 6424 error = EINVAL; 6425 goto bad; 6426 } 6427 6428 /* Lock the ath_node */ 6429 an = ATH_NODE(ni); 6430 ATH_NODE_LOCK(an); 6431 6432 /* Fetch the rate control stats for this node */ 6433 error = ath_rate_fetch_node_stats(sc, an, rs); 6434 6435 /* No matter what happens here, just drop through */ 6436 6437 /* Unlock the ath_node */ 6438 ATH_NODE_UNLOCK(an); 6439 6440 /* Unref the node */ 6441 ieee80211_node_decref(ni); 6442 6443 bad: 6444 return (error); 6445 } 6446 6447 #ifdef ATH_DIAGAPI 6448 /* 6449 * Diagnostic interface to the HAL. This is used by various 6450 * tools to do things like retrieve register contents for 6451 * debugging. The mechanism is intentionally opaque so that 6452 * it can change frequently w/o concern for compatiblity. 6453 */ 6454 static int 6455 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6456 { 6457 struct ath_hal *ah = sc->sc_ah; 6458 u_int id = ad->ad_id & ATH_DIAG_ID; 6459 void *indata = NULL; 6460 void *outdata = NULL; 6461 u_int32_t insize = ad->ad_in_size; 6462 u_int32_t outsize = ad->ad_out_size; 6463 int error = 0; 6464 6465 if (ad->ad_id & ATH_DIAG_IN) { 6466 /* 6467 * Copy in data. 6468 */ 6469 indata = malloc(insize, M_TEMP, M_NOWAIT); 6470 if (indata == NULL) { 6471 error = ENOMEM; 6472 goto bad; 6473 } 6474 error = copyin(ad->ad_in_data, indata, insize); 6475 if (error) 6476 goto bad; 6477 } 6478 if (ad->ad_id & ATH_DIAG_DYN) { 6479 /* 6480 * Allocate a buffer for the results (otherwise the HAL 6481 * returns a pointer to a buffer where we can read the 6482 * results). Note that we depend on the HAL leaving this 6483 * pointer for us to use below in reclaiming the buffer; 6484 * may want to be more defensive. 6485 */ 6486 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6487 if (outdata == NULL) { 6488 error = ENOMEM; 6489 goto bad; 6490 } 6491 } 6492 6493 6494 ATH_LOCK(sc); 6495 if (id != HAL_DIAG_REGS) 6496 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6497 ATH_UNLOCK(sc); 6498 6499 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6500 if (outsize < ad->ad_out_size) 6501 ad->ad_out_size = outsize; 6502 if (outdata != NULL) 6503 error = copyout(outdata, ad->ad_out_data, 6504 ad->ad_out_size); 6505 } else { 6506 error = EINVAL; 6507 } 6508 6509 ATH_LOCK(sc); 6510 if (id != HAL_DIAG_REGS) 6511 ath_power_restore_power_state(sc); 6512 ATH_UNLOCK(sc); 6513 6514 bad: 6515 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6516 free(indata, M_TEMP); 6517 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6518 free(outdata, M_TEMP); 6519 return error; 6520 } 6521 #endif /* ATH_DIAGAPI */ 6522 6523 static void 6524 ath_parent(struct ieee80211com *ic) 6525 { 6526 struct ath_softc *sc = ic->ic_softc; 6527 int error = EDOOFUS; 6528 6529 ATH_LOCK(sc); 6530 if (ic->ic_nrunning > 0) { 6531 /* 6532 * To avoid rescanning another access point, 6533 * do not call ath_init() here. Instead, 6534 * only reflect promisc mode settings. 6535 */ 6536 if (sc->sc_running) { 6537 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6538 ath_mode_init(sc); 6539 ath_power_restore_power_state(sc); 6540 } else if (!sc->sc_invalid) { 6541 /* 6542 * Beware of being called during attach/detach 6543 * to reset promiscuous mode. In that case we 6544 * will still be marked UP but not RUNNING. 6545 * However trying to re-init the interface 6546 * is the wrong thing to do as we've already 6547 * torn down much of our state. There's 6548 * probably a better way to deal with this. 6549 */ 6550 error = ath_init(sc); 6551 } 6552 } else { 6553 ath_stop(sc); 6554 if (!sc->sc_invalid) 6555 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6556 } 6557 ATH_UNLOCK(sc); 6558 6559 if (error == 0) { 6560 #ifdef ATH_TX99_DIAG 6561 if (sc->sc_tx99 != NULL) 6562 sc->sc_tx99->start(sc->sc_tx99); 6563 else 6564 #endif 6565 ieee80211_start_all(ic); 6566 } 6567 } 6568 6569 static int 6570 ath_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 6571 { 6572 struct ifreq *ifr = data; 6573 struct ath_softc *sc = ic->ic_softc; 6574 6575 switch (cmd) { 6576 case SIOCGATHSTATS: { 6577 struct ieee80211vap *vap; 6578 struct ifnet *ifp; 6579 const HAL_RATE_TABLE *rt; 6580 6581 /* NB: embed these numbers to get a consistent view */ 6582 sc->sc_stats.ast_tx_packets = 0; 6583 sc->sc_stats.ast_rx_packets = 0; 6584 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 6585 ifp = vap->iv_ifp; 6586 sc->sc_stats.ast_tx_packets += ifp->if_get_counter(ifp, 6587 IFCOUNTER_OPACKETS); 6588 sc->sc_stats.ast_rx_packets += ifp->if_get_counter(ifp, 6589 IFCOUNTER_IPACKETS); 6590 } 6591 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6592 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6593 #ifdef IEEE80211_SUPPORT_TDMA 6594 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6595 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6596 #endif 6597 rt = sc->sc_currates; 6598 sc->sc_stats.ast_tx_rate = 6599 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6600 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6601 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6602 return copyout(&sc->sc_stats, 6603 ifr->ifr_data, sizeof (sc->sc_stats)); 6604 } 6605 case SIOCGATHAGSTATS: 6606 return copyout(&sc->sc_aggr_stats, 6607 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6608 case SIOCZATHSTATS: { 6609 int error; 6610 6611 error = priv_check(curthread, PRIV_DRIVER); 6612 if (error == 0) { 6613 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6614 memset(&sc->sc_aggr_stats, 0, 6615 sizeof(sc->sc_aggr_stats)); 6616 memset(&sc->sc_intr_stats, 0, 6617 sizeof(sc->sc_intr_stats)); 6618 } 6619 return (error); 6620 } 6621 #ifdef ATH_DIAGAPI 6622 case SIOCGATHDIAG: 6623 return (ath_ioctl_diag(sc, data)); 6624 case SIOCGATHPHYERR: 6625 return (ath_ioctl_phyerr(sc, data)); 6626 #endif 6627 case SIOCGATHSPECTRAL: 6628 return (ath_ioctl_spectral(sc, data)); 6629 case SIOCGATHNODERATESTATS: 6630 return (ath_ioctl_ratestats(sc, data)); 6631 default: 6632 return (ENOTTY); 6633 } 6634 } 6635 6636 /* 6637 * Announce various information on device/driver attach. 6638 */ 6639 static void 6640 ath_announce(struct ath_softc *sc) 6641 { 6642 struct ath_hal *ah = sc->sc_ah; 6643 6644 device_printf(sc->sc_dev, "AR%s mac %d.%d RF%s phy %d.%d\n", 6645 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6646 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6647 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6648 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6649 if (bootverbose) { 6650 int i; 6651 for (i = 0; i <= WME_AC_VO; i++) { 6652 struct ath_txq *txq = sc->sc_ac2q[i]; 6653 device_printf(sc->sc_dev, 6654 "Use hw queue %u for %s traffic\n", 6655 txq->axq_qnum, ieee80211_wme_acnames[i]); 6656 } 6657 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6658 sc->sc_cabq->axq_qnum); 6659 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6660 sc->sc_bhalq); 6661 } 6662 if (ath_rxbuf != ATH_RXBUF) 6663 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6664 if (ath_txbuf != ATH_TXBUF) 6665 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6666 if (sc->sc_mcastkey && bootverbose) 6667 device_printf(sc->sc_dev, "using multicast key search\n"); 6668 } 6669 6670 static void 6671 ath_dfs_tasklet(void *p, int npending) 6672 { 6673 struct ath_softc *sc = (struct ath_softc *) p; 6674 struct ieee80211com *ic = &sc->sc_ic; 6675 6676 /* 6677 * If previous processing has found a radar event, 6678 * signal this to the net80211 layer to begin DFS 6679 * processing. 6680 */ 6681 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6682 /* DFS event found, initiate channel change */ 6683 /* 6684 * XXX doesn't currently tell us whether the event 6685 * XXX was found in the primary or extension 6686 * XXX channel! 6687 */ 6688 IEEE80211_LOCK(ic); 6689 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6690 IEEE80211_UNLOCK(ic); 6691 } 6692 } 6693 6694 /* 6695 * Enable/disable power save. This must be called with 6696 * no TX driver locks currently held, so it should only 6697 * be called from the RX path (which doesn't hold any 6698 * TX driver locks.) 6699 */ 6700 static void 6701 ath_node_powersave(struct ieee80211_node *ni, int enable) 6702 { 6703 #ifdef ATH_SW_PSQ 6704 struct ath_node *an = ATH_NODE(ni); 6705 struct ieee80211com *ic = ni->ni_ic; 6706 struct ath_softc *sc = ic->ic_softc; 6707 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6708 6709 /* XXX and no TXQ locks should be held here */ 6710 6711 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6712 __func__, 6713 ni->ni_macaddr, 6714 ":", 6715 !! enable); 6716 6717 /* Suspend or resume software queue handling */ 6718 if (enable) 6719 ath_tx_node_sleep(sc, an); 6720 else 6721 ath_tx_node_wakeup(sc, an); 6722 6723 /* Update net80211 state */ 6724 avp->av_node_ps(ni, enable); 6725 #else 6726 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6727 6728 /* Update net80211 state */ 6729 avp->av_node_ps(ni, enable); 6730 #endif/* ATH_SW_PSQ */ 6731 } 6732 6733 /* 6734 * Notification from net80211 that the powersave queue state has 6735 * changed. 6736 * 6737 * Since the software queue also may have some frames: 6738 * 6739 * + if the node software queue has frames and the TID state 6740 * is 0, we set the TIM; 6741 * + if the node and the stack are both empty, we clear the TIM bit. 6742 * + If the stack tries to set the bit, always set it. 6743 * + If the stack tries to clear the bit, only clear it if the 6744 * software queue in question is also cleared. 6745 * 6746 * TODO: this is called during node teardown; so let's ensure this 6747 * is all correctly handled and that the TIM bit is cleared. 6748 * It may be that the node flush is called _AFTER_ the net80211 6749 * stack clears the TIM. 6750 * 6751 * Here is the racy part. Since it's possible >1 concurrent, 6752 * overlapping TXes will appear complete with a TX completion in 6753 * another thread, it's possible that the concurrent TIM calls will 6754 * clash. We can't hold the node lock here because setting the 6755 * TIM grabs the net80211 comlock and this may cause a LOR. 6756 * The solution is either to totally serialise _everything_ at 6757 * this point (ie, all TX, completion and any reset/flush go into 6758 * one taskqueue) or a new "ath TIM lock" needs to be created that 6759 * just wraps the driver state change and this call to avp->av_set_tim(). 6760 * 6761 * The same race exists in the net80211 power save queue handling 6762 * as well. Since multiple transmitting threads may queue frames 6763 * into the driver, as well as ps-poll and the driver transmitting 6764 * frames (and thus clearing the psq), it's quite possible that 6765 * a packet entering the PSQ and a ps-poll being handled will 6766 * race, causing the TIM to be cleared and not re-set. 6767 */ 6768 static int 6769 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6770 { 6771 #ifdef ATH_SW_PSQ 6772 struct ieee80211com *ic = ni->ni_ic; 6773 struct ath_softc *sc = ic->ic_softc; 6774 struct ath_node *an = ATH_NODE(ni); 6775 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6776 int changed = 0; 6777 6778 ATH_TX_LOCK(sc); 6779 an->an_stack_psq = enable; 6780 6781 /* 6782 * This will get called for all operating modes, 6783 * even if avp->av_set_tim is unset. 6784 * It's currently set for hostap/ibss modes; but 6785 * the same infrastructure is used for both STA 6786 * and AP/IBSS node power save. 6787 */ 6788 if (avp->av_set_tim == NULL) { 6789 ATH_TX_UNLOCK(sc); 6790 return (0); 6791 } 6792 6793 /* 6794 * If setting the bit, always set it here. 6795 * If clearing the bit, only clear it if the 6796 * software queue is also empty. 6797 * 6798 * If the node has left power save, just clear the TIM 6799 * bit regardless of the state of the power save queue. 6800 * 6801 * XXX TODO: although atomics are used, it's quite possible 6802 * that a race will occur between this and setting/clearing 6803 * in another thread. TX completion will occur always in 6804 * one thread, however setting/clearing the TIM bit can come 6805 * from a variety of different process contexts! 6806 */ 6807 if (enable && an->an_tim_set == 1) { 6808 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6809 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6810 __func__, 6811 ni->ni_macaddr, 6812 ":", 6813 enable); 6814 ATH_TX_UNLOCK(sc); 6815 } else if (enable) { 6816 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6817 "%s: %6D: enable=%d, enabling TIM\n", 6818 __func__, 6819 ni->ni_macaddr, 6820 ":", 6821 enable); 6822 an->an_tim_set = 1; 6823 ATH_TX_UNLOCK(sc); 6824 changed = avp->av_set_tim(ni, enable); 6825 } else if (an->an_swq_depth == 0) { 6826 /* disable */ 6827 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6828 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6829 __func__, 6830 ni->ni_macaddr, 6831 ":", 6832 enable); 6833 an->an_tim_set = 0; 6834 ATH_TX_UNLOCK(sc); 6835 changed = avp->av_set_tim(ni, enable); 6836 } else if (! an->an_is_powersave) { 6837 /* 6838 * disable regardless; the node isn't in powersave now 6839 */ 6840 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6841 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6842 __func__, 6843 ni->ni_macaddr, 6844 ":", 6845 enable); 6846 an->an_tim_set = 0; 6847 ATH_TX_UNLOCK(sc); 6848 changed = avp->av_set_tim(ni, enable); 6849 } else { 6850 /* 6851 * psq disable, node is currently in powersave, node 6852 * software queue isn't empty, so don't clear the TIM bit 6853 * for now. 6854 */ 6855 ATH_TX_UNLOCK(sc); 6856 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6857 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6858 __func__, 6859 ni->ni_macaddr, 6860 ":", 6861 enable); 6862 changed = 0; 6863 } 6864 6865 return (changed); 6866 #else 6867 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6868 6869 /* 6870 * Some operating modes don't set av_set_tim(), so don't 6871 * update it here. 6872 */ 6873 if (avp->av_set_tim == NULL) 6874 return (0); 6875 6876 return (avp->av_set_tim(ni, enable)); 6877 #endif /* ATH_SW_PSQ */ 6878 } 6879 6880 /* 6881 * Set or update the TIM from the software queue. 6882 * 6883 * Check the software queue depth before attempting to do lock 6884 * anything; that avoids trying to obtain the lock. Then, 6885 * re-check afterwards to ensure nothing has changed in the 6886 * meantime. 6887 * 6888 * set: This is designed to be called from the TX path, after 6889 * a frame has been queued; to see if the swq > 0. 6890 * 6891 * clear: This is designed to be called from the buffer completion point 6892 * (right now it's ath_tx_default_comp()) where the state of 6893 * a software queue has changed. 6894 * 6895 * It makes sense to place it at buffer free / completion rather 6896 * than after each software queue operation, as there's no real 6897 * point in churning the TIM bit as the last frames in the software 6898 * queue are transmitted. If they fail and we retry them, we'd 6899 * just be setting the TIM bit again anyway. 6900 */ 6901 void 6902 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6903 int enable) 6904 { 6905 #ifdef ATH_SW_PSQ 6906 struct ath_node *an; 6907 struct ath_vap *avp; 6908 6909 /* Don't do this for broadcast/etc frames */ 6910 if (ni == NULL) 6911 return; 6912 6913 an = ATH_NODE(ni); 6914 avp = ATH_VAP(ni->ni_vap); 6915 6916 /* 6917 * And for operating modes without the TIM handler set, let's 6918 * just skip those. 6919 */ 6920 if (avp->av_set_tim == NULL) 6921 return; 6922 6923 ATH_TX_LOCK_ASSERT(sc); 6924 6925 if (enable) { 6926 if (an->an_is_powersave && 6927 an->an_tim_set == 0 && 6928 an->an_swq_depth != 0) { 6929 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6930 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6931 __func__, 6932 ni->ni_macaddr, 6933 ":"); 6934 an->an_tim_set = 1; 6935 (void) avp->av_set_tim(ni, 1); 6936 } 6937 } else { 6938 /* 6939 * Don't bother grabbing the lock unless the queue is empty. 6940 */ 6941 if (an->an_swq_depth != 0) 6942 return; 6943 6944 if (an->an_is_powersave && 6945 an->an_stack_psq == 0 && 6946 an->an_tim_set == 1 && 6947 an->an_swq_depth == 0) { 6948 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6949 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6950 " clear!\n", 6951 __func__, 6952 ni->ni_macaddr, 6953 ":"); 6954 an->an_tim_set = 0; 6955 (void) avp->av_set_tim(ni, 0); 6956 } 6957 } 6958 #else 6959 return; 6960 #endif /* ATH_SW_PSQ */ 6961 } 6962 6963 /* 6964 * Received a ps-poll frame from net80211. 6965 * 6966 * Here we get a chance to serve out a software-queued frame ourselves 6967 * before we punt it to net80211 to transmit us one itself - either 6968 * because there's traffic in the net80211 psq, or a NULL frame to 6969 * indicate there's nothing else. 6970 */ 6971 static void 6972 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6973 { 6974 #ifdef ATH_SW_PSQ 6975 struct ath_node *an; 6976 struct ath_vap *avp; 6977 struct ieee80211com *ic = ni->ni_ic; 6978 struct ath_softc *sc = ic->ic_softc; 6979 int tid; 6980 6981 /* Just paranoia */ 6982 if (ni == NULL) 6983 return; 6984 6985 /* 6986 * Unassociated (temporary node) station. 6987 */ 6988 if (ni->ni_associd == 0) 6989 return; 6990 6991 /* 6992 * We do have an active node, so let's begin looking into it. 6993 */ 6994 an = ATH_NODE(ni); 6995 avp = ATH_VAP(ni->ni_vap); 6996 6997 /* 6998 * For now, we just call the original ps-poll method. 6999 * Once we're ready to flip this on: 7000 * 7001 * + Set leak to 1, as no matter what we're going to have 7002 * to send a frame; 7003 * + Check the software queue and if there's something in it, 7004 * schedule the highest TID thas has traffic from this node. 7005 * Then make sure we schedule the software scheduler to 7006 * run so it picks up said frame. 7007 * 7008 * That way whatever happens, we'll at least send _a_ frame 7009 * to the given node. 7010 * 7011 * Again, yes, it's crappy QoS if the node has multiple 7012 * TIDs worth of traffic - but let's get it working first 7013 * before we optimise it. 7014 * 7015 * Also yes, there's definitely latency here - we're not 7016 * direct dispatching to the hardware in this path (and 7017 * we're likely being called from the packet receive path, 7018 * so going back into TX may be a little hairy!) but again 7019 * I'd like to get this working first before optimising 7020 * turn-around time. 7021 */ 7022 7023 ATH_TX_LOCK(sc); 7024 7025 /* 7026 * Legacy - we're called and the node isn't asleep. 7027 * Immediately punt. 7028 */ 7029 if (! an->an_is_powersave) { 7030 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7031 "%s: %6D: not in powersave?\n", 7032 __func__, 7033 ni->ni_macaddr, 7034 ":"); 7035 ATH_TX_UNLOCK(sc); 7036 avp->av_recv_pspoll(ni, m); 7037 return; 7038 } 7039 7040 /* 7041 * We're in powersave. 7042 * 7043 * Leak a frame. 7044 */ 7045 an->an_leak_count = 1; 7046 7047 /* 7048 * Now, if there's no frames in the node, just punt to 7049 * recv_pspoll. 7050 * 7051 * Don't bother checking if the TIM bit is set, we really 7052 * only care if there are any frames here! 7053 */ 7054 if (an->an_swq_depth == 0) { 7055 ATH_TX_UNLOCK(sc); 7056 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7057 "%s: %6D: SWQ empty; punting to net80211\n", 7058 __func__, 7059 ni->ni_macaddr, 7060 ":"); 7061 avp->av_recv_pspoll(ni, m); 7062 return; 7063 } 7064 7065 /* 7066 * Ok, let's schedule the highest TID that has traffic 7067 * and then schedule something. 7068 */ 7069 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7070 struct ath_tid *atid = &an->an_tid[tid]; 7071 /* 7072 * No frames? Skip. 7073 */ 7074 if (atid->axq_depth == 0) 7075 continue; 7076 ath_tx_tid_sched(sc, atid); 7077 /* 7078 * XXX we could do a direct call to the TXQ 7079 * scheduler code here to optimise latency 7080 * at the expense of a REALLY deep callstack. 7081 */ 7082 ATH_TX_UNLOCK(sc); 7083 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7084 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7085 "%s: %6D: leaking frame to TID %d\n", 7086 __func__, 7087 ni->ni_macaddr, 7088 ":", 7089 tid); 7090 return; 7091 } 7092 7093 ATH_TX_UNLOCK(sc); 7094 7095 /* 7096 * XXX nothing in the TIDs at this point? Eek. 7097 */ 7098 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7099 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7100 __func__, 7101 ni->ni_macaddr, 7102 ":"); 7103 avp->av_recv_pspoll(ni, m); 7104 #else 7105 avp->av_recv_pspoll(ni, m); 7106 #endif /* ATH_SW_PSQ */ 7107 } 7108 7109 MODULE_VERSION(if_ath, 1); 7110 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 7111 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7112 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 7113 #endif 7114