1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysctl.h> 46 #include <sys/mbuf.h> 47 #include <sys/malloc.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/kernel.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/errno.h> 54 #include <sys/callout.h> 55 #include <sys/bus.h> 56 #include <sys/endian.h> 57 #include <sys/kthread.h> 58 #include <sys/taskqueue.h> 59 #include <sys/priv.h> 60 61 #include <machine/bus.h> 62 63 #include <net/if.h> 64 #include <net/if_dl.h> 65 #include <net/if_media.h> 66 #include <net/if_types.h> 67 #include <net/if_arp.h> 68 #include <net/ethernet.h> 69 #include <net/if_llc.h> 70 71 #include <net80211/ieee80211_var.h> 72 #include <net80211/ieee80211_regdomain.h> 73 #ifdef ATH_SUPPORT_TDMA 74 #include <net80211/ieee80211_tdma.h> 75 #endif 76 77 #include <net/bpf.h> 78 79 #ifdef INET 80 #include <netinet/in.h> 81 #include <netinet/if_ether.h> 82 #endif 83 84 #include <dev/ath/if_athvar.h> 85 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 86 87 #ifdef ATH_TX99_DIAG 88 #include <dev/ath/ath_tx99/ath_tx99.h> 89 #endif 90 91 /* 92 * We require a HAL w/ the changes for split tx/rx MIC. 93 */ 94 CTASSERT(HAL_ABI_VERSION > 0x06052200); 95 96 /* 97 * ATH_BCBUF determines the number of vap's that can transmit 98 * beacons and also (currently) the number of vap's that can 99 * have unique mac addresses/bssid. When staggering beacons 100 * 4 is probably a good max as otherwise the beacons become 101 * very closely spaced and there is limited time for cab q traffic 102 * to go out. You can burst beacons instead but that is not good 103 * for stations in power save and at some point you really want 104 * another radio (and channel). 105 * 106 * The limit on the number of mac addresses is tied to our use of 107 * the U/L bit and tracking addresses in a byte; it would be 108 * worthwhile to allow more for applications like proxy sta. 109 */ 110 CTASSERT(ATH_BCBUF <= 8); 111 112 /* unaligned little endian access */ 113 #define LE_READ_2(p) \ 114 ((u_int16_t) \ 115 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 116 #define LE_READ_4(p) \ 117 ((u_int32_t) \ 118 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 119 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 120 121 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 122 const char name[IFNAMSIZ], int unit, int opmode, 123 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 124 const uint8_t mac[IEEE80211_ADDR_LEN]); 125 static void ath_vap_delete(struct ieee80211vap *); 126 static void ath_init(void *); 127 static void ath_stop_locked(struct ifnet *); 128 static void ath_stop(struct ifnet *); 129 static void ath_start(struct ifnet *); 130 static int ath_reset(struct ifnet *); 131 static int ath_reset_vap(struct ieee80211vap *, u_long); 132 static int ath_media_change(struct ifnet *); 133 static void ath_watchdog(struct ifnet *); 134 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 135 static void ath_fatal_proc(void *, int); 136 static void ath_bmiss_vap(struct ieee80211vap *); 137 static void ath_bmiss_proc(void *, int); 138 static int ath_keyset(struct ath_softc *, const struct ieee80211_key *, 139 struct ieee80211_node *); 140 static int ath_key_alloc(struct ieee80211vap *, 141 struct ieee80211_key *, 142 ieee80211_keyix *, ieee80211_keyix *); 143 static int ath_key_delete(struct ieee80211vap *, 144 const struct ieee80211_key *); 145 static int ath_key_set(struct ieee80211vap *, const struct ieee80211_key *, 146 const u_int8_t mac[IEEE80211_ADDR_LEN]); 147 static void ath_key_update_begin(struct ieee80211vap *); 148 static void ath_key_update_end(struct ieee80211vap *); 149 static void ath_update_mcast(struct ifnet *); 150 static void ath_update_promisc(struct ifnet *); 151 static void ath_mode_init(struct ath_softc *); 152 static void ath_setslottime(struct ath_softc *); 153 static void ath_updateslot(struct ifnet *); 154 static int ath_beaconq_setup(struct ath_hal *); 155 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 156 static void ath_beacon_update(struct ieee80211vap *, int item); 157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 158 static void ath_beacon_proc(void *, int); 159 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 160 struct ieee80211vap *); 161 static void ath_bstuck_proc(void *, int); 162 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 163 static void ath_beacon_free(struct ath_softc *); 164 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 165 static void ath_descdma_cleanup(struct ath_softc *sc, 166 struct ath_descdma *, ath_bufhead *); 167 static int ath_desc_alloc(struct ath_softc *); 168 static void ath_desc_free(struct ath_softc *); 169 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 170 const uint8_t [IEEE80211_ADDR_LEN]); 171 static void ath_node_free(struct ieee80211_node *); 172 static void ath_node_getsignal(const struct ieee80211_node *, 173 int8_t *, int8_t *); 174 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 175 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 176 int subtype, int rssi, int noise, u_int32_t rstamp); 177 static void ath_setdefantenna(struct ath_softc *, u_int); 178 static void ath_rx_proc(void *, int); 179 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 180 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 181 static int ath_tx_setup(struct ath_softc *, int, int); 182 static int ath_wme_update(struct ieee80211com *); 183 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 184 static void ath_tx_cleanup(struct ath_softc *); 185 static void ath_freetx(struct mbuf *); 186 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 187 struct ath_buf *, struct mbuf *); 188 static void ath_tx_proc_q0(void *, int); 189 static void ath_tx_proc_q0123(void *, int); 190 static void ath_tx_proc(void *, int); 191 static void ath_tx_draintxq(struct ath_softc *, struct ath_txq *); 192 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 193 static void ath_draintxq(struct ath_softc *); 194 static void ath_stoprecv(struct ath_softc *); 195 static int ath_startrecv(struct ath_softc *); 196 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 197 static void ath_scan_start(struct ieee80211com *); 198 static void ath_scan_end(struct ieee80211com *); 199 static void ath_set_channel(struct ieee80211com *); 200 static void ath_calibrate(void *); 201 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 202 static void ath_setup_stationkey(struct ieee80211_node *); 203 static void ath_newassoc(struct ieee80211_node *, int); 204 static int ath_setregdomain(struct ieee80211com *, 205 struct ieee80211_regdomain *, int, 206 struct ieee80211_channel []); 207 static void ath_getradiocaps(struct ieee80211com *, int, int *, 208 struct ieee80211_channel []); 209 static int ath_getchannels(struct ath_softc *); 210 static void ath_led_event(struct ath_softc *, int); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_sysctlattach(struct ath_softc *); 216 static int ath_raw_xmit(struct ieee80211_node *, 217 struct mbuf *, const struct ieee80211_bpf_params *); 218 static void ath_bpfattach(struct ath_softc *); 219 static void ath_announce(struct ath_softc *); 220 221 #ifdef ATH_SUPPORT_TDMA 222 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 223 u_int32_t bintval); 224 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 225 const struct ieee80211_tdma_state *tdma); 226 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 227 static void ath_tdma_update(struct ieee80211_node *ni, 228 const struct ieee80211_tdma_param *tdma); 229 static void ath_tdma_beacon_send(struct ath_softc *sc, 230 struct ieee80211vap *vap); 231 232 static __inline void 233 ath_hal_setcca(struct ath_hal *ah, int ena) 234 { 235 /* 236 * NB: fill me in; this is not provided by default because disabling 237 * CCA in most locales violates regulatory. 238 */ 239 } 240 241 static __inline int 242 ath_hal_getcca(struct ath_hal *ah) 243 { 244 u_int32_t diag; 245 if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK) 246 return 1; 247 return ((diag & 0x500000) == 0); 248 } 249 250 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 251 #define TDMA_LPF_LEN 6 252 #define TDMA_DUMMY_MARKER 0x127 253 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 254 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 255 #define TDMA_LPF(x, y, len) \ 256 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 257 #define TDMA_SAMPLE(x, y) do { \ 258 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 259 } while (0) 260 #define TDMA_EP_RND(x,mul) \ 261 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 262 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 263 #endif /* ATH_SUPPORT_TDMA */ 264 265 SYSCTL_DECL(_hw_ath); 266 267 /* XXX validate sysctl values */ 268 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 269 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 270 0, "long chip calibration interval (secs)"); 271 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 272 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 273 0, "short chip calibration interval (msecs)"); 274 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 275 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 276 0, "reset chip calibration results (secs)"); 277 278 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 279 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 280 0, "rx buffers allocated"); 281 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 282 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 283 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 284 0, "tx buffers allocated"); 285 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 286 287 static int ath_bstuck_threshold = 4; /* max missed beacons */ 288 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 289 0, "max missed beacon xmits before chip reset"); 290 291 #ifdef ATH_DEBUG 292 enum { 293 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 294 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 295 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 296 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 297 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 298 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 299 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 300 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 301 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 302 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 303 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 304 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 305 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 306 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 307 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 308 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 309 ATH_DEBUG_NODE = 0x00080000, /* node management */ 310 ATH_DEBUG_LED = 0x00100000, /* led management */ 311 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 312 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 313 ATH_DEBUG_TDMA = 0x00800000, /* TDMA processing */ 314 ATH_DEBUG_TDMA_TIMER = 0x01000000, /* TDMA timer processing */ 315 ATH_DEBUG_REGDOMAIN = 0x02000000, /* regulatory processing */ 316 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 317 ATH_DEBUG_ANY = 0xffffffff 318 }; 319 static int ath_debug = 0; 320 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 321 0, "control debugging printfs"); 322 TUNABLE_INT("hw.ath.debug", &ath_debug); 323 324 #define IFF_DUMPPKTS(sc, m) \ 325 ((sc->sc_debug & (m)) || \ 326 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 327 #define DPRINTF(sc, m, fmt, ...) do { \ 328 if (sc->sc_debug & (m)) \ 329 printf(fmt, __VA_ARGS__); \ 330 } while (0) 331 #define KEYPRINTF(sc, ix, hk, mac) do { \ 332 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 333 ath_keyprint(sc, __func__, ix, hk, mac); \ 334 } while (0) 335 static void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf, 336 u_int ix, int); 337 static void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf, 338 u_int qnum, u_int ix, int done); 339 #else 340 #define IFF_DUMPPKTS(sc, m) \ 341 ((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 342 #define DPRINTF(sc, m, fmt, ...) do { \ 343 (void) sc; \ 344 } while (0) 345 #define KEYPRINTF(sc, k, ix, mac) do { \ 346 (void) sc; \ 347 } while (0) 348 #endif 349 350 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 351 352 int 353 ath_attach(u_int16_t devid, struct ath_softc *sc) 354 { 355 struct ifnet *ifp; 356 struct ieee80211com *ic; 357 struct ath_hal *ah = NULL; 358 HAL_STATUS status; 359 int error = 0, i; 360 u_int wmodes; 361 362 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 363 364 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 365 if (ifp == NULL) { 366 device_printf(sc->sc_dev, "can not if_alloc()\n"); 367 error = ENOSPC; 368 goto bad; 369 } 370 ic = ifp->if_l2com; 371 372 /* set these up early for if_printf use */ 373 if_initname(ifp, device_get_name(sc->sc_dev), 374 device_get_unit(sc->sc_dev)); 375 376 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 377 if (ah == NULL) { 378 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 379 status); 380 error = ENXIO; 381 goto bad; 382 } 383 if (ah->ah_abi != HAL_ABI_VERSION) { 384 if_printf(ifp, "HAL ABI mismatch detected " 385 "(HAL:0x%x != driver:0x%x)\n", 386 ah->ah_abi, HAL_ABI_VERSION); 387 error = ENXIO; 388 goto bad; 389 } 390 sc->sc_ah = ah; 391 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 392 #ifdef ATH_DEBUG 393 sc->sc_debug = ath_debug; 394 #endif 395 396 /* 397 * Check if the MAC has multi-rate retry support. 398 * We do this by trying to setup a fake extended 399 * descriptor. MAC's that don't have support will 400 * return false w/o doing anything. MAC's that do 401 * support it will return true w/o doing anything. 402 */ 403 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 404 405 /* 406 * Check if the device has hardware counters for PHY 407 * errors. If so we need to enable the MIB interrupt 408 * so we can act on stat triggers. 409 */ 410 if (ath_hal_hwphycounters(ah)) 411 sc->sc_needmib = 1; 412 413 /* 414 * Get the hardware key cache size. 415 */ 416 sc->sc_keymax = ath_hal_keycachesize(ah); 417 if (sc->sc_keymax > ATH_KEYMAX) { 418 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 419 ATH_KEYMAX, sc->sc_keymax); 420 sc->sc_keymax = ATH_KEYMAX; 421 } 422 /* 423 * Reset the key cache since some parts do not 424 * reset the contents on initial power up. 425 */ 426 for (i = 0; i < sc->sc_keymax; i++) 427 ath_hal_keyreset(ah, i); 428 429 /* 430 * Collect the default channel list. 431 */ 432 error = ath_getchannels(sc); 433 if (error != 0) 434 goto bad; 435 436 /* 437 * Setup rate tables for all potential media types. 438 */ 439 ath_rate_setup(sc, IEEE80211_MODE_11A); 440 ath_rate_setup(sc, IEEE80211_MODE_11B); 441 ath_rate_setup(sc, IEEE80211_MODE_11G); 442 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 443 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 444 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 445 ath_rate_setup(sc, IEEE80211_MODE_11NA); 446 ath_rate_setup(sc, IEEE80211_MODE_11NG); 447 ath_rate_setup(sc, IEEE80211_MODE_HALF); 448 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 449 450 /* NB: setup here so ath_rate_update is happy */ 451 ath_setcurmode(sc, IEEE80211_MODE_11A); 452 453 /* 454 * Allocate tx+rx descriptors and populate the lists. 455 */ 456 error = ath_desc_alloc(sc); 457 if (error != 0) { 458 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 459 goto bad; 460 } 461 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE); 462 463 ATH_TXBUF_LOCK_INIT(sc); 464 465 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 466 taskqueue_thread_enqueue, &sc->sc_tq); 467 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 468 "%s taskq", ifp->if_xname); 469 470 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 471 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 472 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 473 474 /* 475 * Allocate hardware transmit queues: one queue for 476 * beacon frames and one data queue for each QoS 477 * priority. Note that the hal handles reseting 478 * these queues at the needed time. 479 * 480 * XXX PS-Poll 481 */ 482 sc->sc_bhalq = ath_beaconq_setup(ah); 483 if (sc->sc_bhalq == (u_int) -1) { 484 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 485 error = EIO; 486 goto bad2; 487 } 488 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 489 if (sc->sc_cabq == NULL) { 490 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 491 error = EIO; 492 goto bad2; 493 } 494 /* NB: insure BK queue is the lowest priority h/w queue */ 495 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 496 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 497 ieee80211_wme_acnames[WME_AC_BK]); 498 error = EIO; 499 goto bad2; 500 } 501 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 502 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 503 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 504 /* 505 * Not enough hardware tx queues to properly do WME; 506 * just punt and assign them all to the same h/w queue. 507 * We could do a better job of this if, for example, 508 * we allocate queues when we switch from station to 509 * AP mode. 510 */ 511 if (sc->sc_ac2q[WME_AC_VI] != NULL) 512 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 513 if (sc->sc_ac2q[WME_AC_BE] != NULL) 514 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 515 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 516 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 517 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 518 } 519 520 /* 521 * Special case certain configurations. Note the 522 * CAB queue is handled by these specially so don't 523 * include them when checking the txq setup mask. 524 */ 525 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 526 case 0x01: 527 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 528 break; 529 case 0x0f: 530 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 531 break; 532 default: 533 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 534 break; 535 } 536 537 /* 538 * Setup rate control. Some rate control modules 539 * call back to change the anntena state so expose 540 * the necessary entry points. 541 * XXX maybe belongs in struct ath_ratectrl? 542 */ 543 sc->sc_setdefantenna = ath_setdefantenna; 544 sc->sc_rc = ath_rate_attach(sc); 545 if (sc->sc_rc == NULL) { 546 error = EIO; 547 goto bad2; 548 } 549 550 sc->sc_blinking = 0; 551 sc->sc_ledstate = 1; 552 sc->sc_ledon = 0; /* low true */ 553 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 554 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 555 /* 556 * Auto-enable soft led processing for IBM cards and for 557 * 5211 minipci cards. Users can also manually enable/disable 558 * support with a sysctl. 559 */ 560 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 561 if (sc->sc_softled) { 562 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 563 HAL_GPIO_MUX_MAC_NETWORK_LED); 564 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 565 } 566 567 ifp->if_softc = sc; 568 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 569 ifp->if_start = ath_start; 570 ifp->if_watchdog = ath_watchdog; 571 ifp->if_ioctl = ath_ioctl; 572 ifp->if_init = ath_init; 573 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 574 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 575 IFQ_SET_READY(&ifp->if_snd); 576 577 ic->ic_ifp = ifp; 578 /* XXX not right but it's not used anywhere important */ 579 ic->ic_phytype = IEEE80211_T_OFDM; 580 ic->ic_opmode = IEEE80211_M_STA; 581 ic->ic_caps = 582 IEEE80211_C_STA /* station mode */ 583 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 584 | IEEE80211_C_HOSTAP /* hostap mode */ 585 | IEEE80211_C_MONITOR /* monitor mode */ 586 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 587 | IEEE80211_C_WDS /* 4-address traffic works */ 588 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 589 | IEEE80211_C_SHSLOT /* short slot time supported */ 590 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 591 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 592 | IEEE80211_C_TXFRAG /* handle tx frags */ 593 ; 594 /* 595 * Query the hal to figure out h/w crypto support. 596 */ 597 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 598 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 599 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 600 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 601 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 602 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 603 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 604 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 605 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 606 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 607 /* 608 * Check if h/w does the MIC and/or whether the 609 * separate key cache entries are required to 610 * handle both tx+rx MIC keys. 611 */ 612 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 613 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 614 /* 615 * If the h/w supports storing tx+rx MIC keys 616 * in one cache slot automatically enable use. 617 */ 618 if (ath_hal_hastkipsplit(ah) || 619 !ath_hal_settkipsplit(ah, AH_FALSE)) 620 sc->sc_splitmic = 1; 621 /* 622 * If the h/w can do TKIP MIC together with WME then 623 * we use it; otherwise we force the MIC to be done 624 * in software by the net80211 layer. 625 */ 626 if (ath_hal_haswmetkipmic(ah)) 627 sc->sc_wmetkipmic = 1; 628 } 629 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 630 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 631 /* 632 * Mark key cache slots associated with global keys 633 * as in use. If we knew TKIP was not to be used we 634 * could leave the +32, +64, and +32+64 slots free. 635 */ 636 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 637 setbit(sc->sc_keymap, i); 638 setbit(sc->sc_keymap, i+64); 639 if (sc->sc_splitmic) { 640 setbit(sc->sc_keymap, i+32); 641 setbit(sc->sc_keymap, i+32+64); 642 } 643 } 644 /* 645 * TPC support can be done either with a global cap or 646 * per-packet support. The latter is not available on 647 * all parts. We're a bit pedantic here as all parts 648 * support a global cap. 649 */ 650 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 651 ic->ic_caps |= IEEE80211_C_TXPMGT; 652 653 /* 654 * Mark WME capability only if we have sufficient 655 * hardware queues to do proper priority scheduling. 656 */ 657 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 658 ic->ic_caps |= IEEE80211_C_WME; 659 /* 660 * Check for misc other capabilities. 661 */ 662 if (ath_hal_hasbursting(ah)) 663 ic->ic_caps |= IEEE80211_C_BURST; 664 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 665 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 666 if (ath_hal_hasfastframes(ah)) 667 ic->ic_caps |= IEEE80211_C_FF; 668 wmodes = ath_hal_getwirelessmodes(ah); 669 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 670 ic->ic_caps |= IEEE80211_C_TURBOP; 671 #ifdef ATH_SUPPORT_TDMA 672 if (ath_hal_macversion(ah) > 0x78) { 673 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 674 ic->ic_tdma_update = ath_tdma_update; 675 } 676 #endif 677 /* 678 * Indicate we need the 802.11 header padded to a 679 * 32-bit boundary for 4-address and QoS frames. 680 */ 681 ic->ic_flags |= IEEE80211_F_DATAPAD; 682 683 /* 684 * Query the hal about antenna support. 685 */ 686 sc->sc_defant = ath_hal_getdefantenna(ah); 687 688 /* 689 * Not all chips have the VEOL support we want to 690 * use with IBSS beacons; check here for it. 691 */ 692 sc->sc_hasveol = ath_hal_hasveol(ah); 693 694 /* get mac address from hardware */ 695 ath_hal_getmac(ah, ic->ic_myaddr); 696 if (sc->sc_hasbmask) 697 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 698 699 /* NB: used to size node table key mapping array */ 700 ic->ic_max_keyix = sc->sc_keymax; 701 /* call MI attach routine. */ 702 ieee80211_ifattach(ic); 703 ic->ic_setregdomain = ath_setregdomain; 704 ic->ic_getradiocaps = ath_getradiocaps; 705 sc->sc_opmode = HAL_M_STA; 706 707 /* override default methods */ 708 ic->ic_newassoc = ath_newassoc; 709 ic->ic_updateslot = ath_updateslot; 710 ic->ic_wme.wme_update = ath_wme_update; 711 ic->ic_vap_create = ath_vap_create; 712 ic->ic_vap_delete = ath_vap_delete; 713 ic->ic_raw_xmit = ath_raw_xmit; 714 ic->ic_update_mcast = ath_update_mcast; 715 ic->ic_update_promisc = ath_update_promisc; 716 ic->ic_node_alloc = ath_node_alloc; 717 sc->sc_node_free = ic->ic_node_free; 718 ic->ic_node_free = ath_node_free; 719 ic->ic_node_getsignal = ath_node_getsignal; 720 ic->ic_scan_start = ath_scan_start; 721 ic->ic_scan_end = ath_scan_end; 722 ic->ic_set_channel = ath_set_channel; 723 724 ath_bpfattach(sc); 725 /* 726 * Setup dynamic sysctl's now that country code and 727 * regdomain are available from the hal. 728 */ 729 ath_sysctlattach(sc); 730 731 if (bootverbose) 732 ieee80211_announce(ic); 733 ath_announce(sc); 734 return 0; 735 bad2: 736 ath_tx_cleanup(sc); 737 ath_desc_free(sc); 738 bad: 739 if (ah) 740 ath_hal_detach(ah); 741 if (ifp != NULL) 742 if_free(ifp); 743 sc->sc_invalid = 1; 744 return error; 745 } 746 747 int 748 ath_detach(struct ath_softc *sc) 749 { 750 struct ifnet *ifp = sc->sc_ifp; 751 752 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 753 __func__, ifp->if_flags); 754 755 /* 756 * NB: the order of these is important: 757 * o stop the chip so no more interrupts will fire 758 * o call the 802.11 layer before detaching the hal to 759 * insure callbacks into the driver to delete global 760 * key cache entries can be handled 761 * o free the taskqueue which drains any pending tasks 762 * o reclaim the bpf tap now that we know nothing will use 763 * it (e.g. rx processing from the task q thread) 764 * o reclaim the tx queue data structures after calling 765 * the 802.11 layer as we'll get called back to reclaim 766 * node state and potentially want to use them 767 * o to cleanup the tx queues the hal is called, so detach 768 * it last 769 * Other than that, it's straightforward... 770 */ 771 ath_stop(ifp); 772 ieee80211_ifdetach(ifp->if_l2com); 773 taskqueue_free(sc->sc_tq); 774 bpfdetach(ifp); 775 #ifdef ATH_TX99_DIAG 776 if (sc->sc_tx99 != NULL) 777 sc->sc_tx99->detach(sc->sc_tx99); 778 #endif 779 ath_rate_detach(sc->sc_rc); 780 ath_desc_free(sc); 781 ath_tx_cleanup(sc); 782 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 783 if_free(ifp); 784 785 return 0; 786 } 787 788 /* 789 * MAC address handling for multiple BSS on the same radio. 790 * The first vap uses the MAC address from the EEPROM. For 791 * subsequent vap's we set the U/L bit (bit 1) in the MAC 792 * address and use the next six bits as an index. 793 */ 794 static void 795 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 796 { 797 int i; 798 799 if (clone && sc->sc_hasbmask) { 800 /* NB: we only do this if h/w supports multiple bssid */ 801 for (i = 0; i < 8; i++) 802 if ((sc->sc_bssidmask & (1<<i)) == 0) 803 break; 804 if (i != 0) 805 mac[0] |= (i << 2)|0x2; 806 } else 807 i = 0; 808 sc->sc_bssidmask |= 1<<i; 809 sc->sc_hwbssidmask[0] &= ~mac[0]; 810 if (i == 0) 811 sc->sc_nbssid0++; 812 } 813 814 static void 815 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 816 { 817 int i = mac[0] >> 2; 818 uint8_t mask; 819 820 if (i != 0 || --sc->sc_nbssid0 == 0) { 821 sc->sc_bssidmask &= ~(1<<i); 822 /* recalculate bssid mask from remaining addresses */ 823 mask = 0xff; 824 for (i = 1; i < 8; i++) 825 if (sc->sc_bssidmask & (1<<i)) 826 mask &= ~((i<<2)|0x2); 827 sc->sc_hwbssidmask[0] |= mask; 828 } 829 } 830 831 /* 832 * Assign a beacon xmit slot. We try to space out 833 * assignments so when beacons are staggered the 834 * traffic coming out of the cab q has maximal time 835 * to go out before the next beacon is scheduled. 836 */ 837 static int 838 assign_bslot(struct ath_softc *sc) 839 { 840 u_int slot, free; 841 842 free = 0; 843 for (slot = 0; slot < ATH_BCBUF; slot++) 844 if (sc->sc_bslot[slot] == NULL) { 845 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 846 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 847 return slot; 848 free = slot; 849 /* NB: keep looking for a double slot */ 850 } 851 return free; 852 } 853 854 static struct ieee80211vap * 855 ath_vap_create(struct ieee80211com *ic, 856 const char name[IFNAMSIZ], int unit, int opmode, int flags, 857 const uint8_t bssid[IEEE80211_ADDR_LEN], 858 const uint8_t mac0[IEEE80211_ADDR_LEN]) 859 { 860 struct ath_softc *sc = ic->ic_ifp->if_softc; 861 struct ath_vap *avp; 862 struct ieee80211vap *vap; 863 uint8_t mac[IEEE80211_ADDR_LEN]; 864 int ic_opmode, needbeacon, error; 865 866 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 867 M_80211_VAP, M_WAITOK | M_ZERO); 868 needbeacon = 0; 869 IEEE80211_ADDR_COPY(mac, mac0); 870 871 ATH_LOCK(sc); 872 switch (opmode) { 873 case IEEE80211_M_STA: 874 if (sc->sc_nstavaps != 0) { /* XXX only 1 sta for now */ 875 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 876 goto bad; 877 } 878 if (sc->sc_nvaps) { 879 /* 880 * When there are multiple vaps we must fall 881 * back to s/w beacon miss handling. 882 */ 883 flags |= IEEE80211_CLONE_NOBEACONS; 884 } 885 if (flags & IEEE80211_CLONE_NOBEACONS) 886 ic_opmode = IEEE80211_M_HOSTAP; 887 else 888 ic_opmode = opmode; 889 break; 890 case IEEE80211_M_IBSS: 891 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 892 device_printf(sc->sc_dev, 893 "only 1 ibss vap supported\n"); 894 goto bad; 895 } 896 ic_opmode = opmode; 897 needbeacon = 1; 898 break; 899 case IEEE80211_M_AHDEMO: 900 #ifdef ATH_SUPPORT_TDMA 901 if (flags & IEEE80211_CLONE_TDMA) { 902 needbeacon = 1; 903 flags |= IEEE80211_CLONE_NOBEACONS; 904 } 905 /* fall thru... */ 906 #endif 907 case IEEE80211_M_MONITOR: 908 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 909 /* XXX not right for monitor mode */ 910 ic_opmode = ic->ic_opmode; 911 } else 912 ic_opmode = opmode; 913 break; 914 case IEEE80211_M_HOSTAP: 915 needbeacon = 1; 916 /* fall thru... */ 917 case IEEE80211_M_WDS: 918 if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) { 919 device_printf(sc->sc_dev, 920 "wds not supported in sta mode\n"); 921 goto bad; 922 } 923 if (opmode == IEEE80211_M_WDS) { 924 /* 925 * Silently remove any request for a unique 926 * bssid; WDS vap's always share the local 927 * mac address. 928 */ 929 flags &= ~IEEE80211_CLONE_BSSID; 930 } 931 ic_opmode = IEEE80211_M_HOSTAP; 932 break; 933 default: 934 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 935 goto bad; 936 } 937 /* 938 * Check that a beacon buffer is available; the code below assumes it. 939 */ 940 if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) { 941 device_printf(sc->sc_dev, "no beacon buffer available\n"); 942 goto bad; 943 } 944 945 /* STA, AHDEMO? */ 946 if (opmode == IEEE80211_M_HOSTAP) { 947 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 948 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 949 } 950 951 vap = &avp->av_vap; 952 /* XXX can't hold mutex across if_alloc */ 953 ATH_UNLOCK(sc); 954 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 955 bssid, mac); 956 ATH_LOCK(sc); 957 if (error != 0) { 958 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 959 __func__, error); 960 goto bad2; 961 } 962 963 /* h/w crypto support */ 964 vap->iv_key_alloc = ath_key_alloc; 965 vap->iv_key_delete = ath_key_delete; 966 vap->iv_key_set = ath_key_set; 967 vap->iv_key_update_begin = ath_key_update_begin; 968 vap->iv_key_update_end = ath_key_update_end; 969 970 /* override various methods */ 971 avp->av_recv_mgmt = vap->iv_recv_mgmt; 972 vap->iv_recv_mgmt = ath_recv_mgmt; 973 vap->iv_reset = ath_reset_vap; 974 vap->iv_update_beacon = ath_beacon_update; 975 avp->av_newstate = vap->iv_newstate; 976 vap->iv_newstate = ath_newstate; 977 avp->av_bmiss = vap->iv_bmiss; 978 vap->iv_bmiss = ath_bmiss_vap; 979 980 avp->av_bslot = -1; 981 if (needbeacon) { 982 /* 983 * Allocate beacon state and setup the q for buffered 984 * multicast frames. We know a beacon buffer is 985 * available because we checked above. 986 */ 987 avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf); 988 STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list); 989 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 990 /* 991 * Assign the vap to a beacon xmit slot. As above 992 * this cannot fail to find a free one. 993 */ 994 avp->av_bslot = assign_bslot(sc); 995 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 996 ("beacon slot %u not empty", avp->av_bslot)); 997 sc->sc_bslot[avp->av_bslot] = vap; 998 sc->sc_nbcnvaps++; 999 } 1000 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1001 /* 1002 * Multple vaps are to transmit beacons and we 1003 * have h/w support for TSF adjusting; enable 1004 * use of staggered beacons. 1005 */ 1006 sc->sc_stagbeacons = 1; 1007 } 1008 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1009 } 1010 1011 ic->ic_opmode = ic_opmode; 1012 if (opmode != IEEE80211_M_WDS) { 1013 sc->sc_nvaps++; 1014 if (opmode == IEEE80211_M_STA) 1015 sc->sc_nstavaps++; 1016 } 1017 switch (ic_opmode) { 1018 case IEEE80211_M_IBSS: 1019 sc->sc_opmode = HAL_M_IBSS; 1020 break; 1021 case IEEE80211_M_STA: 1022 sc->sc_opmode = HAL_M_STA; 1023 break; 1024 case IEEE80211_M_AHDEMO: 1025 #ifdef ATH_SUPPORT_TDMA 1026 if (vap->iv_caps & IEEE80211_C_TDMA) { 1027 sc->sc_tdma = 1; 1028 /* NB: disable tsf adjust */ 1029 sc->sc_stagbeacons = 0; 1030 } 1031 /* 1032 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1033 * just ap mode. 1034 */ 1035 /* fall thru... */ 1036 #endif 1037 case IEEE80211_M_HOSTAP: 1038 sc->sc_opmode = HAL_M_HOSTAP; 1039 break; 1040 case IEEE80211_M_MONITOR: 1041 sc->sc_opmode = HAL_M_MONITOR; 1042 break; 1043 default: 1044 /* XXX should not happen */ 1045 break; 1046 } 1047 if (sc->sc_hastsfadd) { 1048 /* 1049 * Configure whether or not TSF adjust should be done. 1050 */ 1051 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1052 } 1053 if (flags & IEEE80211_CLONE_NOBEACONS) { 1054 /* 1055 * Enable s/w beacon miss handling. 1056 */ 1057 sc->sc_swbmiss = 1; 1058 } 1059 ATH_UNLOCK(sc); 1060 1061 /* complete setup */ 1062 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1063 return vap; 1064 bad2: 1065 reclaim_address(sc, mac); 1066 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1067 bad: 1068 free(avp, M_80211_VAP); 1069 ATH_UNLOCK(sc); 1070 return NULL; 1071 } 1072 1073 static void 1074 ath_vap_delete(struct ieee80211vap *vap) 1075 { 1076 struct ieee80211com *ic = vap->iv_ic; 1077 struct ifnet *ifp = ic->ic_ifp; 1078 struct ath_softc *sc = ifp->if_softc; 1079 struct ath_hal *ah = sc->sc_ah; 1080 struct ath_vap *avp = ATH_VAP(vap); 1081 1082 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1083 /* 1084 * Quiesce the hardware while we remove the vap. In 1085 * particular we need to reclaim all references to 1086 * the vap state by any frames pending on the tx queues. 1087 */ 1088 ath_hal_intrset(ah, 0); /* disable interrupts */ 1089 ath_draintxq(sc); /* stop xmit side */ 1090 ath_stoprecv(sc); /* stop recv side */ 1091 } 1092 1093 ieee80211_vap_detach(vap); 1094 ATH_LOCK(sc); 1095 /* 1096 * Reclaim beacon state. Note this must be done before 1097 * the vap instance is reclaimed as we may have a reference 1098 * to it in the buffer for the beacon frame. 1099 */ 1100 if (avp->av_bcbuf != NULL) { 1101 if (avp->av_bslot != -1) { 1102 sc->sc_bslot[avp->av_bslot] = NULL; 1103 sc->sc_nbcnvaps--; 1104 } 1105 ath_beacon_return(sc, avp->av_bcbuf); 1106 avp->av_bcbuf = NULL; 1107 if (sc->sc_nbcnvaps == 0) { 1108 sc->sc_stagbeacons = 0; 1109 if (sc->sc_hastsfadd) 1110 ath_hal_settsfadjust(sc->sc_ah, 0); 1111 } 1112 /* 1113 * Reclaim any pending mcast frames for the vap. 1114 */ 1115 ath_tx_draintxq(sc, &avp->av_mcastq); 1116 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1117 } 1118 /* 1119 * Update bookkeeping. 1120 */ 1121 if (vap->iv_opmode == IEEE80211_M_STA) { 1122 sc->sc_nstavaps--; 1123 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1124 sc->sc_swbmiss = 0; 1125 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 1126 reclaim_address(sc, vap->iv_myaddr); 1127 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1128 } 1129 if (vap->iv_opmode != IEEE80211_M_WDS) 1130 sc->sc_nvaps--; 1131 #ifdef ATH_SUPPORT_TDMA 1132 /* TDMA operation ceases when the last vap is destroyed */ 1133 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1134 sc->sc_tdma = 0; 1135 sc->sc_swbmiss = 0; 1136 } 1137 #endif 1138 ATH_UNLOCK(sc); 1139 free(avp, M_80211_VAP); 1140 1141 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1142 /* 1143 * Restart rx+tx machines if still running (RUNNING will 1144 * be reset if we just destroyed the last vap). 1145 */ 1146 if (ath_startrecv(sc) != 0) 1147 if_printf(ifp, "%s: unable to restart recv logic\n", 1148 __func__); 1149 if (sc->sc_beacons) 1150 ath_beacon_config(sc, NULL); 1151 ath_hal_intrset(ah, sc->sc_imask); 1152 } 1153 } 1154 1155 void 1156 ath_suspend(struct ath_softc *sc) 1157 { 1158 struct ifnet *ifp = sc->sc_ifp; 1159 struct ieee80211com *ic = ifp->if_l2com; 1160 1161 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1162 __func__, ifp->if_flags); 1163 1164 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1165 if (ic->ic_opmode == IEEE80211_M_STA) 1166 ath_stop(ifp); 1167 else 1168 ieee80211_suspend_all(ic); 1169 /* 1170 * NB: don't worry about putting the chip in low power 1171 * mode; pci will power off our socket on suspend and 1172 * cardbus detaches the device. 1173 */ 1174 } 1175 1176 /* 1177 * Reset the key cache since some parts do not reset the 1178 * contents on resume. First we clear all entries, then 1179 * re-load keys that the 802.11 layer assumes are setup 1180 * in h/w. 1181 */ 1182 static void 1183 ath_reset_keycache(struct ath_softc *sc) 1184 { 1185 struct ifnet *ifp = sc->sc_ifp; 1186 struct ieee80211com *ic = ifp->if_l2com; 1187 struct ath_hal *ah = sc->sc_ah; 1188 int i; 1189 1190 for (i = 0; i < sc->sc_keymax; i++) 1191 ath_hal_keyreset(ah, i); 1192 ieee80211_crypto_reload_keys(ic); 1193 } 1194 1195 void 1196 ath_resume(struct ath_softc *sc) 1197 { 1198 struct ifnet *ifp = sc->sc_ifp; 1199 struct ieee80211com *ic = ifp->if_l2com; 1200 struct ath_hal *ah = sc->sc_ah; 1201 HAL_STATUS status; 1202 1203 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1204 __func__, ifp->if_flags); 1205 1206 /* 1207 * Must reset the chip before we reload the 1208 * keycache as we were powered down on suspend. 1209 */ 1210 ath_hal_reset(ah, sc->sc_opmode, 1211 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1212 AH_FALSE, &status); 1213 ath_reset_keycache(sc); 1214 if (sc->sc_resume_up) { 1215 if (ic->ic_opmode == IEEE80211_M_STA) { 1216 ath_init(sc); 1217 ieee80211_beacon_miss(ic); 1218 } else 1219 ieee80211_resume_all(ic); 1220 } 1221 if (sc->sc_softled) { 1222 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 1223 HAL_GPIO_MUX_MAC_NETWORK_LED); 1224 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 1225 } 1226 } 1227 1228 void 1229 ath_shutdown(struct ath_softc *sc) 1230 { 1231 struct ifnet *ifp = sc->sc_ifp; 1232 1233 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1234 __func__, ifp->if_flags); 1235 1236 ath_stop(ifp); 1237 /* NB: no point powering down chip as we're about to reboot */ 1238 } 1239 1240 /* 1241 * Interrupt handler. Most of the actual processing is deferred. 1242 */ 1243 void 1244 ath_intr(void *arg) 1245 { 1246 struct ath_softc *sc = arg; 1247 struct ifnet *ifp = sc->sc_ifp; 1248 struct ath_hal *ah = sc->sc_ah; 1249 HAL_INT status; 1250 1251 if (sc->sc_invalid) { 1252 /* 1253 * The hardware is not ready/present, don't touch anything. 1254 * Note this can happen early on if the IRQ is shared. 1255 */ 1256 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1257 return; 1258 } 1259 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 1260 return; 1261 if ((ifp->if_flags & IFF_UP) == 0 || 1262 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1263 HAL_INT status; 1264 1265 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1266 __func__, ifp->if_flags); 1267 ath_hal_getisr(ah, &status); /* clear ISR */ 1268 ath_hal_intrset(ah, 0); /* disable further intr's */ 1269 return; 1270 } 1271 /* 1272 * Figure out the reason(s) for the interrupt. Note 1273 * that the hal returns a pseudo-ISR that may include 1274 * bits we haven't explicitly enabled so we mask the 1275 * value to insure we only process bits we requested. 1276 */ 1277 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1278 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1279 status &= sc->sc_imask; /* discard unasked for bits */ 1280 if (status & HAL_INT_FATAL) { 1281 sc->sc_stats.ast_hardware++; 1282 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1283 ath_fatal_proc(sc, 0); 1284 } else { 1285 if (status & HAL_INT_SWBA) { 1286 /* 1287 * Software beacon alert--time to send a beacon. 1288 * Handle beacon transmission directly; deferring 1289 * this is too slow to meet timing constraints 1290 * under load. 1291 */ 1292 #ifdef ATH_SUPPORT_TDMA 1293 if (sc->sc_tdma) { 1294 if (sc->sc_tdmaswba == 0) { 1295 struct ieee80211com *ic = ifp->if_l2com; 1296 struct ieee80211vap *vap = 1297 TAILQ_FIRST(&ic->ic_vaps); 1298 ath_tdma_beacon_send(sc, vap); 1299 sc->sc_tdmaswba = 1300 vap->iv_tdma->tdma_bintval; 1301 } else 1302 sc->sc_tdmaswba--; 1303 } else 1304 #endif 1305 ath_beacon_proc(sc, 0); 1306 } 1307 if (status & HAL_INT_RXEOL) { 1308 /* 1309 * NB: the hardware should re-read the link when 1310 * RXE bit is written, but it doesn't work at 1311 * least on older hardware revs. 1312 */ 1313 sc->sc_stats.ast_rxeol++; 1314 sc->sc_rxlink = NULL; 1315 } 1316 if (status & HAL_INT_TXURN) { 1317 sc->sc_stats.ast_txurn++; 1318 /* bump tx trigger level */ 1319 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1320 } 1321 if (status & HAL_INT_RX) 1322 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1323 if (status & HAL_INT_TX) 1324 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1325 if (status & HAL_INT_BMISS) { 1326 sc->sc_stats.ast_bmiss++; 1327 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1328 } 1329 if (status & HAL_INT_MIB) { 1330 sc->sc_stats.ast_mib++; 1331 /* 1332 * Disable interrupts until we service the MIB 1333 * interrupt; otherwise it will continue to fire. 1334 */ 1335 ath_hal_intrset(ah, 0); 1336 /* 1337 * Let the hal handle the event. We assume it will 1338 * clear whatever condition caused the interrupt. 1339 */ 1340 ath_hal_mibevent(ah, &sc->sc_halstats); 1341 ath_hal_intrset(ah, sc->sc_imask); 1342 } 1343 if (status & HAL_INT_RXORN) { 1344 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1345 sc->sc_stats.ast_rxorn++; 1346 } 1347 } 1348 } 1349 1350 static void 1351 ath_fatal_proc(void *arg, int pending) 1352 { 1353 struct ath_softc *sc = arg; 1354 struct ifnet *ifp = sc->sc_ifp; 1355 u_int32_t *state; 1356 u_int32_t len; 1357 void *sp; 1358 1359 if_printf(ifp, "hardware error; resetting\n"); 1360 /* 1361 * Fatal errors are unrecoverable. Typically these 1362 * are caused by DMA errors. Collect h/w state from 1363 * the hal so we can diagnose what's going on. 1364 */ 1365 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1366 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1367 state = sp; 1368 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1369 state[0], state[1] , state[2], state[3], 1370 state[4], state[5]); 1371 } 1372 ath_reset(ifp); 1373 } 1374 1375 static void 1376 ath_bmiss_vap(struct ieee80211vap *vap) 1377 { 1378 /* 1379 * Workaround phantom bmiss interrupts by sanity-checking 1380 * the time of our last rx'd frame. If it is within the 1381 * beacon miss interval then ignore the interrupt. If it's 1382 * truly a bmiss we'll get another interrupt soon and that'll 1383 * be dispatched up for processing. Note this applies only 1384 * for h/w beacon miss events. 1385 */ 1386 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1387 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1388 struct ath_softc *sc = ifp->if_softc; 1389 u_int64_t lastrx = sc->sc_lastrx; 1390 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1391 u_int bmisstimeout = 1392 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1393 1394 DPRINTF(sc, ATH_DEBUG_BEACON, 1395 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1396 __func__, (unsigned long long) tsf, 1397 (unsigned long long)(tsf - lastrx), 1398 (unsigned long long) lastrx, bmisstimeout); 1399 1400 if (tsf - lastrx <= bmisstimeout) { 1401 sc->sc_stats.ast_bmiss_phantom++; 1402 return; 1403 } 1404 } 1405 ATH_VAP(vap)->av_bmiss(vap); 1406 } 1407 1408 static int 1409 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1410 { 1411 uint32_t rsize; 1412 void *sp; 1413 1414 if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(&mask), &sp, &rsize)) 1415 return 0; 1416 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1417 *hangs = *(uint32_t *)sp; 1418 return 1; 1419 } 1420 1421 static void 1422 ath_bmiss_proc(void *arg, int pending) 1423 { 1424 struct ath_softc *sc = arg; 1425 struct ifnet *ifp = sc->sc_ifp; 1426 uint32_t hangs; 1427 1428 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1429 1430 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1431 if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs); 1432 ath_reset(ifp); 1433 } else 1434 ieee80211_beacon_miss(ifp->if_l2com); 1435 } 1436 1437 /* 1438 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1439 * calcs together with WME. If necessary disable the crypto 1440 * hardware and mark the 802.11 state so keys will be setup 1441 * with the MIC work done in software. 1442 */ 1443 static void 1444 ath_settkipmic(struct ath_softc *sc) 1445 { 1446 struct ifnet *ifp = sc->sc_ifp; 1447 struct ieee80211com *ic = ifp->if_l2com; 1448 1449 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1450 if (ic->ic_flags & IEEE80211_F_WME) { 1451 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1452 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1453 } else { 1454 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1455 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1456 } 1457 } 1458 } 1459 1460 static void 1461 ath_init(void *arg) 1462 { 1463 struct ath_softc *sc = (struct ath_softc *) arg; 1464 struct ifnet *ifp = sc->sc_ifp; 1465 struct ieee80211com *ic = ifp->if_l2com; 1466 struct ath_hal *ah = sc->sc_ah; 1467 HAL_STATUS status; 1468 1469 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1470 __func__, ifp->if_flags); 1471 1472 ATH_LOCK(sc); 1473 /* 1474 * Stop anything previously setup. This is safe 1475 * whether this is the first time through or not. 1476 */ 1477 ath_stop_locked(ifp); 1478 1479 /* 1480 * The basic interface to setting the hardware in a good 1481 * state is ``reset''. On return the hardware is known to 1482 * be powered up and with interrupts disabled. This must 1483 * be followed by initialization of the appropriate bits 1484 * and then setup of the interrupt mask. 1485 */ 1486 ath_settkipmic(sc); 1487 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1488 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1489 status); 1490 ATH_UNLOCK(sc); 1491 return; 1492 } 1493 ath_chan_change(sc, ic->ic_curchan); 1494 1495 /* 1496 * Likewise this is set during reset so update 1497 * state cached in the driver. 1498 */ 1499 sc->sc_diversity = ath_hal_getdiversity(ah); 1500 sc->sc_lastlongcal = 0; 1501 sc->sc_resetcal = 1; 1502 sc->sc_lastcalreset = 0; 1503 1504 /* 1505 * Setup the hardware after reset: the key cache 1506 * is filled as needed and the receive engine is 1507 * set going. Frame transmit is handled entirely 1508 * in the frame output path; there's nothing to do 1509 * here except setup the interrupt mask. 1510 */ 1511 if (ath_startrecv(sc) != 0) { 1512 if_printf(ifp, "unable to start recv logic\n"); 1513 ATH_UNLOCK(sc); 1514 return; 1515 } 1516 1517 /* 1518 * Enable interrupts. 1519 */ 1520 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1521 | HAL_INT_RXEOL | HAL_INT_RXORN 1522 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1523 /* 1524 * Enable MIB interrupts when there are hardware phy counters. 1525 * Note we only do this (at the moment) for station mode. 1526 */ 1527 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1528 sc->sc_imask |= HAL_INT_MIB; 1529 1530 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1531 ath_hal_intrset(ah, sc->sc_imask); 1532 1533 ATH_UNLOCK(sc); 1534 1535 #ifdef ATH_TX99_DIAG 1536 if (sc->sc_tx99 != NULL) 1537 sc->sc_tx99->start(sc->sc_tx99); 1538 else 1539 #endif 1540 ieee80211_start_all(ic); /* start all vap's */ 1541 } 1542 1543 static void 1544 ath_stop_locked(struct ifnet *ifp) 1545 { 1546 struct ath_softc *sc = ifp->if_softc; 1547 struct ath_hal *ah = sc->sc_ah; 1548 1549 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1550 __func__, sc->sc_invalid, ifp->if_flags); 1551 1552 ATH_LOCK_ASSERT(sc); 1553 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1554 /* 1555 * Shutdown the hardware and driver: 1556 * reset 802.11 state machine 1557 * turn off timers 1558 * disable interrupts 1559 * turn off the radio 1560 * clear transmit machinery 1561 * clear receive machinery 1562 * drain and release tx queues 1563 * reclaim beacon resources 1564 * power down hardware 1565 * 1566 * Note that some of this work is not possible if the 1567 * hardware is gone (invalid). 1568 */ 1569 #ifdef ATH_TX99_DIAG 1570 if (sc->sc_tx99 != NULL) 1571 sc->sc_tx99->stop(sc->sc_tx99); 1572 #endif 1573 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1574 ifp->if_timer = 0; 1575 if (!sc->sc_invalid) { 1576 if (sc->sc_softled) { 1577 callout_stop(&sc->sc_ledtimer); 1578 ath_hal_gpioset(ah, sc->sc_ledpin, 1579 !sc->sc_ledon); 1580 sc->sc_blinking = 0; 1581 } 1582 ath_hal_intrset(ah, 0); 1583 } 1584 ath_draintxq(sc); 1585 if (!sc->sc_invalid) { 1586 ath_stoprecv(sc); 1587 ath_hal_phydisable(ah); 1588 } else 1589 sc->sc_rxlink = NULL; 1590 ath_beacon_free(sc); /* XXX not needed */ 1591 } 1592 } 1593 1594 static void 1595 ath_stop(struct ifnet *ifp) 1596 { 1597 struct ath_softc *sc = ifp->if_softc; 1598 1599 ATH_LOCK(sc); 1600 ath_stop_locked(ifp); 1601 ATH_UNLOCK(sc); 1602 } 1603 1604 /* 1605 * Reset the hardware w/o losing operational state. This is 1606 * basically a more efficient way of doing ath_stop, ath_init, 1607 * followed by state transitions to the current 802.11 1608 * operational state. Used to recover from various errors and 1609 * to reset or reload hardware state. 1610 */ 1611 static int 1612 ath_reset(struct ifnet *ifp) 1613 { 1614 struct ath_softc *sc = ifp->if_softc; 1615 struct ieee80211com *ic = ifp->if_l2com; 1616 struct ath_hal *ah = sc->sc_ah; 1617 HAL_STATUS status; 1618 1619 ath_hal_intrset(ah, 0); /* disable interrupts */ 1620 ath_draintxq(sc); /* stop xmit side */ 1621 ath_stoprecv(sc); /* stop recv side */ 1622 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1623 /* NB: indicate channel change so we do a full reset */ 1624 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 1625 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1626 __func__, status); 1627 sc->sc_diversity = ath_hal_getdiversity(ah); 1628 if (ath_startrecv(sc) != 0) /* restart recv */ 1629 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1630 /* 1631 * We may be doing a reset in response to an ioctl 1632 * that changes the channel so update any state that 1633 * might change as a result. 1634 */ 1635 ath_chan_change(sc, ic->ic_curchan); 1636 if (sc->sc_beacons) { 1637 #ifdef ATH_SUPPORT_TDMA 1638 if (sc->sc_tdma) 1639 ath_tdma_config(sc, NULL); 1640 else 1641 #endif 1642 ath_beacon_config(sc, NULL); /* restart beacons */ 1643 } 1644 ath_hal_intrset(ah, sc->sc_imask); 1645 1646 ath_start(ifp); /* restart xmit */ 1647 return 0; 1648 } 1649 1650 static int 1651 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 1652 { 1653 struct ieee80211com *ic = vap->iv_ic; 1654 struct ifnet *ifp = ic->ic_ifp; 1655 struct ath_softc *sc = ifp->if_softc; 1656 struct ath_hal *ah = sc->sc_ah; 1657 1658 switch (cmd) { 1659 case IEEE80211_IOC_TXPOWER: 1660 /* 1661 * If per-packet TPC is enabled, then we have nothing 1662 * to do; otherwise we need to force the global limit. 1663 * All this can happen directly; no need to reset. 1664 */ 1665 if (!ath_hal_gettpc(ah)) 1666 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 1667 return 0; 1668 } 1669 return ath_reset(ifp); 1670 } 1671 1672 static int 1673 ath_ff_always(struct ath_txq *txq, struct ath_buf *bf) 1674 { 1675 return 0; 1676 } 1677 1678 #if 0 1679 static int 1680 ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf) 1681 { 1682 return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX; 1683 } 1684 #endif 1685 1686 /* 1687 * Flush FF staging queue. 1688 */ 1689 static void 1690 ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq, 1691 int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf)) 1692 { 1693 struct ath_buf *bf; 1694 struct ieee80211_node *ni; 1695 int pktlen, pri; 1696 1697 for (;;) { 1698 ATH_TXQ_LOCK(txq); 1699 /* 1700 * Go from the back (oldest) to front so we can 1701 * stop early based on the age of the entry. 1702 */ 1703 bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype); 1704 if (bf == NULL || ath_ff_flushdonetest(txq, bf)) { 1705 ATH_TXQ_UNLOCK(txq); 1706 break; 1707 } 1708 1709 ni = bf->bf_node; 1710 pri = M_WME_GETAC(bf->bf_m); 1711 KASSERT(ATH_NODE(ni)->an_ff_buf[pri], 1712 ("no bf on staging queue %p", bf)); 1713 ATH_NODE(ni)->an_ff_buf[pri] = NULL; 1714 TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist); 1715 1716 ATH_TXQ_UNLOCK(txq); 1717 1718 DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n", 1719 __func__, bf->bf_age); 1720 1721 sc->sc_stats.ast_ff_flush++; 1722 1723 /* encap and xmit */ 1724 bf->bf_m = ieee80211_encap(ni, bf->bf_m); 1725 if (bf->bf_m == NULL) { 1726 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF, 1727 "%s: discard, encapsulation failure\n", 1728 __func__); 1729 sc->sc_stats.ast_tx_encap++; 1730 goto bad; 1731 } 1732 pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */ 1733 if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) { 1734 #if 0 /*XXX*/ 1735 ifp->if_opackets++; 1736 #endif 1737 continue; 1738 } 1739 bad: 1740 if (ni != NULL) 1741 ieee80211_free_node(ni); 1742 bf->bf_node = NULL; 1743 if (bf->bf_m != NULL) { 1744 m_freem(bf->bf_m); 1745 bf->bf_m = NULL; 1746 } 1747 1748 ATH_TXBUF_LOCK(sc); 1749 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 1750 ATH_TXBUF_UNLOCK(sc); 1751 } 1752 } 1753 1754 static __inline u_int32_t 1755 ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m) 1756 { 1757 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1758 u_int32_t framelen; 1759 struct ath_buf *bf; 1760 1761 /* 1762 * Approximate the frame length to be transmitted. A swag to add 1763 * the following maximal values to the skb payload: 1764 * - 32: 802.11 encap + CRC 1765 * - 24: encryption overhead (if wep bit) 1766 * - 4 + 6: fast-frame header and padding 1767 * - 16: 2 LLC FF tunnel headers 1768 * - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd) 1769 */ 1770 framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14; 1771 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1772 framelen += 24; 1773 bf = an->an_ff_buf[M_WME_GETAC(m)]; 1774 if (bf != NULL) 1775 framelen += bf->bf_m->m_pkthdr.len; 1776 return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen, 1777 sc->sc_lastdatarix, AH_FALSE); 1778 } 1779 1780 /* 1781 * Determine if a data frame may be aggregated via ff tunnelling. 1782 * Note the caller is responsible for checking if the destination 1783 * supports fast frames. 1784 * 1785 * NB: allowing EAPOL frames to be aggregated with other unicast traffic. 1786 * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't 1787 * be aggregated with other types of frames when encryption is on? 1788 * 1789 * NB: assumes lock on an_ff_buf effectively held by txq lock mechanism. 1790 */ 1791 static __inline int 1792 ath_ff_can_aggregate(struct ath_softc *sc, 1793 struct ath_node *an, struct mbuf *m, int *flushq) 1794 { 1795 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1796 struct ath_txq *txq; 1797 u_int32_t txoplimit; 1798 u_int pri; 1799 1800 *flushq = 0; 1801 1802 /* 1803 * If there is no frame to combine with and the txq has 1804 * fewer frames than the minimum required; then do not 1805 * attempt to aggregate this frame. 1806 */ 1807 pri = M_WME_GETAC(m); 1808 txq = sc->sc_ac2q[pri]; 1809 if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin) 1810 return 0; 1811 /* 1812 * When not in station mode never aggregate a multicast 1813 * frame; this insures, for example, that a combined frame 1814 * does not require multiple encryption keys when using 1815 * 802.1x/WPA. 1816 */ 1817 if (ic->ic_opmode != IEEE80211_M_STA && 1818 ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) 1819 return 0; 1820 /* 1821 * Consult the max bursting interval to insure a combined 1822 * frame fits within the TxOp window. 1823 */ 1824 txoplimit = IEEE80211_TXOP_TO_US( 1825 ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); 1826 if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) { 1827 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF, 1828 "%s: FF TxOp violation\n", __func__); 1829 if (an->an_ff_buf[pri] != NULL) 1830 *flushq = 1; 1831 return 0; 1832 } 1833 return 1; /* try to aggregate */ 1834 } 1835 1836 /* 1837 * Check if the supplied frame can be partnered with an existing 1838 * or pending frame. Return a reference to any frame that should be 1839 * sent on return; otherwise return NULL. 1840 */ 1841 static struct mbuf * 1842 ath_ff_check(struct ath_softc *sc, struct ath_txq *txq, 1843 struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni) 1844 { 1845 struct ath_node *an = ATH_NODE(ni); 1846 struct ath_buf *bfstaged; 1847 int ff_flush, pri; 1848 1849 /* 1850 * Check if the supplied frame can be aggregated. 1851 * 1852 * NB: we use the txq lock to protect references to 1853 * an->an_ff_txbuf in ath_ff_can_aggregate(). 1854 */ 1855 ATH_TXQ_LOCK(txq); 1856 pri = M_WME_GETAC(m); 1857 if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) { 1858 struct ath_buf *bfstaged = an->an_ff_buf[pri]; 1859 if (bfstaged != NULL) { 1860 /* 1861 * A frame is available for partnering; remove 1862 * it, chain it to this one, and encapsulate. 1863 */ 1864 an->an_ff_buf[pri] = NULL; 1865 TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist); 1866 ATH_TXQ_UNLOCK(txq); 1867 1868 /* 1869 * Chain mbufs and add FF magic. 1870 */ 1871 DPRINTF(sc, ATH_DEBUG_FF, 1872 "[%s] aggregate fast-frame, age %u\n", 1873 ether_sprintf(ni->ni_macaddr), txq->axq_curage); 1874 m->m_nextpkt = NULL; 1875 bfstaged->bf_m->m_nextpkt = m; 1876 m = bfstaged->bf_m; 1877 bfstaged->bf_m = NULL; 1878 m->m_flags |= M_FF; 1879 /* 1880 * Release the node reference held while 1881 * the packet sat on an_ff_buf[] 1882 */ 1883 bfstaged->bf_node = NULL; 1884 ieee80211_free_node(ni); 1885 1886 /* 1887 * Return bfstaged to the free list. 1888 */ 1889 ATH_TXBUF_LOCK(sc); 1890 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list); 1891 ATH_TXBUF_UNLOCK(sc); 1892 1893 return m; /* ready to go */ 1894 } else { 1895 /* 1896 * No frame available, queue this frame to wait 1897 * for a partner. Note that we hold the buffer 1898 * and a reference to the node; we need the 1899 * buffer in particular so we're certain we 1900 * can flush the frame at a later time. 1901 */ 1902 DPRINTF(sc, ATH_DEBUG_FF, 1903 "[%s] stage fast-frame, age %u\n", 1904 ether_sprintf(ni->ni_macaddr), txq->axq_curage); 1905 1906 bf->bf_m = m; 1907 bf->bf_node = ni; /* NB: held reference */ 1908 bf->bf_age = txq->axq_curage; 1909 an->an_ff_buf[pri] = bf; 1910 TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist); 1911 ATH_TXQ_UNLOCK(txq); 1912 1913 return NULL; /* consumed */ 1914 } 1915 } 1916 /* 1917 * Frame could not be aggregated, it needs to be returned 1918 * to the caller for immediate transmission. In addition 1919 * we check if we should first flush a frame from the 1920 * staging queue before sending this one. 1921 * 1922 * NB: ath_ff_can_aggregate only marks ff_flush if a frame 1923 * is present to flush. 1924 */ 1925 if (ff_flush) { 1926 int pktlen; 1927 1928 bfstaged = an->an_ff_buf[pri]; 1929 an->an_ff_buf[pri] = NULL; 1930 TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist); 1931 ATH_TXQ_UNLOCK(txq); 1932 1933 DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n", 1934 ether_sprintf(an->an_node.ni_macaddr)); 1935 1936 /* encap and xmit */ 1937 bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m); 1938 if (bfstaged->bf_m == NULL) { 1939 DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF, 1940 "%s: discard, encap failure\n", __func__); 1941 sc->sc_stats.ast_tx_encap++; 1942 goto ff_flushbad; 1943 } 1944 pktlen = bfstaged->bf_m->m_pkthdr.len; 1945 if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) { 1946 DPRINTF(sc, ATH_DEBUG_XMIT, 1947 "%s: discard, xmit failure\n", __func__); 1948 ff_flushbad: 1949 /* 1950 * Unable to transmit frame that was on the staging 1951 * queue. Reclaim the node reference and other 1952 * resources. 1953 */ 1954 if (ni != NULL) 1955 ieee80211_free_node(ni); 1956 bfstaged->bf_node = NULL; 1957 if (bfstaged->bf_m != NULL) { 1958 m_freem(bfstaged->bf_m); 1959 bfstaged->bf_m = NULL; 1960 } 1961 1962 ATH_TXBUF_LOCK(sc); 1963 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list); 1964 ATH_TXBUF_UNLOCK(sc); 1965 } else { 1966 #if 0 1967 ifp->if_opackets++; 1968 #endif 1969 } 1970 } else { 1971 if (an->an_ff_buf[pri] != NULL) { 1972 /* 1973 * XXX: out-of-order condition only occurs for AP 1974 * mode and multicast. There may be no valid way 1975 * to get this condition. 1976 */ 1977 DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n", 1978 ether_sprintf(an->an_node.ni_macaddr)); 1979 /* XXX stat */ 1980 } 1981 ATH_TXQ_UNLOCK(txq); 1982 } 1983 return m; 1984 } 1985 1986 static struct ath_buf * 1987 _ath_getbuf_locked(struct ath_softc *sc) 1988 { 1989 struct ath_buf *bf; 1990 1991 ATH_TXBUF_LOCK_ASSERT(sc); 1992 1993 bf = STAILQ_FIRST(&sc->sc_txbuf); 1994 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 1995 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1996 else 1997 bf = NULL; 1998 if (bf == NULL) { 1999 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2000 STAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2001 "out of xmit buffers" : "xmit buffer busy"); 2002 sc->sc_stats.ast_tx_nobuf++; 2003 } 2004 return bf; 2005 } 2006 2007 static struct ath_buf * 2008 ath_getbuf(struct ath_softc *sc) 2009 { 2010 struct ath_buf *bf; 2011 2012 ATH_TXBUF_LOCK(sc); 2013 bf = _ath_getbuf_locked(sc); 2014 if (bf == NULL) { 2015 struct ifnet *ifp = sc->sc_ifp; 2016 2017 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2018 sc->sc_stats.ast_tx_qstop++; 2019 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2020 } 2021 ATH_TXBUF_UNLOCK(sc); 2022 return bf; 2023 } 2024 2025 /* 2026 * Cleanup driver resources when we run out of buffers 2027 * while processing fragments; return the tx buffers 2028 * allocated and drop node references. 2029 */ 2030 static void 2031 ath_txfrag_cleanup(struct ath_softc *sc, 2032 ath_bufhead *frags, struct ieee80211_node *ni) 2033 { 2034 struct ath_buf *bf, *next; 2035 2036 ATH_TXBUF_LOCK_ASSERT(sc); 2037 2038 STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { 2039 /* NB: bf assumed clean */ 2040 STAILQ_REMOVE_HEAD(frags, bf_list); 2041 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2042 ieee80211_node_decref(ni); 2043 } 2044 } 2045 2046 /* 2047 * Setup xmit of a fragmented frame. Allocate a buffer 2048 * for each frag and bump the node reference count to 2049 * reflect the held reference to be setup by ath_tx_start. 2050 */ 2051 static int 2052 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 2053 struct mbuf *m0, struct ieee80211_node *ni) 2054 { 2055 struct mbuf *m; 2056 struct ath_buf *bf; 2057 2058 ATH_TXBUF_LOCK(sc); 2059 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 2060 bf = _ath_getbuf_locked(sc); 2061 if (bf == NULL) { /* out of buffers, cleanup */ 2062 ath_txfrag_cleanup(sc, frags, ni); 2063 break; 2064 } 2065 ieee80211_node_incref(ni); 2066 STAILQ_INSERT_TAIL(frags, bf, bf_list); 2067 } 2068 ATH_TXBUF_UNLOCK(sc); 2069 2070 return !STAILQ_EMPTY(frags); 2071 } 2072 2073 static void 2074 ath_start(struct ifnet *ifp) 2075 { 2076 struct ath_softc *sc = ifp->if_softc; 2077 struct ieee80211_node *ni; 2078 struct ath_buf *bf; 2079 struct mbuf *m, *next; 2080 struct ath_txq *txq; 2081 ath_bufhead frags; 2082 int pri; 2083 2084 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2085 return; 2086 for (;;) { 2087 /* 2088 * Grab a TX buffer and associated resources. 2089 */ 2090 bf = ath_getbuf(sc); 2091 if (bf == NULL) 2092 break; 2093 2094 IFQ_DEQUEUE(&ifp->if_snd, m); 2095 if (m == NULL) { 2096 ATH_TXBUF_LOCK(sc); 2097 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2098 ATH_TXBUF_UNLOCK(sc); 2099 break; 2100 } 2101 STAILQ_INIT(&frags); 2102 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2103 pri = M_WME_GETAC(m); 2104 txq = sc->sc_ac2q[pri]; 2105 if (IEEE80211_ATH_CAP(ni->ni_vap, ni, IEEE80211_NODE_FF)) { 2106 /* 2107 * Check queue length; if too deep drop this 2108 * frame (tail drop considered good). 2109 */ 2110 if (txq->axq_depth >= sc->sc_fftxqmax) { 2111 DPRINTF(sc, ATH_DEBUG_FF, 2112 "[%s] tail drop on q %u depth %u\n", 2113 ether_sprintf(ni->ni_macaddr), 2114 txq->axq_qnum, txq->axq_depth); 2115 sc->sc_stats.ast_tx_qfull++; 2116 m_freem(m); 2117 goto reclaim; 2118 } 2119 m = ath_ff_check(sc, txq, bf, m, ni); 2120 if (m == NULL) { 2121 /* NB: ni ref & bf held on stageq */ 2122 continue; 2123 } 2124 } 2125 ifp->if_opackets++; 2126 /* 2127 * Encapsulate the packet in prep for transmission. 2128 */ 2129 m = ieee80211_encap(ni, m); 2130 if (m == NULL) { 2131 DPRINTF(sc, ATH_DEBUG_XMIT, 2132 "%s: encapsulation failure\n", __func__); 2133 sc->sc_stats.ast_tx_encap++; 2134 goto bad; 2135 } 2136 /* 2137 * Check for fragmentation. If this frame 2138 * has been broken up verify we have enough 2139 * buffers to send all the fragments so all 2140 * go out or none... 2141 */ 2142 if ((m->m_flags & M_FRAG) && 2143 !ath_txfrag_setup(sc, &frags, m, ni)) { 2144 DPRINTF(sc, ATH_DEBUG_XMIT, 2145 "%s: out of txfrag buffers\n", __func__); 2146 sc->sc_stats.ast_tx_nofrag++; 2147 ath_freetx(m); 2148 goto bad; 2149 } 2150 nextfrag: 2151 /* 2152 * Pass the frame to the h/w for transmission. 2153 * Fragmented frames have each frag chained together 2154 * with m_nextpkt. We know there are sufficient ath_buf's 2155 * to send all the frags because of work done by 2156 * ath_txfrag_setup. We leave m_nextpkt set while 2157 * calling ath_tx_start so it can use it to extend the 2158 * the tx duration to cover the subsequent frag and 2159 * so it can reclaim all the mbufs in case of an error; 2160 * ath_tx_start clears m_nextpkt once it commits to 2161 * handing the frame to the hardware. 2162 */ 2163 next = m->m_nextpkt; 2164 if (ath_tx_start(sc, ni, bf, m)) { 2165 bad: 2166 ifp->if_oerrors++; 2167 reclaim: 2168 bf->bf_m = NULL; 2169 bf->bf_node = NULL; 2170 ATH_TXBUF_LOCK(sc); 2171 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2172 ath_txfrag_cleanup(sc, &frags, ni); 2173 ATH_TXBUF_UNLOCK(sc); 2174 if (ni != NULL) 2175 ieee80211_free_node(ni); 2176 continue; 2177 } 2178 if (next != NULL) { 2179 /* 2180 * Beware of state changing between frags. 2181 * XXX check sta power-save state? 2182 */ 2183 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2184 DPRINTF(sc, ATH_DEBUG_XMIT, 2185 "%s: flush fragmented packet, state %s\n", 2186 __func__, 2187 ieee80211_state_name[ni->ni_vap->iv_state]); 2188 ath_freetx(next); 2189 goto reclaim; 2190 } 2191 m = next; 2192 bf = STAILQ_FIRST(&frags); 2193 KASSERT(bf != NULL, ("no buf for txfrag")); 2194 STAILQ_REMOVE_HEAD(&frags, bf_list); 2195 goto nextfrag; 2196 } 2197 2198 ifp->if_timer = 5; 2199 #if 0 2200 /* 2201 * Flush stale frames from the fast-frame staging queue. 2202 */ 2203 if (ic->ic_opmode != IEEE80211_M_STA) 2204 ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone); 2205 #endif 2206 } 2207 } 2208 2209 static int 2210 ath_media_change(struct ifnet *ifp) 2211 { 2212 int error = ieee80211_media_change(ifp); 2213 /* NB: only the fixed rate can change and that doesn't need a reset */ 2214 return (error == ENETRESET ? 0 : error); 2215 } 2216 2217 #ifdef ATH_DEBUG 2218 static void 2219 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix, 2220 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 2221 { 2222 static const char *ciphers[] = { 2223 "WEP", 2224 "AES-OCB", 2225 "AES-CCM", 2226 "CKIP", 2227 "TKIP", 2228 "CLR", 2229 }; 2230 int i, n; 2231 2232 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 2233 for (i = 0, n = hk->kv_len; i < n; i++) 2234 printf("%02x", hk->kv_val[i]); 2235 printf(" mac %s", ether_sprintf(mac)); 2236 if (hk->kv_type == HAL_CIPHER_TKIP) { 2237 printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic"); 2238 for (i = 0; i < sizeof(hk->kv_mic); i++) 2239 printf("%02x", hk->kv_mic[i]); 2240 if (!sc->sc_splitmic) { 2241 printf(" txmic "); 2242 for (i = 0; i < sizeof(hk->kv_txmic); i++) 2243 printf("%02x", hk->kv_txmic[i]); 2244 } 2245 } 2246 printf("\n"); 2247 } 2248 #endif 2249 2250 /* 2251 * Set a TKIP key into the hardware. This handles the 2252 * potential distribution of key state to multiple key 2253 * cache slots for TKIP. 2254 */ 2255 static int 2256 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 2257 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 2258 { 2259 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 2260 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 2261 struct ath_hal *ah = sc->sc_ah; 2262 2263 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 2264 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 2265 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 2266 if (sc->sc_splitmic) { 2267 /* 2268 * TX key goes at first index, RX key at the rx index. 2269 * The hal handles the MIC keys at index+64. 2270 */ 2271 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 2272 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 2273 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 2274 return 0; 2275 2276 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 2277 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 2278 /* XXX delete tx key on failure? */ 2279 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 2280 } else { 2281 /* 2282 * Room for both TX+RX MIC keys in one key cache 2283 * slot, just set key at the first index; the hal 2284 * will handle the rest. 2285 */ 2286 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 2287 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 2288 KEYPRINTF(sc, k->wk_keyix, hk, mac); 2289 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 2290 } 2291 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 2292 if (sc->sc_splitmic) { 2293 /* 2294 * NB: must pass MIC key in expected location when 2295 * the keycache only holds one MIC key per entry. 2296 */ 2297 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 2298 } else 2299 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 2300 KEYPRINTF(sc, k->wk_keyix, hk, mac); 2301 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 2302 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 2303 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 2304 KEYPRINTF(sc, k->wk_keyix, hk, mac); 2305 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 2306 } 2307 return 0; 2308 #undef IEEE80211_KEY_XR 2309 } 2310 2311 /* 2312 * Set a net80211 key into the hardware. This handles the 2313 * potential distribution of key state to multiple key 2314 * cache slots for TKIP with hardware MIC support. 2315 */ 2316 static int 2317 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 2318 struct ieee80211_node *bss) 2319 { 2320 #define N(a) (sizeof(a)/sizeof(a[0])) 2321 static const u_int8_t ciphermap[] = { 2322 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 2323 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 2324 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 2325 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 2326 (u_int8_t) -1, /* 4 is not allocated */ 2327 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 2328 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 2329 }; 2330 struct ath_hal *ah = sc->sc_ah; 2331 const struct ieee80211_cipher *cip = k->wk_cipher; 2332 u_int8_t gmac[IEEE80211_ADDR_LEN]; 2333 const u_int8_t *mac; 2334 HAL_KEYVAL hk; 2335 2336 memset(&hk, 0, sizeof(hk)); 2337 /* 2338 * Software crypto uses a "clear key" so non-crypto 2339 * state kept in the key cache are maintained and 2340 * so that rx frames have an entry to match. 2341 */ 2342 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 2343 KASSERT(cip->ic_cipher < N(ciphermap), 2344 ("invalid cipher type %u", cip->ic_cipher)); 2345 hk.kv_type = ciphermap[cip->ic_cipher]; 2346 hk.kv_len = k->wk_keylen; 2347 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 2348 } else 2349 hk.kv_type = HAL_CIPHER_CLR; 2350 2351 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 2352 /* 2353 * Group keys on hardware that supports multicast frame 2354 * key search use a mac that is the sender's address with 2355 * the high bit set instead of the app-specified address. 2356 */ 2357 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 2358 gmac[0] |= 0x80; 2359 mac = gmac; 2360 } else 2361 mac = k->wk_macaddr; 2362 2363 if (hk.kv_type == HAL_CIPHER_TKIP && 2364 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 2365 return ath_keyset_tkip(sc, k, &hk, mac); 2366 } else { 2367 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 2368 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 2369 } 2370 #undef N 2371 } 2372 2373 /* 2374 * Allocate tx/rx key slots for TKIP. We allocate two slots for 2375 * each key, one for decrypt/encrypt and the other for the MIC. 2376 */ 2377 static u_int16_t 2378 key_alloc_2pair(struct ath_softc *sc, 2379 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 2380 { 2381 #define N(a) (sizeof(a)/sizeof(a[0])) 2382 u_int i, keyix; 2383 2384 KASSERT(sc->sc_splitmic, ("key cache !split")); 2385 /* XXX could optimize */ 2386 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 2387 u_int8_t b = sc->sc_keymap[i]; 2388 if (b != 0xff) { 2389 /* 2390 * One or more slots in this byte are free. 2391 */ 2392 keyix = i*NBBY; 2393 while (b & 1) { 2394 again: 2395 keyix++; 2396 b >>= 1; 2397 } 2398 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 2399 if (isset(sc->sc_keymap, keyix+32) || 2400 isset(sc->sc_keymap, keyix+64) || 2401 isset(sc->sc_keymap, keyix+32+64)) { 2402 /* full pair unavailable */ 2403 /* XXX statistic */ 2404 if (keyix == (i+1)*NBBY) { 2405 /* no slots were appropriate, advance */ 2406 continue; 2407 } 2408 goto again; 2409 } 2410 setbit(sc->sc_keymap, keyix); 2411 setbit(sc->sc_keymap, keyix+64); 2412 setbit(sc->sc_keymap, keyix+32); 2413 setbit(sc->sc_keymap, keyix+32+64); 2414 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2415 "%s: key pair %u,%u %u,%u\n", 2416 __func__, keyix, keyix+64, 2417 keyix+32, keyix+32+64); 2418 *txkeyix = keyix; 2419 *rxkeyix = keyix+32; 2420 return 1; 2421 } 2422 } 2423 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 2424 return 0; 2425 #undef N 2426 } 2427 2428 /* 2429 * Allocate tx/rx key slots for TKIP. We allocate two slots for 2430 * each key, one for decrypt/encrypt and the other for the MIC. 2431 */ 2432 static u_int16_t 2433 key_alloc_pair(struct ath_softc *sc, 2434 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 2435 { 2436 #define N(a) (sizeof(a)/sizeof(a[0])) 2437 u_int i, keyix; 2438 2439 KASSERT(!sc->sc_splitmic, ("key cache split")); 2440 /* XXX could optimize */ 2441 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 2442 u_int8_t b = sc->sc_keymap[i]; 2443 if (b != 0xff) { 2444 /* 2445 * One or more slots in this byte are free. 2446 */ 2447 keyix = i*NBBY; 2448 while (b & 1) { 2449 again: 2450 keyix++; 2451 b >>= 1; 2452 } 2453 if (isset(sc->sc_keymap, keyix+64)) { 2454 /* full pair unavailable */ 2455 /* XXX statistic */ 2456 if (keyix == (i+1)*NBBY) { 2457 /* no slots were appropriate, advance */ 2458 continue; 2459 } 2460 goto again; 2461 } 2462 setbit(sc->sc_keymap, keyix); 2463 setbit(sc->sc_keymap, keyix+64); 2464 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2465 "%s: key pair %u,%u\n", 2466 __func__, keyix, keyix+64); 2467 *txkeyix = *rxkeyix = keyix; 2468 return 1; 2469 } 2470 } 2471 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 2472 return 0; 2473 #undef N 2474 } 2475 2476 /* 2477 * Allocate a single key cache slot. 2478 */ 2479 static int 2480 key_alloc_single(struct ath_softc *sc, 2481 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 2482 { 2483 #define N(a) (sizeof(a)/sizeof(a[0])) 2484 u_int i, keyix; 2485 2486 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 2487 for (i = 0; i < N(sc->sc_keymap); i++) { 2488 u_int8_t b = sc->sc_keymap[i]; 2489 if (b != 0xff) { 2490 /* 2491 * One or more slots are free. 2492 */ 2493 keyix = i*NBBY; 2494 while (b & 1) 2495 keyix++, b >>= 1; 2496 setbit(sc->sc_keymap, keyix); 2497 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 2498 __func__, keyix); 2499 *txkeyix = *rxkeyix = keyix; 2500 return 1; 2501 } 2502 } 2503 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 2504 return 0; 2505 #undef N 2506 } 2507 2508 /* 2509 * Allocate one or more key cache slots for a uniacst key. The 2510 * key itself is needed only to identify the cipher. For hardware 2511 * TKIP with split cipher+MIC keys we allocate two key cache slot 2512 * pairs so that we can setup separate TX and RX MIC keys. Note 2513 * that the MIC key for a TKIP key at slot i is assumed by the 2514 * hardware to be at slot i+64. This limits TKIP keys to the first 2515 * 64 entries. 2516 */ 2517 static int 2518 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 2519 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 2520 { 2521 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2522 2523 /* 2524 * Group key allocation must be handled specially for 2525 * parts that do not support multicast key cache search 2526 * functionality. For those parts the key id must match 2527 * the h/w key index so lookups find the right key. On 2528 * parts w/ the key search facility we install the sender's 2529 * mac address (with the high bit set) and let the hardware 2530 * find the key w/o using the key id. This is preferred as 2531 * it permits us to support multiple users for adhoc and/or 2532 * multi-station operation. 2533 */ 2534 if (k->wk_keyix != IEEE80211_KEYIX_NONE || /* global key */ 2535 ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) { 2536 if (!(&vap->iv_nw_keys[0] <= k && 2537 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 2538 /* should not happen */ 2539 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 2540 "%s: bogus group key\n", __func__); 2541 return 0; 2542 } 2543 /* 2544 * XXX we pre-allocate the global keys so 2545 * have no way to check if they've already been allocated. 2546 */ 2547 *keyix = *rxkeyix = k - vap->iv_nw_keys; 2548 return 1; 2549 } 2550 2551 /* 2552 * We allocate two pair for TKIP when using the h/w to do 2553 * the MIC. For everything else, including software crypto, 2554 * we allocate a single entry. Note that s/w crypto requires 2555 * a pass-through slot on the 5211 and 5212. The 5210 does 2556 * not support pass-through cache entries and we map all 2557 * those requests to slot 0. 2558 */ 2559 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 2560 return key_alloc_single(sc, keyix, rxkeyix); 2561 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 2562 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 2563 if (sc->sc_splitmic) 2564 return key_alloc_2pair(sc, keyix, rxkeyix); 2565 else 2566 return key_alloc_pair(sc, keyix, rxkeyix); 2567 } else { 2568 return key_alloc_single(sc, keyix, rxkeyix); 2569 } 2570 } 2571 2572 /* 2573 * Delete an entry in the key cache allocated by ath_key_alloc. 2574 */ 2575 static int 2576 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 2577 { 2578 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2579 struct ath_hal *ah = sc->sc_ah; 2580 const struct ieee80211_cipher *cip = k->wk_cipher; 2581 u_int keyix = k->wk_keyix; 2582 2583 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 2584 2585 ath_hal_keyreset(ah, keyix); 2586 /* 2587 * Handle split tx/rx keying required for TKIP with h/w MIC. 2588 */ 2589 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 2590 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 2591 ath_hal_keyreset(ah, keyix+32); /* RX key */ 2592 if (keyix >= IEEE80211_WEP_NKID) { 2593 /* 2594 * Don't touch keymap entries for global keys so 2595 * they are never considered for dynamic allocation. 2596 */ 2597 clrbit(sc->sc_keymap, keyix); 2598 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 2599 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 2600 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 2601 if (sc->sc_splitmic) { 2602 /* +32 for RX key, +32+64 for RX key MIC */ 2603 clrbit(sc->sc_keymap, keyix+32); 2604 clrbit(sc->sc_keymap, keyix+32+64); 2605 } 2606 } 2607 } 2608 return 1; 2609 } 2610 2611 /* 2612 * Set the key cache contents for the specified key. Key cache 2613 * slot(s) must already have been allocated by ath_key_alloc. 2614 */ 2615 static int 2616 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, 2617 const u_int8_t mac[IEEE80211_ADDR_LEN]) 2618 { 2619 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2620 2621 return ath_keyset(sc, k, vap->iv_bss); 2622 } 2623 2624 /* 2625 * Block/unblock tx+rx processing while a key change is done. 2626 * We assume the caller serializes key management operations 2627 * so we only need to worry about synchronization with other 2628 * uses that originate in the driver. 2629 */ 2630 static void 2631 ath_key_update_begin(struct ieee80211vap *vap) 2632 { 2633 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2634 struct ath_softc *sc = ifp->if_softc; 2635 2636 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2637 taskqueue_block(sc->sc_tq); 2638 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2639 } 2640 2641 static void 2642 ath_key_update_end(struct ieee80211vap *vap) 2643 { 2644 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2645 struct ath_softc *sc = ifp->if_softc; 2646 2647 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2648 IF_UNLOCK(&ifp->if_snd); 2649 taskqueue_unblock(sc->sc_tq); 2650 } 2651 2652 /* 2653 * Calculate the receive filter according to the 2654 * operating mode and state: 2655 * 2656 * o always accept unicast, broadcast, and multicast traffic 2657 * o accept PHY error frames when hardware doesn't have MIB support 2658 * to count and we need them for ANI (sta mode only until recently) 2659 * and we are not scanning (ANI is disabled) 2660 * NB: older hal's add rx filter bits out of sight and we need to 2661 * blindly preserve them 2662 * o probe request frames are accepted only when operating in 2663 * hostap, adhoc, or monitor modes 2664 * o enable promiscuous mode 2665 * - when in monitor mode 2666 * - if interface marked PROMISC (assumes bridge setting is filtered) 2667 * o accept beacons: 2668 * - when operating in station mode for collecting rssi data when 2669 * the station is otherwise quiet, or 2670 * - when operating in adhoc mode so the 802.11 layer creates 2671 * node table entries for peers, 2672 * - when scanning 2673 * - when doing s/w beacon miss (e.g. for ap+sta) 2674 * - when operating in ap mode in 11g to detect overlapping bss that 2675 * require protection 2676 * o accept control frames: 2677 * - when in monitor mode 2678 * XXX BAR frames for 11n 2679 * XXX HT protection for 11n 2680 */ 2681 static u_int32_t 2682 ath_calcrxfilter(struct ath_softc *sc) 2683 { 2684 struct ifnet *ifp = sc->sc_ifp; 2685 struct ieee80211com *ic = ifp->if_l2com; 2686 u_int32_t rfilt; 2687 2688 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2689 #if HAL_ABI_VERSION < 0x08011600 2690 rfilt |= (ath_hal_getrxfilter(sc->sc_ah) & 2691 (HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR)); 2692 #elif HAL_ABI_VERSION < 0x08060100 2693 if (ic->ic_opmode == IEEE80211_M_STA && 2694 !sc->sc_needmib && !sc->sc_scanning) 2695 rfilt |= HAL_RX_FILTER_PHYERR; 2696 #else 2697 if (!sc->sc_needmib && !sc->sc_scanning) 2698 rfilt |= HAL_RX_FILTER_PHYERR; 2699 #endif 2700 if (ic->ic_opmode != IEEE80211_M_STA) 2701 rfilt |= HAL_RX_FILTER_PROBEREQ; 2702 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2703 rfilt |= HAL_RX_FILTER_PROM; 2704 if (ic->ic_opmode == IEEE80211_M_STA || 2705 ic->ic_opmode == IEEE80211_M_IBSS || 2706 sc->sc_swbmiss || sc->sc_scanning) 2707 rfilt |= HAL_RX_FILTER_BEACON; 2708 /* 2709 * NB: We don't recalculate the rx filter when 2710 * ic_protmode changes; otherwise we could do 2711 * this only when ic_protmode != NONE. 2712 */ 2713 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2714 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2715 rfilt |= HAL_RX_FILTER_BEACON; 2716 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2717 rfilt |= HAL_RX_FILTER_CONTROL; 2718 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2719 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2720 return rfilt; 2721 } 2722 2723 static void 2724 ath_update_promisc(struct ifnet *ifp) 2725 { 2726 struct ath_softc *sc = ifp->if_softc; 2727 u_int32_t rfilt; 2728 2729 /* configure rx filter */ 2730 rfilt = ath_calcrxfilter(sc); 2731 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2732 2733 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2734 } 2735 2736 static void 2737 ath_update_mcast(struct ifnet *ifp) 2738 { 2739 struct ath_softc *sc = ifp->if_softc; 2740 u_int32_t mfilt[2]; 2741 2742 /* calculate and install multicast filter */ 2743 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2744 struct ifmultiaddr *ifma; 2745 /* 2746 * Merge multicast addresses to form the hardware filter. 2747 */ 2748 mfilt[0] = mfilt[1] = 0; 2749 IF_ADDR_LOCK(ifp); /* XXX need some fiddling to remove? */ 2750 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2751 caddr_t dl; 2752 u_int32_t val; 2753 u_int8_t pos; 2754 2755 /* calculate XOR of eight 6bit values */ 2756 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2757 val = LE_READ_4(dl + 0); 2758 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2759 val = LE_READ_4(dl + 3); 2760 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2761 pos &= 0x3f; 2762 mfilt[pos / 32] |= (1 << (pos % 32)); 2763 } 2764 IF_ADDR_UNLOCK(ifp); 2765 } else 2766 mfilt[0] = mfilt[1] = ~0; 2767 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2768 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2769 __func__, mfilt[0], mfilt[1]); 2770 } 2771 2772 static void 2773 ath_mode_init(struct ath_softc *sc) 2774 { 2775 struct ifnet *ifp = sc->sc_ifp; 2776 struct ieee80211com *ic = ifp->if_l2com; 2777 struct ath_hal *ah = sc->sc_ah; 2778 u_int32_t rfilt; 2779 2780 /* configure rx filter */ 2781 rfilt = ath_calcrxfilter(sc); 2782 ath_hal_setrxfilter(ah, rfilt); 2783 2784 /* configure operational mode */ 2785 ath_hal_setopmode(ah); 2786 2787 /* 2788 * Handle any link-level address change. Note that we only 2789 * need to force ic_myaddr; any other addresses are handled 2790 * as a byproduct of the ifnet code marking the interface 2791 * down then up. 2792 * 2793 * XXX should get from lladdr instead of arpcom but that's more work 2794 */ 2795 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2796 ath_hal_setmac(ah, ic->ic_myaddr); 2797 2798 /* calculate and install multicast filter */ 2799 ath_update_mcast(ifp); 2800 } 2801 2802 /* 2803 * Set the slot time based on the current setting. 2804 */ 2805 static void 2806 ath_setslottime(struct ath_softc *sc) 2807 { 2808 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2809 struct ath_hal *ah = sc->sc_ah; 2810 u_int usec; 2811 2812 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2813 usec = 13; 2814 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2815 usec = 21; 2816 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2817 /* honor short/long slot time only in 11g */ 2818 /* XXX shouldn't honor on pure g or turbo g channel */ 2819 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2820 usec = HAL_SLOT_TIME_9; 2821 else 2822 usec = HAL_SLOT_TIME_20; 2823 } else 2824 usec = HAL_SLOT_TIME_9; 2825 2826 DPRINTF(sc, ATH_DEBUG_RESET, 2827 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2828 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2829 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2830 2831 ath_hal_setslottime(ah, usec); 2832 sc->sc_updateslot = OK; 2833 } 2834 2835 /* 2836 * Callback from the 802.11 layer to update the 2837 * slot time based on the current setting. 2838 */ 2839 static void 2840 ath_updateslot(struct ifnet *ifp) 2841 { 2842 struct ath_softc *sc = ifp->if_softc; 2843 struct ieee80211com *ic = ifp->if_l2com; 2844 2845 /* 2846 * When not coordinating the BSS, change the hardware 2847 * immediately. For other operation we defer the change 2848 * until beacon updates have propagated to the stations. 2849 */ 2850 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2851 sc->sc_updateslot = UPDATE; 2852 else 2853 ath_setslottime(sc); 2854 } 2855 2856 /* 2857 * Setup a h/w transmit queue for beacons. 2858 */ 2859 static int 2860 ath_beaconq_setup(struct ath_hal *ah) 2861 { 2862 HAL_TXQ_INFO qi; 2863 2864 memset(&qi, 0, sizeof(qi)); 2865 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2866 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2867 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2868 /* NB: for dynamic turbo, don't enable any other interrupts */ 2869 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2870 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2871 } 2872 2873 /* 2874 * Setup the transmit queue parameters for the beacon queue. 2875 */ 2876 static int 2877 ath_beaconq_config(struct ath_softc *sc) 2878 { 2879 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2880 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2881 struct ath_hal *ah = sc->sc_ah; 2882 HAL_TXQ_INFO qi; 2883 2884 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2885 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2886 /* 2887 * Always burst out beacon and CAB traffic. 2888 */ 2889 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2890 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2891 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2892 } else { 2893 struct wmeParams *wmep = 2894 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2895 /* 2896 * Adhoc mode; important thing is to use 2x cwmin. 2897 */ 2898 qi.tqi_aifs = wmep->wmep_aifsn; 2899 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2900 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2901 } 2902 2903 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2904 device_printf(sc->sc_dev, "unable to update parameters for " 2905 "beacon hardware queue!\n"); 2906 return 0; 2907 } else { 2908 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2909 return 1; 2910 } 2911 #undef ATH_EXPONENT_TO_VALUE 2912 } 2913 2914 /* 2915 * Allocate and setup an initial beacon frame. 2916 */ 2917 static int 2918 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2919 { 2920 struct ieee80211vap *vap = ni->ni_vap; 2921 struct ath_vap *avp = ATH_VAP(vap); 2922 struct ath_buf *bf; 2923 struct mbuf *m; 2924 int error; 2925 2926 bf = avp->av_bcbuf; 2927 if (bf->bf_m != NULL) { 2928 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2929 m_freem(bf->bf_m); 2930 bf->bf_m = NULL; 2931 } 2932 if (bf->bf_node != NULL) { 2933 ieee80211_free_node(bf->bf_node); 2934 bf->bf_node = NULL; 2935 } 2936 2937 /* 2938 * NB: the beacon data buffer must be 32-bit aligned; 2939 * we assume the mbuf routines will return us something 2940 * with this alignment (perhaps should assert). 2941 */ 2942 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2943 if (m == NULL) { 2944 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2945 sc->sc_stats.ast_be_nombuf++; 2946 return ENOMEM; 2947 } 2948 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2949 bf->bf_segs, &bf->bf_nseg, 2950 BUS_DMA_NOWAIT); 2951 if (error != 0) { 2952 device_printf(sc->sc_dev, 2953 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2954 __func__, error); 2955 m_freem(m); 2956 return error; 2957 } 2958 2959 /* 2960 * Calculate a TSF adjustment factor required for staggered 2961 * beacons. Note that we assume the format of the beacon 2962 * frame leaves the tstamp field immediately following the 2963 * header. 2964 */ 2965 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2966 uint64_t tsfadjust; 2967 struct ieee80211_frame *wh; 2968 2969 /* 2970 * The beacon interval is in TU's; the TSF is in usecs. 2971 * We figure out how many TU's to add to align the timestamp 2972 * then convert to TSF units and handle byte swapping before 2973 * inserting it in the frame. The hardware will then add this 2974 * each time a beacon frame is sent. Note that we align vap's 2975 * 1..N and leave vap 0 untouched. This means vap 0 has a 2976 * timestamp in one beacon interval while the others get a 2977 * timstamp aligned to the next interval. 2978 */ 2979 tsfadjust = ni->ni_intval * 2980 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2981 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2982 2983 DPRINTF(sc, ATH_DEBUG_BEACON, 2984 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2985 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2986 avp->av_bslot, ni->ni_intval, 2987 (long long unsigned) le64toh(tsfadjust)); 2988 2989 wh = mtod(m, struct ieee80211_frame *); 2990 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2991 } 2992 bf->bf_m = m; 2993 bf->bf_node = ieee80211_ref_node(ni); 2994 2995 return 0; 2996 } 2997 2998 /* 2999 * Setup the beacon frame for transmit. 3000 */ 3001 static void 3002 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 3003 { 3004 #define USE_SHPREAMBLE(_ic) \ 3005 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 3006 == IEEE80211_F_SHPREAMBLE) 3007 struct ieee80211_node *ni = bf->bf_node; 3008 struct ieee80211com *ic = ni->ni_ic; 3009 struct mbuf *m = bf->bf_m; 3010 struct ath_hal *ah = sc->sc_ah; 3011 struct ath_desc *ds; 3012 int flags, antenna; 3013 const HAL_RATE_TABLE *rt; 3014 u_int8_t rix, rate; 3015 3016 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 3017 __func__, m, m->m_len); 3018 3019 /* setup descriptors */ 3020 ds = bf->bf_desc; 3021 3022 flags = HAL_TXDESC_NOACK; 3023 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 3024 ds->ds_link = bf->bf_daddr; /* self-linked */ 3025 flags |= HAL_TXDESC_VEOL; 3026 /* 3027 * Let hardware handle antenna switching. 3028 */ 3029 antenna = sc->sc_txantenna; 3030 } else { 3031 ds->ds_link = 0; 3032 /* 3033 * Switch antenna every 4 beacons. 3034 * XXX assumes two antenna 3035 */ 3036 if (sc->sc_txantenna != 0) 3037 antenna = sc->sc_txantenna; 3038 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 3039 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 3040 else 3041 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 3042 } 3043 3044 KASSERT(bf->bf_nseg == 1, 3045 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 3046 ds->ds_data = bf->bf_segs[0].ds_addr; 3047 /* 3048 * Calculate rate code. 3049 * XXX everything at min xmit rate 3050 */ 3051 rix = 0; 3052 rt = sc->sc_currates; 3053 rate = rt->info[rix].rateCode; 3054 if (USE_SHPREAMBLE(ic)) 3055 rate |= rt->info[rix].shortPreamble; 3056 ath_hal_setuptxdesc(ah, ds 3057 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 3058 , sizeof(struct ieee80211_frame)/* header length */ 3059 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 3060 , ni->ni_txpower /* txpower XXX */ 3061 , rate, 1 /* series 0 rate/tries */ 3062 , HAL_TXKEYIX_INVALID /* no encryption */ 3063 , antenna /* antenna mode */ 3064 , flags /* no ack, veol for beacons */ 3065 , 0 /* rts/cts rate */ 3066 , 0 /* rts/cts duration */ 3067 ); 3068 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 3069 ath_hal_filltxdesc(ah, ds 3070 , roundup(m->m_len, 4) /* buffer length */ 3071 , AH_TRUE /* first segment */ 3072 , AH_TRUE /* last segment */ 3073 , ds /* first descriptor */ 3074 ); 3075 #if 0 3076 ath_desc_swap(ds); 3077 #endif 3078 #undef USE_SHPREAMBLE 3079 } 3080 3081 static void 3082 ath_beacon_update(struct ieee80211vap *vap, int item) 3083 { 3084 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 3085 3086 setbit(bo->bo_flags, item); 3087 } 3088 3089 /* 3090 * Append the contents of src to dst; both queues 3091 * are assumed to be locked. 3092 */ 3093 static void 3094 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3095 { 3096 STAILQ_CONCAT(&dst->axq_q, &src->axq_q); 3097 dst->axq_link = src->axq_link; 3098 src->axq_link = NULL; 3099 dst->axq_depth += src->axq_depth; 3100 src->axq_depth = 0; 3101 } 3102 3103 /* 3104 * Transmit a beacon frame at SWBA. Dynamic updates to the 3105 * frame contents are done as needed and the slot time is 3106 * also adjusted based on current state. 3107 */ 3108 static void 3109 ath_beacon_proc(void *arg, int pending) 3110 { 3111 struct ath_softc *sc = arg; 3112 struct ath_hal *ah = sc->sc_ah; 3113 struct ieee80211vap *vap; 3114 struct ath_buf *bf; 3115 int slot, otherant; 3116 uint32_t bfaddr; 3117 3118 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 3119 __func__, pending); 3120 /* 3121 * Check if the previous beacon has gone out. If 3122 * not don't try to post another, skip this period 3123 * and wait for the next. Missed beacons indicate 3124 * a problem and should not occur. If we miss too 3125 * many consecutive beacons reset the device. 3126 */ 3127 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 3128 sc->sc_bmisscount++; 3129 DPRINTF(sc, ATH_DEBUG_BEACON, 3130 "%s: missed %u consecutive beacons\n", 3131 __func__, sc->sc_bmisscount); 3132 if (sc->sc_bmisscount >= ath_bstuck_threshold) 3133 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 3134 return; 3135 } 3136 if (sc->sc_bmisscount != 0) { 3137 DPRINTF(sc, ATH_DEBUG_BEACON, 3138 "%s: resume beacon xmit after %u misses\n", 3139 __func__, sc->sc_bmisscount); 3140 sc->sc_bmisscount = 0; 3141 } 3142 3143 if (sc->sc_stagbeacons) { /* staggered beacons */ 3144 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3145 uint32_t tsftu; 3146 3147 tsftu = ath_hal_gettsf32(ah) >> 10; 3148 /* XXX lintval */ 3149 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 3150 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 3151 bfaddr = 0; 3152 if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) { 3153 bf = ath_beacon_generate(sc, vap); 3154 if (bf != NULL) 3155 bfaddr = bf->bf_daddr; 3156 } 3157 } else { /* burst'd beacons */ 3158 uint32_t *bflink = &bfaddr; 3159 3160 for (slot = 0; slot < ATH_BCBUF; slot++) { 3161 vap = sc->sc_bslot[slot]; 3162 if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) { 3163 bf = ath_beacon_generate(sc, vap); 3164 if (bf != NULL) { 3165 *bflink = bf->bf_daddr; 3166 bflink = &bf->bf_desc->ds_link; 3167 } 3168 } 3169 } 3170 *bflink = 0; /* terminate list */ 3171 } 3172 3173 /* 3174 * Handle slot time change when a non-ERP station joins/leaves 3175 * an 11g network. The 802.11 layer notifies us via callback, 3176 * we mark updateslot, then wait one beacon before effecting 3177 * the change. This gives associated stations at least one 3178 * beacon interval to note the state change. 3179 */ 3180 /* XXX locking */ 3181 if (sc->sc_updateslot == UPDATE) { 3182 sc->sc_updateslot = COMMIT; /* commit next beacon */ 3183 sc->sc_slotupdate = slot; 3184 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 3185 ath_setslottime(sc); /* commit change to h/w */ 3186 3187 /* 3188 * Check recent per-antenna transmit statistics and flip 3189 * the default antenna if noticeably more frames went out 3190 * on the non-default antenna. 3191 * XXX assumes 2 anntenae 3192 */ 3193 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 3194 otherant = sc->sc_defant & 1 ? 2 : 1; 3195 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 3196 ath_setdefantenna(sc, otherant); 3197 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 3198 } 3199 3200 if (bfaddr != 0) { 3201 /* 3202 * Stop any current dma and put the new frame on the queue. 3203 * This should never fail since we check above that no frames 3204 * are still pending on the queue. 3205 */ 3206 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 3207 DPRINTF(sc, ATH_DEBUG_ANY, 3208 "%s: beacon queue %u did not stop?\n", 3209 __func__, sc->sc_bhalq); 3210 } 3211 /* NB: cabq traffic should already be queued and primed */ 3212 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 3213 ath_hal_txstart(ah, sc->sc_bhalq); 3214 3215 sc->sc_stats.ast_be_xmit++; 3216 } 3217 } 3218 3219 static struct ath_buf * 3220 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 3221 { 3222 struct ath_vap *avp = ATH_VAP(vap); 3223 struct ath_txq *cabq = sc->sc_cabq; 3224 struct ath_buf *bf; 3225 struct mbuf *m; 3226 int nmcastq, error; 3227 3228 KASSERT(vap->iv_state == IEEE80211_S_RUN, 3229 ("not running, state %d", vap->iv_state)); 3230 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3231 3232 /* 3233 * Update dynamic beacon contents. If this returns 3234 * non-zero then we need to remap the memory because 3235 * the beacon frame changed size (probably because 3236 * of the TIM bitmap). 3237 */ 3238 bf = avp->av_bcbuf; 3239 m = bf->bf_m; 3240 nmcastq = avp->av_mcastq.axq_depth; 3241 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 3242 /* XXX too conservative? */ 3243 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3244 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3245 bf->bf_segs, &bf->bf_nseg, 3246 BUS_DMA_NOWAIT); 3247 if (error != 0) { 3248 if_printf(vap->iv_ifp, 3249 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3250 __func__, error); 3251 return NULL; 3252 } 3253 } 3254 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3255 DPRINTF(sc, ATH_DEBUG_BEACON, 3256 "%s: cabq did not drain, mcastq %u cabq %u\n", 3257 __func__, nmcastq, cabq->axq_depth); 3258 sc->sc_stats.ast_cabq_busy++; 3259 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3260 /* 3261 * CABQ traffic from a previous vap is still pending. 3262 * We must drain the q before this beacon frame goes 3263 * out as otherwise this vap's stations will get cab 3264 * frames from a different vap. 3265 * XXX could be slow causing us to miss DBA 3266 */ 3267 ath_tx_draintxq(sc, cabq); 3268 } 3269 } 3270 ath_beacon_setup(sc, bf); 3271 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3272 3273 /* 3274 * Enable the CAB queue before the beacon queue to 3275 * insure cab frames are triggered by this beacon. 3276 */ 3277 if (avp->av_boff.bo_tim[4] & 1) { 3278 struct ath_hal *ah = sc->sc_ah; 3279 3280 /* NB: only at DTIM */ 3281 ATH_TXQ_LOCK(cabq); 3282 ATH_TXQ_LOCK(&avp->av_mcastq); 3283 if (nmcastq) { 3284 struct ath_buf *bfm; 3285 3286 /* 3287 * Move frames from the s/w mcast q to the h/w cab q. 3288 * XXX MORE_DATA bit 3289 */ 3290 bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q); 3291 if (cabq->axq_link != NULL) { 3292 *cabq->axq_link = bfm->bf_daddr; 3293 } else 3294 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3295 bfm->bf_daddr); 3296 ath_txqmove(cabq, &avp->av_mcastq); 3297 3298 sc->sc_stats.ast_cabq_xmit += nmcastq; 3299 } 3300 /* NB: gated by beacon so safe to start here */ 3301 ath_hal_txstart(ah, cabq->axq_qnum); 3302 ATH_TXQ_UNLOCK(cabq); 3303 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3304 } 3305 return bf; 3306 } 3307 3308 static void 3309 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3310 { 3311 struct ath_vap *avp = ATH_VAP(vap); 3312 struct ath_hal *ah = sc->sc_ah; 3313 struct ath_buf *bf; 3314 struct mbuf *m; 3315 int error; 3316 3317 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3318 3319 /* 3320 * Update dynamic beacon contents. If this returns 3321 * non-zero then we need to remap the memory because 3322 * the beacon frame changed size (probably because 3323 * of the TIM bitmap). 3324 */ 3325 bf = avp->av_bcbuf; 3326 m = bf->bf_m; 3327 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3328 /* XXX too conservative? */ 3329 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3330 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3331 bf->bf_segs, &bf->bf_nseg, 3332 BUS_DMA_NOWAIT); 3333 if (error != 0) { 3334 if_printf(vap->iv_ifp, 3335 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3336 __func__, error); 3337 return; 3338 } 3339 } 3340 ath_beacon_setup(sc, bf); 3341 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3342 3343 /* NB: caller is known to have already stopped tx dma */ 3344 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3345 ath_hal_txstart(ah, sc->sc_bhalq); 3346 } 3347 3348 /* 3349 * Reset the hardware after detecting beacons have stopped. 3350 */ 3351 static void 3352 ath_bstuck_proc(void *arg, int pending) 3353 { 3354 struct ath_softc *sc = arg; 3355 struct ifnet *ifp = sc->sc_ifp; 3356 3357 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3358 sc->sc_bmisscount); 3359 sc->sc_stats.ast_bstuck++; 3360 ath_reset(ifp); 3361 } 3362 3363 /* 3364 * Reclaim beacon resources and return buffer to the pool. 3365 */ 3366 static void 3367 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3368 { 3369 3370 if (bf->bf_m != NULL) { 3371 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3372 m_freem(bf->bf_m); 3373 bf->bf_m = NULL; 3374 } 3375 if (bf->bf_node != NULL) { 3376 ieee80211_free_node(bf->bf_node); 3377 bf->bf_node = NULL; 3378 } 3379 STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3380 } 3381 3382 /* 3383 * Reclaim beacon resources. 3384 */ 3385 static void 3386 ath_beacon_free(struct ath_softc *sc) 3387 { 3388 struct ath_buf *bf; 3389 3390 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3391 if (bf->bf_m != NULL) { 3392 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3393 m_freem(bf->bf_m); 3394 bf->bf_m = NULL; 3395 } 3396 if (bf->bf_node != NULL) { 3397 ieee80211_free_node(bf->bf_node); 3398 bf->bf_node = NULL; 3399 } 3400 } 3401 } 3402 3403 /* 3404 * Configure the beacon and sleep timers. 3405 * 3406 * When operating as an AP this resets the TSF and sets 3407 * up the hardware to notify us when we need to issue beacons. 3408 * 3409 * When operating in station mode this sets up the beacon 3410 * timers according to the timestamp of the last received 3411 * beacon and the current TSF, configures PCF and DTIM 3412 * handling, programs the sleep registers so the hardware 3413 * will wakeup in time to receive beacons, and configures 3414 * the beacon miss handling so we'll receive a BMISS 3415 * interrupt when we stop seeing beacons from the AP 3416 * we've associated with. 3417 */ 3418 static void 3419 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3420 { 3421 #define TSF_TO_TU(_h,_l) \ 3422 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3423 #define FUDGE 2 3424 struct ath_hal *ah = sc->sc_ah; 3425 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3426 struct ieee80211_node *ni; 3427 u_int32_t nexttbtt, intval, tsftu; 3428 u_int64_t tsf; 3429 3430 if (vap == NULL) 3431 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3432 ni = vap->iv_bss; 3433 3434 /* extract tstamp from last beacon and convert to TU */ 3435 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3436 LE_READ_4(ni->ni_tstamp.data)); 3437 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 3438 /* 3439 * For multi-bss ap support beacons are either staggered 3440 * evenly over N slots or burst together. For the former 3441 * arrange for the SWBA to be delivered for each slot. 3442 * Slots that are not occupied will generate nothing. 3443 */ 3444 /* NB: the beacon interval is kept internally in TU's */ 3445 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3446 if (sc->sc_stagbeacons) 3447 intval /= ATH_BCBUF; 3448 } else { 3449 /* NB: the beacon interval is kept internally in TU's */ 3450 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3451 } 3452 if (nexttbtt == 0) /* e.g. for ap mode */ 3453 nexttbtt = intval; 3454 else if (intval) /* NB: can be 0 for monitor mode */ 3455 nexttbtt = roundup(nexttbtt, intval); 3456 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3457 __func__, nexttbtt, intval, ni->ni_intval); 3458 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3459 HAL_BEACON_STATE bs; 3460 int dtimperiod, dtimcount; 3461 int cfpperiod, cfpcount; 3462 3463 /* 3464 * Setup dtim and cfp parameters according to 3465 * last beacon we received (which may be none). 3466 */ 3467 dtimperiod = ni->ni_dtim_period; 3468 if (dtimperiod <= 0) /* NB: 0 if not known */ 3469 dtimperiod = 1; 3470 dtimcount = ni->ni_dtim_count; 3471 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3472 dtimcount = 0; /* XXX? */ 3473 cfpperiod = 1; /* NB: no PCF support yet */ 3474 cfpcount = 0; 3475 /* 3476 * Pull nexttbtt forward to reflect the current 3477 * TSF and calculate dtim+cfp state for the result. 3478 */ 3479 tsf = ath_hal_gettsf64(ah); 3480 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3481 do { 3482 nexttbtt += intval; 3483 if (--dtimcount < 0) { 3484 dtimcount = dtimperiod - 1; 3485 if (--cfpcount < 0) 3486 cfpcount = cfpperiod - 1; 3487 } 3488 } while (nexttbtt < tsftu); 3489 memset(&bs, 0, sizeof(bs)); 3490 bs.bs_intval = intval; 3491 bs.bs_nexttbtt = nexttbtt; 3492 bs.bs_dtimperiod = dtimperiod*intval; 3493 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3494 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3495 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3496 bs.bs_cfpmaxduration = 0; 3497 #if 0 3498 /* 3499 * The 802.11 layer records the offset to the DTIM 3500 * bitmap while receiving beacons; use it here to 3501 * enable h/w detection of our AID being marked in 3502 * the bitmap vector (to indicate frames for us are 3503 * pending at the AP). 3504 * XXX do DTIM handling in s/w to WAR old h/w bugs 3505 * XXX enable based on h/w rev for newer chips 3506 */ 3507 bs.bs_timoffset = ni->ni_timoff; 3508 #endif 3509 /* 3510 * Calculate the number of consecutive beacons to miss 3511 * before taking a BMISS interrupt. 3512 * Note that we clamp the result to at most 10 beacons. 3513 */ 3514 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3515 if (bs.bs_bmissthreshold > 10) 3516 bs.bs_bmissthreshold = 10; 3517 else if (bs.bs_bmissthreshold <= 0) 3518 bs.bs_bmissthreshold = 1; 3519 3520 /* 3521 * Calculate sleep duration. The configuration is 3522 * given in ms. We insure a multiple of the beacon 3523 * period is used. Also, if the sleep duration is 3524 * greater than the DTIM period then it makes senses 3525 * to make it a multiple of that. 3526 * 3527 * XXX fixed at 100ms 3528 */ 3529 bs.bs_sleepduration = 3530 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3531 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3532 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3533 3534 DPRINTF(sc, ATH_DEBUG_BEACON, 3535 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3536 , __func__ 3537 , tsf, tsftu 3538 , bs.bs_intval 3539 , bs.bs_nexttbtt 3540 , bs.bs_dtimperiod 3541 , bs.bs_nextdtim 3542 , bs.bs_bmissthreshold 3543 , bs.bs_sleepduration 3544 , bs.bs_cfpperiod 3545 , bs.bs_cfpmaxduration 3546 , bs.bs_cfpnext 3547 , bs.bs_timoffset 3548 ); 3549 ath_hal_intrset(ah, 0); 3550 ath_hal_beacontimers(ah, &bs); 3551 sc->sc_imask |= HAL_INT_BMISS; 3552 ath_hal_intrset(ah, sc->sc_imask); 3553 } else { 3554 ath_hal_intrset(ah, 0); 3555 if (nexttbtt == intval) 3556 intval |= HAL_BEACON_RESET_TSF; 3557 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3558 /* 3559 * In IBSS mode enable the beacon timers but only 3560 * enable SWBA interrupts if we need to manually 3561 * prepare beacon frames. Otherwise we use a 3562 * self-linked tx descriptor and let the hardware 3563 * deal with things. 3564 */ 3565 intval |= HAL_BEACON_ENA; 3566 if (!sc->sc_hasveol) 3567 sc->sc_imask |= HAL_INT_SWBA; 3568 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3569 /* 3570 * Pull nexttbtt forward to reflect 3571 * the current TSF. 3572 */ 3573 tsf = ath_hal_gettsf64(ah); 3574 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3575 do { 3576 nexttbtt += intval; 3577 } while (nexttbtt < tsftu); 3578 } 3579 ath_beaconq_config(sc); 3580 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 3581 /* 3582 * In AP mode we enable the beacon timers and 3583 * SWBA interrupts to prepare beacon frames. 3584 */ 3585 intval |= HAL_BEACON_ENA; 3586 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3587 ath_beaconq_config(sc); 3588 } 3589 ath_hal_beaconinit(ah, nexttbtt, intval); 3590 sc->sc_bmisscount = 0; 3591 ath_hal_intrset(ah, sc->sc_imask); 3592 /* 3593 * When using a self-linked beacon descriptor in 3594 * ibss mode load it once here. 3595 */ 3596 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3597 ath_beacon_start_adhoc(sc, vap); 3598 } 3599 sc->sc_syncbeacon = 0; 3600 #undef FUDGE 3601 #undef TSF_TO_TU 3602 } 3603 3604 static void 3605 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3606 { 3607 bus_addr_t *paddr = (bus_addr_t*) arg; 3608 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3609 *paddr = segs->ds_addr; 3610 } 3611 3612 static int 3613 ath_descdma_setup(struct ath_softc *sc, 3614 struct ath_descdma *dd, ath_bufhead *head, 3615 const char *name, int nbuf, int ndesc) 3616 { 3617 #define DS2PHYS(_dd, _ds) \ 3618 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3619 struct ifnet *ifp = sc->sc_ifp; 3620 struct ath_desc *ds; 3621 struct ath_buf *bf; 3622 int i, bsize, error; 3623 3624 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3625 __func__, name, nbuf, ndesc); 3626 3627 dd->dd_name = name; 3628 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 3629 3630 /* 3631 * Setup DMA descriptor area. 3632 */ 3633 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3634 PAGE_SIZE, 0, /* alignment, bounds */ 3635 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3636 BUS_SPACE_MAXADDR, /* highaddr */ 3637 NULL, NULL, /* filter, filterarg */ 3638 dd->dd_desc_len, /* maxsize */ 3639 1, /* nsegments */ 3640 dd->dd_desc_len, /* maxsegsize */ 3641 BUS_DMA_ALLOCNOW, /* flags */ 3642 NULL, /* lockfunc */ 3643 NULL, /* lockarg */ 3644 &dd->dd_dmat); 3645 if (error != 0) { 3646 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3647 return error; 3648 } 3649 3650 /* allocate descriptors */ 3651 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3652 if (error != 0) { 3653 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3654 "error %u\n", dd->dd_name, error); 3655 goto fail0; 3656 } 3657 3658 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3659 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3660 &dd->dd_dmamap); 3661 if (error != 0) { 3662 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3663 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3664 goto fail1; 3665 } 3666 3667 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3668 dd->dd_desc, dd->dd_desc_len, 3669 ath_load_cb, &dd->dd_desc_paddr, 3670 BUS_DMA_NOWAIT); 3671 if (error != 0) { 3672 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3673 dd->dd_name, error); 3674 goto fail2; 3675 } 3676 3677 ds = dd->dd_desc; 3678 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3679 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3680 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3681 3682 /* allocate rx buffers */ 3683 bsize = sizeof(struct ath_buf) * nbuf; 3684 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3685 if (bf == NULL) { 3686 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3687 dd->dd_name, bsize); 3688 goto fail3; 3689 } 3690 dd->dd_bufptr = bf; 3691 3692 STAILQ_INIT(head); 3693 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 3694 bf->bf_desc = ds; 3695 bf->bf_daddr = DS2PHYS(dd, ds); 3696 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3697 &bf->bf_dmamap); 3698 if (error != 0) { 3699 if_printf(ifp, "unable to create dmamap for %s " 3700 "buffer %u, error %u\n", dd->dd_name, i, error); 3701 ath_descdma_cleanup(sc, dd, head); 3702 return error; 3703 } 3704 STAILQ_INSERT_TAIL(head, bf, bf_list); 3705 } 3706 return 0; 3707 fail3: 3708 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3709 fail2: 3710 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3711 fail1: 3712 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3713 fail0: 3714 bus_dma_tag_destroy(dd->dd_dmat); 3715 memset(dd, 0, sizeof(*dd)); 3716 return error; 3717 #undef DS2PHYS 3718 } 3719 3720 static void 3721 ath_descdma_cleanup(struct ath_softc *sc, 3722 struct ath_descdma *dd, ath_bufhead *head) 3723 { 3724 struct ath_buf *bf; 3725 struct ieee80211_node *ni; 3726 3727 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3728 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3729 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3730 bus_dma_tag_destroy(dd->dd_dmat); 3731 3732 STAILQ_FOREACH(bf, head, bf_list) { 3733 if (bf->bf_m) { 3734 m_freem(bf->bf_m); 3735 bf->bf_m = NULL; 3736 } 3737 if (bf->bf_dmamap != NULL) { 3738 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3739 bf->bf_dmamap = NULL; 3740 } 3741 ni = bf->bf_node; 3742 bf->bf_node = NULL; 3743 if (ni != NULL) { 3744 /* 3745 * Reclaim node reference. 3746 */ 3747 ieee80211_free_node(ni); 3748 } 3749 } 3750 3751 STAILQ_INIT(head); 3752 free(dd->dd_bufptr, M_ATHDEV); 3753 memset(dd, 0, sizeof(*dd)); 3754 } 3755 3756 static int 3757 ath_desc_alloc(struct ath_softc *sc) 3758 { 3759 int error; 3760 3761 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3762 "rx", ath_rxbuf, 1); 3763 if (error != 0) 3764 return error; 3765 3766 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3767 "tx", ath_txbuf, ATH_TXDESC); 3768 if (error != 0) { 3769 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3770 return error; 3771 } 3772 3773 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3774 "beacon", ATH_BCBUF, 1); 3775 if (error != 0) { 3776 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3777 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3778 return error; 3779 } 3780 return 0; 3781 } 3782 3783 static void 3784 ath_desc_free(struct ath_softc *sc) 3785 { 3786 3787 if (sc->sc_bdma.dd_desc_len != 0) 3788 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3789 if (sc->sc_txdma.dd_desc_len != 0) 3790 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3791 if (sc->sc_rxdma.dd_desc_len != 0) 3792 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3793 } 3794 3795 static struct ieee80211_node * 3796 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3797 { 3798 struct ieee80211com *ic = vap->iv_ic; 3799 struct ath_softc *sc = ic->ic_ifp->if_softc; 3800 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3801 struct ath_node *an; 3802 3803 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3804 if (an == NULL) { 3805 /* XXX stat+msg */ 3806 return NULL; 3807 } 3808 ath_rate_node_init(sc, an); 3809 3810 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3811 return &an->an_node; 3812 } 3813 3814 static void 3815 ath_node_free(struct ieee80211_node *ni) 3816 { 3817 struct ieee80211com *ic = ni->ni_ic; 3818 struct ath_softc *sc = ic->ic_ifp->if_softc; 3819 3820 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3821 3822 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3823 sc->sc_node_free(ni); 3824 } 3825 3826 static void 3827 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3828 { 3829 struct ieee80211com *ic = ni->ni_ic; 3830 struct ath_softc *sc = ic->ic_ifp->if_softc; 3831 struct ath_hal *ah = sc->sc_ah; 3832 3833 *rssi = ic->ic_node_getrssi(ni); 3834 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3835 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3836 else 3837 *noise = -95; /* nominally correct */ 3838 } 3839 3840 static int 3841 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3842 { 3843 struct ath_hal *ah = sc->sc_ah; 3844 int error; 3845 struct mbuf *m; 3846 struct ath_desc *ds; 3847 3848 m = bf->bf_m; 3849 if (m == NULL) { 3850 /* 3851 * NB: by assigning a page to the rx dma buffer we 3852 * implicitly satisfy the Atheros requirement that 3853 * this buffer be cache-line-aligned and sized to be 3854 * multiple of the cache line size. Not doing this 3855 * causes weird stuff to happen (for the 5210 at least). 3856 */ 3857 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3858 if (m == NULL) { 3859 DPRINTF(sc, ATH_DEBUG_ANY, 3860 "%s: no mbuf/cluster\n", __func__); 3861 sc->sc_stats.ast_rx_nombuf++; 3862 return ENOMEM; 3863 } 3864 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3865 3866 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3867 bf->bf_dmamap, m, 3868 bf->bf_segs, &bf->bf_nseg, 3869 BUS_DMA_NOWAIT); 3870 if (error != 0) { 3871 DPRINTF(sc, ATH_DEBUG_ANY, 3872 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3873 __func__, error); 3874 sc->sc_stats.ast_rx_busdma++; 3875 m_freem(m); 3876 return error; 3877 } 3878 KASSERT(bf->bf_nseg == 1, 3879 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3880 bf->bf_m = m; 3881 } 3882 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3883 3884 /* 3885 * Setup descriptors. For receive we always terminate 3886 * the descriptor list with a self-linked entry so we'll 3887 * not get overrun under high load (as can happen with a 3888 * 5212 when ANI processing enables PHY error frames). 3889 * 3890 * To insure the last descriptor is self-linked we create 3891 * each descriptor as self-linked and add it to the end. As 3892 * each additional descriptor is added the previous self-linked 3893 * entry is ``fixed'' naturally. This should be safe even 3894 * if DMA is happening. When processing RX interrupts we 3895 * never remove/process the last, self-linked, entry on the 3896 * descriptor list. This insures the hardware always has 3897 * someplace to write a new frame. 3898 */ 3899 ds = bf->bf_desc; 3900 ds->ds_link = bf->bf_daddr; /* link to self */ 3901 ds->ds_data = bf->bf_segs[0].ds_addr; 3902 ath_hal_setuprxdesc(ah, ds 3903 , m->m_len /* buffer size */ 3904 , 0 3905 ); 3906 3907 if (sc->sc_rxlink != NULL) 3908 *sc->sc_rxlink = bf->bf_daddr; 3909 sc->sc_rxlink = &ds->ds_link; 3910 return 0; 3911 } 3912 3913 /* 3914 * Extend 15-bit time stamp from rx descriptor to 3915 * a full 64-bit TSF using the specified TSF. 3916 */ 3917 static __inline u_int64_t 3918 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 3919 { 3920 if ((tsf & 0x7fff) < rstamp) 3921 tsf -= 0x8000; 3922 return ((tsf &~ 0x7fff) | rstamp); 3923 } 3924 3925 /* 3926 * Intercept management frames to collect beacon rssi data 3927 * and to do ibss merges. 3928 */ 3929 static void 3930 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3931 int subtype, int rssi, int noise, u_int32_t rstamp) 3932 { 3933 struct ieee80211vap *vap = ni->ni_vap; 3934 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3935 3936 /* 3937 * Call up first so subsequent work can use information 3938 * potentially stored in the node (e.g. for ibss merge). 3939 */ 3940 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp); 3941 switch (subtype) { 3942 case IEEE80211_FC0_SUBTYPE_BEACON: 3943 /* update rssi statistics for use by the hal */ 3944 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3945 if (sc->sc_syncbeacon && 3946 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3947 /* 3948 * Resync beacon timers using the tsf of the beacon 3949 * frame we just received. 3950 */ 3951 ath_beacon_config(sc, vap); 3952 } 3953 /* fall thru... */ 3954 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3955 if (vap->iv_opmode == IEEE80211_M_IBSS && 3956 vap->iv_state == IEEE80211_S_RUN) { 3957 u_int64_t tsf = ath_extend_tsf(rstamp, 3958 ath_hal_gettsf64(sc->sc_ah)); 3959 /* 3960 * Handle ibss merge as needed; check the tsf on the 3961 * frame before attempting the merge. The 802.11 spec 3962 * says the station should change it's bssid to match 3963 * the oldest station with the same ssid, where oldest 3964 * is determined by the tsf. Note that hardware 3965 * reconfiguration happens through callback to 3966 * ath_newstate as the state machine will go from 3967 * RUN -> RUN when this happens. 3968 */ 3969 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3970 DPRINTF(sc, ATH_DEBUG_STATE, 3971 "ibss merge, rstamp %u tsf %ju " 3972 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3973 (uintmax_t)ni->ni_tstamp.tsf); 3974 (void) ieee80211_ibss_merge(ni); 3975 } 3976 } 3977 break; 3978 } 3979 } 3980 3981 /* 3982 * Set the default antenna. 3983 */ 3984 static void 3985 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3986 { 3987 struct ath_hal *ah = sc->sc_ah; 3988 3989 /* XXX block beacon interrupts */ 3990 ath_hal_setdefantenna(ah, antenna); 3991 if (sc->sc_defant != antenna) 3992 sc->sc_stats.ast_ant_defswitch++; 3993 sc->sc_defant = antenna; 3994 sc->sc_rxotherant = 0; 3995 } 3996 3997 static int 3998 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3999 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 4000 { 4001 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 4002 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 4003 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 4004 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 4005 struct ath_softc *sc = ifp->if_softc; 4006 const HAL_RATE_TABLE *rt; 4007 uint8_t rix; 4008 4009 /* 4010 * Discard anything shorter than an ack or cts. 4011 */ 4012 if (m->m_pkthdr.len < IEEE80211_ACK_LEN) { 4013 DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n", 4014 __func__, m->m_pkthdr.len); 4015 sc->sc_stats.ast_rx_tooshort++; 4016 return 0; 4017 } 4018 rt = sc->sc_currates; 4019 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 4020 rix = rt->rateCodeToIndex[rs->rs_rate]; 4021 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 4022 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 4023 #ifdef AH_SUPPORT_AR5416 4024 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 4025 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 4026 struct ieee80211com *ic = ifp->if_l2com; 4027 4028 if ((rs->rs_flags & HAL_RX_2040) == 0) 4029 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 4030 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 4031 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 4032 else 4033 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 4034 if ((rs->rs_flags & HAL_RX_GI) == 0) 4035 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 4036 } 4037 #endif 4038 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf)); 4039 if (rs->rs_status & HAL_RXERR_CRC) 4040 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 4041 /* XXX propagate other error flags from descriptor */ 4042 sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf; 4043 sc->sc_rx_th.wr_antnoise = nf; 4044 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 4045 4046 bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m); 4047 4048 return 1; 4049 #undef CHAN_HT 4050 #undef CHAN_HT20 4051 #undef CHAN_HT40U 4052 #undef CHAN_HT40D 4053 } 4054 4055 static void 4056 ath_handle_micerror(struct ieee80211com *ic, 4057 struct ieee80211_frame *wh, int keyix) 4058 { 4059 struct ieee80211_node *ni; 4060 4061 /* XXX recheck MIC to deal w/ chips that lie */ 4062 /* XXX discard MIC errors on !data frames */ 4063 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 4064 if (ni != NULL) { 4065 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 4066 ieee80211_free_node(ni); 4067 } 4068 } 4069 4070 static void 4071 ath_rx_proc(void *arg, int npending) 4072 { 4073 #define PA2DESC(_sc, _pa) \ 4074 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4075 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4076 struct ath_softc *sc = arg; 4077 struct ath_buf *bf; 4078 struct ifnet *ifp = sc->sc_ifp; 4079 struct ieee80211com *ic = ifp->if_l2com; 4080 struct ath_hal *ah = sc->sc_ah; 4081 struct ath_desc *ds; 4082 struct ath_rx_status *rs; 4083 struct mbuf *m; 4084 struct ieee80211_node *ni; 4085 int len, type, ngood; 4086 u_int phyerr; 4087 HAL_STATUS status; 4088 int16_t nf; 4089 u_int64_t tsf; 4090 4091 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 4092 ngood = 0; 4093 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 4094 sc->sc_stats.ast_rx_noise = nf; 4095 tsf = ath_hal_gettsf64(ah); 4096 do { 4097 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4098 if (bf == NULL) { /* NB: shouldn't happen */ 4099 if_printf(ifp, "%s: no buffer!\n", __func__); 4100 break; 4101 } 4102 m = bf->bf_m; 4103 if (m == NULL) { /* NB: shouldn't happen */ 4104 /* 4105 * If mbuf allocation failed previously there 4106 * will be no mbuf; try again to re-populate it. 4107 */ 4108 /* XXX make debug msg */ 4109 if_printf(ifp, "%s: no mbuf!\n", __func__); 4110 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 4111 goto rx_next; 4112 } 4113 ds = bf->bf_desc; 4114 if (ds->ds_link == bf->bf_daddr) { 4115 /* NB: never process the self-linked entry at the end */ 4116 break; 4117 } 4118 /* XXX sync descriptor memory */ 4119 /* 4120 * Must provide the virtual address of the current 4121 * descriptor, the physical address, and the virtual 4122 * address of the next descriptor in the h/w chain. 4123 * This allows the HAL to look ahead to see if the 4124 * hardware is done with a descriptor by checking the 4125 * done bit in the following descriptor and the address 4126 * of the current descriptor the DMA engine is working 4127 * on. All this is necessary because of our use of 4128 * a self-linked list to avoid rx overruns. 4129 */ 4130 rs = &bf->bf_status.ds_rxstat; 4131 status = ath_hal_rxprocdesc(ah, ds, 4132 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4133 #ifdef ATH_DEBUG 4134 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4135 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4136 #endif 4137 if (status == HAL_EINPROGRESS) 4138 break; 4139 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 4140 if (rs->rs_status != 0) { 4141 if (rs->rs_status & HAL_RXERR_CRC) 4142 sc->sc_stats.ast_rx_crcerr++; 4143 if (rs->rs_status & HAL_RXERR_FIFO) 4144 sc->sc_stats.ast_rx_fifoerr++; 4145 if (rs->rs_status & HAL_RXERR_PHY) { 4146 sc->sc_stats.ast_rx_phyerr++; 4147 phyerr = rs->rs_phyerr & 0x1f; 4148 sc->sc_stats.ast_rx_phy[phyerr]++; 4149 goto rx_error; /* NB: don't count in ierrors */ 4150 } 4151 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4152 /* 4153 * Decrypt error. If the error occurred 4154 * because there was no hardware key, then 4155 * let the frame through so the upper layers 4156 * can process it. This is necessary for 5210 4157 * parts which have no way to setup a ``clear'' 4158 * key cache entry. 4159 * 4160 * XXX do key cache faulting 4161 */ 4162 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4163 goto rx_accept; 4164 sc->sc_stats.ast_rx_badcrypt++; 4165 } 4166 if (rs->rs_status & HAL_RXERR_MIC) { 4167 sc->sc_stats.ast_rx_badmic++; 4168 /* 4169 * Do minimal work required to hand off 4170 * the 802.11 header for notifcation. 4171 */ 4172 /* XXX frag's and qos frames */ 4173 len = rs->rs_datalen; 4174 if (len >= sizeof (struct ieee80211_frame)) { 4175 bus_dmamap_sync(sc->sc_dmat, 4176 bf->bf_dmamap, 4177 BUS_DMASYNC_POSTREAD); 4178 ath_handle_micerror(ic, 4179 mtod(m, struct ieee80211_frame *), 4180 sc->sc_splitmic ? 4181 rs->rs_keyix-32 : rs->rs_keyix); 4182 } 4183 } 4184 ifp->if_ierrors++; 4185 rx_error: 4186 /* 4187 * Cleanup any pending partial frame. 4188 */ 4189 if (sc->sc_rxpending != NULL) { 4190 m_freem(sc->sc_rxpending); 4191 sc->sc_rxpending = NULL; 4192 } 4193 /* 4194 * When a tap is present pass error frames 4195 * that have been requested. By default we 4196 * pass decrypt+mic errors but others may be 4197 * interesting (e.g. crc). 4198 */ 4199 if (bpf_peers_present(ifp->if_bpf) && 4200 (rs->rs_status & sc->sc_monpass)) { 4201 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4202 BUS_DMASYNC_POSTREAD); 4203 /* NB: bpf needs the mbuf length setup */ 4204 len = rs->rs_datalen; 4205 m->m_pkthdr.len = m->m_len = len; 4206 (void) ath_rx_tap(ifp, m, rs, tsf, nf); 4207 } 4208 /* XXX pass MIC errors up for s/w reclaculation */ 4209 goto rx_next; 4210 } 4211 rx_accept: 4212 /* 4213 * Sync and unmap the frame. At this point we're 4214 * committed to passing the mbuf somewhere so clear 4215 * bf_m; this means a new mbuf must be allocated 4216 * when the rx descriptor is setup again to receive 4217 * another frame. 4218 */ 4219 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4220 BUS_DMASYNC_POSTREAD); 4221 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4222 bf->bf_m = NULL; 4223 4224 len = rs->rs_datalen; 4225 m->m_len = len; 4226 4227 if (rs->rs_more) { 4228 /* 4229 * Frame spans multiple descriptors; save 4230 * it for the next completed descriptor, it 4231 * will be used to construct a jumbogram. 4232 */ 4233 if (sc->sc_rxpending != NULL) { 4234 /* NB: max frame size is currently 2 clusters */ 4235 sc->sc_stats.ast_rx_toobig++; 4236 m_freem(sc->sc_rxpending); 4237 } 4238 m->m_pkthdr.rcvif = ifp; 4239 m->m_pkthdr.len = len; 4240 sc->sc_rxpending = m; 4241 goto rx_next; 4242 } else if (sc->sc_rxpending != NULL) { 4243 /* 4244 * This is the second part of a jumbogram, 4245 * chain it to the first mbuf, adjust the 4246 * frame length, and clear the rxpending state. 4247 */ 4248 sc->sc_rxpending->m_next = m; 4249 sc->sc_rxpending->m_pkthdr.len += len; 4250 m = sc->sc_rxpending; 4251 sc->sc_rxpending = NULL; 4252 } else { 4253 /* 4254 * Normal single-descriptor receive; setup 4255 * the rcvif and packet length. 4256 */ 4257 m->m_pkthdr.rcvif = ifp; 4258 m->m_pkthdr.len = len; 4259 } 4260 4261 ifp->if_ipackets++; 4262 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4263 4264 if (bpf_peers_present(ifp->if_bpf) && 4265 !ath_rx_tap(ifp, m, rs, tsf, nf)) { 4266 m_freem(m); /* XXX reclaim */ 4267 goto rx_next; 4268 } 4269 4270 /* 4271 * From this point on we assume the frame is at least 4272 * as large as ieee80211_frame_min; verify that. 4273 */ 4274 if (len < IEEE80211_MIN_LEN) { 4275 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 4276 __func__, len); 4277 sc->sc_stats.ast_rx_tooshort++; 4278 m_freem(m); 4279 goto rx_next; 4280 } 4281 4282 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4283 const HAL_RATE_TABLE *rt = sc->sc_currates; 4284 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4285 4286 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4287 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4288 } 4289 4290 m_adj(m, -IEEE80211_CRC_LEN); 4291 4292 /* 4293 * Locate the node for sender, track state, and then 4294 * pass the (referenced) node up to the 802.11 layer 4295 * for its use. 4296 */ 4297 ni = ieee80211_find_rxnode_withkey(ic, 4298 mtod(m, const struct ieee80211_frame_min *), 4299 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4300 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4301 if (ni != NULL) { 4302 /* 4303 * Sending station is known, dispatch directly. 4304 */ 4305 #ifdef ATH_SUPPORT_TDMA 4306 sc->sc_tdmars = rs; 4307 #endif 4308 type = ieee80211_input(ni, m, 4309 rs->rs_rssi, nf, rs->rs_tstamp); 4310 ieee80211_free_node(ni); 4311 /* 4312 * Arrange to update the last rx timestamp only for 4313 * frames from our ap when operating in station mode. 4314 * This assumes the rx key is always setup when 4315 * associated. 4316 */ 4317 if (ic->ic_opmode == IEEE80211_M_STA && 4318 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4319 ngood++; 4320 } else { 4321 type = ieee80211_input_all(ic, m, 4322 rs->rs_rssi, nf, rs->rs_tstamp); 4323 } 4324 /* 4325 * Track rx rssi and do any rx antenna management. 4326 */ 4327 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4328 if (sc->sc_diversity) { 4329 /* 4330 * When using fast diversity, change the default rx 4331 * antenna if diversity chooses the other antenna 3 4332 * times in a row. 4333 */ 4334 if (sc->sc_defant != rs->rs_antenna) { 4335 if (++sc->sc_rxotherant >= 3) 4336 ath_setdefantenna(sc, rs->rs_antenna); 4337 } else 4338 sc->sc_rxotherant = 0; 4339 } 4340 if (sc->sc_softled) { 4341 /* 4342 * Blink for any data frame. Otherwise do a 4343 * heartbeat-style blink when idle. The latter 4344 * is mainly for station mode where we depend on 4345 * periodic beacon frames to trigger the poll event. 4346 */ 4347 if (type == IEEE80211_FC0_TYPE_DATA) { 4348 const HAL_RATE_TABLE *rt = sc->sc_currates; 4349 ath_led_event(sc, 4350 rt->rateCodeToIndex[rs->rs_rate]); 4351 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4352 ath_led_event(sc, 0); 4353 } 4354 rx_next: 4355 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4356 } while (ath_rxbuf_init(sc, bf) == 0); 4357 4358 /* rx signal state monitoring */ 4359 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4360 if (ngood) 4361 sc->sc_lastrx = tsf; 4362 4363 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 && 4364 !IFQ_IS_EMPTY(&ifp->if_snd)) 4365 ath_start(ifp); 4366 4367 #undef PA2DESC 4368 } 4369 4370 static void 4371 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4372 { 4373 txq->axq_qnum = qnum; 4374 txq->axq_depth = 0; 4375 txq->axq_intrcnt = 0; 4376 txq->axq_link = NULL; 4377 STAILQ_INIT(&txq->axq_q); 4378 ATH_TXQ_LOCK_INIT(sc, txq); 4379 TAILQ_INIT(&txq->axq_stageq); 4380 txq->axq_curage = 0; 4381 } 4382 4383 /* 4384 * Setup a h/w transmit queue. 4385 */ 4386 static struct ath_txq * 4387 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4388 { 4389 #define N(a) (sizeof(a)/sizeof(a[0])) 4390 struct ath_hal *ah = sc->sc_ah; 4391 HAL_TXQ_INFO qi; 4392 int qnum; 4393 4394 memset(&qi, 0, sizeof(qi)); 4395 qi.tqi_subtype = subtype; 4396 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4397 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4398 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4399 /* 4400 * Enable interrupts only for EOL and DESC conditions. 4401 * We mark tx descriptors to receive a DESC interrupt 4402 * when a tx queue gets deep; otherwise waiting for the 4403 * EOL to reap descriptors. Note that this is done to 4404 * reduce interrupt load and this only defers reaping 4405 * descriptors, never transmitting frames. Aside from 4406 * reducing interrupts this also permits more concurrency. 4407 * The only potential downside is if the tx queue backs 4408 * up in which case the top half of the kernel may backup 4409 * due to a lack of tx descriptors. 4410 */ 4411 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4412 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4413 if (qnum == -1) { 4414 /* 4415 * NB: don't print a message, this happens 4416 * normally on parts with too few tx queues 4417 */ 4418 return NULL; 4419 } 4420 if (qnum >= N(sc->sc_txq)) { 4421 device_printf(sc->sc_dev, 4422 "hal qnum %u out of range, max %zu!\n", 4423 qnum, N(sc->sc_txq)); 4424 ath_hal_releasetxqueue(ah, qnum); 4425 return NULL; 4426 } 4427 if (!ATH_TXQ_SETUP(sc, qnum)) { 4428 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4429 sc->sc_txqsetup |= 1<<qnum; 4430 } 4431 return &sc->sc_txq[qnum]; 4432 #undef N 4433 } 4434 4435 /* 4436 * Setup a hardware data transmit queue for the specified 4437 * access control. The hal may not support all requested 4438 * queues in which case it will return a reference to a 4439 * previously setup queue. We record the mapping from ac's 4440 * to h/w queues for use by ath_tx_start and also track 4441 * the set of h/w queues being used to optimize work in the 4442 * transmit interrupt handler and related routines. 4443 */ 4444 static int 4445 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4446 { 4447 #define N(a) (sizeof(a)/sizeof(a[0])) 4448 struct ath_txq *txq; 4449 4450 if (ac >= N(sc->sc_ac2q)) { 4451 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4452 ac, N(sc->sc_ac2q)); 4453 return 0; 4454 } 4455 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4456 if (txq != NULL) { 4457 sc->sc_ac2q[ac] = txq; 4458 return 1; 4459 } else 4460 return 0; 4461 #undef N 4462 } 4463 4464 /* 4465 * Update WME parameters for a transmit queue. 4466 */ 4467 static int 4468 ath_txq_update(struct ath_softc *sc, int ac) 4469 { 4470 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4471 #define ATH_TXOP_TO_US(v) (v<<5) 4472 struct ifnet *ifp = sc->sc_ifp; 4473 struct ieee80211com *ic = ifp->if_l2com; 4474 struct ath_txq *txq = sc->sc_ac2q[ac]; 4475 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4476 struct ath_hal *ah = sc->sc_ah; 4477 HAL_TXQ_INFO qi; 4478 4479 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4480 #ifdef ATH_SUPPORT_TDMA 4481 if (sc->sc_tdma) { 4482 /* 4483 * AIFS is zero so there's no pre-transmit wait. The 4484 * burst time defines the slot duration and is configured 4485 * via sysctl. The QCU is setup to not do post-xmit 4486 * back off, lockout all lower-priority QCU's, and fire 4487 * off the DMA beacon alert timer which is setup based 4488 * on the slot configuration. 4489 */ 4490 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4491 | HAL_TXQ_TXERRINT_ENABLE 4492 | HAL_TXQ_TXURNINT_ENABLE 4493 | HAL_TXQ_TXEOLINT_ENABLE 4494 | HAL_TXQ_DBA_GATED 4495 | HAL_TXQ_BACKOFF_DISABLE 4496 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4497 ; 4498 qi.tqi_aifs = 0; 4499 /* XXX +dbaprep? */ 4500 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4501 qi.tqi_burstTime = qi.tqi_readyTime; 4502 } else { 4503 #endif 4504 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4505 | HAL_TXQ_TXERRINT_ENABLE 4506 | HAL_TXQ_TXDESCINT_ENABLE 4507 | HAL_TXQ_TXURNINT_ENABLE 4508 ; 4509 qi.tqi_aifs = wmep->wmep_aifsn; 4510 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4511 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4512 qi.tqi_readyTime = 0; 4513 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4514 #ifdef ATH_SUPPORT_TDMA 4515 } 4516 #endif 4517 4518 DPRINTF(sc, ATH_DEBUG_RESET, 4519 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4520 __func__, txq->axq_qnum, qi.tqi_qflags, 4521 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4522 4523 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4524 if_printf(ifp, "unable to update hardware queue " 4525 "parameters for %s traffic!\n", 4526 ieee80211_wme_acnames[ac]); 4527 return 0; 4528 } else { 4529 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4530 return 1; 4531 } 4532 #undef ATH_TXOP_TO_US 4533 #undef ATH_EXPONENT_TO_VALUE 4534 } 4535 4536 /* 4537 * Callback from the 802.11 layer to update WME parameters. 4538 */ 4539 static int 4540 ath_wme_update(struct ieee80211com *ic) 4541 { 4542 struct ath_softc *sc = ic->ic_ifp->if_softc; 4543 4544 return !ath_txq_update(sc, WME_AC_BE) || 4545 !ath_txq_update(sc, WME_AC_BK) || 4546 !ath_txq_update(sc, WME_AC_VI) || 4547 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4548 } 4549 4550 /* 4551 * Reclaim resources for a setup queue. 4552 */ 4553 static void 4554 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4555 { 4556 4557 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4558 ATH_TXQ_LOCK_DESTROY(txq); 4559 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4560 } 4561 4562 /* 4563 * Reclaim all tx queue resources. 4564 */ 4565 static void 4566 ath_tx_cleanup(struct ath_softc *sc) 4567 { 4568 int i; 4569 4570 ATH_TXBUF_LOCK_DESTROY(sc); 4571 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4572 if (ATH_TXQ_SETUP(sc, i)) 4573 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4574 } 4575 4576 /* 4577 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 4578 */ 4579 static int 4580 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 4581 { 4582 int i; 4583 4584 for (i = 0; i < rt->rateCount; i++) 4585 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 4586 return i; 4587 return 0; /* NB: lowest rate */ 4588 } 4589 4590 /* 4591 * Reclaim mbuf resources. For fragmented frames we 4592 * need to claim each frag chained with m_nextpkt. 4593 */ 4594 static void 4595 ath_freetx(struct mbuf *m) 4596 { 4597 struct mbuf *next; 4598 4599 do { 4600 next = m->m_nextpkt; 4601 m->m_nextpkt = NULL; 4602 m_freem(m); 4603 } while ((m = next) != NULL); 4604 } 4605 4606 static int 4607 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) 4608 { 4609 struct mbuf *m; 4610 int error; 4611 4612 /* 4613 * Load the DMA map so any coalescing is done. This 4614 * also calculates the number of descriptors we need. 4615 */ 4616 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 4617 bf->bf_segs, &bf->bf_nseg, 4618 BUS_DMA_NOWAIT); 4619 if (error == EFBIG) { 4620 /* XXX packet requires too many descriptors */ 4621 bf->bf_nseg = ATH_TXDESC+1; 4622 } else if (error != 0) { 4623 sc->sc_stats.ast_tx_busdma++; 4624 ath_freetx(m0); 4625 return error; 4626 } 4627 /* 4628 * Discard null packets and check for packets that 4629 * require too many TX descriptors. We try to convert 4630 * the latter to a cluster. 4631 */ 4632 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 4633 sc->sc_stats.ast_tx_linear++; 4634 m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC); 4635 if (m == NULL) { 4636 ath_freetx(m0); 4637 sc->sc_stats.ast_tx_nombuf++; 4638 return ENOMEM; 4639 } 4640 m0 = m; 4641 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 4642 bf->bf_segs, &bf->bf_nseg, 4643 BUS_DMA_NOWAIT); 4644 if (error != 0) { 4645 sc->sc_stats.ast_tx_busdma++; 4646 ath_freetx(m0); 4647 return error; 4648 } 4649 KASSERT(bf->bf_nseg <= ATH_TXDESC, 4650 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 4651 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 4652 sc->sc_stats.ast_tx_nodata++; 4653 ath_freetx(m0); 4654 return EIO; 4655 } 4656 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", 4657 __func__, m0, m0->m_pkthdr.len); 4658 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 4659 bf->bf_m = m0; 4660 4661 return 0; 4662 } 4663 4664 static void 4665 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) 4666 { 4667 struct ath_hal *ah = sc->sc_ah; 4668 struct ath_desc *ds, *ds0; 4669 int i; 4670 4671 /* 4672 * Fillin the remainder of the descriptor info. 4673 */ 4674 ds0 = ds = bf->bf_desc; 4675 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4676 ds->ds_data = bf->bf_segs[i].ds_addr; 4677 if (i == bf->bf_nseg - 1) 4678 ds->ds_link = 0; 4679 else 4680 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4681 ath_hal_filltxdesc(ah, ds 4682 , bf->bf_segs[i].ds_len /* segment length */ 4683 , i == 0 /* first segment */ 4684 , i == bf->bf_nseg - 1 /* last segment */ 4685 , ds0 /* first descriptor */ 4686 ); 4687 DPRINTF(sc, ATH_DEBUG_XMIT, 4688 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4689 __func__, i, ds->ds_link, ds->ds_data, 4690 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4691 } 4692 /* 4693 * Insert the frame on the outbound list and pass it on 4694 * to the hardware. Multicast frames buffered for power 4695 * save stations and transmit from the CAB queue are stored 4696 * on a s/w only queue and loaded on to the CAB queue in 4697 * the SWBA handler since frames only go out on DTIM and 4698 * to avoid possible races. 4699 */ 4700 ATH_TXQ_LOCK(txq); 4701 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, 4702 ("busy status 0x%x", bf->bf_flags)); 4703 if (txq->axq_qnum != ATH_TXQ_SWQ) { 4704 #ifdef ATH_SUPPORT_TDMA 4705 int qbusy; 4706 4707 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4708 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum); 4709 if (txq->axq_link == NULL) { 4710 /* 4711 * Be careful writing the address to TXDP. If 4712 * the tx q is enabled then this write will be 4713 * ignored. Normally this is not an issue but 4714 * when tdma is in use and the q is beacon gated 4715 * this race can occur. If the q is busy then 4716 * defer the work to later--either when another 4717 * packet comes along or when we prepare a beacon 4718 * frame at SWBA. 4719 */ 4720 if (!qbusy) { 4721 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4722 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 4723 DPRINTF(sc, ATH_DEBUG_XMIT, 4724 "%s: TXDP[%u] = %p (%p) depth %d\n", 4725 __func__, txq->axq_qnum, 4726 (caddr_t)bf->bf_daddr, bf->bf_desc, 4727 txq->axq_depth); 4728 } else { 4729 txq->axq_flags |= ATH_TXQ_PUTPENDING; 4730 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 4731 "%s: Q%u busy, defer enable\n", __func__, 4732 txq->axq_qnum); 4733 } 4734 } else { 4735 *txq->axq_link = bf->bf_daddr; 4736 DPRINTF(sc, ATH_DEBUG_XMIT, 4737 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 4738 txq->axq_qnum, txq->axq_link, 4739 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4740 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) { 4741 /* 4742 * The q was busy when we previously tried 4743 * to write the address of the first buffer 4744 * in the chain. Since it's not busy now 4745 * handle this chore. We are certain the 4746 * buffer at the front is the right one since 4747 * axq_link is NULL only when the buffer list 4748 * is/was empty. 4749 */ 4750 ath_hal_puttxbuf(ah, txq->axq_qnum, 4751 STAILQ_FIRST(&txq->axq_q)->bf_daddr); 4752 txq->axq_flags &= ~ATH_TXQ_PUTPENDING; 4753 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT, 4754 "%s: Q%u restarted\n", __func__, 4755 txq->axq_qnum); 4756 } 4757 } 4758 #else 4759 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4760 if (txq->axq_link == NULL) { 4761 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4762 DPRINTF(sc, ATH_DEBUG_XMIT, 4763 "%s: TXDP[%u] = %p (%p) depth %d\n", 4764 __func__, txq->axq_qnum, 4765 (caddr_t)bf->bf_daddr, bf->bf_desc, 4766 txq->axq_depth); 4767 } else { 4768 *txq->axq_link = bf->bf_daddr; 4769 DPRINTF(sc, ATH_DEBUG_XMIT, 4770 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 4771 txq->axq_qnum, txq->axq_link, 4772 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4773 } 4774 #endif /* ATH_SUPPORT_TDMA */ 4775 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4776 ath_hal_txstart(ah, txq->axq_qnum); 4777 } else { 4778 if (txq->axq_link != NULL) { 4779 struct ath_buf *last = ATH_TXQ_LAST(txq); 4780 struct ieee80211_frame *wh; 4781 4782 /* mark previous frame */ 4783 wh = mtod(last->bf_m, struct ieee80211_frame *); 4784 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 4785 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap, 4786 BUS_DMASYNC_PREWRITE); 4787 4788 /* link descriptor */ 4789 *txq->axq_link = bf->bf_daddr; 4790 } 4791 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4792 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4793 } 4794 ATH_TXQ_UNLOCK(txq); 4795 } 4796 4797 static int 4798 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 4799 struct mbuf *m0) 4800 { 4801 struct ieee80211vap *vap = ni->ni_vap; 4802 struct ath_vap *avp = ATH_VAP(vap); 4803 struct ath_hal *ah = sc->sc_ah; 4804 struct ifnet *ifp = sc->sc_ifp; 4805 struct ieee80211com *ic = ifp->if_l2com; 4806 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 4807 int error, iswep, ismcast, isfrag, ismrr; 4808 int keyix, hdrlen, pktlen, try0; 4809 u_int8_t rix, txrate, ctsrate; 4810 u_int8_t cix = 0xff; /* NB: silence compiler */ 4811 struct ath_desc *ds; 4812 struct ath_txq *txq; 4813 struct ieee80211_frame *wh; 4814 u_int subtype, flags, ctsduration; 4815 HAL_PKT_TYPE atype; 4816 const HAL_RATE_TABLE *rt; 4817 HAL_BOOL shortPreamble; 4818 struct ath_node *an; 4819 u_int pri; 4820 4821 wh = mtod(m0, struct ieee80211_frame *); 4822 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 4823 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 4824 isfrag = m0->m_flags & M_FRAG; 4825 hdrlen = ieee80211_anyhdrsize(wh); 4826 /* 4827 * Packet length must not include any 4828 * pad bytes; deduct them here. 4829 */ 4830 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 4831 4832 if (iswep) { 4833 const struct ieee80211_cipher *cip; 4834 struct ieee80211_key *k; 4835 4836 /* 4837 * Construct the 802.11 header+trailer for an encrypted 4838 * frame. The only reason this can fail is because of an 4839 * unknown or unsupported cipher/key type. 4840 */ 4841 k = ieee80211_crypto_encap(ni, m0); 4842 if (k == NULL) { 4843 /* 4844 * This can happen when the key is yanked after the 4845 * frame was queued. Just discard the frame; the 4846 * 802.11 layer counts failures and provides 4847 * debugging/diagnostics. 4848 */ 4849 ath_freetx(m0); 4850 return EIO; 4851 } 4852 /* 4853 * Adjust the packet + header lengths for the crypto 4854 * additions and calculate the h/w key index. When 4855 * a s/w mic is done the frame will have had any mic 4856 * added to it prior to entry so m0->m_pkthdr.len will 4857 * account for it. Otherwise we need to add it to the 4858 * packet length. 4859 */ 4860 cip = k->wk_cipher; 4861 hdrlen += cip->ic_header; 4862 pktlen += cip->ic_header + cip->ic_trailer; 4863 /* NB: frags always have any TKIP MIC done in s/w */ 4864 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 4865 pktlen += cip->ic_miclen; 4866 keyix = k->wk_keyix; 4867 4868 /* packet header may have moved, reset our local pointer */ 4869 wh = mtod(m0, struct ieee80211_frame *); 4870 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 4871 /* 4872 * Use station key cache slot, if assigned. 4873 */ 4874 keyix = ni->ni_ucastkey.wk_keyix; 4875 if (keyix == IEEE80211_KEYIX_NONE) 4876 keyix = HAL_TXKEYIX_INVALID; 4877 } else 4878 keyix = HAL_TXKEYIX_INVALID; 4879 4880 pktlen += IEEE80211_CRC_LEN; 4881 4882 /* 4883 * Load the DMA map so any coalescing is done. This 4884 * also calculates the number of descriptors we need. 4885 */ 4886 error = ath_tx_dmasetup(sc, bf, m0); 4887 if (error != 0) 4888 return error; 4889 bf->bf_node = ni; /* NB: held reference */ 4890 m0 = bf->bf_m; /* NB: may have changed */ 4891 wh = mtod(m0, struct ieee80211_frame *); 4892 4893 /* setup descriptors */ 4894 ds = bf->bf_desc; 4895 rt = sc->sc_currates; 4896 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 4897 4898 /* 4899 * NB: the 802.11 layer marks whether or not we should 4900 * use short preamble based on the current mode and 4901 * negotiated parameters. 4902 */ 4903 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 4904 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 4905 shortPreamble = AH_TRUE; 4906 sc->sc_stats.ast_tx_shortpre++; 4907 } else { 4908 shortPreamble = AH_FALSE; 4909 } 4910 4911 an = ATH_NODE(ni); 4912 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 4913 ismrr = 0; /* default no multi-rate retry*/ 4914 pri = M_WME_GETAC(m0); /* honor classification */ 4915 /* XXX use txparams instead of fixed values */ 4916 /* 4917 * Calculate Atheros packet type from IEEE80211 packet header, 4918 * setup for rate calculations, and select h/w transmit queue. 4919 */ 4920 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 4921 case IEEE80211_FC0_TYPE_MGT: 4922 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4923 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 4924 atype = HAL_PKT_TYPE_BEACON; 4925 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4926 atype = HAL_PKT_TYPE_PROBE_RESP; 4927 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 4928 atype = HAL_PKT_TYPE_ATIM; 4929 else 4930 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 4931 rix = an->an_mgmtrix; 4932 txrate = rt->info[rix].rateCode; 4933 if (shortPreamble) 4934 txrate |= rt->info[rix].shortPreamble; 4935 try0 = ATH_TXMGTTRY; 4936 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 4937 break; 4938 case IEEE80211_FC0_TYPE_CTL: 4939 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 4940 rix = an->an_mgmtrix; 4941 txrate = rt->info[rix].rateCode; 4942 if (shortPreamble) 4943 txrate |= rt->info[rix].shortPreamble; 4944 try0 = ATH_TXMGTTRY; 4945 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 4946 break; 4947 case IEEE80211_FC0_TYPE_DATA: 4948 atype = HAL_PKT_TYPE_NORMAL; /* default */ 4949 /* 4950 * Data frames: multicast frames go out at a fixed rate, 4951 * EAPOL frames use the mgmt frame rate; otherwise consult 4952 * the rate control module for the rate to use. 4953 */ 4954 if (ismcast) { 4955 rix = an->an_mcastrix; 4956 txrate = rt->info[rix].rateCode; 4957 if (shortPreamble) 4958 txrate |= rt->info[rix].shortPreamble; 4959 try0 = 1; 4960 } else if (m0->m_flags & M_EAPOL) { 4961 /* XXX? maybe always use long preamble? */ 4962 rix = an->an_mgmtrix; 4963 txrate = rt->info[rix].rateCode; 4964 if (shortPreamble) 4965 txrate |= rt->info[rix].shortPreamble; 4966 try0 = ATH_TXMAXTRY; /* XXX?too many? */ 4967 } else { 4968 ath_rate_findrate(sc, an, shortPreamble, pktlen, 4969 &rix, &try0, &txrate); 4970 sc->sc_txrix = rix; /* for LED blinking */ 4971 sc->sc_lastdatarix = rix; /* for fast frames */ 4972 if (try0 != ATH_TXMAXTRY) 4973 ismrr = 1; 4974 } 4975 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 4976 flags |= HAL_TXDESC_NOACK; 4977 break; 4978 default: 4979 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 4980 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 4981 /* XXX statistic */ 4982 ath_freetx(m0); 4983 return EIO; 4984 } 4985 txq = sc->sc_ac2q[pri]; 4986 4987 /* 4988 * When servicing one or more stations in power-save mode 4989 * (or) if there is some mcast data waiting on the mcast 4990 * queue (to prevent out of order delivery) multicast 4991 * frames must be buffered until after the beacon. 4992 */ 4993 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) 4994 txq = &avp->av_mcastq; 4995 4996 /* 4997 * Calculate miscellaneous flags. 4998 */ 4999 if (ismcast) { 5000 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 5001 } else if (pktlen > vap->iv_rtsthreshold && 5002 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { 5003 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 5004 cix = rt->info[rix].controlRate; 5005 sc->sc_stats.ast_tx_rts++; 5006 } 5007 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 5008 sc->sc_stats.ast_tx_noack++; 5009 #ifdef ATH_SUPPORT_TDMA 5010 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { 5011 DPRINTF(sc, ATH_DEBUG_TDMA, 5012 "%s: discard frame, ACK required w/ TDMA\n", __func__); 5013 sc->sc_stats.ast_tdma_ack++; 5014 ath_freetx(m0); 5015 return EIO; 5016 } 5017 #endif 5018 5019 /* 5020 * If 802.11g protection is enabled, determine whether 5021 * to use RTS/CTS or just CTS. Note that this is only 5022 * done for OFDM unicast frames. 5023 */ 5024 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 5025 rt->info[rix].phy == IEEE80211_T_OFDM && 5026 (flags & HAL_TXDESC_NOACK) == 0) { 5027 /* XXX fragments must use CCK rates w/ protection */ 5028 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 5029 flags |= HAL_TXDESC_RTSENA; 5030 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 5031 flags |= HAL_TXDESC_CTSENA; 5032 if (isfrag) { 5033 /* 5034 * For frags it would be desirable to use the 5035 * highest CCK rate for RTS/CTS. But stations 5036 * farther away may detect it at a lower CCK rate 5037 * so use the configured protection rate instead 5038 * (for now). 5039 */ 5040 cix = rt->info[sc->sc_protrix].controlRate; 5041 } else 5042 cix = rt->info[sc->sc_protrix].controlRate; 5043 sc->sc_stats.ast_tx_protect++; 5044 } 5045 5046 /* 5047 * Calculate duration. This logically belongs in the 802.11 5048 * layer but it lacks sufficient information to calculate it. 5049 */ 5050 if ((flags & HAL_TXDESC_NOACK) == 0 && 5051 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 5052 u_int16_t dur; 5053 if (shortPreamble) 5054 dur = rt->info[rix].spAckDuration; 5055 else 5056 dur = rt->info[rix].lpAckDuration; 5057 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 5058 dur += dur; /* additional SIFS+ACK */ 5059 KASSERT(m0->m_nextpkt != NULL, ("no fragment")); 5060 /* 5061 * Include the size of next fragment so NAV is 5062 * updated properly. The last fragment uses only 5063 * the ACK duration 5064 */ 5065 dur += ath_hal_computetxtime(ah, rt, 5066 m0->m_nextpkt->m_pkthdr.len, 5067 rix, shortPreamble); 5068 } 5069 if (isfrag) { 5070 /* 5071 * Force hardware to use computed duration for next 5072 * fragment by disabling multi-rate retry which updates 5073 * duration based on the multi-rate duration table. 5074 */ 5075 ismrr = 0; 5076 try0 = ATH_TXMGTTRY; /* XXX? */ 5077 } 5078 *(u_int16_t *)wh->i_dur = htole16(dur); 5079 } 5080 5081 /* 5082 * Calculate RTS/CTS rate and duration if needed. 5083 */ 5084 ctsduration = 0; 5085 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 5086 /* 5087 * CTS transmit rate is derived from the transmit rate 5088 * by looking in the h/w rate table. We must also factor 5089 * in whether or not a short preamble is to be used. 5090 */ 5091 /* NB: cix is set above where RTS/CTS is enabled */ 5092 KASSERT(cix != 0xff, ("cix not setup")); 5093 ctsrate = rt->info[cix].rateCode; 5094 /* 5095 * Compute the transmit duration based on the frame 5096 * size and the size of an ACK frame. We call into the 5097 * HAL to do the computation since it depends on the 5098 * characteristics of the actual PHY being used. 5099 * 5100 * NB: CTS is assumed the same size as an ACK so we can 5101 * use the precalculated ACK durations. 5102 */ 5103 if (shortPreamble) { 5104 ctsrate |= rt->info[cix].shortPreamble; 5105 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 5106 ctsduration += rt->info[cix].spAckDuration; 5107 ctsduration += ath_hal_computetxtime(ah, 5108 rt, pktlen, rix, AH_TRUE); 5109 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 5110 ctsduration += rt->info[rix].spAckDuration; 5111 } else { 5112 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 5113 ctsduration += rt->info[cix].lpAckDuration; 5114 ctsduration += ath_hal_computetxtime(ah, 5115 rt, pktlen, rix, AH_FALSE); 5116 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 5117 ctsduration += rt->info[rix].lpAckDuration; 5118 } 5119 /* 5120 * Must disable multi-rate retry when using RTS/CTS. 5121 */ 5122 ismrr = 0; 5123 try0 = ATH_TXMGTTRY; /* XXX */ 5124 } else 5125 ctsrate = 0; 5126 5127 /* 5128 * At this point we are committed to sending the frame 5129 * and we don't need to look at m_nextpkt; clear it in 5130 * case this frame is part of frag chain. 5131 */ 5132 m0->m_nextpkt = NULL; 5133 5134 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 5135 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 5136 sc->sc_hwmap[rix].ieeerate, -1); 5137 5138 if (bpf_peers_present(ifp->if_bpf)) { 5139 u_int64_t tsf = ath_hal_gettsf64(ah); 5140 5141 sc->sc_tx_th.wt_tsf = htole64(tsf); 5142 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 5143 if (iswep) 5144 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 5145 if (isfrag) 5146 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 5147 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 5148 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 5149 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 5150 5151 bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); 5152 } 5153 5154 /* 5155 * Determine if a tx interrupt should be generated for 5156 * this descriptor. We take a tx interrupt to reap 5157 * descriptors when the h/w hits an EOL condition or 5158 * when the descriptor is specifically marked to generate 5159 * an interrupt. We periodically mark descriptors in this 5160 * way to insure timely replenishing of the supply needed 5161 * for sending frames. Defering interrupts reduces system 5162 * load and potentially allows more concurrent work to be 5163 * done but if done to aggressively can cause senders to 5164 * backup. 5165 * 5166 * NB: use >= to deal with sc_txintrperiod changing 5167 * dynamically through sysctl. 5168 */ 5169 if (flags & HAL_TXDESC_INTREQ) { 5170 txq->axq_intrcnt = 0; 5171 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 5172 flags |= HAL_TXDESC_INTREQ; 5173 txq->axq_intrcnt = 0; 5174 } 5175 5176 /* 5177 * Formulate first tx descriptor with tx controls. 5178 */ 5179 /* XXX check return value? */ 5180 ath_hal_setuptxdesc(ah, ds 5181 , pktlen /* packet length */ 5182 , hdrlen /* header length */ 5183 , atype /* Atheros packet type */ 5184 , ni->ni_txpower /* txpower */ 5185 , txrate, try0 /* series 0 rate/tries */ 5186 , keyix /* key cache index */ 5187 , sc->sc_txantenna /* antenna mode */ 5188 , flags /* flags */ 5189 , ctsrate /* rts/cts rate */ 5190 , ctsduration /* rts/cts duration */ 5191 ); 5192 bf->bf_txflags = flags; 5193 /* 5194 * Setup the multi-rate retry state only when we're 5195 * going to use it. This assumes ath_hal_setuptxdesc 5196 * initializes the descriptors (so we don't have to) 5197 * when the hardware supports multi-rate retry and 5198 * we don't use it. 5199 */ 5200 if (ismrr) 5201 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 5202 5203 ath_tx_handoff(sc, txq, bf); 5204 return 0; 5205 } 5206 5207 /* 5208 * Process completed xmit descriptors from the specified queue. 5209 */ 5210 static int 5211 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 5212 { 5213 struct ath_hal *ah = sc->sc_ah; 5214 struct ifnet *ifp = sc->sc_ifp; 5215 struct ieee80211com *ic = ifp->if_l2com; 5216 struct ath_buf *bf, *last; 5217 struct ath_desc *ds, *ds0; 5218 struct ath_tx_status *ts; 5219 struct ieee80211_node *ni; 5220 struct ath_node *an; 5221 int sr, lr, pri, nacked; 5222 HAL_STATUS status; 5223 5224 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 5225 __func__, txq->axq_qnum, 5226 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 5227 txq->axq_link); 5228 nacked = 0; 5229 for (;;) { 5230 ATH_TXQ_LOCK(txq); 5231 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 5232 bf = STAILQ_FIRST(&txq->axq_q); 5233 if (bf == NULL) { 5234 ATH_TXQ_UNLOCK(txq); 5235 break; 5236 } 5237 ds0 = &bf->bf_desc[0]; 5238 ds = &bf->bf_desc[bf->bf_nseg - 1]; 5239 ts = &bf->bf_status.ds_txstat; 5240 status = ath_hal_txprocdesc(ah, ds, ts); 5241 #ifdef ATH_DEBUG 5242 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 5243 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 5244 status == HAL_OK); 5245 #endif 5246 if (status == HAL_EINPROGRESS) { 5247 ATH_TXQ_UNLOCK(txq); 5248 break; 5249 } 5250 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 5251 #ifdef ATH_SUPPORT_TDMA 5252 if (txq->axq_depth > 0) { 5253 /* 5254 * More frames follow. Mark the buffer busy 5255 * so it's not re-used while the hardware may 5256 * still re-read the link field in the descriptor. 5257 */ 5258 bf->bf_flags |= ATH_BUF_BUSY; 5259 } else 5260 #else 5261 if (txq->axq_depth == 0) 5262 #endif 5263 txq->axq_link = NULL; 5264 ATH_TXQ_UNLOCK(txq); 5265 5266 ni = bf->bf_node; 5267 if (ni != NULL) { 5268 an = ATH_NODE(ni); 5269 if (ts->ts_status == 0) { 5270 u_int8_t txant = ts->ts_antenna; 5271 sc->sc_stats.ast_ant_tx[txant]++; 5272 sc->sc_ant_tx[txant]++; 5273 if (ts->ts_rate & HAL_TXSTAT_ALTRATE) 5274 sc->sc_stats.ast_tx_altrate++; 5275 pri = M_WME_GETAC(bf->bf_m); 5276 if (pri >= WME_AC_VO) 5277 ic->ic_wme.wme_hipri_traffic++; 5278 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 5279 ni->ni_inact = ni->ni_inact_reload; 5280 } else { 5281 if (ts->ts_status & HAL_TXERR_XRETRY) 5282 sc->sc_stats.ast_tx_xretries++; 5283 if (ts->ts_status & HAL_TXERR_FIFO) 5284 sc->sc_stats.ast_tx_fifoerr++; 5285 if (ts->ts_status & HAL_TXERR_FILT) 5286 sc->sc_stats.ast_tx_filtered++; 5287 if (bf->bf_m->m_flags & M_FF) 5288 sc->sc_stats.ast_ff_txerr++; 5289 } 5290 sr = ts->ts_shortretry; 5291 lr = ts->ts_longretry; 5292 sc->sc_stats.ast_tx_shortretry += sr; 5293 sc->sc_stats.ast_tx_longretry += lr; 5294 /* 5295 * Hand the descriptor to the rate control algorithm. 5296 */ 5297 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 5298 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 5299 /* 5300 * If frame was ack'd update statistics, 5301 * including the last rx time used to 5302 * workaround phantom bmiss interrupts. 5303 */ 5304 if (ts->ts_status == 0) { 5305 nacked++; 5306 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 5307 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 5308 ts->ts_rssi); 5309 } 5310 ath_rate_tx_complete(sc, an, bf); 5311 } 5312 /* 5313 * Do any tx complete callback. Note this must 5314 * be done before releasing the node reference. 5315 */ 5316 if (bf->bf_m->m_flags & M_TXCB) 5317 ieee80211_process_callback(ni, bf->bf_m, 5318 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ? 5319 ts->ts_status : HAL_TXERR_XRETRY); 5320 /* 5321 * Reclaim reference to node. 5322 * 5323 * NB: the node may be reclaimed here if, for example 5324 * this is a DEAUTH message that was sent and the 5325 * node was timed out due to inactivity. 5326 */ 5327 ieee80211_free_node(ni); 5328 } 5329 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 5330 BUS_DMASYNC_POSTWRITE); 5331 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5332 5333 m_freem(bf->bf_m); 5334 bf->bf_m = NULL; 5335 bf->bf_node = NULL; 5336 5337 ATH_TXBUF_LOCK(sc); 5338 last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list); 5339 if (last != NULL) 5340 last->bf_flags &= ~ATH_BUF_BUSY; 5341 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5342 ATH_TXBUF_UNLOCK(sc); 5343 } 5344 /* 5345 * Flush fast-frame staging queue when traffic slows. 5346 */ 5347 if (txq->axq_depth <= 1) 5348 ath_ff_stageq_flush(sc, txq, ath_ff_always); 5349 return nacked; 5350 } 5351 5352 static __inline int 5353 txqactive(struct ath_hal *ah, int qnum) 5354 { 5355 u_int32_t txqs = 1<<qnum; 5356 ath_hal_gettxintrtxqs(ah, &txqs); 5357 return (txqs & (1<<qnum)); 5358 } 5359 5360 /* 5361 * Deferred processing of transmit interrupt; special-cased 5362 * for a single hardware transmit queue (e.g. 5210 and 5211). 5363 */ 5364 static void 5365 ath_tx_proc_q0(void *arg, int npending) 5366 { 5367 struct ath_softc *sc = arg; 5368 struct ifnet *ifp = sc->sc_ifp; 5369 5370 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0])) 5371 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5372 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 5373 ath_tx_processq(sc, sc->sc_cabq); 5374 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5375 ifp->if_timer = 0; 5376 5377 if (sc->sc_softled) 5378 ath_led_event(sc, sc->sc_txrix); 5379 5380 ath_start(ifp); 5381 } 5382 5383 /* 5384 * Deferred processing of transmit interrupt; special-cased 5385 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 5386 */ 5387 static void 5388 ath_tx_proc_q0123(void *arg, int npending) 5389 { 5390 struct ath_softc *sc = arg; 5391 struct ifnet *ifp = sc->sc_ifp; 5392 int nacked; 5393 5394 /* 5395 * Process each active queue. 5396 */ 5397 nacked = 0; 5398 if (txqactive(sc->sc_ah, 0)) 5399 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 5400 if (txqactive(sc->sc_ah, 1)) 5401 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 5402 if (txqactive(sc->sc_ah, 2)) 5403 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 5404 if (txqactive(sc->sc_ah, 3)) 5405 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 5406 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 5407 ath_tx_processq(sc, sc->sc_cabq); 5408 if (nacked) 5409 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5410 5411 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5412 ifp->if_timer = 0; 5413 5414 if (sc->sc_softled) 5415 ath_led_event(sc, sc->sc_txrix); 5416 5417 ath_start(ifp); 5418 } 5419 5420 /* 5421 * Deferred processing of transmit interrupt. 5422 */ 5423 static void 5424 ath_tx_proc(void *arg, int npending) 5425 { 5426 struct ath_softc *sc = arg; 5427 struct ifnet *ifp = sc->sc_ifp; 5428 int i, nacked; 5429 5430 /* 5431 * Process each active queue. 5432 */ 5433 nacked = 0; 5434 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5435 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 5436 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 5437 if (nacked) 5438 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5439 5440 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5441 ifp->if_timer = 0; 5442 5443 if (sc->sc_softled) 5444 ath_led_event(sc, sc->sc_txrix); 5445 5446 ath_start(ifp); 5447 } 5448 5449 static void 5450 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5451 { 5452 #ifdef ATH_DEBUG 5453 struct ath_hal *ah = sc->sc_ah; 5454 #endif 5455 struct ieee80211_node *ni; 5456 struct ath_buf *bf; 5457 u_int ix; 5458 5459 /* 5460 * NB: this assumes output has been stopped and 5461 * we do not need to block ath_tx_proc 5462 */ 5463 ATH_TXBUF_LOCK(sc); 5464 bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list); 5465 if (bf != NULL) 5466 bf->bf_flags &= ~ATH_BUF_BUSY; 5467 ATH_TXBUF_UNLOCK(sc); 5468 for (ix = 0;; ix++) { 5469 ATH_TXQ_LOCK(txq); 5470 bf = STAILQ_FIRST(&txq->axq_q); 5471 if (bf == NULL) { 5472 txq->axq_link = NULL; 5473 ATH_TXQ_UNLOCK(txq); 5474 break; 5475 } 5476 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 5477 ATH_TXQ_UNLOCK(txq); 5478 #ifdef ATH_DEBUG 5479 if (sc->sc_debug & ATH_DEBUG_RESET) { 5480 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5481 5482 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5483 ath_hal_txprocdesc(ah, bf->bf_desc, 5484 &bf->bf_status.ds_txstat) == HAL_OK); 5485 ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t), 5486 bf->bf_m->m_len, 0, -1); 5487 } 5488 #endif /* ATH_DEBUG */ 5489 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5490 ni = bf->bf_node; 5491 bf->bf_node = NULL; 5492 if (ni != NULL) { 5493 /* 5494 * Do any callback and reclaim the node reference. 5495 */ 5496 if (bf->bf_m->m_flags & M_TXCB) 5497 ieee80211_process_callback(ni, bf->bf_m, -1); 5498 ieee80211_free_node(ni); 5499 } 5500 m_freem(bf->bf_m); 5501 bf->bf_m = NULL; 5502 bf->bf_flags &= ~ATH_BUF_BUSY; 5503 5504 ATH_TXBUF_LOCK(sc); 5505 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5506 ATH_TXBUF_UNLOCK(sc); 5507 } 5508 } 5509 5510 static void 5511 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5512 { 5513 struct ath_hal *ah = sc->sc_ah; 5514 5515 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5516 __func__, txq->axq_qnum, 5517 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5518 txq->axq_link); 5519 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5520 } 5521 5522 /* 5523 * Drain the transmit queues and reclaim resources. 5524 */ 5525 static void 5526 ath_draintxq(struct ath_softc *sc) 5527 { 5528 struct ath_hal *ah = sc->sc_ah; 5529 struct ifnet *ifp = sc->sc_ifp; 5530 int i; 5531 5532 /* XXX return value */ 5533 if (!sc->sc_invalid) { 5534 /* don't touch the hardware if marked invalid */ 5535 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5536 __func__, sc->sc_bhalq, 5537 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5538 NULL); 5539 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5540 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5541 if (ATH_TXQ_SETUP(sc, i)) 5542 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5543 } 5544 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5545 if (ATH_TXQ_SETUP(sc, i)) 5546 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5547 #ifdef ATH_DEBUG 5548 if (sc->sc_debug & ATH_DEBUG_RESET) { 5549 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 5550 if (bf != NULL && bf->bf_m != NULL) { 5551 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5552 ath_hal_txprocdesc(ah, bf->bf_desc, 5553 &bf->bf_status.ds_txstat) == HAL_OK); 5554 ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t), 5555 bf->bf_m->m_len, 0, -1); 5556 } 5557 } 5558 #endif /* ATH_DEBUG */ 5559 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5560 ifp->if_timer = 0; 5561 } 5562 5563 /* 5564 * Disable the receive h/w in preparation for a reset. 5565 */ 5566 static void 5567 ath_stoprecv(struct ath_softc *sc) 5568 { 5569 #define PA2DESC(_sc, _pa) \ 5570 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5571 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5572 struct ath_hal *ah = sc->sc_ah; 5573 5574 ath_hal_stoppcurecv(ah); /* disable PCU */ 5575 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5576 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5577 DELAY(3000); /* 3ms is long enough for 1 frame */ 5578 #ifdef ATH_DEBUG 5579 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5580 struct ath_buf *bf; 5581 u_int ix; 5582 5583 printf("%s: rx queue %p, link %p\n", __func__, 5584 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5585 ix = 0; 5586 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5587 struct ath_desc *ds = bf->bf_desc; 5588 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5589 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5590 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5591 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5592 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5593 ix++; 5594 } 5595 } 5596 #endif 5597 if (sc->sc_rxpending != NULL) { 5598 m_freem(sc->sc_rxpending); 5599 sc->sc_rxpending = NULL; 5600 } 5601 sc->sc_rxlink = NULL; /* just in case */ 5602 #undef PA2DESC 5603 } 5604 5605 /* 5606 * Enable the receive h/w following a reset. 5607 */ 5608 static int 5609 ath_startrecv(struct ath_softc *sc) 5610 { 5611 struct ath_hal *ah = sc->sc_ah; 5612 struct ath_buf *bf; 5613 5614 sc->sc_rxlink = NULL; 5615 sc->sc_rxpending = NULL; 5616 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5617 int error = ath_rxbuf_init(sc, bf); 5618 if (error != 0) { 5619 DPRINTF(sc, ATH_DEBUG_RECV, 5620 "%s: ath_rxbuf_init failed %d\n", 5621 __func__, error); 5622 return error; 5623 } 5624 } 5625 5626 bf = STAILQ_FIRST(&sc->sc_rxbuf); 5627 ath_hal_putrxbuf(ah, bf->bf_daddr); 5628 ath_hal_rxena(ah); /* enable recv descriptors */ 5629 ath_mode_init(sc); /* set filters, etc. */ 5630 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5631 return 0; 5632 } 5633 5634 /* 5635 * Update internal state after a channel change. 5636 */ 5637 static void 5638 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5639 { 5640 enum ieee80211_phymode mode; 5641 5642 /* 5643 * Change channels and update the h/w rate map 5644 * if we're switching; e.g. 11a to 11b/g. 5645 */ 5646 mode = ieee80211_chan2mode(chan); 5647 if (mode != sc->sc_curmode) 5648 ath_setcurmode(sc, mode); 5649 sc->sc_curchan = chan; 5650 5651 sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags); 5652 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags; 5653 sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq); 5654 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq; 5655 sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee; 5656 sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee; 5657 sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower; 5658 sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow; 5659 } 5660 5661 /* 5662 * Set/change channels. If the channel is really being changed, 5663 * it's done by reseting the chip. To accomplish this we must 5664 * first cleanup any pending DMA, then restart stuff after a la 5665 * ath_init. 5666 */ 5667 static int 5668 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5669 { 5670 struct ifnet *ifp = sc->sc_ifp; 5671 struct ieee80211com *ic = ifp->if_l2com; 5672 struct ath_hal *ah = sc->sc_ah; 5673 5674 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5675 __func__, ieee80211_chan2ieee(ic, chan), 5676 chan->ic_freq, chan->ic_flags); 5677 if (chan != sc->sc_curchan) { 5678 HAL_STATUS status; 5679 /* 5680 * To switch channels clear any pending DMA operations; 5681 * wait long enough for the RX fifo to drain, reset the 5682 * hardware at the new frequency, and then re-enable 5683 * the relevant bits of the h/w. 5684 */ 5685 ath_hal_intrset(ah, 0); /* disable interrupts */ 5686 ath_draintxq(sc); /* clear pending tx frames */ 5687 ath_stoprecv(sc); /* turn off frame recv */ 5688 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5689 if_printf(ifp, "%s: unable to reset " 5690 "channel %u (%u Mhz, flags 0x%x), hal status %u\n", 5691 __func__, ieee80211_chan2ieee(ic, chan), 5692 chan->ic_freq, chan->ic_flags, status); 5693 return EIO; 5694 } 5695 sc->sc_diversity = ath_hal_getdiversity(ah); 5696 5697 /* 5698 * Re-enable rx framework. 5699 */ 5700 if (ath_startrecv(sc) != 0) { 5701 if_printf(ifp, "%s: unable to restart recv logic\n", 5702 __func__); 5703 return EIO; 5704 } 5705 5706 /* 5707 * Change channels and update the h/w rate map 5708 * if we're switching; e.g. 11a to 11b/g. 5709 */ 5710 ath_chan_change(sc, chan); 5711 5712 /* 5713 * Re-enable interrupts. 5714 */ 5715 ath_hal_intrset(ah, sc->sc_imask); 5716 } 5717 return 0; 5718 } 5719 5720 /* 5721 * Periodically recalibrate the PHY to account 5722 * for temperature/environment changes. 5723 */ 5724 static void 5725 ath_calibrate(void *arg) 5726 { 5727 struct ath_softc *sc = arg; 5728 struct ath_hal *ah = sc->sc_ah; 5729 struct ifnet *ifp = sc->sc_ifp; 5730 struct ieee80211com *ic = ifp->if_l2com; 5731 HAL_BOOL longCal, isCalDone; 5732 int nextcal; 5733 5734 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5735 goto restart; 5736 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5737 if (longCal) { 5738 sc->sc_stats.ast_per_cal++; 5739 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5740 /* 5741 * Rfgain is out of bounds, reset the chip 5742 * to load new gain values. 5743 */ 5744 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5745 "%s: rfgain change\n", __func__); 5746 sc->sc_stats.ast_per_rfgain++; 5747 ath_reset(ifp); 5748 } 5749 /* 5750 * If this long cal is after an idle period, then 5751 * reset the data collection state so we start fresh. 5752 */ 5753 if (sc->sc_resetcal) { 5754 (void) ath_hal_calreset(ah, sc->sc_curchan); 5755 sc->sc_lastcalreset = ticks; 5756 sc->sc_resetcal = 0; 5757 } 5758 } 5759 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5760 if (longCal) { 5761 /* 5762 * Calibrate noise floor data again in case of change. 5763 */ 5764 ath_hal_process_noisefloor(ah); 5765 } 5766 } else { 5767 DPRINTF(sc, ATH_DEBUG_ANY, 5768 "%s: calibration of channel %u failed\n", 5769 __func__, sc->sc_curchan->ic_freq); 5770 sc->sc_stats.ast_per_calfail++; 5771 } 5772 if (!isCalDone) { 5773 restart: 5774 /* 5775 * Use a shorter interval to potentially collect multiple 5776 * data samples required to complete calibration. Once 5777 * we're told the work is done we drop back to a longer 5778 * interval between requests. We're more aggressive doing 5779 * work when operating as an AP to improve operation right 5780 * after startup. 5781 */ 5782 nextcal = (1000*ath_shortcalinterval)/hz; 5783 if (sc->sc_opmode != HAL_M_HOSTAP) 5784 nextcal *= 10; 5785 } else { 5786 nextcal = ath_longcalinterval*hz; 5787 sc->sc_lastlongcal = ticks; 5788 if (sc->sc_lastcalreset == 0) 5789 sc->sc_lastcalreset = sc->sc_lastlongcal; 5790 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5791 sc->sc_resetcal = 1; /* setup reset next trip */ 5792 } 5793 5794 if (nextcal != 0) { 5795 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5796 __func__, nextcal, isCalDone ? "" : "!"); 5797 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5798 } else { 5799 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5800 __func__); 5801 /* NB: don't rearm timer */ 5802 } 5803 } 5804 5805 static void 5806 ath_scan_start(struct ieee80211com *ic) 5807 { 5808 struct ifnet *ifp = ic->ic_ifp; 5809 struct ath_softc *sc = ifp->if_softc; 5810 struct ath_hal *ah = sc->sc_ah; 5811 u_int32_t rfilt; 5812 5813 /* XXX calibration timer? */ 5814 5815 sc->sc_scanning = 1; 5816 sc->sc_syncbeacon = 0; 5817 rfilt = ath_calcrxfilter(sc); 5818 ath_hal_setrxfilter(ah, rfilt); 5819 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5820 5821 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5822 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5823 } 5824 5825 static void 5826 ath_scan_end(struct ieee80211com *ic) 5827 { 5828 struct ifnet *ifp = ic->ic_ifp; 5829 struct ath_softc *sc = ifp->if_softc; 5830 struct ath_hal *ah = sc->sc_ah; 5831 u_int32_t rfilt; 5832 5833 sc->sc_scanning = 0; 5834 rfilt = ath_calcrxfilter(sc); 5835 ath_hal_setrxfilter(ah, rfilt); 5836 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5837 5838 ath_hal_process_noisefloor(ah); 5839 5840 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5841 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5842 sc->sc_curaid); 5843 } 5844 5845 static void 5846 ath_set_channel(struct ieee80211com *ic) 5847 { 5848 struct ifnet *ifp = ic->ic_ifp; 5849 struct ath_softc *sc = ifp->if_softc; 5850 5851 (void) ath_chan_set(sc, ic->ic_curchan); 5852 /* 5853 * If we are returning to our bss channel then mark state 5854 * so the next recv'd beacon's tsf will be used to sync the 5855 * beacon timers. Note that since we only hear beacons in 5856 * sta/ibss mode this has no effect in other operating modes. 5857 */ 5858 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5859 sc->sc_syncbeacon = 1; 5860 } 5861 5862 /* 5863 * Walk the vap list and check if there any vap's in RUN state. 5864 */ 5865 static int 5866 ath_isanyrunningvaps(struct ieee80211vap *this) 5867 { 5868 struct ieee80211com *ic = this->iv_ic; 5869 struct ieee80211vap *vap; 5870 5871 IEEE80211_LOCK_ASSERT(ic); 5872 5873 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5874 if (vap != this && vap->iv_state == IEEE80211_S_RUN) 5875 return 1; 5876 } 5877 return 0; 5878 } 5879 5880 static int 5881 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5882 { 5883 struct ieee80211com *ic = vap->iv_ic; 5884 struct ath_softc *sc = ic->ic_ifp->if_softc; 5885 struct ath_vap *avp = ATH_VAP(vap); 5886 struct ath_hal *ah = sc->sc_ah; 5887 struct ieee80211_node *ni = NULL; 5888 int i, error, stamode; 5889 u_int32_t rfilt; 5890 static const HAL_LED_STATE leds[] = { 5891 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5892 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5893 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5894 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5895 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5896 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5897 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5898 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5899 }; 5900 5901 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5902 ieee80211_state_name[vap->iv_state], 5903 ieee80211_state_name[nstate]); 5904 5905 callout_stop(&sc->sc_cal_ch); 5906 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5907 5908 if (nstate == IEEE80211_S_SCAN) { 5909 /* 5910 * Scanning: turn off beacon miss and don't beacon. 5911 * Mark beacon state so when we reach RUN state we'll 5912 * [re]setup beacons. Unblock the task q thread so 5913 * deferred interrupt processing is done. 5914 */ 5915 ath_hal_intrset(ah, 5916 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5917 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5918 sc->sc_beacons = 0; 5919 taskqueue_unblock(sc->sc_tq); 5920 } 5921 5922 ni = vap->iv_bss; 5923 rfilt = ath_calcrxfilter(sc); 5924 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5925 vap->iv_opmode == IEEE80211_M_AHDEMO || 5926 vap->iv_opmode == IEEE80211_M_IBSS); 5927 if (stamode && nstate == IEEE80211_S_RUN) { 5928 sc->sc_curaid = ni->ni_associd; 5929 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5930 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5931 } 5932 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5933 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5934 ath_hal_setrxfilter(ah, rfilt); 5935 5936 /* XXX is this to restore keycache on resume? */ 5937 if (vap->iv_opmode != IEEE80211_M_STA && 5938 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5939 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5940 if (ath_hal_keyisvalid(ah, i)) 5941 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5942 } 5943 5944 /* 5945 * Invoke the parent method to do net80211 work. 5946 */ 5947 error = avp->av_newstate(vap, nstate, arg); 5948 if (error != 0) 5949 goto bad; 5950 5951 if (nstate == IEEE80211_S_RUN) { 5952 /* NB: collect bss node again, it may have changed */ 5953 ni = vap->iv_bss; 5954 5955 DPRINTF(sc, ATH_DEBUG_STATE, 5956 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5957 "capinfo 0x%04x chan %d\n", __func__, 5958 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5959 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5960 5961 switch (vap->iv_opmode) { 5962 #ifdef ATH_SUPPORT_TDMA 5963 case IEEE80211_M_AHDEMO: 5964 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5965 break; 5966 /* fall thru... */ 5967 #endif 5968 case IEEE80211_M_HOSTAP: 5969 case IEEE80211_M_IBSS: 5970 /* 5971 * Allocate and setup the beacon frame. 5972 * 5973 * Stop any previous beacon DMA. This may be 5974 * necessary, for example, when an ibss merge 5975 * causes reconfiguration; there will be a state 5976 * transition from RUN->RUN that means we may 5977 * be called with beacon transmission active. 5978 */ 5979 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5980 5981 error = ath_beacon_alloc(sc, ni); 5982 if (error != 0) 5983 goto bad; 5984 /* 5985 * If joining an adhoc network defer beacon timer 5986 * configuration to the next beacon frame so we 5987 * have a current TSF to use. Otherwise we're 5988 * starting an ibss/bss so there's no need to delay; 5989 * if this is the first vap moving to RUN state, then 5990 * beacon state needs to be [re]configured. 5991 */ 5992 if (vap->iv_opmode == IEEE80211_M_IBSS && 5993 ni->ni_tstamp.tsf != 0) { 5994 sc->sc_syncbeacon = 1; 5995 } else if (!sc->sc_beacons) { 5996 #ifdef ATH_SUPPORT_TDMA 5997 if (vap->iv_caps & IEEE80211_C_TDMA) 5998 ath_tdma_config(sc, vap); 5999 else 6000 #endif 6001 ath_beacon_config(sc, vap); 6002 sc->sc_beacons = 1; 6003 } 6004 break; 6005 case IEEE80211_M_STA: 6006 /* 6007 * Defer beacon timer configuration to the next 6008 * beacon frame so we have a current TSF to use 6009 * (any TSF collected when scanning is likely old). 6010 */ 6011 sc->sc_syncbeacon = 1; 6012 break; 6013 case IEEE80211_M_MONITOR: 6014 /* 6015 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6016 * transitions so we must re-enable interrupts here to 6017 * handle the case of a single monitor mode vap. 6018 */ 6019 ath_hal_intrset(ah, sc->sc_imask); 6020 break; 6021 case IEEE80211_M_WDS: 6022 break; 6023 default: 6024 break; 6025 } 6026 /* 6027 * Let the hal process statistics collected during a 6028 * scan so it can provide calibrated noise floor data. 6029 */ 6030 ath_hal_process_noisefloor(ah); 6031 /* 6032 * Reset rssi stats; maybe not the best place... 6033 */ 6034 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6035 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6036 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6037 /* 6038 * Finally, start any timers and the task q thread 6039 * (in case we didn't go through SCAN state). 6040 */ 6041 if (ath_longcalinterval != 0) { 6042 /* start periodic recalibration timer */ 6043 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6044 } else { 6045 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6046 "%s: calibration disabled\n", __func__); 6047 } 6048 taskqueue_unblock(sc->sc_tq); 6049 } else if (nstate == IEEE80211_S_INIT) { 6050 /* 6051 * If there are no vaps left in RUN state then 6052 * shutdown host/driver operation: 6053 * o disable interrupts 6054 * o disable the task queue thread 6055 * o mark beacon processing as stopped 6056 */ 6057 if (!ath_isanyrunningvaps(vap)) { 6058 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6059 /* disable interrupts */ 6060 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6061 taskqueue_block(sc->sc_tq); 6062 sc->sc_beacons = 0; 6063 } 6064 #ifdef ATH_SUPPORT_TDMA 6065 ath_hal_setcca(ah, AH_TRUE); 6066 #endif 6067 } 6068 bad: 6069 return error; 6070 } 6071 6072 /* 6073 * Allocate a key cache slot to the station so we can 6074 * setup a mapping from key index to node. The key cache 6075 * slot is needed for managing antenna state and for 6076 * compression when stations do not use crypto. We do 6077 * it uniliaterally here; if crypto is employed this slot 6078 * will be reassigned. 6079 */ 6080 static void 6081 ath_setup_stationkey(struct ieee80211_node *ni) 6082 { 6083 struct ieee80211vap *vap = ni->ni_vap; 6084 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6085 ieee80211_keyix keyix, rxkeyix; 6086 6087 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6088 /* 6089 * Key cache is full; we'll fall back to doing 6090 * the more expensive lookup in software. Note 6091 * this also means no h/w compression. 6092 */ 6093 /* XXX msg+statistic */ 6094 } else { 6095 /* XXX locking? */ 6096 ni->ni_ucastkey.wk_keyix = keyix; 6097 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6098 /* NB: must mark device key to get called back on delete */ 6099 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6100 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6101 /* NB: this will create a pass-thru key entry */ 6102 ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss); 6103 } 6104 } 6105 6106 /* 6107 * Setup driver-specific state for a newly associated node. 6108 * Note that we're called also on a re-associate, the isnew 6109 * param tells us if this is the first time or not. 6110 */ 6111 static void 6112 ath_newassoc(struct ieee80211_node *ni, int isnew) 6113 { 6114 struct ath_node *an = ATH_NODE(ni); 6115 struct ieee80211vap *vap = ni->ni_vap; 6116 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6117 const struct ieee80211_txparam *tp = ni->ni_txparms; 6118 6119 an->an_mcastrix = ath_tx_findrix(sc->sc_currates, tp->mcastrate); 6120 an->an_mgmtrix = ath_tx_findrix(sc->sc_currates, tp->mgmtrate); 6121 6122 ath_rate_newassoc(sc, an, isnew); 6123 if (isnew && 6124 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6125 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6126 ath_setup_stationkey(ni); 6127 } 6128 6129 static int 6130 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6131 int nchans, struct ieee80211_channel chans[]) 6132 { 6133 struct ath_softc *sc = ic->ic_ifp->if_softc; 6134 struct ath_hal *ah = sc->sc_ah; 6135 HAL_STATUS status; 6136 6137 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6138 "%s: rd %u cc %u location %c%s\n", 6139 __func__, reg->regdomain, reg->country, reg->location, 6140 reg->ecm ? " ecm" : ""); 6141 6142 status = ath_hal_set_channels(ah, chans, nchans, 6143 reg->country, reg->regdomain); 6144 if (status != HAL_OK) { 6145 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6146 __func__, status); 6147 return EINVAL; /* XXX */ 6148 } 6149 return 0; 6150 } 6151 6152 static void 6153 ath_getradiocaps(struct ieee80211com *ic, 6154 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6155 { 6156 struct ath_softc *sc = ic->ic_ifp->if_softc; 6157 struct ath_hal *ah = sc->sc_ah; 6158 6159 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6160 __func__, SKU_DEBUG, CTRY_DEFAULT); 6161 6162 /* XXX check return */ 6163 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6164 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6165 6166 } 6167 6168 static int 6169 ath_getchannels(struct ath_softc *sc) 6170 { 6171 struct ifnet *ifp = sc->sc_ifp; 6172 struct ieee80211com *ic = ifp->if_l2com; 6173 struct ath_hal *ah = sc->sc_ah; 6174 HAL_STATUS status; 6175 6176 /* 6177 * Collect channel set based on EEPROM contents. 6178 */ 6179 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6180 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6181 if (status != HAL_OK) { 6182 if_printf(ifp, "%s: unable to collect channel list from hal, " 6183 "status %d\n", __func__, status); 6184 return EINVAL; 6185 } 6186 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6187 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6188 /* XXX map Atheros sku's to net80211 SKU's */ 6189 /* XXX net80211 types too small */ 6190 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6191 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6192 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6193 ic->ic_regdomain.isocc[1] = ' '; 6194 6195 ic->ic_regdomain.ecm = 1; 6196 ic->ic_regdomain.location = 'I'; 6197 6198 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6199 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6200 __func__, sc->sc_eerd, sc->sc_eecc, 6201 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6202 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6203 return 0; 6204 } 6205 6206 static void 6207 ath_led_done(void *arg) 6208 { 6209 struct ath_softc *sc = arg; 6210 6211 sc->sc_blinking = 0; 6212 } 6213 6214 /* 6215 * Turn the LED off: flip the pin and then set a timer so no 6216 * update will happen for the specified duration. 6217 */ 6218 static void 6219 ath_led_off(void *arg) 6220 { 6221 struct ath_softc *sc = arg; 6222 6223 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 6224 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 6225 } 6226 6227 /* 6228 * Blink the LED according to the specified on/off times. 6229 */ 6230 static void 6231 ath_led_blink(struct ath_softc *sc, int on, int off) 6232 { 6233 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 6234 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 6235 sc->sc_blinking = 1; 6236 sc->sc_ledoff = off; 6237 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 6238 } 6239 6240 static void 6241 ath_led_event(struct ath_softc *sc, int rix) 6242 { 6243 sc->sc_ledevent = ticks; /* time of last event */ 6244 if (sc->sc_blinking) /* don't interrupt active blink */ 6245 return; 6246 ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff); 6247 } 6248 6249 static int 6250 ath_rate_setup(struct ath_softc *sc, u_int mode) 6251 { 6252 struct ath_hal *ah = sc->sc_ah; 6253 const HAL_RATE_TABLE *rt; 6254 6255 switch (mode) { 6256 case IEEE80211_MODE_11A: 6257 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6258 break; 6259 case IEEE80211_MODE_HALF: 6260 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6261 break; 6262 case IEEE80211_MODE_QUARTER: 6263 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6264 break; 6265 case IEEE80211_MODE_11B: 6266 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6267 break; 6268 case IEEE80211_MODE_11G: 6269 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6270 break; 6271 case IEEE80211_MODE_TURBO_A: 6272 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6273 #if HAL_ABI_VERSION < 0x07013100 6274 if (rt == NULL) /* XXX bandaid for old hal's */ 6275 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6276 #endif 6277 break; 6278 case IEEE80211_MODE_TURBO_G: 6279 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6280 break; 6281 case IEEE80211_MODE_STURBO_A: 6282 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6283 break; 6284 case IEEE80211_MODE_11NA: 6285 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6286 break; 6287 case IEEE80211_MODE_11NG: 6288 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6289 break; 6290 default: 6291 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6292 __func__, mode); 6293 return 0; 6294 } 6295 sc->sc_rates[mode] = rt; 6296 return (rt != NULL); 6297 } 6298 6299 static void 6300 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6301 { 6302 #define N(a) (sizeof(a)/sizeof(a[0])) 6303 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6304 static const struct { 6305 u_int rate; /* tx/rx 802.11 rate */ 6306 u_int16_t timeOn; /* LED on time (ms) */ 6307 u_int16_t timeOff; /* LED off time (ms) */ 6308 } blinkrates[] = { 6309 { 108, 40, 10 }, 6310 { 96, 44, 11 }, 6311 { 72, 50, 13 }, 6312 { 48, 57, 14 }, 6313 { 36, 67, 16 }, 6314 { 24, 80, 20 }, 6315 { 22, 100, 25 }, 6316 { 18, 133, 34 }, 6317 { 12, 160, 40 }, 6318 { 10, 200, 50 }, 6319 { 6, 240, 58 }, 6320 { 4, 267, 66 }, 6321 { 2, 400, 100 }, 6322 { 0, 500, 130 }, 6323 /* XXX half/quarter rates */ 6324 }; 6325 const HAL_RATE_TABLE *rt; 6326 int i, j; 6327 6328 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6329 rt = sc->sc_rates[mode]; 6330 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6331 for (i = 0; i < rt->rateCount; i++) { 6332 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6333 if (rt->info[i].phy != IEEE80211_T_HT) 6334 sc->sc_rixmap[ieeerate] = i; 6335 else 6336 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6337 } 6338 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6339 for (i = 0; i < N(sc->sc_hwmap); i++) { 6340 if (i >= rt->rateCount) { 6341 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6342 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6343 continue; 6344 } 6345 sc->sc_hwmap[i].ieeerate = 6346 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6347 if (rt->info[i].phy == IEEE80211_T_HT) 6348 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6349 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6350 if (rt->info[i].shortPreamble || 6351 rt->info[i].phy == IEEE80211_T_OFDM) 6352 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6353 /* NB: receive frames include FCS */ 6354 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 6355 IEEE80211_RADIOTAP_F_FCS; 6356 /* setup blink rate table to avoid per-packet lookup */ 6357 for (j = 0; j < N(blinkrates)-1; j++) 6358 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6359 break; 6360 /* NB: this uses the last entry if the rate isn't found */ 6361 /* XXX beware of overlow */ 6362 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6363 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6364 } 6365 sc->sc_currates = rt; 6366 sc->sc_curmode = mode; 6367 /* 6368 * All protection frames are transmited at 2Mb/s for 6369 * 11g, otherwise at 1Mb/s. 6370 */ 6371 if (mode == IEEE80211_MODE_11G) 6372 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 6373 else 6374 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 6375 /* NB: caller is responsible for reseting rate control state */ 6376 #undef N 6377 } 6378 6379 #ifdef ATH_DEBUG 6380 static void 6381 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf, 6382 u_int ix, int done) 6383 { 6384 const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 6385 struct ath_hal *ah = sc->sc_ah; 6386 const struct ath_desc *ds; 6387 int i; 6388 6389 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 6390 printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n" 6391 " %08x %08x %08x %08x\n", 6392 ix, ds, (const struct ath_desc *)bf->bf_daddr + i, 6393 ds->ds_link, ds->ds_data, 6394 !done ? "" : (rs->rs_status == 0) ? " *" : " !", 6395 ds->ds_ctl0, ds->ds_ctl1, 6396 ds->ds_hw[0], ds->ds_hw[1]); 6397 if (ah->ah_magic == 0x20065416) { 6398 printf(" %08x %08x %08x %08x %08x %08x %08x\n", 6399 ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4], 6400 ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7], 6401 ds->ds_hw[8]); 6402 } 6403 } 6404 } 6405 6406 static void 6407 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf, 6408 u_int qnum, u_int ix, int done) 6409 { 6410 const struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 6411 struct ath_hal *ah = sc->sc_ah; 6412 const struct ath_desc *ds; 6413 int i; 6414 6415 printf("Q%u[%3u]", qnum, ix); 6416 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 6417 printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n" 6418 " %08x %08x %08x %08x %08x %08x\n", 6419 ds, (const struct ath_desc *)bf->bf_daddr + i, 6420 ds->ds_link, ds->ds_data, bf->bf_txflags, 6421 !done ? "" : (ts->ts_status == 0) ? " *" : " !", 6422 ds->ds_ctl0, ds->ds_ctl1, 6423 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]); 6424 if (ah->ah_magic == 0x20065416) { 6425 printf(" %08x %08x %08x %08x %08x %08x %08x %08x\n", 6426 ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6], 6427 ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9], 6428 ds->ds_hw[10],ds->ds_hw[11]); 6429 printf(" %08x %08x %08x %08x %08x %08x %08x %08x\n", 6430 ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14], 6431 ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17], 6432 ds->ds_hw[18], ds->ds_hw[19]); 6433 } 6434 } 6435 } 6436 #endif /* ATH_DEBUG */ 6437 6438 static void 6439 ath_watchdog(struct ifnet *ifp) 6440 { 6441 struct ath_softc *sc = ifp->if_softc; 6442 6443 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) { 6444 uint32_t hangs; 6445 6446 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6447 hangs != 0) { 6448 if_printf(ifp, "%s hang detected (0x%x)\n", 6449 hangs & 0xff ? "bb" : "mac", hangs); 6450 } else 6451 if_printf(ifp, "device timeout\n"); 6452 ath_reset(ifp); 6453 ifp->if_oerrors++; 6454 sc->sc_stats.ast_watchdog++; 6455 } 6456 } 6457 6458 #ifdef ATH_DIAGAPI 6459 /* 6460 * Diagnostic interface to the HAL. This is used by various 6461 * tools to do things like retrieve register contents for 6462 * debugging. The mechanism is intentionally opaque so that 6463 * it can change frequently w/o concern for compatiblity. 6464 */ 6465 static int 6466 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6467 { 6468 struct ath_hal *ah = sc->sc_ah; 6469 u_int id = ad->ad_id & ATH_DIAG_ID; 6470 void *indata = NULL; 6471 void *outdata = NULL; 6472 u_int32_t insize = ad->ad_in_size; 6473 u_int32_t outsize = ad->ad_out_size; 6474 int error = 0; 6475 6476 if (ad->ad_id & ATH_DIAG_IN) { 6477 /* 6478 * Copy in data. 6479 */ 6480 indata = malloc(insize, M_TEMP, M_NOWAIT); 6481 if (indata == NULL) { 6482 error = ENOMEM; 6483 goto bad; 6484 } 6485 error = copyin(ad->ad_in_data, indata, insize); 6486 if (error) 6487 goto bad; 6488 } 6489 if (ad->ad_id & ATH_DIAG_DYN) { 6490 /* 6491 * Allocate a buffer for the results (otherwise the HAL 6492 * returns a pointer to a buffer where we can read the 6493 * results). Note that we depend on the HAL leaving this 6494 * pointer for us to use below in reclaiming the buffer; 6495 * may want to be more defensive. 6496 */ 6497 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6498 if (outdata == NULL) { 6499 error = ENOMEM; 6500 goto bad; 6501 } 6502 } 6503 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6504 if (outsize < ad->ad_out_size) 6505 ad->ad_out_size = outsize; 6506 if (outdata != NULL) 6507 error = copyout(outdata, ad->ad_out_data, 6508 ad->ad_out_size); 6509 } else { 6510 error = EINVAL; 6511 } 6512 bad: 6513 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6514 free(indata, M_TEMP); 6515 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6516 free(outdata, M_TEMP); 6517 return error; 6518 } 6519 #endif /* ATH_DIAGAPI */ 6520 6521 static int 6522 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6523 { 6524 #define IS_RUNNING(ifp) \ 6525 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6526 struct ath_softc *sc = ifp->if_softc; 6527 struct ieee80211com *ic = ifp->if_l2com; 6528 struct ifreq *ifr = (struct ifreq *)data; 6529 const HAL_RATE_TABLE *rt; 6530 int error = 0; 6531 6532 switch (cmd) { 6533 case SIOCSIFFLAGS: 6534 ATH_LOCK(sc); 6535 if (IS_RUNNING(ifp)) { 6536 /* 6537 * To avoid rescanning another access point, 6538 * do not call ath_init() here. Instead, 6539 * only reflect promisc mode settings. 6540 */ 6541 ath_mode_init(sc); 6542 } else if (ifp->if_flags & IFF_UP) { 6543 /* 6544 * Beware of being called during attach/detach 6545 * to reset promiscuous mode. In that case we 6546 * will still be marked UP but not RUNNING. 6547 * However trying to re-init the interface 6548 * is the wrong thing to do as we've already 6549 * torn down much of our state. There's 6550 * probably a better way to deal with this. 6551 */ 6552 if (!sc->sc_invalid) 6553 ath_init(sc); /* XXX lose error */ 6554 } else { 6555 ath_stop_locked(ifp); 6556 #ifdef notyet 6557 /* XXX must wakeup in places like ath_vap_delete */ 6558 if (!sc->sc_invalid) 6559 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6560 #endif 6561 } 6562 ATH_UNLOCK(sc); 6563 break; 6564 case SIOCGIFMEDIA: 6565 case SIOCSIFMEDIA: 6566 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6567 break; 6568 case SIOCGATHSTATS: 6569 /* NB: embed these numbers to get a consistent view */ 6570 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6571 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6572 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6573 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6574 #ifdef ATH_SUPPORT_TDMA 6575 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6576 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6577 #endif 6578 rt = sc->sc_currates; 6579 /* XXX HT rates */ 6580 sc->sc_stats.ast_tx_rate = 6581 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6582 return copyout(&sc->sc_stats, 6583 ifr->ifr_data, sizeof (sc->sc_stats)); 6584 case SIOCZATHSTATS: 6585 error = priv_check(curthread, PRIV_DRIVER); 6586 if (error == 0) 6587 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6588 break; 6589 #ifdef ATH_DIAGAPI 6590 case SIOCGATHDIAG: 6591 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6592 break; 6593 #endif 6594 case SIOCGIFADDR: 6595 error = ether_ioctl(ifp, cmd, data); 6596 break; 6597 default: 6598 error = EINVAL; 6599 break; 6600 } 6601 return error; 6602 #undef IS_RUNNING 6603 } 6604 6605 static int 6606 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS) 6607 { 6608 struct ath_softc *sc = arg1; 6609 u_int slottime = ath_hal_getslottime(sc->sc_ah); 6610 int error; 6611 6612 error = sysctl_handle_int(oidp, &slottime, 0, req); 6613 if (error || !req->newptr) 6614 return error; 6615 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0; 6616 } 6617 6618 static int 6619 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS) 6620 { 6621 struct ath_softc *sc = arg1; 6622 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah); 6623 int error; 6624 6625 error = sysctl_handle_int(oidp, &acktimeout, 0, req); 6626 if (error || !req->newptr) 6627 return error; 6628 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0; 6629 } 6630 6631 static int 6632 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS) 6633 { 6634 struct ath_softc *sc = arg1; 6635 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah); 6636 int error; 6637 6638 error = sysctl_handle_int(oidp, &ctstimeout, 0, req); 6639 if (error || !req->newptr) 6640 return error; 6641 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0; 6642 } 6643 6644 static int 6645 ath_sysctl_softled(SYSCTL_HANDLER_ARGS) 6646 { 6647 struct ath_softc *sc = arg1; 6648 int softled = sc->sc_softled; 6649 int error; 6650 6651 error = sysctl_handle_int(oidp, &softled, 0, req); 6652 if (error || !req->newptr) 6653 return error; 6654 softled = (softled != 0); 6655 if (softled != sc->sc_softled) { 6656 if (softled) { 6657 /* NB: handle any sc_ledpin change */ 6658 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin, 6659 HAL_GPIO_MUX_MAC_NETWORK_LED); 6660 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 6661 !sc->sc_ledon); 6662 } 6663 sc->sc_softled = softled; 6664 } 6665 return 0; 6666 } 6667 6668 static int 6669 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS) 6670 { 6671 struct ath_softc *sc = arg1; 6672 int ledpin = sc->sc_ledpin; 6673 int error; 6674 6675 error = sysctl_handle_int(oidp, &ledpin, 0, req); 6676 if (error || !req->newptr) 6677 return error; 6678 if (ledpin != sc->sc_ledpin) { 6679 sc->sc_ledpin = ledpin; 6680 if (sc->sc_softled) { 6681 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin, 6682 HAL_GPIO_MUX_MAC_NETWORK_LED); 6683 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 6684 !sc->sc_ledon); 6685 } 6686 } 6687 return 0; 6688 } 6689 6690 static int 6691 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS) 6692 { 6693 struct ath_softc *sc = arg1; 6694 u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah); 6695 int error; 6696 6697 error = sysctl_handle_int(oidp, &txantenna, 0, req); 6698 if (!error && req->newptr) { 6699 /* XXX assumes 2 antenna ports */ 6700 if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B) 6701 return EINVAL; 6702 ath_hal_setantennaswitch(sc->sc_ah, txantenna); 6703 /* 6704 * NB: with the switch locked this isn't meaningful, 6705 * but set it anyway so things like radiotap get 6706 * consistent info in their data. 6707 */ 6708 sc->sc_txantenna = txantenna; 6709 } 6710 return error; 6711 } 6712 6713 static int 6714 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS) 6715 { 6716 struct ath_softc *sc = arg1; 6717 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah); 6718 int error; 6719 6720 error = sysctl_handle_int(oidp, &defantenna, 0, req); 6721 if (!error && req->newptr) 6722 ath_hal_setdefantenna(sc->sc_ah, defantenna); 6723 return error; 6724 } 6725 6726 static int 6727 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS) 6728 { 6729 struct ath_softc *sc = arg1; 6730 u_int diversity = ath_hal_getdiversity(sc->sc_ah); 6731 int error; 6732 6733 error = sysctl_handle_int(oidp, &diversity, 0, req); 6734 if (error || !req->newptr) 6735 return error; 6736 if (!ath_hal_setdiversity(sc->sc_ah, diversity)) 6737 return EINVAL; 6738 sc->sc_diversity = diversity; 6739 return 0; 6740 } 6741 6742 static int 6743 ath_sysctl_diag(SYSCTL_HANDLER_ARGS) 6744 { 6745 struct ath_softc *sc = arg1; 6746 u_int32_t diag; 6747 int error; 6748 6749 if (!ath_hal_getdiag(sc->sc_ah, &diag)) 6750 return EINVAL; 6751 error = sysctl_handle_int(oidp, &diag, 0, req); 6752 if (error || !req->newptr) 6753 return error; 6754 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0; 6755 } 6756 6757 static int 6758 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS) 6759 { 6760 struct ath_softc *sc = arg1; 6761 struct ifnet *ifp = sc->sc_ifp; 6762 u_int32_t scale; 6763 int error; 6764 6765 (void) ath_hal_gettpscale(sc->sc_ah, &scale); 6766 error = sysctl_handle_int(oidp, &scale, 0, req); 6767 if (error || !req->newptr) 6768 return error; 6769 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : 6770 (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0; 6771 } 6772 6773 static int 6774 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS) 6775 { 6776 struct ath_softc *sc = arg1; 6777 u_int tpc = ath_hal_gettpc(sc->sc_ah); 6778 int error; 6779 6780 error = sysctl_handle_int(oidp, &tpc, 0, req); 6781 if (error || !req->newptr) 6782 return error; 6783 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0; 6784 } 6785 6786 static int 6787 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS) 6788 { 6789 struct ath_softc *sc = arg1; 6790 struct ifnet *ifp = sc->sc_ifp; 6791 struct ath_hal *ah = sc->sc_ah; 6792 u_int rfkill = ath_hal_getrfkill(ah); 6793 int error; 6794 6795 error = sysctl_handle_int(oidp, &rfkill, 0, req); 6796 if (error || !req->newptr) 6797 return error; 6798 if (rfkill == ath_hal_getrfkill(ah)) /* unchanged */ 6799 return 0; 6800 if (!ath_hal_setrfkill(ah, rfkill)) 6801 return EINVAL; 6802 return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0; 6803 } 6804 6805 static int 6806 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS) 6807 { 6808 struct ath_softc *sc = arg1; 6809 u_int rfsilent; 6810 int error; 6811 6812 (void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent); 6813 error = sysctl_handle_int(oidp, &rfsilent, 0, req); 6814 if (error || !req->newptr) 6815 return error; 6816 if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) 6817 return EINVAL; 6818 sc->sc_rfsilentpin = rfsilent & 0x1c; 6819 sc->sc_rfsilentpol = (rfsilent & 0x2) != 0; 6820 return 0; 6821 } 6822 6823 static int 6824 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS) 6825 { 6826 struct ath_softc *sc = arg1; 6827 u_int32_t tpack; 6828 int error; 6829 6830 (void) ath_hal_gettpack(sc->sc_ah, &tpack); 6831 error = sysctl_handle_int(oidp, &tpack, 0, req); 6832 if (error || !req->newptr) 6833 return error; 6834 return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0; 6835 } 6836 6837 static int 6838 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS) 6839 { 6840 struct ath_softc *sc = arg1; 6841 u_int32_t tpcts; 6842 int error; 6843 6844 (void) ath_hal_gettpcts(sc->sc_ah, &tpcts); 6845 error = sysctl_handle_int(oidp, &tpcts, 0, req); 6846 if (error || !req->newptr) 6847 return error; 6848 return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0; 6849 } 6850 6851 static int 6852 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS) 6853 { 6854 struct ath_softc *sc = arg1; 6855 int intmit, error; 6856 6857 intmit = ath_hal_getintmit(sc->sc_ah); 6858 error = sysctl_handle_int(oidp, &intmit, 0, req); 6859 if (error || !req->newptr) 6860 return error; 6861 return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0; 6862 } 6863 6864 static void 6865 ath_sysctlattach(struct ath_softc *sc) 6866 { 6867 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 6868 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 6869 struct ath_hal *ah = sc->sc_ah; 6870 6871 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6872 "countrycode", CTLFLAG_RD, &sc->sc_eecc, 0, 6873 "EEPROM country code"); 6874 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6875 "regdomain", CTLFLAG_RD, &sc->sc_eerd, 0, 6876 "EEPROM regdomain code"); 6877 #ifdef ATH_DEBUG 6878 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6879 "debug", CTLFLAG_RW, &sc->sc_debug, 0, 6880 "control debugging printfs"); 6881 #endif 6882 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6883 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6884 ath_sysctl_slottime, "I", "802.11 slot time (us)"); 6885 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6886 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6887 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)"); 6888 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6889 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6890 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)"); 6891 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6892 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6893 ath_sysctl_softled, "I", "enable/disable software LED support"); 6894 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6895 "ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6896 ath_sysctl_ledpin, "I", "GPIO pin connected to LED"); 6897 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6898 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0, 6899 "setting to turn LED on"); 6900 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6901 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 6902 "idle time for inactivity LED (ticks)"); 6903 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6904 "txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6905 ath_sysctl_txantenna, "I", "antenna switch"); 6906 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6907 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6908 ath_sysctl_rxantenna, "I", "default/rx antenna"); 6909 if (ath_hal_hasdiversity(ah)) 6910 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6911 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6912 ath_sysctl_diversity, "I", "antenna diversity"); 6913 sc->sc_txintrperiod = ATH_TXINTR_PERIOD; 6914 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6915 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0, 6916 "tx descriptor batching"); 6917 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6918 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6919 ath_sysctl_diag, "I", "h/w diagnostic control"); 6920 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6921 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6922 ath_sysctl_tpscale, "I", "tx power scaling"); 6923 if (ath_hal_hastpc(ah)) { 6924 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6925 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6926 ath_sysctl_tpc, "I", "enable/disable per-packet TPC"); 6927 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6928 "tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6929 ath_sysctl_tpack, "I", "tx power for ack frames"); 6930 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6931 "tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6932 ath_sysctl_tpcts, "I", "tx power for cts frames"); 6933 } 6934 if (ath_hal_hasfastframes(sc->sc_ah)) { 6935 sc->sc_fftxqmin = ATH_FF_TXQMIN; 6936 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6937 "fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0, 6938 "min frames before fast-frame staging"); 6939 sc->sc_fftxqmax = ATH_FF_TXQMAX; 6940 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6941 "fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0, 6942 "max queued frames before tail drop"); 6943 } 6944 if (ath_hal_hasrfsilent(ah)) { 6945 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6946 "rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6947 ath_sysctl_rfsilent, "I", "h/w RF silent config"); 6948 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6949 "rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6950 ath_sysctl_rfkill, "I", "enable/disable RF kill switch"); 6951 } 6952 if (ath_hal_hasintmit(ah)) { 6953 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6954 "intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 6955 ath_sysctl_intmit, "I", "interference mitigation"); 6956 } 6957 sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC; 6958 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6959 "monpass", CTLFLAG_RW, &sc->sc_monpass, 0, 6960 "mask of error frames to pass when monitoring"); 6961 #ifdef ATH_SUPPORT_TDMA 6962 if (ath_hal_macversion(ah) > 0x78) { 6963 sc->sc_tdmadbaprep = 2; 6964 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6965 "dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0, 6966 "TDMA DBA preparation time"); 6967 sc->sc_tdmaswbaprep = 10; 6968 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6969 "swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0, 6970 "TDMA SWBA preparation time"); 6971 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6972 "guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0, 6973 "TDMA slot guard time"); 6974 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6975 "superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0, 6976 "TDMA calculated super frame"); 6977 } 6978 #endif 6979 } 6980 6981 static void 6982 ath_bpfattach(struct ath_softc *sc) 6983 { 6984 struct ifnet *ifp = sc->sc_ifp; 6985 6986 bpfattach(ifp, DLT_IEEE802_11_RADIO, 6987 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th)); 6988 /* 6989 * Initialize constant fields. 6990 * XXX make header lengths a multiple of 32-bits so subsequent 6991 * headers are properly aligned; this is a kludge to keep 6992 * certain applications happy. 6993 * 6994 * NB: the channel is setup each time we transition to the 6995 * RUN state to avoid filling it in for each frame. 6996 */ 6997 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 6998 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 6999 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 7000 7001 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 7002 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 7003 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 7004 } 7005 7006 static int 7007 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, 7008 struct ath_buf *bf, struct mbuf *m0, 7009 const struct ieee80211_bpf_params *params) 7010 { 7011 struct ifnet *ifp = sc->sc_ifp; 7012 struct ieee80211com *ic = ifp->if_l2com; 7013 struct ath_hal *ah = sc->sc_ah; 7014 int error, ismcast, ismrr; 7015 int keyix, hdrlen, pktlen, try0, txantenna; 7016 u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3; 7017 struct ieee80211_frame *wh; 7018 u_int flags, ctsduration; 7019 HAL_PKT_TYPE atype; 7020 const HAL_RATE_TABLE *rt; 7021 struct ath_desc *ds; 7022 u_int pri; 7023 7024 wh = mtod(m0, struct ieee80211_frame *); 7025 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 7026 hdrlen = ieee80211_anyhdrsize(wh); 7027 /* 7028 * Packet length must not include any 7029 * pad bytes; deduct them here. 7030 */ 7031 /* XXX honor IEEE80211_BPF_DATAPAD */ 7032 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; 7033 7034 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 7035 const struct ieee80211_cipher *cip; 7036 struct ieee80211_key *k; 7037 7038 /* 7039 * Construct the 802.11 header+trailer for an encrypted 7040 * frame. The only reason this can fail is because of an 7041 * unknown or unsupported cipher/key type. 7042 */ 7043 k = ieee80211_crypto_encap(ni, m0); 7044 if (k == NULL) { 7045 /* 7046 * This can happen when the key is yanked after the 7047 * frame was queued. Just discard the frame; the 7048 * 802.11 layer counts failures and provides 7049 * debugging/diagnostics. 7050 */ 7051 ath_freetx(m0); 7052 return EIO; 7053 } 7054 /* 7055 * Adjust the packet + header lengths for the crypto 7056 * additions and calculate the h/w key index. When 7057 * a s/w mic is done the frame will have had any mic 7058 * added to it prior to entry so m0->m_pkthdr.len will 7059 * account for it. Otherwise we need to add it to the 7060 * packet length. 7061 */ 7062 cip = k->wk_cipher; 7063 hdrlen += cip->ic_header; 7064 pktlen += cip->ic_header + cip->ic_trailer; 7065 /* NB: frags always have any TKIP MIC done in s/w */ 7066 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0) 7067 pktlen += cip->ic_miclen; 7068 keyix = k->wk_keyix; 7069 7070 /* packet header may have moved, reset our local pointer */ 7071 wh = mtod(m0, struct ieee80211_frame *); 7072 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 7073 /* 7074 * Use station key cache slot, if assigned. 7075 */ 7076 keyix = ni->ni_ucastkey.wk_keyix; 7077 if (keyix == IEEE80211_KEYIX_NONE) 7078 keyix = HAL_TXKEYIX_INVALID; 7079 } else 7080 keyix = HAL_TXKEYIX_INVALID; 7081 7082 error = ath_tx_dmasetup(sc, bf, m0); 7083 if (error != 0) 7084 return error; 7085 m0 = bf->bf_m; /* NB: may have changed */ 7086 wh = mtod(m0, struct ieee80211_frame *); 7087 bf->bf_node = ni; /* NB: held reference */ 7088 7089 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 7090 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 7091 if (params->ibp_flags & IEEE80211_BPF_RTS) 7092 flags |= HAL_TXDESC_RTSENA; 7093 else if (params->ibp_flags & IEEE80211_BPF_CTS) 7094 flags |= HAL_TXDESC_CTSENA; 7095 /* XXX leave ismcast to injector? */ 7096 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) 7097 flags |= HAL_TXDESC_NOACK; 7098 7099 rt = sc->sc_currates; 7100 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 7101 rix = ath_tx_findrix(rt, params->ibp_rate0); 7102 txrate = rt->info[rix].rateCode; 7103 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 7104 txrate |= rt->info[rix].shortPreamble; 7105 sc->sc_txrix = rix; 7106 try0 = params->ibp_try0; 7107 ismrr = (params->ibp_try1 != 0); 7108 txantenna = params->ibp_pri >> 2; 7109 if (txantenna == 0) /* XXX? */ 7110 txantenna = sc->sc_txantenna; 7111 ctsduration = 0; 7112 if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) { 7113 cix = ath_tx_findrix(rt, params->ibp_ctsrate); 7114 ctsrate = rt->info[cix].rateCode; 7115 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) { 7116 ctsrate |= rt->info[cix].shortPreamble; 7117 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 7118 ctsduration += rt->info[cix].spAckDuration; 7119 ctsduration += ath_hal_computetxtime(ah, 7120 rt, pktlen, rix, AH_TRUE); 7121 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 7122 ctsduration += rt->info[rix].spAckDuration; 7123 } else { 7124 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 7125 ctsduration += rt->info[cix].lpAckDuration; 7126 ctsduration += ath_hal_computetxtime(ah, 7127 rt, pktlen, rix, AH_FALSE); 7128 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 7129 ctsduration += rt->info[rix].lpAckDuration; 7130 } 7131 ismrr = 0; /* XXX */ 7132 } else 7133 ctsrate = 0; 7134 pri = params->ibp_pri & 3; 7135 /* 7136 * NB: we mark all packets as type PSPOLL so the h/w won't 7137 * set the sequence number, duration, etc. 7138 */ 7139 atype = HAL_PKT_TYPE_PSPOLL; 7140 7141 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 7142 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, 7143 sc->sc_hwmap[rix].ieeerate, -1); 7144 7145 if (bpf_peers_present(ifp->if_bpf)) { 7146 u_int64_t tsf = ath_hal_gettsf64(ah); 7147 7148 sc->sc_tx_th.wt_tsf = htole64(tsf); 7149 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; 7150 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 7151 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 7152 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; 7153 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 7154 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 7155 7156 bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); 7157 } 7158 7159 /* 7160 * Formulate first tx descriptor with tx controls. 7161 */ 7162 ds = bf->bf_desc; 7163 /* XXX check return value? */ 7164 ath_hal_setuptxdesc(ah, ds 7165 , pktlen /* packet length */ 7166 , hdrlen /* header length */ 7167 , atype /* Atheros packet type */ 7168 , params->ibp_power /* txpower */ 7169 , txrate, try0 /* series 0 rate/tries */ 7170 , keyix /* key cache index */ 7171 , txantenna /* antenna mode */ 7172 , flags /* flags */ 7173 , ctsrate /* rts/cts rate */ 7174 , ctsduration /* rts/cts duration */ 7175 ); 7176 bf->bf_txflags = flags; 7177 7178 if (ismrr) { 7179 rix = ath_tx_findrix(rt, params->ibp_rate1); 7180 rate1 = rt->info[rix].rateCode; 7181 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 7182 rate1 |= rt->info[rix].shortPreamble; 7183 if (params->ibp_try2) { 7184 rix = ath_tx_findrix(rt, params->ibp_rate2); 7185 rate2 = rt->info[rix].rateCode; 7186 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 7187 rate2 |= rt->info[rix].shortPreamble; 7188 } else 7189 rate2 = 0; 7190 if (params->ibp_try3) { 7191 rix = ath_tx_findrix(rt, params->ibp_rate3); 7192 rate3 = rt->info[rix].rateCode; 7193 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) 7194 rate3 |= rt->info[rix].shortPreamble; 7195 } else 7196 rate3 = 0; 7197 ath_hal_setupxtxdesc(ah, ds 7198 , rate1, params->ibp_try1 /* series 1 */ 7199 , rate2, params->ibp_try2 /* series 2 */ 7200 , rate3, params->ibp_try3 /* series 3 */ 7201 ); 7202 } 7203 7204 /* NB: no buffered multicast in power save support */ 7205 ath_tx_handoff(sc, sc->sc_ac2q[pri], bf); 7206 return 0; 7207 } 7208 7209 static int 7210 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 7211 const struct ieee80211_bpf_params *params) 7212 { 7213 struct ieee80211com *ic = ni->ni_ic; 7214 struct ifnet *ifp = ic->ic_ifp; 7215 struct ath_softc *sc = ifp->if_softc; 7216 struct ath_buf *bf; 7217 7218 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) { 7219 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__, 7220 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ? 7221 "!running" : "invalid"); 7222 sc->sc_stats.ast_tx_raw_fail++; 7223 ieee80211_free_node(ni); 7224 m_freem(m); 7225 return ENETDOWN; 7226 } 7227 /* 7228 * Grab a TX buffer and associated resources. 7229 */ 7230 bf = ath_getbuf(sc); 7231 if (bf == NULL) { 7232 /* NB: ath_getbuf handles stat+msg */ 7233 ieee80211_free_node(ni); 7234 m_freem(m); 7235 return ENOBUFS; 7236 } 7237 7238 ifp->if_opackets++; 7239 sc->sc_stats.ast_tx_raw++; 7240 7241 if (params == NULL) { 7242 /* 7243 * Legacy path; interpret frame contents to decide 7244 * precisely how to send the frame. 7245 */ 7246 if (ath_tx_start(sc, ni, bf, m)) 7247 goto bad; 7248 } else { 7249 /* 7250 * Caller supplied explicit parameters to use in 7251 * sending the frame. 7252 */ 7253 if (ath_tx_raw_start(sc, ni, bf, m, params)) 7254 goto bad; 7255 } 7256 ifp->if_timer = 5; 7257 7258 return 0; 7259 bad: 7260 ifp->if_oerrors++; 7261 ATH_TXBUF_LOCK(sc); 7262 STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 7263 ATH_TXBUF_UNLOCK(sc); 7264 ieee80211_free_node(ni); 7265 return EIO; /* XXX */ 7266 } 7267 7268 /* 7269 * Announce various information on device/driver attach. 7270 */ 7271 static void 7272 ath_announce(struct ath_softc *sc) 7273 { 7274 struct ifnet *ifp = sc->sc_ifp; 7275 struct ath_hal *ah = sc->sc_ah; 7276 7277 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 7278 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 7279 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 7280 if (bootverbose) { 7281 int i; 7282 for (i = 0; i <= WME_AC_VO; i++) { 7283 struct ath_txq *txq = sc->sc_ac2q[i]; 7284 if_printf(ifp, "Use hw queue %u for %s traffic\n", 7285 txq->axq_qnum, ieee80211_wme_acnames[i]); 7286 } 7287 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 7288 sc->sc_cabq->axq_qnum); 7289 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 7290 } 7291 if (ath_rxbuf != ATH_RXBUF) 7292 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 7293 if (ath_txbuf != ATH_TXBUF) 7294 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 7295 } 7296 7297 #ifdef ATH_SUPPORT_TDMA 7298 static __inline uint32_t 7299 ath_hal_getnexttbtt(struct ath_hal *ah) 7300 { 7301 #define AR_TIMER0 0x8028 7302 return OS_REG_READ(ah, AR_TIMER0); 7303 } 7304 7305 static __inline void 7306 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta) 7307 { 7308 /* XXX handle wrap/overflow */ 7309 OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta); 7310 } 7311 7312 static void 7313 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 7314 { 7315 struct ath_hal *ah = sc->sc_ah; 7316 HAL_BEACON_TIMERS bt; 7317 7318 bt.bt_intval = bintval | HAL_BEACON_ENA; 7319 bt.bt_nexttbtt = nexttbtt; 7320 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 7321 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 7322 bt.bt_nextatim = nexttbtt+1; 7323 ath_hal_beaconsettimers(ah, &bt); 7324 } 7325 7326 /* 7327 * Calculate the beacon interval. This is periodic in the 7328 * superframe for the bss. We assume each station is configured 7329 * identically wrt transmit rate so the guard time we calculate 7330 * above will be the same on all stations. Note we need to 7331 * factor in the xmit time because the hardware will schedule 7332 * a frame for transmit if the start of the frame is within 7333 * the burst time. When we get hardware that properly kills 7334 * frames in the PCU we can reduce/eliminate the guard time. 7335 * 7336 * Roundup to 1024 is so we have 1 TU buffer in the guard time 7337 * to deal with the granularity of the nexttbtt timer. 11n MAC's 7338 * with 1us timer granularity should allow us to reduce/eliminate 7339 * this. 7340 */ 7341 static void 7342 ath_tdma_bintvalsetup(struct ath_softc *sc, 7343 const struct ieee80211_tdma_state *tdma) 7344 { 7345 /* copy from vap state (XXX check all vaps have same value?) */ 7346 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 7347 sc->sc_tdmabintcnt = tdma->tdma_bintval; 7348 7349 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 7350 tdma->tdma_slotcnt, 1024); 7351 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 7352 if (sc->sc_tdmabintval & 1) 7353 sc->sc_tdmabintval++; 7354 7355 if (tdma->tdma_slot == 0) { 7356 /* 7357 * Only slot 0 beacons; other slots respond. 7358 */ 7359 sc->sc_imask |= HAL_INT_SWBA; 7360 sc->sc_tdmaswba = 0; /* beacon immediately */ 7361 } else { 7362 /* XXX all vaps must be slot 0 or slot !0 */ 7363 sc->sc_imask &= ~HAL_INT_SWBA; 7364 } 7365 } 7366 7367 /* 7368 * Max 802.11 overhead. This assumes no 4-address frames and 7369 * the encapsulation done by ieee80211_encap (llc). We also 7370 * include potential crypto overhead. 7371 */ 7372 #define IEEE80211_MAXOVERHEAD \ 7373 (sizeof(struct ieee80211_qosframe) \ 7374 + sizeof(struct llc) \ 7375 + IEEE80211_ADDR_LEN \ 7376 + IEEE80211_WEP_IVLEN \ 7377 + IEEE80211_WEP_KIDLEN \ 7378 + IEEE80211_WEP_CRCLEN \ 7379 + IEEE80211_WEP_MICLEN \ 7380 + IEEE80211_CRC_LEN) 7381 7382 /* 7383 * Setup initially for tdma operation. Start the beacon 7384 * timers and enable SWBA if we are slot 0. Otherwise 7385 * we wait for slot 0 to arrive so we can sync up before 7386 * starting to transmit. 7387 */ 7388 static void 7389 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 7390 { 7391 struct ath_hal *ah = sc->sc_ah; 7392 struct ifnet *ifp = sc->sc_ifp; 7393 struct ieee80211com *ic = ifp->if_l2com; 7394 const struct ieee80211_txparam *tp; 7395 const struct ieee80211_tdma_state *tdma = NULL; 7396 int rix; 7397 7398 if (vap == NULL) { 7399 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 7400 if (vap == NULL) { 7401 if_printf(ifp, "%s: no vaps?\n", __func__); 7402 return; 7403 } 7404 } 7405 tp = vap->iv_bss->ni_txparms; 7406 /* 7407 * Calculate the guard time for each slot. This is the 7408 * time to send a maximal-size frame according to the 7409 * fixed/lowest transmit rate. Note that the interface 7410 * mtu does not include the 802.11 overhead so we must 7411 * tack that on (ath_hal_computetxtime includes the 7412 * preamble and plcp in it's calculation). 7413 */ 7414 tdma = vap->iv_tdma; 7415 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 7416 rix = ath_tx_findrix(sc->sc_currates, tp->ucastrate); 7417 else 7418 rix = ath_tx_findrix(sc->sc_currates, tp->mcastrate); 7419 /* XXX short preamble assumed */ 7420 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 7421 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 7422 7423 ath_hal_intrset(ah, 0); 7424 7425 ath_beaconq_config(sc); /* setup h/w beacon q */ 7426 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 7427 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 7428 ath_tdma_settimers(sc, sc->sc_tdmabintval, 7429 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 7430 sc->sc_syncbeacon = 0; 7431 7432 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 7433 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 7434 7435 ath_hal_intrset(ah, sc->sc_imask); 7436 7437 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 7438 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 7439 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 7440 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 7441 sc->sc_tdmadbaprep); 7442 } 7443 7444 /* 7445 * Update tdma operation. Called from the 802.11 layer 7446 * when a beacon is received from the TDMA station operating 7447 * in the slot immediately preceding us in the bss. Use 7448 * the rx timestamp for the beacon frame to update our 7449 * beacon timers so we follow their schedule. Note that 7450 * by using the rx timestamp we implicitly include the 7451 * propagation delay in our schedule. 7452 */ 7453 static void 7454 ath_tdma_update(struct ieee80211_node *ni, 7455 const struct ieee80211_tdma_param *tdma) 7456 { 7457 #define TSF_TO_TU(_h,_l) \ 7458 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 7459 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 7460 struct ieee80211vap *vap = ni->ni_vap; 7461 struct ieee80211com *ic = ni->ni_ic; 7462 struct ath_softc *sc = ic->ic_ifp->if_softc; 7463 struct ath_hal *ah = sc->sc_ah; 7464 const HAL_RATE_TABLE *rt = sc->sc_currates; 7465 u_int64_t tsf, rstamp, nextslot; 7466 u_int32_t txtime, nextslottu, timer0; 7467 int32_t tudelta, tsfdelta; 7468 const struct ath_rx_status *rs; 7469 int rix; 7470 7471 sc->sc_stats.ast_tdma_update++; 7472 7473 /* 7474 * Check for and adopt configuration changes. 7475 */ 7476 if (isset(ATH_VAP(vap)->av_boff.bo_flags, IEEE80211_BEACON_TDMA)) { 7477 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 7478 7479 ath_tdma_bintvalsetup(sc, ts); 7480 7481 DPRINTF(sc, ATH_DEBUG_TDMA, 7482 "%s: adopt slot %u slotcnt %u slotlen %u us " 7483 "bintval %u TU\n", __func__, 7484 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 7485 sc->sc_tdmabintval); 7486 7487 ath_beaconq_config(sc); 7488 /* XXX right? */ 7489 ath_hal_intrset(ah, sc->sc_imask); 7490 /* NB: beacon timers programmed below */ 7491 } 7492 7493 /* extend rx timestamp to 64 bits */ 7494 tsf = ath_hal_gettsf64(ah); 7495 rstamp = ath_extend_tsf(ni->ni_rstamp, tsf); 7496 /* 7497 * The rx timestamp is set by the hardware on completing 7498 * reception (at the point where the rx descriptor is DMA'd 7499 * to the host). To find the start of our next slot we 7500 * must adjust this time by the time required to send 7501 * the packet just received. 7502 */ 7503 rs = sc->sc_tdmars; 7504 rix = rt->rateCodeToIndex[rs->rs_rate]; 7505 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 7506 rt->info[rix].shortPreamble); 7507 /* NB: << 9 is to cvt to TU and /2 */ 7508 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 7509 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 7510 7511 /* 7512 * TIMER0 is the h/w's idea of NextTBTT (in TU's). Convert 7513 * to usecs and calculate the difference between what the 7514 * other station thinks and what we have programmed. This 7515 * lets us figure how to adjust our timers to match. The 7516 * adjustments are done by pulling the TSF forward and possibly 7517 * rewriting the beacon timers. 7518 */ 7519 timer0 = ath_hal_getnexttbtt(ah); 7520 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0)); 7521 7522 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 7523 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 7524 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 7525 7526 if (tsfdelta < 0) { 7527 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 7528 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 7529 tsfdelta = -tsfdelta % 1024; 7530 nextslottu++; 7531 } else if (tsfdelta > 0) { 7532 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 7533 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 7534 tsfdelta = 1024 - (tsfdelta % 1024); 7535 nextslottu++; 7536 } else { 7537 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 7538 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 7539 } 7540 tudelta = nextslottu - timer0; 7541 7542 /* 7543 * Copy sender's timetstamp into tdma ie so they can 7544 * calculate roundtrip time. We submit a beacon frame 7545 * below after any timer adjustment. The frame goes out 7546 * at the next TBTT so the sender can calculate the 7547 * roundtrip by inspecting the tdma ie in our beacon frame. 7548 * 7549 * NB: This tstamp is subtlely preserved when 7550 * IEEE80211_BEACON_TDMA is marked (e.g. when the 7551 * slot position changes) because ieee80211_add_tdma 7552 * skips over the data. 7553 */ 7554 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 7555 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 7556 &ni->ni_tstamp.data, 8); 7557 #if 0 7558 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 7559 "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n", 7560 (unsigned long long) tsf, (unsigned long long) nextslot, 7561 (int)(nextslot - tsf), tsfdelta, 7562 nextslottu, timer0, tudelta); 7563 #endif 7564 /* 7565 * Adjust the beacon timers only when pulling them forward 7566 * or when going back by less than the beacon interval. 7567 * Negative jumps larger than the beacon interval seem to 7568 * cause the timers to stop and generally cause instability. 7569 * This basically filters out jumps due to missed beacons. 7570 */ 7571 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 7572 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 7573 sc->sc_stats.ast_tdma_timers++; 7574 } 7575 if (tsfdelta > 0) { 7576 ath_hal_adjusttsf(ah, tsfdelta); 7577 sc->sc_stats.ast_tdma_tsf++; 7578 } 7579 ath_tdma_beacon_send(sc, vap); /* prepare response */ 7580 #undef TU_TO_TSF 7581 #undef TSF_TO_TU 7582 } 7583 7584 /* 7585 * Transmit a beacon frame at SWBA. Dynamic updates 7586 * to the frame contents are done as needed. 7587 */ 7588 static void 7589 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 7590 { 7591 struct ath_hal *ah = sc->sc_ah; 7592 struct ath_buf *bf; 7593 int otherant; 7594 7595 /* 7596 * Check if the previous beacon has gone out. If 7597 * not don't try to post another, skip this period 7598 * and wait for the next. Missed beacons indicate 7599 * a problem and should not occur. If we miss too 7600 * many consecutive beacons reset the device. 7601 */ 7602 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 7603 sc->sc_bmisscount++; 7604 DPRINTF(sc, ATH_DEBUG_BEACON, 7605 "%s: missed %u consecutive beacons\n", 7606 __func__, sc->sc_bmisscount); 7607 if (sc->sc_bmisscount >= ath_bstuck_threshold) 7608 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 7609 return; 7610 } 7611 if (sc->sc_bmisscount != 0) { 7612 DPRINTF(sc, ATH_DEBUG_BEACON, 7613 "%s: resume beacon xmit after %u misses\n", 7614 __func__, sc->sc_bmisscount); 7615 sc->sc_bmisscount = 0; 7616 } 7617 7618 /* 7619 * Check recent per-antenna transmit statistics and flip 7620 * the default antenna if noticeably more frames went out 7621 * on the non-default antenna. 7622 * XXX assumes 2 anntenae 7623 */ 7624 if (!sc->sc_diversity) { 7625 otherant = sc->sc_defant & 1 ? 2 : 1; 7626 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 7627 ath_setdefantenna(sc, otherant); 7628 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 7629 } 7630 7631 bf = ath_beacon_generate(sc, vap); 7632 if (bf != NULL) { 7633 /* 7634 * Stop any current dma and put the new frame on the queue. 7635 * This should never fail since we check above that no frames 7636 * are still pending on the queue. 7637 */ 7638 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 7639 DPRINTF(sc, ATH_DEBUG_ANY, 7640 "%s: beacon queue %u did not stop?\n", 7641 __func__, sc->sc_bhalq); 7642 /* NB: the HAL still stops DMA, so proceed */ 7643 } 7644 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 7645 ath_hal_txstart(ah, sc->sc_bhalq); 7646 7647 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 7648 7649 /* 7650 * Record local TSF for our last send for use 7651 * in arbitrating slot collisions. 7652 */ 7653 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 7654 } 7655 } 7656 #endif /* ATH_SUPPORT_TDMA */ 7657