xref: /freebsd/sys/dev/ath/if_ath.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/priv.h>
60 
61 #include <machine/bus.h>
62 
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_arp.h>
68 #include <net/ethernet.h>
69 #include <net/if_llc.h>
70 
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_regdomain.h>
73 #ifdef ATH_SUPPORT_TDMA
74 #include <net80211/ieee80211_tdma.h>
75 #endif
76 
77 #include <net/bpf.h>
78 
79 #ifdef INET
80 #include <netinet/in.h>
81 #include <netinet/if_ether.h>
82 #endif
83 
84 #include <dev/ath/if_athvar.h>
85 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
86 
87 #ifdef ATH_TX99_DIAG
88 #include <dev/ath/ath_tx99/ath_tx99.h>
89 #endif
90 
91 /*
92  * We require a HAL w/ the changes for split tx/rx MIC.
93  */
94 CTASSERT(HAL_ABI_VERSION > 0x06052200);
95 
96 /*
97  * ATH_BCBUF determines the number of vap's that can transmit
98  * beacons and also (currently) the number of vap's that can
99  * have unique mac addresses/bssid.  When staggering beacons
100  * 4 is probably a good max as otherwise the beacons become
101  * very closely spaced and there is limited time for cab q traffic
102  * to go out.  You can burst beacons instead but that is not good
103  * for stations in power save and at some point you really want
104  * another radio (and channel).
105  *
106  * The limit on the number of mac addresses is tied to our use of
107  * the U/L bit and tracking addresses in a byte; it would be
108  * worthwhile to allow more for applications like proxy sta.
109  */
110 CTASSERT(ATH_BCBUF <= 8);
111 
112 /* unaligned little endian access */
113 #define LE_READ_2(p)							\
114 	((u_int16_t)							\
115 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
116 #define LE_READ_4(p)							\
117 	((u_int32_t)							\
118 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
119 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
120 
121 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
122 		    const char name[IFNAMSIZ], int unit, int opmode,
123 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
124 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
125 static void	ath_vap_delete(struct ieee80211vap *);
126 static void	ath_init(void *);
127 static void	ath_stop_locked(struct ifnet *);
128 static void	ath_stop(struct ifnet *);
129 static void	ath_start(struct ifnet *);
130 static int	ath_reset(struct ifnet *);
131 static int	ath_reset_vap(struct ieee80211vap *, u_long);
132 static int	ath_media_change(struct ifnet *);
133 static void	ath_watchdog(struct ifnet *);
134 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
135 static void	ath_fatal_proc(void *, int);
136 static void	ath_bmiss_vap(struct ieee80211vap *);
137 static void	ath_bmiss_proc(void *, int);
138 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
139 			struct ieee80211_node *);
140 static int	ath_key_alloc(struct ieee80211vap *,
141 			struct ieee80211_key *,
142 			ieee80211_keyix *, ieee80211_keyix *);
143 static int	ath_key_delete(struct ieee80211vap *,
144 			const struct ieee80211_key *);
145 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
146 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void	ath_key_update_begin(struct ieee80211vap *);
148 static void	ath_key_update_end(struct ieee80211vap *);
149 static void	ath_update_mcast(struct ifnet *);
150 static void	ath_update_promisc(struct ifnet *);
151 static void	ath_mode_init(struct ath_softc *);
152 static void	ath_setslottime(struct ath_softc *);
153 static void	ath_updateslot(struct ifnet *);
154 static int	ath_beaconq_setup(struct ath_hal *);
155 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
156 static void	ath_beacon_update(struct ieee80211vap *, int item);
157 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158 static void	ath_beacon_proc(void *, int);
159 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
160 			struct ieee80211vap *);
161 static void	ath_bstuck_proc(void *, int);
162 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
163 static void	ath_beacon_free(struct ath_softc *);
164 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
165 static void	ath_descdma_cleanup(struct ath_softc *sc,
166 			struct ath_descdma *, ath_bufhead *);
167 static int	ath_desc_alloc(struct ath_softc *);
168 static void	ath_desc_free(struct ath_softc *);
169 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
170 			const uint8_t [IEEE80211_ADDR_LEN]);
171 static void	ath_node_free(struct ieee80211_node *);
172 static void	ath_node_getsignal(const struct ieee80211_node *,
173 			int8_t *, int8_t *);
174 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
175 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
176 			int subtype, int rssi, int noise, u_int32_t rstamp);
177 static void	ath_setdefantenna(struct ath_softc *, u_int);
178 static void	ath_rx_proc(void *, int);
179 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
180 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
181 static int	ath_tx_setup(struct ath_softc *, int, int);
182 static int	ath_wme_update(struct ieee80211com *);
183 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
184 static void	ath_tx_cleanup(struct ath_softc *);
185 static void	ath_freetx(struct mbuf *);
186 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
187 			     struct ath_buf *, struct mbuf *);
188 static void	ath_tx_proc_q0(void *, int);
189 static void	ath_tx_proc_q0123(void *, int);
190 static void	ath_tx_proc(void *, int);
191 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
192 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
193 static void	ath_draintxq(struct ath_softc *);
194 static void	ath_stoprecv(struct ath_softc *);
195 static int	ath_startrecv(struct ath_softc *);
196 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
197 static void	ath_scan_start(struct ieee80211com *);
198 static void	ath_scan_end(struct ieee80211com *);
199 static void	ath_set_channel(struct ieee80211com *);
200 static void	ath_calibrate(void *);
201 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
202 static void	ath_setup_stationkey(struct ieee80211_node *);
203 static void	ath_newassoc(struct ieee80211_node *, int);
204 static int	ath_setregdomain(struct ieee80211com *,
205 		    struct ieee80211_regdomain *, int,
206 		    struct ieee80211_channel []);
207 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
208 		    struct ieee80211_channel []);
209 static int	ath_getchannels(struct ath_softc *);
210 static void	ath_led_event(struct ath_softc *, int);
211 
212 static int	ath_rate_setup(struct ath_softc *, u_int mode);
213 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
214 
215 static void	ath_sysctlattach(struct ath_softc *);
216 static int	ath_raw_xmit(struct ieee80211_node *,
217 			struct mbuf *, const struct ieee80211_bpf_params *);
218 static void	ath_bpfattach(struct ath_softc *);
219 static void	ath_announce(struct ath_softc *);
220 
221 #ifdef ATH_SUPPORT_TDMA
222 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
223 		    u_int32_t bintval);
224 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
225 		    const struct ieee80211_tdma_state *tdma);
226 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
227 static void	ath_tdma_update(struct ieee80211_node *ni,
228 		    const struct ieee80211_tdma_param *tdma);
229 static void	ath_tdma_beacon_send(struct ath_softc *sc,
230 		    struct ieee80211vap *vap);
231 
232 static __inline void
233 ath_hal_setcca(struct ath_hal *ah, int ena)
234 {
235 	/*
236 	 * NB: fill me in; this is not provided by default because disabling
237 	 *     CCA in most locales violates regulatory.
238 	 */
239 }
240 
241 static __inline int
242 ath_hal_getcca(struct ath_hal *ah)
243 {
244 	u_int32_t diag;
245 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
246 		return 1;
247 	return ((diag & 0x500000) == 0);
248 }
249 
250 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
251 #define	TDMA_LPF_LEN		6
252 #define	TDMA_DUMMY_MARKER	0x127
253 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
254 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
255 #define	TDMA_LPF(x, y, len) \
256     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
257 #define	TDMA_SAMPLE(x, y) do {					\
258 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
259 } while (0)
260 #define	TDMA_EP_RND(x,mul) \
261 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
262 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
263 #endif /* ATH_SUPPORT_TDMA */
264 
265 SYSCTL_DECL(_hw_ath);
266 
267 /* XXX validate sysctl values */
268 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
269 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
270 	    0, "long chip calibration interval (secs)");
271 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
272 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
273 	    0, "short chip calibration interval (msecs)");
274 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
275 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
276 	    0, "reset chip calibration results (secs)");
277 
278 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
279 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
280 	    0, "rx buffers allocated");
281 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
282 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
283 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
284 	    0, "tx buffers allocated");
285 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
286 
287 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
288 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
289 	    0, "max missed beacon xmits before chip reset");
290 
291 #ifdef ATH_DEBUG
292 enum {
293 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
294 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
295 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
296 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
297 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
298 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
299 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
300 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
301 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
302 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
303 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
304 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
305 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
306 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
307 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
308 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
309 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
310 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
311 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
312 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
313 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
314 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
315 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
316 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
317 	ATH_DEBUG_ANY		= 0xffffffff
318 };
319 static	int ath_debug = 0;
320 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
321 	    0, "control debugging printfs");
322 TUNABLE_INT("hw.ath.debug", &ath_debug);
323 
324 #define	IFF_DUMPPKTS(sc, m) \
325 	((sc->sc_debug & (m)) || \
326 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
327 #define	DPRINTF(sc, m, fmt, ...) do {				\
328 	if (sc->sc_debug & (m))					\
329 		printf(fmt, __VA_ARGS__);			\
330 } while (0)
331 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
332 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
333 		ath_keyprint(sc, __func__, ix, hk, mac);	\
334 } while (0)
335 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
336 	u_int ix, int);
337 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
338 	u_int qnum, u_int ix, int done);
339 #else
340 #define	IFF_DUMPPKTS(sc, m) \
341 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
342 #define	DPRINTF(sc, m, fmt, ...) do {				\
343 	(void) sc;						\
344 } while (0)
345 #define	KEYPRINTF(sc, k, ix, mac) do {				\
346 	(void) sc;						\
347 } while (0)
348 #endif
349 
350 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
351 
352 int
353 ath_attach(u_int16_t devid, struct ath_softc *sc)
354 {
355 	struct ifnet *ifp;
356 	struct ieee80211com *ic;
357 	struct ath_hal *ah = NULL;
358 	HAL_STATUS status;
359 	int error = 0, i;
360 	u_int wmodes;
361 
362 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
363 
364 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
365 	if (ifp == NULL) {
366 		device_printf(sc->sc_dev, "can not if_alloc()\n");
367 		error = ENOSPC;
368 		goto bad;
369 	}
370 	ic = ifp->if_l2com;
371 
372 	/* set these up early for if_printf use */
373 	if_initname(ifp, device_get_name(sc->sc_dev),
374 		device_get_unit(sc->sc_dev));
375 
376 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
377 	if (ah == NULL) {
378 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
379 			status);
380 		error = ENXIO;
381 		goto bad;
382 	}
383 	if (ah->ah_abi != HAL_ABI_VERSION) {
384 		if_printf(ifp, "HAL ABI mismatch detected "
385 			"(HAL:0x%x != driver:0x%x)\n",
386 			ah->ah_abi, HAL_ABI_VERSION);
387 		error = ENXIO;
388 		goto bad;
389 	}
390 	sc->sc_ah = ah;
391 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
392 #ifdef	ATH_DEBUG
393 	sc->sc_debug = ath_debug;
394 #endif
395 
396 	/*
397 	 * Check if the MAC has multi-rate retry support.
398 	 * We do this by trying to setup a fake extended
399 	 * descriptor.  MAC's that don't have support will
400 	 * return false w/o doing anything.  MAC's that do
401 	 * support it will return true w/o doing anything.
402 	 */
403 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
404 
405 	/*
406 	 * Check if the device has hardware counters for PHY
407 	 * errors.  If so we need to enable the MIB interrupt
408 	 * so we can act on stat triggers.
409 	 */
410 	if (ath_hal_hwphycounters(ah))
411 		sc->sc_needmib = 1;
412 
413 	/*
414 	 * Get the hardware key cache size.
415 	 */
416 	sc->sc_keymax = ath_hal_keycachesize(ah);
417 	if (sc->sc_keymax > ATH_KEYMAX) {
418 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
419 			ATH_KEYMAX, sc->sc_keymax);
420 		sc->sc_keymax = ATH_KEYMAX;
421 	}
422 	/*
423 	 * Reset the key cache since some parts do not
424 	 * reset the contents on initial power up.
425 	 */
426 	for (i = 0; i < sc->sc_keymax; i++)
427 		ath_hal_keyreset(ah, i);
428 
429 	/*
430 	 * Collect the default channel list.
431 	 */
432 	error = ath_getchannels(sc);
433 	if (error != 0)
434 		goto bad;
435 
436 	/*
437 	 * Setup rate tables for all potential media types.
438 	 */
439 	ath_rate_setup(sc, IEEE80211_MODE_11A);
440 	ath_rate_setup(sc, IEEE80211_MODE_11B);
441 	ath_rate_setup(sc, IEEE80211_MODE_11G);
442 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
443 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
444 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
445 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
446 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
447 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
448 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
449 
450 	/* NB: setup here so ath_rate_update is happy */
451 	ath_setcurmode(sc, IEEE80211_MODE_11A);
452 
453 	/*
454 	 * Allocate tx+rx descriptors and populate the lists.
455 	 */
456 	error = ath_desc_alloc(sc);
457 	if (error != 0) {
458 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
459 		goto bad;
460 	}
461 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
462 
463 	ATH_TXBUF_LOCK_INIT(sc);
464 
465 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
466 		taskqueue_thread_enqueue, &sc->sc_tq);
467 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
468 		"%s taskq", ifp->if_xname);
469 
470 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
471 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
472 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
473 
474 	/*
475 	 * Allocate hardware transmit queues: one queue for
476 	 * beacon frames and one data queue for each QoS
477 	 * priority.  Note that the hal handles reseting
478 	 * these queues at the needed time.
479 	 *
480 	 * XXX PS-Poll
481 	 */
482 	sc->sc_bhalq = ath_beaconq_setup(ah);
483 	if (sc->sc_bhalq == (u_int) -1) {
484 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
485 		error = EIO;
486 		goto bad2;
487 	}
488 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
489 	if (sc->sc_cabq == NULL) {
490 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
491 		error = EIO;
492 		goto bad2;
493 	}
494 	/* NB: insure BK queue is the lowest priority h/w queue */
495 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
496 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
497 			ieee80211_wme_acnames[WME_AC_BK]);
498 		error = EIO;
499 		goto bad2;
500 	}
501 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
502 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
503 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
504 		/*
505 		 * Not enough hardware tx queues to properly do WME;
506 		 * just punt and assign them all to the same h/w queue.
507 		 * We could do a better job of this if, for example,
508 		 * we allocate queues when we switch from station to
509 		 * AP mode.
510 		 */
511 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
512 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
513 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
514 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
515 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
516 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
517 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
518 	}
519 
520 	/*
521 	 * Special case certain configurations.  Note the
522 	 * CAB queue is handled by these specially so don't
523 	 * include them when checking the txq setup mask.
524 	 */
525 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
526 	case 0x01:
527 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
528 		break;
529 	case 0x0f:
530 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
531 		break;
532 	default:
533 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
534 		break;
535 	}
536 
537 	/*
538 	 * Setup rate control.  Some rate control modules
539 	 * call back to change the anntena state so expose
540 	 * the necessary entry points.
541 	 * XXX maybe belongs in struct ath_ratectrl?
542 	 */
543 	sc->sc_setdefantenna = ath_setdefantenna;
544 	sc->sc_rc = ath_rate_attach(sc);
545 	if (sc->sc_rc == NULL) {
546 		error = EIO;
547 		goto bad2;
548 	}
549 
550 	sc->sc_blinking = 0;
551 	sc->sc_ledstate = 1;
552 	sc->sc_ledon = 0;			/* low true */
553 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
554 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
555 	/*
556 	 * Auto-enable soft led processing for IBM cards and for
557 	 * 5211 minipci cards.  Users can also manually enable/disable
558 	 * support with a sysctl.
559 	 */
560 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
561 	if (sc->sc_softled) {
562 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
563 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
564 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
565 	}
566 
567 	ifp->if_softc = sc;
568 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
569 	ifp->if_start = ath_start;
570 	ifp->if_watchdog = ath_watchdog;
571 	ifp->if_ioctl = ath_ioctl;
572 	ifp->if_init = ath_init;
573 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
574 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
575 	IFQ_SET_READY(&ifp->if_snd);
576 
577 	ic->ic_ifp = ifp;
578 	/* XXX not right but it's not used anywhere important */
579 	ic->ic_phytype = IEEE80211_T_OFDM;
580 	ic->ic_opmode = IEEE80211_M_STA;
581 	ic->ic_caps =
582 		  IEEE80211_C_STA		/* station mode */
583 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
584 		| IEEE80211_C_HOSTAP		/* hostap mode */
585 		| IEEE80211_C_MONITOR		/* monitor mode */
586 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
587 		| IEEE80211_C_WDS		/* 4-address traffic works */
588 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
589 		| IEEE80211_C_SHSLOT		/* short slot time supported */
590 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
591 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
592 		| IEEE80211_C_TXFRAG		/* handle tx frags */
593 		;
594 	/*
595 	 * Query the hal to figure out h/w crypto support.
596 	 */
597 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
598 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
599 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
600 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
601 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
602 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
603 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
604 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
605 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
606 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
607 		/*
608 		 * Check if h/w does the MIC and/or whether the
609 		 * separate key cache entries are required to
610 		 * handle both tx+rx MIC keys.
611 		 */
612 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
613 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
614 		/*
615 		 * If the h/w supports storing tx+rx MIC keys
616 		 * in one cache slot automatically enable use.
617 		 */
618 		if (ath_hal_hastkipsplit(ah) ||
619 		    !ath_hal_settkipsplit(ah, AH_FALSE))
620 			sc->sc_splitmic = 1;
621 		/*
622 		 * If the h/w can do TKIP MIC together with WME then
623 		 * we use it; otherwise we force the MIC to be done
624 		 * in software by the net80211 layer.
625 		 */
626 		if (ath_hal_haswmetkipmic(ah))
627 			sc->sc_wmetkipmic = 1;
628 	}
629 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
630 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
631 	/*
632 	 * Mark key cache slots associated with global keys
633 	 * as in use.  If we knew TKIP was not to be used we
634 	 * could leave the +32, +64, and +32+64 slots free.
635 	 */
636 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
637 		setbit(sc->sc_keymap, i);
638 		setbit(sc->sc_keymap, i+64);
639 		if (sc->sc_splitmic) {
640 			setbit(sc->sc_keymap, i+32);
641 			setbit(sc->sc_keymap, i+32+64);
642 		}
643 	}
644 	/*
645 	 * TPC support can be done either with a global cap or
646 	 * per-packet support.  The latter is not available on
647 	 * all parts.  We're a bit pedantic here as all parts
648 	 * support a global cap.
649 	 */
650 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
651 		ic->ic_caps |= IEEE80211_C_TXPMGT;
652 
653 	/*
654 	 * Mark WME capability only if we have sufficient
655 	 * hardware queues to do proper priority scheduling.
656 	 */
657 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
658 		ic->ic_caps |= IEEE80211_C_WME;
659 	/*
660 	 * Check for misc other capabilities.
661 	 */
662 	if (ath_hal_hasbursting(ah))
663 		ic->ic_caps |= IEEE80211_C_BURST;
664 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
665 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
666 	if (ath_hal_hasfastframes(ah))
667 		ic->ic_caps |= IEEE80211_C_FF;
668 	wmodes = ath_hal_getwirelessmodes(ah);
669 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
670 		ic->ic_caps |= IEEE80211_C_TURBOP;
671 #ifdef ATH_SUPPORT_TDMA
672 	if (ath_hal_macversion(ah) > 0x78) {
673 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
674 		ic->ic_tdma_update = ath_tdma_update;
675 	}
676 #endif
677 	/*
678 	 * Indicate we need the 802.11 header padded to a
679 	 * 32-bit boundary for 4-address and QoS frames.
680 	 */
681 	ic->ic_flags |= IEEE80211_F_DATAPAD;
682 
683 	/*
684 	 * Query the hal about antenna support.
685 	 */
686 	sc->sc_defant = ath_hal_getdefantenna(ah);
687 
688 	/*
689 	 * Not all chips have the VEOL support we want to
690 	 * use with IBSS beacons; check here for it.
691 	 */
692 	sc->sc_hasveol = ath_hal_hasveol(ah);
693 
694 	/* get mac address from hardware */
695 	ath_hal_getmac(ah, ic->ic_myaddr);
696 	if (sc->sc_hasbmask)
697 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
698 
699 	/* NB: used to size node table key mapping array */
700 	ic->ic_max_keyix = sc->sc_keymax;
701 	/* call MI attach routine. */
702 	ieee80211_ifattach(ic);
703 	ic->ic_setregdomain = ath_setregdomain;
704 	ic->ic_getradiocaps = ath_getradiocaps;
705 	sc->sc_opmode = HAL_M_STA;
706 
707 	/* override default methods */
708 	ic->ic_newassoc = ath_newassoc;
709 	ic->ic_updateslot = ath_updateslot;
710 	ic->ic_wme.wme_update = ath_wme_update;
711 	ic->ic_vap_create = ath_vap_create;
712 	ic->ic_vap_delete = ath_vap_delete;
713 	ic->ic_raw_xmit = ath_raw_xmit;
714 	ic->ic_update_mcast = ath_update_mcast;
715 	ic->ic_update_promisc = ath_update_promisc;
716 	ic->ic_node_alloc = ath_node_alloc;
717 	sc->sc_node_free = ic->ic_node_free;
718 	ic->ic_node_free = ath_node_free;
719 	ic->ic_node_getsignal = ath_node_getsignal;
720 	ic->ic_scan_start = ath_scan_start;
721 	ic->ic_scan_end = ath_scan_end;
722 	ic->ic_set_channel = ath_set_channel;
723 
724 	ath_bpfattach(sc);
725 	/*
726 	 * Setup dynamic sysctl's now that country code and
727 	 * regdomain are available from the hal.
728 	 */
729 	ath_sysctlattach(sc);
730 
731 	if (bootverbose)
732 		ieee80211_announce(ic);
733 	ath_announce(sc);
734 	return 0;
735 bad2:
736 	ath_tx_cleanup(sc);
737 	ath_desc_free(sc);
738 bad:
739 	if (ah)
740 		ath_hal_detach(ah);
741 	if (ifp != NULL)
742 		if_free(ifp);
743 	sc->sc_invalid = 1;
744 	return error;
745 }
746 
747 int
748 ath_detach(struct ath_softc *sc)
749 {
750 	struct ifnet *ifp = sc->sc_ifp;
751 
752 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
753 		__func__, ifp->if_flags);
754 
755 	/*
756 	 * NB: the order of these is important:
757 	 * o stop the chip so no more interrupts will fire
758 	 * o call the 802.11 layer before detaching the hal to
759 	 *   insure callbacks into the driver to delete global
760 	 *   key cache entries can be handled
761 	 * o free the taskqueue which drains any pending tasks
762 	 * o reclaim the bpf tap now that we know nothing will use
763 	 *   it (e.g. rx processing from the task q thread)
764 	 * o reclaim the tx queue data structures after calling
765 	 *   the 802.11 layer as we'll get called back to reclaim
766 	 *   node state and potentially want to use them
767 	 * o to cleanup the tx queues the hal is called, so detach
768 	 *   it last
769 	 * Other than that, it's straightforward...
770 	 */
771 	ath_stop(ifp);
772 	ieee80211_ifdetach(ifp->if_l2com);
773 	taskqueue_free(sc->sc_tq);
774 	bpfdetach(ifp);
775 #ifdef ATH_TX99_DIAG
776 	if (sc->sc_tx99 != NULL)
777 		sc->sc_tx99->detach(sc->sc_tx99);
778 #endif
779 	ath_rate_detach(sc->sc_rc);
780 	ath_desc_free(sc);
781 	ath_tx_cleanup(sc);
782 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
783 	if_free(ifp);
784 
785 	return 0;
786 }
787 
788 /*
789  * MAC address handling for multiple BSS on the same radio.
790  * The first vap uses the MAC address from the EEPROM.  For
791  * subsequent vap's we set the U/L bit (bit 1) in the MAC
792  * address and use the next six bits as an index.
793  */
794 static void
795 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
796 {
797 	int i;
798 
799 	if (clone && sc->sc_hasbmask) {
800 		/* NB: we only do this if h/w supports multiple bssid */
801 		for (i = 0; i < 8; i++)
802 			if ((sc->sc_bssidmask & (1<<i)) == 0)
803 				break;
804 		if (i != 0)
805 			mac[0] |= (i << 2)|0x2;
806 	} else
807 		i = 0;
808 	sc->sc_bssidmask |= 1<<i;
809 	sc->sc_hwbssidmask[0] &= ~mac[0];
810 	if (i == 0)
811 		sc->sc_nbssid0++;
812 }
813 
814 static void
815 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
816 {
817 	int i = mac[0] >> 2;
818 	uint8_t mask;
819 
820 	if (i != 0 || --sc->sc_nbssid0 == 0) {
821 		sc->sc_bssidmask &= ~(1<<i);
822 		/* recalculate bssid mask from remaining addresses */
823 		mask = 0xff;
824 		for (i = 1; i < 8; i++)
825 			if (sc->sc_bssidmask & (1<<i))
826 				mask &= ~((i<<2)|0x2);
827 		sc->sc_hwbssidmask[0] |= mask;
828 	}
829 }
830 
831 /*
832  * Assign a beacon xmit slot.  We try to space out
833  * assignments so when beacons are staggered the
834  * traffic coming out of the cab q has maximal time
835  * to go out before the next beacon is scheduled.
836  */
837 static int
838 assign_bslot(struct ath_softc *sc)
839 {
840 	u_int slot, free;
841 
842 	free = 0;
843 	for (slot = 0; slot < ATH_BCBUF; slot++)
844 		if (sc->sc_bslot[slot] == NULL) {
845 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
846 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
847 				return slot;
848 			free = slot;
849 			/* NB: keep looking for a double slot */
850 		}
851 	return free;
852 }
853 
854 static struct ieee80211vap *
855 ath_vap_create(struct ieee80211com *ic,
856 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
857 	const uint8_t bssid[IEEE80211_ADDR_LEN],
858 	const uint8_t mac0[IEEE80211_ADDR_LEN])
859 {
860 	struct ath_softc *sc = ic->ic_ifp->if_softc;
861 	struct ath_vap *avp;
862 	struct ieee80211vap *vap;
863 	uint8_t mac[IEEE80211_ADDR_LEN];
864 	int ic_opmode, needbeacon, error;
865 
866 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
867 	    M_80211_VAP, M_WAITOK | M_ZERO);
868 	needbeacon = 0;
869 	IEEE80211_ADDR_COPY(mac, mac0);
870 
871 	ATH_LOCK(sc);
872 	switch (opmode) {
873 	case IEEE80211_M_STA:
874 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 sta for now */
875 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
876 			goto bad;
877 		}
878 		if (sc->sc_nvaps) {
879 			/*
880 			 * When there are multiple vaps we must fall
881 			 * back to s/w beacon miss handling.
882 			 */
883 			flags |= IEEE80211_CLONE_NOBEACONS;
884 		}
885 		if (flags & IEEE80211_CLONE_NOBEACONS)
886 			ic_opmode = IEEE80211_M_HOSTAP;
887 		else
888 			ic_opmode = opmode;
889 		break;
890 	case IEEE80211_M_IBSS:
891 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
892 			device_printf(sc->sc_dev,
893 			    "only 1 ibss vap supported\n");
894 			goto bad;
895 		}
896 		ic_opmode = opmode;
897 		needbeacon = 1;
898 		break;
899 	case IEEE80211_M_AHDEMO:
900 #ifdef ATH_SUPPORT_TDMA
901 		if (flags & IEEE80211_CLONE_TDMA) {
902 			needbeacon = 1;
903 			flags |= IEEE80211_CLONE_NOBEACONS;
904 		}
905 		/* fall thru... */
906 #endif
907 	case IEEE80211_M_MONITOR:
908 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
909 			/* XXX not right for monitor mode */
910 			ic_opmode = ic->ic_opmode;
911 		} else
912 			ic_opmode = opmode;
913 		break;
914 	case IEEE80211_M_HOSTAP:
915 		needbeacon = 1;
916 		/* fall thru... */
917 	case IEEE80211_M_WDS:
918 		if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
919 			device_printf(sc->sc_dev,
920 			    "wds not supported in sta mode\n");
921 			goto bad;
922 		}
923 		if (opmode == IEEE80211_M_WDS) {
924 			/*
925 			 * Silently remove any request for a unique
926 			 * bssid; WDS vap's always share the local
927 			 * mac address.
928 			 */
929 			flags &= ~IEEE80211_CLONE_BSSID;
930 		}
931 		ic_opmode = IEEE80211_M_HOSTAP;
932 		break;
933 	default:
934 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
935 		goto bad;
936 	}
937 	/*
938 	 * Check that a beacon buffer is available; the code below assumes it.
939 	 */
940 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
941 		device_printf(sc->sc_dev, "no beacon buffer available\n");
942 		goto bad;
943 	}
944 
945 	/* STA, AHDEMO? */
946 	if (opmode == IEEE80211_M_HOSTAP) {
947 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
948 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
949 	}
950 
951 	vap = &avp->av_vap;
952 	/* XXX can't hold mutex across if_alloc */
953 	ATH_UNLOCK(sc);
954 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
955 	    bssid, mac);
956 	ATH_LOCK(sc);
957 	if (error != 0) {
958 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
959 		    __func__, error);
960 		goto bad2;
961 	}
962 
963 	/* h/w crypto support */
964 	vap->iv_key_alloc = ath_key_alloc;
965 	vap->iv_key_delete = ath_key_delete;
966 	vap->iv_key_set = ath_key_set;
967 	vap->iv_key_update_begin = ath_key_update_begin;
968 	vap->iv_key_update_end = ath_key_update_end;
969 
970 	/* override various methods */
971 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
972 	vap->iv_recv_mgmt = ath_recv_mgmt;
973 	vap->iv_reset = ath_reset_vap;
974 	vap->iv_update_beacon = ath_beacon_update;
975 	avp->av_newstate = vap->iv_newstate;
976 	vap->iv_newstate = ath_newstate;
977 	avp->av_bmiss = vap->iv_bmiss;
978 	vap->iv_bmiss = ath_bmiss_vap;
979 
980 	avp->av_bslot = -1;
981 	if (needbeacon) {
982 		/*
983 		 * Allocate beacon state and setup the q for buffered
984 		 * multicast frames.  We know a beacon buffer is
985 		 * available because we checked above.
986 		 */
987 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
988 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
989 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
990 			/*
991 			 * Assign the vap to a beacon xmit slot.  As above
992 			 * this cannot fail to find a free one.
993 			 */
994 			avp->av_bslot = assign_bslot(sc);
995 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
996 			    ("beacon slot %u not empty", avp->av_bslot));
997 			sc->sc_bslot[avp->av_bslot] = vap;
998 			sc->sc_nbcnvaps++;
999 		}
1000 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1001 			/*
1002 			 * Multple vaps are to transmit beacons and we
1003 			 * have h/w support for TSF adjusting; enable
1004 			 * use of staggered beacons.
1005 			 */
1006 			sc->sc_stagbeacons = 1;
1007 		}
1008 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1009 	}
1010 
1011 	ic->ic_opmode = ic_opmode;
1012 	if (opmode != IEEE80211_M_WDS) {
1013 		sc->sc_nvaps++;
1014 		if (opmode == IEEE80211_M_STA)
1015 			sc->sc_nstavaps++;
1016 	}
1017 	switch (ic_opmode) {
1018 	case IEEE80211_M_IBSS:
1019 		sc->sc_opmode = HAL_M_IBSS;
1020 		break;
1021 	case IEEE80211_M_STA:
1022 		sc->sc_opmode = HAL_M_STA;
1023 		break;
1024 	case IEEE80211_M_AHDEMO:
1025 #ifdef ATH_SUPPORT_TDMA
1026 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1027 			sc->sc_tdma = 1;
1028 			/* NB: disable tsf adjust */
1029 			sc->sc_stagbeacons = 0;
1030 		}
1031 		/*
1032 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1033 		 * just ap mode.
1034 		 */
1035 		/* fall thru... */
1036 #endif
1037 	case IEEE80211_M_HOSTAP:
1038 		sc->sc_opmode = HAL_M_HOSTAP;
1039 		break;
1040 	case IEEE80211_M_MONITOR:
1041 		sc->sc_opmode = HAL_M_MONITOR;
1042 		break;
1043 	default:
1044 		/* XXX should not happen */
1045 		break;
1046 	}
1047 	if (sc->sc_hastsfadd) {
1048 		/*
1049 		 * Configure whether or not TSF adjust should be done.
1050 		 */
1051 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1052 	}
1053 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1054 		/*
1055 		 * Enable s/w beacon miss handling.
1056 		 */
1057 		sc->sc_swbmiss = 1;
1058 	}
1059 	ATH_UNLOCK(sc);
1060 
1061 	/* complete setup */
1062 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1063 	return vap;
1064 bad2:
1065 	reclaim_address(sc, mac);
1066 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1067 bad:
1068 	free(avp, M_80211_VAP);
1069 	ATH_UNLOCK(sc);
1070 	return NULL;
1071 }
1072 
1073 static void
1074 ath_vap_delete(struct ieee80211vap *vap)
1075 {
1076 	struct ieee80211com *ic = vap->iv_ic;
1077 	struct ifnet *ifp = ic->ic_ifp;
1078 	struct ath_softc *sc = ifp->if_softc;
1079 	struct ath_hal *ah = sc->sc_ah;
1080 	struct ath_vap *avp = ATH_VAP(vap);
1081 
1082 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1083 		/*
1084 		 * Quiesce the hardware while we remove the vap.  In
1085 		 * particular we need to reclaim all references to
1086 		 * the vap state by any frames pending on the tx queues.
1087 		 */
1088 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1089 		ath_draintxq(sc);		/* stop xmit side */
1090 		ath_stoprecv(sc);		/* stop recv side */
1091 	}
1092 
1093 	ieee80211_vap_detach(vap);
1094 	ATH_LOCK(sc);
1095 	/*
1096 	 * Reclaim beacon state.  Note this must be done before
1097 	 * the vap instance is reclaimed as we may have a reference
1098 	 * to it in the buffer for the beacon frame.
1099 	 */
1100 	if (avp->av_bcbuf != NULL) {
1101 		if (avp->av_bslot != -1) {
1102 			sc->sc_bslot[avp->av_bslot] = NULL;
1103 			sc->sc_nbcnvaps--;
1104 		}
1105 		ath_beacon_return(sc, avp->av_bcbuf);
1106 		avp->av_bcbuf = NULL;
1107 		if (sc->sc_nbcnvaps == 0) {
1108 			sc->sc_stagbeacons = 0;
1109 			if (sc->sc_hastsfadd)
1110 				ath_hal_settsfadjust(sc->sc_ah, 0);
1111 		}
1112 		/*
1113 		 * Reclaim any pending mcast frames for the vap.
1114 		 */
1115 		ath_tx_draintxq(sc, &avp->av_mcastq);
1116 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1117 	}
1118 	/*
1119 	 * Update bookkeeping.
1120 	 */
1121 	if (vap->iv_opmode == IEEE80211_M_STA) {
1122 		sc->sc_nstavaps--;
1123 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1124 			sc->sc_swbmiss = 0;
1125 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1126 		reclaim_address(sc, vap->iv_myaddr);
1127 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1128 	}
1129 	if (vap->iv_opmode != IEEE80211_M_WDS)
1130 		sc->sc_nvaps--;
1131 #ifdef ATH_SUPPORT_TDMA
1132 	/* TDMA operation ceases when the last vap is destroyed */
1133 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1134 		sc->sc_tdma = 0;
1135 		sc->sc_swbmiss = 0;
1136 	}
1137 #endif
1138 	ATH_UNLOCK(sc);
1139 	free(avp, M_80211_VAP);
1140 
1141 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1142 		/*
1143 		 * Restart rx+tx machines if still running (RUNNING will
1144 		 * be reset if we just destroyed the last vap).
1145 		 */
1146 		if (ath_startrecv(sc) != 0)
1147 			if_printf(ifp, "%s: unable to restart recv logic\n",
1148 			    __func__);
1149 		if (sc->sc_beacons)
1150 			ath_beacon_config(sc, NULL);
1151 		ath_hal_intrset(ah, sc->sc_imask);
1152 	}
1153 }
1154 
1155 void
1156 ath_suspend(struct ath_softc *sc)
1157 {
1158 	struct ifnet *ifp = sc->sc_ifp;
1159 	struct ieee80211com *ic = ifp->if_l2com;
1160 
1161 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1162 		__func__, ifp->if_flags);
1163 
1164 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1165 	if (ic->ic_opmode == IEEE80211_M_STA)
1166 		ath_stop(ifp);
1167 	else
1168 		ieee80211_suspend_all(ic);
1169 	/*
1170 	 * NB: don't worry about putting the chip in low power
1171 	 * mode; pci will power off our socket on suspend and
1172 	 * cardbus detaches the device.
1173 	 */
1174 }
1175 
1176 /*
1177  * Reset the key cache since some parts do not reset the
1178  * contents on resume.  First we clear all entries, then
1179  * re-load keys that the 802.11 layer assumes are setup
1180  * in h/w.
1181  */
1182 static void
1183 ath_reset_keycache(struct ath_softc *sc)
1184 {
1185 	struct ifnet *ifp = sc->sc_ifp;
1186 	struct ieee80211com *ic = ifp->if_l2com;
1187 	struct ath_hal *ah = sc->sc_ah;
1188 	int i;
1189 
1190 	for (i = 0; i < sc->sc_keymax; i++)
1191 		ath_hal_keyreset(ah, i);
1192 	ieee80211_crypto_reload_keys(ic);
1193 }
1194 
1195 void
1196 ath_resume(struct ath_softc *sc)
1197 {
1198 	struct ifnet *ifp = sc->sc_ifp;
1199 	struct ieee80211com *ic = ifp->if_l2com;
1200 	struct ath_hal *ah = sc->sc_ah;
1201 	HAL_STATUS status;
1202 
1203 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1204 		__func__, ifp->if_flags);
1205 
1206 	/*
1207 	 * Must reset the chip before we reload the
1208 	 * keycache as we were powered down on suspend.
1209 	 */
1210 	ath_hal_reset(ah, sc->sc_opmode,
1211 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1212 	    AH_FALSE, &status);
1213 	ath_reset_keycache(sc);
1214 	if (sc->sc_resume_up) {
1215 		if (ic->ic_opmode == IEEE80211_M_STA) {
1216 			ath_init(sc);
1217 			ieee80211_beacon_miss(ic);
1218 		} else
1219 			ieee80211_resume_all(ic);
1220 	}
1221 	if (sc->sc_softled) {
1222 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1223 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1224 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1225 	}
1226 }
1227 
1228 void
1229 ath_shutdown(struct ath_softc *sc)
1230 {
1231 	struct ifnet *ifp = sc->sc_ifp;
1232 
1233 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1234 		__func__, ifp->if_flags);
1235 
1236 	ath_stop(ifp);
1237 	/* NB: no point powering down chip as we're about to reboot */
1238 }
1239 
1240 /*
1241  * Interrupt handler.  Most of the actual processing is deferred.
1242  */
1243 void
1244 ath_intr(void *arg)
1245 {
1246 	struct ath_softc *sc = arg;
1247 	struct ifnet *ifp = sc->sc_ifp;
1248 	struct ath_hal *ah = sc->sc_ah;
1249 	HAL_INT status;
1250 
1251 	if (sc->sc_invalid) {
1252 		/*
1253 		 * The hardware is not ready/present, don't touch anything.
1254 		 * Note this can happen early on if the IRQ is shared.
1255 		 */
1256 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1257 		return;
1258 	}
1259 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1260 		return;
1261 	if ((ifp->if_flags & IFF_UP) == 0 ||
1262 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1263 		HAL_INT status;
1264 
1265 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1266 			__func__, ifp->if_flags);
1267 		ath_hal_getisr(ah, &status);	/* clear ISR */
1268 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1269 		return;
1270 	}
1271 	/*
1272 	 * Figure out the reason(s) for the interrupt.  Note
1273 	 * that the hal returns a pseudo-ISR that may include
1274 	 * bits we haven't explicitly enabled so we mask the
1275 	 * value to insure we only process bits we requested.
1276 	 */
1277 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1278 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1279 	status &= sc->sc_imask;			/* discard unasked for bits */
1280 	if (status & HAL_INT_FATAL) {
1281 		sc->sc_stats.ast_hardware++;
1282 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1283 		ath_fatal_proc(sc, 0);
1284 	} else {
1285 		if (status & HAL_INT_SWBA) {
1286 			/*
1287 			 * Software beacon alert--time to send a beacon.
1288 			 * Handle beacon transmission directly; deferring
1289 			 * this is too slow to meet timing constraints
1290 			 * under load.
1291 			 */
1292 #ifdef ATH_SUPPORT_TDMA
1293 			if (sc->sc_tdma) {
1294 				if (sc->sc_tdmaswba == 0) {
1295 					struct ieee80211com *ic = ifp->if_l2com;
1296 					struct ieee80211vap *vap =
1297 					    TAILQ_FIRST(&ic->ic_vaps);
1298 					ath_tdma_beacon_send(sc, vap);
1299 					sc->sc_tdmaswba =
1300 					    vap->iv_tdma->tdma_bintval;
1301 				} else
1302 					sc->sc_tdmaswba--;
1303 			} else
1304 #endif
1305 				ath_beacon_proc(sc, 0);
1306 		}
1307 		if (status & HAL_INT_RXEOL) {
1308 			/*
1309 			 * NB: the hardware should re-read the link when
1310 			 *     RXE bit is written, but it doesn't work at
1311 			 *     least on older hardware revs.
1312 			 */
1313 			sc->sc_stats.ast_rxeol++;
1314 			sc->sc_rxlink = NULL;
1315 		}
1316 		if (status & HAL_INT_TXURN) {
1317 			sc->sc_stats.ast_txurn++;
1318 			/* bump tx trigger level */
1319 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1320 		}
1321 		if (status & HAL_INT_RX)
1322 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1323 		if (status & HAL_INT_TX)
1324 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1325 		if (status & HAL_INT_BMISS) {
1326 			sc->sc_stats.ast_bmiss++;
1327 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1328 		}
1329 		if (status & HAL_INT_MIB) {
1330 			sc->sc_stats.ast_mib++;
1331 			/*
1332 			 * Disable interrupts until we service the MIB
1333 			 * interrupt; otherwise it will continue to fire.
1334 			 */
1335 			ath_hal_intrset(ah, 0);
1336 			/*
1337 			 * Let the hal handle the event.  We assume it will
1338 			 * clear whatever condition caused the interrupt.
1339 			 */
1340 			ath_hal_mibevent(ah, &sc->sc_halstats);
1341 			ath_hal_intrset(ah, sc->sc_imask);
1342 		}
1343 		if (status & HAL_INT_RXORN) {
1344 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1345 			sc->sc_stats.ast_rxorn++;
1346 		}
1347 	}
1348 }
1349 
1350 static void
1351 ath_fatal_proc(void *arg, int pending)
1352 {
1353 	struct ath_softc *sc = arg;
1354 	struct ifnet *ifp = sc->sc_ifp;
1355 	u_int32_t *state;
1356 	u_int32_t len;
1357 	void *sp;
1358 
1359 	if_printf(ifp, "hardware error; resetting\n");
1360 	/*
1361 	 * Fatal errors are unrecoverable.  Typically these
1362 	 * are caused by DMA errors.  Collect h/w state from
1363 	 * the hal so we can diagnose what's going on.
1364 	 */
1365 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1366 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1367 		state = sp;
1368 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1369 		    state[0], state[1] , state[2], state[3],
1370 		    state[4], state[5]);
1371 	}
1372 	ath_reset(ifp);
1373 }
1374 
1375 static void
1376 ath_bmiss_vap(struct ieee80211vap *vap)
1377 {
1378 	/*
1379 	 * Workaround phantom bmiss interrupts by sanity-checking
1380 	 * the time of our last rx'd frame.  If it is within the
1381 	 * beacon miss interval then ignore the interrupt.  If it's
1382 	 * truly a bmiss we'll get another interrupt soon and that'll
1383 	 * be dispatched up for processing.  Note this applies only
1384 	 * for h/w beacon miss events.
1385 	 */
1386 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1387 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1388 		struct ath_softc *sc = ifp->if_softc;
1389 		u_int64_t lastrx = sc->sc_lastrx;
1390 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1391 		u_int bmisstimeout =
1392 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1393 
1394 		DPRINTF(sc, ATH_DEBUG_BEACON,
1395 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1396 		    __func__, (unsigned long long) tsf,
1397 		    (unsigned long long)(tsf - lastrx),
1398 		    (unsigned long long) lastrx, bmisstimeout);
1399 
1400 		if (tsf - lastrx <= bmisstimeout) {
1401 			sc->sc_stats.ast_bmiss_phantom++;
1402 			return;
1403 		}
1404 	}
1405 	ATH_VAP(vap)->av_bmiss(vap);
1406 }
1407 
1408 static int
1409 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1410 {
1411 	uint32_t rsize;
1412 	void *sp;
1413 
1414 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(&mask), &sp, &rsize))
1415 		return 0;
1416 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1417 	*hangs = *(uint32_t *)sp;
1418 	return 1;
1419 }
1420 
1421 static void
1422 ath_bmiss_proc(void *arg, int pending)
1423 {
1424 	struct ath_softc *sc = arg;
1425 	struct ifnet *ifp = sc->sc_ifp;
1426 	uint32_t hangs;
1427 
1428 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1429 
1430 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1431 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1432 		ath_reset(ifp);
1433 	} else
1434 		ieee80211_beacon_miss(ifp->if_l2com);
1435 }
1436 
1437 /*
1438  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1439  * calcs together with WME.  If necessary disable the crypto
1440  * hardware and mark the 802.11 state so keys will be setup
1441  * with the MIC work done in software.
1442  */
1443 static void
1444 ath_settkipmic(struct ath_softc *sc)
1445 {
1446 	struct ifnet *ifp = sc->sc_ifp;
1447 	struct ieee80211com *ic = ifp->if_l2com;
1448 
1449 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1450 		if (ic->ic_flags & IEEE80211_F_WME) {
1451 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1452 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1453 		} else {
1454 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1455 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1456 		}
1457 	}
1458 }
1459 
1460 static void
1461 ath_init(void *arg)
1462 {
1463 	struct ath_softc *sc = (struct ath_softc *) arg;
1464 	struct ifnet *ifp = sc->sc_ifp;
1465 	struct ieee80211com *ic = ifp->if_l2com;
1466 	struct ath_hal *ah = sc->sc_ah;
1467 	HAL_STATUS status;
1468 
1469 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1470 		__func__, ifp->if_flags);
1471 
1472 	ATH_LOCK(sc);
1473 	/*
1474 	 * Stop anything previously setup.  This is safe
1475 	 * whether this is the first time through or not.
1476 	 */
1477 	ath_stop_locked(ifp);
1478 
1479 	/*
1480 	 * The basic interface to setting the hardware in a good
1481 	 * state is ``reset''.  On return the hardware is known to
1482 	 * be powered up and with interrupts disabled.  This must
1483 	 * be followed by initialization of the appropriate bits
1484 	 * and then setup of the interrupt mask.
1485 	 */
1486 	ath_settkipmic(sc);
1487 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1488 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1489 			status);
1490 		ATH_UNLOCK(sc);
1491 		return;
1492 	}
1493 	ath_chan_change(sc, ic->ic_curchan);
1494 
1495 	/*
1496 	 * Likewise this is set during reset so update
1497 	 * state cached in the driver.
1498 	 */
1499 	sc->sc_diversity = ath_hal_getdiversity(ah);
1500 	sc->sc_lastlongcal = 0;
1501 	sc->sc_resetcal = 1;
1502 	sc->sc_lastcalreset = 0;
1503 
1504 	/*
1505 	 * Setup the hardware after reset: the key cache
1506 	 * is filled as needed and the receive engine is
1507 	 * set going.  Frame transmit is handled entirely
1508 	 * in the frame output path; there's nothing to do
1509 	 * here except setup the interrupt mask.
1510 	 */
1511 	if (ath_startrecv(sc) != 0) {
1512 		if_printf(ifp, "unable to start recv logic\n");
1513 		ATH_UNLOCK(sc);
1514 		return;
1515 	}
1516 
1517 	/*
1518 	 * Enable interrupts.
1519 	 */
1520 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1521 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1522 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1523 	/*
1524 	 * Enable MIB interrupts when there are hardware phy counters.
1525 	 * Note we only do this (at the moment) for station mode.
1526 	 */
1527 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1528 		sc->sc_imask |= HAL_INT_MIB;
1529 
1530 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1531 	ath_hal_intrset(ah, sc->sc_imask);
1532 
1533 	ATH_UNLOCK(sc);
1534 
1535 #ifdef ATH_TX99_DIAG
1536 	if (sc->sc_tx99 != NULL)
1537 		sc->sc_tx99->start(sc->sc_tx99);
1538 	else
1539 #endif
1540 	ieee80211_start_all(ic);		/* start all vap's */
1541 }
1542 
1543 static void
1544 ath_stop_locked(struct ifnet *ifp)
1545 {
1546 	struct ath_softc *sc = ifp->if_softc;
1547 	struct ath_hal *ah = sc->sc_ah;
1548 
1549 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1550 		__func__, sc->sc_invalid, ifp->if_flags);
1551 
1552 	ATH_LOCK_ASSERT(sc);
1553 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1554 		/*
1555 		 * Shutdown the hardware and driver:
1556 		 *    reset 802.11 state machine
1557 		 *    turn off timers
1558 		 *    disable interrupts
1559 		 *    turn off the radio
1560 		 *    clear transmit machinery
1561 		 *    clear receive machinery
1562 		 *    drain and release tx queues
1563 		 *    reclaim beacon resources
1564 		 *    power down hardware
1565 		 *
1566 		 * Note that some of this work is not possible if the
1567 		 * hardware is gone (invalid).
1568 		 */
1569 #ifdef ATH_TX99_DIAG
1570 		if (sc->sc_tx99 != NULL)
1571 			sc->sc_tx99->stop(sc->sc_tx99);
1572 #endif
1573 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1574 		ifp->if_timer = 0;
1575 		if (!sc->sc_invalid) {
1576 			if (sc->sc_softled) {
1577 				callout_stop(&sc->sc_ledtimer);
1578 				ath_hal_gpioset(ah, sc->sc_ledpin,
1579 					!sc->sc_ledon);
1580 				sc->sc_blinking = 0;
1581 			}
1582 			ath_hal_intrset(ah, 0);
1583 		}
1584 		ath_draintxq(sc);
1585 		if (!sc->sc_invalid) {
1586 			ath_stoprecv(sc);
1587 			ath_hal_phydisable(ah);
1588 		} else
1589 			sc->sc_rxlink = NULL;
1590 		ath_beacon_free(sc);	/* XXX not needed */
1591 	}
1592 }
1593 
1594 static void
1595 ath_stop(struct ifnet *ifp)
1596 {
1597 	struct ath_softc *sc = ifp->if_softc;
1598 
1599 	ATH_LOCK(sc);
1600 	ath_stop_locked(ifp);
1601 	ATH_UNLOCK(sc);
1602 }
1603 
1604 /*
1605  * Reset the hardware w/o losing operational state.  This is
1606  * basically a more efficient way of doing ath_stop, ath_init,
1607  * followed by state transitions to the current 802.11
1608  * operational state.  Used to recover from various errors and
1609  * to reset or reload hardware state.
1610  */
1611 static int
1612 ath_reset(struct ifnet *ifp)
1613 {
1614 	struct ath_softc *sc = ifp->if_softc;
1615 	struct ieee80211com *ic = ifp->if_l2com;
1616 	struct ath_hal *ah = sc->sc_ah;
1617 	HAL_STATUS status;
1618 
1619 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1620 	ath_draintxq(sc);		/* stop xmit side */
1621 	ath_stoprecv(sc);		/* stop recv side */
1622 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1623 	/* NB: indicate channel change so we do a full reset */
1624 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1625 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1626 			__func__, status);
1627 	sc->sc_diversity = ath_hal_getdiversity(ah);
1628 	if (ath_startrecv(sc) != 0)	/* restart recv */
1629 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1630 	/*
1631 	 * We may be doing a reset in response to an ioctl
1632 	 * that changes the channel so update any state that
1633 	 * might change as a result.
1634 	 */
1635 	ath_chan_change(sc, ic->ic_curchan);
1636 	if (sc->sc_beacons) {
1637 #ifdef ATH_SUPPORT_TDMA
1638 		if (sc->sc_tdma)
1639 			ath_tdma_config(sc, NULL);
1640 		else
1641 #endif
1642 			ath_beacon_config(sc, NULL);	/* restart beacons */
1643 	}
1644 	ath_hal_intrset(ah, sc->sc_imask);
1645 
1646 	ath_start(ifp);			/* restart xmit */
1647 	return 0;
1648 }
1649 
1650 static int
1651 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1652 {
1653 	struct ieee80211com *ic = vap->iv_ic;
1654 	struct ifnet *ifp = ic->ic_ifp;
1655 	struct ath_softc *sc = ifp->if_softc;
1656 	struct ath_hal *ah = sc->sc_ah;
1657 
1658 	switch (cmd) {
1659 	case IEEE80211_IOC_TXPOWER:
1660 		/*
1661 		 * If per-packet TPC is enabled, then we have nothing
1662 		 * to do; otherwise we need to force the global limit.
1663 		 * All this can happen directly; no need to reset.
1664 		 */
1665 		if (!ath_hal_gettpc(ah))
1666 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1667 		return 0;
1668 	}
1669 	return ath_reset(ifp);
1670 }
1671 
1672 static int
1673 ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1674 {
1675 	return 0;
1676 }
1677 
1678 #if 0
1679 static int
1680 ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1681 {
1682 	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1683 }
1684 #endif
1685 
1686 /*
1687  * Flush FF staging queue.
1688  */
1689 static void
1690 ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1691 	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1692 {
1693 	struct ath_buf *bf;
1694 	struct ieee80211_node *ni;
1695 	int pktlen, pri;
1696 
1697 	for (;;) {
1698 		ATH_TXQ_LOCK(txq);
1699 		/*
1700 		 * Go from the back (oldest) to front so we can
1701 		 * stop early based on the age of the entry.
1702 		 */
1703 		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1704 		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1705 			ATH_TXQ_UNLOCK(txq);
1706 			break;
1707 		}
1708 
1709 		ni = bf->bf_node;
1710 		pri = M_WME_GETAC(bf->bf_m);
1711 		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1712 			("no bf on staging queue %p", bf));
1713 		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1714 		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1715 
1716 		ATH_TXQ_UNLOCK(txq);
1717 
1718 		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1719 			__func__, bf->bf_age);
1720 
1721 		sc->sc_stats.ast_ff_flush++;
1722 
1723 		/* encap and xmit */
1724 		bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1725 		if (bf->bf_m == NULL) {
1726 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1727 				"%s: discard, encapsulation failure\n",
1728 				__func__);
1729 			sc->sc_stats.ast_tx_encap++;
1730 			goto bad;
1731 		}
1732 		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1733 		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1734 #if 0 /*XXX*/
1735 			ifp->if_opackets++;
1736 #endif
1737 			continue;
1738 		}
1739 	bad:
1740 		if (ni != NULL)
1741 			ieee80211_free_node(ni);
1742 		bf->bf_node = NULL;
1743 		if (bf->bf_m != NULL) {
1744 			m_freem(bf->bf_m);
1745 			bf->bf_m = NULL;
1746 		}
1747 
1748 		ATH_TXBUF_LOCK(sc);
1749 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1750 		ATH_TXBUF_UNLOCK(sc);
1751 	}
1752 }
1753 
1754 static __inline u_int32_t
1755 ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1756 {
1757 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1758 	u_int32_t framelen;
1759 	struct ath_buf *bf;
1760 
1761 	/*
1762 	 * Approximate the frame length to be transmitted. A swag to add
1763 	 * the following maximal values to the skb payload:
1764 	 *   - 32: 802.11 encap + CRC
1765 	 *   - 24: encryption overhead (if wep bit)
1766 	 *   - 4 + 6: fast-frame header and padding
1767 	 *   - 16: 2 LLC FF tunnel headers
1768 	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1769 	 */
1770 	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1771 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1772 		framelen += 24;
1773 	bf = an->an_ff_buf[M_WME_GETAC(m)];
1774 	if (bf != NULL)
1775 		framelen += bf->bf_m->m_pkthdr.len;
1776 	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1777 			sc->sc_lastdatarix, AH_FALSE);
1778 }
1779 
1780 /*
1781  * Determine if a data frame may be aggregated via ff tunnelling.
1782  * Note the caller is responsible for checking if the destination
1783  * supports fast frames.
1784  *
1785  *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1786  *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1787  *      be aggregated with other types of frames when encryption is on?
1788  *
1789  *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1790  */
1791 static __inline int
1792 ath_ff_can_aggregate(struct ath_softc *sc,
1793 	struct ath_node *an, struct mbuf *m, int *flushq)
1794 {
1795 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1796 	struct ath_txq *txq;
1797 	u_int32_t txoplimit;
1798 	u_int pri;
1799 
1800 	*flushq = 0;
1801 
1802 	/*
1803 	 * If there is no frame to combine with and the txq has
1804 	 * fewer frames than the minimum required; then do not
1805 	 * attempt to aggregate this frame.
1806 	 */
1807 	pri = M_WME_GETAC(m);
1808 	txq = sc->sc_ac2q[pri];
1809 	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1810 		return 0;
1811 	/*
1812 	 * When not in station mode never aggregate a multicast
1813 	 * frame; this insures, for example, that a combined frame
1814 	 * does not require multiple encryption keys when using
1815 	 * 802.1x/WPA.
1816 	 */
1817 	if (ic->ic_opmode != IEEE80211_M_STA &&
1818 	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1819 		return 0;
1820 	/*
1821 	 * Consult the max bursting interval to insure a combined
1822 	 * frame fits within the TxOp window.
1823 	 */
1824 	txoplimit = IEEE80211_TXOP_TO_US(
1825 		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1826 	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1827 		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1828 			"%s: FF TxOp violation\n", __func__);
1829 		if (an->an_ff_buf[pri] != NULL)
1830 			*flushq = 1;
1831 		return 0;
1832 	}
1833 	return 1;		/* try to aggregate */
1834 }
1835 
1836 /*
1837  * Check if the supplied frame can be partnered with an existing
1838  * or pending frame.  Return a reference to any frame that should be
1839  * sent on return; otherwise return NULL.
1840  */
1841 static struct mbuf *
1842 ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1843 	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1844 {
1845 	struct ath_node *an = ATH_NODE(ni);
1846 	struct ath_buf *bfstaged;
1847 	int ff_flush, pri;
1848 
1849 	/*
1850 	 * Check if the supplied frame can be aggregated.
1851 	 *
1852 	 * NB: we use the txq lock to protect references to
1853 	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1854 	 */
1855 	ATH_TXQ_LOCK(txq);
1856 	pri = M_WME_GETAC(m);
1857 	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1858 		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1859 		if (bfstaged != NULL) {
1860 			/*
1861 			 * A frame is available for partnering; remove
1862 			 * it, chain it to this one, and encapsulate.
1863 			 */
1864 			an->an_ff_buf[pri] = NULL;
1865 			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1866 			ATH_TXQ_UNLOCK(txq);
1867 
1868 			/*
1869 			 * Chain mbufs and add FF magic.
1870 			 */
1871 			DPRINTF(sc, ATH_DEBUG_FF,
1872 				"[%s] aggregate fast-frame, age %u\n",
1873 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1874 			m->m_nextpkt = NULL;
1875 			bfstaged->bf_m->m_nextpkt = m;
1876 			m = bfstaged->bf_m;
1877 			bfstaged->bf_m = NULL;
1878 			m->m_flags |= M_FF;
1879 			/*
1880 			 * Release the node reference held while
1881 			 * the packet sat on an_ff_buf[]
1882 			 */
1883 			bfstaged->bf_node = NULL;
1884 			ieee80211_free_node(ni);
1885 
1886 			/*
1887 			 * Return bfstaged to the free list.
1888 			 */
1889 			ATH_TXBUF_LOCK(sc);
1890 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1891 			ATH_TXBUF_UNLOCK(sc);
1892 
1893 			return m;		/* ready to go */
1894 		} else {
1895 			/*
1896 			 * No frame available, queue this frame to wait
1897 			 * for a partner.  Note that we hold the buffer
1898 			 * and a reference to the node; we need the
1899 			 * buffer in particular so we're certain we
1900 			 * can flush the frame at a later time.
1901 			 */
1902 			DPRINTF(sc, ATH_DEBUG_FF,
1903 				"[%s] stage fast-frame, age %u\n",
1904 				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1905 
1906 			bf->bf_m = m;
1907 			bf->bf_node = ni;	/* NB: held reference */
1908 			bf->bf_age = txq->axq_curage;
1909 			an->an_ff_buf[pri] = bf;
1910 			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1911 			ATH_TXQ_UNLOCK(txq);
1912 
1913 			return NULL;		/* consumed */
1914 		}
1915 	}
1916 	/*
1917 	 * Frame could not be aggregated, it needs to be returned
1918 	 * to the caller for immediate transmission.  In addition
1919 	 * we check if we should first flush a frame from the
1920 	 * staging queue before sending this one.
1921 	 *
1922 	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1923 	 *     is present to flush.
1924 	 */
1925 	if (ff_flush) {
1926 		int pktlen;
1927 
1928 		bfstaged = an->an_ff_buf[pri];
1929 		an->an_ff_buf[pri] = NULL;
1930 		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1931 		ATH_TXQ_UNLOCK(txq);
1932 
1933 		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1934 			ether_sprintf(an->an_node.ni_macaddr));
1935 
1936 		/* encap and xmit */
1937 		bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1938 		if (bfstaged->bf_m == NULL) {
1939 			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1940 				"%s: discard, encap failure\n", __func__);
1941 			sc->sc_stats.ast_tx_encap++;
1942 			goto ff_flushbad;
1943 		}
1944 		pktlen = bfstaged->bf_m->m_pkthdr.len;
1945 		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1946 			DPRINTF(sc, ATH_DEBUG_XMIT,
1947 				"%s: discard, xmit failure\n", __func__);
1948 	ff_flushbad:
1949 			/*
1950 			 * Unable to transmit frame that was on the staging
1951 			 * queue.  Reclaim the node reference and other
1952 			 * resources.
1953 			 */
1954 			if (ni != NULL)
1955 				ieee80211_free_node(ni);
1956 			bfstaged->bf_node = NULL;
1957 			if (bfstaged->bf_m != NULL) {
1958 				m_freem(bfstaged->bf_m);
1959 				bfstaged->bf_m = NULL;
1960 			}
1961 
1962 			ATH_TXBUF_LOCK(sc);
1963 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1964 			ATH_TXBUF_UNLOCK(sc);
1965 		} else {
1966 #if 0
1967 			ifp->if_opackets++;
1968 #endif
1969 		}
1970 	} else {
1971 		if (an->an_ff_buf[pri] != NULL) {
1972 			/*
1973 			 * XXX: out-of-order condition only occurs for AP
1974 			 * mode and multicast.  There may be no valid way
1975 			 * to get this condition.
1976 			 */
1977 			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1978 				ether_sprintf(an->an_node.ni_macaddr));
1979 			/* XXX stat */
1980 		}
1981 		ATH_TXQ_UNLOCK(txq);
1982 	}
1983 	return m;
1984 }
1985 
1986 static struct ath_buf *
1987 _ath_getbuf_locked(struct ath_softc *sc)
1988 {
1989 	struct ath_buf *bf;
1990 
1991 	ATH_TXBUF_LOCK_ASSERT(sc);
1992 
1993 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1994 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1995 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1996 	else
1997 		bf = NULL;
1998 	if (bf == NULL) {
1999 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2000 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2001 			"out of xmit buffers" : "xmit buffer busy");
2002 		sc->sc_stats.ast_tx_nobuf++;
2003 	}
2004 	return bf;
2005 }
2006 
2007 static struct ath_buf *
2008 ath_getbuf(struct ath_softc *sc)
2009 {
2010 	struct ath_buf *bf;
2011 
2012 	ATH_TXBUF_LOCK(sc);
2013 	bf = _ath_getbuf_locked(sc);
2014 	if (bf == NULL) {
2015 		struct ifnet *ifp = sc->sc_ifp;
2016 
2017 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2018 		sc->sc_stats.ast_tx_qstop++;
2019 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2020 	}
2021 	ATH_TXBUF_UNLOCK(sc);
2022 	return bf;
2023 }
2024 
2025 /*
2026  * Cleanup driver resources when we run out of buffers
2027  * while processing fragments; return the tx buffers
2028  * allocated and drop node references.
2029  */
2030 static void
2031 ath_txfrag_cleanup(struct ath_softc *sc,
2032 	ath_bufhead *frags, struct ieee80211_node *ni)
2033 {
2034 	struct ath_buf *bf, *next;
2035 
2036 	ATH_TXBUF_LOCK_ASSERT(sc);
2037 
2038 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
2039 		/* NB: bf assumed clean */
2040 		STAILQ_REMOVE_HEAD(frags, bf_list);
2041 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2042 		ieee80211_node_decref(ni);
2043 	}
2044 }
2045 
2046 /*
2047  * Setup xmit of a fragmented frame.  Allocate a buffer
2048  * for each frag and bump the node reference count to
2049  * reflect the held reference to be setup by ath_tx_start.
2050  */
2051 static int
2052 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
2053 	struct mbuf *m0, struct ieee80211_node *ni)
2054 {
2055 	struct mbuf *m;
2056 	struct ath_buf *bf;
2057 
2058 	ATH_TXBUF_LOCK(sc);
2059 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
2060 		bf = _ath_getbuf_locked(sc);
2061 		if (bf == NULL) {	/* out of buffers, cleanup */
2062 			ath_txfrag_cleanup(sc, frags, ni);
2063 			break;
2064 		}
2065 		ieee80211_node_incref(ni);
2066 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
2067 	}
2068 	ATH_TXBUF_UNLOCK(sc);
2069 
2070 	return !STAILQ_EMPTY(frags);
2071 }
2072 
2073 static void
2074 ath_start(struct ifnet *ifp)
2075 {
2076 	struct ath_softc *sc = ifp->if_softc;
2077 	struct ieee80211_node *ni;
2078 	struct ath_buf *bf;
2079 	struct mbuf *m, *next;
2080 	struct ath_txq *txq;
2081 	ath_bufhead frags;
2082 	int pri;
2083 
2084 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2085 		return;
2086 	for (;;) {
2087 		/*
2088 		 * Grab a TX buffer and associated resources.
2089 		 */
2090 		bf = ath_getbuf(sc);
2091 		if (bf == NULL)
2092 			break;
2093 
2094 		IFQ_DEQUEUE(&ifp->if_snd, m);
2095 		if (m == NULL) {
2096 			ATH_TXBUF_LOCK(sc);
2097 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2098 			ATH_TXBUF_UNLOCK(sc);
2099 			break;
2100 		}
2101 		STAILQ_INIT(&frags);
2102 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2103 		pri = M_WME_GETAC(m);
2104 		txq = sc->sc_ac2q[pri];
2105 		if (IEEE80211_ATH_CAP(ni->ni_vap, ni, IEEE80211_NODE_FF)) {
2106 			/*
2107 			 * Check queue length; if too deep drop this
2108 			 * frame (tail drop considered good).
2109 			 */
2110 			if (txq->axq_depth >= sc->sc_fftxqmax) {
2111 				DPRINTF(sc, ATH_DEBUG_FF,
2112 				    "[%s] tail drop on q %u depth %u\n",
2113 				    ether_sprintf(ni->ni_macaddr),
2114 				    txq->axq_qnum, txq->axq_depth);
2115 				sc->sc_stats.ast_tx_qfull++;
2116 				m_freem(m);
2117 				goto reclaim;
2118 			}
2119 			m = ath_ff_check(sc, txq, bf, m, ni);
2120 			if (m == NULL) {
2121 				/* NB: ni ref & bf held on stageq */
2122 				continue;
2123 			}
2124 		}
2125 		ifp->if_opackets++;
2126 		/*
2127 		 * Encapsulate the packet in prep for transmission.
2128 		 */
2129 		m = ieee80211_encap(ni, m);
2130 		if (m == NULL) {
2131 			DPRINTF(sc, ATH_DEBUG_XMIT,
2132 			    "%s: encapsulation failure\n", __func__);
2133 			sc->sc_stats.ast_tx_encap++;
2134 			goto bad;
2135 		}
2136 		/*
2137 		 * Check for fragmentation.  If this frame
2138 		 * has been broken up verify we have enough
2139 		 * buffers to send all the fragments so all
2140 		 * go out or none...
2141 		 */
2142 		if ((m->m_flags & M_FRAG) &&
2143 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2144 			DPRINTF(sc, ATH_DEBUG_XMIT,
2145 			    "%s: out of txfrag buffers\n", __func__);
2146 			sc->sc_stats.ast_tx_nofrag++;
2147 			ath_freetx(m);
2148 			goto bad;
2149 		}
2150 	nextfrag:
2151 		/*
2152 		 * Pass the frame to the h/w for transmission.
2153 		 * Fragmented frames have each frag chained together
2154 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2155 		 * to send all the frags because of work done by
2156 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2157 		 * calling ath_tx_start so it can use it to extend the
2158 		 * the tx duration to cover the subsequent frag and
2159 		 * so it can reclaim all the mbufs in case of an error;
2160 		 * ath_tx_start clears m_nextpkt once it commits to
2161 		 * handing the frame to the hardware.
2162 		 */
2163 		next = m->m_nextpkt;
2164 		if (ath_tx_start(sc, ni, bf, m)) {
2165 	bad:
2166 			ifp->if_oerrors++;
2167 	reclaim:
2168 			bf->bf_m = NULL;
2169 			bf->bf_node = NULL;
2170 			ATH_TXBUF_LOCK(sc);
2171 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2172 			ath_txfrag_cleanup(sc, &frags, ni);
2173 			ATH_TXBUF_UNLOCK(sc);
2174 			if (ni != NULL)
2175 				ieee80211_free_node(ni);
2176 			continue;
2177 		}
2178 		if (next != NULL) {
2179 			/*
2180 			 * Beware of state changing between frags.
2181 			 * XXX check sta power-save state?
2182 			 */
2183 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2184 				DPRINTF(sc, ATH_DEBUG_XMIT,
2185 				    "%s: flush fragmented packet, state %s\n",
2186 				    __func__,
2187 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2188 				ath_freetx(next);
2189 				goto reclaim;
2190 			}
2191 			m = next;
2192 			bf = STAILQ_FIRST(&frags);
2193 			KASSERT(bf != NULL, ("no buf for txfrag"));
2194 			STAILQ_REMOVE_HEAD(&frags, bf_list);
2195 			goto nextfrag;
2196 		}
2197 
2198 		ifp->if_timer = 5;
2199 #if 0
2200 		/*
2201 		 * Flush stale frames from the fast-frame staging queue.
2202 		 */
2203 		if (ic->ic_opmode != IEEE80211_M_STA)
2204 			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2205 #endif
2206 	}
2207 }
2208 
2209 static int
2210 ath_media_change(struct ifnet *ifp)
2211 {
2212 	int error = ieee80211_media_change(ifp);
2213 	/* NB: only the fixed rate can change and that doesn't need a reset */
2214 	return (error == ENETRESET ? 0 : error);
2215 }
2216 
2217 #ifdef ATH_DEBUG
2218 static void
2219 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2220 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2221 {
2222 	static const char *ciphers[] = {
2223 		"WEP",
2224 		"AES-OCB",
2225 		"AES-CCM",
2226 		"CKIP",
2227 		"TKIP",
2228 		"CLR",
2229 	};
2230 	int i, n;
2231 
2232 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2233 	for (i = 0, n = hk->kv_len; i < n; i++)
2234 		printf("%02x", hk->kv_val[i]);
2235 	printf(" mac %s", ether_sprintf(mac));
2236 	if (hk->kv_type == HAL_CIPHER_TKIP) {
2237 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2238 		for (i = 0; i < sizeof(hk->kv_mic); i++)
2239 			printf("%02x", hk->kv_mic[i]);
2240 		if (!sc->sc_splitmic) {
2241 			printf(" txmic ");
2242 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
2243 				printf("%02x", hk->kv_txmic[i]);
2244 		}
2245 	}
2246 	printf("\n");
2247 }
2248 #endif
2249 
2250 /*
2251  * Set a TKIP key into the hardware.  This handles the
2252  * potential distribution of key state to multiple key
2253  * cache slots for TKIP.
2254  */
2255 static int
2256 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2257 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2258 {
2259 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2260 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2261 	struct ath_hal *ah = sc->sc_ah;
2262 
2263 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2264 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2265 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2266 		if (sc->sc_splitmic) {
2267 			/*
2268 			 * TX key goes at first index, RX key at the rx index.
2269 			 * The hal handles the MIC keys at index+64.
2270 			 */
2271 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2272 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2273 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2274 				return 0;
2275 
2276 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2277 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2278 			/* XXX delete tx key on failure? */
2279 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2280 		} else {
2281 			/*
2282 			 * Room for both TX+RX MIC keys in one key cache
2283 			 * slot, just set key at the first index; the hal
2284 			 * will handle the rest.
2285 			 */
2286 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2287 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2288 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
2289 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2290 		}
2291 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2292 		if (sc->sc_splitmic) {
2293 			/*
2294 			 * NB: must pass MIC key in expected location when
2295 			 * the keycache only holds one MIC key per entry.
2296 			 */
2297 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
2298 		} else
2299 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2300 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2301 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2302 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
2303 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2304 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2305 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2306 	}
2307 	return 0;
2308 #undef IEEE80211_KEY_XR
2309 }
2310 
2311 /*
2312  * Set a net80211 key into the hardware.  This handles the
2313  * potential distribution of key state to multiple key
2314  * cache slots for TKIP with hardware MIC support.
2315  */
2316 static int
2317 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2318 	struct ieee80211_node *bss)
2319 {
2320 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2321 	static const u_int8_t ciphermap[] = {
2322 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2323 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2324 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2325 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2326 		(u_int8_t) -1,		/* 4 is not allocated */
2327 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2328 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2329 	};
2330 	struct ath_hal *ah = sc->sc_ah;
2331 	const struct ieee80211_cipher *cip = k->wk_cipher;
2332 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2333 	const u_int8_t *mac;
2334 	HAL_KEYVAL hk;
2335 
2336 	memset(&hk, 0, sizeof(hk));
2337 	/*
2338 	 * Software crypto uses a "clear key" so non-crypto
2339 	 * state kept in the key cache are maintained and
2340 	 * so that rx frames have an entry to match.
2341 	 */
2342 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2343 		KASSERT(cip->ic_cipher < N(ciphermap),
2344 			("invalid cipher type %u", cip->ic_cipher));
2345 		hk.kv_type = ciphermap[cip->ic_cipher];
2346 		hk.kv_len = k->wk_keylen;
2347 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2348 	} else
2349 		hk.kv_type = HAL_CIPHER_CLR;
2350 
2351 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2352 		/*
2353 		 * Group keys on hardware that supports multicast frame
2354 		 * key search use a mac that is the sender's address with
2355 		 * the high bit set instead of the app-specified address.
2356 		 */
2357 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2358 		gmac[0] |= 0x80;
2359 		mac = gmac;
2360 	} else
2361 		mac = k->wk_macaddr;
2362 
2363 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2364 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2365 		return ath_keyset_tkip(sc, k, &hk, mac);
2366 	} else {
2367 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2368 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2369 	}
2370 #undef N
2371 }
2372 
2373 /*
2374  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2375  * each key, one for decrypt/encrypt and the other for the MIC.
2376  */
2377 static u_int16_t
2378 key_alloc_2pair(struct ath_softc *sc,
2379 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2380 {
2381 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2382 	u_int i, keyix;
2383 
2384 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2385 	/* XXX could optimize */
2386 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2387 		u_int8_t b = sc->sc_keymap[i];
2388 		if (b != 0xff) {
2389 			/*
2390 			 * One or more slots in this byte are free.
2391 			 */
2392 			keyix = i*NBBY;
2393 			while (b & 1) {
2394 		again:
2395 				keyix++;
2396 				b >>= 1;
2397 			}
2398 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2399 			if (isset(sc->sc_keymap, keyix+32) ||
2400 			    isset(sc->sc_keymap, keyix+64) ||
2401 			    isset(sc->sc_keymap, keyix+32+64)) {
2402 				/* full pair unavailable */
2403 				/* XXX statistic */
2404 				if (keyix == (i+1)*NBBY) {
2405 					/* no slots were appropriate, advance */
2406 					continue;
2407 				}
2408 				goto again;
2409 			}
2410 			setbit(sc->sc_keymap, keyix);
2411 			setbit(sc->sc_keymap, keyix+64);
2412 			setbit(sc->sc_keymap, keyix+32);
2413 			setbit(sc->sc_keymap, keyix+32+64);
2414 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2415 				"%s: key pair %u,%u %u,%u\n",
2416 				__func__, keyix, keyix+64,
2417 				keyix+32, keyix+32+64);
2418 			*txkeyix = keyix;
2419 			*rxkeyix = keyix+32;
2420 			return 1;
2421 		}
2422 	}
2423 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2424 	return 0;
2425 #undef N
2426 }
2427 
2428 /*
2429  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2430  * each key, one for decrypt/encrypt and the other for the MIC.
2431  */
2432 static u_int16_t
2433 key_alloc_pair(struct ath_softc *sc,
2434 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2435 {
2436 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2437 	u_int i, keyix;
2438 
2439 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2440 	/* XXX could optimize */
2441 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2442 		u_int8_t b = sc->sc_keymap[i];
2443 		if (b != 0xff) {
2444 			/*
2445 			 * One or more slots in this byte are free.
2446 			 */
2447 			keyix = i*NBBY;
2448 			while (b & 1) {
2449 		again:
2450 				keyix++;
2451 				b >>= 1;
2452 			}
2453 			if (isset(sc->sc_keymap, keyix+64)) {
2454 				/* full pair unavailable */
2455 				/* XXX statistic */
2456 				if (keyix == (i+1)*NBBY) {
2457 					/* no slots were appropriate, advance */
2458 					continue;
2459 				}
2460 				goto again;
2461 			}
2462 			setbit(sc->sc_keymap, keyix);
2463 			setbit(sc->sc_keymap, keyix+64);
2464 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2465 				"%s: key pair %u,%u\n",
2466 				__func__, keyix, keyix+64);
2467 			*txkeyix = *rxkeyix = keyix;
2468 			return 1;
2469 		}
2470 	}
2471 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2472 	return 0;
2473 #undef N
2474 }
2475 
2476 /*
2477  * Allocate a single key cache slot.
2478  */
2479 static int
2480 key_alloc_single(struct ath_softc *sc,
2481 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2482 {
2483 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2484 	u_int i, keyix;
2485 
2486 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2487 	for (i = 0; i < N(sc->sc_keymap); i++) {
2488 		u_int8_t b = sc->sc_keymap[i];
2489 		if (b != 0xff) {
2490 			/*
2491 			 * One or more slots are free.
2492 			 */
2493 			keyix = i*NBBY;
2494 			while (b & 1)
2495 				keyix++, b >>= 1;
2496 			setbit(sc->sc_keymap, keyix);
2497 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2498 				__func__, keyix);
2499 			*txkeyix = *rxkeyix = keyix;
2500 			return 1;
2501 		}
2502 	}
2503 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2504 	return 0;
2505 #undef N
2506 }
2507 
2508 /*
2509  * Allocate one or more key cache slots for a uniacst key.  The
2510  * key itself is needed only to identify the cipher.  For hardware
2511  * TKIP with split cipher+MIC keys we allocate two key cache slot
2512  * pairs so that we can setup separate TX and RX MIC keys.  Note
2513  * that the MIC key for a TKIP key at slot i is assumed by the
2514  * hardware to be at slot i+64.  This limits TKIP keys to the first
2515  * 64 entries.
2516  */
2517 static int
2518 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2519 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2520 {
2521 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2522 
2523 	/*
2524 	 * Group key allocation must be handled specially for
2525 	 * parts that do not support multicast key cache search
2526 	 * functionality.  For those parts the key id must match
2527 	 * the h/w key index so lookups find the right key.  On
2528 	 * parts w/ the key search facility we install the sender's
2529 	 * mac address (with the high bit set) and let the hardware
2530 	 * find the key w/o using the key id.  This is preferred as
2531 	 * it permits us to support multiple users for adhoc and/or
2532 	 * multi-station operation.
2533 	 */
2534 	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||	/* global key */
2535 	    ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2536 		if (!(&vap->iv_nw_keys[0] <= k &&
2537 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2538 			/* should not happen */
2539 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2540 				"%s: bogus group key\n", __func__);
2541 			return 0;
2542 		}
2543 		/*
2544 		 * XXX we pre-allocate the global keys so
2545 		 * have no way to check if they've already been allocated.
2546 		 */
2547 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2548 		return 1;
2549 	}
2550 
2551 	/*
2552 	 * We allocate two pair for TKIP when using the h/w to do
2553 	 * the MIC.  For everything else, including software crypto,
2554 	 * we allocate a single entry.  Note that s/w crypto requires
2555 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2556 	 * not support pass-through cache entries and we map all
2557 	 * those requests to slot 0.
2558 	 */
2559 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2560 		return key_alloc_single(sc, keyix, rxkeyix);
2561 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2562 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2563 		if (sc->sc_splitmic)
2564 			return key_alloc_2pair(sc, keyix, rxkeyix);
2565 		else
2566 			return key_alloc_pair(sc, keyix, rxkeyix);
2567 	} else {
2568 		return key_alloc_single(sc, keyix, rxkeyix);
2569 	}
2570 }
2571 
2572 /*
2573  * Delete an entry in the key cache allocated by ath_key_alloc.
2574  */
2575 static int
2576 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2577 {
2578 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2579 	struct ath_hal *ah = sc->sc_ah;
2580 	const struct ieee80211_cipher *cip = k->wk_cipher;
2581 	u_int keyix = k->wk_keyix;
2582 
2583 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2584 
2585 	ath_hal_keyreset(ah, keyix);
2586 	/*
2587 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2588 	 */
2589 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2590 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2591 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2592 	if (keyix >= IEEE80211_WEP_NKID) {
2593 		/*
2594 		 * Don't touch keymap entries for global keys so
2595 		 * they are never considered for dynamic allocation.
2596 		 */
2597 		clrbit(sc->sc_keymap, keyix);
2598 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2599 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2600 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2601 			if (sc->sc_splitmic) {
2602 				/* +32 for RX key, +32+64 for RX key MIC */
2603 				clrbit(sc->sc_keymap, keyix+32);
2604 				clrbit(sc->sc_keymap, keyix+32+64);
2605 			}
2606 		}
2607 	}
2608 	return 1;
2609 }
2610 
2611 /*
2612  * Set the key cache contents for the specified key.  Key cache
2613  * slot(s) must already have been allocated by ath_key_alloc.
2614  */
2615 static int
2616 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2617 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2618 {
2619 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2620 
2621 	return ath_keyset(sc, k, vap->iv_bss);
2622 }
2623 
2624 /*
2625  * Block/unblock tx+rx processing while a key change is done.
2626  * We assume the caller serializes key management operations
2627  * so we only need to worry about synchronization with other
2628  * uses that originate in the driver.
2629  */
2630 static void
2631 ath_key_update_begin(struct ieee80211vap *vap)
2632 {
2633 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2634 	struct ath_softc *sc = ifp->if_softc;
2635 
2636 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2637 	taskqueue_block(sc->sc_tq);
2638 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2639 }
2640 
2641 static void
2642 ath_key_update_end(struct ieee80211vap *vap)
2643 {
2644 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2645 	struct ath_softc *sc = ifp->if_softc;
2646 
2647 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2648 	IF_UNLOCK(&ifp->if_snd);
2649 	taskqueue_unblock(sc->sc_tq);
2650 }
2651 
2652 /*
2653  * Calculate the receive filter according to the
2654  * operating mode and state:
2655  *
2656  * o always accept unicast, broadcast, and multicast traffic
2657  * o accept PHY error frames when hardware doesn't have MIB support
2658  *   to count and we need them for ANI (sta mode only until recently)
2659  *   and we are not scanning (ANI is disabled)
2660  *   NB: older hal's add rx filter bits out of sight and we need to
2661  *	 blindly preserve them
2662  * o probe request frames are accepted only when operating in
2663  *   hostap, adhoc, or monitor modes
2664  * o enable promiscuous mode
2665  *   - when in monitor mode
2666  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2667  * o accept beacons:
2668  *   - when operating in station mode for collecting rssi data when
2669  *     the station is otherwise quiet, or
2670  *   - when operating in adhoc mode so the 802.11 layer creates
2671  *     node table entries for peers,
2672  *   - when scanning
2673  *   - when doing s/w beacon miss (e.g. for ap+sta)
2674  *   - when operating in ap mode in 11g to detect overlapping bss that
2675  *     require protection
2676  * o accept control frames:
2677  *   - when in monitor mode
2678  * XXX BAR frames for 11n
2679  * XXX HT protection for 11n
2680  */
2681 static u_int32_t
2682 ath_calcrxfilter(struct ath_softc *sc)
2683 {
2684 	struct ifnet *ifp = sc->sc_ifp;
2685 	struct ieee80211com *ic = ifp->if_l2com;
2686 	u_int32_t rfilt;
2687 
2688 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2689 #if HAL_ABI_VERSION < 0x08011600
2690 	rfilt |= (ath_hal_getrxfilter(sc->sc_ah) &
2691 		(HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR));
2692 #elif HAL_ABI_VERSION < 0x08060100
2693 	if (ic->ic_opmode == IEEE80211_M_STA &&
2694 	    !sc->sc_needmib && !sc->sc_scanning)
2695 		rfilt |= HAL_RX_FILTER_PHYERR;
2696 #else
2697 	if (!sc->sc_needmib && !sc->sc_scanning)
2698 		rfilt |= HAL_RX_FILTER_PHYERR;
2699 #endif
2700 	if (ic->ic_opmode != IEEE80211_M_STA)
2701 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2702 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2703 		rfilt |= HAL_RX_FILTER_PROM;
2704 	if (ic->ic_opmode == IEEE80211_M_STA ||
2705 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2706 	    sc->sc_swbmiss || sc->sc_scanning)
2707 		rfilt |= HAL_RX_FILTER_BEACON;
2708 	/*
2709 	 * NB: We don't recalculate the rx filter when
2710 	 * ic_protmode changes; otherwise we could do
2711 	 * this only when ic_protmode != NONE.
2712 	 */
2713 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2714 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2715 		rfilt |= HAL_RX_FILTER_BEACON;
2716 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2717 		rfilt |= HAL_RX_FILTER_CONTROL;
2718 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2719 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2720 	return rfilt;
2721 }
2722 
2723 static void
2724 ath_update_promisc(struct ifnet *ifp)
2725 {
2726 	struct ath_softc *sc = ifp->if_softc;
2727 	u_int32_t rfilt;
2728 
2729 	/* configure rx filter */
2730 	rfilt = ath_calcrxfilter(sc);
2731 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2732 
2733 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2734 }
2735 
2736 static void
2737 ath_update_mcast(struct ifnet *ifp)
2738 {
2739 	struct ath_softc *sc = ifp->if_softc;
2740 	u_int32_t mfilt[2];
2741 
2742 	/* calculate and install multicast filter */
2743 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2744 		struct ifmultiaddr *ifma;
2745 		/*
2746 		 * Merge multicast addresses to form the hardware filter.
2747 		 */
2748 		mfilt[0] = mfilt[1] = 0;
2749 		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2750 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2751 			caddr_t dl;
2752 			u_int32_t val;
2753 			u_int8_t pos;
2754 
2755 			/* calculate XOR of eight 6bit values */
2756 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2757 			val = LE_READ_4(dl + 0);
2758 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2759 			val = LE_READ_4(dl + 3);
2760 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2761 			pos &= 0x3f;
2762 			mfilt[pos / 32] |= (1 << (pos % 32));
2763 		}
2764 		IF_ADDR_UNLOCK(ifp);
2765 	} else
2766 		mfilt[0] = mfilt[1] = ~0;
2767 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2768 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2769 		__func__, mfilt[0], mfilt[1]);
2770 }
2771 
2772 static void
2773 ath_mode_init(struct ath_softc *sc)
2774 {
2775 	struct ifnet *ifp = sc->sc_ifp;
2776 	struct ieee80211com *ic = ifp->if_l2com;
2777 	struct ath_hal *ah = sc->sc_ah;
2778 	u_int32_t rfilt;
2779 
2780 	/* configure rx filter */
2781 	rfilt = ath_calcrxfilter(sc);
2782 	ath_hal_setrxfilter(ah, rfilt);
2783 
2784 	/* configure operational mode */
2785 	ath_hal_setopmode(ah);
2786 
2787 	/*
2788 	 * Handle any link-level address change.  Note that we only
2789 	 * need to force ic_myaddr; any other addresses are handled
2790 	 * as a byproduct of the ifnet code marking the interface
2791 	 * down then up.
2792 	 *
2793 	 * XXX should get from lladdr instead of arpcom but that's more work
2794 	 */
2795 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2796 	ath_hal_setmac(ah, ic->ic_myaddr);
2797 
2798 	/* calculate and install multicast filter */
2799 	ath_update_mcast(ifp);
2800 }
2801 
2802 /*
2803  * Set the slot time based on the current setting.
2804  */
2805 static void
2806 ath_setslottime(struct ath_softc *sc)
2807 {
2808 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2809 	struct ath_hal *ah = sc->sc_ah;
2810 	u_int usec;
2811 
2812 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2813 		usec = 13;
2814 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2815 		usec = 21;
2816 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2817 		/* honor short/long slot time only in 11g */
2818 		/* XXX shouldn't honor on pure g or turbo g channel */
2819 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2820 			usec = HAL_SLOT_TIME_9;
2821 		else
2822 			usec = HAL_SLOT_TIME_20;
2823 	} else
2824 		usec = HAL_SLOT_TIME_9;
2825 
2826 	DPRINTF(sc, ATH_DEBUG_RESET,
2827 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2828 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2829 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2830 
2831 	ath_hal_setslottime(ah, usec);
2832 	sc->sc_updateslot = OK;
2833 }
2834 
2835 /*
2836  * Callback from the 802.11 layer to update the
2837  * slot time based on the current setting.
2838  */
2839 static void
2840 ath_updateslot(struct ifnet *ifp)
2841 {
2842 	struct ath_softc *sc = ifp->if_softc;
2843 	struct ieee80211com *ic = ifp->if_l2com;
2844 
2845 	/*
2846 	 * When not coordinating the BSS, change the hardware
2847 	 * immediately.  For other operation we defer the change
2848 	 * until beacon updates have propagated to the stations.
2849 	 */
2850 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2851 		sc->sc_updateslot = UPDATE;
2852 	else
2853 		ath_setslottime(sc);
2854 }
2855 
2856 /*
2857  * Setup a h/w transmit queue for beacons.
2858  */
2859 static int
2860 ath_beaconq_setup(struct ath_hal *ah)
2861 {
2862 	HAL_TXQ_INFO qi;
2863 
2864 	memset(&qi, 0, sizeof(qi));
2865 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2866 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2867 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2868 	/* NB: for dynamic turbo, don't enable any other interrupts */
2869 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2870 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2871 }
2872 
2873 /*
2874  * Setup the transmit queue parameters for the beacon queue.
2875  */
2876 static int
2877 ath_beaconq_config(struct ath_softc *sc)
2878 {
2879 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2880 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2881 	struct ath_hal *ah = sc->sc_ah;
2882 	HAL_TXQ_INFO qi;
2883 
2884 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2885 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2886 		/*
2887 		 * Always burst out beacon and CAB traffic.
2888 		 */
2889 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2890 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2891 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2892 	} else {
2893 		struct wmeParams *wmep =
2894 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2895 		/*
2896 		 * Adhoc mode; important thing is to use 2x cwmin.
2897 		 */
2898 		qi.tqi_aifs = wmep->wmep_aifsn;
2899 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2900 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2901 	}
2902 
2903 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2904 		device_printf(sc->sc_dev, "unable to update parameters for "
2905 			"beacon hardware queue!\n");
2906 		return 0;
2907 	} else {
2908 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2909 		return 1;
2910 	}
2911 #undef ATH_EXPONENT_TO_VALUE
2912 }
2913 
2914 /*
2915  * Allocate and setup an initial beacon frame.
2916  */
2917 static int
2918 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2919 {
2920 	struct ieee80211vap *vap = ni->ni_vap;
2921 	struct ath_vap *avp = ATH_VAP(vap);
2922 	struct ath_buf *bf;
2923 	struct mbuf *m;
2924 	int error;
2925 
2926 	bf = avp->av_bcbuf;
2927 	if (bf->bf_m != NULL) {
2928 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2929 		m_freem(bf->bf_m);
2930 		bf->bf_m = NULL;
2931 	}
2932 	if (bf->bf_node != NULL) {
2933 		ieee80211_free_node(bf->bf_node);
2934 		bf->bf_node = NULL;
2935 	}
2936 
2937 	/*
2938 	 * NB: the beacon data buffer must be 32-bit aligned;
2939 	 * we assume the mbuf routines will return us something
2940 	 * with this alignment (perhaps should assert).
2941 	 */
2942 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2943 	if (m == NULL) {
2944 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2945 		sc->sc_stats.ast_be_nombuf++;
2946 		return ENOMEM;
2947 	}
2948 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2949 				     bf->bf_segs, &bf->bf_nseg,
2950 				     BUS_DMA_NOWAIT);
2951 	if (error != 0) {
2952 		device_printf(sc->sc_dev,
2953 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2954 		    __func__, error);
2955 		m_freem(m);
2956 		return error;
2957 	}
2958 
2959 	/*
2960 	 * Calculate a TSF adjustment factor required for staggered
2961 	 * beacons.  Note that we assume the format of the beacon
2962 	 * frame leaves the tstamp field immediately following the
2963 	 * header.
2964 	 */
2965 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2966 		uint64_t tsfadjust;
2967 		struct ieee80211_frame *wh;
2968 
2969 		/*
2970 		 * The beacon interval is in TU's; the TSF is in usecs.
2971 		 * We figure out how many TU's to add to align the timestamp
2972 		 * then convert to TSF units and handle byte swapping before
2973 		 * inserting it in the frame.  The hardware will then add this
2974 		 * each time a beacon frame is sent.  Note that we align vap's
2975 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2976 		 * timestamp in one beacon interval while the others get a
2977 		 * timstamp aligned to the next interval.
2978 		 */
2979 		tsfadjust = ni->ni_intval *
2980 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2981 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2982 
2983 		DPRINTF(sc, ATH_DEBUG_BEACON,
2984 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2985 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2986 		    avp->av_bslot, ni->ni_intval,
2987 		    (long long unsigned) le64toh(tsfadjust));
2988 
2989 		wh = mtod(m, struct ieee80211_frame *);
2990 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2991 	}
2992 	bf->bf_m = m;
2993 	bf->bf_node = ieee80211_ref_node(ni);
2994 
2995 	return 0;
2996 }
2997 
2998 /*
2999  * Setup the beacon frame for transmit.
3000  */
3001 static void
3002 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
3003 {
3004 #define	USE_SHPREAMBLE(_ic) \
3005 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
3006 		== IEEE80211_F_SHPREAMBLE)
3007 	struct ieee80211_node *ni = bf->bf_node;
3008 	struct ieee80211com *ic = ni->ni_ic;
3009 	struct mbuf *m = bf->bf_m;
3010 	struct ath_hal *ah = sc->sc_ah;
3011 	struct ath_desc *ds;
3012 	int flags, antenna;
3013 	const HAL_RATE_TABLE *rt;
3014 	u_int8_t rix, rate;
3015 
3016 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
3017 		__func__, m, m->m_len);
3018 
3019 	/* setup descriptors */
3020 	ds = bf->bf_desc;
3021 
3022 	flags = HAL_TXDESC_NOACK;
3023 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
3024 		ds->ds_link = bf->bf_daddr;	/* self-linked */
3025 		flags |= HAL_TXDESC_VEOL;
3026 		/*
3027 		 * Let hardware handle antenna switching.
3028 		 */
3029 		antenna = sc->sc_txantenna;
3030 	} else {
3031 		ds->ds_link = 0;
3032 		/*
3033 		 * Switch antenna every 4 beacons.
3034 		 * XXX assumes two antenna
3035 		 */
3036 		if (sc->sc_txantenna != 0)
3037 			antenna = sc->sc_txantenna;
3038 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
3039 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
3040 		else
3041 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
3042 	}
3043 
3044 	KASSERT(bf->bf_nseg == 1,
3045 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
3046 	ds->ds_data = bf->bf_segs[0].ds_addr;
3047 	/*
3048 	 * Calculate rate code.
3049 	 * XXX everything at min xmit rate
3050 	 */
3051 	rix = 0;
3052 	rt = sc->sc_currates;
3053 	rate = rt->info[rix].rateCode;
3054 	if (USE_SHPREAMBLE(ic))
3055 		rate |= rt->info[rix].shortPreamble;
3056 	ath_hal_setuptxdesc(ah, ds
3057 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
3058 		, sizeof(struct ieee80211_frame)/* header length */
3059 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
3060 		, ni->ni_txpower		/* txpower XXX */
3061 		, rate, 1			/* series 0 rate/tries */
3062 		, HAL_TXKEYIX_INVALID		/* no encryption */
3063 		, antenna			/* antenna mode */
3064 		, flags				/* no ack, veol for beacons */
3065 		, 0				/* rts/cts rate */
3066 		, 0				/* rts/cts duration */
3067 	);
3068 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
3069 	ath_hal_filltxdesc(ah, ds
3070 		, roundup(m->m_len, 4)		/* buffer length */
3071 		, AH_TRUE			/* first segment */
3072 		, AH_TRUE			/* last segment */
3073 		, ds				/* first descriptor */
3074 	);
3075 #if 0
3076 	ath_desc_swap(ds);
3077 #endif
3078 #undef USE_SHPREAMBLE
3079 }
3080 
3081 static void
3082 ath_beacon_update(struct ieee80211vap *vap, int item)
3083 {
3084 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
3085 
3086 	setbit(bo->bo_flags, item);
3087 }
3088 
3089 /*
3090  * Append the contents of src to dst; both queues
3091  * are assumed to be locked.
3092  */
3093 static void
3094 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3095 {
3096 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
3097 	dst->axq_link = src->axq_link;
3098 	src->axq_link = NULL;
3099 	dst->axq_depth += src->axq_depth;
3100 	src->axq_depth = 0;
3101 }
3102 
3103 /*
3104  * Transmit a beacon frame at SWBA.  Dynamic updates to the
3105  * frame contents are done as needed and the slot time is
3106  * also adjusted based on current state.
3107  */
3108 static void
3109 ath_beacon_proc(void *arg, int pending)
3110 {
3111 	struct ath_softc *sc = arg;
3112 	struct ath_hal *ah = sc->sc_ah;
3113 	struct ieee80211vap *vap;
3114 	struct ath_buf *bf;
3115 	int slot, otherant;
3116 	uint32_t bfaddr;
3117 
3118 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
3119 		__func__, pending);
3120 	/*
3121 	 * Check if the previous beacon has gone out.  If
3122 	 * not don't try to post another, skip this period
3123 	 * and wait for the next.  Missed beacons indicate
3124 	 * a problem and should not occur.  If we miss too
3125 	 * many consecutive beacons reset the device.
3126 	 */
3127 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
3128 		sc->sc_bmisscount++;
3129 		DPRINTF(sc, ATH_DEBUG_BEACON,
3130 			"%s: missed %u consecutive beacons\n",
3131 			__func__, sc->sc_bmisscount);
3132 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
3133 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
3134 		return;
3135 	}
3136 	if (sc->sc_bmisscount != 0) {
3137 		DPRINTF(sc, ATH_DEBUG_BEACON,
3138 			"%s: resume beacon xmit after %u misses\n",
3139 			__func__, sc->sc_bmisscount);
3140 		sc->sc_bmisscount = 0;
3141 	}
3142 
3143 	if (sc->sc_stagbeacons) {			/* staggered beacons */
3144 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3145 		uint32_t tsftu;
3146 
3147 		tsftu = ath_hal_gettsf32(ah) >> 10;
3148 		/* XXX lintval */
3149 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3150 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3151 		bfaddr = 0;
3152 		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3153 			bf = ath_beacon_generate(sc, vap);
3154 			if (bf != NULL)
3155 				bfaddr = bf->bf_daddr;
3156 		}
3157 	} else {					/* burst'd beacons */
3158 		uint32_t *bflink = &bfaddr;
3159 
3160 		for (slot = 0; slot < ATH_BCBUF; slot++) {
3161 			vap = sc->sc_bslot[slot];
3162 			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3163 				bf = ath_beacon_generate(sc, vap);
3164 				if (bf != NULL) {
3165 					*bflink = bf->bf_daddr;
3166 					bflink = &bf->bf_desc->ds_link;
3167 				}
3168 			}
3169 		}
3170 		*bflink = 0;				/* terminate list */
3171 	}
3172 
3173 	/*
3174 	 * Handle slot time change when a non-ERP station joins/leaves
3175 	 * an 11g network.  The 802.11 layer notifies us via callback,
3176 	 * we mark updateslot, then wait one beacon before effecting
3177 	 * the change.  This gives associated stations at least one
3178 	 * beacon interval to note the state change.
3179 	 */
3180 	/* XXX locking */
3181 	if (sc->sc_updateslot == UPDATE) {
3182 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3183 		sc->sc_slotupdate = slot;
3184 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3185 		ath_setslottime(sc);		/* commit change to h/w */
3186 
3187 	/*
3188 	 * Check recent per-antenna transmit statistics and flip
3189 	 * the default antenna if noticeably more frames went out
3190 	 * on the non-default antenna.
3191 	 * XXX assumes 2 anntenae
3192 	 */
3193 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3194 		otherant = sc->sc_defant & 1 ? 2 : 1;
3195 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3196 			ath_setdefantenna(sc, otherant);
3197 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3198 	}
3199 
3200 	if (bfaddr != 0) {
3201 		/*
3202 		 * Stop any current dma and put the new frame on the queue.
3203 		 * This should never fail since we check above that no frames
3204 		 * are still pending on the queue.
3205 		 */
3206 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3207 			DPRINTF(sc, ATH_DEBUG_ANY,
3208 				"%s: beacon queue %u did not stop?\n",
3209 				__func__, sc->sc_bhalq);
3210 		}
3211 		/* NB: cabq traffic should already be queued and primed */
3212 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3213 		ath_hal_txstart(ah, sc->sc_bhalq);
3214 
3215 		sc->sc_stats.ast_be_xmit++;
3216 	}
3217 }
3218 
3219 static struct ath_buf *
3220 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3221 {
3222 	struct ath_vap *avp = ATH_VAP(vap);
3223 	struct ath_txq *cabq = sc->sc_cabq;
3224 	struct ath_buf *bf;
3225 	struct mbuf *m;
3226 	int nmcastq, error;
3227 
3228 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
3229 	    ("not running, state %d", vap->iv_state));
3230 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3231 
3232 	/*
3233 	 * Update dynamic beacon contents.  If this returns
3234 	 * non-zero then we need to remap the memory because
3235 	 * the beacon frame changed size (probably because
3236 	 * of the TIM bitmap).
3237 	 */
3238 	bf = avp->av_bcbuf;
3239 	m = bf->bf_m;
3240 	nmcastq = avp->av_mcastq.axq_depth;
3241 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3242 		/* XXX too conservative? */
3243 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3244 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3245 					     bf->bf_segs, &bf->bf_nseg,
3246 					     BUS_DMA_NOWAIT);
3247 		if (error != 0) {
3248 			if_printf(vap->iv_ifp,
3249 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3250 			    __func__, error);
3251 			return NULL;
3252 		}
3253 	}
3254 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3255 		DPRINTF(sc, ATH_DEBUG_BEACON,
3256 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3257 		    __func__, nmcastq, cabq->axq_depth);
3258 		sc->sc_stats.ast_cabq_busy++;
3259 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3260 			/*
3261 			 * CABQ traffic from a previous vap is still pending.
3262 			 * We must drain the q before this beacon frame goes
3263 			 * out as otherwise this vap's stations will get cab
3264 			 * frames from a different vap.
3265 			 * XXX could be slow causing us to miss DBA
3266 			 */
3267 			ath_tx_draintxq(sc, cabq);
3268 		}
3269 	}
3270 	ath_beacon_setup(sc, bf);
3271 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3272 
3273 	/*
3274 	 * Enable the CAB queue before the beacon queue to
3275 	 * insure cab frames are triggered by this beacon.
3276 	 */
3277 	if (avp->av_boff.bo_tim[4] & 1) {
3278 		struct ath_hal *ah = sc->sc_ah;
3279 
3280 		/* NB: only at DTIM */
3281 		ATH_TXQ_LOCK(cabq);
3282 		ATH_TXQ_LOCK(&avp->av_mcastq);
3283 		if (nmcastq) {
3284 			struct ath_buf *bfm;
3285 
3286 			/*
3287 			 * Move frames from the s/w mcast q to the h/w cab q.
3288 			 * XXX MORE_DATA bit
3289 			 */
3290 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3291 			if (cabq->axq_link != NULL) {
3292 				*cabq->axq_link = bfm->bf_daddr;
3293 			} else
3294 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3295 					bfm->bf_daddr);
3296 			ath_txqmove(cabq, &avp->av_mcastq);
3297 
3298 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3299 		}
3300 		/* NB: gated by beacon so safe to start here */
3301 		ath_hal_txstart(ah, cabq->axq_qnum);
3302 		ATH_TXQ_UNLOCK(cabq);
3303 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3304 	}
3305 	return bf;
3306 }
3307 
3308 static void
3309 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3310 {
3311 	struct ath_vap *avp = ATH_VAP(vap);
3312 	struct ath_hal *ah = sc->sc_ah;
3313 	struct ath_buf *bf;
3314 	struct mbuf *m;
3315 	int error;
3316 
3317 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3318 
3319 	/*
3320 	 * Update dynamic beacon contents.  If this returns
3321 	 * non-zero then we need to remap the memory because
3322 	 * the beacon frame changed size (probably because
3323 	 * of the TIM bitmap).
3324 	 */
3325 	bf = avp->av_bcbuf;
3326 	m = bf->bf_m;
3327 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3328 		/* XXX too conservative? */
3329 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3330 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3331 					     bf->bf_segs, &bf->bf_nseg,
3332 					     BUS_DMA_NOWAIT);
3333 		if (error != 0) {
3334 			if_printf(vap->iv_ifp,
3335 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3336 			    __func__, error);
3337 			return;
3338 		}
3339 	}
3340 	ath_beacon_setup(sc, bf);
3341 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3342 
3343 	/* NB: caller is known to have already stopped tx dma */
3344 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3345 	ath_hal_txstart(ah, sc->sc_bhalq);
3346 }
3347 
3348 /*
3349  * Reset the hardware after detecting beacons have stopped.
3350  */
3351 static void
3352 ath_bstuck_proc(void *arg, int pending)
3353 {
3354 	struct ath_softc *sc = arg;
3355 	struct ifnet *ifp = sc->sc_ifp;
3356 
3357 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3358 		sc->sc_bmisscount);
3359 	sc->sc_stats.ast_bstuck++;
3360 	ath_reset(ifp);
3361 }
3362 
3363 /*
3364  * Reclaim beacon resources and return buffer to the pool.
3365  */
3366 static void
3367 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3368 {
3369 
3370 	if (bf->bf_m != NULL) {
3371 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3372 		m_freem(bf->bf_m);
3373 		bf->bf_m = NULL;
3374 	}
3375 	if (bf->bf_node != NULL) {
3376 		ieee80211_free_node(bf->bf_node);
3377 		bf->bf_node = NULL;
3378 	}
3379 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3380 }
3381 
3382 /*
3383  * Reclaim beacon resources.
3384  */
3385 static void
3386 ath_beacon_free(struct ath_softc *sc)
3387 {
3388 	struct ath_buf *bf;
3389 
3390 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3391 		if (bf->bf_m != NULL) {
3392 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3393 			m_freem(bf->bf_m);
3394 			bf->bf_m = NULL;
3395 		}
3396 		if (bf->bf_node != NULL) {
3397 			ieee80211_free_node(bf->bf_node);
3398 			bf->bf_node = NULL;
3399 		}
3400 	}
3401 }
3402 
3403 /*
3404  * Configure the beacon and sleep timers.
3405  *
3406  * When operating as an AP this resets the TSF and sets
3407  * up the hardware to notify us when we need to issue beacons.
3408  *
3409  * When operating in station mode this sets up the beacon
3410  * timers according to the timestamp of the last received
3411  * beacon and the current TSF, configures PCF and DTIM
3412  * handling, programs the sleep registers so the hardware
3413  * will wakeup in time to receive beacons, and configures
3414  * the beacon miss handling so we'll receive a BMISS
3415  * interrupt when we stop seeing beacons from the AP
3416  * we've associated with.
3417  */
3418 static void
3419 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3420 {
3421 #define	TSF_TO_TU(_h,_l) \
3422 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3423 #define	FUDGE	2
3424 	struct ath_hal *ah = sc->sc_ah;
3425 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3426 	struct ieee80211_node *ni;
3427 	u_int32_t nexttbtt, intval, tsftu;
3428 	u_int64_t tsf;
3429 
3430 	if (vap == NULL)
3431 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3432 	ni = vap->iv_bss;
3433 
3434 	/* extract tstamp from last beacon and convert to TU */
3435 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3436 			     LE_READ_4(ni->ni_tstamp.data));
3437 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3438 		/*
3439 		 * For multi-bss ap support beacons are either staggered
3440 		 * evenly over N slots or burst together.  For the former
3441 		 * arrange for the SWBA to be delivered for each slot.
3442 		 * Slots that are not occupied will generate nothing.
3443 		 */
3444 		/* NB: the beacon interval is kept internally in TU's */
3445 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3446 		if (sc->sc_stagbeacons)
3447 			intval /= ATH_BCBUF;
3448 	} else {
3449 		/* NB: the beacon interval is kept internally in TU's */
3450 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3451 	}
3452 	if (nexttbtt == 0)		/* e.g. for ap mode */
3453 		nexttbtt = intval;
3454 	else if (intval)		/* NB: can be 0 for monitor mode */
3455 		nexttbtt = roundup(nexttbtt, intval);
3456 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3457 		__func__, nexttbtt, intval, ni->ni_intval);
3458 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3459 		HAL_BEACON_STATE bs;
3460 		int dtimperiod, dtimcount;
3461 		int cfpperiod, cfpcount;
3462 
3463 		/*
3464 		 * Setup dtim and cfp parameters according to
3465 		 * last beacon we received (which may be none).
3466 		 */
3467 		dtimperiod = ni->ni_dtim_period;
3468 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3469 			dtimperiod = 1;
3470 		dtimcount = ni->ni_dtim_count;
3471 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3472 			dtimcount = 0;		/* XXX? */
3473 		cfpperiod = 1;			/* NB: no PCF support yet */
3474 		cfpcount = 0;
3475 		/*
3476 		 * Pull nexttbtt forward to reflect the current
3477 		 * TSF and calculate dtim+cfp state for the result.
3478 		 */
3479 		tsf = ath_hal_gettsf64(ah);
3480 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3481 		do {
3482 			nexttbtt += intval;
3483 			if (--dtimcount < 0) {
3484 				dtimcount = dtimperiod - 1;
3485 				if (--cfpcount < 0)
3486 					cfpcount = cfpperiod - 1;
3487 			}
3488 		} while (nexttbtt < tsftu);
3489 		memset(&bs, 0, sizeof(bs));
3490 		bs.bs_intval = intval;
3491 		bs.bs_nexttbtt = nexttbtt;
3492 		bs.bs_dtimperiod = dtimperiod*intval;
3493 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3494 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3495 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3496 		bs.bs_cfpmaxduration = 0;
3497 #if 0
3498 		/*
3499 		 * The 802.11 layer records the offset to the DTIM
3500 		 * bitmap while receiving beacons; use it here to
3501 		 * enable h/w detection of our AID being marked in
3502 		 * the bitmap vector (to indicate frames for us are
3503 		 * pending at the AP).
3504 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3505 		 * XXX enable based on h/w rev for newer chips
3506 		 */
3507 		bs.bs_timoffset = ni->ni_timoff;
3508 #endif
3509 		/*
3510 		 * Calculate the number of consecutive beacons to miss
3511 		 * before taking a BMISS interrupt.
3512 		 * Note that we clamp the result to at most 10 beacons.
3513 		 */
3514 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3515 		if (bs.bs_bmissthreshold > 10)
3516 			bs.bs_bmissthreshold = 10;
3517 		else if (bs.bs_bmissthreshold <= 0)
3518 			bs.bs_bmissthreshold = 1;
3519 
3520 		/*
3521 		 * Calculate sleep duration.  The configuration is
3522 		 * given in ms.  We insure a multiple of the beacon
3523 		 * period is used.  Also, if the sleep duration is
3524 		 * greater than the DTIM period then it makes senses
3525 		 * to make it a multiple of that.
3526 		 *
3527 		 * XXX fixed at 100ms
3528 		 */
3529 		bs.bs_sleepduration =
3530 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3531 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3532 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3533 
3534 		DPRINTF(sc, ATH_DEBUG_BEACON,
3535 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3536 			, __func__
3537 			, tsf, tsftu
3538 			, bs.bs_intval
3539 			, bs.bs_nexttbtt
3540 			, bs.bs_dtimperiod
3541 			, bs.bs_nextdtim
3542 			, bs.bs_bmissthreshold
3543 			, bs.bs_sleepduration
3544 			, bs.bs_cfpperiod
3545 			, bs.bs_cfpmaxduration
3546 			, bs.bs_cfpnext
3547 			, bs.bs_timoffset
3548 		);
3549 		ath_hal_intrset(ah, 0);
3550 		ath_hal_beacontimers(ah, &bs);
3551 		sc->sc_imask |= HAL_INT_BMISS;
3552 		ath_hal_intrset(ah, sc->sc_imask);
3553 	} else {
3554 		ath_hal_intrset(ah, 0);
3555 		if (nexttbtt == intval)
3556 			intval |= HAL_BEACON_RESET_TSF;
3557 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3558 			/*
3559 			 * In IBSS mode enable the beacon timers but only
3560 			 * enable SWBA interrupts if we need to manually
3561 			 * prepare beacon frames.  Otherwise we use a
3562 			 * self-linked tx descriptor and let the hardware
3563 			 * deal with things.
3564 			 */
3565 			intval |= HAL_BEACON_ENA;
3566 			if (!sc->sc_hasveol)
3567 				sc->sc_imask |= HAL_INT_SWBA;
3568 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3569 				/*
3570 				 * Pull nexttbtt forward to reflect
3571 				 * the current TSF.
3572 				 */
3573 				tsf = ath_hal_gettsf64(ah);
3574 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3575 				do {
3576 					nexttbtt += intval;
3577 				} while (nexttbtt < tsftu);
3578 			}
3579 			ath_beaconq_config(sc);
3580 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3581 			/*
3582 			 * In AP mode we enable the beacon timers and
3583 			 * SWBA interrupts to prepare beacon frames.
3584 			 */
3585 			intval |= HAL_BEACON_ENA;
3586 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3587 			ath_beaconq_config(sc);
3588 		}
3589 		ath_hal_beaconinit(ah, nexttbtt, intval);
3590 		sc->sc_bmisscount = 0;
3591 		ath_hal_intrset(ah, sc->sc_imask);
3592 		/*
3593 		 * When using a self-linked beacon descriptor in
3594 		 * ibss mode load it once here.
3595 		 */
3596 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3597 			ath_beacon_start_adhoc(sc, vap);
3598 	}
3599 	sc->sc_syncbeacon = 0;
3600 #undef FUDGE
3601 #undef TSF_TO_TU
3602 }
3603 
3604 static void
3605 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3606 {
3607 	bus_addr_t *paddr = (bus_addr_t*) arg;
3608 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3609 	*paddr = segs->ds_addr;
3610 }
3611 
3612 static int
3613 ath_descdma_setup(struct ath_softc *sc,
3614 	struct ath_descdma *dd, ath_bufhead *head,
3615 	const char *name, int nbuf, int ndesc)
3616 {
3617 #define	DS2PHYS(_dd, _ds) \
3618 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3619 	struct ifnet *ifp = sc->sc_ifp;
3620 	struct ath_desc *ds;
3621 	struct ath_buf *bf;
3622 	int i, bsize, error;
3623 
3624 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3625 	    __func__, name, nbuf, ndesc);
3626 
3627 	dd->dd_name = name;
3628 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3629 
3630 	/*
3631 	 * Setup DMA descriptor area.
3632 	 */
3633 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3634 		       PAGE_SIZE, 0,		/* alignment, bounds */
3635 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3636 		       BUS_SPACE_MAXADDR,	/* highaddr */
3637 		       NULL, NULL,		/* filter, filterarg */
3638 		       dd->dd_desc_len,		/* maxsize */
3639 		       1,			/* nsegments */
3640 		       dd->dd_desc_len,		/* maxsegsize */
3641 		       BUS_DMA_ALLOCNOW,	/* flags */
3642 		       NULL,			/* lockfunc */
3643 		       NULL,			/* lockarg */
3644 		       &dd->dd_dmat);
3645 	if (error != 0) {
3646 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3647 		return error;
3648 	}
3649 
3650 	/* allocate descriptors */
3651 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3652 	if (error != 0) {
3653 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3654 			"error %u\n", dd->dd_name, error);
3655 		goto fail0;
3656 	}
3657 
3658 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3659 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3660 				 &dd->dd_dmamap);
3661 	if (error != 0) {
3662 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3663 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3664 		goto fail1;
3665 	}
3666 
3667 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3668 				dd->dd_desc, dd->dd_desc_len,
3669 				ath_load_cb, &dd->dd_desc_paddr,
3670 				BUS_DMA_NOWAIT);
3671 	if (error != 0) {
3672 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3673 			dd->dd_name, error);
3674 		goto fail2;
3675 	}
3676 
3677 	ds = dd->dd_desc;
3678 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3679 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3680 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3681 
3682 	/* allocate rx buffers */
3683 	bsize = sizeof(struct ath_buf) * nbuf;
3684 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3685 	if (bf == NULL) {
3686 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3687 			dd->dd_name, bsize);
3688 		goto fail3;
3689 	}
3690 	dd->dd_bufptr = bf;
3691 
3692 	STAILQ_INIT(head);
3693 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3694 		bf->bf_desc = ds;
3695 		bf->bf_daddr = DS2PHYS(dd, ds);
3696 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3697 				&bf->bf_dmamap);
3698 		if (error != 0) {
3699 			if_printf(ifp, "unable to create dmamap for %s "
3700 				"buffer %u, error %u\n", dd->dd_name, i, error);
3701 			ath_descdma_cleanup(sc, dd, head);
3702 			return error;
3703 		}
3704 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3705 	}
3706 	return 0;
3707 fail3:
3708 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3709 fail2:
3710 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3711 fail1:
3712 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3713 fail0:
3714 	bus_dma_tag_destroy(dd->dd_dmat);
3715 	memset(dd, 0, sizeof(*dd));
3716 	return error;
3717 #undef DS2PHYS
3718 }
3719 
3720 static void
3721 ath_descdma_cleanup(struct ath_softc *sc,
3722 	struct ath_descdma *dd, ath_bufhead *head)
3723 {
3724 	struct ath_buf *bf;
3725 	struct ieee80211_node *ni;
3726 
3727 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3728 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3729 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3730 	bus_dma_tag_destroy(dd->dd_dmat);
3731 
3732 	STAILQ_FOREACH(bf, head, bf_list) {
3733 		if (bf->bf_m) {
3734 			m_freem(bf->bf_m);
3735 			bf->bf_m = NULL;
3736 		}
3737 		if (bf->bf_dmamap != NULL) {
3738 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3739 			bf->bf_dmamap = NULL;
3740 		}
3741 		ni = bf->bf_node;
3742 		bf->bf_node = NULL;
3743 		if (ni != NULL) {
3744 			/*
3745 			 * Reclaim node reference.
3746 			 */
3747 			ieee80211_free_node(ni);
3748 		}
3749 	}
3750 
3751 	STAILQ_INIT(head);
3752 	free(dd->dd_bufptr, M_ATHDEV);
3753 	memset(dd, 0, sizeof(*dd));
3754 }
3755 
3756 static int
3757 ath_desc_alloc(struct ath_softc *sc)
3758 {
3759 	int error;
3760 
3761 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3762 			"rx", ath_rxbuf, 1);
3763 	if (error != 0)
3764 		return error;
3765 
3766 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3767 			"tx", ath_txbuf, ATH_TXDESC);
3768 	if (error != 0) {
3769 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3770 		return error;
3771 	}
3772 
3773 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3774 			"beacon", ATH_BCBUF, 1);
3775 	if (error != 0) {
3776 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3777 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3778 		return error;
3779 	}
3780 	return 0;
3781 }
3782 
3783 static void
3784 ath_desc_free(struct ath_softc *sc)
3785 {
3786 
3787 	if (sc->sc_bdma.dd_desc_len != 0)
3788 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3789 	if (sc->sc_txdma.dd_desc_len != 0)
3790 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3791 	if (sc->sc_rxdma.dd_desc_len != 0)
3792 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3793 }
3794 
3795 static struct ieee80211_node *
3796 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3797 {
3798 	struct ieee80211com *ic = vap->iv_ic;
3799 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3800 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3801 	struct ath_node *an;
3802 
3803 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3804 	if (an == NULL) {
3805 		/* XXX stat+msg */
3806 		return NULL;
3807 	}
3808 	ath_rate_node_init(sc, an);
3809 
3810 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3811 	return &an->an_node;
3812 }
3813 
3814 static void
3815 ath_node_free(struct ieee80211_node *ni)
3816 {
3817 	struct ieee80211com *ic = ni->ni_ic;
3818         struct ath_softc *sc = ic->ic_ifp->if_softc;
3819 
3820 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3821 
3822 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3823 	sc->sc_node_free(ni);
3824 }
3825 
3826 static void
3827 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3828 {
3829 	struct ieee80211com *ic = ni->ni_ic;
3830 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3831 	struct ath_hal *ah = sc->sc_ah;
3832 
3833 	*rssi = ic->ic_node_getrssi(ni);
3834 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3835 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3836 	else
3837 		*noise = -95;		/* nominally correct */
3838 }
3839 
3840 static int
3841 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3842 {
3843 	struct ath_hal *ah = sc->sc_ah;
3844 	int error;
3845 	struct mbuf *m;
3846 	struct ath_desc *ds;
3847 
3848 	m = bf->bf_m;
3849 	if (m == NULL) {
3850 		/*
3851 		 * NB: by assigning a page to the rx dma buffer we
3852 		 * implicitly satisfy the Atheros requirement that
3853 		 * this buffer be cache-line-aligned and sized to be
3854 		 * multiple of the cache line size.  Not doing this
3855 		 * causes weird stuff to happen (for the 5210 at least).
3856 		 */
3857 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3858 		if (m == NULL) {
3859 			DPRINTF(sc, ATH_DEBUG_ANY,
3860 				"%s: no mbuf/cluster\n", __func__);
3861 			sc->sc_stats.ast_rx_nombuf++;
3862 			return ENOMEM;
3863 		}
3864 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3865 
3866 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3867 					     bf->bf_dmamap, m,
3868 					     bf->bf_segs, &bf->bf_nseg,
3869 					     BUS_DMA_NOWAIT);
3870 		if (error != 0) {
3871 			DPRINTF(sc, ATH_DEBUG_ANY,
3872 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3873 			    __func__, error);
3874 			sc->sc_stats.ast_rx_busdma++;
3875 			m_freem(m);
3876 			return error;
3877 		}
3878 		KASSERT(bf->bf_nseg == 1,
3879 			("multi-segment packet; nseg %u", bf->bf_nseg));
3880 		bf->bf_m = m;
3881 	}
3882 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3883 
3884 	/*
3885 	 * Setup descriptors.  For receive we always terminate
3886 	 * the descriptor list with a self-linked entry so we'll
3887 	 * not get overrun under high load (as can happen with a
3888 	 * 5212 when ANI processing enables PHY error frames).
3889 	 *
3890 	 * To insure the last descriptor is self-linked we create
3891 	 * each descriptor as self-linked and add it to the end.  As
3892 	 * each additional descriptor is added the previous self-linked
3893 	 * entry is ``fixed'' naturally.  This should be safe even
3894 	 * if DMA is happening.  When processing RX interrupts we
3895 	 * never remove/process the last, self-linked, entry on the
3896 	 * descriptor list.  This insures the hardware always has
3897 	 * someplace to write a new frame.
3898 	 */
3899 	ds = bf->bf_desc;
3900 	ds->ds_link = bf->bf_daddr;	/* link to self */
3901 	ds->ds_data = bf->bf_segs[0].ds_addr;
3902 	ath_hal_setuprxdesc(ah, ds
3903 		, m->m_len		/* buffer size */
3904 		, 0
3905 	);
3906 
3907 	if (sc->sc_rxlink != NULL)
3908 		*sc->sc_rxlink = bf->bf_daddr;
3909 	sc->sc_rxlink = &ds->ds_link;
3910 	return 0;
3911 }
3912 
3913 /*
3914  * Extend 15-bit time stamp from rx descriptor to
3915  * a full 64-bit TSF using the specified TSF.
3916  */
3917 static __inline u_int64_t
3918 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3919 {
3920 	if ((tsf & 0x7fff) < rstamp)
3921 		tsf -= 0x8000;
3922 	return ((tsf &~ 0x7fff) | rstamp);
3923 }
3924 
3925 /*
3926  * Intercept management frames to collect beacon rssi data
3927  * and to do ibss merges.
3928  */
3929 static void
3930 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3931 	int subtype, int rssi, int noise, u_int32_t rstamp)
3932 {
3933 	struct ieee80211vap *vap = ni->ni_vap;
3934 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3935 
3936 	/*
3937 	 * Call up first so subsequent work can use information
3938 	 * potentially stored in the node (e.g. for ibss merge).
3939 	 */
3940 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3941 	switch (subtype) {
3942 	case IEEE80211_FC0_SUBTYPE_BEACON:
3943 		/* update rssi statistics for use by the hal */
3944 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3945 		if (sc->sc_syncbeacon &&
3946 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3947 			/*
3948 			 * Resync beacon timers using the tsf of the beacon
3949 			 * frame we just received.
3950 			 */
3951 			ath_beacon_config(sc, vap);
3952 		}
3953 		/* fall thru... */
3954 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3955 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3956 		    vap->iv_state == IEEE80211_S_RUN) {
3957 			u_int64_t tsf = ath_extend_tsf(rstamp,
3958 				ath_hal_gettsf64(sc->sc_ah));
3959 			/*
3960 			 * Handle ibss merge as needed; check the tsf on the
3961 			 * frame before attempting the merge.  The 802.11 spec
3962 			 * says the station should change it's bssid to match
3963 			 * the oldest station with the same ssid, where oldest
3964 			 * is determined by the tsf.  Note that hardware
3965 			 * reconfiguration happens through callback to
3966 			 * ath_newstate as the state machine will go from
3967 			 * RUN -> RUN when this happens.
3968 			 */
3969 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3970 				DPRINTF(sc, ATH_DEBUG_STATE,
3971 				    "ibss merge, rstamp %u tsf %ju "
3972 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3973 				    (uintmax_t)ni->ni_tstamp.tsf);
3974 				(void) ieee80211_ibss_merge(ni);
3975 			}
3976 		}
3977 		break;
3978 	}
3979 }
3980 
3981 /*
3982  * Set the default antenna.
3983  */
3984 static void
3985 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3986 {
3987 	struct ath_hal *ah = sc->sc_ah;
3988 
3989 	/* XXX block beacon interrupts */
3990 	ath_hal_setdefantenna(ah, antenna);
3991 	if (sc->sc_defant != antenna)
3992 		sc->sc_stats.ast_ant_defswitch++;
3993 	sc->sc_defant = antenna;
3994 	sc->sc_rxotherant = 0;
3995 }
3996 
3997 static int
3998 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3999 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
4000 {
4001 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
4002 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
4003 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
4004 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
4005 	struct ath_softc *sc = ifp->if_softc;
4006 	const HAL_RATE_TABLE *rt;
4007 	uint8_t rix;
4008 
4009 	/*
4010 	 * Discard anything shorter than an ack or cts.
4011 	 */
4012 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
4013 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
4014 			__func__, m->m_pkthdr.len);
4015 		sc->sc_stats.ast_rx_tooshort++;
4016 		return 0;
4017 	}
4018 	rt = sc->sc_currates;
4019 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4020 	rix = rt->rateCodeToIndex[rs->rs_rate];
4021 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
4022 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
4023 #ifdef AH_SUPPORT_AR5416
4024 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
4025 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
4026 		struct ieee80211com *ic = ifp->if_l2com;
4027 
4028 		if ((rs->rs_flags & HAL_RX_2040) == 0)
4029 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
4030 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
4031 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
4032 		else
4033 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
4034 		if ((rs->rs_flags & HAL_RX_GI) == 0)
4035 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
4036 	}
4037 #endif
4038 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
4039 	if (rs->rs_status & HAL_RXERR_CRC)
4040 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
4041 	/* XXX propagate other error flags from descriptor */
4042 	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
4043 	sc->sc_rx_th.wr_antnoise = nf;
4044 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
4045 
4046 	bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
4047 
4048 	return 1;
4049 #undef CHAN_HT
4050 #undef CHAN_HT20
4051 #undef CHAN_HT40U
4052 #undef CHAN_HT40D
4053 }
4054 
4055 static void
4056 ath_handle_micerror(struct ieee80211com *ic,
4057 	struct ieee80211_frame *wh, int keyix)
4058 {
4059 	struct ieee80211_node *ni;
4060 
4061 	/* XXX recheck MIC to deal w/ chips that lie */
4062 	/* XXX discard MIC errors on !data frames */
4063 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
4064 	if (ni != NULL) {
4065 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
4066 		ieee80211_free_node(ni);
4067 	}
4068 }
4069 
4070 static void
4071 ath_rx_proc(void *arg, int npending)
4072 {
4073 #define	PA2DESC(_sc, _pa) \
4074 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4075 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4076 	struct ath_softc *sc = arg;
4077 	struct ath_buf *bf;
4078 	struct ifnet *ifp = sc->sc_ifp;
4079 	struct ieee80211com *ic = ifp->if_l2com;
4080 	struct ath_hal *ah = sc->sc_ah;
4081 	struct ath_desc *ds;
4082 	struct ath_rx_status *rs;
4083 	struct mbuf *m;
4084 	struct ieee80211_node *ni;
4085 	int len, type, ngood;
4086 	u_int phyerr;
4087 	HAL_STATUS status;
4088 	int16_t nf;
4089 	u_int64_t tsf;
4090 
4091 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
4092 	ngood = 0;
4093 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
4094 	sc->sc_stats.ast_rx_noise = nf;
4095 	tsf = ath_hal_gettsf64(ah);
4096 	do {
4097 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
4098 		if (bf == NULL) {		/* NB: shouldn't happen */
4099 			if_printf(ifp, "%s: no buffer!\n", __func__);
4100 			break;
4101 		}
4102 		m = bf->bf_m;
4103 		if (m == NULL) {		/* NB: shouldn't happen */
4104 			/*
4105 			 * If mbuf allocation failed previously there
4106 			 * will be no mbuf; try again to re-populate it.
4107 			 */
4108 			/* XXX make debug msg */
4109 			if_printf(ifp, "%s: no mbuf!\n", __func__);
4110 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4111 			goto rx_next;
4112 		}
4113 		ds = bf->bf_desc;
4114 		if (ds->ds_link == bf->bf_daddr) {
4115 			/* NB: never process the self-linked entry at the end */
4116 			break;
4117 		}
4118 		/* XXX sync descriptor memory */
4119 		/*
4120 		 * Must provide the virtual address of the current
4121 		 * descriptor, the physical address, and the virtual
4122 		 * address of the next descriptor in the h/w chain.
4123 		 * This allows the HAL to look ahead to see if the
4124 		 * hardware is done with a descriptor by checking the
4125 		 * done bit in the following descriptor and the address
4126 		 * of the current descriptor the DMA engine is working
4127 		 * on.  All this is necessary because of our use of
4128 		 * a self-linked list to avoid rx overruns.
4129 		 */
4130 		rs = &bf->bf_status.ds_rxstat;
4131 		status = ath_hal_rxprocdesc(ah, ds,
4132 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4133 #ifdef ATH_DEBUG
4134 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4135 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4136 #endif
4137 		if (status == HAL_EINPROGRESS)
4138 			break;
4139 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4140 		if (rs->rs_status != 0) {
4141 			if (rs->rs_status & HAL_RXERR_CRC)
4142 				sc->sc_stats.ast_rx_crcerr++;
4143 			if (rs->rs_status & HAL_RXERR_FIFO)
4144 				sc->sc_stats.ast_rx_fifoerr++;
4145 			if (rs->rs_status & HAL_RXERR_PHY) {
4146 				sc->sc_stats.ast_rx_phyerr++;
4147 				phyerr = rs->rs_phyerr & 0x1f;
4148 				sc->sc_stats.ast_rx_phy[phyerr]++;
4149 				goto rx_error;	/* NB: don't count in ierrors */
4150 			}
4151 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4152 				/*
4153 				 * Decrypt error.  If the error occurred
4154 				 * because there was no hardware key, then
4155 				 * let the frame through so the upper layers
4156 				 * can process it.  This is necessary for 5210
4157 				 * parts which have no way to setup a ``clear''
4158 				 * key cache entry.
4159 				 *
4160 				 * XXX do key cache faulting
4161 				 */
4162 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4163 					goto rx_accept;
4164 				sc->sc_stats.ast_rx_badcrypt++;
4165 			}
4166 			if (rs->rs_status & HAL_RXERR_MIC) {
4167 				sc->sc_stats.ast_rx_badmic++;
4168 				/*
4169 				 * Do minimal work required to hand off
4170 				 * the 802.11 header for notifcation.
4171 				 */
4172 				/* XXX frag's and qos frames */
4173 				len = rs->rs_datalen;
4174 				if (len >= sizeof (struct ieee80211_frame)) {
4175 					bus_dmamap_sync(sc->sc_dmat,
4176 					    bf->bf_dmamap,
4177 					    BUS_DMASYNC_POSTREAD);
4178 					ath_handle_micerror(ic,
4179 					    mtod(m, struct ieee80211_frame *),
4180 					    sc->sc_splitmic ?
4181 						rs->rs_keyix-32 : rs->rs_keyix);
4182 				}
4183 			}
4184 			ifp->if_ierrors++;
4185 rx_error:
4186 			/*
4187 			 * Cleanup any pending partial frame.
4188 			 */
4189 			if (sc->sc_rxpending != NULL) {
4190 				m_freem(sc->sc_rxpending);
4191 				sc->sc_rxpending = NULL;
4192 			}
4193 			/*
4194 			 * When a tap is present pass error frames
4195 			 * that have been requested.  By default we
4196 			 * pass decrypt+mic errors but others may be
4197 			 * interesting (e.g. crc).
4198 			 */
4199 			if (bpf_peers_present(ifp->if_bpf) &&
4200 			    (rs->rs_status & sc->sc_monpass)) {
4201 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4202 				    BUS_DMASYNC_POSTREAD);
4203 				/* NB: bpf needs the mbuf length setup */
4204 				len = rs->rs_datalen;
4205 				m->m_pkthdr.len = m->m_len = len;
4206 				(void) ath_rx_tap(ifp, m, rs, tsf, nf);
4207 			}
4208 			/* XXX pass MIC errors up for s/w reclaculation */
4209 			goto rx_next;
4210 		}
4211 rx_accept:
4212 		/*
4213 		 * Sync and unmap the frame.  At this point we're
4214 		 * committed to passing the mbuf somewhere so clear
4215 		 * bf_m; this means a new mbuf must be allocated
4216 		 * when the rx descriptor is setup again to receive
4217 		 * another frame.
4218 		 */
4219 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4220 		    BUS_DMASYNC_POSTREAD);
4221 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4222 		bf->bf_m = NULL;
4223 
4224 		len = rs->rs_datalen;
4225 		m->m_len = len;
4226 
4227 		if (rs->rs_more) {
4228 			/*
4229 			 * Frame spans multiple descriptors; save
4230 			 * it for the next completed descriptor, it
4231 			 * will be used to construct a jumbogram.
4232 			 */
4233 			if (sc->sc_rxpending != NULL) {
4234 				/* NB: max frame size is currently 2 clusters */
4235 				sc->sc_stats.ast_rx_toobig++;
4236 				m_freem(sc->sc_rxpending);
4237 			}
4238 			m->m_pkthdr.rcvif = ifp;
4239 			m->m_pkthdr.len = len;
4240 			sc->sc_rxpending = m;
4241 			goto rx_next;
4242 		} else if (sc->sc_rxpending != NULL) {
4243 			/*
4244 			 * This is the second part of a jumbogram,
4245 			 * chain it to the first mbuf, adjust the
4246 			 * frame length, and clear the rxpending state.
4247 			 */
4248 			sc->sc_rxpending->m_next = m;
4249 			sc->sc_rxpending->m_pkthdr.len += len;
4250 			m = sc->sc_rxpending;
4251 			sc->sc_rxpending = NULL;
4252 		} else {
4253 			/*
4254 			 * Normal single-descriptor receive; setup
4255 			 * the rcvif and packet length.
4256 			 */
4257 			m->m_pkthdr.rcvif = ifp;
4258 			m->m_pkthdr.len = len;
4259 		}
4260 
4261 		ifp->if_ipackets++;
4262 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4263 
4264 		if (bpf_peers_present(ifp->if_bpf) &&
4265 		    !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4266 			m_freem(m);		/* XXX reclaim */
4267 			goto rx_next;
4268 		}
4269 
4270 		/*
4271 		 * From this point on we assume the frame is at least
4272 		 * as large as ieee80211_frame_min; verify that.
4273 		 */
4274 		if (len < IEEE80211_MIN_LEN) {
4275 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4276 				__func__, len);
4277 			sc->sc_stats.ast_rx_tooshort++;
4278 			m_freem(m);
4279 			goto rx_next;
4280 		}
4281 
4282 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4283 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4284 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4285 
4286 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4287 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4288 		}
4289 
4290 		m_adj(m, -IEEE80211_CRC_LEN);
4291 
4292 		/*
4293 		 * Locate the node for sender, track state, and then
4294 		 * pass the (referenced) node up to the 802.11 layer
4295 		 * for its use.
4296 		 */
4297 		ni = ieee80211_find_rxnode_withkey(ic,
4298 			mtod(m, const struct ieee80211_frame_min *),
4299 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4300 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4301 		if (ni != NULL) {
4302 			/*
4303 			 * Sending station is known, dispatch directly.
4304 			 */
4305 #ifdef ATH_SUPPORT_TDMA
4306 			sc->sc_tdmars = rs;
4307 #endif
4308 			type = ieee80211_input(ni, m,
4309 			    rs->rs_rssi, nf, rs->rs_tstamp);
4310 			ieee80211_free_node(ni);
4311 			/*
4312 			 * Arrange to update the last rx timestamp only for
4313 			 * frames from our ap when operating in station mode.
4314 			 * This assumes the rx key is always setup when
4315 			 * associated.
4316 			 */
4317 			if (ic->ic_opmode == IEEE80211_M_STA &&
4318 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4319 				ngood++;
4320 		} else {
4321 			type = ieee80211_input_all(ic, m,
4322 			    rs->rs_rssi, nf, rs->rs_tstamp);
4323 		}
4324 		/*
4325 		 * Track rx rssi and do any rx antenna management.
4326 		 */
4327 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4328 		if (sc->sc_diversity) {
4329 			/*
4330 			 * When using fast diversity, change the default rx
4331 			 * antenna if diversity chooses the other antenna 3
4332 			 * times in a row.
4333 			 */
4334 			if (sc->sc_defant != rs->rs_antenna) {
4335 				if (++sc->sc_rxotherant >= 3)
4336 					ath_setdefantenna(sc, rs->rs_antenna);
4337 			} else
4338 				sc->sc_rxotherant = 0;
4339 		}
4340 		if (sc->sc_softled) {
4341 			/*
4342 			 * Blink for any data frame.  Otherwise do a
4343 			 * heartbeat-style blink when idle.  The latter
4344 			 * is mainly for station mode where we depend on
4345 			 * periodic beacon frames to trigger the poll event.
4346 			 */
4347 			if (type == IEEE80211_FC0_TYPE_DATA) {
4348 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4349 				ath_led_event(sc,
4350 				    rt->rateCodeToIndex[rs->rs_rate]);
4351 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4352 				ath_led_event(sc, 0);
4353 		}
4354 rx_next:
4355 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4356 	} while (ath_rxbuf_init(sc, bf) == 0);
4357 
4358 	/* rx signal state monitoring */
4359 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4360 	if (ngood)
4361 		sc->sc_lastrx = tsf;
4362 
4363 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4364 	    !IFQ_IS_EMPTY(&ifp->if_snd))
4365 		ath_start(ifp);
4366 
4367 #undef PA2DESC
4368 }
4369 
4370 static void
4371 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4372 {
4373 	txq->axq_qnum = qnum;
4374 	txq->axq_depth = 0;
4375 	txq->axq_intrcnt = 0;
4376 	txq->axq_link = NULL;
4377 	STAILQ_INIT(&txq->axq_q);
4378 	ATH_TXQ_LOCK_INIT(sc, txq);
4379 	TAILQ_INIT(&txq->axq_stageq);
4380 	txq->axq_curage = 0;
4381 }
4382 
4383 /*
4384  * Setup a h/w transmit queue.
4385  */
4386 static struct ath_txq *
4387 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4388 {
4389 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4390 	struct ath_hal *ah = sc->sc_ah;
4391 	HAL_TXQ_INFO qi;
4392 	int qnum;
4393 
4394 	memset(&qi, 0, sizeof(qi));
4395 	qi.tqi_subtype = subtype;
4396 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4397 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4398 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4399 	/*
4400 	 * Enable interrupts only for EOL and DESC conditions.
4401 	 * We mark tx descriptors to receive a DESC interrupt
4402 	 * when a tx queue gets deep; otherwise waiting for the
4403 	 * EOL to reap descriptors.  Note that this is done to
4404 	 * reduce interrupt load and this only defers reaping
4405 	 * descriptors, never transmitting frames.  Aside from
4406 	 * reducing interrupts this also permits more concurrency.
4407 	 * The only potential downside is if the tx queue backs
4408 	 * up in which case the top half of the kernel may backup
4409 	 * due to a lack of tx descriptors.
4410 	 */
4411 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4412 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4413 	if (qnum == -1) {
4414 		/*
4415 		 * NB: don't print a message, this happens
4416 		 * normally on parts with too few tx queues
4417 		 */
4418 		return NULL;
4419 	}
4420 	if (qnum >= N(sc->sc_txq)) {
4421 		device_printf(sc->sc_dev,
4422 			"hal qnum %u out of range, max %zu!\n",
4423 			qnum, N(sc->sc_txq));
4424 		ath_hal_releasetxqueue(ah, qnum);
4425 		return NULL;
4426 	}
4427 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4428 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4429 		sc->sc_txqsetup |= 1<<qnum;
4430 	}
4431 	return &sc->sc_txq[qnum];
4432 #undef N
4433 }
4434 
4435 /*
4436  * Setup a hardware data transmit queue for the specified
4437  * access control.  The hal may not support all requested
4438  * queues in which case it will return a reference to a
4439  * previously setup queue.  We record the mapping from ac's
4440  * to h/w queues for use by ath_tx_start and also track
4441  * the set of h/w queues being used to optimize work in the
4442  * transmit interrupt handler and related routines.
4443  */
4444 static int
4445 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4446 {
4447 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4448 	struct ath_txq *txq;
4449 
4450 	if (ac >= N(sc->sc_ac2q)) {
4451 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4452 			ac, N(sc->sc_ac2q));
4453 		return 0;
4454 	}
4455 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4456 	if (txq != NULL) {
4457 		sc->sc_ac2q[ac] = txq;
4458 		return 1;
4459 	} else
4460 		return 0;
4461 #undef N
4462 }
4463 
4464 /*
4465  * Update WME parameters for a transmit queue.
4466  */
4467 static int
4468 ath_txq_update(struct ath_softc *sc, int ac)
4469 {
4470 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4471 #define	ATH_TXOP_TO_US(v)		(v<<5)
4472 	struct ifnet *ifp = sc->sc_ifp;
4473 	struct ieee80211com *ic = ifp->if_l2com;
4474 	struct ath_txq *txq = sc->sc_ac2q[ac];
4475 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4476 	struct ath_hal *ah = sc->sc_ah;
4477 	HAL_TXQ_INFO qi;
4478 
4479 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4480 #ifdef ATH_SUPPORT_TDMA
4481 	if (sc->sc_tdma) {
4482 		/*
4483 		 * AIFS is zero so there's no pre-transmit wait.  The
4484 		 * burst time defines the slot duration and is configured
4485 		 * via sysctl.  The QCU is setup to not do post-xmit
4486 		 * back off, lockout all lower-priority QCU's, and fire
4487 		 * off the DMA beacon alert timer which is setup based
4488 		 * on the slot configuration.
4489 		 */
4490 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4491 			      | HAL_TXQ_TXERRINT_ENABLE
4492 			      | HAL_TXQ_TXURNINT_ENABLE
4493 			      | HAL_TXQ_TXEOLINT_ENABLE
4494 			      | HAL_TXQ_DBA_GATED
4495 			      | HAL_TXQ_BACKOFF_DISABLE
4496 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4497 			      ;
4498 		qi.tqi_aifs = 0;
4499 		/* XXX +dbaprep? */
4500 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4501 		qi.tqi_burstTime = qi.tqi_readyTime;
4502 	} else {
4503 #endif
4504 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4505 			      | HAL_TXQ_TXERRINT_ENABLE
4506 			      | HAL_TXQ_TXDESCINT_ENABLE
4507 			      | HAL_TXQ_TXURNINT_ENABLE
4508 			      ;
4509 		qi.tqi_aifs = wmep->wmep_aifsn;
4510 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4511 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4512 		qi.tqi_readyTime = 0;
4513 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4514 #ifdef ATH_SUPPORT_TDMA
4515 	}
4516 #endif
4517 
4518 	DPRINTF(sc, ATH_DEBUG_RESET,
4519 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4520 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4521 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4522 
4523 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4524 		if_printf(ifp, "unable to update hardware queue "
4525 			"parameters for %s traffic!\n",
4526 			ieee80211_wme_acnames[ac]);
4527 		return 0;
4528 	} else {
4529 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4530 		return 1;
4531 	}
4532 #undef ATH_TXOP_TO_US
4533 #undef ATH_EXPONENT_TO_VALUE
4534 }
4535 
4536 /*
4537  * Callback from the 802.11 layer to update WME parameters.
4538  */
4539 static int
4540 ath_wme_update(struct ieee80211com *ic)
4541 {
4542 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4543 
4544 	return !ath_txq_update(sc, WME_AC_BE) ||
4545 	    !ath_txq_update(sc, WME_AC_BK) ||
4546 	    !ath_txq_update(sc, WME_AC_VI) ||
4547 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4548 }
4549 
4550 /*
4551  * Reclaim resources for a setup queue.
4552  */
4553 static void
4554 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4555 {
4556 
4557 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4558 	ATH_TXQ_LOCK_DESTROY(txq);
4559 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4560 }
4561 
4562 /*
4563  * Reclaim all tx queue resources.
4564  */
4565 static void
4566 ath_tx_cleanup(struct ath_softc *sc)
4567 {
4568 	int i;
4569 
4570 	ATH_TXBUF_LOCK_DESTROY(sc);
4571 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4572 		if (ATH_TXQ_SETUP(sc, i))
4573 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4574 }
4575 
4576 /*
4577  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4578  */
4579 static int
4580 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4581 {
4582 	int i;
4583 
4584 	for (i = 0; i < rt->rateCount; i++)
4585 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4586 			return i;
4587 	return 0;		/* NB: lowest rate */
4588 }
4589 
4590 /*
4591  * Reclaim mbuf resources.  For fragmented frames we
4592  * need to claim each frag chained with m_nextpkt.
4593  */
4594 static void
4595 ath_freetx(struct mbuf *m)
4596 {
4597 	struct mbuf *next;
4598 
4599 	do {
4600 		next = m->m_nextpkt;
4601 		m->m_nextpkt = NULL;
4602 		m_freem(m);
4603 	} while ((m = next) != NULL);
4604 }
4605 
4606 static int
4607 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4608 {
4609 	struct mbuf *m;
4610 	int error;
4611 
4612 	/*
4613 	 * Load the DMA map so any coalescing is done.  This
4614 	 * also calculates the number of descriptors we need.
4615 	 */
4616 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4617 				     bf->bf_segs, &bf->bf_nseg,
4618 				     BUS_DMA_NOWAIT);
4619 	if (error == EFBIG) {
4620 		/* XXX packet requires too many descriptors */
4621 		bf->bf_nseg = ATH_TXDESC+1;
4622 	} else if (error != 0) {
4623 		sc->sc_stats.ast_tx_busdma++;
4624 		ath_freetx(m0);
4625 		return error;
4626 	}
4627 	/*
4628 	 * Discard null packets and check for packets that
4629 	 * require too many TX descriptors.  We try to convert
4630 	 * the latter to a cluster.
4631 	 */
4632 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4633 		sc->sc_stats.ast_tx_linear++;
4634 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4635 		if (m == NULL) {
4636 			ath_freetx(m0);
4637 			sc->sc_stats.ast_tx_nombuf++;
4638 			return ENOMEM;
4639 		}
4640 		m0 = m;
4641 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4642 					     bf->bf_segs, &bf->bf_nseg,
4643 					     BUS_DMA_NOWAIT);
4644 		if (error != 0) {
4645 			sc->sc_stats.ast_tx_busdma++;
4646 			ath_freetx(m0);
4647 			return error;
4648 		}
4649 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4650 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4651 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4652 		sc->sc_stats.ast_tx_nodata++;
4653 		ath_freetx(m0);
4654 		return EIO;
4655 	}
4656 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4657 		__func__, m0, m0->m_pkthdr.len);
4658 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4659 	bf->bf_m = m0;
4660 
4661 	return 0;
4662 }
4663 
4664 static void
4665 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4666 {
4667 	struct ath_hal *ah = sc->sc_ah;
4668 	struct ath_desc *ds, *ds0;
4669 	int i;
4670 
4671 	/*
4672 	 * Fillin the remainder of the descriptor info.
4673 	 */
4674 	ds0 = ds = bf->bf_desc;
4675 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4676 		ds->ds_data = bf->bf_segs[i].ds_addr;
4677 		if (i == bf->bf_nseg - 1)
4678 			ds->ds_link = 0;
4679 		else
4680 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4681 		ath_hal_filltxdesc(ah, ds
4682 			, bf->bf_segs[i].ds_len	/* segment length */
4683 			, i == 0		/* first segment */
4684 			, i == bf->bf_nseg - 1	/* last segment */
4685 			, ds0			/* first descriptor */
4686 		);
4687 		DPRINTF(sc, ATH_DEBUG_XMIT,
4688 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4689 			__func__, i, ds->ds_link, ds->ds_data,
4690 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4691 	}
4692 	/*
4693 	 * Insert the frame on the outbound list and pass it on
4694 	 * to the hardware.  Multicast frames buffered for power
4695 	 * save stations and transmit from the CAB queue are stored
4696 	 * on a s/w only queue and loaded on to the CAB queue in
4697 	 * the SWBA handler since frames only go out on DTIM and
4698 	 * to avoid possible races.
4699 	 */
4700 	ATH_TXQ_LOCK(txq);
4701 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4702 	     ("busy status 0x%x", bf->bf_flags));
4703 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4704 #ifdef ATH_SUPPORT_TDMA
4705 		int qbusy;
4706 
4707 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4708 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4709 		if (txq->axq_link == NULL) {
4710 			/*
4711 			 * Be careful writing the address to TXDP.  If
4712 			 * the tx q is enabled then this write will be
4713 			 * ignored.  Normally this is not an issue but
4714 			 * when tdma is in use and the q is beacon gated
4715 			 * this race can occur.  If the q is busy then
4716 			 * defer the work to later--either when another
4717 			 * packet comes along or when we prepare a beacon
4718 			 * frame at SWBA.
4719 			 */
4720 			if (!qbusy) {
4721 				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4722 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4723 				DPRINTF(sc, ATH_DEBUG_XMIT,
4724 				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4725 				    __func__, txq->axq_qnum,
4726 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4727 				    txq->axq_depth);
4728 			} else {
4729 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4730 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4731 				    "%s: Q%u busy, defer enable\n", __func__,
4732 				    txq->axq_qnum);
4733 			}
4734 		} else {
4735 			*txq->axq_link = bf->bf_daddr;
4736 			DPRINTF(sc, ATH_DEBUG_XMIT,
4737 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4738 			    txq->axq_qnum, txq->axq_link,
4739 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4740 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4741 				/*
4742 				 * The q was busy when we previously tried
4743 				 * to write the address of the first buffer
4744 				 * in the chain.  Since it's not busy now
4745 				 * handle this chore.  We are certain the
4746 				 * buffer at the front is the right one since
4747 				 * axq_link is NULL only when the buffer list
4748 				 * is/was empty.
4749 				 */
4750 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4751 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4752 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4753 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4754 				    "%s: Q%u restarted\n", __func__,
4755 				    txq->axq_qnum);
4756 			}
4757 		}
4758 #else
4759 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4760 		if (txq->axq_link == NULL) {
4761 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4762 			DPRINTF(sc, ATH_DEBUG_XMIT,
4763 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4764 			    __func__, txq->axq_qnum,
4765 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4766 			    txq->axq_depth);
4767 		} else {
4768 			*txq->axq_link = bf->bf_daddr;
4769 			DPRINTF(sc, ATH_DEBUG_XMIT,
4770 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4771 			    txq->axq_qnum, txq->axq_link,
4772 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4773 		}
4774 #endif /* ATH_SUPPORT_TDMA */
4775 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4776 		ath_hal_txstart(ah, txq->axq_qnum);
4777 	} else {
4778 		if (txq->axq_link != NULL) {
4779 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4780 			struct ieee80211_frame *wh;
4781 
4782 			/* mark previous frame */
4783 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4784 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4785 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4786 			    BUS_DMASYNC_PREWRITE);
4787 
4788 			/* link descriptor */
4789 			*txq->axq_link = bf->bf_daddr;
4790 		}
4791 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4792 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4793 	}
4794 	ATH_TXQ_UNLOCK(txq);
4795 }
4796 
4797 static int
4798 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4799     struct mbuf *m0)
4800 {
4801 	struct ieee80211vap *vap = ni->ni_vap;
4802 	struct ath_vap *avp = ATH_VAP(vap);
4803 	struct ath_hal *ah = sc->sc_ah;
4804 	struct ifnet *ifp = sc->sc_ifp;
4805 	struct ieee80211com *ic = ifp->if_l2com;
4806 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4807 	int error, iswep, ismcast, isfrag, ismrr;
4808 	int keyix, hdrlen, pktlen, try0;
4809 	u_int8_t rix, txrate, ctsrate;
4810 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4811 	struct ath_desc *ds;
4812 	struct ath_txq *txq;
4813 	struct ieee80211_frame *wh;
4814 	u_int subtype, flags, ctsduration;
4815 	HAL_PKT_TYPE atype;
4816 	const HAL_RATE_TABLE *rt;
4817 	HAL_BOOL shortPreamble;
4818 	struct ath_node *an;
4819 	u_int pri;
4820 
4821 	wh = mtod(m0, struct ieee80211_frame *);
4822 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4823 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4824 	isfrag = m0->m_flags & M_FRAG;
4825 	hdrlen = ieee80211_anyhdrsize(wh);
4826 	/*
4827 	 * Packet length must not include any
4828 	 * pad bytes; deduct them here.
4829 	 */
4830 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4831 
4832 	if (iswep) {
4833 		const struct ieee80211_cipher *cip;
4834 		struct ieee80211_key *k;
4835 
4836 		/*
4837 		 * Construct the 802.11 header+trailer for an encrypted
4838 		 * frame. The only reason this can fail is because of an
4839 		 * unknown or unsupported cipher/key type.
4840 		 */
4841 		k = ieee80211_crypto_encap(ni, m0);
4842 		if (k == NULL) {
4843 			/*
4844 			 * This can happen when the key is yanked after the
4845 			 * frame was queued.  Just discard the frame; the
4846 			 * 802.11 layer counts failures and provides
4847 			 * debugging/diagnostics.
4848 			 */
4849 			ath_freetx(m0);
4850 			return EIO;
4851 		}
4852 		/*
4853 		 * Adjust the packet + header lengths for the crypto
4854 		 * additions and calculate the h/w key index.  When
4855 		 * a s/w mic is done the frame will have had any mic
4856 		 * added to it prior to entry so m0->m_pkthdr.len will
4857 		 * account for it. Otherwise we need to add it to the
4858 		 * packet length.
4859 		 */
4860 		cip = k->wk_cipher;
4861 		hdrlen += cip->ic_header;
4862 		pktlen += cip->ic_header + cip->ic_trailer;
4863 		/* NB: frags always have any TKIP MIC done in s/w */
4864 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4865 			pktlen += cip->ic_miclen;
4866 		keyix = k->wk_keyix;
4867 
4868 		/* packet header may have moved, reset our local pointer */
4869 		wh = mtod(m0, struct ieee80211_frame *);
4870 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4871 		/*
4872 		 * Use station key cache slot, if assigned.
4873 		 */
4874 		keyix = ni->ni_ucastkey.wk_keyix;
4875 		if (keyix == IEEE80211_KEYIX_NONE)
4876 			keyix = HAL_TXKEYIX_INVALID;
4877 	} else
4878 		keyix = HAL_TXKEYIX_INVALID;
4879 
4880 	pktlen += IEEE80211_CRC_LEN;
4881 
4882 	/*
4883 	 * Load the DMA map so any coalescing is done.  This
4884 	 * also calculates the number of descriptors we need.
4885 	 */
4886 	error = ath_tx_dmasetup(sc, bf, m0);
4887 	if (error != 0)
4888 		return error;
4889 	bf->bf_node = ni;			/* NB: held reference */
4890 	m0 = bf->bf_m;				/* NB: may have changed */
4891 	wh = mtod(m0, struct ieee80211_frame *);
4892 
4893 	/* setup descriptors */
4894 	ds = bf->bf_desc;
4895 	rt = sc->sc_currates;
4896 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4897 
4898 	/*
4899 	 * NB: the 802.11 layer marks whether or not we should
4900 	 * use short preamble based on the current mode and
4901 	 * negotiated parameters.
4902 	 */
4903 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4904 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4905 		shortPreamble = AH_TRUE;
4906 		sc->sc_stats.ast_tx_shortpre++;
4907 	} else {
4908 		shortPreamble = AH_FALSE;
4909 	}
4910 
4911 	an = ATH_NODE(ni);
4912 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4913 	ismrr = 0;				/* default no multi-rate retry*/
4914 	pri = M_WME_GETAC(m0);			/* honor classification */
4915 	/* XXX use txparams instead of fixed values */
4916 	/*
4917 	 * Calculate Atheros packet type from IEEE80211 packet header,
4918 	 * setup for rate calculations, and select h/w transmit queue.
4919 	 */
4920 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4921 	case IEEE80211_FC0_TYPE_MGT:
4922 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4923 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4924 			atype = HAL_PKT_TYPE_BEACON;
4925 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4926 			atype = HAL_PKT_TYPE_PROBE_RESP;
4927 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4928 			atype = HAL_PKT_TYPE_ATIM;
4929 		else
4930 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4931 		rix = an->an_mgmtrix;
4932 		txrate = rt->info[rix].rateCode;
4933 		if (shortPreamble)
4934 			txrate |= rt->info[rix].shortPreamble;
4935 		try0 = ATH_TXMGTTRY;
4936 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4937 		break;
4938 	case IEEE80211_FC0_TYPE_CTL:
4939 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4940 		rix = an->an_mgmtrix;
4941 		txrate = rt->info[rix].rateCode;
4942 		if (shortPreamble)
4943 			txrate |= rt->info[rix].shortPreamble;
4944 		try0 = ATH_TXMGTTRY;
4945 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4946 		break;
4947 	case IEEE80211_FC0_TYPE_DATA:
4948 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4949 		/*
4950 		 * Data frames: multicast frames go out at a fixed rate,
4951 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4952 		 * the rate control module for the rate to use.
4953 		 */
4954 		if (ismcast) {
4955 			rix = an->an_mcastrix;
4956 			txrate = rt->info[rix].rateCode;
4957 			if (shortPreamble)
4958 				txrate |= rt->info[rix].shortPreamble;
4959 			try0 = 1;
4960 		} else if (m0->m_flags & M_EAPOL) {
4961 			/* XXX? maybe always use long preamble? */
4962 			rix = an->an_mgmtrix;
4963 			txrate = rt->info[rix].rateCode;
4964 			if (shortPreamble)
4965 				txrate |= rt->info[rix].shortPreamble;
4966 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4967 		} else {
4968 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4969 				&rix, &try0, &txrate);
4970 			sc->sc_txrix = rix;		/* for LED blinking */
4971 			sc->sc_lastdatarix = rix;	/* for fast frames */
4972 			if (try0 != ATH_TXMAXTRY)
4973 				ismrr = 1;
4974 		}
4975 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4976 			flags |= HAL_TXDESC_NOACK;
4977 		break;
4978 	default:
4979 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4980 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4981 		/* XXX statistic */
4982 		ath_freetx(m0);
4983 		return EIO;
4984 	}
4985 	txq = sc->sc_ac2q[pri];
4986 
4987 	/*
4988 	 * When servicing one or more stations in power-save mode
4989 	 * (or) if there is some mcast data waiting on the mcast
4990 	 * queue (to prevent out of order delivery) multicast
4991 	 * frames must be buffered until after the beacon.
4992 	 */
4993 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4994 		txq = &avp->av_mcastq;
4995 
4996 	/*
4997 	 * Calculate miscellaneous flags.
4998 	 */
4999 	if (ismcast) {
5000 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
5001 	} else if (pktlen > vap->iv_rtsthreshold &&
5002 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
5003 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
5004 		cix = rt->info[rix].controlRate;
5005 		sc->sc_stats.ast_tx_rts++;
5006 	}
5007 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
5008 		sc->sc_stats.ast_tx_noack++;
5009 #ifdef ATH_SUPPORT_TDMA
5010 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
5011 		DPRINTF(sc, ATH_DEBUG_TDMA,
5012 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
5013 		sc->sc_stats.ast_tdma_ack++;
5014 		ath_freetx(m0);
5015 		return EIO;
5016 	}
5017 #endif
5018 
5019 	/*
5020 	 * If 802.11g protection is enabled, determine whether
5021 	 * to use RTS/CTS or just CTS.  Note that this is only
5022 	 * done for OFDM unicast frames.
5023 	 */
5024 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
5025 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
5026 	    (flags & HAL_TXDESC_NOACK) == 0) {
5027 		/* XXX fragments must use CCK rates w/ protection */
5028 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
5029 			flags |= HAL_TXDESC_RTSENA;
5030 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
5031 			flags |= HAL_TXDESC_CTSENA;
5032 		if (isfrag) {
5033 			/*
5034 			 * For frags it would be desirable to use the
5035 			 * highest CCK rate for RTS/CTS.  But stations
5036 			 * farther away may detect it at a lower CCK rate
5037 			 * so use the configured protection rate instead
5038 			 * (for now).
5039 			 */
5040 			cix = rt->info[sc->sc_protrix].controlRate;
5041 		} else
5042 			cix = rt->info[sc->sc_protrix].controlRate;
5043 		sc->sc_stats.ast_tx_protect++;
5044 	}
5045 
5046 	/*
5047 	 * Calculate duration.  This logically belongs in the 802.11
5048 	 * layer but it lacks sufficient information to calculate it.
5049 	 */
5050 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
5051 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
5052 		u_int16_t dur;
5053 		if (shortPreamble)
5054 			dur = rt->info[rix].spAckDuration;
5055 		else
5056 			dur = rt->info[rix].lpAckDuration;
5057 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
5058 			dur += dur;		/* additional SIFS+ACK */
5059 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
5060 			/*
5061 			 * Include the size of next fragment so NAV is
5062 			 * updated properly.  The last fragment uses only
5063 			 * the ACK duration
5064 			 */
5065 			dur += ath_hal_computetxtime(ah, rt,
5066 					m0->m_nextpkt->m_pkthdr.len,
5067 					rix, shortPreamble);
5068 		}
5069 		if (isfrag) {
5070 			/*
5071 			 * Force hardware to use computed duration for next
5072 			 * fragment by disabling multi-rate retry which updates
5073 			 * duration based on the multi-rate duration table.
5074 			 */
5075 			ismrr = 0;
5076 			try0 = ATH_TXMGTTRY;	/* XXX? */
5077 		}
5078 		*(u_int16_t *)wh->i_dur = htole16(dur);
5079 	}
5080 
5081 	/*
5082 	 * Calculate RTS/CTS rate and duration if needed.
5083 	 */
5084 	ctsduration = 0;
5085 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
5086 		/*
5087 		 * CTS transmit rate is derived from the transmit rate
5088 		 * by looking in the h/w rate table.  We must also factor
5089 		 * in whether or not a short preamble is to be used.
5090 		 */
5091 		/* NB: cix is set above where RTS/CTS is enabled */
5092 		KASSERT(cix != 0xff, ("cix not setup"));
5093 		ctsrate = rt->info[cix].rateCode;
5094 		/*
5095 		 * Compute the transmit duration based on the frame
5096 		 * size and the size of an ACK frame.  We call into the
5097 		 * HAL to do the computation since it depends on the
5098 		 * characteristics of the actual PHY being used.
5099 		 *
5100 		 * NB: CTS is assumed the same size as an ACK so we can
5101 		 *     use the precalculated ACK durations.
5102 		 */
5103 		if (shortPreamble) {
5104 			ctsrate |= rt->info[cix].shortPreamble;
5105 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5106 				ctsduration += rt->info[cix].spAckDuration;
5107 			ctsduration += ath_hal_computetxtime(ah,
5108 				rt, pktlen, rix, AH_TRUE);
5109 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5110 				ctsduration += rt->info[rix].spAckDuration;
5111 		} else {
5112 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5113 				ctsduration += rt->info[cix].lpAckDuration;
5114 			ctsduration += ath_hal_computetxtime(ah,
5115 				rt, pktlen, rix, AH_FALSE);
5116 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5117 				ctsduration += rt->info[rix].lpAckDuration;
5118 		}
5119 		/*
5120 		 * Must disable multi-rate retry when using RTS/CTS.
5121 		 */
5122 		ismrr = 0;
5123 		try0 = ATH_TXMGTTRY;		/* XXX */
5124 	} else
5125 		ctsrate = 0;
5126 
5127 	/*
5128 	 * At this point we are committed to sending the frame
5129 	 * and we don't need to look at m_nextpkt; clear it in
5130 	 * case this frame is part of frag chain.
5131 	 */
5132 	m0->m_nextpkt = NULL;
5133 
5134 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
5135 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
5136 			sc->sc_hwmap[rix].ieeerate, -1);
5137 
5138 	if (bpf_peers_present(ifp->if_bpf)) {
5139 		u_int64_t tsf = ath_hal_gettsf64(ah);
5140 
5141 		sc->sc_tx_th.wt_tsf = htole64(tsf);
5142 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
5143 		if (iswep)
5144 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
5145 		if (isfrag)
5146 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
5147 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
5148 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
5149 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
5150 
5151 		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
5152 	}
5153 
5154 	/*
5155 	 * Determine if a tx interrupt should be generated for
5156 	 * this descriptor.  We take a tx interrupt to reap
5157 	 * descriptors when the h/w hits an EOL condition or
5158 	 * when the descriptor is specifically marked to generate
5159 	 * an interrupt.  We periodically mark descriptors in this
5160 	 * way to insure timely replenishing of the supply needed
5161 	 * for sending frames.  Defering interrupts reduces system
5162 	 * load and potentially allows more concurrent work to be
5163 	 * done but if done to aggressively can cause senders to
5164 	 * backup.
5165 	 *
5166 	 * NB: use >= to deal with sc_txintrperiod changing
5167 	 *     dynamically through sysctl.
5168 	 */
5169 	if (flags & HAL_TXDESC_INTREQ) {
5170 		txq->axq_intrcnt = 0;
5171 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
5172 		flags |= HAL_TXDESC_INTREQ;
5173 		txq->axq_intrcnt = 0;
5174 	}
5175 
5176 	/*
5177 	 * Formulate first tx descriptor with tx controls.
5178 	 */
5179 	/* XXX check return value? */
5180 	ath_hal_setuptxdesc(ah, ds
5181 		, pktlen		/* packet length */
5182 		, hdrlen		/* header length */
5183 		, atype			/* Atheros packet type */
5184 		, ni->ni_txpower	/* txpower */
5185 		, txrate, try0		/* series 0 rate/tries */
5186 		, keyix			/* key cache index */
5187 		, sc->sc_txantenna	/* antenna mode */
5188 		, flags			/* flags */
5189 		, ctsrate		/* rts/cts rate */
5190 		, ctsduration		/* rts/cts duration */
5191 	);
5192 	bf->bf_txflags = flags;
5193 	/*
5194 	 * Setup the multi-rate retry state only when we're
5195 	 * going to use it.  This assumes ath_hal_setuptxdesc
5196 	 * initializes the descriptors (so we don't have to)
5197 	 * when the hardware supports multi-rate retry and
5198 	 * we don't use it.
5199 	 */
5200 	if (ismrr)
5201 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
5202 
5203 	ath_tx_handoff(sc, txq, bf);
5204 	return 0;
5205 }
5206 
5207 /*
5208  * Process completed xmit descriptors from the specified queue.
5209  */
5210 static int
5211 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
5212 {
5213 	struct ath_hal *ah = sc->sc_ah;
5214 	struct ifnet *ifp = sc->sc_ifp;
5215 	struct ieee80211com *ic = ifp->if_l2com;
5216 	struct ath_buf *bf, *last;
5217 	struct ath_desc *ds, *ds0;
5218 	struct ath_tx_status *ts;
5219 	struct ieee80211_node *ni;
5220 	struct ath_node *an;
5221 	int sr, lr, pri, nacked;
5222 	HAL_STATUS status;
5223 
5224 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
5225 		__func__, txq->axq_qnum,
5226 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
5227 		txq->axq_link);
5228 	nacked = 0;
5229 	for (;;) {
5230 		ATH_TXQ_LOCK(txq);
5231 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
5232 		bf = STAILQ_FIRST(&txq->axq_q);
5233 		if (bf == NULL) {
5234 			ATH_TXQ_UNLOCK(txq);
5235 			break;
5236 		}
5237 		ds0 = &bf->bf_desc[0];
5238 		ds = &bf->bf_desc[bf->bf_nseg - 1];
5239 		ts = &bf->bf_status.ds_txstat;
5240 		status = ath_hal_txprocdesc(ah, ds, ts);
5241 #ifdef ATH_DEBUG
5242 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
5243 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
5244 			    status == HAL_OK);
5245 #endif
5246 		if (status == HAL_EINPROGRESS) {
5247 			ATH_TXQ_UNLOCK(txq);
5248 			break;
5249 		}
5250 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5251 #ifdef ATH_SUPPORT_TDMA
5252 		if (txq->axq_depth > 0) {
5253 			/*
5254 			 * More frames follow.  Mark the buffer busy
5255 			 * so it's not re-used while the hardware may
5256 			 * still re-read the link field in the descriptor.
5257 			 */
5258 			bf->bf_flags |= ATH_BUF_BUSY;
5259 		} else
5260 #else
5261 		if (txq->axq_depth == 0)
5262 #endif
5263 			txq->axq_link = NULL;
5264 		ATH_TXQ_UNLOCK(txq);
5265 
5266 		ni = bf->bf_node;
5267 		if (ni != NULL) {
5268 			an = ATH_NODE(ni);
5269 			if (ts->ts_status == 0) {
5270 				u_int8_t txant = ts->ts_antenna;
5271 				sc->sc_stats.ast_ant_tx[txant]++;
5272 				sc->sc_ant_tx[txant]++;
5273 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
5274 					sc->sc_stats.ast_tx_altrate++;
5275 				pri = M_WME_GETAC(bf->bf_m);
5276 				if (pri >= WME_AC_VO)
5277 					ic->ic_wme.wme_hipri_traffic++;
5278 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
5279 					ni->ni_inact = ni->ni_inact_reload;
5280 			} else {
5281 				if (ts->ts_status & HAL_TXERR_XRETRY)
5282 					sc->sc_stats.ast_tx_xretries++;
5283 				if (ts->ts_status & HAL_TXERR_FIFO)
5284 					sc->sc_stats.ast_tx_fifoerr++;
5285 				if (ts->ts_status & HAL_TXERR_FILT)
5286 					sc->sc_stats.ast_tx_filtered++;
5287 				if (bf->bf_m->m_flags & M_FF)
5288 					sc->sc_stats.ast_ff_txerr++;
5289 			}
5290 			sr = ts->ts_shortretry;
5291 			lr = ts->ts_longretry;
5292 			sc->sc_stats.ast_tx_shortretry += sr;
5293 			sc->sc_stats.ast_tx_longretry += lr;
5294 			/*
5295 			 * Hand the descriptor to the rate control algorithm.
5296 			 */
5297 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
5298 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
5299 				/*
5300 				 * If frame was ack'd update statistics,
5301 				 * including the last rx time used to
5302 				 * workaround phantom bmiss interrupts.
5303 				 */
5304 				if (ts->ts_status == 0) {
5305 					nacked++;
5306 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5307 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5308 						ts->ts_rssi);
5309 				}
5310 				ath_rate_tx_complete(sc, an, bf);
5311 			}
5312 			/*
5313 			 * Do any tx complete callback.  Note this must
5314 			 * be done before releasing the node reference.
5315 			 */
5316 			if (bf->bf_m->m_flags & M_TXCB)
5317 				ieee80211_process_callback(ni, bf->bf_m,
5318 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5319 				        ts->ts_status : HAL_TXERR_XRETRY);
5320 			/*
5321 			 * Reclaim reference to node.
5322 			 *
5323 			 * NB: the node may be reclaimed here if, for example
5324 			 *     this is a DEAUTH message that was sent and the
5325 			 *     node was timed out due to inactivity.
5326 			 */
5327 			ieee80211_free_node(ni);
5328 		}
5329 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5330 		    BUS_DMASYNC_POSTWRITE);
5331 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5332 
5333 		m_freem(bf->bf_m);
5334 		bf->bf_m = NULL;
5335 		bf->bf_node = NULL;
5336 
5337 		ATH_TXBUF_LOCK(sc);
5338 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5339 		if (last != NULL)
5340 			last->bf_flags &= ~ATH_BUF_BUSY;
5341 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5342 		ATH_TXBUF_UNLOCK(sc);
5343 	}
5344 	/*
5345 	 * Flush fast-frame staging queue when traffic slows.
5346 	 */
5347 	if (txq->axq_depth <= 1)
5348 		ath_ff_stageq_flush(sc, txq, ath_ff_always);
5349 	return nacked;
5350 }
5351 
5352 static __inline int
5353 txqactive(struct ath_hal *ah, int qnum)
5354 {
5355 	u_int32_t txqs = 1<<qnum;
5356 	ath_hal_gettxintrtxqs(ah, &txqs);
5357 	return (txqs & (1<<qnum));
5358 }
5359 
5360 /*
5361  * Deferred processing of transmit interrupt; special-cased
5362  * for a single hardware transmit queue (e.g. 5210 and 5211).
5363  */
5364 static void
5365 ath_tx_proc_q0(void *arg, int npending)
5366 {
5367 	struct ath_softc *sc = arg;
5368 	struct ifnet *ifp = sc->sc_ifp;
5369 
5370 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5371 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5372 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5373 		ath_tx_processq(sc, sc->sc_cabq);
5374 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5375 	ifp->if_timer = 0;
5376 
5377 	if (sc->sc_softled)
5378 		ath_led_event(sc, sc->sc_txrix);
5379 
5380 	ath_start(ifp);
5381 }
5382 
5383 /*
5384  * Deferred processing of transmit interrupt; special-cased
5385  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5386  */
5387 static void
5388 ath_tx_proc_q0123(void *arg, int npending)
5389 {
5390 	struct ath_softc *sc = arg;
5391 	struct ifnet *ifp = sc->sc_ifp;
5392 	int nacked;
5393 
5394 	/*
5395 	 * Process each active queue.
5396 	 */
5397 	nacked = 0;
5398 	if (txqactive(sc->sc_ah, 0))
5399 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5400 	if (txqactive(sc->sc_ah, 1))
5401 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5402 	if (txqactive(sc->sc_ah, 2))
5403 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5404 	if (txqactive(sc->sc_ah, 3))
5405 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5406 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5407 		ath_tx_processq(sc, sc->sc_cabq);
5408 	if (nacked)
5409 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5410 
5411 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5412 	ifp->if_timer = 0;
5413 
5414 	if (sc->sc_softled)
5415 		ath_led_event(sc, sc->sc_txrix);
5416 
5417 	ath_start(ifp);
5418 }
5419 
5420 /*
5421  * Deferred processing of transmit interrupt.
5422  */
5423 static void
5424 ath_tx_proc(void *arg, int npending)
5425 {
5426 	struct ath_softc *sc = arg;
5427 	struct ifnet *ifp = sc->sc_ifp;
5428 	int i, nacked;
5429 
5430 	/*
5431 	 * Process each active queue.
5432 	 */
5433 	nacked = 0;
5434 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5435 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5436 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5437 	if (nacked)
5438 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5439 
5440 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5441 	ifp->if_timer = 0;
5442 
5443 	if (sc->sc_softled)
5444 		ath_led_event(sc, sc->sc_txrix);
5445 
5446 	ath_start(ifp);
5447 }
5448 
5449 static void
5450 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5451 {
5452 #ifdef ATH_DEBUG
5453 	struct ath_hal *ah = sc->sc_ah;
5454 #endif
5455 	struct ieee80211_node *ni;
5456 	struct ath_buf *bf;
5457 	u_int ix;
5458 
5459 	/*
5460 	 * NB: this assumes output has been stopped and
5461 	 *     we do not need to block ath_tx_proc
5462 	 */
5463 	ATH_TXBUF_LOCK(sc);
5464 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5465 	if (bf != NULL)
5466 		bf->bf_flags &= ~ATH_BUF_BUSY;
5467 	ATH_TXBUF_UNLOCK(sc);
5468 	for (ix = 0;; ix++) {
5469 		ATH_TXQ_LOCK(txq);
5470 		bf = STAILQ_FIRST(&txq->axq_q);
5471 		if (bf == NULL) {
5472 			txq->axq_link = NULL;
5473 			ATH_TXQ_UNLOCK(txq);
5474 			break;
5475 		}
5476 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5477 		ATH_TXQ_UNLOCK(txq);
5478 #ifdef ATH_DEBUG
5479 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5480 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5481 
5482 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5483 				ath_hal_txprocdesc(ah, bf->bf_desc,
5484 				    &bf->bf_status.ds_txstat) == HAL_OK);
5485 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5486 				bf->bf_m->m_len, 0, -1);
5487 		}
5488 #endif /* ATH_DEBUG */
5489 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5490 		ni = bf->bf_node;
5491 		bf->bf_node = NULL;
5492 		if (ni != NULL) {
5493 			/*
5494 			 * Do any callback and reclaim the node reference.
5495 			 */
5496 			if (bf->bf_m->m_flags & M_TXCB)
5497 				ieee80211_process_callback(ni, bf->bf_m, -1);
5498 			ieee80211_free_node(ni);
5499 		}
5500 		m_freem(bf->bf_m);
5501 		bf->bf_m = NULL;
5502 		bf->bf_flags &= ~ATH_BUF_BUSY;
5503 
5504 		ATH_TXBUF_LOCK(sc);
5505 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5506 		ATH_TXBUF_UNLOCK(sc);
5507 	}
5508 }
5509 
5510 static void
5511 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5512 {
5513 	struct ath_hal *ah = sc->sc_ah;
5514 
5515 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5516 	    __func__, txq->axq_qnum,
5517 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5518 	    txq->axq_link);
5519 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5520 }
5521 
5522 /*
5523  * Drain the transmit queues and reclaim resources.
5524  */
5525 static void
5526 ath_draintxq(struct ath_softc *sc)
5527 {
5528 	struct ath_hal *ah = sc->sc_ah;
5529 	struct ifnet *ifp = sc->sc_ifp;
5530 	int i;
5531 
5532 	/* XXX return value */
5533 	if (!sc->sc_invalid) {
5534 		/* don't touch the hardware if marked invalid */
5535 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5536 		    __func__, sc->sc_bhalq,
5537 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5538 		    NULL);
5539 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5540 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5541 			if (ATH_TXQ_SETUP(sc, i))
5542 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5543 	}
5544 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5545 		if (ATH_TXQ_SETUP(sc, i))
5546 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5547 #ifdef ATH_DEBUG
5548 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5549 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5550 		if (bf != NULL && bf->bf_m != NULL) {
5551 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5552 				ath_hal_txprocdesc(ah, bf->bf_desc,
5553 				    &bf->bf_status.ds_txstat) == HAL_OK);
5554 			ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5555 				bf->bf_m->m_len, 0, -1);
5556 		}
5557 	}
5558 #endif /* ATH_DEBUG */
5559 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5560 	ifp->if_timer = 0;
5561 }
5562 
5563 /*
5564  * Disable the receive h/w in preparation for a reset.
5565  */
5566 static void
5567 ath_stoprecv(struct ath_softc *sc)
5568 {
5569 #define	PA2DESC(_sc, _pa) \
5570 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5571 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5572 	struct ath_hal *ah = sc->sc_ah;
5573 
5574 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5575 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5576 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5577 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5578 #ifdef ATH_DEBUG
5579 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5580 		struct ath_buf *bf;
5581 		u_int ix;
5582 
5583 		printf("%s: rx queue %p, link %p\n", __func__,
5584 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5585 		ix = 0;
5586 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5587 			struct ath_desc *ds = bf->bf_desc;
5588 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5589 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5590 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5591 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5592 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5593 			ix++;
5594 		}
5595 	}
5596 #endif
5597 	if (sc->sc_rxpending != NULL) {
5598 		m_freem(sc->sc_rxpending);
5599 		sc->sc_rxpending = NULL;
5600 	}
5601 	sc->sc_rxlink = NULL;		/* just in case */
5602 #undef PA2DESC
5603 }
5604 
5605 /*
5606  * Enable the receive h/w following a reset.
5607  */
5608 static int
5609 ath_startrecv(struct ath_softc *sc)
5610 {
5611 	struct ath_hal *ah = sc->sc_ah;
5612 	struct ath_buf *bf;
5613 
5614 	sc->sc_rxlink = NULL;
5615 	sc->sc_rxpending = NULL;
5616 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5617 		int error = ath_rxbuf_init(sc, bf);
5618 		if (error != 0) {
5619 			DPRINTF(sc, ATH_DEBUG_RECV,
5620 				"%s: ath_rxbuf_init failed %d\n",
5621 				__func__, error);
5622 			return error;
5623 		}
5624 	}
5625 
5626 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5627 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5628 	ath_hal_rxena(ah);		/* enable recv descriptors */
5629 	ath_mode_init(sc);		/* set filters, etc. */
5630 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5631 	return 0;
5632 }
5633 
5634 /*
5635  * Update internal state after a channel change.
5636  */
5637 static void
5638 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5639 {
5640 	enum ieee80211_phymode mode;
5641 
5642 	/*
5643 	 * Change channels and update the h/w rate map
5644 	 * if we're switching; e.g. 11a to 11b/g.
5645 	 */
5646 	mode = ieee80211_chan2mode(chan);
5647 	if (mode != sc->sc_curmode)
5648 		ath_setcurmode(sc, mode);
5649 	sc->sc_curchan = chan;
5650 
5651 	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5652 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5653 	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5654 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5655 	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5656 	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5657 	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5658 	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5659 }
5660 
5661 /*
5662  * Set/change channels.  If the channel is really being changed,
5663  * it's done by reseting the chip.  To accomplish this we must
5664  * first cleanup any pending DMA, then restart stuff after a la
5665  * ath_init.
5666  */
5667 static int
5668 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5669 {
5670 	struct ifnet *ifp = sc->sc_ifp;
5671 	struct ieee80211com *ic = ifp->if_l2com;
5672 	struct ath_hal *ah = sc->sc_ah;
5673 
5674 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5675 	    __func__, ieee80211_chan2ieee(ic, chan),
5676 	    chan->ic_freq, chan->ic_flags);
5677 	if (chan != sc->sc_curchan) {
5678 		HAL_STATUS status;
5679 		/*
5680 		 * To switch channels clear any pending DMA operations;
5681 		 * wait long enough for the RX fifo to drain, reset the
5682 		 * hardware at the new frequency, and then re-enable
5683 		 * the relevant bits of the h/w.
5684 		 */
5685 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5686 		ath_draintxq(sc);		/* clear pending tx frames */
5687 		ath_stoprecv(sc);		/* turn off frame recv */
5688 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5689 			if_printf(ifp, "%s: unable to reset "
5690 			    "channel %u (%u Mhz, flags 0x%x), hal status %u\n",
5691 			    __func__, ieee80211_chan2ieee(ic, chan),
5692 			    chan->ic_freq, chan->ic_flags, status);
5693 			return EIO;
5694 		}
5695 		sc->sc_diversity = ath_hal_getdiversity(ah);
5696 
5697 		/*
5698 		 * Re-enable rx framework.
5699 		 */
5700 		if (ath_startrecv(sc) != 0) {
5701 			if_printf(ifp, "%s: unable to restart recv logic\n",
5702 			    __func__);
5703 			return EIO;
5704 		}
5705 
5706 		/*
5707 		 * Change channels and update the h/w rate map
5708 		 * if we're switching; e.g. 11a to 11b/g.
5709 		 */
5710 		ath_chan_change(sc, chan);
5711 
5712 		/*
5713 		 * Re-enable interrupts.
5714 		 */
5715 		ath_hal_intrset(ah, sc->sc_imask);
5716 	}
5717 	return 0;
5718 }
5719 
5720 /*
5721  * Periodically recalibrate the PHY to account
5722  * for temperature/environment changes.
5723  */
5724 static void
5725 ath_calibrate(void *arg)
5726 {
5727 	struct ath_softc *sc = arg;
5728 	struct ath_hal *ah = sc->sc_ah;
5729 	struct ifnet *ifp = sc->sc_ifp;
5730 	struct ieee80211com *ic = ifp->if_l2com;
5731 	HAL_BOOL longCal, isCalDone;
5732 	int nextcal;
5733 
5734 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5735 		goto restart;
5736 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5737 	if (longCal) {
5738 		sc->sc_stats.ast_per_cal++;
5739 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5740 			/*
5741 			 * Rfgain is out of bounds, reset the chip
5742 			 * to load new gain values.
5743 			 */
5744 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5745 				"%s: rfgain change\n", __func__);
5746 			sc->sc_stats.ast_per_rfgain++;
5747 			ath_reset(ifp);
5748 		}
5749 		/*
5750 		 * If this long cal is after an idle period, then
5751 		 * reset the data collection state so we start fresh.
5752 		 */
5753 		if (sc->sc_resetcal) {
5754 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5755 			sc->sc_lastcalreset = ticks;
5756 			sc->sc_resetcal = 0;
5757 		}
5758 	}
5759 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5760 		if (longCal) {
5761 			/*
5762 			 * Calibrate noise floor data again in case of change.
5763 			 */
5764 			ath_hal_process_noisefloor(ah);
5765 		}
5766 	} else {
5767 		DPRINTF(sc, ATH_DEBUG_ANY,
5768 			"%s: calibration of channel %u failed\n",
5769 			__func__, sc->sc_curchan->ic_freq);
5770 		sc->sc_stats.ast_per_calfail++;
5771 	}
5772 	if (!isCalDone) {
5773 restart:
5774 		/*
5775 		 * Use a shorter interval to potentially collect multiple
5776 		 * data samples required to complete calibration.  Once
5777 		 * we're told the work is done we drop back to a longer
5778 		 * interval between requests.  We're more aggressive doing
5779 		 * work when operating as an AP to improve operation right
5780 		 * after startup.
5781 		 */
5782 		nextcal = (1000*ath_shortcalinterval)/hz;
5783 		if (sc->sc_opmode != HAL_M_HOSTAP)
5784 			nextcal *= 10;
5785 	} else {
5786 		nextcal = ath_longcalinterval*hz;
5787 		sc->sc_lastlongcal = ticks;
5788 		if (sc->sc_lastcalreset == 0)
5789 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5790 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5791 			sc->sc_resetcal = 1;	/* setup reset next trip */
5792 	}
5793 
5794 	if (nextcal != 0) {
5795 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5796 		    __func__, nextcal, isCalDone ? "" : "!");
5797 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5798 	} else {
5799 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5800 		    __func__);
5801 		/* NB: don't rearm timer */
5802 	}
5803 }
5804 
5805 static void
5806 ath_scan_start(struct ieee80211com *ic)
5807 {
5808 	struct ifnet *ifp = ic->ic_ifp;
5809 	struct ath_softc *sc = ifp->if_softc;
5810 	struct ath_hal *ah = sc->sc_ah;
5811 	u_int32_t rfilt;
5812 
5813 	/* XXX calibration timer? */
5814 
5815 	sc->sc_scanning = 1;
5816 	sc->sc_syncbeacon = 0;
5817 	rfilt = ath_calcrxfilter(sc);
5818 	ath_hal_setrxfilter(ah, rfilt);
5819 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5820 
5821 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5822 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5823 }
5824 
5825 static void
5826 ath_scan_end(struct ieee80211com *ic)
5827 {
5828 	struct ifnet *ifp = ic->ic_ifp;
5829 	struct ath_softc *sc = ifp->if_softc;
5830 	struct ath_hal *ah = sc->sc_ah;
5831 	u_int32_t rfilt;
5832 
5833 	sc->sc_scanning = 0;
5834 	rfilt = ath_calcrxfilter(sc);
5835 	ath_hal_setrxfilter(ah, rfilt);
5836 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5837 
5838 	ath_hal_process_noisefloor(ah);
5839 
5840 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5841 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5842 		 sc->sc_curaid);
5843 }
5844 
5845 static void
5846 ath_set_channel(struct ieee80211com *ic)
5847 {
5848 	struct ifnet *ifp = ic->ic_ifp;
5849 	struct ath_softc *sc = ifp->if_softc;
5850 
5851 	(void) ath_chan_set(sc, ic->ic_curchan);
5852 	/*
5853 	 * If we are returning to our bss channel then mark state
5854 	 * so the next recv'd beacon's tsf will be used to sync the
5855 	 * beacon timers.  Note that since we only hear beacons in
5856 	 * sta/ibss mode this has no effect in other operating modes.
5857 	 */
5858 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5859 		sc->sc_syncbeacon = 1;
5860 }
5861 
5862 /*
5863  * Walk the vap list and check if there any vap's in RUN state.
5864  */
5865 static int
5866 ath_isanyrunningvaps(struct ieee80211vap *this)
5867 {
5868 	struct ieee80211com *ic = this->iv_ic;
5869 	struct ieee80211vap *vap;
5870 
5871 	IEEE80211_LOCK_ASSERT(ic);
5872 
5873 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5874 		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5875 			return 1;
5876 	}
5877 	return 0;
5878 }
5879 
5880 static int
5881 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5882 {
5883 	struct ieee80211com *ic = vap->iv_ic;
5884 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5885 	struct ath_vap *avp = ATH_VAP(vap);
5886 	struct ath_hal *ah = sc->sc_ah;
5887 	struct ieee80211_node *ni = NULL;
5888 	int i, error, stamode;
5889 	u_int32_t rfilt;
5890 	static const HAL_LED_STATE leds[] = {
5891 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5892 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5893 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5894 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5895 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5896 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5897 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5898 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5899 	};
5900 
5901 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5902 		ieee80211_state_name[vap->iv_state],
5903 		ieee80211_state_name[nstate]);
5904 
5905 	callout_stop(&sc->sc_cal_ch);
5906 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5907 
5908 	if (nstate == IEEE80211_S_SCAN) {
5909 		/*
5910 		 * Scanning: turn off beacon miss and don't beacon.
5911 		 * Mark beacon state so when we reach RUN state we'll
5912 		 * [re]setup beacons.  Unblock the task q thread so
5913 		 * deferred interrupt processing is done.
5914 		 */
5915 		ath_hal_intrset(ah,
5916 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5917 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5918 		sc->sc_beacons = 0;
5919 		taskqueue_unblock(sc->sc_tq);
5920 	}
5921 
5922 	ni = vap->iv_bss;
5923 	rfilt = ath_calcrxfilter(sc);
5924 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5925 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5926 		   vap->iv_opmode == IEEE80211_M_IBSS);
5927 	if (stamode && nstate == IEEE80211_S_RUN) {
5928 		sc->sc_curaid = ni->ni_associd;
5929 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5930 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5931 	}
5932 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5933 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5934 	ath_hal_setrxfilter(ah, rfilt);
5935 
5936 	/* XXX is this to restore keycache on resume? */
5937 	if (vap->iv_opmode != IEEE80211_M_STA &&
5938 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5939 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5940 			if (ath_hal_keyisvalid(ah, i))
5941 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5942 	}
5943 
5944 	/*
5945 	 * Invoke the parent method to do net80211 work.
5946 	 */
5947 	error = avp->av_newstate(vap, nstate, arg);
5948 	if (error != 0)
5949 		goto bad;
5950 
5951 	if (nstate == IEEE80211_S_RUN) {
5952 		/* NB: collect bss node again, it may have changed */
5953 		ni = vap->iv_bss;
5954 
5955 		DPRINTF(sc, ATH_DEBUG_STATE,
5956 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5957 		    "capinfo 0x%04x chan %d\n", __func__,
5958 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5959 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5960 
5961 		switch (vap->iv_opmode) {
5962 #ifdef ATH_SUPPORT_TDMA
5963 		case IEEE80211_M_AHDEMO:
5964 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5965 				break;
5966 			/* fall thru... */
5967 #endif
5968 		case IEEE80211_M_HOSTAP:
5969 		case IEEE80211_M_IBSS:
5970 			/*
5971 			 * Allocate and setup the beacon frame.
5972 			 *
5973 			 * Stop any previous beacon DMA.  This may be
5974 			 * necessary, for example, when an ibss merge
5975 			 * causes reconfiguration; there will be a state
5976 			 * transition from RUN->RUN that means we may
5977 			 * be called with beacon transmission active.
5978 			 */
5979 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5980 
5981 			error = ath_beacon_alloc(sc, ni);
5982 			if (error != 0)
5983 				goto bad;
5984 			/*
5985 			 * If joining an adhoc network defer beacon timer
5986 			 * configuration to the next beacon frame so we
5987 			 * have a current TSF to use.  Otherwise we're
5988 			 * starting an ibss/bss so there's no need to delay;
5989 			 * if this is the first vap moving to RUN state, then
5990 			 * beacon state needs to be [re]configured.
5991 			 */
5992 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5993 			    ni->ni_tstamp.tsf != 0) {
5994 				sc->sc_syncbeacon = 1;
5995 			} else if (!sc->sc_beacons) {
5996 #ifdef ATH_SUPPORT_TDMA
5997 				if (vap->iv_caps & IEEE80211_C_TDMA)
5998 					ath_tdma_config(sc, vap);
5999 				else
6000 #endif
6001 					ath_beacon_config(sc, vap);
6002 				sc->sc_beacons = 1;
6003 			}
6004 			break;
6005 		case IEEE80211_M_STA:
6006 			/*
6007 			 * Defer beacon timer configuration to the next
6008 			 * beacon frame so we have a current TSF to use
6009 			 * (any TSF collected when scanning is likely old).
6010 			 */
6011 			sc->sc_syncbeacon = 1;
6012 			break;
6013 		case IEEE80211_M_MONITOR:
6014 			/*
6015 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6016 			 * transitions so we must re-enable interrupts here to
6017 			 * handle the case of a single monitor mode vap.
6018 			 */
6019 			ath_hal_intrset(ah, sc->sc_imask);
6020 			break;
6021 		case IEEE80211_M_WDS:
6022 			break;
6023 		default:
6024 			break;
6025 		}
6026 		/*
6027 		 * Let the hal process statistics collected during a
6028 		 * scan so it can provide calibrated noise floor data.
6029 		 */
6030 		ath_hal_process_noisefloor(ah);
6031 		/*
6032 		 * Reset rssi stats; maybe not the best place...
6033 		 */
6034 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6035 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6036 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6037 		/*
6038 		 * Finally, start any timers and the task q thread
6039 		 * (in case we didn't go through SCAN state).
6040 		 */
6041 		if (ath_longcalinterval != 0) {
6042 			/* start periodic recalibration timer */
6043 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6044 		} else {
6045 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6046 			    "%s: calibration disabled\n", __func__);
6047 		}
6048 		taskqueue_unblock(sc->sc_tq);
6049 	} else if (nstate == IEEE80211_S_INIT) {
6050 		/*
6051 		 * If there are no vaps left in RUN state then
6052 		 * shutdown host/driver operation:
6053 		 * o disable interrupts
6054 		 * o disable the task queue thread
6055 		 * o mark beacon processing as stopped
6056 		 */
6057 		if (!ath_isanyrunningvaps(vap)) {
6058 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6059 			/* disable interrupts  */
6060 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6061 			taskqueue_block(sc->sc_tq);
6062 			sc->sc_beacons = 0;
6063 		}
6064 #ifdef ATH_SUPPORT_TDMA
6065 		ath_hal_setcca(ah, AH_TRUE);
6066 #endif
6067 	}
6068 bad:
6069 	return error;
6070 }
6071 
6072 /*
6073  * Allocate a key cache slot to the station so we can
6074  * setup a mapping from key index to node. The key cache
6075  * slot is needed for managing antenna state and for
6076  * compression when stations do not use crypto.  We do
6077  * it uniliaterally here; if crypto is employed this slot
6078  * will be reassigned.
6079  */
6080 static void
6081 ath_setup_stationkey(struct ieee80211_node *ni)
6082 {
6083 	struct ieee80211vap *vap = ni->ni_vap;
6084 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6085 	ieee80211_keyix keyix, rxkeyix;
6086 
6087 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6088 		/*
6089 		 * Key cache is full; we'll fall back to doing
6090 		 * the more expensive lookup in software.  Note
6091 		 * this also means no h/w compression.
6092 		 */
6093 		/* XXX msg+statistic */
6094 	} else {
6095 		/* XXX locking? */
6096 		ni->ni_ucastkey.wk_keyix = keyix;
6097 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6098 		/* NB: must mark device key to get called back on delete */
6099 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6100 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6101 		/* NB: this will create a pass-thru key entry */
6102 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
6103 	}
6104 }
6105 
6106 /*
6107  * Setup driver-specific state for a newly associated node.
6108  * Note that we're called also on a re-associate, the isnew
6109  * param tells us if this is the first time or not.
6110  */
6111 static void
6112 ath_newassoc(struct ieee80211_node *ni, int isnew)
6113 {
6114 	struct ath_node *an = ATH_NODE(ni);
6115 	struct ieee80211vap *vap = ni->ni_vap;
6116 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6117 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6118 
6119 	an->an_mcastrix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
6120 	an->an_mgmtrix = ath_tx_findrix(sc->sc_currates, tp->mgmtrate);
6121 
6122 	ath_rate_newassoc(sc, an, isnew);
6123 	if (isnew &&
6124 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6125 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6126 		ath_setup_stationkey(ni);
6127 }
6128 
6129 static int
6130 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6131 	int nchans, struct ieee80211_channel chans[])
6132 {
6133 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6134 	struct ath_hal *ah = sc->sc_ah;
6135 	HAL_STATUS status;
6136 
6137 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6138 	    "%s: rd %u cc %u location %c%s\n",
6139 	    __func__, reg->regdomain, reg->country, reg->location,
6140 	    reg->ecm ? " ecm" : "");
6141 
6142 	status = ath_hal_set_channels(ah, chans, nchans,
6143 	    reg->country, reg->regdomain);
6144 	if (status != HAL_OK) {
6145 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6146 		    __func__, status);
6147 		return EINVAL;		/* XXX */
6148 	}
6149 	return 0;
6150 }
6151 
6152 static void
6153 ath_getradiocaps(struct ieee80211com *ic,
6154 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6155 {
6156 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6157 	struct ath_hal *ah = sc->sc_ah;
6158 
6159 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6160 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6161 
6162 	/* XXX check return */
6163 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6164 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6165 
6166 }
6167 
6168 static int
6169 ath_getchannels(struct ath_softc *sc)
6170 {
6171 	struct ifnet *ifp = sc->sc_ifp;
6172 	struct ieee80211com *ic = ifp->if_l2com;
6173 	struct ath_hal *ah = sc->sc_ah;
6174 	HAL_STATUS status;
6175 
6176 	/*
6177 	 * Collect channel set based on EEPROM contents.
6178 	 */
6179 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6180 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6181 	if (status != HAL_OK) {
6182 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6183 		    "status %d\n", __func__, status);
6184 		return EINVAL;
6185 	}
6186 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6187 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6188 	/* XXX map Atheros sku's to net80211 SKU's */
6189 	/* XXX net80211 types too small */
6190 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6191 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6192 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6193 	ic->ic_regdomain.isocc[1] = ' ';
6194 
6195 	ic->ic_regdomain.ecm = 1;
6196 	ic->ic_regdomain.location = 'I';
6197 
6198 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6199 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6200 	    __func__, sc->sc_eerd, sc->sc_eecc,
6201 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6202 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6203 	return 0;
6204 }
6205 
6206 static void
6207 ath_led_done(void *arg)
6208 {
6209 	struct ath_softc *sc = arg;
6210 
6211 	sc->sc_blinking = 0;
6212 }
6213 
6214 /*
6215  * Turn the LED off: flip the pin and then set a timer so no
6216  * update will happen for the specified duration.
6217  */
6218 static void
6219 ath_led_off(void *arg)
6220 {
6221 	struct ath_softc *sc = arg;
6222 
6223 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
6224 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
6225 }
6226 
6227 /*
6228  * Blink the LED according to the specified on/off times.
6229  */
6230 static void
6231 ath_led_blink(struct ath_softc *sc, int on, int off)
6232 {
6233 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
6234 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
6235 	sc->sc_blinking = 1;
6236 	sc->sc_ledoff = off;
6237 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
6238 }
6239 
6240 static void
6241 ath_led_event(struct ath_softc *sc, int rix)
6242 {
6243 	sc->sc_ledevent = ticks;	/* time of last event */
6244 	if (sc->sc_blinking)		/* don't interrupt active blink */
6245 		return;
6246 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
6247 }
6248 
6249 static int
6250 ath_rate_setup(struct ath_softc *sc, u_int mode)
6251 {
6252 	struct ath_hal *ah = sc->sc_ah;
6253 	const HAL_RATE_TABLE *rt;
6254 
6255 	switch (mode) {
6256 	case IEEE80211_MODE_11A:
6257 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6258 		break;
6259 	case IEEE80211_MODE_HALF:
6260 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6261 		break;
6262 	case IEEE80211_MODE_QUARTER:
6263 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6264 		break;
6265 	case IEEE80211_MODE_11B:
6266 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6267 		break;
6268 	case IEEE80211_MODE_11G:
6269 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6270 		break;
6271 	case IEEE80211_MODE_TURBO_A:
6272 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6273 #if HAL_ABI_VERSION < 0x07013100
6274 		if (rt == NULL)		/* XXX bandaid for old hal's */
6275 			rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6276 #endif
6277 		break;
6278 	case IEEE80211_MODE_TURBO_G:
6279 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6280 		break;
6281 	case IEEE80211_MODE_STURBO_A:
6282 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6283 		break;
6284 	case IEEE80211_MODE_11NA:
6285 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6286 		break;
6287 	case IEEE80211_MODE_11NG:
6288 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6289 		break;
6290 	default:
6291 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6292 			__func__, mode);
6293 		return 0;
6294 	}
6295 	sc->sc_rates[mode] = rt;
6296 	return (rt != NULL);
6297 }
6298 
6299 static void
6300 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6301 {
6302 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6303 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6304 	static const struct {
6305 		u_int		rate;		/* tx/rx 802.11 rate */
6306 		u_int16_t	timeOn;		/* LED on time (ms) */
6307 		u_int16_t	timeOff;	/* LED off time (ms) */
6308 	} blinkrates[] = {
6309 		{ 108,  40,  10 },
6310 		{  96,  44,  11 },
6311 		{  72,  50,  13 },
6312 		{  48,  57,  14 },
6313 		{  36,  67,  16 },
6314 		{  24,  80,  20 },
6315 		{  22, 100,  25 },
6316 		{  18, 133,  34 },
6317 		{  12, 160,  40 },
6318 		{  10, 200,  50 },
6319 		{   6, 240,  58 },
6320 		{   4, 267,  66 },
6321 		{   2, 400, 100 },
6322 		{   0, 500, 130 },
6323 		/* XXX half/quarter rates */
6324 	};
6325 	const HAL_RATE_TABLE *rt;
6326 	int i, j;
6327 
6328 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6329 	rt = sc->sc_rates[mode];
6330 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6331 	for (i = 0; i < rt->rateCount; i++) {
6332 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6333 		if (rt->info[i].phy != IEEE80211_T_HT)
6334 			sc->sc_rixmap[ieeerate] = i;
6335 		else
6336 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6337 	}
6338 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6339 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6340 		if (i >= rt->rateCount) {
6341 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6342 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6343 			continue;
6344 		}
6345 		sc->sc_hwmap[i].ieeerate =
6346 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6347 		if (rt->info[i].phy == IEEE80211_T_HT)
6348 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6349 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6350 		if (rt->info[i].shortPreamble ||
6351 		    rt->info[i].phy == IEEE80211_T_OFDM)
6352 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6353 		/* NB: receive frames include FCS */
6354 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6355 			IEEE80211_RADIOTAP_F_FCS;
6356 		/* setup blink rate table to avoid per-packet lookup */
6357 		for (j = 0; j < N(blinkrates)-1; j++)
6358 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6359 				break;
6360 		/* NB: this uses the last entry if the rate isn't found */
6361 		/* XXX beware of overlow */
6362 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6363 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6364 	}
6365 	sc->sc_currates = rt;
6366 	sc->sc_curmode = mode;
6367 	/*
6368 	 * All protection frames are transmited at 2Mb/s for
6369 	 * 11g, otherwise at 1Mb/s.
6370 	 */
6371 	if (mode == IEEE80211_MODE_11G)
6372 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6373 	else
6374 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6375 	/* NB: caller is responsible for reseting rate control state */
6376 #undef N
6377 }
6378 
6379 #ifdef ATH_DEBUG
6380 static void
6381 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6382 	u_int ix, int done)
6383 {
6384 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6385 	struct ath_hal *ah = sc->sc_ah;
6386 	const struct ath_desc *ds;
6387 	int i;
6388 
6389 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6390 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6391 		       "      %08x %08x %08x %08x\n",
6392 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6393 		    ds->ds_link, ds->ds_data,
6394 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6395 		    ds->ds_ctl0, ds->ds_ctl1,
6396 		    ds->ds_hw[0], ds->ds_hw[1]);
6397 		if (ah->ah_magic == 0x20065416) {
6398 			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6399 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6400 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6401 			    ds->ds_hw[8]);
6402 		}
6403 	}
6404 }
6405 
6406 static void
6407 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6408 	u_int qnum, u_int ix, int done)
6409 {
6410 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6411 	struct ath_hal *ah = sc->sc_ah;
6412 	const struct ath_desc *ds;
6413 	int i;
6414 
6415 	printf("Q%u[%3u]", qnum, ix);
6416 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6417 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6418 		       "        %08x %08x %08x %08x %08x %08x\n",
6419 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6420 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6421 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6422 		    ds->ds_ctl0, ds->ds_ctl1,
6423 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6424 		if (ah->ah_magic == 0x20065416) {
6425 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6426 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6427 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6428 			    ds->ds_hw[10],ds->ds_hw[11]);
6429 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6430 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6431 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6432 			    ds->ds_hw[18], ds->ds_hw[19]);
6433 		}
6434 	}
6435 }
6436 #endif /* ATH_DEBUG */
6437 
6438 static void
6439 ath_watchdog(struct ifnet *ifp)
6440 {
6441 	struct ath_softc *sc = ifp->if_softc;
6442 
6443 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
6444 		uint32_t hangs;
6445 
6446 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6447 		    hangs != 0) {
6448 			if_printf(ifp, "%s hang detected (0x%x)\n",
6449 			    hangs & 0xff ? "bb" : "mac", hangs);
6450 		} else
6451 			if_printf(ifp, "device timeout\n");
6452 		ath_reset(ifp);
6453 		ifp->if_oerrors++;
6454 		sc->sc_stats.ast_watchdog++;
6455 	}
6456 }
6457 
6458 #ifdef ATH_DIAGAPI
6459 /*
6460  * Diagnostic interface to the HAL.  This is used by various
6461  * tools to do things like retrieve register contents for
6462  * debugging.  The mechanism is intentionally opaque so that
6463  * it can change frequently w/o concern for compatiblity.
6464  */
6465 static int
6466 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6467 {
6468 	struct ath_hal *ah = sc->sc_ah;
6469 	u_int id = ad->ad_id & ATH_DIAG_ID;
6470 	void *indata = NULL;
6471 	void *outdata = NULL;
6472 	u_int32_t insize = ad->ad_in_size;
6473 	u_int32_t outsize = ad->ad_out_size;
6474 	int error = 0;
6475 
6476 	if (ad->ad_id & ATH_DIAG_IN) {
6477 		/*
6478 		 * Copy in data.
6479 		 */
6480 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6481 		if (indata == NULL) {
6482 			error = ENOMEM;
6483 			goto bad;
6484 		}
6485 		error = copyin(ad->ad_in_data, indata, insize);
6486 		if (error)
6487 			goto bad;
6488 	}
6489 	if (ad->ad_id & ATH_DIAG_DYN) {
6490 		/*
6491 		 * Allocate a buffer for the results (otherwise the HAL
6492 		 * returns a pointer to a buffer where we can read the
6493 		 * results).  Note that we depend on the HAL leaving this
6494 		 * pointer for us to use below in reclaiming the buffer;
6495 		 * may want to be more defensive.
6496 		 */
6497 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6498 		if (outdata == NULL) {
6499 			error = ENOMEM;
6500 			goto bad;
6501 		}
6502 	}
6503 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6504 		if (outsize < ad->ad_out_size)
6505 			ad->ad_out_size = outsize;
6506 		if (outdata != NULL)
6507 			error = copyout(outdata, ad->ad_out_data,
6508 					ad->ad_out_size);
6509 	} else {
6510 		error = EINVAL;
6511 	}
6512 bad:
6513 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6514 		free(indata, M_TEMP);
6515 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6516 		free(outdata, M_TEMP);
6517 	return error;
6518 }
6519 #endif /* ATH_DIAGAPI */
6520 
6521 static int
6522 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6523 {
6524 #define	IS_RUNNING(ifp) \
6525 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6526 	struct ath_softc *sc = ifp->if_softc;
6527 	struct ieee80211com *ic = ifp->if_l2com;
6528 	struct ifreq *ifr = (struct ifreq *)data;
6529 	const HAL_RATE_TABLE *rt;
6530 	int error = 0;
6531 
6532 	switch (cmd) {
6533 	case SIOCSIFFLAGS:
6534 		ATH_LOCK(sc);
6535 		if (IS_RUNNING(ifp)) {
6536 			/*
6537 			 * To avoid rescanning another access point,
6538 			 * do not call ath_init() here.  Instead,
6539 			 * only reflect promisc mode settings.
6540 			 */
6541 			ath_mode_init(sc);
6542 		} else if (ifp->if_flags & IFF_UP) {
6543 			/*
6544 			 * Beware of being called during attach/detach
6545 			 * to reset promiscuous mode.  In that case we
6546 			 * will still be marked UP but not RUNNING.
6547 			 * However trying to re-init the interface
6548 			 * is the wrong thing to do as we've already
6549 			 * torn down much of our state.  There's
6550 			 * probably a better way to deal with this.
6551 			 */
6552 			if (!sc->sc_invalid)
6553 				ath_init(sc);	/* XXX lose error */
6554 		} else {
6555 			ath_stop_locked(ifp);
6556 #ifdef notyet
6557 			/* XXX must wakeup in places like ath_vap_delete */
6558 			if (!sc->sc_invalid)
6559 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6560 #endif
6561 		}
6562 		ATH_UNLOCK(sc);
6563 		break;
6564 	case SIOCGIFMEDIA:
6565 	case SIOCSIFMEDIA:
6566 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6567 		break;
6568 	case SIOCGATHSTATS:
6569 		/* NB: embed these numbers to get a consistent view */
6570 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6571 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6572 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6573 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6574 #ifdef ATH_SUPPORT_TDMA
6575 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6576 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6577 #endif
6578 		rt = sc->sc_currates;
6579 		/* XXX HT rates */
6580 		sc->sc_stats.ast_tx_rate =
6581 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6582 		return copyout(&sc->sc_stats,
6583 		    ifr->ifr_data, sizeof (sc->sc_stats));
6584 	case SIOCZATHSTATS:
6585 		error = priv_check(curthread, PRIV_DRIVER);
6586 		if (error == 0)
6587 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6588 		break;
6589 #ifdef ATH_DIAGAPI
6590 	case SIOCGATHDIAG:
6591 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6592 		break;
6593 #endif
6594 	case SIOCGIFADDR:
6595 		error = ether_ioctl(ifp, cmd, data);
6596 		break;
6597 	default:
6598 		error = EINVAL;
6599 		break;
6600 	}
6601 	return error;
6602 #undef IS_RUNNING
6603 }
6604 
6605 static int
6606 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6607 {
6608 	struct ath_softc *sc = arg1;
6609 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6610 	int error;
6611 
6612 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6613 	if (error || !req->newptr)
6614 		return error;
6615 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6616 }
6617 
6618 static int
6619 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6620 {
6621 	struct ath_softc *sc = arg1;
6622 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6623 	int error;
6624 
6625 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6626 	if (error || !req->newptr)
6627 		return error;
6628 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6629 }
6630 
6631 static int
6632 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6633 {
6634 	struct ath_softc *sc = arg1;
6635 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6636 	int error;
6637 
6638 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6639 	if (error || !req->newptr)
6640 		return error;
6641 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6642 }
6643 
6644 static int
6645 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6646 {
6647 	struct ath_softc *sc = arg1;
6648 	int softled = sc->sc_softled;
6649 	int error;
6650 
6651 	error = sysctl_handle_int(oidp, &softled, 0, req);
6652 	if (error || !req->newptr)
6653 		return error;
6654 	softled = (softled != 0);
6655 	if (softled != sc->sc_softled) {
6656 		if (softled) {
6657 			/* NB: handle any sc_ledpin change */
6658 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6659 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6660 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6661 				!sc->sc_ledon);
6662 		}
6663 		sc->sc_softled = softled;
6664 	}
6665 	return 0;
6666 }
6667 
6668 static int
6669 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6670 {
6671 	struct ath_softc *sc = arg1;
6672 	int ledpin = sc->sc_ledpin;
6673 	int error;
6674 
6675 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6676 	if (error || !req->newptr)
6677 		return error;
6678 	if (ledpin != sc->sc_ledpin) {
6679 		sc->sc_ledpin = ledpin;
6680 		if (sc->sc_softled) {
6681 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6682 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6683 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6684 				!sc->sc_ledon);
6685 		}
6686 	}
6687 	return 0;
6688 }
6689 
6690 static int
6691 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6692 {
6693 	struct ath_softc *sc = arg1;
6694 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6695 	int error;
6696 
6697 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6698 	if (!error && req->newptr) {
6699 		/* XXX assumes 2 antenna ports */
6700 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6701 			return EINVAL;
6702 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6703 		/*
6704 		 * NB: with the switch locked this isn't meaningful,
6705 		 *     but set it anyway so things like radiotap get
6706 		 *     consistent info in their data.
6707 		 */
6708 		sc->sc_txantenna = txantenna;
6709 	}
6710 	return error;
6711 }
6712 
6713 static int
6714 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6715 {
6716 	struct ath_softc *sc = arg1;
6717 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6718 	int error;
6719 
6720 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6721 	if (!error && req->newptr)
6722 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6723 	return error;
6724 }
6725 
6726 static int
6727 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6728 {
6729 	struct ath_softc *sc = arg1;
6730 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6731 	int error;
6732 
6733 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6734 	if (error || !req->newptr)
6735 		return error;
6736 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6737 		return EINVAL;
6738 	sc->sc_diversity = diversity;
6739 	return 0;
6740 }
6741 
6742 static int
6743 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6744 {
6745 	struct ath_softc *sc = arg1;
6746 	u_int32_t diag;
6747 	int error;
6748 
6749 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6750 		return EINVAL;
6751 	error = sysctl_handle_int(oidp, &diag, 0, req);
6752 	if (error || !req->newptr)
6753 		return error;
6754 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6755 }
6756 
6757 static int
6758 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6759 {
6760 	struct ath_softc *sc = arg1;
6761 	struct ifnet *ifp = sc->sc_ifp;
6762 	u_int32_t scale;
6763 	int error;
6764 
6765 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6766 	error = sysctl_handle_int(oidp, &scale, 0, req);
6767 	if (error || !req->newptr)
6768 		return error;
6769 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6770 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6771 }
6772 
6773 static int
6774 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6775 {
6776 	struct ath_softc *sc = arg1;
6777 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6778 	int error;
6779 
6780 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6781 	if (error || !req->newptr)
6782 		return error;
6783 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6784 }
6785 
6786 static int
6787 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6788 {
6789 	struct ath_softc *sc = arg1;
6790 	struct ifnet *ifp = sc->sc_ifp;
6791 	struct ath_hal *ah = sc->sc_ah;
6792 	u_int rfkill = ath_hal_getrfkill(ah);
6793 	int error;
6794 
6795 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6796 	if (error || !req->newptr)
6797 		return error;
6798 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6799 		return 0;
6800 	if (!ath_hal_setrfkill(ah, rfkill))
6801 		return EINVAL;
6802 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6803 }
6804 
6805 static int
6806 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6807 {
6808 	struct ath_softc *sc = arg1;
6809 	u_int rfsilent;
6810 	int error;
6811 
6812 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6813 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6814 	if (error || !req->newptr)
6815 		return error;
6816 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6817 		return EINVAL;
6818 	sc->sc_rfsilentpin = rfsilent & 0x1c;
6819 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6820 	return 0;
6821 }
6822 
6823 static int
6824 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6825 {
6826 	struct ath_softc *sc = arg1;
6827 	u_int32_t tpack;
6828 	int error;
6829 
6830 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6831 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6832 	if (error || !req->newptr)
6833 		return error;
6834 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6835 }
6836 
6837 static int
6838 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6839 {
6840 	struct ath_softc *sc = arg1;
6841 	u_int32_t tpcts;
6842 	int error;
6843 
6844 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6845 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6846 	if (error || !req->newptr)
6847 		return error;
6848 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6849 }
6850 
6851 static int
6852 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6853 {
6854 	struct ath_softc *sc = arg1;
6855 	int intmit, error;
6856 
6857 	intmit = ath_hal_getintmit(sc->sc_ah);
6858 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6859 	if (error || !req->newptr)
6860 		return error;
6861 	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6862 }
6863 
6864 static void
6865 ath_sysctlattach(struct ath_softc *sc)
6866 {
6867 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6868 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6869 	struct ath_hal *ah = sc->sc_ah;
6870 
6871 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6872 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6873 		"EEPROM country code");
6874 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6875 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6876 		"EEPROM regdomain code");
6877 #ifdef	ATH_DEBUG
6878 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6879 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6880 		"control debugging printfs");
6881 #endif
6882 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6883 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6884 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6885 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6886 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6887 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6888 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6889 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6890 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6891 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6892 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6893 		ath_sysctl_softled, "I", "enable/disable software LED support");
6894 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6895 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6896 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6897 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6898 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6899 		"setting to turn LED on");
6900 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6901 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6902 		"idle time for inactivity LED (ticks)");
6903 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6904 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6905 		ath_sysctl_txantenna, "I", "antenna switch");
6906 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6907 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6908 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6909 	if (ath_hal_hasdiversity(ah))
6910 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6911 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6912 			ath_sysctl_diversity, "I", "antenna diversity");
6913 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6914 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6915 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6916 		"tx descriptor batching");
6917 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6918 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6919 		ath_sysctl_diag, "I", "h/w diagnostic control");
6920 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6921 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6922 		ath_sysctl_tpscale, "I", "tx power scaling");
6923 	if (ath_hal_hastpc(ah)) {
6924 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6925 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6926 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6927 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6928 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6929 			ath_sysctl_tpack, "I", "tx power for ack frames");
6930 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6931 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6932 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6933 	}
6934 	if (ath_hal_hasfastframes(sc->sc_ah)) {
6935 		sc->sc_fftxqmin = ATH_FF_TXQMIN;
6936 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6937 			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6938 			"min frames before fast-frame staging");
6939 		sc->sc_fftxqmax = ATH_FF_TXQMAX;
6940 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6941 			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6942 			"max queued frames before tail drop");
6943 	}
6944 	if (ath_hal_hasrfsilent(ah)) {
6945 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6946 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6947 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6948 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6949 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6950 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6951 	}
6952 	if (ath_hal_hasintmit(ah)) {
6953 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6954 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6955 			ath_sysctl_intmit, "I", "interference mitigation");
6956 	}
6957 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6958 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6959 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6960 		"mask of error frames to pass when monitoring");
6961 #ifdef ATH_SUPPORT_TDMA
6962 	if (ath_hal_macversion(ah) > 0x78) {
6963 		sc->sc_tdmadbaprep = 2;
6964 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6965 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6966 			"TDMA DBA preparation time");
6967 		sc->sc_tdmaswbaprep = 10;
6968 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6969 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6970 			"TDMA SWBA preparation time");
6971 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6972 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6973 			"TDMA slot guard time");
6974 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6975 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6976 			"TDMA calculated super frame");
6977 	}
6978 #endif
6979 }
6980 
6981 static void
6982 ath_bpfattach(struct ath_softc *sc)
6983 {
6984 	struct ifnet *ifp = sc->sc_ifp;
6985 
6986 	bpfattach(ifp, DLT_IEEE802_11_RADIO,
6987 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
6988 	/*
6989 	 * Initialize constant fields.
6990 	 * XXX make header lengths a multiple of 32-bits so subsequent
6991 	 *     headers are properly aligned; this is a kludge to keep
6992 	 *     certain applications happy.
6993 	 *
6994 	 * NB: the channel is setup each time we transition to the
6995 	 *     RUN state to avoid filling it in for each frame.
6996 	 */
6997 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
6998 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
6999 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
7000 
7001 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
7002 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
7003 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
7004 }
7005 
7006 static int
7007 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
7008 	struct ath_buf *bf, struct mbuf *m0,
7009 	const struct ieee80211_bpf_params *params)
7010 {
7011 	struct ifnet *ifp = sc->sc_ifp;
7012 	struct ieee80211com *ic = ifp->if_l2com;
7013 	struct ath_hal *ah = sc->sc_ah;
7014 	int error, ismcast, ismrr;
7015 	int keyix, hdrlen, pktlen, try0, txantenna;
7016 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
7017 	struct ieee80211_frame *wh;
7018 	u_int flags, ctsduration;
7019 	HAL_PKT_TYPE atype;
7020 	const HAL_RATE_TABLE *rt;
7021 	struct ath_desc *ds;
7022 	u_int pri;
7023 
7024 	wh = mtod(m0, struct ieee80211_frame *);
7025 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
7026 	hdrlen = ieee80211_anyhdrsize(wh);
7027 	/*
7028 	 * Packet length must not include any
7029 	 * pad bytes; deduct them here.
7030 	 */
7031 	/* XXX honor IEEE80211_BPF_DATAPAD */
7032 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
7033 
7034 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
7035 		const struct ieee80211_cipher *cip;
7036 		struct ieee80211_key *k;
7037 
7038 		/*
7039 		 * Construct the 802.11 header+trailer for an encrypted
7040 		 * frame. The only reason this can fail is because of an
7041 		 * unknown or unsupported cipher/key type.
7042 		 */
7043 		k = ieee80211_crypto_encap(ni, m0);
7044 		if (k == NULL) {
7045 			/*
7046 			 * This can happen when the key is yanked after the
7047 			 * frame was queued.  Just discard the frame; the
7048 			 * 802.11 layer counts failures and provides
7049 			 * debugging/diagnostics.
7050 			 */
7051 			ath_freetx(m0);
7052 			return EIO;
7053 		}
7054 		/*
7055 		 * Adjust the packet + header lengths for the crypto
7056 		 * additions and calculate the h/w key index.  When
7057 		 * a s/w mic is done the frame will have had any mic
7058 		 * added to it prior to entry so m0->m_pkthdr.len will
7059 		 * account for it. Otherwise we need to add it to the
7060 		 * packet length.
7061 		 */
7062 		cip = k->wk_cipher;
7063 		hdrlen += cip->ic_header;
7064 		pktlen += cip->ic_header + cip->ic_trailer;
7065 		/* NB: frags always have any TKIP MIC done in s/w */
7066 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
7067 			pktlen += cip->ic_miclen;
7068 		keyix = k->wk_keyix;
7069 
7070 		/* packet header may have moved, reset our local pointer */
7071 		wh = mtod(m0, struct ieee80211_frame *);
7072 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
7073 		/*
7074 		 * Use station key cache slot, if assigned.
7075 		 */
7076 		keyix = ni->ni_ucastkey.wk_keyix;
7077 		if (keyix == IEEE80211_KEYIX_NONE)
7078 			keyix = HAL_TXKEYIX_INVALID;
7079 	} else
7080 		keyix = HAL_TXKEYIX_INVALID;
7081 
7082 	error = ath_tx_dmasetup(sc, bf, m0);
7083 	if (error != 0)
7084 		return error;
7085 	m0 = bf->bf_m;				/* NB: may have changed */
7086 	wh = mtod(m0, struct ieee80211_frame *);
7087 	bf->bf_node = ni;			/* NB: held reference */
7088 
7089 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
7090 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
7091 	if (params->ibp_flags & IEEE80211_BPF_RTS)
7092 		flags |= HAL_TXDESC_RTSENA;
7093 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
7094 		flags |= HAL_TXDESC_CTSENA;
7095 	/* XXX leave ismcast to injector? */
7096 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
7097 		flags |= HAL_TXDESC_NOACK;
7098 
7099 	rt = sc->sc_currates;
7100 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
7101 	rix = ath_tx_findrix(rt, params->ibp_rate0);
7102 	txrate = rt->info[rix].rateCode;
7103 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7104 		txrate |= rt->info[rix].shortPreamble;
7105 	sc->sc_txrix = rix;
7106 	try0 = params->ibp_try0;
7107 	ismrr = (params->ibp_try1 != 0);
7108 	txantenna = params->ibp_pri >> 2;
7109 	if (txantenna == 0)			/* XXX? */
7110 		txantenna = sc->sc_txantenna;
7111 	ctsduration = 0;
7112 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
7113 		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
7114 		ctsrate = rt->info[cix].rateCode;
7115 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
7116 			ctsrate |= rt->info[cix].shortPreamble;
7117 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
7118 				ctsduration += rt->info[cix].spAckDuration;
7119 			ctsduration += ath_hal_computetxtime(ah,
7120 				rt, pktlen, rix, AH_TRUE);
7121 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
7122 				ctsduration += rt->info[rix].spAckDuration;
7123 		} else {
7124 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
7125 				ctsduration += rt->info[cix].lpAckDuration;
7126 			ctsduration += ath_hal_computetxtime(ah,
7127 				rt, pktlen, rix, AH_FALSE);
7128 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
7129 				ctsduration += rt->info[rix].lpAckDuration;
7130 		}
7131 		ismrr = 0;			/* XXX */
7132 	} else
7133 		ctsrate = 0;
7134 	pri = params->ibp_pri & 3;
7135 	/*
7136 	 * NB: we mark all packets as type PSPOLL so the h/w won't
7137 	 * set the sequence number, duration, etc.
7138 	 */
7139 	atype = HAL_PKT_TYPE_PSPOLL;
7140 
7141 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
7142 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
7143 			sc->sc_hwmap[rix].ieeerate, -1);
7144 
7145 	if (bpf_peers_present(ifp->if_bpf)) {
7146 		u_int64_t tsf = ath_hal_gettsf64(ah);
7147 
7148 		sc->sc_tx_th.wt_tsf = htole64(tsf);
7149 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
7150 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
7151 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
7152 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
7153 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
7154 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
7155 
7156 		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
7157 	}
7158 
7159 	/*
7160 	 * Formulate first tx descriptor with tx controls.
7161 	 */
7162 	ds = bf->bf_desc;
7163 	/* XXX check return value? */
7164 	ath_hal_setuptxdesc(ah, ds
7165 		, pktlen		/* packet length */
7166 		, hdrlen		/* header length */
7167 		, atype			/* Atheros packet type */
7168 		, params->ibp_power	/* txpower */
7169 		, txrate, try0		/* series 0 rate/tries */
7170 		, keyix			/* key cache index */
7171 		, txantenna		/* antenna mode */
7172 		, flags			/* flags */
7173 		, ctsrate		/* rts/cts rate */
7174 		, ctsduration		/* rts/cts duration */
7175 	);
7176 	bf->bf_txflags = flags;
7177 
7178 	if (ismrr) {
7179 		rix = ath_tx_findrix(rt, params->ibp_rate1);
7180 		rate1 = rt->info[rix].rateCode;
7181 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7182 			rate1 |= rt->info[rix].shortPreamble;
7183 		if (params->ibp_try2) {
7184 			rix = ath_tx_findrix(rt, params->ibp_rate2);
7185 			rate2 = rt->info[rix].rateCode;
7186 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7187 				rate2 |= rt->info[rix].shortPreamble;
7188 		} else
7189 			rate2 = 0;
7190 		if (params->ibp_try3) {
7191 			rix = ath_tx_findrix(rt, params->ibp_rate3);
7192 			rate3 = rt->info[rix].rateCode;
7193 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7194 				rate3 |= rt->info[rix].shortPreamble;
7195 		} else
7196 			rate3 = 0;
7197 		ath_hal_setupxtxdesc(ah, ds
7198 			, rate1, params->ibp_try1	/* series 1 */
7199 			, rate2, params->ibp_try2	/* series 2 */
7200 			, rate3, params->ibp_try3	/* series 3 */
7201 		);
7202 	}
7203 
7204 	/* NB: no buffered multicast in power save support */
7205 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
7206 	return 0;
7207 }
7208 
7209 static int
7210 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
7211 	const struct ieee80211_bpf_params *params)
7212 {
7213 	struct ieee80211com *ic = ni->ni_ic;
7214 	struct ifnet *ifp = ic->ic_ifp;
7215 	struct ath_softc *sc = ifp->if_softc;
7216 	struct ath_buf *bf;
7217 
7218 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
7219 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
7220 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
7221 			"!running" : "invalid");
7222 		sc->sc_stats.ast_tx_raw_fail++;
7223 		ieee80211_free_node(ni);
7224 		m_freem(m);
7225 		return ENETDOWN;
7226 	}
7227 	/*
7228 	 * Grab a TX buffer and associated resources.
7229 	 */
7230 	bf = ath_getbuf(sc);
7231 	if (bf == NULL) {
7232 		/* NB: ath_getbuf handles stat+msg */
7233 		ieee80211_free_node(ni);
7234 		m_freem(m);
7235 		return ENOBUFS;
7236 	}
7237 
7238 	ifp->if_opackets++;
7239 	sc->sc_stats.ast_tx_raw++;
7240 
7241 	if (params == NULL) {
7242 		/*
7243 		 * Legacy path; interpret frame contents to decide
7244 		 * precisely how to send the frame.
7245 		 */
7246 		if (ath_tx_start(sc, ni, bf, m))
7247 			goto bad;
7248 	} else {
7249 		/*
7250 		 * Caller supplied explicit parameters to use in
7251 		 * sending the frame.
7252 		 */
7253 		if (ath_tx_raw_start(sc, ni, bf, m, params))
7254 			goto bad;
7255 	}
7256 	ifp->if_timer = 5;
7257 
7258 	return 0;
7259 bad:
7260 	ifp->if_oerrors++;
7261 	ATH_TXBUF_LOCK(sc);
7262 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
7263 	ATH_TXBUF_UNLOCK(sc);
7264 	ieee80211_free_node(ni);
7265 	return EIO;		/* XXX */
7266 }
7267 
7268 /*
7269  * Announce various information on device/driver attach.
7270  */
7271 static void
7272 ath_announce(struct ath_softc *sc)
7273 {
7274 	struct ifnet *ifp = sc->sc_ifp;
7275 	struct ath_hal *ah = sc->sc_ah;
7276 
7277 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
7278 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
7279 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7280 	if (bootverbose) {
7281 		int i;
7282 		for (i = 0; i <= WME_AC_VO; i++) {
7283 			struct ath_txq *txq = sc->sc_ac2q[i];
7284 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7285 				txq->axq_qnum, ieee80211_wme_acnames[i]);
7286 		}
7287 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7288 			sc->sc_cabq->axq_qnum);
7289 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7290 	}
7291 	if (ath_rxbuf != ATH_RXBUF)
7292 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7293 	if (ath_txbuf != ATH_TXBUF)
7294 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7295 }
7296 
7297 #ifdef ATH_SUPPORT_TDMA
7298 static __inline uint32_t
7299 ath_hal_getnexttbtt(struct ath_hal *ah)
7300 {
7301 #define	AR_TIMER0	0x8028
7302 	return OS_REG_READ(ah, AR_TIMER0);
7303 }
7304 
7305 static __inline void
7306 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7307 {
7308 	/* XXX handle wrap/overflow */
7309 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7310 }
7311 
7312 static void
7313 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7314 {
7315 	struct ath_hal *ah = sc->sc_ah;
7316 	HAL_BEACON_TIMERS bt;
7317 
7318 	bt.bt_intval = bintval | HAL_BEACON_ENA;
7319 	bt.bt_nexttbtt = nexttbtt;
7320 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7321 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7322 	bt.bt_nextatim = nexttbtt+1;
7323 	ath_hal_beaconsettimers(ah, &bt);
7324 }
7325 
7326 /*
7327  * Calculate the beacon interval.  This is periodic in the
7328  * superframe for the bss.  We assume each station is configured
7329  * identically wrt transmit rate so the guard time we calculate
7330  * above will be the same on all stations.  Note we need to
7331  * factor in the xmit time because the hardware will schedule
7332  * a frame for transmit if the start of the frame is within
7333  * the burst time.  When we get hardware that properly kills
7334  * frames in the PCU we can reduce/eliminate the guard time.
7335  *
7336  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7337  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7338  * with 1us timer granularity should allow us to reduce/eliminate
7339  * this.
7340  */
7341 static void
7342 ath_tdma_bintvalsetup(struct ath_softc *sc,
7343 	const struct ieee80211_tdma_state *tdma)
7344 {
7345 	/* copy from vap state (XXX check all vaps have same value?) */
7346 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7347 	sc->sc_tdmabintcnt = tdma->tdma_bintval;
7348 
7349 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7350 		tdma->tdma_slotcnt, 1024);
7351 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7352 	if (sc->sc_tdmabintval & 1)
7353 		sc->sc_tdmabintval++;
7354 
7355 	if (tdma->tdma_slot == 0) {
7356 		/*
7357 		 * Only slot 0 beacons; other slots respond.
7358 		 */
7359 		sc->sc_imask |= HAL_INT_SWBA;
7360 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7361 	} else {
7362 		/* XXX all vaps must be slot 0 or slot !0 */
7363 		sc->sc_imask &= ~HAL_INT_SWBA;
7364 	}
7365 }
7366 
7367 /*
7368  * Max 802.11 overhead.  This assumes no 4-address frames and
7369  * the encapsulation done by ieee80211_encap (llc).  We also
7370  * include potential crypto overhead.
7371  */
7372 #define	IEEE80211_MAXOVERHEAD \
7373 	(sizeof(struct ieee80211_qosframe) \
7374 	 + sizeof(struct llc) \
7375 	 + IEEE80211_ADDR_LEN \
7376 	 + IEEE80211_WEP_IVLEN \
7377 	 + IEEE80211_WEP_KIDLEN \
7378 	 + IEEE80211_WEP_CRCLEN \
7379 	 + IEEE80211_WEP_MICLEN \
7380 	 + IEEE80211_CRC_LEN)
7381 
7382 /*
7383  * Setup initially for tdma operation.  Start the beacon
7384  * timers and enable SWBA if we are slot 0.  Otherwise
7385  * we wait for slot 0 to arrive so we can sync up before
7386  * starting to transmit.
7387  */
7388 static void
7389 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7390 {
7391 	struct ath_hal *ah = sc->sc_ah;
7392 	struct ifnet *ifp = sc->sc_ifp;
7393 	struct ieee80211com *ic = ifp->if_l2com;
7394 	const struct ieee80211_txparam *tp;
7395 	const struct ieee80211_tdma_state *tdma = NULL;
7396 	int rix;
7397 
7398 	if (vap == NULL) {
7399 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7400 		if (vap == NULL) {
7401 			if_printf(ifp, "%s: no vaps?\n", __func__);
7402 			return;
7403 		}
7404 	}
7405 	tp = vap->iv_bss->ni_txparms;
7406 	/*
7407 	 * Calculate the guard time for each slot.  This is the
7408 	 * time to send a maximal-size frame according to the
7409 	 * fixed/lowest transmit rate.  Note that the interface
7410 	 * mtu does not include the 802.11 overhead so we must
7411 	 * tack that on (ath_hal_computetxtime includes the
7412 	 * preamble and plcp in it's calculation).
7413 	 */
7414 	tdma = vap->iv_tdma;
7415 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7416 		rix = ath_tx_findrix(sc->sc_currates, tp->ucastrate);
7417 	else
7418 		rix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
7419 	/* XXX short preamble assumed */
7420 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7421 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7422 
7423 	ath_hal_intrset(ah, 0);
7424 
7425 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7426 	ath_hal_setcca(ah, AH_FALSE);		/* disable CCA */
7427 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7428 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7429 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7430 	sc->sc_syncbeacon = 0;
7431 
7432 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7433 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7434 
7435 	ath_hal_intrset(ah, sc->sc_imask);
7436 
7437 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7438 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7439 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7440 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7441 	    sc->sc_tdmadbaprep);
7442 }
7443 
7444 /*
7445  * Update tdma operation.  Called from the 802.11 layer
7446  * when a beacon is received from the TDMA station operating
7447  * in the slot immediately preceding us in the bss.  Use
7448  * the rx timestamp for the beacon frame to update our
7449  * beacon timers so we follow their schedule.  Note that
7450  * by using the rx timestamp we implicitly include the
7451  * propagation delay in our schedule.
7452  */
7453 static void
7454 ath_tdma_update(struct ieee80211_node *ni,
7455 	const struct ieee80211_tdma_param *tdma)
7456 {
7457 #define	TSF_TO_TU(_h,_l) \
7458 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7459 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7460 	struct ieee80211vap *vap = ni->ni_vap;
7461 	struct ieee80211com *ic = ni->ni_ic;
7462 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7463 	struct ath_hal *ah = sc->sc_ah;
7464 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7465 	u_int64_t tsf, rstamp, nextslot;
7466 	u_int32_t txtime, nextslottu, timer0;
7467 	int32_t tudelta, tsfdelta;
7468 	const struct ath_rx_status *rs;
7469 	int rix;
7470 
7471 	sc->sc_stats.ast_tdma_update++;
7472 
7473 	/*
7474 	 * Check for and adopt configuration changes.
7475 	 */
7476 	if (isset(ATH_VAP(vap)->av_boff.bo_flags, IEEE80211_BEACON_TDMA)) {
7477 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7478 
7479 		ath_tdma_bintvalsetup(sc, ts);
7480 
7481 		DPRINTF(sc, ATH_DEBUG_TDMA,
7482 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7483 		    "bintval %u TU\n", __func__,
7484 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7485 		    sc->sc_tdmabintval);
7486 
7487 		ath_beaconq_config(sc);
7488 		/* XXX right? */
7489 		ath_hal_intrset(ah, sc->sc_imask);
7490 		/* NB: beacon timers programmed below */
7491 	}
7492 
7493 	/* extend rx timestamp to 64 bits */
7494 	tsf = ath_hal_gettsf64(ah);
7495 	rstamp = ath_extend_tsf(ni->ni_rstamp, tsf);
7496 	/*
7497 	 * The rx timestamp is set by the hardware on completing
7498 	 * reception (at the point where the rx descriptor is DMA'd
7499 	 * to the host).  To find the start of our next slot we
7500 	 * must adjust this time by the time required to send
7501 	 * the packet just received.
7502 	 */
7503 	rs = sc->sc_tdmars;
7504 	rix = rt->rateCodeToIndex[rs->rs_rate];
7505 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7506 	    rt->info[rix].shortPreamble);
7507 	/* NB: << 9 is to cvt to TU and /2 */
7508 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7509 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7510 
7511 	/*
7512 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7513 	 * to usecs and calculate the difference between what the
7514 	 * other station thinks and what we have programmed.  This
7515 	 * lets us figure how to adjust our timers to match.  The
7516 	 * adjustments are done by pulling the TSF forward and possibly
7517 	 * rewriting the beacon timers.
7518 	 */
7519 	timer0 = ath_hal_getnexttbtt(ah);
7520 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7521 
7522 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7523 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7524 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7525 
7526 	if (tsfdelta < 0) {
7527 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7528 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7529 		tsfdelta = -tsfdelta % 1024;
7530 		nextslottu++;
7531 	} else if (tsfdelta > 0) {
7532 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7533 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7534 		tsfdelta = 1024 - (tsfdelta % 1024);
7535 		nextslottu++;
7536 	} else {
7537 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7538 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7539 	}
7540 	tudelta = nextslottu - timer0;
7541 
7542 	/*
7543 	 * Copy sender's timetstamp into tdma ie so they can
7544 	 * calculate roundtrip time.  We submit a beacon frame
7545 	 * below after any timer adjustment.  The frame goes out
7546 	 * at the next TBTT so the sender can calculate the
7547 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7548 	 *
7549 	 * NB: This tstamp is subtlely preserved when
7550 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7551 	 *     slot position changes) because ieee80211_add_tdma
7552 	 *     skips over the data.
7553 	 */
7554 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7555 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7556 		&ni->ni_tstamp.data, 8);
7557 #if 0
7558 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7559 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7560 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7561 	    (int)(nextslot - tsf), tsfdelta,
7562 	    nextslottu, timer0, tudelta);
7563 #endif
7564 	/*
7565 	 * Adjust the beacon timers only when pulling them forward
7566 	 * or when going back by less than the beacon interval.
7567 	 * Negative jumps larger than the beacon interval seem to
7568 	 * cause the timers to stop and generally cause instability.
7569 	 * This basically filters out jumps due to missed beacons.
7570 	 */
7571 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7572 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7573 		sc->sc_stats.ast_tdma_timers++;
7574 	}
7575 	if (tsfdelta > 0) {
7576 		ath_hal_adjusttsf(ah, tsfdelta);
7577 		sc->sc_stats.ast_tdma_tsf++;
7578 	}
7579 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7580 #undef TU_TO_TSF
7581 #undef TSF_TO_TU
7582 }
7583 
7584 /*
7585  * Transmit a beacon frame at SWBA.  Dynamic updates
7586  * to the frame contents are done as needed.
7587  */
7588 static void
7589 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7590 {
7591 	struct ath_hal *ah = sc->sc_ah;
7592 	struct ath_buf *bf;
7593 	int otherant;
7594 
7595 	/*
7596 	 * Check if the previous beacon has gone out.  If
7597 	 * not don't try to post another, skip this period
7598 	 * and wait for the next.  Missed beacons indicate
7599 	 * a problem and should not occur.  If we miss too
7600 	 * many consecutive beacons reset the device.
7601 	 */
7602 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7603 		sc->sc_bmisscount++;
7604 		DPRINTF(sc, ATH_DEBUG_BEACON,
7605 			"%s: missed %u consecutive beacons\n",
7606 			__func__, sc->sc_bmisscount);
7607 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7608 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7609 		return;
7610 	}
7611 	if (sc->sc_bmisscount != 0) {
7612 		DPRINTF(sc, ATH_DEBUG_BEACON,
7613 			"%s: resume beacon xmit after %u misses\n",
7614 			__func__, sc->sc_bmisscount);
7615 		sc->sc_bmisscount = 0;
7616 	}
7617 
7618 	/*
7619 	 * Check recent per-antenna transmit statistics and flip
7620 	 * the default antenna if noticeably more frames went out
7621 	 * on the non-default antenna.
7622 	 * XXX assumes 2 anntenae
7623 	 */
7624 	if (!sc->sc_diversity) {
7625 		otherant = sc->sc_defant & 1 ? 2 : 1;
7626 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7627 			ath_setdefantenna(sc, otherant);
7628 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7629 	}
7630 
7631 	bf = ath_beacon_generate(sc, vap);
7632 	if (bf != NULL) {
7633 		/*
7634 		 * Stop any current dma and put the new frame on the queue.
7635 		 * This should never fail since we check above that no frames
7636 		 * are still pending on the queue.
7637 		 */
7638 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7639 			DPRINTF(sc, ATH_DEBUG_ANY,
7640 				"%s: beacon queue %u did not stop?\n",
7641 				__func__, sc->sc_bhalq);
7642 			/* NB: the HAL still stops DMA, so proceed */
7643 		}
7644 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7645 		ath_hal_txstart(ah, sc->sc_bhalq);
7646 
7647 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7648 
7649 		/*
7650 		 * Record local TSF for our last send for use
7651 		 * in arbitrating slot collisions.
7652 		 */
7653 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7654 	}
7655 }
7656 #endif /* ATH_SUPPORT_TDMA */
7657