xref: /freebsd/sys/dev/ath/if_ath.c (revision ae77177087c655fc883075af4f425b37e032cd05)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tx.h>
106 #include <dev/ath/if_ath_sysctl.h>
107 #include <dev/ath/if_ath_led.h>
108 #include <dev/ath/if_ath_keycache.h>
109 #include <dev/ath/if_athdfs.h>
110 
111 #ifdef ATH_TX99_DIAG
112 #include <dev/ath/ath_tx99/ath_tx99.h>
113 #endif
114 
115 #define	ATH_KTR_INTR	KTR_SPARE4
116 #define	ATH_KTR_ERR	KTR_SPARE3
117 
118 /*
119  * ATH_BCBUF determines the number of vap's that can transmit
120  * beacons and also (currently) the number of vap's that can
121  * have unique mac addresses/bssid.  When staggering beacons
122  * 4 is probably a good max as otherwise the beacons become
123  * very closely spaced and there is limited time for cab q traffic
124  * to go out.  You can burst beacons instead but that is not good
125  * for stations in power save and at some point you really want
126  * another radio (and channel).
127  *
128  * The limit on the number of mac addresses is tied to our use of
129  * the U/L bit and tracking addresses in a byte; it would be
130  * worthwhile to allow more for applications like proxy sta.
131  */
132 CTASSERT(ATH_BCBUF <= 8);
133 
134 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	ath_vap_delete(struct ieee80211vap *);
139 static void	ath_init(void *);
140 static void	ath_stop_locked(struct ifnet *);
141 static void	ath_stop(struct ifnet *);
142 static void	ath_start(struct ifnet *);
143 static int	ath_reset_vap(struct ieee80211vap *, u_long);
144 static int	ath_media_change(struct ifnet *);
145 static void	ath_watchdog(void *);
146 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
147 static void	ath_fatal_proc(void *, int);
148 static void	ath_bmiss_vap(struct ieee80211vap *);
149 static void	ath_bmiss_proc(void *, int);
150 static void	ath_key_update_begin(struct ieee80211vap *);
151 static void	ath_key_update_end(struct ieee80211vap *);
152 static void	ath_update_mcast(struct ifnet *);
153 static void	ath_update_promisc(struct ifnet *);
154 static void	ath_mode_init(struct ath_softc *);
155 static void	ath_setslottime(struct ath_softc *);
156 static void	ath_updateslot(struct ifnet *);
157 static int	ath_beaconq_setup(struct ath_hal *);
158 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
159 static void	ath_beacon_update(struct ieee80211vap *, int item);
160 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
161 static void	ath_beacon_proc(void *, int);
162 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
163 			struct ieee80211vap *);
164 static void	ath_bstuck_proc(void *, int);
165 static void	ath_reset_proc(void *, int);
166 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
167 static void	ath_beacon_free(struct ath_softc *);
168 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
169 static void	ath_descdma_cleanup(struct ath_softc *sc,
170 			struct ath_descdma *, ath_bufhead *);
171 static int	ath_desc_alloc(struct ath_softc *);
172 static void	ath_desc_free(struct ath_softc *);
173 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
174 			const uint8_t [IEEE80211_ADDR_LEN]);
175 static void	ath_node_cleanup(struct ieee80211_node *);
176 static void	ath_node_free(struct ieee80211_node *);
177 static void	ath_node_getsignal(const struct ieee80211_node *,
178 			int8_t *, int8_t *);
179 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
180 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
181 			int subtype, int rssi, int nf);
182 static void	ath_setdefantenna(struct ath_softc *, u_int);
183 static void	ath_rx_proc(struct ath_softc *sc, int);
184 static void	ath_rx_tasklet(void *, int);
185 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
187 static int	ath_tx_setup(struct ath_softc *, int, int);
188 static int	ath_wme_update(struct ieee80211com *);
189 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
190 static void	ath_tx_cleanup(struct ath_softc *);
191 static void	ath_tx_proc_q0(void *, int);
192 static void	ath_tx_proc_q0123(void *, int);
193 static void	ath_tx_proc(void *, int);
194 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
195 static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
196 static void	ath_stoprecv(struct ath_softc *, int);
197 static int	ath_startrecv(struct ath_softc *);
198 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
199 static void	ath_scan_start(struct ieee80211com *);
200 static void	ath_scan_end(struct ieee80211com *);
201 static void	ath_set_channel(struct ieee80211com *);
202 static void	ath_calibrate(void *);
203 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
204 static void	ath_setup_stationkey(struct ieee80211_node *);
205 static void	ath_newassoc(struct ieee80211_node *, int);
206 static int	ath_setregdomain(struct ieee80211com *,
207 		    struct ieee80211_regdomain *, int,
208 		    struct ieee80211_channel []);
209 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
210 		    struct ieee80211_channel []);
211 static int	ath_getchannels(struct ath_softc *);
212 
213 static int	ath_rate_setup(struct ath_softc *, u_int mode);
214 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
215 
216 static void	ath_announce(struct ath_softc *);
217 
218 static void	ath_dfs_tasklet(void *, int);
219 
220 #ifdef IEEE80211_SUPPORT_TDMA
221 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
222 		    u_int32_t bintval);
223 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
224 		    const struct ieee80211_tdma_state *tdma);
225 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
226 static void	ath_tdma_update(struct ieee80211_node *ni,
227 		    const struct ieee80211_tdma_param *tdma, int);
228 static void	ath_tdma_beacon_send(struct ath_softc *sc,
229 		    struct ieee80211vap *vap);
230 
231 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
232 #define	TDMA_LPF_LEN		6
233 #define	TDMA_DUMMY_MARKER	0x127
234 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
235 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
236 #define	TDMA_LPF(x, y, len) \
237     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
238 #define	TDMA_SAMPLE(x, y) do {					\
239 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
240 } while (0)
241 #define	TDMA_EP_RND(x,mul) \
242 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
243 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
244 #endif /* IEEE80211_SUPPORT_TDMA */
245 
246 SYSCTL_DECL(_hw_ath);
247 
248 /* XXX validate sysctl values */
249 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
250 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
251 	    0, "long chip calibration interval (secs)");
252 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
253 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
254 	    0, "short chip calibration interval (msecs)");
255 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
256 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
257 	    0, "reset chip calibration results (secs)");
258 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
259 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
260 	    0, "ANI calibration (msecs)");
261 
262 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
263 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
264 	    0, "rx buffers allocated");
265 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
266 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
267 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
268 	    0, "tx buffers allocated");
269 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
270 
271 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
272 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
273 	    0, "max missed beacon xmits before chip reset");
274 
275 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
276 
277 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
278 #define	HAL_MODE_HT40 \
279 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
280 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
281 int
282 ath_attach(u_int16_t devid, struct ath_softc *sc)
283 {
284 	struct ifnet *ifp;
285 	struct ieee80211com *ic;
286 	struct ath_hal *ah = NULL;
287 	HAL_STATUS status;
288 	int error = 0, i;
289 	u_int wmodes;
290 	uint8_t macaddr[IEEE80211_ADDR_LEN];
291 	int rx_chainmask, tx_chainmask;
292 
293 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
294 
295 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
296 	if (ifp == NULL) {
297 		device_printf(sc->sc_dev, "can not if_alloc()\n");
298 		error = ENOSPC;
299 		goto bad;
300 	}
301 	ic = ifp->if_l2com;
302 
303 	/* set these up early for if_printf use */
304 	if_initname(ifp, device_get_name(sc->sc_dev),
305 		device_get_unit(sc->sc_dev));
306 
307 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
308 	    sc->sc_eepromdata, &status);
309 	if (ah == NULL) {
310 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
311 			status);
312 		error = ENXIO;
313 		goto bad;
314 	}
315 	sc->sc_ah = ah;
316 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
317 #ifdef	ATH_DEBUG
318 	sc->sc_debug = ath_debug;
319 #endif
320 
321 	/*
322 	 * Check if the MAC has multi-rate retry support.
323 	 * We do this by trying to setup a fake extended
324 	 * descriptor.  MAC's that don't have support will
325 	 * return false w/o doing anything.  MAC's that do
326 	 * support it will return true w/o doing anything.
327 	 */
328 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
329 
330 	/*
331 	 * Check if the device has hardware counters for PHY
332 	 * errors.  If so we need to enable the MIB interrupt
333 	 * so we can act on stat triggers.
334 	 */
335 	if (ath_hal_hwphycounters(ah))
336 		sc->sc_needmib = 1;
337 
338 	/*
339 	 * Get the hardware key cache size.
340 	 */
341 	sc->sc_keymax = ath_hal_keycachesize(ah);
342 	if (sc->sc_keymax > ATH_KEYMAX) {
343 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
344 			ATH_KEYMAX, sc->sc_keymax);
345 		sc->sc_keymax = ATH_KEYMAX;
346 	}
347 	/*
348 	 * Reset the key cache since some parts do not
349 	 * reset the contents on initial power up.
350 	 */
351 	for (i = 0; i < sc->sc_keymax; i++)
352 		ath_hal_keyreset(ah, i);
353 
354 	/*
355 	 * Collect the default channel list.
356 	 */
357 	error = ath_getchannels(sc);
358 	if (error != 0)
359 		goto bad;
360 
361 	/*
362 	 * Setup rate tables for all potential media types.
363 	 */
364 	ath_rate_setup(sc, IEEE80211_MODE_11A);
365 	ath_rate_setup(sc, IEEE80211_MODE_11B);
366 	ath_rate_setup(sc, IEEE80211_MODE_11G);
367 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
368 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
369 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
370 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
371 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
372 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
373 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
374 
375 	/* NB: setup here so ath_rate_update is happy */
376 	ath_setcurmode(sc, IEEE80211_MODE_11A);
377 
378 	/*
379 	 * Allocate tx+rx descriptors and populate the lists.
380 	 */
381 	error = ath_desc_alloc(sc);
382 	if (error != 0) {
383 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
384 		goto bad;
385 	}
386 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
387 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
388 
389 	ATH_TXBUF_LOCK_INIT(sc);
390 
391 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
392 		taskqueue_thread_enqueue, &sc->sc_tq);
393 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
394 		"%s taskq", ifp->if_xname);
395 
396 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
397 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
398 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
399 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
400 
401 	/*
402 	 * Allocate hardware transmit queues: one queue for
403 	 * beacon frames and one data queue for each QoS
404 	 * priority.  Note that the hal handles resetting
405 	 * these queues at the needed time.
406 	 *
407 	 * XXX PS-Poll
408 	 */
409 	sc->sc_bhalq = ath_beaconq_setup(ah);
410 	if (sc->sc_bhalq == (u_int) -1) {
411 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
412 		error = EIO;
413 		goto bad2;
414 	}
415 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
416 	if (sc->sc_cabq == NULL) {
417 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
418 		error = EIO;
419 		goto bad2;
420 	}
421 	/* NB: insure BK queue is the lowest priority h/w queue */
422 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
423 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
424 			ieee80211_wme_acnames[WME_AC_BK]);
425 		error = EIO;
426 		goto bad2;
427 	}
428 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
429 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
430 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
431 		/*
432 		 * Not enough hardware tx queues to properly do WME;
433 		 * just punt and assign them all to the same h/w queue.
434 		 * We could do a better job of this if, for example,
435 		 * we allocate queues when we switch from station to
436 		 * AP mode.
437 		 */
438 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
439 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
440 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
441 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
442 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
443 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
444 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
445 	}
446 
447 	/*
448 	 * Special case certain configurations.  Note the
449 	 * CAB queue is handled by these specially so don't
450 	 * include them when checking the txq setup mask.
451 	 */
452 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
453 	case 0x01:
454 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
455 		break;
456 	case 0x0f:
457 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
458 		break;
459 	default:
460 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
461 		break;
462 	}
463 
464 	/*
465 	 * Setup rate control.  Some rate control modules
466 	 * call back to change the anntena state so expose
467 	 * the necessary entry points.
468 	 * XXX maybe belongs in struct ath_ratectrl?
469 	 */
470 	sc->sc_setdefantenna = ath_setdefantenna;
471 	sc->sc_rc = ath_rate_attach(sc);
472 	if (sc->sc_rc == NULL) {
473 		error = EIO;
474 		goto bad2;
475 	}
476 
477 	/* Attach DFS module */
478 	if (! ath_dfs_attach(sc)) {
479 		device_printf(sc->sc_dev,
480 		    "%s: unable to attach DFS\n", __func__);
481 		error = EIO;
482 		goto bad2;
483 	}
484 
485 	/* Start DFS processing tasklet */
486 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
487 
488 	/* Configure LED state */
489 	sc->sc_blinking = 0;
490 	sc->sc_ledstate = 1;
491 	sc->sc_ledon = 0;			/* low true */
492 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
493 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
494 
495 	/*
496 	 * Don't setup hardware-based blinking.
497 	 *
498 	 * Although some NICs may have this configured in the
499 	 * default reset register values, the user may wish
500 	 * to alter which pins have which function.
501 	 *
502 	 * The reference driver attaches the MAC network LED to GPIO1 and
503 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
504 	 * NIC has these reversed.
505 	 */
506 	sc->sc_hardled = (1 == 0);
507 	sc->sc_led_net_pin = -1;
508 	sc->sc_led_pwr_pin = -1;
509 	/*
510 	 * Auto-enable soft led processing for IBM cards and for
511 	 * 5211 minipci cards.  Users can also manually enable/disable
512 	 * support with a sysctl.
513 	 */
514 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
515 	ath_led_config(sc);
516 	ath_hal_setledstate(ah, HAL_LED_INIT);
517 
518 	ifp->if_softc = sc;
519 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
520 	ifp->if_start = ath_start;
521 	ifp->if_ioctl = ath_ioctl;
522 	ifp->if_init = ath_init;
523 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
524 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
525 	IFQ_SET_READY(&ifp->if_snd);
526 
527 	ic->ic_ifp = ifp;
528 	/* XXX not right but it's not used anywhere important */
529 	ic->ic_phytype = IEEE80211_T_OFDM;
530 	ic->ic_opmode = IEEE80211_M_STA;
531 	ic->ic_caps =
532 		  IEEE80211_C_STA		/* station mode */
533 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
534 		| IEEE80211_C_HOSTAP		/* hostap mode */
535 		| IEEE80211_C_MONITOR		/* monitor mode */
536 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
537 		| IEEE80211_C_WDS		/* 4-address traffic works */
538 		| IEEE80211_C_MBSS		/* mesh point link mode */
539 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
540 		| IEEE80211_C_SHSLOT		/* short slot time supported */
541 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
542 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
543 		| IEEE80211_C_TXFRAG		/* handle tx frags */
544 #ifdef	ATH_ENABLE_DFS
545 		| IEEE80211_C_DFS		/* Enable radar detection */
546 #endif
547 		;
548 	/*
549 	 * Query the hal to figure out h/w crypto support.
550 	 */
551 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
552 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
554 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
556 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
558 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
560 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
561 		/*
562 		 * Check if h/w does the MIC and/or whether the
563 		 * separate key cache entries are required to
564 		 * handle both tx+rx MIC keys.
565 		 */
566 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
567 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
568 		/*
569 		 * If the h/w supports storing tx+rx MIC keys
570 		 * in one cache slot automatically enable use.
571 		 */
572 		if (ath_hal_hastkipsplit(ah) ||
573 		    !ath_hal_settkipsplit(ah, AH_FALSE))
574 			sc->sc_splitmic = 1;
575 		/*
576 		 * If the h/w can do TKIP MIC together with WME then
577 		 * we use it; otherwise we force the MIC to be done
578 		 * in software by the net80211 layer.
579 		 */
580 		if (ath_hal_haswmetkipmic(ah))
581 			sc->sc_wmetkipmic = 1;
582 	}
583 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
584 	/*
585 	 * Check for multicast key search support.
586 	 */
587 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
588 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
589 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
590 	}
591 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
592 	/*
593 	 * Mark key cache slots associated with global keys
594 	 * as in use.  If we knew TKIP was not to be used we
595 	 * could leave the +32, +64, and +32+64 slots free.
596 	 */
597 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
598 		setbit(sc->sc_keymap, i);
599 		setbit(sc->sc_keymap, i+64);
600 		if (sc->sc_splitmic) {
601 			setbit(sc->sc_keymap, i+32);
602 			setbit(sc->sc_keymap, i+32+64);
603 		}
604 	}
605 	/*
606 	 * TPC support can be done either with a global cap or
607 	 * per-packet support.  The latter is not available on
608 	 * all parts.  We're a bit pedantic here as all parts
609 	 * support a global cap.
610 	 */
611 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
612 		ic->ic_caps |= IEEE80211_C_TXPMGT;
613 
614 	/*
615 	 * Mark WME capability only if we have sufficient
616 	 * hardware queues to do proper priority scheduling.
617 	 */
618 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
619 		ic->ic_caps |= IEEE80211_C_WME;
620 	/*
621 	 * Check for misc other capabilities.
622 	 */
623 	if (ath_hal_hasbursting(ah))
624 		ic->ic_caps |= IEEE80211_C_BURST;
625 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
626 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
627 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
628 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
629 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
630 	if (ath_hal_hasfastframes(ah))
631 		ic->ic_caps |= IEEE80211_C_FF;
632 	wmodes = ath_hal_getwirelessmodes(ah);
633 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
634 		ic->ic_caps |= IEEE80211_C_TURBOP;
635 #ifdef IEEE80211_SUPPORT_TDMA
636 	if (ath_hal_macversion(ah) > 0x78) {
637 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
638 		ic->ic_tdma_update = ath_tdma_update;
639 	}
640 #endif
641 
642 	/*
643 	 * TODO: enforce that at least this many frames are available
644 	 * in the txbuf list before allowing data frames (raw or
645 	 * otherwise) to be transmitted.
646 	 */
647 	sc->sc_txq_data_minfree = 10;
648 	/*
649 	 * Leave this as default to maintain legacy behaviour.
650 	 * Shortening the cabq/mcastq may end up causing some
651 	 * undesirable behaviour.
652 	 */
653 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
654 
655 	/*
656 	 * Allow the TX and RX chainmasks to be overridden by
657 	 * environment variables and/or device.hints.
658 	 *
659 	 * This must be done early - before the hardware is
660 	 * calibrated or before the 802.11n stream calculation
661 	 * is done.
662 	 */
663 	if (resource_int_value(device_get_name(sc->sc_dev),
664 	    device_get_unit(sc->sc_dev), "rx_chainmask",
665 	    &rx_chainmask) == 0) {
666 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
667 		    rx_chainmask);
668 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
669 	}
670 	if (resource_int_value(device_get_name(sc->sc_dev),
671 	    device_get_unit(sc->sc_dev), "tx_chainmask",
672 	    &tx_chainmask) == 0) {
673 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
674 		    tx_chainmask);
675 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
676 	}
677 
678 	/*
679 	 * The if_ath 11n support is completely not ready for normal use.
680 	 * Enabling this option will likely break everything and everything.
681 	 * Don't think of doing that unless you know what you're doing.
682 	 */
683 
684 #ifdef	ATH_ENABLE_11N
685 	/*
686 	 * Query HT capabilities
687 	 */
688 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
689 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
690 		int rxs, txs;
691 
692 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
693 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
694 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
695 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
696 			    | IEEE80211_HTCAP_MAXAMSDU_3839
697 			    				/* max A-MSDU length */
698 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
699 			;
700 
701 		/*
702 		 * Enable short-GI for HT20 only if the hardware
703 		 * advertises support.
704 		 * Notably, anything earlier than the AR9287 doesn't.
705 		 */
706 		if ((ath_hal_getcapability(ah,
707 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
708 		    (wmodes & HAL_MODE_HT20)) {
709 			device_printf(sc->sc_dev,
710 			    "[HT] enabling short-GI in 20MHz mode\n");
711 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
712 		}
713 
714 		if (wmodes & HAL_MODE_HT40)
715 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
716 			    |  IEEE80211_HTCAP_SHORTGI40;
717 
718 		/*
719 		 * TX/RX streams need to be taken into account when
720 		 * negotiating which MCS rates it'll receive and
721 		 * what MCS rates are available for TX.
722 		 */
723 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
724 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
725 
726 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
727 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
728 
729 		ic->ic_txstream = txs;
730 		ic->ic_rxstream = rxs;
731 
732 		device_printf(sc->sc_dev,
733 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
734 	}
735 #endif
736 
737 	/*
738 	 * Check if the hardware requires PCI register serialisation.
739 	 * Some of the Owl based MACs require this.
740 	 */
741 	if (mp_ncpus > 1 &&
742 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
743 	     0, NULL) == HAL_OK) {
744 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
745 		device_printf(sc->sc_dev,
746 		    "Enabling register serialisation\n");
747 	}
748 
749 	/*
750 	 * Indicate we need the 802.11 header padded to a
751 	 * 32-bit boundary for 4-address and QoS frames.
752 	 */
753 	ic->ic_flags |= IEEE80211_F_DATAPAD;
754 
755 	/*
756 	 * Query the hal about antenna support.
757 	 */
758 	sc->sc_defant = ath_hal_getdefantenna(ah);
759 
760 	/*
761 	 * Not all chips have the VEOL support we want to
762 	 * use with IBSS beacons; check here for it.
763 	 */
764 	sc->sc_hasveol = ath_hal_hasveol(ah);
765 
766 	/* get mac address from hardware */
767 	ath_hal_getmac(ah, macaddr);
768 	if (sc->sc_hasbmask)
769 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
770 
771 	/* NB: used to size node table key mapping array */
772 	ic->ic_max_keyix = sc->sc_keymax;
773 	/* call MI attach routine. */
774 	ieee80211_ifattach(ic, macaddr);
775 	ic->ic_setregdomain = ath_setregdomain;
776 	ic->ic_getradiocaps = ath_getradiocaps;
777 	sc->sc_opmode = HAL_M_STA;
778 
779 	/* override default methods */
780 	ic->ic_newassoc = ath_newassoc;
781 	ic->ic_updateslot = ath_updateslot;
782 	ic->ic_wme.wme_update = ath_wme_update;
783 	ic->ic_vap_create = ath_vap_create;
784 	ic->ic_vap_delete = ath_vap_delete;
785 	ic->ic_raw_xmit = ath_raw_xmit;
786 	ic->ic_update_mcast = ath_update_mcast;
787 	ic->ic_update_promisc = ath_update_promisc;
788 	ic->ic_node_alloc = ath_node_alloc;
789 	sc->sc_node_free = ic->ic_node_free;
790 	ic->ic_node_free = ath_node_free;
791 	sc->sc_node_cleanup = ic->ic_node_cleanup;
792 	ic->ic_node_cleanup = ath_node_cleanup;
793 	ic->ic_node_getsignal = ath_node_getsignal;
794 	ic->ic_scan_start = ath_scan_start;
795 	ic->ic_scan_end = ath_scan_end;
796 	ic->ic_set_channel = ath_set_channel;
797 
798 	/* 802.11n specific - but just override anyway */
799 	sc->sc_addba_request = ic->ic_addba_request;
800 	sc->sc_addba_response = ic->ic_addba_response;
801 	sc->sc_addba_stop = ic->ic_addba_stop;
802 	sc->sc_bar_response = ic->ic_bar_response;
803 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
804 
805 	ic->ic_addba_request = ath_addba_request;
806 	ic->ic_addba_response = ath_addba_response;
807 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
808 	ic->ic_addba_stop = ath_addba_stop;
809 	ic->ic_bar_response = ath_bar_response;
810 
811 	ieee80211_radiotap_attach(ic,
812 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
813 		ATH_TX_RADIOTAP_PRESENT,
814 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
815 		ATH_RX_RADIOTAP_PRESENT);
816 
817 	/*
818 	 * Setup dynamic sysctl's now that country code and
819 	 * regdomain are available from the hal.
820 	 */
821 	ath_sysctlattach(sc);
822 	ath_sysctl_stats_attach(sc);
823 	ath_sysctl_hal_attach(sc);
824 
825 	if (bootverbose)
826 		ieee80211_announce(ic);
827 	ath_announce(sc);
828 	return 0;
829 bad2:
830 	ath_tx_cleanup(sc);
831 	ath_desc_free(sc);
832 bad:
833 	if (ah)
834 		ath_hal_detach(ah);
835 	if (ifp != NULL)
836 		if_free(ifp);
837 	sc->sc_invalid = 1;
838 	return error;
839 }
840 
841 int
842 ath_detach(struct ath_softc *sc)
843 {
844 	struct ifnet *ifp = sc->sc_ifp;
845 
846 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
847 		__func__, ifp->if_flags);
848 
849 	/*
850 	 * NB: the order of these is important:
851 	 * o stop the chip so no more interrupts will fire
852 	 * o call the 802.11 layer before detaching the hal to
853 	 *   insure callbacks into the driver to delete global
854 	 *   key cache entries can be handled
855 	 * o free the taskqueue which drains any pending tasks
856 	 * o reclaim the tx queue data structures after calling
857 	 *   the 802.11 layer as we'll get called back to reclaim
858 	 *   node state and potentially want to use them
859 	 * o to cleanup the tx queues the hal is called, so detach
860 	 *   it last
861 	 * Other than that, it's straightforward...
862 	 */
863 	ath_stop(ifp);
864 	ieee80211_ifdetach(ifp->if_l2com);
865 	taskqueue_free(sc->sc_tq);
866 #ifdef ATH_TX99_DIAG
867 	if (sc->sc_tx99 != NULL)
868 		sc->sc_tx99->detach(sc->sc_tx99);
869 #endif
870 	ath_rate_detach(sc->sc_rc);
871 
872 	ath_dfs_detach(sc);
873 	ath_desc_free(sc);
874 	ath_tx_cleanup(sc);
875 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
876 	if_free(ifp);
877 
878 	return 0;
879 }
880 
881 /*
882  * MAC address handling for multiple BSS on the same radio.
883  * The first vap uses the MAC address from the EEPROM.  For
884  * subsequent vap's we set the U/L bit (bit 1) in the MAC
885  * address and use the next six bits as an index.
886  */
887 static void
888 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
889 {
890 	int i;
891 
892 	if (clone && sc->sc_hasbmask) {
893 		/* NB: we only do this if h/w supports multiple bssid */
894 		for (i = 0; i < 8; i++)
895 			if ((sc->sc_bssidmask & (1<<i)) == 0)
896 				break;
897 		if (i != 0)
898 			mac[0] |= (i << 2)|0x2;
899 	} else
900 		i = 0;
901 	sc->sc_bssidmask |= 1<<i;
902 	sc->sc_hwbssidmask[0] &= ~mac[0];
903 	if (i == 0)
904 		sc->sc_nbssid0++;
905 }
906 
907 static void
908 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
909 {
910 	int i = mac[0] >> 2;
911 	uint8_t mask;
912 
913 	if (i != 0 || --sc->sc_nbssid0 == 0) {
914 		sc->sc_bssidmask &= ~(1<<i);
915 		/* recalculate bssid mask from remaining addresses */
916 		mask = 0xff;
917 		for (i = 1; i < 8; i++)
918 			if (sc->sc_bssidmask & (1<<i))
919 				mask &= ~((i<<2)|0x2);
920 		sc->sc_hwbssidmask[0] |= mask;
921 	}
922 }
923 
924 /*
925  * Assign a beacon xmit slot.  We try to space out
926  * assignments so when beacons are staggered the
927  * traffic coming out of the cab q has maximal time
928  * to go out before the next beacon is scheduled.
929  */
930 static int
931 assign_bslot(struct ath_softc *sc)
932 {
933 	u_int slot, free;
934 
935 	free = 0;
936 	for (slot = 0; slot < ATH_BCBUF; slot++)
937 		if (sc->sc_bslot[slot] == NULL) {
938 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
939 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
940 				return slot;
941 			free = slot;
942 			/* NB: keep looking for a double slot */
943 		}
944 	return free;
945 }
946 
947 static struct ieee80211vap *
948 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
949     enum ieee80211_opmode opmode, int flags,
950     const uint8_t bssid[IEEE80211_ADDR_LEN],
951     const uint8_t mac0[IEEE80211_ADDR_LEN])
952 {
953 	struct ath_softc *sc = ic->ic_ifp->if_softc;
954 	struct ath_vap *avp;
955 	struct ieee80211vap *vap;
956 	uint8_t mac[IEEE80211_ADDR_LEN];
957 	int needbeacon, error;
958 	enum ieee80211_opmode ic_opmode;
959 
960 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
961 	    M_80211_VAP, M_WAITOK | M_ZERO);
962 	needbeacon = 0;
963 	IEEE80211_ADDR_COPY(mac, mac0);
964 
965 	ATH_LOCK(sc);
966 	ic_opmode = opmode;		/* default to opmode of new vap */
967 	switch (opmode) {
968 	case IEEE80211_M_STA:
969 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
970 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
971 			goto bad;
972 		}
973 		if (sc->sc_nvaps) {
974 			/*
975 			 * With multiple vaps we must fall back
976 			 * to s/w beacon miss handling.
977 			 */
978 			flags |= IEEE80211_CLONE_NOBEACONS;
979 		}
980 		if (flags & IEEE80211_CLONE_NOBEACONS) {
981 			/*
982 			 * Station mode w/o beacons are implemented w/ AP mode.
983 			 */
984 			ic_opmode = IEEE80211_M_HOSTAP;
985 		}
986 		break;
987 	case IEEE80211_M_IBSS:
988 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
989 			device_printf(sc->sc_dev,
990 			    "only 1 ibss vap supported\n");
991 			goto bad;
992 		}
993 		needbeacon = 1;
994 		break;
995 	case IEEE80211_M_AHDEMO:
996 #ifdef IEEE80211_SUPPORT_TDMA
997 		if (flags & IEEE80211_CLONE_TDMA) {
998 			if (sc->sc_nvaps != 0) {
999 				device_printf(sc->sc_dev,
1000 				    "only 1 tdma vap supported\n");
1001 				goto bad;
1002 			}
1003 			needbeacon = 1;
1004 			flags |= IEEE80211_CLONE_NOBEACONS;
1005 		}
1006 		/* fall thru... */
1007 #endif
1008 	case IEEE80211_M_MONITOR:
1009 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1010 			/*
1011 			 * Adopt existing mode.  Adding a monitor or ahdemo
1012 			 * vap to an existing configuration is of dubious
1013 			 * value but should be ok.
1014 			 */
1015 			/* XXX not right for monitor mode */
1016 			ic_opmode = ic->ic_opmode;
1017 		}
1018 		break;
1019 	case IEEE80211_M_HOSTAP:
1020 	case IEEE80211_M_MBSS:
1021 		needbeacon = 1;
1022 		break;
1023 	case IEEE80211_M_WDS:
1024 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1025 			device_printf(sc->sc_dev,
1026 			    "wds not supported in sta mode\n");
1027 			goto bad;
1028 		}
1029 		/*
1030 		 * Silently remove any request for a unique
1031 		 * bssid; WDS vap's always share the local
1032 		 * mac address.
1033 		 */
1034 		flags &= ~IEEE80211_CLONE_BSSID;
1035 		if (sc->sc_nvaps == 0)
1036 			ic_opmode = IEEE80211_M_HOSTAP;
1037 		else
1038 			ic_opmode = ic->ic_opmode;
1039 		break;
1040 	default:
1041 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1042 		goto bad;
1043 	}
1044 	/*
1045 	 * Check that a beacon buffer is available; the code below assumes it.
1046 	 */
1047 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1048 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1049 		goto bad;
1050 	}
1051 
1052 	/* STA, AHDEMO? */
1053 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1054 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1055 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1056 	}
1057 
1058 	vap = &avp->av_vap;
1059 	/* XXX can't hold mutex across if_alloc */
1060 	ATH_UNLOCK(sc);
1061 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1062 	    bssid, mac);
1063 	ATH_LOCK(sc);
1064 	if (error != 0) {
1065 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1066 		    __func__, error);
1067 		goto bad2;
1068 	}
1069 
1070 	/* h/w crypto support */
1071 	vap->iv_key_alloc = ath_key_alloc;
1072 	vap->iv_key_delete = ath_key_delete;
1073 	vap->iv_key_set = ath_key_set;
1074 	vap->iv_key_update_begin = ath_key_update_begin;
1075 	vap->iv_key_update_end = ath_key_update_end;
1076 
1077 	/* override various methods */
1078 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1079 	vap->iv_recv_mgmt = ath_recv_mgmt;
1080 	vap->iv_reset = ath_reset_vap;
1081 	vap->iv_update_beacon = ath_beacon_update;
1082 	avp->av_newstate = vap->iv_newstate;
1083 	vap->iv_newstate = ath_newstate;
1084 	avp->av_bmiss = vap->iv_bmiss;
1085 	vap->iv_bmiss = ath_bmiss_vap;
1086 
1087 	/* Set default parameters */
1088 
1089 	/*
1090 	 * Anything earlier than some AR9300 series MACs don't
1091 	 * support a smaller MPDU density.
1092 	 */
1093 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1094 	/*
1095 	 * All NICs can handle the maximum size, however
1096 	 * AR5416 based MACs can only TX aggregates w/ RTS
1097 	 * protection when the total aggregate size is <= 8k.
1098 	 * However, for now that's enforced by the TX path.
1099 	 */
1100 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1101 
1102 	avp->av_bslot = -1;
1103 	if (needbeacon) {
1104 		/*
1105 		 * Allocate beacon state and setup the q for buffered
1106 		 * multicast frames.  We know a beacon buffer is
1107 		 * available because we checked above.
1108 		 */
1109 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1110 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1111 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1112 			/*
1113 			 * Assign the vap to a beacon xmit slot.  As above
1114 			 * this cannot fail to find a free one.
1115 			 */
1116 			avp->av_bslot = assign_bslot(sc);
1117 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1118 			    ("beacon slot %u not empty", avp->av_bslot));
1119 			sc->sc_bslot[avp->av_bslot] = vap;
1120 			sc->sc_nbcnvaps++;
1121 		}
1122 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1123 			/*
1124 			 * Multple vaps are to transmit beacons and we
1125 			 * have h/w support for TSF adjusting; enable
1126 			 * use of staggered beacons.
1127 			 */
1128 			sc->sc_stagbeacons = 1;
1129 		}
1130 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1131 	}
1132 
1133 	ic->ic_opmode = ic_opmode;
1134 	if (opmode != IEEE80211_M_WDS) {
1135 		sc->sc_nvaps++;
1136 		if (opmode == IEEE80211_M_STA)
1137 			sc->sc_nstavaps++;
1138 		if (opmode == IEEE80211_M_MBSS)
1139 			sc->sc_nmeshvaps++;
1140 	}
1141 	switch (ic_opmode) {
1142 	case IEEE80211_M_IBSS:
1143 		sc->sc_opmode = HAL_M_IBSS;
1144 		break;
1145 	case IEEE80211_M_STA:
1146 		sc->sc_opmode = HAL_M_STA;
1147 		break;
1148 	case IEEE80211_M_AHDEMO:
1149 #ifdef IEEE80211_SUPPORT_TDMA
1150 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1151 			sc->sc_tdma = 1;
1152 			/* NB: disable tsf adjust */
1153 			sc->sc_stagbeacons = 0;
1154 		}
1155 		/*
1156 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1157 		 * just ap mode.
1158 		 */
1159 		/* fall thru... */
1160 #endif
1161 	case IEEE80211_M_HOSTAP:
1162 	case IEEE80211_M_MBSS:
1163 		sc->sc_opmode = HAL_M_HOSTAP;
1164 		break;
1165 	case IEEE80211_M_MONITOR:
1166 		sc->sc_opmode = HAL_M_MONITOR;
1167 		break;
1168 	default:
1169 		/* XXX should not happen */
1170 		break;
1171 	}
1172 	if (sc->sc_hastsfadd) {
1173 		/*
1174 		 * Configure whether or not TSF adjust should be done.
1175 		 */
1176 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1177 	}
1178 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1179 		/*
1180 		 * Enable s/w beacon miss handling.
1181 		 */
1182 		sc->sc_swbmiss = 1;
1183 	}
1184 	ATH_UNLOCK(sc);
1185 
1186 	/* complete setup */
1187 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1188 	return vap;
1189 bad2:
1190 	reclaim_address(sc, mac);
1191 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1192 bad:
1193 	free(avp, M_80211_VAP);
1194 	ATH_UNLOCK(sc);
1195 	return NULL;
1196 }
1197 
1198 static void
1199 ath_vap_delete(struct ieee80211vap *vap)
1200 {
1201 	struct ieee80211com *ic = vap->iv_ic;
1202 	struct ifnet *ifp = ic->ic_ifp;
1203 	struct ath_softc *sc = ifp->if_softc;
1204 	struct ath_hal *ah = sc->sc_ah;
1205 	struct ath_vap *avp = ATH_VAP(vap);
1206 
1207 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1208 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1209 		/*
1210 		 * Quiesce the hardware while we remove the vap.  In
1211 		 * particular we need to reclaim all references to
1212 		 * the vap state by any frames pending on the tx queues.
1213 		 */
1214 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1215 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1216 		/* XXX Do all frames from all vaps/nodes need draining here? */
1217 		ath_stoprecv(sc, 1);		/* stop recv side */
1218 	}
1219 
1220 	ieee80211_vap_detach(vap);
1221 
1222 	/*
1223 	 * XXX Danger Will Robinson! Danger!
1224 	 *
1225 	 * Because ieee80211_vap_detach() can queue a frame (the station
1226 	 * diassociate message?) after we've drained the TXQ and
1227 	 * flushed the software TXQ, we will end up with a frame queued
1228 	 * to a node whose vap is about to be freed.
1229 	 *
1230 	 * To work around this, flush the hardware/software again.
1231 	 * This may be racy - the ath task may be running and the packet
1232 	 * may be being scheduled between sw->hw txq. Tsk.
1233 	 *
1234 	 * TODO: figure out why a new node gets allocated somewhere around
1235 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1236 	 * call!)
1237 	 */
1238 
1239 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1240 
1241 	ATH_LOCK(sc);
1242 	/*
1243 	 * Reclaim beacon state.  Note this must be done before
1244 	 * the vap instance is reclaimed as we may have a reference
1245 	 * to it in the buffer for the beacon frame.
1246 	 */
1247 	if (avp->av_bcbuf != NULL) {
1248 		if (avp->av_bslot != -1) {
1249 			sc->sc_bslot[avp->av_bslot] = NULL;
1250 			sc->sc_nbcnvaps--;
1251 		}
1252 		ath_beacon_return(sc, avp->av_bcbuf);
1253 		avp->av_bcbuf = NULL;
1254 		if (sc->sc_nbcnvaps == 0) {
1255 			sc->sc_stagbeacons = 0;
1256 			if (sc->sc_hastsfadd)
1257 				ath_hal_settsfadjust(sc->sc_ah, 0);
1258 		}
1259 		/*
1260 		 * Reclaim any pending mcast frames for the vap.
1261 		 */
1262 		ath_tx_draintxq(sc, &avp->av_mcastq);
1263 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1264 	}
1265 	/*
1266 	 * Update bookkeeping.
1267 	 */
1268 	if (vap->iv_opmode == IEEE80211_M_STA) {
1269 		sc->sc_nstavaps--;
1270 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1271 			sc->sc_swbmiss = 0;
1272 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1273 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1274 		reclaim_address(sc, vap->iv_myaddr);
1275 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1276 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1277 			sc->sc_nmeshvaps--;
1278 	}
1279 	if (vap->iv_opmode != IEEE80211_M_WDS)
1280 		sc->sc_nvaps--;
1281 #ifdef IEEE80211_SUPPORT_TDMA
1282 	/* TDMA operation ceases when the last vap is destroyed */
1283 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1284 		sc->sc_tdma = 0;
1285 		sc->sc_swbmiss = 0;
1286 	}
1287 #endif
1288 	free(avp, M_80211_VAP);
1289 
1290 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1291 		/*
1292 		 * Restart rx+tx machines if still running (RUNNING will
1293 		 * be reset if we just destroyed the last vap).
1294 		 */
1295 		if (ath_startrecv(sc) != 0)
1296 			if_printf(ifp, "%s: unable to restart recv logic\n",
1297 			    __func__);
1298 		if (sc->sc_beacons) {		/* restart beacons */
1299 #ifdef IEEE80211_SUPPORT_TDMA
1300 			if (sc->sc_tdma)
1301 				ath_tdma_config(sc, NULL);
1302 			else
1303 #endif
1304 				ath_beacon_config(sc, NULL);
1305 		}
1306 		ath_hal_intrset(ah, sc->sc_imask);
1307 	}
1308 	ATH_UNLOCK(sc);
1309 }
1310 
1311 void
1312 ath_suspend(struct ath_softc *sc)
1313 {
1314 	struct ifnet *ifp = sc->sc_ifp;
1315 	struct ieee80211com *ic = ifp->if_l2com;
1316 
1317 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1318 		__func__, ifp->if_flags);
1319 
1320 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1321 	if (ic->ic_opmode == IEEE80211_M_STA)
1322 		ath_stop(ifp);
1323 	else
1324 		ieee80211_suspend_all(ic);
1325 	/*
1326 	 * NB: don't worry about putting the chip in low power
1327 	 * mode; pci will power off our socket on suspend and
1328 	 * CardBus detaches the device.
1329 	 */
1330 }
1331 
1332 /*
1333  * Reset the key cache since some parts do not reset the
1334  * contents on resume.  First we clear all entries, then
1335  * re-load keys that the 802.11 layer assumes are setup
1336  * in h/w.
1337  */
1338 static void
1339 ath_reset_keycache(struct ath_softc *sc)
1340 {
1341 	struct ifnet *ifp = sc->sc_ifp;
1342 	struct ieee80211com *ic = ifp->if_l2com;
1343 	struct ath_hal *ah = sc->sc_ah;
1344 	int i;
1345 
1346 	for (i = 0; i < sc->sc_keymax; i++)
1347 		ath_hal_keyreset(ah, i);
1348 	ieee80211_crypto_reload_keys(ic);
1349 }
1350 
1351 void
1352 ath_resume(struct ath_softc *sc)
1353 {
1354 	struct ifnet *ifp = sc->sc_ifp;
1355 	struct ieee80211com *ic = ifp->if_l2com;
1356 	struct ath_hal *ah = sc->sc_ah;
1357 	HAL_STATUS status;
1358 
1359 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1360 		__func__, ifp->if_flags);
1361 
1362 	/*
1363 	 * Must reset the chip before we reload the
1364 	 * keycache as we were powered down on suspend.
1365 	 */
1366 	ath_hal_reset(ah, sc->sc_opmode,
1367 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1368 	    AH_FALSE, &status);
1369 	ath_reset_keycache(sc);
1370 
1371 	/* Let DFS at it in case it's a DFS channel */
1372 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1373 
1374 	/* Restore the LED configuration */
1375 	ath_led_config(sc);
1376 	ath_hal_setledstate(ah, HAL_LED_INIT);
1377 
1378 	if (sc->sc_resume_up) {
1379 		if (ic->ic_opmode == IEEE80211_M_STA) {
1380 			ath_init(sc);
1381 			ath_hal_setledstate(ah, HAL_LED_RUN);
1382 			/*
1383 			 * Program the beacon registers using the last rx'd
1384 			 * beacon frame and enable sync on the next beacon
1385 			 * we see.  This should handle the case where we
1386 			 * wakeup and find the same AP and also the case where
1387 			 * we wakeup and need to roam.  For the latter we
1388 			 * should get bmiss events that trigger a roam.
1389 			 */
1390 			ath_beacon_config(sc, NULL);
1391 			sc->sc_syncbeacon = 1;
1392 		} else
1393 			ieee80211_resume_all(ic);
1394 	}
1395 
1396 	/* XXX beacons ? */
1397 }
1398 
1399 void
1400 ath_shutdown(struct ath_softc *sc)
1401 {
1402 	struct ifnet *ifp = sc->sc_ifp;
1403 
1404 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1405 		__func__, ifp->if_flags);
1406 
1407 	ath_stop(ifp);
1408 	/* NB: no point powering down chip as we're about to reboot */
1409 }
1410 
1411 /*
1412  * Interrupt handler.  Most of the actual processing is deferred.
1413  */
1414 void
1415 ath_intr(void *arg)
1416 {
1417 	struct ath_softc *sc = arg;
1418 	struct ifnet *ifp = sc->sc_ifp;
1419 	struct ath_hal *ah = sc->sc_ah;
1420 	HAL_INT status = 0;
1421 	uint32_t txqs;
1422 
1423 	/*
1424 	 * If we're inside a reset path, just print a warning and
1425 	 * clear the ISR. The reset routine will finish it for us.
1426 	 */
1427 	ATH_PCU_LOCK(sc);
1428 	if (sc->sc_inreset_cnt) {
1429 		HAL_INT status;
1430 		ath_hal_getisr(ah, &status);	/* clear ISR */
1431 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1432 		DPRINTF(sc, ATH_DEBUG_ANY,
1433 		    "%s: in reset, ignoring: status=0x%x\n",
1434 		    __func__, status);
1435 		ATH_PCU_UNLOCK(sc);
1436 		return;
1437 	}
1438 
1439 	if (sc->sc_invalid) {
1440 		/*
1441 		 * The hardware is not ready/present, don't touch anything.
1442 		 * Note this can happen early on if the IRQ is shared.
1443 		 */
1444 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1445 		ATH_PCU_UNLOCK(sc);
1446 		return;
1447 	}
1448 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1449 		ATH_PCU_UNLOCK(sc);
1450 		return;
1451 	}
1452 
1453 	if ((ifp->if_flags & IFF_UP) == 0 ||
1454 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1455 		HAL_INT status;
1456 
1457 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1458 			__func__, ifp->if_flags);
1459 		ath_hal_getisr(ah, &status);	/* clear ISR */
1460 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1461 		ATH_PCU_UNLOCK(sc);
1462 		return;
1463 	}
1464 
1465 	/*
1466 	 * Figure out the reason(s) for the interrupt.  Note
1467 	 * that the hal returns a pseudo-ISR that may include
1468 	 * bits we haven't explicitly enabled so we mask the
1469 	 * value to insure we only process bits we requested.
1470 	 */
1471 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1472 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1473 	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1474 #ifdef	ATH_KTR_INTR_DEBUG
1475 	CTR5(ATH_KTR_INTR,
1476 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1477 	    ah->ah_intrstate[0],
1478 	    ah->ah_intrstate[1],
1479 	    ah->ah_intrstate[2],
1480 	    ah->ah_intrstate[3],
1481 	    ah->ah_intrstate[6]);
1482 #endif
1483 	status &= sc->sc_imask;			/* discard unasked for bits */
1484 
1485 	/* Short-circuit un-handled interrupts */
1486 	if (status == 0x0) {
1487 		ATH_PCU_UNLOCK(sc);
1488 		return;
1489 	}
1490 
1491 	/*
1492 	 * Take a note that we're inside the interrupt handler, so
1493 	 * the reset routines know to wait.
1494 	 */
1495 	sc->sc_intr_cnt++;
1496 	ATH_PCU_UNLOCK(sc);
1497 
1498 	/*
1499 	 * Handle the interrupt. We won't run concurrent with the reset
1500 	 * or channel change routines as they'll wait for sc_intr_cnt
1501 	 * to be 0 before continuing.
1502 	 */
1503 	if (status & HAL_INT_FATAL) {
1504 		sc->sc_stats.ast_hardware++;
1505 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1506 		ath_fatal_proc(sc, 0);
1507 	} else {
1508 		if (status & HAL_INT_SWBA) {
1509 			/*
1510 			 * Software beacon alert--time to send a beacon.
1511 			 * Handle beacon transmission directly; deferring
1512 			 * this is too slow to meet timing constraints
1513 			 * under load.
1514 			 */
1515 #ifdef IEEE80211_SUPPORT_TDMA
1516 			if (sc->sc_tdma) {
1517 				if (sc->sc_tdmaswba == 0) {
1518 					struct ieee80211com *ic = ifp->if_l2com;
1519 					struct ieee80211vap *vap =
1520 					    TAILQ_FIRST(&ic->ic_vaps);
1521 					ath_tdma_beacon_send(sc, vap);
1522 					sc->sc_tdmaswba =
1523 					    vap->iv_tdma->tdma_bintval;
1524 				} else
1525 					sc->sc_tdmaswba--;
1526 			} else
1527 #endif
1528 			{
1529 				ath_beacon_proc(sc, 0);
1530 #ifdef IEEE80211_SUPPORT_SUPERG
1531 				/*
1532 				 * Schedule the rx taskq in case there's no
1533 				 * traffic so any frames held on the staging
1534 				 * queue are aged and potentially flushed.
1535 				 */
1536 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1537 #endif
1538 			}
1539 		}
1540 		if (status & HAL_INT_RXEOL) {
1541 			int imask;
1542 			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1543 			ATH_PCU_LOCK(sc);
1544 			/*
1545 			 * NB: the hardware should re-read the link when
1546 			 *     RXE bit is written, but it doesn't work at
1547 			 *     least on older hardware revs.
1548 			 */
1549 			sc->sc_stats.ast_rxeol++;
1550 			/*
1551 			 * Disable RXEOL/RXORN - prevent an interrupt
1552 			 * storm until the PCU logic can be reset.
1553 			 * In case the interface is reset some other
1554 			 * way before "sc_kickpcu" is called, don't
1555 			 * modify sc_imask - that way if it is reset
1556 			 * by a call to ath_reset() somehow, the
1557 			 * interrupt mask will be correctly reprogrammed.
1558 			 */
1559 			imask = sc->sc_imask;
1560 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1561 			ath_hal_intrset(ah, imask);
1562 			/*
1563 			 * Only blank sc_rxlink if we've not yet kicked
1564 			 * the PCU.
1565 			 *
1566 			 * This isn't entirely correct - the correct solution
1567 			 * would be to have a PCU lock and engage that for
1568 			 * the duration of the PCU fiddling; which would include
1569 			 * running the RX process. Otherwise we could end up
1570 			 * messing up the RX descriptor chain and making the
1571 			 * RX desc list much shorter.
1572 			 */
1573 			if (! sc->sc_kickpcu)
1574 				sc->sc_rxlink = NULL;
1575 			sc->sc_kickpcu = 1;
1576 			/*
1577 			 * Enqueue an RX proc, to handled whatever
1578 			 * is in the RX queue.
1579 			 * This will then kick the PCU.
1580 			 */
1581 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1582 			ATH_PCU_UNLOCK(sc);
1583 		}
1584 		if (status & HAL_INT_TXURN) {
1585 			sc->sc_stats.ast_txurn++;
1586 			/* bump tx trigger level */
1587 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1588 		}
1589 		if (status & HAL_INT_RX) {
1590 			sc->sc_stats.ast_rx_intr++;
1591 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1592 		}
1593 		if (status & HAL_INT_TX) {
1594 			sc->sc_stats.ast_tx_intr++;
1595 			/*
1596 			 * Grab all the currently set bits in the HAL txq bitmap
1597 			 * and blank them. This is the only place we should be
1598 			 * doing this.
1599 			 */
1600 			ATH_PCU_LOCK(sc);
1601 			txqs = 0xffffffff;
1602 			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1603 			sc->sc_txq_active |= txqs;
1604 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1605 			ATH_PCU_UNLOCK(sc);
1606 		}
1607 		if (status & HAL_INT_BMISS) {
1608 			sc->sc_stats.ast_bmiss++;
1609 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1610 		}
1611 		if (status & HAL_INT_GTT)
1612 			sc->sc_stats.ast_tx_timeout++;
1613 		if (status & HAL_INT_CST)
1614 			sc->sc_stats.ast_tx_cst++;
1615 		if (status & HAL_INT_MIB) {
1616 			sc->sc_stats.ast_mib++;
1617 			ATH_PCU_LOCK(sc);
1618 			/*
1619 			 * Disable interrupts until we service the MIB
1620 			 * interrupt; otherwise it will continue to fire.
1621 			 */
1622 			ath_hal_intrset(ah, 0);
1623 			/*
1624 			 * Let the hal handle the event.  We assume it will
1625 			 * clear whatever condition caused the interrupt.
1626 			 */
1627 			ath_hal_mibevent(ah, &sc->sc_halstats);
1628 			/*
1629 			 * Don't reset the interrupt if we've just
1630 			 * kicked the PCU, or we may get a nested
1631 			 * RXEOL before the rxproc has had a chance
1632 			 * to run.
1633 			 */
1634 			if (sc->sc_kickpcu == 0)
1635 				ath_hal_intrset(ah, sc->sc_imask);
1636 			ATH_PCU_UNLOCK(sc);
1637 		}
1638 		if (status & HAL_INT_RXORN) {
1639 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1640 			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1641 			sc->sc_stats.ast_rxorn++;
1642 		}
1643 	}
1644 	ATH_PCU_LOCK(sc);
1645 	sc->sc_intr_cnt--;
1646 	ATH_PCU_UNLOCK(sc);
1647 }
1648 
1649 static void
1650 ath_fatal_proc(void *arg, int pending)
1651 {
1652 	struct ath_softc *sc = arg;
1653 	struct ifnet *ifp = sc->sc_ifp;
1654 	u_int32_t *state;
1655 	u_int32_t len;
1656 	void *sp;
1657 
1658 	if_printf(ifp, "hardware error; resetting\n");
1659 	/*
1660 	 * Fatal errors are unrecoverable.  Typically these
1661 	 * are caused by DMA errors.  Collect h/w state from
1662 	 * the hal so we can diagnose what's going on.
1663 	 */
1664 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1665 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1666 		state = sp;
1667 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1668 		    state[0], state[1] , state[2], state[3],
1669 		    state[4], state[5]);
1670 	}
1671 	ath_reset(ifp, ATH_RESET_NOLOSS);
1672 }
1673 
1674 static void
1675 ath_bmiss_vap(struct ieee80211vap *vap)
1676 {
1677 	/*
1678 	 * Workaround phantom bmiss interrupts by sanity-checking
1679 	 * the time of our last rx'd frame.  If it is within the
1680 	 * beacon miss interval then ignore the interrupt.  If it's
1681 	 * truly a bmiss we'll get another interrupt soon and that'll
1682 	 * be dispatched up for processing.  Note this applies only
1683 	 * for h/w beacon miss events.
1684 	 */
1685 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1686 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1687 		struct ath_softc *sc = ifp->if_softc;
1688 		u_int64_t lastrx = sc->sc_lastrx;
1689 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1690 		/* XXX should take a locked ref to iv_bss */
1691 		u_int bmisstimeout =
1692 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1693 
1694 		DPRINTF(sc, ATH_DEBUG_BEACON,
1695 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1696 		    __func__, (unsigned long long) tsf,
1697 		    (unsigned long long)(tsf - lastrx),
1698 		    (unsigned long long) lastrx, bmisstimeout);
1699 
1700 		if (tsf - lastrx <= bmisstimeout) {
1701 			sc->sc_stats.ast_bmiss_phantom++;
1702 			return;
1703 		}
1704 	}
1705 	ATH_VAP(vap)->av_bmiss(vap);
1706 }
1707 
1708 static int
1709 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1710 {
1711 	uint32_t rsize;
1712 	void *sp;
1713 
1714 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1715 		return 0;
1716 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1717 	*hangs = *(uint32_t *)sp;
1718 	return 1;
1719 }
1720 
1721 static void
1722 ath_bmiss_proc(void *arg, int pending)
1723 {
1724 	struct ath_softc *sc = arg;
1725 	struct ifnet *ifp = sc->sc_ifp;
1726 	uint32_t hangs;
1727 
1728 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1729 
1730 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1731 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1732 		ath_reset(ifp, ATH_RESET_NOLOSS);
1733 	} else
1734 		ieee80211_beacon_miss(ifp->if_l2com);
1735 }
1736 
1737 /*
1738  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1739  * calcs together with WME.  If necessary disable the crypto
1740  * hardware and mark the 802.11 state so keys will be setup
1741  * with the MIC work done in software.
1742  */
1743 static void
1744 ath_settkipmic(struct ath_softc *sc)
1745 {
1746 	struct ifnet *ifp = sc->sc_ifp;
1747 	struct ieee80211com *ic = ifp->if_l2com;
1748 
1749 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1750 		if (ic->ic_flags & IEEE80211_F_WME) {
1751 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1752 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1753 		} else {
1754 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1755 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1756 		}
1757 	}
1758 }
1759 
1760 static void
1761 ath_init(void *arg)
1762 {
1763 	struct ath_softc *sc = (struct ath_softc *) arg;
1764 	struct ifnet *ifp = sc->sc_ifp;
1765 	struct ieee80211com *ic = ifp->if_l2com;
1766 	struct ath_hal *ah = sc->sc_ah;
1767 	HAL_STATUS status;
1768 
1769 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1770 		__func__, ifp->if_flags);
1771 
1772 	ATH_LOCK(sc);
1773 	/*
1774 	 * Stop anything previously setup.  This is safe
1775 	 * whether this is the first time through or not.
1776 	 */
1777 	ath_stop_locked(ifp);
1778 
1779 	/*
1780 	 * The basic interface to setting the hardware in a good
1781 	 * state is ``reset''.  On return the hardware is known to
1782 	 * be powered up and with interrupts disabled.  This must
1783 	 * be followed by initialization of the appropriate bits
1784 	 * and then setup of the interrupt mask.
1785 	 */
1786 	ath_settkipmic(sc);
1787 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1788 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1789 			status);
1790 		ATH_UNLOCK(sc);
1791 		return;
1792 	}
1793 	ath_chan_change(sc, ic->ic_curchan);
1794 
1795 	/* Let DFS at it in case it's a DFS channel */
1796 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1797 
1798 	/*
1799 	 * Likewise this is set during reset so update
1800 	 * state cached in the driver.
1801 	 */
1802 	sc->sc_diversity = ath_hal_getdiversity(ah);
1803 	sc->sc_lastlongcal = 0;
1804 	sc->sc_resetcal = 1;
1805 	sc->sc_lastcalreset = 0;
1806 	sc->sc_lastani = 0;
1807 	sc->sc_lastshortcal = 0;
1808 	sc->sc_doresetcal = AH_FALSE;
1809 	/*
1810 	 * Beacon timers were cleared here; give ath_newstate()
1811 	 * a hint that the beacon timers should be poked when
1812 	 * things transition to the RUN state.
1813 	 */
1814 	sc->sc_beacons = 0;
1815 
1816 	/*
1817 	 * Initial aggregation settings.
1818 	 */
1819 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1820 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1821 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1822 
1823 	/*
1824 	 * Setup the hardware after reset: the key cache
1825 	 * is filled as needed and the receive engine is
1826 	 * set going.  Frame transmit is handled entirely
1827 	 * in the frame output path; there's nothing to do
1828 	 * here except setup the interrupt mask.
1829 	 */
1830 	if (ath_startrecv(sc) != 0) {
1831 		if_printf(ifp, "unable to start recv logic\n");
1832 		ATH_UNLOCK(sc);
1833 		return;
1834 	}
1835 
1836 	/*
1837 	 * Enable interrupts.
1838 	 */
1839 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1840 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1841 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1842 	/*
1843 	 * Enable MIB interrupts when there are hardware phy counters.
1844 	 * Note we only do this (at the moment) for station mode.
1845 	 */
1846 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1847 		sc->sc_imask |= HAL_INT_MIB;
1848 
1849 	/* Enable global TX timeout and carrier sense timeout if available */
1850 	if (ath_hal_gtxto_supported(ah))
1851 		sc->sc_imask |= HAL_INT_GTT;
1852 
1853 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1854 		__func__, sc->sc_imask);
1855 
1856 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1857 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1858 	ath_hal_intrset(ah, sc->sc_imask);
1859 
1860 	ATH_UNLOCK(sc);
1861 
1862 #ifdef ATH_TX99_DIAG
1863 	if (sc->sc_tx99 != NULL)
1864 		sc->sc_tx99->start(sc->sc_tx99);
1865 	else
1866 #endif
1867 	ieee80211_start_all(ic);		/* start all vap's */
1868 }
1869 
1870 static void
1871 ath_stop_locked(struct ifnet *ifp)
1872 {
1873 	struct ath_softc *sc = ifp->if_softc;
1874 	struct ath_hal *ah = sc->sc_ah;
1875 
1876 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1877 		__func__, sc->sc_invalid, ifp->if_flags);
1878 
1879 	ATH_LOCK_ASSERT(sc);
1880 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1881 		/*
1882 		 * Shutdown the hardware and driver:
1883 		 *    reset 802.11 state machine
1884 		 *    turn off timers
1885 		 *    disable interrupts
1886 		 *    turn off the radio
1887 		 *    clear transmit machinery
1888 		 *    clear receive machinery
1889 		 *    drain and release tx queues
1890 		 *    reclaim beacon resources
1891 		 *    power down hardware
1892 		 *
1893 		 * Note that some of this work is not possible if the
1894 		 * hardware is gone (invalid).
1895 		 */
1896 #ifdef ATH_TX99_DIAG
1897 		if (sc->sc_tx99 != NULL)
1898 			sc->sc_tx99->stop(sc->sc_tx99);
1899 #endif
1900 		callout_stop(&sc->sc_wd_ch);
1901 		sc->sc_wd_timer = 0;
1902 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1903 		if (!sc->sc_invalid) {
1904 			if (sc->sc_softled) {
1905 				callout_stop(&sc->sc_ledtimer);
1906 				ath_hal_gpioset(ah, sc->sc_ledpin,
1907 					!sc->sc_ledon);
1908 				sc->sc_blinking = 0;
1909 			}
1910 			ath_hal_intrset(ah, 0);
1911 		}
1912 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1913 		if (!sc->sc_invalid) {
1914 			ath_stoprecv(sc, 1);
1915 			ath_hal_phydisable(ah);
1916 		} else
1917 			sc->sc_rxlink = NULL;
1918 		ath_beacon_free(sc);	/* XXX not needed */
1919 	}
1920 }
1921 
1922 #define	MAX_TXRX_ITERATIONS	1000
1923 static void
1924 ath_txrx_stop_locked(struct ath_softc *sc)
1925 {
1926 	int i = MAX_TXRX_ITERATIONS;
1927 
1928 	ATH_UNLOCK_ASSERT(sc);
1929 	ATH_PCU_LOCK_ASSERT(sc);
1930 
1931 	/*
1932 	 * Sleep until all the pending operations have completed.
1933 	 *
1934 	 * The caller must ensure that reset has been incremented
1935 	 * or the pending operations may continue being queued.
1936 	 */
1937 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1938 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1939 		if (i <= 0)
1940 			break;
1941 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1942 		i--;
1943 	}
1944 
1945 	if (i <= 0)
1946 		device_printf(sc->sc_dev,
1947 		    "%s: didn't finish after %d iterations\n",
1948 		    __func__, MAX_TXRX_ITERATIONS);
1949 }
1950 #undef	MAX_TXRX_ITERATIONS
1951 
1952 #if 0
1953 static void
1954 ath_txrx_stop(struct ath_softc *sc)
1955 {
1956 	ATH_UNLOCK_ASSERT(sc);
1957 	ATH_PCU_UNLOCK_ASSERT(sc);
1958 
1959 	ATH_PCU_LOCK(sc);
1960 	ath_txrx_stop_locked(sc);
1961 	ATH_PCU_UNLOCK(sc);
1962 }
1963 #endif
1964 
1965 static void
1966 ath_txrx_start(struct ath_softc *sc)
1967 {
1968 
1969 	taskqueue_unblock(sc->sc_tq);
1970 }
1971 
1972 /*
1973  * Grab the reset lock, and wait around until noone else
1974  * is trying to do anything with it.
1975  *
1976  * This is totally horrible but we can't hold this lock for
1977  * long enough to do TX/RX or we end up with net80211/ip stack
1978  * LORs and eventual deadlock.
1979  *
1980  * "dowait" signals whether to spin, waiting for the reset
1981  * lock count to reach 0. This should (for now) only be used
1982  * during the reset path, as the rest of the code may not
1983  * be locking-reentrant enough to behave correctly.
1984  *
1985  * Another, cleaner way should be found to serialise all of
1986  * these operations.
1987  */
1988 #define	MAX_RESET_ITERATIONS	10
1989 static int
1990 ath_reset_grablock(struct ath_softc *sc, int dowait)
1991 {
1992 	int w = 0;
1993 	int i = MAX_RESET_ITERATIONS;
1994 
1995 	ATH_PCU_LOCK_ASSERT(sc);
1996 	do {
1997 		if (sc->sc_inreset_cnt == 0) {
1998 			w = 1;
1999 			break;
2000 		}
2001 		if (dowait == 0) {
2002 			w = 0;
2003 			break;
2004 		}
2005 		ATH_PCU_UNLOCK(sc);
2006 		pause("ath_reset_grablock", 1);
2007 		i--;
2008 		ATH_PCU_LOCK(sc);
2009 	} while (i > 0);
2010 
2011 	/*
2012 	 * We always increment the refcounter, regardless
2013 	 * of whether we succeeded to get it in an exclusive
2014 	 * way.
2015 	 */
2016 	sc->sc_inreset_cnt++;
2017 
2018 	if (i <= 0)
2019 		device_printf(sc->sc_dev,
2020 		    "%s: didn't finish after %d iterations\n",
2021 		    __func__, MAX_RESET_ITERATIONS);
2022 
2023 	if (w == 0)
2024 		device_printf(sc->sc_dev,
2025 		    "%s: warning, recursive reset path!\n",
2026 		    __func__);
2027 
2028 	return w;
2029 }
2030 #undef MAX_RESET_ITERATIONS
2031 
2032 /*
2033  * XXX TODO: write ath_reset_releaselock
2034  */
2035 
2036 static void
2037 ath_stop(struct ifnet *ifp)
2038 {
2039 	struct ath_softc *sc = ifp->if_softc;
2040 
2041 	ATH_LOCK(sc);
2042 	ath_stop_locked(ifp);
2043 	ATH_UNLOCK(sc);
2044 }
2045 
2046 /*
2047  * Reset the hardware w/o losing operational state.  This is
2048  * basically a more efficient way of doing ath_stop, ath_init,
2049  * followed by state transitions to the current 802.11
2050  * operational state.  Used to recover from various errors and
2051  * to reset or reload hardware state.
2052  */
2053 int
2054 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2055 {
2056 	struct ath_softc *sc = ifp->if_softc;
2057 	struct ieee80211com *ic = ifp->if_l2com;
2058 	struct ath_hal *ah = sc->sc_ah;
2059 	HAL_STATUS status;
2060 	int i;
2061 
2062 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2063 
2064 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2065 	ATH_PCU_UNLOCK_ASSERT(sc);
2066 	ATH_UNLOCK_ASSERT(sc);
2067 
2068 	/* Try to (stop any further TX/RX from occuring */
2069 	taskqueue_block(sc->sc_tq);
2070 
2071 	ATH_PCU_LOCK(sc);
2072 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2073 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2074 	if (ath_reset_grablock(sc, 1) == 0) {
2075 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2076 		    __func__);
2077 	}
2078 	ATH_PCU_UNLOCK(sc);
2079 
2080 	/*
2081 	 * Should now wait for pending TX/RX to complete
2082 	 * and block future ones from occuring. This needs to be
2083 	 * done before the TX queue is drained.
2084 	 */
2085 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2086 
2087 	/*
2088 	 * Regardless of whether we're doing a no-loss flush or
2089 	 * not, stop the PCU and handle what's in the RX queue.
2090 	 * That way frames aren't dropped which shouldn't be.
2091 	 */
2092 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2093 	ath_rx_proc(sc, 0);
2094 
2095 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2096 	/* NB: indicate channel change so we do a full reset */
2097 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2098 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2099 			__func__, status);
2100 	sc->sc_diversity = ath_hal_getdiversity(ah);
2101 
2102 	/* Let DFS at it in case it's a DFS channel */
2103 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2104 
2105 	if (ath_startrecv(sc) != 0)	/* restart recv */
2106 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2107 	/*
2108 	 * We may be doing a reset in response to an ioctl
2109 	 * that changes the channel so update any state that
2110 	 * might change as a result.
2111 	 */
2112 	ath_chan_change(sc, ic->ic_curchan);
2113 	if (sc->sc_beacons) {		/* restart beacons */
2114 #ifdef IEEE80211_SUPPORT_TDMA
2115 		if (sc->sc_tdma)
2116 			ath_tdma_config(sc, NULL);
2117 		else
2118 #endif
2119 			ath_beacon_config(sc, NULL);
2120 	}
2121 
2122 	/*
2123 	 * Release the reset lock and re-enable interrupts here.
2124 	 * If an interrupt was being processed in ath_intr(),
2125 	 * it would disable interrupts at this point. So we have
2126 	 * to atomically enable interrupts and decrement the
2127 	 * reset counter - this way ath_intr() doesn't end up
2128 	 * disabling interrupts without a corresponding enable
2129 	 * in the rest or channel change path.
2130 	 */
2131 	ATH_PCU_LOCK(sc);
2132 	sc->sc_inreset_cnt--;
2133 	/* XXX only do this if sc_inreset_cnt == 0? */
2134 	ath_hal_intrset(ah, sc->sc_imask);
2135 	ATH_PCU_UNLOCK(sc);
2136 
2137 	/*
2138 	 * TX and RX can be started here. If it were started with
2139 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2140 	 * Thus if this is a nested call through the reset or
2141 	 * channel change code, TX completion will occur but
2142 	 * RX completion and ath_start / ath_tx_start will not
2143 	 * run.
2144 	 */
2145 
2146 	/* Restart TX/RX as needed */
2147 	ath_txrx_start(sc);
2148 
2149 	/* XXX Restart TX completion and pending TX */
2150 	if (reset_type == ATH_RESET_NOLOSS) {
2151 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2152 			if (ATH_TXQ_SETUP(sc, i)) {
2153 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2154 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2155 				ath_txq_sched(sc, &sc->sc_txq[i]);
2156 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2157 			}
2158 		}
2159 	}
2160 
2161 	/*
2162 	 * This may have been set during an ath_start() call which
2163 	 * set this once it detected a concurrent TX was going on.
2164 	 * So, clear it.
2165 	 */
2166 	IF_LOCK(&ifp->if_snd);
2167 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2168 	IF_UNLOCK(&ifp->if_snd);
2169 
2170 	/* Handle any frames in the TX queue */
2171 	/*
2172 	 * XXX should this be done by the caller, rather than
2173 	 * ath_reset() ?
2174 	 */
2175 	ath_start(ifp);			/* restart xmit */
2176 	return 0;
2177 }
2178 
2179 static int
2180 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2181 {
2182 	struct ieee80211com *ic = vap->iv_ic;
2183 	struct ifnet *ifp = ic->ic_ifp;
2184 	struct ath_softc *sc = ifp->if_softc;
2185 	struct ath_hal *ah = sc->sc_ah;
2186 
2187 	switch (cmd) {
2188 	case IEEE80211_IOC_TXPOWER:
2189 		/*
2190 		 * If per-packet TPC is enabled, then we have nothing
2191 		 * to do; otherwise we need to force the global limit.
2192 		 * All this can happen directly; no need to reset.
2193 		 */
2194 		if (!ath_hal_gettpc(ah))
2195 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2196 		return 0;
2197 	}
2198 	/* XXX? Full or NOLOSS? */
2199 	return ath_reset(ifp, ATH_RESET_FULL);
2200 }
2201 
2202 struct ath_buf *
2203 _ath_getbuf_locked(struct ath_softc *sc)
2204 {
2205 	struct ath_buf *bf;
2206 
2207 	ATH_TXBUF_LOCK_ASSERT(sc);
2208 
2209 	bf = TAILQ_FIRST(&sc->sc_txbuf);
2210 	if (bf == NULL) {
2211 		sc->sc_stats.ast_tx_getnobuf++;
2212 	} else {
2213 		if (bf->bf_flags & ATH_BUF_BUSY) {
2214 			sc->sc_stats.ast_tx_getbusybuf++;
2215 			bf = NULL;
2216 		}
2217 	}
2218 
2219 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
2220 		TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2221 	else
2222 		bf = NULL;
2223 
2224 	if (bf == NULL) {
2225 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2226 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2227 			"out of xmit buffers" : "xmit buffer busy");
2228 		return NULL;
2229 	}
2230 
2231 	/* Valid bf here; clear some basic fields */
2232 	bf->bf_next = NULL;	/* XXX just to be sure */
2233 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2234 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2235 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2236 
2237 	return bf;
2238 }
2239 
2240 /*
2241  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2242  * can't be thrown back on the queue as they could still be
2243  * in use by the hardware.
2244  *
2245  * This duplicates the buffer, or returns NULL.
2246  *
2247  * The descriptor is also copied but the link pointers and
2248  * the DMA segments aren't copied; this frame should thus
2249  * be again passed through the descriptor setup/chain routines
2250  * so the link is correct.
2251  *
2252  * The caller must free the buffer using ath_freebuf().
2253  *
2254  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2255  * XXX in the TX pathway when retries are needed.
2256  * XXX Figure out how to keep some buffers free, or factor the
2257  * XXX number of busy buffers into the xmit path (ath_start())
2258  * XXX so we don't over-commit.
2259  */
2260 struct ath_buf *
2261 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2262 {
2263 	struct ath_buf *tbf;
2264 
2265 	tbf = ath_getbuf(sc);
2266 	if (tbf == NULL)
2267 		return NULL;	/* XXX failure? Why? */
2268 
2269 	/* Copy basics */
2270 	tbf->bf_next = NULL;
2271 	tbf->bf_nseg = bf->bf_nseg;
2272 	tbf->bf_txflags = bf->bf_txflags;
2273 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2274 	tbf->bf_status = bf->bf_status;
2275 	tbf->bf_m = bf->bf_m;
2276 	tbf->bf_node = bf->bf_node;
2277 	/* will be setup by the chain/setup function */
2278 	tbf->bf_lastds = NULL;
2279 	/* for now, last == self */
2280 	tbf->bf_last = tbf;
2281 	tbf->bf_comp = bf->bf_comp;
2282 
2283 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2284 
2285 	/* The caller has to re-init the descriptor + links */
2286 
2287 	/* Copy state */
2288 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2289 
2290 	return tbf;
2291 }
2292 
2293 struct ath_buf *
2294 ath_getbuf(struct ath_softc *sc)
2295 {
2296 	struct ath_buf *bf;
2297 
2298 	ATH_TXBUF_LOCK(sc);
2299 	bf = _ath_getbuf_locked(sc);
2300 	ATH_TXBUF_UNLOCK(sc);
2301 	if (bf == NULL) {
2302 		struct ifnet *ifp = sc->sc_ifp;
2303 
2304 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2305 		sc->sc_stats.ast_tx_qstop++;
2306 		IF_LOCK(&ifp->if_snd);
2307 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2308 		IF_UNLOCK(&ifp->if_snd);
2309 	}
2310 	return bf;
2311 }
2312 
2313 static void
2314 ath_start(struct ifnet *ifp)
2315 {
2316 	struct ath_softc *sc = ifp->if_softc;
2317 	struct ieee80211_node *ni;
2318 	struct ath_buf *bf;
2319 	struct mbuf *m, *next;
2320 	ath_bufhead frags;
2321 
2322 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2323 		return;
2324 
2325 	/* XXX is it ok to hold the ATH_LOCK here? */
2326 	ATH_PCU_LOCK(sc);
2327 	if (sc->sc_inreset_cnt > 0) {
2328 		device_printf(sc->sc_dev,
2329 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2330 		ATH_PCU_UNLOCK(sc);
2331 		IF_LOCK(&ifp->if_snd);
2332 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2333 		IF_UNLOCK(&ifp->if_snd);
2334 		return;
2335 	}
2336 	sc->sc_txstart_cnt++;
2337 	ATH_PCU_UNLOCK(sc);
2338 
2339 	for (;;) {
2340 		/*
2341 		 * Grab a TX buffer and associated resources.
2342 		 */
2343 		bf = ath_getbuf(sc);
2344 		if (bf == NULL)
2345 			break;
2346 
2347 		IFQ_DEQUEUE(&ifp->if_snd, m);
2348 		if (m == NULL) {
2349 			ATH_TXBUF_LOCK(sc);
2350 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2351 			ATH_TXBUF_UNLOCK(sc);
2352 			break;
2353 		}
2354 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2355 		/*
2356 		 * Check for fragmentation.  If this frame
2357 		 * has been broken up verify we have enough
2358 		 * buffers to send all the fragments so all
2359 		 * go out or none...
2360 		 */
2361 		TAILQ_INIT(&frags);
2362 		if ((m->m_flags & M_FRAG) &&
2363 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2364 			DPRINTF(sc, ATH_DEBUG_XMIT,
2365 			    "%s: out of txfrag buffers\n", __func__);
2366 			sc->sc_stats.ast_tx_nofrag++;
2367 			ifp->if_oerrors++;
2368 			ath_freetx(m);
2369 			goto bad;
2370 		}
2371 		ifp->if_opackets++;
2372 	nextfrag:
2373 		/*
2374 		 * Pass the frame to the h/w for transmission.
2375 		 * Fragmented frames have each frag chained together
2376 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2377 		 * to send all the frags because of work done by
2378 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2379 		 * calling ath_tx_start so it can use it to extend the
2380 		 * the tx duration to cover the subsequent frag and
2381 		 * so it can reclaim all the mbufs in case of an error;
2382 		 * ath_tx_start clears m_nextpkt once it commits to
2383 		 * handing the frame to the hardware.
2384 		 */
2385 		next = m->m_nextpkt;
2386 		if (ath_tx_start(sc, ni, bf, m)) {
2387 	bad:
2388 			ifp->if_oerrors++;
2389 	reclaim:
2390 			bf->bf_m = NULL;
2391 			bf->bf_node = NULL;
2392 			ATH_TXBUF_LOCK(sc);
2393 			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2394 			ath_txfrag_cleanup(sc, &frags, ni);
2395 			ATH_TXBUF_UNLOCK(sc);
2396 			if (ni != NULL)
2397 				ieee80211_free_node(ni);
2398 			continue;
2399 		}
2400 		if (next != NULL) {
2401 			/*
2402 			 * Beware of state changing between frags.
2403 			 * XXX check sta power-save state?
2404 			 */
2405 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2406 				DPRINTF(sc, ATH_DEBUG_XMIT,
2407 				    "%s: flush fragmented packet, state %s\n",
2408 				    __func__,
2409 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2410 				ath_freetx(next);
2411 				goto reclaim;
2412 			}
2413 			m = next;
2414 			bf = TAILQ_FIRST(&frags);
2415 			KASSERT(bf != NULL, ("no buf for txfrag"));
2416 			TAILQ_REMOVE(&frags, bf, bf_list);
2417 			goto nextfrag;
2418 		}
2419 
2420 		sc->sc_wd_timer = 5;
2421 	}
2422 
2423 	ATH_PCU_LOCK(sc);
2424 	sc->sc_txstart_cnt--;
2425 	ATH_PCU_UNLOCK(sc);
2426 }
2427 
2428 static int
2429 ath_media_change(struct ifnet *ifp)
2430 {
2431 	int error = ieee80211_media_change(ifp);
2432 	/* NB: only the fixed rate can change and that doesn't need a reset */
2433 	return (error == ENETRESET ? 0 : error);
2434 }
2435 
2436 /*
2437  * Block/unblock tx+rx processing while a key change is done.
2438  * We assume the caller serializes key management operations
2439  * so we only need to worry about synchronization with other
2440  * uses that originate in the driver.
2441  */
2442 static void
2443 ath_key_update_begin(struct ieee80211vap *vap)
2444 {
2445 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2446 	struct ath_softc *sc = ifp->if_softc;
2447 
2448 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2449 	taskqueue_block(sc->sc_tq);
2450 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2451 }
2452 
2453 static void
2454 ath_key_update_end(struct ieee80211vap *vap)
2455 {
2456 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2457 	struct ath_softc *sc = ifp->if_softc;
2458 
2459 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2460 	IF_UNLOCK(&ifp->if_snd);
2461 	taskqueue_unblock(sc->sc_tq);
2462 }
2463 
2464 /*
2465  * Calculate the receive filter according to the
2466  * operating mode and state:
2467  *
2468  * o always accept unicast, broadcast, and multicast traffic
2469  * o accept PHY error frames when hardware doesn't have MIB support
2470  *   to count and we need them for ANI (sta mode only until recently)
2471  *   and we are not scanning (ANI is disabled)
2472  *   NB: older hal's add rx filter bits out of sight and we need to
2473  *	 blindly preserve them
2474  * o probe request frames are accepted only when operating in
2475  *   hostap, adhoc, mesh, or monitor modes
2476  * o enable promiscuous mode
2477  *   - when in monitor mode
2478  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2479  * o accept beacons:
2480  *   - when operating in station mode for collecting rssi data when
2481  *     the station is otherwise quiet, or
2482  *   - when operating in adhoc mode so the 802.11 layer creates
2483  *     node table entries for peers,
2484  *   - when scanning
2485  *   - when doing s/w beacon miss (e.g. for ap+sta)
2486  *   - when operating in ap mode in 11g to detect overlapping bss that
2487  *     require protection
2488  *   - when operating in mesh mode to detect neighbors
2489  * o accept control frames:
2490  *   - when in monitor mode
2491  * XXX HT protection for 11n
2492  */
2493 static u_int32_t
2494 ath_calcrxfilter(struct ath_softc *sc)
2495 {
2496 	struct ifnet *ifp = sc->sc_ifp;
2497 	struct ieee80211com *ic = ifp->if_l2com;
2498 	u_int32_t rfilt;
2499 
2500 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2501 	if (!sc->sc_needmib && !sc->sc_scanning)
2502 		rfilt |= HAL_RX_FILTER_PHYERR;
2503 	if (ic->ic_opmode != IEEE80211_M_STA)
2504 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2505 	/* XXX ic->ic_monvaps != 0? */
2506 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2507 		rfilt |= HAL_RX_FILTER_PROM;
2508 	if (ic->ic_opmode == IEEE80211_M_STA ||
2509 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2510 	    sc->sc_swbmiss || sc->sc_scanning)
2511 		rfilt |= HAL_RX_FILTER_BEACON;
2512 	/*
2513 	 * NB: We don't recalculate the rx filter when
2514 	 * ic_protmode changes; otherwise we could do
2515 	 * this only when ic_protmode != NONE.
2516 	 */
2517 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2518 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2519 		rfilt |= HAL_RX_FILTER_BEACON;
2520 
2521 	/*
2522 	 * Enable hardware PS-POLL RX only for hostap mode;
2523 	 * STA mode sends PS-POLL frames but never
2524 	 * receives them.
2525 	 */
2526 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2527 	    0, NULL) == HAL_OK &&
2528 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2529 		rfilt |= HAL_RX_FILTER_PSPOLL;
2530 
2531 	if (sc->sc_nmeshvaps) {
2532 		rfilt |= HAL_RX_FILTER_BEACON;
2533 		if (sc->sc_hasbmatch)
2534 			rfilt |= HAL_RX_FILTER_BSSID;
2535 		else
2536 			rfilt |= HAL_RX_FILTER_PROM;
2537 	}
2538 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2539 		rfilt |= HAL_RX_FILTER_CONTROL;
2540 
2541 	/*
2542 	 * Enable RX of compressed BAR frames only when doing
2543 	 * 802.11n. Required for A-MPDU.
2544 	 */
2545 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2546 		rfilt |= HAL_RX_FILTER_COMPBAR;
2547 
2548 	/*
2549 	 * Enable radar PHY errors if requested by the
2550 	 * DFS module.
2551 	 */
2552 	if (sc->sc_dodfs)
2553 		rfilt |= HAL_RX_FILTER_PHYRADAR;
2554 
2555 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2556 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2557 	return rfilt;
2558 }
2559 
2560 static void
2561 ath_update_promisc(struct ifnet *ifp)
2562 {
2563 	struct ath_softc *sc = ifp->if_softc;
2564 	u_int32_t rfilt;
2565 
2566 	/* configure rx filter */
2567 	rfilt = ath_calcrxfilter(sc);
2568 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2569 
2570 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2571 }
2572 
2573 static void
2574 ath_update_mcast(struct ifnet *ifp)
2575 {
2576 	struct ath_softc *sc = ifp->if_softc;
2577 	u_int32_t mfilt[2];
2578 
2579 	/* calculate and install multicast filter */
2580 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2581 		struct ifmultiaddr *ifma;
2582 		/*
2583 		 * Merge multicast addresses to form the hardware filter.
2584 		 */
2585 		mfilt[0] = mfilt[1] = 0;
2586 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2587 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2588 			caddr_t dl;
2589 			u_int32_t val;
2590 			u_int8_t pos;
2591 
2592 			/* calculate XOR of eight 6bit values */
2593 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2594 			val = LE_READ_4(dl + 0);
2595 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2596 			val = LE_READ_4(dl + 3);
2597 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2598 			pos &= 0x3f;
2599 			mfilt[pos / 32] |= (1 << (pos % 32));
2600 		}
2601 		if_maddr_runlock(ifp);
2602 	} else
2603 		mfilt[0] = mfilt[1] = ~0;
2604 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2605 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2606 		__func__, mfilt[0], mfilt[1]);
2607 }
2608 
2609 static void
2610 ath_mode_init(struct ath_softc *sc)
2611 {
2612 	struct ifnet *ifp = sc->sc_ifp;
2613 	struct ath_hal *ah = sc->sc_ah;
2614 	u_int32_t rfilt;
2615 
2616 	/* configure rx filter */
2617 	rfilt = ath_calcrxfilter(sc);
2618 	ath_hal_setrxfilter(ah, rfilt);
2619 
2620 	/* configure operational mode */
2621 	ath_hal_setopmode(ah);
2622 
2623 	/* handle any link-level address change */
2624 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2625 
2626 	/* calculate and install multicast filter */
2627 	ath_update_mcast(ifp);
2628 }
2629 
2630 /*
2631  * Set the slot time based on the current setting.
2632  */
2633 static void
2634 ath_setslottime(struct ath_softc *sc)
2635 {
2636 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2637 	struct ath_hal *ah = sc->sc_ah;
2638 	u_int usec;
2639 
2640 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2641 		usec = 13;
2642 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2643 		usec = 21;
2644 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2645 		/* honor short/long slot time only in 11g */
2646 		/* XXX shouldn't honor on pure g or turbo g channel */
2647 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2648 			usec = HAL_SLOT_TIME_9;
2649 		else
2650 			usec = HAL_SLOT_TIME_20;
2651 	} else
2652 		usec = HAL_SLOT_TIME_9;
2653 
2654 	DPRINTF(sc, ATH_DEBUG_RESET,
2655 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2656 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2657 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2658 
2659 	ath_hal_setslottime(ah, usec);
2660 	sc->sc_updateslot = OK;
2661 }
2662 
2663 /*
2664  * Callback from the 802.11 layer to update the
2665  * slot time based on the current setting.
2666  */
2667 static void
2668 ath_updateslot(struct ifnet *ifp)
2669 {
2670 	struct ath_softc *sc = ifp->if_softc;
2671 	struct ieee80211com *ic = ifp->if_l2com;
2672 
2673 	/*
2674 	 * When not coordinating the BSS, change the hardware
2675 	 * immediately.  For other operation we defer the change
2676 	 * until beacon updates have propagated to the stations.
2677 	 */
2678 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2679 	    ic->ic_opmode == IEEE80211_M_MBSS)
2680 		sc->sc_updateslot = UPDATE;
2681 	else
2682 		ath_setslottime(sc);
2683 }
2684 
2685 /*
2686  * Setup a h/w transmit queue for beacons.
2687  */
2688 static int
2689 ath_beaconq_setup(struct ath_hal *ah)
2690 {
2691 	HAL_TXQ_INFO qi;
2692 
2693 	memset(&qi, 0, sizeof(qi));
2694 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2695 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2696 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2697 	/* NB: for dynamic turbo, don't enable any other interrupts */
2698 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2699 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2700 }
2701 
2702 /*
2703  * Setup the transmit queue parameters for the beacon queue.
2704  */
2705 static int
2706 ath_beaconq_config(struct ath_softc *sc)
2707 {
2708 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2709 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2710 	struct ath_hal *ah = sc->sc_ah;
2711 	HAL_TXQ_INFO qi;
2712 
2713 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2714 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2715 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2716 		/*
2717 		 * Always burst out beacon and CAB traffic.
2718 		 */
2719 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2720 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2721 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2722 	} else {
2723 		struct wmeParams *wmep =
2724 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2725 		/*
2726 		 * Adhoc mode; important thing is to use 2x cwmin.
2727 		 */
2728 		qi.tqi_aifs = wmep->wmep_aifsn;
2729 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2730 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2731 	}
2732 
2733 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2734 		device_printf(sc->sc_dev, "unable to update parameters for "
2735 			"beacon hardware queue!\n");
2736 		return 0;
2737 	} else {
2738 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2739 		return 1;
2740 	}
2741 #undef ATH_EXPONENT_TO_VALUE
2742 }
2743 
2744 /*
2745  * Allocate and setup an initial beacon frame.
2746  */
2747 static int
2748 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2749 {
2750 	struct ieee80211vap *vap = ni->ni_vap;
2751 	struct ath_vap *avp = ATH_VAP(vap);
2752 	struct ath_buf *bf;
2753 	struct mbuf *m;
2754 	int error;
2755 
2756 	bf = avp->av_bcbuf;
2757 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: bf_m=%p, bf_node=%p\n",
2758 	    __func__, bf->bf_m, bf->bf_node);
2759 	if (bf->bf_m != NULL) {
2760 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2761 		m_freem(bf->bf_m);
2762 		bf->bf_m = NULL;
2763 	}
2764 	if (bf->bf_node != NULL) {
2765 		ieee80211_free_node(bf->bf_node);
2766 		bf->bf_node = NULL;
2767 	}
2768 
2769 	/*
2770 	 * NB: the beacon data buffer must be 32-bit aligned;
2771 	 * we assume the mbuf routines will return us something
2772 	 * with this alignment (perhaps should assert).
2773 	 */
2774 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2775 	if (m == NULL) {
2776 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2777 		sc->sc_stats.ast_be_nombuf++;
2778 		return ENOMEM;
2779 	}
2780 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2781 				     bf->bf_segs, &bf->bf_nseg,
2782 				     BUS_DMA_NOWAIT);
2783 	if (error != 0) {
2784 		device_printf(sc->sc_dev,
2785 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2786 		    __func__, error);
2787 		m_freem(m);
2788 		return error;
2789 	}
2790 
2791 	/*
2792 	 * Calculate a TSF adjustment factor required for staggered
2793 	 * beacons.  Note that we assume the format of the beacon
2794 	 * frame leaves the tstamp field immediately following the
2795 	 * header.
2796 	 */
2797 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2798 		uint64_t tsfadjust;
2799 		struct ieee80211_frame *wh;
2800 
2801 		/*
2802 		 * The beacon interval is in TU's; the TSF is in usecs.
2803 		 * We figure out how many TU's to add to align the timestamp
2804 		 * then convert to TSF units and handle byte swapping before
2805 		 * inserting it in the frame.  The hardware will then add this
2806 		 * each time a beacon frame is sent.  Note that we align vap's
2807 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2808 		 * timestamp in one beacon interval while the others get a
2809 		 * timstamp aligned to the next interval.
2810 		 */
2811 		tsfadjust = ni->ni_intval *
2812 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2813 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2814 
2815 		DPRINTF(sc, ATH_DEBUG_BEACON,
2816 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2817 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2818 		    avp->av_bslot, ni->ni_intval,
2819 		    (long long unsigned) le64toh(tsfadjust));
2820 
2821 		wh = mtod(m, struct ieee80211_frame *);
2822 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2823 	}
2824 	bf->bf_m = m;
2825 	bf->bf_node = ieee80211_ref_node(ni);
2826 
2827 	return 0;
2828 }
2829 
2830 /*
2831  * Setup the beacon frame for transmit.
2832  */
2833 static void
2834 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2835 {
2836 #define	USE_SHPREAMBLE(_ic) \
2837 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2838 		== IEEE80211_F_SHPREAMBLE)
2839 	struct ieee80211_node *ni = bf->bf_node;
2840 	struct ieee80211com *ic = ni->ni_ic;
2841 	struct mbuf *m = bf->bf_m;
2842 	struct ath_hal *ah = sc->sc_ah;
2843 	struct ath_desc *ds;
2844 	int flags, antenna;
2845 	const HAL_RATE_TABLE *rt;
2846 	u_int8_t rix, rate;
2847 
2848 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2849 		__func__, m, m->m_len);
2850 
2851 	/* setup descriptors */
2852 	ds = bf->bf_desc;
2853 	bf->bf_last = bf;
2854 	bf->bf_lastds = ds;
2855 
2856 	flags = HAL_TXDESC_NOACK;
2857 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2858 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2859 		flags |= HAL_TXDESC_VEOL;
2860 		/*
2861 		 * Let hardware handle antenna switching.
2862 		 */
2863 		antenna = sc->sc_txantenna;
2864 	} else {
2865 		ds->ds_link = 0;
2866 		/*
2867 		 * Switch antenna every 4 beacons.
2868 		 * XXX assumes two antenna
2869 		 */
2870 		if (sc->sc_txantenna != 0)
2871 			antenna = sc->sc_txantenna;
2872 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2873 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2874 		else
2875 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2876 	}
2877 
2878 	KASSERT(bf->bf_nseg == 1,
2879 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2880 	ds->ds_data = bf->bf_segs[0].ds_addr;
2881 	/*
2882 	 * Calculate rate code.
2883 	 * XXX everything at min xmit rate
2884 	 */
2885 	rix = 0;
2886 	rt = sc->sc_currates;
2887 	rate = rt->info[rix].rateCode;
2888 	if (USE_SHPREAMBLE(ic))
2889 		rate |= rt->info[rix].shortPreamble;
2890 	ath_hal_setuptxdesc(ah, ds
2891 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2892 		, sizeof(struct ieee80211_frame)/* header length */
2893 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2894 		, ni->ni_txpower		/* txpower XXX */
2895 		, rate, 1			/* series 0 rate/tries */
2896 		, HAL_TXKEYIX_INVALID		/* no encryption */
2897 		, antenna			/* antenna mode */
2898 		, flags				/* no ack, veol for beacons */
2899 		, 0				/* rts/cts rate */
2900 		, 0				/* rts/cts duration */
2901 	);
2902 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2903 	ath_hal_filltxdesc(ah, ds
2904 		, roundup(m->m_len, 4)		/* buffer length */
2905 		, AH_TRUE			/* first segment */
2906 		, AH_TRUE			/* last segment */
2907 		, ds				/* first descriptor */
2908 	);
2909 #if 0
2910 	ath_desc_swap(ds);
2911 #endif
2912 #undef USE_SHPREAMBLE
2913 }
2914 
2915 static void
2916 ath_beacon_update(struct ieee80211vap *vap, int item)
2917 {
2918 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2919 
2920 	setbit(bo->bo_flags, item);
2921 }
2922 
2923 /*
2924  * Append the contents of src to dst; both queues
2925  * are assumed to be locked.
2926  */
2927 static void
2928 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2929 {
2930 
2931 	ATH_TXQ_LOCK_ASSERT(dst);
2932 	ATH_TXQ_LOCK_ASSERT(src);
2933 
2934 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2935 	dst->axq_link = src->axq_link;
2936 	src->axq_link = NULL;
2937 	dst->axq_depth += src->axq_depth;
2938 	dst->axq_aggr_depth += src->axq_aggr_depth;
2939 	src->axq_depth = 0;
2940 	src->axq_aggr_depth = 0;
2941 }
2942 
2943 /*
2944  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2945  * frame contents are done as needed and the slot time is
2946  * also adjusted based on current state.
2947  */
2948 static void
2949 ath_beacon_proc(void *arg, int pending)
2950 {
2951 	struct ath_softc *sc = arg;
2952 	struct ath_hal *ah = sc->sc_ah;
2953 	struct ieee80211vap *vap;
2954 	struct ath_buf *bf;
2955 	int slot, otherant;
2956 	uint32_t bfaddr;
2957 
2958 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2959 		__func__, pending);
2960 	/*
2961 	 * Check if the previous beacon has gone out.  If
2962 	 * not don't try to post another, skip this period
2963 	 * and wait for the next.  Missed beacons indicate
2964 	 * a problem and should not occur.  If we miss too
2965 	 * many consecutive beacons reset the device.
2966 	 */
2967 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2968 		sc->sc_bmisscount++;
2969 		sc->sc_stats.ast_be_missed++;
2970 		DPRINTF(sc, ATH_DEBUG_BEACON,
2971 			"%s: missed %u consecutive beacons\n",
2972 			__func__, sc->sc_bmisscount);
2973 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2974 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2975 		return;
2976 	}
2977 	if (sc->sc_bmisscount != 0) {
2978 		DPRINTF(sc, ATH_DEBUG_BEACON,
2979 			"%s: resume beacon xmit after %u misses\n",
2980 			__func__, sc->sc_bmisscount);
2981 		sc->sc_bmisscount = 0;
2982 	}
2983 
2984 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2985 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2986 		uint32_t tsftu;
2987 
2988 		tsftu = ath_hal_gettsf32(ah) >> 10;
2989 		/* XXX lintval */
2990 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2991 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2992 		bfaddr = 0;
2993 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2994 			bf = ath_beacon_generate(sc, vap);
2995 			if (bf != NULL)
2996 				bfaddr = bf->bf_daddr;
2997 		}
2998 	} else {					/* burst'd beacons */
2999 		uint32_t *bflink = &bfaddr;
3000 
3001 		for (slot = 0; slot < ATH_BCBUF; slot++) {
3002 			vap = sc->sc_bslot[slot];
3003 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
3004 				bf = ath_beacon_generate(sc, vap);
3005 				if (bf != NULL) {
3006 					*bflink = bf->bf_daddr;
3007 					bflink = &bf->bf_desc->ds_link;
3008 				}
3009 			}
3010 		}
3011 		*bflink = 0;				/* terminate list */
3012 	}
3013 
3014 	/*
3015 	 * Handle slot time change when a non-ERP station joins/leaves
3016 	 * an 11g network.  The 802.11 layer notifies us via callback,
3017 	 * we mark updateslot, then wait one beacon before effecting
3018 	 * the change.  This gives associated stations at least one
3019 	 * beacon interval to note the state change.
3020 	 */
3021 	/* XXX locking */
3022 	if (sc->sc_updateslot == UPDATE) {
3023 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3024 		sc->sc_slotupdate = slot;
3025 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3026 		ath_setslottime(sc);		/* commit change to h/w */
3027 
3028 	/*
3029 	 * Check recent per-antenna transmit statistics and flip
3030 	 * the default antenna if noticeably more frames went out
3031 	 * on the non-default antenna.
3032 	 * XXX assumes 2 anntenae
3033 	 */
3034 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3035 		otherant = sc->sc_defant & 1 ? 2 : 1;
3036 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3037 			ath_setdefantenna(sc, otherant);
3038 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3039 	}
3040 
3041 	if (bfaddr != 0) {
3042 		/*
3043 		 * Stop any current dma and put the new frame on the queue.
3044 		 * This should never fail since we check above that no frames
3045 		 * are still pending on the queue.
3046 		 */
3047 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3048 			DPRINTF(sc, ATH_DEBUG_ANY,
3049 				"%s: beacon queue %u did not stop?\n",
3050 				__func__, sc->sc_bhalq);
3051 		}
3052 		/* NB: cabq traffic should already be queued and primed */
3053 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3054 		ath_hal_txstart(ah, sc->sc_bhalq);
3055 
3056 		sc->sc_stats.ast_be_xmit++;
3057 	}
3058 }
3059 
3060 static struct ath_buf *
3061 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3062 {
3063 	struct ath_vap *avp = ATH_VAP(vap);
3064 	struct ath_txq *cabq = sc->sc_cabq;
3065 	struct ath_buf *bf;
3066 	struct mbuf *m;
3067 	int nmcastq, error;
3068 
3069 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
3070 	    ("not running, state %d", vap->iv_state));
3071 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3072 
3073 	/*
3074 	 * Update dynamic beacon contents.  If this returns
3075 	 * non-zero then we need to remap the memory because
3076 	 * the beacon frame changed size (probably because
3077 	 * of the TIM bitmap).
3078 	 */
3079 	bf = avp->av_bcbuf;
3080 	m = bf->bf_m;
3081 	/* XXX lock mcastq? */
3082 	nmcastq = avp->av_mcastq.axq_depth;
3083 
3084 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3085 		/* XXX too conservative? */
3086 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3087 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3088 					     bf->bf_segs, &bf->bf_nseg,
3089 					     BUS_DMA_NOWAIT);
3090 		if (error != 0) {
3091 			if_printf(vap->iv_ifp,
3092 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3093 			    __func__, error);
3094 			return NULL;
3095 		}
3096 	}
3097 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3098 		DPRINTF(sc, ATH_DEBUG_BEACON,
3099 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3100 		    __func__, nmcastq, cabq->axq_depth);
3101 		sc->sc_stats.ast_cabq_busy++;
3102 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3103 			/*
3104 			 * CABQ traffic from a previous vap is still pending.
3105 			 * We must drain the q before this beacon frame goes
3106 			 * out as otherwise this vap's stations will get cab
3107 			 * frames from a different vap.
3108 			 * XXX could be slow causing us to miss DBA
3109 			 */
3110 			ath_tx_draintxq(sc, cabq);
3111 		}
3112 	}
3113 	ath_beacon_setup(sc, bf);
3114 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3115 
3116 	/*
3117 	 * Enable the CAB queue before the beacon queue to
3118 	 * insure cab frames are triggered by this beacon.
3119 	 */
3120 	if (avp->av_boff.bo_tim[4] & 1) {
3121 		struct ath_hal *ah = sc->sc_ah;
3122 
3123 		/* NB: only at DTIM */
3124 		ATH_TXQ_LOCK(cabq);
3125 		ATH_TXQ_LOCK(&avp->av_mcastq);
3126 		if (nmcastq) {
3127 			struct ath_buf *bfm;
3128 
3129 			/*
3130 			 * Move frames from the s/w mcast q to the h/w cab q.
3131 			 * XXX MORE_DATA bit
3132 			 */
3133 			bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q);
3134 			if (cabq->axq_link != NULL) {
3135 				*cabq->axq_link = bfm->bf_daddr;
3136 			} else
3137 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3138 					bfm->bf_daddr);
3139 			ath_txqmove(cabq, &avp->av_mcastq);
3140 
3141 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3142 		}
3143 		/* NB: gated by beacon so safe to start here */
3144 		if (! TAILQ_EMPTY(&(cabq->axq_q)))
3145 			ath_hal_txstart(ah, cabq->axq_qnum);
3146 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3147 		ATH_TXQ_UNLOCK(cabq);
3148 	}
3149 	return bf;
3150 }
3151 
3152 static void
3153 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3154 {
3155 	struct ath_vap *avp = ATH_VAP(vap);
3156 	struct ath_hal *ah = sc->sc_ah;
3157 	struct ath_buf *bf;
3158 	struct mbuf *m;
3159 	int error;
3160 
3161 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3162 
3163 	/*
3164 	 * Update dynamic beacon contents.  If this returns
3165 	 * non-zero then we need to remap the memory because
3166 	 * the beacon frame changed size (probably because
3167 	 * of the TIM bitmap).
3168 	 */
3169 	bf = avp->av_bcbuf;
3170 	m = bf->bf_m;
3171 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3172 		/* XXX too conservative? */
3173 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3174 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3175 					     bf->bf_segs, &bf->bf_nseg,
3176 					     BUS_DMA_NOWAIT);
3177 		if (error != 0) {
3178 			if_printf(vap->iv_ifp,
3179 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3180 			    __func__, error);
3181 			return;
3182 		}
3183 	}
3184 	ath_beacon_setup(sc, bf);
3185 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3186 
3187 	/* NB: caller is known to have already stopped tx dma */
3188 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3189 	ath_hal_txstart(ah, sc->sc_bhalq);
3190 }
3191 
3192 /*
3193  * Reset the hardware, with no loss.
3194  *
3195  * This can't be used for a general case reset.
3196  */
3197 static void
3198 ath_reset_proc(void *arg, int pending)
3199 {
3200 	struct ath_softc *sc = arg;
3201 	struct ifnet *ifp = sc->sc_ifp;
3202 
3203 #if 0
3204 	if_printf(ifp, "%s: resetting\n", __func__);
3205 #endif
3206 	ath_reset(ifp, ATH_RESET_NOLOSS);
3207 }
3208 
3209 /*
3210  * Reset the hardware after detecting beacons have stopped.
3211  */
3212 static void
3213 ath_bstuck_proc(void *arg, int pending)
3214 {
3215 	struct ath_softc *sc = arg;
3216 	struct ifnet *ifp = sc->sc_ifp;
3217 	uint32_t hangs = 0;
3218 
3219 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3220 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3221 
3222 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3223 		sc->sc_bmisscount);
3224 	sc->sc_stats.ast_bstuck++;
3225 	/*
3226 	 * This assumes that there's no simultaneous channel mode change
3227 	 * occuring.
3228 	 */
3229 	ath_reset(ifp, ATH_RESET_NOLOSS);
3230 }
3231 
3232 /*
3233  * Reclaim beacon resources and return buffer to the pool.
3234  */
3235 static void
3236 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3237 {
3238 
3239 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: free bf=%p, bf_m=%p, bf_node=%p\n",
3240 	    __func__, bf, bf->bf_m, bf->bf_node);
3241 	if (bf->bf_m != NULL) {
3242 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3243 		m_freem(bf->bf_m);
3244 		bf->bf_m = NULL;
3245 	}
3246 	if (bf->bf_node != NULL) {
3247 		ieee80211_free_node(bf->bf_node);
3248 		bf->bf_node = NULL;
3249 	}
3250 	TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3251 }
3252 
3253 /*
3254  * Reclaim beacon resources.
3255  */
3256 static void
3257 ath_beacon_free(struct ath_softc *sc)
3258 {
3259 	struct ath_buf *bf;
3260 
3261 	TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3262 		DPRINTF(sc, ATH_DEBUG_NODE,
3263 		    "%s: free bf=%p, bf_m=%p, bf_node=%p\n",
3264 		        __func__, bf, bf->bf_m, bf->bf_node);
3265 		if (bf->bf_m != NULL) {
3266 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3267 			m_freem(bf->bf_m);
3268 			bf->bf_m = NULL;
3269 		}
3270 		if (bf->bf_node != NULL) {
3271 			ieee80211_free_node(bf->bf_node);
3272 			bf->bf_node = NULL;
3273 		}
3274 	}
3275 }
3276 
3277 /*
3278  * Configure the beacon and sleep timers.
3279  *
3280  * When operating as an AP this resets the TSF and sets
3281  * up the hardware to notify us when we need to issue beacons.
3282  *
3283  * When operating in station mode this sets up the beacon
3284  * timers according to the timestamp of the last received
3285  * beacon and the current TSF, configures PCF and DTIM
3286  * handling, programs the sleep registers so the hardware
3287  * will wakeup in time to receive beacons, and configures
3288  * the beacon miss handling so we'll receive a BMISS
3289  * interrupt when we stop seeing beacons from the AP
3290  * we've associated with.
3291  */
3292 static void
3293 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3294 {
3295 #define	TSF_TO_TU(_h,_l) \
3296 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3297 #define	FUDGE	2
3298 	struct ath_hal *ah = sc->sc_ah;
3299 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3300 	struct ieee80211_node *ni;
3301 	u_int32_t nexttbtt, intval, tsftu;
3302 	u_int64_t tsf;
3303 
3304 	if (vap == NULL)
3305 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3306 	ni = ieee80211_ref_node(vap->iv_bss);
3307 
3308 	/* extract tstamp from last beacon and convert to TU */
3309 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3310 			     LE_READ_4(ni->ni_tstamp.data));
3311 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3312 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3313 		/*
3314 		 * For multi-bss ap/mesh support beacons are either staggered
3315 		 * evenly over N slots or burst together.  For the former
3316 		 * arrange for the SWBA to be delivered for each slot.
3317 		 * Slots that are not occupied will generate nothing.
3318 		 */
3319 		/* NB: the beacon interval is kept internally in TU's */
3320 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3321 		if (sc->sc_stagbeacons)
3322 			intval /= ATH_BCBUF;
3323 	} else {
3324 		/* NB: the beacon interval is kept internally in TU's */
3325 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3326 	}
3327 	if (nexttbtt == 0)		/* e.g. for ap mode */
3328 		nexttbtt = intval;
3329 	else if (intval)		/* NB: can be 0 for monitor mode */
3330 		nexttbtt = roundup(nexttbtt, intval);
3331 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3332 		__func__, nexttbtt, intval, ni->ni_intval);
3333 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3334 		HAL_BEACON_STATE bs;
3335 		int dtimperiod, dtimcount;
3336 		int cfpperiod, cfpcount;
3337 
3338 		/*
3339 		 * Setup dtim and cfp parameters according to
3340 		 * last beacon we received (which may be none).
3341 		 */
3342 		dtimperiod = ni->ni_dtim_period;
3343 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3344 			dtimperiod = 1;
3345 		dtimcount = ni->ni_dtim_count;
3346 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3347 			dtimcount = 0;		/* XXX? */
3348 		cfpperiod = 1;			/* NB: no PCF support yet */
3349 		cfpcount = 0;
3350 		/*
3351 		 * Pull nexttbtt forward to reflect the current
3352 		 * TSF and calculate dtim+cfp state for the result.
3353 		 */
3354 		tsf = ath_hal_gettsf64(ah);
3355 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3356 		do {
3357 			nexttbtt += intval;
3358 			if (--dtimcount < 0) {
3359 				dtimcount = dtimperiod - 1;
3360 				if (--cfpcount < 0)
3361 					cfpcount = cfpperiod - 1;
3362 			}
3363 		} while (nexttbtt < tsftu);
3364 		memset(&bs, 0, sizeof(bs));
3365 		bs.bs_intval = intval;
3366 		bs.bs_nexttbtt = nexttbtt;
3367 		bs.bs_dtimperiod = dtimperiod*intval;
3368 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3369 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3370 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3371 		bs.bs_cfpmaxduration = 0;
3372 #if 0
3373 		/*
3374 		 * The 802.11 layer records the offset to the DTIM
3375 		 * bitmap while receiving beacons; use it here to
3376 		 * enable h/w detection of our AID being marked in
3377 		 * the bitmap vector (to indicate frames for us are
3378 		 * pending at the AP).
3379 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3380 		 * XXX enable based on h/w rev for newer chips
3381 		 */
3382 		bs.bs_timoffset = ni->ni_timoff;
3383 #endif
3384 		/*
3385 		 * Calculate the number of consecutive beacons to miss
3386 		 * before taking a BMISS interrupt.
3387 		 * Note that we clamp the result to at most 10 beacons.
3388 		 */
3389 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3390 		if (bs.bs_bmissthreshold > 10)
3391 			bs.bs_bmissthreshold = 10;
3392 		else if (bs.bs_bmissthreshold <= 0)
3393 			bs.bs_bmissthreshold = 1;
3394 
3395 		/*
3396 		 * Calculate sleep duration.  The configuration is
3397 		 * given in ms.  We insure a multiple of the beacon
3398 		 * period is used.  Also, if the sleep duration is
3399 		 * greater than the DTIM period then it makes senses
3400 		 * to make it a multiple of that.
3401 		 *
3402 		 * XXX fixed at 100ms
3403 		 */
3404 		bs.bs_sleepduration =
3405 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3406 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3407 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3408 
3409 		DPRINTF(sc, ATH_DEBUG_BEACON,
3410 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3411 			, __func__
3412 			, tsf, tsftu
3413 			, bs.bs_intval
3414 			, bs.bs_nexttbtt
3415 			, bs.bs_dtimperiod
3416 			, bs.bs_nextdtim
3417 			, bs.bs_bmissthreshold
3418 			, bs.bs_sleepduration
3419 			, bs.bs_cfpperiod
3420 			, bs.bs_cfpmaxduration
3421 			, bs.bs_cfpnext
3422 			, bs.bs_timoffset
3423 		);
3424 		ath_hal_intrset(ah, 0);
3425 		ath_hal_beacontimers(ah, &bs);
3426 		sc->sc_imask |= HAL_INT_BMISS;
3427 		ath_hal_intrset(ah, sc->sc_imask);
3428 	} else {
3429 		ath_hal_intrset(ah, 0);
3430 		if (nexttbtt == intval)
3431 			intval |= HAL_BEACON_RESET_TSF;
3432 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3433 			/*
3434 			 * In IBSS mode enable the beacon timers but only
3435 			 * enable SWBA interrupts if we need to manually
3436 			 * prepare beacon frames.  Otherwise we use a
3437 			 * self-linked tx descriptor and let the hardware
3438 			 * deal with things.
3439 			 */
3440 			intval |= HAL_BEACON_ENA;
3441 			if (!sc->sc_hasveol)
3442 				sc->sc_imask |= HAL_INT_SWBA;
3443 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3444 				/*
3445 				 * Pull nexttbtt forward to reflect
3446 				 * the current TSF.
3447 				 */
3448 				tsf = ath_hal_gettsf64(ah);
3449 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3450 				do {
3451 					nexttbtt += intval;
3452 				} while (nexttbtt < tsftu);
3453 			}
3454 			ath_beaconq_config(sc);
3455 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3456 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3457 			/*
3458 			 * In AP/mesh mode we enable the beacon timers
3459 			 * and SWBA interrupts to prepare beacon frames.
3460 			 */
3461 			intval |= HAL_BEACON_ENA;
3462 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3463 			ath_beaconq_config(sc);
3464 		}
3465 		ath_hal_beaconinit(ah, nexttbtt, intval);
3466 		sc->sc_bmisscount = 0;
3467 		ath_hal_intrset(ah, sc->sc_imask);
3468 		/*
3469 		 * When using a self-linked beacon descriptor in
3470 		 * ibss mode load it once here.
3471 		 */
3472 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3473 			ath_beacon_start_adhoc(sc, vap);
3474 	}
3475 	sc->sc_syncbeacon = 0;
3476 	ieee80211_free_node(ni);
3477 #undef FUDGE
3478 #undef TSF_TO_TU
3479 }
3480 
3481 static void
3482 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3483 {
3484 	bus_addr_t *paddr = (bus_addr_t*) arg;
3485 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3486 	*paddr = segs->ds_addr;
3487 }
3488 
3489 static int
3490 ath_descdma_setup(struct ath_softc *sc,
3491 	struct ath_descdma *dd, ath_bufhead *head,
3492 	const char *name, int nbuf, int ndesc)
3493 {
3494 #define	DS2PHYS(_dd, _ds) \
3495 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3496 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3497 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3498 	struct ifnet *ifp = sc->sc_ifp;
3499 	uint8_t *ds;
3500 	struct ath_buf *bf;
3501 	int i, bsize, error;
3502 	int desc_len;
3503 
3504 	desc_len = sizeof(struct ath_desc);
3505 
3506 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3507 	    __func__, name, nbuf, ndesc);
3508 
3509 	dd->dd_name = name;
3510 	dd->dd_desc_len = desc_len * nbuf * ndesc;
3511 
3512 	/*
3513 	 * Merlin work-around:
3514 	 * Descriptors that cross the 4KB boundary can't be used.
3515 	 * Assume one skipped descriptor per 4KB page.
3516 	 */
3517 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3518 		int numdescpage = 4096 / (desc_len * ndesc);
3519 		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
3520 	}
3521 
3522 	/*
3523 	 * Setup DMA descriptor area.
3524 	 */
3525 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3526 		       PAGE_SIZE, 0,		/* alignment, bounds */
3527 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3528 		       BUS_SPACE_MAXADDR,	/* highaddr */
3529 		       NULL, NULL,		/* filter, filterarg */
3530 		       dd->dd_desc_len,		/* maxsize */
3531 		       1,			/* nsegments */
3532 		       dd->dd_desc_len,		/* maxsegsize */
3533 		       BUS_DMA_ALLOCNOW,	/* flags */
3534 		       NULL,			/* lockfunc */
3535 		       NULL,			/* lockarg */
3536 		       &dd->dd_dmat);
3537 	if (error != 0) {
3538 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3539 		return error;
3540 	}
3541 
3542 	/* allocate descriptors */
3543 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3544 	if (error != 0) {
3545 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3546 			"error %u\n", dd->dd_name, error);
3547 		goto fail0;
3548 	}
3549 
3550 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3551 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3552 				 &dd->dd_dmamap);
3553 	if (error != 0) {
3554 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3555 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3556 		goto fail1;
3557 	}
3558 
3559 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3560 				dd->dd_desc, dd->dd_desc_len,
3561 				ath_load_cb, &dd->dd_desc_paddr,
3562 				BUS_DMA_NOWAIT);
3563 	if (error != 0) {
3564 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3565 			dd->dd_name, error);
3566 		goto fail2;
3567 	}
3568 
3569 	ds = (uint8_t *) dd->dd_desc;
3570 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3571 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3572 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3573 
3574 	/* allocate rx buffers */
3575 	bsize = sizeof(struct ath_buf) * nbuf;
3576 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3577 	if (bf == NULL) {
3578 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3579 			dd->dd_name, bsize);
3580 		goto fail3;
3581 	}
3582 	dd->dd_bufptr = bf;
3583 
3584 	TAILQ_INIT(head);
3585 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3586 		bf->bf_desc = (struct ath_desc *) ds;
3587 		bf->bf_daddr = DS2PHYS(dd, ds);
3588 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3589 			/*
3590 			 * Merlin WAR: Skip descriptor addresses which
3591 			 * cause 4KB boundary crossing along any point
3592 			 * in the descriptor.
3593 			 */
3594 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3595 			     desc_len * ndesc)) {
3596 				/* Start at the next page */
3597 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3598 				bf->bf_desc = (struct ath_desc *) ds;
3599 				bf->bf_daddr = DS2PHYS(dd, ds);
3600 			}
3601 		}
3602 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3603 				&bf->bf_dmamap);
3604 		if (error != 0) {
3605 			if_printf(ifp, "unable to create dmamap for %s "
3606 				"buffer %u, error %u\n", dd->dd_name, i, error);
3607 			ath_descdma_cleanup(sc, dd, head);
3608 			return error;
3609 		}
3610 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3611 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3612 	}
3613 	return 0;
3614 fail3:
3615 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3616 fail2:
3617 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3618 fail1:
3619 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3620 fail0:
3621 	bus_dma_tag_destroy(dd->dd_dmat);
3622 	memset(dd, 0, sizeof(*dd));
3623 	return error;
3624 #undef DS2PHYS
3625 #undef ATH_DESC_4KB_BOUND_CHECK
3626 }
3627 
3628 static void
3629 ath_descdma_cleanup(struct ath_softc *sc,
3630 	struct ath_descdma *dd, ath_bufhead *head)
3631 {
3632 	struct ath_buf *bf;
3633 	struct ieee80211_node *ni;
3634 
3635 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3636 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3637 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3638 	bus_dma_tag_destroy(dd->dd_dmat);
3639 
3640 	TAILQ_FOREACH(bf, head, bf_list) {
3641 		if (bf->bf_m) {
3642 			m_freem(bf->bf_m);
3643 			bf->bf_m = NULL;
3644 		}
3645 		if (bf->bf_dmamap != NULL) {
3646 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3647 			bf->bf_dmamap = NULL;
3648 		}
3649 		ni = bf->bf_node;
3650 		bf->bf_node = NULL;
3651 		if (ni != NULL) {
3652 			/*
3653 			 * Reclaim node reference.
3654 			 */
3655 			ieee80211_free_node(ni);
3656 		}
3657 	}
3658 
3659 	TAILQ_INIT(head);
3660 	free(dd->dd_bufptr, M_ATHDEV);
3661 	memset(dd, 0, sizeof(*dd));
3662 }
3663 
3664 static int
3665 ath_desc_alloc(struct ath_softc *sc)
3666 {
3667 	int error;
3668 
3669 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3670 			"rx", ath_rxbuf, 1);
3671 	if (error != 0)
3672 		return error;
3673 
3674 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3675 			"tx", ath_txbuf, ATH_TXDESC);
3676 	if (error != 0) {
3677 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3678 		return error;
3679 	}
3680 
3681 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3682 			"beacon", ATH_BCBUF, 1);
3683 	if (error != 0) {
3684 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3685 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3686 		return error;
3687 	}
3688 	return 0;
3689 }
3690 
3691 static void
3692 ath_desc_free(struct ath_softc *sc)
3693 {
3694 
3695 	if (sc->sc_bdma.dd_desc_len != 0)
3696 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3697 	if (sc->sc_txdma.dd_desc_len != 0)
3698 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3699 	if (sc->sc_rxdma.dd_desc_len != 0)
3700 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3701 }
3702 
3703 static struct ieee80211_node *
3704 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3705 {
3706 	struct ieee80211com *ic = vap->iv_ic;
3707 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3708 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3709 	struct ath_node *an;
3710 
3711 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3712 	if (an == NULL) {
3713 		/* XXX stat+msg */
3714 		return NULL;
3715 	}
3716 	ath_rate_node_init(sc, an);
3717 
3718 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3719 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3720 	    device_get_nameunit(sc->sc_dev), an);
3721 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3722 
3723 	/* XXX setup ath_tid */
3724 	ath_tx_tid_init(sc, an);
3725 
3726 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3727 	return &an->an_node;
3728 }
3729 
3730 static void
3731 ath_node_cleanup(struct ieee80211_node *ni)
3732 {
3733 	struct ieee80211com *ic = ni->ni_ic;
3734 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3735 
3736 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3737 	ath_tx_node_flush(sc, ATH_NODE(ni));
3738 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3739 	sc->sc_node_cleanup(ni);
3740 }
3741 
3742 static void
3743 ath_node_free(struct ieee80211_node *ni)
3744 {
3745 	struct ieee80211com *ic = ni->ni_ic;
3746 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3747 
3748 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3749 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3750 	sc->sc_node_free(ni);
3751 }
3752 
3753 static void
3754 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3755 {
3756 	struct ieee80211com *ic = ni->ni_ic;
3757 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3758 	struct ath_hal *ah = sc->sc_ah;
3759 
3760 	*rssi = ic->ic_node_getrssi(ni);
3761 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3762 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3763 	else
3764 		*noise = -95;		/* nominally correct */
3765 }
3766 
3767 static int
3768 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3769 {
3770 	struct ath_hal *ah = sc->sc_ah;
3771 	int error;
3772 	struct mbuf *m;
3773 	struct ath_desc *ds;
3774 
3775 	m = bf->bf_m;
3776 	if (m == NULL) {
3777 		/*
3778 		 * NB: by assigning a page to the rx dma buffer we
3779 		 * implicitly satisfy the Atheros requirement that
3780 		 * this buffer be cache-line-aligned and sized to be
3781 		 * multiple of the cache line size.  Not doing this
3782 		 * causes weird stuff to happen (for the 5210 at least).
3783 		 */
3784 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3785 		if (m == NULL) {
3786 			DPRINTF(sc, ATH_DEBUG_ANY,
3787 				"%s: no mbuf/cluster\n", __func__);
3788 			sc->sc_stats.ast_rx_nombuf++;
3789 			return ENOMEM;
3790 		}
3791 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3792 
3793 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3794 					     bf->bf_dmamap, m,
3795 					     bf->bf_segs, &bf->bf_nseg,
3796 					     BUS_DMA_NOWAIT);
3797 		if (error != 0) {
3798 			DPRINTF(sc, ATH_DEBUG_ANY,
3799 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3800 			    __func__, error);
3801 			sc->sc_stats.ast_rx_busdma++;
3802 			m_freem(m);
3803 			return error;
3804 		}
3805 		KASSERT(bf->bf_nseg == 1,
3806 			("multi-segment packet; nseg %u", bf->bf_nseg));
3807 		bf->bf_m = m;
3808 	}
3809 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3810 
3811 	/*
3812 	 * Setup descriptors.  For receive we always terminate
3813 	 * the descriptor list with a self-linked entry so we'll
3814 	 * not get overrun under high load (as can happen with a
3815 	 * 5212 when ANI processing enables PHY error frames).
3816 	 *
3817 	 * To insure the last descriptor is self-linked we create
3818 	 * each descriptor as self-linked and add it to the end.  As
3819 	 * each additional descriptor is added the previous self-linked
3820 	 * entry is ``fixed'' naturally.  This should be safe even
3821 	 * if DMA is happening.  When processing RX interrupts we
3822 	 * never remove/process the last, self-linked, entry on the
3823 	 * descriptor list.  This insures the hardware always has
3824 	 * someplace to write a new frame.
3825 	 */
3826 	/*
3827 	 * 11N: we can no longer afford to self link the last descriptor.
3828 	 * MAC acknowledges BA status as long as it copies frames to host
3829 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3830 	 * to a sender if last desc is self-linked.
3831 	 */
3832 	ds = bf->bf_desc;
3833 	if (sc->sc_rxslink)
3834 		ds->ds_link = bf->bf_daddr;	/* link to self */
3835 	else
3836 		ds->ds_link = 0;		/* terminate the list */
3837 	ds->ds_data = bf->bf_segs[0].ds_addr;
3838 	ath_hal_setuprxdesc(ah, ds
3839 		, m->m_len		/* buffer size */
3840 		, 0
3841 	);
3842 
3843 	if (sc->sc_rxlink != NULL)
3844 		*sc->sc_rxlink = bf->bf_daddr;
3845 	sc->sc_rxlink = &ds->ds_link;
3846 	return 0;
3847 }
3848 
3849 /*
3850  * Extend 15-bit time stamp from rx descriptor to
3851  * a full 64-bit TSF using the specified TSF.
3852  */
3853 static __inline u_int64_t
3854 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3855 {
3856 	if ((tsf & 0x7fff) < rstamp)
3857 		tsf -= 0x8000;
3858 
3859 	return ((tsf &~ 0x7fff) | rstamp);
3860 }
3861 
3862 /*
3863  * Extend 32-bit time stamp from rx descriptor to
3864  * a full 64-bit TSF using the specified TSF.
3865  */
3866 static __inline u_int64_t
3867 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3868 {
3869 	u_int32_t tsf_low = tsf & 0xffffffff;
3870 	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3871 
3872 	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3873 		tsf64 -= 0x100000000ULL;
3874 
3875 	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3876 		tsf64 += 0x100000000ULL;
3877 
3878 	return tsf64;
3879 }
3880 
3881 /*
3882  * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3883  * Earlier hardware versions only wrote the low 15 bits of the
3884  * TSF into the RX descriptor; later versions (AR5416 and up)
3885  * include the 32 bit TSF value.
3886  */
3887 static __inline u_int64_t
3888 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3889 {
3890 	if (sc->sc_rxtsf32)
3891 		return ath_extend_tsf32(rstamp, tsf);
3892 	else
3893 		return ath_extend_tsf15(rstamp, tsf);
3894 }
3895 
3896 /*
3897  * Intercept management frames to collect beacon rssi data
3898  * and to do ibss merges.
3899  */
3900 static void
3901 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3902 	int subtype, int rssi, int nf)
3903 {
3904 	struct ieee80211vap *vap = ni->ni_vap;
3905 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3906 
3907 	/*
3908 	 * Call up first so subsequent work can use information
3909 	 * potentially stored in the node (e.g. for ibss merge).
3910 	 */
3911 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3912 	switch (subtype) {
3913 	case IEEE80211_FC0_SUBTYPE_BEACON:
3914 		/* update rssi statistics for use by the hal */
3915 		/* XXX unlocked check against vap->iv_bss? */
3916 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3917 		if (sc->sc_syncbeacon &&
3918 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3919 			/*
3920 			 * Resync beacon timers using the tsf of the beacon
3921 			 * frame we just received.
3922 			 */
3923 			ath_beacon_config(sc, vap);
3924 		}
3925 		/* fall thru... */
3926 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3927 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3928 		    vap->iv_state == IEEE80211_S_RUN) {
3929 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3930 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3931 				ath_hal_gettsf64(sc->sc_ah));
3932 			/*
3933 			 * Handle ibss merge as needed; check the tsf on the
3934 			 * frame before attempting the merge.  The 802.11 spec
3935 			 * says the station should change it's bssid to match
3936 			 * the oldest station with the same ssid, where oldest
3937 			 * is determined by the tsf.  Note that hardware
3938 			 * reconfiguration happens through callback to
3939 			 * ath_newstate as the state machine will go from
3940 			 * RUN -> RUN when this happens.
3941 			 */
3942 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3943 				DPRINTF(sc, ATH_DEBUG_STATE,
3944 				    "ibss merge, rstamp %u tsf %ju "
3945 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3946 				    (uintmax_t)ni->ni_tstamp.tsf);
3947 				(void) ieee80211_ibss_merge(ni);
3948 			}
3949 		}
3950 		break;
3951 	}
3952 }
3953 
3954 /*
3955  * Set the default antenna.
3956  */
3957 static void
3958 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3959 {
3960 	struct ath_hal *ah = sc->sc_ah;
3961 
3962 	/* XXX block beacon interrupts */
3963 	ath_hal_setdefantenna(ah, antenna);
3964 	if (sc->sc_defant != antenna)
3965 		sc->sc_stats.ast_ant_defswitch++;
3966 	sc->sc_defant = antenna;
3967 	sc->sc_rxotherant = 0;
3968 }
3969 
3970 static void
3971 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3972 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3973 {
3974 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3975 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3976 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3977 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3978 	struct ath_softc *sc = ifp->if_softc;
3979 	const HAL_RATE_TABLE *rt;
3980 	uint8_t rix;
3981 
3982 	rt = sc->sc_currates;
3983 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3984 	rix = rt->rateCodeToIndex[rs->rs_rate];
3985 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3986 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3987 #ifdef AH_SUPPORT_AR5416
3988 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3989 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3990 		struct ieee80211com *ic = ifp->if_l2com;
3991 
3992 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3993 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3994 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3995 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3996 		else
3997 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3998 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3999 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
4000 	}
4001 #endif
4002 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
4003 	if (rs->rs_status & HAL_RXERR_CRC)
4004 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
4005 	/* XXX propagate other error flags from descriptor */
4006 	sc->sc_rx_th.wr_antnoise = nf;
4007 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
4008 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
4009 #undef CHAN_HT
4010 #undef CHAN_HT20
4011 #undef CHAN_HT40U
4012 #undef CHAN_HT40D
4013 }
4014 
4015 static void
4016 ath_handle_micerror(struct ieee80211com *ic,
4017 	struct ieee80211_frame *wh, int keyix)
4018 {
4019 	struct ieee80211_node *ni;
4020 
4021 	/* XXX recheck MIC to deal w/ chips that lie */
4022 	/* XXX discard MIC errors on !data frames */
4023 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
4024 	if (ni != NULL) {
4025 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
4026 		ieee80211_free_node(ni);
4027 	}
4028 }
4029 
4030 /*
4031  * Only run the RX proc if it's not already running.
4032  * Since this may get run as part of the reset/flush path,
4033  * the task can't clash with an existing, running tasklet.
4034  */
4035 static void
4036 ath_rx_tasklet(void *arg, int npending)
4037 {
4038 	struct ath_softc *sc = arg;
4039 
4040 	CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending);
4041 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
4042 	ATH_PCU_LOCK(sc);
4043 	if (sc->sc_inreset_cnt > 0) {
4044 		device_printf(sc->sc_dev,
4045 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4046 		ATH_PCU_UNLOCK(sc);
4047 		return;
4048 	}
4049 	ATH_PCU_UNLOCK(sc);
4050 	ath_rx_proc(sc, 1);
4051 }
4052 
4053 static void
4054 ath_rx_proc(struct ath_softc *sc, int resched)
4055 {
4056 #define	PA2DESC(_sc, _pa) \
4057 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4058 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4059 	struct ath_buf *bf;
4060 	struct ifnet *ifp = sc->sc_ifp;
4061 	struct ieee80211com *ic = ifp->if_l2com;
4062 	struct ath_hal *ah = sc->sc_ah;
4063 	struct ath_desc *ds;
4064 	struct ath_rx_status *rs;
4065 	struct mbuf *m;
4066 	struct ieee80211_node *ni;
4067 	int len, type, ngood;
4068 	HAL_STATUS status;
4069 	int16_t nf;
4070 	u_int64_t tsf, rstamp;
4071 	int npkts = 0;
4072 
4073 	/* XXX we must not hold the ATH_LOCK here */
4074 	ATH_UNLOCK_ASSERT(sc);
4075 	ATH_PCU_UNLOCK_ASSERT(sc);
4076 
4077 	ATH_PCU_LOCK(sc);
4078 	sc->sc_rxproc_cnt++;
4079 	ATH_PCU_UNLOCK(sc);
4080 
4081 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
4082 	ngood = 0;
4083 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
4084 	sc->sc_stats.ast_rx_noise = nf;
4085 	tsf = ath_hal_gettsf64(ah);
4086 	do {
4087 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4088 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
4089 			if_printf(ifp, "%s: no buffer!\n", __func__);
4090 			break;
4091 		} else if (bf == NULL) {
4092 			/*
4093 			 * End of List:
4094 			 * this can happen for non-self-linked RX chains
4095 			 */
4096 			sc->sc_stats.ast_rx_hitqueueend++;
4097 			break;
4098 		}
4099 		m = bf->bf_m;
4100 		if (m == NULL) {		/* NB: shouldn't happen */
4101 			/*
4102 			 * If mbuf allocation failed previously there
4103 			 * will be no mbuf; try again to re-populate it.
4104 			 */
4105 			/* XXX make debug msg */
4106 			if_printf(ifp, "%s: no mbuf!\n", __func__);
4107 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4108 			goto rx_next;
4109 		}
4110 		ds = bf->bf_desc;
4111 		if (ds->ds_link == bf->bf_daddr) {
4112 			/* NB: never process the self-linked entry at the end */
4113 			sc->sc_stats.ast_rx_hitqueueend++;
4114 			break;
4115 		}
4116 		/* XXX sync descriptor memory */
4117 		/*
4118 		 * Must provide the virtual address of the current
4119 		 * descriptor, the physical address, and the virtual
4120 		 * address of the next descriptor in the h/w chain.
4121 		 * This allows the HAL to look ahead to see if the
4122 		 * hardware is done with a descriptor by checking the
4123 		 * done bit in the following descriptor and the address
4124 		 * of the current descriptor the DMA engine is working
4125 		 * on.  All this is necessary because of our use of
4126 		 * a self-linked list to avoid rx overruns.
4127 		 */
4128 		rs = &bf->bf_status.ds_rxstat;
4129 		status = ath_hal_rxprocdesc(ah, ds,
4130 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4131 #ifdef ATH_DEBUG
4132 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4133 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4134 #endif
4135 		if (status == HAL_EINPROGRESS)
4136 			break;
4137 
4138 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
4139 		npkts++;
4140 
4141 		/*
4142 		 * Calculate the correct 64 bit TSF given
4143 		 * the TSF64 register value and rs_tstamp.
4144 		 */
4145 		rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
4146 
4147 		/* These aren't specifically errors */
4148 #ifdef	AH_SUPPORT_AR5416
4149 		if (rs->rs_flags & HAL_RX_GI)
4150 			sc->sc_stats.ast_rx_halfgi++;
4151 		if (rs->rs_flags & HAL_RX_2040)
4152 			sc->sc_stats.ast_rx_2040++;
4153 		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
4154 			sc->sc_stats.ast_rx_pre_crc_err++;
4155 		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
4156 			sc->sc_stats.ast_rx_post_crc_err++;
4157 		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
4158 			sc->sc_stats.ast_rx_decrypt_busy_err++;
4159 		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
4160 			sc->sc_stats.ast_rx_hi_rx_chain++;
4161 #endif /* AH_SUPPORT_AR5416 */
4162 
4163 		if (rs->rs_status != 0) {
4164 			if (rs->rs_status & HAL_RXERR_CRC)
4165 				sc->sc_stats.ast_rx_crcerr++;
4166 			if (rs->rs_status & HAL_RXERR_FIFO)
4167 				sc->sc_stats.ast_rx_fifoerr++;
4168 			if (rs->rs_status & HAL_RXERR_PHY) {
4169 				sc->sc_stats.ast_rx_phyerr++;
4170 				/* Process DFS radar events */
4171 				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
4172 				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
4173 					/* Since we're touching the frame data, sync it */
4174 					bus_dmamap_sync(sc->sc_dmat,
4175 					    bf->bf_dmamap,
4176 					    BUS_DMASYNC_POSTREAD);
4177 					/* Now pass it to the radar processing code */
4178 					ath_dfs_process_phy_err(sc, mtod(m, char *), rstamp, rs);
4179 				}
4180 
4181 				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
4182 				if (rs->rs_phyerr < 64)
4183 					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
4184 				goto rx_error;	/* NB: don't count in ierrors */
4185 			}
4186 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4187 				/*
4188 				 * Decrypt error.  If the error occurred
4189 				 * because there was no hardware key, then
4190 				 * let the frame through so the upper layers
4191 				 * can process it.  This is necessary for 5210
4192 				 * parts which have no way to setup a ``clear''
4193 				 * key cache entry.
4194 				 *
4195 				 * XXX do key cache faulting
4196 				 */
4197 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4198 					goto rx_accept;
4199 				sc->sc_stats.ast_rx_badcrypt++;
4200 			}
4201 			if (rs->rs_status & HAL_RXERR_MIC) {
4202 				sc->sc_stats.ast_rx_badmic++;
4203 				/*
4204 				 * Do minimal work required to hand off
4205 				 * the 802.11 header for notification.
4206 				 */
4207 				/* XXX frag's and qos frames */
4208 				len = rs->rs_datalen;
4209 				if (len >= sizeof (struct ieee80211_frame)) {
4210 					bus_dmamap_sync(sc->sc_dmat,
4211 					    bf->bf_dmamap,
4212 					    BUS_DMASYNC_POSTREAD);
4213 					ath_handle_micerror(ic,
4214 					    mtod(m, struct ieee80211_frame *),
4215 					    sc->sc_splitmic ?
4216 						rs->rs_keyix-32 : rs->rs_keyix);
4217 				}
4218 			}
4219 			ifp->if_ierrors++;
4220 rx_error:
4221 			/*
4222 			 * Cleanup any pending partial frame.
4223 			 */
4224 			if (sc->sc_rxpending != NULL) {
4225 				m_freem(sc->sc_rxpending);
4226 				sc->sc_rxpending = NULL;
4227 			}
4228 			/*
4229 			 * When a tap is present pass error frames
4230 			 * that have been requested.  By default we
4231 			 * pass decrypt+mic errors but others may be
4232 			 * interesting (e.g. crc).
4233 			 */
4234 			if (ieee80211_radiotap_active(ic) &&
4235 			    (rs->rs_status & sc->sc_monpass)) {
4236 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4237 				    BUS_DMASYNC_POSTREAD);
4238 				/* NB: bpf needs the mbuf length setup */
4239 				len = rs->rs_datalen;
4240 				m->m_pkthdr.len = m->m_len = len;
4241 				bf->bf_m = NULL;
4242 				ath_rx_tap(ifp, m, rs, rstamp, nf);
4243 				ieee80211_radiotap_rx_all(ic, m);
4244 				m_freem(m);
4245 			}
4246 			/* XXX pass MIC errors up for s/w reclaculation */
4247 			goto rx_next;
4248 		}
4249 rx_accept:
4250 		/*
4251 		 * Sync and unmap the frame.  At this point we're
4252 		 * committed to passing the mbuf somewhere so clear
4253 		 * bf_m; this means a new mbuf must be allocated
4254 		 * when the rx descriptor is setup again to receive
4255 		 * another frame.
4256 		 */
4257 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4258 		    BUS_DMASYNC_POSTREAD);
4259 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4260 		bf->bf_m = NULL;
4261 
4262 		len = rs->rs_datalen;
4263 		m->m_len = len;
4264 
4265 		if (rs->rs_more) {
4266 			/*
4267 			 * Frame spans multiple descriptors; save
4268 			 * it for the next completed descriptor, it
4269 			 * will be used to construct a jumbogram.
4270 			 */
4271 			if (sc->sc_rxpending != NULL) {
4272 				/* NB: max frame size is currently 2 clusters */
4273 				sc->sc_stats.ast_rx_toobig++;
4274 				m_freem(sc->sc_rxpending);
4275 			}
4276 			m->m_pkthdr.rcvif = ifp;
4277 			m->m_pkthdr.len = len;
4278 			sc->sc_rxpending = m;
4279 			goto rx_next;
4280 		} else if (sc->sc_rxpending != NULL) {
4281 			/*
4282 			 * This is the second part of a jumbogram,
4283 			 * chain it to the first mbuf, adjust the
4284 			 * frame length, and clear the rxpending state.
4285 			 */
4286 			sc->sc_rxpending->m_next = m;
4287 			sc->sc_rxpending->m_pkthdr.len += len;
4288 			m = sc->sc_rxpending;
4289 			sc->sc_rxpending = NULL;
4290 		} else {
4291 			/*
4292 			 * Normal single-descriptor receive; setup
4293 			 * the rcvif and packet length.
4294 			 */
4295 			m->m_pkthdr.rcvif = ifp;
4296 			m->m_pkthdr.len = len;
4297 		}
4298 
4299 		/*
4300 		 * Validate rs->rs_antenna.
4301 		 *
4302 		 * Some users w/ AR9285 NICs have reported crashes
4303 		 * here because rs_antenna field is bogusly large.
4304 		 * Let's enforce the maximum antenna limit of 8
4305 		 * (and it shouldn't be hard coded, but that's a
4306 		 * separate problem) and if there's an issue, print
4307 		 * out an error and adjust rs_antenna to something
4308 		 * sensible.
4309 		 *
4310 		 * This code should be removed once the actual
4311 		 * root cause of the issue has been identified.
4312 		 * For example, it may be that the rs_antenna
4313 		 * field is only valid for the lsat frame of
4314 		 * an aggregate and it just happens that it is
4315 		 * "mostly" right. (This is a general statement -
4316 		 * the majority of the statistics are only valid
4317 		 * for the last frame in an aggregate.
4318 		 */
4319 		if (rs->rs_antenna > 7) {
4320 			device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
4321 			    __func__, rs->rs_antenna);
4322 #ifdef	ATH_DEBUG
4323 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4324 #endif /* ATH_DEBUG */
4325 			rs->rs_antenna = 0;	/* XXX better than nothing */
4326 		}
4327 
4328 		ifp->if_ipackets++;
4329 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4330 
4331 		/*
4332 		 * Populate the rx status block.  When there are bpf
4333 		 * listeners we do the additional work to provide
4334 		 * complete status.  Otherwise we fill in only the
4335 		 * material required by ieee80211_input.  Note that
4336 		 * noise setting is filled in above.
4337 		 */
4338 		if (ieee80211_radiotap_active(ic))
4339 			ath_rx_tap(ifp, m, rs, rstamp, nf);
4340 
4341 		/*
4342 		 * From this point on we assume the frame is at least
4343 		 * as large as ieee80211_frame_min; verify that.
4344 		 */
4345 		if (len < IEEE80211_MIN_LEN) {
4346 			if (!ieee80211_radiotap_active(ic)) {
4347 				DPRINTF(sc, ATH_DEBUG_RECV,
4348 				    "%s: short packet %d\n", __func__, len);
4349 				sc->sc_stats.ast_rx_tooshort++;
4350 			} else {
4351 				/* NB: in particular this captures ack's */
4352 				ieee80211_radiotap_rx_all(ic, m);
4353 			}
4354 			m_freem(m);
4355 			goto rx_next;
4356 		}
4357 
4358 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4359 			const HAL_RATE_TABLE *rt = sc->sc_currates;
4360 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4361 
4362 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4363 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4364 		}
4365 
4366 		m_adj(m, -IEEE80211_CRC_LEN);
4367 
4368 		/*
4369 		 * Locate the node for sender, track state, and then
4370 		 * pass the (referenced) node up to the 802.11 layer
4371 		 * for its use.
4372 		 */
4373 		ni = ieee80211_find_rxnode_withkey(ic,
4374 			mtod(m, const struct ieee80211_frame_min *),
4375 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4376 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4377 		sc->sc_lastrs = rs;
4378 
4379 #ifdef	AH_SUPPORT_AR5416
4380 		if (rs->rs_isaggr)
4381 			sc->sc_stats.ast_rx_agg++;
4382 #endif /* AH_SUPPORT_AR5416 */
4383 
4384 		if (ni != NULL) {
4385 			/*
4386  			 * Only punt packets for ampdu reorder processing for
4387 			 * 11n nodes; net80211 enforces that M_AMPDU is only
4388 			 * set for 11n nodes.
4389  			 */
4390 			if (ni->ni_flags & IEEE80211_NODE_HT)
4391 				m->m_flags |= M_AMPDU;
4392 
4393 			/*
4394 			 * Sending station is known, dispatch directly.
4395 			 */
4396 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4397 			ieee80211_free_node(ni);
4398 			/*
4399 			 * Arrange to update the last rx timestamp only for
4400 			 * frames from our ap when operating in station mode.
4401 			 * This assumes the rx key is always setup when
4402 			 * associated.
4403 			 */
4404 			if (ic->ic_opmode == IEEE80211_M_STA &&
4405 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4406 				ngood++;
4407 		} else {
4408 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4409 		}
4410 		/*
4411 		 * Track rx rssi and do any rx antenna management.
4412 		 */
4413 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4414 		if (sc->sc_diversity) {
4415 			/*
4416 			 * When using fast diversity, change the default rx
4417 			 * antenna if diversity chooses the other antenna 3
4418 			 * times in a row.
4419 			 */
4420 			if (sc->sc_defant != rs->rs_antenna) {
4421 				if (++sc->sc_rxotherant >= 3)
4422 					ath_setdefantenna(sc, rs->rs_antenna);
4423 			} else
4424 				sc->sc_rxotherant = 0;
4425 		}
4426 
4427 		/* Newer school diversity - kite specific for now */
4428 		/* XXX perhaps migrate the normal diversity code to this? */
4429 		if ((ah)->ah_rxAntCombDiversity)
4430 			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
4431 
4432 		if (sc->sc_softled) {
4433 			/*
4434 			 * Blink for any data frame.  Otherwise do a
4435 			 * heartbeat-style blink when idle.  The latter
4436 			 * is mainly for station mode where we depend on
4437 			 * periodic beacon frames to trigger the poll event.
4438 			 */
4439 			if (type == IEEE80211_FC0_TYPE_DATA) {
4440 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4441 				ath_led_event(sc,
4442 				    rt->rateCodeToIndex[rs->rs_rate]);
4443 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4444 				ath_led_event(sc, 0);
4445 		}
4446 rx_next:
4447 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4448 	} while (ath_rxbuf_init(sc, bf) == 0);
4449 
4450 	/* rx signal state monitoring */
4451 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4452 	if (ngood)
4453 		sc->sc_lastrx = tsf;
4454 
4455 	CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
4456 	/* Queue DFS tasklet if needed */
4457 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
4458 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
4459 
4460 	/*
4461 	 * Now that all the RX frames were handled that
4462 	 * need to be handled, kick the PCU if there's
4463 	 * been an RXEOL condition.
4464 	 */
4465 	ATH_PCU_LOCK(sc);
4466 	if (resched && sc->sc_kickpcu) {
4467 		CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu");
4468 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
4469 		    __func__, npkts);
4470 
4471 		/* XXX rxslink? */
4472 		/*
4473 		 * XXX can we hold the PCU lock here?
4474 		 * Are there any net80211 buffer calls involved?
4475 		 */
4476 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
4477 		ath_hal_putrxbuf(ah, bf->bf_daddr);
4478 		ath_hal_rxena(ah);		/* enable recv descriptors */
4479 		ath_mode_init(sc);		/* set filters, etc. */
4480 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4481 
4482 		ath_hal_intrset(ah, sc->sc_imask);
4483 		sc->sc_kickpcu = 0;
4484 	}
4485 	ATH_PCU_UNLOCK(sc);
4486 
4487 	/* XXX check this inside of IF_LOCK? */
4488 	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4489 #ifdef IEEE80211_SUPPORT_SUPERG
4490 		ieee80211_ff_age_all(ic, 100);
4491 #endif
4492 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4493 			ath_start(ifp);
4494 	}
4495 #undef PA2DESC
4496 
4497 	ATH_PCU_LOCK(sc);
4498 	sc->sc_rxproc_cnt--;
4499 	ATH_PCU_UNLOCK(sc);
4500 }
4501 
4502 static void
4503 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4504 {
4505 	txq->axq_qnum = qnum;
4506 	txq->axq_ac = 0;
4507 	txq->axq_depth = 0;
4508 	txq->axq_aggr_depth = 0;
4509 	txq->axq_intrcnt = 0;
4510 	txq->axq_link = NULL;
4511 	txq->axq_softc = sc;
4512 	TAILQ_INIT(&txq->axq_q);
4513 	TAILQ_INIT(&txq->axq_tidq);
4514 	ATH_TXQ_LOCK_INIT(sc, txq);
4515 }
4516 
4517 /*
4518  * Setup a h/w transmit queue.
4519  */
4520 static struct ath_txq *
4521 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4522 {
4523 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4524 	struct ath_hal *ah = sc->sc_ah;
4525 	HAL_TXQ_INFO qi;
4526 	int qnum;
4527 
4528 	memset(&qi, 0, sizeof(qi));
4529 	qi.tqi_subtype = subtype;
4530 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4531 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4532 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4533 	/*
4534 	 * Enable interrupts only for EOL and DESC conditions.
4535 	 * We mark tx descriptors to receive a DESC interrupt
4536 	 * when a tx queue gets deep; otherwise waiting for the
4537 	 * EOL to reap descriptors.  Note that this is done to
4538 	 * reduce interrupt load and this only defers reaping
4539 	 * descriptors, never transmitting frames.  Aside from
4540 	 * reducing interrupts this also permits more concurrency.
4541 	 * The only potential downside is if the tx queue backs
4542 	 * up in which case the top half of the kernel may backup
4543 	 * due to a lack of tx descriptors.
4544 	 */
4545 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4546 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4547 	if (qnum == -1) {
4548 		/*
4549 		 * NB: don't print a message, this happens
4550 		 * normally on parts with too few tx queues
4551 		 */
4552 		return NULL;
4553 	}
4554 	if (qnum >= N(sc->sc_txq)) {
4555 		device_printf(sc->sc_dev,
4556 			"hal qnum %u out of range, max %zu!\n",
4557 			qnum, N(sc->sc_txq));
4558 		ath_hal_releasetxqueue(ah, qnum);
4559 		return NULL;
4560 	}
4561 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4562 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4563 		sc->sc_txqsetup |= 1<<qnum;
4564 	}
4565 	return &sc->sc_txq[qnum];
4566 #undef N
4567 }
4568 
4569 /*
4570  * Setup a hardware data transmit queue for the specified
4571  * access control.  The hal may not support all requested
4572  * queues in which case it will return a reference to a
4573  * previously setup queue.  We record the mapping from ac's
4574  * to h/w queues for use by ath_tx_start and also track
4575  * the set of h/w queues being used to optimize work in the
4576  * transmit interrupt handler and related routines.
4577  */
4578 static int
4579 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4580 {
4581 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4582 	struct ath_txq *txq;
4583 
4584 	if (ac >= N(sc->sc_ac2q)) {
4585 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4586 			ac, N(sc->sc_ac2q));
4587 		return 0;
4588 	}
4589 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4590 	if (txq != NULL) {
4591 		txq->axq_ac = ac;
4592 		sc->sc_ac2q[ac] = txq;
4593 		return 1;
4594 	} else
4595 		return 0;
4596 #undef N
4597 }
4598 
4599 /*
4600  * Update WME parameters for a transmit queue.
4601  */
4602 static int
4603 ath_txq_update(struct ath_softc *sc, int ac)
4604 {
4605 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4606 #define	ATH_TXOP_TO_US(v)		(v<<5)
4607 	struct ifnet *ifp = sc->sc_ifp;
4608 	struct ieee80211com *ic = ifp->if_l2com;
4609 	struct ath_txq *txq = sc->sc_ac2q[ac];
4610 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4611 	struct ath_hal *ah = sc->sc_ah;
4612 	HAL_TXQ_INFO qi;
4613 
4614 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4615 #ifdef IEEE80211_SUPPORT_TDMA
4616 	if (sc->sc_tdma) {
4617 		/*
4618 		 * AIFS is zero so there's no pre-transmit wait.  The
4619 		 * burst time defines the slot duration and is configured
4620 		 * through net80211.  The QCU is setup to not do post-xmit
4621 		 * back off, lockout all lower-priority QCU's, and fire
4622 		 * off the DMA beacon alert timer which is setup based
4623 		 * on the slot configuration.
4624 		 */
4625 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4626 			      | HAL_TXQ_TXERRINT_ENABLE
4627 			      | HAL_TXQ_TXURNINT_ENABLE
4628 			      | HAL_TXQ_TXEOLINT_ENABLE
4629 			      | HAL_TXQ_DBA_GATED
4630 			      | HAL_TXQ_BACKOFF_DISABLE
4631 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4632 			      ;
4633 		qi.tqi_aifs = 0;
4634 		/* XXX +dbaprep? */
4635 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4636 		qi.tqi_burstTime = qi.tqi_readyTime;
4637 	} else {
4638 #endif
4639 		/*
4640 		 * XXX shouldn't this just use the default flags
4641 		 * used in the previous queue setup?
4642 		 */
4643 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4644 			      | HAL_TXQ_TXERRINT_ENABLE
4645 			      | HAL_TXQ_TXDESCINT_ENABLE
4646 			      | HAL_TXQ_TXURNINT_ENABLE
4647 			      | HAL_TXQ_TXEOLINT_ENABLE
4648 			      ;
4649 		qi.tqi_aifs = wmep->wmep_aifsn;
4650 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4651 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4652 		qi.tqi_readyTime = 0;
4653 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4654 #ifdef IEEE80211_SUPPORT_TDMA
4655 	}
4656 #endif
4657 
4658 	DPRINTF(sc, ATH_DEBUG_RESET,
4659 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4660 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4661 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4662 
4663 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4664 		if_printf(ifp, "unable to update hardware queue "
4665 			"parameters for %s traffic!\n",
4666 			ieee80211_wme_acnames[ac]);
4667 		return 0;
4668 	} else {
4669 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4670 		return 1;
4671 	}
4672 #undef ATH_TXOP_TO_US
4673 #undef ATH_EXPONENT_TO_VALUE
4674 }
4675 
4676 /*
4677  * Callback from the 802.11 layer to update WME parameters.
4678  */
4679 static int
4680 ath_wme_update(struct ieee80211com *ic)
4681 {
4682 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4683 
4684 	return !ath_txq_update(sc, WME_AC_BE) ||
4685 	    !ath_txq_update(sc, WME_AC_BK) ||
4686 	    !ath_txq_update(sc, WME_AC_VI) ||
4687 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4688 }
4689 
4690 /*
4691  * Reclaim resources for a setup queue.
4692  */
4693 static void
4694 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4695 {
4696 
4697 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4698 	ATH_TXQ_LOCK_DESTROY(txq);
4699 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4700 }
4701 
4702 /*
4703  * Reclaim all tx queue resources.
4704  */
4705 static void
4706 ath_tx_cleanup(struct ath_softc *sc)
4707 {
4708 	int i;
4709 
4710 	ATH_TXBUF_LOCK_DESTROY(sc);
4711 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4712 		if (ATH_TXQ_SETUP(sc, i))
4713 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4714 }
4715 
4716 /*
4717  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4718  * using the current rates in sc_rixmap.
4719  */
4720 int
4721 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4722 {
4723 	int rix = sc->sc_rixmap[rate];
4724 	/* NB: return lowest rix for invalid rate */
4725 	return (rix == 0xff ? 0 : rix);
4726 }
4727 
4728 static void
4729 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4730     struct ath_buf *bf)
4731 {
4732 	struct ieee80211_node *ni = bf->bf_node;
4733 	struct ifnet *ifp = sc->sc_ifp;
4734 	struct ieee80211com *ic = ifp->if_l2com;
4735 	int sr, lr, pri;
4736 
4737 	if (ts->ts_status == 0) {
4738 		u_int8_t txant = ts->ts_antenna;
4739 		sc->sc_stats.ast_ant_tx[txant]++;
4740 		sc->sc_ant_tx[txant]++;
4741 		if (ts->ts_finaltsi != 0)
4742 			sc->sc_stats.ast_tx_altrate++;
4743 		pri = M_WME_GETAC(bf->bf_m);
4744 		if (pri >= WME_AC_VO)
4745 			ic->ic_wme.wme_hipri_traffic++;
4746 		if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4747 			ni->ni_inact = ni->ni_inact_reload;
4748 	} else {
4749 		if (ts->ts_status & HAL_TXERR_XRETRY)
4750 			sc->sc_stats.ast_tx_xretries++;
4751 		if (ts->ts_status & HAL_TXERR_FIFO)
4752 			sc->sc_stats.ast_tx_fifoerr++;
4753 		if (ts->ts_status & HAL_TXERR_FILT)
4754 			sc->sc_stats.ast_tx_filtered++;
4755 		if (ts->ts_status & HAL_TXERR_XTXOP)
4756 			sc->sc_stats.ast_tx_xtxop++;
4757 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4758 			sc->sc_stats.ast_tx_timerexpired++;
4759 
4760 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
4761 			sc->sc_stats.ast_tx_data_underrun++;
4762 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
4763 			sc->sc_stats.ast_tx_delim_underrun++;
4764 
4765 		if (bf->bf_m->m_flags & M_FF)
4766 			sc->sc_stats.ast_ff_txerr++;
4767 	}
4768 	/* XXX when is this valid? */
4769 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4770 		sc->sc_stats.ast_tx_desccfgerr++;
4771 
4772 	sr = ts->ts_shortretry;
4773 	lr = ts->ts_longretry;
4774 	sc->sc_stats.ast_tx_shortretry += sr;
4775 	sc->sc_stats.ast_tx_longretry += lr;
4776 
4777 }
4778 
4779 /*
4780  * The default completion. If fail is 1, this means
4781  * "please don't retry the frame, and just return -1 status
4782  * to the net80211 stack.
4783  */
4784 void
4785 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4786 {
4787 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4788 	int st;
4789 
4790 	if (fail == 1)
4791 		st = -1;
4792 	else
4793 		st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ?
4794 		    ts->ts_status : HAL_TXERR_XRETRY;
4795 
4796 	if (bf->bf_state.bfs_dobaw)
4797 		device_printf(sc->sc_dev,
4798 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4799 		    __func__,
4800 		    bf,
4801 		    SEQNO(bf->bf_state.bfs_seqno));
4802 	if (bf->bf_next != NULL)
4803 		device_printf(sc->sc_dev,
4804 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4805 		    __func__,
4806 		    bf,
4807 		    SEQNO(bf->bf_state.bfs_seqno));
4808 
4809 	/*
4810 	 * Do any tx complete callback.  Note this must
4811 	 * be done before releasing the node reference.
4812 	 * This will free the mbuf, release the net80211
4813 	 * node and recycle the ath_buf.
4814 	 */
4815 	ath_tx_freebuf(sc, bf, st);
4816 }
4817 
4818 /*
4819  * Update rate control with the given completion status.
4820  */
4821 void
4822 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4823     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4824     int nframes, int nbad)
4825 {
4826 	struct ath_node *an;
4827 
4828 	/* Only for unicast frames */
4829 	if (ni == NULL)
4830 		return;
4831 
4832 	an = ATH_NODE(ni);
4833 
4834 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4835 		ATH_NODE_LOCK(an);
4836 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4837 		ATH_NODE_UNLOCK(an);
4838 	}
4839 }
4840 
4841 /*
4842  * Update the busy status of the last frame on the free list.
4843  * When doing TDMA, the busy flag tracks whether the hardware
4844  * currently points to this buffer or not, and thus gated DMA
4845  * may restart by re-reading the last descriptor in this
4846  * buffer.
4847  *
4848  * This should be called in the completion function once one
4849  * of the buffers has been used.
4850  */
4851 static void
4852 ath_tx_update_busy(struct ath_softc *sc)
4853 {
4854 	struct ath_buf *last;
4855 
4856 	/*
4857 	 * Since the last frame may still be marked
4858 	 * as ATH_BUF_BUSY, unmark it here before
4859 	 * finishing the frame processing.
4860 	 * Since we've completed a frame (aggregate
4861 	 * or otherwise), the hardware has moved on
4862 	 * and is no longer referencing the previous
4863 	 * descriptor.
4864 	 */
4865 	ATH_TXBUF_LOCK_ASSERT(sc);
4866 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4867 	if (last != NULL)
4868 		last->bf_flags &= ~ATH_BUF_BUSY;
4869 }
4870 
4871 
4872 /*
4873  * Process completed xmit descriptors from the specified queue.
4874  * Kick the packet scheduler if needed. This can occur from this
4875  * particular task.
4876  */
4877 static int
4878 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4879 {
4880 	struct ath_hal *ah = sc->sc_ah;
4881 	struct ath_buf *bf;
4882 	struct ath_desc *ds;
4883 	struct ath_tx_status *ts;
4884 	struct ieee80211_node *ni;
4885 	struct ath_node *an;
4886 	int nacked;
4887 	HAL_STATUS status;
4888 
4889 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4890 		__func__, txq->axq_qnum,
4891 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4892 		txq->axq_link);
4893 	nacked = 0;
4894 	for (;;) {
4895 		ATH_TXQ_LOCK(txq);
4896 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4897 		bf = TAILQ_FIRST(&txq->axq_q);
4898 		if (bf == NULL) {
4899 			ATH_TXQ_UNLOCK(txq);
4900 			break;
4901 		}
4902 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4903 		ts = &bf->bf_status.ds_txstat;
4904 		status = ath_hal_txprocdesc(ah, ds, ts);
4905 #ifdef ATH_DEBUG
4906 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4907 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4908 			    status == HAL_OK);
4909 #endif
4910 		if (status == HAL_EINPROGRESS) {
4911 			ATH_TXQ_UNLOCK(txq);
4912 			break;
4913 		}
4914 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4915 #ifdef IEEE80211_SUPPORT_TDMA
4916 		if (txq->axq_depth > 0) {
4917 			/*
4918 			 * More frames follow.  Mark the buffer busy
4919 			 * so it's not re-used while the hardware may
4920 			 * still re-read the link field in the descriptor.
4921 			 *
4922 			 * Use the last buffer in an aggregate as that
4923 			 * is where the hardware may be - intermediate
4924 			 * descriptors won't be "busy".
4925 			 */
4926 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4927 		} else
4928 #else
4929 		if (txq->axq_depth == 0)
4930 #endif
4931 			txq->axq_link = NULL;
4932 		if (bf->bf_state.bfs_aggr)
4933 			txq->axq_aggr_depth--;
4934 
4935 		ni = bf->bf_node;
4936 		/*
4937 		 * If unicast frame was ack'd update RSSI,
4938 		 * including the last rx time used to
4939 		 * workaround phantom bmiss interrupts.
4940 		 */
4941 		if (ni != NULL && ts->ts_status == 0 &&
4942 		    ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) {
4943 			nacked++;
4944 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4945 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4946 				ts->ts_rssi);
4947 		}
4948 		ATH_TXQ_UNLOCK(txq);
4949 
4950 		/* If unicast frame, update general statistics */
4951 		if (ni != NULL) {
4952 			an = ATH_NODE(ni);
4953 			/* update statistics */
4954 			ath_tx_update_stats(sc, ts, bf);
4955 		}
4956 
4957 		/*
4958 		 * Call the completion handler.
4959 		 * The completion handler is responsible for
4960 		 * calling the rate control code.
4961 		 *
4962 		 * Frames with no completion handler get the
4963 		 * rate control code called here.
4964 		 */
4965 		if (bf->bf_comp == NULL) {
4966 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4967 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4968 				/*
4969 				 * XXX assume this isn't an aggregate
4970 				 * frame.
4971 				 */
4972 				ath_tx_update_ratectrl(sc, ni,
4973 				     bf->bf_state.bfs_rc, ts,
4974 				    bf->bf_state.bfs_pktlen, 1,
4975 				    (ts->ts_status == 0 ? 0 : 1));
4976 			}
4977 			ath_tx_default_comp(sc, bf, 0);
4978 		} else
4979 			bf->bf_comp(sc, bf, 0);
4980 	}
4981 #ifdef IEEE80211_SUPPORT_SUPERG
4982 	/*
4983 	 * Flush fast-frame staging queue when traffic slows.
4984 	 */
4985 	if (txq->axq_depth <= 1)
4986 		ieee80211_ff_flush(ic, txq->axq_ac);
4987 #endif
4988 
4989 	/* Kick the TXQ scheduler */
4990 	if (dosched) {
4991 		ATH_TXQ_LOCK(txq);
4992 		ath_txq_sched(sc, txq);
4993 		ATH_TXQ_UNLOCK(txq);
4994 	}
4995 
4996 	return nacked;
4997 }
4998 
4999 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
5000 
5001 /*
5002  * Deferred processing of transmit interrupt; special-cased
5003  * for a single hardware transmit queue (e.g. 5210 and 5211).
5004  */
5005 static void
5006 ath_tx_proc_q0(void *arg, int npending)
5007 {
5008 	struct ath_softc *sc = arg;
5009 	struct ifnet *ifp = sc->sc_ifp;
5010 	uint32_t txqs;
5011 
5012 	ATH_PCU_LOCK(sc);
5013 	sc->sc_txproc_cnt++;
5014 	txqs = sc->sc_txq_active;
5015 	sc->sc_txq_active &= ~txqs;
5016 	ATH_PCU_UNLOCK(sc);
5017 
5018 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
5019 		/* XXX why is lastrx updated in tx code? */
5020 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5021 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
5022 		ath_tx_processq(sc, sc->sc_cabq, 1);
5023 	IF_LOCK(&ifp->if_snd);
5024 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5025 	IF_UNLOCK(&ifp->if_snd);
5026 	sc->sc_wd_timer = 0;
5027 
5028 	if (sc->sc_softled)
5029 		ath_led_event(sc, sc->sc_txrix);
5030 
5031 	ATH_PCU_LOCK(sc);
5032 	sc->sc_txproc_cnt--;
5033 	ATH_PCU_UNLOCK(sc);
5034 
5035 	ath_start(ifp);
5036 }
5037 
5038 /*
5039  * Deferred processing of transmit interrupt; special-cased
5040  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5041  */
5042 static void
5043 ath_tx_proc_q0123(void *arg, int npending)
5044 {
5045 	struct ath_softc *sc = arg;
5046 	struct ifnet *ifp = sc->sc_ifp;
5047 	int nacked;
5048 	uint32_t txqs;
5049 
5050 	ATH_PCU_LOCK(sc);
5051 	sc->sc_txproc_cnt++;
5052 	txqs = sc->sc_txq_active;
5053 	sc->sc_txq_active &= ~txqs;
5054 	ATH_PCU_UNLOCK(sc);
5055 
5056 	/*
5057 	 * Process each active queue.
5058 	 */
5059 	nacked = 0;
5060 	if (TXQACTIVE(txqs, 0))
5061 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
5062 	if (TXQACTIVE(txqs, 1))
5063 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
5064 	if (TXQACTIVE(txqs, 2))
5065 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
5066 	if (TXQACTIVE(txqs, 3))
5067 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
5068 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
5069 		ath_tx_processq(sc, sc->sc_cabq, 1);
5070 	if (nacked)
5071 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5072 
5073 	IF_LOCK(&ifp->if_snd);
5074 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5075 	IF_UNLOCK(&ifp->if_snd);
5076 	sc->sc_wd_timer = 0;
5077 
5078 	if (sc->sc_softled)
5079 		ath_led_event(sc, sc->sc_txrix);
5080 
5081 	ATH_PCU_LOCK(sc);
5082 	sc->sc_txproc_cnt--;
5083 	ATH_PCU_UNLOCK(sc);
5084 
5085 	ath_start(ifp);
5086 }
5087 
5088 /*
5089  * Deferred processing of transmit interrupt.
5090  */
5091 static void
5092 ath_tx_proc(void *arg, int npending)
5093 {
5094 	struct ath_softc *sc = arg;
5095 	struct ifnet *ifp = sc->sc_ifp;
5096 	int i, nacked;
5097 	uint32_t txqs;
5098 
5099 	ATH_PCU_LOCK(sc);
5100 	sc->sc_txproc_cnt++;
5101 	txqs = sc->sc_txq_active;
5102 	sc->sc_txq_active &= ~txqs;
5103 	ATH_PCU_UNLOCK(sc);
5104 
5105 	/*
5106 	 * Process each active queue.
5107 	 */
5108 	nacked = 0;
5109 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5110 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
5111 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
5112 	if (nacked)
5113 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5114 
5115 	/* XXX check this inside of IF_LOCK? */
5116 	IF_LOCK(&ifp->if_snd);
5117 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5118 	IF_UNLOCK(&ifp->if_snd);
5119 	sc->sc_wd_timer = 0;
5120 
5121 	if (sc->sc_softled)
5122 		ath_led_event(sc, sc->sc_txrix);
5123 
5124 	ATH_PCU_LOCK(sc);
5125 	sc->sc_txproc_cnt--;
5126 	ATH_PCU_UNLOCK(sc);
5127 
5128 	ath_start(ifp);
5129 }
5130 #undef	TXQACTIVE
5131 
5132 /*
5133  * Return a buffer to the pool and update the 'busy' flag on the
5134  * previous 'tail' entry.
5135  *
5136  * This _must_ only be called when the buffer is involved in a completed
5137  * TX. The logic is that if it was part of an active TX, the previous
5138  * buffer on the list is now not involved in a halted TX DMA queue, waiting
5139  * for restart (eg for TDMA.)
5140  *
5141  * The caller must free the mbuf and recycle the node reference.
5142  */
5143 void
5144 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5145 {
5146 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5147 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
5148 
5149 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5150 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5151 
5152 	ATH_TXBUF_LOCK(sc);
5153 	ath_tx_update_busy(sc);
5154 	TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5155 	ATH_TXBUF_UNLOCK(sc);
5156 }
5157 
5158 /*
5159  * This is currently used by ath_tx_draintxq() and
5160  * ath_tx_tid_free_pkts().
5161  *
5162  * It recycles a single ath_buf.
5163  */
5164 void
5165 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5166 {
5167 	struct ieee80211_node *ni = bf->bf_node;
5168 	struct mbuf *m0 = bf->bf_m;
5169 
5170 	bf->bf_node = NULL;
5171 	bf->bf_m = NULL;
5172 
5173 	/* Free the buffer, it's not needed any longer */
5174 	ath_freebuf(sc, bf);
5175 
5176 	if (ni != NULL) {
5177 		/*
5178 		 * Do any callback and reclaim the node reference.
5179 		 */
5180 		if (m0->m_flags & M_TXCB)
5181 			ieee80211_process_callback(ni, m0, status);
5182 		ieee80211_free_node(ni);
5183 	}
5184 	m_freem(m0);
5185 
5186 	/*
5187 	 * XXX the buffer used to be freed -after-, but the DMA map was
5188 	 * freed where ath_freebuf() now is. I've no idea what this
5189 	 * will do.
5190 	 */
5191 }
5192 
5193 void
5194 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5195 {
5196 #ifdef ATH_DEBUG
5197 	struct ath_hal *ah = sc->sc_ah;
5198 #endif
5199 	struct ath_buf *bf;
5200 	u_int ix;
5201 
5202 	/*
5203 	 * NB: this assumes output has been stopped and
5204 	 *     we do not need to block ath_tx_proc
5205 	 */
5206 	ATH_TXBUF_LOCK(sc);
5207 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
5208 	if (bf != NULL)
5209 		bf->bf_flags &= ~ATH_BUF_BUSY;
5210 	ATH_TXBUF_UNLOCK(sc);
5211 
5212 	for (ix = 0;; ix++) {
5213 		ATH_TXQ_LOCK(txq);
5214 		bf = TAILQ_FIRST(&txq->axq_q);
5215 		if (bf == NULL) {
5216 			txq->axq_link = NULL;
5217 			ATH_TXQ_UNLOCK(txq);
5218 			break;
5219 		}
5220 		ATH_TXQ_REMOVE(txq, bf, bf_list);
5221 		if (bf->bf_state.bfs_aggr)
5222 			txq->axq_aggr_depth--;
5223 #ifdef ATH_DEBUG
5224 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5225 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5226 
5227 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5228 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5229 				    &bf->bf_status.ds_txstat) == HAL_OK);
5230 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5231 			    bf->bf_m->m_len, 0, -1);
5232 		}
5233 #endif /* ATH_DEBUG */
5234 		/*
5235 		 * Since we're now doing magic in the completion
5236 		 * functions, we -must- call it for aggregation
5237 		 * destinations or BAW tracking will get upset.
5238 		 */
5239 		/*
5240 		 * Clear ATH_BUF_BUSY; the completion handler
5241 		 * will free the buffer.
5242 		 */
5243 		ATH_TXQ_UNLOCK(txq);
5244 		bf->bf_flags &= ~ATH_BUF_BUSY;
5245 		if (bf->bf_comp)
5246 			bf->bf_comp(sc, bf, 1);
5247 		else
5248 			ath_tx_default_comp(sc, bf, 1);
5249 	}
5250 
5251 	/*
5252 	 * Drain software queued frames which are on
5253 	 * active TIDs.
5254 	 */
5255 	ath_tx_txq_drain(sc, txq);
5256 }
5257 
5258 static void
5259 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5260 {
5261 	struct ath_hal *ah = sc->sc_ah;
5262 
5263 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5264 	    __func__, txq->axq_qnum,
5265 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5266 	    txq->axq_link);
5267 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5268 }
5269 
5270 static int
5271 ath_stoptxdma(struct ath_softc *sc)
5272 {
5273 	struct ath_hal *ah = sc->sc_ah;
5274 	int i;
5275 
5276 	/* XXX return value */
5277 	if (sc->sc_invalid)
5278 		return 0;
5279 
5280 	if (!sc->sc_invalid) {
5281 		/* don't touch the hardware if marked invalid */
5282 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5283 		    __func__, sc->sc_bhalq,
5284 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5285 		    NULL);
5286 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5287 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5288 			if (ATH_TXQ_SETUP(sc, i))
5289 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5290 	}
5291 
5292 	return 1;
5293 }
5294 
5295 /*
5296  * Drain the transmit queues and reclaim resources.
5297  */
5298 static void
5299 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5300 {
5301 #ifdef	ATH_DEBUG
5302 	struct ath_hal *ah = sc->sc_ah;
5303 #endif
5304 	struct ifnet *ifp = sc->sc_ifp;
5305 	int i;
5306 
5307 	(void) ath_stoptxdma(sc);
5308 
5309 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5310 		/*
5311 		 * XXX TODO: should we just handle the completed TX frames
5312 		 * here, whether or not the reset is a full one or not?
5313 		 */
5314 		if (ATH_TXQ_SETUP(sc, i)) {
5315 			if (reset_type == ATH_RESET_NOLOSS)
5316 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5317 			else
5318 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5319 		}
5320 	}
5321 #ifdef ATH_DEBUG
5322 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5323 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5324 		if (bf != NULL && bf->bf_m != NULL) {
5325 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5326 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5327 				    &bf->bf_status.ds_txstat) == HAL_OK);
5328 			ieee80211_dump_pkt(ifp->if_l2com,
5329 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5330 			    0, -1);
5331 		}
5332 	}
5333 #endif /* ATH_DEBUG */
5334 	IF_LOCK(&ifp->if_snd);
5335 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5336 	IF_UNLOCK(&ifp->if_snd);
5337 	sc->sc_wd_timer = 0;
5338 }
5339 
5340 /*
5341  * Disable the receive h/w in preparation for a reset.
5342  */
5343 static void
5344 ath_stoprecv(struct ath_softc *sc, int dodelay)
5345 {
5346 #define	PA2DESC(_sc, _pa) \
5347 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5348 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5349 	struct ath_hal *ah = sc->sc_ah;
5350 
5351 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5352 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5353 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5354 	if (dodelay)
5355 		DELAY(3000);		/* 3ms is long enough for 1 frame */
5356 #ifdef ATH_DEBUG
5357 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5358 		struct ath_buf *bf;
5359 		u_int ix;
5360 
5361 		device_printf(sc->sc_dev,
5362 		    "%s: rx queue %p, link %p\n",
5363 		    __func__,
5364 		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah),
5365 		    sc->sc_rxlink);
5366 		ix = 0;
5367 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5368 			struct ath_desc *ds = bf->bf_desc;
5369 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5370 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5371 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5372 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5373 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5374 			ix++;
5375 		}
5376 	}
5377 #endif
5378 	if (sc->sc_rxpending != NULL) {
5379 		m_freem(sc->sc_rxpending);
5380 		sc->sc_rxpending = NULL;
5381 	}
5382 	sc->sc_rxlink = NULL;		/* just in case */
5383 #undef PA2DESC
5384 }
5385 
5386 /*
5387  * Enable the receive h/w following a reset.
5388  */
5389 static int
5390 ath_startrecv(struct ath_softc *sc)
5391 {
5392 	struct ath_hal *ah = sc->sc_ah;
5393 	struct ath_buf *bf;
5394 
5395 	sc->sc_rxlink = NULL;
5396 	sc->sc_rxpending = NULL;
5397 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5398 		int error = ath_rxbuf_init(sc, bf);
5399 		if (error != 0) {
5400 			DPRINTF(sc, ATH_DEBUG_RECV,
5401 				"%s: ath_rxbuf_init failed %d\n",
5402 				__func__, error);
5403 			return error;
5404 		}
5405 	}
5406 
5407 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
5408 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5409 	ath_hal_rxena(ah);		/* enable recv descriptors */
5410 	ath_mode_init(sc);		/* set filters, etc. */
5411 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5412 	return 0;
5413 }
5414 
5415 /*
5416  * Update internal state after a channel change.
5417  */
5418 static void
5419 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5420 {
5421 	enum ieee80211_phymode mode;
5422 
5423 	/*
5424 	 * Change channels and update the h/w rate map
5425 	 * if we're switching; e.g. 11a to 11b/g.
5426 	 */
5427 	mode = ieee80211_chan2mode(chan);
5428 	if (mode != sc->sc_curmode)
5429 		ath_setcurmode(sc, mode);
5430 	sc->sc_curchan = chan;
5431 }
5432 
5433 /*
5434  * Set/change channels.  If the channel is really being changed,
5435  * it's done by resetting the chip.  To accomplish this we must
5436  * first cleanup any pending DMA, then restart stuff after a la
5437  * ath_init.
5438  */
5439 static int
5440 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5441 {
5442 	struct ifnet *ifp = sc->sc_ifp;
5443 	struct ieee80211com *ic = ifp->if_l2com;
5444 	struct ath_hal *ah = sc->sc_ah;
5445 	int ret = 0;
5446 
5447 	/* Treat this as an interface reset */
5448 	ATH_PCU_UNLOCK_ASSERT(sc);
5449 	ATH_UNLOCK_ASSERT(sc);
5450 
5451 	/* (Try to) stop TX/RX from occuring */
5452 	taskqueue_block(sc->sc_tq);
5453 
5454 	ATH_PCU_LOCK(sc);
5455 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
5456 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
5457 	if (ath_reset_grablock(sc, 1) == 0) {
5458 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5459 		    __func__);
5460 	}
5461 	ATH_PCU_UNLOCK(sc);
5462 
5463 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5464 	    __func__, ieee80211_chan2ieee(ic, chan),
5465 	    chan->ic_freq, chan->ic_flags);
5466 	if (chan != sc->sc_curchan) {
5467 		HAL_STATUS status;
5468 		/*
5469 		 * To switch channels clear any pending DMA operations;
5470 		 * wait long enough for the RX fifo to drain, reset the
5471 		 * hardware at the new frequency, and then re-enable
5472 		 * the relevant bits of the h/w.
5473 		 */
5474 #if 0
5475 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5476 #endif
5477 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5478 		/*
5479 		 * First, handle completed TX/RX frames.
5480 		 */
5481 		ath_rx_proc(sc, 0);
5482 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5483 		/*
5484 		 * Next, flush the non-scheduled frames.
5485 		 */
5486 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5487 
5488 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5489 			if_printf(ifp, "%s: unable to reset "
5490 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5491 			    __func__, ieee80211_chan2ieee(ic, chan),
5492 			    chan->ic_freq, chan->ic_flags, status);
5493 			ret = EIO;
5494 			goto finish;
5495 		}
5496 		sc->sc_diversity = ath_hal_getdiversity(ah);
5497 
5498 		/* Let DFS at it in case it's a DFS channel */
5499 		ath_dfs_radar_enable(sc, chan);
5500 
5501 		/*
5502 		 * Re-enable rx framework.
5503 		 */
5504 		if (ath_startrecv(sc) != 0) {
5505 			if_printf(ifp, "%s: unable to restart recv logic\n",
5506 			    __func__);
5507 			ret = EIO;
5508 			goto finish;
5509 		}
5510 
5511 		/*
5512 		 * Change channels and update the h/w rate map
5513 		 * if we're switching; e.g. 11a to 11b/g.
5514 		 */
5515 		ath_chan_change(sc, chan);
5516 
5517 		/*
5518 		 * Reset clears the beacon timers; reset them
5519 		 * here if needed.
5520 		 */
5521 		if (sc->sc_beacons) {		/* restart beacons */
5522 #ifdef IEEE80211_SUPPORT_TDMA
5523 			if (sc->sc_tdma)
5524 				ath_tdma_config(sc, NULL);
5525 			else
5526 #endif
5527 			ath_beacon_config(sc, NULL);
5528 		}
5529 
5530 		/*
5531 		 * Re-enable interrupts.
5532 		 */
5533 #if 0
5534 		ath_hal_intrset(ah, sc->sc_imask);
5535 #endif
5536 	}
5537 
5538 finish:
5539 	ATH_PCU_LOCK(sc);
5540 	sc->sc_inreset_cnt--;
5541 	/* XXX only do this if sc_inreset_cnt == 0? */
5542 	ath_hal_intrset(ah, sc->sc_imask);
5543 	ATH_PCU_UNLOCK(sc);
5544 
5545 	IF_LOCK(&ifp->if_snd);
5546 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5547 	IF_UNLOCK(&ifp->if_snd);
5548 	ath_txrx_start(sc);
5549 	/* XXX ath_start? */
5550 
5551 	return ret;
5552 }
5553 
5554 /*
5555  * Periodically recalibrate the PHY to account
5556  * for temperature/environment changes.
5557  */
5558 static void
5559 ath_calibrate(void *arg)
5560 {
5561 	struct ath_softc *sc = arg;
5562 	struct ath_hal *ah = sc->sc_ah;
5563 	struct ifnet *ifp = sc->sc_ifp;
5564 	struct ieee80211com *ic = ifp->if_l2com;
5565 	HAL_BOOL longCal, isCalDone;
5566 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5567 	int nextcal;
5568 
5569 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5570 		goto restart;
5571 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5572 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5573 	if (sc->sc_doresetcal)
5574 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5575 
5576 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5577 	if (aniCal) {
5578 		sc->sc_stats.ast_ani_cal++;
5579 		sc->sc_lastani = ticks;
5580 		ath_hal_ani_poll(ah, sc->sc_curchan);
5581 	}
5582 
5583 	if (longCal) {
5584 		sc->sc_stats.ast_per_cal++;
5585 		sc->sc_lastlongcal = ticks;
5586 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5587 			/*
5588 			 * Rfgain is out of bounds, reset the chip
5589 			 * to load new gain values.
5590 			 */
5591 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5592 				"%s: rfgain change\n", __func__);
5593 			sc->sc_stats.ast_per_rfgain++;
5594 			sc->sc_resetcal = 0;
5595 			sc->sc_doresetcal = AH_TRUE;
5596 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5597 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5598 			return;
5599 		}
5600 		/*
5601 		 * If this long cal is after an idle period, then
5602 		 * reset the data collection state so we start fresh.
5603 		 */
5604 		if (sc->sc_resetcal) {
5605 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5606 			sc->sc_lastcalreset = ticks;
5607 			sc->sc_lastshortcal = ticks;
5608 			sc->sc_resetcal = 0;
5609 			sc->sc_doresetcal = AH_TRUE;
5610 		}
5611 	}
5612 
5613 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5614 	if (shortCal || longCal) {
5615 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5616 			if (longCal) {
5617 				/*
5618 				 * Calibrate noise floor data again in case of change.
5619 				 */
5620 				ath_hal_process_noisefloor(ah);
5621 			}
5622 		} else {
5623 			DPRINTF(sc, ATH_DEBUG_ANY,
5624 				"%s: calibration of channel %u failed\n",
5625 				__func__, sc->sc_curchan->ic_freq);
5626 			sc->sc_stats.ast_per_calfail++;
5627 		}
5628 		if (shortCal)
5629 			sc->sc_lastshortcal = ticks;
5630 	}
5631 	if (!isCalDone) {
5632 restart:
5633 		/*
5634 		 * Use a shorter interval to potentially collect multiple
5635 		 * data samples required to complete calibration.  Once
5636 		 * we're told the work is done we drop back to a longer
5637 		 * interval between requests.  We're more aggressive doing
5638 		 * work when operating as an AP to improve operation right
5639 		 * after startup.
5640 		 */
5641 		sc->sc_lastshortcal = ticks;
5642 		nextcal = ath_shortcalinterval*hz/1000;
5643 		if (sc->sc_opmode != HAL_M_HOSTAP)
5644 			nextcal *= 10;
5645 		sc->sc_doresetcal = AH_TRUE;
5646 	} else {
5647 		/* nextcal should be the shortest time for next event */
5648 		nextcal = ath_longcalinterval*hz;
5649 		if (sc->sc_lastcalreset == 0)
5650 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5651 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5652 			sc->sc_resetcal = 1;	/* setup reset next trip */
5653 		sc->sc_doresetcal = AH_FALSE;
5654 	}
5655 	/* ANI calibration may occur more often than short/long/resetcal */
5656 	if (ath_anicalinterval > 0)
5657 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5658 
5659 	if (nextcal != 0) {
5660 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5661 		    __func__, nextcal, isCalDone ? "" : "!");
5662 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5663 	} else {
5664 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5665 		    __func__);
5666 		/* NB: don't rearm timer */
5667 	}
5668 }
5669 
5670 static void
5671 ath_scan_start(struct ieee80211com *ic)
5672 {
5673 	struct ifnet *ifp = ic->ic_ifp;
5674 	struct ath_softc *sc = ifp->if_softc;
5675 	struct ath_hal *ah = sc->sc_ah;
5676 	u_int32_t rfilt;
5677 
5678 	/* XXX calibration timer? */
5679 
5680 	ATH_LOCK(sc);
5681 	sc->sc_scanning = 1;
5682 	sc->sc_syncbeacon = 0;
5683 	rfilt = ath_calcrxfilter(sc);
5684 	ATH_UNLOCK(sc);
5685 
5686 	ATH_PCU_LOCK(sc);
5687 	ath_hal_setrxfilter(ah, rfilt);
5688 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5689 	ATH_PCU_UNLOCK(sc);
5690 
5691 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5692 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5693 }
5694 
5695 static void
5696 ath_scan_end(struct ieee80211com *ic)
5697 {
5698 	struct ifnet *ifp = ic->ic_ifp;
5699 	struct ath_softc *sc = ifp->if_softc;
5700 	struct ath_hal *ah = sc->sc_ah;
5701 	u_int32_t rfilt;
5702 
5703 	ATH_LOCK(sc);
5704 	sc->sc_scanning = 0;
5705 	rfilt = ath_calcrxfilter(sc);
5706 	ATH_UNLOCK(sc);
5707 
5708 	ATH_PCU_LOCK(sc);
5709 	ath_hal_setrxfilter(ah, rfilt);
5710 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5711 
5712 	ath_hal_process_noisefloor(ah);
5713 	ATH_PCU_UNLOCK(sc);
5714 
5715 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5716 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5717 		 sc->sc_curaid);
5718 }
5719 
5720 static void
5721 ath_set_channel(struct ieee80211com *ic)
5722 {
5723 	struct ifnet *ifp = ic->ic_ifp;
5724 	struct ath_softc *sc = ifp->if_softc;
5725 
5726 	(void) ath_chan_set(sc, ic->ic_curchan);
5727 	/*
5728 	 * If we are returning to our bss channel then mark state
5729 	 * so the next recv'd beacon's tsf will be used to sync the
5730 	 * beacon timers.  Note that since we only hear beacons in
5731 	 * sta/ibss mode this has no effect in other operating modes.
5732 	 */
5733 	ATH_LOCK(sc);
5734 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5735 		sc->sc_syncbeacon = 1;
5736 	ATH_UNLOCK(sc);
5737 }
5738 
5739 /*
5740  * Walk the vap list and check if there any vap's in RUN state.
5741  */
5742 static int
5743 ath_isanyrunningvaps(struct ieee80211vap *this)
5744 {
5745 	struct ieee80211com *ic = this->iv_ic;
5746 	struct ieee80211vap *vap;
5747 
5748 	IEEE80211_LOCK_ASSERT(ic);
5749 
5750 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5751 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5752 			return 1;
5753 	}
5754 	return 0;
5755 }
5756 
5757 static int
5758 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5759 {
5760 	struct ieee80211com *ic = vap->iv_ic;
5761 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5762 	struct ath_vap *avp = ATH_VAP(vap);
5763 	struct ath_hal *ah = sc->sc_ah;
5764 	struct ieee80211_node *ni = NULL;
5765 	int i, error, stamode;
5766 	u_int32_t rfilt;
5767 	int csa_run_transition = 0;
5768 	static const HAL_LED_STATE leds[] = {
5769 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5770 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5771 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5772 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5773 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5774 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5775 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5776 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5777 	};
5778 
5779 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5780 		ieee80211_state_name[vap->iv_state],
5781 		ieee80211_state_name[nstate]);
5782 
5783 	/*
5784 	 * net80211 _should_ have the comlock asserted at this point.
5785 	 * There are some comments around the calls to vap->iv_newstate
5786 	 * which indicate that it (newstate) may end up dropping the
5787 	 * lock.  This and the subsequent lock assert check after newstate
5788 	 * are an attempt to catch these and figure out how/why.
5789 	 */
5790 	IEEE80211_LOCK_ASSERT(ic);
5791 
5792 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5793 		csa_run_transition = 1;
5794 
5795 	callout_drain(&sc->sc_cal_ch);
5796 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5797 
5798 	if (nstate == IEEE80211_S_SCAN) {
5799 		/*
5800 		 * Scanning: turn off beacon miss and don't beacon.
5801 		 * Mark beacon state so when we reach RUN state we'll
5802 		 * [re]setup beacons.  Unblock the task q thread so
5803 		 * deferred interrupt processing is done.
5804 		 */
5805 		ath_hal_intrset(ah,
5806 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5807 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5808 		sc->sc_beacons = 0;
5809 		taskqueue_unblock(sc->sc_tq);
5810 	}
5811 
5812 	ni = ieee80211_ref_node(vap->iv_bss);
5813 	rfilt = ath_calcrxfilter(sc);
5814 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5815 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5816 		   vap->iv_opmode == IEEE80211_M_IBSS);
5817 	if (stamode && nstate == IEEE80211_S_RUN) {
5818 		sc->sc_curaid = ni->ni_associd;
5819 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5820 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5821 	}
5822 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5823 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5824 	ath_hal_setrxfilter(ah, rfilt);
5825 
5826 	/* XXX is this to restore keycache on resume? */
5827 	if (vap->iv_opmode != IEEE80211_M_STA &&
5828 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5829 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5830 			if (ath_hal_keyisvalid(ah, i))
5831 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5832 	}
5833 
5834 	/*
5835 	 * Invoke the parent method to do net80211 work.
5836 	 */
5837 	error = avp->av_newstate(vap, nstate, arg);
5838 	if (error != 0)
5839 		goto bad;
5840 
5841 	/*
5842 	 * See above: ensure av_newstate() doesn't drop the lock
5843 	 * on us.
5844 	 */
5845 	IEEE80211_LOCK_ASSERT(ic);
5846 
5847 	if (nstate == IEEE80211_S_RUN) {
5848 		/* NB: collect bss node again, it may have changed */
5849 		ieee80211_free_node(ni);
5850 		ni = ieee80211_ref_node(vap->iv_bss);
5851 
5852 		DPRINTF(sc, ATH_DEBUG_STATE,
5853 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5854 		    "capinfo 0x%04x chan %d\n", __func__,
5855 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5856 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5857 
5858 		switch (vap->iv_opmode) {
5859 #ifdef IEEE80211_SUPPORT_TDMA
5860 		case IEEE80211_M_AHDEMO:
5861 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5862 				break;
5863 			/* fall thru... */
5864 #endif
5865 		case IEEE80211_M_HOSTAP:
5866 		case IEEE80211_M_IBSS:
5867 		case IEEE80211_M_MBSS:
5868 			/*
5869 			 * Allocate and setup the beacon frame.
5870 			 *
5871 			 * Stop any previous beacon DMA.  This may be
5872 			 * necessary, for example, when an ibss merge
5873 			 * causes reconfiguration; there will be a state
5874 			 * transition from RUN->RUN that means we may
5875 			 * be called with beacon transmission active.
5876 			 */
5877 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5878 
5879 			error = ath_beacon_alloc(sc, ni);
5880 			if (error != 0)
5881 				goto bad;
5882 			/*
5883 			 * If joining an adhoc network defer beacon timer
5884 			 * configuration to the next beacon frame so we
5885 			 * have a current TSF to use.  Otherwise we're
5886 			 * starting an ibss/bss so there's no need to delay;
5887 			 * if this is the first vap moving to RUN state, then
5888 			 * beacon state needs to be [re]configured.
5889 			 */
5890 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5891 			    ni->ni_tstamp.tsf != 0) {
5892 				sc->sc_syncbeacon = 1;
5893 			} else if (!sc->sc_beacons) {
5894 #ifdef IEEE80211_SUPPORT_TDMA
5895 				if (vap->iv_caps & IEEE80211_C_TDMA)
5896 					ath_tdma_config(sc, vap);
5897 				else
5898 #endif
5899 					ath_beacon_config(sc, vap);
5900 				sc->sc_beacons = 1;
5901 			}
5902 			break;
5903 		case IEEE80211_M_STA:
5904 			/*
5905 			 * Defer beacon timer configuration to the next
5906 			 * beacon frame so we have a current TSF to use
5907 			 * (any TSF collected when scanning is likely old).
5908 			 * However if it's due to a CSA -> RUN transition,
5909 			 * force a beacon update so we pick up a lack of
5910 			 * beacons from an AP in CAC and thus force a
5911 			 * scan.
5912 			 */
5913 			sc->sc_syncbeacon = 1;
5914 			if (csa_run_transition)
5915 				ath_beacon_config(sc, vap);
5916 			break;
5917 		case IEEE80211_M_MONITOR:
5918 			/*
5919 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5920 			 * transitions so we must re-enable interrupts here to
5921 			 * handle the case of a single monitor mode vap.
5922 			 */
5923 			ath_hal_intrset(ah, sc->sc_imask);
5924 			break;
5925 		case IEEE80211_M_WDS:
5926 			break;
5927 		default:
5928 			break;
5929 		}
5930 		/*
5931 		 * Let the hal process statistics collected during a
5932 		 * scan so it can provide calibrated noise floor data.
5933 		 */
5934 		ath_hal_process_noisefloor(ah);
5935 		/*
5936 		 * Reset rssi stats; maybe not the best place...
5937 		 */
5938 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5939 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5940 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5941 		/*
5942 		 * Finally, start any timers and the task q thread
5943 		 * (in case we didn't go through SCAN state).
5944 		 */
5945 		if (ath_longcalinterval != 0) {
5946 			/* start periodic recalibration timer */
5947 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5948 		} else {
5949 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5950 			    "%s: calibration disabled\n", __func__);
5951 		}
5952 		taskqueue_unblock(sc->sc_tq);
5953 	} else if (nstate == IEEE80211_S_INIT) {
5954 		/*
5955 		 * If there are no vaps left in RUN state then
5956 		 * shutdown host/driver operation:
5957 		 * o disable interrupts
5958 		 * o disable the task queue thread
5959 		 * o mark beacon processing as stopped
5960 		 */
5961 		if (!ath_isanyrunningvaps(vap)) {
5962 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5963 			/* disable interrupts  */
5964 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5965 			taskqueue_block(sc->sc_tq);
5966 			sc->sc_beacons = 0;
5967 		}
5968 #ifdef IEEE80211_SUPPORT_TDMA
5969 		ath_hal_setcca(ah, AH_TRUE);
5970 #endif
5971 	}
5972 bad:
5973 	ieee80211_free_node(ni);
5974 	return error;
5975 }
5976 
5977 /*
5978  * Allocate a key cache slot to the station so we can
5979  * setup a mapping from key index to node. The key cache
5980  * slot is needed for managing antenna state and for
5981  * compression when stations do not use crypto.  We do
5982  * it uniliaterally here; if crypto is employed this slot
5983  * will be reassigned.
5984  */
5985 static void
5986 ath_setup_stationkey(struct ieee80211_node *ni)
5987 {
5988 	struct ieee80211vap *vap = ni->ni_vap;
5989 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5990 	ieee80211_keyix keyix, rxkeyix;
5991 
5992 	/* XXX should take a locked ref to vap->iv_bss */
5993 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5994 		/*
5995 		 * Key cache is full; we'll fall back to doing
5996 		 * the more expensive lookup in software.  Note
5997 		 * this also means no h/w compression.
5998 		 */
5999 		/* XXX msg+statistic */
6000 	} else {
6001 		/* XXX locking? */
6002 		ni->ni_ucastkey.wk_keyix = keyix;
6003 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6004 		/* NB: must mark device key to get called back on delete */
6005 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6006 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6007 		/* NB: this will create a pass-thru key entry */
6008 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6009 	}
6010 }
6011 
6012 /*
6013  * Setup driver-specific state for a newly associated node.
6014  * Note that we're called also on a re-associate, the isnew
6015  * param tells us if this is the first time or not.
6016  */
6017 static void
6018 ath_newassoc(struct ieee80211_node *ni, int isnew)
6019 {
6020 	struct ath_node *an = ATH_NODE(ni);
6021 	struct ieee80211vap *vap = ni->ni_vap;
6022 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6023 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6024 
6025 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6026 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6027 
6028 	ath_rate_newassoc(sc, an, isnew);
6029 	if (isnew &&
6030 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6031 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6032 		ath_setup_stationkey(ni);
6033 }
6034 
6035 static int
6036 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6037 	int nchans, struct ieee80211_channel chans[])
6038 {
6039 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6040 	struct ath_hal *ah = sc->sc_ah;
6041 	HAL_STATUS status;
6042 
6043 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6044 	    "%s: rd %u cc %u location %c%s\n",
6045 	    __func__, reg->regdomain, reg->country, reg->location,
6046 	    reg->ecm ? " ecm" : "");
6047 
6048 	status = ath_hal_set_channels(ah, chans, nchans,
6049 	    reg->country, reg->regdomain);
6050 	if (status != HAL_OK) {
6051 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6052 		    __func__, status);
6053 		return EINVAL;		/* XXX */
6054 	}
6055 
6056 	return 0;
6057 }
6058 
6059 static void
6060 ath_getradiocaps(struct ieee80211com *ic,
6061 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6062 {
6063 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6064 	struct ath_hal *ah = sc->sc_ah;
6065 
6066 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6067 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6068 
6069 	/* XXX check return */
6070 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6071 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6072 
6073 }
6074 
6075 static int
6076 ath_getchannels(struct ath_softc *sc)
6077 {
6078 	struct ifnet *ifp = sc->sc_ifp;
6079 	struct ieee80211com *ic = ifp->if_l2com;
6080 	struct ath_hal *ah = sc->sc_ah;
6081 	HAL_STATUS status;
6082 
6083 	/*
6084 	 * Collect channel set based on EEPROM contents.
6085 	 */
6086 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6087 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6088 	if (status != HAL_OK) {
6089 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6090 		    "status %d\n", __func__, status);
6091 		return EINVAL;
6092 	}
6093 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6094 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6095 	/* XXX map Atheros sku's to net80211 SKU's */
6096 	/* XXX net80211 types too small */
6097 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6098 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6099 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6100 	ic->ic_regdomain.isocc[1] = ' ';
6101 
6102 	ic->ic_regdomain.ecm = 1;
6103 	ic->ic_regdomain.location = 'I';
6104 
6105 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6106 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6107 	    __func__, sc->sc_eerd, sc->sc_eecc,
6108 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6109 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6110 	return 0;
6111 }
6112 
6113 static int
6114 ath_rate_setup(struct ath_softc *sc, u_int mode)
6115 {
6116 	struct ath_hal *ah = sc->sc_ah;
6117 	const HAL_RATE_TABLE *rt;
6118 
6119 	switch (mode) {
6120 	case IEEE80211_MODE_11A:
6121 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6122 		break;
6123 	case IEEE80211_MODE_HALF:
6124 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6125 		break;
6126 	case IEEE80211_MODE_QUARTER:
6127 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6128 		break;
6129 	case IEEE80211_MODE_11B:
6130 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6131 		break;
6132 	case IEEE80211_MODE_11G:
6133 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6134 		break;
6135 	case IEEE80211_MODE_TURBO_A:
6136 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6137 		break;
6138 	case IEEE80211_MODE_TURBO_G:
6139 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6140 		break;
6141 	case IEEE80211_MODE_STURBO_A:
6142 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6143 		break;
6144 	case IEEE80211_MODE_11NA:
6145 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6146 		break;
6147 	case IEEE80211_MODE_11NG:
6148 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6149 		break;
6150 	default:
6151 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6152 			__func__, mode);
6153 		return 0;
6154 	}
6155 	sc->sc_rates[mode] = rt;
6156 	return (rt != NULL);
6157 }
6158 
6159 static void
6160 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6161 {
6162 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6163 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6164 	static const struct {
6165 		u_int		rate;		/* tx/rx 802.11 rate */
6166 		u_int16_t	timeOn;		/* LED on time (ms) */
6167 		u_int16_t	timeOff;	/* LED off time (ms) */
6168 	} blinkrates[] = {
6169 		{ 108,  40,  10 },
6170 		{  96,  44,  11 },
6171 		{  72,  50,  13 },
6172 		{  48,  57,  14 },
6173 		{  36,  67,  16 },
6174 		{  24,  80,  20 },
6175 		{  22, 100,  25 },
6176 		{  18, 133,  34 },
6177 		{  12, 160,  40 },
6178 		{  10, 200,  50 },
6179 		{   6, 240,  58 },
6180 		{   4, 267,  66 },
6181 		{   2, 400, 100 },
6182 		{   0, 500, 130 },
6183 		/* XXX half/quarter rates */
6184 	};
6185 	const HAL_RATE_TABLE *rt;
6186 	int i, j;
6187 
6188 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6189 	rt = sc->sc_rates[mode];
6190 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6191 	for (i = 0; i < rt->rateCount; i++) {
6192 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6193 		if (rt->info[i].phy != IEEE80211_T_HT)
6194 			sc->sc_rixmap[ieeerate] = i;
6195 		else
6196 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6197 	}
6198 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6199 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6200 		if (i >= rt->rateCount) {
6201 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6202 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6203 			continue;
6204 		}
6205 		sc->sc_hwmap[i].ieeerate =
6206 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6207 		if (rt->info[i].phy == IEEE80211_T_HT)
6208 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6209 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6210 		if (rt->info[i].shortPreamble ||
6211 		    rt->info[i].phy == IEEE80211_T_OFDM)
6212 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6213 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6214 		for (j = 0; j < N(blinkrates)-1; j++)
6215 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6216 				break;
6217 		/* NB: this uses the last entry if the rate isn't found */
6218 		/* XXX beware of overlow */
6219 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6220 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6221 	}
6222 	sc->sc_currates = rt;
6223 	sc->sc_curmode = mode;
6224 	/*
6225 	 * All protection frames are transmited at 2Mb/s for
6226 	 * 11g, otherwise at 1Mb/s.
6227 	 */
6228 	if (mode == IEEE80211_MODE_11G)
6229 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6230 	else
6231 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6232 	/* NB: caller is responsible for resetting rate control state */
6233 #undef N
6234 }
6235 
6236 static void
6237 ath_watchdog(void *arg)
6238 {
6239 	struct ath_softc *sc = arg;
6240 	int do_reset = 0;
6241 
6242 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6243 		struct ifnet *ifp = sc->sc_ifp;
6244 		uint32_t hangs;
6245 
6246 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6247 		    hangs != 0) {
6248 			if_printf(ifp, "%s hang detected (0x%x)\n",
6249 			    hangs & 0xff ? "bb" : "mac", hangs);
6250 		} else
6251 			if_printf(ifp, "device timeout\n");
6252 		do_reset = 1;
6253 		ifp->if_oerrors++;
6254 		sc->sc_stats.ast_watchdog++;
6255 	}
6256 
6257 	/*
6258 	 * We can't hold the lock across the ath_reset() call.
6259 	 *
6260 	 * And since this routine can't hold a lock and sleep,
6261 	 * do the reset deferred.
6262 	 */
6263 	if (do_reset) {
6264 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6265 	}
6266 
6267 	callout_schedule(&sc->sc_wd_ch, hz);
6268 }
6269 
6270 #ifdef ATH_DIAGAPI
6271 /*
6272  * Diagnostic interface to the HAL.  This is used by various
6273  * tools to do things like retrieve register contents for
6274  * debugging.  The mechanism is intentionally opaque so that
6275  * it can change frequently w/o concern for compatiblity.
6276  */
6277 static int
6278 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6279 {
6280 	struct ath_hal *ah = sc->sc_ah;
6281 	u_int id = ad->ad_id & ATH_DIAG_ID;
6282 	void *indata = NULL;
6283 	void *outdata = NULL;
6284 	u_int32_t insize = ad->ad_in_size;
6285 	u_int32_t outsize = ad->ad_out_size;
6286 	int error = 0;
6287 
6288 	if (ad->ad_id & ATH_DIAG_IN) {
6289 		/*
6290 		 * Copy in data.
6291 		 */
6292 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6293 		if (indata == NULL) {
6294 			error = ENOMEM;
6295 			goto bad;
6296 		}
6297 		error = copyin(ad->ad_in_data, indata, insize);
6298 		if (error)
6299 			goto bad;
6300 	}
6301 	if (ad->ad_id & ATH_DIAG_DYN) {
6302 		/*
6303 		 * Allocate a buffer for the results (otherwise the HAL
6304 		 * returns a pointer to a buffer where we can read the
6305 		 * results).  Note that we depend on the HAL leaving this
6306 		 * pointer for us to use below in reclaiming the buffer;
6307 		 * may want to be more defensive.
6308 		 */
6309 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6310 		if (outdata == NULL) {
6311 			error = ENOMEM;
6312 			goto bad;
6313 		}
6314 	}
6315 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6316 		if (outsize < ad->ad_out_size)
6317 			ad->ad_out_size = outsize;
6318 		if (outdata != NULL)
6319 			error = copyout(outdata, ad->ad_out_data,
6320 					ad->ad_out_size);
6321 	} else {
6322 		error = EINVAL;
6323 	}
6324 bad:
6325 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6326 		free(indata, M_TEMP);
6327 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6328 		free(outdata, M_TEMP);
6329 	return error;
6330 }
6331 #endif /* ATH_DIAGAPI */
6332 
6333 static int
6334 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6335 {
6336 #define	IS_RUNNING(ifp) \
6337 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6338 	struct ath_softc *sc = ifp->if_softc;
6339 	struct ieee80211com *ic = ifp->if_l2com;
6340 	struct ifreq *ifr = (struct ifreq *)data;
6341 	const HAL_RATE_TABLE *rt;
6342 	int error = 0;
6343 
6344 	switch (cmd) {
6345 	case SIOCSIFFLAGS:
6346 		ATH_LOCK(sc);
6347 		if (IS_RUNNING(ifp)) {
6348 			/*
6349 			 * To avoid rescanning another access point,
6350 			 * do not call ath_init() here.  Instead,
6351 			 * only reflect promisc mode settings.
6352 			 */
6353 			ath_mode_init(sc);
6354 		} else if (ifp->if_flags & IFF_UP) {
6355 			/*
6356 			 * Beware of being called during attach/detach
6357 			 * to reset promiscuous mode.  In that case we
6358 			 * will still be marked UP but not RUNNING.
6359 			 * However trying to re-init the interface
6360 			 * is the wrong thing to do as we've already
6361 			 * torn down much of our state.  There's
6362 			 * probably a better way to deal with this.
6363 			 */
6364 			if (!sc->sc_invalid)
6365 				ath_init(sc);	/* XXX lose error */
6366 		} else {
6367 			ath_stop_locked(ifp);
6368 #ifdef notyet
6369 			/* XXX must wakeup in places like ath_vap_delete */
6370 			if (!sc->sc_invalid)
6371 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6372 #endif
6373 		}
6374 		ATH_UNLOCK(sc);
6375 		break;
6376 	case SIOCGIFMEDIA:
6377 	case SIOCSIFMEDIA:
6378 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6379 		break;
6380 	case SIOCGATHSTATS:
6381 		/* NB: embed these numbers to get a consistent view */
6382 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6383 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6384 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6385 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6386 #ifdef IEEE80211_SUPPORT_TDMA
6387 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6388 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6389 #endif
6390 		rt = sc->sc_currates;
6391 		sc->sc_stats.ast_tx_rate =
6392 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6393 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6394 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6395 		return copyout(&sc->sc_stats,
6396 		    ifr->ifr_data, sizeof (sc->sc_stats));
6397 	case SIOCZATHSTATS:
6398 		error = priv_check(curthread, PRIV_DRIVER);
6399 		if (error == 0)
6400 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6401 		break;
6402 #ifdef ATH_DIAGAPI
6403 	case SIOCGATHDIAG:
6404 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6405 		break;
6406 	case SIOCGATHPHYERR:
6407 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6408 		break;
6409 #endif
6410 	case SIOCGIFADDR:
6411 		error = ether_ioctl(ifp, cmd, data);
6412 		break;
6413 	default:
6414 		error = EINVAL;
6415 		break;
6416 	}
6417 	return error;
6418 #undef IS_RUNNING
6419 }
6420 
6421 /*
6422  * Announce various information on device/driver attach.
6423  */
6424 static void
6425 ath_announce(struct ath_softc *sc)
6426 {
6427 	struct ifnet *ifp = sc->sc_ifp;
6428 	struct ath_hal *ah = sc->sc_ah;
6429 
6430 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6431 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6432 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6433 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6434 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6435 	if (bootverbose) {
6436 		int i;
6437 		for (i = 0; i <= WME_AC_VO; i++) {
6438 			struct ath_txq *txq = sc->sc_ac2q[i];
6439 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6440 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6441 		}
6442 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6443 			sc->sc_cabq->axq_qnum);
6444 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6445 	}
6446 	if (ath_rxbuf != ATH_RXBUF)
6447 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6448 	if (ath_txbuf != ATH_TXBUF)
6449 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6450 	if (sc->sc_mcastkey && bootverbose)
6451 		if_printf(ifp, "using multicast key search\n");
6452 }
6453 
6454 #ifdef IEEE80211_SUPPORT_TDMA
6455 static void
6456 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6457 {
6458 	struct ath_hal *ah = sc->sc_ah;
6459 	HAL_BEACON_TIMERS bt;
6460 
6461 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6462 	bt.bt_nexttbtt = nexttbtt;
6463 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6464 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6465 	bt.bt_nextatim = nexttbtt+1;
6466 	/* Enables TBTT, DBA, SWBA timers by default */
6467 	bt.bt_flags = 0;
6468 	ath_hal_beaconsettimers(ah, &bt);
6469 }
6470 
6471 /*
6472  * Calculate the beacon interval.  This is periodic in the
6473  * superframe for the bss.  We assume each station is configured
6474  * identically wrt transmit rate so the guard time we calculate
6475  * above will be the same on all stations.  Note we need to
6476  * factor in the xmit time because the hardware will schedule
6477  * a frame for transmit if the start of the frame is within
6478  * the burst time.  When we get hardware that properly kills
6479  * frames in the PCU we can reduce/eliminate the guard time.
6480  *
6481  * Roundup to 1024 is so we have 1 TU buffer in the guard time
6482  * to deal with the granularity of the nexttbtt timer.  11n MAC's
6483  * with 1us timer granularity should allow us to reduce/eliminate
6484  * this.
6485  */
6486 static void
6487 ath_tdma_bintvalsetup(struct ath_softc *sc,
6488 	const struct ieee80211_tdma_state *tdma)
6489 {
6490 	/* copy from vap state (XXX check all vaps have same value?) */
6491 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
6492 
6493 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
6494 		tdma->tdma_slotcnt, 1024);
6495 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
6496 	if (sc->sc_tdmabintval & 1)
6497 		sc->sc_tdmabintval++;
6498 
6499 	if (tdma->tdma_slot == 0) {
6500 		/*
6501 		 * Only slot 0 beacons; other slots respond.
6502 		 */
6503 		sc->sc_imask |= HAL_INT_SWBA;
6504 		sc->sc_tdmaswba = 0;		/* beacon immediately */
6505 	} else {
6506 		/* XXX all vaps must be slot 0 or slot !0 */
6507 		sc->sc_imask &= ~HAL_INT_SWBA;
6508 	}
6509 }
6510 
6511 /*
6512  * Max 802.11 overhead.  This assumes no 4-address frames and
6513  * the encapsulation done by ieee80211_encap (llc).  We also
6514  * include potential crypto overhead.
6515  */
6516 #define	IEEE80211_MAXOVERHEAD \
6517 	(sizeof(struct ieee80211_qosframe) \
6518 	 + sizeof(struct llc) \
6519 	 + IEEE80211_ADDR_LEN \
6520 	 + IEEE80211_WEP_IVLEN \
6521 	 + IEEE80211_WEP_KIDLEN \
6522 	 + IEEE80211_WEP_CRCLEN \
6523 	 + IEEE80211_WEP_MICLEN \
6524 	 + IEEE80211_CRC_LEN)
6525 
6526 /*
6527  * Setup initially for tdma operation.  Start the beacon
6528  * timers and enable SWBA if we are slot 0.  Otherwise
6529  * we wait for slot 0 to arrive so we can sync up before
6530  * starting to transmit.
6531  */
6532 static void
6533 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
6534 {
6535 	struct ath_hal *ah = sc->sc_ah;
6536 	struct ifnet *ifp = sc->sc_ifp;
6537 	struct ieee80211com *ic = ifp->if_l2com;
6538 	const struct ieee80211_txparam *tp;
6539 	const struct ieee80211_tdma_state *tdma = NULL;
6540 	int rix;
6541 
6542 	if (vap == NULL) {
6543 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
6544 		if (vap == NULL) {
6545 			if_printf(ifp, "%s: no vaps?\n", __func__);
6546 			return;
6547 		}
6548 	}
6549 	/* XXX should take a locked ref to iv_bss */
6550 	tp = vap->iv_bss->ni_txparms;
6551 	/*
6552 	 * Calculate the guard time for each slot.  This is the
6553 	 * time to send a maximal-size frame according to the
6554 	 * fixed/lowest transmit rate.  Note that the interface
6555 	 * mtu does not include the 802.11 overhead so we must
6556 	 * tack that on (ath_hal_computetxtime includes the
6557 	 * preamble and plcp in it's calculation).
6558 	 */
6559 	tdma = vap->iv_tdma;
6560 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
6561 		rix = ath_tx_findrix(sc, tp->ucastrate);
6562 	else
6563 		rix = ath_tx_findrix(sc, tp->mcastrate);
6564 	/* XXX short preamble assumed */
6565 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
6566 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
6567 
6568 	ath_hal_intrset(ah, 0);
6569 
6570 	ath_beaconq_config(sc);			/* setup h/w beacon q */
6571 	if (sc->sc_setcca)
6572 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
6573 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
6574 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
6575 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
6576 	sc->sc_syncbeacon = 0;
6577 
6578 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
6579 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
6580 
6581 	ath_hal_intrset(ah, sc->sc_imask);
6582 
6583 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
6584 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
6585 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
6586 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
6587 	    sc->sc_tdmadbaprep);
6588 }
6589 
6590 /*
6591  * Update tdma operation.  Called from the 802.11 layer
6592  * when a beacon is received from the TDMA station operating
6593  * in the slot immediately preceding us in the bss.  Use
6594  * the rx timestamp for the beacon frame to update our
6595  * beacon timers so we follow their schedule.  Note that
6596  * by using the rx timestamp we implicitly include the
6597  * propagation delay in our schedule.
6598  */
6599 static void
6600 ath_tdma_update(struct ieee80211_node *ni,
6601 	const struct ieee80211_tdma_param *tdma, int changed)
6602 {
6603 #define	TSF_TO_TU(_h,_l) \
6604 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
6605 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
6606 	struct ieee80211vap *vap = ni->ni_vap;
6607 	struct ieee80211com *ic = ni->ni_ic;
6608 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6609 	struct ath_hal *ah = sc->sc_ah;
6610 	const HAL_RATE_TABLE *rt = sc->sc_currates;
6611 	u_int64_t tsf, rstamp, nextslot, nexttbtt;
6612 	u_int32_t txtime, nextslottu;
6613 	int32_t tudelta, tsfdelta;
6614 	const struct ath_rx_status *rs;
6615 	int rix;
6616 
6617 	sc->sc_stats.ast_tdma_update++;
6618 
6619 	/*
6620 	 * Check for and adopt configuration changes.
6621 	 */
6622 	if (changed != 0) {
6623 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
6624 
6625 		ath_tdma_bintvalsetup(sc, ts);
6626 		if (changed & TDMA_UPDATE_SLOTLEN)
6627 			ath_wme_update(ic);
6628 
6629 		DPRINTF(sc, ATH_DEBUG_TDMA,
6630 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
6631 		    "bintval %u TU\n", __func__,
6632 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
6633 		    sc->sc_tdmabintval);
6634 
6635 		/* XXX right? */
6636 		ath_hal_intrset(ah, sc->sc_imask);
6637 		/* NB: beacon timers programmed below */
6638 	}
6639 
6640 	/* extend rx timestamp to 64 bits */
6641 	rs = sc->sc_lastrs;
6642 	tsf = ath_hal_gettsf64(ah);
6643 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
6644 	/*
6645 	 * The rx timestamp is set by the hardware on completing
6646 	 * reception (at the point where the rx descriptor is DMA'd
6647 	 * to the host).  To find the start of our next slot we
6648 	 * must adjust this time by the time required to send
6649 	 * the packet just received.
6650 	 */
6651 	rix = rt->rateCodeToIndex[rs->rs_rate];
6652 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
6653 	    rt->info[rix].shortPreamble);
6654 	/* NB: << 9 is to cvt to TU and /2 */
6655 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
6656 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
6657 
6658 	/*
6659 	 * Retrieve the hardware NextTBTT in usecs
6660 	 * and calculate the difference between what the
6661 	 * other station thinks and what we have programmed.  This
6662 	 * lets us figure how to adjust our timers to match.  The
6663 	 * adjustments are done by pulling the TSF forward and possibly
6664 	 * rewriting the beacon timers.
6665 	 */
6666 	nexttbtt = ath_hal_getnexttbtt(ah);
6667 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
6668 
6669 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6670 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
6671 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
6672 
6673 	if (tsfdelta < 0) {
6674 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6675 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
6676 		tsfdelta = -tsfdelta % 1024;
6677 		nextslottu++;
6678 	} else if (tsfdelta > 0) {
6679 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
6680 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6681 		tsfdelta = 1024 - (tsfdelta % 1024);
6682 		nextslottu++;
6683 	} else {
6684 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
6685 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
6686 	}
6687 	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
6688 
6689 	/*
6690 	 * Copy sender's timetstamp into tdma ie so they can
6691 	 * calculate roundtrip time.  We submit a beacon frame
6692 	 * below after any timer adjustment.  The frame goes out
6693 	 * at the next TBTT so the sender can calculate the
6694 	 * roundtrip by inspecting the tdma ie in our beacon frame.
6695 	 *
6696 	 * NB: This tstamp is subtlely preserved when
6697 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
6698 	 *     slot position changes) because ieee80211_add_tdma
6699 	 *     skips over the data.
6700 	 */
6701 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
6702 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
6703 		&ni->ni_tstamp.data, 8);
6704 #if 0
6705 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
6706 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
6707 	    (unsigned long long) tsf, (unsigned long long) nextslot,
6708 	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
6709 #endif
6710 	/*
6711 	 * Adjust the beacon timers only when pulling them forward
6712 	 * or when going back by less than the beacon interval.
6713 	 * Negative jumps larger than the beacon interval seem to
6714 	 * cause the timers to stop and generally cause instability.
6715 	 * This basically filters out jumps due to missed beacons.
6716 	 */
6717 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
6718 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
6719 		sc->sc_stats.ast_tdma_timers++;
6720 	}
6721 	if (tsfdelta > 0) {
6722 		ath_hal_adjusttsf(ah, tsfdelta);
6723 		sc->sc_stats.ast_tdma_tsf++;
6724 	}
6725 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
6726 #undef TU_TO_TSF
6727 #undef TSF_TO_TU
6728 }
6729 
6730 /*
6731  * Transmit a beacon frame at SWBA.  Dynamic updates
6732  * to the frame contents are done as needed.
6733  */
6734 static void
6735 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
6736 {
6737 	struct ath_hal *ah = sc->sc_ah;
6738 	struct ath_buf *bf;
6739 	int otherant;
6740 
6741 	/*
6742 	 * Check if the previous beacon has gone out.  If
6743 	 * not don't try to post another, skip this period
6744 	 * and wait for the next.  Missed beacons indicate
6745 	 * a problem and should not occur.  If we miss too
6746 	 * many consecutive beacons reset the device.
6747 	 */
6748 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
6749 		sc->sc_bmisscount++;
6750 		DPRINTF(sc, ATH_DEBUG_BEACON,
6751 			"%s: missed %u consecutive beacons\n",
6752 			__func__, sc->sc_bmisscount);
6753 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
6754 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
6755 		return;
6756 	}
6757 	if (sc->sc_bmisscount != 0) {
6758 		DPRINTF(sc, ATH_DEBUG_BEACON,
6759 			"%s: resume beacon xmit after %u misses\n",
6760 			__func__, sc->sc_bmisscount);
6761 		sc->sc_bmisscount = 0;
6762 	}
6763 
6764 	/*
6765 	 * Check recent per-antenna transmit statistics and flip
6766 	 * the default antenna if noticeably more frames went out
6767 	 * on the non-default antenna.
6768 	 * XXX assumes 2 anntenae
6769 	 */
6770 	if (!sc->sc_diversity) {
6771 		otherant = sc->sc_defant & 1 ? 2 : 1;
6772 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
6773 			ath_setdefantenna(sc, otherant);
6774 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
6775 	}
6776 
6777 	bf = ath_beacon_generate(sc, vap);
6778 	if (bf != NULL) {
6779 		/*
6780 		 * Stop any current dma and put the new frame on the queue.
6781 		 * This should never fail since we check above that no frames
6782 		 * are still pending on the queue.
6783 		 */
6784 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
6785 			DPRINTF(sc, ATH_DEBUG_ANY,
6786 				"%s: beacon queue %u did not stop?\n",
6787 				__func__, sc->sc_bhalq);
6788 			/* NB: the HAL still stops DMA, so proceed */
6789 		}
6790 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
6791 		ath_hal_txstart(ah, sc->sc_bhalq);
6792 
6793 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
6794 
6795 		/*
6796 		 * Record local TSF for our last send for use
6797 		 * in arbitrating slot collisions.
6798 		 */
6799 		/* XXX should take a locked ref to iv_bss */
6800 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
6801 	}
6802 }
6803 #endif /* IEEE80211_SUPPORT_TDMA */
6804 
6805 static void
6806 ath_dfs_tasklet(void *p, int npending)
6807 {
6808 	struct ath_softc *sc = (struct ath_softc *) p;
6809 	struct ifnet *ifp = sc->sc_ifp;
6810 	struct ieee80211com *ic = ifp->if_l2com;
6811 
6812 	/*
6813 	 * If previous processing has found a radar event,
6814 	 * signal this to the net80211 layer to begin DFS
6815 	 * processing.
6816 	 */
6817 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6818 		/* DFS event found, initiate channel change */
6819 		/*
6820 		 * XXX doesn't currently tell us whether the event
6821 		 * XXX was found in the primary or extension
6822 		 * XXX channel!
6823 		 */
6824 		IEEE80211_LOCK(ic);
6825 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6826 		IEEE80211_UNLOCK(ic);
6827 	}
6828 }
6829 
6830 MODULE_VERSION(if_ath, 1);
6831 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6832 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6833 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6834 #endif
6835