1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 #ifdef ATH_DEBUG_ALQ 121 #include <dev/ath/if_ath_alq.h> 122 #endif 123 124 /* 125 * Only enable this if you're working on PS-POLL support. 126 */ 127 #undef ATH_SW_PSQ 128 129 /* 130 * ATH_BCBUF determines the number of vap's that can transmit 131 * beacons and also (currently) the number of vap's that can 132 * have unique mac addresses/bssid. When staggering beacons 133 * 4 is probably a good max as otherwise the beacons become 134 * very closely spaced and there is limited time for cab q traffic 135 * to go out. You can burst beacons instead but that is not good 136 * for stations in power save and at some point you really want 137 * another radio (and channel). 138 * 139 * The limit on the number of mac addresses is tied to our use of 140 * the U/L bit and tracking addresses in a byte; it would be 141 * worthwhile to allow more for applications like proxy sta. 142 */ 143 CTASSERT(ATH_BCBUF <= 8); 144 145 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 146 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 147 const uint8_t [IEEE80211_ADDR_LEN], 148 const uint8_t [IEEE80211_ADDR_LEN]); 149 static void ath_vap_delete(struct ieee80211vap *); 150 static void ath_init(void *); 151 static void ath_stop_locked(struct ifnet *); 152 static void ath_stop(struct ifnet *); 153 static int ath_reset_vap(struct ieee80211vap *, u_long); 154 static void ath_start_queue(struct ifnet *ifp); 155 static int ath_media_change(struct ifnet *); 156 static void ath_watchdog(void *); 157 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 158 static void ath_fatal_proc(void *, int); 159 static void ath_bmiss_vap(struct ieee80211vap *); 160 static void ath_bmiss_proc(void *, int); 161 static void ath_key_update_begin(struct ieee80211vap *); 162 static void ath_key_update_end(struct ieee80211vap *); 163 static void ath_update_mcast(struct ifnet *); 164 static void ath_update_promisc(struct ifnet *); 165 static void ath_updateslot(struct ifnet *); 166 static void ath_bstuck_proc(void *, int); 167 static void ath_reset_proc(void *, int); 168 static int ath_desc_alloc(struct ath_softc *); 169 static void ath_desc_free(struct ath_softc *); 170 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 171 const uint8_t [IEEE80211_ADDR_LEN]); 172 static void ath_node_cleanup(struct ieee80211_node *); 173 static void ath_node_free(struct ieee80211_node *); 174 static void ath_node_getsignal(const struct ieee80211_node *, 175 int8_t *, int8_t *); 176 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 177 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 178 static int ath_tx_setup(struct ath_softc *, int, int); 179 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 180 static void ath_tx_cleanup(struct ath_softc *); 181 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 182 int dosched); 183 static void ath_tx_proc_q0(void *, int); 184 static void ath_tx_proc_q0123(void *, int); 185 static void ath_tx_proc(void *, int); 186 static void ath_txq_sched_tasklet(void *, int); 187 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 188 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_scan_start(struct ieee80211com *); 190 static void ath_scan_end(struct ieee80211com *); 191 static void ath_set_channel(struct ieee80211com *); 192 #ifdef ATH_ENABLE_11N 193 static void ath_update_chw(struct ieee80211com *); 194 #endif /* ATH_ENABLE_11N */ 195 static void ath_calibrate(void *); 196 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 197 static void ath_setup_stationkey(struct ieee80211_node *); 198 static void ath_newassoc(struct ieee80211_node *, int); 199 static int ath_setregdomain(struct ieee80211com *, 200 struct ieee80211_regdomain *, int, 201 struct ieee80211_channel []); 202 static void ath_getradiocaps(struct ieee80211com *, int, int *, 203 struct ieee80211_channel []); 204 static int ath_getchannels(struct ath_softc *); 205 206 static int ath_rate_setup(struct ath_softc *, u_int mode); 207 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 208 209 static void ath_announce(struct ath_softc *); 210 211 static void ath_dfs_tasklet(void *, int); 212 static void ath_node_powersave(struct ieee80211_node *, int); 213 static int ath_node_set_tim(struct ieee80211_node *, int); 214 215 #ifdef IEEE80211_SUPPORT_TDMA 216 #include <dev/ath/if_ath_tdma.h> 217 #endif 218 219 SYSCTL_DECL(_hw_ath); 220 221 /* XXX validate sysctl values */ 222 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 223 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 224 0, "long chip calibration interval (secs)"); 225 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 226 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 227 0, "short chip calibration interval (msecs)"); 228 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 230 0, "reset chip calibration results (secs)"); 231 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 233 0, "ANI calibration (msecs)"); 234 235 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 237 0, "rx buffers allocated"); 238 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 239 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 241 0, "tx buffers allocated"); 242 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 243 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 244 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 245 0, "tx (mgmt) buffers allocated"); 246 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 247 248 int ath_bstuck_threshold = 4; /* max missed beacons */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 250 0, "max missed beacon xmits before chip reset"); 251 252 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 253 254 void 255 ath_legacy_attach_comp_func(struct ath_softc *sc) 256 { 257 258 /* 259 * Special case certain configurations. Note the 260 * CAB queue is handled by these specially so don't 261 * include them when checking the txq setup mask. 262 */ 263 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 264 case 0x01: 265 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 266 break; 267 case 0x0f: 268 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 269 break; 270 default: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 272 break; 273 } 274 } 275 276 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 277 #define HAL_MODE_HT40 \ 278 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 279 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 280 int 281 ath_attach(u_int16_t devid, struct ath_softc *sc) 282 { 283 struct ifnet *ifp; 284 struct ieee80211com *ic; 285 struct ath_hal *ah = NULL; 286 HAL_STATUS status; 287 int error = 0, i; 288 u_int wmodes; 289 uint8_t macaddr[IEEE80211_ADDR_LEN]; 290 int rx_chainmask, tx_chainmask; 291 292 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 293 294 CURVNET_SET(vnet0); 295 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 296 if (ifp == NULL) { 297 device_printf(sc->sc_dev, "can not if_alloc()\n"); 298 error = ENOSPC; 299 CURVNET_RESTORE(); 300 goto bad; 301 } 302 ic = ifp->if_l2com; 303 304 /* set these up early for if_printf use */ 305 if_initname(ifp, device_get_name(sc->sc_dev), 306 device_get_unit(sc->sc_dev)); 307 CURVNET_RESTORE(); 308 309 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 310 sc->sc_eepromdata, &status); 311 if (ah == NULL) { 312 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 313 status); 314 error = ENXIO; 315 goto bad; 316 } 317 sc->sc_ah = ah; 318 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 319 #ifdef ATH_DEBUG 320 sc->sc_debug = ath_debug; 321 #endif 322 323 /* 324 * Setup the DMA/EDMA functions based on the current 325 * hardware support. 326 * 327 * This is required before the descriptors are allocated. 328 */ 329 if (ath_hal_hasedma(sc->sc_ah)) { 330 sc->sc_isedma = 1; 331 ath_recv_setup_edma(sc); 332 ath_xmit_setup_edma(sc); 333 } else { 334 ath_recv_setup_legacy(sc); 335 ath_xmit_setup_legacy(sc); 336 } 337 338 /* 339 * Check if the MAC has multi-rate retry support. 340 * We do this by trying to setup a fake extended 341 * descriptor. MAC's that don't have support will 342 * return false w/o doing anything. MAC's that do 343 * support it will return true w/o doing anything. 344 */ 345 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 346 347 /* 348 * Check if the device has hardware counters for PHY 349 * errors. If so we need to enable the MIB interrupt 350 * so we can act on stat triggers. 351 */ 352 if (ath_hal_hwphycounters(ah)) 353 sc->sc_needmib = 1; 354 355 /* 356 * Get the hardware key cache size. 357 */ 358 sc->sc_keymax = ath_hal_keycachesize(ah); 359 if (sc->sc_keymax > ATH_KEYMAX) { 360 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 361 ATH_KEYMAX, sc->sc_keymax); 362 sc->sc_keymax = ATH_KEYMAX; 363 } 364 /* 365 * Reset the key cache since some parts do not 366 * reset the contents on initial power up. 367 */ 368 for (i = 0; i < sc->sc_keymax; i++) 369 ath_hal_keyreset(ah, i); 370 371 /* 372 * Collect the default channel list. 373 */ 374 error = ath_getchannels(sc); 375 if (error != 0) 376 goto bad; 377 378 /* 379 * Setup rate tables for all potential media types. 380 */ 381 ath_rate_setup(sc, IEEE80211_MODE_11A); 382 ath_rate_setup(sc, IEEE80211_MODE_11B); 383 ath_rate_setup(sc, IEEE80211_MODE_11G); 384 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 386 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 387 ath_rate_setup(sc, IEEE80211_MODE_11NA); 388 ath_rate_setup(sc, IEEE80211_MODE_11NG); 389 ath_rate_setup(sc, IEEE80211_MODE_HALF); 390 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 391 392 /* NB: setup here so ath_rate_update is happy */ 393 ath_setcurmode(sc, IEEE80211_MODE_11A); 394 395 /* 396 * Allocate TX descriptors and populate the lists. 397 */ 398 error = ath_desc_alloc(sc); 399 if (error != 0) { 400 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 401 error); 402 goto bad; 403 } 404 error = ath_txdma_setup(sc); 405 if (error != 0) { 406 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 407 error); 408 goto bad; 409 } 410 411 /* 412 * Allocate RX descriptors and populate the lists. 413 */ 414 error = ath_rxdma_setup(sc); 415 if (error != 0) { 416 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 417 error); 418 goto bad; 419 } 420 421 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 422 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 423 424 ATH_TXBUF_LOCK_INIT(sc); 425 426 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 427 taskqueue_thread_enqueue, &sc->sc_tq); 428 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 429 "%s taskq", ifp->if_xname); 430 431 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 432 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 433 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 434 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 435 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 436 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 437 438 /* 439 * Allocate hardware transmit queues: one queue for 440 * beacon frames and one data queue for each QoS 441 * priority. Note that the hal handles resetting 442 * these queues at the needed time. 443 * 444 * XXX PS-Poll 445 */ 446 sc->sc_bhalq = ath_beaconq_setup(sc); 447 if (sc->sc_bhalq == (u_int) -1) { 448 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 449 error = EIO; 450 goto bad2; 451 } 452 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 453 if (sc->sc_cabq == NULL) { 454 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 455 error = EIO; 456 goto bad2; 457 } 458 /* NB: insure BK queue is the lowest priority h/w queue */ 459 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 460 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 461 ieee80211_wme_acnames[WME_AC_BK]); 462 error = EIO; 463 goto bad2; 464 } 465 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 466 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 467 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 468 /* 469 * Not enough hardware tx queues to properly do WME; 470 * just punt and assign them all to the same h/w queue. 471 * We could do a better job of this if, for example, 472 * we allocate queues when we switch from station to 473 * AP mode. 474 */ 475 if (sc->sc_ac2q[WME_AC_VI] != NULL) 476 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 477 if (sc->sc_ac2q[WME_AC_BE] != NULL) 478 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 479 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 480 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 481 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 482 } 483 484 /* 485 * Attach the TX completion function. 486 * 487 * The non-EDMA chips may have some special case optimisations; 488 * this method gives everyone a chance to attach cleanly. 489 */ 490 sc->sc_tx.xmit_attach_comp_func(sc); 491 492 /* 493 * Setup rate control. Some rate control modules 494 * call back to change the anntena state so expose 495 * the necessary entry points. 496 * XXX maybe belongs in struct ath_ratectrl? 497 */ 498 sc->sc_setdefantenna = ath_setdefantenna; 499 sc->sc_rc = ath_rate_attach(sc); 500 if (sc->sc_rc == NULL) { 501 error = EIO; 502 goto bad2; 503 } 504 505 /* Attach DFS module */ 506 if (! ath_dfs_attach(sc)) { 507 device_printf(sc->sc_dev, 508 "%s: unable to attach DFS\n", __func__); 509 error = EIO; 510 goto bad2; 511 } 512 513 /* Start DFS processing tasklet */ 514 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 515 516 /* Configure LED state */ 517 sc->sc_blinking = 0; 518 sc->sc_ledstate = 1; 519 sc->sc_ledon = 0; /* low true */ 520 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 521 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 522 523 /* 524 * Don't setup hardware-based blinking. 525 * 526 * Although some NICs may have this configured in the 527 * default reset register values, the user may wish 528 * to alter which pins have which function. 529 * 530 * The reference driver attaches the MAC network LED to GPIO1 and 531 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 532 * NIC has these reversed. 533 */ 534 sc->sc_hardled = (1 == 0); 535 sc->sc_led_net_pin = -1; 536 sc->sc_led_pwr_pin = -1; 537 /* 538 * Auto-enable soft led processing for IBM cards and for 539 * 5211 minipci cards. Users can also manually enable/disable 540 * support with a sysctl. 541 */ 542 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 543 ath_led_config(sc); 544 ath_hal_setledstate(ah, HAL_LED_INIT); 545 546 ifp->if_softc = sc; 547 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 548 ifp->if_start = ath_start_queue; 549 ifp->if_ioctl = ath_ioctl; 550 ifp->if_init = ath_init; 551 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 552 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 553 IFQ_SET_READY(&ifp->if_snd); 554 555 ic->ic_ifp = ifp; 556 /* XXX not right but it's not used anywhere important */ 557 ic->ic_phytype = IEEE80211_T_OFDM; 558 ic->ic_opmode = IEEE80211_M_STA; 559 ic->ic_caps = 560 IEEE80211_C_STA /* station mode */ 561 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 562 | IEEE80211_C_HOSTAP /* hostap mode */ 563 | IEEE80211_C_MONITOR /* monitor mode */ 564 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 565 | IEEE80211_C_WDS /* 4-address traffic works */ 566 | IEEE80211_C_MBSS /* mesh point link mode */ 567 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 568 | IEEE80211_C_SHSLOT /* short slot time supported */ 569 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 570 #ifndef ATH_ENABLE_11N 571 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 572 #endif 573 | IEEE80211_C_TXFRAG /* handle tx frags */ 574 #ifdef ATH_ENABLE_DFS 575 | IEEE80211_C_DFS /* Enable radar detection */ 576 #endif 577 ; 578 /* 579 * Query the hal to figure out h/w crypto support. 580 */ 581 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 582 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 583 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 584 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 585 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 586 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 587 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 588 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 589 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 590 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 591 /* 592 * Check if h/w does the MIC and/or whether the 593 * separate key cache entries are required to 594 * handle both tx+rx MIC keys. 595 */ 596 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 597 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 598 /* 599 * If the h/w supports storing tx+rx MIC keys 600 * in one cache slot automatically enable use. 601 */ 602 if (ath_hal_hastkipsplit(ah) || 603 !ath_hal_settkipsplit(ah, AH_FALSE)) 604 sc->sc_splitmic = 1; 605 /* 606 * If the h/w can do TKIP MIC together with WME then 607 * we use it; otherwise we force the MIC to be done 608 * in software by the net80211 layer. 609 */ 610 if (ath_hal_haswmetkipmic(ah)) 611 sc->sc_wmetkipmic = 1; 612 } 613 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 614 /* 615 * Check for multicast key search support. 616 */ 617 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 618 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 619 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 620 } 621 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 622 /* 623 * Mark key cache slots associated with global keys 624 * as in use. If we knew TKIP was not to be used we 625 * could leave the +32, +64, and +32+64 slots free. 626 */ 627 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 628 setbit(sc->sc_keymap, i); 629 setbit(sc->sc_keymap, i+64); 630 if (sc->sc_splitmic) { 631 setbit(sc->sc_keymap, i+32); 632 setbit(sc->sc_keymap, i+32+64); 633 } 634 } 635 /* 636 * TPC support can be done either with a global cap or 637 * per-packet support. The latter is not available on 638 * all parts. We're a bit pedantic here as all parts 639 * support a global cap. 640 */ 641 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 642 ic->ic_caps |= IEEE80211_C_TXPMGT; 643 644 /* 645 * Mark WME capability only if we have sufficient 646 * hardware queues to do proper priority scheduling. 647 */ 648 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 649 ic->ic_caps |= IEEE80211_C_WME; 650 /* 651 * Check for misc other capabilities. 652 */ 653 if (ath_hal_hasbursting(ah)) 654 ic->ic_caps |= IEEE80211_C_BURST; 655 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 656 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 657 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 658 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 659 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 660 if (ath_hal_hasfastframes(ah)) 661 ic->ic_caps |= IEEE80211_C_FF; 662 wmodes = ath_hal_getwirelessmodes(ah); 663 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 664 ic->ic_caps |= IEEE80211_C_TURBOP; 665 #ifdef IEEE80211_SUPPORT_TDMA 666 if (ath_hal_macversion(ah) > 0x78) { 667 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 668 ic->ic_tdma_update = ath_tdma_update; 669 } 670 #endif 671 672 /* 673 * TODO: enforce that at least this many frames are available 674 * in the txbuf list before allowing data frames (raw or 675 * otherwise) to be transmitted. 676 */ 677 sc->sc_txq_data_minfree = 10; 678 /* 679 * Leave this as default to maintain legacy behaviour. 680 * Shortening the cabq/mcastq may end up causing some 681 * undesirable behaviour. 682 */ 683 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 684 685 /* 686 * Allow the TX and RX chainmasks to be overridden by 687 * environment variables and/or device.hints. 688 * 689 * This must be done early - before the hardware is 690 * calibrated or before the 802.11n stream calculation 691 * is done. 692 */ 693 if (resource_int_value(device_get_name(sc->sc_dev), 694 device_get_unit(sc->sc_dev), "rx_chainmask", 695 &rx_chainmask) == 0) { 696 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 697 rx_chainmask); 698 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 699 } 700 if (resource_int_value(device_get_name(sc->sc_dev), 701 device_get_unit(sc->sc_dev), "tx_chainmask", 702 &tx_chainmask) == 0) { 703 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 704 tx_chainmask); 705 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 706 } 707 708 /* 709 * Disable MRR with protected frames by default. 710 * Only 802.11n series NICs can handle this. 711 */ 712 sc->sc_mrrprot = 0; /* XXX should be a capability */ 713 714 /* 715 * Query the enterprise mode information the HAL. 716 */ 717 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 718 &sc->sc_ent_cfg) == HAL_OK) 719 sc->sc_use_ent = 1; 720 721 #ifdef ATH_ENABLE_11N 722 /* 723 * Query HT capabilities 724 */ 725 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 726 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 727 int rxs, txs; 728 729 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 730 731 sc->sc_mrrprot = 1; /* XXX should be a capability */ 732 733 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 734 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 735 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 736 | IEEE80211_HTCAP_MAXAMSDU_3839 737 /* max A-MSDU length */ 738 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 739 ; 740 741 /* 742 * Enable short-GI for HT20 only if the hardware 743 * advertises support. 744 * Notably, anything earlier than the AR9287 doesn't. 745 */ 746 if ((ath_hal_getcapability(ah, 747 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 748 (wmodes & HAL_MODE_HT20)) { 749 device_printf(sc->sc_dev, 750 "[HT] enabling short-GI in 20MHz mode\n"); 751 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 752 } 753 754 if (wmodes & HAL_MODE_HT40) 755 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 756 | IEEE80211_HTCAP_SHORTGI40; 757 758 /* 759 * TX/RX streams need to be taken into account when 760 * negotiating which MCS rates it'll receive and 761 * what MCS rates are available for TX. 762 */ 763 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 764 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 765 766 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 767 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 768 769 ic->ic_txstream = txs; 770 ic->ic_rxstream = rxs; 771 772 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 773 &sc->sc_rts_aggr_limit); 774 if (sc->sc_rts_aggr_limit != (64 * 1024)) 775 device_printf(sc->sc_dev, 776 "[HT] RTS aggregates limited to %d KiB\n", 777 sc->sc_rts_aggr_limit / 1024); 778 779 device_printf(sc->sc_dev, 780 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 781 } 782 #endif 783 784 /* 785 * Initial aggregation settings. 786 */ 787 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 788 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 789 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 790 791 /* 792 * Check if the hardware requires PCI register serialisation. 793 * Some of the Owl based MACs require this. 794 */ 795 if (mp_ncpus > 1 && 796 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 797 0, NULL) == HAL_OK) { 798 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 799 device_printf(sc->sc_dev, 800 "Enabling register serialisation\n"); 801 } 802 803 /* 804 * Indicate we need the 802.11 header padded to a 805 * 32-bit boundary for 4-address and QoS frames. 806 */ 807 ic->ic_flags |= IEEE80211_F_DATAPAD; 808 809 /* 810 * Query the hal about antenna support. 811 */ 812 sc->sc_defant = ath_hal_getdefantenna(ah); 813 814 /* 815 * Not all chips have the VEOL support we want to 816 * use with IBSS beacons; check here for it. 817 */ 818 sc->sc_hasveol = ath_hal_hasveol(ah); 819 820 /* get mac address from hardware */ 821 ath_hal_getmac(ah, macaddr); 822 if (sc->sc_hasbmask) 823 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 824 825 /* NB: used to size node table key mapping array */ 826 ic->ic_max_keyix = sc->sc_keymax; 827 /* call MI attach routine. */ 828 ieee80211_ifattach(ic, macaddr); 829 ic->ic_setregdomain = ath_setregdomain; 830 ic->ic_getradiocaps = ath_getradiocaps; 831 sc->sc_opmode = HAL_M_STA; 832 833 /* override default methods */ 834 ic->ic_newassoc = ath_newassoc; 835 ic->ic_updateslot = ath_updateslot; 836 ic->ic_wme.wme_update = ath_wme_update; 837 ic->ic_vap_create = ath_vap_create; 838 ic->ic_vap_delete = ath_vap_delete; 839 ic->ic_raw_xmit = ath_raw_xmit; 840 ic->ic_update_mcast = ath_update_mcast; 841 ic->ic_update_promisc = ath_update_promisc; 842 ic->ic_node_alloc = ath_node_alloc; 843 sc->sc_node_free = ic->ic_node_free; 844 ic->ic_node_free = ath_node_free; 845 sc->sc_node_cleanup = ic->ic_node_cleanup; 846 ic->ic_node_cleanup = ath_node_cleanup; 847 ic->ic_node_getsignal = ath_node_getsignal; 848 ic->ic_scan_start = ath_scan_start; 849 ic->ic_scan_end = ath_scan_end; 850 ic->ic_set_channel = ath_set_channel; 851 #ifdef ATH_ENABLE_11N 852 /* 802.11n specific - but just override anyway */ 853 sc->sc_addba_request = ic->ic_addba_request; 854 sc->sc_addba_response = ic->ic_addba_response; 855 sc->sc_addba_stop = ic->ic_addba_stop; 856 sc->sc_bar_response = ic->ic_bar_response; 857 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 858 859 ic->ic_addba_request = ath_addba_request; 860 ic->ic_addba_response = ath_addba_response; 861 ic->ic_addba_response_timeout = ath_addba_response_timeout; 862 ic->ic_addba_stop = ath_addba_stop; 863 ic->ic_bar_response = ath_bar_response; 864 865 ic->ic_update_chw = ath_update_chw; 866 #endif /* ATH_ENABLE_11N */ 867 868 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 869 /* 870 * There's one vendor bitmap entry in the RX radiotap 871 * header; make sure that's taken into account. 872 */ 873 ieee80211_radiotap_attachv(ic, 874 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 875 ATH_TX_RADIOTAP_PRESENT, 876 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 877 ATH_RX_RADIOTAP_PRESENT); 878 #else 879 /* 880 * No vendor bitmap/extensions are present. 881 */ 882 ieee80211_radiotap_attach(ic, 883 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 884 ATH_TX_RADIOTAP_PRESENT, 885 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 886 ATH_RX_RADIOTAP_PRESENT); 887 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 888 889 /* 890 * Setup the ALQ logging if required 891 */ 892 #ifdef ATH_DEBUG_ALQ 893 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 894 if_ath_alq_setcfg(&sc->sc_alq, 895 sc->sc_ah->ah_macVersion, 896 sc->sc_ah->ah_macRev, 897 sc->sc_ah->ah_phyRev, 898 sc->sc_ah->ah_magic); 899 #endif 900 901 /* 902 * Setup dynamic sysctl's now that country code and 903 * regdomain are available from the hal. 904 */ 905 ath_sysctlattach(sc); 906 ath_sysctl_stats_attach(sc); 907 ath_sysctl_hal_attach(sc); 908 909 if (bootverbose) 910 ieee80211_announce(ic); 911 ath_announce(sc); 912 return 0; 913 bad2: 914 ath_tx_cleanup(sc); 915 ath_desc_free(sc); 916 ath_txdma_teardown(sc); 917 ath_rxdma_teardown(sc); 918 bad: 919 if (ah) 920 ath_hal_detach(ah); 921 922 /* 923 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 924 */ 925 if (ifp != NULL && ifp->if_vnet) { 926 CURVNET_SET(ifp->if_vnet); 927 if_free(ifp); 928 CURVNET_RESTORE(); 929 } else if (ifp != NULL) 930 if_free(ifp); 931 sc->sc_invalid = 1; 932 return error; 933 } 934 935 int 936 ath_detach(struct ath_softc *sc) 937 { 938 struct ifnet *ifp = sc->sc_ifp; 939 940 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 941 __func__, ifp->if_flags); 942 943 /* 944 * NB: the order of these is important: 945 * o stop the chip so no more interrupts will fire 946 * o call the 802.11 layer before detaching the hal to 947 * insure callbacks into the driver to delete global 948 * key cache entries can be handled 949 * o free the taskqueue which drains any pending tasks 950 * o reclaim the tx queue data structures after calling 951 * the 802.11 layer as we'll get called back to reclaim 952 * node state and potentially want to use them 953 * o to cleanup the tx queues the hal is called, so detach 954 * it last 955 * Other than that, it's straightforward... 956 */ 957 ath_stop(ifp); 958 ieee80211_ifdetach(ifp->if_l2com); 959 taskqueue_free(sc->sc_tq); 960 #ifdef ATH_TX99_DIAG 961 if (sc->sc_tx99 != NULL) 962 sc->sc_tx99->detach(sc->sc_tx99); 963 #endif 964 ath_rate_detach(sc->sc_rc); 965 966 #ifdef ATH_DEBUG_ALQ 967 if_ath_alq_tidyup(&sc->sc_alq); 968 #endif 969 970 ath_dfs_detach(sc); 971 ath_desc_free(sc); 972 ath_txdma_teardown(sc); 973 ath_rxdma_teardown(sc); 974 ath_tx_cleanup(sc); 975 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 976 977 CURVNET_SET(ifp->if_vnet); 978 if_free(ifp); 979 CURVNET_RESTORE(); 980 981 return 0; 982 } 983 984 /* 985 * MAC address handling for multiple BSS on the same radio. 986 * The first vap uses the MAC address from the EEPROM. For 987 * subsequent vap's we set the U/L bit (bit 1) in the MAC 988 * address and use the next six bits as an index. 989 */ 990 static void 991 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 992 { 993 int i; 994 995 if (clone && sc->sc_hasbmask) { 996 /* NB: we only do this if h/w supports multiple bssid */ 997 for (i = 0; i < 8; i++) 998 if ((sc->sc_bssidmask & (1<<i)) == 0) 999 break; 1000 if (i != 0) 1001 mac[0] |= (i << 2)|0x2; 1002 } else 1003 i = 0; 1004 sc->sc_bssidmask |= 1<<i; 1005 sc->sc_hwbssidmask[0] &= ~mac[0]; 1006 if (i == 0) 1007 sc->sc_nbssid0++; 1008 } 1009 1010 static void 1011 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1012 { 1013 int i = mac[0] >> 2; 1014 uint8_t mask; 1015 1016 if (i != 0 || --sc->sc_nbssid0 == 0) { 1017 sc->sc_bssidmask &= ~(1<<i); 1018 /* recalculate bssid mask from remaining addresses */ 1019 mask = 0xff; 1020 for (i = 1; i < 8; i++) 1021 if (sc->sc_bssidmask & (1<<i)) 1022 mask &= ~((i<<2)|0x2); 1023 sc->sc_hwbssidmask[0] |= mask; 1024 } 1025 } 1026 1027 /* 1028 * Assign a beacon xmit slot. We try to space out 1029 * assignments so when beacons are staggered the 1030 * traffic coming out of the cab q has maximal time 1031 * to go out before the next beacon is scheduled. 1032 */ 1033 static int 1034 assign_bslot(struct ath_softc *sc) 1035 { 1036 u_int slot, free; 1037 1038 free = 0; 1039 for (slot = 0; slot < ATH_BCBUF; slot++) 1040 if (sc->sc_bslot[slot] == NULL) { 1041 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1042 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1043 return slot; 1044 free = slot; 1045 /* NB: keep looking for a double slot */ 1046 } 1047 return free; 1048 } 1049 1050 static struct ieee80211vap * 1051 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1052 enum ieee80211_opmode opmode, int flags, 1053 const uint8_t bssid[IEEE80211_ADDR_LEN], 1054 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1055 { 1056 struct ath_softc *sc = ic->ic_ifp->if_softc; 1057 struct ath_vap *avp; 1058 struct ieee80211vap *vap; 1059 uint8_t mac[IEEE80211_ADDR_LEN]; 1060 int needbeacon, error; 1061 enum ieee80211_opmode ic_opmode; 1062 1063 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1064 M_80211_VAP, M_WAITOK | M_ZERO); 1065 needbeacon = 0; 1066 IEEE80211_ADDR_COPY(mac, mac0); 1067 1068 ATH_LOCK(sc); 1069 ic_opmode = opmode; /* default to opmode of new vap */ 1070 switch (opmode) { 1071 case IEEE80211_M_STA: 1072 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1073 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1074 goto bad; 1075 } 1076 if (sc->sc_nvaps) { 1077 /* 1078 * With multiple vaps we must fall back 1079 * to s/w beacon miss handling. 1080 */ 1081 flags |= IEEE80211_CLONE_NOBEACONS; 1082 } 1083 if (flags & IEEE80211_CLONE_NOBEACONS) { 1084 /* 1085 * Station mode w/o beacons are implemented w/ AP mode. 1086 */ 1087 ic_opmode = IEEE80211_M_HOSTAP; 1088 } 1089 break; 1090 case IEEE80211_M_IBSS: 1091 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1092 device_printf(sc->sc_dev, 1093 "only 1 ibss vap supported\n"); 1094 goto bad; 1095 } 1096 needbeacon = 1; 1097 break; 1098 case IEEE80211_M_AHDEMO: 1099 #ifdef IEEE80211_SUPPORT_TDMA 1100 if (flags & IEEE80211_CLONE_TDMA) { 1101 if (sc->sc_nvaps != 0) { 1102 device_printf(sc->sc_dev, 1103 "only 1 tdma vap supported\n"); 1104 goto bad; 1105 } 1106 needbeacon = 1; 1107 flags |= IEEE80211_CLONE_NOBEACONS; 1108 } 1109 /* fall thru... */ 1110 #endif 1111 case IEEE80211_M_MONITOR: 1112 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1113 /* 1114 * Adopt existing mode. Adding a monitor or ahdemo 1115 * vap to an existing configuration is of dubious 1116 * value but should be ok. 1117 */ 1118 /* XXX not right for monitor mode */ 1119 ic_opmode = ic->ic_opmode; 1120 } 1121 break; 1122 case IEEE80211_M_HOSTAP: 1123 case IEEE80211_M_MBSS: 1124 needbeacon = 1; 1125 break; 1126 case IEEE80211_M_WDS: 1127 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1128 device_printf(sc->sc_dev, 1129 "wds not supported in sta mode\n"); 1130 goto bad; 1131 } 1132 /* 1133 * Silently remove any request for a unique 1134 * bssid; WDS vap's always share the local 1135 * mac address. 1136 */ 1137 flags &= ~IEEE80211_CLONE_BSSID; 1138 if (sc->sc_nvaps == 0) 1139 ic_opmode = IEEE80211_M_HOSTAP; 1140 else 1141 ic_opmode = ic->ic_opmode; 1142 break; 1143 default: 1144 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1145 goto bad; 1146 } 1147 /* 1148 * Check that a beacon buffer is available; the code below assumes it. 1149 */ 1150 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1151 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1152 goto bad; 1153 } 1154 1155 /* STA, AHDEMO? */ 1156 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1157 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1158 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1159 } 1160 1161 vap = &avp->av_vap; 1162 /* XXX can't hold mutex across if_alloc */ 1163 ATH_UNLOCK(sc); 1164 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1165 bssid, mac); 1166 ATH_LOCK(sc); 1167 if (error != 0) { 1168 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1169 __func__, error); 1170 goto bad2; 1171 } 1172 1173 /* h/w crypto support */ 1174 vap->iv_key_alloc = ath_key_alloc; 1175 vap->iv_key_delete = ath_key_delete; 1176 vap->iv_key_set = ath_key_set; 1177 vap->iv_key_update_begin = ath_key_update_begin; 1178 vap->iv_key_update_end = ath_key_update_end; 1179 1180 /* override various methods */ 1181 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1182 vap->iv_recv_mgmt = ath_recv_mgmt; 1183 vap->iv_reset = ath_reset_vap; 1184 vap->iv_update_beacon = ath_beacon_update; 1185 avp->av_newstate = vap->iv_newstate; 1186 vap->iv_newstate = ath_newstate; 1187 avp->av_bmiss = vap->iv_bmiss; 1188 vap->iv_bmiss = ath_bmiss_vap; 1189 1190 avp->av_node_ps = vap->iv_node_ps; 1191 vap->iv_node_ps = ath_node_powersave; 1192 1193 avp->av_set_tim = vap->iv_set_tim; 1194 vap->iv_set_tim = ath_node_set_tim; 1195 1196 /* Set default parameters */ 1197 1198 /* 1199 * Anything earlier than some AR9300 series MACs don't 1200 * support a smaller MPDU density. 1201 */ 1202 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1203 /* 1204 * All NICs can handle the maximum size, however 1205 * AR5416 based MACs can only TX aggregates w/ RTS 1206 * protection when the total aggregate size is <= 8k. 1207 * However, for now that's enforced by the TX path. 1208 */ 1209 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1210 1211 avp->av_bslot = -1; 1212 if (needbeacon) { 1213 /* 1214 * Allocate beacon state and setup the q for buffered 1215 * multicast frames. We know a beacon buffer is 1216 * available because we checked above. 1217 */ 1218 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1219 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1220 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1221 /* 1222 * Assign the vap to a beacon xmit slot. As above 1223 * this cannot fail to find a free one. 1224 */ 1225 avp->av_bslot = assign_bslot(sc); 1226 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1227 ("beacon slot %u not empty", avp->av_bslot)); 1228 sc->sc_bslot[avp->av_bslot] = vap; 1229 sc->sc_nbcnvaps++; 1230 } 1231 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1232 /* 1233 * Multple vaps are to transmit beacons and we 1234 * have h/w support for TSF adjusting; enable 1235 * use of staggered beacons. 1236 */ 1237 sc->sc_stagbeacons = 1; 1238 } 1239 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1240 } 1241 1242 ic->ic_opmode = ic_opmode; 1243 if (opmode != IEEE80211_M_WDS) { 1244 sc->sc_nvaps++; 1245 if (opmode == IEEE80211_M_STA) 1246 sc->sc_nstavaps++; 1247 if (opmode == IEEE80211_M_MBSS) 1248 sc->sc_nmeshvaps++; 1249 } 1250 switch (ic_opmode) { 1251 case IEEE80211_M_IBSS: 1252 sc->sc_opmode = HAL_M_IBSS; 1253 break; 1254 case IEEE80211_M_STA: 1255 sc->sc_opmode = HAL_M_STA; 1256 break; 1257 case IEEE80211_M_AHDEMO: 1258 #ifdef IEEE80211_SUPPORT_TDMA 1259 if (vap->iv_caps & IEEE80211_C_TDMA) { 1260 sc->sc_tdma = 1; 1261 /* NB: disable tsf adjust */ 1262 sc->sc_stagbeacons = 0; 1263 } 1264 /* 1265 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1266 * just ap mode. 1267 */ 1268 /* fall thru... */ 1269 #endif 1270 case IEEE80211_M_HOSTAP: 1271 case IEEE80211_M_MBSS: 1272 sc->sc_opmode = HAL_M_HOSTAP; 1273 break; 1274 case IEEE80211_M_MONITOR: 1275 sc->sc_opmode = HAL_M_MONITOR; 1276 break; 1277 default: 1278 /* XXX should not happen */ 1279 break; 1280 } 1281 if (sc->sc_hastsfadd) { 1282 /* 1283 * Configure whether or not TSF adjust should be done. 1284 */ 1285 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1286 } 1287 if (flags & IEEE80211_CLONE_NOBEACONS) { 1288 /* 1289 * Enable s/w beacon miss handling. 1290 */ 1291 sc->sc_swbmiss = 1; 1292 } 1293 ATH_UNLOCK(sc); 1294 1295 /* complete setup */ 1296 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1297 return vap; 1298 bad2: 1299 reclaim_address(sc, mac); 1300 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1301 bad: 1302 free(avp, M_80211_VAP); 1303 ATH_UNLOCK(sc); 1304 return NULL; 1305 } 1306 1307 static void 1308 ath_vap_delete(struct ieee80211vap *vap) 1309 { 1310 struct ieee80211com *ic = vap->iv_ic; 1311 struct ifnet *ifp = ic->ic_ifp; 1312 struct ath_softc *sc = ifp->if_softc; 1313 struct ath_hal *ah = sc->sc_ah; 1314 struct ath_vap *avp = ATH_VAP(vap); 1315 1316 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1317 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1318 /* 1319 * Quiesce the hardware while we remove the vap. In 1320 * particular we need to reclaim all references to 1321 * the vap state by any frames pending on the tx queues. 1322 */ 1323 ath_hal_intrset(ah, 0); /* disable interrupts */ 1324 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1325 /* XXX Do all frames from all vaps/nodes need draining here? */ 1326 ath_stoprecv(sc, 1); /* stop recv side */ 1327 } 1328 1329 ieee80211_vap_detach(vap); 1330 1331 /* 1332 * XXX Danger Will Robinson! Danger! 1333 * 1334 * Because ieee80211_vap_detach() can queue a frame (the station 1335 * diassociate message?) after we've drained the TXQ and 1336 * flushed the software TXQ, we will end up with a frame queued 1337 * to a node whose vap is about to be freed. 1338 * 1339 * To work around this, flush the hardware/software again. 1340 * This may be racy - the ath task may be running and the packet 1341 * may be being scheduled between sw->hw txq. Tsk. 1342 * 1343 * TODO: figure out why a new node gets allocated somewhere around 1344 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1345 * call!) 1346 */ 1347 1348 ath_draintxq(sc, ATH_RESET_DEFAULT); 1349 1350 ATH_LOCK(sc); 1351 /* 1352 * Reclaim beacon state. Note this must be done before 1353 * the vap instance is reclaimed as we may have a reference 1354 * to it in the buffer for the beacon frame. 1355 */ 1356 if (avp->av_bcbuf != NULL) { 1357 if (avp->av_bslot != -1) { 1358 sc->sc_bslot[avp->av_bslot] = NULL; 1359 sc->sc_nbcnvaps--; 1360 } 1361 ath_beacon_return(sc, avp->av_bcbuf); 1362 avp->av_bcbuf = NULL; 1363 if (sc->sc_nbcnvaps == 0) { 1364 sc->sc_stagbeacons = 0; 1365 if (sc->sc_hastsfadd) 1366 ath_hal_settsfadjust(sc->sc_ah, 0); 1367 } 1368 /* 1369 * Reclaim any pending mcast frames for the vap. 1370 */ 1371 ath_tx_draintxq(sc, &avp->av_mcastq); 1372 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1373 } 1374 /* 1375 * Update bookkeeping. 1376 */ 1377 if (vap->iv_opmode == IEEE80211_M_STA) { 1378 sc->sc_nstavaps--; 1379 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1380 sc->sc_swbmiss = 0; 1381 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1382 vap->iv_opmode == IEEE80211_M_MBSS) { 1383 reclaim_address(sc, vap->iv_myaddr); 1384 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1385 if (vap->iv_opmode == IEEE80211_M_MBSS) 1386 sc->sc_nmeshvaps--; 1387 } 1388 if (vap->iv_opmode != IEEE80211_M_WDS) 1389 sc->sc_nvaps--; 1390 #ifdef IEEE80211_SUPPORT_TDMA 1391 /* TDMA operation ceases when the last vap is destroyed */ 1392 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1393 sc->sc_tdma = 0; 1394 sc->sc_swbmiss = 0; 1395 } 1396 #endif 1397 free(avp, M_80211_VAP); 1398 1399 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1400 /* 1401 * Restart rx+tx machines if still running (RUNNING will 1402 * be reset if we just destroyed the last vap). 1403 */ 1404 if (ath_startrecv(sc) != 0) 1405 if_printf(ifp, "%s: unable to restart recv logic\n", 1406 __func__); 1407 if (sc->sc_beacons) { /* restart beacons */ 1408 #ifdef IEEE80211_SUPPORT_TDMA 1409 if (sc->sc_tdma) 1410 ath_tdma_config(sc, NULL); 1411 else 1412 #endif 1413 ath_beacon_config(sc, NULL); 1414 } 1415 ath_hal_intrset(ah, sc->sc_imask); 1416 } 1417 ATH_UNLOCK(sc); 1418 } 1419 1420 void 1421 ath_suspend(struct ath_softc *sc) 1422 { 1423 struct ifnet *ifp = sc->sc_ifp; 1424 struct ieee80211com *ic = ifp->if_l2com; 1425 1426 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1427 __func__, ifp->if_flags); 1428 1429 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1430 1431 ieee80211_suspend_all(ic); 1432 /* 1433 * NB: don't worry about putting the chip in low power 1434 * mode; pci will power off our socket on suspend and 1435 * CardBus detaches the device. 1436 */ 1437 1438 /* 1439 * XXX ensure none of the taskqueues are running 1440 * XXX ensure sc_invalid is 1 1441 * XXX ensure the calibration callout is disabled 1442 */ 1443 1444 /* Disable the PCIe PHY, complete with workarounds */ 1445 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1446 } 1447 1448 /* 1449 * Reset the key cache since some parts do not reset the 1450 * contents on resume. First we clear all entries, then 1451 * re-load keys that the 802.11 layer assumes are setup 1452 * in h/w. 1453 */ 1454 static void 1455 ath_reset_keycache(struct ath_softc *sc) 1456 { 1457 struct ifnet *ifp = sc->sc_ifp; 1458 struct ieee80211com *ic = ifp->if_l2com; 1459 struct ath_hal *ah = sc->sc_ah; 1460 int i; 1461 1462 for (i = 0; i < sc->sc_keymax; i++) 1463 ath_hal_keyreset(ah, i); 1464 ieee80211_crypto_reload_keys(ic); 1465 } 1466 1467 void 1468 ath_resume(struct ath_softc *sc) 1469 { 1470 struct ifnet *ifp = sc->sc_ifp; 1471 struct ieee80211com *ic = ifp->if_l2com; 1472 struct ath_hal *ah = sc->sc_ah; 1473 HAL_STATUS status; 1474 1475 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1476 __func__, ifp->if_flags); 1477 1478 /* Re-enable PCIe, re-enable the PCIe bus */ 1479 ath_hal_enablepcie(ah, 0, 0); 1480 1481 /* 1482 * Must reset the chip before we reload the 1483 * keycache as we were powered down on suspend. 1484 */ 1485 ath_hal_reset(ah, sc->sc_opmode, 1486 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1487 AH_FALSE, &status); 1488 ath_reset_keycache(sc); 1489 1490 /* Let DFS at it in case it's a DFS channel */ 1491 ath_dfs_radar_enable(sc, ic->ic_curchan); 1492 1493 /* Restore the LED configuration */ 1494 ath_led_config(sc); 1495 ath_hal_setledstate(ah, HAL_LED_INIT); 1496 1497 if (sc->sc_resume_up) 1498 ieee80211_resume_all(ic); 1499 1500 /* XXX beacons ? */ 1501 } 1502 1503 void 1504 ath_shutdown(struct ath_softc *sc) 1505 { 1506 struct ifnet *ifp = sc->sc_ifp; 1507 1508 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1509 __func__, ifp->if_flags); 1510 1511 ath_stop(ifp); 1512 /* NB: no point powering down chip as we're about to reboot */ 1513 } 1514 1515 /* 1516 * Interrupt handler. Most of the actual processing is deferred. 1517 */ 1518 void 1519 ath_intr(void *arg) 1520 { 1521 struct ath_softc *sc = arg; 1522 struct ifnet *ifp = sc->sc_ifp; 1523 struct ath_hal *ah = sc->sc_ah; 1524 HAL_INT status = 0; 1525 uint32_t txqs; 1526 1527 /* 1528 * If we're inside a reset path, just print a warning and 1529 * clear the ISR. The reset routine will finish it for us. 1530 */ 1531 ATH_PCU_LOCK(sc); 1532 if (sc->sc_inreset_cnt) { 1533 HAL_INT status; 1534 ath_hal_getisr(ah, &status); /* clear ISR */ 1535 ath_hal_intrset(ah, 0); /* disable further intr's */ 1536 DPRINTF(sc, ATH_DEBUG_ANY, 1537 "%s: in reset, ignoring: status=0x%x\n", 1538 __func__, status); 1539 ATH_PCU_UNLOCK(sc); 1540 return; 1541 } 1542 1543 if (sc->sc_invalid) { 1544 /* 1545 * The hardware is not ready/present, don't touch anything. 1546 * Note this can happen early on if the IRQ is shared. 1547 */ 1548 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1549 ATH_PCU_UNLOCK(sc); 1550 return; 1551 } 1552 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1553 ATH_PCU_UNLOCK(sc); 1554 return; 1555 } 1556 1557 if ((ifp->if_flags & IFF_UP) == 0 || 1558 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1559 HAL_INT status; 1560 1561 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1562 __func__, ifp->if_flags); 1563 ath_hal_getisr(ah, &status); /* clear ISR */ 1564 ath_hal_intrset(ah, 0); /* disable further intr's */ 1565 ATH_PCU_UNLOCK(sc); 1566 return; 1567 } 1568 1569 /* 1570 * Figure out the reason(s) for the interrupt. Note 1571 * that the hal returns a pseudo-ISR that may include 1572 * bits we haven't explicitly enabled so we mask the 1573 * value to insure we only process bits we requested. 1574 */ 1575 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1576 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1577 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1578 #ifdef ATH_KTR_INTR_DEBUG 1579 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1580 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1581 ah->ah_intrstate[0], 1582 ah->ah_intrstate[1], 1583 ah->ah_intrstate[2], 1584 ah->ah_intrstate[3], 1585 ah->ah_intrstate[6]); 1586 #endif 1587 1588 /* Squirrel away SYNC interrupt debugging */ 1589 if (ah->ah_syncstate != 0) { 1590 int i; 1591 for (i = 0; i < 32; i++) 1592 if (ah->ah_syncstate & (i << i)) 1593 sc->sc_intr_stats.sync_intr[i]++; 1594 } 1595 1596 status &= sc->sc_imask; /* discard unasked for bits */ 1597 1598 /* Short-circuit un-handled interrupts */ 1599 if (status == 0x0) { 1600 ATH_PCU_UNLOCK(sc); 1601 return; 1602 } 1603 1604 /* 1605 * Take a note that we're inside the interrupt handler, so 1606 * the reset routines know to wait. 1607 */ 1608 sc->sc_intr_cnt++; 1609 ATH_PCU_UNLOCK(sc); 1610 1611 /* 1612 * Handle the interrupt. We won't run concurrent with the reset 1613 * or channel change routines as they'll wait for sc_intr_cnt 1614 * to be 0 before continuing. 1615 */ 1616 if (status & HAL_INT_FATAL) { 1617 sc->sc_stats.ast_hardware++; 1618 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1619 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1620 } else { 1621 if (status & HAL_INT_SWBA) { 1622 /* 1623 * Software beacon alert--time to send a beacon. 1624 * Handle beacon transmission directly; deferring 1625 * this is too slow to meet timing constraints 1626 * under load. 1627 */ 1628 #ifdef IEEE80211_SUPPORT_TDMA 1629 if (sc->sc_tdma) { 1630 if (sc->sc_tdmaswba == 0) { 1631 struct ieee80211com *ic = ifp->if_l2com; 1632 struct ieee80211vap *vap = 1633 TAILQ_FIRST(&ic->ic_vaps); 1634 ath_tdma_beacon_send(sc, vap); 1635 sc->sc_tdmaswba = 1636 vap->iv_tdma->tdma_bintval; 1637 } else 1638 sc->sc_tdmaswba--; 1639 } else 1640 #endif 1641 { 1642 ath_beacon_proc(sc, 0); 1643 #ifdef IEEE80211_SUPPORT_SUPERG 1644 /* 1645 * Schedule the rx taskq in case there's no 1646 * traffic so any frames held on the staging 1647 * queue are aged and potentially flushed. 1648 */ 1649 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1650 #endif 1651 } 1652 } 1653 if (status & HAL_INT_RXEOL) { 1654 int imask; 1655 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1656 ATH_PCU_LOCK(sc); 1657 /* 1658 * NB: the hardware should re-read the link when 1659 * RXE bit is written, but it doesn't work at 1660 * least on older hardware revs. 1661 */ 1662 sc->sc_stats.ast_rxeol++; 1663 /* 1664 * Disable RXEOL/RXORN - prevent an interrupt 1665 * storm until the PCU logic can be reset. 1666 * In case the interface is reset some other 1667 * way before "sc_kickpcu" is called, don't 1668 * modify sc_imask - that way if it is reset 1669 * by a call to ath_reset() somehow, the 1670 * interrupt mask will be correctly reprogrammed. 1671 */ 1672 imask = sc->sc_imask; 1673 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1674 ath_hal_intrset(ah, imask); 1675 /* 1676 * Only blank sc_rxlink if we've not yet kicked 1677 * the PCU. 1678 * 1679 * This isn't entirely correct - the correct solution 1680 * would be to have a PCU lock and engage that for 1681 * the duration of the PCU fiddling; which would include 1682 * running the RX process. Otherwise we could end up 1683 * messing up the RX descriptor chain and making the 1684 * RX desc list much shorter. 1685 */ 1686 if (! sc->sc_kickpcu) 1687 sc->sc_rxlink = NULL; 1688 sc->sc_kickpcu = 1; 1689 /* 1690 * Enqueue an RX proc, to handled whatever 1691 * is in the RX queue. 1692 * This will then kick the PCU. 1693 */ 1694 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1695 ATH_PCU_UNLOCK(sc); 1696 } 1697 if (status & HAL_INT_TXURN) { 1698 sc->sc_stats.ast_txurn++; 1699 /* bump tx trigger level */ 1700 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1701 } 1702 /* 1703 * Handle both the legacy and RX EDMA interrupt bits. 1704 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1705 */ 1706 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1707 sc->sc_stats.ast_rx_intr++; 1708 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1709 } 1710 if (status & HAL_INT_TX) { 1711 sc->sc_stats.ast_tx_intr++; 1712 /* 1713 * Grab all the currently set bits in the HAL txq bitmap 1714 * and blank them. This is the only place we should be 1715 * doing this. 1716 */ 1717 if (! sc->sc_isedma) { 1718 ATH_PCU_LOCK(sc); 1719 txqs = 0xffffffff; 1720 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1721 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1722 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1723 txqs, 1724 sc->sc_txq_active, 1725 sc->sc_txq_active | txqs); 1726 sc->sc_txq_active |= txqs; 1727 ATH_PCU_UNLOCK(sc); 1728 } 1729 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1730 } 1731 if (status & HAL_INT_BMISS) { 1732 sc->sc_stats.ast_bmiss++; 1733 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1734 } 1735 if (status & HAL_INT_GTT) 1736 sc->sc_stats.ast_tx_timeout++; 1737 if (status & HAL_INT_CST) 1738 sc->sc_stats.ast_tx_cst++; 1739 if (status & HAL_INT_MIB) { 1740 sc->sc_stats.ast_mib++; 1741 ATH_PCU_LOCK(sc); 1742 /* 1743 * Disable interrupts until we service the MIB 1744 * interrupt; otherwise it will continue to fire. 1745 */ 1746 ath_hal_intrset(ah, 0); 1747 /* 1748 * Let the hal handle the event. We assume it will 1749 * clear whatever condition caused the interrupt. 1750 */ 1751 ath_hal_mibevent(ah, &sc->sc_halstats); 1752 /* 1753 * Don't reset the interrupt if we've just 1754 * kicked the PCU, or we may get a nested 1755 * RXEOL before the rxproc has had a chance 1756 * to run. 1757 */ 1758 if (sc->sc_kickpcu == 0) 1759 ath_hal_intrset(ah, sc->sc_imask); 1760 ATH_PCU_UNLOCK(sc); 1761 } 1762 if (status & HAL_INT_RXORN) { 1763 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1764 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1765 sc->sc_stats.ast_rxorn++; 1766 } 1767 } 1768 ATH_PCU_LOCK(sc); 1769 sc->sc_intr_cnt--; 1770 ATH_PCU_UNLOCK(sc); 1771 } 1772 1773 static void 1774 ath_fatal_proc(void *arg, int pending) 1775 { 1776 struct ath_softc *sc = arg; 1777 struct ifnet *ifp = sc->sc_ifp; 1778 u_int32_t *state; 1779 u_int32_t len; 1780 void *sp; 1781 1782 if_printf(ifp, "hardware error; resetting\n"); 1783 /* 1784 * Fatal errors are unrecoverable. Typically these 1785 * are caused by DMA errors. Collect h/w state from 1786 * the hal so we can diagnose what's going on. 1787 */ 1788 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1789 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1790 state = sp; 1791 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1792 state[0], state[1] , state[2], state[3], 1793 state[4], state[5]); 1794 } 1795 ath_reset(ifp, ATH_RESET_NOLOSS); 1796 } 1797 1798 static void 1799 ath_bmiss_vap(struct ieee80211vap *vap) 1800 { 1801 /* 1802 * Workaround phantom bmiss interrupts by sanity-checking 1803 * the time of our last rx'd frame. If it is within the 1804 * beacon miss interval then ignore the interrupt. If it's 1805 * truly a bmiss we'll get another interrupt soon and that'll 1806 * be dispatched up for processing. Note this applies only 1807 * for h/w beacon miss events. 1808 */ 1809 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1810 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1811 struct ath_softc *sc = ifp->if_softc; 1812 u_int64_t lastrx = sc->sc_lastrx; 1813 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1814 /* XXX should take a locked ref to iv_bss */ 1815 u_int bmisstimeout = 1816 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1817 1818 DPRINTF(sc, ATH_DEBUG_BEACON, 1819 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1820 __func__, (unsigned long long) tsf, 1821 (unsigned long long)(tsf - lastrx), 1822 (unsigned long long) lastrx, bmisstimeout); 1823 1824 if (tsf - lastrx <= bmisstimeout) { 1825 sc->sc_stats.ast_bmiss_phantom++; 1826 return; 1827 } 1828 } 1829 ATH_VAP(vap)->av_bmiss(vap); 1830 } 1831 1832 static int 1833 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1834 { 1835 uint32_t rsize; 1836 void *sp; 1837 1838 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1839 return 0; 1840 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1841 *hangs = *(uint32_t *)sp; 1842 return 1; 1843 } 1844 1845 static void 1846 ath_bmiss_proc(void *arg, int pending) 1847 { 1848 struct ath_softc *sc = arg; 1849 struct ifnet *ifp = sc->sc_ifp; 1850 uint32_t hangs; 1851 1852 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1853 1854 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1855 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1856 ath_reset(ifp, ATH_RESET_NOLOSS); 1857 } else 1858 ieee80211_beacon_miss(ifp->if_l2com); 1859 } 1860 1861 /* 1862 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1863 * calcs together with WME. If necessary disable the crypto 1864 * hardware and mark the 802.11 state so keys will be setup 1865 * with the MIC work done in software. 1866 */ 1867 static void 1868 ath_settkipmic(struct ath_softc *sc) 1869 { 1870 struct ifnet *ifp = sc->sc_ifp; 1871 struct ieee80211com *ic = ifp->if_l2com; 1872 1873 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1874 if (ic->ic_flags & IEEE80211_F_WME) { 1875 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1876 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1877 } else { 1878 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1879 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1880 } 1881 } 1882 } 1883 1884 static void 1885 ath_init(void *arg) 1886 { 1887 struct ath_softc *sc = (struct ath_softc *) arg; 1888 struct ifnet *ifp = sc->sc_ifp; 1889 struct ieee80211com *ic = ifp->if_l2com; 1890 struct ath_hal *ah = sc->sc_ah; 1891 HAL_STATUS status; 1892 1893 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1894 __func__, ifp->if_flags); 1895 1896 ATH_LOCK(sc); 1897 /* 1898 * Stop anything previously setup. This is safe 1899 * whether this is the first time through or not. 1900 */ 1901 ath_stop_locked(ifp); 1902 1903 /* 1904 * The basic interface to setting the hardware in a good 1905 * state is ``reset''. On return the hardware is known to 1906 * be powered up and with interrupts disabled. This must 1907 * be followed by initialization of the appropriate bits 1908 * and then setup of the interrupt mask. 1909 */ 1910 ath_settkipmic(sc); 1911 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1912 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1913 status); 1914 ATH_UNLOCK(sc); 1915 return; 1916 } 1917 ath_chan_change(sc, ic->ic_curchan); 1918 1919 /* Let DFS at it in case it's a DFS channel */ 1920 ath_dfs_radar_enable(sc, ic->ic_curchan); 1921 1922 /* 1923 * Likewise this is set during reset so update 1924 * state cached in the driver. 1925 */ 1926 sc->sc_diversity = ath_hal_getdiversity(ah); 1927 sc->sc_lastlongcal = 0; 1928 sc->sc_resetcal = 1; 1929 sc->sc_lastcalreset = 0; 1930 sc->sc_lastani = 0; 1931 sc->sc_lastshortcal = 0; 1932 sc->sc_doresetcal = AH_FALSE; 1933 /* 1934 * Beacon timers were cleared here; give ath_newstate() 1935 * a hint that the beacon timers should be poked when 1936 * things transition to the RUN state. 1937 */ 1938 sc->sc_beacons = 0; 1939 1940 /* 1941 * Setup the hardware after reset: the key cache 1942 * is filled as needed and the receive engine is 1943 * set going. Frame transmit is handled entirely 1944 * in the frame output path; there's nothing to do 1945 * here except setup the interrupt mask. 1946 */ 1947 if (ath_startrecv(sc) != 0) { 1948 if_printf(ifp, "unable to start recv logic\n"); 1949 ATH_UNLOCK(sc); 1950 return; 1951 } 1952 1953 /* 1954 * Enable interrupts. 1955 */ 1956 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1957 | HAL_INT_RXEOL | HAL_INT_RXORN 1958 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1959 1960 /* 1961 * Enable RX EDMA bits. Note these overlap with 1962 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1963 */ 1964 if (sc->sc_isedma) 1965 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1966 1967 /* 1968 * Enable MIB interrupts when there are hardware phy counters. 1969 * Note we only do this (at the moment) for station mode. 1970 */ 1971 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1972 sc->sc_imask |= HAL_INT_MIB; 1973 1974 /* Enable global TX timeout and carrier sense timeout if available */ 1975 if (ath_hal_gtxto_supported(ah)) 1976 sc->sc_imask |= HAL_INT_GTT; 1977 1978 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1979 __func__, sc->sc_imask); 1980 1981 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1982 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1983 ath_hal_intrset(ah, sc->sc_imask); 1984 1985 ATH_UNLOCK(sc); 1986 1987 #ifdef ATH_TX99_DIAG 1988 if (sc->sc_tx99 != NULL) 1989 sc->sc_tx99->start(sc->sc_tx99); 1990 else 1991 #endif 1992 ieee80211_start_all(ic); /* start all vap's */ 1993 } 1994 1995 static void 1996 ath_stop_locked(struct ifnet *ifp) 1997 { 1998 struct ath_softc *sc = ifp->if_softc; 1999 struct ath_hal *ah = sc->sc_ah; 2000 2001 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2002 __func__, sc->sc_invalid, ifp->if_flags); 2003 2004 ATH_LOCK_ASSERT(sc); 2005 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2006 /* 2007 * Shutdown the hardware and driver: 2008 * reset 802.11 state machine 2009 * turn off timers 2010 * disable interrupts 2011 * turn off the radio 2012 * clear transmit machinery 2013 * clear receive machinery 2014 * drain and release tx queues 2015 * reclaim beacon resources 2016 * power down hardware 2017 * 2018 * Note that some of this work is not possible if the 2019 * hardware is gone (invalid). 2020 */ 2021 #ifdef ATH_TX99_DIAG 2022 if (sc->sc_tx99 != NULL) 2023 sc->sc_tx99->stop(sc->sc_tx99); 2024 #endif 2025 callout_stop(&sc->sc_wd_ch); 2026 sc->sc_wd_timer = 0; 2027 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2028 if (!sc->sc_invalid) { 2029 if (sc->sc_softled) { 2030 callout_stop(&sc->sc_ledtimer); 2031 ath_hal_gpioset(ah, sc->sc_ledpin, 2032 !sc->sc_ledon); 2033 sc->sc_blinking = 0; 2034 } 2035 ath_hal_intrset(ah, 0); 2036 } 2037 ath_draintxq(sc, ATH_RESET_DEFAULT); 2038 if (!sc->sc_invalid) { 2039 ath_stoprecv(sc, 1); 2040 ath_hal_phydisable(ah); 2041 } else 2042 sc->sc_rxlink = NULL; 2043 ath_beacon_free(sc); /* XXX not needed */ 2044 } 2045 } 2046 2047 #define MAX_TXRX_ITERATIONS 1000 2048 static void 2049 ath_txrx_stop_locked(struct ath_softc *sc) 2050 { 2051 int i = MAX_TXRX_ITERATIONS; 2052 2053 ATH_UNLOCK_ASSERT(sc); 2054 ATH_PCU_LOCK_ASSERT(sc); 2055 2056 /* 2057 * Sleep until all the pending operations have completed. 2058 * 2059 * The caller must ensure that reset has been incremented 2060 * or the pending operations may continue being queued. 2061 */ 2062 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2063 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2064 if (i <= 0) 2065 break; 2066 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2067 i--; 2068 } 2069 2070 if (i <= 0) 2071 device_printf(sc->sc_dev, 2072 "%s: didn't finish after %d iterations\n", 2073 __func__, MAX_TXRX_ITERATIONS); 2074 } 2075 #undef MAX_TXRX_ITERATIONS 2076 2077 #if 0 2078 static void 2079 ath_txrx_stop(struct ath_softc *sc) 2080 { 2081 ATH_UNLOCK_ASSERT(sc); 2082 ATH_PCU_UNLOCK_ASSERT(sc); 2083 2084 ATH_PCU_LOCK(sc); 2085 ath_txrx_stop_locked(sc); 2086 ATH_PCU_UNLOCK(sc); 2087 } 2088 #endif 2089 2090 static void 2091 ath_txrx_start(struct ath_softc *sc) 2092 { 2093 2094 taskqueue_unblock(sc->sc_tq); 2095 } 2096 2097 /* 2098 * Grab the reset lock, and wait around until noone else 2099 * is trying to do anything with it. 2100 * 2101 * This is totally horrible but we can't hold this lock for 2102 * long enough to do TX/RX or we end up with net80211/ip stack 2103 * LORs and eventual deadlock. 2104 * 2105 * "dowait" signals whether to spin, waiting for the reset 2106 * lock count to reach 0. This should (for now) only be used 2107 * during the reset path, as the rest of the code may not 2108 * be locking-reentrant enough to behave correctly. 2109 * 2110 * Another, cleaner way should be found to serialise all of 2111 * these operations. 2112 */ 2113 #define MAX_RESET_ITERATIONS 10 2114 static int 2115 ath_reset_grablock(struct ath_softc *sc, int dowait) 2116 { 2117 int w = 0; 2118 int i = MAX_RESET_ITERATIONS; 2119 2120 ATH_PCU_LOCK_ASSERT(sc); 2121 do { 2122 if (sc->sc_inreset_cnt == 0) { 2123 w = 1; 2124 break; 2125 } 2126 if (dowait == 0) { 2127 w = 0; 2128 break; 2129 } 2130 ATH_PCU_UNLOCK(sc); 2131 pause("ath_reset_grablock", 1); 2132 i--; 2133 ATH_PCU_LOCK(sc); 2134 } while (i > 0); 2135 2136 /* 2137 * We always increment the refcounter, regardless 2138 * of whether we succeeded to get it in an exclusive 2139 * way. 2140 */ 2141 sc->sc_inreset_cnt++; 2142 2143 if (i <= 0) 2144 device_printf(sc->sc_dev, 2145 "%s: didn't finish after %d iterations\n", 2146 __func__, MAX_RESET_ITERATIONS); 2147 2148 if (w == 0) 2149 device_printf(sc->sc_dev, 2150 "%s: warning, recursive reset path!\n", 2151 __func__); 2152 2153 return w; 2154 } 2155 #undef MAX_RESET_ITERATIONS 2156 2157 /* 2158 * XXX TODO: write ath_reset_releaselock 2159 */ 2160 2161 static void 2162 ath_stop(struct ifnet *ifp) 2163 { 2164 struct ath_softc *sc = ifp->if_softc; 2165 2166 ATH_LOCK(sc); 2167 ath_stop_locked(ifp); 2168 ATH_UNLOCK(sc); 2169 } 2170 2171 /* 2172 * Reset the hardware w/o losing operational state. This is 2173 * basically a more efficient way of doing ath_stop, ath_init, 2174 * followed by state transitions to the current 802.11 2175 * operational state. Used to recover from various errors and 2176 * to reset or reload hardware state. 2177 */ 2178 int 2179 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2180 { 2181 struct ath_softc *sc = ifp->if_softc; 2182 struct ieee80211com *ic = ifp->if_l2com; 2183 struct ath_hal *ah = sc->sc_ah; 2184 HAL_STATUS status; 2185 int i; 2186 2187 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2188 2189 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2190 ATH_PCU_UNLOCK_ASSERT(sc); 2191 ATH_UNLOCK_ASSERT(sc); 2192 2193 /* Try to (stop any further TX/RX from occuring */ 2194 taskqueue_block(sc->sc_tq); 2195 2196 ATH_PCU_LOCK(sc); 2197 ath_hal_intrset(ah, 0); /* disable interrupts */ 2198 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2199 if (ath_reset_grablock(sc, 1) == 0) { 2200 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2201 __func__); 2202 } 2203 ATH_PCU_UNLOCK(sc); 2204 2205 /* 2206 * Should now wait for pending TX/RX to complete 2207 * and block future ones from occuring. This needs to be 2208 * done before the TX queue is drained. 2209 */ 2210 ath_draintxq(sc, reset_type); /* stop xmit side */ 2211 2212 /* 2213 * Regardless of whether we're doing a no-loss flush or 2214 * not, stop the PCU and handle what's in the RX queue. 2215 * That way frames aren't dropped which shouldn't be. 2216 */ 2217 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2218 ath_rx_flush(sc); 2219 2220 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2221 /* NB: indicate channel change so we do a full reset */ 2222 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2223 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2224 __func__, status); 2225 sc->sc_diversity = ath_hal_getdiversity(ah); 2226 2227 /* Let DFS at it in case it's a DFS channel */ 2228 ath_dfs_radar_enable(sc, ic->ic_curchan); 2229 2230 if (ath_startrecv(sc) != 0) /* restart recv */ 2231 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2232 /* 2233 * We may be doing a reset in response to an ioctl 2234 * that changes the channel so update any state that 2235 * might change as a result. 2236 */ 2237 ath_chan_change(sc, ic->ic_curchan); 2238 if (sc->sc_beacons) { /* restart beacons */ 2239 #ifdef IEEE80211_SUPPORT_TDMA 2240 if (sc->sc_tdma) 2241 ath_tdma_config(sc, NULL); 2242 else 2243 #endif 2244 ath_beacon_config(sc, NULL); 2245 } 2246 2247 /* 2248 * Release the reset lock and re-enable interrupts here. 2249 * If an interrupt was being processed in ath_intr(), 2250 * it would disable interrupts at this point. So we have 2251 * to atomically enable interrupts and decrement the 2252 * reset counter - this way ath_intr() doesn't end up 2253 * disabling interrupts without a corresponding enable 2254 * in the rest or channel change path. 2255 */ 2256 ATH_PCU_LOCK(sc); 2257 sc->sc_inreset_cnt--; 2258 /* XXX only do this if sc_inreset_cnt == 0? */ 2259 ath_hal_intrset(ah, sc->sc_imask); 2260 ATH_PCU_UNLOCK(sc); 2261 2262 /* 2263 * TX and RX can be started here. If it were started with 2264 * sc_inreset_cnt > 0, the TX and RX path would abort. 2265 * Thus if this is a nested call through the reset or 2266 * channel change code, TX completion will occur but 2267 * RX completion and ath_start / ath_tx_start will not 2268 * run. 2269 */ 2270 2271 /* Restart TX/RX as needed */ 2272 ath_txrx_start(sc); 2273 2274 /* XXX Restart TX completion and pending TX */ 2275 if (reset_type == ATH_RESET_NOLOSS) { 2276 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2277 if (ATH_TXQ_SETUP(sc, i)) { 2278 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2279 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2280 ath_txq_sched(sc, &sc->sc_txq[i]); 2281 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2282 } 2283 } 2284 } 2285 2286 /* 2287 * This may have been set during an ath_start() call which 2288 * set this once it detected a concurrent TX was going on. 2289 * So, clear it. 2290 */ 2291 IF_LOCK(&ifp->if_snd); 2292 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2293 IF_UNLOCK(&ifp->if_snd); 2294 2295 /* Handle any frames in the TX queue */ 2296 /* 2297 * XXX should this be done by the caller, rather than 2298 * ath_reset() ? 2299 */ 2300 ath_tx_kick(sc); /* restart xmit */ 2301 return 0; 2302 } 2303 2304 static int 2305 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2306 { 2307 struct ieee80211com *ic = vap->iv_ic; 2308 struct ifnet *ifp = ic->ic_ifp; 2309 struct ath_softc *sc = ifp->if_softc; 2310 struct ath_hal *ah = sc->sc_ah; 2311 2312 switch (cmd) { 2313 case IEEE80211_IOC_TXPOWER: 2314 /* 2315 * If per-packet TPC is enabled, then we have nothing 2316 * to do; otherwise we need to force the global limit. 2317 * All this can happen directly; no need to reset. 2318 */ 2319 if (!ath_hal_gettpc(ah)) 2320 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2321 return 0; 2322 } 2323 /* XXX? Full or NOLOSS? */ 2324 return ath_reset(ifp, ATH_RESET_FULL); 2325 } 2326 2327 struct ath_buf * 2328 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2329 { 2330 struct ath_buf *bf; 2331 2332 ATH_TXBUF_LOCK_ASSERT(sc); 2333 2334 if (btype == ATH_BUFTYPE_MGMT) 2335 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2336 else 2337 bf = TAILQ_FIRST(&sc->sc_txbuf); 2338 2339 if (bf == NULL) { 2340 sc->sc_stats.ast_tx_getnobuf++; 2341 } else { 2342 if (bf->bf_flags & ATH_BUF_BUSY) { 2343 sc->sc_stats.ast_tx_getbusybuf++; 2344 bf = NULL; 2345 } 2346 } 2347 2348 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2349 if (btype == ATH_BUFTYPE_MGMT) 2350 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2351 else { 2352 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2353 sc->sc_txbuf_cnt--; 2354 2355 /* 2356 * This shuldn't happen; however just to be 2357 * safe print a warning and fudge the txbuf 2358 * count. 2359 */ 2360 if (sc->sc_txbuf_cnt < 0) { 2361 device_printf(sc->sc_dev, 2362 "%s: sc_txbuf_cnt < 0?\n", 2363 __func__); 2364 sc->sc_txbuf_cnt = 0; 2365 } 2366 } 2367 } else 2368 bf = NULL; 2369 2370 if (bf == NULL) { 2371 /* XXX should check which list, mgmt or otherwise */ 2372 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2373 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2374 "out of xmit buffers" : "xmit buffer busy"); 2375 return NULL; 2376 } 2377 2378 /* XXX TODO: should do this at buffer list initialisation */ 2379 /* XXX (then, ensure the buffer has the right flag set) */ 2380 if (btype == ATH_BUFTYPE_MGMT) 2381 bf->bf_flags |= ATH_BUF_MGMT; 2382 else 2383 bf->bf_flags &= (~ATH_BUF_MGMT); 2384 2385 /* Valid bf here; clear some basic fields */ 2386 bf->bf_next = NULL; /* XXX just to be sure */ 2387 bf->bf_last = NULL; /* XXX again, just to be sure */ 2388 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2389 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2390 2391 /* 2392 * Track the descriptor ID only if doing EDMA 2393 */ 2394 if (sc->sc_isedma) { 2395 bf->bf_descid = sc->sc_txbuf_descid; 2396 sc->sc_txbuf_descid++; 2397 } 2398 2399 return bf; 2400 } 2401 2402 /* 2403 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2404 * can't be thrown back on the queue as they could still be 2405 * in use by the hardware. 2406 * 2407 * This duplicates the buffer, or returns NULL. 2408 * 2409 * The descriptor is also copied but the link pointers and 2410 * the DMA segments aren't copied; this frame should thus 2411 * be again passed through the descriptor setup/chain routines 2412 * so the link is correct. 2413 * 2414 * The caller must free the buffer using ath_freebuf(). 2415 * 2416 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2417 * XXX in the TX pathway when retries are needed. 2418 * XXX Figure out how to keep some buffers free, or factor the 2419 * XXX number of busy buffers into the xmit path (ath_start()) 2420 * XXX so we don't over-commit. 2421 */ 2422 struct ath_buf * 2423 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2424 { 2425 struct ath_buf *tbf; 2426 2427 tbf = ath_getbuf(sc, 2428 (bf->bf_flags & ATH_BUF_MGMT) ? 2429 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2430 if (tbf == NULL) 2431 return NULL; /* XXX failure? Why? */ 2432 2433 /* Copy basics */ 2434 tbf->bf_next = NULL; 2435 tbf->bf_nseg = bf->bf_nseg; 2436 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2437 tbf->bf_status = bf->bf_status; 2438 tbf->bf_m = bf->bf_m; 2439 tbf->bf_node = bf->bf_node; 2440 /* will be setup by the chain/setup function */ 2441 tbf->bf_lastds = NULL; 2442 /* for now, last == self */ 2443 tbf->bf_last = tbf; 2444 tbf->bf_comp = bf->bf_comp; 2445 2446 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2447 2448 /* The caller has to re-init the descriptor + links */ 2449 2450 /* Copy state */ 2451 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2452 2453 return tbf; 2454 } 2455 2456 struct ath_buf * 2457 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2458 { 2459 struct ath_buf *bf; 2460 2461 ATH_TXBUF_LOCK(sc); 2462 bf = _ath_getbuf_locked(sc, btype); 2463 /* 2464 * If a mgmt buffer was requested but we're out of those, 2465 * try requesting a normal one. 2466 */ 2467 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2468 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2469 ATH_TXBUF_UNLOCK(sc); 2470 if (bf == NULL) { 2471 struct ifnet *ifp = sc->sc_ifp; 2472 2473 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2474 sc->sc_stats.ast_tx_qstop++; 2475 IF_LOCK(&ifp->if_snd); 2476 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2477 IF_UNLOCK(&ifp->if_snd); 2478 } 2479 return bf; 2480 } 2481 2482 static void 2483 ath_start_queue(struct ifnet *ifp) 2484 { 2485 struct ath_softc *sc = ifp->if_softc; 2486 2487 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2488 ath_tx_kick(sc); 2489 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2490 } 2491 2492 void 2493 ath_start_task(void *arg, int npending) 2494 { 2495 struct ath_softc *sc = (struct ath_softc *) arg; 2496 struct ifnet *ifp = sc->sc_ifp; 2497 2498 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2499 2500 /* XXX is it ok to hold the ATH_LOCK here? */ 2501 ATH_PCU_LOCK(sc); 2502 if (sc->sc_inreset_cnt > 0) { 2503 device_printf(sc->sc_dev, 2504 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2505 ATH_PCU_UNLOCK(sc); 2506 IF_LOCK(&ifp->if_snd); 2507 sc->sc_stats.ast_tx_qstop++; 2508 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2509 IF_UNLOCK(&ifp->if_snd); 2510 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2511 return; 2512 } 2513 sc->sc_txstart_cnt++; 2514 ATH_PCU_UNLOCK(sc); 2515 2516 ath_start(sc->sc_ifp); 2517 2518 ATH_PCU_LOCK(sc); 2519 sc->sc_txstart_cnt--; 2520 ATH_PCU_UNLOCK(sc); 2521 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2522 } 2523 2524 void 2525 ath_start(struct ifnet *ifp) 2526 { 2527 struct ath_softc *sc = ifp->if_softc; 2528 struct ieee80211_node *ni; 2529 struct ath_buf *bf; 2530 struct mbuf *m, *next; 2531 ath_bufhead frags; 2532 int npkts = 0; 2533 2534 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2535 return; 2536 2537 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2538 2539 for (;;) { 2540 ATH_TXBUF_LOCK(sc); 2541 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2542 /* XXX increment counter? */ 2543 ATH_TXBUF_UNLOCK(sc); 2544 IF_LOCK(&ifp->if_snd); 2545 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2546 IF_UNLOCK(&ifp->if_snd); 2547 break; 2548 } 2549 ATH_TXBUF_UNLOCK(sc); 2550 2551 /* 2552 * Grab a TX buffer and associated resources. 2553 */ 2554 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2555 if (bf == NULL) 2556 break; 2557 2558 IFQ_DEQUEUE(&ifp->if_snd, m); 2559 if (m == NULL) { 2560 ATH_TXBUF_LOCK(sc); 2561 ath_returnbuf_head(sc, bf); 2562 ATH_TXBUF_UNLOCK(sc); 2563 break; 2564 } 2565 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2566 npkts ++; 2567 /* 2568 * Check for fragmentation. If this frame 2569 * has been broken up verify we have enough 2570 * buffers to send all the fragments so all 2571 * go out or none... 2572 */ 2573 TAILQ_INIT(&frags); 2574 if ((m->m_flags & M_FRAG) && 2575 !ath_txfrag_setup(sc, &frags, m, ni)) { 2576 DPRINTF(sc, ATH_DEBUG_XMIT, 2577 "%s: out of txfrag buffers\n", __func__); 2578 sc->sc_stats.ast_tx_nofrag++; 2579 ifp->if_oerrors++; 2580 ath_freetx(m); 2581 goto bad; 2582 } 2583 ifp->if_opackets++; 2584 nextfrag: 2585 /* 2586 * Pass the frame to the h/w for transmission. 2587 * Fragmented frames have each frag chained together 2588 * with m_nextpkt. We know there are sufficient ath_buf's 2589 * to send all the frags because of work done by 2590 * ath_txfrag_setup. We leave m_nextpkt set while 2591 * calling ath_tx_start so it can use it to extend the 2592 * the tx duration to cover the subsequent frag and 2593 * so it can reclaim all the mbufs in case of an error; 2594 * ath_tx_start clears m_nextpkt once it commits to 2595 * handing the frame to the hardware. 2596 */ 2597 next = m->m_nextpkt; 2598 if (ath_tx_start(sc, ni, bf, m)) { 2599 bad: 2600 ifp->if_oerrors++; 2601 reclaim: 2602 bf->bf_m = NULL; 2603 bf->bf_node = NULL; 2604 ATH_TXBUF_LOCK(sc); 2605 ath_returnbuf_head(sc, bf); 2606 ath_txfrag_cleanup(sc, &frags, ni); 2607 ATH_TXBUF_UNLOCK(sc); 2608 if (ni != NULL) 2609 ieee80211_free_node(ni); 2610 continue; 2611 } 2612 2613 /* 2614 * Check here if the node is in power save state. 2615 */ 2616 ath_tx_update_tim(sc, ni, 1); 2617 2618 if (next != NULL) { 2619 /* 2620 * Beware of state changing between frags. 2621 * XXX check sta power-save state? 2622 */ 2623 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2624 DPRINTF(sc, ATH_DEBUG_XMIT, 2625 "%s: flush fragmented packet, state %s\n", 2626 __func__, 2627 ieee80211_state_name[ni->ni_vap->iv_state]); 2628 ath_freetx(next); 2629 goto reclaim; 2630 } 2631 m = next; 2632 bf = TAILQ_FIRST(&frags); 2633 KASSERT(bf != NULL, ("no buf for txfrag")); 2634 TAILQ_REMOVE(&frags, bf, bf_list); 2635 goto nextfrag; 2636 } 2637 2638 sc->sc_wd_timer = 5; 2639 } 2640 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2641 } 2642 2643 static int 2644 ath_media_change(struct ifnet *ifp) 2645 { 2646 int error = ieee80211_media_change(ifp); 2647 /* NB: only the fixed rate can change and that doesn't need a reset */ 2648 return (error == ENETRESET ? 0 : error); 2649 } 2650 2651 /* 2652 * Block/unblock tx+rx processing while a key change is done. 2653 * We assume the caller serializes key management operations 2654 * so we only need to worry about synchronization with other 2655 * uses that originate in the driver. 2656 */ 2657 static void 2658 ath_key_update_begin(struct ieee80211vap *vap) 2659 { 2660 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2661 struct ath_softc *sc = ifp->if_softc; 2662 2663 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2664 taskqueue_block(sc->sc_tq); 2665 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2666 } 2667 2668 static void 2669 ath_key_update_end(struct ieee80211vap *vap) 2670 { 2671 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2672 struct ath_softc *sc = ifp->if_softc; 2673 2674 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2675 IF_UNLOCK(&ifp->if_snd); 2676 taskqueue_unblock(sc->sc_tq); 2677 } 2678 2679 static void 2680 ath_update_promisc(struct ifnet *ifp) 2681 { 2682 struct ath_softc *sc = ifp->if_softc; 2683 u_int32_t rfilt; 2684 2685 /* configure rx filter */ 2686 rfilt = ath_calcrxfilter(sc); 2687 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2688 2689 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2690 } 2691 2692 static void 2693 ath_update_mcast(struct ifnet *ifp) 2694 { 2695 struct ath_softc *sc = ifp->if_softc; 2696 u_int32_t mfilt[2]; 2697 2698 /* calculate and install multicast filter */ 2699 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2700 struct ifmultiaddr *ifma; 2701 /* 2702 * Merge multicast addresses to form the hardware filter. 2703 */ 2704 mfilt[0] = mfilt[1] = 0; 2705 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2706 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2707 caddr_t dl; 2708 u_int32_t val; 2709 u_int8_t pos; 2710 2711 /* calculate XOR of eight 6bit values */ 2712 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2713 val = LE_READ_4(dl + 0); 2714 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2715 val = LE_READ_4(dl + 3); 2716 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2717 pos &= 0x3f; 2718 mfilt[pos / 32] |= (1 << (pos % 32)); 2719 } 2720 if_maddr_runlock(ifp); 2721 } else 2722 mfilt[0] = mfilt[1] = ~0; 2723 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2724 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2725 __func__, mfilt[0], mfilt[1]); 2726 } 2727 2728 void 2729 ath_mode_init(struct ath_softc *sc) 2730 { 2731 struct ifnet *ifp = sc->sc_ifp; 2732 struct ath_hal *ah = sc->sc_ah; 2733 u_int32_t rfilt; 2734 2735 /* configure rx filter */ 2736 rfilt = ath_calcrxfilter(sc); 2737 ath_hal_setrxfilter(ah, rfilt); 2738 2739 /* configure operational mode */ 2740 ath_hal_setopmode(ah); 2741 2742 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2743 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2744 __func__, 2745 ah, 2746 ifp, 2747 (ifp == NULL) ? NULL : ifp->if_addr); 2748 2749 /* handle any link-level address change */ 2750 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2751 2752 /* calculate and install multicast filter */ 2753 ath_update_mcast(ifp); 2754 } 2755 2756 /* 2757 * Set the slot time based on the current setting. 2758 */ 2759 void 2760 ath_setslottime(struct ath_softc *sc) 2761 { 2762 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2763 struct ath_hal *ah = sc->sc_ah; 2764 u_int usec; 2765 2766 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2767 usec = 13; 2768 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2769 usec = 21; 2770 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2771 /* honor short/long slot time only in 11g */ 2772 /* XXX shouldn't honor on pure g or turbo g channel */ 2773 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2774 usec = HAL_SLOT_TIME_9; 2775 else 2776 usec = HAL_SLOT_TIME_20; 2777 } else 2778 usec = HAL_SLOT_TIME_9; 2779 2780 DPRINTF(sc, ATH_DEBUG_RESET, 2781 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2782 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2783 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2784 2785 ath_hal_setslottime(ah, usec); 2786 sc->sc_updateslot = OK; 2787 } 2788 2789 /* 2790 * Callback from the 802.11 layer to update the 2791 * slot time based on the current setting. 2792 */ 2793 static void 2794 ath_updateslot(struct ifnet *ifp) 2795 { 2796 struct ath_softc *sc = ifp->if_softc; 2797 struct ieee80211com *ic = ifp->if_l2com; 2798 2799 /* 2800 * When not coordinating the BSS, change the hardware 2801 * immediately. For other operation we defer the change 2802 * until beacon updates have propagated to the stations. 2803 */ 2804 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2805 ic->ic_opmode == IEEE80211_M_MBSS) 2806 sc->sc_updateslot = UPDATE; 2807 else 2808 ath_setslottime(sc); 2809 } 2810 2811 /* 2812 * Append the contents of src to dst; both queues 2813 * are assumed to be locked. 2814 */ 2815 void 2816 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2817 { 2818 2819 ATH_TXQ_LOCK_ASSERT(dst); 2820 ATH_TXQ_LOCK_ASSERT(src); 2821 2822 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2823 dst->axq_link = src->axq_link; 2824 src->axq_link = NULL; 2825 dst->axq_depth += src->axq_depth; 2826 dst->axq_aggr_depth += src->axq_aggr_depth; 2827 src->axq_depth = 0; 2828 src->axq_aggr_depth = 0; 2829 } 2830 2831 /* 2832 * Reset the hardware, with no loss. 2833 * 2834 * This can't be used for a general case reset. 2835 */ 2836 static void 2837 ath_reset_proc(void *arg, int pending) 2838 { 2839 struct ath_softc *sc = arg; 2840 struct ifnet *ifp = sc->sc_ifp; 2841 2842 #if 0 2843 if_printf(ifp, "%s: resetting\n", __func__); 2844 #endif 2845 ath_reset(ifp, ATH_RESET_NOLOSS); 2846 } 2847 2848 /* 2849 * Reset the hardware after detecting beacons have stopped. 2850 */ 2851 static void 2852 ath_bstuck_proc(void *arg, int pending) 2853 { 2854 struct ath_softc *sc = arg; 2855 struct ifnet *ifp = sc->sc_ifp; 2856 uint32_t hangs = 0; 2857 2858 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2859 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2860 2861 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2862 sc->sc_bmisscount); 2863 sc->sc_stats.ast_bstuck++; 2864 /* 2865 * This assumes that there's no simultaneous channel mode change 2866 * occuring. 2867 */ 2868 ath_reset(ifp, ATH_RESET_NOLOSS); 2869 } 2870 2871 static void 2872 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2873 { 2874 bus_addr_t *paddr = (bus_addr_t*) arg; 2875 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2876 *paddr = segs->ds_addr; 2877 } 2878 2879 /* 2880 * Allocate the descriptors and appropriate DMA tag/setup. 2881 * 2882 * For some situations (eg EDMA TX completion), there isn't a requirement 2883 * for the ath_buf entries to be allocated. 2884 */ 2885 int 2886 ath_descdma_alloc_desc(struct ath_softc *sc, 2887 struct ath_descdma *dd, ath_bufhead *head, 2888 const char *name, int ds_size, int ndesc) 2889 { 2890 #define DS2PHYS(_dd, _ds) \ 2891 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2892 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2893 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2894 struct ifnet *ifp = sc->sc_ifp; 2895 int error; 2896 2897 dd->dd_descsize = ds_size; 2898 2899 DPRINTF(sc, ATH_DEBUG_RESET, 2900 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2901 __func__, name, ndesc, dd->dd_descsize); 2902 2903 dd->dd_name = name; 2904 dd->dd_desc_len = dd->dd_descsize * ndesc; 2905 2906 /* 2907 * Merlin work-around: 2908 * Descriptors that cross the 4KB boundary can't be used. 2909 * Assume one skipped descriptor per 4KB page. 2910 */ 2911 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2912 int numpages = dd->dd_desc_len / 4096; 2913 dd->dd_desc_len += ds_size * numpages; 2914 } 2915 2916 /* 2917 * Setup DMA descriptor area. 2918 */ 2919 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2920 PAGE_SIZE, 0, /* alignment, bounds */ 2921 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2922 BUS_SPACE_MAXADDR, /* highaddr */ 2923 NULL, NULL, /* filter, filterarg */ 2924 dd->dd_desc_len, /* maxsize */ 2925 1, /* nsegments */ 2926 dd->dd_desc_len, /* maxsegsize */ 2927 BUS_DMA_ALLOCNOW, /* flags */ 2928 NULL, /* lockfunc */ 2929 NULL, /* lockarg */ 2930 &dd->dd_dmat); 2931 if (error != 0) { 2932 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2933 return error; 2934 } 2935 2936 /* allocate descriptors */ 2937 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2938 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2939 &dd->dd_dmamap); 2940 if (error != 0) { 2941 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2942 "error %u\n", ndesc, dd->dd_name, error); 2943 goto fail1; 2944 } 2945 2946 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2947 dd->dd_desc, dd->dd_desc_len, 2948 ath_load_cb, &dd->dd_desc_paddr, 2949 BUS_DMA_NOWAIT); 2950 if (error != 0) { 2951 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2952 dd->dd_name, error); 2953 goto fail2; 2954 } 2955 2956 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2957 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2958 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2959 /*XXX*/ (u_long) dd->dd_desc_len); 2960 2961 return (0); 2962 2963 fail2: 2964 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2965 fail1: 2966 bus_dma_tag_destroy(dd->dd_dmat); 2967 memset(dd, 0, sizeof(*dd)); 2968 return error; 2969 #undef DS2PHYS 2970 #undef ATH_DESC_4KB_BOUND_CHECK 2971 } 2972 2973 int 2974 ath_descdma_setup(struct ath_softc *sc, 2975 struct ath_descdma *dd, ath_bufhead *head, 2976 const char *name, int ds_size, int nbuf, int ndesc) 2977 { 2978 #define DS2PHYS(_dd, _ds) \ 2979 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2980 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2981 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2982 struct ifnet *ifp = sc->sc_ifp; 2983 uint8_t *ds; 2984 struct ath_buf *bf; 2985 int i, bsize, error; 2986 2987 /* Allocate descriptors */ 2988 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2989 nbuf * ndesc); 2990 2991 /* Assume any errors during allocation were dealt with */ 2992 if (error != 0) { 2993 return (error); 2994 } 2995 2996 ds = (uint8_t *) dd->dd_desc; 2997 2998 /* allocate rx buffers */ 2999 bsize = sizeof(struct ath_buf) * nbuf; 3000 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3001 if (bf == NULL) { 3002 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3003 dd->dd_name, bsize); 3004 goto fail3; 3005 } 3006 dd->dd_bufptr = bf; 3007 3008 TAILQ_INIT(head); 3009 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3010 bf->bf_desc = (struct ath_desc *) ds; 3011 bf->bf_daddr = DS2PHYS(dd, ds); 3012 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3013 /* 3014 * Merlin WAR: Skip descriptor addresses which 3015 * cause 4KB boundary crossing along any point 3016 * in the descriptor. 3017 */ 3018 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3019 dd->dd_descsize)) { 3020 /* Start at the next page */ 3021 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3022 bf->bf_desc = (struct ath_desc *) ds; 3023 bf->bf_daddr = DS2PHYS(dd, ds); 3024 } 3025 } 3026 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3027 &bf->bf_dmamap); 3028 if (error != 0) { 3029 if_printf(ifp, "unable to create dmamap for %s " 3030 "buffer %u, error %u\n", dd->dd_name, i, error); 3031 ath_descdma_cleanup(sc, dd, head); 3032 return error; 3033 } 3034 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3035 TAILQ_INSERT_TAIL(head, bf, bf_list); 3036 } 3037 3038 /* 3039 * XXX TODO: ensure that ds doesn't overflow the descriptor 3040 * allocation otherwise weird stuff will occur and crash your 3041 * machine. 3042 */ 3043 return 0; 3044 /* XXX this should likely just call ath_descdma_cleanup() */ 3045 fail3: 3046 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3047 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3048 bus_dma_tag_destroy(dd->dd_dmat); 3049 memset(dd, 0, sizeof(*dd)); 3050 return error; 3051 #undef DS2PHYS 3052 #undef ATH_DESC_4KB_BOUND_CHECK 3053 } 3054 3055 /* 3056 * Allocate ath_buf entries but no descriptor contents. 3057 * 3058 * This is for RX EDMA where the descriptors are the header part of 3059 * the RX buffer. 3060 */ 3061 int 3062 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3063 struct ath_descdma *dd, ath_bufhead *head, 3064 const char *name, int nbuf, int rx_status_len) 3065 { 3066 struct ifnet *ifp = sc->sc_ifp; 3067 struct ath_buf *bf; 3068 int i, bsize, error; 3069 3070 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3071 __func__, name, nbuf); 3072 3073 dd->dd_name = name; 3074 /* 3075 * This is (mostly) purely for show. We're not allocating any actual 3076 * descriptors here as EDMA RX has the descriptor be part 3077 * of the RX buffer. 3078 * 3079 * However, dd_desc_len is used by ath_descdma_free() to determine 3080 * whether we have already freed this DMA mapping. 3081 */ 3082 dd->dd_desc_len = rx_status_len * nbuf; 3083 dd->dd_descsize = rx_status_len; 3084 3085 /* allocate rx buffers */ 3086 bsize = sizeof(struct ath_buf) * nbuf; 3087 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3088 if (bf == NULL) { 3089 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3090 dd->dd_name, bsize); 3091 error = ENOMEM; 3092 goto fail3; 3093 } 3094 dd->dd_bufptr = bf; 3095 3096 TAILQ_INIT(head); 3097 for (i = 0; i < nbuf; i++, bf++) { 3098 bf->bf_desc = NULL; 3099 bf->bf_daddr = 0; 3100 bf->bf_lastds = NULL; /* Just an initial value */ 3101 3102 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3103 &bf->bf_dmamap); 3104 if (error != 0) { 3105 if_printf(ifp, "unable to create dmamap for %s " 3106 "buffer %u, error %u\n", dd->dd_name, i, error); 3107 ath_descdma_cleanup(sc, dd, head); 3108 return error; 3109 } 3110 TAILQ_INSERT_TAIL(head, bf, bf_list); 3111 } 3112 return 0; 3113 fail3: 3114 memset(dd, 0, sizeof(*dd)); 3115 return error; 3116 } 3117 3118 void 3119 ath_descdma_cleanup(struct ath_softc *sc, 3120 struct ath_descdma *dd, ath_bufhead *head) 3121 { 3122 struct ath_buf *bf; 3123 struct ieee80211_node *ni; 3124 3125 if (dd->dd_dmamap != 0) { 3126 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3127 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3128 bus_dma_tag_destroy(dd->dd_dmat); 3129 } 3130 3131 if (head != NULL) { 3132 TAILQ_FOREACH(bf, head, bf_list) { 3133 if (bf->bf_m) { 3134 m_freem(bf->bf_m); 3135 bf->bf_m = NULL; 3136 } 3137 if (bf->bf_dmamap != NULL) { 3138 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3139 bf->bf_dmamap = NULL; 3140 } 3141 ni = bf->bf_node; 3142 bf->bf_node = NULL; 3143 if (ni != NULL) { 3144 /* 3145 * Reclaim node reference. 3146 */ 3147 ieee80211_free_node(ni); 3148 } 3149 } 3150 } 3151 3152 if (head != NULL) 3153 TAILQ_INIT(head); 3154 3155 if (dd->dd_bufptr != NULL) 3156 free(dd->dd_bufptr, M_ATHDEV); 3157 memset(dd, 0, sizeof(*dd)); 3158 } 3159 3160 static int 3161 ath_desc_alloc(struct ath_softc *sc) 3162 { 3163 int error; 3164 3165 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3166 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3167 if (error != 0) { 3168 return error; 3169 } 3170 sc->sc_txbuf_cnt = ath_txbuf; 3171 3172 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3173 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3174 ATH_TXDESC); 3175 if (error != 0) { 3176 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3177 return error; 3178 } 3179 3180 /* 3181 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3182 * flag doesn't have to be set in ath_getbuf_locked(). 3183 */ 3184 3185 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3186 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3187 if (error != 0) { 3188 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3189 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3190 &sc->sc_txbuf_mgmt); 3191 return error; 3192 } 3193 return 0; 3194 } 3195 3196 static void 3197 ath_desc_free(struct ath_softc *sc) 3198 { 3199 3200 if (sc->sc_bdma.dd_desc_len != 0) 3201 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3202 if (sc->sc_txdma.dd_desc_len != 0) 3203 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3204 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3205 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3206 &sc->sc_txbuf_mgmt); 3207 } 3208 3209 static struct ieee80211_node * 3210 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3211 { 3212 struct ieee80211com *ic = vap->iv_ic; 3213 struct ath_softc *sc = ic->ic_ifp->if_softc; 3214 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3215 struct ath_node *an; 3216 3217 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3218 if (an == NULL) { 3219 /* XXX stat+msg */ 3220 return NULL; 3221 } 3222 ath_rate_node_init(sc, an); 3223 3224 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3225 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3226 device_get_nameunit(sc->sc_dev), an); 3227 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3228 3229 /* XXX setup ath_tid */ 3230 ath_tx_tid_init(sc, an); 3231 3232 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3233 return &an->an_node; 3234 } 3235 3236 static void 3237 ath_node_cleanup(struct ieee80211_node *ni) 3238 { 3239 struct ieee80211com *ic = ni->ni_ic; 3240 struct ath_softc *sc = ic->ic_ifp->if_softc; 3241 3242 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3243 ath_tx_node_flush(sc, ATH_NODE(ni)); 3244 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3245 sc->sc_node_cleanup(ni); 3246 } 3247 3248 static void 3249 ath_node_free(struct ieee80211_node *ni) 3250 { 3251 struct ieee80211com *ic = ni->ni_ic; 3252 struct ath_softc *sc = ic->ic_ifp->if_softc; 3253 3254 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3255 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3256 sc->sc_node_free(ni); 3257 } 3258 3259 static void 3260 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3261 { 3262 struct ieee80211com *ic = ni->ni_ic; 3263 struct ath_softc *sc = ic->ic_ifp->if_softc; 3264 struct ath_hal *ah = sc->sc_ah; 3265 3266 *rssi = ic->ic_node_getrssi(ni); 3267 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3268 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3269 else 3270 *noise = -95; /* nominally correct */ 3271 } 3272 3273 /* 3274 * Set the default antenna. 3275 */ 3276 void 3277 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3278 { 3279 struct ath_hal *ah = sc->sc_ah; 3280 3281 /* XXX block beacon interrupts */ 3282 ath_hal_setdefantenna(ah, antenna); 3283 if (sc->sc_defant != antenna) 3284 sc->sc_stats.ast_ant_defswitch++; 3285 sc->sc_defant = antenna; 3286 sc->sc_rxotherant = 0; 3287 } 3288 3289 static void 3290 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3291 { 3292 txq->axq_qnum = qnum; 3293 txq->axq_ac = 0; 3294 txq->axq_depth = 0; 3295 txq->axq_aggr_depth = 0; 3296 txq->axq_intrcnt = 0; 3297 txq->axq_link = NULL; 3298 txq->axq_softc = sc; 3299 TAILQ_INIT(&txq->axq_q); 3300 TAILQ_INIT(&txq->axq_tidq); 3301 ATH_TXQ_LOCK_INIT(sc, txq); 3302 } 3303 3304 /* 3305 * Setup a h/w transmit queue. 3306 */ 3307 static struct ath_txq * 3308 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3309 { 3310 #define N(a) (sizeof(a)/sizeof(a[0])) 3311 struct ath_hal *ah = sc->sc_ah; 3312 HAL_TXQ_INFO qi; 3313 int qnum; 3314 3315 memset(&qi, 0, sizeof(qi)); 3316 qi.tqi_subtype = subtype; 3317 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3318 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3319 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3320 /* 3321 * Enable interrupts only for EOL and DESC conditions. 3322 * We mark tx descriptors to receive a DESC interrupt 3323 * when a tx queue gets deep; otherwise waiting for the 3324 * EOL to reap descriptors. Note that this is done to 3325 * reduce interrupt load and this only defers reaping 3326 * descriptors, never transmitting frames. Aside from 3327 * reducing interrupts this also permits more concurrency. 3328 * The only potential downside is if the tx queue backs 3329 * up in which case the top half of the kernel may backup 3330 * due to a lack of tx descriptors. 3331 */ 3332 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3333 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3334 if (qnum == -1) { 3335 /* 3336 * NB: don't print a message, this happens 3337 * normally on parts with too few tx queues 3338 */ 3339 return NULL; 3340 } 3341 if (qnum >= N(sc->sc_txq)) { 3342 device_printf(sc->sc_dev, 3343 "hal qnum %u out of range, max %zu!\n", 3344 qnum, N(sc->sc_txq)); 3345 ath_hal_releasetxqueue(ah, qnum); 3346 return NULL; 3347 } 3348 if (!ATH_TXQ_SETUP(sc, qnum)) { 3349 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3350 sc->sc_txqsetup |= 1<<qnum; 3351 } 3352 return &sc->sc_txq[qnum]; 3353 #undef N 3354 } 3355 3356 /* 3357 * Setup a hardware data transmit queue for the specified 3358 * access control. The hal may not support all requested 3359 * queues in which case it will return a reference to a 3360 * previously setup queue. We record the mapping from ac's 3361 * to h/w queues for use by ath_tx_start and also track 3362 * the set of h/w queues being used to optimize work in the 3363 * transmit interrupt handler and related routines. 3364 */ 3365 static int 3366 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3367 { 3368 #define N(a) (sizeof(a)/sizeof(a[0])) 3369 struct ath_txq *txq; 3370 3371 if (ac >= N(sc->sc_ac2q)) { 3372 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3373 ac, N(sc->sc_ac2q)); 3374 return 0; 3375 } 3376 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3377 if (txq != NULL) { 3378 txq->axq_ac = ac; 3379 sc->sc_ac2q[ac] = txq; 3380 return 1; 3381 } else 3382 return 0; 3383 #undef N 3384 } 3385 3386 /* 3387 * Update WME parameters for a transmit queue. 3388 */ 3389 static int 3390 ath_txq_update(struct ath_softc *sc, int ac) 3391 { 3392 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3393 #define ATH_TXOP_TO_US(v) (v<<5) 3394 struct ifnet *ifp = sc->sc_ifp; 3395 struct ieee80211com *ic = ifp->if_l2com; 3396 struct ath_txq *txq = sc->sc_ac2q[ac]; 3397 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3398 struct ath_hal *ah = sc->sc_ah; 3399 HAL_TXQ_INFO qi; 3400 3401 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3402 #ifdef IEEE80211_SUPPORT_TDMA 3403 if (sc->sc_tdma) { 3404 /* 3405 * AIFS is zero so there's no pre-transmit wait. The 3406 * burst time defines the slot duration and is configured 3407 * through net80211. The QCU is setup to not do post-xmit 3408 * back off, lockout all lower-priority QCU's, and fire 3409 * off the DMA beacon alert timer which is setup based 3410 * on the slot configuration. 3411 */ 3412 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3413 | HAL_TXQ_TXERRINT_ENABLE 3414 | HAL_TXQ_TXURNINT_ENABLE 3415 | HAL_TXQ_TXEOLINT_ENABLE 3416 | HAL_TXQ_DBA_GATED 3417 | HAL_TXQ_BACKOFF_DISABLE 3418 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3419 ; 3420 qi.tqi_aifs = 0; 3421 /* XXX +dbaprep? */ 3422 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3423 qi.tqi_burstTime = qi.tqi_readyTime; 3424 } else { 3425 #endif 3426 /* 3427 * XXX shouldn't this just use the default flags 3428 * used in the previous queue setup? 3429 */ 3430 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3431 | HAL_TXQ_TXERRINT_ENABLE 3432 | HAL_TXQ_TXDESCINT_ENABLE 3433 | HAL_TXQ_TXURNINT_ENABLE 3434 | HAL_TXQ_TXEOLINT_ENABLE 3435 ; 3436 qi.tqi_aifs = wmep->wmep_aifsn; 3437 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3438 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3439 qi.tqi_readyTime = 0; 3440 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3441 #ifdef IEEE80211_SUPPORT_TDMA 3442 } 3443 #endif 3444 3445 DPRINTF(sc, ATH_DEBUG_RESET, 3446 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3447 __func__, txq->axq_qnum, qi.tqi_qflags, 3448 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3449 3450 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3451 if_printf(ifp, "unable to update hardware queue " 3452 "parameters for %s traffic!\n", 3453 ieee80211_wme_acnames[ac]); 3454 return 0; 3455 } else { 3456 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3457 return 1; 3458 } 3459 #undef ATH_TXOP_TO_US 3460 #undef ATH_EXPONENT_TO_VALUE 3461 } 3462 3463 /* 3464 * Callback from the 802.11 layer to update WME parameters. 3465 */ 3466 int 3467 ath_wme_update(struct ieee80211com *ic) 3468 { 3469 struct ath_softc *sc = ic->ic_ifp->if_softc; 3470 3471 return !ath_txq_update(sc, WME_AC_BE) || 3472 !ath_txq_update(sc, WME_AC_BK) || 3473 !ath_txq_update(sc, WME_AC_VI) || 3474 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3475 } 3476 3477 /* 3478 * Reclaim resources for a setup queue. 3479 */ 3480 static void 3481 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3482 { 3483 3484 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3485 ATH_TXQ_LOCK_DESTROY(txq); 3486 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3487 } 3488 3489 /* 3490 * Reclaim all tx queue resources. 3491 */ 3492 static void 3493 ath_tx_cleanup(struct ath_softc *sc) 3494 { 3495 int i; 3496 3497 ATH_TXBUF_LOCK_DESTROY(sc); 3498 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3499 if (ATH_TXQ_SETUP(sc, i)) 3500 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3501 } 3502 3503 /* 3504 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3505 * using the current rates in sc_rixmap. 3506 */ 3507 int 3508 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3509 { 3510 int rix = sc->sc_rixmap[rate]; 3511 /* NB: return lowest rix for invalid rate */ 3512 return (rix == 0xff ? 0 : rix); 3513 } 3514 3515 static void 3516 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3517 struct ath_buf *bf) 3518 { 3519 struct ieee80211_node *ni = bf->bf_node; 3520 struct ifnet *ifp = sc->sc_ifp; 3521 struct ieee80211com *ic = ifp->if_l2com; 3522 int sr, lr, pri; 3523 3524 if (ts->ts_status == 0) { 3525 u_int8_t txant = ts->ts_antenna; 3526 sc->sc_stats.ast_ant_tx[txant]++; 3527 sc->sc_ant_tx[txant]++; 3528 if (ts->ts_finaltsi != 0) 3529 sc->sc_stats.ast_tx_altrate++; 3530 pri = M_WME_GETAC(bf->bf_m); 3531 if (pri >= WME_AC_VO) 3532 ic->ic_wme.wme_hipri_traffic++; 3533 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3534 ni->ni_inact = ni->ni_inact_reload; 3535 } else { 3536 if (ts->ts_status & HAL_TXERR_XRETRY) 3537 sc->sc_stats.ast_tx_xretries++; 3538 if (ts->ts_status & HAL_TXERR_FIFO) 3539 sc->sc_stats.ast_tx_fifoerr++; 3540 if (ts->ts_status & HAL_TXERR_FILT) 3541 sc->sc_stats.ast_tx_filtered++; 3542 if (ts->ts_status & HAL_TXERR_XTXOP) 3543 sc->sc_stats.ast_tx_xtxop++; 3544 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3545 sc->sc_stats.ast_tx_timerexpired++; 3546 3547 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3548 sc->sc_stats.ast_tx_data_underrun++; 3549 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3550 sc->sc_stats.ast_tx_delim_underrun++; 3551 3552 if (bf->bf_m->m_flags & M_FF) 3553 sc->sc_stats.ast_ff_txerr++; 3554 } 3555 /* XXX when is this valid? */ 3556 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3557 sc->sc_stats.ast_tx_desccfgerr++; 3558 3559 sr = ts->ts_shortretry; 3560 lr = ts->ts_longretry; 3561 sc->sc_stats.ast_tx_shortretry += sr; 3562 sc->sc_stats.ast_tx_longretry += lr; 3563 3564 } 3565 3566 /* 3567 * The default completion. If fail is 1, this means 3568 * "please don't retry the frame, and just return -1 status 3569 * to the net80211 stack. 3570 */ 3571 void 3572 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3573 { 3574 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3575 int st; 3576 3577 if (fail == 1) 3578 st = -1; 3579 else 3580 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3581 ts->ts_status : HAL_TXERR_XRETRY; 3582 3583 if (bf->bf_state.bfs_dobaw) 3584 device_printf(sc->sc_dev, 3585 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3586 __func__, 3587 bf, 3588 SEQNO(bf->bf_state.bfs_seqno)); 3589 if (bf->bf_next != NULL) 3590 device_printf(sc->sc_dev, 3591 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3592 __func__, 3593 bf, 3594 SEQNO(bf->bf_state.bfs_seqno)); 3595 3596 /* 3597 * Check if the node software queue is empty; if so 3598 * then clear the TIM. 3599 * 3600 * This needs to be done before the buffer is freed as 3601 * otherwise the node reference will have been released 3602 * and the node may not actually exist any longer. 3603 * 3604 * XXX I don't like this belonging here, but it's cleaner 3605 * to do it here right now then all the other places 3606 * where ath_tx_default_comp() is called. 3607 * 3608 * XXX TODO: during drain, ensure that the callback is 3609 * being called so we get a chance to update the TIM. 3610 */ 3611 if (bf->bf_node) 3612 ath_tx_update_tim(sc, bf->bf_node, 0); 3613 3614 /* 3615 * Do any tx complete callback. Note this must 3616 * be done before releasing the node reference. 3617 * This will free the mbuf, release the net80211 3618 * node and recycle the ath_buf. 3619 */ 3620 ath_tx_freebuf(sc, bf, st); 3621 } 3622 3623 /* 3624 * Update rate control with the given completion status. 3625 */ 3626 void 3627 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3628 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3629 int nframes, int nbad) 3630 { 3631 struct ath_node *an; 3632 3633 /* Only for unicast frames */ 3634 if (ni == NULL) 3635 return; 3636 3637 an = ATH_NODE(ni); 3638 ATH_NODE_UNLOCK_ASSERT(an); 3639 3640 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3641 ATH_NODE_LOCK(an); 3642 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3643 ATH_NODE_UNLOCK(an); 3644 } 3645 } 3646 3647 /* 3648 * Update the busy status of the last frame on the free list. 3649 * When doing TDMA, the busy flag tracks whether the hardware 3650 * currently points to this buffer or not, and thus gated DMA 3651 * may restart by re-reading the last descriptor in this 3652 * buffer. 3653 * 3654 * This should be called in the completion function once one 3655 * of the buffers has been used. 3656 */ 3657 static void 3658 ath_tx_update_busy(struct ath_softc *sc) 3659 { 3660 struct ath_buf *last; 3661 3662 /* 3663 * Since the last frame may still be marked 3664 * as ATH_BUF_BUSY, unmark it here before 3665 * finishing the frame processing. 3666 * Since we've completed a frame (aggregate 3667 * or otherwise), the hardware has moved on 3668 * and is no longer referencing the previous 3669 * descriptor. 3670 */ 3671 ATH_TXBUF_LOCK_ASSERT(sc); 3672 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3673 if (last != NULL) 3674 last->bf_flags &= ~ATH_BUF_BUSY; 3675 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3676 if (last != NULL) 3677 last->bf_flags &= ~ATH_BUF_BUSY; 3678 } 3679 3680 /* 3681 * Process the completion of the given buffer. 3682 * 3683 * This calls the rate control update and then the buffer completion. 3684 * This will either free the buffer or requeue it. In any case, the 3685 * bf pointer should be treated as invalid after this function is called. 3686 */ 3687 void 3688 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3689 struct ath_tx_status *ts, struct ath_buf *bf) 3690 { 3691 struct ieee80211_node *ni = bf->bf_node; 3692 struct ath_node *an = NULL; 3693 3694 ATH_TXQ_UNLOCK_ASSERT(txq); 3695 3696 /* If unicast frame, update general statistics */ 3697 if (ni != NULL) { 3698 an = ATH_NODE(ni); 3699 /* update statistics */ 3700 ath_tx_update_stats(sc, ts, bf); 3701 } 3702 3703 /* 3704 * Call the completion handler. 3705 * The completion handler is responsible for 3706 * calling the rate control code. 3707 * 3708 * Frames with no completion handler get the 3709 * rate control code called here. 3710 */ 3711 if (bf->bf_comp == NULL) { 3712 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3713 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3714 /* 3715 * XXX assume this isn't an aggregate 3716 * frame. 3717 */ 3718 ath_tx_update_ratectrl(sc, ni, 3719 bf->bf_state.bfs_rc, ts, 3720 bf->bf_state.bfs_pktlen, 1, 3721 (ts->ts_status == 0 ? 0 : 1)); 3722 } 3723 ath_tx_default_comp(sc, bf, 0); 3724 } else 3725 bf->bf_comp(sc, bf, 0); 3726 } 3727 3728 3729 3730 /* 3731 * Process completed xmit descriptors from the specified queue. 3732 * Kick the packet scheduler if needed. This can occur from this 3733 * particular task. 3734 */ 3735 static int 3736 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3737 { 3738 struct ath_hal *ah = sc->sc_ah; 3739 struct ath_buf *bf; 3740 struct ath_desc *ds; 3741 struct ath_tx_status *ts; 3742 struct ieee80211_node *ni; 3743 #ifdef IEEE80211_SUPPORT_SUPERG 3744 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3745 #endif /* IEEE80211_SUPPORT_SUPERG */ 3746 int nacked; 3747 HAL_STATUS status; 3748 3749 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3750 __func__, txq->axq_qnum, 3751 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3752 txq->axq_link); 3753 3754 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3755 "ath_tx_processq: txq=%u head %p link %p depth %p", 3756 txq->axq_qnum, 3757 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3758 txq->axq_link, 3759 txq->axq_depth); 3760 3761 nacked = 0; 3762 for (;;) { 3763 ATH_TXQ_LOCK(txq); 3764 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3765 bf = TAILQ_FIRST(&txq->axq_q); 3766 if (bf == NULL) { 3767 ATH_TXQ_UNLOCK(txq); 3768 break; 3769 } 3770 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3771 ts = &bf->bf_status.ds_txstat; 3772 3773 status = ath_hal_txprocdesc(ah, ds, ts); 3774 #ifdef ATH_DEBUG 3775 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3776 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3777 status == HAL_OK); 3778 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3779 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3780 status == HAL_OK); 3781 #endif 3782 #ifdef ATH_DEBUG_ALQ 3783 if (if_ath_alq_checkdebug(&sc->sc_alq, 3784 ATH_ALQ_EDMA_TXSTATUS)) { 3785 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 3786 sc->sc_tx_statuslen, 3787 (char *) ds); 3788 } 3789 #endif 3790 3791 if (status == HAL_EINPROGRESS) { 3792 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3793 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3794 txq->axq_qnum, bf, ds); 3795 ATH_TXQ_UNLOCK(txq); 3796 break; 3797 } 3798 ATH_TXQ_REMOVE(txq, bf, bf_list); 3799 #ifdef IEEE80211_SUPPORT_TDMA 3800 if (txq->axq_depth > 0) { 3801 /* 3802 * More frames follow. Mark the buffer busy 3803 * so it's not re-used while the hardware may 3804 * still re-read the link field in the descriptor. 3805 * 3806 * Use the last buffer in an aggregate as that 3807 * is where the hardware may be - intermediate 3808 * descriptors won't be "busy". 3809 */ 3810 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3811 } else 3812 #else 3813 if (txq->axq_depth == 0) 3814 #endif 3815 txq->axq_link = NULL; 3816 if (bf->bf_state.bfs_aggr) 3817 txq->axq_aggr_depth--; 3818 3819 ni = bf->bf_node; 3820 3821 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3822 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3823 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3824 /* 3825 * If unicast frame was ack'd update RSSI, 3826 * including the last rx time used to 3827 * workaround phantom bmiss interrupts. 3828 */ 3829 if (ni != NULL && ts->ts_status == 0 && 3830 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3831 nacked++; 3832 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3833 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3834 ts->ts_rssi); 3835 } 3836 ATH_TXQ_UNLOCK(txq); 3837 3838 /* 3839 * Update statistics and call completion 3840 */ 3841 ath_tx_process_buf_completion(sc, txq, ts, bf); 3842 3843 /* XXX at this point, bf and ni may be totally invalid */ 3844 } 3845 #ifdef IEEE80211_SUPPORT_SUPERG 3846 /* 3847 * Flush fast-frame staging queue when traffic slows. 3848 */ 3849 if (txq->axq_depth <= 1) 3850 ieee80211_ff_flush(ic, txq->axq_ac); 3851 #endif 3852 3853 /* Kick the TXQ scheduler */ 3854 if (dosched) { 3855 ATH_TXQ_LOCK(txq); 3856 ath_txq_sched(sc, txq); 3857 ATH_TXQ_UNLOCK(txq); 3858 } 3859 3860 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3861 "ath_tx_processq: txq=%u: done", 3862 txq->axq_qnum); 3863 3864 return nacked; 3865 } 3866 3867 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3868 3869 /* 3870 * Deferred processing of transmit interrupt; special-cased 3871 * for a single hardware transmit queue (e.g. 5210 and 5211). 3872 */ 3873 static void 3874 ath_tx_proc_q0(void *arg, int npending) 3875 { 3876 struct ath_softc *sc = arg; 3877 struct ifnet *ifp = sc->sc_ifp; 3878 uint32_t txqs; 3879 3880 ATH_PCU_LOCK(sc); 3881 sc->sc_txproc_cnt++; 3882 txqs = sc->sc_txq_active; 3883 sc->sc_txq_active &= ~txqs; 3884 ATH_PCU_UNLOCK(sc); 3885 3886 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3887 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3888 3889 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3890 /* XXX why is lastrx updated in tx code? */ 3891 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3892 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3893 ath_tx_processq(sc, sc->sc_cabq, 1); 3894 IF_LOCK(&ifp->if_snd); 3895 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3896 IF_UNLOCK(&ifp->if_snd); 3897 sc->sc_wd_timer = 0; 3898 3899 if (sc->sc_softled) 3900 ath_led_event(sc, sc->sc_txrix); 3901 3902 ATH_PCU_LOCK(sc); 3903 sc->sc_txproc_cnt--; 3904 ATH_PCU_UNLOCK(sc); 3905 3906 ath_tx_kick(sc); 3907 } 3908 3909 /* 3910 * Deferred processing of transmit interrupt; special-cased 3911 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3912 */ 3913 static void 3914 ath_tx_proc_q0123(void *arg, int npending) 3915 { 3916 struct ath_softc *sc = arg; 3917 struct ifnet *ifp = sc->sc_ifp; 3918 int nacked; 3919 uint32_t txqs; 3920 3921 ATH_PCU_LOCK(sc); 3922 sc->sc_txproc_cnt++; 3923 txqs = sc->sc_txq_active; 3924 sc->sc_txq_active &= ~txqs; 3925 ATH_PCU_UNLOCK(sc); 3926 3927 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3928 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 3929 3930 /* 3931 * Process each active queue. 3932 */ 3933 nacked = 0; 3934 if (TXQACTIVE(txqs, 0)) 3935 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3936 if (TXQACTIVE(txqs, 1)) 3937 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3938 if (TXQACTIVE(txqs, 2)) 3939 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3940 if (TXQACTIVE(txqs, 3)) 3941 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3942 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3943 ath_tx_processq(sc, sc->sc_cabq, 1); 3944 if (nacked) 3945 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3946 3947 IF_LOCK(&ifp->if_snd); 3948 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3949 IF_UNLOCK(&ifp->if_snd); 3950 sc->sc_wd_timer = 0; 3951 3952 if (sc->sc_softled) 3953 ath_led_event(sc, sc->sc_txrix); 3954 3955 ATH_PCU_LOCK(sc); 3956 sc->sc_txproc_cnt--; 3957 ATH_PCU_UNLOCK(sc); 3958 3959 ath_tx_kick(sc); 3960 } 3961 3962 /* 3963 * Deferred processing of transmit interrupt. 3964 */ 3965 static void 3966 ath_tx_proc(void *arg, int npending) 3967 { 3968 struct ath_softc *sc = arg; 3969 struct ifnet *ifp = sc->sc_ifp; 3970 int i, nacked; 3971 uint32_t txqs; 3972 3973 ATH_PCU_LOCK(sc); 3974 sc->sc_txproc_cnt++; 3975 txqs = sc->sc_txq_active; 3976 sc->sc_txq_active &= ~txqs; 3977 ATH_PCU_UNLOCK(sc); 3978 3979 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 3980 3981 /* 3982 * Process each active queue. 3983 */ 3984 nacked = 0; 3985 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3986 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3987 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3988 if (nacked) 3989 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3990 3991 /* XXX check this inside of IF_LOCK? */ 3992 IF_LOCK(&ifp->if_snd); 3993 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3994 IF_UNLOCK(&ifp->if_snd); 3995 sc->sc_wd_timer = 0; 3996 3997 if (sc->sc_softled) 3998 ath_led_event(sc, sc->sc_txrix); 3999 4000 ATH_PCU_LOCK(sc); 4001 sc->sc_txproc_cnt--; 4002 ATH_PCU_UNLOCK(sc); 4003 4004 ath_tx_kick(sc); 4005 } 4006 #undef TXQACTIVE 4007 4008 /* 4009 * Deferred processing of TXQ rescheduling. 4010 */ 4011 static void 4012 ath_txq_sched_tasklet(void *arg, int npending) 4013 { 4014 struct ath_softc *sc = arg; 4015 int i; 4016 4017 /* XXX is skipping ok? */ 4018 ATH_PCU_LOCK(sc); 4019 #if 0 4020 if (sc->sc_inreset_cnt > 0) { 4021 device_printf(sc->sc_dev, 4022 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4023 ATH_PCU_UNLOCK(sc); 4024 return; 4025 } 4026 #endif 4027 sc->sc_txproc_cnt++; 4028 ATH_PCU_UNLOCK(sc); 4029 4030 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4031 if (ATH_TXQ_SETUP(sc, i)) { 4032 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4033 ath_txq_sched(sc, &sc->sc_txq[i]); 4034 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4035 } 4036 } 4037 4038 ATH_PCU_LOCK(sc); 4039 sc->sc_txproc_cnt--; 4040 ATH_PCU_UNLOCK(sc); 4041 } 4042 4043 void 4044 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4045 { 4046 4047 ATH_TXBUF_LOCK_ASSERT(sc); 4048 4049 if (bf->bf_flags & ATH_BUF_MGMT) 4050 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4051 else { 4052 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4053 sc->sc_txbuf_cnt++; 4054 if (sc->sc_txbuf_cnt > ath_txbuf) { 4055 device_printf(sc->sc_dev, 4056 "%s: sc_txbuf_cnt > %d?\n", 4057 __func__, 4058 ath_txbuf); 4059 sc->sc_txbuf_cnt = ath_txbuf; 4060 } 4061 } 4062 } 4063 4064 void 4065 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4066 { 4067 4068 ATH_TXBUF_LOCK_ASSERT(sc); 4069 4070 if (bf->bf_flags & ATH_BUF_MGMT) 4071 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4072 else { 4073 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4074 sc->sc_txbuf_cnt++; 4075 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4076 device_printf(sc->sc_dev, 4077 "%s: sc_txbuf_cnt > %d?\n", 4078 __func__, 4079 ATH_TXBUF); 4080 sc->sc_txbuf_cnt = ATH_TXBUF; 4081 } 4082 } 4083 } 4084 4085 /* 4086 * Return a buffer to the pool and update the 'busy' flag on the 4087 * previous 'tail' entry. 4088 * 4089 * This _must_ only be called when the buffer is involved in a completed 4090 * TX. The logic is that if it was part of an active TX, the previous 4091 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4092 * for restart (eg for TDMA.) 4093 * 4094 * The caller must free the mbuf and recycle the node reference. 4095 */ 4096 void 4097 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4098 { 4099 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4100 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4101 4102 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4103 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4104 4105 ATH_TXBUF_LOCK(sc); 4106 ath_tx_update_busy(sc); 4107 ath_returnbuf_tail(sc, bf); 4108 ATH_TXBUF_UNLOCK(sc); 4109 } 4110 4111 /* 4112 * This is currently used by ath_tx_draintxq() and 4113 * ath_tx_tid_free_pkts(). 4114 * 4115 * It recycles a single ath_buf. 4116 */ 4117 void 4118 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4119 { 4120 struct ieee80211_node *ni = bf->bf_node; 4121 struct mbuf *m0 = bf->bf_m; 4122 4123 bf->bf_node = NULL; 4124 bf->bf_m = NULL; 4125 4126 /* Free the buffer, it's not needed any longer */ 4127 ath_freebuf(sc, bf); 4128 4129 if (ni != NULL) { 4130 /* 4131 * Do any callback and reclaim the node reference. 4132 */ 4133 if (m0->m_flags & M_TXCB) 4134 ieee80211_process_callback(ni, m0, status); 4135 ieee80211_free_node(ni); 4136 } 4137 m_freem(m0); 4138 4139 /* 4140 * XXX the buffer used to be freed -after-, but the DMA map was 4141 * freed where ath_freebuf() now is. I've no idea what this 4142 * will do. 4143 */ 4144 } 4145 4146 void 4147 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4148 { 4149 #ifdef ATH_DEBUG 4150 struct ath_hal *ah = sc->sc_ah; 4151 #endif 4152 struct ath_buf *bf; 4153 u_int ix; 4154 4155 /* 4156 * NB: this assumes output has been stopped and 4157 * we do not need to block ath_tx_proc 4158 */ 4159 ATH_TXBUF_LOCK(sc); 4160 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4161 if (bf != NULL) 4162 bf->bf_flags &= ~ATH_BUF_BUSY; 4163 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4164 if (bf != NULL) 4165 bf->bf_flags &= ~ATH_BUF_BUSY; 4166 ATH_TXBUF_UNLOCK(sc); 4167 4168 for (ix = 0;; ix++) { 4169 ATH_TXQ_LOCK(txq); 4170 bf = TAILQ_FIRST(&txq->axq_q); 4171 if (bf == NULL) { 4172 txq->axq_link = NULL; 4173 /* 4174 * There's currently no flag that indicates 4175 * a buffer is on the FIFO. So until that 4176 * occurs, just clear the FIFO counter here. 4177 * 4178 * Yes, this means that if something in parallel 4179 * is pushing things onto this TXQ and pushing 4180 * _that_ into the hardware, things will get 4181 * very fruity very quickly. 4182 */ 4183 txq->axq_fifo_depth = 0; 4184 ATH_TXQ_UNLOCK(txq); 4185 break; 4186 } 4187 ATH_TXQ_REMOVE(txq, bf, bf_list); 4188 if (bf->bf_state.bfs_aggr) 4189 txq->axq_aggr_depth--; 4190 #ifdef ATH_DEBUG 4191 if (sc->sc_debug & ATH_DEBUG_RESET) { 4192 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4193 int status = 0; 4194 4195 /* 4196 * EDMA operation has a TX completion FIFO 4197 * separate from the TX descriptor, so this 4198 * method of checking the "completion" status 4199 * is wrong. 4200 */ 4201 if (! sc->sc_isedma) { 4202 status = (ath_hal_txprocdesc(ah, 4203 bf->bf_lastds, 4204 &bf->bf_status.ds_txstat) == HAL_OK); 4205 } 4206 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4207 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4208 bf->bf_m->m_len, 0, -1); 4209 } 4210 #endif /* ATH_DEBUG */ 4211 /* 4212 * Since we're now doing magic in the completion 4213 * functions, we -must- call it for aggregation 4214 * destinations or BAW tracking will get upset. 4215 */ 4216 /* 4217 * Clear ATH_BUF_BUSY; the completion handler 4218 * will free the buffer. 4219 */ 4220 ATH_TXQ_UNLOCK(txq); 4221 bf->bf_flags &= ~ATH_BUF_BUSY; 4222 if (bf->bf_comp) 4223 bf->bf_comp(sc, bf, 1); 4224 else 4225 ath_tx_default_comp(sc, bf, 1); 4226 } 4227 4228 /* 4229 * Drain software queued frames which are on 4230 * active TIDs. 4231 */ 4232 ath_tx_txq_drain(sc, txq); 4233 } 4234 4235 static void 4236 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4237 { 4238 struct ath_hal *ah = sc->sc_ah; 4239 4240 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4241 __func__, txq->axq_qnum, 4242 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4243 txq->axq_link); 4244 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4245 } 4246 4247 int 4248 ath_stoptxdma(struct ath_softc *sc) 4249 { 4250 struct ath_hal *ah = sc->sc_ah; 4251 int i; 4252 4253 /* XXX return value */ 4254 if (sc->sc_invalid) 4255 return 0; 4256 4257 if (!sc->sc_invalid) { 4258 /* don't touch the hardware if marked invalid */ 4259 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4260 __func__, sc->sc_bhalq, 4261 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4262 NULL); 4263 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4264 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4265 if (ATH_TXQ_SETUP(sc, i)) 4266 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4267 } 4268 4269 return 1; 4270 } 4271 4272 /* 4273 * Drain the transmit queues and reclaim resources. 4274 */ 4275 void 4276 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4277 { 4278 #ifdef ATH_DEBUG 4279 struct ath_hal *ah = sc->sc_ah; 4280 #endif 4281 struct ifnet *ifp = sc->sc_ifp; 4282 int i; 4283 4284 (void) ath_stoptxdma(sc); 4285 4286 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4287 /* 4288 * XXX TODO: should we just handle the completed TX frames 4289 * here, whether or not the reset is a full one or not? 4290 */ 4291 if (ATH_TXQ_SETUP(sc, i)) { 4292 if (reset_type == ATH_RESET_NOLOSS) 4293 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4294 else 4295 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4296 } 4297 } 4298 #ifdef ATH_DEBUG 4299 if (sc->sc_debug & ATH_DEBUG_RESET) { 4300 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4301 if (bf != NULL && bf->bf_m != NULL) { 4302 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4303 ath_hal_txprocdesc(ah, bf->bf_lastds, 4304 &bf->bf_status.ds_txstat) == HAL_OK); 4305 ieee80211_dump_pkt(ifp->if_l2com, 4306 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4307 0, -1); 4308 } 4309 } 4310 #endif /* ATH_DEBUG */ 4311 IF_LOCK(&ifp->if_snd); 4312 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4313 IF_UNLOCK(&ifp->if_snd); 4314 sc->sc_wd_timer = 0; 4315 } 4316 4317 /* 4318 * Update internal state after a channel change. 4319 */ 4320 static void 4321 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4322 { 4323 enum ieee80211_phymode mode; 4324 4325 /* 4326 * Change channels and update the h/w rate map 4327 * if we're switching; e.g. 11a to 11b/g. 4328 */ 4329 mode = ieee80211_chan2mode(chan); 4330 if (mode != sc->sc_curmode) 4331 ath_setcurmode(sc, mode); 4332 sc->sc_curchan = chan; 4333 } 4334 4335 /* 4336 * Set/change channels. If the channel is really being changed, 4337 * it's done by resetting the chip. To accomplish this we must 4338 * first cleanup any pending DMA, then restart stuff after a la 4339 * ath_init. 4340 */ 4341 static int 4342 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4343 { 4344 struct ifnet *ifp = sc->sc_ifp; 4345 struct ieee80211com *ic = ifp->if_l2com; 4346 struct ath_hal *ah = sc->sc_ah; 4347 int ret = 0; 4348 4349 /* Treat this as an interface reset */ 4350 ATH_PCU_UNLOCK_ASSERT(sc); 4351 ATH_UNLOCK_ASSERT(sc); 4352 4353 /* (Try to) stop TX/RX from occuring */ 4354 taskqueue_block(sc->sc_tq); 4355 4356 ATH_PCU_LOCK(sc); 4357 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4358 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4359 if (ath_reset_grablock(sc, 1) == 0) { 4360 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4361 __func__); 4362 } 4363 ATH_PCU_UNLOCK(sc); 4364 4365 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4366 __func__, ieee80211_chan2ieee(ic, chan), 4367 chan->ic_freq, chan->ic_flags); 4368 if (chan != sc->sc_curchan) { 4369 HAL_STATUS status; 4370 /* 4371 * To switch channels clear any pending DMA operations; 4372 * wait long enough for the RX fifo to drain, reset the 4373 * hardware at the new frequency, and then re-enable 4374 * the relevant bits of the h/w. 4375 */ 4376 #if 0 4377 ath_hal_intrset(ah, 0); /* disable interrupts */ 4378 #endif 4379 ath_stoprecv(sc, 1); /* turn off frame recv */ 4380 /* 4381 * First, handle completed TX/RX frames. 4382 */ 4383 ath_rx_flush(sc); 4384 ath_draintxq(sc, ATH_RESET_NOLOSS); 4385 /* 4386 * Next, flush the non-scheduled frames. 4387 */ 4388 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4389 4390 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4391 if_printf(ifp, "%s: unable to reset " 4392 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4393 __func__, ieee80211_chan2ieee(ic, chan), 4394 chan->ic_freq, chan->ic_flags, status); 4395 ret = EIO; 4396 goto finish; 4397 } 4398 sc->sc_diversity = ath_hal_getdiversity(ah); 4399 4400 /* Let DFS at it in case it's a DFS channel */ 4401 ath_dfs_radar_enable(sc, chan); 4402 4403 /* 4404 * Re-enable rx framework. 4405 */ 4406 if (ath_startrecv(sc) != 0) { 4407 if_printf(ifp, "%s: unable to restart recv logic\n", 4408 __func__); 4409 ret = EIO; 4410 goto finish; 4411 } 4412 4413 /* 4414 * Change channels and update the h/w rate map 4415 * if we're switching; e.g. 11a to 11b/g. 4416 */ 4417 ath_chan_change(sc, chan); 4418 4419 /* 4420 * Reset clears the beacon timers; reset them 4421 * here if needed. 4422 */ 4423 if (sc->sc_beacons) { /* restart beacons */ 4424 #ifdef IEEE80211_SUPPORT_TDMA 4425 if (sc->sc_tdma) 4426 ath_tdma_config(sc, NULL); 4427 else 4428 #endif 4429 ath_beacon_config(sc, NULL); 4430 } 4431 4432 /* 4433 * Re-enable interrupts. 4434 */ 4435 #if 0 4436 ath_hal_intrset(ah, sc->sc_imask); 4437 #endif 4438 } 4439 4440 finish: 4441 ATH_PCU_LOCK(sc); 4442 sc->sc_inreset_cnt--; 4443 /* XXX only do this if sc_inreset_cnt == 0? */ 4444 ath_hal_intrset(ah, sc->sc_imask); 4445 ATH_PCU_UNLOCK(sc); 4446 4447 IF_LOCK(&ifp->if_snd); 4448 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4449 IF_UNLOCK(&ifp->if_snd); 4450 ath_txrx_start(sc); 4451 /* XXX ath_start? */ 4452 4453 return ret; 4454 } 4455 4456 /* 4457 * Periodically recalibrate the PHY to account 4458 * for temperature/environment changes. 4459 */ 4460 static void 4461 ath_calibrate(void *arg) 4462 { 4463 struct ath_softc *sc = arg; 4464 struct ath_hal *ah = sc->sc_ah; 4465 struct ifnet *ifp = sc->sc_ifp; 4466 struct ieee80211com *ic = ifp->if_l2com; 4467 HAL_BOOL longCal, isCalDone = AH_TRUE; 4468 HAL_BOOL aniCal, shortCal = AH_FALSE; 4469 int nextcal; 4470 4471 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4472 goto restart; 4473 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4474 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4475 if (sc->sc_doresetcal) 4476 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4477 4478 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4479 if (aniCal) { 4480 sc->sc_stats.ast_ani_cal++; 4481 sc->sc_lastani = ticks; 4482 ath_hal_ani_poll(ah, sc->sc_curchan); 4483 } 4484 4485 if (longCal) { 4486 sc->sc_stats.ast_per_cal++; 4487 sc->sc_lastlongcal = ticks; 4488 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4489 /* 4490 * Rfgain is out of bounds, reset the chip 4491 * to load new gain values. 4492 */ 4493 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4494 "%s: rfgain change\n", __func__); 4495 sc->sc_stats.ast_per_rfgain++; 4496 sc->sc_resetcal = 0; 4497 sc->sc_doresetcal = AH_TRUE; 4498 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4499 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4500 return; 4501 } 4502 /* 4503 * If this long cal is after an idle period, then 4504 * reset the data collection state so we start fresh. 4505 */ 4506 if (sc->sc_resetcal) { 4507 (void) ath_hal_calreset(ah, sc->sc_curchan); 4508 sc->sc_lastcalreset = ticks; 4509 sc->sc_lastshortcal = ticks; 4510 sc->sc_resetcal = 0; 4511 sc->sc_doresetcal = AH_TRUE; 4512 } 4513 } 4514 4515 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4516 if (shortCal || longCal) { 4517 isCalDone = AH_FALSE; 4518 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4519 if (longCal) { 4520 /* 4521 * Calibrate noise floor data again in case of change. 4522 */ 4523 ath_hal_process_noisefloor(ah); 4524 } 4525 } else { 4526 DPRINTF(sc, ATH_DEBUG_ANY, 4527 "%s: calibration of channel %u failed\n", 4528 __func__, sc->sc_curchan->ic_freq); 4529 sc->sc_stats.ast_per_calfail++; 4530 } 4531 if (shortCal) 4532 sc->sc_lastshortcal = ticks; 4533 } 4534 if (!isCalDone) { 4535 restart: 4536 /* 4537 * Use a shorter interval to potentially collect multiple 4538 * data samples required to complete calibration. Once 4539 * we're told the work is done we drop back to a longer 4540 * interval between requests. We're more aggressive doing 4541 * work when operating as an AP to improve operation right 4542 * after startup. 4543 */ 4544 sc->sc_lastshortcal = ticks; 4545 nextcal = ath_shortcalinterval*hz/1000; 4546 if (sc->sc_opmode != HAL_M_HOSTAP) 4547 nextcal *= 10; 4548 sc->sc_doresetcal = AH_TRUE; 4549 } else { 4550 /* nextcal should be the shortest time for next event */ 4551 nextcal = ath_longcalinterval*hz; 4552 if (sc->sc_lastcalreset == 0) 4553 sc->sc_lastcalreset = sc->sc_lastlongcal; 4554 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4555 sc->sc_resetcal = 1; /* setup reset next trip */ 4556 sc->sc_doresetcal = AH_FALSE; 4557 } 4558 /* ANI calibration may occur more often than short/long/resetcal */ 4559 if (ath_anicalinterval > 0) 4560 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4561 4562 if (nextcal != 0) { 4563 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4564 __func__, nextcal, isCalDone ? "" : "!"); 4565 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4566 } else { 4567 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4568 __func__); 4569 /* NB: don't rearm timer */ 4570 } 4571 } 4572 4573 static void 4574 ath_scan_start(struct ieee80211com *ic) 4575 { 4576 struct ifnet *ifp = ic->ic_ifp; 4577 struct ath_softc *sc = ifp->if_softc; 4578 struct ath_hal *ah = sc->sc_ah; 4579 u_int32_t rfilt; 4580 4581 /* XXX calibration timer? */ 4582 4583 ATH_LOCK(sc); 4584 sc->sc_scanning = 1; 4585 sc->sc_syncbeacon = 0; 4586 rfilt = ath_calcrxfilter(sc); 4587 ATH_UNLOCK(sc); 4588 4589 ATH_PCU_LOCK(sc); 4590 ath_hal_setrxfilter(ah, rfilt); 4591 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4592 ATH_PCU_UNLOCK(sc); 4593 4594 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4595 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4596 } 4597 4598 static void 4599 ath_scan_end(struct ieee80211com *ic) 4600 { 4601 struct ifnet *ifp = ic->ic_ifp; 4602 struct ath_softc *sc = ifp->if_softc; 4603 struct ath_hal *ah = sc->sc_ah; 4604 u_int32_t rfilt; 4605 4606 ATH_LOCK(sc); 4607 sc->sc_scanning = 0; 4608 rfilt = ath_calcrxfilter(sc); 4609 ATH_UNLOCK(sc); 4610 4611 ATH_PCU_LOCK(sc); 4612 ath_hal_setrxfilter(ah, rfilt); 4613 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4614 4615 ath_hal_process_noisefloor(ah); 4616 ATH_PCU_UNLOCK(sc); 4617 4618 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4619 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4620 sc->sc_curaid); 4621 } 4622 4623 #ifdef ATH_ENABLE_11N 4624 /* 4625 * For now, just do a channel change. 4626 * 4627 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4628 * control state and resetting the hardware without dropping frames out 4629 * of the queue. 4630 * 4631 * The unfortunate trouble here is making absolutely sure that the 4632 * channel width change has propagated enough so the hardware 4633 * absolutely isn't handed bogus frames for it's current operating 4634 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4635 * does occur in parallel, we need to make certain we've blocked 4636 * any further ongoing TX (and RX, that can cause raw TX) 4637 * before we do this. 4638 */ 4639 static void 4640 ath_update_chw(struct ieee80211com *ic) 4641 { 4642 struct ifnet *ifp = ic->ic_ifp; 4643 struct ath_softc *sc = ifp->if_softc; 4644 4645 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4646 ath_set_channel(ic); 4647 } 4648 #endif /* ATH_ENABLE_11N */ 4649 4650 static void 4651 ath_set_channel(struct ieee80211com *ic) 4652 { 4653 struct ifnet *ifp = ic->ic_ifp; 4654 struct ath_softc *sc = ifp->if_softc; 4655 4656 (void) ath_chan_set(sc, ic->ic_curchan); 4657 /* 4658 * If we are returning to our bss channel then mark state 4659 * so the next recv'd beacon's tsf will be used to sync the 4660 * beacon timers. Note that since we only hear beacons in 4661 * sta/ibss mode this has no effect in other operating modes. 4662 */ 4663 ATH_LOCK(sc); 4664 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4665 sc->sc_syncbeacon = 1; 4666 ATH_UNLOCK(sc); 4667 } 4668 4669 /* 4670 * Walk the vap list and check if there any vap's in RUN state. 4671 */ 4672 static int 4673 ath_isanyrunningvaps(struct ieee80211vap *this) 4674 { 4675 struct ieee80211com *ic = this->iv_ic; 4676 struct ieee80211vap *vap; 4677 4678 IEEE80211_LOCK_ASSERT(ic); 4679 4680 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4681 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4682 return 1; 4683 } 4684 return 0; 4685 } 4686 4687 static int 4688 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4689 { 4690 struct ieee80211com *ic = vap->iv_ic; 4691 struct ath_softc *sc = ic->ic_ifp->if_softc; 4692 struct ath_vap *avp = ATH_VAP(vap); 4693 struct ath_hal *ah = sc->sc_ah; 4694 struct ieee80211_node *ni = NULL; 4695 int i, error, stamode; 4696 u_int32_t rfilt; 4697 int csa_run_transition = 0; 4698 static const HAL_LED_STATE leds[] = { 4699 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4700 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4701 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4702 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4703 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4704 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4705 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4706 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4707 }; 4708 4709 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4710 ieee80211_state_name[vap->iv_state], 4711 ieee80211_state_name[nstate]); 4712 4713 /* 4714 * net80211 _should_ have the comlock asserted at this point. 4715 * There are some comments around the calls to vap->iv_newstate 4716 * which indicate that it (newstate) may end up dropping the 4717 * lock. This and the subsequent lock assert check after newstate 4718 * are an attempt to catch these and figure out how/why. 4719 */ 4720 IEEE80211_LOCK_ASSERT(ic); 4721 4722 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4723 csa_run_transition = 1; 4724 4725 callout_drain(&sc->sc_cal_ch); 4726 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4727 4728 if (nstate == IEEE80211_S_SCAN) { 4729 /* 4730 * Scanning: turn off beacon miss and don't beacon. 4731 * Mark beacon state so when we reach RUN state we'll 4732 * [re]setup beacons. Unblock the task q thread so 4733 * deferred interrupt processing is done. 4734 */ 4735 ath_hal_intrset(ah, 4736 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4737 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4738 sc->sc_beacons = 0; 4739 taskqueue_unblock(sc->sc_tq); 4740 } 4741 4742 ni = ieee80211_ref_node(vap->iv_bss); 4743 rfilt = ath_calcrxfilter(sc); 4744 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4745 vap->iv_opmode == IEEE80211_M_AHDEMO || 4746 vap->iv_opmode == IEEE80211_M_IBSS); 4747 if (stamode && nstate == IEEE80211_S_RUN) { 4748 sc->sc_curaid = ni->ni_associd; 4749 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4750 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4751 } 4752 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4753 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4754 ath_hal_setrxfilter(ah, rfilt); 4755 4756 /* XXX is this to restore keycache on resume? */ 4757 if (vap->iv_opmode != IEEE80211_M_STA && 4758 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4759 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4760 if (ath_hal_keyisvalid(ah, i)) 4761 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4762 } 4763 4764 /* 4765 * Invoke the parent method to do net80211 work. 4766 */ 4767 error = avp->av_newstate(vap, nstate, arg); 4768 if (error != 0) 4769 goto bad; 4770 4771 /* 4772 * See above: ensure av_newstate() doesn't drop the lock 4773 * on us. 4774 */ 4775 IEEE80211_LOCK_ASSERT(ic); 4776 4777 if (nstate == IEEE80211_S_RUN) { 4778 /* NB: collect bss node again, it may have changed */ 4779 ieee80211_free_node(ni); 4780 ni = ieee80211_ref_node(vap->iv_bss); 4781 4782 DPRINTF(sc, ATH_DEBUG_STATE, 4783 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4784 "capinfo 0x%04x chan %d\n", __func__, 4785 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4786 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4787 4788 switch (vap->iv_opmode) { 4789 #ifdef IEEE80211_SUPPORT_TDMA 4790 case IEEE80211_M_AHDEMO: 4791 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4792 break; 4793 /* fall thru... */ 4794 #endif 4795 case IEEE80211_M_HOSTAP: 4796 case IEEE80211_M_IBSS: 4797 case IEEE80211_M_MBSS: 4798 /* 4799 * Allocate and setup the beacon frame. 4800 * 4801 * Stop any previous beacon DMA. This may be 4802 * necessary, for example, when an ibss merge 4803 * causes reconfiguration; there will be a state 4804 * transition from RUN->RUN that means we may 4805 * be called with beacon transmission active. 4806 */ 4807 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4808 4809 error = ath_beacon_alloc(sc, ni); 4810 if (error != 0) 4811 goto bad; 4812 /* 4813 * If joining an adhoc network defer beacon timer 4814 * configuration to the next beacon frame so we 4815 * have a current TSF to use. Otherwise we're 4816 * starting an ibss/bss so there's no need to delay; 4817 * if this is the first vap moving to RUN state, then 4818 * beacon state needs to be [re]configured. 4819 */ 4820 if (vap->iv_opmode == IEEE80211_M_IBSS && 4821 ni->ni_tstamp.tsf != 0) { 4822 sc->sc_syncbeacon = 1; 4823 } else if (!sc->sc_beacons) { 4824 #ifdef IEEE80211_SUPPORT_TDMA 4825 if (vap->iv_caps & IEEE80211_C_TDMA) 4826 ath_tdma_config(sc, vap); 4827 else 4828 #endif 4829 ath_beacon_config(sc, vap); 4830 sc->sc_beacons = 1; 4831 } 4832 break; 4833 case IEEE80211_M_STA: 4834 /* 4835 * Defer beacon timer configuration to the next 4836 * beacon frame so we have a current TSF to use 4837 * (any TSF collected when scanning is likely old). 4838 * However if it's due to a CSA -> RUN transition, 4839 * force a beacon update so we pick up a lack of 4840 * beacons from an AP in CAC and thus force a 4841 * scan. 4842 */ 4843 sc->sc_syncbeacon = 1; 4844 if (csa_run_transition) 4845 ath_beacon_config(sc, vap); 4846 break; 4847 case IEEE80211_M_MONITOR: 4848 /* 4849 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4850 * transitions so we must re-enable interrupts here to 4851 * handle the case of a single monitor mode vap. 4852 */ 4853 ath_hal_intrset(ah, sc->sc_imask); 4854 break; 4855 case IEEE80211_M_WDS: 4856 break; 4857 default: 4858 break; 4859 } 4860 /* 4861 * Let the hal process statistics collected during a 4862 * scan so it can provide calibrated noise floor data. 4863 */ 4864 ath_hal_process_noisefloor(ah); 4865 /* 4866 * Reset rssi stats; maybe not the best place... 4867 */ 4868 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4869 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4870 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4871 /* 4872 * Finally, start any timers and the task q thread 4873 * (in case we didn't go through SCAN state). 4874 */ 4875 if (ath_longcalinterval != 0) { 4876 /* start periodic recalibration timer */ 4877 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4878 } else { 4879 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4880 "%s: calibration disabled\n", __func__); 4881 } 4882 taskqueue_unblock(sc->sc_tq); 4883 } else if (nstate == IEEE80211_S_INIT) { 4884 /* 4885 * If there are no vaps left in RUN state then 4886 * shutdown host/driver operation: 4887 * o disable interrupts 4888 * o disable the task queue thread 4889 * o mark beacon processing as stopped 4890 */ 4891 if (!ath_isanyrunningvaps(vap)) { 4892 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4893 /* disable interrupts */ 4894 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4895 taskqueue_block(sc->sc_tq); 4896 sc->sc_beacons = 0; 4897 } 4898 #ifdef IEEE80211_SUPPORT_TDMA 4899 ath_hal_setcca(ah, AH_TRUE); 4900 #endif 4901 } 4902 bad: 4903 ieee80211_free_node(ni); 4904 return error; 4905 } 4906 4907 /* 4908 * Allocate a key cache slot to the station so we can 4909 * setup a mapping from key index to node. The key cache 4910 * slot is needed for managing antenna state and for 4911 * compression when stations do not use crypto. We do 4912 * it uniliaterally here; if crypto is employed this slot 4913 * will be reassigned. 4914 */ 4915 static void 4916 ath_setup_stationkey(struct ieee80211_node *ni) 4917 { 4918 struct ieee80211vap *vap = ni->ni_vap; 4919 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4920 ieee80211_keyix keyix, rxkeyix; 4921 4922 /* XXX should take a locked ref to vap->iv_bss */ 4923 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4924 /* 4925 * Key cache is full; we'll fall back to doing 4926 * the more expensive lookup in software. Note 4927 * this also means no h/w compression. 4928 */ 4929 /* XXX msg+statistic */ 4930 } else { 4931 /* XXX locking? */ 4932 ni->ni_ucastkey.wk_keyix = keyix; 4933 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4934 /* NB: must mark device key to get called back on delete */ 4935 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4936 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4937 /* NB: this will create a pass-thru key entry */ 4938 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4939 } 4940 } 4941 4942 /* 4943 * Setup driver-specific state for a newly associated node. 4944 * Note that we're called also on a re-associate, the isnew 4945 * param tells us if this is the first time or not. 4946 */ 4947 static void 4948 ath_newassoc(struct ieee80211_node *ni, int isnew) 4949 { 4950 struct ath_node *an = ATH_NODE(ni); 4951 struct ieee80211vap *vap = ni->ni_vap; 4952 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4953 const struct ieee80211_txparam *tp = ni->ni_txparms; 4954 4955 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4956 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4957 4958 ath_rate_newassoc(sc, an, isnew); 4959 if (isnew && 4960 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4961 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4962 ath_setup_stationkey(ni); 4963 } 4964 4965 static int 4966 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4967 int nchans, struct ieee80211_channel chans[]) 4968 { 4969 struct ath_softc *sc = ic->ic_ifp->if_softc; 4970 struct ath_hal *ah = sc->sc_ah; 4971 HAL_STATUS status; 4972 4973 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4974 "%s: rd %u cc %u location %c%s\n", 4975 __func__, reg->regdomain, reg->country, reg->location, 4976 reg->ecm ? " ecm" : ""); 4977 4978 status = ath_hal_set_channels(ah, chans, nchans, 4979 reg->country, reg->regdomain); 4980 if (status != HAL_OK) { 4981 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4982 __func__, status); 4983 return EINVAL; /* XXX */ 4984 } 4985 4986 return 0; 4987 } 4988 4989 static void 4990 ath_getradiocaps(struct ieee80211com *ic, 4991 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4992 { 4993 struct ath_softc *sc = ic->ic_ifp->if_softc; 4994 struct ath_hal *ah = sc->sc_ah; 4995 4996 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4997 __func__, SKU_DEBUG, CTRY_DEFAULT); 4998 4999 /* XXX check return */ 5000 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5001 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5002 5003 } 5004 5005 static int 5006 ath_getchannels(struct ath_softc *sc) 5007 { 5008 struct ifnet *ifp = sc->sc_ifp; 5009 struct ieee80211com *ic = ifp->if_l2com; 5010 struct ath_hal *ah = sc->sc_ah; 5011 HAL_STATUS status; 5012 5013 /* 5014 * Collect channel set based on EEPROM contents. 5015 */ 5016 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5017 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5018 if (status != HAL_OK) { 5019 if_printf(ifp, "%s: unable to collect channel list from hal, " 5020 "status %d\n", __func__, status); 5021 return EINVAL; 5022 } 5023 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5024 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5025 /* XXX map Atheros sku's to net80211 SKU's */ 5026 /* XXX net80211 types too small */ 5027 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5028 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5029 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5030 ic->ic_regdomain.isocc[1] = ' '; 5031 5032 ic->ic_regdomain.ecm = 1; 5033 ic->ic_regdomain.location = 'I'; 5034 5035 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5036 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5037 __func__, sc->sc_eerd, sc->sc_eecc, 5038 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5039 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5040 return 0; 5041 } 5042 5043 static int 5044 ath_rate_setup(struct ath_softc *sc, u_int mode) 5045 { 5046 struct ath_hal *ah = sc->sc_ah; 5047 const HAL_RATE_TABLE *rt; 5048 5049 switch (mode) { 5050 case IEEE80211_MODE_11A: 5051 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5052 break; 5053 case IEEE80211_MODE_HALF: 5054 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5055 break; 5056 case IEEE80211_MODE_QUARTER: 5057 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5058 break; 5059 case IEEE80211_MODE_11B: 5060 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5061 break; 5062 case IEEE80211_MODE_11G: 5063 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5064 break; 5065 case IEEE80211_MODE_TURBO_A: 5066 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5067 break; 5068 case IEEE80211_MODE_TURBO_G: 5069 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5070 break; 5071 case IEEE80211_MODE_STURBO_A: 5072 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5073 break; 5074 case IEEE80211_MODE_11NA: 5075 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5076 break; 5077 case IEEE80211_MODE_11NG: 5078 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5079 break; 5080 default: 5081 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5082 __func__, mode); 5083 return 0; 5084 } 5085 sc->sc_rates[mode] = rt; 5086 return (rt != NULL); 5087 } 5088 5089 static void 5090 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5091 { 5092 #define N(a) (sizeof(a)/sizeof(a[0])) 5093 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5094 static const struct { 5095 u_int rate; /* tx/rx 802.11 rate */ 5096 u_int16_t timeOn; /* LED on time (ms) */ 5097 u_int16_t timeOff; /* LED off time (ms) */ 5098 } blinkrates[] = { 5099 { 108, 40, 10 }, 5100 { 96, 44, 11 }, 5101 { 72, 50, 13 }, 5102 { 48, 57, 14 }, 5103 { 36, 67, 16 }, 5104 { 24, 80, 20 }, 5105 { 22, 100, 25 }, 5106 { 18, 133, 34 }, 5107 { 12, 160, 40 }, 5108 { 10, 200, 50 }, 5109 { 6, 240, 58 }, 5110 { 4, 267, 66 }, 5111 { 2, 400, 100 }, 5112 { 0, 500, 130 }, 5113 /* XXX half/quarter rates */ 5114 }; 5115 const HAL_RATE_TABLE *rt; 5116 int i, j; 5117 5118 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5119 rt = sc->sc_rates[mode]; 5120 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5121 for (i = 0; i < rt->rateCount; i++) { 5122 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5123 if (rt->info[i].phy != IEEE80211_T_HT) 5124 sc->sc_rixmap[ieeerate] = i; 5125 else 5126 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5127 } 5128 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5129 for (i = 0; i < N(sc->sc_hwmap); i++) { 5130 if (i >= rt->rateCount) { 5131 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5132 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5133 continue; 5134 } 5135 sc->sc_hwmap[i].ieeerate = 5136 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5137 if (rt->info[i].phy == IEEE80211_T_HT) 5138 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5139 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5140 if (rt->info[i].shortPreamble || 5141 rt->info[i].phy == IEEE80211_T_OFDM) 5142 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5143 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5144 for (j = 0; j < N(blinkrates)-1; j++) 5145 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5146 break; 5147 /* NB: this uses the last entry if the rate isn't found */ 5148 /* XXX beware of overlow */ 5149 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5150 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5151 } 5152 sc->sc_currates = rt; 5153 sc->sc_curmode = mode; 5154 /* 5155 * All protection frames are transmited at 2Mb/s for 5156 * 11g, otherwise at 1Mb/s. 5157 */ 5158 if (mode == IEEE80211_MODE_11G) 5159 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5160 else 5161 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5162 /* NB: caller is responsible for resetting rate control state */ 5163 #undef N 5164 } 5165 5166 static void 5167 ath_watchdog(void *arg) 5168 { 5169 struct ath_softc *sc = arg; 5170 int do_reset = 0; 5171 5172 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5173 struct ifnet *ifp = sc->sc_ifp; 5174 uint32_t hangs; 5175 5176 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5177 hangs != 0) { 5178 if_printf(ifp, "%s hang detected (0x%x)\n", 5179 hangs & 0xff ? "bb" : "mac", hangs); 5180 } else 5181 if_printf(ifp, "device timeout\n"); 5182 do_reset = 1; 5183 ifp->if_oerrors++; 5184 sc->sc_stats.ast_watchdog++; 5185 } 5186 5187 /* 5188 * We can't hold the lock across the ath_reset() call. 5189 * 5190 * And since this routine can't hold a lock and sleep, 5191 * do the reset deferred. 5192 */ 5193 if (do_reset) { 5194 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5195 } 5196 5197 callout_schedule(&sc->sc_wd_ch, hz); 5198 } 5199 5200 /* 5201 * Fetch the rate control statistics for the given node. 5202 */ 5203 static int 5204 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5205 { 5206 struct ath_node *an; 5207 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5208 struct ieee80211_node *ni; 5209 int error = 0; 5210 5211 /* Perform a lookup on the given node */ 5212 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5213 if (ni == NULL) { 5214 error = EINVAL; 5215 goto bad; 5216 } 5217 5218 /* Lock the ath_node */ 5219 an = ATH_NODE(ni); 5220 ATH_NODE_LOCK(an); 5221 5222 /* Fetch the rate control stats for this node */ 5223 error = ath_rate_fetch_node_stats(sc, an, rs); 5224 5225 /* No matter what happens here, just drop through */ 5226 5227 /* Unlock the ath_node */ 5228 ATH_NODE_UNLOCK(an); 5229 5230 /* Unref the node */ 5231 ieee80211_node_decref(ni); 5232 5233 bad: 5234 return (error); 5235 } 5236 5237 #ifdef ATH_DIAGAPI 5238 /* 5239 * Diagnostic interface to the HAL. This is used by various 5240 * tools to do things like retrieve register contents for 5241 * debugging. The mechanism is intentionally opaque so that 5242 * it can change frequently w/o concern for compatiblity. 5243 */ 5244 static int 5245 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5246 { 5247 struct ath_hal *ah = sc->sc_ah; 5248 u_int id = ad->ad_id & ATH_DIAG_ID; 5249 void *indata = NULL; 5250 void *outdata = NULL; 5251 u_int32_t insize = ad->ad_in_size; 5252 u_int32_t outsize = ad->ad_out_size; 5253 int error = 0; 5254 5255 if (ad->ad_id & ATH_DIAG_IN) { 5256 /* 5257 * Copy in data. 5258 */ 5259 indata = malloc(insize, M_TEMP, M_NOWAIT); 5260 if (indata == NULL) { 5261 error = ENOMEM; 5262 goto bad; 5263 } 5264 error = copyin(ad->ad_in_data, indata, insize); 5265 if (error) 5266 goto bad; 5267 } 5268 if (ad->ad_id & ATH_DIAG_DYN) { 5269 /* 5270 * Allocate a buffer for the results (otherwise the HAL 5271 * returns a pointer to a buffer where we can read the 5272 * results). Note that we depend on the HAL leaving this 5273 * pointer for us to use below in reclaiming the buffer; 5274 * may want to be more defensive. 5275 */ 5276 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5277 if (outdata == NULL) { 5278 error = ENOMEM; 5279 goto bad; 5280 } 5281 } 5282 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5283 if (outsize < ad->ad_out_size) 5284 ad->ad_out_size = outsize; 5285 if (outdata != NULL) 5286 error = copyout(outdata, ad->ad_out_data, 5287 ad->ad_out_size); 5288 } else { 5289 error = EINVAL; 5290 } 5291 bad: 5292 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5293 free(indata, M_TEMP); 5294 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5295 free(outdata, M_TEMP); 5296 return error; 5297 } 5298 #endif /* ATH_DIAGAPI */ 5299 5300 static int 5301 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5302 { 5303 #define IS_RUNNING(ifp) \ 5304 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5305 struct ath_softc *sc = ifp->if_softc; 5306 struct ieee80211com *ic = ifp->if_l2com; 5307 struct ifreq *ifr = (struct ifreq *)data; 5308 const HAL_RATE_TABLE *rt; 5309 int error = 0; 5310 5311 switch (cmd) { 5312 case SIOCSIFFLAGS: 5313 ATH_LOCK(sc); 5314 if (IS_RUNNING(ifp)) { 5315 /* 5316 * To avoid rescanning another access point, 5317 * do not call ath_init() here. Instead, 5318 * only reflect promisc mode settings. 5319 */ 5320 ath_mode_init(sc); 5321 } else if (ifp->if_flags & IFF_UP) { 5322 /* 5323 * Beware of being called during attach/detach 5324 * to reset promiscuous mode. In that case we 5325 * will still be marked UP but not RUNNING. 5326 * However trying to re-init the interface 5327 * is the wrong thing to do as we've already 5328 * torn down much of our state. There's 5329 * probably a better way to deal with this. 5330 */ 5331 if (!sc->sc_invalid) 5332 ath_init(sc); /* XXX lose error */ 5333 } else { 5334 ath_stop_locked(ifp); 5335 #ifdef notyet 5336 /* XXX must wakeup in places like ath_vap_delete */ 5337 if (!sc->sc_invalid) 5338 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5339 #endif 5340 } 5341 ATH_UNLOCK(sc); 5342 break; 5343 case SIOCGIFMEDIA: 5344 case SIOCSIFMEDIA: 5345 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5346 break; 5347 case SIOCGATHSTATS: 5348 /* NB: embed these numbers to get a consistent view */ 5349 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5350 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5351 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5352 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5353 #ifdef IEEE80211_SUPPORT_TDMA 5354 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5355 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5356 #endif 5357 rt = sc->sc_currates; 5358 sc->sc_stats.ast_tx_rate = 5359 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5360 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5361 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5362 return copyout(&sc->sc_stats, 5363 ifr->ifr_data, sizeof (sc->sc_stats)); 5364 case SIOCGATHAGSTATS: 5365 return copyout(&sc->sc_aggr_stats, 5366 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5367 case SIOCZATHSTATS: 5368 error = priv_check(curthread, PRIV_DRIVER); 5369 if (error == 0) { 5370 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5371 memset(&sc->sc_aggr_stats, 0, 5372 sizeof(sc->sc_aggr_stats)); 5373 memset(&sc->sc_intr_stats, 0, 5374 sizeof(sc->sc_intr_stats)); 5375 } 5376 break; 5377 #ifdef ATH_DIAGAPI 5378 case SIOCGATHDIAG: 5379 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5380 break; 5381 case SIOCGATHPHYERR: 5382 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5383 break; 5384 #endif 5385 case SIOCGATHNODERATESTATS: 5386 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5387 break; 5388 case SIOCGIFADDR: 5389 error = ether_ioctl(ifp, cmd, data); 5390 break; 5391 default: 5392 error = EINVAL; 5393 break; 5394 } 5395 return error; 5396 #undef IS_RUNNING 5397 } 5398 5399 /* 5400 * Announce various information on device/driver attach. 5401 */ 5402 static void 5403 ath_announce(struct ath_softc *sc) 5404 { 5405 struct ifnet *ifp = sc->sc_ifp; 5406 struct ath_hal *ah = sc->sc_ah; 5407 5408 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5409 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5410 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5411 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5412 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5413 if (bootverbose) { 5414 int i; 5415 for (i = 0; i <= WME_AC_VO; i++) { 5416 struct ath_txq *txq = sc->sc_ac2q[i]; 5417 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5418 txq->axq_qnum, ieee80211_wme_acnames[i]); 5419 } 5420 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5421 sc->sc_cabq->axq_qnum); 5422 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5423 } 5424 if (ath_rxbuf != ATH_RXBUF) 5425 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5426 if (ath_txbuf != ATH_TXBUF) 5427 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5428 if (sc->sc_mcastkey && bootverbose) 5429 if_printf(ifp, "using multicast key search\n"); 5430 } 5431 5432 static void 5433 ath_dfs_tasklet(void *p, int npending) 5434 { 5435 struct ath_softc *sc = (struct ath_softc *) p; 5436 struct ifnet *ifp = sc->sc_ifp; 5437 struct ieee80211com *ic = ifp->if_l2com; 5438 5439 /* 5440 * If previous processing has found a radar event, 5441 * signal this to the net80211 layer to begin DFS 5442 * processing. 5443 */ 5444 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5445 /* DFS event found, initiate channel change */ 5446 /* 5447 * XXX doesn't currently tell us whether the event 5448 * XXX was found in the primary or extension 5449 * XXX channel! 5450 */ 5451 IEEE80211_LOCK(ic); 5452 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5453 IEEE80211_UNLOCK(ic); 5454 } 5455 } 5456 5457 /* 5458 * Enable/disable power save. This must be called with 5459 * no TX driver locks currently held, so it should only 5460 * be called from the RX path (which doesn't hold any 5461 * TX driver locks.) 5462 */ 5463 static void 5464 ath_node_powersave(struct ieee80211_node *ni, int enable) 5465 { 5466 #ifdef ATH_SW_PSQ 5467 struct ath_node *an = ATH_NODE(ni); 5468 struct ieee80211com *ic = ni->ni_ic; 5469 struct ath_softc *sc = ic->ic_ifp->if_softc; 5470 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5471 5472 ATH_NODE_UNLOCK_ASSERT(an); 5473 /* XXX and no TXQ locks should be held here */ 5474 5475 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5476 __func__, ni, enable); 5477 5478 /* Suspend or resume software queue handling */ 5479 if (enable) 5480 ath_tx_node_sleep(sc, an); 5481 else 5482 ath_tx_node_wakeup(sc, an); 5483 5484 /* Update net80211 state */ 5485 avp->av_node_ps(ni, enable); 5486 #else 5487 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5488 5489 /* Update net80211 state */ 5490 avp->av_node_ps(ni, enable); 5491 #endif/* ATH_SW_PSQ */ 5492 } 5493 5494 /* 5495 * Notification from net80211 that the powersave queue state has 5496 * changed. 5497 * 5498 * Since the software queue also may have some frames: 5499 * 5500 * + if the node software queue has frames and the TID state 5501 * is 0, we set the TIM; 5502 * + if the node and the stack are both empty, we clear the TIM bit. 5503 * + If the stack tries to set the bit, always set it. 5504 * + If the stack tries to clear the bit, only clear it if the 5505 * software queue in question is also cleared. 5506 * 5507 * TODO: this is called during node teardown; so let's ensure this 5508 * is all correctly handled and that the TIM bit is cleared. 5509 * It may be that the node flush is called _AFTER_ the net80211 5510 * stack clears the TIM. 5511 * 5512 * Here is the racy part. Since it's possible >1 concurrent, 5513 * overlapping TXes will appear complete with a TX completion in 5514 * another thread, it's possible that the concurrent TIM calls will 5515 * clash. We can't hold the node lock here because setting the 5516 * TIM grabs the net80211 comlock and this may cause a LOR. 5517 * The solution is either to totally serialise _everything_ at 5518 * this point (ie, all TX, completion and any reset/flush go into 5519 * one taskqueue) or a new "ath TIM lock" needs to be created that 5520 * just wraps the driver state change and this call to avp->av_set_tim(). 5521 * 5522 * The same race exists in the net80211 power save queue handling 5523 * as well. Since multiple transmitting threads may queue frames 5524 * into the driver, as well as ps-poll and the driver transmitting 5525 * frames (and thus clearing the psq), it's quite possible that 5526 * a packet entering the PSQ and a ps-poll being handled will 5527 * race, causing the TIM to be cleared and not re-set. 5528 */ 5529 static int 5530 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5531 { 5532 #ifdef ATH_SW_PSQ 5533 struct ieee80211com *ic = ni->ni_ic; 5534 struct ath_softc *sc = ic->ic_ifp->if_softc; 5535 struct ath_node *an = ATH_NODE(ni); 5536 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5537 int changed = 0; 5538 5539 ATH_NODE_UNLOCK_ASSERT(an); 5540 5541 /* 5542 * For now, just track and then update the TIM. 5543 */ 5544 ATH_NODE_LOCK(an); 5545 an->an_stack_psq = enable; 5546 5547 /* 5548 * This will get called for all operating modes, 5549 * even if avp->av_set_tim is unset. 5550 * It's currently set for hostap/ibss modes; but 5551 * the same infrastructure is used for both STA 5552 * and AP/IBSS node power save. 5553 */ 5554 if (avp->av_set_tim == NULL) { 5555 ATH_NODE_UNLOCK(an); 5556 return (0); 5557 } 5558 5559 /* 5560 * If setting the bit, always set it here. 5561 * If clearing the bit, only clear it if the 5562 * software queue is also empty. 5563 * 5564 * If the node has left power save, just clear the TIM 5565 * bit regardless of the state of the power save queue. 5566 * 5567 * XXX TODO: although atomics are used, it's quite possible 5568 * that a race will occur between this and setting/clearing 5569 * in another thread. TX completion will occur always in 5570 * one thread, however setting/clearing the TIM bit can come 5571 * from a variety of different process contexts! 5572 */ 5573 if (enable && an->an_tim_set == 1) { 5574 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5575 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5576 __func__, an, enable); 5577 ATH_NODE_UNLOCK(an); 5578 } else if (enable) { 5579 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5580 "%s: an=%p, enable=%d, enabling TIM\n", 5581 __func__, an, enable); 5582 an->an_tim_set = 1; 5583 ATH_NODE_UNLOCK(an); 5584 changed = avp->av_set_tim(ni, enable); 5585 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5586 /* disable */ 5587 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5588 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5589 __func__, an, enable); 5590 an->an_tim_set = 0; 5591 ATH_NODE_UNLOCK(an); 5592 changed = avp->av_set_tim(ni, enable); 5593 } else if (! an->an_is_powersave) { 5594 /* 5595 * disable regardless; the node isn't in powersave now 5596 */ 5597 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5598 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5599 __func__, an, enable); 5600 an->an_tim_set = 0; 5601 ATH_NODE_UNLOCK(an); 5602 changed = avp->av_set_tim(ni, enable); 5603 } else { 5604 /* 5605 * psq disable, node is currently in powersave, node 5606 * software queue isn't empty, so don't clear the TIM bit 5607 * for now. 5608 */ 5609 ATH_NODE_UNLOCK(an); 5610 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5611 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5612 __func__, enable); 5613 changed = 0; 5614 } 5615 5616 return (changed); 5617 #else 5618 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5619 5620 /* 5621 * Some operating omdes don't set av_set_tim(), so don't 5622 * update it here. 5623 */ 5624 if (avp->av_set_tim == NULL) 5625 return (0); 5626 5627 return (avp->av_set_tim(ni, enable)); 5628 #endif /* ATH_SW_PSQ */ 5629 } 5630 5631 /* 5632 * Set or update the TIM from the software queue. 5633 * 5634 * Check the software queue depth before attempting to do lock 5635 * anything; that avoids trying to obtain the lock. Then, 5636 * re-check afterwards to ensure nothing has changed in the 5637 * meantime. 5638 * 5639 * set: This is designed to be called from the TX path, after 5640 * a frame has been queued; to see if the swq > 0. 5641 * 5642 * clear: This is designed to be called from the buffer completion point 5643 * (right now it's ath_tx_default_comp()) where the state of 5644 * a software queue has changed. 5645 * 5646 * It makes sense to place it at buffer free / completion rather 5647 * than after each software queue operation, as there's no real 5648 * point in churning the TIM bit as the last frames in the software 5649 * queue are transmitted. If they fail and we retry them, we'd 5650 * just be setting the TIM bit again anyway. 5651 */ 5652 void 5653 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5654 int enable) 5655 { 5656 #ifdef ATH_SW_PSQ 5657 struct ath_node *an; 5658 struct ath_vap *avp; 5659 5660 /* Don't do this for broadcast/etc frames */ 5661 if (ni == NULL) 5662 return; 5663 5664 an = ATH_NODE(ni); 5665 avp = ATH_VAP(ni->ni_vap); 5666 5667 /* 5668 * And for operating modes without the TIM handler set, let's 5669 * just skip those. 5670 */ 5671 if (avp->av_set_tim == NULL) 5672 return; 5673 5674 ATH_NODE_UNLOCK_ASSERT(an); 5675 5676 if (enable) { 5677 /* 5678 * Don't bother grabbing the lock unless the queue is not 5679 * empty. 5680 */ 5681 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5682 return; 5683 5684 ATH_NODE_LOCK(an); 5685 if (an->an_is_powersave && 5686 an->an_tim_set == 0 && 5687 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5688 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5689 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5690 __func__, an); 5691 an->an_tim_set = 1; 5692 ATH_NODE_UNLOCK(an); 5693 (void) avp->av_set_tim(ni, 1); 5694 } else { 5695 ATH_NODE_UNLOCK(an); 5696 } 5697 } else { 5698 /* 5699 * Don't bother grabbing the lock unless the queue is empty. 5700 */ 5701 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5702 return; 5703 5704 ATH_NODE_LOCK(an); 5705 if (an->an_is_powersave && 5706 an->an_stack_psq == 0 && 5707 an->an_tim_set == 1 && 5708 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5709 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5710 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5711 " clear!\n", 5712 __func__, an); 5713 an->an_tim_set = 0; 5714 ATH_NODE_UNLOCK(an); 5715 (void) avp->av_set_tim(ni, 0); 5716 } else { 5717 ATH_NODE_UNLOCK(an); 5718 } 5719 } 5720 #else 5721 return; 5722 #endif /* ATH_SW_PSQ */ 5723 } 5724 5725 MODULE_VERSION(if_ath, 1); 5726 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5727 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5728 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5729 #endif 5730