xref: /freebsd/sys/dev/ath/if_ath.c (revision a812392203d7c4c3f0db9d8a0f3391374c49c71f)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/ethernet.h>
82 #include <net/if_llc.h>
83 
84 #include <net80211/ieee80211_var.h>
85 #include <net80211/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <net80211/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <net80211/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/ath/if_athvar.h>
101 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/ath/if_ath_debug.h>
105 #include <dev/ath/if_ath_misc.h>
106 #include <dev/ath/if_ath_tsf.h>
107 #include <dev/ath/if_ath_tx.h>
108 #include <dev/ath/if_ath_sysctl.h>
109 #include <dev/ath/if_ath_led.h>
110 #include <dev/ath/if_ath_keycache.h>
111 #include <dev/ath/if_ath_rx.h>
112 #include <dev/ath/if_ath_rx_edma.h>
113 #include <dev/ath/if_ath_tx_edma.h>
114 #include <dev/ath/if_ath_beacon.h>
115 #include <dev/ath/if_ath_btcoex.h>
116 #include <dev/ath/if_ath_spectral.h>
117 #include <dev/ath/if_ath_lna_div.h>
118 #include <dev/ath/if_athdfs.h>
119 
120 #ifdef ATH_TX99_DIAG
121 #include <dev/ath/ath_tx99/ath_tx99.h>
122 #endif
123 
124 #ifdef	ATH_DEBUG_ALQ
125 #include <dev/ath/if_ath_alq.h>
126 #endif
127 
128 /*
129  * Only enable this if you're working on PS-POLL support.
130  */
131 #define	ATH_SW_PSQ
132 
133 /*
134  * ATH_BCBUF determines the number of vap's that can transmit
135  * beacons and also (currently) the number of vap's that can
136  * have unique mac addresses/bssid.  When staggering beacons
137  * 4 is probably a good max as otherwise the beacons become
138  * very closely spaced and there is limited time for cab q traffic
139  * to go out.  You can burst beacons instead but that is not good
140  * for stations in power save and at some point you really want
141  * another radio (and channel).
142  *
143  * The limit on the number of mac addresses is tied to our use of
144  * the U/L bit and tracking addresses in a byte; it would be
145  * worthwhile to allow more for applications like proxy sta.
146  */
147 CTASSERT(ATH_BCBUF <= 8);
148 
149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151 		    const uint8_t [IEEE80211_ADDR_LEN],
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	ath_vap_delete(struct ieee80211vap *);
154 static void	ath_init(void *);
155 static void	ath_stop_locked(struct ifnet *);
156 static void	ath_stop(struct ifnet *);
157 static int	ath_reset_vap(struct ieee80211vap *, u_long);
158 static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
159 static void	ath_qflush(struct ifnet *ifp);
160 static int	ath_media_change(struct ifnet *);
161 static void	ath_watchdog(void *);
162 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
163 static void	ath_fatal_proc(void *, int);
164 static void	ath_bmiss_vap(struct ieee80211vap *);
165 static void	ath_bmiss_proc(void *, int);
166 static void	ath_key_update_begin(struct ieee80211vap *);
167 static void	ath_key_update_end(struct ieee80211vap *);
168 static void	ath_update_mcast_hw(struct ath_softc *);
169 static void	ath_update_mcast(struct ifnet *);
170 static void	ath_update_promisc(struct ifnet *);
171 static void	ath_updateslot(struct ifnet *);
172 static void	ath_bstuck_proc(void *, int);
173 static void	ath_reset_proc(void *, int);
174 static int	ath_desc_alloc(struct ath_softc *);
175 static void	ath_desc_free(struct ath_softc *);
176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
177 			const uint8_t [IEEE80211_ADDR_LEN]);
178 static void	ath_node_cleanup(struct ieee80211_node *);
179 static void	ath_node_free(struct ieee80211_node *);
180 static void	ath_node_getsignal(const struct ieee80211_node *,
181 			int8_t *, int8_t *);
182 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
184 static int	ath_tx_setup(struct ath_softc *, int, int);
185 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
186 static void	ath_tx_cleanup(struct ath_softc *);
187 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
188 		    int dosched);
189 static void	ath_tx_proc_q0(void *, int);
190 static void	ath_tx_proc_q0123(void *, int);
191 static void	ath_tx_proc(void *, int);
192 static void	ath_txq_sched_tasklet(void *, int);
193 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
194 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
195 static void	ath_scan_start(struct ieee80211com *);
196 static void	ath_scan_end(struct ieee80211com *);
197 static void	ath_set_channel(struct ieee80211com *);
198 #ifdef	ATH_ENABLE_11N
199 static void	ath_update_chw(struct ieee80211com *);
200 #endif	/* ATH_ENABLE_11N */
201 static void	ath_calibrate(void *);
202 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
203 static void	ath_setup_stationkey(struct ieee80211_node *);
204 static void	ath_newassoc(struct ieee80211_node *, int);
205 static int	ath_setregdomain(struct ieee80211com *,
206 		    struct ieee80211_regdomain *, int,
207 		    struct ieee80211_channel []);
208 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
209 		    struct ieee80211_channel []);
210 static int	ath_getchannels(struct ath_softc *);
211 
212 static int	ath_rate_setup(struct ath_softc *, u_int mode);
213 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
214 
215 static void	ath_announce(struct ath_softc *);
216 
217 static void	ath_dfs_tasklet(void *, int);
218 static void	ath_node_powersave(struct ieee80211_node *, int);
219 static int	ath_node_set_tim(struct ieee80211_node *, int);
220 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
221 
222 #ifdef IEEE80211_SUPPORT_TDMA
223 #include <dev/ath/if_ath_tdma.h>
224 #endif
225 
226 SYSCTL_DECL(_hw_ath);
227 
228 /* XXX validate sysctl values */
229 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
231 	    0, "long chip calibration interval (secs)");
232 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
234 	    0, "short chip calibration interval (msecs)");
235 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
237 	    0, "reset chip calibration results (secs)");
238 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
240 	    0, "ANI calibration (msecs)");
241 
242 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
244 	    0, "rx buffers allocated");
245 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
247 	    0, "tx buffers allocated");
248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
250 	    0, "tx (mgmt) buffers allocated");
251 
252 int ath_bstuck_threshold = 4;		/* max missed beacons */
253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
254 	    0, "max missed beacon xmits before chip reset");
255 
256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257 
258 void
259 ath_legacy_attach_comp_func(struct ath_softc *sc)
260 {
261 
262 	/*
263 	 * Special case certain configurations.  Note the
264 	 * CAB queue is handled by these specially so don't
265 	 * include them when checking the txq setup mask.
266 	 */
267 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
268 	case 0x01:
269 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
270 		break;
271 	case 0x0f:
272 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
273 		break;
274 	default:
275 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
276 		break;
277 	}
278 }
279 
280 /*
281  * Set the target power mode.
282  *
283  * If this is called during a point in time where
284  * the hardware is being programmed elsewhere, it will
285  * simply store it away and update it when all current
286  * uses of the hardware are completed.
287  */
288 void
289 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
290 {
291 	ATH_LOCK_ASSERT(sc);
292 
293 	sc->sc_target_powerstate = power_state;
294 
295 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
296 	    __func__,
297 	    file,
298 	    line,
299 	    power_state,
300 	    sc->sc_powersave_refcnt);
301 
302 	if (sc->sc_powersave_refcnt == 0 &&
303 	    power_state != sc->sc_cur_powerstate) {
304 		sc->sc_cur_powerstate = power_state;
305 		ath_hal_setpower(sc->sc_ah, power_state);
306 
307 		/*
308 		 * If the NIC is force-awake, then set the
309 		 * self-gen frame state appropriately.
310 		 *
311 		 * If the nic is in network sleep or full-sleep,
312 		 * we let the above call leave the self-gen
313 		 * state as "sleep".
314 		 */
315 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
316 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
317 			ath_hal_setselfgenpower(sc->sc_ah,
318 			    sc->sc_target_selfgen_state);
319 		}
320 	}
321 }
322 
323 /*
324  * Set the current self-generated frames state.
325  *
326  * This is separate from the target power mode.  The chip may be
327  * awake but the desired state is "sleep", so frames sent to the
328  * destination has PWRMGT=1 in the 802.11 header.  The NIC also
329  * needs to know to set PWRMGT=1 in self-generated frames.
330  */
331 void
332 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
333 {
334 
335 	ATH_LOCK_ASSERT(sc);
336 
337 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
338 	    __func__,
339 	    file,
340 	    line,
341 	    power_state,
342 	    sc->sc_target_selfgen_state);
343 
344 	sc->sc_target_selfgen_state = power_state;
345 
346 	/*
347 	 * If the NIC is force-awake, then set the power state.
348 	 * Network-state and full-sleep will already transition it to
349 	 * mark self-gen frames as sleeping - and we can't
350 	 * guarantee the NIC is awake to program the self-gen frame
351 	 * setting anyway.
352 	 */
353 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
354 		ath_hal_setselfgenpower(sc->sc_ah, power_state);
355 	}
356 }
357 
358 /*
359  * Set the hardware power mode and take a reference.
360  *
361  * This doesn't update the target power mode in the driver;
362  * it just updates the hardware power state.
363  *
364  * XXX it should only ever force the hardware awake; it should
365  * never be called to set it asleep.
366  */
367 void
368 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
369 {
370 	ATH_LOCK_ASSERT(sc);
371 
372 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
373 	    __func__,
374 	    file,
375 	    line,
376 	    power_state,
377 	    sc->sc_powersave_refcnt);
378 
379 	sc->sc_powersave_refcnt++;
380 
381 	if (power_state != sc->sc_cur_powerstate) {
382 		ath_hal_setpower(sc->sc_ah, power_state);
383 		sc->sc_cur_powerstate = power_state;
384 
385 		/*
386 		 * Adjust the self-gen powerstate if appropriate.
387 		 */
388 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
389 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
390 			ath_hal_setselfgenpower(sc->sc_ah,
391 			    sc->sc_target_selfgen_state);
392 		}
393 
394 	}
395 }
396 
397 /*
398  * Restore the power save mode to what it once was.
399  *
400  * This will decrement the reference counter and once it hits
401  * zero, it'll restore the powersave state.
402  */
403 void
404 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
405 {
406 
407 	ATH_LOCK_ASSERT(sc);
408 
409 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
410 	    __func__,
411 	    file,
412 	    line,
413 	    sc->sc_powersave_refcnt,
414 	    sc->sc_target_powerstate);
415 
416 	if (sc->sc_powersave_refcnt == 0)
417 		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
418 	else
419 		sc->sc_powersave_refcnt--;
420 
421 	if (sc->sc_powersave_refcnt == 0 &&
422 	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
423 		sc->sc_cur_powerstate = sc->sc_target_powerstate;
424 		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
425 	}
426 
427 	/*
428 	 * Adjust the self-gen powerstate if appropriate.
429 	 */
430 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
431 	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
432 		ath_hal_setselfgenpower(sc->sc_ah,
433 		    sc->sc_target_selfgen_state);
434 	}
435 
436 }
437 
438 /*
439  * Configure the initial HAL configuration values based on bus
440  * specific parameters.
441  *
442  * Some PCI IDs and other information may need tweaking.
443  *
444  * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
445  * if BT antenna diversity isn't enabled.
446  *
447  * So, let's also figure out how to enable BT diversity for AR9485.
448  */
449 static void
450 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
451 {
452 	/* XXX TODO: only for PCI devices? */
453 
454 	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
455 		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
456 		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
457 		ah_config->ath_hal_min_gainidx = AH_TRUE;
458 		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
459 		/* XXX low_rssi_thresh */
460 		/* XXX fast_div_bias */
461 		device_printf(sc->sc_dev, "configuring for %s\n",
462 		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
463 		    "CUS198" : "CUS230");
464 	}
465 
466 	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
467 		device_printf(sc->sc_dev, "CUS217 card detected\n");
468 
469 	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
470 		device_printf(sc->sc_dev, "CUS252 card detected\n");
471 
472 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
473 		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
474 
475 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
476 		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
477 
478 	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
479 		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
480 
481 #if 0
482         /*
483          * Some WB335 cards do not support antenna diversity. Since
484          * we use a hardcoded value for AR9565 instead of using the
485          * EEPROM/OTP data, remove the combining feature from
486          * the HW capabilities bitmap.
487          */
488         if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
489                 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
490                         pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
491         }
492 
493         if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
494                 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
495                 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
496         }
497 #endif
498 
499         if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
500                 ah_config->ath_hal_pcie_waen = 0x0040473b;
501                 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
502         }
503 
504 #if 0
505         if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
506                 ah->config.no_pll_pwrsave = true;
507                 device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
508         }
509 #endif
510 
511 }
512 
513 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
514 #define	HAL_MODE_HT40 \
515 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
516 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
517 int
518 ath_attach(u_int16_t devid, struct ath_softc *sc)
519 {
520 	struct ifnet *ifp;
521 	struct ieee80211com *ic;
522 	struct ath_hal *ah = NULL;
523 	HAL_STATUS status;
524 	int error = 0, i;
525 	u_int wmodes;
526 	uint8_t macaddr[IEEE80211_ADDR_LEN];
527 	int rx_chainmask, tx_chainmask;
528 	HAL_OPS_CONFIG ah_config;
529 
530 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
531 
532 	CURVNET_SET(vnet0);
533 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
534 	if (ifp == NULL) {
535 		device_printf(sc->sc_dev, "can not if_alloc()\n");
536 		error = ENOSPC;
537 		CURVNET_RESTORE();
538 		goto bad;
539 	}
540 	ic = ifp->if_l2com;
541 
542 	/* set these up early for if_printf use */
543 	if_initname(ifp, device_get_name(sc->sc_dev),
544 		device_get_unit(sc->sc_dev));
545 	CURVNET_RESTORE();
546 
547 	/*
548 	 * Configure the initial configuration data.
549 	 *
550 	 * This is stuff that may be needed early during attach
551 	 * rather than done via configuration calls later.
552 	 */
553 	bzero(&ah_config, sizeof(ah_config));
554 	ath_setup_hal_config(sc, &ah_config);
555 
556 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
557 	    sc->sc_eepromdata, &ah_config, &status);
558 	if (ah == NULL) {
559 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
560 			status);
561 		error = ENXIO;
562 		goto bad;
563 	}
564 	sc->sc_ah = ah;
565 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
566 #ifdef	ATH_DEBUG
567 	sc->sc_debug = ath_debug;
568 #endif
569 
570 	/*
571 	 * Setup the DMA/EDMA functions based on the current
572 	 * hardware support.
573 	 *
574 	 * This is required before the descriptors are allocated.
575 	 */
576 	if (ath_hal_hasedma(sc->sc_ah)) {
577 		sc->sc_isedma = 1;
578 		ath_recv_setup_edma(sc);
579 		ath_xmit_setup_edma(sc);
580 	} else {
581 		ath_recv_setup_legacy(sc);
582 		ath_xmit_setup_legacy(sc);
583 	}
584 
585 	if (ath_hal_hasmybeacon(sc->sc_ah)) {
586 		sc->sc_do_mybeacon = 1;
587 	}
588 
589 	/*
590 	 * Check if the MAC has multi-rate retry support.
591 	 * We do this by trying to setup a fake extended
592 	 * descriptor.  MAC's that don't have support will
593 	 * return false w/o doing anything.  MAC's that do
594 	 * support it will return true w/o doing anything.
595 	 */
596 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
597 
598 	/*
599 	 * Check if the device has hardware counters for PHY
600 	 * errors.  If so we need to enable the MIB interrupt
601 	 * so we can act on stat triggers.
602 	 */
603 	if (ath_hal_hwphycounters(ah))
604 		sc->sc_needmib = 1;
605 
606 	/*
607 	 * Get the hardware key cache size.
608 	 */
609 	sc->sc_keymax = ath_hal_keycachesize(ah);
610 	if (sc->sc_keymax > ATH_KEYMAX) {
611 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
612 			ATH_KEYMAX, sc->sc_keymax);
613 		sc->sc_keymax = ATH_KEYMAX;
614 	}
615 	/*
616 	 * Reset the key cache since some parts do not
617 	 * reset the contents on initial power up.
618 	 */
619 	for (i = 0; i < sc->sc_keymax; i++)
620 		ath_hal_keyreset(ah, i);
621 
622 	/*
623 	 * Collect the default channel list.
624 	 */
625 	error = ath_getchannels(sc);
626 	if (error != 0)
627 		goto bad;
628 
629 	/*
630 	 * Setup rate tables for all potential media types.
631 	 */
632 	ath_rate_setup(sc, IEEE80211_MODE_11A);
633 	ath_rate_setup(sc, IEEE80211_MODE_11B);
634 	ath_rate_setup(sc, IEEE80211_MODE_11G);
635 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
636 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
637 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
638 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
639 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
640 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
641 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
642 
643 	/* NB: setup here so ath_rate_update is happy */
644 	ath_setcurmode(sc, IEEE80211_MODE_11A);
645 
646 	/*
647 	 * Allocate TX descriptors and populate the lists.
648 	 */
649 	error = ath_desc_alloc(sc);
650 	if (error != 0) {
651 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
652 		    error);
653 		goto bad;
654 	}
655 	error = ath_txdma_setup(sc);
656 	if (error != 0) {
657 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
658 		    error);
659 		goto bad;
660 	}
661 
662 	/*
663 	 * Allocate RX descriptors and populate the lists.
664 	 */
665 	error = ath_rxdma_setup(sc);
666 	if (error != 0) {
667 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
668 		    error);
669 		goto bad;
670 	}
671 
672 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
673 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
674 
675 	ATH_TXBUF_LOCK_INIT(sc);
676 
677 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
678 		taskqueue_thread_enqueue, &sc->sc_tq);
679 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
680 		"%s taskq", ifp->if_xname);
681 
682 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
683 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
684 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
685 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
686 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
687 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
688 
689 	/*
690 	 * Allocate hardware transmit queues: one queue for
691 	 * beacon frames and one data queue for each QoS
692 	 * priority.  Note that the hal handles resetting
693 	 * these queues at the needed time.
694 	 *
695 	 * XXX PS-Poll
696 	 */
697 	sc->sc_bhalq = ath_beaconq_setup(sc);
698 	if (sc->sc_bhalq == (u_int) -1) {
699 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
700 		error = EIO;
701 		goto bad2;
702 	}
703 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
704 	if (sc->sc_cabq == NULL) {
705 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
706 		error = EIO;
707 		goto bad2;
708 	}
709 	/* NB: insure BK queue is the lowest priority h/w queue */
710 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
711 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
712 			ieee80211_wme_acnames[WME_AC_BK]);
713 		error = EIO;
714 		goto bad2;
715 	}
716 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
717 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
718 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
719 		/*
720 		 * Not enough hardware tx queues to properly do WME;
721 		 * just punt and assign them all to the same h/w queue.
722 		 * We could do a better job of this if, for example,
723 		 * we allocate queues when we switch from station to
724 		 * AP mode.
725 		 */
726 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
727 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
728 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
729 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
730 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
731 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
732 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
733 	}
734 
735 	/*
736 	 * Attach the TX completion function.
737 	 *
738 	 * The non-EDMA chips may have some special case optimisations;
739 	 * this method gives everyone a chance to attach cleanly.
740 	 */
741 	sc->sc_tx.xmit_attach_comp_func(sc);
742 
743 	/*
744 	 * Setup rate control.  Some rate control modules
745 	 * call back to change the anntena state so expose
746 	 * the necessary entry points.
747 	 * XXX maybe belongs in struct ath_ratectrl?
748 	 */
749 	sc->sc_setdefantenna = ath_setdefantenna;
750 	sc->sc_rc = ath_rate_attach(sc);
751 	if (sc->sc_rc == NULL) {
752 		error = EIO;
753 		goto bad2;
754 	}
755 
756 	/* Attach DFS module */
757 	if (! ath_dfs_attach(sc)) {
758 		device_printf(sc->sc_dev,
759 		    "%s: unable to attach DFS\n", __func__);
760 		error = EIO;
761 		goto bad2;
762 	}
763 
764 	/* Attach spectral module */
765 	if (ath_spectral_attach(sc) < 0) {
766 		device_printf(sc->sc_dev,
767 		    "%s: unable to attach spectral\n", __func__);
768 		error = EIO;
769 		goto bad2;
770 	}
771 
772 	/* Attach bluetooth coexistence module */
773 	if (ath_btcoex_attach(sc) < 0) {
774 		device_printf(sc->sc_dev,
775 		    "%s: unable to attach bluetooth coexistence\n", __func__);
776 		error = EIO;
777 		goto bad2;
778 	}
779 
780 	/* Attach LNA diversity module */
781 	if (ath_lna_div_attach(sc) < 0) {
782 		device_printf(sc->sc_dev,
783 		    "%s: unable to attach LNA diversity\n", __func__);
784 		error = EIO;
785 		goto bad2;
786 	}
787 
788 	/* Start DFS processing tasklet */
789 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
790 
791 	/* Configure LED state */
792 	sc->sc_blinking = 0;
793 	sc->sc_ledstate = 1;
794 	sc->sc_ledon = 0;			/* low true */
795 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
796 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
797 
798 	/*
799 	 * Don't setup hardware-based blinking.
800 	 *
801 	 * Although some NICs may have this configured in the
802 	 * default reset register values, the user may wish
803 	 * to alter which pins have which function.
804 	 *
805 	 * The reference driver attaches the MAC network LED to GPIO1 and
806 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
807 	 * NIC has these reversed.
808 	 */
809 	sc->sc_hardled = (1 == 0);
810 	sc->sc_led_net_pin = -1;
811 	sc->sc_led_pwr_pin = -1;
812 	/*
813 	 * Auto-enable soft led processing for IBM cards and for
814 	 * 5211 minipci cards.  Users can also manually enable/disable
815 	 * support with a sysctl.
816 	 */
817 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
818 	ath_led_config(sc);
819 	ath_hal_setledstate(ah, HAL_LED_INIT);
820 
821 	ifp->if_softc = sc;
822 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
823 	ifp->if_transmit = ath_transmit;
824 	ifp->if_qflush = ath_qflush;
825 	ifp->if_ioctl = ath_ioctl;
826 	ifp->if_init = ath_init;
827 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
828 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
829 	IFQ_SET_READY(&ifp->if_snd);
830 
831 	ic->ic_ifp = ifp;
832 	/* XXX not right but it's not used anywhere important */
833 	ic->ic_phytype = IEEE80211_T_OFDM;
834 	ic->ic_opmode = IEEE80211_M_STA;
835 	ic->ic_caps =
836 		  IEEE80211_C_STA		/* station mode */
837 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
838 		| IEEE80211_C_HOSTAP		/* hostap mode */
839 		| IEEE80211_C_MONITOR		/* monitor mode */
840 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
841 		| IEEE80211_C_WDS		/* 4-address traffic works */
842 		| IEEE80211_C_MBSS		/* mesh point link mode */
843 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
844 		| IEEE80211_C_SHSLOT		/* short slot time supported */
845 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
846 #ifndef	ATH_ENABLE_11N
847 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
848 #endif
849 		| IEEE80211_C_TXFRAG		/* handle tx frags */
850 #ifdef	ATH_ENABLE_DFS
851 		| IEEE80211_C_DFS		/* Enable radar detection */
852 #endif
853 		| IEEE80211_C_PMGT		/* Station side power mgmt */
854 		| IEEE80211_C_SWSLEEP
855 		;
856 	/*
857 	 * Query the hal to figure out h/w crypto support.
858 	 */
859 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
860 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
861 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
862 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
863 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
864 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
865 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
866 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
867 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
868 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
869 		/*
870 		 * Check if h/w does the MIC and/or whether the
871 		 * separate key cache entries are required to
872 		 * handle both tx+rx MIC keys.
873 		 */
874 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
875 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
876 		/*
877 		 * If the h/w supports storing tx+rx MIC keys
878 		 * in one cache slot automatically enable use.
879 		 */
880 		if (ath_hal_hastkipsplit(ah) ||
881 		    !ath_hal_settkipsplit(ah, AH_FALSE))
882 			sc->sc_splitmic = 1;
883 		/*
884 		 * If the h/w can do TKIP MIC together with WME then
885 		 * we use it; otherwise we force the MIC to be done
886 		 * in software by the net80211 layer.
887 		 */
888 		if (ath_hal_haswmetkipmic(ah))
889 			sc->sc_wmetkipmic = 1;
890 	}
891 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
892 	/*
893 	 * Check for multicast key search support.
894 	 */
895 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
896 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
897 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
898 	}
899 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
900 	/*
901 	 * Mark key cache slots associated with global keys
902 	 * as in use.  If we knew TKIP was not to be used we
903 	 * could leave the +32, +64, and +32+64 slots free.
904 	 */
905 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
906 		setbit(sc->sc_keymap, i);
907 		setbit(sc->sc_keymap, i+64);
908 		if (sc->sc_splitmic) {
909 			setbit(sc->sc_keymap, i+32);
910 			setbit(sc->sc_keymap, i+32+64);
911 		}
912 	}
913 	/*
914 	 * TPC support can be done either with a global cap or
915 	 * per-packet support.  The latter is not available on
916 	 * all parts.  We're a bit pedantic here as all parts
917 	 * support a global cap.
918 	 */
919 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
920 		ic->ic_caps |= IEEE80211_C_TXPMGT;
921 
922 	/*
923 	 * Mark WME capability only if we have sufficient
924 	 * hardware queues to do proper priority scheduling.
925 	 */
926 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
927 		ic->ic_caps |= IEEE80211_C_WME;
928 	/*
929 	 * Check for misc other capabilities.
930 	 */
931 	if (ath_hal_hasbursting(ah))
932 		ic->ic_caps |= IEEE80211_C_BURST;
933 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
934 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
935 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
936 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
937 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
938 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
939 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
940 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
941 
942 	if (ath_hal_hasfastframes(ah))
943 		ic->ic_caps |= IEEE80211_C_FF;
944 	wmodes = ath_hal_getwirelessmodes(ah);
945 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
946 		ic->ic_caps |= IEEE80211_C_TURBOP;
947 #ifdef IEEE80211_SUPPORT_TDMA
948 	if (ath_hal_macversion(ah) > 0x78) {
949 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
950 		ic->ic_tdma_update = ath_tdma_update;
951 	}
952 #endif
953 
954 	/*
955 	 * TODO: enforce that at least this many frames are available
956 	 * in the txbuf list before allowing data frames (raw or
957 	 * otherwise) to be transmitted.
958 	 */
959 	sc->sc_txq_data_minfree = 10;
960 	/*
961 	 * Leave this as default to maintain legacy behaviour.
962 	 * Shortening the cabq/mcastq may end up causing some
963 	 * undesirable behaviour.
964 	 */
965 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
966 
967 	/*
968 	 * How deep can the node software TX queue get whilst it's asleep.
969 	 */
970 	sc->sc_txq_node_psq_maxdepth = 16;
971 
972 	/*
973 	 * Default the maximum queue depth for a given node
974 	 * to 1/4'th the TX buffers, or 64, whichever
975 	 * is larger.
976 	 */
977 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
978 
979 	/* Enable CABQ by default */
980 	sc->sc_cabq_enable = 1;
981 
982 	/*
983 	 * Allow the TX and RX chainmasks to be overridden by
984 	 * environment variables and/or device.hints.
985 	 *
986 	 * This must be done early - before the hardware is
987 	 * calibrated or before the 802.11n stream calculation
988 	 * is done.
989 	 */
990 	if (resource_int_value(device_get_name(sc->sc_dev),
991 	    device_get_unit(sc->sc_dev), "rx_chainmask",
992 	    &rx_chainmask) == 0) {
993 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
994 		    rx_chainmask);
995 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
996 	}
997 	if (resource_int_value(device_get_name(sc->sc_dev),
998 	    device_get_unit(sc->sc_dev), "tx_chainmask",
999 	    &tx_chainmask) == 0) {
1000 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1001 		    tx_chainmask);
1002 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1003 	}
1004 
1005 	/*
1006 	 * Query the TX/RX chainmask configuration.
1007 	 *
1008 	 * This is only relevant for 11n devices.
1009 	 */
1010 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1011 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1012 
1013 	/*
1014 	 * Disable MRR with protected frames by default.
1015 	 * Only 802.11n series NICs can handle this.
1016 	 */
1017 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1018 
1019 	/*
1020 	 * Query the enterprise mode information the HAL.
1021 	 */
1022 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1023 	    &sc->sc_ent_cfg) == HAL_OK)
1024 		sc->sc_use_ent = 1;
1025 
1026 #ifdef	ATH_ENABLE_11N
1027 	/*
1028 	 * Query HT capabilities
1029 	 */
1030 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1031 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1032 		uint32_t rxs, txs;
1033 
1034 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1035 
1036 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1037 
1038 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1039 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1040 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1041 			    | IEEE80211_HTCAP_MAXAMSDU_3839
1042 			    				/* max A-MSDU length */
1043 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1044 			;
1045 
1046 		/*
1047 		 * Enable short-GI for HT20 only if the hardware
1048 		 * advertises support.
1049 		 * Notably, anything earlier than the AR9287 doesn't.
1050 		 */
1051 		if ((ath_hal_getcapability(ah,
1052 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1053 		    (wmodes & HAL_MODE_HT20)) {
1054 			device_printf(sc->sc_dev,
1055 			    "[HT] enabling short-GI in 20MHz mode\n");
1056 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1057 		}
1058 
1059 		if (wmodes & HAL_MODE_HT40)
1060 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1061 			    |  IEEE80211_HTCAP_SHORTGI40;
1062 
1063 		/*
1064 		 * TX/RX streams need to be taken into account when
1065 		 * negotiating which MCS rates it'll receive and
1066 		 * what MCS rates are available for TX.
1067 		 */
1068 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1069 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1070 		ic->ic_txstream = txs;
1071 		ic->ic_rxstream = rxs;
1072 
1073 		/*
1074 		 * Setup TX and RX STBC based on what the HAL allows and
1075 		 * the currently configured chainmask set.
1076 		 * Ie - don't enable STBC TX if only one chain is enabled.
1077 		 * STBC RX is fine on a single RX chain; it just won't
1078 		 * provide any real benefit.
1079 		 */
1080 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1081 		    NULL) == HAL_OK) {
1082 			sc->sc_rx_stbc = 1;
1083 			device_printf(sc->sc_dev,
1084 			    "[HT] 1 stream STBC receive enabled\n");
1085 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1086 		}
1087 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1088 		    NULL) == HAL_OK) {
1089 			sc->sc_tx_stbc = 1;
1090 			device_printf(sc->sc_dev,
1091 			    "[HT] 1 stream STBC transmit enabled\n");
1092 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1093 		}
1094 
1095 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1096 		    &sc->sc_rts_aggr_limit);
1097 		if (sc->sc_rts_aggr_limit != (64 * 1024))
1098 			device_printf(sc->sc_dev,
1099 			    "[HT] RTS aggregates limited to %d KiB\n",
1100 			    sc->sc_rts_aggr_limit / 1024);
1101 
1102 		device_printf(sc->sc_dev,
1103 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1104 	}
1105 #endif
1106 
1107 	/*
1108 	 * Initial aggregation settings.
1109 	 */
1110 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1111 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1112 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1113 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1114 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1115 	sc->sc_delim_min_pad = 0;
1116 
1117 	/*
1118 	 * Check if the hardware requires PCI register serialisation.
1119 	 * Some of the Owl based MACs require this.
1120 	 */
1121 	if (mp_ncpus > 1 &&
1122 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1123 	     0, NULL) == HAL_OK) {
1124 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1125 		device_printf(sc->sc_dev,
1126 		    "Enabling register serialisation\n");
1127 	}
1128 
1129 	/*
1130 	 * Initialise the deferred completed RX buffer list.
1131 	 */
1132 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1133 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1134 
1135 	/*
1136 	 * Indicate we need the 802.11 header padded to a
1137 	 * 32-bit boundary for 4-address and QoS frames.
1138 	 */
1139 	ic->ic_flags |= IEEE80211_F_DATAPAD;
1140 
1141 	/*
1142 	 * Query the hal about antenna support.
1143 	 */
1144 	sc->sc_defant = ath_hal_getdefantenna(ah);
1145 
1146 	/*
1147 	 * Not all chips have the VEOL support we want to
1148 	 * use with IBSS beacons; check here for it.
1149 	 */
1150 	sc->sc_hasveol = ath_hal_hasveol(ah);
1151 
1152 	/* get mac address from hardware */
1153 	ath_hal_getmac(ah, macaddr);
1154 	if (sc->sc_hasbmask)
1155 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1156 
1157 	/* NB: used to size node table key mapping array */
1158 	ic->ic_max_keyix = sc->sc_keymax;
1159 	/* call MI attach routine. */
1160 	ieee80211_ifattach(ic, macaddr);
1161 	ic->ic_setregdomain = ath_setregdomain;
1162 	ic->ic_getradiocaps = ath_getradiocaps;
1163 	sc->sc_opmode = HAL_M_STA;
1164 
1165 	/* override default methods */
1166 	ic->ic_newassoc = ath_newassoc;
1167 	ic->ic_updateslot = ath_updateslot;
1168 	ic->ic_wme.wme_update = ath_wme_update;
1169 	ic->ic_vap_create = ath_vap_create;
1170 	ic->ic_vap_delete = ath_vap_delete;
1171 	ic->ic_raw_xmit = ath_raw_xmit;
1172 	ic->ic_update_mcast = ath_update_mcast;
1173 	ic->ic_update_promisc = ath_update_promisc;
1174 	ic->ic_node_alloc = ath_node_alloc;
1175 	sc->sc_node_free = ic->ic_node_free;
1176 	ic->ic_node_free = ath_node_free;
1177 	sc->sc_node_cleanup = ic->ic_node_cleanup;
1178 	ic->ic_node_cleanup = ath_node_cleanup;
1179 	ic->ic_node_getsignal = ath_node_getsignal;
1180 	ic->ic_scan_start = ath_scan_start;
1181 	ic->ic_scan_end = ath_scan_end;
1182 	ic->ic_set_channel = ath_set_channel;
1183 #ifdef	ATH_ENABLE_11N
1184 	/* 802.11n specific - but just override anyway */
1185 	sc->sc_addba_request = ic->ic_addba_request;
1186 	sc->sc_addba_response = ic->ic_addba_response;
1187 	sc->sc_addba_stop = ic->ic_addba_stop;
1188 	sc->sc_bar_response = ic->ic_bar_response;
1189 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1190 
1191 	ic->ic_addba_request = ath_addba_request;
1192 	ic->ic_addba_response = ath_addba_response;
1193 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1194 	ic->ic_addba_stop = ath_addba_stop;
1195 	ic->ic_bar_response = ath_bar_response;
1196 
1197 	ic->ic_update_chw = ath_update_chw;
1198 #endif	/* ATH_ENABLE_11N */
1199 
1200 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1201 	/*
1202 	 * There's one vendor bitmap entry in the RX radiotap
1203 	 * header; make sure that's taken into account.
1204 	 */
1205 	ieee80211_radiotap_attachv(ic,
1206 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1207 		ATH_TX_RADIOTAP_PRESENT,
1208 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1209 		ATH_RX_RADIOTAP_PRESENT);
1210 #else
1211 	/*
1212 	 * No vendor bitmap/extensions are present.
1213 	 */
1214 	ieee80211_radiotap_attach(ic,
1215 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1216 		ATH_TX_RADIOTAP_PRESENT,
1217 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1218 		ATH_RX_RADIOTAP_PRESENT);
1219 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1220 
1221 	/*
1222 	 * Setup the ALQ logging if required
1223 	 */
1224 #ifdef	ATH_DEBUG_ALQ
1225 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1226 	if_ath_alq_setcfg(&sc->sc_alq,
1227 	    sc->sc_ah->ah_macVersion,
1228 	    sc->sc_ah->ah_macRev,
1229 	    sc->sc_ah->ah_phyRev,
1230 	    sc->sc_ah->ah_magic);
1231 #endif
1232 
1233 	/*
1234 	 * Setup dynamic sysctl's now that country code and
1235 	 * regdomain are available from the hal.
1236 	 */
1237 	ath_sysctlattach(sc);
1238 	ath_sysctl_stats_attach(sc);
1239 	ath_sysctl_hal_attach(sc);
1240 
1241 	if (bootverbose)
1242 		ieee80211_announce(ic);
1243 	ath_announce(sc);
1244 
1245 	/*
1246 	 * Put it to sleep for now.
1247 	 */
1248 	ATH_LOCK(sc);
1249 	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1250 	ATH_UNLOCK(sc);
1251 
1252 	return 0;
1253 bad2:
1254 	ath_tx_cleanup(sc);
1255 	ath_desc_free(sc);
1256 	ath_txdma_teardown(sc);
1257 	ath_rxdma_teardown(sc);
1258 bad:
1259 	if (ah)
1260 		ath_hal_detach(ah);
1261 
1262 	/*
1263 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1264 	 */
1265 	if (ifp != NULL && ifp->if_vnet) {
1266 		CURVNET_SET(ifp->if_vnet);
1267 		if_free(ifp);
1268 		CURVNET_RESTORE();
1269 	} else if (ifp != NULL)
1270 		if_free(ifp);
1271 	sc->sc_invalid = 1;
1272 	return error;
1273 }
1274 
1275 int
1276 ath_detach(struct ath_softc *sc)
1277 {
1278 	struct ifnet *ifp = sc->sc_ifp;
1279 
1280 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1281 		__func__, ifp->if_flags);
1282 
1283 	/*
1284 	 * NB: the order of these is important:
1285 	 * o stop the chip so no more interrupts will fire
1286 	 * o call the 802.11 layer before detaching the hal to
1287 	 *   insure callbacks into the driver to delete global
1288 	 *   key cache entries can be handled
1289 	 * o free the taskqueue which drains any pending tasks
1290 	 * o reclaim the tx queue data structures after calling
1291 	 *   the 802.11 layer as we'll get called back to reclaim
1292 	 *   node state and potentially want to use them
1293 	 * o to cleanup the tx queues the hal is called, so detach
1294 	 *   it last
1295 	 * Other than that, it's straightforward...
1296 	 */
1297 
1298 	/*
1299 	 * XXX Wake the hardware up first.  ath_stop() will still
1300 	 * wake it up first, but I'd rather do it here just to
1301 	 * ensure it's awake.
1302 	 */
1303 	ATH_LOCK(sc);
1304 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1305 	ath_power_setpower(sc, HAL_PM_AWAKE);
1306 	ATH_UNLOCK(sc);
1307 
1308 	/*
1309 	 * Stop things cleanly.
1310 	 */
1311 	ath_stop(ifp);
1312 
1313 	ieee80211_ifdetach(ifp->if_l2com);
1314 	taskqueue_free(sc->sc_tq);
1315 #ifdef ATH_TX99_DIAG
1316 	if (sc->sc_tx99 != NULL)
1317 		sc->sc_tx99->detach(sc->sc_tx99);
1318 #endif
1319 	ath_rate_detach(sc->sc_rc);
1320 #ifdef	ATH_DEBUG_ALQ
1321 	if_ath_alq_tidyup(&sc->sc_alq);
1322 #endif
1323 	ath_lna_div_detach(sc);
1324 	ath_btcoex_detach(sc);
1325 	ath_spectral_detach(sc);
1326 	ath_dfs_detach(sc);
1327 	ath_desc_free(sc);
1328 	ath_txdma_teardown(sc);
1329 	ath_rxdma_teardown(sc);
1330 	ath_tx_cleanup(sc);
1331 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1332 
1333 	CURVNET_SET(ifp->if_vnet);
1334 	if_free(ifp);
1335 	CURVNET_RESTORE();
1336 
1337 	return 0;
1338 }
1339 
1340 /*
1341  * MAC address handling for multiple BSS on the same radio.
1342  * The first vap uses the MAC address from the EEPROM.  For
1343  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1344  * address and use the next six bits as an index.
1345  */
1346 static void
1347 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1348 {
1349 	int i;
1350 
1351 	if (clone && sc->sc_hasbmask) {
1352 		/* NB: we only do this if h/w supports multiple bssid */
1353 		for (i = 0; i < 8; i++)
1354 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1355 				break;
1356 		if (i != 0)
1357 			mac[0] |= (i << 2)|0x2;
1358 	} else
1359 		i = 0;
1360 	sc->sc_bssidmask |= 1<<i;
1361 	sc->sc_hwbssidmask[0] &= ~mac[0];
1362 	if (i == 0)
1363 		sc->sc_nbssid0++;
1364 }
1365 
1366 static void
1367 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1368 {
1369 	int i = mac[0] >> 2;
1370 	uint8_t mask;
1371 
1372 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1373 		sc->sc_bssidmask &= ~(1<<i);
1374 		/* recalculate bssid mask from remaining addresses */
1375 		mask = 0xff;
1376 		for (i = 1; i < 8; i++)
1377 			if (sc->sc_bssidmask & (1<<i))
1378 				mask &= ~((i<<2)|0x2);
1379 		sc->sc_hwbssidmask[0] |= mask;
1380 	}
1381 }
1382 
1383 /*
1384  * Assign a beacon xmit slot.  We try to space out
1385  * assignments so when beacons are staggered the
1386  * traffic coming out of the cab q has maximal time
1387  * to go out before the next beacon is scheduled.
1388  */
1389 static int
1390 assign_bslot(struct ath_softc *sc)
1391 {
1392 	u_int slot, free;
1393 
1394 	free = 0;
1395 	for (slot = 0; slot < ATH_BCBUF; slot++)
1396 		if (sc->sc_bslot[slot] == NULL) {
1397 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1398 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1399 				return slot;
1400 			free = slot;
1401 			/* NB: keep looking for a double slot */
1402 		}
1403 	return free;
1404 }
1405 
1406 static struct ieee80211vap *
1407 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1408     enum ieee80211_opmode opmode, int flags,
1409     const uint8_t bssid[IEEE80211_ADDR_LEN],
1410     const uint8_t mac0[IEEE80211_ADDR_LEN])
1411 {
1412 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1413 	struct ath_vap *avp;
1414 	struct ieee80211vap *vap;
1415 	uint8_t mac[IEEE80211_ADDR_LEN];
1416 	int needbeacon, error;
1417 	enum ieee80211_opmode ic_opmode;
1418 
1419 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1420 	    M_80211_VAP, M_WAITOK | M_ZERO);
1421 	needbeacon = 0;
1422 	IEEE80211_ADDR_COPY(mac, mac0);
1423 
1424 	ATH_LOCK(sc);
1425 	ic_opmode = opmode;		/* default to opmode of new vap */
1426 	switch (opmode) {
1427 	case IEEE80211_M_STA:
1428 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1429 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1430 			goto bad;
1431 		}
1432 		if (sc->sc_nvaps) {
1433 			/*
1434 			 * With multiple vaps we must fall back
1435 			 * to s/w beacon miss handling.
1436 			 */
1437 			flags |= IEEE80211_CLONE_NOBEACONS;
1438 		}
1439 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1440 			/*
1441 			 * Station mode w/o beacons are implemented w/ AP mode.
1442 			 */
1443 			ic_opmode = IEEE80211_M_HOSTAP;
1444 		}
1445 		break;
1446 	case IEEE80211_M_IBSS:
1447 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1448 			device_printf(sc->sc_dev,
1449 			    "only 1 ibss vap supported\n");
1450 			goto bad;
1451 		}
1452 		needbeacon = 1;
1453 		break;
1454 	case IEEE80211_M_AHDEMO:
1455 #ifdef IEEE80211_SUPPORT_TDMA
1456 		if (flags & IEEE80211_CLONE_TDMA) {
1457 			if (sc->sc_nvaps != 0) {
1458 				device_printf(sc->sc_dev,
1459 				    "only 1 tdma vap supported\n");
1460 				goto bad;
1461 			}
1462 			needbeacon = 1;
1463 			flags |= IEEE80211_CLONE_NOBEACONS;
1464 		}
1465 		/* fall thru... */
1466 #endif
1467 	case IEEE80211_M_MONITOR:
1468 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1469 			/*
1470 			 * Adopt existing mode.  Adding a monitor or ahdemo
1471 			 * vap to an existing configuration is of dubious
1472 			 * value but should be ok.
1473 			 */
1474 			/* XXX not right for monitor mode */
1475 			ic_opmode = ic->ic_opmode;
1476 		}
1477 		break;
1478 	case IEEE80211_M_HOSTAP:
1479 	case IEEE80211_M_MBSS:
1480 		needbeacon = 1;
1481 		break;
1482 	case IEEE80211_M_WDS:
1483 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1484 			device_printf(sc->sc_dev,
1485 			    "wds not supported in sta mode\n");
1486 			goto bad;
1487 		}
1488 		/*
1489 		 * Silently remove any request for a unique
1490 		 * bssid; WDS vap's always share the local
1491 		 * mac address.
1492 		 */
1493 		flags &= ~IEEE80211_CLONE_BSSID;
1494 		if (sc->sc_nvaps == 0)
1495 			ic_opmode = IEEE80211_M_HOSTAP;
1496 		else
1497 			ic_opmode = ic->ic_opmode;
1498 		break;
1499 	default:
1500 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1501 		goto bad;
1502 	}
1503 	/*
1504 	 * Check that a beacon buffer is available; the code below assumes it.
1505 	 */
1506 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1507 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1508 		goto bad;
1509 	}
1510 
1511 	/* STA, AHDEMO? */
1512 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1513 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1514 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1515 	}
1516 
1517 	vap = &avp->av_vap;
1518 	/* XXX can't hold mutex across if_alloc */
1519 	ATH_UNLOCK(sc);
1520 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1521 	    bssid, mac);
1522 	ATH_LOCK(sc);
1523 	if (error != 0) {
1524 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1525 		    __func__, error);
1526 		goto bad2;
1527 	}
1528 
1529 	/* h/w crypto support */
1530 	vap->iv_key_alloc = ath_key_alloc;
1531 	vap->iv_key_delete = ath_key_delete;
1532 	vap->iv_key_set = ath_key_set;
1533 	vap->iv_key_update_begin = ath_key_update_begin;
1534 	vap->iv_key_update_end = ath_key_update_end;
1535 
1536 	/* override various methods */
1537 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1538 	vap->iv_recv_mgmt = ath_recv_mgmt;
1539 	vap->iv_reset = ath_reset_vap;
1540 	vap->iv_update_beacon = ath_beacon_update;
1541 	avp->av_newstate = vap->iv_newstate;
1542 	vap->iv_newstate = ath_newstate;
1543 	avp->av_bmiss = vap->iv_bmiss;
1544 	vap->iv_bmiss = ath_bmiss_vap;
1545 
1546 	avp->av_node_ps = vap->iv_node_ps;
1547 	vap->iv_node_ps = ath_node_powersave;
1548 
1549 	avp->av_set_tim = vap->iv_set_tim;
1550 	vap->iv_set_tim = ath_node_set_tim;
1551 
1552 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1553 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1554 
1555 	/* Set default parameters */
1556 
1557 	/*
1558 	 * Anything earlier than some AR9300 series MACs don't
1559 	 * support a smaller MPDU density.
1560 	 */
1561 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1562 	/*
1563 	 * All NICs can handle the maximum size, however
1564 	 * AR5416 based MACs can only TX aggregates w/ RTS
1565 	 * protection when the total aggregate size is <= 8k.
1566 	 * However, for now that's enforced by the TX path.
1567 	 */
1568 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1569 
1570 	avp->av_bslot = -1;
1571 	if (needbeacon) {
1572 		/*
1573 		 * Allocate beacon state and setup the q for buffered
1574 		 * multicast frames.  We know a beacon buffer is
1575 		 * available because we checked above.
1576 		 */
1577 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1578 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1579 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1580 			/*
1581 			 * Assign the vap to a beacon xmit slot.  As above
1582 			 * this cannot fail to find a free one.
1583 			 */
1584 			avp->av_bslot = assign_bslot(sc);
1585 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1586 			    ("beacon slot %u not empty", avp->av_bslot));
1587 			sc->sc_bslot[avp->av_bslot] = vap;
1588 			sc->sc_nbcnvaps++;
1589 		}
1590 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1591 			/*
1592 			 * Multple vaps are to transmit beacons and we
1593 			 * have h/w support for TSF adjusting; enable
1594 			 * use of staggered beacons.
1595 			 */
1596 			sc->sc_stagbeacons = 1;
1597 		}
1598 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1599 	}
1600 
1601 	ic->ic_opmode = ic_opmode;
1602 	if (opmode != IEEE80211_M_WDS) {
1603 		sc->sc_nvaps++;
1604 		if (opmode == IEEE80211_M_STA)
1605 			sc->sc_nstavaps++;
1606 		if (opmode == IEEE80211_M_MBSS)
1607 			sc->sc_nmeshvaps++;
1608 	}
1609 	switch (ic_opmode) {
1610 	case IEEE80211_M_IBSS:
1611 		sc->sc_opmode = HAL_M_IBSS;
1612 		break;
1613 	case IEEE80211_M_STA:
1614 		sc->sc_opmode = HAL_M_STA;
1615 		break;
1616 	case IEEE80211_M_AHDEMO:
1617 #ifdef IEEE80211_SUPPORT_TDMA
1618 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1619 			sc->sc_tdma = 1;
1620 			/* NB: disable tsf adjust */
1621 			sc->sc_stagbeacons = 0;
1622 		}
1623 		/*
1624 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1625 		 * just ap mode.
1626 		 */
1627 		/* fall thru... */
1628 #endif
1629 	case IEEE80211_M_HOSTAP:
1630 	case IEEE80211_M_MBSS:
1631 		sc->sc_opmode = HAL_M_HOSTAP;
1632 		break;
1633 	case IEEE80211_M_MONITOR:
1634 		sc->sc_opmode = HAL_M_MONITOR;
1635 		break;
1636 	default:
1637 		/* XXX should not happen */
1638 		break;
1639 	}
1640 	if (sc->sc_hastsfadd) {
1641 		/*
1642 		 * Configure whether or not TSF adjust should be done.
1643 		 */
1644 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1645 	}
1646 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1647 		/*
1648 		 * Enable s/w beacon miss handling.
1649 		 */
1650 		sc->sc_swbmiss = 1;
1651 	}
1652 	ATH_UNLOCK(sc);
1653 
1654 	/* complete setup */
1655 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1656 	return vap;
1657 bad2:
1658 	reclaim_address(sc, mac);
1659 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1660 bad:
1661 	free(avp, M_80211_VAP);
1662 	ATH_UNLOCK(sc);
1663 	return NULL;
1664 }
1665 
1666 static void
1667 ath_vap_delete(struct ieee80211vap *vap)
1668 {
1669 	struct ieee80211com *ic = vap->iv_ic;
1670 	struct ifnet *ifp = ic->ic_ifp;
1671 	struct ath_softc *sc = ifp->if_softc;
1672 	struct ath_hal *ah = sc->sc_ah;
1673 	struct ath_vap *avp = ATH_VAP(vap);
1674 
1675 	ATH_LOCK(sc);
1676 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1677 	ATH_UNLOCK(sc);
1678 
1679 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1680 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1681 		/*
1682 		 * Quiesce the hardware while we remove the vap.  In
1683 		 * particular we need to reclaim all references to
1684 		 * the vap state by any frames pending on the tx queues.
1685 		 */
1686 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1687 		/* XXX Do all frames from all vaps/nodes need draining here? */
1688 		ath_stoprecv(sc, 1);		/* stop recv side */
1689 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1690 	}
1691 
1692 	/* .. leave the hardware awake for now. */
1693 
1694 	ieee80211_vap_detach(vap);
1695 
1696 	/*
1697 	 * XXX Danger Will Robinson! Danger!
1698 	 *
1699 	 * Because ieee80211_vap_detach() can queue a frame (the station
1700 	 * diassociate message?) after we've drained the TXQ and
1701 	 * flushed the software TXQ, we will end up with a frame queued
1702 	 * to a node whose vap is about to be freed.
1703 	 *
1704 	 * To work around this, flush the hardware/software again.
1705 	 * This may be racy - the ath task may be running and the packet
1706 	 * may be being scheduled between sw->hw txq. Tsk.
1707 	 *
1708 	 * TODO: figure out why a new node gets allocated somewhere around
1709 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1710 	 * call!)
1711 	 */
1712 
1713 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1714 
1715 	ATH_LOCK(sc);
1716 	/*
1717 	 * Reclaim beacon state.  Note this must be done before
1718 	 * the vap instance is reclaimed as we may have a reference
1719 	 * to it in the buffer for the beacon frame.
1720 	 */
1721 	if (avp->av_bcbuf != NULL) {
1722 		if (avp->av_bslot != -1) {
1723 			sc->sc_bslot[avp->av_bslot] = NULL;
1724 			sc->sc_nbcnvaps--;
1725 		}
1726 		ath_beacon_return(sc, avp->av_bcbuf);
1727 		avp->av_bcbuf = NULL;
1728 		if (sc->sc_nbcnvaps == 0) {
1729 			sc->sc_stagbeacons = 0;
1730 			if (sc->sc_hastsfadd)
1731 				ath_hal_settsfadjust(sc->sc_ah, 0);
1732 		}
1733 		/*
1734 		 * Reclaim any pending mcast frames for the vap.
1735 		 */
1736 		ath_tx_draintxq(sc, &avp->av_mcastq);
1737 	}
1738 	/*
1739 	 * Update bookkeeping.
1740 	 */
1741 	if (vap->iv_opmode == IEEE80211_M_STA) {
1742 		sc->sc_nstavaps--;
1743 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1744 			sc->sc_swbmiss = 0;
1745 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1746 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1747 		reclaim_address(sc, vap->iv_myaddr);
1748 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1749 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1750 			sc->sc_nmeshvaps--;
1751 	}
1752 	if (vap->iv_opmode != IEEE80211_M_WDS)
1753 		sc->sc_nvaps--;
1754 #ifdef IEEE80211_SUPPORT_TDMA
1755 	/* TDMA operation ceases when the last vap is destroyed */
1756 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1757 		sc->sc_tdma = 0;
1758 		sc->sc_swbmiss = 0;
1759 	}
1760 #endif
1761 	free(avp, M_80211_VAP);
1762 
1763 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1764 		/*
1765 		 * Restart rx+tx machines if still running (RUNNING will
1766 		 * be reset if we just destroyed the last vap).
1767 		 */
1768 		if (ath_startrecv(sc) != 0)
1769 			if_printf(ifp, "%s: unable to restart recv logic\n",
1770 			    __func__);
1771 		if (sc->sc_beacons) {		/* restart beacons */
1772 #ifdef IEEE80211_SUPPORT_TDMA
1773 			if (sc->sc_tdma)
1774 				ath_tdma_config(sc, NULL);
1775 			else
1776 #endif
1777 				ath_beacon_config(sc, NULL);
1778 		}
1779 		ath_hal_intrset(ah, sc->sc_imask);
1780 	}
1781 
1782 	/* Ok, let the hardware asleep. */
1783 	ath_power_restore_power_state(sc);
1784 	ATH_UNLOCK(sc);
1785 }
1786 
1787 void
1788 ath_suspend(struct ath_softc *sc)
1789 {
1790 	struct ifnet *ifp = sc->sc_ifp;
1791 	struct ieee80211com *ic = ifp->if_l2com;
1792 
1793 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1794 		__func__, ifp->if_flags);
1795 
1796 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1797 
1798 	ieee80211_suspend_all(ic);
1799 	/*
1800 	 * NB: don't worry about putting the chip in low power
1801 	 * mode; pci will power off our socket on suspend and
1802 	 * CardBus detaches the device.
1803 	 *
1804 	 * XXX TODO: well, that's great, except for non-cardbus
1805 	 * devices!
1806 	 */
1807 
1808 	/*
1809 	 * XXX This doesn't wait until all pending taskqueue
1810 	 * items and parallel transmit/receive/other threads
1811 	 * are running!
1812 	 */
1813 	ath_hal_intrset(sc->sc_ah, 0);
1814 	taskqueue_block(sc->sc_tq);
1815 
1816 	ATH_LOCK(sc);
1817 	callout_stop(&sc->sc_cal_ch);
1818 	ATH_UNLOCK(sc);
1819 
1820 	/*
1821 	 * XXX ensure sc_invalid is 1
1822 	 */
1823 
1824 	/* Disable the PCIe PHY, complete with workarounds */
1825 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1826 }
1827 
1828 /*
1829  * Reset the key cache since some parts do not reset the
1830  * contents on resume.  First we clear all entries, then
1831  * re-load keys that the 802.11 layer assumes are setup
1832  * in h/w.
1833  */
1834 static void
1835 ath_reset_keycache(struct ath_softc *sc)
1836 {
1837 	struct ifnet *ifp = sc->sc_ifp;
1838 	struct ieee80211com *ic = ifp->if_l2com;
1839 	struct ath_hal *ah = sc->sc_ah;
1840 	int i;
1841 
1842 	ATH_LOCK(sc);
1843 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1844 	for (i = 0; i < sc->sc_keymax; i++)
1845 		ath_hal_keyreset(ah, i);
1846 	ath_power_restore_power_state(sc);
1847 	ATH_UNLOCK(sc);
1848 	ieee80211_crypto_reload_keys(ic);
1849 }
1850 
1851 /*
1852  * Fetch the current chainmask configuration based on the current
1853  * operating channel and options.
1854  */
1855 static void
1856 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1857 {
1858 
1859 	/*
1860 	 * Set TX chainmask to the currently configured chainmask;
1861 	 * the TX chainmask depends upon the current operating mode.
1862 	 */
1863 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1864 	if (IEEE80211_IS_CHAN_HT(chan)) {
1865 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1866 	} else {
1867 		sc->sc_cur_txchainmask = 1;
1868 	}
1869 
1870 	DPRINTF(sc, ATH_DEBUG_RESET,
1871 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1872 	    __func__,
1873 	    sc->sc_cur_txchainmask,
1874 	    sc->sc_cur_rxchainmask);
1875 }
1876 
1877 void
1878 ath_resume(struct ath_softc *sc)
1879 {
1880 	struct ifnet *ifp = sc->sc_ifp;
1881 	struct ieee80211com *ic = ifp->if_l2com;
1882 	struct ath_hal *ah = sc->sc_ah;
1883 	HAL_STATUS status;
1884 
1885 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1886 		__func__, ifp->if_flags);
1887 
1888 	/* Re-enable PCIe, re-enable the PCIe bus */
1889 	ath_hal_enablepcie(ah, 0, 0);
1890 
1891 	/*
1892 	 * Must reset the chip before we reload the
1893 	 * keycache as we were powered down on suspend.
1894 	 */
1895 	ath_update_chainmasks(sc,
1896 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1897 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1898 	    sc->sc_cur_rxchainmask);
1899 
1900 	/* Ensure we set the current power state to on */
1901 	ATH_LOCK(sc);
1902 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1903 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1904 	ath_power_setpower(sc, HAL_PM_AWAKE);
1905 	ATH_UNLOCK(sc);
1906 
1907 	ath_hal_reset(ah, sc->sc_opmode,
1908 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1909 	    AH_FALSE, &status);
1910 	ath_reset_keycache(sc);
1911 
1912 	ATH_RX_LOCK(sc);
1913 	sc->sc_rx_stopped = 1;
1914 	sc->sc_rx_resetted = 1;
1915 	ATH_RX_UNLOCK(sc);
1916 
1917 	/* Let DFS at it in case it's a DFS channel */
1918 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1919 
1920 	/* Let spectral at in case spectral is enabled */
1921 	ath_spectral_enable(sc, ic->ic_curchan);
1922 
1923 	/*
1924 	 * Let bluetooth coexistence at in case it's needed for this channel
1925 	 */
1926 	ath_btcoex_enable(sc, ic->ic_curchan);
1927 
1928 	/*
1929 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1930 	 * support it.
1931 	 */
1932 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1933 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1934 	else
1935 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1936 
1937 	/* Restore the LED configuration */
1938 	ath_led_config(sc);
1939 	ath_hal_setledstate(ah, HAL_LED_INIT);
1940 
1941 	if (sc->sc_resume_up)
1942 		ieee80211_resume_all(ic);
1943 
1944 	ATH_LOCK(sc);
1945 	ath_power_restore_power_state(sc);
1946 	ATH_UNLOCK(sc);
1947 
1948 	/* XXX beacons ? */
1949 }
1950 
1951 void
1952 ath_shutdown(struct ath_softc *sc)
1953 {
1954 	struct ifnet *ifp = sc->sc_ifp;
1955 
1956 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1957 		__func__, ifp->if_flags);
1958 
1959 	ath_stop(ifp);
1960 	/* NB: no point powering down chip as we're about to reboot */
1961 }
1962 
1963 /*
1964  * Interrupt handler.  Most of the actual processing is deferred.
1965  */
1966 void
1967 ath_intr(void *arg)
1968 {
1969 	struct ath_softc *sc = arg;
1970 	struct ifnet *ifp = sc->sc_ifp;
1971 	struct ath_hal *ah = sc->sc_ah;
1972 	HAL_INT status = 0;
1973 	uint32_t txqs;
1974 
1975 	/*
1976 	 * If we're inside a reset path, just print a warning and
1977 	 * clear the ISR. The reset routine will finish it for us.
1978 	 */
1979 	ATH_PCU_LOCK(sc);
1980 	if (sc->sc_inreset_cnt) {
1981 		HAL_INT status;
1982 		ath_hal_getisr(ah, &status);	/* clear ISR */
1983 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1984 		DPRINTF(sc, ATH_DEBUG_ANY,
1985 		    "%s: in reset, ignoring: status=0x%x\n",
1986 		    __func__, status);
1987 		ATH_PCU_UNLOCK(sc);
1988 		return;
1989 	}
1990 
1991 	if (sc->sc_invalid) {
1992 		/*
1993 		 * The hardware is not ready/present, don't touch anything.
1994 		 * Note this can happen early on if the IRQ is shared.
1995 		 */
1996 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1997 		ATH_PCU_UNLOCK(sc);
1998 		return;
1999 	}
2000 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2001 		ATH_PCU_UNLOCK(sc);
2002 		return;
2003 	}
2004 
2005 	ATH_LOCK(sc);
2006 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2007 	ATH_UNLOCK(sc);
2008 
2009 	if ((ifp->if_flags & IFF_UP) == 0 ||
2010 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2011 		HAL_INT status;
2012 
2013 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2014 			__func__, ifp->if_flags);
2015 		ath_hal_getisr(ah, &status);	/* clear ISR */
2016 		ath_hal_intrset(ah, 0);		/* disable further intr's */
2017 		ATH_PCU_UNLOCK(sc);
2018 
2019 		ATH_LOCK(sc);
2020 		ath_power_restore_power_state(sc);
2021 		ATH_UNLOCK(sc);
2022 		return;
2023 	}
2024 
2025 	/*
2026 	 * Figure out the reason(s) for the interrupt.  Note
2027 	 * that the hal returns a pseudo-ISR that may include
2028 	 * bits we haven't explicitly enabled so we mask the
2029 	 * value to insure we only process bits we requested.
2030 	 */
2031 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2032 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2033 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2034 #ifdef	ATH_DEBUG_ALQ
2035 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2036 	    ah->ah_syncstate);
2037 #endif	/* ATH_DEBUG_ALQ */
2038 #ifdef	ATH_KTR_INTR_DEBUG
2039 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2040 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2041 	    ah->ah_intrstate[0],
2042 	    ah->ah_intrstate[1],
2043 	    ah->ah_intrstate[2],
2044 	    ah->ah_intrstate[3],
2045 	    ah->ah_intrstate[6]);
2046 #endif
2047 
2048 	/* Squirrel away SYNC interrupt debugging */
2049 	if (ah->ah_syncstate != 0) {
2050 		int i;
2051 		for (i = 0; i < 32; i++)
2052 			if (ah->ah_syncstate & (i << i))
2053 				sc->sc_intr_stats.sync_intr[i]++;
2054 	}
2055 
2056 	status &= sc->sc_imask;			/* discard unasked for bits */
2057 
2058 	/* Short-circuit un-handled interrupts */
2059 	if (status == 0x0) {
2060 		ATH_PCU_UNLOCK(sc);
2061 
2062 		ATH_LOCK(sc);
2063 		ath_power_restore_power_state(sc);
2064 		ATH_UNLOCK(sc);
2065 
2066 		return;
2067 	}
2068 
2069 	/*
2070 	 * Take a note that we're inside the interrupt handler, so
2071 	 * the reset routines know to wait.
2072 	 */
2073 	sc->sc_intr_cnt++;
2074 	ATH_PCU_UNLOCK(sc);
2075 
2076 	/*
2077 	 * Handle the interrupt. We won't run concurrent with the reset
2078 	 * or channel change routines as they'll wait for sc_intr_cnt
2079 	 * to be 0 before continuing.
2080 	 */
2081 	if (status & HAL_INT_FATAL) {
2082 		sc->sc_stats.ast_hardware++;
2083 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2084 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2085 	} else {
2086 		if (status & HAL_INT_SWBA) {
2087 			/*
2088 			 * Software beacon alert--time to send a beacon.
2089 			 * Handle beacon transmission directly; deferring
2090 			 * this is too slow to meet timing constraints
2091 			 * under load.
2092 			 */
2093 #ifdef IEEE80211_SUPPORT_TDMA
2094 			if (sc->sc_tdma) {
2095 				if (sc->sc_tdmaswba == 0) {
2096 					struct ieee80211com *ic = ifp->if_l2com;
2097 					struct ieee80211vap *vap =
2098 					    TAILQ_FIRST(&ic->ic_vaps);
2099 					ath_tdma_beacon_send(sc, vap);
2100 					sc->sc_tdmaswba =
2101 					    vap->iv_tdma->tdma_bintval;
2102 				} else
2103 					sc->sc_tdmaswba--;
2104 			} else
2105 #endif
2106 			{
2107 				ath_beacon_proc(sc, 0);
2108 #ifdef IEEE80211_SUPPORT_SUPERG
2109 				/*
2110 				 * Schedule the rx taskq in case there's no
2111 				 * traffic so any frames held on the staging
2112 				 * queue are aged and potentially flushed.
2113 				 */
2114 				sc->sc_rx.recv_sched(sc, 1);
2115 #endif
2116 			}
2117 		}
2118 		if (status & HAL_INT_RXEOL) {
2119 			int imask;
2120 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2121 			if (! sc->sc_isedma) {
2122 				ATH_PCU_LOCK(sc);
2123 				/*
2124 				 * NB: the hardware should re-read the link when
2125 				 *     RXE bit is written, but it doesn't work at
2126 				 *     least on older hardware revs.
2127 				 */
2128 				sc->sc_stats.ast_rxeol++;
2129 				/*
2130 				 * Disable RXEOL/RXORN - prevent an interrupt
2131 				 * storm until the PCU logic can be reset.
2132 				 * In case the interface is reset some other
2133 				 * way before "sc_kickpcu" is called, don't
2134 				 * modify sc_imask - that way if it is reset
2135 				 * by a call to ath_reset() somehow, the
2136 				 * interrupt mask will be correctly reprogrammed.
2137 				 */
2138 				imask = sc->sc_imask;
2139 				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2140 				ath_hal_intrset(ah, imask);
2141 				/*
2142 				 * Only blank sc_rxlink if we've not yet kicked
2143 				 * the PCU.
2144 				 *
2145 				 * This isn't entirely correct - the correct solution
2146 				 * would be to have a PCU lock and engage that for
2147 				 * the duration of the PCU fiddling; which would include
2148 				 * running the RX process. Otherwise we could end up
2149 				 * messing up the RX descriptor chain and making the
2150 				 * RX desc list much shorter.
2151 				 */
2152 				if (! sc->sc_kickpcu)
2153 					sc->sc_rxlink = NULL;
2154 				sc->sc_kickpcu = 1;
2155 				ATH_PCU_UNLOCK(sc);
2156 			}
2157 			/*
2158 			 * Enqueue an RX proc to handle whatever
2159 			 * is in the RX queue.
2160 			 * This will then kick the PCU if required.
2161 			 */
2162 			sc->sc_rx.recv_sched(sc, 1);
2163 		}
2164 		if (status & HAL_INT_TXURN) {
2165 			sc->sc_stats.ast_txurn++;
2166 			/* bump tx trigger level */
2167 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2168 		}
2169 		/*
2170 		 * Handle both the legacy and RX EDMA interrupt bits.
2171 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2172 		 */
2173 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2174 			sc->sc_stats.ast_rx_intr++;
2175 			sc->sc_rx.recv_sched(sc, 1);
2176 		}
2177 		if (status & HAL_INT_TX) {
2178 			sc->sc_stats.ast_tx_intr++;
2179 			/*
2180 			 * Grab all the currently set bits in the HAL txq bitmap
2181 			 * and blank them. This is the only place we should be
2182 			 * doing this.
2183 			 */
2184 			if (! sc->sc_isedma) {
2185 				ATH_PCU_LOCK(sc);
2186 				txqs = 0xffffffff;
2187 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2188 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2189 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2190 				    txqs,
2191 				    sc->sc_txq_active,
2192 				    sc->sc_txq_active | txqs);
2193 				sc->sc_txq_active |= txqs;
2194 				ATH_PCU_UNLOCK(sc);
2195 			}
2196 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2197 		}
2198 		if (status & HAL_INT_BMISS) {
2199 			sc->sc_stats.ast_bmiss++;
2200 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2201 		}
2202 		if (status & HAL_INT_GTT)
2203 			sc->sc_stats.ast_tx_timeout++;
2204 		if (status & HAL_INT_CST)
2205 			sc->sc_stats.ast_tx_cst++;
2206 		if (status & HAL_INT_MIB) {
2207 			sc->sc_stats.ast_mib++;
2208 			ATH_PCU_LOCK(sc);
2209 			/*
2210 			 * Disable interrupts until we service the MIB
2211 			 * interrupt; otherwise it will continue to fire.
2212 			 */
2213 			ath_hal_intrset(ah, 0);
2214 			/*
2215 			 * Let the hal handle the event.  We assume it will
2216 			 * clear whatever condition caused the interrupt.
2217 			 */
2218 			ath_hal_mibevent(ah, &sc->sc_halstats);
2219 			/*
2220 			 * Don't reset the interrupt if we've just
2221 			 * kicked the PCU, or we may get a nested
2222 			 * RXEOL before the rxproc has had a chance
2223 			 * to run.
2224 			 */
2225 			if (sc->sc_kickpcu == 0)
2226 				ath_hal_intrset(ah, sc->sc_imask);
2227 			ATH_PCU_UNLOCK(sc);
2228 		}
2229 		if (status & HAL_INT_RXORN) {
2230 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2231 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2232 			sc->sc_stats.ast_rxorn++;
2233 		}
2234 		if (status & HAL_INT_TSFOOR) {
2235 			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2236 			sc->sc_syncbeacon = 1;
2237 		}
2238 	}
2239 	ATH_PCU_LOCK(sc);
2240 	sc->sc_intr_cnt--;
2241 	ATH_PCU_UNLOCK(sc);
2242 
2243 	ATH_LOCK(sc);
2244 	ath_power_restore_power_state(sc);
2245 	ATH_UNLOCK(sc);
2246 }
2247 
2248 static void
2249 ath_fatal_proc(void *arg, int pending)
2250 {
2251 	struct ath_softc *sc = arg;
2252 	struct ifnet *ifp = sc->sc_ifp;
2253 	u_int32_t *state;
2254 	u_int32_t len;
2255 	void *sp;
2256 
2257 	if_printf(ifp, "hardware error; resetting\n");
2258 	/*
2259 	 * Fatal errors are unrecoverable.  Typically these
2260 	 * are caused by DMA errors.  Collect h/w state from
2261 	 * the hal so we can diagnose what's going on.
2262 	 */
2263 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2264 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2265 		state = sp;
2266 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2267 		    state[0], state[1] , state[2], state[3],
2268 		    state[4], state[5]);
2269 	}
2270 	ath_reset(ifp, ATH_RESET_NOLOSS);
2271 }
2272 
2273 static void
2274 ath_bmiss_vap(struct ieee80211vap *vap)
2275 {
2276 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2277 
2278 	/*
2279 	 * Workaround phantom bmiss interrupts by sanity-checking
2280 	 * the time of our last rx'd frame.  If it is within the
2281 	 * beacon miss interval then ignore the interrupt.  If it's
2282 	 * truly a bmiss we'll get another interrupt soon and that'll
2283 	 * be dispatched up for processing.  Note this applies only
2284 	 * for h/w beacon miss events.
2285 	 */
2286 
2287 	/*
2288 	 * XXX TODO: Just read the TSF during the interrupt path;
2289 	 * that way we don't have to wake up again just to read it
2290 	 * again.
2291 	 */
2292 	ATH_LOCK(sc);
2293 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2294 	ATH_UNLOCK(sc);
2295 
2296 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2297 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
2298 		struct ath_softc *sc = ifp->if_softc;
2299 		u_int64_t lastrx = sc->sc_lastrx;
2300 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2301 		/* XXX should take a locked ref to iv_bss */
2302 		u_int bmisstimeout =
2303 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2304 
2305 		DPRINTF(sc, ATH_DEBUG_BEACON,
2306 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2307 		    __func__, (unsigned long long) tsf,
2308 		    (unsigned long long)(tsf - lastrx),
2309 		    (unsigned long long) lastrx, bmisstimeout);
2310 
2311 		if (tsf - lastrx <= bmisstimeout) {
2312 			sc->sc_stats.ast_bmiss_phantom++;
2313 
2314 			ATH_LOCK(sc);
2315 			ath_power_restore_power_state(sc);
2316 			ATH_UNLOCK(sc);
2317 
2318 			return;
2319 		}
2320 	}
2321 
2322 	/*
2323 	 * There's no need to keep the hardware awake during the call
2324 	 * to av_bmiss().
2325 	 */
2326 	ATH_LOCK(sc);
2327 	ath_power_restore_power_state(sc);
2328 	ATH_UNLOCK(sc);
2329 
2330 	/*
2331 	 * Attempt to force a beacon resync.
2332 	 */
2333 	sc->sc_syncbeacon = 1;
2334 
2335 	ATH_VAP(vap)->av_bmiss(vap);
2336 }
2337 
2338 /* XXX this needs a force wakeup! */
2339 int
2340 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2341 {
2342 	uint32_t rsize;
2343 	void *sp;
2344 
2345 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2346 		return 0;
2347 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2348 	*hangs = *(uint32_t *)sp;
2349 	return 1;
2350 }
2351 
2352 static void
2353 ath_bmiss_proc(void *arg, int pending)
2354 {
2355 	struct ath_softc *sc = arg;
2356 	struct ifnet *ifp = sc->sc_ifp;
2357 	uint32_t hangs;
2358 
2359 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2360 
2361 	ATH_LOCK(sc);
2362 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2363 	ATH_UNLOCK(sc);
2364 
2365 	ath_beacon_miss(sc);
2366 
2367 	/*
2368 	 * Do a reset upon any becaon miss event.
2369 	 *
2370 	 * It may be a non-recognised RX clear hang which needs a reset
2371 	 * to clear.
2372 	 */
2373 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2374 		ath_reset(ifp, ATH_RESET_NOLOSS);
2375 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2376 	} else {
2377 		ath_reset(ifp, ATH_RESET_NOLOSS);
2378 		ieee80211_beacon_miss(ifp->if_l2com);
2379 	}
2380 
2381 	/* Force a beacon resync, in case they've drifted */
2382 	sc->sc_syncbeacon = 1;
2383 
2384 	ATH_LOCK(sc);
2385 	ath_power_restore_power_state(sc);
2386 	ATH_UNLOCK(sc);
2387 }
2388 
2389 /*
2390  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2391  * calcs together with WME.  If necessary disable the crypto
2392  * hardware and mark the 802.11 state so keys will be setup
2393  * with the MIC work done in software.
2394  */
2395 static void
2396 ath_settkipmic(struct ath_softc *sc)
2397 {
2398 	struct ifnet *ifp = sc->sc_ifp;
2399 	struct ieee80211com *ic = ifp->if_l2com;
2400 
2401 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2402 		if (ic->ic_flags & IEEE80211_F_WME) {
2403 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2404 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2405 		} else {
2406 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2407 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2408 		}
2409 	}
2410 }
2411 
2412 static void
2413 ath_init(void *arg)
2414 {
2415 	struct ath_softc *sc = (struct ath_softc *) arg;
2416 	struct ifnet *ifp = sc->sc_ifp;
2417 	struct ieee80211com *ic = ifp->if_l2com;
2418 	struct ath_hal *ah = sc->sc_ah;
2419 	HAL_STATUS status;
2420 
2421 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2422 		__func__, ifp->if_flags);
2423 
2424 	ATH_LOCK(sc);
2425 	/*
2426 	 * Force the sleep state awake.
2427 	 */
2428 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2429 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2430 	ath_power_setpower(sc, HAL_PM_AWAKE);
2431 
2432 	/*
2433 	 * Stop anything previously setup.  This is safe
2434 	 * whether this is the first time through or not.
2435 	 */
2436 	ath_stop_locked(ifp);
2437 
2438 	/*
2439 	 * The basic interface to setting the hardware in a good
2440 	 * state is ``reset''.  On return the hardware is known to
2441 	 * be powered up and with interrupts disabled.  This must
2442 	 * be followed by initialization of the appropriate bits
2443 	 * and then setup of the interrupt mask.
2444 	 */
2445 	ath_settkipmic(sc);
2446 	ath_update_chainmasks(sc, ic->ic_curchan);
2447 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2448 	    sc->sc_cur_rxchainmask);
2449 
2450 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2451 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2452 			status);
2453 		ATH_UNLOCK(sc);
2454 		return;
2455 	}
2456 
2457 	ATH_RX_LOCK(sc);
2458 	sc->sc_rx_stopped = 1;
2459 	sc->sc_rx_resetted = 1;
2460 	ATH_RX_UNLOCK(sc);
2461 
2462 	ath_chan_change(sc, ic->ic_curchan);
2463 
2464 	/* Let DFS at it in case it's a DFS channel */
2465 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2466 
2467 	/* Let spectral at in case spectral is enabled */
2468 	ath_spectral_enable(sc, ic->ic_curchan);
2469 
2470 	/*
2471 	 * Let bluetooth coexistence at in case it's needed for this channel
2472 	 */
2473 	ath_btcoex_enable(sc, ic->ic_curchan);
2474 
2475 	/*
2476 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2477 	 * support it.
2478 	 */
2479 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2480 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2481 	else
2482 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2483 
2484 	/*
2485 	 * Likewise this is set during reset so update
2486 	 * state cached in the driver.
2487 	 */
2488 	sc->sc_diversity = ath_hal_getdiversity(ah);
2489 	sc->sc_lastlongcal = 0;
2490 	sc->sc_resetcal = 1;
2491 	sc->sc_lastcalreset = 0;
2492 	sc->sc_lastani = 0;
2493 	sc->sc_lastshortcal = 0;
2494 	sc->sc_doresetcal = AH_FALSE;
2495 	/*
2496 	 * Beacon timers were cleared here; give ath_newstate()
2497 	 * a hint that the beacon timers should be poked when
2498 	 * things transition to the RUN state.
2499 	 */
2500 	sc->sc_beacons = 0;
2501 
2502 	/*
2503 	 * Setup the hardware after reset: the key cache
2504 	 * is filled as needed and the receive engine is
2505 	 * set going.  Frame transmit is handled entirely
2506 	 * in the frame output path; there's nothing to do
2507 	 * here except setup the interrupt mask.
2508 	 */
2509 	if (ath_startrecv(sc) != 0) {
2510 		if_printf(ifp, "unable to start recv logic\n");
2511 		ath_power_restore_power_state(sc);
2512 		ATH_UNLOCK(sc);
2513 		return;
2514 	}
2515 
2516 	/*
2517 	 * Enable interrupts.
2518 	 */
2519 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2520 		  | HAL_INT_RXORN | HAL_INT_TXURN
2521 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2522 
2523 	/*
2524 	 * Enable RX EDMA bits.  Note these overlap with
2525 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2526 	 */
2527 	if (sc->sc_isedma)
2528 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2529 
2530 	/*
2531 	 * If we're an EDMA NIC, we don't care about RXEOL.
2532 	 * Writing a new descriptor in will simply restart
2533 	 * RX DMA.
2534 	 */
2535 	if (! sc->sc_isedma)
2536 		sc->sc_imask |= HAL_INT_RXEOL;
2537 
2538 	/*
2539 	 * Enable MIB interrupts when there are hardware phy counters.
2540 	 * Note we only do this (at the moment) for station mode.
2541 	 */
2542 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2543 		sc->sc_imask |= HAL_INT_MIB;
2544 
2545 	/*
2546 	 * XXX add capability for this.
2547 	 *
2548 	 * If we're in STA mode (and maybe IBSS?) then register for
2549 	 * TSFOOR interrupts.
2550 	 */
2551 	if (ic->ic_opmode == IEEE80211_M_STA)
2552 		sc->sc_imask |= HAL_INT_TSFOOR;
2553 
2554 	/* Enable global TX timeout and carrier sense timeout if available */
2555 	if (ath_hal_gtxto_supported(ah))
2556 		sc->sc_imask |= HAL_INT_GTT;
2557 
2558 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2559 		__func__, sc->sc_imask);
2560 
2561 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2562 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2563 	ath_hal_intrset(ah, sc->sc_imask);
2564 
2565 	ath_power_restore_power_state(sc);
2566 	ATH_UNLOCK(sc);
2567 
2568 #ifdef ATH_TX99_DIAG
2569 	if (sc->sc_tx99 != NULL)
2570 		sc->sc_tx99->start(sc->sc_tx99);
2571 	else
2572 #endif
2573 	ieee80211_start_all(ic);		/* start all vap's */
2574 }
2575 
2576 static void
2577 ath_stop_locked(struct ifnet *ifp)
2578 {
2579 	struct ath_softc *sc = ifp->if_softc;
2580 	struct ath_hal *ah = sc->sc_ah;
2581 
2582 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2583 		__func__, sc->sc_invalid, ifp->if_flags);
2584 
2585 	ATH_LOCK_ASSERT(sc);
2586 
2587 	/*
2588 	 * Wake the hardware up before fiddling with it.
2589 	 */
2590 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2591 
2592 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2593 		/*
2594 		 * Shutdown the hardware and driver:
2595 		 *    reset 802.11 state machine
2596 		 *    turn off timers
2597 		 *    disable interrupts
2598 		 *    turn off the radio
2599 		 *    clear transmit machinery
2600 		 *    clear receive machinery
2601 		 *    drain and release tx queues
2602 		 *    reclaim beacon resources
2603 		 *    power down hardware
2604 		 *
2605 		 * Note that some of this work is not possible if the
2606 		 * hardware is gone (invalid).
2607 		 */
2608 #ifdef ATH_TX99_DIAG
2609 		if (sc->sc_tx99 != NULL)
2610 			sc->sc_tx99->stop(sc->sc_tx99);
2611 #endif
2612 		callout_stop(&sc->sc_wd_ch);
2613 		sc->sc_wd_timer = 0;
2614 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2615 		if (!sc->sc_invalid) {
2616 			if (sc->sc_softled) {
2617 				callout_stop(&sc->sc_ledtimer);
2618 				ath_hal_gpioset(ah, sc->sc_ledpin,
2619 					!sc->sc_ledon);
2620 				sc->sc_blinking = 0;
2621 			}
2622 			ath_hal_intrset(ah, 0);
2623 		}
2624 		/* XXX we should stop RX regardless of whether it's valid */
2625 		if (!sc->sc_invalid) {
2626 			ath_stoprecv(sc, 1);
2627 			ath_hal_phydisable(ah);
2628 		} else
2629 			sc->sc_rxlink = NULL;
2630 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2631 		ath_beacon_free(sc);	/* XXX not needed */
2632 	}
2633 
2634 	/* And now, restore the current power state */
2635 	ath_power_restore_power_state(sc);
2636 }
2637 
2638 /*
2639  * Wait until all pending TX/RX has completed.
2640  *
2641  * This waits until all existing transmit, receive and interrupts
2642  * have completed.  It's assumed that the caller has first
2643  * grabbed the reset lock so it doesn't try to do overlapping
2644  * chip resets.
2645  */
2646 #define	MAX_TXRX_ITERATIONS	100
2647 static void
2648 ath_txrx_stop_locked(struct ath_softc *sc)
2649 {
2650 	int i = MAX_TXRX_ITERATIONS;
2651 
2652 	ATH_UNLOCK_ASSERT(sc);
2653 	ATH_PCU_LOCK_ASSERT(sc);
2654 
2655 	/*
2656 	 * Sleep until all the pending operations have completed.
2657 	 *
2658 	 * The caller must ensure that reset has been incremented
2659 	 * or the pending operations may continue being queued.
2660 	 */
2661 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2662 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2663 		if (i <= 0)
2664 			break;
2665 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2666 		    msecs_to_ticks(10));
2667 		i--;
2668 	}
2669 
2670 	if (i <= 0)
2671 		device_printf(sc->sc_dev,
2672 		    "%s: didn't finish after %d iterations\n",
2673 		    __func__, MAX_TXRX_ITERATIONS);
2674 }
2675 #undef	MAX_TXRX_ITERATIONS
2676 
2677 #if 0
2678 static void
2679 ath_txrx_stop(struct ath_softc *sc)
2680 {
2681 	ATH_UNLOCK_ASSERT(sc);
2682 	ATH_PCU_UNLOCK_ASSERT(sc);
2683 
2684 	ATH_PCU_LOCK(sc);
2685 	ath_txrx_stop_locked(sc);
2686 	ATH_PCU_UNLOCK(sc);
2687 }
2688 #endif
2689 
2690 static void
2691 ath_txrx_start(struct ath_softc *sc)
2692 {
2693 
2694 	taskqueue_unblock(sc->sc_tq);
2695 }
2696 
2697 /*
2698  * Grab the reset lock, and wait around until noone else
2699  * is trying to do anything with it.
2700  *
2701  * This is totally horrible but we can't hold this lock for
2702  * long enough to do TX/RX or we end up with net80211/ip stack
2703  * LORs and eventual deadlock.
2704  *
2705  * "dowait" signals whether to spin, waiting for the reset
2706  * lock count to reach 0. This should (for now) only be used
2707  * during the reset path, as the rest of the code may not
2708  * be locking-reentrant enough to behave correctly.
2709  *
2710  * Another, cleaner way should be found to serialise all of
2711  * these operations.
2712  */
2713 #define	MAX_RESET_ITERATIONS	25
2714 static int
2715 ath_reset_grablock(struct ath_softc *sc, int dowait)
2716 {
2717 	int w = 0;
2718 	int i = MAX_RESET_ITERATIONS;
2719 
2720 	ATH_PCU_LOCK_ASSERT(sc);
2721 	do {
2722 		if (sc->sc_inreset_cnt == 0) {
2723 			w = 1;
2724 			break;
2725 		}
2726 		if (dowait == 0) {
2727 			w = 0;
2728 			break;
2729 		}
2730 		ATH_PCU_UNLOCK(sc);
2731 		/*
2732 		 * 1 tick is likely not enough time for long calibrations
2733 		 * to complete.  So we should wait quite a while.
2734 		 */
2735 		pause("ath_reset_grablock", msecs_to_ticks(100));
2736 		i--;
2737 		ATH_PCU_LOCK(sc);
2738 	} while (i > 0);
2739 
2740 	/*
2741 	 * We always increment the refcounter, regardless
2742 	 * of whether we succeeded to get it in an exclusive
2743 	 * way.
2744 	 */
2745 	sc->sc_inreset_cnt++;
2746 
2747 	if (i <= 0)
2748 		device_printf(sc->sc_dev,
2749 		    "%s: didn't finish after %d iterations\n",
2750 		    __func__, MAX_RESET_ITERATIONS);
2751 
2752 	if (w == 0)
2753 		device_printf(sc->sc_dev,
2754 		    "%s: warning, recursive reset path!\n",
2755 		    __func__);
2756 
2757 	return w;
2758 }
2759 #undef MAX_RESET_ITERATIONS
2760 
2761 /*
2762  * XXX TODO: write ath_reset_releaselock
2763  */
2764 
2765 static void
2766 ath_stop(struct ifnet *ifp)
2767 {
2768 	struct ath_softc *sc = ifp->if_softc;
2769 
2770 	ATH_LOCK(sc);
2771 	ath_stop_locked(ifp);
2772 	ATH_UNLOCK(sc);
2773 }
2774 
2775 /*
2776  * Reset the hardware w/o losing operational state.  This is
2777  * basically a more efficient way of doing ath_stop, ath_init,
2778  * followed by state transitions to the current 802.11
2779  * operational state.  Used to recover from various errors and
2780  * to reset or reload hardware state.
2781  */
2782 int
2783 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2784 {
2785 	struct ath_softc *sc = ifp->if_softc;
2786 	struct ieee80211com *ic = ifp->if_l2com;
2787 	struct ath_hal *ah = sc->sc_ah;
2788 	HAL_STATUS status;
2789 	int i;
2790 
2791 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2792 
2793 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2794 	ATH_PCU_UNLOCK_ASSERT(sc);
2795 	ATH_UNLOCK_ASSERT(sc);
2796 
2797 	/* Try to (stop any further TX/RX from occuring */
2798 	taskqueue_block(sc->sc_tq);
2799 
2800 	/*
2801 	 * Wake the hardware up.
2802 	 */
2803 	ATH_LOCK(sc);
2804 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2805 	ATH_UNLOCK(sc);
2806 
2807 	ATH_PCU_LOCK(sc);
2808 
2809 	/*
2810 	 * Grab the reset lock before TX/RX is stopped.
2811 	 *
2812 	 * This is needed to ensure that when the TX/RX actually does finish,
2813 	 * no further TX/RX/reset runs in parallel with this.
2814 	 */
2815 	if (ath_reset_grablock(sc, 1) == 0) {
2816 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2817 		    __func__);
2818 	}
2819 
2820 	/* disable interrupts */
2821 	ath_hal_intrset(ah, 0);
2822 
2823 	/*
2824 	 * Now, ensure that any in progress TX/RX completes before we
2825 	 * continue.
2826 	 */
2827 	ath_txrx_stop_locked(sc);
2828 
2829 	ATH_PCU_UNLOCK(sc);
2830 
2831 	/*
2832 	 * Regardless of whether we're doing a no-loss flush or
2833 	 * not, stop the PCU and handle what's in the RX queue.
2834 	 * That way frames aren't dropped which shouldn't be.
2835 	 */
2836 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2837 	ath_rx_flush(sc);
2838 
2839 	/*
2840 	 * Should now wait for pending TX/RX to complete
2841 	 * and block future ones from occuring. This needs to be
2842 	 * done before the TX queue is drained.
2843 	 */
2844 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2845 
2846 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2847 	/* NB: indicate channel change so we do a full reset */
2848 	ath_update_chainmasks(sc, ic->ic_curchan);
2849 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2850 	    sc->sc_cur_rxchainmask);
2851 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2852 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2853 			__func__, status);
2854 	sc->sc_diversity = ath_hal_getdiversity(ah);
2855 
2856 	ATH_RX_LOCK(sc);
2857 	sc->sc_rx_stopped = 1;
2858 	sc->sc_rx_resetted = 1;
2859 	ATH_RX_UNLOCK(sc);
2860 
2861 	/* Let DFS at it in case it's a DFS channel */
2862 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2863 
2864 	/* Let spectral at in case spectral is enabled */
2865 	ath_spectral_enable(sc, ic->ic_curchan);
2866 
2867 	/*
2868 	 * Let bluetooth coexistence at in case it's needed for this channel
2869 	 */
2870 	ath_btcoex_enable(sc, ic->ic_curchan);
2871 
2872 	/*
2873 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2874 	 * support it.
2875 	 */
2876 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2877 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2878 	else
2879 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2880 
2881 	if (ath_startrecv(sc) != 0)	/* restart recv */
2882 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2883 	/*
2884 	 * We may be doing a reset in response to an ioctl
2885 	 * that changes the channel so update any state that
2886 	 * might change as a result.
2887 	 */
2888 	ath_chan_change(sc, ic->ic_curchan);
2889 	if (sc->sc_beacons) {		/* restart beacons */
2890 #ifdef IEEE80211_SUPPORT_TDMA
2891 		if (sc->sc_tdma)
2892 			ath_tdma_config(sc, NULL);
2893 		else
2894 #endif
2895 			ath_beacon_config(sc, NULL);
2896 	}
2897 
2898 	/*
2899 	 * Release the reset lock and re-enable interrupts here.
2900 	 * If an interrupt was being processed in ath_intr(),
2901 	 * it would disable interrupts at this point. So we have
2902 	 * to atomically enable interrupts and decrement the
2903 	 * reset counter - this way ath_intr() doesn't end up
2904 	 * disabling interrupts without a corresponding enable
2905 	 * in the rest or channel change path.
2906 	 *
2907 	 * Grab the TX reference in case we need to transmit.
2908 	 * That way a parallel transmit doesn't.
2909 	 */
2910 	ATH_PCU_LOCK(sc);
2911 	sc->sc_inreset_cnt--;
2912 	sc->sc_txstart_cnt++;
2913 	/* XXX only do this if sc_inreset_cnt == 0? */
2914 	ath_hal_intrset(ah, sc->sc_imask);
2915 	ATH_PCU_UNLOCK(sc);
2916 
2917 	/*
2918 	 * TX and RX can be started here. If it were started with
2919 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2920 	 * Thus if this is a nested call through the reset or
2921 	 * channel change code, TX completion will occur but
2922 	 * RX completion and ath_start / ath_tx_start will not
2923 	 * run.
2924 	 */
2925 
2926 	/* Restart TX/RX as needed */
2927 	ath_txrx_start(sc);
2928 
2929 	/* XXX TODO: we need to hold the tx refcount here! */
2930 
2931 	/* Restart TX completion and pending TX */
2932 	if (reset_type == ATH_RESET_NOLOSS) {
2933 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2934 			if (ATH_TXQ_SETUP(sc, i)) {
2935 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2936 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2937 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2938 
2939 				ATH_TX_LOCK(sc);
2940 				ath_txq_sched(sc, &sc->sc_txq[i]);
2941 				ATH_TX_UNLOCK(sc);
2942 			}
2943 		}
2944 	}
2945 
2946 	/*
2947 	 * This may have been set during an ath_start() call which
2948 	 * set this once it detected a concurrent TX was going on.
2949 	 * So, clear it.
2950 	 */
2951 	IF_LOCK(&ifp->if_snd);
2952 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2953 	IF_UNLOCK(&ifp->if_snd);
2954 
2955 	ATH_LOCK(sc);
2956 	ath_power_restore_power_state(sc);
2957 	ATH_UNLOCK(sc);
2958 
2959 	ATH_PCU_LOCK(sc);
2960 	sc->sc_txstart_cnt--;
2961 	ATH_PCU_UNLOCK(sc);
2962 
2963 	/* Handle any frames in the TX queue */
2964 	/*
2965 	 * XXX should this be done by the caller, rather than
2966 	 * ath_reset() ?
2967 	 */
2968 	ath_tx_kick(sc);		/* restart xmit */
2969 	return 0;
2970 }
2971 
2972 static int
2973 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2974 {
2975 	struct ieee80211com *ic = vap->iv_ic;
2976 	struct ifnet *ifp = ic->ic_ifp;
2977 	struct ath_softc *sc = ifp->if_softc;
2978 	struct ath_hal *ah = sc->sc_ah;
2979 
2980 	switch (cmd) {
2981 	case IEEE80211_IOC_TXPOWER:
2982 		/*
2983 		 * If per-packet TPC is enabled, then we have nothing
2984 		 * to do; otherwise we need to force the global limit.
2985 		 * All this can happen directly; no need to reset.
2986 		 */
2987 		if (!ath_hal_gettpc(ah))
2988 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2989 		return 0;
2990 	}
2991 	/* XXX? Full or NOLOSS? */
2992 	return ath_reset(ifp, ATH_RESET_FULL);
2993 }
2994 
2995 struct ath_buf *
2996 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2997 {
2998 	struct ath_buf *bf;
2999 
3000 	ATH_TXBUF_LOCK_ASSERT(sc);
3001 
3002 	if (btype == ATH_BUFTYPE_MGMT)
3003 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3004 	else
3005 		bf = TAILQ_FIRST(&sc->sc_txbuf);
3006 
3007 	if (bf == NULL) {
3008 		sc->sc_stats.ast_tx_getnobuf++;
3009 	} else {
3010 		if (bf->bf_flags & ATH_BUF_BUSY) {
3011 			sc->sc_stats.ast_tx_getbusybuf++;
3012 			bf = NULL;
3013 		}
3014 	}
3015 
3016 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3017 		if (btype == ATH_BUFTYPE_MGMT)
3018 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3019 		else {
3020 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3021 			sc->sc_txbuf_cnt--;
3022 
3023 			/*
3024 			 * This shuldn't happen; however just to be
3025 			 * safe print a warning and fudge the txbuf
3026 			 * count.
3027 			 */
3028 			if (sc->sc_txbuf_cnt < 0) {
3029 				device_printf(sc->sc_dev,
3030 				    "%s: sc_txbuf_cnt < 0?\n",
3031 				    __func__);
3032 				sc->sc_txbuf_cnt = 0;
3033 			}
3034 		}
3035 	} else
3036 		bf = NULL;
3037 
3038 	if (bf == NULL) {
3039 		/* XXX should check which list, mgmt or otherwise */
3040 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3041 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3042 			"out of xmit buffers" : "xmit buffer busy");
3043 		return NULL;
3044 	}
3045 
3046 	/* XXX TODO: should do this at buffer list initialisation */
3047 	/* XXX (then, ensure the buffer has the right flag set) */
3048 	bf->bf_flags = 0;
3049 	if (btype == ATH_BUFTYPE_MGMT)
3050 		bf->bf_flags |= ATH_BUF_MGMT;
3051 	else
3052 		bf->bf_flags &= (~ATH_BUF_MGMT);
3053 
3054 	/* Valid bf here; clear some basic fields */
3055 	bf->bf_next = NULL;	/* XXX just to be sure */
3056 	bf->bf_last = NULL;	/* XXX again, just to be sure */
3057 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3058 	bzero(&bf->bf_state, sizeof(bf->bf_state));
3059 
3060 	/*
3061 	 * Track the descriptor ID only if doing EDMA
3062 	 */
3063 	if (sc->sc_isedma) {
3064 		bf->bf_descid = sc->sc_txbuf_descid;
3065 		sc->sc_txbuf_descid++;
3066 	}
3067 
3068 	return bf;
3069 }
3070 
3071 /*
3072  * When retrying a software frame, buffers marked ATH_BUF_BUSY
3073  * can't be thrown back on the queue as they could still be
3074  * in use by the hardware.
3075  *
3076  * This duplicates the buffer, or returns NULL.
3077  *
3078  * The descriptor is also copied but the link pointers and
3079  * the DMA segments aren't copied; this frame should thus
3080  * be again passed through the descriptor setup/chain routines
3081  * so the link is correct.
3082  *
3083  * The caller must free the buffer using ath_freebuf().
3084  */
3085 struct ath_buf *
3086 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3087 {
3088 	struct ath_buf *tbf;
3089 
3090 	tbf = ath_getbuf(sc,
3091 	    (bf->bf_flags & ATH_BUF_MGMT) ?
3092 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3093 	if (tbf == NULL)
3094 		return NULL;	/* XXX failure? Why? */
3095 
3096 	/* Copy basics */
3097 	tbf->bf_next = NULL;
3098 	tbf->bf_nseg = bf->bf_nseg;
3099 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3100 	tbf->bf_status = bf->bf_status;
3101 	tbf->bf_m = bf->bf_m;
3102 	tbf->bf_node = bf->bf_node;
3103 	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3104 	/* will be setup by the chain/setup function */
3105 	tbf->bf_lastds = NULL;
3106 	/* for now, last == self */
3107 	tbf->bf_last = tbf;
3108 	tbf->bf_comp = bf->bf_comp;
3109 
3110 	/* NOTE: DMA segments will be setup by the setup/chain functions */
3111 
3112 	/* The caller has to re-init the descriptor + links */
3113 
3114 	/*
3115 	 * Free the DMA mapping here, before we NULL the mbuf.
3116 	 * We must only call bus_dmamap_unload() once per mbuf chain
3117 	 * or behaviour is undefined.
3118 	 */
3119 	if (bf->bf_m != NULL) {
3120 		/*
3121 		 * XXX is this POSTWRITE call required?
3122 		 */
3123 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3124 		    BUS_DMASYNC_POSTWRITE);
3125 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3126 	}
3127 
3128 	bf->bf_m = NULL;
3129 	bf->bf_node = NULL;
3130 
3131 	/* Copy state */
3132 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3133 
3134 	return tbf;
3135 }
3136 
3137 struct ath_buf *
3138 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3139 {
3140 	struct ath_buf *bf;
3141 
3142 	ATH_TXBUF_LOCK(sc);
3143 	bf = _ath_getbuf_locked(sc, btype);
3144 	/*
3145 	 * If a mgmt buffer was requested but we're out of those,
3146 	 * try requesting a normal one.
3147 	 */
3148 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3149 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3150 	ATH_TXBUF_UNLOCK(sc);
3151 	if (bf == NULL) {
3152 		struct ifnet *ifp = sc->sc_ifp;
3153 
3154 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3155 		sc->sc_stats.ast_tx_qstop++;
3156 		IF_LOCK(&ifp->if_snd);
3157 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3158 		IF_UNLOCK(&ifp->if_snd);
3159 	}
3160 	return bf;
3161 }
3162 
3163 static void
3164 ath_qflush(struct ifnet *ifp)
3165 {
3166 
3167 	/* XXX TODO */
3168 }
3169 
3170 /*
3171  * Transmit a single frame.
3172  *
3173  * net80211 will free the node reference if the transmit
3174  * fails, so don't free the node reference here.
3175  */
3176 static int
3177 ath_transmit(struct ifnet *ifp, struct mbuf *m)
3178 {
3179 	struct ieee80211com *ic = ifp->if_l2com;
3180 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3181 	struct ieee80211_node *ni;
3182 	struct mbuf *next;
3183 	struct ath_buf *bf;
3184 	ath_bufhead frags;
3185 	int retval = 0;
3186 
3187 	/*
3188 	 * Tell the reset path that we're currently transmitting.
3189 	 */
3190 	ATH_PCU_LOCK(sc);
3191 	if (sc->sc_inreset_cnt > 0) {
3192 		DPRINTF(sc, ATH_DEBUG_XMIT,
3193 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3194 		ATH_PCU_UNLOCK(sc);
3195 		IF_LOCK(&ifp->if_snd);
3196 		sc->sc_stats.ast_tx_qstop++;
3197 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3198 		IF_UNLOCK(&ifp->if_snd);
3199 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3200 		return (ENOBUFS);	/* XXX should be EINVAL or? */
3201 	}
3202 	sc->sc_txstart_cnt++;
3203 	ATH_PCU_UNLOCK(sc);
3204 
3205 	/* Wake the hardware up already */
3206 	ATH_LOCK(sc);
3207 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3208 	ATH_UNLOCK(sc);
3209 
3210 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3211 	/*
3212 	 * Grab the TX lock - it's ok to do this here; we haven't
3213 	 * yet started transmitting.
3214 	 */
3215 	ATH_TX_LOCK(sc);
3216 
3217 	/*
3218 	 * Node reference, if there's one.
3219 	 */
3220 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3221 
3222 	/*
3223 	 * Enforce how deep a node queue can get.
3224 	 *
3225 	 * XXX it would be nicer if we kept an mbuf queue per
3226 	 * node and only whacked them into ath_bufs when we
3227 	 * are ready to schedule some traffic from them.
3228 	 * .. that may come later.
3229 	 *
3230 	 * XXX we should also track the per-node hardware queue
3231 	 * depth so it is easy to limit the _SUM_ of the swq and
3232 	 * hwq frames.  Since we only schedule two HWQ frames
3233 	 * at a time, this should be OK for now.
3234 	 */
3235 	if ((!(m->m_flags & M_EAPOL)) &&
3236 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3237 		sc->sc_stats.ast_tx_nodeq_overflow++;
3238 		m_freem(m);
3239 		m = NULL;
3240 		retval = ENOBUFS;
3241 		goto finish;
3242 	}
3243 
3244 	/*
3245 	 * Check how many TX buffers are available.
3246 	 *
3247 	 * If this is for non-EAPOL traffic, just leave some
3248 	 * space free in order for buffer cloning and raw
3249 	 * frame transmission to occur.
3250 	 *
3251 	 * If it's for EAPOL traffic, ignore this for now.
3252 	 * Management traffic will be sent via the raw transmit
3253 	 * method which bypasses this check.
3254 	 *
3255 	 * This is needed to ensure that EAPOL frames during
3256 	 * (re) keying have a chance to go out.
3257 	 *
3258 	 * See kern/138379 for more information.
3259 	 */
3260 	if ((!(m->m_flags & M_EAPOL)) &&
3261 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3262 		sc->sc_stats.ast_tx_nobuf++;
3263 		m_freem(m);
3264 		m = NULL;
3265 		retval = ENOBUFS;
3266 		goto finish;
3267 	}
3268 
3269 	/*
3270 	 * Grab a TX buffer and associated resources.
3271 	 *
3272 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3273 	 * That way even with temporary buffer exhaustion due to
3274 	 * the data path doesn't leave us without the ability
3275 	 * to transmit management frames.
3276 	 *
3277 	 * Otherwise allocate a normal buffer.
3278 	 */
3279 	if (m->m_flags & M_EAPOL)
3280 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3281 	else
3282 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3283 
3284 	if (bf == NULL) {
3285 		/*
3286 		 * If we failed to allocate a buffer, fail.
3287 		 *
3288 		 * We shouldn't fail normally, due to the check
3289 		 * above.
3290 		 */
3291 		sc->sc_stats.ast_tx_nobuf++;
3292 		IF_LOCK(&ifp->if_snd);
3293 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3294 		IF_UNLOCK(&ifp->if_snd);
3295 		m_freem(m);
3296 		m = NULL;
3297 		retval = ENOBUFS;
3298 		goto finish;
3299 	}
3300 
3301 	/*
3302 	 * At this point we have a buffer; so we need to free it
3303 	 * if we hit any error conditions.
3304 	 */
3305 
3306 	/*
3307 	 * Check for fragmentation.  If this frame
3308 	 * has been broken up verify we have enough
3309 	 * buffers to send all the fragments so all
3310 	 * go out or none...
3311 	 */
3312 	TAILQ_INIT(&frags);
3313 	if ((m->m_flags & M_FRAG) &&
3314 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3315 		DPRINTF(sc, ATH_DEBUG_XMIT,
3316 		    "%s: out of txfrag buffers\n", __func__);
3317 		sc->sc_stats.ast_tx_nofrag++;
3318 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3319 		ath_freetx(m);
3320 		goto bad;
3321 	}
3322 
3323 	/*
3324 	 * At this point if we have any TX fragments, then we will
3325 	 * have bumped the node reference once for each of those.
3326 	 */
3327 
3328 	/*
3329 	 * XXX Is there anything actually _enforcing_ that the
3330 	 * fragments are being transmitted in one hit, rather than
3331 	 * being interleaved with other transmissions on that
3332 	 * hardware queue?
3333 	 *
3334 	 * The ATH TX output lock is the only thing serialising this
3335 	 * right now.
3336 	 */
3337 
3338 	/*
3339 	 * Calculate the "next fragment" length field in ath_buf
3340 	 * in order to let the transmit path know enough about
3341 	 * what to next write to the hardware.
3342 	 */
3343 	if (m->m_flags & M_FRAG) {
3344 		struct ath_buf *fbf = bf;
3345 		struct ath_buf *n_fbf = NULL;
3346 		struct mbuf *fm = m->m_nextpkt;
3347 
3348 		/*
3349 		 * We need to walk the list of fragments and set
3350 		 * the next size to the following buffer.
3351 		 * However, the first buffer isn't in the frag
3352 		 * list, so we have to do some gymnastics here.
3353 		 */
3354 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3355 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3356 			fbf = n_fbf;
3357 			fm = fm->m_nextpkt;
3358 		}
3359 	}
3360 
3361 	/*
3362 	 * Bump the ifp output counter.
3363 	 *
3364 	 * XXX should use atomics?
3365 	 */
3366 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3367 nextfrag:
3368 	/*
3369 	 * Pass the frame to the h/w for transmission.
3370 	 * Fragmented frames have each frag chained together
3371 	 * with m_nextpkt.  We know there are sufficient ath_buf's
3372 	 * to send all the frags because of work done by
3373 	 * ath_txfrag_setup.  We leave m_nextpkt set while
3374 	 * calling ath_tx_start so it can use it to extend the
3375 	 * the tx duration to cover the subsequent frag and
3376 	 * so it can reclaim all the mbufs in case of an error;
3377 	 * ath_tx_start clears m_nextpkt once it commits to
3378 	 * handing the frame to the hardware.
3379 	 *
3380 	 * Note: if this fails, then the mbufs are freed but
3381 	 * not the node reference.
3382 	 */
3383 	next = m->m_nextpkt;
3384 	if (ath_tx_start(sc, ni, bf, m)) {
3385 bad:
3386 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3387 reclaim:
3388 		bf->bf_m = NULL;
3389 		bf->bf_node = NULL;
3390 		ATH_TXBUF_LOCK(sc);
3391 		ath_returnbuf_head(sc, bf);
3392 		/*
3393 		 * Free the rest of the node references and
3394 		 * buffers for the fragment list.
3395 		 */
3396 		ath_txfrag_cleanup(sc, &frags, ni);
3397 		ATH_TXBUF_UNLOCK(sc);
3398 		retval = ENOBUFS;
3399 		goto finish;
3400 	}
3401 
3402 	/*
3403 	 * Check here if the node is in power save state.
3404 	 */
3405 	ath_tx_update_tim(sc, ni, 1);
3406 
3407 	if (next != NULL) {
3408 		/*
3409 		 * Beware of state changing between frags.
3410 		 * XXX check sta power-save state?
3411 		 */
3412 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3413 			DPRINTF(sc, ATH_DEBUG_XMIT,
3414 			    "%s: flush fragmented packet, state %s\n",
3415 			    __func__,
3416 			    ieee80211_state_name[ni->ni_vap->iv_state]);
3417 			/* XXX dmamap */
3418 			ath_freetx(next);
3419 			goto reclaim;
3420 		}
3421 		m = next;
3422 		bf = TAILQ_FIRST(&frags);
3423 		KASSERT(bf != NULL, ("no buf for txfrag"));
3424 		TAILQ_REMOVE(&frags, bf, bf_list);
3425 		goto nextfrag;
3426 	}
3427 
3428 	/*
3429 	 * Bump watchdog timer.
3430 	 */
3431 	sc->sc_wd_timer = 5;
3432 
3433 finish:
3434 	ATH_TX_UNLOCK(sc);
3435 
3436 	/*
3437 	 * Finished transmitting!
3438 	 */
3439 	ATH_PCU_LOCK(sc);
3440 	sc->sc_txstart_cnt--;
3441 	ATH_PCU_UNLOCK(sc);
3442 
3443 	/* Sleep the hardware if required */
3444 	ATH_LOCK(sc);
3445 	ath_power_restore_power_state(sc);
3446 	ATH_UNLOCK(sc);
3447 
3448 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3449 
3450 	return (retval);
3451 }
3452 
3453 static int
3454 ath_media_change(struct ifnet *ifp)
3455 {
3456 	int error = ieee80211_media_change(ifp);
3457 	/* NB: only the fixed rate can change and that doesn't need a reset */
3458 	return (error == ENETRESET ? 0 : error);
3459 }
3460 
3461 /*
3462  * Block/unblock tx+rx processing while a key change is done.
3463  * We assume the caller serializes key management operations
3464  * so we only need to worry about synchronization with other
3465  * uses that originate in the driver.
3466  */
3467 static void
3468 ath_key_update_begin(struct ieee80211vap *vap)
3469 {
3470 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3471 	struct ath_softc *sc = ifp->if_softc;
3472 
3473 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3474 	taskqueue_block(sc->sc_tq);
3475 }
3476 
3477 static void
3478 ath_key_update_end(struct ieee80211vap *vap)
3479 {
3480 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3481 	struct ath_softc *sc = ifp->if_softc;
3482 
3483 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3484 	taskqueue_unblock(sc->sc_tq);
3485 }
3486 
3487 static void
3488 ath_update_promisc(struct ifnet *ifp)
3489 {
3490 	struct ath_softc *sc = ifp->if_softc;
3491 	u_int32_t rfilt;
3492 
3493 	/* configure rx filter */
3494 	ATH_LOCK(sc);
3495 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3496 	rfilt = ath_calcrxfilter(sc);
3497 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3498 	ath_power_restore_power_state(sc);
3499 	ATH_UNLOCK(sc);
3500 
3501 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3502 }
3503 
3504 /*
3505  * Driver-internal mcast update call.
3506  *
3507  * Assumes the hardware is already awake.
3508  */
3509 static void
3510 ath_update_mcast_hw(struct ath_softc *sc)
3511 {
3512 	struct ifnet *ifp = sc->sc_ifp;
3513 	u_int32_t mfilt[2];
3514 
3515 	/* calculate and install multicast filter */
3516 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3517 		struct ifmultiaddr *ifma;
3518 		/*
3519 		 * Merge multicast addresses to form the hardware filter.
3520 		 */
3521 		mfilt[0] = mfilt[1] = 0;
3522 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3523 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3524 			caddr_t dl;
3525 			u_int32_t val;
3526 			u_int8_t pos;
3527 
3528 			/* calculate XOR of eight 6bit values */
3529 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3530 			val = LE_READ_4(dl + 0);
3531 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3532 			val = LE_READ_4(dl + 3);
3533 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3534 			pos &= 0x3f;
3535 			mfilt[pos / 32] |= (1 << (pos % 32));
3536 		}
3537 		if_maddr_runlock(ifp);
3538 	} else
3539 		mfilt[0] = mfilt[1] = ~0;
3540 
3541 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3542 
3543 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3544 		__func__, mfilt[0], mfilt[1]);
3545 }
3546 
3547 /*
3548  * Called from the net80211 layer - force the hardware
3549  * awake before operating.
3550  */
3551 static void
3552 ath_update_mcast(struct ifnet *ifp)
3553 {
3554 	struct ath_softc *sc = ifp->if_softc;
3555 
3556 	ATH_LOCK(sc);
3557 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3558 	ATH_UNLOCK(sc);
3559 
3560 	ath_update_mcast_hw(sc);
3561 
3562 	ATH_LOCK(sc);
3563 	ath_power_restore_power_state(sc);
3564 	ATH_UNLOCK(sc);
3565 }
3566 
3567 void
3568 ath_mode_init(struct ath_softc *sc)
3569 {
3570 	struct ifnet *ifp = sc->sc_ifp;
3571 	struct ath_hal *ah = sc->sc_ah;
3572 	u_int32_t rfilt;
3573 
3574 	/* configure rx filter */
3575 	rfilt = ath_calcrxfilter(sc);
3576 	ath_hal_setrxfilter(ah, rfilt);
3577 
3578 	/* configure operational mode */
3579 	ath_hal_setopmode(ah);
3580 
3581 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3582 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3583 	    __func__,
3584 	    ah,
3585 	    ifp,
3586 	    (ifp == NULL) ? NULL : ifp->if_addr);
3587 
3588 	/* handle any link-level address change */
3589 	ath_hal_setmac(ah, IF_LLADDR(ifp));
3590 
3591 	/* calculate and install multicast filter */
3592 	ath_update_mcast_hw(sc);
3593 }
3594 
3595 /*
3596  * Set the slot time based on the current setting.
3597  */
3598 void
3599 ath_setslottime(struct ath_softc *sc)
3600 {
3601 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3602 	struct ath_hal *ah = sc->sc_ah;
3603 	u_int usec;
3604 
3605 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3606 		usec = 13;
3607 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3608 		usec = 21;
3609 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3610 		/* honor short/long slot time only in 11g */
3611 		/* XXX shouldn't honor on pure g or turbo g channel */
3612 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3613 			usec = HAL_SLOT_TIME_9;
3614 		else
3615 			usec = HAL_SLOT_TIME_20;
3616 	} else
3617 		usec = HAL_SLOT_TIME_9;
3618 
3619 	DPRINTF(sc, ATH_DEBUG_RESET,
3620 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3621 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3622 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3623 
3624 	/* Wake up the hardware first before updating the slot time */
3625 	ATH_LOCK(sc);
3626 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3627 	ath_hal_setslottime(ah, usec);
3628 	ath_power_restore_power_state(sc);
3629 	sc->sc_updateslot = OK;
3630 	ATH_UNLOCK(sc);
3631 }
3632 
3633 /*
3634  * Callback from the 802.11 layer to update the
3635  * slot time based on the current setting.
3636  */
3637 static void
3638 ath_updateslot(struct ifnet *ifp)
3639 {
3640 	struct ath_softc *sc = ifp->if_softc;
3641 	struct ieee80211com *ic = ifp->if_l2com;
3642 
3643 	/*
3644 	 * When not coordinating the BSS, change the hardware
3645 	 * immediately.  For other operation we defer the change
3646 	 * until beacon updates have propagated to the stations.
3647 	 *
3648 	 * XXX sc_updateslot isn't changed behind a lock?
3649 	 */
3650 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3651 	    ic->ic_opmode == IEEE80211_M_MBSS)
3652 		sc->sc_updateslot = UPDATE;
3653 	else
3654 		ath_setslottime(sc);
3655 }
3656 
3657 /*
3658  * Append the contents of src to dst; both queues
3659  * are assumed to be locked.
3660  */
3661 void
3662 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3663 {
3664 
3665 	ATH_TXQ_LOCK_ASSERT(src);
3666 	ATH_TXQ_LOCK_ASSERT(dst);
3667 
3668 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3669 	dst->axq_link = src->axq_link;
3670 	src->axq_link = NULL;
3671 	dst->axq_depth += src->axq_depth;
3672 	dst->axq_aggr_depth += src->axq_aggr_depth;
3673 	src->axq_depth = 0;
3674 	src->axq_aggr_depth = 0;
3675 }
3676 
3677 /*
3678  * Reset the hardware, with no loss.
3679  *
3680  * This can't be used for a general case reset.
3681  */
3682 static void
3683 ath_reset_proc(void *arg, int pending)
3684 {
3685 	struct ath_softc *sc = arg;
3686 	struct ifnet *ifp = sc->sc_ifp;
3687 
3688 #if 0
3689 	if_printf(ifp, "%s: resetting\n", __func__);
3690 #endif
3691 	ath_reset(ifp, ATH_RESET_NOLOSS);
3692 }
3693 
3694 /*
3695  * Reset the hardware after detecting beacons have stopped.
3696  */
3697 static void
3698 ath_bstuck_proc(void *arg, int pending)
3699 {
3700 	struct ath_softc *sc = arg;
3701 	struct ifnet *ifp = sc->sc_ifp;
3702 	uint32_t hangs = 0;
3703 
3704 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3705 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3706 
3707 #ifdef	ATH_DEBUG_ALQ
3708 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3709 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3710 #endif
3711 
3712 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3713 		sc->sc_bmisscount);
3714 	sc->sc_stats.ast_bstuck++;
3715 	/*
3716 	 * This assumes that there's no simultaneous channel mode change
3717 	 * occuring.
3718 	 */
3719 	ath_reset(ifp, ATH_RESET_NOLOSS);
3720 }
3721 
3722 static void
3723 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3724 {
3725 	bus_addr_t *paddr = (bus_addr_t*) arg;
3726 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3727 	*paddr = segs->ds_addr;
3728 }
3729 
3730 /*
3731  * Allocate the descriptors and appropriate DMA tag/setup.
3732  *
3733  * For some situations (eg EDMA TX completion), there isn't a requirement
3734  * for the ath_buf entries to be allocated.
3735  */
3736 int
3737 ath_descdma_alloc_desc(struct ath_softc *sc,
3738 	struct ath_descdma *dd, ath_bufhead *head,
3739 	const char *name, int ds_size, int ndesc)
3740 {
3741 #define	DS2PHYS(_dd, _ds) \
3742 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3743 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3744 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3745 	struct ifnet *ifp = sc->sc_ifp;
3746 	int error;
3747 
3748 	dd->dd_descsize = ds_size;
3749 
3750 	DPRINTF(sc, ATH_DEBUG_RESET,
3751 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3752 	    __func__, name, ndesc, dd->dd_descsize);
3753 
3754 	dd->dd_name = name;
3755 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3756 
3757 	/*
3758 	 * Merlin work-around:
3759 	 * Descriptors that cross the 4KB boundary can't be used.
3760 	 * Assume one skipped descriptor per 4KB page.
3761 	 */
3762 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3763 		int numpages = dd->dd_desc_len / 4096;
3764 		dd->dd_desc_len += ds_size * numpages;
3765 	}
3766 
3767 	/*
3768 	 * Setup DMA descriptor area.
3769 	 *
3770 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3771 	 * buffers for the descriptors themselves.
3772 	 */
3773 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3774 		       PAGE_SIZE, 0,		/* alignment, bounds */
3775 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3776 		       BUS_SPACE_MAXADDR,	/* highaddr */
3777 		       NULL, NULL,		/* filter, filterarg */
3778 		       dd->dd_desc_len,		/* maxsize */
3779 		       1,			/* nsegments */
3780 		       dd->dd_desc_len,		/* maxsegsize */
3781 		       0,			/* flags */
3782 		       NULL,			/* lockfunc */
3783 		       NULL,			/* lockarg */
3784 		       &dd->dd_dmat);
3785 	if (error != 0) {
3786 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3787 		return error;
3788 	}
3789 
3790 	/* allocate descriptors */
3791 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3792 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3793 				 &dd->dd_dmamap);
3794 	if (error != 0) {
3795 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3796 			"error %u\n", ndesc, dd->dd_name, error);
3797 		goto fail1;
3798 	}
3799 
3800 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3801 				dd->dd_desc, dd->dd_desc_len,
3802 				ath_load_cb, &dd->dd_desc_paddr,
3803 				BUS_DMA_NOWAIT);
3804 	if (error != 0) {
3805 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3806 			dd->dd_name, error);
3807 		goto fail2;
3808 	}
3809 
3810 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3811 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3812 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3813 	    /*XXX*/ (u_long) dd->dd_desc_len);
3814 
3815 	return (0);
3816 
3817 fail2:
3818 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3819 fail1:
3820 	bus_dma_tag_destroy(dd->dd_dmat);
3821 	memset(dd, 0, sizeof(*dd));
3822 	return error;
3823 #undef DS2PHYS
3824 #undef ATH_DESC_4KB_BOUND_CHECK
3825 }
3826 
3827 int
3828 ath_descdma_setup(struct ath_softc *sc,
3829 	struct ath_descdma *dd, ath_bufhead *head,
3830 	const char *name, int ds_size, int nbuf, int ndesc)
3831 {
3832 #define	DS2PHYS(_dd, _ds) \
3833 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3834 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3835 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3836 	struct ifnet *ifp = sc->sc_ifp;
3837 	uint8_t *ds;
3838 	struct ath_buf *bf;
3839 	int i, bsize, error;
3840 
3841 	/* Allocate descriptors */
3842 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3843 	    nbuf * ndesc);
3844 
3845 	/* Assume any errors during allocation were dealt with */
3846 	if (error != 0) {
3847 		return (error);
3848 	}
3849 
3850 	ds = (uint8_t *) dd->dd_desc;
3851 
3852 	/* allocate rx buffers */
3853 	bsize = sizeof(struct ath_buf) * nbuf;
3854 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3855 	if (bf == NULL) {
3856 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3857 			dd->dd_name, bsize);
3858 		goto fail3;
3859 	}
3860 	dd->dd_bufptr = bf;
3861 
3862 	TAILQ_INIT(head);
3863 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3864 		bf->bf_desc = (struct ath_desc *) ds;
3865 		bf->bf_daddr = DS2PHYS(dd, ds);
3866 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3867 			/*
3868 			 * Merlin WAR: Skip descriptor addresses which
3869 			 * cause 4KB boundary crossing along any point
3870 			 * in the descriptor.
3871 			 */
3872 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3873 			     dd->dd_descsize)) {
3874 				/* Start at the next page */
3875 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3876 				bf->bf_desc = (struct ath_desc *) ds;
3877 				bf->bf_daddr = DS2PHYS(dd, ds);
3878 			}
3879 		}
3880 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3881 				&bf->bf_dmamap);
3882 		if (error != 0) {
3883 			if_printf(ifp, "unable to create dmamap for %s "
3884 				"buffer %u, error %u\n", dd->dd_name, i, error);
3885 			ath_descdma_cleanup(sc, dd, head);
3886 			return error;
3887 		}
3888 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3889 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3890 	}
3891 
3892 	/*
3893 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3894 	 * allocation otherwise weird stuff will occur and crash your
3895 	 * machine.
3896 	 */
3897 	return 0;
3898 	/* XXX this should likely just call ath_descdma_cleanup() */
3899 fail3:
3900 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3901 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3902 	bus_dma_tag_destroy(dd->dd_dmat);
3903 	memset(dd, 0, sizeof(*dd));
3904 	return error;
3905 #undef DS2PHYS
3906 #undef ATH_DESC_4KB_BOUND_CHECK
3907 }
3908 
3909 /*
3910  * Allocate ath_buf entries but no descriptor contents.
3911  *
3912  * This is for RX EDMA where the descriptors are the header part of
3913  * the RX buffer.
3914  */
3915 int
3916 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3917 	struct ath_descdma *dd, ath_bufhead *head,
3918 	const char *name, int nbuf, int rx_status_len)
3919 {
3920 	struct ifnet *ifp = sc->sc_ifp;
3921 	struct ath_buf *bf;
3922 	int i, bsize, error;
3923 
3924 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3925 	    __func__, name, nbuf);
3926 
3927 	dd->dd_name = name;
3928 	/*
3929 	 * This is (mostly) purely for show.  We're not allocating any actual
3930 	 * descriptors here as EDMA RX has the descriptor be part
3931 	 * of the RX buffer.
3932 	 *
3933 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3934 	 * whether we have already freed this DMA mapping.
3935 	 */
3936 	dd->dd_desc_len = rx_status_len * nbuf;
3937 	dd->dd_descsize = rx_status_len;
3938 
3939 	/* allocate rx buffers */
3940 	bsize = sizeof(struct ath_buf) * nbuf;
3941 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3942 	if (bf == NULL) {
3943 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3944 			dd->dd_name, bsize);
3945 		error = ENOMEM;
3946 		goto fail3;
3947 	}
3948 	dd->dd_bufptr = bf;
3949 
3950 	TAILQ_INIT(head);
3951 	for (i = 0; i < nbuf; i++, bf++) {
3952 		bf->bf_desc = NULL;
3953 		bf->bf_daddr = 0;
3954 		bf->bf_lastds = NULL;	/* Just an initial value */
3955 
3956 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3957 				&bf->bf_dmamap);
3958 		if (error != 0) {
3959 			if_printf(ifp, "unable to create dmamap for %s "
3960 				"buffer %u, error %u\n", dd->dd_name, i, error);
3961 			ath_descdma_cleanup(sc, dd, head);
3962 			return error;
3963 		}
3964 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3965 	}
3966 	return 0;
3967 fail3:
3968 	memset(dd, 0, sizeof(*dd));
3969 	return error;
3970 }
3971 
3972 void
3973 ath_descdma_cleanup(struct ath_softc *sc,
3974 	struct ath_descdma *dd, ath_bufhead *head)
3975 {
3976 	struct ath_buf *bf;
3977 	struct ieee80211_node *ni;
3978 	int do_warning = 0;
3979 
3980 	if (dd->dd_dmamap != 0) {
3981 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3982 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3983 		bus_dma_tag_destroy(dd->dd_dmat);
3984 	}
3985 
3986 	if (head != NULL) {
3987 		TAILQ_FOREACH(bf, head, bf_list) {
3988 			if (bf->bf_m) {
3989 				/*
3990 				 * XXX warn if there's buffers here.
3991 				 * XXX it should have been freed by the
3992 				 * owner!
3993 				 */
3994 
3995 				if (do_warning == 0) {
3996 					do_warning = 1;
3997 					device_printf(sc->sc_dev,
3998 					    "%s: %s: mbuf should've been"
3999 					    " unmapped/freed!\n",
4000 					    __func__,
4001 					    dd->dd_name);
4002 				}
4003 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4004 				    BUS_DMASYNC_POSTREAD);
4005 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4006 				m_freem(bf->bf_m);
4007 				bf->bf_m = NULL;
4008 			}
4009 			if (bf->bf_dmamap != NULL) {
4010 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
4011 				bf->bf_dmamap = NULL;
4012 			}
4013 			ni = bf->bf_node;
4014 			bf->bf_node = NULL;
4015 			if (ni != NULL) {
4016 				/*
4017 				 * Reclaim node reference.
4018 				 */
4019 				ieee80211_free_node(ni);
4020 			}
4021 		}
4022 	}
4023 
4024 	if (head != NULL)
4025 		TAILQ_INIT(head);
4026 
4027 	if (dd->dd_bufptr != NULL)
4028 		free(dd->dd_bufptr, M_ATHDEV);
4029 	memset(dd, 0, sizeof(*dd));
4030 }
4031 
4032 static int
4033 ath_desc_alloc(struct ath_softc *sc)
4034 {
4035 	int error;
4036 
4037 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
4038 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
4039 	if (error != 0) {
4040 		return error;
4041 	}
4042 	sc->sc_txbuf_cnt = ath_txbuf;
4043 
4044 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
4045 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
4046 		    ATH_TXDESC);
4047 	if (error != 0) {
4048 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4049 		return error;
4050 	}
4051 
4052 	/*
4053 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
4054 	 * flag doesn't have to be set in ath_getbuf_locked().
4055 	 */
4056 
4057 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
4058 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
4059 	if (error != 0) {
4060 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4061 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4062 		    &sc->sc_txbuf_mgmt);
4063 		return error;
4064 	}
4065 	return 0;
4066 }
4067 
4068 static void
4069 ath_desc_free(struct ath_softc *sc)
4070 {
4071 
4072 	if (sc->sc_bdma.dd_desc_len != 0)
4073 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
4074 	if (sc->sc_txdma.dd_desc_len != 0)
4075 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4076 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
4077 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4078 		    &sc->sc_txbuf_mgmt);
4079 }
4080 
4081 static struct ieee80211_node *
4082 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4083 {
4084 	struct ieee80211com *ic = vap->iv_ic;
4085 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4086 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
4087 	struct ath_node *an;
4088 
4089 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
4090 	if (an == NULL) {
4091 		/* XXX stat+msg */
4092 		return NULL;
4093 	}
4094 	ath_rate_node_init(sc, an);
4095 
4096 	/* Setup the mutex - there's no associd yet so set the name to NULL */
4097 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
4098 	    device_get_nameunit(sc->sc_dev), an);
4099 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
4100 
4101 	/* XXX setup ath_tid */
4102 	ath_tx_tid_init(sc, an);
4103 
4104 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
4105 	return &an->an_node;
4106 }
4107 
4108 static void
4109 ath_node_cleanup(struct ieee80211_node *ni)
4110 {
4111 	struct ieee80211com *ic = ni->ni_ic;
4112 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4113 
4114 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4115 	    ni->ni_macaddr, ":", ATH_NODE(ni));
4116 
4117 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
4118 	ath_tx_node_flush(sc, ATH_NODE(ni));
4119 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
4120 	sc->sc_node_cleanup(ni);
4121 }
4122 
4123 static void
4124 ath_node_free(struct ieee80211_node *ni)
4125 {
4126 	struct ieee80211com *ic = ni->ni_ic;
4127 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4128 
4129 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4130 	    ni->ni_macaddr, ":", ATH_NODE(ni));
4131 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
4132 	sc->sc_node_free(ni);
4133 }
4134 
4135 static void
4136 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4137 {
4138 	struct ieee80211com *ic = ni->ni_ic;
4139 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4140 	struct ath_hal *ah = sc->sc_ah;
4141 
4142 	*rssi = ic->ic_node_getrssi(ni);
4143 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4144 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4145 	else
4146 		*noise = -95;		/* nominally correct */
4147 }
4148 
4149 /*
4150  * Set the default antenna.
4151  */
4152 void
4153 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4154 {
4155 	struct ath_hal *ah = sc->sc_ah;
4156 
4157 	/* XXX block beacon interrupts */
4158 	ath_hal_setdefantenna(ah, antenna);
4159 	if (sc->sc_defant != antenna)
4160 		sc->sc_stats.ast_ant_defswitch++;
4161 	sc->sc_defant = antenna;
4162 	sc->sc_rxotherant = 0;
4163 }
4164 
4165 static void
4166 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4167 {
4168 	txq->axq_qnum = qnum;
4169 	txq->axq_ac = 0;
4170 	txq->axq_depth = 0;
4171 	txq->axq_aggr_depth = 0;
4172 	txq->axq_intrcnt = 0;
4173 	txq->axq_link = NULL;
4174 	txq->axq_softc = sc;
4175 	TAILQ_INIT(&txq->axq_q);
4176 	TAILQ_INIT(&txq->axq_tidq);
4177 	TAILQ_INIT(&txq->fifo.axq_q);
4178 	ATH_TXQ_LOCK_INIT(sc, txq);
4179 }
4180 
4181 /*
4182  * Setup a h/w transmit queue.
4183  */
4184 static struct ath_txq *
4185 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4186 {
4187 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4188 	struct ath_hal *ah = sc->sc_ah;
4189 	HAL_TXQ_INFO qi;
4190 	int qnum;
4191 
4192 	memset(&qi, 0, sizeof(qi));
4193 	qi.tqi_subtype = subtype;
4194 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4195 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4196 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4197 	/*
4198 	 * Enable interrupts only for EOL and DESC conditions.
4199 	 * We mark tx descriptors to receive a DESC interrupt
4200 	 * when a tx queue gets deep; otherwise waiting for the
4201 	 * EOL to reap descriptors.  Note that this is done to
4202 	 * reduce interrupt load and this only defers reaping
4203 	 * descriptors, never transmitting frames.  Aside from
4204 	 * reducing interrupts this also permits more concurrency.
4205 	 * The only potential downside is if the tx queue backs
4206 	 * up in which case the top half of the kernel may backup
4207 	 * due to a lack of tx descriptors.
4208 	 */
4209 	if (sc->sc_isedma)
4210 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4211 		    HAL_TXQ_TXOKINT_ENABLE;
4212 	else
4213 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4214 		    HAL_TXQ_TXDESCINT_ENABLE;
4215 
4216 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4217 	if (qnum == -1) {
4218 		/*
4219 		 * NB: don't print a message, this happens
4220 		 * normally on parts with too few tx queues
4221 		 */
4222 		return NULL;
4223 	}
4224 	if (qnum >= N(sc->sc_txq)) {
4225 		device_printf(sc->sc_dev,
4226 			"hal qnum %u out of range, max %zu!\n",
4227 			qnum, N(sc->sc_txq));
4228 		ath_hal_releasetxqueue(ah, qnum);
4229 		return NULL;
4230 	}
4231 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4232 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4233 		sc->sc_txqsetup |= 1<<qnum;
4234 	}
4235 	return &sc->sc_txq[qnum];
4236 #undef N
4237 }
4238 
4239 /*
4240  * Setup a hardware data transmit queue for the specified
4241  * access control.  The hal may not support all requested
4242  * queues in which case it will return a reference to a
4243  * previously setup queue.  We record the mapping from ac's
4244  * to h/w queues for use by ath_tx_start and also track
4245  * the set of h/w queues being used to optimize work in the
4246  * transmit interrupt handler and related routines.
4247  */
4248 static int
4249 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4250 {
4251 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4252 	struct ath_txq *txq;
4253 
4254 	if (ac >= N(sc->sc_ac2q)) {
4255 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4256 			ac, N(sc->sc_ac2q));
4257 		return 0;
4258 	}
4259 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4260 	if (txq != NULL) {
4261 		txq->axq_ac = ac;
4262 		sc->sc_ac2q[ac] = txq;
4263 		return 1;
4264 	} else
4265 		return 0;
4266 #undef N
4267 }
4268 
4269 /*
4270  * Update WME parameters for a transmit queue.
4271  */
4272 static int
4273 ath_txq_update(struct ath_softc *sc, int ac)
4274 {
4275 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4276 #define	ATH_TXOP_TO_US(v)		(v<<5)
4277 	struct ifnet *ifp = sc->sc_ifp;
4278 	struct ieee80211com *ic = ifp->if_l2com;
4279 	struct ath_txq *txq = sc->sc_ac2q[ac];
4280 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4281 	struct ath_hal *ah = sc->sc_ah;
4282 	HAL_TXQ_INFO qi;
4283 
4284 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4285 #ifdef IEEE80211_SUPPORT_TDMA
4286 	if (sc->sc_tdma) {
4287 		/*
4288 		 * AIFS is zero so there's no pre-transmit wait.  The
4289 		 * burst time defines the slot duration and is configured
4290 		 * through net80211.  The QCU is setup to not do post-xmit
4291 		 * back off, lockout all lower-priority QCU's, and fire
4292 		 * off the DMA beacon alert timer which is setup based
4293 		 * on the slot configuration.
4294 		 */
4295 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4296 			      | HAL_TXQ_TXERRINT_ENABLE
4297 			      | HAL_TXQ_TXURNINT_ENABLE
4298 			      | HAL_TXQ_TXEOLINT_ENABLE
4299 			      | HAL_TXQ_DBA_GATED
4300 			      | HAL_TXQ_BACKOFF_DISABLE
4301 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4302 			      ;
4303 		qi.tqi_aifs = 0;
4304 		/* XXX +dbaprep? */
4305 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4306 		qi.tqi_burstTime = qi.tqi_readyTime;
4307 	} else {
4308 #endif
4309 		/*
4310 		 * XXX shouldn't this just use the default flags
4311 		 * used in the previous queue setup?
4312 		 */
4313 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4314 			      | HAL_TXQ_TXERRINT_ENABLE
4315 			      | HAL_TXQ_TXDESCINT_ENABLE
4316 			      | HAL_TXQ_TXURNINT_ENABLE
4317 			      | HAL_TXQ_TXEOLINT_ENABLE
4318 			      ;
4319 		qi.tqi_aifs = wmep->wmep_aifsn;
4320 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4321 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4322 		qi.tqi_readyTime = 0;
4323 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4324 #ifdef IEEE80211_SUPPORT_TDMA
4325 	}
4326 #endif
4327 
4328 	DPRINTF(sc, ATH_DEBUG_RESET,
4329 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4330 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4331 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4332 
4333 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4334 		if_printf(ifp, "unable to update hardware queue "
4335 			"parameters for %s traffic!\n",
4336 			ieee80211_wme_acnames[ac]);
4337 		return 0;
4338 	} else {
4339 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4340 		return 1;
4341 	}
4342 #undef ATH_TXOP_TO_US
4343 #undef ATH_EXPONENT_TO_VALUE
4344 }
4345 
4346 /*
4347  * Callback from the 802.11 layer to update WME parameters.
4348  */
4349 int
4350 ath_wme_update(struct ieee80211com *ic)
4351 {
4352 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4353 
4354 	return !ath_txq_update(sc, WME_AC_BE) ||
4355 	    !ath_txq_update(sc, WME_AC_BK) ||
4356 	    !ath_txq_update(sc, WME_AC_VI) ||
4357 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4358 }
4359 
4360 /*
4361  * Reclaim resources for a setup queue.
4362  */
4363 static void
4364 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4365 {
4366 
4367 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4368 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4369 	ATH_TXQ_LOCK_DESTROY(txq);
4370 }
4371 
4372 /*
4373  * Reclaim all tx queue resources.
4374  */
4375 static void
4376 ath_tx_cleanup(struct ath_softc *sc)
4377 {
4378 	int i;
4379 
4380 	ATH_TXBUF_LOCK_DESTROY(sc);
4381 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4382 		if (ATH_TXQ_SETUP(sc, i))
4383 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4384 }
4385 
4386 /*
4387  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4388  * using the current rates in sc_rixmap.
4389  */
4390 int
4391 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4392 {
4393 	int rix = sc->sc_rixmap[rate];
4394 	/* NB: return lowest rix for invalid rate */
4395 	return (rix == 0xff ? 0 : rix);
4396 }
4397 
4398 static void
4399 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4400     struct ath_buf *bf)
4401 {
4402 	struct ieee80211_node *ni = bf->bf_node;
4403 	struct ifnet *ifp = sc->sc_ifp;
4404 	struct ieee80211com *ic = ifp->if_l2com;
4405 	int sr, lr, pri;
4406 
4407 	if (ts->ts_status == 0) {
4408 		u_int8_t txant = ts->ts_antenna;
4409 		sc->sc_stats.ast_ant_tx[txant]++;
4410 		sc->sc_ant_tx[txant]++;
4411 		if (ts->ts_finaltsi != 0)
4412 			sc->sc_stats.ast_tx_altrate++;
4413 		pri = M_WME_GETAC(bf->bf_m);
4414 		if (pri >= WME_AC_VO)
4415 			ic->ic_wme.wme_hipri_traffic++;
4416 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4417 			ni->ni_inact = ni->ni_inact_reload;
4418 	} else {
4419 		if (ts->ts_status & HAL_TXERR_XRETRY)
4420 			sc->sc_stats.ast_tx_xretries++;
4421 		if (ts->ts_status & HAL_TXERR_FIFO)
4422 			sc->sc_stats.ast_tx_fifoerr++;
4423 		if (ts->ts_status & HAL_TXERR_FILT)
4424 			sc->sc_stats.ast_tx_filtered++;
4425 		if (ts->ts_status & HAL_TXERR_XTXOP)
4426 			sc->sc_stats.ast_tx_xtxop++;
4427 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4428 			sc->sc_stats.ast_tx_timerexpired++;
4429 
4430 		if (bf->bf_m->m_flags & M_FF)
4431 			sc->sc_stats.ast_ff_txerr++;
4432 	}
4433 	/* XXX when is this valid? */
4434 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4435 		sc->sc_stats.ast_tx_desccfgerr++;
4436 	/*
4437 	 * This can be valid for successful frame transmission!
4438 	 * If there's a TX FIFO underrun during aggregate transmission,
4439 	 * the MAC will pad the rest of the aggregate with delimiters.
4440 	 * If a BA is returned, the frame is marked as "OK" and it's up
4441 	 * to the TX completion code to notice which frames weren't
4442 	 * successfully transmitted.
4443 	 */
4444 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4445 		sc->sc_stats.ast_tx_data_underrun++;
4446 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4447 		sc->sc_stats.ast_tx_delim_underrun++;
4448 
4449 	sr = ts->ts_shortretry;
4450 	lr = ts->ts_longretry;
4451 	sc->sc_stats.ast_tx_shortretry += sr;
4452 	sc->sc_stats.ast_tx_longretry += lr;
4453 
4454 }
4455 
4456 /*
4457  * The default completion. If fail is 1, this means
4458  * "please don't retry the frame, and just return -1 status
4459  * to the net80211 stack.
4460  */
4461 void
4462 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4463 {
4464 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4465 	int st;
4466 
4467 	if (fail == 1)
4468 		st = -1;
4469 	else
4470 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4471 		    ts->ts_status : HAL_TXERR_XRETRY;
4472 
4473 #if 0
4474 	if (bf->bf_state.bfs_dobaw)
4475 		device_printf(sc->sc_dev,
4476 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4477 		    __func__,
4478 		    bf,
4479 		    SEQNO(bf->bf_state.bfs_seqno));
4480 #endif
4481 	if (bf->bf_next != NULL)
4482 		device_printf(sc->sc_dev,
4483 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4484 		    __func__,
4485 		    bf,
4486 		    SEQNO(bf->bf_state.bfs_seqno));
4487 
4488 	/*
4489 	 * Check if the node software queue is empty; if so
4490 	 * then clear the TIM.
4491 	 *
4492 	 * This needs to be done before the buffer is freed as
4493 	 * otherwise the node reference will have been released
4494 	 * and the node may not actually exist any longer.
4495 	 *
4496 	 * XXX I don't like this belonging here, but it's cleaner
4497 	 * to do it here right now then all the other places
4498 	 * where ath_tx_default_comp() is called.
4499 	 *
4500 	 * XXX TODO: during drain, ensure that the callback is
4501 	 * being called so we get a chance to update the TIM.
4502 	 */
4503 	if (bf->bf_node) {
4504 		ATH_TX_LOCK(sc);
4505 		ath_tx_update_tim(sc, bf->bf_node, 0);
4506 		ATH_TX_UNLOCK(sc);
4507 	}
4508 
4509 	/*
4510 	 * Do any tx complete callback.  Note this must
4511 	 * be done before releasing the node reference.
4512 	 * This will free the mbuf, release the net80211
4513 	 * node and recycle the ath_buf.
4514 	 */
4515 	ath_tx_freebuf(sc, bf, st);
4516 }
4517 
4518 /*
4519  * Update rate control with the given completion status.
4520  */
4521 void
4522 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4523     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4524     int nframes, int nbad)
4525 {
4526 	struct ath_node *an;
4527 
4528 	/* Only for unicast frames */
4529 	if (ni == NULL)
4530 		return;
4531 
4532 	an = ATH_NODE(ni);
4533 	ATH_NODE_UNLOCK_ASSERT(an);
4534 
4535 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4536 		ATH_NODE_LOCK(an);
4537 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4538 		ATH_NODE_UNLOCK(an);
4539 	}
4540 }
4541 
4542 /*
4543  * Process the completion of the given buffer.
4544  *
4545  * This calls the rate control update and then the buffer completion.
4546  * This will either free the buffer or requeue it.  In any case, the
4547  * bf pointer should be treated as invalid after this function is called.
4548  */
4549 void
4550 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4551     struct ath_tx_status *ts, struct ath_buf *bf)
4552 {
4553 	struct ieee80211_node *ni = bf->bf_node;
4554 
4555 	ATH_TX_UNLOCK_ASSERT(sc);
4556 	ATH_TXQ_UNLOCK_ASSERT(txq);
4557 
4558 	/* If unicast frame, update general statistics */
4559 	if (ni != NULL) {
4560 		/* update statistics */
4561 		ath_tx_update_stats(sc, ts, bf);
4562 	}
4563 
4564 	/*
4565 	 * Call the completion handler.
4566 	 * The completion handler is responsible for
4567 	 * calling the rate control code.
4568 	 *
4569 	 * Frames with no completion handler get the
4570 	 * rate control code called here.
4571 	 */
4572 	if (bf->bf_comp == NULL) {
4573 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4574 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4575 			/*
4576 			 * XXX assume this isn't an aggregate
4577 			 * frame.
4578 			 */
4579 			ath_tx_update_ratectrl(sc, ni,
4580 			     bf->bf_state.bfs_rc, ts,
4581 			    bf->bf_state.bfs_pktlen, 1,
4582 			    (ts->ts_status == 0 ? 0 : 1));
4583 		}
4584 		ath_tx_default_comp(sc, bf, 0);
4585 	} else
4586 		bf->bf_comp(sc, bf, 0);
4587 }
4588 
4589 
4590 
4591 /*
4592  * Process completed xmit descriptors from the specified queue.
4593  * Kick the packet scheduler if needed. This can occur from this
4594  * particular task.
4595  */
4596 static int
4597 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4598 {
4599 	struct ath_hal *ah = sc->sc_ah;
4600 	struct ath_buf *bf;
4601 	struct ath_desc *ds;
4602 	struct ath_tx_status *ts;
4603 	struct ieee80211_node *ni;
4604 #ifdef	IEEE80211_SUPPORT_SUPERG
4605 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4606 #endif	/* IEEE80211_SUPPORT_SUPERG */
4607 	int nacked;
4608 	HAL_STATUS status;
4609 
4610 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4611 		__func__, txq->axq_qnum,
4612 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4613 		txq->axq_link);
4614 
4615 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4616 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4617 	    txq->axq_qnum,
4618 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4619 	    txq->axq_link,
4620 	    txq->axq_depth);
4621 
4622 	nacked = 0;
4623 	for (;;) {
4624 		ATH_TXQ_LOCK(txq);
4625 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4626 		bf = TAILQ_FIRST(&txq->axq_q);
4627 		if (bf == NULL) {
4628 			ATH_TXQ_UNLOCK(txq);
4629 			break;
4630 		}
4631 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4632 		ts = &bf->bf_status.ds_txstat;
4633 
4634 		status = ath_hal_txprocdesc(ah, ds, ts);
4635 #ifdef ATH_DEBUG
4636 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4637 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4638 			    status == HAL_OK);
4639 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4640 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4641 			    status == HAL_OK);
4642 #endif
4643 #ifdef	ATH_DEBUG_ALQ
4644 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4645 		    ATH_ALQ_EDMA_TXSTATUS)) {
4646 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4647 			sc->sc_tx_statuslen,
4648 			(char *) ds);
4649 		}
4650 #endif
4651 
4652 		if (status == HAL_EINPROGRESS) {
4653 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4654 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4655 			    txq->axq_qnum, bf, ds);
4656 			ATH_TXQ_UNLOCK(txq);
4657 			break;
4658 		}
4659 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4660 
4661 		/*
4662 		 * Sanity check.
4663 		 */
4664 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4665 			device_printf(sc->sc_dev,
4666 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4667 			    __func__,
4668 			    txq->axq_qnum,
4669 			    bf,
4670 			    bf->bf_state.bfs_tx_queue);
4671 		}
4672 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4673 			device_printf(sc->sc_dev,
4674 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4675 			    __func__,
4676 			    txq->axq_qnum,
4677 			    bf->bf_last,
4678 			    bf->bf_last->bf_state.bfs_tx_queue);
4679 		}
4680 
4681 #if 0
4682 		if (txq->axq_depth > 0) {
4683 			/*
4684 			 * More frames follow.  Mark the buffer busy
4685 			 * so it's not re-used while the hardware may
4686 			 * still re-read the link field in the descriptor.
4687 			 *
4688 			 * Use the last buffer in an aggregate as that
4689 			 * is where the hardware may be - intermediate
4690 			 * descriptors won't be "busy".
4691 			 */
4692 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4693 		} else
4694 			txq->axq_link = NULL;
4695 #else
4696 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4697 #endif
4698 		if (bf->bf_state.bfs_aggr)
4699 			txq->axq_aggr_depth--;
4700 
4701 		ni = bf->bf_node;
4702 
4703 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4704 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4705 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4706 		/*
4707 		 * If unicast frame was ack'd update RSSI,
4708 		 * including the last rx time used to
4709 		 * workaround phantom bmiss interrupts.
4710 		 */
4711 		if (ni != NULL && ts->ts_status == 0 &&
4712 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4713 			nacked++;
4714 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4715 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4716 				ts->ts_rssi);
4717 		}
4718 		ATH_TXQ_UNLOCK(txq);
4719 
4720 		/*
4721 		 * Update statistics and call completion
4722 		 */
4723 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4724 
4725 		/* XXX at this point, bf and ni may be totally invalid */
4726 	}
4727 #ifdef IEEE80211_SUPPORT_SUPERG
4728 	/*
4729 	 * Flush fast-frame staging queue when traffic slows.
4730 	 */
4731 	if (txq->axq_depth <= 1)
4732 		ieee80211_ff_flush(ic, txq->axq_ac);
4733 #endif
4734 
4735 	/* Kick the software TXQ scheduler */
4736 	if (dosched) {
4737 		ATH_TX_LOCK(sc);
4738 		ath_txq_sched(sc, txq);
4739 		ATH_TX_UNLOCK(sc);
4740 	}
4741 
4742 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4743 	    "ath_tx_processq: txq=%u: done",
4744 	    txq->axq_qnum);
4745 
4746 	return nacked;
4747 }
4748 
4749 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4750 
4751 /*
4752  * Deferred processing of transmit interrupt; special-cased
4753  * for a single hardware transmit queue (e.g. 5210 and 5211).
4754  */
4755 static void
4756 ath_tx_proc_q0(void *arg, int npending)
4757 {
4758 	struct ath_softc *sc = arg;
4759 	struct ifnet *ifp = sc->sc_ifp;
4760 	uint32_t txqs;
4761 
4762 	ATH_PCU_LOCK(sc);
4763 	sc->sc_txproc_cnt++;
4764 	txqs = sc->sc_txq_active;
4765 	sc->sc_txq_active &= ~txqs;
4766 	ATH_PCU_UNLOCK(sc);
4767 
4768 	ATH_LOCK(sc);
4769 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4770 	ATH_UNLOCK(sc);
4771 
4772 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4773 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4774 
4775 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4776 		/* XXX why is lastrx updated in tx code? */
4777 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4778 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4779 		ath_tx_processq(sc, sc->sc_cabq, 1);
4780 	IF_LOCK(&ifp->if_snd);
4781 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4782 	IF_UNLOCK(&ifp->if_snd);
4783 	sc->sc_wd_timer = 0;
4784 
4785 	if (sc->sc_softled)
4786 		ath_led_event(sc, sc->sc_txrix);
4787 
4788 	ATH_PCU_LOCK(sc);
4789 	sc->sc_txproc_cnt--;
4790 	ATH_PCU_UNLOCK(sc);
4791 
4792 	ATH_LOCK(sc);
4793 	ath_power_restore_power_state(sc);
4794 	ATH_UNLOCK(sc);
4795 
4796 	ath_tx_kick(sc);
4797 }
4798 
4799 /*
4800  * Deferred processing of transmit interrupt; special-cased
4801  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4802  */
4803 static void
4804 ath_tx_proc_q0123(void *arg, int npending)
4805 {
4806 	struct ath_softc *sc = arg;
4807 	struct ifnet *ifp = sc->sc_ifp;
4808 	int nacked;
4809 	uint32_t txqs;
4810 
4811 	ATH_PCU_LOCK(sc);
4812 	sc->sc_txproc_cnt++;
4813 	txqs = sc->sc_txq_active;
4814 	sc->sc_txq_active &= ~txqs;
4815 	ATH_PCU_UNLOCK(sc);
4816 
4817 	ATH_LOCK(sc);
4818 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4819 	ATH_UNLOCK(sc);
4820 
4821 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4822 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4823 
4824 	/*
4825 	 * Process each active queue.
4826 	 */
4827 	nacked = 0;
4828 	if (TXQACTIVE(txqs, 0))
4829 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4830 	if (TXQACTIVE(txqs, 1))
4831 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4832 	if (TXQACTIVE(txqs, 2))
4833 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4834 	if (TXQACTIVE(txqs, 3))
4835 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4836 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4837 		ath_tx_processq(sc, sc->sc_cabq, 1);
4838 	if (nacked)
4839 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4840 
4841 	IF_LOCK(&ifp->if_snd);
4842 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4843 	IF_UNLOCK(&ifp->if_snd);
4844 	sc->sc_wd_timer = 0;
4845 
4846 	if (sc->sc_softled)
4847 		ath_led_event(sc, sc->sc_txrix);
4848 
4849 	ATH_PCU_LOCK(sc);
4850 	sc->sc_txproc_cnt--;
4851 	ATH_PCU_UNLOCK(sc);
4852 
4853 	ATH_LOCK(sc);
4854 	ath_power_restore_power_state(sc);
4855 	ATH_UNLOCK(sc);
4856 
4857 	ath_tx_kick(sc);
4858 }
4859 
4860 /*
4861  * Deferred processing of transmit interrupt.
4862  */
4863 static void
4864 ath_tx_proc(void *arg, int npending)
4865 {
4866 	struct ath_softc *sc = arg;
4867 	struct ifnet *ifp = sc->sc_ifp;
4868 	int i, nacked;
4869 	uint32_t txqs;
4870 
4871 	ATH_PCU_LOCK(sc);
4872 	sc->sc_txproc_cnt++;
4873 	txqs = sc->sc_txq_active;
4874 	sc->sc_txq_active &= ~txqs;
4875 	ATH_PCU_UNLOCK(sc);
4876 
4877 	ATH_LOCK(sc);
4878 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4879 	ATH_UNLOCK(sc);
4880 
4881 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4882 
4883 	/*
4884 	 * Process each active queue.
4885 	 */
4886 	nacked = 0;
4887 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4888 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4889 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4890 	if (nacked)
4891 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4892 
4893 	/* XXX check this inside of IF_LOCK? */
4894 	IF_LOCK(&ifp->if_snd);
4895 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4896 	IF_UNLOCK(&ifp->if_snd);
4897 	sc->sc_wd_timer = 0;
4898 
4899 	if (sc->sc_softled)
4900 		ath_led_event(sc, sc->sc_txrix);
4901 
4902 	ATH_PCU_LOCK(sc);
4903 	sc->sc_txproc_cnt--;
4904 	ATH_PCU_UNLOCK(sc);
4905 
4906 	ATH_LOCK(sc);
4907 	ath_power_restore_power_state(sc);
4908 	ATH_UNLOCK(sc);
4909 
4910 	ath_tx_kick(sc);
4911 }
4912 #undef	TXQACTIVE
4913 
4914 /*
4915  * Deferred processing of TXQ rescheduling.
4916  */
4917 static void
4918 ath_txq_sched_tasklet(void *arg, int npending)
4919 {
4920 	struct ath_softc *sc = arg;
4921 	int i;
4922 
4923 	/* XXX is skipping ok? */
4924 	ATH_PCU_LOCK(sc);
4925 #if 0
4926 	if (sc->sc_inreset_cnt > 0) {
4927 		device_printf(sc->sc_dev,
4928 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4929 		ATH_PCU_UNLOCK(sc);
4930 		return;
4931 	}
4932 #endif
4933 	sc->sc_txproc_cnt++;
4934 	ATH_PCU_UNLOCK(sc);
4935 
4936 	ATH_LOCK(sc);
4937 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4938 	ATH_UNLOCK(sc);
4939 
4940 	ATH_TX_LOCK(sc);
4941 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4942 		if (ATH_TXQ_SETUP(sc, i)) {
4943 			ath_txq_sched(sc, &sc->sc_txq[i]);
4944 		}
4945 	}
4946 	ATH_TX_UNLOCK(sc);
4947 
4948 	ATH_LOCK(sc);
4949 	ath_power_restore_power_state(sc);
4950 	ATH_UNLOCK(sc);
4951 
4952 	ATH_PCU_LOCK(sc);
4953 	sc->sc_txproc_cnt--;
4954 	ATH_PCU_UNLOCK(sc);
4955 }
4956 
4957 void
4958 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4959 {
4960 
4961 	ATH_TXBUF_LOCK_ASSERT(sc);
4962 
4963 	if (bf->bf_flags & ATH_BUF_MGMT)
4964 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4965 	else {
4966 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4967 		sc->sc_txbuf_cnt++;
4968 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4969 			device_printf(sc->sc_dev,
4970 			    "%s: sc_txbuf_cnt > %d?\n",
4971 			    __func__,
4972 			    ath_txbuf);
4973 			sc->sc_txbuf_cnt = ath_txbuf;
4974 		}
4975 	}
4976 }
4977 
4978 void
4979 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4980 {
4981 
4982 	ATH_TXBUF_LOCK_ASSERT(sc);
4983 
4984 	if (bf->bf_flags & ATH_BUF_MGMT)
4985 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4986 	else {
4987 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4988 		sc->sc_txbuf_cnt++;
4989 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4990 			device_printf(sc->sc_dev,
4991 			    "%s: sc_txbuf_cnt > %d?\n",
4992 			    __func__,
4993 			    ATH_TXBUF);
4994 			sc->sc_txbuf_cnt = ATH_TXBUF;
4995 		}
4996 	}
4997 }
4998 
4999 /*
5000  * Free the holding buffer if it exists
5001  */
5002 void
5003 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
5004 {
5005 	ATH_TXBUF_UNLOCK_ASSERT(sc);
5006 	ATH_TXQ_LOCK_ASSERT(txq);
5007 
5008 	if (txq->axq_holdingbf == NULL)
5009 		return;
5010 
5011 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
5012 
5013 	ATH_TXBUF_LOCK(sc);
5014 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
5015 	ATH_TXBUF_UNLOCK(sc);
5016 
5017 	txq->axq_holdingbf = NULL;
5018 }
5019 
5020 /*
5021  * Add this buffer to the holding queue, freeing the previous
5022  * one if it exists.
5023  */
5024 static void
5025 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
5026 {
5027 	struct ath_txq *txq;
5028 
5029 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5030 
5031 	ATH_TXBUF_UNLOCK_ASSERT(sc);
5032 	ATH_TXQ_LOCK_ASSERT(txq);
5033 
5034 	/* XXX assert ATH_BUF_BUSY is set */
5035 
5036 	/* XXX assert the tx queue is under the max number */
5037 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
5038 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
5039 		    __func__,
5040 		    bf,
5041 		    bf->bf_state.bfs_tx_queue);
5042 		bf->bf_flags &= ~ATH_BUF_BUSY;
5043 		ath_returnbuf_tail(sc, bf);
5044 		return;
5045 	}
5046 	ath_txq_freeholdingbuf(sc, txq);
5047 	txq->axq_holdingbf = bf;
5048 }
5049 
5050 /*
5051  * Return a buffer to the pool and update the 'busy' flag on the
5052  * previous 'tail' entry.
5053  *
5054  * This _must_ only be called when the buffer is involved in a completed
5055  * TX. The logic is that if it was part of an active TX, the previous
5056  * buffer on the list is now not involved in a halted TX DMA queue, waiting
5057  * for restart (eg for TDMA.)
5058  *
5059  * The caller must free the mbuf and recycle the node reference.
5060  *
5061  * XXX This method of handling busy / holding buffers is insanely stupid.
5062  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
5063  * be much nicer if buffers in the processq() methods would instead be
5064  * always completed there (pushed onto a txq or ath_bufhead) so we knew
5065  * exactly what hardware queue they came from in the first place.
5066  */
5067 void
5068 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5069 {
5070 	struct ath_txq *txq;
5071 
5072 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5073 
5074 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5075 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5076 
5077 	/*
5078 	 * If this buffer is busy, push it onto the holding queue.
5079 	 */
5080 	if (bf->bf_flags & ATH_BUF_BUSY) {
5081 		ATH_TXQ_LOCK(txq);
5082 		ath_txq_addholdingbuf(sc, bf);
5083 		ATH_TXQ_UNLOCK(txq);
5084 		return;
5085 	}
5086 
5087 	/*
5088 	 * Not a busy buffer, so free normally
5089 	 */
5090 	ATH_TXBUF_LOCK(sc);
5091 	ath_returnbuf_tail(sc, bf);
5092 	ATH_TXBUF_UNLOCK(sc);
5093 }
5094 
5095 /*
5096  * This is currently used by ath_tx_draintxq() and
5097  * ath_tx_tid_free_pkts().
5098  *
5099  * It recycles a single ath_buf.
5100  */
5101 void
5102 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5103 {
5104 	struct ieee80211_node *ni = bf->bf_node;
5105 	struct mbuf *m0 = bf->bf_m;
5106 
5107 	/*
5108 	 * Make sure that we only sync/unload if there's an mbuf.
5109 	 * If not (eg we cloned a buffer), the unload will have already
5110 	 * occured.
5111 	 */
5112 	if (bf->bf_m != NULL) {
5113 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5114 		    BUS_DMASYNC_POSTWRITE);
5115 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5116 	}
5117 
5118 	bf->bf_node = NULL;
5119 	bf->bf_m = NULL;
5120 
5121 	/* Free the buffer, it's not needed any longer */
5122 	ath_freebuf(sc, bf);
5123 
5124 	/* Pass the buffer back to net80211 - completing it */
5125 	ieee80211_tx_complete(ni, m0, status);
5126 }
5127 
5128 static struct ath_buf *
5129 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5130 {
5131 	struct ath_buf *bf;
5132 
5133 	ATH_TXQ_LOCK_ASSERT(txq);
5134 
5135 	/*
5136 	 * Drain the FIFO queue first, then if it's
5137 	 * empty, move to the normal frame queue.
5138 	 */
5139 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5140 	if (bf != NULL) {
5141 		/*
5142 		 * Is it the last buffer in this set?
5143 		 * Decrement the FIFO counter.
5144 		 */
5145 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5146 			if (txq->axq_fifo_depth == 0) {
5147 				device_printf(sc->sc_dev,
5148 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5149 				    __func__,
5150 				    txq->axq_qnum,
5151 				    txq->fifo.axq_depth);
5152 			} else
5153 				txq->axq_fifo_depth--;
5154 		}
5155 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5156 		return (bf);
5157 	}
5158 
5159 	/*
5160 	 * Debugging!
5161 	 */
5162 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5163 		device_printf(sc->sc_dev,
5164 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5165 		    __func__,
5166 		    txq->axq_qnum,
5167 		    txq->axq_fifo_depth,
5168 		    txq->fifo.axq_depth);
5169 	}
5170 
5171 	/*
5172 	 * Now drain the pending queue.
5173 	 */
5174 	bf = TAILQ_FIRST(&txq->axq_q);
5175 	if (bf == NULL) {
5176 		txq->axq_link = NULL;
5177 		return (NULL);
5178 	}
5179 	ATH_TXQ_REMOVE(txq, bf, bf_list);
5180 	return (bf);
5181 }
5182 
5183 void
5184 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5185 {
5186 #ifdef ATH_DEBUG
5187 	struct ath_hal *ah = sc->sc_ah;
5188 #endif
5189 	struct ath_buf *bf;
5190 	u_int ix;
5191 
5192 	/*
5193 	 * NB: this assumes output has been stopped and
5194 	 *     we do not need to block ath_tx_proc
5195 	 */
5196 	for (ix = 0;; ix++) {
5197 		ATH_TXQ_LOCK(txq);
5198 		bf = ath_tx_draintxq_get_one(sc, txq);
5199 		if (bf == NULL) {
5200 			ATH_TXQ_UNLOCK(txq);
5201 			break;
5202 		}
5203 		if (bf->bf_state.bfs_aggr)
5204 			txq->axq_aggr_depth--;
5205 #ifdef ATH_DEBUG
5206 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5207 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5208 			int status = 0;
5209 
5210 			/*
5211 			 * EDMA operation has a TX completion FIFO
5212 			 * separate from the TX descriptor, so this
5213 			 * method of checking the "completion" status
5214 			 * is wrong.
5215 			 */
5216 			if (! sc->sc_isedma) {
5217 				status = (ath_hal_txprocdesc(ah,
5218 				    bf->bf_lastds,
5219 				    &bf->bf_status.ds_txstat) == HAL_OK);
5220 			}
5221 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5222 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5223 			    bf->bf_m->m_len, 0, -1);
5224 		}
5225 #endif /* ATH_DEBUG */
5226 		/*
5227 		 * Since we're now doing magic in the completion
5228 		 * functions, we -must- call it for aggregation
5229 		 * destinations or BAW tracking will get upset.
5230 		 */
5231 		/*
5232 		 * Clear ATH_BUF_BUSY; the completion handler
5233 		 * will free the buffer.
5234 		 */
5235 		ATH_TXQ_UNLOCK(txq);
5236 		bf->bf_flags &= ~ATH_BUF_BUSY;
5237 		if (bf->bf_comp)
5238 			bf->bf_comp(sc, bf, 1);
5239 		else
5240 			ath_tx_default_comp(sc, bf, 1);
5241 	}
5242 
5243 	/*
5244 	 * Free the holding buffer if it exists
5245 	 */
5246 	ATH_TXQ_LOCK(txq);
5247 	ath_txq_freeholdingbuf(sc, txq);
5248 	ATH_TXQ_UNLOCK(txq);
5249 
5250 	/*
5251 	 * Drain software queued frames which are on
5252 	 * active TIDs.
5253 	 */
5254 	ath_tx_txq_drain(sc, txq);
5255 }
5256 
5257 static void
5258 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5259 {
5260 	struct ath_hal *ah = sc->sc_ah;
5261 
5262 	ATH_TXQ_LOCK_ASSERT(txq);
5263 
5264 	DPRINTF(sc, ATH_DEBUG_RESET,
5265 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5266 	    "link %p, holdingbf=%p\n",
5267 	    __func__,
5268 	    txq->axq_qnum,
5269 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5270 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5271 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5272 	    txq->axq_flags,
5273 	    txq->axq_link,
5274 	    txq->axq_holdingbf);
5275 
5276 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5277 	/* We've stopped TX DMA, so mark this as stopped. */
5278 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5279 
5280 #ifdef	ATH_DEBUG
5281 	if ((sc->sc_debug & ATH_DEBUG_RESET)
5282 	    && (txq->axq_holdingbf != NULL)) {
5283 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5284 	}
5285 #endif
5286 }
5287 
5288 int
5289 ath_stoptxdma(struct ath_softc *sc)
5290 {
5291 	struct ath_hal *ah = sc->sc_ah;
5292 	int i;
5293 
5294 	/* XXX return value */
5295 	if (sc->sc_invalid)
5296 		return 0;
5297 
5298 	if (!sc->sc_invalid) {
5299 		/* don't touch the hardware if marked invalid */
5300 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5301 		    __func__, sc->sc_bhalq,
5302 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5303 		    NULL);
5304 
5305 		/* stop the beacon queue */
5306 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5307 
5308 		/* Stop the data queues */
5309 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5310 			if (ATH_TXQ_SETUP(sc, i)) {
5311 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5312 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5313 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5314 			}
5315 		}
5316 	}
5317 
5318 	return 1;
5319 }
5320 
5321 #ifdef	ATH_DEBUG
5322 void
5323 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5324 {
5325 	struct ath_hal *ah = sc->sc_ah;
5326 	struct ath_buf *bf;
5327 	int i = 0;
5328 
5329 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5330 		return;
5331 
5332 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5333 	    __func__, txq->axq_qnum);
5334 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5335 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5336 			ath_hal_txprocdesc(ah, bf->bf_lastds,
5337 			    &bf->bf_status.ds_txstat) == HAL_OK);
5338 		i++;
5339 	}
5340 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5341 	    __func__, txq->axq_qnum);
5342 }
5343 #endif /* ATH_DEBUG */
5344 
5345 /*
5346  * Drain the transmit queues and reclaim resources.
5347  */
5348 void
5349 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5350 {
5351 	struct ath_hal *ah = sc->sc_ah;
5352 	struct ifnet *ifp = sc->sc_ifp;
5353 	int i;
5354 	struct ath_buf *bf_last;
5355 
5356 	(void) ath_stoptxdma(sc);
5357 
5358 	/*
5359 	 * Dump the queue contents
5360 	 */
5361 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5362 		/*
5363 		 * XXX TODO: should we just handle the completed TX frames
5364 		 * here, whether or not the reset is a full one or not?
5365 		 */
5366 		if (ATH_TXQ_SETUP(sc, i)) {
5367 #ifdef	ATH_DEBUG
5368 			if (sc->sc_debug & ATH_DEBUG_RESET)
5369 				ath_tx_dump(sc, &sc->sc_txq[i]);
5370 #endif	/* ATH_DEBUG */
5371 			if (reset_type == ATH_RESET_NOLOSS) {
5372 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5373 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5374 				/*
5375 				 * Free the holding buffer; DMA is now
5376 				 * stopped.
5377 				 */
5378 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5379 				/*
5380 				 * Setup the link pointer to be the
5381 				 * _last_ buffer/descriptor in the list.
5382 				 * If there's nothing in the list, set it
5383 				 * to NULL.
5384 				 */
5385 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5386 				    axq_q_s);
5387 				if (bf_last != NULL) {
5388 					ath_hal_gettxdesclinkptr(ah,
5389 					    bf_last->bf_lastds,
5390 					    &sc->sc_txq[i].axq_link);
5391 				} else {
5392 					sc->sc_txq[i].axq_link = NULL;
5393 				}
5394 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5395 			} else
5396 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5397 		}
5398 	}
5399 #ifdef ATH_DEBUG
5400 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5401 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5402 		if (bf != NULL && bf->bf_m != NULL) {
5403 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5404 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5405 				    &bf->bf_status.ds_txstat) == HAL_OK);
5406 			ieee80211_dump_pkt(ifp->if_l2com,
5407 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5408 			    0, -1);
5409 		}
5410 	}
5411 #endif /* ATH_DEBUG */
5412 	IF_LOCK(&ifp->if_snd);
5413 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5414 	IF_UNLOCK(&ifp->if_snd);
5415 	sc->sc_wd_timer = 0;
5416 }
5417 
5418 /*
5419  * Update internal state after a channel change.
5420  */
5421 static void
5422 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5423 {
5424 	enum ieee80211_phymode mode;
5425 
5426 	/*
5427 	 * Change channels and update the h/w rate map
5428 	 * if we're switching; e.g. 11a to 11b/g.
5429 	 */
5430 	mode = ieee80211_chan2mode(chan);
5431 	if (mode != sc->sc_curmode)
5432 		ath_setcurmode(sc, mode);
5433 	sc->sc_curchan = chan;
5434 }
5435 
5436 /*
5437  * Set/change channels.  If the channel is really being changed,
5438  * it's done by resetting the chip.  To accomplish this we must
5439  * first cleanup any pending DMA, then restart stuff after a la
5440  * ath_init.
5441  */
5442 static int
5443 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5444 {
5445 	struct ifnet *ifp = sc->sc_ifp;
5446 	struct ieee80211com *ic = ifp->if_l2com;
5447 	struct ath_hal *ah = sc->sc_ah;
5448 	int ret = 0;
5449 
5450 	/* Treat this as an interface reset */
5451 	ATH_PCU_UNLOCK_ASSERT(sc);
5452 	ATH_UNLOCK_ASSERT(sc);
5453 
5454 	/* (Try to) stop TX/RX from occuring */
5455 	taskqueue_block(sc->sc_tq);
5456 
5457 	ATH_PCU_LOCK(sc);
5458 
5459 	/* Disable interrupts */
5460 	ath_hal_intrset(ah, 0);
5461 
5462 	/* Stop new RX/TX/interrupt completion */
5463 	if (ath_reset_grablock(sc, 1) == 0) {
5464 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5465 		    __func__);
5466 	}
5467 
5468 	/* Stop pending RX/TX completion */
5469 	ath_txrx_stop_locked(sc);
5470 
5471 	ATH_PCU_UNLOCK(sc);
5472 
5473 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5474 	    __func__, ieee80211_chan2ieee(ic, chan),
5475 	    chan->ic_freq, chan->ic_flags);
5476 	if (chan != sc->sc_curchan) {
5477 		HAL_STATUS status;
5478 		/*
5479 		 * To switch channels clear any pending DMA operations;
5480 		 * wait long enough for the RX fifo to drain, reset the
5481 		 * hardware at the new frequency, and then re-enable
5482 		 * the relevant bits of the h/w.
5483 		 */
5484 #if 0
5485 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5486 #endif
5487 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5488 		/*
5489 		 * First, handle completed TX/RX frames.
5490 		 */
5491 		ath_rx_flush(sc);
5492 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5493 		/*
5494 		 * Next, flush the non-scheduled frames.
5495 		 */
5496 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5497 
5498 		ath_update_chainmasks(sc, chan);
5499 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5500 		    sc->sc_cur_rxchainmask);
5501 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5502 			if_printf(ifp, "%s: unable to reset "
5503 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5504 			    __func__, ieee80211_chan2ieee(ic, chan),
5505 			    chan->ic_freq, chan->ic_flags, status);
5506 			ret = EIO;
5507 			goto finish;
5508 		}
5509 		sc->sc_diversity = ath_hal_getdiversity(ah);
5510 
5511 		ATH_RX_LOCK(sc);
5512 		sc->sc_rx_stopped = 1;
5513 		sc->sc_rx_resetted = 1;
5514 		ATH_RX_UNLOCK(sc);
5515 
5516 		/* Let DFS at it in case it's a DFS channel */
5517 		ath_dfs_radar_enable(sc, chan);
5518 
5519 		/* Let spectral at in case spectral is enabled */
5520 		ath_spectral_enable(sc, chan);
5521 
5522 		/*
5523 		 * Let bluetooth coexistence at in case it's needed for this
5524 		 * channel
5525 		 */
5526 		ath_btcoex_enable(sc, ic->ic_curchan);
5527 
5528 		/*
5529 		 * If we're doing TDMA, enforce the TXOP limitation for chips
5530 		 * that support it.
5531 		 */
5532 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5533 			ath_hal_setenforcetxop(sc->sc_ah, 1);
5534 		else
5535 			ath_hal_setenforcetxop(sc->sc_ah, 0);
5536 
5537 		/*
5538 		 * Re-enable rx framework.
5539 		 */
5540 		if (ath_startrecv(sc) != 0) {
5541 			if_printf(ifp, "%s: unable to restart recv logic\n",
5542 			    __func__);
5543 			ret = EIO;
5544 			goto finish;
5545 		}
5546 
5547 		/*
5548 		 * Change channels and update the h/w rate map
5549 		 * if we're switching; e.g. 11a to 11b/g.
5550 		 */
5551 		ath_chan_change(sc, chan);
5552 
5553 		/*
5554 		 * Reset clears the beacon timers; reset them
5555 		 * here if needed.
5556 		 */
5557 		if (sc->sc_beacons) {		/* restart beacons */
5558 #ifdef IEEE80211_SUPPORT_TDMA
5559 			if (sc->sc_tdma)
5560 				ath_tdma_config(sc, NULL);
5561 			else
5562 #endif
5563 			ath_beacon_config(sc, NULL);
5564 		}
5565 
5566 		/*
5567 		 * Re-enable interrupts.
5568 		 */
5569 #if 0
5570 		ath_hal_intrset(ah, sc->sc_imask);
5571 #endif
5572 	}
5573 
5574 finish:
5575 	ATH_PCU_LOCK(sc);
5576 	sc->sc_inreset_cnt--;
5577 	/* XXX only do this if sc_inreset_cnt == 0? */
5578 	ath_hal_intrset(ah, sc->sc_imask);
5579 	ATH_PCU_UNLOCK(sc);
5580 
5581 	IF_LOCK(&ifp->if_snd);
5582 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5583 	IF_UNLOCK(&ifp->if_snd);
5584 	ath_txrx_start(sc);
5585 	/* XXX ath_start? */
5586 
5587 	return ret;
5588 }
5589 
5590 /*
5591  * Periodically recalibrate the PHY to account
5592  * for temperature/environment changes.
5593  */
5594 static void
5595 ath_calibrate(void *arg)
5596 {
5597 	struct ath_softc *sc = arg;
5598 	struct ath_hal *ah = sc->sc_ah;
5599 	struct ifnet *ifp = sc->sc_ifp;
5600 	struct ieee80211com *ic = ifp->if_l2com;
5601 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5602 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5603 	int nextcal;
5604 
5605 	ATH_LOCK_ASSERT(sc);
5606 
5607 	/*
5608 	 * Force the hardware awake for ANI work.
5609 	 */
5610 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5611 
5612 	/* Skip trying to do this if we're in reset */
5613 	if (sc->sc_inreset_cnt)
5614 		goto restart;
5615 
5616 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5617 		goto restart;
5618 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5619 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5620 	if (sc->sc_doresetcal)
5621 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5622 
5623 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5624 	if (aniCal) {
5625 		sc->sc_stats.ast_ani_cal++;
5626 		sc->sc_lastani = ticks;
5627 		ath_hal_ani_poll(ah, sc->sc_curchan);
5628 	}
5629 
5630 	if (longCal) {
5631 		sc->sc_stats.ast_per_cal++;
5632 		sc->sc_lastlongcal = ticks;
5633 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5634 			/*
5635 			 * Rfgain is out of bounds, reset the chip
5636 			 * to load new gain values.
5637 			 */
5638 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5639 				"%s: rfgain change\n", __func__);
5640 			sc->sc_stats.ast_per_rfgain++;
5641 			sc->sc_resetcal = 0;
5642 			sc->sc_doresetcal = AH_TRUE;
5643 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5644 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5645 			ath_power_restore_power_state(sc);
5646 			return;
5647 		}
5648 		/*
5649 		 * If this long cal is after an idle period, then
5650 		 * reset the data collection state so we start fresh.
5651 		 */
5652 		if (sc->sc_resetcal) {
5653 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5654 			sc->sc_lastcalreset = ticks;
5655 			sc->sc_lastshortcal = ticks;
5656 			sc->sc_resetcal = 0;
5657 			sc->sc_doresetcal = AH_TRUE;
5658 		}
5659 	}
5660 
5661 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5662 	if (shortCal || longCal) {
5663 		isCalDone = AH_FALSE;
5664 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5665 			if (longCal) {
5666 				/*
5667 				 * Calibrate noise floor data again in case of change.
5668 				 */
5669 				ath_hal_process_noisefloor(ah);
5670 			}
5671 		} else {
5672 			DPRINTF(sc, ATH_DEBUG_ANY,
5673 				"%s: calibration of channel %u failed\n",
5674 				__func__, sc->sc_curchan->ic_freq);
5675 			sc->sc_stats.ast_per_calfail++;
5676 		}
5677 		if (shortCal)
5678 			sc->sc_lastshortcal = ticks;
5679 	}
5680 	if (!isCalDone) {
5681 restart:
5682 		/*
5683 		 * Use a shorter interval to potentially collect multiple
5684 		 * data samples required to complete calibration.  Once
5685 		 * we're told the work is done we drop back to a longer
5686 		 * interval between requests.  We're more aggressive doing
5687 		 * work when operating as an AP to improve operation right
5688 		 * after startup.
5689 		 */
5690 		sc->sc_lastshortcal = ticks;
5691 		nextcal = ath_shortcalinterval*hz/1000;
5692 		if (sc->sc_opmode != HAL_M_HOSTAP)
5693 			nextcal *= 10;
5694 		sc->sc_doresetcal = AH_TRUE;
5695 	} else {
5696 		/* nextcal should be the shortest time for next event */
5697 		nextcal = ath_longcalinterval*hz;
5698 		if (sc->sc_lastcalreset == 0)
5699 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5700 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5701 			sc->sc_resetcal = 1;	/* setup reset next trip */
5702 		sc->sc_doresetcal = AH_FALSE;
5703 	}
5704 	/* ANI calibration may occur more often than short/long/resetcal */
5705 	if (ath_anicalinterval > 0)
5706 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5707 
5708 	if (nextcal != 0) {
5709 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5710 		    __func__, nextcal, isCalDone ? "" : "!");
5711 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5712 	} else {
5713 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5714 		    __func__);
5715 		/* NB: don't rearm timer */
5716 	}
5717 	/*
5718 	 * Restore power state now that we're done.
5719 	 */
5720 	ath_power_restore_power_state(sc);
5721 }
5722 
5723 static void
5724 ath_scan_start(struct ieee80211com *ic)
5725 {
5726 	struct ifnet *ifp = ic->ic_ifp;
5727 	struct ath_softc *sc = ifp->if_softc;
5728 	struct ath_hal *ah = sc->sc_ah;
5729 	u_int32_t rfilt;
5730 
5731 	/* XXX calibration timer? */
5732 
5733 	ATH_LOCK(sc);
5734 	sc->sc_scanning = 1;
5735 	sc->sc_syncbeacon = 0;
5736 	rfilt = ath_calcrxfilter(sc);
5737 	ATH_UNLOCK(sc);
5738 
5739 	ATH_PCU_LOCK(sc);
5740 	ath_hal_setrxfilter(ah, rfilt);
5741 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5742 	ATH_PCU_UNLOCK(sc);
5743 
5744 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5745 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5746 }
5747 
5748 static void
5749 ath_scan_end(struct ieee80211com *ic)
5750 {
5751 	struct ifnet *ifp = ic->ic_ifp;
5752 	struct ath_softc *sc = ifp->if_softc;
5753 	struct ath_hal *ah = sc->sc_ah;
5754 	u_int32_t rfilt;
5755 
5756 	ATH_LOCK(sc);
5757 	sc->sc_scanning = 0;
5758 	rfilt = ath_calcrxfilter(sc);
5759 	ATH_UNLOCK(sc);
5760 
5761 	ATH_PCU_LOCK(sc);
5762 	ath_hal_setrxfilter(ah, rfilt);
5763 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5764 
5765 	ath_hal_process_noisefloor(ah);
5766 	ATH_PCU_UNLOCK(sc);
5767 
5768 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5769 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5770 		 sc->sc_curaid);
5771 }
5772 
5773 #ifdef	ATH_ENABLE_11N
5774 /*
5775  * For now, just do a channel change.
5776  *
5777  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5778  * control state and resetting the hardware without dropping frames out
5779  * of the queue.
5780  *
5781  * The unfortunate trouble here is making absolutely sure that the
5782  * channel width change has propagated enough so the hardware
5783  * absolutely isn't handed bogus frames for it's current operating
5784  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5785  * does occur in parallel, we need to make certain we've blocked
5786  * any further ongoing TX (and RX, that can cause raw TX)
5787  * before we do this.
5788  */
5789 static void
5790 ath_update_chw(struct ieee80211com *ic)
5791 {
5792 	struct ifnet *ifp = ic->ic_ifp;
5793 	struct ath_softc *sc = ifp->if_softc;
5794 
5795 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5796 	ath_set_channel(ic);
5797 }
5798 #endif	/* ATH_ENABLE_11N */
5799 
5800 static void
5801 ath_set_channel(struct ieee80211com *ic)
5802 {
5803 	struct ifnet *ifp = ic->ic_ifp;
5804 	struct ath_softc *sc = ifp->if_softc;
5805 
5806 	ATH_LOCK(sc);
5807 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5808 	ATH_UNLOCK(sc);
5809 
5810 	(void) ath_chan_set(sc, ic->ic_curchan);
5811 	/*
5812 	 * If we are returning to our bss channel then mark state
5813 	 * so the next recv'd beacon's tsf will be used to sync the
5814 	 * beacon timers.  Note that since we only hear beacons in
5815 	 * sta/ibss mode this has no effect in other operating modes.
5816 	 */
5817 	ATH_LOCK(sc);
5818 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5819 		sc->sc_syncbeacon = 1;
5820 	ath_power_restore_power_state(sc);
5821 	ATH_UNLOCK(sc);
5822 }
5823 
5824 /*
5825  * Walk the vap list and check if there any vap's in RUN state.
5826  */
5827 static int
5828 ath_isanyrunningvaps(struct ieee80211vap *this)
5829 {
5830 	struct ieee80211com *ic = this->iv_ic;
5831 	struct ieee80211vap *vap;
5832 
5833 	IEEE80211_LOCK_ASSERT(ic);
5834 
5835 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5836 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5837 			return 1;
5838 	}
5839 	return 0;
5840 }
5841 
5842 static int
5843 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5844 {
5845 	struct ieee80211com *ic = vap->iv_ic;
5846 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5847 	struct ath_vap *avp = ATH_VAP(vap);
5848 	struct ath_hal *ah = sc->sc_ah;
5849 	struct ieee80211_node *ni = NULL;
5850 	int i, error, stamode;
5851 	u_int32_t rfilt;
5852 	int csa_run_transition = 0;
5853 	enum ieee80211_state ostate = vap->iv_state;
5854 
5855 	static const HAL_LED_STATE leds[] = {
5856 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5857 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5858 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5859 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5860 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5861 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5862 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5863 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5864 	};
5865 
5866 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5867 		ieee80211_state_name[ostate],
5868 		ieee80211_state_name[nstate]);
5869 
5870 	/*
5871 	 * net80211 _should_ have the comlock asserted at this point.
5872 	 * There are some comments around the calls to vap->iv_newstate
5873 	 * which indicate that it (newstate) may end up dropping the
5874 	 * lock.  This and the subsequent lock assert check after newstate
5875 	 * are an attempt to catch these and figure out how/why.
5876 	 */
5877 	IEEE80211_LOCK_ASSERT(ic);
5878 
5879 	/* Before we touch the hardware - wake it up */
5880 	ATH_LOCK(sc);
5881 	/*
5882 	 * If the NIC is in anything other than SLEEP state,
5883 	 * we need to ensure that self-generated frames are
5884 	 * set for PWRMGT=0.  Otherwise we may end up with
5885 	 * strange situations.
5886 	 *
5887 	 * XXX TODO: is this actually the case? :-)
5888 	 */
5889 	if (nstate != IEEE80211_S_SLEEP)
5890 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5891 
5892 	/*
5893 	 * Now, wake the thing up.
5894 	 */
5895 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5896 
5897 	/*
5898 	 * And stop the calibration callout whilst we have
5899 	 * ATH_LOCK held.
5900 	 */
5901 	callout_stop(&sc->sc_cal_ch);
5902 	ATH_UNLOCK(sc);
5903 
5904 	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5905 		csa_run_transition = 1;
5906 
5907 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5908 
5909 	if (nstate == IEEE80211_S_SCAN) {
5910 		/*
5911 		 * Scanning: turn off beacon miss and don't beacon.
5912 		 * Mark beacon state so when we reach RUN state we'll
5913 		 * [re]setup beacons.  Unblock the task q thread so
5914 		 * deferred interrupt processing is done.
5915 		 */
5916 
5917 		/* Ensure we stay awake during scan */
5918 		ATH_LOCK(sc);
5919 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5920 		ath_power_setpower(sc, HAL_PM_AWAKE);
5921 		ATH_UNLOCK(sc);
5922 
5923 		ath_hal_intrset(ah,
5924 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5925 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5926 		sc->sc_beacons = 0;
5927 		taskqueue_unblock(sc->sc_tq);
5928 	}
5929 
5930 	ni = ieee80211_ref_node(vap->iv_bss);
5931 	rfilt = ath_calcrxfilter(sc);
5932 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5933 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5934 		   vap->iv_opmode == IEEE80211_M_IBSS);
5935 
5936 	/*
5937 	 * XXX Dont need to do this (and others) if we've transitioned
5938 	 * from SLEEP->RUN.
5939 	 */
5940 	if (stamode && nstate == IEEE80211_S_RUN) {
5941 		sc->sc_curaid = ni->ni_associd;
5942 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5943 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5944 	}
5945 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5946 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5947 	ath_hal_setrxfilter(ah, rfilt);
5948 
5949 	/* XXX is this to restore keycache on resume? */
5950 	if (vap->iv_opmode != IEEE80211_M_STA &&
5951 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5952 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5953 			if (ath_hal_keyisvalid(ah, i))
5954 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5955 	}
5956 
5957 	/*
5958 	 * Invoke the parent method to do net80211 work.
5959 	 */
5960 	error = avp->av_newstate(vap, nstate, arg);
5961 	if (error != 0)
5962 		goto bad;
5963 
5964 	/*
5965 	 * See above: ensure av_newstate() doesn't drop the lock
5966 	 * on us.
5967 	 */
5968 	IEEE80211_LOCK_ASSERT(ic);
5969 
5970 	if (nstate == IEEE80211_S_RUN) {
5971 		/* NB: collect bss node again, it may have changed */
5972 		ieee80211_free_node(ni);
5973 		ni = ieee80211_ref_node(vap->iv_bss);
5974 
5975 		DPRINTF(sc, ATH_DEBUG_STATE,
5976 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5977 		    "capinfo 0x%04x chan %d\n", __func__,
5978 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5979 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5980 
5981 		switch (vap->iv_opmode) {
5982 #ifdef IEEE80211_SUPPORT_TDMA
5983 		case IEEE80211_M_AHDEMO:
5984 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5985 				break;
5986 			/* fall thru... */
5987 #endif
5988 		case IEEE80211_M_HOSTAP:
5989 		case IEEE80211_M_IBSS:
5990 		case IEEE80211_M_MBSS:
5991 			/*
5992 			 * Allocate and setup the beacon frame.
5993 			 *
5994 			 * Stop any previous beacon DMA.  This may be
5995 			 * necessary, for example, when an ibss merge
5996 			 * causes reconfiguration; there will be a state
5997 			 * transition from RUN->RUN that means we may
5998 			 * be called with beacon transmission active.
5999 			 */
6000 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
6001 
6002 			error = ath_beacon_alloc(sc, ni);
6003 			if (error != 0)
6004 				goto bad;
6005 			/*
6006 			 * If joining an adhoc network defer beacon timer
6007 			 * configuration to the next beacon frame so we
6008 			 * have a current TSF to use.  Otherwise we're
6009 			 * starting an ibss/bss so there's no need to delay;
6010 			 * if this is the first vap moving to RUN state, then
6011 			 * beacon state needs to be [re]configured.
6012 			 */
6013 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
6014 			    ni->ni_tstamp.tsf != 0) {
6015 				sc->sc_syncbeacon = 1;
6016 			} else if (!sc->sc_beacons) {
6017 #ifdef IEEE80211_SUPPORT_TDMA
6018 				if (vap->iv_caps & IEEE80211_C_TDMA)
6019 					ath_tdma_config(sc, vap);
6020 				else
6021 #endif
6022 					ath_beacon_config(sc, vap);
6023 				sc->sc_beacons = 1;
6024 			}
6025 			break;
6026 		case IEEE80211_M_STA:
6027 			/*
6028 			 * Defer beacon timer configuration to the next
6029 			 * beacon frame so we have a current TSF to use
6030 			 * (any TSF collected when scanning is likely old).
6031 			 * However if it's due to a CSA -> RUN transition,
6032 			 * force a beacon update so we pick up a lack of
6033 			 * beacons from an AP in CAC and thus force a
6034 			 * scan.
6035 			 *
6036 			 * And, there's also corner cases here where
6037 			 * after a scan, the AP may have disappeared.
6038 			 * In that case, we may not receive an actual
6039 			 * beacon to update the beacon timer and thus we
6040 			 * won't get notified of the missing beacons.
6041 			 */
6042 			if (ostate != IEEE80211_S_RUN &&
6043 			    ostate != IEEE80211_S_SLEEP) {
6044 				DPRINTF(sc, ATH_DEBUG_BEACON,
6045 				    "%s: STA; syncbeacon=1\n", __func__);
6046 				sc->sc_syncbeacon = 1;
6047 
6048 				if (csa_run_transition)
6049 					ath_beacon_config(sc, vap);
6050 
6051 			/*
6052 			 * PR: kern/175227
6053 			 *
6054 			 * Reconfigure beacons during reset; as otherwise
6055 			 * we won't get the beacon timers reprogrammed
6056 			 * after a reset and thus we won't pick up a
6057 			 * beacon miss interrupt.
6058 			 *
6059 			 * Hopefully we'll see a beacon before the BMISS
6060 			 * timer fires (too often), leading to a STA
6061 			 * disassociation.
6062 			 */
6063 				sc->sc_beacons = 1;
6064 			}
6065 			break;
6066 		case IEEE80211_M_MONITOR:
6067 			/*
6068 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6069 			 * transitions so we must re-enable interrupts here to
6070 			 * handle the case of a single monitor mode vap.
6071 			 */
6072 			ath_hal_intrset(ah, sc->sc_imask);
6073 			break;
6074 		case IEEE80211_M_WDS:
6075 			break;
6076 		default:
6077 			break;
6078 		}
6079 		/*
6080 		 * Let the hal process statistics collected during a
6081 		 * scan so it can provide calibrated noise floor data.
6082 		 */
6083 		ath_hal_process_noisefloor(ah);
6084 		/*
6085 		 * Reset rssi stats; maybe not the best place...
6086 		 */
6087 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6088 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6089 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6090 
6091 		/*
6092 		 * Force awake for RUN mode.
6093 		 */
6094 		ATH_LOCK(sc);
6095 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6096 		ath_power_setpower(sc, HAL_PM_AWAKE);
6097 
6098 		/*
6099 		 * Finally, start any timers and the task q thread
6100 		 * (in case we didn't go through SCAN state).
6101 		 */
6102 		if (ath_longcalinterval != 0) {
6103 			/* start periodic recalibration timer */
6104 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6105 		} else {
6106 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6107 			    "%s: calibration disabled\n", __func__);
6108 		}
6109 		ATH_UNLOCK(sc);
6110 
6111 		taskqueue_unblock(sc->sc_tq);
6112 	} else if (nstate == IEEE80211_S_INIT) {
6113 		/*
6114 		 * If there are no vaps left in RUN state then
6115 		 * shutdown host/driver operation:
6116 		 * o disable interrupts
6117 		 * o disable the task queue thread
6118 		 * o mark beacon processing as stopped
6119 		 */
6120 		if (!ath_isanyrunningvaps(vap)) {
6121 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6122 			/* disable interrupts  */
6123 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6124 			taskqueue_block(sc->sc_tq);
6125 			sc->sc_beacons = 0;
6126 		}
6127 #ifdef IEEE80211_SUPPORT_TDMA
6128 		ath_hal_setcca(ah, AH_TRUE);
6129 #endif
6130 	} else if (nstate == IEEE80211_S_SLEEP) {
6131 		/* We're going to sleep, so transition appropriately */
6132 		/* For now, only do this if we're a single STA vap */
6133 		if (sc->sc_nvaps == 1 &&
6134 		    vap->iv_opmode == IEEE80211_M_STA) {
6135 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6136 			ATH_LOCK(sc);
6137 			/*
6138 			 * Always at least set the self-generated
6139 			 * frame config to set PWRMGT=1.
6140 			 */
6141 			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6142 
6143 			/*
6144 			 * If we're not syncing beacons, transition
6145 			 * to NETWORK_SLEEP.
6146 			 *
6147 			 * We stay awake if syncbeacon > 0 in case
6148 			 * we need to listen for some beacons otherwise
6149 			 * our beacon timer config may be wrong.
6150 			 */
6151 			if (sc->sc_syncbeacon == 0) {
6152 				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6153 			}
6154 			ATH_UNLOCK(sc);
6155 		}
6156 	}
6157 bad:
6158 	ieee80211_free_node(ni);
6159 
6160 	/*
6161 	 * Restore the power state - either to what it was, or
6162 	 * to network_sleep if it's alright.
6163 	 */
6164 	ATH_LOCK(sc);
6165 	ath_power_restore_power_state(sc);
6166 	ATH_UNLOCK(sc);
6167 	return error;
6168 }
6169 
6170 /*
6171  * Allocate a key cache slot to the station so we can
6172  * setup a mapping from key index to node. The key cache
6173  * slot is needed for managing antenna state and for
6174  * compression when stations do not use crypto.  We do
6175  * it uniliaterally here; if crypto is employed this slot
6176  * will be reassigned.
6177  */
6178 static void
6179 ath_setup_stationkey(struct ieee80211_node *ni)
6180 {
6181 	struct ieee80211vap *vap = ni->ni_vap;
6182 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6183 	ieee80211_keyix keyix, rxkeyix;
6184 
6185 	/* XXX should take a locked ref to vap->iv_bss */
6186 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6187 		/*
6188 		 * Key cache is full; we'll fall back to doing
6189 		 * the more expensive lookup in software.  Note
6190 		 * this also means no h/w compression.
6191 		 */
6192 		/* XXX msg+statistic */
6193 	} else {
6194 		/* XXX locking? */
6195 		ni->ni_ucastkey.wk_keyix = keyix;
6196 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6197 		/* NB: must mark device key to get called back on delete */
6198 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6199 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6200 		/* NB: this will create a pass-thru key entry */
6201 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6202 	}
6203 }
6204 
6205 /*
6206  * Setup driver-specific state for a newly associated node.
6207  * Note that we're called also on a re-associate, the isnew
6208  * param tells us if this is the first time or not.
6209  */
6210 static void
6211 ath_newassoc(struct ieee80211_node *ni, int isnew)
6212 {
6213 	struct ath_node *an = ATH_NODE(ni);
6214 	struct ieee80211vap *vap = ni->ni_vap;
6215 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6216 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6217 
6218 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6219 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6220 
6221 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6222 	    __func__,
6223 	    ni->ni_macaddr,
6224 	    ":",
6225 	    isnew,
6226 	    an->an_is_powersave);
6227 
6228 	ATH_NODE_LOCK(an);
6229 	ath_rate_newassoc(sc, an, isnew);
6230 	ATH_NODE_UNLOCK(an);
6231 
6232 	if (isnew &&
6233 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6234 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6235 		ath_setup_stationkey(ni);
6236 
6237 	/*
6238 	 * If we're reassociating, make sure that any paused queues
6239 	 * get unpaused.
6240 	 *
6241 	 * Now, we may hvae frames in the hardware queue for this node.
6242 	 * So if we are reassociating and there are frames in the queue,
6243 	 * we need to go through the cleanup path to ensure that they're
6244 	 * marked as non-aggregate.
6245 	 */
6246 	if (! isnew) {
6247 		DPRINTF(sc, ATH_DEBUG_NODE,
6248 		    "%s: %6D: reassoc; is_powersave=%d\n",
6249 		    __func__,
6250 		    ni->ni_macaddr,
6251 		    ":",
6252 		    an->an_is_powersave);
6253 
6254 		/* XXX for now, we can't hold the lock across assoc */
6255 		ath_tx_node_reassoc(sc, an);
6256 
6257 		/* XXX for now, we can't hold the lock across wakeup */
6258 		if (an->an_is_powersave)
6259 			ath_tx_node_wakeup(sc, an);
6260 	}
6261 }
6262 
6263 static int
6264 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6265 	int nchans, struct ieee80211_channel chans[])
6266 {
6267 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6268 	struct ath_hal *ah = sc->sc_ah;
6269 	HAL_STATUS status;
6270 
6271 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6272 	    "%s: rd %u cc %u location %c%s\n",
6273 	    __func__, reg->regdomain, reg->country, reg->location,
6274 	    reg->ecm ? " ecm" : "");
6275 
6276 	status = ath_hal_set_channels(ah, chans, nchans,
6277 	    reg->country, reg->regdomain);
6278 	if (status != HAL_OK) {
6279 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6280 		    __func__, status);
6281 		return EINVAL;		/* XXX */
6282 	}
6283 
6284 	return 0;
6285 }
6286 
6287 static void
6288 ath_getradiocaps(struct ieee80211com *ic,
6289 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6290 {
6291 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6292 	struct ath_hal *ah = sc->sc_ah;
6293 
6294 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6295 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6296 
6297 	/* XXX check return */
6298 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6299 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6300 
6301 }
6302 
6303 static int
6304 ath_getchannels(struct ath_softc *sc)
6305 {
6306 	struct ifnet *ifp = sc->sc_ifp;
6307 	struct ieee80211com *ic = ifp->if_l2com;
6308 	struct ath_hal *ah = sc->sc_ah;
6309 	HAL_STATUS status;
6310 
6311 	/*
6312 	 * Collect channel set based on EEPROM contents.
6313 	 */
6314 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6315 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6316 	if (status != HAL_OK) {
6317 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6318 		    "status %d\n", __func__, status);
6319 		return EINVAL;
6320 	}
6321 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6322 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6323 	/* XXX map Atheros sku's to net80211 SKU's */
6324 	/* XXX net80211 types too small */
6325 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6326 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6327 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6328 	ic->ic_regdomain.isocc[1] = ' ';
6329 
6330 	ic->ic_regdomain.ecm = 1;
6331 	ic->ic_regdomain.location = 'I';
6332 
6333 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6334 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6335 	    __func__, sc->sc_eerd, sc->sc_eecc,
6336 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6337 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6338 	return 0;
6339 }
6340 
6341 static int
6342 ath_rate_setup(struct ath_softc *sc, u_int mode)
6343 {
6344 	struct ath_hal *ah = sc->sc_ah;
6345 	const HAL_RATE_TABLE *rt;
6346 
6347 	switch (mode) {
6348 	case IEEE80211_MODE_11A:
6349 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6350 		break;
6351 	case IEEE80211_MODE_HALF:
6352 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6353 		break;
6354 	case IEEE80211_MODE_QUARTER:
6355 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6356 		break;
6357 	case IEEE80211_MODE_11B:
6358 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6359 		break;
6360 	case IEEE80211_MODE_11G:
6361 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6362 		break;
6363 	case IEEE80211_MODE_TURBO_A:
6364 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6365 		break;
6366 	case IEEE80211_MODE_TURBO_G:
6367 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6368 		break;
6369 	case IEEE80211_MODE_STURBO_A:
6370 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6371 		break;
6372 	case IEEE80211_MODE_11NA:
6373 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6374 		break;
6375 	case IEEE80211_MODE_11NG:
6376 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6377 		break;
6378 	default:
6379 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6380 			__func__, mode);
6381 		return 0;
6382 	}
6383 	sc->sc_rates[mode] = rt;
6384 	return (rt != NULL);
6385 }
6386 
6387 static void
6388 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6389 {
6390 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6391 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6392 	static const struct {
6393 		u_int		rate;		/* tx/rx 802.11 rate */
6394 		u_int16_t	timeOn;		/* LED on time (ms) */
6395 		u_int16_t	timeOff;	/* LED off time (ms) */
6396 	} blinkrates[] = {
6397 		{ 108,  40,  10 },
6398 		{  96,  44,  11 },
6399 		{  72,  50,  13 },
6400 		{  48,  57,  14 },
6401 		{  36,  67,  16 },
6402 		{  24,  80,  20 },
6403 		{  22, 100,  25 },
6404 		{  18, 133,  34 },
6405 		{  12, 160,  40 },
6406 		{  10, 200,  50 },
6407 		{   6, 240,  58 },
6408 		{   4, 267,  66 },
6409 		{   2, 400, 100 },
6410 		{   0, 500, 130 },
6411 		/* XXX half/quarter rates */
6412 	};
6413 	const HAL_RATE_TABLE *rt;
6414 	int i, j;
6415 
6416 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6417 	rt = sc->sc_rates[mode];
6418 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6419 	for (i = 0; i < rt->rateCount; i++) {
6420 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6421 		if (rt->info[i].phy != IEEE80211_T_HT)
6422 			sc->sc_rixmap[ieeerate] = i;
6423 		else
6424 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6425 	}
6426 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6427 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6428 		if (i >= rt->rateCount) {
6429 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6430 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6431 			continue;
6432 		}
6433 		sc->sc_hwmap[i].ieeerate =
6434 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6435 		if (rt->info[i].phy == IEEE80211_T_HT)
6436 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6437 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6438 		if (rt->info[i].shortPreamble ||
6439 		    rt->info[i].phy == IEEE80211_T_OFDM)
6440 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6441 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6442 		for (j = 0; j < N(blinkrates)-1; j++)
6443 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6444 				break;
6445 		/* NB: this uses the last entry if the rate isn't found */
6446 		/* XXX beware of overlow */
6447 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6448 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6449 	}
6450 	sc->sc_currates = rt;
6451 	sc->sc_curmode = mode;
6452 	/*
6453 	 * All protection frames are transmited at 2Mb/s for
6454 	 * 11g, otherwise at 1Mb/s.
6455 	 */
6456 	if (mode == IEEE80211_MODE_11G)
6457 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6458 	else
6459 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6460 	/* NB: caller is responsible for resetting rate control state */
6461 #undef N
6462 }
6463 
6464 static void
6465 ath_watchdog(void *arg)
6466 {
6467 	struct ath_softc *sc = arg;
6468 	int do_reset = 0;
6469 
6470 	ATH_LOCK_ASSERT(sc);
6471 
6472 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6473 		struct ifnet *ifp = sc->sc_ifp;
6474 		uint32_t hangs;
6475 
6476 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6477 
6478 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6479 		    hangs != 0) {
6480 			if_printf(ifp, "%s hang detected (0x%x)\n",
6481 			    hangs & 0xff ? "bb" : "mac", hangs);
6482 		} else
6483 			if_printf(ifp, "device timeout\n");
6484 		do_reset = 1;
6485 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6486 		sc->sc_stats.ast_watchdog++;
6487 
6488 		ath_power_restore_power_state(sc);
6489 	}
6490 
6491 	/*
6492 	 * We can't hold the lock across the ath_reset() call.
6493 	 *
6494 	 * And since this routine can't hold a lock and sleep,
6495 	 * do the reset deferred.
6496 	 */
6497 	if (do_reset) {
6498 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6499 	}
6500 
6501 	callout_schedule(&sc->sc_wd_ch, hz);
6502 }
6503 
6504 /*
6505  * Fetch the rate control statistics for the given node.
6506  */
6507 static int
6508 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6509 {
6510 	struct ath_node *an;
6511 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6512 	struct ieee80211_node *ni;
6513 	int error = 0;
6514 
6515 	/* Perform a lookup on the given node */
6516 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6517 	if (ni == NULL) {
6518 		error = EINVAL;
6519 		goto bad;
6520 	}
6521 
6522 	/* Lock the ath_node */
6523 	an = ATH_NODE(ni);
6524 	ATH_NODE_LOCK(an);
6525 
6526 	/* Fetch the rate control stats for this node */
6527 	error = ath_rate_fetch_node_stats(sc, an, rs);
6528 
6529 	/* No matter what happens here, just drop through */
6530 
6531 	/* Unlock the ath_node */
6532 	ATH_NODE_UNLOCK(an);
6533 
6534 	/* Unref the node */
6535 	ieee80211_node_decref(ni);
6536 
6537 bad:
6538 	return (error);
6539 }
6540 
6541 #ifdef ATH_DIAGAPI
6542 /*
6543  * Diagnostic interface to the HAL.  This is used by various
6544  * tools to do things like retrieve register contents for
6545  * debugging.  The mechanism is intentionally opaque so that
6546  * it can change frequently w/o concern for compatiblity.
6547  */
6548 static int
6549 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6550 {
6551 	struct ath_hal *ah = sc->sc_ah;
6552 	u_int id = ad->ad_id & ATH_DIAG_ID;
6553 	void *indata = NULL;
6554 	void *outdata = NULL;
6555 	u_int32_t insize = ad->ad_in_size;
6556 	u_int32_t outsize = ad->ad_out_size;
6557 	int error = 0;
6558 
6559 	if (ad->ad_id & ATH_DIAG_IN) {
6560 		/*
6561 		 * Copy in data.
6562 		 */
6563 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6564 		if (indata == NULL) {
6565 			error = ENOMEM;
6566 			goto bad;
6567 		}
6568 		error = copyin(ad->ad_in_data, indata, insize);
6569 		if (error)
6570 			goto bad;
6571 	}
6572 	if (ad->ad_id & ATH_DIAG_DYN) {
6573 		/*
6574 		 * Allocate a buffer for the results (otherwise the HAL
6575 		 * returns a pointer to a buffer where we can read the
6576 		 * results).  Note that we depend on the HAL leaving this
6577 		 * pointer for us to use below in reclaiming the buffer;
6578 		 * may want to be more defensive.
6579 		 */
6580 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6581 		if (outdata == NULL) {
6582 			error = ENOMEM;
6583 			goto bad;
6584 		}
6585 	}
6586 
6587 
6588 	ATH_LOCK(sc);
6589 	if (id != HAL_DIAG_REGS)
6590 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6591 	ATH_UNLOCK(sc);
6592 
6593 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6594 		if (outsize < ad->ad_out_size)
6595 			ad->ad_out_size = outsize;
6596 		if (outdata != NULL)
6597 			error = copyout(outdata, ad->ad_out_data,
6598 					ad->ad_out_size);
6599 	} else {
6600 		error = EINVAL;
6601 	}
6602 
6603 	ATH_LOCK(sc);
6604 	if (id != HAL_DIAG_REGS)
6605 		ath_power_restore_power_state(sc);
6606 	ATH_UNLOCK(sc);
6607 
6608 bad:
6609 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6610 		free(indata, M_TEMP);
6611 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6612 		free(outdata, M_TEMP);
6613 	return error;
6614 }
6615 #endif /* ATH_DIAGAPI */
6616 
6617 static int
6618 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6619 {
6620 #define	IS_RUNNING(ifp) \
6621 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6622 	struct ath_softc *sc = ifp->if_softc;
6623 	struct ieee80211com *ic = ifp->if_l2com;
6624 	struct ifreq *ifr = (struct ifreq *)data;
6625 	const HAL_RATE_TABLE *rt;
6626 	int error = 0;
6627 
6628 	switch (cmd) {
6629 	case SIOCSIFFLAGS:
6630 		if (IS_RUNNING(ifp)) {
6631 			/*
6632 			 * To avoid rescanning another access point,
6633 			 * do not call ath_init() here.  Instead,
6634 			 * only reflect promisc mode settings.
6635 			 */
6636 			ATH_LOCK(sc);
6637 			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6638 			ath_mode_init(sc);
6639 			ath_power_restore_power_state(sc);
6640 			ATH_UNLOCK(sc);
6641 		} else if (ifp->if_flags & IFF_UP) {
6642 			/*
6643 			 * Beware of being called during attach/detach
6644 			 * to reset promiscuous mode.  In that case we
6645 			 * will still be marked UP but not RUNNING.
6646 			 * However trying to re-init the interface
6647 			 * is the wrong thing to do as we've already
6648 			 * torn down much of our state.  There's
6649 			 * probably a better way to deal with this.
6650 			 */
6651 			if (!sc->sc_invalid)
6652 				ath_init(sc);	/* XXX lose error */
6653 		} else {
6654 			ATH_LOCK(sc);
6655 			ath_stop_locked(ifp);
6656 			if (!sc->sc_invalid)
6657 				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6658 			ATH_UNLOCK(sc);
6659 		}
6660 		break;
6661 	case SIOCGIFMEDIA:
6662 	case SIOCSIFMEDIA:
6663 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6664 		break;
6665 	case SIOCGATHSTATS:
6666 		/* NB: embed these numbers to get a consistent view */
6667 		sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp,
6668 		    IFCOUNTER_OPACKETS);
6669 		sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp,
6670 		    IFCOUNTER_IPACKETS);
6671 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6672 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6673 #ifdef IEEE80211_SUPPORT_TDMA
6674 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6675 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6676 #endif
6677 		rt = sc->sc_currates;
6678 		sc->sc_stats.ast_tx_rate =
6679 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6680 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6681 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6682 		return copyout(&sc->sc_stats,
6683 		    ifr->ifr_data, sizeof (sc->sc_stats));
6684 	case SIOCGATHAGSTATS:
6685 		return copyout(&sc->sc_aggr_stats,
6686 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6687 	case SIOCZATHSTATS:
6688 		error = priv_check(curthread, PRIV_DRIVER);
6689 		if (error == 0) {
6690 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6691 			memset(&sc->sc_aggr_stats, 0,
6692 			    sizeof(sc->sc_aggr_stats));
6693 			memset(&sc->sc_intr_stats, 0,
6694 			    sizeof(sc->sc_intr_stats));
6695 		}
6696 		break;
6697 #ifdef ATH_DIAGAPI
6698 	case SIOCGATHDIAG:
6699 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6700 		break;
6701 	case SIOCGATHPHYERR:
6702 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6703 		break;
6704 #endif
6705 	case SIOCGATHSPECTRAL:
6706 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6707 		break;
6708 	case SIOCGATHNODERATESTATS:
6709 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6710 		break;
6711 	case SIOCGIFADDR:
6712 		error = ether_ioctl(ifp, cmd, data);
6713 		break;
6714 	default:
6715 		error = EINVAL;
6716 		break;
6717 	}
6718 	return error;
6719 #undef IS_RUNNING
6720 }
6721 
6722 /*
6723  * Announce various information on device/driver attach.
6724  */
6725 static void
6726 ath_announce(struct ath_softc *sc)
6727 {
6728 	struct ifnet *ifp = sc->sc_ifp;
6729 	struct ath_hal *ah = sc->sc_ah;
6730 
6731 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6732 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6733 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6734 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6735 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6736 	if (bootverbose) {
6737 		int i;
6738 		for (i = 0; i <= WME_AC_VO; i++) {
6739 			struct ath_txq *txq = sc->sc_ac2q[i];
6740 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6741 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6742 		}
6743 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6744 			sc->sc_cabq->axq_qnum);
6745 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6746 	}
6747 	if (ath_rxbuf != ATH_RXBUF)
6748 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6749 	if (ath_txbuf != ATH_TXBUF)
6750 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6751 	if (sc->sc_mcastkey && bootverbose)
6752 		if_printf(ifp, "using multicast key search\n");
6753 }
6754 
6755 static void
6756 ath_dfs_tasklet(void *p, int npending)
6757 {
6758 	struct ath_softc *sc = (struct ath_softc *) p;
6759 	struct ifnet *ifp = sc->sc_ifp;
6760 	struct ieee80211com *ic = ifp->if_l2com;
6761 
6762 	/*
6763 	 * If previous processing has found a radar event,
6764 	 * signal this to the net80211 layer to begin DFS
6765 	 * processing.
6766 	 */
6767 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6768 		/* DFS event found, initiate channel change */
6769 		/*
6770 		 * XXX doesn't currently tell us whether the event
6771 		 * XXX was found in the primary or extension
6772 		 * XXX channel!
6773 		 */
6774 		IEEE80211_LOCK(ic);
6775 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6776 		IEEE80211_UNLOCK(ic);
6777 	}
6778 }
6779 
6780 /*
6781  * Enable/disable power save.  This must be called with
6782  * no TX driver locks currently held, so it should only
6783  * be called from the RX path (which doesn't hold any
6784  * TX driver locks.)
6785  */
6786 static void
6787 ath_node_powersave(struct ieee80211_node *ni, int enable)
6788 {
6789 #ifdef	ATH_SW_PSQ
6790 	struct ath_node *an = ATH_NODE(ni);
6791 	struct ieee80211com *ic = ni->ni_ic;
6792 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6793 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6794 
6795 	/* XXX and no TXQ locks should be held here */
6796 
6797 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6798 	    __func__,
6799 	    ni->ni_macaddr,
6800 	    ":",
6801 	    !! enable);
6802 
6803 	/* Suspend or resume software queue handling */
6804 	if (enable)
6805 		ath_tx_node_sleep(sc, an);
6806 	else
6807 		ath_tx_node_wakeup(sc, an);
6808 
6809 	/* Update net80211 state */
6810 	avp->av_node_ps(ni, enable);
6811 #else
6812 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6813 
6814 	/* Update net80211 state */
6815 	avp->av_node_ps(ni, enable);
6816 #endif/* ATH_SW_PSQ */
6817 }
6818 
6819 /*
6820  * Notification from net80211 that the powersave queue state has
6821  * changed.
6822  *
6823  * Since the software queue also may have some frames:
6824  *
6825  * + if the node software queue has frames and the TID state
6826  *   is 0, we set the TIM;
6827  * + if the node and the stack are both empty, we clear the TIM bit.
6828  * + If the stack tries to set the bit, always set it.
6829  * + If the stack tries to clear the bit, only clear it if the
6830  *   software queue in question is also cleared.
6831  *
6832  * TODO: this is called during node teardown; so let's ensure this
6833  * is all correctly handled and that the TIM bit is cleared.
6834  * It may be that the node flush is called _AFTER_ the net80211
6835  * stack clears the TIM.
6836  *
6837  * Here is the racy part.  Since it's possible >1 concurrent,
6838  * overlapping TXes will appear complete with a TX completion in
6839  * another thread, it's possible that the concurrent TIM calls will
6840  * clash.  We can't hold the node lock here because setting the
6841  * TIM grabs the net80211 comlock and this may cause a LOR.
6842  * The solution is either to totally serialise _everything_ at
6843  * this point (ie, all TX, completion and any reset/flush go into
6844  * one taskqueue) or a new "ath TIM lock" needs to be created that
6845  * just wraps the driver state change and this call to avp->av_set_tim().
6846  *
6847  * The same race exists in the net80211 power save queue handling
6848  * as well.  Since multiple transmitting threads may queue frames
6849  * into the driver, as well as ps-poll and the driver transmitting
6850  * frames (and thus clearing the psq), it's quite possible that
6851  * a packet entering the PSQ and a ps-poll being handled will
6852  * race, causing the TIM to be cleared and not re-set.
6853  */
6854 static int
6855 ath_node_set_tim(struct ieee80211_node *ni, int enable)
6856 {
6857 #ifdef	ATH_SW_PSQ
6858 	struct ieee80211com *ic = ni->ni_ic;
6859 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6860 	struct ath_node *an = ATH_NODE(ni);
6861 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6862 	int changed = 0;
6863 
6864 	ATH_TX_LOCK(sc);
6865 	an->an_stack_psq = enable;
6866 
6867 	/*
6868 	 * This will get called for all operating modes,
6869 	 * even if avp->av_set_tim is unset.
6870 	 * It's currently set for hostap/ibss modes; but
6871 	 * the same infrastructure is used for both STA
6872 	 * and AP/IBSS node power save.
6873 	 */
6874 	if (avp->av_set_tim == NULL) {
6875 		ATH_TX_UNLOCK(sc);
6876 		return (0);
6877 	}
6878 
6879 	/*
6880 	 * If setting the bit, always set it here.
6881 	 * If clearing the bit, only clear it if the
6882 	 * software queue is also empty.
6883 	 *
6884 	 * If the node has left power save, just clear the TIM
6885 	 * bit regardless of the state of the power save queue.
6886 	 *
6887 	 * XXX TODO: although atomics are used, it's quite possible
6888 	 * that a race will occur between this and setting/clearing
6889 	 * in another thread.  TX completion will occur always in
6890 	 * one thread, however setting/clearing the TIM bit can come
6891 	 * from a variety of different process contexts!
6892 	 */
6893 	if (enable && an->an_tim_set == 1) {
6894 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6895 		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6896 		    __func__,
6897 		    ni->ni_macaddr,
6898 		    ":",
6899 		    enable);
6900 		ATH_TX_UNLOCK(sc);
6901 	} else if (enable) {
6902 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6903 		    "%s: %6D: enable=%d, enabling TIM\n",
6904 		    __func__,
6905 		    ni->ni_macaddr,
6906 		    ":",
6907 		    enable);
6908 		an->an_tim_set = 1;
6909 		ATH_TX_UNLOCK(sc);
6910 		changed = avp->av_set_tim(ni, enable);
6911 	} else if (an->an_swq_depth == 0) {
6912 		/* disable */
6913 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6914 		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6915 		    __func__,
6916 		    ni->ni_macaddr,
6917 		    ":",
6918 		    enable);
6919 		an->an_tim_set = 0;
6920 		ATH_TX_UNLOCK(sc);
6921 		changed = avp->av_set_tim(ni, enable);
6922 	} else if (! an->an_is_powersave) {
6923 		/*
6924 		 * disable regardless; the node isn't in powersave now
6925 		 */
6926 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6927 		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6928 		    __func__,
6929 		    ni->ni_macaddr,
6930 		    ":",
6931 		    enable);
6932 		an->an_tim_set = 0;
6933 		ATH_TX_UNLOCK(sc);
6934 		changed = avp->av_set_tim(ni, enable);
6935 	} else {
6936 		/*
6937 		 * psq disable, node is currently in powersave, node
6938 		 * software queue isn't empty, so don't clear the TIM bit
6939 		 * for now.
6940 		 */
6941 		ATH_TX_UNLOCK(sc);
6942 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6943 		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6944 		    __func__,
6945 		    ni->ni_macaddr,
6946 		    ":",
6947 		    enable);
6948 		changed = 0;
6949 	}
6950 
6951 	return (changed);
6952 #else
6953 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6954 
6955 	/*
6956 	 * Some operating modes don't set av_set_tim(), so don't
6957 	 * update it here.
6958 	 */
6959 	if (avp->av_set_tim == NULL)
6960 		return (0);
6961 
6962 	return (avp->av_set_tim(ni, enable));
6963 #endif /* ATH_SW_PSQ */
6964 }
6965 
6966 /*
6967  * Set or update the TIM from the software queue.
6968  *
6969  * Check the software queue depth before attempting to do lock
6970  * anything; that avoids trying to obtain the lock.  Then,
6971  * re-check afterwards to ensure nothing has changed in the
6972  * meantime.
6973  *
6974  * set:   This is designed to be called from the TX path, after
6975  *        a frame has been queued; to see if the swq > 0.
6976  *
6977  * clear: This is designed to be called from the buffer completion point
6978  *        (right now it's ath_tx_default_comp()) where the state of
6979  *        a software queue has changed.
6980  *
6981  * It makes sense to place it at buffer free / completion rather
6982  * than after each software queue operation, as there's no real
6983  * point in churning the TIM bit as the last frames in the software
6984  * queue are transmitted.  If they fail and we retry them, we'd
6985  * just be setting the TIM bit again anyway.
6986  */
6987 void
6988 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6989      int enable)
6990 {
6991 #ifdef	ATH_SW_PSQ
6992 	struct ath_node *an;
6993 	struct ath_vap *avp;
6994 
6995 	/* Don't do this for broadcast/etc frames */
6996 	if (ni == NULL)
6997 		return;
6998 
6999 	an = ATH_NODE(ni);
7000 	avp = ATH_VAP(ni->ni_vap);
7001 
7002 	/*
7003 	 * And for operating modes without the TIM handler set, let's
7004 	 * just skip those.
7005 	 */
7006 	if (avp->av_set_tim == NULL)
7007 		return;
7008 
7009 	ATH_TX_LOCK_ASSERT(sc);
7010 
7011 	if (enable) {
7012 		if (an->an_is_powersave &&
7013 		    an->an_tim_set == 0 &&
7014 		    an->an_swq_depth != 0) {
7015 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7016 			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
7017 			    __func__,
7018 			    ni->ni_macaddr,
7019 			    ":");
7020 			an->an_tim_set = 1;
7021 			(void) avp->av_set_tim(ni, 1);
7022 		}
7023 	} else {
7024 		/*
7025 		 * Don't bother grabbing the lock unless the queue is empty.
7026 		 */
7027 		if (&an->an_swq_depth != 0)
7028 			return;
7029 
7030 		if (an->an_is_powersave &&
7031 		    an->an_stack_psq == 0 &&
7032 		    an->an_tim_set == 1 &&
7033 		    an->an_swq_depth == 0) {
7034 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7035 			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
7036 			    " clear!\n",
7037 			    __func__,
7038 			    ni->ni_macaddr,
7039 			    ":");
7040 			an->an_tim_set = 0;
7041 			(void) avp->av_set_tim(ni, 0);
7042 		}
7043 	}
7044 #else
7045 	return;
7046 #endif	/* ATH_SW_PSQ */
7047 }
7048 
7049 /*
7050  * Received a ps-poll frame from net80211.
7051  *
7052  * Here we get a chance to serve out a software-queued frame ourselves
7053  * before we punt it to net80211 to transmit us one itself - either
7054  * because there's traffic in the net80211 psq, or a NULL frame to
7055  * indicate there's nothing else.
7056  */
7057 static void
7058 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
7059 {
7060 #ifdef	ATH_SW_PSQ
7061 	struct ath_node *an;
7062 	struct ath_vap *avp;
7063 	struct ieee80211com *ic = ni->ni_ic;
7064 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7065 	int tid;
7066 
7067 	/* Just paranoia */
7068 	if (ni == NULL)
7069 		return;
7070 
7071 	/*
7072 	 * Unassociated (temporary node) station.
7073 	 */
7074 	if (ni->ni_associd == 0)
7075 		return;
7076 
7077 	/*
7078 	 * We do have an active node, so let's begin looking into it.
7079 	 */
7080 	an = ATH_NODE(ni);
7081 	avp = ATH_VAP(ni->ni_vap);
7082 
7083 	/*
7084 	 * For now, we just call the original ps-poll method.
7085 	 * Once we're ready to flip this on:
7086 	 *
7087 	 * + Set leak to 1, as no matter what we're going to have
7088 	 *   to send a frame;
7089 	 * + Check the software queue and if there's something in it,
7090 	 *   schedule the highest TID thas has traffic from this node.
7091 	 *   Then make sure we schedule the software scheduler to
7092 	 *   run so it picks up said frame.
7093 	 *
7094 	 * That way whatever happens, we'll at least send _a_ frame
7095 	 * to the given node.
7096 	 *
7097 	 * Again, yes, it's crappy QoS if the node has multiple
7098 	 * TIDs worth of traffic - but let's get it working first
7099 	 * before we optimise it.
7100 	 *
7101 	 * Also yes, there's definitely latency here - we're not
7102 	 * direct dispatching to the hardware in this path (and
7103 	 * we're likely being called from the packet receive path,
7104 	 * so going back into TX may be a little hairy!) but again
7105 	 * I'd like to get this working first before optimising
7106 	 * turn-around time.
7107 	 */
7108 
7109 	ATH_TX_LOCK(sc);
7110 
7111 	/*
7112 	 * Legacy - we're called and the node isn't asleep.
7113 	 * Immediately punt.
7114 	 */
7115 	if (! an->an_is_powersave) {
7116 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7117 		    "%s: %6D: not in powersave?\n",
7118 		    __func__,
7119 		    ni->ni_macaddr,
7120 		    ":");
7121 		ATH_TX_UNLOCK(sc);
7122 		avp->av_recv_pspoll(ni, m);
7123 		return;
7124 	}
7125 
7126 	/*
7127 	 * We're in powersave.
7128 	 *
7129 	 * Leak a frame.
7130 	 */
7131 	an->an_leak_count = 1;
7132 
7133 	/*
7134 	 * Now, if there's no frames in the node, just punt to
7135 	 * recv_pspoll.
7136 	 *
7137 	 * Don't bother checking if the TIM bit is set, we really
7138 	 * only care if there are any frames here!
7139 	 */
7140 	if (an->an_swq_depth == 0) {
7141 		ATH_TX_UNLOCK(sc);
7142 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7143 		    "%s: %6D: SWQ empty; punting to net80211\n",
7144 		    __func__,
7145 		    ni->ni_macaddr,
7146 		    ":");
7147 		avp->av_recv_pspoll(ni, m);
7148 		return;
7149 	}
7150 
7151 	/*
7152 	 * Ok, let's schedule the highest TID that has traffic
7153 	 * and then schedule something.
7154 	 */
7155 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7156 		struct ath_tid *atid = &an->an_tid[tid];
7157 		/*
7158 		 * No frames? Skip.
7159 		 */
7160 		if (atid->axq_depth == 0)
7161 			continue;
7162 		ath_tx_tid_sched(sc, atid);
7163 		/*
7164 		 * XXX we could do a direct call to the TXQ
7165 		 * scheduler code here to optimise latency
7166 		 * at the expense of a REALLY deep callstack.
7167 		 */
7168 		ATH_TX_UNLOCK(sc);
7169 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7170 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7171 		    "%s: %6D: leaking frame to TID %d\n",
7172 		    __func__,
7173 		    ni->ni_macaddr,
7174 		    ":",
7175 		    tid);
7176 		return;
7177 	}
7178 
7179 	ATH_TX_UNLOCK(sc);
7180 
7181 	/*
7182 	 * XXX nothing in the TIDs at this point? Eek.
7183 	 */
7184 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7185 	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7186 	    __func__,
7187 	    ni->ni_macaddr,
7188 	    ":");
7189 	avp->av_recv_pspoll(ni, m);
7190 #else
7191 	avp->av_recv_pspoll(ni, m);
7192 #endif	/* ATH_SW_PSQ */
7193 }
7194 
7195 MODULE_VERSION(if_ath, 1);
7196 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7197 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7198 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7199 #endif
7200