1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 120 #ifdef ATH_TX99_DIAG 121 #include <dev/ath/ath_tx99/ath_tx99.h> 122 #endif 123 124 #ifdef ATH_DEBUG_ALQ 125 #include <dev/ath/if_ath_alq.h> 126 #endif 127 128 /* 129 * Only enable this if you're working on PS-POLL support. 130 */ 131 #define ATH_SW_PSQ 132 133 /* 134 * ATH_BCBUF determines the number of vap's that can transmit 135 * beacons and also (currently) the number of vap's that can 136 * have unique mac addresses/bssid. When staggering beacons 137 * 4 is probably a good max as otherwise the beacons become 138 * very closely spaced and there is limited time for cab q traffic 139 * to go out. You can burst beacons instead but that is not good 140 * for stations in power save and at some point you really want 141 * another radio (and channel). 142 * 143 * The limit on the number of mac addresses is tied to our use of 144 * the U/L bit and tracking addresses in a byte; it would be 145 * worthwhile to allow more for applications like proxy sta. 146 */ 147 CTASSERT(ATH_BCBUF <= 8); 148 149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 150 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 151 const uint8_t [IEEE80211_ADDR_LEN], 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void ath_vap_delete(struct ieee80211vap *); 154 static void ath_init(void *); 155 static void ath_stop_locked(struct ifnet *); 156 static void ath_stop(struct ifnet *); 157 static int ath_reset_vap(struct ieee80211vap *, u_long); 158 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 159 static void ath_qflush(struct ifnet *ifp); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast_hw(struct ath_softc *); 169 static void ath_update_mcast(struct ifnet *); 170 static void ath_update_promisc(struct ifnet *); 171 static void ath_updateslot(struct ifnet *); 172 static void ath_bstuck_proc(void *, int); 173 static void ath_reset_proc(void *, int); 174 static int ath_desc_alloc(struct ath_softc *); 175 static void ath_desc_free(struct ath_softc *); 176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 177 const uint8_t [IEEE80211_ADDR_LEN]); 178 static void ath_node_cleanup(struct ieee80211_node *); 179 static void ath_node_free(struct ieee80211_node *); 180 static void ath_node_getsignal(const struct ieee80211_node *, 181 int8_t *, int8_t *); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 188 int dosched); 189 static void ath_tx_proc_q0(void *, int); 190 static void ath_tx_proc_q0123(void *, int); 191 static void ath_tx_proc(void *, int); 192 static void ath_txq_sched_tasklet(void *, int); 193 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 #ifdef ATH_ENABLE_11N 199 static void ath_update_chw(struct ieee80211com *); 200 #endif /* ATH_ENABLE_11N */ 201 static void ath_calibrate(void *); 202 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 203 static void ath_setup_stationkey(struct ieee80211_node *); 204 static void ath_newassoc(struct ieee80211_node *, int); 205 static int ath_setregdomain(struct ieee80211com *, 206 struct ieee80211_regdomain *, int, 207 struct ieee80211_channel []); 208 static void ath_getradiocaps(struct ieee80211com *, int, int *, 209 struct ieee80211_channel []); 210 static int ath_getchannels(struct ath_softc *); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_announce(struct ath_softc *); 216 217 static void ath_dfs_tasklet(void *, int); 218 static void ath_node_powersave(struct ieee80211_node *, int); 219 static int ath_node_set_tim(struct ieee80211_node *, int); 220 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 #include <dev/ath/if_ath_tdma.h> 224 #endif 225 226 SYSCTL_DECL(_hw_ath); 227 228 /* XXX validate sysctl values */ 229 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 231 0, "long chip calibration interval (secs)"); 232 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 234 0, "short chip calibration interval (msecs)"); 235 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 237 0, "reset chip calibration results (secs)"); 238 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 240 0, "ANI calibration (msecs)"); 241 242 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 244 0, "rx buffers allocated"); 245 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 247 0, "tx buffers allocated"); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 252 int ath_bstuck_threshold = 4; /* max missed beacons */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 254 0, "max missed beacon xmits before chip reset"); 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 void 259 ath_legacy_attach_comp_func(struct ath_softc *sc) 260 { 261 262 /* 263 * Special case certain configurations. Note the 264 * CAB queue is handled by these specially so don't 265 * include them when checking the txq setup mask. 266 */ 267 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 268 case 0x01: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 270 break; 271 case 0x0f: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 273 break; 274 default: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 276 break; 277 } 278 } 279 280 /* 281 * Set the target power mode. 282 * 283 * If this is called during a point in time where 284 * the hardware is being programmed elsewhere, it will 285 * simply store it away and update it when all current 286 * uses of the hardware are completed. 287 */ 288 void 289 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 290 { 291 ATH_LOCK_ASSERT(sc); 292 293 sc->sc_target_powerstate = power_state; 294 295 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 296 __func__, 297 file, 298 line, 299 power_state, 300 sc->sc_powersave_refcnt); 301 302 if (sc->sc_powersave_refcnt == 0 && 303 power_state != sc->sc_cur_powerstate) { 304 sc->sc_cur_powerstate = power_state; 305 ath_hal_setpower(sc->sc_ah, power_state); 306 307 /* 308 * If the NIC is force-awake, then set the 309 * self-gen frame state appropriately. 310 * 311 * If the nic is in network sleep or full-sleep, 312 * we let the above call leave the self-gen 313 * state as "sleep". 314 */ 315 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 316 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 317 ath_hal_setselfgenpower(sc->sc_ah, 318 sc->sc_target_selfgen_state); 319 } 320 } 321 } 322 323 /* 324 * Set the current self-generated frames state. 325 * 326 * This is separate from the target power mode. The chip may be 327 * awake but the desired state is "sleep", so frames sent to the 328 * destination has PWRMGT=1 in the 802.11 header. The NIC also 329 * needs to know to set PWRMGT=1 in self-generated frames. 330 */ 331 void 332 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 333 { 334 335 ATH_LOCK_ASSERT(sc); 336 337 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 338 __func__, 339 file, 340 line, 341 power_state, 342 sc->sc_target_selfgen_state); 343 344 sc->sc_target_selfgen_state = power_state; 345 346 /* 347 * If the NIC is force-awake, then set the power state. 348 * Network-state and full-sleep will already transition it to 349 * mark self-gen frames as sleeping - and we can't 350 * guarantee the NIC is awake to program the self-gen frame 351 * setting anyway. 352 */ 353 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 354 ath_hal_setselfgenpower(sc->sc_ah, power_state); 355 } 356 } 357 358 /* 359 * Set the hardware power mode and take a reference. 360 * 361 * This doesn't update the target power mode in the driver; 362 * it just updates the hardware power state. 363 * 364 * XXX it should only ever force the hardware awake; it should 365 * never be called to set it asleep. 366 */ 367 void 368 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 369 { 370 ATH_LOCK_ASSERT(sc); 371 372 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 373 __func__, 374 file, 375 line, 376 power_state, 377 sc->sc_powersave_refcnt); 378 379 sc->sc_powersave_refcnt++; 380 381 if (power_state != sc->sc_cur_powerstate) { 382 ath_hal_setpower(sc->sc_ah, power_state); 383 sc->sc_cur_powerstate = power_state; 384 385 /* 386 * Adjust the self-gen powerstate if appropriate. 387 */ 388 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 389 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 390 ath_hal_setselfgenpower(sc->sc_ah, 391 sc->sc_target_selfgen_state); 392 } 393 394 } 395 } 396 397 /* 398 * Restore the power save mode to what it once was. 399 * 400 * This will decrement the reference counter and once it hits 401 * zero, it'll restore the powersave state. 402 */ 403 void 404 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 405 { 406 407 ATH_LOCK_ASSERT(sc); 408 409 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 410 __func__, 411 file, 412 line, 413 sc->sc_powersave_refcnt, 414 sc->sc_target_powerstate); 415 416 if (sc->sc_powersave_refcnt == 0) 417 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 418 else 419 sc->sc_powersave_refcnt--; 420 421 if (sc->sc_powersave_refcnt == 0 && 422 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 423 sc->sc_cur_powerstate = sc->sc_target_powerstate; 424 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 425 } 426 427 /* 428 * Adjust the self-gen powerstate if appropriate. 429 */ 430 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 431 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 432 ath_hal_setselfgenpower(sc->sc_ah, 433 sc->sc_target_selfgen_state); 434 } 435 436 } 437 438 /* 439 * Configure the initial HAL configuration values based on bus 440 * specific parameters. 441 * 442 * Some PCI IDs and other information may need tweaking. 443 * 444 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 445 * if BT antenna diversity isn't enabled. 446 * 447 * So, let's also figure out how to enable BT diversity for AR9485. 448 */ 449 static void 450 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 451 { 452 /* XXX TODO: only for PCI devices? */ 453 454 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 455 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 456 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 457 ah_config->ath_hal_min_gainidx = AH_TRUE; 458 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 459 /* XXX low_rssi_thresh */ 460 /* XXX fast_div_bias */ 461 device_printf(sc->sc_dev, "configuring for %s\n", 462 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 463 "CUS198" : "CUS230"); 464 } 465 466 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 467 device_printf(sc->sc_dev, "CUS217 card detected\n"); 468 469 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 470 device_printf(sc->sc_dev, "CUS252 card detected\n"); 471 472 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 473 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 474 475 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 476 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 477 478 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 479 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 480 481 #if 0 482 /* 483 * Some WB335 cards do not support antenna diversity. Since 484 * we use a hardcoded value for AR9565 instead of using the 485 * EEPROM/OTP data, remove the combining feature from 486 * the HW capabilities bitmap. 487 */ 488 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 489 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 490 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 491 } 492 493 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 494 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 495 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 496 } 497 #endif 498 499 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 500 ah_config->ath_hal_pcie_waen = 0x0040473b; 501 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 502 } 503 504 #if 0 505 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 506 ah->config.no_pll_pwrsave = true; 507 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 508 } 509 #endif 510 511 } 512 513 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 514 #define HAL_MODE_HT40 \ 515 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 516 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 517 int 518 ath_attach(u_int16_t devid, struct ath_softc *sc) 519 { 520 struct ifnet *ifp; 521 struct ieee80211com *ic; 522 struct ath_hal *ah = NULL; 523 HAL_STATUS status; 524 int error = 0, i; 525 u_int wmodes; 526 uint8_t macaddr[IEEE80211_ADDR_LEN]; 527 int rx_chainmask, tx_chainmask; 528 HAL_OPS_CONFIG ah_config; 529 530 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 531 532 CURVNET_SET(vnet0); 533 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 534 if (ifp == NULL) { 535 device_printf(sc->sc_dev, "can not if_alloc()\n"); 536 error = ENOSPC; 537 CURVNET_RESTORE(); 538 goto bad; 539 } 540 ic = ifp->if_l2com; 541 542 /* set these up early for if_printf use */ 543 if_initname(ifp, device_get_name(sc->sc_dev), 544 device_get_unit(sc->sc_dev)); 545 CURVNET_RESTORE(); 546 547 /* 548 * Configure the initial configuration data. 549 * 550 * This is stuff that may be needed early during attach 551 * rather than done via configuration calls later. 552 */ 553 bzero(&ah_config, sizeof(ah_config)); 554 ath_setup_hal_config(sc, &ah_config); 555 556 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 557 sc->sc_eepromdata, &ah_config, &status); 558 if (ah == NULL) { 559 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 560 status); 561 error = ENXIO; 562 goto bad; 563 } 564 sc->sc_ah = ah; 565 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 566 #ifdef ATH_DEBUG 567 sc->sc_debug = ath_debug; 568 #endif 569 570 /* 571 * Setup the DMA/EDMA functions based on the current 572 * hardware support. 573 * 574 * This is required before the descriptors are allocated. 575 */ 576 if (ath_hal_hasedma(sc->sc_ah)) { 577 sc->sc_isedma = 1; 578 ath_recv_setup_edma(sc); 579 ath_xmit_setup_edma(sc); 580 } else { 581 ath_recv_setup_legacy(sc); 582 ath_xmit_setup_legacy(sc); 583 } 584 585 if (ath_hal_hasmybeacon(sc->sc_ah)) { 586 sc->sc_do_mybeacon = 1; 587 } 588 589 /* 590 * Check if the MAC has multi-rate retry support. 591 * We do this by trying to setup a fake extended 592 * descriptor. MAC's that don't have support will 593 * return false w/o doing anything. MAC's that do 594 * support it will return true w/o doing anything. 595 */ 596 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 597 598 /* 599 * Check if the device has hardware counters for PHY 600 * errors. If so we need to enable the MIB interrupt 601 * so we can act on stat triggers. 602 */ 603 if (ath_hal_hwphycounters(ah)) 604 sc->sc_needmib = 1; 605 606 /* 607 * Get the hardware key cache size. 608 */ 609 sc->sc_keymax = ath_hal_keycachesize(ah); 610 if (sc->sc_keymax > ATH_KEYMAX) { 611 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 612 ATH_KEYMAX, sc->sc_keymax); 613 sc->sc_keymax = ATH_KEYMAX; 614 } 615 /* 616 * Reset the key cache since some parts do not 617 * reset the contents on initial power up. 618 */ 619 for (i = 0; i < sc->sc_keymax; i++) 620 ath_hal_keyreset(ah, i); 621 622 /* 623 * Collect the default channel list. 624 */ 625 error = ath_getchannels(sc); 626 if (error != 0) 627 goto bad; 628 629 /* 630 * Setup rate tables for all potential media types. 631 */ 632 ath_rate_setup(sc, IEEE80211_MODE_11A); 633 ath_rate_setup(sc, IEEE80211_MODE_11B); 634 ath_rate_setup(sc, IEEE80211_MODE_11G); 635 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 636 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 637 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 638 ath_rate_setup(sc, IEEE80211_MODE_11NA); 639 ath_rate_setup(sc, IEEE80211_MODE_11NG); 640 ath_rate_setup(sc, IEEE80211_MODE_HALF); 641 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 642 643 /* NB: setup here so ath_rate_update is happy */ 644 ath_setcurmode(sc, IEEE80211_MODE_11A); 645 646 /* 647 * Allocate TX descriptors and populate the lists. 648 */ 649 error = ath_desc_alloc(sc); 650 if (error != 0) { 651 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 652 error); 653 goto bad; 654 } 655 error = ath_txdma_setup(sc); 656 if (error != 0) { 657 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 658 error); 659 goto bad; 660 } 661 662 /* 663 * Allocate RX descriptors and populate the lists. 664 */ 665 error = ath_rxdma_setup(sc); 666 if (error != 0) { 667 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 668 error); 669 goto bad; 670 } 671 672 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 673 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 674 675 ATH_TXBUF_LOCK_INIT(sc); 676 677 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 678 taskqueue_thread_enqueue, &sc->sc_tq); 679 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 680 "%s taskq", ifp->if_xname); 681 682 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 683 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 684 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 685 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 686 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 687 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 688 689 /* 690 * Allocate hardware transmit queues: one queue for 691 * beacon frames and one data queue for each QoS 692 * priority. Note that the hal handles resetting 693 * these queues at the needed time. 694 * 695 * XXX PS-Poll 696 */ 697 sc->sc_bhalq = ath_beaconq_setup(sc); 698 if (sc->sc_bhalq == (u_int) -1) { 699 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 700 error = EIO; 701 goto bad2; 702 } 703 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 704 if (sc->sc_cabq == NULL) { 705 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 706 error = EIO; 707 goto bad2; 708 } 709 /* NB: insure BK queue is the lowest priority h/w queue */ 710 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 711 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 712 ieee80211_wme_acnames[WME_AC_BK]); 713 error = EIO; 714 goto bad2; 715 } 716 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 717 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 718 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 719 /* 720 * Not enough hardware tx queues to properly do WME; 721 * just punt and assign them all to the same h/w queue. 722 * We could do a better job of this if, for example, 723 * we allocate queues when we switch from station to 724 * AP mode. 725 */ 726 if (sc->sc_ac2q[WME_AC_VI] != NULL) 727 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 728 if (sc->sc_ac2q[WME_AC_BE] != NULL) 729 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 730 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 731 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 732 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 733 } 734 735 /* 736 * Attach the TX completion function. 737 * 738 * The non-EDMA chips may have some special case optimisations; 739 * this method gives everyone a chance to attach cleanly. 740 */ 741 sc->sc_tx.xmit_attach_comp_func(sc); 742 743 /* 744 * Setup rate control. Some rate control modules 745 * call back to change the anntena state so expose 746 * the necessary entry points. 747 * XXX maybe belongs in struct ath_ratectrl? 748 */ 749 sc->sc_setdefantenna = ath_setdefantenna; 750 sc->sc_rc = ath_rate_attach(sc); 751 if (sc->sc_rc == NULL) { 752 error = EIO; 753 goto bad2; 754 } 755 756 /* Attach DFS module */ 757 if (! ath_dfs_attach(sc)) { 758 device_printf(sc->sc_dev, 759 "%s: unable to attach DFS\n", __func__); 760 error = EIO; 761 goto bad2; 762 } 763 764 /* Attach spectral module */ 765 if (ath_spectral_attach(sc) < 0) { 766 device_printf(sc->sc_dev, 767 "%s: unable to attach spectral\n", __func__); 768 error = EIO; 769 goto bad2; 770 } 771 772 /* Attach bluetooth coexistence module */ 773 if (ath_btcoex_attach(sc) < 0) { 774 device_printf(sc->sc_dev, 775 "%s: unable to attach bluetooth coexistence\n", __func__); 776 error = EIO; 777 goto bad2; 778 } 779 780 /* Attach LNA diversity module */ 781 if (ath_lna_div_attach(sc) < 0) { 782 device_printf(sc->sc_dev, 783 "%s: unable to attach LNA diversity\n", __func__); 784 error = EIO; 785 goto bad2; 786 } 787 788 /* Start DFS processing tasklet */ 789 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 790 791 /* Configure LED state */ 792 sc->sc_blinking = 0; 793 sc->sc_ledstate = 1; 794 sc->sc_ledon = 0; /* low true */ 795 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 796 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 797 798 /* 799 * Don't setup hardware-based blinking. 800 * 801 * Although some NICs may have this configured in the 802 * default reset register values, the user may wish 803 * to alter which pins have which function. 804 * 805 * The reference driver attaches the MAC network LED to GPIO1 and 806 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 807 * NIC has these reversed. 808 */ 809 sc->sc_hardled = (1 == 0); 810 sc->sc_led_net_pin = -1; 811 sc->sc_led_pwr_pin = -1; 812 /* 813 * Auto-enable soft led processing for IBM cards and for 814 * 5211 minipci cards. Users can also manually enable/disable 815 * support with a sysctl. 816 */ 817 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 818 ath_led_config(sc); 819 ath_hal_setledstate(ah, HAL_LED_INIT); 820 821 ifp->if_softc = sc; 822 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 823 ifp->if_transmit = ath_transmit; 824 ifp->if_qflush = ath_qflush; 825 ifp->if_ioctl = ath_ioctl; 826 ifp->if_init = ath_init; 827 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 828 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 829 IFQ_SET_READY(&ifp->if_snd); 830 831 ic->ic_ifp = ifp; 832 /* XXX not right but it's not used anywhere important */ 833 ic->ic_phytype = IEEE80211_T_OFDM; 834 ic->ic_opmode = IEEE80211_M_STA; 835 ic->ic_caps = 836 IEEE80211_C_STA /* station mode */ 837 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 838 | IEEE80211_C_HOSTAP /* hostap mode */ 839 | IEEE80211_C_MONITOR /* monitor mode */ 840 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 841 | IEEE80211_C_WDS /* 4-address traffic works */ 842 | IEEE80211_C_MBSS /* mesh point link mode */ 843 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 844 | IEEE80211_C_SHSLOT /* short slot time supported */ 845 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 846 #ifndef ATH_ENABLE_11N 847 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 848 #endif 849 | IEEE80211_C_TXFRAG /* handle tx frags */ 850 #ifdef ATH_ENABLE_DFS 851 | IEEE80211_C_DFS /* Enable radar detection */ 852 #endif 853 | IEEE80211_C_PMGT /* Station side power mgmt */ 854 | IEEE80211_C_SWSLEEP 855 ; 856 /* 857 * Query the hal to figure out h/w crypto support. 858 */ 859 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 860 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 861 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 862 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 863 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 864 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 865 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 866 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 867 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 868 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 869 /* 870 * Check if h/w does the MIC and/or whether the 871 * separate key cache entries are required to 872 * handle both tx+rx MIC keys. 873 */ 874 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 875 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 876 /* 877 * If the h/w supports storing tx+rx MIC keys 878 * in one cache slot automatically enable use. 879 */ 880 if (ath_hal_hastkipsplit(ah) || 881 !ath_hal_settkipsplit(ah, AH_FALSE)) 882 sc->sc_splitmic = 1; 883 /* 884 * If the h/w can do TKIP MIC together with WME then 885 * we use it; otherwise we force the MIC to be done 886 * in software by the net80211 layer. 887 */ 888 if (ath_hal_haswmetkipmic(ah)) 889 sc->sc_wmetkipmic = 1; 890 } 891 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 892 /* 893 * Check for multicast key search support. 894 */ 895 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 896 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 897 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 898 } 899 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 900 /* 901 * Mark key cache slots associated with global keys 902 * as in use. If we knew TKIP was not to be used we 903 * could leave the +32, +64, and +32+64 slots free. 904 */ 905 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 906 setbit(sc->sc_keymap, i); 907 setbit(sc->sc_keymap, i+64); 908 if (sc->sc_splitmic) { 909 setbit(sc->sc_keymap, i+32); 910 setbit(sc->sc_keymap, i+32+64); 911 } 912 } 913 /* 914 * TPC support can be done either with a global cap or 915 * per-packet support. The latter is not available on 916 * all parts. We're a bit pedantic here as all parts 917 * support a global cap. 918 */ 919 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 920 ic->ic_caps |= IEEE80211_C_TXPMGT; 921 922 /* 923 * Mark WME capability only if we have sufficient 924 * hardware queues to do proper priority scheduling. 925 */ 926 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 927 ic->ic_caps |= IEEE80211_C_WME; 928 /* 929 * Check for misc other capabilities. 930 */ 931 if (ath_hal_hasbursting(ah)) 932 ic->ic_caps |= IEEE80211_C_BURST; 933 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 934 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 935 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 936 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 937 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 938 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 939 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 940 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 941 942 if (ath_hal_hasfastframes(ah)) 943 ic->ic_caps |= IEEE80211_C_FF; 944 wmodes = ath_hal_getwirelessmodes(ah); 945 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 946 ic->ic_caps |= IEEE80211_C_TURBOP; 947 #ifdef IEEE80211_SUPPORT_TDMA 948 if (ath_hal_macversion(ah) > 0x78) { 949 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 950 ic->ic_tdma_update = ath_tdma_update; 951 } 952 #endif 953 954 /* 955 * TODO: enforce that at least this many frames are available 956 * in the txbuf list before allowing data frames (raw or 957 * otherwise) to be transmitted. 958 */ 959 sc->sc_txq_data_minfree = 10; 960 /* 961 * Leave this as default to maintain legacy behaviour. 962 * Shortening the cabq/mcastq may end up causing some 963 * undesirable behaviour. 964 */ 965 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 966 967 /* 968 * How deep can the node software TX queue get whilst it's asleep. 969 */ 970 sc->sc_txq_node_psq_maxdepth = 16; 971 972 /* 973 * Default the maximum queue depth for a given node 974 * to 1/4'th the TX buffers, or 64, whichever 975 * is larger. 976 */ 977 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 978 979 /* Enable CABQ by default */ 980 sc->sc_cabq_enable = 1; 981 982 /* 983 * Allow the TX and RX chainmasks to be overridden by 984 * environment variables and/or device.hints. 985 * 986 * This must be done early - before the hardware is 987 * calibrated or before the 802.11n stream calculation 988 * is done. 989 */ 990 if (resource_int_value(device_get_name(sc->sc_dev), 991 device_get_unit(sc->sc_dev), "rx_chainmask", 992 &rx_chainmask) == 0) { 993 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 994 rx_chainmask); 995 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 996 } 997 if (resource_int_value(device_get_name(sc->sc_dev), 998 device_get_unit(sc->sc_dev), "tx_chainmask", 999 &tx_chainmask) == 0) { 1000 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1001 tx_chainmask); 1002 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1003 } 1004 1005 /* 1006 * Query the TX/RX chainmask configuration. 1007 * 1008 * This is only relevant for 11n devices. 1009 */ 1010 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1011 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1012 1013 /* 1014 * Disable MRR with protected frames by default. 1015 * Only 802.11n series NICs can handle this. 1016 */ 1017 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1018 1019 /* 1020 * Query the enterprise mode information the HAL. 1021 */ 1022 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1023 &sc->sc_ent_cfg) == HAL_OK) 1024 sc->sc_use_ent = 1; 1025 1026 #ifdef ATH_ENABLE_11N 1027 /* 1028 * Query HT capabilities 1029 */ 1030 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1031 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1032 uint32_t rxs, txs; 1033 1034 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1035 1036 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1037 1038 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1039 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1040 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1041 | IEEE80211_HTCAP_MAXAMSDU_3839 1042 /* max A-MSDU length */ 1043 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1044 ; 1045 1046 /* 1047 * Enable short-GI for HT20 only if the hardware 1048 * advertises support. 1049 * Notably, anything earlier than the AR9287 doesn't. 1050 */ 1051 if ((ath_hal_getcapability(ah, 1052 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1053 (wmodes & HAL_MODE_HT20)) { 1054 device_printf(sc->sc_dev, 1055 "[HT] enabling short-GI in 20MHz mode\n"); 1056 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1057 } 1058 1059 if (wmodes & HAL_MODE_HT40) 1060 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1061 | IEEE80211_HTCAP_SHORTGI40; 1062 1063 /* 1064 * TX/RX streams need to be taken into account when 1065 * negotiating which MCS rates it'll receive and 1066 * what MCS rates are available for TX. 1067 */ 1068 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1069 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1070 ic->ic_txstream = txs; 1071 ic->ic_rxstream = rxs; 1072 1073 /* 1074 * Setup TX and RX STBC based on what the HAL allows and 1075 * the currently configured chainmask set. 1076 * Ie - don't enable STBC TX if only one chain is enabled. 1077 * STBC RX is fine on a single RX chain; it just won't 1078 * provide any real benefit. 1079 */ 1080 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1081 NULL) == HAL_OK) { 1082 sc->sc_rx_stbc = 1; 1083 device_printf(sc->sc_dev, 1084 "[HT] 1 stream STBC receive enabled\n"); 1085 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1086 } 1087 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1088 NULL) == HAL_OK) { 1089 sc->sc_tx_stbc = 1; 1090 device_printf(sc->sc_dev, 1091 "[HT] 1 stream STBC transmit enabled\n"); 1092 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1093 } 1094 1095 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1096 &sc->sc_rts_aggr_limit); 1097 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1098 device_printf(sc->sc_dev, 1099 "[HT] RTS aggregates limited to %d KiB\n", 1100 sc->sc_rts_aggr_limit / 1024); 1101 1102 device_printf(sc->sc_dev, 1103 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1104 } 1105 #endif 1106 1107 /* 1108 * Initial aggregation settings. 1109 */ 1110 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1111 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1112 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1113 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1114 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1115 sc->sc_delim_min_pad = 0; 1116 1117 /* 1118 * Check if the hardware requires PCI register serialisation. 1119 * Some of the Owl based MACs require this. 1120 */ 1121 if (mp_ncpus > 1 && 1122 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1123 0, NULL) == HAL_OK) { 1124 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1125 device_printf(sc->sc_dev, 1126 "Enabling register serialisation\n"); 1127 } 1128 1129 /* 1130 * Initialise the deferred completed RX buffer list. 1131 */ 1132 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1133 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1134 1135 /* 1136 * Indicate we need the 802.11 header padded to a 1137 * 32-bit boundary for 4-address and QoS frames. 1138 */ 1139 ic->ic_flags |= IEEE80211_F_DATAPAD; 1140 1141 /* 1142 * Query the hal about antenna support. 1143 */ 1144 sc->sc_defant = ath_hal_getdefantenna(ah); 1145 1146 /* 1147 * Not all chips have the VEOL support we want to 1148 * use with IBSS beacons; check here for it. 1149 */ 1150 sc->sc_hasveol = ath_hal_hasveol(ah); 1151 1152 /* get mac address from hardware */ 1153 ath_hal_getmac(ah, macaddr); 1154 if (sc->sc_hasbmask) 1155 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1156 1157 /* NB: used to size node table key mapping array */ 1158 ic->ic_max_keyix = sc->sc_keymax; 1159 /* call MI attach routine. */ 1160 ieee80211_ifattach(ic, macaddr); 1161 ic->ic_setregdomain = ath_setregdomain; 1162 ic->ic_getradiocaps = ath_getradiocaps; 1163 sc->sc_opmode = HAL_M_STA; 1164 1165 /* override default methods */ 1166 ic->ic_newassoc = ath_newassoc; 1167 ic->ic_updateslot = ath_updateslot; 1168 ic->ic_wme.wme_update = ath_wme_update; 1169 ic->ic_vap_create = ath_vap_create; 1170 ic->ic_vap_delete = ath_vap_delete; 1171 ic->ic_raw_xmit = ath_raw_xmit; 1172 ic->ic_update_mcast = ath_update_mcast; 1173 ic->ic_update_promisc = ath_update_promisc; 1174 ic->ic_node_alloc = ath_node_alloc; 1175 sc->sc_node_free = ic->ic_node_free; 1176 ic->ic_node_free = ath_node_free; 1177 sc->sc_node_cleanup = ic->ic_node_cleanup; 1178 ic->ic_node_cleanup = ath_node_cleanup; 1179 ic->ic_node_getsignal = ath_node_getsignal; 1180 ic->ic_scan_start = ath_scan_start; 1181 ic->ic_scan_end = ath_scan_end; 1182 ic->ic_set_channel = ath_set_channel; 1183 #ifdef ATH_ENABLE_11N 1184 /* 802.11n specific - but just override anyway */ 1185 sc->sc_addba_request = ic->ic_addba_request; 1186 sc->sc_addba_response = ic->ic_addba_response; 1187 sc->sc_addba_stop = ic->ic_addba_stop; 1188 sc->sc_bar_response = ic->ic_bar_response; 1189 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1190 1191 ic->ic_addba_request = ath_addba_request; 1192 ic->ic_addba_response = ath_addba_response; 1193 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1194 ic->ic_addba_stop = ath_addba_stop; 1195 ic->ic_bar_response = ath_bar_response; 1196 1197 ic->ic_update_chw = ath_update_chw; 1198 #endif /* ATH_ENABLE_11N */ 1199 1200 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1201 /* 1202 * There's one vendor bitmap entry in the RX radiotap 1203 * header; make sure that's taken into account. 1204 */ 1205 ieee80211_radiotap_attachv(ic, 1206 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1207 ATH_TX_RADIOTAP_PRESENT, 1208 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1209 ATH_RX_RADIOTAP_PRESENT); 1210 #else 1211 /* 1212 * No vendor bitmap/extensions are present. 1213 */ 1214 ieee80211_radiotap_attach(ic, 1215 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1216 ATH_TX_RADIOTAP_PRESENT, 1217 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1218 ATH_RX_RADIOTAP_PRESENT); 1219 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1220 1221 /* 1222 * Setup the ALQ logging if required 1223 */ 1224 #ifdef ATH_DEBUG_ALQ 1225 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1226 if_ath_alq_setcfg(&sc->sc_alq, 1227 sc->sc_ah->ah_macVersion, 1228 sc->sc_ah->ah_macRev, 1229 sc->sc_ah->ah_phyRev, 1230 sc->sc_ah->ah_magic); 1231 #endif 1232 1233 /* 1234 * Setup dynamic sysctl's now that country code and 1235 * regdomain are available from the hal. 1236 */ 1237 ath_sysctlattach(sc); 1238 ath_sysctl_stats_attach(sc); 1239 ath_sysctl_hal_attach(sc); 1240 1241 if (bootverbose) 1242 ieee80211_announce(ic); 1243 ath_announce(sc); 1244 1245 /* 1246 * Put it to sleep for now. 1247 */ 1248 ATH_LOCK(sc); 1249 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1250 ATH_UNLOCK(sc); 1251 1252 return 0; 1253 bad2: 1254 ath_tx_cleanup(sc); 1255 ath_desc_free(sc); 1256 ath_txdma_teardown(sc); 1257 ath_rxdma_teardown(sc); 1258 bad: 1259 if (ah) 1260 ath_hal_detach(ah); 1261 1262 /* 1263 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 1264 */ 1265 if (ifp != NULL && ifp->if_vnet) { 1266 CURVNET_SET(ifp->if_vnet); 1267 if_free(ifp); 1268 CURVNET_RESTORE(); 1269 } else if (ifp != NULL) 1270 if_free(ifp); 1271 sc->sc_invalid = 1; 1272 return error; 1273 } 1274 1275 int 1276 ath_detach(struct ath_softc *sc) 1277 { 1278 struct ifnet *ifp = sc->sc_ifp; 1279 1280 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1281 __func__, ifp->if_flags); 1282 1283 /* 1284 * NB: the order of these is important: 1285 * o stop the chip so no more interrupts will fire 1286 * o call the 802.11 layer before detaching the hal to 1287 * insure callbacks into the driver to delete global 1288 * key cache entries can be handled 1289 * o free the taskqueue which drains any pending tasks 1290 * o reclaim the tx queue data structures after calling 1291 * the 802.11 layer as we'll get called back to reclaim 1292 * node state and potentially want to use them 1293 * o to cleanup the tx queues the hal is called, so detach 1294 * it last 1295 * Other than that, it's straightforward... 1296 */ 1297 1298 /* 1299 * XXX Wake the hardware up first. ath_stop() will still 1300 * wake it up first, but I'd rather do it here just to 1301 * ensure it's awake. 1302 */ 1303 ATH_LOCK(sc); 1304 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1305 ath_power_setpower(sc, HAL_PM_AWAKE); 1306 ATH_UNLOCK(sc); 1307 1308 /* 1309 * Stop things cleanly. 1310 */ 1311 ath_stop(ifp); 1312 1313 ieee80211_ifdetach(ifp->if_l2com); 1314 taskqueue_free(sc->sc_tq); 1315 #ifdef ATH_TX99_DIAG 1316 if (sc->sc_tx99 != NULL) 1317 sc->sc_tx99->detach(sc->sc_tx99); 1318 #endif 1319 ath_rate_detach(sc->sc_rc); 1320 #ifdef ATH_DEBUG_ALQ 1321 if_ath_alq_tidyup(&sc->sc_alq); 1322 #endif 1323 ath_lna_div_detach(sc); 1324 ath_btcoex_detach(sc); 1325 ath_spectral_detach(sc); 1326 ath_dfs_detach(sc); 1327 ath_desc_free(sc); 1328 ath_txdma_teardown(sc); 1329 ath_rxdma_teardown(sc); 1330 ath_tx_cleanup(sc); 1331 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1332 1333 CURVNET_SET(ifp->if_vnet); 1334 if_free(ifp); 1335 CURVNET_RESTORE(); 1336 1337 return 0; 1338 } 1339 1340 /* 1341 * MAC address handling for multiple BSS on the same radio. 1342 * The first vap uses the MAC address from the EEPROM. For 1343 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1344 * address and use the next six bits as an index. 1345 */ 1346 static void 1347 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1348 { 1349 int i; 1350 1351 if (clone && sc->sc_hasbmask) { 1352 /* NB: we only do this if h/w supports multiple bssid */ 1353 for (i = 0; i < 8; i++) 1354 if ((sc->sc_bssidmask & (1<<i)) == 0) 1355 break; 1356 if (i != 0) 1357 mac[0] |= (i << 2)|0x2; 1358 } else 1359 i = 0; 1360 sc->sc_bssidmask |= 1<<i; 1361 sc->sc_hwbssidmask[0] &= ~mac[0]; 1362 if (i == 0) 1363 sc->sc_nbssid0++; 1364 } 1365 1366 static void 1367 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1368 { 1369 int i = mac[0] >> 2; 1370 uint8_t mask; 1371 1372 if (i != 0 || --sc->sc_nbssid0 == 0) { 1373 sc->sc_bssidmask &= ~(1<<i); 1374 /* recalculate bssid mask from remaining addresses */ 1375 mask = 0xff; 1376 for (i = 1; i < 8; i++) 1377 if (sc->sc_bssidmask & (1<<i)) 1378 mask &= ~((i<<2)|0x2); 1379 sc->sc_hwbssidmask[0] |= mask; 1380 } 1381 } 1382 1383 /* 1384 * Assign a beacon xmit slot. We try to space out 1385 * assignments so when beacons are staggered the 1386 * traffic coming out of the cab q has maximal time 1387 * to go out before the next beacon is scheduled. 1388 */ 1389 static int 1390 assign_bslot(struct ath_softc *sc) 1391 { 1392 u_int slot, free; 1393 1394 free = 0; 1395 for (slot = 0; slot < ATH_BCBUF; slot++) 1396 if (sc->sc_bslot[slot] == NULL) { 1397 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1398 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1399 return slot; 1400 free = slot; 1401 /* NB: keep looking for a double slot */ 1402 } 1403 return free; 1404 } 1405 1406 static struct ieee80211vap * 1407 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1408 enum ieee80211_opmode opmode, int flags, 1409 const uint8_t bssid[IEEE80211_ADDR_LEN], 1410 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1411 { 1412 struct ath_softc *sc = ic->ic_ifp->if_softc; 1413 struct ath_vap *avp; 1414 struct ieee80211vap *vap; 1415 uint8_t mac[IEEE80211_ADDR_LEN]; 1416 int needbeacon, error; 1417 enum ieee80211_opmode ic_opmode; 1418 1419 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1420 M_80211_VAP, M_WAITOK | M_ZERO); 1421 needbeacon = 0; 1422 IEEE80211_ADDR_COPY(mac, mac0); 1423 1424 ATH_LOCK(sc); 1425 ic_opmode = opmode; /* default to opmode of new vap */ 1426 switch (opmode) { 1427 case IEEE80211_M_STA: 1428 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1429 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1430 goto bad; 1431 } 1432 if (sc->sc_nvaps) { 1433 /* 1434 * With multiple vaps we must fall back 1435 * to s/w beacon miss handling. 1436 */ 1437 flags |= IEEE80211_CLONE_NOBEACONS; 1438 } 1439 if (flags & IEEE80211_CLONE_NOBEACONS) { 1440 /* 1441 * Station mode w/o beacons are implemented w/ AP mode. 1442 */ 1443 ic_opmode = IEEE80211_M_HOSTAP; 1444 } 1445 break; 1446 case IEEE80211_M_IBSS: 1447 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1448 device_printf(sc->sc_dev, 1449 "only 1 ibss vap supported\n"); 1450 goto bad; 1451 } 1452 needbeacon = 1; 1453 break; 1454 case IEEE80211_M_AHDEMO: 1455 #ifdef IEEE80211_SUPPORT_TDMA 1456 if (flags & IEEE80211_CLONE_TDMA) { 1457 if (sc->sc_nvaps != 0) { 1458 device_printf(sc->sc_dev, 1459 "only 1 tdma vap supported\n"); 1460 goto bad; 1461 } 1462 needbeacon = 1; 1463 flags |= IEEE80211_CLONE_NOBEACONS; 1464 } 1465 /* fall thru... */ 1466 #endif 1467 case IEEE80211_M_MONITOR: 1468 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1469 /* 1470 * Adopt existing mode. Adding a monitor or ahdemo 1471 * vap to an existing configuration is of dubious 1472 * value but should be ok. 1473 */ 1474 /* XXX not right for monitor mode */ 1475 ic_opmode = ic->ic_opmode; 1476 } 1477 break; 1478 case IEEE80211_M_HOSTAP: 1479 case IEEE80211_M_MBSS: 1480 needbeacon = 1; 1481 break; 1482 case IEEE80211_M_WDS: 1483 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1484 device_printf(sc->sc_dev, 1485 "wds not supported in sta mode\n"); 1486 goto bad; 1487 } 1488 /* 1489 * Silently remove any request for a unique 1490 * bssid; WDS vap's always share the local 1491 * mac address. 1492 */ 1493 flags &= ~IEEE80211_CLONE_BSSID; 1494 if (sc->sc_nvaps == 0) 1495 ic_opmode = IEEE80211_M_HOSTAP; 1496 else 1497 ic_opmode = ic->ic_opmode; 1498 break; 1499 default: 1500 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1501 goto bad; 1502 } 1503 /* 1504 * Check that a beacon buffer is available; the code below assumes it. 1505 */ 1506 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1507 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1508 goto bad; 1509 } 1510 1511 /* STA, AHDEMO? */ 1512 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1513 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1514 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1515 } 1516 1517 vap = &avp->av_vap; 1518 /* XXX can't hold mutex across if_alloc */ 1519 ATH_UNLOCK(sc); 1520 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1521 bssid, mac); 1522 ATH_LOCK(sc); 1523 if (error != 0) { 1524 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1525 __func__, error); 1526 goto bad2; 1527 } 1528 1529 /* h/w crypto support */ 1530 vap->iv_key_alloc = ath_key_alloc; 1531 vap->iv_key_delete = ath_key_delete; 1532 vap->iv_key_set = ath_key_set; 1533 vap->iv_key_update_begin = ath_key_update_begin; 1534 vap->iv_key_update_end = ath_key_update_end; 1535 1536 /* override various methods */ 1537 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1538 vap->iv_recv_mgmt = ath_recv_mgmt; 1539 vap->iv_reset = ath_reset_vap; 1540 vap->iv_update_beacon = ath_beacon_update; 1541 avp->av_newstate = vap->iv_newstate; 1542 vap->iv_newstate = ath_newstate; 1543 avp->av_bmiss = vap->iv_bmiss; 1544 vap->iv_bmiss = ath_bmiss_vap; 1545 1546 avp->av_node_ps = vap->iv_node_ps; 1547 vap->iv_node_ps = ath_node_powersave; 1548 1549 avp->av_set_tim = vap->iv_set_tim; 1550 vap->iv_set_tim = ath_node_set_tim; 1551 1552 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1553 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1554 1555 /* Set default parameters */ 1556 1557 /* 1558 * Anything earlier than some AR9300 series MACs don't 1559 * support a smaller MPDU density. 1560 */ 1561 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1562 /* 1563 * All NICs can handle the maximum size, however 1564 * AR5416 based MACs can only TX aggregates w/ RTS 1565 * protection when the total aggregate size is <= 8k. 1566 * However, for now that's enforced by the TX path. 1567 */ 1568 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1569 1570 avp->av_bslot = -1; 1571 if (needbeacon) { 1572 /* 1573 * Allocate beacon state and setup the q for buffered 1574 * multicast frames. We know a beacon buffer is 1575 * available because we checked above. 1576 */ 1577 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1578 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1579 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1580 /* 1581 * Assign the vap to a beacon xmit slot. As above 1582 * this cannot fail to find a free one. 1583 */ 1584 avp->av_bslot = assign_bslot(sc); 1585 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1586 ("beacon slot %u not empty", avp->av_bslot)); 1587 sc->sc_bslot[avp->av_bslot] = vap; 1588 sc->sc_nbcnvaps++; 1589 } 1590 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1591 /* 1592 * Multple vaps are to transmit beacons and we 1593 * have h/w support for TSF adjusting; enable 1594 * use of staggered beacons. 1595 */ 1596 sc->sc_stagbeacons = 1; 1597 } 1598 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1599 } 1600 1601 ic->ic_opmode = ic_opmode; 1602 if (opmode != IEEE80211_M_WDS) { 1603 sc->sc_nvaps++; 1604 if (opmode == IEEE80211_M_STA) 1605 sc->sc_nstavaps++; 1606 if (opmode == IEEE80211_M_MBSS) 1607 sc->sc_nmeshvaps++; 1608 } 1609 switch (ic_opmode) { 1610 case IEEE80211_M_IBSS: 1611 sc->sc_opmode = HAL_M_IBSS; 1612 break; 1613 case IEEE80211_M_STA: 1614 sc->sc_opmode = HAL_M_STA; 1615 break; 1616 case IEEE80211_M_AHDEMO: 1617 #ifdef IEEE80211_SUPPORT_TDMA 1618 if (vap->iv_caps & IEEE80211_C_TDMA) { 1619 sc->sc_tdma = 1; 1620 /* NB: disable tsf adjust */ 1621 sc->sc_stagbeacons = 0; 1622 } 1623 /* 1624 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1625 * just ap mode. 1626 */ 1627 /* fall thru... */ 1628 #endif 1629 case IEEE80211_M_HOSTAP: 1630 case IEEE80211_M_MBSS: 1631 sc->sc_opmode = HAL_M_HOSTAP; 1632 break; 1633 case IEEE80211_M_MONITOR: 1634 sc->sc_opmode = HAL_M_MONITOR; 1635 break; 1636 default: 1637 /* XXX should not happen */ 1638 break; 1639 } 1640 if (sc->sc_hastsfadd) { 1641 /* 1642 * Configure whether or not TSF adjust should be done. 1643 */ 1644 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1645 } 1646 if (flags & IEEE80211_CLONE_NOBEACONS) { 1647 /* 1648 * Enable s/w beacon miss handling. 1649 */ 1650 sc->sc_swbmiss = 1; 1651 } 1652 ATH_UNLOCK(sc); 1653 1654 /* complete setup */ 1655 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1656 return vap; 1657 bad2: 1658 reclaim_address(sc, mac); 1659 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1660 bad: 1661 free(avp, M_80211_VAP); 1662 ATH_UNLOCK(sc); 1663 return NULL; 1664 } 1665 1666 static void 1667 ath_vap_delete(struct ieee80211vap *vap) 1668 { 1669 struct ieee80211com *ic = vap->iv_ic; 1670 struct ifnet *ifp = ic->ic_ifp; 1671 struct ath_softc *sc = ifp->if_softc; 1672 struct ath_hal *ah = sc->sc_ah; 1673 struct ath_vap *avp = ATH_VAP(vap); 1674 1675 ATH_LOCK(sc); 1676 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1677 ATH_UNLOCK(sc); 1678 1679 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1680 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1681 /* 1682 * Quiesce the hardware while we remove the vap. In 1683 * particular we need to reclaim all references to 1684 * the vap state by any frames pending on the tx queues. 1685 */ 1686 ath_hal_intrset(ah, 0); /* disable interrupts */ 1687 /* XXX Do all frames from all vaps/nodes need draining here? */ 1688 ath_stoprecv(sc, 1); /* stop recv side */ 1689 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1690 } 1691 1692 /* .. leave the hardware awake for now. */ 1693 1694 ieee80211_vap_detach(vap); 1695 1696 /* 1697 * XXX Danger Will Robinson! Danger! 1698 * 1699 * Because ieee80211_vap_detach() can queue a frame (the station 1700 * diassociate message?) after we've drained the TXQ and 1701 * flushed the software TXQ, we will end up with a frame queued 1702 * to a node whose vap is about to be freed. 1703 * 1704 * To work around this, flush the hardware/software again. 1705 * This may be racy - the ath task may be running and the packet 1706 * may be being scheduled between sw->hw txq. Tsk. 1707 * 1708 * TODO: figure out why a new node gets allocated somewhere around 1709 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1710 * call!) 1711 */ 1712 1713 ath_draintxq(sc, ATH_RESET_DEFAULT); 1714 1715 ATH_LOCK(sc); 1716 /* 1717 * Reclaim beacon state. Note this must be done before 1718 * the vap instance is reclaimed as we may have a reference 1719 * to it in the buffer for the beacon frame. 1720 */ 1721 if (avp->av_bcbuf != NULL) { 1722 if (avp->av_bslot != -1) { 1723 sc->sc_bslot[avp->av_bslot] = NULL; 1724 sc->sc_nbcnvaps--; 1725 } 1726 ath_beacon_return(sc, avp->av_bcbuf); 1727 avp->av_bcbuf = NULL; 1728 if (sc->sc_nbcnvaps == 0) { 1729 sc->sc_stagbeacons = 0; 1730 if (sc->sc_hastsfadd) 1731 ath_hal_settsfadjust(sc->sc_ah, 0); 1732 } 1733 /* 1734 * Reclaim any pending mcast frames for the vap. 1735 */ 1736 ath_tx_draintxq(sc, &avp->av_mcastq); 1737 } 1738 /* 1739 * Update bookkeeping. 1740 */ 1741 if (vap->iv_opmode == IEEE80211_M_STA) { 1742 sc->sc_nstavaps--; 1743 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1744 sc->sc_swbmiss = 0; 1745 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1746 vap->iv_opmode == IEEE80211_M_MBSS) { 1747 reclaim_address(sc, vap->iv_myaddr); 1748 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1749 if (vap->iv_opmode == IEEE80211_M_MBSS) 1750 sc->sc_nmeshvaps--; 1751 } 1752 if (vap->iv_opmode != IEEE80211_M_WDS) 1753 sc->sc_nvaps--; 1754 #ifdef IEEE80211_SUPPORT_TDMA 1755 /* TDMA operation ceases when the last vap is destroyed */ 1756 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1757 sc->sc_tdma = 0; 1758 sc->sc_swbmiss = 0; 1759 } 1760 #endif 1761 free(avp, M_80211_VAP); 1762 1763 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1764 /* 1765 * Restart rx+tx machines if still running (RUNNING will 1766 * be reset if we just destroyed the last vap). 1767 */ 1768 if (ath_startrecv(sc) != 0) 1769 if_printf(ifp, "%s: unable to restart recv logic\n", 1770 __func__); 1771 if (sc->sc_beacons) { /* restart beacons */ 1772 #ifdef IEEE80211_SUPPORT_TDMA 1773 if (sc->sc_tdma) 1774 ath_tdma_config(sc, NULL); 1775 else 1776 #endif 1777 ath_beacon_config(sc, NULL); 1778 } 1779 ath_hal_intrset(ah, sc->sc_imask); 1780 } 1781 1782 /* Ok, let the hardware asleep. */ 1783 ath_power_restore_power_state(sc); 1784 ATH_UNLOCK(sc); 1785 } 1786 1787 void 1788 ath_suspend(struct ath_softc *sc) 1789 { 1790 struct ifnet *ifp = sc->sc_ifp; 1791 struct ieee80211com *ic = ifp->if_l2com; 1792 1793 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1794 __func__, ifp->if_flags); 1795 1796 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1797 1798 ieee80211_suspend_all(ic); 1799 /* 1800 * NB: don't worry about putting the chip in low power 1801 * mode; pci will power off our socket on suspend and 1802 * CardBus detaches the device. 1803 * 1804 * XXX TODO: well, that's great, except for non-cardbus 1805 * devices! 1806 */ 1807 1808 /* 1809 * XXX This doesn't wait until all pending taskqueue 1810 * items and parallel transmit/receive/other threads 1811 * are running! 1812 */ 1813 ath_hal_intrset(sc->sc_ah, 0); 1814 taskqueue_block(sc->sc_tq); 1815 1816 ATH_LOCK(sc); 1817 callout_stop(&sc->sc_cal_ch); 1818 ATH_UNLOCK(sc); 1819 1820 /* 1821 * XXX ensure sc_invalid is 1 1822 */ 1823 1824 /* Disable the PCIe PHY, complete with workarounds */ 1825 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1826 } 1827 1828 /* 1829 * Reset the key cache since some parts do not reset the 1830 * contents on resume. First we clear all entries, then 1831 * re-load keys that the 802.11 layer assumes are setup 1832 * in h/w. 1833 */ 1834 static void 1835 ath_reset_keycache(struct ath_softc *sc) 1836 { 1837 struct ifnet *ifp = sc->sc_ifp; 1838 struct ieee80211com *ic = ifp->if_l2com; 1839 struct ath_hal *ah = sc->sc_ah; 1840 int i; 1841 1842 ATH_LOCK(sc); 1843 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1844 for (i = 0; i < sc->sc_keymax; i++) 1845 ath_hal_keyreset(ah, i); 1846 ath_power_restore_power_state(sc); 1847 ATH_UNLOCK(sc); 1848 ieee80211_crypto_reload_keys(ic); 1849 } 1850 1851 /* 1852 * Fetch the current chainmask configuration based on the current 1853 * operating channel and options. 1854 */ 1855 static void 1856 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1857 { 1858 1859 /* 1860 * Set TX chainmask to the currently configured chainmask; 1861 * the TX chainmask depends upon the current operating mode. 1862 */ 1863 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1864 if (IEEE80211_IS_CHAN_HT(chan)) { 1865 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1866 } else { 1867 sc->sc_cur_txchainmask = 1; 1868 } 1869 1870 DPRINTF(sc, ATH_DEBUG_RESET, 1871 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1872 __func__, 1873 sc->sc_cur_txchainmask, 1874 sc->sc_cur_rxchainmask); 1875 } 1876 1877 void 1878 ath_resume(struct ath_softc *sc) 1879 { 1880 struct ifnet *ifp = sc->sc_ifp; 1881 struct ieee80211com *ic = ifp->if_l2com; 1882 struct ath_hal *ah = sc->sc_ah; 1883 HAL_STATUS status; 1884 1885 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1886 __func__, ifp->if_flags); 1887 1888 /* Re-enable PCIe, re-enable the PCIe bus */ 1889 ath_hal_enablepcie(ah, 0, 0); 1890 1891 /* 1892 * Must reset the chip before we reload the 1893 * keycache as we were powered down on suspend. 1894 */ 1895 ath_update_chainmasks(sc, 1896 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1897 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1898 sc->sc_cur_rxchainmask); 1899 1900 /* Ensure we set the current power state to on */ 1901 ATH_LOCK(sc); 1902 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1903 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1904 ath_power_setpower(sc, HAL_PM_AWAKE); 1905 ATH_UNLOCK(sc); 1906 1907 ath_hal_reset(ah, sc->sc_opmode, 1908 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1909 AH_FALSE, &status); 1910 ath_reset_keycache(sc); 1911 1912 ATH_RX_LOCK(sc); 1913 sc->sc_rx_stopped = 1; 1914 sc->sc_rx_resetted = 1; 1915 ATH_RX_UNLOCK(sc); 1916 1917 /* Let DFS at it in case it's a DFS channel */ 1918 ath_dfs_radar_enable(sc, ic->ic_curchan); 1919 1920 /* Let spectral at in case spectral is enabled */ 1921 ath_spectral_enable(sc, ic->ic_curchan); 1922 1923 /* 1924 * Let bluetooth coexistence at in case it's needed for this channel 1925 */ 1926 ath_btcoex_enable(sc, ic->ic_curchan); 1927 1928 /* 1929 * If we're doing TDMA, enforce the TXOP limitation for chips that 1930 * support it. 1931 */ 1932 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1933 ath_hal_setenforcetxop(sc->sc_ah, 1); 1934 else 1935 ath_hal_setenforcetxop(sc->sc_ah, 0); 1936 1937 /* Restore the LED configuration */ 1938 ath_led_config(sc); 1939 ath_hal_setledstate(ah, HAL_LED_INIT); 1940 1941 if (sc->sc_resume_up) 1942 ieee80211_resume_all(ic); 1943 1944 ATH_LOCK(sc); 1945 ath_power_restore_power_state(sc); 1946 ATH_UNLOCK(sc); 1947 1948 /* XXX beacons ? */ 1949 } 1950 1951 void 1952 ath_shutdown(struct ath_softc *sc) 1953 { 1954 struct ifnet *ifp = sc->sc_ifp; 1955 1956 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1957 __func__, ifp->if_flags); 1958 1959 ath_stop(ifp); 1960 /* NB: no point powering down chip as we're about to reboot */ 1961 } 1962 1963 /* 1964 * Interrupt handler. Most of the actual processing is deferred. 1965 */ 1966 void 1967 ath_intr(void *arg) 1968 { 1969 struct ath_softc *sc = arg; 1970 struct ifnet *ifp = sc->sc_ifp; 1971 struct ath_hal *ah = sc->sc_ah; 1972 HAL_INT status = 0; 1973 uint32_t txqs; 1974 1975 /* 1976 * If we're inside a reset path, just print a warning and 1977 * clear the ISR. The reset routine will finish it for us. 1978 */ 1979 ATH_PCU_LOCK(sc); 1980 if (sc->sc_inreset_cnt) { 1981 HAL_INT status; 1982 ath_hal_getisr(ah, &status); /* clear ISR */ 1983 ath_hal_intrset(ah, 0); /* disable further intr's */ 1984 DPRINTF(sc, ATH_DEBUG_ANY, 1985 "%s: in reset, ignoring: status=0x%x\n", 1986 __func__, status); 1987 ATH_PCU_UNLOCK(sc); 1988 return; 1989 } 1990 1991 if (sc->sc_invalid) { 1992 /* 1993 * The hardware is not ready/present, don't touch anything. 1994 * Note this can happen early on if the IRQ is shared. 1995 */ 1996 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1997 ATH_PCU_UNLOCK(sc); 1998 return; 1999 } 2000 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2001 ATH_PCU_UNLOCK(sc); 2002 return; 2003 } 2004 2005 ATH_LOCK(sc); 2006 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2007 ATH_UNLOCK(sc); 2008 2009 if ((ifp->if_flags & IFF_UP) == 0 || 2010 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2011 HAL_INT status; 2012 2013 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2014 __func__, ifp->if_flags); 2015 ath_hal_getisr(ah, &status); /* clear ISR */ 2016 ath_hal_intrset(ah, 0); /* disable further intr's */ 2017 ATH_PCU_UNLOCK(sc); 2018 2019 ATH_LOCK(sc); 2020 ath_power_restore_power_state(sc); 2021 ATH_UNLOCK(sc); 2022 return; 2023 } 2024 2025 /* 2026 * Figure out the reason(s) for the interrupt. Note 2027 * that the hal returns a pseudo-ISR that may include 2028 * bits we haven't explicitly enabled so we mask the 2029 * value to insure we only process bits we requested. 2030 */ 2031 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2032 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2033 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2034 #ifdef ATH_DEBUG_ALQ 2035 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2036 ah->ah_syncstate); 2037 #endif /* ATH_DEBUG_ALQ */ 2038 #ifdef ATH_KTR_INTR_DEBUG 2039 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2040 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2041 ah->ah_intrstate[0], 2042 ah->ah_intrstate[1], 2043 ah->ah_intrstate[2], 2044 ah->ah_intrstate[3], 2045 ah->ah_intrstate[6]); 2046 #endif 2047 2048 /* Squirrel away SYNC interrupt debugging */ 2049 if (ah->ah_syncstate != 0) { 2050 int i; 2051 for (i = 0; i < 32; i++) 2052 if (ah->ah_syncstate & (i << i)) 2053 sc->sc_intr_stats.sync_intr[i]++; 2054 } 2055 2056 status &= sc->sc_imask; /* discard unasked for bits */ 2057 2058 /* Short-circuit un-handled interrupts */ 2059 if (status == 0x0) { 2060 ATH_PCU_UNLOCK(sc); 2061 2062 ATH_LOCK(sc); 2063 ath_power_restore_power_state(sc); 2064 ATH_UNLOCK(sc); 2065 2066 return; 2067 } 2068 2069 /* 2070 * Take a note that we're inside the interrupt handler, so 2071 * the reset routines know to wait. 2072 */ 2073 sc->sc_intr_cnt++; 2074 ATH_PCU_UNLOCK(sc); 2075 2076 /* 2077 * Handle the interrupt. We won't run concurrent with the reset 2078 * or channel change routines as they'll wait for sc_intr_cnt 2079 * to be 0 before continuing. 2080 */ 2081 if (status & HAL_INT_FATAL) { 2082 sc->sc_stats.ast_hardware++; 2083 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2084 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2085 } else { 2086 if (status & HAL_INT_SWBA) { 2087 /* 2088 * Software beacon alert--time to send a beacon. 2089 * Handle beacon transmission directly; deferring 2090 * this is too slow to meet timing constraints 2091 * under load. 2092 */ 2093 #ifdef IEEE80211_SUPPORT_TDMA 2094 if (sc->sc_tdma) { 2095 if (sc->sc_tdmaswba == 0) { 2096 struct ieee80211com *ic = ifp->if_l2com; 2097 struct ieee80211vap *vap = 2098 TAILQ_FIRST(&ic->ic_vaps); 2099 ath_tdma_beacon_send(sc, vap); 2100 sc->sc_tdmaswba = 2101 vap->iv_tdma->tdma_bintval; 2102 } else 2103 sc->sc_tdmaswba--; 2104 } else 2105 #endif 2106 { 2107 ath_beacon_proc(sc, 0); 2108 #ifdef IEEE80211_SUPPORT_SUPERG 2109 /* 2110 * Schedule the rx taskq in case there's no 2111 * traffic so any frames held on the staging 2112 * queue are aged and potentially flushed. 2113 */ 2114 sc->sc_rx.recv_sched(sc, 1); 2115 #endif 2116 } 2117 } 2118 if (status & HAL_INT_RXEOL) { 2119 int imask; 2120 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2121 if (! sc->sc_isedma) { 2122 ATH_PCU_LOCK(sc); 2123 /* 2124 * NB: the hardware should re-read the link when 2125 * RXE bit is written, but it doesn't work at 2126 * least on older hardware revs. 2127 */ 2128 sc->sc_stats.ast_rxeol++; 2129 /* 2130 * Disable RXEOL/RXORN - prevent an interrupt 2131 * storm until the PCU logic can be reset. 2132 * In case the interface is reset some other 2133 * way before "sc_kickpcu" is called, don't 2134 * modify sc_imask - that way if it is reset 2135 * by a call to ath_reset() somehow, the 2136 * interrupt mask will be correctly reprogrammed. 2137 */ 2138 imask = sc->sc_imask; 2139 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2140 ath_hal_intrset(ah, imask); 2141 /* 2142 * Only blank sc_rxlink if we've not yet kicked 2143 * the PCU. 2144 * 2145 * This isn't entirely correct - the correct solution 2146 * would be to have a PCU lock and engage that for 2147 * the duration of the PCU fiddling; which would include 2148 * running the RX process. Otherwise we could end up 2149 * messing up the RX descriptor chain and making the 2150 * RX desc list much shorter. 2151 */ 2152 if (! sc->sc_kickpcu) 2153 sc->sc_rxlink = NULL; 2154 sc->sc_kickpcu = 1; 2155 ATH_PCU_UNLOCK(sc); 2156 } 2157 /* 2158 * Enqueue an RX proc to handle whatever 2159 * is in the RX queue. 2160 * This will then kick the PCU if required. 2161 */ 2162 sc->sc_rx.recv_sched(sc, 1); 2163 } 2164 if (status & HAL_INT_TXURN) { 2165 sc->sc_stats.ast_txurn++; 2166 /* bump tx trigger level */ 2167 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2168 } 2169 /* 2170 * Handle both the legacy and RX EDMA interrupt bits. 2171 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2172 */ 2173 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2174 sc->sc_stats.ast_rx_intr++; 2175 sc->sc_rx.recv_sched(sc, 1); 2176 } 2177 if (status & HAL_INT_TX) { 2178 sc->sc_stats.ast_tx_intr++; 2179 /* 2180 * Grab all the currently set bits in the HAL txq bitmap 2181 * and blank them. This is the only place we should be 2182 * doing this. 2183 */ 2184 if (! sc->sc_isedma) { 2185 ATH_PCU_LOCK(sc); 2186 txqs = 0xffffffff; 2187 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2188 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2189 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2190 txqs, 2191 sc->sc_txq_active, 2192 sc->sc_txq_active | txqs); 2193 sc->sc_txq_active |= txqs; 2194 ATH_PCU_UNLOCK(sc); 2195 } 2196 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2197 } 2198 if (status & HAL_INT_BMISS) { 2199 sc->sc_stats.ast_bmiss++; 2200 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2201 } 2202 if (status & HAL_INT_GTT) 2203 sc->sc_stats.ast_tx_timeout++; 2204 if (status & HAL_INT_CST) 2205 sc->sc_stats.ast_tx_cst++; 2206 if (status & HAL_INT_MIB) { 2207 sc->sc_stats.ast_mib++; 2208 ATH_PCU_LOCK(sc); 2209 /* 2210 * Disable interrupts until we service the MIB 2211 * interrupt; otherwise it will continue to fire. 2212 */ 2213 ath_hal_intrset(ah, 0); 2214 /* 2215 * Let the hal handle the event. We assume it will 2216 * clear whatever condition caused the interrupt. 2217 */ 2218 ath_hal_mibevent(ah, &sc->sc_halstats); 2219 /* 2220 * Don't reset the interrupt if we've just 2221 * kicked the PCU, or we may get a nested 2222 * RXEOL before the rxproc has had a chance 2223 * to run. 2224 */ 2225 if (sc->sc_kickpcu == 0) 2226 ath_hal_intrset(ah, sc->sc_imask); 2227 ATH_PCU_UNLOCK(sc); 2228 } 2229 if (status & HAL_INT_RXORN) { 2230 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2231 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2232 sc->sc_stats.ast_rxorn++; 2233 } 2234 if (status & HAL_INT_TSFOOR) { 2235 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2236 sc->sc_syncbeacon = 1; 2237 } 2238 } 2239 ATH_PCU_LOCK(sc); 2240 sc->sc_intr_cnt--; 2241 ATH_PCU_UNLOCK(sc); 2242 2243 ATH_LOCK(sc); 2244 ath_power_restore_power_state(sc); 2245 ATH_UNLOCK(sc); 2246 } 2247 2248 static void 2249 ath_fatal_proc(void *arg, int pending) 2250 { 2251 struct ath_softc *sc = arg; 2252 struct ifnet *ifp = sc->sc_ifp; 2253 u_int32_t *state; 2254 u_int32_t len; 2255 void *sp; 2256 2257 if_printf(ifp, "hardware error; resetting\n"); 2258 /* 2259 * Fatal errors are unrecoverable. Typically these 2260 * are caused by DMA errors. Collect h/w state from 2261 * the hal so we can diagnose what's going on. 2262 */ 2263 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2264 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2265 state = sp; 2266 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 2267 state[0], state[1] , state[2], state[3], 2268 state[4], state[5]); 2269 } 2270 ath_reset(ifp, ATH_RESET_NOLOSS); 2271 } 2272 2273 static void 2274 ath_bmiss_vap(struct ieee80211vap *vap) 2275 { 2276 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2277 2278 /* 2279 * Workaround phantom bmiss interrupts by sanity-checking 2280 * the time of our last rx'd frame. If it is within the 2281 * beacon miss interval then ignore the interrupt. If it's 2282 * truly a bmiss we'll get another interrupt soon and that'll 2283 * be dispatched up for processing. Note this applies only 2284 * for h/w beacon miss events. 2285 */ 2286 2287 /* 2288 * XXX TODO: Just read the TSF during the interrupt path; 2289 * that way we don't have to wake up again just to read it 2290 * again. 2291 */ 2292 ATH_LOCK(sc); 2293 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2294 ATH_UNLOCK(sc); 2295 2296 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2297 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2298 struct ath_softc *sc = ifp->if_softc; 2299 u_int64_t lastrx = sc->sc_lastrx; 2300 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2301 /* XXX should take a locked ref to iv_bss */ 2302 u_int bmisstimeout = 2303 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2304 2305 DPRINTF(sc, ATH_DEBUG_BEACON, 2306 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2307 __func__, (unsigned long long) tsf, 2308 (unsigned long long)(tsf - lastrx), 2309 (unsigned long long) lastrx, bmisstimeout); 2310 2311 if (tsf - lastrx <= bmisstimeout) { 2312 sc->sc_stats.ast_bmiss_phantom++; 2313 2314 ATH_LOCK(sc); 2315 ath_power_restore_power_state(sc); 2316 ATH_UNLOCK(sc); 2317 2318 return; 2319 } 2320 } 2321 2322 /* 2323 * There's no need to keep the hardware awake during the call 2324 * to av_bmiss(). 2325 */ 2326 ATH_LOCK(sc); 2327 ath_power_restore_power_state(sc); 2328 ATH_UNLOCK(sc); 2329 2330 /* 2331 * Attempt to force a beacon resync. 2332 */ 2333 sc->sc_syncbeacon = 1; 2334 2335 ATH_VAP(vap)->av_bmiss(vap); 2336 } 2337 2338 /* XXX this needs a force wakeup! */ 2339 int 2340 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2341 { 2342 uint32_t rsize; 2343 void *sp; 2344 2345 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2346 return 0; 2347 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2348 *hangs = *(uint32_t *)sp; 2349 return 1; 2350 } 2351 2352 static void 2353 ath_bmiss_proc(void *arg, int pending) 2354 { 2355 struct ath_softc *sc = arg; 2356 struct ifnet *ifp = sc->sc_ifp; 2357 uint32_t hangs; 2358 2359 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2360 2361 ATH_LOCK(sc); 2362 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2363 ATH_UNLOCK(sc); 2364 2365 ath_beacon_miss(sc); 2366 2367 /* 2368 * Do a reset upon any becaon miss event. 2369 * 2370 * It may be a non-recognised RX clear hang which needs a reset 2371 * to clear. 2372 */ 2373 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2374 ath_reset(ifp, ATH_RESET_NOLOSS); 2375 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 2376 } else { 2377 ath_reset(ifp, ATH_RESET_NOLOSS); 2378 ieee80211_beacon_miss(ifp->if_l2com); 2379 } 2380 2381 /* Force a beacon resync, in case they've drifted */ 2382 sc->sc_syncbeacon = 1; 2383 2384 ATH_LOCK(sc); 2385 ath_power_restore_power_state(sc); 2386 ATH_UNLOCK(sc); 2387 } 2388 2389 /* 2390 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2391 * calcs together with WME. If necessary disable the crypto 2392 * hardware and mark the 802.11 state so keys will be setup 2393 * with the MIC work done in software. 2394 */ 2395 static void 2396 ath_settkipmic(struct ath_softc *sc) 2397 { 2398 struct ifnet *ifp = sc->sc_ifp; 2399 struct ieee80211com *ic = ifp->if_l2com; 2400 2401 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2402 if (ic->ic_flags & IEEE80211_F_WME) { 2403 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2404 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2405 } else { 2406 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2407 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2408 } 2409 } 2410 } 2411 2412 static void 2413 ath_init(void *arg) 2414 { 2415 struct ath_softc *sc = (struct ath_softc *) arg; 2416 struct ifnet *ifp = sc->sc_ifp; 2417 struct ieee80211com *ic = ifp->if_l2com; 2418 struct ath_hal *ah = sc->sc_ah; 2419 HAL_STATUS status; 2420 2421 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2422 __func__, ifp->if_flags); 2423 2424 ATH_LOCK(sc); 2425 /* 2426 * Force the sleep state awake. 2427 */ 2428 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2429 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2430 ath_power_setpower(sc, HAL_PM_AWAKE); 2431 2432 /* 2433 * Stop anything previously setup. This is safe 2434 * whether this is the first time through or not. 2435 */ 2436 ath_stop_locked(ifp); 2437 2438 /* 2439 * The basic interface to setting the hardware in a good 2440 * state is ``reset''. On return the hardware is known to 2441 * be powered up and with interrupts disabled. This must 2442 * be followed by initialization of the appropriate bits 2443 * and then setup of the interrupt mask. 2444 */ 2445 ath_settkipmic(sc); 2446 ath_update_chainmasks(sc, ic->ic_curchan); 2447 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2448 sc->sc_cur_rxchainmask); 2449 2450 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 2451 if_printf(ifp, "unable to reset hardware; hal status %u\n", 2452 status); 2453 ATH_UNLOCK(sc); 2454 return; 2455 } 2456 2457 ATH_RX_LOCK(sc); 2458 sc->sc_rx_stopped = 1; 2459 sc->sc_rx_resetted = 1; 2460 ATH_RX_UNLOCK(sc); 2461 2462 ath_chan_change(sc, ic->ic_curchan); 2463 2464 /* Let DFS at it in case it's a DFS channel */ 2465 ath_dfs_radar_enable(sc, ic->ic_curchan); 2466 2467 /* Let spectral at in case spectral is enabled */ 2468 ath_spectral_enable(sc, ic->ic_curchan); 2469 2470 /* 2471 * Let bluetooth coexistence at in case it's needed for this channel 2472 */ 2473 ath_btcoex_enable(sc, ic->ic_curchan); 2474 2475 /* 2476 * If we're doing TDMA, enforce the TXOP limitation for chips that 2477 * support it. 2478 */ 2479 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2480 ath_hal_setenforcetxop(sc->sc_ah, 1); 2481 else 2482 ath_hal_setenforcetxop(sc->sc_ah, 0); 2483 2484 /* 2485 * Likewise this is set during reset so update 2486 * state cached in the driver. 2487 */ 2488 sc->sc_diversity = ath_hal_getdiversity(ah); 2489 sc->sc_lastlongcal = 0; 2490 sc->sc_resetcal = 1; 2491 sc->sc_lastcalreset = 0; 2492 sc->sc_lastani = 0; 2493 sc->sc_lastshortcal = 0; 2494 sc->sc_doresetcal = AH_FALSE; 2495 /* 2496 * Beacon timers were cleared here; give ath_newstate() 2497 * a hint that the beacon timers should be poked when 2498 * things transition to the RUN state. 2499 */ 2500 sc->sc_beacons = 0; 2501 2502 /* 2503 * Setup the hardware after reset: the key cache 2504 * is filled as needed and the receive engine is 2505 * set going. Frame transmit is handled entirely 2506 * in the frame output path; there's nothing to do 2507 * here except setup the interrupt mask. 2508 */ 2509 if (ath_startrecv(sc) != 0) { 2510 if_printf(ifp, "unable to start recv logic\n"); 2511 ath_power_restore_power_state(sc); 2512 ATH_UNLOCK(sc); 2513 return; 2514 } 2515 2516 /* 2517 * Enable interrupts. 2518 */ 2519 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2520 | HAL_INT_RXORN | HAL_INT_TXURN 2521 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2522 2523 /* 2524 * Enable RX EDMA bits. Note these overlap with 2525 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2526 */ 2527 if (sc->sc_isedma) 2528 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2529 2530 /* 2531 * If we're an EDMA NIC, we don't care about RXEOL. 2532 * Writing a new descriptor in will simply restart 2533 * RX DMA. 2534 */ 2535 if (! sc->sc_isedma) 2536 sc->sc_imask |= HAL_INT_RXEOL; 2537 2538 /* 2539 * Enable MIB interrupts when there are hardware phy counters. 2540 * Note we only do this (at the moment) for station mode. 2541 */ 2542 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2543 sc->sc_imask |= HAL_INT_MIB; 2544 2545 /* 2546 * XXX add capability for this. 2547 * 2548 * If we're in STA mode (and maybe IBSS?) then register for 2549 * TSFOOR interrupts. 2550 */ 2551 if (ic->ic_opmode == IEEE80211_M_STA) 2552 sc->sc_imask |= HAL_INT_TSFOOR; 2553 2554 /* Enable global TX timeout and carrier sense timeout if available */ 2555 if (ath_hal_gtxto_supported(ah)) 2556 sc->sc_imask |= HAL_INT_GTT; 2557 2558 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2559 __func__, sc->sc_imask); 2560 2561 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2562 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2563 ath_hal_intrset(ah, sc->sc_imask); 2564 2565 ath_power_restore_power_state(sc); 2566 ATH_UNLOCK(sc); 2567 2568 #ifdef ATH_TX99_DIAG 2569 if (sc->sc_tx99 != NULL) 2570 sc->sc_tx99->start(sc->sc_tx99); 2571 else 2572 #endif 2573 ieee80211_start_all(ic); /* start all vap's */ 2574 } 2575 2576 static void 2577 ath_stop_locked(struct ifnet *ifp) 2578 { 2579 struct ath_softc *sc = ifp->if_softc; 2580 struct ath_hal *ah = sc->sc_ah; 2581 2582 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2583 __func__, sc->sc_invalid, ifp->if_flags); 2584 2585 ATH_LOCK_ASSERT(sc); 2586 2587 /* 2588 * Wake the hardware up before fiddling with it. 2589 */ 2590 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2591 2592 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2593 /* 2594 * Shutdown the hardware and driver: 2595 * reset 802.11 state machine 2596 * turn off timers 2597 * disable interrupts 2598 * turn off the radio 2599 * clear transmit machinery 2600 * clear receive machinery 2601 * drain and release tx queues 2602 * reclaim beacon resources 2603 * power down hardware 2604 * 2605 * Note that some of this work is not possible if the 2606 * hardware is gone (invalid). 2607 */ 2608 #ifdef ATH_TX99_DIAG 2609 if (sc->sc_tx99 != NULL) 2610 sc->sc_tx99->stop(sc->sc_tx99); 2611 #endif 2612 callout_stop(&sc->sc_wd_ch); 2613 sc->sc_wd_timer = 0; 2614 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2615 if (!sc->sc_invalid) { 2616 if (sc->sc_softled) { 2617 callout_stop(&sc->sc_ledtimer); 2618 ath_hal_gpioset(ah, sc->sc_ledpin, 2619 !sc->sc_ledon); 2620 sc->sc_blinking = 0; 2621 } 2622 ath_hal_intrset(ah, 0); 2623 } 2624 /* XXX we should stop RX regardless of whether it's valid */ 2625 if (!sc->sc_invalid) { 2626 ath_stoprecv(sc, 1); 2627 ath_hal_phydisable(ah); 2628 } else 2629 sc->sc_rxlink = NULL; 2630 ath_draintxq(sc, ATH_RESET_DEFAULT); 2631 ath_beacon_free(sc); /* XXX not needed */ 2632 } 2633 2634 /* And now, restore the current power state */ 2635 ath_power_restore_power_state(sc); 2636 } 2637 2638 /* 2639 * Wait until all pending TX/RX has completed. 2640 * 2641 * This waits until all existing transmit, receive and interrupts 2642 * have completed. It's assumed that the caller has first 2643 * grabbed the reset lock so it doesn't try to do overlapping 2644 * chip resets. 2645 */ 2646 #define MAX_TXRX_ITERATIONS 100 2647 static void 2648 ath_txrx_stop_locked(struct ath_softc *sc) 2649 { 2650 int i = MAX_TXRX_ITERATIONS; 2651 2652 ATH_UNLOCK_ASSERT(sc); 2653 ATH_PCU_LOCK_ASSERT(sc); 2654 2655 /* 2656 * Sleep until all the pending operations have completed. 2657 * 2658 * The caller must ensure that reset has been incremented 2659 * or the pending operations may continue being queued. 2660 */ 2661 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2662 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2663 if (i <= 0) 2664 break; 2665 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2666 msecs_to_ticks(10)); 2667 i--; 2668 } 2669 2670 if (i <= 0) 2671 device_printf(sc->sc_dev, 2672 "%s: didn't finish after %d iterations\n", 2673 __func__, MAX_TXRX_ITERATIONS); 2674 } 2675 #undef MAX_TXRX_ITERATIONS 2676 2677 #if 0 2678 static void 2679 ath_txrx_stop(struct ath_softc *sc) 2680 { 2681 ATH_UNLOCK_ASSERT(sc); 2682 ATH_PCU_UNLOCK_ASSERT(sc); 2683 2684 ATH_PCU_LOCK(sc); 2685 ath_txrx_stop_locked(sc); 2686 ATH_PCU_UNLOCK(sc); 2687 } 2688 #endif 2689 2690 static void 2691 ath_txrx_start(struct ath_softc *sc) 2692 { 2693 2694 taskqueue_unblock(sc->sc_tq); 2695 } 2696 2697 /* 2698 * Grab the reset lock, and wait around until noone else 2699 * is trying to do anything with it. 2700 * 2701 * This is totally horrible but we can't hold this lock for 2702 * long enough to do TX/RX or we end up with net80211/ip stack 2703 * LORs and eventual deadlock. 2704 * 2705 * "dowait" signals whether to spin, waiting for the reset 2706 * lock count to reach 0. This should (for now) only be used 2707 * during the reset path, as the rest of the code may not 2708 * be locking-reentrant enough to behave correctly. 2709 * 2710 * Another, cleaner way should be found to serialise all of 2711 * these operations. 2712 */ 2713 #define MAX_RESET_ITERATIONS 25 2714 static int 2715 ath_reset_grablock(struct ath_softc *sc, int dowait) 2716 { 2717 int w = 0; 2718 int i = MAX_RESET_ITERATIONS; 2719 2720 ATH_PCU_LOCK_ASSERT(sc); 2721 do { 2722 if (sc->sc_inreset_cnt == 0) { 2723 w = 1; 2724 break; 2725 } 2726 if (dowait == 0) { 2727 w = 0; 2728 break; 2729 } 2730 ATH_PCU_UNLOCK(sc); 2731 /* 2732 * 1 tick is likely not enough time for long calibrations 2733 * to complete. So we should wait quite a while. 2734 */ 2735 pause("ath_reset_grablock", msecs_to_ticks(100)); 2736 i--; 2737 ATH_PCU_LOCK(sc); 2738 } while (i > 0); 2739 2740 /* 2741 * We always increment the refcounter, regardless 2742 * of whether we succeeded to get it in an exclusive 2743 * way. 2744 */ 2745 sc->sc_inreset_cnt++; 2746 2747 if (i <= 0) 2748 device_printf(sc->sc_dev, 2749 "%s: didn't finish after %d iterations\n", 2750 __func__, MAX_RESET_ITERATIONS); 2751 2752 if (w == 0) 2753 device_printf(sc->sc_dev, 2754 "%s: warning, recursive reset path!\n", 2755 __func__); 2756 2757 return w; 2758 } 2759 #undef MAX_RESET_ITERATIONS 2760 2761 /* 2762 * XXX TODO: write ath_reset_releaselock 2763 */ 2764 2765 static void 2766 ath_stop(struct ifnet *ifp) 2767 { 2768 struct ath_softc *sc = ifp->if_softc; 2769 2770 ATH_LOCK(sc); 2771 ath_stop_locked(ifp); 2772 ATH_UNLOCK(sc); 2773 } 2774 2775 /* 2776 * Reset the hardware w/o losing operational state. This is 2777 * basically a more efficient way of doing ath_stop, ath_init, 2778 * followed by state transitions to the current 802.11 2779 * operational state. Used to recover from various errors and 2780 * to reset or reload hardware state. 2781 */ 2782 int 2783 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2784 { 2785 struct ath_softc *sc = ifp->if_softc; 2786 struct ieee80211com *ic = ifp->if_l2com; 2787 struct ath_hal *ah = sc->sc_ah; 2788 HAL_STATUS status; 2789 int i; 2790 2791 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2792 2793 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2794 ATH_PCU_UNLOCK_ASSERT(sc); 2795 ATH_UNLOCK_ASSERT(sc); 2796 2797 /* Try to (stop any further TX/RX from occuring */ 2798 taskqueue_block(sc->sc_tq); 2799 2800 /* 2801 * Wake the hardware up. 2802 */ 2803 ATH_LOCK(sc); 2804 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2805 ATH_UNLOCK(sc); 2806 2807 ATH_PCU_LOCK(sc); 2808 2809 /* 2810 * Grab the reset lock before TX/RX is stopped. 2811 * 2812 * This is needed to ensure that when the TX/RX actually does finish, 2813 * no further TX/RX/reset runs in parallel with this. 2814 */ 2815 if (ath_reset_grablock(sc, 1) == 0) { 2816 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2817 __func__); 2818 } 2819 2820 /* disable interrupts */ 2821 ath_hal_intrset(ah, 0); 2822 2823 /* 2824 * Now, ensure that any in progress TX/RX completes before we 2825 * continue. 2826 */ 2827 ath_txrx_stop_locked(sc); 2828 2829 ATH_PCU_UNLOCK(sc); 2830 2831 /* 2832 * Regardless of whether we're doing a no-loss flush or 2833 * not, stop the PCU and handle what's in the RX queue. 2834 * That way frames aren't dropped which shouldn't be. 2835 */ 2836 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2837 ath_rx_flush(sc); 2838 2839 /* 2840 * Should now wait for pending TX/RX to complete 2841 * and block future ones from occuring. This needs to be 2842 * done before the TX queue is drained. 2843 */ 2844 ath_draintxq(sc, reset_type); /* stop xmit side */ 2845 2846 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2847 /* NB: indicate channel change so we do a full reset */ 2848 ath_update_chainmasks(sc, ic->ic_curchan); 2849 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2850 sc->sc_cur_rxchainmask); 2851 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2852 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2853 __func__, status); 2854 sc->sc_diversity = ath_hal_getdiversity(ah); 2855 2856 ATH_RX_LOCK(sc); 2857 sc->sc_rx_stopped = 1; 2858 sc->sc_rx_resetted = 1; 2859 ATH_RX_UNLOCK(sc); 2860 2861 /* Let DFS at it in case it's a DFS channel */ 2862 ath_dfs_radar_enable(sc, ic->ic_curchan); 2863 2864 /* Let spectral at in case spectral is enabled */ 2865 ath_spectral_enable(sc, ic->ic_curchan); 2866 2867 /* 2868 * Let bluetooth coexistence at in case it's needed for this channel 2869 */ 2870 ath_btcoex_enable(sc, ic->ic_curchan); 2871 2872 /* 2873 * If we're doing TDMA, enforce the TXOP limitation for chips that 2874 * support it. 2875 */ 2876 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2877 ath_hal_setenforcetxop(sc->sc_ah, 1); 2878 else 2879 ath_hal_setenforcetxop(sc->sc_ah, 0); 2880 2881 if (ath_startrecv(sc) != 0) /* restart recv */ 2882 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2883 /* 2884 * We may be doing a reset in response to an ioctl 2885 * that changes the channel so update any state that 2886 * might change as a result. 2887 */ 2888 ath_chan_change(sc, ic->ic_curchan); 2889 if (sc->sc_beacons) { /* restart beacons */ 2890 #ifdef IEEE80211_SUPPORT_TDMA 2891 if (sc->sc_tdma) 2892 ath_tdma_config(sc, NULL); 2893 else 2894 #endif 2895 ath_beacon_config(sc, NULL); 2896 } 2897 2898 /* 2899 * Release the reset lock and re-enable interrupts here. 2900 * If an interrupt was being processed in ath_intr(), 2901 * it would disable interrupts at this point. So we have 2902 * to atomically enable interrupts and decrement the 2903 * reset counter - this way ath_intr() doesn't end up 2904 * disabling interrupts without a corresponding enable 2905 * in the rest or channel change path. 2906 * 2907 * Grab the TX reference in case we need to transmit. 2908 * That way a parallel transmit doesn't. 2909 */ 2910 ATH_PCU_LOCK(sc); 2911 sc->sc_inreset_cnt--; 2912 sc->sc_txstart_cnt++; 2913 /* XXX only do this if sc_inreset_cnt == 0? */ 2914 ath_hal_intrset(ah, sc->sc_imask); 2915 ATH_PCU_UNLOCK(sc); 2916 2917 /* 2918 * TX and RX can be started here. If it were started with 2919 * sc_inreset_cnt > 0, the TX and RX path would abort. 2920 * Thus if this is a nested call through the reset or 2921 * channel change code, TX completion will occur but 2922 * RX completion and ath_start / ath_tx_start will not 2923 * run. 2924 */ 2925 2926 /* Restart TX/RX as needed */ 2927 ath_txrx_start(sc); 2928 2929 /* XXX TODO: we need to hold the tx refcount here! */ 2930 2931 /* Restart TX completion and pending TX */ 2932 if (reset_type == ATH_RESET_NOLOSS) { 2933 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2934 if (ATH_TXQ_SETUP(sc, i)) { 2935 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2936 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2937 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2938 2939 ATH_TX_LOCK(sc); 2940 ath_txq_sched(sc, &sc->sc_txq[i]); 2941 ATH_TX_UNLOCK(sc); 2942 } 2943 } 2944 } 2945 2946 /* 2947 * This may have been set during an ath_start() call which 2948 * set this once it detected a concurrent TX was going on. 2949 * So, clear it. 2950 */ 2951 IF_LOCK(&ifp->if_snd); 2952 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2953 IF_UNLOCK(&ifp->if_snd); 2954 2955 ATH_LOCK(sc); 2956 ath_power_restore_power_state(sc); 2957 ATH_UNLOCK(sc); 2958 2959 ATH_PCU_LOCK(sc); 2960 sc->sc_txstart_cnt--; 2961 ATH_PCU_UNLOCK(sc); 2962 2963 /* Handle any frames in the TX queue */ 2964 /* 2965 * XXX should this be done by the caller, rather than 2966 * ath_reset() ? 2967 */ 2968 ath_tx_kick(sc); /* restart xmit */ 2969 return 0; 2970 } 2971 2972 static int 2973 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2974 { 2975 struct ieee80211com *ic = vap->iv_ic; 2976 struct ifnet *ifp = ic->ic_ifp; 2977 struct ath_softc *sc = ifp->if_softc; 2978 struct ath_hal *ah = sc->sc_ah; 2979 2980 switch (cmd) { 2981 case IEEE80211_IOC_TXPOWER: 2982 /* 2983 * If per-packet TPC is enabled, then we have nothing 2984 * to do; otherwise we need to force the global limit. 2985 * All this can happen directly; no need to reset. 2986 */ 2987 if (!ath_hal_gettpc(ah)) 2988 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2989 return 0; 2990 } 2991 /* XXX? Full or NOLOSS? */ 2992 return ath_reset(ifp, ATH_RESET_FULL); 2993 } 2994 2995 struct ath_buf * 2996 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2997 { 2998 struct ath_buf *bf; 2999 3000 ATH_TXBUF_LOCK_ASSERT(sc); 3001 3002 if (btype == ATH_BUFTYPE_MGMT) 3003 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3004 else 3005 bf = TAILQ_FIRST(&sc->sc_txbuf); 3006 3007 if (bf == NULL) { 3008 sc->sc_stats.ast_tx_getnobuf++; 3009 } else { 3010 if (bf->bf_flags & ATH_BUF_BUSY) { 3011 sc->sc_stats.ast_tx_getbusybuf++; 3012 bf = NULL; 3013 } 3014 } 3015 3016 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3017 if (btype == ATH_BUFTYPE_MGMT) 3018 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3019 else { 3020 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3021 sc->sc_txbuf_cnt--; 3022 3023 /* 3024 * This shuldn't happen; however just to be 3025 * safe print a warning and fudge the txbuf 3026 * count. 3027 */ 3028 if (sc->sc_txbuf_cnt < 0) { 3029 device_printf(sc->sc_dev, 3030 "%s: sc_txbuf_cnt < 0?\n", 3031 __func__); 3032 sc->sc_txbuf_cnt = 0; 3033 } 3034 } 3035 } else 3036 bf = NULL; 3037 3038 if (bf == NULL) { 3039 /* XXX should check which list, mgmt or otherwise */ 3040 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3041 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3042 "out of xmit buffers" : "xmit buffer busy"); 3043 return NULL; 3044 } 3045 3046 /* XXX TODO: should do this at buffer list initialisation */ 3047 /* XXX (then, ensure the buffer has the right flag set) */ 3048 bf->bf_flags = 0; 3049 if (btype == ATH_BUFTYPE_MGMT) 3050 bf->bf_flags |= ATH_BUF_MGMT; 3051 else 3052 bf->bf_flags &= (~ATH_BUF_MGMT); 3053 3054 /* Valid bf here; clear some basic fields */ 3055 bf->bf_next = NULL; /* XXX just to be sure */ 3056 bf->bf_last = NULL; /* XXX again, just to be sure */ 3057 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3058 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3059 3060 /* 3061 * Track the descriptor ID only if doing EDMA 3062 */ 3063 if (sc->sc_isedma) { 3064 bf->bf_descid = sc->sc_txbuf_descid; 3065 sc->sc_txbuf_descid++; 3066 } 3067 3068 return bf; 3069 } 3070 3071 /* 3072 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3073 * can't be thrown back on the queue as they could still be 3074 * in use by the hardware. 3075 * 3076 * This duplicates the buffer, or returns NULL. 3077 * 3078 * The descriptor is also copied but the link pointers and 3079 * the DMA segments aren't copied; this frame should thus 3080 * be again passed through the descriptor setup/chain routines 3081 * so the link is correct. 3082 * 3083 * The caller must free the buffer using ath_freebuf(). 3084 */ 3085 struct ath_buf * 3086 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3087 { 3088 struct ath_buf *tbf; 3089 3090 tbf = ath_getbuf(sc, 3091 (bf->bf_flags & ATH_BUF_MGMT) ? 3092 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3093 if (tbf == NULL) 3094 return NULL; /* XXX failure? Why? */ 3095 3096 /* Copy basics */ 3097 tbf->bf_next = NULL; 3098 tbf->bf_nseg = bf->bf_nseg; 3099 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3100 tbf->bf_status = bf->bf_status; 3101 tbf->bf_m = bf->bf_m; 3102 tbf->bf_node = bf->bf_node; 3103 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3104 /* will be setup by the chain/setup function */ 3105 tbf->bf_lastds = NULL; 3106 /* for now, last == self */ 3107 tbf->bf_last = tbf; 3108 tbf->bf_comp = bf->bf_comp; 3109 3110 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3111 3112 /* The caller has to re-init the descriptor + links */ 3113 3114 /* 3115 * Free the DMA mapping here, before we NULL the mbuf. 3116 * We must only call bus_dmamap_unload() once per mbuf chain 3117 * or behaviour is undefined. 3118 */ 3119 if (bf->bf_m != NULL) { 3120 /* 3121 * XXX is this POSTWRITE call required? 3122 */ 3123 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3124 BUS_DMASYNC_POSTWRITE); 3125 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3126 } 3127 3128 bf->bf_m = NULL; 3129 bf->bf_node = NULL; 3130 3131 /* Copy state */ 3132 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3133 3134 return tbf; 3135 } 3136 3137 struct ath_buf * 3138 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3139 { 3140 struct ath_buf *bf; 3141 3142 ATH_TXBUF_LOCK(sc); 3143 bf = _ath_getbuf_locked(sc, btype); 3144 /* 3145 * If a mgmt buffer was requested but we're out of those, 3146 * try requesting a normal one. 3147 */ 3148 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3149 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3150 ATH_TXBUF_UNLOCK(sc); 3151 if (bf == NULL) { 3152 struct ifnet *ifp = sc->sc_ifp; 3153 3154 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3155 sc->sc_stats.ast_tx_qstop++; 3156 IF_LOCK(&ifp->if_snd); 3157 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3158 IF_UNLOCK(&ifp->if_snd); 3159 } 3160 return bf; 3161 } 3162 3163 static void 3164 ath_qflush(struct ifnet *ifp) 3165 { 3166 3167 /* XXX TODO */ 3168 } 3169 3170 /* 3171 * Transmit a single frame. 3172 * 3173 * net80211 will free the node reference if the transmit 3174 * fails, so don't free the node reference here. 3175 */ 3176 static int 3177 ath_transmit(struct ifnet *ifp, struct mbuf *m) 3178 { 3179 struct ieee80211com *ic = ifp->if_l2com; 3180 struct ath_softc *sc = ic->ic_ifp->if_softc; 3181 struct ieee80211_node *ni; 3182 struct mbuf *next; 3183 struct ath_buf *bf; 3184 ath_bufhead frags; 3185 int retval = 0; 3186 3187 /* 3188 * Tell the reset path that we're currently transmitting. 3189 */ 3190 ATH_PCU_LOCK(sc); 3191 if (sc->sc_inreset_cnt > 0) { 3192 DPRINTF(sc, ATH_DEBUG_XMIT, 3193 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3194 ATH_PCU_UNLOCK(sc); 3195 IF_LOCK(&ifp->if_snd); 3196 sc->sc_stats.ast_tx_qstop++; 3197 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3198 IF_UNLOCK(&ifp->if_snd); 3199 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3200 return (ENOBUFS); /* XXX should be EINVAL or? */ 3201 } 3202 sc->sc_txstart_cnt++; 3203 ATH_PCU_UNLOCK(sc); 3204 3205 /* Wake the hardware up already */ 3206 ATH_LOCK(sc); 3207 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3208 ATH_UNLOCK(sc); 3209 3210 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3211 /* 3212 * Grab the TX lock - it's ok to do this here; we haven't 3213 * yet started transmitting. 3214 */ 3215 ATH_TX_LOCK(sc); 3216 3217 /* 3218 * Node reference, if there's one. 3219 */ 3220 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3221 3222 /* 3223 * Enforce how deep a node queue can get. 3224 * 3225 * XXX it would be nicer if we kept an mbuf queue per 3226 * node and only whacked them into ath_bufs when we 3227 * are ready to schedule some traffic from them. 3228 * .. that may come later. 3229 * 3230 * XXX we should also track the per-node hardware queue 3231 * depth so it is easy to limit the _SUM_ of the swq and 3232 * hwq frames. Since we only schedule two HWQ frames 3233 * at a time, this should be OK for now. 3234 */ 3235 if ((!(m->m_flags & M_EAPOL)) && 3236 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3237 sc->sc_stats.ast_tx_nodeq_overflow++; 3238 m_freem(m); 3239 m = NULL; 3240 retval = ENOBUFS; 3241 goto finish; 3242 } 3243 3244 /* 3245 * Check how many TX buffers are available. 3246 * 3247 * If this is for non-EAPOL traffic, just leave some 3248 * space free in order for buffer cloning and raw 3249 * frame transmission to occur. 3250 * 3251 * If it's for EAPOL traffic, ignore this for now. 3252 * Management traffic will be sent via the raw transmit 3253 * method which bypasses this check. 3254 * 3255 * This is needed to ensure that EAPOL frames during 3256 * (re) keying have a chance to go out. 3257 * 3258 * See kern/138379 for more information. 3259 */ 3260 if ((!(m->m_flags & M_EAPOL)) && 3261 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3262 sc->sc_stats.ast_tx_nobuf++; 3263 m_freem(m); 3264 m = NULL; 3265 retval = ENOBUFS; 3266 goto finish; 3267 } 3268 3269 /* 3270 * Grab a TX buffer and associated resources. 3271 * 3272 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3273 * That way even with temporary buffer exhaustion due to 3274 * the data path doesn't leave us without the ability 3275 * to transmit management frames. 3276 * 3277 * Otherwise allocate a normal buffer. 3278 */ 3279 if (m->m_flags & M_EAPOL) 3280 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3281 else 3282 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3283 3284 if (bf == NULL) { 3285 /* 3286 * If we failed to allocate a buffer, fail. 3287 * 3288 * We shouldn't fail normally, due to the check 3289 * above. 3290 */ 3291 sc->sc_stats.ast_tx_nobuf++; 3292 IF_LOCK(&ifp->if_snd); 3293 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3294 IF_UNLOCK(&ifp->if_snd); 3295 m_freem(m); 3296 m = NULL; 3297 retval = ENOBUFS; 3298 goto finish; 3299 } 3300 3301 /* 3302 * At this point we have a buffer; so we need to free it 3303 * if we hit any error conditions. 3304 */ 3305 3306 /* 3307 * Check for fragmentation. If this frame 3308 * has been broken up verify we have enough 3309 * buffers to send all the fragments so all 3310 * go out or none... 3311 */ 3312 TAILQ_INIT(&frags); 3313 if ((m->m_flags & M_FRAG) && 3314 !ath_txfrag_setup(sc, &frags, m, ni)) { 3315 DPRINTF(sc, ATH_DEBUG_XMIT, 3316 "%s: out of txfrag buffers\n", __func__); 3317 sc->sc_stats.ast_tx_nofrag++; 3318 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3319 ath_freetx(m); 3320 goto bad; 3321 } 3322 3323 /* 3324 * At this point if we have any TX fragments, then we will 3325 * have bumped the node reference once for each of those. 3326 */ 3327 3328 /* 3329 * XXX Is there anything actually _enforcing_ that the 3330 * fragments are being transmitted in one hit, rather than 3331 * being interleaved with other transmissions on that 3332 * hardware queue? 3333 * 3334 * The ATH TX output lock is the only thing serialising this 3335 * right now. 3336 */ 3337 3338 /* 3339 * Calculate the "next fragment" length field in ath_buf 3340 * in order to let the transmit path know enough about 3341 * what to next write to the hardware. 3342 */ 3343 if (m->m_flags & M_FRAG) { 3344 struct ath_buf *fbf = bf; 3345 struct ath_buf *n_fbf = NULL; 3346 struct mbuf *fm = m->m_nextpkt; 3347 3348 /* 3349 * We need to walk the list of fragments and set 3350 * the next size to the following buffer. 3351 * However, the first buffer isn't in the frag 3352 * list, so we have to do some gymnastics here. 3353 */ 3354 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3355 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3356 fbf = n_fbf; 3357 fm = fm->m_nextpkt; 3358 } 3359 } 3360 3361 /* 3362 * Bump the ifp output counter. 3363 * 3364 * XXX should use atomics? 3365 */ 3366 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3367 nextfrag: 3368 /* 3369 * Pass the frame to the h/w for transmission. 3370 * Fragmented frames have each frag chained together 3371 * with m_nextpkt. We know there are sufficient ath_buf's 3372 * to send all the frags because of work done by 3373 * ath_txfrag_setup. We leave m_nextpkt set while 3374 * calling ath_tx_start so it can use it to extend the 3375 * the tx duration to cover the subsequent frag and 3376 * so it can reclaim all the mbufs in case of an error; 3377 * ath_tx_start clears m_nextpkt once it commits to 3378 * handing the frame to the hardware. 3379 * 3380 * Note: if this fails, then the mbufs are freed but 3381 * not the node reference. 3382 */ 3383 next = m->m_nextpkt; 3384 if (ath_tx_start(sc, ni, bf, m)) { 3385 bad: 3386 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3387 reclaim: 3388 bf->bf_m = NULL; 3389 bf->bf_node = NULL; 3390 ATH_TXBUF_LOCK(sc); 3391 ath_returnbuf_head(sc, bf); 3392 /* 3393 * Free the rest of the node references and 3394 * buffers for the fragment list. 3395 */ 3396 ath_txfrag_cleanup(sc, &frags, ni); 3397 ATH_TXBUF_UNLOCK(sc); 3398 retval = ENOBUFS; 3399 goto finish; 3400 } 3401 3402 /* 3403 * Check here if the node is in power save state. 3404 */ 3405 ath_tx_update_tim(sc, ni, 1); 3406 3407 if (next != NULL) { 3408 /* 3409 * Beware of state changing between frags. 3410 * XXX check sta power-save state? 3411 */ 3412 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3413 DPRINTF(sc, ATH_DEBUG_XMIT, 3414 "%s: flush fragmented packet, state %s\n", 3415 __func__, 3416 ieee80211_state_name[ni->ni_vap->iv_state]); 3417 /* XXX dmamap */ 3418 ath_freetx(next); 3419 goto reclaim; 3420 } 3421 m = next; 3422 bf = TAILQ_FIRST(&frags); 3423 KASSERT(bf != NULL, ("no buf for txfrag")); 3424 TAILQ_REMOVE(&frags, bf, bf_list); 3425 goto nextfrag; 3426 } 3427 3428 /* 3429 * Bump watchdog timer. 3430 */ 3431 sc->sc_wd_timer = 5; 3432 3433 finish: 3434 ATH_TX_UNLOCK(sc); 3435 3436 /* 3437 * Finished transmitting! 3438 */ 3439 ATH_PCU_LOCK(sc); 3440 sc->sc_txstart_cnt--; 3441 ATH_PCU_UNLOCK(sc); 3442 3443 /* Sleep the hardware if required */ 3444 ATH_LOCK(sc); 3445 ath_power_restore_power_state(sc); 3446 ATH_UNLOCK(sc); 3447 3448 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3449 3450 return (retval); 3451 } 3452 3453 static int 3454 ath_media_change(struct ifnet *ifp) 3455 { 3456 int error = ieee80211_media_change(ifp); 3457 /* NB: only the fixed rate can change and that doesn't need a reset */ 3458 return (error == ENETRESET ? 0 : error); 3459 } 3460 3461 /* 3462 * Block/unblock tx+rx processing while a key change is done. 3463 * We assume the caller serializes key management operations 3464 * so we only need to worry about synchronization with other 3465 * uses that originate in the driver. 3466 */ 3467 static void 3468 ath_key_update_begin(struct ieee80211vap *vap) 3469 { 3470 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3471 struct ath_softc *sc = ifp->if_softc; 3472 3473 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3474 taskqueue_block(sc->sc_tq); 3475 } 3476 3477 static void 3478 ath_key_update_end(struct ieee80211vap *vap) 3479 { 3480 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3481 struct ath_softc *sc = ifp->if_softc; 3482 3483 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3484 taskqueue_unblock(sc->sc_tq); 3485 } 3486 3487 static void 3488 ath_update_promisc(struct ifnet *ifp) 3489 { 3490 struct ath_softc *sc = ifp->if_softc; 3491 u_int32_t rfilt; 3492 3493 /* configure rx filter */ 3494 ATH_LOCK(sc); 3495 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3496 rfilt = ath_calcrxfilter(sc); 3497 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3498 ath_power_restore_power_state(sc); 3499 ATH_UNLOCK(sc); 3500 3501 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3502 } 3503 3504 /* 3505 * Driver-internal mcast update call. 3506 * 3507 * Assumes the hardware is already awake. 3508 */ 3509 static void 3510 ath_update_mcast_hw(struct ath_softc *sc) 3511 { 3512 struct ifnet *ifp = sc->sc_ifp; 3513 u_int32_t mfilt[2]; 3514 3515 /* calculate and install multicast filter */ 3516 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3517 struct ifmultiaddr *ifma; 3518 /* 3519 * Merge multicast addresses to form the hardware filter. 3520 */ 3521 mfilt[0] = mfilt[1] = 0; 3522 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 3523 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3524 caddr_t dl; 3525 u_int32_t val; 3526 u_int8_t pos; 3527 3528 /* calculate XOR of eight 6bit values */ 3529 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 3530 val = LE_READ_4(dl + 0); 3531 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3532 val = LE_READ_4(dl + 3); 3533 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3534 pos &= 0x3f; 3535 mfilt[pos / 32] |= (1 << (pos % 32)); 3536 } 3537 if_maddr_runlock(ifp); 3538 } else 3539 mfilt[0] = mfilt[1] = ~0; 3540 3541 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3542 3543 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3544 __func__, mfilt[0], mfilt[1]); 3545 } 3546 3547 /* 3548 * Called from the net80211 layer - force the hardware 3549 * awake before operating. 3550 */ 3551 static void 3552 ath_update_mcast(struct ifnet *ifp) 3553 { 3554 struct ath_softc *sc = ifp->if_softc; 3555 3556 ATH_LOCK(sc); 3557 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3558 ATH_UNLOCK(sc); 3559 3560 ath_update_mcast_hw(sc); 3561 3562 ATH_LOCK(sc); 3563 ath_power_restore_power_state(sc); 3564 ATH_UNLOCK(sc); 3565 } 3566 3567 void 3568 ath_mode_init(struct ath_softc *sc) 3569 { 3570 struct ifnet *ifp = sc->sc_ifp; 3571 struct ath_hal *ah = sc->sc_ah; 3572 u_int32_t rfilt; 3573 3574 /* configure rx filter */ 3575 rfilt = ath_calcrxfilter(sc); 3576 ath_hal_setrxfilter(ah, rfilt); 3577 3578 /* configure operational mode */ 3579 ath_hal_setopmode(ah); 3580 3581 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3582 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3583 __func__, 3584 ah, 3585 ifp, 3586 (ifp == NULL) ? NULL : ifp->if_addr); 3587 3588 /* handle any link-level address change */ 3589 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3590 3591 /* calculate and install multicast filter */ 3592 ath_update_mcast_hw(sc); 3593 } 3594 3595 /* 3596 * Set the slot time based on the current setting. 3597 */ 3598 void 3599 ath_setslottime(struct ath_softc *sc) 3600 { 3601 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3602 struct ath_hal *ah = sc->sc_ah; 3603 u_int usec; 3604 3605 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3606 usec = 13; 3607 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3608 usec = 21; 3609 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3610 /* honor short/long slot time only in 11g */ 3611 /* XXX shouldn't honor on pure g or turbo g channel */ 3612 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3613 usec = HAL_SLOT_TIME_9; 3614 else 3615 usec = HAL_SLOT_TIME_20; 3616 } else 3617 usec = HAL_SLOT_TIME_9; 3618 3619 DPRINTF(sc, ATH_DEBUG_RESET, 3620 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3621 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3622 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3623 3624 /* Wake up the hardware first before updating the slot time */ 3625 ATH_LOCK(sc); 3626 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3627 ath_hal_setslottime(ah, usec); 3628 ath_power_restore_power_state(sc); 3629 sc->sc_updateslot = OK; 3630 ATH_UNLOCK(sc); 3631 } 3632 3633 /* 3634 * Callback from the 802.11 layer to update the 3635 * slot time based on the current setting. 3636 */ 3637 static void 3638 ath_updateslot(struct ifnet *ifp) 3639 { 3640 struct ath_softc *sc = ifp->if_softc; 3641 struct ieee80211com *ic = ifp->if_l2com; 3642 3643 /* 3644 * When not coordinating the BSS, change the hardware 3645 * immediately. For other operation we defer the change 3646 * until beacon updates have propagated to the stations. 3647 * 3648 * XXX sc_updateslot isn't changed behind a lock? 3649 */ 3650 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3651 ic->ic_opmode == IEEE80211_M_MBSS) 3652 sc->sc_updateslot = UPDATE; 3653 else 3654 ath_setslottime(sc); 3655 } 3656 3657 /* 3658 * Append the contents of src to dst; both queues 3659 * are assumed to be locked. 3660 */ 3661 void 3662 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3663 { 3664 3665 ATH_TXQ_LOCK_ASSERT(src); 3666 ATH_TXQ_LOCK_ASSERT(dst); 3667 3668 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3669 dst->axq_link = src->axq_link; 3670 src->axq_link = NULL; 3671 dst->axq_depth += src->axq_depth; 3672 dst->axq_aggr_depth += src->axq_aggr_depth; 3673 src->axq_depth = 0; 3674 src->axq_aggr_depth = 0; 3675 } 3676 3677 /* 3678 * Reset the hardware, with no loss. 3679 * 3680 * This can't be used for a general case reset. 3681 */ 3682 static void 3683 ath_reset_proc(void *arg, int pending) 3684 { 3685 struct ath_softc *sc = arg; 3686 struct ifnet *ifp = sc->sc_ifp; 3687 3688 #if 0 3689 if_printf(ifp, "%s: resetting\n", __func__); 3690 #endif 3691 ath_reset(ifp, ATH_RESET_NOLOSS); 3692 } 3693 3694 /* 3695 * Reset the hardware after detecting beacons have stopped. 3696 */ 3697 static void 3698 ath_bstuck_proc(void *arg, int pending) 3699 { 3700 struct ath_softc *sc = arg; 3701 struct ifnet *ifp = sc->sc_ifp; 3702 uint32_t hangs = 0; 3703 3704 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3705 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3706 3707 #ifdef ATH_DEBUG_ALQ 3708 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3709 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3710 #endif 3711 3712 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3713 sc->sc_bmisscount); 3714 sc->sc_stats.ast_bstuck++; 3715 /* 3716 * This assumes that there's no simultaneous channel mode change 3717 * occuring. 3718 */ 3719 ath_reset(ifp, ATH_RESET_NOLOSS); 3720 } 3721 3722 static void 3723 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3724 { 3725 bus_addr_t *paddr = (bus_addr_t*) arg; 3726 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3727 *paddr = segs->ds_addr; 3728 } 3729 3730 /* 3731 * Allocate the descriptors and appropriate DMA tag/setup. 3732 * 3733 * For some situations (eg EDMA TX completion), there isn't a requirement 3734 * for the ath_buf entries to be allocated. 3735 */ 3736 int 3737 ath_descdma_alloc_desc(struct ath_softc *sc, 3738 struct ath_descdma *dd, ath_bufhead *head, 3739 const char *name, int ds_size, int ndesc) 3740 { 3741 #define DS2PHYS(_dd, _ds) \ 3742 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3743 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3744 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3745 struct ifnet *ifp = sc->sc_ifp; 3746 int error; 3747 3748 dd->dd_descsize = ds_size; 3749 3750 DPRINTF(sc, ATH_DEBUG_RESET, 3751 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3752 __func__, name, ndesc, dd->dd_descsize); 3753 3754 dd->dd_name = name; 3755 dd->dd_desc_len = dd->dd_descsize * ndesc; 3756 3757 /* 3758 * Merlin work-around: 3759 * Descriptors that cross the 4KB boundary can't be used. 3760 * Assume one skipped descriptor per 4KB page. 3761 */ 3762 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3763 int numpages = dd->dd_desc_len / 4096; 3764 dd->dd_desc_len += ds_size * numpages; 3765 } 3766 3767 /* 3768 * Setup DMA descriptor area. 3769 * 3770 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3771 * buffers for the descriptors themselves. 3772 */ 3773 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3774 PAGE_SIZE, 0, /* alignment, bounds */ 3775 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3776 BUS_SPACE_MAXADDR, /* highaddr */ 3777 NULL, NULL, /* filter, filterarg */ 3778 dd->dd_desc_len, /* maxsize */ 3779 1, /* nsegments */ 3780 dd->dd_desc_len, /* maxsegsize */ 3781 0, /* flags */ 3782 NULL, /* lockfunc */ 3783 NULL, /* lockarg */ 3784 &dd->dd_dmat); 3785 if (error != 0) { 3786 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3787 return error; 3788 } 3789 3790 /* allocate descriptors */ 3791 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3792 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3793 &dd->dd_dmamap); 3794 if (error != 0) { 3795 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3796 "error %u\n", ndesc, dd->dd_name, error); 3797 goto fail1; 3798 } 3799 3800 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3801 dd->dd_desc, dd->dd_desc_len, 3802 ath_load_cb, &dd->dd_desc_paddr, 3803 BUS_DMA_NOWAIT); 3804 if (error != 0) { 3805 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3806 dd->dd_name, error); 3807 goto fail2; 3808 } 3809 3810 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3811 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3812 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3813 /*XXX*/ (u_long) dd->dd_desc_len); 3814 3815 return (0); 3816 3817 fail2: 3818 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3819 fail1: 3820 bus_dma_tag_destroy(dd->dd_dmat); 3821 memset(dd, 0, sizeof(*dd)); 3822 return error; 3823 #undef DS2PHYS 3824 #undef ATH_DESC_4KB_BOUND_CHECK 3825 } 3826 3827 int 3828 ath_descdma_setup(struct ath_softc *sc, 3829 struct ath_descdma *dd, ath_bufhead *head, 3830 const char *name, int ds_size, int nbuf, int ndesc) 3831 { 3832 #define DS2PHYS(_dd, _ds) \ 3833 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3834 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3835 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3836 struct ifnet *ifp = sc->sc_ifp; 3837 uint8_t *ds; 3838 struct ath_buf *bf; 3839 int i, bsize, error; 3840 3841 /* Allocate descriptors */ 3842 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3843 nbuf * ndesc); 3844 3845 /* Assume any errors during allocation were dealt with */ 3846 if (error != 0) { 3847 return (error); 3848 } 3849 3850 ds = (uint8_t *) dd->dd_desc; 3851 3852 /* allocate rx buffers */ 3853 bsize = sizeof(struct ath_buf) * nbuf; 3854 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3855 if (bf == NULL) { 3856 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3857 dd->dd_name, bsize); 3858 goto fail3; 3859 } 3860 dd->dd_bufptr = bf; 3861 3862 TAILQ_INIT(head); 3863 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3864 bf->bf_desc = (struct ath_desc *) ds; 3865 bf->bf_daddr = DS2PHYS(dd, ds); 3866 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3867 /* 3868 * Merlin WAR: Skip descriptor addresses which 3869 * cause 4KB boundary crossing along any point 3870 * in the descriptor. 3871 */ 3872 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3873 dd->dd_descsize)) { 3874 /* Start at the next page */ 3875 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3876 bf->bf_desc = (struct ath_desc *) ds; 3877 bf->bf_daddr = DS2PHYS(dd, ds); 3878 } 3879 } 3880 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3881 &bf->bf_dmamap); 3882 if (error != 0) { 3883 if_printf(ifp, "unable to create dmamap for %s " 3884 "buffer %u, error %u\n", dd->dd_name, i, error); 3885 ath_descdma_cleanup(sc, dd, head); 3886 return error; 3887 } 3888 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3889 TAILQ_INSERT_TAIL(head, bf, bf_list); 3890 } 3891 3892 /* 3893 * XXX TODO: ensure that ds doesn't overflow the descriptor 3894 * allocation otherwise weird stuff will occur and crash your 3895 * machine. 3896 */ 3897 return 0; 3898 /* XXX this should likely just call ath_descdma_cleanup() */ 3899 fail3: 3900 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3901 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3902 bus_dma_tag_destroy(dd->dd_dmat); 3903 memset(dd, 0, sizeof(*dd)); 3904 return error; 3905 #undef DS2PHYS 3906 #undef ATH_DESC_4KB_BOUND_CHECK 3907 } 3908 3909 /* 3910 * Allocate ath_buf entries but no descriptor contents. 3911 * 3912 * This is for RX EDMA where the descriptors are the header part of 3913 * the RX buffer. 3914 */ 3915 int 3916 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3917 struct ath_descdma *dd, ath_bufhead *head, 3918 const char *name, int nbuf, int rx_status_len) 3919 { 3920 struct ifnet *ifp = sc->sc_ifp; 3921 struct ath_buf *bf; 3922 int i, bsize, error; 3923 3924 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3925 __func__, name, nbuf); 3926 3927 dd->dd_name = name; 3928 /* 3929 * This is (mostly) purely for show. We're not allocating any actual 3930 * descriptors here as EDMA RX has the descriptor be part 3931 * of the RX buffer. 3932 * 3933 * However, dd_desc_len is used by ath_descdma_free() to determine 3934 * whether we have already freed this DMA mapping. 3935 */ 3936 dd->dd_desc_len = rx_status_len * nbuf; 3937 dd->dd_descsize = rx_status_len; 3938 3939 /* allocate rx buffers */ 3940 bsize = sizeof(struct ath_buf) * nbuf; 3941 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3942 if (bf == NULL) { 3943 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3944 dd->dd_name, bsize); 3945 error = ENOMEM; 3946 goto fail3; 3947 } 3948 dd->dd_bufptr = bf; 3949 3950 TAILQ_INIT(head); 3951 for (i = 0; i < nbuf; i++, bf++) { 3952 bf->bf_desc = NULL; 3953 bf->bf_daddr = 0; 3954 bf->bf_lastds = NULL; /* Just an initial value */ 3955 3956 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3957 &bf->bf_dmamap); 3958 if (error != 0) { 3959 if_printf(ifp, "unable to create dmamap for %s " 3960 "buffer %u, error %u\n", dd->dd_name, i, error); 3961 ath_descdma_cleanup(sc, dd, head); 3962 return error; 3963 } 3964 TAILQ_INSERT_TAIL(head, bf, bf_list); 3965 } 3966 return 0; 3967 fail3: 3968 memset(dd, 0, sizeof(*dd)); 3969 return error; 3970 } 3971 3972 void 3973 ath_descdma_cleanup(struct ath_softc *sc, 3974 struct ath_descdma *dd, ath_bufhead *head) 3975 { 3976 struct ath_buf *bf; 3977 struct ieee80211_node *ni; 3978 int do_warning = 0; 3979 3980 if (dd->dd_dmamap != 0) { 3981 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3982 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3983 bus_dma_tag_destroy(dd->dd_dmat); 3984 } 3985 3986 if (head != NULL) { 3987 TAILQ_FOREACH(bf, head, bf_list) { 3988 if (bf->bf_m) { 3989 /* 3990 * XXX warn if there's buffers here. 3991 * XXX it should have been freed by the 3992 * owner! 3993 */ 3994 3995 if (do_warning == 0) { 3996 do_warning = 1; 3997 device_printf(sc->sc_dev, 3998 "%s: %s: mbuf should've been" 3999 " unmapped/freed!\n", 4000 __func__, 4001 dd->dd_name); 4002 } 4003 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4004 BUS_DMASYNC_POSTREAD); 4005 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4006 m_freem(bf->bf_m); 4007 bf->bf_m = NULL; 4008 } 4009 if (bf->bf_dmamap != NULL) { 4010 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 4011 bf->bf_dmamap = NULL; 4012 } 4013 ni = bf->bf_node; 4014 bf->bf_node = NULL; 4015 if (ni != NULL) { 4016 /* 4017 * Reclaim node reference. 4018 */ 4019 ieee80211_free_node(ni); 4020 } 4021 } 4022 } 4023 4024 if (head != NULL) 4025 TAILQ_INIT(head); 4026 4027 if (dd->dd_bufptr != NULL) 4028 free(dd->dd_bufptr, M_ATHDEV); 4029 memset(dd, 0, sizeof(*dd)); 4030 } 4031 4032 static int 4033 ath_desc_alloc(struct ath_softc *sc) 4034 { 4035 int error; 4036 4037 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 4038 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 4039 if (error != 0) { 4040 return error; 4041 } 4042 sc->sc_txbuf_cnt = ath_txbuf; 4043 4044 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 4045 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 4046 ATH_TXDESC); 4047 if (error != 0) { 4048 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4049 return error; 4050 } 4051 4052 /* 4053 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 4054 * flag doesn't have to be set in ath_getbuf_locked(). 4055 */ 4056 4057 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 4058 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 4059 if (error != 0) { 4060 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4061 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 4062 &sc->sc_txbuf_mgmt); 4063 return error; 4064 } 4065 return 0; 4066 } 4067 4068 static void 4069 ath_desc_free(struct ath_softc *sc) 4070 { 4071 4072 if (sc->sc_bdma.dd_desc_len != 0) 4073 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 4074 if (sc->sc_txdma.dd_desc_len != 0) 4075 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 4076 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 4077 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 4078 &sc->sc_txbuf_mgmt); 4079 } 4080 4081 static struct ieee80211_node * 4082 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 4083 { 4084 struct ieee80211com *ic = vap->iv_ic; 4085 struct ath_softc *sc = ic->ic_ifp->if_softc; 4086 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 4087 struct ath_node *an; 4088 4089 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 4090 if (an == NULL) { 4091 /* XXX stat+msg */ 4092 return NULL; 4093 } 4094 ath_rate_node_init(sc, an); 4095 4096 /* Setup the mutex - there's no associd yet so set the name to NULL */ 4097 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 4098 device_get_nameunit(sc->sc_dev), an); 4099 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 4100 4101 /* XXX setup ath_tid */ 4102 ath_tx_tid_init(sc, an); 4103 4104 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 4105 return &an->an_node; 4106 } 4107 4108 static void 4109 ath_node_cleanup(struct ieee80211_node *ni) 4110 { 4111 struct ieee80211com *ic = ni->ni_ic; 4112 struct ath_softc *sc = ic->ic_ifp->if_softc; 4113 4114 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4115 ni->ni_macaddr, ":", ATH_NODE(ni)); 4116 4117 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 4118 ath_tx_node_flush(sc, ATH_NODE(ni)); 4119 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 4120 sc->sc_node_cleanup(ni); 4121 } 4122 4123 static void 4124 ath_node_free(struct ieee80211_node *ni) 4125 { 4126 struct ieee80211com *ic = ni->ni_ic; 4127 struct ath_softc *sc = ic->ic_ifp->if_softc; 4128 4129 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 4130 ni->ni_macaddr, ":", ATH_NODE(ni)); 4131 mtx_destroy(&ATH_NODE(ni)->an_mtx); 4132 sc->sc_node_free(ni); 4133 } 4134 4135 static void 4136 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 4137 { 4138 struct ieee80211com *ic = ni->ni_ic; 4139 struct ath_softc *sc = ic->ic_ifp->if_softc; 4140 struct ath_hal *ah = sc->sc_ah; 4141 4142 *rssi = ic->ic_node_getrssi(ni); 4143 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 4144 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 4145 else 4146 *noise = -95; /* nominally correct */ 4147 } 4148 4149 /* 4150 * Set the default antenna. 4151 */ 4152 void 4153 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 4154 { 4155 struct ath_hal *ah = sc->sc_ah; 4156 4157 /* XXX block beacon interrupts */ 4158 ath_hal_setdefantenna(ah, antenna); 4159 if (sc->sc_defant != antenna) 4160 sc->sc_stats.ast_ant_defswitch++; 4161 sc->sc_defant = antenna; 4162 sc->sc_rxotherant = 0; 4163 } 4164 4165 static void 4166 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4167 { 4168 txq->axq_qnum = qnum; 4169 txq->axq_ac = 0; 4170 txq->axq_depth = 0; 4171 txq->axq_aggr_depth = 0; 4172 txq->axq_intrcnt = 0; 4173 txq->axq_link = NULL; 4174 txq->axq_softc = sc; 4175 TAILQ_INIT(&txq->axq_q); 4176 TAILQ_INIT(&txq->axq_tidq); 4177 TAILQ_INIT(&txq->fifo.axq_q); 4178 ATH_TXQ_LOCK_INIT(sc, txq); 4179 } 4180 4181 /* 4182 * Setup a h/w transmit queue. 4183 */ 4184 static struct ath_txq * 4185 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4186 { 4187 #define N(a) (sizeof(a)/sizeof(a[0])) 4188 struct ath_hal *ah = sc->sc_ah; 4189 HAL_TXQ_INFO qi; 4190 int qnum; 4191 4192 memset(&qi, 0, sizeof(qi)); 4193 qi.tqi_subtype = subtype; 4194 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4195 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4196 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4197 /* 4198 * Enable interrupts only for EOL and DESC conditions. 4199 * We mark tx descriptors to receive a DESC interrupt 4200 * when a tx queue gets deep; otherwise waiting for the 4201 * EOL to reap descriptors. Note that this is done to 4202 * reduce interrupt load and this only defers reaping 4203 * descriptors, never transmitting frames. Aside from 4204 * reducing interrupts this also permits more concurrency. 4205 * The only potential downside is if the tx queue backs 4206 * up in which case the top half of the kernel may backup 4207 * due to a lack of tx descriptors. 4208 */ 4209 if (sc->sc_isedma) 4210 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4211 HAL_TXQ_TXOKINT_ENABLE; 4212 else 4213 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4214 HAL_TXQ_TXDESCINT_ENABLE; 4215 4216 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4217 if (qnum == -1) { 4218 /* 4219 * NB: don't print a message, this happens 4220 * normally on parts with too few tx queues 4221 */ 4222 return NULL; 4223 } 4224 if (qnum >= N(sc->sc_txq)) { 4225 device_printf(sc->sc_dev, 4226 "hal qnum %u out of range, max %zu!\n", 4227 qnum, N(sc->sc_txq)); 4228 ath_hal_releasetxqueue(ah, qnum); 4229 return NULL; 4230 } 4231 if (!ATH_TXQ_SETUP(sc, qnum)) { 4232 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4233 sc->sc_txqsetup |= 1<<qnum; 4234 } 4235 return &sc->sc_txq[qnum]; 4236 #undef N 4237 } 4238 4239 /* 4240 * Setup a hardware data transmit queue for the specified 4241 * access control. The hal may not support all requested 4242 * queues in which case it will return a reference to a 4243 * previously setup queue. We record the mapping from ac's 4244 * to h/w queues for use by ath_tx_start and also track 4245 * the set of h/w queues being used to optimize work in the 4246 * transmit interrupt handler and related routines. 4247 */ 4248 static int 4249 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4250 { 4251 #define N(a) (sizeof(a)/sizeof(a[0])) 4252 struct ath_txq *txq; 4253 4254 if (ac >= N(sc->sc_ac2q)) { 4255 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4256 ac, N(sc->sc_ac2q)); 4257 return 0; 4258 } 4259 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4260 if (txq != NULL) { 4261 txq->axq_ac = ac; 4262 sc->sc_ac2q[ac] = txq; 4263 return 1; 4264 } else 4265 return 0; 4266 #undef N 4267 } 4268 4269 /* 4270 * Update WME parameters for a transmit queue. 4271 */ 4272 static int 4273 ath_txq_update(struct ath_softc *sc, int ac) 4274 { 4275 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4276 #define ATH_TXOP_TO_US(v) (v<<5) 4277 struct ifnet *ifp = sc->sc_ifp; 4278 struct ieee80211com *ic = ifp->if_l2com; 4279 struct ath_txq *txq = sc->sc_ac2q[ac]; 4280 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4281 struct ath_hal *ah = sc->sc_ah; 4282 HAL_TXQ_INFO qi; 4283 4284 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4285 #ifdef IEEE80211_SUPPORT_TDMA 4286 if (sc->sc_tdma) { 4287 /* 4288 * AIFS is zero so there's no pre-transmit wait. The 4289 * burst time defines the slot duration and is configured 4290 * through net80211. The QCU is setup to not do post-xmit 4291 * back off, lockout all lower-priority QCU's, and fire 4292 * off the DMA beacon alert timer which is setup based 4293 * on the slot configuration. 4294 */ 4295 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4296 | HAL_TXQ_TXERRINT_ENABLE 4297 | HAL_TXQ_TXURNINT_ENABLE 4298 | HAL_TXQ_TXEOLINT_ENABLE 4299 | HAL_TXQ_DBA_GATED 4300 | HAL_TXQ_BACKOFF_DISABLE 4301 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4302 ; 4303 qi.tqi_aifs = 0; 4304 /* XXX +dbaprep? */ 4305 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4306 qi.tqi_burstTime = qi.tqi_readyTime; 4307 } else { 4308 #endif 4309 /* 4310 * XXX shouldn't this just use the default flags 4311 * used in the previous queue setup? 4312 */ 4313 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4314 | HAL_TXQ_TXERRINT_ENABLE 4315 | HAL_TXQ_TXDESCINT_ENABLE 4316 | HAL_TXQ_TXURNINT_ENABLE 4317 | HAL_TXQ_TXEOLINT_ENABLE 4318 ; 4319 qi.tqi_aifs = wmep->wmep_aifsn; 4320 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4321 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4322 qi.tqi_readyTime = 0; 4323 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4324 #ifdef IEEE80211_SUPPORT_TDMA 4325 } 4326 #endif 4327 4328 DPRINTF(sc, ATH_DEBUG_RESET, 4329 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4330 __func__, txq->axq_qnum, qi.tqi_qflags, 4331 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4332 4333 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4334 if_printf(ifp, "unable to update hardware queue " 4335 "parameters for %s traffic!\n", 4336 ieee80211_wme_acnames[ac]); 4337 return 0; 4338 } else { 4339 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4340 return 1; 4341 } 4342 #undef ATH_TXOP_TO_US 4343 #undef ATH_EXPONENT_TO_VALUE 4344 } 4345 4346 /* 4347 * Callback from the 802.11 layer to update WME parameters. 4348 */ 4349 int 4350 ath_wme_update(struct ieee80211com *ic) 4351 { 4352 struct ath_softc *sc = ic->ic_ifp->if_softc; 4353 4354 return !ath_txq_update(sc, WME_AC_BE) || 4355 !ath_txq_update(sc, WME_AC_BK) || 4356 !ath_txq_update(sc, WME_AC_VI) || 4357 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4358 } 4359 4360 /* 4361 * Reclaim resources for a setup queue. 4362 */ 4363 static void 4364 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4365 { 4366 4367 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4368 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4369 ATH_TXQ_LOCK_DESTROY(txq); 4370 } 4371 4372 /* 4373 * Reclaim all tx queue resources. 4374 */ 4375 static void 4376 ath_tx_cleanup(struct ath_softc *sc) 4377 { 4378 int i; 4379 4380 ATH_TXBUF_LOCK_DESTROY(sc); 4381 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4382 if (ATH_TXQ_SETUP(sc, i)) 4383 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4384 } 4385 4386 /* 4387 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4388 * using the current rates in sc_rixmap. 4389 */ 4390 int 4391 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4392 { 4393 int rix = sc->sc_rixmap[rate]; 4394 /* NB: return lowest rix for invalid rate */ 4395 return (rix == 0xff ? 0 : rix); 4396 } 4397 4398 static void 4399 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4400 struct ath_buf *bf) 4401 { 4402 struct ieee80211_node *ni = bf->bf_node; 4403 struct ifnet *ifp = sc->sc_ifp; 4404 struct ieee80211com *ic = ifp->if_l2com; 4405 int sr, lr, pri; 4406 4407 if (ts->ts_status == 0) { 4408 u_int8_t txant = ts->ts_antenna; 4409 sc->sc_stats.ast_ant_tx[txant]++; 4410 sc->sc_ant_tx[txant]++; 4411 if (ts->ts_finaltsi != 0) 4412 sc->sc_stats.ast_tx_altrate++; 4413 pri = M_WME_GETAC(bf->bf_m); 4414 if (pri >= WME_AC_VO) 4415 ic->ic_wme.wme_hipri_traffic++; 4416 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4417 ni->ni_inact = ni->ni_inact_reload; 4418 } else { 4419 if (ts->ts_status & HAL_TXERR_XRETRY) 4420 sc->sc_stats.ast_tx_xretries++; 4421 if (ts->ts_status & HAL_TXERR_FIFO) 4422 sc->sc_stats.ast_tx_fifoerr++; 4423 if (ts->ts_status & HAL_TXERR_FILT) 4424 sc->sc_stats.ast_tx_filtered++; 4425 if (ts->ts_status & HAL_TXERR_XTXOP) 4426 sc->sc_stats.ast_tx_xtxop++; 4427 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4428 sc->sc_stats.ast_tx_timerexpired++; 4429 4430 if (bf->bf_m->m_flags & M_FF) 4431 sc->sc_stats.ast_ff_txerr++; 4432 } 4433 /* XXX when is this valid? */ 4434 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4435 sc->sc_stats.ast_tx_desccfgerr++; 4436 /* 4437 * This can be valid for successful frame transmission! 4438 * If there's a TX FIFO underrun during aggregate transmission, 4439 * the MAC will pad the rest of the aggregate with delimiters. 4440 * If a BA is returned, the frame is marked as "OK" and it's up 4441 * to the TX completion code to notice which frames weren't 4442 * successfully transmitted. 4443 */ 4444 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4445 sc->sc_stats.ast_tx_data_underrun++; 4446 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4447 sc->sc_stats.ast_tx_delim_underrun++; 4448 4449 sr = ts->ts_shortretry; 4450 lr = ts->ts_longretry; 4451 sc->sc_stats.ast_tx_shortretry += sr; 4452 sc->sc_stats.ast_tx_longretry += lr; 4453 4454 } 4455 4456 /* 4457 * The default completion. If fail is 1, this means 4458 * "please don't retry the frame, and just return -1 status 4459 * to the net80211 stack. 4460 */ 4461 void 4462 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4463 { 4464 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4465 int st; 4466 4467 if (fail == 1) 4468 st = -1; 4469 else 4470 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4471 ts->ts_status : HAL_TXERR_XRETRY; 4472 4473 #if 0 4474 if (bf->bf_state.bfs_dobaw) 4475 device_printf(sc->sc_dev, 4476 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4477 __func__, 4478 bf, 4479 SEQNO(bf->bf_state.bfs_seqno)); 4480 #endif 4481 if (bf->bf_next != NULL) 4482 device_printf(sc->sc_dev, 4483 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4484 __func__, 4485 bf, 4486 SEQNO(bf->bf_state.bfs_seqno)); 4487 4488 /* 4489 * Check if the node software queue is empty; if so 4490 * then clear the TIM. 4491 * 4492 * This needs to be done before the buffer is freed as 4493 * otherwise the node reference will have been released 4494 * and the node may not actually exist any longer. 4495 * 4496 * XXX I don't like this belonging here, but it's cleaner 4497 * to do it here right now then all the other places 4498 * where ath_tx_default_comp() is called. 4499 * 4500 * XXX TODO: during drain, ensure that the callback is 4501 * being called so we get a chance to update the TIM. 4502 */ 4503 if (bf->bf_node) { 4504 ATH_TX_LOCK(sc); 4505 ath_tx_update_tim(sc, bf->bf_node, 0); 4506 ATH_TX_UNLOCK(sc); 4507 } 4508 4509 /* 4510 * Do any tx complete callback. Note this must 4511 * be done before releasing the node reference. 4512 * This will free the mbuf, release the net80211 4513 * node and recycle the ath_buf. 4514 */ 4515 ath_tx_freebuf(sc, bf, st); 4516 } 4517 4518 /* 4519 * Update rate control with the given completion status. 4520 */ 4521 void 4522 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4523 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4524 int nframes, int nbad) 4525 { 4526 struct ath_node *an; 4527 4528 /* Only for unicast frames */ 4529 if (ni == NULL) 4530 return; 4531 4532 an = ATH_NODE(ni); 4533 ATH_NODE_UNLOCK_ASSERT(an); 4534 4535 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4536 ATH_NODE_LOCK(an); 4537 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4538 ATH_NODE_UNLOCK(an); 4539 } 4540 } 4541 4542 /* 4543 * Process the completion of the given buffer. 4544 * 4545 * This calls the rate control update and then the buffer completion. 4546 * This will either free the buffer or requeue it. In any case, the 4547 * bf pointer should be treated as invalid after this function is called. 4548 */ 4549 void 4550 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4551 struct ath_tx_status *ts, struct ath_buf *bf) 4552 { 4553 struct ieee80211_node *ni = bf->bf_node; 4554 4555 ATH_TX_UNLOCK_ASSERT(sc); 4556 ATH_TXQ_UNLOCK_ASSERT(txq); 4557 4558 /* If unicast frame, update general statistics */ 4559 if (ni != NULL) { 4560 /* update statistics */ 4561 ath_tx_update_stats(sc, ts, bf); 4562 } 4563 4564 /* 4565 * Call the completion handler. 4566 * The completion handler is responsible for 4567 * calling the rate control code. 4568 * 4569 * Frames with no completion handler get the 4570 * rate control code called here. 4571 */ 4572 if (bf->bf_comp == NULL) { 4573 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4574 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4575 /* 4576 * XXX assume this isn't an aggregate 4577 * frame. 4578 */ 4579 ath_tx_update_ratectrl(sc, ni, 4580 bf->bf_state.bfs_rc, ts, 4581 bf->bf_state.bfs_pktlen, 1, 4582 (ts->ts_status == 0 ? 0 : 1)); 4583 } 4584 ath_tx_default_comp(sc, bf, 0); 4585 } else 4586 bf->bf_comp(sc, bf, 0); 4587 } 4588 4589 4590 4591 /* 4592 * Process completed xmit descriptors from the specified queue. 4593 * Kick the packet scheduler if needed. This can occur from this 4594 * particular task. 4595 */ 4596 static int 4597 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4598 { 4599 struct ath_hal *ah = sc->sc_ah; 4600 struct ath_buf *bf; 4601 struct ath_desc *ds; 4602 struct ath_tx_status *ts; 4603 struct ieee80211_node *ni; 4604 #ifdef IEEE80211_SUPPORT_SUPERG 4605 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4606 #endif /* IEEE80211_SUPPORT_SUPERG */ 4607 int nacked; 4608 HAL_STATUS status; 4609 4610 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4611 __func__, txq->axq_qnum, 4612 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4613 txq->axq_link); 4614 4615 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4616 "ath_tx_processq: txq=%u head %p link %p depth %p", 4617 txq->axq_qnum, 4618 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4619 txq->axq_link, 4620 txq->axq_depth); 4621 4622 nacked = 0; 4623 for (;;) { 4624 ATH_TXQ_LOCK(txq); 4625 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4626 bf = TAILQ_FIRST(&txq->axq_q); 4627 if (bf == NULL) { 4628 ATH_TXQ_UNLOCK(txq); 4629 break; 4630 } 4631 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4632 ts = &bf->bf_status.ds_txstat; 4633 4634 status = ath_hal_txprocdesc(ah, ds, ts); 4635 #ifdef ATH_DEBUG 4636 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4637 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4638 status == HAL_OK); 4639 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4640 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4641 status == HAL_OK); 4642 #endif 4643 #ifdef ATH_DEBUG_ALQ 4644 if (if_ath_alq_checkdebug(&sc->sc_alq, 4645 ATH_ALQ_EDMA_TXSTATUS)) { 4646 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4647 sc->sc_tx_statuslen, 4648 (char *) ds); 4649 } 4650 #endif 4651 4652 if (status == HAL_EINPROGRESS) { 4653 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4654 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4655 txq->axq_qnum, bf, ds); 4656 ATH_TXQ_UNLOCK(txq); 4657 break; 4658 } 4659 ATH_TXQ_REMOVE(txq, bf, bf_list); 4660 4661 /* 4662 * Sanity check. 4663 */ 4664 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4665 device_printf(sc->sc_dev, 4666 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4667 __func__, 4668 txq->axq_qnum, 4669 bf, 4670 bf->bf_state.bfs_tx_queue); 4671 } 4672 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4673 device_printf(sc->sc_dev, 4674 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4675 __func__, 4676 txq->axq_qnum, 4677 bf->bf_last, 4678 bf->bf_last->bf_state.bfs_tx_queue); 4679 } 4680 4681 #if 0 4682 if (txq->axq_depth > 0) { 4683 /* 4684 * More frames follow. Mark the buffer busy 4685 * so it's not re-used while the hardware may 4686 * still re-read the link field in the descriptor. 4687 * 4688 * Use the last buffer in an aggregate as that 4689 * is where the hardware may be - intermediate 4690 * descriptors won't be "busy". 4691 */ 4692 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4693 } else 4694 txq->axq_link = NULL; 4695 #else 4696 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4697 #endif 4698 if (bf->bf_state.bfs_aggr) 4699 txq->axq_aggr_depth--; 4700 4701 ni = bf->bf_node; 4702 4703 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4704 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4705 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4706 /* 4707 * If unicast frame was ack'd update RSSI, 4708 * including the last rx time used to 4709 * workaround phantom bmiss interrupts. 4710 */ 4711 if (ni != NULL && ts->ts_status == 0 && 4712 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4713 nacked++; 4714 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4715 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4716 ts->ts_rssi); 4717 } 4718 ATH_TXQ_UNLOCK(txq); 4719 4720 /* 4721 * Update statistics and call completion 4722 */ 4723 ath_tx_process_buf_completion(sc, txq, ts, bf); 4724 4725 /* XXX at this point, bf and ni may be totally invalid */ 4726 } 4727 #ifdef IEEE80211_SUPPORT_SUPERG 4728 /* 4729 * Flush fast-frame staging queue when traffic slows. 4730 */ 4731 if (txq->axq_depth <= 1) 4732 ieee80211_ff_flush(ic, txq->axq_ac); 4733 #endif 4734 4735 /* Kick the software TXQ scheduler */ 4736 if (dosched) { 4737 ATH_TX_LOCK(sc); 4738 ath_txq_sched(sc, txq); 4739 ATH_TX_UNLOCK(sc); 4740 } 4741 4742 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4743 "ath_tx_processq: txq=%u: done", 4744 txq->axq_qnum); 4745 4746 return nacked; 4747 } 4748 4749 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4750 4751 /* 4752 * Deferred processing of transmit interrupt; special-cased 4753 * for a single hardware transmit queue (e.g. 5210 and 5211). 4754 */ 4755 static void 4756 ath_tx_proc_q0(void *arg, int npending) 4757 { 4758 struct ath_softc *sc = arg; 4759 struct ifnet *ifp = sc->sc_ifp; 4760 uint32_t txqs; 4761 4762 ATH_PCU_LOCK(sc); 4763 sc->sc_txproc_cnt++; 4764 txqs = sc->sc_txq_active; 4765 sc->sc_txq_active &= ~txqs; 4766 ATH_PCU_UNLOCK(sc); 4767 4768 ATH_LOCK(sc); 4769 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4770 ATH_UNLOCK(sc); 4771 4772 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4773 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4774 4775 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4776 /* XXX why is lastrx updated in tx code? */ 4777 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4778 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4779 ath_tx_processq(sc, sc->sc_cabq, 1); 4780 IF_LOCK(&ifp->if_snd); 4781 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4782 IF_UNLOCK(&ifp->if_snd); 4783 sc->sc_wd_timer = 0; 4784 4785 if (sc->sc_softled) 4786 ath_led_event(sc, sc->sc_txrix); 4787 4788 ATH_PCU_LOCK(sc); 4789 sc->sc_txproc_cnt--; 4790 ATH_PCU_UNLOCK(sc); 4791 4792 ATH_LOCK(sc); 4793 ath_power_restore_power_state(sc); 4794 ATH_UNLOCK(sc); 4795 4796 ath_tx_kick(sc); 4797 } 4798 4799 /* 4800 * Deferred processing of transmit interrupt; special-cased 4801 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4802 */ 4803 static void 4804 ath_tx_proc_q0123(void *arg, int npending) 4805 { 4806 struct ath_softc *sc = arg; 4807 struct ifnet *ifp = sc->sc_ifp; 4808 int nacked; 4809 uint32_t txqs; 4810 4811 ATH_PCU_LOCK(sc); 4812 sc->sc_txproc_cnt++; 4813 txqs = sc->sc_txq_active; 4814 sc->sc_txq_active &= ~txqs; 4815 ATH_PCU_UNLOCK(sc); 4816 4817 ATH_LOCK(sc); 4818 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4819 ATH_UNLOCK(sc); 4820 4821 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4822 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4823 4824 /* 4825 * Process each active queue. 4826 */ 4827 nacked = 0; 4828 if (TXQACTIVE(txqs, 0)) 4829 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4830 if (TXQACTIVE(txqs, 1)) 4831 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4832 if (TXQACTIVE(txqs, 2)) 4833 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4834 if (TXQACTIVE(txqs, 3)) 4835 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4836 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4837 ath_tx_processq(sc, sc->sc_cabq, 1); 4838 if (nacked) 4839 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4840 4841 IF_LOCK(&ifp->if_snd); 4842 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4843 IF_UNLOCK(&ifp->if_snd); 4844 sc->sc_wd_timer = 0; 4845 4846 if (sc->sc_softled) 4847 ath_led_event(sc, sc->sc_txrix); 4848 4849 ATH_PCU_LOCK(sc); 4850 sc->sc_txproc_cnt--; 4851 ATH_PCU_UNLOCK(sc); 4852 4853 ATH_LOCK(sc); 4854 ath_power_restore_power_state(sc); 4855 ATH_UNLOCK(sc); 4856 4857 ath_tx_kick(sc); 4858 } 4859 4860 /* 4861 * Deferred processing of transmit interrupt. 4862 */ 4863 static void 4864 ath_tx_proc(void *arg, int npending) 4865 { 4866 struct ath_softc *sc = arg; 4867 struct ifnet *ifp = sc->sc_ifp; 4868 int i, nacked; 4869 uint32_t txqs; 4870 4871 ATH_PCU_LOCK(sc); 4872 sc->sc_txproc_cnt++; 4873 txqs = sc->sc_txq_active; 4874 sc->sc_txq_active &= ~txqs; 4875 ATH_PCU_UNLOCK(sc); 4876 4877 ATH_LOCK(sc); 4878 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4879 ATH_UNLOCK(sc); 4880 4881 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4882 4883 /* 4884 * Process each active queue. 4885 */ 4886 nacked = 0; 4887 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4888 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4889 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4890 if (nacked) 4891 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4892 4893 /* XXX check this inside of IF_LOCK? */ 4894 IF_LOCK(&ifp->if_snd); 4895 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4896 IF_UNLOCK(&ifp->if_snd); 4897 sc->sc_wd_timer = 0; 4898 4899 if (sc->sc_softled) 4900 ath_led_event(sc, sc->sc_txrix); 4901 4902 ATH_PCU_LOCK(sc); 4903 sc->sc_txproc_cnt--; 4904 ATH_PCU_UNLOCK(sc); 4905 4906 ATH_LOCK(sc); 4907 ath_power_restore_power_state(sc); 4908 ATH_UNLOCK(sc); 4909 4910 ath_tx_kick(sc); 4911 } 4912 #undef TXQACTIVE 4913 4914 /* 4915 * Deferred processing of TXQ rescheduling. 4916 */ 4917 static void 4918 ath_txq_sched_tasklet(void *arg, int npending) 4919 { 4920 struct ath_softc *sc = arg; 4921 int i; 4922 4923 /* XXX is skipping ok? */ 4924 ATH_PCU_LOCK(sc); 4925 #if 0 4926 if (sc->sc_inreset_cnt > 0) { 4927 device_printf(sc->sc_dev, 4928 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4929 ATH_PCU_UNLOCK(sc); 4930 return; 4931 } 4932 #endif 4933 sc->sc_txproc_cnt++; 4934 ATH_PCU_UNLOCK(sc); 4935 4936 ATH_LOCK(sc); 4937 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4938 ATH_UNLOCK(sc); 4939 4940 ATH_TX_LOCK(sc); 4941 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4942 if (ATH_TXQ_SETUP(sc, i)) { 4943 ath_txq_sched(sc, &sc->sc_txq[i]); 4944 } 4945 } 4946 ATH_TX_UNLOCK(sc); 4947 4948 ATH_LOCK(sc); 4949 ath_power_restore_power_state(sc); 4950 ATH_UNLOCK(sc); 4951 4952 ATH_PCU_LOCK(sc); 4953 sc->sc_txproc_cnt--; 4954 ATH_PCU_UNLOCK(sc); 4955 } 4956 4957 void 4958 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4959 { 4960 4961 ATH_TXBUF_LOCK_ASSERT(sc); 4962 4963 if (bf->bf_flags & ATH_BUF_MGMT) 4964 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4965 else { 4966 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4967 sc->sc_txbuf_cnt++; 4968 if (sc->sc_txbuf_cnt > ath_txbuf) { 4969 device_printf(sc->sc_dev, 4970 "%s: sc_txbuf_cnt > %d?\n", 4971 __func__, 4972 ath_txbuf); 4973 sc->sc_txbuf_cnt = ath_txbuf; 4974 } 4975 } 4976 } 4977 4978 void 4979 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4980 { 4981 4982 ATH_TXBUF_LOCK_ASSERT(sc); 4983 4984 if (bf->bf_flags & ATH_BUF_MGMT) 4985 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4986 else { 4987 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4988 sc->sc_txbuf_cnt++; 4989 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4990 device_printf(sc->sc_dev, 4991 "%s: sc_txbuf_cnt > %d?\n", 4992 __func__, 4993 ATH_TXBUF); 4994 sc->sc_txbuf_cnt = ATH_TXBUF; 4995 } 4996 } 4997 } 4998 4999 /* 5000 * Free the holding buffer if it exists 5001 */ 5002 void 5003 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 5004 { 5005 ATH_TXBUF_UNLOCK_ASSERT(sc); 5006 ATH_TXQ_LOCK_ASSERT(txq); 5007 5008 if (txq->axq_holdingbf == NULL) 5009 return; 5010 5011 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 5012 5013 ATH_TXBUF_LOCK(sc); 5014 ath_returnbuf_tail(sc, txq->axq_holdingbf); 5015 ATH_TXBUF_UNLOCK(sc); 5016 5017 txq->axq_holdingbf = NULL; 5018 } 5019 5020 /* 5021 * Add this buffer to the holding queue, freeing the previous 5022 * one if it exists. 5023 */ 5024 static void 5025 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 5026 { 5027 struct ath_txq *txq; 5028 5029 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 5030 5031 ATH_TXBUF_UNLOCK_ASSERT(sc); 5032 ATH_TXQ_LOCK_ASSERT(txq); 5033 5034 /* XXX assert ATH_BUF_BUSY is set */ 5035 5036 /* XXX assert the tx queue is under the max number */ 5037 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 5038 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 5039 __func__, 5040 bf, 5041 bf->bf_state.bfs_tx_queue); 5042 bf->bf_flags &= ~ATH_BUF_BUSY; 5043 ath_returnbuf_tail(sc, bf); 5044 return; 5045 } 5046 ath_txq_freeholdingbuf(sc, txq); 5047 txq->axq_holdingbf = bf; 5048 } 5049 5050 /* 5051 * Return a buffer to the pool and update the 'busy' flag on the 5052 * previous 'tail' entry. 5053 * 5054 * This _must_ only be called when the buffer is involved in a completed 5055 * TX. The logic is that if it was part of an active TX, the previous 5056 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5057 * for restart (eg for TDMA.) 5058 * 5059 * The caller must free the mbuf and recycle the node reference. 5060 * 5061 * XXX This method of handling busy / holding buffers is insanely stupid. 5062 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 5063 * be much nicer if buffers in the processq() methods would instead be 5064 * always completed there (pushed onto a txq or ath_bufhead) so we knew 5065 * exactly what hardware queue they came from in the first place. 5066 */ 5067 void 5068 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5069 { 5070 struct ath_txq *txq; 5071 5072 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 5073 5074 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5075 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5076 5077 /* 5078 * If this buffer is busy, push it onto the holding queue. 5079 */ 5080 if (bf->bf_flags & ATH_BUF_BUSY) { 5081 ATH_TXQ_LOCK(txq); 5082 ath_txq_addholdingbuf(sc, bf); 5083 ATH_TXQ_UNLOCK(txq); 5084 return; 5085 } 5086 5087 /* 5088 * Not a busy buffer, so free normally 5089 */ 5090 ATH_TXBUF_LOCK(sc); 5091 ath_returnbuf_tail(sc, bf); 5092 ATH_TXBUF_UNLOCK(sc); 5093 } 5094 5095 /* 5096 * This is currently used by ath_tx_draintxq() and 5097 * ath_tx_tid_free_pkts(). 5098 * 5099 * It recycles a single ath_buf. 5100 */ 5101 void 5102 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5103 { 5104 struct ieee80211_node *ni = bf->bf_node; 5105 struct mbuf *m0 = bf->bf_m; 5106 5107 /* 5108 * Make sure that we only sync/unload if there's an mbuf. 5109 * If not (eg we cloned a buffer), the unload will have already 5110 * occured. 5111 */ 5112 if (bf->bf_m != NULL) { 5113 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 5114 BUS_DMASYNC_POSTWRITE); 5115 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5116 } 5117 5118 bf->bf_node = NULL; 5119 bf->bf_m = NULL; 5120 5121 /* Free the buffer, it's not needed any longer */ 5122 ath_freebuf(sc, bf); 5123 5124 /* Pass the buffer back to net80211 - completing it */ 5125 ieee80211_tx_complete(ni, m0, status); 5126 } 5127 5128 static struct ath_buf * 5129 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 5130 { 5131 struct ath_buf *bf; 5132 5133 ATH_TXQ_LOCK_ASSERT(txq); 5134 5135 /* 5136 * Drain the FIFO queue first, then if it's 5137 * empty, move to the normal frame queue. 5138 */ 5139 bf = TAILQ_FIRST(&txq->fifo.axq_q); 5140 if (bf != NULL) { 5141 /* 5142 * Is it the last buffer in this set? 5143 * Decrement the FIFO counter. 5144 */ 5145 if (bf->bf_flags & ATH_BUF_FIFOEND) { 5146 if (txq->axq_fifo_depth == 0) { 5147 device_printf(sc->sc_dev, 5148 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 5149 __func__, 5150 txq->axq_qnum, 5151 txq->fifo.axq_depth); 5152 } else 5153 txq->axq_fifo_depth--; 5154 } 5155 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 5156 return (bf); 5157 } 5158 5159 /* 5160 * Debugging! 5161 */ 5162 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 5163 device_printf(sc->sc_dev, 5164 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 5165 __func__, 5166 txq->axq_qnum, 5167 txq->axq_fifo_depth, 5168 txq->fifo.axq_depth); 5169 } 5170 5171 /* 5172 * Now drain the pending queue. 5173 */ 5174 bf = TAILQ_FIRST(&txq->axq_q); 5175 if (bf == NULL) { 5176 txq->axq_link = NULL; 5177 return (NULL); 5178 } 5179 ATH_TXQ_REMOVE(txq, bf, bf_list); 5180 return (bf); 5181 } 5182 5183 void 5184 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5185 { 5186 #ifdef ATH_DEBUG 5187 struct ath_hal *ah = sc->sc_ah; 5188 #endif 5189 struct ath_buf *bf; 5190 u_int ix; 5191 5192 /* 5193 * NB: this assumes output has been stopped and 5194 * we do not need to block ath_tx_proc 5195 */ 5196 for (ix = 0;; ix++) { 5197 ATH_TXQ_LOCK(txq); 5198 bf = ath_tx_draintxq_get_one(sc, txq); 5199 if (bf == NULL) { 5200 ATH_TXQ_UNLOCK(txq); 5201 break; 5202 } 5203 if (bf->bf_state.bfs_aggr) 5204 txq->axq_aggr_depth--; 5205 #ifdef ATH_DEBUG 5206 if (sc->sc_debug & ATH_DEBUG_RESET) { 5207 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5208 int status = 0; 5209 5210 /* 5211 * EDMA operation has a TX completion FIFO 5212 * separate from the TX descriptor, so this 5213 * method of checking the "completion" status 5214 * is wrong. 5215 */ 5216 if (! sc->sc_isedma) { 5217 status = (ath_hal_txprocdesc(ah, 5218 bf->bf_lastds, 5219 &bf->bf_status.ds_txstat) == HAL_OK); 5220 } 5221 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5222 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5223 bf->bf_m->m_len, 0, -1); 5224 } 5225 #endif /* ATH_DEBUG */ 5226 /* 5227 * Since we're now doing magic in the completion 5228 * functions, we -must- call it for aggregation 5229 * destinations or BAW tracking will get upset. 5230 */ 5231 /* 5232 * Clear ATH_BUF_BUSY; the completion handler 5233 * will free the buffer. 5234 */ 5235 ATH_TXQ_UNLOCK(txq); 5236 bf->bf_flags &= ~ATH_BUF_BUSY; 5237 if (bf->bf_comp) 5238 bf->bf_comp(sc, bf, 1); 5239 else 5240 ath_tx_default_comp(sc, bf, 1); 5241 } 5242 5243 /* 5244 * Free the holding buffer if it exists 5245 */ 5246 ATH_TXQ_LOCK(txq); 5247 ath_txq_freeholdingbuf(sc, txq); 5248 ATH_TXQ_UNLOCK(txq); 5249 5250 /* 5251 * Drain software queued frames which are on 5252 * active TIDs. 5253 */ 5254 ath_tx_txq_drain(sc, txq); 5255 } 5256 5257 static void 5258 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5259 { 5260 struct ath_hal *ah = sc->sc_ah; 5261 5262 ATH_TXQ_LOCK_ASSERT(txq); 5263 5264 DPRINTF(sc, ATH_DEBUG_RESET, 5265 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5266 "link %p, holdingbf=%p\n", 5267 __func__, 5268 txq->axq_qnum, 5269 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5270 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5271 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5272 txq->axq_flags, 5273 txq->axq_link, 5274 txq->axq_holdingbf); 5275 5276 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5277 /* We've stopped TX DMA, so mark this as stopped. */ 5278 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5279 5280 #ifdef ATH_DEBUG 5281 if ((sc->sc_debug & ATH_DEBUG_RESET) 5282 && (txq->axq_holdingbf != NULL)) { 5283 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5284 } 5285 #endif 5286 } 5287 5288 int 5289 ath_stoptxdma(struct ath_softc *sc) 5290 { 5291 struct ath_hal *ah = sc->sc_ah; 5292 int i; 5293 5294 /* XXX return value */ 5295 if (sc->sc_invalid) 5296 return 0; 5297 5298 if (!sc->sc_invalid) { 5299 /* don't touch the hardware if marked invalid */ 5300 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5301 __func__, sc->sc_bhalq, 5302 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5303 NULL); 5304 5305 /* stop the beacon queue */ 5306 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5307 5308 /* Stop the data queues */ 5309 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5310 if (ATH_TXQ_SETUP(sc, i)) { 5311 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5312 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5313 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5314 } 5315 } 5316 } 5317 5318 return 1; 5319 } 5320 5321 #ifdef ATH_DEBUG 5322 void 5323 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5324 { 5325 struct ath_hal *ah = sc->sc_ah; 5326 struct ath_buf *bf; 5327 int i = 0; 5328 5329 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5330 return; 5331 5332 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5333 __func__, txq->axq_qnum); 5334 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5335 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5336 ath_hal_txprocdesc(ah, bf->bf_lastds, 5337 &bf->bf_status.ds_txstat) == HAL_OK); 5338 i++; 5339 } 5340 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5341 __func__, txq->axq_qnum); 5342 } 5343 #endif /* ATH_DEBUG */ 5344 5345 /* 5346 * Drain the transmit queues and reclaim resources. 5347 */ 5348 void 5349 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5350 { 5351 struct ath_hal *ah = sc->sc_ah; 5352 struct ifnet *ifp = sc->sc_ifp; 5353 int i; 5354 struct ath_buf *bf_last; 5355 5356 (void) ath_stoptxdma(sc); 5357 5358 /* 5359 * Dump the queue contents 5360 */ 5361 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5362 /* 5363 * XXX TODO: should we just handle the completed TX frames 5364 * here, whether or not the reset is a full one or not? 5365 */ 5366 if (ATH_TXQ_SETUP(sc, i)) { 5367 #ifdef ATH_DEBUG 5368 if (sc->sc_debug & ATH_DEBUG_RESET) 5369 ath_tx_dump(sc, &sc->sc_txq[i]); 5370 #endif /* ATH_DEBUG */ 5371 if (reset_type == ATH_RESET_NOLOSS) { 5372 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5373 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5374 /* 5375 * Free the holding buffer; DMA is now 5376 * stopped. 5377 */ 5378 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5379 /* 5380 * Setup the link pointer to be the 5381 * _last_ buffer/descriptor in the list. 5382 * If there's nothing in the list, set it 5383 * to NULL. 5384 */ 5385 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5386 axq_q_s); 5387 if (bf_last != NULL) { 5388 ath_hal_gettxdesclinkptr(ah, 5389 bf_last->bf_lastds, 5390 &sc->sc_txq[i].axq_link); 5391 } else { 5392 sc->sc_txq[i].axq_link = NULL; 5393 } 5394 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5395 } else 5396 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5397 } 5398 } 5399 #ifdef ATH_DEBUG 5400 if (sc->sc_debug & ATH_DEBUG_RESET) { 5401 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5402 if (bf != NULL && bf->bf_m != NULL) { 5403 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5404 ath_hal_txprocdesc(ah, bf->bf_lastds, 5405 &bf->bf_status.ds_txstat) == HAL_OK); 5406 ieee80211_dump_pkt(ifp->if_l2com, 5407 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5408 0, -1); 5409 } 5410 } 5411 #endif /* ATH_DEBUG */ 5412 IF_LOCK(&ifp->if_snd); 5413 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5414 IF_UNLOCK(&ifp->if_snd); 5415 sc->sc_wd_timer = 0; 5416 } 5417 5418 /* 5419 * Update internal state after a channel change. 5420 */ 5421 static void 5422 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5423 { 5424 enum ieee80211_phymode mode; 5425 5426 /* 5427 * Change channels and update the h/w rate map 5428 * if we're switching; e.g. 11a to 11b/g. 5429 */ 5430 mode = ieee80211_chan2mode(chan); 5431 if (mode != sc->sc_curmode) 5432 ath_setcurmode(sc, mode); 5433 sc->sc_curchan = chan; 5434 } 5435 5436 /* 5437 * Set/change channels. If the channel is really being changed, 5438 * it's done by resetting the chip. To accomplish this we must 5439 * first cleanup any pending DMA, then restart stuff after a la 5440 * ath_init. 5441 */ 5442 static int 5443 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5444 { 5445 struct ifnet *ifp = sc->sc_ifp; 5446 struct ieee80211com *ic = ifp->if_l2com; 5447 struct ath_hal *ah = sc->sc_ah; 5448 int ret = 0; 5449 5450 /* Treat this as an interface reset */ 5451 ATH_PCU_UNLOCK_ASSERT(sc); 5452 ATH_UNLOCK_ASSERT(sc); 5453 5454 /* (Try to) stop TX/RX from occuring */ 5455 taskqueue_block(sc->sc_tq); 5456 5457 ATH_PCU_LOCK(sc); 5458 5459 /* Disable interrupts */ 5460 ath_hal_intrset(ah, 0); 5461 5462 /* Stop new RX/TX/interrupt completion */ 5463 if (ath_reset_grablock(sc, 1) == 0) { 5464 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5465 __func__); 5466 } 5467 5468 /* Stop pending RX/TX completion */ 5469 ath_txrx_stop_locked(sc); 5470 5471 ATH_PCU_UNLOCK(sc); 5472 5473 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5474 __func__, ieee80211_chan2ieee(ic, chan), 5475 chan->ic_freq, chan->ic_flags); 5476 if (chan != sc->sc_curchan) { 5477 HAL_STATUS status; 5478 /* 5479 * To switch channels clear any pending DMA operations; 5480 * wait long enough for the RX fifo to drain, reset the 5481 * hardware at the new frequency, and then re-enable 5482 * the relevant bits of the h/w. 5483 */ 5484 #if 0 5485 ath_hal_intrset(ah, 0); /* disable interrupts */ 5486 #endif 5487 ath_stoprecv(sc, 1); /* turn off frame recv */ 5488 /* 5489 * First, handle completed TX/RX frames. 5490 */ 5491 ath_rx_flush(sc); 5492 ath_draintxq(sc, ATH_RESET_NOLOSS); 5493 /* 5494 * Next, flush the non-scheduled frames. 5495 */ 5496 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5497 5498 ath_update_chainmasks(sc, chan); 5499 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5500 sc->sc_cur_rxchainmask); 5501 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5502 if_printf(ifp, "%s: unable to reset " 5503 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5504 __func__, ieee80211_chan2ieee(ic, chan), 5505 chan->ic_freq, chan->ic_flags, status); 5506 ret = EIO; 5507 goto finish; 5508 } 5509 sc->sc_diversity = ath_hal_getdiversity(ah); 5510 5511 ATH_RX_LOCK(sc); 5512 sc->sc_rx_stopped = 1; 5513 sc->sc_rx_resetted = 1; 5514 ATH_RX_UNLOCK(sc); 5515 5516 /* Let DFS at it in case it's a DFS channel */ 5517 ath_dfs_radar_enable(sc, chan); 5518 5519 /* Let spectral at in case spectral is enabled */ 5520 ath_spectral_enable(sc, chan); 5521 5522 /* 5523 * Let bluetooth coexistence at in case it's needed for this 5524 * channel 5525 */ 5526 ath_btcoex_enable(sc, ic->ic_curchan); 5527 5528 /* 5529 * If we're doing TDMA, enforce the TXOP limitation for chips 5530 * that support it. 5531 */ 5532 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5533 ath_hal_setenforcetxop(sc->sc_ah, 1); 5534 else 5535 ath_hal_setenforcetxop(sc->sc_ah, 0); 5536 5537 /* 5538 * Re-enable rx framework. 5539 */ 5540 if (ath_startrecv(sc) != 0) { 5541 if_printf(ifp, "%s: unable to restart recv logic\n", 5542 __func__); 5543 ret = EIO; 5544 goto finish; 5545 } 5546 5547 /* 5548 * Change channels and update the h/w rate map 5549 * if we're switching; e.g. 11a to 11b/g. 5550 */ 5551 ath_chan_change(sc, chan); 5552 5553 /* 5554 * Reset clears the beacon timers; reset them 5555 * here if needed. 5556 */ 5557 if (sc->sc_beacons) { /* restart beacons */ 5558 #ifdef IEEE80211_SUPPORT_TDMA 5559 if (sc->sc_tdma) 5560 ath_tdma_config(sc, NULL); 5561 else 5562 #endif 5563 ath_beacon_config(sc, NULL); 5564 } 5565 5566 /* 5567 * Re-enable interrupts. 5568 */ 5569 #if 0 5570 ath_hal_intrset(ah, sc->sc_imask); 5571 #endif 5572 } 5573 5574 finish: 5575 ATH_PCU_LOCK(sc); 5576 sc->sc_inreset_cnt--; 5577 /* XXX only do this if sc_inreset_cnt == 0? */ 5578 ath_hal_intrset(ah, sc->sc_imask); 5579 ATH_PCU_UNLOCK(sc); 5580 5581 IF_LOCK(&ifp->if_snd); 5582 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5583 IF_UNLOCK(&ifp->if_snd); 5584 ath_txrx_start(sc); 5585 /* XXX ath_start? */ 5586 5587 return ret; 5588 } 5589 5590 /* 5591 * Periodically recalibrate the PHY to account 5592 * for temperature/environment changes. 5593 */ 5594 static void 5595 ath_calibrate(void *arg) 5596 { 5597 struct ath_softc *sc = arg; 5598 struct ath_hal *ah = sc->sc_ah; 5599 struct ifnet *ifp = sc->sc_ifp; 5600 struct ieee80211com *ic = ifp->if_l2com; 5601 HAL_BOOL longCal, isCalDone = AH_TRUE; 5602 HAL_BOOL aniCal, shortCal = AH_FALSE; 5603 int nextcal; 5604 5605 ATH_LOCK_ASSERT(sc); 5606 5607 /* 5608 * Force the hardware awake for ANI work. 5609 */ 5610 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5611 5612 /* Skip trying to do this if we're in reset */ 5613 if (sc->sc_inreset_cnt) 5614 goto restart; 5615 5616 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5617 goto restart; 5618 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5619 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5620 if (sc->sc_doresetcal) 5621 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5622 5623 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5624 if (aniCal) { 5625 sc->sc_stats.ast_ani_cal++; 5626 sc->sc_lastani = ticks; 5627 ath_hal_ani_poll(ah, sc->sc_curchan); 5628 } 5629 5630 if (longCal) { 5631 sc->sc_stats.ast_per_cal++; 5632 sc->sc_lastlongcal = ticks; 5633 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5634 /* 5635 * Rfgain is out of bounds, reset the chip 5636 * to load new gain values. 5637 */ 5638 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5639 "%s: rfgain change\n", __func__); 5640 sc->sc_stats.ast_per_rfgain++; 5641 sc->sc_resetcal = 0; 5642 sc->sc_doresetcal = AH_TRUE; 5643 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5644 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5645 ath_power_restore_power_state(sc); 5646 return; 5647 } 5648 /* 5649 * If this long cal is after an idle period, then 5650 * reset the data collection state so we start fresh. 5651 */ 5652 if (sc->sc_resetcal) { 5653 (void) ath_hal_calreset(ah, sc->sc_curchan); 5654 sc->sc_lastcalreset = ticks; 5655 sc->sc_lastshortcal = ticks; 5656 sc->sc_resetcal = 0; 5657 sc->sc_doresetcal = AH_TRUE; 5658 } 5659 } 5660 5661 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5662 if (shortCal || longCal) { 5663 isCalDone = AH_FALSE; 5664 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5665 if (longCal) { 5666 /* 5667 * Calibrate noise floor data again in case of change. 5668 */ 5669 ath_hal_process_noisefloor(ah); 5670 } 5671 } else { 5672 DPRINTF(sc, ATH_DEBUG_ANY, 5673 "%s: calibration of channel %u failed\n", 5674 __func__, sc->sc_curchan->ic_freq); 5675 sc->sc_stats.ast_per_calfail++; 5676 } 5677 if (shortCal) 5678 sc->sc_lastshortcal = ticks; 5679 } 5680 if (!isCalDone) { 5681 restart: 5682 /* 5683 * Use a shorter interval to potentially collect multiple 5684 * data samples required to complete calibration. Once 5685 * we're told the work is done we drop back to a longer 5686 * interval between requests. We're more aggressive doing 5687 * work when operating as an AP to improve operation right 5688 * after startup. 5689 */ 5690 sc->sc_lastshortcal = ticks; 5691 nextcal = ath_shortcalinterval*hz/1000; 5692 if (sc->sc_opmode != HAL_M_HOSTAP) 5693 nextcal *= 10; 5694 sc->sc_doresetcal = AH_TRUE; 5695 } else { 5696 /* nextcal should be the shortest time for next event */ 5697 nextcal = ath_longcalinterval*hz; 5698 if (sc->sc_lastcalreset == 0) 5699 sc->sc_lastcalreset = sc->sc_lastlongcal; 5700 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5701 sc->sc_resetcal = 1; /* setup reset next trip */ 5702 sc->sc_doresetcal = AH_FALSE; 5703 } 5704 /* ANI calibration may occur more often than short/long/resetcal */ 5705 if (ath_anicalinterval > 0) 5706 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5707 5708 if (nextcal != 0) { 5709 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5710 __func__, nextcal, isCalDone ? "" : "!"); 5711 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5712 } else { 5713 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5714 __func__); 5715 /* NB: don't rearm timer */ 5716 } 5717 /* 5718 * Restore power state now that we're done. 5719 */ 5720 ath_power_restore_power_state(sc); 5721 } 5722 5723 static void 5724 ath_scan_start(struct ieee80211com *ic) 5725 { 5726 struct ifnet *ifp = ic->ic_ifp; 5727 struct ath_softc *sc = ifp->if_softc; 5728 struct ath_hal *ah = sc->sc_ah; 5729 u_int32_t rfilt; 5730 5731 /* XXX calibration timer? */ 5732 5733 ATH_LOCK(sc); 5734 sc->sc_scanning = 1; 5735 sc->sc_syncbeacon = 0; 5736 rfilt = ath_calcrxfilter(sc); 5737 ATH_UNLOCK(sc); 5738 5739 ATH_PCU_LOCK(sc); 5740 ath_hal_setrxfilter(ah, rfilt); 5741 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5742 ATH_PCU_UNLOCK(sc); 5743 5744 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5745 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5746 } 5747 5748 static void 5749 ath_scan_end(struct ieee80211com *ic) 5750 { 5751 struct ifnet *ifp = ic->ic_ifp; 5752 struct ath_softc *sc = ifp->if_softc; 5753 struct ath_hal *ah = sc->sc_ah; 5754 u_int32_t rfilt; 5755 5756 ATH_LOCK(sc); 5757 sc->sc_scanning = 0; 5758 rfilt = ath_calcrxfilter(sc); 5759 ATH_UNLOCK(sc); 5760 5761 ATH_PCU_LOCK(sc); 5762 ath_hal_setrxfilter(ah, rfilt); 5763 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5764 5765 ath_hal_process_noisefloor(ah); 5766 ATH_PCU_UNLOCK(sc); 5767 5768 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5769 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5770 sc->sc_curaid); 5771 } 5772 5773 #ifdef ATH_ENABLE_11N 5774 /* 5775 * For now, just do a channel change. 5776 * 5777 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5778 * control state and resetting the hardware without dropping frames out 5779 * of the queue. 5780 * 5781 * The unfortunate trouble here is making absolutely sure that the 5782 * channel width change has propagated enough so the hardware 5783 * absolutely isn't handed bogus frames for it's current operating 5784 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5785 * does occur in parallel, we need to make certain we've blocked 5786 * any further ongoing TX (and RX, that can cause raw TX) 5787 * before we do this. 5788 */ 5789 static void 5790 ath_update_chw(struct ieee80211com *ic) 5791 { 5792 struct ifnet *ifp = ic->ic_ifp; 5793 struct ath_softc *sc = ifp->if_softc; 5794 5795 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5796 ath_set_channel(ic); 5797 } 5798 #endif /* ATH_ENABLE_11N */ 5799 5800 static void 5801 ath_set_channel(struct ieee80211com *ic) 5802 { 5803 struct ifnet *ifp = ic->ic_ifp; 5804 struct ath_softc *sc = ifp->if_softc; 5805 5806 ATH_LOCK(sc); 5807 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5808 ATH_UNLOCK(sc); 5809 5810 (void) ath_chan_set(sc, ic->ic_curchan); 5811 /* 5812 * If we are returning to our bss channel then mark state 5813 * so the next recv'd beacon's tsf will be used to sync the 5814 * beacon timers. Note that since we only hear beacons in 5815 * sta/ibss mode this has no effect in other operating modes. 5816 */ 5817 ATH_LOCK(sc); 5818 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5819 sc->sc_syncbeacon = 1; 5820 ath_power_restore_power_state(sc); 5821 ATH_UNLOCK(sc); 5822 } 5823 5824 /* 5825 * Walk the vap list and check if there any vap's in RUN state. 5826 */ 5827 static int 5828 ath_isanyrunningvaps(struct ieee80211vap *this) 5829 { 5830 struct ieee80211com *ic = this->iv_ic; 5831 struct ieee80211vap *vap; 5832 5833 IEEE80211_LOCK_ASSERT(ic); 5834 5835 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5836 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5837 return 1; 5838 } 5839 return 0; 5840 } 5841 5842 static int 5843 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5844 { 5845 struct ieee80211com *ic = vap->iv_ic; 5846 struct ath_softc *sc = ic->ic_ifp->if_softc; 5847 struct ath_vap *avp = ATH_VAP(vap); 5848 struct ath_hal *ah = sc->sc_ah; 5849 struct ieee80211_node *ni = NULL; 5850 int i, error, stamode; 5851 u_int32_t rfilt; 5852 int csa_run_transition = 0; 5853 enum ieee80211_state ostate = vap->iv_state; 5854 5855 static const HAL_LED_STATE leds[] = { 5856 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5857 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5858 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5859 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5860 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5861 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5862 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5863 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5864 }; 5865 5866 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5867 ieee80211_state_name[ostate], 5868 ieee80211_state_name[nstate]); 5869 5870 /* 5871 * net80211 _should_ have the comlock asserted at this point. 5872 * There are some comments around the calls to vap->iv_newstate 5873 * which indicate that it (newstate) may end up dropping the 5874 * lock. This and the subsequent lock assert check after newstate 5875 * are an attempt to catch these and figure out how/why. 5876 */ 5877 IEEE80211_LOCK_ASSERT(ic); 5878 5879 /* Before we touch the hardware - wake it up */ 5880 ATH_LOCK(sc); 5881 /* 5882 * If the NIC is in anything other than SLEEP state, 5883 * we need to ensure that self-generated frames are 5884 * set for PWRMGT=0. Otherwise we may end up with 5885 * strange situations. 5886 * 5887 * XXX TODO: is this actually the case? :-) 5888 */ 5889 if (nstate != IEEE80211_S_SLEEP) 5890 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5891 5892 /* 5893 * Now, wake the thing up. 5894 */ 5895 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5896 5897 /* 5898 * And stop the calibration callout whilst we have 5899 * ATH_LOCK held. 5900 */ 5901 callout_stop(&sc->sc_cal_ch); 5902 ATH_UNLOCK(sc); 5903 5904 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5905 csa_run_transition = 1; 5906 5907 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5908 5909 if (nstate == IEEE80211_S_SCAN) { 5910 /* 5911 * Scanning: turn off beacon miss and don't beacon. 5912 * Mark beacon state so when we reach RUN state we'll 5913 * [re]setup beacons. Unblock the task q thread so 5914 * deferred interrupt processing is done. 5915 */ 5916 5917 /* Ensure we stay awake during scan */ 5918 ATH_LOCK(sc); 5919 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5920 ath_power_setpower(sc, HAL_PM_AWAKE); 5921 ATH_UNLOCK(sc); 5922 5923 ath_hal_intrset(ah, 5924 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5925 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5926 sc->sc_beacons = 0; 5927 taskqueue_unblock(sc->sc_tq); 5928 } 5929 5930 ni = ieee80211_ref_node(vap->iv_bss); 5931 rfilt = ath_calcrxfilter(sc); 5932 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5933 vap->iv_opmode == IEEE80211_M_AHDEMO || 5934 vap->iv_opmode == IEEE80211_M_IBSS); 5935 5936 /* 5937 * XXX Dont need to do this (and others) if we've transitioned 5938 * from SLEEP->RUN. 5939 */ 5940 if (stamode && nstate == IEEE80211_S_RUN) { 5941 sc->sc_curaid = ni->ni_associd; 5942 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5943 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5944 } 5945 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5946 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5947 ath_hal_setrxfilter(ah, rfilt); 5948 5949 /* XXX is this to restore keycache on resume? */ 5950 if (vap->iv_opmode != IEEE80211_M_STA && 5951 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5952 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5953 if (ath_hal_keyisvalid(ah, i)) 5954 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5955 } 5956 5957 /* 5958 * Invoke the parent method to do net80211 work. 5959 */ 5960 error = avp->av_newstate(vap, nstate, arg); 5961 if (error != 0) 5962 goto bad; 5963 5964 /* 5965 * See above: ensure av_newstate() doesn't drop the lock 5966 * on us. 5967 */ 5968 IEEE80211_LOCK_ASSERT(ic); 5969 5970 if (nstate == IEEE80211_S_RUN) { 5971 /* NB: collect bss node again, it may have changed */ 5972 ieee80211_free_node(ni); 5973 ni = ieee80211_ref_node(vap->iv_bss); 5974 5975 DPRINTF(sc, ATH_DEBUG_STATE, 5976 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5977 "capinfo 0x%04x chan %d\n", __func__, 5978 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5979 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5980 5981 switch (vap->iv_opmode) { 5982 #ifdef IEEE80211_SUPPORT_TDMA 5983 case IEEE80211_M_AHDEMO: 5984 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5985 break; 5986 /* fall thru... */ 5987 #endif 5988 case IEEE80211_M_HOSTAP: 5989 case IEEE80211_M_IBSS: 5990 case IEEE80211_M_MBSS: 5991 /* 5992 * Allocate and setup the beacon frame. 5993 * 5994 * Stop any previous beacon DMA. This may be 5995 * necessary, for example, when an ibss merge 5996 * causes reconfiguration; there will be a state 5997 * transition from RUN->RUN that means we may 5998 * be called with beacon transmission active. 5999 */ 6000 ath_hal_stoptxdma(ah, sc->sc_bhalq); 6001 6002 error = ath_beacon_alloc(sc, ni); 6003 if (error != 0) 6004 goto bad; 6005 /* 6006 * If joining an adhoc network defer beacon timer 6007 * configuration to the next beacon frame so we 6008 * have a current TSF to use. Otherwise we're 6009 * starting an ibss/bss so there's no need to delay; 6010 * if this is the first vap moving to RUN state, then 6011 * beacon state needs to be [re]configured. 6012 */ 6013 if (vap->iv_opmode == IEEE80211_M_IBSS && 6014 ni->ni_tstamp.tsf != 0) { 6015 sc->sc_syncbeacon = 1; 6016 } else if (!sc->sc_beacons) { 6017 #ifdef IEEE80211_SUPPORT_TDMA 6018 if (vap->iv_caps & IEEE80211_C_TDMA) 6019 ath_tdma_config(sc, vap); 6020 else 6021 #endif 6022 ath_beacon_config(sc, vap); 6023 sc->sc_beacons = 1; 6024 } 6025 break; 6026 case IEEE80211_M_STA: 6027 /* 6028 * Defer beacon timer configuration to the next 6029 * beacon frame so we have a current TSF to use 6030 * (any TSF collected when scanning is likely old). 6031 * However if it's due to a CSA -> RUN transition, 6032 * force a beacon update so we pick up a lack of 6033 * beacons from an AP in CAC and thus force a 6034 * scan. 6035 * 6036 * And, there's also corner cases here where 6037 * after a scan, the AP may have disappeared. 6038 * In that case, we may not receive an actual 6039 * beacon to update the beacon timer and thus we 6040 * won't get notified of the missing beacons. 6041 */ 6042 if (ostate != IEEE80211_S_RUN && 6043 ostate != IEEE80211_S_SLEEP) { 6044 DPRINTF(sc, ATH_DEBUG_BEACON, 6045 "%s: STA; syncbeacon=1\n", __func__); 6046 sc->sc_syncbeacon = 1; 6047 6048 if (csa_run_transition) 6049 ath_beacon_config(sc, vap); 6050 6051 /* 6052 * PR: kern/175227 6053 * 6054 * Reconfigure beacons during reset; as otherwise 6055 * we won't get the beacon timers reprogrammed 6056 * after a reset and thus we won't pick up a 6057 * beacon miss interrupt. 6058 * 6059 * Hopefully we'll see a beacon before the BMISS 6060 * timer fires (too often), leading to a STA 6061 * disassociation. 6062 */ 6063 sc->sc_beacons = 1; 6064 } 6065 break; 6066 case IEEE80211_M_MONITOR: 6067 /* 6068 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6069 * transitions so we must re-enable interrupts here to 6070 * handle the case of a single monitor mode vap. 6071 */ 6072 ath_hal_intrset(ah, sc->sc_imask); 6073 break; 6074 case IEEE80211_M_WDS: 6075 break; 6076 default: 6077 break; 6078 } 6079 /* 6080 * Let the hal process statistics collected during a 6081 * scan so it can provide calibrated noise floor data. 6082 */ 6083 ath_hal_process_noisefloor(ah); 6084 /* 6085 * Reset rssi stats; maybe not the best place... 6086 */ 6087 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6088 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6089 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6090 6091 /* 6092 * Force awake for RUN mode. 6093 */ 6094 ATH_LOCK(sc); 6095 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6096 ath_power_setpower(sc, HAL_PM_AWAKE); 6097 6098 /* 6099 * Finally, start any timers and the task q thread 6100 * (in case we didn't go through SCAN state). 6101 */ 6102 if (ath_longcalinterval != 0) { 6103 /* start periodic recalibration timer */ 6104 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6105 } else { 6106 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6107 "%s: calibration disabled\n", __func__); 6108 } 6109 ATH_UNLOCK(sc); 6110 6111 taskqueue_unblock(sc->sc_tq); 6112 } else if (nstate == IEEE80211_S_INIT) { 6113 /* 6114 * If there are no vaps left in RUN state then 6115 * shutdown host/driver operation: 6116 * o disable interrupts 6117 * o disable the task queue thread 6118 * o mark beacon processing as stopped 6119 */ 6120 if (!ath_isanyrunningvaps(vap)) { 6121 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6122 /* disable interrupts */ 6123 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6124 taskqueue_block(sc->sc_tq); 6125 sc->sc_beacons = 0; 6126 } 6127 #ifdef IEEE80211_SUPPORT_TDMA 6128 ath_hal_setcca(ah, AH_TRUE); 6129 #endif 6130 } else if (nstate == IEEE80211_S_SLEEP) { 6131 /* We're going to sleep, so transition appropriately */ 6132 /* For now, only do this if we're a single STA vap */ 6133 if (sc->sc_nvaps == 1 && 6134 vap->iv_opmode == IEEE80211_M_STA) { 6135 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6136 ATH_LOCK(sc); 6137 /* 6138 * Always at least set the self-generated 6139 * frame config to set PWRMGT=1. 6140 */ 6141 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6142 6143 /* 6144 * If we're not syncing beacons, transition 6145 * to NETWORK_SLEEP. 6146 * 6147 * We stay awake if syncbeacon > 0 in case 6148 * we need to listen for some beacons otherwise 6149 * our beacon timer config may be wrong. 6150 */ 6151 if (sc->sc_syncbeacon == 0) { 6152 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 6153 } 6154 ATH_UNLOCK(sc); 6155 } 6156 } 6157 bad: 6158 ieee80211_free_node(ni); 6159 6160 /* 6161 * Restore the power state - either to what it was, or 6162 * to network_sleep if it's alright. 6163 */ 6164 ATH_LOCK(sc); 6165 ath_power_restore_power_state(sc); 6166 ATH_UNLOCK(sc); 6167 return error; 6168 } 6169 6170 /* 6171 * Allocate a key cache slot to the station so we can 6172 * setup a mapping from key index to node. The key cache 6173 * slot is needed for managing antenna state and for 6174 * compression when stations do not use crypto. We do 6175 * it uniliaterally here; if crypto is employed this slot 6176 * will be reassigned. 6177 */ 6178 static void 6179 ath_setup_stationkey(struct ieee80211_node *ni) 6180 { 6181 struct ieee80211vap *vap = ni->ni_vap; 6182 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6183 ieee80211_keyix keyix, rxkeyix; 6184 6185 /* XXX should take a locked ref to vap->iv_bss */ 6186 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6187 /* 6188 * Key cache is full; we'll fall back to doing 6189 * the more expensive lookup in software. Note 6190 * this also means no h/w compression. 6191 */ 6192 /* XXX msg+statistic */ 6193 } else { 6194 /* XXX locking? */ 6195 ni->ni_ucastkey.wk_keyix = keyix; 6196 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6197 /* NB: must mark device key to get called back on delete */ 6198 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6199 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6200 /* NB: this will create a pass-thru key entry */ 6201 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6202 } 6203 } 6204 6205 /* 6206 * Setup driver-specific state for a newly associated node. 6207 * Note that we're called also on a re-associate, the isnew 6208 * param tells us if this is the first time or not. 6209 */ 6210 static void 6211 ath_newassoc(struct ieee80211_node *ni, int isnew) 6212 { 6213 struct ath_node *an = ATH_NODE(ni); 6214 struct ieee80211vap *vap = ni->ni_vap; 6215 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6216 const struct ieee80211_txparam *tp = ni->ni_txparms; 6217 6218 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6219 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6220 6221 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6222 __func__, 6223 ni->ni_macaddr, 6224 ":", 6225 isnew, 6226 an->an_is_powersave); 6227 6228 ATH_NODE_LOCK(an); 6229 ath_rate_newassoc(sc, an, isnew); 6230 ATH_NODE_UNLOCK(an); 6231 6232 if (isnew && 6233 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6234 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6235 ath_setup_stationkey(ni); 6236 6237 /* 6238 * If we're reassociating, make sure that any paused queues 6239 * get unpaused. 6240 * 6241 * Now, we may hvae frames in the hardware queue for this node. 6242 * So if we are reassociating and there are frames in the queue, 6243 * we need to go through the cleanup path to ensure that they're 6244 * marked as non-aggregate. 6245 */ 6246 if (! isnew) { 6247 DPRINTF(sc, ATH_DEBUG_NODE, 6248 "%s: %6D: reassoc; is_powersave=%d\n", 6249 __func__, 6250 ni->ni_macaddr, 6251 ":", 6252 an->an_is_powersave); 6253 6254 /* XXX for now, we can't hold the lock across assoc */ 6255 ath_tx_node_reassoc(sc, an); 6256 6257 /* XXX for now, we can't hold the lock across wakeup */ 6258 if (an->an_is_powersave) 6259 ath_tx_node_wakeup(sc, an); 6260 } 6261 } 6262 6263 static int 6264 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6265 int nchans, struct ieee80211_channel chans[]) 6266 { 6267 struct ath_softc *sc = ic->ic_ifp->if_softc; 6268 struct ath_hal *ah = sc->sc_ah; 6269 HAL_STATUS status; 6270 6271 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6272 "%s: rd %u cc %u location %c%s\n", 6273 __func__, reg->regdomain, reg->country, reg->location, 6274 reg->ecm ? " ecm" : ""); 6275 6276 status = ath_hal_set_channels(ah, chans, nchans, 6277 reg->country, reg->regdomain); 6278 if (status != HAL_OK) { 6279 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6280 __func__, status); 6281 return EINVAL; /* XXX */ 6282 } 6283 6284 return 0; 6285 } 6286 6287 static void 6288 ath_getradiocaps(struct ieee80211com *ic, 6289 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6290 { 6291 struct ath_softc *sc = ic->ic_ifp->if_softc; 6292 struct ath_hal *ah = sc->sc_ah; 6293 6294 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6295 __func__, SKU_DEBUG, CTRY_DEFAULT); 6296 6297 /* XXX check return */ 6298 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6299 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6300 6301 } 6302 6303 static int 6304 ath_getchannels(struct ath_softc *sc) 6305 { 6306 struct ifnet *ifp = sc->sc_ifp; 6307 struct ieee80211com *ic = ifp->if_l2com; 6308 struct ath_hal *ah = sc->sc_ah; 6309 HAL_STATUS status; 6310 6311 /* 6312 * Collect channel set based on EEPROM contents. 6313 */ 6314 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6315 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6316 if (status != HAL_OK) { 6317 if_printf(ifp, "%s: unable to collect channel list from hal, " 6318 "status %d\n", __func__, status); 6319 return EINVAL; 6320 } 6321 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6322 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6323 /* XXX map Atheros sku's to net80211 SKU's */ 6324 /* XXX net80211 types too small */ 6325 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6326 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6327 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6328 ic->ic_regdomain.isocc[1] = ' '; 6329 6330 ic->ic_regdomain.ecm = 1; 6331 ic->ic_regdomain.location = 'I'; 6332 6333 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6334 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6335 __func__, sc->sc_eerd, sc->sc_eecc, 6336 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6337 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6338 return 0; 6339 } 6340 6341 static int 6342 ath_rate_setup(struct ath_softc *sc, u_int mode) 6343 { 6344 struct ath_hal *ah = sc->sc_ah; 6345 const HAL_RATE_TABLE *rt; 6346 6347 switch (mode) { 6348 case IEEE80211_MODE_11A: 6349 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6350 break; 6351 case IEEE80211_MODE_HALF: 6352 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6353 break; 6354 case IEEE80211_MODE_QUARTER: 6355 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6356 break; 6357 case IEEE80211_MODE_11B: 6358 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6359 break; 6360 case IEEE80211_MODE_11G: 6361 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6362 break; 6363 case IEEE80211_MODE_TURBO_A: 6364 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6365 break; 6366 case IEEE80211_MODE_TURBO_G: 6367 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6368 break; 6369 case IEEE80211_MODE_STURBO_A: 6370 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6371 break; 6372 case IEEE80211_MODE_11NA: 6373 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6374 break; 6375 case IEEE80211_MODE_11NG: 6376 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6377 break; 6378 default: 6379 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6380 __func__, mode); 6381 return 0; 6382 } 6383 sc->sc_rates[mode] = rt; 6384 return (rt != NULL); 6385 } 6386 6387 static void 6388 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6389 { 6390 #define N(a) (sizeof(a)/sizeof(a[0])) 6391 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6392 static const struct { 6393 u_int rate; /* tx/rx 802.11 rate */ 6394 u_int16_t timeOn; /* LED on time (ms) */ 6395 u_int16_t timeOff; /* LED off time (ms) */ 6396 } blinkrates[] = { 6397 { 108, 40, 10 }, 6398 { 96, 44, 11 }, 6399 { 72, 50, 13 }, 6400 { 48, 57, 14 }, 6401 { 36, 67, 16 }, 6402 { 24, 80, 20 }, 6403 { 22, 100, 25 }, 6404 { 18, 133, 34 }, 6405 { 12, 160, 40 }, 6406 { 10, 200, 50 }, 6407 { 6, 240, 58 }, 6408 { 4, 267, 66 }, 6409 { 2, 400, 100 }, 6410 { 0, 500, 130 }, 6411 /* XXX half/quarter rates */ 6412 }; 6413 const HAL_RATE_TABLE *rt; 6414 int i, j; 6415 6416 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6417 rt = sc->sc_rates[mode]; 6418 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6419 for (i = 0; i < rt->rateCount; i++) { 6420 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6421 if (rt->info[i].phy != IEEE80211_T_HT) 6422 sc->sc_rixmap[ieeerate] = i; 6423 else 6424 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6425 } 6426 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6427 for (i = 0; i < N(sc->sc_hwmap); i++) { 6428 if (i >= rt->rateCount) { 6429 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6430 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6431 continue; 6432 } 6433 sc->sc_hwmap[i].ieeerate = 6434 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6435 if (rt->info[i].phy == IEEE80211_T_HT) 6436 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6437 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6438 if (rt->info[i].shortPreamble || 6439 rt->info[i].phy == IEEE80211_T_OFDM) 6440 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6441 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6442 for (j = 0; j < N(blinkrates)-1; j++) 6443 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6444 break; 6445 /* NB: this uses the last entry if the rate isn't found */ 6446 /* XXX beware of overlow */ 6447 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6448 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6449 } 6450 sc->sc_currates = rt; 6451 sc->sc_curmode = mode; 6452 /* 6453 * All protection frames are transmited at 2Mb/s for 6454 * 11g, otherwise at 1Mb/s. 6455 */ 6456 if (mode == IEEE80211_MODE_11G) 6457 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6458 else 6459 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6460 /* NB: caller is responsible for resetting rate control state */ 6461 #undef N 6462 } 6463 6464 static void 6465 ath_watchdog(void *arg) 6466 { 6467 struct ath_softc *sc = arg; 6468 int do_reset = 0; 6469 6470 ATH_LOCK_ASSERT(sc); 6471 6472 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6473 struct ifnet *ifp = sc->sc_ifp; 6474 uint32_t hangs; 6475 6476 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6477 6478 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6479 hangs != 0) { 6480 if_printf(ifp, "%s hang detected (0x%x)\n", 6481 hangs & 0xff ? "bb" : "mac", hangs); 6482 } else 6483 if_printf(ifp, "device timeout\n"); 6484 do_reset = 1; 6485 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 6486 sc->sc_stats.ast_watchdog++; 6487 6488 ath_power_restore_power_state(sc); 6489 } 6490 6491 /* 6492 * We can't hold the lock across the ath_reset() call. 6493 * 6494 * And since this routine can't hold a lock and sleep, 6495 * do the reset deferred. 6496 */ 6497 if (do_reset) { 6498 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6499 } 6500 6501 callout_schedule(&sc->sc_wd_ch, hz); 6502 } 6503 6504 /* 6505 * Fetch the rate control statistics for the given node. 6506 */ 6507 static int 6508 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 6509 { 6510 struct ath_node *an; 6511 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 6512 struct ieee80211_node *ni; 6513 int error = 0; 6514 6515 /* Perform a lookup on the given node */ 6516 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 6517 if (ni == NULL) { 6518 error = EINVAL; 6519 goto bad; 6520 } 6521 6522 /* Lock the ath_node */ 6523 an = ATH_NODE(ni); 6524 ATH_NODE_LOCK(an); 6525 6526 /* Fetch the rate control stats for this node */ 6527 error = ath_rate_fetch_node_stats(sc, an, rs); 6528 6529 /* No matter what happens here, just drop through */ 6530 6531 /* Unlock the ath_node */ 6532 ATH_NODE_UNLOCK(an); 6533 6534 /* Unref the node */ 6535 ieee80211_node_decref(ni); 6536 6537 bad: 6538 return (error); 6539 } 6540 6541 #ifdef ATH_DIAGAPI 6542 /* 6543 * Diagnostic interface to the HAL. This is used by various 6544 * tools to do things like retrieve register contents for 6545 * debugging. The mechanism is intentionally opaque so that 6546 * it can change frequently w/o concern for compatiblity. 6547 */ 6548 static int 6549 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6550 { 6551 struct ath_hal *ah = sc->sc_ah; 6552 u_int id = ad->ad_id & ATH_DIAG_ID; 6553 void *indata = NULL; 6554 void *outdata = NULL; 6555 u_int32_t insize = ad->ad_in_size; 6556 u_int32_t outsize = ad->ad_out_size; 6557 int error = 0; 6558 6559 if (ad->ad_id & ATH_DIAG_IN) { 6560 /* 6561 * Copy in data. 6562 */ 6563 indata = malloc(insize, M_TEMP, M_NOWAIT); 6564 if (indata == NULL) { 6565 error = ENOMEM; 6566 goto bad; 6567 } 6568 error = copyin(ad->ad_in_data, indata, insize); 6569 if (error) 6570 goto bad; 6571 } 6572 if (ad->ad_id & ATH_DIAG_DYN) { 6573 /* 6574 * Allocate a buffer for the results (otherwise the HAL 6575 * returns a pointer to a buffer where we can read the 6576 * results). Note that we depend on the HAL leaving this 6577 * pointer for us to use below in reclaiming the buffer; 6578 * may want to be more defensive. 6579 */ 6580 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6581 if (outdata == NULL) { 6582 error = ENOMEM; 6583 goto bad; 6584 } 6585 } 6586 6587 6588 ATH_LOCK(sc); 6589 if (id != HAL_DIAG_REGS) 6590 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6591 ATH_UNLOCK(sc); 6592 6593 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6594 if (outsize < ad->ad_out_size) 6595 ad->ad_out_size = outsize; 6596 if (outdata != NULL) 6597 error = copyout(outdata, ad->ad_out_data, 6598 ad->ad_out_size); 6599 } else { 6600 error = EINVAL; 6601 } 6602 6603 ATH_LOCK(sc); 6604 if (id != HAL_DIAG_REGS) 6605 ath_power_restore_power_state(sc); 6606 ATH_UNLOCK(sc); 6607 6608 bad: 6609 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6610 free(indata, M_TEMP); 6611 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6612 free(outdata, M_TEMP); 6613 return error; 6614 } 6615 #endif /* ATH_DIAGAPI */ 6616 6617 static int 6618 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6619 { 6620 #define IS_RUNNING(ifp) \ 6621 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6622 struct ath_softc *sc = ifp->if_softc; 6623 struct ieee80211com *ic = ifp->if_l2com; 6624 struct ifreq *ifr = (struct ifreq *)data; 6625 const HAL_RATE_TABLE *rt; 6626 int error = 0; 6627 6628 switch (cmd) { 6629 case SIOCSIFFLAGS: 6630 if (IS_RUNNING(ifp)) { 6631 /* 6632 * To avoid rescanning another access point, 6633 * do not call ath_init() here. Instead, 6634 * only reflect promisc mode settings. 6635 */ 6636 ATH_LOCK(sc); 6637 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6638 ath_mode_init(sc); 6639 ath_power_restore_power_state(sc); 6640 ATH_UNLOCK(sc); 6641 } else if (ifp->if_flags & IFF_UP) { 6642 /* 6643 * Beware of being called during attach/detach 6644 * to reset promiscuous mode. In that case we 6645 * will still be marked UP but not RUNNING. 6646 * However trying to re-init the interface 6647 * is the wrong thing to do as we've already 6648 * torn down much of our state. There's 6649 * probably a better way to deal with this. 6650 */ 6651 if (!sc->sc_invalid) 6652 ath_init(sc); /* XXX lose error */ 6653 } else { 6654 ATH_LOCK(sc); 6655 ath_stop_locked(ifp); 6656 if (!sc->sc_invalid) 6657 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6658 ATH_UNLOCK(sc); 6659 } 6660 break; 6661 case SIOCGIFMEDIA: 6662 case SIOCSIFMEDIA: 6663 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6664 break; 6665 case SIOCGATHSTATS: 6666 /* NB: embed these numbers to get a consistent view */ 6667 sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp, 6668 IFCOUNTER_OPACKETS); 6669 sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp, 6670 IFCOUNTER_IPACKETS); 6671 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6672 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6673 #ifdef IEEE80211_SUPPORT_TDMA 6674 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6675 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6676 #endif 6677 rt = sc->sc_currates; 6678 sc->sc_stats.ast_tx_rate = 6679 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6680 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6681 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6682 return copyout(&sc->sc_stats, 6683 ifr->ifr_data, sizeof (sc->sc_stats)); 6684 case SIOCGATHAGSTATS: 6685 return copyout(&sc->sc_aggr_stats, 6686 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6687 case SIOCZATHSTATS: 6688 error = priv_check(curthread, PRIV_DRIVER); 6689 if (error == 0) { 6690 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6691 memset(&sc->sc_aggr_stats, 0, 6692 sizeof(sc->sc_aggr_stats)); 6693 memset(&sc->sc_intr_stats, 0, 6694 sizeof(sc->sc_intr_stats)); 6695 } 6696 break; 6697 #ifdef ATH_DIAGAPI 6698 case SIOCGATHDIAG: 6699 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6700 break; 6701 case SIOCGATHPHYERR: 6702 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6703 break; 6704 #endif 6705 case SIOCGATHSPECTRAL: 6706 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 6707 break; 6708 case SIOCGATHNODERATESTATS: 6709 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 6710 break; 6711 case SIOCGIFADDR: 6712 error = ether_ioctl(ifp, cmd, data); 6713 break; 6714 default: 6715 error = EINVAL; 6716 break; 6717 } 6718 return error; 6719 #undef IS_RUNNING 6720 } 6721 6722 /* 6723 * Announce various information on device/driver attach. 6724 */ 6725 static void 6726 ath_announce(struct ath_softc *sc) 6727 { 6728 struct ifnet *ifp = sc->sc_ifp; 6729 struct ath_hal *ah = sc->sc_ah; 6730 6731 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6732 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6733 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6734 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6735 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6736 if (bootverbose) { 6737 int i; 6738 for (i = 0; i <= WME_AC_VO; i++) { 6739 struct ath_txq *txq = sc->sc_ac2q[i]; 6740 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6741 txq->axq_qnum, ieee80211_wme_acnames[i]); 6742 } 6743 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6744 sc->sc_cabq->axq_qnum); 6745 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6746 } 6747 if (ath_rxbuf != ATH_RXBUF) 6748 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6749 if (ath_txbuf != ATH_TXBUF) 6750 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6751 if (sc->sc_mcastkey && bootverbose) 6752 if_printf(ifp, "using multicast key search\n"); 6753 } 6754 6755 static void 6756 ath_dfs_tasklet(void *p, int npending) 6757 { 6758 struct ath_softc *sc = (struct ath_softc *) p; 6759 struct ifnet *ifp = sc->sc_ifp; 6760 struct ieee80211com *ic = ifp->if_l2com; 6761 6762 /* 6763 * If previous processing has found a radar event, 6764 * signal this to the net80211 layer to begin DFS 6765 * processing. 6766 */ 6767 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6768 /* DFS event found, initiate channel change */ 6769 /* 6770 * XXX doesn't currently tell us whether the event 6771 * XXX was found in the primary or extension 6772 * XXX channel! 6773 */ 6774 IEEE80211_LOCK(ic); 6775 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6776 IEEE80211_UNLOCK(ic); 6777 } 6778 } 6779 6780 /* 6781 * Enable/disable power save. This must be called with 6782 * no TX driver locks currently held, so it should only 6783 * be called from the RX path (which doesn't hold any 6784 * TX driver locks.) 6785 */ 6786 static void 6787 ath_node_powersave(struct ieee80211_node *ni, int enable) 6788 { 6789 #ifdef ATH_SW_PSQ 6790 struct ath_node *an = ATH_NODE(ni); 6791 struct ieee80211com *ic = ni->ni_ic; 6792 struct ath_softc *sc = ic->ic_ifp->if_softc; 6793 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6794 6795 /* XXX and no TXQ locks should be held here */ 6796 6797 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6798 __func__, 6799 ni->ni_macaddr, 6800 ":", 6801 !! enable); 6802 6803 /* Suspend or resume software queue handling */ 6804 if (enable) 6805 ath_tx_node_sleep(sc, an); 6806 else 6807 ath_tx_node_wakeup(sc, an); 6808 6809 /* Update net80211 state */ 6810 avp->av_node_ps(ni, enable); 6811 #else 6812 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6813 6814 /* Update net80211 state */ 6815 avp->av_node_ps(ni, enable); 6816 #endif/* ATH_SW_PSQ */ 6817 } 6818 6819 /* 6820 * Notification from net80211 that the powersave queue state has 6821 * changed. 6822 * 6823 * Since the software queue also may have some frames: 6824 * 6825 * + if the node software queue has frames and the TID state 6826 * is 0, we set the TIM; 6827 * + if the node and the stack are both empty, we clear the TIM bit. 6828 * + If the stack tries to set the bit, always set it. 6829 * + If the stack tries to clear the bit, only clear it if the 6830 * software queue in question is also cleared. 6831 * 6832 * TODO: this is called during node teardown; so let's ensure this 6833 * is all correctly handled and that the TIM bit is cleared. 6834 * It may be that the node flush is called _AFTER_ the net80211 6835 * stack clears the TIM. 6836 * 6837 * Here is the racy part. Since it's possible >1 concurrent, 6838 * overlapping TXes will appear complete with a TX completion in 6839 * another thread, it's possible that the concurrent TIM calls will 6840 * clash. We can't hold the node lock here because setting the 6841 * TIM grabs the net80211 comlock and this may cause a LOR. 6842 * The solution is either to totally serialise _everything_ at 6843 * this point (ie, all TX, completion and any reset/flush go into 6844 * one taskqueue) or a new "ath TIM lock" needs to be created that 6845 * just wraps the driver state change and this call to avp->av_set_tim(). 6846 * 6847 * The same race exists in the net80211 power save queue handling 6848 * as well. Since multiple transmitting threads may queue frames 6849 * into the driver, as well as ps-poll and the driver transmitting 6850 * frames (and thus clearing the psq), it's quite possible that 6851 * a packet entering the PSQ and a ps-poll being handled will 6852 * race, causing the TIM to be cleared and not re-set. 6853 */ 6854 static int 6855 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6856 { 6857 #ifdef ATH_SW_PSQ 6858 struct ieee80211com *ic = ni->ni_ic; 6859 struct ath_softc *sc = ic->ic_ifp->if_softc; 6860 struct ath_node *an = ATH_NODE(ni); 6861 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6862 int changed = 0; 6863 6864 ATH_TX_LOCK(sc); 6865 an->an_stack_psq = enable; 6866 6867 /* 6868 * This will get called for all operating modes, 6869 * even if avp->av_set_tim is unset. 6870 * It's currently set for hostap/ibss modes; but 6871 * the same infrastructure is used for both STA 6872 * and AP/IBSS node power save. 6873 */ 6874 if (avp->av_set_tim == NULL) { 6875 ATH_TX_UNLOCK(sc); 6876 return (0); 6877 } 6878 6879 /* 6880 * If setting the bit, always set it here. 6881 * If clearing the bit, only clear it if the 6882 * software queue is also empty. 6883 * 6884 * If the node has left power save, just clear the TIM 6885 * bit regardless of the state of the power save queue. 6886 * 6887 * XXX TODO: although atomics are used, it's quite possible 6888 * that a race will occur between this and setting/clearing 6889 * in another thread. TX completion will occur always in 6890 * one thread, however setting/clearing the TIM bit can come 6891 * from a variety of different process contexts! 6892 */ 6893 if (enable && an->an_tim_set == 1) { 6894 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6895 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6896 __func__, 6897 ni->ni_macaddr, 6898 ":", 6899 enable); 6900 ATH_TX_UNLOCK(sc); 6901 } else if (enable) { 6902 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6903 "%s: %6D: enable=%d, enabling TIM\n", 6904 __func__, 6905 ni->ni_macaddr, 6906 ":", 6907 enable); 6908 an->an_tim_set = 1; 6909 ATH_TX_UNLOCK(sc); 6910 changed = avp->av_set_tim(ni, enable); 6911 } else if (an->an_swq_depth == 0) { 6912 /* disable */ 6913 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6914 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6915 __func__, 6916 ni->ni_macaddr, 6917 ":", 6918 enable); 6919 an->an_tim_set = 0; 6920 ATH_TX_UNLOCK(sc); 6921 changed = avp->av_set_tim(ni, enable); 6922 } else if (! an->an_is_powersave) { 6923 /* 6924 * disable regardless; the node isn't in powersave now 6925 */ 6926 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6927 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6928 __func__, 6929 ni->ni_macaddr, 6930 ":", 6931 enable); 6932 an->an_tim_set = 0; 6933 ATH_TX_UNLOCK(sc); 6934 changed = avp->av_set_tim(ni, enable); 6935 } else { 6936 /* 6937 * psq disable, node is currently in powersave, node 6938 * software queue isn't empty, so don't clear the TIM bit 6939 * for now. 6940 */ 6941 ATH_TX_UNLOCK(sc); 6942 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6943 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6944 __func__, 6945 ni->ni_macaddr, 6946 ":", 6947 enable); 6948 changed = 0; 6949 } 6950 6951 return (changed); 6952 #else 6953 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6954 6955 /* 6956 * Some operating modes don't set av_set_tim(), so don't 6957 * update it here. 6958 */ 6959 if (avp->av_set_tim == NULL) 6960 return (0); 6961 6962 return (avp->av_set_tim(ni, enable)); 6963 #endif /* ATH_SW_PSQ */ 6964 } 6965 6966 /* 6967 * Set or update the TIM from the software queue. 6968 * 6969 * Check the software queue depth before attempting to do lock 6970 * anything; that avoids trying to obtain the lock. Then, 6971 * re-check afterwards to ensure nothing has changed in the 6972 * meantime. 6973 * 6974 * set: This is designed to be called from the TX path, after 6975 * a frame has been queued; to see if the swq > 0. 6976 * 6977 * clear: This is designed to be called from the buffer completion point 6978 * (right now it's ath_tx_default_comp()) where the state of 6979 * a software queue has changed. 6980 * 6981 * It makes sense to place it at buffer free / completion rather 6982 * than after each software queue operation, as there's no real 6983 * point in churning the TIM bit as the last frames in the software 6984 * queue are transmitted. If they fail and we retry them, we'd 6985 * just be setting the TIM bit again anyway. 6986 */ 6987 void 6988 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6989 int enable) 6990 { 6991 #ifdef ATH_SW_PSQ 6992 struct ath_node *an; 6993 struct ath_vap *avp; 6994 6995 /* Don't do this for broadcast/etc frames */ 6996 if (ni == NULL) 6997 return; 6998 6999 an = ATH_NODE(ni); 7000 avp = ATH_VAP(ni->ni_vap); 7001 7002 /* 7003 * And for operating modes without the TIM handler set, let's 7004 * just skip those. 7005 */ 7006 if (avp->av_set_tim == NULL) 7007 return; 7008 7009 ATH_TX_LOCK_ASSERT(sc); 7010 7011 if (enable) { 7012 if (an->an_is_powersave && 7013 an->an_tim_set == 0 && 7014 an->an_swq_depth != 0) { 7015 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7016 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 7017 __func__, 7018 ni->ni_macaddr, 7019 ":"); 7020 an->an_tim_set = 1; 7021 (void) avp->av_set_tim(ni, 1); 7022 } 7023 } else { 7024 /* 7025 * Don't bother grabbing the lock unless the queue is empty. 7026 */ 7027 if (&an->an_swq_depth != 0) 7028 return; 7029 7030 if (an->an_is_powersave && 7031 an->an_stack_psq == 0 && 7032 an->an_tim_set == 1 && 7033 an->an_swq_depth == 0) { 7034 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7035 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 7036 " clear!\n", 7037 __func__, 7038 ni->ni_macaddr, 7039 ":"); 7040 an->an_tim_set = 0; 7041 (void) avp->av_set_tim(ni, 0); 7042 } 7043 } 7044 #else 7045 return; 7046 #endif /* ATH_SW_PSQ */ 7047 } 7048 7049 /* 7050 * Received a ps-poll frame from net80211. 7051 * 7052 * Here we get a chance to serve out a software-queued frame ourselves 7053 * before we punt it to net80211 to transmit us one itself - either 7054 * because there's traffic in the net80211 psq, or a NULL frame to 7055 * indicate there's nothing else. 7056 */ 7057 static void 7058 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 7059 { 7060 #ifdef ATH_SW_PSQ 7061 struct ath_node *an; 7062 struct ath_vap *avp; 7063 struct ieee80211com *ic = ni->ni_ic; 7064 struct ath_softc *sc = ic->ic_ifp->if_softc; 7065 int tid; 7066 7067 /* Just paranoia */ 7068 if (ni == NULL) 7069 return; 7070 7071 /* 7072 * Unassociated (temporary node) station. 7073 */ 7074 if (ni->ni_associd == 0) 7075 return; 7076 7077 /* 7078 * We do have an active node, so let's begin looking into it. 7079 */ 7080 an = ATH_NODE(ni); 7081 avp = ATH_VAP(ni->ni_vap); 7082 7083 /* 7084 * For now, we just call the original ps-poll method. 7085 * Once we're ready to flip this on: 7086 * 7087 * + Set leak to 1, as no matter what we're going to have 7088 * to send a frame; 7089 * + Check the software queue and if there's something in it, 7090 * schedule the highest TID thas has traffic from this node. 7091 * Then make sure we schedule the software scheduler to 7092 * run so it picks up said frame. 7093 * 7094 * That way whatever happens, we'll at least send _a_ frame 7095 * to the given node. 7096 * 7097 * Again, yes, it's crappy QoS if the node has multiple 7098 * TIDs worth of traffic - but let's get it working first 7099 * before we optimise it. 7100 * 7101 * Also yes, there's definitely latency here - we're not 7102 * direct dispatching to the hardware in this path (and 7103 * we're likely being called from the packet receive path, 7104 * so going back into TX may be a little hairy!) but again 7105 * I'd like to get this working first before optimising 7106 * turn-around time. 7107 */ 7108 7109 ATH_TX_LOCK(sc); 7110 7111 /* 7112 * Legacy - we're called and the node isn't asleep. 7113 * Immediately punt. 7114 */ 7115 if (! an->an_is_powersave) { 7116 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7117 "%s: %6D: not in powersave?\n", 7118 __func__, 7119 ni->ni_macaddr, 7120 ":"); 7121 ATH_TX_UNLOCK(sc); 7122 avp->av_recv_pspoll(ni, m); 7123 return; 7124 } 7125 7126 /* 7127 * We're in powersave. 7128 * 7129 * Leak a frame. 7130 */ 7131 an->an_leak_count = 1; 7132 7133 /* 7134 * Now, if there's no frames in the node, just punt to 7135 * recv_pspoll. 7136 * 7137 * Don't bother checking if the TIM bit is set, we really 7138 * only care if there are any frames here! 7139 */ 7140 if (an->an_swq_depth == 0) { 7141 ATH_TX_UNLOCK(sc); 7142 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7143 "%s: %6D: SWQ empty; punting to net80211\n", 7144 __func__, 7145 ni->ni_macaddr, 7146 ":"); 7147 avp->av_recv_pspoll(ni, m); 7148 return; 7149 } 7150 7151 /* 7152 * Ok, let's schedule the highest TID that has traffic 7153 * and then schedule something. 7154 */ 7155 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7156 struct ath_tid *atid = &an->an_tid[tid]; 7157 /* 7158 * No frames? Skip. 7159 */ 7160 if (atid->axq_depth == 0) 7161 continue; 7162 ath_tx_tid_sched(sc, atid); 7163 /* 7164 * XXX we could do a direct call to the TXQ 7165 * scheduler code here to optimise latency 7166 * at the expense of a REALLY deep callstack. 7167 */ 7168 ATH_TX_UNLOCK(sc); 7169 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7170 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7171 "%s: %6D: leaking frame to TID %d\n", 7172 __func__, 7173 ni->ni_macaddr, 7174 ":", 7175 tid); 7176 return; 7177 } 7178 7179 ATH_TX_UNLOCK(sc); 7180 7181 /* 7182 * XXX nothing in the TIDs at this point? Eek. 7183 */ 7184 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7185 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7186 __func__, 7187 ni->ni_macaddr, 7188 ":"); 7189 avp->av_recv_pspoll(ni, m); 7190 #else 7191 avp->av_recv_pspoll(ni, m); 7192 #endif /* ATH_SW_PSQ */ 7193 } 7194 7195 MODULE_VERSION(if_ath, 1); 7196 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 7197 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7198 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 7199 #endif 7200