1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 3. Neither the names of the above-listed copyright holders nor the names 16 * of any contributors may be used to endorse or promote products derived 17 * from this software without specific prior written permission. 18 * 19 * Alternatively, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") version 2 as published by the Free 21 * Software Foundation. 22 * 23 * NO WARRANTY 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 34 * THE POSSIBILITY OF SUCH DAMAGES. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /* 41 * Driver for the Atheros Wireless LAN controller. 42 * 43 * This software is derived from work of Atsushi Onoe; his contribution 44 * is greatly appreciated. 45 */ 46 47 #include "opt_inet.h" 48 #include "opt_ath.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/sysctl.h> 53 #include <sys/mbuf.h> 54 #include <sys/malloc.h> 55 #include <sys/lock.h> 56 #include <sys/mutex.h> 57 #include <sys/kernel.h> 58 #include <sys/socket.h> 59 #include <sys/sockio.h> 60 #include <sys/errno.h> 61 #include <sys/callout.h> 62 #include <sys/bus.h> 63 #include <sys/endian.h> 64 #include <sys/kthread.h> 65 #include <sys/taskqueue.h> 66 67 #include <machine/bus.h> 68 69 #include <net/if.h> 70 #include <net/if_dl.h> 71 #include <net/if_media.h> 72 #include <net/if_types.h> 73 #include <net/if_arp.h> 74 #include <net/ethernet.h> 75 #include <net/if_llc.h> 76 77 #include <net80211/ieee80211_var.h> 78 79 #include <net/bpf.h> 80 81 #ifdef INET 82 #include <netinet/in.h> 83 #include <netinet/if_ether.h> 84 #endif 85 86 #include <dev/ath/if_athvar.h> 87 #include <contrib/dev/ath/ah_desc.h> 88 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */ 89 90 #ifdef ATH_TX99_DIAG 91 #include <dev/ath/ath_tx99/ath_tx99.h> 92 #endif 93 94 /* unaligned little endian access */ 95 #define LE_READ_2(p) \ 96 ((u_int16_t) \ 97 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 98 #define LE_READ_4(p) \ 99 ((u_int32_t) \ 100 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 101 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 102 103 enum { 104 ATH_LED_TX, 105 ATH_LED_RX, 106 ATH_LED_POLL, 107 }; 108 109 static void ath_init(void *); 110 static void ath_stop_locked(struct ifnet *); 111 static void ath_stop(struct ifnet *); 112 static void ath_start(struct ifnet *); 113 static int ath_reset(struct ifnet *); 114 static int ath_media_change(struct ifnet *); 115 static void ath_watchdog(struct ifnet *); 116 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 117 static void ath_fatal_proc(void *, int); 118 static void ath_rxorn_proc(void *, int); 119 static void ath_bmiss_proc(void *, int); 120 static void ath_radar_proc(void *, int); 121 static int ath_key_alloc(struct ieee80211com *, 122 const struct ieee80211_key *, 123 ieee80211_keyix *, ieee80211_keyix *); 124 static int ath_key_delete(struct ieee80211com *, 125 const struct ieee80211_key *); 126 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 127 const u_int8_t mac[IEEE80211_ADDR_LEN]); 128 static void ath_key_update_begin(struct ieee80211com *); 129 static void ath_key_update_end(struct ieee80211com *); 130 static void ath_mode_init(struct ath_softc *); 131 static void ath_setslottime(struct ath_softc *); 132 static void ath_updateslot(struct ifnet *); 133 static int ath_beaconq_setup(struct ath_hal *); 134 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 135 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 136 static void ath_beacon_proc(void *, int); 137 static void ath_bstuck_proc(void *, int); 138 static void ath_beacon_free(struct ath_softc *); 139 static void ath_beacon_config(struct ath_softc *); 140 static void ath_descdma_cleanup(struct ath_softc *sc, 141 struct ath_descdma *, ath_bufhead *); 142 static int ath_desc_alloc(struct ath_softc *); 143 static void ath_desc_free(struct ath_softc *); 144 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 145 static void ath_node_free(struct ieee80211_node *); 146 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 147 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 148 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 149 struct ieee80211_node *ni, 150 int subtype, int rssi, u_int32_t rstamp); 151 static void ath_setdefantenna(struct ath_softc *, u_int); 152 static void ath_rx_proc(void *, int); 153 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 154 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 155 static int ath_tx_setup(struct ath_softc *, int, int); 156 static int ath_wme_update(struct ieee80211com *); 157 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 158 static void ath_tx_cleanup(struct ath_softc *); 159 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 160 struct ath_buf *, struct mbuf *); 161 static void ath_tx_proc_q0(void *, int); 162 static void ath_tx_proc_q0123(void *, int); 163 static void ath_tx_proc(void *, int); 164 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 165 static void ath_draintxq(struct ath_softc *); 166 static void ath_stoprecv(struct ath_softc *); 167 static int ath_startrecv(struct ath_softc *); 168 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 169 static void ath_next_scan(void *); 170 static void ath_calibrate(void *); 171 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 172 static void ath_setup_stationkey(struct ieee80211_node *); 173 static void ath_newassoc(struct ieee80211_node *, int); 174 static int ath_getchannels(struct ath_softc *, u_int cc, 175 HAL_BOOL outdoor, HAL_BOOL xchanmode); 176 static void ath_led_event(struct ath_softc *, int); 177 static void ath_update_txpow(struct ath_softc *); 178 179 static int ath_rate_setup(struct ath_softc *, u_int mode); 180 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 181 182 static void ath_sysctlattach(struct ath_softc *); 183 static void ath_bpfattach(struct ath_softc *); 184 static void ath_announce(struct ath_softc *); 185 186 SYSCTL_DECL(_hw_ath); 187 188 /* XXX validate sysctl values */ 189 static int ath_dwelltime = 200; /* 5 channels/second */ 190 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime, 191 0, "channel dwell time (ms) for AP/station scanning"); 192 static int ath_calinterval = 30; /* calibrate every 30 secs */ 193 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 194 0, "chip calibration interval (secs)"); 195 static int ath_outdoor = AH_TRUE; /* outdoor operation */ 196 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor, 197 0, "outdoor operation"); 198 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor); 199 static int ath_xchanmode = AH_TRUE; /* extended channel use */ 200 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode, 201 0, "extended channel mode"); 202 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode); 203 static int ath_countrycode = CTRY_DEFAULT; /* country code */ 204 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode, 205 0, "country code"); 206 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode); 207 static int ath_regdomain = 0; /* regulatory domain */ 208 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain, 209 0, "regulatory domain"); 210 211 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 212 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf, 213 0, "rx buffers allocated"); 214 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 215 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 216 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf, 217 0, "tx buffers allocated"); 218 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 219 220 #ifdef ATH_DEBUG 221 static int ath_debug = 0; 222 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 223 0, "control debugging printfs"); 224 TUNABLE_INT("hw.ath.debug", &ath_debug); 225 enum { 226 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 227 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 228 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 229 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 230 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 231 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 232 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 233 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 234 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 235 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 236 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 237 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 238 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 239 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 240 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 241 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 242 ATH_DEBUG_NODE = 0x00080000, /* node management */ 243 ATH_DEBUG_LED = 0x00100000, /* led management */ 244 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 245 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 246 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 247 ATH_DEBUG_ANY = 0xffffffff 248 }; 249 #define IFF_DUMPPKTS(sc, m) \ 250 ((sc->sc_debug & (m)) || \ 251 (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 252 #define DPRINTF(sc, m, fmt, ...) do { \ 253 if (sc->sc_debug & (m)) \ 254 printf(fmt, __VA_ARGS__); \ 255 } while (0) 256 #define KEYPRINTF(sc, ix, hk, mac) do { \ 257 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 258 ath_keyprint(__func__, ix, hk, mac); \ 259 } while (0) 260 static void ath_printrxbuf(struct ath_buf *bf, u_int ix, int); 261 static void ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done); 262 #else 263 #define IFF_DUMPPKTS(sc, m) \ 264 ((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 265 #define DPRINTF(sc, m, fmt, ...) do { \ 266 (void) sc; \ 267 } while (0) 268 #define KEYPRINTF(sc, k, ix, mac) do { \ 269 (void) sc; \ 270 } while (0) 271 #endif 272 273 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 274 275 int 276 ath_attach(u_int16_t devid, struct ath_softc *sc) 277 { 278 struct ifnet *ifp; 279 struct ieee80211com *ic = &sc->sc_ic; 280 struct ath_hal *ah = NULL; 281 HAL_STATUS status; 282 int error = 0, i; 283 284 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 285 286 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 287 if (ifp == NULL) { 288 device_printf(sc->sc_dev, "can not if_alloc()\n"); 289 error = ENOSPC; 290 goto bad; 291 } 292 293 /* set these up early for if_printf use */ 294 if_initname(ifp, device_get_name(sc->sc_dev), 295 device_get_unit(sc->sc_dev)); 296 297 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 298 if (ah == NULL) { 299 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 300 status); 301 error = ENXIO; 302 goto bad; 303 } 304 if (ah->ah_abi != HAL_ABI_VERSION) { 305 if_printf(ifp, "HAL ABI mismatch detected " 306 "(HAL:0x%x != driver:0x%x)\n", 307 ah->ah_abi, HAL_ABI_VERSION); 308 error = ENXIO; 309 goto bad; 310 } 311 sc->sc_ah = ah; 312 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 313 314 /* 315 * Check if the MAC has multi-rate retry support. 316 * We do this by trying to setup a fake extended 317 * descriptor. MAC's that don't have support will 318 * return false w/o doing anything. MAC's that do 319 * support it will return true w/o doing anything. 320 */ 321 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 322 323 /* 324 * Check if the device has hardware counters for PHY 325 * errors. If so we need to enable the MIB interrupt 326 * so we can act on stat triggers. 327 */ 328 if (ath_hal_hwphycounters(ah)) 329 sc->sc_needmib = 1; 330 331 /* 332 * Get the hardware key cache size. 333 */ 334 sc->sc_keymax = ath_hal_keycachesize(ah); 335 if (sc->sc_keymax > ATH_KEYMAX) { 336 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 337 ATH_KEYMAX, sc->sc_keymax); 338 sc->sc_keymax = ATH_KEYMAX; 339 } 340 /* 341 * Reset the key cache since some parts do not 342 * reset the contents on initial power up. 343 */ 344 for (i = 0; i < sc->sc_keymax; i++) 345 ath_hal_keyreset(ah, i); 346 /* 347 * Mark key cache slots associated with global keys 348 * as in use. If we knew TKIP was not to be used we 349 * could leave the +32, +64, and +32+64 slots free. 350 * XXX only for splitmic. 351 */ 352 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 353 setbit(sc->sc_keymap, i); 354 setbit(sc->sc_keymap, i+32); 355 setbit(sc->sc_keymap, i+64); 356 setbit(sc->sc_keymap, i+32+64); 357 } 358 359 /* 360 * Collect the channel list using the default country 361 * code and including outdoor channels. The 802.11 layer 362 * is resposible for filtering this list based on settings 363 * like the phy mode. 364 */ 365 error = ath_getchannels(sc, ath_countrycode, 366 ath_outdoor, ath_xchanmode); 367 if (error != 0) 368 goto bad; 369 370 /* 371 * Setup rate tables for all potential media types. 372 */ 373 ath_rate_setup(sc, IEEE80211_MODE_11A); 374 ath_rate_setup(sc, IEEE80211_MODE_11B); 375 ath_rate_setup(sc, IEEE80211_MODE_11G); 376 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 377 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 378 /* NB: setup here so ath_rate_update is happy */ 379 ath_setcurmode(sc, IEEE80211_MODE_11A); 380 381 /* 382 * Allocate tx+rx descriptors and populate the lists. 383 */ 384 error = ath_desc_alloc(sc); 385 if (error != 0) { 386 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 387 goto bad; 388 } 389 callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 390 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE); 391 callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 392 393 ATH_TXBUF_LOCK_INIT(sc); 394 395 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 396 taskqueue_thread_enqueue, &sc->sc_tq); 397 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 398 "%s taskq", ifp->if_xname); 399 400 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 401 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 402 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 403 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 404 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 405 406 /* 407 * Allocate hardware transmit queues: one queue for 408 * beacon frames and one data queue for each QoS 409 * priority. Note that the hal handles reseting 410 * these queues at the needed time. 411 * 412 * XXX PS-Poll 413 */ 414 sc->sc_bhalq = ath_beaconq_setup(ah); 415 if (sc->sc_bhalq == (u_int) -1) { 416 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 417 error = EIO; 418 goto bad2; 419 } 420 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 421 if (sc->sc_cabq == NULL) { 422 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 423 error = EIO; 424 goto bad2; 425 } 426 ath_txq_init(sc, &sc->sc_mcastq, -1); /* NB: s/w q, qnum not used */ 427 /* NB: insure BK queue is the lowest priority h/w queue */ 428 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 429 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 430 ieee80211_wme_acnames[WME_AC_BK]); 431 error = EIO; 432 goto bad2; 433 } 434 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 435 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 436 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 437 /* 438 * Not enough hardware tx queues to properly do WME; 439 * just punt and assign them all to the same h/w queue. 440 * We could do a better job of this if, for example, 441 * we allocate queues when we switch from station to 442 * AP mode. 443 */ 444 if (sc->sc_ac2q[WME_AC_VI] != NULL) 445 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 446 if (sc->sc_ac2q[WME_AC_BE] != NULL) 447 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 448 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 449 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 450 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 451 } 452 453 /* 454 * Special case certain configurations. Note the 455 * CAB queue is handled by these specially so don't 456 * include them when checking the txq setup mask. 457 */ 458 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 459 case 0x01: 460 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 461 break; 462 case 0x0f: 463 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 464 break; 465 default: 466 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 467 break; 468 } 469 470 /* 471 * Setup rate control. Some rate control modules 472 * call back to change the anntena state so expose 473 * the necessary entry points. 474 * XXX maybe belongs in struct ath_ratectrl? 475 */ 476 sc->sc_setdefantenna = ath_setdefantenna; 477 sc->sc_rc = ath_rate_attach(sc); 478 if (sc->sc_rc == NULL) { 479 error = EIO; 480 goto bad2; 481 } 482 483 sc->sc_blinking = 0; 484 sc->sc_ledstate = 1; 485 sc->sc_ledon = 0; /* low true */ 486 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 487 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 488 /* 489 * Auto-enable soft led processing for IBM cards and for 490 * 5211 minipci cards. Users can also manually enable/disable 491 * support with a sysctl. 492 */ 493 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 494 if (sc->sc_softled) { 495 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 496 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 497 } 498 499 ifp->if_softc = sc; 500 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 501 ifp->if_start = ath_start; 502 ifp->if_watchdog = ath_watchdog; 503 ifp->if_ioctl = ath_ioctl; 504 ifp->if_init = ath_init; 505 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 506 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 507 IFQ_SET_READY(&ifp->if_snd); 508 509 ic->ic_ifp = ifp; 510 ic->ic_reset = ath_reset; 511 ic->ic_newassoc = ath_newassoc; 512 ic->ic_updateslot = ath_updateslot; 513 ic->ic_wme.wme_update = ath_wme_update; 514 /* XXX not right but it's not used anywhere important */ 515 ic->ic_phytype = IEEE80211_T_OFDM; 516 ic->ic_opmode = IEEE80211_M_STA; 517 ic->ic_caps = 518 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 519 | IEEE80211_C_HOSTAP /* hostap mode */ 520 | IEEE80211_C_MONITOR /* monitor mode */ 521 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 522 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 523 | IEEE80211_C_SHSLOT /* short slot time supported */ 524 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 525 ; 526 /* 527 * Query the hal to figure out h/w crypto support. 528 */ 529 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 530 ic->ic_caps |= IEEE80211_C_WEP; 531 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 532 ic->ic_caps |= IEEE80211_C_AES; 533 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 534 ic->ic_caps |= IEEE80211_C_AES_CCM; 535 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 536 ic->ic_caps |= IEEE80211_C_CKIP; 537 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 538 ic->ic_caps |= IEEE80211_C_TKIP; 539 /* 540 * Check if h/w does the MIC and/or whether the 541 * separate key cache entries are required to 542 * handle both tx+rx MIC keys. 543 */ 544 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 545 ic->ic_caps |= IEEE80211_C_TKIPMIC; 546 if (ath_hal_tkipsplit(ah)) 547 sc->sc_splitmic = 1; 548 } 549 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 550 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 551 /* 552 * TPC support can be done either with a global cap or 553 * per-packet support. The latter is not available on 554 * all parts. We're a bit pedantic here as all parts 555 * support a global cap. 556 */ 557 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 558 ic->ic_caps |= IEEE80211_C_TXPMGT; 559 560 /* 561 * Mark WME capability only if we have sufficient 562 * hardware queues to do proper priority scheduling. 563 */ 564 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 565 ic->ic_caps |= IEEE80211_C_WME; 566 /* 567 * Check for misc other capabilities. 568 */ 569 if (ath_hal_hasbursting(ah)) 570 ic->ic_caps |= IEEE80211_C_BURST; 571 572 /* 573 * Indicate we need the 802.11 header padded to a 574 * 32-bit boundary for 4-address and QoS frames. 575 */ 576 ic->ic_flags |= IEEE80211_F_DATAPAD; 577 578 /* 579 * Query the hal about antenna support. 580 */ 581 sc->sc_defant = ath_hal_getdefantenna(ah); 582 583 /* 584 * Not all chips have the VEOL support we want to 585 * use with IBSS beacons; check here for it. 586 */ 587 sc->sc_hasveol = ath_hal_hasveol(ah); 588 589 /* get mac address from hardware */ 590 ath_hal_getmac(ah, ic->ic_myaddr); 591 592 /* call MI attach routine. */ 593 ieee80211_ifattach(ic); 594 sc->sc_opmode = ic->ic_opmode; 595 /* override default methods */ 596 ic->ic_node_alloc = ath_node_alloc; 597 sc->sc_node_free = ic->ic_node_free; 598 ic->ic_node_free = ath_node_free; 599 ic->ic_node_getrssi = ath_node_getrssi; 600 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 601 ic->ic_recv_mgmt = ath_recv_mgmt; 602 sc->sc_newstate = ic->ic_newstate; 603 ic->ic_newstate = ath_newstate; 604 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 605 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 606 ic->ic_crypto.cs_key_delete = ath_key_delete; 607 ic->ic_crypto.cs_key_set = ath_key_set; 608 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 609 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 610 /* complete initialization */ 611 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 612 613 ath_bpfattach(sc); 614 /* 615 * Setup dynamic sysctl's now that country code and 616 * regdomain are available from the hal. 617 */ 618 ath_sysctlattach(sc); 619 620 if (bootverbose) 621 ieee80211_announce(ic); 622 ath_announce(sc); 623 return 0; 624 bad2: 625 ath_tx_cleanup(sc); 626 ath_desc_free(sc); 627 bad: 628 if (ah) 629 ath_hal_detach(ah); 630 if (ifp != NULL) 631 if_free(ifp); 632 sc->sc_invalid = 1; 633 return error; 634 } 635 636 int 637 ath_detach(struct ath_softc *sc) 638 { 639 struct ifnet *ifp = sc->sc_ifp; 640 641 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 642 __func__, ifp->if_flags); 643 644 ath_stop(ifp); 645 bpfdetach(ifp); 646 /* 647 * NB: the order of these is important: 648 * o call the 802.11 layer before detaching the hal to 649 * insure callbacks into the driver to delete global 650 * key cache entries can be handled 651 * o reclaim the tx queue data structures after calling 652 * the 802.11 layer as we'll get called back to reclaim 653 * node state and potentially want to use them 654 * o to cleanup the tx queues the hal is called, so detach 655 * it last 656 * Other than that, it's straightforward... 657 */ 658 ieee80211_ifdetach(&sc->sc_ic); 659 #ifdef ATH_TX99_DIAG 660 if (sc->sc_tx99 != NULL) 661 sc->sc_tx99->detach(sc->sc_tx99); 662 #endif 663 taskqueue_free(sc->sc_tq); 664 ath_rate_detach(sc->sc_rc); 665 ath_desc_free(sc); 666 ath_tx_cleanup(sc); 667 ath_hal_detach(sc->sc_ah); 668 if_free(ifp); 669 670 return 0; 671 } 672 673 void 674 ath_suspend(struct ath_softc *sc) 675 { 676 struct ifnet *ifp = sc->sc_ifp; 677 678 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 679 __func__, ifp->if_flags); 680 681 ath_stop(ifp); 682 } 683 684 void 685 ath_resume(struct ath_softc *sc) 686 { 687 struct ifnet *ifp = sc->sc_ifp; 688 689 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 690 __func__, ifp->if_flags); 691 692 if (ifp->if_flags & IFF_UP) { 693 ath_init(sc); 694 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 695 ath_start(ifp); 696 } 697 if (sc->sc_softled) { 698 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 699 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 700 } 701 } 702 703 void 704 ath_shutdown(struct ath_softc *sc) 705 { 706 struct ifnet *ifp = sc->sc_ifp; 707 708 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 709 __func__, ifp->if_flags); 710 711 ath_stop(ifp); 712 } 713 714 /* 715 * Interrupt handler. Most of the actual processing is deferred. 716 */ 717 void 718 ath_intr(void *arg) 719 { 720 struct ath_softc *sc = arg; 721 struct ifnet *ifp = sc->sc_ifp; 722 struct ath_hal *ah = sc->sc_ah; 723 HAL_INT status; 724 725 if (sc->sc_invalid) { 726 /* 727 * The hardware is not ready/present, don't touch anything. 728 * Note this can happen early on if the IRQ is shared. 729 */ 730 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 731 return; 732 } 733 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 734 return; 735 if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & 736 IFF_DRV_RUNNING))) { 737 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 738 __func__, ifp->if_flags); 739 ath_hal_getisr(ah, &status); /* clear ISR */ 740 ath_hal_intrset(ah, 0); /* disable further intr's */ 741 return; 742 } 743 /* 744 * Figure out the reason(s) for the interrupt. Note 745 * that the hal returns a pseudo-ISR that may include 746 * bits we haven't explicitly enabled so we mask the 747 * value to insure we only process bits we requested. 748 */ 749 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 750 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 751 status &= sc->sc_imask; /* discard unasked for bits */ 752 if (status & HAL_INT_FATAL) { 753 sc->sc_stats.ast_hardware++; 754 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 755 ath_fatal_proc(sc, 0); 756 } else if (status & HAL_INT_RXORN) { 757 sc->sc_stats.ast_rxorn++; 758 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 759 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask); 760 } else { 761 if (status & HAL_INT_SWBA) { 762 /* 763 * Software beacon alert--time to send a beacon. 764 * Handle beacon transmission directly; deferring 765 * this is too slow to meet timing constraints 766 * under load. 767 */ 768 ath_beacon_proc(sc, 0); 769 } 770 if (status & HAL_INT_RXEOL) { 771 /* 772 * NB: the hardware should re-read the link when 773 * RXE bit is written, but it doesn't work at 774 * least on older hardware revs. 775 */ 776 sc->sc_stats.ast_rxeol++; 777 sc->sc_rxlink = NULL; 778 } 779 if (status & HAL_INT_TXURN) { 780 sc->sc_stats.ast_txurn++; 781 /* bump tx trigger level */ 782 ath_hal_updatetxtriglevel(ah, AH_TRUE); 783 } 784 if (status & HAL_INT_RX) 785 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 786 if (status & HAL_INT_TX) 787 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 788 if (status & HAL_INT_BMISS) { 789 sc->sc_stats.ast_bmiss++; 790 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 791 } 792 if (status & HAL_INT_MIB) { 793 sc->sc_stats.ast_mib++; 794 /* 795 * Disable interrupts until we service the MIB 796 * interrupt; otherwise it will continue to fire. 797 */ 798 ath_hal_intrset(ah, 0); 799 /* 800 * Let the hal handle the event. We assume it will 801 * clear whatever condition caused the interrupt. 802 */ 803 ath_hal_mibevent(ah, &sc->sc_halstats); 804 ath_hal_intrset(ah, sc->sc_imask); 805 } 806 } 807 } 808 809 static void 810 ath_fatal_proc(void *arg, int pending) 811 { 812 struct ath_softc *sc = arg; 813 struct ifnet *ifp = sc->sc_ifp; 814 u_int32_t *state; 815 u_int32_t len; 816 817 if_printf(ifp, "hardware error; resetting\n"); 818 /* 819 * Fatal errors are unrecoverable. Typically these 820 * are caused by DMA errors. Collect h/w state from 821 * the hal so we can diagnose what's going on. 822 */ 823 if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) { 824 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 825 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 826 state[0], state[1] , state[2], state[3], 827 state[4], state[5]); 828 } 829 ath_reset(ifp); 830 } 831 832 static void 833 ath_rxorn_proc(void *arg, int pending) 834 { 835 struct ath_softc *sc = arg; 836 struct ifnet *ifp = sc->sc_ifp; 837 838 if_printf(ifp, "rx FIFO overrun; resetting\n"); 839 ath_reset(ifp); 840 } 841 842 static void 843 ath_bmiss_proc(void *arg, int pending) 844 { 845 struct ath_softc *sc = arg; 846 struct ieee80211com *ic = &sc->sc_ic; 847 848 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 849 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 850 ("unexpect operating mode %u", ic->ic_opmode)); 851 if (ic->ic_state == IEEE80211_S_RUN) { 852 u_int64_t lastrx = sc->sc_lastrx; 853 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 854 u_int bmisstimeout = 855 ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024; 856 857 DPRINTF(sc, ATH_DEBUG_BEACON, 858 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 859 __func__, (unsigned long long) tsf, 860 (unsigned long long)(tsf - lastrx), 861 (unsigned long long) lastrx, bmisstimeout); 862 /* 863 * Workaround phantom bmiss interrupts by sanity-checking 864 * the time of our last rx'd frame. If it is within the 865 * beacon miss interval then ignore the interrupt. If it's 866 * truly a bmiss we'll get another interrupt soon and that'll 867 * be dispatched up for processing. 868 */ 869 if (tsf - lastrx > bmisstimeout) { 870 NET_LOCK_GIANT(); 871 ieee80211_beacon_miss(ic); 872 NET_UNLOCK_GIANT(); 873 } else 874 sc->sc_stats.ast_bmiss_phantom++; 875 } 876 } 877 878 static void 879 ath_radar_proc(void *arg, int pending) 880 { 881 struct ath_softc *sc = arg; 882 struct ifnet *ifp = sc->sc_ifp; 883 struct ath_hal *ah = sc->sc_ah; 884 HAL_CHANNEL hchan; 885 886 if (ath_hal_procdfs(ah, &hchan)) { 887 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 888 hchan.channel, hchan.channelFlags, hchan.privFlags); 889 /* 890 * Initiate channel change. 891 */ 892 /* XXX not yet */ 893 } 894 } 895 896 static u_int 897 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 898 { 899 #define N(a) (sizeof(a) / sizeof(a[0])) 900 static const u_int modeflags[] = { 901 0, /* IEEE80211_MODE_AUTO */ 902 CHANNEL_A, /* IEEE80211_MODE_11A */ 903 CHANNEL_B, /* IEEE80211_MODE_11B */ 904 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 905 0, /* IEEE80211_MODE_FH */ 906 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 907 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 908 }; 909 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 910 911 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 912 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 913 return modeflags[mode]; 914 #undef N 915 } 916 917 static void 918 ath_init(void *arg) 919 { 920 struct ath_softc *sc = (struct ath_softc *) arg; 921 struct ieee80211com *ic = &sc->sc_ic; 922 struct ifnet *ifp = sc->sc_ifp; 923 struct ath_hal *ah = sc->sc_ah; 924 HAL_STATUS status; 925 926 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 927 __func__, ifp->if_flags); 928 929 ATH_LOCK(sc); 930 /* 931 * Stop anything previously setup. This is safe 932 * whether this is the first time through or not. 933 */ 934 ath_stop_locked(ifp); 935 936 /* 937 * The basic interface to setting the hardware in a good 938 * state is ``reset''. On return the hardware is known to 939 * be powered up and with interrupts disabled. This must 940 * be followed by initialization of the appropriate bits 941 * and then setup of the interrupt mask. 942 */ 943 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 944 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 945 if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 946 if_printf(ifp, "unable to reset hardware; hal status %u\n", 947 status); 948 goto done; 949 } 950 951 /* 952 * This is needed only to setup initial state 953 * but it's best done after a reset. 954 */ 955 ath_update_txpow(sc); 956 /* 957 * Likewise this is set during reset so update 958 * state cached in the driver. 959 */ 960 sc->sc_diversity = ath_hal_getdiversity(ah); 961 sc->sc_calinterval = 1; 962 sc->sc_caltries = 0; 963 964 /* 965 * Setup the hardware after reset: the key cache 966 * is filled as needed and the receive engine is 967 * set going. Frame transmit is handled entirely 968 * in the frame output path; there's nothing to do 969 * here except setup the interrupt mask. 970 */ 971 if (ath_startrecv(sc) != 0) { 972 if_printf(ifp, "unable to start recv logic\n"); 973 goto done; 974 } 975 976 /* 977 * Enable interrupts. 978 */ 979 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 980 | HAL_INT_RXEOL | HAL_INT_RXORN 981 | HAL_INT_FATAL | HAL_INT_GLOBAL; 982 /* 983 * Enable MIB interrupts when there are hardware phy counters. 984 * Note we only do this (at the moment) for station mode. 985 */ 986 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 987 sc->sc_imask |= HAL_INT_MIB; 988 ath_hal_intrset(ah, sc->sc_imask); 989 990 ifp->if_drv_flags |= IFF_DRV_RUNNING; 991 ic->ic_state = IEEE80211_S_INIT; 992 993 /* 994 * The hardware should be ready to go now so it's safe 995 * to kick the 802.11 state machine as it's likely to 996 * immediately call back to us to send mgmt frames. 997 */ 998 ath_chan_change(sc, ic->ic_curchan); 999 #ifdef ATH_TX99_DIAG 1000 if (sc->sc_tx99 != NULL) 1001 sc->sc_tx99->start(sc->sc_tx99); 1002 else 1003 #endif 1004 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1005 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1006 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1007 } else 1008 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1009 done: 1010 ATH_UNLOCK(sc); 1011 } 1012 1013 static void 1014 ath_stop_locked(struct ifnet *ifp) 1015 { 1016 struct ath_softc *sc = ifp->if_softc; 1017 struct ieee80211com *ic = &sc->sc_ic; 1018 struct ath_hal *ah = sc->sc_ah; 1019 1020 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1021 __func__, sc->sc_invalid, ifp->if_flags); 1022 1023 ATH_LOCK_ASSERT(sc); 1024 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1025 /* 1026 * Shutdown the hardware and driver: 1027 * reset 802.11 state machine 1028 * turn off timers 1029 * disable interrupts 1030 * turn off the radio 1031 * clear transmit machinery 1032 * clear receive machinery 1033 * drain and release tx queues 1034 * reclaim beacon resources 1035 * power down hardware 1036 * 1037 * Note that some of this work is not possible if the 1038 * hardware is gone (invalid). 1039 */ 1040 #ifdef ATH_TX99_DIAG 1041 if (sc->sc_tx99 != NULL) 1042 sc->sc_tx99->stop(sc->sc_tx99); 1043 #endif 1044 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1045 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1046 ifp->if_timer = 0; 1047 if (!sc->sc_invalid) { 1048 if (sc->sc_softled) { 1049 callout_stop(&sc->sc_ledtimer); 1050 ath_hal_gpioset(ah, sc->sc_ledpin, 1051 !sc->sc_ledon); 1052 sc->sc_blinking = 0; 1053 } 1054 ath_hal_intrset(ah, 0); 1055 } 1056 ath_draintxq(sc); 1057 if (!sc->sc_invalid) { 1058 ath_stoprecv(sc); 1059 ath_hal_phydisable(ah); 1060 } else 1061 sc->sc_rxlink = NULL; 1062 IFQ_DRV_PURGE(&ifp->if_snd); 1063 ath_beacon_free(sc); 1064 } 1065 } 1066 1067 static void 1068 ath_stop(struct ifnet *ifp) 1069 { 1070 struct ath_softc *sc = ifp->if_softc; 1071 1072 ATH_LOCK(sc); 1073 ath_stop_locked(ifp); 1074 if (!sc->sc_invalid) { 1075 /* 1076 * Set the chip in full sleep mode. Note that we are 1077 * careful to do this only when bringing the interface 1078 * completely to a stop. When the chip is in this state 1079 * it must be carefully woken up or references to 1080 * registers in the PCI clock domain may freeze the bus 1081 * (and system). This varies by chip and is mostly an 1082 * issue with newer parts that go to sleep more quickly. 1083 */ 1084 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 1085 } 1086 ATH_UNLOCK(sc); 1087 } 1088 1089 /* 1090 * Reset the hardware w/o losing operational state. This is 1091 * basically a more efficient way of doing ath_stop, ath_init, 1092 * followed by state transitions to the current 802.11 1093 * operational state. Used to recover from various errors and 1094 * to reset or reload hardware state. 1095 */ 1096 static int 1097 ath_reset(struct ifnet *ifp) 1098 { 1099 struct ath_softc *sc = ifp->if_softc; 1100 struct ieee80211com *ic = &sc->sc_ic; 1101 struct ath_hal *ah = sc->sc_ah; 1102 struct ieee80211_channel *c; 1103 HAL_STATUS status; 1104 1105 /* 1106 * Convert to a HAL channel description with the flags 1107 * constrained to reflect the current operating mode. 1108 */ 1109 c = ic->ic_curchan; 1110 sc->sc_curchan.channel = c->ic_freq; 1111 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1112 1113 ath_hal_intrset(ah, 0); /* disable interrupts */ 1114 ath_draintxq(sc); /* stop xmit side */ 1115 ath_stoprecv(sc); /* stop recv side */ 1116 /* NB: indicate channel change so we do a full reset */ 1117 if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1118 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1119 __func__, status); 1120 ath_update_txpow(sc); /* update tx power state */ 1121 sc->sc_diversity = ath_hal_getdiversity(ah); 1122 sc->sc_calinterval = 1; 1123 sc->sc_caltries = 0; 1124 /* 1125 * We may be doing a reset in response to an ioctl 1126 * that changes the channel so update any state that 1127 * might change as a result. 1128 */ 1129 ath_chan_change(sc, c); 1130 if (ath_startrecv(sc) != 0) /* restart recv */ 1131 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1132 if (ic->ic_state == IEEE80211_S_RUN) 1133 ath_beacon_config(sc); /* restart beacons */ 1134 ath_hal_intrset(ah, sc->sc_imask); 1135 1136 ath_start(ifp); /* restart xmit */ 1137 return 0; 1138 } 1139 1140 static void 1141 ath_start(struct ifnet *ifp) 1142 { 1143 struct ath_softc *sc = ifp->if_softc; 1144 struct ath_hal *ah = sc->sc_ah; 1145 struct ieee80211com *ic = &sc->sc_ic; 1146 struct ieee80211_node *ni; 1147 struct ath_buf *bf; 1148 struct mbuf *m; 1149 struct ieee80211_frame *wh; 1150 struct ether_header *eh; 1151 1152 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 1153 return; 1154 for (;;) { 1155 /* 1156 * Grab a TX buffer and associated resources. 1157 */ 1158 ATH_TXBUF_LOCK(sc); 1159 bf = STAILQ_FIRST(&sc->sc_txbuf); 1160 if (bf != NULL) 1161 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1162 ATH_TXBUF_UNLOCK(sc); 1163 if (bf == NULL) { 1164 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1165 __func__); 1166 sc->sc_stats.ast_tx_qstop++; 1167 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1168 break; 1169 } 1170 /* 1171 * Poll the management queue for frames; they 1172 * have priority over normal data frames. 1173 */ 1174 IF_DEQUEUE(&ic->ic_mgtq, m); 1175 if (m == NULL) { 1176 /* 1177 * No data frames go out unless we're associated. 1178 */ 1179 if (ic->ic_state != IEEE80211_S_RUN) { 1180 DPRINTF(sc, ATH_DEBUG_XMIT, 1181 "%s: discard data packet, state %s\n", 1182 __func__, 1183 ieee80211_state_name[ic->ic_state]); 1184 sc->sc_stats.ast_tx_discard++; 1185 ATH_TXBUF_LOCK(sc); 1186 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1187 ATH_TXBUF_UNLOCK(sc); 1188 break; 1189 } 1190 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1191 if (m == NULL) { 1192 ATH_TXBUF_LOCK(sc); 1193 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1194 ATH_TXBUF_UNLOCK(sc); 1195 break; 1196 } 1197 /* 1198 * Find the node for the destination so we can do 1199 * things like power save and fast frames aggregation. 1200 */ 1201 if (m->m_len < sizeof(struct ether_header) && 1202 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1203 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1204 ni = NULL; 1205 goto bad; 1206 } 1207 eh = mtod(m, struct ether_header *); 1208 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1209 if (ni == NULL) { 1210 /* NB: ieee80211_find_txnode does stat+msg */ 1211 m_freem(m); 1212 goto bad; 1213 } 1214 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1215 (m->m_flags & M_PWR_SAV) == 0) { 1216 /* 1217 * Station in power save mode; pass the frame 1218 * to the 802.11 layer and continue. We'll get 1219 * the frame back when the time is right. 1220 */ 1221 ieee80211_pwrsave(ic, ni, m); 1222 goto reclaim; 1223 } 1224 /* calculate priority so we can find the tx queue */ 1225 if (ieee80211_classify(ic, m, ni)) { 1226 DPRINTF(sc, ATH_DEBUG_XMIT, 1227 "%s: discard, classification failure\n", 1228 __func__); 1229 m_freem(m); 1230 goto bad; 1231 } 1232 ifp->if_opackets++; 1233 BPF_MTAP(ifp, m); 1234 /* 1235 * Encapsulate the packet in prep for transmission. 1236 */ 1237 m = ieee80211_encap(ic, m, ni); 1238 if (m == NULL) { 1239 DPRINTF(sc, ATH_DEBUG_XMIT, 1240 "%s: encapsulation failure\n", 1241 __func__); 1242 sc->sc_stats.ast_tx_encap++; 1243 goto bad; 1244 } 1245 } else { 1246 /* 1247 * Hack! The referenced node pointer is in the 1248 * rcvif field of the packet header. This is 1249 * placed there by ieee80211_mgmt_output because 1250 * we need to hold the reference with the frame 1251 * and there's no other way (other than packet 1252 * tags which we consider too expensive to use) 1253 * to pass it along. 1254 */ 1255 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1256 m->m_pkthdr.rcvif = NULL; 1257 1258 wh = mtod(m, struct ieee80211_frame *); 1259 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1260 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1261 /* fill time stamp */ 1262 u_int64_t tsf; 1263 u_int32_t *tstamp; 1264 1265 tsf = ath_hal_gettsf64(ah); 1266 /* XXX: adjust 100us delay to xmit */ 1267 tsf += 100; 1268 tstamp = (u_int32_t *)&wh[1]; 1269 tstamp[0] = htole32(tsf & 0xffffffff); 1270 tstamp[1] = htole32(tsf >> 32); 1271 } 1272 sc->sc_stats.ast_tx_mgmt++; 1273 } 1274 1275 if (ath_tx_start(sc, ni, bf, m)) { 1276 bad: 1277 ifp->if_oerrors++; 1278 reclaim: 1279 ATH_TXBUF_LOCK(sc); 1280 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1281 ATH_TXBUF_UNLOCK(sc); 1282 if (ni != NULL) 1283 ieee80211_free_node(ni); 1284 continue; 1285 } 1286 1287 sc->sc_tx_timer = 5; 1288 ifp->if_timer = 1; 1289 } 1290 } 1291 1292 static int 1293 ath_media_change(struct ifnet *ifp) 1294 { 1295 #define IS_UP(ifp) \ 1296 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 1297 int error; 1298 1299 error = ieee80211_media_change(ifp); 1300 if (error == ENETRESET) { 1301 struct ath_softc *sc = ifp->if_softc; 1302 struct ieee80211com *ic = &sc->sc_ic; 1303 1304 if (ic->ic_opmode == IEEE80211_M_AHDEMO) { 1305 /* 1306 * Adhoc demo mode is just ibss mode w/o beacons 1307 * (mostly). The hal knows nothing about it; 1308 * tell it we're operating in ibss mode. 1309 */ 1310 sc->sc_opmode = HAL_M_IBSS; 1311 } else 1312 sc->sc_opmode = ic->ic_opmode; 1313 if (IS_UP(ifp)) 1314 ath_init(ifp->if_softc); /* XXX lose error */ 1315 error = 0; 1316 } 1317 return error; 1318 #undef IS_UP 1319 } 1320 1321 #ifdef ATH_DEBUG 1322 static void 1323 ath_keyprint(const char *tag, u_int ix, 1324 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1325 { 1326 static const char *ciphers[] = { 1327 "WEP", 1328 "AES-OCB", 1329 "AES-CCM", 1330 "CKIP", 1331 "TKIP", 1332 "CLR", 1333 }; 1334 int i, n; 1335 1336 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1337 for (i = 0, n = hk->kv_len; i < n; i++) 1338 printf("%02x", hk->kv_val[i]); 1339 printf(" mac %s", ether_sprintf(mac)); 1340 if (hk->kv_type == HAL_CIPHER_TKIP) { 1341 printf(" mic "); 1342 for (i = 0; i < sizeof(hk->kv_mic); i++) 1343 printf("%02x", hk->kv_mic[i]); 1344 } 1345 printf("\n"); 1346 } 1347 #endif 1348 1349 /* 1350 * Set a TKIP key into the hardware. This handles the 1351 * potential distribution of key state to multiple key 1352 * cache slots for TKIP. 1353 */ 1354 static int 1355 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1356 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1357 { 1358 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1359 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1360 struct ath_hal *ah = sc->sc_ah; 1361 1362 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1363 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1364 KASSERT(sc->sc_splitmic, ("key cache !split")); 1365 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1366 /* 1367 * TX key goes at first index, RX key at the rx index. 1368 * The hal handles the MIC keys at index+64. 1369 */ 1370 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1371 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1372 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 1373 return 0; 1374 1375 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1376 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1377 /* XXX delete tx key on failure? */ 1378 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 1379 } else if (k->wk_flags & IEEE80211_KEY_XR) { 1380 /* 1381 * TX/RX key goes at first index. 1382 * The hal handles the MIC keys are index+64. 1383 */ 1384 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ? 1385 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic)); 1386 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1387 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1388 } 1389 return 0; 1390 #undef IEEE80211_KEY_XR 1391 } 1392 1393 /* 1394 * Set a net80211 key into the hardware. This handles the 1395 * potential distribution of key state to multiple key 1396 * cache slots for TKIP with hardware MIC support. 1397 */ 1398 static int 1399 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1400 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1401 struct ieee80211_node *bss) 1402 { 1403 #define N(a) (sizeof(a)/sizeof(a[0])) 1404 static const u_int8_t ciphermap[] = { 1405 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1406 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1407 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1408 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1409 (u_int8_t) -1, /* 4 is not allocated */ 1410 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1411 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1412 }; 1413 struct ath_hal *ah = sc->sc_ah; 1414 const struct ieee80211_cipher *cip = k->wk_cipher; 1415 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1416 const u_int8_t *mac; 1417 HAL_KEYVAL hk; 1418 1419 memset(&hk, 0, sizeof(hk)); 1420 /* 1421 * Software crypto uses a "clear key" so non-crypto 1422 * state kept in the key cache are maintained and 1423 * so that rx frames have an entry to match. 1424 */ 1425 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1426 KASSERT(cip->ic_cipher < N(ciphermap), 1427 ("invalid cipher type %u", cip->ic_cipher)); 1428 hk.kv_type = ciphermap[cip->ic_cipher]; 1429 hk.kv_len = k->wk_keylen; 1430 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1431 } else 1432 hk.kv_type = HAL_CIPHER_CLR; 1433 1434 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1435 /* 1436 * Group keys on hardware that supports multicast frame 1437 * key search use a mac that is the sender's address with 1438 * the high bit set instead of the app-specified address. 1439 */ 1440 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1441 gmac[0] |= 0x80; 1442 mac = gmac; 1443 } else 1444 mac = mac0; 1445 1446 if (hk.kv_type == HAL_CIPHER_TKIP && 1447 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1448 sc->sc_splitmic) { 1449 return ath_keyset_tkip(sc, k, &hk, mac); 1450 } else { 1451 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1452 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 1453 } 1454 #undef N 1455 } 1456 1457 /* 1458 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1459 * each key, one for decrypt/encrypt and the other for the MIC. 1460 */ 1461 static u_int16_t 1462 key_alloc_2pair(struct ath_softc *sc, 1463 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1464 { 1465 #define N(a) (sizeof(a)/sizeof(a[0])) 1466 u_int i, keyix; 1467 1468 KASSERT(sc->sc_splitmic, ("key cache !split")); 1469 /* XXX could optimize */ 1470 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1471 u_int8_t b = sc->sc_keymap[i]; 1472 if (b != 0xff) { 1473 /* 1474 * One or more slots in this byte are free. 1475 */ 1476 keyix = i*NBBY; 1477 while (b & 1) { 1478 again: 1479 keyix++; 1480 b >>= 1; 1481 } 1482 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1483 if (isset(sc->sc_keymap, keyix+32) || 1484 isset(sc->sc_keymap, keyix+64) || 1485 isset(sc->sc_keymap, keyix+32+64)) { 1486 /* full pair unavailable */ 1487 /* XXX statistic */ 1488 if (keyix == (i+1)*NBBY) { 1489 /* no slots were appropriate, advance */ 1490 continue; 1491 } 1492 goto again; 1493 } 1494 setbit(sc->sc_keymap, keyix); 1495 setbit(sc->sc_keymap, keyix+64); 1496 setbit(sc->sc_keymap, keyix+32); 1497 setbit(sc->sc_keymap, keyix+32+64); 1498 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1499 "%s: key pair %u,%u %u,%u\n", 1500 __func__, keyix, keyix+64, 1501 keyix+32, keyix+32+64); 1502 *txkeyix = keyix; 1503 *rxkeyix = keyix+32; 1504 return 1; 1505 } 1506 } 1507 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1508 return 0; 1509 #undef N 1510 } 1511 1512 /* 1513 * Allocate a single key cache slot. 1514 */ 1515 static int 1516 key_alloc_single(struct ath_softc *sc, 1517 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1518 { 1519 #define N(a) (sizeof(a)/sizeof(a[0])) 1520 u_int i, keyix; 1521 1522 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1523 for (i = 0; i < N(sc->sc_keymap); i++) { 1524 u_int8_t b = sc->sc_keymap[i]; 1525 if (b != 0xff) { 1526 /* 1527 * One or more slots are free. 1528 */ 1529 keyix = i*NBBY; 1530 while (b & 1) 1531 keyix++, b >>= 1; 1532 setbit(sc->sc_keymap, keyix); 1533 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1534 __func__, keyix); 1535 *txkeyix = *rxkeyix = keyix; 1536 return 1; 1537 } 1538 } 1539 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1540 return 0; 1541 #undef N 1542 } 1543 1544 /* 1545 * Allocate one or more key cache slots for a uniacst key. The 1546 * key itself is needed only to identify the cipher. For hardware 1547 * TKIP with split cipher+MIC keys we allocate two key cache slot 1548 * pairs so that we can setup separate TX and RX MIC keys. Note 1549 * that the MIC key for a TKIP key at slot i is assumed by the 1550 * hardware to be at slot i+64. This limits TKIP keys to the first 1551 * 64 entries. 1552 */ 1553 static int 1554 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1555 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1556 { 1557 struct ath_softc *sc = ic->ic_ifp->if_softc; 1558 1559 /* 1560 * Group key allocation must be handled specially for 1561 * parts that do not support multicast key cache search 1562 * functionality. For those parts the key id must match 1563 * the h/w key index so lookups find the right key. On 1564 * parts w/ the key search facility we install the sender's 1565 * mac address (with the high bit set) and let the hardware 1566 * find the key w/o using the key id. This is preferred as 1567 * it permits us to support multiple users for adhoc and/or 1568 * multi-station operation. 1569 */ 1570 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1571 if (!(&ic->ic_nw_keys[0] <= k && 1572 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1573 /* should not happen */ 1574 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1575 "%s: bogus group key\n", __func__); 1576 return 0; 1577 } 1578 /* 1579 * XXX we pre-allocate the global keys so 1580 * have no way to check if they've already been allocated. 1581 */ 1582 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1583 return 1; 1584 } 1585 1586 /* 1587 * We allocate two pair for TKIP when using the h/w to do 1588 * the MIC. For everything else, including software crypto, 1589 * we allocate a single entry. Note that s/w crypto requires 1590 * a pass-through slot on the 5211 and 5212. The 5210 does 1591 * not support pass-through cache entries and we map all 1592 * those requests to slot 0. 1593 */ 1594 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1595 return key_alloc_single(sc, keyix, rxkeyix); 1596 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1597 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1598 return key_alloc_2pair(sc, keyix, rxkeyix); 1599 } else { 1600 return key_alloc_single(sc, keyix, rxkeyix); 1601 } 1602 } 1603 1604 /* 1605 * Delete an entry in the key cache allocated by ath_key_alloc. 1606 */ 1607 static int 1608 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1609 { 1610 struct ath_softc *sc = ic->ic_ifp->if_softc; 1611 struct ath_hal *ah = sc->sc_ah; 1612 const struct ieee80211_cipher *cip = k->wk_cipher; 1613 u_int keyix = k->wk_keyix; 1614 1615 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1616 1617 ath_hal_keyreset(ah, keyix); 1618 /* 1619 * Handle split tx/rx keying required for TKIP with h/w MIC. 1620 */ 1621 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1622 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1623 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1624 if (keyix >= IEEE80211_WEP_NKID) { 1625 /* 1626 * Don't touch keymap entries for global keys so 1627 * they are never considered for dynamic allocation. 1628 */ 1629 clrbit(sc->sc_keymap, keyix); 1630 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1631 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1632 sc->sc_splitmic) { 1633 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1634 clrbit(sc->sc_keymap, keyix+32); /* RX key */ 1635 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */ 1636 } 1637 } 1638 return 1; 1639 } 1640 1641 /* 1642 * Set the key cache contents for the specified key. Key cache 1643 * slot(s) must already have been allocated by ath_key_alloc. 1644 */ 1645 static int 1646 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1647 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1648 { 1649 struct ath_softc *sc = ic->ic_ifp->if_softc; 1650 1651 return ath_keyset(sc, k, mac, ic->ic_bss); 1652 } 1653 1654 /* 1655 * Block/unblock tx+rx processing while a key change is done. 1656 * We assume the caller serializes key management operations 1657 * so we only need to worry about synchronization with other 1658 * uses that originate in the driver. 1659 */ 1660 static void 1661 ath_key_update_begin(struct ieee80211com *ic) 1662 { 1663 struct ifnet *ifp = ic->ic_ifp; 1664 struct ath_softc *sc = ifp->if_softc; 1665 1666 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1667 #if 0 1668 tasklet_disable(&sc->sc_rxtq); 1669 #endif 1670 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1671 } 1672 1673 static void 1674 ath_key_update_end(struct ieee80211com *ic) 1675 { 1676 struct ifnet *ifp = ic->ic_ifp; 1677 struct ath_softc *sc = ifp->if_softc; 1678 1679 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1680 IF_UNLOCK(&ifp->if_snd); 1681 #if 0 1682 tasklet_enable(&sc->sc_rxtq); 1683 #endif 1684 } 1685 1686 /* 1687 * Calculate the receive filter according to the 1688 * operating mode and state: 1689 * 1690 * o always accept unicast, broadcast, and multicast traffic 1691 * o maintain current state of phy error reception (the hal 1692 * may enable phy error frames for noise immunity work) 1693 * o probe request frames are accepted only when operating in 1694 * hostap, adhoc, or monitor modes 1695 * o enable promiscuous mode according to the interface state 1696 * o accept beacons: 1697 * - when operating in adhoc mode so the 802.11 layer creates 1698 * node table entries for peers, 1699 * - when operating in station mode for collecting rssi data when 1700 * the station is otherwise quiet, or 1701 * - when scanning 1702 * o accept control frames: 1703 * - when in monitor mode 1704 */ 1705 static u_int32_t 1706 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1707 { 1708 #define RX_FILTER_PRESERVE (HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR) 1709 struct ieee80211com *ic = &sc->sc_ic; 1710 struct ath_hal *ah = sc->sc_ah; 1711 struct ifnet *ifp = sc->sc_ifp; 1712 u_int32_t rfilt; 1713 1714 rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE) 1715 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1716 if (ic->ic_opmode != IEEE80211_M_STA) 1717 rfilt |= HAL_RX_FILTER_PROBEREQ; 1718 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1719 (ifp->if_flags & IFF_PROMISC)) 1720 rfilt |= HAL_RX_FILTER_PROM; 1721 if (ic->ic_opmode == IEEE80211_M_STA || 1722 ic->ic_opmode == IEEE80211_M_IBSS || 1723 state == IEEE80211_S_SCAN) 1724 rfilt |= HAL_RX_FILTER_BEACON; 1725 if (ic->ic_opmode == IEEE80211_M_MONITOR) 1726 rfilt |= HAL_RX_FILTER_CONTROL; 1727 return rfilt; 1728 #undef RX_FILTER_PRESERVE 1729 } 1730 1731 static void 1732 ath_mode_init(struct ath_softc *sc) 1733 { 1734 struct ieee80211com *ic = &sc->sc_ic; 1735 struct ath_hal *ah = sc->sc_ah; 1736 struct ifnet *ifp = sc->sc_ifp; 1737 u_int32_t rfilt, mfilt[2], val; 1738 u_int8_t pos; 1739 struct ifmultiaddr *ifma; 1740 1741 /* configure rx filter */ 1742 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1743 ath_hal_setrxfilter(ah, rfilt); 1744 1745 /* configure operational mode */ 1746 ath_hal_setopmode(ah); 1747 1748 /* 1749 * Handle any link-level address change. Note that we only 1750 * need to force ic_myaddr; any other addresses are handled 1751 * as a byproduct of the ifnet code marking the interface 1752 * down then up. 1753 * 1754 * XXX should get from lladdr instead of arpcom but that's more work 1755 */ 1756 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 1757 ath_hal_setmac(ah, ic->ic_myaddr); 1758 1759 /* calculate and install multicast filter */ 1760 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1761 mfilt[0] = mfilt[1] = 0; 1762 IF_ADDR_LOCK(ifp); 1763 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1764 caddr_t dl; 1765 1766 /* calculate XOR of eight 6bit values */ 1767 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1768 val = LE_READ_4(dl + 0); 1769 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1770 val = LE_READ_4(dl + 3); 1771 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1772 pos &= 0x3f; 1773 mfilt[pos / 32] |= (1 << (pos % 32)); 1774 } 1775 IF_ADDR_UNLOCK(ifp); 1776 } else { 1777 mfilt[0] = mfilt[1] = ~0; 1778 } 1779 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1780 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 1781 __func__, rfilt, mfilt[0], mfilt[1]); 1782 } 1783 1784 /* 1785 * Set the slot time based on the current setting. 1786 */ 1787 static void 1788 ath_setslottime(struct ath_softc *sc) 1789 { 1790 struct ieee80211com *ic = &sc->sc_ic; 1791 struct ath_hal *ah = sc->sc_ah; 1792 1793 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1794 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 1795 else 1796 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 1797 sc->sc_updateslot = OK; 1798 } 1799 1800 /* 1801 * Callback from the 802.11 layer to update the 1802 * slot time based on the current setting. 1803 */ 1804 static void 1805 ath_updateslot(struct ifnet *ifp) 1806 { 1807 struct ath_softc *sc = ifp->if_softc; 1808 struct ieee80211com *ic = &sc->sc_ic; 1809 1810 /* 1811 * When not coordinating the BSS, change the hardware 1812 * immediately. For other operation we defer the change 1813 * until beacon updates have propagated to the stations. 1814 */ 1815 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1816 sc->sc_updateslot = UPDATE; 1817 else 1818 ath_setslottime(sc); 1819 } 1820 1821 /* 1822 * Setup a h/w transmit queue for beacons. 1823 */ 1824 static int 1825 ath_beaconq_setup(struct ath_hal *ah) 1826 { 1827 HAL_TXQ_INFO qi; 1828 1829 memset(&qi, 0, sizeof(qi)); 1830 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 1831 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 1832 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 1833 /* NB: for dynamic turbo, don't enable any other interrupts */ 1834 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 1835 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 1836 } 1837 1838 /* 1839 * Setup the transmit queue parameters for the beacon queue. 1840 */ 1841 static int 1842 ath_beaconq_config(struct ath_softc *sc) 1843 { 1844 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 1845 struct ieee80211com *ic = &sc->sc_ic; 1846 struct ath_hal *ah = sc->sc_ah; 1847 HAL_TXQ_INFO qi; 1848 1849 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 1850 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1851 /* 1852 * Always burst out beacon and CAB traffic. 1853 */ 1854 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 1855 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 1856 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 1857 } else { 1858 struct wmeParams *wmep = 1859 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 1860 /* 1861 * Adhoc mode; important thing is to use 2x cwmin. 1862 */ 1863 qi.tqi_aifs = wmep->wmep_aifsn; 1864 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 1865 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 1866 } 1867 1868 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 1869 device_printf(sc->sc_dev, "unable to update parameters for " 1870 "beacon hardware queue!\n"); 1871 return 0; 1872 } else { 1873 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 1874 return 1; 1875 } 1876 #undef ATH_EXPONENT_TO_VALUE 1877 } 1878 1879 /* 1880 * Allocate and setup an initial beacon frame. 1881 */ 1882 static int 1883 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1884 { 1885 struct ieee80211com *ic = ni->ni_ic; 1886 struct ath_buf *bf; 1887 struct mbuf *m; 1888 int error; 1889 1890 bf = STAILQ_FIRST(&sc->sc_bbuf); 1891 if (bf == NULL) { 1892 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 1893 sc->sc_stats.ast_be_nombuf++; /* XXX */ 1894 return ENOMEM; /* XXX */ 1895 } 1896 /* 1897 * NB: the beacon data buffer must be 32-bit aligned; 1898 * we assume the mbuf routines will return us something 1899 * with this alignment (perhaps should assert). 1900 */ 1901 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 1902 if (m == NULL) { 1903 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 1904 __func__); 1905 sc->sc_stats.ast_be_nombuf++; 1906 return ENOMEM; 1907 } 1908 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 1909 bf->bf_segs, &bf->bf_nseg, 1910 BUS_DMA_NOWAIT); 1911 if (error == 0) { 1912 bf->bf_m = m; 1913 bf->bf_node = ieee80211_ref_node(ni); 1914 } else { 1915 m_freem(m); 1916 } 1917 return error; 1918 } 1919 1920 /* 1921 * Setup the beacon frame for transmit. 1922 */ 1923 static void 1924 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 1925 { 1926 #define USE_SHPREAMBLE(_ic) \ 1927 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 1928 == IEEE80211_F_SHPREAMBLE) 1929 struct ieee80211_node *ni = bf->bf_node; 1930 struct ieee80211com *ic = ni->ni_ic; 1931 struct mbuf *m = bf->bf_m; 1932 struct ath_hal *ah = sc->sc_ah; 1933 struct ath_desc *ds; 1934 int flags, antenna; 1935 const HAL_RATE_TABLE *rt; 1936 u_int8_t rix, rate; 1937 1938 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 1939 __func__, m, m->m_len); 1940 1941 /* setup descriptors */ 1942 ds = bf->bf_desc; 1943 1944 flags = HAL_TXDESC_NOACK; 1945 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 1946 ds->ds_link = bf->bf_daddr; /* self-linked */ 1947 flags |= HAL_TXDESC_VEOL; 1948 /* 1949 * Let hardware handle antenna switching. 1950 */ 1951 antenna = sc->sc_txantenna; 1952 } else { 1953 ds->ds_link = 0; 1954 /* 1955 * Switch antenna every 4 beacons. 1956 * XXX assumes two antenna 1957 */ 1958 antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna 1959 : (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 1960 } 1961 1962 KASSERT(bf->bf_nseg == 1, 1963 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 1964 ds->ds_data = bf->bf_segs[0].ds_addr; 1965 /* 1966 * Calculate rate code. 1967 * XXX everything at min xmit rate 1968 */ 1969 rix = sc->sc_minrateix; 1970 rt = sc->sc_currates; 1971 rate = rt->info[rix].rateCode; 1972 if (USE_SHPREAMBLE(ic)) 1973 rate |= rt->info[rix].shortPreamble; 1974 ath_hal_setuptxdesc(ah, ds 1975 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 1976 , sizeof(struct ieee80211_frame)/* header length */ 1977 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1978 , ni->ni_txpower /* txpower XXX */ 1979 , rate, 1 /* series 0 rate/tries */ 1980 , HAL_TXKEYIX_INVALID /* no encryption */ 1981 , antenna /* antenna mode */ 1982 , flags /* no ack, veol for beacons */ 1983 , 0 /* rts/cts rate */ 1984 , 0 /* rts/cts duration */ 1985 ); 1986 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1987 ath_hal_filltxdesc(ah, ds 1988 , roundup(m->m_len, 4) /* buffer length */ 1989 , AH_TRUE /* first segment */ 1990 , AH_TRUE /* last segment */ 1991 , ds /* first descriptor */ 1992 ); 1993 #undef USE_SHPREAMBLE 1994 } 1995 1996 /* 1997 * Append the contents of src to dst; both queues 1998 * are assumed to be locked. 1999 */ 2000 static void 2001 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2002 { 2003 STAILQ_CONCAT(&dst->axq_q, &src->axq_q); 2004 dst->axq_link = src->axq_link; 2005 src->axq_link = NULL; 2006 dst->axq_depth += src->axq_depth; 2007 src->axq_depth = 0; 2008 } 2009 2010 /* 2011 * Transmit a beacon frame at SWBA. Dynamic updates to the 2012 * frame contents are done as needed and the slot time is 2013 * also adjusted based on current state. 2014 */ 2015 static void 2016 ath_beacon_proc(void *arg, int pending) 2017 { 2018 struct ath_softc *sc = arg; 2019 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2020 struct ieee80211_node *ni = bf->bf_node; 2021 struct ieee80211com *ic = ni->ni_ic; 2022 struct ath_hal *ah = sc->sc_ah; 2023 struct ath_txq *cabq = sc->sc_cabq; 2024 struct mbuf *m; 2025 int ncabq, nmcastq, error, otherant; 2026 2027 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2028 __func__, pending); 2029 2030 if (ic->ic_opmode == IEEE80211_M_STA || 2031 ic->ic_opmode == IEEE80211_M_MONITOR || 2032 bf == NULL || bf->bf_m == NULL) { 2033 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2034 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2035 return; 2036 } 2037 /* 2038 * Check if the previous beacon has gone out. If 2039 * not don't try to post another, skip this period 2040 * and wait for the next. Missed beacons indicate 2041 * a problem and should not occur. If we miss too 2042 * many consecutive beacons reset the device. 2043 */ 2044 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2045 sc->sc_bmisscount++; 2046 DPRINTF(sc, ATH_DEBUG_BEACON, 2047 "%s: missed %u consecutive beacons\n", 2048 __func__, sc->sc_bmisscount); 2049 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2050 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2051 return; 2052 } 2053 if (sc->sc_bmisscount != 0) { 2054 DPRINTF(sc, ATH_DEBUG_BEACON, 2055 "%s: resume beacon xmit after %u misses\n", 2056 __func__, sc->sc_bmisscount); 2057 sc->sc_bmisscount = 0; 2058 } 2059 2060 /* 2061 * Update dynamic beacon contents. If this returns 2062 * non-zero then we need to remap the memory because 2063 * the beacon frame changed size (probably because 2064 * of the TIM bitmap). 2065 */ 2066 m = bf->bf_m; 2067 nmcastq = sc->sc_mcastq.axq_depth; 2068 ncabq = ath_hal_numtxpending(ah, cabq->axq_qnum); 2069 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq+nmcastq)) { 2070 /* XXX too conservative? */ 2071 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2072 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2073 bf->bf_segs, &bf->bf_nseg, 2074 BUS_DMA_NOWAIT); 2075 if (error != 0) { 2076 if_printf(ic->ic_ifp, 2077 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 2078 __func__, error); 2079 return; 2080 } 2081 } 2082 if (ncabq && (sc->sc_boff.bo_tim[4] & 1)) { 2083 /* 2084 * CABQ traffic from the previous DTIM is still pending. 2085 * This is ok for now but when there are multiple vap's 2086 * and we are using staggered beacons we'll want to drain 2087 * the cabq before loading frames for the different vap. 2088 */ 2089 DPRINTF(sc, ATH_DEBUG_BEACON, 2090 "%s: cabq did not drain, mcastq %u cabq %u/%u\n", 2091 __func__, nmcastq, ncabq, cabq->axq_depth); 2092 sc->sc_stats.ast_cabq_busy++; 2093 } 2094 2095 /* 2096 * Handle slot time change when a non-ERP station joins/leaves 2097 * an 11g network. The 802.11 layer notifies us via callback, 2098 * we mark updateslot, then wait one beacon before effecting 2099 * the change. This gives associated stations at least one 2100 * beacon interval to note the state change. 2101 */ 2102 /* XXX locking */ 2103 if (sc->sc_updateslot == UPDATE) 2104 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2105 else if (sc->sc_updateslot == COMMIT) 2106 ath_setslottime(sc); /* commit change to h/w */ 2107 2108 /* 2109 * Check recent per-antenna transmit statistics and flip 2110 * the default antenna if noticeably more frames went out 2111 * on the non-default antenna. 2112 * XXX assumes 2 anntenae 2113 */ 2114 otherant = sc->sc_defant & 1 ? 2 : 1; 2115 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2116 ath_setdefantenna(sc, otherant); 2117 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2118 2119 /* 2120 * Construct tx descriptor. 2121 */ 2122 ath_beacon_setup(sc, bf); 2123 2124 /* 2125 * Stop any current dma and put the new frame on the queue. 2126 * This should never fail since we check above that no frames 2127 * are still pending on the queue. 2128 */ 2129 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2130 DPRINTF(sc, ATH_DEBUG_ANY, 2131 "%s: beacon queue %u did not stop?\n", 2132 __func__, sc->sc_bhalq); 2133 } 2134 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 2135 2136 /* 2137 * Enable the CAB queue before the beacon queue to 2138 * insure cab frames are triggered by this beacon. 2139 */ 2140 if (sc->sc_boff.bo_tim_len && (sc->sc_boff.bo_tim[4] & 1)) { 2141 /* NB: only at DTIM */ 2142 ATH_TXQ_LOCK(cabq); 2143 ATH_TXQ_LOCK(&sc->sc_mcastq); 2144 if (nmcastq) { 2145 struct ath_buf *bfm; 2146 2147 /* 2148 * Move frames from the s/w mcast q to the h/w cab q. 2149 */ 2150 bfm = STAILQ_FIRST(&sc->sc_mcastq.axq_q); 2151 if (cabq->axq_link != NULL) { 2152 *cabq->axq_link = bfm->bf_daddr; 2153 } else 2154 ath_hal_puttxbuf(ah, cabq->axq_qnum, 2155 bfm->bf_daddr); 2156 ath_txqmove(cabq, &sc->sc_mcastq); 2157 2158 sc->sc_stats.ast_cabq_xmit += nmcastq; 2159 } 2160 /* NB: gated by beacon so safe to start here */ 2161 ath_hal_txstart(ah, cabq->axq_qnum); 2162 ATH_TXQ_UNLOCK(cabq); 2163 ATH_TXQ_UNLOCK(&sc->sc_mcastq); 2164 } 2165 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2166 ath_hal_txstart(ah, sc->sc_bhalq); 2167 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2168 "%s: TXDP[%u] = %p (%p)\n", __func__, 2169 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc); 2170 2171 sc->sc_stats.ast_be_xmit++; 2172 } 2173 2174 /* 2175 * Reset the hardware after detecting beacons have stopped. 2176 */ 2177 static void 2178 ath_bstuck_proc(void *arg, int pending) 2179 { 2180 struct ath_softc *sc = arg; 2181 struct ifnet *ifp = sc->sc_ifp; 2182 2183 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2184 sc->sc_bmisscount); 2185 ath_reset(ifp); 2186 } 2187 2188 /* 2189 * Reclaim beacon resources. 2190 */ 2191 static void 2192 ath_beacon_free(struct ath_softc *sc) 2193 { 2194 struct ath_buf *bf; 2195 2196 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2197 if (bf->bf_m != NULL) { 2198 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2199 m_freem(bf->bf_m); 2200 bf->bf_m = NULL; 2201 } 2202 if (bf->bf_node != NULL) { 2203 ieee80211_free_node(bf->bf_node); 2204 bf->bf_node = NULL; 2205 } 2206 } 2207 } 2208 2209 /* 2210 * Configure the beacon and sleep timers. 2211 * 2212 * When operating as an AP this resets the TSF and sets 2213 * up the hardware to notify us when we need to issue beacons. 2214 * 2215 * When operating in station mode this sets up the beacon 2216 * timers according to the timestamp of the last received 2217 * beacon and the current TSF, configures PCF and DTIM 2218 * handling, programs the sleep registers so the hardware 2219 * will wakeup in time to receive beacons, and configures 2220 * the beacon miss handling so we'll receive a BMISS 2221 * interrupt when we stop seeing beacons from the AP 2222 * we've associated with. 2223 */ 2224 static void 2225 ath_beacon_config(struct ath_softc *sc) 2226 { 2227 #define TSF_TO_TU(_h,_l) \ 2228 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2229 #define FUDGE 2 2230 struct ath_hal *ah = sc->sc_ah; 2231 struct ieee80211com *ic = &sc->sc_ic; 2232 struct ieee80211_node *ni = ic->ic_bss; 2233 u_int32_t nexttbtt, intval, tsftu; 2234 u_int64_t tsf; 2235 2236 /* extract tstamp from last beacon and convert to TU */ 2237 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2238 LE_READ_4(ni->ni_tstamp.data)); 2239 /* NB: the beacon interval is kept internally in TU's */ 2240 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2241 if (nexttbtt == 0) /* e.g. for ap mode */ 2242 nexttbtt = intval; 2243 else if (intval) /* NB: can be 0 for monitor mode */ 2244 nexttbtt = roundup(nexttbtt, intval); 2245 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2246 __func__, nexttbtt, intval, ni->ni_intval); 2247 if (ic->ic_opmode == IEEE80211_M_STA) { 2248 HAL_BEACON_STATE bs; 2249 int dtimperiod, dtimcount; 2250 int cfpperiod, cfpcount; 2251 2252 /* 2253 * Setup dtim and cfp parameters according to 2254 * last beacon we received (which may be none). 2255 */ 2256 dtimperiod = ni->ni_dtim_period; 2257 if (dtimperiod <= 0) /* NB: 0 if not known */ 2258 dtimperiod = 1; 2259 dtimcount = ni->ni_dtim_count; 2260 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2261 dtimcount = 0; /* XXX? */ 2262 cfpperiod = 1; /* NB: no PCF support yet */ 2263 cfpcount = 0; 2264 /* 2265 * Pull nexttbtt forward to reflect the current 2266 * TSF and calculate dtim+cfp state for the result. 2267 */ 2268 tsf = ath_hal_gettsf64(ah); 2269 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2270 do { 2271 nexttbtt += intval; 2272 if (--dtimcount < 0) { 2273 dtimcount = dtimperiod - 1; 2274 if (--cfpcount < 0) 2275 cfpcount = cfpperiod - 1; 2276 } 2277 } while (nexttbtt < tsftu); 2278 memset(&bs, 0, sizeof(bs)); 2279 bs.bs_intval = intval; 2280 bs.bs_nexttbtt = nexttbtt; 2281 bs.bs_dtimperiod = dtimperiod*intval; 2282 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2283 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2284 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2285 bs.bs_cfpmaxduration = 0; 2286 #if 0 2287 /* 2288 * The 802.11 layer records the offset to the DTIM 2289 * bitmap while receiving beacons; use it here to 2290 * enable h/w detection of our AID being marked in 2291 * the bitmap vector (to indicate frames for us are 2292 * pending at the AP). 2293 * XXX do DTIM handling in s/w to WAR old h/w bugs 2294 * XXX enable based on h/w rev for newer chips 2295 */ 2296 bs.bs_timoffset = ni->ni_timoff; 2297 #endif 2298 /* 2299 * Calculate the number of consecutive beacons to miss 2300 * before taking a BMISS interrupt. The configuration 2301 * is specified in ms, so we need to convert that to 2302 * TU's and then calculate based on the beacon interval. 2303 * Note that we clamp the result to at most 10 beacons. 2304 */ 2305 bs.bs_bmissthreshold = ic->ic_bmissthreshold; 2306 if (bs.bs_bmissthreshold > 10) 2307 bs.bs_bmissthreshold = 10; 2308 else if (bs.bs_bmissthreshold <= 0) 2309 bs.bs_bmissthreshold = 1; 2310 2311 /* 2312 * Calculate sleep duration. The configuration is 2313 * given in ms. We insure a multiple of the beacon 2314 * period is used. Also, if the sleep duration is 2315 * greater than the DTIM period then it makes senses 2316 * to make it a multiple of that. 2317 * 2318 * XXX fixed at 100ms 2319 */ 2320 bs.bs_sleepduration = 2321 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2322 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2323 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2324 2325 DPRINTF(sc, ATH_DEBUG_BEACON, 2326 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2327 , __func__ 2328 , tsf, tsftu 2329 , bs.bs_intval 2330 , bs.bs_nexttbtt 2331 , bs.bs_dtimperiod 2332 , bs.bs_nextdtim 2333 , bs.bs_bmissthreshold 2334 , bs.bs_sleepduration 2335 , bs.bs_cfpperiod 2336 , bs.bs_cfpmaxduration 2337 , bs.bs_cfpnext 2338 , bs.bs_timoffset 2339 ); 2340 ath_hal_intrset(ah, 0); 2341 ath_hal_beacontimers(ah, &bs); 2342 sc->sc_imask |= HAL_INT_BMISS; 2343 ath_hal_intrset(ah, sc->sc_imask); 2344 } else { 2345 ath_hal_intrset(ah, 0); 2346 if (nexttbtt == intval) 2347 intval |= HAL_BEACON_RESET_TSF; 2348 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2349 /* 2350 * In IBSS mode enable the beacon timers but only 2351 * enable SWBA interrupts if we need to manually 2352 * prepare beacon frames. Otherwise we use a 2353 * self-linked tx descriptor and let the hardware 2354 * deal with things. 2355 */ 2356 intval |= HAL_BEACON_ENA; 2357 if (!sc->sc_hasveol) 2358 sc->sc_imask |= HAL_INT_SWBA; 2359 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2360 /* 2361 * Pull nexttbtt forward to reflect 2362 * the current TSF. 2363 */ 2364 tsf = ath_hal_gettsf64(ah); 2365 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2366 do { 2367 nexttbtt += intval; 2368 } while (nexttbtt < tsftu); 2369 } 2370 ath_beaconq_config(sc); 2371 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2372 /* 2373 * In AP mode we enable the beacon timers and 2374 * SWBA interrupts to prepare beacon frames. 2375 */ 2376 intval |= HAL_BEACON_ENA; 2377 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2378 ath_beaconq_config(sc); 2379 } 2380 ath_hal_beaconinit(ah, nexttbtt, intval); 2381 sc->sc_bmisscount = 0; 2382 ath_hal_intrset(ah, sc->sc_imask); 2383 /* 2384 * When using a self-linked beacon descriptor in 2385 * ibss mode load it once here. 2386 */ 2387 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2388 ath_beacon_proc(sc, 0); 2389 } 2390 sc->sc_syncbeacon = 0; 2391 #undef FUDGE 2392 #undef TSF_TO_TU 2393 } 2394 2395 static void 2396 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2397 { 2398 bus_addr_t *paddr = (bus_addr_t*) arg; 2399 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2400 *paddr = segs->ds_addr; 2401 } 2402 2403 static int 2404 ath_descdma_setup(struct ath_softc *sc, 2405 struct ath_descdma *dd, ath_bufhead *head, 2406 const char *name, int nbuf, int ndesc) 2407 { 2408 #define DS2PHYS(_dd, _ds) \ 2409 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2410 struct ifnet *ifp = sc->sc_ifp; 2411 struct ath_desc *ds; 2412 struct ath_buf *bf; 2413 int i, bsize, error; 2414 2415 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2416 __func__, name, nbuf, ndesc); 2417 2418 dd->dd_name = name; 2419 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2420 2421 /* 2422 * Setup DMA descriptor area. 2423 */ 2424 error = bus_dma_tag_create(NULL, /* parent */ 2425 PAGE_SIZE, 0, /* alignment, bounds */ 2426 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2427 BUS_SPACE_MAXADDR, /* highaddr */ 2428 NULL, NULL, /* filter, filterarg */ 2429 dd->dd_desc_len, /* maxsize */ 2430 1, /* nsegments */ 2431 dd->dd_desc_len, /* maxsegsize */ 2432 BUS_DMA_ALLOCNOW, /* flags */ 2433 NULL, /* lockfunc */ 2434 NULL, /* lockarg */ 2435 &dd->dd_dmat); 2436 if (error != 0) { 2437 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2438 return error; 2439 } 2440 2441 /* allocate descriptors */ 2442 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2443 if (error != 0) { 2444 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2445 "error %u\n", dd->dd_name, error); 2446 goto fail0; 2447 } 2448 2449 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2450 BUS_DMA_NOWAIT, &dd->dd_dmamap); 2451 if (error != 0) { 2452 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2453 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2454 goto fail1; 2455 } 2456 2457 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2458 dd->dd_desc, dd->dd_desc_len, 2459 ath_load_cb, &dd->dd_desc_paddr, 2460 BUS_DMA_NOWAIT); 2461 if (error != 0) { 2462 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2463 dd->dd_name, error); 2464 goto fail2; 2465 } 2466 2467 ds = dd->dd_desc; 2468 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2469 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2470 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2471 2472 /* allocate rx buffers */ 2473 bsize = sizeof(struct ath_buf) * nbuf; 2474 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2475 if (bf == NULL) { 2476 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2477 dd->dd_name, bsize); 2478 goto fail3; 2479 } 2480 dd->dd_bufptr = bf; 2481 2482 STAILQ_INIT(head); 2483 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2484 bf->bf_desc = ds; 2485 bf->bf_daddr = DS2PHYS(dd, ds); 2486 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2487 &bf->bf_dmamap); 2488 if (error != 0) { 2489 if_printf(ifp, "unable to create dmamap for %s " 2490 "buffer %u, error %u\n", dd->dd_name, i, error); 2491 ath_descdma_cleanup(sc, dd, head); 2492 return error; 2493 } 2494 STAILQ_INSERT_TAIL(head, bf, bf_list); 2495 } 2496 return 0; 2497 fail3: 2498 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2499 fail2: 2500 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2501 fail1: 2502 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2503 fail0: 2504 bus_dma_tag_destroy(dd->dd_dmat); 2505 memset(dd, 0, sizeof(*dd)); 2506 return error; 2507 #undef DS2PHYS 2508 } 2509 2510 static void 2511 ath_descdma_cleanup(struct ath_softc *sc, 2512 struct ath_descdma *dd, ath_bufhead *head) 2513 { 2514 struct ath_buf *bf; 2515 struct ieee80211_node *ni; 2516 2517 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2518 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2519 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2520 bus_dma_tag_destroy(dd->dd_dmat); 2521 2522 STAILQ_FOREACH(bf, head, bf_list) { 2523 if (bf->bf_m) { 2524 m_freem(bf->bf_m); 2525 bf->bf_m = NULL; 2526 } 2527 if (bf->bf_dmamap != NULL) { 2528 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2529 bf->bf_dmamap = NULL; 2530 } 2531 ni = bf->bf_node; 2532 bf->bf_node = NULL; 2533 if (ni != NULL) { 2534 /* 2535 * Reclaim node reference. 2536 */ 2537 ieee80211_free_node(ni); 2538 } 2539 } 2540 2541 STAILQ_INIT(head); 2542 free(dd->dd_bufptr, M_ATHDEV); 2543 memset(dd, 0, sizeof(*dd)); 2544 } 2545 2546 static int 2547 ath_desc_alloc(struct ath_softc *sc) 2548 { 2549 int error; 2550 2551 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2552 "rx", ath_rxbuf, 1); 2553 if (error != 0) 2554 return error; 2555 2556 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2557 "tx", ath_txbuf, ATH_TXDESC); 2558 if (error != 0) { 2559 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2560 return error; 2561 } 2562 2563 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2564 "beacon", 1, 1); 2565 if (error != 0) { 2566 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2567 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2568 return error; 2569 } 2570 return 0; 2571 } 2572 2573 static void 2574 ath_desc_free(struct ath_softc *sc) 2575 { 2576 2577 if (sc->sc_bdma.dd_desc_len != 0) 2578 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2579 if (sc->sc_txdma.dd_desc_len != 0) 2580 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2581 if (sc->sc_rxdma.dd_desc_len != 0) 2582 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2583 } 2584 2585 static struct ieee80211_node * 2586 ath_node_alloc(struct ieee80211_node_table *nt) 2587 { 2588 struct ieee80211com *ic = nt->nt_ic; 2589 struct ath_softc *sc = ic->ic_ifp->if_softc; 2590 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2591 struct ath_node *an; 2592 2593 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2594 if (an == NULL) { 2595 /* XXX stat+msg */ 2596 return NULL; 2597 } 2598 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2599 ath_rate_node_init(sc, an); 2600 2601 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2602 return &an->an_node; 2603 } 2604 2605 static void 2606 ath_node_free(struct ieee80211_node *ni) 2607 { 2608 struct ieee80211com *ic = ni->ni_ic; 2609 struct ath_softc *sc = ic->ic_ifp->if_softc; 2610 2611 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2612 2613 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2614 sc->sc_node_free(ni); 2615 } 2616 2617 static u_int8_t 2618 ath_node_getrssi(const struct ieee80211_node *ni) 2619 { 2620 #define HAL_EP_RND(x, mul) \ 2621 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2622 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2623 int32_t rssi; 2624 2625 /* 2626 * When only one frame is received there will be no state in 2627 * avgrssi so fallback on the value recorded by the 802.11 layer. 2628 */ 2629 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2630 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2631 else 2632 rssi = ni->ni_rssi; 2633 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2634 #undef HAL_EP_RND 2635 } 2636 2637 static int 2638 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2639 { 2640 struct ath_hal *ah = sc->sc_ah; 2641 int error; 2642 struct mbuf *m; 2643 struct ath_desc *ds; 2644 2645 m = bf->bf_m; 2646 if (m == NULL) { 2647 /* 2648 * NB: by assigning a page to the rx dma buffer we 2649 * implicitly satisfy the Atheros requirement that 2650 * this buffer be cache-line-aligned and sized to be 2651 * multiple of the cache line size. Not doing this 2652 * causes weird stuff to happen (for the 5210 at least). 2653 */ 2654 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2655 if (m == NULL) { 2656 DPRINTF(sc, ATH_DEBUG_ANY, 2657 "%s: no mbuf/cluster\n", __func__); 2658 sc->sc_stats.ast_rx_nombuf++; 2659 return ENOMEM; 2660 } 2661 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2662 2663 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 2664 bf->bf_dmamap, m, 2665 bf->bf_segs, &bf->bf_nseg, 2666 BUS_DMA_NOWAIT); 2667 if (error != 0) { 2668 DPRINTF(sc, ATH_DEBUG_ANY, 2669 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 2670 __func__, error); 2671 sc->sc_stats.ast_rx_busdma++; 2672 m_freem(m); 2673 return error; 2674 } 2675 KASSERT(bf->bf_nseg == 1, 2676 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2677 bf->bf_m = m; 2678 } 2679 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 2680 2681 /* 2682 * Setup descriptors. For receive we always terminate 2683 * the descriptor list with a self-linked entry so we'll 2684 * not get overrun under high load (as can happen with a 2685 * 5212 when ANI processing enables PHY error frames). 2686 * 2687 * To insure the last descriptor is self-linked we create 2688 * each descriptor as self-linked and add it to the end. As 2689 * each additional descriptor is added the previous self-linked 2690 * entry is ``fixed'' naturally. This should be safe even 2691 * if DMA is happening. When processing RX interrupts we 2692 * never remove/process the last, self-linked, entry on the 2693 * descriptor list. This insures the hardware always has 2694 * someplace to write a new frame. 2695 */ 2696 ds = bf->bf_desc; 2697 ds->ds_link = bf->bf_daddr; /* link to self */ 2698 ds->ds_data = bf->bf_segs[0].ds_addr; 2699 ds->ds_vdata = mtod(m, void *); /* for radar */ 2700 ath_hal_setuprxdesc(ah, ds 2701 , m->m_len /* buffer size */ 2702 , 0 2703 ); 2704 2705 if (sc->sc_rxlink != NULL) 2706 *sc->sc_rxlink = bf->bf_daddr; 2707 sc->sc_rxlink = &ds->ds_link; 2708 return 0; 2709 } 2710 2711 /* 2712 * Extend 15-bit time stamp from rx descriptor to 2713 * a full 64-bit TSF using the specified TSF. 2714 */ 2715 static __inline u_int64_t 2716 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2717 { 2718 if ((tsf & 0x7fff) < rstamp) 2719 tsf -= 0x8000; 2720 return ((tsf &~ 0x7fff) | rstamp); 2721 } 2722 2723 /* 2724 * Intercept management frames to collect beacon rssi data 2725 * and to do ibss merges. 2726 */ 2727 static void 2728 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2729 struct ieee80211_node *ni, 2730 int subtype, int rssi, u_int32_t rstamp) 2731 { 2732 struct ath_softc *sc = ic->ic_ifp->if_softc; 2733 2734 /* 2735 * Call up first so subsequent work can use information 2736 * potentially stored in the node (e.g. for ibss merge). 2737 */ 2738 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2739 switch (subtype) { 2740 case IEEE80211_FC0_SUBTYPE_BEACON: 2741 /* update rssi statistics for use by the hal */ 2742 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2743 if (sc->sc_syncbeacon && 2744 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2745 /* 2746 * Resync beacon timers using the tsf of the beacon 2747 * frame we just received. 2748 */ 2749 ath_beacon_config(sc); 2750 } 2751 /* fall thru... */ 2752 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2753 if (ic->ic_opmode == IEEE80211_M_IBSS && 2754 ic->ic_state == IEEE80211_S_RUN) { 2755 u_int64_t tsf = ath_extend_tsf(rstamp, 2756 ath_hal_gettsf64(sc->sc_ah)); 2757 /* 2758 * Handle ibss merge as needed; check the tsf on the 2759 * frame before attempting the merge. The 802.11 spec 2760 * says the station should change it's bssid to match 2761 * the oldest station with the same ssid, where oldest 2762 * is determined by the tsf. Note that hardware 2763 * reconfiguration happens through callback to 2764 * ath_newstate as the state machine will go from 2765 * RUN -> RUN when this happens. 2766 */ 2767 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2768 DPRINTF(sc, ATH_DEBUG_STATE, 2769 "ibss merge, rstamp %u tsf %ju " 2770 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2771 (uintmax_t)ni->ni_tstamp.tsf); 2772 (void) ieee80211_ibss_merge(ni); 2773 } 2774 } 2775 break; 2776 } 2777 } 2778 2779 /* 2780 * Set the default antenna. 2781 */ 2782 static void 2783 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2784 { 2785 struct ath_hal *ah = sc->sc_ah; 2786 2787 /* XXX block beacon interrupts */ 2788 ath_hal_setdefantenna(ah, antenna); 2789 if (sc->sc_defant != antenna) 2790 sc->sc_stats.ast_ant_defswitch++; 2791 sc->sc_defant = antenna; 2792 sc->sc_rxotherant = 0; 2793 } 2794 2795 static int 2796 ath_rx_tap(struct ath_softc *sc, struct mbuf *m, 2797 const struct ath_desc *ds, u_int64_t tsf, int16_t nf) 2798 { 2799 u_int8_t rix; 2800 2801 KASSERT(sc->sc_drvbpf != NULL, ("no tap")); 2802 2803 /* 2804 * Discard anything shorter than an ack or cts. 2805 */ 2806 if (m->m_pkthdr.len < IEEE80211_ACK_LEN) { 2807 DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n", 2808 __func__, m->m_pkthdr.len); 2809 sc->sc_stats.ast_rx_tooshort++; 2810 return 0; 2811 } 2812 sc->sc_rx_th.wr_tsf = htole64( 2813 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 2814 rix = ds->ds_rxstat.rs_rate; 2815 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 2816 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2817 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 2818 /* XXX propagate other error flags from descriptor */ 2819 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 2820 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 2821 sc->sc_rx_th.wr_antnoise = nf; 2822 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 2823 2824 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m); 2825 2826 return 1; 2827 } 2828 2829 static void 2830 ath_rx_proc(void *arg, int npending) 2831 { 2832 #define PA2DESC(_sc, _pa) \ 2833 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 2834 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2835 struct ath_softc *sc = arg; 2836 struct ath_buf *bf; 2837 struct ieee80211com *ic = &sc->sc_ic; 2838 struct ifnet *ifp = sc->sc_ifp; 2839 struct ath_hal *ah = sc->sc_ah; 2840 struct ath_desc *ds; 2841 struct mbuf *m; 2842 struct ieee80211_node *ni; 2843 struct ath_node *an; 2844 int len, type, ngood; 2845 u_int phyerr; 2846 HAL_STATUS status; 2847 int16_t nf; 2848 u_int64_t tsf; 2849 2850 NET_LOCK_GIANT(); /* XXX */ 2851 2852 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 2853 ngood = 0; 2854 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 2855 tsf = ath_hal_gettsf64(ah); 2856 do { 2857 bf = STAILQ_FIRST(&sc->sc_rxbuf); 2858 if (bf == NULL) { /* NB: shouldn't happen */ 2859 if_printf(ifp, "%s: no buffer!\n", __func__); 2860 break; 2861 } 2862 m = bf->bf_m; 2863 if (m == NULL) { /* NB: shouldn't happen */ 2864 /* 2865 * If mbuf allocation failed previously there 2866 * will be no mbuf; try again to re-populate it. 2867 */ 2868 /* XXX make debug msg */ 2869 if_printf(ifp, "%s: no mbuf!\n", __func__); 2870 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 2871 goto rx_next; 2872 } 2873 ds = bf->bf_desc; 2874 if (ds->ds_link == bf->bf_daddr) { 2875 /* NB: never process the self-linked entry at the end */ 2876 break; 2877 } 2878 /* XXX sync descriptor memory */ 2879 /* 2880 * Must provide the virtual address of the current 2881 * descriptor, the physical address, and the virtual 2882 * address of the next descriptor in the h/w chain. 2883 * This allows the HAL to look ahead to see if the 2884 * hardware is done with a descriptor by checking the 2885 * done bit in the following descriptor and the address 2886 * of the current descriptor the DMA engine is working 2887 * on. All this is necessary because of our use of 2888 * a self-linked list to avoid rx overruns. 2889 */ 2890 status = ath_hal_rxprocdesc(ah, ds, 2891 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2892 #ifdef ATH_DEBUG 2893 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 2894 ath_printrxbuf(bf, 0, status == HAL_OK); 2895 #endif 2896 if (status == HAL_EINPROGRESS) 2897 break; 2898 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 2899 if (ds->ds_rxstat.rs_more) { 2900 /* 2901 * Frame spans multiple descriptors; this 2902 * cannot happen yet as we don't support 2903 * jumbograms. If not in monitor mode, 2904 * discard the frame. 2905 */ 2906 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2907 sc->sc_stats.ast_rx_toobig++; 2908 goto rx_next; 2909 } 2910 /* fall thru for monitor mode handling... */ 2911 } else if (ds->ds_rxstat.rs_status != 0) { 2912 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2913 sc->sc_stats.ast_rx_crcerr++; 2914 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2915 sc->sc_stats.ast_rx_fifoerr++; 2916 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2917 sc->sc_stats.ast_rx_phyerr++; 2918 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2919 sc->sc_stats.ast_rx_phy[phyerr]++; 2920 goto rx_next; 2921 } 2922 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 2923 /* 2924 * Decrypt error. If the error occurred 2925 * because there was no hardware key, then 2926 * let the frame through so the upper layers 2927 * can process it. This is necessary for 5210 2928 * parts which have no way to setup a ``clear'' 2929 * key cache entry. 2930 * 2931 * XXX do key cache faulting 2932 */ 2933 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 2934 goto rx_accept; 2935 sc->sc_stats.ast_rx_badcrypt++; 2936 } 2937 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 2938 sc->sc_stats.ast_rx_badmic++; 2939 /* 2940 * Do minimal work required to hand off 2941 * the 802.11 header for notifcation. 2942 */ 2943 /* XXX frag's and qos frames */ 2944 len = ds->ds_rxstat.rs_datalen; 2945 if (len >= sizeof (struct ieee80211_frame)) { 2946 bus_dmamap_sync(sc->sc_dmat, 2947 bf->bf_dmamap, 2948 BUS_DMASYNC_POSTREAD); 2949 ieee80211_notify_michael_failure(ic, 2950 mtod(m, struct ieee80211_frame *), 2951 sc->sc_splitmic ? 2952 ds->ds_rxstat.rs_keyix-32 : 2953 ds->ds_rxstat.rs_keyix 2954 ); 2955 } 2956 } 2957 ifp->if_ierrors++; 2958 /* 2959 * When a tap is present pass error frames 2960 * that have been requested. By default we 2961 * pass decrypt+mic errors but others may be 2962 * interesting (e.g. crc). 2963 */ 2964 if (bpf_peers_present(sc->sc_drvbpf) && 2965 (ds->ds_rxstat.rs_status & sc->sc_monpass)) { 2966 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2967 BUS_DMASYNC_POSTREAD); 2968 /* NB: bpf needs the mbuf length setup */ 2969 len = ds->ds_rxstat.rs_datalen; 2970 m->m_pkthdr.len = m->m_len = len; 2971 (void) ath_rx_tap(sc, m, ds, tsf, nf); 2972 } 2973 /* XXX pass MIC errors up for s/w reclaculation */ 2974 goto rx_next; 2975 } 2976 rx_accept: 2977 /* 2978 * Sync and unmap the frame. At this point we're 2979 * committed to passing the mbuf somewhere so clear 2980 * bf_m; this means a new mbuf must be allocated 2981 * when the rx descriptor is setup again to receive 2982 * another frame. 2983 */ 2984 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2985 BUS_DMASYNC_POSTREAD); 2986 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2987 bf->bf_m = NULL; 2988 2989 m->m_pkthdr.rcvif = ifp; 2990 len = ds->ds_rxstat.rs_datalen; 2991 m->m_pkthdr.len = m->m_len = len; 2992 2993 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 2994 2995 if (bpf_peers_present(sc->sc_drvbpf) && 2996 !ath_rx_tap(sc, m, ds, tsf, nf)) { 2997 m_freem(m); /* XXX reclaim */ 2998 goto rx_next; 2999 } 3000 3001 /* 3002 * From this point on we assume the frame is at least 3003 * as large as ieee80211_frame_min; verify that. 3004 */ 3005 if (len < IEEE80211_MIN_LEN) { 3006 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3007 __func__, len); 3008 sc->sc_stats.ast_rx_tooshort++; 3009 m_freem(m); 3010 goto rx_next; 3011 } 3012 3013 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3014 ieee80211_dump_pkt(mtod(m, caddr_t), len, 3015 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3016 ds->ds_rxstat.rs_rssi); 3017 } 3018 3019 m_adj(m, -IEEE80211_CRC_LEN); 3020 3021 /* 3022 * Locate the node for sender, track state, and then 3023 * pass the (referenced) node up to the 802.11 layer 3024 * for its use. 3025 */ 3026 ni = ieee80211_find_rxnode_withkey(ic, 3027 mtod(m, const struct ieee80211_frame_min *), 3028 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3029 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3030 /* 3031 * Track rx rssi and do any rx antenna management. 3032 */ 3033 an = ATH_NODE(ni); 3034 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3035 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3036 /* 3037 * Send frame up for processing. 3038 */ 3039 type = ieee80211_input(ic, m, ni, 3040 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3041 ieee80211_free_node(ni); 3042 if (sc->sc_diversity) { 3043 /* 3044 * When using fast diversity, change the default rx 3045 * antenna if diversity chooses the other antenna 3 3046 * times in a row. 3047 */ 3048 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3049 if (++sc->sc_rxotherant >= 3) 3050 ath_setdefantenna(sc, 3051 ds->ds_rxstat.rs_antenna); 3052 } else 3053 sc->sc_rxotherant = 0; 3054 } 3055 if (sc->sc_softled) { 3056 /* 3057 * Blink for any data frame. Otherwise do a 3058 * heartbeat-style blink when idle. The latter 3059 * is mainly for station mode where we depend on 3060 * periodic beacon frames to trigger the poll event. 3061 */ 3062 if (type == IEEE80211_FC0_TYPE_DATA) { 3063 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3064 ath_led_event(sc, ATH_LED_RX); 3065 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3066 ath_led_event(sc, ATH_LED_POLL); 3067 } 3068 /* 3069 * Arrange to update the last rx timestamp only for 3070 * frames from our ap when operating in station mode. 3071 * This assumes the rx key is always setup when associated. 3072 */ 3073 if (ic->ic_opmode == IEEE80211_M_STA && 3074 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3075 ngood++; 3076 rx_next: 3077 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3078 } while (ath_rxbuf_init(sc, bf) == 0); 3079 3080 /* rx signal state monitoring */ 3081 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3082 if (ath_hal_radar_event(ah)) 3083 taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask); 3084 if (ngood) 3085 sc->sc_lastrx = tsf; 3086 3087 NET_UNLOCK_GIANT(); /* XXX */ 3088 #undef PA2DESC 3089 } 3090 3091 static void 3092 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3093 { 3094 txq->axq_qnum = qnum; 3095 txq->axq_depth = 0; 3096 txq->axq_intrcnt = 0; 3097 txq->axq_link = NULL; 3098 STAILQ_INIT(&txq->axq_q); 3099 ATH_TXQ_LOCK_INIT(sc, txq); 3100 } 3101 3102 /* 3103 * Setup a h/w transmit queue. 3104 */ 3105 static struct ath_txq * 3106 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3107 { 3108 #define N(a) (sizeof(a)/sizeof(a[0])) 3109 struct ath_hal *ah = sc->sc_ah; 3110 HAL_TXQ_INFO qi; 3111 int qnum; 3112 3113 memset(&qi, 0, sizeof(qi)); 3114 qi.tqi_subtype = subtype; 3115 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3116 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3117 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3118 /* 3119 * Enable interrupts only for EOL and DESC conditions. 3120 * We mark tx descriptors to receive a DESC interrupt 3121 * when a tx queue gets deep; otherwise waiting for the 3122 * EOL to reap descriptors. Note that this is done to 3123 * reduce interrupt load and this only defers reaping 3124 * descriptors, never transmitting frames. Aside from 3125 * reducing interrupts this also permits more concurrency. 3126 * The only potential downside is if the tx queue backs 3127 * up in which case the top half of the kernel may backup 3128 * due to a lack of tx descriptors. 3129 */ 3130 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3131 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3132 if (qnum == -1) { 3133 /* 3134 * NB: don't print a message, this happens 3135 * normally on parts with too few tx queues 3136 */ 3137 return NULL; 3138 } 3139 if (qnum >= N(sc->sc_txq)) { 3140 device_printf(sc->sc_dev, 3141 "hal qnum %u out of range, max %zu!\n", 3142 qnum, N(sc->sc_txq)); 3143 ath_hal_releasetxqueue(ah, qnum); 3144 return NULL; 3145 } 3146 if (!ATH_TXQ_SETUP(sc, qnum)) { 3147 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3148 sc->sc_txqsetup |= 1<<qnum; 3149 } 3150 return &sc->sc_txq[qnum]; 3151 #undef N 3152 } 3153 3154 /* 3155 * Setup a hardware data transmit queue for the specified 3156 * access control. The hal may not support all requested 3157 * queues in which case it will return a reference to a 3158 * previously setup queue. We record the mapping from ac's 3159 * to h/w queues for use by ath_tx_start and also track 3160 * the set of h/w queues being used to optimize work in the 3161 * transmit interrupt handler and related routines. 3162 */ 3163 static int 3164 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3165 { 3166 #define N(a) (sizeof(a)/sizeof(a[0])) 3167 struct ath_txq *txq; 3168 3169 if (ac >= N(sc->sc_ac2q)) { 3170 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3171 ac, N(sc->sc_ac2q)); 3172 return 0; 3173 } 3174 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3175 if (txq != NULL) { 3176 sc->sc_ac2q[ac] = txq; 3177 return 1; 3178 } else 3179 return 0; 3180 #undef N 3181 } 3182 3183 /* 3184 * Update WME parameters for a transmit queue. 3185 */ 3186 static int 3187 ath_txq_update(struct ath_softc *sc, int ac) 3188 { 3189 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3190 #define ATH_TXOP_TO_US(v) (v<<5) 3191 struct ieee80211com *ic = &sc->sc_ic; 3192 struct ath_txq *txq = sc->sc_ac2q[ac]; 3193 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3194 struct ath_hal *ah = sc->sc_ah; 3195 HAL_TXQ_INFO qi; 3196 3197 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3198 qi.tqi_aifs = wmep->wmep_aifsn; 3199 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3200 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3201 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3202 3203 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3204 device_printf(sc->sc_dev, "unable to update hardware queue " 3205 "parameters for %s traffic!\n", 3206 ieee80211_wme_acnames[ac]); 3207 return 0; 3208 } else { 3209 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3210 return 1; 3211 } 3212 #undef ATH_TXOP_TO_US 3213 #undef ATH_EXPONENT_TO_VALUE 3214 } 3215 3216 /* 3217 * Callback from the 802.11 layer to update WME parameters. 3218 */ 3219 static int 3220 ath_wme_update(struct ieee80211com *ic) 3221 { 3222 struct ath_softc *sc = ic->ic_ifp->if_softc; 3223 3224 return !ath_txq_update(sc, WME_AC_BE) || 3225 !ath_txq_update(sc, WME_AC_BK) || 3226 !ath_txq_update(sc, WME_AC_VI) || 3227 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3228 } 3229 3230 /* 3231 * Reclaim resources for a setup queue. 3232 */ 3233 static void 3234 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3235 { 3236 3237 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3238 ATH_TXQ_LOCK_DESTROY(txq); 3239 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3240 } 3241 3242 /* 3243 * Reclaim all tx queue resources. 3244 */ 3245 static void 3246 ath_tx_cleanup(struct ath_softc *sc) 3247 { 3248 int i; 3249 3250 ATH_TXBUF_LOCK_DESTROY(sc); 3251 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3252 if (ATH_TXQ_SETUP(sc, i)) 3253 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3254 ATH_TXQ_LOCK_DESTROY(&sc->sc_mcastq); 3255 } 3256 3257 /* 3258 * Defragment an mbuf chain, returning at most maxfrags separate 3259 * mbufs+clusters. If this is not possible NULL is returned and 3260 * the original mbuf chain is left in it's present (potentially 3261 * modified) state. We use two techniques: collapsing consecutive 3262 * mbufs and replacing consecutive mbufs by a cluster. 3263 */ 3264 static struct mbuf * 3265 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3266 { 3267 struct mbuf *m, *n, *n2, **prev; 3268 u_int curfrags; 3269 3270 /* 3271 * Calculate the current number of frags. 3272 */ 3273 curfrags = 0; 3274 for (m = m0; m != NULL; m = m->m_next) 3275 curfrags++; 3276 /* 3277 * First, try to collapse mbufs. Note that we always collapse 3278 * towards the front so we don't need to deal with moving the 3279 * pkthdr. This may be suboptimal if the first mbuf has much 3280 * less data than the following. 3281 */ 3282 m = m0; 3283 again: 3284 for (;;) { 3285 n = m->m_next; 3286 if (n == NULL) 3287 break; 3288 if ((m->m_flags & M_RDONLY) == 0 && 3289 n->m_len < M_TRAILINGSPACE(m)) { 3290 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 3291 n->m_len); 3292 m->m_len += n->m_len; 3293 m->m_next = n->m_next; 3294 m_free(n); 3295 if (--curfrags <= maxfrags) 3296 return m0; 3297 } else 3298 m = n; 3299 } 3300 KASSERT(maxfrags > 1, 3301 ("maxfrags %u, but normal collapse failed", maxfrags)); 3302 /* 3303 * Collapse consecutive mbufs to a cluster. 3304 */ 3305 prev = &m0->m_next; /* NB: not the first mbuf */ 3306 while ((n = *prev) != NULL) { 3307 if ((n2 = n->m_next) != NULL && 3308 n->m_len + n2->m_len < MCLBYTES) { 3309 m = m_getcl(how, MT_DATA, 0); 3310 if (m == NULL) 3311 goto bad; 3312 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3313 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3314 n2->m_len); 3315 m->m_len = n->m_len + n2->m_len; 3316 m->m_next = n2->m_next; 3317 *prev = m; 3318 m_free(n); 3319 m_free(n2); 3320 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3321 return m0; 3322 /* 3323 * Still not there, try the normal collapse 3324 * again before we allocate another cluster. 3325 */ 3326 goto again; 3327 } 3328 prev = &n->m_next; 3329 } 3330 /* 3331 * No place where we can collapse to a cluster; punt. 3332 * This can occur if, for example, you request 2 frags 3333 * but the packet requires that both be clusters (we 3334 * never reallocate the first mbuf to avoid moving the 3335 * packet header). 3336 */ 3337 bad: 3338 return NULL; 3339 } 3340 3341 /* 3342 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3343 */ 3344 static int 3345 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3346 { 3347 int i; 3348 3349 for (i = 0; i < rt->rateCount; i++) 3350 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3351 return i; 3352 return 0; /* NB: lowest rate */ 3353 } 3354 3355 static int 3356 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3357 struct mbuf *m0) 3358 { 3359 struct ieee80211com *ic = &sc->sc_ic; 3360 struct ath_hal *ah = sc->sc_ah; 3361 struct ifnet *ifp = sc->sc_ifp; 3362 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3363 int i, error, iswep, ismcast, ismrr; 3364 int keyix, hdrlen, pktlen, try0; 3365 u_int8_t rix, txrate, ctsrate; 3366 u_int8_t cix = 0xff; /* NB: silence compiler */ 3367 struct ath_desc *ds, *ds0; 3368 struct ath_txq *txq; 3369 struct ieee80211_frame *wh; 3370 u_int subtype, flags, ctsduration; 3371 HAL_PKT_TYPE atype; 3372 const HAL_RATE_TABLE *rt; 3373 HAL_BOOL shortPreamble; 3374 struct ath_node *an; 3375 struct mbuf *m; 3376 u_int pri; 3377 3378 wh = mtod(m0, struct ieee80211_frame *); 3379 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3380 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3381 hdrlen = ieee80211_anyhdrsize(wh); 3382 /* 3383 * Packet length must not include any 3384 * pad bytes; deduct them here. 3385 */ 3386 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 3387 3388 if (iswep) { 3389 const struct ieee80211_cipher *cip; 3390 struct ieee80211_key *k; 3391 3392 /* 3393 * Construct the 802.11 header+trailer for an encrypted 3394 * frame. The only reason this can fail is because of an 3395 * unknown or unsupported cipher/key type. 3396 */ 3397 k = ieee80211_crypto_encap(ic, ni, m0); 3398 if (k == NULL) { 3399 /* 3400 * This can happen when the key is yanked after the 3401 * frame was queued. Just discard the frame; the 3402 * 802.11 layer counts failures and provides 3403 * debugging/diagnostics. 3404 */ 3405 m_freem(m0); 3406 return EIO; 3407 } 3408 /* 3409 * Adjust the packet + header lengths for the crypto 3410 * additions and calculate the h/w key index. When 3411 * a s/w mic is done the frame will have had any mic 3412 * added to it prior to entry so m0->m_pkthdr.len above will 3413 * account for it. Otherwise we need to add it to the 3414 * packet length. 3415 */ 3416 cip = k->wk_cipher; 3417 hdrlen += cip->ic_header; 3418 pktlen += cip->ic_header + cip->ic_trailer; 3419 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0) 3420 pktlen += cip->ic_miclen; 3421 keyix = k->wk_keyix; 3422 3423 /* packet header may have moved, reset our local pointer */ 3424 wh = mtod(m0, struct ieee80211_frame *); 3425 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3426 /* 3427 * Use station key cache slot, if assigned. 3428 */ 3429 keyix = ni->ni_ucastkey.wk_keyix; 3430 if (keyix == IEEE80211_KEYIX_NONE) 3431 keyix = HAL_TXKEYIX_INVALID; 3432 } else 3433 keyix = HAL_TXKEYIX_INVALID; 3434 3435 pktlen += IEEE80211_CRC_LEN; 3436 3437 /* 3438 * Load the DMA map so any coalescing is done. This 3439 * also calculates the number of descriptors we need. 3440 */ 3441 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 3442 bf->bf_segs, &bf->bf_nseg, 3443 BUS_DMA_NOWAIT); 3444 if (error == EFBIG) { 3445 /* XXX packet requires too many descriptors */ 3446 bf->bf_nseg = ATH_TXDESC+1; 3447 } else if (error != 0) { 3448 sc->sc_stats.ast_tx_busdma++; 3449 m_freem(m0); 3450 return error; 3451 } 3452 /* 3453 * Discard null packets and check for packets that 3454 * require too many TX descriptors. We try to convert 3455 * the latter to a cluster. 3456 */ 3457 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 3458 sc->sc_stats.ast_tx_linear++; 3459 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3460 if (m == NULL) { 3461 m_freem(m0); 3462 sc->sc_stats.ast_tx_nombuf++; 3463 return ENOMEM; 3464 } 3465 m0 = m; 3466 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 3467 bf->bf_segs, &bf->bf_nseg, 3468 BUS_DMA_NOWAIT); 3469 if (error != 0) { 3470 sc->sc_stats.ast_tx_busdma++; 3471 m_freem(m0); 3472 return error; 3473 } 3474 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3475 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3476 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3477 sc->sc_stats.ast_tx_nodata++; 3478 m_freem(m0); 3479 return EIO; 3480 } 3481 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3482 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3483 bf->bf_m = m0; 3484 bf->bf_node = ni; /* NB: held reference */ 3485 3486 /* setup descriptors */ 3487 ds = bf->bf_desc; 3488 rt = sc->sc_currates; 3489 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3490 3491 /* 3492 * NB: the 802.11 layer marks whether or not we should 3493 * use short preamble based on the current mode and 3494 * negotiated parameters. 3495 */ 3496 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3497 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 3498 shortPreamble = AH_TRUE; 3499 sc->sc_stats.ast_tx_shortpre++; 3500 } else { 3501 shortPreamble = AH_FALSE; 3502 } 3503 3504 an = ATH_NODE(ni); 3505 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3506 ismrr = 0; /* default no multi-rate retry*/ 3507 /* 3508 * Calculate Atheros packet type from IEEE80211 packet header, 3509 * setup for rate calculations, and select h/w transmit queue. 3510 */ 3511 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3512 case IEEE80211_FC0_TYPE_MGT: 3513 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3514 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3515 atype = HAL_PKT_TYPE_BEACON; 3516 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3517 atype = HAL_PKT_TYPE_PROBE_RESP; 3518 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3519 atype = HAL_PKT_TYPE_ATIM; 3520 else 3521 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3522 rix = sc->sc_minrateix; 3523 txrate = rt->info[rix].rateCode; 3524 if (shortPreamble) 3525 txrate |= rt->info[rix].shortPreamble; 3526 try0 = ATH_TXMGTTRY; 3527 /* NB: force all management frames to highest queue */ 3528 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3529 /* NB: force all management frames to highest queue */ 3530 pri = WME_AC_VO; 3531 } else 3532 pri = WME_AC_BE; 3533 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3534 break; 3535 case IEEE80211_FC0_TYPE_CTL: 3536 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3537 rix = sc->sc_minrateix; 3538 txrate = rt->info[rix].rateCode; 3539 if (shortPreamble) 3540 txrate |= rt->info[rix].shortPreamble; 3541 try0 = ATH_TXMGTTRY; 3542 /* NB: force all ctl frames to highest queue */ 3543 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3544 /* NB: force all ctl frames to highest queue */ 3545 pri = WME_AC_VO; 3546 } else 3547 pri = WME_AC_BE; 3548 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3549 break; 3550 case IEEE80211_FC0_TYPE_DATA: 3551 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3552 /* 3553 * Data frames: multicast frames go out at a fixed rate, 3554 * otherwise consult the rate control module for the 3555 * rate to use. 3556 */ 3557 if (ismcast) { 3558 /* 3559 * Check mcast rate setting in case it's changed. 3560 * XXX move out of fastpath 3561 */ 3562 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3563 sc->sc_mcastrix = 3564 ath_tx_findrix(rt, ic->ic_mcast_rate); 3565 sc->sc_mcastrate = ic->ic_mcast_rate; 3566 } 3567 rix = sc->sc_mcastrix; 3568 txrate = rt->info[rix].rateCode; 3569 if (shortPreamble) 3570 txrate |= rt->info[rix].shortPreamble; 3571 try0 = 1; 3572 } else { 3573 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3574 &rix, &try0, &txrate); 3575 sc->sc_txrate = txrate; /* for LED blinking */ 3576 if (try0 != ATH_TXMAXTRY) 3577 ismrr = 1; 3578 } 3579 pri = M_WME_GETAC(m0); 3580 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3581 flags |= HAL_TXDESC_NOACK; 3582 break; 3583 default: 3584 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3585 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3586 /* XXX statistic */ 3587 m_freem(m0); 3588 return EIO; 3589 } 3590 txq = sc->sc_ac2q[pri]; 3591 3592 /* 3593 * When servicing one or more stations in power-save mode 3594 * (or) if there is some mcast data waiting on the mcast 3595 * queue (to prevent out of order delivery) multicast 3596 * frames must be buffered until after the beacon. 3597 */ 3598 if (ismcast && (ic->ic_ps_sta || sc->sc_mcastq.axq_depth)) { 3599 txq = &sc->sc_mcastq; 3600 /* XXX? more bit in 802.11 frame header */ 3601 } 3602 3603 /* 3604 * Calculate miscellaneous flags. 3605 */ 3606 if (ismcast) { 3607 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3608 } else if (pktlen > ic->ic_rtsthreshold) { 3609 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3610 cix = rt->info[rix].controlRate; 3611 sc->sc_stats.ast_tx_rts++; 3612 } 3613 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3614 sc->sc_stats.ast_tx_noack++; 3615 3616 /* 3617 * If 802.11g protection is enabled, determine whether 3618 * to use RTS/CTS or just CTS. Note that this is only 3619 * done for OFDM unicast frames. 3620 */ 3621 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3622 rt->info[rix].phy == IEEE80211_T_OFDM && 3623 (flags & HAL_TXDESC_NOACK) == 0) { 3624 /* XXX fragments must use CCK rates w/ protection */ 3625 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3626 flags |= HAL_TXDESC_RTSENA; 3627 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3628 flags |= HAL_TXDESC_CTSENA; 3629 cix = rt->info[sc->sc_protrix].controlRate; 3630 sc->sc_stats.ast_tx_protect++; 3631 } 3632 3633 /* 3634 * Calculate duration. This logically belongs in the 802.11 3635 * layer but it lacks sufficient information to calculate it. 3636 */ 3637 if ((flags & HAL_TXDESC_NOACK) == 0 && 3638 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3639 u_int16_t dur; 3640 /* 3641 * XXX not right with fragmentation. 3642 */ 3643 if (shortPreamble) 3644 dur = rt->info[rix].spAckDuration; 3645 else 3646 dur = rt->info[rix].lpAckDuration; 3647 *(u_int16_t *)wh->i_dur = htole16(dur); 3648 } 3649 3650 /* 3651 * Calculate RTS/CTS rate and duration if needed. 3652 */ 3653 ctsduration = 0; 3654 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3655 /* 3656 * CTS transmit rate is derived from the transmit rate 3657 * by looking in the h/w rate table. We must also factor 3658 * in whether or not a short preamble is to be used. 3659 */ 3660 /* NB: cix is set above where RTS/CTS is enabled */ 3661 KASSERT(cix != 0xff, ("cix not setup")); 3662 ctsrate = rt->info[cix].rateCode; 3663 /* 3664 * Compute the transmit duration based on the frame 3665 * size and the size of an ACK frame. We call into the 3666 * HAL to do the computation since it depends on the 3667 * characteristics of the actual PHY being used. 3668 * 3669 * NB: CTS is assumed the same size as an ACK so we can 3670 * use the precalculated ACK durations. 3671 */ 3672 if (shortPreamble) { 3673 ctsrate |= rt->info[cix].shortPreamble; 3674 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3675 ctsduration += rt->info[cix].spAckDuration; 3676 ctsduration += ath_hal_computetxtime(ah, 3677 rt, pktlen, rix, AH_TRUE); 3678 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3679 ctsduration += rt->info[rix].spAckDuration; 3680 } else { 3681 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3682 ctsduration += rt->info[cix].lpAckDuration; 3683 ctsduration += ath_hal_computetxtime(ah, 3684 rt, pktlen, rix, AH_FALSE); 3685 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3686 ctsduration += rt->info[rix].lpAckDuration; 3687 } 3688 /* 3689 * Must disable multi-rate retry when using RTS/CTS. 3690 */ 3691 ismrr = 0; 3692 try0 = ATH_TXMGTTRY; /* XXX */ 3693 } else 3694 ctsrate = 0; 3695 3696 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3697 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len, 3698 sc->sc_hwmap[txrate].ieeerate, -1); 3699 3700 if (bpf_peers_present(ic->ic_rawbpf)) 3701 bpf_mtap(ic->ic_rawbpf, m0); 3702 if (bpf_peers_present(sc->sc_drvbpf)) { 3703 u_int64_t tsf = ath_hal_gettsf64(ah); 3704 3705 sc->sc_tx_th.wt_tsf = htole64(tsf); 3706 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3707 if (iswep) 3708 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3709 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3710 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3711 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3712 3713 bpf_mtap2(sc->sc_drvbpf, 3714 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3715 } 3716 3717 /* 3718 * Determine if a tx interrupt should be generated for 3719 * this descriptor. We take a tx interrupt to reap 3720 * descriptors when the h/w hits an EOL condition or 3721 * when the descriptor is specifically marked to generate 3722 * an interrupt. We periodically mark descriptors in this 3723 * way to insure timely replenishing of the supply needed 3724 * for sending frames. Defering interrupts reduces system 3725 * load and potentially allows more concurrent work to be 3726 * done but if done to aggressively can cause senders to 3727 * backup. 3728 * 3729 * NB: use >= to deal with sc_txintrperiod changing 3730 * dynamically through sysctl. 3731 */ 3732 if (flags & HAL_TXDESC_INTREQ) { 3733 txq->axq_intrcnt = 0; 3734 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3735 flags |= HAL_TXDESC_INTREQ; 3736 txq->axq_intrcnt = 0; 3737 } 3738 3739 /* 3740 * Formulate first tx descriptor with tx controls. 3741 */ 3742 /* XXX check return value? */ 3743 ath_hal_setuptxdesc(ah, ds 3744 , pktlen /* packet length */ 3745 , hdrlen /* header length */ 3746 , atype /* Atheros packet type */ 3747 , ni->ni_txpower /* txpower */ 3748 , txrate, try0 /* series 0 rate/tries */ 3749 , keyix /* key cache index */ 3750 , sc->sc_txantenna /* antenna mode */ 3751 , flags /* flags */ 3752 , ctsrate /* rts/cts rate */ 3753 , ctsduration /* rts/cts duration */ 3754 ); 3755 bf->bf_flags = flags; 3756 /* 3757 * Setup the multi-rate retry state only when we're 3758 * going to use it. This assumes ath_hal_setuptxdesc 3759 * initializes the descriptors (so we don't have to) 3760 * when the hardware supports multi-rate retry and 3761 * we don't use it. 3762 */ 3763 if (ismrr) 3764 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 3765 3766 /* 3767 * Fillin the remainder of the descriptor info. 3768 */ 3769 ds0 = ds; 3770 for (i = 0; i < bf->bf_nseg; i++, ds++) { 3771 ds->ds_data = bf->bf_segs[i].ds_addr; 3772 if (i == bf->bf_nseg - 1) 3773 ds->ds_link = 0; 3774 else 3775 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 3776 ath_hal_filltxdesc(ah, ds 3777 , bf->bf_segs[i].ds_len /* segment length */ 3778 , i == 0 /* first segment */ 3779 , i == bf->bf_nseg - 1 /* last segment */ 3780 , ds0 /* first descriptor */ 3781 ); 3782 DPRINTF(sc, ATH_DEBUG_XMIT, 3783 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 3784 __func__, i, ds->ds_link, ds->ds_data, 3785 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 3786 } 3787 /* 3788 * Insert the frame on the outbound list and pass it on 3789 * to the hardware. Multicast frames buffered for power 3790 * save stations and transmit from the CAB queue are stored 3791 * on a s/w only queue and loaded on to the CAB queue in 3792 * the SWBA handler since frames only go out on DTIM and 3793 * to avoid possible races. 3794 */ 3795 ATH_TXQ_LOCK(txq); 3796 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 3797 if (txq != &sc->sc_mcastq) { 3798 if (txq->axq_link == NULL) { 3799 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 3800 DPRINTF(sc, ATH_DEBUG_XMIT, 3801 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, 3802 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, 3803 txq->axq_depth); 3804 } else { 3805 *txq->axq_link = bf->bf_daddr; 3806 DPRINTF(sc, ATH_DEBUG_XMIT, 3807 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 3808 txq->axq_qnum, txq->axq_link, 3809 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 3810 } 3811 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 3812 ath_hal_txstart(ah, txq->axq_qnum); 3813 } else { 3814 if (txq->axq_link != NULL) 3815 *txq->axq_link = bf->bf_daddr; 3816 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 3817 } 3818 ATH_TXQ_UNLOCK(txq); 3819 3820 return 0; 3821 } 3822 3823 /* 3824 * Process completed xmit descriptors from the specified queue. 3825 */ 3826 static int 3827 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 3828 { 3829 struct ath_hal *ah = sc->sc_ah; 3830 struct ieee80211com *ic = &sc->sc_ic; 3831 struct ath_buf *bf; 3832 struct ath_desc *ds, *ds0; 3833 struct ieee80211_node *ni; 3834 struct ath_node *an; 3835 int sr, lr, pri, nacked; 3836 HAL_STATUS status; 3837 3838 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3839 __func__, txq->axq_qnum, 3840 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3841 txq->axq_link); 3842 nacked = 0; 3843 for (;;) { 3844 ATH_TXQ_LOCK(txq); 3845 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3846 bf = STAILQ_FIRST(&txq->axq_q); 3847 if (bf == NULL) { 3848 ATH_TXQ_UNLOCK(txq); 3849 break; 3850 } 3851 ds0 = &bf->bf_desc[0]; 3852 ds = &bf->bf_desc[bf->bf_nseg - 1]; 3853 status = ath_hal_txprocdesc(ah, ds); 3854 #ifdef ATH_DEBUG 3855 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3856 ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK); 3857 #endif 3858 if (status == HAL_EINPROGRESS) { 3859 ATH_TXQ_UNLOCK(txq); 3860 break; 3861 } 3862 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3863 if (txq->axq_depth == 0) 3864 txq->axq_link = NULL; 3865 ATH_TXQ_UNLOCK(txq); 3866 3867 ni = bf->bf_node; 3868 if (ni != NULL) { 3869 an = ATH_NODE(ni); 3870 if (ds->ds_txstat.ts_status == 0) { 3871 u_int8_t txant = ds->ds_txstat.ts_antenna; 3872 sc->sc_stats.ast_ant_tx[txant]++; 3873 sc->sc_ant_tx[txant]++; 3874 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 3875 sc->sc_stats.ast_tx_altrate++; 3876 sc->sc_stats.ast_tx_rssi = 3877 ds->ds_txstat.ts_rssi; 3878 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3879 ds->ds_txstat.ts_rssi); 3880 pri = M_WME_GETAC(bf->bf_m); 3881 if (pri >= WME_AC_VO) 3882 ic->ic_wme.wme_hipri_traffic++; 3883 ni->ni_inact = ni->ni_inact_reload; 3884 } else { 3885 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 3886 sc->sc_stats.ast_tx_xretries++; 3887 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 3888 sc->sc_stats.ast_tx_fifoerr++; 3889 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 3890 sc->sc_stats.ast_tx_filtered++; 3891 } 3892 sr = ds->ds_txstat.ts_shortretry; 3893 lr = ds->ds_txstat.ts_longretry; 3894 sc->sc_stats.ast_tx_shortretry += sr; 3895 sc->sc_stats.ast_tx_longretry += lr; 3896 /* 3897 * Hand the descriptor to the rate control algorithm. 3898 */ 3899 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 3900 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 3901 /* 3902 * If frame was ack'd update the last rx time 3903 * used to workaround phantom bmiss interrupts. 3904 */ 3905 if (ds->ds_txstat.ts_status == 0) 3906 nacked++; 3907 ath_rate_tx_complete(sc, an, ds, ds0); 3908 } 3909 /* 3910 * Reclaim reference to node. 3911 * 3912 * NB: the node may be reclaimed here if, for example 3913 * this is a DEAUTH message that was sent and the 3914 * node was timed out due to inactivity. 3915 */ 3916 ieee80211_free_node(ni); 3917 } 3918 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3919 BUS_DMASYNC_POSTWRITE); 3920 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3921 m_freem(bf->bf_m); 3922 bf->bf_m = NULL; 3923 bf->bf_node = NULL; 3924 3925 ATH_TXBUF_LOCK(sc); 3926 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3927 ATH_TXBUF_UNLOCK(sc); 3928 } 3929 return nacked; 3930 } 3931 3932 static __inline int 3933 txqactive(struct ath_hal *ah, int qnum) 3934 { 3935 u_int32_t txqs = 1<<qnum; 3936 ath_hal_gettxintrtxqs(ah, &txqs); 3937 return (txqs & (1<<qnum)); 3938 } 3939 3940 /* 3941 * Deferred processing of transmit interrupt; special-cased 3942 * for a single hardware transmit queue (e.g. 5210 and 5211). 3943 */ 3944 static void 3945 ath_tx_proc_q0(void *arg, int npending) 3946 { 3947 struct ath_softc *sc = arg; 3948 struct ifnet *ifp = sc->sc_ifp; 3949 3950 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0])) 3951 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3952 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 3953 ath_tx_processq(sc, sc->sc_cabq); 3954 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3955 sc->sc_tx_timer = 0; 3956 3957 if (sc->sc_softled) 3958 ath_led_event(sc, ATH_LED_TX); 3959 3960 ath_start(ifp); 3961 } 3962 3963 /* 3964 * Deferred processing of transmit interrupt; special-cased 3965 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3966 */ 3967 static void 3968 ath_tx_proc_q0123(void *arg, int npending) 3969 { 3970 struct ath_softc *sc = arg; 3971 struct ifnet *ifp = sc->sc_ifp; 3972 int nacked; 3973 3974 /* 3975 * Process each active queue. 3976 */ 3977 nacked = 0; 3978 if (txqactive(sc->sc_ah, 0)) 3979 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 3980 if (txqactive(sc->sc_ah, 1)) 3981 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 3982 if (txqactive(sc->sc_ah, 2)) 3983 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 3984 if (txqactive(sc->sc_ah, 3)) 3985 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 3986 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 3987 ath_tx_processq(sc, sc->sc_cabq); 3988 if (nacked) 3989 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3990 3991 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3992 sc->sc_tx_timer = 0; 3993 3994 if (sc->sc_softled) 3995 ath_led_event(sc, ATH_LED_TX); 3996 3997 ath_start(ifp); 3998 } 3999 4000 /* 4001 * Deferred processing of transmit interrupt. 4002 */ 4003 static void 4004 ath_tx_proc(void *arg, int npending) 4005 { 4006 struct ath_softc *sc = arg; 4007 struct ifnet *ifp = sc->sc_ifp; 4008 int i, nacked; 4009 4010 /* 4011 * Process each active queue. 4012 */ 4013 nacked = 0; 4014 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4015 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4016 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4017 if (nacked) 4018 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4019 4020 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4021 sc->sc_tx_timer = 0; 4022 4023 if (sc->sc_softled) 4024 ath_led_event(sc, ATH_LED_TX); 4025 4026 ath_start(ifp); 4027 } 4028 4029 static void 4030 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4031 { 4032 #ifdef ATH_DEBUG 4033 struct ath_hal *ah = sc->sc_ah; 4034 #endif 4035 struct ieee80211_node *ni; 4036 struct ath_buf *bf; 4037 u_int ix; 4038 4039 /* 4040 * NB: this assumes output has been stopped and 4041 * we do not need to block ath_tx_tasklet 4042 */ 4043 for (ix = 0;; ix++) { 4044 ATH_TXQ_LOCK(txq); 4045 bf = STAILQ_FIRST(&txq->axq_q); 4046 if (bf == NULL) { 4047 txq->axq_link = NULL; 4048 ATH_TXQ_UNLOCK(txq); 4049 break; 4050 } 4051 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4052 ATH_TXQ_UNLOCK(txq); 4053 #ifdef ATH_DEBUG 4054 if (sc->sc_debug & ATH_DEBUG_RESET) { 4055 ath_printtxbuf(bf, txq->axq_qnum, ix, 4056 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 4057 ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t), 4058 bf->bf_m->m_len, 0, -1); 4059 } 4060 #endif /* ATH_DEBUG */ 4061 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4062 m_freem(bf->bf_m); 4063 bf->bf_m = NULL; 4064 ni = bf->bf_node; 4065 bf->bf_node = NULL; 4066 if (ni != NULL) { 4067 /* 4068 * Reclaim node reference. 4069 */ 4070 ieee80211_free_node(ni); 4071 } 4072 ATH_TXBUF_LOCK(sc); 4073 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4074 ATH_TXBUF_UNLOCK(sc); 4075 } 4076 } 4077 4078 static void 4079 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4080 { 4081 struct ath_hal *ah = sc->sc_ah; 4082 4083 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4084 __func__, txq->axq_qnum, 4085 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4086 txq->axq_link); 4087 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4088 } 4089 4090 /* 4091 * Drain the transmit queues and reclaim resources. 4092 */ 4093 static void 4094 ath_draintxq(struct ath_softc *sc) 4095 { 4096 struct ath_hal *ah = sc->sc_ah; 4097 struct ifnet *ifp = sc->sc_ifp; 4098 int i; 4099 4100 /* XXX return value */ 4101 if (!sc->sc_invalid) { 4102 /* don't touch the hardware if marked invalid */ 4103 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4104 __func__, sc->sc_bhalq, 4105 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4106 NULL); 4107 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4108 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4109 if (ATH_TXQ_SETUP(sc, i)) 4110 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4111 } 4112 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4113 if (ATH_TXQ_SETUP(sc, i)) 4114 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4115 ath_tx_draintxq(sc, &sc->sc_mcastq); 4116 #ifdef ATH_DEBUG 4117 if (sc->sc_debug & ATH_DEBUG_RESET) { 4118 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 4119 if (bf != NULL && bf->bf_m != NULL) { 4120 ath_printtxbuf(bf, sc->sc_bhalq, 0, 4121 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 4122 ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t), 4123 bf->bf_m->m_len, 0, -1); 4124 } 4125 } 4126 #endif /* ATH_DEBUG */ 4127 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4128 sc->sc_tx_timer = 0; 4129 } 4130 4131 /* 4132 * Disable the receive h/w in preparation for a reset. 4133 */ 4134 static void 4135 ath_stoprecv(struct ath_softc *sc) 4136 { 4137 #define PA2DESC(_sc, _pa) \ 4138 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4139 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4140 struct ath_hal *ah = sc->sc_ah; 4141 4142 ath_hal_stoppcurecv(ah); /* disable PCU */ 4143 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4144 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4145 DELAY(3000); /* 3ms is long enough for 1 frame */ 4146 #ifdef ATH_DEBUG 4147 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4148 struct ath_buf *bf; 4149 u_int ix; 4150 4151 printf("%s: rx queue %p, link %p\n", __func__, 4152 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4153 ix = 0; 4154 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4155 struct ath_desc *ds = bf->bf_desc; 4156 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4157 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 4158 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4159 ath_printrxbuf(bf, ix, status == HAL_OK); 4160 ix++; 4161 } 4162 } 4163 #endif 4164 sc->sc_rxlink = NULL; /* just in case */ 4165 #undef PA2DESC 4166 } 4167 4168 /* 4169 * Enable the receive h/w following a reset. 4170 */ 4171 static int 4172 ath_startrecv(struct ath_softc *sc) 4173 { 4174 struct ath_hal *ah = sc->sc_ah; 4175 struct ath_buf *bf; 4176 4177 sc->sc_rxlink = NULL; 4178 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4179 int error = ath_rxbuf_init(sc, bf); 4180 if (error != 0) { 4181 DPRINTF(sc, ATH_DEBUG_RECV, 4182 "%s: ath_rxbuf_init failed %d\n", 4183 __func__, error); 4184 return error; 4185 } 4186 } 4187 4188 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4189 ath_hal_putrxbuf(ah, bf->bf_daddr); 4190 ath_hal_rxena(ah); /* enable recv descriptors */ 4191 ath_mode_init(sc); /* set filters, etc. */ 4192 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4193 return 0; 4194 } 4195 4196 /* 4197 * Update internal state after a channel change. 4198 */ 4199 static void 4200 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4201 { 4202 struct ieee80211com *ic = &sc->sc_ic; 4203 enum ieee80211_phymode mode; 4204 u_int16_t flags; 4205 4206 /* 4207 * Change channels and update the h/w rate map 4208 * if we're switching; e.g. 11a to 11b/g. 4209 */ 4210 mode = ieee80211_chan2mode(ic, chan); 4211 if (mode != sc->sc_curmode) 4212 ath_setcurmode(sc, mode); 4213 /* 4214 * Update BPF state. NB: ethereal et. al. don't handle 4215 * merged flags well so pick a unique mode for their use. 4216 */ 4217 if (IEEE80211_IS_CHAN_A(chan)) 4218 flags = IEEE80211_CHAN_A; 4219 /* XXX 11g schizophrenia */ 4220 else if (IEEE80211_IS_CHAN_G(chan) || 4221 IEEE80211_IS_CHAN_PUREG(chan)) 4222 flags = IEEE80211_CHAN_G; 4223 else 4224 flags = IEEE80211_CHAN_B; 4225 if (IEEE80211_IS_CHAN_T(chan)) 4226 flags |= IEEE80211_CHAN_TURBO; 4227 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4228 htole16(chan->ic_freq); 4229 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4230 htole16(flags); 4231 } 4232 4233 /* 4234 * Poll for a channel clear indication; this is required 4235 * for channels requiring DFS and not previously visited 4236 * and/or with a recent radar detection. 4237 */ 4238 static void 4239 ath_dfswait(void *arg) 4240 { 4241 struct ath_softc *sc = arg; 4242 struct ath_hal *ah = sc->sc_ah; 4243 HAL_CHANNEL hchan; 4244 4245 ath_hal_radar_wait(ah, &hchan); 4246 DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n", 4247 __func__, hchan.channel, hchan.channelFlags, hchan.privFlags); 4248 4249 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4250 if_printf(sc->sc_ifp, 4251 "channel %u/0x%x/0x%x has interference\n", 4252 hchan.channel, hchan.channelFlags, hchan.privFlags); 4253 return; 4254 } 4255 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4256 /* XXX should not happen */ 4257 return; 4258 } 4259 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4260 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4261 sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4262 if_printf(sc->sc_ifp, 4263 "channel %u/0x%x/0x%x marked clear\n", 4264 hchan.channel, hchan.channelFlags, hchan.privFlags); 4265 } else 4266 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4267 } 4268 4269 /* 4270 * Set/change channels. If the channel is really being changed, 4271 * it's done by reseting the chip. To accomplish this we must 4272 * first cleanup any pending DMA, then restart stuff after a la 4273 * ath_init. 4274 */ 4275 static int 4276 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4277 { 4278 struct ath_hal *ah = sc->sc_ah; 4279 struct ieee80211com *ic = &sc->sc_ic; 4280 HAL_CHANNEL hchan; 4281 4282 /* 4283 * Convert to a HAL channel description with 4284 * the flags constrained to reflect the current 4285 * operating mode. 4286 */ 4287 hchan.channel = chan->ic_freq; 4288 hchan.channelFlags = ath_chan2flags(ic, chan); 4289 4290 DPRINTF(sc, ATH_DEBUG_RESET, 4291 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4292 __func__, 4293 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4294 sc->sc_curchan.channelFlags), 4295 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4296 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4297 hchan.channel, hchan.channelFlags); 4298 if (hchan.channel != sc->sc_curchan.channel || 4299 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4300 HAL_STATUS status; 4301 4302 /* 4303 * To switch channels clear any pending DMA operations; 4304 * wait long enough for the RX fifo to drain, reset the 4305 * hardware at the new frequency, and then re-enable 4306 * the relevant bits of the h/w. 4307 */ 4308 ath_hal_intrset(ah, 0); /* disable interrupts */ 4309 ath_draintxq(sc); /* clear pending tx frames */ 4310 ath_stoprecv(sc); /* turn off frame recv */ 4311 if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) { 4312 if_printf(ic->ic_ifp, "%s: unable to reset " 4313 "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n", 4314 __func__, ieee80211_chan2ieee(ic, chan), 4315 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4316 return EIO; 4317 } 4318 sc->sc_curchan = hchan; 4319 ath_update_txpow(sc); /* update tx power state */ 4320 sc->sc_diversity = ath_hal_getdiversity(ah); 4321 sc->sc_calinterval = 1; 4322 sc->sc_caltries = 0; 4323 4324 /* 4325 * Re-enable rx framework. 4326 */ 4327 if (ath_startrecv(sc) != 0) { 4328 if_printf(ic->ic_ifp, 4329 "%s: unable to restart recv logic\n", __func__); 4330 return EIO; 4331 } 4332 4333 /* 4334 * Change channels and update the h/w rate map 4335 * if we're switching; e.g. 11a to 11b/g. 4336 */ 4337 ic->ic_ibss_chan = chan; 4338 ath_chan_change(sc, chan); 4339 4340 /* 4341 * Handle DFS required waiting period to determine 4342 * if channel is clear of radar traffic. 4343 */ 4344 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4345 #define DFS_AND_NOT_CLEAR(_c) \ 4346 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4347 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4348 if_printf(sc->sc_ifp, 4349 "wait for DFS clear channel signal\n"); 4350 /* XXX stop sndq */ 4351 sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4352 callout_reset(&sc->sc_dfs_ch, 4353 2 * hz, ath_dfswait, sc); 4354 } else 4355 callout_stop(&sc->sc_dfs_ch); 4356 #undef DFS_NOT_CLEAR 4357 } 4358 4359 /* 4360 * Re-enable interrupts. 4361 */ 4362 ath_hal_intrset(ah, sc->sc_imask); 4363 } 4364 return 0; 4365 } 4366 4367 static void 4368 ath_next_scan(void *arg) 4369 { 4370 struct ath_softc *sc = arg; 4371 struct ieee80211com *ic = &sc->sc_ic; 4372 4373 if (ic->ic_state == IEEE80211_S_SCAN) 4374 ieee80211_next_scan(ic); 4375 } 4376 4377 /* 4378 * Periodically recalibrate the PHY to account 4379 * for temperature/environment changes. 4380 */ 4381 static void 4382 ath_calibrate(void *arg) 4383 { 4384 struct ath_softc *sc = arg; 4385 struct ath_hal *ah = sc->sc_ah; 4386 HAL_BOOL iqCalDone; 4387 4388 sc->sc_stats.ast_per_cal++; 4389 4390 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4391 /* 4392 * Rfgain is out of bounds, reset the chip 4393 * to load new gain values. 4394 */ 4395 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4396 "%s: rfgain change\n", __func__); 4397 sc->sc_stats.ast_per_rfgain++; 4398 ath_reset(sc->sc_ifp); 4399 } 4400 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4401 DPRINTF(sc, ATH_DEBUG_ANY, 4402 "%s: calibration of channel %u failed\n", 4403 __func__, sc->sc_curchan.channel); 4404 sc->sc_stats.ast_per_calfail++; 4405 } 4406 /* 4407 * Calibrate noise floor data again in case of change. 4408 */ 4409 ath_hal_process_noisefloor(ah); 4410 /* 4411 * Poll more frequently when the IQ calibration is in 4412 * progress to speedup loading the final settings. 4413 * We temper this aggressive polling with an exponential 4414 * back off after 4 tries up to ath_calinterval. 4415 */ 4416 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4417 sc->sc_caltries = 0; 4418 sc->sc_calinterval = ath_calinterval; 4419 } else if (sc->sc_caltries > 4) { 4420 sc->sc_caltries = 0; 4421 sc->sc_calinterval <<= 1; 4422 if (sc->sc_calinterval > ath_calinterval) 4423 sc->sc_calinterval = ath_calinterval; 4424 } 4425 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval, 4426 ("bad calibration interval %u", sc->sc_calinterval)); 4427 4428 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4429 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4430 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4431 sc->sc_caltries++; 4432 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4433 ath_calibrate, sc); 4434 } 4435 4436 static int 4437 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4438 { 4439 struct ifnet *ifp = ic->ic_ifp; 4440 struct ath_softc *sc = ifp->if_softc; 4441 struct ath_hal *ah = sc->sc_ah; 4442 struct ieee80211_node *ni; 4443 int i, error; 4444 const u_int8_t *bssid; 4445 u_int32_t rfilt; 4446 static const HAL_LED_STATE leds[] = { 4447 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4448 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4449 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4450 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4451 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4452 }; 4453 4454 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4455 ieee80211_state_name[ic->ic_state], 4456 ieee80211_state_name[nstate]); 4457 4458 callout_stop(&sc->sc_scan_ch); 4459 callout_stop(&sc->sc_cal_ch); 4460 callout_stop(&sc->sc_dfs_ch); 4461 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4462 4463 if (nstate == IEEE80211_S_INIT) { 4464 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4465 /* 4466 * NB: disable interrupts so we don't rx frames. 4467 */ 4468 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4469 /* 4470 * Notify the rate control algorithm. 4471 */ 4472 ath_rate_newstate(sc, nstate); 4473 goto done; 4474 } 4475 ni = ic->ic_bss; 4476 error = ath_chan_set(sc, ic->ic_curchan); 4477 if (error != 0) 4478 goto bad; 4479 rfilt = ath_calcrxfilter(sc, nstate); 4480 if (nstate == IEEE80211_S_SCAN) 4481 bssid = ifp->if_broadcastaddr; 4482 else 4483 bssid = ni->ni_bssid; 4484 ath_hal_setrxfilter(ah, rfilt); 4485 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4486 __func__, rfilt, ether_sprintf(bssid)); 4487 4488 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4489 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4490 else 4491 ath_hal_setassocid(ah, bssid, 0); 4492 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4493 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4494 if (ath_hal_keyisvalid(ah, i)) 4495 ath_hal_keysetmac(ah, i, bssid); 4496 } 4497 4498 /* 4499 * Notify the rate control algorithm so rates 4500 * are setup should ath_beacon_alloc be called. 4501 */ 4502 ath_rate_newstate(sc, nstate); 4503 4504 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4505 /* nothing to do */; 4506 } else if (nstate == IEEE80211_S_RUN) { 4507 DPRINTF(sc, ATH_DEBUG_STATE, 4508 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4509 "capinfo=0x%04x chan=%d\n" 4510 , __func__ 4511 , ic->ic_flags 4512 , ni->ni_intval 4513 , ether_sprintf(ni->ni_bssid) 4514 , ni->ni_capinfo 4515 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4516 4517 switch (ic->ic_opmode) { 4518 case IEEE80211_M_HOSTAP: 4519 case IEEE80211_M_IBSS: 4520 /* 4521 * Allocate and setup the beacon frame. 4522 * 4523 * Stop any previous beacon DMA. This may be 4524 * necessary, for example, when an ibss merge 4525 * causes reconfiguration; there will be a state 4526 * transition from RUN->RUN that means we may 4527 * be called with beacon transmission active. 4528 */ 4529 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4530 ath_beacon_free(sc); 4531 error = ath_beacon_alloc(sc, ni); 4532 if (error != 0) 4533 goto bad; 4534 /* 4535 * If joining an adhoc network defer beacon timer 4536 * configuration to the next beacon frame so we 4537 * have a current TSF to use. Otherwise we're 4538 * starting an ibss/bss so there's no need to delay. 4539 */ 4540 if (ic->ic_opmode == IEEE80211_M_IBSS && 4541 ic->ic_bss->ni_tstamp.tsf != 0) 4542 sc->sc_syncbeacon = 1; 4543 else 4544 ath_beacon_config(sc); 4545 break; 4546 case IEEE80211_M_STA: 4547 /* 4548 * Allocate a key cache slot to the station. 4549 */ 4550 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4551 sc->sc_hasclrkey && 4552 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4553 ath_setup_stationkey(ni); 4554 /* 4555 * Defer beacon timer configuration to the next 4556 * beacon frame so we have a current TSF to use 4557 * (any TSF collected when scanning is likely old). 4558 */ 4559 sc->sc_syncbeacon = 1; 4560 break; 4561 default: 4562 break; 4563 } 4564 4565 /* 4566 * Let the hal process statistics collected during a 4567 * scan so it can provide calibrated noise floor data. 4568 */ 4569 ath_hal_process_noisefloor(ah); 4570 /* 4571 * Reset rssi stats; maybe not the best place... 4572 */ 4573 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4574 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4575 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4576 } else { 4577 ath_hal_intrset(ah, 4578 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4579 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4580 } 4581 done: 4582 /* 4583 * Invoke the parent method to complete the work. 4584 */ 4585 error = sc->sc_newstate(ic, nstate, arg); 4586 /* 4587 * Finally, start any timers. 4588 */ 4589 if (nstate == IEEE80211_S_RUN) { 4590 /* start periodic recalibration timer */ 4591 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4592 ath_calibrate, sc); 4593 } else if (nstate == IEEE80211_S_SCAN) { 4594 /* start ap/neighbor scan timer */ 4595 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4596 ath_next_scan, sc); 4597 } 4598 bad: 4599 return error; 4600 } 4601 4602 /* 4603 * Allocate a key cache slot to the station so we can 4604 * setup a mapping from key index to node. The key cache 4605 * slot is needed for managing antenna state and for 4606 * compression when stations do not use crypto. We do 4607 * it uniliaterally here; if crypto is employed this slot 4608 * will be reassigned. 4609 */ 4610 static void 4611 ath_setup_stationkey(struct ieee80211_node *ni) 4612 { 4613 struct ieee80211com *ic = ni->ni_ic; 4614 struct ath_softc *sc = ic->ic_ifp->if_softc; 4615 ieee80211_keyix keyix, rxkeyix; 4616 4617 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4618 /* 4619 * Key cache is full; we'll fall back to doing 4620 * the more expensive lookup in software. Note 4621 * this also means no h/w compression. 4622 */ 4623 /* XXX msg+statistic */ 4624 } else { 4625 /* XXX locking? */ 4626 ni->ni_ucastkey.wk_keyix = keyix; 4627 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4628 /* NB: this will create a pass-thru key entry */ 4629 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4630 } 4631 } 4632 4633 /* 4634 * Setup driver-specific state for a newly associated node. 4635 * Note that we're called also on a re-associate, the isnew 4636 * param tells us if this is the first time or not. 4637 */ 4638 static void 4639 ath_newassoc(struct ieee80211_node *ni, int isnew) 4640 { 4641 struct ieee80211com *ic = ni->ni_ic; 4642 struct ath_softc *sc = ic->ic_ifp->if_softc; 4643 4644 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4645 if (isnew && 4646 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4647 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4648 ("new assoc with a unicast key already setup (keyix %u)", 4649 ni->ni_ucastkey.wk_keyix)); 4650 ath_setup_stationkey(ni); 4651 } 4652 } 4653 4654 static int 4655 ath_getchannels(struct ath_softc *sc, u_int cc, 4656 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4657 { 4658 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4659 #define IS_CHAN_PUBLIC_SAFETY(_c) \ 4660 (((_c)->channelFlags & CHANNEL_5GHZ) && \ 4661 ((_c)->channel > 4940 && (_c)->channel < 4990)) 4662 struct ieee80211com *ic = &sc->sc_ic; 4663 struct ifnet *ifp = sc->sc_ifp; 4664 struct ath_hal *ah = sc->sc_ah; 4665 HAL_CHANNEL *chans; 4666 int i, ix, nchan; 4667 4668 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4669 M_TEMP, M_NOWAIT); 4670 if (chans == NULL) { 4671 if_printf(ifp, "unable to allocate channel table\n"); 4672 return ENOMEM; 4673 } 4674 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4675 NULL, 0, NULL, 4676 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4677 u_int32_t rd; 4678 4679 ath_hal_getregdomain(ah, &rd); 4680 if_printf(ifp, "unable to collect channel list from hal; " 4681 "regdomain likely %u country code %u\n", rd, cc); 4682 free(chans, M_TEMP); 4683 return EINVAL; 4684 } 4685 4686 /* 4687 * Convert HAL channels to ieee80211 ones and insert 4688 * them in the table according to their channel number. 4689 */ 4690 for (i = 0; i < nchan; i++) { 4691 HAL_CHANNEL *c = &chans[i]; 4692 u_int16_t flags; 4693 4694 /* 4695 * XXX we're not ready to handle the ieee number mapping 4696 * for public safety channels as they overlap with any 4697 * 2GHz channels; for now use the non-public safety 4698 * numbering which is non-overlapping. 4699 */ 4700 if (IS_CHAN_PUBLIC_SAFETY(c)) 4701 ix = (c->channel - 4000) / 5; 4702 else 4703 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4704 if (ix > IEEE80211_CHAN_MAX) { 4705 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4706 ix, c->channel, c->channelFlags); 4707 continue; 4708 } 4709 if (ix < 0) { 4710 /* XXX can't handle stuff <2400 right now */ 4711 if (bootverbose) 4712 if_printf(ifp, "hal channel %d (%u/%x) " 4713 "cannot be handled; ignored\n", 4714 ix, c->channel, c->channelFlags); 4715 continue; 4716 } 4717 /* 4718 * Calculate net80211 flags; most are compatible 4719 * but some need massaging. Note the static turbo 4720 * conversion can be removed once net80211 is updated 4721 * to understand static vs. dynamic turbo. 4722 */ 4723 flags = c->channelFlags & COMPAT; 4724 if (c->channelFlags & CHANNEL_STURBO) 4725 flags |= IEEE80211_CHAN_TURBO; 4726 if (ic->ic_channels[ix].ic_freq == 0) { 4727 ic->ic_channels[ix].ic_freq = c->channel; 4728 ic->ic_channels[ix].ic_flags = flags; 4729 } else { 4730 /* channels overlap; e.g. 11g and 11b */ 4731 ic->ic_channels[ix].ic_flags |= flags; 4732 } 4733 } 4734 free(chans, M_TEMP); 4735 return 0; 4736 #undef IS_CHAN_PUBLIC_SAFETY 4737 #undef COMPAT 4738 } 4739 4740 static void 4741 ath_led_done(void *arg) 4742 { 4743 struct ath_softc *sc = arg; 4744 4745 sc->sc_blinking = 0; 4746 } 4747 4748 /* 4749 * Turn the LED off: flip the pin and then set a timer so no 4750 * update will happen for the specified duration. 4751 */ 4752 static void 4753 ath_led_off(void *arg) 4754 { 4755 struct ath_softc *sc = arg; 4756 4757 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4758 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4759 } 4760 4761 /* 4762 * Blink the LED according to the specified on/off times. 4763 */ 4764 static void 4765 ath_led_blink(struct ath_softc *sc, int on, int off) 4766 { 4767 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4768 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4769 sc->sc_blinking = 1; 4770 sc->sc_ledoff = off; 4771 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4772 } 4773 4774 static void 4775 ath_led_event(struct ath_softc *sc, int event) 4776 { 4777 4778 sc->sc_ledevent = ticks; /* time of last event */ 4779 if (sc->sc_blinking) /* don't interrupt active blink */ 4780 return; 4781 switch (event) { 4782 case ATH_LED_POLL: 4783 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4784 sc->sc_hwmap[0].ledoff); 4785 break; 4786 case ATH_LED_TX: 4787 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4788 sc->sc_hwmap[sc->sc_txrate].ledoff); 4789 break; 4790 case ATH_LED_RX: 4791 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 4792 sc->sc_hwmap[sc->sc_rxrate].ledoff); 4793 break; 4794 } 4795 } 4796 4797 static void 4798 ath_update_txpow(struct ath_softc *sc) 4799 { 4800 struct ieee80211com *ic = &sc->sc_ic; 4801 struct ath_hal *ah = sc->sc_ah; 4802 u_int32_t txpow; 4803 4804 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 4805 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 4806 /* read back in case value is clamped */ 4807 ath_hal_gettxpowlimit(ah, &txpow); 4808 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 4809 } 4810 /* 4811 * Fetch max tx power level for status requests. 4812 */ 4813 ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 4814 ic->ic_bss->ni_txpower = txpow; 4815 } 4816 4817 static void 4818 rate_setup(struct ath_softc *sc, 4819 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 4820 { 4821 int i, maxrates; 4822 4823 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 4824 DPRINTF(sc, ATH_DEBUG_ANY, 4825 "%s: rate table too small (%u > %u)\n", 4826 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 4827 maxrates = IEEE80211_RATE_MAXSIZE; 4828 } else 4829 maxrates = rt->rateCount; 4830 for (i = 0; i < maxrates; i++) 4831 rs->rs_rates[i] = rt->info[i].dot11Rate; 4832 rs->rs_nrates = maxrates; 4833 } 4834 4835 static int 4836 ath_rate_setup(struct ath_softc *sc, u_int mode) 4837 { 4838 struct ath_hal *ah = sc->sc_ah; 4839 struct ieee80211com *ic = &sc->sc_ic; 4840 const HAL_RATE_TABLE *rt; 4841 4842 switch (mode) { 4843 case IEEE80211_MODE_11A: 4844 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4845 break; 4846 case IEEE80211_MODE_11B: 4847 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4848 break; 4849 case IEEE80211_MODE_11G: 4850 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4851 break; 4852 case IEEE80211_MODE_TURBO_A: 4853 /* XXX until static/dynamic turbo is fixed */ 4854 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4855 break; 4856 case IEEE80211_MODE_TURBO_G: 4857 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4858 break; 4859 default: 4860 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4861 __func__, mode); 4862 return 0; 4863 } 4864 sc->sc_rates[mode] = rt; 4865 if (rt != NULL) { 4866 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 4867 return 1; 4868 } else 4869 return 0; 4870 } 4871 4872 static void 4873 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4874 { 4875 #define N(a) (sizeof(a)/sizeof(a[0])) 4876 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4877 static const struct { 4878 u_int rate; /* tx/rx 802.11 rate */ 4879 u_int16_t timeOn; /* LED on time (ms) */ 4880 u_int16_t timeOff; /* LED off time (ms) */ 4881 } blinkrates[] = { 4882 { 108, 40, 10 }, 4883 { 96, 44, 11 }, 4884 { 72, 50, 13 }, 4885 { 48, 57, 14 }, 4886 { 36, 67, 16 }, 4887 { 24, 80, 20 }, 4888 { 22, 100, 25 }, 4889 { 18, 133, 34 }, 4890 { 12, 160, 40 }, 4891 { 10, 200, 50 }, 4892 { 6, 240, 58 }, 4893 { 4, 267, 66 }, 4894 { 2, 400, 100 }, 4895 { 0, 500, 130 }, 4896 }; 4897 const HAL_RATE_TABLE *rt; 4898 int i, j; 4899 4900 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4901 rt = sc->sc_rates[mode]; 4902 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4903 for (i = 0; i < rt->rateCount; i++) 4904 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 4905 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4906 for (i = 0; i < 32; i++) { 4907 u_int8_t ix = rt->rateCodeToIndex[i]; 4908 if (ix == 0xff) { 4909 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4910 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4911 continue; 4912 } 4913 sc->sc_hwmap[i].ieeerate = 4914 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 4915 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4916 if (rt->info[ix].shortPreamble || 4917 rt->info[ix].phy == IEEE80211_T_OFDM) 4918 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4919 /* NB: receive frames include FCS */ 4920 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 4921 IEEE80211_RADIOTAP_F_FCS; 4922 /* setup blink rate table to avoid per-packet lookup */ 4923 for (j = 0; j < N(blinkrates)-1; j++) 4924 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4925 break; 4926 /* NB: this uses the last entry if the rate isn't found */ 4927 /* XXX beware of overlow */ 4928 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4929 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4930 } 4931 sc->sc_currates = rt; 4932 sc->sc_curmode = mode; 4933 /* 4934 * All protection frames are transmited at 2Mb/s for 4935 * 11g, otherwise at 1Mb/s. 4936 */ 4937 if (mode == IEEE80211_MODE_11G) 4938 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 4939 else 4940 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 4941 /* rate index used to send management frames */ 4942 sc->sc_minrateix = 0; 4943 /* 4944 * Setup multicast rate state. 4945 */ 4946 /* XXX layering violation */ 4947 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 4948 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 4949 /* NB: caller is responsible for reseting rate control state */ 4950 #undef N 4951 } 4952 4953 #ifdef ATH_DEBUG 4954 static void 4955 ath_printrxbuf(struct ath_buf *bf, u_int ix, int done) 4956 { 4957 struct ath_desc *ds; 4958 int i; 4959 4960 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4961 printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n" 4962 " %08x %08x %08x %08x\n", 4963 ix, ds, (struct ath_desc *)bf->bf_daddr + i, 4964 ds->ds_link, ds->ds_data, 4965 !done ? "" : (ds->ds_rxstat.rs_status == 0) ? " *" : " !", 4966 ds->ds_ctl0, ds->ds_ctl1, 4967 ds->ds_hw[0], ds->ds_hw[1]); 4968 } 4969 } 4970 4971 static void 4972 ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done) 4973 { 4974 struct ath_desc *ds; 4975 int i; 4976 4977 printf("Q%u[%3u]", qnum, ix); 4978 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4979 printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n" 4980 " %08x %08x %08x %08x %08x %08x\n", 4981 ds, (struct ath_desc *)bf->bf_daddr + i, 4982 ds->ds_link, ds->ds_data, bf->bf_flags, 4983 !done ? "" : (ds->ds_txstat.ts_status == 0) ? " *" : " !", 4984 ds->ds_ctl0, ds->ds_ctl1, 4985 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]); 4986 } 4987 } 4988 #endif /* ATH_DEBUG */ 4989 4990 static void 4991 ath_watchdog(struct ifnet *ifp) 4992 { 4993 struct ath_softc *sc = ifp->if_softc; 4994 struct ieee80211com *ic = &sc->sc_ic; 4995 4996 ifp->if_timer = 0; 4997 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 4998 return; 4999 if (sc->sc_tx_timer) { 5000 if (--sc->sc_tx_timer == 0) { 5001 if_printf(ifp, "device timeout\n"); 5002 ath_reset(ifp); 5003 ifp->if_oerrors++; 5004 sc->sc_stats.ast_watchdog++; 5005 } else 5006 ifp->if_timer = 1; 5007 } 5008 ieee80211_watchdog(ic); 5009 } 5010 5011 #ifdef ATH_DIAGAPI 5012 /* 5013 * Diagnostic interface to the HAL. This is used by various 5014 * tools to do things like retrieve register contents for 5015 * debugging. The mechanism is intentionally opaque so that 5016 * it can change frequently w/o concern for compatiblity. 5017 */ 5018 static int 5019 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5020 { 5021 struct ath_hal *ah = sc->sc_ah; 5022 u_int id = ad->ad_id & ATH_DIAG_ID; 5023 void *indata = NULL; 5024 void *outdata = NULL; 5025 u_int32_t insize = ad->ad_in_size; 5026 u_int32_t outsize = ad->ad_out_size; 5027 int error = 0; 5028 5029 if (ad->ad_id & ATH_DIAG_IN) { 5030 /* 5031 * Copy in data. 5032 */ 5033 indata = malloc(insize, M_TEMP, M_NOWAIT); 5034 if (indata == NULL) { 5035 error = ENOMEM; 5036 goto bad; 5037 } 5038 error = copyin(ad->ad_in_data, indata, insize); 5039 if (error) 5040 goto bad; 5041 } 5042 if (ad->ad_id & ATH_DIAG_DYN) { 5043 /* 5044 * Allocate a buffer for the results (otherwise the HAL 5045 * returns a pointer to a buffer where we can read the 5046 * results). Note that we depend on the HAL leaving this 5047 * pointer for us to use below in reclaiming the buffer; 5048 * may want to be more defensive. 5049 */ 5050 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5051 if (outdata == NULL) { 5052 error = ENOMEM; 5053 goto bad; 5054 } 5055 } 5056 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5057 if (outsize < ad->ad_out_size) 5058 ad->ad_out_size = outsize; 5059 if (outdata != NULL) 5060 error = copyout(outdata, ad->ad_out_data, 5061 ad->ad_out_size); 5062 } else { 5063 error = EINVAL; 5064 } 5065 bad: 5066 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5067 free(indata, M_TEMP); 5068 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5069 free(outdata, M_TEMP); 5070 return error; 5071 } 5072 #endif /* ATH_DIAGAPI */ 5073 5074 static int 5075 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5076 { 5077 #define IS_RUNNING(ifp) \ 5078 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5079 struct ath_softc *sc = ifp->if_softc; 5080 struct ieee80211com *ic = &sc->sc_ic; 5081 struct ifreq *ifr = (struct ifreq *)data; 5082 int error = 0; 5083 5084 ATH_LOCK(sc); 5085 switch (cmd) { 5086 case SIOCSIFFLAGS: 5087 if (IS_RUNNING(ifp)) { 5088 /* 5089 * To avoid rescanning another access point, 5090 * do not call ath_init() here. Instead, 5091 * only reflect promisc mode settings. 5092 */ 5093 ath_mode_init(sc); 5094 } else if (ifp->if_flags & IFF_UP) { 5095 /* 5096 * Beware of being called during attach/detach 5097 * to reset promiscuous mode. In that case we 5098 * will still be marked UP but not RUNNING. 5099 * However trying to re-init the interface 5100 * is the wrong thing to do as we've already 5101 * torn down much of our state. There's 5102 * probably a better way to deal with this. 5103 */ 5104 if (!sc->sc_invalid && ic->ic_bss != NULL) 5105 ath_init(sc); /* XXX lose error */ 5106 } else 5107 ath_stop_locked(ifp); 5108 break; 5109 case SIOCADDMULTI: 5110 case SIOCDELMULTI: 5111 /* 5112 * The upper layer has already installed/removed 5113 * the multicast address(es), just recalculate the 5114 * multicast filter for the card. 5115 */ 5116 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5117 ath_mode_init(sc); 5118 break; 5119 case SIOCGATHSTATS: 5120 /* NB: embed these numbers to get a consistent view */ 5121 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5122 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5123 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 5124 ATH_UNLOCK(sc); 5125 /* 5126 * NB: Drop the softc lock in case of a page fault; 5127 * we'll accept any potential inconsisentcy in the 5128 * statistics. The alternative is to copy the data 5129 * to a local structure. 5130 */ 5131 return copyout(&sc->sc_stats, 5132 ifr->ifr_data, sizeof (sc->sc_stats)); 5133 #ifdef ATH_DIAGAPI 5134 case SIOCGATHDIAG: 5135 ATH_UNLOCK(sc); 5136 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5137 ATH_LOCK(sc); 5138 break; 5139 #endif 5140 default: 5141 error = ieee80211_ioctl(ic, cmd, data); 5142 if (error == ENETRESET) { 5143 if (IS_RUNNING(ifp) && 5144 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5145 ath_init(sc); /* XXX lose error */ 5146 error = 0; 5147 } 5148 if (error == ERESTART) 5149 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0; 5150 break; 5151 } 5152 ATH_UNLOCK(sc); 5153 return error; 5154 #undef IS_RUNNING 5155 } 5156 5157 static int 5158 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS) 5159 { 5160 struct ath_softc *sc = arg1; 5161 u_int slottime = ath_hal_getslottime(sc->sc_ah); 5162 int error; 5163 5164 error = sysctl_handle_int(oidp, &slottime, 0, req); 5165 if (error || !req->newptr) 5166 return error; 5167 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0; 5168 } 5169 5170 static int 5171 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS) 5172 { 5173 struct ath_softc *sc = arg1; 5174 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah); 5175 int error; 5176 5177 error = sysctl_handle_int(oidp, &acktimeout, 0, req); 5178 if (error || !req->newptr) 5179 return error; 5180 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0; 5181 } 5182 5183 static int 5184 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS) 5185 { 5186 struct ath_softc *sc = arg1; 5187 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah); 5188 int error; 5189 5190 error = sysctl_handle_int(oidp, &ctstimeout, 0, req); 5191 if (error || !req->newptr) 5192 return error; 5193 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0; 5194 } 5195 5196 static int 5197 ath_sysctl_softled(SYSCTL_HANDLER_ARGS) 5198 { 5199 struct ath_softc *sc = arg1; 5200 int softled = sc->sc_softled; 5201 int error; 5202 5203 error = sysctl_handle_int(oidp, &softled, 0, req); 5204 if (error || !req->newptr) 5205 return error; 5206 softled = (softled != 0); 5207 if (softled != sc->sc_softled) { 5208 if (softled) { 5209 /* NB: handle any sc_ledpin change */ 5210 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 5211 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 5212 !sc->sc_ledon); 5213 } 5214 sc->sc_softled = softled; 5215 } 5216 return 0; 5217 } 5218 5219 static int 5220 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS) 5221 { 5222 struct ath_softc *sc = arg1; 5223 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah); 5224 int error; 5225 5226 error = sysctl_handle_int(oidp, &defantenna, 0, req); 5227 if (!error && req->newptr) 5228 ath_hal_setdefantenna(sc->sc_ah, defantenna); 5229 return error; 5230 } 5231 5232 static int 5233 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS) 5234 { 5235 struct ath_softc *sc = arg1; 5236 u_int diversity = ath_hal_getdiversity(sc->sc_ah); 5237 int error; 5238 5239 error = sysctl_handle_int(oidp, &diversity, 0, req); 5240 if (error || !req->newptr) 5241 return error; 5242 if (!ath_hal_setdiversity(sc->sc_ah, diversity)) 5243 return EINVAL; 5244 sc->sc_diversity = diversity; 5245 return 0; 5246 } 5247 5248 static int 5249 ath_sysctl_diag(SYSCTL_HANDLER_ARGS) 5250 { 5251 struct ath_softc *sc = arg1; 5252 u_int32_t diag; 5253 int error; 5254 5255 if (!ath_hal_getdiag(sc->sc_ah, &diag)) 5256 return EINVAL; 5257 error = sysctl_handle_int(oidp, &diag, 0, req); 5258 if (error || !req->newptr) 5259 return error; 5260 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0; 5261 } 5262 5263 static int 5264 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS) 5265 { 5266 struct ath_softc *sc = arg1; 5267 struct ifnet *ifp = sc->sc_ifp; 5268 u_int32_t scale; 5269 int error; 5270 5271 ath_hal_gettpscale(sc->sc_ah, &scale); 5272 error = sysctl_handle_int(oidp, &scale, 0, req); 5273 if (error || !req->newptr) 5274 return error; 5275 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp); 5276 } 5277 5278 static int 5279 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS) 5280 { 5281 struct ath_softc *sc = arg1; 5282 u_int tpc = ath_hal_gettpc(sc->sc_ah); 5283 int error; 5284 5285 error = sysctl_handle_int(oidp, &tpc, 0, req); 5286 if (error || !req->newptr) 5287 return error; 5288 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0; 5289 } 5290 5291 static int 5292 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS) 5293 { 5294 struct ath_softc *sc = arg1; 5295 struct ath_hal *ah = sc->sc_ah; 5296 u_int rfkill = ath_hal_getrfkill(ah); 5297 int error; 5298 5299 error = sysctl_handle_int(oidp, &rfkill, 0, req); 5300 if (error || !req->newptr) 5301 return error; 5302 if (rfkill == ath_hal_getrfkill(ah)) /* unchanged */ 5303 return 0; 5304 if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(sc->sc_ifp) != 0) 5305 return EINVAL; 5306 else 5307 return 0; 5308 } 5309 5310 static int 5311 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS) 5312 { 5313 struct ath_softc *sc = arg1; 5314 u_int rfsilent; 5315 int error; 5316 5317 ath_hal_getrfsilent(sc->sc_ah, &rfsilent); 5318 error = sysctl_handle_int(oidp, &rfsilent, 0, req); 5319 if (error || !req->newptr) 5320 return error; 5321 if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) 5322 return EINVAL; 5323 sc->sc_rfsilentpin = rfsilent & 0x1c; 5324 sc->sc_rfsilentpol = (rfsilent & 0x2) != 0; 5325 return 0; 5326 } 5327 5328 static int 5329 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS) 5330 { 5331 struct ath_softc *sc = arg1; 5332 u_int32_t rd; 5333 int error; 5334 5335 if (!ath_hal_getregdomain(sc->sc_ah, &rd)) 5336 return EINVAL; 5337 error = sysctl_handle_int(oidp, &rd, 0, req); 5338 if (error || !req->newptr) 5339 return error; 5340 return !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0; 5341 } 5342 5343 static int 5344 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS) 5345 { 5346 struct ath_softc *sc = arg1; 5347 u_int32_t tpack; 5348 int error; 5349 5350 ath_hal_gettpack(sc->sc_ah, &tpack); 5351 error = sysctl_handle_int(oidp, &tpack, 0, req); 5352 if (error || !req->newptr) 5353 return error; 5354 return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0; 5355 } 5356 5357 static int 5358 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS) 5359 { 5360 struct ath_softc *sc = arg1; 5361 u_int32_t tpcts; 5362 int error; 5363 5364 ath_hal_gettpcts(sc->sc_ah, &tpcts); 5365 error = sysctl_handle_int(oidp, &tpcts, 0, req); 5366 if (error || !req->newptr) 5367 return error; 5368 return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0; 5369 } 5370 5371 static void 5372 ath_sysctlattach(struct ath_softc *sc) 5373 { 5374 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 5375 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 5376 struct ath_hal *ah = sc->sc_ah; 5377 5378 ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode); 5379 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5380 "countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0, 5381 "EEPROM country code"); 5382 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5383 "regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5384 ath_sysctl_regdomain, "I", "EEPROM regdomain code"); 5385 #ifdef ATH_DEBUG 5386 sc->sc_debug = ath_debug; 5387 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5388 "debug", CTLFLAG_RW, &sc->sc_debug, 0, 5389 "control debugging printfs"); 5390 #endif 5391 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5392 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5393 ath_sysctl_slottime, "I", "802.11 slot time (us)"); 5394 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5395 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5396 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)"); 5397 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5398 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5399 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)"); 5400 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5401 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5402 ath_sysctl_softled, "I", "enable/disable software LED support"); 5403 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5404 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 5405 "GPIO pin connected to LED"); 5406 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5407 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0, 5408 "setting to turn LED on"); 5409 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5410 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 5411 "idle time for inactivity LED (ticks)"); 5412 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5413 "txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0, 5414 "tx antenna (0=auto)"); 5415 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5416 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5417 ath_sysctl_rxantenna, "I", "default/rx antenna"); 5418 if (ath_hal_hasdiversity(ah)) 5419 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5420 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5421 ath_sysctl_diversity, "I", "antenna diversity"); 5422 sc->sc_txintrperiod = ATH_TXINTR_PERIOD; 5423 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5424 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0, 5425 "tx descriptor batching"); 5426 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5427 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5428 ath_sysctl_diag, "I", "h/w diagnostic control"); 5429 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5430 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5431 ath_sysctl_tpscale, "I", "tx power scaling"); 5432 if (ath_hal_hastpc(ah)) { 5433 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5434 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5435 ath_sysctl_tpc, "I", "enable/disable per-packet TPC"); 5436 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5437 "tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5438 ath_sysctl_tpack, "I", "tx power for ack frames"); 5439 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5440 "tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5441 ath_sysctl_tpcts, "I", "tx power for cts frames"); 5442 } 5443 if (ath_hal_hasrfsilent(ah)) { 5444 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5445 "rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5446 ath_sysctl_rfsilent, "I", "h/w RF silent config"); 5447 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5448 "rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 5449 ath_sysctl_rfkill, "I", "enable/disable RF kill switch"); 5450 } 5451 sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC; 5452 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 5453 "monpass", CTLFLAG_RW, &sc->sc_monpass, 0, 5454 "mask of error frames to pass when monitoring"); 5455 } 5456 5457 static void 5458 ath_bpfattach(struct ath_softc *sc) 5459 { 5460 struct ifnet *ifp = sc->sc_ifp; 5461 5462 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 5463 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5464 &sc->sc_drvbpf); 5465 /* 5466 * Initialize constant fields. 5467 * XXX make header lengths a multiple of 32-bits so subsequent 5468 * headers are properly aligned; this is a kludge to keep 5469 * certain applications happy. 5470 * 5471 * NB: the channel is setup each time we transition to the 5472 * RUN state to avoid filling it in for each frame. 5473 */ 5474 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5475 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5476 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5477 5478 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5479 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5480 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5481 } 5482 5483 /* 5484 * Announce various information on device/driver attach. 5485 */ 5486 static void 5487 ath_announce(struct ath_softc *sc) 5488 { 5489 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5490 struct ifnet *ifp = sc->sc_ifp; 5491 struct ath_hal *ah = sc->sc_ah; 5492 u_int modes, cc; 5493 5494 if_printf(ifp, "mac %d.%d phy %d.%d", 5495 ah->ah_macVersion, ah->ah_macRev, 5496 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5497 /* 5498 * Print radio revision(s). We check the wireless modes 5499 * to avoid falsely printing revs for inoperable parts. 5500 * Dual-band radio revs are returned in the 5Ghz rev number. 5501 */ 5502 ath_hal_getcountrycode(ah, &cc); 5503 modes = ath_hal_getwirelessmodes(ah, cc); 5504 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5505 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5506 printf(" 5ghz radio %d.%d 2ghz radio %d.%d", 5507 ah->ah_analog5GhzRev >> 4, 5508 ah->ah_analog5GhzRev & 0xf, 5509 ah->ah_analog2GhzRev >> 4, 5510 ah->ah_analog2GhzRev & 0xf); 5511 else 5512 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5513 ah->ah_analog5GhzRev & 0xf); 5514 } else 5515 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5516 ah->ah_analog5GhzRev & 0xf); 5517 printf("\n"); 5518 if (bootverbose) { 5519 int i; 5520 for (i = 0; i <= WME_AC_VO; i++) { 5521 struct ath_txq *txq = sc->sc_ac2q[i]; 5522 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5523 txq->axq_qnum, ieee80211_wme_acnames[i]); 5524 } 5525 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5526 sc->sc_cabq->axq_qnum); 5527 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5528 } 5529 if (ath_rxbuf != ATH_RXBUF) 5530 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5531 if (ath_txbuf != ATH_TXBUF) 5532 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5533 #undef HAL_MODE_DUALBAND 5534 } 5535