1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 29 * THE POSSIBILITY OF SUCH DAMAGES. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * Driver for the Atheros Wireless LAN controller. 37 * 38 * This software is derived from work of Atsushi Onoe; his contribution 39 * is greatly appreciated. 40 */ 41 42 #include "opt_inet.h" 43 #include "opt_ath.h" 44 /* 45 * This is needed for register operations which are performed 46 * by the driver - eg, calls to ath_hal_gettsf32(). 47 * 48 * It's also required for any AH_DEBUG checks in here, eg the 49 * module dependencies. 50 */ 51 #include "opt_ah.h" 52 #include "opt_wlan.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/sysctl.h> 57 #include <sys/mbuf.h> 58 #include <sys/malloc.h> 59 #include <sys/lock.h> 60 #include <sys/mutex.h> 61 #include <sys/kernel.h> 62 #include <sys/socket.h> 63 #include <sys/sockio.h> 64 #include <sys/errno.h> 65 #include <sys/callout.h> 66 #include <sys/bus.h> 67 #include <sys/endian.h> 68 #include <sys/kthread.h> 69 #include <sys/taskqueue.h> 70 #include <sys/priv.h> 71 #include <sys/module.h> 72 #include <sys/ktr.h> 73 #include <sys/smp.h> /* for mp_ncpus */ 74 75 #include <machine/bus.h> 76 77 #include <net/if.h> 78 #include <net/if_var.h> 79 #include <net/if_dl.h> 80 #include <net/if_media.h> 81 #include <net/if_types.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_llc.h> 85 86 #include <net80211/ieee80211_var.h> 87 #include <net80211/ieee80211_regdomain.h> 88 #ifdef IEEE80211_SUPPORT_SUPERG 89 #include <net80211/ieee80211_superg.h> 90 #endif 91 #ifdef IEEE80211_SUPPORT_TDMA 92 #include <net80211/ieee80211_tdma.h> 93 #endif 94 95 #include <net/bpf.h> 96 97 #ifdef INET 98 #include <netinet/in.h> 99 #include <netinet/if_ether.h> 100 #endif 101 102 #include <dev/ath/if_athvar.h> 103 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 104 #include <dev/ath/ath_hal/ah_diagcodes.h> 105 106 #include <dev/ath/if_ath_debug.h> 107 #include <dev/ath/if_ath_misc.h> 108 #include <dev/ath/if_ath_tsf.h> 109 #include <dev/ath/if_ath_tx.h> 110 #include <dev/ath/if_ath_sysctl.h> 111 #include <dev/ath/if_ath_led.h> 112 #include <dev/ath/if_ath_keycache.h> 113 #include <dev/ath/if_ath_rx.h> 114 #include <dev/ath/if_ath_rx_edma.h> 115 #include <dev/ath/if_ath_tx_edma.h> 116 #include <dev/ath/if_ath_beacon.h> 117 #include <dev/ath/if_ath_btcoex.h> 118 #include <dev/ath/if_ath_btcoex_mci.h> 119 #include <dev/ath/if_ath_spectral.h> 120 #include <dev/ath/if_ath_lna_div.h> 121 #include <dev/ath/if_athdfs.h> 122 #include <dev/ath/if_ath_ioctl.h> 123 #include <dev/ath/if_ath_descdma.h> 124 125 #ifdef ATH_TX99_DIAG 126 #include <dev/ath/ath_tx99/ath_tx99.h> 127 #endif 128 129 #ifdef ATH_DEBUG_ALQ 130 #include <dev/ath/if_ath_alq.h> 131 #endif 132 133 /* 134 * Only enable this if you're working on PS-POLL support. 135 */ 136 #define ATH_SW_PSQ 137 138 /* 139 * ATH_BCBUF determines the number of vap's that can transmit 140 * beacons and also (currently) the number of vap's that can 141 * have unique mac addresses/bssid. When staggering beacons 142 * 4 is probably a good max as otherwise the beacons become 143 * very closely spaced and there is limited time for cab q traffic 144 * to go out. You can burst beacons instead but that is not good 145 * for stations in power save and at some point you really want 146 * another radio (and channel). 147 * 148 * The limit on the number of mac addresses is tied to our use of 149 * the U/L bit and tracking addresses in a byte; it would be 150 * worthwhile to allow more for applications like proxy sta. 151 */ 152 CTASSERT(ATH_BCBUF <= 8); 153 154 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 155 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 156 const uint8_t [IEEE80211_ADDR_LEN], 157 const uint8_t [IEEE80211_ADDR_LEN]); 158 static void ath_vap_delete(struct ieee80211vap *); 159 static int ath_init(struct ath_softc *); 160 static void ath_stop(struct ath_softc *); 161 static int ath_reset_vap(struct ieee80211vap *, u_long); 162 static int ath_transmit(struct ieee80211com *, struct mbuf *); 163 static int ath_media_change(struct ifnet *); 164 static void ath_watchdog(void *); 165 static void ath_parent(struct ieee80211com *); 166 static void ath_fatal_proc(void *, int); 167 static void ath_bmiss_vap(struct ieee80211vap *); 168 static void ath_bmiss_proc(void *, int); 169 static void ath_key_update_begin(struct ieee80211vap *); 170 static void ath_key_update_end(struct ieee80211vap *); 171 static void ath_update_mcast_hw(struct ath_softc *); 172 static void ath_update_mcast(struct ieee80211com *); 173 static void ath_update_promisc(struct ieee80211com *); 174 static void ath_updateslot(struct ieee80211com *); 175 static void ath_bstuck_proc(void *, int); 176 static void ath_reset_proc(void *, int); 177 static int ath_desc_alloc(struct ath_softc *); 178 static void ath_desc_free(struct ath_softc *); 179 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 180 const uint8_t [IEEE80211_ADDR_LEN]); 181 static void ath_node_cleanup(struct ieee80211_node *); 182 static void ath_node_free(struct ieee80211_node *); 183 static void ath_node_getsignal(const struct ieee80211_node *, 184 int8_t *, int8_t *); 185 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 187 static int ath_tx_setup(struct ath_softc *, int, int); 188 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 189 static void ath_tx_cleanup(struct ath_softc *); 190 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 191 int dosched); 192 static void ath_tx_proc_q0(void *, int); 193 static void ath_tx_proc_q0123(void *, int); 194 static void ath_tx_proc(void *, int); 195 static void ath_txq_sched_tasklet(void *, int); 196 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 197 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 198 static void ath_scan_start(struct ieee80211com *); 199 static void ath_scan_end(struct ieee80211com *); 200 static void ath_set_channel(struct ieee80211com *); 201 #ifdef ATH_ENABLE_11N 202 static void ath_update_chw(struct ieee80211com *); 203 #endif /* ATH_ENABLE_11N */ 204 static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *); 205 static void ath_calibrate(void *); 206 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 207 static void ath_setup_stationkey(struct ieee80211_node *); 208 static void ath_newassoc(struct ieee80211_node *, int); 209 static int ath_setregdomain(struct ieee80211com *, 210 struct ieee80211_regdomain *, int, 211 struct ieee80211_channel []); 212 static void ath_getradiocaps(struct ieee80211com *, int, int *, 213 struct ieee80211_channel []); 214 static int ath_getchannels(struct ath_softc *); 215 216 static int ath_rate_setup(struct ath_softc *, u_int mode); 217 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 218 219 static void ath_announce(struct ath_softc *); 220 221 static void ath_dfs_tasklet(void *, int); 222 static void ath_node_powersave(struct ieee80211_node *, int); 223 static int ath_node_set_tim(struct ieee80211_node *, int); 224 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 225 226 #ifdef IEEE80211_SUPPORT_TDMA 227 #include <dev/ath/if_ath_tdma.h> 228 #endif 229 230 SYSCTL_DECL(_hw_ath); 231 232 /* XXX validate sysctl values */ 233 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 235 0, "long chip calibration interval (secs)"); 236 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 238 0, "short chip calibration interval (msecs)"); 239 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 241 0, "reset chip calibration results (secs)"); 242 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 244 0, "ANI calibration (msecs)"); 245 246 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 248 0, "rx buffers allocated"); 249 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 251 0, "tx buffers allocated"); 252 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 254 0, "tx (mgmt) buffers allocated"); 255 256 int ath_bstuck_threshold = 4; /* max missed beacons */ 257 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 258 0, "max missed beacon xmits before chip reset"); 259 260 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 261 262 void 263 ath_legacy_attach_comp_func(struct ath_softc *sc) 264 { 265 266 /* 267 * Special case certain configurations. Note the 268 * CAB queue is handled by these specially so don't 269 * include them when checking the txq setup mask. 270 */ 271 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 272 case 0x01: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 274 break; 275 case 0x0f: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 277 break; 278 default: 279 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 280 break; 281 } 282 } 283 284 /* 285 * Set the target power mode. 286 * 287 * If this is called during a point in time where 288 * the hardware is being programmed elsewhere, it will 289 * simply store it away and update it when all current 290 * uses of the hardware are completed. 291 * 292 * If the chip is going into network sleep or power off, then 293 * we will wait until all uses of the chip are done before 294 * going into network sleep or power off. 295 * 296 * If the chip is being programmed full-awake, then immediately 297 * program it full-awake so we can actually stay awake rather than 298 * the chip potentially going to sleep underneath us. 299 */ 300 void 301 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 302 const char *file, int line) 303 { 304 ATH_LOCK_ASSERT(sc); 305 306 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 307 __func__, 308 file, 309 line, 310 power_state, 311 sc->sc_powersave_refcnt, 312 sc->sc_target_powerstate, 313 sc->sc_cur_powerstate); 314 315 sc->sc_target_powerstate = power_state; 316 317 /* 318 * Don't program the chip into network sleep if the chip 319 * is being programmed elsewhere. 320 * 321 * However, if the chip is being programmed /awake/, force 322 * the chip awake so we stay awake. 323 */ 324 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 325 power_state != sc->sc_cur_powerstate) { 326 sc->sc_cur_powerstate = power_state; 327 ath_hal_setpower(sc->sc_ah, power_state); 328 329 /* 330 * If the NIC is force-awake, then set the 331 * self-gen frame state appropriately. 332 * 333 * If the nic is in network sleep or full-sleep, 334 * we let the above call leave the self-gen 335 * state as "sleep". 336 */ 337 if (selfgen && 338 sc->sc_cur_powerstate == HAL_PM_AWAKE && 339 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 340 ath_hal_setselfgenpower(sc->sc_ah, 341 sc->sc_target_selfgen_state); 342 } 343 } 344 } 345 346 /* 347 * Set the current self-generated frames state. 348 * 349 * This is separate from the target power mode. The chip may be 350 * awake but the desired state is "sleep", so frames sent to the 351 * destination has PWRMGT=1 in the 802.11 header. The NIC also 352 * needs to know to set PWRMGT=1 in self-generated frames. 353 */ 354 void 355 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 356 { 357 358 ATH_LOCK_ASSERT(sc); 359 360 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 361 __func__, 362 file, 363 line, 364 power_state, 365 sc->sc_target_selfgen_state); 366 367 sc->sc_target_selfgen_state = power_state; 368 369 /* 370 * If the NIC is force-awake, then set the power state. 371 * Network-state and full-sleep will already transition it to 372 * mark self-gen frames as sleeping - and we can't 373 * guarantee the NIC is awake to program the self-gen frame 374 * setting anyway. 375 */ 376 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 377 ath_hal_setselfgenpower(sc->sc_ah, power_state); 378 } 379 } 380 381 /* 382 * Set the hardware power mode and take a reference. 383 * 384 * This doesn't update the target power mode in the driver; 385 * it just updates the hardware power state. 386 * 387 * XXX it should only ever force the hardware awake; it should 388 * never be called to set it asleep. 389 */ 390 void 391 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 392 { 393 ATH_LOCK_ASSERT(sc); 394 395 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 396 __func__, 397 file, 398 line, 399 power_state, 400 sc->sc_powersave_refcnt); 401 402 sc->sc_powersave_refcnt++; 403 404 /* 405 * Only do the power state change if we're not programming 406 * it elsewhere. 407 */ 408 if (power_state != sc->sc_cur_powerstate) { 409 ath_hal_setpower(sc->sc_ah, power_state); 410 sc->sc_cur_powerstate = power_state; 411 /* 412 * Adjust the self-gen powerstate if appropriate. 413 */ 414 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 415 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 416 ath_hal_setselfgenpower(sc->sc_ah, 417 sc->sc_target_selfgen_state); 418 } 419 } 420 } 421 422 /* 423 * Restore the power save mode to what it once was. 424 * 425 * This will decrement the reference counter and once it hits 426 * zero, it'll restore the powersave state. 427 */ 428 void 429 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 430 { 431 432 ATH_LOCK_ASSERT(sc); 433 434 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 435 __func__, 436 file, 437 line, 438 sc->sc_powersave_refcnt, 439 sc->sc_target_powerstate); 440 441 if (sc->sc_powersave_refcnt == 0) 442 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 443 else 444 sc->sc_powersave_refcnt--; 445 446 if (sc->sc_powersave_refcnt == 0 && 447 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 448 sc->sc_cur_powerstate = sc->sc_target_powerstate; 449 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 450 } 451 452 /* 453 * Adjust the self-gen powerstate if appropriate. 454 */ 455 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 456 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 457 ath_hal_setselfgenpower(sc->sc_ah, 458 sc->sc_target_selfgen_state); 459 } 460 461 } 462 463 /* 464 * Configure the initial HAL configuration values based on bus 465 * specific parameters. 466 * 467 * Some PCI IDs and other information may need tweaking. 468 * 469 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 470 * if BT antenna diversity isn't enabled. 471 * 472 * So, let's also figure out how to enable BT diversity for AR9485. 473 */ 474 static void 475 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 476 { 477 /* XXX TODO: only for PCI devices? */ 478 479 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 480 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 481 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 482 ah_config->ath_hal_min_gainidx = AH_TRUE; 483 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 484 /* XXX low_rssi_thresh */ 485 /* XXX fast_div_bias */ 486 device_printf(sc->sc_dev, "configuring for %s\n", 487 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 488 "CUS198" : "CUS230"); 489 } 490 491 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 492 device_printf(sc->sc_dev, "CUS217 card detected\n"); 493 494 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 495 device_printf(sc->sc_dev, "CUS252 card detected\n"); 496 497 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 498 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 499 500 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 501 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 502 503 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 504 device_printf(sc->sc_dev, 505 "Bluetooth Antenna Diversity card detected\n"); 506 507 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 508 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 509 510 #if 0 511 /* 512 * Some WB335 cards do not support antenna diversity. Since 513 * we use a hardcoded value for AR9565 instead of using the 514 * EEPROM/OTP data, remove the combining feature from 515 * the HW capabilities bitmap. 516 */ 517 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 518 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 519 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 520 } 521 522 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 523 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 524 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 525 } 526 #endif 527 528 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 529 ah_config->ath_hal_pcie_waen = 0x0040473b; 530 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 531 } 532 533 #if 0 534 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 535 ah->config.no_pll_pwrsave = true; 536 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 537 } 538 #endif 539 540 } 541 542 /* 543 * Attempt to fetch the MAC address from the kernel environment. 544 * 545 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 546 */ 547 static int 548 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 549 { 550 char devid_str[32]; 551 int local_mac = 0; 552 char *local_macstr; 553 554 /* 555 * Fetch from the kenv rather than using hints. 556 * 557 * Hints would be nice but the transition to dynamic 558 * hints/kenv doesn't happen early enough for this 559 * to work reliably (eg on anything embedded.) 560 */ 561 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 562 device_get_name(sc->sc_dev), 563 device_get_unit(sc->sc_dev)); 564 565 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 566 uint32_t tmpmac[ETHER_ADDR_LEN]; 567 int count; 568 int i; 569 570 /* Have a MAC address; should use it */ 571 device_printf(sc->sc_dev, 572 "Overriding MAC address from environment: '%s'\n", 573 local_macstr); 574 575 /* Extract out the MAC address */ 576 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 577 &tmpmac[0], &tmpmac[1], 578 &tmpmac[2], &tmpmac[3], 579 &tmpmac[4], &tmpmac[5]); 580 if (count == 6) { 581 /* Valid! */ 582 local_mac = 1; 583 for (i = 0; i < ETHER_ADDR_LEN; i++) 584 macaddr[i] = tmpmac[i]; 585 } 586 /* Done! */ 587 freeenv(local_macstr); 588 local_macstr = NULL; 589 } 590 591 if (local_mac) 592 return (0); 593 return (-1); 594 } 595 596 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 597 #define HAL_MODE_HT40 \ 598 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 599 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 600 int 601 ath_attach(u_int16_t devid, struct ath_softc *sc) 602 { 603 struct ieee80211com *ic = &sc->sc_ic; 604 struct ath_hal *ah = NULL; 605 HAL_STATUS status; 606 int error = 0, i; 607 u_int wmodes; 608 int rx_chainmask, tx_chainmask; 609 HAL_OPS_CONFIG ah_config; 610 611 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 612 613 ic->ic_softc = sc; 614 ic->ic_name = device_get_nameunit(sc->sc_dev); 615 616 /* 617 * Configure the initial configuration data. 618 * 619 * This is stuff that may be needed early during attach 620 * rather than done via configuration calls later. 621 */ 622 bzero(&ah_config, sizeof(ah_config)); 623 ath_setup_hal_config(sc, &ah_config); 624 625 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 626 sc->sc_eepromdata, &ah_config, &status); 627 if (ah == NULL) { 628 device_printf(sc->sc_dev, 629 "unable to attach hardware; HAL status %u\n", status); 630 error = ENXIO; 631 goto bad; 632 } 633 sc->sc_ah = ah; 634 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 635 #ifdef ATH_DEBUG 636 sc->sc_debug = ath_debug; 637 #endif 638 639 /* 640 * Force the chip awake during setup, just to keep 641 * the HAL/driver power tracking happy. 642 * 643 * There are some methods (eg ath_hal_setmac()) 644 * that poke the hardware. 645 */ 646 ATH_LOCK(sc); 647 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 648 ATH_UNLOCK(sc); 649 650 /* 651 * Setup the DMA/EDMA functions based on the current 652 * hardware support. 653 * 654 * This is required before the descriptors are allocated. 655 */ 656 if (ath_hal_hasedma(sc->sc_ah)) { 657 sc->sc_isedma = 1; 658 ath_recv_setup_edma(sc); 659 ath_xmit_setup_edma(sc); 660 } else { 661 ath_recv_setup_legacy(sc); 662 ath_xmit_setup_legacy(sc); 663 } 664 665 if (ath_hal_hasmybeacon(sc->sc_ah)) { 666 sc->sc_do_mybeacon = 1; 667 } 668 669 /* 670 * Check if the MAC has multi-rate retry support. 671 * We do this by trying to setup a fake extended 672 * descriptor. MAC's that don't have support will 673 * return false w/o doing anything. MAC's that do 674 * support it will return true w/o doing anything. 675 */ 676 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 677 678 /* 679 * Check if the device has hardware counters for PHY 680 * errors. If so we need to enable the MIB interrupt 681 * so we can act on stat triggers. 682 */ 683 if (ath_hal_hwphycounters(ah)) 684 sc->sc_needmib = 1; 685 686 /* 687 * Get the hardware key cache size. 688 */ 689 sc->sc_keymax = ath_hal_keycachesize(ah); 690 if (sc->sc_keymax > ATH_KEYMAX) { 691 device_printf(sc->sc_dev, 692 "Warning, using only %u of %u key cache slots\n", 693 ATH_KEYMAX, sc->sc_keymax); 694 sc->sc_keymax = ATH_KEYMAX; 695 } 696 /* 697 * Reset the key cache since some parts do not 698 * reset the contents on initial power up. 699 */ 700 for (i = 0; i < sc->sc_keymax; i++) 701 ath_hal_keyreset(ah, i); 702 703 /* 704 * Collect the default channel list. 705 */ 706 error = ath_getchannels(sc); 707 if (error != 0) 708 goto bad; 709 710 /* 711 * Setup rate tables for all potential media types. 712 */ 713 ath_rate_setup(sc, IEEE80211_MODE_11A); 714 ath_rate_setup(sc, IEEE80211_MODE_11B); 715 ath_rate_setup(sc, IEEE80211_MODE_11G); 716 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 717 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 718 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 719 ath_rate_setup(sc, IEEE80211_MODE_11NA); 720 ath_rate_setup(sc, IEEE80211_MODE_11NG); 721 ath_rate_setup(sc, IEEE80211_MODE_HALF); 722 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 723 724 /* NB: setup here so ath_rate_update is happy */ 725 ath_setcurmode(sc, IEEE80211_MODE_11A); 726 727 /* 728 * Allocate TX descriptors and populate the lists. 729 */ 730 error = ath_desc_alloc(sc); 731 if (error != 0) { 732 device_printf(sc->sc_dev, 733 "failed to allocate TX descriptors: %d\n", error); 734 goto bad; 735 } 736 error = ath_txdma_setup(sc); 737 if (error != 0) { 738 device_printf(sc->sc_dev, 739 "failed to allocate TX descriptors: %d\n", error); 740 goto bad; 741 } 742 743 /* 744 * Allocate RX descriptors and populate the lists. 745 */ 746 error = ath_rxdma_setup(sc); 747 if (error != 0) { 748 device_printf(sc->sc_dev, 749 "failed to allocate RX descriptors: %d\n", error); 750 goto bad; 751 } 752 753 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 754 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 755 756 ATH_TXBUF_LOCK_INIT(sc); 757 758 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 759 taskqueue_thread_enqueue, &sc->sc_tq); 760 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 761 device_get_nameunit(sc->sc_dev)); 762 763 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 764 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 765 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 766 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 767 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 768 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 769 770 /* 771 * Allocate hardware transmit queues: one queue for 772 * beacon frames and one data queue for each QoS 773 * priority. Note that the hal handles resetting 774 * these queues at the needed time. 775 * 776 * XXX PS-Poll 777 */ 778 sc->sc_bhalq = ath_beaconq_setup(sc); 779 if (sc->sc_bhalq == (u_int) -1) { 780 device_printf(sc->sc_dev, 781 "unable to setup a beacon xmit queue!\n"); 782 error = EIO; 783 goto bad2; 784 } 785 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 786 if (sc->sc_cabq == NULL) { 787 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 788 error = EIO; 789 goto bad2; 790 } 791 /* NB: insure BK queue is the lowest priority h/w queue */ 792 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 793 device_printf(sc->sc_dev, 794 "unable to setup xmit queue for %s traffic!\n", 795 ieee80211_wme_acnames[WME_AC_BK]); 796 error = EIO; 797 goto bad2; 798 } 799 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 800 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 801 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 802 /* 803 * Not enough hardware tx queues to properly do WME; 804 * just punt and assign them all to the same h/w queue. 805 * We could do a better job of this if, for example, 806 * we allocate queues when we switch from station to 807 * AP mode. 808 */ 809 if (sc->sc_ac2q[WME_AC_VI] != NULL) 810 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 811 if (sc->sc_ac2q[WME_AC_BE] != NULL) 812 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 813 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 814 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 815 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 816 } 817 818 /* 819 * Attach the TX completion function. 820 * 821 * The non-EDMA chips may have some special case optimisations; 822 * this method gives everyone a chance to attach cleanly. 823 */ 824 sc->sc_tx.xmit_attach_comp_func(sc); 825 826 /* 827 * Setup rate control. Some rate control modules 828 * call back to change the anntena state so expose 829 * the necessary entry points. 830 * XXX maybe belongs in struct ath_ratectrl? 831 */ 832 sc->sc_setdefantenna = ath_setdefantenna; 833 sc->sc_rc = ath_rate_attach(sc); 834 if (sc->sc_rc == NULL) { 835 error = EIO; 836 goto bad2; 837 } 838 839 /* Attach DFS module */ 840 if (! ath_dfs_attach(sc)) { 841 device_printf(sc->sc_dev, 842 "%s: unable to attach DFS\n", __func__); 843 error = EIO; 844 goto bad2; 845 } 846 847 /* Attach spectral module */ 848 if (ath_spectral_attach(sc) < 0) { 849 device_printf(sc->sc_dev, 850 "%s: unable to attach spectral\n", __func__); 851 error = EIO; 852 goto bad2; 853 } 854 855 /* Attach bluetooth coexistence module */ 856 if (ath_btcoex_attach(sc) < 0) { 857 device_printf(sc->sc_dev, 858 "%s: unable to attach bluetooth coexistence\n", __func__); 859 error = EIO; 860 goto bad2; 861 } 862 863 /* Attach LNA diversity module */ 864 if (ath_lna_div_attach(sc) < 0) { 865 device_printf(sc->sc_dev, 866 "%s: unable to attach LNA diversity\n", __func__); 867 error = EIO; 868 goto bad2; 869 } 870 871 /* Start DFS processing tasklet */ 872 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 873 874 /* Configure LED state */ 875 sc->sc_blinking = 0; 876 sc->sc_ledstate = 1; 877 sc->sc_ledon = 0; /* low true */ 878 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 879 callout_init(&sc->sc_ledtimer, 1); 880 881 /* 882 * Don't setup hardware-based blinking. 883 * 884 * Although some NICs may have this configured in the 885 * default reset register values, the user may wish 886 * to alter which pins have which function. 887 * 888 * The reference driver attaches the MAC network LED to GPIO1 and 889 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 890 * NIC has these reversed. 891 */ 892 sc->sc_hardled = (1 == 0); 893 sc->sc_led_net_pin = -1; 894 sc->sc_led_pwr_pin = -1; 895 /* 896 * Auto-enable soft led processing for IBM cards and for 897 * 5211 minipci cards. Users can also manually enable/disable 898 * support with a sysctl. 899 */ 900 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 901 ath_led_config(sc); 902 ath_hal_setledstate(ah, HAL_LED_INIT); 903 904 /* XXX not right but it's not used anywhere important */ 905 ic->ic_phytype = IEEE80211_T_OFDM; 906 ic->ic_opmode = IEEE80211_M_STA; 907 ic->ic_caps = 908 IEEE80211_C_STA /* station mode */ 909 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 910 | IEEE80211_C_HOSTAP /* hostap mode */ 911 | IEEE80211_C_MONITOR /* monitor mode */ 912 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 913 | IEEE80211_C_WDS /* 4-address traffic works */ 914 | IEEE80211_C_MBSS /* mesh point link mode */ 915 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 916 | IEEE80211_C_SHSLOT /* short slot time supported */ 917 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 918 #ifndef ATH_ENABLE_11N 919 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 920 #endif 921 | IEEE80211_C_TXFRAG /* handle tx frags */ 922 #ifdef ATH_ENABLE_DFS 923 | IEEE80211_C_DFS /* Enable radar detection */ 924 #endif 925 | IEEE80211_C_PMGT /* Station side power mgmt */ 926 | IEEE80211_C_SWSLEEP 927 ; 928 /* 929 * Query the hal to figure out h/w crypto support. 930 */ 931 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 932 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 933 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 934 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 935 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 936 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 937 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 938 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 939 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 940 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 941 /* 942 * Check if h/w does the MIC and/or whether the 943 * separate key cache entries are required to 944 * handle both tx+rx MIC keys. 945 */ 946 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 947 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 948 /* 949 * If the h/w supports storing tx+rx MIC keys 950 * in one cache slot automatically enable use. 951 */ 952 if (ath_hal_hastkipsplit(ah) || 953 !ath_hal_settkipsplit(ah, AH_FALSE)) 954 sc->sc_splitmic = 1; 955 /* 956 * If the h/w can do TKIP MIC together with WME then 957 * we use it; otherwise we force the MIC to be done 958 * in software by the net80211 layer. 959 */ 960 if (ath_hal_haswmetkipmic(ah)) 961 sc->sc_wmetkipmic = 1; 962 } 963 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 964 /* 965 * Check for multicast key search support. 966 */ 967 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 968 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 969 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 970 } 971 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 972 /* 973 * Mark key cache slots associated with global keys 974 * as in use. If we knew TKIP was not to be used we 975 * could leave the +32, +64, and +32+64 slots free. 976 */ 977 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 978 setbit(sc->sc_keymap, i); 979 setbit(sc->sc_keymap, i+64); 980 if (sc->sc_splitmic) { 981 setbit(sc->sc_keymap, i+32); 982 setbit(sc->sc_keymap, i+32+64); 983 } 984 } 985 /* 986 * TPC support can be done either with a global cap or 987 * per-packet support. The latter is not available on 988 * all parts. We're a bit pedantic here as all parts 989 * support a global cap. 990 */ 991 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 992 ic->ic_caps |= IEEE80211_C_TXPMGT; 993 994 /* 995 * Mark WME capability only if we have sufficient 996 * hardware queues to do proper priority scheduling. 997 */ 998 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 999 ic->ic_caps |= IEEE80211_C_WME; 1000 /* 1001 * Check for misc other capabilities. 1002 */ 1003 if (ath_hal_hasbursting(ah)) 1004 ic->ic_caps |= IEEE80211_C_BURST; 1005 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 1006 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 1007 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 1008 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 1009 1010 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 1011 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 1012 if (i == 32) { 1013 sc->sc_rxtsf32 = 1; 1014 } 1015 if (bootverbose) 1016 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1017 } 1018 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1019 if (bootverbose) 1020 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1021 } 1022 1023 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1024 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1025 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1026 1027 /* 1028 * Some WB335 cards do not support antenna diversity. Since 1029 * we use a hardcoded value for AR9565 instead of using the 1030 * EEPROM/OTP data, remove the combining feature from 1031 * the HW capabilities bitmap. 1032 */ 1033 /* 1034 * XXX TODO: check reference driver and ath9k for what to do 1035 * here for WB335. I think we have to actually disable the 1036 * LNA div processing in the HAL and instead use the hard 1037 * coded values; and then use BT diversity. 1038 * 1039 * .. but also need to setup MCI too for WB335.. 1040 */ 1041 #if 0 1042 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 1043 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n", 1044 __func__); 1045 sc->sc_dolnadiv = 0; 1046 } 1047 #endif 1048 1049 if (ath_hal_hasfastframes(ah)) 1050 ic->ic_caps |= IEEE80211_C_FF; 1051 wmodes = ath_hal_getwirelessmodes(ah); 1052 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1053 ic->ic_caps |= IEEE80211_C_TURBOP; 1054 #ifdef IEEE80211_SUPPORT_TDMA 1055 if (ath_hal_macversion(ah) > 0x78) { 1056 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1057 ic->ic_tdma_update = ath_tdma_update; 1058 } 1059 #endif 1060 1061 /* 1062 * TODO: enforce that at least this many frames are available 1063 * in the txbuf list before allowing data frames (raw or 1064 * otherwise) to be transmitted. 1065 */ 1066 sc->sc_txq_data_minfree = 10; 1067 1068 /* 1069 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1070 * is smaller. 1071 * 1072 * Anything bigger can potentially see the cabq consume 1073 * almost all buffers, starving everything else, only to 1074 * see most fail to transmit in the given beacon interval. 1075 */ 1076 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1077 1078 /* 1079 * How deep can the node software TX queue get whilst it's asleep. 1080 */ 1081 sc->sc_txq_node_psq_maxdepth = 16; 1082 1083 /* 1084 * Default the maximum queue to 1/4'th the TX buffers, or 1085 * 64, whichever is smaller. 1086 */ 1087 sc->sc_txq_node_maxdepth = MIN(64, ath_txbuf / 4); 1088 1089 /* Enable CABQ by default */ 1090 sc->sc_cabq_enable = 1; 1091 1092 /* 1093 * Allow the TX and RX chainmasks to be overridden by 1094 * environment variables and/or device.hints. 1095 * 1096 * This must be done early - before the hardware is 1097 * calibrated or before the 802.11n stream calculation 1098 * is done. 1099 */ 1100 if (resource_int_value(device_get_name(sc->sc_dev), 1101 device_get_unit(sc->sc_dev), "rx_chainmask", 1102 &rx_chainmask) == 0) { 1103 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1104 rx_chainmask); 1105 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1106 } 1107 if (resource_int_value(device_get_name(sc->sc_dev), 1108 device_get_unit(sc->sc_dev), "tx_chainmask", 1109 &tx_chainmask) == 0) { 1110 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1111 tx_chainmask); 1112 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1113 } 1114 1115 /* 1116 * Query the TX/RX chainmask configuration. 1117 * 1118 * This is only relevant for 11n devices. 1119 */ 1120 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1121 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1122 1123 /* 1124 * Disable MRR with protected frames by default. 1125 * Only 802.11n series NICs can handle this. 1126 */ 1127 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1128 1129 /* 1130 * Query the enterprise mode information the HAL. 1131 */ 1132 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1133 &sc->sc_ent_cfg) == HAL_OK) 1134 sc->sc_use_ent = 1; 1135 1136 #ifdef ATH_ENABLE_11N 1137 /* 1138 * Query HT capabilities 1139 */ 1140 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1141 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1142 uint32_t rxs, txs; 1143 uint32_t ldpc; 1144 1145 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1146 1147 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1148 1149 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1150 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1151 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1152 | IEEE80211_HTCAP_MAXAMSDU_3839 1153 /* max A-MSDU length */ 1154 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1155 1156 /* 1157 * Enable short-GI for HT20 only if the hardware 1158 * advertises support. 1159 * Notably, anything earlier than the AR9287 doesn't. 1160 */ 1161 if ((ath_hal_getcapability(ah, 1162 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1163 (wmodes & HAL_MODE_HT20)) { 1164 device_printf(sc->sc_dev, 1165 "[HT] enabling short-GI in 20MHz mode\n"); 1166 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1167 } 1168 1169 if (wmodes & HAL_MODE_HT40) 1170 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1171 | IEEE80211_HTCAP_SHORTGI40; 1172 1173 /* 1174 * TX/RX streams need to be taken into account when 1175 * negotiating which MCS rates it'll receive and 1176 * what MCS rates are available for TX. 1177 */ 1178 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1179 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1180 ic->ic_txstream = txs; 1181 ic->ic_rxstream = rxs; 1182 1183 /* 1184 * Setup TX and RX STBC based on what the HAL allows and 1185 * the currently configured chainmask set. 1186 * Ie - don't enable STBC TX if only one chain is enabled. 1187 * STBC RX is fine on a single RX chain; it just won't 1188 * provide any real benefit. 1189 */ 1190 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1191 NULL) == HAL_OK) { 1192 sc->sc_rx_stbc = 1; 1193 device_printf(sc->sc_dev, 1194 "[HT] 1 stream STBC receive enabled\n"); 1195 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1196 } 1197 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1198 NULL) == HAL_OK) { 1199 sc->sc_tx_stbc = 1; 1200 device_printf(sc->sc_dev, 1201 "[HT] 1 stream STBC transmit enabled\n"); 1202 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1203 } 1204 1205 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1206 &sc->sc_rts_aggr_limit); 1207 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1208 device_printf(sc->sc_dev, 1209 "[HT] RTS aggregates limited to %d KiB\n", 1210 sc->sc_rts_aggr_limit / 1024); 1211 1212 /* 1213 * LDPC 1214 */ 1215 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1216 == HAL_OK && (ldpc == 1)) { 1217 sc->sc_has_ldpc = 1; 1218 device_printf(sc->sc_dev, 1219 "[HT] LDPC transmit/receive enabled\n"); 1220 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1221 IEEE80211_HTC_TXLDPC; 1222 } 1223 1224 1225 device_printf(sc->sc_dev, 1226 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1227 } 1228 #endif 1229 1230 /* 1231 * Initial aggregation settings. 1232 */ 1233 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1234 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1235 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1236 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1237 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1238 sc->sc_delim_min_pad = 0; 1239 1240 /* 1241 * Check if the hardware requires PCI register serialisation. 1242 * Some of the Owl based MACs require this. 1243 */ 1244 if (mp_ncpus > 1 && 1245 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1246 0, NULL) == HAL_OK) { 1247 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1248 device_printf(sc->sc_dev, 1249 "Enabling register serialisation\n"); 1250 } 1251 1252 /* 1253 * Initialise the deferred completed RX buffer list. 1254 */ 1255 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1256 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1257 1258 /* 1259 * Indicate we need the 802.11 header padded to a 1260 * 32-bit boundary for 4-address and QoS frames. 1261 */ 1262 ic->ic_flags |= IEEE80211_F_DATAPAD; 1263 1264 /* 1265 * Query the hal about antenna support. 1266 */ 1267 sc->sc_defant = ath_hal_getdefantenna(ah); 1268 1269 /* 1270 * Not all chips have the VEOL support we want to 1271 * use with IBSS beacons; check here for it. 1272 */ 1273 sc->sc_hasveol = ath_hal_hasveol(ah); 1274 1275 /* get mac address from kenv first, then hardware */ 1276 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1277 /* Tell the HAL now about the new MAC */ 1278 ath_hal_setmac(ah, ic->ic_macaddr); 1279 } else { 1280 ath_hal_getmac(ah, ic->ic_macaddr); 1281 } 1282 1283 if (sc->sc_hasbmask) 1284 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1285 1286 /* NB: used to size node table key mapping array */ 1287 ic->ic_max_keyix = sc->sc_keymax; 1288 /* call MI attach routine. */ 1289 ieee80211_ifattach(ic); 1290 ic->ic_setregdomain = ath_setregdomain; 1291 ic->ic_getradiocaps = ath_getradiocaps; 1292 sc->sc_opmode = HAL_M_STA; 1293 1294 /* override default methods */ 1295 ic->ic_ioctl = ath_ioctl; 1296 ic->ic_parent = ath_parent; 1297 ic->ic_transmit = ath_transmit; 1298 ic->ic_newassoc = ath_newassoc; 1299 ic->ic_updateslot = ath_updateslot; 1300 ic->ic_wme.wme_update = ath_wme_update; 1301 ic->ic_vap_create = ath_vap_create; 1302 ic->ic_vap_delete = ath_vap_delete; 1303 ic->ic_raw_xmit = ath_raw_xmit; 1304 ic->ic_update_mcast = ath_update_mcast; 1305 ic->ic_update_promisc = ath_update_promisc; 1306 ic->ic_node_alloc = ath_node_alloc; 1307 sc->sc_node_free = ic->ic_node_free; 1308 ic->ic_node_free = ath_node_free; 1309 sc->sc_node_cleanup = ic->ic_node_cleanup; 1310 ic->ic_node_cleanup = ath_node_cleanup; 1311 ic->ic_node_getsignal = ath_node_getsignal; 1312 ic->ic_scan_start = ath_scan_start; 1313 ic->ic_scan_end = ath_scan_end; 1314 ic->ic_set_channel = ath_set_channel; 1315 #ifdef ATH_ENABLE_11N 1316 /* 802.11n specific - but just override anyway */ 1317 sc->sc_addba_request = ic->ic_addba_request; 1318 sc->sc_addba_response = ic->ic_addba_response; 1319 sc->sc_addba_stop = ic->ic_addba_stop; 1320 sc->sc_bar_response = ic->ic_bar_response; 1321 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1322 1323 ic->ic_addba_request = ath_addba_request; 1324 ic->ic_addba_response = ath_addba_response; 1325 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1326 ic->ic_addba_stop = ath_addba_stop; 1327 ic->ic_bar_response = ath_bar_response; 1328 1329 ic->ic_update_chw = ath_update_chw; 1330 #endif /* ATH_ENABLE_11N */ 1331 ic->ic_set_quiet = ath_set_quiet_ie; 1332 1333 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1334 /* 1335 * There's one vendor bitmap entry in the RX radiotap 1336 * header; make sure that's taken into account. 1337 */ 1338 ieee80211_radiotap_attachv(ic, 1339 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1340 ATH_TX_RADIOTAP_PRESENT, 1341 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1342 ATH_RX_RADIOTAP_PRESENT); 1343 #else 1344 /* 1345 * No vendor bitmap/extensions are present. 1346 */ 1347 ieee80211_radiotap_attach(ic, 1348 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1349 ATH_TX_RADIOTAP_PRESENT, 1350 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1351 ATH_RX_RADIOTAP_PRESENT); 1352 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1353 1354 /* 1355 * Setup the ALQ logging if required 1356 */ 1357 #ifdef ATH_DEBUG_ALQ 1358 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1359 if_ath_alq_setcfg(&sc->sc_alq, 1360 sc->sc_ah->ah_macVersion, 1361 sc->sc_ah->ah_macRev, 1362 sc->sc_ah->ah_phyRev, 1363 sc->sc_ah->ah_magic); 1364 #endif 1365 1366 /* 1367 * Setup dynamic sysctl's now that country code and 1368 * regdomain are available from the hal. 1369 */ 1370 ath_sysctlattach(sc); 1371 ath_sysctl_stats_attach(sc); 1372 ath_sysctl_hal_attach(sc); 1373 1374 if (bootverbose) 1375 ieee80211_announce(ic); 1376 ath_announce(sc); 1377 1378 /* 1379 * Put it to sleep for now. 1380 */ 1381 ATH_LOCK(sc); 1382 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1383 ATH_UNLOCK(sc); 1384 1385 return 0; 1386 bad2: 1387 ath_tx_cleanup(sc); 1388 ath_desc_free(sc); 1389 ath_txdma_teardown(sc); 1390 ath_rxdma_teardown(sc); 1391 1392 bad: 1393 if (ah) 1394 ath_hal_detach(ah); 1395 sc->sc_invalid = 1; 1396 return error; 1397 } 1398 1399 int 1400 ath_detach(struct ath_softc *sc) 1401 { 1402 1403 /* 1404 * NB: the order of these is important: 1405 * o stop the chip so no more interrupts will fire 1406 * o call the 802.11 layer before detaching the hal to 1407 * insure callbacks into the driver to delete global 1408 * key cache entries can be handled 1409 * o free the taskqueue which drains any pending tasks 1410 * o reclaim the tx queue data structures after calling 1411 * the 802.11 layer as we'll get called back to reclaim 1412 * node state and potentially want to use them 1413 * o to cleanup the tx queues the hal is called, so detach 1414 * it last 1415 * Other than that, it's straightforward... 1416 */ 1417 1418 /* 1419 * XXX Wake the hardware up first. ath_stop() will still 1420 * wake it up first, but I'd rather do it here just to 1421 * ensure it's awake. 1422 */ 1423 ATH_LOCK(sc); 1424 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1425 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1426 1427 /* 1428 * Stop things cleanly. 1429 */ 1430 ath_stop(sc); 1431 ATH_UNLOCK(sc); 1432 1433 ieee80211_ifdetach(&sc->sc_ic); 1434 taskqueue_free(sc->sc_tq); 1435 #ifdef ATH_TX99_DIAG 1436 if (sc->sc_tx99 != NULL) 1437 sc->sc_tx99->detach(sc->sc_tx99); 1438 #endif 1439 ath_rate_detach(sc->sc_rc); 1440 #ifdef ATH_DEBUG_ALQ 1441 if_ath_alq_tidyup(&sc->sc_alq); 1442 #endif 1443 ath_lna_div_detach(sc); 1444 ath_btcoex_detach(sc); 1445 ath_spectral_detach(sc); 1446 ath_dfs_detach(sc); 1447 ath_desc_free(sc); 1448 ath_txdma_teardown(sc); 1449 ath_rxdma_teardown(sc); 1450 ath_tx_cleanup(sc); 1451 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1452 1453 return 0; 1454 } 1455 1456 /* 1457 * MAC address handling for multiple BSS on the same radio. 1458 * The first vap uses the MAC address from the EEPROM. For 1459 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1460 * address and use the next six bits as an index. 1461 */ 1462 static void 1463 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1464 { 1465 int i; 1466 1467 if (clone && sc->sc_hasbmask) { 1468 /* NB: we only do this if h/w supports multiple bssid */ 1469 for (i = 0; i < 8; i++) 1470 if ((sc->sc_bssidmask & (1<<i)) == 0) 1471 break; 1472 if (i != 0) 1473 mac[0] |= (i << 2)|0x2; 1474 } else 1475 i = 0; 1476 sc->sc_bssidmask |= 1<<i; 1477 sc->sc_hwbssidmask[0] &= ~mac[0]; 1478 if (i == 0) 1479 sc->sc_nbssid0++; 1480 } 1481 1482 static void 1483 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1484 { 1485 int i = mac[0] >> 2; 1486 uint8_t mask; 1487 1488 if (i != 0 || --sc->sc_nbssid0 == 0) { 1489 sc->sc_bssidmask &= ~(1<<i); 1490 /* recalculate bssid mask from remaining addresses */ 1491 mask = 0xff; 1492 for (i = 1; i < 8; i++) 1493 if (sc->sc_bssidmask & (1<<i)) 1494 mask &= ~((i<<2)|0x2); 1495 sc->sc_hwbssidmask[0] |= mask; 1496 } 1497 } 1498 1499 /* 1500 * Assign a beacon xmit slot. We try to space out 1501 * assignments so when beacons are staggered the 1502 * traffic coming out of the cab q has maximal time 1503 * to go out before the next beacon is scheduled. 1504 */ 1505 static int 1506 assign_bslot(struct ath_softc *sc) 1507 { 1508 u_int slot, free; 1509 1510 free = 0; 1511 for (slot = 0; slot < ATH_BCBUF; slot++) 1512 if (sc->sc_bslot[slot] == NULL) { 1513 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1514 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1515 return slot; 1516 free = slot; 1517 /* NB: keep looking for a double slot */ 1518 } 1519 return free; 1520 } 1521 1522 static struct ieee80211vap * 1523 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1524 enum ieee80211_opmode opmode, int flags, 1525 const uint8_t bssid[IEEE80211_ADDR_LEN], 1526 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1527 { 1528 struct ath_softc *sc = ic->ic_softc; 1529 struct ath_vap *avp; 1530 struct ieee80211vap *vap; 1531 uint8_t mac[IEEE80211_ADDR_LEN]; 1532 int needbeacon, error; 1533 enum ieee80211_opmode ic_opmode; 1534 1535 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1536 needbeacon = 0; 1537 IEEE80211_ADDR_COPY(mac, mac0); 1538 1539 ATH_LOCK(sc); 1540 ic_opmode = opmode; /* default to opmode of new vap */ 1541 switch (opmode) { 1542 case IEEE80211_M_STA: 1543 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1544 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1545 goto bad; 1546 } 1547 if (sc->sc_nvaps) { 1548 /* 1549 * With multiple vaps we must fall back 1550 * to s/w beacon miss handling. 1551 */ 1552 flags |= IEEE80211_CLONE_NOBEACONS; 1553 } 1554 if (flags & IEEE80211_CLONE_NOBEACONS) { 1555 /* 1556 * Station mode w/o beacons are implemented w/ AP mode. 1557 */ 1558 ic_opmode = IEEE80211_M_HOSTAP; 1559 } 1560 break; 1561 case IEEE80211_M_IBSS: 1562 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1563 device_printf(sc->sc_dev, 1564 "only 1 ibss vap supported\n"); 1565 goto bad; 1566 } 1567 needbeacon = 1; 1568 break; 1569 case IEEE80211_M_AHDEMO: 1570 #ifdef IEEE80211_SUPPORT_TDMA 1571 if (flags & IEEE80211_CLONE_TDMA) { 1572 if (sc->sc_nvaps != 0) { 1573 device_printf(sc->sc_dev, 1574 "only 1 tdma vap supported\n"); 1575 goto bad; 1576 } 1577 needbeacon = 1; 1578 flags |= IEEE80211_CLONE_NOBEACONS; 1579 } 1580 /* fall thru... */ 1581 #endif 1582 case IEEE80211_M_MONITOR: 1583 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1584 /* 1585 * Adopt existing mode. Adding a monitor or ahdemo 1586 * vap to an existing configuration is of dubious 1587 * value but should be ok. 1588 */ 1589 /* XXX not right for monitor mode */ 1590 ic_opmode = ic->ic_opmode; 1591 } 1592 break; 1593 case IEEE80211_M_HOSTAP: 1594 case IEEE80211_M_MBSS: 1595 needbeacon = 1; 1596 break; 1597 case IEEE80211_M_WDS: 1598 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1599 device_printf(sc->sc_dev, 1600 "wds not supported in sta mode\n"); 1601 goto bad; 1602 } 1603 /* 1604 * Silently remove any request for a unique 1605 * bssid; WDS vap's always share the local 1606 * mac address. 1607 */ 1608 flags &= ~IEEE80211_CLONE_BSSID; 1609 if (sc->sc_nvaps == 0) 1610 ic_opmode = IEEE80211_M_HOSTAP; 1611 else 1612 ic_opmode = ic->ic_opmode; 1613 break; 1614 default: 1615 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1616 goto bad; 1617 } 1618 /* 1619 * Check that a beacon buffer is available; the code below assumes it. 1620 */ 1621 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1622 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1623 goto bad; 1624 } 1625 1626 /* STA, AHDEMO? */ 1627 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) { 1628 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1629 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1630 } 1631 1632 vap = &avp->av_vap; 1633 /* XXX can't hold mutex across if_alloc */ 1634 ATH_UNLOCK(sc); 1635 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1636 ATH_LOCK(sc); 1637 if (error != 0) { 1638 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1639 __func__, error); 1640 goto bad2; 1641 } 1642 1643 /* h/w crypto support */ 1644 vap->iv_key_alloc = ath_key_alloc; 1645 vap->iv_key_delete = ath_key_delete; 1646 vap->iv_key_set = ath_key_set; 1647 vap->iv_key_update_begin = ath_key_update_begin; 1648 vap->iv_key_update_end = ath_key_update_end; 1649 1650 /* override various methods */ 1651 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1652 vap->iv_recv_mgmt = ath_recv_mgmt; 1653 vap->iv_reset = ath_reset_vap; 1654 vap->iv_update_beacon = ath_beacon_update; 1655 avp->av_newstate = vap->iv_newstate; 1656 vap->iv_newstate = ath_newstate; 1657 avp->av_bmiss = vap->iv_bmiss; 1658 vap->iv_bmiss = ath_bmiss_vap; 1659 1660 avp->av_node_ps = vap->iv_node_ps; 1661 vap->iv_node_ps = ath_node_powersave; 1662 1663 avp->av_set_tim = vap->iv_set_tim; 1664 vap->iv_set_tim = ath_node_set_tim; 1665 1666 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1667 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1668 1669 /* Set default parameters */ 1670 1671 /* 1672 * Anything earlier than some AR9300 series MACs don't 1673 * support a smaller MPDU density. 1674 */ 1675 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1676 /* 1677 * All NICs can handle the maximum size, however 1678 * AR5416 based MACs can only TX aggregates w/ RTS 1679 * protection when the total aggregate size is <= 8k. 1680 * However, for now that's enforced by the TX path. 1681 */ 1682 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1683 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1684 1685 avp->av_bslot = -1; 1686 if (needbeacon) { 1687 /* 1688 * Allocate beacon state and setup the q for buffered 1689 * multicast frames. We know a beacon buffer is 1690 * available because we checked above. 1691 */ 1692 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1693 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1694 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1695 /* 1696 * Assign the vap to a beacon xmit slot. As above 1697 * this cannot fail to find a free one. 1698 */ 1699 avp->av_bslot = assign_bslot(sc); 1700 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1701 ("beacon slot %u not empty", avp->av_bslot)); 1702 sc->sc_bslot[avp->av_bslot] = vap; 1703 sc->sc_nbcnvaps++; 1704 } 1705 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1706 /* 1707 * Multple vaps are to transmit beacons and we 1708 * have h/w support for TSF adjusting; enable 1709 * use of staggered beacons. 1710 */ 1711 sc->sc_stagbeacons = 1; 1712 } 1713 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1714 } 1715 1716 ic->ic_opmode = ic_opmode; 1717 if (opmode != IEEE80211_M_WDS) { 1718 sc->sc_nvaps++; 1719 if (opmode == IEEE80211_M_STA) 1720 sc->sc_nstavaps++; 1721 if (opmode == IEEE80211_M_MBSS) 1722 sc->sc_nmeshvaps++; 1723 } 1724 switch (ic_opmode) { 1725 case IEEE80211_M_IBSS: 1726 sc->sc_opmode = HAL_M_IBSS; 1727 break; 1728 case IEEE80211_M_STA: 1729 sc->sc_opmode = HAL_M_STA; 1730 break; 1731 case IEEE80211_M_AHDEMO: 1732 #ifdef IEEE80211_SUPPORT_TDMA 1733 if (vap->iv_caps & IEEE80211_C_TDMA) { 1734 sc->sc_tdma = 1; 1735 /* NB: disable tsf adjust */ 1736 sc->sc_stagbeacons = 0; 1737 } 1738 /* 1739 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1740 * just ap mode. 1741 */ 1742 /* fall thru... */ 1743 #endif 1744 case IEEE80211_M_HOSTAP: 1745 case IEEE80211_M_MBSS: 1746 sc->sc_opmode = HAL_M_HOSTAP; 1747 break; 1748 case IEEE80211_M_MONITOR: 1749 sc->sc_opmode = HAL_M_MONITOR; 1750 break; 1751 default: 1752 /* XXX should not happen */ 1753 break; 1754 } 1755 if (sc->sc_hastsfadd) { 1756 /* 1757 * Configure whether or not TSF adjust should be done. 1758 */ 1759 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1760 } 1761 if (flags & IEEE80211_CLONE_NOBEACONS) { 1762 /* 1763 * Enable s/w beacon miss handling. 1764 */ 1765 sc->sc_swbmiss = 1; 1766 } 1767 ATH_UNLOCK(sc); 1768 1769 /* complete setup */ 1770 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1771 mac); 1772 return vap; 1773 bad2: 1774 reclaim_address(sc, mac); 1775 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1776 bad: 1777 free(avp, M_80211_VAP); 1778 ATH_UNLOCK(sc); 1779 return NULL; 1780 } 1781 1782 static void 1783 ath_vap_delete(struct ieee80211vap *vap) 1784 { 1785 struct ieee80211com *ic = vap->iv_ic; 1786 struct ath_softc *sc = ic->ic_softc; 1787 struct ath_hal *ah = sc->sc_ah; 1788 struct ath_vap *avp = ATH_VAP(vap); 1789 1790 ATH_LOCK(sc); 1791 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1792 ATH_UNLOCK(sc); 1793 1794 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1795 if (sc->sc_running) { 1796 /* 1797 * Quiesce the hardware while we remove the vap. In 1798 * particular we need to reclaim all references to 1799 * the vap state by any frames pending on the tx queues. 1800 */ 1801 ath_hal_intrset(ah, 0); /* disable interrupts */ 1802 /* XXX Do all frames from all vaps/nodes need draining here? */ 1803 ath_stoprecv(sc, 1); /* stop recv side */ 1804 ath_rx_flush(sc); 1805 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1806 } 1807 1808 /* .. leave the hardware awake for now. */ 1809 1810 ieee80211_vap_detach(vap); 1811 1812 /* 1813 * XXX Danger Will Robinson! Danger! 1814 * 1815 * Because ieee80211_vap_detach() can queue a frame (the station 1816 * diassociate message?) after we've drained the TXQ and 1817 * flushed the software TXQ, we will end up with a frame queued 1818 * to a node whose vap is about to be freed. 1819 * 1820 * To work around this, flush the hardware/software again. 1821 * This may be racy - the ath task may be running and the packet 1822 * may be being scheduled between sw->hw txq. Tsk. 1823 * 1824 * TODO: figure out why a new node gets allocated somewhere around 1825 * here (after the ath_tx_swq() call; and after an ath_stop() 1826 * call!) 1827 */ 1828 1829 ath_draintxq(sc, ATH_RESET_DEFAULT); 1830 1831 ATH_LOCK(sc); 1832 /* 1833 * Reclaim beacon state. Note this must be done before 1834 * the vap instance is reclaimed as we may have a reference 1835 * to it in the buffer for the beacon frame. 1836 */ 1837 if (avp->av_bcbuf != NULL) { 1838 if (avp->av_bslot != -1) { 1839 sc->sc_bslot[avp->av_bslot] = NULL; 1840 sc->sc_nbcnvaps--; 1841 } 1842 ath_beacon_return(sc, avp->av_bcbuf); 1843 avp->av_bcbuf = NULL; 1844 if (sc->sc_nbcnvaps == 0) { 1845 sc->sc_stagbeacons = 0; 1846 if (sc->sc_hastsfadd) 1847 ath_hal_settsfadjust(sc->sc_ah, 0); 1848 } 1849 /* 1850 * Reclaim any pending mcast frames for the vap. 1851 */ 1852 ath_tx_draintxq(sc, &avp->av_mcastq); 1853 } 1854 /* 1855 * Update bookkeeping. 1856 */ 1857 if (vap->iv_opmode == IEEE80211_M_STA) { 1858 sc->sc_nstavaps--; 1859 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1860 sc->sc_swbmiss = 0; 1861 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1862 vap->iv_opmode == IEEE80211_M_STA || 1863 vap->iv_opmode == IEEE80211_M_MBSS) { 1864 reclaim_address(sc, vap->iv_myaddr); 1865 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1866 if (vap->iv_opmode == IEEE80211_M_MBSS) 1867 sc->sc_nmeshvaps--; 1868 } 1869 if (vap->iv_opmode != IEEE80211_M_WDS) 1870 sc->sc_nvaps--; 1871 #ifdef IEEE80211_SUPPORT_TDMA 1872 /* TDMA operation ceases when the last vap is destroyed */ 1873 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1874 sc->sc_tdma = 0; 1875 sc->sc_swbmiss = 0; 1876 } 1877 #endif 1878 free(avp, M_80211_VAP); 1879 1880 if (sc->sc_running) { 1881 /* 1882 * Restart rx+tx machines if still running (RUNNING will 1883 * be reset if we just destroyed the last vap). 1884 */ 1885 if (ath_startrecv(sc) != 0) 1886 device_printf(sc->sc_dev, 1887 "%s: unable to restart recv logic\n", __func__); 1888 if (sc->sc_beacons) { /* restart beacons */ 1889 #ifdef IEEE80211_SUPPORT_TDMA 1890 if (sc->sc_tdma) 1891 ath_tdma_config(sc, NULL); 1892 else 1893 #endif 1894 ath_beacon_config(sc, NULL); 1895 } 1896 ath_hal_intrset(ah, sc->sc_imask); 1897 } 1898 1899 /* Ok, let the hardware asleep. */ 1900 ath_power_restore_power_state(sc); 1901 ATH_UNLOCK(sc); 1902 } 1903 1904 void 1905 ath_suspend(struct ath_softc *sc) 1906 { 1907 struct ieee80211com *ic = &sc->sc_ic; 1908 1909 sc->sc_resume_up = ic->ic_nrunning != 0; 1910 1911 ieee80211_suspend_all(ic); 1912 /* 1913 * NB: don't worry about putting the chip in low power 1914 * mode; pci will power off our socket on suspend and 1915 * CardBus detaches the device. 1916 * 1917 * XXX TODO: well, that's great, except for non-cardbus 1918 * devices! 1919 */ 1920 1921 /* 1922 * XXX This doesn't wait until all pending taskqueue 1923 * items and parallel transmit/receive/other threads 1924 * are running! 1925 */ 1926 ath_hal_intrset(sc->sc_ah, 0); 1927 taskqueue_block(sc->sc_tq); 1928 1929 ATH_LOCK(sc); 1930 callout_stop(&sc->sc_cal_ch); 1931 ATH_UNLOCK(sc); 1932 1933 /* 1934 * XXX ensure sc_invalid is 1 1935 */ 1936 1937 /* Disable the PCIe PHY, complete with workarounds */ 1938 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1939 } 1940 1941 /* 1942 * Reset the key cache since some parts do not reset the 1943 * contents on resume. First we clear all entries, then 1944 * re-load keys that the 802.11 layer assumes are setup 1945 * in h/w. 1946 */ 1947 static void 1948 ath_reset_keycache(struct ath_softc *sc) 1949 { 1950 struct ieee80211com *ic = &sc->sc_ic; 1951 struct ath_hal *ah = sc->sc_ah; 1952 int i; 1953 1954 ATH_LOCK(sc); 1955 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1956 for (i = 0; i < sc->sc_keymax; i++) 1957 ath_hal_keyreset(ah, i); 1958 ath_power_restore_power_state(sc); 1959 ATH_UNLOCK(sc); 1960 ieee80211_crypto_reload_keys(ic); 1961 } 1962 1963 /* 1964 * Fetch the current chainmask configuration based on the current 1965 * operating channel and options. 1966 */ 1967 static void 1968 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1969 { 1970 1971 /* 1972 * Set TX chainmask to the currently configured chainmask; 1973 * the TX chainmask depends upon the current operating mode. 1974 */ 1975 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1976 if (IEEE80211_IS_CHAN_HT(chan)) { 1977 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1978 } else { 1979 sc->sc_cur_txchainmask = 1; 1980 } 1981 1982 DPRINTF(sc, ATH_DEBUG_RESET, 1983 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1984 __func__, 1985 sc->sc_cur_txchainmask, 1986 sc->sc_cur_rxchainmask); 1987 } 1988 1989 void 1990 ath_resume(struct ath_softc *sc) 1991 { 1992 struct ieee80211com *ic = &sc->sc_ic; 1993 struct ath_hal *ah = sc->sc_ah; 1994 HAL_STATUS status; 1995 1996 ath_hal_enablepcie(ah, 0, 0); 1997 1998 /* 1999 * Must reset the chip before we reload the 2000 * keycache as we were powered down on suspend. 2001 */ 2002 ath_update_chainmasks(sc, 2003 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 2004 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2005 sc->sc_cur_rxchainmask); 2006 2007 /* Ensure we set the current power state to on */ 2008 ATH_LOCK(sc); 2009 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2010 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2011 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2012 ATH_UNLOCK(sc); 2013 2014 ath_hal_reset(ah, sc->sc_opmode, 2015 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 2016 AH_FALSE, HAL_RESET_NORMAL, &status); 2017 ath_reset_keycache(sc); 2018 2019 ATH_RX_LOCK(sc); 2020 sc->sc_rx_stopped = 1; 2021 sc->sc_rx_resetted = 1; 2022 ATH_RX_UNLOCK(sc); 2023 2024 /* Let DFS at it in case it's a DFS channel */ 2025 ath_dfs_radar_enable(sc, ic->ic_curchan); 2026 2027 /* Let spectral at in case spectral is enabled */ 2028 ath_spectral_enable(sc, ic->ic_curchan); 2029 2030 /* 2031 * Let bluetooth coexistence at in case it's needed for this channel 2032 */ 2033 ath_btcoex_enable(sc, ic->ic_curchan); 2034 2035 /* 2036 * If we're doing TDMA, enforce the TXOP limitation for chips that 2037 * support it. 2038 */ 2039 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2040 ath_hal_setenforcetxop(sc->sc_ah, 1); 2041 else 2042 ath_hal_setenforcetxop(sc->sc_ah, 0); 2043 2044 /* Restore the LED configuration */ 2045 ath_led_config(sc); 2046 ath_hal_setledstate(ah, HAL_LED_INIT); 2047 2048 if (sc->sc_resume_up) 2049 ieee80211_resume_all(ic); 2050 2051 ATH_LOCK(sc); 2052 ath_power_restore_power_state(sc); 2053 ATH_UNLOCK(sc); 2054 2055 /* XXX beacons ? */ 2056 } 2057 2058 void 2059 ath_shutdown(struct ath_softc *sc) 2060 { 2061 2062 ATH_LOCK(sc); 2063 ath_stop(sc); 2064 ATH_UNLOCK(sc); 2065 /* NB: no point powering down chip as we're about to reboot */ 2066 } 2067 2068 /* 2069 * Interrupt handler. Most of the actual processing is deferred. 2070 */ 2071 void 2072 ath_intr(void *arg) 2073 { 2074 struct ath_softc *sc = arg; 2075 struct ath_hal *ah = sc->sc_ah; 2076 HAL_INT status = 0; 2077 uint32_t txqs; 2078 2079 /* 2080 * If we're inside a reset path, just print a warning and 2081 * clear the ISR. The reset routine will finish it for us. 2082 */ 2083 ATH_PCU_LOCK(sc); 2084 if (sc->sc_inreset_cnt) { 2085 HAL_INT status; 2086 ath_hal_getisr(ah, &status); /* clear ISR */ 2087 ath_hal_intrset(ah, 0); /* disable further intr's */ 2088 DPRINTF(sc, ATH_DEBUG_ANY, 2089 "%s: in reset, ignoring: status=0x%x\n", 2090 __func__, status); 2091 ATH_PCU_UNLOCK(sc); 2092 return; 2093 } 2094 2095 if (sc->sc_invalid) { 2096 /* 2097 * The hardware is not ready/present, don't touch anything. 2098 * Note this can happen early on if the IRQ is shared. 2099 */ 2100 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2101 ATH_PCU_UNLOCK(sc); 2102 return; 2103 } 2104 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2105 ATH_PCU_UNLOCK(sc); 2106 return; 2107 } 2108 2109 ATH_LOCK(sc); 2110 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2111 ATH_UNLOCK(sc); 2112 2113 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2114 HAL_INT status; 2115 2116 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2117 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2118 ath_hal_getisr(ah, &status); /* clear ISR */ 2119 ath_hal_intrset(ah, 0); /* disable further intr's */ 2120 ATH_PCU_UNLOCK(sc); 2121 2122 ATH_LOCK(sc); 2123 ath_power_restore_power_state(sc); 2124 ATH_UNLOCK(sc); 2125 return; 2126 } 2127 2128 /* 2129 * Figure out the reason(s) for the interrupt. Note 2130 * that the hal returns a pseudo-ISR that may include 2131 * bits we haven't explicitly enabled so we mask the 2132 * value to insure we only process bits we requested. 2133 */ 2134 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2135 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2136 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2137 #ifdef ATH_DEBUG_ALQ 2138 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2139 ah->ah_syncstate); 2140 #endif /* ATH_DEBUG_ALQ */ 2141 #ifdef ATH_KTR_INTR_DEBUG 2142 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2143 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2144 ah->ah_intrstate[0], 2145 ah->ah_intrstate[1], 2146 ah->ah_intrstate[2], 2147 ah->ah_intrstate[3], 2148 ah->ah_intrstate[6]); 2149 #endif 2150 2151 /* Squirrel away SYNC interrupt debugging */ 2152 if (ah->ah_syncstate != 0) { 2153 int i; 2154 for (i = 0; i < 32; i++) 2155 if (ah->ah_syncstate & (1 << i)) 2156 sc->sc_intr_stats.sync_intr[i]++; 2157 } 2158 2159 status &= sc->sc_imask; /* discard unasked for bits */ 2160 2161 /* Short-circuit un-handled interrupts */ 2162 if (status == 0x0) { 2163 ATH_PCU_UNLOCK(sc); 2164 2165 ATH_LOCK(sc); 2166 ath_power_restore_power_state(sc); 2167 ATH_UNLOCK(sc); 2168 2169 return; 2170 } 2171 2172 /* 2173 * Take a note that we're inside the interrupt handler, so 2174 * the reset routines know to wait. 2175 */ 2176 sc->sc_intr_cnt++; 2177 ATH_PCU_UNLOCK(sc); 2178 2179 /* 2180 * Handle the interrupt. We won't run concurrent with the reset 2181 * or channel change routines as they'll wait for sc_intr_cnt 2182 * to be 0 before continuing. 2183 */ 2184 if (status & HAL_INT_FATAL) { 2185 sc->sc_stats.ast_hardware++; 2186 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2187 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2188 } else { 2189 if (status & HAL_INT_SWBA) { 2190 /* 2191 * Software beacon alert--time to send a beacon. 2192 * Handle beacon transmission directly; deferring 2193 * this is too slow to meet timing constraints 2194 * under load. 2195 */ 2196 #ifdef IEEE80211_SUPPORT_TDMA 2197 if (sc->sc_tdma) { 2198 if (sc->sc_tdmaswba == 0) { 2199 struct ieee80211com *ic = &sc->sc_ic; 2200 struct ieee80211vap *vap = 2201 TAILQ_FIRST(&ic->ic_vaps); 2202 ath_tdma_beacon_send(sc, vap); 2203 sc->sc_tdmaswba = 2204 vap->iv_tdma->tdma_bintval; 2205 } else 2206 sc->sc_tdmaswba--; 2207 } else 2208 #endif 2209 { 2210 ath_beacon_proc(sc, 0); 2211 #ifdef IEEE80211_SUPPORT_SUPERG 2212 /* 2213 * Schedule the rx taskq in case there's no 2214 * traffic so any frames held on the staging 2215 * queue are aged and potentially flushed. 2216 */ 2217 sc->sc_rx.recv_sched(sc, 1); 2218 #endif 2219 } 2220 } 2221 if (status & HAL_INT_RXEOL) { 2222 int imask; 2223 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2224 if (! sc->sc_isedma) { 2225 ATH_PCU_LOCK(sc); 2226 /* 2227 * NB: the hardware should re-read the link when 2228 * RXE bit is written, but it doesn't work at 2229 * least on older hardware revs. 2230 */ 2231 sc->sc_stats.ast_rxeol++; 2232 /* 2233 * Disable RXEOL/RXORN - prevent an interrupt 2234 * storm until the PCU logic can be reset. 2235 * In case the interface is reset some other 2236 * way before "sc_kickpcu" is called, don't 2237 * modify sc_imask - that way if it is reset 2238 * by a call to ath_reset() somehow, the 2239 * interrupt mask will be correctly reprogrammed. 2240 */ 2241 imask = sc->sc_imask; 2242 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2243 ath_hal_intrset(ah, imask); 2244 /* 2245 * Only blank sc_rxlink if we've not yet kicked 2246 * the PCU. 2247 * 2248 * This isn't entirely correct - the correct solution 2249 * would be to have a PCU lock and engage that for 2250 * the duration of the PCU fiddling; which would include 2251 * running the RX process. Otherwise we could end up 2252 * messing up the RX descriptor chain and making the 2253 * RX desc list much shorter. 2254 */ 2255 if (! sc->sc_kickpcu) 2256 sc->sc_rxlink = NULL; 2257 sc->sc_kickpcu = 1; 2258 ATH_PCU_UNLOCK(sc); 2259 } 2260 /* 2261 * Enqueue an RX proc to handle whatever 2262 * is in the RX queue. 2263 * This will then kick the PCU if required. 2264 */ 2265 sc->sc_rx.recv_sched(sc, 1); 2266 } 2267 if (status & HAL_INT_TXURN) { 2268 sc->sc_stats.ast_txurn++; 2269 /* bump tx trigger level */ 2270 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2271 } 2272 /* 2273 * Handle both the legacy and RX EDMA interrupt bits. 2274 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2275 */ 2276 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2277 sc->sc_stats.ast_rx_intr++; 2278 sc->sc_rx.recv_sched(sc, 1); 2279 } 2280 if (status & HAL_INT_TX) { 2281 sc->sc_stats.ast_tx_intr++; 2282 /* 2283 * Grab all the currently set bits in the HAL txq bitmap 2284 * and blank them. This is the only place we should be 2285 * doing this. 2286 */ 2287 if (! sc->sc_isedma) { 2288 ATH_PCU_LOCK(sc); 2289 txqs = 0xffffffff; 2290 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2291 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2292 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2293 txqs, 2294 sc->sc_txq_active, 2295 sc->sc_txq_active | txqs); 2296 sc->sc_txq_active |= txqs; 2297 ATH_PCU_UNLOCK(sc); 2298 } 2299 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2300 } 2301 if (status & HAL_INT_BMISS) { 2302 sc->sc_stats.ast_bmiss++; 2303 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2304 } 2305 if (status & HAL_INT_GTT) 2306 sc->sc_stats.ast_tx_timeout++; 2307 if (status & HAL_INT_CST) 2308 sc->sc_stats.ast_tx_cst++; 2309 if (status & HAL_INT_MIB) { 2310 sc->sc_stats.ast_mib++; 2311 ATH_PCU_LOCK(sc); 2312 /* 2313 * Disable interrupts until we service the MIB 2314 * interrupt; otherwise it will continue to fire. 2315 */ 2316 ath_hal_intrset(ah, 0); 2317 /* 2318 * Let the hal handle the event. We assume it will 2319 * clear whatever condition caused the interrupt. 2320 */ 2321 ath_hal_mibevent(ah, &sc->sc_halstats); 2322 /* 2323 * Don't reset the interrupt if we've just 2324 * kicked the PCU, or we may get a nested 2325 * RXEOL before the rxproc has had a chance 2326 * to run. 2327 */ 2328 if (sc->sc_kickpcu == 0) 2329 ath_hal_intrset(ah, sc->sc_imask); 2330 ATH_PCU_UNLOCK(sc); 2331 } 2332 if (status & HAL_INT_RXORN) { 2333 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2334 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2335 sc->sc_stats.ast_rxorn++; 2336 } 2337 if (status & HAL_INT_TSFOOR) { 2338 /* out of range beacon - wake the chip up, 2339 * but don't modify self-gen frame config */ 2340 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2341 sc->sc_syncbeacon = 1; 2342 ATH_LOCK(sc); 2343 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2344 ATH_UNLOCK(sc); 2345 } 2346 if (status & HAL_INT_MCI) { 2347 ath_btcoex_mci_intr(sc); 2348 } 2349 } 2350 ATH_PCU_LOCK(sc); 2351 sc->sc_intr_cnt--; 2352 ATH_PCU_UNLOCK(sc); 2353 2354 ATH_LOCK(sc); 2355 ath_power_restore_power_state(sc); 2356 ATH_UNLOCK(sc); 2357 } 2358 2359 static void 2360 ath_fatal_proc(void *arg, int pending) 2361 { 2362 struct ath_softc *sc = arg; 2363 u_int32_t *state; 2364 u_int32_t len; 2365 void *sp; 2366 2367 if (sc->sc_invalid) 2368 return; 2369 2370 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2371 /* 2372 * Fatal errors are unrecoverable. Typically these 2373 * are caused by DMA errors. Collect h/w state from 2374 * the hal so we can diagnose what's going on. 2375 */ 2376 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2377 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2378 state = sp; 2379 device_printf(sc->sc_dev, 2380 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2381 state[1] , state[2], state[3], state[4], state[5]); 2382 } 2383 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2384 } 2385 2386 static void 2387 ath_bmiss_vap(struct ieee80211vap *vap) 2388 { 2389 struct ath_softc *sc = vap->iv_ic->ic_softc; 2390 2391 /* 2392 * Workaround phantom bmiss interrupts by sanity-checking 2393 * the time of our last rx'd frame. If it is within the 2394 * beacon miss interval then ignore the interrupt. If it's 2395 * truly a bmiss we'll get another interrupt soon and that'll 2396 * be dispatched up for processing. Note this applies only 2397 * for h/w beacon miss events. 2398 */ 2399 2400 /* 2401 * XXX TODO: Just read the TSF during the interrupt path; 2402 * that way we don't have to wake up again just to read it 2403 * again. 2404 */ 2405 ATH_LOCK(sc); 2406 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2407 ATH_UNLOCK(sc); 2408 2409 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2410 u_int64_t lastrx = sc->sc_lastrx; 2411 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2412 /* XXX should take a locked ref to iv_bss */ 2413 u_int bmisstimeout = 2414 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2415 2416 DPRINTF(sc, ATH_DEBUG_BEACON, 2417 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2418 __func__, (unsigned long long) tsf, 2419 (unsigned long long)(tsf - lastrx), 2420 (unsigned long long) lastrx, bmisstimeout); 2421 2422 if (tsf - lastrx <= bmisstimeout) { 2423 sc->sc_stats.ast_bmiss_phantom++; 2424 2425 ATH_LOCK(sc); 2426 ath_power_restore_power_state(sc); 2427 ATH_UNLOCK(sc); 2428 2429 return; 2430 } 2431 } 2432 2433 /* 2434 * Keep the hardware awake if it's asleep (and leave self-gen 2435 * frame config alone) until the next beacon, so we can resync 2436 * against the next beacon. 2437 * 2438 * This handles three common beacon miss cases in STA powersave mode - 2439 * (a) the beacon TBTT isnt a multiple of bintval; 2440 * (b) the beacon was missed; and 2441 * (c) the beacons are being delayed because the AP is busy and 2442 * isn't reliably able to meet its TBTT. 2443 */ 2444 ATH_LOCK(sc); 2445 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2446 ath_power_restore_power_state(sc); 2447 ATH_UNLOCK(sc); 2448 DPRINTF(sc, ATH_DEBUG_BEACON, 2449 "%s: forced awake; force syncbeacon=1\n", __func__); 2450 2451 /* 2452 * Attempt to force a beacon resync. 2453 */ 2454 sc->sc_syncbeacon = 1; 2455 2456 ATH_VAP(vap)->av_bmiss(vap); 2457 } 2458 2459 /* XXX this needs a force wakeup! */ 2460 int 2461 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2462 { 2463 uint32_t rsize; 2464 void *sp; 2465 2466 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2467 return 0; 2468 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2469 *hangs = *(uint32_t *)sp; 2470 return 1; 2471 } 2472 2473 static void 2474 ath_bmiss_proc(void *arg, int pending) 2475 { 2476 struct ath_softc *sc = arg; 2477 uint32_t hangs; 2478 2479 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2480 2481 ATH_LOCK(sc); 2482 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2483 ATH_UNLOCK(sc); 2484 2485 ath_beacon_miss(sc); 2486 2487 /* 2488 * Do a reset upon any becaon miss event. 2489 * 2490 * It may be a non-recognised RX clear hang which needs a reset 2491 * to clear. 2492 */ 2493 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2494 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC); 2495 device_printf(sc->sc_dev, 2496 "bb hang detected (0x%x), resetting\n", hangs); 2497 } else { 2498 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2499 ieee80211_beacon_miss(&sc->sc_ic); 2500 } 2501 2502 /* Force a beacon resync, in case they've drifted */ 2503 sc->sc_syncbeacon = 1; 2504 2505 ATH_LOCK(sc); 2506 ath_power_restore_power_state(sc); 2507 ATH_UNLOCK(sc); 2508 } 2509 2510 /* 2511 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2512 * calcs together with WME. If necessary disable the crypto 2513 * hardware and mark the 802.11 state so keys will be setup 2514 * with the MIC work done in software. 2515 */ 2516 static void 2517 ath_settkipmic(struct ath_softc *sc) 2518 { 2519 struct ieee80211com *ic = &sc->sc_ic; 2520 2521 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2522 if (ic->ic_flags & IEEE80211_F_WME) { 2523 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2524 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2525 } else { 2526 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2527 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2528 } 2529 } 2530 } 2531 2532 static void 2533 ath_vap_clear_quiet_ie(struct ath_softc *sc) 2534 { 2535 struct ieee80211com *ic = &sc->sc_ic; 2536 struct ieee80211vap *vap; 2537 struct ath_vap *avp; 2538 2539 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2540 avp = ATH_VAP(vap); 2541 /* Quiet time handling - ensure we resync */ 2542 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 2543 } 2544 } 2545 2546 static int 2547 ath_init(struct ath_softc *sc) 2548 { 2549 struct ieee80211com *ic = &sc->sc_ic; 2550 struct ath_hal *ah = sc->sc_ah; 2551 HAL_STATUS status; 2552 2553 ATH_LOCK_ASSERT(sc); 2554 2555 /* 2556 * Force the sleep state awake. 2557 */ 2558 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2559 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2560 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2561 2562 /* 2563 * Stop anything previously setup. This is safe 2564 * whether this is the first time through or not. 2565 */ 2566 ath_stop(sc); 2567 2568 /* 2569 * The basic interface to setting the hardware in a good 2570 * state is ``reset''. On return the hardware is known to 2571 * be powered up and with interrupts disabled. This must 2572 * be followed by initialization of the appropriate bits 2573 * and then setup of the interrupt mask. 2574 */ 2575 ath_settkipmic(sc); 2576 ath_update_chainmasks(sc, ic->ic_curchan); 2577 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2578 sc->sc_cur_rxchainmask); 2579 2580 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2581 HAL_RESET_NORMAL, &status)) { 2582 device_printf(sc->sc_dev, 2583 "unable to reset hardware; hal status %u\n", status); 2584 return (ENODEV); 2585 } 2586 2587 ATH_RX_LOCK(sc); 2588 sc->sc_rx_stopped = 1; 2589 sc->sc_rx_resetted = 1; 2590 ATH_RX_UNLOCK(sc); 2591 2592 /* Clear quiet IE state for each VAP */ 2593 ath_vap_clear_quiet_ie(sc); 2594 2595 ath_chan_change(sc, ic->ic_curchan); 2596 2597 /* Let DFS at it in case it's a DFS channel */ 2598 ath_dfs_radar_enable(sc, ic->ic_curchan); 2599 2600 /* Let spectral at in case spectral is enabled */ 2601 ath_spectral_enable(sc, ic->ic_curchan); 2602 2603 /* 2604 * Let bluetooth coexistence at in case it's needed for this channel 2605 */ 2606 ath_btcoex_enable(sc, ic->ic_curchan); 2607 2608 /* 2609 * If we're doing TDMA, enforce the TXOP limitation for chips that 2610 * support it. 2611 */ 2612 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2613 ath_hal_setenforcetxop(sc->sc_ah, 1); 2614 else 2615 ath_hal_setenforcetxop(sc->sc_ah, 0); 2616 2617 /* 2618 * Likewise this is set during reset so update 2619 * state cached in the driver. 2620 */ 2621 sc->sc_diversity = ath_hal_getdiversity(ah); 2622 sc->sc_lastlongcal = ticks; 2623 sc->sc_resetcal = 1; 2624 sc->sc_lastcalreset = 0; 2625 sc->sc_lastani = ticks; 2626 sc->sc_lastshortcal = ticks; 2627 sc->sc_doresetcal = AH_FALSE; 2628 /* 2629 * Beacon timers were cleared here; give ath_newstate() 2630 * a hint that the beacon timers should be poked when 2631 * things transition to the RUN state. 2632 */ 2633 sc->sc_beacons = 0; 2634 2635 /* 2636 * Setup the hardware after reset: the key cache 2637 * is filled as needed and the receive engine is 2638 * set going. Frame transmit is handled entirely 2639 * in the frame output path; there's nothing to do 2640 * here except setup the interrupt mask. 2641 */ 2642 if (ath_startrecv(sc) != 0) { 2643 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2644 ath_power_restore_power_state(sc); 2645 return (ENODEV); 2646 } 2647 2648 /* 2649 * Enable interrupts. 2650 */ 2651 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2652 | HAL_INT_RXORN | HAL_INT_TXURN 2653 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2654 2655 /* 2656 * Enable RX EDMA bits. Note these overlap with 2657 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2658 */ 2659 if (sc->sc_isedma) 2660 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2661 2662 /* 2663 * If we're an EDMA NIC, we don't care about RXEOL. 2664 * Writing a new descriptor in will simply restart 2665 * RX DMA. 2666 */ 2667 if (! sc->sc_isedma) 2668 sc->sc_imask |= HAL_INT_RXEOL; 2669 2670 /* 2671 * Enable MCI interrupt for MCI devices. 2672 */ 2673 if (sc->sc_btcoex_mci) 2674 sc->sc_imask |= HAL_INT_MCI; 2675 2676 /* 2677 * Enable MIB interrupts when there are hardware phy counters. 2678 * Note we only do this (at the moment) for station mode. 2679 */ 2680 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2681 sc->sc_imask |= HAL_INT_MIB; 2682 2683 /* 2684 * XXX add capability for this. 2685 * 2686 * If we're in STA mode (and maybe IBSS?) then register for 2687 * TSFOOR interrupts. 2688 */ 2689 if (ic->ic_opmode == IEEE80211_M_STA) 2690 sc->sc_imask |= HAL_INT_TSFOOR; 2691 2692 /* Enable global TX timeout and carrier sense timeout if available */ 2693 if (ath_hal_gtxto_supported(ah)) 2694 sc->sc_imask |= HAL_INT_GTT; 2695 2696 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2697 __func__, sc->sc_imask); 2698 2699 sc->sc_running = 1; 2700 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2701 ath_hal_intrset(ah, sc->sc_imask); 2702 2703 ath_power_restore_power_state(sc); 2704 2705 return (0); 2706 } 2707 2708 static void 2709 ath_stop(struct ath_softc *sc) 2710 { 2711 struct ath_hal *ah = sc->sc_ah; 2712 2713 ATH_LOCK_ASSERT(sc); 2714 2715 /* 2716 * Wake the hardware up before fiddling with it. 2717 */ 2718 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2719 2720 if (sc->sc_running) { 2721 /* 2722 * Shutdown the hardware and driver: 2723 * reset 802.11 state machine 2724 * turn off timers 2725 * disable interrupts 2726 * turn off the radio 2727 * clear transmit machinery 2728 * clear receive machinery 2729 * drain and release tx queues 2730 * reclaim beacon resources 2731 * power down hardware 2732 * 2733 * Note that some of this work is not possible if the 2734 * hardware is gone (invalid). 2735 */ 2736 #ifdef ATH_TX99_DIAG 2737 if (sc->sc_tx99 != NULL) 2738 sc->sc_tx99->stop(sc->sc_tx99); 2739 #endif 2740 callout_stop(&sc->sc_wd_ch); 2741 sc->sc_wd_timer = 0; 2742 sc->sc_running = 0; 2743 if (!sc->sc_invalid) { 2744 if (sc->sc_softled) { 2745 callout_stop(&sc->sc_ledtimer); 2746 ath_hal_gpioset(ah, sc->sc_ledpin, 2747 !sc->sc_ledon); 2748 sc->sc_blinking = 0; 2749 } 2750 ath_hal_intrset(ah, 0); 2751 } 2752 /* XXX we should stop RX regardless of whether it's valid */ 2753 if (!sc->sc_invalid) { 2754 ath_stoprecv(sc, 1); 2755 ath_hal_phydisable(ah); 2756 } else 2757 sc->sc_rxlink = NULL; 2758 ath_draintxq(sc, ATH_RESET_DEFAULT); 2759 ath_beacon_free(sc); /* XXX not needed */ 2760 } 2761 2762 /* And now, restore the current power state */ 2763 ath_power_restore_power_state(sc); 2764 } 2765 2766 /* 2767 * Wait until all pending TX/RX has completed. 2768 * 2769 * This waits until all existing transmit, receive and interrupts 2770 * have completed. It's assumed that the caller has first 2771 * grabbed the reset lock so it doesn't try to do overlapping 2772 * chip resets. 2773 */ 2774 #define MAX_TXRX_ITERATIONS 100 2775 static void 2776 ath_txrx_stop_locked(struct ath_softc *sc) 2777 { 2778 int i = MAX_TXRX_ITERATIONS; 2779 2780 ATH_UNLOCK_ASSERT(sc); 2781 ATH_PCU_LOCK_ASSERT(sc); 2782 2783 /* 2784 * Sleep until all the pending operations have completed. 2785 * 2786 * The caller must ensure that reset has been incremented 2787 * or the pending operations may continue being queued. 2788 */ 2789 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2790 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2791 if (i <= 0) 2792 break; 2793 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2794 msecs_to_ticks(10)); 2795 i--; 2796 } 2797 2798 if (i <= 0) 2799 device_printf(sc->sc_dev, 2800 "%s: didn't finish after %d iterations\n", 2801 __func__, MAX_TXRX_ITERATIONS); 2802 } 2803 #undef MAX_TXRX_ITERATIONS 2804 2805 #if 0 2806 static void 2807 ath_txrx_stop(struct ath_softc *sc) 2808 { 2809 ATH_UNLOCK_ASSERT(sc); 2810 ATH_PCU_UNLOCK_ASSERT(sc); 2811 2812 ATH_PCU_LOCK(sc); 2813 ath_txrx_stop_locked(sc); 2814 ATH_PCU_UNLOCK(sc); 2815 } 2816 #endif 2817 2818 static void 2819 ath_txrx_start(struct ath_softc *sc) 2820 { 2821 2822 taskqueue_unblock(sc->sc_tq); 2823 } 2824 2825 /* 2826 * Grab the reset lock, and wait around until no one else 2827 * is trying to do anything with it. 2828 * 2829 * This is totally horrible but we can't hold this lock for 2830 * long enough to do TX/RX or we end up with net80211/ip stack 2831 * LORs and eventual deadlock. 2832 * 2833 * "dowait" signals whether to spin, waiting for the reset 2834 * lock count to reach 0. This should (for now) only be used 2835 * during the reset path, as the rest of the code may not 2836 * be locking-reentrant enough to behave correctly. 2837 * 2838 * Another, cleaner way should be found to serialise all of 2839 * these operations. 2840 */ 2841 #define MAX_RESET_ITERATIONS 25 2842 static int 2843 ath_reset_grablock(struct ath_softc *sc, int dowait) 2844 { 2845 int w = 0; 2846 int i = MAX_RESET_ITERATIONS; 2847 2848 ATH_PCU_LOCK_ASSERT(sc); 2849 do { 2850 if (sc->sc_inreset_cnt == 0) { 2851 w = 1; 2852 break; 2853 } 2854 if (dowait == 0) { 2855 w = 0; 2856 break; 2857 } 2858 ATH_PCU_UNLOCK(sc); 2859 /* 2860 * 1 tick is likely not enough time for long calibrations 2861 * to complete. So we should wait quite a while. 2862 */ 2863 pause("ath_reset_grablock", msecs_to_ticks(100)); 2864 i--; 2865 ATH_PCU_LOCK(sc); 2866 } while (i > 0); 2867 2868 /* 2869 * We always increment the refcounter, regardless 2870 * of whether we succeeded to get it in an exclusive 2871 * way. 2872 */ 2873 sc->sc_inreset_cnt++; 2874 2875 if (i <= 0) 2876 device_printf(sc->sc_dev, 2877 "%s: didn't finish after %d iterations\n", 2878 __func__, MAX_RESET_ITERATIONS); 2879 2880 if (w == 0) 2881 device_printf(sc->sc_dev, 2882 "%s: warning, recursive reset path!\n", 2883 __func__); 2884 2885 return w; 2886 } 2887 #undef MAX_RESET_ITERATIONS 2888 2889 /* 2890 * Reset the hardware w/o losing operational state. This is 2891 * basically a more efficient way of doing ath_stop, ath_init, 2892 * followed by state transitions to the current 802.11 2893 * operational state. Used to recover from various errors and 2894 * to reset or reload hardware state. 2895 */ 2896 int 2897 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type, 2898 HAL_RESET_TYPE ah_reset_type) 2899 { 2900 struct ieee80211com *ic = &sc->sc_ic; 2901 struct ath_hal *ah = sc->sc_ah; 2902 HAL_STATUS status; 2903 int i; 2904 2905 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2906 2907 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2908 ATH_PCU_UNLOCK_ASSERT(sc); 2909 ATH_UNLOCK_ASSERT(sc); 2910 2911 /* Try to (stop any further TX/RX from occurring */ 2912 taskqueue_block(sc->sc_tq); 2913 2914 /* 2915 * Wake the hardware up. 2916 */ 2917 ATH_LOCK(sc); 2918 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2919 ATH_UNLOCK(sc); 2920 2921 ATH_PCU_LOCK(sc); 2922 2923 /* 2924 * Grab the reset lock before TX/RX is stopped. 2925 * 2926 * This is needed to ensure that when the TX/RX actually does finish, 2927 * no further TX/RX/reset runs in parallel with this. 2928 */ 2929 if (ath_reset_grablock(sc, 1) == 0) { 2930 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2931 __func__); 2932 } 2933 2934 /* disable interrupts */ 2935 ath_hal_intrset(ah, 0); 2936 2937 /* 2938 * Now, ensure that any in progress TX/RX completes before we 2939 * continue. 2940 */ 2941 ath_txrx_stop_locked(sc); 2942 2943 ATH_PCU_UNLOCK(sc); 2944 2945 /* 2946 * Regardless of whether we're doing a no-loss flush or 2947 * not, stop the PCU and handle what's in the RX queue. 2948 * That way frames aren't dropped which shouldn't be. 2949 */ 2950 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2951 ath_rx_flush(sc); 2952 2953 /* 2954 * Should now wait for pending TX/RX to complete 2955 * and block future ones from occurring. This needs to be 2956 * done before the TX queue is drained. 2957 */ 2958 ath_draintxq(sc, reset_type); /* stop xmit side */ 2959 2960 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2961 /* NB: indicate channel change so we do a full reset */ 2962 ath_update_chainmasks(sc, ic->ic_curchan); 2963 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2964 sc->sc_cur_rxchainmask); 2965 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2966 ah_reset_type, &status)) 2967 device_printf(sc->sc_dev, 2968 "%s: unable to reset hardware; hal status %u\n", 2969 __func__, status); 2970 sc->sc_diversity = ath_hal_getdiversity(ah); 2971 2972 ATH_RX_LOCK(sc); 2973 sc->sc_rx_stopped = 1; 2974 sc->sc_rx_resetted = 1; 2975 ATH_RX_UNLOCK(sc); 2976 2977 /* Quiet time handling - ensure we resync */ 2978 ath_vap_clear_quiet_ie(sc); 2979 2980 /* Let DFS at it in case it's a DFS channel */ 2981 ath_dfs_radar_enable(sc, ic->ic_curchan); 2982 2983 /* Let spectral at in case spectral is enabled */ 2984 ath_spectral_enable(sc, ic->ic_curchan); 2985 2986 /* 2987 * Let bluetooth coexistence at in case it's needed for this channel 2988 */ 2989 ath_btcoex_enable(sc, ic->ic_curchan); 2990 2991 /* 2992 * If we're doing TDMA, enforce the TXOP limitation for chips that 2993 * support it. 2994 */ 2995 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2996 ath_hal_setenforcetxop(sc->sc_ah, 1); 2997 else 2998 ath_hal_setenforcetxop(sc->sc_ah, 0); 2999 3000 if (ath_startrecv(sc) != 0) /* restart recv */ 3001 device_printf(sc->sc_dev, 3002 "%s: unable to start recv logic\n", __func__); 3003 /* 3004 * We may be doing a reset in response to an ioctl 3005 * that changes the channel so update any state that 3006 * might change as a result. 3007 */ 3008 ath_chan_change(sc, ic->ic_curchan); 3009 if (sc->sc_beacons) { /* restart beacons */ 3010 #ifdef IEEE80211_SUPPORT_TDMA 3011 if (sc->sc_tdma) 3012 ath_tdma_config(sc, NULL); 3013 else 3014 #endif 3015 ath_beacon_config(sc, NULL); 3016 } 3017 3018 /* 3019 * Release the reset lock and re-enable interrupts here. 3020 * If an interrupt was being processed in ath_intr(), 3021 * it would disable interrupts at this point. So we have 3022 * to atomically enable interrupts and decrement the 3023 * reset counter - this way ath_intr() doesn't end up 3024 * disabling interrupts without a corresponding enable 3025 * in the rest or channel change path. 3026 * 3027 * Grab the TX reference in case we need to transmit. 3028 * That way a parallel transmit doesn't. 3029 */ 3030 ATH_PCU_LOCK(sc); 3031 sc->sc_inreset_cnt--; 3032 sc->sc_txstart_cnt++; 3033 /* XXX only do this if sc_inreset_cnt == 0? */ 3034 ath_hal_intrset(ah, sc->sc_imask); 3035 ATH_PCU_UNLOCK(sc); 3036 3037 /* 3038 * TX and RX can be started here. If it were started with 3039 * sc_inreset_cnt > 0, the TX and RX path would abort. 3040 * Thus if this is a nested call through the reset or 3041 * channel change code, TX completion will occur but 3042 * RX completion and ath_start / ath_tx_start will not 3043 * run. 3044 */ 3045 3046 /* Restart TX/RX as needed */ 3047 ath_txrx_start(sc); 3048 3049 /* XXX TODO: we need to hold the tx refcount here! */ 3050 3051 /* Restart TX completion and pending TX */ 3052 if (reset_type == ATH_RESET_NOLOSS) { 3053 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3054 if (ATH_TXQ_SETUP(sc, i)) { 3055 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3056 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 3057 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3058 3059 ATH_TX_LOCK(sc); 3060 ath_txq_sched(sc, &sc->sc_txq[i]); 3061 ATH_TX_UNLOCK(sc); 3062 } 3063 } 3064 } 3065 3066 ATH_LOCK(sc); 3067 ath_power_restore_power_state(sc); 3068 ATH_UNLOCK(sc); 3069 3070 ATH_PCU_LOCK(sc); 3071 sc->sc_txstart_cnt--; 3072 ATH_PCU_UNLOCK(sc); 3073 3074 /* Handle any frames in the TX queue */ 3075 /* 3076 * XXX should this be done by the caller, rather than 3077 * ath_reset() ? 3078 */ 3079 ath_tx_kick(sc); /* restart xmit */ 3080 return 0; 3081 } 3082 3083 static int 3084 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3085 { 3086 struct ieee80211com *ic = vap->iv_ic; 3087 struct ath_softc *sc = ic->ic_softc; 3088 struct ath_hal *ah = sc->sc_ah; 3089 3090 switch (cmd) { 3091 case IEEE80211_IOC_TXPOWER: 3092 /* 3093 * If per-packet TPC is enabled, then we have nothing 3094 * to do; otherwise we need to force the global limit. 3095 * All this can happen directly; no need to reset. 3096 */ 3097 if (!ath_hal_gettpc(ah)) 3098 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3099 return 0; 3100 } 3101 /* XXX? Full or NOLOSS? */ 3102 return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL); 3103 } 3104 3105 struct ath_buf * 3106 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3107 { 3108 struct ath_buf *bf; 3109 3110 ATH_TXBUF_LOCK_ASSERT(sc); 3111 3112 if (btype == ATH_BUFTYPE_MGMT) 3113 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3114 else 3115 bf = TAILQ_FIRST(&sc->sc_txbuf); 3116 3117 if (bf == NULL) { 3118 sc->sc_stats.ast_tx_getnobuf++; 3119 } else { 3120 if (bf->bf_flags & ATH_BUF_BUSY) { 3121 sc->sc_stats.ast_tx_getbusybuf++; 3122 bf = NULL; 3123 } 3124 } 3125 3126 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3127 if (btype == ATH_BUFTYPE_MGMT) 3128 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3129 else { 3130 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3131 sc->sc_txbuf_cnt--; 3132 3133 /* 3134 * This shuldn't happen; however just to be 3135 * safe print a warning and fudge the txbuf 3136 * count. 3137 */ 3138 if (sc->sc_txbuf_cnt < 0) { 3139 device_printf(sc->sc_dev, 3140 "%s: sc_txbuf_cnt < 0?\n", 3141 __func__); 3142 sc->sc_txbuf_cnt = 0; 3143 } 3144 } 3145 } else 3146 bf = NULL; 3147 3148 if (bf == NULL) { 3149 /* XXX should check which list, mgmt or otherwise */ 3150 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3151 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3152 "out of xmit buffers" : "xmit buffer busy"); 3153 return NULL; 3154 } 3155 3156 /* XXX TODO: should do this at buffer list initialisation */ 3157 /* XXX (then, ensure the buffer has the right flag set) */ 3158 bf->bf_flags = 0; 3159 if (btype == ATH_BUFTYPE_MGMT) 3160 bf->bf_flags |= ATH_BUF_MGMT; 3161 else 3162 bf->bf_flags &= (~ATH_BUF_MGMT); 3163 3164 /* Valid bf here; clear some basic fields */ 3165 bf->bf_next = NULL; /* XXX just to be sure */ 3166 bf->bf_last = NULL; /* XXX again, just to be sure */ 3167 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3168 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3169 3170 /* 3171 * Track the descriptor ID only if doing EDMA 3172 */ 3173 if (sc->sc_isedma) { 3174 bf->bf_descid = sc->sc_txbuf_descid; 3175 sc->sc_txbuf_descid++; 3176 } 3177 3178 return bf; 3179 } 3180 3181 /* 3182 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3183 * can't be thrown back on the queue as they could still be 3184 * in use by the hardware. 3185 * 3186 * This duplicates the buffer, or returns NULL. 3187 * 3188 * The descriptor is also copied but the link pointers and 3189 * the DMA segments aren't copied; this frame should thus 3190 * be again passed through the descriptor setup/chain routines 3191 * so the link is correct. 3192 * 3193 * The caller must free the buffer using ath_freebuf(). 3194 */ 3195 struct ath_buf * 3196 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3197 { 3198 struct ath_buf *tbf; 3199 3200 tbf = ath_getbuf(sc, 3201 (bf->bf_flags & ATH_BUF_MGMT) ? 3202 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3203 if (tbf == NULL) 3204 return NULL; /* XXX failure? Why? */ 3205 3206 /* Copy basics */ 3207 tbf->bf_next = NULL; 3208 tbf->bf_nseg = bf->bf_nseg; 3209 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3210 tbf->bf_status = bf->bf_status; 3211 tbf->bf_m = bf->bf_m; 3212 tbf->bf_node = bf->bf_node; 3213 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3214 /* will be setup by the chain/setup function */ 3215 tbf->bf_lastds = NULL; 3216 /* for now, last == self */ 3217 tbf->bf_last = tbf; 3218 tbf->bf_comp = bf->bf_comp; 3219 3220 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3221 3222 /* The caller has to re-init the descriptor + links */ 3223 3224 /* 3225 * Free the DMA mapping here, before we NULL the mbuf. 3226 * We must only call bus_dmamap_unload() once per mbuf chain 3227 * or behaviour is undefined. 3228 */ 3229 if (bf->bf_m != NULL) { 3230 /* 3231 * XXX is this POSTWRITE call required? 3232 */ 3233 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3234 BUS_DMASYNC_POSTWRITE); 3235 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3236 } 3237 3238 bf->bf_m = NULL; 3239 bf->bf_node = NULL; 3240 3241 /* Copy state */ 3242 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3243 3244 return tbf; 3245 } 3246 3247 struct ath_buf * 3248 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3249 { 3250 struct ath_buf *bf; 3251 3252 ATH_TXBUF_LOCK(sc); 3253 bf = _ath_getbuf_locked(sc, btype); 3254 /* 3255 * If a mgmt buffer was requested but we're out of those, 3256 * try requesting a normal one. 3257 */ 3258 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3259 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3260 ATH_TXBUF_UNLOCK(sc); 3261 if (bf == NULL) { 3262 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3263 sc->sc_stats.ast_tx_qstop++; 3264 } 3265 return bf; 3266 } 3267 3268 /* 3269 * Transmit a single frame. 3270 * 3271 * net80211 will free the node reference if the transmit 3272 * fails, so don't free the node reference here. 3273 */ 3274 static int 3275 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3276 { 3277 struct ath_softc *sc = ic->ic_softc; 3278 struct ieee80211_node *ni; 3279 struct mbuf *next; 3280 struct ath_buf *bf; 3281 ath_bufhead frags; 3282 int retval = 0; 3283 3284 /* 3285 * Tell the reset path that we're currently transmitting. 3286 */ 3287 ATH_PCU_LOCK(sc); 3288 if (sc->sc_inreset_cnt > 0) { 3289 DPRINTF(sc, ATH_DEBUG_XMIT, 3290 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3291 ATH_PCU_UNLOCK(sc); 3292 sc->sc_stats.ast_tx_qstop++; 3293 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3294 return (ENOBUFS); /* XXX should be EINVAL or? */ 3295 } 3296 sc->sc_txstart_cnt++; 3297 ATH_PCU_UNLOCK(sc); 3298 3299 /* Wake the hardware up already */ 3300 ATH_LOCK(sc); 3301 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3302 ATH_UNLOCK(sc); 3303 3304 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3305 /* 3306 * Grab the TX lock - it's ok to do this here; we haven't 3307 * yet started transmitting. 3308 */ 3309 ATH_TX_LOCK(sc); 3310 3311 /* 3312 * Node reference, if there's one. 3313 */ 3314 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3315 3316 /* 3317 * Enforce how deep a node queue can get. 3318 * 3319 * XXX it would be nicer if we kept an mbuf queue per 3320 * node and only whacked them into ath_bufs when we 3321 * are ready to schedule some traffic from them. 3322 * .. that may come later. 3323 * 3324 * XXX we should also track the per-node hardware queue 3325 * depth so it is easy to limit the _SUM_ of the swq and 3326 * hwq frames. Since we only schedule two HWQ frames 3327 * at a time, this should be OK for now. 3328 */ 3329 if ((!(m->m_flags & M_EAPOL)) && 3330 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3331 sc->sc_stats.ast_tx_nodeq_overflow++; 3332 retval = ENOBUFS; 3333 goto finish; 3334 } 3335 3336 /* 3337 * Check how many TX buffers are available. 3338 * 3339 * If this is for non-EAPOL traffic, just leave some 3340 * space free in order for buffer cloning and raw 3341 * frame transmission to occur. 3342 * 3343 * If it's for EAPOL traffic, ignore this for now. 3344 * Management traffic will be sent via the raw transmit 3345 * method which bypasses this check. 3346 * 3347 * This is needed to ensure that EAPOL frames during 3348 * (re) keying have a chance to go out. 3349 * 3350 * See kern/138379 for more information. 3351 */ 3352 if ((!(m->m_flags & M_EAPOL)) && 3353 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3354 sc->sc_stats.ast_tx_nobuf++; 3355 retval = ENOBUFS; 3356 goto finish; 3357 } 3358 3359 /* 3360 * Grab a TX buffer and associated resources. 3361 * 3362 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3363 * That way even with temporary buffer exhaustion due to 3364 * the data path doesn't leave us without the ability 3365 * to transmit management frames. 3366 * 3367 * Otherwise allocate a normal buffer. 3368 */ 3369 if (m->m_flags & M_EAPOL) 3370 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3371 else 3372 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3373 3374 if (bf == NULL) { 3375 /* 3376 * If we failed to allocate a buffer, fail. 3377 * 3378 * We shouldn't fail normally, due to the check 3379 * above. 3380 */ 3381 sc->sc_stats.ast_tx_nobuf++; 3382 retval = ENOBUFS; 3383 goto finish; 3384 } 3385 3386 /* 3387 * At this point we have a buffer; so we need to free it 3388 * if we hit any error conditions. 3389 */ 3390 3391 /* 3392 * Check for fragmentation. If this frame 3393 * has been broken up verify we have enough 3394 * buffers to send all the fragments so all 3395 * go out or none... 3396 */ 3397 TAILQ_INIT(&frags); 3398 if ((m->m_flags & M_FRAG) && 3399 !ath_txfrag_setup(sc, &frags, m, ni)) { 3400 DPRINTF(sc, ATH_DEBUG_XMIT, 3401 "%s: out of txfrag buffers\n", __func__); 3402 sc->sc_stats.ast_tx_nofrag++; 3403 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3404 /* 3405 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3406 * we shouldn't free it but return back. 3407 */ 3408 ieee80211_free_mbuf(m); 3409 m = NULL; 3410 goto bad; 3411 } 3412 3413 /* 3414 * At this point if we have any TX fragments, then we will 3415 * have bumped the node reference once for each of those. 3416 */ 3417 3418 /* 3419 * XXX Is there anything actually _enforcing_ that the 3420 * fragments are being transmitted in one hit, rather than 3421 * being interleaved with other transmissions on that 3422 * hardware queue? 3423 * 3424 * The ATH TX output lock is the only thing serialising this 3425 * right now. 3426 */ 3427 3428 /* 3429 * Calculate the "next fragment" length field in ath_buf 3430 * in order to let the transmit path know enough about 3431 * what to next write to the hardware. 3432 */ 3433 if (m->m_flags & M_FRAG) { 3434 struct ath_buf *fbf = bf; 3435 struct ath_buf *n_fbf = NULL; 3436 struct mbuf *fm = m->m_nextpkt; 3437 3438 /* 3439 * We need to walk the list of fragments and set 3440 * the next size to the following buffer. 3441 * However, the first buffer isn't in the frag 3442 * list, so we have to do some gymnastics here. 3443 */ 3444 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3445 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3446 fbf = n_fbf; 3447 fm = fm->m_nextpkt; 3448 } 3449 } 3450 3451 nextfrag: 3452 /* 3453 * Pass the frame to the h/w for transmission. 3454 * Fragmented frames have each frag chained together 3455 * with m_nextpkt. We know there are sufficient ath_buf's 3456 * to send all the frags because of work done by 3457 * ath_txfrag_setup. We leave m_nextpkt set while 3458 * calling ath_tx_start so it can use it to extend the 3459 * the tx duration to cover the subsequent frag and 3460 * so it can reclaim all the mbufs in case of an error; 3461 * ath_tx_start clears m_nextpkt once it commits to 3462 * handing the frame to the hardware. 3463 * 3464 * Note: if this fails, then the mbufs are freed but 3465 * not the node reference. 3466 * 3467 * So, we now have to free the node reference ourselves here 3468 * and return OK up to the stack. 3469 */ 3470 next = m->m_nextpkt; 3471 if (ath_tx_start(sc, ni, bf, m)) { 3472 bad: 3473 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3474 reclaim: 3475 bf->bf_m = NULL; 3476 bf->bf_node = NULL; 3477 ATH_TXBUF_LOCK(sc); 3478 ath_returnbuf_head(sc, bf); 3479 /* 3480 * Free the rest of the node references and 3481 * buffers for the fragment list. 3482 */ 3483 ath_txfrag_cleanup(sc, &frags, ni); 3484 ATH_TXBUF_UNLOCK(sc); 3485 3486 /* 3487 * XXX: And free the node/return OK; ath_tx_start() may have 3488 * modified the buffer. We currently have no way to 3489 * signify that the mbuf was freed but there was an error. 3490 */ 3491 ieee80211_free_node(ni); 3492 retval = 0; 3493 goto finish; 3494 } 3495 3496 /* 3497 * Check here if the node is in power save state. 3498 */ 3499 ath_tx_update_tim(sc, ni, 1); 3500 3501 if (next != NULL) { 3502 /* 3503 * Beware of state changing between frags. 3504 * XXX check sta power-save state? 3505 */ 3506 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3507 DPRINTF(sc, ATH_DEBUG_XMIT, 3508 "%s: flush fragmented packet, state %s\n", 3509 __func__, 3510 ieee80211_state_name[ni->ni_vap->iv_state]); 3511 /* XXX dmamap */ 3512 ieee80211_free_mbuf(next); 3513 goto reclaim; 3514 } 3515 m = next; 3516 bf = TAILQ_FIRST(&frags); 3517 KASSERT(bf != NULL, ("no buf for txfrag")); 3518 TAILQ_REMOVE(&frags, bf, bf_list); 3519 goto nextfrag; 3520 } 3521 3522 /* 3523 * Bump watchdog timer. 3524 */ 3525 sc->sc_wd_timer = 5; 3526 3527 finish: 3528 ATH_TX_UNLOCK(sc); 3529 3530 /* 3531 * Finished transmitting! 3532 */ 3533 ATH_PCU_LOCK(sc); 3534 sc->sc_txstart_cnt--; 3535 ATH_PCU_UNLOCK(sc); 3536 3537 /* Sleep the hardware if required */ 3538 ATH_LOCK(sc); 3539 ath_power_restore_power_state(sc); 3540 ATH_UNLOCK(sc); 3541 3542 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3543 3544 return (retval); 3545 } 3546 3547 static int 3548 ath_media_change(struct ifnet *ifp) 3549 { 3550 int error = ieee80211_media_change(ifp); 3551 /* NB: only the fixed rate can change and that doesn't need a reset */ 3552 return (error == ENETRESET ? 0 : error); 3553 } 3554 3555 /* 3556 * Block/unblock tx+rx processing while a key change is done. 3557 * We assume the caller serializes key management operations 3558 * so we only need to worry about synchronization with other 3559 * uses that originate in the driver. 3560 */ 3561 static void 3562 ath_key_update_begin(struct ieee80211vap *vap) 3563 { 3564 struct ath_softc *sc = vap->iv_ic->ic_softc; 3565 3566 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3567 taskqueue_block(sc->sc_tq); 3568 } 3569 3570 static void 3571 ath_key_update_end(struct ieee80211vap *vap) 3572 { 3573 struct ath_softc *sc = vap->iv_ic->ic_softc; 3574 3575 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3576 taskqueue_unblock(sc->sc_tq); 3577 } 3578 3579 static void 3580 ath_update_promisc(struct ieee80211com *ic) 3581 { 3582 struct ath_softc *sc = ic->ic_softc; 3583 u_int32_t rfilt; 3584 3585 /* configure rx filter */ 3586 ATH_LOCK(sc); 3587 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3588 rfilt = ath_calcrxfilter(sc); 3589 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3590 ath_power_restore_power_state(sc); 3591 ATH_UNLOCK(sc); 3592 3593 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3594 } 3595 3596 static u_int 3597 ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 3598 { 3599 uint32_t val, *mfilt = arg; 3600 char *dl; 3601 uint8_t pos; 3602 3603 /* calculate XOR of eight 6bit values */ 3604 dl = LLADDR(sdl); 3605 val = le32dec(dl + 0); 3606 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3607 val = le32dec(dl + 3); 3608 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3609 pos &= 0x3f; 3610 mfilt[pos / 32] |= (1 << (pos % 32)); 3611 3612 return (1); 3613 } 3614 3615 /* 3616 * Driver-internal mcast update call. 3617 * 3618 * Assumes the hardware is already awake. 3619 */ 3620 static void 3621 ath_update_mcast_hw(struct ath_softc *sc) 3622 { 3623 struct ieee80211com *ic = &sc->sc_ic; 3624 u_int32_t mfilt[2]; 3625 3626 /* calculate and install multicast filter */ 3627 if (ic->ic_allmulti == 0) { 3628 struct ieee80211vap *vap; 3629 3630 /* 3631 * Merge multicast addresses to form the hardware filter. 3632 */ 3633 mfilt[0] = mfilt[1] = 0; 3634 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 3635 if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt); 3636 } else 3637 mfilt[0] = mfilt[1] = ~0; 3638 3639 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3640 3641 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3642 __func__, mfilt[0], mfilt[1]); 3643 } 3644 3645 /* 3646 * Called from the net80211 layer - force the hardware 3647 * awake before operating. 3648 */ 3649 static void 3650 ath_update_mcast(struct ieee80211com *ic) 3651 { 3652 struct ath_softc *sc = ic->ic_softc; 3653 3654 ATH_LOCK(sc); 3655 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3656 ATH_UNLOCK(sc); 3657 3658 ath_update_mcast_hw(sc); 3659 3660 ATH_LOCK(sc); 3661 ath_power_restore_power_state(sc); 3662 ATH_UNLOCK(sc); 3663 } 3664 3665 void 3666 ath_mode_init(struct ath_softc *sc) 3667 { 3668 struct ieee80211com *ic = &sc->sc_ic; 3669 struct ath_hal *ah = sc->sc_ah; 3670 u_int32_t rfilt; 3671 3672 /* XXX power state? */ 3673 3674 /* configure rx filter */ 3675 rfilt = ath_calcrxfilter(sc); 3676 ath_hal_setrxfilter(ah, rfilt); 3677 3678 /* configure operational mode */ 3679 ath_hal_setopmode(ah); 3680 3681 /* handle any link-level address change */ 3682 ath_hal_setmac(ah, ic->ic_macaddr); 3683 3684 /* calculate and install multicast filter */ 3685 ath_update_mcast_hw(sc); 3686 } 3687 3688 /* 3689 * Set the slot time based on the current setting. 3690 */ 3691 void 3692 ath_setslottime(struct ath_softc *sc) 3693 { 3694 struct ieee80211com *ic = &sc->sc_ic; 3695 struct ath_hal *ah = sc->sc_ah; 3696 u_int usec; 3697 3698 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3699 usec = 13; 3700 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3701 usec = 21; 3702 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3703 /* honor short/long slot time only in 11g */ 3704 /* XXX shouldn't honor on pure g or turbo g channel */ 3705 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3706 usec = HAL_SLOT_TIME_9; 3707 else 3708 usec = HAL_SLOT_TIME_20; 3709 } else 3710 usec = HAL_SLOT_TIME_9; 3711 3712 DPRINTF(sc, ATH_DEBUG_RESET, 3713 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3714 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3715 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3716 3717 /* Wake up the hardware first before updating the slot time */ 3718 ATH_LOCK(sc); 3719 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3720 ath_hal_setslottime(ah, usec); 3721 ath_power_restore_power_state(sc); 3722 sc->sc_updateslot = OK; 3723 ATH_UNLOCK(sc); 3724 } 3725 3726 /* 3727 * Callback from the 802.11 layer to update the 3728 * slot time based on the current setting. 3729 */ 3730 static void 3731 ath_updateslot(struct ieee80211com *ic) 3732 { 3733 struct ath_softc *sc = ic->ic_softc; 3734 3735 /* 3736 * When not coordinating the BSS, change the hardware 3737 * immediately. For other operation we defer the change 3738 * until beacon updates have propagated to the stations. 3739 * 3740 * XXX sc_updateslot isn't changed behind a lock? 3741 */ 3742 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3743 ic->ic_opmode == IEEE80211_M_MBSS) 3744 sc->sc_updateslot = UPDATE; 3745 else 3746 ath_setslottime(sc); 3747 } 3748 3749 /* 3750 * Append the contents of src to dst; both queues 3751 * are assumed to be locked. 3752 */ 3753 void 3754 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3755 { 3756 3757 ATH_TXQ_LOCK_ASSERT(src); 3758 ATH_TXQ_LOCK_ASSERT(dst); 3759 3760 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3761 dst->axq_link = src->axq_link; 3762 src->axq_link = NULL; 3763 dst->axq_depth += src->axq_depth; 3764 dst->axq_aggr_depth += src->axq_aggr_depth; 3765 src->axq_depth = 0; 3766 src->axq_aggr_depth = 0; 3767 } 3768 3769 /* 3770 * Reset the hardware, with no loss. 3771 * 3772 * This can't be used for a general case reset. 3773 */ 3774 static void 3775 ath_reset_proc(void *arg, int pending) 3776 { 3777 struct ath_softc *sc = arg; 3778 3779 #if 0 3780 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3781 #endif 3782 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3783 } 3784 3785 /* 3786 * Reset the hardware after detecting beacons have stopped. 3787 */ 3788 static void 3789 ath_bstuck_proc(void *arg, int pending) 3790 { 3791 struct ath_softc *sc = arg; 3792 uint32_t hangs = 0; 3793 3794 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3795 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3796 3797 #ifdef ATH_DEBUG_ALQ 3798 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3799 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3800 #endif 3801 3802 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3803 sc->sc_bmisscount); 3804 sc->sc_stats.ast_bstuck++; 3805 /* 3806 * This assumes that there's no simultaneous channel mode change 3807 * occurring. 3808 */ 3809 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3810 } 3811 3812 static int 3813 ath_desc_alloc(struct ath_softc *sc) 3814 { 3815 int error; 3816 3817 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3818 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3819 if (error != 0) { 3820 return error; 3821 } 3822 sc->sc_txbuf_cnt = ath_txbuf; 3823 3824 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3825 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3826 ATH_TXDESC); 3827 if (error != 0) { 3828 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3829 return error; 3830 } 3831 3832 /* 3833 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3834 * flag doesn't have to be set in ath_getbuf_locked(). 3835 */ 3836 3837 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3838 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3839 if (error != 0) { 3840 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3841 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3842 &sc->sc_txbuf_mgmt); 3843 return error; 3844 } 3845 return 0; 3846 } 3847 3848 static void 3849 ath_desc_free(struct ath_softc *sc) 3850 { 3851 3852 if (sc->sc_bdma.dd_desc_len != 0) 3853 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3854 if (sc->sc_txdma.dd_desc_len != 0) 3855 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3856 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3857 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3858 &sc->sc_txbuf_mgmt); 3859 } 3860 3861 static struct ieee80211_node * 3862 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3863 { 3864 struct ieee80211com *ic = vap->iv_ic; 3865 struct ath_softc *sc = ic->ic_softc; 3866 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3867 struct ath_node *an; 3868 3869 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3870 if (an == NULL) { 3871 /* XXX stat+msg */ 3872 return NULL; 3873 } 3874 ath_rate_node_init(sc, an); 3875 3876 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3877 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3878 device_get_nameunit(sc->sc_dev), an); 3879 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3880 3881 /* XXX setup ath_tid */ 3882 ath_tx_tid_init(sc, an); 3883 3884 an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 3885 an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 3886 an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 3887 3888 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3889 return &an->an_node; 3890 } 3891 3892 static void 3893 ath_node_cleanup(struct ieee80211_node *ni) 3894 { 3895 struct ieee80211com *ic = ni->ni_ic; 3896 struct ath_softc *sc = ic->ic_softc; 3897 3898 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3899 ni->ni_macaddr, ":", ATH_NODE(ni)); 3900 3901 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3902 ath_tx_node_flush(sc, ATH_NODE(ni)); 3903 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3904 sc->sc_node_cleanup(ni); 3905 } 3906 3907 static void 3908 ath_node_free(struct ieee80211_node *ni) 3909 { 3910 struct ieee80211com *ic = ni->ni_ic; 3911 struct ath_softc *sc = ic->ic_softc; 3912 3913 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3914 ni->ni_macaddr, ":", ATH_NODE(ni)); 3915 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3916 sc->sc_node_free(ni); 3917 } 3918 3919 static void 3920 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3921 { 3922 struct ieee80211com *ic = ni->ni_ic; 3923 struct ath_softc *sc = ic->ic_softc; 3924 struct ath_hal *ah = sc->sc_ah; 3925 3926 *rssi = ic->ic_node_getrssi(ni); 3927 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3928 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3929 else 3930 *noise = -95; /* nominally correct */ 3931 } 3932 3933 /* 3934 * Set the default antenna. 3935 */ 3936 void 3937 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3938 { 3939 struct ath_hal *ah = sc->sc_ah; 3940 3941 /* XXX block beacon interrupts */ 3942 ath_hal_setdefantenna(ah, antenna); 3943 if (sc->sc_defant != antenna) 3944 sc->sc_stats.ast_ant_defswitch++; 3945 sc->sc_defant = antenna; 3946 sc->sc_rxotherant = 0; 3947 } 3948 3949 static void 3950 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3951 { 3952 txq->axq_qnum = qnum; 3953 txq->axq_ac = 0; 3954 txq->axq_depth = 0; 3955 txq->axq_aggr_depth = 0; 3956 txq->axq_intrcnt = 0; 3957 txq->axq_link = NULL; 3958 txq->axq_softc = sc; 3959 TAILQ_INIT(&txq->axq_q); 3960 TAILQ_INIT(&txq->axq_tidq); 3961 TAILQ_INIT(&txq->fifo.axq_q); 3962 ATH_TXQ_LOCK_INIT(sc, txq); 3963 } 3964 3965 /* 3966 * Setup a h/w transmit queue. 3967 */ 3968 static struct ath_txq * 3969 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3970 { 3971 struct ath_hal *ah = sc->sc_ah; 3972 HAL_TXQ_INFO qi; 3973 int qnum; 3974 3975 memset(&qi, 0, sizeof(qi)); 3976 qi.tqi_subtype = subtype; 3977 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3978 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3979 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3980 /* 3981 * Enable interrupts only for EOL and DESC conditions. 3982 * We mark tx descriptors to receive a DESC interrupt 3983 * when a tx queue gets deep; otherwise waiting for the 3984 * EOL to reap descriptors. Note that this is done to 3985 * reduce interrupt load and this only defers reaping 3986 * descriptors, never transmitting frames. Aside from 3987 * reducing interrupts this also permits more concurrency. 3988 * The only potential downside is if the tx queue backs 3989 * up in which case the top half of the kernel may backup 3990 * due to a lack of tx descriptors. 3991 */ 3992 if (sc->sc_isedma) 3993 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3994 HAL_TXQ_TXOKINT_ENABLE; 3995 else 3996 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3997 HAL_TXQ_TXDESCINT_ENABLE; 3998 3999 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4000 if (qnum == -1) { 4001 /* 4002 * NB: don't print a message, this happens 4003 * normally on parts with too few tx queues 4004 */ 4005 return NULL; 4006 } 4007 if (qnum >= nitems(sc->sc_txq)) { 4008 device_printf(sc->sc_dev, 4009 "hal qnum %u out of range, max %zu!\n", 4010 qnum, nitems(sc->sc_txq)); 4011 ath_hal_releasetxqueue(ah, qnum); 4012 return NULL; 4013 } 4014 if (!ATH_TXQ_SETUP(sc, qnum)) { 4015 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4016 sc->sc_txqsetup |= 1<<qnum; 4017 } 4018 return &sc->sc_txq[qnum]; 4019 } 4020 4021 /* 4022 * Setup a hardware data transmit queue for the specified 4023 * access control. The hal may not support all requested 4024 * queues in which case it will return a reference to a 4025 * previously setup queue. We record the mapping from ac's 4026 * to h/w queues for use by ath_tx_start and also track 4027 * the set of h/w queues being used to optimize work in the 4028 * transmit interrupt handler and related routines. 4029 */ 4030 static int 4031 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4032 { 4033 struct ath_txq *txq; 4034 4035 if (ac >= nitems(sc->sc_ac2q)) { 4036 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4037 ac, nitems(sc->sc_ac2q)); 4038 return 0; 4039 } 4040 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4041 if (txq != NULL) { 4042 txq->axq_ac = ac; 4043 sc->sc_ac2q[ac] = txq; 4044 return 1; 4045 } else 4046 return 0; 4047 } 4048 4049 /* 4050 * Update WME parameters for a transmit queue. 4051 */ 4052 static int 4053 ath_txq_update(struct ath_softc *sc, int ac) 4054 { 4055 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4056 struct ieee80211com *ic = &sc->sc_ic; 4057 struct ath_txq *txq = sc->sc_ac2q[ac]; 4058 struct chanAccParams chp; 4059 struct wmeParams *wmep; 4060 struct ath_hal *ah = sc->sc_ah; 4061 HAL_TXQ_INFO qi; 4062 4063 ieee80211_wme_ic_getparams(ic, &chp); 4064 wmep = &chp.cap_wmeParams[ac]; 4065 4066 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4067 #ifdef IEEE80211_SUPPORT_TDMA 4068 if (sc->sc_tdma) { 4069 /* 4070 * AIFS is zero so there's no pre-transmit wait. The 4071 * burst time defines the slot duration and is configured 4072 * through net80211. The QCU is setup to not do post-xmit 4073 * back off, lockout all lower-priority QCU's, and fire 4074 * off the DMA beacon alert timer which is setup based 4075 * on the slot configuration. 4076 */ 4077 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4078 | HAL_TXQ_TXERRINT_ENABLE 4079 | HAL_TXQ_TXURNINT_ENABLE 4080 | HAL_TXQ_TXEOLINT_ENABLE 4081 | HAL_TXQ_DBA_GATED 4082 | HAL_TXQ_BACKOFF_DISABLE 4083 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4084 ; 4085 qi.tqi_aifs = 0; 4086 /* XXX +dbaprep? */ 4087 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4088 qi.tqi_burstTime = qi.tqi_readyTime; 4089 } else { 4090 #endif 4091 /* 4092 * XXX shouldn't this just use the default flags 4093 * used in the previous queue setup? 4094 */ 4095 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4096 | HAL_TXQ_TXERRINT_ENABLE 4097 | HAL_TXQ_TXDESCINT_ENABLE 4098 | HAL_TXQ_TXURNINT_ENABLE 4099 | HAL_TXQ_TXEOLINT_ENABLE 4100 ; 4101 qi.tqi_aifs = wmep->wmep_aifsn; 4102 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4103 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4104 qi.tqi_readyTime = 0; 4105 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4106 #ifdef IEEE80211_SUPPORT_TDMA 4107 } 4108 #endif 4109 4110 DPRINTF(sc, ATH_DEBUG_RESET, 4111 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4112 __func__, txq->axq_qnum, qi.tqi_qflags, 4113 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4114 4115 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4116 device_printf(sc->sc_dev, "unable to update hardware queue " 4117 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4118 return 0; 4119 } else { 4120 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4121 return 1; 4122 } 4123 #undef ATH_EXPONENT_TO_VALUE 4124 } 4125 4126 /* 4127 * Callback from the 802.11 layer to update WME parameters. 4128 */ 4129 int 4130 ath_wme_update(struct ieee80211com *ic) 4131 { 4132 struct ath_softc *sc = ic->ic_softc; 4133 4134 return !ath_txq_update(sc, WME_AC_BE) || 4135 !ath_txq_update(sc, WME_AC_BK) || 4136 !ath_txq_update(sc, WME_AC_VI) || 4137 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4138 } 4139 4140 /* 4141 * Reclaim resources for a setup queue. 4142 */ 4143 static void 4144 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4145 { 4146 4147 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4148 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4149 ATH_TXQ_LOCK_DESTROY(txq); 4150 } 4151 4152 /* 4153 * Reclaim all tx queue resources. 4154 */ 4155 static void 4156 ath_tx_cleanup(struct ath_softc *sc) 4157 { 4158 int i; 4159 4160 ATH_TXBUF_LOCK_DESTROY(sc); 4161 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4162 if (ATH_TXQ_SETUP(sc, i)) 4163 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4164 } 4165 4166 /* 4167 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4168 * using the current rates in sc_rixmap. 4169 */ 4170 int 4171 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4172 { 4173 int rix = sc->sc_rixmap[rate]; 4174 /* NB: return lowest rix for invalid rate */ 4175 return (rix == 0xff ? 0 : rix); 4176 } 4177 4178 static void 4179 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4180 struct ath_buf *bf) 4181 { 4182 struct ieee80211_node *ni = bf->bf_node; 4183 struct ieee80211com *ic = &sc->sc_ic; 4184 int sr, lr, pri; 4185 4186 if (ts->ts_status == 0) { 4187 u_int8_t txant = ts->ts_antenna; 4188 sc->sc_stats.ast_ant_tx[txant]++; 4189 sc->sc_ant_tx[txant]++; 4190 if (ts->ts_finaltsi != 0) 4191 sc->sc_stats.ast_tx_altrate++; 4192 4193 /* XXX TODO: should do per-pri conuters */ 4194 pri = M_WME_GETAC(bf->bf_m); 4195 if (pri >= WME_AC_VO) 4196 ic->ic_wme.wme_hipri_traffic++; 4197 4198 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4199 ni->ni_inact = ni->ni_inact_reload; 4200 } else { 4201 if (ts->ts_status & HAL_TXERR_XRETRY) 4202 sc->sc_stats.ast_tx_xretries++; 4203 if (ts->ts_status & HAL_TXERR_FIFO) 4204 sc->sc_stats.ast_tx_fifoerr++; 4205 if (ts->ts_status & HAL_TXERR_FILT) 4206 sc->sc_stats.ast_tx_filtered++; 4207 if (ts->ts_status & HAL_TXERR_XTXOP) 4208 sc->sc_stats.ast_tx_xtxop++; 4209 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4210 sc->sc_stats.ast_tx_timerexpired++; 4211 4212 if (bf->bf_m->m_flags & M_FF) 4213 sc->sc_stats.ast_ff_txerr++; 4214 } 4215 /* XXX when is this valid? */ 4216 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4217 sc->sc_stats.ast_tx_desccfgerr++; 4218 /* 4219 * This can be valid for successful frame transmission! 4220 * If there's a TX FIFO underrun during aggregate transmission, 4221 * the MAC will pad the rest of the aggregate with delimiters. 4222 * If a BA is returned, the frame is marked as "OK" and it's up 4223 * to the TX completion code to notice which frames weren't 4224 * successfully transmitted. 4225 */ 4226 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4227 sc->sc_stats.ast_tx_data_underrun++; 4228 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4229 sc->sc_stats.ast_tx_delim_underrun++; 4230 4231 sr = ts->ts_shortretry; 4232 lr = ts->ts_longretry; 4233 sc->sc_stats.ast_tx_shortretry += sr; 4234 sc->sc_stats.ast_tx_longretry += lr; 4235 4236 } 4237 4238 /* 4239 * The default completion. If fail is 1, this means 4240 * "please don't retry the frame, and just return -1 status 4241 * to the net80211 stack. 4242 */ 4243 void 4244 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4245 { 4246 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4247 int st; 4248 4249 if (fail == 1) 4250 st = -1; 4251 else 4252 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4253 ts->ts_status : HAL_TXERR_XRETRY; 4254 4255 #if 0 4256 if (bf->bf_state.bfs_dobaw) 4257 device_printf(sc->sc_dev, 4258 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4259 __func__, 4260 bf, 4261 SEQNO(bf->bf_state.bfs_seqno)); 4262 #endif 4263 if (bf->bf_next != NULL) 4264 device_printf(sc->sc_dev, 4265 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4266 __func__, 4267 bf, 4268 SEQNO(bf->bf_state.bfs_seqno)); 4269 4270 /* 4271 * Check if the node software queue is empty; if so 4272 * then clear the TIM. 4273 * 4274 * This needs to be done before the buffer is freed as 4275 * otherwise the node reference will have been released 4276 * and the node may not actually exist any longer. 4277 * 4278 * XXX I don't like this belonging here, but it's cleaner 4279 * to do it here right now then all the other places 4280 * where ath_tx_default_comp() is called. 4281 * 4282 * XXX TODO: during drain, ensure that the callback is 4283 * being called so we get a chance to update the TIM. 4284 */ 4285 if (bf->bf_node) { 4286 ATH_TX_LOCK(sc); 4287 ath_tx_update_tim(sc, bf->bf_node, 0); 4288 ATH_TX_UNLOCK(sc); 4289 } 4290 4291 /* 4292 * Do any tx complete callback. Note this must 4293 * be done before releasing the node reference. 4294 * This will free the mbuf, release the net80211 4295 * node and recycle the ath_buf. 4296 */ 4297 ath_tx_freebuf(sc, bf, st); 4298 } 4299 4300 /* 4301 * Update rate control with the given completion status. 4302 */ 4303 void 4304 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4305 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4306 int rc_framelen, int nframes, int nbad) 4307 { 4308 struct ath_node *an; 4309 4310 /* Only for unicast frames */ 4311 if (ni == NULL) 4312 return; 4313 4314 an = ATH_NODE(ni); 4315 ATH_NODE_UNLOCK_ASSERT(an); 4316 4317 /* 4318 * XXX TODO: teach the rate control about TXERR_FILT and 4319 * see about handling it (eg see how many attempts were 4320 * made before it got filtered and account for that.) 4321 */ 4322 4323 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4324 ATH_NODE_LOCK(an); 4325 ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen, 4326 nframes, nbad); 4327 ATH_NODE_UNLOCK(an); 4328 } 4329 } 4330 4331 /* 4332 * Process the completion of the given buffer. 4333 * 4334 * This calls the rate control update and then the buffer completion. 4335 * This will either free the buffer or requeue it. In any case, the 4336 * bf pointer should be treated as invalid after this function is called. 4337 */ 4338 void 4339 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4340 struct ath_tx_status *ts, struct ath_buf *bf) 4341 { 4342 struct ieee80211_node *ni = bf->bf_node; 4343 4344 ATH_TX_UNLOCK_ASSERT(sc); 4345 ATH_TXQ_UNLOCK_ASSERT(txq); 4346 4347 /* If unicast frame, update general statistics */ 4348 if (ni != NULL) { 4349 /* update statistics */ 4350 ath_tx_update_stats(sc, ts, bf); 4351 } 4352 4353 /* 4354 * Call the completion handler. 4355 * The completion handler is responsible for 4356 * calling the rate control code. 4357 * 4358 * Frames with no completion handler get the 4359 * rate control code called here. 4360 */ 4361 if (bf->bf_comp == NULL) { 4362 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4363 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4364 /* 4365 * XXX assume this isn't an aggregate 4366 * frame. 4367 * 4368 * XXX TODO: also do this for filtered frames? 4369 * Once rate control knows about them? 4370 */ 4371 ath_tx_update_ratectrl(sc, ni, 4372 bf->bf_state.bfs_rc, ts, 4373 bf->bf_state.bfs_pktlen, 4374 bf->bf_state.bfs_pktlen, 4375 1, 4376 (ts->ts_status == 0 ? 0 : 1)); 4377 } 4378 ath_tx_default_comp(sc, bf, 0); 4379 } else 4380 bf->bf_comp(sc, bf, 0); 4381 } 4382 4383 4384 4385 /* 4386 * Process completed xmit descriptors from the specified queue. 4387 * Kick the packet scheduler if needed. This can occur from this 4388 * particular task. 4389 */ 4390 static int 4391 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4392 { 4393 struct ath_hal *ah = sc->sc_ah; 4394 struct ath_buf *bf; 4395 struct ath_desc *ds; 4396 struct ath_tx_status *ts; 4397 struct ieee80211_node *ni; 4398 #ifdef IEEE80211_SUPPORT_SUPERG 4399 struct ieee80211com *ic = &sc->sc_ic; 4400 #endif /* IEEE80211_SUPPORT_SUPERG */ 4401 int nacked; 4402 HAL_STATUS status; 4403 4404 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4405 __func__, txq->axq_qnum, 4406 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4407 txq->axq_link); 4408 4409 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4410 "ath_tx_processq: txq=%u head %p link %p depth %p", 4411 txq->axq_qnum, 4412 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4413 txq->axq_link, 4414 txq->axq_depth); 4415 4416 nacked = 0; 4417 for (;;) { 4418 ATH_TXQ_LOCK(txq); 4419 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4420 bf = TAILQ_FIRST(&txq->axq_q); 4421 if (bf == NULL) { 4422 ATH_TXQ_UNLOCK(txq); 4423 break; 4424 } 4425 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4426 ts = &bf->bf_status.ds_txstat; 4427 4428 status = ath_hal_txprocdesc(ah, ds, ts); 4429 #ifdef ATH_DEBUG 4430 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4431 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4432 status == HAL_OK); 4433 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4434 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4435 status == HAL_OK); 4436 #endif 4437 #ifdef ATH_DEBUG_ALQ 4438 if (if_ath_alq_checkdebug(&sc->sc_alq, 4439 ATH_ALQ_EDMA_TXSTATUS)) { 4440 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4441 sc->sc_tx_statuslen, 4442 (char *) ds); 4443 } 4444 #endif 4445 4446 if (status == HAL_EINPROGRESS) { 4447 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4448 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4449 txq->axq_qnum, bf, ds); 4450 ATH_TXQ_UNLOCK(txq); 4451 break; 4452 } 4453 ATH_TXQ_REMOVE(txq, bf, bf_list); 4454 4455 /* 4456 * Sanity check. 4457 */ 4458 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4459 device_printf(sc->sc_dev, 4460 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4461 __func__, 4462 txq->axq_qnum, 4463 bf, 4464 bf->bf_state.bfs_tx_queue); 4465 } 4466 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4467 device_printf(sc->sc_dev, 4468 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4469 __func__, 4470 txq->axq_qnum, 4471 bf->bf_last, 4472 bf->bf_last->bf_state.bfs_tx_queue); 4473 } 4474 4475 #if 0 4476 if (txq->axq_depth > 0) { 4477 /* 4478 * More frames follow. Mark the buffer busy 4479 * so it's not re-used while the hardware may 4480 * still re-read the link field in the descriptor. 4481 * 4482 * Use the last buffer in an aggregate as that 4483 * is where the hardware may be - intermediate 4484 * descriptors won't be "busy". 4485 */ 4486 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4487 } else 4488 txq->axq_link = NULL; 4489 #else 4490 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4491 #endif 4492 if (bf->bf_state.bfs_aggr) 4493 txq->axq_aggr_depth--; 4494 4495 ni = bf->bf_node; 4496 4497 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4498 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4499 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4500 /* 4501 * If unicast frame was ack'd update RSSI, 4502 * including the last rx time used to 4503 * workaround phantom bmiss interrupts. 4504 */ 4505 if (ni != NULL && ts->ts_status == 0 && 4506 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4507 nacked++; 4508 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4509 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4510 ts->ts_rssi); 4511 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi, 4512 ts->ts_rssi); 4513 } 4514 ATH_TXQ_UNLOCK(txq); 4515 4516 /* 4517 * Update statistics and call completion 4518 */ 4519 ath_tx_process_buf_completion(sc, txq, ts, bf); 4520 4521 /* XXX at this point, bf and ni may be totally invalid */ 4522 } 4523 #ifdef IEEE80211_SUPPORT_SUPERG 4524 /* 4525 * Flush fast-frame staging queue when traffic slows. 4526 */ 4527 if (txq->axq_depth <= 1) 4528 ieee80211_ff_flush(ic, txq->axq_ac); 4529 #endif 4530 4531 /* Kick the software TXQ scheduler */ 4532 if (dosched) { 4533 ATH_TX_LOCK(sc); 4534 ath_txq_sched(sc, txq); 4535 ATH_TX_UNLOCK(sc); 4536 } 4537 4538 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4539 "ath_tx_processq: txq=%u: done", 4540 txq->axq_qnum); 4541 4542 return nacked; 4543 } 4544 4545 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4546 4547 /* 4548 * Deferred processing of transmit interrupt; special-cased 4549 * for a single hardware transmit queue (e.g. 5210 and 5211). 4550 */ 4551 static void 4552 ath_tx_proc_q0(void *arg, int npending) 4553 { 4554 struct ath_softc *sc = arg; 4555 uint32_t txqs; 4556 4557 ATH_PCU_LOCK(sc); 4558 sc->sc_txproc_cnt++; 4559 txqs = sc->sc_txq_active; 4560 sc->sc_txq_active &= ~txqs; 4561 ATH_PCU_UNLOCK(sc); 4562 4563 ATH_LOCK(sc); 4564 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4565 ATH_UNLOCK(sc); 4566 4567 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4568 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4569 4570 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4571 /* XXX why is lastrx updated in tx code? */ 4572 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4573 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4574 ath_tx_processq(sc, sc->sc_cabq, 1); 4575 sc->sc_wd_timer = 0; 4576 4577 if (sc->sc_softled) 4578 ath_led_event(sc, sc->sc_txrix); 4579 4580 ATH_PCU_LOCK(sc); 4581 sc->sc_txproc_cnt--; 4582 ATH_PCU_UNLOCK(sc); 4583 4584 ATH_LOCK(sc); 4585 ath_power_restore_power_state(sc); 4586 ATH_UNLOCK(sc); 4587 4588 ath_tx_kick(sc); 4589 } 4590 4591 /* 4592 * Deferred processing of transmit interrupt; special-cased 4593 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4594 */ 4595 static void 4596 ath_tx_proc_q0123(void *arg, int npending) 4597 { 4598 struct ath_softc *sc = arg; 4599 int nacked; 4600 uint32_t txqs; 4601 4602 ATH_PCU_LOCK(sc); 4603 sc->sc_txproc_cnt++; 4604 txqs = sc->sc_txq_active; 4605 sc->sc_txq_active &= ~txqs; 4606 ATH_PCU_UNLOCK(sc); 4607 4608 ATH_LOCK(sc); 4609 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4610 ATH_UNLOCK(sc); 4611 4612 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4613 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4614 4615 /* 4616 * Process each active queue. 4617 */ 4618 nacked = 0; 4619 if (TXQACTIVE(txqs, 0)) 4620 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4621 if (TXQACTIVE(txqs, 1)) 4622 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4623 if (TXQACTIVE(txqs, 2)) 4624 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4625 if (TXQACTIVE(txqs, 3)) 4626 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4627 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4628 ath_tx_processq(sc, sc->sc_cabq, 1); 4629 if (nacked) 4630 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4631 4632 sc->sc_wd_timer = 0; 4633 4634 if (sc->sc_softled) 4635 ath_led_event(sc, sc->sc_txrix); 4636 4637 ATH_PCU_LOCK(sc); 4638 sc->sc_txproc_cnt--; 4639 ATH_PCU_UNLOCK(sc); 4640 4641 ATH_LOCK(sc); 4642 ath_power_restore_power_state(sc); 4643 ATH_UNLOCK(sc); 4644 4645 ath_tx_kick(sc); 4646 } 4647 4648 /* 4649 * Deferred processing of transmit interrupt. 4650 */ 4651 static void 4652 ath_tx_proc(void *arg, int npending) 4653 { 4654 struct ath_softc *sc = arg; 4655 int i, nacked; 4656 uint32_t txqs; 4657 4658 ATH_PCU_LOCK(sc); 4659 sc->sc_txproc_cnt++; 4660 txqs = sc->sc_txq_active; 4661 sc->sc_txq_active &= ~txqs; 4662 ATH_PCU_UNLOCK(sc); 4663 4664 ATH_LOCK(sc); 4665 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4666 ATH_UNLOCK(sc); 4667 4668 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4669 4670 /* 4671 * Process each active queue. 4672 */ 4673 nacked = 0; 4674 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4675 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4676 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4677 if (nacked) 4678 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4679 4680 sc->sc_wd_timer = 0; 4681 4682 if (sc->sc_softled) 4683 ath_led_event(sc, sc->sc_txrix); 4684 4685 ATH_PCU_LOCK(sc); 4686 sc->sc_txproc_cnt--; 4687 ATH_PCU_UNLOCK(sc); 4688 4689 ATH_LOCK(sc); 4690 ath_power_restore_power_state(sc); 4691 ATH_UNLOCK(sc); 4692 4693 ath_tx_kick(sc); 4694 } 4695 #undef TXQACTIVE 4696 4697 /* 4698 * Deferred processing of TXQ rescheduling. 4699 */ 4700 static void 4701 ath_txq_sched_tasklet(void *arg, int npending) 4702 { 4703 struct ath_softc *sc = arg; 4704 int i; 4705 4706 /* XXX is skipping ok? */ 4707 ATH_PCU_LOCK(sc); 4708 #if 0 4709 if (sc->sc_inreset_cnt > 0) { 4710 device_printf(sc->sc_dev, 4711 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4712 ATH_PCU_UNLOCK(sc); 4713 return; 4714 } 4715 #endif 4716 sc->sc_txproc_cnt++; 4717 ATH_PCU_UNLOCK(sc); 4718 4719 ATH_LOCK(sc); 4720 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4721 ATH_UNLOCK(sc); 4722 4723 ATH_TX_LOCK(sc); 4724 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4725 if (ATH_TXQ_SETUP(sc, i)) { 4726 ath_txq_sched(sc, &sc->sc_txq[i]); 4727 } 4728 } 4729 ATH_TX_UNLOCK(sc); 4730 4731 ATH_LOCK(sc); 4732 ath_power_restore_power_state(sc); 4733 ATH_UNLOCK(sc); 4734 4735 ATH_PCU_LOCK(sc); 4736 sc->sc_txproc_cnt--; 4737 ATH_PCU_UNLOCK(sc); 4738 } 4739 4740 void 4741 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4742 { 4743 4744 ATH_TXBUF_LOCK_ASSERT(sc); 4745 4746 if (bf->bf_flags & ATH_BUF_MGMT) 4747 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4748 else { 4749 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4750 sc->sc_txbuf_cnt++; 4751 if (sc->sc_txbuf_cnt > ath_txbuf) { 4752 device_printf(sc->sc_dev, 4753 "%s: sc_txbuf_cnt > %d?\n", 4754 __func__, 4755 ath_txbuf); 4756 sc->sc_txbuf_cnt = ath_txbuf; 4757 } 4758 } 4759 } 4760 4761 void 4762 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4763 { 4764 4765 ATH_TXBUF_LOCK_ASSERT(sc); 4766 4767 if (bf->bf_flags & ATH_BUF_MGMT) 4768 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4769 else { 4770 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4771 sc->sc_txbuf_cnt++; 4772 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4773 device_printf(sc->sc_dev, 4774 "%s: sc_txbuf_cnt > %d?\n", 4775 __func__, 4776 ATH_TXBUF); 4777 sc->sc_txbuf_cnt = ATH_TXBUF; 4778 } 4779 } 4780 } 4781 4782 /* 4783 * Free the holding buffer if it exists 4784 */ 4785 void 4786 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4787 { 4788 ATH_TXBUF_UNLOCK_ASSERT(sc); 4789 ATH_TXQ_LOCK_ASSERT(txq); 4790 4791 if (txq->axq_holdingbf == NULL) 4792 return; 4793 4794 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4795 4796 ATH_TXBUF_LOCK(sc); 4797 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4798 ATH_TXBUF_UNLOCK(sc); 4799 4800 txq->axq_holdingbf = NULL; 4801 } 4802 4803 /* 4804 * Add this buffer to the holding queue, freeing the previous 4805 * one if it exists. 4806 */ 4807 static void 4808 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4809 { 4810 struct ath_txq *txq; 4811 4812 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4813 4814 ATH_TXBUF_UNLOCK_ASSERT(sc); 4815 ATH_TXQ_LOCK_ASSERT(txq); 4816 4817 /* XXX assert ATH_BUF_BUSY is set */ 4818 4819 /* XXX assert the tx queue is under the max number */ 4820 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4821 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4822 __func__, 4823 bf, 4824 bf->bf_state.bfs_tx_queue); 4825 bf->bf_flags &= ~ATH_BUF_BUSY; 4826 ath_returnbuf_tail(sc, bf); 4827 return; 4828 } 4829 ath_txq_freeholdingbuf(sc, txq); 4830 txq->axq_holdingbf = bf; 4831 } 4832 4833 /* 4834 * Return a buffer to the pool and update the 'busy' flag on the 4835 * previous 'tail' entry. 4836 * 4837 * This _must_ only be called when the buffer is involved in a completed 4838 * TX. The logic is that if it was part of an active TX, the previous 4839 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4840 * for restart (eg for TDMA.) 4841 * 4842 * The caller must free the mbuf and recycle the node reference. 4843 * 4844 * XXX This method of handling busy / holding buffers is insanely stupid. 4845 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4846 * be much nicer if buffers in the processq() methods would instead be 4847 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4848 * exactly what hardware queue they came from in the first place. 4849 */ 4850 void 4851 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4852 { 4853 struct ath_txq *txq; 4854 4855 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4856 4857 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4858 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4859 4860 /* 4861 * If this buffer is busy, push it onto the holding queue. 4862 */ 4863 if (bf->bf_flags & ATH_BUF_BUSY) { 4864 ATH_TXQ_LOCK(txq); 4865 ath_txq_addholdingbuf(sc, bf); 4866 ATH_TXQ_UNLOCK(txq); 4867 return; 4868 } 4869 4870 /* 4871 * Not a busy buffer, so free normally 4872 */ 4873 ATH_TXBUF_LOCK(sc); 4874 ath_returnbuf_tail(sc, bf); 4875 ATH_TXBUF_UNLOCK(sc); 4876 } 4877 4878 /* 4879 * This is currently used by ath_tx_draintxq() and 4880 * ath_tx_tid_free_pkts(). 4881 * 4882 * It recycles a single ath_buf. 4883 */ 4884 void 4885 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4886 { 4887 struct ieee80211_node *ni = bf->bf_node; 4888 struct mbuf *m0 = bf->bf_m; 4889 4890 /* 4891 * Make sure that we only sync/unload if there's an mbuf. 4892 * If not (eg we cloned a buffer), the unload will have already 4893 * occurred. 4894 */ 4895 if (bf->bf_m != NULL) { 4896 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4897 BUS_DMASYNC_POSTWRITE); 4898 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4899 } 4900 4901 bf->bf_node = NULL; 4902 bf->bf_m = NULL; 4903 4904 /* Free the buffer, it's not needed any longer */ 4905 ath_freebuf(sc, bf); 4906 4907 /* Pass the buffer back to net80211 - completing it */ 4908 ieee80211_tx_complete(ni, m0, status); 4909 } 4910 4911 static struct ath_buf * 4912 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4913 { 4914 struct ath_buf *bf; 4915 4916 ATH_TXQ_LOCK_ASSERT(txq); 4917 4918 /* 4919 * Drain the FIFO queue first, then if it's 4920 * empty, move to the normal frame queue. 4921 */ 4922 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4923 if (bf != NULL) { 4924 /* 4925 * Is it the last buffer in this set? 4926 * Decrement the FIFO counter. 4927 */ 4928 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4929 if (txq->axq_fifo_depth == 0) { 4930 device_printf(sc->sc_dev, 4931 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4932 __func__, 4933 txq->axq_qnum, 4934 txq->fifo.axq_depth); 4935 } else 4936 txq->axq_fifo_depth--; 4937 } 4938 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4939 return (bf); 4940 } 4941 4942 /* 4943 * Debugging! 4944 */ 4945 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4946 device_printf(sc->sc_dev, 4947 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4948 __func__, 4949 txq->axq_qnum, 4950 txq->axq_fifo_depth, 4951 txq->fifo.axq_depth); 4952 } 4953 4954 /* 4955 * Now drain the pending queue. 4956 */ 4957 bf = TAILQ_FIRST(&txq->axq_q); 4958 if (bf == NULL) { 4959 txq->axq_link = NULL; 4960 return (NULL); 4961 } 4962 ATH_TXQ_REMOVE(txq, bf, bf_list); 4963 return (bf); 4964 } 4965 4966 void 4967 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4968 { 4969 #ifdef ATH_DEBUG 4970 struct ath_hal *ah = sc->sc_ah; 4971 #endif 4972 struct ath_buf *bf; 4973 u_int ix; 4974 4975 /* 4976 * NB: this assumes output has been stopped and 4977 * we do not need to block ath_tx_proc 4978 */ 4979 for (ix = 0;; ix++) { 4980 ATH_TXQ_LOCK(txq); 4981 bf = ath_tx_draintxq_get_one(sc, txq); 4982 if (bf == NULL) { 4983 ATH_TXQ_UNLOCK(txq); 4984 break; 4985 } 4986 if (bf->bf_state.bfs_aggr) 4987 txq->axq_aggr_depth--; 4988 #ifdef ATH_DEBUG 4989 if (sc->sc_debug & ATH_DEBUG_RESET) { 4990 struct ieee80211com *ic = &sc->sc_ic; 4991 int status = 0; 4992 4993 /* 4994 * EDMA operation has a TX completion FIFO 4995 * separate from the TX descriptor, so this 4996 * method of checking the "completion" status 4997 * is wrong. 4998 */ 4999 if (! sc->sc_isedma) { 5000 status = (ath_hal_txprocdesc(ah, 5001 bf->bf_lastds, 5002 &bf->bf_status.ds_txstat) == HAL_OK); 5003 } 5004 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5005 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5006 bf->bf_m->m_len, 0, -1); 5007 } 5008 #endif /* ATH_DEBUG */ 5009 /* 5010 * Since we're now doing magic in the completion 5011 * functions, we -must- call it for aggregation 5012 * destinations or BAW tracking will get upset. 5013 */ 5014 /* 5015 * Clear ATH_BUF_BUSY; the completion handler 5016 * will free the buffer. 5017 */ 5018 ATH_TXQ_UNLOCK(txq); 5019 bf->bf_flags &= ~ATH_BUF_BUSY; 5020 if (bf->bf_comp) 5021 bf->bf_comp(sc, bf, 1); 5022 else 5023 ath_tx_default_comp(sc, bf, 1); 5024 } 5025 5026 /* 5027 * Free the holding buffer if it exists 5028 */ 5029 ATH_TXQ_LOCK(txq); 5030 ath_txq_freeholdingbuf(sc, txq); 5031 ATH_TXQ_UNLOCK(txq); 5032 5033 /* 5034 * Drain software queued frames which are on 5035 * active TIDs. 5036 */ 5037 ath_tx_txq_drain(sc, txq); 5038 } 5039 5040 static void 5041 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5042 { 5043 struct ath_hal *ah = sc->sc_ah; 5044 5045 ATH_TXQ_LOCK_ASSERT(txq); 5046 5047 DPRINTF(sc, ATH_DEBUG_RESET, 5048 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5049 "link %p, holdingbf=%p\n", 5050 __func__, 5051 txq->axq_qnum, 5052 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5053 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5054 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5055 txq->axq_flags, 5056 txq->axq_link, 5057 txq->axq_holdingbf); 5058 5059 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5060 /* We've stopped TX DMA, so mark this as stopped. */ 5061 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5062 5063 #ifdef ATH_DEBUG 5064 if ((sc->sc_debug & ATH_DEBUG_RESET) 5065 && (txq->axq_holdingbf != NULL)) { 5066 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5067 } 5068 #endif 5069 } 5070 5071 int 5072 ath_stoptxdma(struct ath_softc *sc) 5073 { 5074 struct ath_hal *ah = sc->sc_ah; 5075 int i; 5076 5077 /* XXX return value */ 5078 if (sc->sc_invalid) 5079 return 0; 5080 5081 if (!sc->sc_invalid) { 5082 /* don't touch the hardware if marked invalid */ 5083 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5084 __func__, sc->sc_bhalq, 5085 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5086 NULL); 5087 5088 /* stop the beacon queue */ 5089 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5090 5091 /* Stop the data queues */ 5092 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5093 if (ATH_TXQ_SETUP(sc, i)) { 5094 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5095 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5096 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5097 } 5098 } 5099 } 5100 5101 return 1; 5102 } 5103 5104 #ifdef ATH_DEBUG 5105 void 5106 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5107 { 5108 struct ath_hal *ah = sc->sc_ah; 5109 struct ath_buf *bf; 5110 int i = 0; 5111 5112 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5113 return; 5114 5115 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5116 __func__, txq->axq_qnum); 5117 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5118 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5119 ath_hal_txprocdesc(ah, bf->bf_lastds, 5120 &bf->bf_status.ds_txstat) == HAL_OK); 5121 i++; 5122 } 5123 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5124 __func__, txq->axq_qnum); 5125 } 5126 #endif /* ATH_DEBUG */ 5127 5128 /* 5129 * Drain the transmit queues and reclaim resources. 5130 */ 5131 void 5132 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5133 { 5134 struct ath_hal *ah = sc->sc_ah; 5135 struct ath_buf *bf_last; 5136 int i; 5137 5138 (void) ath_stoptxdma(sc); 5139 5140 /* 5141 * Dump the queue contents 5142 */ 5143 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5144 /* 5145 * XXX TODO: should we just handle the completed TX frames 5146 * here, whether or not the reset is a full one or not? 5147 */ 5148 if (ATH_TXQ_SETUP(sc, i)) { 5149 #ifdef ATH_DEBUG 5150 if (sc->sc_debug & ATH_DEBUG_RESET) 5151 ath_tx_dump(sc, &sc->sc_txq[i]); 5152 #endif /* ATH_DEBUG */ 5153 if (reset_type == ATH_RESET_NOLOSS) { 5154 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5155 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5156 /* 5157 * Free the holding buffer; DMA is now 5158 * stopped. 5159 */ 5160 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5161 /* 5162 * Setup the link pointer to be the 5163 * _last_ buffer/descriptor in the list. 5164 * If there's nothing in the list, set it 5165 * to NULL. 5166 */ 5167 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5168 axq_q_s); 5169 if (bf_last != NULL) { 5170 ath_hal_gettxdesclinkptr(ah, 5171 bf_last->bf_lastds, 5172 &sc->sc_txq[i].axq_link); 5173 } else { 5174 sc->sc_txq[i].axq_link = NULL; 5175 } 5176 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5177 } else 5178 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5179 } 5180 } 5181 #ifdef ATH_DEBUG 5182 if (sc->sc_debug & ATH_DEBUG_RESET) { 5183 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5184 if (bf != NULL && bf->bf_m != NULL) { 5185 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5186 ath_hal_txprocdesc(ah, bf->bf_lastds, 5187 &bf->bf_status.ds_txstat) == HAL_OK); 5188 ieee80211_dump_pkt(&sc->sc_ic, 5189 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5190 0, -1); 5191 } 5192 } 5193 #endif /* ATH_DEBUG */ 5194 sc->sc_wd_timer = 0; 5195 } 5196 5197 /* 5198 * Update internal state after a channel change. 5199 */ 5200 static void 5201 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5202 { 5203 enum ieee80211_phymode mode; 5204 5205 /* 5206 * Change channels and update the h/w rate map 5207 * if we're switching; e.g. 11a to 11b/g. 5208 */ 5209 mode = ieee80211_chan2mode(chan); 5210 if (mode != sc->sc_curmode) 5211 ath_setcurmode(sc, mode); 5212 sc->sc_curchan = chan; 5213 } 5214 5215 /* 5216 * Set/change channels. If the channel is really being changed, 5217 * it's done by resetting the chip. To accomplish this we must 5218 * first cleanup any pending DMA, then restart stuff after a la 5219 * ath_init. 5220 */ 5221 static int 5222 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5223 { 5224 struct ieee80211com *ic = &sc->sc_ic; 5225 struct ath_hal *ah = sc->sc_ah; 5226 int ret = 0; 5227 5228 /* Treat this as an interface reset */ 5229 ATH_PCU_UNLOCK_ASSERT(sc); 5230 ATH_UNLOCK_ASSERT(sc); 5231 5232 /* (Try to) stop TX/RX from occurring */ 5233 taskqueue_block(sc->sc_tq); 5234 5235 ATH_PCU_LOCK(sc); 5236 5237 /* Disable interrupts */ 5238 ath_hal_intrset(ah, 0); 5239 5240 /* Stop new RX/TX/interrupt completion */ 5241 if (ath_reset_grablock(sc, 1) == 0) { 5242 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5243 __func__); 5244 } 5245 5246 /* Stop pending RX/TX completion */ 5247 ath_txrx_stop_locked(sc); 5248 5249 ATH_PCU_UNLOCK(sc); 5250 5251 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5252 __func__, ieee80211_chan2ieee(ic, chan), 5253 chan->ic_freq, chan->ic_flags); 5254 if (chan != sc->sc_curchan) { 5255 HAL_STATUS status; 5256 /* 5257 * To switch channels clear any pending DMA operations; 5258 * wait long enough for the RX fifo to drain, reset the 5259 * hardware at the new frequency, and then re-enable 5260 * the relevant bits of the h/w. 5261 */ 5262 #if 0 5263 ath_hal_intrset(ah, 0); /* disable interrupts */ 5264 #endif 5265 ath_stoprecv(sc, 1); /* turn off frame recv */ 5266 /* 5267 * First, handle completed TX/RX frames. 5268 */ 5269 ath_rx_flush(sc); 5270 ath_draintxq(sc, ATH_RESET_NOLOSS); 5271 /* 5272 * Next, flush the non-scheduled frames. 5273 */ 5274 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5275 5276 ath_update_chainmasks(sc, chan); 5277 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5278 sc->sc_cur_rxchainmask); 5279 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5280 HAL_RESET_NORMAL, &status)) { 5281 device_printf(sc->sc_dev, "%s: unable to reset " 5282 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5283 __func__, ieee80211_chan2ieee(ic, chan), 5284 chan->ic_freq, chan->ic_flags, status); 5285 ret = EIO; 5286 goto finish; 5287 } 5288 sc->sc_diversity = ath_hal_getdiversity(ah); 5289 5290 ATH_RX_LOCK(sc); 5291 sc->sc_rx_stopped = 1; 5292 sc->sc_rx_resetted = 1; 5293 ATH_RX_UNLOCK(sc); 5294 5295 /* Quiet time handling - ensure we resync */ 5296 ath_vap_clear_quiet_ie(sc); 5297 5298 /* Let DFS at it in case it's a DFS channel */ 5299 ath_dfs_radar_enable(sc, chan); 5300 5301 /* Let spectral at in case spectral is enabled */ 5302 ath_spectral_enable(sc, chan); 5303 5304 /* 5305 * Let bluetooth coexistence at in case it's needed for this 5306 * channel 5307 */ 5308 ath_btcoex_enable(sc, ic->ic_curchan); 5309 5310 /* 5311 * If we're doing TDMA, enforce the TXOP limitation for chips 5312 * that support it. 5313 */ 5314 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5315 ath_hal_setenforcetxop(sc->sc_ah, 1); 5316 else 5317 ath_hal_setenforcetxop(sc->sc_ah, 0); 5318 5319 /* 5320 * Re-enable rx framework. 5321 */ 5322 if (ath_startrecv(sc) != 0) { 5323 device_printf(sc->sc_dev, 5324 "%s: unable to restart recv logic\n", __func__); 5325 ret = EIO; 5326 goto finish; 5327 } 5328 5329 /* 5330 * Change channels and update the h/w rate map 5331 * if we're switching; e.g. 11a to 11b/g. 5332 */ 5333 ath_chan_change(sc, chan); 5334 5335 /* 5336 * Reset clears the beacon timers; reset them 5337 * here if needed. 5338 */ 5339 if (sc->sc_beacons) { /* restart beacons */ 5340 #ifdef IEEE80211_SUPPORT_TDMA 5341 if (sc->sc_tdma) 5342 ath_tdma_config(sc, NULL); 5343 else 5344 #endif 5345 ath_beacon_config(sc, NULL); 5346 } 5347 5348 /* 5349 * Re-enable interrupts. 5350 */ 5351 #if 0 5352 ath_hal_intrset(ah, sc->sc_imask); 5353 #endif 5354 } 5355 5356 finish: 5357 ATH_PCU_LOCK(sc); 5358 sc->sc_inreset_cnt--; 5359 /* XXX only do this if sc_inreset_cnt == 0? */ 5360 ath_hal_intrset(ah, sc->sc_imask); 5361 ATH_PCU_UNLOCK(sc); 5362 5363 ath_txrx_start(sc); 5364 /* XXX ath_start? */ 5365 5366 return ret; 5367 } 5368 5369 /* 5370 * Periodically recalibrate the PHY to account 5371 * for temperature/environment changes. 5372 */ 5373 static void 5374 ath_calibrate(void *arg) 5375 { 5376 struct ath_softc *sc = arg; 5377 struct ath_hal *ah = sc->sc_ah; 5378 struct ieee80211com *ic = &sc->sc_ic; 5379 HAL_BOOL longCal, isCalDone = AH_TRUE; 5380 HAL_BOOL aniCal, shortCal = AH_FALSE; 5381 int nextcal; 5382 5383 ATH_LOCK_ASSERT(sc); 5384 5385 /* 5386 * Force the hardware awake for ANI work. 5387 */ 5388 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5389 5390 /* Skip trying to do this if we're in reset */ 5391 if (sc->sc_inreset_cnt) 5392 goto restart; 5393 5394 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5395 goto restart; 5396 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5397 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5398 if (sc->sc_doresetcal) 5399 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5400 5401 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5402 if (aniCal) { 5403 sc->sc_stats.ast_ani_cal++; 5404 sc->sc_lastani = ticks; 5405 ath_hal_ani_poll(ah, sc->sc_curchan); 5406 } 5407 5408 if (longCal) { 5409 sc->sc_stats.ast_per_cal++; 5410 sc->sc_lastlongcal = ticks; 5411 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5412 /* 5413 * Rfgain is out of bounds, reset the chip 5414 * to load new gain values. 5415 */ 5416 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5417 "%s: rfgain change\n", __func__); 5418 sc->sc_stats.ast_per_rfgain++; 5419 sc->sc_resetcal = 0; 5420 sc->sc_doresetcal = AH_TRUE; 5421 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5422 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5423 ath_power_restore_power_state(sc); 5424 return; 5425 } 5426 /* 5427 * If this long cal is after an idle period, then 5428 * reset the data collection state so we start fresh. 5429 */ 5430 if (sc->sc_resetcal) { 5431 (void) ath_hal_calreset(ah, sc->sc_curchan); 5432 sc->sc_lastcalreset = ticks; 5433 sc->sc_lastshortcal = ticks; 5434 sc->sc_resetcal = 0; 5435 sc->sc_doresetcal = AH_TRUE; 5436 } 5437 } 5438 5439 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5440 if (shortCal || longCal) { 5441 isCalDone = AH_FALSE; 5442 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5443 if (longCal) { 5444 /* 5445 * Calibrate noise floor data again in case of change. 5446 */ 5447 ath_hal_process_noisefloor(ah); 5448 } 5449 } else { 5450 DPRINTF(sc, ATH_DEBUG_ANY, 5451 "%s: calibration of channel %u failed\n", 5452 __func__, sc->sc_curchan->ic_freq); 5453 sc->sc_stats.ast_per_calfail++; 5454 } 5455 /* 5456 * XXX TODO: get the NF calibration results from the HAL. 5457 * If we failed NF cal then schedule a hard reset to potentially 5458 * un-freeze the PHY. 5459 * 5460 * Note we have to be careful here to not get stuck in an 5461 * infinite NIC restart. Ideally we'd not restart if we 5462 * failed the first NF cal - that /can/ fail sometimes in 5463 * a noisy environment. 5464 * 5465 * Instead, we should likely temporarily shorten the longCal 5466 * period to happen pretty quickly and if a subsequent one 5467 * fails, do a full reset. 5468 */ 5469 if (shortCal) 5470 sc->sc_lastshortcal = ticks; 5471 } 5472 if (!isCalDone) { 5473 restart: 5474 /* 5475 * Use a shorter interval to potentially collect multiple 5476 * data samples required to complete calibration. Once 5477 * we're told the work is done we drop back to a longer 5478 * interval between requests. We're more aggressive doing 5479 * work when operating as an AP to improve operation right 5480 * after startup. 5481 */ 5482 sc->sc_lastshortcal = ticks; 5483 nextcal = ath_shortcalinterval*hz/1000; 5484 if (sc->sc_opmode != HAL_M_HOSTAP) 5485 nextcal *= 10; 5486 sc->sc_doresetcal = AH_TRUE; 5487 } else { 5488 /* nextcal should be the shortest time for next event */ 5489 nextcal = ath_longcalinterval*hz; 5490 if (sc->sc_lastcalreset == 0) 5491 sc->sc_lastcalreset = sc->sc_lastlongcal; 5492 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5493 sc->sc_resetcal = 1; /* setup reset next trip */ 5494 sc->sc_doresetcal = AH_FALSE; 5495 } 5496 /* ANI calibration may occur more often than short/long/resetcal */ 5497 if (ath_anicalinterval > 0) 5498 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5499 5500 if (nextcal != 0) { 5501 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5502 __func__, nextcal, isCalDone ? "" : "!"); 5503 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5504 } else { 5505 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5506 __func__); 5507 /* NB: don't rearm timer */ 5508 } 5509 /* 5510 * Restore power state now that we're done. 5511 */ 5512 ath_power_restore_power_state(sc); 5513 } 5514 5515 static void 5516 ath_scan_start(struct ieee80211com *ic) 5517 { 5518 struct ath_softc *sc = ic->ic_softc; 5519 struct ath_hal *ah = sc->sc_ah; 5520 u_int32_t rfilt; 5521 5522 /* XXX calibration timer? */ 5523 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5524 5525 ATH_LOCK(sc); 5526 sc->sc_scanning = 1; 5527 sc->sc_syncbeacon = 0; 5528 rfilt = ath_calcrxfilter(sc); 5529 ATH_UNLOCK(sc); 5530 5531 ATH_PCU_LOCK(sc); 5532 ath_hal_setrxfilter(ah, rfilt); 5533 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5534 ATH_PCU_UNLOCK(sc); 5535 5536 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5537 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5538 } 5539 5540 static void 5541 ath_scan_end(struct ieee80211com *ic) 5542 { 5543 struct ath_softc *sc = ic->ic_softc; 5544 struct ath_hal *ah = sc->sc_ah; 5545 u_int32_t rfilt; 5546 5547 ATH_LOCK(sc); 5548 sc->sc_scanning = 0; 5549 rfilt = ath_calcrxfilter(sc); 5550 ATH_UNLOCK(sc); 5551 5552 ATH_PCU_LOCK(sc); 5553 ath_hal_setrxfilter(ah, rfilt); 5554 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5555 5556 ath_hal_process_noisefloor(ah); 5557 ATH_PCU_UNLOCK(sc); 5558 5559 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5560 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5561 sc->sc_curaid); 5562 } 5563 5564 #ifdef ATH_ENABLE_11N 5565 /* 5566 * For now, just do a channel change. 5567 * 5568 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5569 * control state and resetting the hardware without dropping frames out 5570 * of the queue. 5571 * 5572 * The unfortunate trouble here is making absolutely sure that the 5573 * channel width change has propagated enough so the hardware 5574 * absolutely isn't handed bogus frames for it's current operating 5575 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5576 * does occur in parallel, we need to make certain we've blocked 5577 * any further ongoing TX (and RX, that can cause raw TX) 5578 * before we do this. 5579 */ 5580 static void 5581 ath_update_chw(struct ieee80211com *ic) 5582 { 5583 struct ath_softc *sc = ic->ic_softc; 5584 5585 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5586 device_printf(sc->sc_dev, "%s: called\n", __func__); 5587 5588 /* 5589 * XXX TODO: schedule a tasklet that stops things without freeing, 5590 * walks the now stopped TX queue(s) looking for frames to retry 5591 * as if we TX filtered them (whch may mean dropping non-ampdu frames!) 5592 * but okay) then place them back on the software queue so they 5593 * can have the rate control lookup done again. 5594 */ 5595 ath_set_channel(ic); 5596 } 5597 #endif /* ATH_ENABLE_11N */ 5598 5599 /* 5600 * This is called by the beacon parsing routine in the receive 5601 * path to update the current quiet time information provided by 5602 * an AP. 5603 * 5604 * This is STA specific, it doesn't take the AP TBTT/beacon slot 5605 * offset into account. 5606 * 5607 * The quiet IE doesn't control the /now/ beacon interval - it 5608 * controls the upcoming beacon interval. So, when tbtt=1, 5609 * the quiet element programming shall be for the next beacon 5610 * interval. There's no tbtt=0 behaviour defined, so don't. 5611 * 5612 * Since we're programming the next quiet interval, we have 5613 * to keep in mind what we will see when the next beacon 5614 * is received with potentially a quiet IE. For example, if 5615 * quiet_period is 1, then we are always getting a quiet interval 5616 * each TBTT - so if we just program it in upon each beacon received, 5617 * it will constantly reflect the "next" TBTT and we will never 5618 * let the counter stay programmed correctly. 5619 * 5620 * So: 5621 * + the first time we see the quiet IE, program it and store 5622 * the details somewhere; 5623 * + if the quiet parameters don't change (ie, period/duration/offset) 5624 * then just leave the programming enabled; 5625 * + (we can "skip" beacons, so don't try to enforce tbttcount unless 5626 * you're willing to also do the skipped beacon math); 5627 * + if the quiet IE is removed, then halt quiet time. 5628 */ 5629 static int 5630 ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie) 5631 { 5632 struct ieee80211_quiet_ie *q; 5633 struct ieee80211vap *vap = ni->ni_vap; 5634 struct ath_vap *avp = ATH_VAP(vap); 5635 struct ieee80211com *ic = vap->iv_ic; 5636 struct ath_softc *sc = ic->ic_softc; 5637 5638 if (vap->iv_opmode != IEEE80211_M_STA) 5639 return (0); 5640 5641 /* Verify we have a quiet time IE */ 5642 if (ie == NULL) { 5643 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5644 "%s: called; NULL IE, disabling\n", __func__); 5645 5646 ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE); 5647 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 5648 return (0); 5649 } 5650 5651 /* If we do, verify it's actually legit */ 5652 if (ie[0] != IEEE80211_ELEMID_QUIET) 5653 return 0; 5654 if (ie[1] != 6) 5655 return 0; 5656 5657 /* Note: this belongs in net80211, parsed out and everything */ 5658 q = (void *) ie; 5659 5660 /* 5661 * Compare what we have stored to what we last saw. 5662 * If they're the same then don't program in anything. 5663 */ 5664 if ((q->period == avp->quiet_ie.period) && 5665 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) && 5666 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset))) 5667 return (0); 5668 5669 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5670 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n", 5671 __func__, 5672 (int) q->tbttcount, 5673 (int) q->period, 5674 (int) le16dec(&q->duration), 5675 (int) le16dec(&q->offset)); 5676 5677 /* 5678 * Don't program in garbage values. 5679 */ 5680 if ((le16dec(&q->duration) == 0) || 5681 (le16dec(&q->duration) >= ni->ni_intval)) { 5682 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5683 "%s: invalid duration (%d)\n", __func__, 5684 le16dec(&q->duration)); 5685 return (0); 5686 } 5687 /* 5688 * Can have a 0 offset, but not a duration - so just check 5689 * they don't exceed the intval. 5690 */ 5691 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) { 5692 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5693 "%s: invalid duration + offset (%d+%d)\n", __func__, 5694 le16dec(&q->duration), 5695 le16dec(&q->offset)); 5696 return (0); 5697 } 5698 if (q->tbttcount == 0) { 5699 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5700 "%s: invalid tbttcount (0)\n", __func__); 5701 return (0); 5702 } 5703 if (q->period == 0) { 5704 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5705 "%s: invalid period (0)\n", __func__); 5706 return (0); 5707 } 5708 5709 /* 5710 * This is a new quiet time IE config, so wait until tbttcount 5711 * is equal to 1, and program it in. 5712 */ 5713 if (q->tbttcount == 1) { 5714 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5715 "%s: programming\n", __func__); 5716 ath_hal_set_quiet(sc->sc_ah, 5717 q->period * ni->ni_intval, /* convert to TU */ 5718 le16dec(&q->duration), /* already in TU */ 5719 le16dec(&q->offset) + ni->ni_intval, 5720 HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF); 5721 /* 5722 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for 5723 * STA mode 5724 */ 5725 5726 /* Update local state */ 5727 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie)); 5728 } 5729 5730 return (0); 5731 } 5732 5733 static void 5734 ath_set_channel(struct ieee80211com *ic) 5735 { 5736 struct ath_softc *sc = ic->ic_softc; 5737 5738 ATH_LOCK(sc); 5739 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5740 ATH_UNLOCK(sc); 5741 5742 (void) ath_chan_set(sc, ic->ic_curchan); 5743 /* 5744 * If we are returning to our bss channel then mark state 5745 * so the next recv'd beacon's tsf will be used to sync the 5746 * beacon timers. Note that since we only hear beacons in 5747 * sta/ibss mode this has no effect in other operating modes. 5748 */ 5749 ATH_LOCK(sc); 5750 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5751 sc->sc_syncbeacon = 1; 5752 ath_power_restore_power_state(sc); 5753 ATH_UNLOCK(sc); 5754 } 5755 5756 /* 5757 * Walk the vap list and check if there any vap's in RUN state. 5758 */ 5759 static int 5760 ath_isanyrunningvaps(struct ieee80211vap *this) 5761 { 5762 struct ieee80211com *ic = this->iv_ic; 5763 struct ieee80211vap *vap; 5764 5765 IEEE80211_LOCK_ASSERT(ic); 5766 5767 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5768 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5769 return 1; 5770 } 5771 return 0; 5772 } 5773 5774 static int 5775 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5776 { 5777 struct ieee80211com *ic = vap->iv_ic; 5778 struct ath_softc *sc = ic->ic_softc; 5779 struct ath_vap *avp = ATH_VAP(vap); 5780 struct ath_hal *ah = sc->sc_ah; 5781 struct ieee80211_node *ni = NULL; 5782 int i, error, stamode; 5783 u_int32_t rfilt; 5784 int csa_run_transition = 0; 5785 enum ieee80211_state ostate = vap->iv_state; 5786 5787 static const HAL_LED_STATE leds[] = { 5788 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5789 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5790 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5791 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5792 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5793 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5794 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5795 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5796 }; 5797 5798 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5799 ieee80211_state_name[ostate], 5800 ieee80211_state_name[nstate]); 5801 5802 /* 5803 * net80211 _should_ have the comlock asserted at this point. 5804 * There are some comments around the calls to vap->iv_newstate 5805 * which indicate that it (newstate) may end up dropping the 5806 * lock. This and the subsequent lock assert check after newstate 5807 * are an attempt to catch these and figure out how/why. 5808 */ 5809 IEEE80211_LOCK_ASSERT(ic); 5810 5811 /* Before we touch the hardware - wake it up */ 5812 ATH_LOCK(sc); 5813 /* 5814 * If the NIC is in anything other than SLEEP state, 5815 * we need to ensure that self-generated frames are 5816 * set for PWRMGT=0. Otherwise we may end up with 5817 * strange situations. 5818 * 5819 * XXX TODO: is this actually the case? :-) 5820 */ 5821 if (nstate != IEEE80211_S_SLEEP) 5822 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5823 5824 /* 5825 * Now, wake the thing up. 5826 */ 5827 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5828 5829 /* 5830 * And stop the calibration callout whilst we have 5831 * ATH_LOCK held. 5832 */ 5833 callout_stop(&sc->sc_cal_ch); 5834 ATH_UNLOCK(sc); 5835 5836 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5837 csa_run_transition = 1; 5838 5839 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5840 5841 if (nstate == IEEE80211_S_SCAN) { 5842 /* 5843 * Scanning: turn off beacon miss and don't beacon. 5844 * Mark beacon state so when we reach RUN state we'll 5845 * [re]setup beacons. Unblock the task q thread so 5846 * deferred interrupt processing is done. 5847 */ 5848 5849 /* Ensure we stay awake during scan */ 5850 ATH_LOCK(sc); 5851 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5852 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5853 ATH_UNLOCK(sc); 5854 5855 ath_hal_intrset(ah, 5856 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5857 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5858 sc->sc_beacons = 0; 5859 taskqueue_unblock(sc->sc_tq); 5860 } 5861 5862 ni = ieee80211_ref_node(vap->iv_bss); 5863 rfilt = ath_calcrxfilter(sc); 5864 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5865 vap->iv_opmode == IEEE80211_M_AHDEMO || 5866 vap->iv_opmode == IEEE80211_M_IBSS); 5867 5868 /* 5869 * XXX Dont need to do this (and others) if we've transitioned 5870 * from SLEEP->RUN. 5871 */ 5872 if (stamode && nstate == IEEE80211_S_RUN) { 5873 sc->sc_curaid = ni->ni_associd; 5874 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5875 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5876 } 5877 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5878 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5879 ath_hal_setrxfilter(ah, rfilt); 5880 5881 /* XXX is this to restore keycache on resume? */ 5882 if (vap->iv_opmode != IEEE80211_M_STA && 5883 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5884 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5885 if (ath_hal_keyisvalid(ah, i)) 5886 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5887 } 5888 5889 /* 5890 * Invoke the parent method to do net80211 work. 5891 */ 5892 error = avp->av_newstate(vap, nstate, arg); 5893 if (error != 0) 5894 goto bad; 5895 5896 /* 5897 * See above: ensure av_newstate() doesn't drop the lock 5898 * on us. 5899 */ 5900 IEEE80211_LOCK_ASSERT(ic); 5901 5902 /* 5903 * XXX TODO: if nstate is _S_CAC, then we should disable 5904 * ACK processing until CAC is completed. 5905 */ 5906 5907 /* 5908 * XXX TODO: if we're on a passive channel, then we should 5909 * not allow any ACKs or self-generated frames until we hear 5910 * a beacon. Unfortunately there isn't a notification from 5911 * net80211 so perhaps we could slot that particular check 5912 * into the mgmt receive path and just ensure that we clear 5913 * it on RX of beacons in passive mode (and only clear it 5914 * once, obviously.) 5915 */ 5916 5917 /* 5918 * XXX TODO: net80211 should be tracking whether channels 5919 * have heard beacons and are thus considered "OK" for 5920 * transmitting - and then inform the driver about this 5921 * state change. That way if we hear an AP go quiet 5922 * (and nothing else is beaconing on a channel) the 5923 * channel can go back to being passive until another 5924 * beacon is heard. 5925 */ 5926 5927 /* 5928 * XXX TODO: if nstate is _S_CAC, then we should disable 5929 * ACK processing until CAC is completed. 5930 */ 5931 5932 /* 5933 * XXX TODO: if we're on a passive channel, then we should 5934 * not allow any ACKs or self-generated frames until we hear 5935 * a beacon. Unfortunately there isn't a notification from 5936 * net80211 so perhaps we could slot that particular check 5937 * into the mgmt receive path and just ensure that we clear 5938 * it on RX of beacons in passive mode (and only clear it 5939 * once, obviously.) 5940 */ 5941 5942 /* 5943 * XXX TODO: net80211 should be tracking whether channels 5944 * have heard beacons and are thus considered "OK" for 5945 * transmitting - and then inform the driver about this 5946 * state change. That way if we hear an AP go quiet 5947 * (and nothing else is beaconing on a channel) the 5948 * channel can go back to being passive until another 5949 * beacon is heard. 5950 */ 5951 5952 if (nstate == IEEE80211_S_RUN) { 5953 /* NB: collect bss node again, it may have changed */ 5954 ieee80211_free_node(ni); 5955 ni = ieee80211_ref_node(vap->iv_bss); 5956 5957 DPRINTF(sc, ATH_DEBUG_STATE, 5958 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5959 "capinfo 0x%04x chan %d\n", __func__, 5960 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5961 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5962 5963 switch (vap->iv_opmode) { 5964 #ifdef IEEE80211_SUPPORT_TDMA 5965 case IEEE80211_M_AHDEMO: 5966 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5967 break; 5968 /* fall thru... */ 5969 #endif 5970 case IEEE80211_M_HOSTAP: 5971 case IEEE80211_M_IBSS: 5972 case IEEE80211_M_MBSS: 5973 5974 /* 5975 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.) 5976 * For channels that are in CAC, we may have disabled 5977 * this during CAC to ensure we don't ACK frames 5978 * sent to us. 5979 */ 5980 5981 /* 5982 * Allocate and setup the beacon frame. 5983 * 5984 * Stop any previous beacon DMA. This may be 5985 * necessary, for example, when an ibss merge 5986 * causes reconfiguration; there will be a state 5987 * transition from RUN->RUN that means we may 5988 * be called with beacon transmission active. 5989 */ 5990 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5991 5992 error = ath_beacon_alloc(sc, ni); 5993 if (error != 0) 5994 goto bad; 5995 /* 5996 * If joining an adhoc network defer beacon timer 5997 * configuration to the next beacon frame so we 5998 * have a current TSF to use. Otherwise we're 5999 * starting an ibss/bss so there's no need to delay; 6000 * if this is the first vap moving to RUN state, then 6001 * beacon state needs to be [re]configured. 6002 */ 6003 if (vap->iv_opmode == IEEE80211_M_IBSS && 6004 ni->ni_tstamp.tsf != 0) { 6005 sc->sc_syncbeacon = 1; 6006 } else if (!sc->sc_beacons) { 6007 #ifdef IEEE80211_SUPPORT_TDMA 6008 if (vap->iv_caps & IEEE80211_C_TDMA) 6009 ath_tdma_config(sc, vap); 6010 else 6011 #endif 6012 ath_beacon_config(sc, vap); 6013 sc->sc_beacons = 1; 6014 } 6015 break; 6016 case IEEE80211_M_STA: 6017 /* 6018 * Defer beacon timer configuration to the next 6019 * beacon frame so we have a current TSF to use 6020 * (any TSF collected when scanning is likely old). 6021 * However if it's due to a CSA -> RUN transition, 6022 * force a beacon update so we pick up a lack of 6023 * beacons from an AP in CAC and thus force a 6024 * scan. 6025 * 6026 * And, there's also corner cases here where 6027 * after a scan, the AP may have disappeared. 6028 * In that case, we may not receive an actual 6029 * beacon to update the beacon timer and thus we 6030 * won't get notified of the missing beacons. 6031 */ 6032 if (ostate != IEEE80211_S_RUN && 6033 ostate != IEEE80211_S_SLEEP) { 6034 DPRINTF(sc, ATH_DEBUG_BEACON, 6035 "%s: STA; syncbeacon=1\n", __func__); 6036 sc->sc_syncbeacon = 1; 6037 6038 /* Quiet time handling - ensure we resync */ 6039 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6040 6041 if (csa_run_transition) 6042 ath_beacon_config(sc, vap); 6043 6044 /* 6045 * PR: kern/175227 6046 * 6047 * Reconfigure beacons during reset; as otherwise 6048 * we won't get the beacon timers reprogrammed 6049 * after a reset and thus we won't pick up a 6050 * beacon miss interrupt. 6051 * 6052 * Hopefully we'll see a beacon before the BMISS 6053 * timer fires (too often), leading to a STA 6054 * disassociation. 6055 */ 6056 sc->sc_beacons = 1; 6057 } 6058 break; 6059 case IEEE80211_M_MONITOR: 6060 /* 6061 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6062 * transitions so we must re-enable interrupts here to 6063 * handle the case of a single monitor mode vap. 6064 */ 6065 ath_hal_intrset(ah, sc->sc_imask); 6066 break; 6067 case IEEE80211_M_WDS: 6068 break; 6069 default: 6070 break; 6071 } 6072 /* 6073 * Let the hal process statistics collected during a 6074 * scan so it can provide calibrated noise floor data. 6075 */ 6076 ath_hal_process_noisefloor(ah); 6077 /* 6078 * Reset rssi stats; maybe not the best place... 6079 */ 6080 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6081 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6082 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6083 6084 /* 6085 * Force awake for RUN mode. 6086 */ 6087 ATH_LOCK(sc); 6088 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6089 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 6090 6091 /* 6092 * Finally, start any timers and the task q thread 6093 * (in case we didn't go through SCAN state). 6094 */ 6095 if (ath_longcalinterval != 0) { 6096 /* start periodic recalibration timer */ 6097 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6098 } else { 6099 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6100 "%s: calibration disabled\n", __func__); 6101 } 6102 ATH_UNLOCK(sc); 6103 6104 taskqueue_unblock(sc->sc_tq); 6105 } else if (nstate == IEEE80211_S_INIT) { 6106 6107 /* Quiet time handling - ensure we resync */ 6108 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6109 6110 /* 6111 * If there are no vaps left in RUN state then 6112 * shutdown host/driver operation: 6113 * o disable interrupts 6114 * o disable the task queue thread 6115 * o mark beacon processing as stopped 6116 */ 6117 if (!ath_isanyrunningvaps(vap)) { 6118 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6119 /* disable interrupts */ 6120 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6121 taskqueue_block(sc->sc_tq); 6122 sc->sc_beacons = 0; 6123 } 6124 6125 /* 6126 * For at least STA mode we likely should clear the ANI 6127 * and NF calibration state and allow the NIC/HAL to figure 6128 * out optimal parameters at runtime. Otherwise if we 6129 * disassociate due to interference / deafness it may persist 6130 * when we reconnect. 6131 * 6132 * Note: may need to do this for other states too, not just 6133 * _S_INIT. 6134 */ 6135 #ifdef IEEE80211_SUPPORT_TDMA 6136 ath_hal_setcca(ah, AH_TRUE); 6137 #endif 6138 } else if (nstate == IEEE80211_S_SLEEP) { 6139 /* We're going to sleep, so transition appropriately */ 6140 /* For now, only do this if we're a single STA vap */ 6141 if (sc->sc_nvaps == 1 && 6142 vap->iv_opmode == IEEE80211_M_STA) { 6143 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6144 ATH_LOCK(sc); 6145 /* 6146 * Always at least set the self-generated 6147 * frame config to set PWRMGT=1. 6148 */ 6149 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6150 6151 /* 6152 * If we're not syncing beacons, transition 6153 * to NETWORK_SLEEP. 6154 * 6155 * We stay awake if syncbeacon > 0 in case 6156 * we need to listen for some beacons otherwise 6157 * our beacon timer config may be wrong. 6158 */ 6159 if (sc->sc_syncbeacon == 0) { 6160 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 6161 } 6162 ATH_UNLOCK(sc); 6163 } 6164 6165 /* 6166 * Note - the ANI/calibration timer isn't re-enabled during 6167 * network sleep for now. One unfortunate side-effect is that 6168 * the PHY/airtime statistics aren't gathered on the channel 6169 * but I haven't yet tested to see if reading those registers 6170 * CAN occur during network sleep. 6171 * 6172 * This should be revisited in a future commit, even if it's 6173 * just to split out the airtime polling from ANI/calibration. 6174 */ 6175 } else if (nstate == IEEE80211_S_SCAN) { 6176 /* Quiet time handling - ensure we resync */ 6177 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6178 6179 /* 6180 * If we're in scan mode then startpcureceive() is 6181 * hopefully being called with "reset ANI" for this channel; 6182 * but once we attempt to reassociate we program in the previous 6183 * ANI values and.. not do any calibration until we're running. 6184 * This may mean we stay deaf unless we can associate successfully. 6185 * 6186 * So do kick off the cal timer to get NF/ANI going. 6187 */ 6188 ATH_LOCK(sc); 6189 if (ath_longcalinterval != 0) { 6190 /* start periodic recalibration timer */ 6191 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6192 } else { 6193 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6194 "%s: calibration disabled\n", __func__); 6195 } 6196 ATH_UNLOCK(sc); 6197 } 6198 bad: 6199 ieee80211_free_node(ni); 6200 6201 /* 6202 * Restore the power state - either to what it was, or 6203 * to network_sleep if it's alright. 6204 */ 6205 ATH_LOCK(sc); 6206 ath_power_restore_power_state(sc); 6207 ATH_UNLOCK(sc); 6208 return error; 6209 } 6210 6211 /* 6212 * Allocate a key cache slot to the station so we can 6213 * setup a mapping from key index to node. The key cache 6214 * slot is needed for managing antenna state and for 6215 * compression when stations do not use crypto. We do 6216 * it uniliaterally here; if crypto is employed this slot 6217 * will be reassigned. 6218 */ 6219 static void 6220 ath_setup_stationkey(struct ieee80211_node *ni) 6221 { 6222 struct ieee80211vap *vap = ni->ni_vap; 6223 struct ath_softc *sc = vap->iv_ic->ic_softc; 6224 ieee80211_keyix keyix, rxkeyix; 6225 6226 /* XXX should take a locked ref to vap->iv_bss */ 6227 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6228 /* 6229 * Key cache is full; we'll fall back to doing 6230 * the more expensive lookup in software. Note 6231 * this also means no h/w compression. 6232 */ 6233 /* XXX msg+statistic */ 6234 } else { 6235 /* XXX locking? */ 6236 ni->ni_ucastkey.wk_keyix = keyix; 6237 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6238 /* NB: must mark device key to get called back on delete */ 6239 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6240 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6241 /* NB: this will create a pass-thru key entry */ 6242 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6243 } 6244 } 6245 6246 /* 6247 * Setup driver-specific state for a newly associated node. 6248 * Note that we're called also on a re-associate, the isnew 6249 * param tells us if this is the first time or not. 6250 */ 6251 static void 6252 ath_newassoc(struct ieee80211_node *ni, int isnew) 6253 { 6254 struct ath_node *an = ATH_NODE(ni); 6255 struct ieee80211vap *vap = ni->ni_vap; 6256 struct ath_softc *sc = vap->iv_ic->ic_softc; 6257 const struct ieee80211_txparam *tp = ni->ni_txparms; 6258 6259 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6260 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6261 6262 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6263 __func__, 6264 ni->ni_macaddr, 6265 ":", 6266 isnew, 6267 an->an_is_powersave); 6268 6269 ATH_NODE_LOCK(an); 6270 ath_rate_newassoc(sc, an, isnew); 6271 ATH_NODE_UNLOCK(an); 6272 6273 if (isnew && 6274 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6275 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6276 ath_setup_stationkey(ni); 6277 6278 /* 6279 * If we're reassociating, make sure that any paused queues 6280 * get unpaused. 6281 * 6282 * Now, we may have frames in the hardware queue for this node. 6283 * So if we are reassociating and there are frames in the queue, 6284 * we need to go through the cleanup path to ensure that they're 6285 * marked as non-aggregate. 6286 */ 6287 if (! isnew) { 6288 DPRINTF(sc, ATH_DEBUG_NODE, 6289 "%s: %6D: reassoc; is_powersave=%d\n", 6290 __func__, 6291 ni->ni_macaddr, 6292 ":", 6293 an->an_is_powersave); 6294 6295 /* XXX for now, we can't hold the lock across assoc */ 6296 ath_tx_node_reassoc(sc, an); 6297 6298 /* XXX for now, we can't hold the lock across wakeup */ 6299 if (an->an_is_powersave) 6300 ath_tx_node_wakeup(sc, an); 6301 } 6302 } 6303 6304 static int 6305 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6306 int nchans, struct ieee80211_channel chans[]) 6307 { 6308 struct ath_softc *sc = ic->ic_softc; 6309 struct ath_hal *ah = sc->sc_ah; 6310 HAL_STATUS status; 6311 6312 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6313 "%s: rd %u cc %u location %c%s\n", 6314 __func__, reg->regdomain, reg->country, reg->location, 6315 reg->ecm ? " ecm" : ""); 6316 6317 status = ath_hal_set_channels(ah, chans, nchans, 6318 reg->country, reg->regdomain); 6319 if (status != HAL_OK) { 6320 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6321 __func__, status); 6322 return EINVAL; /* XXX */ 6323 } 6324 6325 return 0; 6326 } 6327 6328 static void 6329 ath_getradiocaps(struct ieee80211com *ic, 6330 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6331 { 6332 struct ath_softc *sc = ic->ic_softc; 6333 struct ath_hal *ah = sc->sc_ah; 6334 6335 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6336 __func__, SKU_DEBUG, CTRY_DEFAULT); 6337 6338 /* XXX check return */ 6339 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6340 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6341 6342 } 6343 6344 static int 6345 ath_getchannels(struct ath_softc *sc) 6346 { 6347 struct ieee80211com *ic = &sc->sc_ic; 6348 struct ath_hal *ah = sc->sc_ah; 6349 HAL_STATUS status; 6350 6351 /* 6352 * Collect channel set based on EEPROM contents. 6353 */ 6354 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6355 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6356 if (status != HAL_OK) { 6357 device_printf(sc->sc_dev, 6358 "%s: unable to collect channel list from hal, status %d\n", 6359 __func__, status); 6360 return EINVAL; 6361 } 6362 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6363 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6364 /* XXX map Atheros sku's to net80211 SKU's */ 6365 /* XXX net80211 types too small */ 6366 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6367 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6368 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6369 ic->ic_regdomain.isocc[1] = ' '; 6370 6371 ic->ic_regdomain.ecm = 1; 6372 ic->ic_regdomain.location = 'I'; 6373 6374 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6375 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6376 __func__, sc->sc_eerd, sc->sc_eecc, 6377 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6378 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6379 return 0; 6380 } 6381 6382 static int 6383 ath_rate_setup(struct ath_softc *sc, u_int mode) 6384 { 6385 struct ath_hal *ah = sc->sc_ah; 6386 const HAL_RATE_TABLE *rt; 6387 6388 switch (mode) { 6389 case IEEE80211_MODE_11A: 6390 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6391 break; 6392 case IEEE80211_MODE_HALF: 6393 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6394 break; 6395 case IEEE80211_MODE_QUARTER: 6396 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6397 break; 6398 case IEEE80211_MODE_11B: 6399 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6400 break; 6401 case IEEE80211_MODE_11G: 6402 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6403 break; 6404 case IEEE80211_MODE_TURBO_A: 6405 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6406 break; 6407 case IEEE80211_MODE_TURBO_G: 6408 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6409 break; 6410 case IEEE80211_MODE_STURBO_A: 6411 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6412 break; 6413 case IEEE80211_MODE_11NA: 6414 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6415 break; 6416 case IEEE80211_MODE_11NG: 6417 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6418 break; 6419 default: 6420 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6421 __func__, mode); 6422 return 0; 6423 } 6424 sc->sc_rates[mode] = rt; 6425 return (rt != NULL); 6426 } 6427 6428 static void 6429 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6430 { 6431 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6432 static const struct { 6433 u_int rate; /* tx/rx 802.11 rate */ 6434 u_int16_t timeOn; /* LED on time (ms) */ 6435 u_int16_t timeOff; /* LED off time (ms) */ 6436 } blinkrates[] = { 6437 { 108, 40, 10 }, 6438 { 96, 44, 11 }, 6439 { 72, 50, 13 }, 6440 { 48, 57, 14 }, 6441 { 36, 67, 16 }, 6442 { 24, 80, 20 }, 6443 { 22, 100, 25 }, 6444 { 18, 133, 34 }, 6445 { 12, 160, 40 }, 6446 { 10, 200, 50 }, 6447 { 6, 240, 58 }, 6448 { 4, 267, 66 }, 6449 { 2, 400, 100 }, 6450 { 0, 500, 130 }, 6451 /* XXX half/quarter rates */ 6452 }; 6453 const HAL_RATE_TABLE *rt; 6454 int i, j; 6455 6456 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6457 rt = sc->sc_rates[mode]; 6458 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6459 for (i = 0; i < rt->rateCount; i++) { 6460 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6461 if (rt->info[i].phy != IEEE80211_T_HT) 6462 sc->sc_rixmap[ieeerate] = i; 6463 else 6464 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6465 } 6466 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6467 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6468 if (i >= rt->rateCount) { 6469 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6470 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6471 continue; 6472 } 6473 sc->sc_hwmap[i].ieeerate = 6474 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6475 if (rt->info[i].phy == IEEE80211_T_HT) 6476 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6477 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6478 if (rt->info[i].shortPreamble || 6479 rt->info[i].phy == IEEE80211_T_OFDM) 6480 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6481 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6482 for (j = 0; j < nitems(blinkrates)-1; j++) 6483 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6484 break; 6485 /* NB: this uses the last entry if the rate isn't found */ 6486 /* XXX beware of overlow */ 6487 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6488 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6489 } 6490 sc->sc_currates = rt; 6491 sc->sc_curmode = mode; 6492 /* 6493 * All protection frames are transmitted at 2Mb/s for 6494 * 11g, otherwise at 1Mb/s. 6495 */ 6496 if (mode == IEEE80211_MODE_11G) 6497 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6498 else 6499 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6500 /* NB: caller is responsible for resetting rate control state */ 6501 } 6502 6503 static void 6504 ath_watchdog(void *arg) 6505 { 6506 struct ath_softc *sc = arg; 6507 struct ieee80211com *ic = &sc->sc_ic; 6508 int do_reset = 0; 6509 6510 ATH_LOCK_ASSERT(sc); 6511 6512 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6513 uint32_t hangs; 6514 6515 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6516 6517 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6518 hangs != 0) { 6519 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6520 hangs & 0xff ? "bb" : "mac", hangs); 6521 } else 6522 device_printf(sc->sc_dev, "device timeout\n"); 6523 do_reset = 1; 6524 counter_u64_add(ic->ic_oerrors, 1); 6525 sc->sc_stats.ast_watchdog++; 6526 6527 ath_power_restore_power_state(sc); 6528 } 6529 6530 /* 6531 * We can't hold the lock across the ath_reset() call. 6532 * 6533 * And since this routine can't hold a lock and sleep, 6534 * do the reset deferred. 6535 */ 6536 if (do_reset) { 6537 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6538 } 6539 6540 callout_schedule(&sc->sc_wd_ch, hz); 6541 } 6542 6543 static void 6544 ath_parent(struct ieee80211com *ic) 6545 { 6546 struct ath_softc *sc = ic->ic_softc; 6547 int error = EDOOFUS; 6548 6549 ATH_LOCK(sc); 6550 if (ic->ic_nrunning > 0) { 6551 /* 6552 * To avoid rescanning another access point, 6553 * do not call ath_init() here. Instead, 6554 * only reflect promisc mode settings. 6555 */ 6556 if (sc->sc_running) { 6557 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6558 ath_mode_init(sc); 6559 ath_power_restore_power_state(sc); 6560 } else if (!sc->sc_invalid) { 6561 /* 6562 * Beware of being called during attach/detach 6563 * to reset promiscuous mode. In that case we 6564 * will still be marked UP but not RUNNING. 6565 * However trying to re-init the interface 6566 * is the wrong thing to do as we've already 6567 * torn down much of our state. There's 6568 * probably a better way to deal with this. 6569 */ 6570 error = ath_init(sc); 6571 } 6572 } else { 6573 ath_stop(sc); 6574 if (!sc->sc_invalid) 6575 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6576 } 6577 ATH_UNLOCK(sc); 6578 6579 if (error == 0) { 6580 #ifdef ATH_TX99_DIAG 6581 if (sc->sc_tx99 != NULL) 6582 sc->sc_tx99->start(sc->sc_tx99); 6583 else 6584 #endif 6585 ieee80211_start_all(ic); 6586 } 6587 } 6588 6589 /* 6590 * Announce various information on device/driver attach. 6591 */ 6592 static void 6593 ath_announce(struct ath_softc *sc) 6594 { 6595 struct ath_hal *ah = sc->sc_ah; 6596 6597 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6598 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6599 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6600 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6601 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6602 if (bootverbose) { 6603 int i; 6604 for (i = 0; i <= WME_AC_VO; i++) { 6605 struct ath_txq *txq = sc->sc_ac2q[i]; 6606 device_printf(sc->sc_dev, 6607 "Use hw queue %u for %s traffic\n", 6608 txq->axq_qnum, ieee80211_wme_acnames[i]); 6609 } 6610 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6611 sc->sc_cabq->axq_qnum); 6612 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6613 sc->sc_bhalq); 6614 } 6615 if (ath_rxbuf != ATH_RXBUF) 6616 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6617 if (ath_txbuf != ATH_TXBUF) 6618 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6619 if (sc->sc_mcastkey && bootverbose) 6620 device_printf(sc->sc_dev, "using multicast key search\n"); 6621 } 6622 6623 static void 6624 ath_dfs_tasklet(void *p, int npending) 6625 { 6626 struct ath_softc *sc = (struct ath_softc *) p; 6627 struct ieee80211com *ic = &sc->sc_ic; 6628 6629 /* 6630 * If previous processing has found a radar event, 6631 * signal this to the net80211 layer to begin DFS 6632 * processing. 6633 */ 6634 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6635 /* DFS event found, initiate channel change */ 6636 6637 /* 6638 * XXX TODO: immediately disable ACK processing 6639 * on the current channel. This would be done 6640 * by setting AR_DIAG_ACK_DIS (AR5212; may be 6641 * different for others) until we are out of 6642 * CAC. 6643 */ 6644 6645 /* 6646 * XXX doesn't currently tell us whether the event 6647 * XXX was found in the primary or extension 6648 * XXX channel! 6649 */ 6650 IEEE80211_LOCK(ic); 6651 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6652 IEEE80211_UNLOCK(ic); 6653 } 6654 } 6655 6656 /* 6657 * Enable/disable power save. This must be called with 6658 * no TX driver locks currently held, so it should only 6659 * be called from the RX path (which doesn't hold any 6660 * TX driver locks.) 6661 */ 6662 static void 6663 ath_node_powersave(struct ieee80211_node *ni, int enable) 6664 { 6665 #ifdef ATH_SW_PSQ 6666 struct ath_node *an = ATH_NODE(ni); 6667 struct ieee80211com *ic = ni->ni_ic; 6668 struct ath_softc *sc = ic->ic_softc; 6669 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6670 6671 /* XXX and no TXQ locks should be held here */ 6672 6673 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6674 __func__, 6675 ni->ni_macaddr, 6676 ":", 6677 !! enable); 6678 6679 /* Suspend or resume software queue handling */ 6680 if (enable) 6681 ath_tx_node_sleep(sc, an); 6682 else 6683 ath_tx_node_wakeup(sc, an); 6684 6685 /* Update net80211 state */ 6686 avp->av_node_ps(ni, enable); 6687 #else 6688 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6689 6690 /* Update net80211 state */ 6691 avp->av_node_ps(ni, enable); 6692 #endif/* ATH_SW_PSQ */ 6693 } 6694 6695 /* 6696 * Notification from net80211 that the powersave queue state has 6697 * changed. 6698 * 6699 * Since the software queue also may have some frames: 6700 * 6701 * + if the node software queue has frames and the TID state 6702 * is 0, we set the TIM; 6703 * + if the node and the stack are both empty, we clear the TIM bit. 6704 * + If the stack tries to set the bit, always set it. 6705 * + If the stack tries to clear the bit, only clear it if the 6706 * software queue in question is also cleared. 6707 * 6708 * TODO: this is called during node teardown; so let's ensure this 6709 * is all correctly handled and that the TIM bit is cleared. 6710 * It may be that the node flush is called _AFTER_ the net80211 6711 * stack clears the TIM. 6712 * 6713 * Here is the racy part. Since it's possible >1 concurrent, 6714 * overlapping TXes will appear complete with a TX completion in 6715 * another thread, it's possible that the concurrent TIM calls will 6716 * clash. We can't hold the node lock here because setting the 6717 * TIM grabs the net80211 comlock and this may cause a LOR. 6718 * The solution is either to totally serialise _everything_ at 6719 * this point (ie, all TX, completion and any reset/flush go into 6720 * one taskqueue) or a new "ath TIM lock" needs to be created that 6721 * just wraps the driver state change and this call to avp->av_set_tim(). 6722 * 6723 * The same race exists in the net80211 power save queue handling 6724 * as well. Since multiple transmitting threads may queue frames 6725 * into the driver, as well as ps-poll and the driver transmitting 6726 * frames (and thus clearing the psq), it's quite possible that 6727 * a packet entering the PSQ and a ps-poll being handled will 6728 * race, causing the TIM to be cleared and not re-set. 6729 */ 6730 static int 6731 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6732 { 6733 #ifdef ATH_SW_PSQ 6734 struct ieee80211com *ic = ni->ni_ic; 6735 struct ath_softc *sc = ic->ic_softc; 6736 struct ath_node *an = ATH_NODE(ni); 6737 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6738 int changed = 0; 6739 6740 ATH_TX_LOCK(sc); 6741 an->an_stack_psq = enable; 6742 6743 /* 6744 * This will get called for all operating modes, 6745 * even if avp->av_set_tim is unset. 6746 * It's currently set for hostap/ibss modes; but 6747 * the same infrastructure is used for both STA 6748 * and AP/IBSS node power save. 6749 */ 6750 if (avp->av_set_tim == NULL) { 6751 ATH_TX_UNLOCK(sc); 6752 return (0); 6753 } 6754 6755 /* 6756 * If setting the bit, always set it here. 6757 * If clearing the bit, only clear it if the 6758 * software queue is also empty. 6759 * 6760 * If the node has left power save, just clear the TIM 6761 * bit regardless of the state of the power save queue. 6762 * 6763 * XXX TODO: although atomics are used, it's quite possible 6764 * that a race will occur between this and setting/clearing 6765 * in another thread. TX completion will occur always in 6766 * one thread, however setting/clearing the TIM bit can come 6767 * from a variety of different process contexts! 6768 */ 6769 if (enable && an->an_tim_set == 1) { 6770 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6771 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6772 __func__, 6773 ni->ni_macaddr, 6774 ":", 6775 enable); 6776 ATH_TX_UNLOCK(sc); 6777 } else if (enable) { 6778 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6779 "%s: %6D: enable=%d, enabling TIM\n", 6780 __func__, 6781 ni->ni_macaddr, 6782 ":", 6783 enable); 6784 an->an_tim_set = 1; 6785 ATH_TX_UNLOCK(sc); 6786 changed = avp->av_set_tim(ni, enable); 6787 } else if (an->an_swq_depth == 0) { 6788 /* disable */ 6789 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6790 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6791 __func__, 6792 ni->ni_macaddr, 6793 ":", 6794 enable); 6795 an->an_tim_set = 0; 6796 ATH_TX_UNLOCK(sc); 6797 changed = avp->av_set_tim(ni, enable); 6798 } else if (! an->an_is_powersave) { 6799 /* 6800 * disable regardless; the node isn't in powersave now 6801 */ 6802 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6803 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6804 __func__, 6805 ni->ni_macaddr, 6806 ":", 6807 enable); 6808 an->an_tim_set = 0; 6809 ATH_TX_UNLOCK(sc); 6810 changed = avp->av_set_tim(ni, enable); 6811 } else { 6812 /* 6813 * psq disable, node is currently in powersave, node 6814 * software queue isn't empty, so don't clear the TIM bit 6815 * for now. 6816 */ 6817 ATH_TX_UNLOCK(sc); 6818 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6819 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6820 __func__, 6821 ni->ni_macaddr, 6822 ":", 6823 enable); 6824 changed = 0; 6825 } 6826 6827 return (changed); 6828 #else 6829 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6830 6831 /* 6832 * Some operating modes don't set av_set_tim(), so don't 6833 * update it here. 6834 */ 6835 if (avp->av_set_tim == NULL) 6836 return (0); 6837 6838 return (avp->av_set_tim(ni, enable)); 6839 #endif /* ATH_SW_PSQ */ 6840 } 6841 6842 /* 6843 * Set or update the TIM from the software queue. 6844 * 6845 * Check the software queue depth before attempting to do lock 6846 * anything; that avoids trying to obtain the lock. Then, 6847 * re-check afterwards to ensure nothing has changed in the 6848 * meantime. 6849 * 6850 * set: This is designed to be called from the TX path, after 6851 * a frame has been queued; to see if the swq > 0. 6852 * 6853 * clear: This is designed to be called from the buffer completion point 6854 * (right now it's ath_tx_default_comp()) where the state of 6855 * a software queue has changed. 6856 * 6857 * It makes sense to place it at buffer free / completion rather 6858 * than after each software queue operation, as there's no real 6859 * point in churning the TIM bit as the last frames in the software 6860 * queue are transmitted. If they fail and we retry them, we'd 6861 * just be setting the TIM bit again anyway. 6862 */ 6863 void 6864 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6865 int enable) 6866 { 6867 #ifdef ATH_SW_PSQ 6868 struct ath_node *an; 6869 struct ath_vap *avp; 6870 6871 /* Don't do this for broadcast/etc frames */ 6872 if (ni == NULL) 6873 return; 6874 6875 an = ATH_NODE(ni); 6876 avp = ATH_VAP(ni->ni_vap); 6877 6878 /* 6879 * And for operating modes without the TIM handler set, let's 6880 * just skip those. 6881 */ 6882 if (avp->av_set_tim == NULL) 6883 return; 6884 6885 ATH_TX_LOCK_ASSERT(sc); 6886 6887 if (enable) { 6888 if (an->an_is_powersave && 6889 an->an_tim_set == 0 && 6890 an->an_swq_depth != 0) { 6891 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6892 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6893 __func__, 6894 ni->ni_macaddr, 6895 ":"); 6896 an->an_tim_set = 1; 6897 (void) avp->av_set_tim(ni, 1); 6898 } 6899 } else { 6900 /* 6901 * Don't bother grabbing the lock unless the queue is empty. 6902 */ 6903 if (an->an_swq_depth != 0) 6904 return; 6905 6906 if (an->an_is_powersave && 6907 an->an_stack_psq == 0 && 6908 an->an_tim_set == 1 && 6909 an->an_swq_depth == 0) { 6910 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6911 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6912 " clear!\n", 6913 __func__, 6914 ni->ni_macaddr, 6915 ":"); 6916 an->an_tim_set = 0; 6917 (void) avp->av_set_tim(ni, 0); 6918 } 6919 } 6920 #else 6921 return; 6922 #endif /* ATH_SW_PSQ */ 6923 } 6924 6925 /* 6926 * Received a ps-poll frame from net80211. 6927 * 6928 * Here we get a chance to serve out a software-queued frame ourselves 6929 * before we punt it to net80211 to transmit us one itself - either 6930 * because there's traffic in the net80211 psq, or a NULL frame to 6931 * indicate there's nothing else. 6932 */ 6933 static void 6934 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6935 { 6936 #ifdef ATH_SW_PSQ 6937 struct ath_node *an; 6938 struct ath_vap *avp; 6939 struct ieee80211com *ic = ni->ni_ic; 6940 struct ath_softc *sc = ic->ic_softc; 6941 int tid; 6942 6943 /* Just paranoia */ 6944 if (ni == NULL) 6945 return; 6946 6947 /* 6948 * Unassociated (temporary node) station. 6949 */ 6950 if (ni->ni_associd == 0) 6951 return; 6952 6953 /* 6954 * We do have an active node, so let's begin looking into it. 6955 */ 6956 an = ATH_NODE(ni); 6957 avp = ATH_VAP(ni->ni_vap); 6958 6959 /* 6960 * For now, we just call the original ps-poll method. 6961 * Once we're ready to flip this on: 6962 * 6963 * + Set leak to 1, as no matter what we're going to have 6964 * to send a frame; 6965 * + Check the software queue and if there's something in it, 6966 * schedule the highest TID thas has traffic from this node. 6967 * Then make sure we schedule the software scheduler to 6968 * run so it picks up said frame. 6969 * 6970 * That way whatever happens, we'll at least send _a_ frame 6971 * to the given node. 6972 * 6973 * Again, yes, it's crappy QoS if the node has multiple 6974 * TIDs worth of traffic - but let's get it working first 6975 * before we optimise it. 6976 * 6977 * Also yes, there's definitely latency here - we're not 6978 * direct dispatching to the hardware in this path (and 6979 * we're likely being called from the packet receive path, 6980 * so going back into TX may be a little hairy!) but again 6981 * I'd like to get this working first before optimising 6982 * turn-around time. 6983 */ 6984 6985 ATH_TX_LOCK(sc); 6986 6987 /* 6988 * Legacy - we're called and the node isn't asleep. 6989 * Immediately punt. 6990 */ 6991 if (! an->an_is_powersave) { 6992 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6993 "%s: %6D: not in powersave?\n", 6994 __func__, 6995 ni->ni_macaddr, 6996 ":"); 6997 ATH_TX_UNLOCK(sc); 6998 avp->av_recv_pspoll(ni, m); 6999 return; 7000 } 7001 7002 /* 7003 * We're in powersave. 7004 * 7005 * Leak a frame. 7006 */ 7007 an->an_leak_count = 1; 7008 7009 /* 7010 * Now, if there's no frames in the node, just punt to 7011 * recv_pspoll. 7012 * 7013 * Don't bother checking if the TIM bit is set, we really 7014 * only care if there are any frames here! 7015 */ 7016 if (an->an_swq_depth == 0) { 7017 ATH_TX_UNLOCK(sc); 7018 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7019 "%s: %6D: SWQ empty; punting to net80211\n", 7020 __func__, 7021 ni->ni_macaddr, 7022 ":"); 7023 avp->av_recv_pspoll(ni, m); 7024 return; 7025 } 7026 7027 /* 7028 * Ok, let's schedule the highest TID that has traffic 7029 * and then schedule something. 7030 */ 7031 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7032 struct ath_tid *atid = &an->an_tid[tid]; 7033 /* 7034 * No frames? Skip. 7035 */ 7036 if (atid->axq_depth == 0) 7037 continue; 7038 ath_tx_tid_sched(sc, atid); 7039 /* 7040 * XXX we could do a direct call to the TXQ 7041 * scheduler code here to optimise latency 7042 * at the expense of a REALLY deep callstack. 7043 */ 7044 ATH_TX_UNLOCK(sc); 7045 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7046 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7047 "%s: %6D: leaking frame to TID %d\n", 7048 __func__, 7049 ni->ni_macaddr, 7050 ":", 7051 tid); 7052 return; 7053 } 7054 7055 ATH_TX_UNLOCK(sc); 7056 7057 /* 7058 * XXX nothing in the TIDs at this point? Eek. 7059 */ 7060 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7061 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7062 __func__, 7063 ni->ni_macaddr, 7064 ":"); 7065 avp->av_recv_pspoll(ni, m); 7066 #else 7067 avp->av_recv_pspoll(ni, m); 7068 #endif /* ATH_SW_PSQ */ 7069 } 7070 7071 MODULE_VERSION(ath_main, 1); 7072 MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */ 7073 MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1); 7074 MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1); 7075 MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1); 7076 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7077 MODULE_DEPEND(ath_main, alq, 1, 1, 1); 7078 #endif 7079