xref: /freebsd/sys/dev/ath/if_ath.c (revision a10cee30c94cf5944826d2a495e9cdf339dfbcc8)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_athdfs.h>
115 
116 #ifdef ATH_TX99_DIAG
117 #include <dev/ath/ath_tx99/ath_tx99.h>
118 #endif
119 
120 /*
121  * ATH_BCBUF determines the number of vap's that can transmit
122  * beacons and also (currently) the number of vap's that can
123  * have unique mac addresses/bssid.  When staggering beacons
124  * 4 is probably a good max as otherwise the beacons become
125  * very closely spaced and there is limited time for cab q traffic
126  * to go out.  You can burst beacons instead but that is not good
127  * for stations in power save and at some point you really want
128  * another radio (and channel).
129  *
130  * The limit on the number of mac addresses is tied to our use of
131  * the U/L bit and tracking addresses in a byte; it would be
132  * worthwhile to allow more for applications like proxy sta.
133  */
134 CTASSERT(ATH_BCBUF <= 8);
135 
136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
137 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
138 		    const uint8_t [IEEE80211_ADDR_LEN],
139 		    const uint8_t [IEEE80211_ADDR_LEN]);
140 static void	ath_vap_delete(struct ieee80211vap *);
141 static void	ath_init(void *);
142 static void	ath_stop_locked(struct ifnet *);
143 static void	ath_stop(struct ifnet *);
144 static int	ath_reset_vap(struct ieee80211vap *, u_long);
145 static int	ath_media_change(struct ifnet *);
146 static void	ath_watchdog(void *);
147 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
148 static void	ath_fatal_proc(void *, int);
149 static void	ath_bmiss_vap(struct ieee80211vap *);
150 static void	ath_bmiss_proc(void *, int);
151 static void	ath_key_update_begin(struct ieee80211vap *);
152 static void	ath_key_update_end(struct ieee80211vap *);
153 static void	ath_update_mcast(struct ifnet *);
154 static void	ath_update_promisc(struct ifnet *);
155 static void	ath_updateslot(struct ifnet *);
156 static void	ath_bstuck_proc(void *, int);
157 static void	ath_reset_proc(void *, int);
158 static int	ath_desc_alloc(struct ath_softc *);
159 static void	ath_desc_free(struct ath_softc *);
160 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
161 			const uint8_t [IEEE80211_ADDR_LEN]);
162 static void	ath_node_cleanup(struct ieee80211_node *);
163 static void	ath_node_free(struct ieee80211_node *);
164 static void	ath_node_getsignal(const struct ieee80211_node *,
165 			int8_t *, int8_t *);
166 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
167 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
168 static int	ath_tx_setup(struct ath_softc *, int, int);
169 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
170 static void	ath_tx_cleanup(struct ath_softc *);
171 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
172 		    int dosched);
173 static void	ath_tx_proc_q0(void *, int);
174 static void	ath_tx_proc_q0123(void *, int);
175 static void	ath_tx_proc(void *, int);
176 static void	ath_txq_sched_tasklet(void *, int);
177 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
178 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_scan_start(struct ieee80211com *);
180 static void	ath_scan_end(struct ieee80211com *);
181 static void	ath_set_channel(struct ieee80211com *);
182 #ifdef	ATH_ENABLE_11N
183 static void	ath_update_chw(struct ieee80211com *);
184 #endif	/* ATH_ENABLE_11N */
185 static void	ath_calibrate(void *);
186 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
187 static void	ath_setup_stationkey(struct ieee80211_node *);
188 static void	ath_newassoc(struct ieee80211_node *, int);
189 static int	ath_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel []);
192 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
193 		    struct ieee80211_channel []);
194 static int	ath_getchannels(struct ath_softc *);
195 
196 static int	ath_rate_setup(struct ath_softc *, u_int mode);
197 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
198 
199 static void	ath_announce(struct ath_softc *);
200 
201 static void	ath_dfs_tasklet(void *, int);
202 static void	ath_node_powersave(struct ieee80211_node *, int);
203 
204 #ifdef IEEE80211_SUPPORT_TDMA
205 #include <dev/ath/if_ath_tdma.h>
206 #endif
207 
208 SYSCTL_DECL(_hw_ath);
209 
210 /* XXX validate sysctl values */
211 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
212 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
213 	    0, "long chip calibration interval (secs)");
214 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
215 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
216 	    0, "short chip calibration interval (msecs)");
217 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
218 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
219 	    0, "reset chip calibration results (secs)");
220 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
221 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
222 	    0, "ANI calibration (msecs)");
223 
224 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
225 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
226 	    0, "rx buffers allocated");
227 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
228 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
229 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
230 	    0, "tx buffers allocated");
231 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
232 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
233 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
234 	    0, "tx (mgmt) buffers allocated");
235 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
236 
237 int ath_bstuck_threshold = 4;		/* max missed beacons */
238 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
239 	    0, "max missed beacon xmits before chip reset");
240 
241 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
242 
243 void
244 ath_legacy_attach_comp_func(struct ath_softc *sc)
245 {
246 
247 	/*
248 	 * Special case certain configurations.  Note the
249 	 * CAB queue is handled by these specially so don't
250 	 * include them when checking the txq setup mask.
251 	 */
252 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
253 	case 0x01:
254 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
255 		break;
256 	case 0x0f:
257 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
258 		break;
259 	default:
260 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
261 		break;
262 	}
263 }
264 
265 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
266 #define	HAL_MODE_HT40 \
267 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
268 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
269 int
270 ath_attach(u_int16_t devid, struct ath_softc *sc)
271 {
272 	struct ifnet *ifp;
273 	struct ieee80211com *ic;
274 	struct ath_hal *ah = NULL;
275 	HAL_STATUS status;
276 	int error = 0, i;
277 	u_int wmodes;
278 	uint8_t macaddr[IEEE80211_ADDR_LEN];
279 	int rx_chainmask, tx_chainmask;
280 
281 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
282 
283 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
284 	if (ifp == NULL) {
285 		device_printf(sc->sc_dev, "can not if_alloc()\n");
286 		error = ENOSPC;
287 		goto bad;
288 	}
289 	ic = ifp->if_l2com;
290 
291 	/* set these up early for if_printf use */
292 	if_initname(ifp, device_get_name(sc->sc_dev),
293 		device_get_unit(sc->sc_dev));
294 
295 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
296 	    sc->sc_eepromdata, &status);
297 	if (ah == NULL) {
298 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
299 			status);
300 		error = ENXIO;
301 		goto bad;
302 	}
303 	sc->sc_ah = ah;
304 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
305 #ifdef	ATH_DEBUG
306 	sc->sc_debug = ath_debug;
307 #endif
308 
309 	/*
310 	 * Setup the DMA/EDMA functions based on the current
311 	 * hardware support.
312 	 *
313 	 * This is required before the descriptors are allocated.
314 	 */
315 	if (ath_hal_hasedma(sc->sc_ah)) {
316 		sc->sc_isedma = 1;
317 		ath_recv_setup_edma(sc);
318 		ath_xmit_setup_edma(sc);
319 	} else {
320 		ath_recv_setup_legacy(sc);
321 		ath_xmit_setup_legacy(sc);
322 	}
323 
324 	/*
325 	 * Check if the MAC has multi-rate retry support.
326 	 * We do this by trying to setup a fake extended
327 	 * descriptor.  MAC's that don't have support will
328 	 * return false w/o doing anything.  MAC's that do
329 	 * support it will return true w/o doing anything.
330 	 */
331 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
332 
333 	/*
334 	 * Check if the device has hardware counters for PHY
335 	 * errors.  If so we need to enable the MIB interrupt
336 	 * so we can act on stat triggers.
337 	 */
338 	if (ath_hal_hwphycounters(ah))
339 		sc->sc_needmib = 1;
340 
341 	/*
342 	 * Get the hardware key cache size.
343 	 */
344 	sc->sc_keymax = ath_hal_keycachesize(ah);
345 	if (sc->sc_keymax > ATH_KEYMAX) {
346 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
347 			ATH_KEYMAX, sc->sc_keymax);
348 		sc->sc_keymax = ATH_KEYMAX;
349 	}
350 	/*
351 	 * Reset the key cache since some parts do not
352 	 * reset the contents on initial power up.
353 	 */
354 	for (i = 0; i < sc->sc_keymax; i++)
355 		ath_hal_keyreset(ah, i);
356 
357 	/*
358 	 * Collect the default channel list.
359 	 */
360 	error = ath_getchannels(sc);
361 	if (error != 0)
362 		goto bad;
363 
364 	/*
365 	 * Setup rate tables for all potential media types.
366 	 */
367 	ath_rate_setup(sc, IEEE80211_MODE_11A);
368 	ath_rate_setup(sc, IEEE80211_MODE_11B);
369 	ath_rate_setup(sc, IEEE80211_MODE_11G);
370 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
371 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
372 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
373 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
374 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
375 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
376 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
377 
378 	/* NB: setup here so ath_rate_update is happy */
379 	ath_setcurmode(sc, IEEE80211_MODE_11A);
380 
381 	/*
382 	 * Allocate TX descriptors and populate the lists.
383 	 */
384 	error = ath_desc_alloc(sc);
385 	if (error != 0) {
386 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
387 		    error);
388 		goto bad;
389 	}
390 	error = ath_txdma_setup(sc);
391 	if (error != 0) {
392 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
393 		    error);
394 		goto bad;
395 	}
396 
397 	/*
398 	 * Allocate RX descriptors and populate the lists.
399 	 */
400 	error = ath_rxdma_setup(sc);
401 	if (error != 0) {
402 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
403 		    error);
404 		goto bad;
405 	}
406 
407 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
408 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
409 
410 	ATH_TXBUF_LOCK_INIT(sc);
411 
412 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
413 		taskqueue_thread_enqueue, &sc->sc_tq);
414 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
415 		"%s taskq", ifp->if_xname);
416 
417 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
418 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
419 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
420 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
421 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
422 	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
423 
424 	/*
425 	 * Allocate hardware transmit queues: one queue for
426 	 * beacon frames and one data queue for each QoS
427 	 * priority.  Note that the hal handles resetting
428 	 * these queues at the needed time.
429 	 *
430 	 * XXX PS-Poll
431 	 */
432 	sc->sc_bhalq = ath_beaconq_setup(sc);
433 	if (sc->sc_bhalq == (u_int) -1) {
434 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
435 		error = EIO;
436 		goto bad2;
437 	}
438 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
439 	if (sc->sc_cabq == NULL) {
440 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
441 		error = EIO;
442 		goto bad2;
443 	}
444 	/* NB: insure BK queue is the lowest priority h/w queue */
445 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
446 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
447 			ieee80211_wme_acnames[WME_AC_BK]);
448 		error = EIO;
449 		goto bad2;
450 	}
451 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
452 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
453 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
454 		/*
455 		 * Not enough hardware tx queues to properly do WME;
456 		 * just punt and assign them all to the same h/w queue.
457 		 * We could do a better job of this if, for example,
458 		 * we allocate queues when we switch from station to
459 		 * AP mode.
460 		 */
461 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
462 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
463 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
464 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
465 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
466 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
467 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
468 	}
469 
470 	/*
471 	 * Attach the TX completion function.
472 	 *
473 	 * The non-EDMA chips may have some special case optimisations;
474 	 * this method gives everyone a chance to attach cleanly.
475 	 */
476 	sc->sc_tx.xmit_attach_comp_func(sc);
477 
478 	/*
479 	 * Setup rate control.  Some rate control modules
480 	 * call back to change the anntena state so expose
481 	 * the necessary entry points.
482 	 * XXX maybe belongs in struct ath_ratectrl?
483 	 */
484 	sc->sc_setdefantenna = ath_setdefantenna;
485 	sc->sc_rc = ath_rate_attach(sc);
486 	if (sc->sc_rc == NULL) {
487 		error = EIO;
488 		goto bad2;
489 	}
490 
491 	/* Attach DFS module */
492 	if (! ath_dfs_attach(sc)) {
493 		device_printf(sc->sc_dev,
494 		    "%s: unable to attach DFS\n", __func__);
495 		error = EIO;
496 		goto bad2;
497 	}
498 
499 	/* Start DFS processing tasklet */
500 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
501 
502 	/* Configure LED state */
503 	sc->sc_blinking = 0;
504 	sc->sc_ledstate = 1;
505 	sc->sc_ledon = 0;			/* low true */
506 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
507 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
508 
509 	/*
510 	 * Don't setup hardware-based blinking.
511 	 *
512 	 * Although some NICs may have this configured in the
513 	 * default reset register values, the user may wish
514 	 * to alter which pins have which function.
515 	 *
516 	 * The reference driver attaches the MAC network LED to GPIO1 and
517 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
518 	 * NIC has these reversed.
519 	 */
520 	sc->sc_hardled = (1 == 0);
521 	sc->sc_led_net_pin = -1;
522 	sc->sc_led_pwr_pin = -1;
523 	/*
524 	 * Auto-enable soft led processing for IBM cards and for
525 	 * 5211 minipci cards.  Users can also manually enable/disable
526 	 * support with a sysctl.
527 	 */
528 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
529 	ath_led_config(sc);
530 	ath_hal_setledstate(ah, HAL_LED_INIT);
531 
532 	ifp->if_softc = sc;
533 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
534 	ifp->if_start = ath_start;
535 	ifp->if_ioctl = ath_ioctl;
536 	ifp->if_init = ath_init;
537 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
538 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
539 	IFQ_SET_READY(&ifp->if_snd);
540 
541 	ic->ic_ifp = ifp;
542 	/* XXX not right but it's not used anywhere important */
543 	ic->ic_phytype = IEEE80211_T_OFDM;
544 	ic->ic_opmode = IEEE80211_M_STA;
545 	ic->ic_caps =
546 		  IEEE80211_C_STA		/* station mode */
547 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
548 		| IEEE80211_C_HOSTAP		/* hostap mode */
549 		| IEEE80211_C_MONITOR		/* monitor mode */
550 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
551 		| IEEE80211_C_WDS		/* 4-address traffic works */
552 		| IEEE80211_C_MBSS		/* mesh point link mode */
553 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
554 		| IEEE80211_C_SHSLOT		/* short slot time supported */
555 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
556 #ifndef	ATH_ENABLE_11N
557 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
558 #endif
559 		| IEEE80211_C_TXFRAG		/* handle tx frags */
560 #ifdef	ATH_ENABLE_DFS
561 		| IEEE80211_C_DFS		/* Enable radar detection */
562 #endif
563 		;
564 	/*
565 	 * Query the hal to figure out h/w crypto support.
566 	 */
567 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
568 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
569 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
570 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
571 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
572 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
573 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
574 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
575 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
576 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
577 		/*
578 		 * Check if h/w does the MIC and/or whether the
579 		 * separate key cache entries are required to
580 		 * handle both tx+rx MIC keys.
581 		 */
582 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
583 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
584 		/*
585 		 * If the h/w supports storing tx+rx MIC keys
586 		 * in one cache slot automatically enable use.
587 		 */
588 		if (ath_hal_hastkipsplit(ah) ||
589 		    !ath_hal_settkipsplit(ah, AH_FALSE))
590 			sc->sc_splitmic = 1;
591 		/*
592 		 * If the h/w can do TKIP MIC together with WME then
593 		 * we use it; otherwise we force the MIC to be done
594 		 * in software by the net80211 layer.
595 		 */
596 		if (ath_hal_haswmetkipmic(ah))
597 			sc->sc_wmetkipmic = 1;
598 	}
599 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
600 	/*
601 	 * Check for multicast key search support.
602 	 */
603 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
604 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
605 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
606 	}
607 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
608 	/*
609 	 * Mark key cache slots associated with global keys
610 	 * as in use.  If we knew TKIP was not to be used we
611 	 * could leave the +32, +64, and +32+64 slots free.
612 	 */
613 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
614 		setbit(sc->sc_keymap, i);
615 		setbit(sc->sc_keymap, i+64);
616 		if (sc->sc_splitmic) {
617 			setbit(sc->sc_keymap, i+32);
618 			setbit(sc->sc_keymap, i+32+64);
619 		}
620 	}
621 	/*
622 	 * TPC support can be done either with a global cap or
623 	 * per-packet support.  The latter is not available on
624 	 * all parts.  We're a bit pedantic here as all parts
625 	 * support a global cap.
626 	 */
627 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
628 		ic->ic_caps |= IEEE80211_C_TXPMGT;
629 
630 	/*
631 	 * Mark WME capability only if we have sufficient
632 	 * hardware queues to do proper priority scheduling.
633 	 */
634 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
635 		ic->ic_caps |= IEEE80211_C_WME;
636 	/*
637 	 * Check for misc other capabilities.
638 	 */
639 	if (ath_hal_hasbursting(ah))
640 		ic->ic_caps |= IEEE80211_C_BURST;
641 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
642 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
643 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
644 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
645 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
646 	if (ath_hal_hasfastframes(ah))
647 		ic->ic_caps |= IEEE80211_C_FF;
648 	wmodes = ath_hal_getwirelessmodes(ah);
649 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
650 		ic->ic_caps |= IEEE80211_C_TURBOP;
651 #ifdef IEEE80211_SUPPORT_TDMA
652 	if (ath_hal_macversion(ah) > 0x78) {
653 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
654 		ic->ic_tdma_update = ath_tdma_update;
655 	}
656 #endif
657 
658 	/*
659 	 * TODO: enforce that at least this many frames are available
660 	 * in the txbuf list before allowing data frames (raw or
661 	 * otherwise) to be transmitted.
662 	 */
663 	sc->sc_txq_data_minfree = 10;
664 	/*
665 	 * Leave this as default to maintain legacy behaviour.
666 	 * Shortening the cabq/mcastq may end up causing some
667 	 * undesirable behaviour.
668 	 */
669 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
670 
671 	/*
672 	 * Allow the TX and RX chainmasks to be overridden by
673 	 * environment variables and/or device.hints.
674 	 *
675 	 * This must be done early - before the hardware is
676 	 * calibrated or before the 802.11n stream calculation
677 	 * is done.
678 	 */
679 	if (resource_int_value(device_get_name(sc->sc_dev),
680 	    device_get_unit(sc->sc_dev), "rx_chainmask",
681 	    &rx_chainmask) == 0) {
682 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
683 		    rx_chainmask);
684 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
685 	}
686 	if (resource_int_value(device_get_name(sc->sc_dev),
687 	    device_get_unit(sc->sc_dev), "tx_chainmask",
688 	    &tx_chainmask) == 0) {
689 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
690 		    tx_chainmask);
691 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
692 	}
693 
694 	/*
695 	 * Disable MRR with protected frames by default.
696 	 * Only 802.11n series NICs can handle this.
697 	 */
698 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
699 
700 #ifdef	ATH_ENABLE_11N
701 	/*
702 	 * Query HT capabilities
703 	 */
704 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
705 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
706 		int rxs, txs;
707 
708 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
709 
710 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
711 
712 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
713 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
714 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
715 			    | IEEE80211_HTCAP_MAXAMSDU_3839
716 			    				/* max A-MSDU length */
717 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
718 			;
719 
720 		/*
721 		 * Enable short-GI for HT20 only if the hardware
722 		 * advertises support.
723 		 * Notably, anything earlier than the AR9287 doesn't.
724 		 */
725 		if ((ath_hal_getcapability(ah,
726 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
727 		    (wmodes & HAL_MODE_HT20)) {
728 			device_printf(sc->sc_dev,
729 			    "[HT] enabling short-GI in 20MHz mode\n");
730 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
731 		}
732 
733 		if (wmodes & HAL_MODE_HT40)
734 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
735 			    |  IEEE80211_HTCAP_SHORTGI40;
736 
737 		/*
738 		 * TX/RX streams need to be taken into account when
739 		 * negotiating which MCS rates it'll receive and
740 		 * what MCS rates are available for TX.
741 		 */
742 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
743 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
744 
745 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
746 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
747 
748 		ic->ic_txstream = txs;
749 		ic->ic_rxstream = rxs;
750 
751 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
752 		    &sc->sc_rts_aggr_limit);
753 		if (sc->sc_rts_aggr_limit != (64 * 1024))
754 			device_printf(sc->sc_dev,
755 			    "[HT] RTS aggregates limited to %d KiB\n",
756 			    sc->sc_rts_aggr_limit / 1024);
757 
758 		device_printf(sc->sc_dev,
759 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
760 	}
761 #endif
762 
763 	/*
764 	 * Initial aggregation settings.
765 	 */
766 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
767 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
768 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
769 
770 	/*
771 	 * Check if the hardware requires PCI register serialisation.
772 	 * Some of the Owl based MACs require this.
773 	 */
774 	if (mp_ncpus > 1 &&
775 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
776 	     0, NULL) == HAL_OK) {
777 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
778 		device_printf(sc->sc_dev,
779 		    "Enabling register serialisation\n");
780 	}
781 
782 	/*
783 	 * Indicate we need the 802.11 header padded to a
784 	 * 32-bit boundary for 4-address and QoS frames.
785 	 */
786 	ic->ic_flags |= IEEE80211_F_DATAPAD;
787 
788 	/*
789 	 * Query the hal about antenna support.
790 	 */
791 	sc->sc_defant = ath_hal_getdefantenna(ah);
792 
793 	/*
794 	 * Not all chips have the VEOL support we want to
795 	 * use with IBSS beacons; check here for it.
796 	 */
797 	sc->sc_hasveol = ath_hal_hasveol(ah);
798 
799 	/* get mac address from hardware */
800 	ath_hal_getmac(ah, macaddr);
801 	if (sc->sc_hasbmask)
802 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
803 
804 	/* NB: used to size node table key mapping array */
805 	ic->ic_max_keyix = sc->sc_keymax;
806 	/* call MI attach routine. */
807 	ieee80211_ifattach(ic, macaddr);
808 	ic->ic_setregdomain = ath_setregdomain;
809 	ic->ic_getradiocaps = ath_getradiocaps;
810 	sc->sc_opmode = HAL_M_STA;
811 
812 	/* override default methods */
813 	ic->ic_newassoc = ath_newassoc;
814 	ic->ic_updateslot = ath_updateslot;
815 	ic->ic_wme.wme_update = ath_wme_update;
816 	ic->ic_vap_create = ath_vap_create;
817 	ic->ic_vap_delete = ath_vap_delete;
818 	ic->ic_raw_xmit = ath_raw_xmit;
819 	ic->ic_update_mcast = ath_update_mcast;
820 	ic->ic_update_promisc = ath_update_promisc;
821 	ic->ic_node_alloc = ath_node_alloc;
822 	sc->sc_node_free = ic->ic_node_free;
823 	ic->ic_node_free = ath_node_free;
824 	sc->sc_node_cleanup = ic->ic_node_cleanup;
825 	ic->ic_node_cleanup = ath_node_cleanup;
826 	ic->ic_node_getsignal = ath_node_getsignal;
827 	ic->ic_scan_start = ath_scan_start;
828 	ic->ic_scan_end = ath_scan_end;
829 	ic->ic_set_channel = ath_set_channel;
830 #ifdef	ATH_ENABLE_11N
831 	/* 802.11n specific - but just override anyway */
832 	sc->sc_addba_request = ic->ic_addba_request;
833 	sc->sc_addba_response = ic->ic_addba_response;
834 	sc->sc_addba_stop = ic->ic_addba_stop;
835 	sc->sc_bar_response = ic->ic_bar_response;
836 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
837 
838 	ic->ic_addba_request = ath_addba_request;
839 	ic->ic_addba_response = ath_addba_response;
840 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
841 	ic->ic_addba_stop = ath_addba_stop;
842 	ic->ic_bar_response = ath_bar_response;
843 
844 	ic->ic_update_chw = ath_update_chw;
845 #endif	/* ATH_ENABLE_11N */
846 
847 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
848 	/*
849 	 * There's one vendor bitmap entry in the RX radiotap
850 	 * header; make sure that's taken into account.
851 	 */
852 	ieee80211_radiotap_attachv(ic,
853 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
854 		ATH_TX_RADIOTAP_PRESENT,
855 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
856 		ATH_RX_RADIOTAP_PRESENT);
857 #else
858 	/*
859 	 * No vendor bitmap/extensions are present.
860 	 */
861 	ieee80211_radiotap_attach(ic,
862 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
863 		ATH_TX_RADIOTAP_PRESENT,
864 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
865 		ATH_RX_RADIOTAP_PRESENT);
866 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
867 
868 	/*
869 	 * Setup dynamic sysctl's now that country code and
870 	 * regdomain are available from the hal.
871 	 */
872 	ath_sysctlattach(sc);
873 	ath_sysctl_stats_attach(sc);
874 	ath_sysctl_hal_attach(sc);
875 
876 	if (bootverbose)
877 		ieee80211_announce(ic);
878 	ath_announce(sc);
879 	return 0;
880 bad2:
881 	ath_tx_cleanup(sc);
882 	ath_desc_free(sc);
883 	ath_txdma_teardown(sc);
884 	ath_rxdma_teardown(sc);
885 bad:
886 	if (ah)
887 		ath_hal_detach(ah);
888 	if (ifp != NULL)
889 		if_free(ifp);
890 	sc->sc_invalid = 1;
891 	return error;
892 }
893 
894 int
895 ath_detach(struct ath_softc *sc)
896 {
897 	struct ifnet *ifp = sc->sc_ifp;
898 
899 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
900 		__func__, ifp->if_flags);
901 
902 	/*
903 	 * NB: the order of these is important:
904 	 * o stop the chip so no more interrupts will fire
905 	 * o call the 802.11 layer before detaching the hal to
906 	 *   insure callbacks into the driver to delete global
907 	 *   key cache entries can be handled
908 	 * o free the taskqueue which drains any pending tasks
909 	 * o reclaim the tx queue data structures after calling
910 	 *   the 802.11 layer as we'll get called back to reclaim
911 	 *   node state and potentially want to use them
912 	 * o to cleanup the tx queues the hal is called, so detach
913 	 *   it last
914 	 * Other than that, it's straightforward...
915 	 */
916 	ath_stop(ifp);
917 	ieee80211_ifdetach(ifp->if_l2com);
918 	taskqueue_free(sc->sc_tq);
919 #ifdef ATH_TX99_DIAG
920 	if (sc->sc_tx99 != NULL)
921 		sc->sc_tx99->detach(sc->sc_tx99);
922 #endif
923 	ath_rate_detach(sc->sc_rc);
924 
925 	ath_dfs_detach(sc);
926 	ath_desc_free(sc);
927 	ath_txdma_teardown(sc);
928 	ath_rxdma_teardown(sc);
929 	ath_tx_cleanup(sc);
930 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
931 	if_free(ifp);
932 
933 	return 0;
934 }
935 
936 /*
937  * MAC address handling for multiple BSS on the same radio.
938  * The first vap uses the MAC address from the EEPROM.  For
939  * subsequent vap's we set the U/L bit (bit 1) in the MAC
940  * address and use the next six bits as an index.
941  */
942 static void
943 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
944 {
945 	int i;
946 
947 	if (clone && sc->sc_hasbmask) {
948 		/* NB: we only do this if h/w supports multiple bssid */
949 		for (i = 0; i < 8; i++)
950 			if ((sc->sc_bssidmask & (1<<i)) == 0)
951 				break;
952 		if (i != 0)
953 			mac[0] |= (i << 2)|0x2;
954 	} else
955 		i = 0;
956 	sc->sc_bssidmask |= 1<<i;
957 	sc->sc_hwbssidmask[0] &= ~mac[0];
958 	if (i == 0)
959 		sc->sc_nbssid0++;
960 }
961 
962 static void
963 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
964 {
965 	int i = mac[0] >> 2;
966 	uint8_t mask;
967 
968 	if (i != 0 || --sc->sc_nbssid0 == 0) {
969 		sc->sc_bssidmask &= ~(1<<i);
970 		/* recalculate bssid mask from remaining addresses */
971 		mask = 0xff;
972 		for (i = 1; i < 8; i++)
973 			if (sc->sc_bssidmask & (1<<i))
974 				mask &= ~((i<<2)|0x2);
975 		sc->sc_hwbssidmask[0] |= mask;
976 	}
977 }
978 
979 /*
980  * Assign a beacon xmit slot.  We try to space out
981  * assignments so when beacons are staggered the
982  * traffic coming out of the cab q has maximal time
983  * to go out before the next beacon is scheduled.
984  */
985 static int
986 assign_bslot(struct ath_softc *sc)
987 {
988 	u_int slot, free;
989 
990 	free = 0;
991 	for (slot = 0; slot < ATH_BCBUF; slot++)
992 		if (sc->sc_bslot[slot] == NULL) {
993 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
994 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
995 				return slot;
996 			free = slot;
997 			/* NB: keep looking for a double slot */
998 		}
999 	return free;
1000 }
1001 
1002 static struct ieee80211vap *
1003 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1004     enum ieee80211_opmode opmode, int flags,
1005     const uint8_t bssid[IEEE80211_ADDR_LEN],
1006     const uint8_t mac0[IEEE80211_ADDR_LEN])
1007 {
1008 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1009 	struct ath_vap *avp;
1010 	struct ieee80211vap *vap;
1011 	uint8_t mac[IEEE80211_ADDR_LEN];
1012 	int needbeacon, error;
1013 	enum ieee80211_opmode ic_opmode;
1014 
1015 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1016 	    M_80211_VAP, M_WAITOK | M_ZERO);
1017 	needbeacon = 0;
1018 	IEEE80211_ADDR_COPY(mac, mac0);
1019 
1020 	ATH_LOCK(sc);
1021 	ic_opmode = opmode;		/* default to opmode of new vap */
1022 	switch (opmode) {
1023 	case IEEE80211_M_STA:
1024 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1025 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1026 			goto bad;
1027 		}
1028 		if (sc->sc_nvaps) {
1029 			/*
1030 			 * With multiple vaps we must fall back
1031 			 * to s/w beacon miss handling.
1032 			 */
1033 			flags |= IEEE80211_CLONE_NOBEACONS;
1034 		}
1035 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1036 			/*
1037 			 * Station mode w/o beacons are implemented w/ AP mode.
1038 			 */
1039 			ic_opmode = IEEE80211_M_HOSTAP;
1040 		}
1041 		break;
1042 	case IEEE80211_M_IBSS:
1043 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1044 			device_printf(sc->sc_dev,
1045 			    "only 1 ibss vap supported\n");
1046 			goto bad;
1047 		}
1048 		needbeacon = 1;
1049 		break;
1050 	case IEEE80211_M_AHDEMO:
1051 #ifdef IEEE80211_SUPPORT_TDMA
1052 		if (flags & IEEE80211_CLONE_TDMA) {
1053 			if (sc->sc_nvaps != 0) {
1054 				device_printf(sc->sc_dev,
1055 				    "only 1 tdma vap supported\n");
1056 				goto bad;
1057 			}
1058 			needbeacon = 1;
1059 			flags |= IEEE80211_CLONE_NOBEACONS;
1060 		}
1061 		/* fall thru... */
1062 #endif
1063 	case IEEE80211_M_MONITOR:
1064 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1065 			/*
1066 			 * Adopt existing mode.  Adding a monitor or ahdemo
1067 			 * vap to an existing configuration is of dubious
1068 			 * value but should be ok.
1069 			 */
1070 			/* XXX not right for monitor mode */
1071 			ic_opmode = ic->ic_opmode;
1072 		}
1073 		break;
1074 	case IEEE80211_M_HOSTAP:
1075 	case IEEE80211_M_MBSS:
1076 		needbeacon = 1;
1077 		break;
1078 	case IEEE80211_M_WDS:
1079 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1080 			device_printf(sc->sc_dev,
1081 			    "wds not supported in sta mode\n");
1082 			goto bad;
1083 		}
1084 		/*
1085 		 * Silently remove any request for a unique
1086 		 * bssid; WDS vap's always share the local
1087 		 * mac address.
1088 		 */
1089 		flags &= ~IEEE80211_CLONE_BSSID;
1090 		if (sc->sc_nvaps == 0)
1091 			ic_opmode = IEEE80211_M_HOSTAP;
1092 		else
1093 			ic_opmode = ic->ic_opmode;
1094 		break;
1095 	default:
1096 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1097 		goto bad;
1098 	}
1099 	/*
1100 	 * Check that a beacon buffer is available; the code below assumes it.
1101 	 */
1102 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1103 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1104 		goto bad;
1105 	}
1106 
1107 	/* STA, AHDEMO? */
1108 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1109 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1110 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1111 	}
1112 
1113 	vap = &avp->av_vap;
1114 	/* XXX can't hold mutex across if_alloc */
1115 	ATH_UNLOCK(sc);
1116 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1117 	    bssid, mac);
1118 	ATH_LOCK(sc);
1119 	if (error != 0) {
1120 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1121 		    __func__, error);
1122 		goto bad2;
1123 	}
1124 
1125 	/* h/w crypto support */
1126 	vap->iv_key_alloc = ath_key_alloc;
1127 	vap->iv_key_delete = ath_key_delete;
1128 	vap->iv_key_set = ath_key_set;
1129 	vap->iv_key_update_begin = ath_key_update_begin;
1130 	vap->iv_key_update_end = ath_key_update_end;
1131 
1132 	/* override various methods */
1133 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1134 	vap->iv_recv_mgmt = ath_recv_mgmt;
1135 	vap->iv_reset = ath_reset_vap;
1136 	vap->iv_update_beacon = ath_beacon_update;
1137 	avp->av_newstate = vap->iv_newstate;
1138 	vap->iv_newstate = ath_newstate;
1139 	avp->av_bmiss = vap->iv_bmiss;
1140 	vap->iv_bmiss = ath_bmiss_vap;
1141 
1142 	avp->av_node_ps = vap->iv_node_ps;
1143 	vap->iv_node_ps = ath_node_powersave;
1144 
1145 	/* Set default parameters */
1146 
1147 	/*
1148 	 * Anything earlier than some AR9300 series MACs don't
1149 	 * support a smaller MPDU density.
1150 	 */
1151 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1152 	/*
1153 	 * All NICs can handle the maximum size, however
1154 	 * AR5416 based MACs can only TX aggregates w/ RTS
1155 	 * protection when the total aggregate size is <= 8k.
1156 	 * However, for now that's enforced by the TX path.
1157 	 */
1158 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1159 
1160 	avp->av_bslot = -1;
1161 	if (needbeacon) {
1162 		/*
1163 		 * Allocate beacon state and setup the q for buffered
1164 		 * multicast frames.  We know a beacon buffer is
1165 		 * available because we checked above.
1166 		 */
1167 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1168 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1169 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1170 			/*
1171 			 * Assign the vap to a beacon xmit slot.  As above
1172 			 * this cannot fail to find a free one.
1173 			 */
1174 			avp->av_bslot = assign_bslot(sc);
1175 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1176 			    ("beacon slot %u not empty", avp->av_bslot));
1177 			sc->sc_bslot[avp->av_bslot] = vap;
1178 			sc->sc_nbcnvaps++;
1179 		}
1180 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1181 			/*
1182 			 * Multple vaps are to transmit beacons and we
1183 			 * have h/w support for TSF adjusting; enable
1184 			 * use of staggered beacons.
1185 			 */
1186 			sc->sc_stagbeacons = 1;
1187 		}
1188 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1189 	}
1190 
1191 	ic->ic_opmode = ic_opmode;
1192 	if (opmode != IEEE80211_M_WDS) {
1193 		sc->sc_nvaps++;
1194 		if (opmode == IEEE80211_M_STA)
1195 			sc->sc_nstavaps++;
1196 		if (opmode == IEEE80211_M_MBSS)
1197 			sc->sc_nmeshvaps++;
1198 	}
1199 	switch (ic_opmode) {
1200 	case IEEE80211_M_IBSS:
1201 		sc->sc_opmode = HAL_M_IBSS;
1202 		break;
1203 	case IEEE80211_M_STA:
1204 		sc->sc_opmode = HAL_M_STA;
1205 		break;
1206 	case IEEE80211_M_AHDEMO:
1207 #ifdef IEEE80211_SUPPORT_TDMA
1208 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1209 			sc->sc_tdma = 1;
1210 			/* NB: disable tsf adjust */
1211 			sc->sc_stagbeacons = 0;
1212 		}
1213 		/*
1214 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1215 		 * just ap mode.
1216 		 */
1217 		/* fall thru... */
1218 #endif
1219 	case IEEE80211_M_HOSTAP:
1220 	case IEEE80211_M_MBSS:
1221 		sc->sc_opmode = HAL_M_HOSTAP;
1222 		break;
1223 	case IEEE80211_M_MONITOR:
1224 		sc->sc_opmode = HAL_M_MONITOR;
1225 		break;
1226 	default:
1227 		/* XXX should not happen */
1228 		break;
1229 	}
1230 	if (sc->sc_hastsfadd) {
1231 		/*
1232 		 * Configure whether or not TSF adjust should be done.
1233 		 */
1234 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1235 	}
1236 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1237 		/*
1238 		 * Enable s/w beacon miss handling.
1239 		 */
1240 		sc->sc_swbmiss = 1;
1241 	}
1242 	ATH_UNLOCK(sc);
1243 
1244 	/* complete setup */
1245 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1246 	return vap;
1247 bad2:
1248 	reclaim_address(sc, mac);
1249 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1250 bad:
1251 	free(avp, M_80211_VAP);
1252 	ATH_UNLOCK(sc);
1253 	return NULL;
1254 }
1255 
1256 static void
1257 ath_vap_delete(struct ieee80211vap *vap)
1258 {
1259 	struct ieee80211com *ic = vap->iv_ic;
1260 	struct ifnet *ifp = ic->ic_ifp;
1261 	struct ath_softc *sc = ifp->if_softc;
1262 	struct ath_hal *ah = sc->sc_ah;
1263 	struct ath_vap *avp = ATH_VAP(vap);
1264 
1265 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1266 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1267 		/*
1268 		 * Quiesce the hardware while we remove the vap.  In
1269 		 * particular we need to reclaim all references to
1270 		 * the vap state by any frames pending on the tx queues.
1271 		 */
1272 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1273 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1274 		/* XXX Do all frames from all vaps/nodes need draining here? */
1275 		ath_stoprecv(sc, 1);		/* stop recv side */
1276 	}
1277 
1278 	ieee80211_vap_detach(vap);
1279 
1280 	/*
1281 	 * XXX Danger Will Robinson! Danger!
1282 	 *
1283 	 * Because ieee80211_vap_detach() can queue a frame (the station
1284 	 * diassociate message?) after we've drained the TXQ and
1285 	 * flushed the software TXQ, we will end up with a frame queued
1286 	 * to a node whose vap is about to be freed.
1287 	 *
1288 	 * To work around this, flush the hardware/software again.
1289 	 * This may be racy - the ath task may be running and the packet
1290 	 * may be being scheduled between sw->hw txq. Tsk.
1291 	 *
1292 	 * TODO: figure out why a new node gets allocated somewhere around
1293 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1294 	 * call!)
1295 	 */
1296 
1297 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1298 
1299 	ATH_LOCK(sc);
1300 	/*
1301 	 * Reclaim beacon state.  Note this must be done before
1302 	 * the vap instance is reclaimed as we may have a reference
1303 	 * to it in the buffer for the beacon frame.
1304 	 */
1305 	if (avp->av_bcbuf != NULL) {
1306 		if (avp->av_bslot != -1) {
1307 			sc->sc_bslot[avp->av_bslot] = NULL;
1308 			sc->sc_nbcnvaps--;
1309 		}
1310 		ath_beacon_return(sc, avp->av_bcbuf);
1311 		avp->av_bcbuf = NULL;
1312 		if (sc->sc_nbcnvaps == 0) {
1313 			sc->sc_stagbeacons = 0;
1314 			if (sc->sc_hastsfadd)
1315 				ath_hal_settsfadjust(sc->sc_ah, 0);
1316 		}
1317 		/*
1318 		 * Reclaim any pending mcast frames for the vap.
1319 		 */
1320 		ath_tx_draintxq(sc, &avp->av_mcastq);
1321 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1322 	}
1323 	/*
1324 	 * Update bookkeeping.
1325 	 */
1326 	if (vap->iv_opmode == IEEE80211_M_STA) {
1327 		sc->sc_nstavaps--;
1328 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1329 			sc->sc_swbmiss = 0;
1330 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1331 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1332 		reclaim_address(sc, vap->iv_myaddr);
1333 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1334 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1335 			sc->sc_nmeshvaps--;
1336 	}
1337 	if (vap->iv_opmode != IEEE80211_M_WDS)
1338 		sc->sc_nvaps--;
1339 #ifdef IEEE80211_SUPPORT_TDMA
1340 	/* TDMA operation ceases when the last vap is destroyed */
1341 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1342 		sc->sc_tdma = 0;
1343 		sc->sc_swbmiss = 0;
1344 	}
1345 #endif
1346 	free(avp, M_80211_VAP);
1347 
1348 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1349 		/*
1350 		 * Restart rx+tx machines if still running (RUNNING will
1351 		 * be reset if we just destroyed the last vap).
1352 		 */
1353 		if (ath_startrecv(sc) != 0)
1354 			if_printf(ifp, "%s: unable to restart recv logic\n",
1355 			    __func__);
1356 		if (sc->sc_beacons) {		/* restart beacons */
1357 #ifdef IEEE80211_SUPPORT_TDMA
1358 			if (sc->sc_tdma)
1359 				ath_tdma_config(sc, NULL);
1360 			else
1361 #endif
1362 				ath_beacon_config(sc, NULL);
1363 		}
1364 		ath_hal_intrset(ah, sc->sc_imask);
1365 	}
1366 	ATH_UNLOCK(sc);
1367 }
1368 
1369 void
1370 ath_suspend(struct ath_softc *sc)
1371 {
1372 	struct ifnet *ifp = sc->sc_ifp;
1373 	struct ieee80211com *ic = ifp->if_l2com;
1374 
1375 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1376 		__func__, ifp->if_flags);
1377 
1378 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1379 
1380 	ieee80211_suspend_all(ic);
1381 	/*
1382 	 * NB: don't worry about putting the chip in low power
1383 	 * mode; pci will power off our socket on suspend and
1384 	 * CardBus detaches the device.
1385 	 */
1386 
1387 	/*
1388 	 * XXX ensure none of the taskqueues are running
1389 	 * XXX ensure sc_invalid is 1
1390 	 * XXX ensure the calibration callout is disabled
1391 	 */
1392 
1393 	/* Disable the PCIe PHY, complete with workarounds */
1394 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1395 }
1396 
1397 /*
1398  * Reset the key cache since some parts do not reset the
1399  * contents on resume.  First we clear all entries, then
1400  * re-load keys that the 802.11 layer assumes are setup
1401  * in h/w.
1402  */
1403 static void
1404 ath_reset_keycache(struct ath_softc *sc)
1405 {
1406 	struct ifnet *ifp = sc->sc_ifp;
1407 	struct ieee80211com *ic = ifp->if_l2com;
1408 	struct ath_hal *ah = sc->sc_ah;
1409 	int i;
1410 
1411 	for (i = 0; i < sc->sc_keymax; i++)
1412 		ath_hal_keyreset(ah, i);
1413 	ieee80211_crypto_reload_keys(ic);
1414 }
1415 
1416 void
1417 ath_resume(struct ath_softc *sc)
1418 {
1419 	struct ifnet *ifp = sc->sc_ifp;
1420 	struct ieee80211com *ic = ifp->if_l2com;
1421 	struct ath_hal *ah = sc->sc_ah;
1422 	HAL_STATUS status;
1423 
1424 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1425 		__func__, ifp->if_flags);
1426 
1427 	/* Re-enable PCIe, re-enable the PCIe bus */
1428 	ath_hal_enablepcie(ah, 0, 0);
1429 
1430 	/*
1431 	 * Must reset the chip before we reload the
1432 	 * keycache as we were powered down on suspend.
1433 	 */
1434 	ath_hal_reset(ah, sc->sc_opmode,
1435 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1436 	    AH_FALSE, &status);
1437 	ath_reset_keycache(sc);
1438 
1439 	/* Let DFS at it in case it's a DFS channel */
1440 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1441 
1442 	/* Restore the LED configuration */
1443 	ath_led_config(sc);
1444 	ath_hal_setledstate(ah, HAL_LED_INIT);
1445 
1446 	if (sc->sc_resume_up)
1447 		ieee80211_resume_all(ic);
1448 
1449 	/* XXX beacons ? */
1450 }
1451 
1452 void
1453 ath_shutdown(struct ath_softc *sc)
1454 {
1455 	struct ifnet *ifp = sc->sc_ifp;
1456 
1457 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1458 		__func__, ifp->if_flags);
1459 
1460 	ath_stop(ifp);
1461 	/* NB: no point powering down chip as we're about to reboot */
1462 }
1463 
1464 /*
1465  * Interrupt handler.  Most of the actual processing is deferred.
1466  */
1467 void
1468 ath_intr(void *arg)
1469 {
1470 	struct ath_softc *sc = arg;
1471 	struct ifnet *ifp = sc->sc_ifp;
1472 	struct ath_hal *ah = sc->sc_ah;
1473 	HAL_INT status = 0;
1474 	uint32_t txqs;
1475 
1476 	/*
1477 	 * If we're inside a reset path, just print a warning and
1478 	 * clear the ISR. The reset routine will finish it for us.
1479 	 */
1480 	ATH_PCU_LOCK(sc);
1481 	if (sc->sc_inreset_cnt) {
1482 		HAL_INT status;
1483 		ath_hal_getisr(ah, &status);	/* clear ISR */
1484 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1485 		DPRINTF(sc, ATH_DEBUG_ANY,
1486 		    "%s: in reset, ignoring: status=0x%x\n",
1487 		    __func__, status);
1488 		ATH_PCU_UNLOCK(sc);
1489 		return;
1490 	}
1491 
1492 	if (sc->sc_invalid) {
1493 		/*
1494 		 * The hardware is not ready/present, don't touch anything.
1495 		 * Note this can happen early on if the IRQ is shared.
1496 		 */
1497 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1498 		ATH_PCU_UNLOCK(sc);
1499 		return;
1500 	}
1501 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1502 		ATH_PCU_UNLOCK(sc);
1503 		return;
1504 	}
1505 
1506 	if ((ifp->if_flags & IFF_UP) == 0 ||
1507 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1508 		HAL_INT status;
1509 
1510 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1511 			__func__, ifp->if_flags);
1512 		ath_hal_getisr(ah, &status);	/* clear ISR */
1513 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1514 		ATH_PCU_UNLOCK(sc);
1515 		return;
1516 	}
1517 
1518 	/*
1519 	 * Figure out the reason(s) for the interrupt.  Note
1520 	 * that the hal returns a pseudo-ISR that may include
1521 	 * bits we haven't explicitly enabled so we mask the
1522 	 * value to insure we only process bits we requested.
1523 	 */
1524 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1525 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1526 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1527 #ifdef	ATH_KTR_INTR_DEBUG
1528 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1529 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1530 	    ah->ah_intrstate[0],
1531 	    ah->ah_intrstate[1],
1532 	    ah->ah_intrstate[2],
1533 	    ah->ah_intrstate[3],
1534 	    ah->ah_intrstate[6]);
1535 #endif
1536 
1537 	/* Squirrel away SYNC interrupt debugging */
1538 	if (ah->ah_syncstate != 0) {
1539 		int i;
1540 		for (i = 0; i < 32; i++)
1541 			if (ah->ah_syncstate & (i << i))
1542 				sc->sc_intr_stats.sync_intr[i]++;
1543 	}
1544 
1545 	status &= sc->sc_imask;			/* discard unasked for bits */
1546 
1547 	/* Short-circuit un-handled interrupts */
1548 	if (status == 0x0) {
1549 		ATH_PCU_UNLOCK(sc);
1550 		return;
1551 	}
1552 
1553 	/*
1554 	 * Take a note that we're inside the interrupt handler, so
1555 	 * the reset routines know to wait.
1556 	 */
1557 	sc->sc_intr_cnt++;
1558 	ATH_PCU_UNLOCK(sc);
1559 
1560 	/*
1561 	 * Handle the interrupt. We won't run concurrent with the reset
1562 	 * or channel change routines as they'll wait for sc_intr_cnt
1563 	 * to be 0 before continuing.
1564 	 */
1565 	if (status & HAL_INT_FATAL) {
1566 		sc->sc_stats.ast_hardware++;
1567 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1568 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1569 	} else {
1570 		if (status & HAL_INT_SWBA) {
1571 			/*
1572 			 * Software beacon alert--time to send a beacon.
1573 			 * Handle beacon transmission directly; deferring
1574 			 * this is too slow to meet timing constraints
1575 			 * under load.
1576 			 */
1577 #ifdef IEEE80211_SUPPORT_TDMA
1578 			if (sc->sc_tdma) {
1579 				if (sc->sc_tdmaswba == 0) {
1580 					struct ieee80211com *ic = ifp->if_l2com;
1581 					struct ieee80211vap *vap =
1582 					    TAILQ_FIRST(&ic->ic_vaps);
1583 					ath_tdma_beacon_send(sc, vap);
1584 					sc->sc_tdmaswba =
1585 					    vap->iv_tdma->tdma_bintval;
1586 				} else
1587 					sc->sc_tdmaswba--;
1588 			} else
1589 #endif
1590 			{
1591 				ath_beacon_proc(sc, 0);
1592 #ifdef IEEE80211_SUPPORT_SUPERG
1593 				/*
1594 				 * Schedule the rx taskq in case there's no
1595 				 * traffic so any frames held on the staging
1596 				 * queue are aged and potentially flushed.
1597 				 */
1598 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1599 #endif
1600 			}
1601 		}
1602 		if (status & HAL_INT_RXEOL) {
1603 			int imask;
1604 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1605 			ATH_PCU_LOCK(sc);
1606 			/*
1607 			 * NB: the hardware should re-read the link when
1608 			 *     RXE bit is written, but it doesn't work at
1609 			 *     least on older hardware revs.
1610 			 */
1611 			sc->sc_stats.ast_rxeol++;
1612 			/*
1613 			 * Disable RXEOL/RXORN - prevent an interrupt
1614 			 * storm until the PCU logic can be reset.
1615 			 * In case the interface is reset some other
1616 			 * way before "sc_kickpcu" is called, don't
1617 			 * modify sc_imask - that way if it is reset
1618 			 * by a call to ath_reset() somehow, the
1619 			 * interrupt mask will be correctly reprogrammed.
1620 			 */
1621 			imask = sc->sc_imask;
1622 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1623 			ath_hal_intrset(ah, imask);
1624 			/*
1625 			 * Only blank sc_rxlink if we've not yet kicked
1626 			 * the PCU.
1627 			 *
1628 			 * This isn't entirely correct - the correct solution
1629 			 * would be to have a PCU lock and engage that for
1630 			 * the duration of the PCU fiddling; which would include
1631 			 * running the RX process. Otherwise we could end up
1632 			 * messing up the RX descriptor chain and making the
1633 			 * RX desc list much shorter.
1634 			 */
1635 			if (! sc->sc_kickpcu)
1636 				sc->sc_rxlink = NULL;
1637 			sc->sc_kickpcu = 1;
1638 			/*
1639 			 * Enqueue an RX proc, to handled whatever
1640 			 * is in the RX queue.
1641 			 * This will then kick the PCU.
1642 			 */
1643 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1644 			ATH_PCU_UNLOCK(sc);
1645 		}
1646 		if (status & HAL_INT_TXURN) {
1647 			sc->sc_stats.ast_txurn++;
1648 			/* bump tx trigger level */
1649 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1650 		}
1651 		/*
1652 		 * Handle both the legacy and RX EDMA interrupt bits.
1653 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1654 		 */
1655 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1656 			sc->sc_stats.ast_rx_intr++;
1657 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1658 		}
1659 		if (status & HAL_INT_TX) {
1660 			sc->sc_stats.ast_tx_intr++;
1661 			/*
1662 			 * Grab all the currently set bits in the HAL txq bitmap
1663 			 * and blank them. This is the only place we should be
1664 			 * doing this.
1665 			 */
1666 			if (! sc->sc_isedma) {
1667 				ATH_PCU_LOCK(sc);
1668 				txqs = 0xffffffff;
1669 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1670 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1671 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1672 				    txqs,
1673 				    sc->sc_txq_active,
1674 				    sc->sc_txq_active | txqs);
1675 				sc->sc_txq_active |= txqs;
1676 				ATH_PCU_UNLOCK(sc);
1677 			}
1678 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1679 		}
1680 		if (status & HAL_INT_BMISS) {
1681 			sc->sc_stats.ast_bmiss++;
1682 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1683 		}
1684 		if (status & HAL_INT_GTT)
1685 			sc->sc_stats.ast_tx_timeout++;
1686 		if (status & HAL_INT_CST)
1687 			sc->sc_stats.ast_tx_cst++;
1688 		if (status & HAL_INT_MIB) {
1689 			sc->sc_stats.ast_mib++;
1690 			ATH_PCU_LOCK(sc);
1691 			/*
1692 			 * Disable interrupts until we service the MIB
1693 			 * interrupt; otherwise it will continue to fire.
1694 			 */
1695 			ath_hal_intrset(ah, 0);
1696 			/*
1697 			 * Let the hal handle the event.  We assume it will
1698 			 * clear whatever condition caused the interrupt.
1699 			 */
1700 			ath_hal_mibevent(ah, &sc->sc_halstats);
1701 			/*
1702 			 * Don't reset the interrupt if we've just
1703 			 * kicked the PCU, or we may get a nested
1704 			 * RXEOL before the rxproc has had a chance
1705 			 * to run.
1706 			 */
1707 			if (sc->sc_kickpcu == 0)
1708 				ath_hal_intrset(ah, sc->sc_imask);
1709 			ATH_PCU_UNLOCK(sc);
1710 		}
1711 		if (status & HAL_INT_RXORN) {
1712 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1713 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1714 			sc->sc_stats.ast_rxorn++;
1715 		}
1716 	}
1717 	ATH_PCU_LOCK(sc);
1718 	sc->sc_intr_cnt--;
1719 	ATH_PCU_UNLOCK(sc);
1720 }
1721 
1722 static void
1723 ath_fatal_proc(void *arg, int pending)
1724 {
1725 	struct ath_softc *sc = arg;
1726 	struct ifnet *ifp = sc->sc_ifp;
1727 	u_int32_t *state;
1728 	u_int32_t len;
1729 	void *sp;
1730 
1731 	if_printf(ifp, "hardware error; resetting\n");
1732 	/*
1733 	 * Fatal errors are unrecoverable.  Typically these
1734 	 * are caused by DMA errors.  Collect h/w state from
1735 	 * the hal so we can diagnose what's going on.
1736 	 */
1737 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1738 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1739 		state = sp;
1740 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1741 		    state[0], state[1] , state[2], state[3],
1742 		    state[4], state[5]);
1743 	}
1744 	ath_reset(ifp, ATH_RESET_NOLOSS);
1745 }
1746 
1747 static void
1748 ath_bmiss_vap(struct ieee80211vap *vap)
1749 {
1750 	/*
1751 	 * Workaround phantom bmiss interrupts by sanity-checking
1752 	 * the time of our last rx'd frame.  If it is within the
1753 	 * beacon miss interval then ignore the interrupt.  If it's
1754 	 * truly a bmiss we'll get another interrupt soon and that'll
1755 	 * be dispatched up for processing.  Note this applies only
1756 	 * for h/w beacon miss events.
1757 	 */
1758 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1759 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1760 		struct ath_softc *sc = ifp->if_softc;
1761 		u_int64_t lastrx = sc->sc_lastrx;
1762 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1763 		/* XXX should take a locked ref to iv_bss */
1764 		u_int bmisstimeout =
1765 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1766 
1767 		DPRINTF(sc, ATH_DEBUG_BEACON,
1768 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1769 		    __func__, (unsigned long long) tsf,
1770 		    (unsigned long long)(tsf - lastrx),
1771 		    (unsigned long long) lastrx, bmisstimeout);
1772 
1773 		if (tsf - lastrx <= bmisstimeout) {
1774 			sc->sc_stats.ast_bmiss_phantom++;
1775 			return;
1776 		}
1777 	}
1778 	ATH_VAP(vap)->av_bmiss(vap);
1779 }
1780 
1781 static int
1782 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1783 {
1784 	uint32_t rsize;
1785 	void *sp;
1786 
1787 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1788 		return 0;
1789 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1790 	*hangs = *(uint32_t *)sp;
1791 	return 1;
1792 }
1793 
1794 static void
1795 ath_bmiss_proc(void *arg, int pending)
1796 {
1797 	struct ath_softc *sc = arg;
1798 	struct ifnet *ifp = sc->sc_ifp;
1799 	uint32_t hangs;
1800 
1801 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1802 
1803 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1804 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1805 		ath_reset(ifp, ATH_RESET_NOLOSS);
1806 	} else
1807 		ieee80211_beacon_miss(ifp->if_l2com);
1808 }
1809 
1810 /*
1811  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1812  * calcs together with WME.  If necessary disable the crypto
1813  * hardware and mark the 802.11 state so keys will be setup
1814  * with the MIC work done in software.
1815  */
1816 static void
1817 ath_settkipmic(struct ath_softc *sc)
1818 {
1819 	struct ifnet *ifp = sc->sc_ifp;
1820 	struct ieee80211com *ic = ifp->if_l2com;
1821 
1822 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1823 		if (ic->ic_flags & IEEE80211_F_WME) {
1824 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1825 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1826 		} else {
1827 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1828 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1829 		}
1830 	}
1831 }
1832 
1833 static void
1834 ath_init(void *arg)
1835 {
1836 	struct ath_softc *sc = (struct ath_softc *) arg;
1837 	struct ifnet *ifp = sc->sc_ifp;
1838 	struct ieee80211com *ic = ifp->if_l2com;
1839 	struct ath_hal *ah = sc->sc_ah;
1840 	HAL_STATUS status;
1841 
1842 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1843 		__func__, ifp->if_flags);
1844 
1845 	ATH_LOCK(sc);
1846 	/*
1847 	 * Stop anything previously setup.  This is safe
1848 	 * whether this is the first time through or not.
1849 	 */
1850 	ath_stop_locked(ifp);
1851 
1852 	/*
1853 	 * The basic interface to setting the hardware in a good
1854 	 * state is ``reset''.  On return the hardware is known to
1855 	 * be powered up and with interrupts disabled.  This must
1856 	 * be followed by initialization of the appropriate bits
1857 	 * and then setup of the interrupt mask.
1858 	 */
1859 	ath_settkipmic(sc);
1860 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1861 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1862 			status);
1863 		ATH_UNLOCK(sc);
1864 		return;
1865 	}
1866 	ath_chan_change(sc, ic->ic_curchan);
1867 
1868 	/* Let DFS at it in case it's a DFS channel */
1869 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1870 
1871 	/*
1872 	 * Likewise this is set during reset so update
1873 	 * state cached in the driver.
1874 	 */
1875 	sc->sc_diversity = ath_hal_getdiversity(ah);
1876 	sc->sc_lastlongcal = 0;
1877 	sc->sc_resetcal = 1;
1878 	sc->sc_lastcalreset = 0;
1879 	sc->sc_lastani = 0;
1880 	sc->sc_lastshortcal = 0;
1881 	sc->sc_doresetcal = AH_FALSE;
1882 	/*
1883 	 * Beacon timers were cleared here; give ath_newstate()
1884 	 * a hint that the beacon timers should be poked when
1885 	 * things transition to the RUN state.
1886 	 */
1887 	sc->sc_beacons = 0;
1888 
1889 	/*
1890 	 * Setup the hardware after reset: the key cache
1891 	 * is filled as needed and the receive engine is
1892 	 * set going.  Frame transmit is handled entirely
1893 	 * in the frame output path; there's nothing to do
1894 	 * here except setup the interrupt mask.
1895 	 */
1896 	if (ath_startrecv(sc) != 0) {
1897 		if_printf(ifp, "unable to start recv logic\n");
1898 		ATH_UNLOCK(sc);
1899 		return;
1900 	}
1901 
1902 	/*
1903 	 * Enable interrupts.
1904 	 */
1905 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1906 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1907 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1908 
1909 	/*
1910 	 * Enable RX EDMA bits.  Note these overlap with
1911 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
1912 	 */
1913 	if (sc->sc_isedma)
1914 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
1915 
1916 	/*
1917 	 * Enable MIB interrupts when there are hardware phy counters.
1918 	 * Note we only do this (at the moment) for station mode.
1919 	 */
1920 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1921 		sc->sc_imask |= HAL_INT_MIB;
1922 
1923 	/* Enable global TX timeout and carrier sense timeout if available */
1924 	if (ath_hal_gtxto_supported(ah))
1925 		sc->sc_imask |= HAL_INT_GTT;
1926 
1927 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1928 		__func__, sc->sc_imask);
1929 
1930 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1931 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1932 	ath_hal_intrset(ah, sc->sc_imask);
1933 
1934 	ATH_UNLOCK(sc);
1935 
1936 #ifdef ATH_TX99_DIAG
1937 	if (sc->sc_tx99 != NULL)
1938 		sc->sc_tx99->start(sc->sc_tx99);
1939 	else
1940 #endif
1941 	ieee80211_start_all(ic);		/* start all vap's */
1942 }
1943 
1944 static void
1945 ath_stop_locked(struct ifnet *ifp)
1946 {
1947 	struct ath_softc *sc = ifp->if_softc;
1948 	struct ath_hal *ah = sc->sc_ah;
1949 
1950 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1951 		__func__, sc->sc_invalid, ifp->if_flags);
1952 
1953 	ATH_LOCK_ASSERT(sc);
1954 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1955 		/*
1956 		 * Shutdown the hardware and driver:
1957 		 *    reset 802.11 state machine
1958 		 *    turn off timers
1959 		 *    disable interrupts
1960 		 *    turn off the radio
1961 		 *    clear transmit machinery
1962 		 *    clear receive machinery
1963 		 *    drain and release tx queues
1964 		 *    reclaim beacon resources
1965 		 *    power down hardware
1966 		 *
1967 		 * Note that some of this work is not possible if the
1968 		 * hardware is gone (invalid).
1969 		 */
1970 #ifdef ATH_TX99_DIAG
1971 		if (sc->sc_tx99 != NULL)
1972 			sc->sc_tx99->stop(sc->sc_tx99);
1973 #endif
1974 		callout_stop(&sc->sc_wd_ch);
1975 		sc->sc_wd_timer = 0;
1976 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1977 		if (!sc->sc_invalid) {
1978 			if (sc->sc_softled) {
1979 				callout_stop(&sc->sc_ledtimer);
1980 				ath_hal_gpioset(ah, sc->sc_ledpin,
1981 					!sc->sc_ledon);
1982 				sc->sc_blinking = 0;
1983 			}
1984 			ath_hal_intrset(ah, 0);
1985 		}
1986 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1987 		if (!sc->sc_invalid) {
1988 			ath_stoprecv(sc, 1);
1989 			ath_hal_phydisable(ah);
1990 		} else
1991 			sc->sc_rxlink = NULL;
1992 		ath_beacon_free(sc);	/* XXX not needed */
1993 	}
1994 }
1995 
1996 #define	MAX_TXRX_ITERATIONS	1000
1997 static void
1998 ath_txrx_stop_locked(struct ath_softc *sc)
1999 {
2000 	int i = MAX_TXRX_ITERATIONS;
2001 
2002 	ATH_UNLOCK_ASSERT(sc);
2003 	ATH_PCU_LOCK_ASSERT(sc);
2004 
2005 	/*
2006 	 * Sleep until all the pending operations have completed.
2007 	 *
2008 	 * The caller must ensure that reset has been incremented
2009 	 * or the pending operations may continue being queued.
2010 	 */
2011 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2012 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2013 		if (i <= 0)
2014 			break;
2015 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2016 		i--;
2017 	}
2018 
2019 	if (i <= 0)
2020 		device_printf(sc->sc_dev,
2021 		    "%s: didn't finish after %d iterations\n",
2022 		    __func__, MAX_TXRX_ITERATIONS);
2023 }
2024 #undef	MAX_TXRX_ITERATIONS
2025 
2026 #if 0
2027 static void
2028 ath_txrx_stop(struct ath_softc *sc)
2029 {
2030 	ATH_UNLOCK_ASSERT(sc);
2031 	ATH_PCU_UNLOCK_ASSERT(sc);
2032 
2033 	ATH_PCU_LOCK(sc);
2034 	ath_txrx_stop_locked(sc);
2035 	ATH_PCU_UNLOCK(sc);
2036 }
2037 #endif
2038 
2039 static void
2040 ath_txrx_start(struct ath_softc *sc)
2041 {
2042 
2043 	taskqueue_unblock(sc->sc_tq);
2044 }
2045 
2046 /*
2047  * Grab the reset lock, and wait around until noone else
2048  * is trying to do anything with it.
2049  *
2050  * This is totally horrible but we can't hold this lock for
2051  * long enough to do TX/RX or we end up with net80211/ip stack
2052  * LORs and eventual deadlock.
2053  *
2054  * "dowait" signals whether to spin, waiting for the reset
2055  * lock count to reach 0. This should (for now) only be used
2056  * during the reset path, as the rest of the code may not
2057  * be locking-reentrant enough to behave correctly.
2058  *
2059  * Another, cleaner way should be found to serialise all of
2060  * these operations.
2061  */
2062 #define	MAX_RESET_ITERATIONS	10
2063 static int
2064 ath_reset_grablock(struct ath_softc *sc, int dowait)
2065 {
2066 	int w = 0;
2067 	int i = MAX_RESET_ITERATIONS;
2068 
2069 	ATH_PCU_LOCK_ASSERT(sc);
2070 	do {
2071 		if (sc->sc_inreset_cnt == 0) {
2072 			w = 1;
2073 			break;
2074 		}
2075 		if (dowait == 0) {
2076 			w = 0;
2077 			break;
2078 		}
2079 		ATH_PCU_UNLOCK(sc);
2080 		pause("ath_reset_grablock", 1);
2081 		i--;
2082 		ATH_PCU_LOCK(sc);
2083 	} while (i > 0);
2084 
2085 	/*
2086 	 * We always increment the refcounter, regardless
2087 	 * of whether we succeeded to get it in an exclusive
2088 	 * way.
2089 	 */
2090 	sc->sc_inreset_cnt++;
2091 
2092 	if (i <= 0)
2093 		device_printf(sc->sc_dev,
2094 		    "%s: didn't finish after %d iterations\n",
2095 		    __func__, MAX_RESET_ITERATIONS);
2096 
2097 	if (w == 0)
2098 		device_printf(sc->sc_dev,
2099 		    "%s: warning, recursive reset path!\n",
2100 		    __func__);
2101 
2102 	return w;
2103 }
2104 #undef MAX_RESET_ITERATIONS
2105 
2106 /*
2107  * XXX TODO: write ath_reset_releaselock
2108  */
2109 
2110 static void
2111 ath_stop(struct ifnet *ifp)
2112 {
2113 	struct ath_softc *sc = ifp->if_softc;
2114 
2115 	ATH_LOCK(sc);
2116 	ath_stop_locked(ifp);
2117 	ATH_UNLOCK(sc);
2118 }
2119 
2120 /*
2121  * Reset the hardware w/o losing operational state.  This is
2122  * basically a more efficient way of doing ath_stop, ath_init,
2123  * followed by state transitions to the current 802.11
2124  * operational state.  Used to recover from various errors and
2125  * to reset or reload hardware state.
2126  */
2127 int
2128 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2129 {
2130 	struct ath_softc *sc = ifp->if_softc;
2131 	struct ieee80211com *ic = ifp->if_l2com;
2132 	struct ath_hal *ah = sc->sc_ah;
2133 	HAL_STATUS status;
2134 	int i;
2135 
2136 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2137 
2138 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2139 	ATH_PCU_UNLOCK_ASSERT(sc);
2140 	ATH_UNLOCK_ASSERT(sc);
2141 
2142 	/* Try to (stop any further TX/RX from occuring */
2143 	taskqueue_block(sc->sc_tq);
2144 
2145 	ATH_PCU_LOCK(sc);
2146 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2147 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2148 	if (ath_reset_grablock(sc, 1) == 0) {
2149 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2150 		    __func__);
2151 	}
2152 	ATH_PCU_UNLOCK(sc);
2153 
2154 	/*
2155 	 * Should now wait for pending TX/RX to complete
2156 	 * and block future ones from occuring. This needs to be
2157 	 * done before the TX queue is drained.
2158 	 */
2159 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2160 
2161 	/*
2162 	 * Regardless of whether we're doing a no-loss flush or
2163 	 * not, stop the PCU and handle what's in the RX queue.
2164 	 * That way frames aren't dropped which shouldn't be.
2165 	 */
2166 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2167 	ath_rx_flush(sc);
2168 
2169 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2170 	/* NB: indicate channel change so we do a full reset */
2171 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2172 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2173 			__func__, status);
2174 	sc->sc_diversity = ath_hal_getdiversity(ah);
2175 
2176 	/* Let DFS at it in case it's a DFS channel */
2177 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2178 
2179 	if (ath_startrecv(sc) != 0)	/* restart recv */
2180 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2181 	/*
2182 	 * We may be doing a reset in response to an ioctl
2183 	 * that changes the channel so update any state that
2184 	 * might change as a result.
2185 	 */
2186 	ath_chan_change(sc, ic->ic_curchan);
2187 	if (sc->sc_beacons) {		/* restart beacons */
2188 #ifdef IEEE80211_SUPPORT_TDMA
2189 		if (sc->sc_tdma)
2190 			ath_tdma_config(sc, NULL);
2191 		else
2192 #endif
2193 			ath_beacon_config(sc, NULL);
2194 	}
2195 
2196 	/*
2197 	 * Release the reset lock and re-enable interrupts here.
2198 	 * If an interrupt was being processed in ath_intr(),
2199 	 * it would disable interrupts at this point. So we have
2200 	 * to atomically enable interrupts and decrement the
2201 	 * reset counter - this way ath_intr() doesn't end up
2202 	 * disabling interrupts without a corresponding enable
2203 	 * in the rest or channel change path.
2204 	 */
2205 	ATH_PCU_LOCK(sc);
2206 	sc->sc_inreset_cnt--;
2207 	/* XXX only do this if sc_inreset_cnt == 0? */
2208 	ath_hal_intrset(ah, sc->sc_imask);
2209 	ATH_PCU_UNLOCK(sc);
2210 
2211 	/*
2212 	 * TX and RX can be started here. If it were started with
2213 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2214 	 * Thus if this is a nested call through the reset or
2215 	 * channel change code, TX completion will occur but
2216 	 * RX completion and ath_start / ath_tx_start will not
2217 	 * run.
2218 	 */
2219 
2220 	/* Restart TX/RX as needed */
2221 	ath_txrx_start(sc);
2222 
2223 	/* XXX Restart TX completion and pending TX */
2224 	if (reset_type == ATH_RESET_NOLOSS) {
2225 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2226 			if (ATH_TXQ_SETUP(sc, i)) {
2227 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2228 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2229 				ath_txq_sched(sc, &sc->sc_txq[i]);
2230 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2231 			}
2232 		}
2233 	}
2234 
2235 	/*
2236 	 * This may have been set during an ath_start() call which
2237 	 * set this once it detected a concurrent TX was going on.
2238 	 * So, clear it.
2239 	 */
2240 	IF_LOCK(&ifp->if_snd);
2241 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2242 	IF_UNLOCK(&ifp->if_snd);
2243 
2244 	/* Handle any frames in the TX queue */
2245 	/*
2246 	 * XXX should this be done by the caller, rather than
2247 	 * ath_reset() ?
2248 	 */
2249 	ath_start(ifp);			/* restart xmit */
2250 	return 0;
2251 }
2252 
2253 static int
2254 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2255 {
2256 	struct ieee80211com *ic = vap->iv_ic;
2257 	struct ifnet *ifp = ic->ic_ifp;
2258 	struct ath_softc *sc = ifp->if_softc;
2259 	struct ath_hal *ah = sc->sc_ah;
2260 
2261 	switch (cmd) {
2262 	case IEEE80211_IOC_TXPOWER:
2263 		/*
2264 		 * If per-packet TPC is enabled, then we have nothing
2265 		 * to do; otherwise we need to force the global limit.
2266 		 * All this can happen directly; no need to reset.
2267 		 */
2268 		if (!ath_hal_gettpc(ah))
2269 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2270 		return 0;
2271 	}
2272 	/* XXX? Full or NOLOSS? */
2273 	return ath_reset(ifp, ATH_RESET_FULL);
2274 }
2275 
2276 struct ath_buf *
2277 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2278 {
2279 	struct ath_buf *bf;
2280 
2281 	ATH_TXBUF_LOCK_ASSERT(sc);
2282 
2283 	if (btype == ATH_BUFTYPE_MGMT)
2284 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2285 	else
2286 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2287 
2288 	if (bf == NULL) {
2289 		sc->sc_stats.ast_tx_getnobuf++;
2290 	} else {
2291 		if (bf->bf_flags & ATH_BUF_BUSY) {
2292 			sc->sc_stats.ast_tx_getbusybuf++;
2293 			bf = NULL;
2294 		}
2295 	}
2296 
2297 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2298 		if (btype == ATH_BUFTYPE_MGMT)
2299 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2300 		else {
2301 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2302 			sc->sc_txbuf_cnt--;
2303 
2304 			/*
2305 			 * This shuldn't happen; however just to be
2306 			 * safe print a warning and fudge the txbuf
2307 			 * count.
2308 			 */
2309 			if (sc->sc_txbuf_cnt < 0) {
2310 				device_printf(sc->sc_dev,
2311 				    "%s: sc_txbuf_cnt < 0?\n",
2312 				    __func__);
2313 				sc->sc_txbuf_cnt = 0;
2314 			}
2315 		}
2316 	} else
2317 		bf = NULL;
2318 
2319 	if (bf == NULL) {
2320 		/* XXX should check which list, mgmt or otherwise */
2321 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2322 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2323 			"out of xmit buffers" : "xmit buffer busy");
2324 		return NULL;
2325 	}
2326 
2327 	/* XXX TODO: should do this at buffer list initialisation */
2328 	/* XXX (then, ensure the buffer has the right flag set) */
2329 	if (btype == ATH_BUFTYPE_MGMT)
2330 		bf->bf_flags |= ATH_BUF_MGMT;
2331 	else
2332 		bf->bf_flags &= (~ATH_BUF_MGMT);
2333 
2334 	/* Valid bf here; clear some basic fields */
2335 	bf->bf_next = NULL;	/* XXX just to be sure */
2336 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2337 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2338 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2339 
2340 	/*
2341 	 * Track the descriptor ID only if doing EDMA
2342 	 */
2343 	if (sc->sc_isedma) {
2344 		bf->bf_descid = sc->sc_txbuf_descid;
2345 		sc->sc_txbuf_descid++;
2346 	}
2347 
2348 	return bf;
2349 }
2350 
2351 /*
2352  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2353  * can't be thrown back on the queue as they could still be
2354  * in use by the hardware.
2355  *
2356  * This duplicates the buffer, or returns NULL.
2357  *
2358  * The descriptor is also copied but the link pointers and
2359  * the DMA segments aren't copied; this frame should thus
2360  * be again passed through the descriptor setup/chain routines
2361  * so the link is correct.
2362  *
2363  * The caller must free the buffer using ath_freebuf().
2364  *
2365  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2366  * XXX in the TX pathway when retries are needed.
2367  * XXX Figure out how to keep some buffers free, or factor the
2368  * XXX number of busy buffers into the xmit path (ath_start())
2369  * XXX so we don't over-commit.
2370  */
2371 struct ath_buf *
2372 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2373 {
2374 	struct ath_buf *tbf;
2375 
2376 	tbf = ath_getbuf(sc,
2377 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2378 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2379 	if (tbf == NULL)
2380 		return NULL;	/* XXX failure? Why? */
2381 
2382 	/* Copy basics */
2383 	tbf->bf_next = NULL;
2384 	tbf->bf_nseg = bf->bf_nseg;
2385 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2386 	tbf->bf_status = bf->bf_status;
2387 	tbf->bf_m = bf->bf_m;
2388 	tbf->bf_node = bf->bf_node;
2389 	/* will be setup by the chain/setup function */
2390 	tbf->bf_lastds = NULL;
2391 	/* for now, last == self */
2392 	tbf->bf_last = tbf;
2393 	tbf->bf_comp = bf->bf_comp;
2394 
2395 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2396 
2397 	/* The caller has to re-init the descriptor + links */
2398 
2399 	/* Copy state */
2400 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2401 
2402 	return tbf;
2403 }
2404 
2405 struct ath_buf *
2406 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2407 {
2408 	struct ath_buf *bf;
2409 
2410 	ATH_TXBUF_LOCK(sc);
2411 	bf = _ath_getbuf_locked(sc, btype);
2412 	/*
2413 	 * If a mgmt buffer was requested but we're out of those,
2414 	 * try requesting a normal one.
2415 	 */
2416 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2417 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2418 	ATH_TXBUF_UNLOCK(sc);
2419 	if (bf == NULL) {
2420 		struct ifnet *ifp = sc->sc_ifp;
2421 
2422 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2423 		sc->sc_stats.ast_tx_qstop++;
2424 		IF_LOCK(&ifp->if_snd);
2425 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2426 		IF_UNLOCK(&ifp->if_snd);
2427 	}
2428 	return bf;
2429 }
2430 
2431 void
2432 ath_start(struct ifnet *ifp)
2433 {
2434 	struct ath_softc *sc = ifp->if_softc;
2435 	struct ieee80211_node *ni;
2436 	struct ath_buf *bf;
2437 	struct mbuf *m, *next;
2438 	ath_bufhead frags;
2439 
2440 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2441 		return;
2442 
2443 	/* XXX is it ok to hold the ATH_LOCK here? */
2444 	ATH_PCU_LOCK(sc);
2445 	if (sc->sc_inreset_cnt > 0) {
2446 		device_printf(sc->sc_dev,
2447 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2448 		ATH_PCU_UNLOCK(sc);
2449 		IF_LOCK(&ifp->if_snd);
2450 		sc->sc_stats.ast_tx_qstop++;
2451 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2452 		IF_UNLOCK(&ifp->if_snd);
2453 		return;
2454 	}
2455 	sc->sc_txstart_cnt++;
2456 	ATH_PCU_UNLOCK(sc);
2457 
2458 	for (;;) {
2459 		ATH_TXBUF_LOCK(sc);
2460 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2461 			/* XXX increment counter? */
2462 			ATH_TXBUF_UNLOCK(sc);
2463 			IF_LOCK(&ifp->if_snd);
2464 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2465 			IF_UNLOCK(&ifp->if_snd);
2466 			break;
2467 		}
2468 		ATH_TXBUF_UNLOCK(sc);
2469 
2470 		/*
2471 		 * Grab a TX buffer and associated resources.
2472 		 */
2473 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2474 		if (bf == NULL)
2475 			break;
2476 
2477 		IFQ_DEQUEUE(&ifp->if_snd, m);
2478 		if (m == NULL) {
2479 			ATH_TXBUF_LOCK(sc);
2480 			ath_returnbuf_head(sc, bf);
2481 			ATH_TXBUF_UNLOCK(sc);
2482 			break;
2483 		}
2484 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2485 		/*
2486 		 * Check for fragmentation.  If this frame
2487 		 * has been broken up verify we have enough
2488 		 * buffers to send all the fragments so all
2489 		 * go out or none...
2490 		 */
2491 		TAILQ_INIT(&frags);
2492 		if ((m->m_flags & M_FRAG) &&
2493 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2494 			DPRINTF(sc, ATH_DEBUG_XMIT,
2495 			    "%s: out of txfrag buffers\n", __func__);
2496 			sc->sc_stats.ast_tx_nofrag++;
2497 			ifp->if_oerrors++;
2498 			ath_freetx(m);
2499 			goto bad;
2500 		}
2501 		ifp->if_opackets++;
2502 	nextfrag:
2503 		/*
2504 		 * Pass the frame to the h/w for transmission.
2505 		 * Fragmented frames have each frag chained together
2506 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2507 		 * to send all the frags because of work done by
2508 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2509 		 * calling ath_tx_start so it can use it to extend the
2510 		 * the tx duration to cover the subsequent frag and
2511 		 * so it can reclaim all the mbufs in case of an error;
2512 		 * ath_tx_start clears m_nextpkt once it commits to
2513 		 * handing the frame to the hardware.
2514 		 */
2515 		next = m->m_nextpkt;
2516 		if (ath_tx_start(sc, ni, bf, m)) {
2517 	bad:
2518 			ifp->if_oerrors++;
2519 	reclaim:
2520 			bf->bf_m = NULL;
2521 			bf->bf_node = NULL;
2522 			ATH_TXBUF_LOCK(sc);
2523 			ath_returnbuf_head(sc, bf);
2524 			ath_txfrag_cleanup(sc, &frags, ni);
2525 			ATH_TXBUF_UNLOCK(sc);
2526 			if (ni != NULL)
2527 				ieee80211_free_node(ni);
2528 			continue;
2529 		}
2530 		if (next != NULL) {
2531 			/*
2532 			 * Beware of state changing between frags.
2533 			 * XXX check sta power-save state?
2534 			 */
2535 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2536 				DPRINTF(sc, ATH_DEBUG_XMIT,
2537 				    "%s: flush fragmented packet, state %s\n",
2538 				    __func__,
2539 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2540 				ath_freetx(next);
2541 				goto reclaim;
2542 			}
2543 			m = next;
2544 			bf = TAILQ_FIRST(&frags);
2545 			KASSERT(bf != NULL, ("no buf for txfrag"));
2546 			TAILQ_REMOVE(&frags, bf, bf_list);
2547 			goto nextfrag;
2548 		}
2549 
2550 		sc->sc_wd_timer = 5;
2551 	}
2552 
2553 	ATH_PCU_LOCK(sc);
2554 	sc->sc_txstart_cnt--;
2555 	ATH_PCU_UNLOCK(sc);
2556 }
2557 
2558 static int
2559 ath_media_change(struct ifnet *ifp)
2560 {
2561 	int error = ieee80211_media_change(ifp);
2562 	/* NB: only the fixed rate can change and that doesn't need a reset */
2563 	return (error == ENETRESET ? 0 : error);
2564 }
2565 
2566 /*
2567  * Block/unblock tx+rx processing while a key change is done.
2568  * We assume the caller serializes key management operations
2569  * so we only need to worry about synchronization with other
2570  * uses that originate in the driver.
2571  */
2572 static void
2573 ath_key_update_begin(struct ieee80211vap *vap)
2574 {
2575 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2576 	struct ath_softc *sc = ifp->if_softc;
2577 
2578 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2579 	taskqueue_block(sc->sc_tq);
2580 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2581 }
2582 
2583 static void
2584 ath_key_update_end(struct ieee80211vap *vap)
2585 {
2586 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2587 	struct ath_softc *sc = ifp->if_softc;
2588 
2589 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2590 	IF_UNLOCK(&ifp->if_snd);
2591 	taskqueue_unblock(sc->sc_tq);
2592 }
2593 
2594 static void
2595 ath_update_promisc(struct ifnet *ifp)
2596 {
2597 	struct ath_softc *sc = ifp->if_softc;
2598 	u_int32_t rfilt;
2599 
2600 	/* configure rx filter */
2601 	rfilt = ath_calcrxfilter(sc);
2602 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2603 
2604 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2605 }
2606 
2607 static void
2608 ath_update_mcast(struct ifnet *ifp)
2609 {
2610 	struct ath_softc *sc = ifp->if_softc;
2611 	u_int32_t mfilt[2];
2612 
2613 	/* calculate and install multicast filter */
2614 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2615 		struct ifmultiaddr *ifma;
2616 		/*
2617 		 * Merge multicast addresses to form the hardware filter.
2618 		 */
2619 		mfilt[0] = mfilt[1] = 0;
2620 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2621 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2622 			caddr_t dl;
2623 			u_int32_t val;
2624 			u_int8_t pos;
2625 
2626 			/* calculate XOR of eight 6bit values */
2627 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2628 			val = LE_READ_4(dl + 0);
2629 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2630 			val = LE_READ_4(dl + 3);
2631 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2632 			pos &= 0x3f;
2633 			mfilt[pos / 32] |= (1 << (pos % 32));
2634 		}
2635 		if_maddr_runlock(ifp);
2636 	} else
2637 		mfilt[0] = mfilt[1] = ~0;
2638 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2639 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2640 		__func__, mfilt[0], mfilt[1]);
2641 }
2642 
2643 void
2644 ath_mode_init(struct ath_softc *sc)
2645 {
2646 	struct ifnet *ifp = sc->sc_ifp;
2647 	struct ath_hal *ah = sc->sc_ah;
2648 	u_int32_t rfilt;
2649 
2650 	/* configure rx filter */
2651 	rfilt = ath_calcrxfilter(sc);
2652 	ath_hal_setrxfilter(ah, rfilt);
2653 
2654 	/* configure operational mode */
2655 	ath_hal_setopmode(ah);
2656 
2657 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2658 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2659 	    __func__,
2660 	    ah,
2661 	    ifp,
2662 	    (ifp == NULL) ? NULL : ifp->if_addr);
2663 
2664 	/* handle any link-level address change */
2665 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2666 
2667 	/* calculate and install multicast filter */
2668 	ath_update_mcast(ifp);
2669 }
2670 
2671 /*
2672  * Set the slot time based on the current setting.
2673  */
2674 void
2675 ath_setslottime(struct ath_softc *sc)
2676 {
2677 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2678 	struct ath_hal *ah = sc->sc_ah;
2679 	u_int usec;
2680 
2681 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2682 		usec = 13;
2683 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2684 		usec = 21;
2685 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2686 		/* honor short/long slot time only in 11g */
2687 		/* XXX shouldn't honor on pure g or turbo g channel */
2688 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2689 			usec = HAL_SLOT_TIME_9;
2690 		else
2691 			usec = HAL_SLOT_TIME_20;
2692 	} else
2693 		usec = HAL_SLOT_TIME_9;
2694 
2695 	DPRINTF(sc, ATH_DEBUG_RESET,
2696 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2697 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2698 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2699 
2700 	ath_hal_setslottime(ah, usec);
2701 	sc->sc_updateslot = OK;
2702 }
2703 
2704 /*
2705  * Callback from the 802.11 layer to update the
2706  * slot time based on the current setting.
2707  */
2708 static void
2709 ath_updateslot(struct ifnet *ifp)
2710 {
2711 	struct ath_softc *sc = ifp->if_softc;
2712 	struct ieee80211com *ic = ifp->if_l2com;
2713 
2714 	/*
2715 	 * When not coordinating the BSS, change the hardware
2716 	 * immediately.  For other operation we defer the change
2717 	 * until beacon updates have propagated to the stations.
2718 	 */
2719 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2720 	    ic->ic_opmode == IEEE80211_M_MBSS)
2721 		sc->sc_updateslot = UPDATE;
2722 	else
2723 		ath_setslottime(sc);
2724 }
2725 
2726 /*
2727  * Append the contents of src to dst; both queues
2728  * are assumed to be locked.
2729  */
2730 void
2731 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2732 {
2733 
2734 	ATH_TXQ_LOCK_ASSERT(dst);
2735 	ATH_TXQ_LOCK_ASSERT(src);
2736 
2737 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2738 	dst->axq_link = src->axq_link;
2739 	src->axq_link = NULL;
2740 	dst->axq_depth += src->axq_depth;
2741 	dst->axq_aggr_depth += src->axq_aggr_depth;
2742 	src->axq_depth = 0;
2743 	src->axq_aggr_depth = 0;
2744 }
2745 
2746 /*
2747  * Reset the hardware, with no loss.
2748  *
2749  * This can't be used for a general case reset.
2750  */
2751 static void
2752 ath_reset_proc(void *arg, int pending)
2753 {
2754 	struct ath_softc *sc = arg;
2755 	struct ifnet *ifp = sc->sc_ifp;
2756 
2757 #if 0
2758 	if_printf(ifp, "%s: resetting\n", __func__);
2759 #endif
2760 	ath_reset(ifp, ATH_RESET_NOLOSS);
2761 }
2762 
2763 /*
2764  * Reset the hardware after detecting beacons have stopped.
2765  */
2766 static void
2767 ath_bstuck_proc(void *arg, int pending)
2768 {
2769 	struct ath_softc *sc = arg;
2770 	struct ifnet *ifp = sc->sc_ifp;
2771 	uint32_t hangs = 0;
2772 
2773 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2774 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2775 
2776 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2777 		sc->sc_bmisscount);
2778 	sc->sc_stats.ast_bstuck++;
2779 	/*
2780 	 * This assumes that there's no simultaneous channel mode change
2781 	 * occuring.
2782 	 */
2783 	ath_reset(ifp, ATH_RESET_NOLOSS);
2784 }
2785 
2786 static void
2787 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2788 {
2789 	bus_addr_t *paddr = (bus_addr_t*) arg;
2790 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2791 	*paddr = segs->ds_addr;
2792 }
2793 
2794 /*
2795  * Allocate the descriptors and appropriate DMA tag/setup.
2796  *
2797  * For some situations (eg EDMA TX completion), there isn't a requirement
2798  * for the ath_buf entries to be allocated.
2799  */
2800 int
2801 ath_descdma_alloc_desc(struct ath_softc *sc,
2802 	struct ath_descdma *dd, ath_bufhead *head,
2803 	const char *name, int ds_size, int ndesc)
2804 {
2805 #define	DS2PHYS(_dd, _ds) \
2806 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2807 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2808 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2809 	struct ifnet *ifp = sc->sc_ifp;
2810 	int error;
2811 
2812 	dd->dd_descsize = ds_size;
2813 
2814 	DPRINTF(sc, ATH_DEBUG_RESET,
2815 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
2816 	    __func__, name, ndesc, dd->dd_descsize);
2817 
2818 	dd->dd_name = name;
2819 	dd->dd_desc_len = dd->dd_descsize * ndesc;
2820 
2821 	/*
2822 	 * Merlin work-around:
2823 	 * Descriptors that cross the 4KB boundary can't be used.
2824 	 * Assume one skipped descriptor per 4KB page.
2825 	 */
2826 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2827 		int numpages = dd->dd_desc_len / 4096;
2828 		dd->dd_desc_len += ds_size * numpages;
2829 	}
2830 
2831 	/*
2832 	 * Setup DMA descriptor area.
2833 	 */
2834 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2835 		       PAGE_SIZE, 0,		/* alignment, bounds */
2836 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2837 		       BUS_SPACE_MAXADDR,	/* highaddr */
2838 		       NULL, NULL,		/* filter, filterarg */
2839 		       dd->dd_desc_len,		/* maxsize */
2840 		       1,			/* nsegments */
2841 		       dd->dd_desc_len,		/* maxsegsize */
2842 		       BUS_DMA_ALLOCNOW,	/* flags */
2843 		       NULL,			/* lockfunc */
2844 		       NULL,			/* lockarg */
2845 		       &dd->dd_dmat);
2846 	if (error != 0) {
2847 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2848 		return error;
2849 	}
2850 
2851 	/* allocate descriptors */
2852 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2853 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2854 				 &dd->dd_dmamap);
2855 	if (error != 0) {
2856 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2857 			"error %u\n", ndesc, dd->dd_name, error);
2858 		goto fail1;
2859 	}
2860 
2861 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2862 				dd->dd_desc, dd->dd_desc_len,
2863 				ath_load_cb, &dd->dd_desc_paddr,
2864 				BUS_DMA_NOWAIT);
2865 	if (error != 0) {
2866 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2867 			dd->dd_name, error);
2868 		goto fail2;
2869 	}
2870 
2871 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2872 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
2873 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
2874 	    /*XXX*/ (u_long) dd->dd_desc_len);
2875 
2876 	return (0);
2877 
2878 fail2:
2879 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2880 fail1:
2881 	bus_dma_tag_destroy(dd->dd_dmat);
2882 	memset(dd, 0, sizeof(*dd));
2883 	return error;
2884 #undef DS2PHYS
2885 #undef ATH_DESC_4KB_BOUND_CHECK
2886 }
2887 
2888 int
2889 ath_descdma_setup(struct ath_softc *sc,
2890 	struct ath_descdma *dd, ath_bufhead *head,
2891 	const char *name, int ds_size, int nbuf, int ndesc)
2892 {
2893 #define	DS2PHYS(_dd, _ds) \
2894 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2895 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2896 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2897 	struct ifnet *ifp = sc->sc_ifp;
2898 	uint8_t *ds;
2899 	struct ath_buf *bf;
2900 	int i, bsize, error;
2901 
2902 	/* Allocate descriptors */
2903 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
2904 	    nbuf * ndesc);
2905 
2906 	/* Assume any errors during allocation were dealt with */
2907 	if (error != 0) {
2908 		return (error);
2909 	}
2910 
2911 	ds = (uint8_t *) dd->dd_desc;
2912 
2913 	/* allocate rx buffers */
2914 	bsize = sizeof(struct ath_buf) * nbuf;
2915 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2916 	if (bf == NULL) {
2917 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2918 			dd->dd_name, bsize);
2919 		goto fail3;
2920 	}
2921 	dd->dd_bufptr = bf;
2922 
2923 	TAILQ_INIT(head);
2924 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
2925 		bf->bf_desc = (struct ath_desc *) ds;
2926 		bf->bf_daddr = DS2PHYS(dd, ds);
2927 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
2928 			/*
2929 			 * Merlin WAR: Skip descriptor addresses which
2930 			 * cause 4KB boundary crossing along any point
2931 			 * in the descriptor.
2932 			 */
2933 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
2934 			     dd->dd_descsize)) {
2935 				/* Start at the next page */
2936 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
2937 				bf->bf_desc = (struct ath_desc *) ds;
2938 				bf->bf_daddr = DS2PHYS(dd, ds);
2939 			}
2940 		}
2941 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2942 				&bf->bf_dmamap);
2943 		if (error != 0) {
2944 			if_printf(ifp, "unable to create dmamap for %s "
2945 				"buffer %u, error %u\n", dd->dd_name, i, error);
2946 			ath_descdma_cleanup(sc, dd, head);
2947 			return error;
2948 		}
2949 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
2950 		TAILQ_INSERT_TAIL(head, bf, bf_list);
2951 	}
2952 
2953 	/*
2954 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
2955 	 * allocation otherwise weird stuff will occur and crash your
2956 	 * machine.
2957 	 */
2958 	return 0;
2959 	/* XXX this should likely just call ath_descdma_cleanup() */
2960 fail3:
2961 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2962 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2963 	bus_dma_tag_destroy(dd->dd_dmat);
2964 	memset(dd, 0, sizeof(*dd));
2965 	return error;
2966 #undef DS2PHYS
2967 #undef ATH_DESC_4KB_BOUND_CHECK
2968 }
2969 
2970 /*
2971  * Allocate ath_buf entries but no descriptor contents.
2972  *
2973  * This is for RX EDMA where the descriptors are the header part of
2974  * the RX buffer.
2975  */
2976 int
2977 ath_descdma_setup_rx_edma(struct ath_softc *sc,
2978 	struct ath_descdma *dd, ath_bufhead *head,
2979 	const char *name, int nbuf, int rx_status_len)
2980 {
2981 	struct ifnet *ifp = sc->sc_ifp;
2982 	struct ath_buf *bf;
2983 	int i, bsize, error;
2984 
2985 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
2986 	    __func__, name, nbuf);
2987 
2988 	dd->dd_name = name;
2989 	/*
2990 	 * This is (mostly) purely for show.  We're not allocating any actual
2991 	 * descriptors here as EDMA RX has the descriptor be part
2992 	 * of the RX buffer.
2993 	 *
2994 	 * However, dd_desc_len is used by ath_descdma_free() to determine
2995 	 * whether we have already freed this DMA mapping.
2996 	 */
2997 	dd->dd_desc_len = rx_status_len * nbuf;
2998 	dd->dd_descsize = rx_status_len;
2999 
3000 	/* allocate rx buffers */
3001 	bsize = sizeof(struct ath_buf) * nbuf;
3002 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3003 	if (bf == NULL) {
3004 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3005 			dd->dd_name, bsize);
3006 		error = ENOMEM;
3007 		goto fail3;
3008 	}
3009 	dd->dd_bufptr = bf;
3010 
3011 	TAILQ_INIT(head);
3012 	for (i = 0; i < nbuf; i++, bf++) {
3013 		bf->bf_desc = NULL;
3014 		bf->bf_daddr = 0;
3015 		bf->bf_lastds = NULL;	/* Just an initial value */
3016 
3017 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3018 				&bf->bf_dmamap);
3019 		if (error != 0) {
3020 			if_printf(ifp, "unable to create dmamap for %s "
3021 				"buffer %u, error %u\n", dd->dd_name, i, error);
3022 			ath_descdma_cleanup(sc, dd, head);
3023 			return error;
3024 		}
3025 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3026 	}
3027 	return 0;
3028 fail3:
3029 	memset(dd, 0, sizeof(*dd));
3030 	return error;
3031 }
3032 
3033 void
3034 ath_descdma_cleanup(struct ath_softc *sc,
3035 	struct ath_descdma *dd, ath_bufhead *head)
3036 {
3037 	struct ath_buf *bf;
3038 	struct ieee80211_node *ni;
3039 
3040 	if (dd->dd_dmamap != 0) {
3041 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3042 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3043 		bus_dma_tag_destroy(dd->dd_dmat);
3044 	}
3045 
3046 	if (head != NULL) {
3047 		TAILQ_FOREACH(bf, head, bf_list) {
3048 			if (bf->bf_m) {
3049 				m_freem(bf->bf_m);
3050 				bf->bf_m = NULL;
3051 			}
3052 			if (bf->bf_dmamap != NULL) {
3053 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3054 				bf->bf_dmamap = NULL;
3055 			}
3056 			ni = bf->bf_node;
3057 			bf->bf_node = NULL;
3058 			if (ni != NULL) {
3059 				/*
3060 				 * Reclaim node reference.
3061 				 */
3062 				ieee80211_free_node(ni);
3063 			}
3064 		}
3065 	}
3066 
3067 	if (head != NULL)
3068 		TAILQ_INIT(head);
3069 
3070 	if (dd->dd_bufptr != NULL)
3071 		free(dd->dd_bufptr, M_ATHDEV);
3072 	memset(dd, 0, sizeof(*dd));
3073 }
3074 
3075 static int
3076 ath_desc_alloc(struct ath_softc *sc)
3077 {
3078 	int error;
3079 
3080 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3081 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
3082 	if (error != 0) {
3083 		return error;
3084 	}
3085 	sc->sc_txbuf_cnt = ath_txbuf;
3086 
3087 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3088 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3089 		    ATH_TXDESC);
3090 	if (error != 0) {
3091 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3092 		return error;
3093 	}
3094 
3095 	/*
3096 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3097 	 * flag doesn't have to be set in ath_getbuf_locked().
3098 	 */
3099 
3100 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3101 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3102 	if (error != 0) {
3103 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3104 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3105 		    &sc->sc_txbuf_mgmt);
3106 		return error;
3107 	}
3108 	return 0;
3109 }
3110 
3111 static void
3112 ath_desc_free(struct ath_softc *sc)
3113 {
3114 
3115 	if (sc->sc_bdma.dd_desc_len != 0)
3116 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3117 	if (sc->sc_txdma.dd_desc_len != 0)
3118 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3119 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3120 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3121 		    &sc->sc_txbuf_mgmt);
3122 }
3123 
3124 static struct ieee80211_node *
3125 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3126 {
3127 	struct ieee80211com *ic = vap->iv_ic;
3128 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3129 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3130 	struct ath_node *an;
3131 
3132 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3133 	if (an == NULL) {
3134 		/* XXX stat+msg */
3135 		return NULL;
3136 	}
3137 	ath_rate_node_init(sc, an);
3138 
3139 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3140 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3141 	    device_get_nameunit(sc->sc_dev), an);
3142 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3143 
3144 	/* XXX setup ath_tid */
3145 	ath_tx_tid_init(sc, an);
3146 
3147 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3148 	return &an->an_node;
3149 }
3150 
3151 static void
3152 ath_node_cleanup(struct ieee80211_node *ni)
3153 {
3154 	struct ieee80211com *ic = ni->ni_ic;
3155 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3156 
3157 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3158 	ath_tx_node_flush(sc, ATH_NODE(ni));
3159 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3160 	sc->sc_node_cleanup(ni);
3161 }
3162 
3163 static void
3164 ath_node_free(struct ieee80211_node *ni)
3165 {
3166 	struct ieee80211com *ic = ni->ni_ic;
3167 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3168 
3169 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3170 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3171 	sc->sc_node_free(ni);
3172 }
3173 
3174 static void
3175 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3176 {
3177 	struct ieee80211com *ic = ni->ni_ic;
3178 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3179 	struct ath_hal *ah = sc->sc_ah;
3180 
3181 	*rssi = ic->ic_node_getrssi(ni);
3182 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3183 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3184 	else
3185 		*noise = -95;		/* nominally correct */
3186 }
3187 
3188 /*
3189  * Set the default antenna.
3190  */
3191 void
3192 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3193 {
3194 	struct ath_hal *ah = sc->sc_ah;
3195 
3196 	/* XXX block beacon interrupts */
3197 	ath_hal_setdefantenna(ah, antenna);
3198 	if (sc->sc_defant != antenna)
3199 		sc->sc_stats.ast_ant_defswitch++;
3200 	sc->sc_defant = antenna;
3201 	sc->sc_rxotherant = 0;
3202 }
3203 
3204 static void
3205 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3206 {
3207 	txq->axq_qnum = qnum;
3208 	txq->axq_ac = 0;
3209 	txq->axq_depth = 0;
3210 	txq->axq_aggr_depth = 0;
3211 	txq->axq_intrcnt = 0;
3212 	txq->axq_link = NULL;
3213 	txq->axq_softc = sc;
3214 	TAILQ_INIT(&txq->axq_q);
3215 	TAILQ_INIT(&txq->axq_tidq);
3216 	ATH_TXQ_LOCK_INIT(sc, txq);
3217 }
3218 
3219 /*
3220  * Setup a h/w transmit queue.
3221  */
3222 static struct ath_txq *
3223 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3224 {
3225 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3226 	struct ath_hal *ah = sc->sc_ah;
3227 	HAL_TXQ_INFO qi;
3228 	int qnum;
3229 
3230 	memset(&qi, 0, sizeof(qi));
3231 	qi.tqi_subtype = subtype;
3232 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3233 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3234 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3235 	/*
3236 	 * Enable interrupts only for EOL and DESC conditions.
3237 	 * We mark tx descriptors to receive a DESC interrupt
3238 	 * when a tx queue gets deep; otherwise waiting for the
3239 	 * EOL to reap descriptors.  Note that this is done to
3240 	 * reduce interrupt load and this only defers reaping
3241 	 * descriptors, never transmitting frames.  Aside from
3242 	 * reducing interrupts this also permits more concurrency.
3243 	 * The only potential downside is if the tx queue backs
3244 	 * up in which case the top half of the kernel may backup
3245 	 * due to a lack of tx descriptors.
3246 	 */
3247 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3248 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3249 	if (qnum == -1) {
3250 		/*
3251 		 * NB: don't print a message, this happens
3252 		 * normally on parts with too few tx queues
3253 		 */
3254 		return NULL;
3255 	}
3256 	if (qnum >= N(sc->sc_txq)) {
3257 		device_printf(sc->sc_dev,
3258 			"hal qnum %u out of range, max %zu!\n",
3259 			qnum, N(sc->sc_txq));
3260 		ath_hal_releasetxqueue(ah, qnum);
3261 		return NULL;
3262 	}
3263 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3264 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3265 		sc->sc_txqsetup |= 1<<qnum;
3266 	}
3267 	return &sc->sc_txq[qnum];
3268 #undef N
3269 }
3270 
3271 /*
3272  * Setup a hardware data transmit queue for the specified
3273  * access control.  The hal may not support all requested
3274  * queues in which case it will return a reference to a
3275  * previously setup queue.  We record the mapping from ac's
3276  * to h/w queues for use by ath_tx_start and also track
3277  * the set of h/w queues being used to optimize work in the
3278  * transmit interrupt handler and related routines.
3279  */
3280 static int
3281 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3282 {
3283 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3284 	struct ath_txq *txq;
3285 
3286 	if (ac >= N(sc->sc_ac2q)) {
3287 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3288 			ac, N(sc->sc_ac2q));
3289 		return 0;
3290 	}
3291 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3292 	if (txq != NULL) {
3293 		txq->axq_ac = ac;
3294 		sc->sc_ac2q[ac] = txq;
3295 		return 1;
3296 	} else
3297 		return 0;
3298 #undef N
3299 }
3300 
3301 /*
3302  * Update WME parameters for a transmit queue.
3303  */
3304 static int
3305 ath_txq_update(struct ath_softc *sc, int ac)
3306 {
3307 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3308 #define	ATH_TXOP_TO_US(v)		(v<<5)
3309 	struct ifnet *ifp = sc->sc_ifp;
3310 	struct ieee80211com *ic = ifp->if_l2com;
3311 	struct ath_txq *txq = sc->sc_ac2q[ac];
3312 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3313 	struct ath_hal *ah = sc->sc_ah;
3314 	HAL_TXQ_INFO qi;
3315 
3316 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3317 #ifdef IEEE80211_SUPPORT_TDMA
3318 	if (sc->sc_tdma) {
3319 		/*
3320 		 * AIFS is zero so there's no pre-transmit wait.  The
3321 		 * burst time defines the slot duration and is configured
3322 		 * through net80211.  The QCU is setup to not do post-xmit
3323 		 * back off, lockout all lower-priority QCU's, and fire
3324 		 * off the DMA beacon alert timer which is setup based
3325 		 * on the slot configuration.
3326 		 */
3327 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3328 			      | HAL_TXQ_TXERRINT_ENABLE
3329 			      | HAL_TXQ_TXURNINT_ENABLE
3330 			      | HAL_TXQ_TXEOLINT_ENABLE
3331 			      | HAL_TXQ_DBA_GATED
3332 			      | HAL_TXQ_BACKOFF_DISABLE
3333 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3334 			      ;
3335 		qi.tqi_aifs = 0;
3336 		/* XXX +dbaprep? */
3337 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3338 		qi.tqi_burstTime = qi.tqi_readyTime;
3339 	} else {
3340 #endif
3341 		/*
3342 		 * XXX shouldn't this just use the default flags
3343 		 * used in the previous queue setup?
3344 		 */
3345 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3346 			      | HAL_TXQ_TXERRINT_ENABLE
3347 			      | HAL_TXQ_TXDESCINT_ENABLE
3348 			      | HAL_TXQ_TXURNINT_ENABLE
3349 			      | HAL_TXQ_TXEOLINT_ENABLE
3350 			      ;
3351 		qi.tqi_aifs = wmep->wmep_aifsn;
3352 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3353 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3354 		qi.tqi_readyTime = 0;
3355 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3356 #ifdef IEEE80211_SUPPORT_TDMA
3357 	}
3358 #endif
3359 
3360 	DPRINTF(sc, ATH_DEBUG_RESET,
3361 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3362 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3363 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3364 
3365 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3366 		if_printf(ifp, "unable to update hardware queue "
3367 			"parameters for %s traffic!\n",
3368 			ieee80211_wme_acnames[ac]);
3369 		return 0;
3370 	} else {
3371 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3372 		return 1;
3373 	}
3374 #undef ATH_TXOP_TO_US
3375 #undef ATH_EXPONENT_TO_VALUE
3376 }
3377 
3378 /*
3379  * Callback from the 802.11 layer to update WME parameters.
3380  */
3381 int
3382 ath_wme_update(struct ieee80211com *ic)
3383 {
3384 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3385 
3386 	return !ath_txq_update(sc, WME_AC_BE) ||
3387 	    !ath_txq_update(sc, WME_AC_BK) ||
3388 	    !ath_txq_update(sc, WME_AC_VI) ||
3389 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3390 }
3391 
3392 /*
3393  * Reclaim resources for a setup queue.
3394  */
3395 static void
3396 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3397 {
3398 
3399 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3400 	ATH_TXQ_LOCK_DESTROY(txq);
3401 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3402 }
3403 
3404 /*
3405  * Reclaim all tx queue resources.
3406  */
3407 static void
3408 ath_tx_cleanup(struct ath_softc *sc)
3409 {
3410 	int i;
3411 
3412 	ATH_TXBUF_LOCK_DESTROY(sc);
3413 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3414 		if (ATH_TXQ_SETUP(sc, i))
3415 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3416 }
3417 
3418 /*
3419  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3420  * using the current rates in sc_rixmap.
3421  */
3422 int
3423 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3424 {
3425 	int rix = sc->sc_rixmap[rate];
3426 	/* NB: return lowest rix for invalid rate */
3427 	return (rix == 0xff ? 0 : rix);
3428 }
3429 
3430 static void
3431 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3432     struct ath_buf *bf)
3433 {
3434 	struct ieee80211_node *ni = bf->bf_node;
3435 	struct ifnet *ifp = sc->sc_ifp;
3436 	struct ieee80211com *ic = ifp->if_l2com;
3437 	int sr, lr, pri;
3438 
3439 	if (ts->ts_status == 0) {
3440 		u_int8_t txant = ts->ts_antenna;
3441 		sc->sc_stats.ast_ant_tx[txant]++;
3442 		sc->sc_ant_tx[txant]++;
3443 		if (ts->ts_finaltsi != 0)
3444 			sc->sc_stats.ast_tx_altrate++;
3445 		pri = M_WME_GETAC(bf->bf_m);
3446 		if (pri >= WME_AC_VO)
3447 			ic->ic_wme.wme_hipri_traffic++;
3448 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3449 			ni->ni_inact = ni->ni_inact_reload;
3450 	} else {
3451 		if (ts->ts_status & HAL_TXERR_XRETRY)
3452 			sc->sc_stats.ast_tx_xretries++;
3453 		if (ts->ts_status & HAL_TXERR_FIFO)
3454 			sc->sc_stats.ast_tx_fifoerr++;
3455 		if (ts->ts_status & HAL_TXERR_FILT)
3456 			sc->sc_stats.ast_tx_filtered++;
3457 		if (ts->ts_status & HAL_TXERR_XTXOP)
3458 			sc->sc_stats.ast_tx_xtxop++;
3459 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3460 			sc->sc_stats.ast_tx_timerexpired++;
3461 
3462 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3463 			sc->sc_stats.ast_tx_data_underrun++;
3464 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3465 			sc->sc_stats.ast_tx_delim_underrun++;
3466 
3467 		if (bf->bf_m->m_flags & M_FF)
3468 			sc->sc_stats.ast_ff_txerr++;
3469 	}
3470 	/* XXX when is this valid? */
3471 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3472 		sc->sc_stats.ast_tx_desccfgerr++;
3473 
3474 	sr = ts->ts_shortretry;
3475 	lr = ts->ts_longretry;
3476 	sc->sc_stats.ast_tx_shortretry += sr;
3477 	sc->sc_stats.ast_tx_longretry += lr;
3478 
3479 }
3480 
3481 /*
3482  * The default completion. If fail is 1, this means
3483  * "please don't retry the frame, and just return -1 status
3484  * to the net80211 stack.
3485  */
3486 void
3487 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3488 {
3489 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3490 	int st;
3491 
3492 	if (fail == 1)
3493 		st = -1;
3494 	else
3495 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3496 		    ts->ts_status : HAL_TXERR_XRETRY;
3497 
3498 	if (bf->bf_state.bfs_dobaw)
3499 		device_printf(sc->sc_dev,
3500 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3501 		    __func__,
3502 		    bf,
3503 		    SEQNO(bf->bf_state.bfs_seqno));
3504 	if (bf->bf_next != NULL)
3505 		device_printf(sc->sc_dev,
3506 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3507 		    __func__,
3508 		    bf,
3509 		    SEQNO(bf->bf_state.bfs_seqno));
3510 
3511 	/*
3512 	 * Do any tx complete callback.  Note this must
3513 	 * be done before releasing the node reference.
3514 	 * This will free the mbuf, release the net80211
3515 	 * node and recycle the ath_buf.
3516 	 */
3517 	ath_tx_freebuf(sc, bf, st);
3518 }
3519 
3520 /*
3521  * Update rate control with the given completion status.
3522  */
3523 void
3524 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3525     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3526     int nframes, int nbad)
3527 {
3528 	struct ath_node *an;
3529 
3530 	/* Only for unicast frames */
3531 	if (ni == NULL)
3532 		return;
3533 
3534 	an = ATH_NODE(ni);
3535 
3536 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3537 		ATH_NODE_LOCK(an);
3538 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3539 		ATH_NODE_UNLOCK(an);
3540 	}
3541 }
3542 
3543 /*
3544  * Update the busy status of the last frame on the free list.
3545  * When doing TDMA, the busy flag tracks whether the hardware
3546  * currently points to this buffer or not, and thus gated DMA
3547  * may restart by re-reading the last descriptor in this
3548  * buffer.
3549  *
3550  * This should be called in the completion function once one
3551  * of the buffers has been used.
3552  */
3553 static void
3554 ath_tx_update_busy(struct ath_softc *sc)
3555 {
3556 	struct ath_buf *last;
3557 
3558 	/*
3559 	 * Since the last frame may still be marked
3560 	 * as ATH_BUF_BUSY, unmark it here before
3561 	 * finishing the frame processing.
3562 	 * Since we've completed a frame (aggregate
3563 	 * or otherwise), the hardware has moved on
3564 	 * and is no longer referencing the previous
3565 	 * descriptor.
3566 	 */
3567 	ATH_TXBUF_LOCK_ASSERT(sc);
3568 	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3569 	if (last != NULL)
3570 		last->bf_flags &= ~ATH_BUF_BUSY;
3571 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3572 	if (last != NULL)
3573 		last->bf_flags &= ~ATH_BUF_BUSY;
3574 }
3575 
3576 /*
3577  * Process the completion of the given buffer.
3578  *
3579  * This calls the rate control update and then the buffer completion.
3580  * This will either free the buffer or requeue it.  In any case, the
3581  * bf pointer should be treated as invalid after this function is called.
3582  */
3583 void
3584 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3585     struct ath_tx_status *ts, struct ath_buf *bf)
3586 {
3587 	struct ieee80211_node *ni = bf->bf_node;
3588 	struct ath_node *an = NULL;
3589 
3590 	ATH_TXQ_UNLOCK_ASSERT(txq);
3591 
3592 	/* If unicast frame, update general statistics */
3593 	if (ni != NULL) {
3594 		an = ATH_NODE(ni);
3595 		/* update statistics */
3596 		ath_tx_update_stats(sc, ts, bf);
3597 	}
3598 
3599 	/*
3600 	 * Call the completion handler.
3601 	 * The completion handler is responsible for
3602 	 * calling the rate control code.
3603 	 *
3604 	 * Frames with no completion handler get the
3605 	 * rate control code called here.
3606 	 */
3607 	if (bf->bf_comp == NULL) {
3608 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3609 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3610 			/*
3611 			 * XXX assume this isn't an aggregate
3612 			 * frame.
3613 			 */
3614 			ath_tx_update_ratectrl(sc, ni,
3615 			     bf->bf_state.bfs_rc, ts,
3616 			    bf->bf_state.bfs_pktlen, 1,
3617 			    (ts->ts_status == 0 ? 0 : 1));
3618 		}
3619 		ath_tx_default_comp(sc, bf, 0);
3620 	} else
3621 		bf->bf_comp(sc, bf, 0);
3622 }
3623 
3624 
3625 
3626 /*
3627  * Process completed xmit descriptors from the specified queue.
3628  * Kick the packet scheduler if needed. This can occur from this
3629  * particular task.
3630  */
3631 static int
3632 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3633 {
3634 	struct ath_hal *ah = sc->sc_ah;
3635 	struct ath_buf *bf;
3636 	struct ath_desc *ds;
3637 	struct ath_tx_status *ts;
3638 	struct ieee80211_node *ni;
3639 #ifdef	IEEE80211_SUPPORT_SUPERG
3640 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3641 #endif	/* IEEE80211_SUPPORT_SUPERG */
3642 	int nacked;
3643 	HAL_STATUS status;
3644 
3645 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3646 		__func__, txq->axq_qnum,
3647 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3648 		txq->axq_link);
3649 
3650 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3651 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3652 	    txq->axq_qnum,
3653 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3654 	    txq->axq_link,
3655 	    txq->axq_depth);
3656 
3657 	nacked = 0;
3658 	for (;;) {
3659 		ATH_TXQ_LOCK(txq);
3660 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3661 		bf = TAILQ_FIRST(&txq->axq_q);
3662 		if (bf == NULL) {
3663 			ATH_TXQ_UNLOCK(txq);
3664 			break;
3665 		}
3666 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3667 		ts = &bf->bf_status.ds_txstat;
3668 
3669 		status = ath_hal_txprocdesc(ah, ds, ts);
3670 #ifdef ATH_DEBUG
3671 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3672 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3673 			    status == HAL_OK);
3674 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3675 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3676 			    status == HAL_OK);
3677 #endif
3678 
3679 		if (status == HAL_EINPROGRESS) {
3680 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3681 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3682 			    txq->axq_qnum, bf, ds);
3683 			ATH_TXQ_UNLOCK(txq);
3684 			break;
3685 		}
3686 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3687 #ifdef IEEE80211_SUPPORT_TDMA
3688 		if (txq->axq_depth > 0) {
3689 			/*
3690 			 * More frames follow.  Mark the buffer busy
3691 			 * so it's not re-used while the hardware may
3692 			 * still re-read the link field in the descriptor.
3693 			 *
3694 			 * Use the last buffer in an aggregate as that
3695 			 * is where the hardware may be - intermediate
3696 			 * descriptors won't be "busy".
3697 			 */
3698 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3699 		} else
3700 #else
3701 		if (txq->axq_depth == 0)
3702 #endif
3703 			txq->axq_link = NULL;
3704 		if (bf->bf_state.bfs_aggr)
3705 			txq->axq_aggr_depth--;
3706 
3707 		ni = bf->bf_node;
3708 
3709 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
3710 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
3711 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
3712 		/*
3713 		 * If unicast frame was ack'd update RSSI,
3714 		 * including the last rx time used to
3715 		 * workaround phantom bmiss interrupts.
3716 		 */
3717 		if (ni != NULL && ts->ts_status == 0 &&
3718 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3719 			nacked++;
3720 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3721 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3722 				ts->ts_rssi);
3723 		}
3724 		ATH_TXQ_UNLOCK(txq);
3725 
3726 		/*
3727 		 * Update statistics and call completion
3728 		 */
3729 		ath_tx_process_buf_completion(sc, txq, ts, bf);
3730 	}
3731 #ifdef IEEE80211_SUPPORT_SUPERG
3732 	/*
3733 	 * Flush fast-frame staging queue when traffic slows.
3734 	 */
3735 	if (txq->axq_depth <= 1)
3736 		ieee80211_ff_flush(ic, txq->axq_ac);
3737 #endif
3738 
3739 	/* Kick the TXQ scheduler */
3740 	if (dosched) {
3741 		ATH_TXQ_LOCK(txq);
3742 		ath_txq_sched(sc, txq);
3743 		ATH_TXQ_UNLOCK(txq);
3744 	}
3745 
3746 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3747 	    "ath_tx_processq: txq=%u: done",
3748 	    txq->axq_qnum);
3749 
3750 	return nacked;
3751 }
3752 
3753 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3754 
3755 /*
3756  * Deferred processing of transmit interrupt; special-cased
3757  * for a single hardware transmit queue (e.g. 5210 and 5211).
3758  */
3759 static void
3760 ath_tx_proc_q0(void *arg, int npending)
3761 {
3762 	struct ath_softc *sc = arg;
3763 	struct ifnet *ifp = sc->sc_ifp;
3764 	uint32_t txqs;
3765 
3766 	ATH_PCU_LOCK(sc);
3767 	sc->sc_txproc_cnt++;
3768 	txqs = sc->sc_txq_active;
3769 	sc->sc_txq_active &= ~txqs;
3770 	ATH_PCU_UNLOCK(sc);
3771 
3772 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3773 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
3774 
3775 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3776 		/* XXX why is lastrx updated in tx code? */
3777 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3778 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3779 		ath_tx_processq(sc, sc->sc_cabq, 1);
3780 	IF_LOCK(&ifp->if_snd);
3781 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3782 	IF_UNLOCK(&ifp->if_snd);
3783 	sc->sc_wd_timer = 0;
3784 
3785 	if (sc->sc_softled)
3786 		ath_led_event(sc, sc->sc_txrix);
3787 
3788 	ATH_PCU_LOCK(sc);
3789 	sc->sc_txproc_cnt--;
3790 	ATH_PCU_UNLOCK(sc);
3791 
3792 	ath_tx_kick(sc);
3793 }
3794 
3795 /*
3796  * Deferred processing of transmit interrupt; special-cased
3797  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3798  */
3799 static void
3800 ath_tx_proc_q0123(void *arg, int npending)
3801 {
3802 	struct ath_softc *sc = arg;
3803 	struct ifnet *ifp = sc->sc_ifp;
3804 	int nacked;
3805 	uint32_t txqs;
3806 
3807 	ATH_PCU_LOCK(sc);
3808 	sc->sc_txproc_cnt++;
3809 	txqs = sc->sc_txq_active;
3810 	sc->sc_txq_active &= ~txqs;
3811 	ATH_PCU_UNLOCK(sc);
3812 
3813 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3814 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
3815 
3816 	/*
3817 	 * Process each active queue.
3818 	 */
3819 	nacked = 0;
3820 	if (TXQACTIVE(txqs, 0))
3821 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3822 	if (TXQACTIVE(txqs, 1))
3823 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3824 	if (TXQACTIVE(txqs, 2))
3825 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3826 	if (TXQACTIVE(txqs, 3))
3827 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3828 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3829 		ath_tx_processq(sc, sc->sc_cabq, 1);
3830 	if (nacked)
3831 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3832 
3833 	IF_LOCK(&ifp->if_snd);
3834 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3835 	IF_UNLOCK(&ifp->if_snd);
3836 	sc->sc_wd_timer = 0;
3837 
3838 	if (sc->sc_softled)
3839 		ath_led_event(sc, sc->sc_txrix);
3840 
3841 	ATH_PCU_LOCK(sc);
3842 	sc->sc_txproc_cnt--;
3843 	ATH_PCU_UNLOCK(sc);
3844 
3845 	ath_tx_kick(sc);
3846 }
3847 
3848 /*
3849  * Deferred processing of transmit interrupt.
3850  */
3851 static void
3852 ath_tx_proc(void *arg, int npending)
3853 {
3854 	struct ath_softc *sc = arg;
3855 	struct ifnet *ifp = sc->sc_ifp;
3856 	int i, nacked;
3857 	uint32_t txqs;
3858 
3859 	ATH_PCU_LOCK(sc);
3860 	sc->sc_txproc_cnt++;
3861 	txqs = sc->sc_txq_active;
3862 	sc->sc_txq_active &= ~txqs;
3863 	ATH_PCU_UNLOCK(sc);
3864 
3865 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
3866 
3867 	/*
3868 	 * Process each active queue.
3869 	 */
3870 	nacked = 0;
3871 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3872 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3873 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3874 	if (nacked)
3875 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3876 
3877 	/* XXX check this inside of IF_LOCK? */
3878 	IF_LOCK(&ifp->if_snd);
3879 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3880 	IF_UNLOCK(&ifp->if_snd);
3881 	sc->sc_wd_timer = 0;
3882 
3883 	if (sc->sc_softled)
3884 		ath_led_event(sc, sc->sc_txrix);
3885 
3886 	ATH_PCU_LOCK(sc);
3887 	sc->sc_txproc_cnt--;
3888 	ATH_PCU_UNLOCK(sc);
3889 
3890 	ath_tx_kick(sc);
3891 }
3892 #undef	TXQACTIVE
3893 
3894 /*
3895  * Deferred processing of TXQ rescheduling.
3896  */
3897 static void
3898 ath_txq_sched_tasklet(void *arg, int npending)
3899 {
3900 	struct ath_softc *sc = arg;
3901 	int i;
3902 
3903 	/* XXX is skipping ok? */
3904 	ATH_PCU_LOCK(sc);
3905 #if 0
3906 	if (sc->sc_inreset_cnt > 0) {
3907 		device_printf(sc->sc_dev,
3908 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3909 		ATH_PCU_UNLOCK(sc);
3910 		return;
3911 	}
3912 #endif
3913 	sc->sc_txproc_cnt++;
3914 	ATH_PCU_UNLOCK(sc);
3915 
3916 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3917 		if (ATH_TXQ_SETUP(sc, i)) {
3918 			ATH_TXQ_LOCK(&sc->sc_txq[i]);
3919 			ath_txq_sched(sc, &sc->sc_txq[i]);
3920 			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3921 		}
3922 	}
3923 
3924 	ATH_PCU_LOCK(sc);
3925 	sc->sc_txproc_cnt--;
3926 	ATH_PCU_UNLOCK(sc);
3927 }
3928 
3929 void
3930 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
3931 {
3932 
3933 	ATH_TXBUF_LOCK_ASSERT(sc);
3934 
3935 	if (bf->bf_flags & ATH_BUF_MGMT)
3936 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
3937 	else {
3938 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3939 		sc->sc_txbuf_cnt++;
3940 		if (sc->sc_txbuf_cnt > ath_txbuf) {
3941 			device_printf(sc->sc_dev,
3942 			    "%s: sc_txbuf_cnt > %d?\n",
3943 			    __func__,
3944 			    ath_txbuf);
3945 			sc->sc_txbuf_cnt = ath_txbuf;
3946 		}
3947 	}
3948 }
3949 
3950 void
3951 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
3952 {
3953 
3954 	ATH_TXBUF_LOCK_ASSERT(sc);
3955 
3956 	if (bf->bf_flags & ATH_BUF_MGMT)
3957 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
3958 	else {
3959 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
3960 		sc->sc_txbuf_cnt++;
3961 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
3962 			device_printf(sc->sc_dev,
3963 			    "%s: sc_txbuf_cnt > %d?\n",
3964 			    __func__,
3965 			    ATH_TXBUF);
3966 			sc->sc_txbuf_cnt = ATH_TXBUF;
3967 		}
3968 	}
3969 }
3970 
3971 /*
3972  * Return a buffer to the pool and update the 'busy' flag on the
3973  * previous 'tail' entry.
3974  *
3975  * This _must_ only be called when the buffer is involved in a completed
3976  * TX. The logic is that if it was part of an active TX, the previous
3977  * buffer on the list is now not involved in a halted TX DMA queue, waiting
3978  * for restart (eg for TDMA.)
3979  *
3980  * The caller must free the mbuf and recycle the node reference.
3981  */
3982 void
3983 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
3984 {
3985 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3986 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
3987 
3988 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
3989 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
3990 
3991 	ATH_TXBUF_LOCK(sc);
3992 	ath_tx_update_busy(sc);
3993 	ath_returnbuf_tail(sc, bf);
3994 	ATH_TXBUF_UNLOCK(sc);
3995 }
3996 
3997 /*
3998  * This is currently used by ath_tx_draintxq() and
3999  * ath_tx_tid_free_pkts().
4000  *
4001  * It recycles a single ath_buf.
4002  */
4003 void
4004 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4005 {
4006 	struct ieee80211_node *ni = bf->bf_node;
4007 	struct mbuf *m0 = bf->bf_m;
4008 
4009 	bf->bf_node = NULL;
4010 	bf->bf_m = NULL;
4011 
4012 	/* Free the buffer, it's not needed any longer */
4013 	ath_freebuf(sc, bf);
4014 
4015 	if (ni != NULL) {
4016 		/*
4017 		 * Do any callback and reclaim the node reference.
4018 		 */
4019 		if (m0->m_flags & M_TXCB)
4020 			ieee80211_process_callback(ni, m0, status);
4021 		ieee80211_free_node(ni);
4022 	}
4023 	m_freem(m0);
4024 
4025 	/*
4026 	 * XXX the buffer used to be freed -after-, but the DMA map was
4027 	 * freed where ath_freebuf() now is. I've no idea what this
4028 	 * will do.
4029 	 */
4030 }
4031 
4032 void
4033 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4034 {
4035 #ifdef ATH_DEBUG
4036 	struct ath_hal *ah = sc->sc_ah;
4037 #endif
4038 	struct ath_buf *bf;
4039 	u_int ix;
4040 
4041 	/*
4042 	 * NB: this assumes output has been stopped and
4043 	 *     we do not need to block ath_tx_proc
4044 	 */
4045 	ATH_TXBUF_LOCK(sc);
4046 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4047 	if (bf != NULL)
4048 		bf->bf_flags &= ~ATH_BUF_BUSY;
4049 	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
4050 	if (bf != NULL)
4051 		bf->bf_flags &= ~ATH_BUF_BUSY;
4052 	ATH_TXBUF_UNLOCK(sc);
4053 
4054 	for (ix = 0;; ix++) {
4055 		ATH_TXQ_LOCK(txq);
4056 		bf = TAILQ_FIRST(&txq->axq_q);
4057 		if (bf == NULL) {
4058 			txq->axq_link = NULL;
4059 			/*
4060 			 * There's currently no flag that indicates
4061 			 * a buffer is on the FIFO.  So until that
4062 			 * occurs, just clear the FIFO counter here.
4063 			 *
4064 			 * Yes, this means that if something in parallel
4065 			 * is pushing things onto this TXQ and pushing
4066 			 * _that_ into the hardware, things will get
4067 			 * very fruity very quickly.
4068 			 */
4069 			txq->axq_fifo_depth = 0;
4070 			ATH_TXQ_UNLOCK(txq);
4071 			break;
4072 		}
4073 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4074 		if (bf->bf_state.bfs_aggr)
4075 			txq->axq_aggr_depth--;
4076 #ifdef ATH_DEBUG
4077 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4078 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4079 			int status = 0;
4080 
4081 			/*
4082 			 * EDMA operation has a TX completion FIFO
4083 			 * separate from the TX descriptor, so this
4084 			 * method of checking the "completion" status
4085 			 * is wrong.
4086 			 */
4087 			if (! sc->sc_isedma) {
4088 				status = (ath_hal_txprocdesc(ah,
4089 				    bf->bf_lastds,
4090 				    &bf->bf_status.ds_txstat) == HAL_OK);
4091 			}
4092 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4093 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4094 			    bf->bf_m->m_len, 0, -1);
4095 		}
4096 #endif /* ATH_DEBUG */
4097 		/*
4098 		 * Since we're now doing magic in the completion
4099 		 * functions, we -must- call it for aggregation
4100 		 * destinations or BAW tracking will get upset.
4101 		 */
4102 		/*
4103 		 * Clear ATH_BUF_BUSY; the completion handler
4104 		 * will free the buffer.
4105 		 */
4106 		ATH_TXQ_UNLOCK(txq);
4107 		bf->bf_flags &= ~ATH_BUF_BUSY;
4108 		if (bf->bf_comp)
4109 			bf->bf_comp(sc, bf, 1);
4110 		else
4111 			ath_tx_default_comp(sc, bf, 1);
4112 	}
4113 
4114 	/*
4115 	 * Drain software queued frames which are on
4116 	 * active TIDs.
4117 	 */
4118 	ath_tx_txq_drain(sc, txq);
4119 }
4120 
4121 static void
4122 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4123 {
4124 	struct ath_hal *ah = sc->sc_ah;
4125 
4126 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4127 	    __func__, txq->axq_qnum,
4128 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4129 	    txq->axq_link);
4130 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4131 }
4132 
4133 int
4134 ath_stoptxdma(struct ath_softc *sc)
4135 {
4136 	struct ath_hal *ah = sc->sc_ah;
4137 	int i;
4138 
4139 	/* XXX return value */
4140 	if (sc->sc_invalid)
4141 		return 0;
4142 
4143 	if (!sc->sc_invalid) {
4144 		/* don't touch the hardware if marked invalid */
4145 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4146 		    __func__, sc->sc_bhalq,
4147 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4148 		    NULL);
4149 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4150 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4151 			if (ATH_TXQ_SETUP(sc, i))
4152 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4153 	}
4154 
4155 	return 1;
4156 }
4157 
4158 /*
4159  * Drain the transmit queues and reclaim resources.
4160  */
4161 void
4162 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4163 {
4164 #ifdef	ATH_DEBUG
4165 	struct ath_hal *ah = sc->sc_ah;
4166 #endif
4167 	struct ifnet *ifp = sc->sc_ifp;
4168 	int i;
4169 
4170 	(void) ath_stoptxdma(sc);
4171 
4172 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4173 		/*
4174 		 * XXX TODO: should we just handle the completed TX frames
4175 		 * here, whether or not the reset is a full one or not?
4176 		 */
4177 		if (ATH_TXQ_SETUP(sc, i)) {
4178 			if (reset_type == ATH_RESET_NOLOSS)
4179 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4180 			else
4181 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4182 		}
4183 	}
4184 #ifdef ATH_DEBUG
4185 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4186 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4187 		if (bf != NULL && bf->bf_m != NULL) {
4188 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4189 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4190 				    &bf->bf_status.ds_txstat) == HAL_OK);
4191 			ieee80211_dump_pkt(ifp->if_l2com,
4192 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4193 			    0, -1);
4194 		}
4195 	}
4196 #endif /* ATH_DEBUG */
4197 	IF_LOCK(&ifp->if_snd);
4198 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4199 	IF_UNLOCK(&ifp->if_snd);
4200 	sc->sc_wd_timer = 0;
4201 }
4202 
4203 /*
4204  * Update internal state after a channel change.
4205  */
4206 static void
4207 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4208 {
4209 	enum ieee80211_phymode mode;
4210 
4211 	/*
4212 	 * Change channels and update the h/w rate map
4213 	 * if we're switching; e.g. 11a to 11b/g.
4214 	 */
4215 	mode = ieee80211_chan2mode(chan);
4216 	if (mode != sc->sc_curmode)
4217 		ath_setcurmode(sc, mode);
4218 	sc->sc_curchan = chan;
4219 }
4220 
4221 /*
4222  * Set/change channels.  If the channel is really being changed,
4223  * it's done by resetting the chip.  To accomplish this we must
4224  * first cleanup any pending DMA, then restart stuff after a la
4225  * ath_init.
4226  */
4227 static int
4228 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4229 {
4230 	struct ifnet *ifp = sc->sc_ifp;
4231 	struct ieee80211com *ic = ifp->if_l2com;
4232 	struct ath_hal *ah = sc->sc_ah;
4233 	int ret = 0;
4234 
4235 	/* Treat this as an interface reset */
4236 	ATH_PCU_UNLOCK_ASSERT(sc);
4237 	ATH_UNLOCK_ASSERT(sc);
4238 
4239 	/* (Try to) stop TX/RX from occuring */
4240 	taskqueue_block(sc->sc_tq);
4241 
4242 	ATH_PCU_LOCK(sc);
4243 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4244 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4245 	if (ath_reset_grablock(sc, 1) == 0) {
4246 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4247 		    __func__);
4248 	}
4249 	ATH_PCU_UNLOCK(sc);
4250 
4251 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4252 	    __func__, ieee80211_chan2ieee(ic, chan),
4253 	    chan->ic_freq, chan->ic_flags);
4254 	if (chan != sc->sc_curchan) {
4255 		HAL_STATUS status;
4256 		/*
4257 		 * To switch channels clear any pending DMA operations;
4258 		 * wait long enough for the RX fifo to drain, reset the
4259 		 * hardware at the new frequency, and then re-enable
4260 		 * the relevant bits of the h/w.
4261 		 */
4262 #if 0
4263 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4264 #endif
4265 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4266 		/*
4267 		 * First, handle completed TX/RX frames.
4268 		 */
4269 		ath_rx_flush(sc);
4270 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4271 		/*
4272 		 * Next, flush the non-scheduled frames.
4273 		 */
4274 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4275 
4276 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4277 			if_printf(ifp, "%s: unable to reset "
4278 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4279 			    __func__, ieee80211_chan2ieee(ic, chan),
4280 			    chan->ic_freq, chan->ic_flags, status);
4281 			ret = EIO;
4282 			goto finish;
4283 		}
4284 		sc->sc_diversity = ath_hal_getdiversity(ah);
4285 
4286 		/* Let DFS at it in case it's a DFS channel */
4287 		ath_dfs_radar_enable(sc, chan);
4288 
4289 		/*
4290 		 * Re-enable rx framework.
4291 		 */
4292 		if (ath_startrecv(sc) != 0) {
4293 			if_printf(ifp, "%s: unable to restart recv logic\n",
4294 			    __func__);
4295 			ret = EIO;
4296 			goto finish;
4297 		}
4298 
4299 		/*
4300 		 * Change channels and update the h/w rate map
4301 		 * if we're switching; e.g. 11a to 11b/g.
4302 		 */
4303 		ath_chan_change(sc, chan);
4304 
4305 		/*
4306 		 * Reset clears the beacon timers; reset them
4307 		 * here if needed.
4308 		 */
4309 		if (sc->sc_beacons) {		/* restart beacons */
4310 #ifdef IEEE80211_SUPPORT_TDMA
4311 			if (sc->sc_tdma)
4312 				ath_tdma_config(sc, NULL);
4313 			else
4314 #endif
4315 			ath_beacon_config(sc, NULL);
4316 		}
4317 
4318 		/*
4319 		 * Re-enable interrupts.
4320 		 */
4321 #if 0
4322 		ath_hal_intrset(ah, sc->sc_imask);
4323 #endif
4324 	}
4325 
4326 finish:
4327 	ATH_PCU_LOCK(sc);
4328 	sc->sc_inreset_cnt--;
4329 	/* XXX only do this if sc_inreset_cnt == 0? */
4330 	ath_hal_intrset(ah, sc->sc_imask);
4331 	ATH_PCU_UNLOCK(sc);
4332 
4333 	IF_LOCK(&ifp->if_snd);
4334 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4335 	IF_UNLOCK(&ifp->if_snd);
4336 	ath_txrx_start(sc);
4337 	/* XXX ath_start? */
4338 
4339 	return ret;
4340 }
4341 
4342 /*
4343  * Periodically recalibrate the PHY to account
4344  * for temperature/environment changes.
4345  */
4346 static void
4347 ath_calibrate(void *arg)
4348 {
4349 	struct ath_softc *sc = arg;
4350 	struct ath_hal *ah = sc->sc_ah;
4351 	struct ifnet *ifp = sc->sc_ifp;
4352 	struct ieee80211com *ic = ifp->if_l2com;
4353 	HAL_BOOL longCal, isCalDone = AH_TRUE;
4354 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4355 	int nextcal;
4356 
4357 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4358 		goto restart;
4359 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4360 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4361 	if (sc->sc_doresetcal)
4362 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4363 
4364 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4365 	if (aniCal) {
4366 		sc->sc_stats.ast_ani_cal++;
4367 		sc->sc_lastani = ticks;
4368 		ath_hal_ani_poll(ah, sc->sc_curchan);
4369 	}
4370 
4371 	if (longCal) {
4372 		sc->sc_stats.ast_per_cal++;
4373 		sc->sc_lastlongcal = ticks;
4374 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4375 			/*
4376 			 * Rfgain is out of bounds, reset the chip
4377 			 * to load new gain values.
4378 			 */
4379 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4380 				"%s: rfgain change\n", __func__);
4381 			sc->sc_stats.ast_per_rfgain++;
4382 			sc->sc_resetcal = 0;
4383 			sc->sc_doresetcal = AH_TRUE;
4384 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4385 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4386 			return;
4387 		}
4388 		/*
4389 		 * If this long cal is after an idle period, then
4390 		 * reset the data collection state so we start fresh.
4391 		 */
4392 		if (sc->sc_resetcal) {
4393 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4394 			sc->sc_lastcalreset = ticks;
4395 			sc->sc_lastshortcal = ticks;
4396 			sc->sc_resetcal = 0;
4397 			sc->sc_doresetcal = AH_TRUE;
4398 		}
4399 	}
4400 
4401 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4402 	if (shortCal || longCal) {
4403 		isCalDone = AH_FALSE;
4404 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4405 			if (longCal) {
4406 				/*
4407 				 * Calibrate noise floor data again in case of change.
4408 				 */
4409 				ath_hal_process_noisefloor(ah);
4410 			}
4411 		} else {
4412 			DPRINTF(sc, ATH_DEBUG_ANY,
4413 				"%s: calibration of channel %u failed\n",
4414 				__func__, sc->sc_curchan->ic_freq);
4415 			sc->sc_stats.ast_per_calfail++;
4416 		}
4417 		if (shortCal)
4418 			sc->sc_lastshortcal = ticks;
4419 	}
4420 	if (!isCalDone) {
4421 restart:
4422 		/*
4423 		 * Use a shorter interval to potentially collect multiple
4424 		 * data samples required to complete calibration.  Once
4425 		 * we're told the work is done we drop back to a longer
4426 		 * interval between requests.  We're more aggressive doing
4427 		 * work when operating as an AP to improve operation right
4428 		 * after startup.
4429 		 */
4430 		sc->sc_lastshortcal = ticks;
4431 		nextcal = ath_shortcalinterval*hz/1000;
4432 		if (sc->sc_opmode != HAL_M_HOSTAP)
4433 			nextcal *= 10;
4434 		sc->sc_doresetcal = AH_TRUE;
4435 	} else {
4436 		/* nextcal should be the shortest time for next event */
4437 		nextcal = ath_longcalinterval*hz;
4438 		if (sc->sc_lastcalreset == 0)
4439 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4440 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4441 			sc->sc_resetcal = 1;	/* setup reset next trip */
4442 		sc->sc_doresetcal = AH_FALSE;
4443 	}
4444 	/* ANI calibration may occur more often than short/long/resetcal */
4445 	if (ath_anicalinterval > 0)
4446 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4447 
4448 	if (nextcal != 0) {
4449 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4450 		    __func__, nextcal, isCalDone ? "" : "!");
4451 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4452 	} else {
4453 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4454 		    __func__);
4455 		/* NB: don't rearm timer */
4456 	}
4457 }
4458 
4459 static void
4460 ath_scan_start(struct ieee80211com *ic)
4461 {
4462 	struct ifnet *ifp = ic->ic_ifp;
4463 	struct ath_softc *sc = ifp->if_softc;
4464 	struct ath_hal *ah = sc->sc_ah;
4465 	u_int32_t rfilt;
4466 
4467 	/* XXX calibration timer? */
4468 
4469 	ATH_LOCK(sc);
4470 	sc->sc_scanning = 1;
4471 	sc->sc_syncbeacon = 0;
4472 	rfilt = ath_calcrxfilter(sc);
4473 	ATH_UNLOCK(sc);
4474 
4475 	ATH_PCU_LOCK(sc);
4476 	ath_hal_setrxfilter(ah, rfilt);
4477 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4478 	ATH_PCU_UNLOCK(sc);
4479 
4480 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4481 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4482 }
4483 
4484 static void
4485 ath_scan_end(struct ieee80211com *ic)
4486 {
4487 	struct ifnet *ifp = ic->ic_ifp;
4488 	struct ath_softc *sc = ifp->if_softc;
4489 	struct ath_hal *ah = sc->sc_ah;
4490 	u_int32_t rfilt;
4491 
4492 	ATH_LOCK(sc);
4493 	sc->sc_scanning = 0;
4494 	rfilt = ath_calcrxfilter(sc);
4495 	ATH_UNLOCK(sc);
4496 
4497 	ATH_PCU_LOCK(sc);
4498 	ath_hal_setrxfilter(ah, rfilt);
4499 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4500 
4501 	ath_hal_process_noisefloor(ah);
4502 	ATH_PCU_UNLOCK(sc);
4503 
4504 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4505 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4506 		 sc->sc_curaid);
4507 }
4508 
4509 #ifdef	ATH_ENABLE_11N
4510 /*
4511  * For now, just do a channel change.
4512  *
4513  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4514  * control state and resetting the hardware without dropping frames out
4515  * of the queue.
4516  *
4517  * The unfortunate trouble here is making absolutely sure that the
4518  * channel width change has propagated enough so the hardware
4519  * absolutely isn't handed bogus frames for it's current operating
4520  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4521  * does occur in parallel, we need to make certain we've blocked
4522  * any further ongoing TX (and RX, that can cause raw TX)
4523  * before we do this.
4524  */
4525 static void
4526 ath_update_chw(struct ieee80211com *ic)
4527 {
4528 	struct ifnet *ifp = ic->ic_ifp;
4529 	struct ath_softc *sc = ifp->if_softc;
4530 
4531 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4532 	ath_set_channel(ic);
4533 }
4534 #endif	/* ATH_ENABLE_11N */
4535 
4536 static void
4537 ath_set_channel(struct ieee80211com *ic)
4538 {
4539 	struct ifnet *ifp = ic->ic_ifp;
4540 	struct ath_softc *sc = ifp->if_softc;
4541 
4542 	(void) ath_chan_set(sc, ic->ic_curchan);
4543 	/*
4544 	 * If we are returning to our bss channel then mark state
4545 	 * so the next recv'd beacon's tsf will be used to sync the
4546 	 * beacon timers.  Note that since we only hear beacons in
4547 	 * sta/ibss mode this has no effect in other operating modes.
4548 	 */
4549 	ATH_LOCK(sc);
4550 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4551 		sc->sc_syncbeacon = 1;
4552 	ATH_UNLOCK(sc);
4553 }
4554 
4555 /*
4556  * Walk the vap list and check if there any vap's in RUN state.
4557  */
4558 static int
4559 ath_isanyrunningvaps(struct ieee80211vap *this)
4560 {
4561 	struct ieee80211com *ic = this->iv_ic;
4562 	struct ieee80211vap *vap;
4563 
4564 	IEEE80211_LOCK_ASSERT(ic);
4565 
4566 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4567 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4568 			return 1;
4569 	}
4570 	return 0;
4571 }
4572 
4573 static int
4574 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4575 {
4576 	struct ieee80211com *ic = vap->iv_ic;
4577 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4578 	struct ath_vap *avp = ATH_VAP(vap);
4579 	struct ath_hal *ah = sc->sc_ah;
4580 	struct ieee80211_node *ni = NULL;
4581 	int i, error, stamode;
4582 	u_int32_t rfilt;
4583 	int csa_run_transition = 0;
4584 	static const HAL_LED_STATE leds[] = {
4585 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4586 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4587 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4588 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4589 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4590 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4591 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4592 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4593 	};
4594 
4595 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4596 		ieee80211_state_name[vap->iv_state],
4597 		ieee80211_state_name[nstate]);
4598 
4599 	/*
4600 	 * net80211 _should_ have the comlock asserted at this point.
4601 	 * There are some comments around the calls to vap->iv_newstate
4602 	 * which indicate that it (newstate) may end up dropping the
4603 	 * lock.  This and the subsequent lock assert check after newstate
4604 	 * are an attempt to catch these and figure out how/why.
4605 	 */
4606 	IEEE80211_LOCK_ASSERT(ic);
4607 
4608 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4609 		csa_run_transition = 1;
4610 
4611 	callout_drain(&sc->sc_cal_ch);
4612 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4613 
4614 	if (nstate == IEEE80211_S_SCAN) {
4615 		/*
4616 		 * Scanning: turn off beacon miss and don't beacon.
4617 		 * Mark beacon state so when we reach RUN state we'll
4618 		 * [re]setup beacons.  Unblock the task q thread so
4619 		 * deferred interrupt processing is done.
4620 		 */
4621 		ath_hal_intrset(ah,
4622 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4623 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4624 		sc->sc_beacons = 0;
4625 		taskqueue_unblock(sc->sc_tq);
4626 	}
4627 
4628 	ni = ieee80211_ref_node(vap->iv_bss);
4629 	rfilt = ath_calcrxfilter(sc);
4630 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4631 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4632 		   vap->iv_opmode == IEEE80211_M_IBSS);
4633 	if (stamode && nstate == IEEE80211_S_RUN) {
4634 		sc->sc_curaid = ni->ni_associd;
4635 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4636 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4637 	}
4638 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4639 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4640 	ath_hal_setrxfilter(ah, rfilt);
4641 
4642 	/* XXX is this to restore keycache on resume? */
4643 	if (vap->iv_opmode != IEEE80211_M_STA &&
4644 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4645 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4646 			if (ath_hal_keyisvalid(ah, i))
4647 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4648 	}
4649 
4650 	/*
4651 	 * Invoke the parent method to do net80211 work.
4652 	 */
4653 	error = avp->av_newstate(vap, nstate, arg);
4654 	if (error != 0)
4655 		goto bad;
4656 
4657 	/*
4658 	 * See above: ensure av_newstate() doesn't drop the lock
4659 	 * on us.
4660 	 */
4661 	IEEE80211_LOCK_ASSERT(ic);
4662 
4663 	if (nstate == IEEE80211_S_RUN) {
4664 		/* NB: collect bss node again, it may have changed */
4665 		ieee80211_free_node(ni);
4666 		ni = ieee80211_ref_node(vap->iv_bss);
4667 
4668 		DPRINTF(sc, ATH_DEBUG_STATE,
4669 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4670 		    "capinfo 0x%04x chan %d\n", __func__,
4671 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4672 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4673 
4674 		switch (vap->iv_opmode) {
4675 #ifdef IEEE80211_SUPPORT_TDMA
4676 		case IEEE80211_M_AHDEMO:
4677 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4678 				break;
4679 			/* fall thru... */
4680 #endif
4681 		case IEEE80211_M_HOSTAP:
4682 		case IEEE80211_M_IBSS:
4683 		case IEEE80211_M_MBSS:
4684 			/*
4685 			 * Allocate and setup the beacon frame.
4686 			 *
4687 			 * Stop any previous beacon DMA.  This may be
4688 			 * necessary, for example, when an ibss merge
4689 			 * causes reconfiguration; there will be a state
4690 			 * transition from RUN->RUN that means we may
4691 			 * be called with beacon transmission active.
4692 			 */
4693 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4694 
4695 			error = ath_beacon_alloc(sc, ni);
4696 			if (error != 0)
4697 				goto bad;
4698 			/*
4699 			 * If joining an adhoc network defer beacon timer
4700 			 * configuration to the next beacon frame so we
4701 			 * have a current TSF to use.  Otherwise we're
4702 			 * starting an ibss/bss so there's no need to delay;
4703 			 * if this is the first vap moving to RUN state, then
4704 			 * beacon state needs to be [re]configured.
4705 			 */
4706 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4707 			    ni->ni_tstamp.tsf != 0) {
4708 				sc->sc_syncbeacon = 1;
4709 			} else if (!sc->sc_beacons) {
4710 #ifdef IEEE80211_SUPPORT_TDMA
4711 				if (vap->iv_caps & IEEE80211_C_TDMA)
4712 					ath_tdma_config(sc, vap);
4713 				else
4714 #endif
4715 					ath_beacon_config(sc, vap);
4716 				sc->sc_beacons = 1;
4717 			}
4718 			break;
4719 		case IEEE80211_M_STA:
4720 			/*
4721 			 * Defer beacon timer configuration to the next
4722 			 * beacon frame so we have a current TSF to use
4723 			 * (any TSF collected when scanning is likely old).
4724 			 * However if it's due to a CSA -> RUN transition,
4725 			 * force a beacon update so we pick up a lack of
4726 			 * beacons from an AP in CAC and thus force a
4727 			 * scan.
4728 			 */
4729 			sc->sc_syncbeacon = 1;
4730 			if (csa_run_transition)
4731 				ath_beacon_config(sc, vap);
4732 			break;
4733 		case IEEE80211_M_MONITOR:
4734 			/*
4735 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4736 			 * transitions so we must re-enable interrupts here to
4737 			 * handle the case of a single monitor mode vap.
4738 			 */
4739 			ath_hal_intrset(ah, sc->sc_imask);
4740 			break;
4741 		case IEEE80211_M_WDS:
4742 			break;
4743 		default:
4744 			break;
4745 		}
4746 		/*
4747 		 * Let the hal process statistics collected during a
4748 		 * scan so it can provide calibrated noise floor data.
4749 		 */
4750 		ath_hal_process_noisefloor(ah);
4751 		/*
4752 		 * Reset rssi stats; maybe not the best place...
4753 		 */
4754 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4755 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4756 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4757 		/*
4758 		 * Finally, start any timers and the task q thread
4759 		 * (in case we didn't go through SCAN state).
4760 		 */
4761 		if (ath_longcalinterval != 0) {
4762 			/* start periodic recalibration timer */
4763 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4764 		} else {
4765 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4766 			    "%s: calibration disabled\n", __func__);
4767 		}
4768 		taskqueue_unblock(sc->sc_tq);
4769 	} else if (nstate == IEEE80211_S_INIT) {
4770 		/*
4771 		 * If there are no vaps left in RUN state then
4772 		 * shutdown host/driver operation:
4773 		 * o disable interrupts
4774 		 * o disable the task queue thread
4775 		 * o mark beacon processing as stopped
4776 		 */
4777 		if (!ath_isanyrunningvaps(vap)) {
4778 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4779 			/* disable interrupts  */
4780 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4781 			taskqueue_block(sc->sc_tq);
4782 			sc->sc_beacons = 0;
4783 		}
4784 #ifdef IEEE80211_SUPPORT_TDMA
4785 		ath_hal_setcca(ah, AH_TRUE);
4786 #endif
4787 	}
4788 bad:
4789 	ieee80211_free_node(ni);
4790 	return error;
4791 }
4792 
4793 /*
4794  * Allocate a key cache slot to the station so we can
4795  * setup a mapping from key index to node. The key cache
4796  * slot is needed for managing antenna state and for
4797  * compression when stations do not use crypto.  We do
4798  * it uniliaterally here; if crypto is employed this slot
4799  * will be reassigned.
4800  */
4801 static void
4802 ath_setup_stationkey(struct ieee80211_node *ni)
4803 {
4804 	struct ieee80211vap *vap = ni->ni_vap;
4805 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4806 	ieee80211_keyix keyix, rxkeyix;
4807 
4808 	/* XXX should take a locked ref to vap->iv_bss */
4809 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4810 		/*
4811 		 * Key cache is full; we'll fall back to doing
4812 		 * the more expensive lookup in software.  Note
4813 		 * this also means no h/w compression.
4814 		 */
4815 		/* XXX msg+statistic */
4816 	} else {
4817 		/* XXX locking? */
4818 		ni->ni_ucastkey.wk_keyix = keyix;
4819 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4820 		/* NB: must mark device key to get called back on delete */
4821 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4822 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4823 		/* NB: this will create a pass-thru key entry */
4824 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4825 	}
4826 }
4827 
4828 /*
4829  * Setup driver-specific state for a newly associated node.
4830  * Note that we're called also on a re-associate, the isnew
4831  * param tells us if this is the first time or not.
4832  */
4833 static void
4834 ath_newassoc(struct ieee80211_node *ni, int isnew)
4835 {
4836 	struct ath_node *an = ATH_NODE(ni);
4837 	struct ieee80211vap *vap = ni->ni_vap;
4838 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4839 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4840 
4841 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4842 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4843 
4844 	ath_rate_newassoc(sc, an, isnew);
4845 	if (isnew &&
4846 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4847 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4848 		ath_setup_stationkey(ni);
4849 }
4850 
4851 static int
4852 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4853 	int nchans, struct ieee80211_channel chans[])
4854 {
4855 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4856 	struct ath_hal *ah = sc->sc_ah;
4857 	HAL_STATUS status;
4858 
4859 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4860 	    "%s: rd %u cc %u location %c%s\n",
4861 	    __func__, reg->regdomain, reg->country, reg->location,
4862 	    reg->ecm ? " ecm" : "");
4863 
4864 	status = ath_hal_set_channels(ah, chans, nchans,
4865 	    reg->country, reg->regdomain);
4866 	if (status != HAL_OK) {
4867 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4868 		    __func__, status);
4869 		return EINVAL;		/* XXX */
4870 	}
4871 
4872 	return 0;
4873 }
4874 
4875 static void
4876 ath_getradiocaps(struct ieee80211com *ic,
4877 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4878 {
4879 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4880 	struct ath_hal *ah = sc->sc_ah;
4881 
4882 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4883 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4884 
4885 	/* XXX check return */
4886 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4887 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4888 
4889 }
4890 
4891 static int
4892 ath_getchannels(struct ath_softc *sc)
4893 {
4894 	struct ifnet *ifp = sc->sc_ifp;
4895 	struct ieee80211com *ic = ifp->if_l2com;
4896 	struct ath_hal *ah = sc->sc_ah;
4897 	HAL_STATUS status;
4898 
4899 	/*
4900 	 * Collect channel set based on EEPROM contents.
4901 	 */
4902 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4903 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4904 	if (status != HAL_OK) {
4905 		if_printf(ifp, "%s: unable to collect channel list from hal, "
4906 		    "status %d\n", __func__, status);
4907 		return EINVAL;
4908 	}
4909 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4910 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4911 	/* XXX map Atheros sku's to net80211 SKU's */
4912 	/* XXX net80211 types too small */
4913 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4914 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4915 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4916 	ic->ic_regdomain.isocc[1] = ' ';
4917 
4918 	ic->ic_regdomain.ecm = 1;
4919 	ic->ic_regdomain.location = 'I';
4920 
4921 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4922 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4923 	    __func__, sc->sc_eerd, sc->sc_eecc,
4924 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4925 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4926 	return 0;
4927 }
4928 
4929 static int
4930 ath_rate_setup(struct ath_softc *sc, u_int mode)
4931 {
4932 	struct ath_hal *ah = sc->sc_ah;
4933 	const HAL_RATE_TABLE *rt;
4934 
4935 	switch (mode) {
4936 	case IEEE80211_MODE_11A:
4937 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4938 		break;
4939 	case IEEE80211_MODE_HALF:
4940 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4941 		break;
4942 	case IEEE80211_MODE_QUARTER:
4943 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4944 		break;
4945 	case IEEE80211_MODE_11B:
4946 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4947 		break;
4948 	case IEEE80211_MODE_11G:
4949 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4950 		break;
4951 	case IEEE80211_MODE_TURBO_A:
4952 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4953 		break;
4954 	case IEEE80211_MODE_TURBO_G:
4955 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4956 		break;
4957 	case IEEE80211_MODE_STURBO_A:
4958 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4959 		break;
4960 	case IEEE80211_MODE_11NA:
4961 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4962 		break;
4963 	case IEEE80211_MODE_11NG:
4964 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4965 		break;
4966 	default:
4967 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4968 			__func__, mode);
4969 		return 0;
4970 	}
4971 	sc->sc_rates[mode] = rt;
4972 	return (rt != NULL);
4973 }
4974 
4975 static void
4976 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4977 {
4978 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4979 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4980 	static const struct {
4981 		u_int		rate;		/* tx/rx 802.11 rate */
4982 		u_int16_t	timeOn;		/* LED on time (ms) */
4983 		u_int16_t	timeOff;	/* LED off time (ms) */
4984 	} blinkrates[] = {
4985 		{ 108,  40,  10 },
4986 		{  96,  44,  11 },
4987 		{  72,  50,  13 },
4988 		{  48,  57,  14 },
4989 		{  36,  67,  16 },
4990 		{  24,  80,  20 },
4991 		{  22, 100,  25 },
4992 		{  18, 133,  34 },
4993 		{  12, 160,  40 },
4994 		{  10, 200,  50 },
4995 		{   6, 240,  58 },
4996 		{   4, 267,  66 },
4997 		{   2, 400, 100 },
4998 		{   0, 500, 130 },
4999 		/* XXX half/quarter rates */
5000 	};
5001 	const HAL_RATE_TABLE *rt;
5002 	int i, j;
5003 
5004 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5005 	rt = sc->sc_rates[mode];
5006 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5007 	for (i = 0; i < rt->rateCount; i++) {
5008 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5009 		if (rt->info[i].phy != IEEE80211_T_HT)
5010 			sc->sc_rixmap[ieeerate] = i;
5011 		else
5012 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5013 	}
5014 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5015 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5016 		if (i >= rt->rateCount) {
5017 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5018 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5019 			continue;
5020 		}
5021 		sc->sc_hwmap[i].ieeerate =
5022 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5023 		if (rt->info[i].phy == IEEE80211_T_HT)
5024 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5025 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5026 		if (rt->info[i].shortPreamble ||
5027 		    rt->info[i].phy == IEEE80211_T_OFDM)
5028 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5029 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5030 		for (j = 0; j < N(blinkrates)-1; j++)
5031 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5032 				break;
5033 		/* NB: this uses the last entry if the rate isn't found */
5034 		/* XXX beware of overlow */
5035 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5036 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5037 	}
5038 	sc->sc_currates = rt;
5039 	sc->sc_curmode = mode;
5040 	/*
5041 	 * All protection frames are transmited at 2Mb/s for
5042 	 * 11g, otherwise at 1Mb/s.
5043 	 */
5044 	if (mode == IEEE80211_MODE_11G)
5045 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5046 	else
5047 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5048 	/* NB: caller is responsible for resetting rate control state */
5049 #undef N
5050 }
5051 
5052 static void
5053 ath_watchdog(void *arg)
5054 {
5055 	struct ath_softc *sc = arg;
5056 	int do_reset = 0;
5057 
5058 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5059 		struct ifnet *ifp = sc->sc_ifp;
5060 		uint32_t hangs;
5061 
5062 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5063 		    hangs != 0) {
5064 			if_printf(ifp, "%s hang detected (0x%x)\n",
5065 			    hangs & 0xff ? "bb" : "mac", hangs);
5066 		} else
5067 			if_printf(ifp, "device timeout\n");
5068 		do_reset = 1;
5069 		ifp->if_oerrors++;
5070 		sc->sc_stats.ast_watchdog++;
5071 	}
5072 
5073 	/*
5074 	 * We can't hold the lock across the ath_reset() call.
5075 	 *
5076 	 * And since this routine can't hold a lock and sleep,
5077 	 * do the reset deferred.
5078 	 */
5079 	if (do_reset) {
5080 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5081 	}
5082 
5083 	callout_schedule(&sc->sc_wd_ch, hz);
5084 }
5085 
5086 /*
5087  * Fetch the rate control statistics for the given node.
5088  */
5089 static int
5090 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5091 {
5092 	struct ath_node *an;
5093 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5094 	struct ieee80211_node *ni;
5095 	int error = 0;
5096 
5097 	/* Perform a lookup on the given node */
5098 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5099 	if (ni == NULL) {
5100 		error = EINVAL;
5101 		goto bad;
5102 	}
5103 
5104 	/* Lock the ath_node */
5105 	an = ATH_NODE(ni);
5106 	ATH_NODE_LOCK(an);
5107 
5108 	/* Fetch the rate control stats for this node */
5109 	error = ath_rate_fetch_node_stats(sc, an, rs);
5110 
5111 	/* No matter what happens here, just drop through */
5112 
5113 	/* Unlock the ath_node */
5114 	ATH_NODE_UNLOCK(an);
5115 
5116 	/* Unref the node */
5117 	ieee80211_node_decref(ni);
5118 
5119 bad:
5120 	return (error);
5121 }
5122 
5123 #ifdef ATH_DIAGAPI
5124 /*
5125  * Diagnostic interface to the HAL.  This is used by various
5126  * tools to do things like retrieve register contents for
5127  * debugging.  The mechanism is intentionally opaque so that
5128  * it can change frequently w/o concern for compatiblity.
5129  */
5130 static int
5131 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5132 {
5133 	struct ath_hal *ah = sc->sc_ah;
5134 	u_int id = ad->ad_id & ATH_DIAG_ID;
5135 	void *indata = NULL;
5136 	void *outdata = NULL;
5137 	u_int32_t insize = ad->ad_in_size;
5138 	u_int32_t outsize = ad->ad_out_size;
5139 	int error = 0;
5140 
5141 	if (ad->ad_id & ATH_DIAG_IN) {
5142 		/*
5143 		 * Copy in data.
5144 		 */
5145 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5146 		if (indata == NULL) {
5147 			error = ENOMEM;
5148 			goto bad;
5149 		}
5150 		error = copyin(ad->ad_in_data, indata, insize);
5151 		if (error)
5152 			goto bad;
5153 	}
5154 	if (ad->ad_id & ATH_DIAG_DYN) {
5155 		/*
5156 		 * Allocate a buffer for the results (otherwise the HAL
5157 		 * returns a pointer to a buffer where we can read the
5158 		 * results).  Note that we depend on the HAL leaving this
5159 		 * pointer for us to use below in reclaiming the buffer;
5160 		 * may want to be more defensive.
5161 		 */
5162 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5163 		if (outdata == NULL) {
5164 			error = ENOMEM;
5165 			goto bad;
5166 		}
5167 	}
5168 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5169 		if (outsize < ad->ad_out_size)
5170 			ad->ad_out_size = outsize;
5171 		if (outdata != NULL)
5172 			error = copyout(outdata, ad->ad_out_data,
5173 					ad->ad_out_size);
5174 	} else {
5175 		error = EINVAL;
5176 	}
5177 bad:
5178 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5179 		free(indata, M_TEMP);
5180 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5181 		free(outdata, M_TEMP);
5182 	return error;
5183 }
5184 #endif /* ATH_DIAGAPI */
5185 
5186 static int
5187 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5188 {
5189 #define	IS_RUNNING(ifp) \
5190 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5191 	struct ath_softc *sc = ifp->if_softc;
5192 	struct ieee80211com *ic = ifp->if_l2com;
5193 	struct ifreq *ifr = (struct ifreq *)data;
5194 	const HAL_RATE_TABLE *rt;
5195 	int error = 0;
5196 
5197 	switch (cmd) {
5198 	case SIOCSIFFLAGS:
5199 		ATH_LOCK(sc);
5200 		if (IS_RUNNING(ifp)) {
5201 			/*
5202 			 * To avoid rescanning another access point,
5203 			 * do not call ath_init() here.  Instead,
5204 			 * only reflect promisc mode settings.
5205 			 */
5206 			ath_mode_init(sc);
5207 		} else if (ifp->if_flags & IFF_UP) {
5208 			/*
5209 			 * Beware of being called during attach/detach
5210 			 * to reset promiscuous mode.  In that case we
5211 			 * will still be marked UP but not RUNNING.
5212 			 * However trying to re-init the interface
5213 			 * is the wrong thing to do as we've already
5214 			 * torn down much of our state.  There's
5215 			 * probably a better way to deal with this.
5216 			 */
5217 			if (!sc->sc_invalid)
5218 				ath_init(sc);	/* XXX lose error */
5219 		} else {
5220 			ath_stop_locked(ifp);
5221 #ifdef notyet
5222 			/* XXX must wakeup in places like ath_vap_delete */
5223 			if (!sc->sc_invalid)
5224 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5225 #endif
5226 		}
5227 		ATH_UNLOCK(sc);
5228 		break;
5229 	case SIOCGIFMEDIA:
5230 	case SIOCSIFMEDIA:
5231 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5232 		break;
5233 	case SIOCGATHSTATS:
5234 		/* NB: embed these numbers to get a consistent view */
5235 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5236 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5237 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5238 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5239 #ifdef IEEE80211_SUPPORT_TDMA
5240 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5241 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5242 #endif
5243 		rt = sc->sc_currates;
5244 		sc->sc_stats.ast_tx_rate =
5245 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5246 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5247 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5248 		return copyout(&sc->sc_stats,
5249 		    ifr->ifr_data, sizeof (sc->sc_stats));
5250 	case SIOCGATHAGSTATS:
5251 		return copyout(&sc->sc_aggr_stats,
5252 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5253 	case SIOCZATHSTATS:
5254 		error = priv_check(curthread, PRIV_DRIVER);
5255 		if (error == 0) {
5256 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5257 			memset(&sc->sc_aggr_stats, 0,
5258 			    sizeof(sc->sc_aggr_stats));
5259 			memset(&sc->sc_intr_stats, 0,
5260 			    sizeof(sc->sc_intr_stats));
5261 		}
5262 		break;
5263 #ifdef ATH_DIAGAPI
5264 	case SIOCGATHDIAG:
5265 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5266 		break;
5267 	case SIOCGATHPHYERR:
5268 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5269 		break;
5270 #endif
5271 	case SIOCGATHNODERATESTATS:
5272 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5273 		break;
5274 	case SIOCGIFADDR:
5275 		error = ether_ioctl(ifp, cmd, data);
5276 		break;
5277 	default:
5278 		error = EINVAL;
5279 		break;
5280 	}
5281 	return error;
5282 #undef IS_RUNNING
5283 }
5284 
5285 /*
5286  * Announce various information on device/driver attach.
5287  */
5288 static void
5289 ath_announce(struct ath_softc *sc)
5290 {
5291 	struct ifnet *ifp = sc->sc_ifp;
5292 	struct ath_hal *ah = sc->sc_ah;
5293 
5294 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5295 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5296 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5297 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5298 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5299 	if (bootverbose) {
5300 		int i;
5301 		for (i = 0; i <= WME_AC_VO; i++) {
5302 			struct ath_txq *txq = sc->sc_ac2q[i];
5303 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5304 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5305 		}
5306 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5307 			sc->sc_cabq->axq_qnum);
5308 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5309 	}
5310 	if (ath_rxbuf != ATH_RXBUF)
5311 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5312 	if (ath_txbuf != ATH_TXBUF)
5313 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5314 	if (sc->sc_mcastkey && bootverbose)
5315 		if_printf(ifp, "using multicast key search\n");
5316 }
5317 
5318 static void
5319 ath_dfs_tasklet(void *p, int npending)
5320 {
5321 	struct ath_softc *sc = (struct ath_softc *) p;
5322 	struct ifnet *ifp = sc->sc_ifp;
5323 	struct ieee80211com *ic = ifp->if_l2com;
5324 
5325 	/*
5326 	 * If previous processing has found a radar event,
5327 	 * signal this to the net80211 layer to begin DFS
5328 	 * processing.
5329 	 */
5330 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5331 		/* DFS event found, initiate channel change */
5332 		/*
5333 		 * XXX doesn't currently tell us whether the event
5334 		 * XXX was found in the primary or extension
5335 		 * XXX channel!
5336 		 */
5337 		IEEE80211_LOCK(ic);
5338 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5339 		IEEE80211_UNLOCK(ic);
5340 	}
5341 }
5342 
5343 /*
5344  * Enable/disable power save.  This must be called with
5345  * no TX driver locks currently held, so it should only
5346  * be called from the RX path (which doesn't hold any
5347  * TX driver locks.)
5348  */
5349 static void
5350 ath_node_powersave(struct ieee80211_node *ni, int enable)
5351 {
5352 	struct ath_node *an = ATH_NODE(ni);
5353 	struct ieee80211com *ic = ni->ni_ic;
5354 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5355 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5356 
5357 	ATH_NODE_UNLOCK_ASSERT(an);
5358 	/* XXX and no TXQ locks should be held here */
5359 
5360 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5361 	    __func__, ni, enable);
5362 
5363 	/* Suspend or resume software queue handling */
5364 	if (enable)
5365 		ath_tx_node_sleep(sc, an);
5366 	else
5367 		ath_tx_node_wakeup(sc, an);
5368 
5369 	/* Update net80211 state */
5370 	avp->av_node_ps(ni, enable);
5371 }
5372 
5373 
5374 MODULE_VERSION(if_ath, 1);
5375 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5376 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5377 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5378 #endif
5379