1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 /* 121 * ATH_BCBUF determines the number of vap's that can transmit 122 * beacons and also (currently) the number of vap's that can 123 * have unique mac addresses/bssid. When staggering beacons 124 * 4 is probably a good max as otherwise the beacons become 125 * very closely spaced and there is limited time for cab q traffic 126 * to go out. You can burst beacons instead but that is not good 127 * for stations in power save and at some point you really want 128 * another radio (and channel). 129 * 130 * The limit on the number of mac addresses is tied to our use of 131 * the U/L bit and tracking addresses in a byte; it would be 132 * worthwhile to allow more for applications like proxy sta. 133 */ 134 CTASSERT(ATH_BCBUF <= 8); 135 136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 137 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 138 const uint8_t [IEEE80211_ADDR_LEN], 139 const uint8_t [IEEE80211_ADDR_LEN]); 140 static void ath_vap_delete(struct ieee80211vap *); 141 static void ath_init(void *); 142 static void ath_stop_locked(struct ifnet *); 143 static void ath_stop(struct ifnet *); 144 static int ath_reset_vap(struct ieee80211vap *, u_long); 145 static int ath_media_change(struct ifnet *); 146 static void ath_watchdog(void *); 147 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 148 static void ath_fatal_proc(void *, int); 149 static void ath_bmiss_vap(struct ieee80211vap *); 150 static void ath_bmiss_proc(void *, int); 151 static void ath_key_update_begin(struct ieee80211vap *); 152 static void ath_key_update_end(struct ieee80211vap *); 153 static void ath_update_mcast(struct ifnet *); 154 static void ath_update_promisc(struct ifnet *); 155 static void ath_updateslot(struct ifnet *); 156 static void ath_bstuck_proc(void *, int); 157 static void ath_reset_proc(void *, int); 158 static int ath_desc_alloc(struct ath_softc *); 159 static void ath_desc_free(struct ath_softc *); 160 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 161 const uint8_t [IEEE80211_ADDR_LEN]); 162 static void ath_node_cleanup(struct ieee80211_node *); 163 static void ath_node_free(struct ieee80211_node *); 164 static void ath_node_getsignal(const struct ieee80211_node *, 165 int8_t *, int8_t *); 166 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 167 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 168 static int ath_tx_setup(struct ath_softc *, int, int); 169 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 170 static void ath_tx_cleanup(struct ath_softc *); 171 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 172 int dosched); 173 static void ath_tx_proc_q0(void *, int); 174 static void ath_tx_proc_q0123(void *, int); 175 static void ath_tx_proc(void *, int); 176 static void ath_txq_sched_tasklet(void *, int); 177 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 178 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_scan_start(struct ieee80211com *); 180 static void ath_scan_end(struct ieee80211com *); 181 static void ath_set_channel(struct ieee80211com *); 182 #ifdef ATH_ENABLE_11N 183 static void ath_update_chw(struct ieee80211com *); 184 #endif /* ATH_ENABLE_11N */ 185 static void ath_calibrate(void *); 186 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 187 static void ath_setup_stationkey(struct ieee80211_node *); 188 static void ath_newassoc(struct ieee80211_node *, int); 189 static int ath_setregdomain(struct ieee80211com *, 190 struct ieee80211_regdomain *, int, 191 struct ieee80211_channel []); 192 static void ath_getradiocaps(struct ieee80211com *, int, int *, 193 struct ieee80211_channel []); 194 static int ath_getchannels(struct ath_softc *); 195 196 static int ath_rate_setup(struct ath_softc *, u_int mode); 197 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 198 199 static void ath_announce(struct ath_softc *); 200 201 static void ath_dfs_tasklet(void *, int); 202 static void ath_node_powersave(struct ieee80211_node *, int); 203 204 #ifdef IEEE80211_SUPPORT_TDMA 205 #include <dev/ath/if_ath_tdma.h> 206 #endif 207 208 SYSCTL_DECL(_hw_ath); 209 210 /* XXX validate sysctl values */ 211 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 212 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 213 0, "long chip calibration interval (secs)"); 214 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 215 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 216 0, "short chip calibration interval (msecs)"); 217 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 218 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 219 0, "reset chip calibration results (secs)"); 220 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 221 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 222 0, "ANI calibration (msecs)"); 223 224 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 225 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 226 0, "rx buffers allocated"); 227 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 228 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 230 0, "tx buffers allocated"); 231 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 232 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 234 0, "tx (mgmt) buffers allocated"); 235 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 236 237 int ath_bstuck_threshold = 4; /* max missed beacons */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 239 0, "max missed beacon xmits before chip reset"); 240 241 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 242 243 void 244 ath_legacy_attach_comp_func(struct ath_softc *sc) 245 { 246 247 /* 248 * Special case certain configurations. Note the 249 * CAB queue is handled by these specially so don't 250 * include them when checking the txq setup mask. 251 */ 252 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 253 case 0x01: 254 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 255 break; 256 case 0x0f: 257 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 258 break; 259 default: 260 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 261 break; 262 } 263 } 264 265 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 266 #define HAL_MODE_HT40 \ 267 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 268 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 269 int 270 ath_attach(u_int16_t devid, struct ath_softc *sc) 271 { 272 struct ifnet *ifp; 273 struct ieee80211com *ic; 274 struct ath_hal *ah = NULL; 275 HAL_STATUS status; 276 int error = 0, i; 277 u_int wmodes; 278 uint8_t macaddr[IEEE80211_ADDR_LEN]; 279 int rx_chainmask, tx_chainmask; 280 281 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 282 283 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 284 if (ifp == NULL) { 285 device_printf(sc->sc_dev, "can not if_alloc()\n"); 286 error = ENOSPC; 287 goto bad; 288 } 289 ic = ifp->if_l2com; 290 291 /* set these up early for if_printf use */ 292 if_initname(ifp, device_get_name(sc->sc_dev), 293 device_get_unit(sc->sc_dev)); 294 295 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 296 sc->sc_eepromdata, &status); 297 if (ah == NULL) { 298 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 299 status); 300 error = ENXIO; 301 goto bad; 302 } 303 sc->sc_ah = ah; 304 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 305 #ifdef ATH_DEBUG 306 sc->sc_debug = ath_debug; 307 #endif 308 309 /* 310 * Setup the DMA/EDMA functions based on the current 311 * hardware support. 312 * 313 * This is required before the descriptors are allocated. 314 */ 315 if (ath_hal_hasedma(sc->sc_ah)) { 316 sc->sc_isedma = 1; 317 ath_recv_setup_edma(sc); 318 ath_xmit_setup_edma(sc); 319 } else { 320 ath_recv_setup_legacy(sc); 321 ath_xmit_setup_legacy(sc); 322 } 323 324 /* 325 * Check if the MAC has multi-rate retry support. 326 * We do this by trying to setup a fake extended 327 * descriptor. MAC's that don't have support will 328 * return false w/o doing anything. MAC's that do 329 * support it will return true w/o doing anything. 330 */ 331 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 332 333 /* 334 * Check if the device has hardware counters for PHY 335 * errors. If so we need to enable the MIB interrupt 336 * so we can act on stat triggers. 337 */ 338 if (ath_hal_hwphycounters(ah)) 339 sc->sc_needmib = 1; 340 341 /* 342 * Get the hardware key cache size. 343 */ 344 sc->sc_keymax = ath_hal_keycachesize(ah); 345 if (sc->sc_keymax > ATH_KEYMAX) { 346 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 347 ATH_KEYMAX, sc->sc_keymax); 348 sc->sc_keymax = ATH_KEYMAX; 349 } 350 /* 351 * Reset the key cache since some parts do not 352 * reset the contents on initial power up. 353 */ 354 for (i = 0; i < sc->sc_keymax; i++) 355 ath_hal_keyreset(ah, i); 356 357 /* 358 * Collect the default channel list. 359 */ 360 error = ath_getchannels(sc); 361 if (error != 0) 362 goto bad; 363 364 /* 365 * Setup rate tables for all potential media types. 366 */ 367 ath_rate_setup(sc, IEEE80211_MODE_11A); 368 ath_rate_setup(sc, IEEE80211_MODE_11B); 369 ath_rate_setup(sc, IEEE80211_MODE_11G); 370 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 371 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 372 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 373 ath_rate_setup(sc, IEEE80211_MODE_11NA); 374 ath_rate_setup(sc, IEEE80211_MODE_11NG); 375 ath_rate_setup(sc, IEEE80211_MODE_HALF); 376 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 377 378 /* NB: setup here so ath_rate_update is happy */ 379 ath_setcurmode(sc, IEEE80211_MODE_11A); 380 381 /* 382 * Allocate TX descriptors and populate the lists. 383 */ 384 error = ath_desc_alloc(sc); 385 if (error != 0) { 386 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 387 error); 388 goto bad; 389 } 390 error = ath_txdma_setup(sc); 391 if (error != 0) { 392 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 393 error); 394 goto bad; 395 } 396 397 /* 398 * Allocate RX descriptors and populate the lists. 399 */ 400 error = ath_rxdma_setup(sc); 401 if (error != 0) { 402 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 403 error); 404 goto bad; 405 } 406 407 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 408 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 409 410 ATH_TXBUF_LOCK_INIT(sc); 411 412 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 413 taskqueue_thread_enqueue, &sc->sc_tq); 414 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 415 "%s taskq", ifp->if_xname); 416 417 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 418 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 419 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 420 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 421 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 422 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 423 424 /* 425 * Allocate hardware transmit queues: one queue for 426 * beacon frames and one data queue for each QoS 427 * priority. Note that the hal handles resetting 428 * these queues at the needed time. 429 * 430 * XXX PS-Poll 431 */ 432 sc->sc_bhalq = ath_beaconq_setup(sc); 433 if (sc->sc_bhalq == (u_int) -1) { 434 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 435 error = EIO; 436 goto bad2; 437 } 438 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 439 if (sc->sc_cabq == NULL) { 440 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 441 error = EIO; 442 goto bad2; 443 } 444 /* NB: insure BK queue is the lowest priority h/w queue */ 445 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 446 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 447 ieee80211_wme_acnames[WME_AC_BK]); 448 error = EIO; 449 goto bad2; 450 } 451 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 452 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 453 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 454 /* 455 * Not enough hardware tx queues to properly do WME; 456 * just punt and assign them all to the same h/w queue. 457 * We could do a better job of this if, for example, 458 * we allocate queues when we switch from station to 459 * AP mode. 460 */ 461 if (sc->sc_ac2q[WME_AC_VI] != NULL) 462 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 463 if (sc->sc_ac2q[WME_AC_BE] != NULL) 464 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 465 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 466 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 467 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 468 } 469 470 /* 471 * Attach the TX completion function. 472 * 473 * The non-EDMA chips may have some special case optimisations; 474 * this method gives everyone a chance to attach cleanly. 475 */ 476 sc->sc_tx.xmit_attach_comp_func(sc); 477 478 /* 479 * Setup rate control. Some rate control modules 480 * call back to change the anntena state so expose 481 * the necessary entry points. 482 * XXX maybe belongs in struct ath_ratectrl? 483 */ 484 sc->sc_setdefantenna = ath_setdefantenna; 485 sc->sc_rc = ath_rate_attach(sc); 486 if (sc->sc_rc == NULL) { 487 error = EIO; 488 goto bad2; 489 } 490 491 /* Attach DFS module */ 492 if (! ath_dfs_attach(sc)) { 493 device_printf(sc->sc_dev, 494 "%s: unable to attach DFS\n", __func__); 495 error = EIO; 496 goto bad2; 497 } 498 499 /* Start DFS processing tasklet */ 500 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 501 502 /* Configure LED state */ 503 sc->sc_blinking = 0; 504 sc->sc_ledstate = 1; 505 sc->sc_ledon = 0; /* low true */ 506 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 507 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 508 509 /* 510 * Don't setup hardware-based blinking. 511 * 512 * Although some NICs may have this configured in the 513 * default reset register values, the user may wish 514 * to alter which pins have which function. 515 * 516 * The reference driver attaches the MAC network LED to GPIO1 and 517 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 518 * NIC has these reversed. 519 */ 520 sc->sc_hardled = (1 == 0); 521 sc->sc_led_net_pin = -1; 522 sc->sc_led_pwr_pin = -1; 523 /* 524 * Auto-enable soft led processing for IBM cards and for 525 * 5211 minipci cards. Users can also manually enable/disable 526 * support with a sysctl. 527 */ 528 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 529 ath_led_config(sc); 530 ath_hal_setledstate(ah, HAL_LED_INIT); 531 532 ifp->if_softc = sc; 533 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 534 ifp->if_start = ath_start; 535 ifp->if_ioctl = ath_ioctl; 536 ifp->if_init = ath_init; 537 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 538 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 539 IFQ_SET_READY(&ifp->if_snd); 540 541 ic->ic_ifp = ifp; 542 /* XXX not right but it's not used anywhere important */ 543 ic->ic_phytype = IEEE80211_T_OFDM; 544 ic->ic_opmode = IEEE80211_M_STA; 545 ic->ic_caps = 546 IEEE80211_C_STA /* station mode */ 547 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 548 | IEEE80211_C_HOSTAP /* hostap mode */ 549 | IEEE80211_C_MONITOR /* monitor mode */ 550 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 551 | IEEE80211_C_WDS /* 4-address traffic works */ 552 | IEEE80211_C_MBSS /* mesh point link mode */ 553 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 554 | IEEE80211_C_SHSLOT /* short slot time supported */ 555 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 556 #ifndef ATH_ENABLE_11N 557 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 558 #endif 559 | IEEE80211_C_TXFRAG /* handle tx frags */ 560 #ifdef ATH_ENABLE_DFS 561 | IEEE80211_C_DFS /* Enable radar detection */ 562 #endif 563 ; 564 /* 565 * Query the hal to figure out h/w crypto support. 566 */ 567 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 568 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 569 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 570 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 571 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 572 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 573 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 574 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 575 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 576 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 577 /* 578 * Check if h/w does the MIC and/or whether the 579 * separate key cache entries are required to 580 * handle both tx+rx MIC keys. 581 */ 582 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 583 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 584 /* 585 * If the h/w supports storing tx+rx MIC keys 586 * in one cache slot automatically enable use. 587 */ 588 if (ath_hal_hastkipsplit(ah) || 589 !ath_hal_settkipsplit(ah, AH_FALSE)) 590 sc->sc_splitmic = 1; 591 /* 592 * If the h/w can do TKIP MIC together with WME then 593 * we use it; otherwise we force the MIC to be done 594 * in software by the net80211 layer. 595 */ 596 if (ath_hal_haswmetkipmic(ah)) 597 sc->sc_wmetkipmic = 1; 598 } 599 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 600 /* 601 * Check for multicast key search support. 602 */ 603 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 604 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 605 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 606 } 607 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 608 /* 609 * Mark key cache slots associated with global keys 610 * as in use. If we knew TKIP was not to be used we 611 * could leave the +32, +64, and +32+64 slots free. 612 */ 613 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 614 setbit(sc->sc_keymap, i); 615 setbit(sc->sc_keymap, i+64); 616 if (sc->sc_splitmic) { 617 setbit(sc->sc_keymap, i+32); 618 setbit(sc->sc_keymap, i+32+64); 619 } 620 } 621 /* 622 * TPC support can be done either with a global cap or 623 * per-packet support. The latter is not available on 624 * all parts. We're a bit pedantic here as all parts 625 * support a global cap. 626 */ 627 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 628 ic->ic_caps |= IEEE80211_C_TXPMGT; 629 630 /* 631 * Mark WME capability only if we have sufficient 632 * hardware queues to do proper priority scheduling. 633 */ 634 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 635 ic->ic_caps |= IEEE80211_C_WME; 636 /* 637 * Check for misc other capabilities. 638 */ 639 if (ath_hal_hasbursting(ah)) 640 ic->ic_caps |= IEEE80211_C_BURST; 641 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 642 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 643 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 644 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 645 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 646 if (ath_hal_hasfastframes(ah)) 647 ic->ic_caps |= IEEE80211_C_FF; 648 wmodes = ath_hal_getwirelessmodes(ah); 649 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 650 ic->ic_caps |= IEEE80211_C_TURBOP; 651 #ifdef IEEE80211_SUPPORT_TDMA 652 if (ath_hal_macversion(ah) > 0x78) { 653 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 654 ic->ic_tdma_update = ath_tdma_update; 655 } 656 #endif 657 658 /* 659 * TODO: enforce that at least this many frames are available 660 * in the txbuf list before allowing data frames (raw or 661 * otherwise) to be transmitted. 662 */ 663 sc->sc_txq_data_minfree = 10; 664 /* 665 * Leave this as default to maintain legacy behaviour. 666 * Shortening the cabq/mcastq may end up causing some 667 * undesirable behaviour. 668 */ 669 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 670 671 /* 672 * Allow the TX and RX chainmasks to be overridden by 673 * environment variables and/or device.hints. 674 * 675 * This must be done early - before the hardware is 676 * calibrated or before the 802.11n stream calculation 677 * is done. 678 */ 679 if (resource_int_value(device_get_name(sc->sc_dev), 680 device_get_unit(sc->sc_dev), "rx_chainmask", 681 &rx_chainmask) == 0) { 682 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 683 rx_chainmask); 684 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 685 } 686 if (resource_int_value(device_get_name(sc->sc_dev), 687 device_get_unit(sc->sc_dev), "tx_chainmask", 688 &tx_chainmask) == 0) { 689 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 690 tx_chainmask); 691 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 692 } 693 694 /* 695 * Disable MRR with protected frames by default. 696 * Only 802.11n series NICs can handle this. 697 */ 698 sc->sc_mrrprot = 0; /* XXX should be a capability */ 699 700 #ifdef ATH_ENABLE_11N 701 /* 702 * Query HT capabilities 703 */ 704 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 705 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 706 int rxs, txs; 707 708 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 709 710 sc->sc_mrrprot = 1; /* XXX should be a capability */ 711 712 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 713 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 714 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 715 | IEEE80211_HTCAP_MAXAMSDU_3839 716 /* max A-MSDU length */ 717 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 718 ; 719 720 /* 721 * Enable short-GI for HT20 only if the hardware 722 * advertises support. 723 * Notably, anything earlier than the AR9287 doesn't. 724 */ 725 if ((ath_hal_getcapability(ah, 726 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 727 (wmodes & HAL_MODE_HT20)) { 728 device_printf(sc->sc_dev, 729 "[HT] enabling short-GI in 20MHz mode\n"); 730 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 731 } 732 733 if (wmodes & HAL_MODE_HT40) 734 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 735 | IEEE80211_HTCAP_SHORTGI40; 736 737 /* 738 * TX/RX streams need to be taken into account when 739 * negotiating which MCS rates it'll receive and 740 * what MCS rates are available for TX. 741 */ 742 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 743 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 744 745 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 746 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 747 748 ic->ic_txstream = txs; 749 ic->ic_rxstream = rxs; 750 751 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 752 &sc->sc_rts_aggr_limit); 753 if (sc->sc_rts_aggr_limit != (64 * 1024)) 754 device_printf(sc->sc_dev, 755 "[HT] RTS aggregates limited to %d KiB\n", 756 sc->sc_rts_aggr_limit / 1024); 757 758 device_printf(sc->sc_dev, 759 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 760 } 761 #endif 762 763 /* 764 * Initial aggregation settings. 765 */ 766 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 767 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 768 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 769 770 /* 771 * Check if the hardware requires PCI register serialisation. 772 * Some of the Owl based MACs require this. 773 */ 774 if (mp_ncpus > 1 && 775 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 776 0, NULL) == HAL_OK) { 777 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 778 device_printf(sc->sc_dev, 779 "Enabling register serialisation\n"); 780 } 781 782 /* 783 * Indicate we need the 802.11 header padded to a 784 * 32-bit boundary for 4-address and QoS frames. 785 */ 786 ic->ic_flags |= IEEE80211_F_DATAPAD; 787 788 /* 789 * Query the hal about antenna support. 790 */ 791 sc->sc_defant = ath_hal_getdefantenna(ah); 792 793 /* 794 * Not all chips have the VEOL support we want to 795 * use with IBSS beacons; check here for it. 796 */ 797 sc->sc_hasveol = ath_hal_hasveol(ah); 798 799 /* get mac address from hardware */ 800 ath_hal_getmac(ah, macaddr); 801 if (sc->sc_hasbmask) 802 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 803 804 /* NB: used to size node table key mapping array */ 805 ic->ic_max_keyix = sc->sc_keymax; 806 /* call MI attach routine. */ 807 ieee80211_ifattach(ic, macaddr); 808 ic->ic_setregdomain = ath_setregdomain; 809 ic->ic_getradiocaps = ath_getradiocaps; 810 sc->sc_opmode = HAL_M_STA; 811 812 /* override default methods */ 813 ic->ic_newassoc = ath_newassoc; 814 ic->ic_updateslot = ath_updateslot; 815 ic->ic_wme.wme_update = ath_wme_update; 816 ic->ic_vap_create = ath_vap_create; 817 ic->ic_vap_delete = ath_vap_delete; 818 ic->ic_raw_xmit = ath_raw_xmit; 819 ic->ic_update_mcast = ath_update_mcast; 820 ic->ic_update_promisc = ath_update_promisc; 821 ic->ic_node_alloc = ath_node_alloc; 822 sc->sc_node_free = ic->ic_node_free; 823 ic->ic_node_free = ath_node_free; 824 sc->sc_node_cleanup = ic->ic_node_cleanup; 825 ic->ic_node_cleanup = ath_node_cleanup; 826 ic->ic_node_getsignal = ath_node_getsignal; 827 ic->ic_scan_start = ath_scan_start; 828 ic->ic_scan_end = ath_scan_end; 829 ic->ic_set_channel = ath_set_channel; 830 #ifdef ATH_ENABLE_11N 831 /* 802.11n specific - but just override anyway */ 832 sc->sc_addba_request = ic->ic_addba_request; 833 sc->sc_addba_response = ic->ic_addba_response; 834 sc->sc_addba_stop = ic->ic_addba_stop; 835 sc->sc_bar_response = ic->ic_bar_response; 836 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 837 838 ic->ic_addba_request = ath_addba_request; 839 ic->ic_addba_response = ath_addba_response; 840 ic->ic_addba_response_timeout = ath_addba_response_timeout; 841 ic->ic_addba_stop = ath_addba_stop; 842 ic->ic_bar_response = ath_bar_response; 843 844 ic->ic_update_chw = ath_update_chw; 845 #endif /* ATH_ENABLE_11N */ 846 847 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 848 /* 849 * There's one vendor bitmap entry in the RX radiotap 850 * header; make sure that's taken into account. 851 */ 852 ieee80211_radiotap_attachv(ic, 853 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 854 ATH_TX_RADIOTAP_PRESENT, 855 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 856 ATH_RX_RADIOTAP_PRESENT); 857 #else 858 /* 859 * No vendor bitmap/extensions are present. 860 */ 861 ieee80211_radiotap_attach(ic, 862 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 863 ATH_TX_RADIOTAP_PRESENT, 864 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 865 ATH_RX_RADIOTAP_PRESENT); 866 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 867 868 /* 869 * Setup dynamic sysctl's now that country code and 870 * regdomain are available from the hal. 871 */ 872 ath_sysctlattach(sc); 873 ath_sysctl_stats_attach(sc); 874 ath_sysctl_hal_attach(sc); 875 876 if (bootverbose) 877 ieee80211_announce(ic); 878 ath_announce(sc); 879 return 0; 880 bad2: 881 ath_tx_cleanup(sc); 882 ath_desc_free(sc); 883 ath_txdma_teardown(sc); 884 ath_rxdma_teardown(sc); 885 bad: 886 if (ah) 887 ath_hal_detach(ah); 888 if (ifp != NULL) 889 if_free(ifp); 890 sc->sc_invalid = 1; 891 return error; 892 } 893 894 int 895 ath_detach(struct ath_softc *sc) 896 { 897 struct ifnet *ifp = sc->sc_ifp; 898 899 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 900 __func__, ifp->if_flags); 901 902 /* 903 * NB: the order of these is important: 904 * o stop the chip so no more interrupts will fire 905 * o call the 802.11 layer before detaching the hal to 906 * insure callbacks into the driver to delete global 907 * key cache entries can be handled 908 * o free the taskqueue which drains any pending tasks 909 * o reclaim the tx queue data structures after calling 910 * the 802.11 layer as we'll get called back to reclaim 911 * node state and potentially want to use them 912 * o to cleanup the tx queues the hal is called, so detach 913 * it last 914 * Other than that, it's straightforward... 915 */ 916 ath_stop(ifp); 917 ieee80211_ifdetach(ifp->if_l2com); 918 taskqueue_free(sc->sc_tq); 919 #ifdef ATH_TX99_DIAG 920 if (sc->sc_tx99 != NULL) 921 sc->sc_tx99->detach(sc->sc_tx99); 922 #endif 923 ath_rate_detach(sc->sc_rc); 924 925 ath_dfs_detach(sc); 926 ath_desc_free(sc); 927 ath_txdma_teardown(sc); 928 ath_rxdma_teardown(sc); 929 ath_tx_cleanup(sc); 930 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 931 if_free(ifp); 932 933 return 0; 934 } 935 936 /* 937 * MAC address handling for multiple BSS on the same radio. 938 * The first vap uses the MAC address from the EEPROM. For 939 * subsequent vap's we set the U/L bit (bit 1) in the MAC 940 * address and use the next six bits as an index. 941 */ 942 static void 943 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 944 { 945 int i; 946 947 if (clone && sc->sc_hasbmask) { 948 /* NB: we only do this if h/w supports multiple bssid */ 949 for (i = 0; i < 8; i++) 950 if ((sc->sc_bssidmask & (1<<i)) == 0) 951 break; 952 if (i != 0) 953 mac[0] |= (i << 2)|0x2; 954 } else 955 i = 0; 956 sc->sc_bssidmask |= 1<<i; 957 sc->sc_hwbssidmask[0] &= ~mac[0]; 958 if (i == 0) 959 sc->sc_nbssid0++; 960 } 961 962 static void 963 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 964 { 965 int i = mac[0] >> 2; 966 uint8_t mask; 967 968 if (i != 0 || --sc->sc_nbssid0 == 0) { 969 sc->sc_bssidmask &= ~(1<<i); 970 /* recalculate bssid mask from remaining addresses */ 971 mask = 0xff; 972 for (i = 1; i < 8; i++) 973 if (sc->sc_bssidmask & (1<<i)) 974 mask &= ~((i<<2)|0x2); 975 sc->sc_hwbssidmask[0] |= mask; 976 } 977 } 978 979 /* 980 * Assign a beacon xmit slot. We try to space out 981 * assignments so when beacons are staggered the 982 * traffic coming out of the cab q has maximal time 983 * to go out before the next beacon is scheduled. 984 */ 985 static int 986 assign_bslot(struct ath_softc *sc) 987 { 988 u_int slot, free; 989 990 free = 0; 991 for (slot = 0; slot < ATH_BCBUF; slot++) 992 if (sc->sc_bslot[slot] == NULL) { 993 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 994 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 995 return slot; 996 free = slot; 997 /* NB: keep looking for a double slot */ 998 } 999 return free; 1000 } 1001 1002 static struct ieee80211vap * 1003 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1004 enum ieee80211_opmode opmode, int flags, 1005 const uint8_t bssid[IEEE80211_ADDR_LEN], 1006 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1007 { 1008 struct ath_softc *sc = ic->ic_ifp->if_softc; 1009 struct ath_vap *avp; 1010 struct ieee80211vap *vap; 1011 uint8_t mac[IEEE80211_ADDR_LEN]; 1012 int needbeacon, error; 1013 enum ieee80211_opmode ic_opmode; 1014 1015 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1016 M_80211_VAP, M_WAITOK | M_ZERO); 1017 needbeacon = 0; 1018 IEEE80211_ADDR_COPY(mac, mac0); 1019 1020 ATH_LOCK(sc); 1021 ic_opmode = opmode; /* default to opmode of new vap */ 1022 switch (opmode) { 1023 case IEEE80211_M_STA: 1024 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1025 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1026 goto bad; 1027 } 1028 if (sc->sc_nvaps) { 1029 /* 1030 * With multiple vaps we must fall back 1031 * to s/w beacon miss handling. 1032 */ 1033 flags |= IEEE80211_CLONE_NOBEACONS; 1034 } 1035 if (flags & IEEE80211_CLONE_NOBEACONS) { 1036 /* 1037 * Station mode w/o beacons are implemented w/ AP mode. 1038 */ 1039 ic_opmode = IEEE80211_M_HOSTAP; 1040 } 1041 break; 1042 case IEEE80211_M_IBSS: 1043 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1044 device_printf(sc->sc_dev, 1045 "only 1 ibss vap supported\n"); 1046 goto bad; 1047 } 1048 needbeacon = 1; 1049 break; 1050 case IEEE80211_M_AHDEMO: 1051 #ifdef IEEE80211_SUPPORT_TDMA 1052 if (flags & IEEE80211_CLONE_TDMA) { 1053 if (sc->sc_nvaps != 0) { 1054 device_printf(sc->sc_dev, 1055 "only 1 tdma vap supported\n"); 1056 goto bad; 1057 } 1058 needbeacon = 1; 1059 flags |= IEEE80211_CLONE_NOBEACONS; 1060 } 1061 /* fall thru... */ 1062 #endif 1063 case IEEE80211_M_MONITOR: 1064 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1065 /* 1066 * Adopt existing mode. Adding a monitor or ahdemo 1067 * vap to an existing configuration is of dubious 1068 * value but should be ok. 1069 */ 1070 /* XXX not right for monitor mode */ 1071 ic_opmode = ic->ic_opmode; 1072 } 1073 break; 1074 case IEEE80211_M_HOSTAP: 1075 case IEEE80211_M_MBSS: 1076 needbeacon = 1; 1077 break; 1078 case IEEE80211_M_WDS: 1079 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1080 device_printf(sc->sc_dev, 1081 "wds not supported in sta mode\n"); 1082 goto bad; 1083 } 1084 /* 1085 * Silently remove any request for a unique 1086 * bssid; WDS vap's always share the local 1087 * mac address. 1088 */ 1089 flags &= ~IEEE80211_CLONE_BSSID; 1090 if (sc->sc_nvaps == 0) 1091 ic_opmode = IEEE80211_M_HOSTAP; 1092 else 1093 ic_opmode = ic->ic_opmode; 1094 break; 1095 default: 1096 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1097 goto bad; 1098 } 1099 /* 1100 * Check that a beacon buffer is available; the code below assumes it. 1101 */ 1102 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1103 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1104 goto bad; 1105 } 1106 1107 /* STA, AHDEMO? */ 1108 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1109 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1110 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1111 } 1112 1113 vap = &avp->av_vap; 1114 /* XXX can't hold mutex across if_alloc */ 1115 ATH_UNLOCK(sc); 1116 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1117 bssid, mac); 1118 ATH_LOCK(sc); 1119 if (error != 0) { 1120 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1121 __func__, error); 1122 goto bad2; 1123 } 1124 1125 /* h/w crypto support */ 1126 vap->iv_key_alloc = ath_key_alloc; 1127 vap->iv_key_delete = ath_key_delete; 1128 vap->iv_key_set = ath_key_set; 1129 vap->iv_key_update_begin = ath_key_update_begin; 1130 vap->iv_key_update_end = ath_key_update_end; 1131 1132 /* override various methods */ 1133 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1134 vap->iv_recv_mgmt = ath_recv_mgmt; 1135 vap->iv_reset = ath_reset_vap; 1136 vap->iv_update_beacon = ath_beacon_update; 1137 avp->av_newstate = vap->iv_newstate; 1138 vap->iv_newstate = ath_newstate; 1139 avp->av_bmiss = vap->iv_bmiss; 1140 vap->iv_bmiss = ath_bmiss_vap; 1141 1142 avp->av_node_ps = vap->iv_node_ps; 1143 vap->iv_node_ps = ath_node_powersave; 1144 1145 /* Set default parameters */ 1146 1147 /* 1148 * Anything earlier than some AR9300 series MACs don't 1149 * support a smaller MPDU density. 1150 */ 1151 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1152 /* 1153 * All NICs can handle the maximum size, however 1154 * AR5416 based MACs can only TX aggregates w/ RTS 1155 * protection when the total aggregate size is <= 8k. 1156 * However, for now that's enforced by the TX path. 1157 */ 1158 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1159 1160 avp->av_bslot = -1; 1161 if (needbeacon) { 1162 /* 1163 * Allocate beacon state and setup the q for buffered 1164 * multicast frames. We know a beacon buffer is 1165 * available because we checked above. 1166 */ 1167 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1168 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1169 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1170 /* 1171 * Assign the vap to a beacon xmit slot. As above 1172 * this cannot fail to find a free one. 1173 */ 1174 avp->av_bslot = assign_bslot(sc); 1175 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1176 ("beacon slot %u not empty", avp->av_bslot)); 1177 sc->sc_bslot[avp->av_bslot] = vap; 1178 sc->sc_nbcnvaps++; 1179 } 1180 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1181 /* 1182 * Multple vaps are to transmit beacons and we 1183 * have h/w support for TSF adjusting; enable 1184 * use of staggered beacons. 1185 */ 1186 sc->sc_stagbeacons = 1; 1187 } 1188 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1189 } 1190 1191 ic->ic_opmode = ic_opmode; 1192 if (opmode != IEEE80211_M_WDS) { 1193 sc->sc_nvaps++; 1194 if (opmode == IEEE80211_M_STA) 1195 sc->sc_nstavaps++; 1196 if (opmode == IEEE80211_M_MBSS) 1197 sc->sc_nmeshvaps++; 1198 } 1199 switch (ic_opmode) { 1200 case IEEE80211_M_IBSS: 1201 sc->sc_opmode = HAL_M_IBSS; 1202 break; 1203 case IEEE80211_M_STA: 1204 sc->sc_opmode = HAL_M_STA; 1205 break; 1206 case IEEE80211_M_AHDEMO: 1207 #ifdef IEEE80211_SUPPORT_TDMA 1208 if (vap->iv_caps & IEEE80211_C_TDMA) { 1209 sc->sc_tdma = 1; 1210 /* NB: disable tsf adjust */ 1211 sc->sc_stagbeacons = 0; 1212 } 1213 /* 1214 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1215 * just ap mode. 1216 */ 1217 /* fall thru... */ 1218 #endif 1219 case IEEE80211_M_HOSTAP: 1220 case IEEE80211_M_MBSS: 1221 sc->sc_opmode = HAL_M_HOSTAP; 1222 break; 1223 case IEEE80211_M_MONITOR: 1224 sc->sc_opmode = HAL_M_MONITOR; 1225 break; 1226 default: 1227 /* XXX should not happen */ 1228 break; 1229 } 1230 if (sc->sc_hastsfadd) { 1231 /* 1232 * Configure whether or not TSF adjust should be done. 1233 */ 1234 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1235 } 1236 if (flags & IEEE80211_CLONE_NOBEACONS) { 1237 /* 1238 * Enable s/w beacon miss handling. 1239 */ 1240 sc->sc_swbmiss = 1; 1241 } 1242 ATH_UNLOCK(sc); 1243 1244 /* complete setup */ 1245 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1246 return vap; 1247 bad2: 1248 reclaim_address(sc, mac); 1249 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1250 bad: 1251 free(avp, M_80211_VAP); 1252 ATH_UNLOCK(sc); 1253 return NULL; 1254 } 1255 1256 static void 1257 ath_vap_delete(struct ieee80211vap *vap) 1258 { 1259 struct ieee80211com *ic = vap->iv_ic; 1260 struct ifnet *ifp = ic->ic_ifp; 1261 struct ath_softc *sc = ifp->if_softc; 1262 struct ath_hal *ah = sc->sc_ah; 1263 struct ath_vap *avp = ATH_VAP(vap); 1264 1265 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1266 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1267 /* 1268 * Quiesce the hardware while we remove the vap. In 1269 * particular we need to reclaim all references to 1270 * the vap state by any frames pending on the tx queues. 1271 */ 1272 ath_hal_intrset(ah, 0); /* disable interrupts */ 1273 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1274 /* XXX Do all frames from all vaps/nodes need draining here? */ 1275 ath_stoprecv(sc, 1); /* stop recv side */ 1276 } 1277 1278 ieee80211_vap_detach(vap); 1279 1280 /* 1281 * XXX Danger Will Robinson! Danger! 1282 * 1283 * Because ieee80211_vap_detach() can queue a frame (the station 1284 * diassociate message?) after we've drained the TXQ and 1285 * flushed the software TXQ, we will end up with a frame queued 1286 * to a node whose vap is about to be freed. 1287 * 1288 * To work around this, flush the hardware/software again. 1289 * This may be racy - the ath task may be running and the packet 1290 * may be being scheduled between sw->hw txq. Tsk. 1291 * 1292 * TODO: figure out why a new node gets allocated somewhere around 1293 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1294 * call!) 1295 */ 1296 1297 ath_draintxq(sc, ATH_RESET_DEFAULT); 1298 1299 ATH_LOCK(sc); 1300 /* 1301 * Reclaim beacon state. Note this must be done before 1302 * the vap instance is reclaimed as we may have a reference 1303 * to it in the buffer for the beacon frame. 1304 */ 1305 if (avp->av_bcbuf != NULL) { 1306 if (avp->av_bslot != -1) { 1307 sc->sc_bslot[avp->av_bslot] = NULL; 1308 sc->sc_nbcnvaps--; 1309 } 1310 ath_beacon_return(sc, avp->av_bcbuf); 1311 avp->av_bcbuf = NULL; 1312 if (sc->sc_nbcnvaps == 0) { 1313 sc->sc_stagbeacons = 0; 1314 if (sc->sc_hastsfadd) 1315 ath_hal_settsfadjust(sc->sc_ah, 0); 1316 } 1317 /* 1318 * Reclaim any pending mcast frames for the vap. 1319 */ 1320 ath_tx_draintxq(sc, &avp->av_mcastq); 1321 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1322 } 1323 /* 1324 * Update bookkeeping. 1325 */ 1326 if (vap->iv_opmode == IEEE80211_M_STA) { 1327 sc->sc_nstavaps--; 1328 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1329 sc->sc_swbmiss = 0; 1330 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1331 vap->iv_opmode == IEEE80211_M_MBSS) { 1332 reclaim_address(sc, vap->iv_myaddr); 1333 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1334 if (vap->iv_opmode == IEEE80211_M_MBSS) 1335 sc->sc_nmeshvaps--; 1336 } 1337 if (vap->iv_opmode != IEEE80211_M_WDS) 1338 sc->sc_nvaps--; 1339 #ifdef IEEE80211_SUPPORT_TDMA 1340 /* TDMA operation ceases when the last vap is destroyed */ 1341 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1342 sc->sc_tdma = 0; 1343 sc->sc_swbmiss = 0; 1344 } 1345 #endif 1346 free(avp, M_80211_VAP); 1347 1348 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1349 /* 1350 * Restart rx+tx machines if still running (RUNNING will 1351 * be reset if we just destroyed the last vap). 1352 */ 1353 if (ath_startrecv(sc) != 0) 1354 if_printf(ifp, "%s: unable to restart recv logic\n", 1355 __func__); 1356 if (sc->sc_beacons) { /* restart beacons */ 1357 #ifdef IEEE80211_SUPPORT_TDMA 1358 if (sc->sc_tdma) 1359 ath_tdma_config(sc, NULL); 1360 else 1361 #endif 1362 ath_beacon_config(sc, NULL); 1363 } 1364 ath_hal_intrset(ah, sc->sc_imask); 1365 } 1366 ATH_UNLOCK(sc); 1367 } 1368 1369 void 1370 ath_suspend(struct ath_softc *sc) 1371 { 1372 struct ifnet *ifp = sc->sc_ifp; 1373 struct ieee80211com *ic = ifp->if_l2com; 1374 1375 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1376 __func__, ifp->if_flags); 1377 1378 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1379 1380 ieee80211_suspend_all(ic); 1381 /* 1382 * NB: don't worry about putting the chip in low power 1383 * mode; pci will power off our socket on suspend and 1384 * CardBus detaches the device. 1385 */ 1386 1387 /* 1388 * XXX ensure none of the taskqueues are running 1389 * XXX ensure sc_invalid is 1 1390 * XXX ensure the calibration callout is disabled 1391 */ 1392 1393 /* Disable the PCIe PHY, complete with workarounds */ 1394 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1395 } 1396 1397 /* 1398 * Reset the key cache since some parts do not reset the 1399 * contents on resume. First we clear all entries, then 1400 * re-load keys that the 802.11 layer assumes are setup 1401 * in h/w. 1402 */ 1403 static void 1404 ath_reset_keycache(struct ath_softc *sc) 1405 { 1406 struct ifnet *ifp = sc->sc_ifp; 1407 struct ieee80211com *ic = ifp->if_l2com; 1408 struct ath_hal *ah = sc->sc_ah; 1409 int i; 1410 1411 for (i = 0; i < sc->sc_keymax; i++) 1412 ath_hal_keyreset(ah, i); 1413 ieee80211_crypto_reload_keys(ic); 1414 } 1415 1416 void 1417 ath_resume(struct ath_softc *sc) 1418 { 1419 struct ifnet *ifp = sc->sc_ifp; 1420 struct ieee80211com *ic = ifp->if_l2com; 1421 struct ath_hal *ah = sc->sc_ah; 1422 HAL_STATUS status; 1423 1424 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1425 __func__, ifp->if_flags); 1426 1427 /* Re-enable PCIe, re-enable the PCIe bus */ 1428 ath_hal_enablepcie(ah, 0, 0); 1429 1430 /* 1431 * Must reset the chip before we reload the 1432 * keycache as we were powered down on suspend. 1433 */ 1434 ath_hal_reset(ah, sc->sc_opmode, 1435 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1436 AH_FALSE, &status); 1437 ath_reset_keycache(sc); 1438 1439 /* Let DFS at it in case it's a DFS channel */ 1440 ath_dfs_radar_enable(sc, ic->ic_curchan); 1441 1442 /* Restore the LED configuration */ 1443 ath_led_config(sc); 1444 ath_hal_setledstate(ah, HAL_LED_INIT); 1445 1446 if (sc->sc_resume_up) 1447 ieee80211_resume_all(ic); 1448 1449 /* XXX beacons ? */ 1450 } 1451 1452 void 1453 ath_shutdown(struct ath_softc *sc) 1454 { 1455 struct ifnet *ifp = sc->sc_ifp; 1456 1457 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1458 __func__, ifp->if_flags); 1459 1460 ath_stop(ifp); 1461 /* NB: no point powering down chip as we're about to reboot */ 1462 } 1463 1464 /* 1465 * Interrupt handler. Most of the actual processing is deferred. 1466 */ 1467 void 1468 ath_intr(void *arg) 1469 { 1470 struct ath_softc *sc = arg; 1471 struct ifnet *ifp = sc->sc_ifp; 1472 struct ath_hal *ah = sc->sc_ah; 1473 HAL_INT status = 0; 1474 uint32_t txqs; 1475 1476 /* 1477 * If we're inside a reset path, just print a warning and 1478 * clear the ISR. The reset routine will finish it for us. 1479 */ 1480 ATH_PCU_LOCK(sc); 1481 if (sc->sc_inreset_cnt) { 1482 HAL_INT status; 1483 ath_hal_getisr(ah, &status); /* clear ISR */ 1484 ath_hal_intrset(ah, 0); /* disable further intr's */ 1485 DPRINTF(sc, ATH_DEBUG_ANY, 1486 "%s: in reset, ignoring: status=0x%x\n", 1487 __func__, status); 1488 ATH_PCU_UNLOCK(sc); 1489 return; 1490 } 1491 1492 if (sc->sc_invalid) { 1493 /* 1494 * The hardware is not ready/present, don't touch anything. 1495 * Note this can happen early on if the IRQ is shared. 1496 */ 1497 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1498 ATH_PCU_UNLOCK(sc); 1499 return; 1500 } 1501 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1502 ATH_PCU_UNLOCK(sc); 1503 return; 1504 } 1505 1506 if ((ifp->if_flags & IFF_UP) == 0 || 1507 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1508 HAL_INT status; 1509 1510 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1511 __func__, ifp->if_flags); 1512 ath_hal_getisr(ah, &status); /* clear ISR */ 1513 ath_hal_intrset(ah, 0); /* disable further intr's */ 1514 ATH_PCU_UNLOCK(sc); 1515 return; 1516 } 1517 1518 /* 1519 * Figure out the reason(s) for the interrupt. Note 1520 * that the hal returns a pseudo-ISR that may include 1521 * bits we haven't explicitly enabled so we mask the 1522 * value to insure we only process bits we requested. 1523 */ 1524 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1525 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1526 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1527 #ifdef ATH_KTR_INTR_DEBUG 1528 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1529 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1530 ah->ah_intrstate[0], 1531 ah->ah_intrstate[1], 1532 ah->ah_intrstate[2], 1533 ah->ah_intrstate[3], 1534 ah->ah_intrstate[6]); 1535 #endif 1536 1537 /* Squirrel away SYNC interrupt debugging */ 1538 if (ah->ah_syncstate != 0) { 1539 int i; 1540 for (i = 0; i < 32; i++) 1541 if (ah->ah_syncstate & (i << i)) 1542 sc->sc_intr_stats.sync_intr[i]++; 1543 } 1544 1545 status &= sc->sc_imask; /* discard unasked for bits */ 1546 1547 /* Short-circuit un-handled interrupts */ 1548 if (status == 0x0) { 1549 ATH_PCU_UNLOCK(sc); 1550 return; 1551 } 1552 1553 /* 1554 * Take a note that we're inside the interrupt handler, so 1555 * the reset routines know to wait. 1556 */ 1557 sc->sc_intr_cnt++; 1558 ATH_PCU_UNLOCK(sc); 1559 1560 /* 1561 * Handle the interrupt. We won't run concurrent with the reset 1562 * or channel change routines as they'll wait for sc_intr_cnt 1563 * to be 0 before continuing. 1564 */ 1565 if (status & HAL_INT_FATAL) { 1566 sc->sc_stats.ast_hardware++; 1567 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1568 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1569 } else { 1570 if (status & HAL_INT_SWBA) { 1571 /* 1572 * Software beacon alert--time to send a beacon. 1573 * Handle beacon transmission directly; deferring 1574 * this is too slow to meet timing constraints 1575 * under load. 1576 */ 1577 #ifdef IEEE80211_SUPPORT_TDMA 1578 if (sc->sc_tdma) { 1579 if (sc->sc_tdmaswba == 0) { 1580 struct ieee80211com *ic = ifp->if_l2com; 1581 struct ieee80211vap *vap = 1582 TAILQ_FIRST(&ic->ic_vaps); 1583 ath_tdma_beacon_send(sc, vap); 1584 sc->sc_tdmaswba = 1585 vap->iv_tdma->tdma_bintval; 1586 } else 1587 sc->sc_tdmaswba--; 1588 } else 1589 #endif 1590 { 1591 ath_beacon_proc(sc, 0); 1592 #ifdef IEEE80211_SUPPORT_SUPERG 1593 /* 1594 * Schedule the rx taskq in case there's no 1595 * traffic so any frames held on the staging 1596 * queue are aged and potentially flushed. 1597 */ 1598 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1599 #endif 1600 } 1601 } 1602 if (status & HAL_INT_RXEOL) { 1603 int imask; 1604 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1605 ATH_PCU_LOCK(sc); 1606 /* 1607 * NB: the hardware should re-read the link when 1608 * RXE bit is written, but it doesn't work at 1609 * least on older hardware revs. 1610 */ 1611 sc->sc_stats.ast_rxeol++; 1612 /* 1613 * Disable RXEOL/RXORN - prevent an interrupt 1614 * storm until the PCU logic can be reset. 1615 * In case the interface is reset some other 1616 * way before "sc_kickpcu" is called, don't 1617 * modify sc_imask - that way if it is reset 1618 * by a call to ath_reset() somehow, the 1619 * interrupt mask will be correctly reprogrammed. 1620 */ 1621 imask = sc->sc_imask; 1622 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1623 ath_hal_intrset(ah, imask); 1624 /* 1625 * Only blank sc_rxlink if we've not yet kicked 1626 * the PCU. 1627 * 1628 * This isn't entirely correct - the correct solution 1629 * would be to have a PCU lock and engage that for 1630 * the duration of the PCU fiddling; which would include 1631 * running the RX process. Otherwise we could end up 1632 * messing up the RX descriptor chain and making the 1633 * RX desc list much shorter. 1634 */ 1635 if (! sc->sc_kickpcu) 1636 sc->sc_rxlink = NULL; 1637 sc->sc_kickpcu = 1; 1638 /* 1639 * Enqueue an RX proc, to handled whatever 1640 * is in the RX queue. 1641 * This will then kick the PCU. 1642 */ 1643 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1644 ATH_PCU_UNLOCK(sc); 1645 } 1646 if (status & HAL_INT_TXURN) { 1647 sc->sc_stats.ast_txurn++; 1648 /* bump tx trigger level */ 1649 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1650 } 1651 /* 1652 * Handle both the legacy and RX EDMA interrupt bits. 1653 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1654 */ 1655 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1656 sc->sc_stats.ast_rx_intr++; 1657 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1658 } 1659 if (status & HAL_INT_TX) { 1660 sc->sc_stats.ast_tx_intr++; 1661 /* 1662 * Grab all the currently set bits in the HAL txq bitmap 1663 * and blank them. This is the only place we should be 1664 * doing this. 1665 */ 1666 if (! sc->sc_isedma) { 1667 ATH_PCU_LOCK(sc); 1668 txqs = 0xffffffff; 1669 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1670 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1671 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1672 txqs, 1673 sc->sc_txq_active, 1674 sc->sc_txq_active | txqs); 1675 sc->sc_txq_active |= txqs; 1676 ATH_PCU_UNLOCK(sc); 1677 } 1678 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1679 } 1680 if (status & HAL_INT_BMISS) { 1681 sc->sc_stats.ast_bmiss++; 1682 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1683 } 1684 if (status & HAL_INT_GTT) 1685 sc->sc_stats.ast_tx_timeout++; 1686 if (status & HAL_INT_CST) 1687 sc->sc_stats.ast_tx_cst++; 1688 if (status & HAL_INT_MIB) { 1689 sc->sc_stats.ast_mib++; 1690 ATH_PCU_LOCK(sc); 1691 /* 1692 * Disable interrupts until we service the MIB 1693 * interrupt; otherwise it will continue to fire. 1694 */ 1695 ath_hal_intrset(ah, 0); 1696 /* 1697 * Let the hal handle the event. We assume it will 1698 * clear whatever condition caused the interrupt. 1699 */ 1700 ath_hal_mibevent(ah, &sc->sc_halstats); 1701 /* 1702 * Don't reset the interrupt if we've just 1703 * kicked the PCU, or we may get a nested 1704 * RXEOL before the rxproc has had a chance 1705 * to run. 1706 */ 1707 if (sc->sc_kickpcu == 0) 1708 ath_hal_intrset(ah, sc->sc_imask); 1709 ATH_PCU_UNLOCK(sc); 1710 } 1711 if (status & HAL_INT_RXORN) { 1712 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1713 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1714 sc->sc_stats.ast_rxorn++; 1715 } 1716 } 1717 ATH_PCU_LOCK(sc); 1718 sc->sc_intr_cnt--; 1719 ATH_PCU_UNLOCK(sc); 1720 } 1721 1722 static void 1723 ath_fatal_proc(void *arg, int pending) 1724 { 1725 struct ath_softc *sc = arg; 1726 struct ifnet *ifp = sc->sc_ifp; 1727 u_int32_t *state; 1728 u_int32_t len; 1729 void *sp; 1730 1731 if_printf(ifp, "hardware error; resetting\n"); 1732 /* 1733 * Fatal errors are unrecoverable. Typically these 1734 * are caused by DMA errors. Collect h/w state from 1735 * the hal so we can diagnose what's going on. 1736 */ 1737 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1738 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1739 state = sp; 1740 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1741 state[0], state[1] , state[2], state[3], 1742 state[4], state[5]); 1743 } 1744 ath_reset(ifp, ATH_RESET_NOLOSS); 1745 } 1746 1747 static void 1748 ath_bmiss_vap(struct ieee80211vap *vap) 1749 { 1750 /* 1751 * Workaround phantom bmiss interrupts by sanity-checking 1752 * the time of our last rx'd frame. If it is within the 1753 * beacon miss interval then ignore the interrupt. If it's 1754 * truly a bmiss we'll get another interrupt soon and that'll 1755 * be dispatched up for processing. Note this applies only 1756 * for h/w beacon miss events. 1757 */ 1758 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1759 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1760 struct ath_softc *sc = ifp->if_softc; 1761 u_int64_t lastrx = sc->sc_lastrx; 1762 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1763 /* XXX should take a locked ref to iv_bss */ 1764 u_int bmisstimeout = 1765 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1766 1767 DPRINTF(sc, ATH_DEBUG_BEACON, 1768 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1769 __func__, (unsigned long long) tsf, 1770 (unsigned long long)(tsf - lastrx), 1771 (unsigned long long) lastrx, bmisstimeout); 1772 1773 if (tsf - lastrx <= bmisstimeout) { 1774 sc->sc_stats.ast_bmiss_phantom++; 1775 return; 1776 } 1777 } 1778 ATH_VAP(vap)->av_bmiss(vap); 1779 } 1780 1781 static int 1782 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1783 { 1784 uint32_t rsize; 1785 void *sp; 1786 1787 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1788 return 0; 1789 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1790 *hangs = *(uint32_t *)sp; 1791 return 1; 1792 } 1793 1794 static void 1795 ath_bmiss_proc(void *arg, int pending) 1796 { 1797 struct ath_softc *sc = arg; 1798 struct ifnet *ifp = sc->sc_ifp; 1799 uint32_t hangs; 1800 1801 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1802 1803 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1804 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1805 ath_reset(ifp, ATH_RESET_NOLOSS); 1806 } else 1807 ieee80211_beacon_miss(ifp->if_l2com); 1808 } 1809 1810 /* 1811 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1812 * calcs together with WME. If necessary disable the crypto 1813 * hardware and mark the 802.11 state so keys will be setup 1814 * with the MIC work done in software. 1815 */ 1816 static void 1817 ath_settkipmic(struct ath_softc *sc) 1818 { 1819 struct ifnet *ifp = sc->sc_ifp; 1820 struct ieee80211com *ic = ifp->if_l2com; 1821 1822 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1823 if (ic->ic_flags & IEEE80211_F_WME) { 1824 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1825 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1826 } else { 1827 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1828 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1829 } 1830 } 1831 } 1832 1833 static void 1834 ath_init(void *arg) 1835 { 1836 struct ath_softc *sc = (struct ath_softc *) arg; 1837 struct ifnet *ifp = sc->sc_ifp; 1838 struct ieee80211com *ic = ifp->if_l2com; 1839 struct ath_hal *ah = sc->sc_ah; 1840 HAL_STATUS status; 1841 1842 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1843 __func__, ifp->if_flags); 1844 1845 ATH_LOCK(sc); 1846 /* 1847 * Stop anything previously setup. This is safe 1848 * whether this is the first time through or not. 1849 */ 1850 ath_stop_locked(ifp); 1851 1852 /* 1853 * The basic interface to setting the hardware in a good 1854 * state is ``reset''. On return the hardware is known to 1855 * be powered up and with interrupts disabled. This must 1856 * be followed by initialization of the appropriate bits 1857 * and then setup of the interrupt mask. 1858 */ 1859 ath_settkipmic(sc); 1860 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1861 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1862 status); 1863 ATH_UNLOCK(sc); 1864 return; 1865 } 1866 ath_chan_change(sc, ic->ic_curchan); 1867 1868 /* Let DFS at it in case it's a DFS channel */ 1869 ath_dfs_radar_enable(sc, ic->ic_curchan); 1870 1871 /* 1872 * Likewise this is set during reset so update 1873 * state cached in the driver. 1874 */ 1875 sc->sc_diversity = ath_hal_getdiversity(ah); 1876 sc->sc_lastlongcal = 0; 1877 sc->sc_resetcal = 1; 1878 sc->sc_lastcalreset = 0; 1879 sc->sc_lastani = 0; 1880 sc->sc_lastshortcal = 0; 1881 sc->sc_doresetcal = AH_FALSE; 1882 /* 1883 * Beacon timers were cleared here; give ath_newstate() 1884 * a hint that the beacon timers should be poked when 1885 * things transition to the RUN state. 1886 */ 1887 sc->sc_beacons = 0; 1888 1889 /* 1890 * Setup the hardware after reset: the key cache 1891 * is filled as needed and the receive engine is 1892 * set going. Frame transmit is handled entirely 1893 * in the frame output path; there's nothing to do 1894 * here except setup the interrupt mask. 1895 */ 1896 if (ath_startrecv(sc) != 0) { 1897 if_printf(ifp, "unable to start recv logic\n"); 1898 ATH_UNLOCK(sc); 1899 return; 1900 } 1901 1902 /* 1903 * Enable interrupts. 1904 */ 1905 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1906 | HAL_INT_RXEOL | HAL_INT_RXORN 1907 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1908 1909 /* 1910 * Enable RX EDMA bits. Note these overlap with 1911 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1912 */ 1913 if (sc->sc_isedma) 1914 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1915 1916 /* 1917 * Enable MIB interrupts when there are hardware phy counters. 1918 * Note we only do this (at the moment) for station mode. 1919 */ 1920 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1921 sc->sc_imask |= HAL_INT_MIB; 1922 1923 /* Enable global TX timeout and carrier sense timeout if available */ 1924 if (ath_hal_gtxto_supported(ah)) 1925 sc->sc_imask |= HAL_INT_GTT; 1926 1927 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1928 __func__, sc->sc_imask); 1929 1930 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1931 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1932 ath_hal_intrset(ah, sc->sc_imask); 1933 1934 ATH_UNLOCK(sc); 1935 1936 #ifdef ATH_TX99_DIAG 1937 if (sc->sc_tx99 != NULL) 1938 sc->sc_tx99->start(sc->sc_tx99); 1939 else 1940 #endif 1941 ieee80211_start_all(ic); /* start all vap's */ 1942 } 1943 1944 static void 1945 ath_stop_locked(struct ifnet *ifp) 1946 { 1947 struct ath_softc *sc = ifp->if_softc; 1948 struct ath_hal *ah = sc->sc_ah; 1949 1950 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1951 __func__, sc->sc_invalid, ifp->if_flags); 1952 1953 ATH_LOCK_ASSERT(sc); 1954 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1955 /* 1956 * Shutdown the hardware and driver: 1957 * reset 802.11 state machine 1958 * turn off timers 1959 * disable interrupts 1960 * turn off the radio 1961 * clear transmit machinery 1962 * clear receive machinery 1963 * drain and release tx queues 1964 * reclaim beacon resources 1965 * power down hardware 1966 * 1967 * Note that some of this work is not possible if the 1968 * hardware is gone (invalid). 1969 */ 1970 #ifdef ATH_TX99_DIAG 1971 if (sc->sc_tx99 != NULL) 1972 sc->sc_tx99->stop(sc->sc_tx99); 1973 #endif 1974 callout_stop(&sc->sc_wd_ch); 1975 sc->sc_wd_timer = 0; 1976 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1977 if (!sc->sc_invalid) { 1978 if (sc->sc_softled) { 1979 callout_stop(&sc->sc_ledtimer); 1980 ath_hal_gpioset(ah, sc->sc_ledpin, 1981 !sc->sc_ledon); 1982 sc->sc_blinking = 0; 1983 } 1984 ath_hal_intrset(ah, 0); 1985 } 1986 ath_draintxq(sc, ATH_RESET_DEFAULT); 1987 if (!sc->sc_invalid) { 1988 ath_stoprecv(sc, 1); 1989 ath_hal_phydisable(ah); 1990 } else 1991 sc->sc_rxlink = NULL; 1992 ath_beacon_free(sc); /* XXX not needed */ 1993 } 1994 } 1995 1996 #define MAX_TXRX_ITERATIONS 1000 1997 static void 1998 ath_txrx_stop_locked(struct ath_softc *sc) 1999 { 2000 int i = MAX_TXRX_ITERATIONS; 2001 2002 ATH_UNLOCK_ASSERT(sc); 2003 ATH_PCU_LOCK_ASSERT(sc); 2004 2005 /* 2006 * Sleep until all the pending operations have completed. 2007 * 2008 * The caller must ensure that reset has been incremented 2009 * or the pending operations may continue being queued. 2010 */ 2011 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2012 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2013 if (i <= 0) 2014 break; 2015 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2016 i--; 2017 } 2018 2019 if (i <= 0) 2020 device_printf(sc->sc_dev, 2021 "%s: didn't finish after %d iterations\n", 2022 __func__, MAX_TXRX_ITERATIONS); 2023 } 2024 #undef MAX_TXRX_ITERATIONS 2025 2026 #if 0 2027 static void 2028 ath_txrx_stop(struct ath_softc *sc) 2029 { 2030 ATH_UNLOCK_ASSERT(sc); 2031 ATH_PCU_UNLOCK_ASSERT(sc); 2032 2033 ATH_PCU_LOCK(sc); 2034 ath_txrx_stop_locked(sc); 2035 ATH_PCU_UNLOCK(sc); 2036 } 2037 #endif 2038 2039 static void 2040 ath_txrx_start(struct ath_softc *sc) 2041 { 2042 2043 taskqueue_unblock(sc->sc_tq); 2044 } 2045 2046 /* 2047 * Grab the reset lock, and wait around until noone else 2048 * is trying to do anything with it. 2049 * 2050 * This is totally horrible but we can't hold this lock for 2051 * long enough to do TX/RX or we end up with net80211/ip stack 2052 * LORs and eventual deadlock. 2053 * 2054 * "dowait" signals whether to spin, waiting for the reset 2055 * lock count to reach 0. This should (for now) only be used 2056 * during the reset path, as the rest of the code may not 2057 * be locking-reentrant enough to behave correctly. 2058 * 2059 * Another, cleaner way should be found to serialise all of 2060 * these operations. 2061 */ 2062 #define MAX_RESET_ITERATIONS 10 2063 static int 2064 ath_reset_grablock(struct ath_softc *sc, int dowait) 2065 { 2066 int w = 0; 2067 int i = MAX_RESET_ITERATIONS; 2068 2069 ATH_PCU_LOCK_ASSERT(sc); 2070 do { 2071 if (sc->sc_inreset_cnt == 0) { 2072 w = 1; 2073 break; 2074 } 2075 if (dowait == 0) { 2076 w = 0; 2077 break; 2078 } 2079 ATH_PCU_UNLOCK(sc); 2080 pause("ath_reset_grablock", 1); 2081 i--; 2082 ATH_PCU_LOCK(sc); 2083 } while (i > 0); 2084 2085 /* 2086 * We always increment the refcounter, regardless 2087 * of whether we succeeded to get it in an exclusive 2088 * way. 2089 */ 2090 sc->sc_inreset_cnt++; 2091 2092 if (i <= 0) 2093 device_printf(sc->sc_dev, 2094 "%s: didn't finish after %d iterations\n", 2095 __func__, MAX_RESET_ITERATIONS); 2096 2097 if (w == 0) 2098 device_printf(sc->sc_dev, 2099 "%s: warning, recursive reset path!\n", 2100 __func__); 2101 2102 return w; 2103 } 2104 #undef MAX_RESET_ITERATIONS 2105 2106 /* 2107 * XXX TODO: write ath_reset_releaselock 2108 */ 2109 2110 static void 2111 ath_stop(struct ifnet *ifp) 2112 { 2113 struct ath_softc *sc = ifp->if_softc; 2114 2115 ATH_LOCK(sc); 2116 ath_stop_locked(ifp); 2117 ATH_UNLOCK(sc); 2118 } 2119 2120 /* 2121 * Reset the hardware w/o losing operational state. This is 2122 * basically a more efficient way of doing ath_stop, ath_init, 2123 * followed by state transitions to the current 802.11 2124 * operational state. Used to recover from various errors and 2125 * to reset or reload hardware state. 2126 */ 2127 int 2128 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2129 { 2130 struct ath_softc *sc = ifp->if_softc; 2131 struct ieee80211com *ic = ifp->if_l2com; 2132 struct ath_hal *ah = sc->sc_ah; 2133 HAL_STATUS status; 2134 int i; 2135 2136 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2137 2138 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2139 ATH_PCU_UNLOCK_ASSERT(sc); 2140 ATH_UNLOCK_ASSERT(sc); 2141 2142 /* Try to (stop any further TX/RX from occuring */ 2143 taskqueue_block(sc->sc_tq); 2144 2145 ATH_PCU_LOCK(sc); 2146 ath_hal_intrset(ah, 0); /* disable interrupts */ 2147 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2148 if (ath_reset_grablock(sc, 1) == 0) { 2149 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2150 __func__); 2151 } 2152 ATH_PCU_UNLOCK(sc); 2153 2154 /* 2155 * Should now wait for pending TX/RX to complete 2156 * and block future ones from occuring. This needs to be 2157 * done before the TX queue is drained. 2158 */ 2159 ath_draintxq(sc, reset_type); /* stop xmit side */ 2160 2161 /* 2162 * Regardless of whether we're doing a no-loss flush or 2163 * not, stop the PCU and handle what's in the RX queue. 2164 * That way frames aren't dropped which shouldn't be. 2165 */ 2166 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2167 ath_rx_flush(sc); 2168 2169 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2170 /* NB: indicate channel change so we do a full reset */ 2171 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2172 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2173 __func__, status); 2174 sc->sc_diversity = ath_hal_getdiversity(ah); 2175 2176 /* Let DFS at it in case it's a DFS channel */ 2177 ath_dfs_radar_enable(sc, ic->ic_curchan); 2178 2179 if (ath_startrecv(sc) != 0) /* restart recv */ 2180 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2181 /* 2182 * We may be doing a reset in response to an ioctl 2183 * that changes the channel so update any state that 2184 * might change as a result. 2185 */ 2186 ath_chan_change(sc, ic->ic_curchan); 2187 if (sc->sc_beacons) { /* restart beacons */ 2188 #ifdef IEEE80211_SUPPORT_TDMA 2189 if (sc->sc_tdma) 2190 ath_tdma_config(sc, NULL); 2191 else 2192 #endif 2193 ath_beacon_config(sc, NULL); 2194 } 2195 2196 /* 2197 * Release the reset lock and re-enable interrupts here. 2198 * If an interrupt was being processed in ath_intr(), 2199 * it would disable interrupts at this point. So we have 2200 * to atomically enable interrupts and decrement the 2201 * reset counter - this way ath_intr() doesn't end up 2202 * disabling interrupts without a corresponding enable 2203 * in the rest or channel change path. 2204 */ 2205 ATH_PCU_LOCK(sc); 2206 sc->sc_inreset_cnt--; 2207 /* XXX only do this if sc_inreset_cnt == 0? */ 2208 ath_hal_intrset(ah, sc->sc_imask); 2209 ATH_PCU_UNLOCK(sc); 2210 2211 /* 2212 * TX and RX can be started here. If it were started with 2213 * sc_inreset_cnt > 0, the TX and RX path would abort. 2214 * Thus if this is a nested call through the reset or 2215 * channel change code, TX completion will occur but 2216 * RX completion and ath_start / ath_tx_start will not 2217 * run. 2218 */ 2219 2220 /* Restart TX/RX as needed */ 2221 ath_txrx_start(sc); 2222 2223 /* XXX Restart TX completion and pending TX */ 2224 if (reset_type == ATH_RESET_NOLOSS) { 2225 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2226 if (ATH_TXQ_SETUP(sc, i)) { 2227 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2228 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2229 ath_txq_sched(sc, &sc->sc_txq[i]); 2230 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2231 } 2232 } 2233 } 2234 2235 /* 2236 * This may have been set during an ath_start() call which 2237 * set this once it detected a concurrent TX was going on. 2238 * So, clear it. 2239 */ 2240 IF_LOCK(&ifp->if_snd); 2241 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2242 IF_UNLOCK(&ifp->if_snd); 2243 2244 /* Handle any frames in the TX queue */ 2245 /* 2246 * XXX should this be done by the caller, rather than 2247 * ath_reset() ? 2248 */ 2249 ath_start(ifp); /* restart xmit */ 2250 return 0; 2251 } 2252 2253 static int 2254 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2255 { 2256 struct ieee80211com *ic = vap->iv_ic; 2257 struct ifnet *ifp = ic->ic_ifp; 2258 struct ath_softc *sc = ifp->if_softc; 2259 struct ath_hal *ah = sc->sc_ah; 2260 2261 switch (cmd) { 2262 case IEEE80211_IOC_TXPOWER: 2263 /* 2264 * If per-packet TPC is enabled, then we have nothing 2265 * to do; otherwise we need to force the global limit. 2266 * All this can happen directly; no need to reset. 2267 */ 2268 if (!ath_hal_gettpc(ah)) 2269 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2270 return 0; 2271 } 2272 /* XXX? Full or NOLOSS? */ 2273 return ath_reset(ifp, ATH_RESET_FULL); 2274 } 2275 2276 struct ath_buf * 2277 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2278 { 2279 struct ath_buf *bf; 2280 2281 ATH_TXBUF_LOCK_ASSERT(sc); 2282 2283 if (btype == ATH_BUFTYPE_MGMT) 2284 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2285 else 2286 bf = TAILQ_FIRST(&sc->sc_txbuf); 2287 2288 if (bf == NULL) { 2289 sc->sc_stats.ast_tx_getnobuf++; 2290 } else { 2291 if (bf->bf_flags & ATH_BUF_BUSY) { 2292 sc->sc_stats.ast_tx_getbusybuf++; 2293 bf = NULL; 2294 } 2295 } 2296 2297 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2298 if (btype == ATH_BUFTYPE_MGMT) 2299 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2300 else { 2301 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2302 sc->sc_txbuf_cnt--; 2303 2304 /* 2305 * This shuldn't happen; however just to be 2306 * safe print a warning and fudge the txbuf 2307 * count. 2308 */ 2309 if (sc->sc_txbuf_cnt < 0) { 2310 device_printf(sc->sc_dev, 2311 "%s: sc_txbuf_cnt < 0?\n", 2312 __func__); 2313 sc->sc_txbuf_cnt = 0; 2314 } 2315 } 2316 } else 2317 bf = NULL; 2318 2319 if (bf == NULL) { 2320 /* XXX should check which list, mgmt or otherwise */ 2321 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2322 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2323 "out of xmit buffers" : "xmit buffer busy"); 2324 return NULL; 2325 } 2326 2327 /* XXX TODO: should do this at buffer list initialisation */ 2328 /* XXX (then, ensure the buffer has the right flag set) */ 2329 if (btype == ATH_BUFTYPE_MGMT) 2330 bf->bf_flags |= ATH_BUF_MGMT; 2331 else 2332 bf->bf_flags &= (~ATH_BUF_MGMT); 2333 2334 /* Valid bf here; clear some basic fields */ 2335 bf->bf_next = NULL; /* XXX just to be sure */ 2336 bf->bf_last = NULL; /* XXX again, just to be sure */ 2337 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2338 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2339 2340 /* 2341 * Track the descriptor ID only if doing EDMA 2342 */ 2343 if (sc->sc_isedma) { 2344 bf->bf_descid = sc->sc_txbuf_descid; 2345 sc->sc_txbuf_descid++; 2346 } 2347 2348 return bf; 2349 } 2350 2351 /* 2352 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2353 * can't be thrown back on the queue as they could still be 2354 * in use by the hardware. 2355 * 2356 * This duplicates the buffer, or returns NULL. 2357 * 2358 * The descriptor is also copied but the link pointers and 2359 * the DMA segments aren't copied; this frame should thus 2360 * be again passed through the descriptor setup/chain routines 2361 * so the link is correct. 2362 * 2363 * The caller must free the buffer using ath_freebuf(). 2364 * 2365 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2366 * XXX in the TX pathway when retries are needed. 2367 * XXX Figure out how to keep some buffers free, or factor the 2368 * XXX number of busy buffers into the xmit path (ath_start()) 2369 * XXX so we don't over-commit. 2370 */ 2371 struct ath_buf * 2372 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2373 { 2374 struct ath_buf *tbf; 2375 2376 tbf = ath_getbuf(sc, 2377 (bf->bf_flags & ATH_BUF_MGMT) ? 2378 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2379 if (tbf == NULL) 2380 return NULL; /* XXX failure? Why? */ 2381 2382 /* Copy basics */ 2383 tbf->bf_next = NULL; 2384 tbf->bf_nseg = bf->bf_nseg; 2385 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2386 tbf->bf_status = bf->bf_status; 2387 tbf->bf_m = bf->bf_m; 2388 tbf->bf_node = bf->bf_node; 2389 /* will be setup by the chain/setup function */ 2390 tbf->bf_lastds = NULL; 2391 /* for now, last == self */ 2392 tbf->bf_last = tbf; 2393 tbf->bf_comp = bf->bf_comp; 2394 2395 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2396 2397 /* The caller has to re-init the descriptor + links */ 2398 2399 /* Copy state */ 2400 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2401 2402 return tbf; 2403 } 2404 2405 struct ath_buf * 2406 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2407 { 2408 struct ath_buf *bf; 2409 2410 ATH_TXBUF_LOCK(sc); 2411 bf = _ath_getbuf_locked(sc, btype); 2412 /* 2413 * If a mgmt buffer was requested but we're out of those, 2414 * try requesting a normal one. 2415 */ 2416 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2417 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2418 ATH_TXBUF_UNLOCK(sc); 2419 if (bf == NULL) { 2420 struct ifnet *ifp = sc->sc_ifp; 2421 2422 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2423 sc->sc_stats.ast_tx_qstop++; 2424 IF_LOCK(&ifp->if_snd); 2425 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2426 IF_UNLOCK(&ifp->if_snd); 2427 } 2428 return bf; 2429 } 2430 2431 void 2432 ath_start(struct ifnet *ifp) 2433 { 2434 struct ath_softc *sc = ifp->if_softc; 2435 struct ieee80211_node *ni; 2436 struct ath_buf *bf; 2437 struct mbuf *m, *next; 2438 ath_bufhead frags; 2439 2440 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2441 return; 2442 2443 /* XXX is it ok to hold the ATH_LOCK here? */ 2444 ATH_PCU_LOCK(sc); 2445 if (sc->sc_inreset_cnt > 0) { 2446 device_printf(sc->sc_dev, 2447 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2448 ATH_PCU_UNLOCK(sc); 2449 IF_LOCK(&ifp->if_snd); 2450 sc->sc_stats.ast_tx_qstop++; 2451 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2452 IF_UNLOCK(&ifp->if_snd); 2453 return; 2454 } 2455 sc->sc_txstart_cnt++; 2456 ATH_PCU_UNLOCK(sc); 2457 2458 for (;;) { 2459 ATH_TXBUF_LOCK(sc); 2460 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2461 /* XXX increment counter? */ 2462 ATH_TXBUF_UNLOCK(sc); 2463 IF_LOCK(&ifp->if_snd); 2464 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2465 IF_UNLOCK(&ifp->if_snd); 2466 break; 2467 } 2468 ATH_TXBUF_UNLOCK(sc); 2469 2470 /* 2471 * Grab a TX buffer and associated resources. 2472 */ 2473 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2474 if (bf == NULL) 2475 break; 2476 2477 IFQ_DEQUEUE(&ifp->if_snd, m); 2478 if (m == NULL) { 2479 ATH_TXBUF_LOCK(sc); 2480 ath_returnbuf_head(sc, bf); 2481 ATH_TXBUF_UNLOCK(sc); 2482 break; 2483 } 2484 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2485 /* 2486 * Check for fragmentation. If this frame 2487 * has been broken up verify we have enough 2488 * buffers to send all the fragments so all 2489 * go out or none... 2490 */ 2491 TAILQ_INIT(&frags); 2492 if ((m->m_flags & M_FRAG) && 2493 !ath_txfrag_setup(sc, &frags, m, ni)) { 2494 DPRINTF(sc, ATH_DEBUG_XMIT, 2495 "%s: out of txfrag buffers\n", __func__); 2496 sc->sc_stats.ast_tx_nofrag++; 2497 ifp->if_oerrors++; 2498 ath_freetx(m); 2499 goto bad; 2500 } 2501 ifp->if_opackets++; 2502 nextfrag: 2503 /* 2504 * Pass the frame to the h/w for transmission. 2505 * Fragmented frames have each frag chained together 2506 * with m_nextpkt. We know there are sufficient ath_buf's 2507 * to send all the frags because of work done by 2508 * ath_txfrag_setup. We leave m_nextpkt set while 2509 * calling ath_tx_start so it can use it to extend the 2510 * the tx duration to cover the subsequent frag and 2511 * so it can reclaim all the mbufs in case of an error; 2512 * ath_tx_start clears m_nextpkt once it commits to 2513 * handing the frame to the hardware. 2514 */ 2515 next = m->m_nextpkt; 2516 if (ath_tx_start(sc, ni, bf, m)) { 2517 bad: 2518 ifp->if_oerrors++; 2519 reclaim: 2520 bf->bf_m = NULL; 2521 bf->bf_node = NULL; 2522 ATH_TXBUF_LOCK(sc); 2523 ath_returnbuf_head(sc, bf); 2524 ath_txfrag_cleanup(sc, &frags, ni); 2525 ATH_TXBUF_UNLOCK(sc); 2526 if (ni != NULL) 2527 ieee80211_free_node(ni); 2528 continue; 2529 } 2530 if (next != NULL) { 2531 /* 2532 * Beware of state changing between frags. 2533 * XXX check sta power-save state? 2534 */ 2535 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2536 DPRINTF(sc, ATH_DEBUG_XMIT, 2537 "%s: flush fragmented packet, state %s\n", 2538 __func__, 2539 ieee80211_state_name[ni->ni_vap->iv_state]); 2540 ath_freetx(next); 2541 goto reclaim; 2542 } 2543 m = next; 2544 bf = TAILQ_FIRST(&frags); 2545 KASSERT(bf != NULL, ("no buf for txfrag")); 2546 TAILQ_REMOVE(&frags, bf, bf_list); 2547 goto nextfrag; 2548 } 2549 2550 sc->sc_wd_timer = 5; 2551 } 2552 2553 ATH_PCU_LOCK(sc); 2554 sc->sc_txstart_cnt--; 2555 ATH_PCU_UNLOCK(sc); 2556 } 2557 2558 static int 2559 ath_media_change(struct ifnet *ifp) 2560 { 2561 int error = ieee80211_media_change(ifp); 2562 /* NB: only the fixed rate can change and that doesn't need a reset */ 2563 return (error == ENETRESET ? 0 : error); 2564 } 2565 2566 /* 2567 * Block/unblock tx+rx processing while a key change is done. 2568 * We assume the caller serializes key management operations 2569 * so we only need to worry about synchronization with other 2570 * uses that originate in the driver. 2571 */ 2572 static void 2573 ath_key_update_begin(struct ieee80211vap *vap) 2574 { 2575 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2576 struct ath_softc *sc = ifp->if_softc; 2577 2578 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2579 taskqueue_block(sc->sc_tq); 2580 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2581 } 2582 2583 static void 2584 ath_key_update_end(struct ieee80211vap *vap) 2585 { 2586 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2587 struct ath_softc *sc = ifp->if_softc; 2588 2589 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2590 IF_UNLOCK(&ifp->if_snd); 2591 taskqueue_unblock(sc->sc_tq); 2592 } 2593 2594 static void 2595 ath_update_promisc(struct ifnet *ifp) 2596 { 2597 struct ath_softc *sc = ifp->if_softc; 2598 u_int32_t rfilt; 2599 2600 /* configure rx filter */ 2601 rfilt = ath_calcrxfilter(sc); 2602 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2603 2604 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2605 } 2606 2607 static void 2608 ath_update_mcast(struct ifnet *ifp) 2609 { 2610 struct ath_softc *sc = ifp->if_softc; 2611 u_int32_t mfilt[2]; 2612 2613 /* calculate and install multicast filter */ 2614 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2615 struct ifmultiaddr *ifma; 2616 /* 2617 * Merge multicast addresses to form the hardware filter. 2618 */ 2619 mfilt[0] = mfilt[1] = 0; 2620 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2621 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2622 caddr_t dl; 2623 u_int32_t val; 2624 u_int8_t pos; 2625 2626 /* calculate XOR of eight 6bit values */ 2627 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2628 val = LE_READ_4(dl + 0); 2629 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2630 val = LE_READ_4(dl + 3); 2631 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2632 pos &= 0x3f; 2633 mfilt[pos / 32] |= (1 << (pos % 32)); 2634 } 2635 if_maddr_runlock(ifp); 2636 } else 2637 mfilt[0] = mfilt[1] = ~0; 2638 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2639 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2640 __func__, mfilt[0], mfilt[1]); 2641 } 2642 2643 void 2644 ath_mode_init(struct ath_softc *sc) 2645 { 2646 struct ifnet *ifp = sc->sc_ifp; 2647 struct ath_hal *ah = sc->sc_ah; 2648 u_int32_t rfilt; 2649 2650 /* configure rx filter */ 2651 rfilt = ath_calcrxfilter(sc); 2652 ath_hal_setrxfilter(ah, rfilt); 2653 2654 /* configure operational mode */ 2655 ath_hal_setopmode(ah); 2656 2657 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2658 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2659 __func__, 2660 ah, 2661 ifp, 2662 (ifp == NULL) ? NULL : ifp->if_addr); 2663 2664 /* handle any link-level address change */ 2665 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2666 2667 /* calculate and install multicast filter */ 2668 ath_update_mcast(ifp); 2669 } 2670 2671 /* 2672 * Set the slot time based on the current setting. 2673 */ 2674 void 2675 ath_setslottime(struct ath_softc *sc) 2676 { 2677 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2678 struct ath_hal *ah = sc->sc_ah; 2679 u_int usec; 2680 2681 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2682 usec = 13; 2683 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2684 usec = 21; 2685 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2686 /* honor short/long slot time only in 11g */ 2687 /* XXX shouldn't honor on pure g or turbo g channel */ 2688 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2689 usec = HAL_SLOT_TIME_9; 2690 else 2691 usec = HAL_SLOT_TIME_20; 2692 } else 2693 usec = HAL_SLOT_TIME_9; 2694 2695 DPRINTF(sc, ATH_DEBUG_RESET, 2696 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2697 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2698 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2699 2700 ath_hal_setslottime(ah, usec); 2701 sc->sc_updateslot = OK; 2702 } 2703 2704 /* 2705 * Callback from the 802.11 layer to update the 2706 * slot time based on the current setting. 2707 */ 2708 static void 2709 ath_updateslot(struct ifnet *ifp) 2710 { 2711 struct ath_softc *sc = ifp->if_softc; 2712 struct ieee80211com *ic = ifp->if_l2com; 2713 2714 /* 2715 * When not coordinating the BSS, change the hardware 2716 * immediately. For other operation we defer the change 2717 * until beacon updates have propagated to the stations. 2718 */ 2719 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2720 ic->ic_opmode == IEEE80211_M_MBSS) 2721 sc->sc_updateslot = UPDATE; 2722 else 2723 ath_setslottime(sc); 2724 } 2725 2726 /* 2727 * Append the contents of src to dst; both queues 2728 * are assumed to be locked. 2729 */ 2730 void 2731 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2732 { 2733 2734 ATH_TXQ_LOCK_ASSERT(dst); 2735 ATH_TXQ_LOCK_ASSERT(src); 2736 2737 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2738 dst->axq_link = src->axq_link; 2739 src->axq_link = NULL; 2740 dst->axq_depth += src->axq_depth; 2741 dst->axq_aggr_depth += src->axq_aggr_depth; 2742 src->axq_depth = 0; 2743 src->axq_aggr_depth = 0; 2744 } 2745 2746 /* 2747 * Reset the hardware, with no loss. 2748 * 2749 * This can't be used for a general case reset. 2750 */ 2751 static void 2752 ath_reset_proc(void *arg, int pending) 2753 { 2754 struct ath_softc *sc = arg; 2755 struct ifnet *ifp = sc->sc_ifp; 2756 2757 #if 0 2758 if_printf(ifp, "%s: resetting\n", __func__); 2759 #endif 2760 ath_reset(ifp, ATH_RESET_NOLOSS); 2761 } 2762 2763 /* 2764 * Reset the hardware after detecting beacons have stopped. 2765 */ 2766 static void 2767 ath_bstuck_proc(void *arg, int pending) 2768 { 2769 struct ath_softc *sc = arg; 2770 struct ifnet *ifp = sc->sc_ifp; 2771 uint32_t hangs = 0; 2772 2773 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2774 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2775 2776 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2777 sc->sc_bmisscount); 2778 sc->sc_stats.ast_bstuck++; 2779 /* 2780 * This assumes that there's no simultaneous channel mode change 2781 * occuring. 2782 */ 2783 ath_reset(ifp, ATH_RESET_NOLOSS); 2784 } 2785 2786 static void 2787 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2788 { 2789 bus_addr_t *paddr = (bus_addr_t*) arg; 2790 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2791 *paddr = segs->ds_addr; 2792 } 2793 2794 /* 2795 * Allocate the descriptors and appropriate DMA tag/setup. 2796 * 2797 * For some situations (eg EDMA TX completion), there isn't a requirement 2798 * for the ath_buf entries to be allocated. 2799 */ 2800 int 2801 ath_descdma_alloc_desc(struct ath_softc *sc, 2802 struct ath_descdma *dd, ath_bufhead *head, 2803 const char *name, int ds_size, int ndesc) 2804 { 2805 #define DS2PHYS(_dd, _ds) \ 2806 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2807 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2808 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2809 struct ifnet *ifp = sc->sc_ifp; 2810 int error; 2811 2812 dd->dd_descsize = ds_size; 2813 2814 DPRINTF(sc, ATH_DEBUG_RESET, 2815 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2816 __func__, name, ndesc, dd->dd_descsize); 2817 2818 dd->dd_name = name; 2819 dd->dd_desc_len = dd->dd_descsize * ndesc; 2820 2821 /* 2822 * Merlin work-around: 2823 * Descriptors that cross the 4KB boundary can't be used. 2824 * Assume one skipped descriptor per 4KB page. 2825 */ 2826 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2827 int numpages = dd->dd_desc_len / 4096; 2828 dd->dd_desc_len += ds_size * numpages; 2829 } 2830 2831 /* 2832 * Setup DMA descriptor area. 2833 */ 2834 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2835 PAGE_SIZE, 0, /* alignment, bounds */ 2836 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2837 BUS_SPACE_MAXADDR, /* highaddr */ 2838 NULL, NULL, /* filter, filterarg */ 2839 dd->dd_desc_len, /* maxsize */ 2840 1, /* nsegments */ 2841 dd->dd_desc_len, /* maxsegsize */ 2842 BUS_DMA_ALLOCNOW, /* flags */ 2843 NULL, /* lockfunc */ 2844 NULL, /* lockarg */ 2845 &dd->dd_dmat); 2846 if (error != 0) { 2847 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2848 return error; 2849 } 2850 2851 /* allocate descriptors */ 2852 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2853 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2854 &dd->dd_dmamap); 2855 if (error != 0) { 2856 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2857 "error %u\n", ndesc, dd->dd_name, error); 2858 goto fail1; 2859 } 2860 2861 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2862 dd->dd_desc, dd->dd_desc_len, 2863 ath_load_cb, &dd->dd_desc_paddr, 2864 BUS_DMA_NOWAIT); 2865 if (error != 0) { 2866 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2867 dd->dd_name, error); 2868 goto fail2; 2869 } 2870 2871 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2872 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2873 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2874 /*XXX*/ (u_long) dd->dd_desc_len); 2875 2876 return (0); 2877 2878 fail2: 2879 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2880 fail1: 2881 bus_dma_tag_destroy(dd->dd_dmat); 2882 memset(dd, 0, sizeof(*dd)); 2883 return error; 2884 #undef DS2PHYS 2885 #undef ATH_DESC_4KB_BOUND_CHECK 2886 } 2887 2888 int 2889 ath_descdma_setup(struct ath_softc *sc, 2890 struct ath_descdma *dd, ath_bufhead *head, 2891 const char *name, int ds_size, int nbuf, int ndesc) 2892 { 2893 #define DS2PHYS(_dd, _ds) \ 2894 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2895 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2896 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2897 struct ifnet *ifp = sc->sc_ifp; 2898 uint8_t *ds; 2899 struct ath_buf *bf; 2900 int i, bsize, error; 2901 2902 /* Allocate descriptors */ 2903 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2904 nbuf * ndesc); 2905 2906 /* Assume any errors during allocation were dealt with */ 2907 if (error != 0) { 2908 return (error); 2909 } 2910 2911 ds = (uint8_t *) dd->dd_desc; 2912 2913 /* allocate rx buffers */ 2914 bsize = sizeof(struct ath_buf) * nbuf; 2915 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2916 if (bf == NULL) { 2917 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2918 dd->dd_name, bsize); 2919 goto fail3; 2920 } 2921 dd->dd_bufptr = bf; 2922 2923 TAILQ_INIT(head); 2924 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 2925 bf->bf_desc = (struct ath_desc *) ds; 2926 bf->bf_daddr = DS2PHYS(dd, ds); 2927 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2928 /* 2929 * Merlin WAR: Skip descriptor addresses which 2930 * cause 4KB boundary crossing along any point 2931 * in the descriptor. 2932 */ 2933 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2934 dd->dd_descsize)) { 2935 /* Start at the next page */ 2936 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2937 bf->bf_desc = (struct ath_desc *) ds; 2938 bf->bf_daddr = DS2PHYS(dd, ds); 2939 } 2940 } 2941 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2942 &bf->bf_dmamap); 2943 if (error != 0) { 2944 if_printf(ifp, "unable to create dmamap for %s " 2945 "buffer %u, error %u\n", dd->dd_name, i, error); 2946 ath_descdma_cleanup(sc, dd, head); 2947 return error; 2948 } 2949 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2950 TAILQ_INSERT_TAIL(head, bf, bf_list); 2951 } 2952 2953 /* 2954 * XXX TODO: ensure that ds doesn't overflow the descriptor 2955 * allocation otherwise weird stuff will occur and crash your 2956 * machine. 2957 */ 2958 return 0; 2959 /* XXX this should likely just call ath_descdma_cleanup() */ 2960 fail3: 2961 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2962 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2963 bus_dma_tag_destroy(dd->dd_dmat); 2964 memset(dd, 0, sizeof(*dd)); 2965 return error; 2966 #undef DS2PHYS 2967 #undef ATH_DESC_4KB_BOUND_CHECK 2968 } 2969 2970 /* 2971 * Allocate ath_buf entries but no descriptor contents. 2972 * 2973 * This is for RX EDMA where the descriptors are the header part of 2974 * the RX buffer. 2975 */ 2976 int 2977 ath_descdma_setup_rx_edma(struct ath_softc *sc, 2978 struct ath_descdma *dd, ath_bufhead *head, 2979 const char *name, int nbuf, int rx_status_len) 2980 { 2981 struct ifnet *ifp = sc->sc_ifp; 2982 struct ath_buf *bf; 2983 int i, bsize, error; 2984 2985 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 2986 __func__, name, nbuf); 2987 2988 dd->dd_name = name; 2989 /* 2990 * This is (mostly) purely for show. We're not allocating any actual 2991 * descriptors here as EDMA RX has the descriptor be part 2992 * of the RX buffer. 2993 * 2994 * However, dd_desc_len is used by ath_descdma_free() to determine 2995 * whether we have already freed this DMA mapping. 2996 */ 2997 dd->dd_desc_len = rx_status_len * nbuf; 2998 dd->dd_descsize = rx_status_len; 2999 3000 /* allocate rx buffers */ 3001 bsize = sizeof(struct ath_buf) * nbuf; 3002 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3003 if (bf == NULL) { 3004 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3005 dd->dd_name, bsize); 3006 error = ENOMEM; 3007 goto fail3; 3008 } 3009 dd->dd_bufptr = bf; 3010 3011 TAILQ_INIT(head); 3012 for (i = 0; i < nbuf; i++, bf++) { 3013 bf->bf_desc = NULL; 3014 bf->bf_daddr = 0; 3015 bf->bf_lastds = NULL; /* Just an initial value */ 3016 3017 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3018 &bf->bf_dmamap); 3019 if (error != 0) { 3020 if_printf(ifp, "unable to create dmamap for %s " 3021 "buffer %u, error %u\n", dd->dd_name, i, error); 3022 ath_descdma_cleanup(sc, dd, head); 3023 return error; 3024 } 3025 TAILQ_INSERT_TAIL(head, bf, bf_list); 3026 } 3027 return 0; 3028 fail3: 3029 memset(dd, 0, sizeof(*dd)); 3030 return error; 3031 } 3032 3033 void 3034 ath_descdma_cleanup(struct ath_softc *sc, 3035 struct ath_descdma *dd, ath_bufhead *head) 3036 { 3037 struct ath_buf *bf; 3038 struct ieee80211_node *ni; 3039 3040 if (dd->dd_dmamap != 0) { 3041 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3042 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3043 bus_dma_tag_destroy(dd->dd_dmat); 3044 } 3045 3046 if (head != NULL) { 3047 TAILQ_FOREACH(bf, head, bf_list) { 3048 if (bf->bf_m) { 3049 m_freem(bf->bf_m); 3050 bf->bf_m = NULL; 3051 } 3052 if (bf->bf_dmamap != NULL) { 3053 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3054 bf->bf_dmamap = NULL; 3055 } 3056 ni = bf->bf_node; 3057 bf->bf_node = NULL; 3058 if (ni != NULL) { 3059 /* 3060 * Reclaim node reference. 3061 */ 3062 ieee80211_free_node(ni); 3063 } 3064 } 3065 } 3066 3067 if (head != NULL) 3068 TAILQ_INIT(head); 3069 3070 if (dd->dd_bufptr != NULL) 3071 free(dd->dd_bufptr, M_ATHDEV); 3072 memset(dd, 0, sizeof(*dd)); 3073 } 3074 3075 static int 3076 ath_desc_alloc(struct ath_softc *sc) 3077 { 3078 int error; 3079 3080 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3081 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3082 if (error != 0) { 3083 return error; 3084 } 3085 sc->sc_txbuf_cnt = ath_txbuf; 3086 3087 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3088 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3089 ATH_TXDESC); 3090 if (error != 0) { 3091 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3092 return error; 3093 } 3094 3095 /* 3096 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3097 * flag doesn't have to be set in ath_getbuf_locked(). 3098 */ 3099 3100 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3101 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3102 if (error != 0) { 3103 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3104 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3105 &sc->sc_txbuf_mgmt); 3106 return error; 3107 } 3108 return 0; 3109 } 3110 3111 static void 3112 ath_desc_free(struct ath_softc *sc) 3113 { 3114 3115 if (sc->sc_bdma.dd_desc_len != 0) 3116 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3117 if (sc->sc_txdma.dd_desc_len != 0) 3118 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3119 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3120 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3121 &sc->sc_txbuf_mgmt); 3122 } 3123 3124 static struct ieee80211_node * 3125 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3126 { 3127 struct ieee80211com *ic = vap->iv_ic; 3128 struct ath_softc *sc = ic->ic_ifp->if_softc; 3129 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3130 struct ath_node *an; 3131 3132 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3133 if (an == NULL) { 3134 /* XXX stat+msg */ 3135 return NULL; 3136 } 3137 ath_rate_node_init(sc, an); 3138 3139 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3140 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3141 device_get_nameunit(sc->sc_dev), an); 3142 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3143 3144 /* XXX setup ath_tid */ 3145 ath_tx_tid_init(sc, an); 3146 3147 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3148 return &an->an_node; 3149 } 3150 3151 static void 3152 ath_node_cleanup(struct ieee80211_node *ni) 3153 { 3154 struct ieee80211com *ic = ni->ni_ic; 3155 struct ath_softc *sc = ic->ic_ifp->if_softc; 3156 3157 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3158 ath_tx_node_flush(sc, ATH_NODE(ni)); 3159 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3160 sc->sc_node_cleanup(ni); 3161 } 3162 3163 static void 3164 ath_node_free(struct ieee80211_node *ni) 3165 { 3166 struct ieee80211com *ic = ni->ni_ic; 3167 struct ath_softc *sc = ic->ic_ifp->if_softc; 3168 3169 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3170 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3171 sc->sc_node_free(ni); 3172 } 3173 3174 static void 3175 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3176 { 3177 struct ieee80211com *ic = ni->ni_ic; 3178 struct ath_softc *sc = ic->ic_ifp->if_softc; 3179 struct ath_hal *ah = sc->sc_ah; 3180 3181 *rssi = ic->ic_node_getrssi(ni); 3182 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3183 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3184 else 3185 *noise = -95; /* nominally correct */ 3186 } 3187 3188 /* 3189 * Set the default antenna. 3190 */ 3191 void 3192 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3193 { 3194 struct ath_hal *ah = sc->sc_ah; 3195 3196 /* XXX block beacon interrupts */ 3197 ath_hal_setdefantenna(ah, antenna); 3198 if (sc->sc_defant != antenna) 3199 sc->sc_stats.ast_ant_defswitch++; 3200 sc->sc_defant = antenna; 3201 sc->sc_rxotherant = 0; 3202 } 3203 3204 static void 3205 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3206 { 3207 txq->axq_qnum = qnum; 3208 txq->axq_ac = 0; 3209 txq->axq_depth = 0; 3210 txq->axq_aggr_depth = 0; 3211 txq->axq_intrcnt = 0; 3212 txq->axq_link = NULL; 3213 txq->axq_softc = sc; 3214 TAILQ_INIT(&txq->axq_q); 3215 TAILQ_INIT(&txq->axq_tidq); 3216 ATH_TXQ_LOCK_INIT(sc, txq); 3217 } 3218 3219 /* 3220 * Setup a h/w transmit queue. 3221 */ 3222 static struct ath_txq * 3223 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3224 { 3225 #define N(a) (sizeof(a)/sizeof(a[0])) 3226 struct ath_hal *ah = sc->sc_ah; 3227 HAL_TXQ_INFO qi; 3228 int qnum; 3229 3230 memset(&qi, 0, sizeof(qi)); 3231 qi.tqi_subtype = subtype; 3232 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3233 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3234 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3235 /* 3236 * Enable interrupts only for EOL and DESC conditions. 3237 * We mark tx descriptors to receive a DESC interrupt 3238 * when a tx queue gets deep; otherwise waiting for the 3239 * EOL to reap descriptors. Note that this is done to 3240 * reduce interrupt load and this only defers reaping 3241 * descriptors, never transmitting frames. Aside from 3242 * reducing interrupts this also permits more concurrency. 3243 * The only potential downside is if the tx queue backs 3244 * up in which case the top half of the kernel may backup 3245 * due to a lack of tx descriptors. 3246 */ 3247 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3248 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3249 if (qnum == -1) { 3250 /* 3251 * NB: don't print a message, this happens 3252 * normally on parts with too few tx queues 3253 */ 3254 return NULL; 3255 } 3256 if (qnum >= N(sc->sc_txq)) { 3257 device_printf(sc->sc_dev, 3258 "hal qnum %u out of range, max %zu!\n", 3259 qnum, N(sc->sc_txq)); 3260 ath_hal_releasetxqueue(ah, qnum); 3261 return NULL; 3262 } 3263 if (!ATH_TXQ_SETUP(sc, qnum)) { 3264 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3265 sc->sc_txqsetup |= 1<<qnum; 3266 } 3267 return &sc->sc_txq[qnum]; 3268 #undef N 3269 } 3270 3271 /* 3272 * Setup a hardware data transmit queue for the specified 3273 * access control. The hal may not support all requested 3274 * queues in which case it will return a reference to a 3275 * previously setup queue. We record the mapping from ac's 3276 * to h/w queues for use by ath_tx_start and also track 3277 * the set of h/w queues being used to optimize work in the 3278 * transmit interrupt handler and related routines. 3279 */ 3280 static int 3281 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3282 { 3283 #define N(a) (sizeof(a)/sizeof(a[0])) 3284 struct ath_txq *txq; 3285 3286 if (ac >= N(sc->sc_ac2q)) { 3287 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3288 ac, N(sc->sc_ac2q)); 3289 return 0; 3290 } 3291 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3292 if (txq != NULL) { 3293 txq->axq_ac = ac; 3294 sc->sc_ac2q[ac] = txq; 3295 return 1; 3296 } else 3297 return 0; 3298 #undef N 3299 } 3300 3301 /* 3302 * Update WME parameters for a transmit queue. 3303 */ 3304 static int 3305 ath_txq_update(struct ath_softc *sc, int ac) 3306 { 3307 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3308 #define ATH_TXOP_TO_US(v) (v<<5) 3309 struct ifnet *ifp = sc->sc_ifp; 3310 struct ieee80211com *ic = ifp->if_l2com; 3311 struct ath_txq *txq = sc->sc_ac2q[ac]; 3312 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3313 struct ath_hal *ah = sc->sc_ah; 3314 HAL_TXQ_INFO qi; 3315 3316 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3317 #ifdef IEEE80211_SUPPORT_TDMA 3318 if (sc->sc_tdma) { 3319 /* 3320 * AIFS is zero so there's no pre-transmit wait. The 3321 * burst time defines the slot duration and is configured 3322 * through net80211. The QCU is setup to not do post-xmit 3323 * back off, lockout all lower-priority QCU's, and fire 3324 * off the DMA beacon alert timer which is setup based 3325 * on the slot configuration. 3326 */ 3327 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3328 | HAL_TXQ_TXERRINT_ENABLE 3329 | HAL_TXQ_TXURNINT_ENABLE 3330 | HAL_TXQ_TXEOLINT_ENABLE 3331 | HAL_TXQ_DBA_GATED 3332 | HAL_TXQ_BACKOFF_DISABLE 3333 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3334 ; 3335 qi.tqi_aifs = 0; 3336 /* XXX +dbaprep? */ 3337 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3338 qi.tqi_burstTime = qi.tqi_readyTime; 3339 } else { 3340 #endif 3341 /* 3342 * XXX shouldn't this just use the default flags 3343 * used in the previous queue setup? 3344 */ 3345 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3346 | HAL_TXQ_TXERRINT_ENABLE 3347 | HAL_TXQ_TXDESCINT_ENABLE 3348 | HAL_TXQ_TXURNINT_ENABLE 3349 | HAL_TXQ_TXEOLINT_ENABLE 3350 ; 3351 qi.tqi_aifs = wmep->wmep_aifsn; 3352 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3353 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3354 qi.tqi_readyTime = 0; 3355 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3356 #ifdef IEEE80211_SUPPORT_TDMA 3357 } 3358 #endif 3359 3360 DPRINTF(sc, ATH_DEBUG_RESET, 3361 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3362 __func__, txq->axq_qnum, qi.tqi_qflags, 3363 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3364 3365 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3366 if_printf(ifp, "unable to update hardware queue " 3367 "parameters for %s traffic!\n", 3368 ieee80211_wme_acnames[ac]); 3369 return 0; 3370 } else { 3371 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3372 return 1; 3373 } 3374 #undef ATH_TXOP_TO_US 3375 #undef ATH_EXPONENT_TO_VALUE 3376 } 3377 3378 /* 3379 * Callback from the 802.11 layer to update WME parameters. 3380 */ 3381 int 3382 ath_wme_update(struct ieee80211com *ic) 3383 { 3384 struct ath_softc *sc = ic->ic_ifp->if_softc; 3385 3386 return !ath_txq_update(sc, WME_AC_BE) || 3387 !ath_txq_update(sc, WME_AC_BK) || 3388 !ath_txq_update(sc, WME_AC_VI) || 3389 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3390 } 3391 3392 /* 3393 * Reclaim resources for a setup queue. 3394 */ 3395 static void 3396 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3397 { 3398 3399 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3400 ATH_TXQ_LOCK_DESTROY(txq); 3401 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3402 } 3403 3404 /* 3405 * Reclaim all tx queue resources. 3406 */ 3407 static void 3408 ath_tx_cleanup(struct ath_softc *sc) 3409 { 3410 int i; 3411 3412 ATH_TXBUF_LOCK_DESTROY(sc); 3413 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3414 if (ATH_TXQ_SETUP(sc, i)) 3415 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3416 } 3417 3418 /* 3419 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3420 * using the current rates in sc_rixmap. 3421 */ 3422 int 3423 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3424 { 3425 int rix = sc->sc_rixmap[rate]; 3426 /* NB: return lowest rix for invalid rate */ 3427 return (rix == 0xff ? 0 : rix); 3428 } 3429 3430 static void 3431 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3432 struct ath_buf *bf) 3433 { 3434 struct ieee80211_node *ni = bf->bf_node; 3435 struct ifnet *ifp = sc->sc_ifp; 3436 struct ieee80211com *ic = ifp->if_l2com; 3437 int sr, lr, pri; 3438 3439 if (ts->ts_status == 0) { 3440 u_int8_t txant = ts->ts_antenna; 3441 sc->sc_stats.ast_ant_tx[txant]++; 3442 sc->sc_ant_tx[txant]++; 3443 if (ts->ts_finaltsi != 0) 3444 sc->sc_stats.ast_tx_altrate++; 3445 pri = M_WME_GETAC(bf->bf_m); 3446 if (pri >= WME_AC_VO) 3447 ic->ic_wme.wme_hipri_traffic++; 3448 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3449 ni->ni_inact = ni->ni_inact_reload; 3450 } else { 3451 if (ts->ts_status & HAL_TXERR_XRETRY) 3452 sc->sc_stats.ast_tx_xretries++; 3453 if (ts->ts_status & HAL_TXERR_FIFO) 3454 sc->sc_stats.ast_tx_fifoerr++; 3455 if (ts->ts_status & HAL_TXERR_FILT) 3456 sc->sc_stats.ast_tx_filtered++; 3457 if (ts->ts_status & HAL_TXERR_XTXOP) 3458 sc->sc_stats.ast_tx_xtxop++; 3459 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3460 sc->sc_stats.ast_tx_timerexpired++; 3461 3462 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3463 sc->sc_stats.ast_tx_data_underrun++; 3464 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3465 sc->sc_stats.ast_tx_delim_underrun++; 3466 3467 if (bf->bf_m->m_flags & M_FF) 3468 sc->sc_stats.ast_ff_txerr++; 3469 } 3470 /* XXX when is this valid? */ 3471 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3472 sc->sc_stats.ast_tx_desccfgerr++; 3473 3474 sr = ts->ts_shortretry; 3475 lr = ts->ts_longretry; 3476 sc->sc_stats.ast_tx_shortretry += sr; 3477 sc->sc_stats.ast_tx_longretry += lr; 3478 3479 } 3480 3481 /* 3482 * The default completion. If fail is 1, this means 3483 * "please don't retry the frame, and just return -1 status 3484 * to the net80211 stack. 3485 */ 3486 void 3487 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3488 { 3489 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3490 int st; 3491 3492 if (fail == 1) 3493 st = -1; 3494 else 3495 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3496 ts->ts_status : HAL_TXERR_XRETRY; 3497 3498 if (bf->bf_state.bfs_dobaw) 3499 device_printf(sc->sc_dev, 3500 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3501 __func__, 3502 bf, 3503 SEQNO(bf->bf_state.bfs_seqno)); 3504 if (bf->bf_next != NULL) 3505 device_printf(sc->sc_dev, 3506 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3507 __func__, 3508 bf, 3509 SEQNO(bf->bf_state.bfs_seqno)); 3510 3511 /* 3512 * Do any tx complete callback. Note this must 3513 * be done before releasing the node reference. 3514 * This will free the mbuf, release the net80211 3515 * node and recycle the ath_buf. 3516 */ 3517 ath_tx_freebuf(sc, bf, st); 3518 } 3519 3520 /* 3521 * Update rate control with the given completion status. 3522 */ 3523 void 3524 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3525 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3526 int nframes, int nbad) 3527 { 3528 struct ath_node *an; 3529 3530 /* Only for unicast frames */ 3531 if (ni == NULL) 3532 return; 3533 3534 an = ATH_NODE(ni); 3535 3536 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3537 ATH_NODE_LOCK(an); 3538 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3539 ATH_NODE_UNLOCK(an); 3540 } 3541 } 3542 3543 /* 3544 * Update the busy status of the last frame on the free list. 3545 * When doing TDMA, the busy flag tracks whether the hardware 3546 * currently points to this buffer or not, and thus gated DMA 3547 * may restart by re-reading the last descriptor in this 3548 * buffer. 3549 * 3550 * This should be called in the completion function once one 3551 * of the buffers has been used. 3552 */ 3553 static void 3554 ath_tx_update_busy(struct ath_softc *sc) 3555 { 3556 struct ath_buf *last; 3557 3558 /* 3559 * Since the last frame may still be marked 3560 * as ATH_BUF_BUSY, unmark it here before 3561 * finishing the frame processing. 3562 * Since we've completed a frame (aggregate 3563 * or otherwise), the hardware has moved on 3564 * and is no longer referencing the previous 3565 * descriptor. 3566 */ 3567 ATH_TXBUF_LOCK_ASSERT(sc); 3568 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3569 if (last != NULL) 3570 last->bf_flags &= ~ATH_BUF_BUSY; 3571 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3572 if (last != NULL) 3573 last->bf_flags &= ~ATH_BUF_BUSY; 3574 } 3575 3576 /* 3577 * Process the completion of the given buffer. 3578 * 3579 * This calls the rate control update and then the buffer completion. 3580 * This will either free the buffer or requeue it. In any case, the 3581 * bf pointer should be treated as invalid after this function is called. 3582 */ 3583 void 3584 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3585 struct ath_tx_status *ts, struct ath_buf *bf) 3586 { 3587 struct ieee80211_node *ni = bf->bf_node; 3588 struct ath_node *an = NULL; 3589 3590 ATH_TXQ_UNLOCK_ASSERT(txq); 3591 3592 /* If unicast frame, update general statistics */ 3593 if (ni != NULL) { 3594 an = ATH_NODE(ni); 3595 /* update statistics */ 3596 ath_tx_update_stats(sc, ts, bf); 3597 } 3598 3599 /* 3600 * Call the completion handler. 3601 * The completion handler is responsible for 3602 * calling the rate control code. 3603 * 3604 * Frames with no completion handler get the 3605 * rate control code called here. 3606 */ 3607 if (bf->bf_comp == NULL) { 3608 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3609 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3610 /* 3611 * XXX assume this isn't an aggregate 3612 * frame. 3613 */ 3614 ath_tx_update_ratectrl(sc, ni, 3615 bf->bf_state.bfs_rc, ts, 3616 bf->bf_state.bfs_pktlen, 1, 3617 (ts->ts_status == 0 ? 0 : 1)); 3618 } 3619 ath_tx_default_comp(sc, bf, 0); 3620 } else 3621 bf->bf_comp(sc, bf, 0); 3622 } 3623 3624 3625 3626 /* 3627 * Process completed xmit descriptors from the specified queue. 3628 * Kick the packet scheduler if needed. This can occur from this 3629 * particular task. 3630 */ 3631 static int 3632 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3633 { 3634 struct ath_hal *ah = sc->sc_ah; 3635 struct ath_buf *bf; 3636 struct ath_desc *ds; 3637 struct ath_tx_status *ts; 3638 struct ieee80211_node *ni; 3639 #ifdef IEEE80211_SUPPORT_SUPERG 3640 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3641 #endif /* IEEE80211_SUPPORT_SUPERG */ 3642 int nacked; 3643 HAL_STATUS status; 3644 3645 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3646 __func__, txq->axq_qnum, 3647 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3648 txq->axq_link); 3649 3650 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3651 "ath_tx_processq: txq=%u head %p link %p depth %p", 3652 txq->axq_qnum, 3653 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3654 txq->axq_link, 3655 txq->axq_depth); 3656 3657 nacked = 0; 3658 for (;;) { 3659 ATH_TXQ_LOCK(txq); 3660 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3661 bf = TAILQ_FIRST(&txq->axq_q); 3662 if (bf == NULL) { 3663 ATH_TXQ_UNLOCK(txq); 3664 break; 3665 } 3666 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3667 ts = &bf->bf_status.ds_txstat; 3668 3669 status = ath_hal_txprocdesc(ah, ds, ts); 3670 #ifdef ATH_DEBUG 3671 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3672 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3673 status == HAL_OK); 3674 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3675 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3676 status == HAL_OK); 3677 #endif 3678 3679 if (status == HAL_EINPROGRESS) { 3680 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3681 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3682 txq->axq_qnum, bf, ds); 3683 ATH_TXQ_UNLOCK(txq); 3684 break; 3685 } 3686 ATH_TXQ_REMOVE(txq, bf, bf_list); 3687 #ifdef IEEE80211_SUPPORT_TDMA 3688 if (txq->axq_depth > 0) { 3689 /* 3690 * More frames follow. Mark the buffer busy 3691 * so it's not re-used while the hardware may 3692 * still re-read the link field in the descriptor. 3693 * 3694 * Use the last buffer in an aggregate as that 3695 * is where the hardware may be - intermediate 3696 * descriptors won't be "busy". 3697 */ 3698 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3699 } else 3700 #else 3701 if (txq->axq_depth == 0) 3702 #endif 3703 txq->axq_link = NULL; 3704 if (bf->bf_state.bfs_aggr) 3705 txq->axq_aggr_depth--; 3706 3707 ni = bf->bf_node; 3708 3709 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3710 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3711 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3712 /* 3713 * If unicast frame was ack'd update RSSI, 3714 * including the last rx time used to 3715 * workaround phantom bmiss interrupts. 3716 */ 3717 if (ni != NULL && ts->ts_status == 0 && 3718 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3719 nacked++; 3720 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3721 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3722 ts->ts_rssi); 3723 } 3724 ATH_TXQ_UNLOCK(txq); 3725 3726 /* 3727 * Update statistics and call completion 3728 */ 3729 ath_tx_process_buf_completion(sc, txq, ts, bf); 3730 } 3731 #ifdef IEEE80211_SUPPORT_SUPERG 3732 /* 3733 * Flush fast-frame staging queue when traffic slows. 3734 */ 3735 if (txq->axq_depth <= 1) 3736 ieee80211_ff_flush(ic, txq->axq_ac); 3737 #endif 3738 3739 /* Kick the TXQ scheduler */ 3740 if (dosched) { 3741 ATH_TXQ_LOCK(txq); 3742 ath_txq_sched(sc, txq); 3743 ATH_TXQ_UNLOCK(txq); 3744 } 3745 3746 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3747 "ath_tx_processq: txq=%u: done", 3748 txq->axq_qnum); 3749 3750 return nacked; 3751 } 3752 3753 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3754 3755 /* 3756 * Deferred processing of transmit interrupt; special-cased 3757 * for a single hardware transmit queue (e.g. 5210 and 5211). 3758 */ 3759 static void 3760 ath_tx_proc_q0(void *arg, int npending) 3761 { 3762 struct ath_softc *sc = arg; 3763 struct ifnet *ifp = sc->sc_ifp; 3764 uint32_t txqs; 3765 3766 ATH_PCU_LOCK(sc); 3767 sc->sc_txproc_cnt++; 3768 txqs = sc->sc_txq_active; 3769 sc->sc_txq_active &= ~txqs; 3770 ATH_PCU_UNLOCK(sc); 3771 3772 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3773 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3774 3775 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3776 /* XXX why is lastrx updated in tx code? */ 3777 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3778 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3779 ath_tx_processq(sc, sc->sc_cabq, 1); 3780 IF_LOCK(&ifp->if_snd); 3781 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3782 IF_UNLOCK(&ifp->if_snd); 3783 sc->sc_wd_timer = 0; 3784 3785 if (sc->sc_softled) 3786 ath_led_event(sc, sc->sc_txrix); 3787 3788 ATH_PCU_LOCK(sc); 3789 sc->sc_txproc_cnt--; 3790 ATH_PCU_UNLOCK(sc); 3791 3792 ath_tx_kick(sc); 3793 } 3794 3795 /* 3796 * Deferred processing of transmit interrupt; special-cased 3797 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3798 */ 3799 static void 3800 ath_tx_proc_q0123(void *arg, int npending) 3801 { 3802 struct ath_softc *sc = arg; 3803 struct ifnet *ifp = sc->sc_ifp; 3804 int nacked; 3805 uint32_t txqs; 3806 3807 ATH_PCU_LOCK(sc); 3808 sc->sc_txproc_cnt++; 3809 txqs = sc->sc_txq_active; 3810 sc->sc_txq_active &= ~txqs; 3811 ATH_PCU_UNLOCK(sc); 3812 3813 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3814 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 3815 3816 /* 3817 * Process each active queue. 3818 */ 3819 nacked = 0; 3820 if (TXQACTIVE(txqs, 0)) 3821 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3822 if (TXQACTIVE(txqs, 1)) 3823 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3824 if (TXQACTIVE(txqs, 2)) 3825 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3826 if (TXQACTIVE(txqs, 3)) 3827 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3828 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3829 ath_tx_processq(sc, sc->sc_cabq, 1); 3830 if (nacked) 3831 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3832 3833 IF_LOCK(&ifp->if_snd); 3834 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3835 IF_UNLOCK(&ifp->if_snd); 3836 sc->sc_wd_timer = 0; 3837 3838 if (sc->sc_softled) 3839 ath_led_event(sc, sc->sc_txrix); 3840 3841 ATH_PCU_LOCK(sc); 3842 sc->sc_txproc_cnt--; 3843 ATH_PCU_UNLOCK(sc); 3844 3845 ath_tx_kick(sc); 3846 } 3847 3848 /* 3849 * Deferred processing of transmit interrupt. 3850 */ 3851 static void 3852 ath_tx_proc(void *arg, int npending) 3853 { 3854 struct ath_softc *sc = arg; 3855 struct ifnet *ifp = sc->sc_ifp; 3856 int i, nacked; 3857 uint32_t txqs; 3858 3859 ATH_PCU_LOCK(sc); 3860 sc->sc_txproc_cnt++; 3861 txqs = sc->sc_txq_active; 3862 sc->sc_txq_active &= ~txqs; 3863 ATH_PCU_UNLOCK(sc); 3864 3865 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 3866 3867 /* 3868 * Process each active queue. 3869 */ 3870 nacked = 0; 3871 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3872 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3873 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3874 if (nacked) 3875 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3876 3877 /* XXX check this inside of IF_LOCK? */ 3878 IF_LOCK(&ifp->if_snd); 3879 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3880 IF_UNLOCK(&ifp->if_snd); 3881 sc->sc_wd_timer = 0; 3882 3883 if (sc->sc_softled) 3884 ath_led_event(sc, sc->sc_txrix); 3885 3886 ATH_PCU_LOCK(sc); 3887 sc->sc_txproc_cnt--; 3888 ATH_PCU_UNLOCK(sc); 3889 3890 ath_tx_kick(sc); 3891 } 3892 #undef TXQACTIVE 3893 3894 /* 3895 * Deferred processing of TXQ rescheduling. 3896 */ 3897 static void 3898 ath_txq_sched_tasklet(void *arg, int npending) 3899 { 3900 struct ath_softc *sc = arg; 3901 int i; 3902 3903 /* XXX is skipping ok? */ 3904 ATH_PCU_LOCK(sc); 3905 #if 0 3906 if (sc->sc_inreset_cnt > 0) { 3907 device_printf(sc->sc_dev, 3908 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3909 ATH_PCU_UNLOCK(sc); 3910 return; 3911 } 3912 #endif 3913 sc->sc_txproc_cnt++; 3914 ATH_PCU_UNLOCK(sc); 3915 3916 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3917 if (ATH_TXQ_SETUP(sc, i)) { 3918 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3919 ath_txq_sched(sc, &sc->sc_txq[i]); 3920 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3921 } 3922 } 3923 3924 ATH_PCU_LOCK(sc); 3925 sc->sc_txproc_cnt--; 3926 ATH_PCU_UNLOCK(sc); 3927 } 3928 3929 void 3930 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3931 { 3932 3933 ATH_TXBUF_LOCK_ASSERT(sc); 3934 3935 if (bf->bf_flags & ATH_BUF_MGMT) 3936 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 3937 else { 3938 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3939 sc->sc_txbuf_cnt++; 3940 if (sc->sc_txbuf_cnt > ath_txbuf) { 3941 device_printf(sc->sc_dev, 3942 "%s: sc_txbuf_cnt > %d?\n", 3943 __func__, 3944 ath_txbuf); 3945 sc->sc_txbuf_cnt = ath_txbuf; 3946 } 3947 } 3948 } 3949 3950 void 3951 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 3952 { 3953 3954 ATH_TXBUF_LOCK_ASSERT(sc); 3955 3956 if (bf->bf_flags & ATH_BUF_MGMT) 3957 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 3958 else { 3959 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 3960 sc->sc_txbuf_cnt++; 3961 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 3962 device_printf(sc->sc_dev, 3963 "%s: sc_txbuf_cnt > %d?\n", 3964 __func__, 3965 ATH_TXBUF); 3966 sc->sc_txbuf_cnt = ATH_TXBUF; 3967 } 3968 } 3969 } 3970 3971 /* 3972 * Return a buffer to the pool and update the 'busy' flag on the 3973 * previous 'tail' entry. 3974 * 3975 * This _must_ only be called when the buffer is involved in a completed 3976 * TX. The logic is that if it was part of an active TX, the previous 3977 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3978 * for restart (eg for TDMA.) 3979 * 3980 * The caller must free the mbuf and recycle the node reference. 3981 */ 3982 void 3983 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 3984 { 3985 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3986 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 3987 3988 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 3989 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 3990 3991 ATH_TXBUF_LOCK(sc); 3992 ath_tx_update_busy(sc); 3993 ath_returnbuf_tail(sc, bf); 3994 ATH_TXBUF_UNLOCK(sc); 3995 } 3996 3997 /* 3998 * This is currently used by ath_tx_draintxq() and 3999 * ath_tx_tid_free_pkts(). 4000 * 4001 * It recycles a single ath_buf. 4002 */ 4003 void 4004 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4005 { 4006 struct ieee80211_node *ni = bf->bf_node; 4007 struct mbuf *m0 = bf->bf_m; 4008 4009 bf->bf_node = NULL; 4010 bf->bf_m = NULL; 4011 4012 /* Free the buffer, it's not needed any longer */ 4013 ath_freebuf(sc, bf); 4014 4015 if (ni != NULL) { 4016 /* 4017 * Do any callback and reclaim the node reference. 4018 */ 4019 if (m0->m_flags & M_TXCB) 4020 ieee80211_process_callback(ni, m0, status); 4021 ieee80211_free_node(ni); 4022 } 4023 m_freem(m0); 4024 4025 /* 4026 * XXX the buffer used to be freed -after-, but the DMA map was 4027 * freed where ath_freebuf() now is. I've no idea what this 4028 * will do. 4029 */ 4030 } 4031 4032 void 4033 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4034 { 4035 #ifdef ATH_DEBUG 4036 struct ath_hal *ah = sc->sc_ah; 4037 #endif 4038 struct ath_buf *bf; 4039 u_int ix; 4040 4041 /* 4042 * NB: this assumes output has been stopped and 4043 * we do not need to block ath_tx_proc 4044 */ 4045 ATH_TXBUF_LOCK(sc); 4046 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4047 if (bf != NULL) 4048 bf->bf_flags &= ~ATH_BUF_BUSY; 4049 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4050 if (bf != NULL) 4051 bf->bf_flags &= ~ATH_BUF_BUSY; 4052 ATH_TXBUF_UNLOCK(sc); 4053 4054 for (ix = 0;; ix++) { 4055 ATH_TXQ_LOCK(txq); 4056 bf = TAILQ_FIRST(&txq->axq_q); 4057 if (bf == NULL) { 4058 txq->axq_link = NULL; 4059 /* 4060 * There's currently no flag that indicates 4061 * a buffer is on the FIFO. So until that 4062 * occurs, just clear the FIFO counter here. 4063 * 4064 * Yes, this means that if something in parallel 4065 * is pushing things onto this TXQ and pushing 4066 * _that_ into the hardware, things will get 4067 * very fruity very quickly. 4068 */ 4069 txq->axq_fifo_depth = 0; 4070 ATH_TXQ_UNLOCK(txq); 4071 break; 4072 } 4073 ATH_TXQ_REMOVE(txq, bf, bf_list); 4074 if (bf->bf_state.bfs_aggr) 4075 txq->axq_aggr_depth--; 4076 #ifdef ATH_DEBUG 4077 if (sc->sc_debug & ATH_DEBUG_RESET) { 4078 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4079 int status = 0; 4080 4081 /* 4082 * EDMA operation has a TX completion FIFO 4083 * separate from the TX descriptor, so this 4084 * method of checking the "completion" status 4085 * is wrong. 4086 */ 4087 if (! sc->sc_isedma) { 4088 status = (ath_hal_txprocdesc(ah, 4089 bf->bf_lastds, 4090 &bf->bf_status.ds_txstat) == HAL_OK); 4091 } 4092 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4093 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4094 bf->bf_m->m_len, 0, -1); 4095 } 4096 #endif /* ATH_DEBUG */ 4097 /* 4098 * Since we're now doing magic in the completion 4099 * functions, we -must- call it for aggregation 4100 * destinations or BAW tracking will get upset. 4101 */ 4102 /* 4103 * Clear ATH_BUF_BUSY; the completion handler 4104 * will free the buffer. 4105 */ 4106 ATH_TXQ_UNLOCK(txq); 4107 bf->bf_flags &= ~ATH_BUF_BUSY; 4108 if (bf->bf_comp) 4109 bf->bf_comp(sc, bf, 1); 4110 else 4111 ath_tx_default_comp(sc, bf, 1); 4112 } 4113 4114 /* 4115 * Drain software queued frames which are on 4116 * active TIDs. 4117 */ 4118 ath_tx_txq_drain(sc, txq); 4119 } 4120 4121 static void 4122 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4123 { 4124 struct ath_hal *ah = sc->sc_ah; 4125 4126 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4127 __func__, txq->axq_qnum, 4128 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4129 txq->axq_link); 4130 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4131 } 4132 4133 int 4134 ath_stoptxdma(struct ath_softc *sc) 4135 { 4136 struct ath_hal *ah = sc->sc_ah; 4137 int i; 4138 4139 /* XXX return value */ 4140 if (sc->sc_invalid) 4141 return 0; 4142 4143 if (!sc->sc_invalid) { 4144 /* don't touch the hardware if marked invalid */ 4145 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4146 __func__, sc->sc_bhalq, 4147 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4148 NULL); 4149 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4150 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4151 if (ATH_TXQ_SETUP(sc, i)) 4152 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4153 } 4154 4155 return 1; 4156 } 4157 4158 /* 4159 * Drain the transmit queues and reclaim resources. 4160 */ 4161 void 4162 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4163 { 4164 #ifdef ATH_DEBUG 4165 struct ath_hal *ah = sc->sc_ah; 4166 #endif 4167 struct ifnet *ifp = sc->sc_ifp; 4168 int i; 4169 4170 (void) ath_stoptxdma(sc); 4171 4172 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4173 /* 4174 * XXX TODO: should we just handle the completed TX frames 4175 * here, whether or not the reset is a full one or not? 4176 */ 4177 if (ATH_TXQ_SETUP(sc, i)) { 4178 if (reset_type == ATH_RESET_NOLOSS) 4179 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4180 else 4181 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4182 } 4183 } 4184 #ifdef ATH_DEBUG 4185 if (sc->sc_debug & ATH_DEBUG_RESET) { 4186 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4187 if (bf != NULL && bf->bf_m != NULL) { 4188 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4189 ath_hal_txprocdesc(ah, bf->bf_lastds, 4190 &bf->bf_status.ds_txstat) == HAL_OK); 4191 ieee80211_dump_pkt(ifp->if_l2com, 4192 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4193 0, -1); 4194 } 4195 } 4196 #endif /* ATH_DEBUG */ 4197 IF_LOCK(&ifp->if_snd); 4198 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4199 IF_UNLOCK(&ifp->if_snd); 4200 sc->sc_wd_timer = 0; 4201 } 4202 4203 /* 4204 * Update internal state after a channel change. 4205 */ 4206 static void 4207 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4208 { 4209 enum ieee80211_phymode mode; 4210 4211 /* 4212 * Change channels and update the h/w rate map 4213 * if we're switching; e.g. 11a to 11b/g. 4214 */ 4215 mode = ieee80211_chan2mode(chan); 4216 if (mode != sc->sc_curmode) 4217 ath_setcurmode(sc, mode); 4218 sc->sc_curchan = chan; 4219 } 4220 4221 /* 4222 * Set/change channels. If the channel is really being changed, 4223 * it's done by resetting the chip. To accomplish this we must 4224 * first cleanup any pending DMA, then restart stuff after a la 4225 * ath_init. 4226 */ 4227 static int 4228 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4229 { 4230 struct ifnet *ifp = sc->sc_ifp; 4231 struct ieee80211com *ic = ifp->if_l2com; 4232 struct ath_hal *ah = sc->sc_ah; 4233 int ret = 0; 4234 4235 /* Treat this as an interface reset */ 4236 ATH_PCU_UNLOCK_ASSERT(sc); 4237 ATH_UNLOCK_ASSERT(sc); 4238 4239 /* (Try to) stop TX/RX from occuring */ 4240 taskqueue_block(sc->sc_tq); 4241 4242 ATH_PCU_LOCK(sc); 4243 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4244 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4245 if (ath_reset_grablock(sc, 1) == 0) { 4246 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4247 __func__); 4248 } 4249 ATH_PCU_UNLOCK(sc); 4250 4251 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4252 __func__, ieee80211_chan2ieee(ic, chan), 4253 chan->ic_freq, chan->ic_flags); 4254 if (chan != sc->sc_curchan) { 4255 HAL_STATUS status; 4256 /* 4257 * To switch channels clear any pending DMA operations; 4258 * wait long enough for the RX fifo to drain, reset the 4259 * hardware at the new frequency, and then re-enable 4260 * the relevant bits of the h/w. 4261 */ 4262 #if 0 4263 ath_hal_intrset(ah, 0); /* disable interrupts */ 4264 #endif 4265 ath_stoprecv(sc, 1); /* turn off frame recv */ 4266 /* 4267 * First, handle completed TX/RX frames. 4268 */ 4269 ath_rx_flush(sc); 4270 ath_draintxq(sc, ATH_RESET_NOLOSS); 4271 /* 4272 * Next, flush the non-scheduled frames. 4273 */ 4274 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4275 4276 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4277 if_printf(ifp, "%s: unable to reset " 4278 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4279 __func__, ieee80211_chan2ieee(ic, chan), 4280 chan->ic_freq, chan->ic_flags, status); 4281 ret = EIO; 4282 goto finish; 4283 } 4284 sc->sc_diversity = ath_hal_getdiversity(ah); 4285 4286 /* Let DFS at it in case it's a DFS channel */ 4287 ath_dfs_radar_enable(sc, chan); 4288 4289 /* 4290 * Re-enable rx framework. 4291 */ 4292 if (ath_startrecv(sc) != 0) { 4293 if_printf(ifp, "%s: unable to restart recv logic\n", 4294 __func__); 4295 ret = EIO; 4296 goto finish; 4297 } 4298 4299 /* 4300 * Change channels and update the h/w rate map 4301 * if we're switching; e.g. 11a to 11b/g. 4302 */ 4303 ath_chan_change(sc, chan); 4304 4305 /* 4306 * Reset clears the beacon timers; reset them 4307 * here if needed. 4308 */ 4309 if (sc->sc_beacons) { /* restart beacons */ 4310 #ifdef IEEE80211_SUPPORT_TDMA 4311 if (sc->sc_tdma) 4312 ath_tdma_config(sc, NULL); 4313 else 4314 #endif 4315 ath_beacon_config(sc, NULL); 4316 } 4317 4318 /* 4319 * Re-enable interrupts. 4320 */ 4321 #if 0 4322 ath_hal_intrset(ah, sc->sc_imask); 4323 #endif 4324 } 4325 4326 finish: 4327 ATH_PCU_LOCK(sc); 4328 sc->sc_inreset_cnt--; 4329 /* XXX only do this if sc_inreset_cnt == 0? */ 4330 ath_hal_intrset(ah, sc->sc_imask); 4331 ATH_PCU_UNLOCK(sc); 4332 4333 IF_LOCK(&ifp->if_snd); 4334 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4335 IF_UNLOCK(&ifp->if_snd); 4336 ath_txrx_start(sc); 4337 /* XXX ath_start? */ 4338 4339 return ret; 4340 } 4341 4342 /* 4343 * Periodically recalibrate the PHY to account 4344 * for temperature/environment changes. 4345 */ 4346 static void 4347 ath_calibrate(void *arg) 4348 { 4349 struct ath_softc *sc = arg; 4350 struct ath_hal *ah = sc->sc_ah; 4351 struct ifnet *ifp = sc->sc_ifp; 4352 struct ieee80211com *ic = ifp->if_l2com; 4353 HAL_BOOL longCal, isCalDone = AH_TRUE; 4354 HAL_BOOL aniCal, shortCal = AH_FALSE; 4355 int nextcal; 4356 4357 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4358 goto restart; 4359 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4360 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4361 if (sc->sc_doresetcal) 4362 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4363 4364 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4365 if (aniCal) { 4366 sc->sc_stats.ast_ani_cal++; 4367 sc->sc_lastani = ticks; 4368 ath_hal_ani_poll(ah, sc->sc_curchan); 4369 } 4370 4371 if (longCal) { 4372 sc->sc_stats.ast_per_cal++; 4373 sc->sc_lastlongcal = ticks; 4374 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4375 /* 4376 * Rfgain is out of bounds, reset the chip 4377 * to load new gain values. 4378 */ 4379 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4380 "%s: rfgain change\n", __func__); 4381 sc->sc_stats.ast_per_rfgain++; 4382 sc->sc_resetcal = 0; 4383 sc->sc_doresetcal = AH_TRUE; 4384 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4385 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4386 return; 4387 } 4388 /* 4389 * If this long cal is after an idle period, then 4390 * reset the data collection state so we start fresh. 4391 */ 4392 if (sc->sc_resetcal) { 4393 (void) ath_hal_calreset(ah, sc->sc_curchan); 4394 sc->sc_lastcalreset = ticks; 4395 sc->sc_lastshortcal = ticks; 4396 sc->sc_resetcal = 0; 4397 sc->sc_doresetcal = AH_TRUE; 4398 } 4399 } 4400 4401 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4402 if (shortCal || longCal) { 4403 isCalDone = AH_FALSE; 4404 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4405 if (longCal) { 4406 /* 4407 * Calibrate noise floor data again in case of change. 4408 */ 4409 ath_hal_process_noisefloor(ah); 4410 } 4411 } else { 4412 DPRINTF(sc, ATH_DEBUG_ANY, 4413 "%s: calibration of channel %u failed\n", 4414 __func__, sc->sc_curchan->ic_freq); 4415 sc->sc_stats.ast_per_calfail++; 4416 } 4417 if (shortCal) 4418 sc->sc_lastshortcal = ticks; 4419 } 4420 if (!isCalDone) { 4421 restart: 4422 /* 4423 * Use a shorter interval to potentially collect multiple 4424 * data samples required to complete calibration. Once 4425 * we're told the work is done we drop back to a longer 4426 * interval between requests. We're more aggressive doing 4427 * work when operating as an AP to improve operation right 4428 * after startup. 4429 */ 4430 sc->sc_lastshortcal = ticks; 4431 nextcal = ath_shortcalinterval*hz/1000; 4432 if (sc->sc_opmode != HAL_M_HOSTAP) 4433 nextcal *= 10; 4434 sc->sc_doresetcal = AH_TRUE; 4435 } else { 4436 /* nextcal should be the shortest time for next event */ 4437 nextcal = ath_longcalinterval*hz; 4438 if (sc->sc_lastcalreset == 0) 4439 sc->sc_lastcalreset = sc->sc_lastlongcal; 4440 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4441 sc->sc_resetcal = 1; /* setup reset next trip */ 4442 sc->sc_doresetcal = AH_FALSE; 4443 } 4444 /* ANI calibration may occur more often than short/long/resetcal */ 4445 if (ath_anicalinterval > 0) 4446 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4447 4448 if (nextcal != 0) { 4449 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4450 __func__, nextcal, isCalDone ? "" : "!"); 4451 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4452 } else { 4453 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4454 __func__); 4455 /* NB: don't rearm timer */ 4456 } 4457 } 4458 4459 static void 4460 ath_scan_start(struct ieee80211com *ic) 4461 { 4462 struct ifnet *ifp = ic->ic_ifp; 4463 struct ath_softc *sc = ifp->if_softc; 4464 struct ath_hal *ah = sc->sc_ah; 4465 u_int32_t rfilt; 4466 4467 /* XXX calibration timer? */ 4468 4469 ATH_LOCK(sc); 4470 sc->sc_scanning = 1; 4471 sc->sc_syncbeacon = 0; 4472 rfilt = ath_calcrxfilter(sc); 4473 ATH_UNLOCK(sc); 4474 4475 ATH_PCU_LOCK(sc); 4476 ath_hal_setrxfilter(ah, rfilt); 4477 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4478 ATH_PCU_UNLOCK(sc); 4479 4480 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4481 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4482 } 4483 4484 static void 4485 ath_scan_end(struct ieee80211com *ic) 4486 { 4487 struct ifnet *ifp = ic->ic_ifp; 4488 struct ath_softc *sc = ifp->if_softc; 4489 struct ath_hal *ah = sc->sc_ah; 4490 u_int32_t rfilt; 4491 4492 ATH_LOCK(sc); 4493 sc->sc_scanning = 0; 4494 rfilt = ath_calcrxfilter(sc); 4495 ATH_UNLOCK(sc); 4496 4497 ATH_PCU_LOCK(sc); 4498 ath_hal_setrxfilter(ah, rfilt); 4499 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4500 4501 ath_hal_process_noisefloor(ah); 4502 ATH_PCU_UNLOCK(sc); 4503 4504 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4505 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4506 sc->sc_curaid); 4507 } 4508 4509 #ifdef ATH_ENABLE_11N 4510 /* 4511 * For now, just do a channel change. 4512 * 4513 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4514 * control state and resetting the hardware without dropping frames out 4515 * of the queue. 4516 * 4517 * The unfortunate trouble here is making absolutely sure that the 4518 * channel width change has propagated enough so the hardware 4519 * absolutely isn't handed bogus frames for it's current operating 4520 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4521 * does occur in parallel, we need to make certain we've blocked 4522 * any further ongoing TX (and RX, that can cause raw TX) 4523 * before we do this. 4524 */ 4525 static void 4526 ath_update_chw(struct ieee80211com *ic) 4527 { 4528 struct ifnet *ifp = ic->ic_ifp; 4529 struct ath_softc *sc = ifp->if_softc; 4530 4531 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4532 ath_set_channel(ic); 4533 } 4534 #endif /* ATH_ENABLE_11N */ 4535 4536 static void 4537 ath_set_channel(struct ieee80211com *ic) 4538 { 4539 struct ifnet *ifp = ic->ic_ifp; 4540 struct ath_softc *sc = ifp->if_softc; 4541 4542 (void) ath_chan_set(sc, ic->ic_curchan); 4543 /* 4544 * If we are returning to our bss channel then mark state 4545 * so the next recv'd beacon's tsf will be used to sync the 4546 * beacon timers. Note that since we only hear beacons in 4547 * sta/ibss mode this has no effect in other operating modes. 4548 */ 4549 ATH_LOCK(sc); 4550 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4551 sc->sc_syncbeacon = 1; 4552 ATH_UNLOCK(sc); 4553 } 4554 4555 /* 4556 * Walk the vap list and check if there any vap's in RUN state. 4557 */ 4558 static int 4559 ath_isanyrunningvaps(struct ieee80211vap *this) 4560 { 4561 struct ieee80211com *ic = this->iv_ic; 4562 struct ieee80211vap *vap; 4563 4564 IEEE80211_LOCK_ASSERT(ic); 4565 4566 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4567 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4568 return 1; 4569 } 4570 return 0; 4571 } 4572 4573 static int 4574 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4575 { 4576 struct ieee80211com *ic = vap->iv_ic; 4577 struct ath_softc *sc = ic->ic_ifp->if_softc; 4578 struct ath_vap *avp = ATH_VAP(vap); 4579 struct ath_hal *ah = sc->sc_ah; 4580 struct ieee80211_node *ni = NULL; 4581 int i, error, stamode; 4582 u_int32_t rfilt; 4583 int csa_run_transition = 0; 4584 static const HAL_LED_STATE leds[] = { 4585 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4586 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4587 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4588 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4589 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4590 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4591 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4592 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4593 }; 4594 4595 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4596 ieee80211_state_name[vap->iv_state], 4597 ieee80211_state_name[nstate]); 4598 4599 /* 4600 * net80211 _should_ have the comlock asserted at this point. 4601 * There are some comments around the calls to vap->iv_newstate 4602 * which indicate that it (newstate) may end up dropping the 4603 * lock. This and the subsequent lock assert check after newstate 4604 * are an attempt to catch these and figure out how/why. 4605 */ 4606 IEEE80211_LOCK_ASSERT(ic); 4607 4608 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4609 csa_run_transition = 1; 4610 4611 callout_drain(&sc->sc_cal_ch); 4612 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4613 4614 if (nstate == IEEE80211_S_SCAN) { 4615 /* 4616 * Scanning: turn off beacon miss and don't beacon. 4617 * Mark beacon state so when we reach RUN state we'll 4618 * [re]setup beacons. Unblock the task q thread so 4619 * deferred interrupt processing is done. 4620 */ 4621 ath_hal_intrset(ah, 4622 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4623 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4624 sc->sc_beacons = 0; 4625 taskqueue_unblock(sc->sc_tq); 4626 } 4627 4628 ni = ieee80211_ref_node(vap->iv_bss); 4629 rfilt = ath_calcrxfilter(sc); 4630 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4631 vap->iv_opmode == IEEE80211_M_AHDEMO || 4632 vap->iv_opmode == IEEE80211_M_IBSS); 4633 if (stamode && nstate == IEEE80211_S_RUN) { 4634 sc->sc_curaid = ni->ni_associd; 4635 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4636 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4637 } 4638 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4639 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4640 ath_hal_setrxfilter(ah, rfilt); 4641 4642 /* XXX is this to restore keycache on resume? */ 4643 if (vap->iv_opmode != IEEE80211_M_STA && 4644 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4645 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4646 if (ath_hal_keyisvalid(ah, i)) 4647 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4648 } 4649 4650 /* 4651 * Invoke the parent method to do net80211 work. 4652 */ 4653 error = avp->av_newstate(vap, nstate, arg); 4654 if (error != 0) 4655 goto bad; 4656 4657 /* 4658 * See above: ensure av_newstate() doesn't drop the lock 4659 * on us. 4660 */ 4661 IEEE80211_LOCK_ASSERT(ic); 4662 4663 if (nstate == IEEE80211_S_RUN) { 4664 /* NB: collect bss node again, it may have changed */ 4665 ieee80211_free_node(ni); 4666 ni = ieee80211_ref_node(vap->iv_bss); 4667 4668 DPRINTF(sc, ATH_DEBUG_STATE, 4669 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4670 "capinfo 0x%04x chan %d\n", __func__, 4671 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4672 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4673 4674 switch (vap->iv_opmode) { 4675 #ifdef IEEE80211_SUPPORT_TDMA 4676 case IEEE80211_M_AHDEMO: 4677 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4678 break; 4679 /* fall thru... */ 4680 #endif 4681 case IEEE80211_M_HOSTAP: 4682 case IEEE80211_M_IBSS: 4683 case IEEE80211_M_MBSS: 4684 /* 4685 * Allocate and setup the beacon frame. 4686 * 4687 * Stop any previous beacon DMA. This may be 4688 * necessary, for example, when an ibss merge 4689 * causes reconfiguration; there will be a state 4690 * transition from RUN->RUN that means we may 4691 * be called with beacon transmission active. 4692 */ 4693 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4694 4695 error = ath_beacon_alloc(sc, ni); 4696 if (error != 0) 4697 goto bad; 4698 /* 4699 * If joining an adhoc network defer beacon timer 4700 * configuration to the next beacon frame so we 4701 * have a current TSF to use. Otherwise we're 4702 * starting an ibss/bss so there's no need to delay; 4703 * if this is the first vap moving to RUN state, then 4704 * beacon state needs to be [re]configured. 4705 */ 4706 if (vap->iv_opmode == IEEE80211_M_IBSS && 4707 ni->ni_tstamp.tsf != 0) { 4708 sc->sc_syncbeacon = 1; 4709 } else if (!sc->sc_beacons) { 4710 #ifdef IEEE80211_SUPPORT_TDMA 4711 if (vap->iv_caps & IEEE80211_C_TDMA) 4712 ath_tdma_config(sc, vap); 4713 else 4714 #endif 4715 ath_beacon_config(sc, vap); 4716 sc->sc_beacons = 1; 4717 } 4718 break; 4719 case IEEE80211_M_STA: 4720 /* 4721 * Defer beacon timer configuration to the next 4722 * beacon frame so we have a current TSF to use 4723 * (any TSF collected when scanning is likely old). 4724 * However if it's due to a CSA -> RUN transition, 4725 * force a beacon update so we pick up a lack of 4726 * beacons from an AP in CAC and thus force a 4727 * scan. 4728 */ 4729 sc->sc_syncbeacon = 1; 4730 if (csa_run_transition) 4731 ath_beacon_config(sc, vap); 4732 break; 4733 case IEEE80211_M_MONITOR: 4734 /* 4735 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4736 * transitions so we must re-enable interrupts here to 4737 * handle the case of a single monitor mode vap. 4738 */ 4739 ath_hal_intrset(ah, sc->sc_imask); 4740 break; 4741 case IEEE80211_M_WDS: 4742 break; 4743 default: 4744 break; 4745 } 4746 /* 4747 * Let the hal process statistics collected during a 4748 * scan so it can provide calibrated noise floor data. 4749 */ 4750 ath_hal_process_noisefloor(ah); 4751 /* 4752 * Reset rssi stats; maybe not the best place... 4753 */ 4754 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4755 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4756 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4757 /* 4758 * Finally, start any timers and the task q thread 4759 * (in case we didn't go through SCAN state). 4760 */ 4761 if (ath_longcalinterval != 0) { 4762 /* start periodic recalibration timer */ 4763 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4764 } else { 4765 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4766 "%s: calibration disabled\n", __func__); 4767 } 4768 taskqueue_unblock(sc->sc_tq); 4769 } else if (nstate == IEEE80211_S_INIT) { 4770 /* 4771 * If there are no vaps left in RUN state then 4772 * shutdown host/driver operation: 4773 * o disable interrupts 4774 * o disable the task queue thread 4775 * o mark beacon processing as stopped 4776 */ 4777 if (!ath_isanyrunningvaps(vap)) { 4778 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4779 /* disable interrupts */ 4780 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4781 taskqueue_block(sc->sc_tq); 4782 sc->sc_beacons = 0; 4783 } 4784 #ifdef IEEE80211_SUPPORT_TDMA 4785 ath_hal_setcca(ah, AH_TRUE); 4786 #endif 4787 } 4788 bad: 4789 ieee80211_free_node(ni); 4790 return error; 4791 } 4792 4793 /* 4794 * Allocate a key cache slot to the station so we can 4795 * setup a mapping from key index to node. The key cache 4796 * slot is needed for managing antenna state and for 4797 * compression when stations do not use crypto. We do 4798 * it uniliaterally here; if crypto is employed this slot 4799 * will be reassigned. 4800 */ 4801 static void 4802 ath_setup_stationkey(struct ieee80211_node *ni) 4803 { 4804 struct ieee80211vap *vap = ni->ni_vap; 4805 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4806 ieee80211_keyix keyix, rxkeyix; 4807 4808 /* XXX should take a locked ref to vap->iv_bss */ 4809 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4810 /* 4811 * Key cache is full; we'll fall back to doing 4812 * the more expensive lookup in software. Note 4813 * this also means no h/w compression. 4814 */ 4815 /* XXX msg+statistic */ 4816 } else { 4817 /* XXX locking? */ 4818 ni->ni_ucastkey.wk_keyix = keyix; 4819 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4820 /* NB: must mark device key to get called back on delete */ 4821 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4822 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4823 /* NB: this will create a pass-thru key entry */ 4824 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4825 } 4826 } 4827 4828 /* 4829 * Setup driver-specific state for a newly associated node. 4830 * Note that we're called also on a re-associate, the isnew 4831 * param tells us if this is the first time or not. 4832 */ 4833 static void 4834 ath_newassoc(struct ieee80211_node *ni, int isnew) 4835 { 4836 struct ath_node *an = ATH_NODE(ni); 4837 struct ieee80211vap *vap = ni->ni_vap; 4838 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4839 const struct ieee80211_txparam *tp = ni->ni_txparms; 4840 4841 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4842 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4843 4844 ath_rate_newassoc(sc, an, isnew); 4845 if (isnew && 4846 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4847 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4848 ath_setup_stationkey(ni); 4849 } 4850 4851 static int 4852 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4853 int nchans, struct ieee80211_channel chans[]) 4854 { 4855 struct ath_softc *sc = ic->ic_ifp->if_softc; 4856 struct ath_hal *ah = sc->sc_ah; 4857 HAL_STATUS status; 4858 4859 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4860 "%s: rd %u cc %u location %c%s\n", 4861 __func__, reg->regdomain, reg->country, reg->location, 4862 reg->ecm ? " ecm" : ""); 4863 4864 status = ath_hal_set_channels(ah, chans, nchans, 4865 reg->country, reg->regdomain); 4866 if (status != HAL_OK) { 4867 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4868 __func__, status); 4869 return EINVAL; /* XXX */ 4870 } 4871 4872 return 0; 4873 } 4874 4875 static void 4876 ath_getradiocaps(struct ieee80211com *ic, 4877 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4878 { 4879 struct ath_softc *sc = ic->ic_ifp->if_softc; 4880 struct ath_hal *ah = sc->sc_ah; 4881 4882 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4883 __func__, SKU_DEBUG, CTRY_DEFAULT); 4884 4885 /* XXX check return */ 4886 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4887 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4888 4889 } 4890 4891 static int 4892 ath_getchannels(struct ath_softc *sc) 4893 { 4894 struct ifnet *ifp = sc->sc_ifp; 4895 struct ieee80211com *ic = ifp->if_l2com; 4896 struct ath_hal *ah = sc->sc_ah; 4897 HAL_STATUS status; 4898 4899 /* 4900 * Collect channel set based on EEPROM contents. 4901 */ 4902 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4903 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4904 if (status != HAL_OK) { 4905 if_printf(ifp, "%s: unable to collect channel list from hal, " 4906 "status %d\n", __func__, status); 4907 return EINVAL; 4908 } 4909 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4910 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4911 /* XXX map Atheros sku's to net80211 SKU's */ 4912 /* XXX net80211 types too small */ 4913 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4914 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4915 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4916 ic->ic_regdomain.isocc[1] = ' '; 4917 4918 ic->ic_regdomain.ecm = 1; 4919 ic->ic_regdomain.location = 'I'; 4920 4921 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4922 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4923 __func__, sc->sc_eerd, sc->sc_eecc, 4924 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4925 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4926 return 0; 4927 } 4928 4929 static int 4930 ath_rate_setup(struct ath_softc *sc, u_int mode) 4931 { 4932 struct ath_hal *ah = sc->sc_ah; 4933 const HAL_RATE_TABLE *rt; 4934 4935 switch (mode) { 4936 case IEEE80211_MODE_11A: 4937 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4938 break; 4939 case IEEE80211_MODE_HALF: 4940 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4941 break; 4942 case IEEE80211_MODE_QUARTER: 4943 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4944 break; 4945 case IEEE80211_MODE_11B: 4946 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4947 break; 4948 case IEEE80211_MODE_11G: 4949 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4950 break; 4951 case IEEE80211_MODE_TURBO_A: 4952 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4953 break; 4954 case IEEE80211_MODE_TURBO_G: 4955 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4956 break; 4957 case IEEE80211_MODE_STURBO_A: 4958 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4959 break; 4960 case IEEE80211_MODE_11NA: 4961 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4962 break; 4963 case IEEE80211_MODE_11NG: 4964 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4965 break; 4966 default: 4967 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4968 __func__, mode); 4969 return 0; 4970 } 4971 sc->sc_rates[mode] = rt; 4972 return (rt != NULL); 4973 } 4974 4975 static void 4976 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4977 { 4978 #define N(a) (sizeof(a)/sizeof(a[0])) 4979 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4980 static const struct { 4981 u_int rate; /* tx/rx 802.11 rate */ 4982 u_int16_t timeOn; /* LED on time (ms) */ 4983 u_int16_t timeOff; /* LED off time (ms) */ 4984 } blinkrates[] = { 4985 { 108, 40, 10 }, 4986 { 96, 44, 11 }, 4987 { 72, 50, 13 }, 4988 { 48, 57, 14 }, 4989 { 36, 67, 16 }, 4990 { 24, 80, 20 }, 4991 { 22, 100, 25 }, 4992 { 18, 133, 34 }, 4993 { 12, 160, 40 }, 4994 { 10, 200, 50 }, 4995 { 6, 240, 58 }, 4996 { 4, 267, 66 }, 4997 { 2, 400, 100 }, 4998 { 0, 500, 130 }, 4999 /* XXX half/quarter rates */ 5000 }; 5001 const HAL_RATE_TABLE *rt; 5002 int i, j; 5003 5004 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5005 rt = sc->sc_rates[mode]; 5006 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5007 for (i = 0; i < rt->rateCount; i++) { 5008 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5009 if (rt->info[i].phy != IEEE80211_T_HT) 5010 sc->sc_rixmap[ieeerate] = i; 5011 else 5012 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5013 } 5014 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5015 for (i = 0; i < N(sc->sc_hwmap); i++) { 5016 if (i >= rt->rateCount) { 5017 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5018 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5019 continue; 5020 } 5021 sc->sc_hwmap[i].ieeerate = 5022 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5023 if (rt->info[i].phy == IEEE80211_T_HT) 5024 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5025 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5026 if (rt->info[i].shortPreamble || 5027 rt->info[i].phy == IEEE80211_T_OFDM) 5028 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5029 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5030 for (j = 0; j < N(blinkrates)-1; j++) 5031 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5032 break; 5033 /* NB: this uses the last entry if the rate isn't found */ 5034 /* XXX beware of overlow */ 5035 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5036 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5037 } 5038 sc->sc_currates = rt; 5039 sc->sc_curmode = mode; 5040 /* 5041 * All protection frames are transmited at 2Mb/s for 5042 * 11g, otherwise at 1Mb/s. 5043 */ 5044 if (mode == IEEE80211_MODE_11G) 5045 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5046 else 5047 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5048 /* NB: caller is responsible for resetting rate control state */ 5049 #undef N 5050 } 5051 5052 static void 5053 ath_watchdog(void *arg) 5054 { 5055 struct ath_softc *sc = arg; 5056 int do_reset = 0; 5057 5058 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5059 struct ifnet *ifp = sc->sc_ifp; 5060 uint32_t hangs; 5061 5062 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5063 hangs != 0) { 5064 if_printf(ifp, "%s hang detected (0x%x)\n", 5065 hangs & 0xff ? "bb" : "mac", hangs); 5066 } else 5067 if_printf(ifp, "device timeout\n"); 5068 do_reset = 1; 5069 ifp->if_oerrors++; 5070 sc->sc_stats.ast_watchdog++; 5071 } 5072 5073 /* 5074 * We can't hold the lock across the ath_reset() call. 5075 * 5076 * And since this routine can't hold a lock and sleep, 5077 * do the reset deferred. 5078 */ 5079 if (do_reset) { 5080 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5081 } 5082 5083 callout_schedule(&sc->sc_wd_ch, hz); 5084 } 5085 5086 /* 5087 * Fetch the rate control statistics for the given node. 5088 */ 5089 static int 5090 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5091 { 5092 struct ath_node *an; 5093 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5094 struct ieee80211_node *ni; 5095 int error = 0; 5096 5097 /* Perform a lookup on the given node */ 5098 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5099 if (ni == NULL) { 5100 error = EINVAL; 5101 goto bad; 5102 } 5103 5104 /* Lock the ath_node */ 5105 an = ATH_NODE(ni); 5106 ATH_NODE_LOCK(an); 5107 5108 /* Fetch the rate control stats for this node */ 5109 error = ath_rate_fetch_node_stats(sc, an, rs); 5110 5111 /* No matter what happens here, just drop through */ 5112 5113 /* Unlock the ath_node */ 5114 ATH_NODE_UNLOCK(an); 5115 5116 /* Unref the node */ 5117 ieee80211_node_decref(ni); 5118 5119 bad: 5120 return (error); 5121 } 5122 5123 #ifdef ATH_DIAGAPI 5124 /* 5125 * Diagnostic interface to the HAL. This is used by various 5126 * tools to do things like retrieve register contents for 5127 * debugging. The mechanism is intentionally opaque so that 5128 * it can change frequently w/o concern for compatiblity. 5129 */ 5130 static int 5131 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5132 { 5133 struct ath_hal *ah = sc->sc_ah; 5134 u_int id = ad->ad_id & ATH_DIAG_ID; 5135 void *indata = NULL; 5136 void *outdata = NULL; 5137 u_int32_t insize = ad->ad_in_size; 5138 u_int32_t outsize = ad->ad_out_size; 5139 int error = 0; 5140 5141 if (ad->ad_id & ATH_DIAG_IN) { 5142 /* 5143 * Copy in data. 5144 */ 5145 indata = malloc(insize, M_TEMP, M_NOWAIT); 5146 if (indata == NULL) { 5147 error = ENOMEM; 5148 goto bad; 5149 } 5150 error = copyin(ad->ad_in_data, indata, insize); 5151 if (error) 5152 goto bad; 5153 } 5154 if (ad->ad_id & ATH_DIAG_DYN) { 5155 /* 5156 * Allocate a buffer for the results (otherwise the HAL 5157 * returns a pointer to a buffer where we can read the 5158 * results). Note that we depend on the HAL leaving this 5159 * pointer for us to use below in reclaiming the buffer; 5160 * may want to be more defensive. 5161 */ 5162 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5163 if (outdata == NULL) { 5164 error = ENOMEM; 5165 goto bad; 5166 } 5167 } 5168 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5169 if (outsize < ad->ad_out_size) 5170 ad->ad_out_size = outsize; 5171 if (outdata != NULL) 5172 error = copyout(outdata, ad->ad_out_data, 5173 ad->ad_out_size); 5174 } else { 5175 error = EINVAL; 5176 } 5177 bad: 5178 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5179 free(indata, M_TEMP); 5180 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5181 free(outdata, M_TEMP); 5182 return error; 5183 } 5184 #endif /* ATH_DIAGAPI */ 5185 5186 static int 5187 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5188 { 5189 #define IS_RUNNING(ifp) \ 5190 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5191 struct ath_softc *sc = ifp->if_softc; 5192 struct ieee80211com *ic = ifp->if_l2com; 5193 struct ifreq *ifr = (struct ifreq *)data; 5194 const HAL_RATE_TABLE *rt; 5195 int error = 0; 5196 5197 switch (cmd) { 5198 case SIOCSIFFLAGS: 5199 ATH_LOCK(sc); 5200 if (IS_RUNNING(ifp)) { 5201 /* 5202 * To avoid rescanning another access point, 5203 * do not call ath_init() here. Instead, 5204 * only reflect promisc mode settings. 5205 */ 5206 ath_mode_init(sc); 5207 } else if (ifp->if_flags & IFF_UP) { 5208 /* 5209 * Beware of being called during attach/detach 5210 * to reset promiscuous mode. In that case we 5211 * will still be marked UP but not RUNNING. 5212 * However trying to re-init the interface 5213 * is the wrong thing to do as we've already 5214 * torn down much of our state. There's 5215 * probably a better way to deal with this. 5216 */ 5217 if (!sc->sc_invalid) 5218 ath_init(sc); /* XXX lose error */ 5219 } else { 5220 ath_stop_locked(ifp); 5221 #ifdef notyet 5222 /* XXX must wakeup in places like ath_vap_delete */ 5223 if (!sc->sc_invalid) 5224 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5225 #endif 5226 } 5227 ATH_UNLOCK(sc); 5228 break; 5229 case SIOCGIFMEDIA: 5230 case SIOCSIFMEDIA: 5231 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5232 break; 5233 case SIOCGATHSTATS: 5234 /* NB: embed these numbers to get a consistent view */ 5235 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5236 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5237 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5238 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5239 #ifdef IEEE80211_SUPPORT_TDMA 5240 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5241 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5242 #endif 5243 rt = sc->sc_currates; 5244 sc->sc_stats.ast_tx_rate = 5245 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5246 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5247 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5248 return copyout(&sc->sc_stats, 5249 ifr->ifr_data, sizeof (sc->sc_stats)); 5250 case SIOCGATHAGSTATS: 5251 return copyout(&sc->sc_aggr_stats, 5252 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5253 case SIOCZATHSTATS: 5254 error = priv_check(curthread, PRIV_DRIVER); 5255 if (error == 0) { 5256 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5257 memset(&sc->sc_aggr_stats, 0, 5258 sizeof(sc->sc_aggr_stats)); 5259 memset(&sc->sc_intr_stats, 0, 5260 sizeof(sc->sc_intr_stats)); 5261 } 5262 break; 5263 #ifdef ATH_DIAGAPI 5264 case SIOCGATHDIAG: 5265 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5266 break; 5267 case SIOCGATHPHYERR: 5268 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5269 break; 5270 #endif 5271 case SIOCGATHNODERATESTATS: 5272 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5273 break; 5274 case SIOCGIFADDR: 5275 error = ether_ioctl(ifp, cmd, data); 5276 break; 5277 default: 5278 error = EINVAL; 5279 break; 5280 } 5281 return error; 5282 #undef IS_RUNNING 5283 } 5284 5285 /* 5286 * Announce various information on device/driver attach. 5287 */ 5288 static void 5289 ath_announce(struct ath_softc *sc) 5290 { 5291 struct ifnet *ifp = sc->sc_ifp; 5292 struct ath_hal *ah = sc->sc_ah; 5293 5294 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5295 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5296 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5297 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5298 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5299 if (bootverbose) { 5300 int i; 5301 for (i = 0; i <= WME_AC_VO; i++) { 5302 struct ath_txq *txq = sc->sc_ac2q[i]; 5303 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5304 txq->axq_qnum, ieee80211_wme_acnames[i]); 5305 } 5306 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5307 sc->sc_cabq->axq_qnum); 5308 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5309 } 5310 if (ath_rxbuf != ATH_RXBUF) 5311 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5312 if (ath_txbuf != ATH_TXBUF) 5313 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5314 if (sc->sc_mcastkey && bootverbose) 5315 if_printf(ifp, "using multicast key search\n"); 5316 } 5317 5318 static void 5319 ath_dfs_tasklet(void *p, int npending) 5320 { 5321 struct ath_softc *sc = (struct ath_softc *) p; 5322 struct ifnet *ifp = sc->sc_ifp; 5323 struct ieee80211com *ic = ifp->if_l2com; 5324 5325 /* 5326 * If previous processing has found a radar event, 5327 * signal this to the net80211 layer to begin DFS 5328 * processing. 5329 */ 5330 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5331 /* DFS event found, initiate channel change */ 5332 /* 5333 * XXX doesn't currently tell us whether the event 5334 * XXX was found in the primary or extension 5335 * XXX channel! 5336 */ 5337 IEEE80211_LOCK(ic); 5338 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5339 IEEE80211_UNLOCK(ic); 5340 } 5341 } 5342 5343 /* 5344 * Enable/disable power save. This must be called with 5345 * no TX driver locks currently held, so it should only 5346 * be called from the RX path (which doesn't hold any 5347 * TX driver locks.) 5348 */ 5349 static void 5350 ath_node_powersave(struct ieee80211_node *ni, int enable) 5351 { 5352 struct ath_node *an = ATH_NODE(ni); 5353 struct ieee80211com *ic = ni->ni_ic; 5354 struct ath_softc *sc = ic->ic_ifp->if_softc; 5355 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5356 5357 ATH_NODE_UNLOCK_ASSERT(an); 5358 /* XXX and no TXQ locks should be held here */ 5359 5360 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5361 __func__, ni, enable); 5362 5363 /* Suspend or resume software queue handling */ 5364 if (enable) 5365 ath_tx_node_sleep(sc, an); 5366 else 5367 ath_tx_node_wakeup(sc, an); 5368 5369 /* Update net80211 state */ 5370 avp->av_node_ps(ni, enable); 5371 } 5372 5373 5374 MODULE_VERSION(if_ath, 1); 5375 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5376 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5377 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5378 #endif 5379