1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 */ 46 #include "opt_ah.h" 47 #include "opt_wlan.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 #include <sys/kthread.h> 64 #include <sys/taskqueue.h> 65 #include <sys/priv.h> 66 #include <sys/module.h> 67 #include <sys/ktr.h> 68 #include <sys/smp.h> /* for mp_ncpus */ 69 70 #include <machine/bus.h> 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_types.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_llc.h> 79 80 #include <net80211/ieee80211_var.h> 81 #include <net80211/ieee80211_regdomain.h> 82 #ifdef IEEE80211_SUPPORT_SUPERG 83 #include <net80211/ieee80211_superg.h> 84 #endif 85 #ifdef IEEE80211_SUPPORT_TDMA 86 #include <net80211/ieee80211_tdma.h> 87 #endif 88 89 #include <net/bpf.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #include <netinet/if_ether.h> 94 #endif 95 96 #include <dev/ath/if_athvar.h> 97 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 98 #include <dev/ath/ath_hal/ah_diagcodes.h> 99 100 #include <dev/ath/if_ath_debug.h> 101 #include <dev/ath/if_ath_misc.h> 102 #include <dev/ath/if_ath_tx.h> 103 #include <dev/ath/if_ath_sysctl.h> 104 #include <dev/ath/if_ath_led.h> 105 #include <dev/ath/if_ath_keycache.h> 106 #include <dev/ath/if_athdfs.h> 107 108 #ifdef ATH_TX99_DIAG 109 #include <dev/ath/ath_tx99/ath_tx99.h> 110 #endif 111 112 #define ATH_KTR_INTR KTR_SPARE4 113 #define ATH_KTR_ERR KTR_SPARE3 114 115 /* 116 * ATH_BCBUF determines the number of vap's that can transmit 117 * beacons and also (currently) the number of vap's that can 118 * have unique mac addresses/bssid. When staggering beacons 119 * 4 is probably a good max as otherwise the beacons become 120 * very closely spaced and there is limited time for cab q traffic 121 * to go out. You can burst beacons instead but that is not good 122 * for stations in power save and at some point you really want 123 * another radio (and channel). 124 * 125 * The limit on the number of mac addresses is tied to our use of 126 * the U/L bit and tracking addresses in a byte; it would be 127 * worthwhile to allow more for applications like proxy sta. 128 */ 129 CTASSERT(ATH_BCBUF <= 8); 130 131 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 132 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 133 const uint8_t [IEEE80211_ADDR_LEN], 134 const uint8_t [IEEE80211_ADDR_LEN]); 135 static void ath_vap_delete(struct ieee80211vap *); 136 static void ath_init(void *); 137 static void ath_stop_locked(struct ifnet *); 138 static void ath_stop(struct ifnet *); 139 static void ath_start(struct ifnet *); 140 static int ath_reset_vap(struct ieee80211vap *, u_long); 141 static int ath_media_change(struct ifnet *); 142 static void ath_watchdog(void *); 143 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 144 static void ath_fatal_proc(void *, int); 145 static void ath_bmiss_vap(struct ieee80211vap *); 146 static void ath_bmiss_proc(void *, int); 147 static void ath_key_update_begin(struct ieee80211vap *); 148 static void ath_key_update_end(struct ieee80211vap *); 149 static void ath_update_mcast(struct ifnet *); 150 static void ath_update_promisc(struct ifnet *); 151 static void ath_mode_init(struct ath_softc *); 152 static void ath_setslottime(struct ath_softc *); 153 static void ath_updateslot(struct ifnet *); 154 static int ath_beaconq_setup(struct ath_hal *); 155 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 156 static void ath_beacon_update(struct ieee80211vap *, int item); 157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 158 static void ath_beacon_proc(void *, int); 159 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 160 struct ieee80211vap *); 161 static void ath_bstuck_proc(void *, int); 162 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 163 static void ath_beacon_free(struct ath_softc *); 164 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 165 static void ath_descdma_cleanup(struct ath_softc *sc, 166 struct ath_descdma *, ath_bufhead *); 167 static int ath_desc_alloc(struct ath_softc *); 168 static void ath_desc_free(struct ath_softc *); 169 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 170 const uint8_t [IEEE80211_ADDR_LEN]); 171 static void ath_node_cleanup(struct ieee80211_node *); 172 static void ath_node_free(struct ieee80211_node *); 173 static void ath_node_getsignal(const struct ieee80211_node *, 174 int8_t *, int8_t *); 175 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 176 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 177 int subtype, int rssi, int nf); 178 static void ath_setdefantenna(struct ath_softc *, u_int); 179 static void ath_rx_proc(struct ath_softc *sc, int); 180 static void ath_rx_tasklet(void *, int); 181 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 182 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 183 static int ath_tx_setup(struct ath_softc *, int, int); 184 static int ath_wme_update(struct ieee80211com *); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static void ath_tx_proc_q0(void *, int); 188 static void ath_tx_proc_q0123(void *, int); 189 static void ath_tx_proc(void *, int); 190 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 191 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 192 static void ath_stoprecv(struct ath_softc *, int); 193 static int ath_startrecv(struct ath_softc *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 static void ath_calibrate(void *); 199 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 200 static void ath_setup_stationkey(struct ieee80211_node *); 201 static void ath_newassoc(struct ieee80211_node *, int); 202 static int ath_setregdomain(struct ieee80211com *, 203 struct ieee80211_regdomain *, int, 204 struct ieee80211_channel []); 205 static void ath_getradiocaps(struct ieee80211com *, int, int *, 206 struct ieee80211_channel []); 207 static int ath_getchannels(struct ath_softc *); 208 209 static int ath_rate_setup(struct ath_softc *, u_int mode); 210 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 211 212 static void ath_announce(struct ath_softc *); 213 214 static void ath_dfs_tasklet(void *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 218 u_int32_t bintval); 219 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 220 const struct ieee80211_tdma_state *tdma); 221 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 222 static void ath_tdma_update(struct ieee80211_node *ni, 223 const struct ieee80211_tdma_param *tdma, int); 224 static void ath_tdma_beacon_send(struct ath_softc *sc, 225 struct ieee80211vap *vap); 226 227 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 228 #define TDMA_LPF_LEN 6 229 #define TDMA_DUMMY_MARKER 0x127 230 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 231 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 232 #define TDMA_LPF(x, y, len) \ 233 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 234 #define TDMA_SAMPLE(x, y) do { \ 235 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 236 } while (0) 237 #define TDMA_EP_RND(x,mul) \ 238 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 239 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 240 #endif /* IEEE80211_SUPPORT_TDMA */ 241 242 SYSCTL_DECL(_hw_ath); 243 244 /* XXX validate sysctl values */ 245 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 247 0, "long chip calibration interval (secs)"); 248 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 250 0, "short chip calibration interval (msecs)"); 251 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 253 0, "reset chip calibration results (secs)"); 254 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 256 0, "ANI calibration (msecs)"); 257 258 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 260 0, "rx buffers allocated"); 261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 262 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 264 0, "tx buffers allocated"); 265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 266 267 static int ath_bstuck_threshold = 4; /* max missed beacons */ 268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 269 0, "max missed beacon xmits before chip reset"); 270 271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 272 273 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 274 #define HAL_MODE_HT40 \ 275 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 276 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 277 int 278 ath_attach(u_int16_t devid, struct ath_softc *sc) 279 { 280 struct ifnet *ifp; 281 struct ieee80211com *ic; 282 struct ath_hal *ah = NULL; 283 HAL_STATUS status; 284 int error = 0, i; 285 u_int wmodes; 286 uint8_t macaddr[IEEE80211_ADDR_LEN]; 287 int rx_chainmask, tx_chainmask; 288 289 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 290 291 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 292 if (ifp == NULL) { 293 device_printf(sc->sc_dev, "can not if_alloc()\n"); 294 error = ENOSPC; 295 goto bad; 296 } 297 ic = ifp->if_l2com; 298 299 /* set these up early for if_printf use */ 300 if_initname(ifp, device_get_name(sc->sc_dev), 301 device_get_unit(sc->sc_dev)); 302 303 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 304 sc->sc_eepromdata, &status); 305 if (ah == NULL) { 306 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 307 status); 308 error = ENXIO; 309 goto bad; 310 } 311 sc->sc_ah = ah; 312 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 313 #ifdef ATH_DEBUG 314 sc->sc_debug = ath_debug; 315 #endif 316 317 /* 318 * Check if the MAC has multi-rate retry support. 319 * We do this by trying to setup a fake extended 320 * descriptor. MAC's that don't have support will 321 * return false w/o doing anything. MAC's that do 322 * support it will return true w/o doing anything. 323 */ 324 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 325 326 /* 327 * Check if the device has hardware counters for PHY 328 * errors. If so we need to enable the MIB interrupt 329 * so we can act on stat triggers. 330 */ 331 if (ath_hal_hwphycounters(ah)) 332 sc->sc_needmib = 1; 333 334 /* 335 * Get the hardware key cache size. 336 */ 337 sc->sc_keymax = ath_hal_keycachesize(ah); 338 if (sc->sc_keymax > ATH_KEYMAX) { 339 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 340 ATH_KEYMAX, sc->sc_keymax); 341 sc->sc_keymax = ATH_KEYMAX; 342 } 343 /* 344 * Reset the key cache since some parts do not 345 * reset the contents on initial power up. 346 */ 347 for (i = 0; i < sc->sc_keymax; i++) 348 ath_hal_keyreset(ah, i); 349 350 /* 351 * Collect the default channel list. 352 */ 353 error = ath_getchannels(sc); 354 if (error != 0) 355 goto bad; 356 357 /* 358 * Setup rate tables for all potential media types. 359 */ 360 ath_rate_setup(sc, IEEE80211_MODE_11A); 361 ath_rate_setup(sc, IEEE80211_MODE_11B); 362 ath_rate_setup(sc, IEEE80211_MODE_11G); 363 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 364 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 365 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 366 ath_rate_setup(sc, IEEE80211_MODE_11NA); 367 ath_rate_setup(sc, IEEE80211_MODE_11NG); 368 ath_rate_setup(sc, IEEE80211_MODE_HALF); 369 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 370 371 /* NB: setup here so ath_rate_update is happy */ 372 ath_setcurmode(sc, IEEE80211_MODE_11A); 373 374 /* 375 * Allocate tx+rx descriptors and populate the lists. 376 */ 377 error = ath_desc_alloc(sc); 378 if (error != 0) { 379 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 380 goto bad; 381 } 382 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 383 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 384 385 ATH_TXBUF_LOCK_INIT(sc); 386 387 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 388 taskqueue_thread_enqueue, &sc->sc_tq); 389 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 390 "%s taskq", ifp->if_xname); 391 392 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 393 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 394 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 395 396 /* 397 * Allocate hardware transmit queues: one queue for 398 * beacon frames and one data queue for each QoS 399 * priority. Note that the hal handles resetting 400 * these queues at the needed time. 401 * 402 * XXX PS-Poll 403 */ 404 sc->sc_bhalq = ath_beaconq_setup(ah); 405 if (sc->sc_bhalq == (u_int) -1) { 406 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 407 error = EIO; 408 goto bad2; 409 } 410 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 411 if (sc->sc_cabq == NULL) { 412 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 413 error = EIO; 414 goto bad2; 415 } 416 /* NB: insure BK queue is the lowest priority h/w queue */ 417 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 418 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 419 ieee80211_wme_acnames[WME_AC_BK]); 420 error = EIO; 421 goto bad2; 422 } 423 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 424 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 425 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 426 /* 427 * Not enough hardware tx queues to properly do WME; 428 * just punt and assign them all to the same h/w queue. 429 * We could do a better job of this if, for example, 430 * we allocate queues when we switch from station to 431 * AP mode. 432 */ 433 if (sc->sc_ac2q[WME_AC_VI] != NULL) 434 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 435 if (sc->sc_ac2q[WME_AC_BE] != NULL) 436 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 437 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 438 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 439 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 440 } 441 442 /* 443 * Special case certain configurations. Note the 444 * CAB queue is handled by these specially so don't 445 * include them when checking the txq setup mask. 446 */ 447 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 448 case 0x01: 449 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 450 break; 451 case 0x0f: 452 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 453 break; 454 default: 455 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 456 break; 457 } 458 459 /* 460 * Setup rate control. Some rate control modules 461 * call back to change the anntena state so expose 462 * the necessary entry points. 463 * XXX maybe belongs in struct ath_ratectrl? 464 */ 465 sc->sc_setdefantenna = ath_setdefantenna; 466 sc->sc_rc = ath_rate_attach(sc); 467 if (sc->sc_rc == NULL) { 468 error = EIO; 469 goto bad2; 470 } 471 472 /* Attach DFS module */ 473 if (! ath_dfs_attach(sc)) { 474 device_printf(sc->sc_dev, 475 "%s: unable to attach DFS\n", __func__); 476 error = EIO; 477 goto bad2; 478 } 479 480 /* Start DFS processing tasklet */ 481 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 482 483 /* Configure LED state */ 484 sc->sc_blinking = 0; 485 sc->sc_ledstate = 1; 486 sc->sc_ledon = 0; /* low true */ 487 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 488 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 489 490 /* 491 * Don't setup hardware-based blinking. 492 * 493 * Although some NICs may have this configured in the 494 * default reset register values, the user may wish 495 * to alter which pins have which function. 496 * 497 * The reference driver attaches the MAC network LED to GPIO1 and 498 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 499 * NIC has these reversed. 500 */ 501 sc->sc_hardled = (1 == 0); 502 sc->sc_led_net_pin = -1; 503 sc->sc_led_pwr_pin = -1; 504 /* 505 * Auto-enable soft led processing for IBM cards and for 506 * 5211 minipci cards. Users can also manually enable/disable 507 * support with a sysctl. 508 */ 509 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 510 ath_led_config(sc); 511 ath_hal_setledstate(ah, HAL_LED_INIT); 512 513 ifp->if_softc = sc; 514 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 515 ifp->if_start = ath_start; 516 ifp->if_ioctl = ath_ioctl; 517 ifp->if_init = ath_init; 518 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 519 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 520 IFQ_SET_READY(&ifp->if_snd); 521 522 ic->ic_ifp = ifp; 523 /* XXX not right but it's not used anywhere important */ 524 ic->ic_phytype = IEEE80211_T_OFDM; 525 ic->ic_opmode = IEEE80211_M_STA; 526 ic->ic_caps = 527 IEEE80211_C_STA /* station mode */ 528 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 529 | IEEE80211_C_HOSTAP /* hostap mode */ 530 | IEEE80211_C_MONITOR /* monitor mode */ 531 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 532 | IEEE80211_C_WDS /* 4-address traffic works */ 533 | IEEE80211_C_MBSS /* mesh point link mode */ 534 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 535 | IEEE80211_C_SHSLOT /* short slot time supported */ 536 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 537 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 538 | IEEE80211_C_TXFRAG /* handle tx frags */ 539 #ifdef ATH_ENABLE_DFS 540 | IEEE80211_C_DFS /* Enable radar detection */ 541 #endif 542 ; 543 /* 544 * Query the hal to figure out h/w crypto support. 545 */ 546 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 547 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 548 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 549 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 550 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 551 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 552 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 553 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 555 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 556 /* 557 * Check if h/w does the MIC and/or whether the 558 * separate key cache entries are required to 559 * handle both tx+rx MIC keys. 560 */ 561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 562 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 563 /* 564 * If the h/w supports storing tx+rx MIC keys 565 * in one cache slot automatically enable use. 566 */ 567 if (ath_hal_hastkipsplit(ah) || 568 !ath_hal_settkipsplit(ah, AH_FALSE)) 569 sc->sc_splitmic = 1; 570 /* 571 * If the h/w can do TKIP MIC together with WME then 572 * we use it; otherwise we force the MIC to be done 573 * in software by the net80211 layer. 574 */ 575 if (ath_hal_haswmetkipmic(ah)) 576 sc->sc_wmetkipmic = 1; 577 } 578 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 579 /* 580 * Check for multicast key search support. 581 */ 582 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 583 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 584 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 585 } 586 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 587 /* 588 * Mark key cache slots associated with global keys 589 * as in use. If we knew TKIP was not to be used we 590 * could leave the +32, +64, and +32+64 slots free. 591 */ 592 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 593 setbit(sc->sc_keymap, i); 594 setbit(sc->sc_keymap, i+64); 595 if (sc->sc_splitmic) { 596 setbit(sc->sc_keymap, i+32); 597 setbit(sc->sc_keymap, i+32+64); 598 } 599 } 600 /* 601 * TPC support can be done either with a global cap or 602 * per-packet support. The latter is not available on 603 * all parts. We're a bit pedantic here as all parts 604 * support a global cap. 605 */ 606 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 607 ic->ic_caps |= IEEE80211_C_TXPMGT; 608 609 /* 610 * Mark WME capability only if we have sufficient 611 * hardware queues to do proper priority scheduling. 612 */ 613 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 614 ic->ic_caps |= IEEE80211_C_WME; 615 /* 616 * Check for misc other capabilities. 617 */ 618 if (ath_hal_hasbursting(ah)) 619 ic->ic_caps |= IEEE80211_C_BURST; 620 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 621 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 622 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 623 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 624 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 625 if (ath_hal_hasfastframes(ah)) 626 ic->ic_caps |= IEEE80211_C_FF; 627 wmodes = ath_hal_getwirelessmodes(ah); 628 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 629 ic->ic_caps |= IEEE80211_C_TURBOP; 630 #ifdef IEEE80211_SUPPORT_TDMA 631 if (ath_hal_macversion(ah) > 0x78) { 632 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 633 ic->ic_tdma_update = ath_tdma_update; 634 } 635 #endif 636 637 /* 638 * Allow the TX and RX chainmasks to be overridden by 639 * environment variables and/or device.hints. 640 * 641 * This must be done early - before the hardware is 642 * calibrated or before the 802.11n stream calculation 643 * is done. 644 */ 645 if (resource_int_value(device_get_name(sc->sc_dev), 646 device_get_unit(sc->sc_dev), "rx_chainmask", 647 &rx_chainmask) == 0) { 648 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 649 rx_chainmask); 650 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 651 } 652 if (resource_int_value(device_get_name(sc->sc_dev), 653 device_get_unit(sc->sc_dev), "tx_chainmask", 654 &tx_chainmask) == 0) { 655 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 656 tx_chainmask); 657 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 658 } 659 660 /* 661 * The if_ath 11n support is completely not ready for normal use. 662 * Enabling this option will likely break everything and everything. 663 * Don't think of doing that unless you know what you're doing. 664 */ 665 666 #ifdef ATH_ENABLE_11N 667 /* 668 * Query HT capabilities 669 */ 670 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 671 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 672 int rxs, txs; 673 674 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 675 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 676 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 677 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 678 | IEEE80211_HTCAP_MAXAMSDU_3839 679 /* max A-MSDU length */ 680 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 681 ; 682 683 /* 684 * Enable short-GI for HT20 only if the hardware 685 * advertises support. 686 * Notably, anything earlier than the AR9287 doesn't. 687 */ 688 if ((ath_hal_getcapability(ah, 689 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 690 (wmodes & HAL_MODE_HT20)) { 691 device_printf(sc->sc_dev, 692 "[HT] enabling short-GI in 20MHz mode\n"); 693 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 694 } 695 696 if (wmodes & HAL_MODE_HT40) 697 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 698 | IEEE80211_HTCAP_SHORTGI40; 699 700 /* 701 * TX/RX streams need to be taken into account when 702 * negotiating which MCS rates it'll receive and 703 * what MCS rates are available for TX. 704 */ 705 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 706 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 707 708 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 709 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 710 711 ic->ic_txstream = txs; 712 ic->ic_rxstream = rxs; 713 714 device_printf(sc->sc_dev, 715 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 716 } 717 #endif 718 719 /* 720 * Check if the hardware requires PCI register serialisation. 721 * Some of the Owl based MACs require this. 722 */ 723 if (mp_ncpus > 1 && 724 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 725 0, NULL) == HAL_OK) { 726 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 727 device_printf(sc->sc_dev, 728 "Enabling register serialisation\n"); 729 } 730 731 /* 732 * Indicate we need the 802.11 header padded to a 733 * 32-bit boundary for 4-address and QoS frames. 734 */ 735 ic->ic_flags |= IEEE80211_F_DATAPAD; 736 737 /* 738 * Query the hal about antenna support. 739 */ 740 sc->sc_defant = ath_hal_getdefantenna(ah); 741 742 /* 743 * Not all chips have the VEOL support we want to 744 * use with IBSS beacons; check here for it. 745 */ 746 sc->sc_hasveol = ath_hal_hasveol(ah); 747 748 /* get mac address from hardware */ 749 ath_hal_getmac(ah, macaddr); 750 if (sc->sc_hasbmask) 751 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 752 753 /* NB: used to size node table key mapping array */ 754 ic->ic_max_keyix = sc->sc_keymax; 755 /* call MI attach routine. */ 756 ieee80211_ifattach(ic, macaddr); 757 ic->ic_setregdomain = ath_setregdomain; 758 ic->ic_getradiocaps = ath_getradiocaps; 759 sc->sc_opmode = HAL_M_STA; 760 761 /* override default methods */ 762 ic->ic_newassoc = ath_newassoc; 763 ic->ic_updateslot = ath_updateslot; 764 ic->ic_wme.wme_update = ath_wme_update; 765 ic->ic_vap_create = ath_vap_create; 766 ic->ic_vap_delete = ath_vap_delete; 767 ic->ic_raw_xmit = ath_raw_xmit; 768 ic->ic_update_mcast = ath_update_mcast; 769 ic->ic_update_promisc = ath_update_promisc; 770 ic->ic_node_alloc = ath_node_alloc; 771 sc->sc_node_free = ic->ic_node_free; 772 ic->ic_node_free = ath_node_free; 773 sc->sc_node_cleanup = ic->ic_node_cleanup; 774 ic->ic_node_cleanup = ath_node_cleanup; 775 ic->ic_node_getsignal = ath_node_getsignal; 776 ic->ic_scan_start = ath_scan_start; 777 ic->ic_scan_end = ath_scan_end; 778 ic->ic_set_channel = ath_set_channel; 779 780 /* 802.11n specific - but just override anyway */ 781 sc->sc_addba_request = ic->ic_addba_request; 782 sc->sc_addba_response = ic->ic_addba_response; 783 sc->sc_addba_stop = ic->ic_addba_stop; 784 sc->sc_bar_response = ic->ic_bar_response; 785 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 786 787 ic->ic_addba_request = ath_addba_request; 788 ic->ic_addba_response = ath_addba_response; 789 ic->ic_addba_response_timeout = ath_addba_response_timeout; 790 ic->ic_addba_stop = ath_addba_stop; 791 ic->ic_bar_response = ath_bar_response; 792 793 ieee80211_radiotap_attach(ic, 794 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 795 ATH_TX_RADIOTAP_PRESENT, 796 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 797 ATH_RX_RADIOTAP_PRESENT); 798 799 /* 800 * Setup dynamic sysctl's now that country code and 801 * regdomain are available from the hal. 802 */ 803 ath_sysctlattach(sc); 804 ath_sysctl_stats_attach(sc); 805 ath_sysctl_hal_attach(sc); 806 807 if (bootverbose) 808 ieee80211_announce(ic); 809 ath_announce(sc); 810 return 0; 811 bad2: 812 ath_tx_cleanup(sc); 813 ath_desc_free(sc); 814 bad: 815 if (ah) 816 ath_hal_detach(ah); 817 if (ifp != NULL) 818 if_free(ifp); 819 sc->sc_invalid = 1; 820 return error; 821 } 822 823 int 824 ath_detach(struct ath_softc *sc) 825 { 826 struct ifnet *ifp = sc->sc_ifp; 827 828 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 829 __func__, ifp->if_flags); 830 831 /* 832 * NB: the order of these is important: 833 * o stop the chip so no more interrupts will fire 834 * o call the 802.11 layer before detaching the hal to 835 * insure callbacks into the driver to delete global 836 * key cache entries can be handled 837 * o free the taskqueue which drains any pending tasks 838 * o reclaim the tx queue data structures after calling 839 * the 802.11 layer as we'll get called back to reclaim 840 * node state and potentially want to use them 841 * o to cleanup the tx queues the hal is called, so detach 842 * it last 843 * Other than that, it's straightforward... 844 */ 845 ath_stop(ifp); 846 ieee80211_ifdetach(ifp->if_l2com); 847 taskqueue_free(sc->sc_tq); 848 #ifdef ATH_TX99_DIAG 849 if (sc->sc_tx99 != NULL) 850 sc->sc_tx99->detach(sc->sc_tx99); 851 #endif 852 ath_rate_detach(sc->sc_rc); 853 854 ath_dfs_detach(sc); 855 ath_desc_free(sc); 856 ath_tx_cleanup(sc); 857 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 858 if_free(ifp); 859 860 return 0; 861 } 862 863 /* 864 * MAC address handling for multiple BSS on the same radio. 865 * The first vap uses the MAC address from the EEPROM. For 866 * subsequent vap's we set the U/L bit (bit 1) in the MAC 867 * address and use the next six bits as an index. 868 */ 869 static void 870 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 871 { 872 int i; 873 874 if (clone && sc->sc_hasbmask) { 875 /* NB: we only do this if h/w supports multiple bssid */ 876 for (i = 0; i < 8; i++) 877 if ((sc->sc_bssidmask & (1<<i)) == 0) 878 break; 879 if (i != 0) 880 mac[0] |= (i << 2)|0x2; 881 } else 882 i = 0; 883 sc->sc_bssidmask |= 1<<i; 884 sc->sc_hwbssidmask[0] &= ~mac[0]; 885 if (i == 0) 886 sc->sc_nbssid0++; 887 } 888 889 static void 890 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 891 { 892 int i = mac[0] >> 2; 893 uint8_t mask; 894 895 if (i != 0 || --sc->sc_nbssid0 == 0) { 896 sc->sc_bssidmask &= ~(1<<i); 897 /* recalculate bssid mask from remaining addresses */ 898 mask = 0xff; 899 for (i = 1; i < 8; i++) 900 if (sc->sc_bssidmask & (1<<i)) 901 mask &= ~((i<<2)|0x2); 902 sc->sc_hwbssidmask[0] |= mask; 903 } 904 } 905 906 /* 907 * Assign a beacon xmit slot. We try to space out 908 * assignments so when beacons are staggered the 909 * traffic coming out of the cab q has maximal time 910 * to go out before the next beacon is scheduled. 911 */ 912 static int 913 assign_bslot(struct ath_softc *sc) 914 { 915 u_int slot, free; 916 917 free = 0; 918 for (slot = 0; slot < ATH_BCBUF; slot++) 919 if (sc->sc_bslot[slot] == NULL) { 920 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 921 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 922 return slot; 923 free = slot; 924 /* NB: keep looking for a double slot */ 925 } 926 return free; 927 } 928 929 static struct ieee80211vap * 930 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 931 enum ieee80211_opmode opmode, int flags, 932 const uint8_t bssid[IEEE80211_ADDR_LEN], 933 const uint8_t mac0[IEEE80211_ADDR_LEN]) 934 { 935 struct ath_softc *sc = ic->ic_ifp->if_softc; 936 struct ath_vap *avp; 937 struct ieee80211vap *vap; 938 uint8_t mac[IEEE80211_ADDR_LEN]; 939 int needbeacon, error; 940 enum ieee80211_opmode ic_opmode; 941 942 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 943 M_80211_VAP, M_WAITOK | M_ZERO); 944 needbeacon = 0; 945 IEEE80211_ADDR_COPY(mac, mac0); 946 947 ATH_LOCK(sc); 948 ic_opmode = opmode; /* default to opmode of new vap */ 949 switch (opmode) { 950 case IEEE80211_M_STA: 951 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 952 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 953 goto bad; 954 } 955 if (sc->sc_nvaps) { 956 /* 957 * With multiple vaps we must fall back 958 * to s/w beacon miss handling. 959 */ 960 flags |= IEEE80211_CLONE_NOBEACONS; 961 } 962 if (flags & IEEE80211_CLONE_NOBEACONS) { 963 /* 964 * Station mode w/o beacons are implemented w/ AP mode. 965 */ 966 ic_opmode = IEEE80211_M_HOSTAP; 967 } 968 break; 969 case IEEE80211_M_IBSS: 970 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 971 device_printf(sc->sc_dev, 972 "only 1 ibss vap supported\n"); 973 goto bad; 974 } 975 needbeacon = 1; 976 break; 977 case IEEE80211_M_AHDEMO: 978 #ifdef IEEE80211_SUPPORT_TDMA 979 if (flags & IEEE80211_CLONE_TDMA) { 980 if (sc->sc_nvaps != 0) { 981 device_printf(sc->sc_dev, 982 "only 1 tdma vap supported\n"); 983 goto bad; 984 } 985 needbeacon = 1; 986 flags |= IEEE80211_CLONE_NOBEACONS; 987 } 988 /* fall thru... */ 989 #endif 990 case IEEE80211_M_MONITOR: 991 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 992 /* 993 * Adopt existing mode. Adding a monitor or ahdemo 994 * vap to an existing configuration is of dubious 995 * value but should be ok. 996 */ 997 /* XXX not right for monitor mode */ 998 ic_opmode = ic->ic_opmode; 999 } 1000 break; 1001 case IEEE80211_M_HOSTAP: 1002 case IEEE80211_M_MBSS: 1003 needbeacon = 1; 1004 break; 1005 case IEEE80211_M_WDS: 1006 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1007 device_printf(sc->sc_dev, 1008 "wds not supported in sta mode\n"); 1009 goto bad; 1010 } 1011 /* 1012 * Silently remove any request for a unique 1013 * bssid; WDS vap's always share the local 1014 * mac address. 1015 */ 1016 flags &= ~IEEE80211_CLONE_BSSID; 1017 if (sc->sc_nvaps == 0) 1018 ic_opmode = IEEE80211_M_HOSTAP; 1019 else 1020 ic_opmode = ic->ic_opmode; 1021 break; 1022 default: 1023 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1024 goto bad; 1025 } 1026 /* 1027 * Check that a beacon buffer is available; the code below assumes it. 1028 */ 1029 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1030 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1031 goto bad; 1032 } 1033 1034 /* STA, AHDEMO? */ 1035 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1036 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1037 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1038 } 1039 1040 vap = &avp->av_vap; 1041 /* XXX can't hold mutex across if_alloc */ 1042 ATH_UNLOCK(sc); 1043 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1044 bssid, mac); 1045 ATH_LOCK(sc); 1046 if (error != 0) { 1047 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1048 __func__, error); 1049 goto bad2; 1050 } 1051 1052 /* h/w crypto support */ 1053 vap->iv_key_alloc = ath_key_alloc; 1054 vap->iv_key_delete = ath_key_delete; 1055 vap->iv_key_set = ath_key_set; 1056 vap->iv_key_update_begin = ath_key_update_begin; 1057 vap->iv_key_update_end = ath_key_update_end; 1058 1059 /* override various methods */ 1060 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1061 vap->iv_recv_mgmt = ath_recv_mgmt; 1062 vap->iv_reset = ath_reset_vap; 1063 vap->iv_update_beacon = ath_beacon_update; 1064 avp->av_newstate = vap->iv_newstate; 1065 vap->iv_newstate = ath_newstate; 1066 avp->av_bmiss = vap->iv_bmiss; 1067 vap->iv_bmiss = ath_bmiss_vap; 1068 1069 /* Set default parameters */ 1070 1071 /* 1072 * Anything earlier than some AR9300 series MACs don't 1073 * support a smaller MPDU density. 1074 */ 1075 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1076 /* 1077 * All NICs can handle the maximum size, however 1078 * AR5416 based MACs can only TX aggregates w/ RTS 1079 * protection when the total aggregate size is <= 8k. 1080 * However, for now that's enforced by the TX path. 1081 */ 1082 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1083 1084 avp->av_bslot = -1; 1085 if (needbeacon) { 1086 /* 1087 * Allocate beacon state and setup the q for buffered 1088 * multicast frames. We know a beacon buffer is 1089 * available because we checked above. 1090 */ 1091 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1092 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1093 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1094 /* 1095 * Assign the vap to a beacon xmit slot. As above 1096 * this cannot fail to find a free one. 1097 */ 1098 avp->av_bslot = assign_bslot(sc); 1099 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1100 ("beacon slot %u not empty", avp->av_bslot)); 1101 sc->sc_bslot[avp->av_bslot] = vap; 1102 sc->sc_nbcnvaps++; 1103 } 1104 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1105 /* 1106 * Multple vaps are to transmit beacons and we 1107 * have h/w support for TSF adjusting; enable 1108 * use of staggered beacons. 1109 */ 1110 sc->sc_stagbeacons = 1; 1111 } 1112 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1113 } 1114 1115 ic->ic_opmode = ic_opmode; 1116 if (opmode != IEEE80211_M_WDS) { 1117 sc->sc_nvaps++; 1118 if (opmode == IEEE80211_M_STA) 1119 sc->sc_nstavaps++; 1120 if (opmode == IEEE80211_M_MBSS) 1121 sc->sc_nmeshvaps++; 1122 } 1123 switch (ic_opmode) { 1124 case IEEE80211_M_IBSS: 1125 sc->sc_opmode = HAL_M_IBSS; 1126 break; 1127 case IEEE80211_M_STA: 1128 sc->sc_opmode = HAL_M_STA; 1129 break; 1130 case IEEE80211_M_AHDEMO: 1131 #ifdef IEEE80211_SUPPORT_TDMA 1132 if (vap->iv_caps & IEEE80211_C_TDMA) { 1133 sc->sc_tdma = 1; 1134 /* NB: disable tsf adjust */ 1135 sc->sc_stagbeacons = 0; 1136 } 1137 /* 1138 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1139 * just ap mode. 1140 */ 1141 /* fall thru... */ 1142 #endif 1143 case IEEE80211_M_HOSTAP: 1144 case IEEE80211_M_MBSS: 1145 sc->sc_opmode = HAL_M_HOSTAP; 1146 break; 1147 case IEEE80211_M_MONITOR: 1148 sc->sc_opmode = HAL_M_MONITOR; 1149 break; 1150 default: 1151 /* XXX should not happen */ 1152 break; 1153 } 1154 if (sc->sc_hastsfadd) { 1155 /* 1156 * Configure whether or not TSF adjust should be done. 1157 */ 1158 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1159 } 1160 if (flags & IEEE80211_CLONE_NOBEACONS) { 1161 /* 1162 * Enable s/w beacon miss handling. 1163 */ 1164 sc->sc_swbmiss = 1; 1165 } 1166 ATH_UNLOCK(sc); 1167 1168 /* complete setup */ 1169 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1170 return vap; 1171 bad2: 1172 reclaim_address(sc, mac); 1173 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1174 bad: 1175 free(avp, M_80211_VAP); 1176 ATH_UNLOCK(sc); 1177 return NULL; 1178 } 1179 1180 static void 1181 ath_vap_delete(struct ieee80211vap *vap) 1182 { 1183 struct ieee80211com *ic = vap->iv_ic; 1184 struct ifnet *ifp = ic->ic_ifp; 1185 struct ath_softc *sc = ifp->if_softc; 1186 struct ath_hal *ah = sc->sc_ah; 1187 struct ath_vap *avp = ATH_VAP(vap); 1188 1189 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1190 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1191 /* 1192 * Quiesce the hardware while we remove the vap. In 1193 * particular we need to reclaim all references to 1194 * the vap state by any frames pending on the tx queues. 1195 */ 1196 ath_hal_intrset(ah, 0); /* disable interrupts */ 1197 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1198 /* XXX Do all frames from all vaps/nodes need draining here? */ 1199 ath_stoprecv(sc, 1); /* stop recv side */ 1200 } 1201 1202 ieee80211_vap_detach(vap); 1203 1204 /* 1205 * XXX Danger Will Robinson! Danger! 1206 * 1207 * Because ieee80211_vap_detach() can queue a frame (the station 1208 * diassociate message?) after we've drained the TXQ and 1209 * flushed the software TXQ, we will end up with a frame queued 1210 * to a node whose vap is about to be freed. 1211 * 1212 * To work around this, flush the hardware/software again. 1213 * This may be racy - the ath task may be running and the packet 1214 * may be being scheduled between sw->hw txq. Tsk. 1215 * 1216 * TODO: figure out why a new node gets allocated somewhere around 1217 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1218 * call!) 1219 */ 1220 1221 ath_draintxq(sc, ATH_RESET_DEFAULT); 1222 1223 ATH_LOCK(sc); 1224 /* 1225 * Reclaim beacon state. Note this must be done before 1226 * the vap instance is reclaimed as we may have a reference 1227 * to it in the buffer for the beacon frame. 1228 */ 1229 if (avp->av_bcbuf != NULL) { 1230 if (avp->av_bslot != -1) { 1231 sc->sc_bslot[avp->av_bslot] = NULL; 1232 sc->sc_nbcnvaps--; 1233 } 1234 ath_beacon_return(sc, avp->av_bcbuf); 1235 avp->av_bcbuf = NULL; 1236 if (sc->sc_nbcnvaps == 0) { 1237 sc->sc_stagbeacons = 0; 1238 if (sc->sc_hastsfadd) 1239 ath_hal_settsfadjust(sc->sc_ah, 0); 1240 } 1241 /* 1242 * Reclaim any pending mcast frames for the vap. 1243 */ 1244 ath_tx_draintxq(sc, &avp->av_mcastq); 1245 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1246 } 1247 /* 1248 * Update bookkeeping. 1249 */ 1250 if (vap->iv_opmode == IEEE80211_M_STA) { 1251 sc->sc_nstavaps--; 1252 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1253 sc->sc_swbmiss = 0; 1254 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1255 vap->iv_opmode == IEEE80211_M_MBSS) { 1256 reclaim_address(sc, vap->iv_myaddr); 1257 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1258 if (vap->iv_opmode == IEEE80211_M_MBSS) 1259 sc->sc_nmeshvaps--; 1260 } 1261 if (vap->iv_opmode != IEEE80211_M_WDS) 1262 sc->sc_nvaps--; 1263 #ifdef IEEE80211_SUPPORT_TDMA 1264 /* TDMA operation ceases when the last vap is destroyed */ 1265 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1266 sc->sc_tdma = 0; 1267 sc->sc_swbmiss = 0; 1268 } 1269 #endif 1270 free(avp, M_80211_VAP); 1271 1272 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1273 /* 1274 * Restart rx+tx machines if still running (RUNNING will 1275 * be reset if we just destroyed the last vap). 1276 */ 1277 if (ath_startrecv(sc) != 0) 1278 if_printf(ifp, "%s: unable to restart recv logic\n", 1279 __func__); 1280 if (sc->sc_beacons) { /* restart beacons */ 1281 #ifdef IEEE80211_SUPPORT_TDMA 1282 if (sc->sc_tdma) 1283 ath_tdma_config(sc, NULL); 1284 else 1285 #endif 1286 ath_beacon_config(sc, NULL); 1287 } 1288 ath_hal_intrset(ah, sc->sc_imask); 1289 } 1290 ATH_UNLOCK(sc); 1291 } 1292 1293 void 1294 ath_suspend(struct ath_softc *sc) 1295 { 1296 struct ifnet *ifp = sc->sc_ifp; 1297 struct ieee80211com *ic = ifp->if_l2com; 1298 1299 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1300 __func__, ifp->if_flags); 1301 1302 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1303 if (ic->ic_opmode == IEEE80211_M_STA) 1304 ath_stop(ifp); 1305 else 1306 ieee80211_suspend_all(ic); 1307 /* 1308 * NB: don't worry about putting the chip in low power 1309 * mode; pci will power off our socket on suspend and 1310 * CardBus detaches the device. 1311 */ 1312 } 1313 1314 /* 1315 * Reset the key cache since some parts do not reset the 1316 * contents on resume. First we clear all entries, then 1317 * re-load keys that the 802.11 layer assumes are setup 1318 * in h/w. 1319 */ 1320 static void 1321 ath_reset_keycache(struct ath_softc *sc) 1322 { 1323 struct ifnet *ifp = sc->sc_ifp; 1324 struct ieee80211com *ic = ifp->if_l2com; 1325 struct ath_hal *ah = sc->sc_ah; 1326 int i; 1327 1328 for (i = 0; i < sc->sc_keymax; i++) 1329 ath_hal_keyreset(ah, i); 1330 ieee80211_crypto_reload_keys(ic); 1331 } 1332 1333 void 1334 ath_resume(struct ath_softc *sc) 1335 { 1336 struct ifnet *ifp = sc->sc_ifp; 1337 struct ieee80211com *ic = ifp->if_l2com; 1338 struct ath_hal *ah = sc->sc_ah; 1339 HAL_STATUS status; 1340 1341 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1342 __func__, ifp->if_flags); 1343 1344 /* 1345 * Must reset the chip before we reload the 1346 * keycache as we were powered down on suspend. 1347 */ 1348 ath_hal_reset(ah, sc->sc_opmode, 1349 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1350 AH_FALSE, &status); 1351 ath_reset_keycache(sc); 1352 1353 /* Let DFS at it in case it's a DFS channel */ 1354 ath_dfs_radar_enable(sc, ic->ic_curchan); 1355 1356 /* Restore the LED configuration */ 1357 ath_led_config(sc); 1358 ath_hal_setledstate(ah, HAL_LED_INIT); 1359 1360 if (sc->sc_resume_up) { 1361 if (ic->ic_opmode == IEEE80211_M_STA) { 1362 ath_init(sc); 1363 ath_hal_setledstate(ah, HAL_LED_RUN); 1364 /* 1365 * Program the beacon registers using the last rx'd 1366 * beacon frame and enable sync on the next beacon 1367 * we see. This should handle the case where we 1368 * wakeup and find the same AP and also the case where 1369 * we wakeup and need to roam. For the latter we 1370 * should get bmiss events that trigger a roam. 1371 */ 1372 ath_beacon_config(sc, NULL); 1373 sc->sc_syncbeacon = 1; 1374 } else 1375 ieee80211_resume_all(ic); 1376 } 1377 1378 /* XXX beacons ? */ 1379 } 1380 1381 void 1382 ath_shutdown(struct ath_softc *sc) 1383 { 1384 struct ifnet *ifp = sc->sc_ifp; 1385 1386 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1387 __func__, ifp->if_flags); 1388 1389 ath_stop(ifp); 1390 /* NB: no point powering down chip as we're about to reboot */ 1391 } 1392 1393 /* 1394 * Interrupt handler. Most of the actual processing is deferred. 1395 */ 1396 void 1397 ath_intr(void *arg) 1398 { 1399 struct ath_softc *sc = arg; 1400 struct ifnet *ifp = sc->sc_ifp; 1401 struct ath_hal *ah = sc->sc_ah; 1402 HAL_INT status = 0; 1403 uint32_t txqs; 1404 1405 /* 1406 * If we're inside a reset path, just print a warning and 1407 * clear the ISR. The reset routine will finish it for us. 1408 */ 1409 ATH_PCU_LOCK(sc); 1410 if (sc->sc_inreset_cnt) { 1411 HAL_INT status; 1412 ath_hal_getisr(ah, &status); /* clear ISR */ 1413 ath_hal_intrset(ah, 0); /* disable further intr's */ 1414 DPRINTF(sc, ATH_DEBUG_ANY, 1415 "%s: in reset, ignoring: status=0x%x\n", 1416 __func__, status); 1417 ATH_PCU_UNLOCK(sc); 1418 return; 1419 } 1420 1421 if (sc->sc_invalid) { 1422 /* 1423 * The hardware is not ready/present, don't touch anything. 1424 * Note this can happen early on if the IRQ is shared. 1425 */ 1426 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1427 ATH_PCU_UNLOCK(sc); 1428 return; 1429 } 1430 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1431 ATH_PCU_UNLOCK(sc); 1432 return; 1433 } 1434 1435 if ((ifp->if_flags & IFF_UP) == 0 || 1436 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1437 HAL_INT status; 1438 1439 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1440 __func__, ifp->if_flags); 1441 ath_hal_getisr(ah, &status); /* clear ISR */ 1442 ath_hal_intrset(ah, 0); /* disable further intr's */ 1443 ATH_PCU_UNLOCK(sc); 1444 return; 1445 } 1446 1447 /* 1448 * Figure out the reason(s) for the interrupt. Note 1449 * that the hal returns a pseudo-ISR that may include 1450 * bits we haven't explicitly enabled so we mask the 1451 * value to insure we only process bits we requested. 1452 */ 1453 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1454 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1455 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1456 #ifdef ATH_KTR_INTR_DEBUG 1457 CTR5(ATH_KTR_INTR, 1458 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1459 ah->ah_intrstate[0], 1460 ah->ah_intrstate[1], 1461 ah->ah_intrstate[2], 1462 ah->ah_intrstate[3], 1463 ah->ah_intrstate[6]); 1464 #endif 1465 status &= sc->sc_imask; /* discard unasked for bits */ 1466 1467 /* Short-circuit un-handled interrupts */ 1468 if (status == 0x0) { 1469 ATH_PCU_UNLOCK(sc); 1470 return; 1471 } 1472 1473 /* 1474 * Take a note that we're inside the interrupt handler, so 1475 * the reset routines know to wait. 1476 */ 1477 sc->sc_intr_cnt++; 1478 ATH_PCU_UNLOCK(sc); 1479 1480 /* 1481 * Handle the interrupt. We won't run concurrent with the reset 1482 * or channel change routines as they'll wait for sc_intr_cnt 1483 * to be 0 before continuing. 1484 */ 1485 if (status & HAL_INT_FATAL) { 1486 sc->sc_stats.ast_hardware++; 1487 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1488 ath_fatal_proc(sc, 0); 1489 } else { 1490 if (status & HAL_INT_SWBA) { 1491 /* 1492 * Software beacon alert--time to send a beacon. 1493 * Handle beacon transmission directly; deferring 1494 * this is too slow to meet timing constraints 1495 * under load. 1496 */ 1497 #ifdef IEEE80211_SUPPORT_TDMA 1498 if (sc->sc_tdma) { 1499 if (sc->sc_tdmaswba == 0) { 1500 struct ieee80211com *ic = ifp->if_l2com; 1501 struct ieee80211vap *vap = 1502 TAILQ_FIRST(&ic->ic_vaps); 1503 ath_tdma_beacon_send(sc, vap); 1504 sc->sc_tdmaswba = 1505 vap->iv_tdma->tdma_bintval; 1506 } else 1507 sc->sc_tdmaswba--; 1508 } else 1509 #endif 1510 { 1511 ath_beacon_proc(sc, 0); 1512 #ifdef IEEE80211_SUPPORT_SUPERG 1513 /* 1514 * Schedule the rx taskq in case there's no 1515 * traffic so any frames held on the staging 1516 * queue are aged and potentially flushed. 1517 */ 1518 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1519 #endif 1520 } 1521 } 1522 if (status & HAL_INT_RXEOL) { 1523 int imask; 1524 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1525 ATH_PCU_LOCK(sc); 1526 /* 1527 * NB: the hardware should re-read the link when 1528 * RXE bit is written, but it doesn't work at 1529 * least on older hardware revs. 1530 */ 1531 sc->sc_stats.ast_rxeol++; 1532 /* 1533 * Disable RXEOL/RXORN - prevent an interrupt 1534 * storm until the PCU logic can be reset. 1535 * In case the interface is reset some other 1536 * way before "sc_kickpcu" is called, don't 1537 * modify sc_imask - that way if it is reset 1538 * by a call to ath_reset() somehow, the 1539 * interrupt mask will be correctly reprogrammed. 1540 */ 1541 imask = sc->sc_imask; 1542 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1543 ath_hal_intrset(ah, imask); 1544 /* 1545 * Only blank sc_rxlink if we've not yet kicked 1546 * the PCU. 1547 * 1548 * This isn't entirely correct - the correct solution 1549 * would be to have a PCU lock and engage that for 1550 * the duration of the PCU fiddling; which would include 1551 * running the RX process. Otherwise we could end up 1552 * messing up the RX descriptor chain and making the 1553 * RX desc list much shorter. 1554 */ 1555 if (! sc->sc_kickpcu) 1556 sc->sc_rxlink = NULL; 1557 sc->sc_kickpcu = 1; 1558 /* 1559 * Enqueue an RX proc, to handled whatever 1560 * is in the RX queue. 1561 * This will then kick the PCU. 1562 */ 1563 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1564 ATH_PCU_UNLOCK(sc); 1565 } 1566 if (status & HAL_INT_TXURN) { 1567 sc->sc_stats.ast_txurn++; 1568 /* bump tx trigger level */ 1569 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1570 } 1571 if (status & HAL_INT_RX) { 1572 sc->sc_stats.ast_rx_intr++; 1573 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1574 } 1575 if (status & HAL_INT_TX) { 1576 sc->sc_stats.ast_tx_intr++; 1577 /* 1578 * Grab all the currently set bits in the HAL txq bitmap 1579 * and blank them. This is the only place we should be 1580 * doing this. 1581 */ 1582 ATH_PCU_LOCK(sc); 1583 txqs = 0xffffffff; 1584 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1585 sc->sc_txq_active |= txqs; 1586 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1587 ATH_PCU_UNLOCK(sc); 1588 } 1589 if (status & HAL_INT_BMISS) { 1590 sc->sc_stats.ast_bmiss++; 1591 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1592 } 1593 if (status & HAL_INT_GTT) 1594 sc->sc_stats.ast_tx_timeout++; 1595 if (status & HAL_INT_CST) 1596 sc->sc_stats.ast_tx_cst++; 1597 if (status & HAL_INT_MIB) { 1598 sc->sc_stats.ast_mib++; 1599 ATH_PCU_LOCK(sc); 1600 /* 1601 * Disable interrupts until we service the MIB 1602 * interrupt; otherwise it will continue to fire. 1603 */ 1604 ath_hal_intrset(ah, 0); 1605 /* 1606 * Let the hal handle the event. We assume it will 1607 * clear whatever condition caused the interrupt. 1608 */ 1609 ath_hal_mibevent(ah, &sc->sc_halstats); 1610 /* 1611 * Don't reset the interrupt if we've just 1612 * kicked the PCU, or we may get a nested 1613 * RXEOL before the rxproc has had a chance 1614 * to run. 1615 */ 1616 if (sc->sc_kickpcu == 0) 1617 ath_hal_intrset(ah, sc->sc_imask); 1618 ATH_PCU_UNLOCK(sc); 1619 } 1620 if (status & HAL_INT_RXORN) { 1621 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1622 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1623 sc->sc_stats.ast_rxorn++; 1624 } 1625 } 1626 ATH_PCU_LOCK(sc); 1627 sc->sc_intr_cnt--; 1628 ATH_PCU_UNLOCK(sc); 1629 } 1630 1631 static void 1632 ath_fatal_proc(void *arg, int pending) 1633 { 1634 struct ath_softc *sc = arg; 1635 struct ifnet *ifp = sc->sc_ifp; 1636 u_int32_t *state; 1637 u_int32_t len; 1638 void *sp; 1639 1640 if_printf(ifp, "hardware error; resetting\n"); 1641 /* 1642 * Fatal errors are unrecoverable. Typically these 1643 * are caused by DMA errors. Collect h/w state from 1644 * the hal so we can diagnose what's going on. 1645 */ 1646 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1647 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1648 state = sp; 1649 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1650 state[0], state[1] , state[2], state[3], 1651 state[4], state[5]); 1652 } 1653 ath_reset(ifp, ATH_RESET_NOLOSS); 1654 } 1655 1656 static void 1657 ath_bmiss_vap(struct ieee80211vap *vap) 1658 { 1659 /* 1660 * Workaround phantom bmiss interrupts by sanity-checking 1661 * the time of our last rx'd frame. If it is within the 1662 * beacon miss interval then ignore the interrupt. If it's 1663 * truly a bmiss we'll get another interrupt soon and that'll 1664 * be dispatched up for processing. Note this applies only 1665 * for h/w beacon miss events. 1666 */ 1667 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1668 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1669 struct ath_softc *sc = ifp->if_softc; 1670 u_int64_t lastrx = sc->sc_lastrx; 1671 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1672 /* XXX should take a locked ref to iv_bss */ 1673 u_int bmisstimeout = 1674 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1675 1676 DPRINTF(sc, ATH_DEBUG_BEACON, 1677 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1678 __func__, (unsigned long long) tsf, 1679 (unsigned long long)(tsf - lastrx), 1680 (unsigned long long) lastrx, bmisstimeout); 1681 1682 if (tsf - lastrx <= bmisstimeout) { 1683 sc->sc_stats.ast_bmiss_phantom++; 1684 return; 1685 } 1686 } 1687 ATH_VAP(vap)->av_bmiss(vap); 1688 } 1689 1690 static int 1691 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1692 { 1693 uint32_t rsize; 1694 void *sp; 1695 1696 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1697 return 0; 1698 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1699 *hangs = *(uint32_t *)sp; 1700 return 1; 1701 } 1702 1703 static void 1704 ath_bmiss_proc(void *arg, int pending) 1705 { 1706 struct ath_softc *sc = arg; 1707 struct ifnet *ifp = sc->sc_ifp; 1708 uint32_t hangs; 1709 1710 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1711 1712 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1713 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1714 ath_reset(ifp, ATH_RESET_NOLOSS); 1715 } else 1716 ieee80211_beacon_miss(ifp->if_l2com); 1717 } 1718 1719 /* 1720 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1721 * calcs together with WME. If necessary disable the crypto 1722 * hardware and mark the 802.11 state so keys will be setup 1723 * with the MIC work done in software. 1724 */ 1725 static void 1726 ath_settkipmic(struct ath_softc *sc) 1727 { 1728 struct ifnet *ifp = sc->sc_ifp; 1729 struct ieee80211com *ic = ifp->if_l2com; 1730 1731 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1732 if (ic->ic_flags & IEEE80211_F_WME) { 1733 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1734 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1735 } else { 1736 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1737 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1738 } 1739 } 1740 } 1741 1742 static void 1743 ath_init(void *arg) 1744 { 1745 struct ath_softc *sc = (struct ath_softc *) arg; 1746 struct ifnet *ifp = sc->sc_ifp; 1747 struct ieee80211com *ic = ifp->if_l2com; 1748 struct ath_hal *ah = sc->sc_ah; 1749 HAL_STATUS status; 1750 1751 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1752 __func__, ifp->if_flags); 1753 1754 ATH_LOCK(sc); 1755 /* 1756 * Stop anything previously setup. This is safe 1757 * whether this is the first time through or not. 1758 */ 1759 ath_stop_locked(ifp); 1760 1761 /* 1762 * The basic interface to setting the hardware in a good 1763 * state is ``reset''. On return the hardware is known to 1764 * be powered up and with interrupts disabled. This must 1765 * be followed by initialization of the appropriate bits 1766 * and then setup of the interrupt mask. 1767 */ 1768 ath_settkipmic(sc); 1769 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1770 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1771 status); 1772 ATH_UNLOCK(sc); 1773 return; 1774 } 1775 ath_chan_change(sc, ic->ic_curchan); 1776 1777 /* Let DFS at it in case it's a DFS channel */ 1778 ath_dfs_radar_enable(sc, ic->ic_curchan); 1779 1780 /* 1781 * Likewise this is set during reset so update 1782 * state cached in the driver. 1783 */ 1784 sc->sc_diversity = ath_hal_getdiversity(ah); 1785 sc->sc_lastlongcal = 0; 1786 sc->sc_resetcal = 1; 1787 sc->sc_lastcalreset = 0; 1788 sc->sc_lastani = 0; 1789 sc->sc_lastshortcal = 0; 1790 sc->sc_doresetcal = AH_FALSE; 1791 /* 1792 * Beacon timers were cleared here; give ath_newstate() 1793 * a hint that the beacon timers should be poked when 1794 * things transition to the RUN state. 1795 */ 1796 sc->sc_beacons = 0; 1797 1798 /* 1799 * Initial aggregation settings. 1800 */ 1801 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1802 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1803 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1804 1805 /* 1806 * Setup the hardware after reset: the key cache 1807 * is filled as needed and the receive engine is 1808 * set going. Frame transmit is handled entirely 1809 * in the frame output path; there's nothing to do 1810 * here except setup the interrupt mask. 1811 */ 1812 if (ath_startrecv(sc) != 0) { 1813 if_printf(ifp, "unable to start recv logic\n"); 1814 ATH_UNLOCK(sc); 1815 return; 1816 } 1817 1818 /* 1819 * Enable interrupts. 1820 */ 1821 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1822 | HAL_INT_RXEOL | HAL_INT_RXORN 1823 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1824 /* 1825 * Enable MIB interrupts when there are hardware phy counters. 1826 * Note we only do this (at the moment) for station mode. 1827 */ 1828 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1829 sc->sc_imask |= HAL_INT_MIB; 1830 1831 /* Enable global TX timeout and carrier sense timeout if available */ 1832 if (ath_hal_gtxto_supported(ah)) 1833 sc->sc_imask |= HAL_INT_GTT; 1834 1835 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1836 __func__, sc->sc_imask); 1837 1838 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1839 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1840 ath_hal_intrset(ah, sc->sc_imask); 1841 1842 ATH_UNLOCK(sc); 1843 1844 #ifdef ATH_TX99_DIAG 1845 if (sc->sc_tx99 != NULL) 1846 sc->sc_tx99->start(sc->sc_tx99); 1847 else 1848 #endif 1849 ieee80211_start_all(ic); /* start all vap's */ 1850 } 1851 1852 static void 1853 ath_stop_locked(struct ifnet *ifp) 1854 { 1855 struct ath_softc *sc = ifp->if_softc; 1856 struct ath_hal *ah = sc->sc_ah; 1857 1858 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1859 __func__, sc->sc_invalid, ifp->if_flags); 1860 1861 ATH_LOCK_ASSERT(sc); 1862 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1863 /* 1864 * Shutdown the hardware and driver: 1865 * reset 802.11 state machine 1866 * turn off timers 1867 * disable interrupts 1868 * turn off the radio 1869 * clear transmit machinery 1870 * clear receive machinery 1871 * drain and release tx queues 1872 * reclaim beacon resources 1873 * power down hardware 1874 * 1875 * Note that some of this work is not possible if the 1876 * hardware is gone (invalid). 1877 */ 1878 #ifdef ATH_TX99_DIAG 1879 if (sc->sc_tx99 != NULL) 1880 sc->sc_tx99->stop(sc->sc_tx99); 1881 #endif 1882 callout_stop(&sc->sc_wd_ch); 1883 sc->sc_wd_timer = 0; 1884 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1885 if (!sc->sc_invalid) { 1886 if (sc->sc_softled) { 1887 callout_stop(&sc->sc_ledtimer); 1888 ath_hal_gpioset(ah, sc->sc_ledpin, 1889 !sc->sc_ledon); 1890 sc->sc_blinking = 0; 1891 } 1892 ath_hal_intrset(ah, 0); 1893 } 1894 ath_draintxq(sc, ATH_RESET_DEFAULT); 1895 if (!sc->sc_invalid) { 1896 ath_stoprecv(sc, 1); 1897 ath_hal_phydisable(ah); 1898 } else 1899 sc->sc_rxlink = NULL; 1900 ath_beacon_free(sc); /* XXX not needed */ 1901 } 1902 } 1903 1904 #define MAX_TXRX_ITERATIONS 1000 1905 static void 1906 ath_txrx_stop_locked(struct ath_softc *sc) 1907 { 1908 int i = MAX_TXRX_ITERATIONS; 1909 1910 ATH_UNLOCK_ASSERT(sc); 1911 ATH_PCU_LOCK_ASSERT(sc); 1912 1913 /* Stop any new TX/RX from occuring */ 1914 taskqueue_block(sc->sc_tq); 1915 1916 /* 1917 * Sleep until all the pending operations have completed. 1918 * 1919 * The caller must ensure that reset has been incremented 1920 * or the pending operations may continue being queued. 1921 */ 1922 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1923 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1924 if (i <= 0) 1925 break; 1926 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1927 i--; 1928 } 1929 1930 if (i <= 0) 1931 device_printf(sc->sc_dev, 1932 "%s: didn't finish after %d iterations\n", 1933 __func__, MAX_TXRX_ITERATIONS); 1934 } 1935 #undef MAX_TXRX_ITERATIONS 1936 1937 #if 0 1938 static void 1939 ath_txrx_stop(struct ath_softc *sc) 1940 { 1941 ATH_UNLOCK_ASSERT(sc); 1942 ATH_PCU_UNLOCK_ASSERT(sc); 1943 1944 ATH_PCU_LOCK(sc); 1945 ath_txrx_stop_locked(sc); 1946 ATH_PCU_UNLOCK(sc); 1947 } 1948 #endif 1949 1950 static void 1951 ath_txrx_start(struct ath_softc *sc) 1952 { 1953 1954 taskqueue_unblock(sc->sc_tq); 1955 } 1956 1957 /* 1958 * Grab the reset lock, and wait around until noone else 1959 * is trying to do anything with it. 1960 * 1961 * This is totally horrible but we can't hold this lock for 1962 * long enough to do TX/RX or we end up with net80211/ip stack 1963 * LORs and eventual deadlock. 1964 * 1965 * "dowait" signals whether to spin, waiting for the reset 1966 * lock count to reach 0. This should (for now) only be used 1967 * during the reset path, as the rest of the code may not 1968 * be locking-reentrant enough to behave correctly. 1969 * 1970 * Another, cleaner way should be found to serialise all of 1971 * these operations. 1972 */ 1973 #define MAX_RESET_ITERATIONS 10 1974 static int 1975 ath_reset_grablock(struct ath_softc *sc, int dowait) 1976 { 1977 int w = 0; 1978 int i = MAX_RESET_ITERATIONS; 1979 1980 ATH_PCU_LOCK_ASSERT(sc); 1981 do { 1982 if (sc->sc_inreset_cnt == 0) { 1983 w = 1; 1984 break; 1985 } 1986 if (dowait == 0) { 1987 w = 0; 1988 break; 1989 } 1990 ATH_PCU_UNLOCK(sc); 1991 pause("ath_reset_grablock", 1); 1992 i--; 1993 ATH_PCU_LOCK(sc); 1994 } while (i > 0); 1995 1996 /* 1997 * We always increment the refcounter, regardless 1998 * of whether we succeeded to get it in an exclusive 1999 * way. 2000 */ 2001 sc->sc_inreset_cnt++; 2002 2003 if (i <= 0) 2004 device_printf(sc->sc_dev, 2005 "%s: didn't finish after %d iterations\n", 2006 __func__, MAX_RESET_ITERATIONS); 2007 2008 if (w == 0) 2009 device_printf(sc->sc_dev, 2010 "%s: warning, recursive reset path!\n", 2011 __func__); 2012 2013 return w; 2014 } 2015 #undef MAX_RESET_ITERATIONS 2016 2017 /* 2018 * XXX TODO: write ath_reset_releaselock 2019 */ 2020 2021 static void 2022 ath_stop(struct ifnet *ifp) 2023 { 2024 struct ath_softc *sc = ifp->if_softc; 2025 2026 ATH_LOCK(sc); 2027 ath_stop_locked(ifp); 2028 ATH_UNLOCK(sc); 2029 } 2030 2031 /* 2032 * Reset the hardware w/o losing operational state. This is 2033 * basically a more efficient way of doing ath_stop, ath_init, 2034 * followed by state transitions to the current 802.11 2035 * operational state. Used to recover from various errors and 2036 * to reset or reload hardware state. 2037 */ 2038 int 2039 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2040 { 2041 struct ath_softc *sc = ifp->if_softc; 2042 struct ieee80211com *ic = ifp->if_l2com; 2043 struct ath_hal *ah = sc->sc_ah; 2044 HAL_STATUS status; 2045 int i; 2046 2047 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2048 2049 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2050 ATH_PCU_UNLOCK_ASSERT(sc); 2051 ATH_UNLOCK_ASSERT(sc); 2052 2053 ATH_PCU_LOCK(sc); 2054 ath_hal_intrset(ah, 0); /* disable interrupts */ 2055 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2056 if (ath_reset_grablock(sc, 1) == 0) { 2057 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2058 __func__); 2059 } 2060 ATH_PCU_UNLOCK(sc); 2061 2062 /* 2063 * Should now wait for pending TX/RX to complete 2064 * and block future ones from occuring. This needs to be 2065 * done before the TX queue is drained. 2066 */ 2067 ath_draintxq(sc, reset_type); /* stop xmit side */ 2068 2069 /* 2070 * Regardless of whether we're doing a no-loss flush or 2071 * not, stop the PCU and handle what's in the RX queue. 2072 * That way frames aren't dropped which shouldn't be. 2073 */ 2074 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2075 ath_rx_proc(sc, 0); 2076 2077 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2078 /* NB: indicate channel change so we do a full reset */ 2079 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2080 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2081 __func__, status); 2082 sc->sc_diversity = ath_hal_getdiversity(ah); 2083 2084 /* Let DFS at it in case it's a DFS channel */ 2085 ath_dfs_radar_enable(sc, ic->ic_curchan); 2086 2087 if (ath_startrecv(sc) != 0) /* restart recv */ 2088 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2089 /* 2090 * We may be doing a reset in response to an ioctl 2091 * that changes the channel so update any state that 2092 * might change as a result. 2093 */ 2094 ath_chan_change(sc, ic->ic_curchan); 2095 if (sc->sc_beacons) { /* restart beacons */ 2096 #ifdef IEEE80211_SUPPORT_TDMA 2097 if (sc->sc_tdma) 2098 ath_tdma_config(sc, NULL); 2099 else 2100 #endif 2101 ath_beacon_config(sc, NULL); 2102 } 2103 2104 /* 2105 * Release the reset lock and re-enable interrupts here. 2106 * If an interrupt was being processed in ath_intr(), 2107 * it would disable interrupts at this point. So we have 2108 * to atomically enable interrupts and decrement the 2109 * reset counter - this way ath_intr() doesn't end up 2110 * disabling interrupts without a corresponding enable 2111 * in the rest or channel change path. 2112 */ 2113 ATH_PCU_LOCK(sc); 2114 sc->sc_inreset_cnt--; 2115 /* XXX only do this if sc_inreset_cnt == 0? */ 2116 ath_hal_intrset(ah, sc->sc_imask); 2117 ATH_PCU_UNLOCK(sc); 2118 2119 /* 2120 * TX and RX can be started here. If it were started with 2121 * sc_inreset_cnt > 0, the TX and RX path would abort. 2122 * Thus if this is a nested call through the reset or 2123 * channel change code, TX completion will occur but 2124 * RX completion and ath_start / ath_tx_start will not 2125 * run. 2126 */ 2127 2128 /* Restart TX/RX as needed */ 2129 ath_txrx_start(sc); 2130 2131 /* XXX Restart TX completion and pending TX */ 2132 if (reset_type == ATH_RESET_NOLOSS) { 2133 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2134 if (ATH_TXQ_SETUP(sc, i)) { 2135 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2136 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2137 ath_txq_sched(sc, &sc->sc_txq[i]); 2138 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2139 } 2140 } 2141 } 2142 2143 /* 2144 * This may have been set during an ath_start() call which 2145 * set this once it detected a concurrent TX was going on. 2146 * So, clear it. 2147 */ 2148 /* XXX do this inside of IF_LOCK? */ 2149 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2150 2151 /* Handle any frames in the TX queue */ 2152 /* 2153 * XXX should this be done by the caller, rather than 2154 * ath_reset() ? 2155 */ 2156 ath_start(ifp); /* restart xmit */ 2157 return 0; 2158 } 2159 2160 static int 2161 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2162 { 2163 struct ieee80211com *ic = vap->iv_ic; 2164 struct ifnet *ifp = ic->ic_ifp; 2165 struct ath_softc *sc = ifp->if_softc; 2166 struct ath_hal *ah = sc->sc_ah; 2167 2168 switch (cmd) { 2169 case IEEE80211_IOC_TXPOWER: 2170 /* 2171 * If per-packet TPC is enabled, then we have nothing 2172 * to do; otherwise we need to force the global limit. 2173 * All this can happen directly; no need to reset. 2174 */ 2175 if (!ath_hal_gettpc(ah)) 2176 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2177 return 0; 2178 } 2179 /* XXX? Full or NOLOSS? */ 2180 return ath_reset(ifp, ATH_RESET_FULL); 2181 } 2182 2183 struct ath_buf * 2184 _ath_getbuf_locked(struct ath_softc *sc) 2185 { 2186 struct ath_buf *bf; 2187 2188 ATH_TXBUF_LOCK_ASSERT(sc); 2189 2190 bf = TAILQ_FIRST(&sc->sc_txbuf); 2191 if (bf == NULL) { 2192 sc->sc_stats.ast_tx_getnobuf++; 2193 } else { 2194 if (bf->bf_flags & ATH_BUF_BUSY) { 2195 sc->sc_stats.ast_tx_getbusybuf++; 2196 bf = NULL; 2197 } 2198 } 2199 2200 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2201 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2202 else 2203 bf = NULL; 2204 2205 if (bf == NULL) { 2206 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2207 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2208 "out of xmit buffers" : "xmit buffer busy"); 2209 return NULL; 2210 } 2211 2212 /* Valid bf here; clear some basic fields */ 2213 bf->bf_next = NULL; /* XXX just to be sure */ 2214 bf->bf_last = NULL; /* XXX again, just to be sure */ 2215 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2216 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2217 2218 return bf; 2219 } 2220 2221 /* 2222 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2223 * can't be thrown back on the queue as they could still be 2224 * in use by the hardware. 2225 * 2226 * This duplicates the buffer, or returns NULL. 2227 * 2228 * The descriptor is also copied but the link pointers and 2229 * the DMA segments aren't copied; this frame should thus 2230 * be again passed through the descriptor setup/chain routines 2231 * so the link is correct. 2232 * 2233 * The caller must free the buffer using ath_freebuf(). 2234 * 2235 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2236 * XXX in the TX pathway when retries are needed. 2237 * XXX Figure out how to keep some buffers free, or factor the 2238 * XXX number of busy buffers into the xmit path (ath_start()) 2239 * XXX so we don't over-commit. 2240 */ 2241 struct ath_buf * 2242 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2243 { 2244 struct ath_buf *tbf; 2245 2246 tbf = ath_getbuf(sc); 2247 if (tbf == NULL) 2248 return NULL; /* XXX failure? Why? */ 2249 2250 /* Copy basics */ 2251 tbf->bf_next = NULL; 2252 tbf->bf_nseg = bf->bf_nseg; 2253 tbf->bf_txflags = bf->bf_txflags; 2254 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2255 tbf->bf_status = bf->bf_status; 2256 tbf->bf_m = bf->bf_m; 2257 tbf->bf_node = bf->bf_node; 2258 /* will be setup by the chain/setup function */ 2259 tbf->bf_lastds = NULL; 2260 /* for now, last == self */ 2261 tbf->bf_last = tbf; 2262 tbf->bf_comp = bf->bf_comp; 2263 2264 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2265 2266 /* The caller has to re-init the descriptor + links */ 2267 2268 /* Copy state */ 2269 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2270 2271 return tbf; 2272 } 2273 2274 struct ath_buf * 2275 ath_getbuf(struct ath_softc *sc) 2276 { 2277 struct ath_buf *bf; 2278 2279 ATH_TXBUF_LOCK(sc); 2280 bf = _ath_getbuf_locked(sc); 2281 if (bf == NULL) { 2282 struct ifnet *ifp = sc->sc_ifp; 2283 2284 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2285 sc->sc_stats.ast_tx_qstop++; 2286 /* XXX do this inside of IF_LOCK? */ 2287 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2288 } 2289 ATH_TXBUF_UNLOCK(sc); 2290 return bf; 2291 } 2292 2293 static void 2294 ath_start(struct ifnet *ifp) 2295 { 2296 struct ath_softc *sc = ifp->if_softc; 2297 struct ieee80211_node *ni; 2298 struct ath_buf *bf; 2299 struct mbuf *m, *next; 2300 ath_bufhead frags; 2301 2302 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2303 return; 2304 2305 /* XXX is it ok to hold the ATH_LOCK here? */ 2306 ATH_PCU_LOCK(sc); 2307 if (sc->sc_inreset_cnt > 0) { 2308 device_printf(sc->sc_dev, 2309 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2310 /* XXX do this inside of IF_LOCK? */ 2311 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2312 ATH_PCU_UNLOCK(sc); 2313 return; 2314 } 2315 sc->sc_txstart_cnt++; 2316 ATH_PCU_UNLOCK(sc); 2317 2318 for (;;) { 2319 /* 2320 * Grab a TX buffer and associated resources. 2321 */ 2322 bf = ath_getbuf(sc); 2323 if (bf == NULL) 2324 break; 2325 2326 IFQ_DEQUEUE(&ifp->if_snd, m); 2327 if (m == NULL) { 2328 ATH_TXBUF_LOCK(sc); 2329 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2330 ATH_TXBUF_UNLOCK(sc); 2331 break; 2332 } 2333 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2334 /* 2335 * Check for fragmentation. If this frame 2336 * has been broken up verify we have enough 2337 * buffers to send all the fragments so all 2338 * go out or none... 2339 */ 2340 TAILQ_INIT(&frags); 2341 if ((m->m_flags & M_FRAG) && 2342 !ath_txfrag_setup(sc, &frags, m, ni)) { 2343 DPRINTF(sc, ATH_DEBUG_XMIT, 2344 "%s: out of txfrag buffers\n", __func__); 2345 sc->sc_stats.ast_tx_nofrag++; 2346 ifp->if_oerrors++; 2347 ath_freetx(m); 2348 goto bad; 2349 } 2350 ifp->if_opackets++; 2351 nextfrag: 2352 /* 2353 * Pass the frame to the h/w for transmission. 2354 * Fragmented frames have each frag chained together 2355 * with m_nextpkt. We know there are sufficient ath_buf's 2356 * to send all the frags because of work done by 2357 * ath_txfrag_setup. We leave m_nextpkt set while 2358 * calling ath_tx_start so it can use it to extend the 2359 * the tx duration to cover the subsequent frag and 2360 * so it can reclaim all the mbufs in case of an error; 2361 * ath_tx_start clears m_nextpkt once it commits to 2362 * handing the frame to the hardware. 2363 */ 2364 next = m->m_nextpkt; 2365 if (ath_tx_start(sc, ni, bf, m)) { 2366 bad: 2367 ifp->if_oerrors++; 2368 reclaim: 2369 bf->bf_m = NULL; 2370 bf->bf_node = NULL; 2371 ATH_TXBUF_LOCK(sc); 2372 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2373 ath_txfrag_cleanup(sc, &frags, ni); 2374 ATH_TXBUF_UNLOCK(sc); 2375 if (ni != NULL) 2376 ieee80211_free_node(ni); 2377 continue; 2378 } 2379 if (next != NULL) { 2380 /* 2381 * Beware of state changing between frags. 2382 * XXX check sta power-save state? 2383 */ 2384 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2385 DPRINTF(sc, ATH_DEBUG_XMIT, 2386 "%s: flush fragmented packet, state %s\n", 2387 __func__, 2388 ieee80211_state_name[ni->ni_vap->iv_state]); 2389 ath_freetx(next); 2390 goto reclaim; 2391 } 2392 m = next; 2393 bf = TAILQ_FIRST(&frags); 2394 KASSERT(bf != NULL, ("no buf for txfrag")); 2395 TAILQ_REMOVE(&frags, bf, bf_list); 2396 goto nextfrag; 2397 } 2398 2399 sc->sc_wd_timer = 5; 2400 } 2401 2402 ATH_PCU_LOCK(sc); 2403 sc->sc_txstart_cnt--; 2404 ATH_PCU_UNLOCK(sc); 2405 } 2406 2407 static int 2408 ath_media_change(struct ifnet *ifp) 2409 { 2410 int error = ieee80211_media_change(ifp); 2411 /* NB: only the fixed rate can change and that doesn't need a reset */ 2412 return (error == ENETRESET ? 0 : error); 2413 } 2414 2415 /* 2416 * Block/unblock tx+rx processing while a key change is done. 2417 * We assume the caller serializes key management operations 2418 * so we only need to worry about synchronization with other 2419 * uses that originate in the driver. 2420 */ 2421 static void 2422 ath_key_update_begin(struct ieee80211vap *vap) 2423 { 2424 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2425 struct ath_softc *sc = ifp->if_softc; 2426 2427 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2428 taskqueue_block(sc->sc_tq); 2429 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2430 } 2431 2432 static void 2433 ath_key_update_end(struct ieee80211vap *vap) 2434 { 2435 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2436 struct ath_softc *sc = ifp->if_softc; 2437 2438 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2439 IF_UNLOCK(&ifp->if_snd); 2440 taskqueue_unblock(sc->sc_tq); 2441 } 2442 2443 /* 2444 * Calculate the receive filter according to the 2445 * operating mode and state: 2446 * 2447 * o always accept unicast, broadcast, and multicast traffic 2448 * o accept PHY error frames when hardware doesn't have MIB support 2449 * to count and we need them for ANI (sta mode only until recently) 2450 * and we are not scanning (ANI is disabled) 2451 * NB: older hal's add rx filter bits out of sight and we need to 2452 * blindly preserve them 2453 * o probe request frames are accepted only when operating in 2454 * hostap, adhoc, mesh, or monitor modes 2455 * o enable promiscuous mode 2456 * - when in monitor mode 2457 * - if interface marked PROMISC (assumes bridge setting is filtered) 2458 * o accept beacons: 2459 * - when operating in station mode for collecting rssi data when 2460 * the station is otherwise quiet, or 2461 * - when operating in adhoc mode so the 802.11 layer creates 2462 * node table entries for peers, 2463 * - when scanning 2464 * - when doing s/w beacon miss (e.g. for ap+sta) 2465 * - when operating in ap mode in 11g to detect overlapping bss that 2466 * require protection 2467 * - when operating in mesh mode to detect neighbors 2468 * o accept control frames: 2469 * - when in monitor mode 2470 * XXX HT protection for 11n 2471 */ 2472 static u_int32_t 2473 ath_calcrxfilter(struct ath_softc *sc) 2474 { 2475 struct ifnet *ifp = sc->sc_ifp; 2476 struct ieee80211com *ic = ifp->if_l2com; 2477 u_int32_t rfilt; 2478 2479 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2480 if (!sc->sc_needmib && !sc->sc_scanning) 2481 rfilt |= HAL_RX_FILTER_PHYERR; 2482 if (ic->ic_opmode != IEEE80211_M_STA) 2483 rfilt |= HAL_RX_FILTER_PROBEREQ; 2484 /* XXX ic->ic_monvaps != 0? */ 2485 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2486 rfilt |= HAL_RX_FILTER_PROM; 2487 if (ic->ic_opmode == IEEE80211_M_STA || 2488 ic->ic_opmode == IEEE80211_M_IBSS || 2489 sc->sc_swbmiss || sc->sc_scanning) 2490 rfilt |= HAL_RX_FILTER_BEACON; 2491 /* 2492 * NB: We don't recalculate the rx filter when 2493 * ic_protmode changes; otherwise we could do 2494 * this only when ic_protmode != NONE. 2495 */ 2496 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2497 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2498 rfilt |= HAL_RX_FILTER_BEACON; 2499 2500 /* 2501 * Enable hardware PS-POLL RX only for hostap mode; 2502 * STA mode sends PS-POLL frames but never 2503 * receives them. 2504 */ 2505 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2506 0, NULL) == HAL_OK && 2507 ic->ic_opmode == IEEE80211_M_HOSTAP) 2508 rfilt |= HAL_RX_FILTER_PSPOLL; 2509 2510 if (sc->sc_nmeshvaps) { 2511 rfilt |= HAL_RX_FILTER_BEACON; 2512 if (sc->sc_hasbmatch) 2513 rfilt |= HAL_RX_FILTER_BSSID; 2514 else 2515 rfilt |= HAL_RX_FILTER_PROM; 2516 } 2517 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2518 rfilt |= HAL_RX_FILTER_CONTROL; 2519 2520 /* 2521 * Enable RX of compressed BAR frames only when doing 2522 * 802.11n. Required for A-MPDU. 2523 */ 2524 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2525 rfilt |= HAL_RX_FILTER_COMPBAR; 2526 2527 /* 2528 * Enable radar PHY errors if requested by the 2529 * DFS module. 2530 */ 2531 if (sc->sc_dodfs) 2532 rfilt |= HAL_RX_FILTER_PHYRADAR; 2533 2534 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2535 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2536 return rfilt; 2537 } 2538 2539 static void 2540 ath_update_promisc(struct ifnet *ifp) 2541 { 2542 struct ath_softc *sc = ifp->if_softc; 2543 u_int32_t rfilt; 2544 2545 /* configure rx filter */ 2546 rfilt = ath_calcrxfilter(sc); 2547 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2548 2549 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2550 } 2551 2552 static void 2553 ath_update_mcast(struct ifnet *ifp) 2554 { 2555 struct ath_softc *sc = ifp->if_softc; 2556 u_int32_t mfilt[2]; 2557 2558 /* calculate and install multicast filter */ 2559 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2560 struct ifmultiaddr *ifma; 2561 /* 2562 * Merge multicast addresses to form the hardware filter. 2563 */ 2564 mfilt[0] = mfilt[1] = 0; 2565 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2566 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2567 caddr_t dl; 2568 u_int32_t val; 2569 u_int8_t pos; 2570 2571 /* calculate XOR of eight 6bit values */ 2572 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2573 val = LE_READ_4(dl + 0); 2574 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2575 val = LE_READ_4(dl + 3); 2576 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2577 pos &= 0x3f; 2578 mfilt[pos / 32] |= (1 << (pos % 32)); 2579 } 2580 if_maddr_runlock(ifp); 2581 } else 2582 mfilt[0] = mfilt[1] = ~0; 2583 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2584 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2585 __func__, mfilt[0], mfilt[1]); 2586 } 2587 2588 static void 2589 ath_mode_init(struct ath_softc *sc) 2590 { 2591 struct ifnet *ifp = sc->sc_ifp; 2592 struct ath_hal *ah = sc->sc_ah; 2593 u_int32_t rfilt; 2594 2595 /* configure rx filter */ 2596 rfilt = ath_calcrxfilter(sc); 2597 ath_hal_setrxfilter(ah, rfilt); 2598 2599 /* configure operational mode */ 2600 ath_hal_setopmode(ah); 2601 2602 /* handle any link-level address change */ 2603 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2604 2605 /* calculate and install multicast filter */ 2606 ath_update_mcast(ifp); 2607 } 2608 2609 /* 2610 * Set the slot time based on the current setting. 2611 */ 2612 static void 2613 ath_setslottime(struct ath_softc *sc) 2614 { 2615 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2616 struct ath_hal *ah = sc->sc_ah; 2617 u_int usec; 2618 2619 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2620 usec = 13; 2621 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2622 usec = 21; 2623 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2624 /* honor short/long slot time only in 11g */ 2625 /* XXX shouldn't honor on pure g or turbo g channel */ 2626 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2627 usec = HAL_SLOT_TIME_9; 2628 else 2629 usec = HAL_SLOT_TIME_20; 2630 } else 2631 usec = HAL_SLOT_TIME_9; 2632 2633 DPRINTF(sc, ATH_DEBUG_RESET, 2634 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2635 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2636 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2637 2638 ath_hal_setslottime(ah, usec); 2639 sc->sc_updateslot = OK; 2640 } 2641 2642 /* 2643 * Callback from the 802.11 layer to update the 2644 * slot time based on the current setting. 2645 */ 2646 static void 2647 ath_updateslot(struct ifnet *ifp) 2648 { 2649 struct ath_softc *sc = ifp->if_softc; 2650 struct ieee80211com *ic = ifp->if_l2com; 2651 2652 /* 2653 * When not coordinating the BSS, change the hardware 2654 * immediately. For other operation we defer the change 2655 * until beacon updates have propagated to the stations. 2656 */ 2657 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2658 ic->ic_opmode == IEEE80211_M_MBSS) 2659 sc->sc_updateslot = UPDATE; 2660 else 2661 ath_setslottime(sc); 2662 } 2663 2664 /* 2665 * Setup a h/w transmit queue for beacons. 2666 */ 2667 static int 2668 ath_beaconq_setup(struct ath_hal *ah) 2669 { 2670 HAL_TXQ_INFO qi; 2671 2672 memset(&qi, 0, sizeof(qi)); 2673 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2674 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2675 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2676 /* NB: for dynamic turbo, don't enable any other interrupts */ 2677 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2678 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2679 } 2680 2681 /* 2682 * Setup the transmit queue parameters for the beacon queue. 2683 */ 2684 static int 2685 ath_beaconq_config(struct ath_softc *sc) 2686 { 2687 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2688 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2689 struct ath_hal *ah = sc->sc_ah; 2690 HAL_TXQ_INFO qi; 2691 2692 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2693 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2694 ic->ic_opmode == IEEE80211_M_MBSS) { 2695 /* 2696 * Always burst out beacon and CAB traffic. 2697 */ 2698 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2699 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2700 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2701 } else { 2702 struct wmeParams *wmep = 2703 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2704 /* 2705 * Adhoc mode; important thing is to use 2x cwmin. 2706 */ 2707 qi.tqi_aifs = wmep->wmep_aifsn; 2708 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2709 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2710 } 2711 2712 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2713 device_printf(sc->sc_dev, "unable to update parameters for " 2714 "beacon hardware queue!\n"); 2715 return 0; 2716 } else { 2717 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2718 return 1; 2719 } 2720 #undef ATH_EXPONENT_TO_VALUE 2721 } 2722 2723 /* 2724 * Allocate and setup an initial beacon frame. 2725 */ 2726 static int 2727 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2728 { 2729 struct ieee80211vap *vap = ni->ni_vap; 2730 struct ath_vap *avp = ATH_VAP(vap); 2731 struct ath_buf *bf; 2732 struct mbuf *m; 2733 int error; 2734 2735 bf = avp->av_bcbuf; 2736 DPRINTF(sc, ATH_DEBUG_NODE, "%s: bf_m=%p, bf_node=%p\n", 2737 __func__, bf->bf_m, bf->bf_node); 2738 if (bf->bf_m != NULL) { 2739 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2740 m_freem(bf->bf_m); 2741 bf->bf_m = NULL; 2742 } 2743 if (bf->bf_node != NULL) { 2744 ieee80211_free_node(bf->bf_node); 2745 bf->bf_node = NULL; 2746 } 2747 2748 /* 2749 * NB: the beacon data buffer must be 32-bit aligned; 2750 * we assume the mbuf routines will return us something 2751 * with this alignment (perhaps should assert). 2752 */ 2753 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2754 if (m == NULL) { 2755 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2756 sc->sc_stats.ast_be_nombuf++; 2757 return ENOMEM; 2758 } 2759 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2760 bf->bf_segs, &bf->bf_nseg, 2761 BUS_DMA_NOWAIT); 2762 if (error != 0) { 2763 device_printf(sc->sc_dev, 2764 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2765 __func__, error); 2766 m_freem(m); 2767 return error; 2768 } 2769 2770 /* 2771 * Calculate a TSF adjustment factor required for staggered 2772 * beacons. Note that we assume the format of the beacon 2773 * frame leaves the tstamp field immediately following the 2774 * header. 2775 */ 2776 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2777 uint64_t tsfadjust; 2778 struct ieee80211_frame *wh; 2779 2780 /* 2781 * The beacon interval is in TU's; the TSF is in usecs. 2782 * We figure out how many TU's to add to align the timestamp 2783 * then convert to TSF units and handle byte swapping before 2784 * inserting it in the frame. The hardware will then add this 2785 * each time a beacon frame is sent. Note that we align vap's 2786 * 1..N and leave vap 0 untouched. This means vap 0 has a 2787 * timestamp in one beacon interval while the others get a 2788 * timstamp aligned to the next interval. 2789 */ 2790 tsfadjust = ni->ni_intval * 2791 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2792 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2793 2794 DPRINTF(sc, ATH_DEBUG_BEACON, 2795 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2796 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2797 avp->av_bslot, ni->ni_intval, 2798 (long long unsigned) le64toh(tsfadjust)); 2799 2800 wh = mtod(m, struct ieee80211_frame *); 2801 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2802 } 2803 bf->bf_m = m; 2804 bf->bf_node = ieee80211_ref_node(ni); 2805 2806 return 0; 2807 } 2808 2809 /* 2810 * Setup the beacon frame for transmit. 2811 */ 2812 static void 2813 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2814 { 2815 #define USE_SHPREAMBLE(_ic) \ 2816 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2817 == IEEE80211_F_SHPREAMBLE) 2818 struct ieee80211_node *ni = bf->bf_node; 2819 struct ieee80211com *ic = ni->ni_ic; 2820 struct mbuf *m = bf->bf_m; 2821 struct ath_hal *ah = sc->sc_ah; 2822 struct ath_desc *ds; 2823 int flags, antenna; 2824 const HAL_RATE_TABLE *rt; 2825 u_int8_t rix, rate; 2826 2827 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2828 __func__, m, m->m_len); 2829 2830 /* setup descriptors */ 2831 ds = bf->bf_desc; 2832 bf->bf_last = bf; 2833 bf->bf_lastds = ds; 2834 2835 flags = HAL_TXDESC_NOACK; 2836 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2837 ds->ds_link = bf->bf_daddr; /* self-linked */ 2838 flags |= HAL_TXDESC_VEOL; 2839 /* 2840 * Let hardware handle antenna switching. 2841 */ 2842 antenna = sc->sc_txantenna; 2843 } else { 2844 ds->ds_link = 0; 2845 /* 2846 * Switch antenna every 4 beacons. 2847 * XXX assumes two antenna 2848 */ 2849 if (sc->sc_txantenna != 0) 2850 antenna = sc->sc_txantenna; 2851 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2852 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2853 else 2854 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2855 } 2856 2857 KASSERT(bf->bf_nseg == 1, 2858 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2859 ds->ds_data = bf->bf_segs[0].ds_addr; 2860 /* 2861 * Calculate rate code. 2862 * XXX everything at min xmit rate 2863 */ 2864 rix = 0; 2865 rt = sc->sc_currates; 2866 rate = rt->info[rix].rateCode; 2867 if (USE_SHPREAMBLE(ic)) 2868 rate |= rt->info[rix].shortPreamble; 2869 ath_hal_setuptxdesc(ah, ds 2870 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2871 , sizeof(struct ieee80211_frame)/* header length */ 2872 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2873 , ni->ni_txpower /* txpower XXX */ 2874 , rate, 1 /* series 0 rate/tries */ 2875 , HAL_TXKEYIX_INVALID /* no encryption */ 2876 , antenna /* antenna mode */ 2877 , flags /* no ack, veol for beacons */ 2878 , 0 /* rts/cts rate */ 2879 , 0 /* rts/cts duration */ 2880 ); 2881 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2882 ath_hal_filltxdesc(ah, ds 2883 , roundup(m->m_len, 4) /* buffer length */ 2884 , AH_TRUE /* first segment */ 2885 , AH_TRUE /* last segment */ 2886 , ds /* first descriptor */ 2887 ); 2888 #if 0 2889 ath_desc_swap(ds); 2890 #endif 2891 #undef USE_SHPREAMBLE 2892 } 2893 2894 static void 2895 ath_beacon_update(struct ieee80211vap *vap, int item) 2896 { 2897 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2898 2899 setbit(bo->bo_flags, item); 2900 } 2901 2902 /* 2903 * Append the contents of src to dst; both queues 2904 * are assumed to be locked. 2905 */ 2906 static void 2907 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2908 { 2909 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2910 dst->axq_link = src->axq_link; 2911 src->axq_link = NULL; 2912 dst->axq_depth += src->axq_depth; 2913 dst->axq_aggr_depth += src->axq_aggr_depth; 2914 src->axq_depth = 0; 2915 src->axq_aggr_depth = 0; 2916 } 2917 2918 /* 2919 * Transmit a beacon frame at SWBA. Dynamic updates to the 2920 * frame contents are done as needed and the slot time is 2921 * also adjusted based on current state. 2922 */ 2923 static void 2924 ath_beacon_proc(void *arg, int pending) 2925 { 2926 struct ath_softc *sc = arg; 2927 struct ath_hal *ah = sc->sc_ah; 2928 struct ieee80211vap *vap; 2929 struct ath_buf *bf; 2930 int slot, otherant; 2931 uint32_t bfaddr; 2932 2933 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2934 __func__, pending); 2935 /* 2936 * Check if the previous beacon has gone out. If 2937 * not don't try to post another, skip this period 2938 * and wait for the next. Missed beacons indicate 2939 * a problem and should not occur. If we miss too 2940 * many consecutive beacons reset the device. 2941 */ 2942 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2943 sc->sc_bmisscount++; 2944 sc->sc_stats.ast_be_missed++; 2945 DPRINTF(sc, ATH_DEBUG_BEACON, 2946 "%s: missed %u consecutive beacons\n", 2947 __func__, sc->sc_bmisscount); 2948 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2949 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2950 return; 2951 } 2952 if (sc->sc_bmisscount != 0) { 2953 DPRINTF(sc, ATH_DEBUG_BEACON, 2954 "%s: resume beacon xmit after %u misses\n", 2955 __func__, sc->sc_bmisscount); 2956 sc->sc_bmisscount = 0; 2957 } 2958 2959 if (sc->sc_stagbeacons) { /* staggered beacons */ 2960 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2961 uint32_t tsftu; 2962 2963 tsftu = ath_hal_gettsf32(ah) >> 10; 2964 /* XXX lintval */ 2965 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2966 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2967 bfaddr = 0; 2968 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2969 bf = ath_beacon_generate(sc, vap); 2970 if (bf != NULL) 2971 bfaddr = bf->bf_daddr; 2972 } 2973 } else { /* burst'd beacons */ 2974 uint32_t *bflink = &bfaddr; 2975 2976 for (slot = 0; slot < ATH_BCBUF; slot++) { 2977 vap = sc->sc_bslot[slot]; 2978 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2979 bf = ath_beacon_generate(sc, vap); 2980 if (bf != NULL) { 2981 *bflink = bf->bf_daddr; 2982 bflink = &bf->bf_desc->ds_link; 2983 } 2984 } 2985 } 2986 *bflink = 0; /* terminate list */ 2987 } 2988 2989 /* 2990 * Handle slot time change when a non-ERP station joins/leaves 2991 * an 11g network. The 802.11 layer notifies us via callback, 2992 * we mark updateslot, then wait one beacon before effecting 2993 * the change. This gives associated stations at least one 2994 * beacon interval to note the state change. 2995 */ 2996 /* XXX locking */ 2997 if (sc->sc_updateslot == UPDATE) { 2998 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2999 sc->sc_slotupdate = slot; 3000 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 3001 ath_setslottime(sc); /* commit change to h/w */ 3002 3003 /* 3004 * Check recent per-antenna transmit statistics and flip 3005 * the default antenna if noticeably more frames went out 3006 * on the non-default antenna. 3007 * XXX assumes 2 anntenae 3008 */ 3009 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 3010 otherant = sc->sc_defant & 1 ? 2 : 1; 3011 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 3012 ath_setdefantenna(sc, otherant); 3013 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 3014 } 3015 3016 if (bfaddr != 0) { 3017 /* 3018 * Stop any current dma and put the new frame on the queue. 3019 * This should never fail since we check above that no frames 3020 * are still pending on the queue. 3021 */ 3022 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 3023 DPRINTF(sc, ATH_DEBUG_ANY, 3024 "%s: beacon queue %u did not stop?\n", 3025 __func__, sc->sc_bhalq); 3026 } 3027 /* NB: cabq traffic should already be queued and primed */ 3028 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 3029 ath_hal_txstart(ah, sc->sc_bhalq); 3030 3031 sc->sc_stats.ast_be_xmit++; 3032 } 3033 } 3034 3035 static struct ath_buf * 3036 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 3037 { 3038 struct ath_vap *avp = ATH_VAP(vap); 3039 struct ath_txq *cabq = sc->sc_cabq; 3040 struct ath_buf *bf; 3041 struct mbuf *m; 3042 int nmcastq, error; 3043 3044 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 3045 ("not running, state %d", vap->iv_state)); 3046 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3047 3048 /* 3049 * Update dynamic beacon contents. If this returns 3050 * non-zero then we need to remap the memory because 3051 * the beacon frame changed size (probably because 3052 * of the TIM bitmap). 3053 */ 3054 bf = avp->av_bcbuf; 3055 m = bf->bf_m; 3056 nmcastq = avp->av_mcastq.axq_depth; 3057 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 3058 /* XXX too conservative? */ 3059 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3060 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3061 bf->bf_segs, &bf->bf_nseg, 3062 BUS_DMA_NOWAIT); 3063 if (error != 0) { 3064 if_printf(vap->iv_ifp, 3065 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3066 __func__, error); 3067 return NULL; 3068 } 3069 } 3070 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3071 DPRINTF(sc, ATH_DEBUG_BEACON, 3072 "%s: cabq did not drain, mcastq %u cabq %u\n", 3073 __func__, nmcastq, cabq->axq_depth); 3074 sc->sc_stats.ast_cabq_busy++; 3075 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3076 /* 3077 * CABQ traffic from a previous vap is still pending. 3078 * We must drain the q before this beacon frame goes 3079 * out as otherwise this vap's stations will get cab 3080 * frames from a different vap. 3081 * XXX could be slow causing us to miss DBA 3082 */ 3083 ath_tx_draintxq(sc, cabq); 3084 } 3085 } 3086 ath_beacon_setup(sc, bf); 3087 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3088 3089 /* 3090 * Enable the CAB queue before the beacon queue to 3091 * insure cab frames are triggered by this beacon. 3092 */ 3093 if (avp->av_boff.bo_tim[4] & 1) { 3094 struct ath_hal *ah = sc->sc_ah; 3095 3096 /* NB: only at DTIM */ 3097 ATH_TXQ_LOCK(cabq); 3098 ATH_TXQ_LOCK(&avp->av_mcastq); 3099 if (nmcastq) { 3100 struct ath_buf *bfm; 3101 3102 /* 3103 * Move frames from the s/w mcast q to the h/w cab q. 3104 * XXX MORE_DATA bit 3105 */ 3106 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 3107 if (cabq->axq_link != NULL) { 3108 *cabq->axq_link = bfm->bf_daddr; 3109 } else 3110 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3111 bfm->bf_daddr); 3112 ath_txqmove(cabq, &avp->av_mcastq); 3113 3114 sc->sc_stats.ast_cabq_xmit += nmcastq; 3115 } 3116 /* NB: gated by beacon so safe to start here */ 3117 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3118 ath_hal_txstart(ah, cabq->axq_qnum); 3119 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3120 ATH_TXQ_UNLOCK(cabq); 3121 } 3122 return bf; 3123 } 3124 3125 static void 3126 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3127 { 3128 struct ath_vap *avp = ATH_VAP(vap); 3129 struct ath_hal *ah = sc->sc_ah; 3130 struct ath_buf *bf; 3131 struct mbuf *m; 3132 int error; 3133 3134 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3135 3136 /* 3137 * Update dynamic beacon contents. If this returns 3138 * non-zero then we need to remap the memory because 3139 * the beacon frame changed size (probably because 3140 * of the TIM bitmap). 3141 */ 3142 bf = avp->av_bcbuf; 3143 m = bf->bf_m; 3144 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3145 /* XXX too conservative? */ 3146 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3147 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3148 bf->bf_segs, &bf->bf_nseg, 3149 BUS_DMA_NOWAIT); 3150 if (error != 0) { 3151 if_printf(vap->iv_ifp, 3152 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3153 __func__, error); 3154 return; 3155 } 3156 } 3157 ath_beacon_setup(sc, bf); 3158 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3159 3160 /* NB: caller is known to have already stopped tx dma */ 3161 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3162 ath_hal_txstart(ah, sc->sc_bhalq); 3163 } 3164 3165 /* 3166 * Reset the hardware after detecting beacons have stopped. 3167 */ 3168 static void 3169 ath_bstuck_proc(void *arg, int pending) 3170 { 3171 struct ath_softc *sc = arg; 3172 struct ifnet *ifp = sc->sc_ifp; 3173 uint32_t hangs = 0; 3174 3175 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3176 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3177 3178 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3179 sc->sc_bmisscount); 3180 sc->sc_stats.ast_bstuck++; 3181 /* 3182 * This assumes that there's no simultaneous channel mode change 3183 * occuring. 3184 */ 3185 ath_reset(ifp, ATH_RESET_NOLOSS); 3186 } 3187 3188 /* 3189 * Reclaim beacon resources and return buffer to the pool. 3190 */ 3191 static void 3192 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3193 { 3194 3195 DPRINTF(sc, ATH_DEBUG_NODE, "%s: free bf=%p, bf_m=%p, bf_node=%p\n", 3196 __func__, bf, bf->bf_m, bf->bf_node); 3197 if (bf->bf_m != NULL) { 3198 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3199 m_freem(bf->bf_m); 3200 bf->bf_m = NULL; 3201 } 3202 if (bf->bf_node != NULL) { 3203 ieee80211_free_node(bf->bf_node); 3204 bf->bf_node = NULL; 3205 } 3206 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3207 } 3208 3209 /* 3210 * Reclaim beacon resources. 3211 */ 3212 static void 3213 ath_beacon_free(struct ath_softc *sc) 3214 { 3215 struct ath_buf *bf; 3216 3217 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3218 DPRINTF(sc, ATH_DEBUG_NODE, 3219 "%s: free bf=%p, bf_m=%p, bf_node=%p\n", 3220 __func__, bf, bf->bf_m, bf->bf_node); 3221 if (bf->bf_m != NULL) { 3222 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3223 m_freem(bf->bf_m); 3224 bf->bf_m = NULL; 3225 } 3226 if (bf->bf_node != NULL) { 3227 ieee80211_free_node(bf->bf_node); 3228 bf->bf_node = NULL; 3229 } 3230 } 3231 } 3232 3233 /* 3234 * Configure the beacon and sleep timers. 3235 * 3236 * When operating as an AP this resets the TSF and sets 3237 * up the hardware to notify us when we need to issue beacons. 3238 * 3239 * When operating in station mode this sets up the beacon 3240 * timers according to the timestamp of the last received 3241 * beacon and the current TSF, configures PCF and DTIM 3242 * handling, programs the sleep registers so the hardware 3243 * will wakeup in time to receive beacons, and configures 3244 * the beacon miss handling so we'll receive a BMISS 3245 * interrupt when we stop seeing beacons from the AP 3246 * we've associated with. 3247 */ 3248 static void 3249 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3250 { 3251 #define TSF_TO_TU(_h,_l) \ 3252 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3253 #define FUDGE 2 3254 struct ath_hal *ah = sc->sc_ah; 3255 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3256 struct ieee80211_node *ni; 3257 u_int32_t nexttbtt, intval, tsftu; 3258 u_int64_t tsf; 3259 3260 if (vap == NULL) 3261 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3262 ni = ieee80211_ref_node(vap->iv_bss); 3263 3264 /* extract tstamp from last beacon and convert to TU */ 3265 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3266 LE_READ_4(ni->ni_tstamp.data)); 3267 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3268 ic->ic_opmode == IEEE80211_M_MBSS) { 3269 /* 3270 * For multi-bss ap/mesh support beacons are either staggered 3271 * evenly over N slots or burst together. For the former 3272 * arrange for the SWBA to be delivered for each slot. 3273 * Slots that are not occupied will generate nothing. 3274 */ 3275 /* NB: the beacon interval is kept internally in TU's */ 3276 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3277 if (sc->sc_stagbeacons) 3278 intval /= ATH_BCBUF; 3279 } else { 3280 /* NB: the beacon interval is kept internally in TU's */ 3281 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3282 } 3283 if (nexttbtt == 0) /* e.g. for ap mode */ 3284 nexttbtt = intval; 3285 else if (intval) /* NB: can be 0 for monitor mode */ 3286 nexttbtt = roundup(nexttbtt, intval); 3287 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3288 __func__, nexttbtt, intval, ni->ni_intval); 3289 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3290 HAL_BEACON_STATE bs; 3291 int dtimperiod, dtimcount; 3292 int cfpperiod, cfpcount; 3293 3294 /* 3295 * Setup dtim and cfp parameters according to 3296 * last beacon we received (which may be none). 3297 */ 3298 dtimperiod = ni->ni_dtim_period; 3299 if (dtimperiod <= 0) /* NB: 0 if not known */ 3300 dtimperiod = 1; 3301 dtimcount = ni->ni_dtim_count; 3302 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3303 dtimcount = 0; /* XXX? */ 3304 cfpperiod = 1; /* NB: no PCF support yet */ 3305 cfpcount = 0; 3306 /* 3307 * Pull nexttbtt forward to reflect the current 3308 * TSF and calculate dtim+cfp state for the result. 3309 */ 3310 tsf = ath_hal_gettsf64(ah); 3311 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3312 do { 3313 nexttbtt += intval; 3314 if (--dtimcount < 0) { 3315 dtimcount = dtimperiod - 1; 3316 if (--cfpcount < 0) 3317 cfpcount = cfpperiod - 1; 3318 } 3319 } while (nexttbtt < tsftu); 3320 memset(&bs, 0, sizeof(bs)); 3321 bs.bs_intval = intval; 3322 bs.bs_nexttbtt = nexttbtt; 3323 bs.bs_dtimperiod = dtimperiod*intval; 3324 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3325 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3326 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3327 bs.bs_cfpmaxduration = 0; 3328 #if 0 3329 /* 3330 * The 802.11 layer records the offset to the DTIM 3331 * bitmap while receiving beacons; use it here to 3332 * enable h/w detection of our AID being marked in 3333 * the bitmap vector (to indicate frames for us are 3334 * pending at the AP). 3335 * XXX do DTIM handling in s/w to WAR old h/w bugs 3336 * XXX enable based on h/w rev for newer chips 3337 */ 3338 bs.bs_timoffset = ni->ni_timoff; 3339 #endif 3340 /* 3341 * Calculate the number of consecutive beacons to miss 3342 * before taking a BMISS interrupt. 3343 * Note that we clamp the result to at most 10 beacons. 3344 */ 3345 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3346 if (bs.bs_bmissthreshold > 10) 3347 bs.bs_bmissthreshold = 10; 3348 else if (bs.bs_bmissthreshold <= 0) 3349 bs.bs_bmissthreshold = 1; 3350 3351 /* 3352 * Calculate sleep duration. The configuration is 3353 * given in ms. We insure a multiple of the beacon 3354 * period is used. Also, if the sleep duration is 3355 * greater than the DTIM period then it makes senses 3356 * to make it a multiple of that. 3357 * 3358 * XXX fixed at 100ms 3359 */ 3360 bs.bs_sleepduration = 3361 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3362 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3363 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3364 3365 DPRINTF(sc, ATH_DEBUG_BEACON, 3366 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3367 , __func__ 3368 , tsf, tsftu 3369 , bs.bs_intval 3370 , bs.bs_nexttbtt 3371 , bs.bs_dtimperiod 3372 , bs.bs_nextdtim 3373 , bs.bs_bmissthreshold 3374 , bs.bs_sleepduration 3375 , bs.bs_cfpperiod 3376 , bs.bs_cfpmaxduration 3377 , bs.bs_cfpnext 3378 , bs.bs_timoffset 3379 ); 3380 ath_hal_intrset(ah, 0); 3381 ath_hal_beacontimers(ah, &bs); 3382 sc->sc_imask |= HAL_INT_BMISS; 3383 ath_hal_intrset(ah, sc->sc_imask); 3384 } else { 3385 ath_hal_intrset(ah, 0); 3386 if (nexttbtt == intval) 3387 intval |= HAL_BEACON_RESET_TSF; 3388 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3389 /* 3390 * In IBSS mode enable the beacon timers but only 3391 * enable SWBA interrupts if we need to manually 3392 * prepare beacon frames. Otherwise we use a 3393 * self-linked tx descriptor and let the hardware 3394 * deal with things. 3395 */ 3396 intval |= HAL_BEACON_ENA; 3397 if (!sc->sc_hasveol) 3398 sc->sc_imask |= HAL_INT_SWBA; 3399 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3400 /* 3401 * Pull nexttbtt forward to reflect 3402 * the current TSF. 3403 */ 3404 tsf = ath_hal_gettsf64(ah); 3405 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3406 do { 3407 nexttbtt += intval; 3408 } while (nexttbtt < tsftu); 3409 } 3410 ath_beaconq_config(sc); 3411 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3412 ic->ic_opmode == IEEE80211_M_MBSS) { 3413 /* 3414 * In AP/mesh mode we enable the beacon timers 3415 * and SWBA interrupts to prepare beacon frames. 3416 */ 3417 intval |= HAL_BEACON_ENA; 3418 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3419 ath_beaconq_config(sc); 3420 } 3421 ath_hal_beaconinit(ah, nexttbtt, intval); 3422 sc->sc_bmisscount = 0; 3423 ath_hal_intrset(ah, sc->sc_imask); 3424 /* 3425 * When using a self-linked beacon descriptor in 3426 * ibss mode load it once here. 3427 */ 3428 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3429 ath_beacon_start_adhoc(sc, vap); 3430 } 3431 sc->sc_syncbeacon = 0; 3432 ieee80211_free_node(ni); 3433 #undef FUDGE 3434 #undef TSF_TO_TU 3435 } 3436 3437 static void 3438 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3439 { 3440 bus_addr_t *paddr = (bus_addr_t*) arg; 3441 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3442 *paddr = segs->ds_addr; 3443 } 3444 3445 static int 3446 ath_descdma_setup(struct ath_softc *sc, 3447 struct ath_descdma *dd, ath_bufhead *head, 3448 const char *name, int nbuf, int ndesc) 3449 { 3450 #define DS2PHYS(_dd, _ds) \ 3451 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3452 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3453 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3454 struct ifnet *ifp = sc->sc_ifp; 3455 uint8_t *ds; 3456 struct ath_buf *bf; 3457 int i, bsize, error; 3458 int desc_len; 3459 3460 desc_len = sizeof(struct ath_desc); 3461 3462 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3463 __func__, name, nbuf, ndesc); 3464 3465 dd->dd_name = name; 3466 dd->dd_desc_len = desc_len * nbuf * ndesc; 3467 3468 /* 3469 * Merlin work-around: 3470 * Descriptors that cross the 4KB boundary can't be used. 3471 * Assume one skipped descriptor per 4KB page. 3472 */ 3473 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3474 int numdescpage = 4096 / (desc_len * ndesc); 3475 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3476 } 3477 3478 /* 3479 * Setup DMA descriptor area. 3480 */ 3481 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3482 PAGE_SIZE, 0, /* alignment, bounds */ 3483 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3484 BUS_SPACE_MAXADDR, /* highaddr */ 3485 NULL, NULL, /* filter, filterarg */ 3486 dd->dd_desc_len, /* maxsize */ 3487 1, /* nsegments */ 3488 dd->dd_desc_len, /* maxsegsize */ 3489 BUS_DMA_ALLOCNOW, /* flags */ 3490 NULL, /* lockfunc */ 3491 NULL, /* lockarg */ 3492 &dd->dd_dmat); 3493 if (error != 0) { 3494 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3495 return error; 3496 } 3497 3498 /* allocate descriptors */ 3499 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3500 if (error != 0) { 3501 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3502 "error %u\n", dd->dd_name, error); 3503 goto fail0; 3504 } 3505 3506 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3507 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3508 &dd->dd_dmamap); 3509 if (error != 0) { 3510 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3511 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3512 goto fail1; 3513 } 3514 3515 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3516 dd->dd_desc, dd->dd_desc_len, 3517 ath_load_cb, &dd->dd_desc_paddr, 3518 BUS_DMA_NOWAIT); 3519 if (error != 0) { 3520 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3521 dd->dd_name, error); 3522 goto fail2; 3523 } 3524 3525 ds = (uint8_t *) dd->dd_desc; 3526 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3527 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3528 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3529 3530 /* allocate rx buffers */ 3531 bsize = sizeof(struct ath_buf) * nbuf; 3532 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3533 if (bf == NULL) { 3534 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3535 dd->dd_name, bsize); 3536 goto fail3; 3537 } 3538 dd->dd_bufptr = bf; 3539 3540 TAILQ_INIT(head); 3541 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3542 bf->bf_desc = (struct ath_desc *) ds; 3543 bf->bf_daddr = DS2PHYS(dd, ds); 3544 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3545 /* 3546 * Merlin WAR: Skip descriptor addresses which 3547 * cause 4KB boundary crossing along any point 3548 * in the descriptor. 3549 */ 3550 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3551 desc_len * ndesc)) { 3552 /* Start at the next page */ 3553 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3554 bf->bf_desc = (struct ath_desc *) ds; 3555 bf->bf_daddr = DS2PHYS(dd, ds); 3556 } 3557 } 3558 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3559 &bf->bf_dmamap); 3560 if (error != 0) { 3561 if_printf(ifp, "unable to create dmamap for %s " 3562 "buffer %u, error %u\n", dd->dd_name, i, error); 3563 ath_descdma_cleanup(sc, dd, head); 3564 return error; 3565 } 3566 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3567 TAILQ_INSERT_TAIL(head, bf, bf_list); 3568 } 3569 return 0; 3570 fail3: 3571 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3572 fail2: 3573 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3574 fail1: 3575 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3576 fail0: 3577 bus_dma_tag_destroy(dd->dd_dmat); 3578 memset(dd, 0, sizeof(*dd)); 3579 return error; 3580 #undef DS2PHYS 3581 #undef ATH_DESC_4KB_BOUND_CHECK 3582 } 3583 3584 static void 3585 ath_descdma_cleanup(struct ath_softc *sc, 3586 struct ath_descdma *dd, ath_bufhead *head) 3587 { 3588 struct ath_buf *bf; 3589 struct ieee80211_node *ni; 3590 3591 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3592 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3593 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3594 bus_dma_tag_destroy(dd->dd_dmat); 3595 3596 TAILQ_FOREACH(bf, head, bf_list) { 3597 if (bf->bf_m) { 3598 m_freem(bf->bf_m); 3599 bf->bf_m = NULL; 3600 } 3601 if (bf->bf_dmamap != NULL) { 3602 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3603 bf->bf_dmamap = NULL; 3604 } 3605 ni = bf->bf_node; 3606 bf->bf_node = NULL; 3607 if (ni != NULL) { 3608 /* 3609 * Reclaim node reference. 3610 */ 3611 ieee80211_free_node(ni); 3612 } 3613 } 3614 3615 TAILQ_INIT(head); 3616 free(dd->dd_bufptr, M_ATHDEV); 3617 memset(dd, 0, sizeof(*dd)); 3618 } 3619 3620 static int 3621 ath_desc_alloc(struct ath_softc *sc) 3622 { 3623 int error; 3624 3625 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3626 "rx", ath_rxbuf, 1); 3627 if (error != 0) 3628 return error; 3629 3630 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3631 "tx", ath_txbuf, ATH_TXDESC); 3632 if (error != 0) { 3633 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3634 return error; 3635 } 3636 3637 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3638 "beacon", ATH_BCBUF, 1); 3639 if (error != 0) { 3640 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3641 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3642 return error; 3643 } 3644 return 0; 3645 } 3646 3647 static void 3648 ath_desc_free(struct ath_softc *sc) 3649 { 3650 3651 if (sc->sc_bdma.dd_desc_len != 0) 3652 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3653 if (sc->sc_txdma.dd_desc_len != 0) 3654 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3655 if (sc->sc_rxdma.dd_desc_len != 0) 3656 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3657 } 3658 3659 static struct ieee80211_node * 3660 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3661 { 3662 struct ieee80211com *ic = vap->iv_ic; 3663 struct ath_softc *sc = ic->ic_ifp->if_softc; 3664 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3665 struct ath_node *an; 3666 3667 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3668 if (an == NULL) { 3669 /* XXX stat+msg */ 3670 return NULL; 3671 } 3672 ath_rate_node_init(sc, an); 3673 3674 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3675 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3676 device_get_nameunit(sc->sc_dev), an); 3677 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3678 3679 /* XXX setup ath_tid */ 3680 ath_tx_tid_init(sc, an); 3681 3682 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3683 return &an->an_node; 3684 } 3685 3686 static void 3687 ath_node_cleanup(struct ieee80211_node *ni) 3688 { 3689 struct ieee80211com *ic = ni->ni_ic; 3690 struct ath_softc *sc = ic->ic_ifp->if_softc; 3691 3692 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3693 ath_tx_node_flush(sc, ATH_NODE(ni)); 3694 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3695 sc->sc_node_cleanup(ni); 3696 } 3697 3698 static void 3699 ath_node_free(struct ieee80211_node *ni) 3700 { 3701 struct ieee80211com *ic = ni->ni_ic; 3702 struct ath_softc *sc = ic->ic_ifp->if_softc; 3703 3704 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3705 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3706 sc->sc_node_free(ni); 3707 } 3708 3709 static void 3710 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3711 { 3712 struct ieee80211com *ic = ni->ni_ic; 3713 struct ath_softc *sc = ic->ic_ifp->if_softc; 3714 struct ath_hal *ah = sc->sc_ah; 3715 3716 *rssi = ic->ic_node_getrssi(ni); 3717 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3718 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3719 else 3720 *noise = -95; /* nominally correct */ 3721 } 3722 3723 static int 3724 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3725 { 3726 struct ath_hal *ah = sc->sc_ah; 3727 int error; 3728 struct mbuf *m; 3729 struct ath_desc *ds; 3730 3731 m = bf->bf_m; 3732 if (m == NULL) { 3733 /* 3734 * NB: by assigning a page to the rx dma buffer we 3735 * implicitly satisfy the Atheros requirement that 3736 * this buffer be cache-line-aligned and sized to be 3737 * multiple of the cache line size. Not doing this 3738 * causes weird stuff to happen (for the 5210 at least). 3739 */ 3740 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3741 if (m == NULL) { 3742 DPRINTF(sc, ATH_DEBUG_ANY, 3743 "%s: no mbuf/cluster\n", __func__); 3744 sc->sc_stats.ast_rx_nombuf++; 3745 return ENOMEM; 3746 } 3747 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3748 3749 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3750 bf->bf_dmamap, m, 3751 bf->bf_segs, &bf->bf_nseg, 3752 BUS_DMA_NOWAIT); 3753 if (error != 0) { 3754 DPRINTF(sc, ATH_DEBUG_ANY, 3755 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3756 __func__, error); 3757 sc->sc_stats.ast_rx_busdma++; 3758 m_freem(m); 3759 return error; 3760 } 3761 KASSERT(bf->bf_nseg == 1, 3762 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3763 bf->bf_m = m; 3764 } 3765 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3766 3767 /* 3768 * Setup descriptors. For receive we always terminate 3769 * the descriptor list with a self-linked entry so we'll 3770 * not get overrun under high load (as can happen with a 3771 * 5212 when ANI processing enables PHY error frames). 3772 * 3773 * To insure the last descriptor is self-linked we create 3774 * each descriptor as self-linked and add it to the end. As 3775 * each additional descriptor is added the previous self-linked 3776 * entry is ``fixed'' naturally. This should be safe even 3777 * if DMA is happening. When processing RX interrupts we 3778 * never remove/process the last, self-linked, entry on the 3779 * descriptor list. This insures the hardware always has 3780 * someplace to write a new frame. 3781 */ 3782 /* 3783 * 11N: we can no longer afford to self link the last descriptor. 3784 * MAC acknowledges BA status as long as it copies frames to host 3785 * buffer (or rx fifo). This can incorrectly acknowledge packets 3786 * to a sender if last desc is self-linked. 3787 */ 3788 ds = bf->bf_desc; 3789 if (sc->sc_rxslink) 3790 ds->ds_link = bf->bf_daddr; /* link to self */ 3791 else 3792 ds->ds_link = 0; /* terminate the list */ 3793 ds->ds_data = bf->bf_segs[0].ds_addr; 3794 ath_hal_setuprxdesc(ah, ds 3795 , m->m_len /* buffer size */ 3796 , 0 3797 ); 3798 3799 if (sc->sc_rxlink != NULL) 3800 *sc->sc_rxlink = bf->bf_daddr; 3801 sc->sc_rxlink = &ds->ds_link; 3802 return 0; 3803 } 3804 3805 /* 3806 * Extend 15-bit time stamp from rx descriptor to 3807 * a full 64-bit TSF using the specified TSF. 3808 */ 3809 static __inline u_int64_t 3810 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3811 { 3812 if ((tsf & 0x7fff) < rstamp) 3813 tsf -= 0x8000; 3814 3815 return ((tsf &~ 0x7fff) | rstamp); 3816 } 3817 3818 /* 3819 * Extend 32-bit time stamp from rx descriptor to 3820 * a full 64-bit TSF using the specified TSF. 3821 */ 3822 static __inline u_int64_t 3823 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3824 { 3825 u_int32_t tsf_low = tsf & 0xffffffff; 3826 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3827 3828 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3829 tsf64 -= 0x100000000ULL; 3830 3831 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3832 tsf64 += 0x100000000ULL; 3833 3834 return tsf64; 3835 } 3836 3837 /* 3838 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3839 * Earlier hardware versions only wrote the low 15 bits of the 3840 * TSF into the RX descriptor; later versions (AR5416 and up) 3841 * include the 32 bit TSF value. 3842 */ 3843 static __inline u_int64_t 3844 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3845 { 3846 if (sc->sc_rxtsf32) 3847 return ath_extend_tsf32(rstamp, tsf); 3848 else 3849 return ath_extend_tsf15(rstamp, tsf); 3850 } 3851 3852 /* 3853 * Intercept management frames to collect beacon rssi data 3854 * and to do ibss merges. 3855 */ 3856 static void 3857 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3858 int subtype, int rssi, int nf) 3859 { 3860 struct ieee80211vap *vap = ni->ni_vap; 3861 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3862 3863 /* 3864 * Call up first so subsequent work can use information 3865 * potentially stored in the node (e.g. for ibss merge). 3866 */ 3867 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3868 switch (subtype) { 3869 case IEEE80211_FC0_SUBTYPE_BEACON: 3870 /* update rssi statistics for use by the hal */ 3871 /* XXX unlocked check against vap->iv_bss? */ 3872 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3873 if (sc->sc_syncbeacon && 3874 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3875 /* 3876 * Resync beacon timers using the tsf of the beacon 3877 * frame we just received. 3878 */ 3879 ath_beacon_config(sc, vap); 3880 } 3881 /* fall thru... */ 3882 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3883 if (vap->iv_opmode == IEEE80211_M_IBSS && 3884 vap->iv_state == IEEE80211_S_RUN) { 3885 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3886 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3887 ath_hal_gettsf64(sc->sc_ah)); 3888 /* 3889 * Handle ibss merge as needed; check the tsf on the 3890 * frame before attempting the merge. The 802.11 spec 3891 * says the station should change it's bssid to match 3892 * the oldest station with the same ssid, where oldest 3893 * is determined by the tsf. Note that hardware 3894 * reconfiguration happens through callback to 3895 * ath_newstate as the state machine will go from 3896 * RUN -> RUN when this happens. 3897 */ 3898 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3899 DPRINTF(sc, ATH_DEBUG_STATE, 3900 "ibss merge, rstamp %u tsf %ju " 3901 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3902 (uintmax_t)ni->ni_tstamp.tsf); 3903 (void) ieee80211_ibss_merge(ni); 3904 } 3905 } 3906 break; 3907 } 3908 } 3909 3910 /* 3911 * Set the default antenna. 3912 */ 3913 static void 3914 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3915 { 3916 struct ath_hal *ah = sc->sc_ah; 3917 3918 /* XXX block beacon interrupts */ 3919 ath_hal_setdefantenna(ah, antenna); 3920 if (sc->sc_defant != antenna) 3921 sc->sc_stats.ast_ant_defswitch++; 3922 sc->sc_defant = antenna; 3923 sc->sc_rxotherant = 0; 3924 } 3925 3926 static void 3927 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3928 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3929 { 3930 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3931 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3932 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3933 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3934 struct ath_softc *sc = ifp->if_softc; 3935 const HAL_RATE_TABLE *rt; 3936 uint8_t rix; 3937 3938 rt = sc->sc_currates; 3939 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3940 rix = rt->rateCodeToIndex[rs->rs_rate]; 3941 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3942 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3943 #ifdef AH_SUPPORT_AR5416 3944 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3945 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3946 struct ieee80211com *ic = ifp->if_l2com; 3947 3948 if ((rs->rs_flags & HAL_RX_2040) == 0) 3949 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3950 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3951 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3952 else 3953 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3954 if ((rs->rs_flags & HAL_RX_GI) == 0) 3955 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3956 } 3957 #endif 3958 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 3959 if (rs->rs_status & HAL_RXERR_CRC) 3960 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3961 /* XXX propagate other error flags from descriptor */ 3962 sc->sc_rx_th.wr_antnoise = nf; 3963 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 3964 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3965 #undef CHAN_HT 3966 #undef CHAN_HT20 3967 #undef CHAN_HT40U 3968 #undef CHAN_HT40D 3969 } 3970 3971 static void 3972 ath_handle_micerror(struct ieee80211com *ic, 3973 struct ieee80211_frame *wh, int keyix) 3974 { 3975 struct ieee80211_node *ni; 3976 3977 /* XXX recheck MIC to deal w/ chips that lie */ 3978 /* XXX discard MIC errors on !data frames */ 3979 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3980 if (ni != NULL) { 3981 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3982 ieee80211_free_node(ni); 3983 } 3984 } 3985 3986 /* 3987 * Only run the RX proc if it's not already running. 3988 * Since this may get run as part of the reset/flush path, 3989 * the task can't clash with an existing, running tasklet. 3990 */ 3991 static void 3992 ath_rx_tasklet(void *arg, int npending) 3993 { 3994 struct ath_softc *sc = arg; 3995 3996 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 3997 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3998 ATH_PCU_LOCK(sc); 3999 if (sc->sc_inreset_cnt > 0) { 4000 device_printf(sc->sc_dev, 4001 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4002 ATH_PCU_UNLOCK(sc); 4003 return; 4004 } 4005 ATH_PCU_UNLOCK(sc); 4006 ath_rx_proc(sc, 1); 4007 } 4008 4009 static void 4010 ath_rx_proc(struct ath_softc *sc, int resched) 4011 { 4012 #define PA2DESC(_sc, _pa) \ 4013 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4014 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4015 struct ath_buf *bf; 4016 struct ifnet *ifp = sc->sc_ifp; 4017 struct ieee80211com *ic = ifp->if_l2com; 4018 struct ath_hal *ah = sc->sc_ah; 4019 struct ath_desc *ds; 4020 struct ath_rx_status *rs; 4021 struct mbuf *m; 4022 struct ieee80211_node *ni; 4023 int len, type, ngood; 4024 HAL_STATUS status; 4025 int16_t nf; 4026 u_int64_t tsf, rstamp; 4027 int npkts = 0; 4028 4029 /* XXX we must not hold the ATH_LOCK here */ 4030 ATH_UNLOCK_ASSERT(sc); 4031 ATH_PCU_UNLOCK_ASSERT(sc); 4032 4033 ATH_PCU_LOCK(sc); 4034 sc->sc_rxproc_cnt++; 4035 ATH_PCU_UNLOCK(sc); 4036 4037 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 4038 ngood = 0; 4039 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 4040 sc->sc_stats.ast_rx_noise = nf; 4041 tsf = ath_hal_gettsf64(ah); 4042 do { 4043 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4044 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 4045 if_printf(ifp, "%s: no buffer!\n", __func__); 4046 break; 4047 } else if (bf == NULL) { 4048 /* 4049 * End of List: 4050 * this can happen for non-self-linked RX chains 4051 */ 4052 sc->sc_stats.ast_rx_hitqueueend++; 4053 break; 4054 } 4055 m = bf->bf_m; 4056 if (m == NULL) { /* NB: shouldn't happen */ 4057 /* 4058 * If mbuf allocation failed previously there 4059 * will be no mbuf; try again to re-populate it. 4060 */ 4061 /* XXX make debug msg */ 4062 if_printf(ifp, "%s: no mbuf!\n", __func__); 4063 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4064 goto rx_next; 4065 } 4066 ds = bf->bf_desc; 4067 if (ds->ds_link == bf->bf_daddr) { 4068 /* NB: never process the self-linked entry at the end */ 4069 sc->sc_stats.ast_rx_hitqueueend++; 4070 break; 4071 } 4072 /* XXX sync descriptor memory */ 4073 /* 4074 * Must provide the virtual address of the current 4075 * descriptor, the physical address, and the virtual 4076 * address of the next descriptor in the h/w chain. 4077 * This allows the HAL to look ahead to see if the 4078 * hardware is done with a descriptor by checking the 4079 * done bit in the following descriptor and the address 4080 * of the current descriptor the DMA engine is working 4081 * on. All this is necessary because of our use of 4082 * a self-linked list to avoid rx overruns. 4083 */ 4084 rs = &bf->bf_status.ds_rxstat; 4085 status = ath_hal_rxprocdesc(ah, ds, 4086 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4087 #ifdef ATH_DEBUG 4088 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4089 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4090 #endif 4091 if (status == HAL_EINPROGRESS) 4092 break; 4093 4094 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4095 npkts++; 4096 4097 /* 4098 * Calculate the correct 64 bit TSF given 4099 * the TSF64 register value and rs_tstamp. 4100 */ 4101 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 4102 4103 /* These aren't specifically errors */ 4104 #ifdef AH_SUPPORT_AR5416 4105 if (rs->rs_flags & HAL_RX_GI) 4106 sc->sc_stats.ast_rx_halfgi++; 4107 if (rs->rs_flags & HAL_RX_2040) 4108 sc->sc_stats.ast_rx_2040++; 4109 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 4110 sc->sc_stats.ast_rx_pre_crc_err++; 4111 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 4112 sc->sc_stats.ast_rx_post_crc_err++; 4113 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 4114 sc->sc_stats.ast_rx_decrypt_busy_err++; 4115 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 4116 sc->sc_stats.ast_rx_hi_rx_chain++; 4117 #endif /* AH_SUPPORT_AR5416 */ 4118 4119 if (rs->rs_status != 0) { 4120 if (rs->rs_status & HAL_RXERR_CRC) 4121 sc->sc_stats.ast_rx_crcerr++; 4122 if (rs->rs_status & HAL_RXERR_FIFO) 4123 sc->sc_stats.ast_rx_fifoerr++; 4124 if (rs->rs_status & HAL_RXERR_PHY) { 4125 sc->sc_stats.ast_rx_phyerr++; 4126 /* Process DFS radar events */ 4127 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 4128 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 4129 /* Since we're touching the frame data, sync it */ 4130 bus_dmamap_sync(sc->sc_dmat, 4131 bf->bf_dmamap, 4132 BUS_DMASYNC_POSTREAD); 4133 /* Now pass it to the radar processing code */ 4134 ath_dfs_process_phy_err(sc, mtod(m, char *), rstamp, rs); 4135 } 4136 4137 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4138 if (rs->rs_phyerr < 64) 4139 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4140 goto rx_error; /* NB: don't count in ierrors */ 4141 } 4142 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4143 /* 4144 * Decrypt error. If the error occurred 4145 * because there was no hardware key, then 4146 * let the frame through so the upper layers 4147 * can process it. This is necessary for 5210 4148 * parts which have no way to setup a ``clear'' 4149 * key cache entry. 4150 * 4151 * XXX do key cache faulting 4152 */ 4153 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4154 goto rx_accept; 4155 sc->sc_stats.ast_rx_badcrypt++; 4156 } 4157 if (rs->rs_status & HAL_RXERR_MIC) { 4158 sc->sc_stats.ast_rx_badmic++; 4159 /* 4160 * Do minimal work required to hand off 4161 * the 802.11 header for notification. 4162 */ 4163 /* XXX frag's and qos frames */ 4164 len = rs->rs_datalen; 4165 if (len >= sizeof (struct ieee80211_frame)) { 4166 bus_dmamap_sync(sc->sc_dmat, 4167 bf->bf_dmamap, 4168 BUS_DMASYNC_POSTREAD); 4169 ath_handle_micerror(ic, 4170 mtod(m, struct ieee80211_frame *), 4171 sc->sc_splitmic ? 4172 rs->rs_keyix-32 : rs->rs_keyix); 4173 } 4174 } 4175 ifp->if_ierrors++; 4176 rx_error: 4177 /* 4178 * Cleanup any pending partial frame. 4179 */ 4180 if (sc->sc_rxpending != NULL) { 4181 m_freem(sc->sc_rxpending); 4182 sc->sc_rxpending = NULL; 4183 } 4184 /* 4185 * When a tap is present pass error frames 4186 * that have been requested. By default we 4187 * pass decrypt+mic errors but others may be 4188 * interesting (e.g. crc). 4189 */ 4190 if (ieee80211_radiotap_active(ic) && 4191 (rs->rs_status & sc->sc_monpass)) { 4192 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4193 BUS_DMASYNC_POSTREAD); 4194 /* NB: bpf needs the mbuf length setup */ 4195 len = rs->rs_datalen; 4196 m->m_pkthdr.len = m->m_len = len; 4197 bf->bf_m = NULL; 4198 ath_rx_tap(ifp, m, rs, rstamp, nf); 4199 ieee80211_radiotap_rx_all(ic, m); 4200 m_freem(m); 4201 } 4202 /* XXX pass MIC errors up for s/w reclaculation */ 4203 goto rx_next; 4204 } 4205 rx_accept: 4206 /* 4207 * Sync and unmap the frame. At this point we're 4208 * committed to passing the mbuf somewhere so clear 4209 * bf_m; this means a new mbuf must be allocated 4210 * when the rx descriptor is setup again to receive 4211 * another frame. 4212 */ 4213 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4214 BUS_DMASYNC_POSTREAD); 4215 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4216 bf->bf_m = NULL; 4217 4218 len = rs->rs_datalen; 4219 m->m_len = len; 4220 4221 if (rs->rs_more) { 4222 /* 4223 * Frame spans multiple descriptors; save 4224 * it for the next completed descriptor, it 4225 * will be used to construct a jumbogram. 4226 */ 4227 if (sc->sc_rxpending != NULL) { 4228 /* NB: max frame size is currently 2 clusters */ 4229 sc->sc_stats.ast_rx_toobig++; 4230 m_freem(sc->sc_rxpending); 4231 } 4232 m->m_pkthdr.rcvif = ifp; 4233 m->m_pkthdr.len = len; 4234 sc->sc_rxpending = m; 4235 goto rx_next; 4236 } else if (sc->sc_rxpending != NULL) { 4237 /* 4238 * This is the second part of a jumbogram, 4239 * chain it to the first mbuf, adjust the 4240 * frame length, and clear the rxpending state. 4241 */ 4242 sc->sc_rxpending->m_next = m; 4243 sc->sc_rxpending->m_pkthdr.len += len; 4244 m = sc->sc_rxpending; 4245 sc->sc_rxpending = NULL; 4246 } else { 4247 /* 4248 * Normal single-descriptor receive; setup 4249 * the rcvif and packet length. 4250 */ 4251 m->m_pkthdr.rcvif = ifp; 4252 m->m_pkthdr.len = len; 4253 } 4254 4255 /* 4256 * Validate rs->rs_antenna. 4257 * 4258 * Some users w/ AR9285 NICs have reported crashes 4259 * here because rs_antenna field is bogusly large. 4260 * Let's enforce the maximum antenna limit of 8 4261 * (and it shouldn't be hard coded, but that's a 4262 * separate problem) and if there's an issue, print 4263 * out an error and adjust rs_antenna to something 4264 * sensible. 4265 * 4266 * This code should be removed once the actual 4267 * root cause of the issue has been identified. 4268 * For example, it may be that the rs_antenna 4269 * field is only valid for the lsat frame of 4270 * an aggregate and it just happens that it is 4271 * "mostly" right. (This is a general statement - 4272 * the majority of the statistics are only valid 4273 * for the last frame in an aggregate. 4274 */ 4275 if (rs->rs_antenna > 7) { 4276 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 4277 __func__, rs->rs_antenna); 4278 #ifdef ATH_DEBUG 4279 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4280 #endif /* ATH_DEBUG */ 4281 rs->rs_antenna = 0; /* XXX better than nothing */ 4282 } 4283 4284 ifp->if_ipackets++; 4285 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4286 4287 /* 4288 * Populate the rx status block. When there are bpf 4289 * listeners we do the additional work to provide 4290 * complete status. Otherwise we fill in only the 4291 * material required by ieee80211_input. Note that 4292 * noise setting is filled in above. 4293 */ 4294 if (ieee80211_radiotap_active(ic)) 4295 ath_rx_tap(ifp, m, rs, rstamp, nf); 4296 4297 /* 4298 * From this point on we assume the frame is at least 4299 * as large as ieee80211_frame_min; verify that. 4300 */ 4301 if (len < IEEE80211_MIN_LEN) { 4302 if (!ieee80211_radiotap_active(ic)) { 4303 DPRINTF(sc, ATH_DEBUG_RECV, 4304 "%s: short packet %d\n", __func__, len); 4305 sc->sc_stats.ast_rx_tooshort++; 4306 } else { 4307 /* NB: in particular this captures ack's */ 4308 ieee80211_radiotap_rx_all(ic, m); 4309 } 4310 m_freem(m); 4311 goto rx_next; 4312 } 4313 4314 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4315 const HAL_RATE_TABLE *rt = sc->sc_currates; 4316 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4317 4318 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4319 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4320 } 4321 4322 m_adj(m, -IEEE80211_CRC_LEN); 4323 4324 /* 4325 * Locate the node for sender, track state, and then 4326 * pass the (referenced) node up to the 802.11 layer 4327 * for its use. 4328 */ 4329 ni = ieee80211_find_rxnode_withkey(ic, 4330 mtod(m, const struct ieee80211_frame_min *), 4331 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4332 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4333 sc->sc_lastrs = rs; 4334 4335 #ifdef AH_SUPPORT_AR5416 4336 if (rs->rs_isaggr) 4337 sc->sc_stats.ast_rx_agg++; 4338 #endif /* AH_SUPPORT_AR5416 */ 4339 4340 if (ni != NULL) { 4341 /* 4342 * Only punt packets for ampdu reorder processing for 4343 * 11n nodes; net80211 enforces that M_AMPDU is only 4344 * set for 11n nodes. 4345 */ 4346 if (ni->ni_flags & IEEE80211_NODE_HT) 4347 m->m_flags |= M_AMPDU; 4348 4349 /* 4350 * Sending station is known, dispatch directly. 4351 */ 4352 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4353 ieee80211_free_node(ni); 4354 /* 4355 * Arrange to update the last rx timestamp only for 4356 * frames from our ap when operating in station mode. 4357 * This assumes the rx key is always setup when 4358 * associated. 4359 */ 4360 if (ic->ic_opmode == IEEE80211_M_STA && 4361 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4362 ngood++; 4363 } else { 4364 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4365 } 4366 /* 4367 * Track rx rssi and do any rx antenna management. 4368 */ 4369 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4370 if (sc->sc_diversity) { 4371 /* 4372 * When using fast diversity, change the default rx 4373 * antenna if diversity chooses the other antenna 3 4374 * times in a row. 4375 */ 4376 if (sc->sc_defant != rs->rs_antenna) { 4377 if (++sc->sc_rxotherant >= 3) 4378 ath_setdefantenna(sc, rs->rs_antenna); 4379 } else 4380 sc->sc_rxotherant = 0; 4381 } 4382 4383 /* Newer school diversity - kite specific for now */ 4384 /* XXX perhaps migrate the normal diversity code to this? */ 4385 if ((ah)->ah_rxAntCombDiversity) 4386 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4387 4388 if (sc->sc_softled) { 4389 /* 4390 * Blink for any data frame. Otherwise do a 4391 * heartbeat-style blink when idle. The latter 4392 * is mainly for station mode where we depend on 4393 * periodic beacon frames to trigger the poll event. 4394 */ 4395 if (type == IEEE80211_FC0_TYPE_DATA) { 4396 const HAL_RATE_TABLE *rt = sc->sc_currates; 4397 ath_led_event(sc, 4398 rt->rateCodeToIndex[rs->rs_rate]); 4399 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4400 ath_led_event(sc, 0); 4401 } 4402 rx_next: 4403 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4404 } while (ath_rxbuf_init(sc, bf) == 0); 4405 4406 /* rx signal state monitoring */ 4407 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4408 if (ngood) 4409 sc->sc_lastrx = tsf; 4410 4411 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4412 /* Queue DFS tasklet if needed */ 4413 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4414 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4415 4416 /* 4417 * Now that all the RX frames were handled that 4418 * need to be handled, kick the PCU if there's 4419 * been an RXEOL condition. 4420 */ 4421 ATH_PCU_LOCK(sc); 4422 if (resched && sc->sc_kickpcu) { 4423 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4424 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4425 __func__, npkts); 4426 4427 /* XXX rxslink? */ 4428 /* 4429 * XXX can we hold the PCU lock here? 4430 * Are there any net80211 buffer calls involved? 4431 */ 4432 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4433 ath_hal_putrxbuf(ah, bf->bf_daddr); 4434 ath_hal_rxena(ah); /* enable recv descriptors */ 4435 ath_mode_init(sc); /* set filters, etc. */ 4436 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4437 4438 ath_hal_intrset(ah, sc->sc_imask); 4439 sc->sc_kickpcu = 0; 4440 } 4441 ATH_PCU_UNLOCK(sc); 4442 4443 /* XXX check this inside of IF_LOCK? */ 4444 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4445 #ifdef IEEE80211_SUPPORT_SUPERG 4446 ieee80211_ff_age_all(ic, 100); 4447 #endif 4448 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4449 ath_start(ifp); 4450 } 4451 #undef PA2DESC 4452 4453 ATH_PCU_LOCK(sc); 4454 sc->sc_rxproc_cnt--; 4455 ATH_PCU_UNLOCK(sc); 4456 } 4457 4458 static void 4459 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4460 { 4461 txq->axq_qnum = qnum; 4462 txq->axq_ac = 0; 4463 txq->axq_depth = 0; 4464 txq->axq_aggr_depth = 0; 4465 txq->axq_intrcnt = 0; 4466 txq->axq_link = NULL; 4467 txq->axq_softc = sc; 4468 TAILQ_INIT(&txq->axq_q); 4469 TAILQ_INIT(&txq->axq_tidq); 4470 ATH_TXQ_LOCK_INIT(sc, txq); 4471 } 4472 4473 /* 4474 * Setup a h/w transmit queue. 4475 */ 4476 static struct ath_txq * 4477 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4478 { 4479 #define N(a) (sizeof(a)/sizeof(a[0])) 4480 struct ath_hal *ah = sc->sc_ah; 4481 HAL_TXQ_INFO qi; 4482 int qnum; 4483 4484 memset(&qi, 0, sizeof(qi)); 4485 qi.tqi_subtype = subtype; 4486 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4487 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4488 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4489 /* 4490 * Enable interrupts only for EOL and DESC conditions. 4491 * We mark tx descriptors to receive a DESC interrupt 4492 * when a tx queue gets deep; otherwise waiting for the 4493 * EOL to reap descriptors. Note that this is done to 4494 * reduce interrupt load and this only defers reaping 4495 * descriptors, never transmitting frames. Aside from 4496 * reducing interrupts this also permits more concurrency. 4497 * The only potential downside is if the tx queue backs 4498 * up in which case the top half of the kernel may backup 4499 * due to a lack of tx descriptors. 4500 */ 4501 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4502 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4503 if (qnum == -1) { 4504 /* 4505 * NB: don't print a message, this happens 4506 * normally on parts with too few tx queues 4507 */ 4508 return NULL; 4509 } 4510 if (qnum >= N(sc->sc_txq)) { 4511 device_printf(sc->sc_dev, 4512 "hal qnum %u out of range, max %zu!\n", 4513 qnum, N(sc->sc_txq)); 4514 ath_hal_releasetxqueue(ah, qnum); 4515 return NULL; 4516 } 4517 if (!ATH_TXQ_SETUP(sc, qnum)) { 4518 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4519 sc->sc_txqsetup |= 1<<qnum; 4520 } 4521 return &sc->sc_txq[qnum]; 4522 #undef N 4523 } 4524 4525 /* 4526 * Setup a hardware data transmit queue for the specified 4527 * access control. The hal may not support all requested 4528 * queues in which case it will return a reference to a 4529 * previously setup queue. We record the mapping from ac's 4530 * to h/w queues for use by ath_tx_start and also track 4531 * the set of h/w queues being used to optimize work in the 4532 * transmit interrupt handler and related routines. 4533 */ 4534 static int 4535 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4536 { 4537 #define N(a) (sizeof(a)/sizeof(a[0])) 4538 struct ath_txq *txq; 4539 4540 if (ac >= N(sc->sc_ac2q)) { 4541 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4542 ac, N(sc->sc_ac2q)); 4543 return 0; 4544 } 4545 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4546 if (txq != NULL) { 4547 txq->axq_ac = ac; 4548 sc->sc_ac2q[ac] = txq; 4549 return 1; 4550 } else 4551 return 0; 4552 #undef N 4553 } 4554 4555 /* 4556 * Update WME parameters for a transmit queue. 4557 */ 4558 static int 4559 ath_txq_update(struct ath_softc *sc, int ac) 4560 { 4561 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4562 #define ATH_TXOP_TO_US(v) (v<<5) 4563 struct ifnet *ifp = sc->sc_ifp; 4564 struct ieee80211com *ic = ifp->if_l2com; 4565 struct ath_txq *txq = sc->sc_ac2q[ac]; 4566 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4567 struct ath_hal *ah = sc->sc_ah; 4568 HAL_TXQ_INFO qi; 4569 4570 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4571 #ifdef IEEE80211_SUPPORT_TDMA 4572 if (sc->sc_tdma) { 4573 /* 4574 * AIFS is zero so there's no pre-transmit wait. The 4575 * burst time defines the slot duration and is configured 4576 * through net80211. The QCU is setup to not do post-xmit 4577 * back off, lockout all lower-priority QCU's, and fire 4578 * off the DMA beacon alert timer which is setup based 4579 * on the slot configuration. 4580 */ 4581 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4582 | HAL_TXQ_TXERRINT_ENABLE 4583 | HAL_TXQ_TXURNINT_ENABLE 4584 | HAL_TXQ_TXEOLINT_ENABLE 4585 | HAL_TXQ_DBA_GATED 4586 | HAL_TXQ_BACKOFF_DISABLE 4587 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4588 ; 4589 qi.tqi_aifs = 0; 4590 /* XXX +dbaprep? */ 4591 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4592 qi.tqi_burstTime = qi.tqi_readyTime; 4593 } else { 4594 #endif 4595 /* 4596 * XXX shouldn't this just use the default flags 4597 * used in the previous queue setup? 4598 */ 4599 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4600 | HAL_TXQ_TXERRINT_ENABLE 4601 | HAL_TXQ_TXDESCINT_ENABLE 4602 | HAL_TXQ_TXURNINT_ENABLE 4603 | HAL_TXQ_TXEOLINT_ENABLE 4604 ; 4605 qi.tqi_aifs = wmep->wmep_aifsn; 4606 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4607 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4608 qi.tqi_readyTime = 0; 4609 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4610 #ifdef IEEE80211_SUPPORT_TDMA 4611 } 4612 #endif 4613 4614 DPRINTF(sc, ATH_DEBUG_RESET, 4615 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4616 __func__, txq->axq_qnum, qi.tqi_qflags, 4617 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4618 4619 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4620 if_printf(ifp, "unable to update hardware queue " 4621 "parameters for %s traffic!\n", 4622 ieee80211_wme_acnames[ac]); 4623 return 0; 4624 } else { 4625 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4626 return 1; 4627 } 4628 #undef ATH_TXOP_TO_US 4629 #undef ATH_EXPONENT_TO_VALUE 4630 } 4631 4632 /* 4633 * Callback from the 802.11 layer to update WME parameters. 4634 */ 4635 static int 4636 ath_wme_update(struct ieee80211com *ic) 4637 { 4638 struct ath_softc *sc = ic->ic_ifp->if_softc; 4639 4640 return !ath_txq_update(sc, WME_AC_BE) || 4641 !ath_txq_update(sc, WME_AC_BK) || 4642 !ath_txq_update(sc, WME_AC_VI) || 4643 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4644 } 4645 4646 /* 4647 * Reclaim resources for a setup queue. 4648 */ 4649 static void 4650 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4651 { 4652 4653 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4654 ATH_TXQ_LOCK_DESTROY(txq); 4655 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4656 } 4657 4658 /* 4659 * Reclaim all tx queue resources. 4660 */ 4661 static void 4662 ath_tx_cleanup(struct ath_softc *sc) 4663 { 4664 int i; 4665 4666 ATH_TXBUF_LOCK_DESTROY(sc); 4667 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4668 if (ATH_TXQ_SETUP(sc, i)) 4669 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4670 } 4671 4672 /* 4673 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4674 * using the current rates in sc_rixmap. 4675 */ 4676 int 4677 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4678 { 4679 int rix = sc->sc_rixmap[rate]; 4680 /* NB: return lowest rix for invalid rate */ 4681 return (rix == 0xff ? 0 : rix); 4682 } 4683 4684 static void 4685 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4686 struct ath_buf *bf) 4687 { 4688 struct ieee80211_node *ni = bf->bf_node; 4689 struct ifnet *ifp = sc->sc_ifp; 4690 struct ieee80211com *ic = ifp->if_l2com; 4691 int sr, lr, pri; 4692 4693 if (ts->ts_status == 0) { 4694 u_int8_t txant = ts->ts_antenna; 4695 sc->sc_stats.ast_ant_tx[txant]++; 4696 sc->sc_ant_tx[txant]++; 4697 if (ts->ts_finaltsi != 0) 4698 sc->sc_stats.ast_tx_altrate++; 4699 pri = M_WME_GETAC(bf->bf_m); 4700 if (pri >= WME_AC_VO) 4701 ic->ic_wme.wme_hipri_traffic++; 4702 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4703 ni->ni_inact = ni->ni_inact_reload; 4704 } else { 4705 if (ts->ts_status & HAL_TXERR_XRETRY) 4706 sc->sc_stats.ast_tx_xretries++; 4707 if (ts->ts_status & HAL_TXERR_FIFO) 4708 sc->sc_stats.ast_tx_fifoerr++; 4709 if (ts->ts_status & HAL_TXERR_FILT) 4710 sc->sc_stats.ast_tx_filtered++; 4711 if (ts->ts_status & HAL_TXERR_XTXOP) 4712 sc->sc_stats.ast_tx_xtxop++; 4713 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4714 sc->sc_stats.ast_tx_timerexpired++; 4715 4716 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4717 sc->sc_stats.ast_tx_data_underrun++; 4718 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4719 sc->sc_stats.ast_tx_delim_underrun++; 4720 4721 if (bf->bf_m->m_flags & M_FF) 4722 sc->sc_stats.ast_ff_txerr++; 4723 } 4724 /* XXX when is this valid? */ 4725 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4726 sc->sc_stats.ast_tx_desccfgerr++; 4727 4728 sr = ts->ts_shortretry; 4729 lr = ts->ts_longretry; 4730 sc->sc_stats.ast_tx_shortretry += sr; 4731 sc->sc_stats.ast_tx_longretry += lr; 4732 4733 } 4734 4735 /* 4736 * The default completion. If fail is 1, this means 4737 * "please don't retry the frame, and just return -1 status 4738 * to the net80211 stack. 4739 */ 4740 void 4741 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4742 { 4743 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4744 int st; 4745 4746 if (fail == 1) 4747 st = -1; 4748 else 4749 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4750 ts->ts_status : HAL_TXERR_XRETRY; 4751 4752 if (bf->bf_state.bfs_dobaw) 4753 device_printf(sc->sc_dev, 4754 "%s: dobaw should've been cleared!\n", __func__); 4755 if (bf->bf_next != NULL) 4756 device_printf(sc->sc_dev, 4757 "%s: bf_next not NULL!\n", __func__); 4758 4759 /* 4760 * Do any tx complete callback. Note this must 4761 * be done before releasing the node reference. 4762 * This will free the mbuf, release the net80211 4763 * node and recycle the ath_buf. 4764 */ 4765 ath_tx_freebuf(sc, bf, st); 4766 } 4767 4768 /* 4769 * Update rate control with the given completion status. 4770 */ 4771 void 4772 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4773 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4774 int nframes, int nbad) 4775 { 4776 struct ath_node *an; 4777 4778 /* Only for unicast frames */ 4779 if (ni == NULL) 4780 return; 4781 4782 an = ATH_NODE(ni); 4783 4784 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4785 ATH_NODE_LOCK(an); 4786 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4787 ATH_NODE_UNLOCK(an); 4788 } 4789 } 4790 4791 /* 4792 * Update the busy status of the last frame on the free list. 4793 * When doing TDMA, the busy flag tracks whether the hardware 4794 * currently points to this buffer or not, and thus gated DMA 4795 * may restart by re-reading the last descriptor in this 4796 * buffer. 4797 * 4798 * This should be called in the completion function once one 4799 * of the buffers has been used. 4800 */ 4801 static void 4802 ath_tx_update_busy(struct ath_softc *sc) 4803 { 4804 struct ath_buf *last; 4805 4806 /* 4807 * Since the last frame may still be marked 4808 * as ATH_BUF_BUSY, unmark it here before 4809 * finishing the frame processing. 4810 * Since we've completed a frame (aggregate 4811 * or otherwise), the hardware has moved on 4812 * and is no longer referencing the previous 4813 * descriptor. 4814 */ 4815 ATH_TXBUF_LOCK_ASSERT(sc); 4816 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4817 if (last != NULL) 4818 last->bf_flags &= ~ATH_BUF_BUSY; 4819 } 4820 4821 4822 /* 4823 * Process completed xmit descriptors from the specified queue. 4824 * Kick the packet scheduler if needed. This can occur from this 4825 * particular task. 4826 */ 4827 static int 4828 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4829 { 4830 struct ath_hal *ah = sc->sc_ah; 4831 struct ath_buf *bf; 4832 struct ath_desc *ds; 4833 struct ath_tx_status *ts; 4834 struct ieee80211_node *ni; 4835 struct ath_node *an; 4836 int nacked; 4837 HAL_STATUS status; 4838 4839 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4840 __func__, txq->axq_qnum, 4841 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4842 txq->axq_link); 4843 nacked = 0; 4844 for (;;) { 4845 ATH_TXQ_LOCK(txq); 4846 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4847 bf = TAILQ_FIRST(&txq->axq_q); 4848 if (bf == NULL) { 4849 ATH_TXQ_UNLOCK(txq); 4850 break; 4851 } 4852 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4853 ts = &bf->bf_status.ds_txstat; 4854 status = ath_hal_txprocdesc(ah, ds, ts); 4855 #ifdef ATH_DEBUG 4856 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4857 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4858 status == HAL_OK); 4859 #endif 4860 if (status == HAL_EINPROGRESS) { 4861 ATH_TXQ_UNLOCK(txq); 4862 break; 4863 } 4864 ATH_TXQ_REMOVE(txq, bf, bf_list); 4865 #ifdef IEEE80211_SUPPORT_TDMA 4866 if (txq->axq_depth > 0) { 4867 /* 4868 * More frames follow. Mark the buffer busy 4869 * so it's not re-used while the hardware may 4870 * still re-read the link field in the descriptor. 4871 * 4872 * Use the last buffer in an aggregate as that 4873 * is where the hardware may be - intermediate 4874 * descriptors won't be "busy". 4875 */ 4876 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4877 } else 4878 #else 4879 if (txq->axq_depth == 0) 4880 #endif 4881 txq->axq_link = NULL; 4882 if (bf->bf_state.bfs_aggr) 4883 txq->axq_aggr_depth--; 4884 4885 ni = bf->bf_node; 4886 /* 4887 * If unicast frame was ack'd update RSSI, 4888 * including the last rx time used to 4889 * workaround phantom bmiss interrupts. 4890 */ 4891 if (ni != NULL && ts->ts_status == 0 && 4892 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4893 nacked++; 4894 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4895 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4896 ts->ts_rssi); 4897 } 4898 ATH_TXQ_UNLOCK(txq); 4899 4900 /* If unicast frame, update general statistics */ 4901 if (ni != NULL) { 4902 an = ATH_NODE(ni); 4903 /* update statistics */ 4904 ath_tx_update_stats(sc, ts, bf); 4905 } 4906 4907 /* 4908 * Call the completion handler. 4909 * The completion handler is responsible for 4910 * calling the rate control code. 4911 * 4912 * Frames with no completion handler get the 4913 * rate control code called here. 4914 */ 4915 if (bf->bf_comp == NULL) { 4916 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4917 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4918 /* 4919 * XXX assume this isn't an aggregate 4920 * frame. 4921 */ 4922 ath_tx_update_ratectrl(sc, ni, 4923 bf->bf_state.bfs_rc, ts, 4924 bf->bf_state.bfs_pktlen, 1, 4925 (ts->ts_status == 0 ? 0 : 1)); 4926 } 4927 ath_tx_default_comp(sc, bf, 0); 4928 } else 4929 bf->bf_comp(sc, bf, 0); 4930 } 4931 #ifdef IEEE80211_SUPPORT_SUPERG 4932 /* 4933 * Flush fast-frame staging queue when traffic slows. 4934 */ 4935 if (txq->axq_depth <= 1) 4936 ieee80211_ff_flush(ic, txq->axq_ac); 4937 #endif 4938 4939 /* Kick the TXQ scheduler */ 4940 if (dosched) { 4941 ATH_TXQ_LOCK(txq); 4942 ath_txq_sched(sc, txq); 4943 ATH_TXQ_UNLOCK(txq); 4944 } 4945 4946 return nacked; 4947 } 4948 4949 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4950 4951 /* 4952 * Deferred processing of transmit interrupt; special-cased 4953 * for a single hardware transmit queue (e.g. 5210 and 5211). 4954 */ 4955 static void 4956 ath_tx_proc_q0(void *arg, int npending) 4957 { 4958 struct ath_softc *sc = arg; 4959 struct ifnet *ifp = sc->sc_ifp; 4960 uint32_t txqs; 4961 4962 ATH_PCU_LOCK(sc); 4963 sc->sc_txproc_cnt++; 4964 txqs = sc->sc_txq_active; 4965 sc->sc_txq_active &= ~txqs; 4966 ATH_PCU_UNLOCK(sc); 4967 4968 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4969 /* XXX why is lastrx updated in tx code? */ 4970 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4971 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4972 ath_tx_processq(sc, sc->sc_cabq, 1); 4973 /* XXX check this inside of IF_LOCK? */ 4974 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4975 sc->sc_wd_timer = 0; 4976 4977 if (sc->sc_softled) 4978 ath_led_event(sc, sc->sc_txrix); 4979 4980 ATH_PCU_LOCK(sc); 4981 sc->sc_txproc_cnt--; 4982 ATH_PCU_UNLOCK(sc); 4983 4984 ath_start(ifp); 4985 } 4986 4987 /* 4988 * Deferred processing of transmit interrupt; special-cased 4989 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4990 */ 4991 static void 4992 ath_tx_proc_q0123(void *arg, int npending) 4993 { 4994 struct ath_softc *sc = arg; 4995 struct ifnet *ifp = sc->sc_ifp; 4996 int nacked; 4997 uint32_t txqs; 4998 4999 ATH_PCU_LOCK(sc); 5000 sc->sc_txproc_cnt++; 5001 txqs = sc->sc_txq_active; 5002 sc->sc_txq_active &= ~txqs; 5003 ATH_PCU_UNLOCK(sc); 5004 5005 /* 5006 * Process each active queue. 5007 */ 5008 nacked = 0; 5009 if (TXQACTIVE(txqs, 0)) 5010 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 5011 if (TXQACTIVE(txqs, 1)) 5012 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 5013 if (TXQACTIVE(txqs, 2)) 5014 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 5015 if (TXQACTIVE(txqs, 3)) 5016 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 5017 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 5018 ath_tx_processq(sc, sc->sc_cabq, 1); 5019 if (nacked) 5020 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5021 5022 /* XXX check this inside of IF_LOCK? */ 5023 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5024 sc->sc_wd_timer = 0; 5025 5026 if (sc->sc_softled) 5027 ath_led_event(sc, sc->sc_txrix); 5028 5029 ATH_PCU_LOCK(sc); 5030 sc->sc_txproc_cnt--; 5031 ATH_PCU_UNLOCK(sc); 5032 5033 ath_start(ifp); 5034 } 5035 5036 /* 5037 * Deferred processing of transmit interrupt. 5038 */ 5039 static void 5040 ath_tx_proc(void *arg, int npending) 5041 { 5042 struct ath_softc *sc = arg; 5043 struct ifnet *ifp = sc->sc_ifp; 5044 int i, nacked; 5045 uint32_t txqs; 5046 5047 ATH_PCU_LOCK(sc); 5048 sc->sc_txproc_cnt++; 5049 txqs = sc->sc_txq_active; 5050 sc->sc_txq_active &= ~txqs; 5051 ATH_PCU_UNLOCK(sc); 5052 5053 /* 5054 * Process each active queue. 5055 */ 5056 nacked = 0; 5057 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5058 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 5059 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 5060 if (nacked) 5061 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5062 5063 /* XXX check this inside of IF_LOCK? */ 5064 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5065 sc->sc_wd_timer = 0; 5066 5067 if (sc->sc_softled) 5068 ath_led_event(sc, sc->sc_txrix); 5069 5070 ATH_PCU_LOCK(sc); 5071 sc->sc_txproc_cnt--; 5072 ATH_PCU_UNLOCK(sc); 5073 5074 ath_start(ifp); 5075 } 5076 #undef TXQACTIVE 5077 5078 /* 5079 * Return a buffer to the pool and update the 'busy' flag on the 5080 * previous 'tail' entry. 5081 * 5082 * This _must_ only be called when the buffer is involved in a completed 5083 * TX. The logic is that if it was part of an active TX, the previous 5084 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5085 * for restart (eg for TDMA.) 5086 * 5087 * The caller must free the mbuf and recycle the node reference. 5088 */ 5089 void 5090 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5091 { 5092 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5093 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 5094 5095 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5096 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5097 5098 ATH_TXBUF_LOCK(sc); 5099 ath_tx_update_busy(sc); 5100 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5101 ATH_TXBUF_UNLOCK(sc); 5102 } 5103 5104 /* 5105 * This is currently used by ath_tx_draintxq() and 5106 * ath_tx_tid_free_pkts(). 5107 * 5108 * It recycles a single ath_buf. 5109 */ 5110 void 5111 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5112 { 5113 struct ieee80211_node *ni = bf->bf_node; 5114 struct mbuf *m0 = bf->bf_m; 5115 5116 bf->bf_node = NULL; 5117 bf->bf_m = NULL; 5118 5119 /* Free the buffer, it's not needed any longer */ 5120 ath_freebuf(sc, bf); 5121 5122 if (ni != NULL) { 5123 /* 5124 * Do any callback and reclaim the node reference. 5125 */ 5126 if (m0->m_flags & M_TXCB) 5127 ieee80211_process_callback(ni, m0, status); 5128 ieee80211_free_node(ni); 5129 } 5130 m_freem(m0); 5131 5132 /* 5133 * XXX the buffer used to be freed -after-, but the DMA map was 5134 * freed where ath_freebuf() now is. I've no idea what this 5135 * will do. 5136 */ 5137 } 5138 5139 void 5140 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5141 { 5142 #ifdef ATH_DEBUG 5143 struct ath_hal *ah = sc->sc_ah; 5144 #endif 5145 struct ath_buf *bf; 5146 u_int ix; 5147 5148 /* 5149 * NB: this assumes output has been stopped and 5150 * we do not need to block ath_tx_proc 5151 */ 5152 ATH_TXBUF_LOCK(sc); 5153 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 5154 if (bf != NULL) 5155 bf->bf_flags &= ~ATH_BUF_BUSY; 5156 ATH_TXBUF_UNLOCK(sc); 5157 5158 for (ix = 0;; ix++) { 5159 ATH_TXQ_LOCK(txq); 5160 bf = TAILQ_FIRST(&txq->axq_q); 5161 if (bf == NULL) { 5162 txq->axq_link = NULL; 5163 ATH_TXQ_UNLOCK(txq); 5164 break; 5165 } 5166 ATH_TXQ_REMOVE(txq, bf, bf_list); 5167 if (bf->bf_state.bfs_aggr) 5168 txq->axq_aggr_depth--; 5169 #ifdef ATH_DEBUG 5170 if (sc->sc_debug & ATH_DEBUG_RESET) { 5171 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5172 5173 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5174 ath_hal_txprocdesc(ah, bf->bf_lastds, 5175 &bf->bf_status.ds_txstat) == HAL_OK); 5176 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5177 bf->bf_m->m_len, 0, -1); 5178 } 5179 #endif /* ATH_DEBUG */ 5180 /* 5181 * Since we're now doing magic in the completion 5182 * functions, we -must- call it for aggregation 5183 * destinations or BAW tracking will get upset. 5184 */ 5185 /* 5186 * Clear ATH_BUF_BUSY; the completion handler 5187 * will free the buffer. 5188 */ 5189 ATH_TXQ_UNLOCK(txq); 5190 bf->bf_flags &= ~ATH_BUF_BUSY; 5191 if (bf->bf_comp) 5192 bf->bf_comp(sc, bf, 1); 5193 else 5194 ath_tx_default_comp(sc, bf, 1); 5195 } 5196 5197 /* 5198 * Drain software queued frames which are on 5199 * active TIDs. 5200 */ 5201 ath_tx_txq_drain(sc, txq); 5202 } 5203 5204 static void 5205 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5206 { 5207 struct ath_hal *ah = sc->sc_ah; 5208 5209 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5210 __func__, txq->axq_qnum, 5211 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5212 txq->axq_link); 5213 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5214 } 5215 5216 static int 5217 ath_stoptxdma(struct ath_softc *sc) 5218 { 5219 struct ath_hal *ah = sc->sc_ah; 5220 int i; 5221 5222 /* XXX return value */ 5223 if (sc->sc_invalid) 5224 return 0; 5225 5226 if (!sc->sc_invalid) { 5227 /* don't touch the hardware if marked invalid */ 5228 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5229 __func__, sc->sc_bhalq, 5230 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5231 NULL); 5232 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5233 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5234 if (ATH_TXQ_SETUP(sc, i)) 5235 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5236 } 5237 5238 return 1; 5239 } 5240 5241 /* 5242 * Drain the transmit queues and reclaim resources. 5243 */ 5244 static void 5245 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5246 { 5247 #ifdef ATH_DEBUG 5248 struct ath_hal *ah = sc->sc_ah; 5249 #endif 5250 struct ifnet *ifp = sc->sc_ifp; 5251 int i; 5252 5253 (void) ath_stoptxdma(sc); 5254 5255 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5256 /* 5257 * XXX TODO: should we just handle the completed TX frames 5258 * here, whether or not the reset is a full one or not? 5259 */ 5260 if (ATH_TXQ_SETUP(sc, i)) { 5261 if (reset_type == ATH_RESET_NOLOSS) 5262 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5263 else 5264 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5265 } 5266 } 5267 #ifdef ATH_DEBUG 5268 if (sc->sc_debug & ATH_DEBUG_RESET) { 5269 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5270 if (bf != NULL && bf->bf_m != NULL) { 5271 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5272 ath_hal_txprocdesc(ah, bf->bf_lastds, 5273 &bf->bf_status.ds_txstat) == HAL_OK); 5274 ieee80211_dump_pkt(ifp->if_l2com, 5275 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5276 0, -1); 5277 } 5278 } 5279 #endif /* ATH_DEBUG */ 5280 /* XXX check this inside of IF_LOCK? */ 5281 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5282 sc->sc_wd_timer = 0; 5283 } 5284 5285 /* 5286 * Disable the receive h/w in preparation for a reset. 5287 */ 5288 static void 5289 ath_stoprecv(struct ath_softc *sc, int dodelay) 5290 { 5291 #define PA2DESC(_sc, _pa) \ 5292 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5293 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5294 struct ath_hal *ah = sc->sc_ah; 5295 5296 ath_hal_stoppcurecv(ah); /* disable PCU */ 5297 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5298 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5299 if (dodelay) 5300 DELAY(3000); /* 3ms is long enough for 1 frame */ 5301 #ifdef ATH_DEBUG 5302 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5303 struct ath_buf *bf; 5304 u_int ix; 5305 5306 printf("%s: rx queue %p, link %p\n", __func__, 5307 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5308 ix = 0; 5309 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5310 struct ath_desc *ds = bf->bf_desc; 5311 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5312 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5313 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5314 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5315 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5316 ix++; 5317 } 5318 } 5319 #endif 5320 if (sc->sc_rxpending != NULL) { 5321 m_freem(sc->sc_rxpending); 5322 sc->sc_rxpending = NULL; 5323 } 5324 sc->sc_rxlink = NULL; /* just in case */ 5325 #undef PA2DESC 5326 } 5327 5328 /* 5329 * Enable the receive h/w following a reset. 5330 */ 5331 static int 5332 ath_startrecv(struct ath_softc *sc) 5333 { 5334 struct ath_hal *ah = sc->sc_ah; 5335 struct ath_buf *bf; 5336 5337 sc->sc_rxlink = NULL; 5338 sc->sc_rxpending = NULL; 5339 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5340 int error = ath_rxbuf_init(sc, bf); 5341 if (error != 0) { 5342 DPRINTF(sc, ATH_DEBUG_RECV, 5343 "%s: ath_rxbuf_init failed %d\n", 5344 __func__, error); 5345 return error; 5346 } 5347 } 5348 5349 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5350 ath_hal_putrxbuf(ah, bf->bf_daddr); 5351 ath_hal_rxena(ah); /* enable recv descriptors */ 5352 ath_mode_init(sc); /* set filters, etc. */ 5353 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5354 return 0; 5355 } 5356 5357 /* 5358 * Update internal state after a channel change. 5359 */ 5360 static void 5361 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5362 { 5363 enum ieee80211_phymode mode; 5364 5365 /* 5366 * Change channels and update the h/w rate map 5367 * if we're switching; e.g. 11a to 11b/g. 5368 */ 5369 mode = ieee80211_chan2mode(chan); 5370 if (mode != sc->sc_curmode) 5371 ath_setcurmode(sc, mode); 5372 sc->sc_curchan = chan; 5373 } 5374 5375 /* 5376 * Set/change channels. If the channel is really being changed, 5377 * it's done by resetting the chip. To accomplish this we must 5378 * first cleanup any pending DMA, then restart stuff after a la 5379 * ath_init. 5380 */ 5381 static int 5382 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5383 { 5384 struct ifnet *ifp = sc->sc_ifp; 5385 struct ieee80211com *ic = ifp->if_l2com; 5386 struct ath_hal *ah = sc->sc_ah; 5387 int ret = 0; 5388 5389 /* Treat this as an interface reset */ 5390 ATH_PCU_LOCK(sc); 5391 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 5392 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 5393 if (ath_reset_grablock(sc, 1) == 0) { 5394 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5395 __func__); 5396 } 5397 ATH_PCU_UNLOCK(sc); 5398 5399 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5400 __func__, ieee80211_chan2ieee(ic, chan), 5401 chan->ic_freq, chan->ic_flags); 5402 if (chan != sc->sc_curchan) { 5403 HAL_STATUS status; 5404 /* 5405 * To switch channels clear any pending DMA operations; 5406 * wait long enough for the RX fifo to drain, reset the 5407 * hardware at the new frequency, and then re-enable 5408 * the relevant bits of the h/w. 5409 */ 5410 #if 0 5411 ath_hal_intrset(ah, 0); /* disable interrupts */ 5412 #endif 5413 ath_stoprecv(sc, 1); /* turn off frame recv */ 5414 /* 5415 * First, handle completed TX/RX frames. 5416 */ 5417 ath_rx_proc(sc, 0); 5418 ath_draintxq(sc, ATH_RESET_NOLOSS); 5419 /* 5420 * Next, flush the non-scheduled frames. 5421 */ 5422 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5423 5424 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5425 if_printf(ifp, "%s: unable to reset " 5426 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5427 __func__, ieee80211_chan2ieee(ic, chan), 5428 chan->ic_freq, chan->ic_flags, status); 5429 ret = EIO; 5430 goto finish; 5431 } 5432 sc->sc_diversity = ath_hal_getdiversity(ah); 5433 5434 /* Let DFS at it in case it's a DFS channel */ 5435 ath_dfs_radar_enable(sc, ic->ic_curchan); 5436 5437 /* 5438 * Re-enable rx framework. 5439 */ 5440 if (ath_startrecv(sc) != 0) { 5441 if_printf(ifp, "%s: unable to restart recv logic\n", 5442 __func__); 5443 ret = EIO; 5444 goto finish; 5445 } 5446 5447 /* 5448 * Change channels and update the h/w rate map 5449 * if we're switching; e.g. 11a to 11b/g. 5450 */ 5451 ath_chan_change(sc, chan); 5452 5453 /* 5454 * Reset clears the beacon timers; reset them 5455 * here if needed. 5456 */ 5457 if (sc->sc_beacons) { /* restart beacons */ 5458 #ifdef IEEE80211_SUPPORT_TDMA 5459 if (sc->sc_tdma) 5460 ath_tdma_config(sc, NULL); 5461 else 5462 #endif 5463 ath_beacon_config(sc, NULL); 5464 } 5465 5466 /* 5467 * Re-enable interrupts. 5468 */ 5469 #if 0 5470 ath_hal_intrset(ah, sc->sc_imask); 5471 #endif 5472 } 5473 5474 finish: 5475 ATH_PCU_LOCK(sc); 5476 sc->sc_inreset_cnt--; 5477 /* XXX only do this if sc_inreset_cnt == 0? */ 5478 ath_hal_intrset(ah, sc->sc_imask); 5479 ATH_PCU_UNLOCK(sc); 5480 5481 /* XXX do this inside of IF_LOCK? */ 5482 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5483 ath_txrx_start(sc); 5484 /* XXX ath_start? */ 5485 5486 return ret; 5487 } 5488 5489 /* 5490 * Periodically recalibrate the PHY to account 5491 * for temperature/environment changes. 5492 */ 5493 static void 5494 ath_calibrate(void *arg) 5495 { 5496 struct ath_softc *sc = arg; 5497 struct ath_hal *ah = sc->sc_ah; 5498 struct ifnet *ifp = sc->sc_ifp; 5499 struct ieee80211com *ic = ifp->if_l2com; 5500 HAL_BOOL longCal, isCalDone; 5501 HAL_BOOL aniCal, shortCal = AH_FALSE; 5502 int nextcal; 5503 5504 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5505 goto restart; 5506 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5507 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5508 if (sc->sc_doresetcal) 5509 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5510 5511 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5512 if (aniCal) { 5513 sc->sc_stats.ast_ani_cal++; 5514 sc->sc_lastani = ticks; 5515 ath_hal_ani_poll(ah, sc->sc_curchan); 5516 } 5517 5518 if (longCal) { 5519 sc->sc_stats.ast_per_cal++; 5520 sc->sc_lastlongcal = ticks; 5521 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5522 /* 5523 * Rfgain is out of bounds, reset the chip 5524 * to load new gain values. 5525 */ 5526 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5527 "%s: rfgain change\n", __func__); 5528 sc->sc_stats.ast_per_rfgain++; 5529 /* 5530 * Drop lock - we can't hold it across the 5531 * ath_reset() call. Instead, we'll drop 5532 * out here, do a reset, then reschedule 5533 * the callout. 5534 */ 5535 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5536 sc->sc_resetcal = 0; 5537 sc->sc_doresetcal = AH_TRUE; 5538 ATH_UNLOCK(sc); 5539 ath_reset(ifp, ATH_RESET_NOLOSS); 5540 ATH_LOCK(sc); 5541 return; 5542 } 5543 /* 5544 * If this long cal is after an idle period, then 5545 * reset the data collection state so we start fresh. 5546 */ 5547 if (sc->sc_resetcal) { 5548 (void) ath_hal_calreset(ah, sc->sc_curchan); 5549 sc->sc_lastcalreset = ticks; 5550 sc->sc_lastshortcal = ticks; 5551 sc->sc_resetcal = 0; 5552 sc->sc_doresetcal = AH_TRUE; 5553 } 5554 } 5555 5556 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5557 if (shortCal || longCal) { 5558 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5559 if (longCal) { 5560 /* 5561 * Calibrate noise floor data again in case of change. 5562 */ 5563 ath_hal_process_noisefloor(ah); 5564 } 5565 } else { 5566 DPRINTF(sc, ATH_DEBUG_ANY, 5567 "%s: calibration of channel %u failed\n", 5568 __func__, sc->sc_curchan->ic_freq); 5569 sc->sc_stats.ast_per_calfail++; 5570 } 5571 if (shortCal) 5572 sc->sc_lastshortcal = ticks; 5573 } 5574 if (!isCalDone) { 5575 restart: 5576 /* 5577 * Use a shorter interval to potentially collect multiple 5578 * data samples required to complete calibration. Once 5579 * we're told the work is done we drop back to a longer 5580 * interval between requests. We're more aggressive doing 5581 * work when operating as an AP to improve operation right 5582 * after startup. 5583 */ 5584 sc->sc_lastshortcal = ticks; 5585 nextcal = ath_shortcalinterval*hz/1000; 5586 if (sc->sc_opmode != HAL_M_HOSTAP) 5587 nextcal *= 10; 5588 sc->sc_doresetcal = AH_TRUE; 5589 } else { 5590 /* nextcal should be the shortest time for next event */ 5591 nextcal = ath_longcalinterval*hz; 5592 if (sc->sc_lastcalreset == 0) 5593 sc->sc_lastcalreset = sc->sc_lastlongcal; 5594 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5595 sc->sc_resetcal = 1; /* setup reset next trip */ 5596 sc->sc_doresetcal = AH_FALSE; 5597 } 5598 /* ANI calibration may occur more often than short/long/resetcal */ 5599 if (ath_anicalinterval > 0) 5600 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5601 5602 if (nextcal != 0) { 5603 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5604 __func__, nextcal, isCalDone ? "" : "!"); 5605 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5606 } else { 5607 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5608 __func__); 5609 /* NB: don't rearm timer */ 5610 } 5611 } 5612 5613 static void 5614 ath_scan_start(struct ieee80211com *ic) 5615 { 5616 struct ifnet *ifp = ic->ic_ifp; 5617 struct ath_softc *sc = ifp->if_softc; 5618 struct ath_hal *ah = sc->sc_ah; 5619 u_int32_t rfilt; 5620 5621 /* XXX calibration timer? */ 5622 5623 sc->sc_scanning = 1; 5624 sc->sc_syncbeacon = 0; 5625 rfilt = ath_calcrxfilter(sc); 5626 ath_hal_setrxfilter(ah, rfilt); 5627 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5628 5629 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5630 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5631 } 5632 5633 static void 5634 ath_scan_end(struct ieee80211com *ic) 5635 { 5636 struct ifnet *ifp = ic->ic_ifp; 5637 struct ath_softc *sc = ifp->if_softc; 5638 struct ath_hal *ah = sc->sc_ah; 5639 u_int32_t rfilt; 5640 5641 sc->sc_scanning = 0; 5642 rfilt = ath_calcrxfilter(sc); 5643 ath_hal_setrxfilter(ah, rfilt); 5644 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5645 5646 ath_hal_process_noisefloor(ah); 5647 5648 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5649 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5650 sc->sc_curaid); 5651 } 5652 5653 static void 5654 ath_set_channel(struct ieee80211com *ic) 5655 { 5656 struct ifnet *ifp = ic->ic_ifp; 5657 struct ath_softc *sc = ifp->if_softc; 5658 5659 (void) ath_chan_set(sc, ic->ic_curchan); 5660 /* 5661 * If we are returning to our bss channel then mark state 5662 * so the next recv'd beacon's tsf will be used to sync the 5663 * beacon timers. Note that since we only hear beacons in 5664 * sta/ibss mode this has no effect in other operating modes. 5665 */ 5666 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5667 sc->sc_syncbeacon = 1; 5668 } 5669 5670 /* 5671 * Walk the vap list and check if there any vap's in RUN state. 5672 */ 5673 static int 5674 ath_isanyrunningvaps(struct ieee80211vap *this) 5675 { 5676 struct ieee80211com *ic = this->iv_ic; 5677 struct ieee80211vap *vap; 5678 5679 IEEE80211_LOCK_ASSERT(ic); 5680 5681 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5682 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5683 return 1; 5684 } 5685 return 0; 5686 } 5687 5688 static int 5689 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5690 { 5691 struct ieee80211com *ic = vap->iv_ic; 5692 struct ath_softc *sc = ic->ic_ifp->if_softc; 5693 struct ath_vap *avp = ATH_VAP(vap); 5694 struct ath_hal *ah = sc->sc_ah; 5695 struct ieee80211_node *ni = NULL; 5696 int i, error, stamode; 5697 u_int32_t rfilt; 5698 int csa_run_transition = 0; 5699 static const HAL_LED_STATE leds[] = { 5700 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5701 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5702 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5703 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5704 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5705 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5706 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5707 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5708 }; 5709 5710 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5711 ieee80211_state_name[vap->iv_state], 5712 ieee80211_state_name[nstate]); 5713 5714 /* 5715 * net80211 _should_ have the comlock asserted at this point. 5716 * There are some comments around the calls to vap->iv_newstate 5717 * which indicate that it (newstate) may end up dropping the 5718 * lock. This and the subsequent lock assert check after newstate 5719 * are an attempt to catch these and figure out how/why. 5720 */ 5721 IEEE80211_LOCK_ASSERT(ic); 5722 5723 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5724 csa_run_transition = 1; 5725 5726 callout_drain(&sc->sc_cal_ch); 5727 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5728 5729 if (nstate == IEEE80211_S_SCAN) { 5730 /* 5731 * Scanning: turn off beacon miss and don't beacon. 5732 * Mark beacon state so when we reach RUN state we'll 5733 * [re]setup beacons. Unblock the task q thread so 5734 * deferred interrupt processing is done. 5735 */ 5736 ath_hal_intrset(ah, 5737 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5738 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5739 sc->sc_beacons = 0; 5740 taskqueue_unblock(sc->sc_tq); 5741 } 5742 5743 ni = ieee80211_ref_node(vap->iv_bss); 5744 rfilt = ath_calcrxfilter(sc); 5745 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5746 vap->iv_opmode == IEEE80211_M_AHDEMO || 5747 vap->iv_opmode == IEEE80211_M_IBSS); 5748 if (stamode && nstate == IEEE80211_S_RUN) { 5749 sc->sc_curaid = ni->ni_associd; 5750 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5751 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5752 } 5753 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5754 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5755 ath_hal_setrxfilter(ah, rfilt); 5756 5757 /* XXX is this to restore keycache on resume? */ 5758 if (vap->iv_opmode != IEEE80211_M_STA && 5759 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5760 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5761 if (ath_hal_keyisvalid(ah, i)) 5762 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5763 } 5764 5765 /* 5766 * Invoke the parent method to do net80211 work. 5767 */ 5768 error = avp->av_newstate(vap, nstate, arg); 5769 if (error != 0) 5770 goto bad; 5771 5772 /* 5773 * See above: ensure av_newstate() doesn't drop the lock 5774 * on us. 5775 */ 5776 IEEE80211_LOCK_ASSERT(ic); 5777 5778 if (nstate == IEEE80211_S_RUN) { 5779 /* NB: collect bss node again, it may have changed */ 5780 ieee80211_free_node(ni); 5781 ni = ieee80211_ref_node(vap->iv_bss); 5782 5783 DPRINTF(sc, ATH_DEBUG_STATE, 5784 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5785 "capinfo 0x%04x chan %d\n", __func__, 5786 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5787 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5788 5789 switch (vap->iv_opmode) { 5790 #ifdef IEEE80211_SUPPORT_TDMA 5791 case IEEE80211_M_AHDEMO: 5792 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5793 break; 5794 /* fall thru... */ 5795 #endif 5796 case IEEE80211_M_HOSTAP: 5797 case IEEE80211_M_IBSS: 5798 case IEEE80211_M_MBSS: 5799 /* 5800 * Allocate and setup the beacon frame. 5801 * 5802 * Stop any previous beacon DMA. This may be 5803 * necessary, for example, when an ibss merge 5804 * causes reconfiguration; there will be a state 5805 * transition from RUN->RUN that means we may 5806 * be called with beacon transmission active. 5807 */ 5808 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5809 5810 error = ath_beacon_alloc(sc, ni); 5811 if (error != 0) 5812 goto bad; 5813 /* 5814 * If joining an adhoc network defer beacon timer 5815 * configuration to the next beacon frame so we 5816 * have a current TSF to use. Otherwise we're 5817 * starting an ibss/bss so there's no need to delay; 5818 * if this is the first vap moving to RUN state, then 5819 * beacon state needs to be [re]configured. 5820 */ 5821 if (vap->iv_opmode == IEEE80211_M_IBSS && 5822 ni->ni_tstamp.tsf != 0) { 5823 sc->sc_syncbeacon = 1; 5824 } else if (!sc->sc_beacons) { 5825 #ifdef IEEE80211_SUPPORT_TDMA 5826 if (vap->iv_caps & IEEE80211_C_TDMA) 5827 ath_tdma_config(sc, vap); 5828 else 5829 #endif 5830 ath_beacon_config(sc, vap); 5831 sc->sc_beacons = 1; 5832 } 5833 break; 5834 case IEEE80211_M_STA: 5835 /* 5836 * Defer beacon timer configuration to the next 5837 * beacon frame so we have a current TSF to use 5838 * (any TSF collected when scanning is likely old). 5839 * However if it's due to a CSA -> RUN transition, 5840 * force a beacon update so we pick up a lack of 5841 * beacons from an AP in CAC and thus force a 5842 * scan. 5843 */ 5844 sc->sc_syncbeacon = 1; 5845 if (csa_run_transition) 5846 ath_beacon_config(sc, vap); 5847 break; 5848 case IEEE80211_M_MONITOR: 5849 /* 5850 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5851 * transitions so we must re-enable interrupts here to 5852 * handle the case of a single monitor mode vap. 5853 */ 5854 ath_hal_intrset(ah, sc->sc_imask); 5855 break; 5856 case IEEE80211_M_WDS: 5857 break; 5858 default: 5859 break; 5860 } 5861 /* 5862 * Let the hal process statistics collected during a 5863 * scan so it can provide calibrated noise floor data. 5864 */ 5865 ath_hal_process_noisefloor(ah); 5866 /* 5867 * Reset rssi stats; maybe not the best place... 5868 */ 5869 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5870 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5871 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5872 /* 5873 * Finally, start any timers and the task q thread 5874 * (in case we didn't go through SCAN state). 5875 */ 5876 if (ath_longcalinterval != 0) { 5877 /* start periodic recalibration timer */ 5878 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5879 } else { 5880 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5881 "%s: calibration disabled\n", __func__); 5882 } 5883 taskqueue_unblock(sc->sc_tq); 5884 } else if (nstate == IEEE80211_S_INIT) { 5885 /* 5886 * If there are no vaps left in RUN state then 5887 * shutdown host/driver operation: 5888 * o disable interrupts 5889 * o disable the task queue thread 5890 * o mark beacon processing as stopped 5891 */ 5892 if (!ath_isanyrunningvaps(vap)) { 5893 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5894 /* disable interrupts */ 5895 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5896 taskqueue_block(sc->sc_tq); 5897 sc->sc_beacons = 0; 5898 } 5899 #ifdef IEEE80211_SUPPORT_TDMA 5900 ath_hal_setcca(ah, AH_TRUE); 5901 #endif 5902 } 5903 bad: 5904 ieee80211_free_node(ni); 5905 return error; 5906 } 5907 5908 /* 5909 * Allocate a key cache slot to the station so we can 5910 * setup a mapping from key index to node. The key cache 5911 * slot is needed for managing antenna state and for 5912 * compression when stations do not use crypto. We do 5913 * it uniliaterally here; if crypto is employed this slot 5914 * will be reassigned. 5915 */ 5916 static void 5917 ath_setup_stationkey(struct ieee80211_node *ni) 5918 { 5919 struct ieee80211vap *vap = ni->ni_vap; 5920 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5921 ieee80211_keyix keyix, rxkeyix; 5922 5923 /* XXX should take a locked ref to vap->iv_bss */ 5924 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5925 /* 5926 * Key cache is full; we'll fall back to doing 5927 * the more expensive lookup in software. Note 5928 * this also means no h/w compression. 5929 */ 5930 /* XXX msg+statistic */ 5931 } else { 5932 /* XXX locking? */ 5933 ni->ni_ucastkey.wk_keyix = keyix; 5934 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5935 /* NB: must mark device key to get called back on delete */ 5936 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5937 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5938 /* NB: this will create a pass-thru key entry */ 5939 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5940 } 5941 } 5942 5943 /* 5944 * Setup driver-specific state for a newly associated node. 5945 * Note that we're called also on a re-associate, the isnew 5946 * param tells us if this is the first time or not. 5947 */ 5948 static void 5949 ath_newassoc(struct ieee80211_node *ni, int isnew) 5950 { 5951 struct ath_node *an = ATH_NODE(ni); 5952 struct ieee80211vap *vap = ni->ni_vap; 5953 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5954 const struct ieee80211_txparam *tp = ni->ni_txparms; 5955 5956 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5957 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5958 5959 ath_rate_newassoc(sc, an, isnew); 5960 if (isnew && 5961 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5962 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5963 ath_setup_stationkey(ni); 5964 } 5965 5966 static int 5967 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5968 int nchans, struct ieee80211_channel chans[]) 5969 { 5970 struct ath_softc *sc = ic->ic_ifp->if_softc; 5971 struct ath_hal *ah = sc->sc_ah; 5972 HAL_STATUS status; 5973 5974 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5975 "%s: rd %u cc %u location %c%s\n", 5976 __func__, reg->regdomain, reg->country, reg->location, 5977 reg->ecm ? " ecm" : ""); 5978 5979 status = ath_hal_set_channels(ah, chans, nchans, 5980 reg->country, reg->regdomain); 5981 if (status != HAL_OK) { 5982 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5983 __func__, status); 5984 return EINVAL; /* XXX */ 5985 } 5986 5987 return 0; 5988 } 5989 5990 static void 5991 ath_getradiocaps(struct ieee80211com *ic, 5992 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5993 { 5994 struct ath_softc *sc = ic->ic_ifp->if_softc; 5995 struct ath_hal *ah = sc->sc_ah; 5996 5997 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5998 __func__, SKU_DEBUG, CTRY_DEFAULT); 5999 6000 /* XXX check return */ 6001 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6002 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6003 6004 } 6005 6006 static int 6007 ath_getchannels(struct ath_softc *sc) 6008 { 6009 struct ifnet *ifp = sc->sc_ifp; 6010 struct ieee80211com *ic = ifp->if_l2com; 6011 struct ath_hal *ah = sc->sc_ah; 6012 HAL_STATUS status; 6013 6014 /* 6015 * Collect channel set based on EEPROM contents. 6016 */ 6017 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6018 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6019 if (status != HAL_OK) { 6020 if_printf(ifp, "%s: unable to collect channel list from hal, " 6021 "status %d\n", __func__, status); 6022 return EINVAL; 6023 } 6024 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6025 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6026 /* XXX map Atheros sku's to net80211 SKU's */ 6027 /* XXX net80211 types too small */ 6028 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6029 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6030 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6031 ic->ic_regdomain.isocc[1] = ' '; 6032 6033 ic->ic_regdomain.ecm = 1; 6034 ic->ic_regdomain.location = 'I'; 6035 6036 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6037 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6038 __func__, sc->sc_eerd, sc->sc_eecc, 6039 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6040 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6041 return 0; 6042 } 6043 6044 static int 6045 ath_rate_setup(struct ath_softc *sc, u_int mode) 6046 { 6047 struct ath_hal *ah = sc->sc_ah; 6048 const HAL_RATE_TABLE *rt; 6049 6050 switch (mode) { 6051 case IEEE80211_MODE_11A: 6052 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6053 break; 6054 case IEEE80211_MODE_HALF: 6055 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6056 break; 6057 case IEEE80211_MODE_QUARTER: 6058 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6059 break; 6060 case IEEE80211_MODE_11B: 6061 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6062 break; 6063 case IEEE80211_MODE_11G: 6064 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6065 break; 6066 case IEEE80211_MODE_TURBO_A: 6067 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6068 break; 6069 case IEEE80211_MODE_TURBO_G: 6070 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6071 break; 6072 case IEEE80211_MODE_STURBO_A: 6073 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6074 break; 6075 case IEEE80211_MODE_11NA: 6076 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6077 break; 6078 case IEEE80211_MODE_11NG: 6079 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6080 break; 6081 default: 6082 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6083 __func__, mode); 6084 return 0; 6085 } 6086 sc->sc_rates[mode] = rt; 6087 return (rt != NULL); 6088 } 6089 6090 static void 6091 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6092 { 6093 #define N(a) (sizeof(a)/sizeof(a[0])) 6094 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6095 static const struct { 6096 u_int rate; /* tx/rx 802.11 rate */ 6097 u_int16_t timeOn; /* LED on time (ms) */ 6098 u_int16_t timeOff; /* LED off time (ms) */ 6099 } blinkrates[] = { 6100 { 108, 40, 10 }, 6101 { 96, 44, 11 }, 6102 { 72, 50, 13 }, 6103 { 48, 57, 14 }, 6104 { 36, 67, 16 }, 6105 { 24, 80, 20 }, 6106 { 22, 100, 25 }, 6107 { 18, 133, 34 }, 6108 { 12, 160, 40 }, 6109 { 10, 200, 50 }, 6110 { 6, 240, 58 }, 6111 { 4, 267, 66 }, 6112 { 2, 400, 100 }, 6113 { 0, 500, 130 }, 6114 /* XXX half/quarter rates */ 6115 }; 6116 const HAL_RATE_TABLE *rt; 6117 int i, j; 6118 6119 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6120 rt = sc->sc_rates[mode]; 6121 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6122 for (i = 0; i < rt->rateCount; i++) { 6123 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6124 if (rt->info[i].phy != IEEE80211_T_HT) 6125 sc->sc_rixmap[ieeerate] = i; 6126 else 6127 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6128 } 6129 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6130 for (i = 0; i < N(sc->sc_hwmap); i++) { 6131 if (i >= rt->rateCount) { 6132 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6133 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6134 continue; 6135 } 6136 sc->sc_hwmap[i].ieeerate = 6137 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6138 if (rt->info[i].phy == IEEE80211_T_HT) 6139 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6140 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6141 if (rt->info[i].shortPreamble || 6142 rt->info[i].phy == IEEE80211_T_OFDM) 6143 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6144 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6145 for (j = 0; j < N(blinkrates)-1; j++) 6146 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6147 break; 6148 /* NB: this uses the last entry if the rate isn't found */ 6149 /* XXX beware of overlow */ 6150 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6151 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6152 } 6153 sc->sc_currates = rt; 6154 sc->sc_curmode = mode; 6155 /* 6156 * All protection frames are transmited at 2Mb/s for 6157 * 11g, otherwise at 1Mb/s. 6158 */ 6159 if (mode == IEEE80211_MODE_11G) 6160 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6161 else 6162 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6163 /* NB: caller is responsible for resetting rate control state */ 6164 #undef N 6165 } 6166 6167 static void 6168 ath_watchdog(void *arg) 6169 { 6170 struct ath_softc *sc = arg; 6171 int do_reset = 0; 6172 6173 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6174 struct ifnet *ifp = sc->sc_ifp; 6175 uint32_t hangs; 6176 6177 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6178 hangs != 0) { 6179 if_printf(ifp, "%s hang detected (0x%x)\n", 6180 hangs & 0xff ? "bb" : "mac", hangs); 6181 } else 6182 if_printf(ifp, "device timeout\n"); 6183 do_reset = 1; 6184 ifp->if_oerrors++; 6185 sc->sc_stats.ast_watchdog++; 6186 } 6187 6188 /* 6189 * We can't hold the lock across the ath_reset() call. 6190 */ 6191 if (do_reset) { 6192 ATH_UNLOCK(sc); 6193 ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS); 6194 ATH_LOCK(sc); 6195 } 6196 6197 callout_schedule(&sc->sc_wd_ch, hz); 6198 } 6199 6200 #ifdef ATH_DIAGAPI 6201 /* 6202 * Diagnostic interface to the HAL. This is used by various 6203 * tools to do things like retrieve register contents for 6204 * debugging. The mechanism is intentionally opaque so that 6205 * it can change frequently w/o concern for compatiblity. 6206 */ 6207 static int 6208 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6209 { 6210 struct ath_hal *ah = sc->sc_ah; 6211 u_int id = ad->ad_id & ATH_DIAG_ID; 6212 void *indata = NULL; 6213 void *outdata = NULL; 6214 u_int32_t insize = ad->ad_in_size; 6215 u_int32_t outsize = ad->ad_out_size; 6216 int error = 0; 6217 6218 if (ad->ad_id & ATH_DIAG_IN) { 6219 /* 6220 * Copy in data. 6221 */ 6222 indata = malloc(insize, M_TEMP, M_NOWAIT); 6223 if (indata == NULL) { 6224 error = ENOMEM; 6225 goto bad; 6226 } 6227 error = copyin(ad->ad_in_data, indata, insize); 6228 if (error) 6229 goto bad; 6230 } 6231 if (ad->ad_id & ATH_DIAG_DYN) { 6232 /* 6233 * Allocate a buffer for the results (otherwise the HAL 6234 * returns a pointer to a buffer where we can read the 6235 * results). Note that we depend on the HAL leaving this 6236 * pointer for us to use below in reclaiming the buffer; 6237 * may want to be more defensive. 6238 */ 6239 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6240 if (outdata == NULL) { 6241 error = ENOMEM; 6242 goto bad; 6243 } 6244 } 6245 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6246 if (outsize < ad->ad_out_size) 6247 ad->ad_out_size = outsize; 6248 if (outdata != NULL) 6249 error = copyout(outdata, ad->ad_out_data, 6250 ad->ad_out_size); 6251 } else { 6252 error = EINVAL; 6253 } 6254 bad: 6255 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6256 free(indata, M_TEMP); 6257 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6258 free(outdata, M_TEMP); 6259 return error; 6260 } 6261 #endif /* ATH_DIAGAPI */ 6262 6263 static int 6264 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6265 { 6266 #define IS_RUNNING(ifp) \ 6267 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6268 struct ath_softc *sc = ifp->if_softc; 6269 struct ieee80211com *ic = ifp->if_l2com; 6270 struct ifreq *ifr = (struct ifreq *)data; 6271 const HAL_RATE_TABLE *rt; 6272 int error = 0; 6273 6274 switch (cmd) { 6275 case SIOCSIFFLAGS: 6276 ATH_LOCK(sc); 6277 if (IS_RUNNING(ifp)) { 6278 /* 6279 * To avoid rescanning another access point, 6280 * do not call ath_init() here. Instead, 6281 * only reflect promisc mode settings. 6282 */ 6283 ath_mode_init(sc); 6284 } else if (ifp->if_flags & IFF_UP) { 6285 /* 6286 * Beware of being called during attach/detach 6287 * to reset promiscuous mode. In that case we 6288 * will still be marked UP but not RUNNING. 6289 * However trying to re-init the interface 6290 * is the wrong thing to do as we've already 6291 * torn down much of our state. There's 6292 * probably a better way to deal with this. 6293 */ 6294 if (!sc->sc_invalid) 6295 ath_init(sc); /* XXX lose error */ 6296 } else { 6297 ath_stop_locked(ifp); 6298 #ifdef notyet 6299 /* XXX must wakeup in places like ath_vap_delete */ 6300 if (!sc->sc_invalid) 6301 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6302 #endif 6303 } 6304 ATH_UNLOCK(sc); 6305 break; 6306 case SIOCGIFMEDIA: 6307 case SIOCSIFMEDIA: 6308 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6309 break; 6310 case SIOCGATHSTATS: 6311 /* NB: embed these numbers to get a consistent view */ 6312 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6313 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6314 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6315 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6316 #ifdef IEEE80211_SUPPORT_TDMA 6317 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6318 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6319 #endif 6320 rt = sc->sc_currates; 6321 sc->sc_stats.ast_tx_rate = 6322 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6323 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6324 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6325 return copyout(&sc->sc_stats, 6326 ifr->ifr_data, sizeof (sc->sc_stats)); 6327 case SIOCZATHSTATS: 6328 error = priv_check(curthread, PRIV_DRIVER); 6329 if (error == 0) 6330 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6331 break; 6332 #ifdef ATH_DIAGAPI 6333 case SIOCGATHDIAG: 6334 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6335 break; 6336 case SIOCGATHPHYERR: 6337 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6338 break; 6339 #endif 6340 case SIOCGIFADDR: 6341 error = ether_ioctl(ifp, cmd, data); 6342 break; 6343 default: 6344 error = EINVAL; 6345 break; 6346 } 6347 return error; 6348 #undef IS_RUNNING 6349 } 6350 6351 /* 6352 * Announce various information on device/driver attach. 6353 */ 6354 static void 6355 ath_announce(struct ath_softc *sc) 6356 { 6357 struct ifnet *ifp = sc->sc_ifp; 6358 struct ath_hal *ah = sc->sc_ah; 6359 6360 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6361 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6362 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6363 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6364 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6365 if (bootverbose) { 6366 int i; 6367 for (i = 0; i <= WME_AC_VO; i++) { 6368 struct ath_txq *txq = sc->sc_ac2q[i]; 6369 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6370 txq->axq_qnum, ieee80211_wme_acnames[i]); 6371 } 6372 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6373 sc->sc_cabq->axq_qnum); 6374 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6375 } 6376 if (ath_rxbuf != ATH_RXBUF) 6377 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6378 if (ath_txbuf != ATH_TXBUF) 6379 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6380 if (sc->sc_mcastkey && bootverbose) 6381 if_printf(ifp, "using multicast key search\n"); 6382 } 6383 6384 #ifdef IEEE80211_SUPPORT_TDMA 6385 static void 6386 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6387 { 6388 struct ath_hal *ah = sc->sc_ah; 6389 HAL_BEACON_TIMERS bt; 6390 6391 bt.bt_intval = bintval | HAL_BEACON_ENA; 6392 bt.bt_nexttbtt = nexttbtt; 6393 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6394 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6395 bt.bt_nextatim = nexttbtt+1; 6396 /* Enables TBTT, DBA, SWBA timers by default */ 6397 bt.bt_flags = 0; 6398 ath_hal_beaconsettimers(ah, &bt); 6399 } 6400 6401 /* 6402 * Calculate the beacon interval. This is periodic in the 6403 * superframe for the bss. We assume each station is configured 6404 * identically wrt transmit rate so the guard time we calculate 6405 * above will be the same on all stations. Note we need to 6406 * factor in the xmit time because the hardware will schedule 6407 * a frame for transmit if the start of the frame is within 6408 * the burst time. When we get hardware that properly kills 6409 * frames in the PCU we can reduce/eliminate the guard time. 6410 * 6411 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6412 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6413 * with 1us timer granularity should allow us to reduce/eliminate 6414 * this. 6415 */ 6416 static void 6417 ath_tdma_bintvalsetup(struct ath_softc *sc, 6418 const struct ieee80211_tdma_state *tdma) 6419 { 6420 /* copy from vap state (XXX check all vaps have same value?) */ 6421 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6422 6423 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6424 tdma->tdma_slotcnt, 1024); 6425 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6426 if (sc->sc_tdmabintval & 1) 6427 sc->sc_tdmabintval++; 6428 6429 if (tdma->tdma_slot == 0) { 6430 /* 6431 * Only slot 0 beacons; other slots respond. 6432 */ 6433 sc->sc_imask |= HAL_INT_SWBA; 6434 sc->sc_tdmaswba = 0; /* beacon immediately */ 6435 } else { 6436 /* XXX all vaps must be slot 0 or slot !0 */ 6437 sc->sc_imask &= ~HAL_INT_SWBA; 6438 } 6439 } 6440 6441 /* 6442 * Max 802.11 overhead. This assumes no 4-address frames and 6443 * the encapsulation done by ieee80211_encap (llc). We also 6444 * include potential crypto overhead. 6445 */ 6446 #define IEEE80211_MAXOVERHEAD \ 6447 (sizeof(struct ieee80211_qosframe) \ 6448 + sizeof(struct llc) \ 6449 + IEEE80211_ADDR_LEN \ 6450 + IEEE80211_WEP_IVLEN \ 6451 + IEEE80211_WEP_KIDLEN \ 6452 + IEEE80211_WEP_CRCLEN \ 6453 + IEEE80211_WEP_MICLEN \ 6454 + IEEE80211_CRC_LEN) 6455 6456 /* 6457 * Setup initially for tdma operation. Start the beacon 6458 * timers and enable SWBA if we are slot 0. Otherwise 6459 * we wait for slot 0 to arrive so we can sync up before 6460 * starting to transmit. 6461 */ 6462 static void 6463 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6464 { 6465 struct ath_hal *ah = sc->sc_ah; 6466 struct ifnet *ifp = sc->sc_ifp; 6467 struct ieee80211com *ic = ifp->if_l2com; 6468 const struct ieee80211_txparam *tp; 6469 const struct ieee80211_tdma_state *tdma = NULL; 6470 int rix; 6471 6472 if (vap == NULL) { 6473 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6474 if (vap == NULL) { 6475 if_printf(ifp, "%s: no vaps?\n", __func__); 6476 return; 6477 } 6478 } 6479 /* XXX should take a locked ref to iv_bss */ 6480 tp = vap->iv_bss->ni_txparms; 6481 /* 6482 * Calculate the guard time for each slot. This is the 6483 * time to send a maximal-size frame according to the 6484 * fixed/lowest transmit rate. Note that the interface 6485 * mtu does not include the 802.11 overhead so we must 6486 * tack that on (ath_hal_computetxtime includes the 6487 * preamble and plcp in it's calculation). 6488 */ 6489 tdma = vap->iv_tdma; 6490 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6491 rix = ath_tx_findrix(sc, tp->ucastrate); 6492 else 6493 rix = ath_tx_findrix(sc, tp->mcastrate); 6494 /* XXX short preamble assumed */ 6495 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6496 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6497 6498 ath_hal_intrset(ah, 0); 6499 6500 ath_beaconq_config(sc); /* setup h/w beacon q */ 6501 if (sc->sc_setcca) 6502 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6503 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6504 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6505 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6506 sc->sc_syncbeacon = 0; 6507 6508 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6509 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6510 6511 ath_hal_intrset(ah, sc->sc_imask); 6512 6513 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6514 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6515 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6516 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6517 sc->sc_tdmadbaprep); 6518 } 6519 6520 /* 6521 * Update tdma operation. Called from the 802.11 layer 6522 * when a beacon is received from the TDMA station operating 6523 * in the slot immediately preceding us in the bss. Use 6524 * the rx timestamp for the beacon frame to update our 6525 * beacon timers so we follow their schedule. Note that 6526 * by using the rx timestamp we implicitly include the 6527 * propagation delay in our schedule. 6528 */ 6529 static void 6530 ath_tdma_update(struct ieee80211_node *ni, 6531 const struct ieee80211_tdma_param *tdma, int changed) 6532 { 6533 #define TSF_TO_TU(_h,_l) \ 6534 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6535 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6536 struct ieee80211vap *vap = ni->ni_vap; 6537 struct ieee80211com *ic = ni->ni_ic; 6538 struct ath_softc *sc = ic->ic_ifp->if_softc; 6539 struct ath_hal *ah = sc->sc_ah; 6540 const HAL_RATE_TABLE *rt = sc->sc_currates; 6541 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6542 u_int32_t txtime, nextslottu; 6543 int32_t tudelta, tsfdelta; 6544 const struct ath_rx_status *rs; 6545 int rix; 6546 6547 sc->sc_stats.ast_tdma_update++; 6548 6549 /* 6550 * Check for and adopt configuration changes. 6551 */ 6552 if (changed != 0) { 6553 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6554 6555 ath_tdma_bintvalsetup(sc, ts); 6556 if (changed & TDMA_UPDATE_SLOTLEN) 6557 ath_wme_update(ic); 6558 6559 DPRINTF(sc, ATH_DEBUG_TDMA, 6560 "%s: adopt slot %u slotcnt %u slotlen %u us " 6561 "bintval %u TU\n", __func__, 6562 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6563 sc->sc_tdmabintval); 6564 6565 /* XXX right? */ 6566 ath_hal_intrset(ah, sc->sc_imask); 6567 /* NB: beacon timers programmed below */ 6568 } 6569 6570 /* extend rx timestamp to 64 bits */ 6571 rs = sc->sc_lastrs; 6572 tsf = ath_hal_gettsf64(ah); 6573 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6574 /* 6575 * The rx timestamp is set by the hardware on completing 6576 * reception (at the point where the rx descriptor is DMA'd 6577 * to the host). To find the start of our next slot we 6578 * must adjust this time by the time required to send 6579 * the packet just received. 6580 */ 6581 rix = rt->rateCodeToIndex[rs->rs_rate]; 6582 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6583 rt->info[rix].shortPreamble); 6584 /* NB: << 9 is to cvt to TU and /2 */ 6585 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6586 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6587 6588 /* 6589 * Retrieve the hardware NextTBTT in usecs 6590 * and calculate the difference between what the 6591 * other station thinks and what we have programmed. This 6592 * lets us figure how to adjust our timers to match. The 6593 * adjustments are done by pulling the TSF forward and possibly 6594 * rewriting the beacon timers. 6595 */ 6596 nexttbtt = ath_hal_getnexttbtt(ah); 6597 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6598 6599 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6600 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6601 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6602 6603 if (tsfdelta < 0) { 6604 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6605 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6606 tsfdelta = -tsfdelta % 1024; 6607 nextslottu++; 6608 } else if (tsfdelta > 0) { 6609 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6610 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6611 tsfdelta = 1024 - (tsfdelta % 1024); 6612 nextslottu++; 6613 } else { 6614 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6615 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6616 } 6617 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6618 6619 /* 6620 * Copy sender's timetstamp into tdma ie so they can 6621 * calculate roundtrip time. We submit a beacon frame 6622 * below after any timer adjustment. The frame goes out 6623 * at the next TBTT so the sender can calculate the 6624 * roundtrip by inspecting the tdma ie in our beacon frame. 6625 * 6626 * NB: This tstamp is subtlely preserved when 6627 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6628 * slot position changes) because ieee80211_add_tdma 6629 * skips over the data. 6630 */ 6631 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6632 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6633 &ni->ni_tstamp.data, 8); 6634 #if 0 6635 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6636 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6637 (unsigned long long) tsf, (unsigned long long) nextslot, 6638 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6639 #endif 6640 /* 6641 * Adjust the beacon timers only when pulling them forward 6642 * or when going back by less than the beacon interval. 6643 * Negative jumps larger than the beacon interval seem to 6644 * cause the timers to stop and generally cause instability. 6645 * This basically filters out jumps due to missed beacons. 6646 */ 6647 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6648 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6649 sc->sc_stats.ast_tdma_timers++; 6650 } 6651 if (tsfdelta > 0) { 6652 ath_hal_adjusttsf(ah, tsfdelta); 6653 sc->sc_stats.ast_tdma_tsf++; 6654 } 6655 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6656 #undef TU_TO_TSF 6657 #undef TSF_TO_TU 6658 } 6659 6660 /* 6661 * Transmit a beacon frame at SWBA. Dynamic updates 6662 * to the frame contents are done as needed. 6663 */ 6664 static void 6665 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6666 { 6667 struct ath_hal *ah = sc->sc_ah; 6668 struct ath_buf *bf; 6669 int otherant; 6670 6671 /* 6672 * Check if the previous beacon has gone out. If 6673 * not don't try to post another, skip this period 6674 * and wait for the next. Missed beacons indicate 6675 * a problem and should not occur. If we miss too 6676 * many consecutive beacons reset the device. 6677 */ 6678 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6679 sc->sc_bmisscount++; 6680 DPRINTF(sc, ATH_DEBUG_BEACON, 6681 "%s: missed %u consecutive beacons\n", 6682 __func__, sc->sc_bmisscount); 6683 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6684 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6685 return; 6686 } 6687 if (sc->sc_bmisscount != 0) { 6688 DPRINTF(sc, ATH_DEBUG_BEACON, 6689 "%s: resume beacon xmit after %u misses\n", 6690 __func__, sc->sc_bmisscount); 6691 sc->sc_bmisscount = 0; 6692 } 6693 6694 /* 6695 * Check recent per-antenna transmit statistics and flip 6696 * the default antenna if noticeably more frames went out 6697 * on the non-default antenna. 6698 * XXX assumes 2 anntenae 6699 */ 6700 if (!sc->sc_diversity) { 6701 otherant = sc->sc_defant & 1 ? 2 : 1; 6702 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6703 ath_setdefantenna(sc, otherant); 6704 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6705 } 6706 6707 bf = ath_beacon_generate(sc, vap); 6708 if (bf != NULL) { 6709 /* 6710 * Stop any current dma and put the new frame on the queue. 6711 * This should never fail since we check above that no frames 6712 * are still pending on the queue. 6713 */ 6714 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6715 DPRINTF(sc, ATH_DEBUG_ANY, 6716 "%s: beacon queue %u did not stop?\n", 6717 __func__, sc->sc_bhalq); 6718 /* NB: the HAL still stops DMA, so proceed */ 6719 } 6720 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6721 ath_hal_txstart(ah, sc->sc_bhalq); 6722 6723 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6724 6725 /* 6726 * Record local TSF for our last send for use 6727 * in arbitrating slot collisions. 6728 */ 6729 /* XXX should take a locked ref to iv_bss */ 6730 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6731 } 6732 } 6733 #endif /* IEEE80211_SUPPORT_TDMA */ 6734 6735 static void 6736 ath_dfs_tasklet(void *p, int npending) 6737 { 6738 struct ath_softc *sc = (struct ath_softc *) p; 6739 struct ifnet *ifp = sc->sc_ifp; 6740 struct ieee80211com *ic = ifp->if_l2com; 6741 6742 /* 6743 * If previous processing has found a radar event, 6744 * signal this to the net80211 layer to begin DFS 6745 * processing. 6746 */ 6747 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6748 /* DFS event found, initiate channel change */ 6749 /* 6750 * XXX doesn't currently tell us whether the event 6751 * XXX was found in the primary or extension 6752 * XXX channel! 6753 */ 6754 IEEE80211_LOCK(ic); 6755 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6756 IEEE80211_UNLOCK(ic); 6757 } 6758 } 6759 6760 MODULE_VERSION(if_ath, 1); 6761 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6762