xref: /freebsd/sys/dev/ath/if_ath.c (revision 9fd69f37d28cfd7438cac3eeb45fe9dd46b4d7dd)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 
62 #include <machine/bus.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_llc.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_regdomain.h>
74 #ifdef IEEE80211_SUPPORT_SUPERG
75 #include <net80211/ieee80211_superg.h>
76 #endif
77 #ifdef IEEE80211_SUPPORT_TDMA
78 #include <net80211/ieee80211_tdma.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #endif
87 
88 #include <dev/ath/if_athvar.h>
89 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
90 
91 #ifdef ATH_TX99_DIAG
92 #include <dev/ath/ath_tx99/ath_tx99.h>
93 #endif
94 
95 /*
96  * ATH_BCBUF determines the number of vap's that can transmit
97  * beacons and also (currently) the number of vap's that can
98  * have unique mac addresses/bssid.  When staggering beacons
99  * 4 is probably a good max as otherwise the beacons become
100  * very closely spaced and there is limited time for cab q traffic
101  * to go out.  You can burst beacons instead but that is not good
102  * for stations in power save and at some point you really want
103  * another radio (and channel).
104  *
105  * The limit on the number of mac addresses is tied to our use of
106  * the U/L bit and tracking addresses in a byte; it would be
107  * worthwhile to allow more for applications like proxy sta.
108  */
109 CTASSERT(ATH_BCBUF <= 8);
110 
111 /* unaligned little endian access */
112 #define LE_READ_2(p)							\
113 	((u_int16_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
115 #define LE_READ_4(p)							\
116 	((u_int32_t)							\
117 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
118 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
119 
120 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
121 		    const char name[IFNAMSIZ], int unit, int opmode,
122 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
123 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
124 static void	ath_vap_delete(struct ieee80211vap *);
125 static void	ath_init(void *);
126 static void	ath_stop_locked(struct ifnet *);
127 static void	ath_stop(struct ifnet *);
128 static void	ath_start(struct ifnet *);
129 static int	ath_reset(struct ifnet *);
130 static int	ath_reset_vap(struct ieee80211vap *, u_long);
131 static int	ath_media_change(struct ifnet *);
132 static void	ath_watchdog(void *);
133 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134 static void	ath_fatal_proc(void *, int);
135 static void	ath_bmiss_vap(struct ieee80211vap *);
136 static void	ath_bmiss_proc(void *, int);
137 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
138 			struct ieee80211_node *);
139 static int	ath_key_alloc(struct ieee80211vap *,
140 			struct ieee80211_key *,
141 			ieee80211_keyix *, ieee80211_keyix *);
142 static int	ath_key_delete(struct ieee80211vap *,
143 			const struct ieee80211_key *);
144 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
145 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
146 static void	ath_key_update_begin(struct ieee80211vap *);
147 static void	ath_key_update_end(struct ieee80211vap *);
148 static void	ath_update_mcast(struct ifnet *);
149 static void	ath_update_promisc(struct ifnet *);
150 static void	ath_mode_init(struct ath_softc *);
151 static void	ath_setslottime(struct ath_softc *);
152 static void	ath_updateslot(struct ifnet *);
153 static int	ath_beaconq_setup(struct ath_hal *);
154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void	ath_beacon_update(struct ieee80211vap *, int item);
156 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157 static void	ath_beacon_proc(void *, int);
158 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159 			struct ieee80211vap *);
160 static void	ath_bstuck_proc(void *, int);
161 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162 static void	ath_beacon_free(struct ath_softc *);
163 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164 static void	ath_descdma_cleanup(struct ath_softc *sc,
165 			struct ath_descdma *, ath_bufhead *);
166 static int	ath_desc_alloc(struct ath_softc *);
167 static void	ath_desc_free(struct ath_softc *);
168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169 			const uint8_t [IEEE80211_ADDR_LEN]);
170 static void	ath_node_free(struct ieee80211_node *);
171 static void	ath_node_getsignal(const struct ieee80211_node *,
172 			int8_t *, int8_t *);
173 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
174 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
175 			int subtype, int rssi, int nf);
176 static void	ath_setdefantenna(struct ath_softc *, u_int);
177 static void	ath_rx_proc(void *, int);
178 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
179 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
180 static int	ath_tx_setup(struct ath_softc *, int, int);
181 static int	ath_wme_update(struct ieee80211com *);
182 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
183 static void	ath_tx_cleanup(struct ath_softc *);
184 static void	ath_freetx(struct mbuf *);
185 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
186 			     struct ath_buf *, struct mbuf *);
187 static void	ath_tx_proc_q0(void *, int);
188 static void	ath_tx_proc_q0123(void *, int);
189 static void	ath_tx_proc(void *, int);
190 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
191 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192 static void	ath_draintxq(struct ath_softc *);
193 static void	ath_stoprecv(struct ath_softc *);
194 static int	ath_startrecv(struct ath_softc *);
195 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196 static void	ath_scan_start(struct ieee80211com *);
197 static void	ath_scan_end(struct ieee80211com *);
198 static void	ath_set_channel(struct ieee80211com *);
199 static void	ath_calibrate(void *);
200 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201 static void	ath_setup_stationkey(struct ieee80211_node *);
202 static void	ath_newassoc(struct ieee80211_node *, int);
203 static int	ath_setregdomain(struct ieee80211com *,
204 		    struct ieee80211_regdomain *, int,
205 		    struct ieee80211_channel []);
206 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
207 		    struct ieee80211_channel []);
208 static int	ath_getchannels(struct ath_softc *);
209 static void	ath_led_event(struct ath_softc *, int);
210 
211 static int	ath_rate_setup(struct ath_softc *, u_int mode);
212 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
213 
214 static void	ath_sysctlattach(struct ath_softc *);
215 static int	ath_raw_xmit(struct ieee80211_node *,
216 			struct mbuf *, const struct ieee80211_bpf_params *);
217 static void	ath_announce(struct ath_softc *);
218 
219 #ifdef IEEE80211_SUPPORT_TDMA
220 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
221 		    u_int32_t bintval);
222 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
223 		    const struct ieee80211_tdma_state *tdma);
224 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
225 static void	ath_tdma_update(struct ieee80211_node *ni,
226 		    const struct ieee80211_tdma_param *tdma, int);
227 static void	ath_tdma_beacon_send(struct ath_softc *sc,
228 		    struct ieee80211vap *vap);
229 
230 static __inline void
231 ath_hal_setcca(struct ath_hal *ah, int ena)
232 {
233 	/*
234 	 * NB: fill me in; this is not provided by default because disabling
235 	 *     CCA in most locales violates regulatory.
236 	 */
237 }
238 
239 static __inline int
240 ath_hal_getcca(struct ath_hal *ah)
241 {
242 	u_int32_t diag;
243 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
244 		return 1;
245 	return ((diag & 0x500000) == 0);
246 }
247 
248 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
249 #define	TDMA_LPF_LEN		6
250 #define	TDMA_DUMMY_MARKER	0x127
251 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
252 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
253 #define	TDMA_LPF(x, y, len) \
254     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
255 #define	TDMA_SAMPLE(x, y) do {					\
256 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
257 } while (0)
258 #define	TDMA_EP_RND(x,mul) \
259 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
260 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
261 #endif /* IEEE80211_SUPPORT_TDMA */
262 
263 SYSCTL_DECL(_hw_ath);
264 
265 /* XXX validate sysctl values */
266 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
267 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
268 	    0, "long chip calibration interval (secs)");
269 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
270 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
271 	    0, "short chip calibration interval (msecs)");
272 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
273 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
274 	    0, "reset chip calibration results (secs)");
275 
276 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
277 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
278 	    0, "rx buffers allocated");
279 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
280 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
281 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
282 	    0, "tx buffers allocated");
283 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
284 
285 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
286 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
287 	    0, "max missed beacon xmits before chip reset");
288 
289 #ifdef ATH_DEBUG
290 enum {
291 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
292 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
293 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
294 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
295 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
296 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
297 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
298 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
299 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
300 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
301 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
302 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
303 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
304 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
305 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
306 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
307 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
308 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
309 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
310 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
311 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
312 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
313 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
314 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
315 	ATH_DEBUG_ANY		= 0xffffffff
316 };
317 static	int ath_debug = 0;
318 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
319 	    0, "control debugging printfs");
320 TUNABLE_INT("hw.ath.debug", &ath_debug);
321 
322 #define	IFF_DUMPPKTS(sc, m) \
323 	((sc->sc_debug & (m)) || \
324 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
325 #define	DPRINTF(sc, m, fmt, ...) do {				\
326 	if (sc->sc_debug & (m))					\
327 		printf(fmt, __VA_ARGS__);			\
328 } while (0)
329 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
330 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
331 		ath_keyprint(sc, __func__, ix, hk, mac);	\
332 } while (0)
333 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
334 	u_int ix, int);
335 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
336 	u_int qnum, u_int ix, int done);
337 #else
338 #define	IFF_DUMPPKTS(sc, m) \
339 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
340 #define	DPRINTF(sc, m, fmt, ...) do {				\
341 	(void) sc;						\
342 } while (0)
343 #define	KEYPRINTF(sc, k, ix, mac) do {				\
344 	(void) sc;						\
345 } while (0)
346 #endif
347 
348 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
349 
350 int
351 ath_attach(u_int16_t devid, struct ath_softc *sc)
352 {
353 	struct ifnet *ifp;
354 	struct ieee80211com *ic;
355 	struct ath_hal *ah = NULL;
356 	HAL_STATUS status;
357 	int error = 0, i;
358 	u_int wmodes;
359 	uint8_t macaddr[IEEE80211_ADDR_LEN];
360 
361 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
362 
363 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
364 	if (ifp == NULL) {
365 		device_printf(sc->sc_dev, "can not if_alloc()\n");
366 		error = ENOSPC;
367 		goto bad;
368 	}
369 	ic = ifp->if_l2com;
370 
371 	/* set these up early for if_printf use */
372 	if_initname(ifp, device_get_name(sc->sc_dev),
373 		device_get_unit(sc->sc_dev));
374 
375 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
376 	if (ah == NULL) {
377 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
378 			status);
379 		error = ENXIO;
380 		goto bad;
381 	}
382 	sc->sc_ah = ah;
383 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
384 #ifdef	ATH_DEBUG
385 	sc->sc_debug = ath_debug;
386 #endif
387 
388 	/*
389 	 * Check if the MAC has multi-rate retry support.
390 	 * We do this by trying to setup a fake extended
391 	 * descriptor.  MAC's that don't have support will
392 	 * return false w/o doing anything.  MAC's that do
393 	 * support it will return true w/o doing anything.
394 	 */
395 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
396 
397 	/*
398 	 * Check if the device has hardware counters for PHY
399 	 * errors.  If so we need to enable the MIB interrupt
400 	 * so we can act on stat triggers.
401 	 */
402 	if (ath_hal_hwphycounters(ah))
403 		sc->sc_needmib = 1;
404 
405 	/*
406 	 * Get the hardware key cache size.
407 	 */
408 	sc->sc_keymax = ath_hal_keycachesize(ah);
409 	if (sc->sc_keymax > ATH_KEYMAX) {
410 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
411 			ATH_KEYMAX, sc->sc_keymax);
412 		sc->sc_keymax = ATH_KEYMAX;
413 	}
414 	/*
415 	 * Reset the key cache since some parts do not
416 	 * reset the contents on initial power up.
417 	 */
418 	for (i = 0; i < sc->sc_keymax; i++)
419 		ath_hal_keyreset(ah, i);
420 
421 	/*
422 	 * Collect the default channel list.
423 	 */
424 	error = ath_getchannels(sc);
425 	if (error != 0)
426 		goto bad;
427 
428 	/*
429 	 * Setup rate tables for all potential media types.
430 	 */
431 	ath_rate_setup(sc, IEEE80211_MODE_11A);
432 	ath_rate_setup(sc, IEEE80211_MODE_11B);
433 	ath_rate_setup(sc, IEEE80211_MODE_11G);
434 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
435 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
436 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
437 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
438 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
439 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
440 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
441 
442 	/* NB: setup here so ath_rate_update is happy */
443 	ath_setcurmode(sc, IEEE80211_MODE_11A);
444 
445 	/*
446 	 * Allocate tx+rx descriptors and populate the lists.
447 	 */
448 	error = ath_desc_alloc(sc);
449 	if (error != 0) {
450 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
451 		goto bad;
452 	}
453 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
454 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
455 
456 	ATH_TXBUF_LOCK_INIT(sc);
457 
458 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
459 		taskqueue_thread_enqueue, &sc->sc_tq);
460 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
461 		"%s taskq", ifp->if_xname);
462 
463 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
464 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
465 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
466 
467 	/*
468 	 * Allocate hardware transmit queues: one queue for
469 	 * beacon frames and one data queue for each QoS
470 	 * priority.  Note that the hal handles resetting
471 	 * these queues at the needed time.
472 	 *
473 	 * XXX PS-Poll
474 	 */
475 	sc->sc_bhalq = ath_beaconq_setup(ah);
476 	if (sc->sc_bhalq == (u_int) -1) {
477 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
478 		error = EIO;
479 		goto bad2;
480 	}
481 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
482 	if (sc->sc_cabq == NULL) {
483 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
484 		error = EIO;
485 		goto bad2;
486 	}
487 	/* NB: insure BK queue is the lowest priority h/w queue */
488 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
489 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
490 			ieee80211_wme_acnames[WME_AC_BK]);
491 		error = EIO;
492 		goto bad2;
493 	}
494 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
495 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
496 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
497 		/*
498 		 * Not enough hardware tx queues to properly do WME;
499 		 * just punt and assign them all to the same h/w queue.
500 		 * We could do a better job of this if, for example,
501 		 * we allocate queues when we switch from station to
502 		 * AP mode.
503 		 */
504 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
505 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
506 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
507 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
508 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
509 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
510 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
511 	}
512 
513 	/*
514 	 * Special case certain configurations.  Note the
515 	 * CAB queue is handled by these specially so don't
516 	 * include them when checking the txq setup mask.
517 	 */
518 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
519 	case 0x01:
520 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
521 		break;
522 	case 0x0f:
523 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
524 		break;
525 	default:
526 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
527 		break;
528 	}
529 
530 	/*
531 	 * Setup rate control.  Some rate control modules
532 	 * call back to change the anntena state so expose
533 	 * the necessary entry points.
534 	 * XXX maybe belongs in struct ath_ratectrl?
535 	 */
536 	sc->sc_setdefantenna = ath_setdefantenna;
537 	sc->sc_rc = ath_rate_attach(sc);
538 	if (sc->sc_rc == NULL) {
539 		error = EIO;
540 		goto bad2;
541 	}
542 
543 	sc->sc_blinking = 0;
544 	sc->sc_ledstate = 1;
545 	sc->sc_ledon = 0;			/* low true */
546 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
547 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
548 	/*
549 	 * Auto-enable soft led processing for IBM cards and for
550 	 * 5211 minipci cards.  Users can also manually enable/disable
551 	 * support with a sysctl.
552 	 */
553 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
554 	if (sc->sc_softled) {
555 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
556 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
557 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
558 	}
559 
560 	ifp->if_softc = sc;
561 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
562 	ifp->if_start = ath_start;
563 	ifp->if_ioctl = ath_ioctl;
564 	ifp->if_init = ath_init;
565 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
566 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
567 	IFQ_SET_READY(&ifp->if_snd);
568 
569 	ic->ic_ifp = ifp;
570 	/* XXX not right but it's not used anywhere important */
571 	ic->ic_phytype = IEEE80211_T_OFDM;
572 	ic->ic_opmode = IEEE80211_M_STA;
573 	ic->ic_caps =
574 		  IEEE80211_C_STA		/* station mode */
575 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
576 		| IEEE80211_C_HOSTAP		/* hostap mode */
577 		| IEEE80211_C_MONITOR		/* monitor mode */
578 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
579 		| IEEE80211_C_WDS		/* 4-address traffic works */
580 		| IEEE80211_C_MBSS		/* mesh point link mode */
581 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582 		| IEEE80211_C_SHSLOT		/* short slot time supported */
583 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
584 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
585 		| IEEE80211_C_TXFRAG		/* handle tx frags */
586 		;
587 	/*
588 	 * Query the hal to figure out h/w crypto support.
589 	 */
590 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
591 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
592 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
593 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
594 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
595 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
596 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
597 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
598 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
599 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
600 		/*
601 		 * Check if h/w does the MIC and/or whether the
602 		 * separate key cache entries are required to
603 		 * handle both tx+rx MIC keys.
604 		 */
605 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
606 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
607 		/*
608 		 * If the h/w supports storing tx+rx MIC keys
609 		 * in one cache slot automatically enable use.
610 		 */
611 		if (ath_hal_hastkipsplit(ah) ||
612 		    !ath_hal_settkipsplit(ah, AH_FALSE))
613 			sc->sc_splitmic = 1;
614 		/*
615 		 * If the h/w can do TKIP MIC together with WME then
616 		 * we use it; otherwise we force the MIC to be done
617 		 * in software by the net80211 layer.
618 		 */
619 		if (ath_hal_haswmetkipmic(ah))
620 			sc->sc_wmetkipmic = 1;
621 	}
622 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
623 	/*
624 	 * Check for multicast key search support.
625 	 */
626 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
627 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
628 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
629 	}
630 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
631 	/*
632 	 * Mark key cache slots associated with global keys
633 	 * as in use.  If we knew TKIP was not to be used we
634 	 * could leave the +32, +64, and +32+64 slots free.
635 	 */
636 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
637 		setbit(sc->sc_keymap, i);
638 		setbit(sc->sc_keymap, i+64);
639 		if (sc->sc_splitmic) {
640 			setbit(sc->sc_keymap, i+32);
641 			setbit(sc->sc_keymap, i+32+64);
642 		}
643 	}
644 	/*
645 	 * TPC support can be done either with a global cap or
646 	 * per-packet support.  The latter is not available on
647 	 * all parts.  We're a bit pedantic here as all parts
648 	 * support a global cap.
649 	 */
650 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
651 		ic->ic_caps |= IEEE80211_C_TXPMGT;
652 
653 	/*
654 	 * Mark WME capability only if we have sufficient
655 	 * hardware queues to do proper priority scheduling.
656 	 */
657 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
658 		ic->ic_caps |= IEEE80211_C_WME;
659 	/*
660 	 * Check for misc other capabilities.
661 	 */
662 	if (ath_hal_hasbursting(ah))
663 		ic->ic_caps |= IEEE80211_C_BURST;
664 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
665 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
666 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
667 	if (ath_hal_hasfastframes(ah))
668 		ic->ic_caps |= IEEE80211_C_FF;
669 	wmodes = ath_hal_getwirelessmodes(ah);
670 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
671 		ic->ic_caps |= IEEE80211_C_TURBOP;
672 #ifdef IEEE80211_SUPPORT_TDMA
673 	if (ath_hal_macversion(ah) > 0x78) {
674 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
675 		ic->ic_tdma_update = ath_tdma_update;
676 	}
677 #endif
678 	/*
679 	 * Indicate we need the 802.11 header padded to a
680 	 * 32-bit boundary for 4-address and QoS frames.
681 	 */
682 	ic->ic_flags |= IEEE80211_F_DATAPAD;
683 
684 	/*
685 	 * Query the hal about antenna support.
686 	 */
687 	sc->sc_defant = ath_hal_getdefantenna(ah);
688 
689 	/*
690 	 * Not all chips have the VEOL support we want to
691 	 * use with IBSS beacons; check here for it.
692 	 */
693 	sc->sc_hasveol = ath_hal_hasveol(ah);
694 
695 	/* get mac address from hardware */
696 	ath_hal_getmac(ah, macaddr);
697 	if (sc->sc_hasbmask)
698 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
699 
700 	/* NB: used to size node table key mapping array */
701 	ic->ic_max_keyix = sc->sc_keymax;
702 	/* call MI attach routine. */
703 	ieee80211_ifattach(ic, macaddr);
704 	ic->ic_setregdomain = ath_setregdomain;
705 	ic->ic_getradiocaps = ath_getradiocaps;
706 	sc->sc_opmode = HAL_M_STA;
707 
708 	/* override default methods */
709 	ic->ic_newassoc = ath_newassoc;
710 	ic->ic_updateslot = ath_updateslot;
711 	ic->ic_wme.wme_update = ath_wme_update;
712 	ic->ic_vap_create = ath_vap_create;
713 	ic->ic_vap_delete = ath_vap_delete;
714 	ic->ic_raw_xmit = ath_raw_xmit;
715 	ic->ic_update_mcast = ath_update_mcast;
716 	ic->ic_update_promisc = ath_update_promisc;
717 	ic->ic_node_alloc = ath_node_alloc;
718 	sc->sc_node_free = ic->ic_node_free;
719 	ic->ic_node_free = ath_node_free;
720 	ic->ic_node_getsignal = ath_node_getsignal;
721 	ic->ic_scan_start = ath_scan_start;
722 	ic->ic_scan_end = ath_scan_end;
723 	ic->ic_set_channel = ath_set_channel;
724 
725 	ieee80211_radiotap_attach(ic,
726 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
727 		ATH_TX_RADIOTAP_PRESENT,
728 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
729 		ATH_RX_RADIOTAP_PRESENT);
730 
731 	/*
732 	 * Setup dynamic sysctl's now that country code and
733 	 * regdomain are available from the hal.
734 	 */
735 	ath_sysctlattach(sc);
736 
737 	if (bootverbose)
738 		ieee80211_announce(ic);
739 	ath_announce(sc);
740 	return 0;
741 bad2:
742 	ath_tx_cleanup(sc);
743 	ath_desc_free(sc);
744 bad:
745 	if (ah)
746 		ath_hal_detach(ah);
747 	if (ifp != NULL)
748 		if_free(ifp);
749 	sc->sc_invalid = 1;
750 	return error;
751 }
752 
753 int
754 ath_detach(struct ath_softc *sc)
755 {
756 	struct ifnet *ifp = sc->sc_ifp;
757 
758 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
759 		__func__, ifp->if_flags);
760 
761 	/*
762 	 * NB: the order of these is important:
763 	 * o stop the chip so no more interrupts will fire
764 	 * o call the 802.11 layer before detaching the hal to
765 	 *   insure callbacks into the driver to delete global
766 	 *   key cache entries can be handled
767 	 * o free the taskqueue which drains any pending tasks
768 	 * o reclaim the tx queue data structures after calling
769 	 *   the 802.11 layer as we'll get called back to reclaim
770 	 *   node state and potentially want to use them
771 	 * o to cleanup the tx queues the hal is called, so detach
772 	 *   it last
773 	 * Other than that, it's straightforward...
774 	 */
775 	ath_stop(ifp);
776 	ieee80211_ifdetach(ifp->if_l2com);
777 	taskqueue_free(sc->sc_tq);
778 #ifdef ATH_TX99_DIAG
779 	if (sc->sc_tx99 != NULL)
780 		sc->sc_tx99->detach(sc->sc_tx99);
781 #endif
782 	ath_rate_detach(sc->sc_rc);
783 	ath_desc_free(sc);
784 	ath_tx_cleanup(sc);
785 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
786 	if_free(ifp);
787 
788 	return 0;
789 }
790 
791 /*
792  * MAC address handling for multiple BSS on the same radio.
793  * The first vap uses the MAC address from the EEPROM.  For
794  * subsequent vap's we set the U/L bit (bit 1) in the MAC
795  * address and use the next six bits as an index.
796  */
797 static void
798 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
799 {
800 	int i;
801 
802 	if (clone && sc->sc_hasbmask) {
803 		/* NB: we only do this if h/w supports multiple bssid */
804 		for (i = 0; i < 8; i++)
805 			if ((sc->sc_bssidmask & (1<<i)) == 0)
806 				break;
807 		if (i != 0)
808 			mac[0] |= (i << 2)|0x2;
809 	} else
810 		i = 0;
811 	sc->sc_bssidmask |= 1<<i;
812 	sc->sc_hwbssidmask[0] &= ~mac[0];
813 	if (i == 0)
814 		sc->sc_nbssid0++;
815 }
816 
817 static void
818 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
819 {
820 	int i = mac[0] >> 2;
821 	uint8_t mask;
822 
823 	if (i != 0 || --sc->sc_nbssid0 == 0) {
824 		sc->sc_bssidmask &= ~(1<<i);
825 		/* recalculate bssid mask from remaining addresses */
826 		mask = 0xff;
827 		for (i = 1; i < 8; i++)
828 			if (sc->sc_bssidmask & (1<<i))
829 				mask &= ~((i<<2)|0x2);
830 		sc->sc_hwbssidmask[0] |= mask;
831 	}
832 }
833 
834 /*
835  * Assign a beacon xmit slot.  We try to space out
836  * assignments so when beacons are staggered the
837  * traffic coming out of the cab q has maximal time
838  * to go out before the next beacon is scheduled.
839  */
840 static int
841 assign_bslot(struct ath_softc *sc)
842 {
843 	u_int slot, free;
844 
845 	free = 0;
846 	for (slot = 0; slot < ATH_BCBUF; slot++)
847 		if (sc->sc_bslot[slot] == NULL) {
848 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
849 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
850 				return slot;
851 			free = slot;
852 			/* NB: keep looking for a double slot */
853 		}
854 	return free;
855 }
856 
857 static struct ieee80211vap *
858 ath_vap_create(struct ieee80211com *ic,
859 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
860 	const uint8_t bssid[IEEE80211_ADDR_LEN],
861 	const uint8_t mac0[IEEE80211_ADDR_LEN])
862 {
863 	struct ath_softc *sc = ic->ic_ifp->if_softc;
864 	struct ath_vap *avp;
865 	struct ieee80211vap *vap;
866 	uint8_t mac[IEEE80211_ADDR_LEN];
867 	int ic_opmode, needbeacon, error;
868 
869 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
870 	    M_80211_VAP, M_WAITOK | M_ZERO);
871 	needbeacon = 0;
872 	IEEE80211_ADDR_COPY(mac, mac0);
873 
874 	ATH_LOCK(sc);
875 	ic_opmode = opmode;		/* default to opmode of new vap */
876 	switch (opmode) {
877 	case IEEE80211_M_STA:
878 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
879 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
880 			goto bad;
881 		}
882 		if (sc->sc_nvaps) {
883 			/*
884 			 * With multiple vaps we must fall back
885 			 * to s/w beacon miss handling.
886 			 */
887 			flags |= IEEE80211_CLONE_NOBEACONS;
888 		}
889 		if (flags & IEEE80211_CLONE_NOBEACONS) {
890 			/*
891 			 * Station mode w/o beacons are implemented w/ AP mode.
892 			 */
893 			ic_opmode = IEEE80211_M_HOSTAP;
894 		}
895 		break;
896 	case IEEE80211_M_IBSS:
897 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
898 			device_printf(sc->sc_dev,
899 			    "only 1 ibss vap supported\n");
900 			goto bad;
901 		}
902 		needbeacon = 1;
903 		break;
904 	case IEEE80211_M_AHDEMO:
905 #ifdef IEEE80211_SUPPORT_TDMA
906 		if (flags & IEEE80211_CLONE_TDMA) {
907 			if (sc->sc_nvaps != 0) {
908 				device_printf(sc->sc_dev,
909 				    "only 1 tdma vap supported\n");
910 				goto bad;
911 			}
912 			needbeacon = 1;
913 			flags |= IEEE80211_CLONE_NOBEACONS;
914 		}
915 		/* fall thru... */
916 #endif
917 	case IEEE80211_M_MONITOR:
918 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
919 			/*
920 			 * Adopt existing mode.  Adding a monitor or ahdemo
921 			 * vap to an existing configuration is of dubious
922 			 * value but should be ok.
923 			 */
924 			/* XXX not right for monitor mode */
925 			ic_opmode = ic->ic_opmode;
926 		}
927 		break;
928 	case IEEE80211_M_HOSTAP:
929 	case IEEE80211_M_MBSS:
930 		needbeacon = 1;
931 		break;
932 	case IEEE80211_M_WDS:
933 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
934 			device_printf(sc->sc_dev,
935 			    "wds not supported in sta mode\n");
936 			goto bad;
937 		}
938 		/*
939 		 * Silently remove any request for a unique
940 		 * bssid; WDS vap's always share the local
941 		 * mac address.
942 		 */
943 		flags &= ~IEEE80211_CLONE_BSSID;
944 		if (sc->sc_nvaps == 0)
945 			ic_opmode = IEEE80211_M_HOSTAP;
946 		else
947 			ic_opmode = ic->ic_opmode;
948 		break;
949 	default:
950 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
951 		goto bad;
952 	}
953 	/*
954 	 * Check that a beacon buffer is available; the code below assumes it.
955 	 */
956 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
957 		device_printf(sc->sc_dev, "no beacon buffer available\n");
958 		goto bad;
959 	}
960 
961 	/* STA, AHDEMO? */
962 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
963 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
964 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
965 	}
966 
967 	vap = &avp->av_vap;
968 	/* XXX can't hold mutex across if_alloc */
969 	ATH_UNLOCK(sc);
970 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
971 	    bssid, mac);
972 	ATH_LOCK(sc);
973 	if (error != 0) {
974 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
975 		    __func__, error);
976 		goto bad2;
977 	}
978 
979 	/* h/w crypto support */
980 	vap->iv_key_alloc = ath_key_alloc;
981 	vap->iv_key_delete = ath_key_delete;
982 	vap->iv_key_set = ath_key_set;
983 	vap->iv_key_update_begin = ath_key_update_begin;
984 	vap->iv_key_update_end = ath_key_update_end;
985 
986 	/* override various methods */
987 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
988 	vap->iv_recv_mgmt = ath_recv_mgmt;
989 	vap->iv_reset = ath_reset_vap;
990 	vap->iv_update_beacon = ath_beacon_update;
991 	avp->av_newstate = vap->iv_newstate;
992 	vap->iv_newstate = ath_newstate;
993 	avp->av_bmiss = vap->iv_bmiss;
994 	vap->iv_bmiss = ath_bmiss_vap;
995 
996 	avp->av_bslot = -1;
997 	if (needbeacon) {
998 		/*
999 		 * Allocate beacon state and setup the q for buffered
1000 		 * multicast frames.  We know a beacon buffer is
1001 		 * available because we checked above.
1002 		 */
1003 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1004 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1005 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1006 			/*
1007 			 * Assign the vap to a beacon xmit slot.  As above
1008 			 * this cannot fail to find a free one.
1009 			 */
1010 			avp->av_bslot = assign_bslot(sc);
1011 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1012 			    ("beacon slot %u not empty", avp->av_bslot));
1013 			sc->sc_bslot[avp->av_bslot] = vap;
1014 			sc->sc_nbcnvaps++;
1015 		}
1016 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1017 			/*
1018 			 * Multple vaps are to transmit beacons and we
1019 			 * have h/w support for TSF adjusting; enable
1020 			 * use of staggered beacons.
1021 			 */
1022 			sc->sc_stagbeacons = 1;
1023 		}
1024 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1025 	}
1026 
1027 	ic->ic_opmode = ic_opmode;
1028 	if (opmode != IEEE80211_M_WDS) {
1029 		sc->sc_nvaps++;
1030 		if (opmode == IEEE80211_M_STA)
1031 			sc->sc_nstavaps++;
1032 		if (opmode == IEEE80211_M_MBSS)
1033 			sc->sc_nmeshvaps++;
1034 	}
1035 	switch (ic_opmode) {
1036 	case IEEE80211_M_IBSS:
1037 		sc->sc_opmode = HAL_M_IBSS;
1038 		break;
1039 	case IEEE80211_M_STA:
1040 		sc->sc_opmode = HAL_M_STA;
1041 		break;
1042 	case IEEE80211_M_AHDEMO:
1043 #ifdef IEEE80211_SUPPORT_TDMA
1044 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1045 			sc->sc_tdma = 1;
1046 			/* NB: disable tsf adjust */
1047 			sc->sc_stagbeacons = 0;
1048 		}
1049 		/*
1050 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1051 		 * just ap mode.
1052 		 */
1053 		/* fall thru... */
1054 #endif
1055 	case IEEE80211_M_HOSTAP:
1056 	case IEEE80211_M_MBSS:
1057 		sc->sc_opmode = HAL_M_HOSTAP;
1058 		break;
1059 	case IEEE80211_M_MONITOR:
1060 		sc->sc_opmode = HAL_M_MONITOR;
1061 		break;
1062 	default:
1063 		/* XXX should not happen */
1064 		break;
1065 	}
1066 	if (sc->sc_hastsfadd) {
1067 		/*
1068 		 * Configure whether or not TSF adjust should be done.
1069 		 */
1070 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1071 	}
1072 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1073 		/*
1074 		 * Enable s/w beacon miss handling.
1075 		 */
1076 		sc->sc_swbmiss = 1;
1077 	}
1078 	ATH_UNLOCK(sc);
1079 
1080 	/* complete setup */
1081 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1082 	return vap;
1083 bad2:
1084 	reclaim_address(sc, mac);
1085 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1086 bad:
1087 	free(avp, M_80211_VAP);
1088 	ATH_UNLOCK(sc);
1089 	return NULL;
1090 }
1091 
1092 static void
1093 ath_vap_delete(struct ieee80211vap *vap)
1094 {
1095 	struct ieee80211com *ic = vap->iv_ic;
1096 	struct ifnet *ifp = ic->ic_ifp;
1097 	struct ath_softc *sc = ifp->if_softc;
1098 	struct ath_hal *ah = sc->sc_ah;
1099 	struct ath_vap *avp = ATH_VAP(vap);
1100 
1101 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1102 		/*
1103 		 * Quiesce the hardware while we remove the vap.  In
1104 		 * particular we need to reclaim all references to
1105 		 * the vap state by any frames pending on the tx queues.
1106 		 */
1107 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1108 		ath_draintxq(sc);		/* stop xmit side */
1109 		ath_stoprecv(sc);		/* stop recv side */
1110 	}
1111 
1112 	ieee80211_vap_detach(vap);
1113 	ATH_LOCK(sc);
1114 	/*
1115 	 * Reclaim beacon state.  Note this must be done before
1116 	 * the vap instance is reclaimed as we may have a reference
1117 	 * to it in the buffer for the beacon frame.
1118 	 */
1119 	if (avp->av_bcbuf != NULL) {
1120 		if (avp->av_bslot != -1) {
1121 			sc->sc_bslot[avp->av_bslot] = NULL;
1122 			sc->sc_nbcnvaps--;
1123 		}
1124 		ath_beacon_return(sc, avp->av_bcbuf);
1125 		avp->av_bcbuf = NULL;
1126 		if (sc->sc_nbcnvaps == 0) {
1127 			sc->sc_stagbeacons = 0;
1128 			if (sc->sc_hastsfadd)
1129 				ath_hal_settsfadjust(sc->sc_ah, 0);
1130 		}
1131 		/*
1132 		 * Reclaim any pending mcast frames for the vap.
1133 		 */
1134 		ath_tx_draintxq(sc, &avp->av_mcastq);
1135 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1136 	}
1137 	/*
1138 	 * Update bookkeeping.
1139 	 */
1140 	if (vap->iv_opmode == IEEE80211_M_STA) {
1141 		sc->sc_nstavaps--;
1142 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1143 			sc->sc_swbmiss = 0;
1144 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1145 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1146 		reclaim_address(sc, vap->iv_myaddr);
1147 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1148 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1149 			sc->sc_nmeshvaps--;
1150 	}
1151 	if (vap->iv_opmode != IEEE80211_M_WDS)
1152 		sc->sc_nvaps--;
1153 #ifdef IEEE80211_SUPPORT_TDMA
1154 	/* TDMA operation ceases when the last vap is destroyed */
1155 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1156 		sc->sc_tdma = 0;
1157 		sc->sc_swbmiss = 0;
1158 	}
1159 #endif
1160 	ATH_UNLOCK(sc);
1161 	free(avp, M_80211_VAP);
1162 
1163 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1164 		/*
1165 		 * Restart rx+tx machines if still running (RUNNING will
1166 		 * be reset if we just destroyed the last vap).
1167 		 */
1168 		if (ath_startrecv(sc) != 0)
1169 			if_printf(ifp, "%s: unable to restart recv logic\n",
1170 			    __func__);
1171 		if (sc->sc_beacons) {		/* restart beacons */
1172 #ifdef IEEE80211_SUPPORT_TDMA
1173 			if (sc->sc_tdma)
1174 				ath_tdma_config(sc, NULL);
1175 			else
1176 #endif
1177 				ath_beacon_config(sc, NULL);
1178 		}
1179 		ath_hal_intrset(ah, sc->sc_imask);
1180 	}
1181 }
1182 
1183 void
1184 ath_suspend(struct ath_softc *sc)
1185 {
1186 	struct ifnet *ifp = sc->sc_ifp;
1187 	struct ieee80211com *ic = ifp->if_l2com;
1188 
1189 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1190 		__func__, ifp->if_flags);
1191 
1192 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1193 	if (ic->ic_opmode == IEEE80211_M_STA)
1194 		ath_stop(ifp);
1195 	else
1196 		ieee80211_suspend_all(ic);
1197 	/*
1198 	 * NB: don't worry about putting the chip in low power
1199 	 * mode; pci will power off our socket on suspend and
1200 	 * CardBus detaches the device.
1201 	 */
1202 }
1203 
1204 /*
1205  * Reset the key cache since some parts do not reset the
1206  * contents on resume.  First we clear all entries, then
1207  * re-load keys that the 802.11 layer assumes are setup
1208  * in h/w.
1209  */
1210 static void
1211 ath_reset_keycache(struct ath_softc *sc)
1212 {
1213 	struct ifnet *ifp = sc->sc_ifp;
1214 	struct ieee80211com *ic = ifp->if_l2com;
1215 	struct ath_hal *ah = sc->sc_ah;
1216 	int i;
1217 
1218 	for (i = 0; i < sc->sc_keymax; i++)
1219 		ath_hal_keyreset(ah, i);
1220 	ieee80211_crypto_reload_keys(ic);
1221 }
1222 
1223 void
1224 ath_resume(struct ath_softc *sc)
1225 {
1226 	struct ifnet *ifp = sc->sc_ifp;
1227 	struct ieee80211com *ic = ifp->if_l2com;
1228 	struct ath_hal *ah = sc->sc_ah;
1229 	HAL_STATUS status;
1230 
1231 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1232 		__func__, ifp->if_flags);
1233 
1234 	/*
1235 	 * Must reset the chip before we reload the
1236 	 * keycache as we were powered down on suspend.
1237 	 */
1238 	ath_hal_reset(ah, sc->sc_opmode,
1239 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1240 	    AH_FALSE, &status);
1241 	ath_reset_keycache(sc);
1242 	if (sc->sc_resume_up) {
1243 		if (ic->ic_opmode == IEEE80211_M_STA) {
1244 			ath_init(sc);
1245 			/*
1246 			 * Program the beacon registers using the last rx'd
1247 			 * beacon frame and enable sync on the next beacon
1248 			 * we see.  This should handle the case where we
1249 			 * wakeup and find the same AP and also the case where
1250 			 * we wakeup and need to roam.  For the latter we
1251 			 * should get bmiss events that trigger a roam.
1252 			 */
1253 			ath_beacon_config(sc, NULL);
1254 			sc->sc_syncbeacon = 1;
1255 		} else
1256 			ieee80211_resume_all(ic);
1257 	}
1258 	if (sc->sc_softled) {
1259 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1260 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1261 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1262 	}
1263 }
1264 
1265 void
1266 ath_shutdown(struct ath_softc *sc)
1267 {
1268 	struct ifnet *ifp = sc->sc_ifp;
1269 
1270 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1271 		__func__, ifp->if_flags);
1272 
1273 	ath_stop(ifp);
1274 	/* NB: no point powering down chip as we're about to reboot */
1275 }
1276 
1277 /*
1278  * Interrupt handler.  Most of the actual processing is deferred.
1279  */
1280 void
1281 ath_intr(void *arg)
1282 {
1283 	struct ath_softc *sc = arg;
1284 	struct ifnet *ifp = sc->sc_ifp;
1285 	struct ath_hal *ah = sc->sc_ah;
1286 	HAL_INT status;
1287 
1288 	if (sc->sc_invalid) {
1289 		/*
1290 		 * The hardware is not ready/present, don't touch anything.
1291 		 * Note this can happen early on if the IRQ is shared.
1292 		 */
1293 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1294 		return;
1295 	}
1296 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1297 		return;
1298 	if ((ifp->if_flags & IFF_UP) == 0 ||
1299 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1300 		HAL_INT status;
1301 
1302 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1303 			__func__, ifp->if_flags);
1304 		ath_hal_getisr(ah, &status);	/* clear ISR */
1305 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1306 		return;
1307 	}
1308 	/*
1309 	 * Figure out the reason(s) for the interrupt.  Note
1310 	 * that the hal returns a pseudo-ISR that may include
1311 	 * bits we haven't explicitly enabled so we mask the
1312 	 * value to insure we only process bits we requested.
1313 	 */
1314 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1315 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1316 	status &= sc->sc_imask;			/* discard unasked for bits */
1317 	if (status & HAL_INT_FATAL) {
1318 		sc->sc_stats.ast_hardware++;
1319 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1320 		ath_fatal_proc(sc, 0);
1321 	} else {
1322 		if (status & HAL_INT_SWBA) {
1323 			/*
1324 			 * Software beacon alert--time to send a beacon.
1325 			 * Handle beacon transmission directly; deferring
1326 			 * this is too slow to meet timing constraints
1327 			 * under load.
1328 			 */
1329 #ifdef IEEE80211_SUPPORT_TDMA
1330 			if (sc->sc_tdma) {
1331 				if (sc->sc_tdmaswba == 0) {
1332 					struct ieee80211com *ic = ifp->if_l2com;
1333 					struct ieee80211vap *vap =
1334 					    TAILQ_FIRST(&ic->ic_vaps);
1335 					ath_tdma_beacon_send(sc, vap);
1336 					sc->sc_tdmaswba =
1337 					    vap->iv_tdma->tdma_bintval;
1338 				} else
1339 					sc->sc_tdmaswba--;
1340 			} else
1341 #endif
1342 			{
1343 				ath_beacon_proc(sc, 0);
1344 #ifdef IEEE80211_SUPPORT_SUPERG
1345 				/*
1346 				 * Schedule the rx taskq in case there's no
1347 				 * traffic so any frames held on the staging
1348 				 * queue are aged and potentially flushed.
1349 				 */
1350 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1351 #endif
1352 			}
1353 		}
1354 		if (status & HAL_INT_RXEOL) {
1355 			/*
1356 			 * NB: the hardware should re-read the link when
1357 			 *     RXE bit is written, but it doesn't work at
1358 			 *     least on older hardware revs.
1359 			 */
1360 			sc->sc_stats.ast_rxeol++;
1361 			sc->sc_rxlink = NULL;
1362 		}
1363 		if (status & HAL_INT_TXURN) {
1364 			sc->sc_stats.ast_txurn++;
1365 			/* bump tx trigger level */
1366 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1367 		}
1368 		if (status & HAL_INT_RX)
1369 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1370 		if (status & HAL_INT_TX)
1371 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1372 		if (status & HAL_INT_BMISS) {
1373 			sc->sc_stats.ast_bmiss++;
1374 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1375 		}
1376 		if (status & HAL_INT_MIB) {
1377 			sc->sc_stats.ast_mib++;
1378 			/*
1379 			 * Disable interrupts until we service the MIB
1380 			 * interrupt; otherwise it will continue to fire.
1381 			 */
1382 			ath_hal_intrset(ah, 0);
1383 			/*
1384 			 * Let the hal handle the event.  We assume it will
1385 			 * clear whatever condition caused the interrupt.
1386 			 */
1387 			ath_hal_mibevent(ah, &sc->sc_halstats);
1388 			ath_hal_intrset(ah, sc->sc_imask);
1389 		}
1390 		if (status & HAL_INT_RXORN) {
1391 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1392 			sc->sc_stats.ast_rxorn++;
1393 		}
1394 	}
1395 }
1396 
1397 static void
1398 ath_fatal_proc(void *arg, int pending)
1399 {
1400 	struct ath_softc *sc = arg;
1401 	struct ifnet *ifp = sc->sc_ifp;
1402 	u_int32_t *state;
1403 	u_int32_t len;
1404 	void *sp;
1405 
1406 	if_printf(ifp, "hardware error; resetting\n");
1407 	/*
1408 	 * Fatal errors are unrecoverable.  Typically these
1409 	 * are caused by DMA errors.  Collect h/w state from
1410 	 * the hal so we can diagnose what's going on.
1411 	 */
1412 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1413 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1414 		state = sp;
1415 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1416 		    state[0], state[1] , state[2], state[3],
1417 		    state[4], state[5]);
1418 	}
1419 	ath_reset(ifp);
1420 }
1421 
1422 static void
1423 ath_bmiss_vap(struct ieee80211vap *vap)
1424 {
1425 	/*
1426 	 * Workaround phantom bmiss interrupts by sanity-checking
1427 	 * the time of our last rx'd frame.  If it is within the
1428 	 * beacon miss interval then ignore the interrupt.  If it's
1429 	 * truly a bmiss we'll get another interrupt soon and that'll
1430 	 * be dispatched up for processing.  Note this applies only
1431 	 * for h/w beacon miss events.
1432 	 */
1433 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1434 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1435 		struct ath_softc *sc = ifp->if_softc;
1436 		u_int64_t lastrx = sc->sc_lastrx;
1437 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1438 		u_int bmisstimeout =
1439 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1440 
1441 		DPRINTF(sc, ATH_DEBUG_BEACON,
1442 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1443 		    __func__, (unsigned long long) tsf,
1444 		    (unsigned long long)(tsf - lastrx),
1445 		    (unsigned long long) lastrx, bmisstimeout);
1446 
1447 		if (tsf - lastrx <= bmisstimeout) {
1448 			sc->sc_stats.ast_bmiss_phantom++;
1449 			return;
1450 		}
1451 	}
1452 	ATH_VAP(vap)->av_bmiss(vap);
1453 }
1454 
1455 static int
1456 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1457 {
1458 	uint32_t rsize;
1459 	void *sp;
1460 
1461 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(mask), &sp, &rsize))
1462 		return 0;
1463 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1464 	*hangs = *(uint32_t *)sp;
1465 	return 1;
1466 }
1467 
1468 static void
1469 ath_bmiss_proc(void *arg, int pending)
1470 {
1471 	struct ath_softc *sc = arg;
1472 	struct ifnet *ifp = sc->sc_ifp;
1473 	uint32_t hangs;
1474 
1475 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1476 
1477 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1478 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1479 		ath_reset(ifp);
1480 	} else
1481 		ieee80211_beacon_miss(ifp->if_l2com);
1482 }
1483 
1484 /*
1485  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1486  * calcs together with WME.  If necessary disable the crypto
1487  * hardware and mark the 802.11 state so keys will be setup
1488  * with the MIC work done in software.
1489  */
1490 static void
1491 ath_settkipmic(struct ath_softc *sc)
1492 {
1493 	struct ifnet *ifp = sc->sc_ifp;
1494 	struct ieee80211com *ic = ifp->if_l2com;
1495 
1496 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1497 		if (ic->ic_flags & IEEE80211_F_WME) {
1498 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1499 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1500 		} else {
1501 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1502 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1503 		}
1504 	}
1505 }
1506 
1507 static void
1508 ath_init(void *arg)
1509 {
1510 	struct ath_softc *sc = (struct ath_softc *) arg;
1511 	struct ifnet *ifp = sc->sc_ifp;
1512 	struct ieee80211com *ic = ifp->if_l2com;
1513 	struct ath_hal *ah = sc->sc_ah;
1514 	HAL_STATUS status;
1515 
1516 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1517 		__func__, ifp->if_flags);
1518 
1519 	ATH_LOCK(sc);
1520 	/*
1521 	 * Stop anything previously setup.  This is safe
1522 	 * whether this is the first time through or not.
1523 	 */
1524 	ath_stop_locked(ifp);
1525 
1526 	/*
1527 	 * The basic interface to setting the hardware in a good
1528 	 * state is ``reset''.  On return the hardware is known to
1529 	 * be powered up and with interrupts disabled.  This must
1530 	 * be followed by initialization of the appropriate bits
1531 	 * and then setup of the interrupt mask.
1532 	 */
1533 	ath_settkipmic(sc);
1534 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1535 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1536 			status);
1537 		ATH_UNLOCK(sc);
1538 		return;
1539 	}
1540 	ath_chan_change(sc, ic->ic_curchan);
1541 
1542 	/*
1543 	 * Likewise this is set during reset so update
1544 	 * state cached in the driver.
1545 	 */
1546 	sc->sc_diversity = ath_hal_getdiversity(ah);
1547 	sc->sc_lastlongcal = 0;
1548 	sc->sc_resetcal = 1;
1549 	sc->sc_lastcalreset = 0;
1550 
1551 	/*
1552 	 * Setup the hardware after reset: the key cache
1553 	 * is filled as needed and the receive engine is
1554 	 * set going.  Frame transmit is handled entirely
1555 	 * in the frame output path; there's nothing to do
1556 	 * here except setup the interrupt mask.
1557 	 */
1558 	if (ath_startrecv(sc) != 0) {
1559 		if_printf(ifp, "unable to start recv logic\n");
1560 		ATH_UNLOCK(sc);
1561 		return;
1562 	}
1563 
1564 	/*
1565 	 * Enable interrupts.
1566 	 */
1567 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1568 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1569 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1570 	/*
1571 	 * Enable MIB interrupts when there are hardware phy counters.
1572 	 * Note we only do this (at the moment) for station mode.
1573 	 */
1574 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1575 		sc->sc_imask |= HAL_INT_MIB;
1576 
1577 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1578 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1579 	ath_hal_intrset(ah, sc->sc_imask);
1580 
1581 	ATH_UNLOCK(sc);
1582 
1583 #ifdef ATH_TX99_DIAG
1584 	if (sc->sc_tx99 != NULL)
1585 		sc->sc_tx99->start(sc->sc_tx99);
1586 	else
1587 #endif
1588 	ieee80211_start_all(ic);		/* start all vap's */
1589 }
1590 
1591 static void
1592 ath_stop_locked(struct ifnet *ifp)
1593 {
1594 	struct ath_softc *sc = ifp->if_softc;
1595 	struct ath_hal *ah = sc->sc_ah;
1596 
1597 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1598 		__func__, sc->sc_invalid, ifp->if_flags);
1599 
1600 	ATH_LOCK_ASSERT(sc);
1601 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1602 		/*
1603 		 * Shutdown the hardware and driver:
1604 		 *    reset 802.11 state machine
1605 		 *    turn off timers
1606 		 *    disable interrupts
1607 		 *    turn off the radio
1608 		 *    clear transmit machinery
1609 		 *    clear receive machinery
1610 		 *    drain and release tx queues
1611 		 *    reclaim beacon resources
1612 		 *    power down hardware
1613 		 *
1614 		 * Note that some of this work is not possible if the
1615 		 * hardware is gone (invalid).
1616 		 */
1617 #ifdef ATH_TX99_DIAG
1618 		if (sc->sc_tx99 != NULL)
1619 			sc->sc_tx99->stop(sc->sc_tx99);
1620 #endif
1621 		callout_stop(&sc->sc_wd_ch);
1622 		sc->sc_wd_timer = 0;
1623 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1624 		if (!sc->sc_invalid) {
1625 			if (sc->sc_softled) {
1626 				callout_stop(&sc->sc_ledtimer);
1627 				ath_hal_gpioset(ah, sc->sc_ledpin,
1628 					!sc->sc_ledon);
1629 				sc->sc_blinking = 0;
1630 			}
1631 			ath_hal_intrset(ah, 0);
1632 		}
1633 		ath_draintxq(sc);
1634 		if (!sc->sc_invalid) {
1635 			ath_stoprecv(sc);
1636 			ath_hal_phydisable(ah);
1637 		} else
1638 			sc->sc_rxlink = NULL;
1639 		ath_beacon_free(sc);	/* XXX not needed */
1640 	}
1641 }
1642 
1643 static void
1644 ath_stop(struct ifnet *ifp)
1645 {
1646 	struct ath_softc *sc = ifp->if_softc;
1647 
1648 	ATH_LOCK(sc);
1649 	ath_stop_locked(ifp);
1650 	ATH_UNLOCK(sc);
1651 }
1652 
1653 /*
1654  * Reset the hardware w/o losing operational state.  This is
1655  * basically a more efficient way of doing ath_stop, ath_init,
1656  * followed by state transitions to the current 802.11
1657  * operational state.  Used to recover from various errors and
1658  * to reset or reload hardware state.
1659  */
1660 static int
1661 ath_reset(struct ifnet *ifp)
1662 {
1663 	struct ath_softc *sc = ifp->if_softc;
1664 	struct ieee80211com *ic = ifp->if_l2com;
1665 	struct ath_hal *ah = sc->sc_ah;
1666 	HAL_STATUS status;
1667 
1668 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1669 	ath_draintxq(sc);		/* stop xmit side */
1670 	ath_stoprecv(sc);		/* stop recv side */
1671 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1672 	/* NB: indicate channel change so we do a full reset */
1673 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1674 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1675 			__func__, status);
1676 	sc->sc_diversity = ath_hal_getdiversity(ah);
1677 	if (ath_startrecv(sc) != 0)	/* restart recv */
1678 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1679 	/*
1680 	 * We may be doing a reset in response to an ioctl
1681 	 * that changes the channel so update any state that
1682 	 * might change as a result.
1683 	 */
1684 	ath_chan_change(sc, ic->ic_curchan);
1685 	if (sc->sc_beacons) {		/* restart beacons */
1686 #ifdef IEEE80211_SUPPORT_TDMA
1687 		if (sc->sc_tdma)
1688 			ath_tdma_config(sc, NULL);
1689 		else
1690 #endif
1691 			ath_beacon_config(sc, NULL);
1692 	}
1693 	ath_hal_intrset(ah, sc->sc_imask);
1694 
1695 	ath_start(ifp);			/* restart xmit */
1696 	return 0;
1697 }
1698 
1699 static int
1700 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1701 {
1702 	struct ieee80211com *ic = vap->iv_ic;
1703 	struct ifnet *ifp = ic->ic_ifp;
1704 	struct ath_softc *sc = ifp->if_softc;
1705 	struct ath_hal *ah = sc->sc_ah;
1706 
1707 	switch (cmd) {
1708 	case IEEE80211_IOC_TXPOWER:
1709 		/*
1710 		 * If per-packet TPC is enabled, then we have nothing
1711 		 * to do; otherwise we need to force the global limit.
1712 		 * All this can happen directly; no need to reset.
1713 		 */
1714 		if (!ath_hal_gettpc(ah))
1715 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1716 		return 0;
1717 	}
1718 	return ath_reset(ifp);
1719 }
1720 
1721 static struct ath_buf *
1722 _ath_getbuf_locked(struct ath_softc *sc)
1723 {
1724 	struct ath_buf *bf;
1725 
1726 	ATH_TXBUF_LOCK_ASSERT(sc);
1727 
1728 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1729 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1730 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1731 	else
1732 		bf = NULL;
1733 	if (bf == NULL) {
1734 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1735 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1736 			"out of xmit buffers" : "xmit buffer busy");
1737 	}
1738 	return bf;
1739 }
1740 
1741 static struct ath_buf *
1742 ath_getbuf(struct ath_softc *sc)
1743 {
1744 	struct ath_buf *bf;
1745 
1746 	ATH_TXBUF_LOCK(sc);
1747 	bf = _ath_getbuf_locked(sc);
1748 	if (bf == NULL) {
1749 		struct ifnet *ifp = sc->sc_ifp;
1750 
1751 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1752 		sc->sc_stats.ast_tx_qstop++;
1753 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1754 	}
1755 	ATH_TXBUF_UNLOCK(sc);
1756 	return bf;
1757 }
1758 
1759 /*
1760  * Cleanup driver resources when we run out of buffers
1761  * while processing fragments; return the tx buffers
1762  * allocated and drop node references.
1763  */
1764 static void
1765 ath_txfrag_cleanup(struct ath_softc *sc,
1766 	ath_bufhead *frags, struct ieee80211_node *ni)
1767 {
1768 	struct ath_buf *bf, *next;
1769 
1770 	ATH_TXBUF_LOCK_ASSERT(sc);
1771 
1772 	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1773 		/* NB: bf assumed clean */
1774 		STAILQ_REMOVE_HEAD(frags, bf_list);
1775 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1776 		ieee80211_node_decref(ni);
1777 	}
1778 }
1779 
1780 /*
1781  * Setup xmit of a fragmented frame.  Allocate a buffer
1782  * for each frag and bump the node reference count to
1783  * reflect the held reference to be setup by ath_tx_start.
1784  */
1785 static int
1786 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1787 	struct mbuf *m0, struct ieee80211_node *ni)
1788 {
1789 	struct mbuf *m;
1790 	struct ath_buf *bf;
1791 
1792 	ATH_TXBUF_LOCK(sc);
1793 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1794 		bf = _ath_getbuf_locked(sc);
1795 		if (bf == NULL) {	/* out of buffers, cleanup */
1796 			ath_txfrag_cleanup(sc, frags, ni);
1797 			break;
1798 		}
1799 		ieee80211_node_incref(ni);
1800 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1801 	}
1802 	ATH_TXBUF_UNLOCK(sc);
1803 
1804 	return !STAILQ_EMPTY(frags);
1805 }
1806 
1807 static void
1808 ath_start(struct ifnet *ifp)
1809 {
1810 	struct ath_softc *sc = ifp->if_softc;
1811 	struct ieee80211_node *ni;
1812 	struct ath_buf *bf;
1813 	struct mbuf *m, *next;
1814 	ath_bufhead frags;
1815 
1816 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1817 		return;
1818 	for (;;) {
1819 		/*
1820 		 * Grab a TX buffer and associated resources.
1821 		 */
1822 		bf = ath_getbuf(sc);
1823 		if (bf == NULL)
1824 			break;
1825 
1826 		IFQ_DEQUEUE(&ifp->if_snd, m);
1827 		if (m == NULL) {
1828 			ATH_TXBUF_LOCK(sc);
1829 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1830 			ATH_TXBUF_UNLOCK(sc);
1831 			break;
1832 		}
1833 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1834 		/*
1835 		 * Check for fragmentation.  If this frame
1836 		 * has been broken up verify we have enough
1837 		 * buffers to send all the fragments so all
1838 		 * go out or none...
1839 		 */
1840 		STAILQ_INIT(&frags);
1841 		if ((m->m_flags & M_FRAG) &&
1842 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1843 			DPRINTF(sc, ATH_DEBUG_XMIT,
1844 			    "%s: out of txfrag buffers\n", __func__);
1845 			sc->sc_stats.ast_tx_nofrag++;
1846 			ifp->if_oerrors++;
1847 			ath_freetx(m);
1848 			goto bad;
1849 		}
1850 		ifp->if_opackets++;
1851 	nextfrag:
1852 		/*
1853 		 * Pass the frame to the h/w for transmission.
1854 		 * Fragmented frames have each frag chained together
1855 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1856 		 * to send all the frags because of work done by
1857 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1858 		 * calling ath_tx_start so it can use it to extend the
1859 		 * the tx duration to cover the subsequent frag and
1860 		 * so it can reclaim all the mbufs in case of an error;
1861 		 * ath_tx_start clears m_nextpkt once it commits to
1862 		 * handing the frame to the hardware.
1863 		 */
1864 		next = m->m_nextpkt;
1865 		if (ath_tx_start(sc, ni, bf, m)) {
1866 	bad:
1867 			ifp->if_oerrors++;
1868 	reclaim:
1869 			bf->bf_m = NULL;
1870 			bf->bf_node = NULL;
1871 			ATH_TXBUF_LOCK(sc);
1872 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1873 			ath_txfrag_cleanup(sc, &frags, ni);
1874 			ATH_TXBUF_UNLOCK(sc);
1875 			if (ni != NULL)
1876 				ieee80211_free_node(ni);
1877 			continue;
1878 		}
1879 		if (next != NULL) {
1880 			/*
1881 			 * Beware of state changing between frags.
1882 			 * XXX check sta power-save state?
1883 			 */
1884 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1885 				DPRINTF(sc, ATH_DEBUG_XMIT,
1886 				    "%s: flush fragmented packet, state %s\n",
1887 				    __func__,
1888 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1889 				ath_freetx(next);
1890 				goto reclaim;
1891 			}
1892 			m = next;
1893 			bf = STAILQ_FIRST(&frags);
1894 			KASSERT(bf != NULL, ("no buf for txfrag"));
1895 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1896 			goto nextfrag;
1897 		}
1898 
1899 		sc->sc_wd_timer = 5;
1900 	}
1901 }
1902 
1903 static int
1904 ath_media_change(struct ifnet *ifp)
1905 {
1906 	int error = ieee80211_media_change(ifp);
1907 	/* NB: only the fixed rate can change and that doesn't need a reset */
1908 	return (error == ENETRESET ? 0 : error);
1909 }
1910 
1911 #ifdef ATH_DEBUG
1912 static void
1913 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1914 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1915 {
1916 	static const char *ciphers[] = {
1917 		"WEP",
1918 		"AES-OCB",
1919 		"AES-CCM",
1920 		"CKIP",
1921 		"TKIP",
1922 		"CLR",
1923 	};
1924 	int i, n;
1925 
1926 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1927 	for (i = 0, n = hk->kv_len; i < n; i++)
1928 		printf("%02x", hk->kv_val[i]);
1929 	printf(" mac %s", ether_sprintf(mac));
1930 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1931 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1932 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1933 			printf("%02x", hk->kv_mic[i]);
1934 		if (!sc->sc_splitmic) {
1935 			printf(" txmic ");
1936 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1937 				printf("%02x", hk->kv_txmic[i]);
1938 		}
1939 	}
1940 	printf("\n");
1941 }
1942 #endif
1943 
1944 /*
1945  * Set a TKIP key into the hardware.  This handles the
1946  * potential distribution of key state to multiple key
1947  * cache slots for TKIP.
1948  */
1949 static int
1950 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1951 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1952 {
1953 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1954 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1955 	struct ath_hal *ah = sc->sc_ah;
1956 
1957 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1958 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1959 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1960 		if (sc->sc_splitmic) {
1961 			/*
1962 			 * TX key goes at first index, RX key at the rx index.
1963 			 * The hal handles the MIC keys at index+64.
1964 			 */
1965 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1966 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1967 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1968 				return 0;
1969 
1970 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1971 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1972 			/* XXX delete tx key on failure? */
1973 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1974 		} else {
1975 			/*
1976 			 * Room for both TX+RX MIC keys in one key cache
1977 			 * slot, just set key at the first index; the hal
1978 			 * will handle the rest.
1979 			 */
1980 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1981 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1982 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1983 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1984 		}
1985 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1986 		if (sc->sc_splitmic) {
1987 			/*
1988 			 * NB: must pass MIC key in expected location when
1989 			 * the keycache only holds one MIC key per entry.
1990 			 */
1991 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1992 		} else
1993 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1994 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1995 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1996 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1997 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1998 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1999 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2000 	}
2001 	return 0;
2002 #undef IEEE80211_KEY_XR
2003 }
2004 
2005 /*
2006  * Set a net80211 key into the hardware.  This handles the
2007  * potential distribution of key state to multiple key
2008  * cache slots for TKIP with hardware MIC support.
2009  */
2010 static int
2011 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2012 	struct ieee80211_node *bss)
2013 {
2014 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2015 	static const u_int8_t ciphermap[] = {
2016 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2017 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2018 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2019 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2020 		(u_int8_t) -1,		/* 4 is not allocated */
2021 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2022 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2023 	};
2024 	struct ath_hal *ah = sc->sc_ah;
2025 	const struct ieee80211_cipher *cip = k->wk_cipher;
2026 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2027 	const u_int8_t *mac;
2028 	HAL_KEYVAL hk;
2029 
2030 	memset(&hk, 0, sizeof(hk));
2031 	/*
2032 	 * Software crypto uses a "clear key" so non-crypto
2033 	 * state kept in the key cache are maintained and
2034 	 * so that rx frames have an entry to match.
2035 	 */
2036 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2037 		KASSERT(cip->ic_cipher < N(ciphermap),
2038 			("invalid cipher type %u", cip->ic_cipher));
2039 		hk.kv_type = ciphermap[cip->ic_cipher];
2040 		hk.kv_len = k->wk_keylen;
2041 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2042 	} else
2043 		hk.kv_type = HAL_CIPHER_CLR;
2044 
2045 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2046 		/*
2047 		 * Group keys on hardware that supports multicast frame
2048 		 * key search use a MAC that is the sender's address with
2049 		 * the high bit set instead of the app-specified address.
2050 		 */
2051 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2052 		gmac[0] |= 0x80;
2053 		mac = gmac;
2054 	} else
2055 		mac = k->wk_macaddr;
2056 
2057 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2058 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2059 		return ath_keyset_tkip(sc, k, &hk, mac);
2060 	} else {
2061 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2062 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2063 	}
2064 #undef N
2065 }
2066 
2067 /*
2068  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2069  * each key, one for decrypt/encrypt and the other for the MIC.
2070  */
2071 static u_int16_t
2072 key_alloc_2pair(struct ath_softc *sc,
2073 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2074 {
2075 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2076 	u_int i, keyix;
2077 
2078 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2079 	/* XXX could optimize */
2080 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2081 		u_int8_t b = sc->sc_keymap[i];
2082 		if (b != 0xff) {
2083 			/*
2084 			 * One or more slots in this byte are free.
2085 			 */
2086 			keyix = i*NBBY;
2087 			while (b & 1) {
2088 		again:
2089 				keyix++;
2090 				b >>= 1;
2091 			}
2092 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2093 			if (isset(sc->sc_keymap, keyix+32) ||
2094 			    isset(sc->sc_keymap, keyix+64) ||
2095 			    isset(sc->sc_keymap, keyix+32+64)) {
2096 				/* full pair unavailable */
2097 				/* XXX statistic */
2098 				if (keyix == (i+1)*NBBY) {
2099 					/* no slots were appropriate, advance */
2100 					continue;
2101 				}
2102 				goto again;
2103 			}
2104 			setbit(sc->sc_keymap, keyix);
2105 			setbit(sc->sc_keymap, keyix+64);
2106 			setbit(sc->sc_keymap, keyix+32);
2107 			setbit(sc->sc_keymap, keyix+32+64);
2108 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2109 				"%s: key pair %u,%u %u,%u\n",
2110 				__func__, keyix, keyix+64,
2111 				keyix+32, keyix+32+64);
2112 			*txkeyix = keyix;
2113 			*rxkeyix = keyix+32;
2114 			return 1;
2115 		}
2116 	}
2117 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2118 	return 0;
2119 #undef N
2120 }
2121 
2122 /*
2123  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2124  * each key, one for decrypt/encrypt and the other for the MIC.
2125  */
2126 static u_int16_t
2127 key_alloc_pair(struct ath_softc *sc,
2128 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2129 {
2130 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2131 	u_int i, keyix;
2132 
2133 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2134 	/* XXX could optimize */
2135 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2136 		u_int8_t b = sc->sc_keymap[i];
2137 		if (b != 0xff) {
2138 			/*
2139 			 * One or more slots in this byte are free.
2140 			 */
2141 			keyix = i*NBBY;
2142 			while (b & 1) {
2143 		again:
2144 				keyix++;
2145 				b >>= 1;
2146 			}
2147 			if (isset(sc->sc_keymap, keyix+64)) {
2148 				/* full pair unavailable */
2149 				/* XXX statistic */
2150 				if (keyix == (i+1)*NBBY) {
2151 					/* no slots were appropriate, advance */
2152 					continue;
2153 				}
2154 				goto again;
2155 			}
2156 			setbit(sc->sc_keymap, keyix);
2157 			setbit(sc->sc_keymap, keyix+64);
2158 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2159 				"%s: key pair %u,%u\n",
2160 				__func__, keyix, keyix+64);
2161 			*txkeyix = *rxkeyix = keyix;
2162 			return 1;
2163 		}
2164 	}
2165 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2166 	return 0;
2167 #undef N
2168 }
2169 
2170 /*
2171  * Allocate a single key cache slot.
2172  */
2173 static int
2174 key_alloc_single(struct ath_softc *sc,
2175 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2176 {
2177 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2178 	u_int i, keyix;
2179 
2180 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2181 	for (i = 0; i < N(sc->sc_keymap); i++) {
2182 		u_int8_t b = sc->sc_keymap[i];
2183 		if (b != 0xff) {
2184 			/*
2185 			 * One or more slots are free.
2186 			 */
2187 			keyix = i*NBBY;
2188 			while (b & 1)
2189 				keyix++, b >>= 1;
2190 			setbit(sc->sc_keymap, keyix);
2191 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2192 				__func__, keyix);
2193 			*txkeyix = *rxkeyix = keyix;
2194 			return 1;
2195 		}
2196 	}
2197 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2198 	return 0;
2199 #undef N
2200 }
2201 
2202 /*
2203  * Allocate one or more key cache slots for a uniacst key.  The
2204  * key itself is needed only to identify the cipher.  For hardware
2205  * TKIP with split cipher+MIC keys we allocate two key cache slot
2206  * pairs so that we can setup separate TX and RX MIC keys.  Note
2207  * that the MIC key for a TKIP key at slot i is assumed by the
2208  * hardware to be at slot i+64.  This limits TKIP keys to the first
2209  * 64 entries.
2210  */
2211 static int
2212 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2213 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2214 {
2215 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2216 
2217 	/*
2218 	 * Group key allocation must be handled specially for
2219 	 * parts that do not support multicast key cache search
2220 	 * functionality.  For those parts the key id must match
2221 	 * the h/w key index so lookups find the right key.  On
2222 	 * parts w/ the key search facility we install the sender's
2223 	 * mac address (with the high bit set) and let the hardware
2224 	 * find the key w/o using the key id.  This is preferred as
2225 	 * it permits us to support multiple users for adhoc and/or
2226 	 * multi-station operation.
2227 	 */
2228 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
2229 		/*
2230 		 * Only global keys should have key index assigned.
2231 		 */
2232 		if (!(&vap->iv_nw_keys[0] <= k &&
2233 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2234 			/* should not happen */
2235 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2236 				"%s: bogus group key\n", __func__);
2237 			return 0;
2238 		}
2239 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
2240 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
2241 		    !sc->sc_mcastkey) {
2242 			/*
2243 			 * XXX we pre-allocate the global keys so
2244 			 * have no way to check if they've already
2245 			 * been allocated.
2246 			 */
2247 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
2248 			return 1;
2249 		}
2250 		/*
2251 		 * Group key and device supports multicast key search.
2252 		 */
2253 		k->wk_keyix = IEEE80211_KEYIX_NONE;
2254 	}
2255 
2256 	/*
2257 	 * We allocate two pair for TKIP when using the h/w to do
2258 	 * the MIC.  For everything else, including software crypto,
2259 	 * we allocate a single entry.  Note that s/w crypto requires
2260 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2261 	 * not support pass-through cache entries and we map all
2262 	 * those requests to slot 0.
2263 	 */
2264 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2265 		return key_alloc_single(sc, keyix, rxkeyix);
2266 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2267 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2268 		if (sc->sc_splitmic)
2269 			return key_alloc_2pair(sc, keyix, rxkeyix);
2270 		else
2271 			return key_alloc_pair(sc, keyix, rxkeyix);
2272 	} else {
2273 		return key_alloc_single(sc, keyix, rxkeyix);
2274 	}
2275 }
2276 
2277 /*
2278  * Delete an entry in the key cache allocated by ath_key_alloc.
2279  */
2280 static int
2281 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2282 {
2283 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2284 	struct ath_hal *ah = sc->sc_ah;
2285 	const struct ieee80211_cipher *cip = k->wk_cipher;
2286 	u_int keyix = k->wk_keyix;
2287 
2288 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2289 
2290 	ath_hal_keyreset(ah, keyix);
2291 	/*
2292 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2293 	 */
2294 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2295 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2296 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2297 	if (keyix >= IEEE80211_WEP_NKID) {
2298 		/*
2299 		 * Don't touch keymap entries for global keys so
2300 		 * they are never considered for dynamic allocation.
2301 		 */
2302 		clrbit(sc->sc_keymap, keyix);
2303 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2304 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2305 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2306 			if (sc->sc_splitmic) {
2307 				/* +32 for RX key, +32+64 for RX key MIC */
2308 				clrbit(sc->sc_keymap, keyix+32);
2309 				clrbit(sc->sc_keymap, keyix+32+64);
2310 			}
2311 		}
2312 	}
2313 	return 1;
2314 }
2315 
2316 /*
2317  * Set the key cache contents for the specified key.  Key cache
2318  * slot(s) must already have been allocated by ath_key_alloc.
2319  */
2320 static int
2321 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2322 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2323 {
2324 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2325 
2326 	return ath_keyset(sc, k, vap->iv_bss);
2327 }
2328 
2329 /*
2330  * Block/unblock tx+rx processing while a key change is done.
2331  * We assume the caller serializes key management operations
2332  * so we only need to worry about synchronization with other
2333  * uses that originate in the driver.
2334  */
2335 static void
2336 ath_key_update_begin(struct ieee80211vap *vap)
2337 {
2338 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2339 	struct ath_softc *sc = ifp->if_softc;
2340 
2341 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2342 	taskqueue_block(sc->sc_tq);
2343 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2344 }
2345 
2346 static void
2347 ath_key_update_end(struct ieee80211vap *vap)
2348 {
2349 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2350 	struct ath_softc *sc = ifp->if_softc;
2351 
2352 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2353 	IF_UNLOCK(&ifp->if_snd);
2354 	taskqueue_unblock(sc->sc_tq);
2355 }
2356 
2357 /*
2358  * Calculate the receive filter according to the
2359  * operating mode and state:
2360  *
2361  * o always accept unicast, broadcast, and multicast traffic
2362  * o accept PHY error frames when hardware doesn't have MIB support
2363  *   to count and we need them for ANI (sta mode only until recently)
2364  *   and we are not scanning (ANI is disabled)
2365  *   NB: older hal's add rx filter bits out of sight and we need to
2366  *	 blindly preserve them
2367  * o probe request frames are accepted only when operating in
2368  *   hostap, adhoc, mesh, or monitor modes
2369  * o enable promiscuous mode
2370  *   - when in monitor mode
2371  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2372  * o accept beacons:
2373  *   - when operating in station mode for collecting rssi data when
2374  *     the station is otherwise quiet, or
2375  *   - when operating in adhoc mode so the 802.11 layer creates
2376  *     node table entries for peers,
2377  *   - when scanning
2378  *   - when doing s/w beacon miss (e.g. for ap+sta)
2379  *   - when operating in ap mode in 11g to detect overlapping bss that
2380  *     require protection
2381  *   - when operating in mesh mode to detect neighbors
2382  * o accept control frames:
2383  *   - when in monitor mode
2384  * XXX BAR frames for 11n
2385  * XXX HT protection for 11n
2386  */
2387 static u_int32_t
2388 ath_calcrxfilter(struct ath_softc *sc)
2389 {
2390 	struct ifnet *ifp = sc->sc_ifp;
2391 	struct ieee80211com *ic = ifp->if_l2com;
2392 	u_int32_t rfilt;
2393 
2394 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2395 	if (!sc->sc_needmib && !sc->sc_scanning)
2396 		rfilt |= HAL_RX_FILTER_PHYERR;
2397 	if (ic->ic_opmode != IEEE80211_M_STA)
2398 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2399 	/* XXX ic->ic_monvaps != 0? */
2400 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2401 		rfilt |= HAL_RX_FILTER_PROM;
2402 	if (ic->ic_opmode == IEEE80211_M_STA ||
2403 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2404 	    sc->sc_swbmiss || sc->sc_scanning)
2405 		rfilt |= HAL_RX_FILTER_BEACON;
2406 	/*
2407 	 * NB: We don't recalculate the rx filter when
2408 	 * ic_protmode changes; otherwise we could do
2409 	 * this only when ic_protmode != NONE.
2410 	 */
2411 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2412 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2413 		rfilt |= HAL_RX_FILTER_BEACON;
2414 	if (sc->sc_nmeshvaps) {
2415 		rfilt |= HAL_RX_FILTER_BEACON;
2416 		if (sc->sc_hasbmatch)
2417 			rfilt |= HAL_RX_FILTER_BSSID;
2418 		else
2419 			rfilt |= HAL_RX_FILTER_PROM;
2420 	}
2421 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2422 		rfilt |= HAL_RX_FILTER_CONTROL;
2423 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2424 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2425 	return rfilt;
2426 }
2427 
2428 static void
2429 ath_update_promisc(struct ifnet *ifp)
2430 {
2431 	struct ath_softc *sc = ifp->if_softc;
2432 	u_int32_t rfilt;
2433 
2434 	/* configure rx filter */
2435 	rfilt = ath_calcrxfilter(sc);
2436 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2437 
2438 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2439 }
2440 
2441 static void
2442 ath_update_mcast(struct ifnet *ifp)
2443 {
2444 	struct ath_softc *sc = ifp->if_softc;
2445 	u_int32_t mfilt[2];
2446 
2447 	/* calculate and install multicast filter */
2448 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2449 		struct ifmultiaddr *ifma;
2450 		/*
2451 		 * Merge multicast addresses to form the hardware filter.
2452 		 */
2453 		mfilt[0] = mfilt[1] = 0;
2454 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2455 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2456 			caddr_t dl;
2457 			u_int32_t val;
2458 			u_int8_t pos;
2459 
2460 			/* calculate XOR of eight 6bit values */
2461 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2462 			val = LE_READ_4(dl + 0);
2463 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2464 			val = LE_READ_4(dl + 3);
2465 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2466 			pos &= 0x3f;
2467 			mfilt[pos / 32] |= (1 << (pos % 32));
2468 		}
2469 		if_maddr_runlock(ifp);
2470 	} else
2471 		mfilt[0] = mfilt[1] = ~0;
2472 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2473 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2474 		__func__, mfilt[0], mfilt[1]);
2475 }
2476 
2477 static void
2478 ath_mode_init(struct ath_softc *sc)
2479 {
2480 	struct ifnet *ifp = sc->sc_ifp;
2481 	struct ath_hal *ah = sc->sc_ah;
2482 	u_int32_t rfilt;
2483 
2484 	/* configure rx filter */
2485 	rfilt = ath_calcrxfilter(sc);
2486 	ath_hal_setrxfilter(ah, rfilt);
2487 
2488 	/* configure operational mode */
2489 	ath_hal_setopmode(ah);
2490 
2491 	/* handle any link-level address change */
2492 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2493 
2494 	/* calculate and install multicast filter */
2495 	ath_update_mcast(ifp);
2496 }
2497 
2498 /*
2499  * Set the slot time based on the current setting.
2500  */
2501 static void
2502 ath_setslottime(struct ath_softc *sc)
2503 {
2504 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2505 	struct ath_hal *ah = sc->sc_ah;
2506 	u_int usec;
2507 
2508 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2509 		usec = 13;
2510 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2511 		usec = 21;
2512 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2513 		/* honor short/long slot time only in 11g */
2514 		/* XXX shouldn't honor on pure g or turbo g channel */
2515 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2516 			usec = HAL_SLOT_TIME_9;
2517 		else
2518 			usec = HAL_SLOT_TIME_20;
2519 	} else
2520 		usec = HAL_SLOT_TIME_9;
2521 
2522 	DPRINTF(sc, ATH_DEBUG_RESET,
2523 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2524 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2525 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2526 
2527 	ath_hal_setslottime(ah, usec);
2528 	sc->sc_updateslot = OK;
2529 }
2530 
2531 /*
2532  * Callback from the 802.11 layer to update the
2533  * slot time based on the current setting.
2534  */
2535 static void
2536 ath_updateslot(struct ifnet *ifp)
2537 {
2538 	struct ath_softc *sc = ifp->if_softc;
2539 	struct ieee80211com *ic = ifp->if_l2com;
2540 
2541 	/*
2542 	 * When not coordinating the BSS, change the hardware
2543 	 * immediately.  For other operation we defer the change
2544 	 * until beacon updates have propagated to the stations.
2545 	 */
2546 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2547 	    ic->ic_opmode == IEEE80211_M_MBSS)
2548 		sc->sc_updateslot = UPDATE;
2549 	else
2550 		ath_setslottime(sc);
2551 }
2552 
2553 /*
2554  * Setup a h/w transmit queue for beacons.
2555  */
2556 static int
2557 ath_beaconq_setup(struct ath_hal *ah)
2558 {
2559 	HAL_TXQ_INFO qi;
2560 
2561 	memset(&qi, 0, sizeof(qi));
2562 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2563 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2564 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2565 	/* NB: for dynamic turbo, don't enable any other interrupts */
2566 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2567 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2568 }
2569 
2570 /*
2571  * Setup the transmit queue parameters for the beacon queue.
2572  */
2573 static int
2574 ath_beaconq_config(struct ath_softc *sc)
2575 {
2576 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2577 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2578 	struct ath_hal *ah = sc->sc_ah;
2579 	HAL_TXQ_INFO qi;
2580 
2581 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2582 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2583 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2584 		/*
2585 		 * Always burst out beacon and CAB traffic.
2586 		 */
2587 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2588 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2589 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2590 	} else {
2591 		struct wmeParams *wmep =
2592 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2593 		/*
2594 		 * Adhoc mode; important thing is to use 2x cwmin.
2595 		 */
2596 		qi.tqi_aifs = wmep->wmep_aifsn;
2597 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2598 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2599 	}
2600 
2601 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2602 		device_printf(sc->sc_dev, "unable to update parameters for "
2603 			"beacon hardware queue!\n");
2604 		return 0;
2605 	} else {
2606 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2607 		return 1;
2608 	}
2609 #undef ATH_EXPONENT_TO_VALUE
2610 }
2611 
2612 /*
2613  * Allocate and setup an initial beacon frame.
2614  */
2615 static int
2616 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2617 {
2618 	struct ieee80211vap *vap = ni->ni_vap;
2619 	struct ath_vap *avp = ATH_VAP(vap);
2620 	struct ath_buf *bf;
2621 	struct mbuf *m;
2622 	int error;
2623 
2624 	bf = avp->av_bcbuf;
2625 	if (bf->bf_m != NULL) {
2626 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2627 		m_freem(bf->bf_m);
2628 		bf->bf_m = NULL;
2629 	}
2630 	if (bf->bf_node != NULL) {
2631 		ieee80211_free_node(bf->bf_node);
2632 		bf->bf_node = NULL;
2633 	}
2634 
2635 	/*
2636 	 * NB: the beacon data buffer must be 32-bit aligned;
2637 	 * we assume the mbuf routines will return us something
2638 	 * with this alignment (perhaps should assert).
2639 	 */
2640 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2641 	if (m == NULL) {
2642 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2643 		sc->sc_stats.ast_be_nombuf++;
2644 		return ENOMEM;
2645 	}
2646 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2647 				     bf->bf_segs, &bf->bf_nseg,
2648 				     BUS_DMA_NOWAIT);
2649 	if (error != 0) {
2650 		device_printf(sc->sc_dev,
2651 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2652 		    __func__, error);
2653 		m_freem(m);
2654 		return error;
2655 	}
2656 
2657 	/*
2658 	 * Calculate a TSF adjustment factor required for staggered
2659 	 * beacons.  Note that we assume the format of the beacon
2660 	 * frame leaves the tstamp field immediately following the
2661 	 * header.
2662 	 */
2663 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2664 		uint64_t tsfadjust;
2665 		struct ieee80211_frame *wh;
2666 
2667 		/*
2668 		 * The beacon interval is in TU's; the TSF is in usecs.
2669 		 * We figure out how many TU's to add to align the timestamp
2670 		 * then convert to TSF units and handle byte swapping before
2671 		 * inserting it in the frame.  The hardware will then add this
2672 		 * each time a beacon frame is sent.  Note that we align vap's
2673 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2674 		 * timestamp in one beacon interval while the others get a
2675 		 * timstamp aligned to the next interval.
2676 		 */
2677 		tsfadjust = ni->ni_intval *
2678 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2679 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2680 
2681 		DPRINTF(sc, ATH_DEBUG_BEACON,
2682 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2683 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2684 		    avp->av_bslot, ni->ni_intval,
2685 		    (long long unsigned) le64toh(tsfadjust));
2686 
2687 		wh = mtod(m, struct ieee80211_frame *);
2688 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2689 	}
2690 	bf->bf_m = m;
2691 	bf->bf_node = ieee80211_ref_node(ni);
2692 
2693 	return 0;
2694 }
2695 
2696 /*
2697  * Setup the beacon frame for transmit.
2698  */
2699 static void
2700 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2701 {
2702 #define	USE_SHPREAMBLE(_ic) \
2703 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2704 		== IEEE80211_F_SHPREAMBLE)
2705 	struct ieee80211_node *ni = bf->bf_node;
2706 	struct ieee80211com *ic = ni->ni_ic;
2707 	struct mbuf *m = bf->bf_m;
2708 	struct ath_hal *ah = sc->sc_ah;
2709 	struct ath_desc *ds;
2710 	int flags, antenna;
2711 	const HAL_RATE_TABLE *rt;
2712 	u_int8_t rix, rate;
2713 
2714 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2715 		__func__, m, m->m_len);
2716 
2717 	/* setup descriptors */
2718 	ds = bf->bf_desc;
2719 
2720 	flags = HAL_TXDESC_NOACK;
2721 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2722 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2723 		flags |= HAL_TXDESC_VEOL;
2724 		/*
2725 		 * Let hardware handle antenna switching.
2726 		 */
2727 		antenna = sc->sc_txantenna;
2728 	} else {
2729 		ds->ds_link = 0;
2730 		/*
2731 		 * Switch antenna every 4 beacons.
2732 		 * XXX assumes two antenna
2733 		 */
2734 		if (sc->sc_txantenna != 0)
2735 			antenna = sc->sc_txantenna;
2736 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2737 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2738 		else
2739 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2740 	}
2741 
2742 	KASSERT(bf->bf_nseg == 1,
2743 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2744 	ds->ds_data = bf->bf_segs[0].ds_addr;
2745 	/*
2746 	 * Calculate rate code.
2747 	 * XXX everything at min xmit rate
2748 	 */
2749 	rix = 0;
2750 	rt = sc->sc_currates;
2751 	rate = rt->info[rix].rateCode;
2752 	if (USE_SHPREAMBLE(ic))
2753 		rate |= rt->info[rix].shortPreamble;
2754 	ath_hal_setuptxdesc(ah, ds
2755 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2756 		, sizeof(struct ieee80211_frame)/* header length */
2757 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2758 		, ni->ni_txpower		/* txpower XXX */
2759 		, rate, 1			/* series 0 rate/tries */
2760 		, HAL_TXKEYIX_INVALID		/* no encryption */
2761 		, antenna			/* antenna mode */
2762 		, flags				/* no ack, veol for beacons */
2763 		, 0				/* rts/cts rate */
2764 		, 0				/* rts/cts duration */
2765 	);
2766 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2767 	ath_hal_filltxdesc(ah, ds
2768 		, roundup(m->m_len, 4)		/* buffer length */
2769 		, AH_TRUE			/* first segment */
2770 		, AH_TRUE			/* last segment */
2771 		, ds				/* first descriptor */
2772 	);
2773 #if 0
2774 	ath_desc_swap(ds);
2775 #endif
2776 #undef USE_SHPREAMBLE
2777 }
2778 
2779 static void
2780 ath_beacon_update(struct ieee80211vap *vap, int item)
2781 {
2782 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2783 
2784 	setbit(bo->bo_flags, item);
2785 }
2786 
2787 /*
2788  * Append the contents of src to dst; both queues
2789  * are assumed to be locked.
2790  */
2791 static void
2792 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2793 {
2794 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2795 	dst->axq_link = src->axq_link;
2796 	src->axq_link = NULL;
2797 	dst->axq_depth += src->axq_depth;
2798 	src->axq_depth = 0;
2799 }
2800 
2801 /*
2802  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2803  * frame contents are done as needed and the slot time is
2804  * also adjusted based on current state.
2805  */
2806 static void
2807 ath_beacon_proc(void *arg, int pending)
2808 {
2809 	struct ath_softc *sc = arg;
2810 	struct ath_hal *ah = sc->sc_ah;
2811 	struct ieee80211vap *vap;
2812 	struct ath_buf *bf;
2813 	int slot, otherant;
2814 	uint32_t bfaddr;
2815 
2816 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2817 		__func__, pending);
2818 	/*
2819 	 * Check if the previous beacon has gone out.  If
2820 	 * not don't try to post another, skip this period
2821 	 * and wait for the next.  Missed beacons indicate
2822 	 * a problem and should not occur.  If we miss too
2823 	 * many consecutive beacons reset the device.
2824 	 */
2825 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2826 		sc->sc_bmisscount++;
2827 		DPRINTF(sc, ATH_DEBUG_BEACON,
2828 			"%s: missed %u consecutive beacons\n",
2829 			__func__, sc->sc_bmisscount);
2830 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2831 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2832 		return;
2833 	}
2834 	if (sc->sc_bmisscount != 0) {
2835 		DPRINTF(sc, ATH_DEBUG_BEACON,
2836 			"%s: resume beacon xmit after %u misses\n",
2837 			__func__, sc->sc_bmisscount);
2838 		sc->sc_bmisscount = 0;
2839 	}
2840 
2841 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2842 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2843 		uint32_t tsftu;
2844 
2845 		tsftu = ath_hal_gettsf32(ah) >> 10;
2846 		/* XXX lintval */
2847 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2848 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2849 		bfaddr = 0;
2850 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2851 			bf = ath_beacon_generate(sc, vap);
2852 			if (bf != NULL)
2853 				bfaddr = bf->bf_daddr;
2854 		}
2855 	} else {					/* burst'd beacons */
2856 		uint32_t *bflink = &bfaddr;
2857 
2858 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2859 			vap = sc->sc_bslot[slot];
2860 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2861 				bf = ath_beacon_generate(sc, vap);
2862 				if (bf != NULL) {
2863 					*bflink = bf->bf_daddr;
2864 					bflink = &bf->bf_desc->ds_link;
2865 				}
2866 			}
2867 		}
2868 		*bflink = 0;				/* terminate list */
2869 	}
2870 
2871 	/*
2872 	 * Handle slot time change when a non-ERP station joins/leaves
2873 	 * an 11g network.  The 802.11 layer notifies us via callback,
2874 	 * we mark updateslot, then wait one beacon before effecting
2875 	 * the change.  This gives associated stations at least one
2876 	 * beacon interval to note the state change.
2877 	 */
2878 	/* XXX locking */
2879 	if (sc->sc_updateslot == UPDATE) {
2880 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2881 		sc->sc_slotupdate = slot;
2882 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2883 		ath_setslottime(sc);		/* commit change to h/w */
2884 
2885 	/*
2886 	 * Check recent per-antenna transmit statistics and flip
2887 	 * the default antenna if noticeably more frames went out
2888 	 * on the non-default antenna.
2889 	 * XXX assumes 2 anntenae
2890 	 */
2891 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2892 		otherant = sc->sc_defant & 1 ? 2 : 1;
2893 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2894 			ath_setdefantenna(sc, otherant);
2895 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2896 	}
2897 
2898 	if (bfaddr != 0) {
2899 		/*
2900 		 * Stop any current dma and put the new frame on the queue.
2901 		 * This should never fail since we check above that no frames
2902 		 * are still pending on the queue.
2903 		 */
2904 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2905 			DPRINTF(sc, ATH_DEBUG_ANY,
2906 				"%s: beacon queue %u did not stop?\n",
2907 				__func__, sc->sc_bhalq);
2908 		}
2909 		/* NB: cabq traffic should already be queued and primed */
2910 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2911 		ath_hal_txstart(ah, sc->sc_bhalq);
2912 
2913 		sc->sc_stats.ast_be_xmit++;
2914 	}
2915 }
2916 
2917 static struct ath_buf *
2918 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2919 {
2920 	struct ath_vap *avp = ATH_VAP(vap);
2921 	struct ath_txq *cabq = sc->sc_cabq;
2922 	struct ath_buf *bf;
2923 	struct mbuf *m;
2924 	int nmcastq, error;
2925 
2926 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2927 	    ("not running, state %d", vap->iv_state));
2928 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2929 
2930 	/*
2931 	 * Update dynamic beacon contents.  If this returns
2932 	 * non-zero then we need to remap the memory because
2933 	 * the beacon frame changed size (probably because
2934 	 * of the TIM bitmap).
2935 	 */
2936 	bf = avp->av_bcbuf;
2937 	m = bf->bf_m;
2938 	nmcastq = avp->av_mcastq.axq_depth;
2939 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2940 		/* XXX too conservative? */
2941 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2942 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2943 					     bf->bf_segs, &bf->bf_nseg,
2944 					     BUS_DMA_NOWAIT);
2945 		if (error != 0) {
2946 			if_printf(vap->iv_ifp,
2947 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2948 			    __func__, error);
2949 			return NULL;
2950 		}
2951 	}
2952 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2953 		DPRINTF(sc, ATH_DEBUG_BEACON,
2954 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2955 		    __func__, nmcastq, cabq->axq_depth);
2956 		sc->sc_stats.ast_cabq_busy++;
2957 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2958 			/*
2959 			 * CABQ traffic from a previous vap is still pending.
2960 			 * We must drain the q before this beacon frame goes
2961 			 * out as otherwise this vap's stations will get cab
2962 			 * frames from a different vap.
2963 			 * XXX could be slow causing us to miss DBA
2964 			 */
2965 			ath_tx_draintxq(sc, cabq);
2966 		}
2967 	}
2968 	ath_beacon_setup(sc, bf);
2969 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2970 
2971 	/*
2972 	 * Enable the CAB queue before the beacon queue to
2973 	 * insure cab frames are triggered by this beacon.
2974 	 */
2975 	if (avp->av_boff.bo_tim[4] & 1) {
2976 		struct ath_hal *ah = sc->sc_ah;
2977 
2978 		/* NB: only at DTIM */
2979 		ATH_TXQ_LOCK(cabq);
2980 		ATH_TXQ_LOCK(&avp->av_mcastq);
2981 		if (nmcastq) {
2982 			struct ath_buf *bfm;
2983 
2984 			/*
2985 			 * Move frames from the s/w mcast q to the h/w cab q.
2986 			 * XXX MORE_DATA bit
2987 			 */
2988 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2989 			if (cabq->axq_link != NULL) {
2990 				*cabq->axq_link = bfm->bf_daddr;
2991 			} else
2992 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2993 					bfm->bf_daddr);
2994 			ath_txqmove(cabq, &avp->av_mcastq);
2995 
2996 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2997 		}
2998 		/* NB: gated by beacon so safe to start here */
2999 		ath_hal_txstart(ah, cabq->axq_qnum);
3000 		ATH_TXQ_UNLOCK(cabq);
3001 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3002 	}
3003 	return bf;
3004 }
3005 
3006 static void
3007 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3008 {
3009 	struct ath_vap *avp = ATH_VAP(vap);
3010 	struct ath_hal *ah = sc->sc_ah;
3011 	struct ath_buf *bf;
3012 	struct mbuf *m;
3013 	int error;
3014 
3015 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3016 
3017 	/*
3018 	 * Update dynamic beacon contents.  If this returns
3019 	 * non-zero then we need to remap the memory because
3020 	 * the beacon frame changed size (probably because
3021 	 * of the TIM bitmap).
3022 	 */
3023 	bf = avp->av_bcbuf;
3024 	m = bf->bf_m;
3025 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3026 		/* XXX too conservative? */
3027 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3028 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3029 					     bf->bf_segs, &bf->bf_nseg,
3030 					     BUS_DMA_NOWAIT);
3031 		if (error != 0) {
3032 			if_printf(vap->iv_ifp,
3033 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3034 			    __func__, error);
3035 			return;
3036 		}
3037 	}
3038 	ath_beacon_setup(sc, bf);
3039 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3040 
3041 	/* NB: caller is known to have already stopped tx dma */
3042 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3043 	ath_hal_txstart(ah, sc->sc_bhalq);
3044 }
3045 
3046 /*
3047  * Reset the hardware after detecting beacons have stopped.
3048  */
3049 static void
3050 ath_bstuck_proc(void *arg, int pending)
3051 {
3052 	struct ath_softc *sc = arg;
3053 	struct ifnet *ifp = sc->sc_ifp;
3054 
3055 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3056 		sc->sc_bmisscount);
3057 	sc->sc_stats.ast_bstuck++;
3058 	ath_reset(ifp);
3059 }
3060 
3061 /*
3062  * Reclaim beacon resources and return buffer to the pool.
3063  */
3064 static void
3065 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3066 {
3067 
3068 	if (bf->bf_m != NULL) {
3069 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3070 		m_freem(bf->bf_m);
3071 		bf->bf_m = NULL;
3072 	}
3073 	if (bf->bf_node != NULL) {
3074 		ieee80211_free_node(bf->bf_node);
3075 		bf->bf_node = NULL;
3076 	}
3077 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3078 }
3079 
3080 /*
3081  * Reclaim beacon resources.
3082  */
3083 static void
3084 ath_beacon_free(struct ath_softc *sc)
3085 {
3086 	struct ath_buf *bf;
3087 
3088 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3089 		if (bf->bf_m != NULL) {
3090 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3091 			m_freem(bf->bf_m);
3092 			bf->bf_m = NULL;
3093 		}
3094 		if (bf->bf_node != NULL) {
3095 			ieee80211_free_node(bf->bf_node);
3096 			bf->bf_node = NULL;
3097 		}
3098 	}
3099 }
3100 
3101 /*
3102  * Configure the beacon and sleep timers.
3103  *
3104  * When operating as an AP this resets the TSF and sets
3105  * up the hardware to notify us when we need to issue beacons.
3106  *
3107  * When operating in station mode this sets up the beacon
3108  * timers according to the timestamp of the last received
3109  * beacon and the current TSF, configures PCF and DTIM
3110  * handling, programs the sleep registers so the hardware
3111  * will wakeup in time to receive beacons, and configures
3112  * the beacon miss handling so we'll receive a BMISS
3113  * interrupt when we stop seeing beacons from the AP
3114  * we've associated with.
3115  */
3116 static void
3117 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3118 {
3119 #define	TSF_TO_TU(_h,_l) \
3120 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3121 #define	FUDGE	2
3122 	struct ath_hal *ah = sc->sc_ah;
3123 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3124 	struct ieee80211_node *ni;
3125 	u_int32_t nexttbtt, intval, tsftu;
3126 	u_int64_t tsf;
3127 
3128 	if (vap == NULL)
3129 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3130 	ni = vap->iv_bss;
3131 
3132 	/* extract tstamp from last beacon and convert to TU */
3133 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3134 			     LE_READ_4(ni->ni_tstamp.data));
3135 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3136 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3137 		/*
3138 		 * For multi-bss ap/mesh support beacons are either staggered
3139 		 * evenly over N slots or burst together.  For the former
3140 		 * arrange for the SWBA to be delivered for each slot.
3141 		 * Slots that are not occupied will generate nothing.
3142 		 */
3143 		/* NB: the beacon interval is kept internally in TU's */
3144 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3145 		if (sc->sc_stagbeacons)
3146 			intval /= ATH_BCBUF;
3147 	} else {
3148 		/* NB: the beacon interval is kept internally in TU's */
3149 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3150 	}
3151 	if (nexttbtt == 0)		/* e.g. for ap mode */
3152 		nexttbtt = intval;
3153 	else if (intval)		/* NB: can be 0 for monitor mode */
3154 		nexttbtt = roundup(nexttbtt, intval);
3155 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3156 		__func__, nexttbtt, intval, ni->ni_intval);
3157 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3158 		HAL_BEACON_STATE bs;
3159 		int dtimperiod, dtimcount;
3160 		int cfpperiod, cfpcount;
3161 
3162 		/*
3163 		 * Setup dtim and cfp parameters according to
3164 		 * last beacon we received (which may be none).
3165 		 */
3166 		dtimperiod = ni->ni_dtim_period;
3167 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3168 			dtimperiod = 1;
3169 		dtimcount = ni->ni_dtim_count;
3170 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3171 			dtimcount = 0;		/* XXX? */
3172 		cfpperiod = 1;			/* NB: no PCF support yet */
3173 		cfpcount = 0;
3174 		/*
3175 		 * Pull nexttbtt forward to reflect the current
3176 		 * TSF and calculate dtim+cfp state for the result.
3177 		 */
3178 		tsf = ath_hal_gettsf64(ah);
3179 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3180 		do {
3181 			nexttbtt += intval;
3182 			if (--dtimcount < 0) {
3183 				dtimcount = dtimperiod - 1;
3184 				if (--cfpcount < 0)
3185 					cfpcount = cfpperiod - 1;
3186 			}
3187 		} while (nexttbtt < tsftu);
3188 		memset(&bs, 0, sizeof(bs));
3189 		bs.bs_intval = intval;
3190 		bs.bs_nexttbtt = nexttbtt;
3191 		bs.bs_dtimperiod = dtimperiod*intval;
3192 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3193 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3194 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3195 		bs.bs_cfpmaxduration = 0;
3196 #if 0
3197 		/*
3198 		 * The 802.11 layer records the offset to the DTIM
3199 		 * bitmap while receiving beacons; use it here to
3200 		 * enable h/w detection of our AID being marked in
3201 		 * the bitmap vector (to indicate frames for us are
3202 		 * pending at the AP).
3203 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3204 		 * XXX enable based on h/w rev for newer chips
3205 		 */
3206 		bs.bs_timoffset = ni->ni_timoff;
3207 #endif
3208 		/*
3209 		 * Calculate the number of consecutive beacons to miss
3210 		 * before taking a BMISS interrupt.
3211 		 * Note that we clamp the result to at most 10 beacons.
3212 		 */
3213 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3214 		if (bs.bs_bmissthreshold > 10)
3215 			bs.bs_bmissthreshold = 10;
3216 		else if (bs.bs_bmissthreshold <= 0)
3217 			bs.bs_bmissthreshold = 1;
3218 
3219 		/*
3220 		 * Calculate sleep duration.  The configuration is
3221 		 * given in ms.  We insure a multiple of the beacon
3222 		 * period is used.  Also, if the sleep duration is
3223 		 * greater than the DTIM period then it makes senses
3224 		 * to make it a multiple of that.
3225 		 *
3226 		 * XXX fixed at 100ms
3227 		 */
3228 		bs.bs_sleepduration =
3229 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3230 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3231 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3232 
3233 		DPRINTF(sc, ATH_DEBUG_BEACON,
3234 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3235 			, __func__
3236 			, tsf, tsftu
3237 			, bs.bs_intval
3238 			, bs.bs_nexttbtt
3239 			, bs.bs_dtimperiod
3240 			, bs.bs_nextdtim
3241 			, bs.bs_bmissthreshold
3242 			, bs.bs_sleepduration
3243 			, bs.bs_cfpperiod
3244 			, bs.bs_cfpmaxduration
3245 			, bs.bs_cfpnext
3246 			, bs.bs_timoffset
3247 		);
3248 		ath_hal_intrset(ah, 0);
3249 		ath_hal_beacontimers(ah, &bs);
3250 		sc->sc_imask |= HAL_INT_BMISS;
3251 		ath_hal_intrset(ah, sc->sc_imask);
3252 	} else {
3253 		ath_hal_intrset(ah, 0);
3254 		if (nexttbtt == intval)
3255 			intval |= HAL_BEACON_RESET_TSF;
3256 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3257 			/*
3258 			 * In IBSS mode enable the beacon timers but only
3259 			 * enable SWBA interrupts if we need to manually
3260 			 * prepare beacon frames.  Otherwise we use a
3261 			 * self-linked tx descriptor and let the hardware
3262 			 * deal with things.
3263 			 */
3264 			intval |= HAL_BEACON_ENA;
3265 			if (!sc->sc_hasveol)
3266 				sc->sc_imask |= HAL_INT_SWBA;
3267 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3268 				/*
3269 				 * Pull nexttbtt forward to reflect
3270 				 * the current TSF.
3271 				 */
3272 				tsf = ath_hal_gettsf64(ah);
3273 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3274 				do {
3275 					nexttbtt += intval;
3276 				} while (nexttbtt < tsftu);
3277 			}
3278 			ath_beaconq_config(sc);
3279 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3280 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3281 			/*
3282 			 * In AP/mesh mode we enable the beacon timers
3283 			 * and SWBA interrupts to prepare beacon frames.
3284 			 */
3285 			intval |= HAL_BEACON_ENA;
3286 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3287 			ath_beaconq_config(sc);
3288 		}
3289 		ath_hal_beaconinit(ah, nexttbtt, intval);
3290 		sc->sc_bmisscount = 0;
3291 		ath_hal_intrset(ah, sc->sc_imask);
3292 		/*
3293 		 * When using a self-linked beacon descriptor in
3294 		 * ibss mode load it once here.
3295 		 */
3296 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3297 			ath_beacon_start_adhoc(sc, vap);
3298 	}
3299 	sc->sc_syncbeacon = 0;
3300 #undef FUDGE
3301 #undef TSF_TO_TU
3302 }
3303 
3304 static void
3305 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3306 {
3307 	bus_addr_t *paddr = (bus_addr_t*) arg;
3308 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3309 	*paddr = segs->ds_addr;
3310 }
3311 
3312 static int
3313 ath_descdma_setup(struct ath_softc *sc,
3314 	struct ath_descdma *dd, ath_bufhead *head,
3315 	const char *name, int nbuf, int ndesc)
3316 {
3317 #define	DS2PHYS(_dd, _ds) \
3318 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3319 	struct ifnet *ifp = sc->sc_ifp;
3320 	struct ath_desc *ds;
3321 	struct ath_buf *bf;
3322 	int i, bsize, error;
3323 
3324 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3325 	    __func__, name, nbuf, ndesc);
3326 
3327 	dd->dd_name = name;
3328 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3329 
3330 	/*
3331 	 * Setup DMA descriptor area.
3332 	 */
3333 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3334 		       PAGE_SIZE, 0,		/* alignment, bounds */
3335 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3336 		       BUS_SPACE_MAXADDR,	/* highaddr */
3337 		       NULL, NULL,		/* filter, filterarg */
3338 		       dd->dd_desc_len,		/* maxsize */
3339 		       1,			/* nsegments */
3340 		       dd->dd_desc_len,		/* maxsegsize */
3341 		       BUS_DMA_ALLOCNOW,	/* flags */
3342 		       NULL,			/* lockfunc */
3343 		       NULL,			/* lockarg */
3344 		       &dd->dd_dmat);
3345 	if (error != 0) {
3346 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3347 		return error;
3348 	}
3349 
3350 	/* allocate descriptors */
3351 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3352 	if (error != 0) {
3353 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3354 			"error %u\n", dd->dd_name, error);
3355 		goto fail0;
3356 	}
3357 
3358 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3359 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3360 				 &dd->dd_dmamap);
3361 	if (error != 0) {
3362 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3363 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3364 		goto fail1;
3365 	}
3366 
3367 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3368 				dd->dd_desc, dd->dd_desc_len,
3369 				ath_load_cb, &dd->dd_desc_paddr,
3370 				BUS_DMA_NOWAIT);
3371 	if (error != 0) {
3372 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3373 			dd->dd_name, error);
3374 		goto fail2;
3375 	}
3376 
3377 	ds = dd->dd_desc;
3378 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3379 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3380 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3381 
3382 	/* allocate rx buffers */
3383 	bsize = sizeof(struct ath_buf) * nbuf;
3384 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3385 	if (bf == NULL) {
3386 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3387 			dd->dd_name, bsize);
3388 		goto fail3;
3389 	}
3390 	dd->dd_bufptr = bf;
3391 
3392 	STAILQ_INIT(head);
3393 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3394 		bf->bf_desc = ds;
3395 		bf->bf_daddr = DS2PHYS(dd, ds);
3396 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3397 				&bf->bf_dmamap);
3398 		if (error != 0) {
3399 			if_printf(ifp, "unable to create dmamap for %s "
3400 				"buffer %u, error %u\n", dd->dd_name, i, error);
3401 			ath_descdma_cleanup(sc, dd, head);
3402 			return error;
3403 		}
3404 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3405 	}
3406 	return 0;
3407 fail3:
3408 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3409 fail2:
3410 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3411 fail1:
3412 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3413 fail0:
3414 	bus_dma_tag_destroy(dd->dd_dmat);
3415 	memset(dd, 0, sizeof(*dd));
3416 	return error;
3417 #undef DS2PHYS
3418 }
3419 
3420 static void
3421 ath_descdma_cleanup(struct ath_softc *sc,
3422 	struct ath_descdma *dd, ath_bufhead *head)
3423 {
3424 	struct ath_buf *bf;
3425 	struct ieee80211_node *ni;
3426 
3427 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3428 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3429 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3430 	bus_dma_tag_destroy(dd->dd_dmat);
3431 
3432 	STAILQ_FOREACH(bf, head, bf_list) {
3433 		if (bf->bf_m) {
3434 			m_freem(bf->bf_m);
3435 			bf->bf_m = NULL;
3436 		}
3437 		if (bf->bf_dmamap != NULL) {
3438 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3439 			bf->bf_dmamap = NULL;
3440 		}
3441 		ni = bf->bf_node;
3442 		bf->bf_node = NULL;
3443 		if (ni != NULL) {
3444 			/*
3445 			 * Reclaim node reference.
3446 			 */
3447 			ieee80211_free_node(ni);
3448 		}
3449 	}
3450 
3451 	STAILQ_INIT(head);
3452 	free(dd->dd_bufptr, M_ATHDEV);
3453 	memset(dd, 0, sizeof(*dd));
3454 }
3455 
3456 static int
3457 ath_desc_alloc(struct ath_softc *sc)
3458 {
3459 	int error;
3460 
3461 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3462 			"rx", ath_rxbuf, 1);
3463 	if (error != 0)
3464 		return error;
3465 
3466 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3467 			"tx", ath_txbuf, ATH_TXDESC);
3468 	if (error != 0) {
3469 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3470 		return error;
3471 	}
3472 
3473 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3474 			"beacon", ATH_BCBUF, 1);
3475 	if (error != 0) {
3476 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3477 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3478 		return error;
3479 	}
3480 	return 0;
3481 }
3482 
3483 static void
3484 ath_desc_free(struct ath_softc *sc)
3485 {
3486 
3487 	if (sc->sc_bdma.dd_desc_len != 0)
3488 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3489 	if (sc->sc_txdma.dd_desc_len != 0)
3490 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3491 	if (sc->sc_rxdma.dd_desc_len != 0)
3492 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3493 }
3494 
3495 static struct ieee80211_node *
3496 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3497 {
3498 	struct ieee80211com *ic = vap->iv_ic;
3499 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3500 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3501 	struct ath_node *an;
3502 
3503 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3504 	if (an == NULL) {
3505 		/* XXX stat+msg */
3506 		return NULL;
3507 	}
3508 	ath_rate_node_init(sc, an);
3509 
3510 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3511 	return &an->an_node;
3512 }
3513 
3514 static void
3515 ath_node_free(struct ieee80211_node *ni)
3516 {
3517 	struct ieee80211com *ic = ni->ni_ic;
3518         struct ath_softc *sc = ic->ic_ifp->if_softc;
3519 
3520 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3521 
3522 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3523 	sc->sc_node_free(ni);
3524 }
3525 
3526 static void
3527 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3528 {
3529 	struct ieee80211com *ic = ni->ni_ic;
3530 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3531 	struct ath_hal *ah = sc->sc_ah;
3532 
3533 	*rssi = ic->ic_node_getrssi(ni);
3534 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3535 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3536 	else
3537 		*noise = -95;		/* nominally correct */
3538 }
3539 
3540 static int
3541 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3542 {
3543 	struct ath_hal *ah = sc->sc_ah;
3544 	int error;
3545 	struct mbuf *m;
3546 	struct ath_desc *ds;
3547 
3548 	m = bf->bf_m;
3549 	if (m == NULL) {
3550 		/*
3551 		 * NB: by assigning a page to the rx dma buffer we
3552 		 * implicitly satisfy the Atheros requirement that
3553 		 * this buffer be cache-line-aligned and sized to be
3554 		 * multiple of the cache line size.  Not doing this
3555 		 * causes weird stuff to happen (for the 5210 at least).
3556 		 */
3557 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3558 		if (m == NULL) {
3559 			DPRINTF(sc, ATH_DEBUG_ANY,
3560 				"%s: no mbuf/cluster\n", __func__);
3561 			sc->sc_stats.ast_rx_nombuf++;
3562 			return ENOMEM;
3563 		}
3564 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3565 
3566 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3567 					     bf->bf_dmamap, m,
3568 					     bf->bf_segs, &bf->bf_nseg,
3569 					     BUS_DMA_NOWAIT);
3570 		if (error != 0) {
3571 			DPRINTF(sc, ATH_DEBUG_ANY,
3572 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3573 			    __func__, error);
3574 			sc->sc_stats.ast_rx_busdma++;
3575 			m_freem(m);
3576 			return error;
3577 		}
3578 		KASSERT(bf->bf_nseg == 1,
3579 			("multi-segment packet; nseg %u", bf->bf_nseg));
3580 		bf->bf_m = m;
3581 	}
3582 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3583 
3584 	/*
3585 	 * Setup descriptors.  For receive we always terminate
3586 	 * the descriptor list with a self-linked entry so we'll
3587 	 * not get overrun under high load (as can happen with a
3588 	 * 5212 when ANI processing enables PHY error frames).
3589 	 *
3590 	 * To insure the last descriptor is self-linked we create
3591 	 * each descriptor as self-linked and add it to the end.  As
3592 	 * each additional descriptor is added the previous self-linked
3593 	 * entry is ``fixed'' naturally.  This should be safe even
3594 	 * if DMA is happening.  When processing RX interrupts we
3595 	 * never remove/process the last, self-linked, entry on the
3596 	 * descriptor list.  This insures the hardware always has
3597 	 * someplace to write a new frame.
3598 	 */
3599 	ds = bf->bf_desc;
3600 	ds->ds_link = bf->bf_daddr;	/* link to self */
3601 	ds->ds_data = bf->bf_segs[0].ds_addr;
3602 	ath_hal_setuprxdesc(ah, ds
3603 		, m->m_len		/* buffer size */
3604 		, 0
3605 	);
3606 
3607 	if (sc->sc_rxlink != NULL)
3608 		*sc->sc_rxlink = bf->bf_daddr;
3609 	sc->sc_rxlink = &ds->ds_link;
3610 	return 0;
3611 }
3612 
3613 /*
3614  * Extend 15-bit time stamp from rx descriptor to
3615  * a full 64-bit TSF using the specified TSF.
3616  */
3617 static __inline u_int64_t
3618 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3619 {
3620 	if ((tsf & 0x7fff) < rstamp)
3621 		tsf -= 0x8000;
3622 	return ((tsf &~ 0x7fff) | rstamp);
3623 }
3624 
3625 /*
3626  * Intercept management frames to collect beacon rssi data
3627  * and to do ibss merges.
3628  */
3629 static void
3630 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3631 	int subtype, int rssi, int nf)
3632 {
3633 	struct ieee80211vap *vap = ni->ni_vap;
3634 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3635 
3636 	/*
3637 	 * Call up first so subsequent work can use information
3638 	 * potentially stored in the node (e.g. for ibss merge).
3639 	 */
3640 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3641 	switch (subtype) {
3642 	case IEEE80211_FC0_SUBTYPE_BEACON:
3643 		/* update rssi statistics for use by the hal */
3644 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3645 		if (sc->sc_syncbeacon &&
3646 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3647 			/*
3648 			 * Resync beacon timers using the tsf of the beacon
3649 			 * frame we just received.
3650 			 */
3651 			ath_beacon_config(sc, vap);
3652 		}
3653 		/* fall thru... */
3654 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3655 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3656 		    vap->iv_state == IEEE80211_S_RUN) {
3657 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3658 			u_int64_t tsf = ath_extend_tsf(rstamp,
3659 				ath_hal_gettsf64(sc->sc_ah));
3660 			/*
3661 			 * Handle ibss merge as needed; check the tsf on the
3662 			 * frame before attempting the merge.  The 802.11 spec
3663 			 * says the station should change it's bssid to match
3664 			 * the oldest station with the same ssid, where oldest
3665 			 * is determined by the tsf.  Note that hardware
3666 			 * reconfiguration happens through callback to
3667 			 * ath_newstate as the state machine will go from
3668 			 * RUN -> RUN when this happens.
3669 			 */
3670 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3671 				DPRINTF(sc, ATH_DEBUG_STATE,
3672 				    "ibss merge, rstamp %u tsf %ju "
3673 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3674 				    (uintmax_t)ni->ni_tstamp.tsf);
3675 				(void) ieee80211_ibss_merge(ni);
3676 			}
3677 		}
3678 		break;
3679 	}
3680 }
3681 
3682 /*
3683  * Set the default antenna.
3684  */
3685 static void
3686 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3687 {
3688 	struct ath_hal *ah = sc->sc_ah;
3689 
3690 	/* XXX block beacon interrupts */
3691 	ath_hal_setdefantenna(ah, antenna);
3692 	if (sc->sc_defant != antenna)
3693 		sc->sc_stats.ast_ant_defswitch++;
3694 	sc->sc_defant = antenna;
3695 	sc->sc_rxotherant = 0;
3696 }
3697 
3698 static void
3699 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3700 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3701 {
3702 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3703 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3704 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3705 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3706 	struct ath_softc *sc = ifp->if_softc;
3707 	const HAL_RATE_TABLE *rt;
3708 	uint8_t rix;
3709 
3710 	rt = sc->sc_currates;
3711 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3712 	rix = rt->rateCodeToIndex[rs->rs_rate];
3713 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3714 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3715 #ifdef AH_SUPPORT_AR5416
3716 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3717 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3718 		struct ieee80211com *ic = ifp->if_l2com;
3719 
3720 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3721 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3722 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3723 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3724 		else
3725 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3726 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3727 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3728 	}
3729 #endif
3730 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3731 	if (rs->rs_status & HAL_RXERR_CRC)
3732 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3733 	/* XXX propagate other error flags from descriptor */
3734 	sc->sc_rx_th.wr_antnoise = nf;
3735 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3736 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3737 #undef CHAN_HT
3738 #undef CHAN_HT20
3739 #undef CHAN_HT40U
3740 #undef CHAN_HT40D
3741 }
3742 
3743 static void
3744 ath_handle_micerror(struct ieee80211com *ic,
3745 	struct ieee80211_frame *wh, int keyix)
3746 {
3747 	struct ieee80211_node *ni;
3748 
3749 	/* XXX recheck MIC to deal w/ chips that lie */
3750 	/* XXX discard MIC errors on !data frames */
3751 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3752 	if (ni != NULL) {
3753 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3754 		ieee80211_free_node(ni);
3755 	}
3756 }
3757 
3758 static void
3759 ath_rx_proc(void *arg, int npending)
3760 {
3761 #define	PA2DESC(_sc, _pa) \
3762 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3763 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3764 	struct ath_softc *sc = arg;
3765 	struct ath_buf *bf;
3766 	struct ifnet *ifp = sc->sc_ifp;
3767 	struct ieee80211com *ic = ifp->if_l2com;
3768 	struct ath_hal *ah = sc->sc_ah;
3769 	struct ath_desc *ds;
3770 	struct ath_rx_status *rs;
3771 	struct mbuf *m;
3772 	struct ieee80211_node *ni;
3773 	int len, type, ngood;
3774 	u_int phyerr;
3775 	HAL_STATUS status;
3776 	int16_t nf;
3777 	u_int64_t tsf;
3778 
3779 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3780 	ngood = 0;
3781 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3782 	sc->sc_stats.ast_rx_noise = nf;
3783 	tsf = ath_hal_gettsf64(ah);
3784 	do {
3785 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3786 		if (bf == NULL) {		/* NB: shouldn't happen */
3787 			if_printf(ifp, "%s: no buffer!\n", __func__);
3788 			break;
3789 		}
3790 		m = bf->bf_m;
3791 		if (m == NULL) {		/* NB: shouldn't happen */
3792 			/*
3793 			 * If mbuf allocation failed previously there
3794 			 * will be no mbuf; try again to re-populate it.
3795 			 */
3796 			/* XXX make debug msg */
3797 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3798 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3799 			goto rx_next;
3800 		}
3801 		ds = bf->bf_desc;
3802 		if (ds->ds_link == bf->bf_daddr) {
3803 			/* NB: never process the self-linked entry at the end */
3804 			break;
3805 		}
3806 		/* XXX sync descriptor memory */
3807 		/*
3808 		 * Must provide the virtual address of the current
3809 		 * descriptor, the physical address, and the virtual
3810 		 * address of the next descriptor in the h/w chain.
3811 		 * This allows the HAL to look ahead to see if the
3812 		 * hardware is done with a descriptor by checking the
3813 		 * done bit in the following descriptor and the address
3814 		 * of the current descriptor the DMA engine is working
3815 		 * on.  All this is necessary because of our use of
3816 		 * a self-linked list to avoid rx overruns.
3817 		 */
3818 		rs = &bf->bf_status.ds_rxstat;
3819 		status = ath_hal_rxprocdesc(ah, ds,
3820 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3821 #ifdef ATH_DEBUG
3822 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3823 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3824 #endif
3825 		if (status == HAL_EINPROGRESS)
3826 			break;
3827 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3828 		if (rs->rs_status != 0) {
3829 			if (rs->rs_status & HAL_RXERR_CRC)
3830 				sc->sc_stats.ast_rx_crcerr++;
3831 			if (rs->rs_status & HAL_RXERR_FIFO)
3832 				sc->sc_stats.ast_rx_fifoerr++;
3833 			if (rs->rs_status & HAL_RXERR_PHY) {
3834 				sc->sc_stats.ast_rx_phyerr++;
3835 				phyerr = rs->rs_phyerr & 0x1f;
3836 				sc->sc_stats.ast_rx_phy[phyerr]++;
3837 				goto rx_error;	/* NB: don't count in ierrors */
3838 			}
3839 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3840 				/*
3841 				 * Decrypt error.  If the error occurred
3842 				 * because there was no hardware key, then
3843 				 * let the frame through so the upper layers
3844 				 * can process it.  This is necessary for 5210
3845 				 * parts which have no way to setup a ``clear''
3846 				 * key cache entry.
3847 				 *
3848 				 * XXX do key cache faulting
3849 				 */
3850 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3851 					goto rx_accept;
3852 				sc->sc_stats.ast_rx_badcrypt++;
3853 			}
3854 			if (rs->rs_status & HAL_RXERR_MIC) {
3855 				sc->sc_stats.ast_rx_badmic++;
3856 				/*
3857 				 * Do minimal work required to hand off
3858 				 * the 802.11 header for notification.
3859 				 */
3860 				/* XXX frag's and qos frames */
3861 				len = rs->rs_datalen;
3862 				if (len >= sizeof (struct ieee80211_frame)) {
3863 					bus_dmamap_sync(sc->sc_dmat,
3864 					    bf->bf_dmamap,
3865 					    BUS_DMASYNC_POSTREAD);
3866 					ath_handle_micerror(ic,
3867 					    mtod(m, struct ieee80211_frame *),
3868 					    sc->sc_splitmic ?
3869 						rs->rs_keyix-32 : rs->rs_keyix);
3870 				}
3871 			}
3872 			ifp->if_ierrors++;
3873 rx_error:
3874 			/*
3875 			 * Cleanup any pending partial frame.
3876 			 */
3877 			if (sc->sc_rxpending != NULL) {
3878 				m_freem(sc->sc_rxpending);
3879 				sc->sc_rxpending = NULL;
3880 			}
3881 			/*
3882 			 * When a tap is present pass error frames
3883 			 * that have been requested.  By default we
3884 			 * pass decrypt+mic errors but others may be
3885 			 * interesting (e.g. crc).
3886 			 */
3887 			if (ieee80211_radiotap_active(ic) &&
3888 			    (rs->rs_status & sc->sc_monpass)) {
3889 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3890 				    BUS_DMASYNC_POSTREAD);
3891 				/* NB: bpf needs the mbuf length setup */
3892 				len = rs->rs_datalen;
3893 				m->m_pkthdr.len = m->m_len = len;
3894 				ath_rx_tap(ifp, m, rs, tsf, nf);
3895 				ieee80211_radiotap_rx_all(ic, m);
3896 			}
3897 			/* XXX pass MIC errors up for s/w reclaculation */
3898 			goto rx_next;
3899 		}
3900 rx_accept:
3901 		/*
3902 		 * Sync and unmap the frame.  At this point we're
3903 		 * committed to passing the mbuf somewhere so clear
3904 		 * bf_m; this means a new mbuf must be allocated
3905 		 * when the rx descriptor is setup again to receive
3906 		 * another frame.
3907 		 */
3908 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3909 		    BUS_DMASYNC_POSTREAD);
3910 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3911 		bf->bf_m = NULL;
3912 
3913 		len = rs->rs_datalen;
3914 		m->m_len = len;
3915 
3916 		if (rs->rs_more) {
3917 			/*
3918 			 * Frame spans multiple descriptors; save
3919 			 * it for the next completed descriptor, it
3920 			 * will be used to construct a jumbogram.
3921 			 */
3922 			if (sc->sc_rxpending != NULL) {
3923 				/* NB: max frame size is currently 2 clusters */
3924 				sc->sc_stats.ast_rx_toobig++;
3925 				m_freem(sc->sc_rxpending);
3926 			}
3927 			m->m_pkthdr.rcvif = ifp;
3928 			m->m_pkthdr.len = len;
3929 			sc->sc_rxpending = m;
3930 			goto rx_next;
3931 		} else if (sc->sc_rxpending != NULL) {
3932 			/*
3933 			 * This is the second part of a jumbogram,
3934 			 * chain it to the first mbuf, adjust the
3935 			 * frame length, and clear the rxpending state.
3936 			 */
3937 			sc->sc_rxpending->m_next = m;
3938 			sc->sc_rxpending->m_pkthdr.len += len;
3939 			m = sc->sc_rxpending;
3940 			sc->sc_rxpending = NULL;
3941 		} else {
3942 			/*
3943 			 * Normal single-descriptor receive; setup
3944 			 * the rcvif and packet length.
3945 			 */
3946 			m->m_pkthdr.rcvif = ifp;
3947 			m->m_pkthdr.len = len;
3948 		}
3949 
3950 		ifp->if_ipackets++;
3951 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3952 
3953 		/*
3954 		 * Populate the rx status block.  When there are bpf
3955 		 * listeners we do the additional work to provide
3956 		 * complete status.  Otherwise we fill in only the
3957 		 * material required by ieee80211_input.  Note that
3958 		 * noise setting is filled in above.
3959 		 */
3960 		if (ieee80211_radiotap_active(ic))
3961 			ath_rx_tap(ifp, m, rs, tsf, nf);
3962 
3963 		/*
3964 		 * From this point on we assume the frame is at least
3965 		 * as large as ieee80211_frame_min; verify that.
3966 		 */
3967 		if (len < IEEE80211_MIN_LEN) {
3968 			if (!ieee80211_radiotap_active(ic)) {
3969 				DPRINTF(sc, ATH_DEBUG_RECV,
3970 				    "%s: short packet %d\n", __func__, len);
3971 				sc->sc_stats.ast_rx_tooshort++;
3972 			} else {
3973 				/* NB: in particular this captures ack's */
3974 				ieee80211_radiotap_rx_all(ic, m);
3975 			}
3976 			m_freem(m);
3977 			goto rx_next;
3978 		}
3979 
3980 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3981 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3982 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3983 
3984 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3985 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3986 		}
3987 
3988 		m_adj(m, -IEEE80211_CRC_LEN);
3989 
3990 		/*
3991 		 * Locate the node for sender, track state, and then
3992 		 * pass the (referenced) node up to the 802.11 layer
3993 		 * for its use.
3994 		 */
3995 		ni = ieee80211_find_rxnode_withkey(ic,
3996 			mtod(m, const struct ieee80211_frame_min *),
3997 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3998 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3999 		if (ni != NULL) {
4000 			/*
4001 			 * Sending station is known, dispatch directly.
4002 			 */
4003 			sc->sc_lastrs = rs;
4004 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4005 			ieee80211_free_node(ni);
4006 			/*
4007 			 * Arrange to update the last rx timestamp only for
4008 			 * frames from our ap when operating in station mode.
4009 			 * This assumes the rx key is always setup when
4010 			 * associated.
4011 			 */
4012 			if (ic->ic_opmode == IEEE80211_M_STA &&
4013 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4014 				ngood++;
4015 		} else {
4016 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4017 		}
4018 		/*
4019 		 * Track rx rssi and do any rx antenna management.
4020 		 */
4021 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4022 		if (sc->sc_diversity) {
4023 			/*
4024 			 * When using fast diversity, change the default rx
4025 			 * antenna if diversity chooses the other antenna 3
4026 			 * times in a row.
4027 			 */
4028 			if (sc->sc_defant != rs->rs_antenna) {
4029 				if (++sc->sc_rxotherant >= 3)
4030 					ath_setdefantenna(sc, rs->rs_antenna);
4031 			} else
4032 				sc->sc_rxotherant = 0;
4033 		}
4034 		if (sc->sc_softled) {
4035 			/*
4036 			 * Blink for any data frame.  Otherwise do a
4037 			 * heartbeat-style blink when idle.  The latter
4038 			 * is mainly for station mode where we depend on
4039 			 * periodic beacon frames to trigger the poll event.
4040 			 */
4041 			if (type == IEEE80211_FC0_TYPE_DATA) {
4042 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4043 				ath_led_event(sc,
4044 				    rt->rateCodeToIndex[rs->rs_rate]);
4045 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4046 				ath_led_event(sc, 0);
4047 		}
4048 rx_next:
4049 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4050 	} while (ath_rxbuf_init(sc, bf) == 0);
4051 
4052 	/* rx signal state monitoring */
4053 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4054 	if (ngood)
4055 		sc->sc_lastrx = tsf;
4056 
4057 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4058 #ifdef IEEE80211_SUPPORT_SUPERG
4059 		ieee80211_ff_age_all(ic, 100);
4060 #endif
4061 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4062 			ath_start(ifp);
4063 	}
4064 #undef PA2DESC
4065 }
4066 
4067 static void
4068 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4069 {
4070 	txq->axq_qnum = qnum;
4071 	txq->axq_ac = 0;
4072 	txq->axq_depth = 0;
4073 	txq->axq_intrcnt = 0;
4074 	txq->axq_link = NULL;
4075 	STAILQ_INIT(&txq->axq_q);
4076 	ATH_TXQ_LOCK_INIT(sc, txq);
4077 }
4078 
4079 /*
4080  * Setup a h/w transmit queue.
4081  */
4082 static struct ath_txq *
4083 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4084 {
4085 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4086 	struct ath_hal *ah = sc->sc_ah;
4087 	HAL_TXQ_INFO qi;
4088 	int qnum;
4089 
4090 	memset(&qi, 0, sizeof(qi));
4091 	qi.tqi_subtype = subtype;
4092 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4093 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4094 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4095 	/*
4096 	 * Enable interrupts only for EOL and DESC conditions.
4097 	 * We mark tx descriptors to receive a DESC interrupt
4098 	 * when a tx queue gets deep; otherwise waiting for the
4099 	 * EOL to reap descriptors.  Note that this is done to
4100 	 * reduce interrupt load and this only defers reaping
4101 	 * descriptors, never transmitting frames.  Aside from
4102 	 * reducing interrupts this also permits more concurrency.
4103 	 * The only potential downside is if the tx queue backs
4104 	 * up in which case the top half of the kernel may backup
4105 	 * due to a lack of tx descriptors.
4106 	 */
4107 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4108 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4109 	if (qnum == -1) {
4110 		/*
4111 		 * NB: don't print a message, this happens
4112 		 * normally on parts with too few tx queues
4113 		 */
4114 		return NULL;
4115 	}
4116 	if (qnum >= N(sc->sc_txq)) {
4117 		device_printf(sc->sc_dev,
4118 			"hal qnum %u out of range, max %zu!\n",
4119 			qnum, N(sc->sc_txq));
4120 		ath_hal_releasetxqueue(ah, qnum);
4121 		return NULL;
4122 	}
4123 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4124 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4125 		sc->sc_txqsetup |= 1<<qnum;
4126 	}
4127 	return &sc->sc_txq[qnum];
4128 #undef N
4129 }
4130 
4131 /*
4132  * Setup a hardware data transmit queue for the specified
4133  * access control.  The hal may not support all requested
4134  * queues in which case it will return a reference to a
4135  * previously setup queue.  We record the mapping from ac's
4136  * to h/w queues for use by ath_tx_start and also track
4137  * the set of h/w queues being used to optimize work in the
4138  * transmit interrupt handler and related routines.
4139  */
4140 static int
4141 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4142 {
4143 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4144 	struct ath_txq *txq;
4145 
4146 	if (ac >= N(sc->sc_ac2q)) {
4147 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4148 			ac, N(sc->sc_ac2q));
4149 		return 0;
4150 	}
4151 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4152 	if (txq != NULL) {
4153 		txq->axq_ac = ac;
4154 		sc->sc_ac2q[ac] = txq;
4155 		return 1;
4156 	} else
4157 		return 0;
4158 #undef N
4159 }
4160 
4161 /*
4162  * Update WME parameters for a transmit queue.
4163  */
4164 static int
4165 ath_txq_update(struct ath_softc *sc, int ac)
4166 {
4167 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4168 #define	ATH_TXOP_TO_US(v)		(v<<5)
4169 	struct ifnet *ifp = sc->sc_ifp;
4170 	struct ieee80211com *ic = ifp->if_l2com;
4171 	struct ath_txq *txq = sc->sc_ac2q[ac];
4172 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4173 	struct ath_hal *ah = sc->sc_ah;
4174 	HAL_TXQ_INFO qi;
4175 
4176 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4177 #ifdef IEEE80211_SUPPORT_TDMA
4178 	if (sc->sc_tdma) {
4179 		/*
4180 		 * AIFS is zero so there's no pre-transmit wait.  The
4181 		 * burst time defines the slot duration and is configured
4182 		 * through net80211.  The QCU is setup to not do post-xmit
4183 		 * back off, lockout all lower-priority QCU's, and fire
4184 		 * off the DMA beacon alert timer which is setup based
4185 		 * on the slot configuration.
4186 		 */
4187 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4188 			      | HAL_TXQ_TXERRINT_ENABLE
4189 			      | HAL_TXQ_TXURNINT_ENABLE
4190 			      | HAL_TXQ_TXEOLINT_ENABLE
4191 			      | HAL_TXQ_DBA_GATED
4192 			      | HAL_TXQ_BACKOFF_DISABLE
4193 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4194 			      ;
4195 		qi.tqi_aifs = 0;
4196 		/* XXX +dbaprep? */
4197 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4198 		qi.tqi_burstTime = qi.tqi_readyTime;
4199 	} else {
4200 #endif
4201 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4202 			      | HAL_TXQ_TXERRINT_ENABLE
4203 			      | HAL_TXQ_TXDESCINT_ENABLE
4204 			      | HAL_TXQ_TXURNINT_ENABLE
4205 			      ;
4206 		qi.tqi_aifs = wmep->wmep_aifsn;
4207 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4208 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4209 		qi.tqi_readyTime = 0;
4210 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4211 #ifdef IEEE80211_SUPPORT_TDMA
4212 	}
4213 #endif
4214 
4215 	DPRINTF(sc, ATH_DEBUG_RESET,
4216 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4217 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4218 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4219 
4220 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4221 		if_printf(ifp, "unable to update hardware queue "
4222 			"parameters for %s traffic!\n",
4223 			ieee80211_wme_acnames[ac]);
4224 		return 0;
4225 	} else {
4226 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4227 		return 1;
4228 	}
4229 #undef ATH_TXOP_TO_US
4230 #undef ATH_EXPONENT_TO_VALUE
4231 }
4232 
4233 /*
4234  * Callback from the 802.11 layer to update WME parameters.
4235  */
4236 static int
4237 ath_wme_update(struct ieee80211com *ic)
4238 {
4239 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4240 
4241 	return !ath_txq_update(sc, WME_AC_BE) ||
4242 	    !ath_txq_update(sc, WME_AC_BK) ||
4243 	    !ath_txq_update(sc, WME_AC_VI) ||
4244 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4245 }
4246 
4247 /*
4248  * Reclaim resources for a setup queue.
4249  */
4250 static void
4251 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4252 {
4253 
4254 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4255 	ATH_TXQ_LOCK_DESTROY(txq);
4256 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4257 }
4258 
4259 /*
4260  * Reclaim all tx queue resources.
4261  */
4262 static void
4263 ath_tx_cleanup(struct ath_softc *sc)
4264 {
4265 	int i;
4266 
4267 	ATH_TXBUF_LOCK_DESTROY(sc);
4268 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4269 		if (ATH_TXQ_SETUP(sc, i))
4270 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4271 }
4272 
4273 /*
4274  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4275  * using the current rates in sc_rixmap.
4276  */
4277 static __inline int
4278 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4279 {
4280 	int rix = sc->sc_rixmap[rate];
4281 	/* NB: return lowest rix for invalid rate */
4282 	return (rix == 0xff ? 0 : rix);
4283 }
4284 
4285 /*
4286  * Reclaim mbuf resources.  For fragmented frames we
4287  * need to claim each frag chained with m_nextpkt.
4288  */
4289 static void
4290 ath_freetx(struct mbuf *m)
4291 {
4292 	struct mbuf *next;
4293 
4294 	do {
4295 		next = m->m_nextpkt;
4296 		m->m_nextpkt = NULL;
4297 		m_freem(m);
4298 	} while ((m = next) != NULL);
4299 }
4300 
4301 static int
4302 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4303 {
4304 	struct mbuf *m;
4305 	int error;
4306 
4307 	/*
4308 	 * Load the DMA map so any coalescing is done.  This
4309 	 * also calculates the number of descriptors we need.
4310 	 */
4311 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4312 				     bf->bf_segs, &bf->bf_nseg,
4313 				     BUS_DMA_NOWAIT);
4314 	if (error == EFBIG) {
4315 		/* XXX packet requires too many descriptors */
4316 		bf->bf_nseg = ATH_TXDESC+1;
4317 	} else if (error != 0) {
4318 		sc->sc_stats.ast_tx_busdma++;
4319 		ath_freetx(m0);
4320 		return error;
4321 	}
4322 	/*
4323 	 * Discard null packets and check for packets that
4324 	 * require too many TX descriptors.  We try to convert
4325 	 * the latter to a cluster.
4326 	 */
4327 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4328 		sc->sc_stats.ast_tx_linear++;
4329 		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4330 		if (m == NULL) {
4331 			ath_freetx(m0);
4332 			sc->sc_stats.ast_tx_nombuf++;
4333 			return ENOMEM;
4334 		}
4335 		m0 = m;
4336 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4337 					     bf->bf_segs, &bf->bf_nseg,
4338 					     BUS_DMA_NOWAIT);
4339 		if (error != 0) {
4340 			sc->sc_stats.ast_tx_busdma++;
4341 			ath_freetx(m0);
4342 			return error;
4343 		}
4344 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4345 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4346 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4347 		sc->sc_stats.ast_tx_nodata++;
4348 		ath_freetx(m0);
4349 		return EIO;
4350 	}
4351 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4352 		__func__, m0, m0->m_pkthdr.len);
4353 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4354 	bf->bf_m = m0;
4355 
4356 	return 0;
4357 }
4358 
4359 static void
4360 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4361 {
4362 	struct ath_hal *ah = sc->sc_ah;
4363 	struct ath_desc *ds, *ds0;
4364 	int i;
4365 
4366 	/*
4367 	 * Fillin the remainder of the descriptor info.
4368 	 */
4369 	ds0 = ds = bf->bf_desc;
4370 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4371 		ds->ds_data = bf->bf_segs[i].ds_addr;
4372 		if (i == bf->bf_nseg - 1)
4373 			ds->ds_link = 0;
4374 		else
4375 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4376 		ath_hal_filltxdesc(ah, ds
4377 			, bf->bf_segs[i].ds_len	/* segment length */
4378 			, i == 0		/* first segment */
4379 			, i == bf->bf_nseg - 1	/* last segment */
4380 			, ds0			/* first descriptor */
4381 		);
4382 		DPRINTF(sc, ATH_DEBUG_XMIT,
4383 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4384 			__func__, i, ds->ds_link, ds->ds_data,
4385 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4386 	}
4387 	/*
4388 	 * Insert the frame on the outbound list and pass it on
4389 	 * to the hardware.  Multicast frames buffered for power
4390 	 * save stations and transmit from the CAB queue are stored
4391 	 * on a s/w only queue and loaded on to the CAB queue in
4392 	 * the SWBA handler since frames only go out on DTIM and
4393 	 * to avoid possible races.
4394 	 */
4395 	ATH_TXQ_LOCK(txq);
4396 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4397 	     ("busy status 0x%x", bf->bf_flags));
4398 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4399 #ifdef IEEE80211_SUPPORT_TDMA
4400 		int qbusy;
4401 
4402 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4403 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4404 		if (txq->axq_link == NULL) {
4405 			/*
4406 			 * Be careful writing the address to TXDP.  If
4407 			 * the tx q is enabled then this write will be
4408 			 * ignored.  Normally this is not an issue but
4409 			 * when tdma is in use and the q is beacon gated
4410 			 * this race can occur.  If the q is busy then
4411 			 * defer the work to later--either when another
4412 			 * packet comes along or when we prepare a beacon
4413 			 * frame at SWBA.
4414 			 */
4415 			if (!qbusy) {
4416 				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4417 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4418 				DPRINTF(sc, ATH_DEBUG_XMIT,
4419 				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4420 				    __func__, txq->axq_qnum,
4421 				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4422 				    txq->axq_depth);
4423 			} else {
4424 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4425 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4426 				    "%s: Q%u busy, defer enable\n", __func__,
4427 				    txq->axq_qnum);
4428 			}
4429 		} else {
4430 			*txq->axq_link = bf->bf_daddr;
4431 			DPRINTF(sc, ATH_DEBUG_XMIT,
4432 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4433 			    txq->axq_qnum, txq->axq_link,
4434 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4435 			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4436 				/*
4437 				 * The q was busy when we previously tried
4438 				 * to write the address of the first buffer
4439 				 * in the chain.  Since it's not busy now
4440 				 * handle this chore.  We are certain the
4441 				 * buffer at the front is the right one since
4442 				 * axq_link is NULL only when the buffer list
4443 				 * is/was empty.
4444 				 */
4445 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4446 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4447 				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4448 				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4449 				    "%s: Q%u restarted\n", __func__,
4450 				    txq->axq_qnum);
4451 			}
4452 		}
4453 #else
4454 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4455 		if (txq->axq_link == NULL) {
4456 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4457 			DPRINTF(sc, ATH_DEBUG_XMIT,
4458 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4459 			    __func__, txq->axq_qnum,
4460 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4461 			    txq->axq_depth);
4462 		} else {
4463 			*txq->axq_link = bf->bf_daddr;
4464 			DPRINTF(sc, ATH_DEBUG_XMIT,
4465 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4466 			    txq->axq_qnum, txq->axq_link,
4467 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4468 		}
4469 #endif /* IEEE80211_SUPPORT_TDMA */
4470 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4471 		ath_hal_txstart(ah, txq->axq_qnum);
4472 	} else {
4473 		if (txq->axq_link != NULL) {
4474 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4475 			struct ieee80211_frame *wh;
4476 
4477 			/* mark previous frame */
4478 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4479 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4480 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4481 			    BUS_DMASYNC_PREWRITE);
4482 
4483 			/* link descriptor */
4484 			*txq->axq_link = bf->bf_daddr;
4485 		}
4486 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4487 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4488 	}
4489 	ATH_TXQ_UNLOCK(txq);
4490 }
4491 
4492 static int
4493 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4494     struct mbuf *m0)
4495 {
4496 	struct ieee80211vap *vap = ni->ni_vap;
4497 	struct ath_vap *avp = ATH_VAP(vap);
4498 	struct ath_hal *ah = sc->sc_ah;
4499 	struct ifnet *ifp = sc->sc_ifp;
4500 	struct ieee80211com *ic = ifp->if_l2com;
4501 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4502 	int error, iswep, ismcast, isfrag, ismrr;
4503 	int keyix, hdrlen, pktlen, try0;
4504 	u_int8_t rix, txrate, ctsrate;
4505 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4506 	struct ath_desc *ds;
4507 	struct ath_txq *txq;
4508 	struct ieee80211_frame *wh;
4509 	u_int subtype, flags, ctsduration;
4510 	HAL_PKT_TYPE atype;
4511 	const HAL_RATE_TABLE *rt;
4512 	HAL_BOOL shortPreamble;
4513 	struct ath_node *an;
4514 	u_int pri;
4515 
4516 	wh = mtod(m0, struct ieee80211_frame *);
4517 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4518 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4519 	isfrag = m0->m_flags & M_FRAG;
4520 	hdrlen = ieee80211_anyhdrsize(wh);
4521 	/*
4522 	 * Packet length must not include any
4523 	 * pad bytes; deduct them here.
4524 	 */
4525 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4526 
4527 	if (iswep) {
4528 		const struct ieee80211_cipher *cip;
4529 		struct ieee80211_key *k;
4530 
4531 		/*
4532 		 * Construct the 802.11 header+trailer for an encrypted
4533 		 * frame. The only reason this can fail is because of an
4534 		 * unknown or unsupported cipher/key type.
4535 		 */
4536 		k = ieee80211_crypto_encap(ni, m0);
4537 		if (k == NULL) {
4538 			/*
4539 			 * This can happen when the key is yanked after the
4540 			 * frame was queued.  Just discard the frame; the
4541 			 * 802.11 layer counts failures and provides
4542 			 * debugging/diagnostics.
4543 			 */
4544 			ath_freetx(m0);
4545 			return EIO;
4546 		}
4547 		/*
4548 		 * Adjust the packet + header lengths for the crypto
4549 		 * additions and calculate the h/w key index.  When
4550 		 * a s/w mic is done the frame will have had any mic
4551 		 * added to it prior to entry so m0->m_pkthdr.len will
4552 		 * account for it. Otherwise we need to add it to the
4553 		 * packet length.
4554 		 */
4555 		cip = k->wk_cipher;
4556 		hdrlen += cip->ic_header;
4557 		pktlen += cip->ic_header + cip->ic_trailer;
4558 		/* NB: frags always have any TKIP MIC done in s/w */
4559 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4560 			pktlen += cip->ic_miclen;
4561 		keyix = k->wk_keyix;
4562 
4563 		/* packet header may have moved, reset our local pointer */
4564 		wh = mtod(m0, struct ieee80211_frame *);
4565 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4566 		/*
4567 		 * Use station key cache slot, if assigned.
4568 		 */
4569 		keyix = ni->ni_ucastkey.wk_keyix;
4570 		if (keyix == IEEE80211_KEYIX_NONE)
4571 			keyix = HAL_TXKEYIX_INVALID;
4572 	} else
4573 		keyix = HAL_TXKEYIX_INVALID;
4574 
4575 	pktlen += IEEE80211_CRC_LEN;
4576 
4577 	/*
4578 	 * Load the DMA map so any coalescing is done.  This
4579 	 * also calculates the number of descriptors we need.
4580 	 */
4581 	error = ath_tx_dmasetup(sc, bf, m0);
4582 	if (error != 0)
4583 		return error;
4584 	bf->bf_node = ni;			/* NB: held reference */
4585 	m0 = bf->bf_m;				/* NB: may have changed */
4586 	wh = mtod(m0, struct ieee80211_frame *);
4587 
4588 	/* setup descriptors */
4589 	ds = bf->bf_desc;
4590 	rt = sc->sc_currates;
4591 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4592 
4593 	/*
4594 	 * NB: the 802.11 layer marks whether or not we should
4595 	 * use short preamble based on the current mode and
4596 	 * negotiated parameters.
4597 	 */
4598 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4599 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4600 		shortPreamble = AH_TRUE;
4601 		sc->sc_stats.ast_tx_shortpre++;
4602 	} else {
4603 		shortPreamble = AH_FALSE;
4604 	}
4605 
4606 	an = ATH_NODE(ni);
4607 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4608 	ismrr = 0;				/* default no multi-rate retry*/
4609 	pri = M_WME_GETAC(m0);			/* honor classification */
4610 	/* XXX use txparams instead of fixed values */
4611 	/*
4612 	 * Calculate Atheros packet type from IEEE80211 packet header,
4613 	 * setup for rate calculations, and select h/w transmit queue.
4614 	 */
4615 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4616 	case IEEE80211_FC0_TYPE_MGT:
4617 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4618 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4619 			atype = HAL_PKT_TYPE_BEACON;
4620 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4621 			atype = HAL_PKT_TYPE_PROBE_RESP;
4622 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4623 			atype = HAL_PKT_TYPE_ATIM;
4624 		else
4625 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4626 		rix = an->an_mgmtrix;
4627 		txrate = rt->info[rix].rateCode;
4628 		if (shortPreamble)
4629 			txrate |= rt->info[rix].shortPreamble;
4630 		try0 = ATH_TXMGTTRY;
4631 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4632 		break;
4633 	case IEEE80211_FC0_TYPE_CTL:
4634 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4635 		rix = an->an_mgmtrix;
4636 		txrate = rt->info[rix].rateCode;
4637 		if (shortPreamble)
4638 			txrate |= rt->info[rix].shortPreamble;
4639 		try0 = ATH_TXMGTTRY;
4640 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4641 		break;
4642 	case IEEE80211_FC0_TYPE_DATA:
4643 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4644 		/*
4645 		 * Data frames: multicast frames go out at a fixed rate,
4646 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4647 		 * the rate control module for the rate to use.
4648 		 */
4649 		if (ismcast) {
4650 			rix = an->an_mcastrix;
4651 			txrate = rt->info[rix].rateCode;
4652 			if (shortPreamble)
4653 				txrate |= rt->info[rix].shortPreamble;
4654 			try0 = 1;
4655 		} else if (m0->m_flags & M_EAPOL) {
4656 			/* XXX? maybe always use long preamble? */
4657 			rix = an->an_mgmtrix;
4658 			txrate = rt->info[rix].rateCode;
4659 			if (shortPreamble)
4660 				txrate |= rt->info[rix].shortPreamble;
4661 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4662 		} else {
4663 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4664 				&rix, &try0, &txrate);
4665 			sc->sc_txrix = rix;		/* for LED blinking */
4666 			sc->sc_lastdatarix = rix;	/* for fast frames */
4667 			if (try0 != ATH_TXMAXTRY)
4668 				ismrr = 1;
4669 		}
4670 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4671 			flags |= HAL_TXDESC_NOACK;
4672 		break;
4673 	default:
4674 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4675 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4676 		/* XXX statistic */
4677 		ath_freetx(m0);
4678 		return EIO;
4679 	}
4680 	txq = sc->sc_ac2q[pri];
4681 
4682 	/*
4683 	 * When servicing one or more stations in power-save mode
4684 	 * (or) if there is some mcast data waiting on the mcast
4685 	 * queue (to prevent out of order delivery) multicast
4686 	 * frames must be buffered until after the beacon.
4687 	 */
4688 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4689 		txq = &avp->av_mcastq;
4690 
4691 	/*
4692 	 * Calculate miscellaneous flags.
4693 	 */
4694 	if (ismcast) {
4695 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4696 	} else if (pktlen > vap->iv_rtsthreshold &&
4697 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4698 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4699 		cix = rt->info[rix].controlRate;
4700 		sc->sc_stats.ast_tx_rts++;
4701 	}
4702 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4703 		sc->sc_stats.ast_tx_noack++;
4704 #ifdef IEEE80211_SUPPORT_TDMA
4705 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4706 		DPRINTF(sc, ATH_DEBUG_TDMA,
4707 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4708 		sc->sc_stats.ast_tdma_ack++;
4709 		ath_freetx(m0);
4710 		return EIO;
4711 	}
4712 #endif
4713 
4714 	/*
4715 	 * If 802.11g protection is enabled, determine whether
4716 	 * to use RTS/CTS or just CTS.  Note that this is only
4717 	 * done for OFDM unicast frames.
4718 	 */
4719 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4720 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4721 	    (flags & HAL_TXDESC_NOACK) == 0) {
4722 		/* XXX fragments must use CCK rates w/ protection */
4723 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4724 			flags |= HAL_TXDESC_RTSENA;
4725 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4726 			flags |= HAL_TXDESC_CTSENA;
4727 		if (isfrag) {
4728 			/*
4729 			 * For frags it would be desirable to use the
4730 			 * highest CCK rate for RTS/CTS.  But stations
4731 			 * farther away may detect it at a lower CCK rate
4732 			 * so use the configured protection rate instead
4733 			 * (for now).
4734 			 */
4735 			cix = rt->info[sc->sc_protrix].controlRate;
4736 		} else
4737 			cix = rt->info[sc->sc_protrix].controlRate;
4738 		sc->sc_stats.ast_tx_protect++;
4739 	}
4740 
4741 	/*
4742 	 * Calculate duration.  This logically belongs in the 802.11
4743 	 * layer but it lacks sufficient information to calculate it.
4744 	 */
4745 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4746 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4747 		u_int16_t dur;
4748 		if (shortPreamble)
4749 			dur = rt->info[rix].spAckDuration;
4750 		else
4751 			dur = rt->info[rix].lpAckDuration;
4752 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4753 			dur += dur;		/* additional SIFS+ACK */
4754 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4755 			/*
4756 			 * Include the size of next fragment so NAV is
4757 			 * updated properly.  The last fragment uses only
4758 			 * the ACK duration
4759 			 */
4760 			dur += ath_hal_computetxtime(ah, rt,
4761 					m0->m_nextpkt->m_pkthdr.len,
4762 					rix, shortPreamble);
4763 		}
4764 		if (isfrag) {
4765 			/*
4766 			 * Force hardware to use computed duration for next
4767 			 * fragment by disabling multi-rate retry which updates
4768 			 * duration based on the multi-rate duration table.
4769 			 */
4770 			ismrr = 0;
4771 			try0 = ATH_TXMGTTRY;	/* XXX? */
4772 		}
4773 		*(u_int16_t *)wh->i_dur = htole16(dur);
4774 	}
4775 
4776 	/*
4777 	 * Calculate RTS/CTS rate and duration if needed.
4778 	 */
4779 	ctsduration = 0;
4780 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4781 		/*
4782 		 * CTS transmit rate is derived from the transmit rate
4783 		 * by looking in the h/w rate table.  We must also factor
4784 		 * in whether or not a short preamble is to be used.
4785 		 */
4786 		/* NB: cix is set above where RTS/CTS is enabled */
4787 		KASSERT(cix != 0xff, ("cix not setup"));
4788 		ctsrate = rt->info[cix].rateCode;
4789 		/*
4790 		 * Compute the transmit duration based on the frame
4791 		 * size and the size of an ACK frame.  We call into the
4792 		 * HAL to do the computation since it depends on the
4793 		 * characteristics of the actual PHY being used.
4794 		 *
4795 		 * NB: CTS is assumed the same size as an ACK so we can
4796 		 *     use the precalculated ACK durations.
4797 		 */
4798 		if (shortPreamble) {
4799 			ctsrate |= rt->info[cix].shortPreamble;
4800 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4801 				ctsduration += rt->info[cix].spAckDuration;
4802 			ctsduration += ath_hal_computetxtime(ah,
4803 				rt, pktlen, rix, AH_TRUE);
4804 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4805 				ctsduration += rt->info[rix].spAckDuration;
4806 		} else {
4807 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4808 				ctsduration += rt->info[cix].lpAckDuration;
4809 			ctsduration += ath_hal_computetxtime(ah,
4810 				rt, pktlen, rix, AH_FALSE);
4811 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4812 				ctsduration += rt->info[rix].lpAckDuration;
4813 		}
4814 		/*
4815 		 * Must disable multi-rate retry when using RTS/CTS.
4816 		 */
4817 		ismrr = 0;
4818 		try0 = ATH_TXMGTTRY;		/* XXX */
4819 	} else
4820 		ctsrate = 0;
4821 
4822 	/*
4823 	 * At this point we are committed to sending the frame
4824 	 * and we don't need to look at m_nextpkt; clear it in
4825 	 * case this frame is part of frag chain.
4826 	 */
4827 	m0->m_nextpkt = NULL;
4828 
4829 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4830 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4831 		    sc->sc_hwmap[rix].ieeerate, -1);
4832 
4833 	if (ieee80211_radiotap_active_vap(vap)) {
4834 		u_int64_t tsf = ath_hal_gettsf64(ah);
4835 
4836 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4837 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4838 		if (iswep)
4839 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4840 		if (isfrag)
4841 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4842 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4843 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4844 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4845 
4846 		ieee80211_radiotap_tx(vap, m0);
4847 	}
4848 
4849 	/*
4850 	 * Determine if a tx interrupt should be generated for
4851 	 * this descriptor.  We take a tx interrupt to reap
4852 	 * descriptors when the h/w hits an EOL condition or
4853 	 * when the descriptor is specifically marked to generate
4854 	 * an interrupt.  We periodically mark descriptors in this
4855 	 * way to insure timely replenishing of the supply needed
4856 	 * for sending frames.  Defering interrupts reduces system
4857 	 * load and potentially allows more concurrent work to be
4858 	 * done but if done to aggressively can cause senders to
4859 	 * backup.
4860 	 *
4861 	 * NB: use >= to deal with sc_txintrperiod changing
4862 	 *     dynamically through sysctl.
4863 	 */
4864 	if (flags & HAL_TXDESC_INTREQ) {
4865 		txq->axq_intrcnt = 0;
4866 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4867 		flags |= HAL_TXDESC_INTREQ;
4868 		txq->axq_intrcnt = 0;
4869 	}
4870 
4871 	/*
4872 	 * Formulate first tx descriptor with tx controls.
4873 	 */
4874 	/* XXX check return value? */
4875 	ath_hal_setuptxdesc(ah, ds
4876 		, pktlen		/* packet length */
4877 		, hdrlen		/* header length */
4878 		, atype			/* Atheros packet type */
4879 		, ni->ni_txpower	/* txpower */
4880 		, txrate, try0		/* series 0 rate/tries */
4881 		, keyix			/* key cache index */
4882 		, sc->sc_txantenna	/* antenna mode */
4883 		, flags			/* flags */
4884 		, ctsrate		/* rts/cts rate */
4885 		, ctsduration		/* rts/cts duration */
4886 	);
4887 	bf->bf_txflags = flags;
4888 	/*
4889 	 * Setup the multi-rate retry state only when we're
4890 	 * going to use it.  This assumes ath_hal_setuptxdesc
4891 	 * initializes the descriptors (so we don't have to)
4892 	 * when the hardware supports multi-rate retry and
4893 	 * we don't use it.
4894 	 */
4895 	if (ismrr)
4896 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4897 
4898 	ath_tx_handoff(sc, txq, bf);
4899 	return 0;
4900 }
4901 
4902 /*
4903  * Process completed xmit descriptors from the specified queue.
4904  */
4905 static int
4906 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4907 {
4908 	struct ath_hal *ah = sc->sc_ah;
4909 	struct ifnet *ifp = sc->sc_ifp;
4910 	struct ieee80211com *ic = ifp->if_l2com;
4911 	struct ath_buf *bf, *last;
4912 	struct ath_desc *ds, *ds0;
4913 	struct ath_tx_status *ts;
4914 	struct ieee80211_node *ni;
4915 	struct ath_node *an;
4916 	int sr, lr, pri, nacked;
4917 	HAL_STATUS status;
4918 
4919 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4920 		__func__, txq->axq_qnum,
4921 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4922 		txq->axq_link);
4923 	nacked = 0;
4924 	for (;;) {
4925 		ATH_TXQ_LOCK(txq);
4926 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4927 		bf = STAILQ_FIRST(&txq->axq_q);
4928 		if (bf == NULL) {
4929 			ATH_TXQ_UNLOCK(txq);
4930 			break;
4931 		}
4932 		ds0 = &bf->bf_desc[0];
4933 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4934 		ts = &bf->bf_status.ds_txstat;
4935 		status = ath_hal_txprocdesc(ah, ds, ts);
4936 #ifdef ATH_DEBUG
4937 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4938 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4939 			    status == HAL_OK);
4940 #endif
4941 		if (status == HAL_EINPROGRESS) {
4942 			ATH_TXQ_UNLOCK(txq);
4943 			break;
4944 		}
4945 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4946 #ifdef IEEE80211_SUPPORT_TDMA
4947 		if (txq->axq_depth > 0) {
4948 			/*
4949 			 * More frames follow.  Mark the buffer busy
4950 			 * so it's not re-used while the hardware may
4951 			 * still re-read the link field in the descriptor.
4952 			 */
4953 			bf->bf_flags |= ATH_BUF_BUSY;
4954 		} else
4955 #else
4956 		if (txq->axq_depth == 0)
4957 #endif
4958 			txq->axq_link = NULL;
4959 		ATH_TXQ_UNLOCK(txq);
4960 
4961 		ni = bf->bf_node;
4962 		if (ni != NULL) {
4963 			an = ATH_NODE(ni);
4964 			if (ts->ts_status == 0) {
4965 				u_int8_t txant = ts->ts_antenna;
4966 				sc->sc_stats.ast_ant_tx[txant]++;
4967 				sc->sc_ant_tx[txant]++;
4968 				if (ts->ts_finaltsi != 0)
4969 					sc->sc_stats.ast_tx_altrate++;
4970 				pri = M_WME_GETAC(bf->bf_m);
4971 				if (pri >= WME_AC_VO)
4972 					ic->ic_wme.wme_hipri_traffic++;
4973 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4974 					ni->ni_inact = ni->ni_inact_reload;
4975 			} else {
4976 				if (ts->ts_status & HAL_TXERR_XRETRY)
4977 					sc->sc_stats.ast_tx_xretries++;
4978 				if (ts->ts_status & HAL_TXERR_FIFO)
4979 					sc->sc_stats.ast_tx_fifoerr++;
4980 				if (ts->ts_status & HAL_TXERR_FILT)
4981 					sc->sc_stats.ast_tx_filtered++;
4982 				if (bf->bf_m->m_flags & M_FF)
4983 					sc->sc_stats.ast_ff_txerr++;
4984 			}
4985 			sr = ts->ts_shortretry;
4986 			lr = ts->ts_longretry;
4987 			sc->sc_stats.ast_tx_shortretry += sr;
4988 			sc->sc_stats.ast_tx_longretry += lr;
4989 			/*
4990 			 * Hand the descriptor to the rate control algorithm.
4991 			 */
4992 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4993 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4994 				/*
4995 				 * If frame was ack'd update statistics,
4996 				 * including the last rx time used to
4997 				 * workaround phantom bmiss interrupts.
4998 				 */
4999 				if (ts->ts_status == 0) {
5000 					nacked++;
5001 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5002 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5003 						ts->ts_rssi);
5004 				}
5005 				ath_rate_tx_complete(sc, an, bf);
5006 			}
5007 			/*
5008 			 * Do any tx complete callback.  Note this must
5009 			 * be done before releasing the node reference.
5010 			 */
5011 			if (bf->bf_m->m_flags & M_TXCB)
5012 				ieee80211_process_callback(ni, bf->bf_m,
5013 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5014 				        ts->ts_status : HAL_TXERR_XRETRY);
5015 			ieee80211_free_node(ni);
5016 		}
5017 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5018 		    BUS_DMASYNC_POSTWRITE);
5019 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5020 
5021 		m_freem(bf->bf_m);
5022 		bf->bf_m = NULL;
5023 		bf->bf_node = NULL;
5024 
5025 		ATH_TXBUF_LOCK(sc);
5026 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5027 		if (last != NULL)
5028 			last->bf_flags &= ~ATH_BUF_BUSY;
5029 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5030 		ATH_TXBUF_UNLOCK(sc);
5031 	}
5032 #ifdef IEEE80211_SUPPORT_SUPERG
5033 	/*
5034 	 * Flush fast-frame staging queue when traffic slows.
5035 	 */
5036 	if (txq->axq_depth <= 1)
5037 		ieee80211_ff_flush(ic, txq->axq_ac);
5038 #endif
5039 	return nacked;
5040 }
5041 
5042 static __inline int
5043 txqactive(struct ath_hal *ah, int qnum)
5044 {
5045 	u_int32_t txqs = 1<<qnum;
5046 	ath_hal_gettxintrtxqs(ah, &txqs);
5047 	return (txqs & (1<<qnum));
5048 }
5049 
5050 /*
5051  * Deferred processing of transmit interrupt; special-cased
5052  * for a single hardware transmit queue (e.g. 5210 and 5211).
5053  */
5054 static void
5055 ath_tx_proc_q0(void *arg, int npending)
5056 {
5057 	struct ath_softc *sc = arg;
5058 	struct ifnet *ifp = sc->sc_ifp;
5059 
5060 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5061 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5062 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5063 		ath_tx_processq(sc, sc->sc_cabq);
5064 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5065 	sc->sc_wd_timer = 0;
5066 
5067 	if (sc->sc_softled)
5068 		ath_led_event(sc, sc->sc_txrix);
5069 
5070 	ath_start(ifp);
5071 }
5072 
5073 /*
5074  * Deferred processing of transmit interrupt; special-cased
5075  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5076  */
5077 static void
5078 ath_tx_proc_q0123(void *arg, int npending)
5079 {
5080 	struct ath_softc *sc = arg;
5081 	struct ifnet *ifp = sc->sc_ifp;
5082 	int nacked;
5083 
5084 	/*
5085 	 * Process each active queue.
5086 	 */
5087 	nacked = 0;
5088 	if (txqactive(sc->sc_ah, 0))
5089 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5090 	if (txqactive(sc->sc_ah, 1))
5091 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5092 	if (txqactive(sc->sc_ah, 2))
5093 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5094 	if (txqactive(sc->sc_ah, 3))
5095 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5096 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5097 		ath_tx_processq(sc, sc->sc_cabq);
5098 	if (nacked)
5099 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5100 
5101 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5102 	sc->sc_wd_timer = 0;
5103 
5104 	if (sc->sc_softled)
5105 		ath_led_event(sc, sc->sc_txrix);
5106 
5107 	ath_start(ifp);
5108 }
5109 
5110 /*
5111  * Deferred processing of transmit interrupt.
5112  */
5113 static void
5114 ath_tx_proc(void *arg, int npending)
5115 {
5116 	struct ath_softc *sc = arg;
5117 	struct ifnet *ifp = sc->sc_ifp;
5118 	int i, nacked;
5119 
5120 	/*
5121 	 * Process each active queue.
5122 	 */
5123 	nacked = 0;
5124 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5125 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5126 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5127 	if (nacked)
5128 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5129 
5130 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5131 	sc->sc_wd_timer = 0;
5132 
5133 	if (sc->sc_softled)
5134 		ath_led_event(sc, sc->sc_txrix);
5135 
5136 	ath_start(ifp);
5137 }
5138 
5139 static void
5140 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5141 {
5142 #ifdef ATH_DEBUG
5143 	struct ath_hal *ah = sc->sc_ah;
5144 #endif
5145 	struct ieee80211_node *ni;
5146 	struct ath_buf *bf;
5147 	u_int ix;
5148 
5149 	/*
5150 	 * NB: this assumes output has been stopped and
5151 	 *     we do not need to block ath_tx_proc
5152 	 */
5153 	ATH_TXBUF_LOCK(sc);
5154 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5155 	if (bf != NULL)
5156 		bf->bf_flags &= ~ATH_BUF_BUSY;
5157 	ATH_TXBUF_UNLOCK(sc);
5158 	for (ix = 0;; ix++) {
5159 		ATH_TXQ_LOCK(txq);
5160 		bf = STAILQ_FIRST(&txq->axq_q);
5161 		if (bf == NULL) {
5162 			txq->axq_link = NULL;
5163 			ATH_TXQ_UNLOCK(txq);
5164 			break;
5165 		}
5166 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5167 		ATH_TXQ_UNLOCK(txq);
5168 #ifdef ATH_DEBUG
5169 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5170 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5171 
5172 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5173 				ath_hal_txprocdesc(ah, bf->bf_desc,
5174 				    &bf->bf_status.ds_txstat) == HAL_OK);
5175 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5176 			    bf->bf_m->m_len, 0, -1);
5177 		}
5178 #endif /* ATH_DEBUG */
5179 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5180 		ni = bf->bf_node;
5181 		bf->bf_node = NULL;
5182 		if (ni != NULL) {
5183 			/*
5184 			 * Do any callback and reclaim the node reference.
5185 			 */
5186 			if (bf->bf_m->m_flags & M_TXCB)
5187 				ieee80211_process_callback(ni, bf->bf_m, -1);
5188 			ieee80211_free_node(ni);
5189 		}
5190 		m_freem(bf->bf_m);
5191 		bf->bf_m = NULL;
5192 		bf->bf_flags &= ~ATH_BUF_BUSY;
5193 
5194 		ATH_TXBUF_LOCK(sc);
5195 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5196 		ATH_TXBUF_UNLOCK(sc);
5197 	}
5198 }
5199 
5200 static void
5201 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5202 {
5203 	struct ath_hal *ah = sc->sc_ah;
5204 
5205 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5206 	    __func__, txq->axq_qnum,
5207 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5208 	    txq->axq_link);
5209 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5210 }
5211 
5212 /*
5213  * Drain the transmit queues and reclaim resources.
5214  */
5215 static void
5216 ath_draintxq(struct ath_softc *sc)
5217 {
5218 	struct ath_hal *ah = sc->sc_ah;
5219 	struct ifnet *ifp = sc->sc_ifp;
5220 	int i;
5221 
5222 	/* XXX return value */
5223 	if (!sc->sc_invalid) {
5224 		/* don't touch the hardware if marked invalid */
5225 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5226 		    __func__, sc->sc_bhalq,
5227 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5228 		    NULL);
5229 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5230 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5231 			if (ATH_TXQ_SETUP(sc, i))
5232 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5233 	}
5234 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5235 		if (ATH_TXQ_SETUP(sc, i))
5236 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5237 #ifdef ATH_DEBUG
5238 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5239 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5240 		if (bf != NULL && bf->bf_m != NULL) {
5241 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5242 				ath_hal_txprocdesc(ah, bf->bf_desc,
5243 				    &bf->bf_status.ds_txstat) == HAL_OK);
5244 			ieee80211_dump_pkt(ifp->if_l2com,
5245 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5246 			    0, -1);
5247 		}
5248 	}
5249 #endif /* ATH_DEBUG */
5250 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5251 	sc->sc_wd_timer = 0;
5252 }
5253 
5254 /*
5255  * Disable the receive h/w in preparation for a reset.
5256  */
5257 static void
5258 ath_stoprecv(struct ath_softc *sc)
5259 {
5260 #define	PA2DESC(_sc, _pa) \
5261 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5262 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5263 	struct ath_hal *ah = sc->sc_ah;
5264 
5265 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5266 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5267 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5268 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5269 #ifdef ATH_DEBUG
5270 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5271 		struct ath_buf *bf;
5272 		u_int ix;
5273 
5274 		printf("%s: rx queue %p, link %p\n", __func__,
5275 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5276 		ix = 0;
5277 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5278 			struct ath_desc *ds = bf->bf_desc;
5279 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5280 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5281 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5282 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5283 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5284 			ix++;
5285 		}
5286 	}
5287 #endif
5288 	if (sc->sc_rxpending != NULL) {
5289 		m_freem(sc->sc_rxpending);
5290 		sc->sc_rxpending = NULL;
5291 	}
5292 	sc->sc_rxlink = NULL;		/* just in case */
5293 #undef PA2DESC
5294 }
5295 
5296 /*
5297  * Enable the receive h/w following a reset.
5298  */
5299 static int
5300 ath_startrecv(struct ath_softc *sc)
5301 {
5302 	struct ath_hal *ah = sc->sc_ah;
5303 	struct ath_buf *bf;
5304 
5305 	sc->sc_rxlink = NULL;
5306 	sc->sc_rxpending = NULL;
5307 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5308 		int error = ath_rxbuf_init(sc, bf);
5309 		if (error != 0) {
5310 			DPRINTF(sc, ATH_DEBUG_RECV,
5311 				"%s: ath_rxbuf_init failed %d\n",
5312 				__func__, error);
5313 			return error;
5314 		}
5315 	}
5316 
5317 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5318 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5319 	ath_hal_rxena(ah);		/* enable recv descriptors */
5320 	ath_mode_init(sc);		/* set filters, etc. */
5321 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5322 	return 0;
5323 }
5324 
5325 /*
5326  * Update internal state after a channel change.
5327  */
5328 static void
5329 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5330 {
5331 	enum ieee80211_phymode mode;
5332 
5333 	/*
5334 	 * Change channels and update the h/w rate map
5335 	 * if we're switching; e.g. 11a to 11b/g.
5336 	 */
5337 	mode = ieee80211_chan2mode(chan);
5338 	if (mode != sc->sc_curmode)
5339 		ath_setcurmode(sc, mode);
5340 	sc->sc_curchan = chan;
5341 }
5342 
5343 /*
5344  * Set/change channels.  If the channel is really being changed,
5345  * it's done by resetting the chip.  To accomplish this we must
5346  * first cleanup any pending DMA, then restart stuff after a la
5347  * ath_init.
5348  */
5349 static int
5350 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5351 {
5352 	struct ifnet *ifp = sc->sc_ifp;
5353 	struct ieee80211com *ic = ifp->if_l2com;
5354 	struct ath_hal *ah = sc->sc_ah;
5355 
5356 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5357 	    __func__, ieee80211_chan2ieee(ic, chan),
5358 	    chan->ic_freq, chan->ic_flags);
5359 	if (chan != sc->sc_curchan) {
5360 		HAL_STATUS status;
5361 		/*
5362 		 * To switch channels clear any pending DMA operations;
5363 		 * wait long enough for the RX fifo to drain, reset the
5364 		 * hardware at the new frequency, and then re-enable
5365 		 * the relevant bits of the h/w.
5366 		 */
5367 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5368 		ath_draintxq(sc);		/* clear pending tx frames */
5369 		ath_stoprecv(sc);		/* turn off frame recv */
5370 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5371 			if_printf(ifp, "%s: unable to reset "
5372 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5373 			    __func__, ieee80211_chan2ieee(ic, chan),
5374 			    chan->ic_freq, chan->ic_flags, status);
5375 			return EIO;
5376 		}
5377 		sc->sc_diversity = ath_hal_getdiversity(ah);
5378 
5379 		/*
5380 		 * Re-enable rx framework.
5381 		 */
5382 		if (ath_startrecv(sc) != 0) {
5383 			if_printf(ifp, "%s: unable to restart recv logic\n",
5384 			    __func__);
5385 			return EIO;
5386 		}
5387 
5388 		/*
5389 		 * Change channels and update the h/w rate map
5390 		 * if we're switching; e.g. 11a to 11b/g.
5391 		 */
5392 		ath_chan_change(sc, chan);
5393 
5394 		/*
5395 		 * Re-enable interrupts.
5396 		 */
5397 		ath_hal_intrset(ah, sc->sc_imask);
5398 	}
5399 	return 0;
5400 }
5401 
5402 /*
5403  * Periodically recalibrate the PHY to account
5404  * for temperature/environment changes.
5405  */
5406 static void
5407 ath_calibrate(void *arg)
5408 {
5409 	struct ath_softc *sc = arg;
5410 	struct ath_hal *ah = sc->sc_ah;
5411 	struct ifnet *ifp = sc->sc_ifp;
5412 	struct ieee80211com *ic = ifp->if_l2com;
5413 	HAL_BOOL longCal, isCalDone;
5414 	int nextcal;
5415 
5416 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5417 		goto restart;
5418 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5419 	if (longCal) {
5420 		sc->sc_stats.ast_per_cal++;
5421 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5422 			/*
5423 			 * Rfgain is out of bounds, reset the chip
5424 			 * to load new gain values.
5425 			 */
5426 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5427 				"%s: rfgain change\n", __func__);
5428 			sc->sc_stats.ast_per_rfgain++;
5429 			ath_reset(ifp);
5430 		}
5431 		/*
5432 		 * If this long cal is after an idle period, then
5433 		 * reset the data collection state so we start fresh.
5434 		 */
5435 		if (sc->sc_resetcal) {
5436 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5437 			sc->sc_lastcalreset = ticks;
5438 			sc->sc_resetcal = 0;
5439 		}
5440 	}
5441 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5442 		if (longCal) {
5443 			/*
5444 			 * Calibrate noise floor data again in case of change.
5445 			 */
5446 			ath_hal_process_noisefloor(ah);
5447 		}
5448 	} else {
5449 		DPRINTF(sc, ATH_DEBUG_ANY,
5450 			"%s: calibration of channel %u failed\n",
5451 			__func__, sc->sc_curchan->ic_freq);
5452 		sc->sc_stats.ast_per_calfail++;
5453 	}
5454 	if (!isCalDone) {
5455 restart:
5456 		/*
5457 		 * Use a shorter interval to potentially collect multiple
5458 		 * data samples required to complete calibration.  Once
5459 		 * we're told the work is done we drop back to a longer
5460 		 * interval between requests.  We're more aggressive doing
5461 		 * work when operating as an AP to improve operation right
5462 		 * after startup.
5463 		 */
5464 		nextcal = (1000*ath_shortcalinterval)/hz;
5465 		if (sc->sc_opmode != HAL_M_HOSTAP)
5466 			nextcal *= 10;
5467 	} else {
5468 		nextcal = ath_longcalinterval*hz;
5469 		sc->sc_lastlongcal = ticks;
5470 		if (sc->sc_lastcalreset == 0)
5471 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5472 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5473 			sc->sc_resetcal = 1;	/* setup reset next trip */
5474 	}
5475 
5476 	if (nextcal != 0) {
5477 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5478 		    __func__, nextcal, isCalDone ? "" : "!");
5479 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5480 	} else {
5481 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5482 		    __func__);
5483 		/* NB: don't rearm timer */
5484 	}
5485 }
5486 
5487 static void
5488 ath_scan_start(struct ieee80211com *ic)
5489 {
5490 	struct ifnet *ifp = ic->ic_ifp;
5491 	struct ath_softc *sc = ifp->if_softc;
5492 	struct ath_hal *ah = sc->sc_ah;
5493 	u_int32_t rfilt;
5494 
5495 	/* XXX calibration timer? */
5496 
5497 	sc->sc_scanning = 1;
5498 	sc->sc_syncbeacon = 0;
5499 	rfilt = ath_calcrxfilter(sc);
5500 	ath_hal_setrxfilter(ah, rfilt);
5501 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5502 
5503 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5504 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5505 }
5506 
5507 static void
5508 ath_scan_end(struct ieee80211com *ic)
5509 {
5510 	struct ifnet *ifp = ic->ic_ifp;
5511 	struct ath_softc *sc = ifp->if_softc;
5512 	struct ath_hal *ah = sc->sc_ah;
5513 	u_int32_t rfilt;
5514 
5515 	sc->sc_scanning = 0;
5516 	rfilt = ath_calcrxfilter(sc);
5517 	ath_hal_setrxfilter(ah, rfilt);
5518 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5519 
5520 	ath_hal_process_noisefloor(ah);
5521 
5522 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5523 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5524 		 sc->sc_curaid);
5525 }
5526 
5527 static void
5528 ath_set_channel(struct ieee80211com *ic)
5529 {
5530 	struct ifnet *ifp = ic->ic_ifp;
5531 	struct ath_softc *sc = ifp->if_softc;
5532 
5533 	(void) ath_chan_set(sc, ic->ic_curchan);
5534 	/*
5535 	 * If we are returning to our bss channel then mark state
5536 	 * so the next recv'd beacon's tsf will be used to sync the
5537 	 * beacon timers.  Note that since we only hear beacons in
5538 	 * sta/ibss mode this has no effect in other operating modes.
5539 	 */
5540 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5541 		sc->sc_syncbeacon = 1;
5542 }
5543 
5544 /*
5545  * Walk the vap list and check if there any vap's in RUN state.
5546  */
5547 static int
5548 ath_isanyrunningvaps(struct ieee80211vap *this)
5549 {
5550 	struct ieee80211com *ic = this->iv_ic;
5551 	struct ieee80211vap *vap;
5552 
5553 	IEEE80211_LOCK_ASSERT(ic);
5554 
5555 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5556 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5557 			return 1;
5558 	}
5559 	return 0;
5560 }
5561 
5562 static int
5563 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5564 {
5565 	struct ieee80211com *ic = vap->iv_ic;
5566 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5567 	struct ath_vap *avp = ATH_VAP(vap);
5568 	struct ath_hal *ah = sc->sc_ah;
5569 	struct ieee80211_node *ni = NULL;
5570 	int i, error, stamode;
5571 	u_int32_t rfilt;
5572 	static const HAL_LED_STATE leds[] = {
5573 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5574 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5575 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5576 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5577 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5578 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5579 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5580 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5581 	};
5582 
5583 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5584 		ieee80211_state_name[vap->iv_state],
5585 		ieee80211_state_name[nstate]);
5586 
5587 	callout_drain(&sc->sc_cal_ch);
5588 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5589 
5590 	if (nstate == IEEE80211_S_SCAN) {
5591 		/*
5592 		 * Scanning: turn off beacon miss and don't beacon.
5593 		 * Mark beacon state so when we reach RUN state we'll
5594 		 * [re]setup beacons.  Unblock the task q thread so
5595 		 * deferred interrupt processing is done.
5596 		 */
5597 		ath_hal_intrset(ah,
5598 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5599 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5600 		sc->sc_beacons = 0;
5601 		taskqueue_unblock(sc->sc_tq);
5602 	}
5603 
5604 	ni = vap->iv_bss;
5605 	rfilt = ath_calcrxfilter(sc);
5606 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5607 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5608 		   vap->iv_opmode == IEEE80211_M_IBSS);
5609 	if (stamode && nstate == IEEE80211_S_RUN) {
5610 		sc->sc_curaid = ni->ni_associd;
5611 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5612 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5613 	}
5614 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5615 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5616 	ath_hal_setrxfilter(ah, rfilt);
5617 
5618 	/* XXX is this to restore keycache on resume? */
5619 	if (vap->iv_opmode != IEEE80211_M_STA &&
5620 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5621 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5622 			if (ath_hal_keyisvalid(ah, i))
5623 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5624 	}
5625 
5626 	/*
5627 	 * Invoke the parent method to do net80211 work.
5628 	 */
5629 	error = avp->av_newstate(vap, nstate, arg);
5630 	if (error != 0)
5631 		goto bad;
5632 
5633 	if (nstate == IEEE80211_S_RUN) {
5634 		/* NB: collect bss node again, it may have changed */
5635 		ni = vap->iv_bss;
5636 
5637 		DPRINTF(sc, ATH_DEBUG_STATE,
5638 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5639 		    "capinfo 0x%04x chan %d\n", __func__,
5640 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5641 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5642 
5643 		switch (vap->iv_opmode) {
5644 #ifdef IEEE80211_SUPPORT_TDMA
5645 		case IEEE80211_M_AHDEMO:
5646 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5647 				break;
5648 			/* fall thru... */
5649 #endif
5650 		case IEEE80211_M_HOSTAP:
5651 		case IEEE80211_M_IBSS:
5652 		case IEEE80211_M_MBSS:
5653 			/*
5654 			 * Allocate and setup the beacon frame.
5655 			 *
5656 			 * Stop any previous beacon DMA.  This may be
5657 			 * necessary, for example, when an ibss merge
5658 			 * causes reconfiguration; there will be a state
5659 			 * transition from RUN->RUN that means we may
5660 			 * be called with beacon transmission active.
5661 			 */
5662 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5663 
5664 			error = ath_beacon_alloc(sc, ni);
5665 			if (error != 0)
5666 				goto bad;
5667 			/*
5668 			 * If joining an adhoc network defer beacon timer
5669 			 * configuration to the next beacon frame so we
5670 			 * have a current TSF to use.  Otherwise we're
5671 			 * starting an ibss/bss so there's no need to delay;
5672 			 * if this is the first vap moving to RUN state, then
5673 			 * beacon state needs to be [re]configured.
5674 			 */
5675 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5676 			    ni->ni_tstamp.tsf != 0) {
5677 				sc->sc_syncbeacon = 1;
5678 			} else if (!sc->sc_beacons) {
5679 #ifdef IEEE80211_SUPPORT_TDMA
5680 				if (vap->iv_caps & IEEE80211_C_TDMA)
5681 					ath_tdma_config(sc, vap);
5682 				else
5683 #endif
5684 					ath_beacon_config(sc, vap);
5685 				sc->sc_beacons = 1;
5686 			}
5687 			break;
5688 		case IEEE80211_M_STA:
5689 			/*
5690 			 * Defer beacon timer configuration to the next
5691 			 * beacon frame so we have a current TSF to use
5692 			 * (any TSF collected when scanning is likely old).
5693 			 */
5694 			sc->sc_syncbeacon = 1;
5695 			break;
5696 		case IEEE80211_M_MONITOR:
5697 			/*
5698 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5699 			 * transitions so we must re-enable interrupts here to
5700 			 * handle the case of a single monitor mode vap.
5701 			 */
5702 			ath_hal_intrset(ah, sc->sc_imask);
5703 			break;
5704 		case IEEE80211_M_WDS:
5705 			break;
5706 		default:
5707 			break;
5708 		}
5709 		/*
5710 		 * Let the hal process statistics collected during a
5711 		 * scan so it can provide calibrated noise floor data.
5712 		 */
5713 		ath_hal_process_noisefloor(ah);
5714 		/*
5715 		 * Reset rssi stats; maybe not the best place...
5716 		 */
5717 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5718 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5719 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5720 		/*
5721 		 * Finally, start any timers and the task q thread
5722 		 * (in case we didn't go through SCAN state).
5723 		 */
5724 		if (ath_longcalinterval != 0) {
5725 			/* start periodic recalibration timer */
5726 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5727 		} else {
5728 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5729 			    "%s: calibration disabled\n", __func__);
5730 		}
5731 		taskqueue_unblock(sc->sc_tq);
5732 	} else if (nstate == IEEE80211_S_INIT) {
5733 		/*
5734 		 * If there are no vaps left in RUN state then
5735 		 * shutdown host/driver operation:
5736 		 * o disable interrupts
5737 		 * o disable the task queue thread
5738 		 * o mark beacon processing as stopped
5739 		 */
5740 		if (!ath_isanyrunningvaps(vap)) {
5741 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5742 			/* disable interrupts  */
5743 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5744 			taskqueue_block(sc->sc_tq);
5745 			sc->sc_beacons = 0;
5746 		}
5747 #ifdef IEEE80211_SUPPORT_TDMA
5748 		ath_hal_setcca(ah, AH_TRUE);
5749 #endif
5750 	}
5751 bad:
5752 	return error;
5753 }
5754 
5755 /*
5756  * Allocate a key cache slot to the station so we can
5757  * setup a mapping from key index to node. The key cache
5758  * slot is needed for managing antenna state and for
5759  * compression when stations do not use crypto.  We do
5760  * it uniliaterally here; if crypto is employed this slot
5761  * will be reassigned.
5762  */
5763 static void
5764 ath_setup_stationkey(struct ieee80211_node *ni)
5765 {
5766 	struct ieee80211vap *vap = ni->ni_vap;
5767 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5768 	ieee80211_keyix keyix, rxkeyix;
5769 
5770 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5771 		/*
5772 		 * Key cache is full; we'll fall back to doing
5773 		 * the more expensive lookup in software.  Note
5774 		 * this also means no h/w compression.
5775 		 */
5776 		/* XXX msg+statistic */
5777 	} else {
5778 		/* XXX locking? */
5779 		ni->ni_ucastkey.wk_keyix = keyix;
5780 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5781 		/* NB: must mark device key to get called back on delete */
5782 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5783 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5784 		/* NB: this will create a pass-thru key entry */
5785 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5786 	}
5787 }
5788 
5789 /*
5790  * Setup driver-specific state for a newly associated node.
5791  * Note that we're called also on a re-associate, the isnew
5792  * param tells us if this is the first time or not.
5793  */
5794 static void
5795 ath_newassoc(struct ieee80211_node *ni, int isnew)
5796 {
5797 	struct ath_node *an = ATH_NODE(ni);
5798 	struct ieee80211vap *vap = ni->ni_vap;
5799 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5800 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5801 
5802 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5803 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5804 
5805 	ath_rate_newassoc(sc, an, isnew);
5806 	if (isnew &&
5807 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5808 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5809 		ath_setup_stationkey(ni);
5810 }
5811 
5812 static int
5813 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5814 	int nchans, struct ieee80211_channel chans[])
5815 {
5816 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5817 	struct ath_hal *ah = sc->sc_ah;
5818 	HAL_STATUS status;
5819 
5820 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5821 	    "%s: rd %u cc %u location %c%s\n",
5822 	    __func__, reg->regdomain, reg->country, reg->location,
5823 	    reg->ecm ? " ecm" : "");
5824 
5825 	status = ath_hal_set_channels(ah, chans, nchans,
5826 	    reg->country, reg->regdomain);
5827 	if (status != HAL_OK) {
5828 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5829 		    __func__, status);
5830 		return EINVAL;		/* XXX */
5831 	}
5832 	return 0;
5833 }
5834 
5835 static void
5836 ath_getradiocaps(struct ieee80211com *ic,
5837 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5838 {
5839 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5840 	struct ath_hal *ah = sc->sc_ah;
5841 
5842 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5843 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5844 
5845 	/* XXX check return */
5846 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5847 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5848 
5849 }
5850 
5851 static int
5852 ath_getchannels(struct ath_softc *sc)
5853 {
5854 	struct ifnet *ifp = sc->sc_ifp;
5855 	struct ieee80211com *ic = ifp->if_l2com;
5856 	struct ath_hal *ah = sc->sc_ah;
5857 	HAL_STATUS status;
5858 
5859 	/*
5860 	 * Collect channel set based on EEPROM contents.
5861 	 */
5862 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5863 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5864 	if (status != HAL_OK) {
5865 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5866 		    "status %d\n", __func__, status);
5867 		return EINVAL;
5868 	}
5869 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5870 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5871 	/* XXX map Atheros sku's to net80211 SKU's */
5872 	/* XXX net80211 types too small */
5873 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5874 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5875 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5876 	ic->ic_regdomain.isocc[1] = ' ';
5877 
5878 	ic->ic_regdomain.ecm = 1;
5879 	ic->ic_regdomain.location = 'I';
5880 
5881 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5882 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5883 	    __func__, sc->sc_eerd, sc->sc_eecc,
5884 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5885 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5886 	return 0;
5887 }
5888 
5889 static void
5890 ath_led_done(void *arg)
5891 {
5892 	struct ath_softc *sc = arg;
5893 
5894 	sc->sc_blinking = 0;
5895 }
5896 
5897 /*
5898  * Turn the LED off: flip the pin and then set a timer so no
5899  * update will happen for the specified duration.
5900  */
5901 static void
5902 ath_led_off(void *arg)
5903 {
5904 	struct ath_softc *sc = arg;
5905 
5906 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5907 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5908 }
5909 
5910 /*
5911  * Blink the LED according to the specified on/off times.
5912  */
5913 static void
5914 ath_led_blink(struct ath_softc *sc, int on, int off)
5915 {
5916 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5917 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5918 	sc->sc_blinking = 1;
5919 	sc->sc_ledoff = off;
5920 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5921 }
5922 
5923 static void
5924 ath_led_event(struct ath_softc *sc, int rix)
5925 {
5926 	sc->sc_ledevent = ticks;	/* time of last event */
5927 	if (sc->sc_blinking)		/* don't interrupt active blink */
5928 		return;
5929 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5930 }
5931 
5932 static int
5933 ath_rate_setup(struct ath_softc *sc, u_int mode)
5934 {
5935 	struct ath_hal *ah = sc->sc_ah;
5936 	const HAL_RATE_TABLE *rt;
5937 
5938 	switch (mode) {
5939 	case IEEE80211_MODE_11A:
5940 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5941 		break;
5942 	case IEEE80211_MODE_HALF:
5943 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5944 		break;
5945 	case IEEE80211_MODE_QUARTER:
5946 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5947 		break;
5948 	case IEEE80211_MODE_11B:
5949 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5950 		break;
5951 	case IEEE80211_MODE_11G:
5952 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5953 		break;
5954 	case IEEE80211_MODE_TURBO_A:
5955 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5956 		break;
5957 	case IEEE80211_MODE_TURBO_G:
5958 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5959 		break;
5960 	case IEEE80211_MODE_STURBO_A:
5961 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5962 		break;
5963 	case IEEE80211_MODE_11NA:
5964 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5965 		break;
5966 	case IEEE80211_MODE_11NG:
5967 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5968 		break;
5969 	default:
5970 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5971 			__func__, mode);
5972 		return 0;
5973 	}
5974 	sc->sc_rates[mode] = rt;
5975 	return (rt != NULL);
5976 }
5977 
5978 static void
5979 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5980 {
5981 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5982 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5983 	static const struct {
5984 		u_int		rate;		/* tx/rx 802.11 rate */
5985 		u_int16_t	timeOn;		/* LED on time (ms) */
5986 		u_int16_t	timeOff;	/* LED off time (ms) */
5987 	} blinkrates[] = {
5988 		{ 108,  40,  10 },
5989 		{  96,  44,  11 },
5990 		{  72,  50,  13 },
5991 		{  48,  57,  14 },
5992 		{  36,  67,  16 },
5993 		{  24,  80,  20 },
5994 		{  22, 100,  25 },
5995 		{  18, 133,  34 },
5996 		{  12, 160,  40 },
5997 		{  10, 200,  50 },
5998 		{   6, 240,  58 },
5999 		{   4, 267,  66 },
6000 		{   2, 400, 100 },
6001 		{   0, 500, 130 },
6002 		/* XXX half/quarter rates */
6003 	};
6004 	const HAL_RATE_TABLE *rt;
6005 	int i, j;
6006 
6007 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6008 	rt = sc->sc_rates[mode];
6009 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6010 	for (i = 0; i < rt->rateCount; i++) {
6011 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6012 		if (rt->info[i].phy != IEEE80211_T_HT)
6013 			sc->sc_rixmap[ieeerate] = i;
6014 		else
6015 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6016 	}
6017 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6018 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6019 		if (i >= rt->rateCount) {
6020 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6021 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6022 			continue;
6023 		}
6024 		sc->sc_hwmap[i].ieeerate =
6025 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6026 		if (rt->info[i].phy == IEEE80211_T_HT)
6027 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6028 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6029 		if (rt->info[i].shortPreamble ||
6030 		    rt->info[i].phy == IEEE80211_T_OFDM)
6031 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6032 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6033 		for (j = 0; j < N(blinkrates)-1; j++)
6034 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6035 				break;
6036 		/* NB: this uses the last entry if the rate isn't found */
6037 		/* XXX beware of overlow */
6038 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6039 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6040 	}
6041 	sc->sc_currates = rt;
6042 	sc->sc_curmode = mode;
6043 	/*
6044 	 * All protection frames are transmited at 2Mb/s for
6045 	 * 11g, otherwise at 1Mb/s.
6046 	 */
6047 	if (mode == IEEE80211_MODE_11G)
6048 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6049 	else
6050 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6051 	/* NB: caller is responsible for resetting rate control state */
6052 #undef N
6053 }
6054 
6055 #ifdef ATH_DEBUG
6056 static void
6057 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6058 	u_int ix, int done)
6059 {
6060 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6061 	struct ath_hal *ah = sc->sc_ah;
6062 	const struct ath_desc *ds;
6063 	int i;
6064 
6065 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6066 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6067 		       "      %08x %08x %08x %08x\n",
6068 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6069 		    ds->ds_link, ds->ds_data,
6070 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6071 		    ds->ds_ctl0, ds->ds_ctl1,
6072 		    ds->ds_hw[0], ds->ds_hw[1]);
6073 		if (ah->ah_magic == 0x20065416) {
6074 			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6075 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6076 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6077 			    ds->ds_hw[8]);
6078 		}
6079 	}
6080 }
6081 
6082 static void
6083 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6084 	u_int qnum, u_int ix, int done)
6085 {
6086 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6087 	struct ath_hal *ah = sc->sc_ah;
6088 	const struct ath_desc *ds;
6089 	int i;
6090 
6091 	printf("Q%u[%3u]", qnum, ix);
6092 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6093 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6094 		       "        %08x %08x %08x %08x %08x %08x\n",
6095 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6096 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6097 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6098 		    ds->ds_ctl0, ds->ds_ctl1,
6099 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6100 		if (ah->ah_magic == 0x20065416) {
6101 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6102 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6103 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6104 			    ds->ds_hw[10],ds->ds_hw[11]);
6105 			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6106 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6107 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6108 			    ds->ds_hw[18], ds->ds_hw[19]);
6109 		}
6110 	}
6111 }
6112 #endif /* ATH_DEBUG */
6113 
6114 static void
6115 ath_watchdog(void *arg)
6116 {
6117 	struct ath_softc *sc = arg;
6118 
6119 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6120 		struct ifnet *ifp = sc->sc_ifp;
6121 		uint32_t hangs;
6122 
6123 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6124 		    hangs != 0) {
6125 			if_printf(ifp, "%s hang detected (0x%x)\n",
6126 			    hangs & 0xff ? "bb" : "mac", hangs);
6127 		} else
6128 			if_printf(ifp, "device timeout\n");
6129 		ath_reset(ifp);
6130 		ifp->if_oerrors++;
6131 		sc->sc_stats.ast_watchdog++;
6132 	}
6133 	callout_schedule(&sc->sc_wd_ch, hz);
6134 }
6135 
6136 #ifdef ATH_DIAGAPI
6137 /*
6138  * Diagnostic interface to the HAL.  This is used by various
6139  * tools to do things like retrieve register contents for
6140  * debugging.  The mechanism is intentionally opaque so that
6141  * it can change frequently w/o concern for compatiblity.
6142  */
6143 static int
6144 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6145 {
6146 	struct ath_hal *ah = sc->sc_ah;
6147 	u_int id = ad->ad_id & ATH_DIAG_ID;
6148 	void *indata = NULL;
6149 	void *outdata = NULL;
6150 	u_int32_t insize = ad->ad_in_size;
6151 	u_int32_t outsize = ad->ad_out_size;
6152 	int error = 0;
6153 
6154 	if (ad->ad_id & ATH_DIAG_IN) {
6155 		/*
6156 		 * Copy in data.
6157 		 */
6158 		indata = malloc(insize, M_TEMP, M_NOWAIT);
6159 		if (indata == NULL) {
6160 			error = ENOMEM;
6161 			goto bad;
6162 		}
6163 		error = copyin(ad->ad_in_data, indata, insize);
6164 		if (error)
6165 			goto bad;
6166 	}
6167 	if (ad->ad_id & ATH_DIAG_DYN) {
6168 		/*
6169 		 * Allocate a buffer for the results (otherwise the HAL
6170 		 * returns a pointer to a buffer where we can read the
6171 		 * results).  Note that we depend on the HAL leaving this
6172 		 * pointer for us to use below in reclaiming the buffer;
6173 		 * may want to be more defensive.
6174 		 */
6175 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6176 		if (outdata == NULL) {
6177 			error = ENOMEM;
6178 			goto bad;
6179 		}
6180 	}
6181 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6182 		if (outsize < ad->ad_out_size)
6183 			ad->ad_out_size = outsize;
6184 		if (outdata != NULL)
6185 			error = copyout(outdata, ad->ad_out_data,
6186 					ad->ad_out_size);
6187 	} else {
6188 		error = EINVAL;
6189 	}
6190 bad:
6191 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6192 		free(indata, M_TEMP);
6193 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6194 		free(outdata, M_TEMP);
6195 	return error;
6196 }
6197 #endif /* ATH_DIAGAPI */
6198 
6199 static int
6200 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6201 {
6202 #define	IS_RUNNING(ifp) \
6203 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6204 	struct ath_softc *sc = ifp->if_softc;
6205 	struct ieee80211com *ic = ifp->if_l2com;
6206 	struct ifreq *ifr = (struct ifreq *)data;
6207 	const HAL_RATE_TABLE *rt;
6208 	int error = 0;
6209 
6210 	switch (cmd) {
6211 	case SIOCSIFFLAGS:
6212 		ATH_LOCK(sc);
6213 		if (IS_RUNNING(ifp)) {
6214 			/*
6215 			 * To avoid rescanning another access point,
6216 			 * do not call ath_init() here.  Instead,
6217 			 * only reflect promisc mode settings.
6218 			 */
6219 			ath_mode_init(sc);
6220 		} else if (ifp->if_flags & IFF_UP) {
6221 			/*
6222 			 * Beware of being called during attach/detach
6223 			 * to reset promiscuous mode.  In that case we
6224 			 * will still be marked UP but not RUNNING.
6225 			 * However trying to re-init the interface
6226 			 * is the wrong thing to do as we've already
6227 			 * torn down much of our state.  There's
6228 			 * probably a better way to deal with this.
6229 			 */
6230 			if (!sc->sc_invalid)
6231 				ath_init(sc);	/* XXX lose error */
6232 		} else {
6233 			ath_stop_locked(ifp);
6234 #ifdef notyet
6235 			/* XXX must wakeup in places like ath_vap_delete */
6236 			if (!sc->sc_invalid)
6237 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6238 #endif
6239 		}
6240 		ATH_UNLOCK(sc);
6241 		break;
6242 	case SIOCGIFMEDIA:
6243 	case SIOCSIFMEDIA:
6244 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6245 		break;
6246 	case SIOCGATHSTATS:
6247 		/* NB: embed these numbers to get a consistent view */
6248 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6249 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6250 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6251 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6252 #ifdef IEEE80211_SUPPORT_TDMA
6253 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6254 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6255 #endif
6256 		rt = sc->sc_currates;
6257 		/* XXX HT rates */
6258 		sc->sc_stats.ast_tx_rate =
6259 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6260 		return copyout(&sc->sc_stats,
6261 		    ifr->ifr_data, sizeof (sc->sc_stats));
6262 	case SIOCZATHSTATS:
6263 		error = priv_check(curthread, PRIV_DRIVER);
6264 		if (error == 0)
6265 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6266 		break;
6267 #ifdef ATH_DIAGAPI
6268 	case SIOCGATHDIAG:
6269 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6270 		break;
6271 #endif
6272 	case SIOCGIFADDR:
6273 		error = ether_ioctl(ifp, cmd, data);
6274 		break;
6275 	default:
6276 		error = EINVAL;
6277 		break;
6278 	}
6279 	return error;
6280 #undef IS_RUNNING
6281 }
6282 
6283 static int
6284 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6285 {
6286 	struct ath_softc *sc = arg1;
6287 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6288 	int error;
6289 
6290 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6291 	if (error || !req->newptr)
6292 		return error;
6293 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6294 }
6295 
6296 static int
6297 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6298 {
6299 	struct ath_softc *sc = arg1;
6300 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6301 	int error;
6302 
6303 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6304 	if (error || !req->newptr)
6305 		return error;
6306 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6307 }
6308 
6309 static int
6310 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6311 {
6312 	struct ath_softc *sc = arg1;
6313 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6314 	int error;
6315 
6316 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6317 	if (error || !req->newptr)
6318 		return error;
6319 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6320 }
6321 
6322 static int
6323 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6324 {
6325 	struct ath_softc *sc = arg1;
6326 	int softled = sc->sc_softled;
6327 	int error;
6328 
6329 	error = sysctl_handle_int(oidp, &softled, 0, req);
6330 	if (error || !req->newptr)
6331 		return error;
6332 	softled = (softled != 0);
6333 	if (softled != sc->sc_softled) {
6334 		if (softled) {
6335 			/* NB: handle any sc_ledpin change */
6336 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6337 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6338 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6339 				!sc->sc_ledon);
6340 		}
6341 		sc->sc_softled = softled;
6342 	}
6343 	return 0;
6344 }
6345 
6346 static int
6347 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6348 {
6349 	struct ath_softc *sc = arg1;
6350 	int ledpin = sc->sc_ledpin;
6351 	int error;
6352 
6353 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6354 	if (error || !req->newptr)
6355 		return error;
6356 	if (ledpin != sc->sc_ledpin) {
6357 		sc->sc_ledpin = ledpin;
6358 		if (sc->sc_softled) {
6359 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6360 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6361 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6362 				!sc->sc_ledon);
6363 		}
6364 	}
6365 	return 0;
6366 }
6367 
6368 static int
6369 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6370 {
6371 	struct ath_softc *sc = arg1;
6372 	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6373 	int error;
6374 
6375 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6376 	if (!error && req->newptr) {
6377 		/* XXX assumes 2 antenna ports */
6378 		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6379 			return EINVAL;
6380 		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6381 		/*
6382 		 * NB: with the switch locked this isn't meaningful,
6383 		 *     but set it anyway so things like radiotap get
6384 		 *     consistent info in their data.
6385 		 */
6386 		sc->sc_txantenna = txantenna;
6387 	}
6388 	return error;
6389 }
6390 
6391 static int
6392 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6393 {
6394 	struct ath_softc *sc = arg1;
6395 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6396 	int error;
6397 
6398 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6399 	if (!error && req->newptr)
6400 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6401 	return error;
6402 }
6403 
6404 static int
6405 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6406 {
6407 	struct ath_softc *sc = arg1;
6408 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6409 	int error;
6410 
6411 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6412 	if (error || !req->newptr)
6413 		return error;
6414 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6415 		return EINVAL;
6416 	sc->sc_diversity = diversity;
6417 	return 0;
6418 }
6419 
6420 static int
6421 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6422 {
6423 	struct ath_softc *sc = arg1;
6424 	u_int32_t diag;
6425 	int error;
6426 
6427 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6428 		return EINVAL;
6429 	error = sysctl_handle_int(oidp, &diag, 0, req);
6430 	if (error || !req->newptr)
6431 		return error;
6432 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6433 }
6434 
6435 static int
6436 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6437 {
6438 	struct ath_softc *sc = arg1;
6439 	struct ifnet *ifp = sc->sc_ifp;
6440 	u_int32_t scale;
6441 	int error;
6442 
6443 	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6444 	error = sysctl_handle_int(oidp, &scale, 0, req);
6445 	if (error || !req->newptr)
6446 		return error;
6447 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6448 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6449 }
6450 
6451 static int
6452 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6453 {
6454 	struct ath_softc *sc = arg1;
6455 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6456 	int error;
6457 
6458 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6459 	if (error || !req->newptr)
6460 		return error;
6461 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6462 }
6463 
6464 static int
6465 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6466 {
6467 	struct ath_softc *sc = arg1;
6468 	struct ifnet *ifp = sc->sc_ifp;
6469 	struct ath_hal *ah = sc->sc_ah;
6470 	u_int rfkill = ath_hal_getrfkill(ah);
6471 	int error;
6472 
6473 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6474 	if (error || !req->newptr)
6475 		return error;
6476 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6477 		return 0;
6478 	if (!ath_hal_setrfkill(ah, rfkill))
6479 		return EINVAL;
6480 	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6481 }
6482 
6483 static int
6484 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6485 {
6486 	struct ath_softc *sc = arg1;
6487 	u_int rfsilent;
6488 	int error;
6489 
6490 	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6491 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6492 	if (error || !req->newptr)
6493 		return error;
6494 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6495 		return EINVAL;
6496 	sc->sc_rfsilentpin = rfsilent & 0x1c;
6497 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6498 	return 0;
6499 }
6500 
6501 static int
6502 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6503 {
6504 	struct ath_softc *sc = arg1;
6505 	u_int32_t tpack;
6506 	int error;
6507 
6508 	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6509 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6510 	if (error || !req->newptr)
6511 		return error;
6512 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6513 }
6514 
6515 static int
6516 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6517 {
6518 	struct ath_softc *sc = arg1;
6519 	u_int32_t tpcts;
6520 	int error;
6521 
6522 	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6523 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6524 	if (error || !req->newptr)
6525 		return error;
6526 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6527 }
6528 
6529 static int
6530 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6531 {
6532 	struct ath_softc *sc = arg1;
6533 	int intmit, error;
6534 
6535 	intmit = ath_hal_getintmit(sc->sc_ah);
6536 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6537 	if (error || !req->newptr)
6538 		return error;
6539 	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6540 }
6541 
6542 #ifdef IEEE80211_SUPPORT_TDMA
6543 static int
6544 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6545 {
6546 	struct ath_softc *sc = arg1;
6547 	int setcca, error;
6548 
6549 	setcca = sc->sc_setcca;
6550 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6551 	if (error || !req->newptr)
6552 		return error;
6553 	sc->sc_setcca = (setcca != 0);
6554 	return 0;
6555 }
6556 #endif /* IEEE80211_SUPPORT_TDMA */
6557 
6558 static void
6559 ath_sysctlattach(struct ath_softc *sc)
6560 {
6561 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6562 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6563 	struct ath_hal *ah = sc->sc_ah;
6564 
6565 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6566 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6567 		"EEPROM country code");
6568 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6569 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6570 		"EEPROM regdomain code");
6571 #ifdef	ATH_DEBUG
6572 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6573 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6574 		"control debugging printfs");
6575 #endif
6576 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6577 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6578 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6579 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6580 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6581 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6582 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6583 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6584 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6585 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6586 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6587 		ath_sysctl_softled, "I", "enable/disable software LED support");
6588 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6589 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6590 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6591 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6592 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6593 		"setting to turn LED on");
6594 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6595 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6596 		"idle time for inactivity LED (ticks)");
6597 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6598 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6599 		ath_sysctl_txantenna, "I", "antenna switch");
6600 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6601 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6602 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6603 	if (ath_hal_hasdiversity(ah))
6604 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6605 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6606 			ath_sysctl_diversity, "I", "antenna diversity");
6607 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6608 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6609 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6610 		"tx descriptor batching");
6611 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6612 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6613 		ath_sysctl_diag, "I", "h/w diagnostic control");
6614 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6615 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6616 		ath_sysctl_tpscale, "I", "tx power scaling");
6617 	if (ath_hal_hastpc(ah)) {
6618 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6619 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6620 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6621 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6622 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6623 			ath_sysctl_tpack, "I", "tx power for ack frames");
6624 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6625 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6626 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6627 	}
6628 	if (ath_hal_hasrfsilent(ah)) {
6629 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6630 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6631 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6632 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6633 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6634 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6635 	}
6636 	if (ath_hal_hasintmit(ah)) {
6637 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6638 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6639 			ath_sysctl_intmit, "I", "interference mitigation");
6640 	}
6641 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6642 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6643 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6644 		"mask of error frames to pass when monitoring");
6645 #ifdef IEEE80211_SUPPORT_TDMA
6646 	if (ath_hal_macversion(ah) > 0x78) {
6647 		sc->sc_tdmadbaprep = 2;
6648 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6649 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6650 			"TDMA DBA preparation time");
6651 		sc->sc_tdmaswbaprep = 10;
6652 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6653 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6654 			"TDMA SWBA preparation time");
6655 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6656 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6657 			"TDMA slot guard time");
6658 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6659 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6660 			"TDMA calculated super frame");
6661 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6662 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6663 			ath_sysctl_setcca, "I", "enable CCA control");
6664 	}
6665 #endif
6666 }
6667 
6668 static int
6669 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6670 	struct ath_buf *bf, struct mbuf *m0,
6671 	const struct ieee80211_bpf_params *params)
6672 {
6673 	struct ifnet *ifp = sc->sc_ifp;
6674 	struct ieee80211com *ic = ifp->if_l2com;
6675 	struct ath_hal *ah = sc->sc_ah;
6676 	struct ieee80211vap *vap = ni->ni_vap;
6677 	int error, ismcast, ismrr;
6678 	int keyix, hdrlen, pktlen, try0, txantenna;
6679 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6680 	struct ieee80211_frame *wh;
6681 	u_int flags, ctsduration;
6682 	HAL_PKT_TYPE atype;
6683 	const HAL_RATE_TABLE *rt;
6684 	struct ath_desc *ds;
6685 	u_int pri;
6686 
6687 	wh = mtod(m0, struct ieee80211_frame *);
6688 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6689 	hdrlen = ieee80211_anyhdrsize(wh);
6690 	/*
6691 	 * Packet length must not include any
6692 	 * pad bytes; deduct them here.
6693 	 */
6694 	/* XXX honor IEEE80211_BPF_DATAPAD */
6695 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6696 
6697 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6698 		const struct ieee80211_cipher *cip;
6699 		struct ieee80211_key *k;
6700 
6701 		/*
6702 		 * Construct the 802.11 header+trailer for an encrypted
6703 		 * frame. The only reason this can fail is because of an
6704 		 * unknown or unsupported cipher/key type.
6705 		 */
6706 		k = ieee80211_crypto_encap(ni, m0);
6707 		if (k == NULL) {
6708 			/*
6709 			 * This can happen when the key is yanked after the
6710 			 * frame was queued.  Just discard the frame; the
6711 			 * 802.11 layer counts failures and provides
6712 			 * debugging/diagnostics.
6713 			 */
6714 			ath_freetx(m0);
6715 			return EIO;
6716 		}
6717 		/*
6718 		 * Adjust the packet + header lengths for the crypto
6719 		 * additions and calculate the h/w key index.  When
6720 		 * a s/w mic is done the frame will have had any mic
6721 		 * added to it prior to entry so m0->m_pkthdr.len will
6722 		 * account for it. Otherwise we need to add it to the
6723 		 * packet length.
6724 		 */
6725 		cip = k->wk_cipher;
6726 		hdrlen += cip->ic_header;
6727 		pktlen += cip->ic_header + cip->ic_trailer;
6728 		/* NB: frags always have any TKIP MIC done in s/w */
6729 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6730 			pktlen += cip->ic_miclen;
6731 		keyix = k->wk_keyix;
6732 
6733 		/* packet header may have moved, reset our local pointer */
6734 		wh = mtod(m0, struct ieee80211_frame *);
6735 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6736 		/*
6737 		 * Use station key cache slot, if assigned.
6738 		 */
6739 		keyix = ni->ni_ucastkey.wk_keyix;
6740 		if (keyix == IEEE80211_KEYIX_NONE)
6741 			keyix = HAL_TXKEYIX_INVALID;
6742 	} else
6743 		keyix = HAL_TXKEYIX_INVALID;
6744 
6745 	error = ath_tx_dmasetup(sc, bf, m0);
6746 	if (error != 0)
6747 		return error;
6748 	m0 = bf->bf_m;				/* NB: may have changed */
6749 	wh = mtod(m0, struct ieee80211_frame *);
6750 	bf->bf_node = ni;			/* NB: held reference */
6751 
6752 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6753 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6754 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6755 		flags |= HAL_TXDESC_RTSENA;
6756 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6757 		flags |= HAL_TXDESC_CTSENA;
6758 	/* XXX leave ismcast to injector? */
6759 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6760 		flags |= HAL_TXDESC_NOACK;
6761 
6762 	rt = sc->sc_currates;
6763 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6764 	rix = ath_tx_findrix(sc, params->ibp_rate0);
6765 	txrate = rt->info[rix].rateCode;
6766 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6767 		txrate |= rt->info[rix].shortPreamble;
6768 	sc->sc_txrix = rix;
6769 	try0 = params->ibp_try0;
6770 	ismrr = (params->ibp_try1 != 0);
6771 	txantenna = params->ibp_pri >> 2;
6772 	if (txantenna == 0)			/* XXX? */
6773 		txantenna = sc->sc_txantenna;
6774 	ctsduration = 0;
6775 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6776 		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6777 		ctsrate = rt->info[cix].rateCode;
6778 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6779 			ctsrate |= rt->info[cix].shortPreamble;
6780 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6781 				ctsduration += rt->info[cix].spAckDuration;
6782 			ctsduration += ath_hal_computetxtime(ah,
6783 				rt, pktlen, rix, AH_TRUE);
6784 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6785 				ctsduration += rt->info[rix].spAckDuration;
6786 		} else {
6787 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6788 				ctsduration += rt->info[cix].lpAckDuration;
6789 			ctsduration += ath_hal_computetxtime(ah,
6790 				rt, pktlen, rix, AH_FALSE);
6791 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6792 				ctsduration += rt->info[rix].lpAckDuration;
6793 		}
6794 		ismrr = 0;			/* XXX */
6795 	} else
6796 		ctsrate = 0;
6797 	pri = params->ibp_pri & 3;
6798 	/*
6799 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6800 	 * set the sequence number, duration, etc.
6801 	 */
6802 	atype = HAL_PKT_TYPE_PSPOLL;
6803 
6804 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6805 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6806 		    sc->sc_hwmap[rix].ieeerate, -1);
6807 
6808 	if (ieee80211_radiotap_active_vap(vap)) {
6809 		u_int64_t tsf = ath_hal_gettsf64(ah);
6810 
6811 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6812 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6813 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6814 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6815 		if (m0->m_flags & M_FRAG)
6816 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6817 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6818 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6819 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6820 
6821 		ieee80211_radiotap_tx(vap, m0);
6822 	}
6823 
6824 	/*
6825 	 * Formulate first tx descriptor with tx controls.
6826 	 */
6827 	ds = bf->bf_desc;
6828 	/* XXX check return value? */
6829 	ath_hal_setuptxdesc(ah, ds
6830 		, pktlen		/* packet length */
6831 		, hdrlen		/* header length */
6832 		, atype			/* Atheros packet type */
6833 		, params->ibp_power	/* txpower */
6834 		, txrate, try0		/* series 0 rate/tries */
6835 		, keyix			/* key cache index */
6836 		, txantenna		/* antenna mode */
6837 		, flags			/* flags */
6838 		, ctsrate		/* rts/cts rate */
6839 		, ctsduration		/* rts/cts duration */
6840 	);
6841 	bf->bf_txflags = flags;
6842 
6843 	if (ismrr) {
6844 		rix = ath_tx_findrix(sc, params->ibp_rate1);
6845 		rate1 = rt->info[rix].rateCode;
6846 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6847 			rate1 |= rt->info[rix].shortPreamble;
6848 		if (params->ibp_try2) {
6849 			rix = ath_tx_findrix(sc, params->ibp_rate2);
6850 			rate2 = rt->info[rix].rateCode;
6851 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6852 				rate2 |= rt->info[rix].shortPreamble;
6853 		} else
6854 			rate2 = 0;
6855 		if (params->ibp_try3) {
6856 			rix = ath_tx_findrix(sc, params->ibp_rate3);
6857 			rate3 = rt->info[rix].rateCode;
6858 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6859 				rate3 |= rt->info[rix].shortPreamble;
6860 		} else
6861 			rate3 = 0;
6862 		ath_hal_setupxtxdesc(ah, ds
6863 			, rate1, params->ibp_try1	/* series 1 */
6864 			, rate2, params->ibp_try2	/* series 2 */
6865 			, rate3, params->ibp_try3	/* series 3 */
6866 		);
6867 	}
6868 
6869 	/* NB: no buffered multicast in power save support */
6870 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6871 	return 0;
6872 }
6873 
6874 static int
6875 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6876 	const struct ieee80211_bpf_params *params)
6877 {
6878 	struct ieee80211com *ic = ni->ni_ic;
6879 	struct ifnet *ifp = ic->ic_ifp;
6880 	struct ath_softc *sc = ifp->if_softc;
6881 	struct ath_buf *bf;
6882 	int error;
6883 
6884 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
6885 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6886 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
6887 			"!running" : "invalid");
6888 		m_freem(m);
6889 		error = ENETDOWN;
6890 		goto bad;
6891 	}
6892 	/*
6893 	 * Grab a TX buffer and associated resources.
6894 	 */
6895 	bf = ath_getbuf(sc);
6896 	if (bf == NULL) {
6897 		sc->sc_stats.ast_tx_nobuf++;
6898 		m_freem(m);
6899 		error = ENOBUFS;
6900 		goto bad;
6901 	}
6902 
6903 	if (params == NULL) {
6904 		/*
6905 		 * Legacy path; interpret frame contents to decide
6906 		 * precisely how to send the frame.
6907 		 */
6908 		if (ath_tx_start(sc, ni, bf, m)) {
6909 			error = EIO;		/* XXX */
6910 			goto bad2;
6911 		}
6912 	} else {
6913 		/*
6914 		 * Caller supplied explicit parameters to use in
6915 		 * sending the frame.
6916 		 */
6917 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
6918 			error = EIO;		/* XXX */
6919 			goto bad2;
6920 		}
6921 	}
6922 	sc->sc_wd_timer = 5;
6923 	ifp->if_opackets++;
6924 	sc->sc_stats.ast_tx_raw++;
6925 
6926 	return 0;
6927 bad2:
6928 	ATH_TXBUF_LOCK(sc);
6929 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
6930 	ATH_TXBUF_UNLOCK(sc);
6931 bad:
6932 	ifp->if_oerrors++;
6933 	sc->sc_stats.ast_tx_raw_fail++;
6934 	ieee80211_free_node(ni);
6935 	return error;
6936 }
6937 
6938 /*
6939  * Announce various information on device/driver attach.
6940  */
6941 static void
6942 ath_announce(struct ath_softc *sc)
6943 {
6944 	struct ifnet *ifp = sc->sc_ifp;
6945 	struct ath_hal *ah = sc->sc_ah;
6946 
6947 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6948 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6949 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6950 	if (bootverbose) {
6951 		int i;
6952 		for (i = 0; i <= WME_AC_VO; i++) {
6953 			struct ath_txq *txq = sc->sc_ac2q[i];
6954 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6955 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6956 		}
6957 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6958 			sc->sc_cabq->axq_qnum);
6959 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6960 	}
6961 	if (ath_rxbuf != ATH_RXBUF)
6962 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6963 	if (ath_txbuf != ATH_TXBUF)
6964 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6965 	if (sc->sc_mcastkey && bootverbose)
6966 		if_printf(ifp, "using multicast key search\n");
6967 }
6968 
6969 #ifdef IEEE80211_SUPPORT_TDMA
6970 static __inline uint32_t
6971 ath_hal_getnexttbtt(struct ath_hal *ah)
6972 {
6973 #define	AR_TIMER0	0x8028
6974 	return OS_REG_READ(ah, AR_TIMER0);
6975 }
6976 
6977 static __inline void
6978 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
6979 {
6980 	/* XXX handle wrap/overflow */
6981 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
6982 }
6983 
6984 static void
6985 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6986 {
6987 	struct ath_hal *ah = sc->sc_ah;
6988 	HAL_BEACON_TIMERS bt;
6989 
6990 	bt.bt_intval = bintval | HAL_BEACON_ENA;
6991 	bt.bt_nexttbtt = nexttbtt;
6992 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6993 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6994 	bt.bt_nextatim = nexttbtt+1;
6995 	ath_hal_beaconsettimers(ah, &bt);
6996 }
6997 
6998 /*
6999  * Calculate the beacon interval.  This is periodic in the
7000  * superframe for the bss.  We assume each station is configured
7001  * identically wrt transmit rate so the guard time we calculate
7002  * above will be the same on all stations.  Note we need to
7003  * factor in the xmit time because the hardware will schedule
7004  * a frame for transmit if the start of the frame is within
7005  * the burst time.  When we get hardware that properly kills
7006  * frames in the PCU we can reduce/eliminate the guard time.
7007  *
7008  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7009  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7010  * with 1us timer granularity should allow us to reduce/eliminate
7011  * this.
7012  */
7013 static void
7014 ath_tdma_bintvalsetup(struct ath_softc *sc,
7015 	const struct ieee80211_tdma_state *tdma)
7016 {
7017 	/* copy from vap state (XXX check all vaps have same value?) */
7018 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7019 
7020 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7021 		tdma->tdma_slotcnt, 1024);
7022 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7023 	if (sc->sc_tdmabintval & 1)
7024 		sc->sc_tdmabintval++;
7025 
7026 	if (tdma->tdma_slot == 0) {
7027 		/*
7028 		 * Only slot 0 beacons; other slots respond.
7029 		 */
7030 		sc->sc_imask |= HAL_INT_SWBA;
7031 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7032 	} else {
7033 		/* XXX all vaps must be slot 0 or slot !0 */
7034 		sc->sc_imask &= ~HAL_INT_SWBA;
7035 	}
7036 }
7037 
7038 /*
7039  * Max 802.11 overhead.  This assumes no 4-address frames and
7040  * the encapsulation done by ieee80211_encap (llc).  We also
7041  * include potential crypto overhead.
7042  */
7043 #define	IEEE80211_MAXOVERHEAD \
7044 	(sizeof(struct ieee80211_qosframe) \
7045 	 + sizeof(struct llc) \
7046 	 + IEEE80211_ADDR_LEN \
7047 	 + IEEE80211_WEP_IVLEN \
7048 	 + IEEE80211_WEP_KIDLEN \
7049 	 + IEEE80211_WEP_CRCLEN \
7050 	 + IEEE80211_WEP_MICLEN \
7051 	 + IEEE80211_CRC_LEN)
7052 
7053 /*
7054  * Setup initially for tdma operation.  Start the beacon
7055  * timers and enable SWBA if we are slot 0.  Otherwise
7056  * we wait for slot 0 to arrive so we can sync up before
7057  * starting to transmit.
7058  */
7059 static void
7060 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7061 {
7062 	struct ath_hal *ah = sc->sc_ah;
7063 	struct ifnet *ifp = sc->sc_ifp;
7064 	struct ieee80211com *ic = ifp->if_l2com;
7065 	const struct ieee80211_txparam *tp;
7066 	const struct ieee80211_tdma_state *tdma = NULL;
7067 	int rix;
7068 
7069 	if (vap == NULL) {
7070 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7071 		if (vap == NULL) {
7072 			if_printf(ifp, "%s: no vaps?\n", __func__);
7073 			return;
7074 		}
7075 	}
7076 	tp = vap->iv_bss->ni_txparms;
7077 	/*
7078 	 * Calculate the guard time for each slot.  This is the
7079 	 * time to send a maximal-size frame according to the
7080 	 * fixed/lowest transmit rate.  Note that the interface
7081 	 * mtu does not include the 802.11 overhead so we must
7082 	 * tack that on (ath_hal_computetxtime includes the
7083 	 * preamble and plcp in it's calculation).
7084 	 */
7085 	tdma = vap->iv_tdma;
7086 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7087 		rix = ath_tx_findrix(sc, tp->ucastrate);
7088 	else
7089 		rix = ath_tx_findrix(sc, tp->mcastrate);
7090 	/* XXX short preamble assumed */
7091 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7092 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7093 
7094 	ath_hal_intrset(ah, 0);
7095 
7096 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7097 	if (sc->sc_setcca)
7098 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7099 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7100 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7101 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7102 	sc->sc_syncbeacon = 0;
7103 
7104 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7105 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7106 
7107 	ath_hal_intrset(ah, sc->sc_imask);
7108 
7109 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7110 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7111 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7112 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7113 	    sc->sc_tdmadbaprep);
7114 }
7115 
7116 /*
7117  * Update tdma operation.  Called from the 802.11 layer
7118  * when a beacon is received from the TDMA station operating
7119  * in the slot immediately preceding us in the bss.  Use
7120  * the rx timestamp for the beacon frame to update our
7121  * beacon timers so we follow their schedule.  Note that
7122  * by using the rx timestamp we implicitly include the
7123  * propagation delay in our schedule.
7124  */
7125 static void
7126 ath_tdma_update(struct ieee80211_node *ni,
7127 	const struct ieee80211_tdma_param *tdma, int changed)
7128 {
7129 #define	TSF_TO_TU(_h,_l) \
7130 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7131 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7132 	struct ieee80211vap *vap = ni->ni_vap;
7133 	struct ieee80211com *ic = ni->ni_ic;
7134 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7135 	struct ath_hal *ah = sc->sc_ah;
7136 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7137 	u_int64_t tsf, rstamp, nextslot;
7138 	u_int32_t txtime, nextslottu, timer0;
7139 	int32_t tudelta, tsfdelta;
7140 	const struct ath_rx_status *rs;
7141 	int rix;
7142 
7143 	sc->sc_stats.ast_tdma_update++;
7144 
7145 	/*
7146 	 * Check for and adopt configuration changes.
7147 	 */
7148 	if (changed != 0) {
7149 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7150 
7151 		ath_tdma_bintvalsetup(sc, ts);
7152 		if (changed & TDMA_UPDATE_SLOTLEN)
7153 			ath_wme_update(ic);
7154 
7155 		DPRINTF(sc, ATH_DEBUG_TDMA,
7156 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7157 		    "bintval %u TU\n", __func__,
7158 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7159 		    sc->sc_tdmabintval);
7160 
7161 		/* XXX right? */
7162 		ath_hal_intrset(ah, sc->sc_imask);
7163 		/* NB: beacon timers programmed below */
7164 	}
7165 
7166 	/* extend rx timestamp to 64 bits */
7167 	rs = sc->sc_lastrs;
7168 	tsf = ath_hal_gettsf64(ah);
7169 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7170 	/*
7171 	 * The rx timestamp is set by the hardware on completing
7172 	 * reception (at the point where the rx descriptor is DMA'd
7173 	 * to the host).  To find the start of our next slot we
7174 	 * must adjust this time by the time required to send
7175 	 * the packet just received.
7176 	 */
7177 	rix = rt->rateCodeToIndex[rs->rs_rate];
7178 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7179 	    rt->info[rix].shortPreamble);
7180 	/* NB: << 9 is to cvt to TU and /2 */
7181 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7182 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7183 
7184 	/*
7185 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7186 	 * to usecs and calculate the difference between what the
7187 	 * other station thinks and what we have programmed.  This
7188 	 * lets us figure how to adjust our timers to match.  The
7189 	 * adjustments are done by pulling the TSF forward and possibly
7190 	 * rewriting the beacon timers.
7191 	 */
7192 	timer0 = ath_hal_getnexttbtt(ah);
7193 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7194 
7195 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7196 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7197 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7198 
7199 	if (tsfdelta < 0) {
7200 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7201 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7202 		tsfdelta = -tsfdelta % 1024;
7203 		nextslottu++;
7204 	} else if (tsfdelta > 0) {
7205 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7206 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7207 		tsfdelta = 1024 - (tsfdelta % 1024);
7208 		nextslottu++;
7209 	} else {
7210 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7211 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7212 	}
7213 	tudelta = nextslottu - timer0;
7214 
7215 	/*
7216 	 * Copy sender's timetstamp into tdma ie so they can
7217 	 * calculate roundtrip time.  We submit a beacon frame
7218 	 * below after any timer adjustment.  The frame goes out
7219 	 * at the next TBTT so the sender can calculate the
7220 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7221 	 *
7222 	 * NB: This tstamp is subtlely preserved when
7223 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7224 	 *     slot position changes) because ieee80211_add_tdma
7225 	 *     skips over the data.
7226 	 */
7227 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7228 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7229 		&ni->ni_tstamp.data, 8);
7230 #if 0
7231 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7232 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7233 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7234 	    (int)(nextslot - tsf), tsfdelta,
7235 	    nextslottu, timer0, tudelta);
7236 #endif
7237 	/*
7238 	 * Adjust the beacon timers only when pulling them forward
7239 	 * or when going back by less than the beacon interval.
7240 	 * Negative jumps larger than the beacon interval seem to
7241 	 * cause the timers to stop and generally cause instability.
7242 	 * This basically filters out jumps due to missed beacons.
7243 	 */
7244 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7245 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7246 		sc->sc_stats.ast_tdma_timers++;
7247 	}
7248 	if (tsfdelta > 0) {
7249 		ath_hal_adjusttsf(ah, tsfdelta);
7250 		sc->sc_stats.ast_tdma_tsf++;
7251 	}
7252 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7253 #undef TU_TO_TSF
7254 #undef TSF_TO_TU
7255 }
7256 
7257 /*
7258  * Transmit a beacon frame at SWBA.  Dynamic updates
7259  * to the frame contents are done as needed.
7260  */
7261 static void
7262 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7263 {
7264 	struct ath_hal *ah = sc->sc_ah;
7265 	struct ath_buf *bf;
7266 	int otherant;
7267 
7268 	/*
7269 	 * Check if the previous beacon has gone out.  If
7270 	 * not don't try to post another, skip this period
7271 	 * and wait for the next.  Missed beacons indicate
7272 	 * a problem and should not occur.  If we miss too
7273 	 * many consecutive beacons reset the device.
7274 	 */
7275 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7276 		sc->sc_bmisscount++;
7277 		DPRINTF(sc, ATH_DEBUG_BEACON,
7278 			"%s: missed %u consecutive beacons\n",
7279 			__func__, sc->sc_bmisscount);
7280 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7281 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7282 		return;
7283 	}
7284 	if (sc->sc_bmisscount != 0) {
7285 		DPRINTF(sc, ATH_DEBUG_BEACON,
7286 			"%s: resume beacon xmit after %u misses\n",
7287 			__func__, sc->sc_bmisscount);
7288 		sc->sc_bmisscount = 0;
7289 	}
7290 
7291 	/*
7292 	 * Check recent per-antenna transmit statistics and flip
7293 	 * the default antenna if noticeably more frames went out
7294 	 * on the non-default antenna.
7295 	 * XXX assumes 2 anntenae
7296 	 */
7297 	if (!sc->sc_diversity) {
7298 		otherant = sc->sc_defant & 1 ? 2 : 1;
7299 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7300 			ath_setdefantenna(sc, otherant);
7301 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7302 	}
7303 
7304 	bf = ath_beacon_generate(sc, vap);
7305 	if (bf != NULL) {
7306 		/*
7307 		 * Stop any current dma and put the new frame on the queue.
7308 		 * This should never fail since we check above that no frames
7309 		 * are still pending on the queue.
7310 		 */
7311 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7312 			DPRINTF(sc, ATH_DEBUG_ANY,
7313 				"%s: beacon queue %u did not stop?\n",
7314 				__func__, sc->sc_bhalq);
7315 			/* NB: the HAL still stops DMA, so proceed */
7316 		}
7317 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7318 		ath_hal_txstart(ah, sc->sc_bhalq);
7319 
7320 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7321 
7322 		/*
7323 		 * Record local TSF for our last send for use
7324 		 * in arbitrating slot collisions.
7325 		 */
7326 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7327 	}
7328 }
7329 #endif /* IEEE80211_SUPPORT_TDMA */
7330