xref: /freebsd/sys/dev/ath/if_ath.c (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_athdfs.h>
115 
116 #ifdef ATH_TX99_DIAG
117 #include <dev/ath/ath_tx99/ath_tx99.h>
118 #endif
119 
120 /*
121  * ATH_BCBUF determines the number of vap's that can transmit
122  * beacons and also (currently) the number of vap's that can
123  * have unique mac addresses/bssid.  When staggering beacons
124  * 4 is probably a good max as otherwise the beacons become
125  * very closely spaced and there is limited time for cab q traffic
126  * to go out.  You can burst beacons instead but that is not good
127  * for stations in power save and at some point you really want
128  * another radio (and channel).
129  *
130  * The limit on the number of mac addresses is tied to our use of
131  * the U/L bit and tracking addresses in a byte; it would be
132  * worthwhile to allow more for applications like proxy sta.
133  */
134 CTASSERT(ATH_BCBUF <= 8);
135 
136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
137 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
138 		    const uint8_t [IEEE80211_ADDR_LEN],
139 		    const uint8_t [IEEE80211_ADDR_LEN]);
140 static void	ath_vap_delete(struct ieee80211vap *);
141 static void	ath_init(void *);
142 static void	ath_stop_locked(struct ifnet *);
143 static void	ath_stop(struct ifnet *);
144 static int	ath_reset_vap(struct ieee80211vap *, u_long);
145 static void	ath_start_queue(struct ifnet *ifp);
146 static int	ath_media_change(struct ifnet *);
147 static void	ath_watchdog(void *);
148 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
149 static void	ath_fatal_proc(void *, int);
150 static void	ath_bmiss_vap(struct ieee80211vap *);
151 static void	ath_bmiss_proc(void *, int);
152 static void	ath_key_update_begin(struct ieee80211vap *);
153 static void	ath_key_update_end(struct ieee80211vap *);
154 static void	ath_update_mcast(struct ifnet *);
155 static void	ath_update_promisc(struct ifnet *);
156 static void	ath_updateslot(struct ifnet *);
157 static void	ath_bstuck_proc(void *, int);
158 static void	ath_reset_proc(void *, int);
159 static int	ath_desc_alloc(struct ath_softc *);
160 static void	ath_desc_free(struct ath_softc *);
161 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
162 			const uint8_t [IEEE80211_ADDR_LEN]);
163 static void	ath_node_cleanup(struct ieee80211_node *);
164 static void	ath_node_free(struct ieee80211_node *);
165 static void	ath_node_getsignal(const struct ieee80211_node *,
166 			int8_t *, int8_t *);
167 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
169 static int	ath_tx_setup(struct ath_softc *, int, int);
170 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
171 static void	ath_tx_cleanup(struct ath_softc *);
172 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
173 		    int dosched);
174 static void	ath_tx_proc_q0(void *, int);
175 static void	ath_tx_proc_q0123(void *, int);
176 static void	ath_tx_proc(void *, int);
177 static void	ath_txq_sched_tasklet(void *, int);
178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
180 static void	ath_scan_start(struct ieee80211com *);
181 static void	ath_scan_end(struct ieee80211com *);
182 static void	ath_set_channel(struct ieee80211com *);
183 #ifdef	ATH_ENABLE_11N
184 static void	ath_update_chw(struct ieee80211com *);
185 #endif	/* ATH_ENABLE_11N */
186 static void	ath_calibrate(void *);
187 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
188 static void	ath_setup_stationkey(struct ieee80211_node *);
189 static void	ath_newassoc(struct ieee80211_node *, int);
190 static int	ath_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel []);
193 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
194 		    struct ieee80211_channel []);
195 static int	ath_getchannels(struct ath_softc *);
196 
197 static int	ath_rate_setup(struct ath_softc *, u_int mode);
198 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
199 
200 static void	ath_announce(struct ath_softc *);
201 
202 static void	ath_dfs_tasklet(void *, int);
203 static void	ath_node_powersave(struct ieee80211_node *, int);
204 
205 #ifdef IEEE80211_SUPPORT_TDMA
206 #include <dev/ath/if_ath_tdma.h>
207 #endif
208 
209 SYSCTL_DECL(_hw_ath);
210 
211 /* XXX validate sysctl values */
212 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
213 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
214 	    0, "long chip calibration interval (secs)");
215 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
216 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
217 	    0, "short chip calibration interval (msecs)");
218 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
219 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
220 	    0, "reset chip calibration results (secs)");
221 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
222 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
223 	    0, "ANI calibration (msecs)");
224 
225 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
226 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
227 	    0, "rx buffers allocated");
228 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
229 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
230 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
231 	    0, "tx buffers allocated");
232 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
233 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
234 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
235 	    0, "tx (mgmt) buffers allocated");
236 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
237 
238 int ath_bstuck_threshold = 4;		/* max missed beacons */
239 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
240 	    0, "max missed beacon xmits before chip reset");
241 
242 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
243 
244 void
245 ath_legacy_attach_comp_func(struct ath_softc *sc)
246 {
247 
248 	/*
249 	 * Special case certain configurations.  Note the
250 	 * CAB queue is handled by these specially so don't
251 	 * include them when checking the txq setup mask.
252 	 */
253 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
254 	case 0x01:
255 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
256 		break;
257 	case 0x0f:
258 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
259 		break;
260 	default:
261 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
262 		break;
263 	}
264 }
265 
266 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
267 #define	HAL_MODE_HT40 \
268 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
269 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
270 int
271 ath_attach(u_int16_t devid, struct ath_softc *sc)
272 {
273 	struct ifnet *ifp;
274 	struct ieee80211com *ic;
275 	struct ath_hal *ah = NULL;
276 	HAL_STATUS status;
277 	int error = 0, i;
278 	u_int wmodes;
279 	uint8_t macaddr[IEEE80211_ADDR_LEN];
280 	int rx_chainmask, tx_chainmask;
281 
282 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
283 
284 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
285 	if (ifp == NULL) {
286 		device_printf(sc->sc_dev, "can not if_alloc()\n");
287 		error = ENOSPC;
288 		goto bad;
289 	}
290 	ic = ifp->if_l2com;
291 
292 	/* set these up early for if_printf use */
293 	if_initname(ifp, device_get_name(sc->sc_dev),
294 		device_get_unit(sc->sc_dev));
295 
296 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
297 	    sc->sc_eepromdata, &status);
298 	if (ah == NULL) {
299 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
300 			status);
301 		error = ENXIO;
302 		goto bad;
303 	}
304 	sc->sc_ah = ah;
305 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
306 #ifdef	ATH_DEBUG
307 	sc->sc_debug = ath_debug;
308 #endif
309 
310 	/*
311 	 * Setup the DMA/EDMA functions based on the current
312 	 * hardware support.
313 	 *
314 	 * This is required before the descriptors are allocated.
315 	 */
316 	if (ath_hal_hasedma(sc->sc_ah)) {
317 		sc->sc_isedma = 1;
318 		ath_recv_setup_edma(sc);
319 		ath_xmit_setup_edma(sc);
320 	} else {
321 		ath_recv_setup_legacy(sc);
322 		ath_xmit_setup_legacy(sc);
323 	}
324 
325 	/*
326 	 * Check if the MAC has multi-rate retry support.
327 	 * We do this by trying to setup a fake extended
328 	 * descriptor.  MAC's that don't have support will
329 	 * return false w/o doing anything.  MAC's that do
330 	 * support it will return true w/o doing anything.
331 	 */
332 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
333 
334 	/*
335 	 * Check if the device has hardware counters for PHY
336 	 * errors.  If so we need to enable the MIB interrupt
337 	 * so we can act on stat triggers.
338 	 */
339 	if (ath_hal_hwphycounters(ah))
340 		sc->sc_needmib = 1;
341 
342 	/*
343 	 * Get the hardware key cache size.
344 	 */
345 	sc->sc_keymax = ath_hal_keycachesize(ah);
346 	if (sc->sc_keymax > ATH_KEYMAX) {
347 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
348 			ATH_KEYMAX, sc->sc_keymax);
349 		sc->sc_keymax = ATH_KEYMAX;
350 	}
351 	/*
352 	 * Reset the key cache since some parts do not
353 	 * reset the contents on initial power up.
354 	 */
355 	for (i = 0; i < sc->sc_keymax; i++)
356 		ath_hal_keyreset(ah, i);
357 
358 	/*
359 	 * Collect the default channel list.
360 	 */
361 	error = ath_getchannels(sc);
362 	if (error != 0)
363 		goto bad;
364 
365 	/*
366 	 * Setup rate tables for all potential media types.
367 	 */
368 	ath_rate_setup(sc, IEEE80211_MODE_11A);
369 	ath_rate_setup(sc, IEEE80211_MODE_11B);
370 	ath_rate_setup(sc, IEEE80211_MODE_11G);
371 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
372 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
373 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
374 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
375 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
376 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
377 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
378 
379 	/* NB: setup here so ath_rate_update is happy */
380 	ath_setcurmode(sc, IEEE80211_MODE_11A);
381 
382 	/*
383 	 * Allocate TX descriptors and populate the lists.
384 	 */
385 	error = ath_desc_alloc(sc);
386 	if (error != 0) {
387 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
388 		    error);
389 		goto bad;
390 	}
391 	error = ath_txdma_setup(sc);
392 	if (error != 0) {
393 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
394 		    error);
395 		goto bad;
396 	}
397 
398 	/*
399 	 * Allocate RX descriptors and populate the lists.
400 	 */
401 	error = ath_rxdma_setup(sc);
402 	if (error != 0) {
403 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
404 		    error);
405 		goto bad;
406 	}
407 
408 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
409 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
410 
411 	ATH_TXBUF_LOCK_INIT(sc);
412 
413 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
414 		taskqueue_thread_enqueue, &sc->sc_tq);
415 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
416 		"%s taskq", ifp->if_xname);
417 
418 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
419 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
420 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
421 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
422 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
423 	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
424 	TASK_INIT(&sc->sc_txsndtask, 0, ath_start_task, sc);
425 
426 	/*
427 	 * Allocate hardware transmit queues: one queue for
428 	 * beacon frames and one data queue for each QoS
429 	 * priority.  Note that the hal handles resetting
430 	 * these queues at the needed time.
431 	 *
432 	 * XXX PS-Poll
433 	 */
434 	sc->sc_bhalq = ath_beaconq_setup(sc);
435 	if (sc->sc_bhalq == (u_int) -1) {
436 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
437 		error = EIO;
438 		goto bad2;
439 	}
440 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
441 	if (sc->sc_cabq == NULL) {
442 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
443 		error = EIO;
444 		goto bad2;
445 	}
446 	/* NB: insure BK queue is the lowest priority h/w queue */
447 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
448 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
449 			ieee80211_wme_acnames[WME_AC_BK]);
450 		error = EIO;
451 		goto bad2;
452 	}
453 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
454 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
455 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
456 		/*
457 		 * Not enough hardware tx queues to properly do WME;
458 		 * just punt and assign them all to the same h/w queue.
459 		 * We could do a better job of this if, for example,
460 		 * we allocate queues when we switch from station to
461 		 * AP mode.
462 		 */
463 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
464 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
465 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
466 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
467 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
468 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
469 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
470 	}
471 
472 	/*
473 	 * Attach the TX completion function.
474 	 *
475 	 * The non-EDMA chips may have some special case optimisations;
476 	 * this method gives everyone a chance to attach cleanly.
477 	 */
478 	sc->sc_tx.xmit_attach_comp_func(sc);
479 
480 	/*
481 	 * Setup rate control.  Some rate control modules
482 	 * call back to change the anntena state so expose
483 	 * the necessary entry points.
484 	 * XXX maybe belongs in struct ath_ratectrl?
485 	 */
486 	sc->sc_setdefantenna = ath_setdefantenna;
487 	sc->sc_rc = ath_rate_attach(sc);
488 	if (sc->sc_rc == NULL) {
489 		error = EIO;
490 		goto bad2;
491 	}
492 
493 	/* Attach DFS module */
494 	if (! ath_dfs_attach(sc)) {
495 		device_printf(sc->sc_dev,
496 		    "%s: unable to attach DFS\n", __func__);
497 		error = EIO;
498 		goto bad2;
499 	}
500 
501 	/* Start DFS processing tasklet */
502 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
503 
504 	/* Configure LED state */
505 	sc->sc_blinking = 0;
506 	sc->sc_ledstate = 1;
507 	sc->sc_ledon = 0;			/* low true */
508 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
509 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
510 
511 	/*
512 	 * Don't setup hardware-based blinking.
513 	 *
514 	 * Although some NICs may have this configured in the
515 	 * default reset register values, the user may wish
516 	 * to alter which pins have which function.
517 	 *
518 	 * The reference driver attaches the MAC network LED to GPIO1 and
519 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
520 	 * NIC has these reversed.
521 	 */
522 	sc->sc_hardled = (1 == 0);
523 	sc->sc_led_net_pin = -1;
524 	sc->sc_led_pwr_pin = -1;
525 	/*
526 	 * Auto-enable soft led processing for IBM cards and for
527 	 * 5211 minipci cards.  Users can also manually enable/disable
528 	 * support with a sysctl.
529 	 */
530 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
531 	ath_led_config(sc);
532 	ath_hal_setledstate(ah, HAL_LED_INIT);
533 
534 	ifp->if_softc = sc;
535 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
536 	ifp->if_start = ath_start_queue;
537 	ifp->if_ioctl = ath_ioctl;
538 	ifp->if_init = ath_init;
539 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
540 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
541 	IFQ_SET_READY(&ifp->if_snd);
542 
543 	ic->ic_ifp = ifp;
544 	/* XXX not right but it's not used anywhere important */
545 	ic->ic_phytype = IEEE80211_T_OFDM;
546 	ic->ic_opmode = IEEE80211_M_STA;
547 	ic->ic_caps =
548 		  IEEE80211_C_STA		/* station mode */
549 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
550 		| IEEE80211_C_HOSTAP		/* hostap mode */
551 		| IEEE80211_C_MONITOR		/* monitor mode */
552 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
553 		| IEEE80211_C_WDS		/* 4-address traffic works */
554 		| IEEE80211_C_MBSS		/* mesh point link mode */
555 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
556 		| IEEE80211_C_SHSLOT		/* short slot time supported */
557 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
558 #ifndef	ATH_ENABLE_11N
559 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
560 #endif
561 		| IEEE80211_C_TXFRAG		/* handle tx frags */
562 #ifdef	ATH_ENABLE_DFS
563 		| IEEE80211_C_DFS		/* Enable radar detection */
564 #endif
565 		;
566 	/*
567 	 * Query the hal to figure out h/w crypto support.
568 	 */
569 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
570 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
571 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
572 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
573 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
574 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
575 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
576 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
577 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
578 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
579 		/*
580 		 * Check if h/w does the MIC and/or whether the
581 		 * separate key cache entries are required to
582 		 * handle both tx+rx MIC keys.
583 		 */
584 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
585 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
586 		/*
587 		 * If the h/w supports storing tx+rx MIC keys
588 		 * in one cache slot automatically enable use.
589 		 */
590 		if (ath_hal_hastkipsplit(ah) ||
591 		    !ath_hal_settkipsplit(ah, AH_FALSE))
592 			sc->sc_splitmic = 1;
593 		/*
594 		 * If the h/w can do TKIP MIC together with WME then
595 		 * we use it; otherwise we force the MIC to be done
596 		 * in software by the net80211 layer.
597 		 */
598 		if (ath_hal_haswmetkipmic(ah))
599 			sc->sc_wmetkipmic = 1;
600 	}
601 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
602 	/*
603 	 * Check for multicast key search support.
604 	 */
605 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
606 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
607 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
608 	}
609 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
610 	/*
611 	 * Mark key cache slots associated with global keys
612 	 * as in use.  If we knew TKIP was not to be used we
613 	 * could leave the +32, +64, and +32+64 slots free.
614 	 */
615 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
616 		setbit(sc->sc_keymap, i);
617 		setbit(sc->sc_keymap, i+64);
618 		if (sc->sc_splitmic) {
619 			setbit(sc->sc_keymap, i+32);
620 			setbit(sc->sc_keymap, i+32+64);
621 		}
622 	}
623 	/*
624 	 * TPC support can be done either with a global cap or
625 	 * per-packet support.  The latter is not available on
626 	 * all parts.  We're a bit pedantic here as all parts
627 	 * support a global cap.
628 	 */
629 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
630 		ic->ic_caps |= IEEE80211_C_TXPMGT;
631 
632 	/*
633 	 * Mark WME capability only if we have sufficient
634 	 * hardware queues to do proper priority scheduling.
635 	 */
636 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
637 		ic->ic_caps |= IEEE80211_C_WME;
638 	/*
639 	 * Check for misc other capabilities.
640 	 */
641 	if (ath_hal_hasbursting(ah))
642 		ic->ic_caps |= IEEE80211_C_BURST;
643 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
644 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
645 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
646 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
647 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
648 	if (ath_hal_hasfastframes(ah))
649 		ic->ic_caps |= IEEE80211_C_FF;
650 	wmodes = ath_hal_getwirelessmodes(ah);
651 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
652 		ic->ic_caps |= IEEE80211_C_TURBOP;
653 #ifdef IEEE80211_SUPPORT_TDMA
654 	if (ath_hal_macversion(ah) > 0x78) {
655 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
656 		ic->ic_tdma_update = ath_tdma_update;
657 	}
658 #endif
659 
660 	/*
661 	 * TODO: enforce that at least this many frames are available
662 	 * in the txbuf list before allowing data frames (raw or
663 	 * otherwise) to be transmitted.
664 	 */
665 	sc->sc_txq_data_minfree = 10;
666 	/*
667 	 * Leave this as default to maintain legacy behaviour.
668 	 * Shortening the cabq/mcastq may end up causing some
669 	 * undesirable behaviour.
670 	 */
671 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
672 
673 	/*
674 	 * Allow the TX and RX chainmasks to be overridden by
675 	 * environment variables and/or device.hints.
676 	 *
677 	 * This must be done early - before the hardware is
678 	 * calibrated or before the 802.11n stream calculation
679 	 * is done.
680 	 */
681 	if (resource_int_value(device_get_name(sc->sc_dev),
682 	    device_get_unit(sc->sc_dev), "rx_chainmask",
683 	    &rx_chainmask) == 0) {
684 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
685 		    rx_chainmask);
686 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
687 	}
688 	if (resource_int_value(device_get_name(sc->sc_dev),
689 	    device_get_unit(sc->sc_dev), "tx_chainmask",
690 	    &tx_chainmask) == 0) {
691 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
692 		    tx_chainmask);
693 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
694 	}
695 
696 	/*
697 	 * Disable MRR with protected frames by default.
698 	 * Only 802.11n series NICs can handle this.
699 	 */
700 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
701 
702 #ifdef	ATH_ENABLE_11N
703 	/*
704 	 * Query HT capabilities
705 	 */
706 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
707 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
708 		int rxs, txs;
709 
710 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
711 
712 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
713 
714 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
715 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
716 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
717 			    | IEEE80211_HTCAP_MAXAMSDU_3839
718 			    				/* max A-MSDU length */
719 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
720 			;
721 
722 		/*
723 		 * Enable short-GI for HT20 only if the hardware
724 		 * advertises support.
725 		 * Notably, anything earlier than the AR9287 doesn't.
726 		 */
727 		if ((ath_hal_getcapability(ah,
728 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
729 		    (wmodes & HAL_MODE_HT20)) {
730 			device_printf(sc->sc_dev,
731 			    "[HT] enabling short-GI in 20MHz mode\n");
732 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
733 		}
734 
735 		if (wmodes & HAL_MODE_HT40)
736 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
737 			    |  IEEE80211_HTCAP_SHORTGI40;
738 
739 		/*
740 		 * TX/RX streams need to be taken into account when
741 		 * negotiating which MCS rates it'll receive and
742 		 * what MCS rates are available for TX.
743 		 */
744 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
745 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
746 
747 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
748 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
749 
750 		ic->ic_txstream = txs;
751 		ic->ic_rxstream = rxs;
752 
753 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
754 		    &sc->sc_rts_aggr_limit);
755 		if (sc->sc_rts_aggr_limit != (64 * 1024))
756 			device_printf(sc->sc_dev,
757 			    "[HT] RTS aggregates limited to %d KiB\n",
758 			    sc->sc_rts_aggr_limit / 1024);
759 
760 		device_printf(sc->sc_dev,
761 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
762 	}
763 #endif
764 
765 	/*
766 	 * Initial aggregation settings.
767 	 */
768 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
769 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
770 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
771 
772 	/*
773 	 * Check if the hardware requires PCI register serialisation.
774 	 * Some of the Owl based MACs require this.
775 	 */
776 	if (mp_ncpus > 1 &&
777 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
778 	     0, NULL) == HAL_OK) {
779 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
780 		device_printf(sc->sc_dev,
781 		    "Enabling register serialisation\n");
782 	}
783 
784 	/*
785 	 * Indicate we need the 802.11 header padded to a
786 	 * 32-bit boundary for 4-address and QoS frames.
787 	 */
788 	ic->ic_flags |= IEEE80211_F_DATAPAD;
789 
790 	/*
791 	 * Query the hal about antenna support.
792 	 */
793 	sc->sc_defant = ath_hal_getdefantenna(ah);
794 
795 	/*
796 	 * Not all chips have the VEOL support we want to
797 	 * use with IBSS beacons; check here for it.
798 	 */
799 	sc->sc_hasveol = ath_hal_hasveol(ah);
800 
801 	/* get mac address from hardware */
802 	ath_hal_getmac(ah, macaddr);
803 	if (sc->sc_hasbmask)
804 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
805 
806 	/* NB: used to size node table key mapping array */
807 	ic->ic_max_keyix = sc->sc_keymax;
808 	/* call MI attach routine. */
809 	ieee80211_ifattach(ic, macaddr);
810 	ic->ic_setregdomain = ath_setregdomain;
811 	ic->ic_getradiocaps = ath_getradiocaps;
812 	sc->sc_opmode = HAL_M_STA;
813 
814 	/* override default methods */
815 	ic->ic_newassoc = ath_newassoc;
816 	ic->ic_updateslot = ath_updateslot;
817 	ic->ic_wme.wme_update = ath_wme_update;
818 	ic->ic_vap_create = ath_vap_create;
819 	ic->ic_vap_delete = ath_vap_delete;
820 	ic->ic_raw_xmit = ath_raw_xmit;
821 	ic->ic_update_mcast = ath_update_mcast;
822 	ic->ic_update_promisc = ath_update_promisc;
823 	ic->ic_node_alloc = ath_node_alloc;
824 	sc->sc_node_free = ic->ic_node_free;
825 	ic->ic_node_free = ath_node_free;
826 	sc->sc_node_cleanup = ic->ic_node_cleanup;
827 	ic->ic_node_cleanup = ath_node_cleanup;
828 	ic->ic_node_getsignal = ath_node_getsignal;
829 	ic->ic_scan_start = ath_scan_start;
830 	ic->ic_scan_end = ath_scan_end;
831 	ic->ic_set_channel = ath_set_channel;
832 #ifdef	ATH_ENABLE_11N
833 	/* 802.11n specific - but just override anyway */
834 	sc->sc_addba_request = ic->ic_addba_request;
835 	sc->sc_addba_response = ic->ic_addba_response;
836 	sc->sc_addba_stop = ic->ic_addba_stop;
837 	sc->sc_bar_response = ic->ic_bar_response;
838 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
839 
840 	ic->ic_addba_request = ath_addba_request;
841 	ic->ic_addba_response = ath_addba_response;
842 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
843 	ic->ic_addba_stop = ath_addba_stop;
844 	ic->ic_bar_response = ath_bar_response;
845 
846 	ic->ic_update_chw = ath_update_chw;
847 #endif	/* ATH_ENABLE_11N */
848 
849 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
850 	/*
851 	 * There's one vendor bitmap entry in the RX radiotap
852 	 * header; make sure that's taken into account.
853 	 */
854 	ieee80211_radiotap_attachv(ic,
855 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
856 		ATH_TX_RADIOTAP_PRESENT,
857 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
858 		ATH_RX_RADIOTAP_PRESENT);
859 #else
860 	/*
861 	 * No vendor bitmap/extensions are present.
862 	 */
863 	ieee80211_radiotap_attach(ic,
864 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
865 		ATH_TX_RADIOTAP_PRESENT,
866 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
867 		ATH_RX_RADIOTAP_PRESENT);
868 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
869 
870 	/*
871 	 * Setup dynamic sysctl's now that country code and
872 	 * regdomain are available from the hal.
873 	 */
874 	ath_sysctlattach(sc);
875 	ath_sysctl_stats_attach(sc);
876 	ath_sysctl_hal_attach(sc);
877 
878 	if (bootverbose)
879 		ieee80211_announce(ic);
880 	ath_announce(sc);
881 	return 0;
882 bad2:
883 	ath_tx_cleanup(sc);
884 	ath_desc_free(sc);
885 	ath_txdma_teardown(sc);
886 	ath_rxdma_teardown(sc);
887 bad:
888 	if (ah)
889 		ath_hal_detach(ah);
890 	if (ifp != NULL)
891 		if_free(ifp);
892 	sc->sc_invalid = 1;
893 	return error;
894 }
895 
896 int
897 ath_detach(struct ath_softc *sc)
898 {
899 	struct ifnet *ifp = sc->sc_ifp;
900 
901 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
902 		__func__, ifp->if_flags);
903 
904 	/*
905 	 * NB: the order of these is important:
906 	 * o stop the chip so no more interrupts will fire
907 	 * o call the 802.11 layer before detaching the hal to
908 	 *   insure callbacks into the driver to delete global
909 	 *   key cache entries can be handled
910 	 * o free the taskqueue which drains any pending tasks
911 	 * o reclaim the tx queue data structures after calling
912 	 *   the 802.11 layer as we'll get called back to reclaim
913 	 *   node state and potentially want to use them
914 	 * o to cleanup the tx queues the hal is called, so detach
915 	 *   it last
916 	 * Other than that, it's straightforward...
917 	 */
918 	ath_stop(ifp);
919 	ieee80211_ifdetach(ifp->if_l2com);
920 	taskqueue_free(sc->sc_tq);
921 #ifdef ATH_TX99_DIAG
922 	if (sc->sc_tx99 != NULL)
923 		sc->sc_tx99->detach(sc->sc_tx99);
924 #endif
925 	ath_rate_detach(sc->sc_rc);
926 
927 	ath_dfs_detach(sc);
928 	ath_desc_free(sc);
929 	ath_txdma_teardown(sc);
930 	ath_rxdma_teardown(sc);
931 	ath_tx_cleanup(sc);
932 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
933 	if_free(ifp);
934 
935 	return 0;
936 }
937 
938 /*
939  * MAC address handling for multiple BSS on the same radio.
940  * The first vap uses the MAC address from the EEPROM.  For
941  * subsequent vap's we set the U/L bit (bit 1) in the MAC
942  * address and use the next six bits as an index.
943  */
944 static void
945 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
946 {
947 	int i;
948 
949 	if (clone && sc->sc_hasbmask) {
950 		/* NB: we only do this if h/w supports multiple bssid */
951 		for (i = 0; i < 8; i++)
952 			if ((sc->sc_bssidmask & (1<<i)) == 0)
953 				break;
954 		if (i != 0)
955 			mac[0] |= (i << 2)|0x2;
956 	} else
957 		i = 0;
958 	sc->sc_bssidmask |= 1<<i;
959 	sc->sc_hwbssidmask[0] &= ~mac[0];
960 	if (i == 0)
961 		sc->sc_nbssid0++;
962 }
963 
964 static void
965 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
966 {
967 	int i = mac[0] >> 2;
968 	uint8_t mask;
969 
970 	if (i != 0 || --sc->sc_nbssid0 == 0) {
971 		sc->sc_bssidmask &= ~(1<<i);
972 		/* recalculate bssid mask from remaining addresses */
973 		mask = 0xff;
974 		for (i = 1; i < 8; i++)
975 			if (sc->sc_bssidmask & (1<<i))
976 				mask &= ~((i<<2)|0x2);
977 		sc->sc_hwbssidmask[0] |= mask;
978 	}
979 }
980 
981 /*
982  * Assign a beacon xmit slot.  We try to space out
983  * assignments so when beacons are staggered the
984  * traffic coming out of the cab q has maximal time
985  * to go out before the next beacon is scheduled.
986  */
987 static int
988 assign_bslot(struct ath_softc *sc)
989 {
990 	u_int slot, free;
991 
992 	free = 0;
993 	for (slot = 0; slot < ATH_BCBUF; slot++)
994 		if (sc->sc_bslot[slot] == NULL) {
995 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
996 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
997 				return slot;
998 			free = slot;
999 			/* NB: keep looking for a double slot */
1000 		}
1001 	return free;
1002 }
1003 
1004 static struct ieee80211vap *
1005 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1006     enum ieee80211_opmode opmode, int flags,
1007     const uint8_t bssid[IEEE80211_ADDR_LEN],
1008     const uint8_t mac0[IEEE80211_ADDR_LEN])
1009 {
1010 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1011 	struct ath_vap *avp;
1012 	struct ieee80211vap *vap;
1013 	uint8_t mac[IEEE80211_ADDR_LEN];
1014 	int needbeacon, error;
1015 	enum ieee80211_opmode ic_opmode;
1016 
1017 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1018 	    M_80211_VAP, M_WAITOK | M_ZERO);
1019 	needbeacon = 0;
1020 	IEEE80211_ADDR_COPY(mac, mac0);
1021 
1022 	ATH_LOCK(sc);
1023 	ic_opmode = opmode;		/* default to opmode of new vap */
1024 	switch (opmode) {
1025 	case IEEE80211_M_STA:
1026 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1027 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1028 			goto bad;
1029 		}
1030 		if (sc->sc_nvaps) {
1031 			/*
1032 			 * With multiple vaps we must fall back
1033 			 * to s/w beacon miss handling.
1034 			 */
1035 			flags |= IEEE80211_CLONE_NOBEACONS;
1036 		}
1037 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1038 			/*
1039 			 * Station mode w/o beacons are implemented w/ AP mode.
1040 			 */
1041 			ic_opmode = IEEE80211_M_HOSTAP;
1042 		}
1043 		break;
1044 	case IEEE80211_M_IBSS:
1045 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1046 			device_printf(sc->sc_dev,
1047 			    "only 1 ibss vap supported\n");
1048 			goto bad;
1049 		}
1050 		needbeacon = 1;
1051 		break;
1052 	case IEEE80211_M_AHDEMO:
1053 #ifdef IEEE80211_SUPPORT_TDMA
1054 		if (flags & IEEE80211_CLONE_TDMA) {
1055 			if (sc->sc_nvaps != 0) {
1056 				device_printf(sc->sc_dev,
1057 				    "only 1 tdma vap supported\n");
1058 				goto bad;
1059 			}
1060 			needbeacon = 1;
1061 			flags |= IEEE80211_CLONE_NOBEACONS;
1062 		}
1063 		/* fall thru... */
1064 #endif
1065 	case IEEE80211_M_MONITOR:
1066 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1067 			/*
1068 			 * Adopt existing mode.  Adding a monitor or ahdemo
1069 			 * vap to an existing configuration is of dubious
1070 			 * value but should be ok.
1071 			 */
1072 			/* XXX not right for monitor mode */
1073 			ic_opmode = ic->ic_opmode;
1074 		}
1075 		break;
1076 	case IEEE80211_M_HOSTAP:
1077 	case IEEE80211_M_MBSS:
1078 		needbeacon = 1;
1079 		break;
1080 	case IEEE80211_M_WDS:
1081 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1082 			device_printf(sc->sc_dev,
1083 			    "wds not supported in sta mode\n");
1084 			goto bad;
1085 		}
1086 		/*
1087 		 * Silently remove any request for a unique
1088 		 * bssid; WDS vap's always share the local
1089 		 * mac address.
1090 		 */
1091 		flags &= ~IEEE80211_CLONE_BSSID;
1092 		if (sc->sc_nvaps == 0)
1093 			ic_opmode = IEEE80211_M_HOSTAP;
1094 		else
1095 			ic_opmode = ic->ic_opmode;
1096 		break;
1097 	default:
1098 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1099 		goto bad;
1100 	}
1101 	/*
1102 	 * Check that a beacon buffer is available; the code below assumes it.
1103 	 */
1104 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1105 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1106 		goto bad;
1107 	}
1108 
1109 	/* STA, AHDEMO? */
1110 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1111 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1112 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1113 	}
1114 
1115 	vap = &avp->av_vap;
1116 	/* XXX can't hold mutex across if_alloc */
1117 	ATH_UNLOCK(sc);
1118 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1119 	    bssid, mac);
1120 	ATH_LOCK(sc);
1121 	if (error != 0) {
1122 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1123 		    __func__, error);
1124 		goto bad2;
1125 	}
1126 
1127 	/* h/w crypto support */
1128 	vap->iv_key_alloc = ath_key_alloc;
1129 	vap->iv_key_delete = ath_key_delete;
1130 	vap->iv_key_set = ath_key_set;
1131 	vap->iv_key_update_begin = ath_key_update_begin;
1132 	vap->iv_key_update_end = ath_key_update_end;
1133 
1134 	/* override various methods */
1135 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1136 	vap->iv_recv_mgmt = ath_recv_mgmt;
1137 	vap->iv_reset = ath_reset_vap;
1138 	vap->iv_update_beacon = ath_beacon_update;
1139 	avp->av_newstate = vap->iv_newstate;
1140 	vap->iv_newstate = ath_newstate;
1141 	avp->av_bmiss = vap->iv_bmiss;
1142 	vap->iv_bmiss = ath_bmiss_vap;
1143 
1144 	avp->av_node_ps = vap->iv_node_ps;
1145 	vap->iv_node_ps = ath_node_powersave;
1146 
1147 	/* Set default parameters */
1148 
1149 	/*
1150 	 * Anything earlier than some AR9300 series MACs don't
1151 	 * support a smaller MPDU density.
1152 	 */
1153 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1154 	/*
1155 	 * All NICs can handle the maximum size, however
1156 	 * AR5416 based MACs can only TX aggregates w/ RTS
1157 	 * protection when the total aggregate size is <= 8k.
1158 	 * However, for now that's enforced by the TX path.
1159 	 */
1160 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1161 
1162 	avp->av_bslot = -1;
1163 	if (needbeacon) {
1164 		/*
1165 		 * Allocate beacon state and setup the q for buffered
1166 		 * multicast frames.  We know a beacon buffer is
1167 		 * available because we checked above.
1168 		 */
1169 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1170 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1171 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1172 			/*
1173 			 * Assign the vap to a beacon xmit slot.  As above
1174 			 * this cannot fail to find a free one.
1175 			 */
1176 			avp->av_bslot = assign_bslot(sc);
1177 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1178 			    ("beacon slot %u not empty", avp->av_bslot));
1179 			sc->sc_bslot[avp->av_bslot] = vap;
1180 			sc->sc_nbcnvaps++;
1181 		}
1182 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1183 			/*
1184 			 * Multple vaps are to transmit beacons and we
1185 			 * have h/w support for TSF adjusting; enable
1186 			 * use of staggered beacons.
1187 			 */
1188 			sc->sc_stagbeacons = 1;
1189 		}
1190 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1191 	}
1192 
1193 	ic->ic_opmode = ic_opmode;
1194 	if (opmode != IEEE80211_M_WDS) {
1195 		sc->sc_nvaps++;
1196 		if (opmode == IEEE80211_M_STA)
1197 			sc->sc_nstavaps++;
1198 		if (opmode == IEEE80211_M_MBSS)
1199 			sc->sc_nmeshvaps++;
1200 	}
1201 	switch (ic_opmode) {
1202 	case IEEE80211_M_IBSS:
1203 		sc->sc_opmode = HAL_M_IBSS;
1204 		break;
1205 	case IEEE80211_M_STA:
1206 		sc->sc_opmode = HAL_M_STA;
1207 		break;
1208 	case IEEE80211_M_AHDEMO:
1209 #ifdef IEEE80211_SUPPORT_TDMA
1210 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1211 			sc->sc_tdma = 1;
1212 			/* NB: disable tsf adjust */
1213 			sc->sc_stagbeacons = 0;
1214 		}
1215 		/*
1216 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1217 		 * just ap mode.
1218 		 */
1219 		/* fall thru... */
1220 #endif
1221 	case IEEE80211_M_HOSTAP:
1222 	case IEEE80211_M_MBSS:
1223 		sc->sc_opmode = HAL_M_HOSTAP;
1224 		break;
1225 	case IEEE80211_M_MONITOR:
1226 		sc->sc_opmode = HAL_M_MONITOR;
1227 		break;
1228 	default:
1229 		/* XXX should not happen */
1230 		break;
1231 	}
1232 	if (sc->sc_hastsfadd) {
1233 		/*
1234 		 * Configure whether or not TSF adjust should be done.
1235 		 */
1236 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1237 	}
1238 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1239 		/*
1240 		 * Enable s/w beacon miss handling.
1241 		 */
1242 		sc->sc_swbmiss = 1;
1243 	}
1244 	ATH_UNLOCK(sc);
1245 
1246 	/* complete setup */
1247 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1248 	return vap;
1249 bad2:
1250 	reclaim_address(sc, mac);
1251 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1252 bad:
1253 	free(avp, M_80211_VAP);
1254 	ATH_UNLOCK(sc);
1255 	return NULL;
1256 }
1257 
1258 static void
1259 ath_vap_delete(struct ieee80211vap *vap)
1260 {
1261 	struct ieee80211com *ic = vap->iv_ic;
1262 	struct ifnet *ifp = ic->ic_ifp;
1263 	struct ath_softc *sc = ifp->if_softc;
1264 	struct ath_hal *ah = sc->sc_ah;
1265 	struct ath_vap *avp = ATH_VAP(vap);
1266 
1267 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1268 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1269 		/*
1270 		 * Quiesce the hardware while we remove the vap.  In
1271 		 * particular we need to reclaim all references to
1272 		 * the vap state by any frames pending on the tx queues.
1273 		 */
1274 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1275 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1276 		/* XXX Do all frames from all vaps/nodes need draining here? */
1277 		ath_stoprecv(sc, 1);		/* stop recv side */
1278 	}
1279 
1280 	ieee80211_vap_detach(vap);
1281 
1282 	/*
1283 	 * XXX Danger Will Robinson! Danger!
1284 	 *
1285 	 * Because ieee80211_vap_detach() can queue a frame (the station
1286 	 * diassociate message?) after we've drained the TXQ and
1287 	 * flushed the software TXQ, we will end up with a frame queued
1288 	 * to a node whose vap is about to be freed.
1289 	 *
1290 	 * To work around this, flush the hardware/software again.
1291 	 * This may be racy - the ath task may be running and the packet
1292 	 * may be being scheduled between sw->hw txq. Tsk.
1293 	 *
1294 	 * TODO: figure out why a new node gets allocated somewhere around
1295 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1296 	 * call!)
1297 	 */
1298 
1299 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1300 
1301 	ATH_LOCK(sc);
1302 	/*
1303 	 * Reclaim beacon state.  Note this must be done before
1304 	 * the vap instance is reclaimed as we may have a reference
1305 	 * to it in the buffer for the beacon frame.
1306 	 */
1307 	if (avp->av_bcbuf != NULL) {
1308 		if (avp->av_bslot != -1) {
1309 			sc->sc_bslot[avp->av_bslot] = NULL;
1310 			sc->sc_nbcnvaps--;
1311 		}
1312 		ath_beacon_return(sc, avp->av_bcbuf);
1313 		avp->av_bcbuf = NULL;
1314 		if (sc->sc_nbcnvaps == 0) {
1315 			sc->sc_stagbeacons = 0;
1316 			if (sc->sc_hastsfadd)
1317 				ath_hal_settsfadjust(sc->sc_ah, 0);
1318 		}
1319 		/*
1320 		 * Reclaim any pending mcast frames for the vap.
1321 		 */
1322 		ath_tx_draintxq(sc, &avp->av_mcastq);
1323 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1324 	}
1325 	/*
1326 	 * Update bookkeeping.
1327 	 */
1328 	if (vap->iv_opmode == IEEE80211_M_STA) {
1329 		sc->sc_nstavaps--;
1330 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1331 			sc->sc_swbmiss = 0;
1332 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1333 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1334 		reclaim_address(sc, vap->iv_myaddr);
1335 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1336 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1337 			sc->sc_nmeshvaps--;
1338 	}
1339 	if (vap->iv_opmode != IEEE80211_M_WDS)
1340 		sc->sc_nvaps--;
1341 #ifdef IEEE80211_SUPPORT_TDMA
1342 	/* TDMA operation ceases when the last vap is destroyed */
1343 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1344 		sc->sc_tdma = 0;
1345 		sc->sc_swbmiss = 0;
1346 	}
1347 #endif
1348 	free(avp, M_80211_VAP);
1349 
1350 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1351 		/*
1352 		 * Restart rx+tx machines if still running (RUNNING will
1353 		 * be reset if we just destroyed the last vap).
1354 		 */
1355 		if (ath_startrecv(sc) != 0)
1356 			if_printf(ifp, "%s: unable to restart recv logic\n",
1357 			    __func__);
1358 		if (sc->sc_beacons) {		/* restart beacons */
1359 #ifdef IEEE80211_SUPPORT_TDMA
1360 			if (sc->sc_tdma)
1361 				ath_tdma_config(sc, NULL);
1362 			else
1363 #endif
1364 				ath_beacon_config(sc, NULL);
1365 		}
1366 		ath_hal_intrset(ah, sc->sc_imask);
1367 	}
1368 	ATH_UNLOCK(sc);
1369 }
1370 
1371 void
1372 ath_suspend(struct ath_softc *sc)
1373 {
1374 	struct ifnet *ifp = sc->sc_ifp;
1375 	struct ieee80211com *ic = ifp->if_l2com;
1376 
1377 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1378 		__func__, ifp->if_flags);
1379 
1380 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1381 
1382 	ieee80211_suspend_all(ic);
1383 	/*
1384 	 * NB: don't worry about putting the chip in low power
1385 	 * mode; pci will power off our socket on suspend and
1386 	 * CardBus detaches the device.
1387 	 */
1388 
1389 	/*
1390 	 * XXX ensure none of the taskqueues are running
1391 	 * XXX ensure sc_invalid is 1
1392 	 * XXX ensure the calibration callout is disabled
1393 	 */
1394 
1395 	/* Disable the PCIe PHY, complete with workarounds */
1396 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1397 }
1398 
1399 /*
1400  * Reset the key cache since some parts do not reset the
1401  * contents on resume.  First we clear all entries, then
1402  * re-load keys that the 802.11 layer assumes are setup
1403  * in h/w.
1404  */
1405 static void
1406 ath_reset_keycache(struct ath_softc *sc)
1407 {
1408 	struct ifnet *ifp = sc->sc_ifp;
1409 	struct ieee80211com *ic = ifp->if_l2com;
1410 	struct ath_hal *ah = sc->sc_ah;
1411 	int i;
1412 
1413 	for (i = 0; i < sc->sc_keymax; i++)
1414 		ath_hal_keyreset(ah, i);
1415 	ieee80211_crypto_reload_keys(ic);
1416 }
1417 
1418 void
1419 ath_resume(struct ath_softc *sc)
1420 {
1421 	struct ifnet *ifp = sc->sc_ifp;
1422 	struct ieee80211com *ic = ifp->if_l2com;
1423 	struct ath_hal *ah = sc->sc_ah;
1424 	HAL_STATUS status;
1425 
1426 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1427 		__func__, ifp->if_flags);
1428 
1429 	/* Re-enable PCIe, re-enable the PCIe bus */
1430 	ath_hal_enablepcie(ah, 0, 0);
1431 
1432 	/*
1433 	 * Must reset the chip before we reload the
1434 	 * keycache as we were powered down on suspend.
1435 	 */
1436 	ath_hal_reset(ah, sc->sc_opmode,
1437 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1438 	    AH_FALSE, &status);
1439 	ath_reset_keycache(sc);
1440 
1441 	/* Let DFS at it in case it's a DFS channel */
1442 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1443 
1444 	/* Restore the LED configuration */
1445 	ath_led_config(sc);
1446 	ath_hal_setledstate(ah, HAL_LED_INIT);
1447 
1448 	if (sc->sc_resume_up)
1449 		ieee80211_resume_all(ic);
1450 
1451 	/* XXX beacons ? */
1452 }
1453 
1454 void
1455 ath_shutdown(struct ath_softc *sc)
1456 {
1457 	struct ifnet *ifp = sc->sc_ifp;
1458 
1459 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1460 		__func__, ifp->if_flags);
1461 
1462 	ath_stop(ifp);
1463 	/* NB: no point powering down chip as we're about to reboot */
1464 }
1465 
1466 /*
1467  * Interrupt handler.  Most of the actual processing is deferred.
1468  */
1469 void
1470 ath_intr(void *arg)
1471 {
1472 	struct ath_softc *sc = arg;
1473 	struct ifnet *ifp = sc->sc_ifp;
1474 	struct ath_hal *ah = sc->sc_ah;
1475 	HAL_INT status = 0;
1476 	uint32_t txqs;
1477 
1478 	/*
1479 	 * If we're inside a reset path, just print a warning and
1480 	 * clear the ISR. The reset routine will finish it for us.
1481 	 */
1482 	ATH_PCU_LOCK(sc);
1483 	if (sc->sc_inreset_cnt) {
1484 		HAL_INT status;
1485 		ath_hal_getisr(ah, &status);	/* clear ISR */
1486 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1487 		DPRINTF(sc, ATH_DEBUG_ANY,
1488 		    "%s: in reset, ignoring: status=0x%x\n",
1489 		    __func__, status);
1490 		ATH_PCU_UNLOCK(sc);
1491 		return;
1492 	}
1493 
1494 	if (sc->sc_invalid) {
1495 		/*
1496 		 * The hardware is not ready/present, don't touch anything.
1497 		 * Note this can happen early on if the IRQ is shared.
1498 		 */
1499 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1500 		ATH_PCU_UNLOCK(sc);
1501 		return;
1502 	}
1503 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1504 		ATH_PCU_UNLOCK(sc);
1505 		return;
1506 	}
1507 
1508 	if ((ifp->if_flags & IFF_UP) == 0 ||
1509 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1510 		HAL_INT status;
1511 
1512 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1513 			__func__, ifp->if_flags);
1514 		ath_hal_getisr(ah, &status);	/* clear ISR */
1515 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1516 		ATH_PCU_UNLOCK(sc);
1517 		return;
1518 	}
1519 
1520 	/*
1521 	 * Figure out the reason(s) for the interrupt.  Note
1522 	 * that the hal returns a pseudo-ISR that may include
1523 	 * bits we haven't explicitly enabled so we mask the
1524 	 * value to insure we only process bits we requested.
1525 	 */
1526 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1527 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1528 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1529 #ifdef	ATH_KTR_INTR_DEBUG
1530 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1531 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1532 	    ah->ah_intrstate[0],
1533 	    ah->ah_intrstate[1],
1534 	    ah->ah_intrstate[2],
1535 	    ah->ah_intrstate[3],
1536 	    ah->ah_intrstate[6]);
1537 #endif
1538 
1539 	/* Squirrel away SYNC interrupt debugging */
1540 	if (ah->ah_syncstate != 0) {
1541 		int i;
1542 		for (i = 0; i < 32; i++)
1543 			if (ah->ah_syncstate & (i << i))
1544 				sc->sc_intr_stats.sync_intr[i]++;
1545 	}
1546 
1547 	status &= sc->sc_imask;			/* discard unasked for bits */
1548 
1549 	/* Short-circuit un-handled interrupts */
1550 	if (status == 0x0) {
1551 		ATH_PCU_UNLOCK(sc);
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * Take a note that we're inside the interrupt handler, so
1557 	 * the reset routines know to wait.
1558 	 */
1559 	sc->sc_intr_cnt++;
1560 	ATH_PCU_UNLOCK(sc);
1561 
1562 	/*
1563 	 * Handle the interrupt. We won't run concurrent with the reset
1564 	 * or channel change routines as they'll wait for sc_intr_cnt
1565 	 * to be 0 before continuing.
1566 	 */
1567 	if (status & HAL_INT_FATAL) {
1568 		sc->sc_stats.ast_hardware++;
1569 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1570 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1571 	} else {
1572 		if (status & HAL_INT_SWBA) {
1573 			/*
1574 			 * Software beacon alert--time to send a beacon.
1575 			 * Handle beacon transmission directly; deferring
1576 			 * this is too slow to meet timing constraints
1577 			 * under load.
1578 			 */
1579 #ifdef IEEE80211_SUPPORT_TDMA
1580 			if (sc->sc_tdma) {
1581 				if (sc->sc_tdmaswba == 0) {
1582 					struct ieee80211com *ic = ifp->if_l2com;
1583 					struct ieee80211vap *vap =
1584 					    TAILQ_FIRST(&ic->ic_vaps);
1585 					ath_tdma_beacon_send(sc, vap);
1586 					sc->sc_tdmaswba =
1587 					    vap->iv_tdma->tdma_bintval;
1588 				} else
1589 					sc->sc_tdmaswba--;
1590 			} else
1591 #endif
1592 			{
1593 				ath_beacon_proc(sc, 0);
1594 #ifdef IEEE80211_SUPPORT_SUPERG
1595 				/*
1596 				 * Schedule the rx taskq in case there's no
1597 				 * traffic so any frames held on the staging
1598 				 * queue are aged and potentially flushed.
1599 				 */
1600 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1601 #endif
1602 			}
1603 		}
1604 		if (status & HAL_INT_RXEOL) {
1605 			int imask;
1606 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1607 			ATH_PCU_LOCK(sc);
1608 			/*
1609 			 * NB: the hardware should re-read the link when
1610 			 *     RXE bit is written, but it doesn't work at
1611 			 *     least on older hardware revs.
1612 			 */
1613 			sc->sc_stats.ast_rxeol++;
1614 			/*
1615 			 * Disable RXEOL/RXORN - prevent an interrupt
1616 			 * storm until the PCU logic can be reset.
1617 			 * In case the interface is reset some other
1618 			 * way before "sc_kickpcu" is called, don't
1619 			 * modify sc_imask - that way if it is reset
1620 			 * by a call to ath_reset() somehow, the
1621 			 * interrupt mask will be correctly reprogrammed.
1622 			 */
1623 			imask = sc->sc_imask;
1624 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1625 			ath_hal_intrset(ah, imask);
1626 			/*
1627 			 * Only blank sc_rxlink if we've not yet kicked
1628 			 * the PCU.
1629 			 *
1630 			 * This isn't entirely correct - the correct solution
1631 			 * would be to have a PCU lock and engage that for
1632 			 * the duration of the PCU fiddling; which would include
1633 			 * running the RX process. Otherwise we could end up
1634 			 * messing up the RX descriptor chain and making the
1635 			 * RX desc list much shorter.
1636 			 */
1637 			if (! sc->sc_kickpcu)
1638 				sc->sc_rxlink = NULL;
1639 			sc->sc_kickpcu = 1;
1640 			/*
1641 			 * Enqueue an RX proc, to handled whatever
1642 			 * is in the RX queue.
1643 			 * This will then kick the PCU.
1644 			 */
1645 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1646 			ATH_PCU_UNLOCK(sc);
1647 		}
1648 		if (status & HAL_INT_TXURN) {
1649 			sc->sc_stats.ast_txurn++;
1650 			/* bump tx trigger level */
1651 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1652 		}
1653 		/*
1654 		 * Handle both the legacy and RX EDMA interrupt bits.
1655 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1656 		 */
1657 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1658 			sc->sc_stats.ast_rx_intr++;
1659 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1660 		}
1661 		if (status & HAL_INT_TX) {
1662 			sc->sc_stats.ast_tx_intr++;
1663 			/*
1664 			 * Grab all the currently set bits in the HAL txq bitmap
1665 			 * and blank them. This is the only place we should be
1666 			 * doing this.
1667 			 */
1668 			if (! sc->sc_isedma) {
1669 				ATH_PCU_LOCK(sc);
1670 				txqs = 0xffffffff;
1671 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1672 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1673 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1674 				    txqs,
1675 				    sc->sc_txq_active,
1676 				    sc->sc_txq_active | txqs);
1677 				sc->sc_txq_active |= txqs;
1678 				ATH_PCU_UNLOCK(sc);
1679 			}
1680 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1681 		}
1682 		if (status & HAL_INT_BMISS) {
1683 			sc->sc_stats.ast_bmiss++;
1684 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1685 		}
1686 		if (status & HAL_INT_GTT)
1687 			sc->sc_stats.ast_tx_timeout++;
1688 		if (status & HAL_INT_CST)
1689 			sc->sc_stats.ast_tx_cst++;
1690 		if (status & HAL_INT_MIB) {
1691 			sc->sc_stats.ast_mib++;
1692 			ATH_PCU_LOCK(sc);
1693 			/*
1694 			 * Disable interrupts until we service the MIB
1695 			 * interrupt; otherwise it will continue to fire.
1696 			 */
1697 			ath_hal_intrset(ah, 0);
1698 			/*
1699 			 * Let the hal handle the event.  We assume it will
1700 			 * clear whatever condition caused the interrupt.
1701 			 */
1702 			ath_hal_mibevent(ah, &sc->sc_halstats);
1703 			/*
1704 			 * Don't reset the interrupt if we've just
1705 			 * kicked the PCU, or we may get a nested
1706 			 * RXEOL before the rxproc has had a chance
1707 			 * to run.
1708 			 */
1709 			if (sc->sc_kickpcu == 0)
1710 				ath_hal_intrset(ah, sc->sc_imask);
1711 			ATH_PCU_UNLOCK(sc);
1712 		}
1713 		if (status & HAL_INT_RXORN) {
1714 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1715 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1716 			sc->sc_stats.ast_rxorn++;
1717 		}
1718 	}
1719 	ATH_PCU_LOCK(sc);
1720 	sc->sc_intr_cnt--;
1721 	ATH_PCU_UNLOCK(sc);
1722 }
1723 
1724 static void
1725 ath_fatal_proc(void *arg, int pending)
1726 {
1727 	struct ath_softc *sc = arg;
1728 	struct ifnet *ifp = sc->sc_ifp;
1729 	u_int32_t *state;
1730 	u_int32_t len;
1731 	void *sp;
1732 
1733 	if_printf(ifp, "hardware error; resetting\n");
1734 	/*
1735 	 * Fatal errors are unrecoverable.  Typically these
1736 	 * are caused by DMA errors.  Collect h/w state from
1737 	 * the hal so we can diagnose what's going on.
1738 	 */
1739 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1740 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1741 		state = sp;
1742 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1743 		    state[0], state[1] , state[2], state[3],
1744 		    state[4], state[5]);
1745 	}
1746 	ath_reset(ifp, ATH_RESET_NOLOSS);
1747 }
1748 
1749 static void
1750 ath_bmiss_vap(struct ieee80211vap *vap)
1751 {
1752 	/*
1753 	 * Workaround phantom bmiss interrupts by sanity-checking
1754 	 * the time of our last rx'd frame.  If it is within the
1755 	 * beacon miss interval then ignore the interrupt.  If it's
1756 	 * truly a bmiss we'll get another interrupt soon and that'll
1757 	 * be dispatched up for processing.  Note this applies only
1758 	 * for h/w beacon miss events.
1759 	 */
1760 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1761 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1762 		struct ath_softc *sc = ifp->if_softc;
1763 		u_int64_t lastrx = sc->sc_lastrx;
1764 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1765 		/* XXX should take a locked ref to iv_bss */
1766 		u_int bmisstimeout =
1767 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1768 
1769 		DPRINTF(sc, ATH_DEBUG_BEACON,
1770 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1771 		    __func__, (unsigned long long) tsf,
1772 		    (unsigned long long)(tsf - lastrx),
1773 		    (unsigned long long) lastrx, bmisstimeout);
1774 
1775 		if (tsf - lastrx <= bmisstimeout) {
1776 			sc->sc_stats.ast_bmiss_phantom++;
1777 			return;
1778 		}
1779 	}
1780 	ATH_VAP(vap)->av_bmiss(vap);
1781 }
1782 
1783 static int
1784 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1785 {
1786 	uint32_t rsize;
1787 	void *sp;
1788 
1789 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1790 		return 0;
1791 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1792 	*hangs = *(uint32_t *)sp;
1793 	return 1;
1794 }
1795 
1796 static void
1797 ath_bmiss_proc(void *arg, int pending)
1798 {
1799 	struct ath_softc *sc = arg;
1800 	struct ifnet *ifp = sc->sc_ifp;
1801 	uint32_t hangs;
1802 
1803 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1804 
1805 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1806 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1807 		ath_reset(ifp, ATH_RESET_NOLOSS);
1808 	} else
1809 		ieee80211_beacon_miss(ifp->if_l2com);
1810 }
1811 
1812 /*
1813  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1814  * calcs together with WME.  If necessary disable the crypto
1815  * hardware and mark the 802.11 state so keys will be setup
1816  * with the MIC work done in software.
1817  */
1818 static void
1819 ath_settkipmic(struct ath_softc *sc)
1820 {
1821 	struct ifnet *ifp = sc->sc_ifp;
1822 	struct ieee80211com *ic = ifp->if_l2com;
1823 
1824 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1825 		if (ic->ic_flags & IEEE80211_F_WME) {
1826 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1827 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1828 		} else {
1829 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1830 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1831 		}
1832 	}
1833 }
1834 
1835 static void
1836 ath_init(void *arg)
1837 {
1838 	struct ath_softc *sc = (struct ath_softc *) arg;
1839 	struct ifnet *ifp = sc->sc_ifp;
1840 	struct ieee80211com *ic = ifp->if_l2com;
1841 	struct ath_hal *ah = sc->sc_ah;
1842 	HAL_STATUS status;
1843 
1844 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1845 		__func__, ifp->if_flags);
1846 
1847 	ATH_LOCK(sc);
1848 	/*
1849 	 * Stop anything previously setup.  This is safe
1850 	 * whether this is the first time through or not.
1851 	 */
1852 	ath_stop_locked(ifp);
1853 
1854 	/*
1855 	 * The basic interface to setting the hardware in a good
1856 	 * state is ``reset''.  On return the hardware is known to
1857 	 * be powered up and with interrupts disabled.  This must
1858 	 * be followed by initialization of the appropriate bits
1859 	 * and then setup of the interrupt mask.
1860 	 */
1861 	ath_settkipmic(sc);
1862 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1863 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1864 			status);
1865 		ATH_UNLOCK(sc);
1866 		return;
1867 	}
1868 	ath_chan_change(sc, ic->ic_curchan);
1869 
1870 	/* Let DFS at it in case it's a DFS channel */
1871 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1872 
1873 	/*
1874 	 * Likewise this is set during reset so update
1875 	 * state cached in the driver.
1876 	 */
1877 	sc->sc_diversity = ath_hal_getdiversity(ah);
1878 	sc->sc_lastlongcal = 0;
1879 	sc->sc_resetcal = 1;
1880 	sc->sc_lastcalreset = 0;
1881 	sc->sc_lastani = 0;
1882 	sc->sc_lastshortcal = 0;
1883 	sc->sc_doresetcal = AH_FALSE;
1884 	/*
1885 	 * Beacon timers were cleared here; give ath_newstate()
1886 	 * a hint that the beacon timers should be poked when
1887 	 * things transition to the RUN state.
1888 	 */
1889 	sc->sc_beacons = 0;
1890 
1891 	/*
1892 	 * Setup the hardware after reset: the key cache
1893 	 * is filled as needed and the receive engine is
1894 	 * set going.  Frame transmit is handled entirely
1895 	 * in the frame output path; there's nothing to do
1896 	 * here except setup the interrupt mask.
1897 	 */
1898 	if (ath_startrecv(sc) != 0) {
1899 		if_printf(ifp, "unable to start recv logic\n");
1900 		ATH_UNLOCK(sc);
1901 		return;
1902 	}
1903 
1904 	/*
1905 	 * Enable interrupts.
1906 	 */
1907 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1908 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1909 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1910 
1911 	/*
1912 	 * Enable RX EDMA bits.  Note these overlap with
1913 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
1914 	 */
1915 	if (sc->sc_isedma)
1916 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
1917 
1918 	/*
1919 	 * Enable MIB interrupts when there are hardware phy counters.
1920 	 * Note we only do this (at the moment) for station mode.
1921 	 */
1922 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1923 		sc->sc_imask |= HAL_INT_MIB;
1924 
1925 	/* Enable global TX timeout and carrier sense timeout if available */
1926 	if (ath_hal_gtxto_supported(ah))
1927 		sc->sc_imask |= HAL_INT_GTT;
1928 
1929 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1930 		__func__, sc->sc_imask);
1931 
1932 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1933 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1934 	ath_hal_intrset(ah, sc->sc_imask);
1935 
1936 	ATH_UNLOCK(sc);
1937 
1938 #ifdef ATH_TX99_DIAG
1939 	if (sc->sc_tx99 != NULL)
1940 		sc->sc_tx99->start(sc->sc_tx99);
1941 	else
1942 #endif
1943 	ieee80211_start_all(ic);		/* start all vap's */
1944 }
1945 
1946 static void
1947 ath_stop_locked(struct ifnet *ifp)
1948 {
1949 	struct ath_softc *sc = ifp->if_softc;
1950 	struct ath_hal *ah = sc->sc_ah;
1951 
1952 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1953 		__func__, sc->sc_invalid, ifp->if_flags);
1954 
1955 	ATH_LOCK_ASSERT(sc);
1956 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1957 		/*
1958 		 * Shutdown the hardware and driver:
1959 		 *    reset 802.11 state machine
1960 		 *    turn off timers
1961 		 *    disable interrupts
1962 		 *    turn off the radio
1963 		 *    clear transmit machinery
1964 		 *    clear receive machinery
1965 		 *    drain and release tx queues
1966 		 *    reclaim beacon resources
1967 		 *    power down hardware
1968 		 *
1969 		 * Note that some of this work is not possible if the
1970 		 * hardware is gone (invalid).
1971 		 */
1972 #ifdef ATH_TX99_DIAG
1973 		if (sc->sc_tx99 != NULL)
1974 			sc->sc_tx99->stop(sc->sc_tx99);
1975 #endif
1976 		callout_stop(&sc->sc_wd_ch);
1977 		sc->sc_wd_timer = 0;
1978 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1979 		if (!sc->sc_invalid) {
1980 			if (sc->sc_softled) {
1981 				callout_stop(&sc->sc_ledtimer);
1982 				ath_hal_gpioset(ah, sc->sc_ledpin,
1983 					!sc->sc_ledon);
1984 				sc->sc_blinking = 0;
1985 			}
1986 			ath_hal_intrset(ah, 0);
1987 		}
1988 		ath_draintxq(sc, ATH_RESET_DEFAULT);
1989 		if (!sc->sc_invalid) {
1990 			ath_stoprecv(sc, 1);
1991 			ath_hal_phydisable(ah);
1992 		} else
1993 			sc->sc_rxlink = NULL;
1994 		ath_beacon_free(sc);	/* XXX not needed */
1995 	}
1996 }
1997 
1998 #define	MAX_TXRX_ITERATIONS	1000
1999 static void
2000 ath_txrx_stop_locked(struct ath_softc *sc)
2001 {
2002 	int i = MAX_TXRX_ITERATIONS;
2003 
2004 	ATH_UNLOCK_ASSERT(sc);
2005 	ATH_PCU_LOCK_ASSERT(sc);
2006 
2007 	/*
2008 	 * Sleep until all the pending operations have completed.
2009 	 *
2010 	 * The caller must ensure that reset has been incremented
2011 	 * or the pending operations may continue being queued.
2012 	 */
2013 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2014 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2015 		if (i <= 0)
2016 			break;
2017 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2018 		i--;
2019 	}
2020 
2021 	if (i <= 0)
2022 		device_printf(sc->sc_dev,
2023 		    "%s: didn't finish after %d iterations\n",
2024 		    __func__, MAX_TXRX_ITERATIONS);
2025 }
2026 #undef	MAX_TXRX_ITERATIONS
2027 
2028 #if 0
2029 static void
2030 ath_txrx_stop(struct ath_softc *sc)
2031 {
2032 	ATH_UNLOCK_ASSERT(sc);
2033 	ATH_PCU_UNLOCK_ASSERT(sc);
2034 
2035 	ATH_PCU_LOCK(sc);
2036 	ath_txrx_stop_locked(sc);
2037 	ATH_PCU_UNLOCK(sc);
2038 }
2039 #endif
2040 
2041 static void
2042 ath_txrx_start(struct ath_softc *sc)
2043 {
2044 
2045 	taskqueue_unblock(sc->sc_tq);
2046 }
2047 
2048 /*
2049  * Grab the reset lock, and wait around until noone else
2050  * is trying to do anything with it.
2051  *
2052  * This is totally horrible but we can't hold this lock for
2053  * long enough to do TX/RX or we end up with net80211/ip stack
2054  * LORs and eventual deadlock.
2055  *
2056  * "dowait" signals whether to spin, waiting for the reset
2057  * lock count to reach 0. This should (for now) only be used
2058  * during the reset path, as the rest of the code may not
2059  * be locking-reentrant enough to behave correctly.
2060  *
2061  * Another, cleaner way should be found to serialise all of
2062  * these operations.
2063  */
2064 #define	MAX_RESET_ITERATIONS	10
2065 static int
2066 ath_reset_grablock(struct ath_softc *sc, int dowait)
2067 {
2068 	int w = 0;
2069 	int i = MAX_RESET_ITERATIONS;
2070 
2071 	ATH_PCU_LOCK_ASSERT(sc);
2072 	do {
2073 		if (sc->sc_inreset_cnt == 0) {
2074 			w = 1;
2075 			break;
2076 		}
2077 		if (dowait == 0) {
2078 			w = 0;
2079 			break;
2080 		}
2081 		ATH_PCU_UNLOCK(sc);
2082 		pause("ath_reset_grablock", 1);
2083 		i--;
2084 		ATH_PCU_LOCK(sc);
2085 	} while (i > 0);
2086 
2087 	/*
2088 	 * We always increment the refcounter, regardless
2089 	 * of whether we succeeded to get it in an exclusive
2090 	 * way.
2091 	 */
2092 	sc->sc_inreset_cnt++;
2093 
2094 	if (i <= 0)
2095 		device_printf(sc->sc_dev,
2096 		    "%s: didn't finish after %d iterations\n",
2097 		    __func__, MAX_RESET_ITERATIONS);
2098 
2099 	if (w == 0)
2100 		device_printf(sc->sc_dev,
2101 		    "%s: warning, recursive reset path!\n",
2102 		    __func__);
2103 
2104 	return w;
2105 }
2106 #undef MAX_RESET_ITERATIONS
2107 
2108 /*
2109  * XXX TODO: write ath_reset_releaselock
2110  */
2111 
2112 static void
2113 ath_stop(struct ifnet *ifp)
2114 {
2115 	struct ath_softc *sc = ifp->if_softc;
2116 
2117 	ATH_LOCK(sc);
2118 	ath_stop_locked(ifp);
2119 	ATH_UNLOCK(sc);
2120 }
2121 
2122 /*
2123  * Reset the hardware w/o losing operational state.  This is
2124  * basically a more efficient way of doing ath_stop, ath_init,
2125  * followed by state transitions to the current 802.11
2126  * operational state.  Used to recover from various errors and
2127  * to reset or reload hardware state.
2128  */
2129 int
2130 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2131 {
2132 	struct ath_softc *sc = ifp->if_softc;
2133 	struct ieee80211com *ic = ifp->if_l2com;
2134 	struct ath_hal *ah = sc->sc_ah;
2135 	HAL_STATUS status;
2136 	int i;
2137 
2138 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2139 
2140 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2141 	ATH_PCU_UNLOCK_ASSERT(sc);
2142 	ATH_UNLOCK_ASSERT(sc);
2143 
2144 	/* Try to (stop any further TX/RX from occuring */
2145 	taskqueue_block(sc->sc_tq);
2146 
2147 	ATH_PCU_LOCK(sc);
2148 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2149 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2150 	if (ath_reset_grablock(sc, 1) == 0) {
2151 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2152 		    __func__);
2153 	}
2154 	ATH_PCU_UNLOCK(sc);
2155 
2156 	/*
2157 	 * Should now wait for pending TX/RX to complete
2158 	 * and block future ones from occuring. This needs to be
2159 	 * done before the TX queue is drained.
2160 	 */
2161 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2162 
2163 	/*
2164 	 * Regardless of whether we're doing a no-loss flush or
2165 	 * not, stop the PCU and handle what's in the RX queue.
2166 	 * That way frames aren't dropped which shouldn't be.
2167 	 */
2168 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2169 	ath_rx_flush(sc);
2170 
2171 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2172 	/* NB: indicate channel change so we do a full reset */
2173 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2174 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2175 			__func__, status);
2176 	sc->sc_diversity = ath_hal_getdiversity(ah);
2177 
2178 	/* Let DFS at it in case it's a DFS channel */
2179 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2180 
2181 	if (ath_startrecv(sc) != 0)	/* restart recv */
2182 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2183 	/*
2184 	 * We may be doing a reset in response to an ioctl
2185 	 * that changes the channel so update any state that
2186 	 * might change as a result.
2187 	 */
2188 	ath_chan_change(sc, ic->ic_curchan);
2189 	if (sc->sc_beacons) {		/* restart beacons */
2190 #ifdef IEEE80211_SUPPORT_TDMA
2191 		if (sc->sc_tdma)
2192 			ath_tdma_config(sc, NULL);
2193 		else
2194 #endif
2195 			ath_beacon_config(sc, NULL);
2196 	}
2197 
2198 	/*
2199 	 * Release the reset lock and re-enable interrupts here.
2200 	 * If an interrupt was being processed in ath_intr(),
2201 	 * it would disable interrupts at this point. So we have
2202 	 * to atomically enable interrupts and decrement the
2203 	 * reset counter - this way ath_intr() doesn't end up
2204 	 * disabling interrupts without a corresponding enable
2205 	 * in the rest or channel change path.
2206 	 */
2207 	ATH_PCU_LOCK(sc);
2208 	sc->sc_inreset_cnt--;
2209 	/* XXX only do this if sc_inreset_cnt == 0? */
2210 	ath_hal_intrset(ah, sc->sc_imask);
2211 	ATH_PCU_UNLOCK(sc);
2212 
2213 	/*
2214 	 * TX and RX can be started here. If it were started with
2215 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2216 	 * Thus if this is a nested call through the reset or
2217 	 * channel change code, TX completion will occur but
2218 	 * RX completion and ath_start / ath_tx_start will not
2219 	 * run.
2220 	 */
2221 
2222 	/* Restart TX/RX as needed */
2223 	ath_txrx_start(sc);
2224 
2225 	/* XXX Restart TX completion and pending TX */
2226 	if (reset_type == ATH_RESET_NOLOSS) {
2227 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2228 			if (ATH_TXQ_SETUP(sc, i)) {
2229 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2230 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2231 				ath_txq_sched(sc, &sc->sc_txq[i]);
2232 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2233 			}
2234 		}
2235 	}
2236 
2237 	/*
2238 	 * This may have been set during an ath_start() call which
2239 	 * set this once it detected a concurrent TX was going on.
2240 	 * So, clear it.
2241 	 */
2242 	IF_LOCK(&ifp->if_snd);
2243 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2244 	IF_UNLOCK(&ifp->if_snd);
2245 
2246 	/* Handle any frames in the TX queue */
2247 	/*
2248 	 * XXX should this be done by the caller, rather than
2249 	 * ath_reset() ?
2250 	 */
2251 	ath_tx_kick(sc);		/* restart xmit */
2252 	return 0;
2253 }
2254 
2255 static int
2256 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2257 {
2258 	struct ieee80211com *ic = vap->iv_ic;
2259 	struct ifnet *ifp = ic->ic_ifp;
2260 	struct ath_softc *sc = ifp->if_softc;
2261 	struct ath_hal *ah = sc->sc_ah;
2262 
2263 	switch (cmd) {
2264 	case IEEE80211_IOC_TXPOWER:
2265 		/*
2266 		 * If per-packet TPC is enabled, then we have nothing
2267 		 * to do; otherwise we need to force the global limit.
2268 		 * All this can happen directly; no need to reset.
2269 		 */
2270 		if (!ath_hal_gettpc(ah))
2271 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2272 		return 0;
2273 	}
2274 	/* XXX? Full or NOLOSS? */
2275 	return ath_reset(ifp, ATH_RESET_FULL);
2276 }
2277 
2278 struct ath_buf *
2279 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2280 {
2281 	struct ath_buf *bf;
2282 
2283 	ATH_TXBUF_LOCK_ASSERT(sc);
2284 
2285 	if (btype == ATH_BUFTYPE_MGMT)
2286 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2287 	else
2288 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2289 
2290 	if (bf == NULL) {
2291 		sc->sc_stats.ast_tx_getnobuf++;
2292 	} else {
2293 		if (bf->bf_flags & ATH_BUF_BUSY) {
2294 			sc->sc_stats.ast_tx_getbusybuf++;
2295 			bf = NULL;
2296 		}
2297 	}
2298 
2299 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2300 		if (btype == ATH_BUFTYPE_MGMT)
2301 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2302 		else {
2303 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2304 			sc->sc_txbuf_cnt--;
2305 
2306 			/*
2307 			 * This shuldn't happen; however just to be
2308 			 * safe print a warning and fudge the txbuf
2309 			 * count.
2310 			 */
2311 			if (sc->sc_txbuf_cnt < 0) {
2312 				device_printf(sc->sc_dev,
2313 				    "%s: sc_txbuf_cnt < 0?\n",
2314 				    __func__);
2315 				sc->sc_txbuf_cnt = 0;
2316 			}
2317 		}
2318 	} else
2319 		bf = NULL;
2320 
2321 	if (bf == NULL) {
2322 		/* XXX should check which list, mgmt or otherwise */
2323 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2324 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2325 			"out of xmit buffers" : "xmit buffer busy");
2326 		return NULL;
2327 	}
2328 
2329 	/* XXX TODO: should do this at buffer list initialisation */
2330 	/* XXX (then, ensure the buffer has the right flag set) */
2331 	if (btype == ATH_BUFTYPE_MGMT)
2332 		bf->bf_flags |= ATH_BUF_MGMT;
2333 	else
2334 		bf->bf_flags &= (~ATH_BUF_MGMT);
2335 
2336 	/* Valid bf here; clear some basic fields */
2337 	bf->bf_next = NULL;	/* XXX just to be sure */
2338 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2339 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2340 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2341 
2342 	/*
2343 	 * Track the descriptor ID only if doing EDMA
2344 	 */
2345 	if (sc->sc_isedma) {
2346 		bf->bf_descid = sc->sc_txbuf_descid;
2347 		sc->sc_txbuf_descid++;
2348 	}
2349 
2350 	return bf;
2351 }
2352 
2353 /*
2354  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2355  * can't be thrown back on the queue as they could still be
2356  * in use by the hardware.
2357  *
2358  * This duplicates the buffer, or returns NULL.
2359  *
2360  * The descriptor is also copied but the link pointers and
2361  * the DMA segments aren't copied; this frame should thus
2362  * be again passed through the descriptor setup/chain routines
2363  * so the link is correct.
2364  *
2365  * The caller must free the buffer using ath_freebuf().
2366  *
2367  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2368  * XXX in the TX pathway when retries are needed.
2369  * XXX Figure out how to keep some buffers free, or factor the
2370  * XXX number of busy buffers into the xmit path (ath_start())
2371  * XXX so we don't over-commit.
2372  */
2373 struct ath_buf *
2374 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2375 {
2376 	struct ath_buf *tbf;
2377 
2378 	tbf = ath_getbuf(sc,
2379 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2380 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2381 	if (tbf == NULL)
2382 		return NULL;	/* XXX failure? Why? */
2383 
2384 	/* Copy basics */
2385 	tbf->bf_next = NULL;
2386 	tbf->bf_nseg = bf->bf_nseg;
2387 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2388 	tbf->bf_status = bf->bf_status;
2389 	tbf->bf_m = bf->bf_m;
2390 	tbf->bf_node = bf->bf_node;
2391 	/* will be setup by the chain/setup function */
2392 	tbf->bf_lastds = NULL;
2393 	/* for now, last == self */
2394 	tbf->bf_last = tbf;
2395 	tbf->bf_comp = bf->bf_comp;
2396 
2397 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2398 
2399 	/* The caller has to re-init the descriptor + links */
2400 
2401 	/* Copy state */
2402 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2403 
2404 	return tbf;
2405 }
2406 
2407 struct ath_buf *
2408 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2409 {
2410 	struct ath_buf *bf;
2411 
2412 	ATH_TXBUF_LOCK(sc);
2413 	bf = _ath_getbuf_locked(sc, btype);
2414 	/*
2415 	 * If a mgmt buffer was requested but we're out of those,
2416 	 * try requesting a normal one.
2417 	 */
2418 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2419 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2420 	ATH_TXBUF_UNLOCK(sc);
2421 	if (bf == NULL) {
2422 		struct ifnet *ifp = sc->sc_ifp;
2423 
2424 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2425 		sc->sc_stats.ast_tx_qstop++;
2426 		IF_LOCK(&ifp->if_snd);
2427 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2428 		IF_UNLOCK(&ifp->if_snd);
2429 	}
2430 	return bf;
2431 }
2432 
2433 static void
2434 ath_start_queue(struct ifnet *ifp)
2435 {
2436 	struct ath_softc *sc = ifp->if_softc;
2437 
2438 	ath_tx_kick(sc);
2439 }
2440 
2441 void
2442 ath_start_task(void *arg, int npending)
2443 {
2444 	struct ath_softc *sc = (struct ath_softc *) arg;
2445 	struct ifnet *ifp = sc->sc_ifp;
2446 
2447 	/* XXX is it ok to hold the ATH_LOCK here? */
2448 	ATH_PCU_LOCK(sc);
2449 	if (sc->sc_inreset_cnt > 0) {
2450 		device_printf(sc->sc_dev,
2451 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2452 		ATH_PCU_UNLOCK(sc);
2453 		IF_LOCK(&ifp->if_snd);
2454 		sc->sc_stats.ast_tx_qstop++;
2455 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2456 		IF_UNLOCK(&ifp->if_snd);
2457 		return;
2458 	}
2459 	sc->sc_txstart_cnt++;
2460 	ATH_PCU_UNLOCK(sc);
2461 
2462 	ath_start(sc->sc_ifp);
2463 
2464 	ATH_PCU_LOCK(sc);
2465 	sc->sc_txstart_cnt--;
2466 	ATH_PCU_UNLOCK(sc);
2467 }
2468 
2469 void
2470 ath_start(struct ifnet *ifp)
2471 {
2472 	struct ath_softc *sc = ifp->if_softc;
2473 	struct ieee80211_node *ni;
2474 	struct ath_buf *bf;
2475 	struct mbuf *m, *next;
2476 	ath_bufhead frags;
2477 
2478 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2479 		return;
2480 
2481 	for (;;) {
2482 		ATH_TXBUF_LOCK(sc);
2483 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2484 			/* XXX increment counter? */
2485 			ATH_TXBUF_UNLOCK(sc);
2486 			IF_LOCK(&ifp->if_snd);
2487 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2488 			IF_UNLOCK(&ifp->if_snd);
2489 			break;
2490 		}
2491 		ATH_TXBUF_UNLOCK(sc);
2492 
2493 		/*
2494 		 * Grab a TX buffer and associated resources.
2495 		 */
2496 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2497 		if (bf == NULL)
2498 			break;
2499 
2500 		IFQ_DEQUEUE(&ifp->if_snd, m);
2501 		if (m == NULL) {
2502 			ATH_TXBUF_LOCK(sc);
2503 			ath_returnbuf_head(sc, bf);
2504 			ATH_TXBUF_UNLOCK(sc);
2505 			break;
2506 		}
2507 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2508 		/*
2509 		 * Check for fragmentation.  If this frame
2510 		 * has been broken up verify we have enough
2511 		 * buffers to send all the fragments so all
2512 		 * go out or none...
2513 		 */
2514 		TAILQ_INIT(&frags);
2515 		if ((m->m_flags & M_FRAG) &&
2516 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2517 			DPRINTF(sc, ATH_DEBUG_XMIT,
2518 			    "%s: out of txfrag buffers\n", __func__);
2519 			sc->sc_stats.ast_tx_nofrag++;
2520 			ifp->if_oerrors++;
2521 			ath_freetx(m);
2522 			goto bad;
2523 		}
2524 		ifp->if_opackets++;
2525 	nextfrag:
2526 		/*
2527 		 * Pass the frame to the h/w for transmission.
2528 		 * Fragmented frames have each frag chained together
2529 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2530 		 * to send all the frags because of work done by
2531 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2532 		 * calling ath_tx_start so it can use it to extend the
2533 		 * the tx duration to cover the subsequent frag and
2534 		 * so it can reclaim all the mbufs in case of an error;
2535 		 * ath_tx_start clears m_nextpkt once it commits to
2536 		 * handing the frame to the hardware.
2537 		 */
2538 		next = m->m_nextpkt;
2539 		if (ath_tx_start(sc, ni, bf, m)) {
2540 	bad:
2541 			ifp->if_oerrors++;
2542 	reclaim:
2543 			bf->bf_m = NULL;
2544 			bf->bf_node = NULL;
2545 			ATH_TXBUF_LOCK(sc);
2546 			ath_returnbuf_head(sc, bf);
2547 			ath_txfrag_cleanup(sc, &frags, ni);
2548 			ATH_TXBUF_UNLOCK(sc);
2549 			if (ni != NULL)
2550 				ieee80211_free_node(ni);
2551 			continue;
2552 		}
2553 		if (next != NULL) {
2554 			/*
2555 			 * Beware of state changing between frags.
2556 			 * XXX check sta power-save state?
2557 			 */
2558 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2559 				DPRINTF(sc, ATH_DEBUG_XMIT,
2560 				    "%s: flush fragmented packet, state %s\n",
2561 				    __func__,
2562 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2563 				ath_freetx(next);
2564 				goto reclaim;
2565 			}
2566 			m = next;
2567 			bf = TAILQ_FIRST(&frags);
2568 			KASSERT(bf != NULL, ("no buf for txfrag"));
2569 			TAILQ_REMOVE(&frags, bf, bf_list);
2570 			goto nextfrag;
2571 		}
2572 
2573 		sc->sc_wd_timer = 5;
2574 	}
2575 }
2576 
2577 static int
2578 ath_media_change(struct ifnet *ifp)
2579 {
2580 	int error = ieee80211_media_change(ifp);
2581 	/* NB: only the fixed rate can change and that doesn't need a reset */
2582 	return (error == ENETRESET ? 0 : error);
2583 }
2584 
2585 /*
2586  * Block/unblock tx+rx processing while a key change is done.
2587  * We assume the caller serializes key management operations
2588  * so we only need to worry about synchronization with other
2589  * uses that originate in the driver.
2590  */
2591 static void
2592 ath_key_update_begin(struct ieee80211vap *vap)
2593 {
2594 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2595 	struct ath_softc *sc = ifp->if_softc;
2596 
2597 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2598 	taskqueue_block(sc->sc_tq);
2599 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2600 }
2601 
2602 static void
2603 ath_key_update_end(struct ieee80211vap *vap)
2604 {
2605 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2606 	struct ath_softc *sc = ifp->if_softc;
2607 
2608 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2609 	IF_UNLOCK(&ifp->if_snd);
2610 	taskqueue_unblock(sc->sc_tq);
2611 }
2612 
2613 static void
2614 ath_update_promisc(struct ifnet *ifp)
2615 {
2616 	struct ath_softc *sc = ifp->if_softc;
2617 	u_int32_t rfilt;
2618 
2619 	/* configure rx filter */
2620 	rfilt = ath_calcrxfilter(sc);
2621 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2622 
2623 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2624 }
2625 
2626 static void
2627 ath_update_mcast(struct ifnet *ifp)
2628 {
2629 	struct ath_softc *sc = ifp->if_softc;
2630 	u_int32_t mfilt[2];
2631 
2632 	/* calculate and install multicast filter */
2633 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2634 		struct ifmultiaddr *ifma;
2635 		/*
2636 		 * Merge multicast addresses to form the hardware filter.
2637 		 */
2638 		mfilt[0] = mfilt[1] = 0;
2639 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2640 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2641 			caddr_t dl;
2642 			u_int32_t val;
2643 			u_int8_t pos;
2644 
2645 			/* calculate XOR of eight 6bit values */
2646 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2647 			val = LE_READ_4(dl + 0);
2648 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2649 			val = LE_READ_4(dl + 3);
2650 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2651 			pos &= 0x3f;
2652 			mfilt[pos / 32] |= (1 << (pos % 32));
2653 		}
2654 		if_maddr_runlock(ifp);
2655 	} else
2656 		mfilt[0] = mfilt[1] = ~0;
2657 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2658 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2659 		__func__, mfilt[0], mfilt[1]);
2660 }
2661 
2662 void
2663 ath_mode_init(struct ath_softc *sc)
2664 {
2665 	struct ifnet *ifp = sc->sc_ifp;
2666 	struct ath_hal *ah = sc->sc_ah;
2667 	u_int32_t rfilt;
2668 
2669 	/* configure rx filter */
2670 	rfilt = ath_calcrxfilter(sc);
2671 	ath_hal_setrxfilter(ah, rfilt);
2672 
2673 	/* configure operational mode */
2674 	ath_hal_setopmode(ah);
2675 
2676 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2677 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2678 	    __func__,
2679 	    ah,
2680 	    ifp,
2681 	    (ifp == NULL) ? NULL : ifp->if_addr);
2682 
2683 	/* handle any link-level address change */
2684 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2685 
2686 	/* calculate and install multicast filter */
2687 	ath_update_mcast(ifp);
2688 }
2689 
2690 /*
2691  * Set the slot time based on the current setting.
2692  */
2693 void
2694 ath_setslottime(struct ath_softc *sc)
2695 {
2696 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2697 	struct ath_hal *ah = sc->sc_ah;
2698 	u_int usec;
2699 
2700 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2701 		usec = 13;
2702 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2703 		usec = 21;
2704 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2705 		/* honor short/long slot time only in 11g */
2706 		/* XXX shouldn't honor on pure g or turbo g channel */
2707 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2708 			usec = HAL_SLOT_TIME_9;
2709 		else
2710 			usec = HAL_SLOT_TIME_20;
2711 	} else
2712 		usec = HAL_SLOT_TIME_9;
2713 
2714 	DPRINTF(sc, ATH_DEBUG_RESET,
2715 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2716 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2717 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2718 
2719 	ath_hal_setslottime(ah, usec);
2720 	sc->sc_updateslot = OK;
2721 }
2722 
2723 /*
2724  * Callback from the 802.11 layer to update the
2725  * slot time based on the current setting.
2726  */
2727 static void
2728 ath_updateslot(struct ifnet *ifp)
2729 {
2730 	struct ath_softc *sc = ifp->if_softc;
2731 	struct ieee80211com *ic = ifp->if_l2com;
2732 
2733 	/*
2734 	 * When not coordinating the BSS, change the hardware
2735 	 * immediately.  For other operation we defer the change
2736 	 * until beacon updates have propagated to the stations.
2737 	 */
2738 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2739 	    ic->ic_opmode == IEEE80211_M_MBSS)
2740 		sc->sc_updateslot = UPDATE;
2741 	else
2742 		ath_setslottime(sc);
2743 }
2744 
2745 /*
2746  * Append the contents of src to dst; both queues
2747  * are assumed to be locked.
2748  */
2749 void
2750 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2751 {
2752 
2753 	ATH_TXQ_LOCK_ASSERT(dst);
2754 	ATH_TXQ_LOCK_ASSERT(src);
2755 
2756 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2757 	dst->axq_link = src->axq_link;
2758 	src->axq_link = NULL;
2759 	dst->axq_depth += src->axq_depth;
2760 	dst->axq_aggr_depth += src->axq_aggr_depth;
2761 	src->axq_depth = 0;
2762 	src->axq_aggr_depth = 0;
2763 }
2764 
2765 /*
2766  * Reset the hardware, with no loss.
2767  *
2768  * This can't be used for a general case reset.
2769  */
2770 static void
2771 ath_reset_proc(void *arg, int pending)
2772 {
2773 	struct ath_softc *sc = arg;
2774 	struct ifnet *ifp = sc->sc_ifp;
2775 
2776 #if 0
2777 	if_printf(ifp, "%s: resetting\n", __func__);
2778 #endif
2779 	ath_reset(ifp, ATH_RESET_NOLOSS);
2780 }
2781 
2782 /*
2783  * Reset the hardware after detecting beacons have stopped.
2784  */
2785 static void
2786 ath_bstuck_proc(void *arg, int pending)
2787 {
2788 	struct ath_softc *sc = arg;
2789 	struct ifnet *ifp = sc->sc_ifp;
2790 	uint32_t hangs = 0;
2791 
2792 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2793 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2794 
2795 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2796 		sc->sc_bmisscount);
2797 	sc->sc_stats.ast_bstuck++;
2798 	/*
2799 	 * This assumes that there's no simultaneous channel mode change
2800 	 * occuring.
2801 	 */
2802 	ath_reset(ifp, ATH_RESET_NOLOSS);
2803 }
2804 
2805 static void
2806 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2807 {
2808 	bus_addr_t *paddr = (bus_addr_t*) arg;
2809 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2810 	*paddr = segs->ds_addr;
2811 }
2812 
2813 /*
2814  * Allocate the descriptors and appropriate DMA tag/setup.
2815  *
2816  * For some situations (eg EDMA TX completion), there isn't a requirement
2817  * for the ath_buf entries to be allocated.
2818  */
2819 int
2820 ath_descdma_alloc_desc(struct ath_softc *sc,
2821 	struct ath_descdma *dd, ath_bufhead *head,
2822 	const char *name, int ds_size, int ndesc)
2823 {
2824 #define	DS2PHYS(_dd, _ds) \
2825 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2826 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2827 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2828 	struct ifnet *ifp = sc->sc_ifp;
2829 	int error;
2830 
2831 	dd->dd_descsize = ds_size;
2832 
2833 	DPRINTF(sc, ATH_DEBUG_RESET,
2834 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
2835 	    __func__, name, ndesc, dd->dd_descsize);
2836 
2837 	dd->dd_name = name;
2838 	dd->dd_desc_len = dd->dd_descsize * ndesc;
2839 
2840 	/*
2841 	 * Merlin work-around:
2842 	 * Descriptors that cross the 4KB boundary can't be used.
2843 	 * Assume one skipped descriptor per 4KB page.
2844 	 */
2845 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2846 		int numpages = dd->dd_desc_len / 4096;
2847 		dd->dd_desc_len += ds_size * numpages;
2848 	}
2849 
2850 	/*
2851 	 * Setup DMA descriptor area.
2852 	 */
2853 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2854 		       PAGE_SIZE, 0,		/* alignment, bounds */
2855 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2856 		       BUS_SPACE_MAXADDR,	/* highaddr */
2857 		       NULL, NULL,		/* filter, filterarg */
2858 		       dd->dd_desc_len,		/* maxsize */
2859 		       1,			/* nsegments */
2860 		       dd->dd_desc_len,		/* maxsegsize */
2861 		       BUS_DMA_ALLOCNOW,	/* flags */
2862 		       NULL,			/* lockfunc */
2863 		       NULL,			/* lockarg */
2864 		       &dd->dd_dmat);
2865 	if (error != 0) {
2866 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2867 		return error;
2868 	}
2869 
2870 	/* allocate descriptors */
2871 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2872 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2873 				 &dd->dd_dmamap);
2874 	if (error != 0) {
2875 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2876 			"error %u\n", ndesc, dd->dd_name, error);
2877 		goto fail1;
2878 	}
2879 
2880 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2881 				dd->dd_desc, dd->dd_desc_len,
2882 				ath_load_cb, &dd->dd_desc_paddr,
2883 				BUS_DMA_NOWAIT);
2884 	if (error != 0) {
2885 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2886 			dd->dd_name, error);
2887 		goto fail2;
2888 	}
2889 
2890 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2891 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
2892 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
2893 	    /*XXX*/ (u_long) dd->dd_desc_len);
2894 
2895 	return (0);
2896 
2897 fail2:
2898 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2899 fail1:
2900 	bus_dma_tag_destroy(dd->dd_dmat);
2901 	memset(dd, 0, sizeof(*dd));
2902 	return error;
2903 #undef DS2PHYS
2904 #undef ATH_DESC_4KB_BOUND_CHECK
2905 }
2906 
2907 int
2908 ath_descdma_setup(struct ath_softc *sc,
2909 	struct ath_descdma *dd, ath_bufhead *head,
2910 	const char *name, int ds_size, int nbuf, int ndesc)
2911 {
2912 #define	DS2PHYS(_dd, _ds) \
2913 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2914 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2915 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2916 	struct ifnet *ifp = sc->sc_ifp;
2917 	uint8_t *ds;
2918 	struct ath_buf *bf;
2919 	int i, bsize, error;
2920 
2921 	/* Allocate descriptors */
2922 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
2923 	    nbuf * ndesc);
2924 
2925 	/* Assume any errors during allocation were dealt with */
2926 	if (error != 0) {
2927 		return (error);
2928 	}
2929 
2930 	ds = (uint8_t *) dd->dd_desc;
2931 
2932 	/* allocate rx buffers */
2933 	bsize = sizeof(struct ath_buf) * nbuf;
2934 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2935 	if (bf == NULL) {
2936 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2937 			dd->dd_name, bsize);
2938 		goto fail3;
2939 	}
2940 	dd->dd_bufptr = bf;
2941 
2942 	TAILQ_INIT(head);
2943 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
2944 		bf->bf_desc = (struct ath_desc *) ds;
2945 		bf->bf_daddr = DS2PHYS(dd, ds);
2946 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
2947 			/*
2948 			 * Merlin WAR: Skip descriptor addresses which
2949 			 * cause 4KB boundary crossing along any point
2950 			 * in the descriptor.
2951 			 */
2952 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
2953 			     dd->dd_descsize)) {
2954 				/* Start at the next page */
2955 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
2956 				bf->bf_desc = (struct ath_desc *) ds;
2957 				bf->bf_daddr = DS2PHYS(dd, ds);
2958 			}
2959 		}
2960 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2961 				&bf->bf_dmamap);
2962 		if (error != 0) {
2963 			if_printf(ifp, "unable to create dmamap for %s "
2964 				"buffer %u, error %u\n", dd->dd_name, i, error);
2965 			ath_descdma_cleanup(sc, dd, head);
2966 			return error;
2967 		}
2968 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
2969 		TAILQ_INSERT_TAIL(head, bf, bf_list);
2970 	}
2971 
2972 	/*
2973 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
2974 	 * allocation otherwise weird stuff will occur and crash your
2975 	 * machine.
2976 	 */
2977 	return 0;
2978 	/* XXX this should likely just call ath_descdma_cleanup() */
2979 fail3:
2980 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2981 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2982 	bus_dma_tag_destroy(dd->dd_dmat);
2983 	memset(dd, 0, sizeof(*dd));
2984 	return error;
2985 #undef DS2PHYS
2986 #undef ATH_DESC_4KB_BOUND_CHECK
2987 }
2988 
2989 /*
2990  * Allocate ath_buf entries but no descriptor contents.
2991  *
2992  * This is for RX EDMA where the descriptors are the header part of
2993  * the RX buffer.
2994  */
2995 int
2996 ath_descdma_setup_rx_edma(struct ath_softc *sc,
2997 	struct ath_descdma *dd, ath_bufhead *head,
2998 	const char *name, int nbuf, int rx_status_len)
2999 {
3000 	struct ifnet *ifp = sc->sc_ifp;
3001 	struct ath_buf *bf;
3002 	int i, bsize, error;
3003 
3004 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3005 	    __func__, name, nbuf);
3006 
3007 	dd->dd_name = name;
3008 	/*
3009 	 * This is (mostly) purely for show.  We're not allocating any actual
3010 	 * descriptors here as EDMA RX has the descriptor be part
3011 	 * of the RX buffer.
3012 	 *
3013 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3014 	 * whether we have already freed this DMA mapping.
3015 	 */
3016 	dd->dd_desc_len = rx_status_len * nbuf;
3017 	dd->dd_descsize = rx_status_len;
3018 
3019 	/* allocate rx buffers */
3020 	bsize = sizeof(struct ath_buf) * nbuf;
3021 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3022 	if (bf == NULL) {
3023 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3024 			dd->dd_name, bsize);
3025 		error = ENOMEM;
3026 		goto fail3;
3027 	}
3028 	dd->dd_bufptr = bf;
3029 
3030 	TAILQ_INIT(head);
3031 	for (i = 0; i < nbuf; i++, bf++) {
3032 		bf->bf_desc = NULL;
3033 		bf->bf_daddr = 0;
3034 		bf->bf_lastds = NULL;	/* Just an initial value */
3035 
3036 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3037 				&bf->bf_dmamap);
3038 		if (error != 0) {
3039 			if_printf(ifp, "unable to create dmamap for %s "
3040 				"buffer %u, error %u\n", dd->dd_name, i, error);
3041 			ath_descdma_cleanup(sc, dd, head);
3042 			return error;
3043 		}
3044 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3045 	}
3046 	return 0;
3047 fail3:
3048 	memset(dd, 0, sizeof(*dd));
3049 	return error;
3050 }
3051 
3052 void
3053 ath_descdma_cleanup(struct ath_softc *sc,
3054 	struct ath_descdma *dd, ath_bufhead *head)
3055 {
3056 	struct ath_buf *bf;
3057 	struct ieee80211_node *ni;
3058 
3059 	if (dd->dd_dmamap != 0) {
3060 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3061 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3062 		bus_dma_tag_destroy(dd->dd_dmat);
3063 	}
3064 
3065 	if (head != NULL) {
3066 		TAILQ_FOREACH(bf, head, bf_list) {
3067 			if (bf->bf_m) {
3068 				m_freem(bf->bf_m);
3069 				bf->bf_m = NULL;
3070 			}
3071 			if (bf->bf_dmamap != NULL) {
3072 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3073 				bf->bf_dmamap = NULL;
3074 			}
3075 			ni = bf->bf_node;
3076 			bf->bf_node = NULL;
3077 			if (ni != NULL) {
3078 				/*
3079 				 * Reclaim node reference.
3080 				 */
3081 				ieee80211_free_node(ni);
3082 			}
3083 		}
3084 	}
3085 
3086 	if (head != NULL)
3087 		TAILQ_INIT(head);
3088 
3089 	if (dd->dd_bufptr != NULL)
3090 		free(dd->dd_bufptr, M_ATHDEV);
3091 	memset(dd, 0, sizeof(*dd));
3092 }
3093 
3094 static int
3095 ath_desc_alloc(struct ath_softc *sc)
3096 {
3097 	int error;
3098 
3099 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3100 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
3101 	if (error != 0) {
3102 		return error;
3103 	}
3104 	sc->sc_txbuf_cnt = ath_txbuf;
3105 
3106 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3107 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3108 		    ATH_TXDESC);
3109 	if (error != 0) {
3110 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3111 		return error;
3112 	}
3113 
3114 	/*
3115 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3116 	 * flag doesn't have to be set in ath_getbuf_locked().
3117 	 */
3118 
3119 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3120 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3121 	if (error != 0) {
3122 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3123 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3124 		    &sc->sc_txbuf_mgmt);
3125 		return error;
3126 	}
3127 	return 0;
3128 }
3129 
3130 static void
3131 ath_desc_free(struct ath_softc *sc)
3132 {
3133 
3134 	if (sc->sc_bdma.dd_desc_len != 0)
3135 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3136 	if (sc->sc_txdma.dd_desc_len != 0)
3137 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3138 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3139 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3140 		    &sc->sc_txbuf_mgmt);
3141 }
3142 
3143 static struct ieee80211_node *
3144 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3145 {
3146 	struct ieee80211com *ic = vap->iv_ic;
3147 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3148 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3149 	struct ath_node *an;
3150 
3151 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3152 	if (an == NULL) {
3153 		/* XXX stat+msg */
3154 		return NULL;
3155 	}
3156 	ath_rate_node_init(sc, an);
3157 
3158 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3159 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3160 	    device_get_nameunit(sc->sc_dev), an);
3161 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3162 
3163 	/* XXX setup ath_tid */
3164 	ath_tx_tid_init(sc, an);
3165 
3166 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3167 	return &an->an_node;
3168 }
3169 
3170 static void
3171 ath_node_cleanup(struct ieee80211_node *ni)
3172 {
3173 	struct ieee80211com *ic = ni->ni_ic;
3174 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3175 
3176 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3177 	ath_tx_node_flush(sc, ATH_NODE(ni));
3178 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3179 	sc->sc_node_cleanup(ni);
3180 }
3181 
3182 static void
3183 ath_node_free(struct ieee80211_node *ni)
3184 {
3185 	struct ieee80211com *ic = ni->ni_ic;
3186 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3187 
3188 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3189 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3190 	sc->sc_node_free(ni);
3191 }
3192 
3193 static void
3194 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3195 {
3196 	struct ieee80211com *ic = ni->ni_ic;
3197 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3198 	struct ath_hal *ah = sc->sc_ah;
3199 
3200 	*rssi = ic->ic_node_getrssi(ni);
3201 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3202 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3203 	else
3204 		*noise = -95;		/* nominally correct */
3205 }
3206 
3207 /*
3208  * Set the default antenna.
3209  */
3210 void
3211 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3212 {
3213 	struct ath_hal *ah = sc->sc_ah;
3214 
3215 	/* XXX block beacon interrupts */
3216 	ath_hal_setdefantenna(ah, antenna);
3217 	if (sc->sc_defant != antenna)
3218 		sc->sc_stats.ast_ant_defswitch++;
3219 	sc->sc_defant = antenna;
3220 	sc->sc_rxotherant = 0;
3221 }
3222 
3223 static void
3224 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3225 {
3226 	txq->axq_qnum = qnum;
3227 	txq->axq_ac = 0;
3228 	txq->axq_depth = 0;
3229 	txq->axq_aggr_depth = 0;
3230 	txq->axq_intrcnt = 0;
3231 	txq->axq_link = NULL;
3232 	txq->axq_softc = sc;
3233 	TAILQ_INIT(&txq->axq_q);
3234 	TAILQ_INIT(&txq->axq_tidq);
3235 	ATH_TXQ_LOCK_INIT(sc, txq);
3236 }
3237 
3238 /*
3239  * Setup a h/w transmit queue.
3240  */
3241 static struct ath_txq *
3242 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3243 {
3244 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3245 	struct ath_hal *ah = sc->sc_ah;
3246 	HAL_TXQ_INFO qi;
3247 	int qnum;
3248 
3249 	memset(&qi, 0, sizeof(qi));
3250 	qi.tqi_subtype = subtype;
3251 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3252 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3253 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3254 	/*
3255 	 * Enable interrupts only for EOL and DESC conditions.
3256 	 * We mark tx descriptors to receive a DESC interrupt
3257 	 * when a tx queue gets deep; otherwise waiting for the
3258 	 * EOL to reap descriptors.  Note that this is done to
3259 	 * reduce interrupt load and this only defers reaping
3260 	 * descriptors, never transmitting frames.  Aside from
3261 	 * reducing interrupts this also permits more concurrency.
3262 	 * The only potential downside is if the tx queue backs
3263 	 * up in which case the top half of the kernel may backup
3264 	 * due to a lack of tx descriptors.
3265 	 */
3266 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3267 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3268 	if (qnum == -1) {
3269 		/*
3270 		 * NB: don't print a message, this happens
3271 		 * normally on parts with too few tx queues
3272 		 */
3273 		return NULL;
3274 	}
3275 	if (qnum >= N(sc->sc_txq)) {
3276 		device_printf(sc->sc_dev,
3277 			"hal qnum %u out of range, max %zu!\n",
3278 			qnum, N(sc->sc_txq));
3279 		ath_hal_releasetxqueue(ah, qnum);
3280 		return NULL;
3281 	}
3282 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3283 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3284 		sc->sc_txqsetup |= 1<<qnum;
3285 	}
3286 	return &sc->sc_txq[qnum];
3287 #undef N
3288 }
3289 
3290 /*
3291  * Setup a hardware data transmit queue for the specified
3292  * access control.  The hal may not support all requested
3293  * queues in which case it will return a reference to a
3294  * previously setup queue.  We record the mapping from ac's
3295  * to h/w queues for use by ath_tx_start and also track
3296  * the set of h/w queues being used to optimize work in the
3297  * transmit interrupt handler and related routines.
3298  */
3299 static int
3300 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3301 {
3302 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3303 	struct ath_txq *txq;
3304 
3305 	if (ac >= N(sc->sc_ac2q)) {
3306 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3307 			ac, N(sc->sc_ac2q));
3308 		return 0;
3309 	}
3310 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3311 	if (txq != NULL) {
3312 		txq->axq_ac = ac;
3313 		sc->sc_ac2q[ac] = txq;
3314 		return 1;
3315 	} else
3316 		return 0;
3317 #undef N
3318 }
3319 
3320 /*
3321  * Update WME parameters for a transmit queue.
3322  */
3323 static int
3324 ath_txq_update(struct ath_softc *sc, int ac)
3325 {
3326 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3327 #define	ATH_TXOP_TO_US(v)		(v<<5)
3328 	struct ifnet *ifp = sc->sc_ifp;
3329 	struct ieee80211com *ic = ifp->if_l2com;
3330 	struct ath_txq *txq = sc->sc_ac2q[ac];
3331 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3332 	struct ath_hal *ah = sc->sc_ah;
3333 	HAL_TXQ_INFO qi;
3334 
3335 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3336 #ifdef IEEE80211_SUPPORT_TDMA
3337 	if (sc->sc_tdma) {
3338 		/*
3339 		 * AIFS is zero so there's no pre-transmit wait.  The
3340 		 * burst time defines the slot duration and is configured
3341 		 * through net80211.  The QCU is setup to not do post-xmit
3342 		 * back off, lockout all lower-priority QCU's, and fire
3343 		 * off the DMA beacon alert timer which is setup based
3344 		 * on the slot configuration.
3345 		 */
3346 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3347 			      | HAL_TXQ_TXERRINT_ENABLE
3348 			      | HAL_TXQ_TXURNINT_ENABLE
3349 			      | HAL_TXQ_TXEOLINT_ENABLE
3350 			      | HAL_TXQ_DBA_GATED
3351 			      | HAL_TXQ_BACKOFF_DISABLE
3352 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3353 			      ;
3354 		qi.tqi_aifs = 0;
3355 		/* XXX +dbaprep? */
3356 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3357 		qi.tqi_burstTime = qi.tqi_readyTime;
3358 	} else {
3359 #endif
3360 		/*
3361 		 * XXX shouldn't this just use the default flags
3362 		 * used in the previous queue setup?
3363 		 */
3364 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3365 			      | HAL_TXQ_TXERRINT_ENABLE
3366 			      | HAL_TXQ_TXDESCINT_ENABLE
3367 			      | HAL_TXQ_TXURNINT_ENABLE
3368 			      | HAL_TXQ_TXEOLINT_ENABLE
3369 			      ;
3370 		qi.tqi_aifs = wmep->wmep_aifsn;
3371 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3372 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3373 		qi.tqi_readyTime = 0;
3374 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3375 #ifdef IEEE80211_SUPPORT_TDMA
3376 	}
3377 #endif
3378 
3379 	DPRINTF(sc, ATH_DEBUG_RESET,
3380 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3381 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3382 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3383 
3384 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3385 		if_printf(ifp, "unable to update hardware queue "
3386 			"parameters for %s traffic!\n",
3387 			ieee80211_wme_acnames[ac]);
3388 		return 0;
3389 	} else {
3390 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3391 		return 1;
3392 	}
3393 #undef ATH_TXOP_TO_US
3394 #undef ATH_EXPONENT_TO_VALUE
3395 }
3396 
3397 /*
3398  * Callback from the 802.11 layer to update WME parameters.
3399  */
3400 int
3401 ath_wme_update(struct ieee80211com *ic)
3402 {
3403 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3404 
3405 	return !ath_txq_update(sc, WME_AC_BE) ||
3406 	    !ath_txq_update(sc, WME_AC_BK) ||
3407 	    !ath_txq_update(sc, WME_AC_VI) ||
3408 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3409 }
3410 
3411 /*
3412  * Reclaim resources for a setup queue.
3413  */
3414 static void
3415 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3416 {
3417 
3418 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3419 	ATH_TXQ_LOCK_DESTROY(txq);
3420 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3421 }
3422 
3423 /*
3424  * Reclaim all tx queue resources.
3425  */
3426 static void
3427 ath_tx_cleanup(struct ath_softc *sc)
3428 {
3429 	int i;
3430 
3431 	ATH_TXBUF_LOCK_DESTROY(sc);
3432 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3433 		if (ATH_TXQ_SETUP(sc, i))
3434 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3435 }
3436 
3437 /*
3438  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3439  * using the current rates in sc_rixmap.
3440  */
3441 int
3442 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3443 {
3444 	int rix = sc->sc_rixmap[rate];
3445 	/* NB: return lowest rix for invalid rate */
3446 	return (rix == 0xff ? 0 : rix);
3447 }
3448 
3449 static void
3450 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3451     struct ath_buf *bf)
3452 {
3453 	struct ieee80211_node *ni = bf->bf_node;
3454 	struct ifnet *ifp = sc->sc_ifp;
3455 	struct ieee80211com *ic = ifp->if_l2com;
3456 	int sr, lr, pri;
3457 
3458 	if (ts->ts_status == 0) {
3459 		u_int8_t txant = ts->ts_antenna;
3460 		sc->sc_stats.ast_ant_tx[txant]++;
3461 		sc->sc_ant_tx[txant]++;
3462 		if (ts->ts_finaltsi != 0)
3463 			sc->sc_stats.ast_tx_altrate++;
3464 		pri = M_WME_GETAC(bf->bf_m);
3465 		if (pri >= WME_AC_VO)
3466 			ic->ic_wme.wme_hipri_traffic++;
3467 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3468 			ni->ni_inact = ni->ni_inact_reload;
3469 	} else {
3470 		if (ts->ts_status & HAL_TXERR_XRETRY)
3471 			sc->sc_stats.ast_tx_xretries++;
3472 		if (ts->ts_status & HAL_TXERR_FIFO)
3473 			sc->sc_stats.ast_tx_fifoerr++;
3474 		if (ts->ts_status & HAL_TXERR_FILT)
3475 			sc->sc_stats.ast_tx_filtered++;
3476 		if (ts->ts_status & HAL_TXERR_XTXOP)
3477 			sc->sc_stats.ast_tx_xtxop++;
3478 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3479 			sc->sc_stats.ast_tx_timerexpired++;
3480 
3481 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3482 			sc->sc_stats.ast_tx_data_underrun++;
3483 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3484 			sc->sc_stats.ast_tx_delim_underrun++;
3485 
3486 		if (bf->bf_m->m_flags & M_FF)
3487 			sc->sc_stats.ast_ff_txerr++;
3488 	}
3489 	/* XXX when is this valid? */
3490 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3491 		sc->sc_stats.ast_tx_desccfgerr++;
3492 
3493 	sr = ts->ts_shortretry;
3494 	lr = ts->ts_longretry;
3495 	sc->sc_stats.ast_tx_shortretry += sr;
3496 	sc->sc_stats.ast_tx_longretry += lr;
3497 
3498 }
3499 
3500 /*
3501  * The default completion. If fail is 1, this means
3502  * "please don't retry the frame, and just return -1 status
3503  * to the net80211 stack.
3504  */
3505 void
3506 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3507 {
3508 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3509 	int st;
3510 
3511 	if (fail == 1)
3512 		st = -1;
3513 	else
3514 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3515 		    ts->ts_status : HAL_TXERR_XRETRY;
3516 
3517 	if (bf->bf_state.bfs_dobaw)
3518 		device_printf(sc->sc_dev,
3519 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3520 		    __func__,
3521 		    bf,
3522 		    SEQNO(bf->bf_state.bfs_seqno));
3523 	if (bf->bf_next != NULL)
3524 		device_printf(sc->sc_dev,
3525 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3526 		    __func__,
3527 		    bf,
3528 		    SEQNO(bf->bf_state.bfs_seqno));
3529 
3530 	/*
3531 	 * Do any tx complete callback.  Note this must
3532 	 * be done before releasing the node reference.
3533 	 * This will free the mbuf, release the net80211
3534 	 * node and recycle the ath_buf.
3535 	 */
3536 	ath_tx_freebuf(sc, bf, st);
3537 }
3538 
3539 /*
3540  * Update rate control with the given completion status.
3541  */
3542 void
3543 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3544     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3545     int nframes, int nbad)
3546 {
3547 	struct ath_node *an;
3548 
3549 	/* Only for unicast frames */
3550 	if (ni == NULL)
3551 		return;
3552 
3553 	an = ATH_NODE(ni);
3554 
3555 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3556 		ATH_NODE_LOCK(an);
3557 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3558 		ATH_NODE_UNLOCK(an);
3559 	}
3560 }
3561 
3562 /*
3563  * Update the busy status of the last frame on the free list.
3564  * When doing TDMA, the busy flag tracks whether the hardware
3565  * currently points to this buffer or not, and thus gated DMA
3566  * may restart by re-reading the last descriptor in this
3567  * buffer.
3568  *
3569  * This should be called in the completion function once one
3570  * of the buffers has been used.
3571  */
3572 static void
3573 ath_tx_update_busy(struct ath_softc *sc)
3574 {
3575 	struct ath_buf *last;
3576 
3577 	/*
3578 	 * Since the last frame may still be marked
3579 	 * as ATH_BUF_BUSY, unmark it here before
3580 	 * finishing the frame processing.
3581 	 * Since we've completed a frame (aggregate
3582 	 * or otherwise), the hardware has moved on
3583 	 * and is no longer referencing the previous
3584 	 * descriptor.
3585 	 */
3586 	ATH_TXBUF_LOCK_ASSERT(sc);
3587 	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3588 	if (last != NULL)
3589 		last->bf_flags &= ~ATH_BUF_BUSY;
3590 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3591 	if (last != NULL)
3592 		last->bf_flags &= ~ATH_BUF_BUSY;
3593 }
3594 
3595 /*
3596  * Process the completion of the given buffer.
3597  *
3598  * This calls the rate control update and then the buffer completion.
3599  * This will either free the buffer or requeue it.  In any case, the
3600  * bf pointer should be treated as invalid after this function is called.
3601  */
3602 void
3603 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3604     struct ath_tx_status *ts, struct ath_buf *bf)
3605 {
3606 	struct ieee80211_node *ni = bf->bf_node;
3607 	struct ath_node *an = NULL;
3608 
3609 	ATH_TXQ_UNLOCK_ASSERT(txq);
3610 
3611 	/* If unicast frame, update general statistics */
3612 	if (ni != NULL) {
3613 		an = ATH_NODE(ni);
3614 		/* update statistics */
3615 		ath_tx_update_stats(sc, ts, bf);
3616 	}
3617 
3618 	/*
3619 	 * Call the completion handler.
3620 	 * The completion handler is responsible for
3621 	 * calling the rate control code.
3622 	 *
3623 	 * Frames with no completion handler get the
3624 	 * rate control code called here.
3625 	 */
3626 	if (bf->bf_comp == NULL) {
3627 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3628 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3629 			/*
3630 			 * XXX assume this isn't an aggregate
3631 			 * frame.
3632 			 */
3633 			ath_tx_update_ratectrl(sc, ni,
3634 			     bf->bf_state.bfs_rc, ts,
3635 			    bf->bf_state.bfs_pktlen, 1,
3636 			    (ts->ts_status == 0 ? 0 : 1));
3637 		}
3638 		ath_tx_default_comp(sc, bf, 0);
3639 	} else
3640 		bf->bf_comp(sc, bf, 0);
3641 }
3642 
3643 
3644 
3645 /*
3646  * Process completed xmit descriptors from the specified queue.
3647  * Kick the packet scheduler if needed. This can occur from this
3648  * particular task.
3649  */
3650 static int
3651 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3652 {
3653 	struct ath_hal *ah = sc->sc_ah;
3654 	struct ath_buf *bf;
3655 	struct ath_desc *ds;
3656 	struct ath_tx_status *ts;
3657 	struct ieee80211_node *ni;
3658 #ifdef	IEEE80211_SUPPORT_SUPERG
3659 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3660 #endif	/* IEEE80211_SUPPORT_SUPERG */
3661 	int nacked;
3662 	HAL_STATUS status;
3663 
3664 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3665 		__func__, txq->axq_qnum,
3666 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3667 		txq->axq_link);
3668 
3669 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3670 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3671 	    txq->axq_qnum,
3672 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3673 	    txq->axq_link,
3674 	    txq->axq_depth);
3675 
3676 	nacked = 0;
3677 	for (;;) {
3678 		ATH_TXQ_LOCK(txq);
3679 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3680 		bf = TAILQ_FIRST(&txq->axq_q);
3681 		if (bf == NULL) {
3682 			ATH_TXQ_UNLOCK(txq);
3683 			break;
3684 		}
3685 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3686 		ts = &bf->bf_status.ds_txstat;
3687 
3688 		status = ath_hal_txprocdesc(ah, ds, ts);
3689 #ifdef ATH_DEBUG
3690 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3691 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3692 			    status == HAL_OK);
3693 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3694 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3695 			    status == HAL_OK);
3696 #endif
3697 
3698 		if (status == HAL_EINPROGRESS) {
3699 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3700 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3701 			    txq->axq_qnum, bf, ds);
3702 			ATH_TXQ_UNLOCK(txq);
3703 			break;
3704 		}
3705 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3706 #ifdef IEEE80211_SUPPORT_TDMA
3707 		if (txq->axq_depth > 0) {
3708 			/*
3709 			 * More frames follow.  Mark the buffer busy
3710 			 * so it's not re-used while the hardware may
3711 			 * still re-read the link field in the descriptor.
3712 			 *
3713 			 * Use the last buffer in an aggregate as that
3714 			 * is where the hardware may be - intermediate
3715 			 * descriptors won't be "busy".
3716 			 */
3717 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3718 		} else
3719 #else
3720 		if (txq->axq_depth == 0)
3721 #endif
3722 			txq->axq_link = NULL;
3723 		if (bf->bf_state.bfs_aggr)
3724 			txq->axq_aggr_depth--;
3725 
3726 		ni = bf->bf_node;
3727 
3728 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
3729 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
3730 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
3731 		/*
3732 		 * If unicast frame was ack'd update RSSI,
3733 		 * including the last rx time used to
3734 		 * workaround phantom bmiss interrupts.
3735 		 */
3736 		if (ni != NULL && ts->ts_status == 0 &&
3737 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3738 			nacked++;
3739 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3740 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3741 				ts->ts_rssi);
3742 		}
3743 		ATH_TXQ_UNLOCK(txq);
3744 
3745 		/*
3746 		 * Update statistics and call completion
3747 		 */
3748 		ath_tx_process_buf_completion(sc, txq, ts, bf);
3749 	}
3750 #ifdef IEEE80211_SUPPORT_SUPERG
3751 	/*
3752 	 * Flush fast-frame staging queue when traffic slows.
3753 	 */
3754 	if (txq->axq_depth <= 1)
3755 		ieee80211_ff_flush(ic, txq->axq_ac);
3756 #endif
3757 
3758 	/* Kick the TXQ scheduler */
3759 	if (dosched) {
3760 		ATH_TXQ_LOCK(txq);
3761 		ath_txq_sched(sc, txq);
3762 		ATH_TXQ_UNLOCK(txq);
3763 	}
3764 
3765 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3766 	    "ath_tx_processq: txq=%u: done",
3767 	    txq->axq_qnum);
3768 
3769 	return nacked;
3770 }
3771 
3772 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3773 
3774 /*
3775  * Deferred processing of transmit interrupt; special-cased
3776  * for a single hardware transmit queue (e.g. 5210 and 5211).
3777  */
3778 static void
3779 ath_tx_proc_q0(void *arg, int npending)
3780 {
3781 	struct ath_softc *sc = arg;
3782 	struct ifnet *ifp = sc->sc_ifp;
3783 	uint32_t txqs;
3784 
3785 	ATH_PCU_LOCK(sc);
3786 	sc->sc_txproc_cnt++;
3787 	txqs = sc->sc_txq_active;
3788 	sc->sc_txq_active &= ~txqs;
3789 	ATH_PCU_UNLOCK(sc);
3790 
3791 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3792 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
3793 
3794 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3795 		/* XXX why is lastrx updated in tx code? */
3796 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3797 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3798 		ath_tx_processq(sc, sc->sc_cabq, 1);
3799 	IF_LOCK(&ifp->if_snd);
3800 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3801 	IF_UNLOCK(&ifp->if_snd);
3802 	sc->sc_wd_timer = 0;
3803 
3804 	if (sc->sc_softled)
3805 		ath_led_event(sc, sc->sc_txrix);
3806 
3807 	ATH_PCU_LOCK(sc);
3808 	sc->sc_txproc_cnt--;
3809 	ATH_PCU_UNLOCK(sc);
3810 
3811 	ath_tx_kick(sc);
3812 }
3813 
3814 /*
3815  * Deferred processing of transmit interrupt; special-cased
3816  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3817  */
3818 static void
3819 ath_tx_proc_q0123(void *arg, int npending)
3820 {
3821 	struct ath_softc *sc = arg;
3822 	struct ifnet *ifp = sc->sc_ifp;
3823 	int nacked;
3824 	uint32_t txqs;
3825 
3826 	ATH_PCU_LOCK(sc);
3827 	sc->sc_txproc_cnt++;
3828 	txqs = sc->sc_txq_active;
3829 	sc->sc_txq_active &= ~txqs;
3830 	ATH_PCU_UNLOCK(sc);
3831 
3832 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3833 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
3834 
3835 	/*
3836 	 * Process each active queue.
3837 	 */
3838 	nacked = 0;
3839 	if (TXQACTIVE(txqs, 0))
3840 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3841 	if (TXQACTIVE(txqs, 1))
3842 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3843 	if (TXQACTIVE(txqs, 2))
3844 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3845 	if (TXQACTIVE(txqs, 3))
3846 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3847 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3848 		ath_tx_processq(sc, sc->sc_cabq, 1);
3849 	if (nacked)
3850 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3851 
3852 	IF_LOCK(&ifp->if_snd);
3853 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3854 	IF_UNLOCK(&ifp->if_snd);
3855 	sc->sc_wd_timer = 0;
3856 
3857 	if (sc->sc_softled)
3858 		ath_led_event(sc, sc->sc_txrix);
3859 
3860 	ATH_PCU_LOCK(sc);
3861 	sc->sc_txproc_cnt--;
3862 	ATH_PCU_UNLOCK(sc);
3863 
3864 	ath_tx_kick(sc);
3865 }
3866 
3867 /*
3868  * Deferred processing of transmit interrupt.
3869  */
3870 static void
3871 ath_tx_proc(void *arg, int npending)
3872 {
3873 	struct ath_softc *sc = arg;
3874 	struct ifnet *ifp = sc->sc_ifp;
3875 	int i, nacked;
3876 	uint32_t txqs;
3877 
3878 	ATH_PCU_LOCK(sc);
3879 	sc->sc_txproc_cnt++;
3880 	txqs = sc->sc_txq_active;
3881 	sc->sc_txq_active &= ~txqs;
3882 	ATH_PCU_UNLOCK(sc);
3883 
3884 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
3885 
3886 	/*
3887 	 * Process each active queue.
3888 	 */
3889 	nacked = 0;
3890 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3891 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3892 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3893 	if (nacked)
3894 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3895 
3896 	/* XXX check this inside of IF_LOCK? */
3897 	IF_LOCK(&ifp->if_snd);
3898 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3899 	IF_UNLOCK(&ifp->if_snd);
3900 	sc->sc_wd_timer = 0;
3901 
3902 	if (sc->sc_softled)
3903 		ath_led_event(sc, sc->sc_txrix);
3904 
3905 	ATH_PCU_LOCK(sc);
3906 	sc->sc_txproc_cnt--;
3907 	ATH_PCU_UNLOCK(sc);
3908 
3909 	ath_tx_kick(sc);
3910 }
3911 #undef	TXQACTIVE
3912 
3913 /*
3914  * Deferred processing of TXQ rescheduling.
3915  */
3916 static void
3917 ath_txq_sched_tasklet(void *arg, int npending)
3918 {
3919 	struct ath_softc *sc = arg;
3920 	int i;
3921 
3922 	/* XXX is skipping ok? */
3923 	ATH_PCU_LOCK(sc);
3924 #if 0
3925 	if (sc->sc_inreset_cnt > 0) {
3926 		device_printf(sc->sc_dev,
3927 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3928 		ATH_PCU_UNLOCK(sc);
3929 		return;
3930 	}
3931 #endif
3932 	sc->sc_txproc_cnt++;
3933 	ATH_PCU_UNLOCK(sc);
3934 
3935 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3936 		if (ATH_TXQ_SETUP(sc, i)) {
3937 			ATH_TXQ_LOCK(&sc->sc_txq[i]);
3938 			ath_txq_sched(sc, &sc->sc_txq[i]);
3939 			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3940 		}
3941 	}
3942 
3943 	ATH_PCU_LOCK(sc);
3944 	sc->sc_txproc_cnt--;
3945 	ATH_PCU_UNLOCK(sc);
3946 }
3947 
3948 void
3949 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
3950 {
3951 
3952 	ATH_TXBUF_LOCK_ASSERT(sc);
3953 
3954 	if (bf->bf_flags & ATH_BUF_MGMT)
3955 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
3956 	else {
3957 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3958 		sc->sc_txbuf_cnt++;
3959 		if (sc->sc_txbuf_cnt > ath_txbuf) {
3960 			device_printf(sc->sc_dev,
3961 			    "%s: sc_txbuf_cnt > %d?\n",
3962 			    __func__,
3963 			    ath_txbuf);
3964 			sc->sc_txbuf_cnt = ath_txbuf;
3965 		}
3966 	}
3967 }
3968 
3969 void
3970 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
3971 {
3972 
3973 	ATH_TXBUF_LOCK_ASSERT(sc);
3974 
3975 	if (bf->bf_flags & ATH_BUF_MGMT)
3976 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
3977 	else {
3978 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
3979 		sc->sc_txbuf_cnt++;
3980 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
3981 			device_printf(sc->sc_dev,
3982 			    "%s: sc_txbuf_cnt > %d?\n",
3983 			    __func__,
3984 			    ATH_TXBUF);
3985 			sc->sc_txbuf_cnt = ATH_TXBUF;
3986 		}
3987 	}
3988 }
3989 
3990 /*
3991  * Return a buffer to the pool and update the 'busy' flag on the
3992  * previous 'tail' entry.
3993  *
3994  * This _must_ only be called when the buffer is involved in a completed
3995  * TX. The logic is that if it was part of an active TX, the previous
3996  * buffer on the list is now not involved in a halted TX DMA queue, waiting
3997  * for restart (eg for TDMA.)
3998  *
3999  * The caller must free the mbuf and recycle the node reference.
4000  */
4001 void
4002 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4003 {
4004 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4005 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
4006 
4007 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4008 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4009 
4010 	ATH_TXBUF_LOCK(sc);
4011 	ath_tx_update_busy(sc);
4012 	ath_returnbuf_tail(sc, bf);
4013 	ATH_TXBUF_UNLOCK(sc);
4014 }
4015 
4016 /*
4017  * This is currently used by ath_tx_draintxq() and
4018  * ath_tx_tid_free_pkts().
4019  *
4020  * It recycles a single ath_buf.
4021  */
4022 void
4023 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4024 {
4025 	struct ieee80211_node *ni = bf->bf_node;
4026 	struct mbuf *m0 = bf->bf_m;
4027 
4028 	bf->bf_node = NULL;
4029 	bf->bf_m = NULL;
4030 
4031 	/* Free the buffer, it's not needed any longer */
4032 	ath_freebuf(sc, bf);
4033 
4034 	if (ni != NULL) {
4035 		/*
4036 		 * Do any callback and reclaim the node reference.
4037 		 */
4038 		if (m0->m_flags & M_TXCB)
4039 			ieee80211_process_callback(ni, m0, status);
4040 		ieee80211_free_node(ni);
4041 	}
4042 	m_freem(m0);
4043 
4044 	/*
4045 	 * XXX the buffer used to be freed -after-, but the DMA map was
4046 	 * freed where ath_freebuf() now is. I've no idea what this
4047 	 * will do.
4048 	 */
4049 }
4050 
4051 void
4052 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4053 {
4054 #ifdef ATH_DEBUG
4055 	struct ath_hal *ah = sc->sc_ah;
4056 #endif
4057 	struct ath_buf *bf;
4058 	u_int ix;
4059 
4060 	/*
4061 	 * NB: this assumes output has been stopped and
4062 	 *     we do not need to block ath_tx_proc
4063 	 */
4064 	ATH_TXBUF_LOCK(sc);
4065 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4066 	if (bf != NULL)
4067 		bf->bf_flags &= ~ATH_BUF_BUSY;
4068 	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
4069 	if (bf != NULL)
4070 		bf->bf_flags &= ~ATH_BUF_BUSY;
4071 	ATH_TXBUF_UNLOCK(sc);
4072 
4073 	for (ix = 0;; ix++) {
4074 		ATH_TXQ_LOCK(txq);
4075 		bf = TAILQ_FIRST(&txq->axq_q);
4076 		if (bf == NULL) {
4077 			txq->axq_link = NULL;
4078 			/*
4079 			 * There's currently no flag that indicates
4080 			 * a buffer is on the FIFO.  So until that
4081 			 * occurs, just clear the FIFO counter here.
4082 			 *
4083 			 * Yes, this means that if something in parallel
4084 			 * is pushing things onto this TXQ and pushing
4085 			 * _that_ into the hardware, things will get
4086 			 * very fruity very quickly.
4087 			 */
4088 			txq->axq_fifo_depth = 0;
4089 			ATH_TXQ_UNLOCK(txq);
4090 			break;
4091 		}
4092 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4093 		if (bf->bf_state.bfs_aggr)
4094 			txq->axq_aggr_depth--;
4095 #ifdef ATH_DEBUG
4096 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4097 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4098 			int status = 0;
4099 
4100 			/*
4101 			 * EDMA operation has a TX completion FIFO
4102 			 * separate from the TX descriptor, so this
4103 			 * method of checking the "completion" status
4104 			 * is wrong.
4105 			 */
4106 			if (! sc->sc_isedma) {
4107 				status = (ath_hal_txprocdesc(ah,
4108 				    bf->bf_lastds,
4109 				    &bf->bf_status.ds_txstat) == HAL_OK);
4110 			}
4111 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4112 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4113 			    bf->bf_m->m_len, 0, -1);
4114 		}
4115 #endif /* ATH_DEBUG */
4116 		/*
4117 		 * Since we're now doing magic in the completion
4118 		 * functions, we -must- call it for aggregation
4119 		 * destinations or BAW tracking will get upset.
4120 		 */
4121 		/*
4122 		 * Clear ATH_BUF_BUSY; the completion handler
4123 		 * will free the buffer.
4124 		 */
4125 		ATH_TXQ_UNLOCK(txq);
4126 		bf->bf_flags &= ~ATH_BUF_BUSY;
4127 		if (bf->bf_comp)
4128 			bf->bf_comp(sc, bf, 1);
4129 		else
4130 			ath_tx_default_comp(sc, bf, 1);
4131 	}
4132 
4133 	/*
4134 	 * Drain software queued frames which are on
4135 	 * active TIDs.
4136 	 */
4137 	ath_tx_txq_drain(sc, txq);
4138 }
4139 
4140 static void
4141 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4142 {
4143 	struct ath_hal *ah = sc->sc_ah;
4144 
4145 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4146 	    __func__, txq->axq_qnum,
4147 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4148 	    txq->axq_link);
4149 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4150 }
4151 
4152 int
4153 ath_stoptxdma(struct ath_softc *sc)
4154 {
4155 	struct ath_hal *ah = sc->sc_ah;
4156 	int i;
4157 
4158 	/* XXX return value */
4159 	if (sc->sc_invalid)
4160 		return 0;
4161 
4162 	if (!sc->sc_invalid) {
4163 		/* don't touch the hardware if marked invalid */
4164 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4165 		    __func__, sc->sc_bhalq,
4166 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4167 		    NULL);
4168 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4169 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4170 			if (ATH_TXQ_SETUP(sc, i))
4171 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4172 	}
4173 
4174 	return 1;
4175 }
4176 
4177 /*
4178  * Drain the transmit queues and reclaim resources.
4179  */
4180 void
4181 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4182 {
4183 #ifdef	ATH_DEBUG
4184 	struct ath_hal *ah = sc->sc_ah;
4185 #endif
4186 	struct ifnet *ifp = sc->sc_ifp;
4187 	int i;
4188 
4189 	(void) ath_stoptxdma(sc);
4190 
4191 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4192 		/*
4193 		 * XXX TODO: should we just handle the completed TX frames
4194 		 * here, whether or not the reset is a full one or not?
4195 		 */
4196 		if (ATH_TXQ_SETUP(sc, i)) {
4197 			if (reset_type == ATH_RESET_NOLOSS)
4198 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4199 			else
4200 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4201 		}
4202 	}
4203 #ifdef ATH_DEBUG
4204 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4205 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4206 		if (bf != NULL && bf->bf_m != NULL) {
4207 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4208 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4209 				    &bf->bf_status.ds_txstat) == HAL_OK);
4210 			ieee80211_dump_pkt(ifp->if_l2com,
4211 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4212 			    0, -1);
4213 		}
4214 	}
4215 #endif /* ATH_DEBUG */
4216 	IF_LOCK(&ifp->if_snd);
4217 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4218 	IF_UNLOCK(&ifp->if_snd);
4219 	sc->sc_wd_timer = 0;
4220 }
4221 
4222 /*
4223  * Update internal state after a channel change.
4224  */
4225 static void
4226 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4227 {
4228 	enum ieee80211_phymode mode;
4229 
4230 	/*
4231 	 * Change channels and update the h/w rate map
4232 	 * if we're switching; e.g. 11a to 11b/g.
4233 	 */
4234 	mode = ieee80211_chan2mode(chan);
4235 	if (mode != sc->sc_curmode)
4236 		ath_setcurmode(sc, mode);
4237 	sc->sc_curchan = chan;
4238 }
4239 
4240 /*
4241  * Set/change channels.  If the channel is really being changed,
4242  * it's done by resetting the chip.  To accomplish this we must
4243  * first cleanup any pending DMA, then restart stuff after a la
4244  * ath_init.
4245  */
4246 static int
4247 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4248 {
4249 	struct ifnet *ifp = sc->sc_ifp;
4250 	struct ieee80211com *ic = ifp->if_l2com;
4251 	struct ath_hal *ah = sc->sc_ah;
4252 	int ret = 0;
4253 
4254 	/* Treat this as an interface reset */
4255 	ATH_PCU_UNLOCK_ASSERT(sc);
4256 	ATH_UNLOCK_ASSERT(sc);
4257 
4258 	/* (Try to) stop TX/RX from occuring */
4259 	taskqueue_block(sc->sc_tq);
4260 
4261 	ATH_PCU_LOCK(sc);
4262 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4263 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4264 	if (ath_reset_grablock(sc, 1) == 0) {
4265 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4266 		    __func__);
4267 	}
4268 	ATH_PCU_UNLOCK(sc);
4269 
4270 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4271 	    __func__, ieee80211_chan2ieee(ic, chan),
4272 	    chan->ic_freq, chan->ic_flags);
4273 	if (chan != sc->sc_curchan) {
4274 		HAL_STATUS status;
4275 		/*
4276 		 * To switch channels clear any pending DMA operations;
4277 		 * wait long enough for the RX fifo to drain, reset the
4278 		 * hardware at the new frequency, and then re-enable
4279 		 * the relevant bits of the h/w.
4280 		 */
4281 #if 0
4282 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4283 #endif
4284 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4285 		/*
4286 		 * First, handle completed TX/RX frames.
4287 		 */
4288 		ath_rx_flush(sc);
4289 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4290 		/*
4291 		 * Next, flush the non-scheduled frames.
4292 		 */
4293 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4294 
4295 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4296 			if_printf(ifp, "%s: unable to reset "
4297 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4298 			    __func__, ieee80211_chan2ieee(ic, chan),
4299 			    chan->ic_freq, chan->ic_flags, status);
4300 			ret = EIO;
4301 			goto finish;
4302 		}
4303 		sc->sc_diversity = ath_hal_getdiversity(ah);
4304 
4305 		/* Let DFS at it in case it's a DFS channel */
4306 		ath_dfs_radar_enable(sc, chan);
4307 
4308 		/*
4309 		 * Re-enable rx framework.
4310 		 */
4311 		if (ath_startrecv(sc) != 0) {
4312 			if_printf(ifp, "%s: unable to restart recv logic\n",
4313 			    __func__);
4314 			ret = EIO;
4315 			goto finish;
4316 		}
4317 
4318 		/*
4319 		 * Change channels and update the h/w rate map
4320 		 * if we're switching; e.g. 11a to 11b/g.
4321 		 */
4322 		ath_chan_change(sc, chan);
4323 
4324 		/*
4325 		 * Reset clears the beacon timers; reset them
4326 		 * here if needed.
4327 		 */
4328 		if (sc->sc_beacons) {		/* restart beacons */
4329 #ifdef IEEE80211_SUPPORT_TDMA
4330 			if (sc->sc_tdma)
4331 				ath_tdma_config(sc, NULL);
4332 			else
4333 #endif
4334 			ath_beacon_config(sc, NULL);
4335 		}
4336 
4337 		/*
4338 		 * Re-enable interrupts.
4339 		 */
4340 #if 0
4341 		ath_hal_intrset(ah, sc->sc_imask);
4342 #endif
4343 	}
4344 
4345 finish:
4346 	ATH_PCU_LOCK(sc);
4347 	sc->sc_inreset_cnt--;
4348 	/* XXX only do this if sc_inreset_cnt == 0? */
4349 	ath_hal_intrset(ah, sc->sc_imask);
4350 	ATH_PCU_UNLOCK(sc);
4351 
4352 	IF_LOCK(&ifp->if_snd);
4353 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4354 	IF_UNLOCK(&ifp->if_snd);
4355 	ath_txrx_start(sc);
4356 	/* XXX ath_start? */
4357 
4358 	return ret;
4359 }
4360 
4361 /*
4362  * Periodically recalibrate the PHY to account
4363  * for temperature/environment changes.
4364  */
4365 static void
4366 ath_calibrate(void *arg)
4367 {
4368 	struct ath_softc *sc = arg;
4369 	struct ath_hal *ah = sc->sc_ah;
4370 	struct ifnet *ifp = sc->sc_ifp;
4371 	struct ieee80211com *ic = ifp->if_l2com;
4372 	HAL_BOOL longCal, isCalDone = AH_TRUE;
4373 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4374 	int nextcal;
4375 
4376 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4377 		goto restart;
4378 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4379 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4380 	if (sc->sc_doresetcal)
4381 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4382 
4383 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4384 	if (aniCal) {
4385 		sc->sc_stats.ast_ani_cal++;
4386 		sc->sc_lastani = ticks;
4387 		ath_hal_ani_poll(ah, sc->sc_curchan);
4388 	}
4389 
4390 	if (longCal) {
4391 		sc->sc_stats.ast_per_cal++;
4392 		sc->sc_lastlongcal = ticks;
4393 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4394 			/*
4395 			 * Rfgain is out of bounds, reset the chip
4396 			 * to load new gain values.
4397 			 */
4398 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4399 				"%s: rfgain change\n", __func__);
4400 			sc->sc_stats.ast_per_rfgain++;
4401 			sc->sc_resetcal = 0;
4402 			sc->sc_doresetcal = AH_TRUE;
4403 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4404 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4405 			return;
4406 		}
4407 		/*
4408 		 * If this long cal is after an idle period, then
4409 		 * reset the data collection state so we start fresh.
4410 		 */
4411 		if (sc->sc_resetcal) {
4412 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4413 			sc->sc_lastcalreset = ticks;
4414 			sc->sc_lastshortcal = ticks;
4415 			sc->sc_resetcal = 0;
4416 			sc->sc_doresetcal = AH_TRUE;
4417 		}
4418 	}
4419 
4420 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4421 	if (shortCal || longCal) {
4422 		isCalDone = AH_FALSE;
4423 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4424 			if (longCal) {
4425 				/*
4426 				 * Calibrate noise floor data again in case of change.
4427 				 */
4428 				ath_hal_process_noisefloor(ah);
4429 			}
4430 		} else {
4431 			DPRINTF(sc, ATH_DEBUG_ANY,
4432 				"%s: calibration of channel %u failed\n",
4433 				__func__, sc->sc_curchan->ic_freq);
4434 			sc->sc_stats.ast_per_calfail++;
4435 		}
4436 		if (shortCal)
4437 			sc->sc_lastshortcal = ticks;
4438 	}
4439 	if (!isCalDone) {
4440 restart:
4441 		/*
4442 		 * Use a shorter interval to potentially collect multiple
4443 		 * data samples required to complete calibration.  Once
4444 		 * we're told the work is done we drop back to a longer
4445 		 * interval between requests.  We're more aggressive doing
4446 		 * work when operating as an AP to improve operation right
4447 		 * after startup.
4448 		 */
4449 		sc->sc_lastshortcal = ticks;
4450 		nextcal = ath_shortcalinterval*hz/1000;
4451 		if (sc->sc_opmode != HAL_M_HOSTAP)
4452 			nextcal *= 10;
4453 		sc->sc_doresetcal = AH_TRUE;
4454 	} else {
4455 		/* nextcal should be the shortest time for next event */
4456 		nextcal = ath_longcalinterval*hz;
4457 		if (sc->sc_lastcalreset == 0)
4458 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4459 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4460 			sc->sc_resetcal = 1;	/* setup reset next trip */
4461 		sc->sc_doresetcal = AH_FALSE;
4462 	}
4463 	/* ANI calibration may occur more often than short/long/resetcal */
4464 	if (ath_anicalinterval > 0)
4465 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4466 
4467 	if (nextcal != 0) {
4468 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4469 		    __func__, nextcal, isCalDone ? "" : "!");
4470 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4471 	} else {
4472 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4473 		    __func__);
4474 		/* NB: don't rearm timer */
4475 	}
4476 }
4477 
4478 static void
4479 ath_scan_start(struct ieee80211com *ic)
4480 {
4481 	struct ifnet *ifp = ic->ic_ifp;
4482 	struct ath_softc *sc = ifp->if_softc;
4483 	struct ath_hal *ah = sc->sc_ah;
4484 	u_int32_t rfilt;
4485 
4486 	/* XXX calibration timer? */
4487 
4488 	ATH_LOCK(sc);
4489 	sc->sc_scanning = 1;
4490 	sc->sc_syncbeacon = 0;
4491 	rfilt = ath_calcrxfilter(sc);
4492 	ATH_UNLOCK(sc);
4493 
4494 	ATH_PCU_LOCK(sc);
4495 	ath_hal_setrxfilter(ah, rfilt);
4496 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4497 	ATH_PCU_UNLOCK(sc);
4498 
4499 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4500 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4501 }
4502 
4503 static void
4504 ath_scan_end(struct ieee80211com *ic)
4505 {
4506 	struct ifnet *ifp = ic->ic_ifp;
4507 	struct ath_softc *sc = ifp->if_softc;
4508 	struct ath_hal *ah = sc->sc_ah;
4509 	u_int32_t rfilt;
4510 
4511 	ATH_LOCK(sc);
4512 	sc->sc_scanning = 0;
4513 	rfilt = ath_calcrxfilter(sc);
4514 	ATH_UNLOCK(sc);
4515 
4516 	ATH_PCU_LOCK(sc);
4517 	ath_hal_setrxfilter(ah, rfilt);
4518 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4519 
4520 	ath_hal_process_noisefloor(ah);
4521 	ATH_PCU_UNLOCK(sc);
4522 
4523 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4524 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4525 		 sc->sc_curaid);
4526 }
4527 
4528 #ifdef	ATH_ENABLE_11N
4529 /*
4530  * For now, just do a channel change.
4531  *
4532  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4533  * control state and resetting the hardware without dropping frames out
4534  * of the queue.
4535  *
4536  * The unfortunate trouble here is making absolutely sure that the
4537  * channel width change has propagated enough so the hardware
4538  * absolutely isn't handed bogus frames for it's current operating
4539  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4540  * does occur in parallel, we need to make certain we've blocked
4541  * any further ongoing TX (and RX, that can cause raw TX)
4542  * before we do this.
4543  */
4544 static void
4545 ath_update_chw(struct ieee80211com *ic)
4546 {
4547 	struct ifnet *ifp = ic->ic_ifp;
4548 	struct ath_softc *sc = ifp->if_softc;
4549 
4550 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4551 	ath_set_channel(ic);
4552 }
4553 #endif	/* ATH_ENABLE_11N */
4554 
4555 static void
4556 ath_set_channel(struct ieee80211com *ic)
4557 {
4558 	struct ifnet *ifp = ic->ic_ifp;
4559 	struct ath_softc *sc = ifp->if_softc;
4560 
4561 	(void) ath_chan_set(sc, ic->ic_curchan);
4562 	/*
4563 	 * If we are returning to our bss channel then mark state
4564 	 * so the next recv'd beacon's tsf will be used to sync the
4565 	 * beacon timers.  Note that since we only hear beacons in
4566 	 * sta/ibss mode this has no effect in other operating modes.
4567 	 */
4568 	ATH_LOCK(sc);
4569 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4570 		sc->sc_syncbeacon = 1;
4571 	ATH_UNLOCK(sc);
4572 }
4573 
4574 /*
4575  * Walk the vap list and check if there any vap's in RUN state.
4576  */
4577 static int
4578 ath_isanyrunningvaps(struct ieee80211vap *this)
4579 {
4580 	struct ieee80211com *ic = this->iv_ic;
4581 	struct ieee80211vap *vap;
4582 
4583 	IEEE80211_LOCK_ASSERT(ic);
4584 
4585 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4586 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4587 			return 1;
4588 	}
4589 	return 0;
4590 }
4591 
4592 static int
4593 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4594 {
4595 	struct ieee80211com *ic = vap->iv_ic;
4596 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4597 	struct ath_vap *avp = ATH_VAP(vap);
4598 	struct ath_hal *ah = sc->sc_ah;
4599 	struct ieee80211_node *ni = NULL;
4600 	int i, error, stamode;
4601 	u_int32_t rfilt;
4602 	int csa_run_transition = 0;
4603 	static const HAL_LED_STATE leds[] = {
4604 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4605 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4606 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4607 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4608 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4609 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4610 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4611 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4612 	};
4613 
4614 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4615 		ieee80211_state_name[vap->iv_state],
4616 		ieee80211_state_name[nstate]);
4617 
4618 	/*
4619 	 * net80211 _should_ have the comlock asserted at this point.
4620 	 * There are some comments around the calls to vap->iv_newstate
4621 	 * which indicate that it (newstate) may end up dropping the
4622 	 * lock.  This and the subsequent lock assert check after newstate
4623 	 * are an attempt to catch these and figure out how/why.
4624 	 */
4625 	IEEE80211_LOCK_ASSERT(ic);
4626 
4627 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4628 		csa_run_transition = 1;
4629 
4630 	callout_drain(&sc->sc_cal_ch);
4631 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4632 
4633 	if (nstate == IEEE80211_S_SCAN) {
4634 		/*
4635 		 * Scanning: turn off beacon miss and don't beacon.
4636 		 * Mark beacon state so when we reach RUN state we'll
4637 		 * [re]setup beacons.  Unblock the task q thread so
4638 		 * deferred interrupt processing is done.
4639 		 */
4640 		ath_hal_intrset(ah,
4641 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4642 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4643 		sc->sc_beacons = 0;
4644 		taskqueue_unblock(sc->sc_tq);
4645 	}
4646 
4647 	ni = ieee80211_ref_node(vap->iv_bss);
4648 	rfilt = ath_calcrxfilter(sc);
4649 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4650 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4651 		   vap->iv_opmode == IEEE80211_M_IBSS);
4652 	if (stamode && nstate == IEEE80211_S_RUN) {
4653 		sc->sc_curaid = ni->ni_associd;
4654 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4655 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4656 	}
4657 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4658 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4659 	ath_hal_setrxfilter(ah, rfilt);
4660 
4661 	/* XXX is this to restore keycache on resume? */
4662 	if (vap->iv_opmode != IEEE80211_M_STA &&
4663 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4664 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4665 			if (ath_hal_keyisvalid(ah, i))
4666 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4667 	}
4668 
4669 	/*
4670 	 * Invoke the parent method to do net80211 work.
4671 	 */
4672 	error = avp->av_newstate(vap, nstate, arg);
4673 	if (error != 0)
4674 		goto bad;
4675 
4676 	/*
4677 	 * See above: ensure av_newstate() doesn't drop the lock
4678 	 * on us.
4679 	 */
4680 	IEEE80211_LOCK_ASSERT(ic);
4681 
4682 	if (nstate == IEEE80211_S_RUN) {
4683 		/* NB: collect bss node again, it may have changed */
4684 		ieee80211_free_node(ni);
4685 		ni = ieee80211_ref_node(vap->iv_bss);
4686 
4687 		DPRINTF(sc, ATH_DEBUG_STATE,
4688 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4689 		    "capinfo 0x%04x chan %d\n", __func__,
4690 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4691 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4692 
4693 		switch (vap->iv_opmode) {
4694 #ifdef IEEE80211_SUPPORT_TDMA
4695 		case IEEE80211_M_AHDEMO:
4696 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4697 				break;
4698 			/* fall thru... */
4699 #endif
4700 		case IEEE80211_M_HOSTAP:
4701 		case IEEE80211_M_IBSS:
4702 		case IEEE80211_M_MBSS:
4703 			/*
4704 			 * Allocate and setup the beacon frame.
4705 			 *
4706 			 * Stop any previous beacon DMA.  This may be
4707 			 * necessary, for example, when an ibss merge
4708 			 * causes reconfiguration; there will be a state
4709 			 * transition from RUN->RUN that means we may
4710 			 * be called with beacon transmission active.
4711 			 */
4712 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4713 
4714 			error = ath_beacon_alloc(sc, ni);
4715 			if (error != 0)
4716 				goto bad;
4717 			/*
4718 			 * If joining an adhoc network defer beacon timer
4719 			 * configuration to the next beacon frame so we
4720 			 * have a current TSF to use.  Otherwise we're
4721 			 * starting an ibss/bss so there's no need to delay;
4722 			 * if this is the first vap moving to RUN state, then
4723 			 * beacon state needs to be [re]configured.
4724 			 */
4725 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4726 			    ni->ni_tstamp.tsf != 0) {
4727 				sc->sc_syncbeacon = 1;
4728 			} else if (!sc->sc_beacons) {
4729 #ifdef IEEE80211_SUPPORT_TDMA
4730 				if (vap->iv_caps & IEEE80211_C_TDMA)
4731 					ath_tdma_config(sc, vap);
4732 				else
4733 #endif
4734 					ath_beacon_config(sc, vap);
4735 				sc->sc_beacons = 1;
4736 			}
4737 			break;
4738 		case IEEE80211_M_STA:
4739 			/*
4740 			 * Defer beacon timer configuration to the next
4741 			 * beacon frame so we have a current TSF to use
4742 			 * (any TSF collected when scanning is likely old).
4743 			 * However if it's due to a CSA -> RUN transition,
4744 			 * force a beacon update so we pick up a lack of
4745 			 * beacons from an AP in CAC and thus force a
4746 			 * scan.
4747 			 */
4748 			sc->sc_syncbeacon = 1;
4749 			if (csa_run_transition)
4750 				ath_beacon_config(sc, vap);
4751 			break;
4752 		case IEEE80211_M_MONITOR:
4753 			/*
4754 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4755 			 * transitions so we must re-enable interrupts here to
4756 			 * handle the case of a single monitor mode vap.
4757 			 */
4758 			ath_hal_intrset(ah, sc->sc_imask);
4759 			break;
4760 		case IEEE80211_M_WDS:
4761 			break;
4762 		default:
4763 			break;
4764 		}
4765 		/*
4766 		 * Let the hal process statistics collected during a
4767 		 * scan so it can provide calibrated noise floor data.
4768 		 */
4769 		ath_hal_process_noisefloor(ah);
4770 		/*
4771 		 * Reset rssi stats; maybe not the best place...
4772 		 */
4773 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4774 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4775 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4776 		/*
4777 		 * Finally, start any timers and the task q thread
4778 		 * (in case we didn't go through SCAN state).
4779 		 */
4780 		if (ath_longcalinterval != 0) {
4781 			/* start periodic recalibration timer */
4782 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4783 		} else {
4784 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4785 			    "%s: calibration disabled\n", __func__);
4786 		}
4787 		taskqueue_unblock(sc->sc_tq);
4788 	} else if (nstate == IEEE80211_S_INIT) {
4789 		/*
4790 		 * If there are no vaps left in RUN state then
4791 		 * shutdown host/driver operation:
4792 		 * o disable interrupts
4793 		 * o disable the task queue thread
4794 		 * o mark beacon processing as stopped
4795 		 */
4796 		if (!ath_isanyrunningvaps(vap)) {
4797 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4798 			/* disable interrupts  */
4799 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4800 			taskqueue_block(sc->sc_tq);
4801 			sc->sc_beacons = 0;
4802 		}
4803 #ifdef IEEE80211_SUPPORT_TDMA
4804 		ath_hal_setcca(ah, AH_TRUE);
4805 #endif
4806 	}
4807 bad:
4808 	ieee80211_free_node(ni);
4809 	return error;
4810 }
4811 
4812 /*
4813  * Allocate a key cache slot to the station so we can
4814  * setup a mapping from key index to node. The key cache
4815  * slot is needed for managing antenna state and for
4816  * compression when stations do not use crypto.  We do
4817  * it uniliaterally here; if crypto is employed this slot
4818  * will be reassigned.
4819  */
4820 static void
4821 ath_setup_stationkey(struct ieee80211_node *ni)
4822 {
4823 	struct ieee80211vap *vap = ni->ni_vap;
4824 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4825 	ieee80211_keyix keyix, rxkeyix;
4826 
4827 	/* XXX should take a locked ref to vap->iv_bss */
4828 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4829 		/*
4830 		 * Key cache is full; we'll fall back to doing
4831 		 * the more expensive lookup in software.  Note
4832 		 * this also means no h/w compression.
4833 		 */
4834 		/* XXX msg+statistic */
4835 	} else {
4836 		/* XXX locking? */
4837 		ni->ni_ucastkey.wk_keyix = keyix;
4838 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4839 		/* NB: must mark device key to get called back on delete */
4840 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4841 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4842 		/* NB: this will create a pass-thru key entry */
4843 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4844 	}
4845 }
4846 
4847 /*
4848  * Setup driver-specific state for a newly associated node.
4849  * Note that we're called also on a re-associate, the isnew
4850  * param tells us if this is the first time or not.
4851  */
4852 static void
4853 ath_newassoc(struct ieee80211_node *ni, int isnew)
4854 {
4855 	struct ath_node *an = ATH_NODE(ni);
4856 	struct ieee80211vap *vap = ni->ni_vap;
4857 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4858 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4859 
4860 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4861 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4862 
4863 	ath_rate_newassoc(sc, an, isnew);
4864 	if (isnew &&
4865 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4866 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4867 		ath_setup_stationkey(ni);
4868 }
4869 
4870 static int
4871 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4872 	int nchans, struct ieee80211_channel chans[])
4873 {
4874 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4875 	struct ath_hal *ah = sc->sc_ah;
4876 	HAL_STATUS status;
4877 
4878 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4879 	    "%s: rd %u cc %u location %c%s\n",
4880 	    __func__, reg->regdomain, reg->country, reg->location,
4881 	    reg->ecm ? " ecm" : "");
4882 
4883 	status = ath_hal_set_channels(ah, chans, nchans,
4884 	    reg->country, reg->regdomain);
4885 	if (status != HAL_OK) {
4886 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4887 		    __func__, status);
4888 		return EINVAL;		/* XXX */
4889 	}
4890 
4891 	return 0;
4892 }
4893 
4894 static void
4895 ath_getradiocaps(struct ieee80211com *ic,
4896 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4897 {
4898 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4899 	struct ath_hal *ah = sc->sc_ah;
4900 
4901 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4902 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4903 
4904 	/* XXX check return */
4905 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4906 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4907 
4908 }
4909 
4910 static int
4911 ath_getchannels(struct ath_softc *sc)
4912 {
4913 	struct ifnet *ifp = sc->sc_ifp;
4914 	struct ieee80211com *ic = ifp->if_l2com;
4915 	struct ath_hal *ah = sc->sc_ah;
4916 	HAL_STATUS status;
4917 
4918 	/*
4919 	 * Collect channel set based on EEPROM contents.
4920 	 */
4921 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4922 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4923 	if (status != HAL_OK) {
4924 		if_printf(ifp, "%s: unable to collect channel list from hal, "
4925 		    "status %d\n", __func__, status);
4926 		return EINVAL;
4927 	}
4928 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4929 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4930 	/* XXX map Atheros sku's to net80211 SKU's */
4931 	/* XXX net80211 types too small */
4932 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4933 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4934 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4935 	ic->ic_regdomain.isocc[1] = ' ';
4936 
4937 	ic->ic_regdomain.ecm = 1;
4938 	ic->ic_regdomain.location = 'I';
4939 
4940 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4941 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4942 	    __func__, sc->sc_eerd, sc->sc_eecc,
4943 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4944 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4945 	return 0;
4946 }
4947 
4948 static int
4949 ath_rate_setup(struct ath_softc *sc, u_int mode)
4950 {
4951 	struct ath_hal *ah = sc->sc_ah;
4952 	const HAL_RATE_TABLE *rt;
4953 
4954 	switch (mode) {
4955 	case IEEE80211_MODE_11A:
4956 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4957 		break;
4958 	case IEEE80211_MODE_HALF:
4959 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4960 		break;
4961 	case IEEE80211_MODE_QUARTER:
4962 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4963 		break;
4964 	case IEEE80211_MODE_11B:
4965 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4966 		break;
4967 	case IEEE80211_MODE_11G:
4968 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4969 		break;
4970 	case IEEE80211_MODE_TURBO_A:
4971 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4972 		break;
4973 	case IEEE80211_MODE_TURBO_G:
4974 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4975 		break;
4976 	case IEEE80211_MODE_STURBO_A:
4977 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4978 		break;
4979 	case IEEE80211_MODE_11NA:
4980 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4981 		break;
4982 	case IEEE80211_MODE_11NG:
4983 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4984 		break;
4985 	default:
4986 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4987 			__func__, mode);
4988 		return 0;
4989 	}
4990 	sc->sc_rates[mode] = rt;
4991 	return (rt != NULL);
4992 }
4993 
4994 static void
4995 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4996 {
4997 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4998 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4999 	static const struct {
5000 		u_int		rate;		/* tx/rx 802.11 rate */
5001 		u_int16_t	timeOn;		/* LED on time (ms) */
5002 		u_int16_t	timeOff;	/* LED off time (ms) */
5003 	} blinkrates[] = {
5004 		{ 108,  40,  10 },
5005 		{  96,  44,  11 },
5006 		{  72,  50,  13 },
5007 		{  48,  57,  14 },
5008 		{  36,  67,  16 },
5009 		{  24,  80,  20 },
5010 		{  22, 100,  25 },
5011 		{  18, 133,  34 },
5012 		{  12, 160,  40 },
5013 		{  10, 200,  50 },
5014 		{   6, 240,  58 },
5015 		{   4, 267,  66 },
5016 		{   2, 400, 100 },
5017 		{   0, 500, 130 },
5018 		/* XXX half/quarter rates */
5019 	};
5020 	const HAL_RATE_TABLE *rt;
5021 	int i, j;
5022 
5023 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5024 	rt = sc->sc_rates[mode];
5025 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5026 	for (i = 0; i < rt->rateCount; i++) {
5027 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5028 		if (rt->info[i].phy != IEEE80211_T_HT)
5029 			sc->sc_rixmap[ieeerate] = i;
5030 		else
5031 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5032 	}
5033 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5034 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5035 		if (i >= rt->rateCount) {
5036 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5037 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5038 			continue;
5039 		}
5040 		sc->sc_hwmap[i].ieeerate =
5041 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5042 		if (rt->info[i].phy == IEEE80211_T_HT)
5043 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5044 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5045 		if (rt->info[i].shortPreamble ||
5046 		    rt->info[i].phy == IEEE80211_T_OFDM)
5047 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5048 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5049 		for (j = 0; j < N(blinkrates)-1; j++)
5050 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5051 				break;
5052 		/* NB: this uses the last entry if the rate isn't found */
5053 		/* XXX beware of overlow */
5054 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5055 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5056 	}
5057 	sc->sc_currates = rt;
5058 	sc->sc_curmode = mode;
5059 	/*
5060 	 * All protection frames are transmited at 2Mb/s for
5061 	 * 11g, otherwise at 1Mb/s.
5062 	 */
5063 	if (mode == IEEE80211_MODE_11G)
5064 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5065 	else
5066 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5067 	/* NB: caller is responsible for resetting rate control state */
5068 #undef N
5069 }
5070 
5071 static void
5072 ath_watchdog(void *arg)
5073 {
5074 	struct ath_softc *sc = arg;
5075 	int do_reset = 0;
5076 
5077 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5078 		struct ifnet *ifp = sc->sc_ifp;
5079 		uint32_t hangs;
5080 
5081 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5082 		    hangs != 0) {
5083 			if_printf(ifp, "%s hang detected (0x%x)\n",
5084 			    hangs & 0xff ? "bb" : "mac", hangs);
5085 		} else
5086 			if_printf(ifp, "device timeout\n");
5087 		do_reset = 1;
5088 		ifp->if_oerrors++;
5089 		sc->sc_stats.ast_watchdog++;
5090 	}
5091 
5092 	/*
5093 	 * We can't hold the lock across the ath_reset() call.
5094 	 *
5095 	 * And since this routine can't hold a lock and sleep,
5096 	 * do the reset deferred.
5097 	 */
5098 	if (do_reset) {
5099 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5100 	}
5101 
5102 	callout_schedule(&sc->sc_wd_ch, hz);
5103 }
5104 
5105 /*
5106  * Fetch the rate control statistics for the given node.
5107  */
5108 static int
5109 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5110 {
5111 	struct ath_node *an;
5112 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5113 	struct ieee80211_node *ni;
5114 	int error = 0;
5115 
5116 	/* Perform a lookup on the given node */
5117 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5118 	if (ni == NULL) {
5119 		error = EINVAL;
5120 		goto bad;
5121 	}
5122 
5123 	/* Lock the ath_node */
5124 	an = ATH_NODE(ni);
5125 	ATH_NODE_LOCK(an);
5126 
5127 	/* Fetch the rate control stats for this node */
5128 	error = ath_rate_fetch_node_stats(sc, an, rs);
5129 
5130 	/* No matter what happens here, just drop through */
5131 
5132 	/* Unlock the ath_node */
5133 	ATH_NODE_UNLOCK(an);
5134 
5135 	/* Unref the node */
5136 	ieee80211_node_decref(ni);
5137 
5138 bad:
5139 	return (error);
5140 }
5141 
5142 #ifdef ATH_DIAGAPI
5143 /*
5144  * Diagnostic interface to the HAL.  This is used by various
5145  * tools to do things like retrieve register contents for
5146  * debugging.  The mechanism is intentionally opaque so that
5147  * it can change frequently w/o concern for compatiblity.
5148  */
5149 static int
5150 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5151 {
5152 	struct ath_hal *ah = sc->sc_ah;
5153 	u_int id = ad->ad_id & ATH_DIAG_ID;
5154 	void *indata = NULL;
5155 	void *outdata = NULL;
5156 	u_int32_t insize = ad->ad_in_size;
5157 	u_int32_t outsize = ad->ad_out_size;
5158 	int error = 0;
5159 
5160 	if (ad->ad_id & ATH_DIAG_IN) {
5161 		/*
5162 		 * Copy in data.
5163 		 */
5164 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5165 		if (indata == NULL) {
5166 			error = ENOMEM;
5167 			goto bad;
5168 		}
5169 		error = copyin(ad->ad_in_data, indata, insize);
5170 		if (error)
5171 			goto bad;
5172 	}
5173 	if (ad->ad_id & ATH_DIAG_DYN) {
5174 		/*
5175 		 * Allocate a buffer for the results (otherwise the HAL
5176 		 * returns a pointer to a buffer where we can read the
5177 		 * results).  Note that we depend on the HAL leaving this
5178 		 * pointer for us to use below in reclaiming the buffer;
5179 		 * may want to be more defensive.
5180 		 */
5181 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5182 		if (outdata == NULL) {
5183 			error = ENOMEM;
5184 			goto bad;
5185 		}
5186 	}
5187 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5188 		if (outsize < ad->ad_out_size)
5189 			ad->ad_out_size = outsize;
5190 		if (outdata != NULL)
5191 			error = copyout(outdata, ad->ad_out_data,
5192 					ad->ad_out_size);
5193 	} else {
5194 		error = EINVAL;
5195 	}
5196 bad:
5197 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5198 		free(indata, M_TEMP);
5199 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5200 		free(outdata, M_TEMP);
5201 	return error;
5202 }
5203 #endif /* ATH_DIAGAPI */
5204 
5205 static int
5206 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5207 {
5208 #define	IS_RUNNING(ifp) \
5209 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5210 	struct ath_softc *sc = ifp->if_softc;
5211 	struct ieee80211com *ic = ifp->if_l2com;
5212 	struct ifreq *ifr = (struct ifreq *)data;
5213 	const HAL_RATE_TABLE *rt;
5214 	int error = 0;
5215 
5216 	switch (cmd) {
5217 	case SIOCSIFFLAGS:
5218 		ATH_LOCK(sc);
5219 		if (IS_RUNNING(ifp)) {
5220 			/*
5221 			 * To avoid rescanning another access point,
5222 			 * do not call ath_init() here.  Instead,
5223 			 * only reflect promisc mode settings.
5224 			 */
5225 			ath_mode_init(sc);
5226 		} else if (ifp->if_flags & IFF_UP) {
5227 			/*
5228 			 * Beware of being called during attach/detach
5229 			 * to reset promiscuous mode.  In that case we
5230 			 * will still be marked UP but not RUNNING.
5231 			 * However trying to re-init the interface
5232 			 * is the wrong thing to do as we've already
5233 			 * torn down much of our state.  There's
5234 			 * probably a better way to deal with this.
5235 			 */
5236 			if (!sc->sc_invalid)
5237 				ath_init(sc);	/* XXX lose error */
5238 		} else {
5239 			ath_stop_locked(ifp);
5240 #ifdef notyet
5241 			/* XXX must wakeup in places like ath_vap_delete */
5242 			if (!sc->sc_invalid)
5243 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5244 #endif
5245 		}
5246 		ATH_UNLOCK(sc);
5247 		break;
5248 	case SIOCGIFMEDIA:
5249 	case SIOCSIFMEDIA:
5250 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5251 		break;
5252 	case SIOCGATHSTATS:
5253 		/* NB: embed these numbers to get a consistent view */
5254 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5255 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5256 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5257 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5258 #ifdef IEEE80211_SUPPORT_TDMA
5259 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5260 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5261 #endif
5262 		rt = sc->sc_currates;
5263 		sc->sc_stats.ast_tx_rate =
5264 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5265 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5266 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5267 		return copyout(&sc->sc_stats,
5268 		    ifr->ifr_data, sizeof (sc->sc_stats));
5269 	case SIOCGATHAGSTATS:
5270 		return copyout(&sc->sc_aggr_stats,
5271 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5272 	case SIOCZATHSTATS:
5273 		error = priv_check(curthread, PRIV_DRIVER);
5274 		if (error == 0) {
5275 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5276 			memset(&sc->sc_aggr_stats, 0,
5277 			    sizeof(sc->sc_aggr_stats));
5278 			memset(&sc->sc_intr_stats, 0,
5279 			    sizeof(sc->sc_intr_stats));
5280 		}
5281 		break;
5282 #ifdef ATH_DIAGAPI
5283 	case SIOCGATHDIAG:
5284 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5285 		break;
5286 	case SIOCGATHPHYERR:
5287 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5288 		break;
5289 #endif
5290 	case SIOCGATHNODERATESTATS:
5291 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5292 		break;
5293 	case SIOCGIFADDR:
5294 		error = ether_ioctl(ifp, cmd, data);
5295 		break;
5296 	default:
5297 		error = EINVAL;
5298 		break;
5299 	}
5300 	return error;
5301 #undef IS_RUNNING
5302 }
5303 
5304 /*
5305  * Announce various information on device/driver attach.
5306  */
5307 static void
5308 ath_announce(struct ath_softc *sc)
5309 {
5310 	struct ifnet *ifp = sc->sc_ifp;
5311 	struct ath_hal *ah = sc->sc_ah;
5312 
5313 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5314 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5315 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5316 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5317 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5318 	if (bootverbose) {
5319 		int i;
5320 		for (i = 0; i <= WME_AC_VO; i++) {
5321 			struct ath_txq *txq = sc->sc_ac2q[i];
5322 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5323 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5324 		}
5325 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5326 			sc->sc_cabq->axq_qnum);
5327 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5328 	}
5329 	if (ath_rxbuf != ATH_RXBUF)
5330 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5331 	if (ath_txbuf != ATH_TXBUF)
5332 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5333 	if (sc->sc_mcastkey && bootverbose)
5334 		if_printf(ifp, "using multicast key search\n");
5335 }
5336 
5337 static void
5338 ath_dfs_tasklet(void *p, int npending)
5339 {
5340 	struct ath_softc *sc = (struct ath_softc *) p;
5341 	struct ifnet *ifp = sc->sc_ifp;
5342 	struct ieee80211com *ic = ifp->if_l2com;
5343 
5344 	/*
5345 	 * If previous processing has found a radar event,
5346 	 * signal this to the net80211 layer to begin DFS
5347 	 * processing.
5348 	 */
5349 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5350 		/* DFS event found, initiate channel change */
5351 		/*
5352 		 * XXX doesn't currently tell us whether the event
5353 		 * XXX was found in the primary or extension
5354 		 * XXX channel!
5355 		 */
5356 		IEEE80211_LOCK(ic);
5357 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5358 		IEEE80211_UNLOCK(ic);
5359 	}
5360 }
5361 
5362 /*
5363  * Enable/disable power save.  This must be called with
5364  * no TX driver locks currently held, so it should only
5365  * be called from the RX path (which doesn't hold any
5366  * TX driver locks.)
5367  */
5368 static void
5369 ath_node_powersave(struct ieee80211_node *ni, int enable)
5370 {
5371 	struct ath_node *an = ATH_NODE(ni);
5372 	struct ieee80211com *ic = ni->ni_ic;
5373 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5374 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5375 
5376 	ATH_NODE_UNLOCK_ASSERT(an);
5377 	/* XXX and no TXQ locks should be held here */
5378 
5379 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5380 	    __func__, ni, enable);
5381 
5382 	/* Suspend or resume software queue handling */
5383 	if (enable)
5384 		ath_tx_node_sleep(sc, an);
5385 	else
5386 		ath_tx_node_wakeup(sc, an);
5387 
5388 	/* Update net80211 state */
5389 	avp->av_node_ps(ni, enable);
5390 }
5391 
5392 
5393 MODULE_VERSION(if_ath, 1);
5394 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5395 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5396 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5397 #endif
5398