1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_athdfs.h> 115 116 #ifdef ATH_TX99_DIAG 117 #include <dev/ath/ath_tx99/ath_tx99.h> 118 #endif 119 120 /* 121 * ATH_BCBUF determines the number of vap's that can transmit 122 * beacons and also (currently) the number of vap's that can 123 * have unique mac addresses/bssid. When staggering beacons 124 * 4 is probably a good max as otherwise the beacons become 125 * very closely spaced and there is limited time for cab q traffic 126 * to go out. You can burst beacons instead but that is not good 127 * for stations in power save and at some point you really want 128 * another radio (and channel). 129 * 130 * The limit on the number of mac addresses is tied to our use of 131 * the U/L bit and tracking addresses in a byte; it would be 132 * worthwhile to allow more for applications like proxy sta. 133 */ 134 CTASSERT(ATH_BCBUF <= 8); 135 136 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 137 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 138 const uint8_t [IEEE80211_ADDR_LEN], 139 const uint8_t [IEEE80211_ADDR_LEN]); 140 static void ath_vap_delete(struct ieee80211vap *); 141 static void ath_init(void *); 142 static void ath_stop_locked(struct ifnet *); 143 static void ath_stop(struct ifnet *); 144 static int ath_reset_vap(struct ieee80211vap *, u_long); 145 static void ath_start_queue(struct ifnet *ifp); 146 static int ath_media_change(struct ifnet *); 147 static void ath_watchdog(void *); 148 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 149 static void ath_fatal_proc(void *, int); 150 static void ath_bmiss_vap(struct ieee80211vap *); 151 static void ath_bmiss_proc(void *, int); 152 static void ath_key_update_begin(struct ieee80211vap *); 153 static void ath_key_update_end(struct ieee80211vap *); 154 static void ath_update_mcast(struct ifnet *); 155 static void ath_update_promisc(struct ifnet *); 156 static void ath_updateslot(struct ifnet *); 157 static void ath_bstuck_proc(void *, int); 158 static void ath_reset_proc(void *, int); 159 static int ath_desc_alloc(struct ath_softc *); 160 static void ath_desc_free(struct ath_softc *); 161 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 162 const uint8_t [IEEE80211_ADDR_LEN]); 163 static void ath_node_cleanup(struct ieee80211_node *); 164 static void ath_node_free(struct ieee80211_node *); 165 static void ath_node_getsignal(const struct ieee80211_node *, 166 int8_t *, int8_t *); 167 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 169 static int ath_tx_setup(struct ath_softc *, int, int); 170 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 171 static void ath_tx_cleanup(struct ath_softc *); 172 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 173 int dosched); 174 static void ath_tx_proc_q0(void *, int); 175 static void ath_tx_proc_q0123(void *, int); 176 static void ath_tx_proc(void *, int); 177 static void ath_txq_sched_tasklet(void *, int); 178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 180 static void ath_scan_start(struct ieee80211com *); 181 static void ath_scan_end(struct ieee80211com *); 182 static void ath_set_channel(struct ieee80211com *); 183 #ifdef ATH_ENABLE_11N 184 static void ath_update_chw(struct ieee80211com *); 185 #endif /* ATH_ENABLE_11N */ 186 static void ath_calibrate(void *); 187 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 188 static void ath_setup_stationkey(struct ieee80211_node *); 189 static void ath_newassoc(struct ieee80211_node *, int); 190 static int ath_setregdomain(struct ieee80211com *, 191 struct ieee80211_regdomain *, int, 192 struct ieee80211_channel []); 193 static void ath_getradiocaps(struct ieee80211com *, int, int *, 194 struct ieee80211_channel []); 195 static int ath_getchannels(struct ath_softc *); 196 197 static int ath_rate_setup(struct ath_softc *, u_int mode); 198 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 199 200 static void ath_announce(struct ath_softc *); 201 202 static void ath_dfs_tasklet(void *, int); 203 static void ath_node_powersave(struct ieee80211_node *, int); 204 205 #ifdef IEEE80211_SUPPORT_TDMA 206 #include <dev/ath/if_ath_tdma.h> 207 #endif 208 209 SYSCTL_DECL(_hw_ath); 210 211 /* XXX validate sysctl values */ 212 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 213 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 214 0, "long chip calibration interval (secs)"); 215 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 216 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 217 0, "short chip calibration interval (msecs)"); 218 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 219 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 220 0, "reset chip calibration results (secs)"); 221 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 222 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 223 0, "ANI calibration (msecs)"); 224 225 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 226 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 227 0, "rx buffers allocated"); 228 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 229 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 231 0, "tx buffers allocated"); 232 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 233 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 235 0, "tx (mgmt) buffers allocated"); 236 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 237 238 int ath_bstuck_threshold = 4; /* max missed beacons */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 240 0, "max missed beacon xmits before chip reset"); 241 242 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 243 244 void 245 ath_legacy_attach_comp_func(struct ath_softc *sc) 246 { 247 248 /* 249 * Special case certain configurations. Note the 250 * CAB queue is handled by these specially so don't 251 * include them when checking the txq setup mask. 252 */ 253 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 254 case 0x01: 255 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 256 break; 257 case 0x0f: 258 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 259 break; 260 default: 261 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 262 break; 263 } 264 } 265 266 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 267 #define HAL_MODE_HT40 \ 268 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 269 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 270 int 271 ath_attach(u_int16_t devid, struct ath_softc *sc) 272 { 273 struct ifnet *ifp; 274 struct ieee80211com *ic; 275 struct ath_hal *ah = NULL; 276 HAL_STATUS status; 277 int error = 0, i; 278 u_int wmodes; 279 uint8_t macaddr[IEEE80211_ADDR_LEN]; 280 int rx_chainmask, tx_chainmask; 281 282 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 283 284 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 285 if (ifp == NULL) { 286 device_printf(sc->sc_dev, "can not if_alloc()\n"); 287 error = ENOSPC; 288 goto bad; 289 } 290 ic = ifp->if_l2com; 291 292 /* set these up early for if_printf use */ 293 if_initname(ifp, device_get_name(sc->sc_dev), 294 device_get_unit(sc->sc_dev)); 295 296 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 297 sc->sc_eepromdata, &status); 298 if (ah == NULL) { 299 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 300 status); 301 error = ENXIO; 302 goto bad; 303 } 304 sc->sc_ah = ah; 305 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 306 #ifdef ATH_DEBUG 307 sc->sc_debug = ath_debug; 308 #endif 309 310 /* 311 * Setup the DMA/EDMA functions based on the current 312 * hardware support. 313 * 314 * This is required before the descriptors are allocated. 315 */ 316 if (ath_hal_hasedma(sc->sc_ah)) { 317 sc->sc_isedma = 1; 318 ath_recv_setup_edma(sc); 319 ath_xmit_setup_edma(sc); 320 } else { 321 ath_recv_setup_legacy(sc); 322 ath_xmit_setup_legacy(sc); 323 } 324 325 /* 326 * Check if the MAC has multi-rate retry support. 327 * We do this by trying to setup a fake extended 328 * descriptor. MAC's that don't have support will 329 * return false w/o doing anything. MAC's that do 330 * support it will return true w/o doing anything. 331 */ 332 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 333 334 /* 335 * Check if the device has hardware counters for PHY 336 * errors. If so we need to enable the MIB interrupt 337 * so we can act on stat triggers. 338 */ 339 if (ath_hal_hwphycounters(ah)) 340 sc->sc_needmib = 1; 341 342 /* 343 * Get the hardware key cache size. 344 */ 345 sc->sc_keymax = ath_hal_keycachesize(ah); 346 if (sc->sc_keymax > ATH_KEYMAX) { 347 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 348 ATH_KEYMAX, sc->sc_keymax); 349 sc->sc_keymax = ATH_KEYMAX; 350 } 351 /* 352 * Reset the key cache since some parts do not 353 * reset the contents on initial power up. 354 */ 355 for (i = 0; i < sc->sc_keymax; i++) 356 ath_hal_keyreset(ah, i); 357 358 /* 359 * Collect the default channel list. 360 */ 361 error = ath_getchannels(sc); 362 if (error != 0) 363 goto bad; 364 365 /* 366 * Setup rate tables for all potential media types. 367 */ 368 ath_rate_setup(sc, IEEE80211_MODE_11A); 369 ath_rate_setup(sc, IEEE80211_MODE_11B); 370 ath_rate_setup(sc, IEEE80211_MODE_11G); 371 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 372 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 373 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 374 ath_rate_setup(sc, IEEE80211_MODE_11NA); 375 ath_rate_setup(sc, IEEE80211_MODE_11NG); 376 ath_rate_setup(sc, IEEE80211_MODE_HALF); 377 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 378 379 /* NB: setup here so ath_rate_update is happy */ 380 ath_setcurmode(sc, IEEE80211_MODE_11A); 381 382 /* 383 * Allocate TX descriptors and populate the lists. 384 */ 385 error = ath_desc_alloc(sc); 386 if (error != 0) { 387 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 388 error); 389 goto bad; 390 } 391 error = ath_txdma_setup(sc); 392 if (error != 0) { 393 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 394 error); 395 goto bad; 396 } 397 398 /* 399 * Allocate RX descriptors and populate the lists. 400 */ 401 error = ath_rxdma_setup(sc); 402 if (error != 0) { 403 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 404 error); 405 goto bad; 406 } 407 408 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 409 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 410 411 ATH_TXBUF_LOCK_INIT(sc); 412 413 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 414 taskqueue_thread_enqueue, &sc->sc_tq); 415 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 416 "%s taskq", ifp->if_xname); 417 418 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 419 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 420 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 421 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 422 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 423 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 424 TASK_INIT(&sc->sc_txsndtask, 0, ath_start_task, sc); 425 426 /* 427 * Allocate hardware transmit queues: one queue for 428 * beacon frames and one data queue for each QoS 429 * priority. Note that the hal handles resetting 430 * these queues at the needed time. 431 * 432 * XXX PS-Poll 433 */ 434 sc->sc_bhalq = ath_beaconq_setup(sc); 435 if (sc->sc_bhalq == (u_int) -1) { 436 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 437 error = EIO; 438 goto bad2; 439 } 440 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 441 if (sc->sc_cabq == NULL) { 442 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 443 error = EIO; 444 goto bad2; 445 } 446 /* NB: insure BK queue is the lowest priority h/w queue */ 447 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 448 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 449 ieee80211_wme_acnames[WME_AC_BK]); 450 error = EIO; 451 goto bad2; 452 } 453 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 454 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 455 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 456 /* 457 * Not enough hardware tx queues to properly do WME; 458 * just punt and assign them all to the same h/w queue. 459 * We could do a better job of this if, for example, 460 * we allocate queues when we switch from station to 461 * AP mode. 462 */ 463 if (sc->sc_ac2q[WME_AC_VI] != NULL) 464 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 465 if (sc->sc_ac2q[WME_AC_BE] != NULL) 466 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 467 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 468 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 469 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 470 } 471 472 /* 473 * Attach the TX completion function. 474 * 475 * The non-EDMA chips may have some special case optimisations; 476 * this method gives everyone a chance to attach cleanly. 477 */ 478 sc->sc_tx.xmit_attach_comp_func(sc); 479 480 /* 481 * Setup rate control. Some rate control modules 482 * call back to change the anntena state so expose 483 * the necessary entry points. 484 * XXX maybe belongs in struct ath_ratectrl? 485 */ 486 sc->sc_setdefantenna = ath_setdefantenna; 487 sc->sc_rc = ath_rate_attach(sc); 488 if (sc->sc_rc == NULL) { 489 error = EIO; 490 goto bad2; 491 } 492 493 /* Attach DFS module */ 494 if (! ath_dfs_attach(sc)) { 495 device_printf(sc->sc_dev, 496 "%s: unable to attach DFS\n", __func__); 497 error = EIO; 498 goto bad2; 499 } 500 501 /* Start DFS processing tasklet */ 502 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 503 504 /* Configure LED state */ 505 sc->sc_blinking = 0; 506 sc->sc_ledstate = 1; 507 sc->sc_ledon = 0; /* low true */ 508 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 509 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 510 511 /* 512 * Don't setup hardware-based blinking. 513 * 514 * Although some NICs may have this configured in the 515 * default reset register values, the user may wish 516 * to alter which pins have which function. 517 * 518 * The reference driver attaches the MAC network LED to GPIO1 and 519 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 520 * NIC has these reversed. 521 */ 522 sc->sc_hardled = (1 == 0); 523 sc->sc_led_net_pin = -1; 524 sc->sc_led_pwr_pin = -1; 525 /* 526 * Auto-enable soft led processing for IBM cards and for 527 * 5211 minipci cards. Users can also manually enable/disable 528 * support with a sysctl. 529 */ 530 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 531 ath_led_config(sc); 532 ath_hal_setledstate(ah, HAL_LED_INIT); 533 534 ifp->if_softc = sc; 535 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 536 ifp->if_start = ath_start_queue; 537 ifp->if_ioctl = ath_ioctl; 538 ifp->if_init = ath_init; 539 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 540 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 541 IFQ_SET_READY(&ifp->if_snd); 542 543 ic->ic_ifp = ifp; 544 /* XXX not right but it's not used anywhere important */ 545 ic->ic_phytype = IEEE80211_T_OFDM; 546 ic->ic_opmode = IEEE80211_M_STA; 547 ic->ic_caps = 548 IEEE80211_C_STA /* station mode */ 549 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 550 | IEEE80211_C_HOSTAP /* hostap mode */ 551 | IEEE80211_C_MONITOR /* monitor mode */ 552 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 553 | IEEE80211_C_WDS /* 4-address traffic works */ 554 | IEEE80211_C_MBSS /* mesh point link mode */ 555 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 556 | IEEE80211_C_SHSLOT /* short slot time supported */ 557 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 558 #ifndef ATH_ENABLE_11N 559 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 560 #endif 561 | IEEE80211_C_TXFRAG /* handle tx frags */ 562 #ifdef ATH_ENABLE_DFS 563 | IEEE80211_C_DFS /* Enable radar detection */ 564 #endif 565 ; 566 /* 567 * Query the hal to figure out h/w crypto support. 568 */ 569 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 570 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 571 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 572 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 573 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 574 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 575 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 576 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 577 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 578 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 579 /* 580 * Check if h/w does the MIC and/or whether the 581 * separate key cache entries are required to 582 * handle both tx+rx MIC keys. 583 */ 584 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 585 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 586 /* 587 * If the h/w supports storing tx+rx MIC keys 588 * in one cache slot automatically enable use. 589 */ 590 if (ath_hal_hastkipsplit(ah) || 591 !ath_hal_settkipsplit(ah, AH_FALSE)) 592 sc->sc_splitmic = 1; 593 /* 594 * If the h/w can do TKIP MIC together with WME then 595 * we use it; otherwise we force the MIC to be done 596 * in software by the net80211 layer. 597 */ 598 if (ath_hal_haswmetkipmic(ah)) 599 sc->sc_wmetkipmic = 1; 600 } 601 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 602 /* 603 * Check for multicast key search support. 604 */ 605 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 606 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 607 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 608 } 609 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 610 /* 611 * Mark key cache slots associated with global keys 612 * as in use. If we knew TKIP was not to be used we 613 * could leave the +32, +64, and +32+64 slots free. 614 */ 615 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 616 setbit(sc->sc_keymap, i); 617 setbit(sc->sc_keymap, i+64); 618 if (sc->sc_splitmic) { 619 setbit(sc->sc_keymap, i+32); 620 setbit(sc->sc_keymap, i+32+64); 621 } 622 } 623 /* 624 * TPC support can be done either with a global cap or 625 * per-packet support. The latter is not available on 626 * all parts. We're a bit pedantic here as all parts 627 * support a global cap. 628 */ 629 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 630 ic->ic_caps |= IEEE80211_C_TXPMGT; 631 632 /* 633 * Mark WME capability only if we have sufficient 634 * hardware queues to do proper priority scheduling. 635 */ 636 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 637 ic->ic_caps |= IEEE80211_C_WME; 638 /* 639 * Check for misc other capabilities. 640 */ 641 if (ath_hal_hasbursting(ah)) 642 ic->ic_caps |= IEEE80211_C_BURST; 643 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 644 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 645 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 646 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 647 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 648 if (ath_hal_hasfastframes(ah)) 649 ic->ic_caps |= IEEE80211_C_FF; 650 wmodes = ath_hal_getwirelessmodes(ah); 651 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 652 ic->ic_caps |= IEEE80211_C_TURBOP; 653 #ifdef IEEE80211_SUPPORT_TDMA 654 if (ath_hal_macversion(ah) > 0x78) { 655 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 656 ic->ic_tdma_update = ath_tdma_update; 657 } 658 #endif 659 660 /* 661 * TODO: enforce that at least this many frames are available 662 * in the txbuf list before allowing data frames (raw or 663 * otherwise) to be transmitted. 664 */ 665 sc->sc_txq_data_minfree = 10; 666 /* 667 * Leave this as default to maintain legacy behaviour. 668 * Shortening the cabq/mcastq may end up causing some 669 * undesirable behaviour. 670 */ 671 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 672 673 /* 674 * Allow the TX and RX chainmasks to be overridden by 675 * environment variables and/or device.hints. 676 * 677 * This must be done early - before the hardware is 678 * calibrated or before the 802.11n stream calculation 679 * is done. 680 */ 681 if (resource_int_value(device_get_name(sc->sc_dev), 682 device_get_unit(sc->sc_dev), "rx_chainmask", 683 &rx_chainmask) == 0) { 684 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 685 rx_chainmask); 686 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 687 } 688 if (resource_int_value(device_get_name(sc->sc_dev), 689 device_get_unit(sc->sc_dev), "tx_chainmask", 690 &tx_chainmask) == 0) { 691 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 692 tx_chainmask); 693 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 694 } 695 696 /* 697 * Disable MRR with protected frames by default. 698 * Only 802.11n series NICs can handle this. 699 */ 700 sc->sc_mrrprot = 0; /* XXX should be a capability */ 701 702 #ifdef ATH_ENABLE_11N 703 /* 704 * Query HT capabilities 705 */ 706 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 707 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 708 int rxs, txs; 709 710 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 711 712 sc->sc_mrrprot = 1; /* XXX should be a capability */ 713 714 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 715 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 716 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 717 | IEEE80211_HTCAP_MAXAMSDU_3839 718 /* max A-MSDU length */ 719 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 720 ; 721 722 /* 723 * Enable short-GI for HT20 only if the hardware 724 * advertises support. 725 * Notably, anything earlier than the AR9287 doesn't. 726 */ 727 if ((ath_hal_getcapability(ah, 728 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 729 (wmodes & HAL_MODE_HT20)) { 730 device_printf(sc->sc_dev, 731 "[HT] enabling short-GI in 20MHz mode\n"); 732 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 733 } 734 735 if (wmodes & HAL_MODE_HT40) 736 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 737 | IEEE80211_HTCAP_SHORTGI40; 738 739 /* 740 * TX/RX streams need to be taken into account when 741 * negotiating which MCS rates it'll receive and 742 * what MCS rates are available for TX. 743 */ 744 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 745 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 746 747 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 748 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 749 750 ic->ic_txstream = txs; 751 ic->ic_rxstream = rxs; 752 753 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 754 &sc->sc_rts_aggr_limit); 755 if (sc->sc_rts_aggr_limit != (64 * 1024)) 756 device_printf(sc->sc_dev, 757 "[HT] RTS aggregates limited to %d KiB\n", 758 sc->sc_rts_aggr_limit / 1024); 759 760 device_printf(sc->sc_dev, 761 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 762 } 763 #endif 764 765 /* 766 * Initial aggregation settings. 767 */ 768 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 769 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 770 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 771 772 /* 773 * Check if the hardware requires PCI register serialisation. 774 * Some of the Owl based MACs require this. 775 */ 776 if (mp_ncpus > 1 && 777 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 778 0, NULL) == HAL_OK) { 779 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 780 device_printf(sc->sc_dev, 781 "Enabling register serialisation\n"); 782 } 783 784 /* 785 * Indicate we need the 802.11 header padded to a 786 * 32-bit boundary for 4-address and QoS frames. 787 */ 788 ic->ic_flags |= IEEE80211_F_DATAPAD; 789 790 /* 791 * Query the hal about antenna support. 792 */ 793 sc->sc_defant = ath_hal_getdefantenna(ah); 794 795 /* 796 * Not all chips have the VEOL support we want to 797 * use with IBSS beacons; check here for it. 798 */ 799 sc->sc_hasveol = ath_hal_hasveol(ah); 800 801 /* get mac address from hardware */ 802 ath_hal_getmac(ah, macaddr); 803 if (sc->sc_hasbmask) 804 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 805 806 /* NB: used to size node table key mapping array */ 807 ic->ic_max_keyix = sc->sc_keymax; 808 /* call MI attach routine. */ 809 ieee80211_ifattach(ic, macaddr); 810 ic->ic_setregdomain = ath_setregdomain; 811 ic->ic_getradiocaps = ath_getradiocaps; 812 sc->sc_opmode = HAL_M_STA; 813 814 /* override default methods */ 815 ic->ic_newassoc = ath_newassoc; 816 ic->ic_updateslot = ath_updateslot; 817 ic->ic_wme.wme_update = ath_wme_update; 818 ic->ic_vap_create = ath_vap_create; 819 ic->ic_vap_delete = ath_vap_delete; 820 ic->ic_raw_xmit = ath_raw_xmit; 821 ic->ic_update_mcast = ath_update_mcast; 822 ic->ic_update_promisc = ath_update_promisc; 823 ic->ic_node_alloc = ath_node_alloc; 824 sc->sc_node_free = ic->ic_node_free; 825 ic->ic_node_free = ath_node_free; 826 sc->sc_node_cleanup = ic->ic_node_cleanup; 827 ic->ic_node_cleanup = ath_node_cleanup; 828 ic->ic_node_getsignal = ath_node_getsignal; 829 ic->ic_scan_start = ath_scan_start; 830 ic->ic_scan_end = ath_scan_end; 831 ic->ic_set_channel = ath_set_channel; 832 #ifdef ATH_ENABLE_11N 833 /* 802.11n specific - but just override anyway */ 834 sc->sc_addba_request = ic->ic_addba_request; 835 sc->sc_addba_response = ic->ic_addba_response; 836 sc->sc_addba_stop = ic->ic_addba_stop; 837 sc->sc_bar_response = ic->ic_bar_response; 838 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 839 840 ic->ic_addba_request = ath_addba_request; 841 ic->ic_addba_response = ath_addba_response; 842 ic->ic_addba_response_timeout = ath_addba_response_timeout; 843 ic->ic_addba_stop = ath_addba_stop; 844 ic->ic_bar_response = ath_bar_response; 845 846 ic->ic_update_chw = ath_update_chw; 847 #endif /* ATH_ENABLE_11N */ 848 849 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 850 /* 851 * There's one vendor bitmap entry in the RX radiotap 852 * header; make sure that's taken into account. 853 */ 854 ieee80211_radiotap_attachv(ic, 855 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 856 ATH_TX_RADIOTAP_PRESENT, 857 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 858 ATH_RX_RADIOTAP_PRESENT); 859 #else 860 /* 861 * No vendor bitmap/extensions are present. 862 */ 863 ieee80211_radiotap_attach(ic, 864 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 865 ATH_TX_RADIOTAP_PRESENT, 866 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 867 ATH_RX_RADIOTAP_PRESENT); 868 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 869 870 /* 871 * Setup dynamic sysctl's now that country code and 872 * regdomain are available from the hal. 873 */ 874 ath_sysctlattach(sc); 875 ath_sysctl_stats_attach(sc); 876 ath_sysctl_hal_attach(sc); 877 878 if (bootverbose) 879 ieee80211_announce(ic); 880 ath_announce(sc); 881 return 0; 882 bad2: 883 ath_tx_cleanup(sc); 884 ath_desc_free(sc); 885 ath_txdma_teardown(sc); 886 ath_rxdma_teardown(sc); 887 bad: 888 if (ah) 889 ath_hal_detach(ah); 890 if (ifp != NULL) 891 if_free(ifp); 892 sc->sc_invalid = 1; 893 return error; 894 } 895 896 int 897 ath_detach(struct ath_softc *sc) 898 { 899 struct ifnet *ifp = sc->sc_ifp; 900 901 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 902 __func__, ifp->if_flags); 903 904 /* 905 * NB: the order of these is important: 906 * o stop the chip so no more interrupts will fire 907 * o call the 802.11 layer before detaching the hal to 908 * insure callbacks into the driver to delete global 909 * key cache entries can be handled 910 * o free the taskqueue which drains any pending tasks 911 * o reclaim the tx queue data structures after calling 912 * the 802.11 layer as we'll get called back to reclaim 913 * node state and potentially want to use them 914 * o to cleanup the tx queues the hal is called, so detach 915 * it last 916 * Other than that, it's straightforward... 917 */ 918 ath_stop(ifp); 919 ieee80211_ifdetach(ifp->if_l2com); 920 taskqueue_free(sc->sc_tq); 921 #ifdef ATH_TX99_DIAG 922 if (sc->sc_tx99 != NULL) 923 sc->sc_tx99->detach(sc->sc_tx99); 924 #endif 925 ath_rate_detach(sc->sc_rc); 926 927 ath_dfs_detach(sc); 928 ath_desc_free(sc); 929 ath_txdma_teardown(sc); 930 ath_rxdma_teardown(sc); 931 ath_tx_cleanup(sc); 932 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 933 if_free(ifp); 934 935 return 0; 936 } 937 938 /* 939 * MAC address handling for multiple BSS on the same radio. 940 * The first vap uses the MAC address from the EEPROM. For 941 * subsequent vap's we set the U/L bit (bit 1) in the MAC 942 * address and use the next six bits as an index. 943 */ 944 static void 945 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 946 { 947 int i; 948 949 if (clone && sc->sc_hasbmask) { 950 /* NB: we only do this if h/w supports multiple bssid */ 951 for (i = 0; i < 8; i++) 952 if ((sc->sc_bssidmask & (1<<i)) == 0) 953 break; 954 if (i != 0) 955 mac[0] |= (i << 2)|0x2; 956 } else 957 i = 0; 958 sc->sc_bssidmask |= 1<<i; 959 sc->sc_hwbssidmask[0] &= ~mac[0]; 960 if (i == 0) 961 sc->sc_nbssid0++; 962 } 963 964 static void 965 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 966 { 967 int i = mac[0] >> 2; 968 uint8_t mask; 969 970 if (i != 0 || --sc->sc_nbssid0 == 0) { 971 sc->sc_bssidmask &= ~(1<<i); 972 /* recalculate bssid mask from remaining addresses */ 973 mask = 0xff; 974 for (i = 1; i < 8; i++) 975 if (sc->sc_bssidmask & (1<<i)) 976 mask &= ~((i<<2)|0x2); 977 sc->sc_hwbssidmask[0] |= mask; 978 } 979 } 980 981 /* 982 * Assign a beacon xmit slot. We try to space out 983 * assignments so when beacons are staggered the 984 * traffic coming out of the cab q has maximal time 985 * to go out before the next beacon is scheduled. 986 */ 987 static int 988 assign_bslot(struct ath_softc *sc) 989 { 990 u_int slot, free; 991 992 free = 0; 993 for (slot = 0; slot < ATH_BCBUF; slot++) 994 if (sc->sc_bslot[slot] == NULL) { 995 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 996 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 997 return slot; 998 free = slot; 999 /* NB: keep looking for a double slot */ 1000 } 1001 return free; 1002 } 1003 1004 static struct ieee80211vap * 1005 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1006 enum ieee80211_opmode opmode, int flags, 1007 const uint8_t bssid[IEEE80211_ADDR_LEN], 1008 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1009 { 1010 struct ath_softc *sc = ic->ic_ifp->if_softc; 1011 struct ath_vap *avp; 1012 struct ieee80211vap *vap; 1013 uint8_t mac[IEEE80211_ADDR_LEN]; 1014 int needbeacon, error; 1015 enum ieee80211_opmode ic_opmode; 1016 1017 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1018 M_80211_VAP, M_WAITOK | M_ZERO); 1019 needbeacon = 0; 1020 IEEE80211_ADDR_COPY(mac, mac0); 1021 1022 ATH_LOCK(sc); 1023 ic_opmode = opmode; /* default to opmode of new vap */ 1024 switch (opmode) { 1025 case IEEE80211_M_STA: 1026 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1027 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1028 goto bad; 1029 } 1030 if (sc->sc_nvaps) { 1031 /* 1032 * With multiple vaps we must fall back 1033 * to s/w beacon miss handling. 1034 */ 1035 flags |= IEEE80211_CLONE_NOBEACONS; 1036 } 1037 if (flags & IEEE80211_CLONE_NOBEACONS) { 1038 /* 1039 * Station mode w/o beacons are implemented w/ AP mode. 1040 */ 1041 ic_opmode = IEEE80211_M_HOSTAP; 1042 } 1043 break; 1044 case IEEE80211_M_IBSS: 1045 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1046 device_printf(sc->sc_dev, 1047 "only 1 ibss vap supported\n"); 1048 goto bad; 1049 } 1050 needbeacon = 1; 1051 break; 1052 case IEEE80211_M_AHDEMO: 1053 #ifdef IEEE80211_SUPPORT_TDMA 1054 if (flags & IEEE80211_CLONE_TDMA) { 1055 if (sc->sc_nvaps != 0) { 1056 device_printf(sc->sc_dev, 1057 "only 1 tdma vap supported\n"); 1058 goto bad; 1059 } 1060 needbeacon = 1; 1061 flags |= IEEE80211_CLONE_NOBEACONS; 1062 } 1063 /* fall thru... */ 1064 #endif 1065 case IEEE80211_M_MONITOR: 1066 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1067 /* 1068 * Adopt existing mode. Adding a monitor or ahdemo 1069 * vap to an existing configuration is of dubious 1070 * value but should be ok. 1071 */ 1072 /* XXX not right for monitor mode */ 1073 ic_opmode = ic->ic_opmode; 1074 } 1075 break; 1076 case IEEE80211_M_HOSTAP: 1077 case IEEE80211_M_MBSS: 1078 needbeacon = 1; 1079 break; 1080 case IEEE80211_M_WDS: 1081 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1082 device_printf(sc->sc_dev, 1083 "wds not supported in sta mode\n"); 1084 goto bad; 1085 } 1086 /* 1087 * Silently remove any request for a unique 1088 * bssid; WDS vap's always share the local 1089 * mac address. 1090 */ 1091 flags &= ~IEEE80211_CLONE_BSSID; 1092 if (sc->sc_nvaps == 0) 1093 ic_opmode = IEEE80211_M_HOSTAP; 1094 else 1095 ic_opmode = ic->ic_opmode; 1096 break; 1097 default: 1098 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1099 goto bad; 1100 } 1101 /* 1102 * Check that a beacon buffer is available; the code below assumes it. 1103 */ 1104 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1105 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1106 goto bad; 1107 } 1108 1109 /* STA, AHDEMO? */ 1110 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1111 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1112 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1113 } 1114 1115 vap = &avp->av_vap; 1116 /* XXX can't hold mutex across if_alloc */ 1117 ATH_UNLOCK(sc); 1118 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1119 bssid, mac); 1120 ATH_LOCK(sc); 1121 if (error != 0) { 1122 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1123 __func__, error); 1124 goto bad2; 1125 } 1126 1127 /* h/w crypto support */ 1128 vap->iv_key_alloc = ath_key_alloc; 1129 vap->iv_key_delete = ath_key_delete; 1130 vap->iv_key_set = ath_key_set; 1131 vap->iv_key_update_begin = ath_key_update_begin; 1132 vap->iv_key_update_end = ath_key_update_end; 1133 1134 /* override various methods */ 1135 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1136 vap->iv_recv_mgmt = ath_recv_mgmt; 1137 vap->iv_reset = ath_reset_vap; 1138 vap->iv_update_beacon = ath_beacon_update; 1139 avp->av_newstate = vap->iv_newstate; 1140 vap->iv_newstate = ath_newstate; 1141 avp->av_bmiss = vap->iv_bmiss; 1142 vap->iv_bmiss = ath_bmiss_vap; 1143 1144 avp->av_node_ps = vap->iv_node_ps; 1145 vap->iv_node_ps = ath_node_powersave; 1146 1147 /* Set default parameters */ 1148 1149 /* 1150 * Anything earlier than some AR9300 series MACs don't 1151 * support a smaller MPDU density. 1152 */ 1153 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1154 /* 1155 * All NICs can handle the maximum size, however 1156 * AR5416 based MACs can only TX aggregates w/ RTS 1157 * protection when the total aggregate size is <= 8k. 1158 * However, for now that's enforced by the TX path. 1159 */ 1160 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1161 1162 avp->av_bslot = -1; 1163 if (needbeacon) { 1164 /* 1165 * Allocate beacon state and setup the q for buffered 1166 * multicast frames. We know a beacon buffer is 1167 * available because we checked above. 1168 */ 1169 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1170 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1171 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1172 /* 1173 * Assign the vap to a beacon xmit slot. As above 1174 * this cannot fail to find a free one. 1175 */ 1176 avp->av_bslot = assign_bslot(sc); 1177 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1178 ("beacon slot %u not empty", avp->av_bslot)); 1179 sc->sc_bslot[avp->av_bslot] = vap; 1180 sc->sc_nbcnvaps++; 1181 } 1182 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1183 /* 1184 * Multple vaps are to transmit beacons and we 1185 * have h/w support for TSF adjusting; enable 1186 * use of staggered beacons. 1187 */ 1188 sc->sc_stagbeacons = 1; 1189 } 1190 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1191 } 1192 1193 ic->ic_opmode = ic_opmode; 1194 if (opmode != IEEE80211_M_WDS) { 1195 sc->sc_nvaps++; 1196 if (opmode == IEEE80211_M_STA) 1197 sc->sc_nstavaps++; 1198 if (opmode == IEEE80211_M_MBSS) 1199 sc->sc_nmeshvaps++; 1200 } 1201 switch (ic_opmode) { 1202 case IEEE80211_M_IBSS: 1203 sc->sc_opmode = HAL_M_IBSS; 1204 break; 1205 case IEEE80211_M_STA: 1206 sc->sc_opmode = HAL_M_STA; 1207 break; 1208 case IEEE80211_M_AHDEMO: 1209 #ifdef IEEE80211_SUPPORT_TDMA 1210 if (vap->iv_caps & IEEE80211_C_TDMA) { 1211 sc->sc_tdma = 1; 1212 /* NB: disable tsf adjust */ 1213 sc->sc_stagbeacons = 0; 1214 } 1215 /* 1216 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1217 * just ap mode. 1218 */ 1219 /* fall thru... */ 1220 #endif 1221 case IEEE80211_M_HOSTAP: 1222 case IEEE80211_M_MBSS: 1223 sc->sc_opmode = HAL_M_HOSTAP; 1224 break; 1225 case IEEE80211_M_MONITOR: 1226 sc->sc_opmode = HAL_M_MONITOR; 1227 break; 1228 default: 1229 /* XXX should not happen */ 1230 break; 1231 } 1232 if (sc->sc_hastsfadd) { 1233 /* 1234 * Configure whether or not TSF adjust should be done. 1235 */ 1236 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1237 } 1238 if (flags & IEEE80211_CLONE_NOBEACONS) { 1239 /* 1240 * Enable s/w beacon miss handling. 1241 */ 1242 sc->sc_swbmiss = 1; 1243 } 1244 ATH_UNLOCK(sc); 1245 1246 /* complete setup */ 1247 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1248 return vap; 1249 bad2: 1250 reclaim_address(sc, mac); 1251 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1252 bad: 1253 free(avp, M_80211_VAP); 1254 ATH_UNLOCK(sc); 1255 return NULL; 1256 } 1257 1258 static void 1259 ath_vap_delete(struct ieee80211vap *vap) 1260 { 1261 struct ieee80211com *ic = vap->iv_ic; 1262 struct ifnet *ifp = ic->ic_ifp; 1263 struct ath_softc *sc = ifp->if_softc; 1264 struct ath_hal *ah = sc->sc_ah; 1265 struct ath_vap *avp = ATH_VAP(vap); 1266 1267 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1268 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1269 /* 1270 * Quiesce the hardware while we remove the vap. In 1271 * particular we need to reclaim all references to 1272 * the vap state by any frames pending on the tx queues. 1273 */ 1274 ath_hal_intrset(ah, 0); /* disable interrupts */ 1275 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1276 /* XXX Do all frames from all vaps/nodes need draining here? */ 1277 ath_stoprecv(sc, 1); /* stop recv side */ 1278 } 1279 1280 ieee80211_vap_detach(vap); 1281 1282 /* 1283 * XXX Danger Will Robinson! Danger! 1284 * 1285 * Because ieee80211_vap_detach() can queue a frame (the station 1286 * diassociate message?) after we've drained the TXQ and 1287 * flushed the software TXQ, we will end up with a frame queued 1288 * to a node whose vap is about to be freed. 1289 * 1290 * To work around this, flush the hardware/software again. 1291 * This may be racy - the ath task may be running and the packet 1292 * may be being scheduled between sw->hw txq. Tsk. 1293 * 1294 * TODO: figure out why a new node gets allocated somewhere around 1295 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1296 * call!) 1297 */ 1298 1299 ath_draintxq(sc, ATH_RESET_DEFAULT); 1300 1301 ATH_LOCK(sc); 1302 /* 1303 * Reclaim beacon state. Note this must be done before 1304 * the vap instance is reclaimed as we may have a reference 1305 * to it in the buffer for the beacon frame. 1306 */ 1307 if (avp->av_bcbuf != NULL) { 1308 if (avp->av_bslot != -1) { 1309 sc->sc_bslot[avp->av_bslot] = NULL; 1310 sc->sc_nbcnvaps--; 1311 } 1312 ath_beacon_return(sc, avp->av_bcbuf); 1313 avp->av_bcbuf = NULL; 1314 if (sc->sc_nbcnvaps == 0) { 1315 sc->sc_stagbeacons = 0; 1316 if (sc->sc_hastsfadd) 1317 ath_hal_settsfadjust(sc->sc_ah, 0); 1318 } 1319 /* 1320 * Reclaim any pending mcast frames for the vap. 1321 */ 1322 ath_tx_draintxq(sc, &avp->av_mcastq); 1323 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1324 } 1325 /* 1326 * Update bookkeeping. 1327 */ 1328 if (vap->iv_opmode == IEEE80211_M_STA) { 1329 sc->sc_nstavaps--; 1330 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1331 sc->sc_swbmiss = 0; 1332 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1333 vap->iv_opmode == IEEE80211_M_MBSS) { 1334 reclaim_address(sc, vap->iv_myaddr); 1335 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1336 if (vap->iv_opmode == IEEE80211_M_MBSS) 1337 sc->sc_nmeshvaps--; 1338 } 1339 if (vap->iv_opmode != IEEE80211_M_WDS) 1340 sc->sc_nvaps--; 1341 #ifdef IEEE80211_SUPPORT_TDMA 1342 /* TDMA operation ceases when the last vap is destroyed */ 1343 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1344 sc->sc_tdma = 0; 1345 sc->sc_swbmiss = 0; 1346 } 1347 #endif 1348 free(avp, M_80211_VAP); 1349 1350 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1351 /* 1352 * Restart rx+tx machines if still running (RUNNING will 1353 * be reset if we just destroyed the last vap). 1354 */ 1355 if (ath_startrecv(sc) != 0) 1356 if_printf(ifp, "%s: unable to restart recv logic\n", 1357 __func__); 1358 if (sc->sc_beacons) { /* restart beacons */ 1359 #ifdef IEEE80211_SUPPORT_TDMA 1360 if (sc->sc_tdma) 1361 ath_tdma_config(sc, NULL); 1362 else 1363 #endif 1364 ath_beacon_config(sc, NULL); 1365 } 1366 ath_hal_intrset(ah, sc->sc_imask); 1367 } 1368 ATH_UNLOCK(sc); 1369 } 1370 1371 void 1372 ath_suspend(struct ath_softc *sc) 1373 { 1374 struct ifnet *ifp = sc->sc_ifp; 1375 struct ieee80211com *ic = ifp->if_l2com; 1376 1377 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1378 __func__, ifp->if_flags); 1379 1380 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1381 1382 ieee80211_suspend_all(ic); 1383 /* 1384 * NB: don't worry about putting the chip in low power 1385 * mode; pci will power off our socket on suspend and 1386 * CardBus detaches the device. 1387 */ 1388 1389 /* 1390 * XXX ensure none of the taskqueues are running 1391 * XXX ensure sc_invalid is 1 1392 * XXX ensure the calibration callout is disabled 1393 */ 1394 1395 /* Disable the PCIe PHY, complete with workarounds */ 1396 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1397 } 1398 1399 /* 1400 * Reset the key cache since some parts do not reset the 1401 * contents on resume. First we clear all entries, then 1402 * re-load keys that the 802.11 layer assumes are setup 1403 * in h/w. 1404 */ 1405 static void 1406 ath_reset_keycache(struct ath_softc *sc) 1407 { 1408 struct ifnet *ifp = sc->sc_ifp; 1409 struct ieee80211com *ic = ifp->if_l2com; 1410 struct ath_hal *ah = sc->sc_ah; 1411 int i; 1412 1413 for (i = 0; i < sc->sc_keymax; i++) 1414 ath_hal_keyreset(ah, i); 1415 ieee80211_crypto_reload_keys(ic); 1416 } 1417 1418 void 1419 ath_resume(struct ath_softc *sc) 1420 { 1421 struct ifnet *ifp = sc->sc_ifp; 1422 struct ieee80211com *ic = ifp->if_l2com; 1423 struct ath_hal *ah = sc->sc_ah; 1424 HAL_STATUS status; 1425 1426 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1427 __func__, ifp->if_flags); 1428 1429 /* Re-enable PCIe, re-enable the PCIe bus */ 1430 ath_hal_enablepcie(ah, 0, 0); 1431 1432 /* 1433 * Must reset the chip before we reload the 1434 * keycache as we were powered down on suspend. 1435 */ 1436 ath_hal_reset(ah, sc->sc_opmode, 1437 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1438 AH_FALSE, &status); 1439 ath_reset_keycache(sc); 1440 1441 /* Let DFS at it in case it's a DFS channel */ 1442 ath_dfs_radar_enable(sc, ic->ic_curchan); 1443 1444 /* Restore the LED configuration */ 1445 ath_led_config(sc); 1446 ath_hal_setledstate(ah, HAL_LED_INIT); 1447 1448 if (sc->sc_resume_up) 1449 ieee80211_resume_all(ic); 1450 1451 /* XXX beacons ? */ 1452 } 1453 1454 void 1455 ath_shutdown(struct ath_softc *sc) 1456 { 1457 struct ifnet *ifp = sc->sc_ifp; 1458 1459 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1460 __func__, ifp->if_flags); 1461 1462 ath_stop(ifp); 1463 /* NB: no point powering down chip as we're about to reboot */ 1464 } 1465 1466 /* 1467 * Interrupt handler. Most of the actual processing is deferred. 1468 */ 1469 void 1470 ath_intr(void *arg) 1471 { 1472 struct ath_softc *sc = arg; 1473 struct ifnet *ifp = sc->sc_ifp; 1474 struct ath_hal *ah = sc->sc_ah; 1475 HAL_INT status = 0; 1476 uint32_t txqs; 1477 1478 /* 1479 * If we're inside a reset path, just print a warning and 1480 * clear the ISR. The reset routine will finish it for us. 1481 */ 1482 ATH_PCU_LOCK(sc); 1483 if (sc->sc_inreset_cnt) { 1484 HAL_INT status; 1485 ath_hal_getisr(ah, &status); /* clear ISR */ 1486 ath_hal_intrset(ah, 0); /* disable further intr's */ 1487 DPRINTF(sc, ATH_DEBUG_ANY, 1488 "%s: in reset, ignoring: status=0x%x\n", 1489 __func__, status); 1490 ATH_PCU_UNLOCK(sc); 1491 return; 1492 } 1493 1494 if (sc->sc_invalid) { 1495 /* 1496 * The hardware is not ready/present, don't touch anything. 1497 * Note this can happen early on if the IRQ is shared. 1498 */ 1499 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1500 ATH_PCU_UNLOCK(sc); 1501 return; 1502 } 1503 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1504 ATH_PCU_UNLOCK(sc); 1505 return; 1506 } 1507 1508 if ((ifp->if_flags & IFF_UP) == 0 || 1509 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1510 HAL_INT status; 1511 1512 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1513 __func__, ifp->if_flags); 1514 ath_hal_getisr(ah, &status); /* clear ISR */ 1515 ath_hal_intrset(ah, 0); /* disable further intr's */ 1516 ATH_PCU_UNLOCK(sc); 1517 return; 1518 } 1519 1520 /* 1521 * Figure out the reason(s) for the interrupt. Note 1522 * that the hal returns a pseudo-ISR that may include 1523 * bits we haven't explicitly enabled so we mask the 1524 * value to insure we only process bits we requested. 1525 */ 1526 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1527 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1528 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1529 #ifdef ATH_KTR_INTR_DEBUG 1530 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1531 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1532 ah->ah_intrstate[0], 1533 ah->ah_intrstate[1], 1534 ah->ah_intrstate[2], 1535 ah->ah_intrstate[3], 1536 ah->ah_intrstate[6]); 1537 #endif 1538 1539 /* Squirrel away SYNC interrupt debugging */ 1540 if (ah->ah_syncstate != 0) { 1541 int i; 1542 for (i = 0; i < 32; i++) 1543 if (ah->ah_syncstate & (i << i)) 1544 sc->sc_intr_stats.sync_intr[i]++; 1545 } 1546 1547 status &= sc->sc_imask; /* discard unasked for bits */ 1548 1549 /* Short-circuit un-handled interrupts */ 1550 if (status == 0x0) { 1551 ATH_PCU_UNLOCK(sc); 1552 return; 1553 } 1554 1555 /* 1556 * Take a note that we're inside the interrupt handler, so 1557 * the reset routines know to wait. 1558 */ 1559 sc->sc_intr_cnt++; 1560 ATH_PCU_UNLOCK(sc); 1561 1562 /* 1563 * Handle the interrupt. We won't run concurrent with the reset 1564 * or channel change routines as they'll wait for sc_intr_cnt 1565 * to be 0 before continuing. 1566 */ 1567 if (status & HAL_INT_FATAL) { 1568 sc->sc_stats.ast_hardware++; 1569 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1570 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1571 } else { 1572 if (status & HAL_INT_SWBA) { 1573 /* 1574 * Software beacon alert--time to send a beacon. 1575 * Handle beacon transmission directly; deferring 1576 * this is too slow to meet timing constraints 1577 * under load. 1578 */ 1579 #ifdef IEEE80211_SUPPORT_TDMA 1580 if (sc->sc_tdma) { 1581 if (sc->sc_tdmaswba == 0) { 1582 struct ieee80211com *ic = ifp->if_l2com; 1583 struct ieee80211vap *vap = 1584 TAILQ_FIRST(&ic->ic_vaps); 1585 ath_tdma_beacon_send(sc, vap); 1586 sc->sc_tdmaswba = 1587 vap->iv_tdma->tdma_bintval; 1588 } else 1589 sc->sc_tdmaswba--; 1590 } else 1591 #endif 1592 { 1593 ath_beacon_proc(sc, 0); 1594 #ifdef IEEE80211_SUPPORT_SUPERG 1595 /* 1596 * Schedule the rx taskq in case there's no 1597 * traffic so any frames held on the staging 1598 * queue are aged and potentially flushed. 1599 */ 1600 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1601 #endif 1602 } 1603 } 1604 if (status & HAL_INT_RXEOL) { 1605 int imask; 1606 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1607 ATH_PCU_LOCK(sc); 1608 /* 1609 * NB: the hardware should re-read the link when 1610 * RXE bit is written, but it doesn't work at 1611 * least on older hardware revs. 1612 */ 1613 sc->sc_stats.ast_rxeol++; 1614 /* 1615 * Disable RXEOL/RXORN - prevent an interrupt 1616 * storm until the PCU logic can be reset. 1617 * In case the interface is reset some other 1618 * way before "sc_kickpcu" is called, don't 1619 * modify sc_imask - that way if it is reset 1620 * by a call to ath_reset() somehow, the 1621 * interrupt mask will be correctly reprogrammed. 1622 */ 1623 imask = sc->sc_imask; 1624 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1625 ath_hal_intrset(ah, imask); 1626 /* 1627 * Only blank sc_rxlink if we've not yet kicked 1628 * the PCU. 1629 * 1630 * This isn't entirely correct - the correct solution 1631 * would be to have a PCU lock and engage that for 1632 * the duration of the PCU fiddling; which would include 1633 * running the RX process. Otherwise we could end up 1634 * messing up the RX descriptor chain and making the 1635 * RX desc list much shorter. 1636 */ 1637 if (! sc->sc_kickpcu) 1638 sc->sc_rxlink = NULL; 1639 sc->sc_kickpcu = 1; 1640 /* 1641 * Enqueue an RX proc, to handled whatever 1642 * is in the RX queue. 1643 * This will then kick the PCU. 1644 */ 1645 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1646 ATH_PCU_UNLOCK(sc); 1647 } 1648 if (status & HAL_INT_TXURN) { 1649 sc->sc_stats.ast_txurn++; 1650 /* bump tx trigger level */ 1651 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1652 } 1653 /* 1654 * Handle both the legacy and RX EDMA interrupt bits. 1655 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1656 */ 1657 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1658 sc->sc_stats.ast_rx_intr++; 1659 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1660 } 1661 if (status & HAL_INT_TX) { 1662 sc->sc_stats.ast_tx_intr++; 1663 /* 1664 * Grab all the currently set bits in the HAL txq bitmap 1665 * and blank them. This is the only place we should be 1666 * doing this. 1667 */ 1668 if (! sc->sc_isedma) { 1669 ATH_PCU_LOCK(sc); 1670 txqs = 0xffffffff; 1671 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1672 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1673 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1674 txqs, 1675 sc->sc_txq_active, 1676 sc->sc_txq_active | txqs); 1677 sc->sc_txq_active |= txqs; 1678 ATH_PCU_UNLOCK(sc); 1679 } 1680 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1681 } 1682 if (status & HAL_INT_BMISS) { 1683 sc->sc_stats.ast_bmiss++; 1684 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1685 } 1686 if (status & HAL_INT_GTT) 1687 sc->sc_stats.ast_tx_timeout++; 1688 if (status & HAL_INT_CST) 1689 sc->sc_stats.ast_tx_cst++; 1690 if (status & HAL_INT_MIB) { 1691 sc->sc_stats.ast_mib++; 1692 ATH_PCU_LOCK(sc); 1693 /* 1694 * Disable interrupts until we service the MIB 1695 * interrupt; otherwise it will continue to fire. 1696 */ 1697 ath_hal_intrset(ah, 0); 1698 /* 1699 * Let the hal handle the event. We assume it will 1700 * clear whatever condition caused the interrupt. 1701 */ 1702 ath_hal_mibevent(ah, &sc->sc_halstats); 1703 /* 1704 * Don't reset the interrupt if we've just 1705 * kicked the PCU, or we may get a nested 1706 * RXEOL before the rxproc has had a chance 1707 * to run. 1708 */ 1709 if (sc->sc_kickpcu == 0) 1710 ath_hal_intrset(ah, sc->sc_imask); 1711 ATH_PCU_UNLOCK(sc); 1712 } 1713 if (status & HAL_INT_RXORN) { 1714 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1715 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1716 sc->sc_stats.ast_rxorn++; 1717 } 1718 } 1719 ATH_PCU_LOCK(sc); 1720 sc->sc_intr_cnt--; 1721 ATH_PCU_UNLOCK(sc); 1722 } 1723 1724 static void 1725 ath_fatal_proc(void *arg, int pending) 1726 { 1727 struct ath_softc *sc = arg; 1728 struct ifnet *ifp = sc->sc_ifp; 1729 u_int32_t *state; 1730 u_int32_t len; 1731 void *sp; 1732 1733 if_printf(ifp, "hardware error; resetting\n"); 1734 /* 1735 * Fatal errors are unrecoverable. Typically these 1736 * are caused by DMA errors. Collect h/w state from 1737 * the hal so we can diagnose what's going on. 1738 */ 1739 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1740 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1741 state = sp; 1742 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1743 state[0], state[1] , state[2], state[3], 1744 state[4], state[5]); 1745 } 1746 ath_reset(ifp, ATH_RESET_NOLOSS); 1747 } 1748 1749 static void 1750 ath_bmiss_vap(struct ieee80211vap *vap) 1751 { 1752 /* 1753 * Workaround phantom bmiss interrupts by sanity-checking 1754 * the time of our last rx'd frame. If it is within the 1755 * beacon miss interval then ignore the interrupt. If it's 1756 * truly a bmiss we'll get another interrupt soon and that'll 1757 * be dispatched up for processing. Note this applies only 1758 * for h/w beacon miss events. 1759 */ 1760 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1761 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1762 struct ath_softc *sc = ifp->if_softc; 1763 u_int64_t lastrx = sc->sc_lastrx; 1764 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1765 /* XXX should take a locked ref to iv_bss */ 1766 u_int bmisstimeout = 1767 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1768 1769 DPRINTF(sc, ATH_DEBUG_BEACON, 1770 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1771 __func__, (unsigned long long) tsf, 1772 (unsigned long long)(tsf - lastrx), 1773 (unsigned long long) lastrx, bmisstimeout); 1774 1775 if (tsf - lastrx <= bmisstimeout) { 1776 sc->sc_stats.ast_bmiss_phantom++; 1777 return; 1778 } 1779 } 1780 ATH_VAP(vap)->av_bmiss(vap); 1781 } 1782 1783 static int 1784 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1785 { 1786 uint32_t rsize; 1787 void *sp; 1788 1789 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1790 return 0; 1791 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1792 *hangs = *(uint32_t *)sp; 1793 return 1; 1794 } 1795 1796 static void 1797 ath_bmiss_proc(void *arg, int pending) 1798 { 1799 struct ath_softc *sc = arg; 1800 struct ifnet *ifp = sc->sc_ifp; 1801 uint32_t hangs; 1802 1803 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1804 1805 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1806 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1807 ath_reset(ifp, ATH_RESET_NOLOSS); 1808 } else 1809 ieee80211_beacon_miss(ifp->if_l2com); 1810 } 1811 1812 /* 1813 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1814 * calcs together with WME. If necessary disable the crypto 1815 * hardware and mark the 802.11 state so keys will be setup 1816 * with the MIC work done in software. 1817 */ 1818 static void 1819 ath_settkipmic(struct ath_softc *sc) 1820 { 1821 struct ifnet *ifp = sc->sc_ifp; 1822 struct ieee80211com *ic = ifp->if_l2com; 1823 1824 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1825 if (ic->ic_flags & IEEE80211_F_WME) { 1826 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1827 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1828 } else { 1829 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1830 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1831 } 1832 } 1833 } 1834 1835 static void 1836 ath_init(void *arg) 1837 { 1838 struct ath_softc *sc = (struct ath_softc *) arg; 1839 struct ifnet *ifp = sc->sc_ifp; 1840 struct ieee80211com *ic = ifp->if_l2com; 1841 struct ath_hal *ah = sc->sc_ah; 1842 HAL_STATUS status; 1843 1844 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1845 __func__, ifp->if_flags); 1846 1847 ATH_LOCK(sc); 1848 /* 1849 * Stop anything previously setup. This is safe 1850 * whether this is the first time through or not. 1851 */ 1852 ath_stop_locked(ifp); 1853 1854 /* 1855 * The basic interface to setting the hardware in a good 1856 * state is ``reset''. On return the hardware is known to 1857 * be powered up and with interrupts disabled. This must 1858 * be followed by initialization of the appropriate bits 1859 * and then setup of the interrupt mask. 1860 */ 1861 ath_settkipmic(sc); 1862 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1863 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1864 status); 1865 ATH_UNLOCK(sc); 1866 return; 1867 } 1868 ath_chan_change(sc, ic->ic_curchan); 1869 1870 /* Let DFS at it in case it's a DFS channel */ 1871 ath_dfs_radar_enable(sc, ic->ic_curchan); 1872 1873 /* 1874 * Likewise this is set during reset so update 1875 * state cached in the driver. 1876 */ 1877 sc->sc_diversity = ath_hal_getdiversity(ah); 1878 sc->sc_lastlongcal = 0; 1879 sc->sc_resetcal = 1; 1880 sc->sc_lastcalreset = 0; 1881 sc->sc_lastani = 0; 1882 sc->sc_lastshortcal = 0; 1883 sc->sc_doresetcal = AH_FALSE; 1884 /* 1885 * Beacon timers were cleared here; give ath_newstate() 1886 * a hint that the beacon timers should be poked when 1887 * things transition to the RUN state. 1888 */ 1889 sc->sc_beacons = 0; 1890 1891 /* 1892 * Setup the hardware after reset: the key cache 1893 * is filled as needed and the receive engine is 1894 * set going. Frame transmit is handled entirely 1895 * in the frame output path; there's nothing to do 1896 * here except setup the interrupt mask. 1897 */ 1898 if (ath_startrecv(sc) != 0) { 1899 if_printf(ifp, "unable to start recv logic\n"); 1900 ATH_UNLOCK(sc); 1901 return; 1902 } 1903 1904 /* 1905 * Enable interrupts. 1906 */ 1907 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1908 | HAL_INT_RXEOL | HAL_INT_RXORN 1909 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1910 1911 /* 1912 * Enable RX EDMA bits. Note these overlap with 1913 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1914 */ 1915 if (sc->sc_isedma) 1916 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1917 1918 /* 1919 * Enable MIB interrupts when there are hardware phy counters. 1920 * Note we only do this (at the moment) for station mode. 1921 */ 1922 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1923 sc->sc_imask |= HAL_INT_MIB; 1924 1925 /* Enable global TX timeout and carrier sense timeout if available */ 1926 if (ath_hal_gtxto_supported(ah)) 1927 sc->sc_imask |= HAL_INT_GTT; 1928 1929 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1930 __func__, sc->sc_imask); 1931 1932 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1933 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1934 ath_hal_intrset(ah, sc->sc_imask); 1935 1936 ATH_UNLOCK(sc); 1937 1938 #ifdef ATH_TX99_DIAG 1939 if (sc->sc_tx99 != NULL) 1940 sc->sc_tx99->start(sc->sc_tx99); 1941 else 1942 #endif 1943 ieee80211_start_all(ic); /* start all vap's */ 1944 } 1945 1946 static void 1947 ath_stop_locked(struct ifnet *ifp) 1948 { 1949 struct ath_softc *sc = ifp->if_softc; 1950 struct ath_hal *ah = sc->sc_ah; 1951 1952 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1953 __func__, sc->sc_invalid, ifp->if_flags); 1954 1955 ATH_LOCK_ASSERT(sc); 1956 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1957 /* 1958 * Shutdown the hardware and driver: 1959 * reset 802.11 state machine 1960 * turn off timers 1961 * disable interrupts 1962 * turn off the radio 1963 * clear transmit machinery 1964 * clear receive machinery 1965 * drain and release tx queues 1966 * reclaim beacon resources 1967 * power down hardware 1968 * 1969 * Note that some of this work is not possible if the 1970 * hardware is gone (invalid). 1971 */ 1972 #ifdef ATH_TX99_DIAG 1973 if (sc->sc_tx99 != NULL) 1974 sc->sc_tx99->stop(sc->sc_tx99); 1975 #endif 1976 callout_stop(&sc->sc_wd_ch); 1977 sc->sc_wd_timer = 0; 1978 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1979 if (!sc->sc_invalid) { 1980 if (sc->sc_softled) { 1981 callout_stop(&sc->sc_ledtimer); 1982 ath_hal_gpioset(ah, sc->sc_ledpin, 1983 !sc->sc_ledon); 1984 sc->sc_blinking = 0; 1985 } 1986 ath_hal_intrset(ah, 0); 1987 } 1988 ath_draintxq(sc, ATH_RESET_DEFAULT); 1989 if (!sc->sc_invalid) { 1990 ath_stoprecv(sc, 1); 1991 ath_hal_phydisable(ah); 1992 } else 1993 sc->sc_rxlink = NULL; 1994 ath_beacon_free(sc); /* XXX not needed */ 1995 } 1996 } 1997 1998 #define MAX_TXRX_ITERATIONS 1000 1999 static void 2000 ath_txrx_stop_locked(struct ath_softc *sc) 2001 { 2002 int i = MAX_TXRX_ITERATIONS; 2003 2004 ATH_UNLOCK_ASSERT(sc); 2005 ATH_PCU_LOCK_ASSERT(sc); 2006 2007 /* 2008 * Sleep until all the pending operations have completed. 2009 * 2010 * The caller must ensure that reset has been incremented 2011 * or the pending operations may continue being queued. 2012 */ 2013 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2014 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2015 if (i <= 0) 2016 break; 2017 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2018 i--; 2019 } 2020 2021 if (i <= 0) 2022 device_printf(sc->sc_dev, 2023 "%s: didn't finish after %d iterations\n", 2024 __func__, MAX_TXRX_ITERATIONS); 2025 } 2026 #undef MAX_TXRX_ITERATIONS 2027 2028 #if 0 2029 static void 2030 ath_txrx_stop(struct ath_softc *sc) 2031 { 2032 ATH_UNLOCK_ASSERT(sc); 2033 ATH_PCU_UNLOCK_ASSERT(sc); 2034 2035 ATH_PCU_LOCK(sc); 2036 ath_txrx_stop_locked(sc); 2037 ATH_PCU_UNLOCK(sc); 2038 } 2039 #endif 2040 2041 static void 2042 ath_txrx_start(struct ath_softc *sc) 2043 { 2044 2045 taskqueue_unblock(sc->sc_tq); 2046 } 2047 2048 /* 2049 * Grab the reset lock, and wait around until noone else 2050 * is trying to do anything with it. 2051 * 2052 * This is totally horrible but we can't hold this lock for 2053 * long enough to do TX/RX or we end up with net80211/ip stack 2054 * LORs and eventual deadlock. 2055 * 2056 * "dowait" signals whether to spin, waiting for the reset 2057 * lock count to reach 0. This should (for now) only be used 2058 * during the reset path, as the rest of the code may not 2059 * be locking-reentrant enough to behave correctly. 2060 * 2061 * Another, cleaner way should be found to serialise all of 2062 * these operations. 2063 */ 2064 #define MAX_RESET_ITERATIONS 10 2065 static int 2066 ath_reset_grablock(struct ath_softc *sc, int dowait) 2067 { 2068 int w = 0; 2069 int i = MAX_RESET_ITERATIONS; 2070 2071 ATH_PCU_LOCK_ASSERT(sc); 2072 do { 2073 if (sc->sc_inreset_cnt == 0) { 2074 w = 1; 2075 break; 2076 } 2077 if (dowait == 0) { 2078 w = 0; 2079 break; 2080 } 2081 ATH_PCU_UNLOCK(sc); 2082 pause("ath_reset_grablock", 1); 2083 i--; 2084 ATH_PCU_LOCK(sc); 2085 } while (i > 0); 2086 2087 /* 2088 * We always increment the refcounter, regardless 2089 * of whether we succeeded to get it in an exclusive 2090 * way. 2091 */ 2092 sc->sc_inreset_cnt++; 2093 2094 if (i <= 0) 2095 device_printf(sc->sc_dev, 2096 "%s: didn't finish after %d iterations\n", 2097 __func__, MAX_RESET_ITERATIONS); 2098 2099 if (w == 0) 2100 device_printf(sc->sc_dev, 2101 "%s: warning, recursive reset path!\n", 2102 __func__); 2103 2104 return w; 2105 } 2106 #undef MAX_RESET_ITERATIONS 2107 2108 /* 2109 * XXX TODO: write ath_reset_releaselock 2110 */ 2111 2112 static void 2113 ath_stop(struct ifnet *ifp) 2114 { 2115 struct ath_softc *sc = ifp->if_softc; 2116 2117 ATH_LOCK(sc); 2118 ath_stop_locked(ifp); 2119 ATH_UNLOCK(sc); 2120 } 2121 2122 /* 2123 * Reset the hardware w/o losing operational state. This is 2124 * basically a more efficient way of doing ath_stop, ath_init, 2125 * followed by state transitions to the current 802.11 2126 * operational state. Used to recover from various errors and 2127 * to reset or reload hardware state. 2128 */ 2129 int 2130 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2131 { 2132 struct ath_softc *sc = ifp->if_softc; 2133 struct ieee80211com *ic = ifp->if_l2com; 2134 struct ath_hal *ah = sc->sc_ah; 2135 HAL_STATUS status; 2136 int i; 2137 2138 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2139 2140 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2141 ATH_PCU_UNLOCK_ASSERT(sc); 2142 ATH_UNLOCK_ASSERT(sc); 2143 2144 /* Try to (stop any further TX/RX from occuring */ 2145 taskqueue_block(sc->sc_tq); 2146 2147 ATH_PCU_LOCK(sc); 2148 ath_hal_intrset(ah, 0); /* disable interrupts */ 2149 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2150 if (ath_reset_grablock(sc, 1) == 0) { 2151 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2152 __func__); 2153 } 2154 ATH_PCU_UNLOCK(sc); 2155 2156 /* 2157 * Should now wait for pending TX/RX to complete 2158 * and block future ones from occuring. This needs to be 2159 * done before the TX queue is drained. 2160 */ 2161 ath_draintxq(sc, reset_type); /* stop xmit side */ 2162 2163 /* 2164 * Regardless of whether we're doing a no-loss flush or 2165 * not, stop the PCU and handle what's in the RX queue. 2166 * That way frames aren't dropped which shouldn't be. 2167 */ 2168 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2169 ath_rx_flush(sc); 2170 2171 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2172 /* NB: indicate channel change so we do a full reset */ 2173 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2174 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2175 __func__, status); 2176 sc->sc_diversity = ath_hal_getdiversity(ah); 2177 2178 /* Let DFS at it in case it's a DFS channel */ 2179 ath_dfs_radar_enable(sc, ic->ic_curchan); 2180 2181 if (ath_startrecv(sc) != 0) /* restart recv */ 2182 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2183 /* 2184 * We may be doing a reset in response to an ioctl 2185 * that changes the channel so update any state that 2186 * might change as a result. 2187 */ 2188 ath_chan_change(sc, ic->ic_curchan); 2189 if (sc->sc_beacons) { /* restart beacons */ 2190 #ifdef IEEE80211_SUPPORT_TDMA 2191 if (sc->sc_tdma) 2192 ath_tdma_config(sc, NULL); 2193 else 2194 #endif 2195 ath_beacon_config(sc, NULL); 2196 } 2197 2198 /* 2199 * Release the reset lock and re-enable interrupts here. 2200 * If an interrupt was being processed in ath_intr(), 2201 * it would disable interrupts at this point. So we have 2202 * to atomically enable interrupts and decrement the 2203 * reset counter - this way ath_intr() doesn't end up 2204 * disabling interrupts without a corresponding enable 2205 * in the rest or channel change path. 2206 */ 2207 ATH_PCU_LOCK(sc); 2208 sc->sc_inreset_cnt--; 2209 /* XXX only do this if sc_inreset_cnt == 0? */ 2210 ath_hal_intrset(ah, sc->sc_imask); 2211 ATH_PCU_UNLOCK(sc); 2212 2213 /* 2214 * TX and RX can be started here. If it were started with 2215 * sc_inreset_cnt > 0, the TX and RX path would abort. 2216 * Thus if this is a nested call through the reset or 2217 * channel change code, TX completion will occur but 2218 * RX completion and ath_start / ath_tx_start will not 2219 * run. 2220 */ 2221 2222 /* Restart TX/RX as needed */ 2223 ath_txrx_start(sc); 2224 2225 /* XXX Restart TX completion and pending TX */ 2226 if (reset_type == ATH_RESET_NOLOSS) { 2227 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2228 if (ATH_TXQ_SETUP(sc, i)) { 2229 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2230 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2231 ath_txq_sched(sc, &sc->sc_txq[i]); 2232 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2233 } 2234 } 2235 } 2236 2237 /* 2238 * This may have been set during an ath_start() call which 2239 * set this once it detected a concurrent TX was going on. 2240 * So, clear it. 2241 */ 2242 IF_LOCK(&ifp->if_snd); 2243 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2244 IF_UNLOCK(&ifp->if_snd); 2245 2246 /* Handle any frames in the TX queue */ 2247 /* 2248 * XXX should this be done by the caller, rather than 2249 * ath_reset() ? 2250 */ 2251 ath_tx_kick(sc); /* restart xmit */ 2252 return 0; 2253 } 2254 2255 static int 2256 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2257 { 2258 struct ieee80211com *ic = vap->iv_ic; 2259 struct ifnet *ifp = ic->ic_ifp; 2260 struct ath_softc *sc = ifp->if_softc; 2261 struct ath_hal *ah = sc->sc_ah; 2262 2263 switch (cmd) { 2264 case IEEE80211_IOC_TXPOWER: 2265 /* 2266 * If per-packet TPC is enabled, then we have nothing 2267 * to do; otherwise we need to force the global limit. 2268 * All this can happen directly; no need to reset. 2269 */ 2270 if (!ath_hal_gettpc(ah)) 2271 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2272 return 0; 2273 } 2274 /* XXX? Full or NOLOSS? */ 2275 return ath_reset(ifp, ATH_RESET_FULL); 2276 } 2277 2278 struct ath_buf * 2279 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2280 { 2281 struct ath_buf *bf; 2282 2283 ATH_TXBUF_LOCK_ASSERT(sc); 2284 2285 if (btype == ATH_BUFTYPE_MGMT) 2286 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2287 else 2288 bf = TAILQ_FIRST(&sc->sc_txbuf); 2289 2290 if (bf == NULL) { 2291 sc->sc_stats.ast_tx_getnobuf++; 2292 } else { 2293 if (bf->bf_flags & ATH_BUF_BUSY) { 2294 sc->sc_stats.ast_tx_getbusybuf++; 2295 bf = NULL; 2296 } 2297 } 2298 2299 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2300 if (btype == ATH_BUFTYPE_MGMT) 2301 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2302 else { 2303 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2304 sc->sc_txbuf_cnt--; 2305 2306 /* 2307 * This shuldn't happen; however just to be 2308 * safe print a warning and fudge the txbuf 2309 * count. 2310 */ 2311 if (sc->sc_txbuf_cnt < 0) { 2312 device_printf(sc->sc_dev, 2313 "%s: sc_txbuf_cnt < 0?\n", 2314 __func__); 2315 sc->sc_txbuf_cnt = 0; 2316 } 2317 } 2318 } else 2319 bf = NULL; 2320 2321 if (bf == NULL) { 2322 /* XXX should check which list, mgmt or otherwise */ 2323 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2324 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2325 "out of xmit buffers" : "xmit buffer busy"); 2326 return NULL; 2327 } 2328 2329 /* XXX TODO: should do this at buffer list initialisation */ 2330 /* XXX (then, ensure the buffer has the right flag set) */ 2331 if (btype == ATH_BUFTYPE_MGMT) 2332 bf->bf_flags |= ATH_BUF_MGMT; 2333 else 2334 bf->bf_flags &= (~ATH_BUF_MGMT); 2335 2336 /* Valid bf here; clear some basic fields */ 2337 bf->bf_next = NULL; /* XXX just to be sure */ 2338 bf->bf_last = NULL; /* XXX again, just to be sure */ 2339 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2340 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2341 2342 /* 2343 * Track the descriptor ID only if doing EDMA 2344 */ 2345 if (sc->sc_isedma) { 2346 bf->bf_descid = sc->sc_txbuf_descid; 2347 sc->sc_txbuf_descid++; 2348 } 2349 2350 return bf; 2351 } 2352 2353 /* 2354 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2355 * can't be thrown back on the queue as they could still be 2356 * in use by the hardware. 2357 * 2358 * This duplicates the buffer, or returns NULL. 2359 * 2360 * The descriptor is also copied but the link pointers and 2361 * the DMA segments aren't copied; this frame should thus 2362 * be again passed through the descriptor setup/chain routines 2363 * so the link is correct. 2364 * 2365 * The caller must free the buffer using ath_freebuf(). 2366 * 2367 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2368 * XXX in the TX pathway when retries are needed. 2369 * XXX Figure out how to keep some buffers free, or factor the 2370 * XXX number of busy buffers into the xmit path (ath_start()) 2371 * XXX so we don't over-commit. 2372 */ 2373 struct ath_buf * 2374 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2375 { 2376 struct ath_buf *tbf; 2377 2378 tbf = ath_getbuf(sc, 2379 (bf->bf_flags & ATH_BUF_MGMT) ? 2380 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2381 if (tbf == NULL) 2382 return NULL; /* XXX failure? Why? */ 2383 2384 /* Copy basics */ 2385 tbf->bf_next = NULL; 2386 tbf->bf_nseg = bf->bf_nseg; 2387 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2388 tbf->bf_status = bf->bf_status; 2389 tbf->bf_m = bf->bf_m; 2390 tbf->bf_node = bf->bf_node; 2391 /* will be setup by the chain/setup function */ 2392 tbf->bf_lastds = NULL; 2393 /* for now, last == self */ 2394 tbf->bf_last = tbf; 2395 tbf->bf_comp = bf->bf_comp; 2396 2397 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2398 2399 /* The caller has to re-init the descriptor + links */ 2400 2401 /* Copy state */ 2402 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2403 2404 return tbf; 2405 } 2406 2407 struct ath_buf * 2408 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2409 { 2410 struct ath_buf *bf; 2411 2412 ATH_TXBUF_LOCK(sc); 2413 bf = _ath_getbuf_locked(sc, btype); 2414 /* 2415 * If a mgmt buffer was requested but we're out of those, 2416 * try requesting a normal one. 2417 */ 2418 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2419 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2420 ATH_TXBUF_UNLOCK(sc); 2421 if (bf == NULL) { 2422 struct ifnet *ifp = sc->sc_ifp; 2423 2424 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2425 sc->sc_stats.ast_tx_qstop++; 2426 IF_LOCK(&ifp->if_snd); 2427 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2428 IF_UNLOCK(&ifp->if_snd); 2429 } 2430 return bf; 2431 } 2432 2433 static void 2434 ath_start_queue(struct ifnet *ifp) 2435 { 2436 struct ath_softc *sc = ifp->if_softc; 2437 2438 ath_tx_kick(sc); 2439 } 2440 2441 void 2442 ath_start_task(void *arg, int npending) 2443 { 2444 struct ath_softc *sc = (struct ath_softc *) arg; 2445 struct ifnet *ifp = sc->sc_ifp; 2446 2447 /* XXX is it ok to hold the ATH_LOCK here? */ 2448 ATH_PCU_LOCK(sc); 2449 if (sc->sc_inreset_cnt > 0) { 2450 device_printf(sc->sc_dev, 2451 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2452 ATH_PCU_UNLOCK(sc); 2453 IF_LOCK(&ifp->if_snd); 2454 sc->sc_stats.ast_tx_qstop++; 2455 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2456 IF_UNLOCK(&ifp->if_snd); 2457 return; 2458 } 2459 sc->sc_txstart_cnt++; 2460 ATH_PCU_UNLOCK(sc); 2461 2462 ath_start(sc->sc_ifp); 2463 2464 ATH_PCU_LOCK(sc); 2465 sc->sc_txstart_cnt--; 2466 ATH_PCU_UNLOCK(sc); 2467 } 2468 2469 void 2470 ath_start(struct ifnet *ifp) 2471 { 2472 struct ath_softc *sc = ifp->if_softc; 2473 struct ieee80211_node *ni; 2474 struct ath_buf *bf; 2475 struct mbuf *m, *next; 2476 ath_bufhead frags; 2477 2478 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2479 return; 2480 2481 for (;;) { 2482 ATH_TXBUF_LOCK(sc); 2483 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2484 /* XXX increment counter? */ 2485 ATH_TXBUF_UNLOCK(sc); 2486 IF_LOCK(&ifp->if_snd); 2487 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2488 IF_UNLOCK(&ifp->if_snd); 2489 break; 2490 } 2491 ATH_TXBUF_UNLOCK(sc); 2492 2493 /* 2494 * Grab a TX buffer and associated resources. 2495 */ 2496 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2497 if (bf == NULL) 2498 break; 2499 2500 IFQ_DEQUEUE(&ifp->if_snd, m); 2501 if (m == NULL) { 2502 ATH_TXBUF_LOCK(sc); 2503 ath_returnbuf_head(sc, bf); 2504 ATH_TXBUF_UNLOCK(sc); 2505 break; 2506 } 2507 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2508 /* 2509 * Check for fragmentation. If this frame 2510 * has been broken up verify we have enough 2511 * buffers to send all the fragments so all 2512 * go out or none... 2513 */ 2514 TAILQ_INIT(&frags); 2515 if ((m->m_flags & M_FRAG) && 2516 !ath_txfrag_setup(sc, &frags, m, ni)) { 2517 DPRINTF(sc, ATH_DEBUG_XMIT, 2518 "%s: out of txfrag buffers\n", __func__); 2519 sc->sc_stats.ast_tx_nofrag++; 2520 ifp->if_oerrors++; 2521 ath_freetx(m); 2522 goto bad; 2523 } 2524 ifp->if_opackets++; 2525 nextfrag: 2526 /* 2527 * Pass the frame to the h/w for transmission. 2528 * Fragmented frames have each frag chained together 2529 * with m_nextpkt. We know there are sufficient ath_buf's 2530 * to send all the frags because of work done by 2531 * ath_txfrag_setup. We leave m_nextpkt set while 2532 * calling ath_tx_start so it can use it to extend the 2533 * the tx duration to cover the subsequent frag and 2534 * so it can reclaim all the mbufs in case of an error; 2535 * ath_tx_start clears m_nextpkt once it commits to 2536 * handing the frame to the hardware. 2537 */ 2538 next = m->m_nextpkt; 2539 if (ath_tx_start(sc, ni, bf, m)) { 2540 bad: 2541 ifp->if_oerrors++; 2542 reclaim: 2543 bf->bf_m = NULL; 2544 bf->bf_node = NULL; 2545 ATH_TXBUF_LOCK(sc); 2546 ath_returnbuf_head(sc, bf); 2547 ath_txfrag_cleanup(sc, &frags, ni); 2548 ATH_TXBUF_UNLOCK(sc); 2549 if (ni != NULL) 2550 ieee80211_free_node(ni); 2551 continue; 2552 } 2553 if (next != NULL) { 2554 /* 2555 * Beware of state changing between frags. 2556 * XXX check sta power-save state? 2557 */ 2558 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2559 DPRINTF(sc, ATH_DEBUG_XMIT, 2560 "%s: flush fragmented packet, state %s\n", 2561 __func__, 2562 ieee80211_state_name[ni->ni_vap->iv_state]); 2563 ath_freetx(next); 2564 goto reclaim; 2565 } 2566 m = next; 2567 bf = TAILQ_FIRST(&frags); 2568 KASSERT(bf != NULL, ("no buf for txfrag")); 2569 TAILQ_REMOVE(&frags, bf, bf_list); 2570 goto nextfrag; 2571 } 2572 2573 sc->sc_wd_timer = 5; 2574 } 2575 } 2576 2577 static int 2578 ath_media_change(struct ifnet *ifp) 2579 { 2580 int error = ieee80211_media_change(ifp); 2581 /* NB: only the fixed rate can change and that doesn't need a reset */ 2582 return (error == ENETRESET ? 0 : error); 2583 } 2584 2585 /* 2586 * Block/unblock tx+rx processing while a key change is done. 2587 * We assume the caller serializes key management operations 2588 * so we only need to worry about synchronization with other 2589 * uses that originate in the driver. 2590 */ 2591 static void 2592 ath_key_update_begin(struct ieee80211vap *vap) 2593 { 2594 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2595 struct ath_softc *sc = ifp->if_softc; 2596 2597 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2598 taskqueue_block(sc->sc_tq); 2599 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2600 } 2601 2602 static void 2603 ath_key_update_end(struct ieee80211vap *vap) 2604 { 2605 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2606 struct ath_softc *sc = ifp->if_softc; 2607 2608 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2609 IF_UNLOCK(&ifp->if_snd); 2610 taskqueue_unblock(sc->sc_tq); 2611 } 2612 2613 static void 2614 ath_update_promisc(struct ifnet *ifp) 2615 { 2616 struct ath_softc *sc = ifp->if_softc; 2617 u_int32_t rfilt; 2618 2619 /* configure rx filter */ 2620 rfilt = ath_calcrxfilter(sc); 2621 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2622 2623 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2624 } 2625 2626 static void 2627 ath_update_mcast(struct ifnet *ifp) 2628 { 2629 struct ath_softc *sc = ifp->if_softc; 2630 u_int32_t mfilt[2]; 2631 2632 /* calculate and install multicast filter */ 2633 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2634 struct ifmultiaddr *ifma; 2635 /* 2636 * Merge multicast addresses to form the hardware filter. 2637 */ 2638 mfilt[0] = mfilt[1] = 0; 2639 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2640 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2641 caddr_t dl; 2642 u_int32_t val; 2643 u_int8_t pos; 2644 2645 /* calculate XOR of eight 6bit values */ 2646 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2647 val = LE_READ_4(dl + 0); 2648 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2649 val = LE_READ_4(dl + 3); 2650 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2651 pos &= 0x3f; 2652 mfilt[pos / 32] |= (1 << (pos % 32)); 2653 } 2654 if_maddr_runlock(ifp); 2655 } else 2656 mfilt[0] = mfilt[1] = ~0; 2657 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2658 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2659 __func__, mfilt[0], mfilt[1]); 2660 } 2661 2662 void 2663 ath_mode_init(struct ath_softc *sc) 2664 { 2665 struct ifnet *ifp = sc->sc_ifp; 2666 struct ath_hal *ah = sc->sc_ah; 2667 u_int32_t rfilt; 2668 2669 /* configure rx filter */ 2670 rfilt = ath_calcrxfilter(sc); 2671 ath_hal_setrxfilter(ah, rfilt); 2672 2673 /* configure operational mode */ 2674 ath_hal_setopmode(ah); 2675 2676 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2677 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2678 __func__, 2679 ah, 2680 ifp, 2681 (ifp == NULL) ? NULL : ifp->if_addr); 2682 2683 /* handle any link-level address change */ 2684 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2685 2686 /* calculate and install multicast filter */ 2687 ath_update_mcast(ifp); 2688 } 2689 2690 /* 2691 * Set the slot time based on the current setting. 2692 */ 2693 void 2694 ath_setslottime(struct ath_softc *sc) 2695 { 2696 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2697 struct ath_hal *ah = sc->sc_ah; 2698 u_int usec; 2699 2700 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2701 usec = 13; 2702 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2703 usec = 21; 2704 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2705 /* honor short/long slot time only in 11g */ 2706 /* XXX shouldn't honor on pure g or turbo g channel */ 2707 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2708 usec = HAL_SLOT_TIME_9; 2709 else 2710 usec = HAL_SLOT_TIME_20; 2711 } else 2712 usec = HAL_SLOT_TIME_9; 2713 2714 DPRINTF(sc, ATH_DEBUG_RESET, 2715 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2716 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2717 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2718 2719 ath_hal_setslottime(ah, usec); 2720 sc->sc_updateslot = OK; 2721 } 2722 2723 /* 2724 * Callback from the 802.11 layer to update the 2725 * slot time based on the current setting. 2726 */ 2727 static void 2728 ath_updateslot(struct ifnet *ifp) 2729 { 2730 struct ath_softc *sc = ifp->if_softc; 2731 struct ieee80211com *ic = ifp->if_l2com; 2732 2733 /* 2734 * When not coordinating the BSS, change the hardware 2735 * immediately. For other operation we defer the change 2736 * until beacon updates have propagated to the stations. 2737 */ 2738 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2739 ic->ic_opmode == IEEE80211_M_MBSS) 2740 sc->sc_updateslot = UPDATE; 2741 else 2742 ath_setslottime(sc); 2743 } 2744 2745 /* 2746 * Append the contents of src to dst; both queues 2747 * are assumed to be locked. 2748 */ 2749 void 2750 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2751 { 2752 2753 ATH_TXQ_LOCK_ASSERT(dst); 2754 ATH_TXQ_LOCK_ASSERT(src); 2755 2756 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2757 dst->axq_link = src->axq_link; 2758 src->axq_link = NULL; 2759 dst->axq_depth += src->axq_depth; 2760 dst->axq_aggr_depth += src->axq_aggr_depth; 2761 src->axq_depth = 0; 2762 src->axq_aggr_depth = 0; 2763 } 2764 2765 /* 2766 * Reset the hardware, with no loss. 2767 * 2768 * This can't be used for a general case reset. 2769 */ 2770 static void 2771 ath_reset_proc(void *arg, int pending) 2772 { 2773 struct ath_softc *sc = arg; 2774 struct ifnet *ifp = sc->sc_ifp; 2775 2776 #if 0 2777 if_printf(ifp, "%s: resetting\n", __func__); 2778 #endif 2779 ath_reset(ifp, ATH_RESET_NOLOSS); 2780 } 2781 2782 /* 2783 * Reset the hardware after detecting beacons have stopped. 2784 */ 2785 static void 2786 ath_bstuck_proc(void *arg, int pending) 2787 { 2788 struct ath_softc *sc = arg; 2789 struct ifnet *ifp = sc->sc_ifp; 2790 uint32_t hangs = 0; 2791 2792 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2793 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2794 2795 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2796 sc->sc_bmisscount); 2797 sc->sc_stats.ast_bstuck++; 2798 /* 2799 * This assumes that there's no simultaneous channel mode change 2800 * occuring. 2801 */ 2802 ath_reset(ifp, ATH_RESET_NOLOSS); 2803 } 2804 2805 static void 2806 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2807 { 2808 bus_addr_t *paddr = (bus_addr_t*) arg; 2809 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2810 *paddr = segs->ds_addr; 2811 } 2812 2813 /* 2814 * Allocate the descriptors and appropriate DMA tag/setup. 2815 * 2816 * For some situations (eg EDMA TX completion), there isn't a requirement 2817 * for the ath_buf entries to be allocated. 2818 */ 2819 int 2820 ath_descdma_alloc_desc(struct ath_softc *sc, 2821 struct ath_descdma *dd, ath_bufhead *head, 2822 const char *name, int ds_size, int ndesc) 2823 { 2824 #define DS2PHYS(_dd, _ds) \ 2825 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2826 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2827 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2828 struct ifnet *ifp = sc->sc_ifp; 2829 int error; 2830 2831 dd->dd_descsize = ds_size; 2832 2833 DPRINTF(sc, ATH_DEBUG_RESET, 2834 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2835 __func__, name, ndesc, dd->dd_descsize); 2836 2837 dd->dd_name = name; 2838 dd->dd_desc_len = dd->dd_descsize * ndesc; 2839 2840 /* 2841 * Merlin work-around: 2842 * Descriptors that cross the 4KB boundary can't be used. 2843 * Assume one skipped descriptor per 4KB page. 2844 */ 2845 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2846 int numpages = dd->dd_desc_len / 4096; 2847 dd->dd_desc_len += ds_size * numpages; 2848 } 2849 2850 /* 2851 * Setup DMA descriptor area. 2852 */ 2853 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2854 PAGE_SIZE, 0, /* alignment, bounds */ 2855 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2856 BUS_SPACE_MAXADDR, /* highaddr */ 2857 NULL, NULL, /* filter, filterarg */ 2858 dd->dd_desc_len, /* maxsize */ 2859 1, /* nsegments */ 2860 dd->dd_desc_len, /* maxsegsize */ 2861 BUS_DMA_ALLOCNOW, /* flags */ 2862 NULL, /* lockfunc */ 2863 NULL, /* lockarg */ 2864 &dd->dd_dmat); 2865 if (error != 0) { 2866 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2867 return error; 2868 } 2869 2870 /* allocate descriptors */ 2871 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2872 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2873 &dd->dd_dmamap); 2874 if (error != 0) { 2875 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2876 "error %u\n", ndesc, dd->dd_name, error); 2877 goto fail1; 2878 } 2879 2880 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2881 dd->dd_desc, dd->dd_desc_len, 2882 ath_load_cb, &dd->dd_desc_paddr, 2883 BUS_DMA_NOWAIT); 2884 if (error != 0) { 2885 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2886 dd->dd_name, error); 2887 goto fail2; 2888 } 2889 2890 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2891 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2892 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2893 /*XXX*/ (u_long) dd->dd_desc_len); 2894 2895 return (0); 2896 2897 fail2: 2898 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2899 fail1: 2900 bus_dma_tag_destroy(dd->dd_dmat); 2901 memset(dd, 0, sizeof(*dd)); 2902 return error; 2903 #undef DS2PHYS 2904 #undef ATH_DESC_4KB_BOUND_CHECK 2905 } 2906 2907 int 2908 ath_descdma_setup(struct ath_softc *sc, 2909 struct ath_descdma *dd, ath_bufhead *head, 2910 const char *name, int ds_size, int nbuf, int ndesc) 2911 { 2912 #define DS2PHYS(_dd, _ds) \ 2913 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2914 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2915 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2916 struct ifnet *ifp = sc->sc_ifp; 2917 uint8_t *ds; 2918 struct ath_buf *bf; 2919 int i, bsize, error; 2920 2921 /* Allocate descriptors */ 2922 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 2923 nbuf * ndesc); 2924 2925 /* Assume any errors during allocation were dealt with */ 2926 if (error != 0) { 2927 return (error); 2928 } 2929 2930 ds = (uint8_t *) dd->dd_desc; 2931 2932 /* allocate rx buffers */ 2933 bsize = sizeof(struct ath_buf) * nbuf; 2934 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2935 if (bf == NULL) { 2936 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2937 dd->dd_name, bsize); 2938 goto fail3; 2939 } 2940 dd->dd_bufptr = bf; 2941 2942 TAILQ_INIT(head); 2943 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 2944 bf->bf_desc = (struct ath_desc *) ds; 2945 bf->bf_daddr = DS2PHYS(dd, ds); 2946 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2947 /* 2948 * Merlin WAR: Skip descriptor addresses which 2949 * cause 4KB boundary crossing along any point 2950 * in the descriptor. 2951 */ 2952 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 2953 dd->dd_descsize)) { 2954 /* Start at the next page */ 2955 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 2956 bf->bf_desc = (struct ath_desc *) ds; 2957 bf->bf_daddr = DS2PHYS(dd, ds); 2958 } 2959 } 2960 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2961 &bf->bf_dmamap); 2962 if (error != 0) { 2963 if_printf(ifp, "unable to create dmamap for %s " 2964 "buffer %u, error %u\n", dd->dd_name, i, error); 2965 ath_descdma_cleanup(sc, dd, head); 2966 return error; 2967 } 2968 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 2969 TAILQ_INSERT_TAIL(head, bf, bf_list); 2970 } 2971 2972 /* 2973 * XXX TODO: ensure that ds doesn't overflow the descriptor 2974 * allocation otherwise weird stuff will occur and crash your 2975 * machine. 2976 */ 2977 return 0; 2978 /* XXX this should likely just call ath_descdma_cleanup() */ 2979 fail3: 2980 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2981 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2982 bus_dma_tag_destroy(dd->dd_dmat); 2983 memset(dd, 0, sizeof(*dd)); 2984 return error; 2985 #undef DS2PHYS 2986 #undef ATH_DESC_4KB_BOUND_CHECK 2987 } 2988 2989 /* 2990 * Allocate ath_buf entries but no descriptor contents. 2991 * 2992 * This is for RX EDMA where the descriptors are the header part of 2993 * the RX buffer. 2994 */ 2995 int 2996 ath_descdma_setup_rx_edma(struct ath_softc *sc, 2997 struct ath_descdma *dd, ath_bufhead *head, 2998 const char *name, int nbuf, int rx_status_len) 2999 { 3000 struct ifnet *ifp = sc->sc_ifp; 3001 struct ath_buf *bf; 3002 int i, bsize, error; 3003 3004 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3005 __func__, name, nbuf); 3006 3007 dd->dd_name = name; 3008 /* 3009 * This is (mostly) purely for show. We're not allocating any actual 3010 * descriptors here as EDMA RX has the descriptor be part 3011 * of the RX buffer. 3012 * 3013 * However, dd_desc_len is used by ath_descdma_free() to determine 3014 * whether we have already freed this DMA mapping. 3015 */ 3016 dd->dd_desc_len = rx_status_len * nbuf; 3017 dd->dd_descsize = rx_status_len; 3018 3019 /* allocate rx buffers */ 3020 bsize = sizeof(struct ath_buf) * nbuf; 3021 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3022 if (bf == NULL) { 3023 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3024 dd->dd_name, bsize); 3025 error = ENOMEM; 3026 goto fail3; 3027 } 3028 dd->dd_bufptr = bf; 3029 3030 TAILQ_INIT(head); 3031 for (i = 0; i < nbuf; i++, bf++) { 3032 bf->bf_desc = NULL; 3033 bf->bf_daddr = 0; 3034 bf->bf_lastds = NULL; /* Just an initial value */ 3035 3036 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3037 &bf->bf_dmamap); 3038 if (error != 0) { 3039 if_printf(ifp, "unable to create dmamap for %s " 3040 "buffer %u, error %u\n", dd->dd_name, i, error); 3041 ath_descdma_cleanup(sc, dd, head); 3042 return error; 3043 } 3044 TAILQ_INSERT_TAIL(head, bf, bf_list); 3045 } 3046 return 0; 3047 fail3: 3048 memset(dd, 0, sizeof(*dd)); 3049 return error; 3050 } 3051 3052 void 3053 ath_descdma_cleanup(struct ath_softc *sc, 3054 struct ath_descdma *dd, ath_bufhead *head) 3055 { 3056 struct ath_buf *bf; 3057 struct ieee80211_node *ni; 3058 3059 if (dd->dd_dmamap != 0) { 3060 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3061 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3062 bus_dma_tag_destroy(dd->dd_dmat); 3063 } 3064 3065 if (head != NULL) { 3066 TAILQ_FOREACH(bf, head, bf_list) { 3067 if (bf->bf_m) { 3068 m_freem(bf->bf_m); 3069 bf->bf_m = NULL; 3070 } 3071 if (bf->bf_dmamap != NULL) { 3072 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3073 bf->bf_dmamap = NULL; 3074 } 3075 ni = bf->bf_node; 3076 bf->bf_node = NULL; 3077 if (ni != NULL) { 3078 /* 3079 * Reclaim node reference. 3080 */ 3081 ieee80211_free_node(ni); 3082 } 3083 } 3084 } 3085 3086 if (head != NULL) 3087 TAILQ_INIT(head); 3088 3089 if (dd->dd_bufptr != NULL) 3090 free(dd->dd_bufptr, M_ATHDEV); 3091 memset(dd, 0, sizeof(*dd)); 3092 } 3093 3094 static int 3095 ath_desc_alloc(struct ath_softc *sc) 3096 { 3097 int error; 3098 3099 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3100 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3101 if (error != 0) { 3102 return error; 3103 } 3104 sc->sc_txbuf_cnt = ath_txbuf; 3105 3106 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3107 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3108 ATH_TXDESC); 3109 if (error != 0) { 3110 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3111 return error; 3112 } 3113 3114 /* 3115 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3116 * flag doesn't have to be set in ath_getbuf_locked(). 3117 */ 3118 3119 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3120 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3121 if (error != 0) { 3122 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3123 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3124 &sc->sc_txbuf_mgmt); 3125 return error; 3126 } 3127 return 0; 3128 } 3129 3130 static void 3131 ath_desc_free(struct ath_softc *sc) 3132 { 3133 3134 if (sc->sc_bdma.dd_desc_len != 0) 3135 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3136 if (sc->sc_txdma.dd_desc_len != 0) 3137 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3138 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3139 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3140 &sc->sc_txbuf_mgmt); 3141 } 3142 3143 static struct ieee80211_node * 3144 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3145 { 3146 struct ieee80211com *ic = vap->iv_ic; 3147 struct ath_softc *sc = ic->ic_ifp->if_softc; 3148 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3149 struct ath_node *an; 3150 3151 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3152 if (an == NULL) { 3153 /* XXX stat+msg */ 3154 return NULL; 3155 } 3156 ath_rate_node_init(sc, an); 3157 3158 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3159 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3160 device_get_nameunit(sc->sc_dev), an); 3161 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3162 3163 /* XXX setup ath_tid */ 3164 ath_tx_tid_init(sc, an); 3165 3166 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3167 return &an->an_node; 3168 } 3169 3170 static void 3171 ath_node_cleanup(struct ieee80211_node *ni) 3172 { 3173 struct ieee80211com *ic = ni->ni_ic; 3174 struct ath_softc *sc = ic->ic_ifp->if_softc; 3175 3176 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3177 ath_tx_node_flush(sc, ATH_NODE(ni)); 3178 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3179 sc->sc_node_cleanup(ni); 3180 } 3181 3182 static void 3183 ath_node_free(struct ieee80211_node *ni) 3184 { 3185 struct ieee80211com *ic = ni->ni_ic; 3186 struct ath_softc *sc = ic->ic_ifp->if_softc; 3187 3188 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3189 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3190 sc->sc_node_free(ni); 3191 } 3192 3193 static void 3194 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3195 { 3196 struct ieee80211com *ic = ni->ni_ic; 3197 struct ath_softc *sc = ic->ic_ifp->if_softc; 3198 struct ath_hal *ah = sc->sc_ah; 3199 3200 *rssi = ic->ic_node_getrssi(ni); 3201 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3202 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3203 else 3204 *noise = -95; /* nominally correct */ 3205 } 3206 3207 /* 3208 * Set the default antenna. 3209 */ 3210 void 3211 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3212 { 3213 struct ath_hal *ah = sc->sc_ah; 3214 3215 /* XXX block beacon interrupts */ 3216 ath_hal_setdefantenna(ah, antenna); 3217 if (sc->sc_defant != antenna) 3218 sc->sc_stats.ast_ant_defswitch++; 3219 sc->sc_defant = antenna; 3220 sc->sc_rxotherant = 0; 3221 } 3222 3223 static void 3224 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3225 { 3226 txq->axq_qnum = qnum; 3227 txq->axq_ac = 0; 3228 txq->axq_depth = 0; 3229 txq->axq_aggr_depth = 0; 3230 txq->axq_intrcnt = 0; 3231 txq->axq_link = NULL; 3232 txq->axq_softc = sc; 3233 TAILQ_INIT(&txq->axq_q); 3234 TAILQ_INIT(&txq->axq_tidq); 3235 ATH_TXQ_LOCK_INIT(sc, txq); 3236 } 3237 3238 /* 3239 * Setup a h/w transmit queue. 3240 */ 3241 static struct ath_txq * 3242 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3243 { 3244 #define N(a) (sizeof(a)/sizeof(a[0])) 3245 struct ath_hal *ah = sc->sc_ah; 3246 HAL_TXQ_INFO qi; 3247 int qnum; 3248 3249 memset(&qi, 0, sizeof(qi)); 3250 qi.tqi_subtype = subtype; 3251 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3252 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3253 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3254 /* 3255 * Enable interrupts only for EOL and DESC conditions. 3256 * We mark tx descriptors to receive a DESC interrupt 3257 * when a tx queue gets deep; otherwise waiting for the 3258 * EOL to reap descriptors. Note that this is done to 3259 * reduce interrupt load and this only defers reaping 3260 * descriptors, never transmitting frames. Aside from 3261 * reducing interrupts this also permits more concurrency. 3262 * The only potential downside is if the tx queue backs 3263 * up in which case the top half of the kernel may backup 3264 * due to a lack of tx descriptors. 3265 */ 3266 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3267 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3268 if (qnum == -1) { 3269 /* 3270 * NB: don't print a message, this happens 3271 * normally on parts with too few tx queues 3272 */ 3273 return NULL; 3274 } 3275 if (qnum >= N(sc->sc_txq)) { 3276 device_printf(sc->sc_dev, 3277 "hal qnum %u out of range, max %zu!\n", 3278 qnum, N(sc->sc_txq)); 3279 ath_hal_releasetxqueue(ah, qnum); 3280 return NULL; 3281 } 3282 if (!ATH_TXQ_SETUP(sc, qnum)) { 3283 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3284 sc->sc_txqsetup |= 1<<qnum; 3285 } 3286 return &sc->sc_txq[qnum]; 3287 #undef N 3288 } 3289 3290 /* 3291 * Setup a hardware data transmit queue for the specified 3292 * access control. The hal may not support all requested 3293 * queues in which case it will return a reference to a 3294 * previously setup queue. We record the mapping from ac's 3295 * to h/w queues for use by ath_tx_start and also track 3296 * the set of h/w queues being used to optimize work in the 3297 * transmit interrupt handler and related routines. 3298 */ 3299 static int 3300 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3301 { 3302 #define N(a) (sizeof(a)/sizeof(a[0])) 3303 struct ath_txq *txq; 3304 3305 if (ac >= N(sc->sc_ac2q)) { 3306 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3307 ac, N(sc->sc_ac2q)); 3308 return 0; 3309 } 3310 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3311 if (txq != NULL) { 3312 txq->axq_ac = ac; 3313 sc->sc_ac2q[ac] = txq; 3314 return 1; 3315 } else 3316 return 0; 3317 #undef N 3318 } 3319 3320 /* 3321 * Update WME parameters for a transmit queue. 3322 */ 3323 static int 3324 ath_txq_update(struct ath_softc *sc, int ac) 3325 { 3326 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3327 #define ATH_TXOP_TO_US(v) (v<<5) 3328 struct ifnet *ifp = sc->sc_ifp; 3329 struct ieee80211com *ic = ifp->if_l2com; 3330 struct ath_txq *txq = sc->sc_ac2q[ac]; 3331 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3332 struct ath_hal *ah = sc->sc_ah; 3333 HAL_TXQ_INFO qi; 3334 3335 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3336 #ifdef IEEE80211_SUPPORT_TDMA 3337 if (sc->sc_tdma) { 3338 /* 3339 * AIFS is zero so there's no pre-transmit wait. The 3340 * burst time defines the slot duration and is configured 3341 * through net80211. The QCU is setup to not do post-xmit 3342 * back off, lockout all lower-priority QCU's, and fire 3343 * off the DMA beacon alert timer which is setup based 3344 * on the slot configuration. 3345 */ 3346 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3347 | HAL_TXQ_TXERRINT_ENABLE 3348 | HAL_TXQ_TXURNINT_ENABLE 3349 | HAL_TXQ_TXEOLINT_ENABLE 3350 | HAL_TXQ_DBA_GATED 3351 | HAL_TXQ_BACKOFF_DISABLE 3352 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3353 ; 3354 qi.tqi_aifs = 0; 3355 /* XXX +dbaprep? */ 3356 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3357 qi.tqi_burstTime = qi.tqi_readyTime; 3358 } else { 3359 #endif 3360 /* 3361 * XXX shouldn't this just use the default flags 3362 * used in the previous queue setup? 3363 */ 3364 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3365 | HAL_TXQ_TXERRINT_ENABLE 3366 | HAL_TXQ_TXDESCINT_ENABLE 3367 | HAL_TXQ_TXURNINT_ENABLE 3368 | HAL_TXQ_TXEOLINT_ENABLE 3369 ; 3370 qi.tqi_aifs = wmep->wmep_aifsn; 3371 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3372 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3373 qi.tqi_readyTime = 0; 3374 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3375 #ifdef IEEE80211_SUPPORT_TDMA 3376 } 3377 #endif 3378 3379 DPRINTF(sc, ATH_DEBUG_RESET, 3380 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3381 __func__, txq->axq_qnum, qi.tqi_qflags, 3382 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3383 3384 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3385 if_printf(ifp, "unable to update hardware queue " 3386 "parameters for %s traffic!\n", 3387 ieee80211_wme_acnames[ac]); 3388 return 0; 3389 } else { 3390 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3391 return 1; 3392 } 3393 #undef ATH_TXOP_TO_US 3394 #undef ATH_EXPONENT_TO_VALUE 3395 } 3396 3397 /* 3398 * Callback from the 802.11 layer to update WME parameters. 3399 */ 3400 int 3401 ath_wme_update(struct ieee80211com *ic) 3402 { 3403 struct ath_softc *sc = ic->ic_ifp->if_softc; 3404 3405 return !ath_txq_update(sc, WME_AC_BE) || 3406 !ath_txq_update(sc, WME_AC_BK) || 3407 !ath_txq_update(sc, WME_AC_VI) || 3408 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3409 } 3410 3411 /* 3412 * Reclaim resources for a setup queue. 3413 */ 3414 static void 3415 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3416 { 3417 3418 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3419 ATH_TXQ_LOCK_DESTROY(txq); 3420 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3421 } 3422 3423 /* 3424 * Reclaim all tx queue resources. 3425 */ 3426 static void 3427 ath_tx_cleanup(struct ath_softc *sc) 3428 { 3429 int i; 3430 3431 ATH_TXBUF_LOCK_DESTROY(sc); 3432 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3433 if (ATH_TXQ_SETUP(sc, i)) 3434 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3435 } 3436 3437 /* 3438 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3439 * using the current rates in sc_rixmap. 3440 */ 3441 int 3442 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3443 { 3444 int rix = sc->sc_rixmap[rate]; 3445 /* NB: return lowest rix for invalid rate */ 3446 return (rix == 0xff ? 0 : rix); 3447 } 3448 3449 static void 3450 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3451 struct ath_buf *bf) 3452 { 3453 struct ieee80211_node *ni = bf->bf_node; 3454 struct ifnet *ifp = sc->sc_ifp; 3455 struct ieee80211com *ic = ifp->if_l2com; 3456 int sr, lr, pri; 3457 3458 if (ts->ts_status == 0) { 3459 u_int8_t txant = ts->ts_antenna; 3460 sc->sc_stats.ast_ant_tx[txant]++; 3461 sc->sc_ant_tx[txant]++; 3462 if (ts->ts_finaltsi != 0) 3463 sc->sc_stats.ast_tx_altrate++; 3464 pri = M_WME_GETAC(bf->bf_m); 3465 if (pri >= WME_AC_VO) 3466 ic->ic_wme.wme_hipri_traffic++; 3467 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3468 ni->ni_inact = ni->ni_inact_reload; 3469 } else { 3470 if (ts->ts_status & HAL_TXERR_XRETRY) 3471 sc->sc_stats.ast_tx_xretries++; 3472 if (ts->ts_status & HAL_TXERR_FIFO) 3473 sc->sc_stats.ast_tx_fifoerr++; 3474 if (ts->ts_status & HAL_TXERR_FILT) 3475 sc->sc_stats.ast_tx_filtered++; 3476 if (ts->ts_status & HAL_TXERR_XTXOP) 3477 sc->sc_stats.ast_tx_xtxop++; 3478 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3479 sc->sc_stats.ast_tx_timerexpired++; 3480 3481 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3482 sc->sc_stats.ast_tx_data_underrun++; 3483 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3484 sc->sc_stats.ast_tx_delim_underrun++; 3485 3486 if (bf->bf_m->m_flags & M_FF) 3487 sc->sc_stats.ast_ff_txerr++; 3488 } 3489 /* XXX when is this valid? */ 3490 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3491 sc->sc_stats.ast_tx_desccfgerr++; 3492 3493 sr = ts->ts_shortretry; 3494 lr = ts->ts_longretry; 3495 sc->sc_stats.ast_tx_shortretry += sr; 3496 sc->sc_stats.ast_tx_longretry += lr; 3497 3498 } 3499 3500 /* 3501 * The default completion. If fail is 1, this means 3502 * "please don't retry the frame, and just return -1 status 3503 * to the net80211 stack. 3504 */ 3505 void 3506 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3507 { 3508 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3509 int st; 3510 3511 if (fail == 1) 3512 st = -1; 3513 else 3514 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3515 ts->ts_status : HAL_TXERR_XRETRY; 3516 3517 if (bf->bf_state.bfs_dobaw) 3518 device_printf(sc->sc_dev, 3519 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3520 __func__, 3521 bf, 3522 SEQNO(bf->bf_state.bfs_seqno)); 3523 if (bf->bf_next != NULL) 3524 device_printf(sc->sc_dev, 3525 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3526 __func__, 3527 bf, 3528 SEQNO(bf->bf_state.bfs_seqno)); 3529 3530 /* 3531 * Do any tx complete callback. Note this must 3532 * be done before releasing the node reference. 3533 * This will free the mbuf, release the net80211 3534 * node and recycle the ath_buf. 3535 */ 3536 ath_tx_freebuf(sc, bf, st); 3537 } 3538 3539 /* 3540 * Update rate control with the given completion status. 3541 */ 3542 void 3543 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3544 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3545 int nframes, int nbad) 3546 { 3547 struct ath_node *an; 3548 3549 /* Only for unicast frames */ 3550 if (ni == NULL) 3551 return; 3552 3553 an = ATH_NODE(ni); 3554 3555 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3556 ATH_NODE_LOCK(an); 3557 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3558 ATH_NODE_UNLOCK(an); 3559 } 3560 } 3561 3562 /* 3563 * Update the busy status of the last frame on the free list. 3564 * When doing TDMA, the busy flag tracks whether the hardware 3565 * currently points to this buffer or not, and thus gated DMA 3566 * may restart by re-reading the last descriptor in this 3567 * buffer. 3568 * 3569 * This should be called in the completion function once one 3570 * of the buffers has been used. 3571 */ 3572 static void 3573 ath_tx_update_busy(struct ath_softc *sc) 3574 { 3575 struct ath_buf *last; 3576 3577 /* 3578 * Since the last frame may still be marked 3579 * as ATH_BUF_BUSY, unmark it here before 3580 * finishing the frame processing. 3581 * Since we've completed a frame (aggregate 3582 * or otherwise), the hardware has moved on 3583 * and is no longer referencing the previous 3584 * descriptor. 3585 */ 3586 ATH_TXBUF_LOCK_ASSERT(sc); 3587 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3588 if (last != NULL) 3589 last->bf_flags &= ~ATH_BUF_BUSY; 3590 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3591 if (last != NULL) 3592 last->bf_flags &= ~ATH_BUF_BUSY; 3593 } 3594 3595 /* 3596 * Process the completion of the given buffer. 3597 * 3598 * This calls the rate control update and then the buffer completion. 3599 * This will either free the buffer or requeue it. In any case, the 3600 * bf pointer should be treated as invalid after this function is called. 3601 */ 3602 void 3603 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3604 struct ath_tx_status *ts, struct ath_buf *bf) 3605 { 3606 struct ieee80211_node *ni = bf->bf_node; 3607 struct ath_node *an = NULL; 3608 3609 ATH_TXQ_UNLOCK_ASSERT(txq); 3610 3611 /* If unicast frame, update general statistics */ 3612 if (ni != NULL) { 3613 an = ATH_NODE(ni); 3614 /* update statistics */ 3615 ath_tx_update_stats(sc, ts, bf); 3616 } 3617 3618 /* 3619 * Call the completion handler. 3620 * The completion handler is responsible for 3621 * calling the rate control code. 3622 * 3623 * Frames with no completion handler get the 3624 * rate control code called here. 3625 */ 3626 if (bf->bf_comp == NULL) { 3627 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3628 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3629 /* 3630 * XXX assume this isn't an aggregate 3631 * frame. 3632 */ 3633 ath_tx_update_ratectrl(sc, ni, 3634 bf->bf_state.bfs_rc, ts, 3635 bf->bf_state.bfs_pktlen, 1, 3636 (ts->ts_status == 0 ? 0 : 1)); 3637 } 3638 ath_tx_default_comp(sc, bf, 0); 3639 } else 3640 bf->bf_comp(sc, bf, 0); 3641 } 3642 3643 3644 3645 /* 3646 * Process completed xmit descriptors from the specified queue. 3647 * Kick the packet scheduler if needed. This can occur from this 3648 * particular task. 3649 */ 3650 static int 3651 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3652 { 3653 struct ath_hal *ah = sc->sc_ah; 3654 struct ath_buf *bf; 3655 struct ath_desc *ds; 3656 struct ath_tx_status *ts; 3657 struct ieee80211_node *ni; 3658 #ifdef IEEE80211_SUPPORT_SUPERG 3659 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3660 #endif /* IEEE80211_SUPPORT_SUPERG */ 3661 int nacked; 3662 HAL_STATUS status; 3663 3664 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3665 __func__, txq->axq_qnum, 3666 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3667 txq->axq_link); 3668 3669 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3670 "ath_tx_processq: txq=%u head %p link %p depth %p", 3671 txq->axq_qnum, 3672 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3673 txq->axq_link, 3674 txq->axq_depth); 3675 3676 nacked = 0; 3677 for (;;) { 3678 ATH_TXQ_LOCK(txq); 3679 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3680 bf = TAILQ_FIRST(&txq->axq_q); 3681 if (bf == NULL) { 3682 ATH_TXQ_UNLOCK(txq); 3683 break; 3684 } 3685 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3686 ts = &bf->bf_status.ds_txstat; 3687 3688 status = ath_hal_txprocdesc(ah, ds, ts); 3689 #ifdef ATH_DEBUG 3690 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3691 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3692 status == HAL_OK); 3693 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3694 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3695 status == HAL_OK); 3696 #endif 3697 3698 if (status == HAL_EINPROGRESS) { 3699 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3700 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3701 txq->axq_qnum, bf, ds); 3702 ATH_TXQ_UNLOCK(txq); 3703 break; 3704 } 3705 ATH_TXQ_REMOVE(txq, bf, bf_list); 3706 #ifdef IEEE80211_SUPPORT_TDMA 3707 if (txq->axq_depth > 0) { 3708 /* 3709 * More frames follow. Mark the buffer busy 3710 * so it's not re-used while the hardware may 3711 * still re-read the link field in the descriptor. 3712 * 3713 * Use the last buffer in an aggregate as that 3714 * is where the hardware may be - intermediate 3715 * descriptors won't be "busy". 3716 */ 3717 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3718 } else 3719 #else 3720 if (txq->axq_depth == 0) 3721 #endif 3722 txq->axq_link = NULL; 3723 if (bf->bf_state.bfs_aggr) 3724 txq->axq_aggr_depth--; 3725 3726 ni = bf->bf_node; 3727 3728 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3729 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3730 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3731 /* 3732 * If unicast frame was ack'd update RSSI, 3733 * including the last rx time used to 3734 * workaround phantom bmiss interrupts. 3735 */ 3736 if (ni != NULL && ts->ts_status == 0 && 3737 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3738 nacked++; 3739 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3740 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3741 ts->ts_rssi); 3742 } 3743 ATH_TXQ_UNLOCK(txq); 3744 3745 /* 3746 * Update statistics and call completion 3747 */ 3748 ath_tx_process_buf_completion(sc, txq, ts, bf); 3749 } 3750 #ifdef IEEE80211_SUPPORT_SUPERG 3751 /* 3752 * Flush fast-frame staging queue when traffic slows. 3753 */ 3754 if (txq->axq_depth <= 1) 3755 ieee80211_ff_flush(ic, txq->axq_ac); 3756 #endif 3757 3758 /* Kick the TXQ scheduler */ 3759 if (dosched) { 3760 ATH_TXQ_LOCK(txq); 3761 ath_txq_sched(sc, txq); 3762 ATH_TXQ_UNLOCK(txq); 3763 } 3764 3765 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3766 "ath_tx_processq: txq=%u: done", 3767 txq->axq_qnum); 3768 3769 return nacked; 3770 } 3771 3772 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3773 3774 /* 3775 * Deferred processing of transmit interrupt; special-cased 3776 * for a single hardware transmit queue (e.g. 5210 and 5211). 3777 */ 3778 static void 3779 ath_tx_proc_q0(void *arg, int npending) 3780 { 3781 struct ath_softc *sc = arg; 3782 struct ifnet *ifp = sc->sc_ifp; 3783 uint32_t txqs; 3784 3785 ATH_PCU_LOCK(sc); 3786 sc->sc_txproc_cnt++; 3787 txqs = sc->sc_txq_active; 3788 sc->sc_txq_active &= ~txqs; 3789 ATH_PCU_UNLOCK(sc); 3790 3791 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3792 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3793 3794 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3795 /* XXX why is lastrx updated in tx code? */ 3796 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3797 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3798 ath_tx_processq(sc, sc->sc_cabq, 1); 3799 IF_LOCK(&ifp->if_snd); 3800 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3801 IF_UNLOCK(&ifp->if_snd); 3802 sc->sc_wd_timer = 0; 3803 3804 if (sc->sc_softled) 3805 ath_led_event(sc, sc->sc_txrix); 3806 3807 ATH_PCU_LOCK(sc); 3808 sc->sc_txproc_cnt--; 3809 ATH_PCU_UNLOCK(sc); 3810 3811 ath_tx_kick(sc); 3812 } 3813 3814 /* 3815 * Deferred processing of transmit interrupt; special-cased 3816 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3817 */ 3818 static void 3819 ath_tx_proc_q0123(void *arg, int npending) 3820 { 3821 struct ath_softc *sc = arg; 3822 struct ifnet *ifp = sc->sc_ifp; 3823 int nacked; 3824 uint32_t txqs; 3825 3826 ATH_PCU_LOCK(sc); 3827 sc->sc_txproc_cnt++; 3828 txqs = sc->sc_txq_active; 3829 sc->sc_txq_active &= ~txqs; 3830 ATH_PCU_UNLOCK(sc); 3831 3832 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3833 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 3834 3835 /* 3836 * Process each active queue. 3837 */ 3838 nacked = 0; 3839 if (TXQACTIVE(txqs, 0)) 3840 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3841 if (TXQACTIVE(txqs, 1)) 3842 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3843 if (TXQACTIVE(txqs, 2)) 3844 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3845 if (TXQACTIVE(txqs, 3)) 3846 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3847 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3848 ath_tx_processq(sc, sc->sc_cabq, 1); 3849 if (nacked) 3850 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3851 3852 IF_LOCK(&ifp->if_snd); 3853 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3854 IF_UNLOCK(&ifp->if_snd); 3855 sc->sc_wd_timer = 0; 3856 3857 if (sc->sc_softled) 3858 ath_led_event(sc, sc->sc_txrix); 3859 3860 ATH_PCU_LOCK(sc); 3861 sc->sc_txproc_cnt--; 3862 ATH_PCU_UNLOCK(sc); 3863 3864 ath_tx_kick(sc); 3865 } 3866 3867 /* 3868 * Deferred processing of transmit interrupt. 3869 */ 3870 static void 3871 ath_tx_proc(void *arg, int npending) 3872 { 3873 struct ath_softc *sc = arg; 3874 struct ifnet *ifp = sc->sc_ifp; 3875 int i, nacked; 3876 uint32_t txqs; 3877 3878 ATH_PCU_LOCK(sc); 3879 sc->sc_txproc_cnt++; 3880 txqs = sc->sc_txq_active; 3881 sc->sc_txq_active &= ~txqs; 3882 ATH_PCU_UNLOCK(sc); 3883 3884 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 3885 3886 /* 3887 * Process each active queue. 3888 */ 3889 nacked = 0; 3890 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3891 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 3892 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 3893 if (nacked) 3894 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3895 3896 /* XXX check this inside of IF_LOCK? */ 3897 IF_LOCK(&ifp->if_snd); 3898 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3899 IF_UNLOCK(&ifp->if_snd); 3900 sc->sc_wd_timer = 0; 3901 3902 if (sc->sc_softled) 3903 ath_led_event(sc, sc->sc_txrix); 3904 3905 ATH_PCU_LOCK(sc); 3906 sc->sc_txproc_cnt--; 3907 ATH_PCU_UNLOCK(sc); 3908 3909 ath_tx_kick(sc); 3910 } 3911 #undef TXQACTIVE 3912 3913 /* 3914 * Deferred processing of TXQ rescheduling. 3915 */ 3916 static void 3917 ath_txq_sched_tasklet(void *arg, int npending) 3918 { 3919 struct ath_softc *sc = arg; 3920 int i; 3921 3922 /* XXX is skipping ok? */ 3923 ATH_PCU_LOCK(sc); 3924 #if 0 3925 if (sc->sc_inreset_cnt > 0) { 3926 device_printf(sc->sc_dev, 3927 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3928 ATH_PCU_UNLOCK(sc); 3929 return; 3930 } 3931 #endif 3932 sc->sc_txproc_cnt++; 3933 ATH_PCU_UNLOCK(sc); 3934 3935 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3936 if (ATH_TXQ_SETUP(sc, i)) { 3937 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3938 ath_txq_sched(sc, &sc->sc_txq[i]); 3939 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3940 } 3941 } 3942 3943 ATH_PCU_LOCK(sc); 3944 sc->sc_txproc_cnt--; 3945 ATH_PCU_UNLOCK(sc); 3946 } 3947 3948 void 3949 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 3950 { 3951 3952 ATH_TXBUF_LOCK_ASSERT(sc); 3953 3954 if (bf->bf_flags & ATH_BUF_MGMT) 3955 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 3956 else { 3957 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3958 sc->sc_txbuf_cnt++; 3959 if (sc->sc_txbuf_cnt > ath_txbuf) { 3960 device_printf(sc->sc_dev, 3961 "%s: sc_txbuf_cnt > %d?\n", 3962 __func__, 3963 ath_txbuf); 3964 sc->sc_txbuf_cnt = ath_txbuf; 3965 } 3966 } 3967 } 3968 3969 void 3970 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 3971 { 3972 3973 ATH_TXBUF_LOCK_ASSERT(sc); 3974 3975 if (bf->bf_flags & ATH_BUF_MGMT) 3976 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 3977 else { 3978 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 3979 sc->sc_txbuf_cnt++; 3980 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 3981 device_printf(sc->sc_dev, 3982 "%s: sc_txbuf_cnt > %d?\n", 3983 __func__, 3984 ATH_TXBUF); 3985 sc->sc_txbuf_cnt = ATH_TXBUF; 3986 } 3987 } 3988 } 3989 3990 /* 3991 * Return a buffer to the pool and update the 'busy' flag on the 3992 * previous 'tail' entry. 3993 * 3994 * This _must_ only be called when the buffer is involved in a completed 3995 * TX. The logic is that if it was part of an active TX, the previous 3996 * buffer on the list is now not involved in a halted TX DMA queue, waiting 3997 * for restart (eg for TDMA.) 3998 * 3999 * The caller must free the mbuf and recycle the node reference. 4000 */ 4001 void 4002 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4003 { 4004 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4005 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4006 4007 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4008 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4009 4010 ATH_TXBUF_LOCK(sc); 4011 ath_tx_update_busy(sc); 4012 ath_returnbuf_tail(sc, bf); 4013 ATH_TXBUF_UNLOCK(sc); 4014 } 4015 4016 /* 4017 * This is currently used by ath_tx_draintxq() and 4018 * ath_tx_tid_free_pkts(). 4019 * 4020 * It recycles a single ath_buf. 4021 */ 4022 void 4023 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4024 { 4025 struct ieee80211_node *ni = bf->bf_node; 4026 struct mbuf *m0 = bf->bf_m; 4027 4028 bf->bf_node = NULL; 4029 bf->bf_m = NULL; 4030 4031 /* Free the buffer, it's not needed any longer */ 4032 ath_freebuf(sc, bf); 4033 4034 if (ni != NULL) { 4035 /* 4036 * Do any callback and reclaim the node reference. 4037 */ 4038 if (m0->m_flags & M_TXCB) 4039 ieee80211_process_callback(ni, m0, status); 4040 ieee80211_free_node(ni); 4041 } 4042 m_freem(m0); 4043 4044 /* 4045 * XXX the buffer used to be freed -after-, but the DMA map was 4046 * freed where ath_freebuf() now is. I've no idea what this 4047 * will do. 4048 */ 4049 } 4050 4051 void 4052 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4053 { 4054 #ifdef ATH_DEBUG 4055 struct ath_hal *ah = sc->sc_ah; 4056 #endif 4057 struct ath_buf *bf; 4058 u_int ix; 4059 4060 /* 4061 * NB: this assumes output has been stopped and 4062 * we do not need to block ath_tx_proc 4063 */ 4064 ATH_TXBUF_LOCK(sc); 4065 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4066 if (bf != NULL) 4067 bf->bf_flags &= ~ATH_BUF_BUSY; 4068 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4069 if (bf != NULL) 4070 bf->bf_flags &= ~ATH_BUF_BUSY; 4071 ATH_TXBUF_UNLOCK(sc); 4072 4073 for (ix = 0;; ix++) { 4074 ATH_TXQ_LOCK(txq); 4075 bf = TAILQ_FIRST(&txq->axq_q); 4076 if (bf == NULL) { 4077 txq->axq_link = NULL; 4078 /* 4079 * There's currently no flag that indicates 4080 * a buffer is on the FIFO. So until that 4081 * occurs, just clear the FIFO counter here. 4082 * 4083 * Yes, this means that if something in parallel 4084 * is pushing things onto this TXQ and pushing 4085 * _that_ into the hardware, things will get 4086 * very fruity very quickly. 4087 */ 4088 txq->axq_fifo_depth = 0; 4089 ATH_TXQ_UNLOCK(txq); 4090 break; 4091 } 4092 ATH_TXQ_REMOVE(txq, bf, bf_list); 4093 if (bf->bf_state.bfs_aggr) 4094 txq->axq_aggr_depth--; 4095 #ifdef ATH_DEBUG 4096 if (sc->sc_debug & ATH_DEBUG_RESET) { 4097 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4098 int status = 0; 4099 4100 /* 4101 * EDMA operation has a TX completion FIFO 4102 * separate from the TX descriptor, so this 4103 * method of checking the "completion" status 4104 * is wrong. 4105 */ 4106 if (! sc->sc_isedma) { 4107 status = (ath_hal_txprocdesc(ah, 4108 bf->bf_lastds, 4109 &bf->bf_status.ds_txstat) == HAL_OK); 4110 } 4111 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4112 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4113 bf->bf_m->m_len, 0, -1); 4114 } 4115 #endif /* ATH_DEBUG */ 4116 /* 4117 * Since we're now doing magic in the completion 4118 * functions, we -must- call it for aggregation 4119 * destinations or BAW tracking will get upset. 4120 */ 4121 /* 4122 * Clear ATH_BUF_BUSY; the completion handler 4123 * will free the buffer. 4124 */ 4125 ATH_TXQ_UNLOCK(txq); 4126 bf->bf_flags &= ~ATH_BUF_BUSY; 4127 if (bf->bf_comp) 4128 bf->bf_comp(sc, bf, 1); 4129 else 4130 ath_tx_default_comp(sc, bf, 1); 4131 } 4132 4133 /* 4134 * Drain software queued frames which are on 4135 * active TIDs. 4136 */ 4137 ath_tx_txq_drain(sc, txq); 4138 } 4139 4140 static void 4141 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4142 { 4143 struct ath_hal *ah = sc->sc_ah; 4144 4145 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4146 __func__, txq->axq_qnum, 4147 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4148 txq->axq_link); 4149 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4150 } 4151 4152 int 4153 ath_stoptxdma(struct ath_softc *sc) 4154 { 4155 struct ath_hal *ah = sc->sc_ah; 4156 int i; 4157 4158 /* XXX return value */ 4159 if (sc->sc_invalid) 4160 return 0; 4161 4162 if (!sc->sc_invalid) { 4163 /* don't touch the hardware if marked invalid */ 4164 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4165 __func__, sc->sc_bhalq, 4166 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4167 NULL); 4168 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4169 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4170 if (ATH_TXQ_SETUP(sc, i)) 4171 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4172 } 4173 4174 return 1; 4175 } 4176 4177 /* 4178 * Drain the transmit queues and reclaim resources. 4179 */ 4180 void 4181 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4182 { 4183 #ifdef ATH_DEBUG 4184 struct ath_hal *ah = sc->sc_ah; 4185 #endif 4186 struct ifnet *ifp = sc->sc_ifp; 4187 int i; 4188 4189 (void) ath_stoptxdma(sc); 4190 4191 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4192 /* 4193 * XXX TODO: should we just handle the completed TX frames 4194 * here, whether or not the reset is a full one or not? 4195 */ 4196 if (ATH_TXQ_SETUP(sc, i)) { 4197 if (reset_type == ATH_RESET_NOLOSS) 4198 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4199 else 4200 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4201 } 4202 } 4203 #ifdef ATH_DEBUG 4204 if (sc->sc_debug & ATH_DEBUG_RESET) { 4205 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4206 if (bf != NULL && bf->bf_m != NULL) { 4207 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4208 ath_hal_txprocdesc(ah, bf->bf_lastds, 4209 &bf->bf_status.ds_txstat) == HAL_OK); 4210 ieee80211_dump_pkt(ifp->if_l2com, 4211 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4212 0, -1); 4213 } 4214 } 4215 #endif /* ATH_DEBUG */ 4216 IF_LOCK(&ifp->if_snd); 4217 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4218 IF_UNLOCK(&ifp->if_snd); 4219 sc->sc_wd_timer = 0; 4220 } 4221 4222 /* 4223 * Update internal state after a channel change. 4224 */ 4225 static void 4226 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4227 { 4228 enum ieee80211_phymode mode; 4229 4230 /* 4231 * Change channels and update the h/w rate map 4232 * if we're switching; e.g. 11a to 11b/g. 4233 */ 4234 mode = ieee80211_chan2mode(chan); 4235 if (mode != sc->sc_curmode) 4236 ath_setcurmode(sc, mode); 4237 sc->sc_curchan = chan; 4238 } 4239 4240 /* 4241 * Set/change channels. If the channel is really being changed, 4242 * it's done by resetting the chip. To accomplish this we must 4243 * first cleanup any pending DMA, then restart stuff after a la 4244 * ath_init. 4245 */ 4246 static int 4247 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4248 { 4249 struct ifnet *ifp = sc->sc_ifp; 4250 struct ieee80211com *ic = ifp->if_l2com; 4251 struct ath_hal *ah = sc->sc_ah; 4252 int ret = 0; 4253 4254 /* Treat this as an interface reset */ 4255 ATH_PCU_UNLOCK_ASSERT(sc); 4256 ATH_UNLOCK_ASSERT(sc); 4257 4258 /* (Try to) stop TX/RX from occuring */ 4259 taskqueue_block(sc->sc_tq); 4260 4261 ATH_PCU_LOCK(sc); 4262 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4263 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4264 if (ath_reset_grablock(sc, 1) == 0) { 4265 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4266 __func__); 4267 } 4268 ATH_PCU_UNLOCK(sc); 4269 4270 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4271 __func__, ieee80211_chan2ieee(ic, chan), 4272 chan->ic_freq, chan->ic_flags); 4273 if (chan != sc->sc_curchan) { 4274 HAL_STATUS status; 4275 /* 4276 * To switch channels clear any pending DMA operations; 4277 * wait long enough for the RX fifo to drain, reset the 4278 * hardware at the new frequency, and then re-enable 4279 * the relevant bits of the h/w. 4280 */ 4281 #if 0 4282 ath_hal_intrset(ah, 0); /* disable interrupts */ 4283 #endif 4284 ath_stoprecv(sc, 1); /* turn off frame recv */ 4285 /* 4286 * First, handle completed TX/RX frames. 4287 */ 4288 ath_rx_flush(sc); 4289 ath_draintxq(sc, ATH_RESET_NOLOSS); 4290 /* 4291 * Next, flush the non-scheduled frames. 4292 */ 4293 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4294 4295 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4296 if_printf(ifp, "%s: unable to reset " 4297 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4298 __func__, ieee80211_chan2ieee(ic, chan), 4299 chan->ic_freq, chan->ic_flags, status); 4300 ret = EIO; 4301 goto finish; 4302 } 4303 sc->sc_diversity = ath_hal_getdiversity(ah); 4304 4305 /* Let DFS at it in case it's a DFS channel */ 4306 ath_dfs_radar_enable(sc, chan); 4307 4308 /* 4309 * Re-enable rx framework. 4310 */ 4311 if (ath_startrecv(sc) != 0) { 4312 if_printf(ifp, "%s: unable to restart recv logic\n", 4313 __func__); 4314 ret = EIO; 4315 goto finish; 4316 } 4317 4318 /* 4319 * Change channels and update the h/w rate map 4320 * if we're switching; e.g. 11a to 11b/g. 4321 */ 4322 ath_chan_change(sc, chan); 4323 4324 /* 4325 * Reset clears the beacon timers; reset them 4326 * here if needed. 4327 */ 4328 if (sc->sc_beacons) { /* restart beacons */ 4329 #ifdef IEEE80211_SUPPORT_TDMA 4330 if (sc->sc_tdma) 4331 ath_tdma_config(sc, NULL); 4332 else 4333 #endif 4334 ath_beacon_config(sc, NULL); 4335 } 4336 4337 /* 4338 * Re-enable interrupts. 4339 */ 4340 #if 0 4341 ath_hal_intrset(ah, sc->sc_imask); 4342 #endif 4343 } 4344 4345 finish: 4346 ATH_PCU_LOCK(sc); 4347 sc->sc_inreset_cnt--; 4348 /* XXX only do this if sc_inreset_cnt == 0? */ 4349 ath_hal_intrset(ah, sc->sc_imask); 4350 ATH_PCU_UNLOCK(sc); 4351 4352 IF_LOCK(&ifp->if_snd); 4353 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4354 IF_UNLOCK(&ifp->if_snd); 4355 ath_txrx_start(sc); 4356 /* XXX ath_start? */ 4357 4358 return ret; 4359 } 4360 4361 /* 4362 * Periodically recalibrate the PHY to account 4363 * for temperature/environment changes. 4364 */ 4365 static void 4366 ath_calibrate(void *arg) 4367 { 4368 struct ath_softc *sc = arg; 4369 struct ath_hal *ah = sc->sc_ah; 4370 struct ifnet *ifp = sc->sc_ifp; 4371 struct ieee80211com *ic = ifp->if_l2com; 4372 HAL_BOOL longCal, isCalDone = AH_TRUE; 4373 HAL_BOOL aniCal, shortCal = AH_FALSE; 4374 int nextcal; 4375 4376 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4377 goto restart; 4378 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4379 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4380 if (sc->sc_doresetcal) 4381 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4382 4383 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4384 if (aniCal) { 4385 sc->sc_stats.ast_ani_cal++; 4386 sc->sc_lastani = ticks; 4387 ath_hal_ani_poll(ah, sc->sc_curchan); 4388 } 4389 4390 if (longCal) { 4391 sc->sc_stats.ast_per_cal++; 4392 sc->sc_lastlongcal = ticks; 4393 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4394 /* 4395 * Rfgain is out of bounds, reset the chip 4396 * to load new gain values. 4397 */ 4398 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4399 "%s: rfgain change\n", __func__); 4400 sc->sc_stats.ast_per_rfgain++; 4401 sc->sc_resetcal = 0; 4402 sc->sc_doresetcal = AH_TRUE; 4403 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4404 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4405 return; 4406 } 4407 /* 4408 * If this long cal is after an idle period, then 4409 * reset the data collection state so we start fresh. 4410 */ 4411 if (sc->sc_resetcal) { 4412 (void) ath_hal_calreset(ah, sc->sc_curchan); 4413 sc->sc_lastcalreset = ticks; 4414 sc->sc_lastshortcal = ticks; 4415 sc->sc_resetcal = 0; 4416 sc->sc_doresetcal = AH_TRUE; 4417 } 4418 } 4419 4420 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4421 if (shortCal || longCal) { 4422 isCalDone = AH_FALSE; 4423 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4424 if (longCal) { 4425 /* 4426 * Calibrate noise floor data again in case of change. 4427 */ 4428 ath_hal_process_noisefloor(ah); 4429 } 4430 } else { 4431 DPRINTF(sc, ATH_DEBUG_ANY, 4432 "%s: calibration of channel %u failed\n", 4433 __func__, sc->sc_curchan->ic_freq); 4434 sc->sc_stats.ast_per_calfail++; 4435 } 4436 if (shortCal) 4437 sc->sc_lastshortcal = ticks; 4438 } 4439 if (!isCalDone) { 4440 restart: 4441 /* 4442 * Use a shorter interval to potentially collect multiple 4443 * data samples required to complete calibration. Once 4444 * we're told the work is done we drop back to a longer 4445 * interval between requests. We're more aggressive doing 4446 * work when operating as an AP to improve operation right 4447 * after startup. 4448 */ 4449 sc->sc_lastshortcal = ticks; 4450 nextcal = ath_shortcalinterval*hz/1000; 4451 if (sc->sc_opmode != HAL_M_HOSTAP) 4452 nextcal *= 10; 4453 sc->sc_doresetcal = AH_TRUE; 4454 } else { 4455 /* nextcal should be the shortest time for next event */ 4456 nextcal = ath_longcalinterval*hz; 4457 if (sc->sc_lastcalreset == 0) 4458 sc->sc_lastcalreset = sc->sc_lastlongcal; 4459 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4460 sc->sc_resetcal = 1; /* setup reset next trip */ 4461 sc->sc_doresetcal = AH_FALSE; 4462 } 4463 /* ANI calibration may occur more often than short/long/resetcal */ 4464 if (ath_anicalinterval > 0) 4465 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4466 4467 if (nextcal != 0) { 4468 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4469 __func__, nextcal, isCalDone ? "" : "!"); 4470 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4471 } else { 4472 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4473 __func__); 4474 /* NB: don't rearm timer */ 4475 } 4476 } 4477 4478 static void 4479 ath_scan_start(struct ieee80211com *ic) 4480 { 4481 struct ifnet *ifp = ic->ic_ifp; 4482 struct ath_softc *sc = ifp->if_softc; 4483 struct ath_hal *ah = sc->sc_ah; 4484 u_int32_t rfilt; 4485 4486 /* XXX calibration timer? */ 4487 4488 ATH_LOCK(sc); 4489 sc->sc_scanning = 1; 4490 sc->sc_syncbeacon = 0; 4491 rfilt = ath_calcrxfilter(sc); 4492 ATH_UNLOCK(sc); 4493 4494 ATH_PCU_LOCK(sc); 4495 ath_hal_setrxfilter(ah, rfilt); 4496 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4497 ATH_PCU_UNLOCK(sc); 4498 4499 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4500 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4501 } 4502 4503 static void 4504 ath_scan_end(struct ieee80211com *ic) 4505 { 4506 struct ifnet *ifp = ic->ic_ifp; 4507 struct ath_softc *sc = ifp->if_softc; 4508 struct ath_hal *ah = sc->sc_ah; 4509 u_int32_t rfilt; 4510 4511 ATH_LOCK(sc); 4512 sc->sc_scanning = 0; 4513 rfilt = ath_calcrxfilter(sc); 4514 ATH_UNLOCK(sc); 4515 4516 ATH_PCU_LOCK(sc); 4517 ath_hal_setrxfilter(ah, rfilt); 4518 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4519 4520 ath_hal_process_noisefloor(ah); 4521 ATH_PCU_UNLOCK(sc); 4522 4523 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4524 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4525 sc->sc_curaid); 4526 } 4527 4528 #ifdef ATH_ENABLE_11N 4529 /* 4530 * For now, just do a channel change. 4531 * 4532 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4533 * control state and resetting the hardware without dropping frames out 4534 * of the queue. 4535 * 4536 * The unfortunate trouble here is making absolutely sure that the 4537 * channel width change has propagated enough so the hardware 4538 * absolutely isn't handed bogus frames for it's current operating 4539 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4540 * does occur in parallel, we need to make certain we've blocked 4541 * any further ongoing TX (and RX, that can cause raw TX) 4542 * before we do this. 4543 */ 4544 static void 4545 ath_update_chw(struct ieee80211com *ic) 4546 { 4547 struct ifnet *ifp = ic->ic_ifp; 4548 struct ath_softc *sc = ifp->if_softc; 4549 4550 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4551 ath_set_channel(ic); 4552 } 4553 #endif /* ATH_ENABLE_11N */ 4554 4555 static void 4556 ath_set_channel(struct ieee80211com *ic) 4557 { 4558 struct ifnet *ifp = ic->ic_ifp; 4559 struct ath_softc *sc = ifp->if_softc; 4560 4561 (void) ath_chan_set(sc, ic->ic_curchan); 4562 /* 4563 * If we are returning to our bss channel then mark state 4564 * so the next recv'd beacon's tsf will be used to sync the 4565 * beacon timers. Note that since we only hear beacons in 4566 * sta/ibss mode this has no effect in other operating modes. 4567 */ 4568 ATH_LOCK(sc); 4569 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4570 sc->sc_syncbeacon = 1; 4571 ATH_UNLOCK(sc); 4572 } 4573 4574 /* 4575 * Walk the vap list and check if there any vap's in RUN state. 4576 */ 4577 static int 4578 ath_isanyrunningvaps(struct ieee80211vap *this) 4579 { 4580 struct ieee80211com *ic = this->iv_ic; 4581 struct ieee80211vap *vap; 4582 4583 IEEE80211_LOCK_ASSERT(ic); 4584 4585 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4586 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4587 return 1; 4588 } 4589 return 0; 4590 } 4591 4592 static int 4593 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4594 { 4595 struct ieee80211com *ic = vap->iv_ic; 4596 struct ath_softc *sc = ic->ic_ifp->if_softc; 4597 struct ath_vap *avp = ATH_VAP(vap); 4598 struct ath_hal *ah = sc->sc_ah; 4599 struct ieee80211_node *ni = NULL; 4600 int i, error, stamode; 4601 u_int32_t rfilt; 4602 int csa_run_transition = 0; 4603 static const HAL_LED_STATE leds[] = { 4604 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4605 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4606 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4607 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4608 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4609 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4610 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4611 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4612 }; 4613 4614 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4615 ieee80211_state_name[vap->iv_state], 4616 ieee80211_state_name[nstate]); 4617 4618 /* 4619 * net80211 _should_ have the comlock asserted at this point. 4620 * There are some comments around the calls to vap->iv_newstate 4621 * which indicate that it (newstate) may end up dropping the 4622 * lock. This and the subsequent lock assert check after newstate 4623 * are an attempt to catch these and figure out how/why. 4624 */ 4625 IEEE80211_LOCK_ASSERT(ic); 4626 4627 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4628 csa_run_transition = 1; 4629 4630 callout_drain(&sc->sc_cal_ch); 4631 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4632 4633 if (nstate == IEEE80211_S_SCAN) { 4634 /* 4635 * Scanning: turn off beacon miss and don't beacon. 4636 * Mark beacon state so when we reach RUN state we'll 4637 * [re]setup beacons. Unblock the task q thread so 4638 * deferred interrupt processing is done. 4639 */ 4640 ath_hal_intrset(ah, 4641 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4642 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4643 sc->sc_beacons = 0; 4644 taskqueue_unblock(sc->sc_tq); 4645 } 4646 4647 ni = ieee80211_ref_node(vap->iv_bss); 4648 rfilt = ath_calcrxfilter(sc); 4649 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4650 vap->iv_opmode == IEEE80211_M_AHDEMO || 4651 vap->iv_opmode == IEEE80211_M_IBSS); 4652 if (stamode && nstate == IEEE80211_S_RUN) { 4653 sc->sc_curaid = ni->ni_associd; 4654 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4655 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4656 } 4657 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4658 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4659 ath_hal_setrxfilter(ah, rfilt); 4660 4661 /* XXX is this to restore keycache on resume? */ 4662 if (vap->iv_opmode != IEEE80211_M_STA && 4663 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4664 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4665 if (ath_hal_keyisvalid(ah, i)) 4666 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4667 } 4668 4669 /* 4670 * Invoke the parent method to do net80211 work. 4671 */ 4672 error = avp->av_newstate(vap, nstate, arg); 4673 if (error != 0) 4674 goto bad; 4675 4676 /* 4677 * See above: ensure av_newstate() doesn't drop the lock 4678 * on us. 4679 */ 4680 IEEE80211_LOCK_ASSERT(ic); 4681 4682 if (nstate == IEEE80211_S_RUN) { 4683 /* NB: collect bss node again, it may have changed */ 4684 ieee80211_free_node(ni); 4685 ni = ieee80211_ref_node(vap->iv_bss); 4686 4687 DPRINTF(sc, ATH_DEBUG_STATE, 4688 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4689 "capinfo 0x%04x chan %d\n", __func__, 4690 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4691 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4692 4693 switch (vap->iv_opmode) { 4694 #ifdef IEEE80211_SUPPORT_TDMA 4695 case IEEE80211_M_AHDEMO: 4696 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4697 break; 4698 /* fall thru... */ 4699 #endif 4700 case IEEE80211_M_HOSTAP: 4701 case IEEE80211_M_IBSS: 4702 case IEEE80211_M_MBSS: 4703 /* 4704 * Allocate and setup the beacon frame. 4705 * 4706 * Stop any previous beacon DMA. This may be 4707 * necessary, for example, when an ibss merge 4708 * causes reconfiguration; there will be a state 4709 * transition from RUN->RUN that means we may 4710 * be called with beacon transmission active. 4711 */ 4712 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4713 4714 error = ath_beacon_alloc(sc, ni); 4715 if (error != 0) 4716 goto bad; 4717 /* 4718 * If joining an adhoc network defer beacon timer 4719 * configuration to the next beacon frame so we 4720 * have a current TSF to use. Otherwise we're 4721 * starting an ibss/bss so there's no need to delay; 4722 * if this is the first vap moving to RUN state, then 4723 * beacon state needs to be [re]configured. 4724 */ 4725 if (vap->iv_opmode == IEEE80211_M_IBSS && 4726 ni->ni_tstamp.tsf != 0) { 4727 sc->sc_syncbeacon = 1; 4728 } else if (!sc->sc_beacons) { 4729 #ifdef IEEE80211_SUPPORT_TDMA 4730 if (vap->iv_caps & IEEE80211_C_TDMA) 4731 ath_tdma_config(sc, vap); 4732 else 4733 #endif 4734 ath_beacon_config(sc, vap); 4735 sc->sc_beacons = 1; 4736 } 4737 break; 4738 case IEEE80211_M_STA: 4739 /* 4740 * Defer beacon timer configuration to the next 4741 * beacon frame so we have a current TSF to use 4742 * (any TSF collected when scanning is likely old). 4743 * However if it's due to a CSA -> RUN transition, 4744 * force a beacon update so we pick up a lack of 4745 * beacons from an AP in CAC and thus force a 4746 * scan. 4747 */ 4748 sc->sc_syncbeacon = 1; 4749 if (csa_run_transition) 4750 ath_beacon_config(sc, vap); 4751 break; 4752 case IEEE80211_M_MONITOR: 4753 /* 4754 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4755 * transitions so we must re-enable interrupts here to 4756 * handle the case of a single monitor mode vap. 4757 */ 4758 ath_hal_intrset(ah, sc->sc_imask); 4759 break; 4760 case IEEE80211_M_WDS: 4761 break; 4762 default: 4763 break; 4764 } 4765 /* 4766 * Let the hal process statistics collected during a 4767 * scan so it can provide calibrated noise floor data. 4768 */ 4769 ath_hal_process_noisefloor(ah); 4770 /* 4771 * Reset rssi stats; maybe not the best place... 4772 */ 4773 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4774 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4775 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4776 /* 4777 * Finally, start any timers and the task q thread 4778 * (in case we didn't go through SCAN state). 4779 */ 4780 if (ath_longcalinterval != 0) { 4781 /* start periodic recalibration timer */ 4782 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4783 } else { 4784 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4785 "%s: calibration disabled\n", __func__); 4786 } 4787 taskqueue_unblock(sc->sc_tq); 4788 } else if (nstate == IEEE80211_S_INIT) { 4789 /* 4790 * If there are no vaps left in RUN state then 4791 * shutdown host/driver operation: 4792 * o disable interrupts 4793 * o disable the task queue thread 4794 * o mark beacon processing as stopped 4795 */ 4796 if (!ath_isanyrunningvaps(vap)) { 4797 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4798 /* disable interrupts */ 4799 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4800 taskqueue_block(sc->sc_tq); 4801 sc->sc_beacons = 0; 4802 } 4803 #ifdef IEEE80211_SUPPORT_TDMA 4804 ath_hal_setcca(ah, AH_TRUE); 4805 #endif 4806 } 4807 bad: 4808 ieee80211_free_node(ni); 4809 return error; 4810 } 4811 4812 /* 4813 * Allocate a key cache slot to the station so we can 4814 * setup a mapping from key index to node. The key cache 4815 * slot is needed for managing antenna state and for 4816 * compression when stations do not use crypto. We do 4817 * it uniliaterally here; if crypto is employed this slot 4818 * will be reassigned. 4819 */ 4820 static void 4821 ath_setup_stationkey(struct ieee80211_node *ni) 4822 { 4823 struct ieee80211vap *vap = ni->ni_vap; 4824 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4825 ieee80211_keyix keyix, rxkeyix; 4826 4827 /* XXX should take a locked ref to vap->iv_bss */ 4828 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4829 /* 4830 * Key cache is full; we'll fall back to doing 4831 * the more expensive lookup in software. Note 4832 * this also means no h/w compression. 4833 */ 4834 /* XXX msg+statistic */ 4835 } else { 4836 /* XXX locking? */ 4837 ni->ni_ucastkey.wk_keyix = keyix; 4838 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4839 /* NB: must mark device key to get called back on delete */ 4840 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4841 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4842 /* NB: this will create a pass-thru key entry */ 4843 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4844 } 4845 } 4846 4847 /* 4848 * Setup driver-specific state for a newly associated node. 4849 * Note that we're called also on a re-associate, the isnew 4850 * param tells us if this is the first time or not. 4851 */ 4852 static void 4853 ath_newassoc(struct ieee80211_node *ni, int isnew) 4854 { 4855 struct ath_node *an = ATH_NODE(ni); 4856 struct ieee80211vap *vap = ni->ni_vap; 4857 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4858 const struct ieee80211_txparam *tp = ni->ni_txparms; 4859 4860 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4861 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4862 4863 ath_rate_newassoc(sc, an, isnew); 4864 if (isnew && 4865 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4866 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4867 ath_setup_stationkey(ni); 4868 } 4869 4870 static int 4871 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4872 int nchans, struct ieee80211_channel chans[]) 4873 { 4874 struct ath_softc *sc = ic->ic_ifp->if_softc; 4875 struct ath_hal *ah = sc->sc_ah; 4876 HAL_STATUS status; 4877 4878 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4879 "%s: rd %u cc %u location %c%s\n", 4880 __func__, reg->regdomain, reg->country, reg->location, 4881 reg->ecm ? " ecm" : ""); 4882 4883 status = ath_hal_set_channels(ah, chans, nchans, 4884 reg->country, reg->regdomain); 4885 if (status != HAL_OK) { 4886 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 4887 __func__, status); 4888 return EINVAL; /* XXX */ 4889 } 4890 4891 return 0; 4892 } 4893 4894 static void 4895 ath_getradiocaps(struct ieee80211com *ic, 4896 int maxchans, int *nchans, struct ieee80211_channel chans[]) 4897 { 4898 struct ath_softc *sc = ic->ic_ifp->if_softc; 4899 struct ath_hal *ah = sc->sc_ah; 4900 4901 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 4902 __func__, SKU_DEBUG, CTRY_DEFAULT); 4903 4904 /* XXX check return */ 4905 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 4906 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 4907 4908 } 4909 4910 static int 4911 ath_getchannels(struct ath_softc *sc) 4912 { 4913 struct ifnet *ifp = sc->sc_ifp; 4914 struct ieee80211com *ic = ifp->if_l2com; 4915 struct ath_hal *ah = sc->sc_ah; 4916 HAL_STATUS status; 4917 4918 /* 4919 * Collect channel set based on EEPROM contents. 4920 */ 4921 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 4922 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 4923 if (status != HAL_OK) { 4924 if_printf(ifp, "%s: unable to collect channel list from hal, " 4925 "status %d\n", __func__, status); 4926 return EINVAL; 4927 } 4928 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 4929 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 4930 /* XXX map Atheros sku's to net80211 SKU's */ 4931 /* XXX net80211 types too small */ 4932 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 4933 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 4934 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 4935 ic->ic_regdomain.isocc[1] = ' '; 4936 4937 ic->ic_regdomain.ecm = 1; 4938 ic->ic_regdomain.location = 'I'; 4939 4940 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4941 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 4942 __func__, sc->sc_eerd, sc->sc_eecc, 4943 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 4944 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 4945 return 0; 4946 } 4947 4948 static int 4949 ath_rate_setup(struct ath_softc *sc, u_int mode) 4950 { 4951 struct ath_hal *ah = sc->sc_ah; 4952 const HAL_RATE_TABLE *rt; 4953 4954 switch (mode) { 4955 case IEEE80211_MODE_11A: 4956 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4957 break; 4958 case IEEE80211_MODE_HALF: 4959 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 4960 break; 4961 case IEEE80211_MODE_QUARTER: 4962 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 4963 break; 4964 case IEEE80211_MODE_11B: 4965 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4966 break; 4967 case IEEE80211_MODE_11G: 4968 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4969 break; 4970 case IEEE80211_MODE_TURBO_A: 4971 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 4972 break; 4973 case IEEE80211_MODE_TURBO_G: 4974 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4975 break; 4976 case IEEE80211_MODE_STURBO_A: 4977 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4978 break; 4979 case IEEE80211_MODE_11NA: 4980 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 4981 break; 4982 case IEEE80211_MODE_11NG: 4983 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 4984 break; 4985 default: 4986 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4987 __func__, mode); 4988 return 0; 4989 } 4990 sc->sc_rates[mode] = rt; 4991 return (rt != NULL); 4992 } 4993 4994 static void 4995 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4996 { 4997 #define N(a) (sizeof(a)/sizeof(a[0])) 4998 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4999 static const struct { 5000 u_int rate; /* tx/rx 802.11 rate */ 5001 u_int16_t timeOn; /* LED on time (ms) */ 5002 u_int16_t timeOff; /* LED off time (ms) */ 5003 } blinkrates[] = { 5004 { 108, 40, 10 }, 5005 { 96, 44, 11 }, 5006 { 72, 50, 13 }, 5007 { 48, 57, 14 }, 5008 { 36, 67, 16 }, 5009 { 24, 80, 20 }, 5010 { 22, 100, 25 }, 5011 { 18, 133, 34 }, 5012 { 12, 160, 40 }, 5013 { 10, 200, 50 }, 5014 { 6, 240, 58 }, 5015 { 4, 267, 66 }, 5016 { 2, 400, 100 }, 5017 { 0, 500, 130 }, 5018 /* XXX half/quarter rates */ 5019 }; 5020 const HAL_RATE_TABLE *rt; 5021 int i, j; 5022 5023 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5024 rt = sc->sc_rates[mode]; 5025 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5026 for (i = 0; i < rt->rateCount; i++) { 5027 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5028 if (rt->info[i].phy != IEEE80211_T_HT) 5029 sc->sc_rixmap[ieeerate] = i; 5030 else 5031 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5032 } 5033 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5034 for (i = 0; i < N(sc->sc_hwmap); i++) { 5035 if (i >= rt->rateCount) { 5036 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5037 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5038 continue; 5039 } 5040 sc->sc_hwmap[i].ieeerate = 5041 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5042 if (rt->info[i].phy == IEEE80211_T_HT) 5043 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5044 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5045 if (rt->info[i].shortPreamble || 5046 rt->info[i].phy == IEEE80211_T_OFDM) 5047 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5048 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5049 for (j = 0; j < N(blinkrates)-1; j++) 5050 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5051 break; 5052 /* NB: this uses the last entry if the rate isn't found */ 5053 /* XXX beware of overlow */ 5054 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5055 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5056 } 5057 sc->sc_currates = rt; 5058 sc->sc_curmode = mode; 5059 /* 5060 * All protection frames are transmited at 2Mb/s for 5061 * 11g, otherwise at 1Mb/s. 5062 */ 5063 if (mode == IEEE80211_MODE_11G) 5064 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5065 else 5066 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5067 /* NB: caller is responsible for resetting rate control state */ 5068 #undef N 5069 } 5070 5071 static void 5072 ath_watchdog(void *arg) 5073 { 5074 struct ath_softc *sc = arg; 5075 int do_reset = 0; 5076 5077 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5078 struct ifnet *ifp = sc->sc_ifp; 5079 uint32_t hangs; 5080 5081 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5082 hangs != 0) { 5083 if_printf(ifp, "%s hang detected (0x%x)\n", 5084 hangs & 0xff ? "bb" : "mac", hangs); 5085 } else 5086 if_printf(ifp, "device timeout\n"); 5087 do_reset = 1; 5088 ifp->if_oerrors++; 5089 sc->sc_stats.ast_watchdog++; 5090 } 5091 5092 /* 5093 * We can't hold the lock across the ath_reset() call. 5094 * 5095 * And since this routine can't hold a lock and sleep, 5096 * do the reset deferred. 5097 */ 5098 if (do_reset) { 5099 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5100 } 5101 5102 callout_schedule(&sc->sc_wd_ch, hz); 5103 } 5104 5105 /* 5106 * Fetch the rate control statistics for the given node. 5107 */ 5108 static int 5109 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5110 { 5111 struct ath_node *an; 5112 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5113 struct ieee80211_node *ni; 5114 int error = 0; 5115 5116 /* Perform a lookup on the given node */ 5117 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5118 if (ni == NULL) { 5119 error = EINVAL; 5120 goto bad; 5121 } 5122 5123 /* Lock the ath_node */ 5124 an = ATH_NODE(ni); 5125 ATH_NODE_LOCK(an); 5126 5127 /* Fetch the rate control stats for this node */ 5128 error = ath_rate_fetch_node_stats(sc, an, rs); 5129 5130 /* No matter what happens here, just drop through */ 5131 5132 /* Unlock the ath_node */ 5133 ATH_NODE_UNLOCK(an); 5134 5135 /* Unref the node */ 5136 ieee80211_node_decref(ni); 5137 5138 bad: 5139 return (error); 5140 } 5141 5142 #ifdef ATH_DIAGAPI 5143 /* 5144 * Diagnostic interface to the HAL. This is used by various 5145 * tools to do things like retrieve register contents for 5146 * debugging. The mechanism is intentionally opaque so that 5147 * it can change frequently w/o concern for compatiblity. 5148 */ 5149 static int 5150 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5151 { 5152 struct ath_hal *ah = sc->sc_ah; 5153 u_int id = ad->ad_id & ATH_DIAG_ID; 5154 void *indata = NULL; 5155 void *outdata = NULL; 5156 u_int32_t insize = ad->ad_in_size; 5157 u_int32_t outsize = ad->ad_out_size; 5158 int error = 0; 5159 5160 if (ad->ad_id & ATH_DIAG_IN) { 5161 /* 5162 * Copy in data. 5163 */ 5164 indata = malloc(insize, M_TEMP, M_NOWAIT); 5165 if (indata == NULL) { 5166 error = ENOMEM; 5167 goto bad; 5168 } 5169 error = copyin(ad->ad_in_data, indata, insize); 5170 if (error) 5171 goto bad; 5172 } 5173 if (ad->ad_id & ATH_DIAG_DYN) { 5174 /* 5175 * Allocate a buffer for the results (otherwise the HAL 5176 * returns a pointer to a buffer where we can read the 5177 * results). Note that we depend on the HAL leaving this 5178 * pointer for us to use below in reclaiming the buffer; 5179 * may want to be more defensive. 5180 */ 5181 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5182 if (outdata == NULL) { 5183 error = ENOMEM; 5184 goto bad; 5185 } 5186 } 5187 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5188 if (outsize < ad->ad_out_size) 5189 ad->ad_out_size = outsize; 5190 if (outdata != NULL) 5191 error = copyout(outdata, ad->ad_out_data, 5192 ad->ad_out_size); 5193 } else { 5194 error = EINVAL; 5195 } 5196 bad: 5197 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5198 free(indata, M_TEMP); 5199 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5200 free(outdata, M_TEMP); 5201 return error; 5202 } 5203 #endif /* ATH_DIAGAPI */ 5204 5205 static int 5206 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5207 { 5208 #define IS_RUNNING(ifp) \ 5209 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5210 struct ath_softc *sc = ifp->if_softc; 5211 struct ieee80211com *ic = ifp->if_l2com; 5212 struct ifreq *ifr = (struct ifreq *)data; 5213 const HAL_RATE_TABLE *rt; 5214 int error = 0; 5215 5216 switch (cmd) { 5217 case SIOCSIFFLAGS: 5218 ATH_LOCK(sc); 5219 if (IS_RUNNING(ifp)) { 5220 /* 5221 * To avoid rescanning another access point, 5222 * do not call ath_init() here. Instead, 5223 * only reflect promisc mode settings. 5224 */ 5225 ath_mode_init(sc); 5226 } else if (ifp->if_flags & IFF_UP) { 5227 /* 5228 * Beware of being called during attach/detach 5229 * to reset promiscuous mode. In that case we 5230 * will still be marked UP but not RUNNING. 5231 * However trying to re-init the interface 5232 * is the wrong thing to do as we've already 5233 * torn down much of our state. There's 5234 * probably a better way to deal with this. 5235 */ 5236 if (!sc->sc_invalid) 5237 ath_init(sc); /* XXX lose error */ 5238 } else { 5239 ath_stop_locked(ifp); 5240 #ifdef notyet 5241 /* XXX must wakeup in places like ath_vap_delete */ 5242 if (!sc->sc_invalid) 5243 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5244 #endif 5245 } 5246 ATH_UNLOCK(sc); 5247 break; 5248 case SIOCGIFMEDIA: 5249 case SIOCSIFMEDIA: 5250 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5251 break; 5252 case SIOCGATHSTATS: 5253 /* NB: embed these numbers to get a consistent view */ 5254 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5255 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5256 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5257 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5258 #ifdef IEEE80211_SUPPORT_TDMA 5259 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5260 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5261 #endif 5262 rt = sc->sc_currates; 5263 sc->sc_stats.ast_tx_rate = 5264 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5265 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5266 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5267 return copyout(&sc->sc_stats, 5268 ifr->ifr_data, sizeof (sc->sc_stats)); 5269 case SIOCGATHAGSTATS: 5270 return copyout(&sc->sc_aggr_stats, 5271 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5272 case SIOCZATHSTATS: 5273 error = priv_check(curthread, PRIV_DRIVER); 5274 if (error == 0) { 5275 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5276 memset(&sc->sc_aggr_stats, 0, 5277 sizeof(sc->sc_aggr_stats)); 5278 memset(&sc->sc_intr_stats, 0, 5279 sizeof(sc->sc_intr_stats)); 5280 } 5281 break; 5282 #ifdef ATH_DIAGAPI 5283 case SIOCGATHDIAG: 5284 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5285 break; 5286 case SIOCGATHPHYERR: 5287 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5288 break; 5289 #endif 5290 case SIOCGATHNODERATESTATS: 5291 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5292 break; 5293 case SIOCGIFADDR: 5294 error = ether_ioctl(ifp, cmd, data); 5295 break; 5296 default: 5297 error = EINVAL; 5298 break; 5299 } 5300 return error; 5301 #undef IS_RUNNING 5302 } 5303 5304 /* 5305 * Announce various information on device/driver attach. 5306 */ 5307 static void 5308 ath_announce(struct ath_softc *sc) 5309 { 5310 struct ifnet *ifp = sc->sc_ifp; 5311 struct ath_hal *ah = sc->sc_ah; 5312 5313 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5314 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5315 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5316 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5317 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5318 if (bootverbose) { 5319 int i; 5320 for (i = 0; i <= WME_AC_VO; i++) { 5321 struct ath_txq *txq = sc->sc_ac2q[i]; 5322 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5323 txq->axq_qnum, ieee80211_wme_acnames[i]); 5324 } 5325 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5326 sc->sc_cabq->axq_qnum); 5327 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5328 } 5329 if (ath_rxbuf != ATH_RXBUF) 5330 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5331 if (ath_txbuf != ATH_TXBUF) 5332 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5333 if (sc->sc_mcastkey && bootverbose) 5334 if_printf(ifp, "using multicast key search\n"); 5335 } 5336 5337 static void 5338 ath_dfs_tasklet(void *p, int npending) 5339 { 5340 struct ath_softc *sc = (struct ath_softc *) p; 5341 struct ifnet *ifp = sc->sc_ifp; 5342 struct ieee80211com *ic = ifp->if_l2com; 5343 5344 /* 5345 * If previous processing has found a radar event, 5346 * signal this to the net80211 layer to begin DFS 5347 * processing. 5348 */ 5349 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5350 /* DFS event found, initiate channel change */ 5351 /* 5352 * XXX doesn't currently tell us whether the event 5353 * XXX was found in the primary or extension 5354 * XXX channel! 5355 */ 5356 IEEE80211_LOCK(ic); 5357 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5358 IEEE80211_UNLOCK(ic); 5359 } 5360 } 5361 5362 /* 5363 * Enable/disable power save. This must be called with 5364 * no TX driver locks currently held, so it should only 5365 * be called from the RX path (which doesn't hold any 5366 * TX driver locks.) 5367 */ 5368 static void 5369 ath_node_powersave(struct ieee80211_node *ni, int enable) 5370 { 5371 struct ath_node *an = ATH_NODE(ni); 5372 struct ieee80211com *ic = ni->ni_ic; 5373 struct ath_softc *sc = ic->ic_ifp->if_softc; 5374 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5375 5376 ATH_NODE_UNLOCK_ASSERT(an); 5377 /* XXX and no TXQ locks should be held here */ 5378 5379 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5380 __func__, ni, enable); 5381 5382 /* Suspend or resume software queue handling */ 5383 if (enable) 5384 ath_tx_node_sleep(sc, an); 5385 else 5386 ath_tx_node_wakeup(sc, an); 5387 5388 /* Update net80211 state */ 5389 avp->av_node_ps(ni, enable); 5390 } 5391 5392 5393 MODULE_VERSION(if_ath, 1); 5394 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5395 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5396 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5397 #endif 5398