1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 */ 46 #include "opt_ah.h" 47 #include "opt_wlan.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 #include <sys/kthread.h> 64 #include <sys/taskqueue.h> 65 #include <sys/priv.h> 66 #include <sys/module.h> 67 #include <sys/ktr.h> 68 #include <sys/smp.h> /* for mp_ncpus */ 69 70 #include <machine/bus.h> 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_types.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_llc.h> 79 80 #include <net80211/ieee80211_var.h> 81 #include <net80211/ieee80211_regdomain.h> 82 #ifdef IEEE80211_SUPPORT_SUPERG 83 #include <net80211/ieee80211_superg.h> 84 #endif 85 #ifdef IEEE80211_SUPPORT_TDMA 86 #include <net80211/ieee80211_tdma.h> 87 #endif 88 89 #include <net/bpf.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #include <netinet/if_ether.h> 94 #endif 95 96 #include <dev/ath/if_athvar.h> 97 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 98 #include <dev/ath/ath_hal/ah_diagcodes.h> 99 100 #include <dev/ath/if_ath_debug.h> 101 #include <dev/ath/if_ath_misc.h> 102 #include <dev/ath/if_ath_tx.h> 103 #include <dev/ath/if_ath_sysctl.h> 104 #include <dev/ath/if_ath_led.h> 105 #include <dev/ath/if_ath_keycache.h> 106 #include <dev/ath/if_athdfs.h> 107 108 #ifdef ATH_TX99_DIAG 109 #include <dev/ath/ath_tx99/ath_tx99.h> 110 #endif 111 112 #define ATH_KTR_INTR KTR_SPARE4 113 #define ATH_KTR_ERR KTR_SPARE3 114 115 /* 116 * ATH_BCBUF determines the number of vap's that can transmit 117 * beacons and also (currently) the number of vap's that can 118 * have unique mac addresses/bssid. When staggering beacons 119 * 4 is probably a good max as otherwise the beacons become 120 * very closely spaced and there is limited time for cab q traffic 121 * to go out. You can burst beacons instead but that is not good 122 * for stations in power save and at some point you really want 123 * another radio (and channel). 124 * 125 * The limit on the number of mac addresses is tied to our use of 126 * the U/L bit and tracking addresses in a byte; it would be 127 * worthwhile to allow more for applications like proxy sta. 128 */ 129 CTASSERT(ATH_BCBUF <= 8); 130 131 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 132 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 133 const uint8_t [IEEE80211_ADDR_LEN], 134 const uint8_t [IEEE80211_ADDR_LEN]); 135 static void ath_vap_delete(struct ieee80211vap *); 136 static void ath_init(void *); 137 static void ath_stop_locked(struct ifnet *); 138 static void ath_stop(struct ifnet *); 139 static void ath_start(struct ifnet *); 140 static int ath_reset_vap(struct ieee80211vap *, u_long); 141 static int ath_media_change(struct ifnet *); 142 static void ath_watchdog(void *); 143 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 144 static void ath_fatal_proc(void *, int); 145 static void ath_bmiss_vap(struct ieee80211vap *); 146 static void ath_bmiss_proc(void *, int); 147 static void ath_key_update_begin(struct ieee80211vap *); 148 static void ath_key_update_end(struct ieee80211vap *); 149 static void ath_update_mcast(struct ifnet *); 150 static void ath_update_promisc(struct ifnet *); 151 static void ath_mode_init(struct ath_softc *); 152 static void ath_setslottime(struct ath_softc *); 153 static void ath_updateslot(struct ifnet *); 154 static int ath_beaconq_setup(struct ath_hal *); 155 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 156 static void ath_beacon_update(struct ieee80211vap *, int item); 157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 158 static void ath_beacon_proc(void *, int); 159 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 160 struct ieee80211vap *); 161 static void ath_bstuck_proc(void *, int); 162 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 163 static void ath_beacon_free(struct ath_softc *); 164 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 165 static void ath_descdma_cleanup(struct ath_softc *sc, 166 struct ath_descdma *, ath_bufhead *); 167 static int ath_desc_alloc(struct ath_softc *); 168 static void ath_desc_free(struct ath_softc *); 169 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 170 const uint8_t [IEEE80211_ADDR_LEN]); 171 static void ath_node_cleanup(struct ieee80211_node *); 172 static void ath_node_free(struct ieee80211_node *); 173 static void ath_node_getsignal(const struct ieee80211_node *, 174 int8_t *, int8_t *); 175 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 176 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 177 int subtype, int rssi, int nf); 178 static void ath_setdefantenna(struct ath_softc *, u_int); 179 static void ath_rx_proc(struct ath_softc *sc, int); 180 static void ath_rx_tasklet(void *, int); 181 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 182 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 183 static int ath_tx_setup(struct ath_softc *, int, int); 184 static int ath_wme_update(struct ieee80211com *); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static void ath_tx_proc_q0(void *, int); 188 static void ath_tx_proc_q0123(void *, int); 189 static void ath_tx_proc(void *, int); 190 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 191 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 192 static void ath_stoprecv(struct ath_softc *, int); 193 static int ath_startrecv(struct ath_softc *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 static void ath_calibrate(void *); 199 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 200 static void ath_setup_stationkey(struct ieee80211_node *); 201 static void ath_newassoc(struct ieee80211_node *, int); 202 static int ath_setregdomain(struct ieee80211com *, 203 struct ieee80211_regdomain *, int, 204 struct ieee80211_channel []); 205 static void ath_getradiocaps(struct ieee80211com *, int, int *, 206 struct ieee80211_channel []); 207 static int ath_getchannels(struct ath_softc *); 208 209 static int ath_rate_setup(struct ath_softc *, u_int mode); 210 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 211 212 static void ath_announce(struct ath_softc *); 213 214 static void ath_dfs_tasklet(void *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 218 u_int32_t bintval); 219 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 220 const struct ieee80211_tdma_state *tdma); 221 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 222 static void ath_tdma_update(struct ieee80211_node *ni, 223 const struct ieee80211_tdma_param *tdma, int); 224 static void ath_tdma_beacon_send(struct ath_softc *sc, 225 struct ieee80211vap *vap); 226 227 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 228 #define TDMA_LPF_LEN 6 229 #define TDMA_DUMMY_MARKER 0x127 230 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 231 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 232 #define TDMA_LPF(x, y, len) \ 233 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 234 #define TDMA_SAMPLE(x, y) do { \ 235 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 236 } while (0) 237 #define TDMA_EP_RND(x,mul) \ 238 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 239 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 240 #endif /* IEEE80211_SUPPORT_TDMA */ 241 242 SYSCTL_DECL(_hw_ath); 243 244 /* XXX validate sysctl values */ 245 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 247 0, "long chip calibration interval (secs)"); 248 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 250 0, "short chip calibration interval (msecs)"); 251 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 253 0, "reset chip calibration results (secs)"); 254 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 256 0, "ANI calibration (msecs)"); 257 258 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 260 0, "rx buffers allocated"); 261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 262 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 264 0, "tx buffers allocated"); 265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 266 267 static int ath_bstuck_threshold = 4; /* max missed beacons */ 268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 269 0, "max missed beacon xmits before chip reset"); 270 271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 272 273 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 274 #define HAL_MODE_HT40 \ 275 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 276 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 277 int 278 ath_attach(u_int16_t devid, struct ath_softc *sc) 279 { 280 struct ifnet *ifp; 281 struct ieee80211com *ic; 282 struct ath_hal *ah = NULL; 283 HAL_STATUS status; 284 int error = 0, i; 285 u_int wmodes; 286 uint8_t macaddr[IEEE80211_ADDR_LEN]; 287 288 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 289 290 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 291 if (ifp == NULL) { 292 device_printf(sc->sc_dev, "can not if_alloc()\n"); 293 error = ENOSPC; 294 goto bad; 295 } 296 ic = ifp->if_l2com; 297 298 /* set these up early for if_printf use */ 299 if_initname(ifp, device_get_name(sc->sc_dev), 300 device_get_unit(sc->sc_dev)); 301 302 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 303 sc->sc_eepromdata, &status); 304 if (ah == NULL) { 305 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 306 status); 307 error = ENXIO; 308 goto bad; 309 } 310 sc->sc_ah = ah; 311 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 312 #ifdef ATH_DEBUG 313 sc->sc_debug = ath_debug; 314 #endif 315 316 /* 317 * Check if the MAC has multi-rate retry support. 318 * We do this by trying to setup a fake extended 319 * descriptor. MAC's that don't have support will 320 * return false w/o doing anything. MAC's that do 321 * support it will return true w/o doing anything. 322 */ 323 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 324 325 /* 326 * Check if the device has hardware counters for PHY 327 * errors. If so we need to enable the MIB interrupt 328 * so we can act on stat triggers. 329 */ 330 if (ath_hal_hwphycounters(ah)) 331 sc->sc_needmib = 1; 332 333 /* 334 * Get the hardware key cache size. 335 */ 336 sc->sc_keymax = ath_hal_keycachesize(ah); 337 if (sc->sc_keymax > ATH_KEYMAX) { 338 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 339 ATH_KEYMAX, sc->sc_keymax); 340 sc->sc_keymax = ATH_KEYMAX; 341 } 342 /* 343 * Reset the key cache since some parts do not 344 * reset the contents on initial power up. 345 */ 346 for (i = 0; i < sc->sc_keymax; i++) 347 ath_hal_keyreset(ah, i); 348 349 /* 350 * Collect the default channel list. 351 */ 352 error = ath_getchannels(sc); 353 if (error != 0) 354 goto bad; 355 356 /* 357 * Setup rate tables for all potential media types. 358 */ 359 ath_rate_setup(sc, IEEE80211_MODE_11A); 360 ath_rate_setup(sc, IEEE80211_MODE_11B); 361 ath_rate_setup(sc, IEEE80211_MODE_11G); 362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 363 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 364 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 365 ath_rate_setup(sc, IEEE80211_MODE_11NA); 366 ath_rate_setup(sc, IEEE80211_MODE_11NG); 367 ath_rate_setup(sc, IEEE80211_MODE_HALF); 368 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 369 370 /* NB: setup here so ath_rate_update is happy */ 371 ath_setcurmode(sc, IEEE80211_MODE_11A); 372 373 /* 374 * Allocate tx+rx descriptors and populate the lists. 375 */ 376 error = ath_desc_alloc(sc); 377 if (error != 0) { 378 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 379 goto bad; 380 } 381 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 382 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 383 384 ATH_TXBUF_LOCK_INIT(sc); 385 386 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 387 taskqueue_thread_enqueue, &sc->sc_tq); 388 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 389 "%s taskq", ifp->if_xname); 390 391 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 392 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 393 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 394 395 /* 396 * Allocate hardware transmit queues: one queue for 397 * beacon frames and one data queue for each QoS 398 * priority. Note that the hal handles resetting 399 * these queues at the needed time. 400 * 401 * XXX PS-Poll 402 */ 403 sc->sc_bhalq = ath_beaconq_setup(ah); 404 if (sc->sc_bhalq == (u_int) -1) { 405 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 406 error = EIO; 407 goto bad2; 408 } 409 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 410 if (sc->sc_cabq == NULL) { 411 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 412 error = EIO; 413 goto bad2; 414 } 415 /* NB: insure BK queue is the lowest priority h/w queue */ 416 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 417 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 418 ieee80211_wme_acnames[WME_AC_BK]); 419 error = EIO; 420 goto bad2; 421 } 422 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 423 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 424 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 425 /* 426 * Not enough hardware tx queues to properly do WME; 427 * just punt and assign them all to the same h/w queue. 428 * We could do a better job of this if, for example, 429 * we allocate queues when we switch from station to 430 * AP mode. 431 */ 432 if (sc->sc_ac2q[WME_AC_VI] != NULL) 433 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 434 if (sc->sc_ac2q[WME_AC_BE] != NULL) 435 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 436 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 437 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 438 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 439 } 440 441 /* 442 * Special case certain configurations. Note the 443 * CAB queue is handled by these specially so don't 444 * include them when checking the txq setup mask. 445 */ 446 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 447 case 0x01: 448 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 449 break; 450 case 0x0f: 451 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 452 break; 453 default: 454 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 455 break; 456 } 457 458 /* 459 * Setup rate control. Some rate control modules 460 * call back to change the anntena state so expose 461 * the necessary entry points. 462 * XXX maybe belongs in struct ath_ratectrl? 463 */ 464 sc->sc_setdefantenna = ath_setdefantenna; 465 sc->sc_rc = ath_rate_attach(sc); 466 if (sc->sc_rc == NULL) { 467 error = EIO; 468 goto bad2; 469 } 470 471 /* Attach DFS module */ 472 if (! ath_dfs_attach(sc)) { 473 device_printf(sc->sc_dev, 474 "%s: unable to attach DFS\n", __func__); 475 error = EIO; 476 goto bad2; 477 } 478 479 /* Start DFS processing tasklet */ 480 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 481 482 /* Configure LED state */ 483 sc->sc_blinking = 0; 484 sc->sc_ledstate = 1; 485 sc->sc_ledon = 0; /* low true */ 486 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 487 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 488 489 /* 490 * Don't setup hardware-based blinking. 491 * 492 * Although some NICs may have this configured in the 493 * default reset register values, the user may wish 494 * to alter which pins have which function. 495 * 496 * The reference driver attaches the MAC network LED to GPIO1 and 497 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 498 * NIC has these reversed. 499 */ 500 sc->sc_hardled = (1 == 0); 501 sc->sc_led_net_pin = -1; 502 sc->sc_led_pwr_pin = -1; 503 /* 504 * Auto-enable soft led processing for IBM cards and for 505 * 5211 minipci cards. Users can also manually enable/disable 506 * support with a sysctl. 507 */ 508 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 509 ath_led_config(sc); 510 ath_hal_setledstate(ah, HAL_LED_INIT); 511 512 ifp->if_softc = sc; 513 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 514 ifp->if_start = ath_start; 515 ifp->if_ioctl = ath_ioctl; 516 ifp->if_init = ath_init; 517 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 518 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 519 IFQ_SET_READY(&ifp->if_snd); 520 521 ic->ic_ifp = ifp; 522 /* XXX not right but it's not used anywhere important */ 523 ic->ic_phytype = IEEE80211_T_OFDM; 524 ic->ic_opmode = IEEE80211_M_STA; 525 ic->ic_caps = 526 IEEE80211_C_STA /* station mode */ 527 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 528 | IEEE80211_C_HOSTAP /* hostap mode */ 529 | IEEE80211_C_MONITOR /* monitor mode */ 530 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 531 | IEEE80211_C_WDS /* 4-address traffic works */ 532 | IEEE80211_C_MBSS /* mesh point link mode */ 533 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 534 | IEEE80211_C_SHSLOT /* short slot time supported */ 535 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 536 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 537 | IEEE80211_C_TXFRAG /* handle tx frags */ 538 #ifdef ATH_ENABLE_DFS 539 | IEEE80211_C_DFS /* Enable radar detection */ 540 #endif 541 ; 542 /* 543 * Query the hal to figure out h/w crypto support. 544 */ 545 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 546 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 547 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 548 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 549 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 550 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 551 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 552 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 554 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 555 /* 556 * Check if h/w does the MIC and/or whether the 557 * separate key cache entries are required to 558 * handle both tx+rx MIC keys. 559 */ 560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 561 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 562 /* 563 * If the h/w supports storing tx+rx MIC keys 564 * in one cache slot automatically enable use. 565 */ 566 if (ath_hal_hastkipsplit(ah) || 567 !ath_hal_settkipsplit(ah, AH_FALSE)) 568 sc->sc_splitmic = 1; 569 /* 570 * If the h/w can do TKIP MIC together with WME then 571 * we use it; otherwise we force the MIC to be done 572 * in software by the net80211 layer. 573 */ 574 if (ath_hal_haswmetkipmic(ah)) 575 sc->sc_wmetkipmic = 1; 576 } 577 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 578 /* 579 * Check for multicast key search support. 580 */ 581 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 582 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 583 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 584 } 585 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 586 /* 587 * Mark key cache slots associated with global keys 588 * as in use. If we knew TKIP was not to be used we 589 * could leave the +32, +64, and +32+64 slots free. 590 */ 591 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 592 setbit(sc->sc_keymap, i); 593 setbit(sc->sc_keymap, i+64); 594 if (sc->sc_splitmic) { 595 setbit(sc->sc_keymap, i+32); 596 setbit(sc->sc_keymap, i+32+64); 597 } 598 } 599 /* 600 * TPC support can be done either with a global cap or 601 * per-packet support. The latter is not available on 602 * all parts. We're a bit pedantic here as all parts 603 * support a global cap. 604 */ 605 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 606 ic->ic_caps |= IEEE80211_C_TXPMGT; 607 608 /* 609 * Mark WME capability only if we have sufficient 610 * hardware queues to do proper priority scheduling. 611 */ 612 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 613 ic->ic_caps |= IEEE80211_C_WME; 614 /* 615 * Check for misc other capabilities. 616 */ 617 if (ath_hal_hasbursting(ah)) 618 ic->ic_caps |= IEEE80211_C_BURST; 619 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 620 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 621 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 622 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 623 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 624 if (ath_hal_hasfastframes(ah)) 625 ic->ic_caps |= IEEE80211_C_FF; 626 wmodes = ath_hal_getwirelessmodes(ah); 627 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 628 ic->ic_caps |= IEEE80211_C_TURBOP; 629 #ifdef IEEE80211_SUPPORT_TDMA 630 if (ath_hal_macversion(ah) > 0x78) { 631 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 632 ic->ic_tdma_update = ath_tdma_update; 633 } 634 #endif 635 636 /* 637 * The if_ath 11n support is completely not ready for normal use. 638 * Enabling this option will likely break everything and everything. 639 * Don't think of doing that unless you know what you're doing. 640 */ 641 642 #ifdef ATH_ENABLE_11N 643 /* 644 * Query HT capabilities 645 */ 646 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 647 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 648 int rxs, txs; 649 650 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 651 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 652 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 653 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 654 | IEEE80211_HTCAP_MAXAMSDU_3839 655 /* max A-MSDU length */ 656 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 657 ; 658 659 /* 660 * Enable short-GI for HT20 only if the hardware 661 * advertises support. 662 * Notably, anything earlier than the AR9287 doesn't. 663 */ 664 if ((ath_hal_getcapability(ah, 665 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 666 (wmodes & HAL_MODE_HT20)) { 667 device_printf(sc->sc_dev, 668 "[HT] enabling short-GI in 20MHz mode\n"); 669 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 670 } 671 672 if (wmodes & HAL_MODE_HT40) 673 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 674 | IEEE80211_HTCAP_SHORTGI40; 675 676 /* 677 * TX/RX streams need to be taken into account when 678 * negotiating which MCS rates it'll receive and 679 * what MCS rates are available for TX. 680 */ 681 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs); 682 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs); 683 684 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 685 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 686 687 ic->ic_txstream = txs; 688 ic->ic_rxstream = rxs; 689 690 device_printf(sc->sc_dev, 691 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 692 } 693 #endif 694 695 /* 696 * Check if the hardware requires PCI register serialisation. 697 * Some of the Owl based MACs require this. 698 */ 699 if (mp_ncpus > 1 && 700 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 701 0, NULL) == HAL_OK) { 702 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 703 device_printf(sc->sc_dev, 704 "Enabling register serialisation\n"); 705 } 706 707 /* 708 * Indicate we need the 802.11 header padded to a 709 * 32-bit boundary for 4-address and QoS frames. 710 */ 711 ic->ic_flags |= IEEE80211_F_DATAPAD; 712 713 /* 714 * Query the hal about antenna support. 715 */ 716 sc->sc_defant = ath_hal_getdefantenna(ah); 717 718 /* 719 * Not all chips have the VEOL support we want to 720 * use with IBSS beacons; check here for it. 721 */ 722 sc->sc_hasveol = ath_hal_hasveol(ah); 723 724 /* get mac address from hardware */ 725 ath_hal_getmac(ah, macaddr); 726 if (sc->sc_hasbmask) 727 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 728 729 /* NB: used to size node table key mapping array */ 730 ic->ic_max_keyix = sc->sc_keymax; 731 /* call MI attach routine. */ 732 ieee80211_ifattach(ic, macaddr); 733 ic->ic_setregdomain = ath_setregdomain; 734 ic->ic_getradiocaps = ath_getradiocaps; 735 sc->sc_opmode = HAL_M_STA; 736 737 /* override default methods */ 738 ic->ic_newassoc = ath_newassoc; 739 ic->ic_updateslot = ath_updateslot; 740 ic->ic_wme.wme_update = ath_wme_update; 741 ic->ic_vap_create = ath_vap_create; 742 ic->ic_vap_delete = ath_vap_delete; 743 ic->ic_raw_xmit = ath_raw_xmit; 744 ic->ic_update_mcast = ath_update_mcast; 745 ic->ic_update_promisc = ath_update_promisc; 746 ic->ic_node_alloc = ath_node_alloc; 747 sc->sc_node_free = ic->ic_node_free; 748 ic->ic_node_free = ath_node_free; 749 sc->sc_node_cleanup = ic->ic_node_cleanup; 750 ic->ic_node_cleanup = ath_node_cleanup; 751 ic->ic_node_getsignal = ath_node_getsignal; 752 ic->ic_scan_start = ath_scan_start; 753 ic->ic_scan_end = ath_scan_end; 754 ic->ic_set_channel = ath_set_channel; 755 756 /* 802.11n specific - but just override anyway */ 757 sc->sc_addba_request = ic->ic_addba_request; 758 sc->sc_addba_response = ic->ic_addba_response; 759 sc->sc_addba_stop = ic->ic_addba_stop; 760 sc->sc_bar_response = ic->ic_bar_response; 761 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 762 763 ic->ic_addba_request = ath_addba_request; 764 ic->ic_addba_response = ath_addba_response; 765 ic->ic_addba_response_timeout = ath_addba_response_timeout; 766 ic->ic_addba_stop = ath_addba_stop; 767 ic->ic_bar_response = ath_bar_response; 768 769 ieee80211_radiotap_attach(ic, 770 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 771 ATH_TX_RADIOTAP_PRESENT, 772 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 773 ATH_RX_RADIOTAP_PRESENT); 774 775 /* 776 * Setup dynamic sysctl's now that country code and 777 * regdomain are available from the hal. 778 */ 779 ath_sysctlattach(sc); 780 ath_sysctl_stats_attach(sc); 781 ath_sysctl_hal_attach(sc); 782 783 if (bootverbose) 784 ieee80211_announce(ic); 785 ath_announce(sc); 786 return 0; 787 bad2: 788 ath_tx_cleanup(sc); 789 ath_desc_free(sc); 790 bad: 791 if (ah) 792 ath_hal_detach(ah); 793 if (ifp != NULL) 794 if_free(ifp); 795 sc->sc_invalid = 1; 796 return error; 797 } 798 799 int 800 ath_detach(struct ath_softc *sc) 801 { 802 struct ifnet *ifp = sc->sc_ifp; 803 804 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 805 __func__, ifp->if_flags); 806 807 /* 808 * NB: the order of these is important: 809 * o stop the chip so no more interrupts will fire 810 * o call the 802.11 layer before detaching the hal to 811 * insure callbacks into the driver to delete global 812 * key cache entries can be handled 813 * o free the taskqueue which drains any pending tasks 814 * o reclaim the tx queue data structures after calling 815 * the 802.11 layer as we'll get called back to reclaim 816 * node state and potentially want to use them 817 * o to cleanup the tx queues the hal is called, so detach 818 * it last 819 * Other than that, it's straightforward... 820 */ 821 ath_stop(ifp); 822 ieee80211_ifdetach(ifp->if_l2com); 823 taskqueue_free(sc->sc_tq); 824 #ifdef ATH_TX99_DIAG 825 if (sc->sc_tx99 != NULL) 826 sc->sc_tx99->detach(sc->sc_tx99); 827 #endif 828 ath_rate_detach(sc->sc_rc); 829 830 ath_dfs_detach(sc); 831 ath_desc_free(sc); 832 ath_tx_cleanup(sc); 833 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 834 if_free(ifp); 835 836 return 0; 837 } 838 839 /* 840 * MAC address handling for multiple BSS on the same radio. 841 * The first vap uses the MAC address from the EEPROM. For 842 * subsequent vap's we set the U/L bit (bit 1) in the MAC 843 * address and use the next six bits as an index. 844 */ 845 static void 846 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 847 { 848 int i; 849 850 if (clone && sc->sc_hasbmask) { 851 /* NB: we only do this if h/w supports multiple bssid */ 852 for (i = 0; i < 8; i++) 853 if ((sc->sc_bssidmask & (1<<i)) == 0) 854 break; 855 if (i != 0) 856 mac[0] |= (i << 2)|0x2; 857 } else 858 i = 0; 859 sc->sc_bssidmask |= 1<<i; 860 sc->sc_hwbssidmask[0] &= ~mac[0]; 861 if (i == 0) 862 sc->sc_nbssid0++; 863 } 864 865 static void 866 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 867 { 868 int i = mac[0] >> 2; 869 uint8_t mask; 870 871 if (i != 0 || --sc->sc_nbssid0 == 0) { 872 sc->sc_bssidmask &= ~(1<<i); 873 /* recalculate bssid mask from remaining addresses */ 874 mask = 0xff; 875 for (i = 1; i < 8; i++) 876 if (sc->sc_bssidmask & (1<<i)) 877 mask &= ~((i<<2)|0x2); 878 sc->sc_hwbssidmask[0] |= mask; 879 } 880 } 881 882 /* 883 * Assign a beacon xmit slot. We try to space out 884 * assignments so when beacons are staggered the 885 * traffic coming out of the cab q has maximal time 886 * to go out before the next beacon is scheduled. 887 */ 888 static int 889 assign_bslot(struct ath_softc *sc) 890 { 891 u_int slot, free; 892 893 free = 0; 894 for (slot = 0; slot < ATH_BCBUF; slot++) 895 if (sc->sc_bslot[slot] == NULL) { 896 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 897 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 898 return slot; 899 free = slot; 900 /* NB: keep looking for a double slot */ 901 } 902 return free; 903 } 904 905 static struct ieee80211vap * 906 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 907 enum ieee80211_opmode opmode, int flags, 908 const uint8_t bssid[IEEE80211_ADDR_LEN], 909 const uint8_t mac0[IEEE80211_ADDR_LEN]) 910 { 911 struct ath_softc *sc = ic->ic_ifp->if_softc; 912 struct ath_vap *avp; 913 struct ieee80211vap *vap; 914 uint8_t mac[IEEE80211_ADDR_LEN]; 915 int needbeacon, error; 916 enum ieee80211_opmode ic_opmode; 917 918 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 919 M_80211_VAP, M_WAITOK | M_ZERO); 920 needbeacon = 0; 921 IEEE80211_ADDR_COPY(mac, mac0); 922 923 ATH_LOCK(sc); 924 ic_opmode = opmode; /* default to opmode of new vap */ 925 switch (opmode) { 926 case IEEE80211_M_STA: 927 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 928 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 929 goto bad; 930 } 931 if (sc->sc_nvaps) { 932 /* 933 * With multiple vaps we must fall back 934 * to s/w beacon miss handling. 935 */ 936 flags |= IEEE80211_CLONE_NOBEACONS; 937 } 938 if (flags & IEEE80211_CLONE_NOBEACONS) { 939 /* 940 * Station mode w/o beacons are implemented w/ AP mode. 941 */ 942 ic_opmode = IEEE80211_M_HOSTAP; 943 } 944 break; 945 case IEEE80211_M_IBSS: 946 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 947 device_printf(sc->sc_dev, 948 "only 1 ibss vap supported\n"); 949 goto bad; 950 } 951 needbeacon = 1; 952 break; 953 case IEEE80211_M_AHDEMO: 954 #ifdef IEEE80211_SUPPORT_TDMA 955 if (flags & IEEE80211_CLONE_TDMA) { 956 if (sc->sc_nvaps != 0) { 957 device_printf(sc->sc_dev, 958 "only 1 tdma vap supported\n"); 959 goto bad; 960 } 961 needbeacon = 1; 962 flags |= IEEE80211_CLONE_NOBEACONS; 963 } 964 /* fall thru... */ 965 #endif 966 case IEEE80211_M_MONITOR: 967 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 968 /* 969 * Adopt existing mode. Adding a monitor or ahdemo 970 * vap to an existing configuration is of dubious 971 * value but should be ok. 972 */ 973 /* XXX not right for monitor mode */ 974 ic_opmode = ic->ic_opmode; 975 } 976 break; 977 case IEEE80211_M_HOSTAP: 978 case IEEE80211_M_MBSS: 979 needbeacon = 1; 980 break; 981 case IEEE80211_M_WDS: 982 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 983 device_printf(sc->sc_dev, 984 "wds not supported in sta mode\n"); 985 goto bad; 986 } 987 /* 988 * Silently remove any request for a unique 989 * bssid; WDS vap's always share the local 990 * mac address. 991 */ 992 flags &= ~IEEE80211_CLONE_BSSID; 993 if (sc->sc_nvaps == 0) 994 ic_opmode = IEEE80211_M_HOSTAP; 995 else 996 ic_opmode = ic->ic_opmode; 997 break; 998 default: 999 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1000 goto bad; 1001 } 1002 /* 1003 * Check that a beacon buffer is available; the code below assumes it. 1004 */ 1005 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1006 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1007 goto bad; 1008 } 1009 1010 /* STA, AHDEMO? */ 1011 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1012 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1013 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1014 } 1015 1016 vap = &avp->av_vap; 1017 /* XXX can't hold mutex across if_alloc */ 1018 ATH_UNLOCK(sc); 1019 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1020 bssid, mac); 1021 ATH_LOCK(sc); 1022 if (error != 0) { 1023 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1024 __func__, error); 1025 goto bad2; 1026 } 1027 1028 /* h/w crypto support */ 1029 vap->iv_key_alloc = ath_key_alloc; 1030 vap->iv_key_delete = ath_key_delete; 1031 vap->iv_key_set = ath_key_set; 1032 vap->iv_key_update_begin = ath_key_update_begin; 1033 vap->iv_key_update_end = ath_key_update_end; 1034 1035 /* override various methods */ 1036 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1037 vap->iv_recv_mgmt = ath_recv_mgmt; 1038 vap->iv_reset = ath_reset_vap; 1039 vap->iv_update_beacon = ath_beacon_update; 1040 avp->av_newstate = vap->iv_newstate; 1041 vap->iv_newstate = ath_newstate; 1042 avp->av_bmiss = vap->iv_bmiss; 1043 vap->iv_bmiss = ath_bmiss_vap; 1044 1045 /* Set default parameters */ 1046 1047 /* 1048 * Anything earlier than some AR9300 series MACs don't 1049 * support a smaller MPDU density. 1050 */ 1051 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1052 /* 1053 * All NICs can handle the maximum size, however 1054 * AR5416 based MACs can only TX aggregates w/ RTS 1055 * protection when the total aggregate size is <= 8k. 1056 * However, for now that's enforced by the TX path. 1057 */ 1058 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1059 1060 avp->av_bslot = -1; 1061 if (needbeacon) { 1062 /* 1063 * Allocate beacon state and setup the q for buffered 1064 * multicast frames. We know a beacon buffer is 1065 * available because we checked above. 1066 */ 1067 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1068 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1069 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1070 /* 1071 * Assign the vap to a beacon xmit slot. As above 1072 * this cannot fail to find a free one. 1073 */ 1074 avp->av_bslot = assign_bslot(sc); 1075 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1076 ("beacon slot %u not empty", avp->av_bslot)); 1077 sc->sc_bslot[avp->av_bslot] = vap; 1078 sc->sc_nbcnvaps++; 1079 } 1080 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1081 /* 1082 * Multple vaps are to transmit beacons and we 1083 * have h/w support for TSF adjusting; enable 1084 * use of staggered beacons. 1085 */ 1086 sc->sc_stagbeacons = 1; 1087 } 1088 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1089 } 1090 1091 ic->ic_opmode = ic_opmode; 1092 if (opmode != IEEE80211_M_WDS) { 1093 sc->sc_nvaps++; 1094 if (opmode == IEEE80211_M_STA) 1095 sc->sc_nstavaps++; 1096 if (opmode == IEEE80211_M_MBSS) 1097 sc->sc_nmeshvaps++; 1098 } 1099 switch (ic_opmode) { 1100 case IEEE80211_M_IBSS: 1101 sc->sc_opmode = HAL_M_IBSS; 1102 break; 1103 case IEEE80211_M_STA: 1104 sc->sc_opmode = HAL_M_STA; 1105 break; 1106 case IEEE80211_M_AHDEMO: 1107 #ifdef IEEE80211_SUPPORT_TDMA 1108 if (vap->iv_caps & IEEE80211_C_TDMA) { 1109 sc->sc_tdma = 1; 1110 /* NB: disable tsf adjust */ 1111 sc->sc_stagbeacons = 0; 1112 } 1113 /* 1114 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1115 * just ap mode. 1116 */ 1117 /* fall thru... */ 1118 #endif 1119 case IEEE80211_M_HOSTAP: 1120 case IEEE80211_M_MBSS: 1121 sc->sc_opmode = HAL_M_HOSTAP; 1122 break; 1123 case IEEE80211_M_MONITOR: 1124 sc->sc_opmode = HAL_M_MONITOR; 1125 break; 1126 default: 1127 /* XXX should not happen */ 1128 break; 1129 } 1130 if (sc->sc_hastsfadd) { 1131 /* 1132 * Configure whether or not TSF adjust should be done. 1133 */ 1134 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1135 } 1136 if (flags & IEEE80211_CLONE_NOBEACONS) { 1137 /* 1138 * Enable s/w beacon miss handling. 1139 */ 1140 sc->sc_swbmiss = 1; 1141 } 1142 ATH_UNLOCK(sc); 1143 1144 /* complete setup */ 1145 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1146 return vap; 1147 bad2: 1148 reclaim_address(sc, mac); 1149 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1150 bad: 1151 free(avp, M_80211_VAP); 1152 ATH_UNLOCK(sc); 1153 return NULL; 1154 } 1155 1156 static void 1157 ath_vap_delete(struct ieee80211vap *vap) 1158 { 1159 struct ieee80211com *ic = vap->iv_ic; 1160 struct ifnet *ifp = ic->ic_ifp; 1161 struct ath_softc *sc = ifp->if_softc; 1162 struct ath_hal *ah = sc->sc_ah; 1163 struct ath_vap *avp = ATH_VAP(vap); 1164 1165 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1166 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1167 /* 1168 * Quiesce the hardware while we remove the vap. In 1169 * particular we need to reclaim all references to 1170 * the vap state by any frames pending on the tx queues. 1171 */ 1172 ath_hal_intrset(ah, 0); /* disable interrupts */ 1173 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1174 /* XXX Do all frames from all vaps/nodes need draining here? */ 1175 ath_stoprecv(sc, 1); /* stop recv side */ 1176 } 1177 1178 ieee80211_vap_detach(vap); 1179 1180 /* 1181 * XXX Danger Will Robinson! Danger! 1182 * 1183 * Because ieee80211_vap_detach() can queue a frame (the station 1184 * diassociate message?) after we've drained the TXQ and 1185 * flushed the software TXQ, we will end up with a frame queued 1186 * to a node whose vap is about to be freed. 1187 * 1188 * To work around this, flush the hardware/software again. 1189 * This may be racy - the ath task may be running and the packet 1190 * may be being scheduled between sw->hw txq. Tsk. 1191 * 1192 * TODO: figure out why a new node gets allocated somewhere around 1193 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1194 * call!) 1195 */ 1196 1197 ath_draintxq(sc, ATH_RESET_DEFAULT); 1198 1199 ATH_LOCK(sc); 1200 /* 1201 * Reclaim beacon state. Note this must be done before 1202 * the vap instance is reclaimed as we may have a reference 1203 * to it in the buffer for the beacon frame. 1204 */ 1205 if (avp->av_bcbuf != NULL) { 1206 if (avp->av_bslot != -1) { 1207 sc->sc_bslot[avp->av_bslot] = NULL; 1208 sc->sc_nbcnvaps--; 1209 } 1210 ath_beacon_return(sc, avp->av_bcbuf); 1211 avp->av_bcbuf = NULL; 1212 if (sc->sc_nbcnvaps == 0) { 1213 sc->sc_stagbeacons = 0; 1214 if (sc->sc_hastsfadd) 1215 ath_hal_settsfadjust(sc->sc_ah, 0); 1216 } 1217 /* 1218 * Reclaim any pending mcast frames for the vap. 1219 */ 1220 ath_tx_draintxq(sc, &avp->av_mcastq); 1221 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1222 } 1223 /* 1224 * Update bookkeeping. 1225 */ 1226 if (vap->iv_opmode == IEEE80211_M_STA) { 1227 sc->sc_nstavaps--; 1228 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1229 sc->sc_swbmiss = 0; 1230 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1231 vap->iv_opmode == IEEE80211_M_MBSS) { 1232 reclaim_address(sc, vap->iv_myaddr); 1233 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1234 if (vap->iv_opmode == IEEE80211_M_MBSS) 1235 sc->sc_nmeshvaps--; 1236 } 1237 if (vap->iv_opmode != IEEE80211_M_WDS) 1238 sc->sc_nvaps--; 1239 #ifdef IEEE80211_SUPPORT_TDMA 1240 /* TDMA operation ceases when the last vap is destroyed */ 1241 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1242 sc->sc_tdma = 0; 1243 sc->sc_swbmiss = 0; 1244 } 1245 #endif 1246 free(avp, M_80211_VAP); 1247 1248 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1249 /* 1250 * Restart rx+tx machines if still running (RUNNING will 1251 * be reset if we just destroyed the last vap). 1252 */ 1253 if (ath_startrecv(sc) != 0) 1254 if_printf(ifp, "%s: unable to restart recv logic\n", 1255 __func__); 1256 if (sc->sc_beacons) { /* restart beacons */ 1257 #ifdef IEEE80211_SUPPORT_TDMA 1258 if (sc->sc_tdma) 1259 ath_tdma_config(sc, NULL); 1260 else 1261 #endif 1262 ath_beacon_config(sc, NULL); 1263 } 1264 ath_hal_intrset(ah, sc->sc_imask); 1265 } 1266 ATH_UNLOCK(sc); 1267 } 1268 1269 void 1270 ath_suspend(struct ath_softc *sc) 1271 { 1272 struct ifnet *ifp = sc->sc_ifp; 1273 struct ieee80211com *ic = ifp->if_l2com; 1274 1275 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1276 __func__, ifp->if_flags); 1277 1278 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1279 if (ic->ic_opmode == IEEE80211_M_STA) 1280 ath_stop(ifp); 1281 else 1282 ieee80211_suspend_all(ic); 1283 /* 1284 * NB: don't worry about putting the chip in low power 1285 * mode; pci will power off our socket on suspend and 1286 * CardBus detaches the device. 1287 */ 1288 } 1289 1290 /* 1291 * Reset the key cache since some parts do not reset the 1292 * contents on resume. First we clear all entries, then 1293 * re-load keys that the 802.11 layer assumes are setup 1294 * in h/w. 1295 */ 1296 static void 1297 ath_reset_keycache(struct ath_softc *sc) 1298 { 1299 struct ifnet *ifp = sc->sc_ifp; 1300 struct ieee80211com *ic = ifp->if_l2com; 1301 struct ath_hal *ah = sc->sc_ah; 1302 int i; 1303 1304 for (i = 0; i < sc->sc_keymax; i++) 1305 ath_hal_keyreset(ah, i); 1306 ieee80211_crypto_reload_keys(ic); 1307 } 1308 1309 void 1310 ath_resume(struct ath_softc *sc) 1311 { 1312 struct ifnet *ifp = sc->sc_ifp; 1313 struct ieee80211com *ic = ifp->if_l2com; 1314 struct ath_hal *ah = sc->sc_ah; 1315 HAL_STATUS status; 1316 1317 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1318 __func__, ifp->if_flags); 1319 1320 /* 1321 * Must reset the chip before we reload the 1322 * keycache as we were powered down on suspend. 1323 */ 1324 ath_hal_reset(ah, sc->sc_opmode, 1325 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1326 AH_FALSE, &status); 1327 ath_reset_keycache(sc); 1328 1329 /* Let DFS at it in case it's a DFS channel */ 1330 ath_dfs_radar_enable(sc, ic->ic_curchan); 1331 1332 /* Restore the LED configuration */ 1333 ath_led_config(sc); 1334 ath_hal_setledstate(ah, HAL_LED_INIT); 1335 1336 if (sc->sc_resume_up) { 1337 if (ic->ic_opmode == IEEE80211_M_STA) { 1338 ath_init(sc); 1339 ath_hal_setledstate(ah, HAL_LED_RUN); 1340 /* 1341 * Program the beacon registers using the last rx'd 1342 * beacon frame and enable sync on the next beacon 1343 * we see. This should handle the case where we 1344 * wakeup and find the same AP and also the case where 1345 * we wakeup and need to roam. For the latter we 1346 * should get bmiss events that trigger a roam. 1347 */ 1348 ath_beacon_config(sc, NULL); 1349 sc->sc_syncbeacon = 1; 1350 } else 1351 ieee80211_resume_all(ic); 1352 } 1353 1354 /* XXX beacons ? */ 1355 } 1356 1357 void 1358 ath_shutdown(struct ath_softc *sc) 1359 { 1360 struct ifnet *ifp = sc->sc_ifp; 1361 1362 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1363 __func__, ifp->if_flags); 1364 1365 ath_stop(ifp); 1366 /* NB: no point powering down chip as we're about to reboot */ 1367 } 1368 1369 /* 1370 * Interrupt handler. Most of the actual processing is deferred. 1371 */ 1372 void 1373 ath_intr(void *arg) 1374 { 1375 struct ath_softc *sc = arg; 1376 struct ifnet *ifp = sc->sc_ifp; 1377 struct ath_hal *ah = sc->sc_ah; 1378 HAL_INT status = 0; 1379 uint32_t txqs; 1380 1381 /* 1382 * If we're inside a reset path, just print a warning and 1383 * clear the ISR. The reset routine will finish it for us. 1384 */ 1385 ATH_PCU_LOCK(sc); 1386 if (sc->sc_inreset_cnt) { 1387 HAL_INT status; 1388 ath_hal_getisr(ah, &status); /* clear ISR */ 1389 ath_hal_intrset(ah, 0); /* disable further intr's */ 1390 DPRINTF(sc, ATH_DEBUG_ANY, 1391 "%s: in reset, ignoring: status=0x%x\n", 1392 __func__, status); 1393 ATH_PCU_UNLOCK(sc); 1394 return; 1395 } 1396 1397 if (sc->sc_invalid) { 1398 /* 1399 * The hardware is not ready/present, don't touch anything. 1400 * Note this can happen early on if the IRQ is shared. 1401 */ 1402 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1403 ATH_PCU_UNLOCK(sc); 1404 return; 1405 } 1406 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1407 ATH_PCU_UNLOCK(sc); 1408 return; 1409 } 1410 1411 if ((ifp->if_flags & IFF_UP) == 0 || 1412 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1413 HAL_INT status; 1414 1415 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1416 __func__, ifp->if_flags); 1417 ath_hal_getisr(ah, &status); /* clear ISR */ 1418 ath_hal_intrset(ah, 0); /* disable further intr's */ 1419 ATH_PCU_UNLOCK(sc); 1420 return; 1421 } 1422 1423 /* 1424 * Figure out the reason(s) for the interrupt. Note 1425 * that the hal returns a pseudo-ISR that may include 1426 * bits we haven't explicitly enabled so we mask the 1427 * value to insure we only process bits we requested. 1428 */ 1429 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1430 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1431 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1432 #ifdef ATH_KTR_INTR_DEBUG 1433 CTR5(ATH_KTR_INTR, 1434 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1435 ah->ah_intrstate[0], 1436 ah->ah_intrstate[1], 1437 ah->ah_intrstate[2], 1438 ah->ah_intrstate[3], 1439 ah->ah_intrstate[6]); 1440 #endif 1441 status &= sc->sc_imask; /* discard unasked for bits */ 1442 1443 /* Short-circuit un-handled interrupts */ 1444 if (status == 0x0) { 1445 ATH_PCU_UNLOCK(sc); 1446 return; 1447 } 1448 1449 /* 1450 * Take a note that we're inside the interrupt handler, so 1451 * the reset routines know to wait. 1452 */ 1453 sc->sc_intr_cnt++; 1454 ATH_PCU_UNLOCK(sc); 1455 1456 /* 1457 * Handle the interrupt. We won't run concurrent with the reset 1458 * or channel change routines as they'll wait for sc_intr_cnt 1459 * to be 0 before continuing. 1460 */ 1461 if (status & HAL_INT_FATAL) { 1462 sc->sc_stats.ast_hardware++; 1463 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1464 ath_fatal_proc(sc, 0); 1465 } else { 1466 if (status & HAL_INT_SWBA) { 1467 /* 1468 * Software beacon alert--time to send a beacon. 1469 * Handle beacon transmission directly; deferring 1470 * this is too slow to meet timing constraints 1471 * under load. 1472 */ 1473 #ifdef IEEE80211_SUPPORT_TDMA 1474 if (sc->sc_tdma) { 1475 if (sc->sc_tdmaswba == 0) { 1476 struct ieee80211com *ic = ifp->if_l2com; 1477 struct ieee80211vap *vap = 1478 TAILQ_FIRST(&ic->ic_vaps); 1479 ath_tdma_beacon_send(sc, vap); 1480 sc->sc_tdmaswba = 1481 vap->iv_tdma->tdma_bintval; 1482 } else 1483 sc->sc_tdmaswba--; 1484 } else 1485 #endif 1486 { 1487 ath_beacon_proc(sc, 0); 1488 #ifdef IEEE80211_SUPPORT_SUPERG 1489 /* 1490 * Schedule the rx taskq in case there's no 1491 * traffic so any frames held on the staging 1492 * queue are aged and potentially flushed. 1493 */ 1494 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1495 #endif 1496 } 1497 } 1498 if (status & HAL_INT_RXEOL) { 1499 int imask; 1500 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1501 ATH_PCU_LOCK(sc); 1502 /* 1503 * NB: the hardware should re-read the link when 1504 * RXE bit is written, but it doesn't work at 1505 * least on older hardware revs. 1506 */ 1507 sc->sc_stats.ast_rxeol++; 1508 /* 1509 * Disable RXEOL/RXORN - prevent an interrupt 1510 * storm until the PCU logic can be reset. 1511 * In case the interface is reset some other 1512 * way before "sc_kickpcu" is called, don't 1513 * modify sc_imask - that way if it is reset 1514 * by a call to ath_reset() somehow, the 1515 * interrupt mask will be correctly reprogrammed. 1516 */ 1517 imask = sc->sc_imask; 1518 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1519 ath_hal_intrset(ah, imask); 1520 /* 1521 * Only blank sc_rxlink if we've not yet kicked 1522 * the PCU. 1523 * 1524 * This isn't entirely correct - the correct solution 1525 * would be to have a PCU lock and engage that for 1526 * the duration of the PCU fiddling; which would include 1527 * running the RX process. Otherwise we could end up 1528 * messing up the RX descriptor chain and making the 1529 * RX desc list much shorter. 1530 */ 1531 if (! sc->sc_kickpcu) 1532 sc->sc_rxlink = NULL; 1533 sc->sc_kickpcu = 1; 1534 /* 1535 * Enqueue an RX proc, to handled whatever 1536 * is in the RX queue. 1537 * This will then kick the PCU. 1538 */ 1539 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1540 ATH_PCU_UNLOCK(sc); 1541 } 1542 if (status & HAL_INT_TXURN) { 1543 sc->sc_stats.ast_txurn++; 1544 /* bump tx trigger level */ 1545 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1546 } 1547 if (status & HAL_INT_RX) { 1548 sc->sc_stats.ast_rx_intr++; 1549 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1550 } 1551 if (status & HAL_INT_TX) { 1552 sc->sc_stats.ast_tx_intr++; 1553 /* 1554 * Grab all the currently set bits in the HAL txq bitmap 1555 * and blank them. This is the only place we should be 1556 * doing this. 1557 */ 1558 ATH_PCU_LOCK(sc); 1559 txqs = 0xffffffff; 1560 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1561 sc->sc_txq_active |= txqs; 1562 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1563 ATH_PCU_UNLOCK(sc); 1564 } 1565 if (status & HAL_INT_BMISS) { 1566 sc->sc_stats.ast_bmiss++; 1567 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1568 } 1569 if (status & HAL_INT_GTT) 1570 sc->sc_stats.ast_tx_timeout++; 1571 if (status & HAL_INT_CST) 1572 sc->sc_stats.ast_tx_cst++; 1573 if (status & HAL_INT_MIB) { 1574 sc->sc_stats.ast_mib++; 1575 ATH_PCU_LOCK(sc); 1576 /* 1577 * Disable interrupts until we service the MIB 1578 * interrupt; otherwise it will continue to fire. 1579 */ 1580 ath_hal_intrset(ah, 0); 1581 /* 1582 * Let the hal handle the event. We assume it will 1583 * clear whatever condition caused the interrupt. 1584 */ 1585 ath_hal_mibevent(ah, &sc->sc_halstats); 1586 /* 1587 * Don't reset the interrupt if we've just 1588 * kicked the PCU, or we may get a nested 1589 * RXEOL before the rxproc has had a chance 1590 * to run. 1591 */ 1592 if (sc->sc_kickpcu == 0) 1593 ath_hal_intrset(ah, sc->sc_imask); 1594 ATH_PCU_UNLOCK(sc); 1595 } 1596 if (status & HAL_INT_RXORN) { 1597 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1598 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1599 sc->sc_stats.ast_rxorn++; 1600 } 1601 } 1602 ATH_PCU_LOCK(sc); 1603 sc->sc_intr_cnt--; 1604 ATH_PCU_UNLOCK(sc); 1605 } 1606 1607 static void 1608 ath_fatal_proc(void *arg, int pending) 1609 { 1610 struct ath_softc *sc = arg; 1611 struct ifnet *ifp = sc->sc_ifp; 1612 u_int32_t *state; 1613 u_int32_t len; 1614 void *sp; 1615 1616 if_printf(ifp, "hardware error; resetting\n"); 1617 /* 1618 * Fatal errors are unrecoverable. Typically these 1619 * are caused by DMA errors. Collect h/w state from 1620 * the hal so we can diagnose what's going on. 1621 */ 1622 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1623 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1624 state = sp; 1625 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1626 state[0], state[1] , state[2], state[3], 1627 state[4], state[5]); 1628 } 1629 ath_reset(ifp, ATH_RESET_NOLOSS); 1630 } 1631 1632 static void 1633 ath_bmiss_vap(struct ieee80211vap *vap) 1634 { 1635 /* 1636 * Workaround phantom bmiss interrupts by sanity-checking 1637 * the time of our last rx'd frame. If it is within the 1638 * beacon miss interval then ignore the interrupt. If it's 1639 * truly a bmiss we'll get another interrupt soon and that'll 1640 * be dispatched up for processing. Note this applies only 1641 * for h/w beacon miss events. 1642 */ 1643 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1644 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1645 struct ath_softc *sc = ifp->if_softc; 1646 u_int64_t lastrx = sc->sc_lastrx; 1647 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1648 u_int bmisstimeout = 1649 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1650 1651 DPRINTF(sc, ATH_DEBUG_BEACON, 1652 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1653 __func__, (unsigned long long) tsf, 1654 (unsigned long long)(tsf - lastrx), 1655 (unsigned long long) lastrx, bmisstimeout); 1656 1657 if (tsf - lastrx <= bmisstimeout) { 1658 sc->sc_stats.ast_bmiss_phantom++; 1659 return; 1660 } 1661 } 1662 ATH_VAP(vap)->av_bmiss(vap); 1663 } 1664 1665 static int 1666 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1667 { 1668 uint32_t rsize; 1669 void *sp; 1670 1671 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1672 return 0; 1673 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1674 *hangs = *(uint32_t *)sp; 1675 return 1; 1676 } 1677 1678 static void 1679 ath_bmiss_proc(void *arg, int pending) 1680 { 1681 struct ath_softc *sc = arg; 1682 struct ifnet *ifp = sc->sc_ifp; 1683 uint32_t hangs; 1684 1685 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1686 1687 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1688 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1689 ath_reset(ifp, ATH_RESET_NOLOSS); 1690 } else 1691 ieee80211_beacon_miss(ifp->if_l2com); 1692 } 1693 1694 /* 1695 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1696 * calcs together with WME. If necessary disable the crypto 1697 * hardware and mark the 802.11 state so keys will be setup 1698 * with the MIC work done in software. 1699 */ 1700 static void 1701 ath_settkipmic(struct ath_softc *sc) 1702 { 1703 struct ifnet *ifp = sc->sc_ifp; 1704 struct ieee80211com *ic = ifp->if_l2com; 1705 1706 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1707 if (ic->ic_flags & IEEE80211_F_WME) { 1708 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1709 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1710 } else { 1711 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1712 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1713 } 1714 } 1715 } 1716 1717 static void 1718 ath_init(void *arg) 1719 { 1720 struct ath_softc *sc = (struct ath_softc *) arg; 1721 struct ifnet *ifp = sc->sc_ifp; 1722 struct ieee80211com *ic = ifp->if_l2com; 1723 struct ath_hal *ah = sc->sc_ah; 1724 HAL_STATUS status; 1725 1726 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1727 __func__, ifp->if_flags); 1728 1729 ATH_LOCK(sc); 1730 /* 1731 * Stop anything previously setup. This is safe 1732 * whether this is the first time through or not. 1733 */ 1734 ath_stop_locked(ifp); 1735 1736 /* 1737 * The basic interface to setting the hardware in a good 1738 * state is ``reset''. On return the hardware is known to 1739 * be powered up and with interrupts disabled. This must 1740 * be followed by initialization of the appropriate bits 1741 * and then setup of the interrupt mask. 1742 */ 1743 ath_settkipmic(sc); 1744 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1745 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1746 status); 1747 ATH_UNLOCK(sc); 1748 return; 1749 } 1750 ath_chan_change(sc, ic->ic_curchan); 1751 1752 /* Let DFS at it in case it's a DFS channel */ 1753 ath_dfs_radar_enable(sc, ic->ic_curchan); 1754 1755 /* 1756 * Likewise this is set during reset so update 1757 * state cached in the driver. 1758 */ 1759 sc->sc_diversity = ath_hal_getdiversity(ah); 1760 sc->sc_lastlongcal = 0; 1761 sc->sc_resetcal = 1; 1762 sc->sc_lastcalreset = 0; 1763 sc->sc_lastani = 0; 1764 sc->sc_lastshortcal = 0; 1765 sc->sc_doresetcal = AH_FALSE; 1766 /* 1767 * Beacon timers were cleared here; give ath_newstate() 1768 * a hint that the beacon timers should be poked when 1769 * things transition to the RUN state. 1770 */ 1771 sc->sc_beacons = 0; 1772 1773 /* 1774 * Initial aggregation settings. 1775 */ 1776 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1777 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1778 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1779 1780 /* 1781 * Setup the hardware after reset: the key cache 1782 * is filled as needed and the receive engine is 1783 * set going. Frame transmit is handled entirely 1784 * in the frame output path; there's nothing to do 1785 * here except setup the interrupt mask. 1786 */ 1787 if (ath_startrecv(sc) != 0) { 1788 if_printf(ifp, "unable to start recv logic\n"); 1789 ATH_UNLOCK(sc); 1790 return; 1791 } 1792 1793 /* 1794 * Enable interrupts. 1795 */ 1796 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1797 | HAL_INT_RXEOL | HAL_INT_RXORN 1798 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1799 /* 1800 * Enable MIB interrupts when there are hardware phy counters. 1801 * Note we only do this (at the moment) for station mode. 1802 */ 1803 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1804 sc->sc_imask |= HAL_INT_MIB; 1805 1806 /* Enable global TX timeout and carrier sense timeout if available */ 1807 if (ath_hal_gtxto_supported(ah)) 1808 sc->sc_imask |= HAL_INT_GTT; 1809 1810 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1811 __func__, sc->sc_imask); 1812 1813 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1814 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1815 ath_hal_intrset(ah, sc->sc_imask); 1816 1817 ATH_UNLOCK(sc); 1818 1819 #ifdef ATH_TX99_DIAG 1820 if (sc->sc_tx99 != NULL) 1821 sc->sc_tx99->start(sc->sc_tx99); 1822 else 1823 #endif 1824 ieee80211_start_all(ic); /* start all vap's */ 1825 } 1826 1827 static void 1828 ath_stop_locked(struct ifnet *ifp) 1829 { 1830 struct ath_softc *sc = ifp->if_softc; 1831 struct ath_hal *ah = sc->sc_ah; 1832 1833 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1834 __func__, sc->sc_invalid, ifp->if_flags); 1835 1836 ATH_LOCK_ASSERT(sc); 1837 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1838 /* 1839 * Shutdown the hardware and driver: 1840 * reset 802.11 state machine 1841 * turn off timers 1842 * disable interrupts 1843 * turn off the radio 1844 * clear transmit machinery 1845 * clear receive machinery 1846 * drain and release tx queues 1847 * reclaim beacon resources 1848 * power down hardware 1849 * 1850 * Note that some of this work is not possible if the 1851 * hardware is gone (invalid). 1852 */ 1853 #ifdef ATH_TX99_DIAG 1854 if (sc->sc_tx99 != NULL) 1855 sc->sc_tx99->stop(sc->sc_tx99); 1856 #endif 1857 callout_stop(&sc->sc_wd_ch); 1858 sc->sc_wd_timer = 0; 1859 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1860 if (!sc->sc_invalid) { 1861 if (sc->sc_softled) { 1862 callout_stop(&sc->sc_ledtimer); 1863 ath_hal_gpioset(ah, sc->sc_ledpin, 1864 !sc->sc_ledon); 1865 sc->sc_blinking = 0; 1866 } 1867 ath_hal_intrset(ah, 0); 1868 } 1869 ath_draintxq(sc, ATH_RESET_DEFAULT); 1870 if (!sc->sc_invalid) { 1871 ath_stoprecv(sc, 1); 1872 ath_hal_phydisable(ah); 1873 } else 1874 sc->sc_rxlink = NULL; 1875 ath_beacon_free(sc); /* XXX not needed */ 1876 } 1877 } 1878 1879 #define MAX_TXRX_ITERATIONS 1000 1880 static void 1881 ath_txrx_stop(struct ath_softc *sc) 1882 { 1883 int i = MAX_TXRX_ITERATIONS; 1884 1885 ATH_UNLOCK_ASSERT(sc); 1886 /* Stop any new TX/RX from occuring */ 1887 taskqueue_block(sc->sc_tq); 1888 1889 ATH_PCU_LOCK(sc); 1890 /* 1891 * Sleep until all the pending operations have completed. 1892 * 1893 * The caller must ensure that reset has been incremented 1894 * or the pending operations may continue being queued. 1895 */ 1896 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1897 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1898 if (i <= 0) 1899 break; 1900 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1901 i--; 1902 } 1903 ATH_PCU_UNLOCK(sc); 1904 1905 if (i <= 0) 1906 device_printf(sc->sc_dev, 1907 "%s: didn't finish after %d iterations\n", 1908 __func__, MAX_TXRX_ITERATIONS); 1909 } 1910 #undef MAX_TXRX_ITERATIONS 1911 1912 static void 1913 ath_txrx_start(struct ath_softc *sc) 1914 { 1915 1916 taskqueue_unblock(sc->sc_tq); 1917 } 1918 1919 /* 1920 * Grab the reset lock, and wait around until noone else 1921 * is trying to do anything with it. 1922 * 1923 * This is totally horrible but we can't hold this lock for 1924 * long enough to do TX/RX or we end up with net80211/ip stack 1925 * LORs and eventual deadlock. 1926 * 1927 * "dowait" signals whether to spin, waiting for the reset 1928 * lock count to reach 0. This should (for now) only be used 1929 * during the reset path, as the rest of the code may not 1930 * be locking-reentrant enough to behave correctly. 1931 * 1932 * Another, cleaner way should be found to serialise all of 1933 * these operations. 1934 */ 1935 #define MAX_RESET_ITERATIONS 10 1936 static int 1937 ath_reset_grablock(struct ath_softc *sc, int dowait) 1938 { 1939 int w = 0; 1940 int i = MAX_RESET_ITERATIONS; 1941 1942 ATH_PCU_LOCK_ASSERT(sc); 1943 do { 1944 if (sc->sc_inreset_cnt == 0) { 1945 w = 1; 1946 break; 1947 } 1948 if (dowait == 0) { 1949 w = 0; 1950 break; 1951 } 1952 ATH_PCU_UNLOCK(sc); 1953 pause("ath_reset_grablock", 1); 1954 i--; 1955 ATH_PCU_LOCK(sc); 1956 } while (i > 0); 1957 1958 /* 1959 * We always increment the refcounter, regardless 1960 * of whether we succeeded to get it in an exclusive 1961 * way. 1962 */ 1963 sc->sc_inreset_cnt++; 1964 1965 if (i <= 0) 1966 device_printf(sc->sc_dev, 1967 "%s: didn't finish after %d iterations\n", 1968 __func__, MAX_RESET_ITERATIONS); 1969 1970 if (w == 0) 1971 device_printf(sc->sc_dev, 1972 "%s: warning, recursive reset path!\n", 1973 __func__); 1974 1975 return w; 1976 } 1977 #undef MAX_RESET_ITERATIONS 1978 1979 /* 1980 * XXX TODO: write ath_reset_releaselock 1981 */ 1982 1983 static void 1984 ath_stop(struct ifnet *ifp) 1985 { 1986 struct ath_softc *sc = ifp->if_softc; 1987 1988 ATH_LOCK(sc); 1989 ath_stop_locked(ifp); 1990 ATH_UNLOCK(sc); 1991 } 1992 1993 /* 1994 * Reset the hardware w/o losing operational state. This is 1995 * basically a more efficient way of doing ath_stop, ath_init, 1996 * followed by state transitions to the current 802.11 1997 * operational state. Used to recover from various errors and 1998 * to reset or reload hardware state. 1999 */ 2000 int 2001 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2002 { 2003 struct ath_softc *sc = ifp->if_softc; 2004 struct ieee80211com *ic = ifp->if_l2com; 2005 struct ath_hal *ah = sc->sc_ah; 2006 HAL_STATUS status; 2007 int i; 2008 2009 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2010 2011 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2012 ATH_PCU_UNLOCK_ASSERT(sc); 2013 ATH_UNLOCK_ASSERT(sc); 2014 2015 ATH_PCU_LOCK(sc); 2016 if (ath_reset_grablock(sc, 1) == 0) { 2017 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2018 __func__); 2019 } 2020 ath_hal_intrset(ah, 0); /* disable interrupts */ 2021 ATH_PCU_UNLOCK(sc); 2022 2023 /* 2024 * Should now wait for pending TX/RX to complete 2025 * and block future ones from occuring. This needs to be 2026 * done before the TX queue is drained. 2027 */ 2028 ath_txrx_stop(sc); 2029 ath_draintxq(sc, reset_type); /* stop xmit side */ 2030 2031 /* 2032 * Regardless of whether we're doing a no-loss flush or 2033 * not, stop the PCU and handle what's in the RX queue. 2034 * That way frames aren't dropped which shouldn't be. 2035 */ 2036 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2037 ath_rx_proc(sc, 0); 2038 2039 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2040 /* NB: indicate channel change so we do a full reset */ 2041 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2042 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2043 __func__, status); 2044 sc->sc_diversity = ath_hal_getdiversity(ah); 2045 2046 /* Let DFS at it in case it's a DFS channel */ 2047 ath_dfs_radar_enable(sc, ic->ic_curchan); 2048 2049 if (ath_startrecv(sc) != 0) /* restart recv */ 2050 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2051 /* 2052 * We may be doing a reset in response to an ioctl 2053 * that changes the channel so update any state that 2054 * might change as a result. 2055 */ 2056 ath_chan_change(sc, ic->ic_curchan); 2057 if (sc->sc_beacons) { /* restart beacons */ 2058 #ifdef IEEE80211_SUPPORT_TDMA 2059 if (sc->sc_tdma) 2060 ath_tdma_config(sc, NULL); 2061 else 2062 #endif 2063 ath_beacon_config(sc, NULL); 2064 } 2065 2066 /* 2067 * Release the reset lock and re-enable interrupts here. 2068 * If an interrupt was being processed in ath_intr(), 2069 * it would disable interrupts at this point. So we have 2070 * to atomically enable interrupts and decrement the 2071 * reset counter - this way ath_intr() doesn't end up 2072 * disabling interrupts without a corresponding enable 2073 * in the rest or channel change path. 2074 */ 2075 ATH_PCU_LOCK(sc); 2076 sc->sc_inreset_cnt--; 2077 /* XXX only do this if sc_inreset_cnt == 0? */ 2078 ath_hal_intrset(ah, sc->sc_imask); 2079 ATH_PCU_UNLOCK(sc); 2080 2081 /* 2082 * TX and RX can be started here. If it were started with 2083 * sc_inreset_cnt > 0, the TX and RX path would abort. 2084 * Thus if this is a nested call through the reset or 2085 * channel change code, TX completion will occur but 2086 * RX completion and ath_start / ath_tx_start will not 2087 * run. 2088 */ 2089 2090 /* Restart TX/RX as needed */ 2091 ath_txrx_start(sc); 2092 2093 /* XXX Restart TX completion and pending TX */ 2094 if (reset_type == ATH_RESET_NOLOSS) { 2095 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2096 if (ATH_TXQ_SETUP(sc, i)) { 2097 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2098 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2099 ath_txq_sched(sc, &sc->sc_txq[i]); 2100 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2101 } 2102 } 2103 } 2104 2105 /* 2106 * This may have been set during an ath_start() call which 2107 * set this once it detected a concurrent TX was going on. 2108 * So, clear it. 2109 */ 2110 /* XXX do this inside of IF_LOCK? */ 2111 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2112 2113 /* Handle any frames in the TX queue */ 2114 /* 2115 * XXX should this be done by the caller, rather than 2116 * ath_reset() ? 2117 */ 2118 ath_start(ifp); /* restart xmit */ 2119 return 0; 2120 } 2121 2122 static int 2123 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2124 { 2125 struct ieee80211com *ic = vap->iv_ic; 2126 struct ifnet *ifp = ic->ic_ifp; 2127 struct ath_softc *sc = ifp->if_softc; 2128 struct ath_hal *ah = sc->sc_ah; 2129 2130 switch (cmd) { 2131 case IEEE80211_IOC_TXPOWER: 2132 /* 2133 * If per-packet TPC is enabled, then we have nothing 2134 * to do; otherwise we need to force the global limit. 2135 * All this can happen directly; no need to reset. 2136 */ 2137 if (!ath_hal_gettpc(ah)) 2138 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2139 return 0; 2140 } 2141 /* XXX? Full or NOLOSS? */ 2142 return ath_reset(ifp, ATH_RESET_FULL); 2143 } 2144 2145 struct ath_buf * 2146 _ath_getbuf_locked(struct ath_softc *sc) 2147 { 2148 struct ath_buf *bf; 2149 2150 ATH_TXBUF_LOCK_ASSERT(sc); 2151 2152 bf = TAILQ_FIRST(&sc->sc_txbuf); 2153 if (bf == NULL) { 2154 sc->sc_stats.ast_tx_getnobuf++; 2155 } else { 2156 if (bf->bf_flags & ATH_BUF_BUSY) { 2157 sc->sc_stats.ast_tx_getbusybuf++; 2158 bf = NULL; 2159 } 2160 } 2161 2162 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2163 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2164 else 2165 bf = NULL; 2166 2167 if (bf == NULL) { 2168 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2169 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2170 "out of xmit buffers" : "xmit buffer busy"); 2171 return NULL; 2172 } 2173 2174 /* Valid bf here; clear some basic fields */ 2175 bf->bf_next = NULL; /* XXX just to be sure */ 2176 bf->bf_last = NULL; /* XXX again, just to be sure */ 2177 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2178 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2179 2180 return bf; 2181 } 2182 2183 /* 2184 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2185 * can't be thrown back on the queue as they could still be 2186 * in use by the hardware. 2187 * 2188 * This duplicates the buffer, or returns NULL. 2189 * 2190 * The descriptor is also copied but the link pointers and 2191 * the DMA segments aren't copied; this frame should thus 2192 * be again passed through the descriptor setup/chain routines 2193 * so the link is correct. 2194 * 2195 * The caller must free the buffer using ath_freebuf(). 2196 * 2197 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2198 * XXX in the TX pathway when retries are needed. 2199 * XXX Figure out how to keep some buffers free, or factor the 2200 * XXX number of busy buffers into the xmit path (ath_start()) 2201 * XXX so we don't over-commit. 2202 */ 2203 struct ath_buf * 2204 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2205 { 2206 struct ath_buf *tbf; 2207 2208 tbf = ath_getbuf(sc); 2209 if (tbf == NULL) 2210 return NULL; /* XXX failure? Why? */ 2211 2212 /* Copy basics */ 2213 tbf->bf_next = NULL; 2214 tbf->bf_nseg = bf->bf_nseg; 2215 tbf->bf_txflags = bf->bf_txflags; 2216 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2217 tbf->bf_status = bf->bf_status; 2218 tbf->bf_m = bf->bf_m; 2219 tbf->bf_node = bf->bf_node; 2220 /* will be setup by the chain/setup function */ 2221 tbf->bf_lastds = NULL; 2222 /* for now, last == self */ 2223 tbf->bf_last = tbf; 2224 tbf->bf_comp = bf->bf_comp; 2225 2226 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2227 2228 /* The caller has to re-init the descriptor + links */ 2229 2230 /* Copy state */ 2231 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2232 2233 return tbf; 2234 } 2235 2236 struct ath_buf * 2237 ath_getbuf(struct ath_softc *sc) 2238 { 2239 struct ath_buf *bf; 2240 2241 ATH_TXBUF_LOCK(sc); 2242 bf = _ath_getbuf_locked(sc); 2243 if (bf == NULL) { 2244 struct ifnet *ifp = sc->sc_ifp; 2245 2246 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2247 sc->sc_stats.ast_tx_qstop++; 2248 /* XXX do this inside of IF_LOCK? */ 2249 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2250 } 2251 ATH_TXBUF_UNLOCK(sc); 2252 return bf; 2253 } 2254 2255 static void 2256 ath_start(struct ifnet *ifp) 2257 { 2258 struct ath_softc *sc = ifp->if_softc; 2259 struct ieee80211_node *ni; 2260 struct ath_buf *bf; 2261 struct mbuf *m, *next; 2262 ath_bufhead frags; 2263 2264 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2265 return; 2266 2267 /* XXX is it ok to hold the ATH_LOCK here? */ 2268 ATH_PCU_LOCK(sc); 2269 if (sc->sc_inreset_cnt > 0) { 2270 device_printf(sc->sc_dev, 2271 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2272 /* XXX do this inside of IF_LOCK? */ 2273 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2274 ATH_PCU_UNLOCK(sc); 2275 return; 2276 } 2277 sc->sc_txstart_cnt++; 2278 ATH_PCU_UNLOCK(sc); 2279 2280 for (;;) { 2281 /* 2282 * Grab a TX buffer and associated resources. 2283 */ 2284 bf = ath_getbuf(sc); 2285 if (bf == NULL) 2286 break; 2287 2288 IFQ_DEQUEUE(&ifp->if_snd, m); 2289 if (m == NULL) { 2290 ATH_TXBUF_LOCK(sc); 2291 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2292 ATH_TXBUF_UNLOCK(sc); 2293 break; 2294 } 2295 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2296 /* 2297 * Check for fragmentation. If this frame 2298 * has been broken up verify we have enough 2299 * buffers to send all the fragments so all 2300 * go out or none... 2301 */ 2302 TAILQ_INIT(&frags); 2303 if ((m->m_flags & M_FRAG) && 2304 !ath_txfrag_setup(sc, &frags, m, ni)) { 2305 DPRINTF(sc, ATH_DEBUG_XMIT, 2306 "%s: out of txfrag buffers\n", __func__); 2307 sc->sc_stats.ast_tx_nofrag++; 2308 ifp->if_oerrors++; 2309 ath_freetx(m); 2310 goto bad; 2311 } 2312 ifp->if_opackets++; 2313 nextfrag: 2314 /* 2315 * Pass the frame to the h/w for transmission. 2316 * Fragmented frames have each frag chained together 2317 * with m_nextpkt. We know there are sufficient ath_buf's 2318 * to send all the frags because of work done by 2319 * ath_txfrag_setup. We leave m_nextpkt set while 2320 * calling ath_tx_start so it can use it to extend the 2321 * the tx duration to cover the subsequent frag and 2322 * so it can reclaim all the mbufs in case of an error; 2323 * ath_tx_start clears m_nextpkt once it commits to 2324 * handing the frame to the hardware. 2325 */ 2326 next = m->m_nextpkt; 2327 if (ath_tx_start(sc, ni, bf, m)) { 2328 bad: 2329 ifp->if_oerrors++; 2330 reclaim: 2331 bf->bf_m = NULL; 2332 bf->bf_node = NULL; 2333 ATH_TXBUF_LOCK(sc); 2334 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2335 ath_txfrag_cleanup(sc, &frags, ni); 2336 ATH_TXBUF_UNLOCK(sc); 2337 if (ni != NULL) 2338 ieee80211_free_node(ni); 2339 continue; 2340 } 2341 if (next != NULL) { 2342 /* 2343 * Beware of state changing between frags. 2344 * XXX check sta power-save state? 2345 */ 2346 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2347 DPRINTF(sc, ATH_DEBUG_XMIT, 2348 "%s: flush fragmented packet, state %s\n", 2349 __func__, 2350 ieee80211_state_name[ni->ni_vap->iv_state]); 2351 ath_freetx(next); 2352 goto reclaim; 2353 } 2354 m = next; 2355 bf = TAILQ_FIRST(&frags); 2356 KASSERT(bf != NULL, ("no buf for txfrag")); 2357 TAILQ_REMOVE(&frags, bf, bf_list); 2358 goto nextfrag; 2359 } 2360 2361 sc->sc_wd_timer = 5; 2362 } 2363 2364 ATH_PCU_LOCK(sc); 2365 sc->sc_txstart_cnt--; 2366 ATH_PCU_UNLOCK(sc); 2367 } 2368 2369 static int 2370 ath_media_change(struct ifnet *ifp) 2371 { 2372 int error = ieee80211_media_change(ifp); 2373 /* NB: only the fixed rate can change and that doesn't need a reset */ 2374 return (error == ENETRESET ? 0 : error); 2375 } 2376 2377 /* 2378 * Block/unblock tx+rx processing while a key change is done. 2379 * We assume the caller serializes key management operations 2380 * so we only need to worry about synchronization with other 2381 * uses that originate in the driver. 2382 */ 2383 static void 2384 ath_key_update_begin(struct ieee80211vap *vap) 2385 { 2386 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2387 struct ath_softc *sc = ifp->if_softc; 2388 2389 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2390 taskqueue_block(sc->sc_tq); 2391 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2392 } 2393 2394 static void 2395 ath_key_update_end(struct ieee80211vap *vap) 2396 { 2397 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2398 struct ath_softc *sc = ifp->if_softc; 2399 2400 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2401 IF_UNLOCK(&ifp->if_snd); 2402 taskqueue_unblock(sc->sc_tq); 2403 } 2404 2405 /* 2406 * Calculate the receive filter according to the 2407 * operating mode and state: 2408 * 2409 * o always accept unicast, broadcast, and multicast traffic 2410 * o accept PHY error frames when hardware doesn't have MIB support 2411 * to count and we need them for ANI (sta mode only until recently) 2412 * and we are not scanning (ANI is disabled) 2413 * NB: older hal's add rx filter bits out of sight and we need to 2414 * blindly preserve them 2415 * o probe request frames are accepted only when operating in 2416 * hostap, adhoc, mesh, or monitor modes 2417 * o enable promiscuous mode 2418 * - when in monitor mode 2419 * - if interface marked PROMISC (assumes bridge setting is filtered) 2420 * o accept beacons: 2421 * - when operating in station mode for collecting rssi data when 2422 * the station is otherwise quiet, or 2423 * - when operating in adhoc mode so the 802.11 layer creates 2424 * node table entries for peers, 2425 * - when scanning 2426 * - when doing s/w beacon miss (e.g. for ap+sta) 2427 * - when operating in ap mode in 11g to detect overlapping bss that 2428 * require protection 2429 * - when operating in mesh mode to detect neighbors 2430 * o accept control frames: 2431 * - when in monitor mode 2432 * XXX HT protection for 11n 2433 */ 2434 static u_int32_t 2435 ath_calcrxfilter(struct ath_softc *sc) 2436 { 2437 struct ifnet *ifp = sc->sc_ifp; 2438 struct ieee80211com *ic = ifp->if_l2com; 2439 u_int32_t rfilt; 2440 2441 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2442 if (!sc->sc_needmib && !sc->sc_scanning) 2443 rfilt |= HAL_RX_FILTER_PHYERR; 2444 if (ic->ic_opmode != IEEE80211_M_STA) 2445 rfilt |= HAL_RX_FILTER_PROBEREQ; 2446 /* XXX ic->ic_monvaps != 0? */ 2447 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2448 rfilt |= HAL_RX_FILTER_PROM; 2449 if (ic->ic_opmode == IEEE80211_M_STA || 2450 ic->ic_opmode == IEEE80211_M_IBSS || 2451 sc->sc_swbmiss || sc->sc_scanning) 2452 rfilt |= HAL_RX_FILTER_BEACON; 2453 /* 2454 * NB: We don't recalculate the rx filter when 2455 * ic_protmode changes; otherwise we could do 2456 * this only when ic_protmode != NONE. 2457 */ 2458 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2459 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2460 rfilt |= HAL_RX_FILTER_BEACON; 2461 2462 /* 2463 * Enable hardware PS-POLL RX only for hostap mode; 2464 * STA mode sends PS-POLL frames but never 2465 * receives them. 2466 */ 2467 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2468 0, NULL) == HAL_OK && 2469 ic->ic_opmode == IEEE80211_M_HOSTAP) 2470 rfilt |= HAL_RX_FILTER_PSPOLL; 2471 2472 if (sc->sc_nmeshvaps) { 2473 rfilt |= HAL_RX_FILTER_BEACON; 2474 if (sc->sc_hasbmatch) 2475 rfilt |= HAL_RX_FILTER_BSSID; 2476 else 2477 rfilt |= HAL_RX_FILTER_PROM; 2478 } 2479 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2480 rfilt |= HAL_RX_FILTER_CONTROL; 2481 2482 /* 2483 * Enable RX of compressed BAR frames only when doing 2484 * 802.11n. Required for A-MPDU. 2485 */ 2486 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2487 rfilt |= HAL_RX_FILTER_COMPBAR; 2488 2489 /* 2490 * Enable radar PHY errors if requested by the 2491 * DFS module. 2492 */ 2493 if (sc->sc_dodfs) 2494 rfilt |= HAL_RX_FILTER_PHYRADAR; 2495 2496 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2497 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2498 return rfilt; 2499 } 2500 2501 static void 2502 ath_update_promisc(struct ifnet *ifp) 2503 { 2504 struct ath_softc *sc = ifp->if_softc; 2505 u_int32_t rfilt; 2506 2507 /* configure rx filter */ 2508 rfilt = ath_calcrxfilter(sc); 2509 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2510 2511 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2512 } 2513 2514 static void 2515 ath_update_mcast(struct ifnet *ifp) 2516 { 2517 struct ath_softc *sc = ifp->if_softc; 2518 u_int32_t mfilt[2]; 2519 2520 /* calculate and install multicast filter */ 2521 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2522 struct ifmultiaddr *ifma; 2523 /* 2524 * Merge multicast addresses to form the hardware filter. 2525 */ 2526 mfilt[0] = mfilt[1] = 0; 2527 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2528 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2529 caddr_t dl; 2530 u_int32_t val; 2531 u_int8_t pos; 2532 2533 /* calculate XOR of eight 6bit values */ 2534 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2535 val = LE_READ_4(dl + 0); 2536 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2537 val = LE_READ_4(dl + 3); 2538 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2539 pos &= 0x3f; 2540 mfilt[pos / 32] |= (1 << (pos % 32)); 2541 } 2542 if_maddr_runlock(ifp); 2543 } else 2544 mfilt[0] = mfilt[1] = ~0; 2545 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2546 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2547 __func__, mfilt[0], mfilt[1]); 2548 } 2549 2550 static void 2551 ath_mode_init(struct ath_softc *sc) 2552 { 2553 struct ifnet *ifp = sc->sc_ifp; 2554 struct ath_hal *ah = sc->sc_ah; 2555 u_int32_t rfilt; 2556 2557 /* configure rx filter */ 2558 rfilt = ath_calcrxfilter(sc); 2559 ath_hal_setrxfilter(ah, rfilt); 2560 2561 /* configure operational mode */ 2562 ath_hal_setopmode(ah); 2563 2564 /* handle any link-level address change */ 2565 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2566 2567 /* calculate and install multicast filter */ 2568 ath_update_mcast(ifp); 2569 } 2570 2571 /* 2572 * Set the slot time based on the current setting. 2573 */ 2574 static void 2575 ath_setslottime(struct ath_softc *sc) 2576 { 2577 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2578 struct ath_hal *ah = sc->sc_ah; 2579 u_int usec; 2580 2581 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2582 usec = 13; 2583 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2584 usec = 21; 2585 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2586 /* honor short/long slot time only in 11g */ 2587 /* XXX shouldn't honor on pure g or turbo g channel */ 2588 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2589 usec = HAL_SLOT_TIME_9; 2590 else 2591 usec = HAL_SLOT_TIME_20; 2592 } else 2593 usec = HAL_SLOT_TIME_9; 2594 2595 DPRINTF(sc, ATH_DEBUG_RESET, 2596 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2597 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2598 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2599 2600 ath_hal_setslottime(ah, usec); 2601 sc->sc_updateslot = OK; 2602 } 2603 2604 /* 2605 * Callback from the 802.11 layer to update the 2606 * slot time based on the current setting. 2607 */ 2608 static void 2609 ath_updateslot(struct ifnet *ifp) 2610 { 2611 struct ath_softc *sc = ifp->if_softc; 2612 struct ieee80211com *ic = ifp->if_l2com; 2613 2614 /* 2615 * When not coordinating the BSS, change the hardware 2616 * immediately. For other operation we defer the change 2617 * until beacon updates have propagated to the stations. 2618 */ 2619 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2620 ic->ic_opmode == IEEE80211_M_MBSS) 2621 sc->sc_updateslot = UPDATE; 2622 else 2623 ath_setslottime(sc); 2624 } 2625 2626 /* 2627 * Setup a h/w transmit queue for beacons. 2628 */ 2629 static int 2630 ath_beaconq_setup(struct ath_hal *ah) 2631 { 2632 HAL_TXQ_INFO qi; 2633 2634 memset(&qi, 0, sizeof(qi)); 2635 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2636 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2637 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2638 /* NB: for dynamic turbo, don't enable any other interrupts */ 2639 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2640 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2641 } 2642 2643 /* 2644 * Setup the transmit queue parameters for the beacon queue. 2645 */ 2646 static int 2647 ath_beaconq_config(struct ath_softc *sc) 2648 { 2649 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2650 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2651 struct ath_hal *ah = sc->sc_ah; 2652 HAL_TXQ_INFO qi; 2653 2654 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2655 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2656 ic->ic_opmode == IEEE80211_M_MBSS) { 2657 /* 2658 * Always burst out beacon and CAB traffic. 2659 */ 2660 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2661 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2662 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2663 } else { 2664 struct wmeParams *wmep = 2665 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2666 /* 2667 * Adhoc mode; important thing is to use 2x cwmin. 2668 */ 2669 qi.tqi_aifs = wmep->wmep_aifsn; 2670 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2671 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2672 } 2673 2674 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2675 device_printf(sc->sc_dev, "unable to update parameters for " 2676 "beacon hardware queue!\n"); 2677 return 0; 2678 } else { 2679 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2680 return 1; 2681 } 2682 #undef ATH_EXPONENT_TO_VALUE 2683 } 2684 2685 /* 2686 * Allocate and setup an initial beacon frame. 2687 */ 2688 static int 2689 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2690 { 2691 struct ieee80211vap *vap = ni->ni_vap; 2692 struct ath_vap *avp = ATH_VAP(vap); 2693 struct ath_buf *bf; 2694 struct mbuf *m; 2695 int error; 2696 2697 bf = avp->av_bcbuf; 2698 if (bf->bf_m != NULL) { 2699 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2700 m_freem(bf->bf_m); 2701 bf->bf_m = NULL; 2702 } 2703 if (bf->bf_node != NULL) { 2704 ieee80211_free_node(bf->bf_node); 2705 bf->bf_node = NULL; 2706 } 2707 2708 /* 2709 * NB: the beacon data buffer must be 32-bit aligned; 2710 * we assume the mbuf routines will return us something 2711 * with this alignment (perhaps should assert). 2712 */ 2713 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2714 if (m == NULL) { 2715 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2716 sc->sc_stats.ast_be_nombuf++; 2717 return ENOMEM; 2718 } 2719 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2720 bf->bf_segs, &bf->bf_nseg, 2721 BUS_DMA_NOWAIT); 2722 if (error != 0) { 2723 device_printf(sc->sc_dev, 2724 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2725 __func__, error); 2726 m_freem(m); 2727 return error; 2728 } 2729 2730 /* 2731 * Calculate a TSF adjustment factor required for staggered 2732 * beacons. Note that we assume the format of the beacon 2733 * frame leaves the tstamp field immediately following the 2734 * header. 2735 */ 2736 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2737 uint64_t tsfadjust; 2738 struct ieee80211_frame *wh; 2739 2740 /* 2741 * The beacon interval is in TU's; the TSF is in usecs. 2742 * We figure out how many TU's to add to align the timestamp 2743 * then convert to TSF units and handle byte swapping before 2744 * inserting it in the frame. The hardware will then add this 2745 * each time a beacon frame is sent. Note that we align vap's 2746 * 1..N and leave vap 0 untouched. This means vap 0 has a 2747 * timestamp in one beacon interval while the others get a 2748 * timstamp aligned to the next interval. 2749 */ 2750 tsfadjust = ni->ni_intval * 2751 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2752 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2753 2754 DPRINTF(sc, ATH_DEBUG_BEACON, 2755 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2756 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2757 avp->av_bslot, ni->ni_intval, 2758 (long long unsigned) le64toh(tsfadjust)); 2759 2760 wh = mtod(m, struct ieee80211_frame *); 2761 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2762 } 2763 bf->bf_m = m; 2764 bf->bf_node = ieee80211_ref_node(ni); 2765 2766 return 0; 2767 } 2768 2769 /* 2770 * Setup the beacon frame for transmit. 2771 */ 2772 static void 2773 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2774 { 2775 #define USE_SHPREAMBLE(_ic) \ 2776 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2777 == IEEE80211_F_SHPREAMBLE) 2778 struct ieee80211_node *ni = bf->bf_node; 2779 struct ieee80211com *ic = ni->ni_ic; 2780 struct mbuf *m = bf->bf_m; 2781 struct ath_hal *ah = sc->sc_ah; 2782 struct ath_desc *ds; 2783 int flags, antenna; 2784 const HAL_RATE_TABLE *rt; 2785 u_int8_t rix, rate; 2786 2787 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2788 __func__, m, m->m_len); 2789 2790 /* setup descriptors */ 2791 ds = bf->bf_desc; 2792 bf->bf_last = bf; 2793 bf->bf_lastds = ds; 2794 2795 flags = HAL_TXDESC_NOACK; 2796 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2797 ds->ds_link = bf->bf_daddr; /* self-linked */ 2798 flags |= HAL_TXDESC_VEOL; 2799 /* 2800 * Let hardware handle antenna switching. 2801 */ 2802 antenna = sc->sc_txantenna; 2803 } else { 2804 ds->ds_link = 0; 2805 /* 2806 * Switch antenna every 4 beacons. 2807 * XXX assumes two antenna 2808 */ 2809 if (sc->sc_txantenna != 0) 2810 antenna = sc->sc_txantenna; 2811 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2812 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2813 else 2814 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2815 } 2816 2817 KASSERT(bf->bf_nseg == 1, 2818 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2819 ds->ds_data = bf->bf_segs[0].ds_addr; 2820 /* 2821 * Calculate rate code. 2822 * XXX everything at min xmit rate 2823 */ 2824 rix = 0; 2825 rt = sc->sc_currates; 2826 rate = rt->info[rix].rateCode; 2827 if (USE_SHPREAMBLE(ic)) 2828 rate |= rt->info[rix].shortPreamble; 2829 ath_hal_setuptxdesc(ah, ds 2830 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2831 , sizeof(struct ieee80211_frame)/* header length */ 2832 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2833 , ni->ni_txpower /* txpower XXX */ 2834 , rate, 1 /* series 0 rate/tries */ 2835 , HAL_TXKEYIX_INVALID /* no encryption */ 2836 , antenna /* antenna mode */ 2837 , flags /* no ack, veol for beacons */ 2838 , 0 /* rts/cts rate */ 2839 , 0 /* rts/cts duration */ 2840 ); 2841 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2842 ath_hal_filltxdesc(ah, ds 2843 , roundup(m->m_len, 4) /* buffer length */ 2844 , AH_TRUE /* first segment */ 2845 , AH_TRUE /* last segment */ 2846 , ds /* first descriptor */ 2847 ); 2848 #if 0 2849 ath_desc_swap(ds); 2850 #endif 2851 #undef USE_SHPREAMBLE 2852 } 2853 2854 static void 2855 ath_beacon_update(struct ieee80211vap *vap, int item) 2856 { 2857 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2858 2859 setbit(bo->bo_flags, item); 2860 } 2861 2862 /* 2863 * Append the contents of src to dst; both queues 2864 * are assumed to be locked. 2865 */ 2866 static void 2867 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2868 { 2869 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2870 dst->axq_link = src->axq_link; 2871 src->axq_link = NULL; 2872 dst->axq_depth += src->axq_depth; 2873 dst->axq_aggr_depth += src->axq_aggr_depth; 2874 src->axq_depth = 0; 2875 src->axq_aggr_depth = 0; 2876 } 2877 2878 /* 2879 * Transmit a beacon frame at SWBA. Dynamic updates to the 2880 * frame contents are done as needed and the slot time is 2881 * also adjusted based on current state. 2882 */ 2883 static void 2884 ath_beacon_proc(void *arg, int pending) 2885 { 2886 struct ath_softc *sc = arg; 2887 struct ath_hal *ah = sc->sc_ah; 2888 struct ieee80211vap *vap; 2889 struct ath_buf *bf; 2890 int slot, otherant; 2891 uint32_t bfaddr; 2892 2893 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2894 __func__, pending); 2895 /* 2896 * Check if the previous beacon has gone out. If 2897 * not don't try to post another, skip this period 2898 * and wait for the next. Missed beacons indicate 2899 * a problem and should not occur. If we miss too 2900 * many consecutive beacons reset the device. 2901 */ 2902 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2903 sc->sc_bmisscount++; 2904 sc->sc_stats.ast_be_missed++; 2905 DPRINTF(sc, ATH_DEBUG_BEACON, 2906 "%s: missed %u consecutive beacons\n", 2907 __func__, sc->sc_bmisscount); 2908 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2909 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2910 return; 2911 } 2912 if (sc->sc_bmisscount != 0) { 2913 DPRINTF(sc, ATH_DEBUG_BEACON, 2914 "%s: resume beacon xmit after %u misses\n", 2915 __func__, sc->sc_bmisscount); 2916 sc->sc_bmisscount = 0; 2917 } 2918 2919 if (sc->sc_stagbeacons) { /* staggered beacons */ 2920 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2921 uint32_t tsftu; 2922 2923 tsftu = ath_hal_gettsf32(ah) >> 10; 2924 /* XXX lintval */ 2925 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2926 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2927 bfaddr = 0; 2928 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2929 bf = ath_beacon_generate(sc, vap); 2930 if (bf != NULL) 2931 bfaddr = bf->bf_daddr; 2932 } 2933 } else { /* burst'd beacons */ 2934 uint32_t *bflink = &bfaddr; 2935 2936 for (slot = 0; slot < ATH_BCBUF; slot++) { 2937 vap = sc->sc_bslot[slot]; 2938 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2939 bf = ath_beacon_generate(sc, vap); 2940 if (bf != NULL) { 2941 *bflink = bf->bf_daddr; 2942 bflink = &bf->bf_desc->ds_link; 2943 } 2944 } 2945 } 2946 *bflink = 0; /* terminate list */ 2947 } 2948 2949 /* 2950 * Handle slot time change when a non-ERP station joins/leaves 2951 * an 11g network. The 802.11 layer notifies us via callback, 2952 * we mark updateslot, then wait one beacon before effecting 2953 * the change. This gives associated stations at least one 2954 * beacon interval to note the state change. 2955 */ 2956 /* XXX locking */ 2957 if (sc->sc_updateslot == UPDATE) { 2958 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2959 sc->sc_slotupdate = slot; 2960 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 2961 ath_setslottime(sc); /* commit change to h/w */ 2962 2963 /* 2964 * Check recent per-antenna transmit statistics and flip 2965 * the default antenna if noticeably more frames went out 2966 * on the non-default antenna. 2967 * XXX assumes 2 anntenae 2968 */ 2969 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 2970 otherant = sc->sc_defant & 1 ? 2 : 1; 2971 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2972 ath_setdefantenna(sc, otherant); 2973 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2974 } 2975 2976 if (bfaddr != 0) { 2977 /* 2978 * Stop any current dma and put the new frame on the queue. 2979 * This should never fail since we check above that no frames 2980 * are still pending on the queue. 2981 */ 2982 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2983 DPRINTF(sc, ATH_DEBUG_ANY, 2984 "%s: beacon queue %u did not stop?\n", 2985 __func__, sc->sc_bhalq); 2986 } 2987 /* NB: cabq traffic should already be queued and primed */ 2988 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 2989 ath_hal_txstart(ah, sc->sc_bhalq); 2990 2991 sc->sc_stats.ast_be_xmit++; 2992 } 2993 } 2994 2995 static struct ath_buf * 2996 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 2997 { 2998 struct ath_vap *avp = ATH_VAP(vap); 2999 struct ath_txq *cabq = sc->sc_cabq; 3000 struct ath_buf *bf; 3001 struct mbuf *m; 3002 int nmcastq, error; 3003 3004 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 3005 ("not running, state %d", vap->iv_state)); 3006 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3007 3008 /* 3009 * Update dynamic beacon contents. If this returns 3010 * non-zero then we need to remap the memory because 3011 * the beacon frame changed size (probably because 3012 * of the TIM bitmap). 3013 */ 3014 bf = avp->av_bcbuf; 3015 m = bf->bf_m; 3016 nmcastq = avp->av_mcastq.axq_depth; 3017 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 3018 /* XXX too conservative? */ 3019 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3020 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3021 bf->bf_segs, &bf->bf_nseg, 3022 BUS_DMA_NOWAIT); 3023 if (error != 0) { 3024 if_printf(vap->iv_ifp, 3025 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3026 __func__, error); 3027 return NULL; 3028 } 3029 } 3030 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3031 DPRINTF(sc, ATH_DEBUG_BEACON, 3032 "%s: cabq did not drain, mcastq %u cabq %u\n", 3033 __func__, nmcastq, cabq->axq_depth); 3034 sc->sc_stats.ast_cabq_busy++; 3035 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3036 /* 3037 * CABQ traffic from a previous vap is still pending. 3038 * We must drain the q before this beacon frame goes 3039 * out as otherwise this vap's stations will get cab 3040 * frames from a different vap. 3041 * XXX could be slow causing us to miss DBA 3042 */ 3043 ath_tx_draintxq(sc, cabq); 3044 } 3045 } 3046 ath_beacon_setup(sc, bf); 3047 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3048 3049 /* 3050 * Enable the CAB queue before the beacon queue to 3051 * insure cab frames are triggered by this beacon. 3052 */ 3053 if (avp->av_boff.bo_tim[4] & 1) { 3054 struct ath_hal *ah = sc->sc_ah; 3055 3056 /* NB: only at DTIM */ 3057 ATH_TXQ_LOCK(cabq); 3058 ATH_TXQ_LOCK(&avp->av_mcastq); 3059 if (nmcastq) { 3060 struct ath_buf *bfm; 3061 3062 /* 3063 * Move frames from the s/w mcast q to the h/w cab q. 3064 * XXX MORE_DATA bit 3065 */ 3066 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 3067 if (cabq->axq_link != NULL) { 3068 *cabq->axq_link = bfm->bf_daddr; 3069 } else 3070 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3071 bfm->bf_daddr); 3072 ath_txqmove(cabq, &avp->av_mcastq); 3073 3074 sc->sc_stats.ast_cabq_xmit += nmcastq; 3075 } 3076 /* NB: gated by beacon so safe to start here */ 3077 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3078 ath_hal_txstart(ah, cabq->axq_qnum); 3079 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3080 ATH_TXQ_UNLOCK(cabq); 3081 } 3082 return bf; 3083 } 3084 3085 static void 3086 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3087 { 3088 struct ath_vap *avp = ATH_VAP(vap); 3089 struct ath_hal *ah = sc->sc_ah; 3090 struct ath_buf *bf; 3091 struct mbuf *m; 3092 int error; 3093 3094 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3095 3096 /* 3097 * Update dynamic beacon contents. If this returns 3098 * non-zero then we need to remap the memory because 3099 * the beacon frame changed size (probably because 3100 * of the TIM bitmap). 3101 */ 3102 bf = avp->av_bcbuf; 3103 m = bf->bf_m; 3104 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3105 /* XXX too conservative? */ 3106 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3107 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3108 bf->bf_segs, &bf->bf_nseg, 3109 BUS_DMA_NOWAIT); 3110 if (error != 0) { 3111 if_printf(vap->iv_ifp, 3112 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3113 __func__, error); 3114 return; 3115 } 3116 } 3117 ath_beacon_setup(sc, bf); 3118 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3119 3120 /* NB: caller is known to have already stopped tx dma */ 3121 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3122 ath_hal_txstart(ah, sc->sc_bhalq); 3123 } 3124 3125 /* 3126 * Reset the hardware after detecting beacons have stopped. 3127 */ 3128 static void 3129 ath_bstuck_proc(void *arg, int pending) 3130 { 3131 struct ath_softc *sc = arg; 3132 struct ifnet *ifp = sc->sc_ifp; 3133 uint32_t hangs = 0; 3134 3135 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3136 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3137 3138 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3139 sc->sc_bmisscount); 3140 sc->sc_stats.ast_bstuck++; 3141 /* 3142 * This assumes that there's no simultaneous channel mode change 3143 * occuring. 3144 */ 3145 ath_reset(ifp, ATH_RESET_NOLOSS); 3146 } 3147 3148 /* 3149 * Reclaim beacon resources and return buffer to the pool. 3150 */ 3151 static void 3152 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3153 { 3154 3155 if (bf->bf_m != NULL) { 3156 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3157 m_freem(bf->bf_m); 3158 bf->bf_m = NULL; 3159 } 3160 if (bf->bf_node != NULL) { 3161 ieee80211_free_node(bf->bf_node); 3162 bf->bf_node = NULL; 3163 } 3164 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3165 } 3166 3167 /* 3168 * Reclaim beacon resources. 3169 */ 3170 static void 3171 ath_beacon_free(struct ath_softc *sc) 3172 { 3173 struct ath_buf *bf; 3174 3175 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3176 if (bf->bf_m != NULL) { 3177 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3178 m_freem(bf->bf_m); 3179 bf->bf_m = NULL; 3180 } 3181 if (bf->bf_node != NULL) { 3182 ieee80211_free_node(bf->bf_node); 3183 bf->bf_node = NULL; 3184 } 3185 } 3186 } 3187 3188 /* 3189 * Configure the beacon and sleep timers. 3190 * 3191 * When operating as an AP this resets the TSF and sets 3192 * up the hardware to notify us when we need to issue beacons. 3193 * 3194 * When operating in station mode this sets up the beacon 3195 * timers according to the timestamp of the last received 3196 * beacon and the current TSF, configures PCF and DTIM 3197 * handling, programs the sleep registers so the hardware 3198 * will wakeup in time to receive beacons, and configures 3199 * the beacon miss handling so we'll receive a BMISS 3200 * interrupt when we stop seeing beacons from the AP 3201 * we've associated with. 3202 */ 3203 static void 3204 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3205 { 3206 #define TSF_TO_TU(_h,_l) \ 3207 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3208 #define FUDGE 2 3209 struct ath_hal *ah = sc->sc_ah; 3210 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3211 struct ieee80211_node *ni; 3212 u_int32_t nexttbtt, intval, tsftu; 3213 u_int64_t tsf; 3214 3215 if (vap == NULL) 3216 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3217 ni = vap->iv_bss; 3218 3219 /* extract tstamp from last beacon and convert to TU */ 3220 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3221 LE_READ_4(ni->ni_tstamp.data)); 3222 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3223 ic->ic_opmode == IEEE80211_M_MBSS) { 3224 /* 3225 * For multi-bss ap/mesh support beacons are either staggered 3226 * evenly over N slots or burst together. For the former 3227 * arrange for the SWBA to be delivered for each slot. 3228 * Slots that are not occupied will generate nothing. 3229 */ 3230 /* NB: the beacon interval is kept internally in TU's */ 3231 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3232 if (sc->sc_stagbeacons) 3233 intval /= ATH_BCBUF; 3234 } else { 3235 /* NB: the beacon interval is kept internally in TU's */ 3236 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3237 } 3238 if (nexttbtt == 0) /* e.g. for ap mode */ 3239 nexttbtt = intval; 3240 else if (intval) /* NB: can be 0 for monitor mode */ 3241 nexttbtt = roundup(nexttbtt, intval); 3242 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3243 __func__, nexttbtt, intval, ni->ni_intval); 3244 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3245 HAL_BEACON_STATE bs; 3246 int dtimperiod, dtimcount; 3247 int cfpperiod, cfpcount; 3248 3249 /* 3250 * Setup dtim and cfp parameters according to 3251 * last beacon we received (which may be none). 3252 */ 3253 dtimperiod = ni->ni_dtim_period; 3254 if (dtimperiod <= 0) /* NB: 0 if not known */ 3255 dtimperiod = 1; 3256 dtimcount = ni->ni_dtim_count; 3257 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3258 dtimcount = 0; /* XXX? */ 3259 cfpperiod = 1; /* NB: no PCF support yet */ 3260 cfpcount = 0; 3261 /* 3262 * Pull nexttbtt forward to reflect the current 3263 * TSF and calculate dtim+cfp state for the result. 3264 */ 3265 tsf = ath_hal_gettsf64(ah); 3266 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3267 do { 3268 nexttbtt += intval; 3269 if (--dtimcount < 0) { 3270 dtimcount = dtimperiod - 1; 3271 if (--cfpcount < 0) 3272 cfpcount = cfpperiod - 1; 3273 } 3274 } while (nexttbtt < tsftu); 3275 memset(&bs, 0, sizeof(bs)); 3276 bs.bs_intval = intval; 3277 bs.bs_nexttbtt = nexttbtt; 3278 bs.bs_dtimperiod = dtimperiod*intval; 3279 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3280 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3281 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3282 bs.bs_cfpmaxduration = 0; 3283 #if 0 3284 /* 3285 * The 802.11 layer records the offset to the DTIM 3286 * bitmap while receiving beacons; use it here to 3287 * enable h/w detection of our AID being marked in 3288 * the bitmap vector (to indicate frames for us are 3289 * pending at the AP). 3290 * XXX do DTIM handling in s/w to WAR old h/w bugs 3291 * XXX enable based on h/w rev for newer chips 3292 */ 3293 bs.bs_timoffset = ni->ni_timoff; 3294 #endif 3295 /* 3296 * Calculate the number of consecutive beacons to miss 3297 * before taking a BMISS interrupt. 3298 * Note that we clamp the result to at most 10 beacons. 3299 */ 3300 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3301 if (bs.bs_bmissthreshold > 10) 3302 bs.bs_bmissthreshold = 10; 3303 else if (bs.bs_bmissthreshold <= 0) 3304 bs.bs_bmissthreshold = 1; 3305 3306 /* 3307 * Calculate sleep duration. The configuration is 3308 * given in ms. We insure a multiple of the beacon 3309 * period is used. Also, if the sleep duration is 3310 * greater than the DTIM period then it makes senses 3311 * to make it a multiple of that. 3312 * 3313 * XXX fixed at 100ms 3314 */ 3315 bs.bs_sleepduration = 3316 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3317 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3318 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3319 3320 DPRINTF(sc, ATH_DEBUG_BEACON, 3321 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3322 , __func__ 3323 , tsf, tsftu 3324 , bs.bs_intval 3325 , bs.bs_nexttbtt 3326 , bs.bs_dtimperiod 3327 , bs.bs_nextdtim 3328 , bs.bs_bmissthreshold 3329 , bs.bs_sleepduration 3330 , bs.bs_cfpperiod 3331 , bs.bs_cfpmaxduration 3332 , bs.bs_cfpnext 3333 , bs.bs_timoffset 3334 ); 3335 ath_hal_intrset(ah, 0); 3336 ath_hal_beacontimers(ah, &bs); 3337 sc->sc_imask |= HAL_INT_BMISS; 3338 ath_hal_intrset(ah, sc->sc_imask); 3339 } else { 3340 ath_hal_intrset(ah, 0); 3341 if (nexttbtt == intval) 3342 intval |= HAL_BEACON_RESET_TSF; 3343 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3344 /* 3345 * In IBSS mode enable the beacon timers but only 3346 * enable SWBA interrupts if we need to manually 3347 * prepare beacon frames. Otherwise we use a 3348 * self-linked tx descriptor and let the hardware 3349 * deal with things. 3350 */ 3351 intval |= HAL_BEACON_ENA; 3352 if (!sc->sc_hasveol) 3353 sc->sc_imask |= HAL_INT_SWBA; 3354 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3355 /* 3356 * Pull nexttbtt forward to reflect 3357 * the current TSF. 3358 */ 3359 tsf = ath_hal_gettsf64(ah); 3360 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3361 do { 3362 nexttbtt += intval; 3363 } while (nexttbtt < tsftu); 3364 } 3365 ath_beaconq_config(sc); 3366 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3367 ic->ic_opmode == IEEE80211_M_MBSS) { 3368 /* 3369 * In AP/mesh mode we enable the beacon timers 3370 * and SWBA interrupts to prepare beacon frames. 3371 */ 3372 intval |= HAL_BEACON_ENA; 3373 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3374 ath_beaconq_config(sc); 3375 } 3376 ath_hal_beaconinit(ah, nexttbtt, intval); 3377 sc->sc_bmisscount = 0; 3378 ath_hal_intrset(ah, sc->sc_imask); 3379 /* 3380 * When using a self-linked beacon descriptor in 3381 * ibss mode load it once here. 3382 */ 3383 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3384 ath_beacon_start_adhoc(sc, vap); 3385 } 3386 sc->sc_syncbeacon = 0; 3387 #undef FUDGE 3388 #undef TSF_TO_TU 3389 } 3390 3391 static void 3392 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3393 { 3394 bus_addr_t *paddr = (bus_addr_t*) arg; 3395 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3396 *paddr = segs->ds_addr; 3397 } 3398 3399 static int 3400 ath_descdma_setup(struct ath_softc *sc, 3401 struct ath_descdma *dd, ath_bufhead *head, 3402 const char *name, int nbuf, int ndesc) 3403 { 3404 #define DS2PHYS(_dd, _ds) \ 3405 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3406 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3407 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3408 struct ifnet *ifp = sc->sc_ifp; 3409 uint8_t *ds; 3410 struct ath_buf *bf; 3411 int i, bsize, error; 3412 int desc_len; 3413 3414 desc_len = sizeof(struct ath_desc); 3415 3416 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3417 __func__, name, nbuf, ndesc); 3418 3419 dd->dd_name = name; 3420 dd->dd_desc_len = desc_len * nbuf * ndesc; 3421 3422 /* 3423 * Merlin work-around: 3424 * Descriptors that cross the 4KB boundary can't be used. 3425 * Assume one skipped descriptor per 4KB page. 3426 */ 3427 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3428 int numdescpage = 4096 / (desc_len * ndesc); 3429 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3430 } 3431 3432 /* 3433 * Setup DMA descriptor area. 3434 */ 3435 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3436 PAGE_SIZE, 0, /* alignment, bounds */ 3437 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3438 BUS_SPACE_MAXADDR, /* highaddr */ 3439 NULL, NULL, /* filter, filterarg */ 3440 dd->dd_desc_len, /* maxsize */ 3441 1, /* nsegments */ 3442 dd->dd_desc_len, /* maxsegsize */ 3443 BUS_DMA_ALLOCNOW, /* flags */ 3444 NULL, /* lockfunc */ 3445 NULL, /* lockarg */ 3446 &dd->dd_dmat); 3447 if (error != 0) { 3448 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3449 return error; 3450 } 3451 3452 /* allocate descriptors */ 3453 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3454 if (error != 0) { 3455 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3456 "error %u\n", dd->dd_name, error); 3457 goto fail0; 3458 } 3459 3460 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3461 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3462 &dd->dd_dmamap); 3463 if (error != 0) { 3464 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3465 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3466 goto fail1; 3467 } 3468 3469 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3470 dd->dd_desc, dd->dd_desc_len, 3471 ath_load_cb, &dd->dd_desc_paddr, 3472 BUS_DMA_NOWAIT); 3473 if (error != 0) { 3474 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3475 dd->dd_name, error); 3476 goto fail2; 3477 } 3478 3479 ds = (uint8_t *) dd->dd_desc; 3480 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3481 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3482 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3483 3484 /* allocate rx buffers */ 3485 bsize = sizeof(struct ath_buf) * nbuf; 3486 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3487 if (bf == NULL) { 3488 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3489 dd->dd_name, bsize); 3490 goto fail3; 3491 } 3492 dd->dd_bufptr = bf; 3493 3494 TAILQ_INIT(head); 3495 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3496 bf->bf_desc = (struct ath_desc *) ds; 3497 bf->bf_daddr = DS2PHYS(dd, ds); 3498 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3499 /* 3500 * Merlin WAR: Skip descriptor addresses which 3501 * cause 4KB boundary crossing along any point 3502 * in the descriptor. 3503 */ 3504 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3505 desc_len * ndesc)) { 3506 /* Start at the next page */ 3507 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3508 bf->bf_desc = (struct ath_desc *) ds; 3509 bf->bf_daddr = DS2PHYS(dd, ds); 3510 } 3511 } 3512 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3513 &bf->bf_dmamap); 3514 if (error != 0) { 3515 if_printf(ifp, "unable to create dmamap for %s " 3516 "buffer %u, error %u\n", dd->dd_name, i, error); 3517 ath_descdma_cleanup(sc, dd, head); 3518 return error; 3519 } 3520 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3521 TAILQ_INSERT_TAIL(head, bf, bf_list); 3522 } 3523 return 0; 3524 fail3: 3525 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3526 fail2: 3527 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3528 fail1: 3529 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3530 fail0: 3531 bus_dma_tag_destroy(dd->dd_dmat); 3532 memset(dd, 0, sizeof(*dd)); 3533 return error; 3534 #undef DS2PHYS 3535 #undef ATH_DESC_4KB_BOUND_CHECK 3536 } 3537 3538 static void 3539 ath_descdma_cleanup(struct ath_softc *sc, 3540 struct ath_descdma *dd, ath_bufhead *head) 3541 { 3542 struct ath_buf *bf; 3543 struct ieee80211_node *ni; 3544 3545 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3546 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3547 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3548 bus_dma_tag_destroy(dd->dd_dmat); 3549 3550 TAILQ_FOREACH(bf, head, bf_list) { 3551 if (bf->bf_m) { 3552 m_freem(bf->bf_m); 3553 bf->bf_m = NULL; 3554 } 3555 if (bf->bf_dmamap != NULL) { 3556 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3557 bf->bf_dmamap = NULL; 3558 } 3559 ni = bf->bf_node; 3560 bf->bf_node = NULL; 3561 if (ni != NULL) { 3562 /* 3563 * Reclaim node reference. 3564 */ 3565 ieee80211_free_node(ni); 3566 } 3567 } 3568 3569 TAILQ_INIT(head); 3570 free(dd->dd_bufptr, M_ATHDEV); 3571 memset(dd, 0, sizeof(*dd)); 3572 } 3573 3574 static int 3575 ath_desc_alloc(struct ath_softc *sc) 3576 { 3577 int error; 3578 3579 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3580 "rx", ath_rxbuf, 1); 3581 if (error != 0) 3582 return error; 3583 3584 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3585 "tx", ath_txbuf, ATH_TXDESC); 3586 if (error != 0) { 3587 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3588 return error; 3589 } 3590 3591 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3592 "beacon", ATH_BCBUF, 1); 3593 if (error != 0) { 3594 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3595 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3596 return error; 3597 } 3598 return 0; 3599 } 3600 3601 static void 3602 ath_desc_free(struct ath_softc *sc) 3603 { 3604 3605 if (sc->sc_bdma.dd_desc_len != 0) 3606 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3607 if (sc->sc_txdma.dd_desc_len != 0) 3608 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3609 if (sc->sc_rxdma.dd_desc_len != 0) 3610 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3611 } 3612 3613 static struct ieee80211_node * 3614 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3615 { 3616 struct ieee80211com *ic = vap->iv_ic; 3617 struct ath_softc *sc = ic->ic_ifp->if_softc; 3618 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3619 struct ath_node *an; 3620 3621 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3622 if (an == NULL) { 3623 /* XXX stat+msg */ 3624 return NULL; 3625 } 3626 ath_rate_node_init(sc, an); 3627 3628 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3629 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3630 device_get_nameunit(sc->sc_dev), an); 3631 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3632 3633 /* XXX setup ath_tid */ 3634 ath_tx_tid_init(sc, an); 3635 3636 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3637 return &an->an_node; 3638 } 3639 3640 static void 3641 ath_node_cleanup(struct ieee80211_node *ni) 3642 { 3643 struct ieee80211com *ic = ni->ni_ic; 3644 struct ath_softc *sc = ic->ic_ifp->if_softc; 3645 3646 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3647 ath_tx_node_flush(sc, ATH_NODE(ni)); 3648 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3649 sc->sc_node_cleanup(ni); 3650 } 3651 3652 static void 3653 ath_node_free(struct ieee80211_node *ni) 3654 { 3655 struct ieee80211com *ic = ni->ni_ic; 3656 struct ath_softc *sc = ic->ic_ifp->if_softc; 3657 3658 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3659 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3660 sc->sc_node_free(ni); 3661 } 3662 3663 static void 3664 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3665 { 3666 struct ieee80211com *ic = ni->ni_ic; 3667 struct ath_softc *sc = ic->ic_ifp->if_softc; 3668 struct ath_hal *ah = sc->sc_ah; 3669 3670 *rssi = ic->ic_node_getrssi(ni); 3671 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3672 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3673 else 3674 *noise = -95; /* nominally correct */ 3675 } 3676 3677 static int 3678 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3679 { 3680 struct ath_hal *ah = sc->sc_ah; 3681 int error; 3682 struct mbuf *m; 3683 struct ath_desc *ds; 3684 3685 m = bf->bf_m; 3686 if (m == NULL) { 3687 /* 3688 * NB: by assigning a page to the rx dma buffer we 3689 * implicitly satisfy the Atheros requirement that 3690 * this buffer be cache-line-aligned and sized to be 3691 * multiple of the cache line size. Not doing this 3692 * causes weird stuff to happen (for the 5210 at least). 3693 */ 3694 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3695 if (m == NULL) { 3696 DPRINTF(sc, ATH_DEBUG_ANY, 3697 "%s: no mbuf/cluster\n", __func__); 3698 sc->sc_stats.ast_rx_nombuf++; 3699 return ENOMEM; 3700 } 3701 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3702 3703 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3704 bf->bf_dmamap, m, 3705 bf->bf_segs, &bf->bf_nseg, 3706 BUS_DMA_NOWAIT); 3707 if (error != 0) { 3708 DPRINTF(sc, ATH_DEBUG_ANY, 3709 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3710 __func__, error); 3711 sc->sc_stats.ast_rx_busdma++; 3712 m_freem(m); 3713 return error; 3714 } 3715 KASSERT(bf->bf_nseg == 1, 3716 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3717 bf->bf_m = m; 3718 } 3719 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3720 3721 /* 3722 * Setup descriptors. For receive we always terminate 3723 * the descriptor list with a self-linked entry so we'll 3724 * not get overrun under high load (as can happen with a 3725 * 5212 when ANI processing enables PHY error frames). 3726 * 3727 * To insure the last descriptor is self-linked we create 3728 * each descriptor as self-linked and add it to the end. As 3729 * each additional descriptor is added the previous self-linked 3730 * entry is ``fixed'' naturally. This should be safe even 3731 * if DMA is happening. When processing RX interrupts we 3732 * never remove/process the last, self-linked, entry on the 3733 * descriptor list. This insures the hardware always has 3734 * someplace to write a new frame. 3735 */ 3736 /* 3737 * 11N: we can no longer afford to self link the last descriptor. 3738 * MAC acknowledges BA status as long as it copies frames to host 3739 * buffer (or rx fifo). This can incorrectly acknowledge packets 3740 * to a sender if last desc is self-linked. 3741 */ 3742 ds = bf->bf_desc; 3743 if (sc->sc_rxslink) 3744 ds->ds_link = bf->bf_daddr; /* link to self */ 3745 else 3746 ds->ds_link = 0; /* terminate the list */ 3747 ds->ds_data = bf->bf_segs[0].ds_addr; 3748 ath_hal_setuprxdesc(ah, ds 3749 , m->m_len /* buffer size */ 3750 , 0 3751 ); 3752 3753 if (sc->sc_rxlink != NULL) 3754 *sc->sc_rxlink = bf->bf_daddr; 3755 sc->sc_rxlink = &ds->ds_link; 3756 return 0; 3757 } 3758 3759 /* 3760 * Extend 15-bit time stamp from rx descriptor to 3761 * a full 64-bit TSF using the specified TSF. 3762 */ 3763 static __inline u_int64_t 3764 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3765 { 3766 if ((tsf & 0x7fff) < rstamp) 3767 tsf -= 0x8000; 3768 3769 return ((tsf &~ 0x7fff) | rstamp); 3770 } 3771 3772 /* 3773 * Extend 32-bit time stamp from rx descriptor to 3774 * a full 64-bit TSF using the specified TSF. 3775 */ 3776 static __inline u_int64_t 3777 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3778 { 3779 u_int32_t tsf_low = tsf & 0xffffffff; 3780 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3781 3782 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3783 tsf64 -= 0x100000000ULL; 3784 3785 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3786 tsf64 += 0x100000000ULL; 3787 3788 return tsf64; 3789 } 3790 3791 /* 3792 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3793 * Earlier hardware versions only wrote the low 15 bits of the 3794 * TSF into the RX descriptor; later versions (AR5416 and up) 3795 * include the 32 bit TSF value. 3796 */ 3797 static __inline u_int64_t 3798 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3799 { 3800 if (sc->sc_rxtsf32) 3801 return ath_extend_tsf32(rstamp, tsf); 3802 else 3803 return ath_extend_tsf15(rstamp, tsf); 3804 } 3805 3806 /* 3807 * Intercept management frames to collect beacon rssi data 3808 * and to do ibss merges. 3809 */ 3810 static void 3811 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3812 int subtype, int rssi, int nf) 3813 { 3814 struct ieee80211vap *vap = ni->ni_vap; 3815 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3816 3817 /* 3818 * Call up first so subsequent work can use information 3819 * potentially stored in the node (e.g. for ibss merge). 3820 */ 3821 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3822 switch (subtype) { 3823 case IEEE80211_FC0_SUBTYPE_BEACON: 3824 /* update rssi statistics for use by the hal */ 3825 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3826 if (sc->sc_syncbeacon && 3827 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3828 /* 3829 * Resync beacon timers using the tsf of the beacon 3830 * frame we just received. 3831 */ 3832 ath_beacon_config(sc, vap); 3833 } 3834 /* fall thru... */ 3835 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3836 if (vap->iv_opmode == IEEE80211_M_IBSS && 3837 vap->iv_state == IEEE80211_S_RUN) { 3838 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3839 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3840 ath_hal_gettsf64(sc->sc_ah)); 3841 /* 3842 * Handle ibss merge as needed; check the tsf on the 3843 * frame before attempting the merge. The 802.11 spec 3844 * says the station should change it's bssid to match 3845 * the oldest station with the same ssid, where oldest 3846 * is determined by the tsf. Note that hardware 3847 * reconfiguration happens through callback to 3848 * ath_newstate as the state machine will go from 3849 * RUN -> RUN when this happens. 3850 */ 3851 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3852 DPRINTF(sc, ATH_DEBUG_STATE, 3853 "ibss merge, rstamp %u tsf %ju " 3854 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3855 (uintmax_t)ni->ni_tstamp.tsf); 3856 (void) ieee80211_ibss_merge(ni); 3857 } 3858 } 3859 break; 3860 } 3861 } 3862 3863 /* 3864 * Set the default antenna. 3865 */ 3866 static void 3867 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3868 { 3869 struct ath_hal *ah = sc->sc_ah; 3870 3871 /* XXX block beacon interrupts */ 3872 ath_hal_setdefantenna(ah, antenna); 3873 if (sc->sc_defant != antenna) 3874 sc->sc_stats.ast_ant_defswitch++; 3875 sc->sc_defant = antenna; 3876 sc->sc_rxotherant = 0; 3877 } 3878 3879 static void 3880 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3881 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3882 { 3883 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3884 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3885 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3886 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3887 struct ath_softc *sc = ifp->if_softc; 3888 const HAL_RATE_TABLE *rt; 3889 uint8_t rix; 3890 3891 rt = sc->sc_currates; 3892 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3893 rix = rt->rateCodeToIndex[rs->rs_rate]; 3894 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3895 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3896 #ifdef AH_SUPPORT_AR5416 3897 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3898 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3899 struct ieee80211com *ic = ifp->if_l2com; 3900 3901 if ((rs->rs_flags & HAL_RX_2040) == 0) 3902 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3903 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3904 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3905 else 3906 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3907 if ((rs->rs_flags & HAL_RX_GI) == 0) 3908 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3909 } 3910 #endif 3911 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 3912 if (rs->rs_status & HAL_RXERR_CRC) 3913 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3914 /* XXX propagate other error flags from descriptor */ 3915 sc->sc_rx_th.wr_antnoise = nf; 3916 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 3917 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3918 #undef CHAN_HT 3919 #undef CHAN_HT20 3920 #undef CHAN_HT40U 3921 #undef CHAN_HT40D 3922 } 3923 3924 static void 3925 ath_handle_micerror(struct ieee80211com *ic, 3926 struct ieee80211_frame *wh, int keyix) 3927 { 3928 struct ieee80211_node *ni; 3929 3930 /* XXX recheck MIC to deal w/ chips that lie */ 3931 /* XXX discard MIC errors on !data frames */ 3932 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3933 if (ni != NULL) { 3934 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3935 ieee80211_free_node(ni); 3936 } 3937 } 3938 3939 /* 3940 * Only run the RX proc if it's not already running. 3941 * Since this may get run as part of the reset/flush path, 3942 * the task can't clash with an existing, running tasklet. 3943 */ 3944 static void 3945 ath_rx_tasklet(void *arg, int npending) 3946 { 3947 struct ath_softc *sc = arg; 3948 3949 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 3950 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3951 ATH_PCU_LOCK(sc); 3952 if (sc->sc_inreset_cnt > 0) { 3953 device_printf(sc->sc_dev, 3954 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3955 ATH_PCU_UNLOCK(sc); 3956 return; 3957 } 3958 ATH_PCU_UNLOCK(sc); 3959 ath_rx_proc(sc, 1); 3960 } 3961 3962 static void 3963 ath_rx_proc(struct ath_softc *sc, int resched) 3964 { 3965 #define PA2DESC(_sc, _pa) \ 3966 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3967 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3968 struct ath_buf *bf; 3969 struct ifnet *ifp = sc->sc_ifp; 3970 struct ieee80211com *ic = ifp->if_l2com; 3971 struct ath_hal *ah = sc->sc_ah; 3972 struct ath_desc *ds; 3973 struct ath_rx_status *rs; 3974 struct mbuf *m; 3975 struct ieee80211_node *ni; 3976 int len, type, ngood; 3977 HAL_STATUS status; 3978 int16_t nf; 3979 u_int64_t tsf; 3980 int npkts = 0; 3981 3982 /* XXX we must not hold the ATH_LOCK here */ 3983 ATH_UNLOCK_ASSERT(sc); 3984 ATH_PCU_UNLOCK_ASSERT(sc); 3985 3986 ATH_PCU_LOCK(sc); 3987 sc->sc_rxproc_cnt++; 3988 ATH_PCU_UNLOCK(sc); 3989 3990 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 3991 ngood = 0; 3992 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 3993 sc->sc_stats.ast_rx_noise = nf; 3994 tsf = ath_hal_gettsf64(ah); 3995 do { 3996 bf = TAILQ_FIRST(&sc->sc_rxbuf); 3997 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 3998 if_printf(ifp, "%s: no buffer!\n", __func__); 3999 break; 4000 } else if (bf == NULL) { 4001 /* 4002 * End of List: 4003 * this can happen for non-self-linked RX chains 4004 */ 4005 sc->sc_stats.ast_rx_hitqueueend++; 4006 break; 4007 } 4008 m = bf->bf_m; 4009 if (m == NULL) { /* NB: shouldn't happen */ 4010 /* 4011 * If mbuf allocation failed previously there 4012 * will be no mbuf; try again to re-populate it. 4013 */ 4014 /* XXX make debug msg */ 4015 if_printf(ifp, "%s: no mbuf!\n", __func__); 4016 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4017 goto rx_next; 4018 } 4019 ds = bf->bf_desc; 4020 if (ds->ds_link == bf->bf_daddr) { 4021 /* NB: never process the self-linked entry at the end */ 4022 sc->sc_stats.ast_rx_hitqueueend++; 4023 break; 4024 } 4025 /* XXX sync descriptor memory */ 4026 /* 4027 * Must provide the virtual address of the current 4028 * descriptor, the physical address, and the virtual 4029 * address of the next descriptor in the h/w chain. 4030 * This allows the HAL to look ahead to see if the 4031 * hardware is done with a descriptor by checking the 4032 * done bit in the following descriptor and the address 4033 * of the current descriptor the DMA engine is working 4034 * on. All this is necessary because of our use of 4035 * a self-linked list to avoid rx overruns. 4036 */ 4037 rs = &bf->bf_status.ds_rxstat; 4038 status = ath_hal_rxprocdesc(ah, ds, 4039 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4040 #ifdef ATH_DEBUG 4041 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4042 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4043 #endif 4044 if (status == HAL_EINPROGRESS) 4045 break; 4046 4047 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4048 npkts++; 4049 4050 /* These aren't specifically errors */ 4051 #ifdef AH_SUPPORT_AR5416 4052 if (rs->rs_flags & HAL_RX_GI) 4053 sc->sc_stats.ast_rx_halfgi++; 4054 if (rs->rs_flags & HAL_RX_2040) 4055 sc->sc_stats.ast_rx_2040++; 4056 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 4057 sc->sc_stats.ast_rx_pre_crc_err++; 4058 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 4059 sc->sc_stats.ast_rx_post_crc_err++; 4060 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 4061 sc->sc_stats.ast_rx_decrypt_busy_err++; 4062 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 4063 sc->sc_stats.ast_rx_hi_rx_chain++; 4064 #endif /* AH_SUPPORT_AR5416 */ 4065 4066 if (rs->rs_status != 0) { 4067 if (rs->rs_status & HAL_RXERR_CRC) 4068 sc->sc_stats.ast_rx_crcerr++; 4069 if (rs->rs_status & HAL_RXERR_FIFO) 4070 sc->sc_stats.ast_rx_fifoerr++; 4071 if (rs->rs_status & HAL_RXERR_PHY) { 4072 sc->sc_stats.ast_rx_phyerr++; 4073 /* Process DFS radar events */ 4074 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 4075 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 4076 /* Since we're touching the frame data, sync it */ 4077 bus_dmamap_sync(sc->sc_dmat, 4078 bf->bf_dmamap, 4079 BUS_DMASYNC_POSTREAD); 4080 /* Now pass it to the radar processing code */ 4081 ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs); 4082 } 4083 4084 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4085 if (rs->rs_phyerr < 64) 4086 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4087 goto rx_error; /* NB: don't count in ierrors */ 4088 } 4089 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4090 /* 4091 * Decrypt error. If the error occurred 4092 * because there was no hardware key, then 4093 * let the frame through so the upper layers 4094 * can process it. This is necessary for 5210 4095 * parts which have no way to setup a ``clear'' 4096 * key cache entry. 4097 * 4098 * XXX do key cache faulting 4099 */ 4100 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4101 goto rx_accept; 4102 sc->sc_stats.ast_rx_badcrypt++; 4103 } 4104 if (rs->rs_status & HAL_RXERR_MIC) { 4105 sc->sc_stats.ast_rx_badmic++; 4106 /* 4107 * Do minimal work required to hand off 4108 * the 802.11 header for notification. 4109 */ 4110 /* XXX frag's and qos frames */ 4111 len = rs->rs_datalen; 4112 if (len >= sizeof (struct ieee80211_frame)) { 4113 bus_dmamap_sync(sc->sc_dmat, 4114 bf->bf_dmamap, 4115 BUS_DMASYNC_POSTREAD); 4116 ath_handle_micerror(ic, 4117 mtod(m, struct ieee80211_frame *), 4118 sc->sc_splitmic ? 4119 rs->rs_keyix-32 : rs->rs_keyix); 4120 } 4121 } 4122 ifp->if_ierrors++; 4123 rx_error: 4124 /* 4125 * Cleanup any pending partial frame. 4126 */ 4127 if (sc->sc_rxpending != NULL) { 4128 m_freem(sc->sc_rxpending); 4129 sc->sc_rxpending = NULL; 4130 } 4131 /* 4132 * When a tap is present pass error frames 4133 * that have been requested. By default we 4134 * pass decrypt+mic errors but others may be 4135 * interesting (e.g. crc). 4136 */ 4137 if (ieee80211_radiotap_active(ic) && 4138 (rs->rs_status & sc->sc_monpass)) { 4139 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4140 BUS_DMASYNC_POSTREAD); 4141 /* NB: bpf needs the mbuf length setup */ 4142 len = rs->rs_datalen; 4143 m->m_pkthdr.len = m->m_len = len; 4144 bf->bf_m = NULL; 4145 ath_rx_tap(ifp, m, rs, tsf, nf); 4146 ieee80211_radiotap_rx_all(ic, m); 4147 m_freem(m); 4148 } 4149 /* XXX pass MIC errors up for s/w reclaculation */ 4150 goto rx_next; 4151 } 4152 rx_accept: 4153 /* 4154 * Sync and unmap the frame. At this point we're 4155 * committed to passing the mbuf somewhere so clear 4156 * bf_m; this means a new mbuf must be allocated 4157 * when the rx descriptor is setup again to receive 4158 * another frame. 4159 */ 4160 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4161 BUS_DMASYNC_POSTREAD); 4162 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4163 bf->bf_m = NULL; 4164 4165 len = rs->rs_datalen; 4166 m->m_len = len; 4167 4168 if (rs->rs_more) { 4169 /* 4170 * Frame spans multiple descriptors; save 4171 * it for the next completed descriptor, it 4172 * will be used to construct a jumbogram. 4173 */ 4174 if (sc->sc_rxpending != NULL) { 4175 /* NB: max frame size is currently 2 clusters */ 4176 sc->sc_stats.ast_rx_toobig++; 4177 m_freem(sc->sc_rxpending); 4178 } 4179 m->m_pkthdr.rcvif = ifp; 4180 m->m_pkthdr.len = len; 4181 sc->sc_rxpending = m; 4182 goto rx_next; 4183 } else if (sc->sc_rxpending != NULL) { 4184 /* 4185 * This is the second part of a jumbogram, 4186 * chain it to the first mbuf, adjust the 4187 * frame length, and clear the rxpending state. 4188 */ 4189 sc->sc_rxpending->m_next = m; 4190 sc->sc_rxpending->m_pkthdr.len += len; 4191 m = sc->sc_rxpending; 4192 sc->sc_rxpending = NULL; 4193 } else { 4194 /* 4195 * Normal single-descriptor receive; setup 4196 * the rcvif and packet length. 4197 */ 4198 m->m_pkthdr.rcvif = ifp; 4199 m->m_pkthdr.len = len; 4200 } 4201 4202 /* 4203 * Validate rs->rs_antenna. 4204 * 4205 * Some users w/ AR9285 NICs have reported crashes 4206 * here because rs_antenna field is bogusly large. 4207 * Let's enforce the maximum antenna limit of 8 4208 * (and it shouldn't be hard coded, but that's a 4209 * separate problem) and if there's an issue, print 4210 * out an error and adjust rs_antenna to something 4211 * sensible. 4212 * 4213 * This code should be removed once the actual 4214 * root cause of the issue has been identified. 4215 * For example, it may be that the rs_antenna 4216 * field is only valid for the lsat frame of 4217 * an aggregate and it just happens that it is 4218 * "mostly" right. (This is a general statement - 4219 * the majority of the statistics are only valid 4220 * for the last frame in an aggregate. 4221 */ 4222 if (rs->rs_antenna > 7) { 4223 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 4224 __func__, rs->rs_antenna); 4225 #ifdef ATH_DEBUG 4226 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4227 #endif /* ATH_DEBUG */ 4228 rs->rs_antenna = 0; /* XXX better than nothing */ 4229 } 4230 4231 ifp->if_ipackets++; 4232 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4233 4234 /* 4235 * Populate the rx status block. When there are bpf 4236 * listeners we do the additional work to provide 4237 * complete status. Otherwise we fill in only the 4238 * material required by ieee80211_input. Note that 4239 * noise setting is filled in above. 4240 */ 4241 if (ieee80211_radiotap_active(ic)) 4242 ath_rx_tap(ifp, m, rs, tsf, nf); 4243 4244 /* 4245 * From this point on we assume the frame is at least 4246 * as large as ieee80211_frame_min; verify that. 4247 */ 4248 if (len < IEEE80211_MIN_LEN) { 4249 if (!ieee80211_radiotap_active(ic)) { 4250 DPRINTF(sc, ATH_DEBUG_RECV, 4251 "%s: short packet %d\n", __func__, len); 4252 sc->sc_stats.ast_rx_tooshort++; 4253 } else { 4254 /* NB: in particular this captures ack's */ 4255 ieee80211_radiotap_rx_all(ic, m); 4256 } 4257 m_freem(m); 4258 goto rx_next; 4259 } 4260 4261 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4262 const HAL_RATE_TABLE *rt = sc->sc_currates; 4263 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4264 4265 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4266 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4267 } 4268 4269 m_adj(m, -IEEE80211_CRC_LEN); 4270 4271 /* 4272 * Locate the node for sender, track state, and then 4273 * pass the (referenced) node up to the 802.11 layer 4274 * for its use. 4275 */ 4276 ni = ieee80211_find_rxnode_withkey(ic, 4277 mtod(m, const struct ieee80211_frame_min *), 4278 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4279 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4280 sc->sc_lastrs = rs; 4281 4282 #ifdef AH_SUPPORT_AR5416 4283 if (rs->rs_isaggr) 4284 sc->sc_stats.ast_rx_agg++; 4285 #endif /* AH_SUPPORT_AR5416 */ 4286 4287 if (ni != NULL) { 4288 /* 4289 * Only punt packets for ampdu reorder processing for 4290 * 11n nodes; net80211 enforces that M_AMPDU is only 4291 * set for 11n nodes. 4292 */ 4293 if (ni->ni_flags & IEEE80211_NODE_HT) 4294 m->m_flags |= M_AMPDU; 4295 4296 /* 4297 * Sending station is known, dispatch directly. 4298 */ 4299 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4300 ieee80211_free_node(ni); 4301 /* 4302 * Arrange to update the last rx timestamp only for 4303 * frames from our ap when operating in station mode. 4304 * This assumes the rx key is always setup when 4305 * associated. 4306 */ 4307 if (ic->ic_opmode == IEEE80211_M_STA && 4308 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4309 ngood++; 4310 } else { 4311 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4312 } 4313 /* 4314 * Track rx rssi and do any rx antenna management. 4315 */ 4316 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4317 if (sc->sc_diversity) { 4318 /* 4319 * When using fast diversity, change the default rx 4320 * antenna if diversity chooses the other antenna 3 4321 * times in a row. 4322 */ 4323 if (sc->sc_defant != rs->rs_antenna) { 4324 if (++sc->sc_rxotherant >= 3) 4325 ath_setdefantenna(sc, rs->rs_antenna); 4326 } else 4327 sc->sc_rxotherant = 0; 4328 } 4329 4330 /* Newer school diversity - kite specific for now */ 4331 /* XXX perhaps migrate the normal diversity code to this? */ 4332 if ((ah)->ah_rxAntCombDiversity) 4333 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4334 4335 if (sc->sc_softled) { 4336 /* 4337 * Blink for any data frame. Otherwise do a 4338 * heartbeat-style blink when idle. The latter 4339 * is mainly for station mode where we depend on 4340 * periodic beacon frames to trigger the poll event. 4341 */ 4342 if (type == IEEE80211_FC0_TYPE_DATA) { 4343 const HAL_RATE_TABLE *rt = sc->sc_currates; 4344 ath_led_event(sc, 4345 rt->rateCodeToIndex[rs->rs_rate]); 4346 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4347 ath_led_event(sc, 0); 4348 } 4349 rx_next: 4350 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4351 } while (ath_rxbuf_init(sc, bf) == 0); 4352 4353 /* rx signal state monitoring */ 4354 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4355 if (ngood) 4356 sc->sc_lastrx = tsf; 4357 4358 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4359 /* Queue DFS tasklet if needed */ 4360 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4361 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4362 4363 /* 4364 * Now that all the RX frames were handled that 4365 * need to be handled, kick the PCU if there's 4366 * been an RXEOL condition. 4367 */ 4368 ATH_PCU_LOCK(sc); 4369 if (resched && sc->sc_kickpcu) { 4370 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4371 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4372 __func__, npkts); 4373 4374 /* XXX rxslink? */ 4375 /* 4376 * XXX can we hold the PCU lock here? 4377 * Are there any net80211 buffer calls involved? 4378 */ 4379 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4380 ath_hal_putrxbuf(ah, bf->bf_daddr); 4381 ath_hal_rxena(ah); /* enable recv descriptors */ 4382 ath_mode_init(sc); /* set filters, etc. */ 4383 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4384 4385 ath_hal_intrset(ah, sc->sc_imask); 4386 sc->sc_kickpcu = 0; 4387 } 4388 ATH_PCU_UNLOCK(sc); 4389 4390 /* XXX check this inside of IF_LOCK? */ 4391 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4392 #ifdef IEEE80211_SUPPORT_SUPERG 4393 ieee80211_ff_age_all(ic, 100); 4394 #endif 4395 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4396 ath_start(ifp); 4397 } 4398 #undef PA2DESC 4399 4400 ATH_PCU_LOCK(sc); 4401 sc->sc_rxproc_cnt--; 4402 ATH_PCU_UNLOCK(sc); 4403 } 4404 4405 static void 4406 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4407 { 4408 txq->axq_qnum = qnum; 4409 txq->axq_ac = 0; 4410 txq->axq_depth = 0; 4411 txq->axq_aggr_depth = 0; 4412 txq->axq_intrcnt = 0; 4413 txq->axq_link = NULL; 4414 txq->axq_softc = sc; 4415 TAILQ_INIT(&txq->axq_q); 4416 TAILQ_INIT(&txq->axq_tidq); 4417 ATH_TXQ_LOCK_INIT(sc, txq); 4418 } 4419 4420 /* 4421 * Setup a h/w transmit queue. 4422 */ 4423 static struct ath_txq * 4424 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4425 { 4426 #define N(a) (sizeof(a)/sizeof(a[0])) 4427 struct ath_hal *ah = sc->sc_ah; 4428 HAL_TXQ_INFO qi; 4429 int qnum; 4430 4431 memset(&qi, 0, sizeof(qi)); 4432 qi.tqi_subtype = subtype; 4433 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4434 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4435 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4436 /* 4437 * Enable interrupts only for EOL and DESC conditions. 4438 * We mark tx descriptors to receive a DESC interrupt 4439 * when a tx queue gets deep; otherwise waiting for the 4440 * EOL to reap descriptors. Note that this is done to 4441 * reduce interrupt load and this only defers reaping 4442 * descriptors, never transmitting frames. Aside from 4443 * reducing interrupts this also permits more concurrency. 4444 * The only potential downside is if the tx queue backs 4445 * up in which case the top half of the kernel may backup 4446 * due to a lack of tx descriptors. 4447 */ 4448 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4449 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4450 if (qnum == -1) { 4451 /* 4452 * NB: don't print a message, this happens 4453 * normally on parts with too few tx queues 4454 */ 4455 return NULL; 4456 } 4457 if (qnum >= N(sc->sc_txq)) { 4458 device_printf(sc->sc_dev, 4459 "hal qnum %u out of range, max %zu!\n", 4460 qnum, N(sc->sc_txq)); 4461 ath_hal_releasetxqueue(ah, qnum); 4462 return NULL; 4463 } 4464 if (!ATH_TXQ_SETUP(sc, qnum)) { 4465 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4466 sc->sc_txqsetup |= 1<<qnum; 4467 } 4468 return &sc->sc_txq[qnum]; 4469 #undef N 4470 } 4471 4472 /* 4473 * Setup a hardware data transmit queue for the specified 4474 * access control. The hal may not support all requested 4475 * queues in which case it will return a reference to a 4476 * previously setup queue. We record the mapping from ac's 4477 * to h/w queues for use by ath_tx_start and also track 4478 * the set of h/w queues being used to optimize work in the 4479 * transmit interrupt handler and related routines. 4480 */ 4481 static int 4482 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4483 { 4484 #define N(a) (sizeof(a)/sizeof(a[0])) 4485 struct ath_txq *txq; 4486 4487 if (ac >= N(sc->sc_ac2q)) { 4488 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4489 ac, N(sc->sc_ac2q)); 4490 return 0; 4491 } 4492 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4493 if (txq != NULL) { 4494 txq->axq_ac = ac; 4495 sc->sc_ac2q[ac] = txq; 4496 return 1; 4497 } else 4498 return 0; 4499 #undef N 4500 } 4501 4502 /* 4503 * Update WME parameters for a transmit queue. 4504 */ 4505 static int 4506 ath_txq_update(struct ath_softc *sc, int ac) 4507 { 4508 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4509 #define ATH_TXOP_TO_US(v) (v<<5) 4510 struct ifnet *ifp = sc->sc_ifp; 4511 struct ieee80211com *ic = ifp->if_l2com; 4512 struct ath_txq *txq = sc->sc_ac2q[ac]; 4513 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4514 struct ath_hal *ah = sc->sc_ah; 4515 HAL_TXQ_INFO qi; 4516 4517 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4518 #ifdef IEEE80211_SUPPORT_TDMA 4519 if (sc->sc_tdma) { 4520 /* 4521 * AIFS is zero so there's no pre-transmit wait. The 4522 * burst time defines the slot duration and is configured 4523 * through net80211. The QCU is setup to not do post-xmit 4524 * back off, lockout all lower-priority QCU's, and fire 4525 * off the DMA beacon alert timer which is setup based 4526 * on the slot configuration. 4527 */ 4528 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4529 | HAL_TXQ_TXERRINT_ENABLE 4530 | HAL_TXQ_TXURNINT_ENABLE 4531 | HAL_TXQ_TXEOLINT_ENABLE 4532 | HAL_TXQ_DBA_GATED 4533 | HAL_TXQ_BACKOFF_DISABLE 4534 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4535 ; 4536 qi.tqi_aifs = 0; 4537 /* XXX +dbaprep? */ 4538 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4539 qi.tqi_burstTime = qi.tqi_readyTime; 4540 } else { 4541 #endif 4542 /* 4543 * XXX shouldn't this just use the default flags 4544 * used in the previous queue setup? 4545 */ 4546 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4547 | HAL_TXQ_TXERRINT_ENABLE 4548 | HAL_TXQ_TXDESCINT_ENABLE 4549 | HAL_TXQ_TXURNINT_ENABLE 4550 | HAL_TXQ_TXEOLINT_ENABLE 4551 ; 4552 qi.tqi_aifs = wmep->wmep_aifsn; 4553 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4554 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4555 qi.tqi_readyTime = 0; 4556 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4557 #ifdef IEEE80211_SUPPORT_TDMA 4558 } 4559 #endif 4560 4561 DPRINTF(sc, ATH_DEBUG_RESET, 4562 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4563 __func__, txq->axq_qnum, qi.tqi_qflags, 4564 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4565 4566 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4567 if_printf(ifp, "unable to update hardware queue " 4568 "parameters for %s traffic!\n", 4569 ieee80211_wme_acnames[ac]); 4570 return 0; 4571 } else { 4572 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4573 return 1; 4574 } 4575 #undef ATH_TXOP_TO_US 4576 #undef ATH_EXPONENT_TO_VALUE 4577 } 4578 4579 /* 4580 * Callback from the 802.11 layer to update WME parameters. 4581 */ 4582 static int 4583 ath_wme_update(struct ieee80211com *ic) 4584 { 4585 struct ath_softc *sc = ic->ic_ifp->if_softc; 4586 4587 return !ath_txq_update(sc, WME_AC_BE) || 4588 !ath_txq_update(sc, WME_AC_BK) || 4589 !ath_txq_update(sc, WME_AC_VI) || 4590 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4591 } 4592 4593 /* 4594 * Reclaim resources for a setup queue. 4595 */ 4596 static void 4597 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4598 { 4599 4600 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4601 ATH_TXQ_LOCK_DESTROY(txq); 4602 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4603 } 4604 4605 /* 4606 * Reclaim all tx queue resources. 4607 */ 4608 static void 4609 ath_tx_cleanup(struct ath_softc *sc) 4610 { 4611 int i; 4612 4613 ATH_TXBUF_LOCK_DESTROY(sc); 4614 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4615 if (ATH_TXQ_SETUP(sc, i)) 4616 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4617 } 4618 4619 /* 4620 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4621 * using the current rates in sc_rixmap. 4622 */ 4623 int 4624 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4625 { 4626 int rix = sc->sc_rixmap[rate]; 4627 /* NB: return lowest rix for invalid rate */ 4628 return (rix == 0xff ? 0 : rix); 4629 } 4630 4631 static void 4632 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4633 struct ath_buf *bf) 4634 { 4635 struct ieee80211_node *ni = bf->bf_node; 4636 struct ifnet *ifp = sc->sc_ifp; 4637 struct ieee80211com *ic = ifp->if_l2com; 4638 int sr, lr, pri; 4639 4640 if (ts->ts_status == 0) { 4641 u_int8_t txant = ts->ts_antenna; 4642 sc->sc_stats.ast_ant_tx[txant]++; 4643 sc->sc_ant_tx[txant]++; 4644 if (ts->ts_finaltsi != 0) 4645 sc->sc_stats.ast_tx_altrate++; 4646 pri = M_WME_GETAC(bf->bf_m); 4647 if (pri >= WME_AC_VO) 4648 ic->ic_wme.wme_hipri_traffic++; 4649 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4650 ni->ni_inact = ni->ni_inact_reload; 4651 } else { 4652 if (ts->ts_status & HAL_TXERR_XRETRY) 4653 sc->sc_stats.ast_tx_xretries++; 4654 if (ts->ts_status & HAL_TXERR_FIFO) 4655 sc->sc_stats.ast_tx_fifoerr++; 4656 if (ts->ts_status & HAL_TXERR_FILT) 4657 sc->sc_stats.ast_tx_filtered++; 4658 if (ts->ts_status & HAL_TXERR_XTXOP) 4659 sc->sc_stats.ast_tx_xtxop++; 4660 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4661 sc->sc_stats.ast_tx_timerexpired++; 4662 4663 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4664 sc->sc_stats.ast_tx_data_underrun++; 4665 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4666 sc->sc_stats.ast_tx_delim_underrun++; 4667 4668 if (bf->bf_m->m_flags & M_FF) 4669 sc->sc_stats.ast_ff_txerr++; 4670 } 4671 /* XXX when is this valid? */ 4672 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4673 sc->sc_stats.ast_tx_desccfgerr++; 4674 4675 sr = ts->ts_shortretry; 4676 lr = ts->ts_longretry; 4677 sc->sc_stats.ast_tx_shortretry += sr; 4678 sc->sc_stats.ast_tx_longretry += lr; 4679 4680 } 4681 4682 /* 4683 * The default completion. If fail is 1, this means 4684 * "please don't retry the frame, and just return -1 status 4685 * to the net80211 stack. 4686 */ 4687 void 4688 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4689 { 4690 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4691 int st; 4692 4693 if (fail == 1) 4694 st = -1; 4695 else 4696 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4697 ts->ts_status : HAL_TXERR_XRETRY; 4698 4699 if (bf->bf_state.bfs_dobaw) 4700 device_printf(sc->sc_dev, 4701 "%s: dobaw should've been cleared!\n", __func__); 4702 if (bf->bf_next != NULL) 4703 device_printf(sc->sc_dev, 4704 "%s: bf_next not NULL!\n", __func__); 4705 4706 /* 4707 * Do any tx complete callback. Note this must 4708 * be done before releasing the node reference. 4709 * This will free the mbuf, release the net80211 4710 * node and recycle the ath_buf. 4711 */ 4712 ath_tx_freebuf(sc, bf, st); 4713 } 4714 4715 /* 4716 * Update rate control with the given completion status. 4717 */ 4718 void 4719 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4720 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4721 int nframes, int nbad) 4722 { 4723 struct ath_node *an; 4724 4725 /* Only for unicast frames */ 4726 if (ni == NULL) 4727 return; 4728 4729 an = ATH_NODE(ni); 4730 4731 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4732 ATH_NODE_LOCK(an); 4733 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4734 ATH_NODE_UNLOCK(an); 4735 } 4736 } 4737 4738 /* 4739 * Update the busy status of the last frame on the free list. 4740 * When doing TDMA, the busy flag tracks whether the hardware 4741 * currently points to this buffer or not, and thus gated DMA 4742 * may restart by re-reading the last descriptor in this 4743 * buffer. 4744 * 4745 * This should be called in the completion function once one 4746 * of the buffers has been used. 4747 */ 4748 static void 4749 ath_tx_update_busy(struct ath_softc *sc) 4750 { 4751 struct ath_buf *last; 4752 4753 /* 4754 * Since the last frame may still be marked 4755 * as ATH_BUF_BUSY, unmark it here before 4756 * finishing the frame processing. 4757 * Since we've completed a frame (aggregate 4758 * or otherwise), the hardware has moved on 4759 * and is no longer referencing the previous 4760 * descriptor. 4761 */ 4762 ATH_TXBUF_LOCK_ASSERT(sc); 4763 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4764 if (last != NULL) 4765 last->bf_flags &= ~ATH_BUF_BUSY; 4766 } 4767 4768 4769 /* 4770 * Process completed xmit descriptors from the specified queue. 4771 * Kick the packet scheduler if needed. This can occur from this 4772 * particular task. 4773 */ 4774 static int 4775 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4776 { 4777 struct ath_hal *ah = sc->sc_ah; 4778 struct ath_buf *bf; 4779 struct ath_desc *ds; 4780 struct ath_tx_status *ts; 4781 struct ieee80211_node *ni; 4782 struct ath_node *an; 4783 int nacked; 4784 HAL_STATUS status; 4785 4786 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4787 __func__, txq->axq_qnum, 4788 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4789 txq->axq_link); 4790 nacked = 0; 4791 for (;;) { 4792 ATH_TXQ_LOCK(txq); 4793 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4794 bf = TAILQ_FIRST(&txq->axq_q); 4795 if (bf == NULL) { 4796 ATH_TXQ_UNLOCK(txq); 4797 break; 4798 } 4799 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4800 ts = &bf->bf_status.ds_txstat; 4801 status = ath_hal_txprocdesc(ah, ds, ts); 4802 #ifdef ATH_DEBUG 4803 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4804 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4805 status == HAL_OK); 4806 #endif 4807 if (status == HAL_EINPROGRESS) { 4808 ATH_TXQ_UNLOCK(txq); 4809 break; 4810 } 4811 ATH_TXQ_REMOVE(txq, bf, bf_list); 4812 #ifdef IEEE80211_SUPPORT_TDMA 4813 if (txq->axq_depth > 0) { 4814 /* 4815 * More frames follow. Mark the buffer busy 4816 * so it's not re-used while the hardware may 4817 * still re-read the link field in the descriptor. 4818 * 4819 * Use the last buffer in an aggregate as that 4820 * is where the hardware may be - intermediate 4821 * descriptors won't be "busy". 4822 */ 4823 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4824 } else 4825 #else 4826 if (txq->axq_depth == 0) 4827 #endif 4828 txq->axq_link = NULL; 4829 if (bf->bf_state.bfs_aggr) 4830 txq->axq_aggr_depth--; 4831 4832 ni = bf->bf_node; 4833 /* 4834 * If unicast frame was ack'd update RSSI, 4835 * including the last rx time used to 4836 * workaround phantom bmiss interrupts. 4837 */ 4838 if (ni != NULL && ts->ts_status == 0 && 4839 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4840 nacked++; 4841 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4842 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4843 ts->ts_rssi); 4844 } 4845 ATH_TXQ_UNLOCK(txq); 4846 4847 /* If unicast frame, update general statistics */ 4848 if (ni != NULL) { 4849 an = ATH_NODE(ni); 4850 /* update statistics */ 4851 ath_tx_update_stats(sc, ts, bf); 4852 } 4853 4854 /* 4855 * Call the completion handler. 4856 * The completion handler is responsible for 4857 * calling the rate control code. 4858 * 4859 * Frames with no completion handler get the 4860 * rate control code called here. 4861 */ 4862 if (bf->bf_comp == NULL) { 4863 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4864 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4865 /* 4866 * XXX assume this isn't an aggregate 4867 * frame. 4868 */ 4869 ath_tx_update_ratectrl(sc, ni, 4870 bf->bf_state.bfs_rc, ts, 4871 bf->bf_state.bfs_pktlen, 1, 4872 (ts->ts_status == 0 ? 0 : 1)); 4873 } 4874 ath_tx_default_comp(sc, bf, 0); 4875 } else 4876 bf->bf_comp(sc, bf, 0); 4877 } 4878 #ifdef IEEE80211_SUPPORT_SUPERG 4879 /* 4880 * Flush fast-frame staging queue when traffic slows. 4881 */ 4882 if (txq->axq_depth <= 1) 4883 ieee80211_ff_flush(ic, txq->axq_ac); 4884 #endif 4885 4886 /* Kick the TXQ scheduler */ 4887 if (dosched) { 4888 ATH_TXQ_LOCK(txq); 4889 ath_txq_sched(sc, txq); 4890 ATH_TXQ_UNLOCK(txq); 4891 } 4892 4893 return nacked; 4894 } 4895 4896 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4897 4898 /* 4899 * Deferred processing of transmit interrupt; special-cased 4900 * for a single hardware transmit queue (e.g. 5210 and 5211). 4901 */ 4902 static void 4903 ath_tx_proc_q0(void *arg, int npending) 4904 { 4905 struct ath_softc *sc = arg; 4906 struct ifnet *ifp = sc->sc_ifp; 4907 uint32_t txqs; 4908 4909 ATH_PCU_LOCK(sc); 4910 sc->sc_txproc_cnt++; 4911 txqs = sc->sc_txq_active; 4912 sc->sc_txq_active &= ~txqs; 4913 ATH_PCU_UNLOCK(sc); 4914 4915 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4916 /* XXX why is lastrx updated in tx code? */ 4917 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4918 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4919 ath_tx_processq(sc, sc->sc_cabq, 1); 4920 /* XXX check this inside of IF_LOCK? */ 4921 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4922 sc->sc_wd_timer = 0; 4923 4924 if (sc->sc_softled) 4925 ath_led_event(sc, sc->sc_txrix); 4926 4927 ATH_PCU_LOCK(sc); 4928 sc->sc_txproc_cnt--; 4929 ATH_PCU_UNLOCK(sc); 4930 4931 ath_start(ifp); 4932 } 4933 4934 /* 4935 * Deferred processing of transmit interrupt; special-cased 4936 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4937 */ 4938 static void 4939 ath_tx_proc_q0123(void *arg, int npending) 4940 { 4941 struct ath_softc *sc = arg; 4942 struct ifnet *ifp = sc->sc_ifp; 4943 int nacked; 4944 uint32_t txqs; 4945 4946 ATH_PCU_LOCK(sc); 4947 sc->sc_txproc_cnt++; 4948 txqs = sc->sc_txq_active; 4949 sc->sc_txq_active &= ~txqs; 4950 ATH_PCU_UNLOCK(sc); 4951 4952 /* 4953 * Process each active queue. 4954 */ 4955 nacked = 0; 4956 if (TXQACTIVE(txqs, 0)) 4957 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4958 if (TXQACTIVE(txqs, 1)) 4959 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4960 if (TXQACTIVE(txqs, 2)) 4961 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4962 if (TXQACTIVE(txqs, 3)) 4963 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4964 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4965 ath_tx_processq(sc, sc->sc_cabq, 1); 4966 if (nacked) 4967 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4968 4969 /* XXX check this inside of IF_LOCK? */ 4970 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4971 sc->sc_wd_timer = 0; 4972 4973 if (sc->sc_softled) 4974 ath_led_event(sc, sc->sc_txrix); 4975 4976 ATH_PCU_LOCK(sc); 4977 sc->sc_txproc_cnt--; 4978 ATH_PCU_UNLOCK(sc); 4979 4980 ath_start(ifp); 4981 } 4982 4983 /* 4984 * Deferred processing of transmit interrupt. 4985 */ 4986 static void 4987 ath_tx_proc(void *arg, int npending) 4988 { 4989 struct ath_softc *sc = arg; 4990 struct ifnet *ifp = sc->sc_ifp; 4991 int i, nacked; 4992 uint32_t txqs; 4993 4994 ATH_PCU_LOCK(sc); 4995 sc->sc_txproc_cnt++; 4996 txqs = sc->sc_txq_active; 4997 sc->sc_txq_active &= ~txqs; 4998 ATH_PCU_UNLOCK(sc); 4999 5000 /* 5001 * Process each active queue. 5002 */ 5003 nacked = 0; 5004 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5005 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 5006 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 5007 if (nacked) 5008 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5009 5010 /* XXX check this inside of IF_LOCK? */ 5011 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5012 sc->sc_wd_timer = 0; 5013 5014 if (sc->sc_softled) 5015 ath_led_event(sc, sc->sc_txrix); 5016 5017 ATH_PCU_LOCK(sc); 5018 sc->sc_txproc_cnt--; 5019 ATH_PCU_UNLOCK(sc); 5020 5021 ath_start(ifp); 5022 } 5023 #undef TXQACTIVE 5024 5025 /* 5026 * Return a buffer to the pool and update the 'busy' flag on the 5027 * previous 'tail' entry. 5028 * 5029 * This _must_ only be called when the buffer is involved in a completed 5030 * TX. The logic is that if it was part of an active TX, the previous 5031 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5032 * for restart (eg for TDMA.) 5033 * 5034 * The caller must free the mbuf and recycle the node reference. 5035 */ 5036 void 5037 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5038 { 5039 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5040 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 5041 5042 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5043 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5044 5045 ATH_TXBUF_LOCK(sc); 5046 ath_tx_update_busy(sc); 5047 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5048 ATH_TXBUF_UNLOCK(sc); 5049 } 5050 5051 /* 5052 * This is currently used by ath_tx_draintxq() and 5053 * ath_tx_tid_free_pkts(). 5054 * 5055 * It recycles a single ath_buf. 5056 */ 5057 void 5058 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5059 { 5060 struct ieee80211_node *ni = bf->bf_node; 5061 struct mbuf *m0 = bf->bf_m; 5062 5063 bf->bf_node = NULL; 5064 bf->bf_m = NULL; 5065 5066 /* Free the buffer, it's not needed any longer */ 5067 ath_freebuf(sc, bf); 5068 5069 if (ni != NULL) { 5070 /* 5071 * Do any callback and reclaim the node reference. 5072 */ 5073 if (m0->m_flags & M_TXCB) 5074 ieee80211_process_callback(ni, m0, status); 5075 ieee80211_free_node(ni); 5076 } 5077 m_freem(m0); 5078 5079 /* 5080 * XXX the buffer used to be freed -after-, but the DMA map was 5081 * freed where ath_freebuf() now is. I've no idea what this 5082 * will do. 5083 */ 5084 } 5085 5086 void 5087 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5088 { 5089 #ifdef ATH_DEBUG 5090 struct ath_hal *ah = sc->sc_ah; 5091 #endif 5092 struct ath_buf *bf; 5093 u_int ix; 5094 5095 /* 5096 * NB: this assumes output has been stopped and 5097 * we do not need to block ath_tx_proc 5098 */ 5099 ATH_TXBUF_LOCK(sc); 5100 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 5101 if (bf != NULL) 5102 bf->bf_flags &= ~ATH_BUF_BUSY; 5103 ATH_TXBUF_UNLOCK(sc); 5104 5105 for (ix = 0;; ix++) { 5106 ATH_TXQ_LOCK(txq); 5107 bf = TAILQ_FIRST(&txq->axq_q); 5108 if (bf == NULL) { 5109 txq->axq_link = NULL; 5110 ATH_TXQ_UNLOCK(txq); 5111 break; 5112 } 5113 ATH_TXQ_REMOVE(txq, bf, bf_list); 5114 if (bf->bf_state.bfs_aggr) 5115 txq->axq_aggr_depth--; 5116 #ifdef ATH_DEBUG 5117 if (sc->sc_debug & ATH_DEBUG_RESET) { 5118 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5119 5120 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5121 ath_hal_txprocdesc(ah, bf->bf_lastds, 5122 &bf->bf_status.ds_txstat) == HAL_OK); 5123 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5124 bf->bf_m->m_len, 0, -1); 5125 } 5126 #endif /* ATH_DEBUG */ 5127 /* 5128 * Since we're now doing magic in the completion 5129 * functions, we -must- call it for aggregation 5130 * destinations or BAW tracking will get upset. 5131 */ 5132 /* 5133 * Clear ATH_BUF_BUSY; the completion handler 5134 * will free the buffer. 5135 */ 5136 ATH_TXQ_UNLOCK(txq); 5137 bf->bf_flags &= ~ATH_BUF_BUSY; 5138 if (bf->bf_comp) 5139 bf->bf_comp(sc, bf, 1); 5140 else 5141 ath_tx_default_comp(sc, bf, 1); 5142 } 5143 5144 /* 5145 * Drain software queued frames which are on 5146 * active TIDs. 5147 */ 5148 ath_tx_txq_drain(sc, txq); 5149 } 5150 5151 static void 5152 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5153 { 5154 struct ath_hal *ah = sc->sc_ah; 5155 5156 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5157 __func__, txq->axq_qnum, 5158 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5159 txq->axq_link); 5160 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5161 } 5162 5163 static int 5164 ath_stoptxdma(struct ath_softc *sc) 5165 { 5166 struct ath_hal *ah = sc->sc_ah; 5167 int i; 5168 5169 /* XXX return value */ 5170 if (sc->sc_invalid) 5171 return 0; 5172 5173 if (!sc->sc_invalid) { 5174 /* don't touch the hardware if marked invalid */ 5175 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5176 __func__, sc->sc_bhalq, 5177 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5178 NULL); 5179 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5180 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5181 if (ATH_TXQ_SETUP(sc, i)) 5182 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5183 } 5184 5185 return 1; 5186 } 5187 5188 /* 5189 * Drain the transmit queues and reclaim resources. 5190 */ 5191 static void 5192 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5193 { 5194 #ifdef ATH_DEBUG 5195 struct ath_hal *ah = sc->sc_ah; 5196 #endif 5197 struct ifnet *ifp = sc->sc_ifp; 5198 int i; 5199 5200 (void) ath_stoptxdma(sc); 5201 5202 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5203 /* 5204 * XXX TODO: should we just handle the completed TX frames 5205 * here, whether or not the reset is a full one or not? 5206 */ 5207 if (ATH_TXQ_SETUP(sc, i)) { 5208 if (reset_type == ATH_RESET_NOLOSS) 5209 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5210 else 5211 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5212 } 5213 } 5214 #ifdef ATH_DEBUG 5215 if (sc->sc_debug & ATH_DEBUG_RESET) { 5216 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5217 if (bf != NULL && bf->bf_m != NULL) { 5218 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5219 ath_hal_txprocdesc(ah, bf->bf_lastds, 5220 &bf->bf_status.ds_txstat) == HAL_OK); 5221 ieee80211_dump_pkt(ifp->if_l2com, 5222 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5223 0, -1); 5224 } 5225 } 5226 #endif /* ATH_DEBUG */ 5227 /* XXX check this inside of IF_LOCK? */ 5228 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5229 sc->sc_wd_timer = 0; 5230 } 5231 5232 /* 5233 * Disable the receive h/w in preparation for a reset. 5234 */ 5235 static void 5236 ath_stoprecv(struct ath_softc *sc, int dodelay) 5237 { 5238 #define PA2DESC(_sc, _pa) \ 5239 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5240 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5241 struct ath_hal *ah = sc->sc_ah; 5242 5243 ath_hal_stoppcurecv(ah); /* disable PCU */ 5244 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5245 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5246 if (dodelay) 5247 DELAY(3000); /* 3ms is long enough for 1 frame */ 5248 #ifdef ATH_DEBUG 5249 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5250 struct ath_buf *bf; 5251 u_int ix; 5252 5253 printf("%s: rx queue %p, link %p\n", __func__, 5254 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5255 ix = 0; 5256 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5257 struct ath_desc *ds = bf->bf_desc; 5258 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5259 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5260 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5261 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5262 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5263 ix++; 5264 } 5265 } 5266 #endif 5267 if (sc->sc_rxpending != NULL) { 5268 m_freem(sc->sc_rxpending); 5269 sc->sc_rxpending = NULL; 5270 } 5271 sc->sc_rxlink = NULL; /* just in case */ 5272 #undef PA2DESC 5273 } 5274 5275 /* 5276 * Enable the receive h/w following a reset. 5277 */ 5278 static int 5279 ath_startrecv(struct ath_softc *sc) 5280 { 5281 struct ath_hal *ah = sc->sc_ah; 5282 struct ath_buf *bf; 5283 5284 sc->sc_rxlink = NULL; 5285 sc->sc_rxpending = NULL; 5286 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5287 int error = ath_rxbuf_init(sc, bf); 5288 if (error != 0) { 5289 DPRINTF(sc, ATH_DEBUG_RECV, 5290 "%s: ath_rxbuf_init failed %d\n", 5291 __func__, error); 5292 return error; 5293 } 5294 } 5295 5296 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5297 ath_hal_putrxbuf(ah, bf->bf_daddr); 5298 ath_hal_rxena(ah); /* enable recv descriptors */ 5299 ath_mode_init(sc); /* set filters, etc. */ 5300 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5301 return 0; 5302 } 5303 5304 /* 5305 * Update internal state after a channel change. 5306 */ 5307 static void 5308 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5309 { 5310 enum ieee80211_phymode mode; 5311 5312 /* 5313 * Change channels and update the h/w rate map 5314 * if we're switching; e.g. 11a to 11b/g. 5315 */ 5316 mode = ieee80211_chan2mode(chan); 5317 if (mode != sc->sc_curmode) 5318 ath_setcurmode(sc, mode); 5319 sc->sc_curchan = chan; 5320 } 5321 5322 /* 5323 * Set/change channels. If the channel is really being changed, 5324 * it's done by resetting the chip. To accomplish this we must 5325 * first cleanup any pending DMA, then restart stuff after a la 5326 * ath_init. 5327 */ 5328 static int 5329 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5330 { 5331 struct ifnet *ifp = sc->sc_ifp; 5332 struct ieee80211com *ic = ifp->if_l2com; 5333 struct ath_hal *ah = sc->sc_ah; 5334 int ret = 0; 5335 int dointr = 0; 5336 5337 /* Treat this as an interface reset */ 5338 ATH_PCU_LOCK(sc); 5339 if (ath_reset_grablock(sc, 1) == 0) { 5340 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5341 __func__); 5342 } 5343 if (chan != sc->sc_curchan) { 5344 dointr = 1; 5345 /* XXX only do this if inreset_cnt is 1? */ 5346 ath_hal_intrset(ah, 0); 5347 } 5348 ATH_PCU_UNLOCK(sc); 5349 ath_txrx_stop(sc); 5350 5351 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5352 __func__, ieee80211_chan2ieee(ic, chan), 5353 chan->ic_freq, chan->ic_flags); 5354 if (chan != sc->sc_curchan) { 5355 HAL_STATUS status; 5356 /* 5357 * To switch channels clear any pending DMA operations; 5358 * wait long enough for the RX fifo to drain, reset the 5359 * hardware at the new frequency, and then re-enable 5360 * the relevant bits of the h/w. 5361 */ 5362 #if 0 5363 ath_hal_intrset(ah, 0); /* disable interrupts */ 5364 #endif 5365 ath_stoprecv(sc, 1); /* turn off frame recv */ 5366 /* 5367 * First, handle completed TX/RX frames. 5368 */ 5369 ath_rx_proc(sc, 0); 5370 ath_draintxq(sc, ATH_RESET_NOLOSS); 5371 /* 5372 * Next, flush the non-scheduled frames. 5373 */ 5374 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5375 5376 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5377 if_printf(ifp, "%s: unable to reset " 5378 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5379 __func__, ieee80211_chan2ieee(ic, chan), 5380 chan->ic_freq, chan->ic_flags, status); 5381 ret = EIO; 5382 goto finish; 5383 } 5384 sc->sc_diversity = ath_hal_getdiversity(ah); 5385 5386 /* Let DFS at it in case it's a DFS channel */ 5387 ath_dfs_radar_enable(sc, ic->ic_curchan); 5388 5389 /* 5390 * Re-enable rx framework. 5391 */ 5392 if (ath_startrecv(sc) != 0) { 5393 if_printf(ifp, "%s: unable to restart recv logic\n", 5394 __func__); 5395 ret = EIO; 5396 goto finish; 5397 } 5398 5399 /* 5400 * Change channels and update the h/w rate map 5401 * if we're switching; e.g. 11a to 11b/g. 5402 */ 5403 ath_chan_change(sc, chan); 5404 5405 /* 5406 * Reset clears the beacon timers; reset them 5407 * here if needed. 5408 */ 5409 if (sc->sc_beacons) { /* restart beacons */ 5410 #ifdef IEEE80211_SUPPORT_TDMA 5411 if (sc->sc_tdma) 5412 ath_tdma_config(sc, NULL); 5413 else 5414 #endif 5415 ath_beacon_config(sc, NULL); 5416 } 5417 5418 #if 0 5419 /* 5420 * Re-enable interrupts. 5421 */ 5422 ath_hal_intrset(ah, sc->sc_imask); 5423 #endif 5424 } 5425 5426 finish: 5427 ATH_PCU_LOCK(sc); 5428 sc->sc_inreset_cnt--; 5429 /* XXX only do this if sc_inreset_cnt == 0? */ 5430 if (dointr) 5431 ath_hal_intrset(ah, sc->sc_imask); 5432 ATH_PCU_UNLOCK(sc); 5433 5434 /* XXX do this inside of IF_LOCK? */ 5435 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5436 ath_txrx_start(sc); 5437 /* XXX ath_start? */ 5438 5439 return ret; 5440 } 5441 5442 /* 5443 * Periodically recalibrate the PHY to account 5444 * for temperature/environment changes. 5445 */ 5446 static void 5447 ath_calibrate(void *arg) 5448 { 5449 struct ath_softc *sc = arg; 5450 struct ath_hal *ah = sc->sc_ah; 5451 struct ifnet *ifp = sc->sc_ifp; 5452 struct ieee80211com *ic = ifp->if_l2com; 5453 HAL_BOOL longCal, isCalDone; 5454 HAL_BOOL aniCal, shortCal = AH_FALSE; 5455 int nextcal; 5456 5457 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5458 goto restart; 5459 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5460 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5461 if (sc->sc_doresetcal) 5462 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5463 5464 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5465 if (aniCal) { 5466 sc->sc_stats.ast_ani_cal++; 5467 sc->sc_lastani = ticks; 5468 ath_hal_ani_poll(ah, sc->sc_curchan); 5469 } 5470 5471 if (longCal) { 5472 sc->sc_stats.ast_per_cal++; 5473 sc->sc_lastlongcal = ticks; 5474 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5475 /* 5476 * Rfgain is out of bounds, reset the chip 5477 * to load new gain values. 5478 */ 5479 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5480 "%s: rfgain change\n", __func__); 5481 sc->sc_stats.ast_per_rfgain++; 5482 /* 5483 * Drop lock - we can't hold it across the 5484 * ath_reset() call. Instead, we'll drop 5485 * out here, do a reset, then reschedule 5486 * the callout. 5487 */ 5488 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5489 sc->sc_resetcal = 0; 5490 sc->sc_doresetcal = AH_TRUE; 5491 ATH_UNLOCK(sc); 5492 ath_reset(ifp, ATH_RESET_NOLOSS); 5493 ATH_LOCK(sc); 5494 return; 5495 } 5496 /* 5497 * If this long cal is after an idle period, then 5498 * reset the data collection state so we start fresh. 5499 */ 5500 if (sc->sc_resetcal) { 5501 (void) ath_hal_calreset(ah, sc->sc_curchan); 5502 sc->sc_lastcalreset = ticks; 5503 sc->sc_lastshortcal = ticks; 5504 sc->sc_resetcal = 0; 5505 sc->sc_doresetcal = AH_TRUE; 5506 } 5507 } 5508 5509 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5510 if (shortCal || longCal) { 5511 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5512 if (longCal) { 5513 /* 5514 * Calibrate noise floor data again in case of change. 5515 */ 5516 ath_hal_process_noisefloor(ah); 5517 } 5518 } else { 5519 DPRINTF(sc, ATH_DEBUG_ANY, 5520 "%s: calibration of channel %u failed\n", 5521 __func__, sc->sc_curchan->ic_freq); 5522 sc->sc_stats.ast_per_calfail++; 5523 } 5524 if (shortCal) 5525 sc->sc_lastshortcal = ticks; 5526 } 5527 if (!isCalDone) { 5528 restart: 5529 /* 5530 * Use a shorter interval to potentially collect multiple 5531 * data samples required to complete calibration. Once 5532 * we're told the work is done we drop back to a longer 5533 * interval between requests. We're more aggressive doing 5534 * work when operating as an AP to improve operation right 5535 * after startup. 5536 */ 5537 sc->sc_lastshortcal = ticks; 5538 nextcal = ath_shortcalinterval*hz/1000; 5539 if (sc->sc_opmode != HAL_M_HOSTAP) 5540 nextcal *= 10; 5541 sc->sc_doresetcal = AH_TRUE; 5542 } else { 5543 /* nextcal should be the shortest time for next event */ 5544 nextcal = ath_longcalinterval*hz; 5545 if (sc->sc_lastcalreset == 0) 5546 sc->sc_lastcalreset = sc->sc_lastlongcal; 5547 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5548 sc->sc_resetcal = 1; /* setup reset next trip */ 5549 sc->sc_doresetcal = AH_FALSE; 5550 } 5551 /* ANI calibration may occur more often than short/long/resetcal */ 5552 if (ath_anicalinterval > 0) 5553 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5554 5555 if (nextcal != 0) { 5556 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5557 __func__, nextcal, isCalDone ? "" : "!"); 5558 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5559 } else { 5560 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5561 __func__); 5562 /* NB: don't rearm timer */ 5563 } 5564 } 5565 5566 static void 5567 ath_scan_start(struct ieee80211com *ic) 5568 { 5569 struct ifnet *ifp = ic->ic_ifp; 5570 struct ath_softc *sc = ifp->if_softc; 5571 struct ath_hal *ah = sc->sc_ah; 5572 u_int32_t rfilt; 5573 5574 /* XXX calibration timer? */ 5575 5576 sc->sc_scanning = 1; 5577 sc->sc_syncbeacon = 0; 5578 rfilt = ath_calcrxfilter(sc); 5579 ath_hal_setrxfilter(ah, rfilt); 5580 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5581 5582 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5583 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5584 } 5585 5586 static void 5587 ath_scan_end(struct ieee80211com *ic) 5588 { 5589 struct ifnet *ifp = ic->ic_ifp; 5590 struct ath_softc *sc = ifp->if_softc; 5591 struct ath_hal *ah = sc->sc_ah; 5592 u_int32_t rfilt; 5593 5594 sc->sc_scanning = 0; 5595 rfilt = ath_calcrxfilter(sc); 5596 ath_hal_setrxfilter(ah, rfilt); 5597 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5598 5599 ath_hal_process_noisefloor(ah); 5600 5601 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5602 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5603 sc->sc_curaid); 5604 } 5605 5606 static void 5607 ath_set_channel(struct ieee80211com *ic) 5608 { 5609 struct ifnet *ifp = ic->ic_ifp; 5610 struct ath_softc *sc = ifp->if_softc; 5611 5612 (void) ath_chan_set(sc, ic->ic_curchan); 5613 /* 5614 * If we are returning to our bss channel then mark state 5615 * so the next recv'd beacon's tsf will be used to sync the 5616 * beacon timers. Note that since we only hear beacons in 5617 * sta/ibss mode this has no effect in other operating modes. 5618 */ 5619 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5620 sc->sc_syncbeacon = 1; 5621 } 5622 5623 /* 5624 * Walk the vap list and check if there any vap's in RUN state. 5625 */ 5626 static int 5627 ath_isanyrunningvaps(struct ieee80211vap *this) 5628 { 5629 struct ieee80211com *ic = this->iv_ic; 5630 struct ieee80211vap *vap; 5631 5632 IEEE80211_LOCK_ASSERT(ic); 5633 5634 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5635 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5636 return 1; 5637 } 5638 return 0; 5639 } 5640 5641 static int 5642 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5643 { 5644 struct ieee80211com *ic = vap->iv_ic; 5645 struct ath_softc *sc = ic->ic_ifp->if_softc; 5646 struct ath_vap *avp = ATH_VAP(vap); 5647 struct ath_hal *ah = sc->sc_ah; 5648 struct ieee80211_node *ni = NULL; 5649 int i, error, stamode; 5650 u_int32_t rfilt; 5651 int csa_run_transition = 0; 5652 static const HAL_LED_STATE leds[] = { 5653 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5654 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5655 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5656 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5657 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5658 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5659 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5660 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5661 }; 5662 5663 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5664 ieee80211_state_name[vap->iv_state], 5665 ieee80211_state_name[nstate]); 5666 5667 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5668 csa_run_transition = 1; 5669 5670 callout_drain(&sc->sc_cal_ch); 5671 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5672 5673 if (nstate == IEEE80211_S_SCAN) { 5674 /* 5675 * Scanning: turn off beacon miss and don't beacon. 5676 * Mark beacon state so when we reach RUN state we'll 5677 * [re]setup beacons. Unblock the task q thread so 5678 * deferred interrupt processing is done. 5679 */ 5680 ath_hal_intrset(ah, 5681 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5682 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5683 sc->sc_beacons = 0; 5684 taskqueue_unblock(sc->sc_tq); 5685 } 5686 5687 ni = vap->iv_bss; 5688 rfilt = ath_calcrxfilter(sc); 5689 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5690 vap->iv_opmode == IEEE80211_M_AHDEMO || 5691 vap->iv_opmode == IEEE80211_M_IBSS); 5692 if (stamode && nstate == IEEE80211_S_RUN) { 5693 sc->sc_curaid = ni->ni_associd; 5694 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5695 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5696 } 5697 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5698 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5699 ath_hal_setrxfilter(ah, rfilt); 5700 5701 /* XXX is this to restore keycache on resume? */ 5702 if (vap->iv_opmode != IEEE80211_M_STA && 5703 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5704 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5705 if (ath_hal_keyisvalid(ah, i)) 5706 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5707 } 5708 5709 /* 5710 * Invoke the parent method to do net80211 work. 5711 */ 5712 error = avp->av_newstate(vap, nstate, arg); 5713 if (error != 0) 5714 goto bad; 5715 5716 if (nstate == IEEE80211_S_RUN) { 5717 /* NB: collect bss node again, it may have changed */ 5718 ni = vap->iv_bss; 5719 5720 DPRINTF(sc, ATH_DEBUG_STATE, 5721 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5722 "capinfo 0x%04x chan %d\n", __func__, 5723 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5724 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5725 5726 switch (vap->iv_opmode) { 5727 #ifdef IEEE80211_SUPPORT_TDMA 5728 case IEEE80211_M_AHDEMO: 5729 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5730 break; 5731 /* fall thru... */ 5732 #endif 5733 case IEEE80211_M_HOSTAP: 5734 case IEEE80211_M_IBSS: 5735 case IEEE80211_M_MBSS: 5736 /* 5737 * Allocate and setup the beacon frame. 5738 * 5739 * Stop any previous beacon DMA. This may be 5740 * necessary, for example, when an ibss merge 5741 * causes reconfiguration; there will be a state 5742 * transition from RUN->RUN that means we may 5743 * be called with beacon transmission active. 5744 */ 5745 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5746 5747 error = ath_beacon_alloc(sc, ni); 5748 if (error != 0) 5749 goto bad; 5750 /* 5751 * If joining an adhoc network defer beacon timer 5752 * configuration to the next beacon frame so we 5753 * have a current TSF to use. Otherwise we're 5754 * starting an ibss/bss so there's no need to delay; 5755 * if this is the first vap moving to RUN state, then 5756 * beacon state needs to be [re]configured. 5757 */ 5758 if (vap->iv_opmode == IEEE80211_M_IBSS && 5759 ni->ni_tstamp.tsf != 0) { 5760 sc->sc_syncbeacon = 1; 5761 } else if (!sc->sc_beacons) { 5762 #ifdef IEEE80211_SUPPORT_TDMA 5763 if (vap->iv_caps & IEEE80211_C_TDMA) 5764 ath_tdma_config(sc, vap); 5765 else 5766 #endif 5767 ath_beacon_config(sc, vap); 5768 sc->sc_beacons = 1; 5769 } 5770 break; 5771 case IEEE80211_M_STA: 5772 /* 5773 * Defer beacon timer configuration to the next 5774 * beacon frame so we have a current TSF to use 5775 * (any TSF collected when scanning is likely old). 5776 * However if it's due to a CSA -> RUN transition, 5777 * force a beacon update so we pick up a lack of 5778 * beacons from an AP in CAC and thus force a 5779 * scan. 5780 */ 5781 sc->sc_syncbeacon = 1; 5782 if (csa_run_transition) 5783 ath_beacon_config(sc, vap); 5784 break; 5785 case IEEE80211_M_MONITOR: 5786 /* 5787 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5788 * transitions so we must re-enable interrupts here to 5789 * handle the case of a single monitor mode vap. 5790 */ 5791 ath_hal_intrset(ah, sc->sc_imask); 5792 break; 5793 case IEEE80211_M_WDS: 5794 break; 5795 default: 5796 break; 5797 } 5798 /* 5799 * Let the hal process statistics collected during a 5800 * scan so it can provide calibrated noise floor data. 5801 */ 5802 ath_hal_process_noisefloor(ah); 5803 /* 5804 * Reset rssi stats; maybe not the best place... 5805 */ 5806 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5807 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5808 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5809 /* 5810 * Finally, start any timers and the task q thread 5811 * (in case we didn't go through SCAN state). 5812 */ 5813 if (ath_longcalinterval != 0) { 5814 /* start periodic recalibration timer */ 5815 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5816 } else { 5817 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5818 "%s: calibration disabled\n", __func__); 5819 } 5820 taskqueue_unblock(sc->sc_tq); 5821 } else if (nstate == IEEE80211_S_INIT) { 5822 /* 5823 * If there are no vaps left in RUN state then 5824 * shutdown host/driver operation: 5825 * o disable interrupts 5826 * o disable the task queue thread 5827 * o mark beacon processing as stopped 5828 */ 5829 if (!ath_isanyrunningvaps(vap)) { 5830 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5831 /* disable interrupts */ 5832 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5833 taskqueue_block(sc->sc_tq); 5834 sc->sc_beacons = 0; 5835 } 5836 #ifdef IEEE80211_SUPPORT_TDMA 5837 ath_hal_setcca(ah, AH_TRUE); 5838 #endif 5839 } 5840 bad: 5841 return error; 5842 } 5843 5844 /* 5845 * Allocate a key cache slot to the station so we can 5846 * setup a mapping from key index to node. The key cache 5847 * slot is needed for managing antenna state and for 5848 * compression when stations do not use crypto. We do 5849 * it uniliaterally here; if crypto is employed this slot 5850 * will be reassigned. 5851 */ 5852 static void 5853 ath_setup_stationkey(struct ieee80211_node *ni) 5854 { 5855 struct ieee80211vap *vap = ni->ni_vap; 5856 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5857 ieee80211_keyix keyix, rxkeyix; 5858 5859 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5860 /* 5861 * Key cache is full; we'll fall back to doing 5862 * the more expensive lookup in software. Note 5863 * this also means no h/w compression. 5864 */ 5865 /* XXX msg+statistic */ 5866 } else { 5867 /* XXX locking? */ 5868 ni->ni_ucastkey.wk_keyix = keyix; 5869 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5870 /* NB: must mark device key to get called back on delete */ 5871 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5872 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5873 /* NB: this will create a pass-thru key entry */ 5874 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5875 } 5876 } 5877 5878 /* 5879 * Setup driver-specific state for a newly associated node. 5880 * Note that we're called also on a re-associate, the isnew 5881 * param tells us if this is the first time or not. 5882 */ 5883 static void 5884 ath_newassoc(struct ieee80211_node *ni, int isnew) 5885 { 5886 struct ath_node *an = ATH_NODE(ni); 5887 struct ieee80211vap *vap = ni->ni_vap; 5888 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5889 const struct ieee80211_txparam *tp = ni->ni_txparms; 5890 5891 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5892 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5893 5894 ath_rate_newassoc(sc, an, isnew); 5895 if (isnew && 5896 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5897 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5898 ath_setup_stationkey(ni); 5899 } 5900 5901 static int 5902 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5903 int nchans, struct ieee80211_channel chans[]) 5904 { 5905 struct ath_softc *sc = ic->ic_ifp->if_softc; 5906 struct ath_hal *ah = sc->sc_ah; 5907 HAL_STATUS status; 5908 5909 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5910 "%s: rd %u cc %u location %c%s\n", 5911 __func__, reg->regdomain, reg->country, reg->location, 5912 reg->ecm ? " ecm" : ""); 5913 5914 status = ath_hal_set_channels(ah, chans, nchans, 5915 reg->country, reg->regdomain); 5916 if (status != HAL_OK) { 5917 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5918 __func__, status); 5919 return EINVAL; /* XXX */ 5920 } 5921 5922 return 0; 5923 } 5924 5925 static void 5926 ath_getradiocaps(struct ieee80211com *ic, 5927 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5928 { 5929 struct ath_softc *sc = ic->ic_ifp->if_softc; 5930 struct ath_hal *ah = sc->sc_ah; 5931 5932 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5933 __func__, SKU_DEBUG, CTRY_DEFAULT); 5934 5935 /* XXX check return */ 5936 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5937 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5938 5939 } 5940 5941 static int 5942 ath_getchannels(struct ath_softc *sc) 5943 { 5944 struct ifnet *ifp = sc->sc_ifp; 5945 struct ieee80211com *ic = ifp->if_l2com; 5946 struct ath_hal *ah = sc->sc_ah; 5947 HAL_STATUS status; 5948 5949 /* 5950 * Collect channel set based on EEPROM contents. 5951 */ 5952 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5953 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5954 if (status != HAL_OK) { 5955 if_printf(ifp, "%s: unable to collect channel list from hal, " 5956 "status %d\n", __func__, status); 5957 return EINVAL; 5958 } 5959 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5960 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5961 /* XXX map Atheros sku's to net80211 SKU's */ 5962 /* XXX net80211 types too small */ 5963 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5964 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5965 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5966 ic->ic_regdomain.isocc[1] = ' '; 5967 5968 ic->ic_regdomain.ecm = 1; 5969 ic->ic_regdomain.location = 'I'; 5970 5971 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5972 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5973 __func__, sc->sc_eerd, sc->sc_eecc, 5974 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5975 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5976 return 0; 5977 } 5978 5979 static int 5980 ath_rate_setup(struct ath_softc *sc, u_int mode) 5981 { 5982 struct ath_hal *ah = sc->sc_ah; 5983 const HAL_RATE_TABLE *rt; 5984 5985 switch (mode) { 5986 case IEEE80211_MODE_11A: 5987 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5988 break; 5989 case IEEE80211_MODE_HALF: 5990 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5991 break; 5992 case IEEE80211_MODE_QUARTER: 5993 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5994 break; 5995 case IEEE80211_MODE_11B: 5996 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5997 break; 5998 case IEEE80211_MODE_11G: 5999 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6000 break; 6001 case IEEE80211_MODE_TURBO_A: 6002 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6003 break; 6004 case IEEE80211_MODE_TURBO_G: 6005 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6006 break; 6007 case IEEE80211_MODE_STURBO_A: 6008 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6009 break; 6010 case IEEE80211_MODE_11NA: 6011 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6012 break; 6013 case IEEE80211_MODE_11NG: 6014 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6015 break; 6016 default: 6017 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6018 __func__, mode); 6019 return 0; 6020 } 6021 sc->sc_rates[mode] = rt; 6022 return (rt != NULL); 6023 } 6024 6025 static void 6026 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6027 { 6028 #define N(a) (sizeof(a)/sizeof(a[0])) 6029 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6030 static const struct { 6031 u_int rate; /* tx/rx 802.11 rate */ 6032 u_int16_t timeOn; /* LED on time (ms) */ 6033 u_int16_t timeOff; /* LED off time (ms) */ 6034 } blinkrates[] = { 6035 { 108, 40, 10 }, 6036 { 96, 44, 11 }, 6037 { 72, 50, 13 }, 6038 { 48, 57, 14 }, 6039 { 36, 67, 16 }, 6040 { 24, 80, 20 }, 6041 { 22, 100, 25 }, 6042 { 18, 133, 34 }, 6043 { 12, 160, 40 }, 6044 { 10, 200, 50 }, 6045 { 6, 240, 58 }, 6046 { 4, 267, 66 }, 6047 { 2, 400, 100 }, 6048 { 0, 500, 130 }, 6049 /* XXX half/quarter rates */ 6050 }; 6051 const HAL_RATE_TABLE *rt; 6052 int i, j; 6053 6054 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6055 rt = sc->sc_rates[mode]; 6056 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6057 for (i = 0; i < rt->rateCount; i++) { 6058 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6059 if (rt->info[i].phy != IEEE80211_T_HT) 6060 sc->sc_rixmap[ieeerate] = i; 6061 else 6062 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6063 } 6064 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6065 for (i = 0; i < N(sc->sc_hwmap); i++) { 6066 if (i >= rt->rateCount) { 6067 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6068 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6069 continue; 6070 } 6071 sc->sc_hwmap[i].ieeerate = 6072 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6073 if (rt->info[i].phy == IEEE80211_T_HT) 6074 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6075 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6076 if (rt->info[i].shortPreamble || 6077 rt->info[i].phy == IEEE80211_T_OFDM) 6078 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6079 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6080 for (j = 0; j < N(blinkrates)-1; j++) 6081 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6082 break; 6083 /* NB: this uses the last entry if the rate isn't found */ 6084 /* XXX beware of overlow */ 6085 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6086 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6087 } 6088 sc->sc_currates = rt; 6089 sc->sc_curmode = mode; 6090 /* 6091 * All protection frames are transmited at 2Mb/s for 6092 * 11g, otherwise at 1Mb/s. 6093 */ 6094 if (mode == IEEE80211_MODE_11G) 6095 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6096 else 6097 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6098 /* NB: caller is responsible for resetting rate control state */ 6099 #undef N 6100 } 6101 6102 static void 6103 ath_watchdog(void *arg) 6104 { 6105 struct ath_softc *sc = arg; 6106 int do_reset = 0; 6107 6108 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6109 struct ifnet *ifp = sc->sc_ifp; 6110 uint32_t hangs; 6111 6112 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6113 hangs != 0) { 6114 if_printf(ifp, "%s hang detected (0x%x)\n", 6115 hangs & 0xff ? "bb" : "mac", hangs); 6116 } else 6117 if_printf(ifp, "device timeout\n"); 6118 do_reset = 1; 6119 ifp->if_oerrors++; 6120 sc->sc_stats.ast_watchdog++; 6121 } 6122 6123 /* 6124 * We can't hold the lock across the ath_reset() call. 6125 */ 6126 if (do_reset) { 6127 ATH_UNLOCK(sc); 6128 ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS); 6129 ATH_LOCK(sc); 6130 } 6131 6132 callout_schedule(&sc->sc_wd_ch, hz); 6133 } 6134 6135 #ifdef ATH_DIAGAPI 6136 /* 6137 * Diagnostic interface to the HAL. This is used by various 6138 * tools to do things like retrieve register contents for 6139 * debugging. The mechanism is intentionally opaque so that 6140 * it can change frequently w/o concern for compatiblity. 6141 */ 6142 static int 6143 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6144 { 6145 struct ath_hal *ah = sc->sc_ah; 6146 u_int id = ad->ad_id & ATH_DIAG_ID; 6147 void *indata = NULL; 6148 void *outdata = NULL; 6149 u_int32_t insize = ad->ad_in_size; 6150 u_int32_t outsize = ad->ad_out_size; 6151 int error = 0; 6152 6153 if (ad->ad_id & ATH_DIAG_IN) { 6154 /* 6155 * Copy in data. 6156 */ 6157 indata = malloc(insize, M_TEMP, M_NOWAIT); 6158 if (indata == NULL) { 6159 error = ENOMEM; 6160 goto bad; 6161 } 6162 error = copyin(ad->ad_in_data, indata, insize); 6163 if (error) 6164 goto bad; 6165 } 6166 if (ad->ad_id & ATH_DIAG_DYN) { 6167 /* 6168 * Allocate a buffer for the results (otherwise the HAL 6169 * returns a pointer to a buffer where we can read the 6170 * results). Note that we depend on the HAL leaving this 6171 * pointer for us to use below in reclaiming the buffer; 6172 * may want to be more defensive. 6173 */ 6174 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6175 if (outdata == NULL) { 6176 error = ENOMEM; 6177 goto bad; 6178 } 6179 } 6180 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6181 if (outsize < ad->ad_out_size) 6182 ad->ad_out_size = outsize; 6183 if (outdata != NULL) 6184 error = copyout(outdata, ad->ad_out_data, 6185 ad->ad_out_size); 6186 } else { 6187 error = EINVAL; 6188 } 6189 bad: 6190 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6191 free(indata, M_TEMP); 6192 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6193 free(outdata, M_TEMP); 6194 return error; 6195 } 6196 #endif /* ATH_DIAGAPI */ 6197 6198 static int 6199 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6200 { 6201 #define IS_RUNNING(ifp) \ 6202 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6203 struct ath_softc *sc = ifp->if_softc; 6204 struct ieee80211com *ic = ifp->if_l2com; 6205 struct ifreq *ifr = (struct ifreq *)data; 6206 const HAL_RATE_TABLE *rt; 6207 int error = 0; 6208 6209 switch (cmd) { 6210 case SIOCSIFFLAGS: 6211 ATH_LOCK(sc); 6212 if (IS_RUNNING(ifp)) { 6213 /* 6214 * To avoid rescanning another access point, 6215 * do not call ath_init() here. Instead, 6216 * only reflect promisc mode settings. 6217 */ 6218 ath_mode_init(sc); 6219 } else if (ifp->if_flags & IFF_UP) { 6220 /* 6221 * Beware of being called during attach/detach 6222 * to reset promiscuous mode. In that case we 6223 * will still be marked UP but not RUNNING. 6224 * However trying to re-init the interface 6225 * is the wrong thing to do as we've already 6226 * torn down much of our state. There's 6227 * probably a better way to deal with this. 6228 */ 6229 if (!sc->sc_invalid) 6230 ath_init(sc); /* XXX lose error */ 6231 } else { 6232 ath_stop_locked(ifp); 6233 #ifdef notyet 6234 /* XXX must wakeup in places like ath_vap_delete */ 6235 if (!sc->sc_invalid) 6236 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6237 #endif 6238 } 6239 ATH_UNLOCK(sc); 6240 break; 6241 case SIOCGIFMEDIA: 6242 case SIOCSIFMEDIA: 6243 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6244 break; 6245 case SIOCGATHSTATS: 6246 /* NB: embed these numbers to get a consistent view */ 6247 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6248 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6249 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6250 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6251 #ifdef IEEE80211_SUPPORT_TDMA 6252 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6253 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6254 #endif 6255 rt = sc->sc_currates; 6256 sc->sc_stats.ast_tx_rate = 6257 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6258 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6259 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6260 return copyout(&sc->sc_stats, 6261 ifr->ifr_data, sizeof (sc->sc_stats)); 6262 case SIOCZATHSTATS: 6263 error = priv_check(curthread, PRIV_DRIVER); 6264 if (error == 0) 6265 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6266 break; 6267 #ifdef ATH_DIAGAPI 6268 case SIOCGATHDIAG: 6269 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6270 break; 6271 case SIOCGATHPHYERR: 6272 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6273 break; 6274 #endif 6275 case SIOCGIFADDR: 6276 error = ether_ioctl(ifp, cmd, data); 6277 break; 6278 default: 6279 error = EINVAL; 6280 break; 6281 } 6282 return error; 6283 #undef IS_RUNNING 6284 } 6285 6286 /* 6287 * Announce various information on device/driver attach. 6288 */ 6289 static void 6290 ath_announce(struct ath_softc *sc) 6291 { 6292 struct ifnet *ifp = sc->sc_ifp; 6293 struct ath_hal *ah = sc->sc_ah; 6294 6295 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6296 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6297 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6298 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6299 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6300 if (bootverbose) { 6301 int i; 6302 for (i = 0; i <= WME_AC_VO; i++) { 6303 struct ath_txq *txq = sc->sc_ac2q[i]; 6304 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6305 txq->axq_qnum, ieee80211_wme_acnames[i]); 6306 } 6307 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6308 sc->sc_cabq->axq_qnum); 6309 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6310 } 6311 if (ath_rxbuf != ATH_RXBUF) 6312 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6313 if (ath_txbuf != ATH_TXBUF) 6314 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6315 if (sc->sc_mcastkey && bootverbose) 6316 if_printf(ifp, "using multicast key search\n"); 6317 } 6318 6319 #ifdef IEEE80211_SUPPORT_TDMA 6320 static void 6321 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6322 { 6323 struct ath_hal *ah = sc->sc_ah; 6324 HAL_BEACON_TIMERS bt; 6325 6326 bt.bt_intval = bintval | HAL_BEACON_ENA; 6327 bt.bt_nexttbtt = nexttbtt; 6328 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6329 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6330 bt.bt_nextatim = nexttbtt+1; 6331 /* Enables TBTT, DBA, SWBA timers by default */ 6332 bt.bt_flags = 0; 6333 ath_hal_beaconsettimers(ah, &bt); 6334 } 6335 6336 /* 6337 * Calculate the beacon interval. This is periodic in the 6338 * superframe for the bss. We assume each station is configured 6339 * identically wrt transmit rate so the guard time we calculate 6340 * above will be the same on all stations. Note we need to 6341 * factor in the xmit time because the hardware will schedule 6342 * a frame for transmit if the start of the frame is within 6343 * the burst time. When we get hardware that properly kills 6344 * frames in the PCU we can reduce/eliminate the guard time. 6345 * 6346 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6347 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6348 * with 1us timer granularity should allow us to reduce/eliminate 6349 * this. 6350 */ 6351 static void 6352 ath_tdma_bintvalsetup(struct ath_softc *sc, 6353 const struct ieee80211_tdma_state *tdma) 6354 { 6355 /* copy from vap state (XXX check all vaps have same value?) */ 6356 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6357 6358 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6359 tdma->tdma_slotcnt, 1024); 6360 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6361 if (sc->sc_tdmabintval & 1) 6362 sc->sc_tdmabintval++; 6363 6364 if (tdma->tdma_slot == 0) { 6365 /* 6366 * Only slot 0 beacons; other slots respond. 6367 */ 6368 sc->sc_imask |= HAL_INT_SWBA; 6369 sc->sc_tdmaswba = 0; /* beacon immediately */ 6370 } else { 6371 /* XXX all vaps must be slot 0 or slot !0 */ 6372 sc->sc_imask &= ~HAL_INT_SWBA; 6373 } 6374 } 6375 6376 /* 6377 * Max 802.11 overhead. This assumes no 4-address frames and 6378 * the encapsulation done by ieee80211_encap (llc). We also 6379 * include potential crypto overhead. 6380 */ 6381 #define IEEE80211_MAXOVERHEAD \ 6382 (sizeof(struct ieee80211_qosframe) \ 6383 + sizeof(struct llc) \ 6384 + IEEE80211_ADDR_LEN \ 6385 + IEEE80211_WEP_IVLEN \ 6386 + IEEE80211_WEP_KIDLEN \ 6387 + IEEE80211_WEP_CRCLEN \ 6388 + IEEE80211_WEP_MICLEN \ 6389 + IEEE80211_CRC_LEN) 6390 6391 /* 6392 * Setup initially for tdma operation. Start the beacon 6393 * timers and enable SWBA if we are slot 0. Otherwise 6394 * we wait for slot 0 to arrive so we can sync up before 6395 * starting to transmit. 6396 */ 6397 static void 6398 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6399 { 6400 struct ath_hal *ah = sc->sc_ah; 6401 struct ifnet *ifp = sc->sc_ifp; 6402 struct ieee80211com *ic = ifp->if_l2com; 6403 const struct ieee80211_txparam *tp; 6404 const struct ieee80211_tdma_state *tdma = NULL; 6405 int rix; 6406 6407 if (vap == NULL) { 6408 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6409 if (vap == NULL) { 6410 if_printf(ifp, "%s: no vaps?\n", __func__); 6411 return; 6412 } 6413 } 6414 tp = vap->iv_bss->ni_txparms; 6415 /* 6416 * Calculate the guard time for each slot. This is the 6417 * time to send a maximal-size frame according to the 6418 * fixed/lowest transmit rate. Note that the interface 6419 * mtu does not include the 802.11 overhead so we must 6420 * tack that on (ath_hal_computetxtime includes the 6421 * preamble and plcp in it's calculation). 6422 */ 6423 tdma = vap->iv_tdma; 6424 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6425 rix = ath_tx_findrix(sc, tp->ucastrate); 6426 else 6427 rix = ath_tx_findrix(sc, tp->mcastrate); 6428 /* XXX short preamble assumed */ 6429 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6430 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6431 6432 ath_hal_intrset(ah, 0); 6433 6434 ath_beaconq_config(sc); /* setup h/w beacon q */ 6435 if (sc->sc_setcca) 6436 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6437 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6438 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6439 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6440 sc->sc_syncbeacon = 0; 6441 6442 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6443 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6444 6445 ath_hal_intrset(ah, sc->sc_imask); 6446 6447 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6448 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6449 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6450 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6451 sc->sc_tdmadbaprep); 6452 } 6453 6454 /* 6455 * Update tdma operation. Called from the 802.11 layer 6456 * when a beacon is received from the TDMA station operating 6457 * in the slot immediately preceding us in the bss. Use 6458 * the rx timestamp for the beacon frame to update our 6459 * beacon timers so we follow their schedule. Note that 6460 * by using the rx timestamp we implicitly include the 6461 * propagation delay in our schedule. 6462 */ 6463 static void 6464 ath_tdma_update(struct ieee80211_node *ni, 6465 const struct ieee80211_tdma_param *tdma, int changed) 6466 { 6467 #define TSF_TO_TU(_h,_l) \ 6468 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6469 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6470 struct ieee80211vap *vap = ni->ni_vap; 6471 struct ieee80211com *ic = ni->ni_ic; 6472 struct ath_softc *sc = ic->ic_ifp->if_softc; 6473 struct ath_hal *ah = sc->sc_ah; 6474 const HAL_RATE_TABLE *rt = sc->sc_currates; 6475 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6476 u_int32_t txtime, nextslottu; 6477 int32_t tudelta, tsfdelta; 6478 const struct ath_rx_status *rs; 6479 int rix; 6480 6481 sc->sc_stats.ast_tdma_update++; 6482 6483 /* 6484 * Check for and adopt configuration changes. 6485 */ 6486 if (changed != 0) { 6487 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6488 6489 ath_tdma_bintvalsetup(sc, ts); 6490 if (changed & TDMA_UPDATE_SLOTLEN) 6491 ath_wme_update(ic); 6492 6493 DPRINTF(sc, ATH_DEBUG_TDMA, 6494 "%s: adopt slot %u slotcnt %u slotlen %u us " 6495 "bintval %u TU\n", __func__, 6496 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6497 sc->sc_tdmabintval); 6498 6499 /* XXX right? */ 6500 ath_hal_intrset(ah, sc->sc_imask); 6501 /* NB: beacon timers programmed below */ 6502 } 6503 6504 /* extend rx timestamp to 64 bits */ 6505 rs = sc->sc_lastrs; 6506 tsf = ath_hal_gettsf64(ah); 6507 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6508 /* 6509 * The rx timestamp is set by the hardware on completing 6510 * reception (at the point where the rx descriptor is DMA'd 6511 * to the host). To find the start of our next slot we 6512 * must adjust this time by the time required to send 6513 * the packet just received. 6514 */ 6515 rix = rt->rateCodeToIndex[rs->rs_rate]; 6516 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6517 rt->info[rix].shortPreamble); 6518 /* NB: << 9 is to cvt to TU and /2 */ 6519 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6520 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6521 6522 /* 6523 * Retrieve the hardware NextTBTT in usecs 6524 * and calculate the difference between what the 6525 * other station thinks and what we have programmed. This 6526 * lets us figure how to adjust our timers to match. The 6527 * adjustments are done by pulling the TSF forward and possibly 6528 * rewriting the beacon timers. 6529 */ 6530 nexttbtt = ath_hal_getnexttbtt(ah); 6531 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6532 6533 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6534 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6535 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6536 6537 if (tsfdelta < 0) { 6538 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6539 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6540 tsfdelta = -tsfdelta % 1024; 6541 nextslottu++; 6542 } else if (tsfdelta > 0) { 6543 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6544 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6545 tsfdelta = 1024 - (tsfdelta % 1024); 6546 nextslottu++; 6547 } else { 6548 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6549 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6550 } 6551 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6552 6553 /* 6554 * Copy sender's timetstamp into tdma ie so they can 6555 * calculate roundtrip time. We submit a beacon frame 6556 * below after any timer adjustment. The frame goes out 6557 * at the next TBTT so the sender can calculate the 6558 * roundtrip by inspecting the tdma ie in our beacon frame. 6559 * 6560 * NB: This tstamp is subtlely preserved when 6561 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6562 * slot position changes) because ieee80211_add_tdma 6563 * skips over the data. 6564 */ 6565 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6566 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6567 &ni->ni_tstamp.data, 8); 6568 #if 0 6569 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6570 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6571 (unsigned long long) tsf, (unsigned long long) nextslot, 6572 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6573 #endif 6574 /* 6575 * Adjust the beacon timers only when pulling them forward 6576 * or when going back by less than the beacon interval. 6577 * Negative jumps larger than the beacon interval seem to 6578 * cause the timers to stop and generally cause instability. 6579 * This basically filters out jumps due to missed beacons. 6580 */ 6581 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6582 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6583 sc->sc_stats.ast_tdma_timers++; 6584 } 6585 if (tsfdelta > 0) { 6586 ath_hal_adjusttsf(ah, tsfdelta); 6587 sc->sc_stats.ast_tdma_tsf++; 6588 } 6589 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6590 #undef TU_TO_TSF 6591 #undef TSF_TO_TU 6592 } 6593 6594 /* 6595 * Transmit a beacon frame at SWBA. Dynamic updates 6596 * to the frame contents are done as needed. 6597 */ 6598 static void 6599 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6600 { 6601 struct ath_hal *ah = sc->sc_ah; 6602 struct ath_buf *bf; 6603 int otherant; 6604 6605 /* 6606 * Check if the previous beacon has gone out. If 6607 * not don't try to post another, skip this period 6608 * and wait for the next. Missed beacons indicate 6609 * a problem and should not occur. If we miss too 6610 * many consecutive beacons reset the device. 6611 */ 6612 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6613 sc->sc_bmisscount++; 6614 DPRINTF(sc, ATH_DEBUG_BEACON, 6615 "%s: missed %u consecutive beacons\n", 6616 __func__, sc->sc_bmisscount); 6617 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6618 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6619 return; 6620 } 6621 if (sc->sc_bmisscount != 0) { 6622 DPRINTF(sc, ATH_DEBUG_BEACON, 6623 "%s: resume beacon xmit after %u misses\n", 6624 __func__, sc->sc_bmisscount); 6625 sc->sc_bmisscount = 0; 6626 } 6627 6628 /* 6629 * Check recent per-antenna transmit statistics and flip 6630 * the default antenna if noticeably more frames went out 6631 * on the non-default antenna. 6632 * XXX assumes 2 anntenae 6633 */ 6634 if (!sc->sc_diversity) { 6635 otherant = sc->sc_defant & 1 ? 2 : 1; 6636 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6637 ath_setdefantenna(sc, otherant); 6638 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6639 } 6640 6641 bf = ath_beacon_generate(sc, vap); 6642 if (bf != NULL) { 6643 /* 6644 * Stop any current dma and put the new frame on the queue. 6645 * This should never fail since we check above that no frames 6646 * are still pending on the queue. 6647 */ 6648 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6649 DPRINTF(sc, ATH_DEBUG_ANY, 6650 "%s: beacon queue %u did not stop?\n", 6651 __func__, sc->sc_bhalq); 6652 /* NB: the HAL still stops DMA, so proceed */ 6653 } 6654 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6655 ath_hal_txstart(ah, sc->sc_bhalq); 6656 6657 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6658 6659 /* 6660 * Record local TSF for our last send for use 6661 * in arbitrating slot collisions. 6662 */ 6663 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6664 } 6665 } 6666 #endif /* IEEE80211_SUPPORT_TDMA */ 6667 6668 static void 6669 ath_dfs_tasklet(void *p, int npending) 6670 { 6671 struct ath_softc *sc = (struct ath_softc *) p; 6672 struct ifnet *ifp = sc->sc_ifp; 6673 struct ieee80211com *ic = ifp->if_l2com; 6674 6675 /* 6676 * If previous processing has found a radar event, 6677 * signal this to the net80211 layer to begin DFS 6678 * processing. 6679 */ 6680 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6681 /* DFS event found, initiate channel change */ 6682 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6683 } 6684 } 6685 6686 MODULE_VERSION(if_ath, 1); 6687 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6688