1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 29 * THE POSSIBILITY OF SUCH DAMAGES. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * Driver for the Atheros Wireless LAN controller. 37 * 38 * This software is derived from work of Atsushi Onoe; his contribution 39 * is greatly appreciated. 40 */ 41 42 #include "opt_inet.h" 43 #include "opt_ath.h" 44 /* 45 * This is needed for register operations which are performed 46 * by the driver - eg, calls to ath_hal_gettsf32(). 47 * 48 * It's also required for any AH_DEBUG checks in here, eg the 49 * module dependencies. 50 */ 51 #include "opt_ah.h" 52 #include "opt_wlan.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/sysctl.h> 57 #include <sys/mbuf.h> 58 #include <sys/malloc.h> 59 #include <sys/lock.h> 60 #include <sys/mutex.h> 61 #include <sys/kernel.h> 62 #include <sys/socket.h> 63 #include <sys/sockio.h> 64 #include <sys/errno.h> 65 #include <sys/callout.h> 66 #include <sys/bus.h> 67 #include <sys/endian.h> 68 #include <sys/kthread.h> 69 #include <sys/taskqueue.h> 70 #include <sys/priv.h> 71 #include <sys/module.h> 72 #include <sys/ktr.h> 73 #include <sys/smp.h> /* for mp_ncpus */ 74 75 #include <machine/bus.h> 76 77 #include <net/if.h> 78 #include <net/if_var.h> 79 #include <net/if_dl.h> 80 #include <net/if_media.h> 81 #include <net/if_types.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_llc.h> 85 86 #include <net80211/ieee80211_var.h> 87 #include <net80211/ieee80211_regdomain.h> 88 #ifdef IEEE80211_SUPPORT_SUPERG 89 #include <net80211/ieee80211_superg.h> 90 #endif 91 #ifdef IEEE80211_SUPPORT_TDMA 92 #include <net80211/ieee80211_tdma.h> 93 #endif 94 95 #include <net/bpf.h> 96 97 #ifdef INET 98 #include <netinet/in.h> 99 #include <netinet/if_ether.h> 100 #endif 101 102 #include <dev/ath/if_athvar.h> 103 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 104 #include <dev/ath/ath_hal/ah_diagcodes.h> 105 106 #include <dev/ath/if_ath_debug.h> 107 #include <dev/ath/if_ath_misc.h> 108 #include <dev/ath/if_ath_tsf.h> 109 #include <dev/ath/if_ath_tx.h> 110 #include <dev/ath/if_ath_sysctl.h> 111 #include <dev/ath/if_ath_led.h> 112 #include <dev/ath/if_ath_keycache.h> 113 #include <dev/ath/if_ath_rx.h> 114 #include <dev/ath/if_ath_rx_edma.h> 115 #include <dev/ath/if_ath_tx_edma.h> 116 #include <dev/ath/if_ath_beacon.h> 117 #include <dev/ath/if_ath_btcoex.h> 118 #include <dev/ath/if_ath_btcoex_mci.h> 119 #include <dev/ath/if_ath_spectral.h> 120 #include <dev/ath/if_ath_lna_div.h> 121 #include <dev/ath/if_athdfs.h> 122 #include <dev/ath/if_ath_ioctl.h> 123 #include <dev/ath/if_ath_descdma.h> 124 125 #ifdef ATH_TX99_DIAG 126 #include <dev/ath/ath_tx99/ath_tx99.h> 127 #endif 128 129 #ifdef ATH_DEBUG_ALQ 130 #include <dev/ath/if_ath_alq.h> 131 #endif 132 133 /* 134 * Only enable this if you're working on PS-POLL support. 135 */ 136 #define ATH_SW_PSQ 137 138 /* 139 * ATH_BCBUF determines the number of vap's that can transmit 140 * beacons and also (currently) the number of vap's that can 141 * have unique mac addresses/bssid. When staggering beacons 142 * 4 is probably a good max as otherwise the beacons become 143 * very closely spaced and there is limited time for cab q traffic 144 * to go out. You can burst beacons instead but that is not good 145 * for stations in power save and at some point you really want 146 * another radio (and channel). 147 * 148 * The limit on the number of mac addresses is tied to our use of 149 * the U/L bit and tracking addresses in a byte; it would be 150 * worthwhile to allow more for applications like proxy sta. 151 */ 152 CTASSERT(ATH_BCBUF <= 8); 153 154 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 155 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 156 const uint8_t [IEEE80211_ADDR_LEN], 157 const uint8_t [IEEE80211_ADDR_LEN]); 158 static void ath_vap_delete(struct ieee80211vap *); 159 static int ath_init(struct ath_softc *); 160 static void ath_stop(struct ath_softc *); 161 static int ath_reset_vap(struct ieee80211vap *, u_long); 162 static int ath_transmit(struct ieee80211com *, struct mbuf *); 163 static int ath_media_change(struct ifnet *); 164 static void ath_watchdog(void *); 165 static void ath_parent(struct ieee80211com *); 166 static void ath_fatal_proc(void *, int); 167 static void ath_bmiss_vap(struct ieee80211vap *); 168 static void ath_bmiss_proc(void *, int); 169 static void ath_key_update_begin(struct ieee80211vap *); 170 static void ath_key_update_end(struct ieee80211vap *); 171 static void ath_update_mcast_hw(struct ath_softc *); 172 static void ath_update_mcast(struct ieee80211com *); 173 static void ath_update_promisc(struct ieee80211com *); 174 static void ath_updateslot(struct ieee80211com *); 175 static void ath_bstuck_proc(void *, int); 176 static void ath_reset_proc(void *, int); 177 static int ath_desc_alloc(struct ath_softc *); 178 static void ath_desc_free(struct ath_softc *); 179 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 180 const uint8_t [IEEE80211_ADDR_LEN]); 181 static void ath_node_cleanup(struct ieee80211_node *); 182 static void ath_node_free(struct ieee80211_node *); 183 static void ath_node_getsignal(const struct ieee80211_node *, 184 int8_t *, int8_t *); 185 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 187 static int ath_tx_setup(struct ath_softc *, int, int); 188 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 189 static void ath_tx_cleanup(struct ath_softc *); 190 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 191 int dosched); 192 static void ath_tx_proc_q0(void *, int); 193 static void ath_tx_proc_q0123(void *, int); 194 static void ath_tx_proc(void *, int); 195 static void ath_txq_sched_tasklet(void *, int); 196 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 197 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 198 static void ath_scan_start(struct ieee80211com *); 199 static void ath_scan_end(struct ieee80211com *); 200 static void ath_set_channel(struct ieee80211com *); 201 #ifdef ATH_ENABLE_11N 202 static void ath_update_chw(struct ieee80211com *); 203 #endif /* ATH_ENABLE_11N */ 204 static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *); 205 static void ath_calibrate(void *); 206 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 207 static void ath_setup_stationkey(struct ieee80211_node *); 208 static void ath_newassoc(struct ieee80211_node *, int); 209 static int ath_setregdomain(struct ieee80211com *, 210 struct ieee80211_regdomain *, int, 211 struct ieee80211_channel []); 212 static void ath_getradiocaps(struct ieee80211com *, int, int *, 213 struct ieee80211_channel []); 214 static int ath_getchannels(struct ath_softc *); 215 216 static int ath_rate_setup(struct ath_softc *, u_int mode); 217 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 218 219 static void ath_announce(struct ath_softc *); 220 221 static void ath_dfs_tasklet(void *, int); 222 static void ath_node_powersave(struct ieee80211_node *, int); 223 static int ath_node_set_tim(struct ieee80211_node *, int); 224 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 225 226 #ifdef IEEE80211_SUPPORT_TDMA 227 #include <dev/ath/if_ath_tdma.h> 228 #endif 229 230 SYSCTL_DECL(_hw_ath); 231 232 /* XXX validate sysctl values */ 233 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 235 0, "long chip calibration interval (secs)"); 236 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 238 0, "short chip calibration interval (msecs)"); 239 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 241 0, "reset chip calibration results (secs)"); 242 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 244 0, "ANI calibration (msecs)"); 245 246 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 248 0, "rx buffers allocated"); 249 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 251 0, "tx buffers allocated"); 252 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 254 0, "tx (mgmt) buffers allocated"); 255 256 int ath_bstuck_threshold = 4; /* max missed beacons */ 257 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 258 0, "max missed beacon xmits before chip reset"); 259 260 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 261 262 void 263 ath_legacy_attach_comp_func(struct ath_softc *sc) 264 { 265 266 /* 267 * Special case certain configurations. Note the 268 * CAB queue is handled by these specially so don't 269 * include them when checking the txq setup mask. 270 */ 271 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 272 case 0x01: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 274 break; 275 case 0x0f: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 277 break; 278 default: 279 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 280 break; 281 } 282 } 283 284 /* 285 * Set the target power mode. 286 * 287 * If this is called during a point in time where 288 * the hardware is being programmed elsewhere, it will 289 * simply store it away and update it when all current 290 * uses of the hardware are completed. 291 * 292 * If the chip is going into network sleep or power off, then 293 * we will wait until all uses of the chip are done before 294 * going into network sleep or power off. 295 * 296 * If the chip is being programmed full-awake, then immediately 297 * program it full-awake so we can actually stay awake rather than 298 * the chip potentially going to sleep underneath us. 299 */ 300 void 301 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 302 const char *file, int line) 303 { 304 ATH_LOCK_ASSERT(sc); 305 306 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 307 __func__, 308 file, 309 line, 310 power_state, 311 sc->sc_powersave_refcnt, 312 sc->sc_target_powerstate, 313 sc->sc_cur_powerstate); 314 315 sc->sc_target_powerstate = power_state; 316 317 /* 318 * Don't program the chip into network sleep if the chip 319 * is being programmed elsewhere. 320 * 321 * However, if the chip is being programmed /awake/, force 322 * the chip awake so we stay awake. 323 */ 324 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 325 power_state != sc->sc_cur_powerstate) { 326 sc->sc_cur_powerstate = power_state; 327 ath_hal_setpower(sc->sc_ah, power_state); 328 329 /* 330 * If the NIC is force-awake, then set the 331 * self-gen frame state appropriately. 332 * 333 * If the nic is in network sleep or full-sleep, 334 * we let the above call leave the self-gen 335 * state as "sleep". 336 */ 337 if (selfgen && 338 sc->sc_cur_powerstate == HAL_PM_AWAKE && 339 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 340 ath_hal_setselfgenpower(sc->sc_ah, 341 sc->sc_target_selfgen_state); 342 } 343 } 344 } 345 346 /* 347 * Set the current self-generated frames state. 348 * 349 * This is separate from the target power mode. The chip may be 350 * awake but the desired state is "sleep", so frames sent to the 351 * destination has PWRMGT=1 in the 802.11 header. The NIC also 352 * needs to know to set PWRMGT=1 in self-generated frames. 353 */ 354 void 355 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 356 { 357 358 ATH_LOCK_ASSERT(sc); 359 360 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 361 __func__, 362 file, 363 line, 364 power_state, 365 sc->sc_target_selfgen_state); 366 367 sc->sc_target_selfgen_state = power_state; 368 369 /* 370 * If the NIC is force-awake, then set the power state. 371 * Network-state and full-sleep will already transition it to 372 * mark self-gen frames as sleeping - and we can't 373 * guarantee the NIC is awake to program the self-gen frame 374 * setting anyway. 375 */ 376 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 377 ath_hal_setselfgenpower(sc->sc_ah, power_state); 378 } 379 } 380 381 /* 382 * Set the hardware power mode and take a reference. 383 * 384 * This doesn't update the target power mode in the driver; 385 * it just updates the hardware power state. 386 * 387 * XXX it should only ever force the hardware awake; it should 388 * never be called to set it asleep. 389 */ 390 void 391 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 392 { 393 ATH_LOCK_ASSERT(sc); 394 395 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 396 __func__, 397 file, 398 line, 399 power_state, 400 sc->sc_powersave_refcnt); 401 402 sc->sc_powersave_refcnt++; 403 404 /* 405 * Only do the power state change if we're not programming 406 * it elsewhere. 407 */ 408 if (power_state != sc->sc_cur_powerstate) { 409 ath_hal_setpower(sc->sc_ah, power_state); 410 sc->sc_cur_powerstate = power_state; 411 /* 412 * Adjust the self-gen powerstate if appropriate. 413 */ 414 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 415 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 416 ath_hal_setselfgenpower(sc->sc_ah, 417 sc->sc_target_selfgen_state); 418 } 419 } 420 } 421 422 /* 423 * Restore the power save mode to what it once was. 424 * 425 * This will decrement the reference counter and once it hits 426 * zero, it'll restore the powersave state. 427 */ 428 void 429 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 430 { 431 432 ATH_LOCK_ASSERT(sc); 433 434 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 435 __func__, 436 file, 437 line, 438 sc->sc_powersave_refcnt, 439 sc->sc_target_powerstate); 440 441 if (sc->sc_powersave_refcnt == 0) 442 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 443 else 444 sc->sc_powersave_refcnt--; 445 446 if (sc->sc_powersave_refcnt == 0 && 447 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 448 sc->sc_cur_powerstate = sc->sc_target_powerstate; 449 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 450 } 451 452 /* 453 * Adjust the self-gen powerstate if appropriate. 454 */ 455 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 456 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 457 ath_hal_setselfgenpower(sc->sc_ah, 458 sc->sc_target_selfgen_state); 459 } 460 461 } 462 463 /* 464 * Configure the initial HAL configuration values based on bus 465 * specific parameters. 466 * 467 * Some PCI IDs and other information may need tweaking. 468 * 469 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 470 * if BT antenna diversity isn't enabled. 471 * 472 * So, let's also figure out how to enable BT diversity for AR9485. 473 */ 474 static void 475 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 476 { 477 /* XXX TODO: only for PCI devices? */ 478 479 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 480 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 481 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 482 ah_config->ath_hal_min_gainidx = AH_TRUE; 483 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 484 /* XXX low_rssi_thresh */ 485 /* XXX fast_div_bias */ 486 device_printf(sc->sc_dev, "configuring for %s\n", 487 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 488 "CUS198" : "CUS230"); 489 } 490 491 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 492 device_printf(sc->sc_dev, "CUS217 card detected\n"); 493 494 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 495 device_printf(sc->sc_dev, "CUS252 card detected\n"); 496 497 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 498 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 499 500 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 501 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 502 503 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 504 device_printf(sc->sc_dev, 505 "Bluetooth Antenna Diversity card detected\n"); 506 507 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 508 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 509 510 #if 0 511 /* 512 * Some WB335 cards do not support antenna diversity. Since 513 * we use a hardcoded value for AR9565 instead of using the 514 * EEPROM/OTP data, remove the combining feature from 515 * the HW capabilities bitmap. 516 */ 517 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 518 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 519 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 520 } 521 522 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 523 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 524 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 525 } 526 #endif 527 528 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 529 ah_config->ath_hal_pcie_waen = 0x0040473b; 530 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 531 } 532 533 #if 0 534 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 535 ah->config.no_pll_pwrsave = true; 536 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 537 } 538 #endif 539 540 } 541 542 /* 543 * Attempt to fetch the MAC address from the kernel environment. 544 * 545 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 546 */ 547 static int 548 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 549 { 550 char devid_str[32]; 551 int local_mac = 0; 552 char *local_macstr; 553 554 /* 555 * Fetch from the kenv rather than using hints. 556 * 557 * Hints would be nice but the transition to dynamic 558 * hints/kenv doesn't happen early enough for this 559 * to work reliably (eg on anything embedded.) 560 */ 561 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 562 device_get_name(sc->sc_dev), 563 device_get_unit(sc->sc_dev)); 564 565 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 566 uint32_t tmpmac[ETHER_ADDR_LEN]; 567 int count; 568 int i; 569 570 /* Have a MAC address; should use it */ 571 device_printf(sc->sc_dev, 572 "Overriding MAC address from environment: '%s'\n", 573 local_macstr); 574 575 /* Extract out the MAC address */ 576 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 577 &tmpmac[0], &tmpmac[1], 578 &tmpmac[2], &tmpmac[3], 579 &tmpmac[4], &tmpmac[5]); 580 if (count == 6) { 581 /* Valid! */ 582 local_mac = 1; 583 for (i = 0; i < ETHER_ADDR_LEN; i++) 584 macaddr[i] = tmpmac[i]; 585 } 586 /* Done! */ 587 freeenv(local_macstr); 588 local_macstr = NULL; 589 } 590 591 if (local_mac) 592 return (0); 593 return (-1); 594 } 595 596 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 597 #define HAL_MODE_HT40 \ 598 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 599 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 600 int 601 ath_attach(u_int16_t devid, struct ath_softc *sc) 602 { 603 struct ieee80211com *ic = &sc->sc_ic; 604 struct ath_hal *ah = NULL; 605 HAL_STATUS status; 606 int error = 0, i; 607 u_int wmodes; 608 int rx_chainmask, tx_chainmask; 609 HAL_OPS_CONFIG ah_config; 610 611 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 612 613 ic->ic_softc = sc; 614 ic->ic_name = device_get_nameunit(sc->sc_dev); 615 616 /* 617 * Configure the initial configuration data. 618 * 619 * This is stuff that may be needed early during attach 620 * rather than done via configuration calls later. 621 */ 622 bzero(&ah_config, sizeof(ah_config)); 623 ath_setup_hal_config(sc, &ah_config); 624 625 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 626 sc->sc_eepromdata, &ah_config, &status); 627 if (ah == NULL) { 628 device_printf(sc->sc_dev, 629 "unable to attach hardware; HAL status %u\n", status); 630 error = ENXIO; 631 goto bad; 632 } 633 sc->sc_ah = ah; 634 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 635 #ifdef ATH_DEBUG 636 sc->sc_debug = ath_debug; 637 #endif 638 639 /* 640 * Force the chip awake during setup, just to keep 641 * the HAL/driver power tracking happy. 642 * 643 * There are some methods (eg ath_hal_setmac()) 644 * that poke the hardware. 645 */ 646 ATH_LOCK(sc); 647 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 648 ATH_UNLOCK(sc); 649 650 /* 651 * Setup the DMA/EDMA functions based on the current 652 * hardware support. 653 * 654 * This is required before the descriptors are allocated. 655 */ 656 if (ath_hal_hasedma(sc->sc_ah)) { 657 sc->sc_isedma = 1; 658 ath_recv_setup_edma(sc); 659 ath_xmit_setup_edma(sc); 660 } else { 661 ath_recv_setup_legacy(sc); 662 ath_xmit_setup_legacy(sc); 663 } 664 665 if (ath_hal_hasmybeacon(sc->sc_ah)) { 666 sc->sc_do_mybeacon = 1; 667 } 668 669 /* 670 * Check if the MAC has multi-rate retry support. 671 * We do this by trying to setup a fake extended 672 * descriptor. MAC's that don't have support will 673 * return false w/o doing anything. MAC's that do 674 * support it will return true w/o doing anything. 675 */ 676 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 677 678 /* 679 * Check if the device has hardware counters for PHY 680 * errors. If so we need to enable the MIB interrupt 681 * so we can act on stat triggers. 682 */ 683 if (ath_hal_hwphycounters(ah)) 684 sc->sc_needmib = 1; 685 686 /* 687 * Get the hardware key cache size. 688 */ 689 sc->sc_keymax = ath_hal_keycachesize(ah); 690 if (sc->sc_keymax > ATH_KEYMAX) { 691 device_printf(sc->sc_dev, 692 "Warning, using only %u of %u key cache slots\n", 693 ATH_KEYMAX, sc->sc_keymax); 694 sc->sc_keymax = ATH_KEYMAX; 695 } 696 /* 697 * Reset the key cache since some parts do not 698 * reset the contents on initial power up. 699 */ 700 for (i = 0; i < sc->sc_keymax; i++) 701 ath_hal_keyreset(ah, i); 702 703 /* 704 * Collect the default channel list. 705 */ 706 error = ath_getchannels(sc); 707 if (error != 0) 708 goto bad; 709 710 /* 711 * Setup rate tables for all potential media types. 712 */ 713 ath_rate_setup(sc, IEEE80211_MODE_11A); 714 ath_rate_setup(sc, IEEE80211_MODE_11B); 715 ath_rate_setup(sc, IEEE80211_MODE_11G); 716 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 717 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 718 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 719 ath_rate_setup(sc, IEEE80211_MODE_11NA); 720 ath_rate_setup(sc, IEEE80211_MODE_11NG); 721 ath_rate_setup(sc, IEEE80211_MODE_HALF); 722 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 723 724 /* NB: setup here so ath_rate_update is happy */ 725 ath_setcurmode(sc, IEEE80211_MODE_11A); 726 727 /* 728 * Allocate TX descriptors and populate the lists. 729 */ 730 error = ath_desc_alloc(sc); 731 if (error != 0) { 732 device_printf(sc->sc_dev, 733 "failed to allocate TX descriptors: %d\n", error); 734 goto bad; 735 } 736 error = ath_txdma_setup(sc); 737 if (error != 0) { 738 device_printf(sc->sc_dev, 739 "failed to allocate TX descriptors: %d\n", error); 740 goto bad; 741 } 742 743 /* 744 * Allocate RX descriptors and populate the lists. 745 */ 746 error = ath_rxdma_setup(sc); 747 if (error != 0) { 748 device_printf(sc->sc_dev, 749 "failed to allocate RX descriptors: %d\n", error); 750 goto bad; 751 } 752 753 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 754 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 755 756 ATH_TXBUF_LOCK_INIT(sc); 757 758 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 759 taskqueue_thread_enqueue, &sc->sc_tq); 760 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 761 device_get_nameunit(sc->sc_dev)); 762 763 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 764 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 765 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 766 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 767 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 768 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 769 770 /* 771 * Allocate hardware transmit queues: one queue for 772 * beacon frames and one data queue for each QoS 773 * priority. Note that the hal handles resetting 774 * these queues at the needed time. 775 * 776 * XXX PS-Poll 777 */ 778 sc->sc_bhalq = ath_beaconq_setup(sc); 779 if (sc->sc_bhalq == (u_int) -1) { 780 device_printf(sc->sc_dev, 781 "unable to setup a beacon xmit queue!\n"); 782 error = EIO; 783 goto bad2; 784 } 785 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 786 if (sc->sc_cabq == NULL) { 787 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 788 error = EIO; 789 goto bad2; 790 } 791 /* NB: insure BK queue is the lowest priority h/w queue */ 792 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 793 device_printf(sc->sc_dev, 794 "unable to setup xmit queue for %s traffic!\n", 795 ieee80211_wme_acnames[WME_AC_BK]); 796 error = EIO; 797 goto bad2; 798 } 799 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 800 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 801 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 802 /* 803 * Not enough hardware tx queues to properly do WME; 804 * just punt and assign them all to the same h/w queue. 805 * We could do a better job of this if, for example, 806 * we allocate queues when we switch from station to 807 * AP mode. 808 */ 809 if (sc->sc_ac2q[WME_AC_VI] != NULL) 810 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 811 if (sc->sc_ac2q[WME_AC_BE] != NULL) 812 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 813 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 814 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 815 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 816 } 817 818 /* 819 * Attach the TX completion function. 820 * 821 * The non-EDMA chips may have some special case optimisations; 822 * this method gives everyone a chance to attach cleanly. 823 */ 824 sc->sc_tx.xmit_attach_comp_func(sc); 825 826 /* 827 * Setup rate control. Some rate control modules 828 * call back to change the anntena state so expose 829 * the necessary entry points. 830 * XXX maybe belongs in struct ath_ratectrl? 831 */ 832 sc->sc_setdefantenna = ath_setdefantenna; 833 sc->sc_rc = ath_rate_attach(sc); 834 if (sc->sc_rc == NULL) { 835 error = EIO; 836 goto bad2; 837 } 838 839 /* Attach DFS module */ 840 if (! ath_dfs_attach(sc)) { 841 device_printf(sc->sc_dev, 842 "%s: unable to attach DFS\n", __func__); 843 error = EIO; 844 goto bad2; 845 } 846 847 /* Attach spectral module */ 848 if (ath_spectral_attach(sc) < 0) { 849 device_printf(sc->sc_dev, 850 "%s: unable to attach spectral\n", __func__); 851 error = EIO; 852 goto bad2; 853 } 854 855 /* Attach bluetooth coexistence module */ 856 if (ath_btcoex_attach(sc) < 0) { 857 device_printf(sc->sc_dev, 858 "%s: unable to attach bluetooth coexistence\n", __func__); 859 error = EIO; 860 goto bad2; 861 } 862 863 /* Attach LNA diversity module */ 864 if (ath_lna_div_attach(sc) < 0) { 865 device_printf(sc->sc_dev, 866 "%s: unable to attach LNA diversity\n", __func__); 867 error = EIO; 868 goto bad2; 869 } 870 871 /* Start DFS processing tasklet */ 872 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 873 874 /* Configure LED state */ 875 sc->sc_blinking = 0; 876 sc->sc_ledstate = 1; 877 sc->sc_ledon = 0; /* low true */ 878 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 879 callout_init(&sc->sc_ledtimer, 1); 880 881 /* 882 * Don't setup hardware-based blinking. 883 * 884 * Although some NICs may have this configured in the 885 * default reset register values, the user may wish 886 * to alter which pins have which function. 887 * 888 * The reference driver attaches the MAC network LED to GPIO1 and 889 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 890 * NIC has these reversed. 891 */ 892 sc->sc_hardled = (1 == 0); 893 sc->sc_led_net_pin = -1; 894 sc->sc_led_pwr_pin = -1; 895 /* 896 * Auto-enable soft led processing for IBM cards and for 897 * 5211 minipci cards. Users can also manually enable/disable 898 * support with a sysctl. 899 */ 900 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 901 ath_led_config(sc); 902 ath_hal_setledstate(ah, HAL_LED_INIT); 903 904 /* XXX not right but it's not used anywhere important */ 905 ic->ic_phytype = IEEE80211_T_OFDM; 906 ic->ic_opmode = IEEE80211_M_STA; 907 ic->ic_caps = 908 IEEE80211_C_STA /* station mode */ 909 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 910 | IEEE80211_C_HOSTAP /* hostap mode */ 911 | IEEE80211_C_MONITOR /* monitor mode */ 912 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 913 | IEEE80211_C_WDS /* 4-address traffic works */ 914 | IEEE80211_C_MBSS /* mesh point link mode */ 915 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 916 | IEEE80211_C_SHSLOT /* short slot time supported */ 917 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 918 #ifndef ATH_ENABLE_11N 919 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 920 #endif 921 | IEEE80211_C_TXFRAG /* handle tx frags */ 922 #ifdef ATH_ENABLE_DFS 923 | IEEE80211_C_DFS /* Enable radar detection */ 924 #endif 925 | IEEE80211_C_PMGT /* Station side power mgmt */ 926 | IEEE80211_C_SWSLEEP 927 ; 928 /* 929 * Query the hal to figure out h/w crypto support. 930 */ 931 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 932 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 933 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 934 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 935 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 936 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 937 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 938 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 939 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 940 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 941 /* 942 * Check if h/w does the MIC and/or whether the 943 * separate key cache entries are required to 944 * handle both tx+rx MIC keys. 945 */ 946 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 947 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 948 /* 949 * If the h/w supports storing tx+rx MIC keys 950 * in one cache slot automatically enable use. 951 */ 952 if (ath_hal_hastkipsplit(ah) || 953 !ath_hal_settkipsplit(ah, AH_FALSE)) 954 sc->sc_splitmic = 1; 955 /* 956 * If the h/w can do TKIP MIC together with WME then 957 * we use it; otherwise we force the MIC to be done 958 * in software by the net80211 layer. 959 */ 960 if (ath_hal_haswmetkipmic(ah)) 961 sc->sc_wmetkipmic = 1; 962 } 963 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 964 /* 965 * Check for multicast key search support. 966 */ 967 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 968 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 969 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 970 } 971 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 972 /* 973 * Mark key cache slots associated with global keys 974 * as in use. If we knew TKIP was not to be used we 975 * could leave the +32, +64, and +32+64 slots free. 976 */ 977 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 978 setbit(sc->sc_keymap, i); 979 setbit(sc->sc_keymap, i+64); 980 if (sc->sc_splitmic) { 981 setbit(sc->sc_keymap, i+32); 982 setbit(sc->sc_keymap, i+32+64); 983 } 984 } 985 /* 986 * TPC support can be done either with a global cap or 987 * per-packet support. The latter is not available on 988 * all parts. We're a bit pedantic here as all parts 989 * support a global cap. 990 */ 991 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 992 ic->ic_caps |= IEEE80211_C_TXPMGT; 993 994 /* 995 * Mark WME capability only if we have sufficient 996 * hardware queues to do proper priority scheduling. 997 */ 998 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 999 ic->ic_caps |= IEEE80211_C_WME; 1000 /* 1001 * Check for misc other capabilities. 1002 */ 1003 if (ath_hal_hasbursting(ah)) 1004 ic->ic_caps |= IEEE80211_C_BURST; 1005 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 1006 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 1007 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 1008 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 1009 1010 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 1011 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 1012 if (i == 32) { 1013 sc->sc_rxtsf32 = 1; 1014 } 1015 if (bootverbose) 1016 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1017 } 1018 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1019 if (bootverbose) 1020 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1021 } 1022 1023 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1024 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1025 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1026 1027 /* 1028 * Some WB335 cards do not support antenna diversity. Since 1029 * we use a hardcoded value for AR9565 instead of using the 1030 * EEPROM/OTP data, remove the combining feature from 1031 * the HW capabilities bitmap. 1032 */ 1033 /* 1034 * XXX TODO: check reference driver and ath9k for what to do 1035 * here for WB335. I think we have to actually disable the 1036 * LNA div processing in the HAL and instead use the hard 1037 * coded values; and then use BT diversity. 1038 * 1039 * .. but also need to setup MCI too for WB335.. 1040 */ 1041 #if 0 1042 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 1043 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n", 1044 __func__); 1045 sc->sc_dolnadiv = 0; 1046 } 1047 #endif 1048 1049 if (ath_hal_hasfastframes(ah)) 1050 ic->ic_caps |= IEEE80211_C_FF; 1051 wmodes = ath_hal_getwirelessmodes(ah); 1052 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1053 ic->ic_caps |= IEEE80211_C_TURBOP; 1054 #ifdef IEEE80211_SUPPORT_TDMA 1055 if (ath_hal_macversion(ah) > 0x78) { 1056 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1057 ic->ic_tdma_update = ath_tdma_update; 1058 } 1059 #endif 1060 1061 /* 1062 * TODO: enforce that at least this many frames are available 1063 * in the txbuf list before allowing data frames (raw or 1064 * otherwise) to be transmitted. 1065 */ 1066 sc->sc_txq_data_minfree = 10; 1067 1068 /* 1069 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1070 * is smaller. 1071 * 1072 * Anything bigger can potentially see the cabq consume 1073 * almost all buffers, starving everything else, only to 1074 * see most fail to transmit in the given beacon interval. 1075 */ 1076 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1077 1078 /* 1079 * How deep can the node software TX queue get whilst it's asleep. 1080 */ 1081 sc->sc_txq_node_psq_maxdepth = 16; 1082 1083 /* 1084 * Default the maximum queue to 1/4'th the TX buffers, or 1085 * 64, whichever is smaller. 1086 */ 1087 sc->sc_txq_node_maxdepth = MIN(64, ath_txbuf / 4); 1088 1089 /* Enable CABQ by default */ 1090 sc->sc_cabq_enable = 1; 1091 1092 /* 1093 * Allow the TX and RX chainmasks to be overridden by 1094 * environment variables and/or device.hints. 1095 * 1096 * This must be done early - before the hardware is 1097 * calibrated or before the 802.11n stream calculation 1098 * is done. 1099 */ 1100 if (resource_int_value(device_get_name(sc->sc_dev), 1101 device_get_unit(sc->sc_dev), "rx_chainmask", 1102 &rx_chainmask) == 0) { 1103 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1104 rx_chainmask); 1105 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1106 } 1107 if (resource_int_value(device_get_name(sc->sc_dev), 1108 device_get_unit(sc->sc_dev), "tx_chainmask", 1109 &tx_chainmask) == 0) { 1110 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1111 tx_chainmask); 1112 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1113 } 1114 1115 /* 1116 * Query the TX/RX chainmask configuration. 1117 * 1118 * This is only relevant for 11n devices. 1119 */ 1120 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1121 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1122 1123 /* 1124 * Disable MRR with protected frames by default. 1125 * Only 802.11n series NICs can handle this. 1126 */ 1127 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1128 1129 /* 1130 * Query the enterprise mode information the HAL. 1131 */ 1132 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1133 &sc->sc_ent_cfg) == HAL_OK) 1134 sc->sc_use_ent = 1; 1135 1136 #ifdef ATH_ENABLE_11N 1137 /* 1138 * Query HT capabilities 1139 */ 1140 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1141 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1142 uint32_t rxs, txs; 1143 uint32_t ldpc; 1144 1145 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1146 1147 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1148 1149 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1150 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1151 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1152 | IEEE80211_HTCAP_MAXAMSDU_3839 1153 /* max A-MSDU length */ 1154 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1155 1156 /* 1157 * Enable short-GI for HT20 only if the hardware 1158 * advertises support. 1159 * Notably, anything earlier than the AR9287 doesn't. 1160 */ 1161 if ((ath_hal_getcapability(ah, 1162 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1163 (wmodes & HAL_MODE_HT20)) { 1164 device_printf(sc->sc_dev, 1165 "[HT] enabling short-GI in 20MHz mode\n"); 1166 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1167 } 1168 1169 if (wmodes & HAL_MODE_HT40) 1170 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1171 | IEEE80211_HTCAP_SHORTGI40; 1172 1173 /* 1174 * TX/RX streams need to be taken into account when 1175 * negotiating which MCS rates it'll receive and 1176 * what MCS rates are available for TX. 1177 */ 1178 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1179 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1180 ic->ic_txstream = txs; 1181 ic->ic_rxstream = rxs; 1182 1183 /* 1184 * Setup TX and RX STBC based on what the HAL allows and 1185 * the currently configured chainmask set. 1186 * Ie - don't enable STBC TX if only one chain is enabled. 1187 * STBC RX is fine on a single RX chain; it just won't 1188 * provide any real benefit. 1189 */ 1190 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1191 NULL) == HAL_OK) { 1192 sc->sc_rx_stbc = 1; 1193 device_printf(sc->sc_dev, 1194 "[HT] 1 stream STBC receive enabled\n"); 1195 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1196 } 1197 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1198 NULL) == HAL_OK) { 1199 sc->sc_tx_stbc = 1; 1200 device_printf(sc->sc_dev, 1201 "[HT] 1 stream STBC transmit enabled\n"); 1202 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1203 } 1204 1205 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1206 &sc->sc_rts_aggr_limit); 1207 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1208 device_printf(sc->sc_dev, 1209 "[HT] RTS aggregates limited to %d KiB\n", 1210 sc->sc_rts_aggr_limit / 1024); 1211 1212 /* 1213 * LDPC 1214 */ 1215 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1216 == HAL_OK && (ldpc == 1)) { 1217 sc->sc_has_ldpc = 1; 1218 device_printf(sc->sc_dev, 1219 "[HT] LDPC transmit/receive enabled\n"); 1220 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1221 IEEE80211_HTC_TXLDPC; 1222 } 1223 1224 device_printf(sc->sc_dev, 1225 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1226 } 1227 #endif 1228 1229 /* 1230 * Initial aggregation settings. 1231 */ 1232 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1233 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1234 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1235 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1236 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1237 sc->sc_delim_min_pad = 0; 1238 1239 /* 1240 * Check if the hardware requires PCI register serialisation. 1241 * Some of the Owl based MACs require this. 1242 */ 1243 if (mp_ncpus > 1 && 1244 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1245 0, NULL) == HAL_OK) { 1246 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1247 device_printf(sc->sc_dev, 1248 "Enabling register serialisation\n"); 1249 } 1250 1251 /* 1252 * Initialise the deferred completed RX buffer list. 1253 */ 1254 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1255 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1256 1257 /* 1258 * Indicate we need the 802.11 header padded to a 1259 * 32-bit boundary for 4-address and QoS frames. 1260 */ 1261 ic->ic_flags |= IEEE80211_F_DATAPAD; 1262 1263 /* 1264 * Query the hal about antenna support. 1265 */ 1266 sc->sc_defant = ath_hal_getdefantenna(ah); 1267 1268 /* 1269 * Not all chips have the VEOL support we want to 1270 * use with IBSS beacons; check here for it. 1271 */ 1272 sc->sc_hasveol = ath_hal_hasveol(ah); 1273 1274 /* get mac address from kenv first, then hardware */ 1275 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1276 /* Tell the HAL now about the new MAC */ 1277 ath_hal_setmac(ah, ic->ic_macaddr); 1278 } else { 1279 ath_hal_getmac(ah, ic->ic_macaddr); 1280 } 1281 1282 if (sc->sc_hasbmask) 1283 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1284 1285 /* NB: used to size node table key mapping array */ 1286 ic->ic_max_keyix = sc->sc_keymax; 1287 /* call MI attach routine. */ 1288 ieee80211_ifattach(ic); 1289 ic->ic_setregdomain = ath_setregdomain; 1290 ic->ic_getradiocaps = ath_getradiocaps; 1291 sc->sc_opmode = HAL_M_STA; 1292 1293 /* override default methods */ 1294 ic->ic_ioctl = ath_ioctl; 1295 ic->ic_parent = ath_parent; 1296 ic->ic_transmit = ath_transmit; 1297 ic->ic_newassoc = ath_newassoc; 1298 ic->ic_updateslot = ath_updateslot; 1299 ic->ic_wme.wme_update = ath_wme_update; 1300 ic->ic_vap_create = ath_vap_create; 1301 ic->ic_vap_delete = ath_vap_delete; 1302 ic->ic_raw_xmit = ath_raw_xmit; 1303 ic->ic_update_mcast = ath_update_mcast; 1304 ic->ic_update_promisc = ath_update_promisc; 1305 ic->ic_node_alloc = ath_node_alloc; 1306 sc->sc_node_free = ic->ic_node_free; 1307 ic->ic_node_free = ath_node_free; 1308 sc->sc_node_cleanup = ic->ic_node_cleanup; 1309 ic->ic_node_cleanup = ath_node_cleanup; 1310 ic->ic_node_getsignal = ath_node_getsignal; 1311 ic->ic_scan_start = ath_scan_start; 1312 ic->ic_scan_end = ath_scan_end; 1313 ic->ic_set_channel = ath_set_channel; 1314 #ifdef ATH_ENABLE_11N 1315 /* 802.11n specific - but just override anyway */ 1316 sc->sc_addba_request = ic->ic_addba_request; 1317 sc->sc_addba_response = ic->ic_addba_response; 1318 sc->sc_addba_stop = ic->ic_addba_stop; 1319 sc->sc_bar_response = ic->ic_bar_response; 1320 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1321 1322 ic->ic_addba_request = ath_addba_request; 1323 ic->ic_addba_response = ath_addba_response; 1324 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1325 ic->ic_addba_stop = ath_addba_stop; 1326 ic->ic_bar_response = ath_bar_response; 1327 1328 ic->ic_update_chw = ath_update_chw; 1329 #endif /* ATH_ENABLE_11N */ 1330 ic->ic_set_quiet = ath_set_quiet_ie; 1331 1332 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1333 /* 1334 * There's one vendor bitmap entry in the RX radiotap 1335 * header; make sure that's taken into account. 1336 */ 1337 ieee80211_radiotap_attachv(ic, 1338 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1339 ATH_TX_RADIOTAP_PRESENT, 1340 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1341 ATH_RX_RADIOTAP_PRESENT); 1342 #else 1343 /* 1344 * No vendor bitmap/extensions are present. 1345 */ 1346 ieee80211_radiotap_attach(ic, 1347 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1348 ATH_TX_RADIOTAP_PRESENT, 1349 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1350 ATH_RX_RADIOTAP_PRESENT); 1351 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1352 1353 /* 1354 * Setup the ALQ logging if required 1355 */ 1356 #ifdef ATH_DEBUG_ALQ 1357 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1358 if_ath_alq_setcfg(&sc->sc_alq, 1359 sc->sc_ah->ah_macVersion, 1360 sc->sc_ah->ah_macRev, 1361 sc->sc_ah->ah_phyRev, 1362 sc->sc_ah->ah_magic); 1363 #endif 1364 1365 /* 1366 * Setup dynamic sysctl's now that country code and 1367 * regdomain are available from the hal. 1368 */ 1369 ath_sysctlattach(sc); 1370 ath_sysctl_stats_attach(sc); 1371 ath_sysctl_hal_attach(sc); 1372 1373 if (bootverbose) 1374 ieee80211_announce(ic); 1375 ath_announce(sc); 1376 1377 /* 1378 * Put it to sleep for now. 1379 */ 1380 ATH_LOCK(sc); 1381 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1382 ATH_UNLOCK(sc); 1383 1384 return 0; 1385 bad2: 1386 ath_tx_cleanup(sc); 1387 ath_desc_free(sc); 1388 ath_txdma_teardown(sc); 1389 ath_rxdma_teardown(sc); 1390 1391 bad: 1392 if (ah) 1393 ath_hal_detach(ah); 1394 sc->sc_invalid = 1; 1395 return error; 1396 } 1397 1398 int 1399 ath_detach(struct ath_softc *sc) 1400 { 1401 1402 /* 1403 * NB: the order of these is important: 1404 * o stop the chip so no more interrupts will fire 1405 * o call the 802.11 layer before detaching the hal to 1406 * insure callbacks into the driver to delete global 1407 * key cache entries can be handled 1408 * o free the taskqueue which drains any pending tasks 1409 * o reclaim the tx queue data structures after calling 1410 * the 802.11 layer as we'll get called back to reclaim 1411 * node state and potentially want to use them 1412 * o to cleanup the tx queues the hal is called, so detach 1413 * it last 1414 * Other than that, it's straightforward... 1415 */ 1416 1417 /* 1418 * XXX Wake the hardware up first. ath_stop() will still 1419 * wake it up first, but I'd rather do it here just to 1420 * ensure it's awake. 1421 */ 1422 ATH_LOCK(sc); 1423 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1424 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1425 1426 /* 1427 * Stop things cleanly. 1428 */ 1429 ath_stop(sc); 1430 ATH_UNLOCK(sc); 1431 1432 ieee80211_ifdetach(&sc->sc_ic); 1433 taskqueue_free(sc->sc_tq); 1434 #ifdef ATH_TX99_DIAG 1435 if (sc->sc_tx99 != NULL) 1436 sc->sc_tx99->detach(sc->sc_tx99); 1437 #endif 1438 ath_rate_detach(sc->sc_rc); 1439 #ifdef ATH_DEBUG_ALQ 1440 if_ath_alq_tidyup(&sc->sc_alq); 1441 #endif 1442 ath_lna_div_detach(sc); 1443 ath_btcoex_detach(sc); 1444 ath_spectral_detach(sc); 1445 ath_dfs_detach(sc); 1446 ath_desc_free(sc); 1447 ath_txdma_teardown(sc); 1448 ath_rxdma_teardown(sc); 1449 ath_tx_cleanup(sc); 1450 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1451 1452 return 0; 1453 } 1454 1455 /* 1456 * MAC address handling for multiple BSS on the same radio. 1457 * The first vap uses the MAC address from the EEPROM. For 1458 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1459 * address and use the next six bits as an index. 1460 */ 1461 static void 1462 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1463 { 1464 int i; 1465 1466 if (clone && sc->sc_hasbmask) { 1467 /* NB: we only do this if h/w supports multiple bssid */ 1468 for (i = 0; i < 8; i++) 1469 if ((sc->sc_bssidmask & (1<<i)) == 0) 1470 break; 1471 if (i != 0) 1472 mac[0] |= (i << 2)|0x2; 1473 } else 1474 i = 0; 1475 sc->sc_bssidmask |= 1<<i; 1476 sc->sc_hwbssidmask[0] &= ~mac[0]; 1477 if (i == 0) 1478 sc->sc_nbssid0++; 1479 } 1480 1481 static void 1482 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1483 { 1484 int i = mac[0] >> 2; 1485 uint8_t mask; 1486 1487 if (i != 0 || --sc->sc_nbssid0 == 0) { 1488 sc->sc_bssidmask &= ~(1<<i); 1489 /* recalculate bssid mask from remaining addresses */ 1490 mask = 0xff; 1491 for (i = 1; i < 8; i++) 1492 if (sc->sc_bssidmask & (1<<i)) 1493 mask &= ~((i<<2)|0x2); 1494 sc->sc_hwbssidmask[0] |= mask; 1495 } 1496 } 1497 1498 /* 1499 * Assign a beacon xmit slot. We try to space out 1500 * assignments so when beacons are staggered the 1501 * traffic coming out of the cab q has maximal time 1502 * to go out before the next beacon is scheduled. 1503 */ 1504 static int 1505 assign_bslot(struct ath_softc *sc) 1506 { 1507 u_int slot, free; 1508 1509 free = 0; 1510 for (slot = 0; slot < ATH_BCBUF; slot++) 1511 if (sc->sc_bslot[slot] == NULL) { 1512 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1513 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1514 return slot; 1515 free = slot; 1516 /* NB: keep looking for a double slot */ 1517 } 1518 return free; 1519 } 1520 1521 static struct ieee80211vap * 1522 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1523 enum ieee80211_opmode opmode, int flags, 1524 const uint8_t bssid[IEEE80211_ADDR_LEN], 1525 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1526 { 1527 struct ath_softc *sc = ic->ic_softc; 1528 struct ath_vap *avp; 1529 struct ieee80211vap *vap; 1530 uint8_t mac[IEEE80211_ADDR_LEN]; 1531 int needbeacon, error; 1532 enum ieee80211_opmode ic_opmode; 1533 1534 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1535 needbeacon = 0; 1536 IEEE80211_ADDR_COPY(mac, mac0); 1537 1538 ATH_LOCK(sc); 1539 ic_opmode = opmode; /* default to opmode of new vap */ 1540 switch (opmode) { 1541 case IEEE80211_M_STA: 1542 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1543 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1544 goto bad; 1545 } 1546 if (sc->sc_nvaps) { 1547 /* 1548 * With multiple vaps we must fall back 1549 * to s/w beacon miss handling. 1550 */ 1551 flags |= IEEE80211_CLONE_NOBEACONS; 1552 } 1553 if (flags & IEEE80211_CLONE_NOBEACONS) { 1554 /* 1555 * Station mode w/o beacons are implemented w/ AP mode. 1556 */ 1557 ic_opmode = IEEE80211_M_HOSTAP; 1558 } 1559 break; 1560 case IEEE80211_M_IBSS: 1561 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1562 device_printf(sc->sc_dev, 1563 "only 1 ibss vap supported\n"); 1564 goto bad; 1565 } 1566 needbeacon = 1; 1567 break; 1568 case IEEE80211_M_AHDEMO: 1569 #ifdef IEEE80211_SUPPORT_TDMA 1570 if (flags & IEEE80211_CLONE_TDMA) { 1571 if (sc->sc_nvaps != 0) { 1572 device_printf(sc->sc_dev, 1573 "only 1 tdma vap supported\n"); 1574 goto bad; 1575 } 1576 needbeacon = 1; 1577 flags |= IEEE80211_CLONE_NOBEACONS; 1578 } 1579 /* fall thru... */ 1580 #endif 1581 case IEEE80211_M_MONITOR: 1582 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1583 /* 1584 * Adopt existing mode. Adding a monitor or ahdemo 1585 * vap to an existing configuration is of dubious 1586 * value but should be ok. 1587 */ 1588 /* XXX not right for monitor mode */ 1589 ic_opmode = ic->ic_opmode; 1590 } 1591 break; 1592 case IEEE80211_M_HOSTAP: 1593 case IEEE80211_M_MBSS: 1594 needbeacon = 1; 1595 break; 1596 case IEEE80211_M_WDS: 1597 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1598 device_printf(sc->sc_dev, 1599 "wds not supported in sta mode\n"); 1600 goto bad; 1601 } 1602 /* 1603 * Silently remove any request for a unique 1604 * bssid; WDS vap's always share the local 1605 * mac address. 1606 */ 1607 flags &= ~IEEE80211_CLONE_BSSID; 1608 if (sc->sc_nvaps == 0) 1609 ic_opmode = IEEE80211_M_HOSTAP; 1610 else 1611 ic_opmode = ic->ic_opmode; 1612 break; 1613 default: 1614 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1615 goto bad; 1616 } 1617 /* 1618 * Check that a beacon buffer is available; the code below assumes it. 1619 */ 1620 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1621 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1622 goto bad; 1623 } 1624 1625 /* STA, AHDEMO? */ 1626 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) { 1627 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1628 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1629 } 1630 1631 vap = &avp->av_vap; 1632 /* XXX can't hold mutex across if_alloc */ 1633 ATH_UNLOCK(sc); 1634 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1635 ATH_LOCK(sc); 1636 if (error != 0) { 1637 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1638 __func__, error); 1639 goto bad2; 1640 } 1641 1642 /* h/w crypto support */ 1643 vap->iv_key_alloc = ath_key_alloc; 1644 vap->iv_key_delete = ath_key_delete; 1645 vap->iv_key_set = ath_key_set; 1646 vap->iv_key_update_begin = ath_key_update_begin; 1647 vap->iv_key_update_end = ath_key_update_end; 1648 1649 /* override various methods */ 1650 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1651 vap->iv_recv_mgmt = ath_recv_mgmt; 1652 vap->iv_reset = ath_reset_vap; 1653 vap->iv_update_beacon = ath_beacon_update; 1654 avp->av_newstate = vap->iv_newstate; 1655 vap->iv_newstate = ath_newstate; 1656 avp->av_bmiss = vap->iv_bmiss; 1657 vap->iv_bmiss = ath_bmiss_vap; 1658 1659 avp->av_node_ps = vap->iv_node_ps; 1660 vap->iv_node_ps = ath_node_powersave; 1661 1662 avp->av_set_tim = vap->iv_set_tim; 1663 vap->iv_set_tim = ath_node_set_tim; 1664 1665 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1666 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1667 1668 /* Set default parameters */ 1669 1670 /* 1671 * Anything earlier than some AR9300 series MACs don't 1672 * support a smaller MPDU density. 1673 */ 1674 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1675 /* 1676 * All NICs can handle the maximum size, however 1677 * AR5416 based MACs can only TX aggregates w/ RTS 1678 * protection when the total aggregate size is <= 8k. 1679 * However, for now that's enforced by the TX path. 1680 */ 1681 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1682 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1683 1684 avp->av_bslot = -1; 1685 if (needbeacon) { 1686 /* 1687 * Allocate beacon state and setup the q for buffered 1688 * multicast frames. We know a beacon buffer is 1689 * available because we checked above. 1690 */ 1691 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1692 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1693 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1694 /* 1695 * Assign the vap to a beacon xmit slot. As above 1696 * this cannot fail to find a free one. 1697 */ 1698 avp->av_bslot = assign_bslot(sc); 1699 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1700 ("beacon slot %u not empty", avp->av_bslot)); 1701 sc->sc_bslot[avp->av_bslot] = vap; 1702 sc->sc_nbcnvaps++; 1703 } 1704 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1705 /* 1706 * Multple vaps are to transmit beacons and we 1707 * have h/w support for TSF adjusting; enable 1708 * use of staggered beacons. 1709 */ 1710 sc->sc_stagbeacons = 1; 1711 } 1712 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1713 } 1714 1715 ic->ic_opmode = ic_opmode; 1716 if (opmode != IEEE80211_M_WDS) { 1717 sc->sc_nvaps++; 1718 if (opmode == IEEE80211_M_STA) 1719 sc->sc_nstavaps++; 1720 if (opmode == IEEE80211_M_MBSS) 1721 sc->sc_nmeshvaps++; 1722 } 1723 switch (ic_opmode) { 1724 case IEEE80211_M_IBSS: 1725 sc->sc_opmode = HAL_M_IBSS; 1726 break; 1727 case IEEE80211_M_STA: 1728 sc->sc_opmode = HAL_M_STA; 1729 break; 1730 case IEEE80211_M_AHDEMO: 1731 #ifdef IEEE80211_SUPPORT_TDMA 1732 if (vap->iv_caps & IEEE80211_C_TDMA) { 1733 sc->sc_tdma = 1; 1734 /* NB: disable tsf adjust */ 1735 sc->sc_stagbeacons = 0; 1736 } 1737 /* 1738 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1739 * just ap mode. 1740 */ 1741 /* fall thru... */ 1742 #endif 1743 case IEEE80211_M_HOSTAP: 1744 case IEEE80211_M_MBSS: 1745 sc->sc_opmode = HAL_M_HOSTAP; 1746 break; 1747 case IEEE80211_M_MONITOR: 1748 sc->sc_opmode = HAL_M_MONITOR; 1749 break; 1750 default: 1751 /* XXX should not happen */ 1752 break; 1753 } 1754 if (sc->sc_hastsfadd) { 1755 /* 1756 * Configure whether or not TSF adjust should be done. 1757 */ 1758 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1759 } 1760 if (flags & IEEE80211_CLONE_NOBEACONS) { 1761 /* 1762 * Enable s/w beacon miss handling. 1763 */ 1764 sc->sc_swbmiss = 1; 1765 } 1766 ATH_UNLOCK(sc); 1767 1768 /* complete setup */ 1769 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1770 mac); 1771 return vap; 1772 bad2: 1773 reclaim_address(sc, mac); 1774 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1775 bad: 1776 free(avp, M_80211_VAP); 1777 ATH_UNLOCK(sc); 1778 return NULL; 1779 } 1780 1781 static void 1782 ath_vap_delete(struct ieee80211vap *vap) 1783 { 1784 struct ieee80211com *ic = vap->iv_ic; 1785 struct ath_softc *sc = ic->ic_softc; 1786 struct ath_hal *ah = sc->sc_ah; 1787 struct ath_vap *avp = ATH_VAP(vap); 1788 1789 ATH_LOCK(sc); 1790 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1791 ATH_UNLOCK(sc); 1792 1793 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1794 if (sc->sc_running) { 1795 /* 1796 * Quiesce the hardware while we remove the vap. In 1797 * particular we need to reclaim all references to 1798 * the vap state by any frames pending on the tx queues. 1799 */ 1800 ath_hal_intrset(ah, 0); /* disable interrupts */ 1801 /* XXX Do all frames from all vaps/nodes need draining here? */ 1802 ath_stoprecv(sc, 1); /* stop recv side */ 1803 ath_rx_flush(sc); 1804 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1805 } 1806 1807 /* .. leave the hardware awake for now. */ 1808 1809 ieee80211_vap_detach(vap); 1810 1811 /* 1812 * XXX Danger Will Robinson! Danger! 1813 * 1814 * Because ieee80211_vap_detach() can queue a frame (the station 1815 * diassociate message?) after we've drained the TXQ and 1816 * flushed the software TXQ, we will end up with a frame queued 1817 * to a node whose vap is about to be freed. 1818 * 1819 * To work around this, flush the hardware/software again. 1820 * This may be racy - the ath task may be running and the packet 1821 * may be being scheduled between sw->hw txq. Tsk. 1822 * 1823 * TODO: figure out why a new node gets allocated somewhere around 1824 * here (after the ath_tx_swq() call; and after an ath_stop() 1825 * call!) 1826 */ 1827 1828 ath_draintxq(sc, ATH_RESET_DEFAULT); 1829 1830 ATH_LOCK(sc); 1831 /* 1832 * Reclaim beacon state. Note this must be done before 1833 * the vap instance is reclaimed as we may have a reference 1834 * to it in the buffer for the beacon frame. 1835 */ 1836 if (avp->av_bcbuf != NULL) { 1837 if (avp->av_bslot != -1) { 1838 sc->sc_bslot[avp->av_bslot] = NULL; 1839 sc->sc_nbcnvaps--; 1840 } 1841 ath_beacon_return(sc, avp->av_bcbuf); 1842 avp->av_bcbuf = NULL; 1843 if (sc->sc_nbcnvaps == 0) { 1844 sc->sc_stagbeacons = 0; 1845 if (sc->sc_hastsfadd) 1846 ath_hal_settsfadjust(sc->sc_ah, 0); 1847 } 1848 /* 1849 * Reclaim any pending mcast frames for the vap. 1850 */ 1851 ath_tx_draintxq(sc, &avp->av_mcastq); 1852 } 1853 /* 1854 * Update bookkeeping. 1855 */ 1856 if (vap->iv_opmode == IEEE80211_M_STA) { 1857 sc->sc_nstavaps--; 1858 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1859 sc->sc_swbmiss = 0; 1860 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1861 vap->iv_opmode == IEEE80211_M_STA || 1862 vap->iv_opmode == IEEE80211_M_MBSS) { 1863 reclaim_address(sc, vap->iv_myaddr); 1864 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1865 if (vap->iv_opmode == IEEE80211_M_MBSS) 1866 sc->sc_nmeshvaps--; 1867 } 1868 if (vap->iv_opmode != IEEE80211_M_WDS) 1869 sc->sc_nvaps--; 1870 #ifdef IEEE80211_SUPPORT_TDMA 1871 /* TDMA operation ceases when the last vap is destroyed */ 1872 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1873 sc->sc_tdma = 0; 1874 sc->sc_swbmiss = 0; 1875 } 1876 #endif 1877 free(avp, M_80211_VAP); 1878 1879 if (sc->sc_running) { 1880 /* 1881 * Restart rx+tx machines if still running (RUNNING will 1882 * be reset if we just destroyed the last vap). 1883 */ 1884 if (ath_startrecv(sc) != 0) 1885 device_printf(sc->sc_dev, 1886 "%s: unable to restart recv logic\n", __func__); 1887 if (sc->sc_beacons) { /* restart beacons */ 1888 #ifdef IEEE80211_SUPPORT_TDMA 1889 if (sc->sc_tdma) 1890 ath_tdma_config(sc, NULL); 1891 else 1892 #endif 1893 ath_beacon_config(sc, NULL); 1894 } 1895 ath_hal_intrset(ah, sc->sc_imask); 1896 } 1897 1898 /* Ok, let the hardware asleep. */ 1899 ath_power_restore_power_state(sc); 1900 ATH_UNLOCK(sc); 1901 } 1902 1903 void 1904 ath_suspend(struct ath_softc *sc) 1905 { 1906 struct ieee80211com *ic = &sc->sc_ic; 1907 1908 sc->sc_resume_up = ic->ic_nrunning != 0; 1909 1910 ieee80211_suspend_all(ic); 1911 /* 1912 * NB: don't worry about putting the chip in low power 1913 * mode; pci will power off our socket on suspend and 1914 * CardBus detaches the device. 1915 * 1916 * XXX TODO: well, that's great, except for non-cardbus 1917 * devices! 1918 */ 1919 1920 /* 1921 * XXX This doesn't wait until all pending taskqueue 1922 * items and parallel transmit/receive/other threads 1923 * are running! 1924 */ 1925 ath_hal_intrset(sc->sc_ah, 0); 1926 taskqueue_block(sc->sc_tq); 1927 1928 ATH_LOCK(sc); 1929 callout_stop(&sc->sc_cal_ch); 1930 ATH_UNLOCK(sc); 1931 1932 /* 1933 * XXX ensure sc_invalid is 1 1934 */ 1935 1936 /* Disable the PCIe PHY, complete with workarounds */ 1937 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1938 } 1939 1940 /* 1941 * Reset the key cache since some parts do not reset the 1942 * contents on resume. First we clear all entries, then 1943 * re-load keys that the 802.11 layer assumes are setup 1944 * in h/w. 1945 */ 1946 static void 1947 ath_reset_keycache(struct ath_softc *sc) 1948 { 1949 struct ieee80211com *ic = &sc->sc_ic; 1950 struct ath_hal *ah = sc->sc_ah; 1951 int i; 1952 1953 ATH_LOCK(sc); 1954 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1955 for (i = 0; i < sc->sc_keymax; i++) 1956 ath_hal_keyreset(ah, i); 1957 ath_power_restore_power_state(sc); 1958 ATH_UNLOCK(sc); 1959 ieee80211_crypto_reload_keys(ic); 1960 } 1961 1962 /* 1963 * Fetch the current chainmask configuration based on the current 1964 * operating channel and options. 1965 */ 1966 static void 1967 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1968 { 1969 1970 /* 1971 * Set TX chainmask to the currently configured chainmask; 1972 * the TX chainmask depends upon the current operating mode. 1973 */ 1974 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1975 if (IEEE80211_IS_CHAN_HT(chan)) { 1976 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1977 } else { 1978 sc->sc_cur_txchainmask = 1; 1979 } 1980 1981 DPRINTF(sc, ATH_DEBUG_RESET, 1982 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1983 __func__, 1984 sc->sc_cur_txchainmask, 1985 sc->sc_cur_rxchainmask); 1986 } 1987 1988 void 1989 ath_resume(struct ath_softc *sc) 1990 { 1991 struct ieee80211com *ic = &sc->sc_ic; 1992 struct ath_hal *ah = sc->sc_ah; 1993 HAL_STATUS status; 1994 1995 ath_hal_enablepcie(ah, 0, 0); 1996 1997 /* 1998 * Must reset the chip before we reload the 1999 * keycache as we were powered down on suspend. 2000 */ 2001 ath_update_chainmasks(sc, 2002 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 2003 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2004 sc->sc_cur_rxchainmask); 2005 2006 /* Ensure we set the current power state to on */ 2007 ATH_LOCK(sc); 2008 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2009 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2010 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2011 ATH_UNLOCK(sc); 2012 2013 ath_hal_reset(ah, sc->sc_opmode, 2014 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 2015 AH_FALSE, HAL_RESET_NORMAL, &status); 2016 ath_reset_keycache(sc); 2017 2018 ATH_RX_LOCK(sc); 2019 sc->sc_rx_stopped = 1; 2020 sc->sc_rx_resetted = 1; 2021 ATH_RX_UNLOCK(sc); 2022 2023 /* Let DFS at it in case it's a DFS channel */ 2024 ath_dfs_radar_enable(sc, ic->ic_curchan); 2025 2026 /* Let spectral at in case spectral is enabled */ 2027 ath_spectral_enable(sc, ic->ic_curchan); 2028 2029 /* 2030 * Let bluetooth coexistence at in case it's needed for this channel 2031 */ 2032 ath_btcoex_enable(sc, ic->ic_curchan); 2033 2034 /* 2035 * If we're doing TDMA, enforce the TXOP limitation for chips that 2036 * support it. 2037 */ 2038 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2039 ath_hal_setenforcetxop(sc->sc_ah, 1); 2040 else 2041 ath_hal_setenforcetxop(sc->sc_ah, 0); 2042 2043 /* Restore the LED configuration */ 2044 ath_led_config(sc); 2045 ath_hal_setledstate(ah, HAL_LED_INIT); 2046 2047 if (sc->sc_resume_up) 2048 ieee80211_resume_all(ic); 2049 2050 ATH_LOCK(sc); 2051 ath_power_restore_power_state(sc); 2052 ATH_UNLOCK(sc); 2053 2054 /* XXX beacons ? */ 2055 } 2056 2057 void 2058 ath_shutdown(struct ath_softc *sc) 2059 { 2060 2061 ATH_LOCK(sc); 2062 ath_stop(sc); 2063 ATH_UNLOCK(sc); 2064 /* NB: no point powering down chip as we're about to reboot */ 2065 } 2066 2067 /* 2068 * Interrupt handler. Most of the actual processing is deferred. 2069 */ 2070 void 2071 ath_intr(void *arg) 2072 { 2073 struct ath_softc *sc = arg; 2074 struct ath_hal *ah = sc->sc_ah; 2075 HAL_INT status = 0; 2076 uint32_t txqs; 2077 2078 /* 2079 * If we're inside a reset path, just print a warning and 2080 * clear the ISR. The reset routine will finish it for us. 2081 */ 2082 ATH_PCU_LOCK(sc); 2083 if (sc->sc_inreset_cnt) { 2084 HAL_INT status; 2085 ath_hal_getisr(ah, &status); /* clear ISR */ 2086 ath_hal_intrset(ah, 0); /* disable further intr's */ 2087 DPRINTF(sc, ATH_DEBUG_ANY, 2088 "%s: in reset, ignoring: status=0x%x\n", 2089 __func__, status); 2090 ATH_PCU_UNLOCK(sc); 2091 return; 2092 } 2093 2094 if (sc->sc_invalid) { 2095 /* 2096 * The hardware is not ready/present, don't touch anything. 2097 * Note this can happen early on if the IRQ is shared. 2098 */ 2099 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2100 ATH_PCU_UNLOCK(sc); 2101 return; 2102 } 2103 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2104 ATH_PCU_UNLOCK(sc); 2105 return; 2106 } 2107 2108 ATH_LOCK(sc); 2109 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2110 ATH_UNLOCK(sc); 2111 2112 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2113 HAL_INT status; 2114 2115 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2116 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2117 ath_hal_getisr(ah, &status); /* clear ISR */ 2118 ath_hal_intrset(ah, 0); /* disable further intr's */ 2119 ATH_PCU_UNLOCK(sc); 2120 2121 ATH_LOCK(sc); 2122 ath_power_restore_power_state(sc); 2123 ATH_UNLOCK(sc); 2124 return; 2125 } 2126 2127 /* 2128 * Figure out the reason(s) for the interrupt. Note 2129 * that the hal returns a pseudo-ISR that may include 2130 * bits we haven't explicitly enabled so we mask the 2131 * value to insure we only process bits we requested. 2132 */ 2133 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2134 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2135 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2136 #ifdef ATH_DEBUG_ALQ 2137 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2138 ah->ah_syncstate); 2139 #endif /* ATH_DEBUG_ALQ */ 2140 #ifdef ATH_KTR_INTR_DEBUG 2141 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2142 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2143 ah->ah_intrstate[0], 2144 ah->ah_intrstate[1], 2145 ah->ah_intrstate[2], 2146 ah->ah_intrstate[3], 2147 ah->ah_intrstate[6]); 2148 #endif 2149 2150 /* Squirrel away SYNC interrupt debugging */ 2151 if (ah->ah_syncstate != 0) { 2152 int i; 2153 for (i = 0; i < 32; i++) 2154 if (ah->ah_syncstate & (1 << i)) 2155 sc->sc_intr_stats.sync_intr[i]++; 2156 } 2157 2158 status &= sc->sc_imask; /* discard unasked for bits */ 2159 2160 /* Short-circuit un-handled interrupts */ 2161 if (status == 0x0) { 2162 ATH_PCU_UNLOCK(sc); 2163 2164 ATH_LOCK(sc); 2165 ath_power_restore_power_state(sc); 2166 ATH_UNLOCK(sc); 2167 2168 return; 2169 } 2170 2171 /* 2172 * Take a note that we're inside the interrupt handler, so 2173 * the reset routines know to wait. 2174 */ 2175 sc->sc_intr_cnt++; 2176 ATH_PCU_UNLOCK(sc); 2177 2178 /* 2179 * Handle the interrupt. We won't run concurrent with the reset 2180 * or channel change routines as they'll wait for sc_intr_cnt 2181 * to be 0 before continuing. 2182 */ 2183 if (status & HAL_INT_FATAL) { 2184 sc->sc_stats.ast_hardware++; 2185 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2186 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2187 } else { 2188 if (status & HAL_INT_SWBA) { 2189 /* 2190 * Software beacon alert--time to send a beacon. 2191 * Handle beacon transmission directly; deferring 2192 * this is too slow to meet timing constraints 2193 * under load. 2194 */ 2195 #ifdef IEEE80211_SUPPORT_TDMA 2196 if (sc->sc_tdma) { 2197 if (sc->sc_tdmaswba == 0) { 2198 struct ieee80211com *ic = &sc->sc_ic; 2199 struct ieee80211vap *vap = 2200 TAILQ_FIRST(&ic->ic_vaps); 2201 ath_tdma_beacon_send(sc, vap); 2202 sc->sc_tdmaswba = 2203 vap->iv_tdma->tdma_bintval; 2204 } else 2205 sc->sc_tdmaswba--; 2206 } else 2207 #endif 2208 { 2209 ath_beacon_proc(sc, 0); 2210 #ifdef IEEE80211_SUPPORT_SUPERG 2211 /* 2212 * Schedule the rx taskq in case there's no 2213 * traffic so any frames held on the staging 2214 * queue are aged and potentially flushed. 2215 */ 2216 sc->sc_rx.recv_sched(sc, 1); 2217 #endif 2218 } 2219 } 2220 if (status & HAL_INT_RXEOL) { 2221 int imask; 2222 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2223 if (! sc->sc_isedma) { 2224 ATH_PCU_LOCK(sc); 2225 /* 2226 * NB: the hardware should re-read the link when 2227 * RXE bit is written, but it doesn't work at 2228 * least on older hardware revs. 2229 */ 2230 sc->sc_stats.ast_rxeol++; 2231 /* 2232 * Disable RXEOL/RXORN - prevent an interrupt 2233 * storm until the PCU logic can be reset. 2234 * In case the interface is reset some other 2235 * way before "sc_kickpcu" is called, don't 2236 * modify sc_imask - that way if it is reset 2237 * by a call to ath_reset() somehow, the 2238 * interrupt mask will be correctly reprogrammed. 2239 */ 2240 imask = sc->sc_imask; 2241 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2242 ath_hal_intrset(ah, imask); 2243 /* 2244 * Only blank sc_rxlink if we've not yet kicked 2245 * the PCU. 2246 * 2247 * This isn't entirely correct - the correct solution 2248 * would be to have a PCU lock and engage that for 2249 * the duration of the PCU fiddling; which would include 2250 * running the RX process. Otherwise we could end up 2251 * messing up the RX descriptor chain and making the 2252 * RX desc list much shorter. 2253 */ 2254 if (! sc->sc_kickpcu) 2255 sc->sc_rxlink = NULL; 2256 sc->sc_kickpcu = 1; 2257 ATH_PCU_UNLOCK(sc); 2258 } 2259 /* 2260 * Enqueue an RX proc to handle whatever 2261 * is in the RX queue. 2262 * This will then kick the PCU if required. 2263 */ 2264 sc->sc_rx.recv_sched(sc, 1); 2265 } 2266 if (status & HAL_INT_TXURN) { 2267 sc->sc_stats.ast_txurn++; 2268 /* bump tx trigger level */ 2269 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2270 } 2271 /* 2272 * Handle both the legacy and RX EDMA interrupt bits. 2273 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2274 */ 2275 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2276 sc->sc_stats.ast_rx_intr++; 2277 sc->sc_rx.recv_sched(sc, 1); 2278 } 2279 if (status & HAL_INT_TX) { 2280 sc->sc_stats.ast_tx_intr++; 2281 /* 2282 * Grab all the currently set bits in the HAL txq bitmap 2283 * and blank them. This is the only place we should be 2284 * doing this. 2285 */ 2286 if (! sc->sc_isedma) { 2287 ATH_PCU_LOCK(sc); 2288 txqs = 0xffffffff; 2289 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2290 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2291 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2292 txqs, 2293 sc->sc_txq_active, 2294 sc->sc_txq_active | txqs); 2295 sc->sc_txq_active |= txqs; 2296 ATH_PCU_UNLOCK(sc); 2297 } 2298 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2299 } 2300 if (status & HAL_INT_BMISS) { 2301 sc->sc_stats.ast_bmiss++; 2302 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2303 } 2304 if (status & HAL_INT_GTT) 2305 sc->sc_stats.ast_tx_timeout++; 2306 if (status & HAL_INT_CST) 2307 sc->sc_stats.ast_tx_cst++; 2308 if (status & HAL_INT_MIB) { 2309 sc->sc_stats.ast_mib++; 2310 ATH_PCU_LOCK(sc); 2311 /* 2312 * Disable interrupts until we service the MIB 2313 * interrupt; otherwise it will continue to fire. 2314 */ 2315 ath_hal_intrset(ah, 0); 2316 /* 2317 * Let the hal handle the event. We assume it will 2318 * clear whatever condition caused the interrupt. 2319 */ 2320 ath_hal_mibevent(ah, &sc->sc_halstats); 2321 /* 2322 * Don't reset the interrupt if we've just 2323 * kicked the PCU, or we may get a nested 2324 * RXEOL before the rxproc has had a chance 2325 * to run. 2326 */ 2327 if (sc->sc_kickpcu == 0) 2328 ath_hal_intrset(ah, sc->sc_imask); 2329 ATH_PCU_UNLOCK(sc); 2330 } 2331 if (status & HAL_INT_RXORN) { 2332 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2333 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2334 sc->sc_stats.ast_rxorn++; 2335 } 2336 if (status & HAL_INT_TSFOOR) { 2337 /* out of range beacon - wake the chip up, 2338 * but don't modify self-gen frame config */ 2339 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2340 sc->sc_syncbeacon = 1; 2341 ATH_LOCK(sc); 2342 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2343 ATH_UNLOCK(sc); 2344 } 2345 if (status & HAL_INT_MCI) { 2346 ath_btcoex_mci_intr(sc); 2347 } 2348 } 2349 ATH_PCU_LOCK(sc); 2350 sc->sc_intr_cnt--; 2351 ATH_PCU_UNLOCK(sc); 2352 2353 ATH_LOCK(sc); 2354 ath_power_restore_power_state(sc); 2355 ATH_UNLOCK(sc); 2356 } 2357 2358 static void 2359 ath_fatal_proc(void *arg, int pending) 2360 { 2361 struct ath_softc *sc = arg; 2362 u_int32_t *state; 2363 u_int32_t len; 2364 void *sp; 2365 2366 if (sc->sc_invalid) 2367 return; 2368 2369 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2370 /* 2371 * Fatal errors are unrecoverable. Typically these 2372 * are caused by DMA errors. Collect h/w state from 2373 * the hal so we can diagnose what's going on. 2374 */ 2375 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2376 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2377 state = sp; 2378 device_printf(sc->sc_dev, 2379 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2380 state[1] , state[2], state[3], state[4], state[5]); 2381 } 2382 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2383 } 2384 2385 static void 2386 ath_bmiss_vap(struct ieee80211vap *vap) 2387 { 2388 struct ath_softc *sc = vap->iv_ic->ic_softc; 2389 2390 /* 2391 * Workaround phantom bmiss interrupts by sanity-checking 2392 * the time of our last rx'd frame. If it is within the 2393 * beacon miss interval then ignore the interrupt. If it's 2394 * truly a bmiss we'll get another interrupt soon and that'll 2395 * be dispatched up for processing. Note this applies only 2396 * for h/w beacon miss events. 2397 */ 2398 2399 /* 2400 * XXX TODO: Just read the TSF during the interrupt path; 2401 * that way we don't have to wake up again just to read it 2402 * again. 2403 */ 2404 ATH_LOCK(sc); 2405 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2406 ATH_UNLOCK(sc); 2407 2408 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2409 u_int64_t lastrx = sc->sc_lastrx; 2410 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2411 /* XXX should take a locked ref to iv_bss */ 2412 u_int bmisstimeout = 2413 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2414 2415 DPRINTF(sc, ATH_DEBUG_BEACON, 2416 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2417 __func__, (unsigned long long) tsf, 2418 (unsigned long long)(tsf - lastrx), 2419 (unsigned long long) lastrx, bmisstimeout); 2420 2421 if (tsf - lastrx <= bmisstimeout) { 2422 sc->sc_stats.ast_bmiss_phantom++; 2423 2424 ATH_LOCK(sc); 2425 ath_power_restore_power_state(sc); 2426 ATH_UNLOCK(sc); 2427 2428 return; 2429 } 2430 } 2431 2432 /* 2433 * Keep the hardware awake if it's asleep (and leave self-gen 2434 * frame config alone) until the next beacon, so we can resync 2435 * against the next beacon. 2436 * 2437 * This handles three common beacon miss cases in STA powersave mode - 2438 * (a) the beacon TBTT isnt a multiple of bintval; 2439 * (b) the beacon was missed; and 2440 * (c) the beacons are being delayed because the AP is busy and 2441 * isn't reliably able to meet its TBTT. 2442 */ 2443 ATH_LOCK(sc); 2444 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2445 ath_power_restore_power_state(sc); 2446 ATH_UNLOCK(sc); 2447 DPRINTF(sc, ATH_DEBUG_BEACON, 2448 "%s: forced awake; force syncbeacon=1\n", __func__); 2449 2450 /* 2451 * Attempt to force a beacon resync. 2452 */ 2453 sc->sc_syncbeacon = 1; 2454 2455 ATH_VAP(vap)->av_bmiss(vap); 2456 } 2457 2458 /* XXX this needs a force wakeup! */ 2459 int 2460 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2461 { 2462 uint32_t rsize; 2463 void *sp; 2464 2465 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2466 return 0; 2467 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2468 *hangs = *(uint32_t *)sp; 2469 return 1; 2470 } 2471 2472 static void 2473 ath_bmiss_proc(void *arg, int pending) 2474 { 2475 struct ath_softc *sc = arg; 2476 uint32_t hangs; 2477 2478 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2479 2480 ATH_LOCK(sc); 2481 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2482 ATH_UNLOCK(sc); 2483 2484 ath_beacon_miss(sc); 2485 2486 /* 2487 * Do a reset upon any becaon miss event. 2488 * 2489 * It may be a non-recognised RX clear hang which needs a reset 2490 * to clear. 2491 */ 2492 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2493 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC); 2494 device_printf(sc->sc_dev, 2495 "bb hang detected (0x%x), resetting\n", hangs); 2496 } else { 2497 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2498 ieee80211_beacon_miss(&sc->sc_ic); 2499 } 2500 2501 /* Force a beacon resync, in case they've drifted */ 2502 sc->sc_syncbeacon = 1; 2503 2504 ATH_LOCK(sc); 2505 ath_power_restore_power_state(sc); 2506 ATH_UNLOCK(sc); 2507 } 2508 2509 /* 2510 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2511 * calcs together with WME. If necessary disable the crypto 2512 * hardware and mark the 802.11 state so keys will be setup 2513 * with the MIC work done in software. 2514 */ 2515 static void 2516 ath_settkipmic(struct ath_softc *sc) 2517 { 2518 struct ieee80211com *ic = &sc->sc_ic; 2519 2520 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2521 if (ic->ic_flags & IEEE80211_F_WME) { 2522 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2523 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2524 } else { 2525 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2526 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2527 } 2528 } 2529 } 2530 2531 static void 2532 ath_vap_clear_quiet_ie(struct ath_softc *sc) 2533 { 2534 struct ieee80211com *ic = &sc->sc_ic; 2535 struct ieee80211vap *vap; 2536 struct ath_vap *avp; 2537 2538 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2539 avp = ATH_VAP(vap); 2540 /* Quiet time handling - ensure we resync */ 2541 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 2542 } 2543 } 2544 2545 static int 2546 ath_init(struct ath_softc *sc) 2547 { 2548 struct ieee80211com *ic = &sc->sc_ic; 2549 struct ath_hal *ah = sc->sc_ah; 2550 HAL_STATUS status; 2551 2552 ATH_LOCK_ASSERT(sc); 2553 2554 /* 2555 * Force the sleep state awake. 2556 */ 2557 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2558 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2559 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2560 2561 /* 2562 * Stop anything previously setup. This is safe 2563 * whether this is the first time through or not. 2564 */ 2565 ath_stop(sc); 2566 2567 /* 2568 * The basic interface to setting the hardware in a good 2569 * state is ``reset''. On return the hardware is known to 2570 * be powered up and with interrupts disabled. This must 2571 * be followed by initialization of the appropriate bits 2572 * and then setup of the interrupt mask. 2573 */ 2574 ath_settkipmic(sc); 2575 ath_update_chainmasks(sc, ic->ic_curchan); 2576 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2577 sc->sc_cur_rxchainmask); 2578 2579 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2580 HAL_RESET_NORMAL, &status)) { 2581 device_printf(sc->sc_dev, 2582 "unable to reset hardware; hal status %u\n", status); 2583 return (ENODEV); 2584 } 2585 2586 ATH_RX_LOCK(sc); 2587 sc->sc_rx_stopped = 1; 2588 sc->sc_rx_resetted = 1; 2589 ATH_RX_UNLOCK(sc); 2590 2591 /* Clear quiet IE state for each VAP */ 2592 ath_vap_clear_quiet_ie(sc); 2593 2594 ath_chan_change(sc, ic->ic_curchan); 2595 2596 /* Let DFS at it in case it's a DFS channel */ 2597 ath_dfs_radar_enable(sc, ic->ic_curchan); 2598 2599 /* Let spectral at in case spectral is enabled */ 2600 ath_spectral_enable(sc, ic->ic_curchan); 2601 2602 /* 2603 * Let bluetooth coexistence at in case it's needed for this channel 2604 */ 2605 ath_btcoex_enable(sc, ic->ic_curchan); 2606 2607 /* 2608 * If we're doing TDMA, enforce the TXOP limitation for chips that 2609 * support it. 2610 */ 2611 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2612 ath_hal_setenforcetxop(sc->sc_ah, 1); 2613 else 2614 ath_hal_setenforcetxop(sc->sc_ah, 0); 2615 2616 /* 2617 * Likewise this is set during reset so update 2618 * state cached in the driver. 2619 */ 2620 sc->sc_diversity = ath_hal_getdiversity(ah); 2621 sc->sc_lastlongcal = ticks; 2622 sc->sc_resetcal = 1; 2623 sc->sc_lastcalreset = 0; 2624 sc->sc_lastani = ticks; 2625 sc->sc_lastshortcal = ticks; 2626 sc->sc_doresetcal = AH_FALSE; 2627 /* 2628 * Beacon timers were cleared here; give ath_newstate() 2629 * a hint that the beacon timers should be poked when 2630 * things transition to the RUN state. 2631 */ 2632 sc->sc_beacons = 0; 2633 2634 /* 2635 * Setup the hardware after reset: the key cache 2636 * is filled as needed and the receive engine is 2637 * set going. Frame transmit is handled entirely 2638 * in the frame output path; there's nothing to do 2639 * here except setup the interrupt mask. 2640 */ 2641 if (ath_startrecv(sc) != 0) { 2642 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2643 ath_power_restore_power_state(sc); 2644 return (ENODEV); 2645 } 2646 2647 /* 2648 * Enable interrupts. 2649 */ 2650 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2651 | HAL_INT_RXORN | HAL_INT_TXURN 2652 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2653 2654 /* 2655 * Enable RX EDMA bits. Note these overlap with 2656 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2657 */ 2658 if (sc->sc_isedma) 2659 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2660 2661 /* 2662 * If we're an EDMA NIC, we don't care about RXEOL. 2663 * Writing a new descriptor in will simply restart 2664 * RX DMA. 2665 */ 2666 if (! sc->sc_isedma) 2667 sc->sc_imask |= HAL_INT_RXEOL; 2668 2669 /* 2670 * Enable MCI interrupt for MCI devices. 2671 */ 2672 if (sc->sc_btcoex_mci) 2673 sc->sc_imask |= HAL_INT_MCI; 2674 2675 /* 2676 * Enable MIB interrupts when there are hardware phy counters. 2677 * Note we only do this (at the moment) for station mode. 2678 */ 2679 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2680 sc->sc_imask |= HAL_INT_MIB; 2681 2682 /* 2683 * XXX add capability for this. 2684 * 2685 * If we're in STA mode (and maybe IBSS?) then register for 2686 * TSFOOR interrupts. 2687 */ 2688 if (ic->ic_opmode == IEEE80211_M_STA) 2689 sc->sc_imask |= HAL_INT_TSFOOR; 2690 2691 /* Enable global TX timeout and carrier sense timeout if available */ 2692 if (ath_hal_gtxto_supported(ah)) 2693 sc->sc_imask |= HAL_INT_GTT; 2694 2695 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2696 __func__, sc->sc_imask); 2697 2698 sc->sc_running = 1; 2699 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2700 ath_hal_intrset(ah, sc->sc_imask); 2701 2702 ath_power_restore_power_state(sc); 2703 2704 return (0); 2705 } 2706 2707 static void 2708 ath_stop(struct ath_softc *sc) 2709 { 2710 struct ath_hal *ah = sc->sc_ah; 2711 2712 ATH_LOCK_ASSERT(sc); 2713 2714 /* 2715 * Wake the hardware up before fiddling with it. 2716 */ 2717 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2718 2719 if (sc->sc_running) { 2720 /* 2721 * Shutdown the hardware and driver: 2722 * reset 802.11 state machine 2723 * turn off timers 2724 * disable interrupts 2725 * turn off the radio 2726 * clear transmit machinery 2727 * clear receive machinery 2728 * drain and release tx queues 2729 * reclaim beacon resources 2730 * power down hardware 2731 * 2732 * Note that some of this work is not possible if the 2733 * hardware is gone (invalid). 2734 */ 2735 #ifdef ATH_TX99_DIAG 2736 if (sc->sc_tx99 != NULL) 2737 sc->sc_tx99->stop(sc->sc_tx99); 2738 #endif 2739 callout_stop(&sc->sc_wd_ch); 2740 sc->sc_wd_timer = 0; 2741 sc->sc_running = 0; 2742 if (!sc->sc_invalid) { 2743 if (sc->sc_softled) { 2744 callout_stop(&sc->sc_ledtimer); 2745 ath_hal_gpioset(ah, sc->sc_ledpin, 2746 !sc->sc_ledon); 2747 sc->sc_blinking = 0; 2748 } 2749 ath_hal_intrset(ah, 0); 2750 } 2751 /* XXX we should stop RX regardless of whether it's valid */ 2752 if (!sc->sc_invalid) { 2753 ath_stoprecv(sc, 1); 2754 ath_hal_phydisable(ah); 2755 } else 2756 sc->sc_rxlink = NULL; 2757 ath_draintxq(sc, ATH_RESET_DEFAULT); 2758 ath_beacon_free(sc); /* XXX not needed */ 2759 } 2760 2761 /* And now, restore the current power state */ 2762 ath_power_restore_power_state(sc); 2763 } 2764 2765 /* 2766 * Wait until all pending TX/RX has completed. 2767 * 2768 * This waits until all existing transmit, receive and interrupts 2769 * have completed. It's assumed that the caller has first 2770 * grabbed the reset lock so it doesn't try to do overlapping 2771 * chip resets. 2772 */ 2773 #define MAX_TXRX_ITERATIONS 100 2774 static void 2775 ath_txrx_stop_locked(struct ath_softc *sc) 2776 { 2777 int i = MAX_TXRX_ITERATIONS; 2778 2779 ATH_UNLOCK_ASSERT(sc); 2780 ATH_PCU_LOCK_ASSERT(sc); 2781 2782 /* 2783 * Sleep until all the pending operations have completed. 2784 * 2785 * The caller must ensure that reset has been incremented 2786 * or the pending operations may continue being queued. 2787 */ 2788 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2789 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2790 if (i <= 0) 2791 break; 2792 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2793 msecs_to_ticks(10)); 2794 i--; 2795 } 2796 2797 if (i <= 0) 2798 device_printf(sc->sc_dev, 2799 "%s: didn't finish after %d iterations\n", 2800 __func__, MAX_TXRX_ITERATIONS); 2801 } 2802 #undef MAX_TXRX_ITERATIONS 2803 2804 #if 0 2805 static void 2806 ath_txrx_stop(struct ath_softc *sc) 2807 { 2808 ATH_UNLOCK_ASSERT(sc); 2809 ATH_PCU_UNLOCK_ASSERT(sc); 2810 2811 ATH_PCU_LOCK(sc); 2812 ath_txrx_stop_locked(sc); 2813 ATH_PCU_UNLOCK(sc); 2814 } 2815 #endif 2816 2817 static void 2818 ath_txrx_start(struct ath_softc *sc) 2819 { 2820 2821 taskqueue_unblock(sc->sc_tq); 2822 } 2823 2824 /* 2825 * Grab the reset lock, and wait around until no one else 2826 * is trying to do anything with it. 2827 * 2828 * This is totally horrible but we can't hold this lock for 2829 * long enough to do TX/RX or we end up with net80211/ip stack 2830 * LORs and eventual deadlock. 2831 * 2832 * "dowait" signals whether to spin, waiting for the reset 2833 * lock count to reach 0. This should (for now) only be used 2834 * during the reset path, as the rest of the code may not 2835 * be locking-reentrant enough to behave correctly. 2836 * 2837 * Another, cleaner way should be found to serialise all of 2838 * these operations. 2839 */ 2840 #define MAX_RESET_ITERATIONS 25 2841 static int 2842 ath_reset_grablock(struct ath_softc *sc, int dowait) 2843 { 2844 int w = 0; 2845 int i = MAX_RESET_ITERATIONS; 2846 2847 ATH_PCU_LOCK_ASSERT(sc); 2848 do { 2849 if (sc->sc_inreset_cnt == 0) { 2850 w = 1; 2851 break; 2852 } 2853 if (dowait == 0) { 2854 w = 0; 2855 break; 2856 } 2857 ATH_PCU_UNLOCK(sc); 2858 /* 2859 * 1 tick is likely not enough time for long calibrations 2860 * to complete. So we should wait quite a while. 2861 */ 2862 pause("ath_reset_grablock", msecs_to_ticks(100)); 2863 i--; 2864 ATH_PCU_LOCK(sc); 2865 } while (i > 0); 2866 2867 /* 2868 * We always increment the refcounter, regardless 2869 * of whether we succeeded to get it in an exclusive 2870 * way. 2871 */ 2872 sc->sc_inreset_cnt++; 2873 2874 if (i <= 0) 2875 device_printf(sc->sc_dev, 2876 "%s: didn't finish after %d iterations\n", 2877 __func__, MAX_RESET_ITERATIONS); 2878 2879 if (w == 0) 2880 device_printf(sc->sc_dev, 2881 "%s: warning, recursive reset path!\n", 2882 __func__); 2883 2884 return w; 2885 } 2886 #undef MAX_RESET_ITERATIONS 2887 2888 /* 2889 * Reset the hardware w/o losing operational state. This is 2890 * basically a more efficient way of doing ath_stop, ath_init, 2891 * followed by state transitions to the current 802.11 2892 * operational state. Used to recover from various errors and 2893 * to reset or reload hardware state. 2894 */ 2895 int 2896 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type, 2897 HAL_RESET_TYPE ah_reset_type) 2898 { 2899 struct ieee80211com *ic = &sc->sc_ic; 2900 struct ath_hal *ah = sc->sc_ah; 2901 HAL_STATUS status; 2902 int i; 2903 2904 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2905 2906 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2907 ATH_PCU_UNLOCK_ASSERT(sc); 2908 ATH_UNLOCK_ASSERT(sc); 2909 2910 /* Try to (stop any further TX/RX from occurring */ 2911 taskqueue_block(sc->sc_tq); 2912 2913 /* 2914 * Wake the hardware up. 2915 */ 2916 ATH_LOCK(sc); 2917 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2918 ATH_UNLOCK(sc); 2919 2920 ATH_PCU_LOCK(sc); 2921 2922 /* 2923 * Grab the reset lock before TX/RX is stopped. 2924 * 2925 * This is needed to ensure that when the TX/RX actually does finish, 2926 * no further TX/RX/reset runs in parallel with this. 2927 */ 2928 if (ath_reset_grablock(sc, 1) == 0) { 2929 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2930 __func__); 2931 } 2932 2933 /* disable interrupts */ 2934 ath_hal_intrset(ah, 0); 2935 2936 /* 2937 * Now, ensure that any in progress TX/RX completes before we 2938 * continue. 2939 */ 2940 ath_txrx_stop_locked(sc); 2941 2942 ATH_PCU_UNLOCK(sc); 2943 2944 /* 2945 * Regardless of whether we're doing a no-loss flush or 2946 * not, stop the PCU and handle what's in the RX queue. 2947 * That way frames aren't dropped which shouldn't be. 2948 */ 2949 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2950 ath_rx_flush(sc); 2951 2952 /* 2953 * Should now wait for pending TX/RX to complete 2954 * and block future ones from occurring. This needs to be 2955 * done before the TX queue is drained. 2956 */ 2957 ath_draintxq(sc, reset_type); /* stop xmit side */ 2958 2959 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2960 /* NB: indicate channel change so we do a full reset */ 2961 ath_update_chainmasks(sc, ic->ic_curchan); 2962 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2963 sc->sc_cur_rxchainmask); 2964 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2965 ah_reset_type, &status)) 2966 device_printf(sc->sc_dev, 2967 "%s: unable to reset hardware; hal status %u\n", 2968 __func__, status); 2969 sc->sc_diversity = ath_hal_getdiversity(ah); 2970 2971 ATH_RX_LOCK(sc); 2972 sc->sc_rx_stopped = 1; 2973 sc->sc_rx_resetted = 1; 2974 ATH_RX_UNLOCK(sc); 2975 2976 /* Quiet time handling - ensure we resync */ 2977 ath_vap_clear_quiet_ie(sc); 2978 2979 /* Let DFS at it in case it's a DFS channel */ 2980 ath_dfs_radar_enable(sc, ic->ic_curchan); 2981 2982 /* Let spectral at in case spectral is enabled */ 2983 ath_spectral_enable(sc, ic->ic_curchan); 2984 2985 /* 2986 * Let bluetooth coexistence at in case it's needed for this channel 2987 */ 2988 ath_btcoex_enable(sc, ic->ic_curchan); 2989 2990 /* 2991 * If we're doing TDMA, enforce the TXOP limitation for chips that 2992 * support it. 2993 */ 2994 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2995 ath_hal_setenforcetxop(sc->sc_ah, 1); 2996 else 2997 ath_hal_setenforcetxop(sc->sc_ah, 0); 2998 2999 if (ath_startrecv(sc) != 0) /* restart recv */ 3000 device_printf(sc->sc_dev, 3001 "%s: unable to start recv logic\n", __func__); 3002 /* 3003 * We may be doing a reset in response to an ioctl 3004 * that changes the channel so update any state that 3005 * might change as a result. 3006 */ 3007 ath_chan_change(sc, ic->ic_curchan); 3008 if (sc->sc_beacons) { /* restart beacons */ 3009 #ifdef IEEE80211_SUPPORT_TDMA 3010 if (sc->sc_tdma) 3011 ath_tdma_config(sc, NULL); 3012 else 3013 #endif 3014 ath_beacon_config(sc, NULL); 3015 } 3016 3017 /* 3018 * Release the reset lock and re-enable interrupts here. 3019 * If an interrupt was being processed in ath_intr(), 3020 * it would disable interrupts at this point. So we have 3021 * to atomically enable interrupts and decrement the 3022 * reset counter - this way ath_intr() doesn't end up 3023 * disabling interrupts without a corresponding enable 3024 * in the rest or channel change path. 3025 * 3026 * Grab the TX reference in case we need to transmit. 3027 * That way a parallel transmit doesn't. 3028 */ 3029 ATH_PCU_LOCK(sc); 3030 sc->sc_inreset_cnt--; 3031 sc->sc_txstart_cnt++; 3032 /* XXX only do this if sc_inreset_cnt == 0? */ 3033 ath_hal_intrset(ah, sc->sc_imask); 3034 ATH_PCU_UNLOCK(sc); 3035 3036 /* 3037 * TX and RX can be started here. If it were started with 3038 * sc_inreset_cnt > 0, the TX and RX path would abort. 3039 * Thus if this is a nested call through the reset or 3040 * channel change code, TX completion will occur but 3041 * RX completion and ath_start / ath_tx_start will not 3042 * run. 3043 */ 3044 3045 /* Restart TX/RX as needed */ 3046 ath_txrx_start(sc); 3047 3048 /* XXX TODO: we need to hold the tx refcount here! */ 3049 3050 /* Restart TX completion and pending TX */ 3051 if (reset_type == ATH_RESET_NOLOSS) { 3052 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3053 if (ATH_TXQ_SETUP(sc, i)) { 3054 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3055 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 3056 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3057 3058 ATH_TX_LOCK(sc); 3059 ath_txq_sched(sc, &sc->sc_txq[i]); 3060 ATH_TX_UNLOCK(sc); 3061 } 3062 } 3063 } 3064 3065 ATH_LOCK(sc); 3066 ath_power_restore_power_state(sc); 3067 ATH_UNLOCK(sc); 3068 3069 ATH_PCU_LOCK(sc); 3070 sc->sc_txstart_cnt--; 3071 ATH_PCU_UNLOCK(sc); 3072 3073 /* Handle any frames in the TX queue */ 3074 /* 3075 * XXX should this be done by the caller, rather than 3076 * ath_reset() ? 3077 */ 3078 ath_tx_kick(sc); /* restart xmit */ 3079 return 0; 3080 } 3081 3082 static int 3083 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3084 { 3085 struct ieee80211com *ic = vap->iv_ic; 3086 struct ath_softc *sc = ic->ic_softc; 3087 struct ath_hal *ah = sc->sc_ah; 3088 3089 switch (cmd) { 3090 case IEEE80211_IOC_TXPOWER: 3091 /* 3092 * If per-packet TPC is enabled, then we have nothing 3093 * to do; otherwise we need to force the global limit. 3094 * All this can happen directly; no need to reset. 3095 */ 3096 if (!ath_hal_gettpc(ah)) 3097 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3098 return 0; 3099 } 3100 /* XXX? Full or NOLOSS? */ 3101 return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL); 3102 } 3103 3104 struct ath_buf * 3105 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3106 { 3107 struct ath_buf *bf; 3108 3109 ATH_TXBUF_LOCK_ASSERT(sc); 3110 3111 if (btype == ATH_BUFTYPE_MGMT) 3112 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3113 else 3114 bf = TAILQ_FIRST(&sc->sc_txbuf); 3115 3116 if (bf == NULL) { 3117 sc->sc_stats.ast_tx_getnobuf++; 3118 } else { 3119 if (bf->bf_flags & ATH_BUF_BUSY) { 3120 sc->sc_stats.ast_tx_getbusybuf++; 3121 bf = NULL; 3122 } 3123 } 3124 3125 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3126 if (btype == ATH_BUFTYPE_MGMT) 3127 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3128 else { 3129 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3130 sc->sc_txbuf_cnt--; 3131 3132 /* 3133 * This shuldn't happen; however just to be 3134 * safe print a warning and fudge the txbuf 3135 * count. 3136 */ 3137 if (sc->sc_txbuf_cnt < 0) { 3138 device_printf(sc->sc_dev, 3139 "%s: sc_txbuf_cnt < 0?\n", 3140 __func__); 3141 sc->sc_txbuf_cnt = 0; 3142 } 3143 } 3144 } else 3145 bf = NULL; 3146 3147 if (bf == NULL) { 3148 /* XXX should check which list, mgmt or otherwise */ 3149 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3150 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3151 "out of xmit buffers" : "xmit buffer busy"); 3152 return NULL; 3153 } 3154 3155 /* XXX TODO: should do this at buffer list initialisation */ 3156 /* XXX (then, ensure the buffer has the right flag set) */ 3157 bf->bf_flags = 0; 3158 if (btype == ATH_BUFTYPE_MGMT) 3159 bf->bf_flags |= ATH_BUF_MGMT; 3160 else 3161 bf->bf_flags &= (~ATH_BUF_MGMT); 3162 3163 /* Valid bf here; clear some basic fields */ 3164 bf->bf_next = NULL; /* XXX just to be sure */ 3165 bf->bf_last = NULL; /* XXX again, just to be sure */ 3166 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3167 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3168 3169 /* 3170 * Track the descriptor ID only if doing EDMA 3171 */ 3172 if (sc->sc_isedma) { 3173 bf->bf_descid = sc->sc_txbuf_descid; 3174 sc->sc_txbuf_descid++; 3175 } 3176 3177 return bf; 3178 } 3179 3180 /* 3181 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3182 * can't be thrown back on the queue as they could still be 3183 * in use by the hardware. 3184 * 3185 * This duplicates the buffer, or returns NULL. 3186 * 3187 * The descriptor is also copied but the link pointers and 3188 * the DMA segments aren't copied; this frame should thus 3189 * be again passed through the descriptor setup/chain routines 3190 * so the link is correct. 3191 * 3192 * The caller must free the buffer using ath_freebuf(). 3193 */ 3194 struct ath_buf * 3195 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3196 { 3197 struct ath_buf *tbf; 3198 3199 tbf = ath_getbuf(sc, 3200 (bf->bf_flags & ATH_BUF_MGMT) ? 3201 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3202 if (tbf == NULL) 3203 return NULL; /* XXX failure? Why? */ 3204 3205 /* Copy basics */ 3206 tbf->bf_next = NULL; 3207 tbf->bf_nseg = bf->bf_nseg; 3208 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3209 tbf->bf_status = bf->bf_status; 3210 tbf->bf_m = bf->bf_m; 3211 tbf->bf_node = bf->bf_node; 3212 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3213 /* will be setup by the chain/setup function */ 3214 tbf->bf_lastds = NULL; 3215 /* for now, last == self */ 3216 tbf->bf_last = tbf; 3217 tbf->bf_comp = bf->bf_comp; 3218 3219 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3220 3221 /* The caller has to re-init the descriptor + links */ 3222 3223 /* 3224 * Free the DMA mapping here, before we NULL the mbuf. 3225 * We must only call bus_dmamap_unload() once per mbuf chain 3226 * or behaviour is undefined. 3227 */ 3228 if (bf->bf_m != NULL) { 3229 /* 3230 * XXX is this POSTWRITE call required? 3231 */ 3232 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3233 BUS_DMASYNC_POSTWRITE); 3234 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3235 } 3236 3237 bf->bf_m = NULL; 3238 bf->bf_node = NULL; 3239 3240 /* Copy state */ 3241 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3242 3243 return tbf; 3244 } 3245 3246 struct ath_buf * 3247 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3248 { 3249 struct ath_buf *bf; 3250 3251 ATH_TXBUF_LOCK(sc); 3252 bf = _ath_getbuf_locked(sc, btype); 3253 /* 3254 * If a mgmt buffer was requested but we're out of those, 3255 * try requesting a normal one. 3256 */ 3257 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3258 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3259 ATH_TXBUF_UNLOCK(sc); 3260 if (bf == NULL) { 3261 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3262 sc->sc_stats.ast_tx_qstop++; 3263 } 3264 return bf; 3265 } 3266 3267 /* 3268 * Transmit a single frame. 3269 * 3270 * net80211 will free the node reference if the transmit 3271 * fails, so don't free the node reference here. 3272 */ 3273 static int 3274 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3275 { 3276 struct ath_softc *sc = ic->ic_softc; 3277 struct ieee80211_node *ni; 3278 struct mbuf *next; 3279 struct ath_buf *bf; 3280 ath_bufhead frags; 3281 int retval = 0; 3282 3283 /* 3284 * Tell the reset path that we're currently transmitting. 3285 */ 3286 ATH_PCU_LOCK(sc); 3287 if (sc->sc_inreset_cnt > 0) { 3288 DPRINTF(sc, ATH_DEBUG_XMIT, 3289 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3290 ATH_PCU_UNLOCK(sc); 3291 sc->sc_stats.ast_tx_qstop++; 3292 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3293 return (ENOBUFS); /* XXX should be EINVAL or? */ 3294 } 3295 sc->sc_txstart_cnt++; 3296 ATH_PCU_UNLOCK(sc); 3297 3298 /* Wake the hardware up already */ 3299 ATH_LOCK(sc); 3300 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3301 ATH_UNLOCK(sc); 3302 3303 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3304 /* 3305 * Grab the TX lock - it's ok to do this here; we haven't 3306 * yet started transmitting. 3307 */ 3308 ATH_TX_LOCK(sc); 3309 3310 /* 3311 * Node reference, if there's one. 3312 */ 3313 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3314 3315 /* 3316 * Enforce how deep a node queue can get. 3317 * 3318 * XXX it would be nicer if we kept an mbuf queue per 3319 * node and only whacked them into ath_bufs when we 3320 * are ready to schedule some traffic from them. 3321 * .. that may come later. 3322 * 3323 * XXX we should also track the per-node hardware queue 3324 * depth so it is easy to limit the _SUM_ of the swq and 3325 * hwq frames. Since we only schedule two HWQ frames 3326 * at a time, this should be OK for now. 3327 */ 3328 if ((!(m->m_flags & M_EAPOL)) && 3329 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3330 sc->sc_stats.ast_tx_nodeq_overflow++; 3331 retval = ENOBUFS; 3332 goto finish; 3333 } 3334 3335 /* 3336 * Check how many TX buffers are available. 3337 * 3338 * If this is for non-EAPOL traffic, just leave some 3339 * space free in order for buffer cloning and raw 3340 * frame transmission to occur. 3341 * 3342 * If it's for EAPOL traffic, ignore this for now. 3343 * Management traffic will be sent via the raw transmit 3344 * method which bypasses this check. 3345 * 3346 * This is needed to ensure that EAPOL frames during 3347 * (re) keying have a chance to go out. 3348 * 3349 * See kern/138379 for more information. 3350 */ 3351 if ((!(m->m_flags & M_EAPOL)) && 3352 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3353 sc->sc_stats.ast_tx_nobuf++; 3354 retval = ENOBUFS; 3355 goto finish; 3356 } 3357 3358 /* 3359 * Grab a TX buffer and associated resources. 3360 * 3361 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3362 * That way even with temporary buffer exhaustion due to 3363 * the data path doesn't leave us without the ability 3364 * to transmit management frames. 3365 * 3366 * Otherwise allocate a normal buffer. 3367 */ 3368 if (m->m_flags & M_EAPOL) 3369 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3370 else 3371 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3372 3373 if (bf == NULL) { 3374 /* 3375 * If we failed to allocate a buffer, fail. 3376 * 3377 * We shouldn't fail normally, due to the check 3378 * above. 3379 */ 3380 sc->sc_stats.ast_tx_nobuf++; 3381 retval = ENOBUFS; 3382 goto finish; 3383 } 3384 3385 /* 3386 * At this point we have a buffer; so we need to free it 3387 * if we hit any error conditions. 3388 */ 3389 3390 /* 3391 * Check for fragmentation. If this frame 3392 * has been broken up verify we have enough 3393 * buffers to send all the fragments so all 3394 * go out or none... 3395 */ 3396 TAILQ_INIT(&frags); 3397 if ((m->m_flags & M_FRAG) && 3398 !ath_txfrag_setup(sc, &frags, m, ni)) { 3399 DPRINTF(sc, ATH_DEBUG_XMIT, 3400 "%s: out of txfrag buffers\n", __func__); 3401 sc->sc_stats.ast_tx_nofrag++; 3402 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3403 /* 3404 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3405 * we shouldn't free it but return back. 3406 */ 3407 ieee80211_free_mbuf(m); 3408 m = NULL; 3409 goto bad; 3410 } 3411 3412 /* 3413 * At this point if we have any TX fragments, then we will 3414 * have bumped the node reference once for each of those. 3415 */ 3416 3417 /* 3418 * XXX Is there anything actually _enforcing_ that the 3419 * fragments are being transmitted in one hit, rather than 3420 * being interleaved with other transmissions on that 3421 * hardware queue? 3422 * 3423 * The ATH TX output lock is the only thing serialising this 3424 * right now. 3425 */ 3426 3427 /* 3428 * Calculate the "next fragment" length field in ath_buf 3429 * in order to let the transmit path know enough about 3430 * what to next write to the hardware. 3431 */ 3432 if (m->m_flags & M_FRAG) { 3433 struct ath_buf *fbf = bf; 3434 struct ath_buf *n_fbf = NULL; 3435 struct mbuf *fm = m->m_nextpkt; 3436 3437 /* 3438 * We need to walk the list of fragments and set 3439 * the next size to the following buffer. 3440 * However, the first buffer isn't in the frag 3441 * list, so we have to do some gymnastics here. 3442 */ 3443 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3444 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3445 fbf = n_fbf; 3446 fm = fm->m_nextpkt; 3447 } 3448 } 3449 3450 nextfrag: 3451 /* 3452 * Pass the frame to the h/w for transmission. 3453 * Fragmented frames have each frag chained together 3454 * with m_nextpkt. We know there are sufficient ath_buf's 3455 * to send all the frags because of work done by 3456 * ath_txfrag_setup. We leave m_nextpkt set while 3457 * calling ath_tx_start so it can use it to extend the 3458 * the tx duration to cover the subsequent frag and 3459 * so it can reclaim all the mbufs in case of an error; 3460 * ath_tx_start clears m_nextpkt once it commits to 3461 * handing the frame to the hardware. 3462 * 3463 * Note: if this fails, then the mbufs are freed but 3464 * not the node reference. 3465 * 3466 * So, we now have to free the node reference ourselves here 3467 * and return OK up to the stack. 3468 */ 3469 next = m->m_nextpkt; 3470 if (ath_tx_start(sc, ni, bf, m)) { 3471 bad: 3472 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3473 reclaim: 3474 bf->bf_m = NULL; 3475 bf->bf_node = NULL; 3476 ATH_TXBUF_LOCK(sc); 3477 ath_returnbuf_head(sc, bf); 3478 /* 3479 * Free the rest of the node references and 3480 * buffers for the fragment list. 3481 */ 3482 ath_txfrag_cleanup(sc, &frags, ni); 3483 ATH_TXBUF_UNLOCK(sc); 3484 3485 /* 3486 * XXX: And free the node/return OK; ath_tx_start() may have 3487 * modified the buffer. We currently have no way to 3488 * signify that the mbuf was freed but there was an error. 3489 */ 3490 ieee80211_free_node(ni); 3491 retval = 0; 3492 goto finish; 3493 } 3494 3495 /* 3496 * Check here if the node is in power save state. 3497 */ 3498 ath_tx_update_tim(sc, ni, 1); 3499 3500 if (next != NULL) { 3501 /* 3502 * Beware of state changing between frags. 3503 * XXX check sta power-save state? 3504 */ 3505 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3506 DPRINTF(sc, ATH_DEBUG_XMIT, 3507 "%s: flush fragmented packet, state %s\n", 3508 __func__, 3509 ieee80211_state_name[ni->ni_vap->iv_state]); 3510 /* XXX dmamap */ 3511 ieee80211_free_mbuf(next); 3512 goto reclaim; 3513 } 3514 m = next; 3515 bf = TAILQ_FIRST(&frags); 3516 KASSERT(bf != NULL, ("no buf for txfrag")); 3517 TAILQ_REMOVE(&frags, bf, bf_list); 3518 goto nextfrag; 3519 } 3520 3521 /* 3522 * Bump watchdog timer. 3523 */ 3524 sc->sc_wd_timer = 5; 3525 3526 finish: 3527 ATH_TX_UNLOCK(sc); 3528 3529 /* 3530 * Finished transmitting! 3531 */ 3532 ATH_PCU_LOCK(sc); 3533 sc->sc_txstart_cnt--; 3534 ATH_PCU_UNLOCK(sc); 3535 3536 /* Sleep the hardware if required */ 3537 ATH_LOCK(sc); 3538 ath_power_restore_power_state(sc); 3539 ATH_UNLOCK(sc); 3540 3541 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3542 3543 return (retval); 3544 } 3545 3546 static int 3547 ath_media_change(struct ifnet *ifp) 3548 { 3549 int error = ieee80211_media_change(ifp); 3550 /* NB: only the fixed rate can change and that doesn't need a reset */ 3551 return (error == ENETRESET ? 0 : error); 3552 } 3553 3554 /* 3555 * Block/unblock tx+rx processing while a key change is done. 3556 * We assume the caller serializes key management operations 3557 * so we only need to worry about synchronization with other 3558 * uses that originate in the driver. 3559 */ 3560 static void 3561 ath_key_update_begin(struct ieee80211vap *vap) 3562 { 3563 struct ath_softc *sc = vap->iv_ic->ic_softc; 3564 3565 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3566 taskqueue_block(sc->sc_tq); 3567 } 3568 3569 static void 3570 ath_key_update_end(struct ieee80211vap *vap) 3571 { 3572 struct ath_softc *sc = vap->iv_ic->ic_softc; 3573 3574 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3575 taskqueue_unblock(sc->sc_tq); 3576 } 3577 3578 static void 3579 ath_update_promisc(struct ieee80211com *ic) 3580 { 3581 struct ath_softc *sc = ic->ic_softc; 3582 u_int32_t rfilt; 3583 3584 /* configure rx filter */ 3585 ATH_LOCK(sc); 3586 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3587 rfilt = ath_calcrxfilter(sc); 3588 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3589 ath_power_restore_power_state(sc); 3590 ATH_UNLOCK(sc); 3591 3592 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3593 } 3594 3595 static u_int 3596 ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 3597 { 3598 uint32_t val, *mfilt = arg; 3599 char *dl; 3600 uint8_t pos; 3601 3602 /* calculate XOR of eight 6bit values */ 3603 dl = LLADDR(sdl); 3604 val = le32dec(dl + 0); 3605 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3606 val = le32dec(dl + 3); 3607 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3608 pos &= 0x3f; 3609 mfilt[pos / 32] |= (1 << (pos % 32)); 3610 3611 return (1); 3612 } 3613 3614 /* 3615 * Driver-internal mcast update call. 3616 * 3617 * Assumes the hardware is already awake. 3618 */ 3619 static void 3620 ath_update_mcast_hw(struct ath_softc *sc) 3621 { 3622 struct ieee80211com *ic = &sc->sc_ic; 3623 u_int32_t mfilt[2]; 3624 3625 /* calculate and install multicast filter */ 3626 if (ic->ic_allmulti == 0) { 3627 struct ieee80211vap *vap; 3628 3629 /* 3630 * Merge multicast addresses to form the hardware filter. 3631 */ 3632 mfilt[0] = mfilt[1] = 0; 3633 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 3634 if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt); 3635 } else 3636 mfilt[0] = mfilt[1] = ~0; 3637 3638 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3639 3640 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3641 __func__, mfilt[0], mfilt[1]); 3642 } 3643 3644 /* 3645 * Called from the net80211 layer - force the hardware 3646 * awake before operating. 3647 */ 3648 static void 3649 ath_update_mcast(struct ieee80211com *ic) 3650 { 3651 struct ath_softc *sc = ic->ic_softc; 3652 3653 ATH_LOCK(sc); 3654 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3655 ATH_UNLOCK(sc); 3656 3657 ath_update_mcast_hw(sc); 3658 3659 ATH_LOCK(sc); 3660 ath_power_restore_power_state(sc); 3661 ATH_UNLOCK(sc); 3662 } 3663 3664 void 3665 ath_mode_init(struct ath_softc *sc) 3666 { 3667 struct ieee80211com *ic = &sc->sc_ic; 3668 struct ath_hal *ah = sc->sc_ah; 3669 u_int32_t rfilt; 3670 3671 /* XXX power state? */ 3672 3673 /* configure rx filter */ 3674 rfilt = ath_calcrxfilter(sc); 3675 ath_hal_setrxfilter(ah, rfilt); 3676 3677 /* configure operational mode */ 3678 ath_hal_setopmode(ah); 3679 3680 /* handle any link-level address change */ 3681 ath_hal_setmac(ah, ic->ic_macaddr); 3682 3683 /* calculate and install multicast filter */ 3684 ath_update_mcast_hw(sc); 3685 } 3686 3687 /* 3688 * Set the slot time based on the current setting. 3689 */ 3690 void 3691 ath_setslottime(struct ath_softc *sc) 3692 { 3693 struct ieee80211com *ic = &sc->sc_ic; 3694 struct ath_hal *ah = sc->sc_ah; 3695 u_int usec; 3696 3697 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3698 usec = 13; 3699 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3700 usec = 21; 3701 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3702 /* honor short/long slot time only in 11g */ 3703 /* XXX shouldn't honor on pure g or turbo g channel */ 3704 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3705 usec = HAL_SLOT_TIME_9; 3706 else 3707 usec = HAL_SLOT_TIME_20; 3708 } else 3709 usec = HAL_SLOT_TIME_9; 3710 3711 DPRINTF(sc, ATH_DEBUG_RESET, 3712 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3713 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3714 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3715 3716 /* Wake up the hardware first before updating the slot time */ 3717 ATH_LOCK(sc); 3718 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3719 ath_hal_setslottime(ah, usec); 3720 ath_power_restore_power_state(sc); 3721 sc->sc_updateslot = OK; 3722 ATH_UNLOCK(sc); 3723 } 3724 3725 /* 3726 * Callback from the 802.11 layer to update the 3727 * slot time based on the current setting. 3728 */ 3729 static void 3730 ath_updateslot(struct ieee80211com *ic) 3731 { 3732 struct ath_softc *sc = ic->ic_softc; 3733 3734 /* 3735 * When not coordinating the BSS, change the hardware 3736 * immediately. For other operation we defer the change 3737 * until beacon updates have propagated to the stations. 3738 * 3739 * XXX sc_updateslot isn't changed behind a lock? 3740 */ 3741 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3742 ic->ic_opmode == IEEE80211_M_MBSS) 3743 sc->sc_updateslot = UPDATE; 3744 else 3745 ath_setslottime(sc); 3746 } 3747 3748 /* 3749 * Append the contents of src to dst; both queues 3750 * are assumed to be locked. 3751 */ 3752 void 3753 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3754 { 3755 3756 ATH_TXQ_LOCK_ASSERT(src); 3757 ATH_TXQ_LOCK_ASSERT(dst); 3758 3759 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3760 dst->axq_link = src->axq_link; 3761 src->axq_link = NULL; 3762 dst->axq_depth += src->axq_depth; 3763 dst->axq_aggr_depth += src->axq_aggr_depth; 3764 src->axq_depth = 0; 3765 src->axq_aggr_depth = 0; 3766 } 3767 3768 /* 3769 * Reset the hardware, with no loss. 3770 * 3771 * This can't be used for a general case reset. 3772 */ 3773 static void 3774 ath_reset_proc(void *arg, int pending) 3775 { 3776 struct ath_softc *sc = arg; 3777 3778 #if 0 3779 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3780 #endif 3781 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3782 } 3783 3784 /* 3785 * Reset the hardware after detecting beacons have stopped. 3786 */ 3787 static void 3788 ath_bstuck_proc(void *arg, int pending) 3789 { 3790 struct ath_softc *sc = arg; 3791 uint32_t hangs = 0; 3792 3793 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3794 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3795 3796 #ifdef ATH_DEBUG_ALQ 3797 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3798 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3799 #endif 3800 3801 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3802 sc->sc_bmisscount); 3803 sc->sc_stats.ast_bstuck++; 3804 /* 3805 * This assumes that there's no simultaneous channel mode change 3806 * occurring. 3807 */ 3808 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3809 } 3810 3811 static int 3812 ath_desc_alloc(struct ath_softc *sc) 3813 { 3814 int error; 3815 3816 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3817 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3818 if (error != 0) { 3819 return error; 3820 } 3821 sc->sc_txbuf_cnt = ath_txbuf; 3822 3823 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3824 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3825 ATH_TXDESC); 3826 if (error != 0) { 3827 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3828 return error; 3829 } 3830 3831 /* 3832 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3833 * flag doesn't have to be set in ath_getbuf_locked(). 3834 */ 3835 3836 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3837 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3838 if (error != 0) { 3839 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3840 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3841 &sc->sc_txbuf_mgmt); 3842 return error; 3843 } 3844 return 0; 3845 } 3846 3847 static void 3848 ath_desc_free(struct ath_softc *sc) 3849 { 3850 3851 if (sc->sc_bdma.dd_desc_len != 0) 3852 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3853 if (sc->sc_txdma.dd_desc_len != 0) 3854 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3855 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3856 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3857 &sc->sc_txbuf_mgmt); 3858 } 3859 3860 static struct ieee80211_node * 3861 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3862 { 3863 struct ieee80211com *ic = vap->iv_ic; 3864 struct ath_softc *sc = ic->ic_softc; 3865 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3866 struct ath_node *an; 3867 3868 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3869 if (an == NULL) { 3870 /* XXX stat+msg */ 3871 return NULL; 3872 } 3873 ath_rate_node_init(sc, an); 3874 3875 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3876 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3877 device_get_nameunit(sc->sc_dev), an); 3878 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3879 3880 /* XXX setup ath_tid */ 3881 ath_tx_tid_init(sc, an); 3882 3883 an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 3884 an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 3885 an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 3886 3887 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3888 return &an->an_node; 3889 } 3890 3891 static void 3892 ath_node_cleanup(struct ieee80211_node *ni) 3893 { 3894 struct ieee80211com *ic = ni->ni_ic; 3895 struct ath_softc *sc = ic->ic_softc; 3896 3897 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3898 ni->ni_macaddr, ":", ATH_NODE(ni)); 3899 3900 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3901 ath_tx_node_flush(sc, ATH_NODE(ni)); 3902 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3903 sc->sc_node_cleanup(ni); 3904 } 3905 3906 static void 3907 ath_node_free(struct ieee80211_node *ni) 3908 { 3909 struct ieee80211com *ic = ni->ni_ic; 3910 struct ath_softc *sc = ic->ic_softc; 3911 3912 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3913 ni->ni_macaddr, ":", ATH_NODE(ni)); 3914 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3915 sc->sc_node_free(ni); 3916 } 3917 3918 static void 3919 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3920 { 3921 struct ieee80211com *ic = ni->ni_ic; 3922 struct ath_softc *sc = ic->ic_softc; 3923 struct ath_hal *ah = sc->sc_ah; 3924 3925 *rssi = ic->ic_node_getrssi(ni); 3926 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3927 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3928 else 3929 *noise = -95; /* nominally correct */ 3930 } 3931 3932 /* 3933 * Set the default antenna. 3934 */ 3935 void 3936 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3937 { 3938 struct ath_hal *ah = sc->sc_ah; 3939 3940 /* XXX block beacon interrupts */ 3941 ath_hal_setdefantenna(ah, antenna); 3942 if (sc->sc_defant != antenna) 3943 sc->sc_stats.ast_ant_defswitch++; 3944 sc->sc_defant = antenna; 3945 sc->sc_rxotherant = 0; 3946 } 3947 3948 static void 3949 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3950 { 3951 txq->axq_qnum = qnum; 3952 txq->axq_ac = 0; 3953 txq->axq_depth = 0; 3954 txq->axq_aggr_depth = 0; 3955 txq->axq_intrcnt = 0; 3956 txq->axq_link = NULL; 3957 txq->axq_softc = sc; 3958 TAILQ_INIT(&txq->axq_q); 3959 TAILQ_INIT(&txq->axq_tidq); 3960 TAILQ_INIT(&txq->fifo.axq_q); 3961 ATH_TXQ_LOCK_INIT(sc, txq); 3962 } 3963 3964 /* 3965 * Setup a h/w transmit queue. 3966 */ 3967 static struct ath_txq * 3968 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3969 { 3970 struct ath_hal *ah = sc->sc_ah; 3971 HAL_TXQ_INFO qi; 3972 int qnum; 3973 3974 memset(&qi, 0, sizeof(qi)); 3975 qi.tqi_subtype = subtype; 3976 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3977 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3978 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3979 /* 3980 * Enable interrupts only for EOL and DESC conditions. 3981 * We mark tx descriptors to receive a DESC interrupt 3982 * when a tx queue gets deep; otherwise waiting for the 3983 * EOL to reap descriptors. Note that this is done to 3984 * reduce interrupt load and this only defers reaping 3985 * descriptors, never transmitting frames. Aside from 3986 * reducing interrupts this also permits more concurrency. 3987 * The only potential downside is if the tx queue backs 3988 * up in which case the top half of the kernel may backup 3989 * due to a lack of tx descriptors. 3990 */ 3991 if (sc->sc_isedma) 3992 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3993 HAL_TXQ_TXOKINT_ENABLE; 3994 else 3995 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3996 HAL_TXQ_TXDESCINT_ENABLE; 3997 3998 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3999 if (qnum == -1) { 4000 /* 4001 * NB: don't print a message, this happens 4002 * normally on parts with too few tx queues 4003 */ 4004 return NULL; 4005 } 4006 if (qnum >= nitems(sc->sc_txq)) { 4007 device_printf(sc->sc_dev, 4008 "hal qnum %u out of range, max %zu!\n", 4009 qnum, nitems(sc->sc_txq)); 4010 ath_hal_releasetxqueue(ah, qnum); 4011 return NULL; 4012 } 4013 if (!ATH_TXQ_SETUP(sc, qnum)) { 4014 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4015 sc->sc_txqsetup |= 1<<qnum; 4016 } 4017 return &sc->sc_txq[qnum]; 4018 } 4019 4020 /* 4021 * Setup a hardware data transmit queue for the specified 4022 * access control. The hal may not support all requested 4023 * queues in which case it will return a reference to a 4024 * previously setup queue. We record the mapping from ac's 4025 * to h/w queues for use by ath_tx_start and also track 4026 * the set of h/w queues being used to optimize work in the 4027 * transmit interrupt handler and related routines. 4028 */ 4029 static int 4030 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4031 { 4032 struct ath_txq *txq; 4033 4034 if (ac >= nitems(sc->sc_ac2q)) { 4035 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4036 ac, nitems(sc->sc_ac2q)); 4037 return 0; 4038 } 4039 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4040 if (txq != NULL) { 4041 txq->axq_ac = ac; 4042 sc->sc_ac2q[ac] = txq; 4043 return 1; 4044 } else 4045 return 0; 4046 } 4047 4048 /* 4049 * Update WME parameters for a transmit queue. 4050 */ 4051 static int 4052 ath_txq_update(struct ath_softc *sc, int ac) 4053 { 4054 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4055 struct ieee80211com *ic = &sc->sc_ic; 4056 struct ath_txq *txq = sc->sc_ac2q[ac]; 4057 struct chanAccParams chp; 4058 struct wmeParams *wmep; 4059 struct ath_hal *ah = sc->sc_ah; 4060 HAL_TXQ_INFO qi; 4061 4062 ieee80211_wme_ic_getparams(ic, &chp); 4063 wmep = &chp.cap_wmeParams[ac]; 4064 4065 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4066 #ifdef IEEE80211_SUPPORT_TDMA 4067 if (sc->sc_tdma) { 4068 /* 4069 * AIFS is zero so there's no pre-transmit wait. The 4070 * burst time defines the slot duration and is configured 4071 * through net80211. The QCU is setup to not do post-xmit 4072 * back off, lockout all lower-priority QCU's, and fire 4073 * off the DMA beacon alert timer which is setup based 4074 * on the slot configuration. 4075 */ 4076 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4077 | HAL_TXQ_TXERRINT_ENABLE 4078 | HAL_TXQ_TXURNINT_ENABLE 4079 | HAL_TXQ_TXEOLINT_ENABLE 4080 | HAL_TXQ_DBA_GATED 4081 | HAL_TXQ_BACKOFF_DISABLE 4082 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4083 ; 4084 qi.tqi_aifs = 0; 4085 /* XXX +dbaprep? */ 4086 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4087 qi.tqi_burstTime = qi.tqi_readyTime; 4088 } else { 4089 #endif 4090 /* 4091 * XXX shouldn't this just use the default flags 4092 * used in the previous queue setup? 4093 */ 4094 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4095 | HAL_TXQ_TXERRINT_ENABLE 4096 | HAL_TXQ_TXDESCINT_ENABLE 4097 | HAL_TXQ_TXURNINT_ENABLE 4098 | HAL_TXQ_TXEOLINT_ENABLE 4099 ; 4100 qi.tqi_aifs = wmep->wmep_aifsn; 4101 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4102 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4103 qi.tqi_readyTime = 0; 4104 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4105 #ifdef IEEE80211_SUPPORT_TDMA 4106 } 4107 #endif 4108 4109 DPRINTF(sc, ATH_DEBUG_RESET, 4110 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4111 __func__, txq->axq_qnum, qi.tqi_qflags, 4112 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4113 4114 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4115 device_printf(sc->sc_dev, "unable to update hardware queue " 4116 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4117 return 0; 4118 } else { 4119 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4120 return 1; 4121 } 4122 #undef ATH_EXPONENT_TO_VALUE 4123 } 4124 4125 /* 4126 * Callback from the 802.11 layer to update WME parameters. 4127 */ 4128 int 4129 ath_wme_update(struct ieee80211com *ic) 4130 { 4131 struct ath_softc *sc = ic->ic_softc; 4132 4133 return !ath_txq_update(sc, WME_AC_BE) || 4134 !ath_txq_update(sc, WME_AC_BK) || 4135 !ath_txq_update(sc, WME_AC_VI) || 4136 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4137 } 4138 4139 /* 4140 * Reclaim resources for a setup queue. 4141 */ 4142 static void 4143 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4144 { 4145 4146 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4147 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4148 ATH_TXQ_LOCK_DESTROY(txq); 4149 } 4150 4151 /* 4152 * Reclaim all tx queue resources. 4153 */ 4154 static void 4155 ath_tx_cleanup(struct ath_softc *sc) 4156 { 4157 int i; 4158 4159 ATH_TXBUF_LOCK_DESTROY(sc); 4160 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4161 if (ATH_TXQ_SETUP(sc, i)) 4162 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4163 } 4164 4165 /* 4166 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4167 * using the current rates in sc_rixmap. 4168 */ 4169 int 4170 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4171 { 4172 int rix = sc->sc_rixmap[rate]; 4173 /* NB: return lowest rix for invalid rate */ 4174 return (rix == 0xff ? 0 : rix); 4175 } 4176 4177 static void 4178 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4179 struct ath_buf *bf) 4180 { 4181 struct ieee80211_node *ni = bf->bf_node; 4182 struct ieee80211com *ic = &sc->sc_ic; 4183 int sr, lr, pri; 4184 4185 if (ts->ts_status == 0) { 4186 u_int8_t txant = ts->ts_antenna; 4187 sc->sc_stats.ast_ant_tx[txant]++; 4188 sc->sc_ant_tx[txant]++; 4189 if (ts->ts_finaltsi != 0) 4190 sc->sc_stats.ast_tx_altrate++; 4191 4192 /* XXX TODO: should do per-pri conuters */ 4193 pri = M_WME_GETAC(bf->bf_m); 4194 if (pri >= WME_AC_VO) 4195 ic->ic_wme.wme_hipri_traffic++; 4196 4197 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4198 ni->ni_inact = ni->ni_inact_reload; 4199 } else { 4200 if (ts->ts_status & HAL_TXERR_XRETRY) 4201 sc->sc_stats.ast_tx_xretries++; 4202 if (ts->ts_status & HAL_TXERR_FIFO) 4203 sc->sc_stats.ast_tx_fifoerr++; 4204 if (ts->ts_status & HAL_TXERR_FILT) 4205 sc->sc_stats.ast_tx_filtered++; 4206 if (ts->ts_status & HAL_TXERR_XTXOP) 4207 sc->sc_stats.ast_tx_xtxop++; 4208 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4209 sc->sc_stats.ast_tx_timerexpired++; 4210 4211 if (bf->bf_m->m_flags & M_FF) 4212 sc->sc_stats.ast_ff_txerr++; 4213 } 4214 /* XXX when is this valid? */ 4215 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4216 sc->sc_stats.ast_tx_desccfgerr++; 4217 /* 4218 * This can be valid for successful frame transmission! 4219 * If there's a TX FIFO underrun during aggregate transmission, 4220 * the MAC will pad the rest of the aggregate with delimiters. 4221 * If a BA is returned, the frame is marked as "OK" and it's up 4222 * to the TX completion code to notice which frames weren't 4223 * successfully transmitted. 4224 */ 4225 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4226 sc->sc_stats.ast_tx_data_underrun++; 4227 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4228 sc->sc_stats.ast_tx_delim_underrun++; 4229 4230 sr = ts->ts_shortretry; 4231 lr = ts->ts_longretry; 4232 sc->sc_stats.ast_tx_shortretry += sr; 4233 sc->sc_stats.ast_tx_longretry += lr; 4234 4235 } 4236 4237 /* 4238 * The default completion. If fail is 1, this means 4239 * "please don't retry the frame, and just return -1 status 4240 * to the net80211 stack. 4241 */ 4242 void 4243 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4244 { 4245 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4246 int st; 4247 4248 if (fail == 1) 4249 st = -1; 4250 else 4251 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4252 ts->ts_status : HAL_TXERR_XRETRY; 4253 4254 #if 0 4255 if (bf->bf_state.bfs_dobaw) 4256 device_printf(sc->sc_dev, 4257 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4258 __func__, 4259 bf, 4260 SEQNO(bf->bf_state.bfs_seqno)); 4261 #endif 4262 if (bf->bf_next != NULL) 4263 device_printf(sc->sc_dev, 4264 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4265 __func__, 4266 bf, 4267 SEQNO(bf->bf_state.bfs_seqno)); 4268 4269 /* 4270 * Check if the node software queue is empty; if so 4271 * then clear the TIM. 4272 * 4273 * This needs to be done before the buffer is freed as 4274 * otherwise the node reference will have been released 4275 * and the node may not actually exist any longer. 4276 * 4277 * XXX I don't like this belonging here, but it's cleaner 4278 * to do it here right now then all the other places 4279 * where ath_tx_default_comp() is called. 4280 * 4281 * XXX TODO: during drain, ensure that the callback is 4282 * being called so we get a chance to update the TIM. 4283 */ 4284 if (bf->bf_node) { 4285 ATH_TX_LOCK(sc); 4286 ath_tx_update_tim(sc, bf->bf_node, 0); 4287 ATH_TX_UNLOCK(sc); 4288 } 4289 4290 /* 4291 * Do any tx complete callback. Note this must 4292 * be done before releasing the node reference. 4293 * This will free the mbuf, release the net80211 4294 * node and recycle the ath_buf. 4295 */ 4296 ath_tx_freebuf(sc, bf, st); 4297 } 4298 4299 /* 4300 * Update rate control with the given completion status. 4301 */ 4302 void 4303 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4304 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4305 int rc_framelen, int nframes, int nbad) 4306 { 4307 struct ath_node *an; 4308 4309 /* Only for unicast frames */ 4310 if (ni == NULL) 4311 return; 4312 4313 an = ATH_NODE(ni); 4314 ATH_NODE_UNLOCK_ASSERT(an); 4315 4316 /* 4317 * XXX TODO: teach the rate control about TXERR_FILT and 4318 * see about handling it (eg see how many attempts were 4319 * made before it got filtered and account for that.) 4320 */ 4321 4322 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4323 ATH_NODE_LOCK(an); 4324 ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen, 4325 nframes, nbad); 4326 ATH_NODE_UNLOCK(an); 4327 } 4328 } 4329 4330 /* 4331 * Process the completion of the given buffer. 4332 * 4333 * This calls the rate control update and then the buffer completion. 4334 * This will either free the buffer or requeue it. In any case, the 4335 * bf pointer should be treated as invalid after this function is called. 4336 */ 4337 void 4338 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4339 struct ath_tx_status *ts, struct ath_buf *bf) 4340 { 4341 struct ieee80211_node *ni = bf->bf_node; 4342 4343 ATH_TX_UNLOCK_ASSERT(sc); 4344 ATH_TXQ_UNLOCK_ASSERT(txq); 4345 4346 /* If unicast frame, update general statistics */ 4347 if (ni != NULL) { 4348 /* update statistics */ 4349 ath_tx_update_stats(sc, ts, bf); 4350 } 4351 4352 /* 4353 * Call the completion handler. 4354 * The completion handler is responsible for 4355 * calling the rate control code. 4356 * 4357 * Frames with no completion handler get the 4358 * rate control code called here. 4359 */ 4360 if (bf->bf_comp == NULL) { 4361 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4362 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4363 /* 4364 * XXX assume this isn't an aggregate 4365 * frame. 4366 * 4367 * XXX TODO: also do this for filtered frames? 4368 * Once rate control knows about them? 4369 */ 4370 ath_tx_update_ratectrl(sc, ni, 4371 bf->bf_state.bfs_rc, ts, 4372 bf->bf_state.bfs_pktlen, 4373 bf->bf_state.bfs_pktlen, 4374 1, 4375 (ts->ts_status == 0 ? 0 : 1)); 4376 } 4377 ath_tx_default_comp(sc, bf, 0); 4378 } else 4379 bf->bf_comp(sc, bf, 0); 4380 } 4381 4382 /* 4383 * Process completed xmit descriptors from the specified queue. 4384 * Kick the packet scheduler if needed. This can occur from this 4385 * particular task. 4386 */ 4387 static int 4388 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4389 { 4390 struct ath_hal *ah = sc->sc_ah; 4391 struct ath_buf *bf; 4392 struct ath_desc *ds; 4393 struct ath_tx_status *ts; 4394 struct ieee80211_node *ni; 4395 #ifdef IEEE80211_SUPPORT_SUPERG 4396 struct ieee80211com *ic = &sc->sc_ic; 4397 #endif /* IEEE80211_SUPPORT_SUPERG */ 4398 int nacked; 4399 HAL_STATUS status; 4400 4401 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4402 __func__, txq->axq_qnum, 4403 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4404 txq->axq_link); 4405 4406 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4407 "ath_tx_processq: txq=%u head %p link %p depth %p", 4408 txq->axq_qnum, 4409 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4410 txq->axq_link, 4411 txq->axq_depth); 4412 4413 nacked = 0; 4414 for (;;) { 4415 ATH_TXQ_LOCK(txq); 4416 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4417 bf = TAILQ_FIRST(&txq->axq_q); 4418 if (bf == NULL) { 4419 ATH_TXQ_UNLOCK(txq); 4420 break; 4421 } 4422 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4423 ts = &bf->bf_status.ds_txstat; 4424 4425 status = ath_hal_txprocdesc(ah, ds, ts); 4426 #ifdef ATH_DEBUG 4427 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4428 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4429 status == HAL_OK); 4430 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4431 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4432 status == HAL_OK); 4433 #endif 4434 #ifdef ATH_DEBUG_ALQ 4435 if (if_ath_alq_checkdebug(&sc->sc_alq, 4436 ATH_ALQ_EDMA_TXSTATUS)) { 4437 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4438 sc->sc_tx_statuslen, 4439 (char *) ds); 4440 } 4441 #endif 4442 4443 if (status == HAL_EINPROGRESS) { 4444 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4445 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4446 txq->axq_qnum, bf, ds); 4447 ATH_TXQ_UNLOCK(txq); 4448 break; 4449 } 4450 ATH_TXQ_REMOVE(txq, bf, bf_list); 4451 4452 /* 4453 * Sanity check. 4454 */ 4455 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4456 device_printf(sc->sc_dev, 4457 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4458 __func__, 4459 txq->axq_qnum, 4460 bf, 4461 bf->bf_state.bfs_tx_queue); 4462 } 4463 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4464 device_printf(sc->sc_dev, 4465 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4466 __func__, 4467 txq->axq_qnum, 4468 bf->bf_last, 4469 bf->bf_last->bf_state.bfs_tx_queue); 4470 } 4471 4472 #if 0 4473 if (txq->axq_depth > 0) { 4474 /* 4475 * More frames follow. Mark the buffer busy 4476 * so it's not re-used while the hardware may 4477 * still re-read the link field in the descriptor. 4478 * 4479 * Use the last buffer in an aggregate as that 4480 * is where the hardware may be - intermediate 4481 * descriptors won't be "busy". 4482 */ 4483 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4484 } else 4485 txq->axq_link = NULL; 4486 #else 4487 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4488 #endif 4489 if (bf->bf_state.bfs_aggr) 4490 txq->axq_aggr_depth--; 4491 4492 ni = bf->bf_node; 4493 4494 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4495 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4496 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4497 /* 4498 * If unicast frame was ack'd update RSSI, 4499 * including the last rx time used to 4500 * workaround phantom bmiss interrupts. 4501 */ 4502 if (ni != NULL && ts->ts_status == 0 && 4503 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4504 nacked++; 4505 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4506 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4507 ts->ts_rssi); 4508 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi, 4509 ts->ts_rssi); 4510 } 4511 ATH_TXQ_UNLOCK(txq); 4512 4513 /* 4514 * Update statistics and call completion 4515 */ 4516 ath_tx_process_buf_completion(sc, txq, ts, bf); 4517 4518 /* XXX at this point, bf and ni may be totally invalid */ 4519 } 4520 #ifdef IEEE80211_SUPPORT_SUPERG 4521 /* 4522 * Flush fast-frame staging queue when traffic slows. 4523 */ 4524 if (txq->axq_depth <= 1) 4525 ieee80211_ff_flush(ic, txq->axq_ac); 4526 #endif 4527 4528 /* Kick the software TXQ scheduler */ 4529 if (dosched) { 4530 ATH_TX_LOCK(sc); 4531 ath_txq_sched(sc, txq); 4532 ATH_TX_UNLOCK(sc); 4533 } 4534 4535 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4536 "ath_tx_processq: txq=%u: done", 4537 txq->axq_qnum); 4538 4539 return nacked; 4540 } 4541 4542 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4543 4544 /* 4545 * Deferred processing of transmit interrupt; special-cased 4546 * for a single hardware transmit queue (e.g. 5210 and 5211). 4547 */ 4548 static void 4549 ath_tx_proc_q0(void *arg, int npending) 4550 { 4551 struct ath_softc *sc = arg; 4552 uint32_t txqs; 4553 4554 ATH_PCU_LOCK(sc); 4555 sc->sc_txproc_cnt++; 4556 txqs = sc->sc_txq_active; 4557 sc->sc_txq_active &= ~txqs; 4558 ATH_PCU_UNLOCK(sc); 4559 4560 ATH_LOCK(sc); 4561 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4562 ATH_UNLOCK(sc); 4563 4564 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4565 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4566 4567 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4568 /* XXX why is lastrx updated in tx code? */ 4569 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4570 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4571 ath_tx_processq(sc, sc->sc_cabq, 1); 4572 sc->sc_wd_timer = 0; 4573 4574 if (sc->sc_softled) 4575 ath_led_event(sc, sc->sc_txrix); 4576 4577 ATH_PCU_LOCK(sc); 4578 sc->sc_txproc_cnt--; 4579 ATH_PCU_UNLOCK(sc); 4580 4581 ATH_LOCK(sc); 4582 ath_power_restore_power_state(sc); 4583 ATH_UNLOCK(sc); 4584 4585 ath_tx_kick(sc); 4586 } 4587 4588 /* 4589 * Deferred processing of transmit interrupt; special-cased 4590 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4591 */ 4592 static void 4593 ath_tx_proc_q0123(void *arg, int npending) 4594 { 4595 struct ath_softc *sc = arg; 4596 int nacked; 4597 uint32_t txqs; 4598 4599 ATH_PCU_LOCK(sc); 4600 sc->sc_txproc_cnt++; 4601 txqs = sc->sc_txq_active; 4602 sc->sc_txq_active &= ~txqs; 4603 ATH_PCU_UNLOCK(sc); 4604 4605 ATH_LOCK(sc); 4606 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4607 ATH_UNLOCK(sc); 4608 4609 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4610 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4611 4612 /* 4613 * Process each active queue. 4614 */ 4615 nacked = 0; 4616 if (TXQACTIVE(txqs, 0)) 4617 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4618 if (TXQACTIVE(txqs, 1)) 4619 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4620 if (TXQACTIVE(txqs, 2)) 4621 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4622 if (TXQACTIVE(txqs, 3)) 4623 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4624 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4625 ath_tx_processq(sc, sc->sc_cabq, 1); 4626 if (nacked) 4627 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4628 4629 sc->sc_wd_timer = 0; 4630 4631 if (sc->sc_softled) 4632 ath_led_event(sc, sc->sc_txrix); 4633 4634 ATH_PCU_LOCK(sc); 4635 sc->sc_txproc_cnt--; 4636 ATH_PCU_UNLOCK(sc); 4637 4638 ATH_LOCK(sc); 4639 ath_power_restore_power_state(sc); 4640 ATH_UNLOCK(sc); 4641 4642 ath_tx_kick(sc); 4643 } 4644 4645 /* 4646 * Deferred processing of transmit interrupt. 4647 */ 4648 static void 4649 ath_tx_proc(void *arg, int npending) 4650 { 4651 struct ath_softc *sc = arg; 4652 int i, nacked; 4653 uint32_t txqs; 4654 4655 ATH_PCU_LOCK(sc); 4656 sc->sc_txproc_cnt++; 4657 txqs = sc->sc_txq_active; 4658 sc->sc_txq_active &= ~txqs; 4659 ATH_PCU_UNLOCK(sc); 4660 4661 ATH_LOCK(sc); 4662 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4663 ATH_UNLOCK(sc); 4664 4665 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4666 4667 /* 4668 * Process each active queue. 4669 */ 4670 nacked = 0; 4671 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4672 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4673 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4674 if (nacked) 4675 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4676 4677 sc->sc_wd_timer = 0; 4678 4679 if (sc->sc_softled) 4680 ath_led_event(sc, sc->sc_txrix); 4681 4682 ATH_PCU_LOCK(sc); 4683 sc->sc_txproc_cnt--; 4684 ATH_PCU_UNLOCK(sc); 4685 4686 ATH_LOCK(sc); 4687 ath_power_restore_power_state(sc); 4688 ATH_UNLOCK(sc); 4689 4690 ath_tx_kick(sc); 4691 } 4692 #undef TXQACTIVE 4693 4694 /* 4695 * Deferred processing of TXQ rescheduling. 4696 */ 4697 static void 4698 ath_txq_sched_tasklet(void *arg, int npending) 4699 { 4700 struct ath_softc *sc = arg; 4701 int i; 4702 4703 /* XXX is skipping ok? */ 4704 ATH_PCU_LOCK(sc); 4705 #if 0 4706 if (sc->sc_inreset_cnt > 0) { 4707 device_printf(sc->sc_dev, 4708 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4709 ATH_PCU_UNLOCK(sc); 4710 return; 4711 } 4712 #endif 4713 sc->sc_txproc_cnt++; 4714 ATH_PCU_UNLOCK(sc); 4715 4716 ATH_LOCK(sc); 4717 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4718 ATH_UNLOCK(sc); 4719 4720 ATH_TX_LOCK(sc); 4721 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4722 if (ATH_TXQ_SETUP(sc, i)) { 4723 ath_txq_sched(sc, &sc->sc_txq[i]); 4724 } 4725 } 4726 ATH_TX_UNLOCK(sc); 4727 4728 ATH_LOCK(sc); 4729 ath_power_restore_power_state(sc); 4730 ATH_UNLOCK(sc); 4731 4732 ATH_PCU_LOCK(sc); 4733 sc->sc_txproc_cnt--; 4734 ATH_PCU_UNLOCK(sc); 4735 } 4736 4737 void 4738 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4739 { 4740 4741 ATH_TXBUF_LOCK_ASSERT(sc); 4742 4743 if (bf->bf_flags & ATH_BUF_MGMT) 4744 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4745 else { 4746 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4747 sc->sc_txbuf_cnt++; 4748 if (sc->sc_txbuf_cnt > ath_txbuf) { 4749 device_printf(sc->sc_dev, 4750 "%s: sc_txbuf_cnt > %d?\n", 4751 __func__, 4752 ath_txbuf); 4753 sc->sc_txbuf_cnt = ath_txbuf; 4754 } 4755 } 4756 } 4757 4758 void 4759 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4760 { 4761 4762 ATH_TXBUF_LOCK_ASSERT(sc); 4763 4764 if (bf->bf_flags & ATH_BUF_MGMT) 4765 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4766 else { 4767 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4768 sc->sc_txbuf_cnt++; 4769 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4770 device_printf(sc->sc_dev, 4771 "%s: sc_txbuf_cnt > %d?\n", 4772 __func__, 4773 ATH_TXBUF); 4774 sc->sc_txbuf_cnt = ATH_TXBUF; 4775 } 4776 } 4777 } 4778 4779 /* 4780 * Free the holding buffer if it exists 4781 */ 4782 void 4783 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4784 { 4785 ATH_TXBUF_UNLOCK_ASSERT(sc); 4786 ATH_TXQ_LOCK_ASSERT(txq); 4787 4788 if (txq->axq_holdingbf == NULL) 4789 return; 4790 4791 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4792 4793 ATH_TXBUF_LOCK(sc); 4794 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4795 ATH_TXBUF_UNLOCK(sc); 4796 4797 txq->axq_holdingbf = NULL; 4798 } 4799 4800 /* 4801 * Add this buffer to the holding queue, freeing the previous 4802 * one if it exists. 4803 */ 4804 static void 4805 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4806 { 4807 struct ath_txq *txq; 4808 4809 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4810 4811 ATH_TXBUF_UNLOCK_ASSERT(sc); 4812 ATH_TXQ_LOCK_ASSERT(txq); 4813 4814 /* XXX assert ATH_BUF_BUSY is set */ 4815 4816 /* XXX assert the tx queue is under the max number */ 4817 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4818 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4819 __func__, 4820 bf, 4821 bf->bf_state.bfs_tx_queue); 4822 bf->bf_flags &= ~ATH_BUF_BUSY; 4823 ath_returnbuf_tail(sc, bf); 4824 return; 4825 } 4826 ath_txq_freeholdingbuf(sc, txq); 4827 txq->axq_holdingbf = bf; 4828 } 4829 4830 /* 4831 * Return a buffer to the pool and update the 'busy' flag on the 4832 * previous 'tail' entry. 4833 * 4834 * This _must_ only be called when the buffer is involved in a completed 4835 * TX. The logic is that if it was part of an active TX, the previous 4836 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4837 * for restart (eg for TDMA.) 4838 * 4839 * The caller must free the mbuf and recycle the node reference. 4840 * 4841 * XXX This method of handling busy / holding buffers is insanely stupid. 4842 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4843 * be much nicer if buffers in the processq() methods would instead be 4844 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4845 * exactly what hardware queue they came from in the first place. 4846 */ 4847 void 4848 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4849 { 4850 struct ath_txq *txq; 4851 4852 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4853 4854 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4855 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4856 4857 /* 4858 * If this buffer is busy, push it onto the holding queue. 4859 */ 4860 if (bf->bf_flags & ATH_BUF_BUSY) { 4861 ATH_TXQ_LOCK(txq); 4862 ath_txq_addholdingbuf(sc, bf); 4863 ATH_TXQ_UNLOCK(txq); 4864 return; 4865 } 4866 4867 /* 4868 * Not a busy buffer, so free normally 4869 */ 4870 ATH_TXBUF_LOCK(sc); 4871 ath_returnbuf_tail(sc, bf); 4872 ATH_TXBUF_UNLOCK(sc); 4873 } 4874 4875 /* 4876 * This is currently used by ath_tx_draintxq() and 4877 * ath_tx_tid_free_pkts(). 4878 * 4879 * It recycles a single ath_buf. 4880 */ 4881 void 4882 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4883 { 4884 struct ieee80211_node *ni = bf->bf_node; 4885 struct mbuf *m0 = bf->bf_m; 4886 4887 /* 4888 * Make sure that we only sync/unload if there's an mbuf. 4889 * If not (eg we cloned a buffer), the unload will have already 4890 * occurred. 4891 */ 4892 if (bf->bf_m != NULL) { 4893 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4894 BUS_DMASYNC_POSTWRITE); 4895 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4896 } 4897 4898 bf->bf_node = NULL; 4899 bf->bf_m = NULL; 4900 4901 /* Free the buffer, it's not needed any longer */ 4902 ath_freebuf(sc, bf); 4903 4904 /* Pass the buffer back to net80211 - completing it */ 4905 ieee80211_tx_complete(ni, m0, status); 4906 } 4907 4908 static struct ath_buf * 4909 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4910 { 4911 struct ath_buf *bf; 4912 4913 ATH_TXQ_LOCK_ASSERT(txq); 4914 4915 /* 4916 * Drain the FIFO queue first, then if it's 4917 * empty, move to the normal frame queue. 4918 */ 4919 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4920 if (bf != NULL) { 4921 /* 4922 * Is it the last buffer in this set? 4923 * Decrement the FIFO counter. 4924 */ 4925 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4926 if (txq->axq_fifo_depth == 0) { 4927 device_printf(sc->sc_dev, 4928 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4929 __func__, 4930 txq->axq_qnum, 4931 txq->fifo.axq_depth); 4932 } else 4933 txq->axq_fifo_depth--; 4934 } 4935 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4936 return (bf); 4937 } 4938 4939 /* 4940 * Debugging! 4941 */ 4942 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4943 device_printf(sc->sc_dev, 4944 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4945 __func__, 4946 txq->axq_qnum, 4947 txq->axq_fifo_depth, 4948 txq->fifo.axq_depth); 4949 } 4950 4951 /* 4952 * Now drain the pending queue. 4953 */ 4954 bf = TAILQ_FIRST(&txq->axq_q); 4955 if (bf == NULL) { 4956 txq->axq_link = NULL; 4957 return (NULL); 4958 } 4959 ATH_TXQ_REMOVE(txq, bf, bf_list); 4960 return (bf); 4961 } 4962 4963 void 4964 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4965 { 4966 #ifdef ATH_DEBUG 4967 struct ath_hal *ah = sc->sc_ah; 4968 #endif 4969 struct ath_buf *bf; 4970 u_int ix; 4971 4972 /* 4973 * NB: this assumes output has been stopped and 4974 * we do not need to block ath_tx_proc 4975 */ 4976 for (ix = 0;; ix++) { 4977 ATH_TXQ_LOCK(txq); 4978 bf = ath_tx_draintxq_get_one(sc, txq); 4979 if (bf == NULL) { 4980 ATH_TXQ_UNLOCK(txq); 4981 break; 4982 } 4983 if (bf->bf_state.bfs_aggr) 4984 txq->axq_aggr_depth--; 4985 #ifdef ATH_DEBUG 4986 if (sc->sc_debug & ATH_DEBUG_RESET) { 4987 struct ieee80211com *ic = &sc->sc_ic; 4988 int status = 0; 4989 4990 /* 4991 * EDMA operation has a TX completion FIFO 4992 * separate from the TX descriptor, so this 4993 * method of checking the "completion" status 4994 * is wrong. 4995 */ 4996 if (! sc->sc_isedma) { 4997 status = (ath_hal_txprocdesc(ah, 4998 bf->bf_lastds, 4999 &bf->bf_status.ds_txstat) == HAL_OK); 5000 } 5001 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5002 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5003 bf->bf_m->m_len, 0, -1); 5004 } 5005 #endif /* ATH_DEBUG */ 5006 /* 5007 * Since we're now doing magic in the completion 5008 * functions, we -must- call it for aggregation 5009 * destinations or BAW tracking will get upset. 5010 */ 5011 /* 5012 * Clear ATH_BUF_BUSY; the completion handler 5013 * will free the buffer. 5014 */ 5015 ATH_TXQ_UNLOCK(txq); 5016 bf->bf_flags &= ~ATH_BUF_BUSY; 5017 if (bf->bf_comp) 5018 bf->bf_comp(sc, bf, 1); 5019 else 5020 ath_tx_default_comp(sc, bf, 1); 5021 } 5022 5023 /* 5024 * Free the holding buffer if it exists 5025 */ 5026 ATH_TXQ_LOCK(txq); 5027 ath_txq_freeholdingbuf(sc, txq); 5028 ATH_TXQ_UNLOCK(txq); 5029 5030 /* 5031 * Drain software queued frames which are on 5032 * active TIDs. 5033 */ 5034 ath_tx_txq_drain(sc, txq); 5035 } 5036 5037 static void 5038 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5039 { 5040 struct ath_hal *ah = sc->sc_ah; 5041 5042 ATH_TXQ_LOCK_ASSERT(txq); 5043 5044 DPRINTF(sc, ATH_DEBUG_RESET, 5045 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5046 "link %p, holdingbf=%p\n", 5047 __func__, 5048 txq->axq_qnum, 5049 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5050 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5051 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5052 txq->axq_flags, 5053 txq->axq_link, 5054 txq->axq_holdingbf); 5055 5056 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5057 /* We've stopped TX DMA, so mark this as stopped. */ 5058 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5059 5060 #ifdef ATH_DEBUG 5061 if ((sc->sc_debug & ATH_DEBUG_RESET) 5062 && (txq->axq_holdingbf != NULL)) { 5063 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5064 } 5065 #endif 5066 } 5067 5068 int 5069 ath_stoptxdma(struct ath_softc *sc) 5070 { 5071 struct ath_hal *ah = sc->sc_ah; 5072 int i; 5073 5074 /* XXX return value */ 5075 if (sc->sc_invalid) 5076 return 0; 5077 5078 if (!sc->sc_invalid) { 5079 /* don't touch the hardware if marked invalid */ 5080 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5081 __func__, sc->sc_bhalq, 5082 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5083 NULL); 5084 5085 /* stop the beacon queue */ 5086 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5087 5088 /* Stop the data queues */ 5089 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5090 if (ATH_TXQ_SETUP(sc, i)) { 5091 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5092 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5093 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5094 } 5095 } 5096 } 5097 5098 return 1; 5099 } 5100 5101 #ifdef ATH_DEBUG 5102 void 5103 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5104 { 5105 struct ath_hal *ah = sc->sc_ah; 5106 struct ath_buf *bf; 5107 int i = 0; 5108 5109 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5110 return; 5111 5112 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5113 __func__, txq->axq_qnum); 5114 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5115 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5116 ath_hal_txprocdesc(ah, bf->bf_lastds, 5117 &bf->bf_status.ds_txstat) == HAL_OK); 5118 i++; 5119 } 5120 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5121 __func__, txq->axq_qnum); 5122 } 5123 #endif /* ATH_DEBUG */ 5124 5125 /* 5126 * Drain the transmit queues and reclaim resources. 5127 */ 5128 void 5129 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5130 { 5131 struct ath_hal *ah = sc->sc_ah; 5132 struct ath_buf *bf_last; 5133 int i; 5134 5135 (void) ath_stoptxdma(sc); 5136 5137 /* 5138 * Dump the queue contents 5139 */ 5140 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5141 /* 5142 * XXX TODO: should we just handle the completed TX frames 5143 * here, whether or not the reset is a full one or not? 5144 */ 5145 if (ATH_TXQ_SETUP(sc, i)) { 5146 #ifdef ATH_DEBUG 5147 if (sc->sc_debug & ATH_DEBUG_RESET) 5148 ath_tx_dump(sc, &sc->sc_txq[i]); 5149 #endif /* ATH_DEBUG */ 5150 if (reset_type == ATH_RESET_NOLOSS) { 5151 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5152 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5153 /* 5154 * Free the holding buffer; DMA is now 5155 * stopped. 5156 */ 5157 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5158 /* 5159 * Setup the link pointer to be the 5160 * _last_ buffer/descriptor in the list. 5161 * If there's nothing in the list, set it 5162 * to NULL. 5163 */ 5164 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5165 axq_q_s); 5166 if (bf_last != NULL) { 5167 ath_hal_gettxdesclinkptr(ah, 5168 bf_last->bf_lastds, 5169 &sc->sc_txq[i].axq_link); 5170 } else { 5171 sc->sc_txq[i].axq_link = NULL; 5172 } 5173 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5174 } else 5175 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5176 } 5177 } 5178 #ifdef ATH_DEBUG 5179 if (sc->sc_debug & ATH_DEBUG_RESET) { 5180 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5181 if (bf != NULL && bf->bf_m != NULL) { 5182 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5183 ath_hal_txprocdesc(ah, bf->bf_lastds, 5184 &bf->bf_status.ds_txstat) == HAL_OK); 5185 ieee80211_dump_pkt(&sc->sc_ic, 5186 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5187 0, -1); 5188 } 5189 } 5190 #endif /* ATH_DEBUG */ 5191 sc->sc_wd_timer = 0; 5192 } 5193 5194 /* 5195 * Update internal state after a channel change. 5196 */ 5197 static void 5198 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5199 { 5200 enum ieee80211_phymode mode; 5201 5202 /* 5203 * Change channels and update the h/w rate map 5204 * if we're switching; e.g. 11a to 11b/g. 5205 */ 5206 mode = ieee80211_chan2mode(chan); 5207 if (mode != sc->sc_curmode) 5208 ath_setcurmode(sc, mode); 5209 sc->sc_curchan = chan; 5210 } 5211 5212 /* 5213 * Set/change channels. If the channel is really being changed, 5214 * it's done by resetting the chip. To accomplish this we must 5215 * first cleanup any pending DMA, then restart stuff after a la 5216 * ath_init. 5217 */ 5218 static int 5219 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5220 { 5221 struct ieee80211com *ic = &sc->sc_ic; 5222 struct ath_hal *ah = sc->sc_ah; 5223 int ret = 0; 5224 5225 /* Treat this as an interface reset */ 5226 ATH_PCU_UNLOCK_ASSERT(sc); 5227 ATH_UNLOCK_ASSERT(sc); 5228 5229 /* (Try to) stop TX/RX from occurring */ 5230 taskqueue_block(sc->sc_tq); 5231 5232 ATH_PCU_LOCK(sc); 5233 5234 /* Disable interrupts */ 5235 ath_hal_intrset(ah, 0); 5236 5237 /* Stop new RX/TX/interrupt completion */ 5238 if (ath_reset_grablock(sc, 1) == 0) { 5239 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5240 __func__); 5241 } 5242 5243 /* Stop pending RX/TX completion */ 5244 ath_txrx_stop_locked(sc); 5245 5246 ATH_PCU_UNLOCK(sc); 5247 5248 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5249 __func__, ieee80211_chan2ieee(ic, chan), 5250 chan->ic_freq, chan->ic_flags); 5251 if (chan != sc->sc_curchan) { 5252 HAL_STATUS status; 5253 /* 5254 * To switch channels clear any pending DMA operations; 5255 * wait long enough for the RX fifo to drain, reset the 5256 * hardware at the new frequency, and then re-enable 5257 * the relevant bits of the h/w. 5258 */ 5259 #if 0 5260 ath_hal_intrset(ah, 0); /* disable interrupts */ 5261 #endif 5262 ath_stoprecv(sc, 1); /* turn off frame recv */ 5263 /* 5264 * First, handle completed TX/RX frames. 5265 */ 5266 ath_rx_flush(sc); 5267 ath_draintxq(sc, ATH_RESET_NOLOSS); 5268 /* 5269 * Next, flush the non-scheduled frames. 5270 */ 5271 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5272 5273 ath_update_chainmasks(sc, chan); 5274 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5275 sc->sc_cur_rxchainmask); 5276 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5277 HAL_RESET_NORMAL, &status)) { 5278 device_printf(sc->sc_dev, "%s: unable to reset " 5279 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5280 __func__, ieee80211_chan2ieee(ic, chan), 5281 chan->ic_freq, chan->ic_flags, status); 5282 ret = EIO; 5283 goto finish; 5284 } 5285 sc->sc_diversity = ath_hal_getdiversity(ah); 5286 5287 ATH_RX_LOCK(sc); 5288 sc->sc_rx_stopped = 1; 5289 sc->sc_rx_resetted = 1; 5290 ATH_RX_UNLOCK(sc); 5291 5292 /* Quiet time handling - ensure we resync */ 5293 ath_vap_clear_quiet_ie(sc); 5294 5295 /* Let DFS at it in case it's a DFS channel */ 5296 ath_dfs_radar_enable(sc, chan); 5297 5298 /* Let spectral at in case spectral is enabled */ 5299 ath_spectral_enable(sc, chan); 5300 5301 /* 5302 * Let bluetooth coexistence at in case it's needed for this 5303 * channel 5304 */ 5305 ath_btcoex_enable(sc, ic->ic_curchan); 5306 5307 /* 5308 * If we're doing TDMA, enforce the TXOP limitation for chips 5309 * that support it. 5310 */ 5311 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5312 ath_hal_setenforcetxop(sc->sc_ah, 1); 5313 else 5314 ath_hal_setenforcetxop(sc->sc_ah, 0); 5315 5316 /* 5317 * Re-enable rx framework. 5318 */ 5319 if (ath_startrecv(sc) != 0) { 5320 device_printf(sc->sc_dev, 5321 "%s: unable to restart recv logic\n", __func__); 5322 ret = EIO; 5323 goto finish; 5324 } 5325 5326 /* 5327 * Change channels and update the h/w rate map 5328 * if we're switching; e.g. 11a to 11b/g. 5329 */ 5330 ath_chan_change(sc, chan); 5331 5332 /* 5333 * Reset clears the beacon timers; reset them 5334 * here if needed. 5335 */ 5336 if (sc->sc_beacons) { /* restart beacons */ 5337 #ifdef IEEE80211_SUPPORT_TDMA 5338 if (sc->sc_tdma) 5339 ath_tdma_config(sc, NULL); 5340 else 5341 #endif 5342 ath_beacon_config(sc, NULL); 5343 } 5344 5345 /* 5346 * Re-enable interrupts. 5347 */ 5348 #if 0 5349 ath_hal_intrset(ah, sc->sc_imask); 5350 #endif 5351 } 5352 5353 finish: 5354 ATH_PCU_LOCK(sc); 5355 sc->sc_inreset_cnt--; 5356 /* XXX only do this if sc_inreset_cnt == 0? */ 5357 ath_hal_intrset(ah, sc->sc_imask); 5358 ATH_PCU_UNLOCK(sc); 5359 5360 ath_txrx_start(sc); 5361 /* XXX ath_start? */ 5362 5363 return ret; 5364 } 5365 5366 /* 5367 * Periodically recalibrate the PHY to account 5368 * for temperature/environment changes. 5369 */ 5370 static void 5371 ath_calibrate(void *arg) 5372 { 5373 struct ath_softc *sc = arg; 5374 struct ath_hal *ah = sc->sc_ah; 5375 struct ieee80211com *ic = &sc->sc_ic; 5376 HAL_BOOL longCal, isCalDone = AH_TRUE; 5377 HAL_BOOL aniCal, shortCal = AH_FALSE; 5378 int nextcal; 5379 5380 ATH_LOCK_ASSERT(sc); 5381 5382 /* 5383 * Force the hardware awake for ANI work. 5384 */ 5385 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5386 5387 /* Skip trying to do this if we're in reset */ 5388 if (sc->sc_inreset_cnt) 5389 goto restart; 5390 5391 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5392 goto restart; 5393 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5394 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5395 if (sc->sc_doresetcal) 5396 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5397 5398 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5399 if (aniCal) { 5400 sc->sc_stats.ast_ani_cal++; 5401 sc->sc_lastani = ticks; 5402 ath_hal_ani_poll(ah, sc->sc_curchan); 5403 } 5404 5405 if (longCal) { 5406 sc->sc_stats.ast_per_cal++; 5407 sc->sc_lastlongcal = ticks; 5408 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5409 /* 5410 * Rfgain is out of bounds, reset the chip 5411 * to load new gain values. 5412 */ 5413 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5414 "%s: rfgain change\n", __func__); 5415 sc->sc_stats.ast_per_rfgain++; 5416 sc->sc_resetcal = 0; 5417 sc->sc_doresetcal = AH_TRUE; 5418 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5419 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5420 ath_power_restore_power_state(sc); 5421 return; 5422 } 5423 /* 5424 * If this long cal is after an idle period, then 5425 * reset the data collection state so we start fresh. 5426 */ 5427 if (sc->sc_resetcal) { 5428 (void) ath_hal_calreset(ah, sc->sc_curchan); 5429 sc->sc_lastcalreset = ticks; 5430 sc->sc_lastshortcal = ticks; 5431 sc->sc_resetcal = 0; 5432 sc->sc_doresetcal = AH_TRUE; 5433 } 5434 } 5435 5436 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5437 if (shortCal || longCal) { 5438 isCalDone = AH_FALSE; 5439 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5440 if (longCal) { 5441 /* 5442 * Calibrate noise floor data again in case of change. 5443 */ 5444 ath_hal_process_noisefloor(ah); 5445 } 5446 } else { 5447 DPRINTF(sc, ATH_DEBUG_ANY, 5448 "%s: calibration of channel %u failed\n", 5449 __func__, sc->sc_curchan->ic_freq); 5450 sc->sc_stats.ast_per_calfail++; 5451 } 5452 /* 5453 * XXX TODO: get the NF calibration results from the HAL. 5454 * If we failed NF cal then schedule a hard reset to potentially 5455 * un-freeze the PHY. 5456 * 5457 * Note we have to be careful here to not get stuck in an 5458 * infinite NIC restart. Ideally we'd not restart if we 5459 * failed the first NF cal - that /can/ fail sometimes in 5460 * a noisy environment. 5461 * 5462 * Instead, we should likely temporarily shorten the longCal 5463 * period to happen pretty quickly and if a subsequent one 5464 * fails, do a full reset. 5465 */ 5466 if (shortCal) 5467 sc->sc_lastshortcal = ticks; 5468 } 5469 if (!isCalDone) { 5470 restart: 5471 /* 5472 * Use a shorter interval to potentially collect multiple 5473 * data samples required to complete calibration. Once 5474 * we're told the work is done we drop back to a longer 5475 * interval between requests. We're more aggressive doing 5476 * work when operating as an AP to improve operation right 5477 * after startup. 5478 */ 5479 sc->sc_lastshortcal = ticks; 5480 nextcal = ath_shortcalinterval*hz/1000; 5481 if (sc->sc_opmode != HAL_M_HOSTAP) 5482 nextcal *= 10; 5483 sc->sc_doresetcal = AH_TRUE; 5484 } else { 5485 /* nextcal should be the shortest time for next event */ 5486 nextcal = ath_longcalinterval*hz; 5487 if (sc->sc_lastcalreset == 0) 5488 sc->sc_lastcalreset = sc->sc_lastlongcal; 5489 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5490 sc->sc_resetcal = 1; /* setup reset next trip */ 5491 sc->sc_doresetcal = AH_FALSE; 5492 } 5493 /* ANI calibration may occur more often than short/long/resetcal */ 5494 if (ath_anicalinterval > 0) 5495 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5496 5497 if (nextcal != 0) { 5498 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5499 __func__, nextcal, isCalDone ? "" : "!"); 5500 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5501 } else { 5502 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5503 __func__); 5504 /* NB: don't rearm timer */ 5505 } 5506 /* 5507 * Restore power state now that we're done. 5508 */ 5509 ath_power_restore_power_state(sc); 5510 } 5511 5512 static void 5513 ath_scan_start(struct ieee80211com *ic) 5514 { 5515 struct ath_softc *sc = ic->ic_softc; 5516 struct ath_hal *ah = sc->sc_ah; 5517 u_int32_t rfilt; 5518 5519 /* XXX calibration timer? */ 5520 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5521 5522 ATH_LOCK(sc); 5523 sc->sc_scanning = 1; 5524 sc->sc_syncbeacon = 0; 5525 rfilt = ath_calcrxfilter(sc); 5526 ATH_UNLOCK(sc); 5527 5528 ATH_PCU_LOCK(sc); 5529 ath_hal_setrxfilter(ah, rfilt); 5530 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5531 ATH_PCU_UNLOCK(sc); 5532 5533 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5534 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5535 } 5536 5537 static void 5538 ath_scan_end(struct ieee80211com *ic) 5539 { 5540 struct ath_softc *sc = ic->ic_softc; 5541 struct ath_hal *ah = sc->sc_ah; 5542 u_int32_t rfilt; 5543 5544 ATH_LOCK(sc); 5545 sc->sc_scanning = 0; 5546 rfilt = ath_calcrxfilter(sc); 5547 ATH_UNLOCK(sc); 5548 5549 ATH_PCU_LOCK(sc); 5550 ath_hal_setrxfilter(ah, rfilt); 5551 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5552 5553 ath_hal_process_noisefloor(ah); 5554 ATH_PCU_UNLOCK(sc); 5555 5556 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5557 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5558 sc->sc_curaid); 5559 } 5560 5561 #ifdef ATH_ENABLE_11N 5562 /* 5563 * For now, just do a channel change. 5564 * 5565 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5566 * control state and resetting the hardware without dropping frames out 5567 * of the queue. 5568 * 5569 * The unfortunate trouble here is making absolutely sure that the 5570 * channel width change has propagated enough so the hardware 5571 * absolutely isn't handed bogus frames for it's current operating 5572 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5573 * does occur in parallel, we need to make certain we've blocked 5574 * any further ongoing TX (and RX, that can cause raw TX) 5575 * before we do this. 5576 */ 5577 static void 5578 ath_update_chw(struct ieee80211com *ic) 5579 { 5580 struct ath_softc *sc = ic->ic_softc; 5581 5582 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5583 device_printf(sc->sc_dev, "%s: called\n", __func__); 5584 5585 /* 5586 * XXX TODO: schedule a tasklet that stops things without freeing, 5587 * walks the now stopped TX queue(s) looking for frames to retry 5588 * as if we TX filtered them (whch may mean dropping non-ampdu frames!) 5589 * but okay) then place them back on the software queue so they 5590 * can have the rate control lookup done again. 5591 */ 5592 ath_set_channel(ic); 5593 } 5594 #endif /* ATH_ENABLE_11N */ 5595 5596 /* 5597 * This is called by the beacon parsing routine in the receive 5598 * path to update the current quiet time information provided by 5599 * an AP. 5600 * 5601 * This is STA specific, it doesn't take the AP TBTT/beacon slot 5602 * offset into account. 5603 * 5604 * The quiet IE doesn't control the /now/ beacon interval - it 5605 * controls the upcoming beacon interval. So, when tbtt=1, 5606 * the quiet element programming shall be for the next beacon 5607 * interval. There's no tbtt=0 behaviour defined, so don't. 5608 * 5609 * Since we're programming the next quiet interval, we have 5610 * to keep in mind what we will see when the next beacon 5611 * is received with potentially a quiet IE. For example, if 5612 * quiet_period is 1, then we are always getting a quiet interval 5613 * each TBTT - so if we just program it in upon each beacon received, 5614 * it will constantly reflect the "next" TBTT and we will never 5615 * let the counter stay programmed correctly. 5616 * 5617 * So: 5618 * + the first time we see the quiet IE, program it and store 5619 * the details somewhere; 5620 * + if the quiet parameters don't change (ie, period/duration/offset) 5621 * then just leave the programming enabled; 5622 * + (we can "skip" beacons, so don't try to enforce tbttcount unless 5623 * you're willing to also do the skipped beacon math); 5624 * + if the quiet IE is removed, then halt quiet time. 5625 */ 5626 static int 5627 ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie) 5628 { 5629 struct ieee80211_quiet_ie *q; 5630 struct ieee80211vap *vap = ni->ni_vap; 5631 struct ath_vap *avp = ATH_VAP(vap); 5632 struct ieee80211com *ic = vap->iv_ic; 5633 struct ath_softc *sc = ic->ic_softc; 5634 5635 if (vap->iv_opmode != IEEE80211_M_STA) 5636 return (0); 5637 5638 /* Verify we have a quiet time IE */ 5639 if (ie == NULL) { 5640 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5641 "%s: called; NULL IE, disabling\n", __func__); 5642 5643 ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE); 5644 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 5645 return (0); 5646 } 5647 5648 /* If we do, verify it's actually legit */ 5649 if (ie[0] != IEEE80211_ELEMID_QUIET) 5650 return 0; 5651 if (ie[1] != 6) 5652 return 0; 5653 5654 /* Note: this belongs in net80211, parsed out and everything */ 5655 q = (void *) ie; 5656 5657 /* 5658 * Compare what we have stored to what we last saw. 5659 * If they're the same then don't program in anything. 5660 */ 5661 if ((q->period == avp->quiet_ie.period) && 5662 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) && 5663 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset))) 5664 return (0); 5665 5666 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5667 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n", 5668 __func__, 5669 (int) q->tbttcount, 5670 (int) q->period, 5671 (int) le16dec(&q->duration), 5672 (int) le16dec(&q->offset)); 5673 5674 /* 5675 * Don't program in garbage values. 5676 */ 5677 if ((le16dec(&q->duration) == 0) || 5678 (le16dec(&q->duration) >= ni->ni_intval)) { 5679 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5680 "%s: invalid duration (%d)\n", __func__, 5681 le16dec(&q->duration)); 5682 return (0); 5683 } 5684 /* 5685 * Can have a 0 offset, but not a duration - so just check 5686 * they don't exceed the intval. 5687 */ 5688 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) { 5689 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5690 "%s: invalid duration + offset (%d+%d)\n", __func__, 5691 le16dec(&q->duration), 5692 le16dec(&q->offset)); 5693 return (0); 5694 } 5695 if (q->tbttcount == 0) { 5696 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5697 "%s: invalid tbttcount (0)\n", __func__); 5698 return (0); 5699 } 5700 if (q->period == 0) { 5701 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5702 "%s: invalid period (0)\n", __func__); 5703 return (0); 5704 } 5705 5706 /* 5707 * This is a new quiet time IE config, so wait until tbttcount 5708 * is equal to 1, and program it in. 5709 */ 5710 if (q->tbttcount == 1) { 5711 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5712 "%s: programming\n", __func__); 5713 ath_hal_set_quiet(sc->sc_ah, 5714 q->period * ni->ni_intval, /* convert to TU */ 5715 le16dec(&q->duration), /* already in TU */ 5716 le16dec(&q->offset) + ni->ni_intval, 5717 HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF); 5718 /* 5719 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for 5720 * STA mode 5721 */ 5722 5723 /* Update local state */ 5724 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie)); 5725 } 5726 5727 return (0); 5728 } 5729 5730 static void 5731 ath_set_channel(struct ieee80211com *ic) 5732 { 5733 struct ath_softc *sc = ic->ic_softc; 5734 5735 ATH_LOCK(sc); 5736 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5737 ATH_UNLOCK(sc); 5738 5739 (void) ath_chan_set(sc, ic->ic_curchan); 5740 /* 5741 * If we are returning to our bss channel then mark state 5742 * so the next recv'd beacon's tsf will be used to sync the 5743 * beacon timers. Note that since we only hear beacons in 5744 * sta/ibss mode this has no effect in other operating modes. 5745 */ 5746 ATH_LOCK(sc); 5747 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5748 sc->sc_syncbeacon = 1; 5749 ath_power_restore_power_state(sc); 5750 ATH_UNLOCK(sc); 5751 } 5752 5753 /* 5754 * Walk the vap list and check if there any vap's in RUN state. 5755 */ 5756 static int 5757 ath_isanyrunningvaps(struct ieee80211vap *this) 5758 { 5759 struct ieee80211com *ic = this->iv_ic; 5760 struct ieee80211vap *vap; 5761 5762 IEEE80211_LOCK_ASSERT(ic); 5763 5764 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5765 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5766 return 1; 5767 } 5768 return 0; 5769 } 5770 5771 static int 5772 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5773 { 5774 struct ieee80211com *ic = vap->iv_ic; 5775 struct ath_softc *sc = ic->ic_softc; 5776 struct ath_vap *avp = ATH_VAP(vap); 5777 struct ath_hal *ah = sc->sc_ah; 5778 struct ieee80211_node *ni = NULL; 5779 int i, error, stamode; 5780 u_int32_t rfilt; 5781 int csa_run_transition = 0; 5782 enum ieee80211_state ostate = vap->iv_state; 5783 5784 static const HAL_LED_STATE leds[] = { 5785 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5786 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5787 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5788 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5789 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5790 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5791 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5792 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5793 }; 5794 5795 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5796 ieee80211_state_name[ostate], 5797 ieee80211_state_name[nstate]); 5798 5799 /* 5800 * net80211 _should_ have the comlock asserted at this point. 5801 * There are some comments around the calls to vap->iv_newstate 5802 * which indicate that it (newstate) may end up dropping the 5803 * lock. This and the subsequent lock assert check after newstate 5804 * are an attempt to catch these and figure out how/why. 5805 */ 5806 IEEE80211_LOCK_ASSERT(ic); 5807 5808 /* Before we touch the hardware - wake it up */ 5809 ATH_LOCK(sc); 5810 /* 5811 * If the NIC is in anything other than SLEEP state, 5812 * we need to ensure that self-generated frames are 5813 * set for PWRMGT=0. Otherwise we may end up with 5814 * strange situations. 5815 * 5816 * XXX TODO: is this actually the case? :-) 5817 */ 5818 if (nstate != IEEE80211_S_SLEEP) 5819 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5820 5821 /* 5822 * Now, wake the thing up. 5823 */ 5824 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5825 5826 /* 5827 * And stop the calibration callout whilst we have 5828 * ATH_LOCK held. 5829 */ 5830 callout_stop(&sc->sc_cal_ch); 5831 ATH_UNLOCK(sc); 5832 5833 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5834 csa_run_transition = 1; 5835 5836 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5837 5838 if (nstate == IEEE80211_S_SCAN) { 5839 /* 5840 * Scanning: turn off beacon miss and don't beacon. 5841 * Mark beacon state so when we reach RUN state we'll 5842 * [re]setup beacons. Unblock the task q thread so 5843 * deferred interrupt processing is done. 5844 */ 5845 5846 /* Ensure we stay awake during scan */ 5847 ATH_LOCK(sc); 5848 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5849 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5850 ATH_UNLOCK(sc); 5851 5852 ath_hal_intrset(ah, 5853 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5854 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5855 sc->sc_beacons = 0; 5856 taskqueue_unblock(sc->sc_tq); 5857 } 5858 5859 ni = ieee80211_ref_node(vap->iv_bss); 5860 rfilt = ath_calcrxfilter(sc); 5861 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5862 vap->iv_opmode == IEEE80211_M_AHDEMO || 5863 vap->iv_opmode == IEEE80211_M_IBSS); 5864 5865 /* 5866 * XXX Dont need to do this (and others) if we've transitioned 5867 * from SLEEP->RUN. 5868 */ 5869 if (stamode && nstate == IEEE80211_S_RUN) { 5870 sc->sc_curaid = ni->ni_associd; 5871 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5872 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5873 } 5874 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5875 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5876 ath_hal_setrxfilter(ah, rfilt); 5877 5878 /* XXX is this to restore keycache on resume? */ 5879 if (vap->iv_opmode != IEEE80211_M_STA && 5880 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5881 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5882 if (ath_hal_keyisvalid(ah, i)) 5883 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5884 } 5885 5886 /* 5887 * Invoke the parent method to do net80211 work. 5888 */ 5889 error = avp->av_newstate(vap, nstate, arg); 5890 if (error != 0) 5891 goto bad; 5892 5893 /* 5894 * See above: ensure av_newstate() doesn't drop the lock 5895 * on us. 5896 */ 5897 IEEE80211_LOCK_ASSERT(ic); 5898 5899 /* 5900 * XXX TODO: if nstate is _S_CAC, then we should disable 5901 * ACK processing until CAC is completed. 5902 */ 5903 5904 /* 5905 * XXX TODO: if we're on a passive channel, then we should 5906 * not allow any ACKs or self-generated frames until we hear 5907 * a beacon. Unfortunately there isn't a notification from 5908 * net80211 so perhaps we could slot that particular check 5909 * into the mgmt receive path and just ensure that we clear 5910 * it on RX of beacons in passive mode (and only clear it 5911 * once, obviously.) 5912 */ 5913 5914 /* 5915 * XXX TODO: net80211 should be tracking whether channels 5916 * have heard beacons and are thus considered "OK" for 5917 * transmitting - and then inform the driver about this 5918 * state change. That way if we hear an AP go quiet 5919 * (and nothing else is beaconing on a channel) the 5920 * channel can go back to being passive until another 5921 * beacon is heard. 5922 */ 5923 5924 /* 5925 * XXX TODO: if nstate is _S_CAC, then we should disable 5926 * ACK processing until CAC is completed. 5927 */ 5928 5929 /* 5930 * XXX TODO: if we're on a passive channel, then we should 5931 * not allow any ACKs or self-generated frames until we hear 5932 * a beacon. Unfortunately there isn't a notification from 5933 * net80211 so perhaps we could slot that particular check 5934 * into the mgmt receive path and just ensure that we clear 5935 * it on RX of beacons in passive mode (and only clear it 5936 * once, obviously.) 5937 */ 5938 5939 /* 5940 * XXX TODO: net80211 should be tracking whether channels 5941 * have heard beacons and are thus considered "OK" for 5942 * transmitting - and then inform the driver about this 5943 * state change. That way if we hear an AP go quiet 5944 * (and nothing else is beaconing on a channel) the 5945 * channel can go back to being passive until another 5946 * beacon is heard. 5947 */ 5948 5949 if (nstate == IEEE80211_S_RUN) { 5950 /* NB: collect bss node again, it may have changed */ 5951 ieee80211_free_node(ni); 5952 ni = ieee80211_ref_node(vap->iv_bss); 5953 5954 DPRINTF(sc, ATH_DEBUG_STATE, 5955 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5956 "capinfo 0x%04x chan %d\n", __func__, 5957 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5958 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5959 5960 switch (vap->iv_opmode) { 5961 #ifdef IEEE80211_SUPPORT_TDMA 5962 case IEEE80211_M_AHDEMO: 5963 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5964 break; 5965 /* fall thru... */ 5966 #endif 5967 case IEEE80211_M_HOSTAP: 5968 case IEEE80211_M_IBSS: 5969 case IEEE80211_M_MBSS: 5970 5971 /* 5972 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.) 5973 * For channels that are in CAC, we may have disabled 5974 * this during CAC to ensure we don't ACK frames 5975 * sent to us. 5976 */ 5977 5978 /* 5979 * Allocate and setup the beacon frame. 5980 * 5981 * Stop any previous beacon DMA. This may be 5982 * necessary, for example, when an ibss merge 5983 * causes reconfiguration; there will be a state 5984 * transition from RUN->RUN that means we may 5985 * be called with beacon transmission active. 5986 */ 5987 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5988 5989 error = ath_beacon_alloc(sc, ni); 5990 if (error != 0) 5991 goto bad; 5992 /* 5993 * If joining an adhoc network defer beacon timer 5994 * configuration to the next beacon frame so we 5995 * have a current TSF to use. Otherwise we're 5996 * starting an ibss/bss so there's no need to delay; 5997 * if this is the first vap moving to RUN state, then 5998 * beacon state needs to be [re]configured. 5999 */ 6000 if (vap->iv_opmode == IEEE80211_M_IBSS && 6001 ni->ni_tstamp.tsf != 0) { 6002 sc->sc_syncbeacon = 1; 6003 } else if (!sc->sc_beacons) { 6004 #ifdef IEEE80211_SUPPORT_TDMA 6005 if (vap->iv_caps & IEEE80211_C_TDMA) 6006 ath_tdma_config(sc, vap); 6007 else 6008 #endif 6009 ath_beacon_config(sc, vap); 6010 sc->sc_beacons = 1; 6011 } 6012 break; 6013 case IEEE80211_M_STA: 6014 /* 6015 * Defer beacon timer configuration to the next 6016 * beacon frame so we have a current TSF to use 6017 * (any TSF collected when scanning is likely old). 6018 * However if it's due to a CSA -> RUN transition, 6019 * force a beacon update so we pick up a lack of 6020 * beacons from an AP in CAC and thus force a 6021 * scan. 6022 * 6023 * And, there's also corner cases here where 6024 * after a scan, the AP may have disappeared. 6025 * In that case, we may not receive an actual 6026 * beacon to update the beacon timer and thus we 6027 * won't get notified of the missing beacons. 6028 */ 6029 if (ostate != IEEE80211_S_RUN && 6030 ostate != IEEE80211_S_SLEEP) { 6031 DPRINTF(sc, ATH_DEBUG_BEACON, 6032 "%s: STA; syncbeacon=1\n", __func__); 6033 sc->sc_syncbeacon = 1; 6034 6035 /* Quiet time handling - ensure we resync */ 6036 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6037 6038 if (csa_run_transition) 6039 ath_beacon_config(sc, vap); 6040 6041 /* 6042 * PR: kern/175227 6043 * 6044 * Reconfigure beacons during reset; as otherwise 6045 * we won't get the beacon timers reprogrammed 6046 * after a reset and thus we won't pick up a 6047 * beacon miss interrupt. 6048 * 6049 * Hopefully we'll see a beacon before the BMISS 6050 * timer fires (too often), leading to a STA 6051 * disassociation. 6052 */ 6053 sc->sc_beacons = 1; 6054 } 6055 break; 6056 case IEEE80211_M_MONITOR: 6057 /* 6058 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6059 * transitions so we must re-enable interrupts here to 6060 * handle the case of a single monitor mode vap. 6061 */ 6062 ath_hal_intrset(ah, sc->sc_imask); 6063 break; 6064 case IEEE80211_M_WDS: 6065 break; 6066 default: 6067 break; 6068 } 6069 /* 6070 * Let the hal process statistics collected during a 6071 * scan so it can provide calibrated noise floor data. 6072 */ 6073 ath_hal_process_noisefloor(ah); 6074 /* 6075 * Reset rssi stats; maybe not the best place... 6076 */ 6077 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6078 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6079 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6080 6081 /* 6082 * Force awake for RUN mode. 6083 */ 6084 ATH_LOCK(sc); 6085 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6086 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 6087 6088 /* 6089 * Finally, start any timers and the task q thread 6090 * (in case we didn't go through SCAN state). 6091 */ 6092 if (ath_longcalinterval != 0) { 6093 /* start periodic recalibration timer */ 6094 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6095 } else { 6096 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6097 "%s: calibration disabled\n", __func__); 6098 } 6099 ATH_UNLOCK(sc); 6100 6101 taskqueue_unblock(sc->sc_tq); 6102 } else if (nstate == IEEE80211_S_INIT) { 6103 /* Quiet time handling - ensure we resync */ 6104 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6105 6106 /* 6107 * If there are no vaps left in RUN state then 6108 * shutdown host/driver operation: 6109 * o disable interrupts 6110 * o disable the task queue thread 6111 * o mark beacon processing as stopped 6112 */ 6113 if (!ath_isanyrunningvaps(vap)) { 6114 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6115 /* disable interrupts */ 6116 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6117 taskqueue_block(sc->sc_tq); 6118 sc->sc_beacons = 0; 6119 } 6120 6121 /* 6122 * For at least STA mode we likely should clear the ANI 6123 * and NF calibration state and allow the NIC/HAL to figure 6124 * out optimal parameters at runtime. Otherwise if we 6125 * disassociate due to interference / deafness it may persist 6126 * when we reconnect. 6127 * 6128 * Note: may need to do this for other states too, not just 6129 * _S_INIT. 6130 */ 6131 #ifdef IEEE80211_SUPPORT_TDMA 6132 ath_hal_setcca(ah, AH_TRUE); 6133 #endif 6134 } else if (nstate == IEEE80211_S_SLEEP) { 6135 /* We're going to sleep, so transition appropriately */ 6136 /* For now, only do this if we're a single STA vap */ 6137 if (sc->sc_nvaps == 1 && 6138 vap->iv_opmode == IEEE80211_M_STA) { 6139 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6140 ATH_LOCK(sc); 6141 /* 6142 * Always at least set the self-generated 6143 * frame config to set PWRMGT=1. 6144 */ 6145 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6146 6147 /* 6148 * If we're not syncing beacons, transition 6149 * to NETWORK_SLEEP. 6150 * 6151 * We stay awake if syncbeacon > 0 in case 6152 * we need to listen for some beacons otherwise 6153 * our beacon timer config may be wrong. 6154 */ 6155 if (sc->sc_syncbeacon == 0) { 6156 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 6157 } 6158 ATH_UNLOCK(sc); 6159 } 6160 6161 /* 6162 * Note - the ANI/calibration timer isn't re-enabled during 6163 * network sleep for now. One unfortunate side-effect is that 6164 * the PHY/airtime statistics aren't gathered on the channel 6165 * but I haven't yet tested to see if reading those registers 6166 * CAN occur during network sleep. 6167 * 6168 * This should be revisited in a future commit, even if it's 6169 * just to split out the airtime polling from ANI/calibration. 6170 */ 6171 } else if (nstate == IEEE80211_S_SCAN) { 6172 /* Quiet time handling - ensure we resync */ 6173 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6174 6175 /* 6176 * If we're in scan mode then startpcureceive() is 6177 * hopefully being called with "reset ANI" for this channel; 6178 * but once we attempt to reassociate we program in the previous 6179 * ANI values and.. not do any calibration until we're running. 6180 * This may mean we stay deaf unless we can associate successfully. 6181 * 6182 * So do kick off the cal timer to get NF/ANI going. 6183 */ 6184 ATH_LOCK(sc); 6185 if (ath_longcalinterval != 0) { 6186 /* start periodic recalibration timer */ 6187 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6188 } else { 6189 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6190 "%s: calibration disabled\n", __func__); 6191 } 6192 ATH_UNLOCK(sc); 6193 } 6194 bad: 6195 ieee80211_free_node(ni); 6196 6197 /* 6198 * Restore the power state - either to what it was, or 6199 * to network_sleep if it's alright. 6200 */ 6201 ATH_LOCK(sc); 6202 ath_power_restore_power_state(sc); 6203 ATH_UNLOCK(sc); 6204 return error; 6205 } 6206 6207 /* 6208 * Allocate a key cache slot to the station so we can 6209 * setup a mapping from key index to node. The key cache 6210 * slot is needed for managing antenna state and for 6211 * compression when stations do not use crypto. We do 6212 * it uniliaterally here; if crypto is employed this slot 6213 * will be reassigned. 6214 */ 6215 static void 6216 ath_setup_stationkey(struct ieee80211_node *ni) 6217 { 6218 struct ieee80211vap *vap = ni->ni_vap; 6219 struct ath_softc *sc = vap->iv_ic->ic_softc; 6220 ieee80211_keyix keyix, rxkeyix; 6221 6222 /* XXX should take a locked ref to vap->iv_bss */ 6223 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6224 /* 6225 * Key cache is full; we'll fall back to doing 6226 * the more expensive lookup in software. Note 6227 * this also means no h/w compression. 6228 */ 6229 /* XXX msg+statistic */ 6230 } else { 6231 /* XXX locking? */ 6232 ni->ni_ucastkey.wk_keyix = keyix; 6233 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6234 /* NB: must mark device key to get called back on delete */ 6235 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6236 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6237 /* NB: this will create a pass-thru key entry */ 6238 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6239 } 6240 } 6241 6242 /* 6243 * Setup driver-specific state for a newly associated node. 6244 * Note that we're called also on a re-associate, the isnew 6245 * param tells us if this is the first time or not. 6246 */ 6247 static void 6248 ath_newassoc(struct ieee80211_node *ni, int isnew) 6249 { 6250 struct ath_node *an = ATH_NODE(ni); 6251 struct ieee80211vap *vap = ni->ni_vap; 6252 struct ath_softc *sc = vap->iv_ic->ic_softc; 6253 const struct ieee80211_txparam *tp = ni->ni_txparms; 6254 6255 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6256 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6257 6258 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6259 __func__, 6260 ni->ni_macaddr, 6261 ":", 6262 isnew, 6263 an->an_is_powersave); 6264 6265 ATH_NODE_LOCK(an); 6266 ath_rate_newassoc(sc, an, isnew); 6267 ATH_NODE_UNLOCK(an); 6268 6269 if (isnew && 6270 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6271 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6272 ath_setup_stationkey(ni); 6273 6274 /* 6275 * If we're reassociating, make sure that any paused queues 6276 * get unpaused. 6277 * 6278 * Now, we may have frames in the hardware queue for this node. 6279 * So if we are reassociating and there are frames in the queue, 6280 * we need to go through the cleanup path to ensure that they're 6281 * marked as non-aggregate. 6282 */ 6283 if (! isnew) { 6284 DPRINTF(sc, ATH_DEBUG_NODE, 6285 "%s: %6D: reassoc; is_powersave=%d\n", 6286 __func__, 6287 ni->ni_macaddr, 6288 ":", 6289 an->an_is_powersave); 6290 6291 /* XXX for now, we can't hold the lock across assoc */ 6292 ath_tx_node_reassoc(sc, an); 6293 6294 /* XXX for now, we can't hold the lock across wakeup */ 6295 if (an->an_is_powersave) 6296 ath_tx_node_wakeup(sc, an); 6297 } 6298 } 6299 6300 static int 6301 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6302 int nchans, struct ieee80211_channel chans[]) 6303 { 6304 struct ath_softc *sc = ic->ic_softc; 6305 struct ath_hal *ah = sc->sc_ah; 6306 HAL_STATUS status; 6307 6308 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6309 "%s: rd %u cc %u location %c%s\n", 6310 __func__, reg->regdomain, reg->country, reg->location, 6311 reg->ecm ? " ecm" : ""); 6312 6313 status = ath_hal_set_channels(ah, chans, nchans, 6314 reg->country, reg->regdomain); 6315 if (status != HAL_OK) { 6316 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6317 __func__, status); 6318 return EINVAL; /* XXX */ 6319 } 6320 6321 return 0; 6322 } 6323 6324 static void 6325 ath_getradiocaps(struct ieee80211com *ic, 6326 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6327 { 6328 struct ath_softc *sc = ic->ic_softc; 6329 struct ath_hal *ah = sc->sc_ah; 6330 6331 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6332 __func__, SKU_DEBUG, CTRY_DEFAULT); 6333 6334 /* XXX check return */ 6335 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6336 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6337 6338 } 6339 6340 static int 6341 ath_getchannels(struct ath_softc *sc) 6342 { 6343 struct ieee80211com *ic = &sc->sc_ic; 6344 struct ath_hal *ah = sc->sc_ah; 6345 HAL_STATUS status; 6346 6347 /* 6348 * Collect channel set based on EEPROM contents. 6349 */ 6350 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6351 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6352 if (status != HAL_OK) { 6353 device_printf(sc->sc_dev, 6354 "%s: unable to collect channel list from hal, status %d\n", 6355 __func__, status); 6356 return EINVAL; 6357 } 6358 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6359 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6360 /* XXX map Atheros sku's to net80211 SKU's */ 6361 /* XXX net80211 types too small */ 6362 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6363 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6364 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6365 ic->ic_regdomain.isocc[1] = ' '; 6366 6367 ic->ic_regdomain.ecm = 1; 6368 ic->ic_regdomain.location = 'I'; 6369 6370 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6371 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6372 __func__, sc->sc_eerd, sc->sc_eecc, 6373 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6374 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6375 return 0; 6376 } 6377 6378 static int 6379 ath_rate_setup(struct ath_softc *sc, u_int mode) 6380 { 6381 struct ath_hal *ah = sc->sc_ah; 6382 const HAL_RATE_TABLE *rt; 6383 6384 switch (mode) { 6385 case IEEE80211_MODE_11A: 6386 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6387 break; 6388 case IEEE80211_MODE_HALF: 6389 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6390 break; 6391 case IEEE80211_MODE_QUARTER: 6392 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6393 break; 6394 case IEEE80211_MODE_11B: 6395 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6396 break; 6397 case IEEE80211_MODE_11G: 6398 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6399 break; 6400 case IEEE80211_MODE_TURBO_A: 6401 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6402 break; 6403 case IEEE80211_MODE_TURBO_G: 6404 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6405 break; 6406 case IEEE80211_MODE_STURBO_A: 6407 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6408 break; 6409 case IEEE80211_MODE_11NA: 6410 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6411 break; 6412 case IEEE80211_MODE_11NG: 6413 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6414 break; 6415 default: 6416 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6417 __func__, mode); 6418 return 0; 6419 } 6420 sc->sc_rates[mode] = rt; 6421 return (rt != NULL); 6422 } 6423 6424 static void 6425 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6426 { 6427 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6428 static const struct { 6429 u_int rate; /* tx/rx 802.11 rate */ 6430 u_int16_t timeOn; /* LED on time (ms) */ 6431 u_int16_t timeOff; /* LED off time (ms) */ 6432 } blinkrates[] = { 6433 { 108, 40, 10 }, 6434 { 96, 44, 11 }, 6435 { 72, 50, 13 }, 6436 { 48, 57, 14 }, 6437 { 36, 67, 16 }, 6438 { 24, 80, 20 }, 6439 { 22, 100, 25 }, 6440 { 18, 133, 34 }, 6441 { 12, 160, 40 }, 6442 { 10, 200, 50 }, 6443 { 6, 240, 58 }, 6444 { 4, 267, 66 }, 6445 { 2, 400, 100 }, 6446 { 0, 500, 130 }, 6447 /* XXX half/quarter rates */ 6448 }; 6449 const HAL_RATE_TABLE *rt; 6450 int i, j; 6451 6452 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6453 rt = sc->sc_rates[mode]; 6454 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6455 for (i = 0; i < rt->rateCount; i++) { 6456 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6457 if (rt->info[i].phy != IEEE80211_T_HT) 6458 sc->sc_rixmap[ieeerate] = i; 6459 else 6460 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6461 } 6462 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6463 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6464 if (i >= rt->rateCount) { 6465 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6466 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6467 continue; 6468 } 6469 sc->sc_hwmap[i].ieeerate = 6470 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6471 if (rt->info[i].phy == IEEE80211_T_HT) 6472 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6473 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6474 if (rt->info[i].shortPreamble || 6475 rt->info[i].phy == IEEE80211_T_OFDM) 6476 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6477 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6478 for (j = 0; j < nitems(blinkrates)-1; j++) 6479 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6480 break; 6481 /* NB: this uses the last entry if the rate isn't found */ 6482 /* XXX beware of overlow */ 6483 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6484 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6485 } 6486 sc->sc_currates = rt; 6487 sc->sc_curmode = mode; 6488 /* 6489 * All protection frames are transmitted at 2Mb/s for 6490 * 11g, otherwise at 1Mb/s. 6491 */ 6492 if (mode == IEEE80211_MODE_11G) 6493 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6494 else 6495 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6496 /* NB: caller is responsible for resetting rate control state */ 6497 } 6498 6499 static void 6500 ath_watchdog(void *arg) 6501 { 6502 struct ath_softc *sc = arg; 6503 struct ieee80211com *ic = &sc->sc_ic; 6504 int do_reset = 0; 6505 6506 ATH_LOCK_ASSERT(sc); 6507 6508 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6509 uint32_t hangs; 6510 6511 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6512 6513 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6514 hangs != 0) { 6515 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6516 hangs & 0xff ? "bb" : "mac", hangs); 6517 } else 6518 device_printf(sc->sc_dev, "device timeout\n"); 6519 do_reset = 1; 6520 counter_u64_add(ic->ic_oerrors, 1); 6521 sc->sc_stats.ast_watchdog++; 6522 6523 ath_power_restore_power_state(sc); 6524 } 6525 6526 /* 6527 * We can't hold the lock across the ath_reset() call. 6528 * 6529 * And since this routine can't hold a lock and sleep, 6530 * do the reset deferred. 6531 */ 6532 if (do_reset) { 6533 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6534 } 6535 6536 callout_schedule(&sc->sc_wd_ch, hz); 6537 } 6538 6539 static void 6540 ath_parent(struct ieee80211com *ic) 6541 { 6542 struct ath_softc *sc = ic->ic_softc; 6543 int error = EDOOFUS; 6544 6545 ATH_LOCK(sc); 6546 if (ic->ic_nrunning > 0) { 6547 /* 6548 * To avoid rescanning another access point, 6549 * do not call ath_init() here. Instead, 6550 * only reflect promisc mode settings. 6551 */ 6552 if (sc->sc_running) { 6553 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6554 ath_mode_init(sc); 6555 ath_power_restore_power_state(sc); 6556 } else if (!sc->sc_invalid) { 6557 /* 6558 * Beware of being called during attach/detach 6559 * to reset promiscuous mode. In that case we 6560 * will still be marked UP but not RUNNING. 6561 * However trying to re-init the interface 6562 * is the wrong thing to do as we've already 6563 * torn down much of our state. There's 6564 * probably a better way to deal with this. 6565 */ 6566 error = ath_init(sc); 6567 } 6568 } else { 6569 ath_stop(sc); 6570 if (!sc->sc_invalid) 6571 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6572 } 6573 ATH_UNLOCK(sc); 6574 6575 if (error == 0) { 6576 #ifdef ATH_TX99_DIAG 6577 if (sc->sc_tx99 != NULL) 6578 sc->sc_tx99->start(sc->sc_tx99); 6579 else 6580 #endif 6581 ieee80211_start_all(ic); 6582 } 6583 } 6584 6585 /* 6586 * Announce various information on device/driver attach. 6587 */ 6588 static void 6589 ath_announce(struct ath_softc *sc) 6590 { 6591 struct ath_hal *ah = sc->sc_ah; 6592 6593 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6594 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6595 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6596 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6597 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6598 if (bootverbose) { 6599 int i; 6600 for (i = 0; i <= WME_AC_VO; i++) { 6601 struct ath_txq *txq = sc->sc_ac2q[i]; 6602 device_printf(sc->sc_dev, 6603 "Use hw queue %u for %s traffic\n", 6604 txq->axq_qnum, ieee80211_wme_acnames[i]); 6605 } 6606 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6607 sc->sc_cabq->axq_qnum); 6608 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6609 sc->sc_bhalq); 6610 } 6611 if (ath_rxbuf != ATH_RXBUF) 6612 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6613 if (ath_txbuf != ATH_TXBUF) 6614 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6615 if (sc->sc_mcastkey && bootverbose) 6616 device_printf(sc->sc_dev, "using multicast key search\n"); 6617 } 6618 6619 static void 6620 ath_dfs_tasklet(void *p, int npending) 6621 { 6622 struct ath_softc *sc = (struct ath_softc *) p; 6623 struct ieee80211com *ic = &sc->sc_ic; 6624 6625 /* 6626 * If previous processing has found a radar event, 6627 * signal this to the net80211 layer to begin DFS 6628 * processing. 6629 */ 6630 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6631 /* DFS event found, initiate channel change */ 6632 6633 /* 6634 * XXX TODO: immediately disable ACK processing 6635 * on the current channel. This would be done 6636 * by setting AR_DIAG_ACK_DIS (AR5212; may be 6637 * different for others) until we are out of 6638 * CAC. 6639 */ 6640 6641 /* 6642 * XXX doesn't currently tell us whether the event 6643 * XXX was found in the primary or extension 6644 * XXX channel! 6645 */ 6646 IEEE80211_LOCK(ic); 6647 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6648 IEEE80211_UNLOCK(ic); 6649 } 6650 } 6651 6652 /* 6653 * Enable/disable power save. This must be called with 6654 * no TX driver locks currently held, so it should only 6655 * be called from the RX path (which doesn't hold any 6656 * TX driver locks.) 6657 */ 6658 static void 6659 ath_node_powersave(struct ieee80211_node *ni, int enable) 6660 { 6661 #ifdef ATH_SW_PSQ 6662 struct ath_node *an = ATH_NODE(ni); 6663 struct ieee80211com *ic = ni->ni_ic; 6664 struct ath_softc *sc = ic->ic_softc; 6665 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6666 6667 /* XXX and no TXQ locks should be held here */ 6668 6669 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6670 __func__, 6671 ni->ni_macaddr, 6672 ":", 6673 !! enable); 6674 6675 /* Suspend or resume software queue handling */ 6676 if (enable) 6677 ath_tx_node_sleep(sc, an); 6678 else 6679 ath_tx_node_wakeup(sc, an); 6680 6681 /* Update net80211 state */ 6682 avp->av_node_ps(ni, enable); 6683 #else 6684 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6685 6686 /* Update net80211 state */ 6687 avp->av_node_ps(ni, enable); 6688 #endif/* ATH_SW_PSQ */ 6689 } 6690 6691 /* 6692 * Notification from net80211 that the powersave queue state has 6693 * changed. 6694 * 6695 * Since the software queue also may have some frames: 6696 * 6697 * + if the node software queue has frames and the TID state 6698 * is 0, we set the TIM; 6699 * + if the node and the stack are both empty, we clear the TIM bit. 6700 * + If the stack tries to set the bit, always set it. 6701 * + If the stack tries to clear the bit, only clear it if the 6702 * software queue in question is also cleared. 6703 * 6704 * TODO: this is called during node teardown; so let's ensure this 6705 * is all correctly handled and that the TIM bit is cleared. 6706 * It may be that the node flush is called _AFTER_ the net80211 6707 * stack clears the TIM. 6708 * 6709 * Here is the racy part. Since it's possible >1 concurrent, 6710 * overlapping TXes will appear complete with a TX completion in 6711 * another thread, it's possible that the concurrent TIM calls will 6712 * clash. We can't hold the node lock here because setting the 6713 * TIM grabs the net80211 comlock and this may cause a LOR. 6714 * The solution is either to totally serialise _everything_ at 6715 * this point (ie, all TX, completion and any reset/flush go into 6716 * one taskqueue) or a new "ath TIM lock" needs to be created that 6717 * just wraps the driver state change and this call to avp->av_set_tim(). 6718 * 6719 * The same race exists in the net80211 power save queue handling 6720 * as well. Since multiple transmitting threads may queue frames 6721 * into the driver, as well as ps-poll and the driver transmitting 6722 * frames (and thus clearing the psq), it's quite possible that 6723 * a packet entering the PSQ and a ps-poll being handled will 6724 * race, causing the TIM to be cleared and not re-set. 6725 */ 6726 static int 6727 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6728 { 6729 #ifdef ATH_SW_PSQ 6730 struct ieee80211com *ic = ni->ni_ic; 6731 struct ath_softc *sc = ic->ic_softc; 6732 struct ath_node *an = ATH_NODE(ni); 6733 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6734 int changed = 0; 6735 6736 ATH_TX_LOCK(sc); 6737 an->an_stack_psq = enable; 6738 6739 /* 6740 * This will get called for all operating modes, 6741 * even if avp->av_set_tim is unset. 6742 * It's currently set for hostap/ibss modes; but 6743 * the same infrastructure is used for both STA 6744 * and AP/IBSS node power save. 6745 */ 6746 if (avp->av_set_tim == NULL) { 6747 ATH_TX_UNLOCK(sc); 6748 return (0); 6749 } 6750 6751 /* 6752 * If setting the bit, always set it here. 6753 * If clearing the bit, only clear it if the 6754 * software queue is also empty. 6755 * 6756 * If the node has left power save, just clear the TIM 6757 * bit regardless of the state of the power save queue. 6758 * 6759 * XXX TODO: although atomics are used, it's quite possible 6760 * that a race will occur between this and setting/clearing 6761 * in another thread. TX completion will occur always in 6762 * one thread, however setting/clearing the TIM bit can come 6763 * from a variety of different process contexts! 6764 */ 6765 if (enable && an->an_tim_set == 1) { 6766 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6767 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6768 __func__, 6769 ni->ni_macaddr, 6770 ":", 6771 enable); 6772 ATH_TX_UNLOCK(sc); 6773 } else if (enable) { 6774 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6775 "%s: %6D: enable=%d, enabling TIM\n", 6776 __func__, 6777 ni->ni_macaddr, 6778 ":", 6779 enable); 6780 an->an_tim_set = 1; 6781 ATH_TX_UNLOCK(sc); 6782 changed = avp->av_set_tim(ni, enable); 6783 } else if (an->an_swq_depth == 0) { 6784 /* disable */ 6785 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6786 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6787 __func__, 6788 ni->ni_macaddr, 6789 ":", 6790 enable); 6791 an->an_tim_set = 0; 6792 ATH_TX_UNLOCK(sc); 6793 changed = avp->av_set_tim(ni, enable); 6794 } else if (! an->an_is_powersave) { 6795 /* 6796 * disable regardless; the node isn't in powersave now 6797 */ 6798 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6799 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6800 __func__, 6801 ni->ni_macaddr, 6802 ":", 6803 enable); 6804 an->an_tim_set = 0; 6805 ATH_TX_UNLOCK(sc); 6806 changed = avp->av_set_tim(ni, enable); 6807 } else { 6808 /* 6809 * psq disable, node is currently in powersave, node 6810 * software queue isn't empty, so don't clear the TIM bit 6811 * for now. 6812 */ 6813 ATH_TX_UNLOCK(sc); 6814 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6815 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6816 __func__, 6817 ni->ni_macaddr, 6818 ":", 6819 enable); 6820 changed = 0; 6821 } 6822 6823 return (changed); 6824 #else 6825 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6826 6827 /* 6828 * Some operating modes don't set av_set_tim(), so don't 6829 * update it here. 6830 */ 6831 if (avp->av_set_tim == NULL) 6832 return (0); 6833 6834 return (avp->av_set_tim(ni, enable)); 6835 #endif /* ATH_SW_PSQ */ 6836 } 6837 6838 /* 6839 * Set or update the TIM from the software queue. 6840 * 6841 * Check the software queue depth before attempting to do lock 6842 * anything; that avoids trying to obtain the lock. Then, 6843 * re-check afterwards to ensure nothing has changed in the 6844 * meantime. 6845 * 6846 * set: This is designed to be called from the TX path, after 6847 * a frame has been queued; to see if the swq > 0. 6848 * 6849 * clear: This is designed to be called from the buffer completion point 6850 * (right now it's ath_tx_default_comp()) where the state of 6851 * a software queue has changed. 6852 * 6853 * It makes sense to place it at buffer free / completion rather 6854 * than after each software queue operation, as there's no real 6855 * point in churning the TIM bit as the last frames in the software 6856 * queue are transmitted. If they fail and we retry them, we'd 6857 * just be setting the TIM bit again anyway. 6858 */ 6859 void 6860 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6861 int enable) 6862 { 6863 #ifdef ATH_SW_PSQ 6864 struct ath_node *an; 6865 struct ath_vap *avp; 6866 6867 /* Don't do this for broadcast/etc frames */ 6868 if (ni == NULL) 6869 return; 6870 6871 an = ATH_NODE(ni); 6872 avp = ATH_VAP(ni->ni_vap); 6873 6874 /* 6875 * And for operating modes without the TIM handler set, let's 6876 * just skip those. 6877 */ 6878 if (avp->av_set_tim == NULL) 6879 return; 6880 6881 ATH_TX_LOCK_ASSERT(sc); 6882 6883 if (enable) { 6884 if (an->an_is_powersave && 6885 an->an_tim_set == 0 && 6886 an->an_swq_depth != 0) { 6887 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6888 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6889 __func__, 6890 ni->ni_macaddr, 6891 ":"); 6892 an->an_tim_set = 1; 6893 (void) avp->av_set_tim(ni, 1); 6894 } 6895 } else { 6896 /* 6897 * Don't bother grabbing the lock unless the queue is empty. 6898 */ 6899 if (an->an_swq_depth != 0) 6900 return; 6901 6902 if (an->an_is_powersave && 6903 an->an_stack_psq == 0 && 6904 an->an_tim_set == 1 && 6905 an->an_swq_depth == 0) { 6906 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6907 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6908 " clear!\n", 6909 __func__, 6910 ni->ni_macaddr, 6911 ":"); 6912 an->an_tim_set = 0; 6913 (void) avp->av_set_tim(ni, 0); 6914 } 6915 } 6916 #else 6917 return; 6918 #endif /* ATH_SW_PSQ */ 6919 } 6920 6921 /* 6922 * Received a ps-poll frame from net80211. 6923 * 6924 * Here we get a chance to serve out a software-queued frame ourselves 6925 * before we punt it to net80211 to transmit us one itself - either 6926 * because there's traffic in the net80211 psq, or a NULL frame to 6927 * indicate there's nothing else. 6928 */ 6929 static void 6930 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6931 { 6932 #ifdef ATH_SW_PSQ 6933 struct ath_node *an; 6934 struct ath_vap *avp; 6935 struct ieee80211com *ic = ni->ni_ic; 6936 struct ath_softc *sc = ic->ic_softc; 6937 int tid; 6938 6939 /* Just paranoia */ 6940 if (ni == NULL) 6941 return; 6942 6943 /* 6944 * Unassociated (temporary node) station. 6945 */ 6946 if (ni->ni_associd == 0) 6947 return; 6948 6949 /* 6950 * We do have an active node, so let's begin looking into it. 6951 */ 6952 an = ATH_NODE(ni); 6953 avp = ATH_VAP(ni->ni_vap); 6954 6955 /* 6956 * For now, we just call the original ps-poll method. 6957 * Once we're ready to flip this on: 6958 * 6959 * + Set leak to 1, as no matter what we're going to have 6960 * to send a frame; 6961 * + Check the software queue and if there's something in it, 6962 * schedule the highest TID thas has traffic from this node. 6963 * Then make sure we schedule the software scheduler to 6964 * run so it picks up said frame. 6965 * 6966 * That way whatever happens, we'll at least send _a_ frame 6967 * to the given node. 6968 * 6969 * Again, yes, it's crappy QoS if the node has multiple 6970 * TIDs worth of traffic - but let's get it working first 6971 * before we optimise it. 6972 * 6973 * Also yes, there's definitely latency here - we're not 6974 * direct dispatching to the hardware in this path (and 6975 * we're likely being called from the packet receive path, 6976 * so going back into TX may be a little hairy!) but again 6977 * I'd like to get this working first before optimising 6978 * turn-around time. 6979 */ 6980 6981 ATH_TX_LOCK(sc); 6982 6983 /* 6984 * Legacy - we're called and the node isn't asleep. 6985 * Immediately punt. 6986 */ 6987 if (! an->an_is_powersave) { 6988 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6989 "%s: %6D: not in powersave?\n", 6990 __func__, 6991 ni->ni_macaddr, 6992 ":"); 6993 ATH_TX_UNLOCK(sc); 6994 avp->av_recv_pspoll(ni, m); 6995 return; 6996 } 6997 6998 /* 6999 * We're in powersave. 7000 * 7001 * Leak a frame. 7002 */ 7003 an->an_leak_count = 1; 7004 7005 /* 7006 * Now, if there's no frames in the node, just punt to 7007 * recv_pspoll. 7008 * 7009 * Don't bother checking if the TIM bit is set, we really 7010 * only care if there are any frames here! 7011 */ 7012 if (an->an_swq_depth == 0) { 7013 ATH_TX_UNLOCK(sc); 7014 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7015 "%s: %6D: SWQ empty; punting to net80211\n", 7016 __func__, 7017 ni->ni_macaddr, 7018 ":"); 7019 avp->av_recv_pspoll(ni, m); 7020 return; 7021 } 7022 7023 /* 7024 * Ok, let's schedule the highest TID that has traffic 7025 * and then schedule something. 7026 */ 7027 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7028 struct ath_tid *atid = &an->an_tid[tid]; 7029 /* 7030 * No frames? Skip. 7031 */ 7032 if (atid->axq_depth == 0) 7033 continue; 7034 ath_tx_tid_sched(sc, atid); 7035 /* 7036 * XXX we could do a direct call to the TXQ 7037 * scheduler code here to optimise latency 7038 * at the expense of a REALLY deep callstack. 7039 */ 7040 ATH_TX_UNLOCK(sc); 7041 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7042 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7043 "%s: %6D: leaking frame to TID %d\n", 7044 __func__, 7045 ni->ni_macaddr, 7046 ":", 7047 tid); 7048 return; 7049 } 7050 7051 ATH_TX_UNLOCK(sc); 7052 7053 /* 7054 * XXX nothing in the TIDs at this point? Eek. 7055 */ 7056 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7057 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7058 __func__, 7059 ni->ni_macaddr, 7060 ":"); 7061 avp->av_recv_pspoll(ni, m); 7062 #else 7063 avp->av_recv_pspoll(ni, m); 7064 #endif /* ATH_SW_PSQ */ 7065 } 7066 7067 MODULE_VERSION(ath_main, 1); 7068 MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */ 7069 MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1); 7070 MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1); 7071 MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1); 7072 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7073 MODULE_DEPEND(ath_main, alq, 1, 1, 1); 7074 #endif 7075