1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 120 #ifdef ATH_TX99_DIAG 121 #include <dev/ath/ath_tx99/ath_tx99.h> 122 #endif 123 124 #ifdef ATH_DEBUG_ALQ 125 #include <dev/ath/if_ath_alq.h> 126 #endif 127 128 /* 129 * Only enable this if you're working on PS-POLL support. 130 */ 131 #define ATH_SW_PSQ 132 133 /* 134 * ATH_BCBUF determines the number of vap's that can transmit 135 * beacons and also (currently) the number of vap's that can 136 * have unique mac addresses/bssid. When staggering beacons 137 * 4 is probably a good max as otherwise the beacons become 138 * very closely spaced and there is limited time for cab q traffic 139 * to go out. You can burst beacons instead but that is not good 140 * for stations in power save and at some point you really want 141 * another radio (and channel). 142 * 143 * The limit on the number of mac addresses is tied to our use of 144 * the U/L bit and tracking addresses in a byte; it would be 145 * worthwhile to allow more for applications like proxy sta. 146 */ 147 CTASSERT(ATH_BCBUF <= 8); 148 149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 150 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 151 const uint8_t [IEEE80211_ADDR_LEN], 152 const uint8_t [IEEE80211_ADDR_LEN]); 153 static void ath_vap_delete(struct ieee80211vap *); 154 static void ath_init(void *); 155 static void ath_stop_locked(struct ifnet *); 156 static void ath_stop(struct ifnet *); 157 static int ath_reset_vap(struct ieee80211vap *, u_long); 158 static int ath_transmit(struct ifnet *ifp, struct mbuf *m); 159 static void ath_qflush(struct ifnet *ifp); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast(struct ifnet *); 169 static void ath_update_promisc(struct ifnet *); 170 static void ath_updateslot(struct ifnet *); 171 static void ath_bstuck_proc(void *, int); 172 static void ath_reset_proc(void *, int); 173 static int ath_desc_alloc(struct ath_softc *); 174 static void ath_desc_free(struct ath_softc *); 175 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 176 const uint8_t [IEEE80211_ADDR_LEN]); 177 static void ath_node_cleanup(struct ieee80211_node *); 178 static void ath_node_free(struct ieee80211_node *); 179 static void ath_node_getsignal(const struct ieee80211_node *, 180 int8_t *, int8_t *); 181 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 182 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 183 static int ath_tx_setup(struct ath_softc *, int, int); 184 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 185 static void ath_tx_cleanup(struct ath_softc *); 186 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 187 int dosched); 188 static void ath_tx_proc_q0(void *, int); 189 static void ath_tx_proc_q0123(void *, int); 190 static void ath_tx_proc(void *, int); 191 static void ath_txq_sched_tasklet(void *, int); 192 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 193 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_scan_start(struct ieee80211com *); 195 static void ath_scan_end(struct ieee80211com *); 196 static void ath_set_channel(struct ieee80211com *); 197 #ifdef ATH_ENABLE_11N 198 static void ath_update_chw(struct ieee80211com *); 199 #endif /* ATH_ENABLE_11N */ 200 static void ath_calibrate(void *); 201 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 202 static void ath_setup_stationkey(struct ieee80211_node *); 203 static void ath_newassoc(struct ieee80211_node *, int); 204 static int ath_setregdomain(struct ieee80211com *, 205 struct ieee80211_regdomain *, int, 206 struct ieee80211_channel []); 207 static void ath_getradiocaps(struct ieee80211com *, int, int *, 208 struct ieee80211_channel []); 209 static int ath_getchannels(struct ath_softc *); 210 211 static int ath_rate_setup(struct ath_softc *, u_int mode); 212 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 213 214 static void ath_announce(struct ath_softc *); 215 216 static void ath_dfs_tasklet(void *, int); 217 static void ath_node_powersave(struct ieee80211_node *, int); 218 static int ath_node_set_tim(struct ieee80211_node *, int); 219 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 220 221 #ifdef IEEE80211_SUPPORT_TDMA 222 #include <dev/ath/if_ath_tdma.h> 223 #endif 224 225 SYSCTL_DECL(_hw_ath); 226 227 /* XXX validate sysctl values */ 228 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 229 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 230 0, "long chip calibration interval (secs)"); 231 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 233 0, "short chip calibration interval (msecs)"); 234 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 236 0, "reset chip calibration results (secs)"); 237 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 239 0, "ANI calibration (msecs)"); 240 241 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 242 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 243 0, "rx buffers allocated"); 244 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 245 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 247 0, "tx buffers allocated"); 248 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 249 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 251 0, "tx (mgmt) buffers allocated"); 252 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 253 254 int ath_bstuck_threshold = 4; /* max missed beacons */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 256 0, "max missed beacon xmits before chip reset"); 257 258 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 259 260 void 261 ath_legacy_attach_comp_func(struct ath_softc *sc) 262 { 263 264 /* 265 * Special case certain configurations. Note the 266 * CAB queue is handled by these specially so don't 267 * include them when checking the txq setup mask. 268 */ 269 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 270 case 0x01: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 272 break; 273 case 0x0f: 274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 275 break; 276 default: 277 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 278 break; 279 } 280 } 281 282 /* 283 * Set the target power mode. 284 * 285 * If this is called during a point in time where 286 * the hardware is being programmed elsewhere, it will 287 * simply store it away and update it when all current 288 * uses of the hardware are completed. 289 */ 290 void 291 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 292 { 293 ATH_LOCK_ASSERT(sc); 294 295 sc->sc_target_powerstate = power_state; 296 297 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 298 __func__, 299 file, 300 line, 301 power_state, 302 sc->sc_powersave_refcnt); 303 304 if (sc->sc_powersave_refcnt == 0 && 305 power_state != sc->sc_cur_powerstate) { 306 sc->sc_cur_powerstate = power_state; 307 ath_hal_setpower(sc->sc_ah, power_state); 308 309 /* 310 * If the NIC is force-awake, then set the 311 * self-gen frame state appropriately. 312 * 313 * If the nic is in network sleep or full-sleep, 314 * we let the above call leave the self-gen 315 * state as "sleep". 316 */ 317 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 318 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 319 ath_hal_setselfgenpower(sc->sc_ah, 320 sc->sc_target_selfgen_state); 321 } 322 } 323 } 324 325 /* 326 * Set the current self-generated frames state. 327 * 328 * This is separate from the target power mode. The chip may be 329 * awake but the desired state is "sleep", so frames sent to the 330 * destination has PWRMGT=1 in the 802.11 header. The NIC also 331 * needs to know to set PWRMGT=1 in self-generated frames. 332 */ 333 void 334 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 335 { 336 337 ATH_LOCK_ASSERT(sc); 338 339 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 340 __func__, 341 file, 342 line, 343 power_state, 344 sc->sc_target_selfgen_state); 345 346 sc->sc_target_selfgen_state = power_state; 347 348 /* 349 * If the NIC is force-awake, then set the power state. 350 * Network-state and full-sleep will already transition it to 351 * mark self-gen frames as sleeping - and we can't 352 * guarantee the NIC is awake to program the self-gen frame 353 * setting anyway. 354 */ 355 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 356 ath_hal_setselfgenpower(sc->sc_ah, power_state); 357 } 358 } 359 360 /* 361 * Set the hardware power mode and take a reference. 362 * 363 * This doesn't update the target power mode in the driver; 364 * it just updates the hardware power state. 365 * 366 * XXX it should only ever force the hardware awake; it should 367 * never be called to set it asleep. 368 */ 369 void 370 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 371 { 372 ATH_LOCK_ASSERT(sc); 373 374 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 375 __func__, 376 file, 377 line, 378 power_state, 379 sc->sc_powersave_refcnt); 380 381 sc->sc_powersave_refcnt++; 382 383 if (power_state != sc->sc_cur_powerstate) { 384 ath_hal_setpower(sc->sc_ah, power_state); 385 sc->sc_cur_powerstate = power_state; 386 387 /* 388 * Adjust the self-gen powerstate if appropriate. 389 */ 390 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 391 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 392 ath_hal_setselfgenpower(sc->sc_ah, 393 sc->sc_target_selfgen_state); 394 } 395 396 } 397 } 398 399 /* 400 * Restore the power save mode to what it once was. 401 * 402 * This will decrement the reference counter and once it hits 403 * zero, it'll restore the powersave state. 404 */ 405 void 406 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 407 { 408 409 ATH_LOCK_ASSERT(sc); 410 411 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 412 __func__, 413 file, 414 line, 415 sc->sc_powersave_refcnt, 416 sc->sc_target_powerstate); 417 418 if (sc->sc_powersave_refcnt == 0) 419 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 420 else 421 sc->sc_powersave_refcnt--; 422 423 if (sc->sc_powersave_refcnt == 0 && 424 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 425 sc->sc_cur_powerstate = sc->sc_target_powerstate; 426 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 427 } 428 429 /* 430 * Adjust the self-gen powerstate if appropriate. 431 */ 432 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 433 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 434 ath_hal_setselfgenpower(sc->sc_ah, 435 sc->sc_target_selfgen_state); 436 } 437 438 } 439 440 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 441 #define HAL_MODE_HT40 \ 442 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 443 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 444 int 445 ath_attach(u_int16_t devid, struct ath_softc *sc) 446 { 447 struct ifnet *ifp; 448 struct ieee80211com *ic; 449 struct ath_hal *ah = NULL; 450 HAL_STATUS status; 451 int error = 0, i; 452 u_int wmodes; 453 uint8_t macaddr[IEEE80211_ADDR_LEN]; 454 int rx_chainmask, tx_chainmask; 455 456 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 457 458 CURVNET_SET(vnet0); 459 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 460 if (ifp == NULL) { 461 device_printf(sc->sc_dev, "can not if_alloc()\n"); 462 error = ENOSPC; 463 CURVNET_RESTORE(); 464 goto bad; 465 } 466 ic = ifp->if_l2com; 467 468 /* set these up early for if_printf use */ 469 if_initname(ifp, device_get_name(sc->sc_dev), 470 device_get_unit(sc->sc_dev)); 471 CURVNET_RESTORE(); 472 473 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 474 sc->sc_eepromdata, &status); 475 if (ah == NULL) { 476 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 477 status); 478 error = ENXIO; 479 goto bad; 480 } 481 sc->sc_ah = ah; 482 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 483 #ifdef ATH_DEBUG 484 sc->sc_debug = ath_debug; 485 #endif 486 487 /* 488 * Setup the DMA/EDMA functions based on the current 489 * hardware support. 490 * 491 * This is required before the descriptors are allocated. 492 */ 493 if (ath_hal_hasedma(sc->sc_ah)) { 494 sc->sc_isedma = 1; 495 ath_recv_setup_edma(sc); 496 ath_xmit_setup_edma(sc); 497 } else { 498 ath_recv_setup_legacy(sc); 499 ath_xmit_setup_legacy(sc); 500 } 501 502 if (ath_hal_hasmybeacon(sc->sc_ah)) { 503 sc->sc_do_mybeacon = 1; 504 } 505 506 /* 507 * Check if the MAC has multi-rate retry support. 508 * We do this by trying to setup a fake extended 509 * descriptor. MAC's that don't have support will 510 * return false w/o doing anything. MAC's that do 511 * support it will return true w/o doing anything. 512 */ 513 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 514 515 /* 516 * Check if the device has hardware counters for PHY 517 * errors. If so we need to enable the MIB interrupt 518 * so we can act on stat triggers. 519 */ 520 if (ath_hal_hwphycounters(ah)) 521 sc->sc_needmib = 1; 522 523 /* 524 * Get the hardware key cache size. 525 */ 526 sc->sc_keymax = ath_hal_keycachesize(ah); 527 if (sc->sc_keymax > ATH_KEYMAX) { 528 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 529 ATH_KEYMAX, sc->sc_keymax); 530 sc->sc_keymax = ATH_KEYMAX; 531 } 532 /* 533 * Reset the key cache since some parts do not 534 * reset the contents on initial power up. 535 */ 536 for (i = 0; i < sc->sc_keymax; i++) 537 ath_hal_keyreset(ah, i); 538 539 /* 540 * Collect the default channel list. 541 */ 542 error = ath_getchannels(sc); 543 if (error != 0) 544 goto bad; 545 546 /* 547 * Setup rate tables for all potential media types. 548 */ 549 ath_rate_setup(sc, IEEE80211_MODE_11A); 550 ath_rate_setup(sc, IEEE80211_MODE_11B); 551 ath_rate_setup(sc, IEEE80211_MODE_11G); 552 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 553 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 554 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 555 ath_rate_setup(sc, IEEE80211_MODE_11NA); 556 ath_rate_setup(sc, IEEE80211_MODE_11NG); 557 ath_rate_setup(sc, IEEE80211_MODE_HALF); 558 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 559 560 /* NB: setup here so ath_rate_update is happy */ 561 ath_setcurmode(sc, IEEE80211_MODE_11A); 562 563 /* 564 * Allocate TX descriptors and populate the lists. 565 */ 566 error = ath_desc_alloc(sc); 567 if (error != 0) { 568 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 569 error); 570 goto bad; 571 } 572 error = ath_txdma_setup(sc); 573 if (error != 0) { 574 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 575 error); 576 goto bad; 577 } 578 579 /* 580 * Allocate RX descriptors and populate the lists. 581 */ 582 error = ath_rxdma_setup(sc); 583 if (error != 0) { 584 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 585 error); 586 goto bad; 587 } 588 589 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 590 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 591 592 ATH_TXBUF_LOCK_INIT(sc); 593 594 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 595 taskqueue_thread_enqueue, &sc->sc_tq); 596 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 597 "%s taskq", ifp->if_xname); 598 599 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 600 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 601 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 602 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 603 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 604 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 605 606 /* 607 * Allocate hardware transmit queues: one queue for 608 * beacon frames and one data queue for each QoS 609 * priority. Note that the hal handles resetting 610 * these queues at the needed time. 611 * 612 * XXX PS-Poll 613 */ 614 sc->sc_bhalq = ath_beaconq_setup(sc); 615 if (sc->sc_bhalq == (u_int) -1) { 616 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 617 error = EIO; 618 goto bad2; 619 } 620 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 621 if (sc->sc_cabq == NULL) { 622 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 623 error = EIO; 624 goto bad2; 625 } 626 /* NB: insure BK queue is the lowest priority h/w queue */ 627 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 628 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 629 ieee80211_wme_acnames[WME_AC_BK]); 630 error = EIO; 631 goto bad2; 632 } 633 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 634 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 635 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 636 /* 637 * Not enough hardware tx queues to properly do WME; 638 * just punt and assign them all to the same h/w queue. 639 * We could do a better job of this if, for example, 640 * we allocate queues when we switch from station to 641 * AP mode. 642 */ 643 if (sc->sc_ac2q[WME_AC_VI] != NULL) 644 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 645 if (sc->sc_ac2q[WME_AC_BE] != NULL) 646 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 647 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 648 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 649 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 650 } 651 652 /* 653 * Attach the TX completion function. 654 * 655 * The non-EDMA chips may have some special case optimisations; 656 * this method gives everyone a chance to attach cleanly. 657 */ 658 sc->sc_tx.xmit_attach_comp_func(sc); 659 660 /* 661 * Setup rate control. Some rate control modules 662 * call back to change the anntena state so expose 663 * the necessary entry points. 664 * XXX maybe belongs in struct ath_ratectrl? 665 */ 666 sc->sc_setdefantenna = ath_setdefantenna; 667 sc->sc_rc = ath_rate_attach(sc); 668 if (sc->sc_rc == NULL) { 669 error = EIO; 670 goto bad2; 671 } 672 673 /* Attach DFS module */ 674 if (! ath_dfs_attach(sc)) { 675 device_printf(sc->sc_dev, 676 "%s: unable to attach DFS\n", __func__); 677 error = EIO; 678 goto bad2; 679 } 680 681 /* Attach spectral module */ 682 if (ath_spectral_attach(sc) < 0) { 683 device_printf(sc->sc_dev, 684 "%s: unable to attach spectral\n", __func__); 685 error = EIO; 686 goto bad2; 687 } 688 689 /* Attach bluetooth coexistence module */ 690 if (ath_btcoex_attach(sc) < 0) { 691 device_printf(sc->sc_dev, 692 "%s: unable to attach bluetooth coexistence\n", __func__); 693 error = EIO; 694 goto bad2; 695 } 696 697 /* Attach LNA diversity module */ 698 if (ath_lna_div_attach(sc) < 0) { 699 device_printf(sc->sc_dev, 700 "%s: unable to attach LNA diversity\n", __func__); 701 error = EIO; 702 goto bad2; 703 } 704 705 /* Start DFS processing tasklet */ 706 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 707 708 /* Configure LED state */ 709 sc->sc_blinking = 0; 710 sc->sc_ledstate = 1; 711 sc->sc_ledon = 0; /* low true */ 712 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 713 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 714 715 /* 716 * Don't setup hardware-based blinking. 717 * 718 * Although some NICs may have this configured in the 719 * default reset register values, the user may wish 720 * to alter which pins have which function. 721 * 722 * The reference driver attaches the MAC network LED to GPIO1 and 723 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 724 * NIC has these reversed. 725 */ 726 sc->sc_hardled = (1 == 0); 727 sc->sc_led_net_pin = -1; 728 sc->sc_led_pwr_pin = -1; 729 /* 730 * Auto-enable soft led processing for IBM cards and for 731 * 5211 minipci cards. Users can also manually enable/disable 732 * support with a sysctl. 733 */ 734 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 735 ath_led_config(sc); 736 ath_hal_setledstate(ah, HAL_LED_INIT); 737 738 ifp->if_softc = sc; 739 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 740 ifp->if_transmit = ath_transmit; 741 ifp->if_qflush = ath_qflush; 742 ifp->if_ioctl = ath_ioctl; 743 ifp->if_init = ath_init; 744 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 745 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 746 IFQ_SET_READY(&ifp->if_snd); 747 748 ic->ic_ifp = ifp; 749 /* XXX not right but it's not used anywhere important */ 750 ic->ic_phytype = IEEE80211_T_OFDM; 751 ic->ic_opmode = IEEE80211_M_STA; 752 ic->ic_caps = 753 IEEE80211_C_STA /* station mode */ 754 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 755 | IEEE80211_C_HOSTAP /* hostap mode */ 756 | IEEE80211_C_MONITOR /* monitor mode */ 757 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 758 | IEEE80211_C_WDS /* 4-address traffic works */ 759 | IEEE80211_C_MBSS /* mesh point link mode */ 760 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 761 | IEEE80211_C_SHSLOT /* short slot time supported */ 762 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 763 #ifndef ATH_ENABLE_11N 764 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 765 #endif 766 | IEEE80211_C_TXFRAG /* handle tx frags */ 767 #ifdef ATH_ENABLE_DFS 768 | IEEE80211_C_DFS /* Enable radar detection */ 769 #endif 770 | IEEE80211_C_PMGT /* Station side power mgmt */ 771 | IEEE80211_C_SWSLEEP 772 ; 773 /* 774 * Query the hal to figure out h/w crypto support. 775 */ 776 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 777 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 778 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 779 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 780 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 781 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 782 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 783 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 784 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 785 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 786 /* 787 * Check if h/w does the MIC and/or whether the 788 * separate key cache entries are required to 789 * handle both tx+rx MIC keys. 790 */ 791 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 792 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 793 /* 794 * If the h/w supports storing tx+rx MIC keys 795 * in one cache slot automatically enable use. 796 */ 797 if (ath_hal_hastkipsplit(ah) || 798 !ath_hal_settkipsplit(ah, AH_FALSE)) 799 sc->sc_splitmic = 1; 800 /* 801 * If the h/w can do TKIP MIC together with WME then 802 * we use it; otherwise we force the MIC to be done 803 * in software by the net80211 layer. 804 */ 805 if (ath_hal_haswmetkipmic(ah)) 806 sc->sc_wmetkipmic = 1; 807 } 808 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 809 /* 810 * Check for multicast key search support. 811 */ 812 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 813 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 814 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 815 } 816 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 817 /* 818 * Mark key cache slots associated with global keys 819 * as in use. If we knew TKIP was not to be used we 820 * could leave the +32, +64, and +32+64 slots free. 821 */ 822 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 823 setbit(sc->sc_keymap, i); 824 setbit(sc->sc_keymap, i+64); 825 if (sc->sc_splitmic) { 826 setbit(sc->sc_keymap, i+32); 827 setbit(sc->sc_keymap, i+32+64); 828 } 829 } 830 /* 831 * TPC support can be done either with a global cap or 832 * per-packet support. The latter is not available on 833 * all parts. We're a bit pedantic here as all parts 834 * support a global cap. 835 */ 836 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 837 ic->ic_caps |= IEEE80211_C_TXPMGT; 838 839 /* 840 * Mark WME capability only if we have sufficient 841 * hardware queues to do proper priority scheduling. 842 */ 843 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 844 ic->ic_caps |= IEEE80211_C_WME; 845 /* 846 * Check for misc other capabilities. 847 */ 848 if (ath_hal_hasbursting(ah)) 849 ic->ic_caps |= IEEE80211_C_BURST; 850 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 851 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 852 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 853 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 854 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 855 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 856 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 857 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 858 859 if (ath_hal_hasfastframes(ah)) 860 ic->ic_caps |= IEEE80211_C_FF; 861 wmodes = ath_hal_getwirelessmodes(ah); 862 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 863 ic->ic_caps |= IEEE80211_C_TURBOP; 864 #ifdef IEEE80211_SUPPORT_TDMA 865 if (ath_hal_macversion(ah) > 0x78) { 866 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 867 ic->ic_tdma_update = ath_tdma_update; 868 } 869 #endif 870 871 /* 872 * TODO: enforce that at least this many frames are available 873 * in the txbuf list before allowing data frames (raw or 874 * otherwise) to be transmitted. 875 */ 876 sc->sc_txq_data_minfree = 10; 877 /* 878 * Leave this as default to maintain legacy behaviour. 879 * Shortening the cabq/mcastq may end up causing some 880 * undesirable behaviour. 881 */ 882 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 883 884 /* 885 * How deep can the node software TX queue get whilst it's asleep. 886 */ 887 sc->sc_txq_node_psq_maxdepth = 16; 888 889 /* 890 * Default the maximum queue depth for a given node 891 * to 1/4'th the TX buffers, or 64, whichever 892 * is larger. 893 */ 894 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 895 896 /* Enable CABQ by default */ 897 sc->sc_cabq_enable = 1; 898 899 /* 900 * Allow the TX and RX chainmasks to be overridden by 901 * environment variables and/or device.hints. 902 * 903 * This must be done early - before the hardware is 904 * calibrated or before the 802.11n stream calculation 905 * is done. 906 */ 907 if (resource_int_value(device_get_name(sc->sc_dev), 908 device_get_unit(sc->sc_dev), "rx_chainmask", 909 &rx_chainmask) == 0) { 910 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 911 rx_chainmask); 912 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 913 } 914 if (resource_int_value(device_get_name(sc->sc_dev), 915 device_get_unit(sc->sc_dev), "tx_chainmask", 916 &tx_chainmask) == 0) { 917 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 918 tx_chainmask); 919 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 920 } 921 922 /* 923 * Query the TX/RX chainmask configuration. 924 * 925 * This is only relevant for 11n devices. 926 */ 927 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 928 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 929 930 /* 931 * Disable MRR with protected frames by default. 932 * Only 802.11n series NICs can handle this. 933 */ 934 sc->sc_mrrprot = 0; /* XXX should be a capability */ 935 936 /* 937 * Query the enterprise mode information the HAL. 938 */ 939 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 940 &sc->sc_ent_cfg) == HAL_OK) 941 sc->sc_use_ent = 1; 942 943 #ifdef ATH_ENABLE_11N 944 /* 945 * Query HT capabilities 946 */ 947 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 948 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 949 uint32_t rxs, txs; 950 951 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 952 953 sc->sc_mrrprot = 1; /* XXX should be a capability */ 954 955 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 956 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 957 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 958 | IEEE80211_HTCAP_MAXAMSDU_3839 959 /* max A-MSDU length */ 960 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 961 ; 962 963 /* 964 * Enable short-GI for HT20 only if the hardware 965 * advertises support. 966 * Notably, anything earlier than the AR9287 doesn't. 967 */ 968 if ((ath_hal_getcapability(ah, 969 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 970 (wmodes & HAL_MODE_HT20)) { 971 device_printf(sc->sc_dev, 972 "[HT] enabling short-GI in 20MHz mode\n"); 973 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 974 } 975 976 if (wmodes & HAL_MODE_HT40) 977 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 978 | IEEE80211_HTCAP_SHORTGI40; 979 980 /* 981 * TX/RX streams need to be taken into account when 982 * negotiating which MCS rates it'll receive and 983 * what MCS rates are available for TX. 984 */ 985 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 986 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 987 ic->ic_txstream = txs; 988 ic->ic_rxstream = rxs; 989 990 /* 991 * Setup TX and RX STBC based on what the HAL allows and 992 * the currently configured chainmask set. 993 * Ie - don't enable STBC TX if only one chain is enabled. 994 * STBC RX is fine on a single RX chain; it just won't 995 * provide any real benefit. 996 */ 997 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 998 NULL) == HAL_OK) { 999 sc->sc_rx_stbc = 1; 1000 device_printf(sc->sc_dev, 1001 "[HT] 1 stream STBC receive enabled\n"); 1002 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1003 } 1004 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1005 NULL) == HAL_OK) { 1006 sc->sc_tx_stbc = 1; 1007 device_printf(sc->sc_dev, 1008 "[HT] 1 stream STBC transmit enabled\n"); 1009 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1010 } 1011 1012 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1013 &sc->sc_rts_aggr_limit); 1014 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1015 device_printf(sc->sc_dev, 1016 "[HT] RTS aggregates limited to %d KiB\n", 1017 sc->sc_rts_aggr_limit / 1024); 1018 1019 device_printf(sc->sc_dev, 1020 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1021 } 1022 #endif 1023 1024 /* 1025 * Initial aggregation settings. 1026 */ 1027 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1028 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1029 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1030 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1031 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1032 sc->sc_delim_min_pad = 0; 1033 1034 /* 1035 * Check if the hardware requires PCI register serialisation. 1036 * Some of the Owl based MACs require this. 1037 */ 1038 if (mp_ncpus > 1 && 1039 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1040 0, NULL) == HAL_OK) { 1041 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1042 device_printf(sc->sc_dev, 1043 "Enabling register serialisation\n"); 1044 } 1045 1046 /* 1047 * Initialise the deferred completed RX buffer list. 1048 */ 1049 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1050 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1051 1052 /* 1053 * Indicate we need the 802.11 header padded to a 1054 * 32-bit boundary for 4-address and QoS frames. 1055 */ 1056 ic->ic_flags |= IEEE80211_F_DATAPAD; 1057 1058 /* 1059 * Query the hal about antenna support. 1060 */ 1061 sc->sc_defant = ath_hal_getdefantenna(ah); 1062 1063 /* 1064 * Not all chips have the VEOL support we want to 1065 * use with IBSS beacons; check here for it. 1066 */ 1067 sc->sc_hasveol = ath_hal_hasveol(ah); 1068 1069 /* get mac address from hardware */ 1070 ath_hal_getmac(ah, macaddr); 1071 if (sc->sc_hasbmask) 1072 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1073 1074 /* NB: used to size node table key mapping array */ 1075 ic->ic_max_keyix = sc->sc_keymax; 1076 /* call MI attach routine. */ 1077 ieee80211_ifattach(ic, macaddr); 1078 ic->ic_setregdomain = ath_setregdomain; 1079 ic->ic_getradiocaps = ath_getradiocaps; 1080 sc->sc_opmode = HAL_M_STA; 1081 1082 /* override default methods */ 1083 ic->ic_newassoc = ath_newassoc; 1084 ic->ic_updateslot = ath_updateslot; 1085 ic->ic_wme.wme_update = ath_wme_update; 1086 ic->ic_vap_create = ath_vap_create; 1087 ic->ic_vap_delete = ath_vap_delete; 1088 ic->ic_raw_xmit = ath_raw_xmit; 1089 ic->ic_update_mcast = ath_update_mcast; 1090 ic->ic_update_promisc = ath_update_promisc; 1091 ic->ic_node_alloc = ath_node_alloc; 1092 sc->sc_node_free = ic->ic_node_free; 1093 ic->ic_node_free = ath_node_free; 1094 sc->sc_node_cleanup = ic->ic_node_cleanup; 1095 ic->ic_node_cleanup = ath_node_cleanup; 1096 ic->ic_node_getsignal = ath_node_getsignal; 1097 ic->ic_scan_start = ath_scan_start; 1098 ic->ic_scan_end = ath_scan_end; 1099 ic->ic_set_channel = ath_set_channel; 1100 #ifdef ATH_ENABLE_11N 1101 /* 802.11n specific - but just override anyway */ 1102 sc->sc_addba_request = ic->ic_addba_request; 1103 sc->sc_addba_response = ic->ic_addba_response; 1104 sc->sc_addba_stop = ic->ic_addba_stop; 1105 sc->sc_bar_response = ic->ic_bar_response; 1106 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1107 1108 ic->ic_addba_request = ath_addba_request; 1109 ic->ic_addba_response = ath_addba_response; 1110 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1111 ic->ic_addba_stop = ath_addba_stop; 1112 ic->ic_bar_response = ath_bar_response; 1113 1114 ic->ic_update_chw = ath_update_chw; 1115 #endif /* ATH_ENABLE_11N */ 1116 1117 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1118 /* 1119 * There's one vendor bitmap entry in the RX radiotap 1120 * header; make sure that's taken into account. 1121 */ 1122 ieee80211_radiotap_attachv(ic, 1123 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1124 ATH_TX_RADIOTAP_PRESENT, 1125 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1126 ATH_RX_RADIOTAP_PRESENT); 1127 #else 1128 /* 1129 * No vendor bitmap/extensions are present. 1130 */ 1131 ieee80211_radiotap_attach(ic, 1132 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1133 ATH_TX_RADIOTAP_PRESENT, 1134 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1135 ATH_RX_RADIOTAP_PRESENT); 1136 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1137 1138 /* 1139 * Setup the ALQ logging if required 1140 */ 1141 #ifdef ATH_DEBUG_ALQ 1142 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1143 if_ath_alq_setcfg(&sc->sc_alq, 1144 sc->sc_ah->ah_macVersion, 1145 sc->sc_ah->ah_macRev, 1146 sc->sc_ah->ah_phyRev, 1147 sc->sc_ah->ah_magic); 1148 #endif 1149 1150 /* 1151 * Setup dynamic sysctl's now that country code and 1152 * regdomain are available from the hal. 1153 */ 1154 ath_sysctlattach(sc); 1155 ath_sysctl_stats_attach(sc); 1156 ath_sysctl_hal_attach(sc); 1157 1158 if (bootverbose) 1159 ieee80211_announce(ic); 1160 ath_announce(sc); 1161 1162 /* 1163 * Put it to sleep for now. 1164 */ 1165 ATH_LOCK(sc); 1166 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1167 ATH_UNLOCK(sc); 1168 1169 return 0; 1170 bad2: 1171 ath_tx_cleanup(sc); 1172 ath_desc_free(sc); 1173 ath_txdma_teardown(sc); 1174 ath_rxdma_teardown(sc); 1175 bad: 1176 if (ah) 1177 ath_hal_detach(ah); 1178 1179 /* 1180 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 1181 */ 1182 if (ifp != NULL && ifp->if_vnet) { 1183 CURVNET_SET(ifp->if_vnet); 1184 if_free(ifp); 1185 CURVNET_RESTORE(); 1186 } else if (ifp != NULL) 1187 if_free(ifp); 1188 sc->sc_invalid = 1; 1189 return error; 1190 } 1191 1192 int 1193 ath_detach(struct ath_softc *sc) 1194 { 1195 struct ifnet *ifp = sc->sc_ifp; 1196 1197 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1198 __func__, ifp->if_flags); 1199 1200 /* 1201 * NB: the order of these is important: 1202 * o stop the chip so no more interrupts will fire 1203 * o call the 802.11 layer before detaching the hal to 1204 * insure callbacks into the driver to delete global 1205 * key cache entries can be handled 1206 * o free the taskqueue which drains any pending tasks 1207 * o reclaim the tx queue data structures after calling 1208 * the 802.11 layer as we'll get called back to reclaim 1209 * node state and potentially want to use them 1210 * o to cleanup the tx queues the hal is called, so detach 1211 * it last 1212 * Other than that, it's straightforward... 1213 */ 1214 1215 /* 1216 * XXX Wake the hardware up first. ath_stop() will still 1217 * wake it up first, but I'd rather do it here just to 1218 * ensure it's awake. 1219 */ 1220 ATH_LOCK(sc); 1221 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1222 ath_power_setpower(sc, HAL_PM_AWAKE); 1223 ATH_UNLOCK(sc); 1224 1225 /* 1226 * Stop things cleanly. 1227 */ 1228 ath_stop(ifp); 1229 1230 ieee80211_ifdetach(ifp->if_l2com); 1231 taskqueue_free(sc->sc_tq); 1232 #ifdef ATH_TX99_DIAG 1233 if (sc->sc_tx99 != NULL) 1234 sc->sc_tx99->detach(sc->sc_tx99); 1235 #endif 1236 ath_rate_detach(sc->sc_rc); 1237 #ifdef ATH_DEBUG_ALQ 1238 if_ath_alq_tidyup(&sc->sc_alq); 1239 #endif 1240 ath_lna_div_detach(sc); 1241 ath_btcoex_detach(sc); 1242 ath_spectral_detach(sc); 1243 ath_dfs_detach(sc); 1244 ath_desc_free(sc); 1245 ath_txdma_teardown(sc); 1246 ath_rxdma_teardown(sc); 1247 ath_tx_cleanup(sc); 1248 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1249 1250 CURVNET_SET(ifp->if_vnet); 1251 if_free(ifp); 1252 CURVNET_RESTORE(); 1253 1254 return 0; 1255 } 1256 1257 /* 1258 * MAC address handling for multiple BSS on the same radio. 1259 * The first vap uses the MAC address from the EEPROM. For 1260 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1261 * address and use the next six bits as an index. 1262 */ 1263 static void 1264 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1265 { 1266 int i; 1267 1268 if (clone && sc->sc_hasbmask) { 1269 /* NB: we only do this if h/w supports multiple bssid */ 1270 for (i = 0; i < 8; i++) 1271 if ((sc->sc_bssidmask & (1<<i)) == 0) 1272 break; 1273 if (i != 0) 1274 mac[0] |= (i << 2)|0x2; 1275 } else 1276 i = 0; 1277 sc->sc_bssidmask |= 1<<i; 1278 sc->sc_hwbssidmask[0] &= ~mac[0]; 1279 if (i == 0) 1280 sc->sc_nbssid0++; 1281 } 1282 1283 static void 1284 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1285 { 1286 int i = mac[0] >> 2; 1287 uint8_t mask; 1288 1289 if (i != 0 || --sc->sc_nbssid0 == 0) { 1290 sc->sc_bssidmask &= ~(1<<i); 1291 /* recalculate bssid mask from remaining addresses */ 1292 mask = 0xff; 1293 for (i = 1; i < 8; i++) 1294 if (sc->sc_bssidmask & (1<<i)) 1295 mask &= ~((i<<2)|0x2); 1296 sc->sc_hwbssidmask[0] |= mask; 1297 } 1298 } 1299 1300 /* 1301 * Assign a beacon xmit slot. We try to space out 1302 * assignments so when beacons are staggered the 1303 * traffic coming out of the cab q has maximal time 1304 * to go out before the next beacon is scheduled. 1305 */ 1306 static int 1307 assign_bslot(struct ath_softc *sc) 1308 { 1309 u_int slot, free; 1310 1311 free = 0; 1312 for (slot = 0; slot < ATH_BCBUF; slot++) 1313 if (sc->sc_bslot[slot] == NULL) { 1314 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1315 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1316 return slot; 1317 free = slot; 1318 /* NB: keep looking for a double slot */ 1319 } 1320 return free; 1321 } 1322 1323 static struct ieee80211vap * 1324 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1325 enum ieee80211_opmode opmode, int flags, 1326 const uint8_t bssid[IEEE80211_ADDR_LEN], 1327 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1328 { 1329 struct ath_softc *sc = ic->ic_ifp->if_softc; 1330 struct ath_vap *avp; 1331 struct ieee80211vap *vap; 1332 uint8_t mac[IEEE80211_ADDR_LEN]; 1333 int needbeacon, error; 1334 enum ieee80211_opmode ic_opmode; 1335 1336 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1337 M_80211_VAP, M_WAITOK | M_ZERO); 1338 needbeacon = 0; 1339 IEEE80211_ADDR_COPY(mac, mac0); 1340 1341 ATH_LOCK(sc); 1342 ic_opmode = opmode; /* default to opmode of new vap */ 1343 switch (opmode) { 1344 case IEEE80211_M_STA: 1345 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1346 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1347 goto bad; 1348 } 1349 if (sc->sc_nvaps) { 1350 /* 1351 * With multiple vaps we must fall back 1352 * to s/w beacon miss handling. 1353 */ 1354 flags |= IEEE80211_CLONE_NOBEACONS; 1355 } 1356 if (flags & IEEE80211_CLONE_NOBEACONS) { 1357 /* 1358 * Station mode w/o beacons are implemented w/ AP mode. 1359 */ 1360 ic_opmode = IEEE80211_M_HOSTAP; 1361 } 1362 break; 1363 case IEEE80211_M_IBSS: 1364 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1365 device_printf(sc->sc_dev, 1366 "only 1 ibss vap supported\n"); 1367 goto bad; 1368 } 1369 needbeacon = 1; 1370 break; 1371 case IEEE80211_M_AHDEMO: 1372 #ifdef IEEE80211_SUPPORT_TDMA 1373 if (flags & IEEE80211_CLONE_TDMA) { 1374 if (sc->sc_nvaps != 0) { 1375 device_printf(sc->sc_dev, 1376 "only 1 tdma vap supported\n"); 1377 goto bad; 1378 } 1379 needbeacon = 1; 1380 flags |= IEEE80211_CLONE_NOBEACONS; 1381 } 1382 /* fall thru... */ 1383 #endif 1384 case IEEE80211_M_MONITOR: 1385 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1386 /* 1387 * Adopt existing mode. Adding a monitor or ahdemo 1388 * vap to an existing configuration is of dubious 1389 * value but should be ok. 1390 */ 1391 /* XXX not right for monitor mode */ 1392 ic_opmode = ic->ic_opmode; 1393 } 1394 break; 1395 case IEEE80211_M_HOSTAP: 1396 case IEEE80211_M_MBSS: 1397 needbeacon = 1; 1398 break; 1399 case IEEE80211_M_WDS: 1400 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1401 device_printf(sc->sc_dev, 1402 "wds not supported in sta mode\n"); 1403 goto bad; 1404 } 1405 /* 1406 * Silently remove any request for a unique 1407 * bssid; WDS vap's always share the local 1408 * mac address. 1409 */ 1410 flags &= ~IEEE80211_CLONE_BSSID; 1411 if (sc->sc_nvaps == 0) 1412 ic_opmode = IEEE80211_M_HOSTAP; 1413 else 1414 ic_opmode = ic->ic_opmode; 1415 break; 1416 default: 1417 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1418 goto bad; 1419 } 1420 /* 1421 * Check that a beacon buffer is available; the code below assumes it. 1422 */ 1423 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1424 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1425 goto bad; 1426 } 1427 1428 /* STA, AHDEMO? */ 1429 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1430 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1431 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1432 } 1433 1434 vap = &avp->av_vap; 1435 /* XXX can't hold mutex across if_alloc */ 1436 ATH_UNLOCK(sc); 1437 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1438 bssid, mac); 1439 ATH_LOCK(sc); 1440 if (error != 0) { 1441 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1442 __func__, error); 1443 goto bad2; 1444 } 1445 1446 /* h/w crypto support */ 1447 vap->iv_key_alloc = ath_key_alloc; 1448 vap->iv_key_delete = ath_key_delete; 1449 vap->iv_key_set = ath_key_set; 1450 vap->iv_key_update_begin = ath_key_update_begin; 1451 vap->iv_key_update_end = ath_key_update_end; 1452 1453 /* override various methods */ 1454 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1455 vap->iv_recv_mgmt = ath_recv_mgmt; 1456 vap->iv_reset = ath_reset_vap; 1457 vap->iv_update_beacon = ath_beacon_update; 1458 avp->av_newstate = vap->iv_newstate; 1459 vap->iv_newstate = ath_newstate; 1460 avp->av_bmiss = vap->iv_bmiss; 1461 vap->iv_bmiss = ath_bmiss_vap; 1462 1463 avp->av_node_ps = vap->iv_node_ps; 1464 vap->iv_node_ps = ath_node_powersave; 1465 1466 avp->av_set_tim = vap->iv_set_tim; 1467 vap->iv_set_tim = ath_node_set_tim; 1468 1469 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1470 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1471 1472 /* Set default parameters */ 1473 1474 /* 1475 * Anything earlier than some AR9300 series MACs don't 1476 * support a smaller MPDU density. 1477 */ 1478 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1479 /* 1480 * All NICs can handle the maximum size, however 1481 * AR5416 based MACs can only TX aggregates w/ RTS 1482 * protection when the total aggregate size is <= 8k. 1483 * However, for now that's enforced by the TX path. 1484 */ 1485 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1486 1487 avp->av_bslot = -1; 1488 if (needbeacon) { 1489 /* 1490 * Allocate beacon state and setup the q for buffered 1491 * multicast frames. We know a beacon buffer is 1492 * available because we checked above. 1493 */ 1494 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1495 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1496 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1497 /* 1498 * Assign the vap to a beacon xmit slot. As above 1499 * this cannot fail to find a free one. 1500 */ 1501 avp->av_bslot = assign_bslot(sc); 1502 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1503 ("beacon slot %u not empty", avp->av_bslot)); 1504 sc->sc_bslot[avp->av_bslot] = vap; 1505 sc->sc_nbcnvaps++; 1506 } 1507 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1508 /* 1509 * Multple vaps are to transmit beacons and we 1510 * have h/w support for TSF adjusting; enable 1511 * use of staggered beacons. 1512 */ 1513 sc->sc_stagbeacons = 1; 1514 } 1515 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1516 } 1517 1518 ic->ic_opmode = ic_opmode; 1519 if (opmode != IEEE80211_M_WDS) { 1520 sc->sc_nvaps++; 1521 if (opmode == IEEE80211_M_STA) 1522 sc->sc_nstavaps++; 1523 if (opmode == IEEE80211_M_MBSS) 1524 sc->sc_nmeshvaps++; 1525 } 1526 switch (ic_opmode) { 1527 case IEEE80211_M_IBSS: 1528 sc->sc_opmode = HAL_M_IBSS; 1529 break; 1530 case IEEE80211_M_STA: 1531 sc->sc_opmode = HAL_M_STA; 1532 break; 1533 case IEEE80211_M_AHDEMO: 1534 #ifdef IEEE80211_SUPPORT_TDMA 1535 if (vap->iv_caps & IEEE80211_C_TDMA) { 1536 sc->sc_tdma = 1; 1537 /* NB: disable tsf adjust */ 1538 sc->sc_stagbeacons = 0; 1539 } 1540 /* 1541 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1542 * just ap mode. 1543 */ 1544 /* fall thru... */ 1545 #endif 1546 case IEEE80211_M_HOSTAP: 1547 case IEEE80211_M_MBSS: 1548 sc->sc_opmode = HAL_M_HOSTAP; 1549 break; 1550 case IEEE80211_M_MONITOR: 1551 sc->sc_opmode = HAL_M_MONITOR; 1552 break; 1553 default: 1554 /* XXX should not happen */ 1555 break; 1556 } 1557 if (sc->sc_hastsfadd) { 1558 /* 1559 * Configure whether or not TSF adjust should be done. 1560 */ 1561 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1562 } 1563 if (flags & IEEE80211_CLONE_NOBEACONS) { 1564 /* 1565 * Enable s/w beacon miss handling. 1566 */ 1567 sc->sc_swbmiss = 1; 1568 } 1569 ATH_UNLOCK(sc); 1570 1571 /* complete setup */ 1572 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1573 return vap; 1574 bad2: 1575 reclaim_address(sc, mac); 1576 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1577 bad: 1578 free(avp, M_80211_VAP); 1579 ATH_UNLOCK(sc); 1580 return NULL; 1581 } 1582 1583 static void 1584 ath_vap_delete(struct ieee80211vap *vap) 1585 { 1586 struct ieee80211com *ic = vap->iv_ic; 1587 struct ifnet *ifp = ic->ic_ifp; 1588 struct ath_softc *sc = ifp->if_softc; 1589 struct ath_hal *ah = sc->sc_ah; 1590 struct ath_vap *avp = ATH_VAP(vap); 1591 1592 ATH_LOCK(sc); 1593 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1594 ATH_UNLOCK(sc); 1595 1596 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1597 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1598 /* 1599 * Quiesce the hardware while we remove the vap. In 1600 * particular we need to reclaim all references to 1601 * the vap state by any frames pending on the tx queues. 1602 */ 1603 ath_hal_intrset(ah, 0); /* disable interrupts */ 1604 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1605 /* XXX Do all frames from all vaps/nodes need draining here? */ 1606 ath_stoprecv(sc, 1); /* stop recv side */ 1607 } 1608 1609 /* .. leave the hardware awake for now. */ 1610 1611 ieee80211_vap_detach(vap); 1612 1613 /* 1614 * XXX Danger Will Robinson! Danger! 1615 * 1616 * Because ieee80211_vap_detach() can queue a frame (the station 1617 * diassociate message?) after we've drained the TXQ and 1618 * flushed the software TXQ, we will end up with a frame queued 1619 * to a node whose vap is about to be freed. 1620 * 1621 * To work around this, flush the hardware/software again. 1622 * This may be racy - the ath task may be running and the packet 1623 * may be being scheduled between sw->hw txq. Tsk. 1624 * 1625 * TODO: figure out why a new node gets allocated somewhere around 1626 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1627 * call!) 1628 */ 1629 1630 ath_draintxq(sc, ATH_RESET_DEFAULT); 1631 1632 ATH_LOCK(sc); 1633 /* 1634 * Reclaim beacon state. Note this must be done before 1635 * the vap instance is reclaimed as we may have a reference 1636 * to it in the buffer for the beacon frame. 1637 */ 1638 if (avp->av_bcbuf != NULL) { 1639 if (avp->av_bslot != -1) { 1640 sc->sc_bslot[avp->av_bslot] = NULL; 1641 sc->sc_nbcnvaps--; 1642 } 1643 ath_beacon_return(sc, avp->av_bcbuf); 1644 avp->av_bcbuf = NULL; 1645 if (sc->sc_nbcnvaps == 0) { 1646 sc->sc_stagbeacons = 0; 1647 if (sc->sc_hastsfadd) 1648 ath_hal_settsfadjust(sc->sc_ah, 0); 1649 } 1650 /* 1651 * Reclaim any pending mcast frames for the vap. 1652 */ 1653 ath_tx_draintxq(sc, &avp->av_mcastq); 1654 } 1655 /* 1656 * Update bookkeeping. 1657 */ 1658 if (vap->iv_opmode == IEEE80211_M_STA) { 1659 sc->sc_nstavaps--; 1660 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1661 sc->sc_swbmiss = 0; 1662 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1663 vap->iv_opmode == IEEE80211_M_MBSS) { 1664 reclaim_address(sc, vap->iv_myaddr); 1665 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1666 if (vap->iv_opmode == IEEE80211_M_MBSS) 1667 sc->sc_nmeshvaps--; 1668 } 1669 if (vap->iv_opmode != IEEE80211_M_WDS) 1670 sc->sc_nvaps--; 1671 #ifdef IEEE80211_SUPPORT_TDMA 1672 /* TDMA operation ceases when the last vap is destroyed */ 1673 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1674 sc->sc_tdma = 0; 1675 sc->sc_swbmiss = 0; 1676 } 1677 #endif 1678 free(avp, M_80211_VAP); 1679 1680 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1681 /* 1682 * Restart rx+tx machines if still running (RUNNING will 1683 * be reset if we just destroyed the last vap). 1684 */ 1685 if (ath_startrecv(sc) != 0) 1686 if_printf(ifp, "%s: unable to restart recv logic\n", 1687 __func__); 1688 if (sc->sc_beacons) { /* restart beacons */ 1689 #ifdef IEEE80211_SUPPORT_TDMA 1690 if (sc->sc_tdma) 1691 ath_tdma_config(sc, NULL); 1692 else 1693 #endif 1694 ath_beacon_config(sc, NULL); 1695 } 1696 ath_hal_intrset(ah, sc->sc_imask); 1697 } 1698 1699 /* Ok, let the hardware asleep. */ 1700 ath_power_restore_power_state(sc); 1701 ATH_UNLOCK(sc); 1702 } 1703 1704 void 1705 ath_suspend(struct ath_softc *sc) 1706 { 1707 struct ifnet *ifp = sc->sc_ifp; 1708 struct ieee80211com *ic = ifp->if_l2com; 1709 1710 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1711 __func__, ifp->if_flags); 1712 1713 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1714 1715 ieee80211_suspend_all(ic); 1716 /* 1717 * NB: don't worry about putting the chip in low power 1718 * mode; pci will power off our socket on suspend and 1719 * CardBus detaches the device. 1720 */ 1721 1722 /* 1723 * XXX ensure none of the taskqueues are running 1724 * XXX ensure sc_invalid is 1 1725 * XXX ensure the calibration callout is disabled 1726 */ 1727 1728 /* Disable the PCIe PHY, complete with workarounds */ 1729 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1730 } 1731 1732 /* 1733 * Reset the key cache since some parts do not reset the 1734 * contents on resume. First we clear all entries, then 1735 * re-load keys that the 802.11 layer assumes are setup 1736 * in h/w. 1737 */ 1738 static void 1739 ath_reset_keycache(struct ath_softc *sc) 1740 { 1741 struct ifnet *ifp = sc->sc_ifp; 1742 struct ieee80211com *ic = ifp->if_l2com; 1743 struct ath_hal *ah = sc->sc_ah; 1744 int i; 1745 1746 ATH_LOCK(sc); 1747 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1748 for (i = 0; i < sc->sc_keymax; i++) 1749 ath_hal_keyreset(ah, i); 1750 ath_power_restore_power_state(sc); 1751 ATH_UNLOCK(sc); 1752 ieee80211_crypto_reload_keys(ic); 1753 } 1754 1755 /* 1756 * Fetch the current chainmask configuration based on the current 1757 * operating channel and options. 1758 */ 1759 static void 1760 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1761 { 1762 1763 /* 1764 * Set TX chainmask to the currently configured chainmask; 1765 * the TX chainmask depends upon the current operating mode. 1766 */ 1767 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1768 if (IEEE80211_IS_CHAN_HT(chan)) { 1769 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1770 } else { 1771 sc->sc_cur_txchainmask = 1; 1772 } 1773 1774 DPRINTF(sc, ATH_DEBUG_RESET, 1775 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1776 __func__, 1777 sc->sc_cur_txchainmask, 1778 sc->sc_cur_rxchainmask); 1779 } 1780 1781 void 1782 ath_resume(struct ath_softc *sc) 1783 { 1784 struct ifnet *ifp = sc->sc_ifp; 1785 struct ieee80211com *ic = ifp->if_l2com; 1786 struct ath_hal *ah = sc->sc_ah; 1787 HAL_STATUS status; 1788 1789 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1790 __func__, ifp->if_flags); 1791 1792 /* Re-enable PCIe, re-enable the PCIe bus */ 1793 ath_hal_enablepcie(ah, 0, 0); 1794 1795 /* 1796 * Must reset the chip before we reload the 1797 * keycache as we were powered down on suspend. 1798 */ 1799 ath_update_chainmasks(sc, 1800 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1801 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1802 sc->sc_cur_rxchainmask); 1803 1804 /* Ensure we set the current power state to on */ 1805 ATH_LOCK(sc); 1806 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1807 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1808 ath_power_setpower(sc, HAL_PM_AWAKE); 1809 ATH_UNLOCK(sc); 1810 1811 ath_hal_reset(ah, sc->sc_opmode, 1812 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1813 AH_FALSE, &status); 1814 ath_reset_keycache(sc); 1815 1816 /* Let DFS at it in case it's a DFS channel */ 1817 ath_dfs_radar_enable(sc, ic->ic_curchan); 1818 1819 /* Let spectral at in case spectral is enabled */ 1820 ath_spectral_enable(sc, ic->ic_curchan); 1821 1822 /* 1823 * Let bluetooth coexistence at in case it's needed for this channel 1824 */ 1825 ath_btcoex_enable(sc, ic->ic_curchan); 1826 1827 /* 1828 * If we're doing TDMA, enforce the TXOP limitation for chips that 1829 * support it. 1830 */ 1831 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1832 ath_hal_setenforcetxop(sc->sc_ah, 1); 1833 else 1834 ath_hal_setenforcetxop(sc->sc_ah, 0); 1835 1836 /* Restore the LED configuration */ 1837 ath_led_config(sc); 1838 ath_hal_setledstate(ah, HAL_LED_INIT); 1839 1840 if (sc->sc_resume_up) 1841 ieee80211_resume_all(ic); 1842 1843 ATH_LOCK(sc); 1844 ath_power_restore_power_state(sc); 1845 ATH_UNLOCK(sc); 1846 1847 /* XXX beacons ? */ 1848 } 1849 1850 void 1851 ath_shutdown(struct ath_softc *sc) 1852 { 1853 struct ifnet *ifp = sc->sc_ifp; 1854 1855 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1856 __func__, ifp->if_flags); 1857 1858 ath_stop(ifp); 1859 /* NB: no point powering down chip as we're about to reboot */ 1860 } 1861 1862 /* 1863 * Interrupt handler. Most of the actual processing is deferred. 1864 */ 1865 void 1866 ath_intr(void *arg) 1867 { 1868 struct ath_softc *sc = arg; 1869 struct ifnet *ifp = sc->sc_ifp; 1870 struct ath_hal *ah = sc->sc_ah; 1871 HAL_INT status = 0; 1872 uint32_t txqs; 1873 1874 /* 1875 * If we're inside a reset path, just print a warning and 1876 * clear the ISR. The reset routine will finish it for us. 1877 */ 1878 ATH_PCU_LOCK(sc); 1879 if (sc->sc_inreset_cnt) { 1880 HAL_INT status; 1881 ath_hal_getisr(ah, &status); /* clear ISR */ 1882 ath_hal_intrset(ah, 0); /* disable further intr's */ 1883 DPRINTF(sc, ATH_DEBUG_ANY, 1884 "%s: in reset, ignoring: status=0x%x\n", 1885 __func__, status); 1886 ATH_PCU_UNLOCK(sc); 1887 return; 1888 } 1889 1890 if (sc->sc_invalid) { 1891 /* 1892 * The hardware is not ready/present, don't touch anything. 1893 * Note this can happen early on if the IRQ is shared. 1894 */ 1895 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1896 ATH_PCU_UNLOCK(sc); 1897 return; 1898 } 1899 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1900 ATH_PCU_UNLOCK(sc); 1901 return; 1902 } 1903 1904 ATH_LOCK(sc); 1905 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1906 ATH_UNLOCK(sc); 1907 1908 if ((ifp->if_flags & IFF_UP) == 0 || 1909 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1910 HAL_INT status; 1911 1912 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1913 __func__, ifp->if_flags); 1914 ath_hal_getisr(ah, &status); /* clear ISR */ 1915 ath_hal_intrset(ah, 0); /* disable further intr's */ 1916 ATH_PCU_UNLOCK(sc); 1917 1918 ATH_LOCK(sc); 1919 ath_power_restore_power_state(sc); 1920 ATH_UNLOCK(sc); 1921 return; 1922 } 1923 1924 /* 1925 * Figure out the reason(s) for the interrupt. Note 1926 * that the hal returns a pseudo-ISR that may include 1927 * bits we haven't explicitly enabled so we mask the 1928 * value to insure we only process bits we requested. 1929 */ 1930 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1931 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1932 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1933 #ifdef ATH_DEBUG_ALQ 1934 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1935 ah->ah_syncstate); 1936 #endif /* ATH_DEBUG_ALQ */ 1937 #ifdef ATH_KTR_INTR_DEBUG 1938 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1939 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1940 ah->ah_intrstate[0], 1941 ah->ah_intrstate[1], 1942 ah->ah_intrstate[2], 1943 ah->ah_intrstate[3], 1944 ah->ah_intrstate[6]); 1945 #endif 1946 1947 /* Squirrel away SYNC interrupt debugging */ 1948 if (ah->ah_syncstate != 0) { 1949 int i; 1950 for (i = 0; i < 32; i++) 1951 if (ah->ah_syncstate & (i << i)) 1952 sc->sc_intr_stats.sync_intr[i]++; 1953 } 1954 1955 status &= sc->sc_imask; /* discard unasked for bits */ 1956 1957 /* Short-circuit un-handled interrupts */ 1958 if (status == 0x0) { 1959 ATH_PCU_UNLOCK(sc); 1960 1961 ATH_LOCK(sc); 1962 ath_power_restore_power_state(sc); 1963 ATH_UNLOCK(sc); 1964 1965 return; 1966 } 1967 1968 /* 1969 * Take a note that we're inside the interrupt handler, so 1970 * the reset routines know to wait. 1971 */ 1972 sc->sc_intr_cnt++; 1973 ATH_PCU_UNLOCK(sc); 1974 1975 /* 1976 * Handle the interrupt. We won't run concurrent with the reset 1977 * or channel change routines as they'll wait for sc_intr_cnt 1978 * to be 0 before continuing. 1979 */ 1980 if (status & HAL_INT_FATAL) { 1981 sc->sc_stats.ast_hardware++; 1982 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1983 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1984 } else { 1985 if (status & HAL_INT_SWBA) { 1986 /* 1987 * Software beacon alert--time to send a beacon. 1988 * Handle beacon transmission directly; deferring 1989 * this is too slow to meet timing constraints 1990 * under load. 1991 */ 1992 #ifdef IEEE80211_SUPPORT_TDMA 1993 if (sc->sc_tdma) { 1994 if (sc->sc_tdmaswba == 0) { 1995 struct ieee80211com *ic = ifp->if_l2com; 1996 struct ieee80211vap *vap = 1997 TAILQ_FIRST(&ic->ic_vaps); 1998 ath_tdma_beacon_send(sc, vap); 1999 sc->sc_tdmaswba = 2000 vap->iv_tdma->tdma_bintval; 2001 } else 2002 sc->sc_tdmaswba--; 2003 } else 2004 #endif 2005 { 2006 ath_beacon_proc(sc, 0); 2007 #ifdef IEEE80211_SUPPORT_SUPERG 2008 /* 2009 * Schedule the rx taskq in case there's no 2010 * traffic so any frames held on the staging 2011 * queue are aged and potentially flushed. 2012 */ 2013 sc->sc_rx.recv_sched(sc, 1); 2014 #endif 2015 } 2016 } 2017 if (status & HAL_INT_RXEOL) { 2018 int imask; 2019 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2020 ATH_PCU_LOCK(sc); 2021 /* 2022 * NB: the hardware should re-read the link when 2023 * RXE bit is written, but it doesn't work at 2024 * least on older hardware revs. 2025 */ 2026 sc->sc_stats.ast_rxeol++; 2027 /* 2028 * Disable RXEOL/RXORN - prevent an interrupt 2029 * storm until the PCU logic can be reset. 2030 * In case the interface is reset some other 2031 * way before "sc_kickpcu" is called, don't 2032 * modify sc_imask - that way if it is reset 2033 * by a call to ath_reset() somehow, the 2034 * interrupt mask will be correctly reprogrammed. 2035 */ 2036 imask = sc->sc_imask; 2037 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2038 ath_hal_intrset(ah, imask); 2039 /* 2040 * Only blank sc_rxlink if we've not yet kicked 2041 * the PCU. 2042 * 2043 * This isn't entirely correct - the correct solution 2044 * would be to have a PCU lock and engage that for 2045 * the duration of the PCU fiddling; which would include 2046 * running the RX process. Otherwise we could end up 2047 * messing up the RX descriptor chain and making the 2048 * RX desc list much shorter. 2049 */ 2050 if (! sc->sc_kickpcu) 2051 sc->sc_rxlink = NULL; 2052 sc->sc_kickpcu = 1; 2053 ATH_PCU_UNLOCK(sc); 2054 /* 2055 * Enqueue an RX proc, to handled whatever 2056 * is in the RX queue. 2057 * This will then kick the PCU. 2058 */ 2059 sc->sc_rx.recv_sched(sc, 1); 2060 } 2061 if (status & HAL_INT_TXURN) { 2062 sc->sc_stats.ast_txurn++; 2063 /* bump tx trigger level */ 2064 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2065 } 2066 /* 2067 * Handle both the legacy and RX EDMA interrupt bits. 2068 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2069 */ 2070 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2071 sc->sc_stats.ast_rx_intr++; 2072 sc->sc_rx.recv_sched(sc, 1); 2073 } 2074 if (status & HAL_INT_TX) { 2075 sc->sc_stats.ast_tx_intr++; 2076 /* 2077 * Grab all the currently set bits in the HAL txq bitmap 2078 * and blank them. This is the only place we should be 2079 * doing this. 2080 */ 2081 if (! sc->sc_isedma) { 2082 ATH_PCU_LOCK(sc); 2083 txqs = 0xffffffff; 2084 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2085 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2086 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2087 txqs, 2088 sc->sc_txq_active, 2089 sc->sc_txq_active | txqs); 2090 sc->sc_txq_active |= txqs; 2091 ATH_PCU_UNLOCK(sc); 2092 } 2093 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2094 } 2095 if (status & HAL_INT_BMISS) { 2096 sc->sc_stats.ast_bmiss++; 2097 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2098 } 2099 if (status & HAL_INT_GTT) 2100 sc->sc_stats.ast_tx_timeout++; 2101 if (status & HAL_INT_CST) 2102 sc->sc_stats.ast_tx_cst++; 2103 if (status & HAL_INT_MIB) { 2104 sc->sc_stats.ast_mib++; 2105 ATH_PCU_LOCK(sc); 2106 /* 2107 * Disable interrupts until we service the MIB 2108 * interrupt; otherwise it will continue to fire. 2109 */ 2110 ath_hal_intrset(ah, 0); 2111 /* 2112 * Let the hal handle the event. We assume it will 2113 * clear whatever condition caused the interrupt. 2114 */ 2115 ath_hal_mibevent(ah, &sc->sc_halstats); 2116 /* 2117 * Don't reset the interrupt if we've just 2118 * kicked the PCU, or we may get a nested 2119 * RXEOL before the rxproc has had a chance 2120 * to run. 2121 */ 2122 if (sc->sc_kickpcu == 0) 2123 ath_hal_intrset(ah, sc->sc_imask); 2124 ATH_PCU_UNLOCK(sc); 2125 } 2126 if (status & HAL_INT_RXORN) { 2127 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2128 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2129 sc->sc_stats.ast_rxorn++; 2130 } 2131 if (status & HAL_INT_TSFOOR) { 2132 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2133 sc->sc_syncbeacon = 1; 2134 } 2135 } 2136 ATH_PCU_LOCK(sc); 2137 sc->sc_intr_cnt--; 2138 ATH_PCU_UNLOCK(sc); 2139 2140 ATH_LOCK(sc); 2141 ath_power_restore_power_state(sc); 2142 ATH_UNLOCK(sc); 2143 } 2144 2145 static void 2146 ath_fatal_proc(void *arg, int pending) 2147 { 2148 struct ath_softc *sc = arg; 2149 struct ifnet *ifp = sc->sc_ifp; 2150 u_int32_t *state; 2151 u_int32_t len; 2152 void *sp; 2153 2154 if_printf(ifp, "hardware error; resetting\n"); 2155 /* 2156 * Fatal errors are unrecoverable. Typically these 2157 * are caused by DMA errors. Collect h/w state from 2158 * the hal so we can diagnose what's going on. 2159 */ 2160 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2161 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2162 state = sp; 2163 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 2164 state[0], state[1] , state[2], state[3], 2165 state[4], state[5]); 2166 } 2167 ath_reset(ifp, ATH_RESET_NOLOSS); 2168 } 2169 2170 static void 2171 ath_bmiss_vap(struct ieee80211vap *vap) 2172 { 2173 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 2174 2175 /* 2176 * Workaround phantom bmiss interrupts by sanity-checking 2177 * the time of our last rx'd frame. If it is within the 2178 * beacon miss interval then ignore the interrupt. If it's 2179 * truly a bmiss we'll get another interrupt soon and that'll 2180 * be dispatched up for processing. Note this applies only 2181 * for h/w beacon miss events. 2182 */ 2183 2184 /* 2185 * XXX TODO: Just read the TSF during the interrupt path; 2186 * that way we don't have to wake up again just to read it 2187 * again. 2188 */ 2189 ATH_LOCK(sc); 2190 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2191 ATH_UNLOCK(sc); 2192 2193 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2194 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2195 struct ath_softc *sc = ifp->if_softc; 2196 u_int64_t lastrx = sc->sc_lastrx; 2197 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2198 /* XXX should take a locked ref to iv_bss */ 2199 u_int bmisstimeout = 2200 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2201 2202 DPRINTF(sc, ATH_DEBUG_BEACON, 2203 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2204 __func__, (unsigned long long) tsf, 2205 (unsigned long long)(tsf - lastrx), 2206 (unsigned long long) lastrx, bmisstimeout); 2207 2208 if (tsf - lastrx <= bmisstimeout) { 2209 sc->sc_stats.ast_bmiss_phantom++; 2210 2211 ATH_LOCK(sc); 2212 ath_power_restore_power_state(sc); 2213 ATH_UNLOCK(sc); 2214 2215 return; 2216 } 2217 } 2218 2219 /* 2220 * There's no need to keep the hardware awake during the call 2221 * to av_bmiss(). 2222 */ 2223 ATH_LOCK(sc); 2224 ath_power_restore_power_state(sc); 2225 ATH_UNLOCK(sc); 2226 2227 /* 2228 * Attempt to force a beacon resync. 2229 */ 2230 sc->sc_syncbeacon = 1; 2231 2232 ATH_VAP(vap)->av_bmiss(vap); 2233 } 2234 2235 /* XXX this needs a force wakeup! */ 2236 int 2237 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2238 { 2239 uint32_t rsize; 2240 void *sp; 2241 2242 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2243 return 0; 2244 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2245 *hangs = *(uint32_t *)sp; 2246 return 1; 2247 } 2248 2249 static void 2250 ath_bmiss_proc(void *arg, int pending) 2251 { 2252 struct ath_softc *sc = arg; 2253 struct ifnet *ifp = sc->sc_ifp; 2254 uint32_t hangs; 2255 2256 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2257 2258 ATH_LOCK(sc); 2259 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2260 ATH_UNLOCK(sc); 2261 2262 ath_beacon_miss(sc); 2263 2264 /* 2265 * Do a reset upon any becaon miss event. 2266 * 2267 * It may be a non-recognised RX clear hang which needs a reset 2268 * to clear. 2269 */ 2270 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2271 ath_reset(ifp, ATH_RESET_NOLOSS); 2272 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 2273 } else { 2274 ath_reset(ifp, ATH_RESET_NOLOSS); 2275 ieee80211_beacon_miss(ifp->if_l2com); 2276 } 2277 2278 /* Force a beacon resync, in case they've drifted */ 2279 sc->sc_syncbeacon = 1; 2280 2281 ATH_LOCK(sc); 2282 ath_power_restore_power_state(sc); 2283 ATH_UNLOCK(sc); 2284 } 2285 2286 /* 2287 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2288 * calcs together with WME. If necessary disable the crypto 2289 * hardware and mark the 802.11 state so keys will be setup 2290 * with the MIC work done in software. 2291 */ 2292 static void 2293 ath_settkipmic(struct ath_softc *sc) 2294 { 2295 struct ifnet *ifp = sc->sc_ifp; 2296 struct ieee80211com *ic = ifp->if_l2com; 2297 2298 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2299 if (ic->ic_flags & IEEE80211_F_WME) { 2300 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2301 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2302 } else { 2303 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2304 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2305 } 2306 } 2307 } 2308 2309 static void 2310 ath_init(void *arg) 2311 { 2312 struct ath_softc *sc = (struct ath_softc *) arg; 2313 struct ifnet *ifp = sc->sc_ifp; 2314 struct ieee80211com *ic = ifp->if_l2com; 2315 struct ath_hal *ah = sc->sc_ah; 2316 HAL_STATUS status; 2317 2318 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 2319 __func__, ifp->if_flags); 2320 2321 ATH_LOCK(sc); 2322 /* 2323 * Force the sleep state awake. 2324 */ 2325 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2326 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2327 ath_power_setpower(sc, HAL_PM_AWAKE); 2328 2329 /* 2330 * Stop anything previously setup. This is safe 2331 * whether this is the first time through or not. 2332 */ 2333 ath_stop_locked(ifp); 2334 2335 /* 2336 * The basic interface to setting the hardware in a good 2337 * state is ``reset''. On return the hardware is known to 2338 * be powered up and with interrupts disabled. This must 2339 * be followed by initialization of the appropriate bits 2340 * and then setup of the interrupt mask. 2341 */ 2342 ath_settkipmic(sc); 2343 ath_update_chainmasks(sc, ic->ic_curchan); 2344 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2345 sc->sc_cur_rxchainmask); 2346 2347 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 2348 if_printf(ifp, "unable to reset hardware; hal status %u\n", 2349 status); 2350 ATH_UNLOCK(sc); 2351 return; 2352 } 2353 ath_chan_change(sc, ic->ic_curchan); 2354 2355 /* Let DFS at it in case it's a DFS channel */ 2356 ath_dfs_radar_enable(sc, ic->ic_curchan); 2357 2358 /* Let spectral at in case spectral is enabled */ 2359 ath_spectral_enable(sc, ic->ic_curchan); 2360 2361 /* 2362 * Let bluetooth coexistence at in case it's needed for this channel 2363 */ 2364 ath_btcoex_enable(sc, ic->ic_curchan); 2365 2366 /* 2367 * If we're doing TDMA, enforce the TXOP limitation for chips that 2368 * support it. 2369 */ 2370 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2371 ath_hal_setenforcetxop(sc->sc_ah, 1); 2372 else 2373 ath_hal_setenforcetxop(sc->sc_ah, 0); 2374 2375 /* 2376 * Likewise this is set during reset so update 2377 * state cached in the driver. 2378 */ 2379 sc->sc_diversity = ath_hal_getdiversity(ah); 2380 sc->sc_lastlongcal = 0; 2381 sc->sc_resetcal = 1; 2382 sc->sc_lastcalreset = 0; 2383 sc->sc_lastani = 0; 2384 sc->sc_lastshortcal = 0; 2385 sc->sc_doresetcal = AH_FALSE; 2386 /* 2387 * Beacon timers were cleared here; give ath_newstate() 2388 * a hint that the beacon timers should be poked when 2389 * things transition to the RUN state. 2390 */ 2391 sc->sc_beacons = 0; 2392 2393 /* 2394 * Setup the hardware after reset: the key cache 2395 * is filled as needed and the receive engine is 2396 * set going. Frame transmit is handled entirely 2397 * in the frame output path; there's nothing to do 2398 * here except setup the interrupt mask. 2399 */ 2400 if (ath_startrecv(sc) != 0) { 2401 if_printf(ifp, "unable to start recv logic\n"); 2402 ath_power_restore_power_state(sc); 2403 ATH_UNLOCK(sc); 2404 return; 2405 } 2406 2407 /* 2408 * Enable interrupts. 2409 */ 2410 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2411 | HAL_INT_RXEOL | HAL_INT_RXORN 2412 | HAL_INT_TXURN 2413 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2414 2415 /* 2416 * Enable RX EDMA bits. Note these overlap with 2417 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2418 */ 2419 if (sc->sc_isedma) 2420 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2421 2422 /* 2423 * Enable MIB interrupts when there are hardware phy counters. 2424 * Note we only do this (at the moment) for station mode. 2425 */ 2426 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2427 sc->sc_imask |= HAL_INT_MIB; 2428 2429 /* 2430 * XXX add capability for this. 2431 * 2432 * If we're in STA mode (and maybe IBSS?) then register for 2433 * TSFOOR interrupts. 2434 */ 2435 if (ic->ic_opmode == IEEE80211_M_STA) 2436 sc->sc_imask |= HAL_INT_TSFOOR; 2437 2438 /* Enable global TX timeout and carrier sense timeout if available */ 2439 if (ath_hal_gtxto_supported(ah)) 2440 sc->sc_imask |= HAL_INT_GTT; 2441 2442 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2443 __func__, sc->sc_imask); 2444 2445 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2446 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2447 ath_hal_intrset(ah, sc->sc_imask); 2448 2449 ath_power_restore_power_state(sc); 2450 ATH_UNLOCK(sc); 2451 2452 #ifdef ATH_TX99_DIAG 2453 if (sc->sc_tx99 != NULL) 2454 sc->sc_tx99->start(sc->sc_tx99); 2455 else 2456 #endif 2457 ieee80211_start_all(ic); /* start all vap's */ 2458 } 2459 2460 static void 2461 ath_stop_locked(struct ifnet *ifp) 2462 { 2463 struct ath_softc *sc = ifp->if_softc; 2464 struct ath_hal *ah = sc->sc_ah; 2465 2466 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2467 __func__, sc->sc_invalid, ifp->if_flags); 2468 2469 ATH_LOCK_ASSERT(sc); 2470 2471 /* 2472 * Wake the hardware up before fiddling with it. 2473 */ 2474 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2475 2476 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2477 /* 2478 * Shutdown the hardware and driver: 2479 * reset 802.11 state machine 2480 * turn off timers 2481 * disable interrupts 2482 * turn off the radio 2483 * clear transmit machinery 2484 * clear receive machinery 2485 * drain and release tx queues 2486 * reclaim beacon resources 2487 * power down hardware 2488 * 2489 * Note that some of this work is not possible if the 2490 * hardware is gone (invalid). 2491 */ 2492 #ifdef ATH_TX99_DIAG 2493 if (sc->sc_tx99 != NULL) 2494 sc->sc_tx99->stop(sc->sc_tx99); 2495 #endif 2496 callout_stop(&sc->sc_wd_ch); 2497 sc->sc_wd_timer = 0; 2498 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2499 if (!sc->sc_invalid) { 2500 if (sc->sc_softled) { 2501 callout_stop(&sc->sc_ledtimer); 2502 ath_hal_gpioset(ah, sc->sc_ledpin, 2503 !sc->sc_ledon); 2504 sc->sc_blinking = 0; 2505 } 2506 ath_hal_intrset(ah, 0); 2507 } 2508 ath_draintxq(sc, ATH_RESET_DEFAULT); 2509 if (!sc->sc_invalid) { 2510 ath_stoprecv(sc, 1); 2511 ath_hal_phydisable(ah); 2512 } else 2513 sc->sc_rxlink = NULL; 2514 ath_beacon_free(sc); /* XXX not needed */ 2515 } 2516 2517 /* And now, restore the current power state */ 2518 ath_power_restore_power_state(sc); 2519 } 2520 2521 /* 2522 * Wait until all pending TX/RX has completed. 2523 * 2524 * This waits until all existing transmit, receive and interrupts 2525 * have completed. It's assumed that the caller has first 2526 * grabbed the reset lock so it doesn't try to do overlapping 2527 * chip resets. 2528 */ 2529 #define MAX_TXRX_ITERATIONS 100 2530 static void 2531 ath_txrx_stop_locked(struct ath_softc *sc) 2532 { 2533 int i = MAX_TXRX_ITERATIONS; 2534 2535 ATH_UNLOCK_ASSERT(sc); 2536 ATH_PCU_LOCK_ASSERT(sc); 2537 2538 /* 2539 * Sleep until all the pending operations have completed. 2540 * 2541 * The caller must ensure that reset has been incremented 2542 * or the pending operations may continue being queued. 2543 */ 2544 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2545 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2546 if (i <= 0) 2547 break; 2548 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2549 msecs_to_ticks(10)); 2550 i--; 2551 } 2552 2553 if (i <= 0) 2554 device_printf(sc->sc_dev, 2555 "%s: didn't finish after %d iterations\n", 2556 __func__, MAX_TXRX_ITERATIONS); 2557 } 2558 #undef MAX_TXRX_ITERATIONS 2559 2560 #if 0 2561 static void 2562 ath_txrx_stop(struct ath_softc *sc) 2563 { 2564 ATH_UNLOCK_ASSERT(sc); 2565 ATH_PCU_UNLOCK_ASSERT(sc); 2566 2567 ATH_PCU_LOCK(sc); 2568 ath_txrx_stop_locked(sc); 2569 ATH_PCU_UNLOCK(sc); 2570 } 2571 #endif 2572 2573 static void 2574 ath_txrx_start(struct ath_softc *sc) 2575 { 2576 2577 taskqueue_unblock(sc->sc_tq); 2578 } 2579 2580 /* 2581 * Grab the reset lock, and wait around until noone else 2582 * is trying to do anything with it. 2583 * 2584 * This is totally horrible but we can't hold this lock for 2585 * long enough to do TX/RX or we end up with net80211/ip stack 2586 * LORs and eventual deadlock. 2587 * 2588 * "dowait" signals whether to spin, waiting for the reset 2589 * lock count to reach 0. This should (for now) only be used 2590 * during the reset path, as the rest of the code may not 2591 * be locking-reentrant enough to behave correctly. 2592 * 2593 * Another, cleaner way should be found to serialise all of 2594 * these operations. 2595 */ 2596 #define MAX_RESET_ITERATIONS 25 2597 static int 2598 ath_reset_grablock(struct ath_softc *sc, int dowait) 2599 { 2600 int w = 0; 2601 int i = MAX_RESET_ITERATIONS; 2602 2603 ATH_PCU_LOCK_ASSERT(sc); 2604 do { 2605 if (sc->sc_inreset_cnt == 0) { 2606 w = 1; 2607 break; 2608 } 2609 if (dowait == 0) { 2610 w = 0; 2611 break; 2612 } 2613 ATH_PCU_UNLOCK(sc); 2614 /* 2615 * 1 tick is likely not enough time for long calibrations 2616 * to complete. So we should wait quite a while. 2617 */ 2618 pause("ath_reset_grablock", msecs_to_ticks(100)); 2619 i--; 2620 ATH_PCU_LOCK(sc); 2621 } while (i > 0); 2622 2623 /* 2624 * We always increment the refcounter, regardless 2625 * of whether we succeeded to get it in an exclusive 2626 * way. 2627 */ 2628 sc->sc_inreset_cnt++; 2629 2630 if (i <= 0) 2631 device_printf(sc->sc_dev, 2632 "%s: didn't finish after %d iterations\n", 2633 __func__, MAX_RESET_ITERATIONS); 2634 2635 if (w == 0) 2636 device_printf(sc->sc_dev, 2637 "%s: warning, recursive reset path!\n", 2638 __func__); 2639 2640 return w; 2641 } 2642 #undef MAX_RESET_ITERATIONS 2643 2644 /* 2645 * XXX TODO: write ath_reset_releaselock 2646 */ 2647 2648 static void 2649 ath_stop(struct ifnet *ifp) 2650 { 2651 struct ath_softc *sc = ifp->if_softc; 2652 2653 ATH_LOCK(sc); 2654 ath_stop_locked(ifp); 2655 ATH_UNLOCK(sc); 2656 } 2657 2658 /* 2659 * Reset the hardware w/o losing operational state. This is 2660 * basically a more efficient way of doing ath_stop, ath_init, 2661 * followed by state transitions to the current 802.11 2662 * operational state. Used to recover from various errors and 2663 * to reset or reload hardware state. 2664 */ 2665 int 2666 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2667 { 2668 struct ath_softc *sc = ifp->if_softc; 2669 struct ieee80211com *ic = ifp->if_l2com; 2670 struct ath_hal *ah = sc->sc_ah; 2671 HAL_STATUS status; 2672 int i; 2673 2674 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2675 2676 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2677 ATH_PCU_UNLOCK_ASSERT(sc); 2678 ATH_UNLOCK_ASSERT(sc); 2679 2680 /* Try to (stop any further TX/RX from occuring */ 2681 taskqueue_block(sc->sc_tq); 2682 2683 /* 2684 * Wake the hardware up. 2685 */ 2686 ATH_LOCK(sc); 2687 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2688 ATH_UNLOCK(sc); 2689 2690 ATH_PCU_LOCK(sc); 2691 2692 /* 2693 * Grab the reset lock before TX/RX is stopped. 2694 * 2695 * This is needed to ensure that when the TX/RX actually does finish, 2696 * no further TX/RX/reset runs in parallel with this. 2697 */ 2698 if (ath_reset_grablock(sc, 1) == 0) { 2699 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2700 __func__); 2701 } 2702 2703 /* disable interrupts */ 2704 ath_hal_intrset(ah, 0); 2705 2706 /* 2707 * Now, ensure that any in progress TX/RX completes before we 2708 * continue. 2709 */ 2710 ath_txrx_stop_locked(sc); 2711 2712 ATH_PCU_UNLOCK(sc); 2713 2714 /* 2715 * Should now wait for pending TX/RX to complete 2716 * and block future ones from occuring. This needs to be 2717 * done before the TX queue is drained. 2718 */ 2719 ath_draintxq(sc, reset_type); /* stop xmit side */ 2720 2721 /* 2722 * Regardless of whether we're doing a no-loss flush or 2723 * not, stop the PCU and handle what's in the RX queue. 2724 * That way frames aren't dropped which shouldn't be. 2725 */ 2726 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2727 ath_rx_flush(sc); 2728 2729 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2730 /* NB: indicate channel change so we do a full reset */ 2731 ath_update_chainmasks(sc, ic->ic_curchan); 2732 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2733 sc->sc_cur_rxchainmask); 2734 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2735 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2736 __func__, status); 2737 sc->sc_diversity = ath_hal_getdiversity(ah); 2738 2739 /* Let DFS at it in case it's a DFS channel */ 2740 ath_dfs_radar_enable(sc, ic->ic_curchan); 2741 2742 /* Let spectral at in case spectral is enabled */ 2743 ath_spectral_enable(sc, ic->ic_curchan); 2744 2745 /* 2746 * Let bluetooth coexistence at in case it's needed for this channel 2747 */ 2748 ath_btcoex_enable(sc, ic->ic_curchan); 2749 2750 /* 2751 * If we're doing TDMA, enforce the TXOP limitation for chips that 2752 * support it. 2753 */ 2754 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2755 ath_hal_setenforcetxop(sc->sc_ah, 1); 2756 else 2757 ath_hal_setenforcetxop(sc->sc_ah, 0); 2758 2759 if (ath_startrecv(sc) != 0) /* restart recv */ 2760 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2761 /* 2762 * We may be doing a reset in response to an ioctl 2763 * that changes the channel so update any state that 2764 * might change as a result. 2765 */ 2766 ath_chan_change(sc, ic->ic_curchan); 2767 if (sc->sc_beacons) { /* restart beacons */ 2768 #ifdef IEEE80211_SUPPORT_TDMA 2769 if (sc->sc_tdma) 2770 ath_tdma_config(sc, NULL); 2771 else 2772 #endif 2773 ath_beacon_config(sc, NULL); 2774 } 2775 2776 /* 2777 * Release the reset lock and re-enable interrupts here. 2778 * If an interrupt was being processed in ath_intr(), 2779 * it would disable interrupts at this point. So we have 2780 * to atomically enable interrupts and decrement the 2781 * reset counter - this way ath_intr() doesn't end up 2782 * disabling interrupts without a corresponding enable 2783 * in the rest or channel change path. 2784 * 2785 * Grab the TX reference in case we need to transmit. 2786 * That way a parallel transmit doesn't. 2787 */ 2788 ATH_PCU_LOCK(sc); 2789 sc->sc_inreset_cnt--; 2790 sc->sc_txstart_cnt++; 2791 /* XXX only do this if sc_inreset_cnt == 0? */ 2792 ath_hal_intrset(ah, sc->sc_imask); 2793 ATH_PCU_UNLOCK(sc); 2794 2795 /* 2796 * TX and RX can be started here. If it were started with 2797 * sc_inreset_cnt > 0, the TX and RX path would abort. 2798 * Thus if this is a nested call through the reset or 2799 * channel change code, TX completion will occur but 2800 * RX completion and ath_start / ath_tx_start will not 2801 * run. 2802 */ 2803 2804 /* Restart TX/RX as needed */ 2805 ath_txrx_start(sc); 2806 2807 /* XXX TODO: we need to hold the tx refcount here! */ 2808 2809 /* Restart TX completion and pending TX */ 2810 if (reset_type == ATH_RESET_NOLOSS) { 2811 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2812 if (ATH_TXQ_SETUP(sc, i)) { 2813 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2814 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2815 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2816 2817 ATH_TX_LOCK(sc); 2818 ath_txq_sched(sc, &sc->sc_txq[i]); 2819 ATH_TX_UNLOCK(sc); 2820 } 2821 } 2822 } 2823 2824 /* 2825 * This may have been set during an ath_start() call which 2826 * set this once it detected a concurrent TX was going on. 2827 * So, clear it. 2828 */ 2829 IF_LOCK(&ifp->if_snd); 2830 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2831 IF_UNLOCK(&ifp->if_snd); 2832 2833 ATH_LOCK(sc); 2834 ath_power_restore_power_state(sc); 2835 ATH_UNLOCK(sc); 2836 2837 ATH_PCU_LOCK(sc); 2838 sc->sc_txstart_cnt--; 2839 ATH_PCU_UNLOCK(sc); 2840 2841 /* Handle any frames in the TX queue */ 2842 /* 2843 * XXX should this be done by the caller, rather than 2844 * ath_reset() ? 2845 */ 2846 ath_tx_kick(sc); /* restart xmit */ 2847 return 0; 2848 } 2849 2850 static int 2851 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2852 { 2853 struct ieee80211com *ic = vap->iv_ic; 2854 struct ifnet *ifp = ic->ic_ifp; 2855 struct ath_softc *sc = ifp->if_softc; 2856 struct ath_hal *ah = sc->sc_ah; 2857 2858 switch (cmd) { 2859 case IEEE80211_IOC_TXPOWER: 2860 /* 2861 * If per-packet TPC is enabled, then we have nothing 2862 * to do; otherwise we need to force the global limit. 2863 * All this can happen directly; no need to reset. 2864 */ 2865 if (!ath_hal_gettpc(ah)) 2866 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2867 return 0; 2868 } 2869 /* XXX? Full or NOLOSS? */ 2870 return ath_reset(ifp, ATH_RESET_FULL); 2871 } 2872 2873 struct ath_buf * 2874 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2875 { 2876 struct ath_buf *bf; 2877 2878 ATH_TXBUF_LOCK_ASSERT(sc); 2879 2880 if (btype == ATH_BUFTYPE_MGMT) 2881 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2882 else 2883 bf = TAILQ_FIRST(&sc->sc_txbuf); 2884 2885 if (bf == NULL) { 2886 sc->sc_stats.ast_tx_getnobuf++; 2887 } else { 2888 if (bf->bf_flags & ATH_BUF_BUSY) { 2889 sc->sc_stats.ast_tx_getbusybuf++; 2890 bf = NULL; 2891 } 2892 } 2893 2894 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2895 if (btype == ATH_BUFTYPE_MGMT) 2896 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2897 else { 2898 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2899 sc->sc_txbuf_cnt--; 2900 2901 /* 2902 * This shuldn't happen; however just to be 2903 * safe print a warning and fudge the txbuf 2904 * count. 2905 */ 2906 if (sc->sc_txbuf_cnt < 0) { 2907 device_printf(sc->sc_dev, 2908 "%s: sc_txbuf_cnt < 0?\n", 2909 __func__); 2910 sc->sc_txbuf_cnt = 0; 2911 } 2912 } 2913 } else 2914 bf = NULL; 2915 2916 if (bf == NULL) { 2917 /* XXX should check which list, mgmt or otherwise */ 2918 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2919 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2920 "out of xmit buffers" : "xmit buffer busy"); 2921 return NULL; 2922 } 2923 2924 /* XXX TODO: should do this at buffer list initialisation */ 2925 /* XXX (then, ensure the buffer has the right flag set) */ 2926 bf->bf_flags = 0; 2927 if (btype == ATH_BUFTYPE_MGMT) 2928 bf->bf_flags |= ATH_BUF_MGMT; 2929 else 2930 bf->bf_flags &= (~ATH_BUF_MGMT); 2931 2932 /* Valid bf here; clear some basic fields */ 2933 bf->bf_next = NULL; /* XXX just to be sure */ 2934 bf->bf_last = NULL; /* XXX again, just to be sure */ 2935 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2936 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2937 2938 /* 2939 * Track the descriptor ID only if doing EDMA 2940 */ 2941 if (sc->sc_isedma) { 2942 bf->bf_descid = sc->sc_txbuf_descid; 2943 sc->sc_txbuf_descid++; 2944 } 2945 2946 return bf; 2947 } 2948 2949 /* 2950 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2951 * can't be thrown back on the queue as they could still be 2952 * in use by the hardware. 2953 * 2954 * This duplicates the buffer, or returns NULL. 2955 * 2956 * The descriptor is also copied but the link pointers and 2957 * the DMA segments aren't copied; this frame should thus 2958 * be again passed through the descriptor setup/chain routines 2959 * so the link is correct. 2960 * 2961 * The caller must free the buffer using ath_freebuf(). 2962 */ 2963 struct ath_buf * 2964 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 2965 { 2966 struct ath_buf *tbf; 2967 2968 tbf = ath_getbuf(sc, 2969 (bf->bf_flags & ATH_BUF_MGMT) ? 2970 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2971 if (tbf == NULL) 2972 return NULL; /* XXX failure? Why? */ 2973 2974 /* Copy basics */ 2975 tbf->bf_next = NULL; 2976 tbf->bf_nseg = bf->bf_nseg; 2977 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2978 tbf->bf_status = bf->bf_status; 2979 tbf->bf_m = bf->bf_m; 2980 tbf->bf_node = bf->bf_node; 2981 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 2982 /* will be setup by the chain/setup function */ 2983 tbf->bf_lastds = NULL; 2984 /* for now, last == self */ 2985 tbf->bf_last = tbf; 2986 tbf->bf_comp = bf->bf_comp; 2987 2988 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2989 2990 /* The caller has to re-init the descriptor + links */ 2991 2992 /* 2993 * Free the DMA mapping here, before we NULL the mbuf. 2994 * We must only call bus_dmamap_unload() once per mbuf chain 2995 * or behaviour is undefined. 2996 */ 2997 if (bf->bf_m != NULL) { 2998 /* 2999 * XXX is this POSTWRITE call required? 3000 */ 3001 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3002 BUS_DMASYNC_POSTWRITE); 3003 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3004 } 3005 3006 bf->bf_m = NULL; 3007 bf->bf_node = NULL; 3008 3009 /* Copy state */ 3010 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3011 3012 return tbf; 3013 } 3014 3015 struct ath_buf * 3016 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3017 { 3018 struct ath_buf *bf; 3019 3020 ATH_TXBUF_LOCK(sc); 3021 bf = _ath_getbuf_locked(sc, btype); 3022 /* 3023 * If a mgmt buffer was requested but we're out of those, 3024 * try requesting a normal one. 3025 */ 3026 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3027 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3028 ATH_TXBUF_UNLOCK(sc); 3029 if (bf == NULL) { 3030 struct ifnet *ifp = sc->sc_ifp; 3031 3032 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3033 sc->sc_stats.ast_tx_qstop++; 3034 IF_LOCK(&ifp->if_snd); 3035 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3036 IF_UNLOCK(&ifp->if_snd); 3037 } 3038 return bf; 3039 } 3040 3041 static void 3042 ath_qflush(struct ifnet *ifp) 3043 { 3044 3045 /* XXX TODO */ 3046 } 3047 3048 /* 3049 * Transmit a single frame. 3050 * 3051 * net80211 will free the node reference if the transmit 3052 * fails, so don't free the node reference here. 3053 */ 3054 static int 3055 ath_transmit(struct ifnet *ifp, struct mbuf *m) 3056 { 3057 struct ieee80211com *ic = ifp->if_l2com; 3058 struct ath_softc *sc = ic->ic_ifp->if_softc; 3059 struct ieee80211_node *ni; 3060 struct mbuf *next; 3061 struct ath_buf *bf; 3062 ath_bufhead frags; 3063 int retval = 0; 3064 3065 /* 3066 * Tell the reset path that we're currently transmitting. 3067 */ 3068 ATH_PCU_LOCK(sc); 3069 if (sc->sc_inreset_cnt > 0) { 3070 DPRINTF(sc, ATH_DEBUG_XMIT, 3071 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3072 ATH_PCU_UNLOCK(sc); 3073 IF_LOCK(&ifp->if_snd); 3074 sc->sc_stats.ast_tx_qstop++; 3075 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3076 IF_UNLOCK(&ifp->if_snd); 3077 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3078 return (ENOBUFS); /* XXX should be EINVAL or? */ 3079 } 3080 sc->sc_txstart_cnt++; 3081 ATH_PCU_UNLOCK(sc); 3082 3083 /* Wake the hardware up already */ 3084 ATH_LOCK(sc); 3085 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3086 ATH_UNLOCK(sc); 3087 3088 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3089 /* 3090 * Grab the TX lock - it's ok to do this here; we haven't 3091 * yet started transmitting. 3092 */ 3093 ATH_TX_LOCK(sc); 3094 3095 /* 3096 * Node reference, if there's one. 3097 */ 3098 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3099 3100 /* 3101 * Enforce how deep a node queue can get. 3102 * 3103 * XXX it would be nicer if we kept an mbuf queue per 3104 * node and only whacked them into ath_bufs when we 3105 * are ready to schedule some traffic from them. 3106 * .. that may come later. 3107 * 3108 * XXX we should also track the per-node hardware queue 3109 * depth so it is easy to limit the _SUM_ of the swq and 3110 * hwq frames. Since we only schedule two HWQ frames 3111 * at a time, this should be OK for now. 3112 */ 3113 if ((!(m->m_flags & M_EAPOL)) && 3114 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3115 sc->sc_stats.ast_tx_nodeq_overflow++; 3116 m_freem(m); 3117 m = NULL; 3118 retval = ENOBUFS; 3119 goto finish; 3120 } 3121 3122 /* 3123 * Check how many TX buffers are available. 3124 * 3125 * If this is for non-EAPOL traffic, just leave some 3126 * space free in order for buffer cloning and raw 3127 * frame transmission to occur. 3128 * 3129 * If it's for EAPOL traffic, ignore this for now. 3130 * Management traffic will be sent via the raw transmit 3131 * method which bypasses this check. 3132 * 3133 * This is needed to ensure that EAPOL frames during 3134 * (re) keying have a chance to go out. 3135 * 3136 * See kern/138379 for more information. 3137 */ 3138 if ((!(m->m_flags & M_EAPOL)) && 3139 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3140 sc->sc_stats.ast_tx_nobuf++; 3141 m_freem(m); 3142 m = NULL; 3143 retval = ENOBUFS; 3144 goto finish; 3145 } 3146 3147 /* 3148 * Grab a TX buffer and associated resources. 3149 * 3150 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3151 * That way even with temporary buffer exhaustion due to 3152 * the data path doesn't leave us without the ability 3153 * to transmit management frames. 3154 * 3155 * Otherwise allocate a normal buffer. 3156 */ 3157 if (m->m_flags & M_EAPOL) 3158 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3159 else 3160 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3161 3162 if (bf == NULL) { 3163 /* 3164 * If we failed to allocate a buffer, fail. 3165 * 3166 * We shouldn't fail normally, due to the check 3167 * above. 3168 */ 3169 sc->sc_stats.ast_tx_nobuf++; 3170 IF_LOCK(&ifp->if_snd); 3171 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3172 IF_UNLOCK(&ifp->if_snd); 3173 m_freem(m); 3174 m = NULL; 3175 retval = ENOBUFS; 3176 goto finish; 3177 } 3178 3179 /* 3180 * At this point we have a buffer; so we need to free it 3181 * if we hit any error conditions. 3182 */ 3183 3184 /* 3185 * Check for fragmentation. If this frame 3186 * has been broken up verify we have enough 3187 * buffers to send all the fragments so all 3188 * go out or none... 3189 */ 3190 TAILQ_INIT(&frags); 3191 if ((m->m_flags & M_FRAG) && 3192 !ath_txfrag_setup(sc, &frags, m, ni)) { 3193 DPRINTF(sc, ATH_DEBUG_XMIT, 3194 "%s: out of txfrag buffers\n", __func__); 3195 sc->sc_stats.ast_tx_nofrag++; 3196 ifp->if_oerrors++; 3197 ath_freetx(m); 3198 goto bad; 3199 } 3200 3201 /* 3202 * At this point if we have any TX fragments, then we will 3203 * have bumped the node reference once for each of those. 3204 */ 3205 3206 /* 3207 * XXX Is there anything actually _enforcing_ that the 3208 * fragments are being transmitted in one hit, rather than 3209 * being interleaved with other transmissions on that 3210 * hardware queue? 3211 * 3212 * The ATH TX output lock is the only thing serialising this 3213 * right now. 3214 */ 3215 3216 /* 3217 * Calculate the "next fragment" length field in ath_buf 3218 * in order to let the transmit path know enough about 3219 * what to next write to the hardware. 3220 */ 3221 if (m->m_flags & M_FRAG) { 3222 struct ath_buf *fbf = bf; 3223 struct ath_buf *n_fbf = NULL; 3224 struct mbuf *fm = m->m_nextpkt; 3225 3226 /* 3227 * We need to walk the list of fragments and set 3228 * the next size to the following buffer. 3229 * However, the first buffer isn't in the frag 3230 * list, so we have to do some gymnastics here. 3231 */ 3232 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3233 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3234 fbf = n_fbf; 3235 fm = fm->m_nextpkt; 3236 } 3237 } 3238 3239 /* 3240 * Bump the ifp output counter. 3241 * 3242 * XXX should use atomics? 3243 */ 3244 ifp->if_opackets++; 3245 nextfrag: 3246 /* 3247 * Pass the frame to the h/w for transmission. 3248 * Fragmented frames have each frag chained together 3249 * with m_nextpkt. We know there are sufficient ath_buf's 3250 * to send all the frags because of work done by 3251 * ath_txfrag_setup. We leave m_nextpkt set while 3252 * calling ath_tx_start so it can use it to extend the 3253 * the tx duration to cover the subsequent frag and 3254 * so it can reclaim all the mbufs in case of an error; 3255 * ath_tx_start clears m_nextpkt once it commits to 3256 * handing the frame to the hardware. 3257 * 3258 * Note: if this fails, then the mbufs are freed but 3259 * not the node reference. 3260 */ 3261 next = m->m_nextpkt; 3262 if (ath_tx_start(sc, ni, bf, m)) { 3263 bad: 3264 ifp->if_oerrors++; 3265 reclaim: 3266 bf->bf_m = NULL; 3267 bf->bf_node = NULL; 3268 ATH_TXBUF_LOCK(sc); 3269 ath_returnbuf_head(sc, bf); 3270 /* 3271 * Free the rest of the node references and 3272 * buffers for the fragment list. 3273 */ 3274 ath_txfrag_cleanup(sc, &frags, ni); 3275 ATH_TXBUF_UNLOCK(sc); 3276 retval = ENOBUFS; 3277 goto finish; 3278 } 3279 3280 /* 3281 * Check here if the node is in power save state. 3282 */ 3283 ath_tx_update_tim(sc, ni, 1); 3284 3285 if (next != NULL) { 3286 /* 3287 * Beware of state changing between frags. 3288 * XXX check sta power-save state? 3289 */ 3290 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3291 DPRINTF(sc, ATH_DEBUG_XMIT, 3292 "%s: flush fragmented packet, state %s\n", 3293 __func__, 3294 ieee80211_state_name[ni->ni_vap->iv_state]); 3295 /* XXX dmamap */ 3296 ath_freetx(next); 3297 goto reclaim; 3298 } 3299 m = next; 3300 bf = TAILQ_FIRST(&frags); 3301 KASSERT(bf != NULL, ("no buf for txfrag")); 3302 TAILQ_REMOVE(&frags, bf, bf_list); 3303 goto nextfrag; 3304 } 3305 3306 /* 3307 * Bump watchdog timer. 3308 */ 3309 sc->sc_wd_timer = 5; 3310 3311 finish: 3312 ATH_TX_UNLOCK(sc); 3313 3314 /* 3315 * Finished transmitting! 3316 */ 3317 ATH_PCU_LOCK(sc); 3318 sc->sc_txstart_cnt--; 3319 ATH_PCU_UNLOCK(sc); 3320 3321 /* Sleep the hardware if required */ 3322 ATH_LOCK(sc); 3323 ath_power_restore_power_state(sc); 3324 ATH_UNLOCK(sc); 3325 3326 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3327 3328 return (retval); 3329 } 3330 3331 static int 3332 ath_media_change(struct ifnet *ifp) 3333 { 3334 int error = ieee80211_media_change(ifp); 3335 /* NB: only the fixed rate can change and that doesn't need a reset */ 3336 return (error == ENETRESET ? 0 : error); 3337 } 3338 3339 /* 3340 * Block/unblock tx+rx processing while a key change is done. 3341 * We assume the caller serializes key management operations 3342 * so we only need to worry about synchronization with other 3343 * uses that originate in the driver. 3344 */ 3345 static void 3346 ath_key_update_begin(struct ieee80211vap *vap) 3347 { 3348 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3349 struct ath_softc *sc = ifp->if_softc; 3350 3351 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3352 taskqueue_block(sc->sc_tq); 3353 } 3354 3355 static void 3356 ath_key_update_end(struct ieee80211vap *vap) 3357 { 3358 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3359 struct ath_softc *sc = ifp->if_softc; 3360 3361 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3362 taskqueue_unblock(sc->sc_tq); 3363 } 3364 3365 static void 3366 ath_update_promisc(struct ifnet *ifp) 3367 { 3368 struct ath_softc *sc = ifp->if_softc; 3369 u_int32_t rfilt; 3370 3371 /* configure rx filter */ 3372 ATH_LOCK(sc); 3373 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3374 rfilt = ath_calcrxfilter(sc); 3375 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3376 ath_power_restore_power_state(sc); 3377 ATH_UNLOCK(sc); 3378 3379 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3380 } 3381 3382 static void 3383 ath_update_mcast(struct ifnet *ifp) 3384 { 3385 struct ath_softc *sc = ifp->if_softc; 3386 u_int32_t mfilt[2]; 3387 3388 /* calculate and install multicast filter */ 3389 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3390 struct ifmultiaddr *ifma; 3391 /* 3392 * Merge multicast addresses to form the hardware filter. 3393 */ 3394 mfilt[0] = mfilt[1] = 0; 3395 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 3396 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3397 caddr_t dl; 3398 u_int32_t val; 3399 u_int8_t pos; 3400 3401 /* calculate XOR of eight 6bit values */ 3402 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 3403 val = LE_READ_4(dl + 0); 3404 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3405 val = LE_READ_4(dl + 3); 3406 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3407 pos &= 0x3f; 3408 mfilt[pos / 32] |= (1 << (pos % 32)); 3409 } 3410 if_maddr_runlock(ifp); 3411 } else 3412 mfilt[0] = mfilt[1] = ~0; 3413 ATH_LOCK(sc); 3414 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3415 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3416 ath_power_restore_power_state(sc); 3417 ATH_UNLOCK(sc); 3418 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3419 __func__, mfilt[0], mfilt[1]); 3420 } 3421 3422 void 3423 ath_mode_init(struct ath_softc *sc) 3424 { 3425 struct ifnet *ifp = sc->sc_ifp; 3426 struct ath_hal *ah = sc->sc_ah; 3427 u_int32_t rfilt; 3428 3429 /* configure rx filter */ 3430 rfilt = ath_calcrxfilter(sc); 3431 ath_hal_setrxfilter(ah, rfilt); 3432 3433 /* configure operational mode */ 3434 ath_hal_setopmode(ah); 3435 3436 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 3437 "%s: ah=%p, ifp=%p, if_addr=%p\n", 3438 __func__, 3439 ah, 3440 ifp, 3441 (ifp == NULL) ? NULL : ifp->if_addr); 3442 3443 /* handle any link-level address change */ 3444 ath_hal_setmac(ah, IF_LLADDR(ifp)); 3445 3446 /* calculate and install multicast filter */ 3447 ath_update_mcast(ifp); 3448 } 3449 3450 /* 3451 * Set the slot time based on the current setting. 3452 */ 3453 void 3454 ath_setslottime(struct ath_softc *sc) 3455 { 3456 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3457 struct ath_hal *ah = sc->sc_ah; 3458 u_int usec; 3459 3460 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3461 usec = 13; 3462 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3463 usec = 21; 3464 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3465 /* honor short/long slot time only in 11g */ 3466 /* XXX shouldn't honor on pure g or turbo g channel */ 3467 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3468 usec = HAL_SLOT_TIME_9; 3469 else 3470 usec = HAL_SLOT_TIME_20; 3471 } else 3472 usec = HAL_SLOT_TIME_9; 3473 3474 DPRINTF(sc, ATH_DEBUG_RESET, 3475 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3476 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3477 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3478 3479 /* Wake up the hardware first before updating the slot time */ 3480 ATH_LOCK(sc); 3481 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3482 ath_hal_setslottime(ah, usec); 3483 ath_power_restore_power_state(sc); 3484 sc->sc_updateslot = OK; 3485 ATH_UNLOCK(sc); 3486 } 3487 3488 /* 3489 * Callback from the 802.11 layer to update the 3490 * slot time based on the current setting. 3491 */ 3492 static void 3493 ath_updateslot(struct ifnet *ifp) 3494 { 3495 struct ath_softc *sc = ifp->if_softc; 3496 struct ieee80211com *ic = ifp->if_l2com; 3497 3498 /* 3499 * When not coordinating the BSS, change the hardware 3500 * immediately. For other operation we defer the change 3501 * until beacon updates have propagated to the stations. 3502 * 3503 * XXX sc_updateslot isn't changed behind a lock? 3504 */ 3505 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3506 ic->ic_opmode == IEEE80211_M_MBSS) 3507 sc->sc_updateslot = UPDATE; 3508 else 3509 ath_setslottime(sc); 3510 } 3511 3512 /* 3513 * Append the contents of src to dst; both queues 3514 * are assumed to be locked. 3515 */ 3516 void 3517 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3518 { 3519 3520 ATH_TXQ_LOCK_ASSERT(src); 3521 ATH_TXQ_LOCK_ASSERT(dst); 3522 3523 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3524 dst->axq_link = src->axq_link; 3525 src->axq_link = NULL; 3526 dst->axq_depth += src->axq_depth; 3527 dst->axq_aggr_depth += src->axq_aggr_depth; 3528 src->axq_depth = 0; 3529 src->axq_aggr_depth = 0; 3530 } 3531 3532 /* 3533 * Reset the hardware, with no loss. 3534 * 3535 * This can't be used for a general case reset. 3536 */ 3537 static void 3538 ath_reset_proc(void *arg, int pending) 3539 { 3540 struct ath_softc *sc = arg; 3541 struct ifnet *ifp = sc->sc_ifp; 3542 3543 #if 0 3544 if_printf(ifp, "%s: resetting\n", __func__); 3545 #endif 3546 ath_reset(ifp, ATH_RESET_NOLOSS); 3547 } 3548 3549 /* 3550 * Reset the hardware after detecting beacons have stopped. 3551 */ 3552 static void 3553 ath_bstuck_proc(void *arg, int pending) 3554 { 3555 struct ath_softc *sc = arg; 3556 struct ifnet *ifp = sc->sc_ifp; 3557 uint32_t hangs = 0; 3558 3559 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3560 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3561 3562 #ifdef ATH_DEBUG_ALQ 3563 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3564 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3565 #endif 3566 3567 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3568 sc->sc_bmisscount); 3569 sc->sc_stats.ast_bstuck++; 3570 /* 3571 * This assumes that there's no simultaneous channel mode change 3572 * occuring. 3573 */ 3574 ath_reset(ifp, ATH_RESET_NOLOSS); 3575 } 3576 3577 static void 3578 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3579 { 3580 bus_addr_t *paddr = (bus_addr_t*) arg; 3581 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3582 *paddr = segs->ds_addr; 3583 } 3584 3585 /* 3586 * Allocate the descriptors and appropriate DMA tag/setup. 3587 * 3588 * For some situations (eg EDMA TX completion), there isn't a requirement 3589 * for the ath_buf entries to be allocated. 3590 */ 3591 int 3592 ath_descdma_alloc_desc(struct ath_softc *sc, 3593 struct ath_descdma *dd, ath_bufhead *head, 3594 const char *name, int ds_size, int ndesc) 3595 { 3596 #define DS2PHYS(_dd, _ds) \ 3597 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3598 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3599 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3600 struct ifnet *ifp = sc->sc_ifp; 3601 int error; 3602 3603 dd->dd_descsize = ds_size; 3604 3605 DPRINTF(sc, ATH_DEBUG_RESET, 3606 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3607 __func__, name, ndesc, dd->dd_descsize); 3608 3609 dd->dd_name = name; 3610 dd->dd_desc_len = dd->dd_descsize * ndesc; 3611 3612 /* 3613 * Merlin work-around: 3614 * Descriptors that cross the 4KB boundary can't be used. 3615 * Assume one skipped descriptor per 4KB page. 3616 */ 3617 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3618 int numpages = dd->dd_desc_len / 4096; 3619 dd->dd_desc_len += ds_size * numpages; 3620 } 3621 3622 /* 3623 * Setup DMA descriptor area. 3624 * 3625 * BUS_DMA_ALLOCNOW is not used; we never use bounce 3626 * buffers for the descriptors themselves. 3627 */ 3628 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3629 PAGE_SIZE, 0, /* alignment, bounds */ 3630 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3631 BUS_SPACE_MAXADDR, /* highaddr */ 3632 NULL, NULL, /* filter, filterarg */ 3633 dd->dd_desc_len, /* maxsize */ 3634 1, /* nsegments */ 3635 dd->dd_desc_len, /* maxsegsize */ 3636 0, /* flags */ 3637 NULL, /* lockfunc */ 3638 NULL, /* lockarg */ 3639 &dd->dd_dmat); 3640 if (error != 0) { 3641 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3642 return error; 3643 } 3644 3645 /* allocate descriptors */ 3646 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3647 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3648 &dd->dd_dmamap); 3649 if (error != 0) { 3650 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3651 "error %u\n", ndesc, dd->dd_name, error); 3652 goto fail1; 3653 } 3654 3655 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3656 dd->dd_desc, dd->dd_desc_len, 3657 ath_load_cb, &dd->dd_desc_paddr, 3658 BUS_DMA_NOWAIT); 3659 if (error != 0) { 3660 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3661 dd->dd_name, error); 3662 goto fail2; 3663 } 3664 3665 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3666 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3667 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3668 /*XXX*/ (u_long) dd->dd_desc_len); 3669 3670 return (0); 3671 3672 fail2: 3673 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3674 fail1: 3675 bus_dma_tag_destroy(dd->dd_dmat); 3676 memset(dd, 0, sizeof(*dd)); 3677 return error; 3678 #undef DS2PHYS 3679 #undef ATH_DESC_4KB_BOUND_CHECK 3680 } 3681 3682 int 3683 ath_descdma_setup(struct ath_softc *sc, 3684 struct ath_descdma *dd, ath_bufhead *head, 3685 const char *name, int ds_size, int nbuf, int ndesc) 3686 { 3687 #define DS2PHYS(_dd, _ds) \ 3688 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3689 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3690 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3691 struct ifnet *ifp = sc->sc_ifp; 3692 uint8_t *ds; 3693 struct ath_buf *bf; 3694 int i, bsize, error; 3695 3696 /* Allocate descriptors */ 3697 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3698 nbuf * ndesc); 3699 3700 /* Assume any errors during allocation were dealt with */ 3701 if (error != 0) { 3702 return (error); 3703 } 3704 3705 ds = (uint8_t *) dd->dd_desc; 3706 3707 /* allocate rx buffers */ 3708 bsize = sizeof(struct ath_buf) * nbuf; 3709 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3710 if (bf == NULL) { 3711 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3712 dd->dd_name, bsize); 3713 goto fail3; 3714 } 3715 dd->dd_bufptr = bf; 3716 3717 TAILQ_INIT(head); 3718 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3719 bf->bf_desc = (struct ath_desc *) ds; 3720 bf->bf_daddr = DS2PHYS(dd, ds); 3721 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3722 /* 3723 * Merlin WAR: Skip descriptor addresses which 3724 * cause 4KB boundary crossing along any point 3725 * in the descriptor. 3726 */ 3727 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3728 dd->dd_descsize)) { 3729 /* Start at the next page */ 3730 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3731 bf->bf_desc = (struct ath_desc *) ds; 3732 bf->bf_daddr = DS2PHYS(dd, ds); 3733 } 3734 } 3735 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3736 &bf->bf_dmamap); 3737 if (error != 0) { 3738 if_printf(ifp, "unable to create dmamap for %s " 3739 "buffer %u, error %u\n", dd->dd_name, i, error); 3740 ath_descdma_cleanup(sc, dd, head); 3741 return error; 3742 } 3743 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3744 TAILQ_INSERT_TAIL(head, bf, bf_list); 3745 } 3746 3747 /* 3748 * XXX TODO: ensure that ds doesn't overflow the descriptor 3749 * allocation otherwise weird stuff will occur and crash your 3750 * machine. 3751 */ 3752 return 0; 3753 /* XXX this should likely just call ath_descdma_cleanup() */ 3754 fail3: 3755 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3756 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3757 bus_dma_tag_destroy(dd->dd_dmat); 3758 memset(dd, 0, sizeof(*dd)); 3759 return error; 3760 #undef DS2PHYS 3761 #undef ATH_DESC_4KB_BOUND_CHECK 3762 } 3763 3764 /* 3765 * Allocate ath_buf entries but no descriptor contents. 3766 * 3767 * This is for RX EDMA where the descriptors are the header part of 3768 * the RX buffer. 3769 */ 3770 int 3771 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3772 struct ath_descdma *dd, ath_bufhead *head, 3773 const char *name, int nbuf, int rx_status_len) 3774 { 3775 struct ifnet *ifp = sc->sc_ifp; 3776 struct ath_buf *bf; 3777 int i, bsize, error; 3778 3779 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3780 __func__, name, nbuf); 3781 3782 dd->dd_name = name; 3783 /* 3784 * This is (mostly) purely for show. We're not allocating any actual 3785 * descriptors here as EDMA RX has the descriptor be part 3786 * of the RX buffer. 3787 * 3788 * However, dd_desc_len is used by ath_descdma_free() to determine 3789 * whether we have already freed this DMA mapping. 3790 */ 3791 dd->dd_desc_len = rx_status_len * nbuf; 3792 dd->dd_descsize = rx_status_len; 3793 3794 /* allocate rx buffers */ 3795 bsize = sizeof(struct ath_buf) * nbuf; 3796 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3797 if (bf == NULL) { 3798 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3799 dd->dd_name, bsize); 3800 error = ENOMEM; 3801 goto fail3; 3802 } 3803 dd->dd_bufptr = bf; 3804 3805 TAILQ_INIT(head); 3806 for (i = 0; i < nbuf; i++, bf++) { 3807 bf->bf_desc = NULL; 3808 bf->bf_daddr = 0; 3809 bf->bf_lastds = NULL; /* Just an initial value */ 3810 3811 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3812 &bf->bf_dmamap); 3813 if (error != 0) { 3814 if_printf(ifp, "unable to create dmamap for %s " 3815 "buffer %u, error %u\n", dd->dd_name, i, error); 3816 ath_descdma_cleanup(sc, dd, head); 3817 return error; 3818 } 3819 TAILQ_INSERT_TAIL(head, bf, bf_list); 3820 } 3821 return 0; 3822 fail3: 3823 memset(dd, 0, sizeof(*dd)); 3824 return error; 3825 } 3826 3827 void 3828 ath_descdma_cleanup(struct ath_softc *sc, 3829 struct ath_descdma *dd, ath_bufhead *head) 3830 { 3831 struct ath_buf *bf; 3832 struct ieee80211_node *ni; 3833 int do_warning = 0; 3834 3835 if (dd->dd_dmamap != 0) { 3836 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3837 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3838 bus_dma_tag_destroy(dd->dd_dmat); 3839 } 3840 3841 if (head != NULL) { 3842 TAILQ_FOREACH(bf, head, bf_list) { 3843 if (bf->bf_m) { 3844 /* 3845 * XXX warn if there's buffers here. 3846 * XXX it should have been freed by the 3847 * owner! 3848 */ 3849 3850 if (do_warning == 0) { 3851 do_warning = 1; 3852 device_printf(sc->sc_dev, 3853 "%s: %s: mbuf should've been" 3854 " unmapped/freed!\n", 3855 __func__, 3856 dd->dd_name); 3857 } 3858 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3859 BUS_DMASYNC_POSTREAD); 3860 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3861 m_freem(bf->bf_m); 3862 bf->bf_m = NULL; 3863 } 3864 if (bf->bf_dmamap != NULL) { 3865 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3866 bf->bf_dmamap = NULL; 3867 } 3868 ni = bf->bf_node; 3869 bf->bf_node = NULL; 3870 if (ni != NULL) { 3871 /* 3872 * Reclaim node reference. 3873 */ 3874 ieee80211_free_node(ni); 3875 } 3876 } 3877 } 3878 3879 if (head != NULL) 3880 TAILQ_INIT(head); 3881 3882 if (dd->dd_bufptr != NULL) 3883 free(dd->dd_bufptr, M_ATHDEV); 3884 memset(dd, 0, sizeof(*dd)); 3885 } 3886 3887 static int 3888 ath_desc_alloc(struct ath_softc *sc) 3889 { 3890 int error; 3891 3892 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3893 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3894 if (error != 0) { 3895 return error; 3896 } 3897 sc->sc_txbuf_cnt = ath_txbuf; 3898 3899 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3900 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3901 ATH_TXDESC); 3902 if (error != 0) { 3903 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3904 return error; 3905 } 3906 3907 /* 3908 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3909 * flag doesn't have to be set in ath_getbuf_locked(). 3910 */ 3911 3912 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3913 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3914 if (error != 0) { 3915 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3916 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3917 &sc->sc_txbuf_mgmt); 3918 return error; 3919 } 3920 return 0; 3921 } 3922 3923 static void 3924 ath_desc_free(struct ath_softc *sc) 3925 { 3926 3927 if (sc->sc_bdma.dd_desc_len != 0) 3928 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3929 if (sc->sc_txdma.dd_desc_len != 0) 3930 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3931 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3932 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3933 &sc->sc_txbuf_mgmt); 3934 } 3935 3936 static struct ieee80211_node * 3937 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3938 { 3939 struct ieee80211com *ic = vap->iv_ic; 3940 struct ath_softc *sc = ic->ic_ifp->if_softc; 3941 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3942 struct ath_node *an; 3943 3944 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3945 if (an == NULL) { 3946 /* XXX stat+msg */ 3947 return NULL; 3948 } 3949 ath_rate_node_init(sc, an); 3950 3951 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3952 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3953 device_get_nameunit(sc->sc_dev), an); 3954 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3955 3956 /* XXX setup ath_tid */ 3957 ath_tx_tid_init(sc, an); 3958 3959 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3960 return &an->an_node; 3961 } 3962 3963 static void 3964 ath_node_cleanup(struct ieee80211_node *ni) 3965 { 3966 struct ieee80211com *ic = ni->ni_ic; 3967 struct ath_softc *sc = ic->ic_ifp->if_softc; 3968 3969 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3970 ni->ni_macaddr, ":", ATH_NODE(ni)); 3971 3972 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3973 ath_tx_node_flush(sc, ATH_NODE(ni)); 3974 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3975 sc->sc_node_cleanup(ni); 3976 } 3977 3978 static void 3979 ath_node_free(struct ieee80211_node *ni) 3980 { 3981 struct ieee80211com *ic = ni->ni_ic; 3982 struct ath_softc *sc = ic->ic_ifp->if_softc; 3983 3984 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3985 ni->ni_macaddr, ":", ATH_NODE(ni)); 3986 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3987 sc->sc_node_free(ni); 3988 } 3989 3990 static void 3991 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3992 { 3993 struct ieee80211com *ic = ni->ni_ic; 3994 struct ath_softc *sc = ic->ic_ifp->if_softc; 3995 struct ath_hal *ah = sc->sc_ah; 3996 3997 *rssi = ic->ic_node_getrssi(ni); 3998 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3999 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 4000 else 4001 *noise = -95; /* nominally correct */ 4002 } 4003 4004 /* 4005 * Set the default antenna. 4006 */ 4007 void 4008 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 4009 { 4010 struct ath_hal *ah = sc->sc_ah; 4011 4012 /* XXX block beacon interrupts */ 4013 ath_hal_setdefantenna(ah, antenna); 4014 if (sc->sc_defant != antenna) 4015 sc->sc_stats.ast_ant_defswitch++; 4016 sc->sc_defant = antenna; 4017 sc->sc_rxotherant = 0; 4018 } 4019 4020 static void 4021 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4022 { 4023 txq->axq_qnum = qnum; 4024 txq->axq_ac = 0; 4025 txq->axq_depth = 0; 4026 txq->axq_aggr_depth = 0; 4027 txq->axq_intrcnt = 0; 4028 txq->axq_link = NULL; 4029 txq->axq_softc = sc; 4030 TAILQ_INIT(&txq->axq_q); 4031 TAILQ_INIT(&txq->axq_tidq); 4032 TAILQ_INIT(&txq->fifo.axq_q); 4033 ATH_TXQ_LOCK_INIT(sc, txq); 4034 } 4035 4036 /* 4037 * Setup a h/w transmit queue. 4038 */ 4039 static struct ath_txq * 4040 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4041 { 4042 #define N(a) (sizeof(a)/sizeof(a[0])) 4043 struct ath_hal *ah = sc->sc_ah; 4044 HAL_TXQ_INFO qi; 4045 int qnum; 4046 4047 memset(&qi, 0, sizeof(qi)); 4048 qi.tqi_subtype = subtype; 4049 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4050 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4051 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4052 /* 4053 * Enable interrupts only for EOL and DESC conditions. 4054 * We mark tx descriptors to receive a DESC interrupt 4055 * when a tx queue gets deep; otherwise waiting for the 4056 * EOL to reap descriptors. Note that this is done to 4057 * reduce interrupt load and this only defers reaping 4058 * descriptors, never transmitting frames. Aside from 4059 * reducing interrupts this also permits more concurrency. 4060 * The only potential downside is if the tx queue backs 4061 * up in which case the top half of the kernel may backup 4062 * due to a lack of tx descriptors. 4063 */ 4064 if (sc->sc_isedma) 4065 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4066 HAL_TXQ_TXOKINT_ENABLE; 4067 else 4068 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4069 HAL_TXQ_TXDESCINT_ENABLE; 4070 4071 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4072 if (qnum == -1) { 4073 /* 4074 * NB: don't print a message, this happens 4075 * normally on parts with too few tx queues 4076 */ 4077 return NULL; 4078 } 4079 if (qnum >= N(sc->sc_txq)) { 4080 device_printf(sc->sc_dev, 4081 "hal qnum %u out of range, max %zu!\n", 4082 qnum, N(sc->sc_txq)); 4083 ath_hal_releasetxqueue(ah, qnum); 4084 return NULL; 4085 } 4086 if (!ATH_TXQ_SETUP(sc, qnum)) { 4087 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4088 sc->sc_txqsetup |= 1<<qnum; 4089 } 4090 return &sc->sc_txq[qnum]; 4091 #undef N 4092 } 4093 4094 /* 4095 * Setup a hardware data transmit queue for the specified 4096 * access control. The hal may not support all requested 4097 * queues in which case it will return a reference to a 4098 * previously setup queue. We record the mapping from ac's 4099 * to h/w queues for use by ath_tx_start and also track 4100 * the set of h/w queues being used to optimize work in the 4101 * transmit interrupt handler and related routines. 4102 */ 4103 static int 4104 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4105 { 4106 #define N(a) (sizeof(a)/sizeof(a[0])) 4107 struct ath_txq *txq; 4108 4109 if (ac >= N(sc->sc_ac2q)) { 4110 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4111 ac, N(sc->sc_ac2q)); 4112 return 0; 4113 } 4114 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4115 if (txq != NULL) { 4116 txq->axq_ac = ac; 4117 sc->sc_ac2q[ac] = txq; 4118 return 1; 4119 } else 4120 return 0; 4121 #undef N 4122 } 4123 4124 /* 4125 * Update WME parameters for a transmit queue. 4126 */ 4127 static int 4128 ath_txq_update(struct ath_softc *sc, int ac) 4129 { 4130 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4131 #define ATH_TXOP_TO_US(v) (v<<5) 4132 struct ifnet *ifp = sc->sc_ifp; 4133 struct ieee80211com *ic = ifp->if_l2com; 4134 struct ath_txq *txq = sc->sc_ac2q[ac]; 4135 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4136 struct ath_hal *ah = sc->sc_ah; 4137 HAL_TXQ_INFO qi; 4138 4139 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4140 #ifdef IEEE80211_SUPPORT_TDMA 4141 if (sc->sc_tdma) { 4142 /* 4143 * AIFS is zero so there's no pre-transmit wait. The 4144 * burst time defines the slot duration and is configured 4145 * through net80211. The QCU is setup to not do post-xmit 4146 * back off, lockout all lower-priority QCU's, and fire 4147 * off the DMA beacon alert timer which is setup based 4148 * on the slot configuration. 4149 */ 4150 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4151 | HAL_TXQ_TXERRINT_ENABLE 4152 | HAL_TXQ_TXURNINT_ENABLE 4153 | HAL_TXQ_TXEOLINT_ENABLE 4154 | HAL_TXQ_DBA_GATED 4155 | HAL_TXQ_BACKOFF_DISABLE 4156 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4157 ; 4158 qi.tqi_aifs = 0; 4159 /* XXX +dbaprep? */ 4160 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4161 qi.tqi_burstTime = qi.tqi_readyTime; 4162 } else { 4163 #endif 4164 /* 4165 * XXX shouldn't this just use the default flags 4166 * used in the previous queue setup? 4167 */ 4168 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4169 | HAL_TXQ_TXERRINT_ENABLE 4170 | HAL_TXQ_TXDESCINT_ENABLE 4171 | HAL_TXQ_TXURNINT_ENABLE 4172 | HAL_TXQ_TXEOLINT_ENABLE 4173 ; 4174 qi.tqi_aifs = wmep->wmep_aifsn; 4175 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4176 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4177 qi.tqi_readyTime = 0; 4178 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4179 #ifdef IEEE80211_SUPPORT_TDMA 4180 } 4181 #endif 4182 4183 DPRINTF(sc, ATH_DEBUG_RESET, 4184 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4185 __func__, txq->axq_qnum, qi.tqi_qflags, 4186 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4187 4188 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4189 if_printf(ifp, "unable to update hardware queue " 4190 "parameters for %s traffic!\n", 4191 ieee80211_wme_acnames[ac]); 4192 return 0; 4193 } else { 4194 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4195 return 1; 4196 } 4197 #undef ATH_TXOP_TO_US 4198 #undef ATH_EXPONENT_TO_VALUE 4199 } 4200 4201 /* 4202 * Callback from the 802.11 layer to update WME parameters. 4203 */ 4204 int 4205 ath_wme_update(struct ieee80211com *ic) 4206 { 4207 struct ath_softc *sc = ic->ic_ifp->if_softc; 4208 4209 return !ath_txq_update(sc, WME_AC_BE) || 4210 !ath_txq_update(sc, WME_AC_BK) || 4211 !ath_txq_update(sc, WME_AC_VI) || 4212 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4213 } 4214 4215 /* 4216 * Reclaim resources for a setup queue. 4217 */ 4218 static void 4219 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4220 { 4221 4222 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4223 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4224 ATH_TXQ_LOCK_DESTROY(txq); 4225 } 4226 4227 /* 4228 * Reclaim all tx queue resources. 4229 */ 4230 static void 4231 ath_tx_cleanup(struct ath_softc *sc) 4232 { 4233 int i; 4234 4235 ATH_TXBUF_LOCK_DESTROY(sc); 4236 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4237 if (ATH_TXQ_SETUP(sc, i)) 4238 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4239 } 4240 4241 /* 4242 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4243 * using the current rates in sc_rixmap. 4244 */ 4245 int 4246 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4247 { 4248 int rix = sc->sc_rixmap[rate]; 4249 /* NB: return lowest rix for invalid rate */ 4250 return (rix == 0xff ? 0 : rix); 4251 } 4252 4253 static void 4254 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4255 struct ath_buf *bf) 4256 { 4257 struct ieee80211_node *ni = bf->bf_node; 4258 struct ifnet *ifp = sc->sc_ifp; 4259 struct ieee80211com *ic = ifp->if_l2com; 4260 int sr, lr, pri; 4261 4262 if (ts->ts_status == 0) { 4263 u_int8_t txant = ts->ts_antenna; 4264 sc->sc_stats.ast_ant_tx[txant]++; 4265 sc->sc_ant_tx[txant]++; 4266 if (ts->ts_finaltsi != 0) 4267 sc->sc_stats.ast_tx_altrate++; 4268 pri = M_WME_GETAC(bf->bf_m); 4269 if (pri >= WME_AC_VO) 4270 ic->ic_wme.wme_hipri_traffic++; 4271 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4272 ni->ni_inact = ni->ni_inact_reload; 4273 } else { 4274 if (ts->ts_status & HAL_TXERR_XRETRY) 4275 sc->sc_stats.ast_tx_xretries++; 4276 if (ts->ts_status & HAL_TXERR_FIFO) 4277 sc->sc_stats.ast_tx_fifoerr++; 4278 if (ts->ts_status & HAL_TXERR_FILT) 4279 sc->sc_stats.ast_tx_filtered++; 4280 if (ts->ts_status & HAL_TXERR_XTXOP) 4281 sc->sc_stats.ast_tx_xtxop++; 4282 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4283 sc->sc_stats.ast_tx_timerexpired++; 4284 4285 if (bf->bf_m->m_flags & M_FF) 4286 sc->sc_stats.ast_ff_txerr++; 4287 } 4288 /* XXX when is this valid? */ 4289 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4290 sc->sc_stats.ast_tx_desccfgerr++; 4291 /* 4292 * This can be valid for successful frame transmission! 4293 * If there's a TX FIFO underrun during aggregate transmission, 4294 * the MAC will pad the rest of the aggregate with delimiters. 4295 * If a BA is returned, the frame is marked as "OK" and it's up 4296 * to the TX completion code to notice which frames weren't 4297 * successfully transmitted. 4298 */ 4299 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4300 sc->sc_stats.ast_tx_data_underrun++; 4301 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4302 sc->sc_stats.ast_tx_delim_underrun++; 4303 4304 sr = ts->ts_shortretry; 4305 lr = ts->ts_longretry; 4306 sc->sc_stats.ast_tx_shortretry += sr; 4307 sc->sc_stats.ast_tx_longretry += lr; 4308 4309 } 4310 4311 /* 4312 * The default completion. If fail is 1, this means 4313 * "please don't retry the frame, and just return -1 status 4314 * to the net80211 stack. 4315 */ 4316 void 4317 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4318 { 4319 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4320 int st; 4321 4322 if (fail == 1) 4323 st = -1; 4324 else 4325 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4326 ts->ts_status : HAL_TXERR_XRETRY; 4327 4328 #if 0 4329 if (bf->bf_state.bfs_dobaw) 4330 device_printf(sc->sc_dev, 4331 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4332 __func__, 4333 bf, 4334 SEQNO(bf->bf_state.bfs_seqno)); 4335 #endif 4336 if (bf->bf_next != NULL) 4337 device_printf(sc->sc_dev, 4338 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4339 __func__, 4340 bf, 4341 SEQNO(bf->bf_state.bfs_seqno)); 4342 4343 /* 4344 * Check if the node software queue is empty; if so 4345 * then clear the TIM. 4346 * 4347 * This needs to be done before the buffer is freed as 4348 * otherwise the node reference will have been released 4349 * and the node may not actually exist any longer. 4350 * 4351 * XXX I don't like this belonging here, but it's cleaner 4352 * to do it here right now then all the other places 4353 * where ath_tx_default_comp() is called. 4354 * 4355 * XXX TODO: during drain, ensure that the callback is 4356 * being called so we get a chance to update the TIM. 4357 */ 4358 if (bf->bf_node) { 4359 ATH_TX_LOCK(sc); 4360 ath_tx_update_tim(sc, bf->bf_node, 0); 4361 ATH_TX_UNLOCK(sc); 4362 } 4363 4364 /* 4365 * Do any tx complete callback. Note this must 4366 * be done before releasing the node reference. 4367 * This will free the mbuf, release the net80211 4368 * node and recycle the ath_buf. 4369 */ 4370 ath_tx_freebuf(sc, bf, st); 4371 } 4372 4373 /* 4374 * Update rate control with the given completion status. 4375 */ 4376 void 4377 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4378 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4379 int nframes, int nbad) 4380 { 4381 struct ath_node *an; 4382 4383 /* Only for unicast frames */ 4384 if (ni == NULL) 4385 return; 4386 4387 an = ATH_NODE(ni); 4388 ATH_NODE_UNLOCK_ASSERT(an); 4389 4390 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4391 ATH_NODE_LOCK(an); 4392 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4393 ATH_NODE_UNLOCK(an); 4394 } 4395 } 4396 4397 /* 4398 * Process the completion of the given buffer. 4399 * 4400 * This calls the rate control update and then the buffer completion. 4401 * This will either free the buffer or requeue it. In any case, the 4402 * bf pointer should be treated as invalid after this function is called. 4403 */ 4404 void 4405 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4406 struct ath_tx_status *ts, struct ath_buf *bf) 4407 { 4408 struct ieee80211_node *ni = bf->bf_node; 4409 struct ath_node *an = NULL; 4410 4411 ATH_TX_UNLOCK_ASSERT(sc); 4412 ATH_TXQ_UNLOCK_ASSERT(txq); 4413 4414 /* If unicast frame, update general statistics */ 4415 if (ni != NULL) { 4416 an = ATH_NODE(ni); 4417 /* update statistics */ 4418 ath_tx_update_stats(sc, ts, bf); 4419 } 4420 4421 /* 4422 * Call the completion handler. 4423 * The completion handler is responsible for 4424 * calling the rate control code. 4425 * 4426 * Frames with no completion handler get the 4427 * rate control code called here. 4428 */ 4429 if (bf->bf_comp == NULL) { 4430 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4431 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4432 /* 4433 * XXX assume this isn't an aggregate 4434 * frame. 4435 */ 4436 ath_tx_update_ratectrl(sc, ni, 4437 bf->bf_state.bfs_rc, ts, 4438 bf->bf_state.bfs_pktlen, 1, 4439 (ts->ts_status == 0 ? 0 : 1)); 4440 } 4441 ath_tx_default_comp(sc, bf, 0); 4442 } else 4443 bf->bf_comp(sc, bf, 0); 4444 } 4445 4446 4447 4448 /* 4449 * Process completed xmit descriptors from the specified queue. 4450 * Kick the packet scheduler if needed. This can occur from this 4451 * particular task. 4452 */ 4453 static int 4454 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4455 { 4456 struct ath_hal *ah = sc->sc_ah; 4457 struct ath_buf *bf; 4458 struct ath_desc *ds; 4459 struct ath_tx_status *ts; 4460 struct ieee80211_node *ni; 4461 #ifdef IEEE80211_SUPPORT_SUPERG 4462 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4463 #endif /* IEEE80211_SUPPORT_SUPERG */ 4464 int nacked; 4465 HAL_STATUS status; 4466 4467 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4468 __func__, txq->axq_qnum, 4469 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4470 txq->axq_link); 4471 4472 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4473 "ath_tx_processq: txq=%u head %p link %p depth %p", 4474 txq->axq_qnum, 4475 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4476 txq->axq_link, 4477 txq->axq_depth); 4478 4479 nacked = 0; 4480 for (;;) { 4481 ATH_TXQ_LOCK(txq); 4482 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4483 bf = TAILQ_FIRST(&txq->axq_q); 4484 if (bf == NULL) { 4485 ATH_TXQ_UNLOCK(txq); 4486 break; 4487 } 4488 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4489 ts = &bf->bf_status.ds_txstat; 4490 4491 status = ath_hal_txprocdesc(ah, ds, ts); 4492 #ifdef ATH_DEBUG 4493 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4494 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4495 status == HAL_OK); 4496 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4497 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4498 status == HAL_OK); 4499 #endif 4500 #ifdef ATH_DEBUG_ALQ 4501 if (if_ath_alq_checkdebug(&sc->sc_alq, 4502 ATH_ALQ_EDMA_TXSTATUS)) { 4503 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4504 sc->sc_tx_statuslen, 4505 (char *) ds); 4506 } 4507 #endif 4508 4509 if (status == HAL_EINPROGRESS) { 4510 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4511 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4512 txq->axq_qnum, bf, ds); 4513 ATH_TXQ_UNLOCK(txq); 4514 break; 4515 } 4516 ATH_TXQ_REMOVE(txq, bf, bf_list); 4517 4518 /* 4519 * Sanity check. 4520 */ 4521 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4522 device_printf(sc->sc_dev, 4523 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4524 __func__, 4525 txq->axq_qnum, 4526 bf, 4527 bf->bf_state.bfs_tx_queue); 4528 } 4529 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4530 device_printf(sc->sc_dev, 4531 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4532 __func__, 4533 txq->axq_qnum, 4534 bf->bf_last, 4535 bf->bf_last->bf_state.bfs_tx_queue); 4536 } 4537 4538 #if 0 4539 if (txq->axq_depth > 0) { 4540 /* 4541 * More frames follow. Mark the buffer busy 4542 * so it's not re-used while the hardware may 4543 * still re-read the link field in the descriptor. 4544 * 4545 * Use the last buffer in an aggregate as that 4546 * is where the hardware may be - intermediate 4547 * descriptors won't be "busy". 4548 */ 4549 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4550 } else 4551 txq->axq_link = NULL; 4552 #else 4553 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4554 #endif 4555 if (bf->bf_state.bfs_aggr) 4556 txq->axq_aggr_depth--; 4557 4558 ni = bf->bf_node; 4559 4560 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4561 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4562 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4563 /* 4564 * If unicast frame was ack'd update RSSI, 4565 * including the last rx time used to 4566 * workaround phantom bmiss interrupts. 4567 */ 4568 if (ni != NULL && ts->ts_status == 0 && 4569 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4570 nacked++; 4571 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4572 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4573 ts->ts_rssi); 4574 } 4575 ATH_TXQ_UNLOCK(txq); 4576 4577 /* 4578 * Update statistics and call completion 4579 */ 4580 ath_tx_process_buf_completion(sc, txq, ts, bf); 4581 4582 /* XXX at this point, bf and ni may be totally invalid */ 4583 } 4584 #ifdef IEEE80211_SUPPORT_SUPERG 4585 /* 4586 * Flush fast-frame staging queue when traffic slows. 4587 */ 4588 if (txq->axq_depth <= 1) 4589 ieee80211_ff_flush(ic, txq->axq_ac); 4590 #endif 4591 4592 /* Kick the software TXQ scheduler */ 4593 if (dosched) { 4594 ATH_TX_LOCK(sc); 4595 ath_txq_sched(sc, txq); 4596 ATH_TX_UNLOCK(sc); 4597 } 4598 4599 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4600 "ath_tx_processq: txq=%u: done", 4601 txq->axq_qnum); 4602 4603 return nacked; 4604 } 4605 4606 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4607 4608 /* 4609 * Deferred processing of transmit interrupt; special-cased 4610 * for a single hardware transmit queue (e.g. 5210 and 5211). 4611 */ 4612 static void 4613 ath_tx_proc_q0(void *arg, int npending) 4614 { 4615 struct ath_softc *sc = arg; 4616 struct ifnet *ifp = sc->sc_ifp; 4617 uint32_t txqs; 4618 4619 ATH_PCU_LOCK(sc); 4620 sc->sc_txproc_cnt++; 4621 txqs = sc->sc_txq_active; 4622 sc->sc_txq_active &= ~txqs; 4623 ATH_PCU_UNLOCK(sc); 4624 4625 ATH_LOCK(sc); 4626 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4627 ATH_UNLOCK(sc); 4628 4629 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4630 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4631 4632 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4633 /* XXX why is lastrx updated in tx code? */ 4634 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4635 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4636 ath_tx_processq(sc, sc->sc_cabq, 1); 4637 IF_LOCK(&ifp->if_snd); 4638 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4639 IF_UNLOCK(&ifp->if_snd); 4640 sc->sc_wd_timer = 0; 4641 4642 if (sc->sc_softled) 4643 ath_led_event(sc, sc->sc_txrix); 4644 4645 ATH_PCU_LOCK(sc); 4646 sc->sc_txproc_cnt--; 4647 ATH_PCU_UNLOCK(sc); 4648 4649 ATH_LOCK(sc); 4650 ath_power_restore_power_state(sc); 4651 ATH_UNLOCK(sc); 4652 4653 ath_tx_kick(sc); 4654 } 4655 4656 /* 4657 * Deferred processing of transmit interrupt; special-cased 4658 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4659 */ 4660 static void 4661 ath_tx_proc_q0123(void *arg, int npending) 4662 { 4663 struct ath_softc *sc = arg; 4664 struct ifnet *ifp = sc->sc_ifp; 4665 int nacked; 4666 uint32_t txqs; 4667 4668 ATH_PCU_LOCK(sc); 4669 sc->sc_txproc_cnt++; 4670 txqs = sc->sc_txq_active; 4671 sc->sc_txq_active &= ~txqs; 4672 ATH_PCU_UNLOCK(sc); 4673 4674 ATH_LOCK(sc); 4675 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4676 ATH_UNLOCK(sc); 4677 4678 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4679 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4680 4681 /* 4682 * Process each active queue. 4683 */ 4684 nacked = 0; 4685 if (TXQACTIVE(txqs, 0)) 4686 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4687 if (TXQACTIVE(txqs, 1)) 4688 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4689 if (TXQACTIVE(txqs, 2)) 4690 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4691 if (TXQACTIVE(txqs, 3)) 4692 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4693 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4694 ath_tx_processq(sc, sc->sc_cabq, 1); 4695 if (nacked) 4696 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4697 4698 IF_LOCK(&ifp->if_snd); 4699 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4700 IF_UNLOCK(&ifp->if_snd); 4701 sc->sc_wd_timer = 0; 4702 4703 if (sc->sc_softled) 4704 ath_led_event(sc, sc->sc_txrix); 4705 4706 ATH_PCU_LOCK(sc); 4707 sc->sc_txproc_cnt--; 4708 ATH_PCU_UNLOCK(sc); 4709 4710 ATH_LOCK(sc); 4711 ath_power_restore_power_state(sc); 4712 ATH_UNLOCK(sc); 4713 4714 ath_tx_kick(sc); 4715 } 4716 4717 /* 4718 * Deferred processing of transmit interrupt. 4719 */ 4720 static void 4721 ath_tx_proc(void *arg, int npending) 4722 { 4723 struct ath_softc *sc = arg; 4724 struct ifnet *ifp = sc->sc_ifp; 4725 int i, nacked; 4726 uint32_t txqs; 4727 4728 ATH_PCU_LOCK(sc); 4729 sc->sc_txproc_cnt++; 4730 txqs = sc->sc_txq_active; 4731 sc->sc_txq_active &= ~txqs; 4732 ATH_PCU_UNLOCK(sc); 4733 4734 ATH_LOCK(sc); 4735 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4736 ATH_UNLOCK(sc); 4737 4738 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4739 4740 /* 4741 * Process each active queue. 4742 */ 4743 nacked = 0; 4744 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4745 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4746 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4747 if (nacked) 4748 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4749 4750 /* XXX check this inside of IF_LOCK? */ 4751 IF_LOCK(&ifp->if_snd); 4752 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4753 IF_UNLOCK(&ifp->if_snd); 4754 sc->sc_wd_timer = 0; 4755 4756 if (sc->sc_softled) 4757 ath_led_event(sc, sc->sc_txrix); 4758 4759 ATH_PCU_LOCK(sc); 4760 sc->sc_txproc_cnt--; 4761 ATH_PCU_UNLOCK(sc); 4762 4763 ATH_LOCK(sc); 4764 ath_power_restore_power_state(sc); 4765 ATH_UNLOCK(sc); 4766 4767 ath_tx_kick(sc); 4768 } 4769 #undef TXQACTIVE 4770 4771 /* 4772 * Deferred processing of TXQ rescheduling. 4773 */ 4774 static void 4775 ath_txq_sched_tasklet(void *arg, int npending) 4776 { 4777 struct ath_softc *sc = arg; 4778 int i; 4779 4780 /* XXX is skipping ok? */ 4781 ATH_PCU_LOCK(sc); 4782 #if 0 4783 if (sc->sc_inreset_cnt > 0) { 4784 device_printf(sc->sc_dev, 4785 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4786 ATH_PCU_UNLOCK(sc); 4787 return; 4788 } 4789 #endif 4790 sc->sc_txproc_cnt++; 4791 ATH_PCU_UNLOCK(sc); 4792 4793 ATH_LOCK(sc); 4794 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4795 ATH_UNLOCK(sc); 4796 4797 ATH_TX_LOCK(sc); 4798 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4799 if (ATH_TXQ_SETUP(sc, i)) { 4800 ath_txq_sched(sc, &sc->sc_txq[i]); 4801 } 4802 } 4803 ATH_TX_UNLOCK(sc); 4804 4805 ATH_LOCK(sc); 4806 ath_power_restore_power_state(sc); 4807 ATH_UNLOCK(sc); 4808 4809 ATH_PCU_LOCK(sc); 4810 sc->sc_txproc_cnt--; 4811 ATH_PCU_UNLOCK(sc); 4812 } 4813 4814 void 4815 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4816 { 4817 4818 ATH_TXBUF_LOCK_ASSERT(sc); 4819 4820 if (bf->bf_flags & ATH_BUF_MGMT) 4821 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4822 else { 4823 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4824 sc->sc_txbuf_cnt++; 4825 if (sc->sc_txbuf_cnt > ath_txbuf) { 4826 device_printf(sc->sc_dev, 4827 "%s: sc_txbuf_cnt > %d?\n", 4828 __func__, 4829 ath_txbuf); 4830 sc->sc_txbuf_cnt = ath_txbuf; 4831 } 4832 } 4833 } 4834 4835 void 4836 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4837 { 4838 4839 ATH_TXBUF_LOCK_ASSERT(sc); 4840 4841 if (bf->bf_flags & ATH_BUF_MGMT) 4842 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4843 else { 4844 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4845 sc->sc_txbuf_cnt++; 4846 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4847 device_printf(sc->sc_dev, 4848 "%s: sc_txbuf_cnt > %d?\n", 4849 __func__, 4850 ATH_TXBUF); 4851 sc->sc_txbuf_cnt = ATH_TXBUF; 4852 } 4853 } 4854 } 4855 4856 /* 4857 * Free the holding buffer if it exists 4858 */ 4859 void 4860 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4861 { 4862 ATH_TXBUF_UNLOCK_ASSERT(sc); 4863 ATH_TXQ_LOCK_ASSERT(txq); 4864 4865 if (txq->axq_holdingbf == NULL) 4866 return; 4867 4868 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4869 4870 ATH_TXBUF_LOCK(sc); 4871 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4872 ATH_TXBUF_UNLOCK(sc); 4873 4874 txq->axq_holdingbf = NULL; 4875 } 4876 4877 /* 4878 * Add this buffer to the holding queue, freeing the previous 4879 * one if it exists. 4880 */ 4881 static void 4882 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4883 { 4884 struct ath_txq *txq; 4885 4886 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4887 4888 ATH_TXBUF_UNLOCK_ASSERT(sc); 4889 ATH_TXQ_LOCK_ASSERT(txq); 4890 4891 /* XXX assert ATH_BUF_BUSY is set */ 4892 4893 /* XXX assert the tx queue is under the max number */ 4894 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4895 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4896 __func__, 4897 bf, 4898 bf->bf_state.bfs_tx_queue); 4899 bf->bf_flags &= ~ATH_BUF_BUSY; 4900 ath_returnbuf_tail(sc, bf); 4901 return; 4902 } 4903 ath_txq_freeholdingbuf(sc, txq); 4904 txq->axq_holdingbf = bf; 4905 } 4906 4907 /* 4908 * Return a buffer to the pool and update the 'busy' flag on the 4909 * previous 'tail' entry. 4910 * 4911 * This _must_ only be called when the buffer is involved in a completed 4912 * TX. The logic is that if it was part of an active TX, the previous 4913 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4914 * for restart (eg for TDMA.) 4915 * 4916 * The caller must free the mbuf and recycle the node reference. 4917 * 4918 * XXX This method of handling busy / holding buffers is insanely stupid. 4919 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4920 * be much nicer if buffers in the processq() methods would instead be 4921 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4922 * exactly what hardware queue they came from in the first place. 4923 */ 4924 void 4925 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4926 { 4927 struct ath_txq *txq; 4928 4929 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4930 4931 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4932 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4933 4934 /* 4935 * If this buffer is busy, push it onto the holding queue. 4936 */ 4937 if (bf->bf_flags & ATH_BUF_BUSY) { 4938 ATH_TXQ_LOCK(txq); 4939 ath_txq_addholdingbuf(sc, bf); 4940 ATH_TXQ_UNLOCK(txq); 4941 return; 4942 } 4943 4944 /* 4945 * Not a busy buffer, so free normally 4946 */ 4947 ATH_TXBUF_LOCK(sc); 4948 ath_returnbuf_tail(sc, bf); 4949 ATH_TXBUF_UNLOCK(sc); 4950 } 4951 4952 /* 4953 * This is currently used by ath_tx_draintxq() and 4954 * ath_tx_tid_free_pkts(). 4955 * 4956 * It recycles a single ath_buf. 4957 */ 4958 void 4959 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4960 { 4961 struct ieee80211_node *ni = bf->bf_node; 4962 struct mbuf *m0 = bf->bf_m; 4963 4964 /* 4965 * Make sure that we only sync/unload if there's an mbuf. 4966 * If not (eg we cloned a buffer), the unload will have already 4967 * occured. 4968 */ 4969 if (bf->bf_m != NULL) { 4970 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4971 BUS_DMASYNC_POSTWRITE); 4972 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4973 } 4974 4975 bf->bf_node = NULL; 4976 bf->bf_m = NULL; 4977 4978 /* Free the buffer, it's not needed any longer */ 4979 ath_freebuf(sc, bf); 4980 4981 /* Pass the buffer back to net80211 - completing it */ 4982 ieee80211_tx_complete(ni, m0, status); 4983 } 4984 4985 static struct ath_buf * 4986 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4987 { 4988 struct ath_buf *bf; 4989 4990 ATH_TXQ_LOCK_ASSERT(txq); 4991 4992 /* 4993 * Drain the FIFO queue first, then if it's 4994 * empty, move to the normal frame queue. 4995 */ 4996 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4997 if (bf != NULL) { 4998 /* 4999 * Is it the last buffer in this set? 5000 * Decrement the FIFO counter. 5001 */ 5002 if (bf->bf_flags & ATH_BUF_FIFOEND) { 5003 if (txq->axq_fifo_depth == 0) { 5004 device_printf(sc->sc_dev, 5005 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 5006 __func__, 5007 txq->axq_qnum, 5008 txq->fifo.axq_depth); 5009 } else 5010 txq->axq_fifo_depth--; 5011 } 5012 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 5013 return (bf); 5014 } 5015 5016 /* 5017 * Debugging! 5018 */ 5019 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 5020 device_printf(sc->sc_dev, 5021 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 5022 __func__, 5023 txq->axq_qnum, 5024 txq->axq_fifo_depth, 5025 txq->fifo.axq_depth); 5026 } 5027 5028 /* 5029 * Now drain the pending queue. 5030 */ 5031 bf = TAILQ_FIRST(&txq->axq_q); 5032 if (bf == NULL) { 5033 txq->axq_link = NULL; 5034 return (NULL); 5035 } 5036 ATH_TXQ_REMOVE(txq, bf, bf_list); 5037 return (bf); 5038 } 5039 5040 void 5041 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5042 { 5043 #ifdef ATH_DEBUG 5044 struct ath_hal *ah = sc->sc_ah; 5045 #endif 5046 struct ath_buf *bf; 5047 u_int ix; 5048 5049 /* 5050 * NB: this assumes output has been stopped and 5051 * we do not need to block ath_tx_proc 5052 */ 5053 for (ix = 0;; ix++) { 5054 ATH_TXQ_LOCK(txq); 5055 bf = ath_tx_draintxq_get_one(sc, txq); 5056 if (bf == NULL) { 5057 ATH_TXQ_UNLOCK(txq); 5058 break; 5059 } 5060 if (bf->bf_state.bfs_aggr) 5061 txq->axq_aggr_depth--; 5062 #ifdef ATH_DEBUG 5063 if (sc->sc_debug & ATH_DEBUG_RESET) { 5064 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5065 int status = 0; 5066 5067 /* 5068 * EDMA operation has a TX completion FIFO 5069 * separate from the TX descriptor, so this 5070 * method of checking the "completion" status 5071 * is wrong. 5072 */ 5073 if (! sc->sc_isedma) { 5074 status = (ath_hal_txprocdesc(ah, 5075 bf->bf_lastds, 5076 &bf->bf_status.ds_txstat) == HAL_OK); 5077 } 5078 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5079 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5080 bf->bf_m->m_len, 0, -1); 5081 } 5082 #endif /* ATH_DEBUG */ 5083 /* 5084 * Since we're now doing magic in the completion 5085 * functions, we -must- call it for aggregation 5086 * destinations or BAW tracking will get upset. 5087 */ 5088 /* 5089 * Clear ATH_BUF_BUSY; the completion handler 5090 * will free the buffer. 5091 */ 5092 ATH_TXQ_UNLOCK(txq); 5093 bf->bf_flags &= ~ATH_BUF_BUSY; 5094 if (bf->bf_comp) 5095 bf->bf_comp(sc, bf, 1); 5096 else 5097 ath_tx_default_comp(sc, bf, 1); 5098 } 5099 5100 /* 5101 * Free the holding buffer if it exists 5102 */ 5103 ATH_TXQ_LOCK(txq); 5104 ath_txq_freeholdingbuf(sc, txq); 5105 ATH_TXQ_UNLOCK(txq); 5106 5107 /* 5108 * Drain software queued frames which are on 5109 * active TIDs. 5110 */ 5111 ath_tx_txq_drain(sc, txq); 5112 } 5113 5114 static void 5115 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5116 { 5117 struct ath_hal *ah = sc->sc_ah; 5118 5119 ATH_TXQ_LOCK_ASSERT(txq); 5120 5121 DPRINTF(sc, ATH_DEBUG_RESET, 5122 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5123 "link %p, holdingbf=%p\n", 5124 __func__, 5125 txq->axq_qnum, 5126 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5127 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5128 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5129 txq->axq_flags, 5130 txq->axq_link, 5131 txq->axq_holdingbf); 5132 5133 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5134 /* We've stopped TX DMA, so mark this as stopped. */ 5135 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5136 5137 #ifdef ATH_DEBUG 5138 if ((sc->sc_debug & ATH_DEBUG_RESET) 5139 && (txq->axq_holdingbf != NULL)) { 5140 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5141 } 5142 #endif 5143 } 5144 5145 int 5146 ath_stoptxdma(struct ath_softc *sc) 5147 { 5148 struct ath_hal *ah = sc->sc_ah; 5149 int i; 5150 5151 /* XXX return value */ 5152 if (sc->sc_invalid) 5153 return 0; 5154 5155 if (!sc->sc_invalid) { 5156 /* don't touch the hardware if marked invalid */ 5157 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5158 __func__, sc->sc_bhalq, 5159 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5160 NULL); 5161 5162 /* stop the beacon queue */ 5163 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5164 5165 /* Stop the data queues */ 5166 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5167 if (ATH_TXQ_SETUP(sc, i)) { 5168 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5169 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5170 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5171 } 5172 } 5173 } 5174 5175 return 1; 5176 } 5177 5178 #ifdef ATH_DEBUG 5179 void 5180 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5181 { 5182 struct ath_hal *ah = sc->sc_ah; 5183 struct ath_buf *bf; 5184 int i = 0; 5185 5186 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5187 return; 5188 5189 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5190 __func__, txq->axq_qnum); 5191 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5192 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5193 ath_hal_txprocdesc(ah, bf->bf_lastds, 5194 &bf->bf_status.ds_txstat) == HAL_OK); 5195 i++; 5196 } 5197 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5198 __func__, txq->axq_qnum); 5199 } 5200 #endif /* ATH_DEBUG */ 5201 5202 /* 5203 * Drain the transmit queues and reclaim resources. 5204 */ 5205 void 5206 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5207 { 5208 struct ath_hal *ah = sc->sc_ah; 5209 struct ifnet *ifp = sc->sc_ifp; 5210 int i; 5211 struct ath_buf *bf_last; 5212 5213 (void) ath_stoptxdma(sc); 5214 5215 /* 5216 * Dump the queue contents 5217 */ 5218 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5219 /* 5220 * XXX TODO: should we just handle the completed TX frames 5221 * here, whether or not the reset is a full one or not? 5222 */ 5223 if (ATH_TXQ_SETUP(sc, i)) { 5224 #ifdef ATH_DEBUG 5225 if (sc->sc_debug & ATH_DEBUG_RESET) 5226 ath_tx_dump(sc, &sc->sc_txq[i]); 5227 #endif /* ATH_DEBUG */ 5228 if (reset_type == ATH_RESET_NOLOSS) { 5229 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5230 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5231 /* 5232 * Free the holding buffer; DMA is now 5233 * stopped. 5234 */ 5235 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5236 /* 5237 * Setup the link pointer to be the 5238 * _last_ buffer/descriptor in the list. 5239 * If there's nothing in the list, set it 5240 * to NULL. 5241 */ 5242 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5243 axq_q_s); 5244 if (bf_last != NULL) { 5245 ath_hal_gettxdesclinkptr(ah, 5246 bf_last->bf_lastds, 5247 &sc->sc_txq[i].axq_link); 5248 } else { 5249 sc->sc_txq[i].axq_link = NULL; 5250 } 5251 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5252 } else 5253 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5254 } 5255 } 5256 #ifdef ATH_DEBUG 5257 if (sc->sc_debug & ATH_DEBUG_RESET) { 5258 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5259 if (bf != NULL && bf->bf_m != NULL) { 5260 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5261 ath_hal_txprocdesc(ah, bf->bf_lastds, 5262 &bf->bf_status.ds_txstat) == HAL_OK); 5263 ieee80211_dump_pkt(ifp->if_l2com, 5264 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5265 0, -1); 5266 } 5267 } 5268 #endif /* ATH_DEBUG */ 5269 IF_LOCK(&ifp->if_snd); 5270 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5271 IF_UNLOCK(&ifp->if_snd); 5272 sc->sc_wd_timer = 0; 5273 } 5274 5275 /* 5276 * Update internal state after a channel change. 5277 */ 5278 static void 5279 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5280 { 5281 enum ieee80211_phymode mode; 5282 5283 /* 5284 * Change channels and update the h/w rate map 5285 * if we're switching; e.g. 11a to 11b/g. 5286 */ 5287 mode = ieee80211_chan2mode(chan); 5288 if (mode != sc->sc_curmode) 5289 ath_setcurmode(sc, mode); 5290 sc->sc_curchan = chan; 5291 } 5292 5293 /* 5294 * Set/change channels. If the channel is really being changed, 5295 * it's done by resetting the chip. To accomplish this we must 5296 * first cleanup any pending DMA, then restart stuff after a la 5297 * ath_init. 5298 */ 5299 static int 5300 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5301 { 5302 struct ifnet *ifp = sc->sc_ifp; 5303 struct ieee80211com *ic = ifp->if_l2com; 5304 struct ath_hal *ah = sc->sc_ah; 5305 int ret = 0; 5306 5307 /* Treat this as an interface reset */ 5308 ATH_PCU_UNLOCK_ASSERT(sc); 5309 ATH_UNLOCK_ASSERT(sc); 5310 5311 /* (Try to) stop TX/RX from occuring */ 5312 taskqueue_block(sc->sc_tq); 5313 5314 ATH_PCU_LOCK(sc); 5315 5316 /* Stop new RX/TX/interrupt completion */ 5317 if (ath_reset_grablock(sc, 1) == 0) { 5318 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5319 __func__); 5320 } 5321 5322 ath_hal_intrset(ah, 0); 5323 5324 /* Stop pending RX/TX completion */ 5325 ath_txrx_stop_locked(sc); 5326 5327 ATH_PCU_UNLOCK(sc); 5328 5329 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5330 __func__, ieee80211_chan2ieee(ic, chan), 5331 chan->ic_freq, chan->ic_flags); 5332 if (chan != sc->sc_curchan) { 5333 HAL_STATUS status; 5334 /* 5335 * To switch channels clear any pending DMA operations; 5336 * wait long enough for the RX fifo to drain, reset the 5337 * hardware at the new frequency, and then re-enable 5338 * the relevant bits of the h/w. 5339 */ 5340 #if 0 5341 ath_hal_intrset(ah, 0); /* disable interrupts */ 5342 #endif 5343 ath_stoprecv(sc, 1); /* turn off frame recv */ 5344 /* 5345 * First, handle completed TX/RX frames. 5346 */ 5347 ath_rx_flush(sc); 5348 ath_draintxq(sc, ATH_RESET_NOLOSS); 5349 /* 5350 * Next, flush the non-scheduled frames. 5351 */ 5352 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5353 5354 ath_update_chainmasks(sc, chan); 5355 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5356 sc->sc_cur_rxchainmask); 5357 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5358 if_printf(ifp, "%s: unable to reset " 5359 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5360 __func__, ieee80211_chan2ieee(ic, chan), 5361 chan->ic_freq, chan->ic_flags, status); 5362 ret = EIO; 5363 goto finish; 5364 } 5365 sc->sc_diversity = ath_hal_getdiversity(ah); 5366 5367 /* Let DFS at it in case it's a DFS channel */ 5368 ath_dfs_radar_enable(sc, chan); 5369 5370 /* Let spectral at in case spectral is enabled */ 5371 ath_spectral_enable(sc, chan); 5372 5373 /* 5374 * Let bluetooth coexistence at in case it's needed for this 5375 * channel 5376 */ 5377 ath_btcoex_enable(sc, ic->ic_curchan); 5378 5379 /* 5380 * If we're doing TDMA, enforce the TXOP limitation for chips 5381 * that support it. 5382 */ 5383 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5384 ath_hal_setenforcetxop(sc->sc_ah, 1); 5385 else 5386 ath_hal_setenforcetxop(sc->sc_ah, 0); 5387 5388 /* 5389 * Re-enable rx framework. 5390 */ 5391 if (ath_startrecv(sc) != 0) { 5392 if_printf(ifp, "%s: unable to restart recv logic\n", 5393 __func__); 5394 ret = EIO; 5395 goto finish; 5396 } 5397 5398 /* 5399 * Change channels and update the h/w rate map 5400 * if we're switching; e.g. 11a to 11b/g. 5401 */ 5402 ath_chan_change(sc, chan); 5403 5404 /* 5405 * Reset clears the beacon timers; reset them 5406 * here if needed. 5407 */ 5408 if (sc->sc_beacons) { /* restart beacons */ 5409 #ifdef IEEE80211_SUPPORT_TDMA 5410 if (sc->sc_tdma) 5411 ath_tdma_config(sc, NULL); 5412 else 5413 #endif 5414 ath_beacon_config(sc, NULL); 5415 } 5416 5417 /* 5418 * Re-enable interrupts. 5419 */ 5420 #if 0 5421 ath_hal_intrset(ah, sc->sc_imask); 5422 #endif 5423 } 5424 5425 finish: 5426 ATH_PCU_LOCK(sc); 5427 sc->sc_inreset_cnt--; 5428 /* XXX only do this if sc_inreset_cnt == 0? */ 5429 ath_hal_intrset(ah, sc->sc_imask); 5430 ATH_PCU_UNLOCK(sc); 5431 5432 IF_LOCK(&ifp->if_snd); 5433 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5434 IF_UNLOCK(&ifp->if_snd); 5435 ath_txrx_start(sc); 5436 /* XXX ath_start? */ 5437 5438 return ret; 5439 } 5440 5441 /* 5442 * Periodically recalibrate the PHY to account 5443 * for temperature/environment changes. 5444 */ 5445 static void 5446 ath_calibrate(void *arg) 5447 { 5448 struct ath_softc *sc = arg; 5449 struct ath_hal *ah = sc->sc_ah; 5450 struct ifnet *ifp = sc->sc_ifp; 5451 struct ieee80211com *ic = ifp->if_l2com; 5452 HAL_BOOL longCal, isCalDone = AH_TRUE; 5453 HAL_BOOL aniCal, shortCal = AH_FALSE; 5454 int nextcal; 5455 5456 /* 5457 * Force the hardware awake for ANI work. 5458 */ 5459 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5460 5461 /* Skip trying to do this if we're in reset */ 5462 if (sc->sc_inreset_cnt) 5463 goto restart; 5464 5465 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5466 goto restart; 5467 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5468 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5469 if (sc->sc_doresetcal) 5470 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5471 5472 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5473 if (aniCal) { 5474 sc->sc_stats.ast_ani_cal++; 5475 sc->sc_lastani = ticks; 5476 ath_hal_ani_poll(ah, sc->sc_curchan); 5477 } 5478 5479 if (longCal) { 5480 sc->sc_stats.ast_per_cal++; 5481 sc->sc_lastlongcal = ticks; 5482 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5483 /* 5484 * Rfgain is out of bounds, reset the chip 5485 * to load new gain values. 5486 */ 5487 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5488 "%s: rfgain change\n", __func__); 5489 sc->sc_stats.ast_per_rfgain++; 5490 sc->sc_resetcal = 0; 5491 sc->sc_doresetcal = AH_TRUE; 5492 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5493 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5494 ath_power_restore_power_state(sc); 5495 return; 5496 } 5497 /* 5498 * If this long cal is after an idle period, then 5499 * reset the data collection state so we start fresh. 5500 */ 5501 if (sc->sc_resetcal) { 5502 (void) ath_hal_calreset(ah, sc->sc_curchan); 5503 sc->sc_lastcalreset = ticks; 5504 sc->sc_lastshortcal = ticks; 5505 sc->sc_resetcal = 0; 5506 sc->sc_doresetcal = AH_TRUE; 5507 } 5508 } 5509 5510 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5511 if (shortCal || longCal) { 5512 isCalDone = AH_FALSE; 5513 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5514 if (longCal) { 5515 /* 5516 * Calibrate noise floor data again in case of change. 5517 */ 5518 ath_hal_process_noisefloor(ah); 5519 } 5520 } else { 5521 DPRINTF(sc, ATH_DEBUG_ANY, 5522 "%s: calibration of channel %u failed\n", 5523 __func__, sc->sc_curchan->ic_freq); 5524 sc->sc_stats.ast_per_calfail++; 5525 } 5526 if (shortCal) 5527 sc->sc_lastshortcal = ticks; 5528 } 5529 if (!isCalDone) { 5530 restart: 5531 /* 5532 * Use a shorter interval to potentially collect multiple 5533 * data samples required to complete calibration. Once 5534 * we're told the work is done we drop back to a longer 5535 * interval between requests. We're more aggressive doing 5536 * work when operating as an AP to improve operation right 5537 * after startup. 5538 */ 5539 sc->sc_lastshortcal = ticks; 5540 nextcal = ath_shortcalinterval*hz/1000; 5541 if (sc->sc_opmode != HAL_M_HOSTAP) 5542 nextcal *= 10; 5543 sc->sc_doresetcal = AH_TRUE; 5544 } else { 5545 /* nextcal should be the shortest time for next event */ 5546 nextcal = ath_longcalinterval*hz; 5547 if (sc->sc_lastcalreset == 0) 5548 sc->sc_lastcalreset = sc->sc_lastlongcal; 5549 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5550 sc->sc_resetcal = 1; /* setup reset next trip */ 5551 sc->sc_doresetcal = AH_FALSE; 5552 } 5553 /* ANI calibration may occur more often than short/long/resetcal */ 5554 if (ath_anicalinterval > 0) 5555 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5556 5557 if (nextcal != 0) { 5558 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5559 __func__, nextcal, isCalDone ? "" : "!"); 5560 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5561 } else { 5562 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5563 __func__); 5564 /* NB: don't rearm timer */ 5565 } 5566 /* 5567 * Restore power state now that we're done. 5568 */ 5569 ath_power_restore_power_state(sc); 5570 } 5571 5572 static void 5573 ath_scan_start(struct ieee80211com *ic) 5574 { 5575 struct ifnet *ifp = ic->ic_ifp; 5576 struct ath_softc *sc = ifp->if_softc; 5577 struct ath_hal *ah = sc->sc_ah; 5578 u_int32_t rfilt; 5579 5580 /* XXX calibration timer? */ 5581 5582 ATH_LOCK(sc); 5583 sc->sc_scanning = 1; 5584 sc->sc_syncbeacon = 0; 5585 rfilt = ath_calcrxfilter(sc); 5586 ATH_UNLOCK(sc); 5587 5588 ATH_PCU_LOCK(sc); 5589 ath_hal_setrxfilter(ah, rfilt); 5590 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5591 ATH_PCU_UNLOCK(sc); 5592 5593 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5594 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5595 } 5596 5597 static void 5598 ath_scan_end(struct ieee80211com *ic) 5599 { 5600 struct ifnet *ifp = ic->ic_ifp; 5601 struct ath_softc *sc = ifp->if_softc; 5602 struct ath_hal *ah = sc->sc_ah; 5603 u_int32_t rfilt; 5604 5605 ATH_LOCK(sc); 5606 sc->sc_scanning = 0; 5607 rfilt = ath_calcrxfilter(sc); 5608 ATH_UNLOCK(sc); 5609 5610 ATH_PCU_LOCK(sc); 5611 ath_hal_setrxfilter(ah, rfilt); 5612 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5613 5614 ath_hal_process_noisefloor(ah); 5615 ATH_PCU_UNLOCK(sc); 5616 5617 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5618 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5619 sc->sc_curaid); 5620 } 5621 5622 #ifdef ATH_ENABLE_11N 5623 /* 5624 * For now, just do a channel change. 5625 * 5626 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5627 * control state and resetting the hardware without dropping frames out 5628 * of the queue. 5629 * 5630 * The unfortunate trouble here is making absolutely sure that the 5631 * channel width change has propagated enough so the hardware 5632 * absolutely isn't handed bogus frames for it's current operating 5633 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5634 * does occur in parallel, we need to make certain we've blocked 5635 * any further ongoing TX (and RX, that can cause raw TX) 5636 * before we do this. 5637 */ 5638 static void 5639 ath_update_chw(struct ieee80211com *ic) 5640 { 5641 struct ifnet *ifp = ic->ic_ifp; 5642 struct ath_softc *sc = ifp->if_softc; 5643 5644 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5645 ath_set_channel(ic); 5646 } 5647 #endif /* ATH_ENABLE_11N */ 5648 5649 static void 5650 ath_set_channel(struct ieee80211com *ic) 5651 { 5652 struct ifnet *ifp = ic->ic_ifp; 5653 struct ath_softc *sc = ifp->if_softc; 5654 5655 ATH_LOCK(sc); 5656 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5657 ATH_UNLOCK(sc); 5658 5659 (void) ath_chan_set(sc, ic->ic_curchan); 5660 /* 5661 * If we are returning to our bss channel then mark state 5662 * so the next recv'd beacon's tsf will be used to sync the 5663 * beacon timers. Note that since we only hear beacons in 5664 * sta/ibss mode this has no effect in other operating modes. 5665 */ 5666 ATH_LOCK(sc); 5667 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5668 sc->sc_syncbeacon = 1; 5669 ath_power_restore_power_state(sc); 5670 ATH_UNLOCK(sc); 5671 } 5672 5673 /* 5674 * Walk the vap list and check if there any vap's in RUN state. 5675 */ 5676 static int 5677 ath_isanyrunningvaps(struct ieee80211vap *this) 5678 { 5679 struct ieee80211com *ic = this->iv_ic; 5680 struct ieee80211vap *vap; 5681 5682 IEEE80211_LOCK_ASSERT(ic); 5683 5684 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5685 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5686 return 1; 5687 } 5688 return 0; 5689 } 5690 5691 static int 5692 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5693 { 5694 struct ieee80211com *ic = vap->iv_ic; 5695 struct ath_softc *sc = ic->ic_ifp->if_softc; 5696 struct ath_vap *avp = ATH_VAP(vap); 5697 struct ath_hal *ah = sc->sc_ah; 5698 struct ieee80211_node *ni = NULL; 5699 int i, error, stamode; 5700 u_int32_t rfilt; 5701 int csa_run_transition = 0; 5702 enum ieee80211_state ostate = vap->iv_state; 5703 5704 static const HAL_LED_STATE leds[] = { 5705 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5706 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5707 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5708 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5709 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5710 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5711 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5712 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5713 }; 5714 5715 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5716 ieee80211_state_name[ostate], 5717 ieee80211_state_name[nstate]); 5718 5719 /* 5720 * net80211 _should_ have the comlock asserted at this point. 5721 * There are some comments around the calls to vap->iv_newstate 5722 * which indicate that it (newstate) may end up dropping the 5723 * lock. This and the subsequent lock assert check after newstate 5724 * are an attempt to catch these and figure out how/why. 5725 */ 5726 IEEE80211_LOCK_ASSERT(ic); 5727 5728 /* Before we touch the hardware - wake it up */ 5729 ATH_LOCK(sc); 5730 /* 5731 * If the NIC is in anything other than SLEEP state, 5732 * we need to ensure that self-generated frames are 5733 * set for PWRMGT=0. Otherwise we may end up with 5734 * strange situations. 5735 * 5736 * XXX TODO: is this actually the case? :-) 5737 */ 5738 if (nstate != IEEE80211_S_SLEEP) 5739 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5740 5741 /* 5742 * Now, wake the thing up. 5743 */ 5744 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5745 ATH_UNLOCK(sc); 5746 5747 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5748 csa_run_transition = 1; 5749 5750 callout_drain(&sc->sc_cal_ch); 5751 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5752 5753 if (nstate == IEEE80211_S_SCAN) { 5754 /* 5755 * Scanning: turn off beacon miss and don't beacon. 5756 * Mark beacon state so when we reach RUN state we'll 5757 * [re]setup beacons. Unblock the task q thread so 5758 * deferred interrupt processing is done. 5759 */ 5760 5761 /* Ensure we stay awake during scan */ 5762 ATH_LOCK(sc); 5763 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5764 ath_power_setpower(sc, HAL_PM_AWAKE); 5765 ATH_UNLOCK(sc); 5766 5767 ath_hal_intrset(ah, 5768 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5769 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5770 sc->sc_beacons = 0; 5771 taskqueue_unblock(sc->sc_tq); 5772 } 5773 5774 ni = ieee80211_ref_node(vap->iv_bss); 5775 rfilt = ath_calcrxfilter(sc); 5776 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5777 vap->iv_opmode == IEEE80211_M_AHDEMO || 5778 vap->iv_opmode == IEEE80211_M_IBSS); 5779 5780 /* 5781 * XXX Dont need to do this (and others) if we've transitioned 5782 * from SLEEP->RUN. 5783 */ 5784 if (stamode && nstate == IEEE80211_S_RUN) { 5785 sc->sc_curaid = ni->ni_associd; 5786 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5787 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5788 } 5789 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5790 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5791 ath_hal_setrxfilter(ah, rfilt); 5792 5793 /* XXX is this to restore keycache on resume? */ 5794 if (vap->iv_opmode != IEEE80211_M_STA && 5795 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5796 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5797 if (ath_hal_keyisvalid(ah, i)) 5798 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5799 } 5800 5801 /* 5802 * Invoke the parent method to do net80211 work. 5803 */ 5804 error = avp->av_newstate(vap, nstate, arg); 5805 if (error != 0) 5806 goto bad; 5807 5808 /* 5809 * See above: ensure av_newstate() doesn't drop the lock 5810 * on us. 5811 */ 5812 IEEE80211_LOCK_ASSERT(ic); 5813 5814 if (nstate == IEEE80211_S_RUN) { 5815 /* NB: collect bss node again, it may have changed */ 5816 ieee80211_free_node(ni); 5817 ni = ieee80211_ref_node(vap->iv_bss); 5818 5819 DPRINTF(sc, ATH_DEBUG_STATE, 5820 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5821 "capinfo 0x%04x chan %d\n", __func__, 5822 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5823 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5824 5825 switch (vap->iv_opmode) { 5826 #ifdef IEEE80211_SUPPORT_TDMA 5827 case IEEE80211_M_AHDEMO: 5828 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5829 break; 5830 /* fall thru... */ 5831 #endif 5832 case IEEE80211_M_HOSTAP: 5833 case IEEE80211_M_IBSS: 5834 case IEEE80211_M_MBSS: 5835 /* 5836 * Allocate and setup the beacon frame. 5837 * 5838 * Stop any previous beacon DMA. This may be 5839 * necessary, for example, when an ibss merge 5840 * causes reconfiguration; there will be a state 5841 * transition from RUN->RUN that means we may 5842 * be called with beacon transmission active. 5843 */ 5844 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5845 5846 error = ath_beacon_alloc(sc, ni); 5847 if (error != 0) 5848 goto bad; 5849 /* 5850 * If joining an adhoc network defer beacon timer 5851 * configuration to the next beacon frame so we 5852 * have a current TSF to use. Otherwise we're 5853 * starting an ibss/bss so there's no need to delay; 5854 * if this is the first vap moving to RUN state, then 5855 * beacon state needs to be [re]configured. 5856 */ 5857 if (vap->iv_opmode == IEEE80211_M_IBSS && 5858 ni->ni_tstamp.tsf != 0) { 5859 sc->sc_syncbeacon = 1; 5860 } else if (!sc->sc_beacons) { 5861 #ifdef IEEE80211_SUPPORT_TDMA 5862 if (vap->iv_caps & IEEE80211_C_TDMA) 5863 ath_tdma_config(sc, vap); 5864 else 5865 #endif 5866 ath_beacon_config(sc, vap); 5867 sc->sc_beacons = 1; 5868 } 5869 break; 5870 case IEEE80211_M_STA: 5871 /* 5872 * Defer beacon timer configuration to the next 5873 * beacon frame so we have a current TSF to use 5874 * (any TSF collected when scanning is likely old). 5875 * However if it's due to a CSA -> RUN transition, 5876 * force a beacon update so we pick up a lack of 5877 * beacons from an AP in CAC and thus force a 5878 * scan. 5879 * 5880 * And, there's also corner cases here where 5881 * after a scan, the AP may have disappeared. 5882 * In that case, we may not receive an actual 5883 * beacon to update the beacon timer and thus we 5884 * won't get notified of the missing beacons. 5885 */ 5886 if (ostate != IEEE80211_S_RUN && 5887 ostate != IEEE80211_S_SLEEP) { 5888 DPRINTF(sc, ATH_DEBUG_BEACON, 5889 "%s: STA; syncbeacon=1\n", __func__); 5890 sc->sc_syncbeacon = 1; 5891 5892 if (csa_run_transition) 5893 ath_beacon_config(sc, vap); 5894 5895 /* 5896 * PR: kern/175227 5897 * 5898 * Reconfigure beacons during reset; as otherwise 5899 * we won't get the beacon timers reprogrammed 5900 * after a reset and thus we won't pick up a 5901 * beacon miss interrupt. 5902 * 5903 * Hopefully we'll see a beacon before the BMISS 5904 * timer fires (too often), leading to a STA 5905 * disassociation. 5906 */ 5907 sc->sc_beacons = 1; 5908 } 5909 break; 5910 case IEEE80211_M_MONITOR: 5911 /* 5912 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5913 * transitions so we must re-enable interrupts here to 5914 * handle the case of a single monitor mode vap. 5915 */ 5916 ath_hal_intrset(ah, sc->sc_imask); 5917 break; 5918 case IEEE80211_M_WDS: 5919 break; 5920 default: 5921 break; 5922 } 5923 /* 5924 * Let the hal process statistics collected during a 5925 * scan so it can provide calibrated noise floor data. 5926 */ 5927 ath_hal_process_noisefloor(ah); 5928 /* 5929 * Reset rssi stats; maybe not the best place... 5930 */ 5931 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5932 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5933 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5934 5935 /* 5936 * Force awake for RUN mode. 5937 */ 5938 ATH_LOCK(sc); 5939 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5940 ath_power_setpower(sc, HAL_PM_AWAKE); 5941 ATH_UNLOCK(sc); 5942 5943 /* 5944 * Finally, start any timers and the task q thread 5945 * (in case we didn't go through SCAN state). 5946 */ 5947 if (ath_longcalinterval != 0) { 5948 /* start periodic recalibration timer */ 5949 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5950 } else { 5951 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5952 "%s: calibration disabled\n", __func__); 5953 } 5954 5955 taskqueue_unblock(sc->sc_tq); 5956 } else if (nstate == IEEE80211_S_INIT) { 5957 /* 5958 * If there are no vaps left in RUN state then 5959 * shutdown host/driver operation: 5960 * o disable interrupts 5961 * o disable the task queue thread 5962 * o mark beacon processing as stopped 5963 */ 5964 if (!ath_isanyrunningvaps(vap)) { 5965 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5966 /* disable interrupts */ 5967 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5968 taskqueue_block(sc->sc_tq); 5969 sc->sc_beacons = 0; 5970 } 5971 #ifdef IEEE80211_SUPPORT_TDMA 5972 ath_hal_setcca(ah, AH_TRUE); 5973 #endif 5974 } else if (nstate == IEEE80211_S_SLEEP) { 5975 /* We're going to sleep, so transition appropriately */ 5976 /* For now, only do this if we're a single STA vap */ 5977 if (sc->sc_nvaps == 1 && 5978 vap->iv_opmode == IEEE80211_M_STA) { 5979 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 5980 ATH_LOCK(sc); 5981 /* 5982 * Always at least set the self-generated 5983 * frame config to set PWRMGT=1. 5984 */ 5985 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 5986 5987 /* 5988 * If we're not syncing beacons, transition 5989 * to NETWORK_SLEEP. 5990 * 5991 * We stay awake if syncbeacon > 0 in case 5992 * we need to listen for some beacons otherwise 5993 * our beacon timer config may be wrong. 5994 */ 5995 if (sc->sc_syncbeacon == 0) { 5996 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 5997 } 5998 ATH_UNLOCK(sc); 5999 } 6000 } 6001 bad: 6002 ieee80211_free_node(ni); 6003 6004 /* 6005 * Restore the power state - either to what it was, or 6006 * to network_sleep if it's alright. 6007 */ 6008 ATH_LOCK(sc); 6009 ath_power_restore_power_state(sc); 6010 ATH_UNLOCK(sc); 6011 return error; 6012 } 6013 6014 /* 6015 * Allocate a key cache slot to the station so we can 6016 * setup a mapping from key index to node. The key cache 6017 * slot is needed for managing antenna state and for 6018 * compression when stations do not use crypto. We do 6019 * it uniliaterally here; if crypto is employed this slot 6020 * will be reassigned. 6021 */ 6022 static void 6023 ath_setup_stationkey(struct ieee80211_node *ni) 6024 { 6025 struct ieee80211vap *vap = ni->ni_vap; 6026 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6027 ieee80211_keyix keyix, rxkeyix; 6028 6029 /* XXX should take a locked ref to vap->iv_bss */ 6030 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6031 /* 6032 * Key cache is full; we'll fall back to doing 6033 * the more expensive lookup in software. Note 6034 * this also means no h/w compression. 6035 */ 6036 /* XXX msg+statistic */ 6037 } else { 6038 /* XXX locking? */ 6039 ni->ni_ucastkey.wk_keyix = keyix; 6040 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6041 /* NB: must mark device key to get called back on delete */ 6042 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6043 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6044 /* NB: this will create a pass-thru key entry */ 6045 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6046 } 6047 } 6048 6049 /* 6050 * Setup driver-specific state for a newly associated node. 6051 * Note that we're called also on a re-associate, the isnew 6052 * param tells us if this is the first time or not. 6053 */ 6054 static void 6055 ath_newassoc(struct ieee80211_node *ni, int isnew) 6056 { 6057 struct ath_node *an = ATH_NODE(ni); 6058 struct ieee80211vap *vap = ni->ni_vap; 6059 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6060 const struct ieee80211_txparam *tp = ni->ni_txparms; 6061 6062 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6063 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6064 6065 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6066 __func__, 6067 ni->ni_macaddr, 6068 ":", 6069 isnew, 6070 an->an_is_powersave); 6071 6072 ATH_NODE_LOCK(an); 6073 ath_rate_newassoc(sc, an, isnew); 6074 ATH_NODE_UNLOCK(an); 6075 6076 if (isnew && 6077 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6078 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6079 ath_setup_stationkey(ni); 6080 6081 /* 6082 * If we're reassociating, make sure that any paused queues 6083 * get unpaused. 6084 * 6085 * Now, we may hvae frames in the hardware queue for this node. 6086 * So if we are reassociating and there are frames in the queue, 6087 * we need to go through the cleanup path to ensure that they're 6088 * marked as non-aggregate. 6089 */ 6090 if (! isnew) { 6091 DPRINTF(sc, ATH_DEBUG_NODE, 6092 "%s: %6D: reassoc; is_powersave=%d\n", 6093 __func__, 6094 ni->ni_macaddr, 6095 ":", 6096 an->an_is_powersave); 6097 6098 /* XXX for now, we can't hold the lock across assoc */ 6099 ath_tx_node_reassoc(sc, an); 6100 6101 /* XXX for now, we can't hold the lock across wakeup */ 6102 if (an->an_is_powersave) 6103 ath_tx_node_wakeup(sc, an); 6104 } 6105 } 6106 6107 static int 6108 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6109 int nchans, struct ieee80211_channel chans[]) 6110 { 6111 struct ath_softc *sc = ic->ic_ifp->if_softc; 6112 struct ath_hal *ah = sc->sc_ah; 6113 HAL_STATUS status; 6114 6115 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6116 "%s: rd %u cc %u location %c%s\n", 6117 __func__, reg->regdomain, reg->country, reg->location, 6118 reg->ecm ? " ecm" : ""); 6119 6120 status = ath_hal_set_channels(ah, chans, nchans, 6121 reg->country, reg->regdomain); 6122 if (status != HAL_OK) { 6123 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6124 __func__, status); 6125 return EINVAL; /* XXX */ 6126 } 6127 6128 return 0; 6129 } 6130 6131 static void 6132 ath_getradiocaps(struct ieee80211com *ic, 6133 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6134 { 6135 struct ath_softc *sc = ic->ic_ifp->if_softc; 6136 struct ath_hal *ah = sc->sc_ah; 6137 6138 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6139 __func__, SKU_DEBUG, CTRY_DEFAULT); 6140 6141 /* XXX check return */ 6142 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6143 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6144 6145 } 6146 6147 static int 6148 ath_getchannels(struct ath_softc *sc) 6149 { 6150 struct ifnet *ifp = sc->sc_ifp; 6151 struct ieee80211com *ic = ifp->if_l2com; 6152 struct ath_hal *ah = sc->sc_ah; 6153 HAL_STATUS status; 6154 6155 /* 6156 * Collect channel set based on EEPROM contents. 6157 */ 6158 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6159 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6160 if (status != HAL_OK) { 6161 if_printf(ifp, "%s: unable to collect channel list from hal, " 6162 "status %d\n", __func__, status); 6163 return EINVAL; 6164 } 6165 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6166 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6167 /* XXX map Atheros sku's to net80211 SKU's */ 6168 /* XXX net80211 types too small */ 6169 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6170 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6171 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6172 ic->ic_regdomain.isocc[1] = ' '; 6173 6174 ic->ic_regdomain.ecm = 1; 6175 ic->ic_regdomain.location = 'I'; 6176 6177 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6178 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6179 __func__, sc->sc_eerd, sc->sc_eecc, 6180 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6181 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6182 return 0; 6183 } 6184 6185 static int 6186 ath_rate_setup(struct ath_softc *sc, u_int mode) 6187 { 6188 struct ath_hal *ah = sc->sc_ah; 6189 const HAL_RATE_TABLE *rt; 6190 6191 switch (mode) { 6192 case IEEE80211_MODE_11A: 6193 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6194 break; 6195 case IEEE80211_MODE_HALF: 6196 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6197 break; 6198 case IEEE80211_MODE_QUARTER: 6199 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6200 break; 6201 case IEEE80211_MODE_11B: 6202 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6203 break; 6204 case IEEE80211_MODE_11G: 6205 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6206 break; 6207 case IEEE80211_MODE_TURBO_A: 6208 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6209 break; 6210 case IEEE80211_MODE_TURBO_G: 6211 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6212 break; 6213 case IEEE80211_MODE_STURBO_A: 6214 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6215 break; 6216 case IEEE80211_MODE_11NA: 6217 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6218 break; 6219 case IEEE80211_MODE_11NG: 6220 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6221 break; 6222 default: 6223 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6224 __func__, mode); 6225 return 0; 6226 } 6227 sc->sc_rates[mode] = rt; 6228 return (rt != NULL); 6229 } 6230 6231 static void 6232 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6233 { 6234 #define N(a) (sizeof(a)/sizeof(a[0])) 6235 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6236 static const struct { 6237 u_int rate; /* tx/rx 802.11 rate */ 6238 u_int16_t timeOn; /* LED on time (ms) */ 6239 u_int16_t timeOff; /* LED off time (ms) */ 6240 } blinkrates[] = { 6241 { 108, 40, 10 }, 6242 { 96, 44, 11 }, 6243 { 72, 50, 13 }, 6244 { 48, 57, 14 }, 6245 { 36, 67, 16 }, 6246 { 24, 80, 20 }, 6247 { 22, 100, 25 }, 6248 { 18, 133, 34 }, 6249 { 12, 160, 40 }, 6250 { 10, 200, 50 }, 6251 { 6, 240, 58 }, 6252 { 4, 267, 66 }, 6253 { 2, 400, 100 }, 6254 { 0, 500, 130 }, 6255 /* XXX half/quarter rates */ 6256 }; 6257 const HAL_RATE_TABLE *rt; 6258 int i, j; 6259 6260 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6261 rt = sc->sc_rates[mode]; 6262 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6263 for (i = 0; i < rt->rateCount; i++) { 6264 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6265 if (rt->info[i].phy != IEEE80211_T_HT) 6266 sc->sc_rixmap[ieeerate] = i; 6267 else 6268 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6269 } 6270 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6271 for (i = 0; i < N(sc->sc_hwmap); i++) { 6272 if (i >= rt->rateCount) { 6273 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6274 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6275 continue; 6276 } 6277 sc->sc_hwmap[i].ieeerate = 6278 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6279 if (rt->info[i].phy == IEEE80211_T_HT) 6280 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6281 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6282 if (rt->info[i].shortPreamble || 6283 rt->info[i].phy == IEEE80211_T_OFDM) 6284 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6285 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6286 for (j = 0; j < N(blinkrates)-1; j++) 6287 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6288 break; 6289 /* NB: this uses the last entry if the rate isn't found */ 6290 /* XXX beware of overlow */ 6291 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6292 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6293 } 6294 sc->sc_currates = rt; 6295 sc->sc_curmode = mode; 6296 /* 6297 * All protection frames are transmited at 2Mb/s for 6298 * 11g, otherwise at 1Mb/s. 6299 */ 6300 if (mode == IEEE80211_MODE_11G) 6301 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6302 else 6303 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6304 /* NB: caller is responsible for resetting rate control state */ 6305 #undef N 6306 } 6307 6308 static void 6309 ath_watchdog(void *arg) 6310 { 6311 struct ath_softc *sc = arg; 6312 int do_reset = 0; 6313 6314 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6315 struct ifnet *ifp = sc->sc_ifp; 6316 uint32_t hangs; 6317 6318 ATH_LOCK(sc); 6319 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6320 ATH_UNLOCK(sc); 6321 6322 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6323 hangs != 0) { 6324 if_printf(ifp, "%s hang detected (0x%x)\n", 6325 hangs & 0xff ? "bb" : "mac", hangs); 6326 } else 6327 if_printf(ifp, "device timeout\n"); 6328 do_reset = 1; 6329 ifp->if_oerrors++; 6330 sc->sc_stats.ast_watchdog++; 6331 6332 ATH_LOCK(sc); 6333 ath_power_restore_power_state(sc); 6334 ATH_UNLOCK(sc); 6335 } 6336 6337 /* 6338 * We can't hold the lock across the ath_reset() call. 6339 * 6340 * And since this routine can't hold a lock and sleep, 6341 * do the reset deferred. 6342 */ 6343 if (do_reset) { 6344 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6345 } 6346 6347 callout_schedule(&sc->sc_wd_ch, hz); 6348 } 6349 6350 /* 6351 * Fetch the rate control statistics for the given node. 6352 */ 6353 static int 6354 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 6355 { 6356 struct ath_node *an; 6357 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 6358 struct ieee80211_node *ni; 6359 int error = 0; 6360 6361 /* Perform a lookup on the given node */ 6362 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 6363 if (ni == NULL) { 6364 error = EINVAL; 6365 goto bad; 6366 } 6367 6368 /* Lock the ath_node */ 6369 an = ATH_NODE(ni); 6370 ATH_NODE_LOCK(an); 6371 6372 /* Fetch the rate control stats for this node */ 6373 error = ath_rate_fetch_node_stats(sc, an, rs); 6374 6375 /* No matter what happens here, just drop through */ 6376 6377 /* Unlock the ath_node */ 6378 ATH_NODE_UNLOCK(an); 6379 6380 /* Unref the node */ 6381 ieee80211_node_decref(ni); 6382 6383 bad: 6384 return (error); 6385 } 6386 6387 #ifdef ATH_DIAGAPI 6388 /* 6389 * Diagnostic interface to the HAL. This is used by various 6390 * tools to do things like retrieve register contents for 6391 * debugging. The mechanism is intentionally opaque so that 6392 * it can change frequently w/o concern for compatiblity. 6393 */ 6394 static int 6395 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6396 { 6397 struct ath_hal *ah = sc->sc_ah; 6398 u_int id = ad->ad_id & ATH_DIAG_ID; 6399 void *indata = NULL; 6400 void *outdata = NULL; 6401 u_int32_t insize = ad->ad_in_size; 6402 u_int32_t outsize = ad->ad_out_size; 6403 int error = 0; 6404 6405 if (ad->ad_id & ATH_DIAG_IN) { 6406 /* 6407 * Copy in data. 6408 */ 6409 indata = malloc(insize, M_TEMP, M_NOWAIT); 6410 if (indata == NULL) { 6411 error = ENOMEM; 6412 goto bad; 6413 } 6414 error = copyin(ad->ad_in_data, indata, insize); 6415 if (error) 6416 goto bad; 6417 } 6418 if (ad->ad_id & ATH_DIAG_DYN) { 6419 /* 6420 * Allocate a buffer for the results (otherwise the HAL 6421 * returns a pointer to a buffer where we can read the 6422 * results). Note that we depend on the HAL leaving this 6423 * pointer for us to use below in reclaiming the buffer; 6424 * may want to be more defensive. 6425 */ 6426 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6427 if (outdata == NULL) { 6428 error = ENOMEM; 6429 goto bad; 6430 } 6431 } 6432 6433 6434 ATH_LOCK(sc); 6435 if (id != HAL_DIAG_REGS) 6436 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6437 ATH_UNLOCK(sc); 6438 6439 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6440 if (outsize < ad->ad_out_size) 6441 ad->ad_out_size = outsize; 6442 if (outdata != NULL) 6443 error = copyout(outdata, ad->ad_out_data, 6444 ad->ad_out_size); 6445 } else { 6446 error = EINVAL; 6447 } 6448 6449 ATH_LOCK(sc); 6450 if (id != HAL_DIAG_REGS) 6451 ath_power_restore_power_state(sc); 6452 ATH_UNLOCK(sc); 6453 6454 bad: 6455 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6456 free(indata, M_TEMP); 6457 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6458 free(outdata, M_TEMP); 6459 return error; 6460 } 6461 #endif /* ATH_DIAGAPI */ 6462 6463 static int 6464 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6465 { 6466 #define IS_RUNNING(ifp) \ 6467 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6468 struct ath_softc *sc = ifp->if_softc; 6469 struct ieee80211com *ic = ifp->if_l2com; 6470 struct ifreq *ifr = (struct ifreq *)data; 6471 const HAL_RATE_TABLE *rt; 6472 int error = 0; 6473 6474 switch (cmd) { 6475 case SIOCSIFFLAGS: 6476 if (IS_RUNNING(ifp)) { 6477 /* 6478 * To avoid rescanning another access point, 6479 * do not call ath_init() here. Instead, 6480 * only reflect promisc mode settings. 6481 */ 6482 ATH_LOCK(sc); 6483 ath_mode_init(sc); 6484 ATH_UNLOCK(sc); 6485 } else if (ifp->if_flags & IFF_UP) { 6486 /* 6487 * Beware of being called during attach/detach 6488 * to reset promiscuous mode. In that case we 6489 * will still be marked UP but not RUNNING. 6490 * However trying to re-init the interface 6491 * is the wrong thing to do as we've already 6492 * torn down much of our state. There's 6493 * probably a better way to deal with this. 6494 */ 6495 if (!sc->sc_invalid) 6496 ath_init(sc); /* XXX lose error */ 6497 } else { 6498 ATH_LOCK(sc); 6499 ath_stop_locked(ifp); 6500 if (!sc->sc_invalid) 6501 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6502 ATH_UNLOCK(sc); 6503 } 6504 break; 6505 case SIOCGIFMEDIA: 6506 case SIOCSIFMEDIA: 6507 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6508 break; 6509 case SIOCGATHSTATS: 6510 /* NB: embed these numbers to get a consistent view */ 6511 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6512 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6513 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6514 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6515 #ifdef IEEE80211_SUPPORT_TDMA 6516 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6517 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6518 #endif 6519 rt = sc->sc_currates; 6520 sc->sc_stats.ast_tx_rate = 6521 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6522 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6523 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6524 return copyout(&sc->sc_stats, 6525 ifr->ifr_data, sizeof (sc->sc_stats)); 6526 case SIOCGATHAGSTATS: 6527 return copyout(&sc->sc_aggr_stats, 6528 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 6529 case SIOCZATHSTATS: 6530 error = priv_check(curthread, PRIV_DRIVER); 6531 if (error == 0) { 6532 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6533 memset(&sc->sc_aggr_stats, 0, 6534 sizeof(sc->sc_aggr_stats)); 6535 memset(&sc->sc_intr_stats, 0, 6536 sizeof(sc->sc_intr_stats)); 6537 } 6538 break; 6539 #ifdef ATH_DIAGAPI 6540 case SIOCGATHDIAG: 6541 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6542 break; 6543 case SIOCGATHPHYERR: 6544 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6545 break; 6546 #endif 6547 case SIOCGATHSPECTRAL: 6548 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 6549 break; 6550 case SIOCGATHNODERATESTATS: 6551 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 6552 break; 6553 case SIOCGIFADDR: 6554 error = ether_ioctl(ifp, cmd, data); 6555 break; 6556 default: 6557 error = EINVAL; 6558 break; 6559 } 6560 return error; 6561 #undef IS_RUNNING 6562 } 6563 6564 /* 6565 * Announce various information on device/driver attach. 6566 */ 6567 static void 6568 ath_announce(struct ath_softc *sc) 6569 { 6570 struct ifnet *ifp = sc->sc_ifp; 6571 struct ath_hal *ah = sc->sc_ah; 6572 6573 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6574 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6575 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6576 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6577 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6578 if (bootverbose) { 6579 int i; 6580 for (i = 0; i <= WME_AC_VO; i++) { 6581 struct ath_txq *txq = sc->sc_ac2q[i]; 6582 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6583 txq->axq_qnum, ieee80211_wme_acnames[i]); 6584 } 6585 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6586 sc->sc_cabq->axq_qnum); 6587 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6588 } 6589 if (ath_rxbuf != ATH_RXBUF) 6590 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6591 if (ath_txbuf != ATH_TXBUF) 6592 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6593 if (sc->sc_mcastkey && bootverbose) 6594 if_printf(ifp, "using multicast key search\n"); 6595 } 6596 6597 static void 6598 ath_dfs_tasklet(void *p, int npending) 6599 { 6600 struct ath_softc *sc = (struct ath_softc *) p; 6601 struct ifnet *ifp = sc->sc_ifp; 6602 struct ieee80211com *ic = ifp->if_l2com; 6603 6604 /* 6605 * If previous processing has found a radar event, 6606 * signal this to the net80211 layer to begin DFS 6607 * processing. 6608 */ 6609 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6610 /* DFS event found, initiate channel change */ 6611 /* 6612 * XXX doesn't currently tell us whether the event 6613 * XXX was found in the primary or extension 6614 * XXX channel! 6615 */ 6616 IEEE80211_LOCK(ic); 6617 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6618 IEEE80211_UNLOCK(ic); 6619 } 6620 } 6621 6622 /* 6623 * Enable/disable power save. This must be called with 6624 * no TX driver locks currently held, so it should only 6625 * be called from the RX path (which doesn't hold any 6626 * TX driver locks.) 6627 */ 6628 static void 6629 ath_node_powersave(struct ieee80211_node *ni, int enable) 6630 { 6631 #ifdef ATH_SW_PSQ 6632 struct ath_node *an = ATH_NODE(ni); 6633 struct ieee80211com *ic = ni->ni_ic; 6634 struct ath_softc *sc = ic->ic_ifp->if_softc; 6635 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6636 6637 /* XXX and no TXQ locks should be held here */ 6638 6639 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6640 __func__, 6641 ni->ni_macaddr, 6642 ":", 6643 !! enable); 6644 6645 /* Suspend or resume software queue handling */ 6646 if (enable) 6647 ath_tx_node_sleep(sc, an); 6648 else 6649 ath_tx_node_wakeup(sc, an); 6650 6651 /* Update net80211 state */ 6652 avp->av_node_ps(ni, enable); 6653 #else 6654 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6655 6656 /* Update net80211 state */ 6657 avp->av_node_ps(ni, enable); 6658 #endif/* ATH_SW_PSQ */ 6659 } 6660 6661 /* 6662 * Notification from net80211 that the powersave queue state has 6663 * changed. 6664 * 6665 * Since the software queue also may have some frames: 6666 * 6667 * + if the node software queue has frames and the TID state 6668 * is 0, we set the TIM; 6669 * + if the node and the stack are both empty, we clear the TIM bit. 6670 * + If the stack tries to set the bit, always set it. 6671 * + If the stack tries to clear the bit, only clear it if the 6672 * software queue in question is also cleared. 6673 * 6674 * TODO: this is called during node teardown; so let's ensure this 6675 * is all correctly handled and that the TIM bit is cleared. 6676 * It may be that the node flush is called _AFTER_ the net80211 6677 * stack clears the TIM. 6678 * 6679 * Here is the racy part. Since it's possible >1 concurrent, 6680 * overlapping TXes will appear complete with a TX completion in 6681 * another thread, it's possible that the concurrent TIM calls will 6682 * clash. We can't hold the node lock here because setting the 6683 * TIM grabs the net80211 comlock and this may cause a LOR. 6684 * The solution is either to totally serialise _everything_ at 6685 * this point (ie, all TX, completion and any reset/flush go into 6686 * one taskqueue) or a new "ath TIM lock" needs to be created that 6687 * just wraps the driver state change and this call to avp->av_set_tim(). 6688 * 6689 * The same race exists in the net80211 power save queue handling 6690 * as well. Since multiple transmitting threads may queue frames 6691 * into the driver, as well as ps-poll and the driver transmitting 6692 * frames (and thus clearing the psq), it's quite possible that 6693 * a packet entering the PSQ and a ps-poll being handled will 6694 * race, causing the TIM to be cleared and not re-set. 6695 */ 6696 static int 6697 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6698 { 6699 #ifdef ATH_SW_PSQ 6700 struct ieee80211com *ic = ni->ni_ic; 6701 struct ath_softc *sc = ic->ic_ifp->if_softc; 6702 struct ath_node *an = ATH_NODE(ni); 6703 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6704 int changed = 0; 6705 6706 ATH_TX_LOCK(sc); 6707 an->an_stack_psq = enable; 6708 6709 /* 6710 * This will get called for all operating modes, 6711 * even if avp->av_set_tim is unset. 6712 * It's currently set for hostap/ibss modes; but 6713 * the same infrastructure is used for both STA 6714 * and AP/IBSS node power save. 6715 */ 6716 if (avp->av_set_tim == NULL) { 6717 ATH_TX_UNLOCK(sc); 6718 return (0); 6719 } 6720 6721 /* 6722 * If setting the bit, always set it here. 6723 * If clearing the bit, only clear it if the 6724 * software queue is also empty. 6725 * 6726 * If the node has left power save, just clear the TIM 6727 * bit regardless of the state of the power save queue. 6728 * 6729 * XXX TODO: although atomics are used, it's quite possible 6730 * that a race will occur between this and setting/clearing 6731 * in another thread. TX completion will occur always in 6732 * one thread, however setting/clearing the TIM bit can come 6733 * from a variety of different process contexts! 6734 */ 6735 if (enable && an->an_tim_set == 1) { 6736 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6737 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6738 __func__, 6739 ni->ni_macaddr, 6740 ":", 6741 enable); 6742 ATH_TX_UNLOCK(sc); 6743 } else if (enable) { 6744 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6745 "%s: %6D: enable=%d, enabling TIM\n", 6746 __func__, 6747 ni->ni_macaddr, 6748 ":", 6749 enable); 6750 an->an_tim_set = 1; 6751 ATH_TX_UNLOCK(sc); 6752 changed = avp->av_set_tim(ni, enable); 6753 } else if (an->an_swq_depth == 0) { 6754 /* disable */ 6755 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6756 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6757 __func__, 6758 ni->ni_macaddr, 6759 ":", 6760 enable); 6761 an->an_tim_set = 0; 6762 ATH_TX_UNLOCK(sc); 6763 changed = avp->av_set_tim(ni, enable); 6764 } else if (! an->an_is_powersave) { 6765 /* 6766 * disable regardless; the node isn't in powersave now 6767 */ 6768 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6769 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6770 __func__, 6771 ni->ni_macaddr, 6772 ":", 6773 enable); 6774 an->an_tim_set = 0; 6775 ATH_TX_UNLOCK(sc); 6776 changed = avp->av_set_tim(ni, enable); 6777 } else { 6778 /* 6779 * psq disable, node is currently in powersave, node 6780 * software queue isn't empty, so don't clear the TIM bit 6781 * for now. 6782 */ 6783 ATH_TX_UNLOCK(sc); 6784 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6785 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6786 __func__, 6787 ni->ni_macaddr, 6788 ":", 6789 enable); 6790 changed = 0; 6791 } 6792 6793 return (changed); 6794 #else 6795 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6796 6797 /* 6798 * Some operating modes don't set av_set_tim(), so don't 6799 * update it here. 6800 */ 6801 if (avp->av_set_tim == NULL) 6802 return (0); 6803 6804 return (avp->av_set_tim(ni, enable)); 6805 #endif /* ATH_SW_PSQ */ 6806 } 6807 6808 /* 6809 * Set or update the TIM from the software queue. 6810 * 6811 * Check the software queue depth before attempting to do lock 6812 * anything; that avoids trying to obtain the lock. Then, 6813 * re-check afterwards to ensure nothing has changed in the 6814 * meantime. 6815 * 6816 * set: This is designed to be called from the TX path, after 6817 * a frame has been queued; to see if the swq > 0. 6818 * 6819 * clear: This is designed to be called from the buffer completion point 6820 * (right now it's ath_tx_default_comp()) where the state of 6821 * a software queue has changed. 6822 * 6823 * It makes sense to place it at buffer free / completion rather 6824 * than after each software queue operation, as there's no real 6825 * point in churning the TIM bit as the last frames in the software 6826 * queue are transmitted. If they fail and we retry them, we'd 6827 * just be setting the TIM bit again anyway. 6828 */ 6829 void 6830 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6831 int enable) 6832 { 6833 #ifdef ATH_SW_PSQ 6834 struct ath_node *an; 6835 struct ath_vap *avp; 6836 6837 /* Don't do this for broadcast/etc frames */ 6838 if (ni == NULL) 6839 return; 6840 6841 an = ATH_NODE(ni); 6842 avp = ATH_VAP(ni->ni_vap); 6843 6844 /* 6845 * And for operating modes without the TIM handler set, let's 6846 * just skip those. 6847 */ 6848 if (avp->av_set_tim == NULL) 6849 return; 6850 6851 ATH_TX_LOCK_ASSERT(sc); 6852 6853 if (enable) { 6854 if (an->an_is_powersave && 6855 an->an_tim_set == 0 && 6856 an->an_swq_depth != 0) { 6857 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6858 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6859 __func__, 6860 ni->ni_macaddr, 6861 ":"); 6862 an->an_tim_set = 1; 6863 (void) avp->av_set_tim(ni, 1); 6864 } 6865 } else { 6866 /* 6867 * Don't bother grabbing the lock unless the queue is empty. 6868 */ 6869 if (&an->an_swq_depth != 0) 6870 return; 6871 6872 if (an->an_is_powersave && 6873 an->an_stack_psq == 0 && 6874 an->an_tim_set == 1 && 6875 an->an_swq_depth == 0) { 6876 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6877 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6878 " clear!\n", 6879 __func__, 6880 ni->ni_macaddr, 6881 ":"); 6882 an->an_tim_set = 0; 6883 (void) avp->av_set_tim(ni, 0); 6884 } 6885 } 6886 #else 6887 return; 6888 #endif /* ATH_SW_PSQ */ 6889 } 6890 6891 /* 6892 * Received a ps-poll frame from net80211. 6893 * 6894 * Here we get a chance to serve out a software-queued frame ourselves 6895 * before we punt it to net80211 to transmit us one itself - either 6896 * because there's traffic in the net80211 psq, or a NULL frame to 6897 * indicate there's nothing else. 6898 */ 6899 static void 6900 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6901 { 6902 #ifdef ATH_SW_PSQ 6903 struct ath_node *an; 6904 struct ath_vap *avp; 6905 struct ieee80211com *ic = ni->ni_ic; 6906 struct ath_softc *sc = ic->ic_ifp->if_softc; 6907 int tid; 6908 6909 /* Just paranoia */ 6910 if (ni == NULL) 6911 return; 6912 6913 /* 6914 * Unassociated (temporary node) station. 6915 */ 6916 if (ni->ni_associd == 0) 6917 return; 6918 6919 /* 6920 * We do have an active node, so let's begin looking into it. 6921 */ 6922 an = ATH_NODE(ni); 6923 avp = ATH_VAP(ni->ni_vap); 6924 6925 /* 6926 * For now, we just call the original ps-poll method. 6927 * Once we're ready to flip this on: 6928 * 6929 * + Set leak to 1, as no matter what we're going to have 6930 * to send a frame; 6931 * + Check the software queue and if there's something in it, 6932 * schedule the highest TID thas has traffic from this node. 6933 * Then make sure we schedule the software scheduler to 6934 * run so it picks up said frame. 6935 * 6936 * That way whatever happens, we'll at least send _a_ frame 6937 * to the given node. 6938 * 6939 * Again, yes, it's crappy QoS if the node has multiple 6940 * TIDs worth of traffic - but let's get it working first 6941 * before we optimise it. 6942 * 6943 * Also yes, there's definitely latency here - we're not 6944 * direct dispatching to the hardware in this path (and 6945 * we're likely being called from the packet receive path, 6946 * so going back into TX may be a little hairy!) but again 6947 * I'd like to get this working first before optimising 6948 * turn-around time. 6949 */ 6950 6951 ATH_TX_LOCK(sc); 6952 6953 /* 6954 * Legacy - we're called and the node isn't asleep. 6955 * Immediately punt. 6956 */ 6957 if (! an->an_is_powersave) { 6958 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6959 "%s: %6D: not in powersave?\n", 6960 __func__, 6961 ni->ni_macaddr, 6962 ":"); 6963 ATH_TX_UNLOCK(sc); 6964 avp->av_recv_pspoll(ni, m); 6965 return; 6966 } 6967 6968 /* 6969 * We're in powersave. 6970 * 6971 * Leak a frame. 6972 */ 6973 an->an_leak_count = 1; 6974 6975 /* 6976 * Now, if there's no frames in the node, just punt to 6977 * recv_pspoll. 6978 * 6979 * Don't bother checking if the TIM bit is set, we really 6980 * only care if there are any frames here! 6981 */ 6982 if (an->an_swq_depth == 0) { 6983 ATH_TX_UNLOCK(sc); 6984 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6985 "%s: %6D: SWQ empty; punting to net80211\n", 6986 __func__, 6987 ni->ni_macaddr, 6988 ":"); 6989 avp->av_recv_pspoll(ni, m); 6990 return; 6991 } 6992 6993 /* 6994 * Ok, let's schedule the highest TID that has traffic 6995 * and then schedule something. 6996 */ 6997 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6998 struct ath_tid *atid = &an->an_tid[tid]; 6999 /* 7000 * No frames? Skip. 7001 */ 7002 if (atid->axq_depth == 0) 7003 continue; 7004 ath_tx_tid_sched(sc, atid); 7005 /* 7006 * XXX we could do a direct call to the TXQ 7007 * scheduler code here to optimise latency 7008 * at the expense of a REALLY deep callstack. 7009 */ 7010 ATH_TX_UNLOCK(sc); 7011 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7012 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7013 "%s: %6D: leaking frame to TID %d\n", 7014 __func__, 7015 ni->ni_macaddr, 7016 ":", 7017 tid); 7018 return; 7019 } 7020 7021 ATH_TX_UNLOCK(sc); 7022 7023 /* 7024 * XXX nothing in the TIDs at this point? Eek. 7025 */ 7026 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7027 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7028 __func__, 7029 ni->ni_macaddr, 7030 ":"); 7031 avp->av_recv_pspoll(ni, m); 7032 #else 7033 avp->av_recv_pspoll(ni, m); 7034 #endif /* ATH_SW_PSQ */ 7035 } 7036 7037 MODULE_VERSION(if_ath, 1); 7038 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 7039 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 7040 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 7041 #endif 7042