xref: /freebsd/sys/dev/ath/if_ath.c (revision 955c8cbb4960e6cf3602de144b1b9154a5092968)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_ath_spectral.h>
115 #include <dev/ath/if_athdfs.h>
116 
117 #ifdef ATH_TX99_DIAG
118 #include <dev/ath/ath_tx99/ath_tx99.h>
119 #endif
120 
121 #ifdef	ATH_DEBUG_ALQ
122 #include <dev/ath/if_ath_alq.h>
123 #endif
124 
125 /*
126  * Only enable this if you're working on PS-POLL support.
127  */
128 #undef	ATH_SW_PSQ
129 
130 /*
131  * ATH_BCBUF determines the number of vap's that can transmit
132  * beacons and also (currently) the number of vap's that can
133  * have unique mac addresses/bssid.  When staggering beacons
134  * 4 is probably a good max as otherwise the beacons become
135  * very closely spaced and there is limited time for cab q traffic
136  * to go out.  You can burst beacons instead but that is not good
137  * for stations in power save and at some point you really want
138  * another radio (and channel).
139  *
140  * The limit on the number of mac addresses is tied to our use of
141  * the U/L bit and tracking addresses in a byte; it would be
142  * worthwhile to allow more for applications like proxy sta.
143  */
144 CTASSERT(ATH_BCBUF <= 8);
145 
146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
147 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
148 		    const uint8_t [IEEE80211_ADDR_LEN],
149 		    const uint8_t [IEEE80211_ADDR_LEN]);
150 static void	ath_vap_delete(struct ieee80211vap *);
151 static void	ath_init(void *);
152 static void	ath_stop_locked(struct ifnet *);
153 static void	ath_stop(struct ifnet *);
154 static int	ath_reset_vap(struct ieee80211vap *, u_long);
155 static void	ath_start_queue(struct ifnet *ifp);
156 static int	ath_media_change(struct ifnet *);
157 static void	ath_watchdog(void *);
158 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
159 static void	ath_fatal_proc(void *, int);
160 static void	ath_bmiss_vap(struct ieee80211vap *);
161 static void	ath_bmiss_proc(void *, int);
162 static void	ath_key_update_begin(struct ieee80211vap *);
163 static void	ath_key_update_end(struct ieee80211vap *);
164 static void	ath_update_mcast(struct ifnet *);
165 static void	ath_update_promisc(struct ifnet *);
166 static void	ath_updateslot(struct ifnet *);
167 static void	ath_bstuck_proc(void *, int);
168 static void	ath_reset_proc(void *, int);
169 static int	ath_desc_alloc(struct ath_softc *);
170 static void	ath_desc_free(struct ath_softc *);
171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
172 			const uint8_t [IEEE80211_ADDR_LEN]);
173 static void	ath_node_cleanup(struct ieee80211_node *);
174 static void	ath_node_free(struct ieee80211_node *);
175 static void	ath_node_getsignal(const struct ieee80211_node *,
176 			int8_t *, int8_t *);
177 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
179 static int	ath_tx_setup(struct ath_softc *, int, int);
180 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
181 static void	ath_tx_cleanup(struct ath_softc *);
182 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
183 		    int dosched);
184 static void	ath_tx_proc_q0(void *, int);
185 static void	ath_tx_proc_q0123(void *, int);
186 static void	ath_tx_proc(void *, int);
187 static void	ath_txq_sched_tasklet(void *, int);
188 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void	ath_scan_start(struct ieee80211com *);
191 static void	ath_scan_end(struct ieee80211com *);
192 static void	ath_set_channel(struct ieee80211com *);
193 #ifdef	ATH_ENABLE_11N
194 static void	ath_update_chw(struct ieee80211com *);
195 #endif	/* ATH_ENABLE_11N */
196 static void	ath_calibrate(void *);
197 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	ath_setup_stationkey(struct ieee80211_node *);
199 static void	ath_newassoc(struct ieee80211_node *, int);
200 static int	ath_setregdomain(struct ieee80211com *,
201 		    struct ieee80211_regdomain *, int,
202 		    struct ieee80211_channel []);
203 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204 		    struct ieee80211_channel []);
205 static int	ath_getchannels(struct ath_softc *);
206 
207 static int	ath_rate_setup(struct ath_softc *, u_int mode);
208 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
209 
210 static void	ath_announce(struct ath_softc *);
211 
212 static void	ath_dfs_tasklet(void *, int);
213 static void	ath_node_powersave(struct ieee80211_node *, int);
214 static int	ath_node_set_tim(struct ieee80211_node *, int);
215 
216 #ifdef IEEE80211_SUPPORT_TDMA
217 #include <dev/ath/if_ath_tdma.h>
218 #endif
219 
220 SYSCTL_DECL(_hw_ath);
221 
222 /* XXX validate sysctl values */
223 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
225 	    0, "long chip calibration interval (secs)");
226 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
228 	    0, "short chip calibration interval (msecs)");
229 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
231 	    0, "reset chip calibration results (secs)");
232 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
234 	    0, "ANI calibration (msecs)");
235 
236 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
238 	    0, "rx buffers allocated");
239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
240 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
242 	    0, "tx buffers allocated");
243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
246 	    0, "tx (mgmt) buffers allocated");
247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
248 
249 int ath_bstuck_threshold = 4;		/* max missed beacons */
250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
251 	    0, "max missed beacon xmits before chip reset");
252 
253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
254 
255 void
256 ath_legacy_attach_comp_func(struct ath_softc *sc)
257 {
258 
259 	/*
260 	 * Special case certain configurations.  Note the
261 	 * CAB queue is handled by these specially so don't
262 	 * include them when checking the txq setup mask.
263 	 */
264 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
265 	case 0x01:
266 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
267 		break;
268 	case 0x0f:
269 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
270 		break;
271 	default:
272 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
273 		break;
274 	}
275 }
276 
277 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
278 #define	HAL_MODE_HT40 \
279 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
280 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
281 int
282 ath_attach(u_int16_t devid, struct ath_softc *sc)
283 {
284 	struct ifnet *ifp;
285 	struct ieee80211com *ic;
286 	struct ath_hal *ah = NULL;
287 	HAL_STATUS status;
288 	int error = 0, i;
289 	u_int wmodes;
290 	uint8_t macaddr[IEEE80211_ADDR_LEN];
291 	int rx_chainmask, tx_chainmask;
292 
293 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
294 
295 	CURVNET_SET(vnet0);
296 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
297 	if (ifp == NULL) {
298 		device_printf(sc->sc_dev, "can not if_alloc()\n");
299 		error = ENOSPC;
300 		CURVNET_RESTORE();
301 		goto bad;
302 	}
303 	ic = ifp->if_l2com;
304 
305 	/* set these up early for if_printf use */
306 	if_initname(ifp, device_get_name(sc->sc_dev),
307 		device_get_unit(sc->sc_dev));
308 	CURVNET_RESTORE();
309 
310 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
311 	    sc->sc_eepromdata, &status);
312 	if (ah == NULL) {
313 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314 			status);
315 		error = ENXIO;
316 		goto bad;
317 	}
318 	sc->sc_ah = ah;
319 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
320 #ifdef	ATH_DEBUG
321 	sc->sc_debug = ath_debug;
322 #endif
323 
324 	/*
325 	 * Setup the DMA/EDMA functions based on the current
326 	 * hardware support.
327 	 *
328 	 * This is required before the descriptors are allocated.
329 	 */
330 	if (ath_hal_hasedma(sc->sc_ah)) {
331 		sc->sc_isedma = 1;
332 		ath_recv_setup_edma(sc);
333 		ath_xmit_setup_edma(sc);
334 	} else {
335 		ath_recv_setup_legacy(sc);
336 		ath_xmit_setup_legacy(sc);
337 	}
338 
339 	/*
340 	 * Check if the MAC has multi-rate retry support.
341 	 * We do this by trying to setup a fake extended
342 	 * descriptor.  MAC's that don't have support will
343 	 * return false w/o doing anything.  MAC's that do
344 	 * support it will return true w/o doing anything.
345 	 */
346 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
347 
348 	/*
349 	 * Check if the device has hardware counters for PHY
350 	 * errors.  If so we need to enable the MIB interrupt
351 	 * so we can act on stat triggers.
352 	 */
353 	if (ath_hal_hwphycounters(ah))
354 		sc->sc_needmib = 1;
355 
356 	/*
357 	 * Get the hardware key cache size.
358 	 */
359 	sc->sc_keymax = ath_hal_keycachesize(ah);
360 	if (sc->sc_keymax > ATH_KEYMAX) {
361 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
362 			ATH_KEYMAX, sc->sc_keymax);
363 		sc->sc_keymax = ATH_KEYMAX;
364 	}
365 	/*
366 	 * Reset the key cache since some parts do not
367 	 * reset the contents on initial power up.
368 	 */
369 	for (i = 0; i < sc->sc_keymax; i++)
370 		ath_hal_keyreset(ah, i);
371 
372 	/*
373 	 * Collect the default channel list.
374 	 */
375 	error = ath_getchannels(sc);
376 	if (error != 0)
377 		goto bad;
378 
379 	/*
380 	 * Setup rate tables for all potential media types.
381 	 */
382 	ath_rate_setup(sc, IEEE80211_MODE_11A);
383 	ath_rate_setup(sc, IEEE80211_MODE_11B);
384 	ath_rate_setup(sc, IEEE80211_MODE_11G);
385 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
386 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
387 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
388 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
389 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
390 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
391 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
392 
393 	/* NB: setup here so ath_rate_update is happy */
394 	ath_setcurmode(sc, IEEE80211_MODE_11A);
395 
396 	/*
397 	 * Allocate TX descriptors and populate the lists.
398 	 */
399 	error = ath_desc_alloc(sc);
400 	if (error != 0) {
401 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
402 		    error);
403 		goto bad;
404 	}
405 	error = ath_txdma_setup(sc);
406 	if (error != 0) {
407 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
408 		    error);
409 		goto bad;
410 	}
411 
412 	/*
413 	 * Allocate RX descriptors and populate the lists.
414 	 */
415 	error = ath_rxdma_setup(sc);
416 	if (error != 0) {
417 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
418 		    error);
419 		goto bad;
420 	}
421 
422 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
423 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
424 
425 	ATH_TXBUF_LOCK_INIT(sc);
426 
427 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
428 		taskqueue_thread_enqueue, &sc->sc_tq);
429 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
430 		"%s taskq", ifp->if_xname);
431 
432 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
433 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
434 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
435 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
436 	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
437 	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
438 
439 	/*
440 	 * Allocate hardware transmit queues: one queue for
441 	 * beacon frames and one data queue for each QoS
442 	 * priority.  Note that the hal handles resetting
443 	 * these queues at the needed time.
444 	 *
445 	 * XXX PS-Poll
446 	 */
447 	sc->sc_bhalq = ath_beaconq_setup(sc);
448 	if (sc->sc_bhalq == (u_int) -1) {
449 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
450 		error = EIO;
451 		goto bad2;
452 	}
453 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
454 	if (sc->sc_cabq == NULL) {
455 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
456 		error = EIO;
457 		goto bad2;
458 	}
459 	/* NB: insure BK queue is the lowest priority h/w queue */
460 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
461 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
462 			ieee80211_wme_acnames[WME_AC_BK]);
463 		error = EIO;
464 		goto bad2;
465 	}
466 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
467 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
468 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
469 		/*
470 		 * Not enough hardware tx queues to properly do WME;
471 		 * just punt and assign them all to the same h/w queue.
472 		 * We could do a better job of this if, for example,
473 		 * we allocate queues when we switch from station to
474 		 * AP mode.
475 		 */
476 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
477 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
478 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
479 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
480 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
481 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
482 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
483 	}
484 
485 	/*
486 	 * Attach the TX completion function.
487 	 *
488 	 * The non-EDMA chips may have some special case optimisations;
489 	 * this method gives everyone a chance to attach cleanly.
490 	 */
491 	sc->sc_tx.xmit_attach_comp_func(sc);
492 
493 	/*
494 	 * Setup rate control.  Some rate control modules
495 	 * call back to change the anntena state so expose
496 	 * the necessary entry points.
497 	 * XXX maybe belongs in struct ath_ratectrl?
498 	 */
499 	sc->sc_setdefantenna = ath_setdefantenna;
500 	sc->sc_rc = ath_rate_attach(sc);
501 	if (sc->sc_rc == NULL) {
502 		error = EIO;
503 		goto bad2;
504 	}
505 
506 	/* Attach DFS module */
507 	if (! ath_dfs_attach(sc)) {
508 		device_printf(sc->sc_dev,
509 		    "%s: unable to attach DFS\n", __func__);
510 		error = EIO;
511 		goto bad2;
512 	}
513 
514 	/* Attach spectral module */
515 	if (ath_spectral_attach(sc) < 0) {
516 		device_printf(sc->sc_dev,
517 		    "%s: unable to attach spectral\n", __func__);
518 		error = EIO;
519 		goto bad2;
520 	}
521 
522 	/* Start DFS processing tasklet */
523 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
524 
525 	/* Configure LED state */
526 	sc->sc_blinking = 0;
527 	sc->sc_ledstate = 1;
528 	sc->sc_ledon = 0;			/* low true */
529 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
530 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
531 
532 	/*
533 	 * Don't setup hardware-based blinking.
534 	 *
535 	 * Although some NICs may have this configured in the
536 	 * default reset register values, the user may wish
537 	 * to alter which pins have which function.
538 	 *
539 	 * The reference driver attaches the MAC network LED to GPIO1 and
540 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
541 	 * NIC has these reversed.
542 	 */
543 	sc->sc_hardled = (1 == 0);
544 	sc->sc_led_net_pin = -1;
545 	sc->sc_led_pwr_pin = -1;
546 	/*
547 	 * Auto-enable soft led processing for IBM cards and for
548 	 * 5211 minipci cards.  Users can also manually enable/disable
549 	 * support with a sysctl.
550 	 */
551 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
552 	ath_led_config(sc);
553 	ath_hal_setledstate(ah, HAL_LED_INIT);
554 
555 	ifp->if_softc = sc;
556 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
557 	ifp->if_start = ath_start_queue;
558 	ifp->if_ioctl = ath_ioctl;
559 	ifp->if_init = ath_init;
560 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
561 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
562 	IFQ_SET_READY(&ifp->if_snd);
563 
564 	ic->ic_ifp = ifp;
565 	/* XXX not right but it's not used anywhere important */
566 	ic->ic_phytype = IEEE80211_T_OFDM;
567 	ic->ic_opmode = IEEE80211_M_STA;
568 	ic->ic_caps =
569 		  IEEE80211_C_STA		/* station mode */
570 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
571 		| IEEE80211_C_HOSTAP		/* hostap mode */
572 		| IEEE80211_C_MONITOR		/* monitor mode */
573 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
574 		| IEEE80211_C_WDS		/* 4-address traffic works */
575 		| IEEE80211_C_MBSS		/* mesh point link mode */
576 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
577 		| IEEE80211_C_SHSLOT		/* short slot time supported */
578 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
579 #ifndef	ATH_ENABLE_11N
580 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
581 #endif
582 		| IEEE80211_C_TXFRAG		/* handle tx frags */
583 #ifdef	ATH_ENABLE_DFS
584 		| IEEE80211_C_DFS		/* Enable radar detection */
585 #endif
586 		;
587 	/*
588 	 * Query the hal to figure out h/w crypto support.
589 	 */
590 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
591 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
592 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
593 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
594 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
595 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
596 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
597 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
598 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
599 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
600 		/*
601 		 * Check if h/w does the MIC and/or whether the
602 		 * separate key cache entries are required to
603 		 * handle both tx+rx MIC keys.
604 		 */
605 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
606 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
607 		/*
608 		 * If the h/w supports storing tx+rx MIC keys
609 		 * in one cache slot automatically enable use.
610 		 */
611 		if (ath_hal_hastkipsplit(ah) ||
612 		    !ath_hal_settkipsplit(ah, AH_FALSE))
613 			sc->sc_splitmic = 1;
614 		/*
615 		 * If the h/w can do TKIP MIC together with WME then
616 		 * we use it; otherwise we force the MIC to be done
617 		 * in software by the net80211 layer.
618 		 */
619 		if (ath_hal_haswmetkipmic(ah))
620 			sc->sc_wmetkipmic = 1;
621 	}
622 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
623 	/*
624 	 * Check for multicast key search support.
625 	 */
626 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
627 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
628 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
629 	}
630 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
631 	/*
632 	 * Mark key cache slots associated with global keys
633 	 * as in use.  If we knew TKIP was not to be used we
634 	 * could leave the +32, +64, and +32+64 slots free.
635 	 */
636 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
637 		setbit(sc->sc_keymap, i);
638 		setbit(sc->sc_keymap, i+64);
639 		if (sc->sc_splitmic) {
640 			setbit(sc->sc_keymap, i+32);
641 			setbit(sc->sc_keymap, i+32+64);
642 		}
643 	}
644 	/*
645 	 * TPC support can be done either with a global cap or
646 	 * per-packet support.  The latter is not available on
647 	 * all parts.  We're a bit pedantic here as all parts
648 	 * support a global cap.
649 	 */
650 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
651 		ic->ic_caps |= IEEE80211_C_TXPMGT;
652 
653 	/*
654 	 * Mark WME capability only if we have sufficient
655 	 * hardware queues to do proper priority scheduling.
656 	 */
657 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
658 		ic->ic_caps |= IEEE80211_C_WME;
659 	/*
660 	 * Check for misc other capabilities.
661 	 */
662 	if (ath_hal_hasbursting(ah))
663 		ic->ic_caps |= IEEE80211_C_BURST;
664 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
665 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
666 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
667 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
668 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
669 	if (ath_hal_hasfastframes(ah))
670 		ic->ic_caps |= IEEE80211_C_FF;
671 	wmodes = ath_hal_getwirelessmodes(ah);
672 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
673 		ic->ic_caps |= IEEE80211_C_TURBOP;
674 #ifdef IEEE80211_SUPPORT_TDMA
675 	if (ath_hal_macversion(ah) > 0x78) {
676 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
677 		ic->ic_tdma_update = ath_tdma_update;
678 	}
679 #endif
680 
681 	/*
682 	 * TODO: enforce that at least this many frames are available
683 	 * in the txbuf list before allowing data frames (raw or
684 	 * otherwise) to be transmitted.
685 	 */
686 	sc->sc_txq_data_minfree = 10;
687 	/*
688 	 * Leave this as default to maintain legacy behaviour.
689 	 * Shortening the cabq/mcastq may end up causing some
690 	 * undesirable behaviour.
691 	 */
692 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
693 
694 	/*
695 	 * Allow the TX and RX chainmasks to be overridden by
696 	 * environment variables and/or device.hints.
697 	 *
698 	 * This must be done early - before the hardware is
699 	 * calibrated or before the 802.11n stream calculation
700 	 * is done.
701 	 */
702 	if (resource_int_value(device_get_name(sc->sc_dev),
703 	    device_get_unit(sc->sc_dev), "rx_chainmask",
704 	    &rx_chainmask) == 0) {
705 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
706 		    rx_chainmask);
707 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
708 	}
709 	if (resource_int_value(device_get_name(sc->sc_dev),
710 	    device_get_unit(sc->sc_dev), "tx_chainmask",
711 	    &tx_chainmask) == 0) {
712 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
713 		    tx_chainmask);
714 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
715 	}
716 
717 	/*
718 	 * Disable MRR with protected frames by default.
719 	 * Only 802.11n series NICs can handle this.
720 	 */
721 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
722 
723 	/*
724 	 * Query the enterprise mode information the HAL.
725 	 */
726 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
727 	    &sc->sc_ent_cfg) == HAL_OK)
728 		sc->sc_use_ent = 1;
729 
730 #ifdef	ATH_ENABLE_11N
731 	/*
732 	 * Query HT capabilities
733 	 */
734 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
735 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
736 		int rxs, txs;
737 
738 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
739 
740 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
741 
742 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
743 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
744 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
745 			    | IEEE80211_HTCAP_MAXAMSDU_3839
746 			    				/* max A-MSDU length */
747 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
748 			;
749 
750 		/*
751 		 * Enable short-GI for HT20 only if the hardware
752 		 * advertises support.
753 		 * Notably, anything earlier than the AR9287 doesn't.
754 		 */
755 		if ((ath_hal_getcapability(ah,
756 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
757 		    (wmodes & HAL_MODE_HT20)) {
758 			device_printf(sc->sc_dev,
759 			    "[HT] enabling short-GI in 20MHz mode\n");
760 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
761 		}
762 
763 		if (wmodes & HAL_MODE_HT40)
764 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
765 			    |  IEEE80211_HTCAP_SHORTGI40;
766 
767 		/*
768 		 * TX/RX streams need to be taken into account when
769 		 * negotiating which MCS rates it'll receive and
770 		 * what MCS rates are available for TX.
771 		 */
772 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
773 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
774 
775 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
776 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
777 
778 		ic->ic_txstream = txs;
779 		ic->ic_rxstream = rxs;
780 
781 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
782 		    &sc->sc_rts_aggr_limit);
783 		if (sc->sc_rts_aggr_limit != (64 * 1024))
784 			device_printf(sc->sc_dev,
785 			    "[HT] RTS aggregates limited to %d KiB\n",
786 			    sc->sc_rts_aggr_limit / 1024);
787 
788 		device_printf(sc->sc_dev,
789 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
790 	}
791 #endif
792 
793 	/*
794 	 * Initial aggregation settings.
795 	 */
796 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
797 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
798 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
799 
800 	/*
801 	 * Check if the hardware requires PCI register serialisation.
802 	 * Some of the Owl based MACs require this.
803 	 */
804 	if (mp_ncpus > 1 &&
805 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
806 	     0, NULL) == HAL_OK) {
807 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
808 		device_printf(sc->sc_dev,
809 		    "Enabling register serialisation\n");
810 	}
811 
812 	/*
813 	 * Indicate we need the 802.11 header padded to a
814 	 * 32-bit boundary for 4-address and QoS frames.
815 	 */
816 	ic->ic_flags |= IEEE80211_F_DATAPAD;
817 
818 	/*
819 	 * Query the hal about antenna support.
820 	 */
821 	sc->sc_defant = ath_hal_getdefantenna(ah);
822 
823 	/*
824 	 * Not all chips have the VEOL support we want to
825 	 * use with IBSS beacons; check here for it.
826 	 */
827 	sc->sc_hasveol = ath_hal_hasveol(ah);
828 
829 	/* get mac address from hardware */
830 	ath_hal_getmac(ah, macaddr);
831 	if (sc->sc_hasbmask)
832 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
833 
834 	/* NB: used to size node table key mapping array */
835 	ic->ic_max_keyix = sc->sc_keymax;
836 	/* call MI attach routine. */
837 	ieee80211_ifattach(ic, macaddr);
838 	ic->ic_setregdomain = ath_setregdomain;
839 	ic->ic_getradiocaps = ath_getradiocaps;
840 	sc->sc_opmode = HAL_M_STA;
841 
842 	/* override default methods */
843 	ic->ic_newassoc = ath_newassoc;
844 	ic->ic_updateslot = ath_updateslot;
845 	ic->ic_wme.wme_update = ath_wme_update;
846 	ic->ic_vap_create = ath_vap_create;
847 	ic->ic_vap_delete = ath_vap_delete;
848 	ic->ic_raw_xmit = ath_raw_xmit;
849 	ic->ic_update_mcast = ath_update_mcast;
850 	ic->ic_update_promisc = ath_update_promisc;
851 	ic->ic_node_alloc = ath_node_alloc;
852 	sc->sc_node_free = ic->ic_node_free;
853 	ic->ic_node_free = ath_node_free;
854 	sc->sc_node_cleanup = ic->ic_node_cleanup;
855 	ic->ic_node_cleanup = ath_node_cleanup;
856 	ic->ic_node_getsignal = ath_node_getsignal;
857 	ic->ic_scan_start = ath_scan_start;
858 	ic->ic_scan_end = ath_scan_end;
859 	ic->ic_set_channel = ath_set_channel;
860 #ifdef	ATH_ENABLE_11N
861 	/* 802.11n specific - but just override anyway */
862 	sc->sc_addba_request = ic->ic_addba_request;
863 	sc->sc_addba_response = ic->ic_addba_response;
864 	sc->sc_addba_stop = ic->ic_addba_stop;
865 	sc->sc_bar_response = ic->ic_bar_response;
866 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
867 
868 	ic->ic_addba_request = ath_addba_request;
869 	ic->ic_addba_response = ath_addba_response;
870 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
871 	ic->ic_addba_stop = ath_addba_stop;
872 	ic->ic_bar_response = ath_bar_response;
873 
874 	ic->ic_update_chw = ath_update_chw;
875 #endif	/* ATH_ENABLE_11N */
876 
877 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
878 	/*
879 	 * There's one vendor bitmap entry in the RX radiotap
880 	 * header; make sure that's taken into account.
881 	 */
882 	ieee80211_radiotap_attachv(ic,
883 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
884 		ATH_TX_RADIOTAP_PRESENT,
885 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
886 		ATH_RX_RADIOTAP_PRESENT);
887 #else
888 	/*
889 	 * No vendor bitmap/extensions are present.
890 	 */
891 	ieee80211_radiotap_attach(ic,
892 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
893 		ATH_TX_RADIOTAP_PRESENT,
894 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
895 		ATH_RX_RADIOTAP_PRESENT);
896 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
897 
898 	/*
899 	 * Setup the ALQ logging if required
900 	 */
901 #ifdef	ATH_DEBUG_ALQ
902 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
903 	if_ath_alq_setcfg(&sc->sc_alq,
904 	    sc->sc_ah->ah_macVersion,
905 	    sc->sc_ah->ah_macRev,
906 	    sc->sc_ah->ah_phyRev,
907 	    sc->sc_ah->ah_magic);
908 #endif
909 
910 	/*
911 	 * Setup dynamic sysctl's now that country code and
912 	 * regdomain are available from the hal.
913 	 */
914 	ath_sysctlattach(sc);
915 	ath_sysctl_stats_attach(sc);
916 	ath_sysctl_hal_attach(sc);
917 
918 	if (bootverbose)
919 		ieee80211_announce(ic);
920 	ath_announce(sc);
921 	return 0;
922 bad2:
923 	ath_tx_cleanup(sc);
924 	ath_desc_free(sc);
925 	ath_txdma_teardown(sc);
926 	ath_rxdma_teardown(sc);
927 bad:
928 	if (ah)
929 		ath_hal_detach(ah);
930 
931 	/*
932 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
933 	 */
934 	if (ifp != NULL && ifp->if_vnet) {
935 		CURVNET_SET(ifp->if_vnet);
936 		if_free(ifp);
937 		CURVNET_RESTORE();
938 	} else if (ifp != NULL)
939 		if_free(ifp);
940 	sc->sc_invalid = 1;
941 	return error;
942 }
943 
944 int
945 ath_detach(struct ath_softc *sc)
946 {
947 	struct ifnet *ifp = sc->sc_ifp;
948 
949 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
950 		__func__, ifp->if_flags);
951 
952 	/*
953 	 * NB: the order of these is important:
954 	 * o stop the chip so no more interrupts will fire
955 	 * o call the 802.11 layer before detaching the hal to
956 	 *   insure callbacks into the driver to delete global
957 	 *   key cache entries can be handled
958 	 * o free the taskqueue which drains any pending tasks
959 	 * o reclaim the tx queue data structures after calling
960 	 *   the 802.11 layer as we'll get called back to reclaim
961 	 *   node state and potentially want to use them
962 	 * o to cleanup the tx queues the hal is called, so detach
963 	 *   it last
964 	 * Other than that, it's straightforward...
965 	 */
966 	ath_stop(ifp);
967 	ieee80211_ifdetach(ifp->if_l2com);
968 	taskqueue_free(sc->sc_tq);
969 #ifdef ATH_TX99_DIAG
970 	if (sc->sc_tx99 != NULL)
971 		sc->sc_tx99->detach(sc->sc_tx99);
972 #endif
973 	ath_rate_detach(sc->sc_rc);
974 
975 #ifdef	ATH_DEBUG_ALQ
976 	if_ath_alq_tidyup(&sc->sc_alq);
977 #endif
978 
979 	ath_spectral_detach(sc);
980 	ath_dfs_detach(sc);
981 	ath_desc_free(sc);
982 	ath_txdma_teardown(sc);
983 	ath_rxdma_teardown(sc);
984 	ath_tx_cleanup(sc);
985 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
986 
987 	CURVNET_SET(ifp->if_vnet);
988 	if_free(ifp);
989 	CURVNET_RESTORE();
990 
991 	return 0;
992 }
993 
994 /*
995  * MAC address handling for multiple BSS on the same radio.
996  * The first vap uses the MAC address from the EEPROM.  For
997  * subsequent vap's we set the U/L bit (bit 1) in the MAC
998  * address and use the next six bits as an index.
999  */
1000 static void
1001 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1002 {
1003 	int i;
1004 
1005 	if (clone && sc->sc_hasbmask) {
1006 		/* NB: we only do this if h/w supports multiple bssid */
1007 		for (i = 0; i < 8; i++)
1008 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1009 				break;
1010 		if (i != 0)
1011 			mac[0] |= (i << 2)|0x2;
1012 	} else
1013 		i = 0;
1014 	sc->sc_bssidmask |= 1<<i;
1015 	sc->sc_hwbssidmask[0] &= ~mac[0];
1016 	if (i == 0)
1017 		sc->sc_nbssid0++;
1018 }
1019 
1020 static void
1021 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1022 {
1023 	int i = mac[0] >> 2;
1024 	uint8_t mask;
1025 
1026 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1027 		sc->sc_bssidmask &= ~(1<<i);
1028 		/* recalculate bssid mask from remaining addresses */
1029 		mask = 0xff;
1030 		for (i = 1; i < 8; i++)
1031 			if (sc->sc_bssidmask & (1<<i))
1032 				mask &= ~((i<<2)|0x2);
1033 		sc->sc_hwbssidmask[0] |= mask;
1034 	}
1035 }
1036 
1037 /*
1038  * Assign a beacon xmit slot.  We try to space out
1039  * assignments so when beacons are staggered the
1040  * traffic coming out of the cab q has maximal time
1041  * to go out before the next beacon is scheduled.
1042  */
1043 static int
1044 assign_bslot(struct ath_softc *sc)
1045 {
1046 	u_int slot, free;
1047 
1048 	free = 0;
1049 	for (slot = 0; slot < ATH_BCBUF; slot++)
1050 		if (sc->sc_bslot[slot] == NULL) {
1051 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1052 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1053 				return slot;
1054 			free = slot;
1055 			/* NB: keep looking for a double slot */
1056 		}
1057 	return free;
1058 }
1059 
1060 static struct ieee80211vap *
1061 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1062     enum ieee80211_opmode opmode, int flags,
1063     const uint8_t bssid[IEEE80211_ADDR_LEN],
1064     const uint8_t mac0[IEEE80211_ADDR_LEN])
1065 {
1066 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1067 	struct ath_vap *avp;
1068 	struct ieee80211vap *vap;
1069 	uint8_t mac[IEEE80211_ADDR_LEN];
1070 	int needbeacon, error;
1071 	enum ieee80211_opmode ic_opmode;
1072 
1073 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1074 	    M_80211_VAP, M_WAITOK | M_ZERO);
1075 	needbeacon = 0;
1076 	IEEE80211_ADDR_COPY(mac, mac0);
1077 
1078 	ATH_LOCK(sc);
1079 	ic_opmode = opmode;		/* default to opmode of new vap */
1080 	switch (opmode) {
1081 	case IEEE80211_M_STA:
1082 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1083 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1084 			goto bad;
1085 		}
1086 		if (sc->sc_nvaps) {
1087 			/*
1088 			 * With multiple vaps we must fall back
1089 			 * to s/w beacon miss handling.
1090 			 */
1091 			flags |= IEEE80211_CLONE_NOBEACONS;
1092 		}
1093 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1094 			/*
1095 			 * Station mode w/o beacons are implemented w/ AP mode.
1096 			 */
1097 			ic_opmode = IEEE80211_M_HOSTAP;
1098 		}
1099 		break;
1100 	case IEEE80211_M_IBSS:
1101 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1102 			device_printf(sc->sc_dev,
1103 			    "only 1 ibss vap supported\n");
1104 			goto bad;
1105 		}
1106 		needbeacon = 1;
1107 		break;
1108 	case IEEE80211_M_AHDEMO:
1109 #ifdef IEEE80211_SUPPORT_TDMA
1110 		if (flags & IEEE80211_CLONE_TDMA) {
1111 			if (sc->sc_nvaps != 0) {
1112 				device_printf(sc->sc_dev,
1113 				    "only 1 tdma vap supported\n");
1114 				goto bad;
1115 			}
1116 			needbeacon = 1;
1117 			flags |= IEEE80211_CLONE_NOBEACONS;
1118 		}
1119 		/* fall thru... */
1120 #endif
1121 	case IEEE80211_M_MONITOR:
1122 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1123 			/*
1124 			 * Adopt existing mode.  Adding a monitor or ahdemo
1125 			 * vap to an existing configuration is of dubious
1126 			 * value but should be ok.
1127 			 */
1128 			/* XXX not right for monitor mode */
1129 			ic_opmode = ic->ic_opmode;
1130 		}
1131 		break;
1132 	case IEEE80211_M_HOSTAP:
1133 	case IEEE80211_M_MBSS:
1134 		needbeacon = 1;
1135 		break;
1136 	case IEEE80211_M_WDS:
1137 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1138 			device_printf(sc->sc_dev,
1139 			    "wds not supported in sta mode\n");
1140 			goto bad;
1141 		}
1142 		/*
1143 		 * Silently remove any request for a unique
1144 		 * bssid; WDS vap's always share the local
1145 		 * mac address.
1146 		 */
1147 		flags &= ~IEEE80211_CLONE_BSSID;
1148 		if (sc->sc_nvaps == 0)
1149 			ic_opmode = IEEE80211_M_HOSTAP;
1150 		else
1151 			ic_opmode = ic->ic_opmode;
1152 		break;
1153 	default:
1154 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1155 		goto bad;
1156 	}
1157 	/*
1158 	 * Check that a beacon buffer is available; the code below assumes it.
1159 	 */
1160 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1161 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1162 		goto bad;
1163 	}
1164 
1165 	/* STA, AHDEMO? */
1166 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1167 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1168 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1169 	}
1170 
1171 	vap = &avp->av_vap;
1172 	/* XXX can't hold mutex across if_alloc */
1173 	ATH_UNLOCK(sc);
1174 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1175 	    bssid, mac);
1176 	ATH_LOCK(sc);
1177 	if (error != 0) {
1178 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1179 		    __func__, error);
1180 		goto bad2;
1181 	}
1182 
1183 	/* h/w crypto support */
1184 	vap->iv_key_alloc = ath_key_alloc;
1185 	vap->iv_key_delete = ath_key_delete;
1186 	vap->iv_key_set = ath_key_set;
1187 	vap->iv_key_update_begin = ath_key_update_begin;
1188 	vap->iv_key_update_end = ath_key_update_end;
1189 
1190 	/* override various methods */
1191 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1192 	vap->iv_recv_mgmt = ath_recv_mgmt;
1193 	vap->iv_reset = ath_reset_vap;
1194 	vap->iv_update_beacon = ath_beacon_update;
1195 	avp->av_newstate = vap->iv_newstate;
1196 	vap->iv_newstate = ath_newstate;
1197 	avp->av_bmiss = vap->iv_bmiss;
1198 	vap->iv_bmiss = ath_bmiss_vap;
1199 
1200 	avp->av_node_ps = vap->iv_node_ps;
1201 	vap->iv_node_ps = ath_node_powersave;
1202 
1203 	avp->av_set_tim = vap->iv_set_tim;
1204 	vap->iv_set_tim = ath_node_set_tim;
1205 
1206 	/* Set default parameters */
1207 
1208 	/*
1209 	 * Anything earlier than some AR9300 series MACs don't
1210 	 * support a smaller MPDU density.
1211 	 */
1212 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1213 	/*
1214 	 * All NICs can handle the maximum size, however
1215 	 * AR5416 based MACs can only TX aggregates w/ RTS
1216 	 * protection when the total aggregate size is <= 8k.
1217 	 * However, for now that's enforced by the TX path.
1218 	 */
1219 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1220 
1221 	avp->av_bslot = -1;
1222 	if (needbeacon) {
1223 		/*
1224 		 * Allocate beacon state and setup the q for buffered
1225 		 * multicast frames.  We know a beacon buffer is
1226 		 * available because we checked above.
1227 		 */
1228 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1229 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1230 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1231 			/*
1232 			 * Assign the vap to a beacon xmit slot.  As above
1233 			 * this cannot fail to find a free one.
1234 			 */
1235 			avp->av_bslot = assign_bslot(sc);
1236 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1237 			    ("beacon slot %u not empty", avp->av_bslot));
1238 			sc->sc_bslot[avp->av_bslot] = vap;
1239 			sc->sc_nbcnvaps++;
1240 		}
1241 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1242 			/*
1243 			 * Multple vaps are to transmit beacons and we
1244 			 * have h/w support for TSF adjusting; enable
1245 			 * use of staggered beacons.
1246 			 */
1247 			sc->sc_stagbeacons = 1;
1248 		}
1249 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1250 	}
1251 
1252 	ic->ic_opmode = ic_opmode;
1253 	if (opmode != IEEE80211_M_WDS) {
1254 		sc->sc_nvaps++;
1255 		if (opmode == IEEE80211_M_STA)
1256 			sc->sc_nstavaps++;
1257 		if (opmode == IEEE80211_M_MBSS)
1258 			sc->sc_nmeshvaps++;
1259 	}
1260 	switch (ic_opmode) {
1261 	case IEEE80211_M_IBSS:
1262 		sc->sc_opmode = HAL_M_IBSS;
1263 		break;
1264 	case IEEE80211_M_STA:
1265 		sc->sc_opmode = HAL_M_STA;
1266 		break;
1267 	case IEEE80211_M_AHDEMO:
1268 #ifdef IEEE80211_SUPPORT_TDMA
1269 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1270 			sc->sc_tdma = 1;
1271 			/* NB: disable tsf adjust */
1272 			sc->sc_stagbeacons = 0;
1273 		}
1274 		/*
1275 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1276 		 * just ap mode.
1277 		 */
1278 		/* fall thru... */
1279 #endif
1280 	case IEEE80211_M_HOSTAP:
1281 	case IEEE80211_M_MBSS:
1282 		sc->sc_opmode = HAL_M_HOSTAP;
1283 		break;
1284 	case IEEE80211_M_MONITOR:
1285 		sc->sc_opmode = HAL_M_MONITOR;
1286 		break;
1287 	default:
1288 		/* XXX should not happen */
1289 		break;
1290 	}
1291 	if (sc->sc_hastsfadd) {
1292 		/*
1293 		 * Configure whether or not TSF adjust should be done.
1294 		 */
1295 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1296 	}
1297 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1298 		/*
1299 		 * Enable s/w beacon miss handling.
1300 		 */
1301 		sc->sc_swbmiss = 1;
1302 	}
1303 	ATH_UNLOCK(sc);
1304 
1305 	/* complete setup */
1306 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1307 	return vap;
1308 bad2:
1309 	reclaim_address(sc, mac);
1310 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1311 bad:
1312 	free(avp, M_80211_VAP);
1313 	ATH_UNLOCK(sc);
1314 	return NULL;
1315 }
1316 
1317 static void
1318 ath_vap_delete(struct ieee80211vap *vap)
1319 {
1320 	struct ieee80211com *ic = vap->iv_ic;
1321 	struct ifnet *ifp = ic->ic_ifp;
1322 	struct ath_softc *sc = ifp->if_softc;
1323 	struct ath_hal *ah = sc->sc_ah;
1324 	struct ath_vap *avp = ATH_VAP(vap);
1325 
1326 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1327 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1328 		/*
1329 		 * Quiesce the hardware while we remove the vap.  In
1330 		 * particular we need to reclaim all references to
1331 		 * the vap state by any frames pending on the tx queues.
1332 		 */
1333 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1334 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1335 		/* XXX Do all frames from all vaps/nodes need draining here? */
1336 		ath_stoprecv(sc, 1);		/* stop recv side */
1337 	}
1338 
1339 	ieee80211_vap_detach(vap);
1340 
1341 	/*
1342 	 * XXX Danger Will Robinson! Danger!
1343 	 *
1344 	 * Because ieee80211_vap_detach() can queue a frame (the station
1345 	 * diassociate message?) after we've drained the TXQ and
1346 	 * flushed the software TXQ, we will end up with a frame queued
1347 	 * to a node whose vap is about to be freed.
1348 	 *
1349 	 * To work around this, flush the hardware/software again.
1350 	 * This may be racy - the ath task may be running and the packet
1351 	 * may be being scheduled between sw->hw txq. Tsk.
1352 	 *
1353 	 * TODO: figure out why a new node gets allocated somewhere around
1354 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1355 	 * call!)
1356 	 */
1357 
1358 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1359 
1360 	ATH_LOCK(sc);
1361 	/*
1362 	 * Reclaim beacon state.  Note this must be done before
1363 	 * the vap instance is reclaimed as we may have a reference
1364 	 * to it in the buffer for the beacon frame.
1365 	 */
1366 	if (avp->av_bcbuf != NULL) {
1367 		if (avp->av_bslot != -1) {
1368 			sc->sc_bslot[avp->av_bslot] = NULL;
1369 			sc->sc_nbcnvaps--;
1370 		}
1371 		ath_beacon_return(sc, avp->av_bcbuf);
1372 		avp->av_bcbuf = NULL;
1373 		if (sc->sc_nbcnvaps == 0) {
1374 			sc->sc_stagbeacons = 0;
1375 			if (sc->sc_hastsfadd)
1376 				ath_hal_settsfadjust(sc->sc_ah, 0);
1377 		}
1378 		/*
1379 		 * Reclaim any pending mcast frames for the vap.
1380 		 */
1381 		ath_tx_draintxq(sc, &avp->av_mcastq);
1382 	}
1383 	/*
1384 	 * Update bookkeeping.
1385 	 */
1386 	if (vap->iv_opmode == IEEE80211_M_STA) {
1387 		sc->sc_nstavaps--;
1388 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1389 			sc->sc_swbmiss = 0;
1390 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1391 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1392 		reclaim_address(sc, vap->iv_myaddr);
1393 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1394 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1395 			sc->sc_nmeshvaps--;
1396 	}
1397 	if (vap->iv_opmode != IEEE80211_M_WDS)
1398 		sc->sc_nvaps--;
1399 #ifdef IEEE80211_SUPPORT_TDMA
1400 	/* TDMA operation ceases when the last vap is destroyed */
1401 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1402 		sc->sc_tdma = 0;
1403 		sc->sc_swbmiss = 0;
1404 	}
1405 #endif
1406 	free(avp, M_80211_VAP);
1407 
1408 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1409 		/*
1410 		 * Restart rx+tx machines if still running (RUNNING will
1411 		 * be reset if we just destroyed the last vap).
1412 		 */
1413 		if (ath_startrecv(sc) != 0)
1414 			if_printf(ifp, "%s: unable to restart recv logic\n",
1415 			    __func__);
1416 		if (sc->sc_beacons) {		/* restart beacons */
1417 #ifdef IEEE80211_SUPPORT_TDMA
1418 			if (sc->sc_tdma)
1419 				ath_tdma_config(sc, NULL);
1420 			else
1421 #endif
1422 				ath_beacon_config(sc, NULL);
1423 		}
1424 		ath_hal_intrset(ah, sc->sc_imask);
1425 	}
1426 	ATH_UNLOCK(sc);
1427 }
1428 
1429 void
1430 ath_suspend(struct ath_softc *sc)
1431 {
1432 	struct ifnet *ifp = sc->sc_ifp;
1433 	struct ieee80211com *ic = ifp->if_l2com;
1434 
1435 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1436 		__func__, ifp->if_flags);
1437 
1438 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1439 
1440 	ieee80211_suspend_all(ic);
1441 	/*
1442 	 * NB: don't worry about putting the chip in low power
1443 	 * mode; pci will power off our socket on suspend and
1444 	 * CardBus detaches the device.
1445 	 */
1446 
1447 	/*
1448 	 * XXX ensure none of the taskqueues are running
1449 	 * XXX ensure sc_invalid is 1
1450 	 * XXX ensure the calibration callout is disabled
1451 	 */
1452 
1453 	/* Disable the PCIe PHY, complete with workarounds */
1454 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1455 }
1456 
1457 /*
1458  * Reset the key cache since some parts do not reset the
1459  * contents on resume.  First we clear all entries, then
1460  * re-load keys that the 802.11 layer assumes are setup
1461  * in h/w.
1462  */
1463 static void
1464 ath_reset_keycache(struct ath_softc *sc)
1465 {
1466 	struct ifnet *ifp = sc->sc_ifp;
1467 	struct ieee80211com *ic = ifp->if_l2com;
1468 	struct ath_hal *ah = sc->sc_ah;
1469 	int i;
1470 
1471 	for (i = 0; i < sc->sc_keymax; i++)
1472 		ath_hal_keyreset(ah, i);
1473 	ieee80211_crypto_reload_keys(ic);
1474 }
1475 
1476 void
1477 ath_resume(struct ath_softc *sc)
1478 {
1479 	struct ifnet *ifp = sc->sc_ifp;
1480 	struct ieee80211com *ic = ifp->if_l2com;
1481 	struct ath_hal *ah = sc->sc_ah;
1482 	HAL_STATUS status;
1483 
1484 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1485 		__func__, ifp->if_flags);
1486 
1487 	/* Re-enable PCIe, re-enable the PCIe bus */
1488 	ath_hal_enablepcie(ah, 0, 0);
1489 
1490 	/*
1491 	 * Must reset the chip before we reload the
1492 	 * keycache as we were powered down on suspend.
1493 	 */
1494 	ath_hal_reset(ah, sc->sc_opmode,
1495 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1496 	    AH_FALSE, &status);
1497 	ath_reset_keycache(sc);
1498 
1499 	/* Let DFS at it in case it's a DFS channel */
1500 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1501 
1502 	/* Let spectral at in case spectral is enabled */
1503 	ath_spectral_enable(sc, ic->ic_curchan);
1504 
1505 	/* Restore the LED configuration */
1506 	ath_led_config(sc);
1507 	ath_hal_setledstate(ah, HAL_LED_INIT);
1508 
1509 	if (sc->sc_resume_up)
1510 		ieee80211_resume_all(ic);
1511 
1512 	/* XXX beacons ? */
1513 }
1514 
1515 void
1516 ath_shutdown(struct ath_softc *sc)
1517 {
1518 	struct ifnet *ifp = sc->sc_ifp;
1519 
1520 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1521 		__func__, ifp->if_flags);
1522 
1523 	ath_stop(ifp);
1524 	/* NB: no point powering down chip as we're about to reboot */
1525 }
1526 
1527 /*
1528  * Interrupt handler.  Most of the actual processing is deferred.
1529  */
1530 void
1531 ath_intr(void *arg)
1532 {
1533 	struct ath_softc *sc = arg;
1534 	struct ifnet *ifp = sc->sc_ifp;
1535 	struct ath_hal *ah = sc->sc_ah;
1536 	HAL_INT status = 0;
1537 	uint32_t txqs;
1538 
1539 	/*
1540 	 * If we're inside a reset path, just print a warning and
1541 	 * clear the ISR. The reset routine will finish it for us.
1542 	 */
1543 	ATH_PCU_LOCK(sc);
1544 	if (sc->sc_inreset_cnt) {
1545 		HAL_INT status;
1546 		ath_hal_getisr(ah, &status);	/* clear ISR */
1547 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1548 		DPRINTF(sc, ATH_DEBUG_ANY,
1549 		    "%s: in reset, ignoring: status=0x%x\n",
1550 		    __func__, status);
1551 		ATH_PCU_UNLOCK(sc);
1552 		return;
1553 	}
1554 
1555 	if (sc->sc_invalid) {
1556 		/*
1557 		 * The hardware is not ready/present, don't touch anything.
1558 		 * Note this can happen early on if the IRQ is shared.
1559 		 */
1560 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1561 		ATH_PCU_UNLOCK(sc);
1562 		return;
1563 	}
1564 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1565 		ATH_PCU_UNLOCK(sc);
1566 		return;
1567 	}
1568 
1569 	if ((ifp->if_flags & IFF_UP) == 0 ||
1570 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1571 		HAL_INT status;
1572 
1573 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1574 			__func__, ifp->if_flags);
1575 		ath_hal_getisr(ah, &status);	/* clear ISR */
1576 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1577 		ATH_PCU_UNLOCK(sc);
1578 		return;
1579 	}
1580 
1581 	/*
1582 	 * Figure out the reason(s) for the interrupt.  Note
1583 	 * that the hal returns a pseudo-ISR that may include
1584 	 * bits we haven't explicitly enabled so we mask the
1585 	 * value to insure we only process bits we requested.
1586 	 */
1587 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1588 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1589 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1590 #ifdef	ATH_KTR_INTR_DEBUG
1591 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1592 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1593 	    ah->ah_intrstate[0],
1594 	    ah->ah_intrstate[1],
1595 	    ah->ah_intrstate[2],
1596 	    ah->ah_intrstate[3],
1597 	    ah->ah_intrstate[6]);
1598 #endif
1599 
1600 	/* Squirrel away SYNC interrupt debugging */
1601 	if (ah->ah_syncstate != 0) {
1602 		int i;
1603 		for (i = 0; i < 32; i++)
1604 			if (ah->ah_syncstate & (i << i))
1605 				sc->sc_intr_stats.sync_intr[i]++;
1606 	}
1607 
1608 	status &= sc->sc_imask;			/* discard unasked for bits */
1609 
1610 	/* Short-circuit un-handled interrupts */
1611 	if (status == 0x0) {
1612 		ATH_PCU_UNLOCK(sc);
1613 		return;
1614 	}
1615 
1616 	/*
1617 	 * Take a note that we're inside the interrupt handler, so
1618 	 * the reset routines know to wait.
1619 	 */
1620 	sc->sc_intr_cnt++;
1621 	ATH_PCU_UNLOCK(sc);
1622 
1623 	/*
1624 	 * Handle the interrupt. We won't run concurrent with the reset
1625 	 * or channel change routines as they'll wait for sc_intr_cnt
1626 	 * to be 0 before continuing.
1627 	 */
1628 	if (status & HAL_INT_FATAL) {
1629 		sc->sc_stats.ast_hardware++;
1630 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1631 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1632 	} else {
1633 		if (status & HAL_INT_SWBA) {
1634 			/*
1635 			 * Software beacon alert--time to send a beacon.
1636 			 * Handle beacon transmission directly; deferring
1637 			 * this is too slow to meet timing constraints
1638 			 * under load.
1639 			 */
1640 #ifdef IEEE80211_SUPPORT_TDMA
1641 			if (sc->sc_tdma) {
1642 				if (sc->sc_tdmaswba == 0) {
1643 					struct ieee80211com *ic = ifp->if_l2com;
1644 					struct ieee80211vap *vap =
1645 					    TAILQ_FIRST(&ic->ic_vaps);
1646 					ath_tdma_beacon_send(sc, vap);
1647 					sc->sc_tdmaswba =
1648 					    vap->iv_tdma->tdma_bintval;
1649 				} else
1650 					sc->sc_tdmaswba--;
1651 			} else
1652 #endif
1653 			{
1654 				ath_beacon_proc(sc, 0);
1655 #ifdef IEEE80211_SUPPORT_SUPERG
1656 				/*
1657 				 * Schedule the rx taskq in case there's no
1658 				 * traffic so any frames held on the staging
1659 				 * queue are aged and potentially flushed.
1660 				 */
1661 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1662 #endif
1663 			}
1664 		}
1665 		if (status & HAL_INT_RXEOL) {
1666 			int imask;
1667 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1668 			ATH_PCU_LOCK(sc);
1669 			/*
1670 			 * NB: the hardware should re-read the link when
1671 			 *     RXE bit is written, but it doesn't work at
1672 			 *     least on older hardware revs.
1673 			 */
1674 			sc->sc_stats.ast_rxeol++;
1675 			/*
1676 			 * Disable RXEOL/RXORN - prevent an interrupt
1677 			 * storm until the PCU logic can be reset.
1678 			 * In case the interface is reset some other
1679 			 * way before "sc_kickpcu" is called, don't
1680 			 * modify sc_imask - that way if it is reset
1681 			 * by a call to ath_reset() somehow, the
1682 			 * interrupt mask will be correctly reprogrammed.
1683 			 */
1684 			imask = sc->sc_imask;
1685 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1686 			ath_hal_intrset(ah, imask);
1687 			/*
1688 			 * Only blank sc_rxlink if we've not yet kicked
1689 			 * the PCU.
1690 			 *
1691 			 * This isn't entirely correct - the correct solution
1692 			 * would be to have a PCU lock and engage that for
1693 			 * the duration of the PCU fiddling; which would include
1694 			 * running the RX process. Otherwise we could end up
1695 			 * messing up the RX descriptor chain and making the
1696 			 * RX desc list much shorter.
1697 			 */
1698 			if (! sc->sc_kickpcu)
1699 				sc->sc_rxlink = NULL;
1700 			sc->sc_kickpcu = 1;
1701 			/*
1702 			 * Enqueue an RX proc, to handled whatever
1703 			 * is in the RX queue.
1704 			 * This will then kick the PCU.
1705 			 */
1706 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1707 			ATH_PCU_UNLOCK(sc);
1708 		}
1709 		if (status & HAL_INT_TXURN) {
1710 			sc->sc_stats.ast_txurn++;
1711 			/* bump tx trigger level */
1712 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1713 		}
1714 		/*
1715 		 * Handle both the legacy and RX EDMA interrupt bits.
1716 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1717 		 */
1718 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1719 			sc->sc_stats.ast_rx_intr++;
1720 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1721 		}
1722 		if (status & HAL_INT_TX) {
1723 			sc->sc_stats.ast_tx_intr++;
1724 			/*
1725 			 * Grab all the currently set bits in the HAL txq bitmap
1726 			 * and blank them. This is the only place we should be
1727 			 * doing this.
1728 			 */
1729 			if (! sc->sc_isedma) {
1730 				ATH_PCU_LOCK(sc);
1731 				txqs = 0xffffffff;
1732 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1733 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1734 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1735 				    txqs,
1736 				    sc->sc_txq_active,
1737 				    sc->sc_txq_active | txqs);
1738 				sc->sc_txq_active |= txqs;
1739 				ATH_PCU_UNLOCK(sc);
1740 			}
1741 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1742 		}
1743 		if (status & HAL_INT_BMISS) {
1744 			sc->sc_stats.ast_bmiss++;
1745 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1746 		}
1747 		if (status & HAL_INT_GTT)
1748 			sc->sc_stats.ast_tx_timeout++;
1749 		if (status & HAL_INT_CST)
1750 			sc->sc_stats.ast_tx_cst++;
1751 		if (status & HAL_INT_MIB) {
1752 			sc->sc_stats.ast_mib++;
1753 			ATH_PCU_LOCK(sc);
1754 			/*
1755 			 * Disable interrupts until we service the MIB
1756 			 * interrupt; otherwise it will continue to fire.
1757 			 */
1758 			ath_hal_intrset(ah, 0);
1759 			/*
1760 			 * Let the hal handle the event.  We assume it will
1761 			 * clear whatever condition caused the interrupt.
1762 			 */
1763 			ath_hal_mibevent(ah, &sc->sc_halstats);
1764 			/*
1765 			 * Don't reset the interrupt if we've just
1766 			 * kicked the PCU, or we may get a nested
1767 			 * RXEOL before the rxproc has had a chance
1768 			 * to run.
1769 			 */
1770 			if (sc->sc_kickpcu == 0)
1771 				ath_hal_intrset(ah, sc->sc_imask);
1772 			ATH_PCU_UNLOCK(sc);
1773 		}
1774 		if (status & HAL_INT_RXORN) {
1775 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1776 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1777 			sc->sc_stats.ast_rxorn++;
1778 		}
1779 	}
1780 	ATH_PCU_LOCK(sc);
1781 	sc->sc_intr_cnt--;
1782 	ATH_PCU_UNLOCK(sc);
1783 }
1784 
1785 static void
1786 ath_fatal_proc(void *arg, int pending)
1787 {
1788 	struct ath_softc *sc = arg;
1789 	struct ifnet *ifp = sc->sc_ifp;
1790 	u_int32_t *state;
1791 	u_int32_t len;
1792 	void *sp;
1793 
1794 	if_printf(ifp, "hardware error; resetting\n");
1795 	/*
1796 	 * Fatal errors are unrecoverable.  Typically these
1797 	 * are caused by DMA errors.  Collect h/w state from
1798 	 * the hal so we can diagnose what's going on.
1799 	 */
1800 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1801 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1802 		state = sp;
1803 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1804 		    state[0], state[1] , state[2], state[3],
1805 		    state[4], state[5]);
1806 	}
1807 	ath_reset(ifp, ATH_RESET_NOLOSS);
1808 }
1809 
1810 static void
1811 ath_bmiss_vap(struct ieee80211vap *vap)
1812 {
1813 	/*
1814 	 * Workaround phantom bmiss interrupts by sanity-checking
1815 	 * the time of our last rx'd frame.  If it is within the
1816 	 * beacon miss interval then ignore the interrupt.  If it's
1817 	 * truly a bmiss we'll get another interrupt soon and that'll
1818 	 * be dispatched up for processing.  Note this applies only
1819 	 * for h/w beacon miss events.
1820 	 */
1821 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1822 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1823 		struct ath_softc *sc = ifp->if_softc;
1824 		u_int64_t lastrx = sc->sc_lastrx;
1825 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1826 		/* XXX should take a locked ref to iv_bss */
1827 		u_int bmisstimeout =
1828 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1829 
1830 		DPRINTF(sc, ATH_DEBUG_BEACON,
1831 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1832 		    __func__, (unsigned long long) tsf,
1833 		    (unsigned long long)(tsf - lastrx),
1834 		    (unsigned long long) lastrx, bmisstimeout);
1835 
1836 		if (tsf - lastrx <= bmisstimeout) {
1837 			sc->sc_stats.ast_bmiss_phantom++;
1838 			return;
1839 		}
1840 	}
1841 	ATH_VAP(vap)->av_bmiss(vap);
1842 }
1843 
1844 static int
1845 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1846 {
1847 	uint32_t rsize;
1848 	void *sp;
1849 
1850 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1851 		return 0;
1852 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1853 	*hangs = *(uint32_t *)sp;
1854 	return 1;
1855 }
1856 
1857 static void
1858 ath_bmiss_proc(void *arg, int pending)
1859 {
1860 	struct ath_softc *sc = arg;
1861 	struct ifnet *ifp = sc->sc_ifp;
1862 	uint32_t hangs;
1863 
1864 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1865 
1866 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1867 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1868 		ath_reset(ifp, ATH_RESET_NOLOSS);
1869 	} else
1870 		ieee80211_beacon_miss(ifp->if_l2com);
1871 }
1872 
1873 /*
1874  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1875  * calcs together with WME.  If necessary disable the crypto
1876  * hardware and mark the 802.11 state so keys will be setup
1877  * with the MIC work done in software.
1878  */
1879 static void
1880 ath_settkipmic(struct ath_softc *sc)
1881 {
1882 	struct ifnet *ifp = sc->sc_ifp;
1883 	struct ieee80211com *ic = ifp->if_l2com;
1884 
1885 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1886 		if (ic->ic_flags & IEEE80211_F_WME) {
1887 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1888 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1889 		} else {
1890 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1891 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1892 		}
1893 	}
1894 }
1895 
1896 static void
1897 ath_init(void *arg)
1898 {
1899 	struct ath_softc *sc = (struct ath_softc *) arg;
1900 	struct ifnet *ifp = sc->sc_ifp;
1901 	struct ieee80211com *ic = ifp->if_l2com;
1902 	struct ath_hal *ah = sc->sc_ah;
1903 	HAL_STATUS status;
1904 
1905 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1906 		__func__, ifp->if_flags);
1907 
1908 	ATH_LOCK(sc);
1909 	/*
1910 	 * Stop anything previously setup.  This is safe
1911 	 * whether this is the first time through or not.
1912 	 */
1913 	ath_stop_locked(ifp);
1914 
1915 	/*
1916 	 * The basic interface to setting the hardware in a good
1917 	 * state is ``reset''.  On return the hardware is known to
1918 	 * be powered up and with interrupts disabled.  This must
1919 	 * be followed by initialization of the appropriate bits
1920 	 * and then setup of the interrupt mask.
1921 	 */
1922 	ath_settkipmic(sc);
1923 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1924 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1925 			status);
1926 		ATH_UNLOCK(sc);
1927 		return;
1928 	}
1929 	ath_chan_change(sc, ic->ic_curchan);
1930 
1931 	/* Let DFS at it in case it's a DFS channel */
1932 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1933 
1934 	/* Let spectral at in case spectral is enabled */
1935 	ath_spectral_enable(sc, ic->ic_curchan);
1936 
1937 	/*
1938 	 * Likewise this is set during reset so update
1939 	 * state cached in the driver.
1940 	 */
1941 	sc->sc_diversity = ath_hal_getdiversity(ah);
1942 	sc->sc_lastlongcal = 0;
1943 	sc->sc_resetcal = 1;
1944 	sc->sc_lastcalreset = 0;
1945 	sc->sc_lastani = 0;
1946 	sc->sc_lastshortcal = 0;
1947 	sc->sc_doresetcal = AH_FALSE;
1948 	/*
1949 	 * Beacon timers were cleared here; give ath_newstate()
1950 	 * a hint that the beacon timers should be poked when
1951 	 * things transition to the RUN state.
1952 	 */
1953 	sc->sc_beacons = 0;
1954 
1955 	/*
1956 	 * Setup the hardware after reset: the key cache
1957 	 * is filled as needed and the receive engine is
1958 	 * set going.  Frame transmit is handled entirely
1959 	 * in the frame output path; there's nothing to do
1960 	 * here except setup the interrupt mask.
1961 	 */
1962 	if (ath_startrecv(sc) != 0) {
1963 		if_printf(ifp, "unable to start recv logic\n");
1964 		ATH_UNLOCK(sc);
1965 		return;
1966 	}
1967 
1968 	/*
1969 	 * Enable interrupts.
1970 	 */
1971 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1972 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1973 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1974 
1975 	/*
1976 	 * Enable RX EDMA bits.  Note these overlap with
1977 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
1978 	 */
1979 	if (sc->sc_isedma)
1980 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
1981 
1982 	/*
1983 	 * Enable MIB interrupts when there are hardware phy counters.
1984 	 * Note we only do this (at the moment) for station mode.
1985 	 */
1986 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1987 		sc->sc_imask |= HAL_INT_MIB;
1988 
1989 	/* Enable global TX timeout and carrier sense timeout if available */
1990 	if (ath_hal_gtxto_supported(ah))
1991 		sc->sc_imask |= HAL_INT_GTT;
1992 
1993 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1994 		__func__, sc->sc_imask);
1995 
1996 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1997 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1998 	ath_hal_intrset(ah, sc->sc_imask);
1999 
2000 	ATH_UNLOCK(sc);
2001 
2002 #ifdef ATH_TX99_DIAG
2003 	if (sc->sc_tx99 != NULL)
2004 		sc->sc_tx99->start(sc->sc_tx99);
2005 	else
2006 #endif
2007 	ieee80211_start_all(ic);		/* start all vap's */
2008 }
2009 
2010 static void
2011 ath_stop_locked(struct ifnet *ifp)
2012 {
2013 	struct ath_softc *sc = ifp->if_softc;
2014 	struct ath_hal *ah = sc->sc_ah;
2015 
2016 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2017 		__func__, sc->sc_invalid, ifp->if_flags);
2018 
2019 	ATH_LOCK_ASSERT(sc);
2020 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2021 		/*
2022 		 * Shutdown the hardware and driver:
2023 		 *    reset 802.11 state machine
2024 		 *    turn off timers
2025 		 *    disable interrupts
2026 		 *    turn off the radio
2027 		 *    clear transmit machinery
2028 		 *    clear receive machinery
2029 		 *    drain and release tx queues
2030 		 *    reclaim beacon resources
2031 		 *    power down hardware
2032 		 *
2033 		 * Note that some of this work is not possible if the
2034 		 * hardware is gone (invalid).
2035 		 */
2036 #ifdef ATH_TX99_DIAG
2037 		if (sc->sc_tx99 != NULL)
2038 			sc->sc_tx99->stop(sc->sc_tx99);
2039 #endif
2040 		callout_stop(&sc->sc_wd_ch);
2041 		sc->sc_wd_timer = 0;
2042 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2043 		if (!sc->sc_invalid) {
2044 			if (sc->sc_softled) {
2045 				callout_stop(&sc->sc_ledtimer);
2046 				ath_hal_gpioset(ah, sc->sc_ledpin,
2047 					!sc->sc_ledon);
2048 				sc->sc_blinking = 0;
2049 			}
2050 			ath_hal_intrset(ah, 0);
2051 		}
2052 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2053 		if (!sc->sc_invalid) {
2054 			ath_stoprecv(sc, 1);
2055 			ath_hal_phydisable(ah);
2056 		} else
2057 			sc->sc_rxlink = NULL;
2058 		ath_beacon_free(sc);	/* XXX not needed */
2059 	}
2060 }
2061 
2062 #define	MAX_TXRX_ITERATIONS	1000
2063 static void
2064 ath_txrx_stop_locked(struct ath_softc *sc)
2065 {
2066 	int i = MAX_TXRX_ITERATIONS;
2067 
2068 	ATH_UNLOCK_ASSERT(sc);
2069 	ATH_PCU_LOCK_ASSERT(sc);
2070 
2071 	/*
2072 	 * Sleep until all the pending operations have completed.
2073 	 *
2074 	 * The caller must ensure that reset has been incremented
2075 	 * or the pending operations may continue being queued.
2076 	 */
2077 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2078 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2079 		if (i <= 0)
2080 			break;
2081 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2082 		i--;
2083 	}
2084 
2085 	if (i <= 0)
2086 		device_printf(sc->sc_dev,
2087 		    "%s: didn't finish after %d iterations\n",
2088 		    __func__, MAX_TXRX_ITERATIONS);
2089 }
2090 #undef	MAX_TXRX_ITERATIONS
2091 
2092 #if 0
2093 static void
2094 ath_txrx_stop(struct ath_softc *sc)
2095 {
2096 	ATH_UNLOCK_ASSERT(sc);
2097 	ATH_PCU_UNLOCK_ASSERT(sc);
2098 
2099 	ATH_PCU_LOCK(sc);
2100 	ath_txrx_stop_locked(sc);
2101 	ATH_PCU_UNLOCK(sc);
2102 }
2103 #endif
2104 
2105 static void
2106 ath_txrx_start(struct ath_softc *sc)
2107 {
2108 
2109 	taskqueue_unblock(sc->sc_tq);
2110 }
2111 
2112 /*
2113  * Grab the reset lock, and wait around until noone else
2114  * is trying to do anything with it.
2115  *
2116  * This is totally horrible but we can't hold this lock for
2117  * long enough to do TX/RX or we end up with net80211/ip stack
2118  * LORs and eventual deadlock.
2119  *
2120  * "dowait" signals whether to spin, waiting for the reset
2121  * lock count to reach 0. This should (for now) only be used
2122  * during the reset path, as the rest of the code may not
2123  * be locking-reentrant enough to behave correctly.
2124  *
2125  * Another, cleaner way should be found to serialise all of
2126  * these operations.
2127  */
2128 #define	MAX_RESET_ITERATIONS	10
2129 static int
2130 ath_reset_grablock(struct ath_softc *sc, int dowait)
2131 {
2132 	int w = 0;
2133 	int i = MAX_RESET_ITERATIONS;
2134 
2135 	ATH_PCU_LOCK_ASSERT(sc);
2136 	do {
2137 		if (sc->sc_inreset_cnt == 0) {
2138 			w = 1;
2139 			break;
2140 		}
2141 		if (dowait == 0) {
2142 			w = 0;
2143 			break;
2144 		}
2145 		ATH_PCU_UNLOCK(sc);
2146 		pause("ath_reset_grablock", 1);
2147 		i--;
2148 		ATH_PCU_LOCK(sc);
2149 	} while (i > 0);
2150 
2151 	/*
2152 	 * We always increment the refcounter, regardless
2153 	 * of whether we succeeded to get it in an exclusive
2154 	 * way.
2155 	 */
2156 	sc->sc_inreset_cnt++;
2157 
2158 	if (i <= 0)
2159 		device_printf(sc->sc_dev,
2160 		    "%s: didn't finish after %d iterations\n",
2161 		    __func__, MAX_RESET_ITERATIONS);
2162 
2163 	if (w == 0)
2164 		device_printf(sc->sc_dev,
2165 		    "%s: warning, recursive reset path!\n",
2166 		    __func__);
2167 
2168 	return w;
2169 }
2170 #undef MAX_RESET_ITERATIONS
2171 
2172 /*
2173  * XXX TODO: write ath_reset_releaselock
2174  */
2175 
2176 static void
2177 ath_stop(struct ifnet *ifp)
2178 {
2179 	struct ath_softc *sc = ifp->if_softc;
2180 
2181 	ATH_LOCK(sc);
2182 	ath_stop_locked(ifp);
2183 	ATH_UNLOCK(sc);
2184 }
2185 
2186 /*
2187  * Reset the hardware w/o losing operational state.  This is
2188  * basically a more efficient way of doing ath_stop, ath_init,
2189  * followed by state transitions to the current 802.11
2190  * operational state.  Used to recover from various errors and
2191  * to reset or reload hardware state.
2192  */
2193 int
2194 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2195 {
2196 	struct ath_softc *sc = ifp->if_softc;
2197 	struct ieee80211com *ic = ifp->if_l2com;
2198 	struct ath_hal *ah = sc->sc_ah;
2199 	HAL_STATUS status;
2200 	int i;
2201 
2202 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2203 
2204 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2205 	ATH_PCU_UNLOCK_ASSERT(sc);
2206 	ATH_UNLOCK_ASSERT(sc);
2207 
2208 	/* Try to (stop any further TX/RX from occuring */
2209 	taskqueue_block(sc->sc_tq);
2210 
2211 	ATH_PCU_LOCK(sc);
2212 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2213 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2214 	if (ath_reset_grablock(sc, 1) == 0) {
2215 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2216 		    __func__);
2217 	}
2218 	ATH_PCU_UNLOCK(sc);
2219 
2220 	/*
2221 	 * Should now wait for pending TX/RX to complete
2222 	 * and block future ones from occuring. This needs to be
2223 	 * done before the TX queue is drained.
2224 	 */
2225 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2226 
2227 	/*
2228 	 * Regardless of whether we're doing a no-loss flush or
2229 	 * not, stop the PCU and handle what's in the RX queue.
2230 	 * That way frames aren't dropped which shouldn't be.
2231 	 */
2232 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2233 	ath_rx_flush(sc);
2234 
2235 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2236 	/* NB: indicate channel change so we do a full reset */
2237 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2238 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2239 			__func__, status);
2240 	sc->sc_diversity = ath_hal_getdiversity(ah);
2241 
2242 	/* Let DFS at it in case it's a DFS channel */
2243 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2244 
2245 	/* Let spectral at in case spectral is enabled */
2246 	ath_spectral_enable(sc, ic->ic_curchan);
2247 
2248 	if (ath_startrecv(sc) != 0)	/* restart recv */
2249 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2250 	/*
2251 	 * We may be doing a reset in response to an ioctl
2252 	 * that changes the channel so update any state that
2253 	 * might change as a result.
2254 	 */
2255 	ath_chan_change(sc, ic->ic_curchan);
2256 	if (sc->sc_beacons) {		/* restart beacons */
2257 #ifdef IEEE80211_SUPPORT_TDMA
2258 		if (sc->sc_tdma)
2259 			ath_tdma_config(sc, NULL);
2260 		else
2261 #endif
2262 			ath_beacon_config(sc, NULL);
2263 	}
2264 
2265 	/*
2266 	 * Release the reset lock and re-enable interrupts here.
2267 	 * If an interrupt was being processed in ath_intr(),
2268 	 * it would disable interrupts at this point. So we have
2269 	 * to atomically enable interrupts and decrement the
2270 	 * reset counter - this way ath_intr() doesn't end up
2271 	 * disabling interrupts without a corresponding enable
2272 	 * in the rest or channel change path.
2273 	 */
2274 	ATH_PCU_LOCK(sc);
2275 	sc->sc_inreset_cnt--;
2276 	/* XXX only do this if sc_inreset_cnt == 0? */
2277 	ath_hal_intrset(ah, sc->sc_imask);
2278 	ATH_PCU_UNLOCK(sc);
2279 
2280 	/*
2281 	 * TX and RX can be started here. If it were started with
2282 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2283 	 * Thus if this is a nested call through the reset or
2284 	 * channel change code, TX completion will occur but
2285 	 * RX completion and ath_start / ath_tx_start will not
2286 	 * run.
2287 	 */
2288 
2289 	/* Restart TX/RX as needed */
2290 	ath_txrx_start(sc);
2291 
2292 	/* Restart TX completion and pending TX */
2293 	if (reset_type == ATH_RESET_NOLOSS) {
2294 		ATH_TX_LOCK(sc);
2295 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2296 			if (ATH_TXQ_SETUP(sc, i)) {
2297 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2298 				ath_txq_sched(sc, &sc->sc_txq[i]);
2299 			}
2300 		}
2301 		ATH_TX_UNLOCK(sc);
2302 	}
2303 
2304 	/*
2305 	 * This may have been set during an ath_start() call which
2306 	 * set this once it detected a concurrent TX was going on.
2307 	 * So, clear it.
2308 	 */
2309 	IF_LOCK(&ifp->if_snd);
2310 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2311 	IF_UNLOCK(&ifp->if_snd);
2312 
2313 	/* Handle any frames in the TX queue */
2314 	/*
2315 	 * XXX should this be done by the caller, rather than
2316 	 * ath_reset() ?
2317 	 */
2318 	ath_tx_kick(sc);		/* restart xmit */
2319 	return 0;
2320 }
2321 
2322 static int
2323 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2324 {
2325 	struct ieee80211com *ic = vap->iv_ic;
2326 	struct ifnet *ifp = ic->ic_ifp;
2327 	struct ath_softc *sc = ifp->if_softc;
2328 	struct ath_hal *ah = sc->sc_ah;
2329 
2330 	switch (cmd) {
2331 	case IEEE80211_IOC_TXPOWER:
2332 		/*
2333 		 * If per-packet TPC is enabled, then we have nothing
2334 		 * to do; otherwise we need to force the global limit.
2335 		 * All this can happen directly; no need to reset.
2336 		 */
2337 		if (!ath_hal_gettpc(ah))
2338 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2339 		return 0;
2340 	}
2341 	/* XXX? Full or NOLOSS? */
2342 	return ath_reset(ifp, ATH_RESET_FULL);
2343 }
2344 
2345 struct ath_buf *
2346 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2347 {
2348 	struct ath_buf *bf;
2349 
2350 	ATH_TXBUF_LOCK_ASSERT(sc);
2351 
2352 	if (btype == ATH_BUFTYPE_MGMT)
2353 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2354 	else
2355 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2356 
2357 	if (bf == NULL) {
2358 		sc->sc_stats.ast_tx_getnobuf++;
2359 	} else {
2360 		if (bf->bf_flags & ATH_BUF_BUSY) {
2361 			sc->sc_stats.ast_tx_getbusybuf++;
2362 			bf = NULL;
2363 		}
2364 	}
2365 
2366 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2367 		if (btype == ATH_BUFTYPE_MGMT)
2368 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2369 		else {
2370 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2371 			sc->sc_txbuf_cnt--;
2372 
2373 			/*
2374 			 * This shuldn't happen; however just to be
2375 			 * safe print a warning and fudge the txbuf
2376 			 * count.
2377 			 */
2378 			if (sc->sc_txbuf_cnt < 0) {
2379 				device_printf(sc->sc_dev,
2380 				    "%s: sc_txbuf_cnt < 0?\n",
2381 				    __func__);
2382 				sc->sc_txbuf_cnt = 0;
2383 			}
2384 		}
2385 	} else
2386 		bf = NULL;
2387 
2388 	if (bf == NULL) {
2389 		/* XXX should check which list, mgmt or otherwise */
2390 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2391 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2392 			"out of xmit buffers" : "xmit buffer busy");
2393 		return NULL;
2394 	}
2395 
2396 	/* XXX TODO: should do this at buffer list initialisation */
2397 	/* XXX (then, ensure the buffer has the right flag set) */
2398 	if (btype == ATH_BUFTYPE_MGMT)
2399 		bf->bf_flags |= ATH_BUF_MGMT;
2400 	else
2401 		bf->bf_flags &= (~ATH_BUF_MGMT);
2402 
2403 	/* Valid bf here; clear some basic fields */
2404 	bf->bf_next = NULL;	/* XXX just to be sure */
2405 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2406 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2407 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2408 
2409 	/*
2410 	 * Track the descriptor ID only if doing EDMA
2411 	 */
2412 	if (sc->sc_isedma) {
2413 		bf->bf_descid = sc->sc_txbuf_descid;
2414 		sc->sc_txbuf_descid++;
2415 	}
2416 
2417 	return bf;
2418 }
2419 
2420 /*
2421  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2422  * can't be thrown back on the queue as they could still be
2423  * in use by the hardware.
2424  *
2425  * This duplicates the buffer, or returns NULL.
2426  *
2427  * The descriptor is also copied but the link pointers and
2428  * the DMA segments aren't copied; this frame should thus
2429  * be again passed through the descriptor setup/chain routines
2430  * so the link is correct.
2431  *
2432  * The caller must free the buffer using ath_freebuf().
2433  *
2434  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2435  * XXX in the TX pathway when retries are needed.
2436  * XXX Figure out how to keep some buffers free, or factor the
2437  * XXX number of busy buffers into the xmit path (ath_start())
2438  * XXX so we don't over-commit.
2439  */
2440 struct ath_buf *
2441 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2442 {
2443 	struct ath_buf *tbf;
2444 
2445 	tbf = ath_getbuf(sc,
2446 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2447 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2448 	if (tbf == NULL)
2449 		return NULL;	/* XXX failure? Why? */
2450 
2451 	/* Copy basics */
2452 	tbf->bf_next = NULL;
2453 	tbf->bf_nseg = bf->bf_nseg;
2454 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2455 	tbf->bf_status = bf->bf_status;
2456 	tbf->bf_m = bf->bf_m;
2457 	tbf->bf_node = bf->bf_node;
2458 	/* will be setup by the chain/setup function */
2459 	tbf->bf_lastds = NULL;
2460 	/* for now, last == self */
2461 	tbf->bf_last = tbf;
2462 	tbf->bf_comp = bf->bf_comp;
2463 
2464 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2465 
2466 	/* The caller has to re-init the descriptor + links */
2467 
2468 	/* Copy state */
2469 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2470 
2471 	return tbf;
2472 }
2473 
2474 struct ath_buf *
2475 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2476 {
2477 	struct ath_buf *bf;
2478 
2479 	ATH_TXBUF_LOCK(sc);
2480 	bf = _ath_getbuf_locked(sc, btype);
2481 	/*
2482 	 * If a mgmt buffer was requested but we're out of those,
2483 	 * try requesting a normal one.
2484 	 */
2485 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2486 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2487 	ATH_TXBUF_UNLOCK(sc);
2488 	if (bf == NULL) {
2489 		struct ifnet *ifp = sc->sc_ifp;
2490 
2491 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2492 		sc->sc_stats.ast_tx_qstop++;
2493 		IF_LOCK(&ifp->if_snd);
2494 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2495 		IF_UNLOCK(&ifp->if_snd);
2496 	}
2497 	return bf;
2498 }
2499 
2500 static void
2501 ath_start_queue(struct ifnet *ifp)
2502 {
2503 	struct ath_softc *sc = ifp->if_softc;
2504 
2505 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
2506 	ath_tx_kick(sc);
2507 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
2508 }
2509 
2510 void
2511 ath_start_task(void *arg, int npending)
2512 {
2513 	struct ath_softc *sc = (struct ath_softc *) arg;
2514 	struct ifnet *ifp = sc->sc_ifp;
2515 
2516 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
2517 
2518 	/* XXX is it ok to hold the ATH_LOCK here? */
2519 	ATH_PCU_LOCK(sc);
2520 	if (sc->sc_inreset_cnt > 0) {
2521 		device_printf(sc->sc_dev,
2522 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2523 		ATH_PCU_UNLOCK(sc);
2524 		IF_LOCK(&ifp->if_snd);
2525 		sc->sc_stats.ast_tx_qstop++;
2526 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2527 		IF_UNLOCK(&ifp->if_snd);
2528 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2529 		return;
2530 	}
2531 	sc->sc_txstart_cnt++;
2532 	ATH_PCU_UNLOCK(sc);
2533 
2534 	ATH_TX_LOCK(sc);
2535 	ath_start(sc->sc_ifp);
2536 	ATH_TX_UNLOCK(sc);
2537 
2538 	ATH_PCU_LOCK(sc);
2539 	sc->sc_txstart_cnt--;
2540 	ATH_PCU_UNLOCK(sc);
2541 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
2542 }
2543 
2544 void
2545 ath_start(struct ifnet *ifp)
2546 {
2547 	struct ath_softc *sc = ifp->if_softc;
2548 	struct ieee80211_node *ni;
2549 	struct ath_buf *bf;
2550 	struct mbuf *m, *next;
2551 	ath_bufhead frags;
2552 	int npkts = 0;
2553 
2554 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2555 		return;
2556 
2557 	ATH_TX_LOCK_ASSERT(sc);
2558 
2559 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
2560 
2561 	for (;;) {
2562 		ATH_TXBUF_LOCK(sc);
2563 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2564 			/* XXX increment counter? */
2565 			ATH_TXBUF_UNLOCK(sc);
2566 			IF_LOCK(&ifp->if_snd);
2567 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2568 			IF_UNLOCK(&ifp->if_snd);
2569 			break;
2570 		}
2571 		ATH_TXBUF_UNLOCK(sc);
2572 
2573 		/*
2574 		 * Grab a TX buffer and associated resources.
2575 		 */
2576 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2577 		if (bf == NULL)
2578 			break;
2579 
2580 		IFQ_DEQUEUE(&ifp->if_snd, m);
2581 		if (m == NULL) {
2582 			ATH_TXBUF_LOCK(sc);
2583 			ath_returnbuf_head(sc, bf);
2584 			ATH_TXBUF_UNLOCK(sc);
2585 			break;
2586 		}
2587 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2588 		npkts ++;
2589 		/*
2590 		 * Check for fragmentation.  If this frame
2591 		 * has been broken up verify we have enough
2592 		 * buffers to send all the fragments so all
2593 		 * go out or none...
2594 		 */
2595 		TAILQ_INIT(&frags);
2596 		if ((m->m_flags & M_FRAG) &&
2597 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2598 			DPRINTF(sc, ATH_DEBUG_XMIT,
2599 			    "%s: out of txfrag buffers\n", __func__);
2600 			sc->sc_stats.ast_tx_nofrag++;
2601 			ifp->if_oerrors++;
2602 			ath_freetx(m);
2603 			goto bad;
2604 		}
2605 		ifp->if_opackets++;
2606 	nextfrag:
2607 		/*
2608 		 * Pass the frame to the h/w for transmission.
2609 		 * Fragmented frames have each frag chained together
2610 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2611 		 * to send all the frags because of work done by
2612 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2613 		 * calling ath_tx_start so it can use it to extend the
2614 		 * the tx duration to cover the subsequent frag and
2615 		 * so it can reclaim all the mbufs in case of an error;
2616 		 * ath_tx_start clears m_nextpkt once it commits to
2617 		 * handing the frame to the hardware.
2618 		 */
2619 		next = m->m_nextpkt;
2620 		if (ath_tx_start(sc, ni, bf, m)) {
2621 	bad:
2622 			ifp->if_oerrors++;
2623 	reclaim:
2624 			bf->bf_m = NULL;
2625 			bf->bf_node = NULL;
2626 			ATH_TXBUF_LOCK(sc);
2627 			ath_returnbuf_head(sc, bf);
2628 			ath_txfrag_cleanup(sc, &frags, ni);
2629 			ATH_TXBUF_UNLOCK(sc);
2630 			/*
2631 			 * XXX todo, free the node outside of
2632 			 * the TX lock context!
2633 			 */
2634 			if (ni != NULL)
2635 				ieee80211_free_node(ni);
2636 			continue;
2637 		}
2638 
2639 		/*
2640 		 * Check here if the node is in power save state.
2641 		 */
2642 		ath_tx_update_tim(sc, ni, 1);
2643 
2644 		if (next != NULL) {
2645 			/*
2646 			 * Beware of state changing between frags.
2647 			 * XXX check sta power-save state?
2648 			 */
2649 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2650 				DPRINTF(sc, ATH_DEBUG_XMIT,
2651 				    "%s: flush fragmented packet, state %s\n",
2652 				    __func__,
2653 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2654 				ath_freetx(next);
2655 				goto reclaim;
2656 			}
2657 			m = next;
2658 			bf = TAILQ_FIRST(&frags);
2659 			KASSERT(bf != NULL, ("no buf for txfrag"));
2660 			TAILQ_REMOVE(&frags, bf, bf_list);
2661 			goto nextfrag;
2662 		}
2663 
2664 		sc->sc_wd_timer = 5;
2665 	}
2666 	ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
2667 }
2668 
2669 static int
2670 ath_media_change(struct ifnet *ifp)
2671 {
2672 	int error = ieee80211_media_change(ifp);
2673 	/* NB: only the fixed rate can change and that doesn't need a reset */
2674 	return (error == ENETRESET ? 0 : error);
2675 }
2676 
2677 /*
2678  * Block/unblock tx+rx processing while a key change is done.
2679  * We assume the caller serializes key management operations
2680  * so we only need to worry about synchronization with other
2681  * uses that originate in the driver.
2682  */
2683 static void
2684 ath_key_update_begin(struct ieee80211vap *vap)
2685 {
2686 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2687 	struct ath_softc *sc = ifp->if_softc;
2688 
2689 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2690 	taskqueue_block(sc->sc_tq);
2691 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2692 }
2693 
2694 static void
2695 ath_key_update_end(struct ieee80211vap *vap)
2696 {
2697 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2698 	struct ath_softc *sc = ifp->if_softc;
2699 
2700 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2701 	IF_UNLOCK(&ifp->if_snd);
2702 	taskqueue_unblock(sc->sc_tq);
2703 }
2704 
2705 static void
2706 ath_update_promisc(struct ifnet *ifp)
2707 {
2708 	struct ath_softc *sc = ifp->if_softc;
2709 	u_int32_t rfilt;
2710 
2711 	/* configure rx filter */
2712 	rfilt = ath_calcrxfilter(sc);
2713 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2714 
2715 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2716 }
2717 
2718 static void
2719 ath_update_mcast(struct ifnet *ifp)
2720 {
2721 	struct ath_softc *sc = ifp->if_softc;
2722 	u_int32_t mfilt[2];
2723 
2724 	/* calculate and install multicast filter */
2725 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2726 		struct ifmultiaddr *ifma;
2727 		/*
2728 		 * Merge multicast addresses to form the hardware filter.
2729 		 */
2730 		mfilt[0] = mfilt[1] = 0;
2731 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2732 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2733 			caddr_t dl;
2734 			u_int32_t val;
2735 			u_int8_t pos;
2736 
2737 			/* calculate XOR of eight 6bit values */
2738 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2739 			val = LE_READ_4(dl + 0);
2740 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2741 			val = LE_READ_4(dl + 3);
2742 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2743 			pos &= 0x3f;
2744 			mfilt[pos / 32] |= (1 << (pos % 32));
2745 		}
2746 		if_maddr_runlock(ifp);
2747 	} else
2748 		mfilt[0] = mfilt[1] = ~0;
2749 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2750 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2751 		__func__, mfilt[0], mfilt[1]);
2752 }
2753 
2754 void
2755 ath_mode_init(struct ath_softc *sc)
2756 {
2757 	struct ifnet *ifp = sc->sc_ifp;
2758 	struct ath_hal *ah = sc->sc_ah;
2759 	u_int32_t rfilt;
2760 
2761 	/* configure rx filter */
2762 	rfilt = ath_calcrxfilter(sc);
2763 	ath_hal_setrxfilter(ah, rfilt);
2764 
2765 	/* configure operational mode */
2766 	ath_hal_setopmode(ah);
2767 
2768 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2769 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2770 	    __func__,
2771 	    ah,
2772 	    ifp,
2773 	    (ifp == NULL) ? NULL : ifp->if_addr);
2774 
2775 	/* handle any link-level address change */
2776 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2777 
2778 	/* calculate and install multicast filter */
2779 	ath_update_mcast(ifp);
2780 }
2781 
2782 /*
2783  * Set the slot time based on the current setting.
2784  */
2785 void
2786 ath_setslottime(struct ath_softc *sc)
2787 {
2788 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2789 	struct ath_hal *ah = sc->sc_ah;
2790 	u_int usec;
2791 
2792 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2793 		usec = 13;
2794 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2795 		usec = 21;
2796 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2797 		/* honor short/long slot time only in 11g */
2798 		/* XXX shouldn't honor on pure g or turbo g channel */
2799 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2800 			usec = HAL_SLOT_TIME_9;
2801 		else
2802 			usec = HAL_SLOT_TIME_20;
2803 	} else
2804 		usec = HAL_SLOT_TIME_9;
2805 
2806 	DPRINTF(sc, ATH_DEBUG_RESET,
2807 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2808 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2809 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2810 
2811 	ath_hal_setslottime(ah, usec);
2812 	sc->sc_updateslot = OK;
2813 }
2814 
2815 /*
2816  * Callback from the 802.11 layer to update the
2817  * slot time based on the current setting.
2818  */
2819 static void
2820 ath_updateslot(struct ifnet *ifp)
2821 {
2822 	struct ath_softc *sc = ifp->if_softc;
2823 	struct ieee80211com *ic = ifp->if_l2com;
2824 
2825 	/*
2826 	 * When not coordinating the BSS, change the hardware
2827 	 * immediately.  For other operation we defer the change
2828 	 * until beacon updates have propagated to the stations.
2829 	 */
2830 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2831 	    ic->ic_opmode == IEEE80211_M_MBSS)
2832 		sc->sc_updateslot = UPDATE;
2833 	else
2834 		ath_setslottime(sc);
2835 }
2836 
2837 /*
2838  * Append the contents of src to dst; both queues
2839  * are assumed to be locked.
2840  */
2841 void
2842 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2843 {
2844 
2845 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2846 	dst->axq_link = src->axq_link;
2847 	src->axq_link = NULL;
2848 	dst->axq_depth += src->axq_depth;
2849 	dst->axq_aggr_depth += src->axq_aggr_depth;
2850 	src->axq_depth = 0;
2851 	src->axq_aggr_depth = 0;
2852 }
2853 
2854 /*
2855  * Reset the hardware, with no loss.
2856  *
2857  * This can't be used for a general case reset.
2858  */
2859 static void
2860 ath_reset_proc(void *arg, int pending)
2861 {
2862 	struct ath_softc *sc = arg;
2863 	struct ifnet *ifp = sc->sc_ifp;
2864 
2865 #if 0
2866 	if_printf(ifp, "%s: resetting\n", __func__);
2867 #endif
2868 	ath_reset(ifp, ATH_RESET_NOLOSS);
2869 }
2870 
2871 /*
2872  * Reset the hardware after detecting beacons have stopped.
2873  */
2874 static void
2875 ath_bstuck_proc(void *arg, int pending)
2876 {
2877 	struct ath_softc *sc = arg;
2878 	struct ifnet *ifp = sc->sc_ifp;
2879 	uint32_t hangs = 0;
2880 
2881 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2882 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2883 
2884 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2885 		sc->sc_bmisscount);
2886 	sc->sc_stats.ast_bstuck++;
2887 	/*
2888 	 * This assumes that there's no simultaneous channel mode change
2889 	 * occuring.
2890 	 */
2891 	ath_reset(ifp, ATH_RESET_NOLOSS);
2892 }
2893 
2894 static void
2895 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2896 {
2897 	bus_addr_t *paddr = (bus_addr_t*) arg;
2898 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2899 	*paddr = segs->ds_addr;
2900 }
2901 
2902 /*
2903  * Allocate the descriptors and appropriate DMA tag/setup.
2904  *
2905  * For some situations (eg EDMA TX completion), there isn't a requirement
2906  * for the ath_buf entries to be allocated.
2907  */
2908 int
2909 ath_descdma_alloc_desc(struct ath_softc *sc,
2910 	struct ath_descdma *dd, ath_bufhead *head,
2911 	const char *name, int ds_size, int ndesc)
2912 {
2913 #define	DS2PHYS(_dd, _ds) \
2914 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2915 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2916 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2917 	struct ifnet *ifp = sc->sc_ifp;
2918 	int error;
2919 
2920 	dd->dd_descsize = ds_size;
2921 
2922 	DPRINTF(sc, ATH_DEBUG_RESET,
2923 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
2924 	    __func__, name, ndesc, dd->dd_descsize);
2925 
2926 	dd->dd_name = name;
2927 	dd->dd_desc_len = dd->dd_descsize * ndesc;
2928 
2929 	/*
2930 	 * Merlin work-around:
2931 	 * Descriptors that cross the 4KB boundary can't be used.
2932 	 * Assume one skipped descriptor per 4KB page.
2933 	 */
2934 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2935 		int numpages = dd->dd_desc_len / 4096;
2936 		dd->dd_desc_len += ds_size * numpages;
2937 	}
2938 
2939 	/*
2940 	 * Setup DMA descriptor area.
2941 	 */
2942 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2943 		       PAGE_SIZE, 0,		/* alignment, bounds */
2944 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2945 		       BUS_SPACE_MAXADDR,	/* highaddr */
2946 		       NULL, NULL,		/* filter, filterarg */
2947 		       dd->dd_desc_len,		/* maxsize */
2948 		       1,			/* nsegments */
2949 		       dd->dd_desc_len,		/* maxsegsize */
2950 		       BUS_DMA_ALLOCNOW,	/* flags */
2951 		       NULL,			/* lockfunc */
2952 		       NULL,			/* lockarg */
2953 		       &dd->dd_dmat);
2954 	if (error != 0) {
2955 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2956 		return error;
2957 	}
2958 
2959 	/* allocate descriptors */
2960 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2961 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2962 				 &dd->dd_dmamap);
2963 	if (error != 0) {
2964 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2965 			"error %u\n", ndesc, dd->dd_name, error);
2966 		goto fail1;
2967 	}
2968 
2969 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2970 				dd->dd_desc, dd->dd_desc_len,
2971 				ath_load_cb, &dd->dd_desc_paddr,
2972 				BUS_DMA_NOWAIT);
2973 	if (error != 0) {
2974 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2975 			dd->dd_name, error);
2976 		goto fail2;
2977 	}
2978 
2979 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2980 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
2981 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
2982 	    /*XXX*/ (u_long) dd->dd_desc_len);
2983 
2984 	return (0);
2985 
2986 fail2:
2987 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2988 fail1:
2989 	bus_dma_tag_destroy(dd->dd_dmat);
2990 	memset(dd, 0, sizeof(*dd));
2991 	return error;
2992 #undef DS2PHYS
2993 #undef ATH_DESC_4KB_BOUND_CHECK
2994 }
2995 
2996 int
2997 ath_descdma_setup(struct ath_softc *sc,
2998 	struct ath_descdma *dd, ath_bufhead *head,
2999 	const char *name, int ds_size, int nbuf, int ndesc)
3000 {
3001 #define	DS2PHYS(_dd, _ds) \
3002 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3003 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3004 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3005 	struct ifnet *ifp = sc->sc_ifp;
3006 	uint8_t *ds;
3007 	struct ath_buf *bf;
3008 	int i, bsize, error;
3009 
3010 	/* Allocate descriptors */
3011 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3012 	    nbuf * ndesc);
3013 
3014 	/* Assume any errors during allocation were dealt with */
3015 	if (error != 0) {
3016 		return (error);
3017 	}
3018 
3019 	ds = (uint8_t *) dd->dd_desc;
3020 
3021 	/* allocate rx buffers */
3022 	bsize = sizeof(struct ath_buf) * nbuf;
3023 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3024 	if (bf == NULL) {
3025 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3026 			dd->dd_name, bsize);
3027 		goto fail3;
3028 	}
3029 	dd->dd_bufptr = bf;
3030 
3031 	TAILQ_INIT(head);
3032 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3033 		bf->bf_desc = (struct ath_desc *) ds;
3034 		bf->bf_daddr = DS2PHYS(dd, ds);
3035 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3036 			/*
3037 			 * Merlin WAR: Skip descriptor addresses which
3038 			 * cause 4KB boundary crossing along any point
3039 			 * in the descriptor.
3040 			 */
3041 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3042 			     dd->dd_descsize)) {
3043 				/* Start at the next page */
3044 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3045 				bf->bf_desc = (struct ath_desc *) ds;
3046 				bf->bf_daddr = DS2PHYS(dd, ds);
3047 			}
3048 		}
3049 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3050 				&bf->bf_dmamap);
3051 		if (error != 0) {
3052 			if_printf(ifp, "unable to create dmamap for %s "
3053 				"buffer %u, error %u\n", dd->dd_name, i, error);
3054 			ath_descdma_cleanup(sc, dd, head);
3055 			return error;
3056 		}
3057 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3058 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3059 	}
3060 
3061 	/*
3062 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3063 	 * allocation otherwise weird stuff will occur and crash your
3064 	 * machine.
3065 	 */
3066 	return 0;
3067 	/* XXX this should likely just call ath_descdma_cleanup() */
3068 fail3:
3069 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3070 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3071 	bus_dma_tag_destroy(dd->dd_dmat);
3072 	memset(dd, 0, sizeof(*dd));
3073 	return error;
3074 #undef DS2PHYS
3075 #undef ATH_DESC_4KB_BOUND_CHECK
3076 }
3077 
3078 /*
3079  * Allocate ath_buf entries but no descriptor contents.
3080  *
3081  * This is for RX EDMA where the descriptors are the header part of
3082  * the RX buffer.
3083  */
3084 int
3085 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3086 	struct ath_descdma *dd, ath_bufhead *head,
3087 	const char *name, int nbuf, int rx_status_len)
3088 {
3089 	struct ifnet *ifp = sc->sc_ifp;
3090 	struct ath_buf *bf;
3091 	int i, bsize, error;
3092 
3093 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3094 	    __func__, name, nbuf);
3095 
3096 	dd->dd_name = name;
3097 	/*
3098 	 * This is (mostly) purely for show.  We're not allocating any actual
3099 	 * descriptors here as EDMA RX has the descriptor be part
3100 	 * of the RX buffer.
3101 	 *
3102 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3103 	 * whether we have already freed this DMA mapping.
3104 	 */
3105 	dd->dd_desc_len = rx_status_len * nbuf;
3106 	dd->dd_descsize = rx_status_len;
3107 
3108 	/* allocate rx buffers */
3109 	bsize = sizeof(struct ath_buf) * nbuf;
3110 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3111 	if (bf == NULL) {
3112 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3113 			dd->dd_name, bsize);
3114 		error = ENOMEM;
3115 		goto fail3;
3116 	}
3117 	dd->dd_bufptr = bf;
3118 
3119 	TAILQ_INIT(head);
3120 	for (i = 0; i < nbuf; i++, bf++) {
3121 		bf->bf_desc = NULL;
3122 		bf->bf_daddr = 0;
3123 		bf->bf_lastds = NULL;	/* Just an initial value */
3124 
3125 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3126 				&bf->bf_dmamap);
3127 		if (error != 0) {
3128 			if_printf(ifp, "unable to create dmamap for %s "
3129 				"buffer %u, error %u\n", dd->dd_name, i, error);
3130 			ath_descdma_cleanup(sc, dd, head);
3131 			return error;
3132 		}
3133 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3134 	}
3135 	return 0;
3136 fail3:
3137 	memset(dd, 0, sizeof(*dd));
3138 	return error;
3139 }
3140 
3141 void
3142 ath_descdma_cleanup(struct ath_softc *sc,
3143 	struct ath_descdma *dd, ath_bufhead *head)
3144 {
3145 	struct ath_buf *bf;
3146 	struct ieee80211_node *ni;
3147 
3148 	if (dd->dd_dmamap != 0) {
3149 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3150 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3151 		bus_dma_tag_destroy(dd->dd_dmat);
3152 	}
3153 
3154 	if (head != NULL) {
3155 		TAILQ_FOREACH(bf, head, bf_list) {
3156 			if (bf->bf_m) {
3157 				m_freem(bf->bf_m);
3158 				bf->bf_m = NULL;
3159 			}
3160 			if (bf->bf_dmamap != NULL) {
3161 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3162 				bf->bf_dmamap = NULL;
3163 			}
3164 			ni = bf->bf_node;
3165 			bf->bf_node = NULL;
3166 			if (ni != NULL) {
3167 				/*
3168 				 * Reclaim node reference.
3169 				 */
3170 				ieee80211_free_node(ni);
3171 			}
3172 		}
3173 	}
3174 
3175 	if (head != NULL)
3176 		TAILQ_INIT(head);
3177 
3178 	if (dd->dd_bufptr != NULL)
3179 		free(dd->dd_bufptr, M_ATHDEV);
3180 	memset(dd, 0, sizeof(*dd));
3181 }
3182 
3183 static int
3184 ath_desc_alloc(struct ath_softc *sc)
3185 {
3186 	int error;
3187 
3188 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3189 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
3190 	if (error != 0) {
3191 		return error;
3192 	}
3193 	sc->sc_txbuf_cnt = ath_txbuf;
3194 
3195 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3196 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3197 		    ATH_TXDESC);
3198 	if (error != 0) {
3199 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3200 		return error;
3201 	}
3202 
3203 	/*
3204 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3205 	 * flag doesn't have to be set in ath_getbuf_locked().
3206 	 */
3207 
3208 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3209 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3210 	if (error != 0) {
3211 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3212 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3213 		    &sc->sc_txbuf_mgmt);
3214 		return error;
3215 	}
3216 	return 0;
3217 }
3218 
3219 static void
3220 ath_desc_free(struct ath_softc *sc)
3221 {
3222 
3223 	if (sc->sc_bdma.dd_desc_len != 0)
3224 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3225 	if (sc->sc_txdma.dd_desc_len != 0)
3226 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3227 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3228 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3229 		    &sc->sc_txbuf_mgmt);
3230 }
3231 
3232 static struct ieee80211_node *
3233 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3234 {
3235 	struct ieee80211com *ic = vap->iv_ic;
3236 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3237 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3238 	struct ath_node *an;
3239 
3240 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3241 	if (an == NULL) {
3242 		/* XXX stat+msg */
3243 		return NULL;
3244 	}
3245 	ath_rate_node_init(sc, an);
3246 
3247 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3248 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3249 	    device_get_nameunit(sc->sc_dev), an);
3250 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3251 
3252 	/* XXX setup ath_tid */
3253 	ath_tx_tid_init(sc, an);
3254 
3255 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3256 	return &an->an_node;
3257 }
3258 
3259 static void
3260 ath_node_cleanup(struct ieee80211_node *ni)
3261 {
3262 	struct ieee80211com *ic = ni->ni_ic;
3263 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3264 
3265 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3266 	ath_tx_node_flush(sc, ATH_NODE(ni));
3267 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3268 	sc->sc_node_cleanup(ni);
3269 }
3270 
3271 static void
3272 ath_node_free(struct ieee80211_node *ni)
3273 {
3274 	struct ieee80211com *ic = ni->ni_ic;
3275 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3276 
3277 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3278 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3279 	sc->sc_node_free(ni);
3280 }
3281 
3282 static void
3283 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3284 {
3285 	struct ieee80211com *ic = ni->ni_ic;
3286 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3287 	struct ath_hal *ah = sc->sc_ah;
3288 
3289 	*rssi = ic->ic_node_getrssi(ni);
3290 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3291 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3292 	else
3293 		*noise = -95;		/* nominally correct */
3294 }
3295 
3296 /*
3297  * Set the default antenna.
3298  */
3299 void
3300 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3301 {
3302 	struct ath_hal *ah = sc->sc_ah;
3303 
3304 	/* XXX block beacon interrupts */
3305 	ath_hal_setdefantenna(ah, antenna);
3306 	if (sc->sc_defant != antenna)
3307 		sc->sc_stats.ast_ant_defswitch++;
3308 	sc->sc_defant = antenna;
3309 	sc->sc_rxotherant = 0;
3310 }
3311 
3312 static void
3313 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3314 {
3315 	txq->axq_qnum = qnum;
3316 	txq->axq_ac = 0;
3317 	txq->axq_depth = 0;
3318 	txq->axq_aggr_depth = 0;
3319 	txq->axq_intrcnt = 0;
3320 	txq->axq_link = NULL;
3321 	txq->axq_softc = sc;
3322 	TAILQ_INIT(&txq->axq_q);
3323 	TAILQ_INIT(&txq->axq_tidq);
3324 }
3325 
3326 /*
3327  * Setup a h/w transmit queue.
3328  */
3329 static struct ath_txq *
3330 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3331 {
3332 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3333 	struct ath_hal *ah = sc->sc_ah;
3334 	HAL_TXQ_INFO qi;
3335 	int qnum;
3336 
3337 	memset(&qi, 0, sizeof(qi));
3338 	qi.tqi_subtype = subtype;
3339 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3340 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3341 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3342 	/*
3343 	 * Enable interrupts only for EOL and DESC conditions.
3344 	 * We mark tx descriptors to receive a DESC interrupt
3345 	 * when a tx queue gets deep; otherwise waiting for the
3346 	 * EOL to reap descriptors.  Note that this is done to
3347 	 * reduce interrupt load and this only defers reaping
3348 	 * descriptors, never transmitting frames.  Aside from
3349 	 * reducing interrupts this also permits more concurrency.
3350 	 * The only potential downside is if the tx queue backs
3351 	 * up in which case the top half of the kernel may backup
3352 	 * due to a lack of tx descriptors.
3353 	 */
3354 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3355 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3356 	if (qnum == -1) {
3357 		/*
3358 		 * NB: don't print a message, this happens
3359 		 * normally on parts with too few tx queues
3360 		 */
3361 		return NULL;
3362 	}
3363 	if (qnum >= N(sc->sc_txq)) {
3364 		device_printf(sc->sc_dev,
3365 			"hal qnum %u out of range, max %zu!\n",
3366 			qnum, N(sc->sc_txq));
3367 		ath_hal_releasetxqueue(ah, qnum);
3368 		return NULL;
3369 	}
3370 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3371 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3372 		sc->sc_txqsetup |= 1<<qnum;
3373 	}
3374 	return &sc->sc_txq[qnum];
3375 #undef N
3376 }
3377 
3378 /*
3379  * Setup a hardware data transmit queue for the specified
3380  * access control.  The hal may not support all requested
3381  * queues in which case it will return a reference to a
3382  * previously setup queue.  We record the mapping from ac's
3383  * to h/w queues for use by ath_tx_start and also track
3384  * the set of h/w queues being used to optimize work in the
3385  * transmit interrupt handler and related routines.
3386  */
3387 static int
3388 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3389 {
3390 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3391 	struct ath_txq *txq;
3392 
3393 	if (ac >= N(sc->sc_ac2q)) {
3394 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3395 			ac, N(sc->sc_ac2q));
3396 		return 0;
3397 	}
3398 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3399 	if (txq != NULL) {
3400 		txq->axq_ac = ac;
3401 		sc->sc_ac2q[ac] = txq;
3402 		return 1;
3403 	} else
3404 		return 0;
3405 #undef N
3406 }
3407 
3408 /*
3409  * Update WME parameters for a transmit queue.
3410  */
3411 static int
3412 ath_txq_update(struct ath_softc *sc, int ac)
3413 {
3414 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3415 #define	ATH_TXOP_TO_US(v)		(v<<5)
3416 	struct ifnet *ifp = sc->sc_ifp;
3417 	struct ieee80211com *ic = ifp->if_l2com;
3418 	struct ath_txq *txq = sc->sc_ac2q[ac];
3419 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3420 	struct ath_hal *ah = sc->sc_ah;
3421 	HAL_TXQ_INFO qi;
3422 
3423 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3424 #ifdef IEEE80211_SUPPORT_TDMA
3425 	if (sc->sc_tdma) {
3426 		/*
3427 		 * AIFS is zero so there's no pre-transmit wait.  The
3428 		 * burst time defines the slot duration and is configured
3429 		 * through net80211.  The QCU is setup to not do post-xmit
3430 		 * back off, lockout all lower-priority QCU's, and fire
3431 		 * off the DMA beacon alert timer which is setup based
3432 		 * on the slot configuration.
3433 		 */
3434 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3435 			      | HAL_TXQ_TXERRINT_ENABLE
3436 			      | HAL_TXQ_TXURNINT_ENABLE
3437 			      | HAL_TXQ_TXEOLINT_ENABLE
3438 			      | HAL_TXQ_DBA_GATED
3439 			      | HAL_TXQ_BACKOFF_DISABLE
3440 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3441 			      ;
3442 		qi.tqi_aifs = 0;
3443 		/* XXX +dbaprep? */
3444 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3445 		qi.tqi_burstTime = qi.tqi_readyTime;
3446 	} else {
3447 #endif
3448 		/*
3449 		 * XXX shouldn't this just use the default flags
3450 		 * used in the previous queue setup?
3451 		 */
3452 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3453 			      | HAL_TXQ_TXERRINT_ENABLE
3454 			      | HAL_TXQ_TXDESCINT_ENABLE
3455 			      | HAL_TXQ_TXURNINT_ENABLE
3456 			      | HAL_TXQ_TXEOLINT_ENABLE
3457 			      ;
3458 		qi.tqi_aifs = wmep->wmep_aifsn;
3459 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3460 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3461 		qi.tqi_readyTime = 0;
3462 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3463 #ifdef IEEE80211_SUPPORT_TDMA
3464 	}
3465 #endif
3466 
3467 	DPRINTF(sc, ATH_DEBUG_RESET,
3468 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3469 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3470 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3471 
3472 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3473 		if_printf(ifp, "unable to update hardware queue "
3474 			"parameters for %s traffic!\n",
3475 			ieee80211_wme_acnames[ac]);
3476 		return 0;
3477 	} else {
3478 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3479 		return 1;
3480 	}
3481 #undef ATH_TXOP_TO_US
3482 #undef ATH_EXPONENT_TO_VALUE
3483 }
3484 
3485 /*
3486  * Callback from the 802.11 layer to update WME parameters.
3487  */
3488 int
3489 ath_wme_update(struct ieee80211com *ic)
3490 {
3491 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3492 
3493 	return !ath_txq_update(sc, WME_AC_BE) ||
3494 	    !ath_txq_update(sc, WME_AC_BK) ||
3495 	    !ath_txq_update(sc, WME_AC_VI) ||
3496 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3497 }
3498 
3499 /*
3500  * Reclaim resources for a setup queue.
3501  */
3502 static void
3503 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3504 {
3505 
3506 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3507 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3508 }
3509 
3510 /*
3511  * Reclaim all tx queue resources.
3512  */
3513 static void
3514 ath_tx_cleanup(struct ath_softc *sc)
3515 {
3516 	int i;
3517 
3518 	ATH_TXBUF_LOCK_DESTROY(sc);
3519 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3520 		if (ATH_TXQ_SETUP(sc, i))
3521 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3522 }
3523 
3524 /*
3525  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3526  * using the current rates in sc_rixmap.
3527  */
3528 int
3529 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3530 {
3531 	int rix = sc->sc_rixmap[rate];
3532 	/* NB: return lowest rix for invalid rate */
3533 	return (rix == 0xff ? 0 : rix);
3534 }
3535 
3536 static void
3537 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3538     struct ath_buf *bf)
3539 {
3540 	struct ieee80211_node *ni = bf->bf_node;
3541 	struct ifnet *ifp = sc->sc_ifp;
3542 	struct ieee80211com *ic = ifp->if_l2com;
3543 	int sr, lr, pri;
3544 
3545 	if (ts->ts_status == 0) {
3546 		u_int8_t txant = ts->ts_antenna;
3547 		sc->sc_stats.ast_ant_tx[txant]++;
3548 		sc->sc_ant_tx[txant]++;
3549 		if (ts->ts_finaltsi != 0)
3550 			sc->sc_stats.ast_tx_altrate++;
3551 		pri = M_WME_GETAC(bf->bf_m);
3552 		if (pri >= WME_AC_VO)
3553 			ic->ic_wme.wme_hipri_traffic++;
3554 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3555 			ni->ni_inact = ni->ni_inact_reload;
3556 	} else {
3557 		if (ts->ts_status & HAL_TXERR_XRETRY)
3558 			sc->sc_stats.ast_tx_xretries++;
3559 		if (ts->ts_status & HAL_TXERR_FIFO)
3560 			sc->sc_stats.ast_tx_fifoerr++;
3561 		if (ts->ts_status & HAL_TXERR_FILT)
3562 			sc->sc_stats.ast_tx_filtered++;
3563 		if (ts->ts_status & HAL_TXERR_XTXOP)
3564 			sc->sc_stats.ast_tx_xtxop++;
3565 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3566 			sc->sc_stats.ast_tx_timerexpired++;
3567 
3568 		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3569 			sc->sc_stats.ast_tx_data_underrun++;
3570 		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3571 			sc->sc_stats.ast_tx_delim_underrun++;
3572 
3573 		if (bf->bf_m->m_flags & M_FF)
3574 			sc->sc_stats.ast_ff_txerr++;
3575 	}
3576 	/* XXX when is this valid? */
3577 	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3578 		sc->sc_stats.ast_tx_desccfgerr++;
3579 
3580 	sr = ts->ts_shortretry;
3581 	lr = ts->ts_longretry;
3582 	sc->sc_stats.ast_tx_shortretry += sr;
3583 	sc->sc_stats.ast_tx_longretry += lr;
3584 
3585 }
3586 
3587 /*
3588  * The default completion. If fail is 1, this means
3589  * "please don't retry the frame, and just return -1 status
3590  * to the net80211 stack.
3591  */
3592 void
3593 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3594 {
3595 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3596 	int st;
3597 
3598 	if (fail == 1)
3599 		st = -1;
3600 	else
3601 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3602 		    ts->ts_status : HAL_TXERR_XRETRY;
3603 
3604 	if (bf->bf_state.bfs_dobaw)
3605 		device_printf(sc->sc_dev,
3606 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3607 		    __func__,
3608 		    bf,
3609 		    SEQNO(bf->bf_state.bfs_seqno));
3610 	if (bf->bf_next != NULL)
3611 		device_printf(sc->sc_dev,
3612 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3613 		    __func__,
3614 		    bf,
3615 		    SEQNO(bf->bf_state.bfs_seqno));
3616 
3617 	/*
3618 	 * Check if the node software queue is empty; if so
3619 	 * then clear the TIM.
3620 	 *
3621 	 * This needs to be done before the buffer is freed as
3622 	 * otherwise the node reference will have been released
3623 	 * and the node may not actually exist any longer.
3624 	 *
3625 	 * XXX I don't like this belonging here, but it's cleaner
3626 	 * to do it here right now then all the other places
3627 	 * where ath_tx_default_comp() is called.
3628 	 *
3629 	 * XXX TODO: during drain, ensure that the callback is
3630 	 * being called so we get a chance to update the TIM.
3631 	 */
3632 	if (bf->bf_node)
3633 		ath_tx_update_tim(sc, bf->bf_node, 0);
3634 
3635 	/*
3636 	 * Do any tx complete callback.  Note this must
3637 	 * be done before releasing the node reference.
3638 	 * This will free the mbuf, release the net80211
3639 	 * node and recycle the ath_buf.
3640 	 */
3641 	ath_tx_freebuf(sc, bf, st);
3642 }
3643 
3644 /*
3645  * Update rate control with the given completion status.
3646  */
3647 void
3648 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3649     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3650     int nframes, int nbad)
3651 {
3652 	struct ath_node *an;
3653 
3654 	/* Only for unicast frames */
3655 	if (ni == NULL)
3656 		return;
3657 
3658 	an = ATH_NODE(ni);
3659 	ATH_NODE_UNLOCK_ASSERT(an);
3660 
3661 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3662 		ATH_NODE_LOCK(an);
3663 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3664 		ATH_NODE_UNLOCK(an);
3665 	}
3666 }
3667 
3668 /*
3669  * Update the busy status of the last frame on the free list.
3670  * When doing TDMA, the busy flag tracks whether the hardware
3671  * currently points to this buffer or not, and thus gated DMA
3672  * may restart by re-reading the last descriptor in this
3673  * buffer.
3674  *
3675  * This should be called in the completion function once one
3676  * of the buffers has been used.
3677  */
3678 static void
3679 ath_tx_update_busy(struct ath_softc *sc)
3680 {
3681 	struct ath_buf *last;
3682 
3683 	/*
3684 	 * Since the last frame may still be marked
3685 	 * as ATH_BUF_BUSY, unmark it here before
3686 	 * finishing the frame processing.
3687 	 * Since we've completed a frame (aggregate
3688 	 * or otherwise), the hardware has moved on
3689 	 * and is no longer referencing the previous
3690 	 * descriptor.
3691 	 */
3692 	ATH_TXBUF_LOCK_ASSERT(sc);
3693 	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3694 	if (last != NULL)
3695 		last->bf_flags &= ~ATH_BUF_BUSY;
3696 	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3697 	if (last != NULL)
3698 		last->bf_flags &= ~ATH_BUF_BUSY;
3699 }
3700 
3701 /*
3702  * Process the completion of the given buffer.
3703  *
3704  * This calls the rate control update and then the buffer completion.
3705  * This will either free the buffer or requeue it.  In any case, the
3706  * bf pointer should be treated as invalid after this function is called.
3707  */
3708 void
3709 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3710     struct ath_tx_status *ts, struct ath_buf *bf)
3711 {
3712 	struct ieee80211_node *ni = bf->bf_node;
3713 	struct ath_node *an = NULL;
3714 
3715 	ATH_TX_UNLOCK_ASSERT(sc);
3716 
3717 	/* If unicast frame, update general statistics */
3718 	if (ni != NULL) {
3719 		an = ATH_NODE(ni);
3720 		/* update statistics */
3721 		ath_tx_update_stats(sc, ts, bf);
3722 	}
3723 
3724 	/*
3725 	 * Call the completion handler.
3726 	 * The completion handler is responsible for
3727 	 * calling the rate control code.
3728 	 *
3729 	 * Frames with no completion handler get the
3730 	 * rate control code called here.
3731 	 */
3732 	if (bf->bf_comp == NULL) {
3733 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3734 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3735 			/*
3736 			 * XXX assume this isn't an aggregate
3737 			 * frame.
3738 			 */
3739 			ath_tx_update_ratectrl(sc, ni,
3740 			     bf->bf_state.bfs_rc, ts,
3741 			    bf->bf_state.bfs_pktlen, 1,
3742 			    (ts->ts_status == 0 ? 0 : 1));
3743 		}
3744 		ath_tx_default_comp(sc, bf, 0);
3745 	} else
3746 		bf->bf_comp(sc, bf, 0);
3747 }
3748 
3749 
3750 
3751 /*
3752  * Process completed xmit descriptors from the specified queue.
3753  * Kick the packet scheduler if needed. This can occur from this
3754  * particular task.
3755  */
3756 static int
3757 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3758 {
3759 	struct ath_hal *ah = sc->sc_ah;
3760 	struct ath_buf *bf;
3761 	struct ath_desc *ds;
3762 	struct ath_tx_status *ts;
3763 	struct ieee80211_node *ni;
3764 #ifdef	IEEE80211_SUPPORT_SUPERG
3765 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3766 #endif	/* IEEE80211_SUPPORT_SUPERG */
3767 	int nacked;
3768 	HAL_STATUS status;
3769 
3770 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3771 		__func__, txq->axq_qnum,
3772 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3773 		txq->axq_link);
3774 
3775 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3776 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3777 	    txq->axq_qnum,
3778 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3779 	    txq->axq_link,
3780 	    txq->axq_depth);
3781 
3782 	nacked = 0;
3783 	for (;;) {
3784 		ATH_TX_LOCK(sc);
3785 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3786 		bf = TAILQ_FIRST(&txq->axq_q);
3787 		if (bf == NULL) {
3788 			ATH_TX_UNLOCK(sc);
3789 			break;
3790 		}
3791 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3792 		ts = &bf->bf_status.ds_txstat;
3793 
3794 		status = ath_hal_txprocdesc(ah, ds, ts);
3795 #ifdef ATH_DEBUG
3796 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3797 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3798 			    status == HAL_OK);
3799 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3800 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3801 			    status == HAL_OK);
3802 #endif
3803 #ifdef	ATH_DEBUG_ALQ
3804 		if (if_ath_alq_checkdebug(&sc->sc_alq,
3805 		    ATH_ALQ_EDMA_TXSTATUS)) {
3806 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
3807 			sc->sc_tx_statuslen,
3808 			(char *) ds);
3809 		}
3810 #endif
3811 
3812 		if (status == HAL_EINPROGRESS) {
3813 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3814 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3815 			    txq->axq_qnum, bf, ds);
3816 			ATH_TX_UNLOCK(sc);
3817 			break;
3818 		}
3819 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3820 #ifdef IEEE80211_SUPPORT_TDMA
3821 		if (txq->axq_depth > 0) {
3822 			/*
3823 			 * More frames follow.  Mark the buffer busy
3824 			 * so it's not re-used while the hardware may
3825 			 * still re-read the link field in the descriptor.
3826 			 *
3827 			 * Use the last buffer in an aggregate as that
3828 			 * is where the hardware may be - intermediate
3829 			 * descriptors won't be "busy".
3830 			 */
3831 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3832 		} else
3833 #else
3834 		if (txq->axq_depth == 0)
3835 #endif
3836 			txq->axq_link = NULL;
3837 		if (bf->bf_state.bfs_aggr)
3838 			txq->axq_aggr_depth--;
3839 
3840 		ni = bf->bf_node;
3841 
3842 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
3843 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
3844 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
3845 		/*
3846 		 * If unicast frame was ack'd update RSSI,
3847 		 * including the last rx time used to
3848 		 * workaround phantom bmiss interrupts.
3849 		 */
3850 		if (ni != NULL && ts->ts_status == 0 &&
3851 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3852 			nacked++;
3853 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3854 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3855 				ts->ts_rssi);
3856 		}
3857 		ATH_TX_UNLOCK(sc);
3858 
3859 		/*
3860 		 * Update statistics and call completion
3861 		 */
3862 		ath_tx_process_buf_completion(sc, txq, ts, bf);
3863 
3864 		/* XXX at this point, bf and ni may be totally invalid */
3865 	}
3866 #ifdef IEEE80211_SUPPORT_SUPERG
3867 	/*
3868 	 * Flush fast-frame staging queue when traffic slows.
3869 	 */
3870 	if (txq->axq_depth <= 1)
3871 		ieee80211_ff_flush(ic, txq->axq_ac);
3872 #endif
3873 
3874 	/* Kick the TXQ scheduler */
3875 	if (dosched) {
3876 		ATH_TX_LOCK(sc);
3877 		ath_txq_sched(sc, txq);
3878 		ATH_TX_UNLOCK(sc);
3879 	}
3880 
3881 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3882 	    "ath_tx_processq: txq=%u: done",
3883 	    txq->axq_qnum);
3884 
3885 	return nacked;
3886 }
3887 
3888 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3889 
3890 /*
3891  * Deferred processing of transmit interrupt; special-cased
3892  * for a single hardware transmit queue (e.g. 5210 and 5211).
3893  */
3894 static void
3895 ath_tx_proc_q0(void *arg, int npending)
3896 {
3897 	struct ath_softc *sc = arg;
3898 	struct ifnet *ifp = sc->sc_ifp;
3899 	uint32_t txqs;
3900 
3901 	ATH_PCU_LOCK(sc);
3902 	sc->sc_txproc_cnt++;
3903 	txqs = sc->sc_txq_active;
3904 	sc->sc_txq_active &= ~txqs;
3905 	ATH_PCU_UNLOCK(sc);
3906 
3907 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3908 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
3909 
3910 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3911 		/* XXX why is lastrx updated in tx code? */
3912 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3913 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3914 		ath_tx_processq(sc, sc->sc_cabq, 1);
3915 	IF_LOCK(&ifp->if_snd);
3916 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3917 	IF_UNLOCK(&ifp->if_snd);
3918 	sc->sc_wd_timer = 0;
3919 
3920 	if (sc->sc_softled)
3921 		ath_led_event(sc, sc->sc_txrix);
3922 
3923 	ATH_PCU_LOCK(sc);
3924 	sc->sc_txproc_cnt--;
3925 	ATH_PCU_UNLOCK(sc);
3926 
3927 	ath_tx_kick(sc);
3928 }
3929 
3930 /*
3931  * Deferred processing of transmit interrupt; special-cased
3932  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3933  */
3934 static void
3935 ath_tx_proc_q0123(void *arg, int npending)
3936 {
3937 	struct ath_softc *sc = arg;
3938 	struct ifnet *ifp = sc->sc_ifp;
3939 	int nacked;
3940 	uint32_t txqs;
3941 
3942 	ATH_PCU_LOCK(sc);
3943 	sc->sc_txproc_cnt++;
3944 	txqs = sc->sc_txq_active;
3945 	sc->sc_txq_active &= ~txqs;
3946 	ATH_PCU_UNLOCK(sc);
3947 
3948 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3949 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
3950 
3951 	/*
3952 	 * Process each active queue.
3953 	 */
3954 	nacked = 0;
3955 	if (TXQACTIVE(txqs, 0))
3956 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3957 	if (TXQACTIVE(txqs, 1))
3958 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3959 	if (TXQACTIVE(txqs, 2))
3960 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3961 	if (TXQACTIVE(txqs, 3))
3962 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3963 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3964 		ath_tx_processq(sc, sc->sc_cabq, 1);
3965 	if (nacked)
3966 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3967 
3968 	IF_LOCK(&ifp->if_snd);
3969 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3970 	IF_UNLOCK(&ifp->if_snd);
3971 	sc->sc_wd_timer = 0;
3972 
3973 	if (sc->sc_softled)
3974 		ath_led_event(sc, sc->sc_txrix);
3975 
3976 	ATH_PCU_LOCK(sc);
3977 	sc->sc_txproc_cnt--;
3978 	ATH_PCU_UNLOCK(sc);
3979 
3980 	ath_tx_kick(sc);
3981 }
3982 
3983 /*
3984  * Deferred processing of transmit interrupt.
3985  */
3986 static void
3987 ath_tx_proc(void *arg, int npending)
3988 {
3989 	struct ath_softc *sc = arg;
3990 	struct ifnet *ifp = sc->sc_ifp;
3991 	int i, nacked;
3992 	uint32_t txqs;
3993 
3994 	ATH_PCU_LOCK(sc);
3995 	sc->sc_txproc_cnt++;
3996 	txqs = sc->sc_txq_active;
3997 	sc->sc_txq_active &= ~txqs;
3998 	ATH_PCU_UNLOCK(sc);
3999 
4000 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4001 
4002 	/*
4003 	 * Process each active queue.
4004 	 */
4005 	nacked = 0;
4006 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4007 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4008 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4009 	if (nacked)
4010 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4011 
4012 	/* XXX check this inside of IF_LOCK? */
4013 	IF_LOCK(&ifp->if_snd);
4014 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4015 	IF_UNLOCK(&ifp->if_snd);
4016 	sc->sc_wd_timer = 0;
4017 
4018 	if (sc->sc_softled)
4019 		ath_led_event(sc, sc->sc_txrix);
4020 
4021 	ATH_PCU_LOCK(sc);
4022 	sc->sc_txproc_cnt--;
4023 	ATH_PCU_UNLOCK(sc);
4024 
4025 	ath_tx_kick(sc);
4026 }
4027 #undef	TXQACTIVE
4028 
4029 /*
4030  * Deferred processing of TXQ rescheduling.
4031  */
4032 static void
4033 ath_txq_sched_tasklet(void *arg, int npending)
4034 {
4035 	struct ath_softc *sc = arg;
4036 	int i;
4037 
4038 	/* XXX is skipping ok? */
4039 	ATH_PCU_LOCK(sc);
4040 #if 0
4041 	if (sc->sc_inreset_cnt > 0) {
4042 		device_printf(sc->sc_dev,
4043 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4044 		ATH_PCU_UNLOCK(sc);
4045 		return;
4046 	}
4047 #endif
4048 	sc->sc_txproc_cnt++;
4049 	ATH_PCU_UNLOCK(sc);
4050 
4051 	ATH_TX_LOCK(sc);
4052 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4053 		if (ATH_TXQ_SETUP(sc, i)) {
4054 			ath_txq_sched(sc, &sc->sc_txq[i]);
4055 		}
4056 	}
4057 	ATH_TX_UNLOCK(sc);
4058 
4059 	ATH_PCU_LOCK(sc);
4060 	sc->sc_txproc_cnt--;
4061 	ATH_PCU_UNLOCK(sc);
4062 }
4063 
4064 void
4065 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4066 {
4067 
4068 	ATH_TXBUF_LOCK_ASSERT(sc);
4069 
4070 	if (bf->bf_flags & ATH_BUF_MGMT)
4071 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4072 	else {
4073 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4074 		sc->sc_txbuf_cnt++;
4075 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4076 			device_printf(sc->sc_dev,
4077 			    "%s: sc_txbuf_cnt > %d?\n",
4078 			    __func__,
4079 			    ath_txbuf);
4080 			sc->sc_txbuf_cnt = ath_txbuf;
4081 		}
4082 	}
4083 }
4084 
4085 void
4086 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4087 {
4088 
4089 	ATH_TXBUF_LOCK_ASSERT(sc);
4090 
4091 	if (bf->bf_flags & ATH_BUF_MGMT)
4092 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4093 	else {
4094 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4095 		sc->sc_txbuf_cnt++;
4096 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4097 			device_printf(sc->sc_dev,
4098 			    "%s: sc_txbuf_cnt > %d?\n",
4099 			    __func__,
4100 			    ATH_TXBUF);
4101 			sc->sc_txbuf_cnt = ATH_TXBUF;
4102 		}
4103 	}
4104 }
4105 
4106 /*
4107  * Return a buffer to the pool and update the 'busy' flag on the
4108  * previous 'tail' entry.
4109  *
4110  * This _must_ only be called when the buffer is involved in a completed
4111  * TX. The logic is that if it was part of an active TX, the previous
4112  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4113  * for restart (eg for TDMA.)
4114  *
4115  * The caller must free the mbuf and recycle the node reference.
4116  */
4117 void
4118 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4119 {
4120 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4121 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
4122 
4123 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4124 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4125 
4126 	ATH_TXBUF_LOCK(sc);
4127 	ath_tx_update_busy(sc);
4128 	ath_returnbuf_tail(sc, bf);
4129 	ATH_TXBUF_UNLOCK(sc);
4130 }
4131 
4132 /*
4133  * This is currently used by ath_tx_draintxq() and
4134  * ath_tx_tid_free_pkts().
4135  *
4136  * It recycles a single ath_buf.
4137  */
4138 void
4139 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4140 {
4141 	struct ieee80211_node *ni = bf->bf_node;
4142 	struct mbuf *m0 = bf->bf_m;
4143 
4144 	bf->bf_node = NULL;
4145 	bf->bf_m = NULL;
4146 
4147 	/* Free the buffer, it's not needed any longer */
4148 	ath_freebuf(sc, bf);
4149 
4150 	if (ni != NULL) {
4151 		/*
4152 		 * Do any callback and reclaim the node reference.
4153 		 */
4154 		if (m0->m_flags & M_TXCB)
4155 			ieee80211_process_callback(ni, m0, status);
4156 		ieee80211_free_node(ni);
4157 	}
4158 	m_freem(m0);
4159 
4160 	/*
4161 	 * XXX the buffer used to be freed -after-, but the DMA map was
4162 	 * freed where ath_freebuf() now is. I've no idea what this
4163 	 * will do.
4164 	 */
4165 }
4166 
4167 void
4168 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4169 {
4170 #ifdef ATH_DEBUG
4171 	struct ath_hal *ah = sc->sc_ah;
4172 #endif
4173 	struct ath_buf *bf;
4174 	u_int ix;
4175 
4176 	/*
4177 	 * NB: this assumes output has been stopped and
4178 	 *     we do not need to block ath_tx_proc
4179 	 */
4180 	ATH_TXBUF_LOCK(sc);
4181 	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4182 	if (bf != NULL)
4183 		bf->bf_flags &= ~ATH_BUF_BUSY;
4184 	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
4185 	if (bf != NULL)
4186 		bf->bf_flags &= ~ATH_BUF_BUSY;
4187 	ATH_TXBUF_UNLOCK(sc);
4188 
4189 	for (ix = 0;; ix++) {
4190 		ATH_TX_LOCK(sc);
4191 		bf = TAILQ_FIRST(&txq->axq_q);
4192 		if (bf == NULL) {
4193 			txq->axq_link = NULL;
4194 			/*
4195 			 * There's currently no flag that indicates
4196 			 * a buffer is on the FIFO.  So until that
4197 			 * occurs, just clear the FIFO counter here.
4198 			 *
4199 			 * Yes, this means that if something in parallel
4200 			 * is pushing things onto this TXQ and pushing
4201 			 * _that_ into the hardware, things will get
4202 			 * very fruity very quickly.
4203 			 */
4204 			txq->axq_fifo_depth = 0;
4205 			ATH_TX_UNLOCK(sc);
4206 			break;
4207 		}
4208 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4209 		if (bf->bf_state.bfs_aggr)
4210 			txq->axq_aggr_depth--;
4211 #ifdef ATH_DEBUG
4212 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4213 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4214 			int status = 0;
4215 
4216 			/*
4217 			 * EDMA operation has a TX completion FIFO
4218 			 * separate from the TX descriptor, so this
4219 			 * method of checking the "completion" status
4220 			 * is wrong.
4221 			 */
4222 			if (! sc->sc_isedma) {
4223 				status = (ath_hal_txprocdesc(ah,
4224 				    bf->bf_lastds,
4225 				    &bf->bf_status.ds_txstat) == HAL_OK);
4226 			}
4227 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4228 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4229 			    bf->bf_m->m_len, 0, -1);
4230 		}
4231 #endif /* ATH_DEBUG */
4232 		/*
4233 		 * Since we're now doing magic in the completion
4234 		 * functions, we -must- call it for aggregation
4235 		 * destinations or BAW tracking will get upset.
4236 		 */
4237 		/*
4238 		 * Clear ATH_BUF_BUSY; the completion handler
4239 		 * will free the buffer.
4240 		 */
4241 		ATH_TX_UNLOCK(sc);
4242 		bf->bf_flags &= ~ATH_BUF_BUSY;
4243 		if (bf->bf_comp)
4244 			bf->bf_comp(sc, bf, 1);
4245 		else
4246 			ath_tx_default_comp(sc, bf, 1);
4247 	}
4248 
4249 	/*
4250 	 * Drain software queued frames which are on
4251 	 * active TIDs.
4252 	 */
4253 	ath_tx_txq_drain(sc, txq);
4254 }
4255 
4256 static void
4257 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4258 {
4259 	struct ath_hal *ah = sc->sc_ah;
4260 
4261 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4262 	    __func__, txq->axq_qnum,
4263 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4264 	    txq->axq_link);
4265 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4266 }
4267 
4268 int
4269 ath_stoptxdma(struct ath_softc *sc)
4270 {
4271 	struct ath_hal *ah = sc->sc_ah;
4272 	int i;
4273 
4274 	/* XXX return value */
4275 	if (sc->sc_invalid)
4276 		return 0;
4277 
4278 	if (!sc->sc_invalid) {
4279 		/* don't touch the hardware if marked invalid */
4280 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4281 		    __func__, sc->sc_bhalq,
4282 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4283 		    NULL);
4284 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4285 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4286 			if (ATH_TXQ_SETUP(sc, i))
4287 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4288 	}
4289 
4290 	return 1;
4291 }
4292 
4293 /*
4294  * Drain the transmit queues and reclaim resources.
4295  */
4296 void
4297 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4298 {
4299 #ifdef	ATH_DEBUG
4300 	struct ath_hal *ah = sc->sc_ah;
4301 #endif
4302 	struct ifnet *ifp = sc->sc_ifp;
4303 	int i;
4304 
4305 	(void) ath_stoptxdma(sc);
4306 
4307 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4308 		/*
4309 		 * XXX TODO: should we just handle the completed TX frames
4310 		 * here, whether or not the reset is a full one or not?
4311 		 */
4312 		if (ATH_TXQ_SETUP(sc, i)) {
4313 			if (reset_type == ATH_RESET_NOLOSS)
4314 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4315 			else
4316 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4317 		}
4318 	}
4319 #ifdef ATH_DEBUG
4320 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4321 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4322 		if (bf != NULL && bf->bf_m != NULL) {
4323 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4324 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4325 				    &bf->bf_status.ds_txstat) == HAL_OK);
4326 			ieee80211_dump_pkt(ifp->if_l2com,
4327 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4328 			    0, -1);
4329 		}
4330 	}
4331 #endif /* ATH_DEBUG */
4332 	IF_LOCK(&ifp->if_snd);
4333 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4334 	IF_UNLOCK(&ifp->if_snd);
4335 	sc->sc_wd_timer = 0;
4336 }
4337 
4338 /*
4339  * Update internal state after a channel change.
4340  */
4341 static void
4342 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4343 {
4344 	enum ieee80211_phymode mode;
4345 
4346 	/*
4347 	 * Change channels and update the h/w rate map
4348 	 * if we're switching; e.g. 11a to 11b/g.
4349 	 */
4350 	mode = ieee80211_chan2mode(chan);
4351 	if (mode != sc->sc_curmode)
4352 		ath_setcurmode(sc, mode);
4353 	sc->sc_curchan = chan;
4354 }
4355 
4356 /*
4357  * Set/change channels.  If the channel is really being changed,
4358  * it's done by resetting the chip.  To accomplish this we must
4359  * first cleanup any pending DMA, then restart stuff after a la
4360  * ath_init.
4361  */
4362 static int
4363 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4364 {
4365 	struct ifnet *ifp = sc->sc_ifp;
4366 	struct ieee80211com *ic = ifp->if_l2com;
4367 	struct ath_hal *ah = sc->sc_ah;
4368 	int ret = 0;
4369 
4370 	/* Treat this as an interface reset */
4371 	ATH_PCU_UNLOCK_ASSERT(sc);
4372 	ATH_UNLOCK_ASSERT(sc);
4373 
4374 	/* (Try to) stop TX/RX from occuring */
4375 	taskqueue_block(sc->sc_tq);
4376 
4377 	ATH_PCU_LOCK(sc);
4378 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4379 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4380 	if (ath_reset_grablock(sc, 1) == 0) {
4381 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4382 		    __func__);
4383 	}
4384 	ATH_PCU_UNLOCK(sc);
4385 
4386 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4387 	    __func__, ieee80211_chan2ieee(ic, chan),
4388 	    chan->ic_freq, chan->ic_flags);
4389 	if (chan != sc->sc_curchan) {
4390 		HAL_STATUS status;
4391 		/*
4392 		 * To switch channels clear any pending DMA operations;
4393 		 * wait long enough for the RX fifo to drain, reset the
4394 		 * hardware at the new frequency, and then re-enable
4395 		 * the relevant bits of the h/w.
4396 		 */
4397 #if 0
4398 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4399 #endif
4400 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4401 		/*
4402 		 * First, handle completed TX/RX frames.
4403 		 */
4404 		ath_rx_flush(sc);
4405 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4406 		/*
4407 		 * Next, flush the non-scheduled frames.
4408 		 */
4409 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4410 
4411 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4412 			if_printf(ifp, "%s: unable to reset "
4413 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4414 			    __func__, ieee80211_chan2ieee(ic, chan),
4415 			    chan->ic_freq, chan->ic_flags, status);
4416 			ret = EIO;
4417 			goto finish;
4418 		}
4419 		sc->sc_diversity = ath_hal_getdiversity(ah);
4420 
4421 		/* Let DFS at it in case it's a DFS channel */
4422 		ath_dfs_radar_enable(sc, chan);
4423 
4424 		/* Let spectral at in case spectral is enabled */
4425 		ath_spectral_enable(sc, chan);
4426 
4427 		/*
4428 		 * Re-enable rx framework.
4429 		 */
4430 		if (ath_startrecv(sc) != 0) {
4431 			if_printf(ifp, "%s: unable to restart recv logic\n",
4432 			    __func__);
4433 			ret = EIO;
4434 			goto finish;
4435 		}
4436 
4437 		/*
4438 		 * Change channels and update the h/w rate map
4439 		 * if we're switching; e.g. 11a to 11b/g.
4440 		 */
4441 		ath_chan_change(sc, chan);
4442 
4443 		/*
4444 		 * Reset clears the beacon timers; reset them
4445 		 * here if needed.
4446 		 */
4447 		if (sc->sc_beacons) {		/* restart beacons */
4448 #ifdef IEEE80211_SUPPORT_TDMA
4449 			if (sc->sc_tdma)
4450 				ath_tdma_config(sc, NULL);
4451 			else
4452 #endif
4453 			ath_beacon_config(sc, NULL);
4454 		}
4455 
4456 		/*
4457 		 * Re-enable interrupts.
4458 		 */
4459 #if 0
4460 		ath_hal_intrset(ah, sc->sc_imask);
4461 #endif
4462 	}
4463 
4464 finish:
4465 	ATH_PCU_LOCK(sc);
4466 	sc->sc_inreset_cnt--;
4467 	/* XXX only do this if sc_inreset_cnt == 0? */
4468 	ath_hal_intrset(ah, sc->sc_imask);
4469 	ATH_PCU_UNLOCK(sc);
4470 
4471 	IF_LOCK(&ifp->if_snd);
4472 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4473 	IF_UNLOCK(&ifp->if_snd);
4474 	ath_txrx_start(sc);
4475 	/* XXX ath_start? */
4476 
4477 	return ret;
4478 }
4479 
4480 /*
4481  * Periodically recalibrate the PHY to account
4482  * for temperature/environment changes.
4483  */
4484 static void
4485 ath_calibrate(void *arg)
4486 {
4487 	struct ath_softc *sc = arg;
4488 	struct ath_hal *ah = sc->sc_ah;
4489 	struct ifnet *ifp = sc->sc_ifp;
4490 	struct ieee80211com *ic = ifp->if_l2com;
4491 	HAL_BOOL longCal, isCalDone = AH_TRUE;
4492 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4493 	int nextcal;
4494 
4495 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4496 		goto restart;
4497 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4498 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4499 	if (sc->sc_doresetcal)
4500 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4501 
4502 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4503 	if (aniCal) {
4504 		sc->sc_stats.ast_ani_cal++;
4505 		sc->sc_lastani = ticks;
4506 		ath_hal_ani_poll(ah, sc->sc_curchan);
4507 	}
4508 
4509 	if (longCal) {
4510 		sc->sc_stats.ast_per_cal++;
4511 		sc->sc_lastlongcal = ticks;
4512 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4513 			/*
4514 			 * Rfgain is out of bounds, reset the chip
4515 			 * to load new gain values.
4516 			 */
4517 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4518 				"%s: rfgain change\n", __func__);
4519 			sc->sc_stats.ast_per_rfgain++;
4520 			sc->sc_resetcal = 0;
4521 			sc->sc_doresetcal = AH_TRUE;
4522 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4523 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4524 			return;
4525 		}
4526 		/*
4527 		 * If this long cal is after an idle period, then
4528 		 * reset the data collection state so we start fresh.
4529 		 */
4530 		if (sc->sc_resetcal) {
4531 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4532 			sc->sc_lastcalreset = ticks;
4533 			sc->sc_lastshortcal = ticks;
4534 			sc->sc_resetcal = 0;
4535 			sc->sc_doresetcal = AH_TRUE;
4536 		}
4537 	}
4538 
4539 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4540 	if (shortCal || longCal) {
4541 		isCalDone = AH_FALSE;
4542 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4543 			if (longCal) {
4544 				/*
4545 				 * Calibrate noise floor data again in case of change.
4546 				 */
4547 				ath_hal_process_noisefloor(ah);
4548 			}
4549 		} else {
4550 			DPRINTF(sc, ATH_DEBUG_ANY,
4551 				"%s: calibration of channel %u failed\n",
4552 				__func__, sc->sc_curchan->ic_freq);
4553 			sc->sc_stats.ast_per_calfail++;
4554 		}
4555 		if (shortCal)
4556 			sc->sc_lastshortcal = ticks;
4557 	}
4558 	if (!isCalDone) {
4559 restart:
4560 		/*
4561 		 * Use a shorter interval to potentially collect multiple
4562 		 * data samples required to complete calibration.  Once
4563 		 * we're told the work is done we drop back to a longer
4564 		 * interval between requests.  We're more aggressive doing
4565 		 * work when operating as an AP to improve operation right
4566 		 * after startup.
4567 		 */
4568 		sc->sc_lastshortcal = ticks;
4569 		nextcal = ath_shortcalinterval*hz/1000;
4570 		if (sc->sc_opmode != HAL_M_HOSTAP)
4571 			nextcal *= 10;
4572 		sc->sc_doresetcal = AH_TRUE;
4573 	} else {
4574 		/* nextcal should be the shortest time for next event */
4575 		nextcal = ath_longcalinterval*hz;
4576 		if (sc->sc_lastcalreset == 0)
4577 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4578 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4579 			sc->sc_resetcal = 1;	/* setup reset next trip */
4580 		sc->sc_doresetcal = AH_FALSE;
4581 	}
4582 	/* ANI calibration may occur more often than short/long/resetcal */
4583 	if (ath_anicalinterval > 0)
4584 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4585 
4586 	if (nextcal != 0) {
4587 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4588 		    __func__, nextcal, isCalDone ? "" : "!");
4589 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4590 	} else {
4591 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4592 		    __func__);
4593 		/* NB: don't rearm timer */
4594 	}
4595 }
4596 
4597 static void
4598 ath_scan_start(struct ieee80211com *ic)
4599 {
4600 	struct ifnet *ifp = ic->ic_ifp;
4601 	struct ath_softc *sc = ifp->if_softc;
4602 	struct ath_hal *ah = sc->sc_ah;
4603 	u_int32_t rfilt;
4604 
4605 	/* XXX calibration timer? */
4606 
4607 	ATH_LOCK(sc);
4608 	sc->sc_scanning = 1;
4609 	sc->sc_syncbeacon = 0;
4610 	rfilt = ath_calcrxfilter(sc);
4611 	ATH_UNLOCK(sc);
4612 
4613 	ATH_PCU_LOCK(sc);
4614 	ath_hal_setrxfilter(ah, rfilt);
4615 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4616 	ATH_PCU_UNLOCK(sc);
4617 
4618 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4619 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4620 }
4621 
4622 static void
4623 ath_scan_end(struct ieee80211com *ic)
4624 {
4625 	struct ifnet *ifp = ic->ic_ifp;
4626 	struct ath_softc *sc = ifp->if_softc;
4627 	struct ath_hal *ah = sc->sc_ah;
4628 	u_int32_t rfilt;
4629 
4630 	ATH_LOCK(sc);
4631 	sc->sc_scanning = 0;
4632 	rfilt = ath_calcrxfilter(sc);
4633 	ATH_UNLOCK(sc);
4634 
4635 	ATH_PCU_LOCK(sc);
4636 	ath_hal_setrxfilter(ah, rfilt);
4637 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4638 
4639 	ath_hal_process_noisefloor(ah);
4640 	ATH_PCU_UNLOCK(sc);
4641 
4642 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4643 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4644 		 sc->sc_curaid);
4645 }
4646 
4647 #ifdef	ATH_ENABLE_11N
4648 /*
4649  * For now, just do a channel change.
4650  *
4651  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4652  * control state and resetting the hardware without dropping frames out
4653  * of the queue.
4654  *
4655  * The unfortunate trouble here is making absolutely sure that the
4656  * channel width change has propagated enough so the hardware
4657  * absolutely isn't handed bogus frames for it's current operating
4658  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4659  * does occur in parallel, we need to make certain we've blocked
4660  * any further ongoing TX (and RX, that can cause raw TX)
4661  * before we do this.
4662  */
4663 static void
4664 ath_update_chw(struct ieee80211com *ic)
4665 {
4666 	struct ifnet *ifp = ic->ic_ifp;
4667 	struct ath_softc *sc = ifp->if_softc;
4668 
4669 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4670 	ath_set_channel(ic);
4671 }
4672 #endif	/* ATH_ENABLE_11N */
4673 
4674 static void
4675 ath_set_channel(struct ieee80211com *ic)
4676 {
4677 	struct ifnet *ifp = ic->ic_ifp;
4678 	struct ath_softc *sc = ifp->if_softc;
4679 
4680 	(void) ath_chan_set(sc, ic->ic_curchan);
4681 	/*
4682 	 * If we are returning to our bss channel then mark state
4683 	 * so the next recv'd beacon's tsf will be used to sync the
4684 	 * beacon timers.  Note that since we only hear beacons in
4685 	 * sta/ibss mode this has no effect in other operating modes.
4686 	 */
4687 	ATH_LOCK(sc);
4688 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4689 		sc->sc_syncbeacon = 1;
4690 	ATH_UNLOCK(sc);
4691 }
4692 
4693 /*
4694  * Walk the vap list and check if there any vap's in RUN state.
4695  */
4696 static int
4697 ath_isanyrunningvaps(struct ieee80211vap *this)
4698 {
4699 	struct ieee80211com *ic = this->iv_ic;
4700 	struct ieee80211vap *vap;
4701 
4702 	IEEE80211_LOCK_ASSERT(ic);
4703 
4704 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4705 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4706 			return 1;
4707 	}
4708 	return 0;
4709 }
4710 
4711 static int
4712 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4713 {
4714 	struct ieee80211com *ic = vap->iv_ic;
4715 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4716 	struct ath_vap *avp = ATH_VAP(vap);
4717 	struct ath_hal *ah = sc->sc_ah;
4718 	struct ieee80211_node *ni = NULL;
4719 	int i, error, stamode;
4720 	u_int32_t rfilt;
4721 	int csa_run_transition = 0;
4722 	static const HAL_LED_STATE leds[] = {
4723 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4724 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4725 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4726 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4727 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4728 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4729 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4730 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4731 	};
4732 
4733 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4734 		ieee80211_state_name[vap->iv_state],
4735 		ieee80211_state_name[nstate]);
4736 
4737 	/*
4738 	 * net80211 _should_ have the comlock asserted at this point.
4739 	 * There are some comments around the calls to vap->iv_newstate
4740 	 * which indicate that it (newstate) may end up dropping the
4741 	 * lock.  This and the subsequent lock assert check after newstate
4742 	 * are an attempt to catch these and figure out how/why.
4743 	 */
4744 	IEEE80211_LOCK_ASSERT(ic);
4745 
4746 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4747 		csa_run_transition = 1;
4748 
4749 	callout_drain(&sc->sc_cal_ch);
4750 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4751 
4752 	if (nstate == IEEE80211_S_SCAN) {
4753 		/*
4754 		 * Scanning: turn off beacon miss and don't beacon.
4755 		 * Mark beacon state so when we reach RUN state we'll
4756 		 * [re]setup beacons.  Unblock the task q thread so
4757 		 * deferred interrupt processing is done.
4758 		 */
4759 		ath_hal_intrset(ah,
4760 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4761 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4762 		sc->sc_beacons = 0;
4763 		taskqueue_unblock(sc->sc_tq);
4764 	}
4765 
4766 	ni = ieee80211_ref_node(vap->iv_bss);
4767 	rfilt = ath_calcrxfilter(sc);
4768 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4769 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4770 		   vap->iv_opmode == IEEE80211_M_IBSS);
4771 	if (stamode && nstate == IEEE80211_S_RUN) {
4772 		sc->sc_curaid = ni->ni_associd;
4773 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4774 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4775 	}
4776 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4777 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4778 	ath_hal_setrxfilter(ah, rfilt);
4779 
4780 	/* XXX is this to restore keycache on resume? */
4781 	if (vap->iv_opmode != IEEE80211_M_STA &&
4782 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4783 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4784 			if (ath_hal_keyisvalid(ah, i))
4785 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4786 	}
4787 
4788 	/*
4789 	 * Invoke the parent method to do net80211 work.
4790 	 */
4791 	error = avp->av_newstate(vap, nstate, arg);
4792 	if (error != 0)
4793 		goto bad;
4794 
4795 	/*
4796 	 * See above: ensure av_newstate() doesn't drop the lock
4797 	 * on us.
4798 	 */
4799 	IEEE80211_LOCK_ASSERT(ic);
4800 
4801 	if (nstate == IEEE80211_S_RUN) {
4802 		/* NB: collect bss node again, it may have changed */
4803 		ieee80211_free_node(ni);
4804 		ni = ieee80211_ref_node(vap->iv_bss);
4805 
4806 		DPRINTF(sc, ATH_DEBUG_STATE,
4807 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4808 		    "capinfo 0x%04x chan %d\n", __func__,
4809 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4810 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4811 
4812 		switch (vap->iv_opmode) {
4813 #ifdef IEEE80211_SUPPORT_TDMA
4814 		case IEEE80211_M_AHDEMO:
4815 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4816 				break;
4817 			/* fall thru... */
4818 #endif
4819 		case IEEE80211_M_HOSTAP:
4820 		case IEEE80211_M_IBSS:
4821 		case IEEE80211_M_MBSS:
4822 			/*
4823 			 * Allocate and setup the beacon frame.
4824 			 *
4825 			 * Stop any previous beacon DMA.  This may be
4826 			 * necessary, for example, when an ibss merge
4827 			 * causes reconfiguration; there will be a state
4828 			 * transition from RUN->RUN that means we may
4829 			 * be called with beacon transmission active.
4830 			 */
4831 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4832 
4833 			error = ath_beacon_alloc(sc, ni);
4834 			if (error != 0)
4835 				goto bad;
4836 			/*
4837 			 * If joining an adhoc network defer beacon timer
4838 			 * configuration to the next beacon frame so we
4839 			 * have a current TSF to use.  Otherwise we're
4840 			 * starting an ibss/bss so there's no need to delay;
4841 			 * if this is the first vap moving to RUN state, then
4842 			 * beacon state needs to be [re]configured.
4843 			 */
4844 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4845 			    ni->ni_tstamp.tsf != 0) {
4846 				sc->sc_syncbeacon = 1;
4847 			} else if (!sc->sc_beacons) {
4848 #ifdef IEEE80211_SUPPORT_TDMA
4849 				if (vap->iv_caps & IEEE80211_C_TDMA)
4850 					ath_tdma_config(sc, vap);
4851 				else
4852 #endif
4853 					ath_beacon_config(sc, vap);
4854 				sc->sc_beacons = 1;
4855 			}
4856 			break;
4857 		case IEEE80211_M_STA:
4858 			/*
4859 			 * Defer beacon timer configuration to the next
4860 			 * beacon frame so we have a current TSF to use
4861 			 * (any TSF collected when scanning is likely old).
4862 			 * However if it's due to a CSA -> RUN transition,
4863 			 * force a beacon update so we pick up a lack of
4864 			 * beacons from an AP in CAC and thus force a
4865 			 * scan.
4866 			 */
4867 			sc->sc_syncbeacon = 1;
4868 			if (csa_run_transition)
4869 				ath_beacon_config(sc, vap);
4870 			break;
4871 		case IEEE80211_M_MONITOR:
4872 			/*
4873 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4874 			 * transitions so we must re-enable interrupts here to
4875 			 * handle the case of a single monitor mode vap.
4876 			 */
4877 			ath_hal_intrset(ah, sc->sc_imask);
4878 			break;
4879 		case IEEE80211_M_WDS:
4880 			break;
4881 		default:
4882 			break;
4883 		}
4884 		/*
4885 		 * Let the hal process statistics collected during a
4886 		 * scan so it can provide calibrated noise floor data.
4887 		 */
4888 		ath_hal_process_noisefloor(ah);
4889 		/*
4890 		 * Reset rssi stats; maybe not the best place...
4891 		 */
4892 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4893 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4894 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4895 		/*
4896 		 * Finally, start any timers and the task q thread
4897 		 * (in case we didn't go through SCAN state).
4898 		 */
4899 		if (ath_longcalinterval != 0) {
4900 			/* start periodic recalibration timer */
4901 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4902 		} else {
4903 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4904 			    "%s: calibration disabled\n", __func__);
4905 		}
4906 		taskqueue_unblock(sc->sc_tq);
4907 	} else if (nstate == IEEE80211_S_INIT) {
4908 		/*
4909 		 * If there are no vaps left in RUN state then
4910 		 * shutdown host/driver operation:
4911 		 * o disable interrupts
4912 		 * o disable the task queue thread
4913 		 * o mark beacon processing as stopped
4914 		 */
4915 		if (!ath_isanyrunningvaps(vap)) {
4916 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4917 			/* disable interrupts  */
4918 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4919 			taskqueue_block(sc->sc_tq);
4920 			sc->sc_beacons = 0;
4921 		}
4922 #ifdef IEEE80211_SUPPORT_TDMA
4923 		ath_hal_setcca(ah, AH_TRUE);
4924 #endif
4925 	}
4926 bad:
4927 	ieee80211_free_node(ni);
4928 	return error;
4929 }
4930 
4931 /*
4932  * Allocate a key cache slot to the station so we can
4933  * setup a mapping from key index to node. The key cache
4934  * slot is needed for managing antenna state and for
4935  * compression when stations do not use crypto.  We do
4936  * it uniliaterally here; if crypto is employed this slot
4937  * will be reassigned.
4938  */
4939 static void
4940 ath_setup_stationkey(struct ieee80211_node *ni)
4941 {
4942 	struct ieee80211vap *vap = ni->ni_vap;
4943 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4944 	ieee80211_keyix keyix, rxkeyix;
4945 
4946 	/* XXX should take a locked ref to vap->iv_bss */
4947 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4948 		/*
4949 		 * Key cache is full; we'll fall back to doing
4950 		 * the more expensive lookup in software.  Note
4951 		 * this also means no h/w compression.
4952 		 */
4953 		/* XXX msg+statistic */
4954 	} else {
4955 		/* XXX locking? */
4956 		ni->ni_ucastkey.wk_keyix = keyix;
4957 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4958 		/* NB: must mark device key to get called back on delete */
4959 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4960 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4961 		/* NB: this will create a pass-thru key entry */
4962 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4963 	}
4964 }
4965 
4966 /*
4967  * Setup driver-specific state for a newly associated node.
4968  * Note that we're called also on a re-associate, the isnew
4969  * param tells us if this is the first time or not.
4970  */
4971 static void
4972 ath_newassoc(struct ieee80211_node *ni, int isnew)
4973 {
4974 	struct ath_node *an = ATH_NODE(ni);
4975 	struct ieee80211vap *vap = ni->ni_vap;
4976 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4977 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4978 
4979 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4980 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4981 
4982 	ath_rate_newassoc(sc, an, isnew);
4983 	if (isnew &&
4984 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4985 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4986 		ath_setup_stationkey(ni);
4987 }
4988 
4989 static int
4990 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4991 	int nchans, struct ieee80211_channel chans[])
4992 {
4993 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4994 	struct ath_hal *ah = sc->sc_ah;
4995 	HAL_STATUS status;
4996 
4997 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4998 	    "%s: rd %u cc %u location %c%s\n",
4999 	    __func__, reg->regdomain, reg->country, reg->location,
5000 	    reg->ecm ? " ecm" : "");
5001 
5002 	status = ath_hal_set_channels(ah, chans, nchans,
5003 	    reg->country, reg->regdomain);
5004 	if (status != HAL_OK) {
5005 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5006 		    __func__, status);
5007 		return EINVAL;		/* XXX */
5008 	}
5009 
5010 	return 0;
5011 }
5012 
5013 static void
5014 ath_getradiocaps(struct ieee80211com *ic,
5015 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5016 {
5017 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5018 	struct ath_hal *ah = sc->sc_ah;
5019 
5020 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5021 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5022 
5023 	/* XXX check return */
5024 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5025 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5026 
5027 }
5028 
5029 static int
5030 ath_getchannels(struct ath_softc *sc)
5031 {
5032 	struct ifnet *ifp = sc->sc_ifp;
5033 	struct ieee80211com *ic = ifp->if_l2com;
5034 	struct ath_hal *ah = sc->sc_ah;
5035 	HAL_STATUS status;
5036 
5037 	/*
5038 	 * Collect channel set based on EEPROM contents.
5039 	 */
5040 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5041 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5042 	if (status != HAL_OK) {
5043 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5044 		    "status %d\n", __func__, status);
5045 		return EINVAL;
5046 	}
5047 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5048 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5049 	/* XXX map Atheros sku's to net80211 SKU's */
5050 	/* XXX net80211 types too small */
5051 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5052 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5053 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5054 	ic->ic_regdomain.isocc[1] = ' ';
5055 
5056 	ic->ic_regdomain.ecm = 1;
5057 	ic->ic_regdomain.location = 'I';
5058 
5059 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5060 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5061 	    __func__, sc->sc_eerd, sc->sc_eecc,
5062 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5063 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5064 	return 0;
5065 }
5066 
5067 static int
5068 ath_rate_setup(struct ath_softc *sc, u_int mode)
5069 {
5070 	struct ath_hal *ah = sc->sc_ah;
5071 	const HAL_RATE_TABLE *rt;
5072 
5073 	switch (mode) {
5074 	case IEEE80211_MODE_11A:
5075 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5076 		break;
5077 	case IEEE80211_MODE_HALF:
5078 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5079 		break;
5080 	case IEEE80211_MODE_QUARTER:
5081 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5082 		break;
5083 	case IEEE80211_MODE_11B:
5084 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5085 		break;
5086 	case IEEE80211_MODE_11G:
5087 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5088 		break;
5089 	case IEEE80211_MODE_TURBO_A:
5090 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5091 		break;
5092 	case IEEE80211_MODE_TURBO_G:
5093 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5094 		break;
5095 	case IEEE80211_MODE_STURBO_A:
5096 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5097 		break;
5098 	case IEEE80211_MODE_11NA:
5099 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5100 		break;
5101 	case IEEE80211_MODE_11NG:
5102 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5103 		break;
5104 	default:
5105 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5106 			__func__, mode);
5107 		return 0;
5108 	}
5109 	sc->sc_rates[mode] = rt;
5110 	return (rt != NULL);
5111 }
5112 
5113 static void
5114 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5115 {
5116 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5117 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5118 	static const struct {
5119 		u_int		rate;		/* tx/rx 802.11 rate */
5120 		u_int16_t	timeOn;		/* LED on time (ms) */
5121 		u_int16_t	timeOff;	/* LED off time (ms) */
5122 	} blinkrates[] = {
5123 		{ 108,  40,  10 },
5124 		{  96,  44,  11 },
5125 		{  72,  50,  13 },
5126 		{  48,  57,  14 },
5127 		{  36,  67,  16 },
5128 		{  24,  80,  20 },
5129 		{  22, 100,  25 },
5130 		{  18, 133,  34 },
5131 		{  12, 160,  40 },
5132 		{  10, 200,  50 },
5133 		{   6, 240,  58 },
5134 		{   4, 267,  66 },
5135 		{   2, 400, 100 },
5136 		{   0, 500, 130 },
5137 		/* XXX half/quarter rates */
5138 	};
5139 	const HAL_RATE_TABLE *rt;
5140 	int i, j;
5141 
5142 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5143 	rt = sc->sc_rates[mode];
5144 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5145 	for (i = 0; i < rt->rateCount; i++) {
5146 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5147 		if (rt->info[i].phy != IEEE80211_T_HT)
5148 			sc->sc_rixmap[ieeerate] = i;
5149 		else
5150 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5151 	}
5152 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5153 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5154 		if (i >= rt->rateCount) {
5155 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5156 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5157 			continue;
5158 		}
5159 		sc->sc_hwmap[i].ieeerate =
5160 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5161 		if (rt->info[i].phy == IEEE80211_T_HT)
5162 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5163 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5164 		if (rt->info[i].shortPreamble ||
5165 		    rt->info[i].phy == IEEE80211_T_OFDM)
5166 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5167 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5168 		for (j = 0; j < N(blinkrates)-1; j++)
5169 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5170 				break;
5171 		/* NB: this uses the last entry if the rate isn't found */
5172 		/* XXX beware of overlow */
5173 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5174 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5175 	}
5176 	sc->sc_currates = rt;
5177 	sc->sc_curmode = mode;
5178 	/*
5179 	 * All protection frames are transmited at 2Mb/s for
5180 	 * 11g, otherwise at 1Mb/s.
5181 	 */
5182 	if (mode == IEEE80211_MODE_11G)
5183 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5184 	else
5185 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5186 	/* NB: caller is responsible for resetting rate control state */
5187 #undef N
5188 }
5189 
5190 static void
5191 ath_watchdog(void *arg)
5192 {
5193 	struct ath_softc *sc = arg;
5194 	int do_reset = 0;
5195 
5196 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5197 		struct ifnet *ifp = sc->sc_ifp;
5198 		uint32_t hangs;
5199 
5200 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5201 		    hangs != 0) {
5202 			if_printf(ifp, "%s hang detected (0x%x)\n",
5203 			    hangs & 0xff ? "bb" : "mac", hangs);
5204 		} else
5205 			if_printf(ifp, "device timeout\n");
5206 		do_reset = 1;
5207 		ifp->if_oerrors++;
5208 		sc->sc_stats.ast_watchdog++;
5209 	}
5210 
5211 	/*
5212 	 * We can't hold the lock across the ath_reset() call.
5213 	 *
5214 	 * And since this routine can't hold a lock and sleep,
5215 	 * do the reset deferred.
5216 	 */
5217 	if (do_reset) {
5218 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5219 	}
5220 
5221 	callout_schedule(&sc->sc_wd_ch, hz);
5222 }
5223 
5224 /*
5225  * Fetch the rate control statistics for the given node.
5226  */
5227 static int
5228 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5229 {
5230 	struct ath_node *an;
5231 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5232 	struct ieee80211_node *ni;
5233 	int error = 0;
5234 
5235 	/* Perform a lookup on the given node */
5236 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5237 	if (ni == NULL) {
5238 		error = EINVAL;
5239 		goto bad;
5240 	}
5241 
5242 	/* Lock the ath_node */
5243 	an = ATH_NODE(ni);
5244 	ATH_NODE_LOCK(an);
5245 
5246 	/* Fetch the rate control stats for this node */
5247 	error = ath_rate_fetch_node_stats(sc, an, rs);
5248 
5249 	/* No matter what happens here, just drop through */
5250 
5251 	/* Unlock the ath_node */
5252 	ATH_NODE_UNLOCK(an);
5253 
5254 	/* Unref the node */
5255 	ieee80211_node_decref(ni);
5256 
5257 bad:
5258 	return (error);
5259 }
5260 
5261 #ifdef ATH_DIAGAPI
5262 /*
5263  * Diagnostic interface to the HAL.  This is used by various
5264  * tools to do things like retrieve register contents for
5265  * debugging.  The mechanism is intentionally opaque so that
5266  * it can change frequently w/o concern for compatiblity.
5267  */
5268 static int
5269 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5270 {
5271 	struct ath_hal *ah = sc->sc_ah;
5272 	u_int id = ad->ad_id & ATH_DIAG_ID;
5273 	void *indata = NULL;
5274 	void *outdata = NULL;
5275 	u_int32_t insize = ad->ad_in_size;
5276 	u_int32_t outsize = ad->ad_out_size;
5277 	int error = 0;
5278 
5279 	if (ad->ad_id & ATH_DIAG_IN) {
5280 		/*
5281 		 * Copy in data.
5282 		 */
5283 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5284 		if (indata == NULL) {
5285 			error = ENOMEM;
5286 			goto bad;
5287 		}
5288 		error = copyin(ad->ad_in_data, indata, insize);
5289 		if (error)
5290 			goto bad;
5291 	}
5292 	if (ad->ad_id & ATH_DIAG_DYN) {
5293 		/*
5294 		 * Allocate a buffer for the results (otherwise the HAL
5295 		 * returns a pointer to a buffer where we can read the
5296 		 * results).  Note that we depend on the HAL leaving this
5297 		 * pointer for us to use below in reclaiming the buffer;
5298 		 * may want to be more defensive.
5299 		 */
5300 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5301 		if (outdata == NULL) {
5302 			error = ENOMEM;
5303 			goto bad;
5304 		}
5305 	}
5306 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5307 		if (outsize < ad->ad_out_size)
5308 			ad->ad_out_size = outsize;
5309 		if (outdata != NULL)
5310 			error = copyout(outdata, ad->ad_out_data,
5311 					ad->ad_out_size);
5312 	} else {
5313 		error = EINVAL;
5314 	}
5315 bad:
5316 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5317 		free(indata, M_TEMP);
5318 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5319 		free(outdata, M_TEMP);
5320 	return error;
5321 }
5322 #endif /* ATH_DIAGAPI */
5323 
5324 static int
5325 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5326 {
5327 #define	IS_RUNNING(ifp) \
5328 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5329 	struct ath_softc *sc = ifp->if_softc;
5330 	struct ieee80211com *ic = ifp->if_l2com;
5331 	struct ifreq *ifr = (struct ifreq *)data;
5332 	const HAL_RATE_TABLE *rt;
5333 	int error = 0;
5334 
5335 	switch (cmd) {
5336 	case SIOCSIFFLAGS:
5337 		ATH_LOCK(sc);
5338 		if (IS_RUNNING(ifp)) {
5339 			/*
5340 			 * To avoid rescanning another access point,
5341 			 * do not call ath_init() here.  Instead,
5342 			 * only reflect promisc mode settings.
5343 			 */
5344 			ath_mode_init(sc);
5345 		} else if (ifp->if_flags & IFF_UP) {
5346 			/*
5347 			 * Beware of being called during attach/detach
5348 			 * to reset promiscuous mode.  In that case we
5349 			 * will still be marked UP but not RUNNING.
5350 			 * However trying to re-init the interface
5351 			 * is the wrong thing to do as we've already
5352 			 * torn down much of our state.  There's
5353 			 * probably a better way to deal with this.
5354 			 */
5355 			if (!sc->sc_invalid)
5356 				ath_init(sc);	/* XXX lose error */
5357 		} else {
5358 			ath_stop_locked(ifp);
5359 #ifdef notyet
5360 			/* XXX must wakeup in places like ath_vap_delete */
5361 			if (!sc->sc_invalid)
5362 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5363 #endif
5364 		}
5365 		ATH_UNLOCK(sc);
5366 		break;
5367 	case SIOCGIFMEDIA:
5368 	case SIOCSIFMEDIA:
5369 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5370 		break;
5371 	case SIOCGATHSTATS:
5372 		/* NB: embed these numbers to get a consistent view */
5373 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5374 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5375 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5376 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5377 #ifdef IEEE80211_SUPPORT_TDMA
5378 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5379 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5380 #endif
5381 		rt = sc->sc_currates;
5382 		sc->sc_stats.ast_tx_rate =
5383 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5384 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5385 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5386 		return copyout(&sc->sc_stats,
5387 		    ifr->ifr_data, sizeof (sc->sc_stats));
5388 	case SIOCGATHAGSTATS:
5389 		return copyout(&sc->sc_aggr_stats,
5390 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5391 	case SIOCZATHSTATS:
5392 		error = priv_check(curthread, PRIV_DRIVER);
5393 		if (error == 0) {
5394 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5395 			memset(&sc->sc_aggr_stats, 0,
5396 			    sizeof(sc->sc_aggr_stats));
5397 			memset(&sc->sc_intr_stats, 0,
5398 			    sizeof(sc->sc_intr_stats));
5399 		}
5400 		break;
5401 #ifdef ATH_DIAGAPI
5402 	case SIOCGATHDIAG:
5403 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5404 		break;
5405 	case SIOCGATHPHYERR:
5406 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5407 		break;
5408 #endif
5409 	case SIOCGATHSPECTRAL:
5410 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
5411 		break;
5412 	case SIOCGATHNODERATESTATS:
5413 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5414 		break;
5415 	case SIOCGIFADDR:
5416 		error = ether_ioctl(ifp, cmd, data);
5417 		break;
5418 	default:
5419 		error = EINVAL;
5420 		break;
5421 	}
5422 	return error;
5423 #undef IS_RUNNING
5424 }
5425 
5426 /*
5427  * Announce various information on device/driver attach.
5428  */
5429 static void
5430 ath_announce(struct ath_softc *sc)
5431 {
5432 	struct ifnet *ifp = sc->sc_ifp;
5433 	struct ath_hal *ah = sc->sc_ah;
5434 
5435 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5436 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5437 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5438 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5439 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5440 	if (bootverbose) {
5441 		int i;
5442 		for (i = 0; i <= WME_AC_VO; i++) {
5443 			struct ath_txq *txq = sc->sc_ac2q[i];
5444 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5445 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5446 		}
5447 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5448 			sc->sc_cabq->axq_qnum);
5449 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5450 	}
5451 	if (ath_rxbuf != ATH_RXBUF)
5452 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5453 	if (ath_txbuf != ATH_TXBUF)
5454 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5455 	if (sc->sc_mcastkey && bootverbose)
5456 		if_printf(ifp, "using multicast key search\n");
5457 }
5458 
5459 static void
5460 ath_dfs_tasklet(void *p, int npending)
5461 {
5462 	struct ath_softc *sc = (struct ath_softc *) p;
5463 	struct ifnet *ifp = sc->sc_ifp;
5464 	struct ieee80211com *ic = ifp->if_l2com;
5465 
5466 	/*
5467 	 * If previous processing has found a radar event,
5468 	 * signal this to the net80211 layer to begin DFS
5469 	 * processing.
5470 	 */
5471 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5472 		/* DFS event found, initiate channel change */
5473 		/*
5474 		 * XXX doesn't currently tell us whether the event
5475 		 * XXX was found in the primary or extension
5476 		 * XXX channel!
5477 		 */
5478 		IEEE80211_LOCK(ic);
5479 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5480 		IEEE80211_UNLOCK(ic);
5481 	}
5482 }
5483 
5484 /*
5485  * Enable/disable power save.  This must be called with
5486  * no TX driver locks currently held, so it should only
5487  * be called from the RX path (which doesn't hold any
5488  * TX driver locks.)
5489  */
5490 static void
5491 ath_node_powersave(struct ieee80211_node *ni, int enable)
5492 {
5493 #ifdef	ATH_SW_PSQ
5494 	struct ath_node *an = ATH_NODE(ni);
5495 	struct ieee80211com *ic = ni->ni_ic;
5496 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5497 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5498 
5499 	ATH_NODE_UNLOCK_ASSERT(an);
5500 	/* XXX and no TXQ locks should be held here */
5501 
5502 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5503 	    __func__, ni, enable);
5504 
5505 	/* Suspend or resume software queue handling */
5506 	if (enable)
5507 		ath_tx_node_sleep(sc, an);
5508 	else
5509 		ath_tx_node_wakeup(sc, an);
5510 
5511 	/* Update net80211 state */
5512 	avp->av_node_ps(ni, enable);
5513 #else
5514 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5515 
5516 	/* Update net80211 state */
5517 	avp->av_node_ps(ni, enable);
5518 #endif/* ATH_SW_PSQ */
5519 }
5520 
5521 /*
5522  * Notification from net80211 that the powersave queue state has
5523  * changed.
5524  *
5525  * Since the software queue also may have some frames:
5526  *
5527  * + if the node software queue has frames and the TID state
5528  *   is 0, we set the TIM;
5529  * + if the node and the stack are both empty, we clear the TIM bit.
5530  * + If the stack tries to set the bit, always set it.
5531  * + If the stack tries to clear the bit, only clear it if the
5532  *   software queue in question is also cleared.
5533  *
5534  * TODO: this is called during node teardown; so let's ensure this
5535  * is all correctly handled and that the TIM bit is cleared.
5536  * It may be that the node flush is called _AFTER_ the net80211
5537  * stack clears the TIM.
5538  *
5539  * Here is the racy part.  Since it's possible >1 concurrent,
5540  * overlapping TXes will appear complete with a TX completion in
5541  * another thread, it's possible that the concurrent TIM calls will
5542  * clash.  We can't hold the node lock here because setting the
5543  * TIM grabs the net80211 comlock and this may cause a LOR.
5544  * The solution is either to totally serialise _everything_ at
5545  * this point (ie, all TX, completion and any reset/flush go into
5546  * one taskqueue) or a new "ath TIM lock" needs to be created that
5547  * just wraps the driver state change and this call to avp->av_set_tim().
5548  *
5549  * The same race exists in the net80211 power save queue handling
5550  * as well.  Since multiple transmitting threads may queue frames
5551  * into the driver, as well as ps-poll and the driver transmitting
5552  * frames (and thus clearing the psq), it's quite possible that
5553  * a packet entering the PSQ and a ps-poll being handled will
5554  * race, causing the TIM to be cleared and not re-set.
5555  */
5556 static int
5557 ath_node_set_tim(struct ieee80211_node *ni, int enable)
5558 {
5559 #ifdef	ATH_SW_PSQ
5560 	struct ieee80211com *ic = ni->ni_ic;
5561 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5562 	struct ath_node *an = ATH_NODE(ni);
5563 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5564 	int changed = 0;
5565 
5566 	ATH_NODE_UNLOCK_ASSERT(an);
5567 
5568 	/*
5569 	 * For now, just track and then update the TIM.
5570 	 */
5571 	ATH_NODE_LOCK(an);
5572 	an->an_stack_psq = enable;
5573 
5574 	/*
5575 	 * This will get called for all operating modes,
5576 	 * even if avp->av_set_tim is unset.
5577 	 * It's currently set for hostap/ibss modes; but
5578 	 * the same infrastructure is used for both STA
5579 	 * and AP/IBSS node power save.
5580 	 */
5581 	if (avp->av_set_tim == NULL) {
5582 		ATH_NODE_UNLOCK(an);
5583 		return (0);
5584 	}
5585 
5586 	/*
5587 	 * If setting the bit, always set it here.
5588 	 * If clearing the bit, only clear it if the
5589 	 * software queue is also empty.
5590 	 *
5591 	 * If the node has left power save, just clear the TIM
5592 	 * bit regardless of the state of the power save queue.
5593 	 *
5594 	 * XXX TODO: although atomics are used, it's quite possible
5595 	 * that a race will occur between this and setting/clearing
5596 	 * in another thread.  TX completion will occur always in
5597 	 * one thread, however setting/clearing the TIM bit can come
5598 	 * from a variety of different process contexts!
5599 	 */
5600 	if (enable && an->an_tim_set == 1) {
5601 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5602 		    "%s: an=%p, enable=%d, tim_set=1, ignoring\n",
5603 		    __func__, an, enable);
5604 		ATH_NODE_UNLOCK(an);
5605 	} else if (enable) {
5606 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5607 		    "%s: an=%p, enable=%d, enabling TIM\n",
5608 		    __func__, an, enable);
5609 		an->an_tim_set = 1;
5610 		ATH_NODE_UNLOCK(an);
5611 		changed = avp->av_set_tim(ni, enable);
5612 	} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
5613 		/* disable */
5614 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5615 		    "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
5616 		    __func__, an, enable);
5617 		an->an_tim_set = 0;
5618 		ATH_NODE_UNLOCK(an);
5619 		changed = avp->av_set_tim(ni, enable);
5620 	} else if (! an->an_is_powersave) {
5621 		/*
5622 		 * disable regardless; the node isn't in powersave now
5623 		 */
5624 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5625 		    "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
5626 		    __func__, an, enable);
5627 		an->an_tim_set = 0;
5628 		ATH_NODE_UNLOCK(an);
5629 		changed = avp->av_set_tim(ni, enable);
5630 	} else {
5631 		/*
5632 		 * psq disable, node is currently in powersave, node
5633 		 * software queue isn't empty, so don't clear the TIM bit
5634 		 * for now.
5635 		 */
5636 		ATH_NODE_UNLOCK(an);
5637 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5638 		    "%s: enable=%d, an_swq_depth > 0, ignoring\n",
5639 		    __func__, enable);
5640 		changed = 0;
5641 	}
5642 
5643 	return (changed);
5644 #else
5645 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5646 
5647 	/*
5648 	 * Some operating modes don't set av_set_tim(), so don't
5649 	 * update it here.
5650 	 */
5651 	if (avp->av_set_tim == NULL)
5652 		return (0);
5653 
5654 	return (avp->av_set_tim(ni, enable));
5655 #endif /* ATH_SW_PSQ */
5656 }
5657 
5658 /*
5659  * Set or update the TIM from the software queue.
5660  *
5661  * Check the software queue depth before attempting to do lock
5662  * anything; that avoids trying to obtain the lock.  Then,
5663  * re-check afterwards to ensure nothing has changed in the
5664  * meantime.
5665  *
5666  * set:   This is designed to be called from the TX path, after
5667  *        a frame has been queued; to see if the swq > 0.
5668  *
5669  * clear: This is designed to be called from the buffer completion point
5670  *        (right now it's ath_tx_default_comp()) where the state of
5671  *        a software queue has changed.
5672  *
5673  * It makes sense to place it at buffer free / completion rather
5674  * than after each software queue operation, as there's no real
5675  * point in churning the TIM bit as the last frames in the software
5676  * queue are transmitted.  If they fail and we retry them, we'd
5677  * just be setting the TIM bit again anyway.
5678  */
5679 void
5680 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
5681      int enable)
5682 {
5683 #ifdef	ATH_SW_PSQ
5684 	struct ath_node *an;
5685 	struct ath_vap *avp;
5686 
5687 	/* Don't do this for broadcast/etc frames */
5688 	if (ni == NULL)
5689 		return;
5690 
5691 	an = ATH_NODE(ni);
5692 	avp = ATH_VAP(ni->ni_vap);
5693 
5694 	/*
5695 	 * And for operating modes without the TIM handler set, let's
5696 	 * just skip those.
5697 	 */
5698 	if (avp->av_set_tim == NULL)
5699 		return;
5700 
5701 	ATH_NODE_UNLOCK_ASSERT(an);
5702 
5703 	if (enable) {
5704 		/*
5705 		 * Don't bother grabbing the lock unless the queue is not
5706 		 * empty.
5707 		 */
5708 		if (atomic_load_acq_int(&an->an_swq_depth) == 0)
5709 			return;
5710 
5711 		ATH_NODE_LOCK(an);
5712 		if (an->an_is_powersave &&
5713 		    an->an_tim_set == 0 &&
5714 		    atomic_load_acq_int(&an->an_swq_depth) != 0) {
5715 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5716 			    "%s: an=%p, swq_depth>0, tim_set=0, set!\n",
5717 			    __func__, an);
5718 			an->an_tim_set = 1;
5719 			ATH_NODE_UNLOCK(an);
5720 			(void) avp->av_set_tim(ni, 1);
5721 		} else {
5722 			ATH_NODE_UNLOCK(an);
5723 		}
5724 	} else {
5725 		/*
5726 		 * Don't bother grabbing the lock unless the queue is empty.
5727 		 */
5728 		if (atomic_load_acq_int(&an->an_swq_depth) != 0)
5729 			return;
5730 
5731 		ATH_NODE_LOCK(an);
5732 		if (an->an_is_powersave &&
5733 		    an->an_stack_psq == 0 &&
5734 		    an->an_tim_set == 1 &&
5735 		    atomic_load_acq_int(&an->an_swq_depth) == 0) {
5736 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5737 			    "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
5738 			    " clear!\n",
5739 			    __func__, an);
5740 			an->an_tim_set = 0;
5741 			ATH_NODE_UNLOCK(an);
5742 			(void) avp->av_set_tim(ni, 0);
5743 		} else {
5744 			ATH_NODE_UNLOCK(an);
5745 		}
5746 	}
5747 #else
5748 	return;
5749 #endif	/* ATH_SW_PSQ */
5750 }
5751 
5752 MODULE_VERSION(if_ath, 1);
5753 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5754 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5755 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5756 #endif
5757