1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_spectral.h> 115 #include <dev/ath/if_athdfs.h> 116 117 #ifdef ATH_TX99_DIAG 118 #include <dev/ath/ath_tx99/ath_tx99.h> 119 #endif 120 121 #ifdef ATH_DEBUG_ALQ 122 #include <dev/ath/if_ath_alq.h> 123 #endif 124 125 /* 126 * Only enable this if you're working on PS-POLL support. 127 */ 128 #undef ATH_SW_PSQ 129 130 /* 131 * ATH_BCBUF determines the number of vap's that can transmit 132 * beacons and also (currently) the number of vap's that can 133 * have unique mac addresses/bssid. When staggering beacons 134 * 4 is probably a good max as otherwise the beacons become 135 * very closely spaced and there is limited time for cab q traffic 136 * to go out. You can burst beacons instead but that is not good 137 * for stations in power save and at some point you really want 138 * another radio (and channel). 139 * 140 * The limit on the number of mac addresses is tied to our use of 141 * the U/L bit and tracking addresses in a byte; it would be 142 * worthwhile to allow more for applications like proxy sta. 143 */ 144 CTASSERT(ATH_BCBUF <= 8); 145 146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 147 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 148 const uint8_t [IEEE80211_ADDR_LEN], 149 const uint8_t [IEEE80211_ADDR_LEN]); 150 static void ath_vap_delete(struct ieee80211vap *); 151 static void ath_init(void *); 152 static void ath_stop_locked(struct ifnet *); 153 static void ath_stop(struct ifnet *); 154 static int ath_reset_vap(struct ieee80211vap *, u_long); 155 static void ath_start_queue(struct ifnet *ifp); 156 static int ath_media_change(struct ifnet *); 157 static void ath_watchdog(void *); 158 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 159 static void ath_fatal_proc(void *, int); 160 static void ath_bmiss_vap(struct ieee80211vap *); 161 static void ath_bmiss_proc(void *, int); 162 static void ath_key_update_begin(struct ieee80211vap *); 163 static void ath_key_update_end(struct ieee80211vap *); 164 static void ath_update_mcast(struct ifnet *); 165 static void ath_update_promisc(struct ifnet *); 166 static void ath_updateslot(struct ifnet *); 167 static void ath_bstuck_proc(void *, int); 168 static void ath_reset_proc(void *, int); 169 static int ath_desc_alloc(struct ath_softc *); 170 static void ath_desc_free(struct ath_softc *); 171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 172 const uint8_t [IEEE80211_ADDR_LEN]); 173 static void ath_node_cleanup(struct ieee80211_node *); 174 static void ath_node_free(struct ieee80211_node *); 175 static void ath_node_getsignal(const struct ieee80211_node *, 176 int8_t *, int8_t *); 177 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 179 static int ath_tx_setup(struct ath_softc *, int, int); 180 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 181 static void ath_tx_cleanup(struct ath_softc *); 182 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 183 int dosched); 184 static void ath_tx_proc_q0(void *, int); 185 static void ath_tx_proc_q0123(void *, int); 186 static void ath_tx_proc(void *, int); 187 static void ath_txq_sched_tasklet(void *, int); 188 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_scan_start(struct ieee80211com *); 191 static void ath_scan_end(struct ieee80211com *); 192 static void ath_set_channel(struct ieee80211com *); 193 #ifdef ATH_ENABLE_11N 194 static void ath_update_chw(struct ieee80211com *); 195 #endif /* ATH_ENABLE_11N */ 196 static void ath_calibrate(void *); 197 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void ath_setup_stationkey(struct ieee80211_node *); 199 static void ath_newassoc(struct ieee80211_node *, int); 200 static int ath_setregdomain(struct ieee80211com *, 201 struct ieee80211_regdomain *, int, 202 struct ieee80211_channel []); 203 static void ath_getradiocaps(struct ieee80211com *, int, int *, 204 struct ieee80211_channel []); 205 static int ath_getchannels(struct ath_softc *); 206 207 static int ath_rate_setup(struct ath_softc *, u_int mode); 208 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 209 210 static void ath_announce(struct ath_softc *); 211 212 static void ath_dfs_tasklet(void *, int); 213 static void ath_node_powersave(struct ieee80211_node *, int); 214 static int ath_node_set_tim(struct ieee80211_node *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 #include <dev/ath/if_ath_tdma.h> 218 #endif 219 220 SYSCTL_DECL(_hw_ath); 221 222 /* XXX validate sysctl values */ 223 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 225 0, "long chip calibration interval (secs)"); 226 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 228 0, "short chip calibration interval (msecs)"); 229 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 231 0, "reset chip calibration results (secs)"); 232 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 234 0, "ANI calibration (msecs)"); 235 236 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 238 0, "rx buffers allocated"); 239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 240 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 242 0, "tx buffers allocated"); 243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 246 0, "tx (mgmt) buffers allocated"); 247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 248 249 int ath_bstuck_threshold = 4; /* max missed beacons */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 251 0, "max missed beacon xmits before chip reset"); 252 253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 254 255 void 256 ath_legacy_attach_comp_func(struct ath_softc *sc) 257 { 258 259 /* 260 * Special case certain configurations. Note the 261 * CAB queue is handled by these specially so don't 262 * include them when checking the txq setup mask. 263 */ 264 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 265 case 0x01: 266 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 267 break; 268 case 0x0f: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 270 break; 271 default: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 273 break; 274 } 275 } 276 277 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 278 #define HAL_MODE_HT40 \ 279 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 280 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 281 int 282 ath_attach(u_int16_t devid, struct ath_softc *sc) 283 { 284 struct ifnet *ifp; 285 struct ieee80211com *ic; 286 struct ath_hal *ah = NULL; 287 HAL_STATUS status; 288 int error = 0, i; 289 u_int wmodes; 290 uint8_t macaddr[IEEE80211_ADDR_LEN]; 291 int rx_chainmask, tx_chainmask; 292 293 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 294 295 CURVNET_SET(vnet0); 296 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 297 if (ifp == NULL) { 298 device_printf(sc->sc_dev, "can not if_alloc()\n"); 299 error = ENOSPC; 300 CURVNET_RESTORE(); 301 goto bad; 302 } 303 ic = ifp->if_l2com; 304 305 /* set these up early for if_printf use */ 306 if_initname(ifp, device_get_name(sc->sc_dev), 307 device_get_unit(sc->sc_dev)); 308 CURVNET_RESTORE(); 309 310 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 311 sc->sc_eepromdata, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 sc->sc_ah = ah; 319 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 320 #ifdef ATH_DEBUG 321 sc->sc_debug = ath_debug; 322 #endif 323 324 /* 325 * Setup the DMA/EDMA functions based on the current 326 * hardware support. 327 * 328 * This is required before the descriptors are allocated. 329 */ 330 if (ath_hal_hasedma(sc->sc_ah)) { 331 sc->sc_isedma = 1; 332 ath_recv_setup_edma(sc); 333 ath_xmit_setup_edma(sc); 334 } else { 335 ath_recv_setup_legacy(sc); 336 ath_xmit_setup_legacy(sc); 337 } 338 339 /* 340 * Check if the MAC has multi-rate retry support. 341 * We do this by trying to setup a fake extended 342 * descriptor. MAC's that don't have support will 343 * return false w/o doing anything. MAC's that do 344 * support it will return true w/o doing anything. 345 */ 346 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 347 348 /* 349 * Check if the device has hardware counters for PHY 350 * errors. If so we need to enable the MIB interrupt 351 * so we can act on stat triggers. 352 */ 353 if (ath_hal_hwphycounters(ah)) 354 sc->sc_needmib = 1; 355 356 /* 357 * Get the hardware key cache size. 358 */ 359 sc->sc_keymax = ath_hal_keycachesize(ah); 360 if (sc->sc_keymax > ATH_KEYMAX) { 361 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 362 ATH_KEYMAX, sc->sc_keymax); 363 sc->sc_keymax = ATH_KEYMAX; 364 } 365 /* 366 * Reset the key cache since some parts do not 367 * reset the contents on initial power up. 368 */ 369 for (i = 0; i < sc->sc_keymax; i++) 370 ath_hal_keyreset(ah, i); 371 372 /* 373 * Collect the default channel list. 374 */ 375 error = ath_getchannels(sc); 376 if (error != 0) 377 goto bad; 378 379 /* 380 * Setup rate tables for all potential media types. 381 */ 382 ath_rate_setup(sc, IEEE80211_MODE_11A); 383 ath_rate_setup(sc, IEEE80211_MODE_11B); 384 ath_rate_setup(sc, IEEE80211_MODE_11G); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 386 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 387 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 388 ath_rate_setup(sc, IEEE80211_MODE_11NA); 389 ath_rate_setup(sc, IEEE80211_MODE_11NG); 390 ath_rate_setup(sc, IEEE80211_MODE_HALF); 391 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 392 393 /* NB: setup here so ath_rate_update is happy */ 394 ath_setcurmode(sc, IEEE80211_MODE_11A); 395 396 /* 397 * Allocate TX descriptors and populate the lists. 398 */ 399 error = ath_desc_alloc(sc); 400 if (error != 0) { 401 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 402 error); 403 goto bad; 404 } 405 error = ath_txdma_setup(sc); 406 if (error != 0) { 407 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 408 error); 409 goto bad; 410 } 411 412 /* 413 * Allocate RX descriptors and populate the lists. 414 */ 415 error = ath_rxdma_setup(sc); 416 if (error != 0) { 417 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 418 error); 419 goto bad; 420 } 421 422 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 423 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 424 425 ATH_TXBUF_LOCK_INIT(sc); 426 427 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 428 taskqueue_thread_enqueue, &sc->sc_tq); 429 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 430 "%s taskq", ifp->if_xname); 431 432 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 433 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 434 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 435 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 436 TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc); 437 TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc); 438 439 /* 440 * Allocate hardware transmit queues: one queue for 441 * beacon frames and one data queue for each QoS 442 * priority. Note that the hal handles resetting 443 * these queues at the needed time. 444 * 445 * XXX PS-Poll 446 */ 447 sc->sc_bhalq = ath_beaconq_setup(sc); 448 if (sc->sc_bhalq == (u_int) -1) { 449 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 450 error = EIO; 451 goto bad2; 452 } 453 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 454 if (sc->sc_cabq == NULL) { 455 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 456 error = EIO; 457 goto bad2; 458 } 459 /* NB: insure BK queue is the lowest priority h/w queue */ 460 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 461 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 462 ieee80211_wme_acnames[WME_AC_BK]); 463 error = EIO; 464 goto bad2; 465 } 466 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 467 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 468 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 469 /* 470 * Not enough hardware tx queues to properly do WME; 471 * just punt and assign them all to the same h/w queue. 472 * We could do a better job of this if, for example, 473 * we allocate queues when we switch from station to 474 * AP mode. 475 */ 476 if (sc->sc_ac2q[WME_AC_VI] != NULL) 477 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 478 if (sc->sc_ac2q[WME_AC_BE] != NULL) 479 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 480 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 481 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 482 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 483 } 484 485 /* 486 * Attach the TX completion function. 487 * 488 * The non-EDMA chips may have some special case optimisations; 489 * this method gives everyone a chance to attach cleanly. 490 */ 491 sc->sc_tx.xmit_attach_comp_func(sc); 492 493 /* 494 * Setup rate control. Some rate control modules 495 * call back to change the anntena state so expose 496 * the necessary entry points. 497 * XXX maybe belongs in struct ath_ratectrl? 498 */ 499 sc->sc_setdefantenna = ath_setdefantenna; 500 sc->sc_rc = ath_rate_attach(sc); 501 if (sc->sc_rc == NULL) { 502 error = EIO; 503 goto bad2; 504 } 505 506 /* Attach DFS module */ 507 if (! ath_dfs_attach(sc)) { 508 device_printf(sc->sc_dev, 509 "%s: unable to attach DFS\n", __func__); 510 error = EIO; 511 goto bad2; 512 } 513 514 /* Attach spectral module */ 515 if (ath_spectral_attach(sc) < 0) { 516 device_printf(sc->sc_dev, 517 "%s: unable to attach spectral\n", __func__); 518 error = EIO; 519 goto bad2; 520 } 521 522 /* Start DFS processing tasklet */ 523 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 524 525 /* Configure LED state */ 526 sc->sc_blinking = 0; 527 sc->sc_ledstate = 1; 528 sc->sc_ledon = 0; /* low true */ 529 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 530 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 531 532 /* 533 * Don't setup hardware-based blinking. 534 * 535 * Although some NICs may have this configured in the 536 * default reset register values, the user may wish 537 * to alter which pins have which function. 538 * 539 * The reference driver attaches the MAC network LED to GPIO1 and 540 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 541 * NIC has these reversed. 542 */ 543 sc->sc_hardled = (1 == 0); 544 sc->sc_led_net_pin = -1; 545 sc->sc_led_pwr_pin = -1; 546 /* 547 * Auto-enable soft led processing for IBM cards and for 548 * 5211 minipci cards. Users can also manually enable/disable 549 * support with a sysctl. 550 */ 551 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 552 ath_led_config(sc); 553 ath_hal_setledstate(ah, HAL_LED_INIT); 554 555 ifp->if_softc = sc; 556 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 557 ifp->if_start = ath_start_queue; 558 ifp->if_ioctl = ath_ioctl; 559 ifp->if_init = ath_init; 560 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 561 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 562 IFQ_SET_READY(&ifp->if_snd); 563 564 ic->ic_ifp = ifp; 565 /* XXX not right but it's not used anywhere important */ 566 ic->ic_phytype = IEEE80211_T_OFDM; 567 ic->ic_opmode = IEEE80211_M_STA; 568 ic->ic_caps = 569 IEEE80211_C_STA /* station mode */ 570 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 571 | IEEE80211_C_HOSTAP /* hostap mode */ 572 | IEEE80211_C_MONITOR /* monitor mode */ 573 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 574 | IEEE80211_C_WDS /* 4-address traffic works */ 575 | IEEE80211_C_MBSS /* mesh point link mode */ 576 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 577 | IEEE80211_C_SHSLOT /* short slot time supported */ 578 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 579 #ifndef ATH_ENABLE_11N 580 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 581 #endif 582 | IEEE80211_C_TXFRAG /* handle tx frags */ 583 #ifdef ATH_ENABLE_DFS 584 | IEEE80211_C_DFS /* Enable radar detection */ 585 #endif 586 ; 587 /* 588 * Query the hal to figure out h/w crypto support. 589 */ 590 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 591 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 592 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 593 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 594 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 595 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 596 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 597 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 598 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 599 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 600 /* 601 * Check if h/w does the MIC and/or whether the 602 * separate key cache entries are required to 603 * handle both tx+rx MIC keys. 604 */ 605 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 606 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 607 /* 608 * If the h/w supports storing tx+rx MIC keys 609 * in one cache slot automatically enable use. 610 */ 611 if (ath_hal_hastkipsplit(ah) || 612 !ath_hal_settkipsplit(ah, AH_FALSE)) 613 sc->sc_splitmic = 1; 614 /* 615 * If the h/w can do TKIP MIC together with WME then 616 * we use it; otherwise we force the MIC to be done 617 * in software by the net80211 layer. 618 */ 619 if (ath_hal_haswmetkipmic(ah)) 620 sc->sc_wmetkipmic = 1; 621 } 622 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 623 /* 624 * Check for multicast key search support. 625 */ 626 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 627 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 628 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 629 } 630 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 631 /* 632 * Mark key cache slots associated with global keys 633 * as in use. If we knew TKIP was not to be used we 634 * could leave the +32, +64, and +32+64 slots free. 635 */ 636 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 637 setbit(sc->sc_keymap, i); 638 setbit(sc->sc_keymap, i+64); 639 if (sc->sc_splitmic) { 640 setbit(sc->sc_keymap, i+32); 641 setbit(sc->sc_keymap, i+32+64); 642 } 643 } 644 /* 645 * TPC support can be done either with a global cap or 646 * per-packet support. The latter is not available on 647 * all parts. We're a bit pedantic here as all parts 648 * support a global cap. 649 */ 650 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 651 ic->ic_caps |= IEEE80211_C_TXPMGT; 652 653 /* 654 * Mark WME capability only if we have sufficient 655 * hardware queues to do proper priority scheduling. 656 */ 657 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 658 ic->ic_caps |= IEEE80211_C_WME; 659 /* 660 * Check for misc other capabilities. 661 */ 662 if (ath_hal_hasbursting(ah)) 663 ic->ic_caps |= IEEE80211_C_BURST; 664 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 665 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 666 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 667 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 668 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 669 if (ath_hal_hasfastframes(ah)) 670 ic->ic_caps |= IEEE80211_C_FF; 671 wmodes = ath_hal_getwirelessmodes(ah); 672 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 673 ic->ic_caps |= IEEE80211_C_TURBOP; 674 #ifdef IEEE80211_SUPPORT_TDMA 675 if (ath_hal_macversion(ah) > 0x78) { 676 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 677 ic->ic_tdma_update = ath_tdma_update; 678 } 679 #endif 680 681 /* 682 * TODO: enforce that at least this many frames are available 683 * in the txbuf list before allowing data frames (raw or 684 * otherwise) to be transmitted. 685 */ 686 sc->sc_txq_data_minfree = 10; 687 /* 688 * Leave this as default to maintain legacy behaviour. 689 * Shortening the cabq/mcastq may end up causing some 690 * undesirable behaviour. 691 */ 692 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 693 694 /* 695 * Allow the TX and RX chainmasks to be overridden by 696 * environment variables and/or device.hints. 697 * 698 * This must be done early - before the hardware is 699 * calibrated or before the 802.11n stream calculation 700 * is done. 701 */ 702 if (resource_int_value(device_get_name(sc->sc_dev), 703 device_get_unit(sc->sc_dev), "rx_chainmask", 704 &rx_chainmask) == 0) { 705 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 706 rx_chainmask); 707 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 708 } 709 if (resource_int_value(device_get_name(sc->sc_dev), 710 device_get_unit(sc->sc_dev), "tx_chainmask", 711 &tx_chainmask) == 0) { 712 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 713 tx_chainmask); 714 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 715 } 716 717 /* 718 * Disable MRR with protected frames by default. 719 * Only 802.11n series NICs can handle this. 720 */ 721 sc->sc_mrrprot = 0; /* XXX should be a capability */ 722 723 /* 724 * Query the enterprise mode information the HAL. 725 */ 726 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 727 &sc->sc_ent_cfg) == HAL_OK) 728 sc->sc_use_ent = 1; 729 730 #ifdef ATH_ENABLE_11N 731 /* 732 * Query HT capabilities 733 */ 734 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 735 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 736 int rxs, txs; 737 738 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 739 740 sc->sc_mrrprot = 1; /* XXX should be a capability */ 741 742 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 743 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 744 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 745 | IEEE80211_HTCAP_MAXAMSDU_3839 746 /* max A-MSDU length */ 747 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 748 ; 749 750 /* 751 * Enable short-GI for HT20 only if the hardware 752 * advertises support. 753 * Notably, anything earlier than the AR9287 doesn't. 754 */ 755 if ((ath_hal_getcapability(ah, 756 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 757 (wmodes & HAL_MODE_HT20)) { 758 device_printf(sc->sc_dev, 759 "[HT] enabling short-GI in 20MHz mode\n"); 760 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 761 } 762 763 if (wmodes & HAL_MODE_HT40) 764 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 765 | IEEE80211_HTCAP_SHORTGI40; 766 767 /* 768 * TX/RX streams need to be taken into account when 769 * negotiating which MCS rates it'll receive and 770 * what MCS rates are available for TX. 771 */ 772 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 773 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 774 775 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 776 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 777 778 ic->ic_txstream = txs; 779 ic->ic_rxstream = rxs; 780 781 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 782 &sc->sc_rts_aggr_limit); 783 if (sc->sc_rts_aggr_limit != (64 * 1024)) 784 device_printf(sc->sc_dev, 785 "[HT] RTS aggregates limited to %d KiB\n", 786 sc->sc_rts_aggr_limit / 1024); 787 788 device_printf(sc->sc_dev, 789 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 790 } 791 #endif 792 793 /* 794 * Initial aggregation settings. 795 */ 796 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 797 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 798 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 799 800 /* 801 * Check if the hardware requires PCI register serialisation. 802 * Some of the Owl based MACs require this. 803 */ 804 if (mp_ncpus > 1 && 805 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 806 0, NULL) == HAL_OK) { 807 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 808 device_printf(sc->sc_dev, 809 "Enabling register serialisation\n"); 810 } 811 812 /* 813 * Indicate we need the 802.11 header padded to a 814 * 32-bit boundary for 4-address and QoS frames. 815 */ 816 ic->ic_flags |= IEEE80211_F_DATAPAD; 817 818 /* 819 * Query the hal about antenna support. 820 */ 821 sc->sc_defant = ath_hal_getdefantenna(ah); 822 823 /* 824 * Not all chips have the VEOL support we want to 825 * use with IBSS beacons; check here for it. 826 */ 827 sc->sc_hasveol = ath_hal_hasveol(ah); 828 829 /* get mac address from hardware */ 830 ath_hal_getmac(ah, macaddr); 831 if (sc->sc_hasbmask) 832 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 833 834 /* NB: used to size node table key mapping array */ 835 ic->ic_max_keyix = sc->sc_keymax; 836 /* call MI attach routine. */ 837 ieee80211_ifattach(ic, macaddr); 838 ic->ic_setregdomain = ath_setregdomain; 839 ic->ic_getradiocaps = ath_getradiocaps; 840 sc->sc_opmode = HAL_M_STA; 841 842 /* override default methods */ 843 ic->ic_newassoc = ath_newassoc; 844 ic->ic_updateslot = ath_updateslot; 845 ic->ic_wme.wme_update = ath_wme_update; 846 ic->ic_vap_create = ath_vap_create; 847 ic->ic_vap_delete = ath_vap_delete; 848 ic->ic_raw_xmit = ath_raw_xmit; 849 ic->ic_update_mcast = ath_update_mcast; 850 ic->ic_update_promisc = ath_update_promisc; 851 ic->ic_node_alloc = ath_node_alloc; 852 sc->sc_node_free = ic->ic_node_free; 853 ic->ic_node_free = ath_node_free; 854 sc->sc_node_cleanup = ic->ic_node_cleanup; 855 ic->ic_node_cleanup = ath_node_cleanup; 856 ic->ic_node_getsignal = ath_node_getsignal; 857 ic->ic_scan_start = ath_scan_start; 858 ic->ic_scan_end = ath_scan_end; 859 ic->ic_set_channel = ath_set_channel; 860 #ifdef ATH_ENABLE_11N 861 /* 802.11n specific - but just override anyway */ 862 sc->sc_addba_request = ic->ic_addba_request; 863 sc->sc_addba_response = ic->ic_addba_response; 864 sc->sc_addba_stop = ic->ic_addba_stop; 865 sc->sc_bar_response = ic->ic_bar_response; 866 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 867 868 ic->ic_addba_request = ath_addba_request; 869 ic->ic_addba_response = ath_addba_response; 870 ic->ic_addba_response_timeout = ath_addba_response_timeout; 871 ic->ic_addba_stop = ath_addba_stop; 872 ic->ic_bar_response = ath_bar_response; 873 874 ic->ic_update_chw = ath_update_chw; 875 #endif /* ATH_ENABLE_11N */ 876 877 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 878 /* 879 * There's one vendor bitmap entry in the RX radiotap 880 * header; make sure that's taken into account. 881 */ 882 ieee80211_radiotap_attachv(ic, 883 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 884 ATH_TX_RADIOTAP_PRESENT, 885 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 886 ATH_RX_RADIOTAP_PRESENT); 887 #else 888 /* 889 * No vendor bitmap/extensions are present. 890 */ 891 ieee80211_radiotap_attach(ic, 892 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 893 ATH_TX_RADIOTAP_PRESENT, 894 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 895 ATH_RX_RADIOTAP_PRESENT); 896 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 897 898 /* 899 * Setup the ALQ logging if required 900 */ 901 #ifdef ATH_DEBUG_ALQ 902 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 903 if_ath_alq_setcfg(&sc->sc_alq, 904 sc->sc_ah->ah_macVersion, 905 sc->sc_ah->ah_macRev, 906 sc->sc_ah->ah_phyRev, 907 sc->sc_ah->ah_magic); 908 #endif 909 910 /* 911 * Setup dynamic sysctl's now that country code and 912 * regdomain are available from the hal. 913 */ 914 ath_sysctlattach(sc); 915 ath_sysctl_stats_attach(sc); 916 ath_sysctl_hal_attach(sc); 917 918 if (bootverbose) 919 ieee80211_announce(ic); 920 ath_announce(sc); 921 return 0; 922 bad2: 923 ath_tx_cleanup(sc); 924 ath_desc_free(sc); 925 ath_txdma_teardown(sc); 926 ath_rxdma_teardown(sc); 927 bad: 928 if (ah) 929 ath_hal_detach(ah); 930 931 /* 932 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 933 */ 934 if (ifp != NULL && ifp->if_vnet) { 935 CURVNET_SET(ifp->if_vnet); 936 if_free(ifp); 937 CURVNET_RESTORE(); 938 } else if (ifp != NULL) 939 if_free(ifp); 940 sc->sc_invalid = 1; 941 return error; 942 } 943 944 int 945 ath_detach(struct ath_softc *sc) 946 { 947 struct ifnet *ifp = sc->sc_ifp; 948 949 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 950 __func__, ifp->if_flags); 951 952 /* 953 * NB: the order of these is important: 954 * o stop the chip so no more interrupts will fire 955 * o call the 802.11 layer before detaching the hal to 956 * insure callbacks into the driver to delete global 957 * key cache entries can be handled 958 * o free the taskqueue which drains any pending tasks 959 * o reclaim the tx queue data structures after calling 960 * the 802.11 layer as we'll get called back to reclaim 961 * node state and potentially want to use them 962 * o to cleanup the tx queues the hal is called, so detach 963 * it last 964 * Other than that, it's straightforward... 965 */ 966 ath_stop(ifp); 967 ieee80211_ifdetach(ifp->if_l2com); 968 taskqueue_free(sc->sc_tq); 969 #ifdef ATH_TX99_DIAG 970 if (sc->sc_tx99 != NULL) 971 sc->sc_tx99->detach(sc->sc_tx99); 972 #endif 973 ath_rate_detach(sc->sc_rc); 974 975 #ifdef ATH_DEBUG_ALQ 976 if_ath_alq_tidyup(&sc->sc_alq); 977 #endif 978 979 ath_spectral_detach(sc); 980 ath_dfs_detach(sc); 981 ath_desc_free(sc); 982 ath_txdma_teardown(sc); 983 ath_rxdma_teardown(sc); 984 ath_tx_cleanup(sc); 985 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 986 987 CURVNET_SET(ifp->if_vnet); 988 if_free(ifp); 989 CURVNET_RESTORE(); 990 991 return 0; 992 } 993 994 /* 995 * MAC address handling for multiple BSS on the same radio. 996 * The first vap uses the MAC address from the EEPROM. For 997 * subsequent vap's we set the U/L bit (bit 1) in the MAC 998 * address and use the next six bits as an index. 999 */ 1000 static void 1001 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1002 { 1003 int i; 1004 1005 if (clone && sc->sc_hasbmask) { 1006 /* NB: we only do this if h/w supports multiple bssid */ 1007 for (i = 0; i < 8; i++) 1008 if ((sc->sc_bssidmask & (1<<i)) == 0) 1009 break; 1010 if (i != 0) 1011 mac[0] |= (i << 2)|0x2; 1012 } else 1013 i = 0; 1014 sc->sc_bssidmask |= 1<<i; 1015 sc->sc_hwbssidmask[0] &= ~mac[0]; 1016 if (i == 0) 1017 sc->sc_nbssid0++; 1018 } 1019 1020 static void 1021 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1022 { 1023 int i = mac[0] >> 2; 1024 uint8_t mask; 1025 1026 if (i != 0 || --sc->sc_nbssid0 == 0) { 1027 sc->sc_bssidmask &= ~(1<<i); 1028 /* recalculate bssid mask from remaining addresses */ 1029 mask = 0xff; 1030 for (i = 1; i < 8; i++) 1031 if (sc->sc_bssidmask & (1<<i)) 1032 mask &= ~((i<<2)|0x2); 1033 sc->sc_hwbssidmask[0] |= mask; 1034 } 1035 } 1036 1037 /* 1038 * Assign a beacon xmit slot. We try to space out 1039 * assignments so when beacons are staggered the 1040 * traffic coming out of the cab q has maximal time 1041 * to go out before the next beacon is scheduled. 1042 */ 1043 static int 1044 assign_bslot(struct ath_softc *sc) 1045 { 1046 u_int slot, free; 1047 1048 free = 0; 1049 for (slot = 0; slot < ATH_BCBUF; slot++) 1050 if (sc->sc_bslot[slot] == NULL) { 1051 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1052 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1053 return slot; 1054 free = slot; 1055 /* NB: keep looking for a double slot */ 1056 } 1057 return free; 1058 } 1059 1060 static struct ieee80211vap * 1061 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1062 enum ieee80211_opmode opmode, int flags, 1063 const uint8_t bssid[IEEE80211_ADDR_LEN], 1064 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1065 { 1066 struct ath_softc *sc = ic->ic_ifp->if_softc; 1067 struct ath_vap *avp; 1068 struct ieee80211vap *vap; 1069 uint8_t mac[IEEE80211_ADDR_LEN]; 1070 int needbeacon, error; 1071 enum ieee80211_opmode ic_opmode; 1072 1073 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1074 M_80211_VAP, M_WAITOK | M_ZERO); 1075 needbeacon = 0; 1076 IEEE80211_ADDR_COPY(mac, mac0); 1077 1078 ATH_LOCK(sc); 1079 ic_opmode = opmode; /* default to opmode of new vap */ 1080 switch (opmode) { 1081 case IEEE80211_M_STA: 1082 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1083 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1084 goto bad; 1085 } 1086 if (sc->sc_nvaps) { 1087 /* 1088 * With multiple vaps we must fall back 1089 * to s/w beacon miss handling. 1090 */ 1091 flags |= IEEE80211_CLONE_NOBEACONS; 1092 } 1093 if (flags & IEEE80211_CLONE_NOBEACONS) { 1094 /* 1095 * Station mode w/o beacons are implemented w/ AP mode. 1096 */ 1097 ic_opmode = IEEE80211_M_HOSTAP; 1098 } 1099 break; 1100 case IEEE80211_M_IBSS: 1101 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1102 device_printf(sc->sc_dev, 1103 "only 1 ibss vap supported\n"); 1104 goto bad; 1105 } 1106 needbeacon = 1; 1107 break; 1108 case IEEE80211_M_AHDEMO: 1109 #ifdef IEEE80211_SUPPORT_TDMA 1110 if (flags & IEEE80211_CLONE_TDMA) { 1111 if (sc->sc_nvaps != 0) { 1112 device_printf(sc->sc_dev, 1113 "only 1 tdma vap supported\n"); 1114 goto bad; 1115 } 1116 needbeacon = 1; 1117 flags |= IEEE80211_CLONE_NOBEACONS; 1118 } 1119 /* fall thru... */ 1120 #endif 1121 case IEEE80211_M_MONITOR: 1122 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1123 /* 1124 * Adopt existing mode. Adding a monitor or ahdemo 1125 * vap to an existing configuration is of dubious 1126 * value but should be ok. 1127 */ 1128 /* XXX not right for monitor mode */ 1129 ic_opmode = ic->ic_opmode; 1130 } 1131 break; 1132 case IEEE80211_M_HOSTAP: 1133 case IEEE80211_M_MBSS: 1134 needbeacon = 1; 1135 break; 1136 case IEEE80211_M_WDS: 1137 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1138 device_printf(sc->sc_dev, 1139 "wds not supported in sta mode\n"); 1140 goto bad; 1141 } 1142 /* 1143 * Silently remove any request for a unique 1144 * bssid; WDS vap's always share the local 1145 * mac address. 1146 */ 1147 flags &= ~IEEE80211_CLONE_BSSID; 1148 if (sc->sc_nvaps == 0) 1149 ic_opmode = IEEE80211_M_HOSTAP; 1150 else 1151 ic_opmode = ic->ic_opmode; 1152 break; 1153 default: 1154 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1155 goto bad; 1156 } 1157 /* 1158 * Check that a beacon buffer is available; the code below assumes it. 1159 */ 1160 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1161 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1162 goto bad; 1163 } 1164 1165 /* STA, AHDEMO? */ 1166 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1167 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1168 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1169 } 1170 1171 vap = &avp->av_vap; 1172 /* XXX can't hold mutex across if_alloc */ 1173 ATH_UNLOCK(sc); 1174 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1175 bssid, mac); 1176 ATH_LOCK(sc); 1177 if (error != 0) { 1178 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1179 __func__, error); 1180 goto bad2; 1181 } 1182 1183 /* h/w crypto support */ 1184 vap->iv_key_alloc = ath_key_alloc; 1185 vap->iv_key_delete = ath_key_delete; 1186 vap->iv_key_set = ath_key_set; 1187 vap->iv_key_update_begin = ath_key_update_begin; 1188 vap->iv_key_update_end = ath_key_update_end; 1189 1190 /* override various methods */ 1191 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1192 vap->iv_recv_mgmt = ath_recv_mgmt; 1193 vap->iv_reset = ath_reset_vap; 1194 vap->iv_update_beacon = ath_beacon_update; 1195 avp->av_newstate = vap->iv_newstate; 1196 vap->iv_newstate = ath_newstate; 1197 avp->av_bmiss = vap->iv_bmiss; 1198 vap->iv_bmiss = ath_bmiss_vap; 1199 1200 avp->av_node_ps = vap->iv_node_ps; 1201 vap->iv_node_ps = ath_node_powersave; 1202 1203 avp->av_set_tim = vap->iv_set_tim; 1204 vap->iv_set_tim = ath_node_set_tim; 1205 1206 /* Set default parameters */ 1207 1208 /* 1209 * Anything earlier than some AR9300 series MACs don't 1210 * support a smaller MPDU density. 1211 */ 1212 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1213 /* 1214 * All NICs can handle the maximum size, however 1215 * AR5416 based MACs can only TX aggregates w/ RTS 1216 * protection when the total aggregate size is <= 8k. 1217 * However, for now that's enforced by the TX path. 1218 */ 1219 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1220 1221 avp->av_bslot = -1; 1222 if (needbeacon) { 1223 /* 1224 * Allocate beacon state and setup the q for buffered 1225 * multicast frames. We know a beacon buffer is 1226 * available because we checked above. 1227 */ 1228 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1229 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1230 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1231 /* 1232 * Assign the vap to a beacon xmit slot. As above 1233 * this cannot fail to find a free one. 1234 */ 1235 avp->av_bslot = assign_bslot(sc); 1236 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1237 ("beacon slot %u not empty", avp->av_bslot)); 1238 sc->sc_bslot[avp->av_bslot] = vap; 1239 sc->sc_nbcnvaps++; 1240 } 1241 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1242 /* 1243 * Multple vaps are to transmit beacons and we 1244 * have h/w support for TSF adjusting; enable 1245 * use of staggered beacons. 1246 */ 1247 sc->sc_stagbeacons = 1; 1248 } 1249 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1250 } 1251 1252 ic->ic_opmode = ic_opmode; 1253 if (opmode != IEEE80211_M_WDS) { 1254 sc->sc_nvaps++; 1255 if (opmode == IEEE80211_M_STA) 1256 sc->sc_nstavaps++; 1257 if (opmode == IEEE80211_M_MBSS) 1258 sc->sc_nmeshvaps++; 1259 } 1260 switch (ic_opmode) { 1261 case IEEE80211_M_IBSS: 1262 sc->sc_opmode = HAL_M_IBSS; 1263 break; 1264 case IEEE80211_M_STA: 1265 sc->sc_opmode = HAL_M_STA; 1266 break; 1267 case IEEE80211_M_AHDEMO: 1268 #ifdef IEEE80211_SUPPORT_TDMA 1269 if (vap->iv_caps & IEEE80211_C_TDMA) { 1270 sc->sc_tdma = 1; 1271 /* NB: disable tsf adjust */ 1272 sc->sc_stagbeacons = 0; 1273 } 1274 /* 1275 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1276 * just ap mode. 1277 */ 1278 /* fall thru... */ 1279 #endif 1280 case IEEE80211_M_HOSTAP: 1281 case IEEE80211_M_MBSS: 1282 sc->sc_opmode = HAL_M_HOSTAP; 1283 break; 1284 case IEEE80211_M_MONITOR: 1285 sc->sc_opmode = HAL_M_MONITOR; 1286 break; 1287 default: 1288 /* XXX should not happen */ 1289 break; 1290 } 1291 if (sc->sc_hastsfadd) { 1292 /* 1293 * Configure whether or not TSF adjust should be done. 1294 */ 1295 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1296 } 1297 if (flags & IEEE80211_CLONE_NOBEACONS) { 1298 /* 1299 * Enable s/w beacon miss handling. 1300 */ 1301 sc->sc_swbmiss = 1; 1302 } 1303 ATH_UNLOCK(sc); 1304 1305 /* complete setup */ 1306 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1307 return vap; 1308 bad2: 1309 reclaim_address(sc, mac); 1310 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1311 bad: 1312 free(avp, M_80211_VAP); 1313 ATH_UNLOCK(sc); 1314 return NULL; 1315 } 1316 1317 static void 1318 ath_vap_delete(struct ieee80211vap *vap) 1319 { 1320 struct ieee80211com *ic = vap->iv_ic; 1321 struct ifnet *ifp = ic->ic_ifp; 1322 struct ath_softc *sc = ifp->if_softc; 1323 struct ath_hal *ah = sc->sc_ah; 1324 struct ath_vap *avp = ATH_VAP(vap); 1325 1326 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1327 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1328 /* 1329 * Quiesce the hardware while we remove the vap. In 1330 * particular we need to reclaim all references to 1331 * the vap state by any frames pending on the tx queues. 1332 */ 1333 ath_hal_intrset(ah, 0); /* disable interrupts */ 1334 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1335 /* XXX Do all frames from all vaps/nodes need draining here? */ 1336 ath_stoprecv(sc, 1); /* stop recv side */ 1337 } 1338 1339 ieee80211_vap_detach(vap); 1340 1341 /* 1342 * XXX Danger Will Robinson! Danger! 1343 * 1344 * Because ieee80211_vap_detach() can queue a frame (the station 1345 * diassociate message?) after we've drained the TXQ and 1346 * flushed the software TXQ, we will end up with a frame queued 1347 * to a node whose vap is about to be freed. 1348 * 1349 * To work around this, flush the hardware/software again. 1350 * This may be racy - the ath task may be running and the packet 1351 * may be being scheduled between sw->hw txq. Tsk. 1352 * 1353 * TODO: figure out why a new node gets allocated somewhere around 1354 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1355 * call!) 1356 */ 1357 1358 ath_draintxq(sc, ATH_RESET_DEFAULT); 1359 1360 ATH_LOCK(sc); 1361 /* 1362 * Reclaim beacon state. Note this must be done before 1363 * the vap instance is reclaimed as we may have a reference 1364 * to it in the buffer for the beacon frame. 1365 */ 1366 if (avp->av_bcbuf != NULL) { 1367 if (avp->av_bslot != -1) { 1368 sc->sc_bslot[avp->av_bslot] = NULL; 1369 sc->sc_nbcnvaps--; 1370 } 1371 ath_beacon_return(sc, avp->av_bcbuf); 1372 avp->av_bcbuf = NULL; 1373 if (sc->sc_nbcnvaps == 0) { 1374 sc->sc_stagbeacons = 0; 1375 if (sc->sc_hastsfadd) 1376 ath_hal_settsfadjust(sc->sc_ah, 0); 1377 } 1378 /* 1379 * Reclaim any pending mcast frames for the vap. 1380 */ 1381 ath_tx_draintxq(sc, &avp->av_mcastq); 1382 } 1383 /* 1384 * Update bookkeeping. 1385 */ 1386 if (vap->iv_opmode == IEEE80211_M_STA) { 1387 sc->sc_nstavaps--; 1388 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1389 sc->sc_swbmiss = 0; 1390 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1391 vap->iv_opmode == IEEE80211_M_MBSS) { 1392 reclaim_address(sc, vap->iv_myaddr); 1393 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1394 if (vap->iv_opmode == IEEE80211_M_MBSS) 1395 sc->sc_nmeshvaps--; 1396 } 1397 if (vap->iv_opmode != IEEE80211_M_WDS) 1398 sc->sc_nvaps--; 1399 #ifdef IEEE80211_SUPPORT_TDMA 1400 /* TDMA operation ceases when the last vap is destroyed */ 1401 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1402 sc->sc_tdma = 0; 1403 sc->sc_swbmiss = 0; 1404 } 1405 #endif 1406 free(avp, M_80211_VAP); 1407 1408 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1409 /* 1410 * Restart rx+tx machines if still running (RUNNING will 1411 * be reset if we just destroyed the last vap). 1412 */ 1413 if (ath_startrecv(sc) != 0) 1414 if_printf(ifp, "%s: unable to restart recv logic\n", 1415 __func__); 1416 if (sc->sc_beacons) { /* restart beacons */ 1417 #ifdef IEEE80211_SUPPORT_TDMA 1418 if (sc->sc_tdma) 1419 ath_tdma_config(sc, NULL); 1420 else 1421 #endif 1422 ath_beacon_config(sc, NULL); 1423 } 1424 ath_hal_intrset(ah, sc->sc_imask); 1425 } 1426 ATH_UNLOCK(sc); 1427 } 1428 1429 void 1430 ath_suspend(struct ath_softc *sc) 1431 { 1432 struct ifnet *ifp = sc->sc_ifp; 1433 struct ieee80211com *ic = ifp->if_l2com; 1434 1435 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1436 __func__, ifp->if_flags); 1437 1438 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1439 1440 ieee80211_suspend_all(ic); 1441 /* 1442 * NB: don't worry about putting the chip in low power 1443 * mode; pci will power off our socket on suspend and 1444 * CardBus detaches the device. 1445 */ 1446 1447 /* 1448 * XXX ensure none of the taskqueues are running 1449 * XXX ensure sc_invalid is 1 1450 * XXX ensure the calibration callout is disabled 1451 */ 1452 1453 /* Disable the PCIe PHY, complete with workarounds */ 1454 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1455 } 1456 1457 /* 1458 * Reset the key cache since some parts do not reset the 1459 * contents on resume. First we clear all entries, then 1460 * re-load keys that the 802.11 layer assumes are setup 1461 * in h/w. 1462 */ 1463 static void 1464 ath_reset_keycache(struct ath_softc *sc) 1465 { 1466 struct ifnet *ifp = sc->sc_ifp; 1467 struct ieee80211com *ic = ifp->if_l2com; 1468 struct ath_hal *ah = sc->sc_ah; 1469 int i; 1470 1471 for (i = 0; i < sc->sc_keymax; i++) 1472 ath_hal_keyreset(ah, i); 1473 ieee80211_crypto_reload_keys(ic); 1474 } 1475 1476 void 1477 ath_resume(struct ath_softc *sc) 1478 { 1479 struct ifnet *ifp = sc->sc_ifp; 1480 struct ieee80211com *ic = ifp->if_l2com; 1481 struct ath_hal *ah = sc->sc_ah; 1482 HAL_STATUS status; 1483 1484 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1485 __func__, ifp->if_flags); 1486 1487 /* Re-enable PCIe, re-enable the PCIe bus */ 1488 ath_hal_enablepcie(ah, 0, 0); 1489 1490 /* 1491 * Must reset the chip before we reload the 1492 * keycache as we were powered down on suspend. 1493 */ 1494 ath_hal_reset(ah, sc->sc_opmode, 1495 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1496 AH_FALSE, &status); 1497 ath_reset_keycache(sc); 1498 1499 /* Let DFS at it in case it's a DFS channel */ 1500 ath_dfs_radar_enable(sc, ic->ic_curchan); 1501 1502 /* Let spectral at in case spectral is enabled */ 1503 ath_spectral_enable(sc, ic->ic_curchan); 1504 1505 /* Restore the LED configuration */ 1506 ath_led_config(sc); 1507 ath_hal_setledstate(ah, HAL_LED_INIT); 1508 1509 if (sc->sc_resume_up) 1510 ieee80211_resume_all(ic); 1511 1512 /* XXX beacons ? */ 1513 } 1514 1515 void 1516 ath_shutdown(struct ath_softc *sc) 1517 { 1518 struct ifnet *ifp = sc->sc_ifp; 1519 1520 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1521 __func__, ifp->if_flags); 1522 1523 ath_stop(ifp); 1524 /* NB: no point powering down chip as we're about to reboot */ 1525 } 1526 1527 /* 1528 * Interrupt handler. Most of the actual processing is deferred. 1529 */ 1530 void 1531 ath_intr(void *arg) 1532 { 1533 struct ath_softc *sc = arg; 1534 struct ifnet *ifp = sc->sc_ifp; 1535 struct ath_hal *ah = sc->sc_ah; 1536 HAL_INT status = 0; 1537 uint32_t txqs; 1538 1539 /* 1540 * If we're inside a reset path, just print a warning and 1541 * clear the ISR. The reset routine will finish it for us. 1542 */ 1543 ATH_PCU_LOCK(sc); 1544 if (sc->sc_inreset_cnt) { 1545 HAL_INT status; 1546 ath_hal_getisr(ah, &status); /* clear ISR */ 1547 ath_hal_intrset(ah, 0); /* disable further intr's */ 1548 DPRINTF(sc, ATH_DEBUG_ANY, 1549 "%s: in reset, ignoring: status=0x%x\n", 1550 __func__, status); 1551 ATH_PCU_UNLOCK(sc); 1552 return; 1553 } 1554 1555 if (sc->sc_invalid) { 1556 /* 1557 * The hardware is not ready/present, don't touch anything. 1558 * Note this can happen early on if the IRQ is shared. 1559 */ 1560 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1561 ATH_PCU_UNLOCK(sc); 1562 return; 1563 } 1564 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1565 ATH_PCU_UNLOCK(sc); 1566 return; 1567 } 1568 1569 if ((ifp->if_flags & IFF_UP) == 0 || 1570 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1571 HAL_INT status; 1572 1573 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1574 __func__, ifp->if_flags); 1575 ath_hal_getisr(ah, &status); /* clear ISR */ 1576 ath_hal_intrset(ah, 0); /* disable further intr's */ 1577 ATH_PCU_UNLOCK(sc); 1578 return; 1579 } 1580 1581 /* 1582 * Figure out the reason(s) for the interrupt. Note 1583 * that the hal returns a pseudo-ISR that may include 1584 * bits we haven't explicitly enabled so we mask the 1585 * value to insure we only process bits we requested. 1586 */ 1587 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1588 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1589 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1590 #ifdef ATH_KTR_INTR_DEBUG 1591 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1592 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1593 ah->ah_intrstate[0], 1594 ah->ah_intrstate[1], 1595 ah->ah_intrstate[2], 1596 ah->ah_intrstate[3], 1597 ah->ah_intrstate[6]); 1598 #endif 1599 1600 /* Squirrel away SYNC interrupt debugging */ 1601 if (ah->ah_syncstate != 0) { 1602 int i; 1603 for (i = 0; i < 32; i++) 1604 if (ah->ah_syncstate & (i << i)) 1605 sc->sc_intr_stats.sync_intr[i]++; 1606 } 1607 1608 status &= sc->sc_imask; /* discard unasked for bits */ 1609 1610 /* Short-circuit un-handled interrupts */ 1611 if (status == 0x0) { 1612 ATH_PCU_UNLOCK(sc); 1613 return; 1614 } 1615 1616 /* 1617 * Take a note that we're inside the interrupt handler, so 1618 * the reset routines know to wait. 1619 */ 1620 sc->sc_intr_cnt++; 1621 ATH_PCU_UNLOCK(sc); 1622 1623 /* 1624 * Handle the interrupt. We won't run concurrent with the reset 1625 * or channel change routines as they'll wait for sc_intr_cnt 1626 * to be 0 before continuing. 1627 */ 1628 if (status & HAL_INT_FATAL) { 1629 sc->sc_stats.ast_hardware++; 1630 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1631 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1632 } else { 1633 if (status & HAL_INT_SWBA) { 1634 /* 1635 * Software beacon alert--time to send a beacon. 1636 * Handle beacon transmission directly; deferring 1637 * this is too slow to meet timing constraints 1638 * under load. 1639 */ 1640 #ifdef IEEE80211_SUPPORT_TDMA 1641 if (sc->sc_tdma) { 1642 if (sc->sc_tdmaswba == 0) { 1643 struct ieee80211com *ic = ifp->if_l2com; 1644 struct ieee80211vap *vap = 1645 TAILQ_FIRST(&ic->ic_vaps); 1646 ath_tdma_beacon_send(sc, vap); 1647 sc->sc_tdmaswba = 1648 vap->iv_tdma->tdma_bintval; 1649 } else 1650 sc->sc_tdmaswba--; 1651 } else 1652 #endif 1653 { 1654 ath_beacon_proc(sc, 0); 1655 #ifdef IEEE80211_SUPPORT_SUPERG 1656 /* 1657 * Schedule the rx taskq in case there's no 1658 * traffic so any frames held on the staging 1659 * queue are aged and potentially flushed. 1660 */ 1661 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1662 #endif 1663 } 1664 } 1665 if (status & HAL_INT_RXEOL) { 1666 int imask; 1667 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1668 ATH_PCU_LOCK(sc); 1669 /* 1670 * NB: the hardware should re-read the link when 1671 * RXE bit is written, but it doesn't work at 1672 * least on older hardware revs. 1673 */ 1674 sc->sc_stats.ast_rxeol++; 1675 /* 1676 * Disable RXEOL/RXORN - prevent an interrupt 1677 * storm until the PCU logic can be reset. 1678 * In case the interface is reset some other 1679 * way before "sc_kickpcu" is called, don't 1680 * modify sc_imask - that way if it is reset 1681 * by a call to ath_reset() somehow, the 1682 * interrupt mask will be correctly reprogrammed. 1683 */ 1684 imask = sc->sc_imask; 1685 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1686 ath_hal_intrset(ah, imask); 1687 /* 1688 * Only blank sc_rxlink if we've not yet kicked 1689 * the PCU. 1690 * 1691 * This isn't entirely correct - the correct solution 1692 * would be to have a PCU lock and engage that for 1693 * the duration of the PCU fiddling; which would include 1694 * running the RX process. Otherwise we could end up 1695 * messing up the RX descriptor chain and making the 1696 * RX desc list much shorter. 1697 */ 1698 if (! sc->sc_kickpcu) 1699 sc->sc_rxlink = NULL; 1700 sc->sc_kickpcu = 1; 1701 /* 1702 * Enqueue an RX proc, to handled whatever 1703 * is in the RX queue. 1704 * This will then kick the PCU. 1705 */ 1706 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1707 ATH_PCU_UNLOCK(sc); 1708 } 1709 if (status & HAL_INT_TXURN) { 1710 sc->sc_stats.ast_txurn++; 1711 /* bump tx trigger level */ 1712 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1713 } 1714 /* 1715 * Handle both the legacy and RX EDMA interrupt bits. 1716 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1717 */ 1718 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1719 sc->sc_stats.ast_rx_intr++; 1720 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1721 } 1722 if (status & HAL_INT_TX) { 1723 sc->sc_stats.ast_tx_intr++; 1724 /* 1725 * Grab all the currently set bits in the HAL txq bitmap 1726 * and blank them. This is the only place we should be 1727 * doing this. 1728 */ 1729 if (! sc->sc_isedma) { 1730 ATH_PCU_LOCK(sc); 1731 txqs = 0xffffffff; 1732 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1733 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1734 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1735 txqs, 1736 sc->sc_txq_active, 1737 sc->sc_txq_active | txqs); 1738 sc->sc_txq_active |= txqs; 1739 ATH_PCU_UNLOCK(sc); 1740 } 1741 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1742 } 1743 if (status & HAL_INT_BMISS) { 1744 sc->sc_stats.ast_bmiss++; 1745 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1746 } 1747 if (status & HAL_INT_GTT) 1748 sc->sc_stats.ast_tx_timeout++; 1749 if (status & HAL_INT_CST) 1750 sc->sc_stats.ast_tx_cst++; 1751 if (status & HAL_INT_MIB) { 1752 sc->sc_stats.ast_mib++; 1753 ATH_PCU_LOCK(sc); 1754 /* 1755 * Disable interrupts until we service the MIB 1756 * interrupt; otherwise it will continue to fire. 1757 */ 1758 ath_hal_intrset(ah, 0); 1759 /* 1760 * Let the hal handle the event. We assume it will 1761 * clear whatever condition caused the interrupt. 1762 */ 1763 ath_hal_mibevent(ah, &sc->sc_halstats); 1764 /* 1765 * Don't reset the interrupt if we've just 1766 * kicked the PCU, or we may get a nested 1767 * RXEOL before the rxproc has had a chance 1768 * to run. 1769 */ 1770 if (sc->sc_kickpcu == 0) 1771 ath_hal_intrset(ah, sc->sc_imask); 1772 ATH_PCU_UNLOCK(sc); 1773 } 1774 if (status & HAL_INT_RXORN) { 1775 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1776 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1777 sc->sc_stats.ast_rxorn++; 1778 } 1779 } 1780 ATH_PCU_LOCK(sc); 1781 sc->sc_intr_cnt--; 1782 ATH_PCU_UNLOCK(sc); 1783 } 1784 1785 static void 1786 ath_fatal_proc(void *arg, int pending) 1787 { 1788 struct ath_softc *sc = arg; 1789 struct ifnet *ifp = sc->sc_ifp; 1790 u_int32_t *state; 1791 u_int32_t len; 1792 void *sp; 1793 1794 if_printf(ifp, "hardware error; resetting\n"); 1795 /* 1796 * Fatal errors are unrecoverable. Typically these 1797 * are caused by DMA errors. Collect h/w state from 1798 * the hal so we can diagnose what's going on. 1799 */ 1800 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1801 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1802 state = sp; 1803 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1804 state[0], state[1] , state[2], state[3], 1805 state[4], state[5]); 1806 } 1807 ath_reset(ifp, ATH_RESET_NOLOSS); 1808 } 1809 1810 static void 1811 ath_bmiss_vap(struct ieee80211vap *vap) 1812 { 1813 /* 1814 * Workaround phantom bmiss interrupts by sanity-checking 1815 * the time of our last rx'd frame. If it is within the 1816 * beacon miss interval then ignore the interrupt. If it's 1817 * truly a bmiss we'll get another interrupt soon and that'll 1818 * be dispatched up for processing. Note this applies only 1819 * for h/w beacon miss events. 1820 */ 1821 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1822 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1823 struct ath_softc *sc = ifp->if_softc; 1824 u_int64_t lastrx = sc->sc_lastrx; 1825 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1826 /* XXX should take a locked ref to iv_bss */ 1827 u_int bmisstimeout = 1828 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1829 1830 DPRINTF(sc, ATH_DEBUG_BEACON, 1831 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1832 __func__, (unsigned long long) tsf, 1833 (unsigned long long)(tsf - lastrx), 1834 (unsigned long long) lastrx, bmisstimeout); 1835 1836 if (tsf - lastrx <= bmisstimeout) { 1837 sc->sc_stats.ast_bmiss_phantom++; 1838 return; 1839 } 1840 } 1841 ATH_VAP(vap)->av_bmiss(vap); 1842 } 1843 1844 static int 1845 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1846 { 1847 uint32_t rsize; 1848 void *sp; 1849 1850 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1851 return 0; 1852 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1853 *hangs = *(uint32_t *)sp; 1854 return 1; 1855 } 1856 1857 static void 1858 ath_bmiss_proc(void *arg, int pending) 1859 { 1860 struct ath_softc *sc = arg; 1861 struct ifnet *ifp = sc->sc_ifp; 1862 uint32_t hangs; 1863 1864 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1865 1866 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1867 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1868 ath_reset(ifp, ATH_RESET_NOLOSS); 1869 } else 1870 ieee80211_beacon_miss(ifp->if_l2com); 1871 } 1872 1873 /* 1874 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1875 * calcs together with WME. If necessary disable the crypto 1876 * hardware and mark the 802.11 state so keys will be setup 1877 * with the MIC work done in software. 1878 */ 1879 static void 1880 ath_settkipmic(struct ath_softc *sc) 1881 { 1882 struct ifnet *ifp = sc->sc_ifp; 1883 struct ieee80211com *ic = ifp->if_l2com; 1884 1885 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1886 if (ic->ic_flags & IEEE80211_F_WME) { 1887 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1888 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1889 } else { 1890 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1891 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1892 } 1893 } 1894 } 1895 1896 static void 1897 ath_init(void *arg) 1898 { 1899 struct ath_softc *sc = (struct ath_softc *) arg; 1900 struct ifnet *ifp = sc->sc_ifp; 1901 struct ieee80211com *ic = ifp->if_l2com; 1902 struct ath_hal *ah = sc->sc_ah; 1903 HAL_STATUS status; 1904 1905 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1906 __func__, ifp->if_flags); 1907 1908 ATH_LOCK(sc); 1909 /* 1910 * Stop anything previously setup. This is safe 1911 * whether this is the first time through or not. 1912 */ 1913 ath_stop_locked(ifp); 1914 1915 /* 1916 * The basic interface to setting the hardware in a good 1917 * state is ``reset''. On return the hardware is known to 1918 * be powered up and with interrupts disabled. This must 1919 * be followed by initialization of the appropriate bits 1920 * and then setup of the interrupt mask. 1921 */ 1922 ath_settkipmic(sc); 1923 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1924 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1925 status); 1926 ATH_UNLOCK(sc); 1927 return; 1928 } 1929 ath_chan_change(sc, ic->ic_curchan); 1930 1931 /* Let DFS at it in case it's a DFS channel */ 1932 ath_dfs_radar_enable(sc, ic->ic_curchan); 1933 1934 /* Let spectral at in case spectral is enabled */ 1935 ath_spectral_enable(sc, ic->ic_curchan); 1936 1937 /* 1938 * Likewise this is set during reset so update 1939 * state cached in the driver. 1940 */ 1941 sc->sc_diversity = ath_hal_getdiversity(ah); 1942 sc->sc_lastlongcal = 0; 1943 sc->sc_resetcal = 1; 1944 sc->sc_lastcalreset = 0; 1945 sc->sc_lastani = 0; 1946 sc->sc_lastshortcal = 0; 1947 sc->sc_doresetcal = AH_FALSE; 1948 /* 1949 * Beacon timers were cleared here; give ath_newstate() 1950 * a hint that the beacon timers should be poked when 1951 * things transition to the RUN state. 1952 */ 1953 sc->sc_beacons = 0; 1954 1955 /* 1956 * Setup the hardware after reset: the key cache 1957 * is filled as needed and the receive engine is 1958 * set going. Frame transmit is handled entirely 1959 * in the frame output path; there's nothing to do 1960 * here except setup the interrupt mask. 1961 */ 1962 if (ath_startrecv(sc) != 0) { 1963 if_printf(ifp, "unable to start recv logic\n"); 1964 ATH_UNLOCK(sc); 1965 return; 1966 } 1967 1968 /* 1969 * Enable interrupts. 1970 */ 1971 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1972 | HAL_INT_RXEOL | HAL_INT_RXORN 1973 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1974 1975 /* 1976 * Enable RX EDMA bits. Note these overlap with 1977 * HAL_INT_RX and HAL_INT_RXDESC respectively. 1978 */ 1979 if (sc->sc_isedma) 1980 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 1981 1982 /* 1983 * Enable MIB interrupts when there are hardware phy counters. 1984 * Note we only do this (at the moment) for station mode. 1985 */ 1986 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1987 sc->sc_imask |= HAL_INT_MIB; 1988 1989 /* Enable global TX timeout and carrier sense timeout if available */ 1990 if (ath_hal_gtxto_supported(ah)) 1991 sc->sc_imask |= HAL_INT_GTT; 1992 1993 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1994 __func__, sc->sc_imask); 1995 1996 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1997 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1998 ath_hal_intrset(ah, sc->sc_imask); 1999 2000 ATH_UNLOCK(sc); 2001 2002 #ifdef ATH_TX99_DIAG 2003 if (sc->sc_tx99 != NULL) 2004 sc->sc_tx99->start(sc->sc_tx99); 2005 else 2006 #endif 2007 ieee80211_start_all(ic); /* start all vap's */ 2008 } 2009 2010 static void 2011 ath_stop_locked(struct ifnet *ifp) 2012 { 2013 struct ath_softc *sc = ifp->if_softc; 2014 struct ath_hal *ah = sc->sc_ah; 2015 2016 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2017 __func__, sc->sc_invalid, ifp->if_flags); 2018 2019 ATH_LOCK_ASSERT(sc); 2020 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2021 /* 2022 * Shutdown the hardware and driver: 2023 * reset 802.11 state machine 2024 * turn off timers 2025 * disable interrupts 2026 * turn off the radio 2027 * clear transmit machinery 2028 * clear receive machinery 2029 * drain and release tx queues 2030 * reclaim beacon resources 2031 * power down hardware 2032 * 2033 * Note that some of this work is not possible if the 2034 * hardware is gone (invalid). 2035 */ 2036 #ifdef ATH_TX99_DIAG 2037 if (sc->sc_tx99 != NULL) 2038 sc->sc_tx99->stop(sc->sc_tx99); 2039 #endif 2040 callout_stop(&sc->sc_wd_ch); 2041 sc->sc_wd_timer = 0; 2042 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2043 if (!sc->sc_invalid) { 2044 if (sc->sc_softled) { 2045 callout_stop(&sc->sc_ledtimer); 2046 ath_hal_gpioset(ah, sc->sc_ledpin, 2047 !sc->sc_ledon); 2048 sc->sc_blinking = 0; 2049 } 2050 ath_hal_intrset(ah, 0); 2051 } 2052 ath_draintxq(sc, ATH_RESET_DEFAULT); 2053 if (!sc->sc_invalid) { 2054 ath_stoprecv(sc, 1); 2055 ath_hal_phydisable(ah); 2056 } else 2057 sc->sc_rxlink = NULL; 2058 ath_beacon_free(sc); /* XXX not needed */ 2059 } 2060 } 2061 2062 #define MAX_TXRX_ITERATIONS 1000 2063 static void 2064 ath_txrx_stop_locked(struct ath_softc *sc) 2065 { 2066 int i = MAX_TXRX_ITERATIONS; 2067 2068 ATH_UNLOCK_ASSERT(sc); 2069 ATH_PCU_LOCK_ASSERT(sc); 2070 2071 /* 2072 * Sleep until all the pending operations have completed. 2073 * 2074 * The caller must ensure that reset has been incremented 2075 * or the pending operations may continue being queued. 2076 */ 2077 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2078 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2079 if (i <= 0) 2080 break; 2081 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2082 i--; 2083 } 2084 2085 if (i <= 0) 2086 device_printf(sc->sc_dev, 2087 "%s: didn't finish after %d iterations\n", 2088 __func__, MAX_TXRX_ITERATIONS); 2089 } 2090 #undef MAX_TXRX_ITERATIONS 2091 2092 #if 0 2093 static void 2094 ath_txrx_stop(struct ath_softc *sc) 2095 { 2096 ATH_UNLOCK_ASSERT(sc); 2097 ATH_PCU_UNLOCK_ASSERT(sc); 2098 2099 ATH_PCU_LOCK(sc); 2100 ath_txrx_stop_locked(sc); 2101 ATH_PCU_UNLOCK(sc); 2102 } 2103 #endif 2104 2105 static void 2106 ath_txrx_start(struct ath_softc *sc) 2107 { 2108 2109 taskqueue_unblock(sc->sc_tq); 2110 } 2111 2112 /* 2113 * Grab the reset lock, and wait around until noone else 2114 * is trying to do anything with it. 2115 * 2116 * This is totally horrible but we can't hold this lock for 2117 * long enough to do TX/RX or we end up with net80211/ip stack 2118 * LORs and eventual deadlock. 2119 * 2120 * "dowait" signals whether to spin, waiting for the reset 2121 * lock count to reach 0. This should (for now) only be used 2122 * during the reset path, as the rest of the code may not 2123 * be locking-reentrant enough to behave correctly. 2124 * 2125 * Another, cleaner way should be found to serialise all of 2126 * these operations. 2127 */ 2128 #define MAX_RESET_ITERATIONS 10 2129 static int 2130 ath_reset_grablock(struct ath_softc *sc, int dowait) 2131 { 2132 int w = 0; 2133 int i = MAX_RESET_ITERATIONS; 2134 2135 ATH_PCU_LOCK_ASSERT(sc); 2136 do { 2137 if (sc->sc_inreset_cnt == 0) { 2138 w = 1; 2139 break; 2140 } 2141 if (dowait == 0) { 2142 w = 0; 2143 break; 2144 } 2145 ATH_PCU_UNLOCK(sc); 2146 pause("ath_reset_grablock", 1); 2147 i--; 2148 ATH_PCU_LOCK(sc); 2149 } while (i > 0); 2150 2151 /* 2152 * We always increment the refcounter, regardless 2153 * of whether we succeeded to get it in an exclusive 2154 * way. 2155 */ 2156 sc->sc_inreset_cnt++; 2157 2158 if (i <= 0) 2159 device_printf(sc->sc_dev, 2160 "%s: didn't finish after %d iterations\n", 2161 __func__, MAX_RESET_ITERATIONS); 2162 2163 if (w == 0) 2164 device_printf(sc->sc_dev, 2165 "%s: warning, recursive reset path!\n", 2166 __func__); 2167 2168 return w; 2169 } 2170 #undef MAX_RESET_ITERATIONS 2171 2172 /* 2173 * XXX TODO: write ath_reset_releaselock 2174 */ 2175 2176 static void 2177 ath_stop(struct ifnet *ifp) 2178 { 2179 struct ath_softc *sc = ifp->if_softc; 2180 2181 ATH_LOCK(sc); 2182 ath_stop_locked(ifp); 2183 ATH_UNLOCK(sc); 2184 } 2185 2186 /* 2187 * Reset the hardware w/o losing operational state. This is 2188 * basically a more efficient way of doing ath_stop, ath_init, 2189 * followed by state transitions to the current 802.11 2190 * operational state. Used to recover from various errors and 2191 * to reset or reload hardware state. 2192 */ 2193 int 2194 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2195 { 2196 struct ath_softc *sc = ifp->if_softc; 2197 struct ieee80211com *ic = ifp->if_l2com; 2198 struct ath_hal *ah = sc->sc_ah; 2199 HAL_STATUS status; 2200 int i; 2201 2202 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2203 2204 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2205 ATH_PCU_UNLOCK_ASSERT(sc); 2206 ATH_UNLOCK_ASSERT(sc); 2207 2208 /* Try to (stop any further TX/RX from occuring */ 2209 taskqueue_block(sc->sc_tq); 2210 2211 ATH_PCU_LOCK(sc); 2212 ath_hal_intrset(ah, 0); /* disable interrupts */ 2213 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2214 if (ath_reset_grablock(sc, 1) == 0) { 2215 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2216 __func__); 2217 } 2218 ATH_PCU_UNLOCK(sc); 2219 2220 /* 2221 * Should now wait for pending TX/RX to complete 2222 * and block future ones from occuring. This needs to be 2223 * done before the TX queue is drained. 2224 */ 2225 ath_draintxq(sc, reset_type); /* stop xmit side */ 2226 2227 /* 2228 * Regardless of whether we're doing a no-loss flush or 2229 * not, stop the PCU and handle what's in the RX queue. 2230 * That way frames aren't dropped which shouldn't be. 2231 */ 2232 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2233 ath_rx_flush(sc); 2234 2235 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2236 /* NB: indicate channel change so we do a full reset */ 2237 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2238 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2239 __func__, status); 2240 sc->sc_diversity = ath_hal_getdiversity(ah); 2241 2242 /* Let DFS at it in case it's a DFS channel */ 2243 ath_dfs_radar_enable(sc, ic->ic_curchan); 2244 2245 /* Let spectral at in case spectral is enabled */ 2246 ath_spectral_enable(sc, ic->ic_curchan); 2247 2248 if (ath_startrecv(sc) != 0) /* restart recv */ 2249 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2250 /* 2251 * We may be doing a reset in response to an ioctl 2252 * that changes the channel so update any state that 2253 * might change as a result. 2254 */ 2255 ath_chan_change(sc, ic->ic_curchan); 2256 if (sc->sc_beacons) { /* restart beacons */ 2257 #ifdef IEEE80211_SUPPORT_TDMA 2258 if (sc->sc_tdma) 2259 ath_tdma_config(sc, NULL); 2260 else 2261 #endif 2262 ath_beacon_config(sc, NULL); 2263 } 2264 2265 /* 2266 * Release the reset lock and re-enable interrupts here. 2267 * If an interrupt was being processed in ath_intr(), 2268 * it would disable interrupts at this point. So we have 2269 * to atomically enable interrupts and decrement the 2270 * reset counter - this way ath_intr() doesn't end up 2271 * disabling interrupts without a corresponding enable 2272 * in the rest or channel change path. 2273 */ 2274 ATH_PCU_LOCK(sc); 2275 sc->sc_inreset_cnt--; 2276 /* XXX only do this if sc_inreset_cnt == 0? */ 2277 ath_hal_intrset(ah, sc->sc_imask); 2278 ATH_PCU_UNLOCK(sc); 2279 2280 /* 2281 * TX and RX can be started here. If it were started with 2282 * sc_inreset_cnt > 0, the TX and RX path would abort. 2283 * Thus if this is a nested call through the reset or 2284 * channel change code, TX completion will occur but 2285 * RX completion and ath_start / ath_tx_start will not 2286 * run. 2287 */ 2288 2289 /* Restart TX/RX as needed */ 2290 ath_txrx_start(sc); 2291 2292 /* Restart TX completion and pending TX */ 2293 if (reset_type == ATH_RESET_NOLOSS) { 2294 ATH_TX_LOCK(sc); 2295 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2296 if (ATH_TXQ_SETUP(sc, i)) { 2297 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2298 ath_txq_sched(sc, &sc->sc_txq[i]); 2299 } 2300 } 2301 ATH_TX_UNLOCK(sc); 2302 } 2303 2304 /* 2305 * This may have been set during an ath_start() call which 2306 * set this once it detected a concurrent TX was going on. 2307 * So, clear it. 2308 */ 2309 IF_LOCK(&ifp->if_snd); 2310 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2311 IF_UNLOCK(&ifp->if_snd); 2312 2313 /* Handle any frames in the TX queue */ 2314 /* 2315 * XXX should this be done by the caller, rather than 2316 * ath_reset() ? 2317 */ 2318 ath_tx_kick(sc); /* restart xmit */ 2319 return 0; 2320 } 2321 2322 static int 2323 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2324 { 2325 struct ieee80211com *ic = vap->iv_ic; 2326 struct ifnet *ifp = ic->ic_ifp; 2327 struct ath_softc *sc = ifp->if_softc; 2328 struct ath_hal *ah = sc->sc_ah; 2329 2330 switch (cmd) { 2331 case IEEE80211_IOC_TXPOWER: 2332 /* 2333 * If per-packet TPC is enabled, then we have nothing 2334 * to do; otherwise we need to force the global limit. 2335 * All this can happen directly; no need to reset. 2336 */ 2337 if (!ath_hal_gettpc(ah)) 2338 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2339 return 0; 2340 } 2341 /* XXX? Full or NOLOSS? */ 2342 return ath_reset(ifp, ATH_RESET_FULL); 2343 } 2344 2345 struct ath_buf * 2346 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2347 { 2348 struct ath_buf *bf; 2349 2350 ATH_TXBUF_LOCK_ASSERT(sc); 2351 2352 if (btype == ATH_BUFTYPE_MGMT) 2353 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2354 else 2355 bf = TAILQ_FIRST(&sc->sc_txbuf); 2356 2357 if (bf == NULL) { 2358 sc->sc_stats.ast_tx_getnobuf++; 2359 } else { 2360 if (bf->bf_flags & ATH_BUF_BUSY) { 2361 sc->sc_stats.ast_tx_getbusybuf++; 2362 bf = NULL; 2363 } 2364 } 2365 2366 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2367 if (btype == ATH_BUFTYPE_MGMT) 2368 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2369 else { 2370 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2371 sc->sc_txbuf_cnt--; 2372 2373 /* 2374 * This shuldn't happen; however just to be 2375 * safe print a warning and fudge the txbuf 2376 * count. 2377 */ 2378 if (sc->sc_txbuf_cnt < 0) { 2379 device_printf(sc->sc_dev, 2380 "%s: sc_txbuf_cnt < 0?\n", 2381 __func__); 2382 sc->sc_txbuf_cnt = 0; 2383 } 2384 } 2385 } else 2386 bf = NULL; 2387 2388 if (bf == NULL) { 2389 /* XXX should check which list, mgmt or otherwise */ 2390 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2391 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2392 "out of xmit buffers" : "xmit buffer busy"); 2393 return NULL; 2394 } 2395 2396 /* XXX TODO: should do this at buffer list initialisation */ 2397 /* XXX (then, ensure the buffer has the right flag set) */ 2398 if (btype == ATH_BUFTYPE_MGMT) 2399 bf->bf_flags |= ATH_BUF_MGMT; 2400 else 2401 bf->bf_flags &= (~ATH_BUF_MGMT); 2402 2403 /* Valid bf here; clear some basic fields */ 2404 bf->bf_next = NULL; /* XXX just to be sure */ 2405 bf->bf_last = NULL; /* XXX again, just to be sure */ 2406 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2407 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2408 2409 /* 2410 * Track the descriptor ID only if doing EDMA 2411 */ 2412 if (sc->sc_isedma) { 2413 bf->bf_descid = sc->sc_txbuf_descid; 2414 sc->sc_txbuf_descid++; 2415 } 2416 2417 return bf; 2418 } 2419 2420 /* 2421 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2422 * can't be thrown back on the queue as they could still be 2423 * in use by the hardware. 2424 * 2425 * This duplicates the buffer, or returns NULL. 2426 * 2427 * The descriptor is also copied but the link pointers and 2428 * the DMA segments aren't copied; this frame should thus 2429 * be again passed through the descriptor setup/chain routines 2430 * so the link is correct. 2431 * 2432 * The caller must free the buffer using ath_freebuf(). 2433 * 2434 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2435 * XXX in the TX pathway when retries are needed. 2436 * XXX Figure out how to keep some buffers free, or factor the 2437 * XXX number of busy buffers into the xmit path (ath_start()) 2438 * XXX so we don't over-commit. 2439 */ 2440 struct ath_buf * 2441 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2442 { 2443 struct ath_buf *tbf; 2444 2445 tbf = ath_getbuf(sc, 2446 (bf->bf_flags & ATH_BUF_MGMT) ? 2447 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2448 if (tbf == NULL) 2449 return NULL; /* XXX failure? Why? */ 2450 2451 /* Copy basics */ 2452 tbf->bf_next = NULL; 2453 tbf->bf_nseg = bf->bf_nseg; 2454 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2455 tbf->bf_status = bf->bf_status; 2456 tbf->bf_m = bf->bf_m; 2457 tbf->bf_node = bf->bf_node; 2458 /* will be setup by the chain/setup function */ 2459 tbf->bf_lastds = NULL; 2460 /* for now, last == self */ 2461 tbf->bf_last = tbf; 2462 tbf->bf_comp = bf->bf_comp; 2463 2464 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2465 2466 /* The caller has to re-init the descriptor + links */ 2467 2468 /* Copy state */ 2469 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2470 2471 return tbf; 2472 } 2473 2474 struct ath_buf * 2475 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2476 { 2477 struct ath_buf *bf; 2478 2479 ATH_TXBUF_LOCK(sc); 2480 bf = _ath_getbuf_locked(sc, btype); 2481 /* 2482 * If a mgmt buffer was requested but we're out of those, 2483 * try requesting a normal one. 2484 */ 2485 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2486 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2487 ATH_TXBUF_UNLOCK(sc); 2488 if (bf == NULL) { 2489 struct ifnet *ifp = sc->sc_ifp; 2490 2491 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2492 sc->sc_stats.ast_tx_qstop++; 2493 IF_LOCK(&ifp->if_snd); 2494 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2495 IF_UNLOCK(&ifp->if_snd); 2496 } 2497 return bf; 2498 } 2499 2500 static void 2501 ath_start_queue(struct ifnet *ifp) 2502 { 2503 struct ath_softc *sc = ifp->if_softc; 2504 2505 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2506 ath_tx_kick(sc); 2507 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2508 } 2509 2510 void 2511 ath_start_task(void *arg, int npending) 2512 { 2513 struct ath_softc *sc = (struct ath_softc *) arg; 2514 struct ifnet *ifp = sc->sc_ifp; 2515 2516 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2517 2518 /* XXX is it ok to hold the ATH_LOCK here? */ 2519 ATH_PCU_LOCK(sc); 2520 if (sc->sc_inreset_cnt > 0) { 2521 device_printf(sc->sc_dev, 2522 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2523 ATH_PCU_UNLOCK(sc); 2524 IF_LOCK(&ifp->if_snd); 2525 sc->sc_stats.ast_tx_qstop++; 2526 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2527 IF_UNLOCK(&ifp->if_snd); 2528 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2529 return; 2530 } 2531 sc->sc_txstart_cnt++; 2532 ATH_PCU_UNLOCK(sc); 2533 2534 ATH_TX_LOCK(sc); 2535 ath_start(sc->sc_ifp); 2536 ATH_TX_UNLOCK(sc); 2537 2538 ATH_PCU_LOCK(sc); 2539 sc->sc_txstart_cnt--; 2540 ATH_PCU_UNLOCK(sc); 2541 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2542 } 2543 2544 void 2545 ath_start(struct ifnet *ifp) 2546 { 2547 struct ath_softc *sc = ifp->if_softc; 2548 struct ieee80211_node *ni; 2549 struct ath_buf *bf; 2550 struct mbuf *m, *next; 2551 ath_bufhead frags; 2552 int npkts = 0; 2553 2554 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2555 return; 2556 2557 ATH_TX_LOCK_ASSERT(sc); 2558 2559 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2560 2561 for (;;) { 2562 ATH_TXBUF_LOCK(sc); 2563 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2564 /* XXX increment counter? */ 2565 ATH_TXBUF_UNLOCK(sc); 2566 IF_LOCK(&ifp->if_snd); 2567 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2568 IF_UNLOCK(&ifp->if_snd); 2569 break; 2570 } 2571 ATH_TXBUF_UNLOCK(sc); 2572 2573 /* 2574 * Grab a TX buffer and associated resources. 2575 */ 2576 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2577 if (bf == NULL) 2578 break; 2579 2580 IFQ_DEQUEUE(&ifp->if_snd, m); 2581 if (m == NULL) { 2582 ATH_TXBUF_LOCK(sc); 2583 ath_returnbuf_head(sc, bf); 2584 ATH_TXBUF_UNLOCK(sc); 2585 break; 2586 } 2587 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2588 npkts ++; 2589 /* 2590 * Check for fragmentation. If this frame 2591 * has been broken up verify we have enough 2592 * buffers to send all the fragments so all 2593 * go out or none... 2594 */ 2595 TAILQ_INIT(&frags); 2596 if ((m->m_flags & M_FRAG) && 2597 !ath_txfrag_setup(sc, &frags, m, ni)) { 2598 DPRINTF(sc, ATH_DEBUG_XMIT, 2599 "%s: out of txfrag buffers\n", __func__); 2600 sc->sc_stats.ast_tx_nofrag++; 2601 ifp->if_oerrors++; 2602 ath_freetx(m); 2603 goto bad; 2604 } 2605 ifp->if_opackets++; 2606 nextfrag: 2607 /* 2608 * Pass the frame to the h/w for transmission. 2609 * Fragmented frames have each frag chained together 2610 * with m_nextpkt. We know there are sufficient ath_buf's 2611 * to send all the frags because of work done by 2612 * ath_txfrag_setup. We leave m_nextpkt set while 2613 * calling ath_tx_start so it can use it to extend the 2614 * the tx duration to cover the subsequent frag and 2615 * so it can reclaim all the mbufs in case of an error; 2616 * ath_tx_start clears m_nextpkt once it commits to 2617 * handing the frame to the hardware. 2618 */ 2619 next = m->m_nextpkt; 2620 if (ath_tx_start(sc, ni, bf, m)) { 2621 bad: 2622 ifp->if_oerrors++; 2623 reclaim: 2624 bf->bf_m = NULL; 2625 bf->bf_node = NULL; 2626 ATH_TXBUF_LOCK(sc); 2627 ath_returnbuf_head(sc, bf); 2628 ath_txfrag_cleanup(sc, &frags, ni); 2629 ATH_TXBUF_UNLOCK(sc); 2630 /* 2631 * XXX todo, free the node outside of 2632 * the TX lock context! 2633 */ 2634 if (ni != NULL) 2635 ieee80211_free_node(ni); 2636 continue; 2637 } 2638 2639 /* 2640 * Check here if the node is in power save state. 2641 */ 2642 ath_tx_update_tim(sc, ni, 1); 2643 2644 if (next != NULL) { 2645 /* 2646 * Beware of state changing between frags. 2647 * XXX check sta power-save state? 2648 */ 2649 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2650 DPRINTF(sc, ATH_DEBUG_XMIT, 2651 "%s: flush fragmented packet, state %s\n", 2652 __func__, 2653 ieee80211_state_name[ni->ni_vap->iv_state]); 2654 ath_freetx(next); 2655 goto reclaim; 2656 } 2657 m = next; 2658 bf = TAILQ_FIRST(&frags); 2659 KASSERT(bf != NULL, ("no buf for txfrag")); 2660 TAILQ_REMOVE(&frags, bf, bf_list); 2661 goto nextfrag; 2662 } 2663 2664 sc->sc_wd_timer = 5; 2665 } 2666 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2667 } 2668 2669 static int 2670 ath_media_change(struct ifnet *ifp) 2671 { 2672 int error = ieee80211_media_change(ifp); 2673 /* NB: only the fixed rate can change and that doesn't need a reset */ 2674 return (error == ENETRESET ? 0 : error); 2675 } 2676 2677 /* 2678 * Block/unblock tx+rx processing while a key change is done. 2679 * We assume the caller serializes key management operations 2680 * so we only need to worry about synchronization with other 2681 * uses that originate in the driver. 2682 */ 2683 static void 2684 ath_key_update_begin(struct ieee80211vap *vap) 2685 { 2686 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2687 struct ath_softc *sc = ifp->if_softc; 2688 2689 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2690 taskqueue_block(sc->sc_tq); 2691 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2692 } 2693 2694 static void 2695 ath_key_update_end(struct ieee80211vap *vap) 2696 { 2697 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2698 struct ath_softc *sc = ifp->if_softc; 2699 2700 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2701 IF_UNLOCK(&ifp->if_snd); 2702 taskqueue_unblock(sc->sc_tq); 2703 } 2704 2705 static void 2706 ath_update_promisc(struct ifnet *ifp) 2707 { 2708 struct ath_softc *sc = ifp->if_softc; 2709 u_int32_t rfilt; 2710 2711 /* configure rx filter */ 2712 rfilt = ath_calcrxfilter(sc); 2713 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2714 2715 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2716 } 2717 2718 static void 2719 ath_update_mcast(struct ifnet *ifp) 2720 { 2721 struct ath_softc *sc = ifp->if_softc; 2722 u_int32_t mfilt[2]; 2723 2724 /* calculate and install multicast filter */ 2725 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2726 struct ifmultiaddr *ifma; 2727 /* 2728 * Merge multicast addresses to form the hardware filter. 2729 */ 2730 mfilt[0] = mfilt[1] = 0; 2731 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2732 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2733 caddr_t dl; 2734 u_int32_t val; 2735 u_int8_t pos; 2736 2737 /* calculate XOR of eight 6bit values */ 2738 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2739 val = LE_READ_4(dl + 0); 2740 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2741 val = LE_READ_4(dl + 3); 2742 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2743 pos &= 0x3f; 2744 mfilt[pos / 32] |= (1 << (pos % 32)); 2745 } 2746 if_maddr_runlock(ifp); 2747 } else 2748 mfilt[0] = mfilt[1] = ~0; 2749 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2750 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2751 __func__, mfilt[0], mfilt[1]); 2752 } 2753 2754 void 2755 ath_mode_init(struct ath_softc *sc) 2756 { 2757 struct ifnet *ifp = sc->sc_ifp; 2758 struct ath_hal *ah = sc->sc_ah; 2759 u_int32_t rfilt; 2760 2761 /* configure rx filter */ 2762 rfilt = ath_calcrxfilter(sc); 2763 ath_hal_setrxfilter(ah, rfilt); 2764 2765 /* configure operational mode */ 2766 ath_hal_setopmode(ah); 2767 2768 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2769 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2770 __func__, 2771 ah, 2772 ifp, 2773 (ifp == NULL) ? NULL : ifp->if_addr); 2774 2775 /* handle any link-level address change */ 2776 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2777 2778 /* calculate and install multicast filter */ 2779 ath_update_mcast(ifp); 2780 } 2781 2782 /* 2783 * Set the slot time based on the current setting. 2784 */ 2785 void 2786 ath_setslottime(struct ath_softc *sc) 2787 { 2788 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2789 struct ath_hal *ah = sc->sc_ah; 2790 u_int usec; 2791 2792 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2793 usec = 13; 2794 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2795 usec = 21; 2796 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2797 /* honor short/long slot time only in 11g */ 2798 /* XXX shouldn't honor on pure g or turbo g channel */ 2799 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2800 usec = HAL_SLOT_TIME_9; 2801 else 2802 usec = HAL_SLOT_TIME_20; 2803 } else 2804 usec = HAL_SLOT_TIME_9; 2805 2806 DPRINTF(sc, ATH_DEBUG_RESET, 2807 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2808 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2809 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2810 2811 ath_hal_setslottime(ah, usec); 2812 sc->sc_updateslot = OK; 2813 } 2814 2815 /* 2816 * Callback from the 802.11 layer to update the 2817 * slot time based on the current setting. 2818 */ 2819 static void 2820 ath_updateslot(struct ifnet *ifp) 2821 { 2822 struct ath_softc *sc = ifp->if_softc; 2823 struct ieee80211com *ic = ifp->if_l2com; 2824 2825 /* 2826 * When not coordinating the BSS, change the hardware 2827 * immediately. For other operation we defer the change 2828 * until beacon updates have propagated to the stations. 2829 */ 2830 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2831 ic->ic_opmode == IEEE80211_M_MBSS) 2832 sc->sc_updateslot = UPDATE; 2833 else 2834 ath_setslottime(sc); 2835 } 2836 2837 /* 2838 * Append the contents of src to dst; both queues 2839 * are assumed to be locked. 2840 */ 2841 void 2842 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2843 { 2844 2845 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2846 dst->axq_link = src->axq_link; 2847 src->axq_link = NULL; 2848 dst->axq_depth += src->axq_depth; 2849 dst->axq_aggr_depth += src->axq_aggr_depth; 2850 src->axq_depth = 0; 2851 src->axq_aggr_depth = 0; 2852 } 2853 2854 /* 2855 * Reset the hardware, with no loss. 2856 * 2857 * This can't be used for a general case reset. 2858 */ 2859 static void 2860 ath_reset_proc(void *arg, int pending) 2861 { 2862 struct ath_softc *sc = arg; 2863 struct ifnet *ifp = sc->sc_ifp; 2864 2865 #if 0 2866 if_printf(ifp, "%s: resetting\n", __func__); 2867 #endif 2868 ath_reset(ifp, ATH_RESET_NOLOSS); 2869 } 2870 2871 /* 2872 * Reset the hardware after detecting beacons have stopped. 2873 */ 2874 static void 2875 ath_bstuck_proc(void *arg, int pending) 2876 { 2877 struct ath_softc *sc = arg; 2878 struct ifnet *ifp = sc->sc_ifp; 2879 uint32_t hangs = 0; 2880 2881 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2882 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2883 2884 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2885 sc->sc_bmisscount); 2886 sc->sc_stats.ast_bstuck++; 2887 /* 2888 * This assumes that there's no simultaneous channel mode change 2889 * occuring. 2890 */ 2891 ath_reset(ifp, ATH_RESET_NOLOSS); 2892 } 2893 2894 static void 2895 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2896 { 2897 bus_addr_t *paddr = (bus_addr_t*) arg; 2898 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2899 *paddr = segs->ds_addr; 2900 } 2901 2902 /* 2903 * Allocate the descriptors and appropriate DMA tag/setup. 2904 * 2905 * For some situations (eg EDMA TX completion), there isn't a requirement 2906 * for the ath_buf entries to be allocated. 2907 */ 2908 int 2909 ath_descdma_alloc_desc(struct ath_softc *sc, 2910 struct ath_descdma *dd, ath_bufhead *head, 2911 const char *name, int ds_size, int ndesc) 2912 { 2913 #define DS2PHYS(_dd, _ds) \ 2914 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2915 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 2916 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 2917 struct ifnet *ifp = sc->sc_ifp; 2918 int error; 2919 2920 dd->dd_descsize = ds_size; 2921 2922 DPRINTF(sc, ATH_DEBUG_RESET, 2923 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 2924 __func__, name, ndesc, dd->dd_descsize); 2925 2926 dd->dd_name = name; 2927 dd->dd_desc_len = dd->dd_descsize * ndesc; 2928 2929 /* 2930 * Merlin work-around: 2931 * Descriptors that cross the 4KB boundary can't be used. 2932 * Assume one skipped descriptor per 4KB page. 2933 */ 2934 if (! ath_hal_split4ktrans(sc->sc_ah)) { 2935 int numpages = dd->dd_desc_len / 4096; 2936 dd->dd_desc_len += ds_size * numpages; 2937 } 2938 2939 /* 2940 * Setup DMA descriptor area. 2941 */ 2942 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 2943 PAGE_SIZE, 0, /* alignment, bounds */ 2944 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2945 BUS_SPACE_MAXADDR, /* highaddr */ 2946 NULL, NULL, /* filter, filterarg */ 2947 dd->dd_desc_len, /* maxsize */ 2948 1, /* nsegments */ 2949 dd->dd_desc_len, /* maxsegsize */ 2950 BUS_DMA_ALLOCNOW, /* flags */ 2951 NULL, /* lockfunc */ 2952 NULL, /* lockarg */ 2953 &dd->dd_dmat); 2954 if (error != 0) { 2955 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2956 return error; 2957 } 2958 2959 /* allocate descriptors */ 2960 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2961 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 2962 &dd->dd_dmamap); 2963 if (error != 0) { 2964 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2965 "error %u\n", ndesc, dd->dd_name, error); 2966 goto fail1; 2967 } 2968 2969 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2970 dd->dd_desc, dd->dd_desc_len, 2971 ath_load_cb, &dd->dd_desc_paddr, 2972 BUS_DMA_NOWAIT); 2973 if (error != 0) { 2974 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2975 dd->dd_name, error); 2976 goto fail2; 2977 } 2978 2979 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2980 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 2981 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 2982 /*XXX*/ (u_long) dd->dd_desc_len); 2983 2984 return (0); 2985 2986 fail2: 2987 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2988 fail1: 2989 bus_dma_tag_destroy(dd->dd_dmat); 2990 memset(dd, 0, sizeof(*dd)); 2991 return error; 2992 #undef DS2PHYS 2993 #undef ATH_DESC_4KB_BOUND_CHECK 2994 } 2995 2996 int 2997 ath_descdma_setup(struct ath_softc *sc, 2998 struct ath_descdma *dd, ath_bufhead *head, 2999 const char *name, int ds_size, int nbuf, int ndesc) 3000 { 3001 #define DS2PHYS(_dd, _ds) \ 3002 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3003 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3004 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3005 struct ifnet *ifp = sc->sc_ifp; 3006 uint8_t *ds; 3007 struct ath_buf *bf; 3008 int i, bsize, error; 3009 3010 /* Allocate descriptors */ 3011 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3012 nbuf * ndesc); 3013 3014 /* Assume any errors during allocation were dealt with */ 3015 if (error != 0) { 3016 return (error); 3017 } 3018 3019 ds = (uint8_t *) dd->dd_desc; 3020 3021 /* allocate rx buffers */ 3022 bsize = sizeof(struct ath_buf) * nbuf; 3023 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3024 if (bf == NULL) { 3025 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3026 dd->dd_name, bsize); 3027 goto fail3; 3028 } 3029 dd->dd_bufptr = bf; 3030 3031 TAILQ_INIT(head); 3032 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3033 bf->bf_desc = (struct ath_desc *) ds; 3034 bf->bf_daddr = DS2PHYS(dd, ds); 3035 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3036 /* 3037 * Merlin WAR: Skip descriptor addresses which 3038 * cause 4KB boundary crossing along any point 3039 * in the descriptor. 3040 */ 3041 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3042 dd->dd_descsize)) { 3043 /* Start at the next page */ 3044 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3045 bf->bf_desc = (struct ath_desc *) ds; 3046 bf->bf_daddr = DS2PHYS(dd, ds); 3047 } 3048 } 3049 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3050 &bf->bf_dmamap); 3051 if (error != 0) { 3052 if_printf(ifp, "unable to create dmamap for %s " 3053 "buffer %u, error %u\n", dd->dd_name, i, error); 3054 ath_descdma_cleanup(sc, dd, head); 3055 return error; 3056 } 3057 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3058 TAILQ_INSERT_TAIL(head, bf, bf_list); 3059 } 3060 3061 /* 3062 * XXX TODO: ensure that ds doesn't overflow the descriptor 3063 * allocation otherwise weird stuff will occur and crash your 3064 * machine. 3065 */ 3066 return 0; 3067 /* XXX this should likely just call ath_descdma_cleanup() */ 3068 fail3: 3069 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3070 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3071 bus_dma_tag_destroy(dd->dd_dmat); 3072 memset(dd, 0, sizeof(*dd)); 3073 return error; 3074 #undef DS2PHYS 3075 #undef ATH_DESC_4KB_BOUND_CHECK 3076 } 3077 3078 /* 3079 * Allocate ath_buf entries but no descriptor contents. 3080 * 3081 * This is for RX EDMA where the descriptors are the header part of 3082 * the RX buffer. 3083 */ 3084 int 3085 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3086 struct ath_descdma *dd, ath_bufhead *head, 3087 const char *name, int nbuf, int rx_status_len) 3088 { 3089 struct ifnet *ifp = sc->sc_ifp; 3090 struct ath_buf *bf; 3091 int i, bsize, error; 3092 3093 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3094 __func__, name, nbuf); 3095 3096 dd->dd_name = name; 3097 /* 3098 * This is (mostly) purely for show. We're not allocating any actual 3099 * descriptors here as EDMA RX has the descriptor be part 3100 * of the RX buffer. 3101 * 3102 * However, dd_desc_len is used by ath_descdma_free() to determine 3103 * whether we have already freed this DMA mapping. 3104 */ 3105 dd->dd_desc_len = rx_status_len * nbuf; 3106 dd->dd_descsize = rx_status_len; 3107 3108 /* allocate rx buffers */ 3109 bsize = sizeof(struct ath_buf) * nbuf; 3110 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3111 if (bf == NULL) { 3112 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3113 dd->dd_name, bsize); 3114 error = ENOMEM; 3115 goto fail3; 3116 } 3117 dd->dd_bufptr = bf; 3118 3119 TAILQ_INIT(head); 3120 for (i = 0; i < nbuf; i++, bf++) { 3121 bf->bf_desc = NULL; 3122 bf->bf_daddr = 0; 3123 bf->bf_lastds = NULL; /* Just an initial value */ 3124 3125 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3126 &bf->bf_dmamap); 3127 if (error != 0) { 3128 if_printf(ifp, "unable to create dmamap for %s " 3129 "buffer %u, error %u\n", dd->dd_name, i, error); 3130 ath_descdma_cleanup(sc, dd, head); 3131 return error; 3132 } 3133 TAILQ_INSERT_TAIL(head, bf, bf_list); 3134 } 3135 return 0; 3136 fail3: 3137 memset(dd, 0, sizeof(*dd)); 3138 return error; 3139 } 3140 3141 void 3142 ath_descdma_cleanup(struct ath_softc *sc, 3143 struct ath_descdma *dd, ath_bufhead *head) 3144 { 3145 struct ath_buf *bf; 3146 struct ieee80211_node *ni; 3147 3148 if (dd->dd_dmamap != 0) { 3149 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3150 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3151 bus_dma_tag_destroy(dd->dd_dmat); 3152 } 3153 3154 if (head != NULL) { 3155 TAILQ_FOREACH(bf, head, bf_list) { 3156 if (bf->bf_m) { 3157 m_freem(bf->bf_m); 3158 bf->bf_m = NULL; 3159 } 3160 if (bf->bf_dmamap != NULL) { 3161 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3162 bf->bf_dmamap = NULL; 3163 } 3164 ni = bf->bf_node; 3165 bf->bf_node = NULL; 3166 if (ni != NULL) { 3167 /* 3168 * Reclaim node reference. 3169 */ 3170 ieee80211_free_node(ni); 3171 } 3172 } 3173 } 3174 3175 if (head != NULL) 3176 TAILQ_INIT(head); 3177 3178 if (dd->dd_bufptr != NULL) 3179 free(dd->dd_bufptr, M_ATHDEV); 3180 memset(dd, 0, sizeof(*dd)); 3181 } 3182 3183 static int 3184 ath_desc_alloc(struct ath_softc *sc) 3185 { 3186 int error; 3187 3188 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3189 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3190 if (error != 0) { 3191 return error; 3192 } 3193 sc->sc_txbuf_cnt = ath_txbuf; 3194 3195 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3196 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3197 ATH_TXDESC); 3198 if (error != 0) { 3199 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3200 return error; 3201 } 3202 3203 /* 3204 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3205 * flag doesn't have to be set in ath_getbuf_locked(). 3206 */ 3207 3208 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3209 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3210 if (error != 0) { 3211 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3212 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3213 &sc->sc_txbuf_mgmt); 3214 return error; 3215 } 3216 return 0; 3217 } 3218 3219 static void 3220 ath_desc_free(struct ath_softc *sc) 3221 { 3222 3223 if (sc->sc_bdma.dd_desc_len != 0) 3224 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3225 if (sc->sc_txdma.dd_desc_len != 0) 3226 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3227 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3228 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3229 &sc->sc_txbuf_mgmt); 3230 } 3231 3232 static struct ieee80211_node * 3233 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3234 { 3235 struct ieee80211com *ic = vap->iv_ic; 3236 struct ath_softc *sc = ic->ic_ifp->if_softc; 3237 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3238 struct ath_node *an; 3239 3240 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3241 if (an == NULL) { 3242 /* XXX stat+msg */ 3243 return NULL; 3244 } 3245 ath_rate_node_init(sc, an); 3246 3247 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3248 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3249 device_get_nameunit(sc->sc_dev), an); 3250 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3251 3252 /* XXX setup ath_tid */ 3253 ath_tx_tid_init(sc, an); 3254 3255 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3256 return &an->an_node; 3257 } 3258 3259 static void 3260 ath_node_cleanup(struct ieee80211_node *ni) 3261 { 3262 struct ieee80211com *ic = ni->ni_ic; 3263 struct ath_softc *sc = ic->ic_ifp->if_softc; 3264 3265 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3266 ath_tx_node_flush(sc, ATH_NODE(ni)); 3267 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3268 sc->sc_node_cleanup(ni); 3269 } 3270 3271 static void 3272 ath_node_free(struct ieee80211_node *ni) 3273 { 3274 struct ieee80211com *ic = ni->ni_ic; 3275 struct ath_softc *sc = ic->ic_ifp->if_softc; 3276 3277 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3278 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3279 sc->sc_node_free(ni); 3280 } 3281 3282 static void 3283 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3284 { 3285 struct ieee80211com *ic = ni->ni_ic; 3286 struct ath_softc *sc = ic->ic_ifp->if_softc; 3287 struct ath_hal *ah = sc->sc_ah; 3288 3289 *rssi = ic->ic_node_getrssi(ni); 3290 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3291 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3292 else 3293 *noise = -95; /* nominally correct */ 3294 } 3295 3296 /* 3297 * Set the default antenna. 3298 */ 3299 void 3300 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3301 { 3302 struct ath_hal *ah = sc->sc_ah; 3303 3304 /* XXX block beacon interrupts */ 3305 ath_hal_setdefantenna(ah, antenna); 3306 if (sc->sc_defant != antenna) 3307 sc->sc_stats.ast_ant_defswitch++; 3308 sc->sc_defant = antenna; 3309 sc->sc_rxotherant = 0; 3310 } 3311 3312 static void 3313 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3314 { 3315 txq->axq_qnum = qnum; 3316 txq->axq_ac = 0; 3317 txq->axq_depth = 0; 3318 txq->axq_aggr_depth = 0; 3319 txq->axq_intrcnt = 0; 3320 txq->axq_link = NULL; 3321 txq->axq_softc = sc; 3322 TAILQ_INIT(&txq->axq_q); 3323 TAILQ_INIT(&txq->axq_tidq); 3324 } 3325 3326 /* 3327 * Setup a h/w transmit queue. 3328 */ 3329 static struct ath_txq * 3330 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3331 { 3332 #define N(a) (sizeof(a)/sizeof(a[0])) 3333 struct ath_hal *ah = sc->sc_ah; 3334 HAL_TXQ_INFO qi; 3335 int qnum; 3336 3337 memset(&qi, 0, sizeof(qi)); 3338 qi.tqi_subtype = subtype; 3339 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3340 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3341 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3342 /* 3343 * Enable interrupts only for EOL and DESC conditions. 3344 * We mark tx descriptors to receive a DESC interrupt 3345 * when a tx queue gets deep; otherwise waiting for the 3346 * EOL to reap descriptors. Note that this is done to 3347 * reduce interrupt load and this only defers reaping 3348 * descriptors, never transmitting frames. Aside from 3349 * reducing interrupts this also permits more concurrency. 3350 * The only potential downside is if the tx queue backs 3351 * up in which case the top half of the kernel may backup 3352 * due to a lack of tx descriptors. 3353 */ 3354 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3355 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3356 if (qnum == -1) { 3357 /* 3358 * NB: don't print a message, this happens 3359 * normally on parts with too few tx queues 3360 */ 3361 return NULL; 3362 } 3363 if (qnum >= N(sc->sc_txq)) { 3364 device_printf(sc->sc_dev, 3365 "hal qnum %u out of range, max %zu!\n", 3366 qnum, N(sc->sc_txq)); 3367 ath_hal_releasetxqueue(ah, qnum); 3368 return NULL; 3369 } 3370 if (!ATH_TXQ_SETUP(sc, qnum)) { 3371 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3372 sc->sc_txqsetup |= 1<<qnum; 3373 } 3374 return &sc->sc_txq[qnum]; 3375 #undef N 3376 } 3377 3378 /* 3379 * Setup a hardware data transmit queue for the specified 3380 * access control. The hal may not support all requested 3381 * queues in which case it will return a reference to a 3382 * previously setup queue. We record the mapping from ac's 3383 * to h/w queues for use by ath_tx_start and also track 3384 * the set of h/w queues being used to optimize work in the 3385 * transmit interrupt handler and related routines. 3386 */ 3387 static int 3388 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3389 { 3390 #define N(a) (sizeof(a)/sizeof(a[0])) 3391 struct ath_txq *txq; 3392 3393 if (ac >= N(sc->sc_ac2q)) { 3394 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3395 ac, N(sc->sc_ac2q)); 3396 return 0; 3397 } 3398 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3399 if (txq != NULL) { 3400 txq->axq_ac = ac; 3401 sc->sc_ac2q[ac] = txq; 3402 return 1; 3403 } else 3404 return 0; 3405 #undef N 3406 } 3407 3408 /* 3409 * Update WME parameters for a transmit queue. 3410 */ 3411 static int 3412 ath_txq_update(struct ath_softc *sc, int ac) 3413 { 3414 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3415 #define ATH_TXOP_TO_US(v) (v<<5) 3416 struct ifnet *ifp = sc->sc_ifp; 3417 struct ieee80211com *ic = ifp->if_l2com; 3418 struct ath_txq *txq = sc->sc_ac2q[ac]; 3419 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3420 struct ath_hal *ah = sc->sc_ah; 3421 HAL_TXQ_INFO qi; 3422 3423 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3424 #ifdef IEEE80211_SUPPORT_TDMA 3425 if (sc->sc_tdma) { 3426 /* 3427 * AIFS is zero so there's no pre-transmit wait. The 3428 * burst time defines the slot duration and is configured 3429 * through net80211. The QCU is setup to not do post-xmit 3430 * back off, lockout all lower-priority QCU's, and fire 3431 * off the DMA beacon alert timer which is setup based 3432 * on the slot configuration. 3433 */ 3434 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3435 | HAL_TXQ_TXERRINT_ENABLE 3436 | HAL_TXQ_TXURNINT_ENABLE 3437 | HAL_TXQ_TXEOLINT_ENABLE 3438 | HAL_TXQ_DBA_GATED 3439 | HAL_TXQ_BACKOFF_DISABLE 3440 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3441 ; 3442 qi.tqi_aifs = 0; 3443 /* XXX +dbaprep? */ 3444 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3445 qi.tqi_burstTime = qi.tqi_readyTime; 3446 } else { 3447 #endif 3448 /* 3449 * XXX shouldn't this just use the default flags 3450 * used in the previous queue setup? 3451 */ 3452 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3453 | HAL_TXQ_TXERRINT_ENABLE 3454 | HAL_TXQ_TXDESCINT_ENABLE 3455 | HAL_TXQ_TXURNINT_ENABLE 3456 | HAL_TXQ_TXEOLINT_ENABLE 3457 ; 3458 qi.tqi_aifs = wmep->wmep_aifsn; 3459 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3460 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3461 qi.tqi_readyTime = 0; 3462 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3463 #ifdef IEEE80211_SUPPORT_TDMA 3464 } 3465 #endif 3466 3467 DPRINTF(sc, ATH_DEBUG_RESET, 3468 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3469 __func__, txq->axq_qnum, qi.tqi_qflags, 3470 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3471 3472 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3473 if_printf(ifp, "unable to update hardware queue " 3474 "parameters for %s traffic!\n", 3475 ieee80211_wme_acnames[ac]); 3476 return 0; 3477 } else { 3478 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3479 return 1; 3480 } 3481 #undef ATH_TXOP_TO_US 3482 #undef ATH_EXPONENT_TO_VALUE 3483 } 3484 3485 /* 3486 * Callback from the 802.11 layer to update WME parameters. 3487 */ 3488 int 3489 ath_wme_update(struct ieee80211com *ic) 3490 { 3491 struct ath_softc *sc = ic->ic_ifp->if_softc; 3492 3493 return !ath_txq_update(sc, WME_AC_BE) || 3494 !ath_txq_update(sc, WME_AC_BK) || 3495 !ath_txq_update(sc, WME_AC_VI) || 3496 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3497 } 3498 3499 /* 3500 * Reclaim resources for a setup queue. 3501 */ 3502 static void 3503 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3504 { 3505 3506 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3507 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3508 } 3509 3510 /* 3511 * Reclaim all tx queue resources. 3512 */ 3513 static void 3514 ath_tx_cleanup(struct ath_softc *sc) 3515 { 3516 int i; 3517 3518 ATH_TXBUF_LOCK_DESTROY(sc); 3519 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3520 if (ATH_TXQ_SETUP(sc, i)) 3521 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3522 } 3523 3524 /* 3525 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3526 * using the current rates in sc_rixmap. 3527 */ 3528 int 3529 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3530 { 3531 int rix = sc->sc_rixmap[rate]; 3532 /* NB: return lowest rix for invalid rate */ 3533 return (rix == 0xff ? 0 : rix); 3534 } 3535 3536 static void 3537 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3538 struct ath_buf *bf) 3539 { 3540 struct ieee80211_node *ni = bf->bf_node; 3541 struct ifnet *ifp = sc->sc_ifp; 3542 struct ieee80211com *ic = ifp->if_l2com; 3543 int sr, lr, pri; 3544 3545 if (ts->ts_status == 0) { 3546 u_int8_t txant = ts->ts_antenna; 3547 sc->sc_stats.ast_ant_tx[txant]++; 3548 sc->sc_ant_tx[txant]++; 3549 if (ts->ts_finaltsi != 0) 3550 sc->sc_stats.ast_tx_altrate++; 3551 pri = M_WME_GETAC(bf->bf_m); 3552 if (pri >= WME_AC_VO) 3553 ic->ic_wme.wme_hipri_traffic++; 3554 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3555 ni->ni_inact = ni->ni_inact_reload; 3556 } else { 3557 if (ts->ts_status & HAL_TXERR_XRETRY) 3558 sc->sc_stats.ast_tx_xretries++; 3559 if (ts->ts_status & HAL_TXERR_FIFO) 3560 sc->sc_stats.ast_tx_fifoerr++; 3561 if (ts->ts_status & HAL_TXERR_FILT) 3562 sc->sc_stats.ast_tx_filtered++; 3563 if (ts->ts_status & HAL_TXERR_XTXOP) 3564 sc->sc_stats.ast_tx_xtxop++; 3565 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3566 sc->sc_stats.ast_tx_timerexpired++; 3567 3568 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 3569 sc->sc_stats.ast_tx_data_underrun++; 3570 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 3571 sc->sc_stats.ast_tx_delim_underrun++; 3572 3573 if (bf->bf_m->m_flags & M_FF) 3574 sc->sc_stats.ast_ff_txerr++; 3575 } 3576 /* XXX when is this valid? */ 3577 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 3578 sc->sc_stats.ast_tx_desccfgerr++; 3579 3580 sr = ts->ts_shortretry; 3581 lr = ts->ts_longretry; 3582 sc->sc_stats.ast_tx_shortretry += sr; 3583 sc->sc_stats.ast_tx_longretry += lr; 3584 3585 } 3586 3587 /* 3588 * The default completion. If fail is 1, this means 3589 * "please don't retry the frame, and just return -1 status 3590 * to the net80211 stack. 3591 */ 3592 void 3593 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3594 { 3595 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3596 int st; 3597 3598 if (fail == 1) 3599 st = -1; 3600 else 3601 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3602 ts->ts_status : HAL_TXERR_XRETRY; 3603 3604 if (bf->bf_state.bfs_dobaw) 3605 device_printf(sc->sc_dev, 3606 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3607 __func__, 3608 bf, 3609 SEQNO(bf->bf_state.bfs_seqno)); 3610 if (bf->bf_next != NULL) 3611 device_printf(sc->sc_dev, 3612 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3613 __func__, 3614 bf, 3615 SEQNO(bf->bf_state.bfs_seqno)); 3616 3617 /* 3618 * Check if the node software queue is empty; if so 3619 * then clear the TIM. 3620 * 3621 * This needs to be done before the buffer is freed as 3622 * otherwise the node reference will have been released 3623 * and the node may not actually exist any longer. 3624 * 3625 * XXX I don't like this belonging here, but it's cleaner 3626 * to do it here right now then all the other places 3627 * where ath_tx_default_comp() is called. 3628 * 3629 * XXX TODO: during drain, ensure that the callback is 3630 * being called so we get a chance to update the TIM. 3631 */ 3632 if (bf->bf_node) 3633 ath_tx_update_tim(sc, bf->bf_node, 0); 3634 3635 /* 3636 * Do any tx complete callback. Note this must 3637 * be done before releasing the node reference. 3638 * This will free the mbuf, release the net80211 3639 * node and recycle the ath_buf. 3640 */ 3641 ath_tx_freebuf(sc, bf, st); 3642 } 3643 3644 /* 3645 * Update rate control with the given completion status. 3646 */ 3647 void 3648 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3649 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3650 int nframes, int nbad) 3651 { 3652 struct ath_node *an; 3653 3654 /* Only for unicast frames */ 3655 if (ni == NULL) 3656 return; 3657 3658 an = ATH_NODE(ni); 3659 ATH_NODE_UNLOCK_ASSERT(an); 3660 3661 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3662 ATH_NODE_LOCK(an); 3663 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3664 ATH_NODE_UNLOCK(an); 3665 } 3666 } 3667 3668 /* 3669 * Update the busy status of the last frame on the free list. 3670 * When doing TDMA, the busy flag tracks whether the hardware 3671 * currently points to this buffer or not, and thus gated DMA 3672 * may restart by re-reading the last descriptor in this 3673 * buffer. 3674 * 3675 * This should be called in the completion function once one 3676 * of the buffers has been used. 3677 */ 3678 static void 3679 ath_tx_update_busy(struct ath_softc *sc) 3680 { 3681 struct ath_buf *last; 3682 3683 /* 3684 * Since the last frame may still be marked 3685 * as ATH_BUF_BUSY, unmark it here before 3686 * finishing the frame processing. 3687 * Since we've completed a frame (aggregate 3688 * or otherwise), the hardware has moved on 3689 * and is no longer referencing the previous 3690 * descriptor. 3691 */ 3692 ATH_TXBUF_LOCK_ASSERT(sc); 3693 last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 3694 if (last != NULL) 3695 last->bf_flags &= ~ATH_BUF_BUSY; 3696 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 3697 if (last != NULL) 3698 last->bf_flags &= ~ATH_BUF_BUSY; 3699 } 3700 3701 /* 3702 * Process the completion of the given buffer. 3703 * 3704 * This calls the rate control update and then the buffer completion. 3705 * This will either free the buffer or requeue it. In any case, the 3706 * bf pointer should be treated as invalid after this function is called. 3707 */ 3708 void 3709 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3710 struct ath_tx_status *ts, struct ath_buf *bf) 3711 { 3712 struct ieee80211_node *ni = bf->bf_node; 3713 struct ath_node *an = NULL; 3714 3715 ATH_TX_UNLOCK_ASSERT(sc); 3716 3717 /* If unicast frame, update general statistics */ 3718 if (ni != NULL) { 3719 an = ATH_NODE(ni); 3720 /* update statistics */ 3721 ath_tx_update_stats(sc, ts, bf); 3722 } 3723 3724 /* 3725 * Call the completion handler. 3726 * The completion handler is responsible for 3727 * calling the rate control code. 3728 * 3729 * Frames with no completion handler get the 3730 * rate control code called here. 3731 */ 3732 if (bf->bf_comp == NULL) { 3733 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3734 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3735 /* 3736 * XXX assume this isn't an aggregate 3737 * frame. 3738 */ 3739 ath_tx_update_ratectrl(sc, ni, 3740 bf->bf_state.bfs_rc, ts, 3741 bf->bf_state.bfs_pktlen, 1, 3742 (ts->ts_status == 0 ? 0 : 1)); 3743 } 3744 ath_tx_default_comp(sc, bf, 0); 3745 } else 3746 bf->bf_comp(sc, bf, 0); 3747 } 3748 3749 3750 3751 /* 3752 * Process completed xmit descriptors from the specified queue. 3753 * Kick the packet scheduler if needed. This can occur from this 3754 * particular task. 3755 */ 3756 static int 3757 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3758 { 3759 struct ath_hal *ah = sc->sc_ah; 3760 struct ath_buf *bf; 3761 struct ath_desc *ds; 3762 struct ath_tx_status *ts; 3763 struct ieee80211_node *ni; 3764 #ifdef IEEE80211_SUPPORT_SUPERG 3765 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3766 #endif /* IEEE80211_SUPPORT_SUPERG */ 3767 int nacked; 3768 HAL_STATUS status; 3769 3770 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3771 __func__, txq->axq_qnum, 3772 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3773 txq->axq_link); 3774 3775 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3776 "ath_tx_processq: txq=%u head %p link %p depth %p", 3777 txq->axq_qnum, 3778 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3779 txq->axq_link, 3780 txq->axq_depth); 3781 3782 nacked = 0; 3783 for (;;) { 3784 ATH_TX_LOCK(sc); 3785 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3786 bf = TAILQ_FIRST(&txq->axq_q); 3787 if (bf == NULL) { 3788 ATH_TX_UNLOCK(sc); 3789 break; 3790 } 3791 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3792 ts = &bf->bf_status.ds_txstat; 3793 3794 status = ath_hal_txprocdesc(ah, ds, ts); 3795 #ifdef ATH_DEBUG 3796 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3797 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3798 status == HAL_OK); 3799 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3800 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3801 status == HAL_OK); 3802 #endif 3803 #ifdef ATH_DEBUG_ALQ 3804 if (if_ath_alq_checkdebug(&sc->sc_alq, 3805 ATH_ALQ_EDMA_TXSTATUS)) { 3806 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 3807 sc->sc_tx_statuslen, 3808 (char *) ds); 3809 } 3810 #endif 3811 3812 if (status == HAL_EINPROGRESS) { 3813 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3814 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3815 txq->axq_qnum, bf, ds); 3816 ATH_TX_UNLOCK(sc); 3817 break; 3818 } 3819 ATH_TXQ_REMOVE(txq, bf, bf_list); 3820 #ifdef IEEE80211_SUPPORT_TDMA 3821 if (txq->axq_depth > 0) { 3822 /* 3823 * More frames follow. Mark the buffer busy 3824 * so it's not re-used while the hardware may 3825 * still re-read the link field in the descriptor. 3826 * 3827 * Use the last buffer in an aggregate as that 3828 * is where the hardware may be - intermediate 3829 * descriptors won't be "busy". 3830 */ 3831 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3832 } else 3833 #else 3834 if (txq->axq_depth == 0) 3835 #endif 3836 txq->axq_link = NULL; 3837 if (bf->bf_state.bfs_aggr) 3838 txq->axq_aggr_depth--; 3839 3840 ni = bf->bf_node; 3841 3842 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3843 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3844 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3845 /* 3846 * If unicast frame was ack'd update RSSI, 3847 * including the last rx time used to 3848 * workaround phantom bmiss interrupts. 3849 */ 3850 if (ni != NULL && ts->ts_status == 0 && 3851 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3852 nacked++; 3853 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3854 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3855 ts->ts_rssi); 3856 } 3857 ATH_TX_UNLOCK(sc); 3858 3859 /* 3860 * Update statistics and call completion 3861 */ 3862 ath_tx_process_buf_completion(sc, txq, ts, bf); 3863 3864 /* XXX at this point, bf and ni may be totally invalid */ 3865 } 3866 #ifdef IEEE80211_SUPPORT_SUPERG 3867 /* 3868 * Flush fast-frame staging queue when traffic slows. 3869 */ 3870 if (txq->axq_depth <= 1) 3871 ieee80211_ff_flush(ic, txq->axq_ac); 3872 #endif 3873 3874 /* Kick the TXQ scheduler */ 3875 if (dosched) { 3876 ATH_TX_LOCK(sc); 3877 ath_txq_sched(sc, txq); 3878 ATH_TX_UNLOCK(sc); 3879 } 3880 3881 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3882 "ath_tx_processq: txq=%u: done", 3883 txq->axq_qnum); 3884 3885 return nacked; 3886 } 3887 3888 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3889 3890 /* 3891 * Deferred processing of transmit interrupt; special-cased 3892 * for a single hardware transmit queue (e.g. 5210 and 5211). 3893 */ 3894 static void 3895 ath_tx_proc_q0(void *arg, int npending) 3896 { 3897 struct ath_softc *sc = arg; 3898 struct ifnet *ifp = sc->sc_ifp; 3899 uint32_t txqs; 3900 3901 ATH_PCU_LOCK(sc); 3902 sc->sc_txproc_cnt++; 3903 txqs = sc->sc_txq_active; 3904 sc->sc_txq_active &= ~txqs; 3905 ATH_PCU_UNLOCK(sc); 3906 3907 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3908 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3909 3910 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3911 /* XXX why is lastrx updated in tx code? */ 3912 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3913 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3914 ath_tx_processq(sc, sc->sc_cabq, 1); 3915 IF_LOCK(&ifp->if_snd); 3916 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3917 IF_UNLOCK(&ifp->if_snd); 3918 sc->sc_wd_timer = 0; 3919 3920 if (sc->sc_softled) 3921 ath_led_event(sc, sc->sc_txrix); 3922 3923 ATH_PCU_LOCK(sc); 3924 sc->sc_txproc_cnt--; 3925 ATH_PCU_UNLOCK(sc); 3926 3927 ath_tx_kick(sc); 3928 } 3929 3930 /* 3931 * Deferred processing of transmit interrupt; special-cased 3932 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3933 */ 3934 static void 3935 ath_tx_proc_q0123(void *arg, int npending) 3936 { 3937 struct ath_softc *sc = arg; 3938 struct ifnet *ifp = sc->sc_ifp; 3939 int nacked; 3940 uint32_t txqs; 3941 3942 ATH_PCU_LOCK(sc); 3943 sc->sc_txproc_cnt++; 3944 txqs = sc->sc_txq_active; 3945 sc->sc_txq_active &= ~txqs; 3946 ATH_PCU_UNLOCK(sc); 3947 3948 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3949 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 3950 3951 /* 3952 * Process each active queue. 3953 */ 3954 nacked = 0; 3955 if (TXQACTIVE(txqs, 0)) 3956 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 3957 if (TXQACTIVE(txqs, 1)) 3958 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 3959 if (TXQACTIVE(txqs, 2)) 3960 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 3961 if (TXQACTIVE(txqs, 3)) 3962 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 3963 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3964 ath_tx_processq(sc, sc->sc_cabq, 1); 3965 if (nacked) 3966 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3967 3968 IF_LOCK(&ifp->if_snd); 3969 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3970 IF_UNLOCK(&ifp->if_snd); 3971 sc->sc_wd_timer = 0; 3972 3973 if (sc->sc_softled) 3974 ath_led_event(sc, sc->sc_txrix); 3975 3976 ATH_PCU_LOCK(sc); 3977 sc->sc_txproc_cnt--; 3978 ATH_PCU_UNLOCK(sc); 3979 3980 ath_tx_kick(sc); 3981 } 3982 3983 /* 3984 * Deferred processing of transmit interrupt. 3985 */ 3986 static void 3987 ath_tx_proc(void *arg, int npending) 3988 { 3989 struct ath_softc *sc = arg; 3990 struct ifnet *ifp = sc->sc_ifp; 3991 int i, nacked; 3992 uint32_t txqs; 3993 3994 ATH_PCU_LOCK(sc); 3995 sc->sc_txproc_cnt++; 3996 txqs = sc->sc_txq_active; 3997 sc->sc_txq_active &= ~txqs; 3998 ATH_PCU_UNLOCK(sc); 3999 4000 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4001 4002 /* 4003 * Process each active queue. 4004 */ 4005 nacked = 0; 4006 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4007 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4008 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4009 if (nacked) 4010 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4011 4012 /* XXX check this inside of IF_LOCK? */ 4013 IF_LOCK(&ifp->if_snd); 4014 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4015 IF_UNLOCK(&ifp->if_snd); 4016 sc->sc_wd_timer = 0; 4017 4018 if (sc->sc_softled) 4019 ath_led_event(sc, sc->sc_txrix); 4020 4021 ATH_PCU_LOCK(sc); 4022 sc->sc_txproc_cnt--; 4023 ATH_PCU_UNLOCK(sc); 4024 4025 ath_tx_kick(sc); 4026 } 4027 #undef TXQACTIVE 4028 4029 /* 4030 * Deferred processing of TXQ rescheduling. 4031 */ 4032 static void 4033 ath_txq_sched_tasklet(void *arg, int npending) 4034 { 4035 struct ath_softc *sc = arg; 4036 int i; 4037 4038 /* XXX is skipping ok? */ 4039 ATH_PCU_LOCK(sc); 4040 #if 0 4041 if (sc->sc_inreset_cnt > 0) { 4042 device_printf(sc->sc_dev, 4043 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4044 ATH_PCU_UNLOCK(sc); 4045 return; 4046 } 4047 #endif 4048 sc->sc_txproc_cnt++; 4049 ATH_PCU_UNLOCK(sc); 4050 4051 ATH_TX_LOCK(sc); 4052 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4053 if (ATH_TXQ_SETUP(sc, i)) { 4054 ath_txq_sched(sc, &sc->sc_txq[i]); 4055 } 4056 } 4057 ATH_TX_UNLOCK(sc); 4058 4059 ATH_PCU_LOCK(sc); 4060 sc->sc_txproc_cnt--; 4061 ATH_PCU_UNLOCK(sc); 4062 } 4063 4064 void 4065 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4066 { 4067 4068 ATH_TXBUF_LOCK_ASSERT(sc); 4069 4070 if (bf->bf_flags & ATH_BUF_MGMT) 4071 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4072 else { 4073 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4074 sc->sc_txbuf_cnt++; 4075 if (sc->sc_txbuf_cnt > ath_txbuf) { 4076 device_printf(sc->sc_dev, 4077 "%s: sc_txbuf_cnt > %d?\n", 4078 __func__, 4079 ath_txbuf); 4080 sc->sc_txbuf_cnt = ath_txbuf; 4081 } 4082 } 4083 } 4084 4085 void 4086 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4087 { 4088 4089 ATH_TXBUF_LOCK_ASSERT(sc); 4090 4091 if (bf->bf_flags & ATH_BUF_MGMT) 4092 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4093 else { 4094 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4095 sc->sc_txbuf_cnt++; 4096 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4097 device_printf(sc->sc_dev, 4098 "%s: sc_txbuf_cnt > %d?\n", 4099 __func__, 4100 ATH_TXBUF); 4101 sc->sc_txbuf_cnt = ATH_TXBUF; 4102 } 4103 } 4104 } 4105 4106 /* 4107 * Return a buffer to the pool and update the 'busy' flag on the 4108 * previous 'tail' entry. 4109 * 4110 * This _must_ only be called when the buffer is involved in a completed 4111 * TX. The logic is that if it was part of an active TX, the previous 4112 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4113 * for restart (eg for TDMA.) 4114 * 4115 * The caller must free the mbuf and recycle the node reference. 4116 */ 4117 void 4118 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4119 { 4120 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4121 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4122 4123 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4124 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4125 4126 ATH_TXBUF_LOCK(sc); 4127 ath_tx_update_busy(sc); 4128 ath_returnbuf_tail(sc, bf); 4129 ATH_TXBUF_UNLOCK(sc); 4130 } 4131 4132 /* 4133 * This is currently used by ath_tx_draintxq() and 4134 * ath_tx_tid_free_pkts(). 4135 * 4136 * It recycles a single ath_buf. 4137 */ 4138 void 4139 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4140 { 4141 struct ieee80211_node *ni = bf->bf_node; 4142 struct mbuf *m0 = bf->bf_m; 4143 4144 bf->bf_node = NULL; 4145 bf->bf_m = NULL; 4146 4147 /* Free the buffer, it's not needed any longer */ 4148 ath_freebuf(sc, bf); 4149 4150 if (ni != NULL) { 4151 /* 4152 * Do any callback and reclaim the node reference. 4153 */ 4154 if (m0->m_flags & M_TXCB) 4155 ieee80211_process_callback(ni, m0, status); 4156 ieee80211_free_node(ni); 4157 } 4158 m_freem(m0); 4159 4160 /* 4161 * XXX the buffer used to be freed -after-, but the DMA map was 4162 * freed where ath_freebuf() now is. I've no idea what this 4163 * will do. 4164 */ 4165 } 4166 4167 void 4168 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4169 { 4170 #ifdef ATH_DEBUG 4171 struct ath_hal *ah = sc->sc_ah; 4172 #endif 4173 struct ath_buf *bf; 4174 u_int ix; 4175 4176 /* 4177 * NB: this assumes output has been stopped and 4178 * we do not need to block ath_tx_proc 4179 */ 4180 ATH_TXBUF_LOCK(sc); 4181 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4182 if (bf != NULL) 4183 bf->bf_flags &= ~ATH_BUF_BUSY; 4184 bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s); 4185 if (bf != NULL) 4186 bf->bf_flags &= ~ATH_BUF_BUSY; 4187 ATH_TXBUF_UNLOCK(sc); 4188 4189 for (ix = 0;; ix++) { 4190 ATH_TX_LOCK(sc); 4191 bf = TAILQ_FIRST(&txq->axq_q); 4192 if (bf == NULL) { 4193 txq->axq_link = NULL; 4194 /* 4195 * There's currently no flag that indicates 4196 * a buffer is on the FIFO. So until that 4197 * occurs, just clear the FIFO counter here. 4198 * 4199 * Yes, this means that if something in parallel 4200 * is pushing things onto this TXQ and pushing 4201 * _that_ into the hardware, things will get 4202 * very fruity very quickly. 4203 */ 4204 txq->axq_fifo_depth = 0; 4205 ATH_TX_UNLOCK(sc); 4206 break; 4207 } 4208 ATH_TXQ_REMOVE(txq, bf, bf_list); 4209 if (bf->bf_state.bfs_aggr) 4210 txq->axq_aggr_depth--; 4211 #ifdef ATH_DEBUG 4212 if (sc->sc_debug & ATH_DEBUG_RESET) { 4213 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4214 int status = 0; 4215 4216 /* 4217 * EDMA operation has a TX completion FIFO 4218 * separate from the TX descriptor, so this 4219 * method of checking the "completion" status 4220 * is wrong. 4221 */ 4222 if (! sc->sc_isedma) { 4223 status = (ath_hal_txprocdesc(ah, 4224 bf->bf_lastds, 4225 &bf->bf_status.ds_txstat) == HAL_OK); 4226 } 4227 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4228 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4229 bf->bf_m->m_len, 0, -1); 4230 } 4231 #endif /* ATH_DEBUG */ 4232 /* 4233 * Since we're now doing magic in the completion 4234 * functions, we -must- call it for aggregation 4235 * destinations or BAW tracking will get upset. 4236 */ 4237 /* 4238 * Clear ATH_BUF_BUSY; the completion handler 4239 * will free the buffer. 4240 */ 4241 ATH_TX_UNLOCK(sc); 4242 bf->bf_flags &= ~ATH_BUF_BUSY; 4243 if (bf->bf_comp) 4244 bf->bf_comp(sc, bf, 1); 4245 else 4246 ath_tx_default_comp(sc, bf, 1); 4247 } 4248 4249 /* 4250 * Drain software queued frames which are on 4251 * active TIDs. 4252 */ 4253 ath_tx_txq_drain(sc, txq); 4254 } 4255 4256 static void 4257 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4258 { 4259 struct ath_hal *ah = sc->sc_ah; 4260 4261 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4262 __func__, txq->axq_qnum, 4263 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4264 txq->axq_link); 4265 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4266 } 4267 4268 int 4269 ath_stoptxdma(struct ath_softc *sc) 4270 { 4271 struct ath_hal *ah = sc->sc_ah; 4272 int i; 4273 4274 /* XXX return value */ 4275 if (sc->sc_invalid) 4276 return 0; 4277 4278 if (!sc->sc_invalid) { 4279 /* don't touch the hardware if marked invalid */ 4280 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4281 __func__, sc->sc_bhalq, 4282 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4283 NULL); 4284 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4285 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4286 if (ATH_TXQ_SETUP(sc, i)) 4287 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4288 } 4289 4290 return 1; 4291 } 4292 4293 /* 4294 * Drain the transmit queues and reclaim resources. 4295 */ 4296 void 4297 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4298 { 4299 #ifdef ATH_DEBUG 4300 struct ath_hal *ah = sc->sc_ah; 4301 #endif 4302 struct ifnet *ifp = sc->sc_ifp; 4303 int i; 4304 4305 (void) ath_stoptxdma(sc); 4306 4307 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4308 /* 4309 * XXX TODO: should we just handle the completed TX frames 4310 * here, whether or not the reset is a full one or not? 4311 */ 4312 if (ATH_TXQ_SETUP(sc, i)) { 4313 if (reset_type == ATH_RESET_NOLOSS) 4314 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4315 else 4316 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4317 } 4318 } 4319 #ifdef ATH_DEBUG 4320 if (sc->sc_debug & ATH_DEBUG_RESET) { 4321 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4322 if (bf != NULL && bf->bf_m != NULL) { 4323 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4324 ath_hal_txprocdesc(ah, bf->bf_lastds, 4325 &bf->bf_status.ds_txstat) == HAL_OK); 4326 ieee80211_dump_pkt(ifp->if_l2com, 4327 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4328 0, -1); 4329 } 4330 } 4331 #endif /* ATH_DEBUG */ 4332 IF_LOCK(&ifp->if_snd); 4333 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4334 IF_UNLOCK(&ifp->if_snd); 4335 sc->sc_wd_timer = 0; 4336 } 4337 4338 /* 4339 * Update internal state after a channel change. 4340 */ 4341 static void 4342 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4343 { 4344 enum ieee80211_phymode mode; 4345 4346 /* 4347 * Change channels and update the h/w rate map 4348 * if we're switching; e.g. 11a to 11b/g. 4349 */ 4350 mode = ieee80211_chan2mode(chan); 4351 if (mode != sc->sc_curmode) 4352 ath_setcurmode(sc, mode); 4353 sc->sc_curchan = chan; 4354 } 4355 4356 /* 4357 * Set/change channels. If the channel is really being changed, 4358 * it's done by resetting the chip. To accomplish this we must 4359 * first cleanup any pending DMA, then restart stuff after a la 4360 * ath_init. 4361 */ 4362 static int 4363 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4364 { 4365 struct ifnet *ifp = sc->sc_ifp; 4366 struct ieee80211com *ic = ifp->if_l2com; 4367 struct ath_hal *ah = sc->sc_ah; 4368 int ret = 0; 4369 4370 /* Treat this as an interface reset */ 4371 ATH_PCU_UNLOCK_ASSERT(sc); 4372 ATH_UNLOCK_ASSERT(sc); 4373 4374 /* (Try to) stop TX/RX from occuring */ 4375 taskqueue_block(sc->sc_tq); 4376 4377 ATH_PCU_LOCK(sc); 4378 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4379 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4380 if (ath_reset_grablock(sc, 1) == 0) { 4381 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4382 __func__); 4383 } 4384 ATH_PCU_UNLOCK(sc); 4385 4386 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4387 __func__, ieee80211_chan2ieee(ic, chan), 4388 chan->ic_freq, chan->ic_flags); 4389 if (chan != sc->sc_curchan) { 4390 HAL_STATUS status; 4391 /* 4392 * To switch channels clear any pending DMA operations; 4393 * wait long enough for the RX fifo to drain, reset the 4394 * hardware at the new frequency, and then re-enable 4395 * the relevant bits of the h/w. 4396 */ 4397 #if 0 4398 ath_hal_intrset(ah, 0); /* disable interrupts */ 4399 #endif 4400 ath_stoprecv(sc, 1); /* turn off frame recv */ 4401 /* 4402 * First, handle completed TX/RX frames. 4403 */ 4404 ath_rx_flush(sc); 4405 ath_draintxq(sc, ATH_RESET_NOLOSS); 4406 /* 4407 * Next, flush the non-scheduled frames. 4408 */ 4409 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4410 4411 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4412 if_printf(ifp, "%s: unable to reset " 4413 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4414 __func__, ieee80211_chan2ieee(ic, chan), 4415 chan->ic_freq, chan->ic_flags, status); 4416 ret = EIO; 4417 goto finish; 4418 } 4419 sc->sc_diversity = ath_hal_getdiversity(ah); 4420 4421 /* Let DFS at it in case it's a DFS channel */ 4422 ath_dfs_radar_enable(sc, chan); 4423 4424 /* Let spectral at in case spectral is enabled */ 4425 ath_spectral_enable(sc, chan); 4426 4427 /* 4428 * Re-enable rx framework. 4429 */ 4430 if (ath_startrecv(sc) != 0) { 4431 if_printf(ifp, "%s: unable to restart recv logic\n", 4432 __func__); 4433 ret = EIO; 4434 goto finish; 4435 } 4436 4437 /* 4438 * Change channels and update the h/w rate map 4439 * if we're switching; e.g. 11a to 11b/g. 4440 */ 4441 ath_chan_change(sc, chan); 4442 4443 /* 4444 * Reset clears the beacon timers; reset them 4445 * here if needed. 4446 */ 4447 if (sc->sc_beacons) { /* restart beacons */ 4448 #ifdef IEEE80211_SUPPORT_TDMA 4449 if (sc->sc_tdma) 4450 ath_tdma_config(sc, NULL); 4451 else 4452 #endif 4453 ath_beacon_config(sc, NULL); 4454 } 4455 4456 /* 4457 * Re-enable interrupts. 4458 */ 4459 #if 0 4460 ath_hal_intrset(ah, sc->sc_imask); 4461 #endif 4462 } 4463 4464 finish: 4465 ATH_PCU_LOCK(sc); 4466 sc->sc_inreset_cnt--; 4467 /* XXX only do this if sc_inreset_cnt == 0? */ 4468 ath_hal_intrset(ah, sc->sc_imask); 4469 ATH_PCU_UNLOCK(sc); 4470 4471 IF_LOCK(&ifp->if_snd); 4472 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4473 IF_UNLOCK(&ifp->if_snd); 4474 ath_txrx_start(sc); 4475 /* XXX ath_start? */ 4476 4477 return ret; 4478 } 4479 4480 /* 4481 * Periodically recalibrate the PHY to account 4482 * for temperature/environment changes. 4483 */ 4484 static void 4485 ath_calibrate(void *arg) 4486 { 4487 struct ath_softc *sc = arg; 4488 struct ath_hal *ah = sc->sc_ah; 4489 struct ifnet *ifp = sc->sc_ifp; 4490 struct ieee80211com *ic = ifp->if_l2com; 4491 HAL_BOOL longCal, isCalDone = AH_TRUE; 4492 HAL_BOOL aniCal, shortCal = AH_FALSE; 4493 int nextcal; 4494 4495 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4496 goto restart; 4497 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4498 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4499 if (sc->sc_doresetcal) 4500 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4501 4502 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4503 if (aniCal) { 4504 sc->sc_stats.ast_ani_cal++; 4505 sc->sc_lastani = ticks; 4506 ath_hal_ani_poll(ah, sc->sc_curchan); 4507 } 4508 4509 if (longCal) { 4510 sc->sc_stats.ast_per_cal++; 4511 sc->sc_lastlongcal = ticks; 4512 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4513 /* 4514 * Rfgain is out of bounds, reset the chip 4515 * to load new gain values. 4516 */ 4517 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4518 "%s: rfgain change\n", __func__); 4519 sc->sc_stats.ast_per_rfgain++; 4520 sc->sc_resetcal = 0; 4521 sc->sc_doresetcal = AH_TRUE; 4522 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4523 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4524 return; 4525 } 4526 /* 4527 * If this long cal is after an idle period, then 4528 * reset the data collection state so we start fresh. 4529 */ 4530 if (sc->sc_resetcal) { 4531 (void) ath_hal_calreset(ah, sc->sc_curchan); 4532 sc->sc_lastcalreset = ticks; 4533 sc->sc_lastshortcal = ticks; 4534 sc->sc_resetcal = 0; 4535 sc->sc_doresetcal = AH_TRUE; 4536 } 4537 } 4538 4539 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4540 if (shortCal || longCal) { 4541 isCalDone = AH_FALSE; 4542 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4543 if (longCal) { 4544 /* 4545 * Calibrate noise floor data again in case of change. 4546 */ 4547 ath_hal_process_noisefloor(ah); 4548 } 4549 } else { 4550 DPRINTF(sc, ATH_DEBUG_ANY, 4551 "%s: calibration of channel %u failed\n", 4552 __func__, sc->sc_curchan->ic_freq); 4553 sc->sc_stats.ast_per_calfail++; 4554 } 4555 if (shortCal) 4556 sc->sc_lastshortcal = ticks; 4557 } 4558 if (!isCalDone) { 4559 restart: 4560 /* 4561 * Use a shorter interval to potentially collect multiple 4562 * data samples required to complete calibration. Once 4563 * we're told the work is done we drop back to a longer 4564 * interval between requests. We're more aggressive doing 4565 * work when operating as an AP to improve operation right 4566 * after startup. 4567 */ 4568 sc->sc_lastshortcal = ticks; 4569 nextcal = ath_shortcalinterval*hz/1000; 4570 if (sc->sc_opmode != HAL_M_HOSTAP) 4571 nextcal *= 10; 4572 sc->sc_doresetcal = AH_TRUE; 4573 } else { 4574 /* nextcal should be the shortest time for next event */ 4575 nextcal = ath_longcalinterval*hz; 4576 if (sc->sc_lastcalreset == 0) 4577 sc->sc_lastcalreset = sc->sc_lastlongcal; 4578 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4579 sc->sc_resetcal = 1; /* setup reset next trip */ 4580 sc->sc_doresetcal = AH_FALSE; 4581 } 4582 /* ANI calibration may occur more often than short/long/resetcal */ 4583 if (ath_anicalinterval > 0) 4584 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4585 4586 if (nextcal != 0) { 4587 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4588 __func__, nextcal, isCalDone ? "" : "!"); 4589 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4590 } else { 4591 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4592 __func__); 4593 /* NB: don't rearm timer */ 4594 } 4595 } 4596 4597 static void 4598 ath_scan_start(struct ieee80211com *ic) 4599 { 4600 struct ifnet *ifp = ic->ic_ifp; 4601 struct ath_softc *sc = ifp->if_softc; 4602 struct ath_hal *ah = sc->sc_ah; 4603 u_int32_t rfilt; 4604 4605 /* XXX calibration timer? */ 4606 4607 ATH_LOCK(sc); 4608 sc->sc_scanning = 1; 4609 sc->sc_syncbeacon = 0; 4610 rfilt = ath_calcrxfilter(sc); 4611 ATH_UNLOCK(sc); 4612 4613 ATH_PCU_LOCK(sc); 4614 ath_hal_setrxfilter(ah, rfilt); 4615 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4616 ATH_PCU_UNLOCK(sc); 4617 4618 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4619 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4620 } 4621 4622 static void 4623 ath_scan_end(struct ieee80211com *ic) 4624 { 4625 struct ifnet *ifp = ic->ic_ifp; 4626 struct ath_softc *sc = ifp->if_softc; 4627 struct ath_hal *ah = sc->sc_ah; 4628 u_int32_t rfilt; 4629 4630 ATH_LOCK(sc); 4631 sc->sc_scanning = 0; 4632 rfilt = ath_calcrxfilter(sc); 4633 ATH_UNLOCK(sc); 4634 4635 ATH_PCU_LOCK(sc); 4636 ath_hal_setrxfilter(ah, rfilt); 4637 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4638 4639 ath_hal_process_noisefloor(ah); 4640 ATH_PCU_UNLOCK(sc); 4641 4642 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4643 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4644 sc->sc_curaid); 4645 } 4646 4647 #ifdef ATH_ENABLE_11N 4648 /* 4649 * For now, just do a channel change. 4650 * 4651 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4652 * control state and resetting the hardware without dropping frames out 4653 * of the queue. 4654 * 4655 * The unfortunate trouble here is making absolutely sure that the 4656 * channel width change has propagated enough so the hardware 4657 * absolutely isn't handed bogus frames for it's current operating 4658 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4659 * does occur in parallel, we need to make certain we've blocked 4660 * any further ongoing TX (and RX, that can cause raw TX) 4661 * before we do this. 4662 */ 4663 static void 4664 ath_update_chw(struct ieee80211com *ic) 4665 { 4666 struct ifnet *ifp = ic->ic_ifp; 4667 struct ath_softc *sc = ifp->if_softc; 4668 4669 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4670 ath_set_channel(ic); 4671 } 4672 #endif /* ATH_ENABLE_11N */ 4673 4674 static void 4675 ath_set_channel(struct ieee80211com *ic) 4676 { 4677 struct ifnet *ifp = ic->ic_ifp; 4678 struct ath_softc *sc = ifp->if_softc; 4679 4680 (void) ath_chan_set(sc, ic->ic_curchan); 4681 /* 4682 * If we are returning to our bss channel then mark state 4683 * so the next recv'd beacon's tsf will be used to sync the 4684 * beacon timers. Note that since we only hear beacons in 4685 * sta/ibss mode this has no effect in other operating modes. 4686 */ 4687 ATH_LOCK(sc); 4688 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4689 sc->sc_syncbeacon = 1; 4690 ATH_UNLOCK(sc); 4691 } 4692 4693 /* 4694 * Walk the vap list and check if there any vap's in RUN state. 4695 */ 4696 static int 4697 ath_isanyrunningvaps(struct ieee80211vap *this) 4698 { 4699 struct ieee80211com *ic = this->iv_ic; 4700 struct ieee80211vap *vap; 4701 4702 IEEE80211_LOCK_ASSERT(ic); 4703 4704 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4705 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4706 return 1; 4707 } 4708 return 0; 4709 } 4710 4711 static int 4712 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4713 { 4714 struct ieee80211com *ic = vap->iv_ic; 4715 struct ath_softc *sc = ic->ic_ifp->if_softc; 4716 struct ath_vap *avp = ATH_VAP(vap); 4717 struct ath_hal *ah = sc->sc_ah; 4718 struct ieee80211_node *ni = NULL; 4719 int i, error, stamode; 4720 u_int32_t rfilt; 4721 int csa_run_transition = 0; 4722 static const HAL_LED_STATE leds[] = { 4723 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4724 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4725 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4726 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4727 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4728 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4729 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4730 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4731 }; 4732 4733 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4734 ieee80211_state_name[vap->iv_state], 4735 ieee80211_state_name[nstate]); 4736 4737 /* 4738 * net80211 _should_ have the comlock asserted at this point. 4739 * There are some comments around the calls to vap->iv_newstate 4740 * which indicate that it (newstate) may end up dropping the 4741 * lock. This and the subsequent lock assert check after newstate 4742 * are an attempt to catch these and figure out how/why. 4743 */ 4744 IEEE80211_LOCK_ASSERT(ic); 4745 4746 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4747 csa_run_transition = 1; 4748 4749 callout_drain(&sc->sc_cal_ch); 4750 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4751 4752 if (nstate == IEEE80211_S_SCAN) { 4753 /* 4754 * Scanning: turn off beacon miss and don't beacon. 4755 * Mark beacon state so when we reach RUN state we'll 4756 * [re]setup beacons. Unblock the task q thread so 4757 * deferred interrupt processing is done. 4758 */ 4759 ath_hal_intrset(ah, 4760 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4761 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4762 sc->sc_beacons = 0; 4763 taskqueue_unblock(sc->sc_tq); 4764 } 4765 4766 ni = ieee80211_ref_node(vap->iv_bss); 4767 rfilt = ath_calcrxfilter(sc); 4768 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4769 vap->iv_opmode == IEEE80211_M_AHDEMO || 4770 vap->iv_opmode == IEEE80211_M_IBSS); 4771 if (stamode && nstate == IEEE80211_S_RUN) { 4772 sc->sc_curaid = ni->ni_associd; 4773 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4774 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4775 } 4776 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4777 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4778 ath_hal_setrxfilter(ah, rfilt); 4779 4780 /* XXX is this to restore keycache on resume? */ 4781 if (vap->iv_opmode != IEEE80211_M_STA && 4782 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4783 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4784 if (ath_hal_keyisvalid(ah, i)) 4785 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4786 } 4787 4788 /* 4789 * Invoke the parent method to do net80211 work. 4790 */ 4791 error = avp->av_newstate(vap, nstate, arg); 4792 if (error != 0) 4793 goto bad; 4794 4795 /* 4796 * See above: ensure av_newstate() doesn't drop the lock 4797 * on us. 4798 */ 4799 IEEE80211_LOCK_ASSERT(ic); 4800 4801 if (nstate == IEEE80211_S_RUN) { 4802 /* NB: collect bss node again, it may have changed */ 4803 ieee80211_free_node(ni); 4804 ni = ieee80211_ref_node(vap->iv_bss); 4805 4806 DPRINTF(sc, ATH_DEBUG_STATE, 4807 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4808 "capinfo 0x%04x chan %d\n", __func__, 4809 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4810 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4811 4812 switch (vap->iv_opmode) { 4813 #ifdef IEEE80211_SUPPORT_TDMA 4814 case IEEE80211_M_AHDEMO: 4815 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4816 break; 4817 /* fall thru... */ 4818 #endif 4819 case IEEE80211_M_HOSTAP: 4820 case IEEE80211_M_IBSS: 4821 case IEEE80211_M_MBSS: 4822 /* 4823 * Allocate and setup the beacon frame. 4824 * 4825 * Stop any previous beacon DMA. This may be 4826 * necessary, for example, when an ibss merge 4827 * causes reconfiguration; there will be a state 4828 * transition from RUN->RUN that means we may 4829 * be called with beacon transmission active. 4830 */ 4831 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4832 4833 error = ath_beacon_alloc(sc, ni); 4834 if (error != 0) 4835 goto bad; 4836 /* 4837 * If joining an adhoc network defer beacon timer 4838 * configuration to the next beacon frame so we 4839 * have a current TSF to use. Otherwise we're 4840 * starting an ibss/bss so there's no need to delay; 4841 * if this is the first vap moving to RUN state, then 4842 * beacon state needs to be [re]configured. 4843 */ 4844 if (vap->iv_opmode == IEEE80211_M_IBSS && 4845 ni->ni_tstamp.tsf != 0) { 4846 sc->sc_syncbeacon = 1; 4847 } else if (!sc->sc_beacons) { 4848 #ifdef IEEE80211_SUPPORT_TDMA 4849 if (vap->iv_caps & IEEE80211_C_TDMA) 4850 ath_tdma_config(sc, vap); 4851 else 4852 #endif 4853 ath_beacon_config(sc, vap); 4854 sc->sc_beacons = 1; 4855 } 4856 break; 4857 case IEEE80211_M_STA: 4858 /* 4859 * Defer beacon timer configuration to the next 4860 * beacon frame so we have a current TSF to use 4861 * (any TSF collected when scanning is likely old). 4862 * However if it's due to a CSA -> RUN transition, 4863 * force a beacon update so we pick up a lack of 4864 * beacons from an AP in CAC and thus force a 4865 * scan. 4866 */ 4867 sc->sc_syncbeacon = 1; 4868 if (csa_run_transition) 4869 ath_beacon_config(sc, vap); 4870 break; 4871 case IEEE80211_M_MONITOR: 4872 /* 4873 * Monitor mode vaps have only INIT->RUN and RUN->RUN 4874 * transitions so we must re-enable interrupts here to 4875 * handle the case of a single monitor mode vap. 4876 */ 4877 ath_hal_intrset(ah, sc->sc_imask); 4878 break; 4879 case IEEE80211_M_WDS: 4880 break; 4881 default: 4882 break; 4883 } 4884 /* 4885 * Let the hal process statistics collected during a 4886 * scan so it can provide calibrated noise floor data. 4887 */ 4888 ath_hal_process_noisefloor(ah); 4889 /* 4890 * Reset rssi stats; maybe not the best place... 4891 */ 4892 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4893 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4894 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4895 /* 4896 * Finally, start any timers and the task q thread 4897 * (in case we didn't go through SCAN state). 4898 */ 4899 if (ath_longcalinterval != 0) { 4900 /* start periodic recalibration timer */ 4901 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4902 } else { 4903 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4904 "%s: calibration disabled\n", __func__); 4905 } 4906 taskqueue_unblock(sc->sc_tq); 4907 } else if (nstate == IEEE80211_S_INIT) { 4908 /* 4909 * If there are no vaps left in RUN state then 4910 * shutdown host/driver operation: 4911 * o disable interrupts 4912 * o disable the task queue thread 4913 * o mark beacon processing as stopped 4914 */ 4915 if (!ath_isanyrunningvaps(vap)) { 4916 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4917 /* disable interrupts */ 4918 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4919 taskqueue_block(sc->sc_tq); 4920 sc->sc_beacons = 0; 4921 } 4922 #ifdef IEEE80211_SUPPORT_TDMA 4923 ath_hal_setcca(ah, AH_TRUE); 4924 #endif 4925 } 4926 bad: 4927 ieee80211_free_node(ni); 4928 return error; 4929 } 4930 4931 /* 4932 * Allocate a key cache slot to the station so we can 4933 * setup a mapping from key index to node. The key cache 4934 * slot is needed for managing antenna state and for 4935 * compression when stations do not use crypto. We do 4936 * it uniliaterally here; if crypto is employed this slot 4937 * will be reassigned. 4938 */ 4939 static void 4940 ath_setup_stationkey(struct ieee80211_node *ni) 4941 { 4942 struct ieee80211vap *vap = ni->ni_vap; 4943 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4944 ieee80211_keyix keyix, rxkeyix; 4945 4946 /* XXX should take a locked ref to vap->iv_bss */ 4947 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4948 /* 4949 * Key cache is full; we'll fall back to doing 4950 * the more expensive lookup in software. Note 4951 * this also means no h/w compression. 4952 */ 4953 /* XXX msg+statistic */ 4954 } else { 4955 /* XXX locking? */ 4956 ni->ni_ucastkey.wk_keyix = keyix; 4957 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4958 /* NB: must mark device key to get called back on delete */ 4959 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 4960 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 4961 /* NB: this will create a pass-thru key entry */ 4962 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 4963 } 4964 } 4965 4966 /* 4967 * Setup driver-specific state for a newly associated node. 4968 * Note that we're called also on a re-associate, the isnew 4969 * param tells us if this is the first time or not. 4970 */ 4971 static void 4972 ath_newassoc(struct ieee80211_node *ni, int isnew) 4973 { 4974 struct ath_node *an = ATH_NODE(ni); 4975 struct ieee80211vap *vap = ni->ni_vap; 4976 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 4977 const struct ieee80211_txparam *tp = ni->ni_txparms; 4978 4979 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 4980 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 4981 4982 ath_rate_newassoc(sc, an, isnew); 4983 if (isnew && 4984 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 4985 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4986 ath_setup_stationkey(ni); 4987 } 4988 4989 static int 4990 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 4991 int nchans, struct ieee80211_channel chans[]) 4992 { 4993 struct ath_softc *sc = ic->ic_ifp->if_softc; 4994 struct ath_hal *ah = sc->sc_ah; 4995 HAL_STATUS status; 4996 4997 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 4998 "%s: rd %u cc %u location %c%s\n", 4999 __func__, reg->regdomain, reg->country, reg->location, 5000 reg->ecm ? " ecm" : ""); 5001 5002 status = ath_hal_set_channels(ah, chans, nchans, 5003 reg->country, reg->regdomain); 5004 if (status != HAL_OK) { 5005 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5006 __func__, status); 5007 return EINVAL; /* XXX */ 5008 } 5009 5010 return 0; 5011 } 5012 5013 static void 5014 ath_getradiocaps(struct ieee80211com *ic, 5015 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5016 { 5017 struct ath_softc *sc = ic->ic_ifp->if_softc; 5018 struct ath_hal *ah = sc->sc_ah; 5019 5020 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5021 __func__, SKU_DEBUG, CTRY_DEFAULT); 5022 5023 /* XXX check return */ 5024 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5025 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5026 5027 } 5028 5029 static int 5030 ath_getchannels(struct ath_softc *sc) 5031 { 5032 struct ifnet *ifp = sc->sc_ifp; 5033 struct ieee80211com *ic = ifp->if_l2com; 5034 struct ath_hal *ah = sc->sc_ah; 5035 HAL_STATUS status; 5036 5037 /* 5038 * Collect channel set based on EEPROM contents. 5039 */ 5040 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5041 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5042 if (status != HAL_OK) { 5043 if_printf(ifp, "%s: unable to collect channel list from hal, " 5044 "status %d\n", __func__, status); 5045 return EINVAL; 5046 } 5047 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5048 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5049 /* XXX map Atheros sku's to net80211 SKU's */ 5050 /* XXX net80211 types too small */ 5051 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5052 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5053 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5054 ic->ic_regdomain.isocc[1] = ' '; 5055 5056 ic->ic_regdomain.ecm = 1; 5057 ic->ic_regdomain.location = 'I'; 5058 5059 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5060 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5061 __func__, sc->sc_eerd, sc->sc_eecc, 5062 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5063 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5064 return 0; 5065 } 5066 5067 static int 5068 ath_rate_setup(struct ath_softc *sc, u_int mode) 5069 { 5070 struct ath_hal *ah = sc->sc_ah; 5071 const HAL_RATE_TABLE *rt; 5072 5073 switch (mode) { 5074 case IEEE80211_MODE_11A: 5075 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5076 break; 5077 case IEEE80211_MODE_HALF: 5078 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5079 break; 5080 case IEEE80211_MODE_QUARTER: 5081 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5082 break; 5083 case IEEE80211_MODE_11B: 5084 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5085 break; 5086 case IEEE80211_MODE_11G: 5087 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5088 break; 5089 case IEEE80211_MODE_TURBO_A: 5090 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5091 break; 5092 case IEEE80211_MODE_TURBO_G: 5093 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5094 break; 5095 case IEEE80211_MODE_STURBO_A: 5096 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5097 break; 5098 case IEEE80211_MODE_11NA: 5099 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5100 break; 5101 case IEEE80211_MODE_11NG: 5102 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5103 break; 5104 default: 5105 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5106 __func__, mode); 5107 return 0; 5108 } 5109 sc->sc_rates[mode] = rt; 5110 return (rt != NULL); 5111 } 5112 5113 static void 5114 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5115 { 5116 #define N(a) (sizeof(a)/sizeof(a[0])) 5117 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5118 static const struct { 5119 u_int rate; /* tx/rx 802.11 rate */ 5120 u_int16_t timeOn; /* LED on time (ms) */ 5121 u_int16_t timeOff; /* LED off time (ms) */ 5122 } blinkrates[] = { 5123 { 108, 40, 10 }, 5124 { 96, 44, 11 }, 5125 { 72, 50, 13 }, 5126 { 48, 57, 14 }, 5127 { 36, 67, 16 }, 5128 { 24, 80, 20 }, 5129 { 22, 100, 25 }, 5130 { 18, 133, 34 }, 5131 { 12, 160, 40 }, 5132 { 10, 200, 50 }, 5133 { 6, 240, 58 }, 5134 { 4, 267, 66 }, 5135 { 2, 400, 100 }, 5136 { 0, 500, 130 }, 5137 /* XXX half/quarter rates */ 5138 }; 5139 const HAL_RATE_TABLE *rt; 5140 int i, j; 5141 5142 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5143 rt = sc->sc_rates[mode]; 5144 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5145 for (i = 0; i < rt->rateCount; i++) { 5146 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5147 if (rt->info[i].phy != IEEE80211_T_HT) 5148 sc->sc_rixmap[ieeerate] = i; 5149 else 5150 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5151 } 5152 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5153 for (i = 0; i < N(sc->sc_hwmap); i++) { 5154 if (i >= rt->rateCount) { 5155 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5156 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5157 continue; 5158 } 5159 sc->sc_hwmap[i].ieeerate = 5160 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5161 if (rt->info[i].phy == IEEE80211_T_HT) 5162 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5163 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5164 if (rt->info[i].shortPreamble || 5165 rt->info[i].phy == IEEE80211_T_OFDM) 5166 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5167 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5168 for (j = 0; j < N(blinkrates)-1; j++) 5169 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5170 break; 5171 /* NB: this uses the last entry if the rate isn't found */ 5172 /* XXX beware of overlow */ 5173 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5174 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5175 } 5176 sc->sc_currates = rt; 5177 sc->sc_curmode = mode; 5178 /* 5179 * All protection frames are transmited at 2Mb/s for 5180 * 11g, otherwise at 1Mb/s. 5181 */ 5182 if (mode == IEEE80211_MODE_11G) 5183 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5184 else 5185 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5186 /* NB: caller is responsible for resetting rate control state */ 5187 #undef N 5188 } 5189 5190 static void 5191 ath_watchdog(void *arg) 5192 { 5193 struct ath_softc *sc = arg; 5194 int do_reset = 0; 5195 5196 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5197 struct ifnet *ifp = sc->sc_ifp; 5198 uint32_t hangs; 5199 5200 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5201 hangs != 0) { 5202 if_printf(ifp, "%s hang detected (0x%x)\n", 5203 hangs & 0xff ? "bb" : "mac", hangs); 5204 } else 5205 if_printf(ifp, "device timeout\n"); 5206 do_reset = 1; 5207 ifp->if_oerrors++; 5208 sc->sc_stats.ast_watchdog++; 5209 } 5210 5211 /* 5212 * We can't hold the lock across the ath_reset() call. 5213 * 5214 * And since this routine can't hold a lock and sleep, 5215 * do the reset deferred. 5216 */ 5217 if (do_reset) { 5218 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5219 } 5220 5221 callout_schedule(&sc->sc_wd_ch, hz); 5222 } 5223 5224 /* 5225 * Fetch the rate control statistics for the given node. 5226 */ 5227 static int 5228 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5229 { 5230 struct ath_node *an; 5231 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5232 struct ieee80211_node *ni; 5233 int error = 0; 5234 5235 /* Perform a lookup on the given node */ 5236 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5237 if (ni == NULL) { 5238 error = EINVAL; 5239 goto bad; 5240 } 5241 5242 /* Lock the ath_node */ 5243 an = ATH_NODE(ni); 5244 ATH_NODE_LOCK(an); 5245 5246 /* Fetch the rate control stats for this node */ 5247 error = ath_rate_fetch_node_stats(sc, an, rs); 5248 5249 /* No matter what happens here, just drop through */ 5250 5251 /* Unlock the ath_node */ 5252 ATH_NODE_UNLOCK(an); 5253 5254 /* Unref the node */ 5255 ieee80211_node_decref(ni); 5256 5257 bad: 5258 return (error); 5259 } 5260 5261 #ifdef ATH_DIAGAPI 5262 /* 5263 * Diagnostic interface to the HAL. This is used by various 5264 * tools to do things like retrieve register contents for 5265 * debugging. The mechanism is intentionally opaque so that 5266 * it can change frequently w/o concern for compatiblity. 5267 */ 5268 static int 5269 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5270 { 5271 struct ath_hal *ah = sc->sc_ah; 5272 u_int id = ad->ad_id & ATH_DIAG_ID; 5273 void *indata = NULL; 5274 void *outdata = NULL; 5275 u_int32_t insize = ad->ad_in_size; 5276 u_int32_t outsize = ad->ad_out_size; 5277 int error = 0; 5278 5279 if (ad->ad_id & ATH_DIAG_IN) { 5280 /* 5281 * Copy in data. 5282 */ 5283 indata = malloc(insize, M_TEMP, M_NOWAIT); 5284 if (indata == NULL) { 5285 error = ENOMEM; 5286 goto bad; 5287 } 5288 error = copyin(ad->ad_in_data, indata, insize); 5289 if (error) 5290 goto bad; 5291 } 5292 if (ad->ad_id & ATH_DIAG_DYN) { 5293 /* 5294 * Allocate a buffer for the results (otherwise the HAL 5295 * returns a pointer to a buffer where we can read the 5296 * results). Note that we depend on the HAL leaving this 5297 * pointer for us to use below in reclaiming the buffer; 5298 * may want to be more defensive. 5299 */ 5300 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5301 if (outdata == NULL) { 5302 error = ENOMEM; 5303 goto bad; 5304 } 5305 } 5306 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5307 if (outsize < ad->ad_out_size) 5308 ad->ad_out_size = outsize; 5309 if (outdata != NULL) 5310 error = copyout(outdata, ad->ad_out_data, 5311 ad->ad_out_size); 5312 } else { 5313 error = EINVAL; 5314 } 5315 bad: 5316 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5317 free(indata, M_TEMP); 5318 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5319 free(outdata, M_TEMP); 5320 return error; 5321 } 5322 #endif /* ATH_DIAGAPI */ 5323 5324 static int 5325 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5326 { 5327 #define IS_RUNNING(ifp) \ 5328 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5329 struct ath_softc *sc = ifp->if_softc; 5330 struct ieee80211com *ic = ifp->if_l2com; 5331 struct ifreq *ifr = (struct ifreq *)data; 5332 const HAL_RATE_TABLE *rt; 5333 int error = 0; 5334 5335 switch (cmd) { 5336 case SIOCSIFFLAGS: 5337 ATH_LOCK(sc); 5338 if (IS_RUNNING(ifp)) { 5339 /* 5340 * To avoid rescanning another access point, 5341 * do not call ath_init() here. Instead, 5342 * only reflect promisc mode settings. 5343 */ 5344 ath_mode_init(sc); 5345 } else if (ifp->if_flags & IFF_UP) { 5346 /* 5347 * Beware of being called during attach/detach 5348 * to reset promiscuous mode. In that case we 5349 * will still be marked UP but not RUNNING. 5350 * However trying to re-init the interface 5351 * is the wrong thing to do as we've already 5352 * torn down much of our state. There's 5353 * probably a better way to deal with this. 5354 */ 5355 if (!sc->sc_invalid) 5356 ath_init(sc); /* XXX lose error */ 5357 } else { 5358 ath_stop_locked(ifp); 5359 #ifdef notyet 5360 /* XXX must wakeup in places like ath_vap_delete */ 5361 if (!sc->sc_invalid) 5362 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5363 #endif 5364 } 5365 ATH_UNLOCK(sc); 5366 break; 5367 case SIOCGIFMEDIA: 5368 case SIOCSIFMEDIA: 5369 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5370 break; 5371 case SIOCGATHSTATS: 5372 /* NB: embed these numbers to get a consistent view */ 5373 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5374 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5375 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5376 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5377 #ifdef IEEE80211_SUPPORT_TDMA 5378 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5379 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5380 #endif 5381 rt = sc->sc_currates; 5382 sc->sc_stats.ast_tx_rate = 5383 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5384 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5385 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5386 return copyout(&sc->sc_stats, 5387 ifr->ifr_data, sizeof (sc->sc_stats)); 5388 case SIOCGATHAGSTATS: 5389 return copyout(&sc->sc_aggr_stats, 5390 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5391 case SIOCZATHSTATS: 5392 error = priv_check(curthread, PRIV_DRIVER); 5393 if (error == 0) { 5394 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5395 memset(&sc->sc_aggr_stats, 0, 5396 sizeof(sc->sc_aggr_stats)); 5397 memset(&sc->sc_intr_stats, 0, 5398 sizeof(sc->sc_intr_stats)); 5399 } 5400 break; 5401 #ifdef ATH_DIAGAPI 5402 case SIOCGATHDIAG: 5403 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5404 break; 5405 case SIOCGATHPHYERR: 5406 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5407 break; 5408 #endif 5409 case SIOCGATHSPECTRAL: 5410 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 5411 break; 5412 case SIOCGATHNODERATESTATS: 5413 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5414 break; 5415 case SIOCGIFADDR: 5416 error = ether_ioctl(ifp, cmd, data); 5417 break; 5418 default: 5419 error = EINVAL; 5420 break; 5421 } 5422 return error; 5423 #undef IS_RUNNING 5424 } 5425 5426 /* 5427 * Announce various information on device/driver attach. 5428 */ 5429 static void 5430 ath_announce(struct ath_softc *sc) 5431 { 5432 struct ifnet *ifp = sc->sc_ifp; 5433 struct ath_hal *ah = sc->sc_ah; 5434 5435 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5436 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5437 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5438 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5439 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5440 if (bootverbose) { 5441 int i; 5442 for (i = 0; i <= WME_AC_VO; i++) { 5443 struct ath_txq *txq = sc->sc_ac2q[i]; 5444 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5445 txq->axq_qnum, ieee80211_wme_acnames[i]); 5446 } 5447 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5448 sc->sc_cabq->axq_qnum); 5449 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5450 } 5451 if (ath_rxbuf != ATH_RXBUF) 5452 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5453 if (ath_txbuf != ATH_TXBUF) 5454 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5455 if (sc->sc_mcastkey && bootverbose) 5456 if_printf(ifp, "using multicast key search\n"); 5457 } 5458 5459 static void 5460 ath_dfs_tasklet(void *p, int npending) 5461 { 5462 struct ath_softc *sc = (struct ath_softc *) p; 5463 struct ifnet *ifp = sc->sc_ifp; 5464 struct ieee80211com *ic = ifp->if_l2com; 5465 5466 /* 5467 * If previous processing has found a radar event, 5468 * signal this to the net80211 layer to begin DFS 5469 * processing. 5470 */ 5471 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5472 /* DFS event found, initiate channel change */ 5473 /* 5474 * XXX doesn't currently tell us whether the event 5475 * XXX was found in the primary or extension 5476 * XXX channel! 5477 */ 5478 IEEE80211_LOCK(ic); 5479 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5480 IEEE80211_UNLOCK(ic); 5481 } 5482 } 5483 5484 /* 5485 * Enable/disable power save. This must be called with 5486 * no TX driver locks currently held, so it should only 5487 * be called from the RX path (which doesn't hold any 5488 * TX driver locks.) 5489 */ 5490 static void 5491 ath_node_powersave(struct ieee80211_node *ni, int enable) 5492 { 5493 #ifdef ATH_SW_PSQ 5494 struct ath_node *an = ATH_NODE(ni); 5495 struct ieee80211com *ic = ni->ni_ic; 5496 struct ath_softc *sc = ic->ic_ifp->if_softc; 5497 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5498 5499 ATH_NODE_UNLOCK_ASSERT(an); 5500 /* XXX and no TXQ locks should be held here */ 5501 5502 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5503 __func__, ni, enable); 5504 5505 /* Suspend or resume software queue handling */ 5506 if (enable) 5507 ath_tx_node_sleep(sc, an); 5508 else 5509 ath_tx_node_wakeup(sc, an); 5510 5511 /* Update net80211 state */ 5512 avp->av_node_ps(ni, enable); 5513 #else 5514 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5515 5516 /* Update net80211 state */ 5517 avp->av_node_ps(ni, enable); 5518 #endif/* ATH_SW_PSQ */ 5519 } 5520 5521 /* 5522 * Notification from net80211 that the powersave queue state has 5523 * changed. 5524 * 5525 * Since the software queue also may have some frames: 5526 * 5527 * + if the node software queue has frames and the TID state 5528 * is 0, we set the TIM; 5529 * + if the node and the stack are both empty, we clear the TIM bit. 5530 * + If the stack tries to set the bit, always set it. 5531 * + If the stack tries to clear the bit, only clear it if the 5532 * software queue in question is also cleared. 5533 * 5534 * TODO: this is called during node teardown; so let's ensure this 5535 * is all correctly handled and that the TIM bit is cleared. 5536 * It may be that the node flush is called _AFTER_ the net80211 5537 * stack clears the TIM. 5538 * 5539 * Here is the racy part. Since it's possible >1 concurrent, 5540 * overlapping TXes will appear complete with a TX completion in 5541 * another thread, it's possible that the concurrent TIM calls will 5542 * clash. We can't hold the node lock here because setting the 5543 * TIM grabs the net80211 comlock and this may cause a LOR. 5544 * The solution is either to totally serialise _everything_ at 5545 * this point (ie, all TX, completion and any reset/flush go into 5546 * one taskqueue) or a new "ath TIM lock" needs to be created that 5547 * just wraps the driver state change and this call to avp->av_set_tim(). 5548 * 5549 * The same race exists in the net80211 power save queue handling 5550 * as well. Since multiple transmitting threads may queue frames 5551 * into the driver, as well as ps-poll and the driver transmitting 5552 * frames (and thus clearing the psq), it's quite possible that 5553 * a packet entering the PSQ and a ps-poll being handled will 5554 * race, causing the TIM to be cleared and not re-set. 5555 */ 5556 static int 5557 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5558 { 5559 #ifdef ATH_SW_PSQ 5560 struct ieee80211com *ic = ni->ni_ic; 5561 struct ath_softc *sc = ic->ic_ifp->if_softc; 5562 struct ath_node *an = ATH_NODE(ni); 5563 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5564 int changed = 0; 5565 5566 ATH_NODE_UNLOCK_ASSERT(an); 5567 5568 /* 5569 * For now, just track and then update the TIM. 5570 */ 5571 ATH_NODE_LOCK(an); 5572 an->an_stack_psq = enable; 5573 5574 /* 5575 * This will get called for all operating modes, 5576 * even if avp->av_set_tim is unset. 5577 * It's currently set for hostap/ibss modes; but 5578 * the same infrastructure is used for both STA 5579 * and AP/IBSS node power save. 5580 */ 5581 if (avp->av_set_tim == NULL) { 5582 ATH_NODE_UNLOCK(an); 5583 return (0); 5584 } 5585 5586 /* 5587 * If setting the bit, always set it here. 5588 * If clearing the bit, only clear it if the 5589 * software queue is also empty. 5590 * 5591 * If the node has left power save, just clear the TIM 5592 * bit regardless of the state of the power save queue. 5593 * 5594 * XXX TODO: although atomics are used, it's quite possible 5595 * that a race will occur between this and setting/clearing 5596 * in another thread. TX completion will occur always in 5597 * one thread, however setting/clearing the TIM bit can come 5598 * from a variety of different process contexts! 5599 */ 5600 if (enable && an->an_tim_set == 1) { 5601 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5602 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5603 __func__, an, enable); 5604 ATH_NODE_UNLOCK(an); 5605 } else if (enable) { 5606 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5607 "%s: an=%p, enable=%d, enabling TIM\n", 5608 __func__, an, enable); 5609 an->an_tim_set = 1; 5610 ATH_NODE_UNLOCK(an); 5611 changed = avp->av_set_tim(ni, enable); 5612 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5613 /* disable */ 5614 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5615 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5616 __func__, an, enable); 5617 an->an_tim_set = 0; 5618 ATH_NODE_UNLOCK(an); 5619 changed = avp->av_set_tim(ni, enable); 5620 } else if (! an->an_is_powersave) { 5621 /* 5622 * disable regardless; the node isn't in powersave now 5623 */ 5624 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5625 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5626 __func__, an, enable); 5627 an->an_tim_set = 0; 5628 ATH_NODE_UNLOCK(an); 5629 changed = avp->av_set_tim(ni, enable); 5630 } else { 5631 /* 5632 * psq disable, node is currently in powersave, node 5633 * software queue isn't empty, so don't clear the TIM bit 5634 * for now. 5635 */ 5636 ATH_NODE_UNLOCK(an); 5637 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5638 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5639 __func__, enable); 5640 changed = 0; 5641 } 5642 5643 return (changed); 5644 #else 5645 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5646 5647 /* 5648 * Some operating modes don't set av_set_tim(), so don't 5649 * update it here. 5650 */ 5651 if (avp->av_set_tim == NULL) 5652 return (0); 5653 5654 return (avp->av_set_tim(ni, enable)); 5655 #endif /* ATH_SW_PSQ */ 5656 } 5657 5658 /* 5659 * Set or update the TIM from the software queue. 5660 * 5661 * Check the software queue depth before attempting to do lock 5662 * anything; that avoids trying to obtain the lock. Then, 5663 * re-check afterwards to ensure nothing has changed in the 5664 * meantime. 5665 * 5666 * set: This is designed to be called from the TX path, after 5667 * a frame has been queued; to see if the swq > 0. 5668 * 5669 * clear: This is designed to be called from the buffer completion point 5670 * (right now it's ath_tx_default_comp()) where the state of 5671 * a software queue has changed. 5672 * 5673 * It makes sense to place it at buffer free / completion rather 5674 * than after each software queue operation, as there's no real 5675 * point in churning the TIM bit as the last frames in the software 5676 * queue are transmitted. If they fail and we retry them, we'd 5677 * just be setting the TIM bit again anyway. 5678 */ 5679 void 5680 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5681 int enable) 5682 { 5683 #ifdef ATH_SW_PSQ 5684 struct ath_node *an; 5685 struct ath_vap *avp; 5686 5687 /* Don't do this for broadcast/etc frames */ 5688 if (ni == NULL) 5689 return; 5690 5691 an = ATH_NODE(ni); 5692 avp = ATH_VAP(ni->ni_vap); 5693 5694 /* 5695 * And for operating modes without the TIM handler set, let's 5696 * just skip those. 5697 */ 5698 if (avp->av_set_tim == NULL) 5699 return; 5700 5701 ATH_NODE_UNLOCK_ASSERT(an); 5702 5703 if (enable) { 5704 /* 5705 * Don't bother grabbing the lock unless the queue is not 5706 * empty. 5707 */ 5708 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5709 return; 5710 5711 ATH_NODE_LOCK(an); 5712 if (an->an_is_powersave && 5713 an->an_tim_set == 0 && 5714 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5715 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5716 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5717 __func__, an); 5718 an->an_tim_set = 1; 5719 ATH_NODE_UNLOCK(an); 5720 (void) avp->av_set_tim(ni, 1); 5721 } else { 5722 ATH_NODE_UNLOCK(an); 5723 } 5724 } else { 5725 /* 5726 * Don't bother grabbing the lock unless the queue is empty. 5727 */ 5728 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5729 return; 5730 5731 ATH_NODE_LOCK(an); 5732 if (an->an_is_powersave && 5733 an->an_stack_psq == 0 && 5734 an->an_tim_set == 1 && 5735 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5736 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5737 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5738 " clear!\n", 5739 __func__, an); 5740 an->an_tim_set = 0; 5741 ATH_NODE_UNLOCK(an); 5742 (void) avp->av_set_tim(ni, 0); 5743 } else { 5744 ATH_NODE_UNLOCK(an); 5745 } 5746 } 5747 #else 5748 return; 5749 #endif /* ATH_SW_PSQ */ 5750 } 5751 5752 MODULE_VERSION(if_ath, 1); 5753 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5754 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5755 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5756 #endif 5757