1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 #include <dev/ath/if_ath_ioctl.h> 120 #include <dev/ath/if_ath_descdma.h> 121 122 #ifdef ATH_TX99_DIAG 123 #include <dev/ath/ath_tx99/ath_tx99.h> 124 #endif 125 126 #ifdef ATH_DEBUG_ALQ 127 #include <dev/ath/if_ath_alq.h> 128 #endif 129 130 /* 131 * Only enable this if you're working on PS-POLL support. 132 */ 133 #define ATH_SW_PSQ 134 135 /* 136 * ATH_BCBUF determines the number of vap's that can transmit 137 * beacons and also (currently) the number of vap's that can 138 * have unique mac addresses/bssid. When staggering beacons 139 * 4 is probably a good max as otherwise the beacons become 140 * very closely spaced and there is limited time for cab q traffic 141 * to go out. You can burst beacons instead but that is not good 142 * for stations in power save and at some point you really want 143 * another radio (and channel). 144 * 145 * The limit on the number of mac addresses is tied to our use of 146 * the U/L bit and tracking addresses in a byte; it would be 147 * worthwhile to allow more for applications like proxy sta. 148 */ 149 CTASSERT(ATH_BCBUF <= 8); 150 151 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 152 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 153 const uint8_t [IEEE80211_ADDR_LEN], 154 const uint8_t [IEEE80211_ADDR_LEN]); 155 static void ath_vap_delete(struct ieee80211vap *); 156 static int ath_init(struct ath_softc *); 157 static void ath_stop(struct ath_softc *); 158 static int ath_reset_vap(struct ieee80211vap *, u_long); 159 static int ath_transmit(struct ieee80211com *, struct mbuf *); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static void ath_parent(struct ieee80211com *); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast_hw(struct ath_softc *); 169 static void ath_update_mcast(struct ieee80211com *); 170 static void ath_update_promisc(struct ieee80211com *); 171 static void ath_updateslot(struct ieee80211com *); 172 static void ath_bstuck_proc(void *, int); 173 static void ath_reset_proc(void *, int); 174 static int ath_desc_alloc(struct ath_softc *); 175 static void ath_desc_free(struct ath_softc *); 176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 177 const uint8_t [IEEE80211_ADDR_LEN]); 178 static void ath_node_cleanup(struct ieee80211_node *); 179 static void ath_node_free(struct ieee80211_node *); 180 static void ath_node_getsignal(const struct ieee80211_node *, 181 int8_t *, int8_t *); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 188 int dosched); 189 static void ath_tx_proc_q0(void *, int); 190 static void ath_tx_proc_q0123(void *, int); 191 static void ath_tx_proc(void *, int); 192 static void ath_txq_sched_tasklet(void *, int); 193 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 #ifdef ATH_ENABLE_11N 199 static void ath_update_chw(struct ieee80211com *); 200 #endif /* ATH_ENABLE_11N */ 201 static void ath_calibrate(void *); 202 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 203 static void ath_setup_stationkey(struct ieee80211_node *); 204 static void ath_newassoc(struct ieee80211_node *, int); 205 static int ath_setregdomain(struct ieee80211com *, 206 struct ieee80211_regdomain *, int, 207 struct ieee80211_channel []); 208 static void ath_getradiocaps(struct ieee80211com *, int, int *, 209 struct ieee80211_channel []); 210 static int ath_getchannels(struct ath_softc *); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_announce(struct ath_softc *); 216 217 static void ath_dfs_tasklet(void *, int); 218 static void ath_node_powersave(struct ieee80211_node *, int); 219 static int ath_node_set_tim(struct ieee80211_node *, int); 220 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 #include <dev/ath/if_ath_tdma.h> 224 #endif 225 226 SYSCTL_DECL(_hw_ath); 227 228 /* XXX validate sysctl values */ 229 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 231 0, "long chip calibration interval (secs)"); 232 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 234 0, "short chip calibration interval (msecs)"); 235 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 237 0, "reset chip calibration results (secs)"); 238 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 240 0, "ANI calibration (msecs)"); 241 242 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 244 0, "rx buffers allocated"); 245 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 247 0, "tx buffers allocated"); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 252 int ath_bstuck_threshold = 4; /* max missed beacons */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 254 0, "max missed beacon xmits before chip reset"); 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 void 259 ath_legacy_attach_comp_func(struct ath_softc *sc) 260 { 261 262 /* 263 * Special case certain configurations. Note the 264 * CAB queue is handled by these specially so don't 265 * include them when checking the txq setup mask. 266 */ 267 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 268 case 0x01: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 270 break; 271 case 0x0f: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 273 break; 274 default: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 276 break; 277 } 278 } 279 280 /* 281 * Set the target power mode. 282 * 283 * If this is called during a point in time where 284 * the hardware is being programmed elsewhere, it will 285 * simply store it away and update it when all current 286 * uses of the hardware are completed. 287 */ 288 void 289 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 290 { 291 ATH_LOCK_ASSERT(sc); 292 293 sc->sc_target_powerstate = power_state; 294 295 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 296 __func__, 297 file, 298 line, 299 power_state, 300 sc->sc_powersave_refcnt); 301 302 if (sc->sc_powersave_refcnt == 0 && 303 power_state != sc->sc_cur_powerstate) { 304 sc->sc_cur_powerstate = power_state; 305 ath_hal_setpower(sc->sc_ah, power_state); 306 307 /* 308 * If the NIC is force-awake, then set the 309 * self-gen frame state appropriately. 310 * 311 * If the nic is in network sleep or full-sleep, 312 * we let the above call leave the self-gen 313 * state as "sleep". 314 */ 315 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 316 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 317 ath_hal_setselfgenpower(sc->sc_ah, 318 sc->sc_target_selfgen_state); 319 } 320 } 321 } 322 323 /* 324 * Set the current self-generated frames state. 325 * 326 * This is separate from the target power mode. The chip may be 327 * awake but the desired state is "sleep", so frames sent to the 328 * destination has PWRMGT=1 in the 802.11 header. The NIC also 329 * needs to know to set PWRMGT=1 in self-generated frames. 330 */ 331 void 332 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 333 { 334 335 ATH_LOCK_ASSERT(sc); 336 337 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 338 __func__, 339 file, 340 line, 341 power_state, 342 sc->sc_target_selfgen_state); 343 344 sc->sc_target_selfgen_state = power_state; 345 346 /* 347 * If the NIC is force-awake, then set the power state. 348 * Network-state and full-sleep will already transition it to 349 * mark self-gen frames as sleeping - and we can't 350 * guarantee the NIC is awake to program the self-gen frame 351 * setting anyway. 352 */ 353 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 354 ath_hal_setselfgenpower(sc->sc_ah, power_state); 355 } 356 } 357 358 /* 359 * Set the hardware power mode and take a reference. 360 * 361 * This doesn't update the target power mode in the driver; 362 * it just updates the hardware power state. 363 * 364 * XXX it should only ever force the hardware awake; it should 365 * never be called to set it asleep. 366 */ 367 void 368 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 369 { 370 ATH_LOCK_ASSERT(sc); 371 372 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 373 __func__, 374 file, 375 line, 376 power_state, 377 sc->sc_powersave_refcnt); 378 379 sc->sc_powersave_refcnt++; 380 381 if (power_state != sc->sc_cur_powerstate) { 382 ath_hal_setpower(sc->sc_ah, power_state); 383 sc->sc_cur_powerstate = power_state; 384 385 /* 386 * Adjust the self-gen powerstate if appropriate. 387 */ 388 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 389 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 390 ath_hal_setselfgenpower(sc->sc_ah, 391 sc->sc_target_selfgen_state); 392 } 393 394 } 395 } 396 397 /* 398 * Restore the power save mode to what it once was. 399 * 400 * This will decrement the reference counter and once it hits 401 * zero, it'll restore the powersave state. 402 */ 403 void 404 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 405 { 406 407 ATH_LOCK_ASSERT(sc); 408 409 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 410 __func__, 411 file, 412 line, 413 sc->sc_powersave_refcnt, 414 sc->sc_target_powerstate); 415 416 if (sc->sc_powersave_refcnt == 0) 417 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 418 else 419 sc->sc_powersave_refcnt--; 420 421 if (sc->sc_powersave_refcnt == 0 && 422 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 423 sc->sc_cur_powerstate = sc->sc_target_powerstate; 424 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 425 } 426 427 /* 428 * Adjust the self-gen powerstate if appropriate. 429 */ 430 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 431 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 432 ath_hal_setselfgenpower(sc->sc_ah, 433 sc->sc_target_selfgen_state); 434 } 435 436 } 437 438 /* 439 * Configure the initial HAL configuration values based on bus 440 * specific parameters. 441 * 442 * Some PCI IDs and other information may need tweaking. 443 * 444 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 445 * if BT antenna diversity isn't enabled. 446 * 447 * So, let's also figure out how to enable BT diversity for AR9485. 448 */ 449 static void 450 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 451 { 452 /* XXX TODO: only for PCI devices? */ 453 454 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 455 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 456 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 457 ah_config->ath_hal_min_gainidx = AH_TRUE; 458 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 459 /* XXX low_rssi_thresh */ 460 /* XXX fast_div_bias */ 461 device_printf(sc->sc_dev, "configuring for %s\n", 462 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 463 "CUS198" : "CUS230"); 464 } 465 466 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 467 device_printf(sc->sc_dev, "CUS217 card detected\n"); 468 469 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 470 device_printf(sc->sc_dev, "CUS252 card detected\n"); 471 472 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 473 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 474 475 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 476 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 477 478 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 479 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 480 481 #if 0 482 /* 483 * Some WB335 cards do not support antenna diversity. Since 484 * we use a hardcoded value for AR9565 instead of using the 485 * EEPROM/OTP data, remove the combining feature from 486 * the HW capabilities bitmap. 487 */ 488 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 489 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 490 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 491 } 492 493 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 494 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 495 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 496 } 497 #endif 498 499 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 500 ah_config->ath_hal_pcie_waen = 0x0040473b; 501 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 502 } 503 504 #if 0 505 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 506 ah->config.no_pll_pwrsave = true; 507 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 508 } 509 #endif 510 511 } 512 513 /* 514 * Attempt to fetch the MAC address from the kernel environment. 515 * 516 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 517 */ 518 static int 519 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 520 { 521 char devid_str[32]; 522 int local_mac = 0; 523 char *local_macstr; 524 525 /* 526 * Fetch from the kenv rather than using hints. 527 * 528 * Hints would be nice but the transition to dynamic 529 * hints/kenv doesn't happen early enough for this 530 * to work reliably (eg on anything embedded.) 531 */ 532 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 533 device_get_name(sc->sc_dev), 534 device_get_unit(sc->sc_dev)); 535 536 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 537 uint32_t tmpmac[ETHER_ADDR_LEN]; 538 int count; 539 int i; 540 541 /* Have a MAC address; should use it */ 542 device_printf(sc->sc_dev, 543 "Overriding MAC address from environment: '%s'\n", 544 local_macstr); 545 546 /* Extract out the MAC address */ 547 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 548 &tmpmac[0], &tmpmac[1], 549 &tmpmac[2], &tmpmac[3], 550 &tmpmac[4], &tmpmac[5]); 551 if (count == 6) { 552 /* Valid! */ 553 local_mac = 1; 554 for (i = 0; i < ETHER_ADDR_LEN; i++) 555 macaddr[i] = tmpmac[i]; 556 } 557 /* Done! */ 558 freeenv(local_macstr); 559 local_macstr = NULL; 560 } 561 562 if (local_mac) 563 return (0); 564 return (-1); 565 } 566 567 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 568 #define HAL_MODE_HT40 \ 569 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 570 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 571 int 572 ath_attach(u_int16_t devid, struct ath_softc *sc) 573 { 574 struct ieee80211com *ic = &sc->sc_ic; 575 struct ath_hal *ah = NULL; 576 HAL_STATUS status; 577 int error = 0, i; 578 u_int wmodes; 579 int rx_chainmask, tx_chainmask; 580 HAL_OPS_CONFIG ah_config; 581 582 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 583 584 ic->ic_softc = sc; 585 ic->ic_name = device_get_nameunit(sc->sc_dev); 586 587 /* 588 * Configure the initial configuration data. 589 * 590 * This is stuff that may be needed early during attach 591 * rather than done via configuration calls later. 592 */ 593 bzero(&ah_config, sizeof(ah_config)); 594 ath_setup_hal_config(sc, &ah_config); 595 596 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 597 sc->sc_eepromdata, &ah_config, &status); 598 if (ah == NULL) { 599 device_printf(sc->sc_dev, 600 "unable to attach hardware; HAL status %u\n", status); 601 error = ENXIO; 602 goto bad; 603 } 604 sc->sc_ah = ah; 605 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 606 #ifdef ATH_DEBUG 607 sc->sc_debug = ath_debug; 608 #endif 609 610 /* 611 * Setup the DMA/EDMA functions based on the current 612 * hardware support. 613 * 614 * This is required before the descriptors are allocated. 615 */ 616 if (ath_hal_hasedma(sc->sc_ah)) { 617 sc->sc_isedma = 1; 618 ath_recv_setup_edma(sc); 619 ath_xmit_setup_edma(sc); 620 } else { 621 ath_recv_setup_legacy(sc); 622 ath_xmit_setup_legacy(sc); 623 } 624 625 if (ath_hal_hasmybeacon(sc->sc_ah)) { 626 sc->sc_do_mybeacon = 1; 627 } 628 629 /* 630 * Check if the MAC has multi-rate retry support. 631 * We do this by trying to setup a fake extended 632 * descriptor. MAC's that don't have support will 633 * return false w/o doing anything. MAC's that do 634 * support it will return true w/o doing anything. 635 */ 636 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 637 638 /* 639 * Check if the device has hardware counters for PHY 640 * errors. If so we need to enable the MIB interrupt 641 * so we can act on stat triggers. 642 */ 643 if (ath_hal_hwphycounters(ah)) 644 sc->sc_needmib = 1; 645 646 /* 647 * Get the hardware key cache size. 648 */ 649 sc->sc_keymax = ath_hal_keycachesize(ah); 650 if (sc->sc_keymax > ATH_KEYMAX) { 651 device_printf(sc->sc_dev, 652 "Warning, using only %u of %u key cache slots\n", 653 ATH_KEYMAX, sc->sc_keymax); 654 sc->sc_keymax = ATH_KEYMAX; 655 } 656 /* 657 * Reset the key cache since some parts do not 658 * reset the contents on initial power up. 659 */ 660 for (i = 0; i < sc->sc_keymax; i++) 661 ath_hal_keyreset(ah, i); 662 663 /* 664 * Collect the default channel list. 665 */ 666 error = ath_getchannels(sc); 667 if (error != 0) 668 goto bad; 669 670 /* 671 * Setup rate tables for all potential media types. 672 */ 673 ath_rate_setup(sc, IEEE80211_MODE_11A); 674 ath_rate_setup(sc, IEEE80211_MODE_11B); 675 ath_rate_setup(sc, IEEE80211_MODE_11G); 676 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 677 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 678 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 679 ath_rate_setup(sc, IEEE80211_MODE_11NA); 680 ath_rate_setup(sc, IEEE80211_MODE_11NG); 681 ath_rate_setup(sc, IEEE80211_MODE_HALF); 682 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 683 684 /* NB: setup here so ath_rate_update is happy */ 685 ath_setcurmode(sc, IEEE80211_MODE_11A); 686 687 /* 688 * Allocate TX descriptors and populate the lists. 689 */ 690 error = ath_desc_alloc(sc); 691 if (error != 0) { 692 device_printf(sc->sc_dev, 693 "failed to allocate TX descriptors: %d\n", error); 694 goto bad; 695 } 696 error = ath_txdma_setup(sc); 697 if (error != 0) { 698 device_printf(sc->sc_dev, 699 "failed to allocate TX descriptors: %d\n", error); 700 goto bad; 701 } 702 703 /* 704 * Allocate RX descriptors and populate the lists. 705 */ 706 error = ath_rxdma_setup(sc); 707 if (error != 0) { 708 device_printf(sc->sc_dev, 709 "failed to allocate RX descriptors: %d\n", error); 710 goto bad; 711 } 712 713 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 714 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 715 716 ATH_TXBUF_LOCK_INIT(sc); 717 718 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 719 taskqueue_thread_enqueue, &sc->sc_tq); 720 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 721 device_get_nameunit(sc->sc_dev)); 722 723 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 724 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 725 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 726 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 727 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 728 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 729 730 /* 731 * Allocate hardware transmit queues: one queue for 732 * beacon frames and one data queue for each QoS 733 * priority. Note that the hal handles resetting 734 * these queues at the needed time. 735 * 736 * XXX PS-Poll 737 */ 738 sc->sc_bhalq = ath_beaconq_setup(sc); 739 if (sc->sc_bhalq == (u_int) -1) { 740 device_printf(sc->sc_dev, 741 "unable to setup a beacon xmit queue!\n"); 742 error = EIO; 743 goto bad2; 744 } 745 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 746 if (sc->sc_cabq == NULL) { 747 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 748 error = EIO; 749 goto bad2; 750 } 751 /* NB: insure BK queue is the lowest priority h/w queue */ 752 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 753 device_printf(sc->sc_dev, 754 "unable to setup xmit queue for %s traffic!\n", 755 ieee80211_wme_acnames[WME_AC_BK]); 756 error = EIO; 757 goto bad2; 758 } 759 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 760 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 761 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 762 /* 763 * Not enough hardware tx queues to properly do WME; 764 * just punt and assign them all to the same h/w queue. 765 * We could do a better job of this if, for example, 766 * we allocate queues when we switch from station to 767 * AP mode. 768 */ 769 if (sc->sc_ac2q[WME_AC_VI] != NULL) 770 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 771 if (sc->sc_ac2q[WME_AC_BE] != NULL) 772 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 773 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 774 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 775 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 776 } 777 778 /* 779 * Attach the TX completion function. 780 * 781 * The non-EDMA chips may have some special case optimisations; 782 * this method gives everyone a chance to attach cleanly. 783 */ 784 sc->sc_tx.xmit_attach_comp_func(sc); 785 786 /* 787 * Setup rate control. Some rate control modules 788 * call back to change the anntena state so expose 789 * the necessary entry points. 790 * XXX maybe belongs in struct ath_ratectrl? 791 */ 792 sc->sc_setdefantenna = ath_setdefantenna; 793 sc->sc_rc = ath_rate_attach(sc); 794 if (sc->sc_rc == NULL) { 795 error = EIO; 796 goto bad2; 797 } 798 799 /* Attach DFS module */ 800 if (! ath_dfs_attach(sc)) { 801 device_printf(sc->sc_dev, 802 "%s: unable to attach DFS\n", __func__); 803 error = EIO; 804 goto bad2; 805 } 806 807 /* Attach spectral module */ 808 if (ath_spectral_attach(sc) < 0) { 809 device_printf(sc->sc_dev, 810 "%s: unable to attach spectral\n", __func__); 811 error = EIO; 812 goto bad2; 813 } 814 815 /* Attach bluetooth coexistence module */ 816 if (ath_btcoex_attach(sc) < 0) { 817 device_printf(sc->sc_dev, 818 "%s: unable to attach bluetooth coexistence\n", __func__); 819 error = EIO; 820 goto bad2; 821 } 822 823 /* Attach LNA diversity module */ 824 if (ath_lna_div_attach(sc) < 0) { 825 device_printf(sc->sc_dev, 826 "%s: unable to attach LNA diversity\n", __func__); 827 error = EIO; 828 goto bad2; 829 } 830 831 /* Start DFS processing tasklet */ 832 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 833 834 /* Configure LED state */ 835 sc->sc_blinking = 0; 836 sc->sc_ledstate = 1; 837 sc->sc_ledon = 0; /* low true */ 838 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 839 callout_init(&sc->sc_ledtimer, 1); 840 841 /* 842 * Don't setup hardware-based blinking. 843 * 844 * Although some NICs may have this configured in the 845 * default reset register values, the user may wish 846 * to alter which pins have which function. 847 * 848 * The reference driver attaches the MAC network LED to GPIO1 and 849 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 850 * NIC has these reversed. 851 */ 852 sc->sc_hardled = (1 == 0); 853 sc->sc_led_net_pin = -1; 854 sc->sc_led_pwr_pin = -1; 855 /* 856 * Auto-enable soft led processing for IBM cards and for 857 * 5211 minipci cards. Users can also manually enable/disable 858 * support with a sysctl. 859 */ 860 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 861 ath_led_config(sc); 862 ath_hal_setledstate(ah, HAL_LED_INIT); 863 864 /* XXX not right but it's not used anywhere important */ 865 ic->ic_phytype = IEEE80211_T_OFDM; 866 ic->ic_opmode = IEEE80211_M_STA; 867 ic->ic_caps = 868 IEEE80211_C_STA /* station mode */ 869 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 870 | IEEE80211_C_HOSTAP /* hostap mode */ 871 | IEEE80211_C_MONITOR /* monitor mode */ 872 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 873 | IEEE80211_C_WDS /* 4-address traffic works */ 874 | IEEE80211_C_MBSS /* mesh point link mode */ 875 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 876 | IEEE80211_C_SHSLOT /* short slot time supported */ 877 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 878 #ifndef ATH_ENABLE_11N 879 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 880 #endif 881 | IEEE80211_C_TXFRAG /* handle tx frags */ 882 #ifdef ATH_ENABLE_DFS 883 | IEEE80211_C_DFS /* Enable radar detection */ 884 #endif 885 | IEEE80211_C_PMGT /* Station side power mgmt */ 886 | IEEE80211_C_SWSLEEP 887 ; 888 /* 889 * Query the hal to figure out h/w crypto support. 890 */ 891 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 892 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 893 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 894 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 895 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 896 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 897 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 898 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 899 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 900 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 901 /* 902 * Check if h/w does the MIC and/or whether the 903 * separate key cache entries are required to 904 * handle both tx+rx MIC keys. 905 */ 906 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 907 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 908 /* 909 * If the h/w supports storing tx+rx MIC keys 910 * in one cache slot automatically enable use. 911 */ 912 if (ath_hal_hastkipsplit(ah) || 913 !ath_hal_settkipsplit(ah, AH_FALSE)) 914 sc->sc_splitmic = 1; 915 /* 916 * If the h/w can do TKIP MIC together with WME then 917 * we use it; otherwise we force the MIC to be done 918 * in software by the net80211 layer. 919 */ 920 if (ath_hal_haswmetkipmic(ah)) 921 sc->sc_wmetkipmic = 1; 922 } 923 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 924 /* 925 * Check for multicast key search support. 926 */ 927 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 928 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 929 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 930 } 931 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 932 /* 933 * Mark key cache slots associated with global keys 934 * as in use. If we knew TKIP was not to be used we 935 * could leave the +32, +64, and +32+64 slots free. 936 */ 937 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 938 setbit(sc->sc_keymap, i); 939 setbit(sc->sc_keymap, i+64); 940 if (sc->sc_splitmic) { 941 setbit(sc->sc_keymap, i+32); 942 setbit(sc->sc_keymap, i+32+64); 943 } 944 } 945 /* 946 * TPC support can be done either with a global cap or 947 * per-packet support. The latter is not available on 948 * all parts. We're a bit pedantic here as all parts 949 * support a global cap. 950 */ 951 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 952 ic->ic_caps |= IEEE80211_C_TXPMGT; 953 954 /* 955 * Mark WME capability only if we have sufficient 956 * hardware queues to do proper priority scheduling. 957 */ 958 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 959 ic->ic_caps |= IEEE80211_C_WME; 960 /* 961 * Check for misc other capabilities. 962 */ 963 if (ath_hal_hasbursting(ah)) 964 ic->ic_caps |= IEEE80211_C_BURST; 965 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 966 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 967 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 968 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 969 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 970 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 971 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 972 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 973 974 if (ath_hal_hasfastframes(ah)) 975 ic->ic_caps |= IEEE80211_C_FF; 976 wmodes = ath_hal_getwirelessmodes(ah); 977 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 978 ic->ic_caps |= IEEE80211_C_TURBOP; 979 #ifdef IEEE80211_SUPPORT_TDMA 980 if (ath_hal_macversion(ah) > 0x78) { 981 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 982 ic->ic_tdma_update = ath_tdma_update; 983 } 984 #endif 985 986 /* 987 * TODO: enforce that at least this many frames are available 988 * in the txbuf list before allowing data frames (raw or 989 * otherwise) to be transmitted. 990 */ 991 sc->sc_txq_data_minfree = 10; 992 /* 993 * Leave this as default to maintain legacy behaviour. 994 * Shortening the cabq/mcastq may end up causing some 995 * undesirable behaviour. 996 */ 997 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 998 999 /* 1000 * How deep can the node software TX queue get whilst it's asleep. 1001 */ 1002 sc->sc_txq_node_psq_maxdepth = 16; 1003 1004 /* 1005 * Default the maximum queue depth for a given node 1006 * to 1/4'th the TX buffers, or 64, whichever 1007 * is larger. 1008 */ 1009 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 1010 1011 /* Enable CABQ by default */ 1012 sc->sc_cabq_enable = 1; 1013 1014 /* 1015 * Allow the TX and RX chainmasks to be overridden by 1016 * environment variables and/or device.hints. 1017 * 1018 * This must be done early - before the hardware is 1019 * calibrated or before the 802.11n stream calculation 1020 * is done. 1021 */ 1022 if (resource_int_value(device_get_name(sc->sc_dev), 1023 device_get_unit(sc->sc_dev), "rx_chainmask", 1024 &rx_chainmask) == 0) { 1025 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1026 rx_chainmask); 1027 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1028 } 1029 if (resource_int_value(device_get_name(sc->sc_dev), 1030 device_get_unit(sc->sc_dev), "tx_chainmask", 1031 &tx_chainmask) == 0) { 1032 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1033 tx_chainmask); 1034 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1035 } 1036 1037 /* 1038 * Query the TX/RX chainmask configuration. 1039 * 1040 * This is only relevant for 11n devices. 1041 */ 1042 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1043 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1044 1045 /* 1046 * Disable MRR with protected frames by default. 1047 * Only 802.11n series NICs can handle this. 1048 */ 1049 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1050 1051 /* 1052 * Query the enterprise mode information the HAL. 1053 */ 1054 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1055 &sc->sc_ent_cfg) == HAL_OK) 1056 sc->sc_use_ent = 1; 1057 1058 #ifdef ATH_ENABLE_11N 1059 /* 1060 * Query HT capabilities 1061 */ 1062 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1063 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1064 uint32_t rxs, txs; 1065 1066 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1067 1068 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1069 1070 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1071 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1072 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1073 | IEEE80211_HTCAP_MAXAMSDU_3839 1074 /* max A-MSDU length */ 1075 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1076 1077 /* 1078 * Enable short-GI for HT20 only if the hardware 1079 * advertises support. 1080 * Notably, anything earlier than the AR9287 doesn't. 1081 */ 1082 if ((ath_hal_getcapability(ah, 1083 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1084 (wmodes & HAL_MODE_HT20)) { 1085 device_printf(sc->sc_dev, 1086 "[HT] enabling short-GI in 20MHz mode\n"); 1087 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1088 } 1089 1090 if (wmodes & HAL_MODE_HT40) 1091 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1092 | IEEE80211_HTCAP_SHORTGI40; 1093 1094 /* 1095 * TX/RX streams need to be taken into account when 1096 * negotiating which MCS rates it'll receive and 1097 * what MCS rates are available for TX. 1098 */ 1099 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1100 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1101 ic->ic_txstream = txs; 1102 ic->ic_rxstream = rxs; 1103 1104 /* 1105 * Setup TX and RX STBC based on what the HAL allows and 1106 * the currently configured chainmask set. 1107 * Ie - don't enable STBC TX if only one chain is enabled. 1108 * STBC RX is fine on a single RX chain; it just won't 1109 * provide any real benefit. 1110 */ 1111 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1112 NULL) == HAL_OK) { 1113 sc->sc_rx_stbc = 1; 1114 device_printf(sc->sc_dev, 1115 "[HT] 1 stream STBC receive enabled\n"); 1116 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1117 } 1118 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1119 NULL) == HAL_OK) { 1120 sc->sc_tx_stbc = 1; 1121 device_printf(sc->sc_dev, 1122 "[HT] 1 stream STBC transmit enabled\n"); 1123 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1124 } 1125 1126 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1127 &sc->sc_rts_aggr_limit); 1128 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1129 device_printf(sc->sc_dev, 1130 "[HT] RTS aggregates limited to %d KiB\n", 1131 sc->sc_rts_aggr_limit / 1024); 1132 1133 device_printf(sc->sc_dev, 1134 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1135 } 1136 #endif 1137 1138 /* 1139 * Initial aggregation settings. 1140 */ 1141 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1142 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1143 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1144 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1145 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1146 sc->sc_delim_min_pad = 0; 1147 1148 /* 1149 * Check if the hardware requires PCI register serialisation. 1150 * Some of the Owl based MACs require this. 1151 */ 1152 if (mp_ncpus > 1 && 1153 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1154 0, NULL) == HAL_OK) { 1155 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1156 device_printf(sc->sc_dev, 1157 "Enabling register serialisation\n"); 1158 } 1159 1160 /* 1161 * Initialise the deferred completed RX buffer list. 1162 */ 1163 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1164 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1165 1166 /* 1167 * Indicate we need the 802.11 header padded to a 1168 * 32-bit boundary for 4-address and QoS frames. 1169 */ 1170 ic->ic_flags |= IEEE80211_F_DATAPAD; 1171 1172 /* 1173 * Query the hal about antenna support. 1174 */ 1175 sc->sc_defant = ath_hal_getdefantenna(ah); 1176 1177 /* 1178 * Not all chips have the VEOL support we want to 1179 * use with IBSS beacons; check here for it. 1180 */ 1181 sc->sc_hasveol = ath_hal_hasveol(ah); 1182 1183 /* get mac address from kenv first, then hardware */ 1184 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1185 /* Tell the HAL now about the new MAC */ 1186 ath_hal_setmac(ah, ic->ic_macaddr); 1187 } else { 1188 ath_hal_getmac(ah, ic->ic_macaddr); 1189 } 1190 1191 if (sc->sc_hasbmask) 1192 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1193 1194 /* NB: used to size node table key mapping array */ 1195 ic->ic_max_keyix = sc->sc_keymax; 1196 /* call MI attach routine. */ 1197 ieee80211_ifattach(ic); 1198 ic->ic_setregdomain = ath_setregdomain; 1199 ic->ic_getradiocaps = ath_getradiocaps; 1200 sc->sc_opmode = HAL_M_STA; 1201 1202 /* override default methods */ 1203 ic->ic_ioctl = ath_ioctl; 1204 ic->ic_parent = ath_parent; 1205 ic->ic_transmit = ath_transmit; 1206 ic->ic_newassoc = ath_newassoc; 1207 ic->ic_updateslot = ath_updateslot; 1208 ic->ic_wme.wme_update = ath_wme_update; 1209 ic->ic_vap_create = ath_vap_create; 1210 ic->ic_vap_delete = ath_vap_delete; 1211 ic->ic_raw_xmit = ath_raw_xmit; 1212 ic->ic_update_mcast = ath_update_mcast; 1213 ic->ic_update_promisc = ath_update_promisc; 1214 ic->ic_node_alloc = ath_node_alloc; 1215 sc->sc_node_free = ic->ic_node_free; 1216 ic->ic_node_free = ath_node_free; 1217 sc->sc_node_cleanup = ic->ic_node_cleanup; 1218 ic->ic_node_cleanup = ath_node_cleanup; 1219 ic->ic_node_getsignal = ath_node_getsignal; 1220 ic->ic_scan_start = ath_scan_start; 1221 ic->ic_scan_end = ath_scan_end; 1222 ic->ic_set_channel = ath_set_channel; 1223 #ifdef ATH_ENABLE_11N 1224 /* 802.11n specific - but just override anyway */ 1225 sc->sc_addba_request = ic->ic_addba_request; 1226 sc->sc_addba_response = ic->ic_addba_response; 1227 sc->sc_addba_stop = ic->ic_addba_stop; 1228 sc->sc_bar_response = ic->ic_bar_response; 1229 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1230 1231 ic->ic_addba_request = ath_addba_request; 1232 ic->ic_addba_response = ath_addba_response; 1233 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1234 ic->ic_addba_stop = ath_addba_stop; 1235 ic->ic_bar_response = ath_bar_response; 1236 1237 ic->ic_update_chw = ath_update_chw; 1238 #endif /* ATH_ENABLE_11N */ 1239 1240 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1241 /* 1242 * There's one vendor bitmap entry in the RX radiotap 1243 * header; make sure that's taken into account. 1244 */ 1245 ieee80211_radiotap_attachv(ic, 1246 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1247 ATH_TX_RADIOTAP_PRESENT, 1248 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1249 ATH_RX_RADIOTAP_PRESENT); 1250 #else 1251 /* 1252 * No vendor bitmap/extensions are present. 1253 */ 1254 ieee80211_radiotap_attach(ic, 1255 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1256 ATH_TX_RADIOTAP_PRESENT, 1257 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1258 ATH_RX_RADIOTAP_PRESENT); 1259 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1260 1261 /* 1262 * Setup the ALQ logging if required 1263 */ 1264 #ifdef ATH_DEBUG_ALQ 1265 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1266 if_ath_alq_setcfg(&sc->sc_alq, 1267 sc->sc_ah->ah_macVersion, 1268 sc->sc_ah->ah_macRev, 1269 sc->sc_ah->ah_phyRev, 1270 sc->sc_ah->ah_magic); 1271 #endif 1272 1273 /* 1274 * Setup dynamic sysctl's now that country code and 1275 * regdomain are available from the hal. 1276 */ 1277 ath_sysctlattach(sc); 1278 ath_sysctl_stats_attach(sc); 1279 ath_sysctl_hal_attach(sc); 1280 1281 if (bootverbose) 1282 ieee80211_announce(ic); 1283 ath_announce(sc); 1284 1285 /* 1286 * Put it to sleep for now. 1287 */ 1288 ATH_LOCK(sc); 1289 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1290 ATH_UNLOCK(sc); 1291 1292 return 0; 1293 bad2: 1294 ath_tx_cleanup(sc); 1295 ath_desc_free(sc); 1296 ath_txdma_teardown(sc); 1297 ath_rxdma_teardown(sc); 1298 bad: 1299 if (ah) 1300 ath_hal_detach(ah); 1301 sc->sc_invalid = 1; 1302 return error; 1303 } 1304 1305 int 1306 ath_detach(struct ath_softc *sc) 1307 { 1308 1309 /* 1310 * NB: the order of these is important: 1311 * o stop the chip so no more interrupts will fire 1312 * o call the 802.11 layer before detaching the hal to 1313 * insure callbacks into the driver to delete global 1314 * key cache entries can be handled 1315 * o free the taskqueue which drains any pending tasks 1316 * o reclaim the tx queue data structures after calling 1317 * the 802.11 layer as we'll get called back to reclaim 1318 * node state and potentially want to use them 1319 * o to cleanup the tx queues the hal is called, so detach 1320 * it last 1321 * Other than that, it's straightforward... 1322 */ 1323 1324 /* 1325 * XXX Wake the hardware up first. ath_stop() will still 1326 * wake it up first, but I'd rather do it here just to 1327 * ensure it's awake. 1328 */ 1329 ATH_LOCK(sc); 1330 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1331 ath_power_setpower(sc, HAL_PM_AWAKE); 1332 1333 /* 1334 * Stop things cleanly. 1335 */ 1336 ath_stop(sc); 1337 ATH_UNLOCK(sc); 1338 1339 ieee80211_ifdetach(&sc->sc_ic); 1340 taskqueue_free(sc->sc_tq); 1341 #ifdef ATH_TX99_DIAG 1342 if (sc->sc_tx99 != NULL) 1343 sc->sc_tx99->detach(sc->sc_tx99); 1344 #endif 1345 ath_rate_detach(sc->sc_rc); 1346 #ifdef ATH_DEBUG_ALQ 1347 if_ath_alq_tidyup(&sc->sc_alq); 1348 #endif 1349 ath_lna_div_detach(sc); 1350 ath_btcoex_detach(sc); 1351 ath_spectral_detach(sc); 1352 ath_dfs_detach(sc); 1353 ath_desc_free(sc); 1354 ath_txdma_teardown(sc); 1355 ath_rxdma_teardown(sc); 1356 ath_tx_cleanup(sc); 1357 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1358 1359 return 0; 1360 } 1361 1362 /* 1363 * MAC address handling for multiple BSS on the same radio. 1364 * The first vap uses the MAC address from the EEPROM. For 1365 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1366 * address and use the next six bits as an index. 1367 */ 1368 static void 1369 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1370 { 1371 int i; 1372 1373 if (clone && sc->sc_hasbmask) { 1374 /* NB: we only do this if h/w supports multiple bssid */ 1375 for (i = 0; i < 8; i++) 1376 if ((sc->sc_bssidmask & (1<<i)) == 0) 1377 break; 1378 if (i != 0) 1379 mac[0] |= (i << 2)|0x2; 1380 } else 1381 i = 0; 1382 sc->sc_bssidmask |= 1<<i; 1383 sc->sc_hwbssidmask[0] &= ~mac[0]; 1384 if (i == 0) 1385 sc->sc_nbssid0++; 1386 } 1387 1388 static void 1389 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1390 { 1391 int i = mac[0] >> 2; 1392 uint8_t mask; 1393 1394 if (i != 0 || --sc->sc_nbssid0 == 0) { 1395 sc->sc_bssidmask &= ~(1<<i); 1396 /* recalculate bssid mask from remaining addresses */ 1397 mask = 0xff; 1398 for (i = 1; i < 8; i++) 1399 if (sc->sc_bssidmask & (1<<i)) 1400 mask &= ~((i<<2)|0x2); 1401 sc->sc_hwbssidmask[0] |= mask; 1402 } 1403 } 1404 1405 /* 1406 * Assign a beacon xmit slot. We try to space out 1407 * assignments so when beacons are staggered the 1408 * traffic coming out of the cab q has maximal time 1409 * to go out before the next beacon is scheduled. 1410 */ 1411 static int 1412 assign_bslot(struct ath_softc *sc) 1413 { 1414 u_int slot, free; 1415 1416 free = 0; 1417 for (slot = 0; slot < ATH_BCBUF; slot++) 1418 if (sc->sc_bslot[slot] == NULL) { 1419 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1420 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1421 return slot; 1422 free = slot; 1423 /* NB: keep looking for a double slot */ 1424 } 1425 return free; 1426 } 1427 1428 static struct ieee80211vap * 1429 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1430 enum ieee80211_opmode opmode, int flags, 1431 const uint8_t bssid[IEEE80211_ADDR_LEN], 1432 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1433 { 1434 struct ath_softc *sc = ic->ic_softc; 1435 struct ath_vap *avp; 1436 struct ieee80211vap *vap; 1437 uint8_t mac[IEEE80211_ADDR_LEN]; 1438 int needbeacon, error; 1439 enum ieee80211_opmode ic_opmode; 1440 1441 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1442 needbeacon = 0; 1443 IEEE80211_ADDR_COPY(mac, mac0); 1444 1445 ATH_LOCK(sc); 1446 ic_opmode = opmode; /* default to opmode of new vap */ 1447 switch (opmode) { 1448 case IEEE80211_M_STA: 1449 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1450 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1451 goto bad; 1452 } 1453 if (sc->sc_nvaps) { 1454 /* 1455 * With multiple vaps we must fall back 1456 * to s/w beacon miss handling. 1457 */ 1458 flags |= IEEE80211_CLONE_NOBEACONS; 1459 } 1460 if (flags & IEEE80211_CLONE_NOBEACONS) { 1461 /* 1462 * Station mode w/o beacons are implemented w/ AP mode. 1463 */ 1464 ic_opmode = IEEE80211_M_HOSTAP; 1465 } 1466 break; 1467 case IEEE80211_M_IBSS: 1468 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1469 device_printf(sc->sc_dev, 1470 "only 1 ibss vap supported\n"); 1471 goto bad; 1472 } 1473 needbeacon = 1; 1474 break; 1475 case IEEE80211_M_AHDEMO: 1476 #ifdef IEEE80211_SUPPORT_TDMA 1477 if (flags & IEEE80211_CLONE_TDMA) { 1478 if (sc->sc_nvaps != 0) { 1479 device_printf(sc->sc_dev, 1480 "only 1 tdma vap supported\n"); 1481 goto bad; 1482 } 1483 needbeacon = 1; 1484 flags |= IEEE80211_CLONE_NOBEACONS; 1485 } 1486 /* fall thru... */ 1487 #endif 1488 case IEEE80211_M_MONITOR: 1489 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1490 /* 1491 * Adopt existing mode. Adding a monitor or ahdemo 1492 * vap to an existing configuration is of dubious 1493 * value but should be ok. 1494 */ 1495 /* XXX not right for monitor mode */ 1496 ic_opmode = ic->ic_opmode; 1497 } 1498 break; 1499 case IEEE80211_M_HOSTAP: 1500 case IEEE80211_M_MBSS: 1501 needbeacon = 1; 1502 break; 1503 case IEEE80211_M_WDS: 1504 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1505 device_printf(sc->sc_dev, 1506 "wds not supported in sta mode\n"); 1507 goto bad; 1508 } 1509 /* 1510 * Silently remove any request for a unique 1511 * bssid; WDS vap's always share the local 1512 * mac address. 1513 */ 1514 flags &= ~IEEE80211_CLONE_BSSID; 1515 if (sc->sc_nvaps == 0) 1516 ic_opmode = IEEE80211_M_HOSTAP; 1517 else 1518 ic_opmode = ic->ic_opmode; 1519 break; 1520 default: 1521 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1522 goto bad; 1523 } 1524 /* 1525 * Check that a beacon buffer is available; the code below assumes it. 1526 */ 1527 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1528 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1529 goto bad; 1530 } 1531 1532 /* STA, AHDEMO? */ 1533 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1534 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1535 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1536 } 1537 1538 vap = &avp->av_vap; 1539 /* XXX can't hold mutex across if_alloc */ 1540 ATH_UNLOCK(sc); 1541 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1542 ATH_LOCK(sc); 1543 if (error != 0) { 1544 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1545 __func__, error); 1546 goto bad2; 1547 } 1548 1549 /* h/w crypto support */ 1550 vap->iv_key_alloc = ath_key_alloc; 1551 vap->iv_key_delete = ath_key_delete; 1552 vap->iv_key_set = ath_key_set; 1553 vap->iv_key_update_begin = ath_key_update_begin; 1554 vap->iv_key_update_end = ath_key_update_end; 1555 1556 /* override various methods */ 1557 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1558 vap->iv_recv_mgmt = ath_recv_mgmt; 1559 vap->iv_reset = ath_reset_vap; 1560 vap->iv_update_beacon = ath_beacon_update; 1561 avp->av_newstate = vap->iv_newstate; 1562 vap->iv_newstate = ath_newstate; 1563 avp->av_bmiss = vap->iv_bmiss; 1564 vap->iv_bmiss = ath_bmiss_vap; 1565 1566 avp->av_node_ps = vap->iv_node_ps; 1567 vap->iv_node_ps = ath_node_powersave; 1568 1569 avp->av_set_tim = vap->iv_set_tim; 1570 vap->iv_set_tim = ath_node_set_tim; 1571 1572 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1573 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1574 1575 /* Set default parameters */ 1576 1577 /* 1578 * Anything earlier than some AR9300 series MACs don't 1579 * support a smaller MPDU density. 1580 */ 1581 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1582 /* 1583 * All NICs can handle the maximum size, however 1584 * AR5416 based MACs can only TX aggregates w/ RTS 1585 * protection when the total aggregate size is <= 8k. 1586 * However, for now that's enforced by the TX path. 1587 */ 1588 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1589 1590 avp->av_bslot = -1; 1591 if (needbeacon) { 1592 /* 1593 * Allocate beacon state and setup the q for buffered 1594 * multicast frames. We know a beacon buffer is 1595 * available because we checked above. 1596 */ 1597 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1598 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1599 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1600 /* 1601 * Assign the vap to a beacon xmit slot. As above 1602 * this cannot fail to find a free one. 1603 */ 1604 avp->av_bslot = assign_bslot(sc); 1605 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1606 ("beacon slot %u not empty", avp->av_bslot)); 1607 sc->sc_bslot[avp->av_bslot] = vap; 1608 sc->sc_nbcnvaps++; 1609 } 1610 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1611 /* 1612 * Multple vaps are to transmit beacons and we 1613 * have h/w support for TSF adjusting; enable 1614 * use of staggered beacons. 1615 */ 1616 sc->sc_stagbeacons = 1; 1617 } 1618 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1619 } 1620 1621 ic->ic_opmode = ic_opmode; 1622 if (opmode != IEEE80211_M_WDS) { 1623 sc->sc_nvaps++; 1624 if (opmode == IEEE80211_M_STA) 1625 sc->sc_nstavaps++; 1626 if (opmode == IEEE80211_M_MBSS) 1627 sc->sc_nmeshvaps++; 1628 } 1629 switch (ic_opmode) { 1630 case IEEE80211_M_IBSS: 1631 sc->sc_opmode = HAL_M_IBSS; 1632 break; 1633 case IEEE80211_M_STA: 1634 sc->sc_opmode = HAL_M_STA; 1635 break; 1636 case IEEE80211_M_AHDEMO: 1637 #ifdef IEEE80211_SUPPORT_TDMA 1638 if (vap->iv_caps & IEEE80211_C_TDMA) { 1639 sc->sc_tdma = 1; 1640 /* NB: disable tsf adjust */ 1641 sc->sc_stagbeacons = 0; 1642 } 1643 /* 1644 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1645 * just ap mode. 1646 */ 1647 /* fall thru... */ 1648 #endif 1649 case IEEE80211_M_HOSTAP: 1650 case IEEE80211_M_MBSS: 1651 sc->sc_opmode = HAL_M_HOSTAP; 1652 break; 1653 case IEEE80211_M_MONITOR: 1654 sc->sc_opmode = HAL_M_MONITOR; 1655 break; 1656 default: 1657 /* XXX should not happen */ 1658 break; 1659 } 1660 if (sc->sc_hastsfadd) { 1661 /* 1662 * Configure whether or not TSF adjust should be done. 1663 */ 1664 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1665 } 1666 if (flags & IEEE80211_CLONE_NOBEACONS) { 1667 /* 1668 * Enable s/w beacon miss handling. 1669 */ 1670 sc->sc_swbmiss = 1; 1671 } 1672 ATH_UNLOCK(sc); 1673 1674 /* complete setup */ 1675 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1676 mac); 1677 return vap; 1678 bad2: 1679 reclaim_address(sc, mac); 1680 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1681 bad: 1682 free(avp, M_80211_VAP); 1683 ATH_UNLOCK(sc); 1684 return NULL; 1685 } 1686 1687 static void 1688 ath_vap_delete(struct ieee80211vap *vap) 1689 { 1690 struct ieee80211com *ic = vap->iv_ic; 1691 struct ath_softc *sc = ic->ic_softc; 1692 struct ath_hal *ah = sc->sc_ah; 1693 struct ath_vap *avp = ATH_VAP(vap); 1694 1695 ATH_LOCK(sc); 1696 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1697 ATH_UNLOCK(sc); 1698 1699 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1700 if (sc->sc_running) { 1701 /* 1702 * Quiesce the hardware while we remove the vap. In 1703 * particular we need to reclaim all references to 1704 * the vap state by any frames pending on the tx queues. 1705 */ 1706 ath_hal_intrset(ah, 0); /* disable interrupts */ 1707 /* XXX Do all frames from all vaps/nodes need draining here? */ 1708 ath_stoprecv(sc, 1); /* stop recv side */ 1709 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1710 } 1711 1712 /* .. leave the hardware awake for now. */ 1713 1714 ieee80211_vap_detach(vap); 1715 1716 /* 1717 * XXX Danger Will Robinson! Danger! 1718 * 1719 * Because ieee80211_vap_detach() can queue a frame (the station 1720 * diassociate message?) after we've drained the TXQ and 1721 * flushed the software TXQ, we will end up with a frame queued 1722 * to a node whose vap is about to be freed. 1723 * 1724 * To work around this, flush the hardware/software again. 1725 * This may be racy - the ath task may be running and the packet 1726 * may be being scheduled between sw->hw txq. Tsk. 1727 * 1728 * TODO: figure out why a new node gets allocated somewhere around 1729 * here (after the ath_tx_swq() call; and after an ath_stop() 1730 * call!) 1731 */ 1732 1733 ath_draintxq(sc, ATH_RESET_DEFAULT); 1734 1735 ATH_LOCK(sc); 1736 /* 1737 * Reclaim beacon state. Note this must be done before 1738 * the vap instance is reclaimed as we may have a reference 1739 * to it in the buffer for the beacon frame. 1740 */ 1741 if (avp->av_bcbuf != NULL) { 1742 if (avp->av_bslot != -1) { 1743 sc->sc_bslot[avp->av_bslot] = NULL; 1744 sc->sc_nbcnvaps--; 1745 } 1746 ath_beacon_return(sc, avp->av_bcbuf); 1747 avp->av_bcbuf = NULL; 1748 if (sc->sc_nbcnvaps == 0) { 1749 sc->sc_stagbeacons = 0; 1750 if (sc->sc_hastsfadd) 1751 ath_hal_settsfadjust(sc->sc_ah, 0); 1752 } 1753 /* 1754 * Reclaim any pending mcast frames for the vap. 1755 */ 1756 ath_tx_draintxq(sc, &avp->av_mcastq); 1757 } 1758 /* 1759 * Update bookkeeping. 1760 */ 1761 if (vap->iv_opmode == IEEE80211_M_STA) { 1762 sc->sc_nstavaps--; 1763 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1764 sc->sc_swbmiss = 0; 1765 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1766 vap->iv_opmode == IEEE80211_M_MBSS) { 1767 reclaim_address(sc, vap->iv_myaddr); 1768 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1769 if (vap->iv_opmode == IEEE80211_M_MBSS) 1770 sc->sc_nmeshvaps--; 1771 } 1772 if (vap->iv_opmode != IEEE80211_M_WDS) 1773 sc->sc_nvaps--; 1774 #ifdef IEEE80211_SUPPORT_TDMA 1775 /* TDMA operation ceases when the last vap is destroyed */ 1776 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1777 sc->sc_tdma = 0; 1778 sc->sc_swbmiss = 0; 1779 } 1780 #endif 1781 free(avp, M_80211_VAP); 1782 1783 if (sc->sc_running) { 1784 /* 1785 * Restart rx+tx machines if still running (RUNNING will 1786 * be reset if we just destroyed the last vap). 1787 */ 1788 if (ath_startrecv(sc) != 0) 1789 device_printf(sc->sc_dev, 1790 "%s: unable to restart recv logic\n", __func__); 1791 if (sc->sc_beacons) { /* restart beacons */ 1792 #ifdef IEEE80211_SUPPORT_TDMA 1793 if (sc->sc_tdma) 1794 ath_tdma_config(sc, NULL); 1795 else 1796 #endif 1797 ath_beacon_config(sc, NULL); 1798 } 1799 ath_hal_intrset(ah, sc->sc_imask); 1800 } 1801 1802 /* Ok, let the hardware asleep. */ 1803 ath_power_restore_power_state(sc); 1804 ATH_UNLOCK(sc); 1805 } 1806 1807 void 1808 ath_suspend(struct ath_softc *sc) 1809 { 1810 struct ieee80211com *ic = &sc->sc_ic; 1811 1812 sc->sc_resume_up = ic->ic_nrunning != 0; 1813 1814 ieee80211_suspend_all(ic); 1815 /* 1816 * NB: don't worry about putting the chip in low power 1817 * mode; pci will power off our socket on suspend and 1818 * CardBus detaches the device. 1819 * 1820 * XXX TODO: well, that's great, except for non-cardbus 1821 * devices! 1822 */ 1823 1824 /* 1825 * XXX This doesn't wait until all pending taskqueue 1826 * items and parallel transmit/receive/other threads 1827 * are running! 1828 */ 1829 ath_hal_intrset(sc->sc_ah, 0); 1830 taskqueue_block(sc->sc_tq); 1831 1832 ATH_LOCK(sc); 1833 callout_stop(&sc->sc_cal_ch); 1834 ATH_UNLOCK(sc); 1835 1836 /* 1837 * XXX ensure sc_invalid is 1 1838 */ 1839 1840 /* Disable the PCIe PHY, complete with workarounds */ 1841 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1842 } 1843 1844 /* 1845 * Reset the key cache since some parts do not reset the 1846 * contents on resume. First we clear all entries, then 1847 * re-load keys that the 802.11 layer assumes are setup 1848 * in h/w. 1849 */ 1850 static void 1851 ath_reset_keycache(struct ath_softc *sc) 1852 { 1853 struct ieee80211com *ic = &sc->sc_ic; 1854 struct ath_hal *ah = sc->sc_ah; 1855 int i; 1856 1857 ATH_LOCK(sc); 1858 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1859 for (i = 0; i < sc->sc_keymax; i++) 1860 ath_hal_keyreset(ah, i); 1861 ath_power_restore_power_state(sc); 1862 ATH_UNLOCK(sc); 1863 ieee80211_crypto_reload_keys(ic); 1864 } 1865 1866 /* 1867 * Fetch the current chainmask configuration based on the current 1868 * operating channel and options. 1869 */ 1870 static void 1871 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1872 { 1873 1874 /* 1875 * Set TX chainmask to the currently configured chainmask; 1876 * the TX chainmask depends upon the current operating mode. 1877 */ 1878 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1879 if (IEEE80211_IS_CHAN_HT(chan)) { 1880 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1881 } else { 1882 sc->sc_cur_txchainmask = 1; 1883 } 1884 1885 DPRINTF(sc, ATH_DEBUG_RESET, 1886 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1887 __func__, 1888 sc->sc_cur_txchainmask, 1889 sc->sc_cur_rxchainmask); 1890 } 1891 1892 void 1893 ath_resume(struct ath_softc *sc) 1894 { 1895 struct ieee80211com *ic = &sc->sc_ic; 1896 struct ath_hal *ah = sc->sc_ah; 1897 HAL_STATUS status; 1898 1899 ath_hal_enablepcie(ah, 0, 0); 1900 1901 /* 1902 * Must reset the chip before we reload the 1903 * keycache as we were powered down on suspend. 1904 */ 1905 ath_update_chainmasks(sc, 1906 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1907 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1908 sc->sc_cur_rxchainmask); 1909 1910 /* Ensure we set the current power state to on */ 1911 ATH_LOCK(sc); 1912 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1913 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1914 ath_power_setpower(sc, HAL_PM_AWAKE); 1915 ATH_UNLOCK(sc); 1916 1917 ath_hal_reset(ah, sc->sc_opmode, 1918 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1919 AH_FALSE, HAL_RESET_NORMAL, &status); 1920 ath_reset_keycache(sc); 1921 1922 ATH_RX_LOCK(sc); 1923 sc->sc_rx_stopped = 1; 1924 sc->sc_rx_resetted = 1; 1925 ATH_RX_UNLOCK(sc); 1926 1927 /* Let DFS at it in case it's a DFS channel */ 1928 ath_dfs_radar_enable(sc, ic->ic_curchan); 1929 1930 /* Let spectral at in case spectral is enabled */ 1931 ath_spectral_enable(sc, ic->ic_curchan); 1932 1933 /* 1934 * Let bluetooth coexistence at in case it's needed for this channel 1935 */ 1936 ath_btcoex_enable(sc, ic->ic_curchan); 1937 1938 /* 1939 * If we're doing TDMA, enforce the TXOP limitation for chips that 1940 * support it. 1941 */ 1942 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1943 ath_hal_setenforcetxop(sc->sc_ah, 1); 1944 else 1945 ath_hal_setenforcetxop(sc->sc_ah, 0); 1946 1947 /* Restore the LED configuration */ 1948 ath_led_config(sc); 1949 ath_hal_setledstate(ah, HAL_LED_INIT); 1950 1951 if (sc->sc_resume_up) 1952 ieee80211_resume_all(ic); 1953 1954 ATH_LOCK(sc); 1955 ath_power_restore_power_state(sc); 1956 ATH_UNLOCK(sc); 1957 1958 /* XXX beacons ? */ 1959 } 1960 1961 void 1962 ath_shutdown(struct ath_softc *sc) 1963 { 1964 1965 ATH_LOCK(sc); 1966 ath_stop(sc); 1967 ATH_UNLOCK(sc); 1968 /* NB: no point powering down chip as we're about to reboot */ 1969 } 1970 1971 /* 1972 * Interrupt handler. Most of the actual processing is deferred. 1973 */ 1974 void 1975 ath_intr(void *arg) 1976 { 1977 struct ath_softc *sc = arg; 1978 struct ath_hal *ah = sc->sc_ah; 1979 HAL_INT status = 0; 1980 uint32_t txqs; 1981 1982 /* 1983 * If we're inside a reset path, just print a warning and 1984 * clear the ISR. The reset routine will finish it for us. 1985 */ 1986 ATH_PCU_LOCK(sc); 1987 if (sc->sc_inreset_cnt) { 1988 HAL_INT status; 1989 ath_hal_getisr(ah, &status); /* clear ISR */ 1990 ath_hal_intrset(ah, 0); /* disable further intr's */ 1991 DPRINTF(sc, ATH_DEBUG_ANY, 1992 "%s: in reset, ignoring: status=0x%x\n", 1993 __func__, status); 1994 ATH_PCU_UNLOCK(sc); 1995 return; 1996 } 1997 1998 if (sc->sc_invalid) { 1999 /* 2000 * The hardware is not ready/present, don't touch anything. 2001 * Note this can happen early on if the IRQ is shared. 2002 */ 2003 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2004 ATH_PCU_UNLOCK(sc); 2005 return; 2006 } 2007 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2008 ATH_PCU_UNLOCK(sc); 2009 return; 2010 } 2011 2012 ATH_LOCK(sc); 2013 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2014 ATH_UNLOCK(sc); 2015 2016 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2017 HAL_INT status; 2018 2019 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2020 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2021 ath_hal_getisr(ah, &status); /* clear ISR */ 2022 ath_hal_intrset(ah, 0); /* disable further intr's */ 2023 ATH_PCU_UNLOCK(sc); 2024 2025 ATH_LOCK(sc); 2026 ath_power_restore_power_state(sc); 2027 ATH_UNLOCK(sc); 2028 return; 2029 } 2030 2031 /* 2032 * Figure out the reason(s) for the interrupt. Note 2033 * that the hal returns a pseudo-ISR that may include 2034 * bits we haven't explicitly enabled so we mask the 2035 * value to insure we only process bits we requested. 2036 */ 2037 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2038 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2039 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2040 #ifdef ATH_DEBUG_ALQ 2041 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2042 ah->ah_syncstate); 2043 #endif /* ATH_DEBUG_ALQ */ 2044 #ifdef ATH_KTR_INTR_DEBUG 2045 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2046 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2047 ah->ah_intrstate[0], 2048 ah->ah_intrstate[1], 2049 ah->ah_intrstate[2], 2050 ah->ah_intrstate[3], 2051 ah->ah_intrstate[6]); 2052 #endif 2053 2054 /* Squirrel away SYNC interrupt debugging */ 2055 if (ah->ah_syncstate != 0) { 2056 int i; 2057 for (i = 0; i < 32; i++) 2058 if (ah->ah_syncstate & (i << i)) 2059 sc->sc_intr_stats.sync_intr[i]++; 2060 } 2061 2062 status &= sc->sc_imask; /* discard unasked for bits */ 2063 2064 /* Short-circuit un-handled interrupts */ 2065 if (status == 0x0) { 2066 ATH_PCU_UNLOCK(sc); 2067 2068 ATH_LOCK(sc); 2069 ath_power_restore_power_state(sc); 2070 ATH_UNLOCK(sc); 2071 2072 return; 2073 } 2074 2075 /* 2076 * Take a note that we're inside the interrupt handler, so 2077 * the reset routines know to wait. 2078 */ 2079 sc->sc_intr_cnt++; 2080 ATH_PCU_UNLOCK(sc); 2081 2082 /* 2083 * Handle the interrupt. We won't run concurrent with the reset 2084 * or channel change routines as they'll wait for sc_intr_cnt 2085 * to be 0 before continuing. 2086 */ 2087 if (status & HAL_INT_FATAL) { 2088 sc->sc_stats.ast_hardware++; 2089 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2090 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2091 } else { 2092 if (status & HAL_INT_SWBA) { 2093 /* 2094 * Software beacon alert--time to send a beacon. 2095 * Handle beacon transmission directly; deferring 2096 * this is too slow to meet timing constraints 2097 * under load. 2098 */ 2099 #ifdef IEEE80211_SUPPORT_TDMA 2100 if (sc->sc_tdma) { 2101 if (sc->sc_tdmaswba == 0) { 2102 struct ieee80211com *ic = &sc->sc_ic; 2103 struct ieee80211vap *vap = 2104 TAILQ_FIRST(&ic->ic_vaps); 2105 ath_tdma_beacon_send(sc, vap); 2106 sc->sc_tdmaswba = 2107 vap->iv_tdma->tdma_bintval; 2108 } else 2109 sc->sc_tdmaswba--; 2110 } else 2111 #endif 2112 { 2113 ath_beacon_proc(sc, 0); 2114 #ifdef IEEE80211_SUPPORT_SUPERG 2115 /* 2116 * Schedule the rx taskq in case there's no 2117 * traffic so any frames held on the staging 2118 * queue are aged and potentially flushed. 2119 */ 2120 sc->sc_rx.recv_sched(sc, 1); 2121 #endif 2122 } 2123 } 2124 if (status & HAL_INT_RXEOL) { 2125 int imask; 2126 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2127 if (! sc->sc_isedma) { 2128 ATH_PCU_LOCK(sc); 2129 /* 2130 * NB: the hardware should re-read the link when 2131 * RXE bit is written, but it doesn't work at 2132 * least on older hardware revs. 2133 */ 2134 sc->sc_stats.ast_rxeol++; 2135 /* 2136 * Disable RXEOL/RXORN - prevent an interrupt 2137 * storm until the PCU logic can be reset. 2138 * In case the interface is reset some other 2139 * way before "sc_kickpcu" is called, don't 2140 * modify sc_imask - that way if it is reset 2141 * by a call to ath_reset() somehow, the 2142 * interrupt mask will be correctly reprogrammed. 2143 */ 2144 imask = sc->sc_imask; 2145 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2146 ath_hal_intrset(ah, imask); 2147 /* 2148 * Only blank sc_rxlink if we've not yet kicked 2149 * the PCU. 2150 * 2151 * This isn't entirely correct - the correct solution 2152 * would be to have a PCU lock and engage that for 2153 * the duration of the PCU fiddling; which would include 2154 * running the RX process. Otherwise we could end up 2155 * messing up the RX descriptor chain and making the 2156 * RX desc list much shorter. 2157 */ 2158 if (! sc->sc_kickpcu) 2159 sc->sc_rxlink = NULL; 2160 sc->sc_kickpcu = 1; 2161 ATH_PCU_UNLOCK(sc); 2162 } 2163 /* 2164 * Enqueue an RX proc to handle whatever 2165 * is in the RX queue. 2166 * This will then kick the PCU if required. 2167 */ 2168 sc->sc_rx.recv_sched(sc, 1); 2169 } 2170 if (status & HAL_INT_TXURN) { 2171 sc->sc_stats.ast_txurn++; 2172 /* bump tx trigger level */ 2173 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2174 } 2175 /* 2176 * Handle both the legacy and RX EDMA interrupt bits. 2177 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2178 */ 2179 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2180 sc->sc_stats.ast_rx_intr++; 2181 sc->sc_rx.recv_sched(sc, 1); 2182 } 2183 if (status & HAL_INT_TX) { 2184 sc->sc_stats.ast_tx_intr++; 2185 /* 2186 * Grab all the currently set bits in the HAL txq bitmap 2187 * and blank them. This is the only place we should be 2188 * doing this. 2189 */ 2190 if (! sc->sc_isedma) { 2191 ATH_PCU_LOCK(sc); 2192 txqs = 0xffffffff; 2193 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2194 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2195 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2196 txqs, 2197 sc->sc_txq_active, 2198 sc->sc_txq_active | txqs); 2199 sc->sc_txq_active |= txqs; 2200 ATH_PCU_UNLOCK(sc); 2201 } 2202 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2203 } 2204 if (status & HAL_INT_BMISS) { 2205 sc->sc_stats.ast_bmiss++; 2206 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2207 } 2208 if (status & HAL_INT_GTT) 2209 sc->sc_stats.ast_tx_timeout++; 2210 if (status & HAL_INT_CST) 2211 sc->sc_stats.ast_tx_cst++; 2212 if (status & HAL_INT_MIB) { 2213 sc->sc_stats.ast_mib++; 2214 ATH_PCU_LOCK(sc); 2215 /* 2216 * Disable interrupts until we service the MIB 2217 * interrupt; otherwise it will continue to fire. 2218 */ 2219 ath_hal_intrset(ah, 0); 2220 /* 2221 * Let the hal handle the event. We assume it will 2222 * clear whatever condition caused the interrupt. 2223 */ 2224 ath_hal_mibevent(ah, &sc->sc_halstats); 2225 /* 2226 * Don't reset the interrupt if we've just 2227 * kicked the PCU, or we may get a nested 2228 * RXEOL before the rxproc has had a chance 2229 * to run. 2230 */ 2231 if (sc->sc_kickpcu == 0) 2232 ath_hal_intrset(ah, sc->sc_imask); 2233 ATH_PCU_UNLOCK(sc); 2234 } 2235 if (status & HAL_INT_RXORN) { 2236 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2237 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2238 sc->sc_stats.ast_rxorn++; 2239 } 2240 if (status & HAL_INT_TSFOOR) { 2241 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2242 sc->sc_syncbeacon = 1; 2243 } 2244 } 2245 ATH_PCU_LOCK(sc); 2246 sc->sc_intr_cnt--; 2247 ATH_PCU_UNLOCK(sc); 2248 2249 ATH_LOCK(sc); 2250 ath_power_restore_power_state(sc); 2251 ATH_UNLOCK(sc); 2252 } 2253 2254 static void 2255 ath_fatal_proc(void *arg, int pending) 2256 { 2257 struct ath_softc *sc = arg; 2258 u_int32_t *state; 2259 u_int32_t len; 2260 void *sp; 2261 2262 if (sc->sc_invalid) 2263 return; 2264 2265 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2266 /* 2267 * Fatal errors are unrecoverable. Typically these 2268 * are caused by DMA errors. Collect h/w state from 2269 * the hal so we can diagnose what's going on. 2270 */ 2271 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2272 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2273 state = sp; 2274 device_printf(sc->sc_dev, 2275 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2276 state[1] , state[2], state[3], state[4], state[5]); 2277 } 2278 ath_reset(sc, ATH_RESET_NOLOSS); 2279 } 2280 2281 static void 2282 ath_bmiss_vap(struct ieee80211vap *vap) 2283 { 2284 struct ath_softc *sc = vap->iv_ic->ic_softc; 2285 2286 /* 2287 * Workaround phantom bmiss interrupts by sanity-checking 2288 * the time of our last rx'd frame. If it is within the 2289 * beacon miss interval then ignore the interrupt. If it's 2290 * truly a bmiss we'll get another interrupt soon and that'll 2291 * be dispatched up for processing. Note this applies only 2292 * for h/w beacon miss events. 2293 */ 2294 2295 /* 2296 * XXX TODO: Just read the TSF during the interrupt path; 2297 * that way we don't have to wake up again just to read it 2298 * again. 2299 */ 2300 ATH_LOCK(sc); 2301 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2302 ATH_UNLOCK(sc); 2303 2304 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2305 u_int64_t lastrx = sc->sc_lastrx; 2306 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2307 /* XXX should take a locked ref to iv_bss */ 2308 u_int bmisstimeout = 2309 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2310 2311 DPRINTF(sc, ATH_DEBUG_BEACON, 2312 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2313 __func__, (unsigned long long) tsf, 2314 (unsigned long long)(tsf - lastrx), 2315 (unsigned long long) lastrx, bmisstimeout); 2316 2317 if (tsf - lastrx <= bmisstimeout) { 2318 sc->sc_stats.ast_bmiss_phantom++; 2319 2320 ATH_LOCK(sc); 2321 ath_power_restore_power_state(sc); 2322 ATH_UNLOCK(sc); 2323 2324 return; 2325 } 2326 } 2327 2328 /* 2329 * There's no need to keep the hardware awake during the call 2330 * to av_bmiss(). 2331 */ 2332 ATH_LOCK(sc); 2333 ath_power_restore_power_state(sc); 2334 ATH_UNLOCK(sc); 2335 2336 /* 2337 * Attempt to force a beacon resync. 2338 */ 2339 sc->sc_syncbeacon = 1; 2340 2341 ATH_VAP(vap)->av_bmiss(vap); 2342 } 2343 2344 /* XXX this needs a force wakeup! */ 2345 int 2346 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2347 { 2348 uint32_t rsize; 2349 void *sp; 2350 2351 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2352 return 0; 2353 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2354 *hangs = *(uint32_t *)sp; 2355 return 1; 2356 } 2357 2358 static void 2359 ath_bmiss_proc(void *arg, int pending) 2360 { 2361 struct ath_softc *sc = arg; 2362 uint32_t hangs; 2363 2364 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2365 2366 ATH_LOCK(sc); 2367 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2368 ATH_UNLOCK(sc); 2369 2370 ath_beacon_miss(sc); 2371 2372 /* 2373 * Do a reset upon any becaon miss event. 2374 * 2375 * It may be a non-recognised RX clear hang which needs a reset 2376 * to clear. 2377 */ 2378 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2379 ath_reset(sc, ATH_RESET_NOLOSS); 2380 device_printf(sc->sc_dev, 2381 "bb hang detected (0x%x), resetting\n", hangs); 2382 } else { 2383 ath_reset(sc, ATH_RESET_NOLOSS); 2384 ieee80211_beacon_miss(&sc->sc_ic); 2385 } 2386 2387 /* Force a beacon resync, in case they've drifted */ 2388 sc->sc_syncbeacon = 1; 2389 2390 ATH_LOCK(sc); 2391 ath_power_restore_power_state(sc); 2392 ATH_UNLOCK(sc); 2393 } 2394 2395 /* 2396 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2397 * calcs together with WME. If necessary disable the crypto 2398 * hardware and mark the 802.11 state so keys will be setup 2399 * with the MIC work done in software. 2400 */ 2401 static void 2402 ath_settkipmic(struct ath_softc *sc) 2403 { 2404 struct ieee80211com *ic = &sc->sc_ic; 2405 2406 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2407 if (ic->ic_flags & IEEE80211_F_WME) { 2408 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2409 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2410 } else { 2411 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2412 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2413 } 2414 } 2415 } 2416 2417 static int 2418 ath_init(struct ath_softc *sc) 2419 { 2420 struct ieee80211com *ic = &sc->sc_ic; 2421 struct ath_hal *ah = sc->sc_ah; 2422 HAL_STATUS status; 2423 2424 ATH_LOCK_ASSERT(sc); 2425 2426 /* 2427 * Force the sleep state awake. 2428 */ 2429 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2430 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2431 ath_power_setpower(sc, HAL_PM_AWAKE); 2432 2433 /* 2434 * Stop anything previously setup. This is safe 2435 * whether this is the first time through or not. 2436 */ 2437 ath_stop(sc); 2438 2439 /* 2440 * The basic interface to setting the hardware in a good 2441 * state is ``reset''. On return the hardware is known to 2442 * be powered up and with interrupts disabled. This must 2443 * be followed by initialization of the appropriate bits 2444 * and then setup of the interrupt mask. 2445 */ 2446 ath_settkipmic(sc); 2447 ath_update_chainmasks(sc, ic->ic_curchan); 2448 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2449 sc->sc_cur_rxchainmask); 2450 2451 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2452 HAL_RESET_NORMAL, &status)) { 2453 device_printf(sc->sc_dev, 2454 "unable to reset hardware; hal status %u\n", status); 2455 return (ENODEV); 2456 } 2457 2458 ATH_RX_LOCK(sc); 2459 sc->sc_rx_stopped = 1; 2460 sc->sc_rx_resetted = 1; 2461 ATH_RX_UNLOCK(sc); 2462 2463 ath_chan_change(sc, ic->ic_curchan); 2464 2465 /* Let DFS at it in case it's a DFS channel */ 2466 ath_dfs_radar_enable(sc, ic->ic_curchan); 2467 2468 /* Let spectral at in case spectral is enabled */ 2469 ath_spectral_enable(sc, ic->ic_curchan); 2470 2471 /* 2472 * Let bluetooth coexistence at in case it's needed for this channel 2473 */ 2474 ath_btcoex_enable(sc, ic->ic_curchan); 2475 2476 /* 2477 * If we're doing TDMA, enforce the TXOP limitation for chips that 2478 * support it. 2479 */ 2480 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2481 ath_hal_setenforcetxop(sc->sc_ah, 1); 2482 else 2483 ath_hal_setenforcetxop(sc->sc_ah, 0); 2484 2485 /* 2486 * Likewise this is set during reset so update 2487 * state cached in the driver. 2488 */ 2489 sc->sc_diversity = ath_hal_getdiversity(ah); 2490 sc->sc_lastlongcal = ticks; 2491 sc->sc_resetcal = 1; 2492 sc->sc_lastcalreset = 0; 2493 sc->sc_lastani = ticks; 2494 sc->sc_lastshortcal = ticks; 2495 sc->sc_doresetcal = AH_FALSE; 2496 /* 2497 * Beacon timers were cleared here; give ath_newstate() 2498 * a hint that the beacon timers should be poked when 2499 * things transition to the RUN state. 2500 */ 2501 sc->sc_beacons = 0; 2502 2503 /* 2504 * Setup the hardware after reset: the key cache 2505 * is filled as needed and the receive engine is 2506 * set going. Frame transmit is handled entirely 2507 * in the frame output path; there's nothing to do 2508 * here except setup the interrupt mask. 2509 */ 2510 if (ath_startrecv(sc) != 0) { 2511 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2512 ath_power_restore_power_state(sc); 2513 return (ENODEV); 2514 } 2515 2516 /* 2517 * Enable interrupts. 2518 */ 2519 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2520 | HAL_INT_RXORN | HAL_INT_TXURN 2521 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2522 2523 /* 2524 * Enable RX EDMA bits. Note these overlap with 2525 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2526 */ 2527 if (sc->sc_isedma) 2528 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2529 2530 /* 2531 * If we're an EDMA NIC, we don't care about RXEOL. 2532 * Writing a new descriptor in will simply restart 2533 * RX DMA. 2534 */ 2535 if (! sc->sc_isedma) 2536 sc->sc_imask |= HAL_INT_RXEOL; 2537 2538 /* 2539 * Enable MIB interrupts when there are hardware phy counters. 2540 * Note we only do this (at the moment) for station mode. 2541 */ 2542 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2543 sc->sc_imask |= HAL_INT_MIB; 2544 2545 /* 2546 * XXX add capability for this. 2547 * 2548 * If we're in STA mode (and maybe IBSS?) then register for 2549 * TSFOOR interrupts. 2550 */ 2551 if (ic->ic_opmode == IEEE80211_M_STA) 2552 sc->sc_imask |= HAL_INT_TSFOOR; 2553 2554 /* Enable global TX timeout and carrier sense timeout if available */ 2555 if (ath_hal_gtxto_supported(ah)) 2556 sc->sc_imask |= HAL_INT_GTT; 2557 2558 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2559 __func__, sc->sc_imask); 2560 2561 sc->sc_running = 1; 2562 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2563 ath_hal_intrset(ah, sc->sc_imask); 2564 2565 ath_power_restore_power_state(sc); 2566 2567 return (0); 2568 } 2569 2570 static void 2571 ath_stop(struct ath_softc *sc) 2572 { 2573 struct ath_hal *ah = sc->sc_ah; 2574 2575 ATH_LOCK_ASSERT(sc); 2576 2577 /* 2578 * Wake the hardware up before fiddling with it. 2579 */ 2580 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2581 2582 if (sc->sc_running) { 2583 /* 2584 * Shutdown the hardware and driver: 2585 * reset 802.11 state machine 2586 * turn off timers 2587 * disable interrupts 2588 * turn off the radio 2589 * clear transmit machinery 2590 * clear receive machinery 2591 * drain and release tx queues 2592 * reclaim beacon resources 2593 * power down hardware 2594 * 2595 * Note that some of this work is not possible if the 2596 * hardware is gone (invalid). 2597 */ 2598 #ifdef ATH_TX99_DIAG 2599 if (sc->sc_tx99 != NULL) 2600 sc->sc_tx99->stop(sc->sc_tx99); 2601 #endif 2602 callout_stop(&sc->sc_wd_ch); 2603 sc->sc_wd_timer = 0; 2604 sc->sc_running = 0; 2605 if (!sc->sc_invalid) { 2606 if (sc->sc_softled) { 2607 callout_stop(&sc->sc_ledtimer); 2608 ath_hal_gpioset(ah, sc->sc_ledpin, 2609 !sc->sc_ledon); 2610 sc->sc_blinking = 0; 2611 } 2612 ath_hal_intrset(ah, 0); 2613 } 2614 /* XXX we should stop RX regardless of whether it's valid */ 2615 if (!sc->sc_invalid) { 2616 ath_stoprecv(sc, 1); 2617 ath_hal_phydisable(ah); 2618 } else 2619 sc->sc_rxlink = NULL; 2620 ath_draintxq(sc, ATH_RESET_DEFAULT); 2621 ath_beacon_free(sc); /* XXX not needed */ 2622 } 2623 2624 /* And now, restore the current power state */ 2625 ath_power_restore_power_state(sc); 2626 } 2627 2628 /* 2629 * Wait until all pending TX/RX has completed. 2630 * 2631 * This waits until all existing transmit, receive and interrupts 2632 * have completed. It's assumed that the caller has first 2633 * grabbed the reset lock so it doesn't try to do overlapping 2634 * chip resets. 2635 */ 2636 #define MAX_TXRX_ITERATIONS 100 2637 static void 2638 ath_txrx_stop_locked(struct ath_softc *sc) 2639 { 2640 int i = MAX_TXRX_ITERATIONS; 2641 2642 ATH_UNLOCK_ASSERT(sc); 2643 ATH_PCU_LOCK_ASSERT(sc); 2644 2645 /* 2646 * Sleep until all the pending operations have completed. 2647 * 2648 * The caller must ensure that reset has been incremented 2649 * or the pending operations may continue being queued. 2650 */ 2651 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2652 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2653 if (i <= 0) 2654 break; 2655 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2656 msecs_to_ticks(10)); 2657 i--; 2658 } 2659 2660 if (i <= 0) 2661 device_printf(sc->sc_dev, 2662 "%s: didn't finish after %d iterations\n", 2663 __func__, MAX_TXRX_ITERATIONS); 2664 } 2665 #undef MAX_TXRX_ITERATIONS 2666 2667 #if 0 2668 static void 2669 ath_txrx_stop(struct ath_softc *sc) 2670 { 2671 ATH_UNLOCK_ASSERT(sc); 2672 ATH_PCU_UNLOCK_ASSERT(sc); 2673 2674 ATH_PCU_LOCK(sc); 2675 ath_txrx_stop_locked(sc); 2676 ATH_PCU_UNLOCK(sc); 2677 } 2678 #endif 2679 2680 static void 2681 ath_txrx_start(struct ath_softc *sc) 2682 { 2683 2684 taskqueue_unblock(sc->sc_tq); 2685 } 2686 2687 /* 2688 * Grab the reset lock, and wait around until noone else 2689 * is trying to do anything with it. 2690 * 2691 * This is totally horrible but we can't hold this lock for 2692 * long enough to do TX/RX or we end up with net80211/ip stack 2693 * LORs and eventual deadlock. 2694 * 2695 * "dowait" signals whether to spin, waiting for the reset 2696 * lock count to reach 0. This should (for now) only be used 2697 * during the reset path, as the rest of the code may not 2698 * be locking-reentrant enough to behave correctly. 2699 * 2700 * Another, cleaner way should be found to serialise all of 2701 * these operations. 2702 */ 2703 #define MAX_RESET_ITERATIONS 25 2704 static int 2705 ath_reset_grablock(struct ath_softc *sc, int dowait) 2706 { 2707 int w = 0; 2708 int i = MAX_RESET_ITERATIONS; 2709 2710 ATH_PCU_LOCK_ASSERT(sc); 2711 do { 2712 if (sc->sc_inreset_cnt == 0) { 2713 w = 1; 2714 break; 2715 } 2716 if (dowait == 0) { 2717 w = 0; 2718 break; 2719 } 2720 ATH_PCU_UNLOCK(sc); 2721 /* 2722 * 1 tick is likely not enough time for long calibrations 2723 * to complete. So we should wait quite a while. 2724 */ 2725 pause("ath_reset_grablock", msecs_to_ticks(100)); 2726 i--; 2727 ATH_PCU_LOCK(sc); 2728 } while (i > 0); 2729 2730 /* 2731 * We always increment the refcounter, regardless 2732 * of whether we succeeded to get it in an exclusive 2733 * way. 2734 */ 2735 sc->sc_inreset_cnt++; 2736 2737 if (i <= 0) 2738 device_printf(sc->sc_dev, 2739 "%s: didn't finish after %d iterations\n", 2740 __func__, MAX_RESET_ITERATIONS); 2741 2742 if (w == 0) 2743 device_printf(sc->sc_dev, 2744 "%s: warning, recursive reset path!\n", 2745 __func__); 2746 2747 return w; 2748 } 2749 #undef MAX_RESET_ITERATIONS 2750 2751 /* 2752 * Reset the hardware w/o losing operational state. This is 2753 * basically a more efficient way of doing ath_stop, ath_init, 2754 * followed by state transitions to the current 802.11 2755 * operational state. Used to recover from various errors and 2756 * to reset or reload hardware state. 2757 */ 2758 int 2759 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2760 { 2761 struct ieee80211com *ic = &sc->sc_ic; 2762 struct ath_hal *ah = sc->sc_ah; 2763 HAL_STATUS status; 2764 int i; 2765 2766 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2767 2768 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2769 ATH_PCU_UNLOCK_ASSERT(sc); 2770 ATH_UNLOCK_ASSERT(sc); 2771 2772 /* Try to (stop any further TX/RX from occuring */ 2773 taskqueue_block(sc->sc_tq); 2774 2775 /* 2776 * Wake the hardware up. 2777 */ 2778 ATH_LOCK(sc); 2779 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2780 ATH_UNLOCK(sc); 2781 2782 ATH_PCU_LOCK(sc); 2783 2784 /* 2785 * Grab the reset lock before TX/RX is stopped. 2786 * 2787 * This is needed to ensure that when the TX/RX actually does finish, 2788 * no further TX/RX/reset runs in parallel with this. 2789 */ 2790 if (ath_reset_grablock(sc, 1) == 0) { 2791 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2792 __func__); 2793 } 2794 2795 /* disable interrupts */ 2796 ath_hal_intrset(ah, 0); 2797 2798 /* 2799 * Now, ensure that any in progress TX/RX completes before we 2800 * continue. 2801 */ 2802 ath_txrx_stop_locked(sc); 2803 2804 ATH_PCU_UNLOCK(sc); 2805 2806 /* 2807 * Regardless of whether we're doing a no-loss flush or 2808 * not, stop the PCU and handle what's in the RX queue. 2809 * That way frames aren't dropped which shouldn't be. 2810 */ 2811 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2812 ath_rx_flush(sc); 2813 2814 /* 2815 * Should now wait for pending TX/RX to complete 2816 * and block future ones from occuring. This needs to be 2817 * done before the TX queue is drained. 2818 */ 2819 ath_draintxq(sc, reset_type); /* stop xmit side */ 2820 2821 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2822 /* NB: indicate channel change so we do a full reset */ 2823 ath_update_chainmasks(sc, ic->ic_curchan); 2824 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2825 sc->sc_cur_rxchainmask); 2826 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2827 HAL_RESET_NORMAL, &status)) 2828 device_printf(sc->sc_dev, 2829 "%s: unable to reset hardware; hal status %u\n", 2830 __func__, status); 2831 sc->sc_diversity = ath_hal_getdiversity(ah); 2832 2833 ATH_RX_LOCK(sc); 2834 sc->sc_rx_stopped = 1; 2835 sc->sc_rx_resetted = 1; 2836 ATH_RX_UNLOCK(sc); 2837 2838 /* Let DFS at it in case it's a DFS channel */ 2839 ath_dfs_radar_enable(sc, ic->ic_curchan); 2840 2841 /* Let spectral at in case spectral is enabled */ 2842 ath_spectral_enable(sc, ic->ic_curchan); 2843 2844 /* 2845 * Let bluetooth coexistence at in case it's needed for this channel 2846 */ 2847 ath_btcoex_enable(sc, ic->ic_curchan); 2848 2849 /* 2850 * If we're doing TDMA, enforce the TXOP limitation for chips that 2851 * support it. 2852 */ 2853 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2854 ath_hal_setenforcetxop(sc->sc_ah, 1); 2855 else 2856 ath_hal_setenforcetxop(sc->sc_ah, 0); 2857 2858 if (ath_startrecv(sc) != 0) /* restart recv */ 2859 device_printf(sc->sc_dev, 2860 "%s: unable to start recv logic\n", __func__); 2861 /* 2862 * We may be doing a reset in response to an ioctl 2863 * that changes the channel so update any state that 2864 * might change as a result. 2865 */ 2866 ath_chan_change(sc, ic->ic_curchan); 2867 if (sc->sc_beacons) { /* restart beacons */ 2868 #ifdef IEEE80211_SUPPORT_TDMA 2869 if (sc->sc_tdma) 2870 ath_tdma_config(sc, NULL); 2871 else 2872 #endif 2873 ath_beacon_config(sc, NULL); 2874 } 2875 2876 /* 2877 * Release the reset lock and re-enable interrupts here. 2878 * If an interrupt was being processed in ath_intr(), 2879 * it would disable interrupts at this point. So we have 2880 * to atomically enable interrupts and decrement the 2881 * reset counter - this way ath_intr() doesn't end up 2882 * disabling interrupts without a corresponding enable 2883 * in the rest or channel change path. 2884 * 2885 * Grab the TX reference in case we need to transmit. 2886 * That way a parallel transmit doesn't. 2887 */ 2888 ATH_PCU_LOCK(sc); 2889 sc->sc_inreset_cnt--; 2890 sc->sc_txstart_cnt++; 2891 /* XXX only do this if sc_inreset_cnt == 0? */ 2892 ath_hal_intrset(ah, sc->sc_imask); 2893 ATH_PCU_UNLOCK(sc); 2894 2895 /* 2896 * TX and RX can be started here. If it were started with 2897 * sc_inreset_cnt > 0, the TX and RX path would abort. 2898 * Thus if this is a nested call through the reset or 2899 * channel change code, TX completion will occur but 2900 * RX completion and ath_start / ath_tx_start will not 2901 * run. 2902 */ 2903 2904 /* Restart TX/RX as needed */ 2905 ath_txrx_start(sc); 2906 2907 /* XXX TODO: we need to hold the tx refcount here! */ 2908 2909 /* Restart TX completion and pending TX */ 2910 if (reset_type == ATH_RESET_NOLOSS) { 2911 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2912 if (ATH_TXQ_SETUP(sc, i)) { 2913 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2914 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2915 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2916 2917 ATH_TX_LOCK(sc); 2918 ath_txq_sched(sc, &sc->sc_txq[i]); 2919 ATH_TX_UNLOCK(sc); 2920 } 2921 } 2922 } 2923 2924 ATH_LOCK(sc); 2925 ath_power_restore_power_state(sc); 2926 ATH_UNLOCK(sc); 2927 2928 ATH_PCU_LOCK(sc); 2929 sc->sc_txstart_cnt--; 2930 ATH_PCU_UNLOCK(sc); 2931 2932 /* Handle any frames in the TX queue */ 2933 /* 2934 * XXX should this be done by the caller, rather than 2935 * ath_reset() ? 2936 */ 2937 ath_tx_kick(sc); /* restart xmit */ 2938 return 0; 2939 } 2940 2941 static int 2942 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2943 { 2944 struct ieee80211com *ic = vap->iv_ic; 2945 struct ath_softc *sc = ic->ic_softc; 2946 struct ath_hal *ah = sc->sc_ah; 2947 2948 switch (cmd) { 2949 case IEEE80211_IOC_TXPOWER: 2950 /* 2951 * If per-packet TPC is enabled, then we have nothing 2952 * to do; otherwise we need to force the global limit. 2953 * All this can happen directly; no need to reset. 2954 */ 2955 if (!ath_hal_gettpc(ah)) 2956 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2957 return 0; 2958 } 2959 /* XXX? Full or NOLOSS? */ 2960 return ath_reset(sc, ATH_RESET_FULL); 2961 } 2962 2963 struct ath_buf * 2964 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2965 { 2966 struct ath_buf *bf; 2967 2968 ATH_TXBUF_LOCK_ASSERT(sc); 2969 2970 if (btype == ATH_BUFTYPE_MGMT) 2971 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2972 else 2973 bf = TAILQ_FIRST(&sc->sc_txbuf); 2974 2975 if (bf == NULL) { 2976 sc->sc_stats.ast_tx_getnobuf++; 2977 } else { 2978 if (bf->bf_flags & ATH_BUF_BUSY) { 2979 sc->sc_stats.ast_tx_getbusybuf++; 2980 bf = NULL; 2981 } 2982 } 2983 2984 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2985 if (btype == ATH_BUFTYPE_MGMT) 2986 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2987 else { 2988 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2989 sc->sc_txbuf_cnt--; 2990 2991 /* 2992 * This shuldn't happen; however just to be 2993 * safe print a warning and fudge the txbuf 2994 * count. 2995 */ 2996 if (sc->sc_txbuf_cnt < 0) { 2997 device_printf(sc->sc_dev, 2998 "%s: sc_txbuf_cnt < 0?\n", 2999 __func__); 3000 sc->sc_txbuf_cnt = 0; 3001 } 3002 } 3003 } else 3004 bf = NULL; 3005 3006 if (bf == NULL) { 3007 /* XXX should check which list, mgmt or otherwise */ 3008 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3009 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3010 "out of xmit buffers" : "xmit buffer busy"); 3011 return NULL; 3012 } 3013 3014 /* XXX TODO: should do this at buffer list initialisation */ 3015 /* XXX (then, ensure the buffer has the right flag set) */ 3016 bf->bf_flags = 0; 3017 if (btype == ATH_BUFTYPE_MGMT) 3018 bf->bf_flags |= ATH_BUF_MGMT; 3019 else 3020 bf->bf_flags &= (~ATH_BUF_MGMT); 3021 3022 /* Valid bf here; clear some basic fields */ 3023 bf->bf_next = NULL; /* XXX just to be sure */ 3024 bf->bf_last = NULL; /* XXX again, just to be sure */ 3025 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3026 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3027 3028 /* 3029 * Track the descriptor ID only if doing EDMA 3030 */ 3031 if (sc->sc_isedma) { 3032 bf->bf_descid = sc->sc_txbuf_descid; 3033 sc->sc_txbuf_descid++; 3034 } 3035 3036 return bf; 3037 } 3038 3039 /* 3040 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3041 * can't be thrown back on the queue as they could still be 3042 * in use by the hardware. 3043 * 3044 * This duplicates the buffer, or returns NULL. 3045 * 3046 * The descriptor is also copied but the link pointers and 3047 * the DMA segments aren't copied; this frame should thus 3048 * be again passed through the descriptor setup/chain routines 3049 * so the link is correct. 3050 * 3051 * The caller must free the buffer using ath_freebuf(). 3052 */ 3053 struct ath_buf * 3054 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3055 { 3056 struct ath_buf *tbf; 3057 3058 tbf = ath_getbuf(sc, 3059 (bf->bf_flags & ATH_BUF_MGMT) ? 3060 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3061 if (tbf == NULL) 3062 return NULL; /* XXX failure? Why? */ 3063 3064 /* Copy basics */ 3065 tbf->bf_next = NULL; 3066 tbf->bf_nseg = bf->bf_nseg; 3067 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3068 tbf->bf_status = bf->bf_status; 3069 tbf->bf_m = bf->bf_m; 3070 tbf->bf_node = bf->bf_node; 3071 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3072 /* will be setup by the chain/setup function */ 3073 tbf->bf_lastds = NULL; 3074 /* for now, last == self */ 3075 tbf->bf_last = tbf; 3076 tbf->bf_comp = bf->bf_comp; 3077 3078 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3079 3080 /* The caller has to re-init the descriptor + links */ 3081 3082 /* 3083 * Free the DMA mapping here, before we NULL the mbuf. 3084 * We must only call bus_dmamap_unload() once per mbuf chain 3085 * or behaviour is undefined. 3086 */ 3087 if (bf->bf_m != NULL) { 3088 /* 3089 * XXX is this POSTWRITE call required? 3090 */ 3091 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3092 BUS_DMASYNC_POSTWRITE); 3093 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3094 } 3095 3096 bf->bf_m = NULL; 3097 bf->bf_node = NULL; 3098 3099 /* Copy state */ 3100 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3101 3102 return tbf; 3103 } 3104 3105 struct ath_buf * 3106 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3107 { 3108 struct ath_buf *bf; 3109 3110 ATH_TXBUF_LOCK(sc); 3111 bf = _ath_getbuf_locked(sc, btype); 3112 /* 3113 * If a mgmt buffer was requested but we're out of those, 3114 * try requesting a normal one. 3115 */ 3116 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3117 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3118 ATH_TXBUF_UNLOCK(sc); 3119 if (bf == NULL) { 3120 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3121 sc->sc_stats.ast_tx_qstop++; 3122 } 3123 return bf; 3124 } 3125 3126 /* 3127 * Transmit a single frame. 3128 * 3129 * net80211 will free the node reference if the transmit 3130 * fails, so don't free the node reference here. 3131 */ 3132 static int 3133 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3134 { 3135 struct ath_softc *sc = ic->ic_softc; 3136 struct ieee80211_node *ni; 3137 struct mbuf *next; 3138 struct ath_buf *bf; 3139 ath_bufhead frags; 3140 int retval = 0; 3141 3142 /* 3143 * Tell the reset path that we're currently transmitting. 3144 */ 3145 ATH_PCU_LOCK(sc); 3146 if (sc->sc_inreset_cnt > 0) { 3147 DPRINTF(sc, ATH_DEBUG_XMIT, 3148 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3149 ATH_PCU_UNLOCK(sc); 3150 sc->sc_stats.ast_tx_qstop++; 3151 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3152 return (ENOBUFS); /* XXX should be EINVAL or? */ 3153 } 3154 sc->sc_txstart_cnt++; 3155 ATH_PCU_UNLOCK(sc); 3156 3157 /* Wake the hardware up already */ 3158 ATH_LOCK(sc); 3159 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3160 ATH_UNLOCK(sc); 3161 3162 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3163 /* 3164 * Grab the TX lock - it's ok to do this here; we haven't 3165 * yet started transmitting. 3166 */ 3167 ATH_TX_LOCK(sc); 3168 3169 /* 3170 * Node reference, if there's one. 3171 */ 3172 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3173 3174 /* 3175 * Enforce how deep a node queue can get. 3176 * 3177 * XXX it would be nicer if we kept an mbuf queue per 3178 * node and only whacked them into ath_bufs when we 3179 * are ready to schedule some traffic from them. 3180 * .. that may come later. 3181 * 3182 * XXX we should also track the per-node hardware queue 3183 * depth so it is easy to limit the _SUM_ of the swq and 3184 * hwq frames. Since we only schedule two HWQ frames 3185 * at a time, this should be OK for now. 3186 */ 3187 if ((!(m->m_flags & M_EAPOL)) && 3188 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3189 sc->sc_stats.ast_tx_nodeq_overflow++; 3190 retval = ENOBUFS; 3191 goto finish; 3192 } 3193 3194 /* 3195 * Check how many TX buffers are available. 3196 * 3197 * If this is for non-EAPOL traffic, just leave some 3198 * space free in order for buffer cloning and raw 3199 * frame transmission to occur. 3200 * 3201 * If it's for EAPOL traffic, ignore this for now. 3202 * Management traffic will be sent via the raw transmit 3203 * method which bypasses this check. 3204 * 3205 * This is needed to ensure that EAPOL frames during 3206 * (re) keying have a chance to go out. 3207 * 3208 * See kern/138379 for more information. 3209 */ 3210 if ((!(m->m_flags & M_EAPOL)) && 3211 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3212 sc->sc_stats.ast_tx_nobuf++; 3213 retval = ENOBUFS; 3214 goto finish; 3215 } 3216 3217 /* 3218 * Grab a TX buffer and associated resources. 3219 * 3220 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3221 * That way even with temporary buffer exhaustion due to 3222 * the data path doesn't leave us without the ability 3223 * to transmit management frames. 3224 * 3225 * Otherwise allocate a normal buffer. 3226 */ 3227 if (m->m_flags & M_EAPOL) 3228 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3229 else 3230 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3231 3232 if (bf == NULL) { 3233 /* 3234 * If we failed to allocate a buffer, fail. 3235 * 3236 * We shouldn't fail normally, due to the check 3237 * above. 3238 */ 3239 sc->sc_stats.ast_tx_nobuf++; 3240 retval = ENOBUFS; 3241 goto finish; 3242 } 3243 3244 /* 3245 * At this point we have a buffer; so we need to free it 3246 * if we hit any error conditions. 3247 */ 3248 3249 /* 3250 * Check for fragmentation. If this frame 3251 * has been broken up verify we have enough 3252 * buffers to send all the fragments so all 3253 * go out or none... 3254 */ 3255 TAILQ_INIT(&frags); 3256 if ((m->m_flags & M_FRAG) && 3257 !ath_txfrag_setup(sc, &frags, m, ni)) { 3258 DPRINTF(sc, ATH_DEBUG_XMIT, 3259 "%s: out of txfrag buffers\n", __func__); 3260 sc->sc_stats.ast_tx_nofrag++; 3261 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3262 /* 3263 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3264 * we shouldn't free it but return back. 3265 */ 3266 ieee80211_free_mbuf(m); 3267 m = NULL; 3268 goto bad; 3269 } 3270 3271 /* 3272 * At this point if we have any TX fragments, then we will 3273 * have bumped the node reference once for each of those. 3274 */ 3275 3276 /* 3277 * XXX Is there anything actually _enforcing_ that the 3278 * fragments are being transmitted in one hit, rather than 3279 * being interleaved with other transmissions on that 3280 * hardware queue? 3281 * 3282 * The ATH TX output lock is the only thing serialising this 3283 * right now. 3284 */ 3285 3286 /* 3287 * Calculate the "next fragment" length field in ath_buf 3288 * in order to let the transmit path know enough about 3289 * what to next write to the hardware. 3290 */ 3291 if (m->m_flags & M_FRAG) { 3292 struct ath_buf *fbf = bf; 3293 struct ath_buf *n_fbf = NULL; 3294 struct mbuf *fm = m->m_nextpkt; 3295 3296 /* 3297 * We need to walk the list of fragments and set 3298 * the next size to the following buffer. 3299 * However, the first buffer isn't in the frag 3300 * list, so we have to do some gymnastics here. 3301 */ 3302 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3303 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3304 fbf = n_fbf; 3305 fm = fm->m_nextpkt; 3306 } 3307 } 3308 3309 nextfrag: 3310 /* 3311 * Pass the frame to the h/w for transmission. 3312 * Fragmented frames have each frag chained together 3313 * with m_nextpkt. We know there are sufficient ath_buf's 3314 * to send all the frags because of work done by 3315 * ath_txfrag_setup. We leave m_nextpkt set while 3316 * calling ath_tx_start so it can use it to extend the 3317 * the tx duration to cover the subsequent frag and 3318 * so it can reclaim all the mbufs in case of an error; 3319 * ath_tx_start clears m_nextpkt once it commits to 3320 * handing the frame to the hardware. 3321 * 3322 * Note: if this fails, then the mbufs are freed but 3323 * not the node reference. 3324 * 3325 * So, we now have to free the node reference ourselves here 3326 * and return OK up to the stack. 3327 */ 3328 next = m->m_nextpkt; 3329 if (ath_tx_start(sc, ni, bf, m)) { 3330 bad: 3331 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3332 reclaim: 3333 bf->bf_m = NULL; 3334 bf->bf_node = NULL; 3335 ATH_TXBUF_LOCK(sc); 3336 ath_returnbuf_head(sc, bf); 3337 /* 3338 * Free the rest of the node references and 3339 * buffers for the fragment list. 3340 */ 3341 ath_txfrag_cleanup(sc, &frags, ni); 3342 ATH_TXBUF_UNLOCK(sc); 3343 3344 /* 3345 * XXX: And free the node/return OK; ath_tx_start() may have 3346 * modified the buffer. We currently have no way to 3347 * signify that the mbuf was freed but there was an error. 3348 */ 3349 ieee80211_free_node(ni); 3350 retval = 0; 3351 goto finish; 3352 } 3353 3354 /* 3355 * Check here if the node is in power save state. 3356 */ 3357 ath_tx_update_tim(sc, ni, 1); 3358 3359 if (next != NULL) { 3360 /* 3361 * Beware of state changing between frags. 3362 * XXX check sta power-save state? 3363 */ 3364 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3365 DPRINTF(sc, ATH_DEBUG_XMIT, 3366 "%s: flush fragmented packet, state %s\n", 3367 __func__, 3368 ieee80211_state_name[ni->ni_vap->iv_state]); 3369 /* XXX dmamap */ 3370 ieee80211_free_mbuf(next); 3371 goto reclaim; 3372 } 3373 m = next; 3374 bf = TAILQ_FIRST(&frags); 3375 KASSERT(bf != NULL, ("no buf for txfrag")); 3376 TAILQ_REMOVE(&frags, bf, bf_list); 3377 goto nextfrag; 3378 } 3379 3380 /* 3381 * Bump watchdog timer. 3382 */ 3383 sc->sc_wd_timer = 5; 3384 3385 finish: 3386 ATH_TX_UNLOCK(sc); 3387 3388 /* 3389 * Finished transmitting! 3390 */ 3391 ATH_PCU_LOCK(sc); 3392 sc->sc_txstart_cnt--; 3393 ATH_PCU_UNLOCK(sc); 3394 3395 /* Sleep the hardware if required */ 3396 ATH_LOCK(sc); 3397 ath_power_restore_power_state(sc); 3398 ATH_UNLOCK(sc); 3399 3400 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3401 3402 return (retval); 3403 } 3404 3405 static int 3406 ath_media_change(struct ifnet *ifp) 3407 { 3408 int error = ieee80211_media_change(ifp); 3409 /* NB: only the fixed rate can change and that doesn't need a reset */ 3410 return (error == ENETRESET ? 0 : error); 3411 } 3412 3413 /* 3414 * Block/unblock tx+rx processing while a key change is done. 3415 * We assume the caller serializes key management operations 3416 * so we only need to worry about synchronization with other 3417 * uses that originate in the driver. 3418 */ 3419 static void 3420 ath_key_update_begin(struct ieee80211vap *vap) 3421 { 3422 struct ath_softc *sc = vap->iv_ic->ic_softc; 3423 3424 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3425 taskqueue_block(sc->sc_tq); 3426 } 3427 3428 static void 3429 ath_key_update_end(struct ieee80211vap *vap) 3430 { 3431 struct ath_softc *sc = vap->iv_ic->ic_softc; 3432 3433 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3434 taskqueue_unblock(sc->sc_tq); 3435 } 3436 3437 static void 3438 ath_update_promisc(struct ieee80211com *ic) 3439 { 3440 struct ath_softc *sc = ic->ic_softc; 3441 u_int32_t rfilt; 3442 3443 /* configure rx filter */ 3444 ATH_LOCK(sc); 3445 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3446 rfilt = ath_calcrxfilter(sc); 3447 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3448 ath_power_restore_power_state(sc); 3449 ATH_UNLOCK(sc); 3450 3451 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3452 } 3453 3454 /* 3455 * Driver-internal mcast update call. 3456 * 3457 * Assumes the hardware is already awake. 3458 */ 3459 static void 3460 ath_update_mcast_hw(struct ath_softc *sc) 3461 { 3462 struct ieee80211com *ic = &sc->sc_ic; 3463 u_int32_t mfilt[2]; 3464 3465 /* calculate and install multicast filter */ 3466 if (ic->ic_allmulti == 0) { 3467 struct ieee80211vap *vap; 3468 struct ifnet *ifp; 3469 struct ifmultiaddr *ifma; 3470 3471 /* 3472 * Merge multicast addresses to form the hardware filter. 3473 */ 3474 mfilt[0] = mfilt[1] = 0; 3475 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3476 ifp = vap->iv_ifp; 3477 if_maddr_rlock(ifp); 3478 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3479 caddr_t dl; 3480 uint32_t val; 3481 uint8_t pos; 3482 3483 /* calculate XOR of eight 6bit values */ 3484 dl = LLADDR((struct sockaddr_dl *) 3485 ifma->ifma_addr); 3486 val = LE_READ_4(dl + 0); 3487 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3488 val; 3489 val = LE_READ_4(dl + 3); 3490 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3491 val; 3492 pos &= 0x3f; 3493 mfilt[pos / 32] |= (1 << (pos % 32)); 3494 } 3495 if_maddr_runlock(ifp); 3496 } 3497 } else 3498 mfilt[0] = mfilt[1] = ~0; 3499 3500 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3501 3502 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3503 __func__, mfilt[0], mfilt[1]); 3504 } 3505 3506 /* 3507 * Called from the net80211 layer - force the hardware 3508 * awake before operating. 3509 */ 3510 static void 3511 ath_update_mcast(struct ieee80211com *ic) 3512 { 3513 struct ath_softc *sc = ic->ic_softc; 3514 3515 ATH_LOCK(sc); 3516 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3517 ATH_UNLOCK(sc); 3518 3519 ath_update_mcast_hw(sc); 3520 3521 ATH_LOCK(sc); 3522 ath_power_restore_power_state(sc); 3523 ATH_UNLOCK(sc); 3524 } 3525 3526 void 3527 ath_mode_init(struct ath_softc *sc) 3528 { 3529 struct ieee80211com *ic = &sc->sc_ic; 3530 struct ath_hal *ah = sc->sc_ah; 3531 u_int32_t rfilt; 3532 3533 /* configure rx filter */ 3534 rfilt = ath_calcrxfilter(sc); 3535 ath_hal_setrxfilter(ah, rfilt); 3536 3537 /* configure operational mode */ 3538 ath_hal_setopmode(ah); 3539 3540 /* handle any link-level address change */ 3541 ath_hal_setmac(ah, ic->ic_macaddr); 3542 3543 /* calculate and install multicast filter */ 3544 ath_update_mcast_hw(sc); 3545 } 3546 3547 /* 3548 * Set the slot time based on the current setting. 3549 */ 3550 void 3551 ath_setslottime(struct ath_softc *sc) 3552 { 3553 struct ieee80211com *ic = &sc->sc_ic; 3554 struct ath_hal *ah = sc->sc_ah; 3555 u_int usec; 3556 3557 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3558 usec = 13; 3559 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3560 usec = 21; 3561 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3562 /* honor short/long slot time only in 11g */ 3563 /* XXX shouldn't honor on pure g or turbo g channel */ 3564 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3565 usec = HAL_SLOT_TIME_9; 3566 else 3567 usec = HAL_SLOT_TIME_20; 3568 } else 3569 usec = HAL_SLOT_TIME_9; 3570 3571 DPRINTF(sc, ATH_DEBUG_RESET, 3572 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3573 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3574 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3575 3576 /* Wake up the hardware first before updating the slot time */ 3577 ATH_LOCK(sc); 3578 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3579 ath_hal_setslottime(ah, usec); 3580 ath_power_restore_power_state(sc); 3581 sc->sc_updateslot = OK; 3582 ATH_UNLOCK(sc); 3583 } 3584 3585 /* 3586 * Callback from the 802.11 layer to update the 3587 * slot time based on the current setting. 3588 */ 3589 static void 3590 ath_updateslot(struct ieee80211com *ic) 3591 { 3592 struct ath_softc *sc = ic->ic_softc; 3593 3594 /* 3595 * When not coordinating the BSS, change the hardware 3596 * immediately. For other operation we defer the change 3597 * until beacon updates have propagated to the stations. 3598 * 3599 * XXX sc_updateslot isn't changed behind a lock? 3600 */ 3601 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3602 ic->ic_opmode == IEEE80211_M_MBSS) 3603 sc->sc_updateslot = UPDATE; 3604 else 3605 ath_setslottime(sc); 3606 } 3607 3608 /* 3609 * Append the contents of src to dst; both queues 3610 * are assumed to be locked. 3611 */ 3612 void 3613 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3614 { 3615 3616 ATH_TXQ_LOCK_ASSERT(src); 3617 ATH_TXQ_LOCK_ASSERT(dst); 3618 3619 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3620 dst->axq_link = src->axq_link; 3621 src->axq_link = NULL; 3622 dst->axq_depth += src->axq_depth; 3623 dst->axq_aggr_depth += src->axq_aggr_depth; 3624 src->axq_depth = 0; 3625 src->axq_aggr_depth = 0; 3626 } 3627 3628 /* 3629 * Reset the hardware, with no loss. 3630 * 3631 * This can't be used for a general case reset. 3632 */ 3633 static void 3634 ath_reset_proc(void *arg, int pending) 3635 { 3636 struct ath_softc *sc = arg; 3637 3638 #if 0 3639 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3640 #endif 3641 ath_reset(sc, ATH_RESET_NOLOSS); 3642 } 3643 3644 /* 3645 * Reset the hardware after detecting beacons have stopped. 3646 */ 3647 static void 3648 ath_bstuck_proc(void *arg, int pending) 3649 { 3650 struct ath_softc *sc = arg; 3651 uint32_t hangs = 0; 3652 3653 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3654 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3655 3656 #ifdef ATH_DEBUG_ALQ 3657 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3658 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3659 #endif 3660 3661 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3662 sc->sc_bmisscount); 3663 sc->sc_stats.ast_bstuck++; 3664 /* 3665 * This assumes that there's no simultaneous channel mode change 3666 * occuring. 3667 */ 3668 ath_reset(sc, ATH_RESET_NOLOSS); 3669 } 3670 3671 static int 3672 ath_desc_alloc(struct ath_softc *sc) 3673 { 3674 int error; 3675 3676 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3677 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3678 if (error != 0) { 3679 return error; 3680 } 3681 sc->sc_txbuf_cnt = ath_txbuf; 3682 3683 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3684 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3685 ATH_TXDESC); 3686 if (error != 0) { 3687 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3688 return error; 3689 } 3690 3691 /* 3692 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3693 * flag doesn't have to be set in ath_getbuf_locked(). 3694 */ 3695 3696 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3697 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3698 if (error != 0) { 3699 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3700 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3701 &sc->sc_txbuf_mgmt); 3702 return error; 3703 } 3704 return 0; 3705 } 3706 3707 static void 3708 ath_desc_free(struct ath_softc *sc) 3709 { 3710 3711 if (sc->sc_bdma.dd_desc_len != 0) 3712 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3713 if (sc->sc_txdma.dd_desc_len != 0) 3714 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3715 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3716 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3717 &sc->sc_txbuf_mgmt); 3718 } 3719 3720 static struct ieee80211_node * 3721 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3722 { 3723 struct ieee80211com *ic = vap->iv_ic; 3724 struct ath_softc *sc = ic->ic_softc; 3725 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3726 struct ath_node *an; 3727 3728 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3729 if (an == NULL) { 3730 /* XXX stat+msg */ 3731 return NULL; 3732 } 3733 ath_rate_node_init(sc, an); 3734 3735 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3736 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3737 device_get_nameunit(sc->sc_dev), an); 3738 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3739 3740 /* XXX setup ath_tid */ 3741 ath_tx_tid_init(sc, an); 3742 3743 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3744 return &an->an_node; 3745 } 3746 3747 static void 3748 ath_node_cleanup(struct ieee80211_node *ni) 3749 { 3750 struct ieee80211com *ic = ni->ni_ic; 3751 struct ath_softc *sc = ic->ic_softc; 3752 3753 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3754 ni->ni_macaddr, ":", ATH_NODE(ni)); 3755 3756 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3757 ath_tx_node_flush(sc, ATH_NODE(ni)); 3758 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3759 sc->sc_node_cleanup(ni); 3760 } 3761 3762 static void 3763 ath_node_free(struct ieee80211_node *ni) 3764 { 3765 struct ieee80211com *ic = ni->ni_ic; 3766 struct ath_softc *sc = ic->ic_softc; 3767 3768 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3769 ni->ni_macaddr, ":", ATH_NODE(ni)); 3770 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3771 sc->sc_node_free(ni); 3772 } 3773 3774 static void 3775 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3776 { 3777 struct ieee80211com *ic = ni->ni_ic; 3778 struct ath_softc *sc = ic->ic_softc; 3779 struct ath_hal *ah = sc->sc_ah; 3780 3781 *rssi = ic->ic_node_getrssi(ni); 3782 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3783 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3784 else 3785 *noise = -95; /* nominally correct */ 3786 } 3787 3788 /* 3789 * Set the default antenna. 3790 */ 3791 void 3792 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3793 { 3794 struct ath_hal *ah = sc->sc_ah; 3795 3796 /* XXX block beacon interrupts */ 3797 ath_hal_setdefantenna(ah, antenna); 3798 if (sc->sc_defant != antenna) 3799 sc->sc_stats.ast_ant_defswitch++; 3800 sc->sc_defant = antenna; 3801 sc->sc_rxotherant = 0; 3802 } 3803 3804 static void 3805 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3806 { 3807 txq->axq_qnum = qnum; 3808 txq->axq_ac = 0; 3809 txq->axq_depth = 0; 3810 txq->axq_aggr_depth = 0; 3811 txq->axq_intrcnt = 0; 3812 txq->axq_link = NULL; 3813 txq->axq_softc = sc; 3814 TAILQ_INIT(&txq->axq_q); 3815 TAILQ_INIT(&txq->axq_tidq); 3816 TAILQ_INIT(&txq->fifo.axq_q); 3817 ATH_TXQ_LOCK_INIT(sc, txq); 3818 } 3819 3820 /* 3821 * Setup a h/w transmit queue. 3822 */ 3823 static struct ath_txq * 3824 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3825 { 3826 struct ath_hal *ah = sc->sc_ah; 3827 HAL_TXQ_INFO qi; 3828 int qnum; 3829 3830 memset(&qi, 0, sizeof(qi)); 3831 qi.tqi_subtype = subtype; 3832 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3833 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3834 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3835 /* 3836 * Enable interrupts only for EOL and DESC conditions. 3837 * We mark tx descriptors to receive a DESC interrupt 3838 * when a tx queue gets deep; otherwise waiting for the 3839 * EOL to reap descriptors. Note that this is done to 3840 * reduce interrupt load and this only defers reaping 3841 * descriptors, never transmitting frames. Aside from 3842 * reducing interrupts this also permits more concurrency. 3843 * The only potential downside is if the tx queue backs 3844 * up in which case the top half of the kernel may backup 3845 * due to a lack of tx descriptors. 3846 */ 3847 if (sc->sc_isedma) 3848 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3849 HAL_TXQ_TXOKINT_ENABLE; 3850 else 3851 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3852 HAL_TXQ_TXDESCINT_ENABLE; 3853 3854 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3855 if (qnum == -1) { 3856 /* 3857 * NB: don't print a message, this happens 3858 * normally on parts with too few tx queues 3859 */ 3860 return NULL; 3861 } 3862 if (qnum >= nitems(sc->sc_txq)) { 3863 device_printf(sc->sc_dev, 3864 "hal qnum %u out of range, max %zu!\n", 3865 qnum, nitems(sc->sc_txq)); 3866 ath_hal_releasetxqueue(ah, qnum); 3867 return NULL; 3868 } 3869 if (!ATH_TXQ_SETUP(sc, qnum)) { 3870 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3871 sc->sc_txqsetup |= 1<<qnum; 3872 } 3873 return &sc->sc_txq[qnum]; 3874 } 3875 3876 /* 3877 * Setup a hardware data transmit queue for the specified 3878 * access control. The hal may not support all requested 3879 * queues in which case it will return a reference to a 3880 * previously setup queue. We record the mapping from ac's 3881 * to h/w queues for use by ath_tx_start and also track 3882 * the set of h/w queues being used to optimize work in the 3883 * transmit interrupt handler and related routines. 3884 */ 3885 static int 3886 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3887 { 3888 struct ath_txq *txq; 3889 3890 if (ac >= nitems(sc->sc_ac2q)) { 3891 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3892 ac, nitems(sc->sc_ac2q)); 3893 return 0; 3894 } 3895 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3896 if (txq != NULL) { 3897 txq->axq_ac = ac; 3898 sc->sc_ac2q[ac] = txq; 3899 return 1; 3900 } else 3901 return 0; 3902 } 3903 3904 /* 3905 * Update WME parameters for a transmit queue. 3906 */ 3907 static int 3908 ath_txq_update(struct ath_softc *sc, int ac) 3909 { 3910 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3911 struct ieee80211com *ic = &sc->sc_ic; 3912 struct ath_txq *txq = sc->sc_ac2q[ac]; 3913 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3914 struct ath_hal *ah = sc->sc_ah; 3915 HAL_TXQ_INFO qi; 3916 3917 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3918 #ifdef IEEE80211_SUPPORT_TDMA 3919 if (sc->sc_tdma) { 3920 /* 3921 * AIFS is zero so there's no pre-transmit wait. The 3922 * burst time defines the slot duration and is configured 3923 * through net80211. The QCU is setup to not do post-xmit 3924 * back off, lockout all lower-priority QCU's, and fire 3925 * off the DMA beacon alert timer which is setup based 3926 * on the slot configuration. 3927 */ 3928 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3929 | HAL_TXQ_TXERRINT_ENABLE 3930 | HAL_TXQ_TXURNINT_ENABLE 3931 | HAL_TXQ_TXEOLINT_ENABLE 3932 | HAL_TXQ_DBA_GATED 3933 | HAL_TXQ_BACKOFF_DISABLE 3934 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3935 ; 3936 qi.tqi_aifs = 0; 3937 /* XXX +dbaprep? */ 3938 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3939 qi.tqi_burstTime = qi.tqi_readyTime; 3940 } else { 3941 #endif 3942 /* 3943 * XXX shouldn't this just use the default flags 3944 * used in the previous queue setup? 3945 */ 3946 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3947 | HAL_TXQ_TXERRINT_ENABLE 3948 | HAL_TXQ_TXDESCINT_ENABLE 3949 | HAL_TXQ_TXURNINT_ENABLE 3950 | HAL_TXQ_TXEOLINT_ENABLE 3951 ; 3952 qi.tqi_aifs = wmep->wmep_aifsn; 3953 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3954 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3955 qi.tqi_readyTime = 0; 3956 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 3957 #ifdef IEEE80211_SUPPORT_TDMA 3958 } 3959 #endif 3960 3961 DPRINTF(sc, ATH_DEBUG_RESET, 3962 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3963 __func__, txq->axq_qnum, qi.tqi_qflags, 3964 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3965 3966 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3967 device_printf(sc->sc_dev, "unable to update hardware queue " 3968 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 3969 return 0; 3970 } else { 3971 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3972 return 1; 3973 } 3974 #undef ATH_EXPONENT_TO_VALUE 3975 } 3976 3977 /* 3978 * Callback from the 802.11 layer to update WME parameters. 3979 */ 3980 int 3981 ath_wme_update(struct ieee80211com *ic) 3982 { 3983 struct ath_softc *sc = ic->ic_softc; 3984 3985 return !ath_txq_update(sc, WME_AC_BE) || 3986 !ath_txq_update(sc, WME_AC_BK) || 3987 !ath_txq_update(sc, WME_AC_VI) || 3988 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3989 } 3990 3991 /* 3992 * Reclaim resources for a setup queue. 3993 */ 3994 static void 3995 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3996 { 3997 3998 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3999 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4000 ATH_TXQ_LOCK_DESTROY(txq); 4001 } 4002 4003 /* 4004 * Reclaim all tx queue resources. 4005 */ 4006 static void 4007 ath_tx_cleanup(struct ath_softc *sc) 4008 { 4009 int i; 4010 4011 ATH_TXBUF_LOCK_DESTROY(sc); 4012 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4013 if (ATH_TXQ_SETUP(sc, i)) 4014 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4015 } 4016 4017 /* 4018 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4019 * using the current rates in sc_rixmap. 4020 */ 4021 int 4022 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4023 { 4024 int rix = sc->sc_rixmap[rate]; 4025 /* NB: return lowest rix for invalid rate */ 4026 return (rix == 0xff ? 0 : rix); 4027 } 4028 4029 static void 4030 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4031 struct ath_buf *bf) 4032 { 4033 struct ieee80211_node *ni = bf->bf_node; 4034 struct ieee80211com *ic = &sc->sc_ic; 4035 int sr, lr, pri; 4036 4037 if (ts->ts_status == 0) { 4038 u_int8_t txant = ts->ts_antenna; 4039 sc->sc_stats.ast_ant_tx[txant]++; 4040 sc->sc_ant_tx[txant]++; 4041 if (ts->ts_finaltsi != 0) 4042 sc->sc_stats.ast_tx_altrate++; 4043 pri = M_WME_GETAC(bf->bf_m); 4044 if (pri >= WME_AC_VO) 4045 ic->ic_wme.wme_hipri_traffic++; 4046 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4047 ni->ni_inact = ni->ni_inact_reload; 4048 } else { 4049 if (ts->ts_status & HAL_TXERR_XRETRY) 4050 sc->sc_stats.ast_tx_xretries++; 4051 if (ts->ts_status & HAL_TXERR_FIFO) 4052 sc->sc_stats.ast_tx_fifoerr++; 4053 if (ts->ts_status & HAL_TXERR_FILT) 4054 sc->sc_stats.ast_tx_filtered++; 4055 if (ts->ts_status & HAL_TXERR_XTXOP) 4056 sc->sc_stats.ast_tx_xtxop++; 4057 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4058 sc->sc_stats.ast_tx_timerexpired++; 4059 4060 if (bf->bf_m->m_flags & M_FF) 4061 sc->sc_stats.ast_ff_txerr++; 4062 } 4063 /* XXX when is this valid? */ 4064 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4065 sc->sc_stats.ast_tx_desccfgerr++; 4066 /* 4067 * This can be valid for successful frame transmission! 4068 * If there's a TX FIFO underrun during aggregate transmission, 4069 * the MAC will pad the rest of the aggregate with delimiters. 4070 * If a BA is returned, the frame is marked as "OK" and it's up 4071 * to the TX completion code to notice which frames weren't 4072 * successfully transmitted. 4073 */ 4074 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4075 sc->sc_stats.ast_tx_data_underrun++; 4076 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4077 sc->sc_stats.ast_tx_delim_underrun++; 4078 4079 sr = ts->ts_shortretry; 4080 lr = ts->ts_longretry; 4081 sc->sc_stats.ast_tx_shortretry += sr; 4082 sc->sc_stats.ast_tx_longretry += lr; 4083 4084 } 4085 4086 /* 4087 * The default completion. If fail is 1, this means 4088 * "please don't retry the frame, and just return -1 status 4089 * to the net80211 stack. 4090 */ 4091 void 4092 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4093 { 4094 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4095 int st; 4096 4097 if (fail == 1) 4098 st = -1; 4099 else 4100 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4101 ts->ts_status : HAL_TXERR_XRETRY; 4102 4103 #if 0 4104 if (bf->bf_state.bfs_dobaw) 4105 device_printf(sc->sc_dev, 4106 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4107 __func__, 4108 bf, 4109 SEQNO(bf->bf_state.bfs_seqno)); 4110 #endif 4111 if (bf->bf_next != NULL) 4112 device_printf(sc->sc_dev, 4113 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4114 __func__, 4115 bf, 4116 SEQNO(bf->bf_state.bfs_seqno)); 4117 4118 /* 4119 * Check if the node software queue is empty; if so 4120 * then clear the TIM. 4121 * 4122 * This needs to be done before the buffer is freed as 4123 * otherwise the node reference will have been released 4124 * and the node may not actually exist any longer. 4125 * 4126 * XXX I don't like this belonging here, but it's cleaner 4127 * to do it here right now then all the other places 4128 * where ath_tx_default_comp() is called. 4129 * 4130 * XXX TODO: during drain, ensure that the callback is 4131 * being called so we get a chance to update the TIM. 4132 */ 4133 if (bf->bf_node) { 4134 ATH_TX_LOCK(sc); 4135 ath_tx_update_tim(sc, bf->bf_node, 0); 4136 ATH_TX_UNLOCK(sc); 4137 } 4138 4139 /* 4140 * Do any tx complete callback. Note this must 4141 * be done before releasing the node reference. 4142 * This will free the mbuf, release the net80211 4143 * node and recycle the ath_buf. 4144 */ 4145 ath_tx_freebuf(sc, bf, st); 4146 } 4147 4148 /* 4149 * Update rate control with the given completion status. 4150 */ 4151 void 4152 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4153 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4154 int nframes, int nbad) 4155 { 4156 struct ath_node *an; 4157 4158 /* Only for unicast frames */ 4159 if (ni == NULL) 4160 return; 4161 4162 an = ATH_NODE(ni); 4163 ATH_NODE_UNLOCK_ASSERT(an); 4164 4165 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4166 ATH_NODE_LOCK(an); 4167 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4168 ATH_NODE_UNLOCK(an); 4169 } 4170 } 4171 4172 /* 4173 * Process the completion of the given buffer. 4174 * 4175 * This calls the rate control update and then the buffer completion. 4176 * This will either free the buffer or requeue it. In any case, the 4177 * bf pointer should be treated as invalid after this function is called. 4178 */ 4179 void 4180 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4181 struct ath_tx_status *ts, struct ath_buf *bf) 4182 { 4183 struct ieee80211_node *ni = bf->bf_node; 4184 4185 ATH_TX_UNLOCK_ASSERT(sc); 4186 ATH_TXQ_UNLOCK_ASSERT(txq); 4187 4188 /* If unicast frame, update general statistics */ 4189 if (ni != NULL) { 4190 /* update statistics */ 4191 ath_tx_update_stats(sc, ts, bf); 4192 } 4193 4194 /* 4195 * Call the completion handler. 4196 * The completion handler is responsible for 4197 * calling the rate control code. 4198 * 4199 * Frames with no completion handler get the 4200 * rate control code called here. 4201 */ 4202 if (bf->bf_comp == NULL) { 4203 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4204 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4205 /* 4206 * XXX assume this isn't an aggregate 4207 * frame. 4208 */ 4209 ath_tx_update_ratectrl(sc, ni, 4210 bf->bf_state.bfs_rc, ts, 4211 bf->bf_state.bfs_pktlen, 1, 4212 (ts->ts_status == 0 ? 0 : 1)); 4213 } 4214 ath_tx_default_comp(sc, bf, 0); 4215 } else 4216 bf->bf_comp(sc, bf, 0); 4217 } 4218 4219 4220 4221 /* 4222 * Process completed xmit descriptors from the specified queue. 4223 * Kick the packet scheduler if needed. This can occur from this 4224 * particular task. 4225 */ 4226 static int 4227 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4228 { 4229 struct ath_hal *ah = sc->sc_ah; 4230 struct ath_buf *bf; 4231 struct ath_desc *ds; 4232 struct ath_tx_status *ts; 4233 struct ieee80211_node *ni; 4234 #ifdef IEEE80211_SUPPORT_SUPERG 4235 struct ieee80211com *ic = &sc->sc_ic; 4236 #endif /* IEEE80211_SUPPORT_SUPERG */ 4237 int nacked; 4238 HAL_STATUS status; 4239 4240 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4241 __func__, txq->axq_qnum, 4242 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4243 txq->axq_link); 4244 4245 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4246 "ath_tx_processq: txq=%u head %p link %p depth %p", 4247 txq->axq_qnum, 4248 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4249 txq->axq_link, 4250 txq->axq_depth); 4251 4252 nacked = 0; 4253 for (;;) { 4254 ATH_TXQ_LOCK(txq); 4255 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4256 bf = TAILQ_FIRST(&txq->axq_q); 4257 if (bf == NULL) { 4258 ATH_TXQ_UNLOCK(txq); 4259 break; 4260 } 4261 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4262 ts = &bf->bf_status.ds_txstat; 4263 4264 status = ath_hal_txprocdesc(ah, ds, ts); 4265 #ifdef ATH_DEBUG 4266 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4267 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4268 status == HAL_OK); 4269 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4270 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4271 status == HAL_OK); 4272 #endif 4273 #ifdef ATH_DEBUG_ALQ 4274 if (if_ath_alq_checkdebug(&sc->sc_alq, 4275 ATH_ALQ_EDMA_TXSTATUS)) { 4276 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4277 sc->sc_tx_statuslen, 4278 (char *) ds); 4279 } 4280 #endif 4281 4282 if (status == HAL_EINPROGRESS) { 4283 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4284 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4285 txq->axq_qnum, bf, ds); 4286 ATH_TXQ_UNLOCK(txq); 4287 break; 4288 } 4289 ATH_TXQ_REMOVE(txq, bf, bf_list); 4290 4291 /* 4292 * Sanity check. 4293 */ 4294 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4295 device_printf(sc->sc_dev, 4296 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4297 __func__, 4298 txq->axq_qnum, 4299 bf, 4300 bf->bf_state.bfs_tx_queue); 4301 } 4302 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4303 device_printf(sc->sc_dev, 4304 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4305 __func__, 4306 txq->axq_qnum, 4307 bf->bf_last, 4308 bf->bf_last->bf_state.bfs_tx_queue); 4309 } 4310 4311 #if 0 4312 if (txq->axq_depth > 0) { 4313 /* 4314 * More frames follow. Mark the buffer busy 4315 * so it's not re-used while the hardware may 4316 * still re-read the link field in the descriptor. 4317 * 4318 * Use the last buffer in an aggregate as that 4319 * is where the hardware may be - intermediate 4320 * descriptors won't be "busy". 4321 */ 4322 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4323 } else 4324 txq->axq_link = NULL; 4325 #else 4326 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4327 #endif 4328 if (bf->bf_state.bfs_aggr) 4329 txq->axq_aggr_depth--; 4330 4331 ni = bf->bf_node; 4332 4333 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4334 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4335 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4336 /* 4337 * If unicast frame was ack'd update RSSI, 4338 * including the last rx time used to 4339 * workaround phantom bmiss interrupts. 4340 */ 4341 if (ni != NULL && ts->ts_status == 0 && 4342 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4343 nacked++; 4344 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4345 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4346 ts->ts_rssi); 4347 } 4348 ATH_TXQ_UNLOCK(txq); 4349 4350 /* 4351 * Update statistics and call completion 4352 */ 4353 ath_tx_process_buf_completion(sc, txq, ts, bf); 4354 4355 /* XXX at this point, bf and ni may be totally invalid */ 4356 } 4357 #ifdef IEEE80211_SUPPORT_SUPERG 4358 /* 4359 * Flush fast-frame staging queue when traffic slows. 4360 */ 4361 if (txq->axq_depth <= 1) 4362 ieee80211_ff_flush(ic, txq->axq_ac); 4363 #endif 4364 4365 /* Kick the software TXQ scheduler */ 4366 if (dosched) { 4367 ATH_TX_LOCK(sc); 4368 ath_txq_sched(sc, txq); 4369 ATH_TX_UNLOCK(sc); 4370 } 4371 4372 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4373 "ath_tx_processq: txq=%u: done", 4374 txq->axq_qnum); 4375 4376 return nacked; 4377 } 4378 4379 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4380 4381 /* 4382 * Deferred processing of transmit interrupt; special-cased 4383 * for a single hardware transmit queue (e.g. 5210 and 5211). 4384 */ 4385 static void 4386 ath_tx_proc_q0(void *arg, int npending) 4387 { 4388 struct ath_softc *sc = arg; 4389 uint32_t txqs; 4390 4391 ATH_PCU_LOCK(sc); 4392 sc->sc_txproc_cnt++; 4393 txqs = sc->sc_txq_active; 4394 sc->sc_txq_active &= ~txqs; 4395 ATH_PCU_UNLOCK(sc); 4396 4397 ATH_LOCK(sc); 4398 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4399 ATH_UNLOCK(sc); 4400 4401 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4402 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4403 4404 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4405 /* XXX why is lastrx updated in tx code? */ 4406 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4407 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4408 ath_tx_processq(sc, sc->sc_cabq, 1); 4409 sc->sc_wd_timer = 0; 4410 4411 if (sc->sc_softled) 4412 ath_led_event(sc, sc->sc_txrix); 4413 4414 ATH_PCU_LOCK(sc); 4415 sc->sc_txproc_cnt--; 4416 ATH_PCU_UNLOCK(sc); 4417 4418 ATH_LOCK(sc); 4419 ath_power_restore_power_state(sc); 4420 ATH_UNLOCK(sc); 4421 4422 ath_tx_kick(sc); 4423 } 4424 4425 /* 4426 * Deferred processing of transmit interrupt; special-cased 4427 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4428 */ 4429 static void 4430 ath_tx_proc_q0123(void *arg, int npending) 4431 { 4432 struct ath_softc *sc = arg; 4433 int nacked; 4434 uint32_t txqs; 4435 4436 ATH_PCU_LOCK(sc); 4437 sc->sc_txproc_cnt++; 4438 txqs = sc->sc_txq_active; 4439 sc->sc_txq_active &= ~txqs; 4440 ATH_PCU_UNLOCK(sc); 4441 4442 ATH_LOCK(sc); 4443 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4444 ATH_UNLOCK(sc); 4445 4446 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4447 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4448 4449 /* 4450 * Process each active queue. 4451 */ 4452 nacked = 0; 4453 if (TXQACTIVE(txqs, 0)) 4454 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4455 if (TXQACTIVE(txqs, 1)) 4456 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4457 if (TXQACTIVE(txqs, 2)) 4458 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4459 if (TXQACTIVE(txqs, 3)) 4460 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4461 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4462 ath_tx_processq(sc, sc->sc_cabq, 1); 4463 if (nacked) 4464 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4465 4466 sc->sc_wd_timer = 0; 4467 4468 if (sc->sc_softled) 4469 ath_led_event(sc, sc->sc_txrix); 4470 4471 ATH_PCU_LOCK(sc); 4472 sc->sc_txproc_cnt--; 4473 ATH_PCU_UNLOCK(sc); 4474 4475 ATH_LOCK(sc); 4476 ath_power_restore_power_state(sc); 4477 ATH_UNLOCK(sc); 4478 4479 ath_tx_kick(sc); 4480 } 4481 4482 /* 4483 * Deferred processing of transmit interrupt. 4484 */ 4485 static void 4486 ath_tx_proc(void *arg, int npending) 4487 { 4488 struct ath_softc *sc = arg; 4489 int i, nacked; 4490 uint32_t txqs; 4491 4492 ATH_PCU_LOCK(sc); 4493 sc->sc_txproc_cnt++; 4494 txqs = sc->sc_txq_active; 4495 sc->sc_txq_active &= ~txqs; 4496 ATH_PCU_UNLOCK(sc); 4497 4498 ATH_LOCK(sc); 4499 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4500 ATH_UNLOCK(sc); 4501 4502 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4503 4504 /* 4505 * Process each active queue. 4506 */ 4507 nacked = 0; 4508 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4509 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4510 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4511 if (nacked) 4512 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4513 4514 sc->sc_wd_timer = 0; 4515 4516 if (sc->sc_softled) 4517 ath_led_event(sc, sc->sc_txrix); 4518 4519 ATH_PCU_LOCK(sc); 4520 sc->sc_txproc_cnt--; 4521 ATH_PCU_UNLOCK(sc); 4522 4523 ATH_LOCK(sc); 4524 ath_power_restore_power_state(sc); 4525 ATH_UNLOCK(sc); 4526 4527 ath_tx_kick(sc); 4528 } 4529 #undef TXQACTIVE 4530 4531 /* 4532 * Deferred processing of TXQ rescheduling. 4533 */ 4534 static void 4535 ath_txq_sched_tasklet(void *arg, int npending) 4536 { 4537 struct ath_softc *sc = arg; 4538 int i; 4539 4540 /* XXX is skipping ok? */ 4541 ATH_PCU_LOCK(sc); 4542 #if 0 4543 if (sc->sc_inreset_cnt > 0) { 4544 device_printf(sc->sc_dev, 4545 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4546 ATH_PCU_UNLOCK(sc); 4547 return; 4548 } 4549 #endif 4550 sc->sc_txproc_cnt++; 4551 ATH_PCU_UNLOCK(sc); 4552 4553 ATH_LOCK(sc); 4554 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4555 ATH_UNLOCK(sc); 4556 4557 ATH_TX_LOCK(sc); 4558 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4559 if (ATH_TXQ_SETUP(sc, i)) { 4560 ath_txq_sched(sc, &sc->sc_txq[i]); 4561 } 4562 } 4563 ATH_TX_UNLOCK(sc); 4564 4565 ATH_LOCK(sc); 4566 ath_power_restore_power_state(sc); 4567 ATH_UNLOCK(sc); 4568 4569 ATH_PCU_LOCK(sc); 4570 sc->sc_txproc_cnt--; 4571 ATH_PCU_UNLOCK(sc); 4572 } 4573 4574 void 4575 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4576 { 4577 4578 ATH_TXBUF_LOCK_ASSERT(sc); 4579 4580 if (bf->bf_flags & ATH_BUF_MGMT) 4581 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4582 else { 4583 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4584 sc->sc_txbuf_cnt++; 4585 if (sc->sc_txbuf_cnt > ath_txbuf) { 4586 device_printf(sc->sc_dev, 4587 "%s: sc_txbuf_cnt > %d?\n", 4588 __func__, 4589 ath_txbuf); 4590 sc->sc_txbuf_cnt = ath_txbuf; 4591 } 4592 } 4593 } 4594 4595 void 4596 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4597 { 4598 4599 ATH_TXBUF_LOCK_ASSERT(sc); 4600 4601 if (bf->bf_flags & ATH_BUF_MGMT) 4602 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4603 else { 4604 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4605 sc->sc_txbuf_cnt++; 4606 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4607 device_printf(sc->sc_dev, 4608 "%s: sc_txbuf_cnt > %d?\n", 4609 __func__, 4610 ATH_TXBUF); 4611 sc->sc_txbuf_cnt = ATH_TXBUF; 4612 } 4613 } 4614 } 4615 4616 /* 4617 * Free the holding buffer if it exists 4618 */ 4619 void 4620 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4621 { 4622 ATH_TXBUF_UNLOCK_ASSERT(sc); 4623 ATH_TXQ_LOCK_ASSERT(txq); 4624 4625 if (txq->axq_holdingbf == NULL) 4626 return; 4627 4628 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4629 4630 ATH_TXBUF_LOCK(sc); 4631 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4632 ATH_TXBUF_UNLOCK(sc); 4633 4634 txq->axq_holdingbf = NULL; 4635 } 4636 4637 /* 4638 * Add this buffer to the holding queue, freeing the previous 4639 * one if it exists. 4640 */ 4641 static void 4642 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4643 { 4644 struct ath_txq *txq; 4645 4646 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4647 4648 ATH_TXBUF_UNLOCK_ASSERT(sc); 4649 ATH_TXQ_LOCK_ASSERT(txq); 4650 4651 /* XXX assert ATH_BUF_BUSY is set */ 4652 4653 /* XXX assert the tx queue is under the max number */ 4654 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4655 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4656 __func__, 4657 bf, 4658 bf->bf_state.bfs_tx_queue); 4659 bf->bf_flags &= ~ATH_BUF_BUSY; 4660 ath_returnbuf_tail(sc, bf); 4661 return; 4662 } 4663 ath_txq_freeholdingbuf(sc, txq); 4664 txq->axq_holdingbf = bf; 4665 } 4666 4667 /* 4668 * Return a buffer to the pool and update the 'busy' flag on the 4669 * previous 'tail' entry. 4670 * 4671 * This _must_ only be called when the buffer is involved in a completed 4672 * TX. The logic is that if it was part of an active TX, the previous 4673 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4674 * for restart (eg for TDMA.) 4675 * 4676 * The caller must free the mbuf and recycle the node reference. 4677 * 4678 * XXX This method of handling busy / holding buffers is insanely stupid. 4679 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4680 * be much nicer if buffers in the processq() methods would instead be 4681 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4682 * exactly what hardware queue they came from in the first place. 4683 */ 4684 void 4685 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4686 { 4687 struct ath_txq *txq; 4688 4689 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4690 4691 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4692 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4693 4694 /* 4695 * If this buffer is busy, push it onto the holding queue. 4696 */ 4697 if (bf->bf_flags & ATH_BUF_BUSY) { 4698 ATH_TXQ_LOCK(txq); 4699 ath_txq_addholdingbuf(sc, bf); 4700 ATH_TXQ_UNLOCK(txq); 4701 return; 4702 } 4703 4704 /* 4705 * Not a busy buffer, so free normally 4706 */ 4707 ATH_TXBUF_LOCK(sc); 4708 ath_returnbuf_tail(sc, bf); 4709 ATH_TXBUF_UNLOCK(sc); 4710 } 4711 4712 /* 4713 * This is currently used by ath_tx_draintxq() and 4714 * ath_tx_tid_free_pkts(). 4715 * 4716 * It recycles a single ath_buf. 4717 */ 4718 void 4719 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4720 { 4721 struct ieee80211_node *ni = bf->bf_node; 4722 struct mbuf *m0 = bf->bf_m; 4723 4724 /* 4725 * Make sure that we only sync/unload if there's an mbuf. 4726 * If not (eg we cloned a buffer), the unload will have already 4727 * occured. 4728 */ 4729 if (bf->bf_m != NULL) { 4730 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4731 BUS_DMASYNC_POSTWRITE); 4732 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4733 } 4734 4735 bf->bf_node = NULL; 4736 bf->bf_m = NULL; 4737 4738 /* Free the buffer, it's not needed any longer */ 4739 ath_freebuf(sc, bf); 4740 4741 /* Pass the buffer back to net80211 - completing it */ 4742 ieee80211_tx_complete(ni, m0, status); 4743 } 4744 4745 static struct ath_buf * 4746 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4747 { 4748 struct ath_buf *bf; 4749 4750 ATH_TXQ_LOCK_ASSERT(txq); 4751 4752 /* 4753 * Drain the FIFO queue first, then if it's 4754 * empty, move to the normal frame queue. 4755 */ 4756 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4757 if (bf != NULL) { 4758 /* 4759 * Is it the last buffer in this set? 4760 * Decrement the FIFO counter. 4761 */ 4762 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4763 if (txq->axq_fifo_depth == 0) { 4764 device_printf(sc->sc_dev, 4765 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4766 __func__, 4767 txq->axq_qnum, 4768 txq->fifo.axq_depth); 4769 } else 4770 txq->axq_fifo_depth--; 4771 } 4772 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4773 return (bf); 4774 } 4775 4776 /* 4777 * Debugging! 4778 */ 4779 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4780 device_printf(sc->sc_dev, 4781 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4782 __func__, 4783 txq->axq_qnum, 4784 txq->axq_fifo_depth, 4785 txq->fifo.axq_depth); 4786 } 4787 4788 /* 4789 * Now drain the pending queue. 4790 */ 4791 bf = TAILQ_FIRST(&txq->axq_q); 4792 if (bf == NULL) { 4793 txq->axq_link = NULL; 4794 return (NULL); 4795 } 4796 ATH_TXQ_REMOVE(txq, bf, bf_list); 4797 return (bf); 4798 } 4799 4800 void 4801 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4802 { 4803 #ifdef ATH_DEBUG 4804 struct ath_hal *ah = sc->sc_ah; 4805 #endif 4806 struct ath_buf *bf; 4807 u_int ix; 4808 4809 /* 4810 * NB: this assumes output has been stopped and 4811 * we do not need to block ath_tx_proc 4812 */ 4813 for (ix = 0;; ix++) { 4814 ATH_TXQ_LOCK(txq); 4815 bf = ath_tx_draintxq_get_one(sc, txq); 4816 if (bf == NULL) { 4817 ATH_TXQ_UNLOCK(txq); 4818 break; 4819 } 4820 if (bf->bf_state.bfs_aggr) 4821 txq->axq_aggr_depth--; 4822 #ifdef ATH_DEBUG 4823 if (sc->sc_debug & ATH_DEBUG_RESET) { 4824 struct ieee80211com *ic = &sc->sc_ic; 4825 int status = 0; 4826 4827 /* 4828 * EDMA operation has a TX completion FIFO 4829 * separate from the TX descriptor, so this 4830 * method of checking the "completion" status 4831 * is wrong. 4832 */ 4833 if (! sc->sc_isedma) { 4834 status = (ath_hal_txprocdesc(ah, 4835 bf->bf_lastds, 4836 &bf->bf_status.ds_txstat) == HAL_OK); 4837 } 4838 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4839 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4840 bf->bf_m->m_len, 0, -1); 4841 } 4842 #endif /* ATH_DEBUG */ 4843 /* 4844 * Since we're now doing magic in the completion 4845 * functions, we -must- call it for aggregation 4846 * destinations or BAW tracking will get upset. 4847 */ 4848 /* 4849 * Clear ATH_BUF_BUSY; the completion handler 4850 * will free the buffer. 4851 */ 4852 ATH_TXQ_UNLOCK(txq); 4853 bf->bf_flags &= ~ATH_BUF_BUSY; 4854 if (bf->bf_comp) 4855 bf->bf_comp(sc, bf, 1); 4856 else 4857 ath_tx_default_comp(sc, bf, 1); 4858 } 4859 4860 /* 4861 * Free the holding buffer if it exists 4862 */ 4863 ATH_TXQ_LOCK(txq); 4864 ath_txq_freeholdingbuf(sc, txq); 4865 ATH_TXQ_UNLOCK(txq); 4866 4867 /* 4868 * Drain software queued frames which are on 4869 * active TIDs. 4870 */ 4871 ath_tx_txq_drain(sc, txq); 4872 } 4873 4874 static void 4875 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4876 { 4877 struct ath_hal *ah = sc->sc_ah; 4878 4879 ATH_TXQ_LOCK_ASSERT(txq); 4880 4881 DPRINTF(sc, ATH_DEBUG_RESET, 4882 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 4883 "link %p, holdingbf=%p\n", 4884 __func__, 4885 txq->axq_qnum, 4886 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4887 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 4888 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 4889 txq->axq_flags, 4890 txq->axq_link, 4891 txq->axq_holdingbf); 4892 4893 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4894 /* We've stopped TX DMA, so mark this as stopped. */ 4895 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 4896 4897 #ifdef ATH_DEBUG 4898 if ((sc->sc_debug & ATH_DEBUG_RESET) 4899 && (txq->axq_holdingbf != NULL)) { 4900 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 4901 } 4902 #endif 4903 } 4904 4905 int 4906 ath_stoptxdma(struct ath_softc *sc) 4907 { 4908 struct ath_hal *ah = sc->sc_ah; 4909 int i; 4910 4911 /* XXX return value */ 4912 if (sc->sc_invalid) 4913 return 0; 4914 4915 if (!sc->sc_invalid) { 4916 /* don't touch the hardware if marked invalid */ 4917 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4918 __func__, sc->sc_bhalq, 4919 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4920 NULL); 4921 4922 /* stop the beacon queue */ 4923 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4924 4925 /* Stop the data queues */ 4926 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4927 if (ATH_TXQ_SETUP(sc, i)) { 4928 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4929 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4930 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4931 } 4932 } 4933 } 4934 4935 return 1; 4936 } 4937 4938 #ifdef ATH_DEBUG 4939 void 4940 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 4941 { 4942 struct ath_hal *ah = sc->sc_ah; 4943 struct ath_buf *bf; 4944 int i = 0; 4945 4946 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 4947 return; 4948 4949 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 4950 __func__, txq->axq_qnum); 4951 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 4952 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 4953 ath_hal_txprocdesc(ah, bf->bf_lastds, 4954 &bf->bf_status.ds_txstat) == HAL_OK); 4955 i++; 4956 } 4957 device_printf(sc->sc_dev, "%s: Q%d: end\n", 4958 __func__, txq->axq_qnum); 4959 } 4960 #endif /* ATH_DEBUG */ 4961 4962 /* 4963 * Drain the transmit queues and reclaim resources. 4964 */ 4965 void 4966 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4967 { 4968 struct ath_hal *ah = sc->sc_ah; 4969 struct ath_buf *bf_last; 4970 int i; 4971 4972 (void) ath_stoptxdma(sc); 4973 4974 /* 4975 * Dump the queue contents 4976 */ 4977 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4978 /* 4979 * XXX TODO: should we just handle the completed TX frames 4980 * here, whether or not the reset is a full one or not? 4981 */ 4982 if (ATH_TXQ_SETUP(sc, i)) { 4983 #ifdef ATH_DEBUG 4984 if (sc->sc_debug & ATH_DEBUG_RESET) 4985 ath_tx_dump(sc, &sc->sc_txq[i]); 4986 #endif /* ATH_DEBUG */ 4987 if (reset_type == ATH_RESET_NOLOSS) { 4988 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4989 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4990 /* 4991 * Free the holding buffer; DMA is now 4992 * stopped. 4993 */ 4994 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 4995 /* 4996 * Setup the link pointer to be the 4997 * _last_ buffer/descriptor in the list. 4998 * If there's nothing in the list, set it 4999 * to NULL. 5000 */ 5001 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5002 axq_q_s); 5003 if (bf_last != NULL) { 5004 ath_hal_gettxdesclinkptr(ah, 5005 bf_last->bf_lastds, 5006 &sc->sc_txq[i].axq_link); 5007 } else { 5008 sc->sc_txq[i].axq_link = NULL; 5009 } 5010 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5011 } else 5012 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5013 } 5014 } 5015 #ifdef ATH_DEBUG 5016 if (sc->sc_debug & ATH_DEBUG_RESET) { 5017 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5018 if (bf != NULL && bf->bf_m != NULL) { 5019 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5020 ath_hal_txprocdesc(ah, bf->bf_lastds, 5021 &bf->bf_status.ds_txstat) == HAL_OK); 5022 ieee80211_dump_pkt(&sc->sc_ic, 5023 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5024 0, -1); 5025 } 5026 } 5027 #endif /* ATH_DEBUG */ 5028 sc->sc_wd_timer = 0; 5029 } 5030 5031 /* 5032 * Update internal state after a channel change. 5033 */ 5034 static void 5035 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5036 { 5037 enum ieee80211_phymode mode; 5038 5039 /* 5040 * Change channels and update the h/w rate map 5041 * if we're switching; e.g. 11a to 11b/g. 5042 */ 5043 mode = ieee80211_chan2mode(chan); 5044 if (mode != sc->sc_curmode) 5045 ath_setcurmode(sc, mode); 5046 sc->sc_curchan = chan; 5047 } 5048 5049 /* 5050 * Set/change channels. If the channel is really being changed, 5051 * it's done by resetting the chip. To accomplish this we must 5052 * first cleanup any pending DMA, then restart stuff after a la 5053 * ath_init. 5054 */ 5055 static int 5056 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5057 { 5058 struct ieee80211com *ic = &sc->sc_ic; 5059 struct ath_hal *ah = sc->sc_ah; 5060 int ret = 0; 5061 5062 /* Treat this as an interface reset */ 5063 ATH_PCU_UNLOCK_ASSERT(sc); 5064 ATH_UNLOCK_ASSERT(sc); 5065 5066 /* (Try to) stop TX/RX from occuring */ 5067 taskqueue_block(sc->sc_tq); 5068 5069 ATH_PCU_LOCK(sc); 5070 5071 /* Disable interrupts */ 5072 ath_hal_intrset(ah, 0); 5073 5074 /* Stop new RX/TX/interrupt completion */ 5075 if (ath_reset_grablock(sc, 1) == 0) { 5076 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5077 __func__); 5078 } 5079 5080 /* Stop pending RX/TX completion */ 5081 ath_txrx_stop_locked(sc); 5082 5083 ATH_PCU_UNLOCK(sc); 5084 5085 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5086 __func__, ieee80211_chan2ieee(ic, chan), 5087 chan->ic_freq, chan->ic_flags); 5088 if (chan != sc->sc_curchan) { 5089 HAL_STATUS status; 5090 /* 5091 * To switch channels clear any pending DMA operations; 5092 * wait long enough for the RX fifo to drain, reset the 5093 * hardware at the new frequency, and then re-enable 5094 * the relevant bits of the h/w. 5095 */ 5096 #if 0 5097 ath_hal_intrset(ah, 0); /* disable interrupts */ 5098 #endif 5099 ath_stoprecv(sc, 1); /* turn off frame recv */ 5100 /* 5101 * First, handle completed TX/RX frames. 5102 */ 5103 ath_rx_flush(sc); 5104 ath_draintxq(sc, ATH_RESET_NOLOSS); 5105 /* 5106 * Next, flush the non-scheduled frames. 5107 */ 5108 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5109 5110 ath_update_chainmasks(sc, chan); 5111 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5112 sc->sc_cur_rxchainmask); 5113 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5114 HAL_RESET_NORMAL, &status)) { 5115 device_printf(sc->sc_dev, "%s: unable to reset " 5116 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5117 __func__, ieee80211_chan2ieee(ic, chan), 5118 chan->ic_freq, chan->ic_flags, status); 5119 ret = EIO; 5120 goto finish; 5121 } 5122 sc->sc_diversity = ath_hal_getdiversity(ah); 5123 5124 ATH_RX_LOCK(sc); 5125 sc->sc_rx_stopped = 1; 5126 sc->sc_rx_resetted = 1; 5127 ATH_RX_UNLOCK(sc); 5128 5129 /* Let DFS at it in case it's a DFS channel */ 5130 ath_dfs_radar_enable(sc, chan); 5131 5132 /* Let spectral at in case spectral is enabled */ 5133 ath_spectral_enable(sc, chan); 5134 5135 /* 5136 * Let bluetooth coexistence at in case it's needed for this 5137 * channel 5138 */ 5139 ath_btcoex_enable(sc, ic->ic_curchan); 5140 5141 /* 5142 * If we're doing TDMA, enforce the TXOP limitation for chips 5143 * that support it. 5144 */ 5145 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5146 ath_hal_setenforcetxop(sc->sc_ah, 1); 5147 else 5148 ath_hal_setenforcetxop(sc->sc_ah, 0); 5149 5150 /* 5151 * Re-enable rx framework. 5152 */ 5153 if (ath_startrecv(sc) != 0) { 5154 device_printf(sc->sc_dev, 5155 "%s: unable to restart recv logic\n", __func__); 5156 ret = EIO; 5157 goto finish; 5158 } 5159 5160 /* 5161 * Change channels and update the h/w rate map 5162 * if we're switching; e.g. 11a to 11b/g. 5163 */ 5164 ath_chan_change(sc, chan); 5165 5166 /* 5167 * Reset clears the beacon timers; reset them 5168 * here if needed. 5169 */ 5170 if (sc->sc_beacons) { /* restart beacons */ 5171 #ifdef IEEE80211_SUPPORT_TDMA 5172 if (sc->sc_tdma) 5173 ath_tdma_config(sc, NULL); 5174 else 5175 #endif 5176 ath_beacon_config(sc, NULL); 5177 } 5178 5179 /* 5180 * Re-enable interrupts. 5181 */ 5182 #if 0 5183 ath_hal_intrset(ah, sc->sc_imask); 5184 #endif 5185 } 5186 5187 finish: 5188 ATH_PCU_LOCK(sc); 5189 sc->sc_inreset_cnt--; 5190 /* XXX only do this if sc_inreset_cnt == 0? */ 5191 ath_hal_intrset(ah, sc->sc_imask); 5192 ATH_PCU_UNLOCK(sc); 5193 5194 ath_txrx_start(sc); 5195 /* XXX ath_start? */ 5196 5197 return ret; 5198 } 5199 5200 /* 5201 * Periodically recalibrate the PHY to account 5202 * for temperature/environment changes. 5203 */ 5204 static void 5205 ath_calibrate(void *arg) 5206 { 5207 struct ath_softc *sc = arg; 5208 struct ath_hal *ah = sc->sc_ah; 5209 struct ieee80211com *ic = &sc->sc_ic; 5210 HAL_BOOL longCal, isCalDone = AH_TRUE; 5211 HAL_BOOL aniCal, shortCal = AH_FALSE; 5212 int nextcal; 5213 5214 ATH_LOCK_ASSERT(sc); 5215 5216 /* 5217 * Force the hardware awake for ANI work. 5218 */ 5219 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5220 5221 /* Skip trying to do this if we're in reset */ 5222 if (sc->sc_inreset_cnt) 5223 goto restart; 5224 5225 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5226 goto restart; 5227 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5228 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5229 if (sc->sc_doresetcal) 5230 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5231 5232 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5233 if (aniCal) { 5234 sc->sc_stats.ast_ani_cal++; 5235 sc->sc_lastani = ticks; 5236 ath_hal_ani_poll(ah, sc->sc_curchan); 5237 } 5238 5239 if (longCal) { 5240 sc->sc_stats.ast_per_cal++; 5241 sc->sc_lastlongcal = ticks; 5242 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5243 /* 5244 * Rfgain is out of bounds, reset the chip 5245 * to load new gain values. 5246 */ 5247 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5248 "%s: rfgain change\n", __func__); 5249 sc->sc_stats.ast_per_rfgain++; 5250 sc->sc_resetcal = 0; 5251 sc->sc_doresetcal = AH_TRUE; 5252 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5253 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5254 ath_power_restore_power_state(sc); 5255 return; 5256 } 5257 /* 5258 * If this long cal is after an idle period, then 5259 * reset the data collection state so we start fresh. 5260 */ 5261 if (sc->sc_resetcal) { 5262 (void) ath_hal_calreset(ah, sc->sc_curchan); 5263 sc->sc_lastcalreset = ticks; 5264 sc->sc_lastshortcal = ticks; 5265 sc->sc_resetcal = 0; 5266 sc->sc_doresetcal = AH_TRUE; 5267 } 5268 } 5269 5270 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5271 if (shortCal || longCal) { 5272 isCalDone = AH_FALSE; 5273 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5274 if (longCal) { 5275 /* 5276 * Calibrate noise floor data again in case of change. 5277 */ 5278 ath_hal_process_noisefloor(ah); 5279 } 5280 } else { 5281 DPRINTF(sc, ATH_DEBUG_ANY, 5282 "%s: calibration of channel %u failed\n", 5283 __func__, sc->sc_curchan->ic_freq); 5284 sc->sc_stats.ast_per_calfail++; 5285 } 5286 if (shortCal) 5287 sc->sc_lastshortcal = ticks; 5288 } 5289 if (!isCalDone) { 5290 restart: 5291 /* 5292 * Use a shorter interval to potentially collect multiple 5293 * data samples required to complete calibration. Once 5294 * we're told the work is done we drop back to a longer 5295 * interval between requests. We're more aggressive doing 5296 * work when operating as an AP to improve operation right 5297 * after startup. 5298 */ 5299 sc->sc_lastshortcal = ticks; 5300 nextcal = ath_shortcalinterval*hz/1000; 5301 if (sc->sc_opmode != HAL_M_HOSTAP) 5302 nextcal *= 10; 5303 sc->sc_doresetcal = AH_TRUE; 5304 } else { 5305 /* nextcal should be the shortest time for next event */ 5306 nextcal = ath_longcalinterval*hz; 5307 if (sc->sc_lastcalreset == 0) 5308 sc->sc_lastcalreset = sc->sc_lastlongcal; 5309 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5310 sc->sc_resetcal = 1; /* setup reset next trip */ 5311 sc->sc_doresetcal = AH_FALSE; 5312 } 5313 /* ANI calibration may occur more often than short/long/resetcal */ 5314 if (ath_anicalinterval > 0) 5315 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5316 5317 if (nextcal != 0) { 5318 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5319 __func__, nextcal, isCalDone ? "" : "!"); 5320 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5321 } else { 5322 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5323 __func__); 5324 /* NB: don't rearm timer */ 5325 } 5326 /* 5327 * Restore power state now that we're done. 5328 */ 5329 ath_power_restore_power_state(sc); 5330 } 5331 5332 static void 5333 ath_scan_start(struct ieee80211com *ic) 5334 { 5335 struct ath_softc *sc = ic->ic_softc; 5336 struct ath_hal *ah = sc->sc_ah; 5337 u_int32_t rfilt; 5338 5339 /* XXX calibration timer? */ 5340 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5341 5342 ATH_LOCK(sc); 5343 sc->sc_scanning = 1; 5344 sc->sc_syncbeacon = 0; 5345 rfilt = ath_calcrxfilter(sc); 5346 ATH_UNLOCK(sc); 5347 5348 ATH_PCU_LOCK(sc); 5349 ath_hal_setrxfilter(ah, rfilt); 5350 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5351 ATH_PCU_UNLOCK(sc); 5352 5353 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5354 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5355 } 5356 5357 static void 5358 ath_scan_end(struct ieee80211com *ic) 5359 { 5360 struct ath_softc *sc = ic->ic_softc; 5361 struct ath_hal *ah = sc->sc_ah; 5362 u_int32_t rfilt; 5363 5364 ATH_LOCK(sc); 5365 sc->sc_scanning = 0; 5366 rfilt = ath_calcrxfilter(sc); 5367 ATH_UNLOCK(sc); 5368 5369 ATH_PCU_LOCK(sc); 5370 ath_hal_setrxfilter(ah, rfilt); 5371 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5372 5373 ath_hal_process_noisefloor(ah); 5374 ATH_PCU_UNLOCK(sc); 5375 5376 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5377 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5378 sc->sc_curaid); 5379 } 5380 5381 #ifdef ATH_ENABLE_11N 5382 /* 5383 * For now, just do a channel change. 5384 * 5385 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5386 * control state and resetting the hardware without dropping frames out 5387 * of the queue. 5388 * 5389 * The unfortunate trouble here is making absolutely sure that the 5390 * channel width change has propagated enough so the hardware 5391 * absolutely isn't handed bogus frames for it's current operating 5392 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5393 * does occur in parallel, we need to make certain we've blocked 5394 * any further ongoing TX (and RX, that can cause raw TX) 5395 * before we do this. 5396 */ 5397 static void 5398 ath_update_chw(struct ieee80211com *ic) 5399 { 5400 struct ath_softc *sc = ic->ic_softc; 5401 5402 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5403 ath_set_channel(ic); 5404 } 5405 #endif /* ATH_ENABLE_11N */ 5406 5407 static void 5408 ath_set_channel(struct ieee80211com *ic) 5409 { 5410 struct ath_softc *sc = ic->ic_softc; 5411 5412 ATH_LOCK(sc); 5413 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5414 ATH_UNLOCK(sc); 5415 5416 (void) ath_chan_set(sc, ic->ic_curchan); 5417 /* 5418 * If we are returning to our bss channel then mark state 5419 * so the next recv'd beacon's tsf will be used to sync the 5420 * beacon timers. Note that since we only hear beacons in 5421 * sta/ibss mode this has no effect in other operating modes. 5422 */ 5423 ATH_LOCK(sc); 5424 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5425 sc->sc_syncbeacon = 1; 5426 ath_power_restore_power_state(sc); 5427 ATH_UNLOCK(sc); 5428 } 5429 5430 /* 5431 * Walk the vap list and check if there any vap's in RUN state. 5432 */ 5433 static int 5434 ath_isanyrunningvaps(struct ieee80211vap *this) 5435 { 5436 struct ieee80211com *ic = this->iv_ic; 5437 struct ieee80211vap *vap; 5438 5439 IEEE80211_LOCK_ASSERT(ic); 5440 5441 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5442 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5443 return 1; 5444 } 5445 return 0; 5446 } 5447 5448 static int 5449 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5450 { 5451 struct ieee80211com *ic = vap->iv_ic; 5452 struct ath_softc *sc = ic->ic_softc; 5453 struct ath_vap *avp = ATH_VAP(vap); 5454 struct ath_hal *ah = sc->sc_ah; 5455 struct ieee80211_node *ni = NULL; 5456 int i, error, stamode; 5457 u_int32_t rfilt; 5458 int csa_run_transition = 0; 5459 enum ieee80211_state ostate = vap->iv_state; 5460 5461 static const HAL_LED_STATE leds[] = { 5462 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5463 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5464 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5465 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5466 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5467 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5468 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5469 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5470 }; 5471 5472 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5473 ieee80211_state_name[ostate], 5474 ieee80211_state_name[nstate]); 5475 5476 /* 5477 * net80211 _should_ have the comlock asserted at this point. 5478 * There are some comments around the calls to vap->iv_newstate 5479 * which indicate that it (newstate) may end up dropping the 5480 * lock. This and the subsequent lock assert check after newstate 5481 * are an attempt to catch these and figure out how/why. 5482 */ 5483 IEEE80211_LOCK_ASSERT(ic); 5484 5485 /* Before we touch the hardware - wake it up */ 5486 ATH_LOCK(sc); 5487 /* 5488 * If the NIC is in anything other than SLEEP state, 5489 * we need to ensure that self-generated frames are 5490 * set for PWRMGT=0. Otherwise we may end up with 5491 * strange situations. 5492 * 5493 * XXX TODO: is this actually the case? :-) 5494 */ 5495 if (nstate != IEEE80211_S_SLEEP) 5496 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5497 5498 /* 5499 * Now, wake the thing up. 5500 */ 5501 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5502 5503 /* 5504 * And stop the calibration callout whilst we have 5505 * ATH_LOCK held. 5506 */ 5507 callout_stop(&sc->sc_cal_ch); 5508 ATH_UNLOCK(sc); 5509 5510 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5511 csa_run_transition = 1; 5512 5513 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5514 5515 if (nstate == IEEE80211_S_SCAN) { 5516 /* 5517 * Scanning: turn off beacon miss and don't beacon. 5518 * Mark beacon state so when we reach RUN state we'll 5519 * [re]setup beacons. Unblock the task q thread so 5520 * deferred interrupt processing is done. 5521 */ 5522 5523 /* Ensure we stay awake during scan */ 5524 ATH_LOCK(sc); 5525 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5526 ath_power_setpower(sc, HAL_PM_AWAKE); 5527 ATH_UNLOCK(sc); 5528 5529 ath_hal_intrset(ah, 5530 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5531 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5532 sc->sc_beacons = 0; 5533 taskqueue_unblock(sc->sc_tq); 5534 } 5535 5536 ni = ieee80211_ref_node(vap->iv_bss); 5537 rfilt = ath_calcrxfilter(sc); 5538 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5539 vap->iv_opmode == IEEE80211_M_AHDEMO || 5540 vap->iv_opmode == IEEE80211_M_IBSS); 5541 5542 /* 5543 * XXX Dont need to do this (and others) if we've transitioned 5544 * from SLEEP->RUN. 5545 */ 5546 if (stamode && nstate == IEEE80211_S_RUN) { 5547 sc->sc_curaid = ni->ni_associd; 5548 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5549 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5550 } 5551 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5552 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5553 ath_hal_setrxfilter(ah, rfilt); 5554 5555 /* XXX is this to restore keycache on resume? */ 5556 if (vap->iv_opmode != IEEE80211_M_STA && 5557 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5558 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5559 if (ath_hal_keyisvalid(ah, i)) 5560 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5561 } 5562 5563 /* 5564 * Invoke the parent method to do net80211 work. 5565 */ 5566 error = avp->av_newstate(vap, nstate, arg); 5567 if (error != 0) 5568 goto bad; 5569 5570 /* 5571 * See above: ensure av_newstate() doesn't drop the lock 5572 * on us. 5573 */ 5574 IEEE80211_LOCK_ASSERT(ic); 5575 5576 if (nstate == IEEE80211_S_RUN) { 5577 /* NB: collect bss node again, it may have changed */ 5578 ieee80211_free_node(ni); 5579 ni = ieee80211_ref_node(vap->iv_bss); 5580 5581 DPRINTF(sc, ATH_DEBUG_STATE, 5582 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5583 "capinfo 0x%04x chan %d\n", __func__, 5584 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5585 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5586 5587 switch (vap->iv_opmode) { 5588 #ifdef IEEE80211_SUPPORT_TDMA 5589 case IEEE80211_M_AHDEMO: 5590 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5591 break; 5592 /* fall thru... */ 5593 #endif 5594 case IEEE80211_M_HOSTAP: 5595 case IEEE80211_M_IBSS: 5596 case IEEE80211_M_MBSS: 5597 /* 5598 * Allocate and setup the beacon frame. 5599 * 5600 * Stop any previous beacon DMA. This may be 5601 * necessary, for example, when an ibss merge 5602 * causes reconfiguration; there will be a state 5603 * transition from RUN->RUN that means we may 5604 * be called with beacon transmission active. 5605 */ 5606 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5607 5608 error = ath_beacon_alloc(sc, ni); 5609 if (error != 0) 5610 goto bad; 5611 /* 5612 * If joining an adhoc network defer beacon timer 5613 * configuration to the next beacon frame so we 5614 * have a current TSF to use. Otherwise we're 5615 * starting an ibss/bss so there's no need to delay; 5616 * if this is the first vap moving to RUN state, then 5617 * beacon state needs to be [re]configured. 5618 */ 5619 if (vap->iv_opmode == IEEE80211_M_IBSS && 5620 ni->ni_tstamp.tsf != 0) { 5621 sc->sc_syncbeacon = 1; 5622 } else if (!sc->sc_beacons) { 5623 #ifdef IEEE80211_SUPPORT_TDMA 5624 if (vap->iv_caps & IEEE80211_C_TDMA) 5625 ath_tdma_config(sc, vap); 5626 else 5627 #endif 5628 ath_beacon_config(sc, vap); 5629 sc->sc_beacons = 1; 5630 } 5631 break; 5632 case IEEE80211_M_STA: 5633 /* 5634 * Defer beacon timer configuration to the next 5635 * beacon frame so we have a current TSF to use 5636 * (any TSF collected when scanning is likely old). 5637 * However if it's due to a CSA -> RUN transition, 5638 * force a beacon update so we pick up a lack of 5639 * beacons from an AP in CAC and thus force a 5640 * scan. 5641 * 5642 * And, there's also corner cases here where 5643 * after a scan, the AP may have disappeared. 5644 * In that case, we may not receive an actual 5645 * beacon to update the beacon timer and thus we 5646 * won't get notified of the missing beacons. 5647 */ 5648 if (ostate != IEEE80211_S_RUN && 5649 ostate != IEEE80211_S_SLEEP) { 5650 DPRINTF(sc, ATH_DEBUG_BEACON, 5651 "%s: STA; syncbeacon=1\n", __func__); 5652 sc->sc_syncbeacon = 1; 5653 5654 if (csa_run_transition) 5655 ath_beacon_config(sc, vap); 5656 5657 /* 5658 * PR: kern/175227 5659 * 5660 * Reconfigure beacons during reset; as otherwise 5661 * we won't get the beacon timers reprogrammed 5662 * after a reset and thus we won't pick up a 5663 * beacon miss interrupt. 5664 * 5665 * Hopefully we'll see a beacon before the BMISS 5666 * timer fires (too often), leading to a STA 5667 * disassociation. 5668 */ 5669 sc->sc_beacons = 1; 5670 } 5671 break; 5672 case IEEE80211_M_MONITOR: 5673 /* 5674 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5675 * transitions so we must re-enable interrupts here to 5676 * handle the case of a single monitor mode vap. 5677 */ 5678 ath_hal_intrset(ah, sc->sc_imask); 5679 break; 5680 case IEEE80211_M_WDS: 5681 break; 5682 default: 5683 break; 5684 } 5685 /* 5686 * Let the hal process statistics collected during a 5687 * scan so it can provide calibrated noise floor data. 5688 */ 5689 ath_hal_process_noisefloor(ah); 5690 /* 5691 * Reset rssi stats; maybe not the best place... 5692 */ 5693 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5694 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5695 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5696 5697 /* 5698 * Force awake for RUN mode. 5699 */ 5700 ATH_LOCK(sc); 5701 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5702 ath_power_setpower(sc, HAL_PM_AWAKE); 5703 5704 /* 5705 * Finally, start any timers and the task q thread 5706 * (in case we didn't go through SCAN state). 5707 */ 5708 if (ath_longcalinterval != 0) { 5709 /* start periodic recalibration timer */ 5710 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5711 } else { 5712 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5713 "%s: calibration disabled\n", __func__); 5714 } 5715 ATH_UNLOCK(sc); 5716 5717 taskqueue_unblock(sc->sc_tq); 5718 } else if (nstate == IEEE80211_S_INIT) { 5719 /* 5720 * If there are no vaps left in RUN state then 5721 * shutdown host/driver operation: 5722 * o disable interrupts 5723 * o disable the task queue thread 5724 * o mark beacon processing as stopped 5725 */ 5726 if (!ath_isanyrunningvaps(vap)) { 5727 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5728 /* disable interrupts */ 5729 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5730 taskqueue_block(sc->sc_tq); 5731 sc->sc_beacons = 0; 5732 } 5733 #ifdef IEEE80211_SUPPORT_TDMA 5734 ath_hal_setcca(ah, AH_TRUE); 5735 #endif 5736 } else if (nstate == IEEE80211_S_SLEEP) { 5737 /* We're going to sleep, so transition appropriately */ 5738 /* For now, only do this if we're a single STA vap */ 5739 if (sc->sc_nvaps == 1 && 5740 vap->iv_opmode == IEEE80211_M_STA) { 5741 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 5742 ATH_LOCK(sc); 5743 /* 5744 * Always at least set the self-generated 5745 * frame config to set PWRMGT=1. 5746 */ 5747 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 5748 5749 /* 5750 * If we're not syncing beacons, transition 5751 * to NETWORK_SLEEP. 5752 * 5753 * We stay awake if syncbeacon > 0 in case 5754 * we need to listen for some beacons otherwise 5755 * our beacon timer config may be wrong. 5756 */ 5757 if (sc->sc_syncbeacon == 0) { 5758 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 5759 } 5760 ATH_UNLOCK(sc); 5761 } 5762 } 5763 bad: 5764 ieee80211_free_node(ni); 5765 5766 /* 5767 * Restore the power state - either to what it was, or 5768 * to network_sleep if it's alright. 5769 */ 5770 ATH_LOCK(sc); 5771 ath_power_restore_power_state(sc); 5772 ATH_UNLOCK(sc); 5773 return error; 5774 } 5775 5776 /* 5777 * Allocate a key cache slot to the station so we can 5778 * setup a mapping from key index to node. The key cache 5779 * slot is needed for managing antenna state and for 5780 * compression when stations do not use crypto. We do 5781 * it uniliaterally here; if crypto is employed this slot 5782 * will be reassigned. 5783 */ 5784 static void 5785 ath_setup_stationkey(struct ieee80211_node *ni) 5786 { 5787 struct ieee80211vap *vap = ni->ni_vap; 5788 struct ath_softc *sc = vap->iv_ic->ic_softc; 5789 ieee80211_keyix keyix, rxkeyix; 5790 5791 /* XXX should take a locked ref to vap->iv_bss */ 5792 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5793 /* 5794 * Key cache is full; we'll fall back to doing 5795 * the more expensive lookup in software. Note 5796 * this also means no h/w compression. 5797 */ 5798 /* XXX msg+statistic */ 5799 } else { 5800 /* XXX locking? */ 5801 ni->ni_ucastkey.wk_keyix = keyix; 5802 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5803 /* NB: must mark device key to get called back on delete */ 5804 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5805 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5806 /* NB: this will create a pass-thru key entry */ 5807 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5808 } 5809 } 5810 5811 /* 5812 * Setup driver-specific state for a newly associated node. 5813 * Note that we're called also on a re-associate, the isnew 5814 * param tells us if this is the first time or not. 5815 */ 5816 static void 5817 ath_newassoc(struct ieee80211_node *ni, int isnew) 5818 { 5819 struct ath_node *an = ATH_NODE(ni); 5820 struct ieee80211vap *vap = ni->ni_vap; 5821 struct ath_softc *sc = vap->iv_ic->ic_softc; 5822 const struct ieee80211_txparam *tp = ni->ni_txparms; 5823 5824 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5825 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5826 5827 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 5828 __func__, 5829 ni->ni_macaddr, 5830 ":", 5831 isnew, 5832 an->an_is_powersave); 5833 5834 ATH_NODE_LOCK(an); 5835 ath_rate_newassoc(sc, an, isnew); 5836 ATH_NODE_UNLOCK(an); 5837 5838 if (isnew && 5839 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5840 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5841 ath_setup_stationkey(ni); 5842 5843 /* 5844 * If we're reassociating, make sure that any paused queues 5845 * get unpaused. 5846 * 5847 * Now, we may hvae frames in the hardware queue for this node. 5848 * So if we are reassociating and there are frames in the queue, 5849 * we need to go through the cleanup path to ensure that they're 5850 * marked as non-aggregate. 5851 */ 5852 if (! isnew) { 5853 DPRINTF(sc, ATH_DEBUG_NODE, 5854 "%s: %6D: reassoc; is_powersave=%d\n", 5855 __func__, 5856 ni->ni_macaddr, 5857 ":", 5858 an->an_is_powersave); 5859 5860 /* XXX for now, we can't hold the lock across assoc */ 5861 ath_tx_node_reassoc(sc, an); 5862 5863 /* XXX for now, we can't hold the lock across wakeup */ 5864 if (an->an_is_powersave) 5865 ath_tx_node_wakeup(sc, an); 5866 } 5867 } 5868 5869 static int 5870 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5871 int nchans, struct ieee80211_channel chans[]) 5872 { 5873 struct ath_softc *sc = ic->ic_softc; 5874 struct ath_hal *ah = sc->sc_ah; 5875 HAL_STATUS status; 5876 5877 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5878 "%s: rd %u cc %u location %c%s\n", 5879 __func__, reg->regdomain, reg->country, reg->location, 5880 reg->ecm ? " ecm" : ""); 5881 5882 status = ath_hal_set_channels(ah, chans, nchans, 5883 reg->country, reg->regdomain); 5884 if (status != HAL_OK) { 5885 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5886 __func__, status); 5887 return EINVAL; /* XXX */ 5888 } 5889 5890 return 0; 5891 } 5892 5893 static void 5894 ath_getradiocaps(struct ieee80211com *ic, 5895 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5896 { 5897 struct ath_softc *sc = ic->ic_softc; 5898 struct ath_hal *ah = sc->sc_ah; 5899 5900 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5901 __func__, SKU_DEBUG, CTRY_DEFAULT); 5902 5903 /* XXX check return */ 5904 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5905 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5906 5907 } 5908 5909 static int 5910 ath_getchannels(struct ath_softc *sc) 5911 { 5912 struct ieee80211com *ic = &sc->sc_ic; 5913 struct ath_hal *ah = sc->sc_ah; 5914 HAL_STATUS status; 5915 5916 /* 5917 * Collect channel set based on EEPROM contents. 5918 */ 5919 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5920 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5921 if (status != HAL_OK) { 5922 device_printf(sc->sc_dev, 5923 "%s: unable to collect channel list from hal, status %d\n", 5924 __func__, status); 5925 return EINVAL; 5926 } 5927 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5928 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5929 /* XXX map Atheros sku's to net80211 SKU's */ 5930 /* XXX net80211 types too small */ 5931 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5932 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5933 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5934 ic->ic_regdomain.isocc[1] = ' '; 5935 5936 ic->ic_regdomain.ecm = 1; 5937 ic->ic_regdomain.location = 'I'; 5938 5939 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5940 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5941 __func__, sc->sc_eerd, sc->sc_eecc, 5942 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5943 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5944 return 0; 5945 } 5946 5947 static int 5948 ath_rate_setup(struct ath_softc *sc, u_int mode) 5949 { 5950 struct ath_hal *ah = sc->sc_ah; 5951 const HAL_RATE_TABLE *rt; 5952 5953 switch (mode) { 5954 case IEEE80211_MODE_11A: 5955 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5956 break; 5957 case IEEE80211_MODE_HALF: 5958 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5959 break; 5960 case IEEE80211_MODE_QUARTER: 5961 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5962 break; 5963 case IEEE80211_MODE_11B: 5964 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5965 break; 5966 case IEEE80211_MODE_11G: 5967 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5968 break; 5969 case IEEE80211_MODE_TURBO_A: 5970 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5971 break; 5972 case IEEE80211_MODE_TURBO_G: 5973 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5974 break; 5975 case IEEE80211_MODE_STURBO_A: 5976 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5977 break; 5978 case IEEE80211_MODE_11NA: 5979 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5980 break; 5981 case IEEE80211_MODE_11NG: 5982 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5983 break; 5984 default: 5985 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5986 __func__, mode); 5987 return 0; 5988 } 5989 sc->sc_rates[mode] = rt; 5990 return (rt != NULL); 5991 } 5992 5993 static void 5994 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5995 { 5996 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5997 static const struct { 5998 u_int rate; /* tx/rx 802.11 rate */ 5999 u_int16_t timeOn; /* LED on time (ms) */ 6000 u_int16_t timeOff; /* LED off time (ms) */ 6001 } blinkrates[] = { 6002 { 108, 40, 10 }, 6003 { 96, 44, 11 }, 6004 { 72, 50, 13 }, 6005 { 48, 57, 14 }, 6006 { 36, 67, 16 }, 6007 { 24, 80, 20 }, 6008 { 22, 100, 25 }, 6009 { 18, 133, 34 }, 6010 { 12, 160, 40 }, 6011 { 10, 200, 50 }, 6012 { 6, 240, 58 }, 6013 { 4, 267, 66 }, 6014 { 2, 400, 100 }, 6015 { 0, 500, 130 }, 6016 /* XXX half/quarter rates */ 6017 }; 6018 const HAL_RATE_TABLE *rt; 6019 int i, j; 6020 6021 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6022 rt = sc->sc_rates[mode]; 6023 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6024 for (i = 0; i < rt->rateCount; i++) { 6025 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6026 if (rt->info[i].phy != IEEE80211_T_HT) 6027 sc->sc_rixmap[ieeerate] = i; 6028 else 6029 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6030 } 6031 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6032 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6033 if (i >= rt->rateCount) { 6034 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6035 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6036 continue; 6037 } 6038 sc->sc_hwmap[i].ieeerate = 6039 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6040 if (rt->info[i].phy == IEEE80211_T_HT) 6041 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6042 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6043 if (rt->info[i].shortPreamble || 6044 rt->info[i].phy == IEEE80211_T_OFDM) 6045 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6046 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6047 for (j = 0; j < nitems(blinkrates)-1; j++) 6048 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6049 break; 6050 /* NB: this uses the last entry if the rate isn't found */ 6051 /* XXX beware of overlow */ 6052 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6053 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6054 } 6055 sc->sc_currates = rt; 6056 sc->sc_curmode = mode; 6057 /* 6058 * All protection frames are transmited at 2Mb/s for 6059 * 11g, otherwise at 1Mb/s. 6060 */ 6061 if (mode == IEEE80211_MODE_11G) 6062 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6063 else 6064 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6065 /* NB: caller is responsible for resetting rate control state */ 6066 } 6067 6068 static void 6069 ath_watchdog(void *arg) 6070 { 6071 struct ath_softc *sc = arg; 6072 struct ieee80211com *ic = &sc->sc_ic; 6073 int do_reset = 0; 6074 6075 ATH_LOCK_ASSERT(sc); 6076 6077 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6078 uint32_t hangs; 6079 6080 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6081 6082 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6083 hangs != 0) { 6084 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6085 hangs & 0xff ? "bb" : "mac", hangs); 6086 } else 6087 device_printf(sc->sc_dev, "device timeout\n"); 6088 do_reset = 1; 6089 counter_u64_add(ic->ic_oerrors, 1); 6090 sc->sc_stats.ast_watchdog++; 6091 6092 ath_power_restore_power_state(sc); 6093 } 6094 6095 /* 6096 * We can't hold the lock across the ath_reset() call. 6097 * 6098 * And since this routine can't hold a lock and sleep, 6099 * do the reset deferred. 6100 */ 6101 if (do_reset) { 6102 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6103 } 6104 6105 callout_schedule(&sc->sc_wd_ch, hz); 6106 } 6107 6108 static void 6109 ath_parent(struct ieee80211com *ic) 6110 { 6111 struct ath_softc *sc = ic->ic_softc; 6112 int error = EDOOFUS; 6113 6114 ATH_LOCK(sc); 6115 if (ic->ic_nrunning > 0) { 6116 /* 6117 * To avoid rescanning another access point, 6118 * do not call ath_init() here. Instead, 6119 * only reflect promisc mode settings. 6120 */ 6121 if (sc->sc_running) { 6122 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6123 ath_mode_init(sc); 6124 ath_power_restore_power_state(sc); 6125 } else if (!sc->sc_invalid) { 6126 /* 6127 * Beware of being called during attach/detach 6128 * to reset promiscuous mode. In that case we 6129 * will still be marked UP but not RUNNING. 6130 * However trying to re-init the interface 6131 * is the wrong thing to do as we've already 6132 * torn down much of our state. There's 6133 * probably a better way to deal with this. 6134 */ 6135 error = ath_init(sc); 6136 } 6137 } else { 6138 ath_stop(sc); 6139 if (!sc->sc_invalid) 6140 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6141 } 6142 ATH_UNLOCK(sc); 6143 6144 if (error == 0) { 6145 #ifdef ATH_TX99_DIAG 6146 if (sc->sc_tx99 != NULL) 6147 sc->sc_tx99->start(sc->sc_tx99); 6148 else 6149 #endif 6150 ieee80211_start_all(ic); 6151 } 6152 } 6153 6154 /* 6155 * Announce various information on device/driver attach. 6156 */ 6157 static void 6158 ath_announce(struct ath_softc *sc) 6159 { 6160 struct ath_hal *ah = sc->sc_ah; 6161 6162 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6163 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6164 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6165 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6166 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6167 if (bootverbose) { 6168 int i; 6169 for (i = 0; i <= WME_AC_VO; i++) { 6170 struct ath_txq *txq = sc->sc_ac2q[i]; 6171 device_printf(sc->sc_dev, 6172 "Use hw queue %u for %s traffic\n", 6173 txq->axq_qnum, ieee80211_wme_acnames[i]); 6174 } 6175 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6176 sc->sc_cabq->axq_qnum); 6177 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6178 sc->sc_bhalq); 6179 } 6180 if (ath_rxbuf != ATH_RXBUF) 6181 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6182 if (ath_txbuf != ATH_TXBUF) 6183 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6184 if (sc->sc_mcastkey && bootverbose) 6185 device_printf(sc->sc_dev, "using multicast key search\n"); 6186 } 6187 6188 static void 6189 ath_dfs_tasklet(void *p, int npending) 6190 { 6191 struct ath_softc *sc = (struct ath_softc *) p; 6192 struct ieee80211com *ic = &sc->sc_ic; 6193 6194 /* 6195 * If previous processing has found a radar event, 6196 * signal this to the net80211 layer to begin DFS 6197 * processing. 6198 */ 6199 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6200 /* DFS event found, initiate channel change */ 6201 /* 6202 * XXX doesn't currently tell us whether the event 6203 * XXX was found in the primary or extension 6204 * XXX channel! 6205 */ 6206 IEEE80211_LOCK(ic); 6207 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6208 IEEE80211_UNLOCK(ic); 6209 } 6210 } 6211 6212 /* 6213 * Enable/disable power save. This must be called with 6214 * no TX driver locks currently held, so it should only 6215 * be called from the RX path (which doesn't hold any 6216 * TX driver locks.) 6217 */ 6218 static void 6219 ath_node_powersave(struct ieee80211_node *ni, int enable) 6220 { 6221 #ifdef ATH_SW_PSQ 6222 struct ath_node *an = ATH_NODE(ni); 6223 struct ieee80211com *ic = ni->ni_ic; 6224 struct ath_softc *sc = ic->ic_softc; 6225 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6226 6227 /* XXX and no TXQ locks should be held here */ 6228 6229 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6230 __func__, 6231 ni->ni_macaddr, 6232 ":", 6233 !! enable); 6234 6235 /* Suspend or resume software queue handling */ 6236 if (enable) 6237 ath_tx_node_sleep(sc, an); 6238 else 6239 ath_tx_node_wakeup(sc, an); 6240 6241 /* Update net80211 state */ 6242 avp->av_node_ps(ni, enable); 6243 #else 6244 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6245 6246 /* Update net80211 state */ 6247 avp->av_node_ps(ni, enable); 6248 #endif/* ATH_SW_PSQ */ 6249 } 6250 6251 /* 6252 * Notification from net80211 that the powersave queue state has 6253 * changed. 6254 * 6255 * Since the software queue also may have some frames: 6256 * 6257 * + if the node software queue has frames and the TID state 6258 * is 0, we set the TIM; 6259 * + if the node and the stack are both empty, we clear the TIM bit. 6260 * + If the stack tries to set the bit, always set it. 6261 * + If the stack tries to clear the bit, only clear it if the 6262 * software queue in question is also cleared. 6263 * 6264 * TODO: this is called during node teardown; so let's ensure this 6265 * is all correctly handled and that the TIM bit is cleared. 6266 * It may be that the node flush is called _AFTER_ the net80211 6267 * stack clears the TIM. 6268 * 6269 * Here is the racy part. Since it's possible >1 concurrent, 6270 * overlapping TXes will appear complete with a TX completion in 6271 * another thread, it's possible that the concurrent TIM calls will 6272 * clash. We can't hold the node lock here because setting the 6273 * TIM grabs the net80211 comlock and this may cause a LOR. 6274 * The solution is either to totally serialise _everything_ at 6275 * this point (ie, all TX, completion and any reset/flush go into 6276 * one taskqueue) or a new "ath TIM lock" needs to be created that 6277 * just wraps the driver state change and this call to avp->av_set_tim(). 6278 * 6279 * The same race exists in the net80211 power save queue handling 6280 * as well. Since multiple transmitting threads may queue frames 6281 * into the driver, as well as ps-poll and the driver transmitting 6282 * frames (and thus clearing the psq), it's quite possible that 6283 * a packet entering the PSQ and a ps-poll being handled will 6284 * race, causing the TIM to be cleared and not re-set. 6285 */ 6286 static int 6287 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6288 { 6289 #ifdef ATH_SW_PSQ 6290 struct ieee80211com *ic = ni->ni_ic; 6291 struct ath_softc *sc = ic->ic_softc; 6292 struct ath_node *an = ATH_NODE(ni); 6293 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6294 int changed = 0; 6295 6296 ATH_TX_LOCK(sc); 6297 an->an_stack_psq = enable; 6298 6299 /* 6300 * This will get called for all operating modes, 6301 * even if avp->av_set_tim is unset. 6302 * It's currently set for hostap/ibss modes; but 6303 * the same infrastructure is used for both STA 6304 * and AP/IBSS node power save. 6305 */ 6306 if (avp->av_set_tim == NULL) { 6307 ATH_TX_UNLOCK(sc); 6308 return (0); 6309 } 6310 6311 /* 6312 * If setting the bit, always set it here. 6313 * If clearing the bit, only clear it if the 6314 * software queue is also empty. 6315 * 6316 * If the node has left power save, just clear the TIM 6317 * bit regardless of the state of the power save queue. 6318 * 6319 * XXX TODO: although atomics are used, it's quite possible 6320 * that a race will occur between this and setting/clearing 6321 * in another thread. TX completion will occur always in 6322 * one thread, however setting/clearing the TIM bit can come 6323 * from a variety of different process contexts! 6324 */ 6325 if (enable && an->an_tim_set == 1) { 6326 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6327 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6328 __func__, 6329 ni->ni_macaddr, 6330 ":", 6331 enable); 6332 ATH_TX_UNLOCK(sc); 6333 } else if (enable) { 6334 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6335 "%s: %6D: enable=%d, enabling TIM\n", 6336 __func__, 6337 ni->ni_macaddr, 6338 ":", 6339 enable); 6340 an->an_tim_set = 1; 6341 ATH_TX_UNLOCK(sc); 6342 changed = avp->av_set_tim(ni, enable); 6343 } else if (an->an_swq_depth == 0) { 6344 /* disable */ 6345 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6346 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6347 __func__, 6348 ni->ni_macaddr, 6349 ":", 6350 enable); 6351 an->an_tim_set = 0; 6352 ATH_TX_UNLOCK(sc); 6353 changed = avp->av_set_tim(ni, enable); 6354 } else if (! an->an_is_powersave) { 6355 /* 6356 * disable regardless; the node isn't in powersave now 6357 */ 6358 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6359 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6360 __func__, 6361 ni->ni_macaddr, 6362 ":", 6363 enable); 6364 an->an_tim_set = 0; 6365 ATH_TX_UNLOCK(sc); 6366 changed = avp->av_set_tim(ni, enable); 6367 } else { 6368 /* 6369 * psq disable, node is currently in powersave, node 6370 * software queue isn't empty, so don't clear the TIM bit 6371 * for now. 6372 */ 6373 ATH_TX_UNLOCK(sc); 6374 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6375 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6376 __func__, 6377 ni->ni_macaddr, 6378 ":", 6379 enable); 6380 changed = 0; 6381 } 6382 6383 return (changed); 6384 #else 6385 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6386 6387 /* 6388 * Some operating modes don't set av_set_tim(), so don't 6389 * update it here. 6390 */ 6391 if (avp->av_set_tim == NULL) 6392 return (0); 6393 6394 return (avp->av_set_tim(ni, enable)); 6395 #endif /* ATH_SW_PSQ */ 6396 } 6397 6398 /* 6399 * Set or update the TIM from the software queue. 6400 * 6401 * Check the software queue depth before attempting to do lock 6402 * anything; that avoids trying to obtain the lock. Then, 6403 * re-check afterwards to ensure nothing has changed in the 6404 * meantime. 6405 * 6406 * set: This is designed to be called from the TX path, after 6407 * a frame has been queued; to see if the swq > 0. 6408 * 6409 * clear: This is designed to be called from the buffer completion point 6410 * (right now it's ath_tx_default_comp()) where the state of 6411 * a software queue has changed. 6412 * 6413 * It makes sense to place it at buffer free / completion rather 6414 * than after each software queue operation, as there's no real 6415 * point in churning the TIM bit as the last frames in the software 6416 * queue are transmitted. If they fail and we retry them, we'd 6417 * just be setting the TIM bit again anyway. 6418 */ 6419 void 6420 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6421 int enable) 6422 { 6423 #ifdef ATH_SW_PSQ 6424 struct ath_node *an; 6425 struct ath_vap *avp; 6426 6427 /* Don't do this for broadcast/etc frames */ 6428 if (ni == NULL) 6429 return; 6430 6431 an = ATH_NODE(ni); 6432 avp = ATH_VAP(ni->ni_vap); 6433 6434 /* 6435 * And for operating modes without the TIM handler set, let's 6436 * just skip those. 6437 */ 6438 if (avp->av_set_tim == NULL) 6439 return; 6440 6441 ATH_TX_LOCK_ASSERT(sc); 6442 6443 if (enable) { 6444 if (an->an_is_powersave && 6445 an->an_tim_set == 0 && 6446 an->an_swq_depth != 0) { 6447 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6448 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6449 __func__, 6450 ni->ni_macaddr, 6451 ":"); 6452 an->an_tim_set = 1; 6453 (void) avp->av_set_tim(ni, 1); 6454 } 6455 } else { 6456 /* 6457 * Don't bother grabbing the lock unless the queue is empty. 6458 */ 6459 if (an->an_swq_depth != 0) 6460 return; 6461 6462 if (an->an_is_powersave && 6463 an->an_stack_psq == 0 && 6464 an->an_tim_set == 1 && 6465 an->an_swq_depth == 0) { 6466 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6467 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6468 " clear!\n", 6469 __func__, 6470 ni->ni_macaddr, 6471 ":"); 6472 an->an_tim_set = 0; 6473 (void) avp->av_set_tim(ni, 0); 6474 } 6475 } 6476 #else 6477 return; 6478 #endif /* ATH_SW_PSQ */ 6479 } 6480 6481 /* 6482 * Received a ps-poll frame from net80211. 6483 * 6484 * Here we get a chance to serve out a software-queued frame ourselves 6485 * before we punt it to net80211 to transmit us one itself - either 6486 * because there's traffic in the net80211 psq, or a NULL frame to 6487 * indicate there's nothing else. 6488 */ 6489 static void 6490 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6491 { 6492 #ifdef ATH_SW_PSQ 6493 struct ath_node *an; 6494 struct ath_vap *avp; 6495 struct ieee80211com *ic = ni->ni_ic; 6496 struct ath_softc *sc = ic->ic_softc; 6497 int tid; 6498 6499 /* Just paranoia */ 6500 if (ni == NULL) 6501 return; 6502 6503 /* 6504 * Unassociated (temporary node) station. 6505 */ 6506 if (ni->ni_associd == 0) 6507 return; 6508 6509 /* 6510 * We do have an active node, so let's begin looking into it. 6511 */ 6512 an = ATH_NODE(ni); 6513 avp = ATH_VAP(ni->ni_vap); 6514 6515 /* 6516 * For now, we just call the original ps-poll method. 6517 * Once we're ready to flip this on: 6518 * 6519 * + Set leak to 1, as no matter what we're going to have 6520 * to send a frame; 6521 * + Check the software queue and if there's something in it, 6522 * schedule the highest TID thas has traffic from this node. 6523 * Then make sure we schedule the software scheduler to 6524 * run so it picks up said frame. 6525 * 6526 * That way whatever happens, we'll at least send _a_ frame 6527 * to the given node. 6528 * 6529 * Again, yes, it's crappy QoS if the node has multiple 6530 * TIDs worth of traffic - but let's get it working first 6531 * before we optimise it. 6532 * 6533 * Also yes, there's definitely latency here - we're not 6534 * direct dispatching to the hardware in this path (and 6535 * we're likely being called from the packet receive path, 6536 * so going back into TX may be a little hairy!) but again 6537 * I'd like to get this working first before optimising 6538 * turn-around time. 6539 */ 6540 6541 ATH_TX_LOCK(sc); 6542 6543 /* 6544 * Legacy - we're called and the node isn't asleep. 6545 * Immediately punt. 6546 */ 6547 if (! an->an_is_powersave) { 6548 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6549 "%s: %6D: not in powersave?\n", 6550 __func__, 6551 ni->ni_macaddr, 6552 ":"); 6553 ATH_TX_UNLOCK(sc); 6554 avp->av_recv_pspoll(ni, m); 6555 return; 6556 } 6557 6558 /* 6559 * We're in powersave. 6560 * 6561 * Leak a frame. 6562 */ 6563 an->an_leak_count = 1; 6564 6565 /* 6566 * Now, if there's no frames in the node, just punt to 6567 * recv_pspoll. 6568 * 6569 * Don't bother checking if the TIM bit is set, we really 6570 * only care if there are any frames here! 6571 */ 6572 if (an->an_swq_depth == 0) { 6573 ATH_TX_UNLOCK(sc); 6574 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6575 "%s: %6D: SWQ empty; punting to net80211\n", 6576 __func__, 6577 ni->ni_macaddr, 6578 ":"); 6579 avp->av_recv_pspoll(ni, m); 6580 return; 6581 } 6582 6583 /* 6584 * Ok, let's schedule the highest TID that has traffic 6585 * and then schedule something. 6586 */ 6587 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6588 struct ath_tid *atid = &an->an_tid[tid]; 6589 /* 6590 * No frames? Skip. 6591 */ 6592 if (atid->axq_depth == 0) 6593 continue; 6594 ath_tx_tid_sched(sc, atid); 6595 /* 6596 * XXX we could do a direct call to the TXQ 6597 * scheduler code here to optimise latency 6598 * at the expense of a REALLY deep callstack. 6599 */ 6600 ATH_TX_UNLOCK(sc); 6601 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6602 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6603 "%s: %6D: leaking frame to TID %d\n", 6604 __func__, 6605 ni->ni_macaddr, 6606 ":", 6607 tid); 6608 return; 6609 } 6610 6611 ATH_TX_UNLOCK(sc); 6612 6613 /* 6614 * XXX nothing in the TIDs at this point? Eek. 6615 */ 6616 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6617 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6618 __func__, 6619 ni->ni_macaddr, 6620 ":"); 6621 avp->av_recv_pspoll(ni, m); 6622 #else 6623 avp->av_recv_pspoll(ni, m); 6624 #endif /* ATH_SW_PSQ */ 6625 } 6626 6627 MODULE_VERSION(if_ath, 1); 6628 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6629 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 6630 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6631 #endif 6632