1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_btcoex_mci.h> 117 #include <dev/ath/if_ath_spectral.h> 118 #include <dev/ath/if_ath_lna_div.h> 119 #include <dev/ath/if_athdfs.h> 120 #include <dev/ath/if_ath_ioctl.h> 121 #include <dev/ath/if_ath_descdma.h> 122 123 #ifdef ATH_TX99_DIAG 124 #include <dev/ath/ath_tx99/ath_tx99.h> 125 #endif 126 127 #ifdef ATH_DEBUG_ALQ 128 #include <dev/ath/if_ath_alq.h> 129 #endif 130 131 /* 132 * Only enable this if you're working on PS-POLL support. 133 */ 134 #define ATH_SW_PSQ 135 136 /* 137 * ATH_BCBUF determines the number of vap's that can transmit 138 * beacons and also (currently) the number of vap's that can 139 * have unique mac addresses/bssid. When staggering beacons 140 * 4 is probably a good max as otherwise the beacons become 141 * very closely spaced and there is limited time for cab q traffic 142 * to go out. You can burst beacons instead but that is not good 143 * for stations in power save and at some point you really want 144 * another radio (and channel). 145 * 146 * The limit on the number of mac addresses is tied to our use of 147 * the U/L bit and tracking addresses in a byte; it would be 148 * worthwhile to allow more for applications like proxy sta. 149 */ 150 CTASSERT(ATH_BCBUF <= 8); 151 152 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 153 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 154 const uint8_t [IEEE80211_ADDR_LEN], 155 const uint8_t [IEEE80211_ADDR_LEN]); 156 static void ath_vap_delete(struct ieee80211vap *); 157 static int ath_init(struct ath_softc *); 158 static void ath_stop(struct ath_softc *); 159 static int ath_reset_vap(struct ieee80211vap *, u_long); 160 static int ath_transmit(struct ieee80211com *, struct mbuf *); 161 static int ath_media_change(struct ifnet *); 162 static void ath_watchdog(void *); 163 static void ath_parent(struct ieee80211com *); 164 static void ath_fatal_proc(void *, int); 165 static void ath_bmiss_vap(struct ieee80211vap *); 166 static void ath_bmiss_proc(void *, int); 167 static void ath_key_update_begin(struct ieee80211vap *); 168 static void ath_key_update_end(struct ieee80211vap *); 169 static void ath_update_mcast_hw(struct ath_softc *); 170 static void ath_update_mcast(struct ieee80211com *); 171 static void ath_update_promisc(struct ieee80211com *); 172 static void ath_updateslot(struct ieee80211com *); 173 static void ath_bstuck_proc(void *, int); 174 static void ath_reset_proc(void *, int); 175 static int ath_desc_alloc(struct ath_softc *); 176 static void ath_desc_free(struct ath_softc *); 177 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 178 const uint8_t [IEEE80211_ADDR_LEN]); 179 static void ath_node_cleanup(struct ieee80211_node *); 180 static void ath_node_free(struct ieee80211_node *); 181 static void ath_node_getsignal(const struct ieee80211_node *, 182 int8_t *, int8_t *); 183 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 184 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 185 static int ath_tx_setup(struct ath_softc *, int, int); 186 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 187 static void ath_tx_cleanup(struct ath_softc *); 188 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 189 int dosched); 190 static void ath_tx_proc_q0(void *, int); 191 static void ath_tx_proc_q0123(void *, int); 192 static void ath_tx_proc(void *, int); 193 static void ath_txq_sched_tasklet(void *, int); 194 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_scan_start(struct ieee80211com *); 197 static void ath_scan_end(struct ieee80211com *); 198 static void ath_set_channel(struct ieee80211com *); 199 #ifdef ATH_ENABLE_11N 200 static void ath_update_chw(struct ieee80211com *); 201 #endif /* ATH_ENABLE_11N */ 202 static void ath_calibrate(void *); 203 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 204 static void ath_setup_stationkey(struct ieee80211_node *); 205 static void ath_newassoc(struct ieee80211_node *, int); 206 static int ath_setregdomain(struct ieee80211com *, 207 struct ieee80211_regdomain *, int, 208 struct ieee80211_channel []); 209 static void ath_getradiocaps(struct ieee80211com *, int, int *, 210 struct ieee80211_channel []); 211 static int ath_getchannels(struct ath_softc *); 212 213 static int ath_rate_setup(struct ath_softc *, u_int mode); 214 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 215 216 static void ath_announce(struct ath_softc *); 217 218 static void ath_dfs_tasklet(void *, int); 219 static void ath_node_powersave(struct ieee80211_node *, int); 220 static int ath_node_set_tim(struct ieee80211_node *, int); 221 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 222 223 #ifdef IEEE80211_SUPPORT_TDMA 224 #include <dev/ath/if_ath_tdma.h> 225 #endif 226 227 SYSCTL_DECL(_hw_ath); 228 229 /* XXX validate sysctl values */ 230 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 232 0, "long chip calibration interval (secs)"); 233 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 235 0, "short chip calibration interval (msecs)"); 236 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 238 0, "reset chip calibration results (secs)"); 239 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 241 0, "ANI calibration (msecs)"); 242 243 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 244 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 245 0, "rx buffers allocated"); 246 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 248 0, "tx buffers allocated"); 249 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 251 0, "tx (mgmt) buffers allocated"); 252 253 int ath_bstuck_threshold = 4; /* max missed beacons */ 254 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 255 0, "max missed beacon xmits before chip reset"); 256 257 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 258 259 void 260 ath_legacy_attach_comp_func(struct ath_softc *sc) 261 { 262 263 /* 264 * Special case certain configurations. Note the 265 * CAB queue is handled by these specially so don't 266 * include them when checking the txq setup mask. 267 */ 268 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 269 case 0x01: 270 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 271 break; 272 case 0x0f: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 274 break; 275 default: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 277 break; 278 } 279 } 280 281 /* 282 * Set the target power mode. 283 * 284 * If this is called during a point in time where 285 * the hardware is being programmed elsewhere, it will 286 * simply store it away and update it when all current 287 * uses of the hardware are completed. 288 */ 289 void 290 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 291 { 292 ATH_LOCK_ASSERT(sc); 293 294 sc->sc_target_powerstate = power_state; 295 296 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 297 __func__, 298 file, 299 line, 300 power_state, 301 sc->sc_powersave_refcnt); 302 303 if (sc->sc_powersave_refcnt == 0 && 304 power_state != sc->sc_cur_powerstate) { 305 sc->sc_cur_powerstate = power_state; 306 ath_hal_setpower(sc->sc_ah, power_state); 307 308 /* 309 * If the NIC is force-awake, then set the 310 * self-gen frame state appropriately. 311 * 312 * If the nic is in network sleep or full-sleep, 313 * we let the above call leave the self-gen 314 * state as "sleep". 315 */ 316 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 317 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 318 ath_hal_setselfgenpower(sc->sc_ah, 319 sc->sc_target_selfgen_state); 320 } 321 } 322 } 323 324 /* 325 * Set the current self-generated frames state. 326 * 327 * This is separate from the target power mode. The chip may be 328 * awake but the desired state is "sleep", so frames sent to the 329 * destination has PWRMGT=1 in the 802.11 header. The NIC also 330 * needs to know to set PWRMGT=1 in self-generated frames. 331 */ 332 void 333 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 334 { 335 336 ATH_LOCK_ASSERT(sc); 337 338 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 339 __func__, 340 file, 341 line, 342 power_state, 343 sc->sc_target_selfgen_state); 344 345 sc->sc_target_selfgen_state = power_state; 346 347 /* 348 * If the NIC is force-awake, then set the power state. 349 * Network-state and full-sleep will already transition it to 350 * mark self-gen frames as sleeping - and we can't 351 * guarantee the NIC is awake to program the self-gen frame 352 * setting anyway. 353 */ 354 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 355 ath_hal_setselfgenpower(sc->sc_ah, power_state); 356 } 357 } 358 359 /* 360 * Set the hardware power mode and take a reference. 361 * 362 * This doesn't update the target power mode in the driver; 363 * it just updates the hardware power state. 364 * 365 * XXX it should only ever force the hardware awake; it should 366 * never be called to set it asleep. 367 */ 368 void 369 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 370 { 371 ATH_LOCK_ASSERT(sc); 372 373 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 374 __func__, 375 file, 376 line, 377 power_state, 378 sc->sc_powersave_refcnt); 379 380 sc->sc_powersave_refcnt++; 381 382 if (power_state != sc->sc_cur_powerstate) { 383 ath_hal_setpower(sc->sc_ah, power_state); 384 sc->sc_cur_powerstate = power_state; 385 386 /* 387 * Adjust the self-gen powerstate if appropriate. 388 */ 389 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 390 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 391 ath_hal_setselfgenpower(sc->sc_ah, 392 sc->sc_target_selfgen_state); 393 } 394 395 } 396 } 397 398 /* 399 * Restore the power save mode to what it once was. 400 * 401 * This will decrement the reference counter and once it hits 402 * zero, it'll restore the powersave state. 403 */ 404 void 405 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 406 { 407 408 ATH_LOCK_ASSERT(sc); 409 410 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 411 __func__, 412 file, 413 line, 414 sc->sc_powersave_refcnt, 415 sc->sc_target_powerstate); 416 417 if (sc->sc_powersave_refcnt == 0) 418 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 419 else 420 sc->sc_powersave_refcnt--; 421 422 if (sc->sc_powersave_refcnt == 0 && 423 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 424 sc->sc_cur_powerstate = sc->sc_target_powerstate; 425 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 426 } 427 428 /* 429 * Adjust the self-gen powerstate if appropriate. 430 */ 431 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 432 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 433 ath_hal_setselfgenpower(sc->sc_ah, 434 sc->sc_target_selfgen_state); 435 } 436 437 } 438 439 /* 440 * Configure the initial HAL configuration values based on bus 441 * specific parameters. 442 * 443 * Some PCI IDs and other information may need tweaking. 444 * 445 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 446 * if BT antenna diversity isn't enabled. 447 * 448 * So, let's also figure out how to enable BT diversity for AR9485. 449 */ 450 static void 451 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 452 { 453 /* XXX TODO: only for PCI devices? */ 454 455 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 456 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 457 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 458 ah_config->ath_hal_min_gainidx = AH_TRUE; 459 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 460 /* XXX low_rssi_thresh */ 461 /* XXX fast_div_bias */ 462 device_printf(sc->sc_dev, "configuring for %s\n", 463 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 464 "CUS198" : "CUS230"); 465 } 466 467 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 468 device_printf(sc->sc_dev, "CUS217 card detected\n"); 469 470 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 471 device_printf(sc->sc_dev, "CUS252 card detected\n"); 472 473 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 474 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 475 476 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 477 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 478 479 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 480 device_printf(sc->sc_dev, 481 "Bluetooth Antenna Diversity card detected\n"); 482 483 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 484 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 485 486 #if 0 487 /* 488 * Some WB335 cards do not support antenna diversity. Since 489 * we use a hardcoded value for AR9565 instead of using the 490 * EEPROM/OTP data, remove the combining feature from 491 * the HW capabilities bitmap. 492 */ 493 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 494 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 495 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 496 } 497 498 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 499 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 500 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 501 } 502 #endif 503 504 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 505 ah_config->ath_hal_pcie_waen = 0x0040473b; 506 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 507 } 508 509 #if 0 510 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 511 ah->config.no_pll_pwrsave = true; 512 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 513 } 514 #endif 515 516 } 517 518 /* 519 * Attempt to fetch the MAC address from the kernel environment. 520 * 521 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 522 */ 523 static int 524 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 525 { 526 char devid_str[32]; 527 int local_mac = 0; 528 char *local_macstr; 529 530 /* 531 * Fetch from the kenv rather than using hints. 532 * 533 * Hints would be nice but the transition to dynamic 534 * hints/kenv doesn't happen early enough for this 535 * to work reliably (eg on anything embedded.) 536 */ 537 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 538 device_get_name(sc->sc_dev), 539 device_get_unit(sc->sc_dev)); 540 541 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 542 uint32_t tmpmac[ETHER_ADDR_LEN]; 543 int count; 544 int i; 545 546 /* Have a MAC address; should use it */ 547 device_printf(sc->sc_dev, 548 "Overriding MAC address from environment: '%s'\n", 549 local_macstr); 550 551 /* Extract out the MAC address */ 552 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 553 &tmpmac[0], &tmpmac[1], 554 &tmpmac[2], &tmpmac[3], 555 &tmpmac[4], &tmpmac[5]); 556 if (count == 6) { 557 /* Valid! */ 558 local_mac = 1; 559 for (i = 0; i < ETHER_ADDR_LEN; i++) 560 macaddr[i] = tmpmac[i]; 561 } 562 /* Done! */ 563 freeenv(local_macstr); 564 local_macstr = NULL; 565 } 566 567 if (local_mac) 568 return (0); 569 return (-1); 570 } 571 572 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 573 #define HAL_MODE_HT40 \ 574 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 575 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 576 int 577 ath_attach(u_int16_t devid, struct ath_softc *sc) 578 { 579 struct ieee80211com *ic = &sc->sc_ic; 580 struct ath_hal *ah = NULL; 581 HAL_STATUS status; 582 int error = 0, i; 583 u_int wmodes; 584 int rx_chainmask, tx_chainmask; 585 HAL_OPS_CONFIG ah_config; 586 587 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 588 589 ic->ic_softc = sc; 590 ic->ic_name = device_get_nameunit(sc->sc_dev); 591 592 /* 593 * Configure the initial configuration data. 594 * 595 * This is stuff that may be needed early during attach 596 * rather than done via configuration calls later. 597 */ 598 bzero(&ah_config, sizeof(ah_config)); 599 ath_setup_hal_config(sc, &ah_config); 600 601 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 602 sc->sc_eepromdata, &ah_config, &status); 603 if (ah == NULL) { 604 device_printf(sc->sc_dev, 605 "unable to attach hardware; HAL status %u\n", status); 606 error = ENXIO; 607 goto bad; 608 } 609 sc->sc_ah = ah; 610 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 611 #ifdef ATH_DEBUG 612 sc->sc_debug = ath_debug; 613 #endif 614 615 /* 616 * Setup the DMA/EDMA functions based on the current 617 * hardware support. 618 * 619 * This is required before the descriptors are allocated. 620 */ 621 if (ath_hal_hasedma(sc->sc_ah)) { 622 sc->sc_isedma = 1; 623 ath_recv_setup_edma(sc); 624 ath_xmit_setup_edma(sc); 625 } else { 626 ath_recv_setup_legacy(sc); 627 ath_xmit_setup_legacy(sc); 628 } 629 630 if (ath_hal_hasmybeacon(sc->sc_ah)) { 631 sc->sc_do_mybeacon = 1; 632 } 633 634 /* 635 * Check if the MAC has multi-rate retry support. 636 * We do this by trying to setup a fake extended 637 * descriptor. MAC's that don't have support will 638 * return false w/o doing anything. MAC's that do 639 * support it will return true w/o doing anything. 640 */ 641 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 642 643 /* 644 * Check if the device has hardware counters for PHY 645 * errors. If so we need to enable the MIB interrupt 646 * so we can act on stat triggers. 647 */ 648 if (ath_hal_hwphycounters(ah)) 649 sc->sc_needmib = 1; 650 651 /* 652 * Get the hardware key cache size. 653 */ 654 sc->sc_keymax = ath_hal_keycachesize(ah); 655 if (sc->sc_keymax > ATH_KEYMAX) { 656 device_printf(sc->sc_dev, 657 "Warning, using only %u of %u key cache slots\n", 658 ATH_KEYMAX, sc->sc_keymax); 659 sc->sc_keymax = ATH_KEYMAX; 660 } 661 /* 662 * Reset the key cache since some parts do not 663 * reset the contents on initial power up. 664 */ 665 for (i = 0; i < sc->sc_keymax; i++) 666 ath_hal_keyreset(ah, i); 667 668 /* 669 * Collect the default channel list. 670 */ 671 error = ath_getchannels(sc); 672 if (error != 0) 673 goto bad; 674 675 /* 676 * Setup rate tables for all potential media types. 677 */ 678 ath_rate_setup(sc, IEEE80211_MODE_11A); 679 ath_rate_setup(sc, IEEE80211_MODE_11B); 680 ath_rate_setup(sc, IEEE80211_MODE_11G); 681 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 682 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 683 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 684 ath_rate_setup(sc, IEEE80211_MODE_11NA); 685 ath_rate_setup(sc, IEEE80211_MODE_11NG); 686 ath_rate_setup(sc, IEEE80211_MODE_HALF); 687 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 688 689 /* NB: setup here so ath_rate_update is happy */ 690 ath_setcurmode(sc, IEEE80211_MODE_11A); 691 692 /* 693 * Allocate TX descriptors and populate the lists. 694 */ 695 error = ath_desc_alloc(sc); 696 if (error != 0) { 697 device_printf(sc->sc_dev, 698 "failed to allocate TX descriptors: %d\n", error); 699 goto bad; 700 } 701 error = ath_txdma_setup(sc); 702 if (error != 0) { 703 device_printf(sc->sc_dev, 704 "failed to allocate TX descriptors: %d\n", error); 705 goto bad; 706 } 707 708 /* 709 * Allocate RX descriptors and populate the lists. 710 */ 711 error = ath_rxdma_setup(sc); 712 if (error != 0) { 713 device_printf(sc->sc_dev, 714 "failed to allocate RX descriptors: %d\n", error); 715 goto bad; 716 } 717 718 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 719 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 720 721 ATH_TXBUF_LOCK_INIT(sc); 722 723 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 724 taskqueue_thread_enqueue, &sc->sc_tq); 725 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 726 device_get_nameunit(sc->sc_dev)); 727 728 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 729 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 730 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 731 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 732 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 733 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 734 735 /* 736 * Allocate hardware transmit queues: one queue for 737 * beacon frames and one data queue for each QoS 738 * priority. Note that the hal handles resetting 739 * these queues at the needed time. 740 * 741 * XXX PS-Poll 742 */ 743 sc->sc_bhalq = ath_beaconq_setup(sc); 744 if (sc->sc_bhalq == (u_int) -1) { 745 device_printf(sc->sc_dev, 746 "unable to setup a beacon xmit queue!\n"); 747 error = EIO; 748 goto bad2; 749 } 750 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 751 if (sc->sc_cabq == NULL) { 752 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 753 error = EIO; 754 goto bad2; 755 } 756 /* NB: insure BK queue is the lowest priority h/w queue */ 757 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 758 device_printf(sc->sc_dev, 759 "unable to setup xmit queue for %s traffic!\n", 760 ieee80211_wme_acnames[WME_AC_BK]); 761 error = EIO; 762 goto bad2; 763 } 764 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 765 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 766 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 767 /* 768 * Not enough hardware tx queues to properly do WME; 769 * just punt and assign them all to the same h/w queue. 770 * We could do a better job of this if, for example, 771 * we allocate queues when we switch from station to 772 * AP mode. 773 */ 774 if (sc->sc_ac2q[WME_AC_VI] != NULL) 775 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 776 if (sc->sc_ac2q[WME_AC_BE] != NULL) 777 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 778 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 779 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 780 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 781 } 782 783 /* 784 * Attach the TX completion function. 785 * 786 * The non-EDMA chips may have some special case optimisations; 787 * this method gives everyone a chance to attach cleanly. 788 */ 789 sc->sc_tx.xmit_attach_comp_func(sc); 790 791 /* 792 * Setup rate control. Some rate control modules 793 * call back to change the anntena state so expose 794 * the necessary entry points. 795 * XXX maybe belongs in struct ath_ratectrl? 796 */ 797 sc->sc_setdefantenna = ath_setdefantenna; 798 sc->sc_rc = ath_rate_attach(sc); 799 if (sc->sc_rc == NULL) { 800 error = EIO; 801 goto bad2; 802 } 803 804 /* Attach DFS module */ 805 if (! ath_dfs_attach(sc)) { 806 device_printf(sc->sc_dev, 807 "%s: unable to attach DFS\n", __func__); 808 error = EIO; 809 goto bad2; 810 } 811 812 /* Attach spectral module */ 813 if (ath_spectral_attach(sc) < 0) { 814 device_printf(sc->sc_dev, 815 "%s: unable to attach spectral\n", __func__); 816 error = EIO; 817 goto bad2; 818 } 819 820 /* Attach bluetooth coexistence module */ 821 if (ath_btcoex_attach(sc) < 0) { 822 device_printf(sc->sc_dev, 823 "%s: unable to attach bluetooth coexistence\n", __func__); 824 error = EIO; 825 goto bad2; 826 } 827 828 /* Attach LNA diversity module */ 829 if (ath_lna_div_attach(sc) < 0) { 830 device_printf(sc->sc_dev, 831 "%s: unable to attach LNA diversity\n", __func__); 832 error = EIO; 833 goto bad2; 834 } 835 836 /* Start DFS processing tasklet */ 837 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 838 839 /* Configure LED state */ 840 sc->sc_blinking = 0; 841 sc->sc_ledstate = 1; 842 sc->sc_ledon = 0; /* low true */ 843 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 844 callout_init(&sc->sc_ledtimer, 1); 845 846 /* 847 * Don't setup hardware-based blinking. 848 * 849 * Although some NICs may have this configured in the 850 * default reset register values, the user may wish 851 * to alter which pins have which function. 852 * 853 * The reference driver attaches the MAC network LED to GPIO1 and 854 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 855 * NIC has these reversed. 856 */ 857 sc->sc_hardled = (1 == 0); 858 sc->sc_led_net_pin = -1; 859 sc->sc_led_pwr_pin = -1; 860 /* 861 * Auto-enable soft led processing for IBM cards and for 862 * 5211 minipci cards. Users can also manually enable/disable 863 * support with a sysctl. 864 */ 865 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 866 ath_led_config(sc); 867 ath_hal_setledstate(ah, HAL_LED_INIT); 868 869 /* XXX not right but it's not used anywhere important */ 870 ic->ic_phytype = IEEE80211_T_OFDM; 871 ic->ic_opmode = IEEE80211_M_STA; 872 ic->ic_caps = 873 IEEE80211_C_STA /* station mode */ 874 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 875 | IEEE80211_C_HOSTAP /* hostap mode */ 876 | IEEE80211_C_MONITOR /* monitor mode */ 877 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 878 | IEEE80211_C_WDS /* 4-address traffic works */ 879 | IEEE80211_C_MBSS /* mesh point link mode */ 880 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 881 | IEEE80211_C_SHSLOT /* short slot time supported */ 882 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 883 #ifndef ATH_ENABLE_11N 884 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 885 #endif 886 | IEEE80211_C_TXFRAG /* handle tx frags */ 887 #ifdef ATH_ENABLE_DFS 888 | IEEE80211_C_DFS /* Enable radar detection */ 889 #endif 890 | IEEE80211_C_PMGT /* Station side power mgmt */ 891 | IEEE80211_C_SWSLEEP 892 ; 893 /* 894 * Query the hal to figure out h/w crypto support. 895 */ 896 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 897 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 898 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 899 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 900 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 901 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 902 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 903 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 904 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 905 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 906 /* 907 * Check if h/w does the MIC and/or whether the 908 * separate key cache entries are required to 909 * handle both tx+rx MIC keys. 910 */ 911 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 912 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 913 /* 914 * If the h/w supports storing tx+rx MIC keys 915 * in one cache slot automatically enable use. 916 */ 917 if (ath_hal_hastkipsplit(ah) || 918 !ath_hal_settkipsplit(ah, AH_FALSE)) 919 sc->sc_splitmic = 1; 920 /* 921 * If the h/w can do TKIP MIC together with WME then 922 * we use it; otherwise we force the MIC to be done 923 * in software by the net80211 layer. 924 */ 925 if (ath_hal_haswmetkipmic(ah)) 926 sc->sc_wmetkipmic = 1; 927 } 928 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 929 /* 930 * Check for multicast key search support. 931 */ 932 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 933 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 934 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 935 } 936 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 937 /* 938 * Mark key cache slots associated with global keys 939 * as in use. If we knew TKIP was not to be used we 940 * could leave the +32, +64, and +32+64 slots free. 941 */ 942 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 943 setbit(sc->sc_keymap, i); 944 setbit(sc->sc_keymap, i+64); 945 if (sc->sc_splitmic) { 946 setbit(sc->sc_keymap, i+32); 947 setbit(sc->sc_keymap, i+32+64); 948 } 949 } 950 /* 951 * TPC support can be done either with a global cap or 952 * per-packet support. The latter is not available on 953 * all parts. We're a bit pedantic here as all parts 954 * support a global cap. 955 */ 956 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 957 ic->ic_caps |= IEEE80211_C_TXPMGT; 958 959 /* 960 * Mark WME capability only if we have sufficient 961 * hardware queues to do proper priority scheduling. 962 */ 963 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 964 ic->ic_caps |= IEEE80211_C_WME; 965 /* 966 * Check for misc other capabilities. 967 */ 968 if (ath_hal_hasbursting(ah)) 969 ic->ic_caps |= IEEE80211_C_BURST; 970 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 971 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 972 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 973 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 974 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 975 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 976 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 977 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 978 979 if (ath_hal_hasfastframes(ah)) 980 ic->ic_caps |= IEEE80211_C_FF; 981 wmodes = ath_hal_getwirelessmodes(ah); 982 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 983 ic->ic_caps |= IEEE80211_C_TURBOP; 984 #ifdef IEEE80211_SUPPORT_TDMA 985 if (ath_hal_macversion(ah) > 0x78) { 986 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 987 ic->ic_tdma_update = ath_tdma_update; 988 } 989 #endif 990 991 /* 992 * TODO: enforce that at least this many frames are available 993 * in the txbuf list before allowing data frames (raw or 994 * otherwise) to be transmitted. 995 */ 996 sc->sc_txq_data_minfree = 10; 997 /* 998 * Leave this as default to maintain legacy behaviour. 999 * Shortening the cabq/mcastq may end up causing some 1000 * undesirable behaviour. 1001 */ 1002 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 1003 1004 /* 1005 * How deep can the node software TX queue get whilst it's asleep. 1006 */ 1007 sc->sc_txq_node_psq_maxdepth = 16; 1008 1009 /* 1010 * Default the maximum queue depth for a given node 1011 * to 1/4'th the TX buffers, or 64, whichever 1012 * is larger. 1013 */ 1014 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 1015 1016 /* Enable CABQ by default */ 1017 sc->sc_cabq_enable = 1; 1018 1019 /* 1020 * Allow the TX and RX chainmasks to be overridden by 1021 * environment variables and/or device.hints. 1022 * 1023 * This must be done early - before the hardware is 1024 * calibrated or before the 802.11n stream calculation 1025 * is done. 1026 */ 1027 if (resource_int_value(device_get_name(sc->sc_dev), 1028 device_get_unit(sc->sc_dev), "rx_chainmask", 1029 &rx_chainmask) == 0) { 1030 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1031 rx_chainmask); 1032 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1033 } 1034 if (resource_int_value(device_get_name(sc->sc_dev), 1035 device_get_unit(sc->sc_dev), "tx_chainmask", 1036 &tx_chainmask) == 0) { 1037 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1038 tx_chainmask); 1039 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1040 } 1041 1042 /* 1043 * Query the TX/RX chainmask configuration. 1044 * 1045 * This is only relevant for 11n devices. 1046 */ 1047 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1048 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1049 1050 /* 1051 * Disable MRR with protected frames by default. 1052 * Only 802.11n series NICs can handle this. 1053 */ 1054 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1055 1056 /* 1057 * Query the enterprise mode information the HAL. 1058 */ 1059 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1060 &sc->sc_ent_cfg) == HAL_OK) 1061 sc->sc_use_ent = 1; 1062 1063 #ifdef ATH_ENABLE_11N 1064 /* 1065 * Query HT capabilities 1066 */ 1067 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1068 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1069 uint32_t rxs, txs; 1070 uint32_t ldpc; 1071 1072 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1073 1074 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1075 1076 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1077 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1078 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1079 | IEEE80211_HTCAP_MAXAMSDU_3839 1080 /* max A-MSDU length */ 1081 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1082 1083 /* 1084 * Enable short-GI for HT20 only if the hardware 1085 * advertises support. 1086 * Notably, anything earlier than the AR9287 doesn't. 1087 */ 1088 if ((ath_hal_getcapability(ah, 1089 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1090 (wmodes & HAL_MODE_HT20)) { 1091 device_printf(sc->sc_dev, 1092 "[HT] enabling short-GI in 20MHz mode\n"); 1093 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1094 } 1095 1096 if (wmodes & HAL_MODE_HT40) 1097 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1098 | IEEE80211_HTCAP_SHORTGI40; 1099 1100 /* 1101 * TX/RX streams need to be taken into account when 1102 * negotiating which MCS rates it'll receive and 1103 * what MCS rates are available for TX. 1104 */ 1105 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1106 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1107 ic->ic_txstream = txs; 1108 ic->ic_rxstream = rxs; 1109 1110 /* 1111 * Setup TX and RX STBC based on what the HAL allows and 1112 * the currently configured chainmask set. 1113 * Ie - don't enable STBC TX if only one chain is enabled. 1114 * STBC RX is fine on a single RX chain; it just won't 1115 * provide any real benefit. 1116 */ 1117 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1118 NULL) == HAL_OK) { 1119 sc->sc_rx_stbc = 1; 1120 device_printf(sc->sc_dev, 1121 "[HT] 1 stream STBC receive enabled\n"); 1122 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1123 } 1124 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1125 NULL) == HAL_OK) { 1126 sc->sc_tx_stbc = 1; 1127 device_printf(sc->sc_dev, 1128 "[HT] 1 stream STBC transmit enabled\n"); 1129 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1130 } 1131 1132 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1133 &sc->sc_rts_aggr_limit); 1134 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1135 device_printf(sc->sc_dev, 1136 "[HT] RTS aggregates limited to %d KiB\n", 1137 sc->sc_rts_aggr_limit / 1024); 1138 1139 /* 1140 * LDPC 1141 */ 1142 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1143 == HAL_OK && (ldpc == 1)) { 1144 sc->sc_has_ldpc = 1; 1145 device_printf(sc->sc_dev, 1146 "[HT] LDPC transmit/receive enabled\n"); 1147 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC; 1148 } 1149 1150 1151 device_printf(sc->sc_dev, 1152 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1153 } 1154 #endif 1155 1156 /* 1157 * Initial aggregation settings. 1158 */ 1159 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1160 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1161 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1162 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1163 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1164 sc->sc_delim_min_pad = 0; 1165 1166 /* 1167 * Check if the hardware requires PCI register serialisation. 1168 * Some of the Owl based MACs require this. 1169 */ 1170 if (mp_ncpus > 1 && 1171 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1172 0, NULL) == HAL_OK) { 1173 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1174 device_printf(sc->sc_dev, 1175 "Enabling register serialisation\n"); 1176 } 1177 1178 /* 1179 * Initialise the deferred completed RX buffer list. 1180 */ 1181 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1182 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1183 1184 /* 1185 * Indicate we need the 802.11 header padded to a 1186 * 32-bit boundary for 4-address and QoS frames. 1187 */ 1188 ic->ic_flags |= IEEE80211_F_DATAPAD; 1189 1190 /* 1191 * Query the hal about antenna support. 1192 */ 1193 sc->sc_defant = ath_hal_getdefantenna(ah); 1194 1195 /* 1196 * Not all chips have the VEOL support we want to 1197 * use with IBSS beacons; check here for it. 1198 */ 1199 sc->sc_hasveol = ath_hal_hasveol(ah); 1200 1201 /* get mac address from kenv first, then hardware */ 1202 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1203 /* Tell the HAL now about the new MAC */ 1204 ath_hal_setmac(ah, ic->ic_macaddr); 1205 } else { 1206 ath_hal_getmac(ah, ic->ic_macaddr); 1207 } 1208 1209 if (sc->sc_hasbmask) 1210 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1211 1212 /* NB: used to size node table key mapping array */ 1213 ic->ic_max_keyix = sc->sc_keymax; 1214 /* call MI attach routine. */ 1215 ieee80211_ifattach(ic); 1216 ic->ic_setregdomain = ath_setregdomain; 1217 ic->ic_getradiocaps = ath_getradiocaps; 1218 sc->sc_opmode = HAL_M_STA; 1219 1220 /* override default methods */ 1221 ic->ic_ioctl = ath_ioctl; 1222 ic->ic_parent = ath_parent; 1223 ic->ic_transmit = ath_transmit; 1224 ic->ic_newassoc = ath_newassoc; 1225 ic->ic_updateslot = ath_updateslot; 1226 ic->ic_wme.wme_update = ath_wme_update; 1227 ic->ic_vap_create = ath_vap_create; 1228 ic->ic_vap_delete = ath_vap_delete; 1229 ic->ic_raw_xmit = ath_raw_xmit; 1230 ic->ic_update_mcast = ath_update_mcast; 1231 ic->ic_update_promisc = ath_update_promisc; 1232 ic->ic_node_alloc = ath_node_alloc; 1233 sc->sc_node_free = ic->ic_node_free; 1234 ic->ic_node_free = ath_node_free; 1235 sc->sc_node_cleanup = ic->ic_node_cleanup; 1236 ic->ic_node_cleanup = ath_node_cleanup; 1237 ic->ic_node_getsignal = ath_node_getsignal; 1238 ic->ic_scan_start = ath_scan_start; 1239 ic->ic_scan_end = ath_scan_end; 1240 ic->ic_set_channel = ath_set_channel; 1241 #ifdef ATH_ENABLE_11N 1242 /* 802.11n specific - but just override anyway */ 1243 sc->sc_addba_request = ic->ic_addba_request; 1244 sc->sc_addba_response = ic->ic_addba_response; 1245 sc->sc_addba_stop = ic->ic_addba_stop; 1246 sc->sc_bar_response = ic->ic_bar_response; 1247 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1248 1249 ic->ic_addba_request = ath_addba_request; 1250 ic->ic_addba_response = ath_addba_response; 1251 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1252 ic->ic_addba_stop = ath_addba_stop; 1253 ic->ic_bar_response = ath_bar_response; 1254 1255 ic->ic_update_chw = ath_update_chw; 1256 #endif /* ATH_ENABLE_11N */ 1257 1258 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1259 /* 1260 * There's one vendor bitmap entry in the RX radiotap 1261 * header; make sure that's taken into account. 1262 */ 1263 ieee80211_radiotap_attachv(ic, 1264 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1265 ATH_TX_RADIOTAP_PRESENT, 1266 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1267 ATH_RX_RADIOTAP_PRESENT); 1268 #else 1269 /* 1270 * No vendor bitmap/extensions are present. 1271 */ 1272 ieee80211_radiotap_attach(ic, 1273 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1274 ATH_TX_RADIOTAP_PRESENT, 1275 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1276 ATH_RX_RADIOTAP_PRESENT); 1277 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1278 1279 /* 1280 * Setup the ALQ logging if required 1281 */ 1282 #ifdef ATH_DEBUG_ALQ 1283 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1284 if_ath_alq_setcfg(&sc->sc_alq, 1285 sc->sc_ah->ah_macVersion, 1286 sc->sc_ah->ah_macRev, 1287 sc->sc_ah->ah_phyRev, 1288 sc->sc_ah->ah_magic); 1289 #endif 1290 1291 /* 1292 * Setup dynamic sysctl's now that country code and 1293 * regdomain are available from the hal. 1294 */ 1295 ath_sysctlattach(sc); 1296 ath_sysctl_stats_attach(sc); 1297 ath_sysctl_hal_attach(sc); 1298 1299 if (bootverbose) 1300 ieee80211_announce(ic); 1301 ath_announce(sc); 1302 1303 /* 1304 * Put it to sleep for now. 1305 */ 1306 ATH_LOCK(sc); 1307 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1308 ATH_UNLOCK(sc); 1309 1310 return 0; 1311 bad2: 1312 ath_tx_cleanup(sc); 1313 ath_desc_free(sc); 1314 ath_txdma_teardown(sc); 1315 ath_rxdma_teardown(sc); 1316 bad: 1317 if (ah) 1318 ath_hal_detach(ah); 1319 sc->sc_invalid = 1; 1320 return error; 1321 } 1322 1323 int 1324 ath_detach(struct ath_softc *sc) 1325 { 1326 1327 /* 1328 * NB: the order of these is important: 1329 * o stop the chip so no more interrupts will fire 1330 * o call the 802.11 layer before detaching the hal to 1331 * insure callbacks into the driver to delete global 1332 * key cache entries can be handled 1333 * o free the taskqueue which drains any pending tasks 1334 * o reclaim the tx queue data structures after calling 1335 * the 802.11 layer as we'll get called back to reclaim 1336 * node state and potentially want to use them 1337 * o to cleanup the tx queues the hal is called, so detach 1338 * it last 1339 * Other than that, it's straightforward... 1340 */ 1341 1342 /* 1343 * XXX Wake the hardware up first. ath_stop() will still 1344 * wake it up first, but I'd rather do it here just to 1345 * ensure it's awake. 1346 */ 1347 ATH_LOCK(sc); 1348 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1349 ath_power_setpower(sc, HAL_PM_AWAKE); 1350 1351 /* 1352 * Stop things cleanly. 1353 */ 1354 ath_stop(sc); 1355 ATH_UNLOCK(sc); 1356 1357 ieee80211_ifdetach(&sc->sc_ic); 1358 taskqueue_free(sc->sc_tq); 1359 #ifdef ATH_TX99_DIAG 1360 if (sc->sc_tx99 != NULL) 1361 sc->sc_tx99->detach(sc->sc_tx99); 1362 #endif 1363 ath_rate_detach(sc->sc_rc); 1364 #ifdef ATH_DEBUG_ALQ 1365 if_ath_alq_tidyup(&sc->sc_alq); 1366 #endif 1367 ath_lna_div_detach(sc); 1368 ath_btcoex_detach(sc); 1369 ath_spectral_detach(sc); 1370 ath_dfs_detach(sc); 1371 ath_desc_free(sc); 1372 ath_txdma_teardown(sc); 1373 ath_rxdma_teardown(sc); 1374 ath_tx_cleanup(sc); 1375 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1376 1377 return 0; 1378 } 1379 1380 /* 1381 * MAC address handling for multiple BSS on the same radio. 1382 * The first vap uses the MAC address from the EEPROM. For 1383 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1384 * address and use the next six bits as an index. 1385 */ 1386 static void 1387 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1388 { 1389 int i; 1390 1391 if (clone && sc->sc_hasbmask) { 1392 /* NB: we only do this if h/w supports multiple bssid */ 1393 for (i = 0; i < 8; i++) 1394 if ((sc->sc_bssidmask & (1<<i)) == 0) 1395 break; 1396 if (i != 0) 1397 mac[0] |= (i << 2)|0x2; 1398 } else 1399 i = 0; 1400 sc->sc_bssidmask |= 1<<i; 1401 sc->sc_hwbssidmask[0] &= ~mac[0]; 1402 if (i == 0) 1403 sc->sc_nbssid0++; 1404 } 1405 1406 static void 1407 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1408 { 1409 int i = mac[0] >> 2; 1410 uint8_t mask; 1411 1412 if (i != 0 || --sc->sc_nbssid0 == 0) { 1413 sc->sc_bssidmask &= ~(1<<i); 1414 /* recalculate bssid mask from remaining addresses */ 1415 mask = 0xff; 1416 for (i = 1; i < 8; i++) 1417 if (sc->sc_bssidmask & (1<<i)) 1418 mask &= ~((i<<2)|0x2); 1419 sc->sc_hwbssidmask[0] |= mask; 1420 } 1421 } 1422 1423 /* 1424 * Assign a beacon xmit slot. We try to space out 1425 * assignments so when beacons are staggered the 1426 * traffic coming out of the cab q has maximal time 1427 * to go out before the next beacon is scheduled. 1428 */ 1429 static int 1430 assign_bslot(struct ath_softc *sc) 1431 { 1432 u_int slot, free; 1433 1434 free = 0; 1435 for (slot = 0; slot < ATH_BCBUF; slot++) 1436 if (sc->sc_bslot[slot] == NULL) { 1437 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1438 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1439 return slot; 1440 free = slot; 1441 /* NB: keep looking for a double slot */ 1442 } 1443 return free; 1444 } 1445 1446 static struct ieee80211vap * 1447 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1448 enum ieee80211_opmode opmode, int flags, 1449 const uint8_t bssid[IEEE80211_ADDR_LEN], 1450 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1451 { 1452 struct ath_softc *sc = ic->ic_softc; 1453 struct ath_vap *avp; 1454 struct ieee80211vap *vap; 1455 uint8_t mac[IEEE80211_ADDR_LEN]; 1456 int needbeacon, error; 1457 enum ieee80211_opmode ic_opmode; 1458 1459 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1460 needbeacon = 0; 1461 IEEE80211_ADDR_COPY(mac, mac0); 1462 1463 ATH_LOCK(sc); 1464 ic_opmode = opmode; /* default to opmode of new vap */ 1465 switch (opmode) { 1466 case IEEE80211_M_STA: 1467 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1468 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1469 goto bad; 1470 } 1471 if (sc->sc_nvaps) { 1472 /* 1473 * With multiple vaps we must fall back 1474 * to s/w beacon miss handling. 1475 */ 1476 flags |= IEEE80211_CLONE_NOBEACONS; 1477 } 1478 if (flags & IEEE80211_CLONE_NOBEACONS) { 1479 /* 1480 * Station mode w/o beacons are implemented w/ AP mode. 1481 */ 1482 ic_opmode = IEEE80211_M_HOSTAP; 1483 } 1484 break; 1485 case IEEE80211_M_IBSS: 1486 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1487 device_printf(sc->sc_dev, 1488 "only 1 ibss vap supported\n"); 1489 goto bad; 1490 } 1491 needbeacon = 1; 1492 break; 1493 case IEEE80211_M_AHDEMO: 1494 #ifdef IEEE80211_SUPPORT_TDMA 1495 if (flags & IEEE80211_CLONE_TDMA) { 1496 if (sc->sc_nvaps != 0) { 1497 device_printf(sc->sc_dev, 1498 "only 1 tdma vap supported\n"); 1499 goto bad; 1500 } 1501 needbeacon = 1; 1502 flags |= IEEE80211_CLONE_NOBEACONS; 1503 } 1504 /* fall thru... */ 1505 #endif 1506 case IEEE80211_M_MONITOR: 1507 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1508 /* 1509 * Adopt existing mode. Adding a monitor or ahdemo 1510 * vap to an existing configuration is of dubious 1511 * value but should be ok. 1512 */ 1513 /* XXX not right for monitor mode */ 1514 ic_opmode = ic->ic_opmode; 1515 } 1516 break; 1517 case IEEE80211_M_HOSTAP: 1518 case IEEE80211_M_MBSS: 1519 needbeacon = 1; 1520 break; 1521 case IEEE80211_M_WDS: 1522 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1523 device_printf(sc->sc_dev, 1524 "wds not supported in sta mode\n"); 1525 goto bad; 1526 } 1527 /* 1528 * Silently remove any request for a unique 1529 * bssid; WDS vap's always share the local 1530 * mac address. 1531 */ 1532 flags &= ~IEEE80211_CLONE_BSSID; 1533 if (sc->sc_nvaps == 0) 1534 ic_opmode = IEEE80211_M_HOSTAP; 1535 else 1536 ic_opmode = ic->ic_opmode; 1537 break; 1538 default: 1539 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1540 goto bad; 1541 } 1542 /* 1543 * Check that a beacon buffer is available; the code below assumes it. 1544 */ 1545 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1546 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1547 goto bad; 1548 } 1549 1550 /* STA, AHDEMO? */ 1551 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1552 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1553 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1554 } 1555 1556 vap = &avp->av_vap; 1557 /* XXX can't hold mutex across if_alloc */ 1558 ATH_UNLOCK(sc); 1559 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1560 ATH_LOCK(sc); 1561 if (error != 0) { 1562 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1563 __func__, error); 1564 goto bad2; 1565 } 1566 1567 /* h/w crypto support */ 1568 vap->iv_key_alloc = ath_key_alloc; 1569 vap->iv_key_delete = ath_key_delete; 1570 vap->iv_key_set = ath_key_set; 1571 vap->iv_key_update_begin = ath_key_update_begin; 1572 vap->iv_key_update_end = ath_key_update_end; 1573 1574 /* override various methods */ 1575 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1576 vap->iv_recv_mgmt = ath_recv_mgmt; 1577 vap->iv_reset = ath_reset_vap; 1578 vap->iv_update_beacon = ath_beacon_update; 1579 avp->av_newstate = vap->iv_newstate; 1580 vap->iv_newstate = ath_newstate; 1581 avp->av_bmiss = vap->iv_bmiss; 1582 vap->iv_bmiss = ath_bmiss_vap; 1583 1584 avp->av_node_ps = vap->iv_node_ps; 1585 vap->iv_node_ps = ath_node_powersave; 1586 1587 avp->av_set_tim = vap->iv_set_tim; 1588 vap->iv_set_tim = ath_node_set_tim; 1589 1590 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1591 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1592 1593 /* Set default parameters */ 1594 1595 /* 1596 * Anything earlier than some AR9300 series MACs don't 1597 * support a smaller MPDU density. 1598 */ 1599 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1600 /* 1601 * All NICs can handle the maximum size, however 1602 * AR5416 based MACs can only TX aggregates w/ RTS 1603 * protection when the total aggregate size is <= 8k. 1604 * However, for now that's enforced by the TX path. 1605 */ 1606 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1607 1608 avp->av_bslot = -1; 1609 if (needbeacon) { 1610 /* 1611 * Allocate beacon state and setup the q for buffered 1612 * multicast frames. We know a beacon buffer is 1613 * available because we checked above. 1614 */ 1615 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1616 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1617 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1618 /* 1619 * Assign the vap to a beacon xmit slot. As above 1620 * this cannot fail to find a free one. 1621 */ 1622 avp->av_bslot = assign_bslot(sc); 1623 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1624 ("beacon slot %u not empty", avp->av_bslot)); 1625 sc->sc_bslot[avp->av_bslot] = vap; 1626 sc->sc_nbcnvaps++; 1627 } 1628 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1629 /* 1630 * Multple vaps are to transmit beacons and we 1631 * have h/w support for TSF adjusting; enable 1632 * use of staggered beacons. 1633 */ 1634 sc->sc_stagbeacons = 1; 1635 } 1636 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1637 } 1638 1639 ic->ic_opmode = ic_opmode; 1640 if (opmode != IEEE80211_M_WDS) { 1641 sc->sc_nvaps++; 1642 if (opmode == IEEE80211_M_STA) 1643 sc->sc_nstavaps++; 1644 if (opmode == IEEE80211_M_MBSS) 1645 sc->sc_nmeshvaps++; 1646 } 1647 switch (ic_opmode) { 1648 case IEEE80211_M_IBSS: 1649 sc->sc_opmode = HAL_M_IBSS; 1650 break; 1651 case IEEE80211_M_STA: 1652 sc->sc_opmode = HAL_M_STA; 1653 break; 1654 case IEEE80211_M_AHDEMO: 1655 #ifdef IEEE80211_SUPPORT_TDMA 1656 if (vap->iv_caps & IEEE80211_C_TDMA) { 1657 sc->sc_tdma = 1; 1658 /* NB: disable tsf adjust */ 1659 sc->sc_stagbeacons = 0; 1660 } 1661 /* 1662 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1663 * just ap mode. 1664 */ 1665 /* fall thru... */ 1666 #endif 1667 case IEEE80211_M_HOSTAP: 1668 case IEEE80211_M_MBSS: 1669 sc->sc_opmode = HAL_M_HOSTAP; 1670 break; 1671 case IEEE80211_M_MONITOR: 1672 sc->sc_opmode = HAL_M_MONITOR; 1673 break; 1674 default: 1675 /* XXX should not happen */ 1676 break; 1677 } 1678 if (sc->sc_hastsfadd) { 1679 /* 1680 * Configure whether or not TSF adjust should be done. 1681 */ 1682 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1683 } 1684 if (flags & IEEE80211_CLONE_NOBEACONS) { 1685 /* 1686 * Enable s/w beacon miss handling. 1687 */ 1688 sc->sc_swbmiss = 1; 1689 } 1690 ATH_UNLOCK(sc); 1691 1692 /* complete setup */ 1693 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1694 mac); 1695 return vap; 1696 bad2: 1697 reclaim_address(sc, mac); 1698 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1699 bad: 1700 free(avp, M_80211_VAP); 1701 ATH_UNLOCK(sc); 1702 return NULL; 1703 } 1704 1705 static void 1706 ath_vap_delete(struct ieee80211vap *vap) 1707 { 1708 struct ieee80211com *ic = vap->iv_ic; 1709 struct ath_softc *sc = ic->ic_softc; 1710 struct ath_hal *ah = sc->sc_ah; 1711 struct ath_vap *avp = ATH_VAP(vap); 1712 1713 ATH_LOCK(sc); 1714 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1715 ATH_UNLOCK(sc); 1716 1717 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1718 if (sc->sc_running) { 1719 /* 1720 * Quiesce the hardware while we remove the vap. In 1721 * particular we need to reclaim all references to 1722 * the vap state by any frames pending on the tx queues. 1723 */ 1724 ath_hal_intrset(ah, 0); /* disable interrupts */ 1725 /* XXX Do all frames from all vaps/nodes need draining here? */ 1726 ath_stoprecv(sc, 1); /* stop recv side */ 1727 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1728 } 1729 1730 /* .. leave the hardware awake for now. */ 1731 1732 ieee80211_vap_detach(vap); 1733 1734 /* 1735 * XXX Danger Will Robinson! Danger! 1736 * 1737 * Because ieee80211_vap_detach() can queue a frame (the station 1738 * diassociate message?) after we've drained the TXQ and 1739 * flushed the software TXQ, we will end up with a frame queued 1740 * to a node whose vap is about to be freed. 1741 * 1742 * To work around this, flush the hardware/software again. 1743 * This may be racy - the ath task may be running and the packet 1744 * may be being scheduled between sw->hw txq. Tsk. 1745 * 1746 * TODO: figure out why a new node gets allocated somewhere around 1747 * here (after the ath_tx_swq() call; and after an ath_stop() 1748 * call!) 1749 */ 1750 1751 ath_draintxq(sc, ATH_RESET_DEFAULT); 1752 1753 ATH_LOCK(sc); 1754 /* 1755 * Reclaim beacon state. Note this must be done before 1756 * the vap instance is reclaimed as we may have a reference 1757 * to it in the buffer for the beacon frame. 1758 */ 1759 if (avp->av_bcbuf != NULL) { 1760 if (avp->av_bslot != -1) { 1761 sc->sc_bslot[avp->av_bslot] = NULL; 1762 sc->sc_nbcnvaps--; 1763 } 1764 ath_beacon_return(sc, avp->av_bcbuf); 1765 avp->av_bcbuf = NULL; 1766 if (sc->sc_nbcnvaps == 0) { 1767 sc->sc_stagbeacons = 0; 1768 if (sc->sc_hastsfadd) 1769 ath_hal_settsfadjust(sc->sc_ah, 0); 1770 } 1771 /* 1772 * Reclaim any pending mcast frames for the vap. 1773 */ 1774 ath_tx_draintxq(sc, &avp->av_mcastq); 1775 } 1776 /* 1777 * Update bookkeeping. 1778 */ 1779 if (vap->iv_opmode == IEEE80211_M_STA) { 1780 sc->sc_nstavaps--; 1781 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1782 sc->sc_swbmiss = 0; 1783 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1784 vap->iv_opmode == IEEE80211_M_MBSS) { 1785 reclaim_address(sc, vap->iv_myaddr); 1786 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1787 if (vap->iv_opmode == IEEE80211_M_MBSS) 1788 sc->sc_nmeshvaps--; 1789 } 1790 if (vap->iv_opmode != IEEE80211_M_WDS) 1791 sc->sc_nvaps--; 1792 #ifdef IEEE80211_SUPPORT_TDMA 1793 /* TDMA operation ceases when the last vap is destroyed */ 1794 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1795 sc->sc_tdma = 0; 1796 sc->sc_swbmiss = 0; 1797 } 1798 #endif 1799 free(avp, M_80211_VAP); 1800 1801 if (sc->sc_running) { 1802 /* 1803 * Restart rx+tx machines if still running (RUNNING will 1804 * be reset if we just destroyed the last vap). 1805 */ 1806 if (ath_startrecv(sc) != 0) 1807 device_printf(sc->sc_dev, 1808 "%s: unable to restart recv logic\n", __func__); 1809 if (sc->sc_beacons) { /* restart beacons */ 1810 #ifdef IEEE80211_SUPPORT_TDMA 1811 if (sc->sc_tdma) 1812 ath_tdma_config(sc, NULL); 1813 else 1814 #endif 1815 ath_beacon_config(sc, NULL); 1816 } 1817 ath_hal_intrset(ah, sc->sc_imask); 1818 } 1819 1820 /* Ok, let the hardware asleep. */ 1821 ath_power_restore_power_state(sc); 1822 ATH_UNLOCK(sc); 1823 } 1824 1825 void 1826 ath_suspend(struct ath_softc *sc) 1827 { 1828 struct ieee80211com *ic = &sc->sc_ic; 1829 1830 sc->sc_resume_up = ic->ic_nrunning != 0; 1831 1832 ieee80211_suspend_all(ic); 1833 /* 1834 * NB: don't worry about putting the chip in low power 1835 * mode; pci will power off our socket on suspend and 1836 * CardBus detaches the device. 1837 * 1838 * XXX TODO: well, that's great, except for non-cardbus 1839 * devices! 1840 */ 1841 1842 /* 1843 * XXX This doesn't wait until all pending taskqueue 1844 * items and parallel transmit/receive/other threads 1845 * are running! 1846 */ 1847 ath_hal_intrset(sc->sc_ah, 0); 1848 taskqueue_block(sc->sc_tq); 1849 1850 ATH_LOCK(sc); 1851 callout_stop(&sc->sc_cal_ch); 1852 ATH_UNLOCK(sc); 1853 1854 /* 1855 * XXX ensure sc_invalid is 1 1856 */ 1857 1858 /* Disable the PCIe PHY, complete with workarounds */ 1859 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1860 } 1861 1862 /* 1863 * Reset the key cache since some parts do not reset the 1864 * contents on resume. First we clear all entries, then 1865 * re-load keys that the 802.11 layer assumes are setup 1866 * in h/w. 1867 */ 1868 static void 1869 ath_reset_keycache(struct ath_softc *sc) 1870 { 1871 struct ieee80211com *ic = &sc->sc_ic; 1872 struct ath_hal *ah = sc->sc_ah; 1873 int i; 1874 1875 ATH_LOCK(sc); 1876 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1877 for (i = 0; i < sc->sc_keymax; i++) 1878 ath_hal_keyreset(ah, i); 1879 ath_power_restore_power_state(sc); 1880 ATH_UNLOCK(sc); 1881 ieee80211_crypto_reload_keys(ic); 1882 } 1883 1884 /* 1885 * Fetch the current chainmask configuration based on the current 1886 * operating channel and options. 1887 */ 1888 static void 1889 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1890 { 1891 1892 /* 1893 * Set TX chainmask to the currently configured chainmask; 1894 * the TX chainmask depends upon the current operating mode. 1895 */ 1896 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1897 if (IEEE80211_IS_CHAN_HT(chan)) { 1898 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1899 } else { 1900 sc->sc_cur_txchainmask = 1; 1901 } 1902 1903 DPRINTF(sc, ATH_DEBUG_RESET, 1904 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1905 __func__, 1906 sc->sc_cur_txchainmask, 1907 sc->sc_cur_rxchainmask); 1908 } 1909 1910 void 1911 ath_resume(struct ath_softc *sc) 1912 { 1913 struct ieee80211com *ic = &sc->sc_ic; 1914 struct ath_hal *ah = sc->sc_ah; 1915 HAL_STATUS status; 1916 1917 ath_hal_enablepcie(ah, 0, 0); 1918 1919 /* 1920 * Must reset the chip before we reload the 1921 * keycache as we were powered down on suspend. 1922 */ 1923 ath_update_chainmasks(sc, 1924 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1925 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1926 sc->sc_cur_rxchainmask); 1927 1928 /* Ensure we set the current power state to on */ 1929 ATH_LOCK(sc); 1930 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1931 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1932 ath_power_setpower(sc, HAL_PM_AWAKE); 1933 ATH_UNLOCK(sc); 1934 1935 ath_hal_reset(ah, sc->sc_opmode, 1936 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1937 AH_FALSE, HAL_RESET_NORMAL, &status); 1938 ath_reset_keycache(sc); 1939 1940 ATH_RX_LOCK(sc); 1941 sc->sc_rx_stopped = 1; 1942 sc->sc_rx_resetted = 1; 1943 ATH_RX_UNLOCK(sc); 1944 1945 /* Let DFS at it in case it's a DFS channel */ 1946 ath_dfs_radar_enable(sc, ic->ic_curchan); 1947 1948 /* Let spectral at in case spectral is enabled */ 1949 ath_spectral_enable(sc, ic->ic_curchan); 1950 1951 /* 1952 * Let bluetooth coexistence at in case it's needed for this channel 1953 */ 1954 ath_btcoex_enable(sc, ic->ic_curchan); 1955 1956 /* 1957 * If we're doing TDMA, enforce the TXOP limitation for chips that 1958 * support it. 1959 */ 1960 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1961 ath_hal_setenforcetxop(sc->sc_ah, 1); 1962 else 1963 ath_hal_setenforcetxop(sc->sc_ah, 0); 1964 1965 /* Restore the LED configuration */ 1966 ath_led_config(sc); 1967 ath_hal_setledstate(ah, HAL_LED_INIT); 1968 1969 if (sc->sc_resume_up) 1970 ieee80211_resume_all(ic); 1971 1972 ATH_LOCK(sc); 1973 ath_power_restore_power_state(sc); 1974 ATH_UNLOCK(sc); 1975 1976 /* XXX beacons ? */ 1977 } 1978 1979 void 1980 ath_shutdown(struct ath_softc *sc) 1981 { 1982 1983 ATH_LOCK(sc); 1984 ath_stop(sc); 1985 ATH_UNLOCK(sc); 1986 /* NB: no point powering down chip as we're about to reboot */ 1987 } 1988 1989 /* 1990 * Interrupt handler. Most of the actual processing is deferred. 1991 */ 1992 void 1993 ath_intr(void *arg) 1994 { 1995 struct ath_softc *sc = arg; 1996 struct ath_hal *ah = sc->sc_ah; 1997 HAL_INT status = 0; 1998 uint32_t txqs; 1999 2000 /* 2001 * If we're inside a reset path, just print a warning and 2002 * clear the ISR. The reset routine will finish it for us. 2003 */ 2004 ATH_PCU_LOCK(sc); 2005 if (sc->sc_inreset_cnt) { 2006 HAL_INT status; 2007 ath_hal_getisr(ah, &status); /* clear ISR */ 2008 ath_hal_intrset(ah, 0); /* disable further intr's */ 2009 DPRINTF(sc, ATH_DEBUG_ANY, 2010 "%s: in reset, ignoring: status=0x%x\n", 2011 __func__, status); 2012 ATH_PCU_UNLOCK(sc); 2013 return; 2014 } 2015 2016 if (sc->sc_invalid) { 2017 /* 2018 * The hardware is not ready/present, don't touch anything. 2019 * Note this can happen early on if the IRQ is shared. 2020 */ 2021 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2022 ATH_PCU_UNLOCK(sc); 2023 return; 2024 } 2025 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2026 ATH_PCU_UNLOCK(sc); 2027 return; 2028 } 2029 2030 ATH_LOCK(sc); 2031 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2032 ATH_UNLOCK(sc); 2033 2034 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2035 HAL_INT status; 2036 2037 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2038 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2039 ath_hal_getisr(ah, &status); /* clear ISR */ 2040 ath_hal_intrset(ah, 0); /* disable further intr's */ 2041 ATH_PCU_UNLOCK(sc); 2042 2043 ATH_LOCK(sc); 2044 ath_power_restore_power_state(sc); 2045 ATH_UNLOCK(sc); 2046 return; 2047 } 2048 2049 /* 2050 * Figure out the reason(s) for the interrupt. Note 2051 * that the hal returns a pseudo-ISR that may include 2052 * bits we haven't explicitly enabled so we mask the 2053 * value to insure we only process bits we requested. 2054 */ 2055 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2056 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2057 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2058 #ifdef ATH_DEBUG_ALQ 2059 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2060 ah->ah_syncstate); 2061 #endif /* ATH_DEBUG_ALQ */ 2062 #ifdef ATH_KTR_INTR_DEBUG 2063 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2064 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2065 ah->ah_intrstate[0], 2066 ah->ah_intrstate[1], 2067 ah->ah_intrstate[2], 2068 ah->ah_intrstate[3], 2069 ah->ah_intrstate[6]); 2070 #endif 2071 2072 /* Squirrel away SYNC interrupt debugging */ 2073 if (ah->ah_syncstate != 0) { 2074 int i; 2075 for (i = 0; i < 32; i++) 2076 if (ah->ah_syncstate & (i << i)) 2077 sc->sc_intr_stats.sync_intr[i]++; 2078 } 2079 2080 status &= sc->sc_imask; /* discard unasked for bits */ 2081 2082 /* Short-circuit un-handled interrupts */ 2083 if (status == 0x0) { 2084 ATH_PCU_UNLOCK(sc); 2085 2086 ATH_LOCK(sc); 2087 ath_power_restore_power_state(sc); 2088 ATH_UNLOCK(sc); 2089 2090 return; 2091 } 2092 2093 /* 2094 * Take a note that we're inside the interrupt handler, so 2095 * the reset routines know to wait. 2096 */ 2097 sc->sc_intr_cnt++; 2098 ATH_PCU_UNLOCK(sc); 2099 2100 /* 2101 * Handle the interrupt. We won't run concurrent with the reset 2102 * or channel change routines as they'll wait for sc_intr_cnt 2103 * to be 0 before continuing. 2104 */ 2105 if (status & HAL_INT_FATAL) { 2106 sc->sc_stats.ast_hardware++; 2107 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2108 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2109 } else { 2110 if (status & HAL_INT_SWBA) { 2111 /* 2112 * Software beacon alert--time to send a beacon. 2113 * Handle beacon transmission directly; deferring 2114 * this is too slow to meet timing constraints 2115 * under load. 2116 */ 2117 #ifdef IEEE80211_SUPPORT_TDMA 2118 if (sc->sc_tdma) { 2119 if (sc->sc_tdmaswba == 0) { 2120 struct ieee80211com *ic = &sc->sc_ic; 2121 struct ieee80211vap *vap = 2122 TAILQ_FIRST(&ic->ic_vaps); 2123 ath_tdma_beacon_send(sc, vap); 2124 sc->sc_tdmaswba = 2125 vap->iv_tdma->tdma_bintval; 2126 } else 2127 sc->sc_tdmaswba--; 2128 } else 2129 #endif 2130 { 2131 ath_beacon_proc(sc, 0); 2132 #ifdef IEEE80211_SUPPORT_SUPERG 2133 /* 2134 * Schedule the rx taskq in case there's no 2135 * traffic so any frames held on the staging 2136 * queue are aged and potentially flushed. 2137 */ 2138 sc->sc_rx.recv_sched(sc, 1); 2139 #endif 2140 } 2141 } 2142 if (status & HAL_INT_RXEOL) { 2143 int imask; 2144 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2145 if (! sc->sc_isedma) { 2146 ATH_PCU_LOCK(sc); 2147 /* 2148 * NB: the hardware should re-read the link when 2149 * RXE bit is written, but it doesn't work at 2150 * least on older hardware revs. 2151 */ 2152 sc->sc_stats.ast_rxeol++; 2153 /* 2154 * Disable RXEOL/RXORN - prevent an interrupt 2155 * storm until the PCU logic can be reset. 2156 * In case the interface is reset some other 2157 * way before "sc_kickpcu" is called, don't 2158 * modify sc_imask - that way if it is reset 2159 * by a call to ath_reset() somehow, the 2160 * interrupt mask will be correctly reprogrammed. 2161 */ 2162 imask = sc->sc_imask; 2163 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2164 ath_hal_intrset(ah, imask); 2165 /* 2166 * Only blank sc_rxlink if we've not yet kicked 2167 * the PCU. 2168 * 2169 * This isn't entirely correct - the correct solution 2170 * would be to have a PCU lock and engage that for 2171 * the duration of the PCU fiddling; which would include 2172 * running the RX process. Otherwise we could end up 2173 * messing up the RX descriptor chain and making the 2174 * RX desc list much shorter. 2175 */ 2176 if (! sc->sc_kickpcu) 2177 sc->sc_rxlink = NULL; 2178 sc->sc_kickpcu = 1; 2179 ATH_PCU_UNLOCK(sc); 2180 } 2181 /* 2182 * Enqueue an RX proc to handle whatever 2183 * is in the RX queue. 2184 * This will then kick the PCU if required. 2185 */ 2186 sc->sc_rx.recv_sched(sc, 1); 2187 } 2188 if (status & HAL_INT_TXURN) { 2189 sc->sc_stats.ast_txurn++; 2190 /* bump tx trigger level */ 2191 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2192 } 2193 /* 2194 * Handle both the legacy and RX EDMA interrupt bits. 2195 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2196 */ 2197 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2198 sc->sc_stats.ast_rx_intr++; 2199 sc->sc_rx.recv_sched(sc, 1); 2200 } 2201 if (status & HAL_INT_TX) { 2202 sc->sc_stats.ast_tx_intr++; 2203 /* 2204 * Grab all the currently set bits in the HAL txq bitmap 2205 * and blank them. This is the only place we should be 2206 * doing this. 2207 */ 2208 if (! sc->sc_isedma) { 2209 ATH_PCU_LOCK(sc); 2210 txqs = 0xffffffff; 2211 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2212 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2213 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2214 txqs, 2215 sc->sc_txq_active, 2216 sc->sc_txq_active | txqs); 2217 sc->sc_txq_active |= txqs; 2218 ATH_PCU_UNLOCK(sc); 2219 } 2220 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2221 } 2222 if (status & HAL_INT_BMISS) { 2223 sc->sc_stats.ast_bmiss++; 2224 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2225 } 2226 if (status & HAL_INT_GTT) 2227 sc->sc_stats.ast_tx_timeout++; 2228 if (status & HAL_INT_CST) 2229 sc->sc_stats.ast_tx_cst++; 2230 if (status & HAL_INT_MIB) { 2231 sc->sc_stats.ast_mib++; 2232 ATH_PCU_LOCK(sc); 2233 /* 2234 * Disable interrupts until we service the MIB 2235 * interrupt; otherwise it will continue to fire. 2236 */ 2237 ath_hal_intrset(ah, 0); 2238 /* 2239 * Let the hal handle the event. We assume it will 2240 * clear whatever condition caused the interrupt. 2241 */ 2242 ath_hal_mibevent(ah, &sc->sc_halstats); 2243 /* 2244 * Don't reset the interrupt if we've just 2245 * kicked the PCU, or we may get a nested 2246 * RXEOL before the rxproc has had a chance 2247 * to run. 2248 */ 2249 if (sc->sc_kickpcu == 0) 2250 ath_hal_intrset(ah, sc->sc_imask); 2251 ATH_PCU_UNLOCK(sc); 2252 } 2253 if (status & HAL_INT_RXORN) { 2254 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2255 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2256 sc->sc_stats.ast_rxorn++; 2257 } 2258 if (status & HAL_INT_TSFOOR) { 2259 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2260 sc->sc_syncbeacon = 1; 2261 } 2262 if (status & HAL_INT_MCI) { 2263 ath_btcoex_mci_intr(sc); 2264 } 2265 } 2266 ATH_PCU_LOCK(sc); 2267 sc->sc_intr_cnt--; 2268 ATH_PCU_UNLOCK(sc); 2269 2270 ATH_LOCK(sc); 2271 ath_power_restore_power_state(sc); 2272 ATH_UNLOCK(sc); 2273 } 2274 2275 static void 2276 ath_fatal_proc(void *arg, int pending) 2277 { 2278 struct ath_softc *sc = arg; 2279 u_int32_t *state; 2280 u_int32_t len; 2281 void *sp; 2282 2283 if (sc->sc_invalid) 2284 return; 2285 2286 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2287 /* 2288 * Fatal errors are unrecoverable. Typically these 2289 * are caused by DMA errors. Collect h/w state from 2290 * the hal so we can diagnose what's going on. 2291 */ 2292 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2293 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2294 state = sp; 2295 device_printf(sc->sc_dev, 2296 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2297 state[1] , state[2], state[3], state[4], state[5]); 2298 } 2299 ath_reset(sc, ATH_RESET_NOLOSS); 2300 } 2301 2302 static void 2303 ath_bmiss_vap(struct ieee80211vap *vap) 2304 { 2305 struct ath_softc *sc = vap->iv_ic->ic_softc; 2306 2307 /* 2308 * Workaround phantom bmiss interrupts by sanity-checking 2309 * the time of our last rx'd frame. If it is within the 2310 * beacon miss interval then ignore the interrupt. If it's 2311 * truly a bmiss we'll get another interrupt soon and that'll 2312 * be dispatched up for processing. Note this applies only 2313 * for h/w beacon miss events. 2314 */ 2315 2316 /* 2317 * XXX TODO: Just read the TSF during the interrupt path; 2318 * that way we don't have to wake up again just to read it 2319 * again. 2320 */ 2321 ATH_LOCK(sc); 2322 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2323 ATH_UNLOCK(sc); 2324 2325 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2326 u_int64_t lastrx = sc->sc_lastrx; 2327 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2328 /* XXX should take a locked ref to iv_bss */ 2329 u_int bmisstimeout = 2330 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2331 2332 DPRINTF(sc, ATH_DEBUG_BEACON, 2333 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2334 __func__, (unsigned long long) tsf, 2335 (unsigned long long)(tsf - lastrx), 2336 (unsigned long long) lastrx, bmisstimeout); 2337 2338 if (tsf - lastrx <= bmisstimeout) { 2339 sc->sc_stats.ast_bmiss_phantom++; 2340 2341 ATH_LOCK(sc); 2342 ath_power_restore_power_state(sc); 2343 ATH_UNLOCK(sc); 2344 2345 return; 2346 } 2347 } 2348 2349 /* 2350 * There's no need to keep the hardware awake during the call 2351 * to av_bmiss(). 2352 */ 2353 ATH_LOCK(sc); 2354 ath_power_restore_power_state(sc); 2355 ATH_UNLOCK(sc); 2356 2357 /* 2358 * Attempt to force a beacon resync. 2359 */ 2360 sc->sc_syncbeacon = 1; 2361 2362 ATH_VAP(vap)->av_bmiss(vap); 2363 } 2364 2365 /* XXX this needs a force wakeup! */ 2366 int 2367 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2368 { 2369 uint32_t rsize; 2370 void *sp; 2371 2372 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2373 return 0; 2374 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2375 *hangs = *(uint32_t *)sp; 2376 return 1; 2377 } 2378 2379 static void 2380 ath_bmiss_proc(void *arg, int pending) 2381 { 2382 struct ath_softc *sc = arg; 2383 uint32_t hangs; 2384 2385 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2386 2387 ATH_LOCK(sc); 2388 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2389 ATH_UNLOCK(sc); 2390 2391 ath_beacon_miss(sc); 2392 2393 /* 2394 * Do a reset upon any becaon miss event. 2395 * 2396 * It may be a non-recognised RX clear hang which needs a reset 2397 * to clear. 2398 */ 2399 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2400 ath_reset(sc, ATH_RESET_NOLOSS); 2401 device_printf(sc->sc_dev, 2402 "bb hang detected (0x%x), resetting\n", hangs); 2403 } else { 2404 ath_reset(sc, ATH_RESET_NOLOSS); 2405 ieee80211_beacon_miss(&sc->sc_ic); 2406 } 2407 2408 /* Force a beacon resync, in case they've drifted */ 2409 sc->sc_syncbeacon = 1; 2410 2411 ATH_LOCK(sc); 2412 ath_power_restore_power_state(sc); 2413 ATH_UNLOCK(sc); 2414 } 2415 2416 /* 2417 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2418 * calcs together with WME. If necessary disable the crypto 2419 * hardware and mark the 802.11 state so keys will be setup 2420 * with the MIC work done in software. 2421 */ 2422 static void 2423 ath_settkipmic(struct ath_softc *sc) 2424 { 2425 struct ieee80211com *ic = &sc->sc_ic; 2426 2427 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2428 if (ic->ic_flags & IEEE80211_F_WME) { 2429 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2430 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2431 } else { 2432 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2433 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2434 } 2435 } 2436 } 2437 2438 static int 2439 ath_init(struct ath_softc *sc) 2440 { 2441 struct ieee80211com *ic = &sc->sc_ic; 2442 struct ath_hal *ah = sc->sc_ah; 2443 HAL_STATUS status; 2444 2445 ATH_LOCK_ASSERT(sc); 2446 2447 /* 2448 * Force the sleep state awake. 2449 */ 2450 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2451 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2452 ath_power_setpower(sc, HAL_PM_AWAKE); 2453 2454 /* 2455 * Stop anything previously setup. This is safe 2456 * whether this is the first time through or not. 2457 */ 2458 ath_stop(sc); 2459 2460 /* 2461 * The basic interface to setting the hardware in a good 2462 * state is ``reset''. On return the hardware is known to 2463 * be powered up and with interrupts disabled. This must 2464 * be followed by initialization of the appropriate bits 2465 * and then setup of the interrupt mask. 2466 */ 2467 ath_settkipmic(sc); 2468 ath_update_chainmasks(sc, ic->ic_curchan); 2469 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2470 sc->sc_cur_rxchainmask); 2471 2472 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2473 HAL_RESET_NORMAL, &status)) { 2474 device_printf(sc->sc_dev, 2475 "unable to reset hardware; hal status %u\n", status); 2476 return (ENODEV); 2477 } 2478 2479 ATH_RX_LOCK(sc); 2480 sc->sc_rx_stopped = 1; 2481 sc->sc_rx_resetted = 1; 2482 ATH_RX_UNLOCK(sc); 2483 2484 ath_chan_change(sc, ic->ic_curchan); 2485 2486 /* Let DFS at it in case it's a DFS channel */ 2487 ath_dfs_radar_enable(sc, ic->ic_curchan); 2488 2489 /* Let spectral at in case spectral is enabled */ 2490 ath_spectral_enable(sc, ic->ic_curchan); 2491 2492 /* 2493 * Let bluetooth coexistence at in case it's needed for this channel 2494 */ 2495 ath_btcoex_enable(sc, ic->ic_curchan); 2496 2497 /* 2498 * If we're doing TDMA, enforce the TXOP limitation for chips that 2499 * support it. 2500 */ 2501 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2502 ath_hal_setenforcetxop(sc->sc_ah, 1); 2503 else 2504 ath_hal_setenforcetxop(sc->sc_ah, 0); 2505 2506 /* 2507 * Likewise this is set during reset so update 2508 * state cached in the driver. 2509 */ 2510 sc->sc_diversity = ath_hal_getdiversity(ah); 2511 sc->sc_lastlongcal = ticks; 2512 sc->sc_resetcal = 1; 2513 sc->sc_lastcalreset = 0; 2514 sc->sc_lastani = ticks; 2515 sc->sc_lastshortcal = ticks; 2516 sc->sc_doresetcal = AH_FALSE; 2517 /* 2518 * Beacon timers were cleared here; give ath_newstate() 2519 * a hint that the beacon timers should be poked when 2520 * things transition to the RUN state. 2521 */ 2522 sc->sc_beacons = 0; 2523 2524 /* 2525 * Setup the hardware after reset: the key cache 2526 * is filled as needed and the receive engine is 2527 * set going. Frame transmit is handled entirely 2528 * in the frame output path; there's nothing to do 2529 * here except setup the interrupt mask. 2530 */ 2531 if (ath_startrecv(sc) != 0) { 2532 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2533 ath_power_restore_power_state(sc); 2534 return (ENODEV); 2535 } 2536 2537 /* 2538 * Enable interrupts. 2539 */ 2540 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2541 | HAL_INT_RXORN | HAL_INT_TXURN 2542 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2543 2544 /* 2545 * Enable RX EDMA bits. Note these overlap with 2546 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2547 */ 2548 if (sc->sc_isedma) 2549 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2550 2551 /* 2552 * If we're an EDMA NIC, we don't care about RXEOL. 2553 * Writing a new descriptor in will simply restart 2554 * RX DMA. 2555 */ 2556 if (! sc->sc_isedma) 2557 sc->sc_imask |= HAL_INT_RXEOL; 2558 2559 /* 2560 * Enable MCI interrupt for MCI devices. 2561 */ 2562 if (sc->sc_btcoex_mci) 2563 sc->sc_imask |= HAL_INT_MCI; 2564 2565 /* 2566 * Enable MIB interrupts when there are hardware phy counters. 2567 * Note we only do this (at the moment) for station mode. 2568 */ 2569 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2570 sc->sc_imask |= HAL_INT_MIB; 2571 2572 /* 2573 * XXX add capability for this. 2574 * 2575 * If we're in STA mode (and maybe IBSS?) then register for 2576 * TSFOOR interrupts. 2577 */ 2578 if (ic->ic_opmode == IEEE80211_M_STA) 2579 sc->sc_imask |= HAL_INT_TSFOOR; 2580 2581 /* Enable global TX timeout and carrier sense timeout if available */ 2582 if (ath_hal_gtxto_supported(ah)) 2583 sc->sc_imask |= HAL_INT_GTT; 2584 2585 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2586 __func__, sc->sc_imask); 2587 2588 sc->sc_running = 1; 2589 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2590 ath_hal_intrset(ah, sc->sc_imask); 2591 2592 ath_power_restore_power_state(sc); 2593 2594 return (0); 2595 } 2596 2597 static void 2598 ath_stop(struct ath_softc *sc) 2599 { 2600 struct ath_hal *ah = sc->sc_ah; 2601 2602 ATH_LOCK_ASSERT(sc); 2603 2604 /* 2605 * Wake the hardware up before fiddling with it. 2606 */ 2607 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2608 2609 if (sc->sc_running) { 2610 /* 2611 * Shutdown the hardware and driver: 2612 * reset 802.11 state machine 2613 * turn off timers 2614 * disable interrupts 2615 * turn off the radio 2616 * clear transmit machinery 2617 * clear receive machinery 2618 * drain and release tx queues 2619 * reclaim beacon resources 2620 * power down hardware 2621 * 2622 * Note that some of this work is not possible if the 2623 * hardware is gone (invalid). 2624 */ 2625 #ifdef ATH_TX99_DIAG 2626 if (sc->sc_tx99 != NULL) 2627 sc->sc_tx99->stop(sc->sc_tx99); 2628 #endif 2629 callout_stop(&sc->sc_wd_ch); 2630 sc->sc_wd_timer = 0; 2631 sc->sc_running = 0; 2632 if (!sc->sc_invalid) { 2633 if (sc->sc_softled) { 2634 callout_stop(&sc->sc_ledtimer); 2635 ath_hal_gpioset(ah, sc->sc_ledpin, 2636 !sc->sc_ledon); 2637 sc->sc_blinking = 0; 2638 } 2639 ath_hal_intrset(ah, 0); 2640 } 2641 /* XXX we should stop RX regardless of whether it's valid */ 2642 if (!sc->sc_invalid) { 2643 ath_stoprecv(sc, 1); 2644 ath_hal_phydisable(ah); 2645 } else 2646 sc->sc_rxlink = NULL; 2647 ath_draintxq(sc, ATH_RESET_DEFAULT); 2648 ath_beacon_free(sc); /* XXX not needed */ 2649 } 2650 2651 /* And now, restore the current power state */ 2652 ath_power_restore_power_state(sc); 2653 } 2654 2655 /* 2656 * Wait until all pending TX/RX has completed. 2657 * 2658 * This waits until all existing transmit, receive and interrupts 2659 * have completed. It's assumed that the caller has first 2660 * grabbed the reset lock so it doesn't try to do overlapping 2661 * chip resets. 2662 */ 2663 #define MAX_TXRX_ITERATIONS 100 2664 static void 2665 ath_txrx_stop_locked(struct ath_softc *sc) 2666 { 2667 int i = MAX_TXRX_ITERATIONS; 2668 2669 ATH_UNLOCK_ASSERT(sc); 2670 ATH_PCU_LOCK_ASSERT(sc); 2671 2672 /* 2673 * Sleep until all the pending operations have completed. 2674 * 2675 * The caller must ensure that reset has been incremented 2676 * or the pending operations may continue being queued. 2677 */ 2678 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2679 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2680 if (i <= 0) 2681 break; 2682 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2683 msecs_to_ticks(10)); 2684 i--; 2685 } 2686 2687 if (i <= 0) 2688 device_printf(sc->sc_dev, 2689 "%s: didn't finish after %d iterations\n", 2690 __func__, MAX_TXRX_ITERATIONS); 2691 } 2692 #undef MAX_TXRX_ITERATIONS 2693 2694 #if 0 2695 static void 2696 ath_txrx_stop(struct ath_softc *sc) 2697 { 2698 ATH_UNLOCK_ASSERT(sc); 2699 ATH_PCU_UNLOCK_ASSERT(sc); 2700 2701 ATH_PCU_LOCK(sc); 2702 ath_txrx_stop_locked(sc); 2703 ATH_PCU_UNLOCK(sc); 2704 } 2705 #endif 2706 2707 static void 2708 ath_txrx_start(struct ath_softc *sc) 2709 { 2710 2711 taskqueue_unblock(sc->sc_tq); 2712 } 2713 2714 /* 2715 * Grab the reset lock, and wait around until no one else 2716 * is trying to do anything with it. 2717 * 2718 * This is totally horrible but we can't hold this lock for 2719 * long enough to do TX/RX or we end up with net80211/ip stack 2720 * LORs and eventual deadlock. 2721 * 2722 * "dowait" signals whether to spin, waiting for the reset 2723 * lock count to reach 0. This should (for now) only be used 2724 * during the reset path, as the rest of the code may not 2725 * be locking-reentrant enough to behave correctly. 2726 * 2727 * Another, cleaner way should be found to serialise all of 2728 * these operations. 2729 */ 2730 #define MAX_RESET_ITERATIONS 25 2731 static int 2732 ath_reset_grablock(struct ath_softc *sc, int dowait) 2733 { 2734 int w = 0; 2735 int i = MAX_RESET_ITERATIONS; 2736 2737 ATH_PCU_LOCK_ASSERT(sc); 2738 do { 2739 if (sc->sc_inreset_cnt == 0) { 2740 w = 1; 2741 break; 2742 } 2743 if (dowait == 0) { 2744 w = 0; 2745 break; 2746 } 2747 ATH_PCU_UNLOCK(sc); 2748 /* 2749 * 1 tick is likely not enough time for long calibrations 2750 * to complete. So we should wait quite a while. 2751 */ 2752 pause("ath_reset_grablock", msecs_to_ticks(100)); 2753 i--; 2754 ATH_PCU_LOCK(sc); 2755 } while (i > 0); 2756 2757 /* 2758 * We always increment the refcounter, regardless 2759 * of whether we succeeded to get it in an exclusive 2760 * way. 2761 */ 2762 sc->sc_inreset_cnt++; 2763 2764 if (i <= 0) 2765 device_printf(sc->sc_dev, 2766 "%s: didn't finish after %d iterations\n", 2767 __func__, MAX_RESET_ITERATIONS); 2768 2769 if (w == 0) 2770 device_printf(sc->sc_dev, 2771 "%s: warning, recursive reset path!\n", 2772 __func__); 2773 2774 return w; 2775 } 2776 #undef MAX_RESET_ITERATIONS 2777 2778 /* 2779 * Reset the hardware w/o losing operational state. This is 2780 * basically a more efficient way of doing ath_stop, ath_init, 2781 * followed by state transitions to the current 802.11 2782 * operational state. Used to recover from various errors and 2783 * to reset or reload hardware state. 2784 */ 2785 int 2786 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2787 { 2788 struct ieee80211com *ic = &sc->sc_ic; 2789 struct ath_hal *ah = sc->sc_ah; 2790 HAL_STATUS status; 2791 int i; 2792 2793 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2794 2795 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2796 ATH_PCU_UNLOCK_ASSERT(sc); 2797 ATH_UNLOCK_ASSERT(sc); 2798 2799 /* Try to (stop any further TX/RX from occurring */ 2800 taskqueue_block(sc->sc_tq); 2801 2802 /* 2803 * Wake the hardware up. 2804 */ 2805 ATH_LOCK(sc); 2806 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2807 ATH_UNLOCK(sc); 2808 2809 ATH_PCU_LOCK(sc); 2810 2811 /* 2812 * Grab the reset lock before TX/RX is stopped. 2813 * 2814 * This is needed to ensure that when the TX/RX actually does finish, 2815 * no further TX/RX/reset runs in parallel with this. 2816 */ 2817 if (ath_reset_grablock(sc, 1) == 0) { 2818 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2819 __func__); 2820 } 2821 2822 /* disable interrupts */ 2823 ath_hal_intrset(ah, 0); 2824 2825 /* 2826 * Now, ensure that any in progress TX/RX completes before we 2827 * continue. 2828 */ 2829 ath_txrx_stop_locked(sc); 2830 2831 ATH_PCU_UNLOCK(sc); 2832 2833 /* 2834 * Regardless of whether we're doing a no-loss flush or 2835 * not, stop the PCU and handle what's in the RX queue. 2836 * That way frames aren't dropped which shouldn't be. 2837 */ 2838 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2839 ath_rx_flush(sc); 2840 2841 /* 2842 * Should now wait for pending TX/RX to complete 2843 * and block future ones from occurring. This needs to be 2844 * done before the TX queue is drained. 2845 */ 2846 ath_draintxq(sc, reset_type); /* stop xmit side */ 2847 2848 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2849 /* NB: indicate channel change so we do a full reset */ 2850 ath_update_chainmasks(sc, ic->ic_curchan); 2851 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2852 sc->sc_cur_rxchainmask); 2853 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2854 HAL_RESET_NORMAL, &status)) 2855 device_printf(sc->sc_dev, 2856 "%s: unable to reset hardware; hal status %u\n", 2857 __func__, status); 2858 sc->sc_diversity = ath_hal_getdiversity(ah); 2859 2860 ATH_RX_LOCK(sc); 2861 sc->sc_rx_stopped = 1; 2862 sc->sc_rx_resetted = 1; 2863 ATH_RX_UNLOCK(sc); 2864 2865 /* Let DFS at it in case it's a DFS channel */ 2866 ath_dfs_radar_enable(sc, ic->ic_curchan); 2867 2868 /* Let spectral at in case spectral is enabled */ 2869 ath_spectral_enable(sc, ic->ic_curchan); 2870 2871 /* 2872 * Let bluetooth coexistence at in case it's needed for this channel 2873 */ 2874 ath_btcoex_enable(sc, ic->ic_curchan); 2875 2876 /* 2877 * If we're doing TDMA, enforce the TXOP limitation for chips that 2878 * support it. 2879 */ 2880 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2881 ath_hal_setenforcetxop(sc->sc_ah, 1); 2882 else 2883 ath_hal_setenforcetxop(sc->sc_ah, 0); 2884 2885 if (ath_startrecv(sc) != 0) /* restart recv */ 2886 device_printf(sc->sc_dev, 2887 "%s: unable to start recv logic\n", __func__); 2888 /* 2889 * We may be doing a reset in response to an ioctl 2890 * that changes the channel so update any state that 2891 * might change as a result. 2892 */ 2893 ath_chan_change(sc, ic->ic_curchan); 2894 if (sc->sc_beacons) { /* restart beacons */ 2895 #ifdef IEEE80211_SUPPORT_TDMA 2896 if (sc->sc_tdma) 2897 ath_tdma_config(sc, NULL); 2898 else 2899 #endif 2900 ath_beacon_config(sc, NULL); 2901 } 2902 2903 /* 2904 * Release the reset lock and re-enable interrupts here. 2905 * If an interrupt was being processed in ath_intr(), 2906 * it would disable interrupts at this point. So we have 2907 * to atomically enable interrupts and decrement the 2908 * reset counter - this way ath_intr() doesn't end up 2909 * disabling interrupts without a corresponding enable 2910 * in the rest or channel change path. 2911 * 2912 * Grab the TX reference in case we need to transmit. 2913 * That way a parallel transmit doesn't. 2914 */ 2915 ATH_PCU_LOCK(sc); 2916 sc->sc_inreset_cnt--; 2917 sc->sc_txstart_cnt++; 2918 /* XXX only do this if sc_inreset_cnt == 0? */ 2919 ath_hal_intrset(ah, sc->sc_imask); 2920 ATH_PCU_UNLOCK(sc); 2921 2922 /* 2923 * TX and RX can be started here. If it were started with 2924 * sc_inreset_cnt > 0, the TX and RX path would abort. 2925 * Thus if this is a nested call through the reset or 2926 * channel change code, TX completion will occur but 2927 * RX completion and ath_start / ath_tx_start will not 2928 * run. 2929 */ 2930 2931 /* Restart TX/RX as needed */ 2932 ath_txrx_start(sc); 2933 2934 /* XXX TODO: we need to hold the tx refcount here! */ 2935 2936 /* Restart TX completion and pending TX */ 2937 if (reset_type == ATH_RESET_NOLOSS) { 2938 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2939 if (ATH_TXQ_SETUP(sc, i)) { 2940 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2941 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2942 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2943 2944 ATH_TX_LOCK(sc); 2945 ath_txq_sched(sc, &sc->sc_txq[i]); 2946 ATH_TX_UNLOCK(sc); 2947 } 2948 } 2949 } 2950 2951 ATH_LOCK(sc); 2952 ath_power_restore_power_state(sc); 2953 ATH_UNLOCK(sc); 2954 2955 ATH_PCU_LOCK(sc); 2956 sc->sc_txstart_cnt--; 2957 ATH_PCU_UNLOCK(sc); 2958 2959 /* Handle any frames in the TX queue */ 2960 /* 2961 * XXX should this be done by the caller, rather than 2962 * ath_reset() ? 2963 */ 2964 ath_tx_kick(sc); /* restart xmit */ 2965 return 0; 2966 } 2967 2968 static int 2969 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2970 { 2971 struct ieee80211com *ic = vap->iv_ic; 2972 struct ath_softc *sc = ic->ic_softc; 2973 struct ath_hal *ah = sc->sc_ah; 2974 2975 switch (cmd) { 2976 case IEEE80211_IOC_TXPOWER: 2977 /* 2978 * If per-packet TPC is enabled, then we have nothing 2979 * to do; otherwise we need to force the global limit. 2980 * All this can happen directly; no need to reset. 2981 */ 2982 if (!ath_hal_gettpc(ah)) 2983 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2984 return 0; 2985 } 2986 /* XXX? Full or NOLOSS? */ 2987 return ath_reset(sc, ATH_RESET_FULL); 2988 } 2989 2990 struct ath_buf * 2991 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2992 { 2993 struct ath_buf *bf; 2994 2995 ATH_TXBUF_LOCK_ASSERT(sc); 2996 2997 if (btype == ATH_BUFTYPE_MGMT) 2998 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2999 else 3000 bf = TAILQ_FIRST(&sc->sc_txbuf); 3001 3002 if (bf == NULL) { 3003 sc->sc_stats.ast_tx_getnobuf++; 3004 } else { 3005 if (bf->bf_flags & ATH_BUF_BUSY) { 3006 sc->sc_stats.ast_tx_getbusybuf++; 3007 bf = NULL; 3008 } 3009 } 3010 3011 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3012 if (btype == ATH_BUFTYPE_MGMT) 3013 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3014 else { 3015 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3016 sc->sc_txbuf_cnt--; 3017 3018 /* 3019 * This shuldn't happen; however just to be 3020 * safe print a warning and fudge the txbuf 3021 * count. 3022 */ 3023 if (sc->sc_txbuf_cnt < 0) { 3024 device_printf(sc->sc_dev, 3025 "%s: sc_txbuf_cnt < 0?\n", 3026 __func__); 3027 sc->sc_txbuf_cnt = 0; 3028 } 3029 } 3030 } else 3031 bf = NULL; 3032 3033 if (bf == NULL) { 3034 /* XXX should check which list, mgmt or otherwise */ 3035 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3036 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3037 "out of xmit buffers" : "xmit buffer busy"); 3038 return NULL; 3039 } 3040 3041 /* XXX TODO: should do this at buffer list initialisation */ 3042 /* XXX (then, ensure the buffer has the right flag set) */ 3043 bf->bf_flags = 0; 3044 if (btype == ATH_BUFTYPE_MGMT) 3045 bf->bf_flags |= ATH_BUF_MGMT; 3046 else 3047 bf->bf_flags &= (~ATH_BUF_MGMT); 3048 3049 /* Valid bf here; clear some basic fields */ 3050 bf->bf_next = NULL; /* XXX just to be sure */ 3051 bf->bf_last = NULL; /* XXX again, just to be sure */ 3052 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3053 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3054 3055 /* 3056 * Track the descriptor ID only if doing EDMA 3057 */ 3058 if (sc->sc_isedma) { 3059 bf->bf_descid = sc->sc_txbuf_descid; 3060 sc->sc_txbuf_descid++; 3061 } 3062 3063 return bf; 3064 } 3065 3066 /* 3067 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3068 * can't be thrown back on the queue as they could still be 3069 * in use by the hardware. 3070 * 3071 * This duplicates the buffer, or returns NULL. 3072 * 3073 * The descriptor is also copied but the link pointers and 3074 * the DMA segments aren't copied; this frame should thus 3075 * be again passed through the descriptor setup/chain routines 3076 * so the link is correct. 3077 * 3078 * The caller must free the buffer using ath_freebuf(). 3079 */ 3080 struct ath_buf * 3081 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3082 { 3083 struct ath_buf *tbf; 3084 3085 tbf = ath_getbuf(sc, 3086 (bf->bf_flags & ATH_BUF_MGMT) ? 3087 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3088 if (tbf == NULL) 3089 return NULL; /* XXX failure? Why? */ 3090 3091 /* Copy basics */ 3092 tbf->bf_next = NULL; 3093 tbf->bf_nseg = bf->bf_nseg; 3094 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3095 tbf->bf_status = bf->bf_status; 3096 tbf->bf_m = bf->bf_m; 3097 tbf->bf_node = bf->bf_node; 3098 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3099 /* will be setup by the chain/setup function */ 3100 tbf->bf_lastds = NULL; 3101 /* for now, last == self */ 3102 tbf->bf_last = tbf; 3103 tbf->bf_comp = bf->bf_comp; 3104 3105 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3106 3107 /* The caller has to re-init the descriptor + links */ 3108 3109 /* 3110 * Free the DMA mapping here, before we NULL the mbuf. 3111 * We must only call bus_dmamap_unload() once per mbuf chain 3112 * or behaviour is undefined. 3113 */ 3114 if (bf->bf_m != NULL) { 3115 /* 3116 * XXX is this POSTWRITE call required? 3117 */ 3118 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3119 BUS_DMASYNC_POSTWRITE); 3120 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3121 } 3122 3123 bf->bf_m = NULL; 3124 bf->bf_node = NULL; 3125 3126 /* Copy state */ 3127 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3128 3129 return tbf; 3130 } 3131 3132 struct ath_buf * 3133 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3134 { 3135 struct ath_buf *bf; 3136 3137 ATH_TXBUF_LOCK(sc); 3138 bf = _ath_getbuf_locked(sc, btype); 3139 /* 3140 * If a mgmt buffer was requested but we're out of those, 3141 * try requesting a normal one. 3142 */ 3143 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3144 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3145 ATH_TXBUF_UNLOCK(sc); 3146 if (bf == NULL) { 3147 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3148 sc->sc_stats.ast_tx_qstop++; 3149 } 3150 return bf; 3151 } 3152 3153 /* 3154 * Transmit a single frame. 3155 * 3156 * net80211 will free the node reference if the transmit 3157 * fails, so don't free the node reference here. 3158 */ 3159 static int 3160 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3161 { 3162 struct ath_softc *sc = ic->ic_softc; 3163 struct ieee80211_node *ni; 3164 struct mbuf *next; 3165 struct ath_buf *bf; 3166 ath_bufhead frags; 3167 int retval = 0; 3168 3169 /* 3170 * Tell the reset path that we're currently transmitting. 3171 */ 3172 ATH_PCU_LOCK(sc); 3173 if (sc->sc_inreset_cnt > 0) { 3174 DPRINTF(sc, ATH_DEBUG_XMIT, 3175 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3176 ATH_PCU_UNLOCK(sc); 3177 sc->sc_stats.ast_tx_qstop++; 3178 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3179 return (ENOBUFS); /* XXX should be EINVAL or? */ 3180 } 3181 sc->sc_txstart_cnt++; 3182 ATH_PCU_UNLOCK(sc); 3183 3184 /* Wake the hardware up already */ 3185 ATH_LOCK(sc); 3186 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3187 ATH_UNLOCK(sc); 3188 3189 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3190 /* 3191 * Grab the TX lock - it's ok to do this here; we haven't 3192 * yet started transmitting. 3193 */ 3194 ATH_TX_LOCK(sc); 3195 3196 /* 3197 * Node reference, if there's one. 3198 */ 3199 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3200 3201 /* 3202 * Enforce how deep a node queue can get. 3203 * 3204 * XXX it would be nicer if we kept an mbuf queue per 3205 * node and only whacked them into ath_bufs when we 3206 * are ready to schedule some traffic from them. 3207 * .. that may come later. 3208 * 3209 * XXX we should also track the per-node hardware queue 3210 * depth so it is easy to limit the _SUM_ of the swq and 3211 * hwq frames. Since we only schedule two HWQ frames 3212 * at a time, this should be OK for now. 3213 */ 3214 if ((!(m->m_flags & M_EAPOL)) && 3215 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3216 sc->sc_stats.ast_tx_nodeq_overflow++; 3217 retval = ENOBUFS; 3218 goto finish; 3219 } 3220 3221 /* 3222 * Check how many TX buffers are available. 3223 * 3224 * If this is for non-EAPOL traffic, just leave some 3225 * space free in order for buffer cloning and raw 3226 * frame transmission to occur. 3227 * 3228 * If it's for EAPOL traffic, ignore this for now. 3229 * Management traffic will be sent via the raw transmit 3230 * method which bypasses this check. 3231 * 3232 * This is needed to ensure that EAPOL frames during 3233 * (re) keying have a chance to go out. 3234 * 3235 * See kern/138379 for more information. 3236 */ 3237 if ((!(m->m_flags & M_EAPOL)) && 3238 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3239 sc->sc_stats.ast_tx_nobuf++; 3240 retval = ENOBUFS; 3241 goto finish; 3242 } 3243 3244 /* 3245 * Grab a TX buffer and associated resources. 3246 * 3247 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3248 * That way even with temporary buffer exhaustion due to 3249 * the data path doesn't leave us without the ability 3250 * to transmit management frames. 3251 * 3252 * Otherwise allocate a normal buffer. 3253 */ 3254 if (m->m_flags & M_EAPOL) 3255 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3256 else 3257 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3258 3259 if (bf == NULL) { 3260 /* 3261 * If we failed to allocate a buffer, fail. 3262 * 3263 * We shouldn't fail normally, due to the check 3264 * above. 3265 */ 3266 sc->sc_stats.ast_tx_nobuf++; 3267 retval = ENOBUFS; 3268 goto finish; 3269 } 3270 3271 /* 3272 * At this point we have a buffer; so we need to free it 3273 * if we hit any error conditions. 3274 */ 3275 3276 /* 3277 * Check for fragmentation. If this frame 3278 * has been broken up verify we have enough 3279 * buffers to send all the fragments so all 3280 * go out or none... 3281 */ 3282 TAILQ_INIT(&frags); 3283 if ((m->m_flags & M_FRAG) && 3284 !ath_txfrag_setup(sc, &frags, m, ni)) { 3285 DPRINTF(sc, ATH_DEBUG_XMIT, 3286 "%s: out of txfrag buffers\n", __func__); 3287 sc->sc_stats.ast_tx_nofrag++; 3288 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3289 /* 3290 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3291 * we shouldn't free it but return back. 3292 */ 3293 ieee80211_free_mbuf(m); 3294 m = NULL; 3295 goto bad; 3296 } 3297 3298 /* 3299 * At this point if we have any TX fragments, then we will 3300 * have bumped the node reference once for each of those. 3301 */ 3302 3303 /* 3304 * XXX Is there anything actually _enforcing_ that the 3305 * fragments are being transmitted in one hit, rather than 3306 * being interleaved with other transmissions on that 3307 * hardware queue? 3308 * 3309 * The ATH TX output lock is the only thing serialising this 3310 * right now. 3311 */ 3312 3313 /* 3314 * Calculate the "next fragment" length field in ath_buf 3315 * in order to let the transmit path know enough about 3316 * what to next write to the hardware. 3317 */ 3318 if (m->m_flags & M_FRAG) { 3319 struct ath_buf *fbf = bf; 3320 struct ath_buf *n_fbf = NULL; 3321 struct mbuf *fm = m->m_nextpkt; 3322 3323 /* 3324 * We need to walk the list of fragments and set 3325 * the next size to the following buffer. 3326 * However, the first buffer isn't in the frag 3327 * list, so we have to do some gymnastics here. 3328 */ 3329 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3330 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3331 fbf = n_fbf; 3332 fm = fm->m_nextpkt; 3333 } 3334 } 3335 3336 nextfrag: 3337 /* 3338 * Pass the frame to the h/w for transmission. 3339 * Fragmented frames have each frag chained together 3340 * with m_nextpkt. We know there are sufficient ath_buf's 3341 * to send all the frags because of work done by 3342 * ath_txfrag_setup. We leave m_nextpkt set while 3343 * calling ath_tx_start so it can use it to extend the 3344 * the tx duration to cover the subsequent frag and 3345 * so it can reclaim all the mbufs in case of an error; 3346 * ath_tx_start clears m_nextpkt once it commits to 3347 * handing the frame to the hardware. 3348 * 3349 * Note: if this fails, then the mbufs are freed but 3350 * not the node reference. 3351 * 3352 * So, we now have to free the node reference ourselves here 3353 * and return OK up to the stack. 3354 */ 3355 next = m->m_nextpkt; 3356 if (ath_tx_start(sc, ni, bf, m)) { 3357 bad: 3358 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3359 reclaim: 3360 bf->bf_m = NULL; 3361 bf->bf_node = NULL; 3362 ATH_TXBUF_LOCK(sc); 3363 ath_returnbuf_head(sc, bf); 3364 /* 3365 * Free the rest of the node references and 3366 * buffers for the fragment list. 3367 */ 3368 ath_txfrag_cleanup(sc, &frags, ni); 3369 ATH_TXBUF_UNLOCK(sc); 3370 3371 /* 3372 * XXX: And free the node/return OK; ath_tx_start() may have 3373 * modified the buffer. We currently have no way to 3374 * signify that the mbuf was freed but there was an error. 3375 */ 3376 ieee80211_free_node(ni); 3377 retval = 0; 3378 goto finish; 3379 } 3380 3381 /* 3382 * Check here if the node is in power save state. 3383 */ 3384 ath_tx_update_tim(sc, ni, 1); 3385 3386 if (next != NULL) { 3387 /* 3388 * Beware of state changing between frags. 3389 * XXX check sta power-save state? 3390 */ 3391 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3392 DPRINTF(sc, ATH_DEBUG_XMIT, 3393 "%s: flush fragmented packet, state %s\n", 3394 __func__, 3395 ieee80211_state_name[ni->ni_vap->iv_state]); 3396 /* XXX dmamap */ 3397 ieee80211_free_mbuf(next); 3398 goto reclaim; 3399 } 3400 m = next; 3401 bf = TAILQ_FIRST(&frags); 3402 KASSERT(bf != NULL, ("no buf for txfrag")); 3403 TAILQ_REMOVE(&frags, bf, bf_list); 3404 goto nextfrag; 3405 } 3406 3407 /* 3408 * Bump watchdog timer. 3409 */ 3410 sc->sc_wd_timer = 5; 3411 3412 finish: 3413 ATH_TX_UNLOCK(sc); 3414 3415 /* 3416 * Finished transmitting! 3417 */ 3418 ATH_PCU_LOCK(sc); 3419 sc->sc_txstart_cnt--; 3420 ATH_PCU_UNLOCK(sc); 3421 3422 /* Sleep the hardware if required */ 3423 ATH_LOCK(sc); 3424 ath_power_restore_power_state(sc); 3425 ATH_UNLOCK(sc); 3426 3427 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3428 3429 return (retval); 3430 } 3431 3432 static int 3433 ath_media_change(struct ifnet *ifp) 3434 { 3435 int error = ieee80211_media_change(ifp); 3436 /* NB: only the fixed rate can change and that doesn't need a reset */ 3437 return (error == ENETRESET ? 0 : error); 3438 } 3439 3440 /* 3441 * Block/unblock tx+rx processing while a key change is done. 3442 * We assume the caller serializes key management operations 3443 * so we only need to worry about synchronization with other 3444 * uses that originate in the driver. 3445 */ 3446 static void 3447 ath_key_update_begin(struct ieee80211vap *vap) 3448 { 3449 struct ath_softc *sc = vap->iv_ic->ic_softc; 3450 3451 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3452 taskqueue_block(sc->sc_tq); 3453 } 3454 3455 static void 3456 ath_key_update_end(struct ieee80211vap *vap) 3457 { 3458 struct ath_softc *sc = vap->iv_ic->ic_softc; 3459 3460 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3461 taskqueue_unblock(sc->sc_tq); 3462 } 3463 3464 static void 3465 ath_update_promisc(struct ieee80211com *ic) 3466 { 3467 struct ath_softc *sc = ic->ic_softc; 3468 u_int32_t rfilt; 3469 3470 /* configure rx filter */ 3471 ATH_LOCK(sc); 3472 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3473 rfilt = ath_calcrxfilter(sc); 3474 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3475 ath_power_restore_power_state(sc); 3476 ATH_UNLOCK(sc); 3477 3478 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3479 } 3480 3481 /* 3482 * Driver-internal mcast update call. 3483 * 3484 * Assumes the hardware is already awake. 3485 */ 3486 static void 3487 ath_update_mcast_hw(struct ath_softc *sc) 3488 { 3489 struct ieee80211com *ic = &sc->sc_ic; 3490 u_int32_t mfilt[2]; 3491 3492 /* calculate and install multicast filter */ 3493 if (ic->ic_allmulti == 0) { 3494 struct ieee80211vap *vap; 3495 struct ifnet *ifp; 3496 struct ifmultiaddr *ifma; 3497 3498 /* 3499 * Merge multicast addresses to form the hardware filter. 3500 */ 3501 mfilt[0] = mfilt[1] = 0; 3502 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3503 ifp = vap->iv_ifp; 3504 if_maddr_rlock(ifp); 3505 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3506 caddr_t dl; 3507 uint32_t val; 3508 uint8_t pos; 3509 3510 /* calculate XOR of eight 6bit values */ 3511 dl = LLADDR((struct sockaddr_dl *) 3512 ifma->ifma_addr); 3513 val = le32dec(dl + 0); 3514 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3515 val; 3516 val = le32dec(dl + 3); 3517 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3518 val; 3519 pos &= 0x3f; 3520 mfilt[pos / 32] |= (1 << (pos % 32)); 3521 } 3522 if_maddr_runlock(ifp); 3523 } 3524 } else 3525 mfilt[0] = mfilt[1] = ~0; 3526 3527 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3528 3529 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3530 __func__, mfilt[0], mfilt[1]); 3531 } 3532 3533 /* 3534 * Called from the net80211 layer - force the hardware 3535 * awake before operating. 3536 */ 3537 static void 3538 ath_update_mcast(struct ieee80211com *ic) 3539 { 3540 struct ath_softc *sc = ic->ic_softc; 3541 3542 ATH_LOCK(sc); 3543 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3544 ATH_UNLOCK(sc); 3545 3546 ath_update_mcast_hw(sc); 3547 3548 ATH_LOCK(sc); 3549 ath_power_restore_power_state(sc); 3550 ATH_UNLOCK(sc); 3551 } 3552 3553 void 3554 ath_mode_init(struct ath_softc *sc) 3555 { 3556 struct ieee80211com *ic = &sc->sc_ic; 3557 struct ath_hal *ah = sc->sc_ah; 3558 u_int32_t rfilt; 3559 3560 /* configure rx filter */ 3561 rfilt = ath_calcrxfilter(sc); 3562 ath_hal_setrxfilter(ah, rfilt); 3563 3564 /* configure operational mode */ 3565 ath_hal_setopmode(ah); 3566 3567 /* handle any link-level address change */ 3568 ath_hal_setmac(ah, ic->ic_macaddr); 3569 3570 /* calculate and install multicast filter */ 3571 ath_update_mcast_hw(sc); 3572 } 3573 3574 /* 3575 * Set the slot time based on the current setting. 3576 */ 3577 void 3578 ath_setslottime(struct ath_softc *sc) 3579 { 3580 struct ieee80211com *ic = &sc->sc_ic; 3581 struct ath_hal *ah = sc->sc_ah; 3582 u_int usec; 3583 3584 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3585 usec = 13; 3586 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3587 usec = 21; 3588 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3589 /* honor short/long slot time only in 11g */ 3590 /* XXX shouldn't honor on pure g or turbo g channel */ 3591 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3592 usec = HAL_SLOT_TIME_9; 3593 else 3594 usec = HAL_SLOT_TIME_20; 3595 } else 3596 usec = HAL_SLOT_TIME_9; 3597 3598 DPRINTF(sc, ATH_DEBUG_RESET, 3599 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3600 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3601 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3602 3603 /* Wake up the hardware first before updating the slot time */ 3604 ATH_LOCK(sc); 3605 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3606 ath_hal_setslottime(ah, usec); 3607 ath_power_restore_power_state(sc); 3608 sc->sc_updateslot = OK; 3609 ATH_UNLOCK(sc); 3610 } 3611 3612 /* 3613 * Callback from the 802.11 layer to update the 3614 * slot time based on the current setting. 3615 */ 3616 static void 3617 ath_updateslot(struct ieee80211com *ic) 3618 { 3619 struct ath_softc *sc = ic->ic_softc; 3620 3621 /* 3622 * When not coordinating the BSS, change the hardware 3623 * immediately. For other operation we defer the change 3624 * until beacon updates have propagated to the stations. 3625 * 3626 * XXX sc_updateslot isn't changed behind a lock? 3627 */ 3628 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3629 ic->ic_opmode == IEEE80211_M_MBSS) 3630 sc->sc_updateslot = UPDATE; 3631 else 3632 ath_setslottime(sc); 3633 } 3634 3635 /* 3636 * Append the contents of src to dst; both queues 3637 * are assumed to be locked. 3638 */ 3639 void 3640 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3641 { 3642 3643 ATH_TXQ_LOCK_ASSERT(src); 3644 ATH_TXQ_LOCK_ASSERT(dst); 3645 3646 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3647 dst->axq_link = src->axq_link; 3648 src->axq_link = NULL; 3649 dst->axq_depth += src->axq_depth; 3650 dst->axq_aggr_depth += src->axq_aggr_depth; 3651 src->axq_depth = 0; 3652 src->axq_aggr_depth = 0; 3653 } 3654 3655 /* 3656 * Reset the hardware, with no loss. 3657 * 3658 * This can't be used for a general case reset. 3659 */ 3660 static void 3661 ath_reset_proc(void *arg, int pending) 3662 { 3663 struct ath_softc *sc = arg; 3664 3665 #if 0 3666 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3667 #endif 3668 ath_reset(sc, ATH_RESET_NOLOSS); 3669 } 3670 3671 /* 3672 * Reset the hardware after detecting beacons have stopped. 3673 */ 3674 static void 3675 ath_bstuck_proc(void *arg, int pending) 3676 { 3677 struct ath_softc *sc = arg; 3678 uint32_t hangs = 0; 3679 3680 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3681 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3682 3683 #ifdef ATH_DEBUG_ALQ 3684 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3685 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3686 #endif 3687 3688 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3689 sc->sc_bmisscount); 3690 sc->sc_stats.ast_bstuck++; 3691 /* 3692 * This assumes that there's no simultaneous channel mode change 3693 * occurring. 3694 */ 3695 ath_reset(sc, ATH_RESET_NOLOSS); 3696 } 3697 3698 static int 3699 ath_desc_alloc(struct ath_softc *sc) 3700 { 3701 int error; 3702 3703 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3704 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3705 if (error != 0) { 3706 return error; 3707 } 3708 sc->sc_txbuf_cnt = ath_txbuf; 3709 3710 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3711 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3712 ATH_TXDESC); 3713 if (error != 0) { 3714 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3715 return error; 3716 } 3717 3718 /* 3719 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3720 * flag doesn't have to be set in ath_getbuf_locked(). 3721 */ 3722 3723 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3724 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3725 if (error != 0) { 3726 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3727 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3728 &sc->sc_txbuf_mgmt); 3729 return error; 3730 } 3731 return 0; 3732 } 3733 3734 static void 3735 ath_desc_free(struct ath_softc *sc) 3736 { 3737 3738 if (sc->sc_bdma.dd_desc_len != 0) 3739 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3740 if (sc->sc_txdma.dd_desc_len != 0) 3741 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3742 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3743 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3744 &sc->sc_txbuf_mgmt); 3745 } 3746 3747 static struct ieee80211_node * 3748 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3749 { 3750 struct ieee80211com *ic = vap->iv_ic; 3751 struct ath_softc *sc = ic->ic_softc; 3752 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3753 struct ath_node *an; 3754 3755 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3756 if (an == NULL) { 3757 /* XXX stat+msg */ 3758 return NULL; 3759 } 3760 ath_rate_node_init(sc, an); 3761 3762 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3763 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3764 device_get_nameunit(sc->sc_dev), an); 3765 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3766 3767 /* XXX setup ath_tid */ 3768 ath_tx_tid_init(sc, an); 3769 3770 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3771 return &an->an_node; 3772 } 3773 3774 static void 3775 ath_node_cleanup(struct ieee80211_node *ni) 3776 { 3777 struct ieee80211com *ic = ni->ni_ic; 3778 struct ath_softc *sc = ic->ic_softc; 3779 3780 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3781 ni->ni_macaddr, ":", ATH_NODE(ni)); 3782 3783 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3784 ath_tx_node_flush(sc, ATH_NODE(ni)); 3785 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3786 sc->sc_node_cleanup(ni); 3787 } 3788 3789 static void 3790 ath_node_free(struct ieee80211_node *ni) 3791 { 3792 struct ieee80211com *ic = ni->ni_ic; 3793 struct ath_softc *sc = ic->ic_softc; 3794 3795 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3796 ni->ni_macaddr, ":", ATH_NODE(ni)); 3797 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3798 sc->sc_node_free(ni); 3799 } 3800 3801 static void 3802 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3803 { 3804 struct ieee80211com *ic = ni->ni_ic; 3805 struct ath_softc *sc = ic->ic_softc; 3806 struct ath_hal *ah = sc->sc_ah; 3807 3808 *rssi = ic->ic_node_getrssi(ni); 3809 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3810 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3811 else 3812 *noise = -95; /* nominally correct */ 3813 } 3814 3815 /* 3816 * Set the default antenna. 3817 */ 3818 void 3819 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3820 { 3821 struct ath_hal *ah = sc->sc_ah; 3822 3823 /* XXX block beacon interrupts */ 3824 ath_hal_setdefantenna(ah, antenna); 3825 if (sc->sc_defant != antenna) 3826 sc->sc_stats.ast_ant_defswitch++; 3827 sc->sc_defant = antenna; 3828 sc->sc_rxotherant = 0; 3829 } 3830 3831 static void 3832 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3833 { 3834 txq->axq_qnum = qnum; 3835 txq->axq_ac = 0; 3836 txq->axq_depth = 0; 3837 txq->axq_aggr_depth = 0; 3838 txq->axq_intrcnt = 0; 3839 txq->axq_link = NULL; 3840 txq->axq_softc = sc; 3841 TAILQ_INIT(&txq->axq_q); 3842 TAILQ_INIT(&txq->axq_tidq); 3843 TAILQ_INIT(&txq->fifo.axq_q); 3844 ATH_TXQ_LOCK_INIT(sc, txq); 3845 } 3846 3847 /* 3848 * Setup a h/w transmit queue. 3849 */ 3850 static struct ath_txq * 3851 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3852 { 3853 struct ath_hal *ah = sc->sc_ah; 3854 HAL_TXQ_INFO qi; 3855 int qnum; 3856 3857 memset(&qi, 0, sizeof(qi)); 3858 qi.tqi_subtype = subtype; 3859 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3860 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3861 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3862 /* 3863 * Enable interrupts only for EOL and DESC conditions. 3864 * We mark tx descriptors to receive a DESC interrupt 3865 * when a tx queue gets deep; otherwise waiting for the 3866 * EOL to reap descriptors. Note that this is done to 3867 * reduce interrupt load and this only defers reaping 3868 * descriptors, never transmitting frames. Aside from 3869 * reducing interrupts this also permits more concurrency. 3870 * The only potential downside is if the tx queue backs 3871 * up in which case the top half of the kernel may backup 3872 * due to a lack of tx descriptors. 3873 */ 3874 if (sc->sc_isedma) 3875 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3876 HAL_TXQ_TXOKINT_ENABLE; 3877 else 3878 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3879 HAL_TXQ_TXDESCINT_ENABLE; 3880 3881 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3882 if (qnum == -1) { 3883 /* 3884 * NB: don't print a message, this happens 3885 * normally on parts with too few tx queues 3886 */ 3887 return NULL; 3888 } 3889 if (qnum >= nitems(sc->sc_txq)) { 3890 device_printf(sc->sc_dev, 3891 "hal qnum %u out of range, max %zu!\n", 3892 qnum, nitems(sc->sc_txq)); 3893 ath_hal_releasetxqueue(ah, qnum); 3894 return NULL; 3895 } 3896 if (!ATH_TXQ_SETUP(sc, qnum)) { 3897 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3898 sc->sc_txqsetup |= 1<<qnum; 3899 } 3900 return &sc->sc_txq[qnum]; 3901 } 3902 3903 /* 3904 * Setup a hardware data transmit queue for the specified 3905 * access control. The hal may not support all requested 3906 * queues in which case it will return a reference to a 3907 * previously setup queue. We record the mapping from ac's 3908 * to h/w queues for use by ath_tx_start and also track 3909 * the set of h/w queues being used to optimize work in the 3910 * transmit interrupt handler and related routines. 3911 */ 3912 static int 3913 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3914 { 3915 struct ath_txq *txq; 3916 3917 if (ac >= nitems(sc->sc_ac2q)) { 3918 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3919 ac, nitems(sc->sc_ac2q)); 3920 return 0; 3921 } 3922 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3923 if (txq != NULL) { 3924 txq->axq_ac = ac; 3925 sc->sc_ac2q[ac] = txq; 3926 return 1; 3927 } else 3928 return 0; 3929 } 3930 3931 /* 3932 * Update WME parameters for a transmit queue. 3933 */ 3934 static int 3935 ath_txq_update(struct ath_softc *sc, int ac) 3936 { 3937 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3938 struct ieee80211com *ic = &sc->sc_ic; 3939 struct ath_txq *txq = sc->sc_ac2q[ac]; 3940 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3941 struct ath_hal *ah = sc->sc_ah; 3942 HAL_TXQ_INFO qi; 3943 3944 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3945 #ifdef IEEE80211_SUPPORT_TDMA 3946 if (sc->sc_tdma) { 3947 /* 3948 * AIFS is zero so there's no pre-transmit wait. The 3949 * burst time defines the slot duration and is configured 3950 * through net80211. The QCU is setup to not do post-xmit 3951 * back off, lockout all lower-priority QCU's, and fire 3952 * off the DMA beacon alert timer which is setup based 3953 * on the slot configuration. 3954 */ 3955 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3956 | HAL_TXQ_TXERRINT_ENABLE 3957 | HAL_TXQ_TXURNINT_ENABLE 3958 | HAL_TXQ_TXEOLINT_ENABLE 3959 | HAL_TXQ_DBA_GATED 3960 | HAL_TXQ_BACKOFF_DISABLE 3961 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3962 ; 3963 qi.tqi_aifs = 0; 3964 /* XXX +dbaprep? */ 3965 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3966 qi.tqi_burstTime = qi.tqi_readyTime; 3967 } else { 3968 #endif 3969 /* 3970 * XXX shouldn't this just use the default flags 3971 * used in the previous queue setup? 3972 */ 3973 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3974 | HAL_TXQ_TXERRINT_ENABLE 3975 | HAL_TXQ_TXDESCINT_ENABLE 3976 | HAL_TXQ_TXURNINT_ENABLE 3977 | HAL_TXQ_TXEOLINT_ENABLE 3978 ; 3979 qi.tqi_aifs = wmep->wmep_aifsn; 3980 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3981 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3982 qi.tqi_readyTime = 0; 3983 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 3984 #ifdef IEEE80211_SUPPORT_TDMA 3985 } 3986 #endif 3987 3988 DPRINTF(sc, ATH_DEBUG_RESET, 3989 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3990 __func__, txq->axq_qnum, qi.tqi_qflags, 3991 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3992 3993 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3994 device_printf(sc->sc_dev, "unable to update hardware queue " 3995 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 3996 return 0; 3997 } else { 3998 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3999 return 1; 4000 } 4001 #undef ATH_EXPONENT_TO_VALUE 4002 } 4003 4004 /* 4005 * Callback from the 802.11 layer to update WME parameters. 4006 */ 4007 int 4008 ath_wme_update(struct ieee80211com *ic) 4009 { 4010 struct ath_softc *sc = ic->ic_softc; 4011 4012 return !ath_txq_update(sc, WME_AC_BE) || 4013 !ath_txq_update(sc, WME_AC_BK) || 4014 !ath_txq_update(sc, WME_AC_VI) || 4015 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4016 } 4017 4018 /* 4019 * Reclaim resources for a setup queue. 4020 */ 4021 static void 4022 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4023 { 4024 4025 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4026 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4027 ATH_TXQ_LOCK_DESTROY(txq); 4028 } 4029 4030 /* 4031 * Reclaim all tx queue resources. 4032 */ 4033 static void 4034 ath_tx_cleanup(struct ath_softc *sc) 4035 { 4036 int i; 4037 4038 ATH_TXBUF_LOCK_DESTROY(sc); 4039 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4040 if (ATH_TXQ_SETUP(sc, i)) 4041 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4042 } 4043 4044 /* 4045 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4046 * using the current rates in sc_rixmap. 4047 */ 4048 int 4049 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4050 { 4051 int rix = sc->sc_rixmap[rate]; 4052 /* NB: return lowest rix for invalid rate */ 4053 return (rix == 0xff ? 0 : rix); 4054 } 4055 4056 static void 4057 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4058 struct ath_buf *bf) 4059 { 4060 struct ieee80211_node *ni = bf->bf_node; 4061 struct ieee80211com *ic = &sc->sc_ic; 4062 int sr, lr, pri; 4063 4064 if (ts->ts_status == 0) { 4065 u_int8_t txant = ts->ts_antenna; 4066 sc->sc_stats.ast_ant_tx[txant]++; 4067 sc->sc_ant_tx[txant]++; 4068 if (ts->ts_finaltsi != 0) 4069 sc->sc_stats.ast_tx_altrate++; 4070 pri = M_WME_GETAC(bf->bf_m); 4071 if (pri >= WME_AC_VO) 4072 ic->ic_wme.wme_hipri_traffic++; 4073 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4074 ni->ni_inact = ni->ni_inact_reload; 4075 } else { 4076 if (ts->ts_status & HAL_TXERR_XRETRY) 4077 sc->sc_stats.ast_tx_xretries++; 4078 if (ts->ts_status & HAL_TXERR_FIFO) 4079 sc->sc_stats.ast_tx_fifoerr++; 4080 if (ts->ts_status & HAL_TXERR_FILT) 4081 sc->sc_stats.ast_tx_filtered++; 4082 if (ts->ts_status & HAL_TXERR_XTXOP) 4083 sc->sc_stats.ast_tx_xtxop++; 4084 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4085 sc->sc_stats.ast_tx_timerexpired++; 4086 4087 if (bf->bf_m->m_flags & M_FF) 4088 sc->sc_stats.ast_ff_txerr++; 4089 } 4090 /* XXX when is this valid? */ 4091 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4092 sc->sc_stats.ast_tx_desccfgerr++; 4093 /* 4094 * This can be valid for successful frame transmission! 4095 * If there's a TX FIFO underrun during aggregate transmission, 4096 * the MAC will pad the rest of the aggregate with delimiters. 4097 * If a BA is returned, the frame is marked as "OK" and it's up 4098 * to the TX completion code to notice which frames weren't 4099 * successfully transmitted. 4100 */ 4101 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4102 sc->sc_stats.ast_tx_data_underrun++; 4103 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4104 sc->sc_stats.ast_tx_delim_underrun++; 4105 4106 sr = ts->ts_shortretry; 4107 lr = ts->ts_longretry; 4108 sc->sc_stats.ast_tx_shortretry += sr; 4109 sc->sc_stats.ast_tx_longretry += lr; 4110 4111 } 4112 4113 /* 4114 * The default completion. If fail is 1, this means 4115 * "please don't retry the frame, and just return -1 status 4116 * to the net80211 stack. 4117 */ 4118 void 4119 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4120 { 4121 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4122 int st; 4123 4124 if (fail == 1) 4125 st = -1; 4126 else 4127 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4128 ts->ts_status : HAL_TXERR_XRETRY; 4129 4130 #if 0 4131 if (bf->bf_state.bfs_dobaw) 4132 device_printf(sc->sc_dev, 4133 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4134 __func__, 4135 bf, 4136 SEQNO(bf->bf_state.bfs_seqno)); 4137 #endif 4138 if (bf->bf_next != NULL) 4139 device_printf(sc->sc_dev, 4140 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4141 __func__, 4142 bf, 4143 SEQNO(bf->bf_state.bfs_seqno)); 4144 4145 /* 4146 * Check if the node software queue is empty; if so 4147 * then clear the TIM. 4148 * 4149 * This needs to be done before the buffer is freed as 4150 * otherwise the node reference will have been released 4151 * and the node may not actually exist any longer. 4152 * 4153 * XXX I don't like this belonging here, but it's cleaner 4154 * to do it here right now then all the other places 4155 * where ath_tx_default_comp() is called. 4156 * 4157 * XXX TODO: during drain, ensure that the callback is 4158 * being called so we get a chance to update the TIM. 4159 */ 4160 if (bf->bf_node) { 4161 ATH_TX_LOCK(sc); 4162 ath_tx_update_tim(sc, bf->bf_node, 0); 4163 ATH_TX_UNLOCK(sc); 4164 } 4165 4166 /* 4167 * Do any tx complete callback. Note this must 4168 * be done before releasing the node reference. 4169 * This will free the mbuf, release the net80211 4170 * node and recycle the ath_buf. 4171 */ 4172 ath_tx_freebuf(sc, bf, st); 4173 } 4174 4175 /* 4176 * Update rate control with the given completion status. 4177 */ 4178 void 4179 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4180 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4181 int nframes, int nbad) 4182 { 4183 struct ath_node *an; 4184 4185 /* Only for unicast frames */ 4186 if (ni == NULL) 4187 return; 4188 4189 an = ATH_NODE(ni); 4190 ATH_NODE_UNLOCK_ASSERT(an); 4191 4192 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4193 ATH_NODE_LOCK(an); 4194 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4195 ATH_NODE_UNLOCK(an); 4196 } 4197 } 4198 4199 /* 4200 * Process the completion of the given buffer. 4201 * 4202 * This calls the rate control update and then the buffer completion. 4203 * This will either free the buffer or requeue it. In any case, the 4204 * bf pointer should be treated as invalid after this function is called. 4205 */ 4206 void 4207 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4208 struct ath_tx_status *ts, struct ath_buf *bf) 4209 { 4210 struct ieee80211_node *ni = bf->bf_node; 4211 4212 ATH_TX_UNLOCK_ASSERT(sc); 4213 ATH_TXQ_UNLOCK_ASSERT(txq); 4214 4215 /* If unicast frame, update general statistics */ 4216 if (ni != NULL) { 4217 /* update statistics */ 4218 ath_tx_update_stats(sc, ts, bf); 4219 } 4220 4221 /* 4222 * Call the completion handler. 4223 * The completion handler is responsible for 4224 * calling the rate control code. 4225 * 4226 * Frames with no completion handler get the 4227 * rate control code called here. 4228 */ 4229 if (bf->bf_comp == NULL) { 4230 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4231 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4232 /* 4233 * XXX assume this isn't an aggregate 4234 * frame. 4235 */ 4236 ath_tx_update_ratectrl(sc, ni, 4237 bf->bf_state.bfs_rc, ts, 4238 bf->bf_state.bfs_pktlen, 1, 4239 (ts->ts_status == 0 ? 0 : 1)); 4240 } 4241 ath_tx_default_comp(sc, bf, 0); 4242 } else 4243 bf->bf_comp(sc, bf, 0); 4244 } 4245 4246 4247 4248 /* 4249 * Process completed xmit descriptors from the specified queue. 4250 * Kick the packet scheduler if needed. This can occur from this 4251 * particular task. 4252 */ 4253 static int 4254 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4255 { 4256 struct ath_hal *ah = sc->sc_ah; 4257 struct ath_buf *bf; 4258 struct ath_desc *ds; 4259 struct ath_tx_status *ts; 4260 struct ieee80211_node *ni; 4261 #ifdef IEEE80211_SUPPORT_SUPERG 4262 struct ieee80211com *ic = &sc->sc_ic; 4263 #endif /* IEEE80211_SUPPORT_SUPERG */ 4264 int nacked; 4265 HAL_STATUS status; 4266 4267 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4268 __func__, txq->axq_qnum, 4269 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4270 txq->axq_link); 4271 4272 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4273 "ath_tx_processq: txq=%u head %p link %p depth %p", 4274 txq->axq_qnum, 4275 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4276 txq->axq_link, 4277 txq->axq_depth); 4278 4279 nacked = 0; 4280 for (;;) { 4281 ATH_TXQ_LOCK(txq); 4282 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4283 bf = TAILQ_FIRST(&txq->axq_q); 4284 if (bf == NULL) { 4285 ATH_TXQ_UNLOCK(txq); 4286 break; 4287 } 4288 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4289 ts = &bf->bf_status.ds_txstat; 4290 4291 status = ath_hal_txprocdesc(ah, ds, ts); 4292 #ifdef ATH_DEBUG 4293 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4294 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4295 status == HAL_OK); 4296 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4297 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4298 status == HAL_OK); 4299 #endif 4300 #ifdef ATH_DEBUG_ALQ 4301 if (if_ath_alq_checkdebug(&sc->sc_alq, 4302 ATH_ALQ_EDMA_TXSTATUS)) { 4303 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4304 sc->sc_tx_statuslen, 4305 (char *) ds); 4306 } 4307 #endif 4308 4309 if (status == HAL_EINPROGRESS) { 4310 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4311 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4312 txq->axq_qnum, bf, ds); 4313 ATH_TXQ_UNLOCK(txq); 4314 break; 4315 } 4316 ATH_TXQ_REMOVE(txq, bf, bf_list); 4317 4318 /* 4319 * Sanity check. 4320 */ 4321 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4322 device_printf(sc->sc_dev, 4323 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4324 __func__, 4325 txq->axq_qnum, 4326 bf, 4327 bf->bf_state.bfs_tx_queue); 4328 } 4329 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4330 device_printf(sc->sc_dev, 4331 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4332 __func__, 4333 txq->axq_qnum, 4334 bf->bf_last, 4335 bf->bf_last->bf_state.bfs_tx_queue); 4336 } 4337 4338 #if 0 4339 if (txq->axq_depth > 0) { 4340 /* 4341 * More frames follow. Mark the buffer busy 4342 * so it's not re-used while the hardware may 4343 * still re-read the link field in the descriptor. 4344 * 4345 * Use the last buffer in an aggregate as that 4346 * is where the hardware may be - intermediate 4347 * descriptors won't be "busy". 4348 */ 4349 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4350 } else 4351 txq->axq_link = NULL; 4352 #else 4353 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4354 #endif 4355 if (bf->bf_state.bfs_aggr) 4356 txq->axq_aggr_depth--; 4357 4358 ni = bf->bf_node; 4359 4360 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4361 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4362 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4363 /* 4364 * If unicast frame was ack'd update RSSI, 4365 * including the last rx time used to 4366 * workaround phantom bmiss interrupts. 4367 */ 4368 if (ni != NULL && ts->ts_status == 0 && 4369 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4370 nacked++; 4371 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4372 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4373 ts->ts_rssi); 4374 } 4375 ATH_TXQ_UNLOCK(txq); 4376 4377 /* 4378 * Update statistics and call completion 4379 */ 4380 ath_tx_process_buf_completion(sc, txq, ts, bf); 4381 4382 /* XXX at this point, bf and ni may be totally invalid */ 4383 } 4384 #ifdef IEEE80211_SUPPORT_SUPERG 4385 /* 4386 * Flush fast-frame staging queue when traffic slows. 4387 */ 4388 if (txq->axq_depth <= 1) 4389 ieee80211_ff_flush(ic, txq->axq_ac); 4390 #endif 4391 4392 /* Kick the software TXQ scheduler */ 4393 if (dosched) { 4394 ATH_TX_LOCK(sc); 4395 ath_txq_sched(sc, txq); 4396 ATH_TX_UNLOCK(sc); 4397 } 4398 4399 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4400 "ath_tx_processq: txq=%u: done", 4401 txq->axq_qnum); 4402 4403 return nacked; 4404 } 4405 4406 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4407 4408 /* 4409 * Deferred processing of transmit interrupt; special-cased 4410 * for a single hardware transmit queue (e.g. 5210 and 5211). 4411 */ 4412 static void 4413 ath_tx_proc_q0(void *arg, int npending) 4414 { 4415 struct ath_softc *sc = arg; 4416 uint32_t txqs; 4417 4418 ATH_PCU_LOCK(sc); 4419 sc->sc_txproc_cnt++; 4420 txqs = sc->sc_txq_active; 4421 sc->sc_txq_active &= ~txqs; 4422 ATH_PCU_UNLOCK(sc); 4423 4424 ATH_LOCK(sc); 4425 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4426 ATH_UNLOCK(sc); 4427 4428 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4429 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4430 4431 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4432 /* XXX why is lastrx updated in tx code? */ 4433 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4434 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4435 ath_tx_processq(sc, sc->sc_cabq, 1); 4436 sc->sc_wd_timer = 0; 4437 4438 if (sc->sc_softled) 4439 ath_led_event(sc, sc->sc_txrix); 4440 4441 ATH_PCU_LOCK(sc); 4442 sc->sc_txproc_cnt--; 4443 ATH_PCU_UNLOCK(sc); 4444 4445 ATH_LOCK(sc); 4446 ath_power_restore_power_state(sc); 4447 ATH_UNLOCK(sc); 4448 4449 ath_tx_kick(sc); 4450 } 4451 4452 /* 4453 * Deferred processing of transmit interrupt; special-cased 4454 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4455 */ 4456 static void 4457 ath_tx_proc_q0123(void *arg, int npending) 4458 { 4459 struct ath_softc *sc = arg; 4460 int nacked; 4461 uint32_t txqs; 4462 4463 ATH_PCU_LOCK(sc); 4464 sc->sc_txproc_cnt++; 4465 txqs = sc->sc_txq_active; 4466 sc->sc_txq_active &= ~txqs; 4467 ATH_PCU_UNLOCK(sc); 4468 4469 ATH_LOCK(sc); 4470 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4471 ATH_UNLOCK(sc); 4472 4473 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4474 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4475 4476 /* 4477 * Process each active queue. 4478 */ 4479 nacked = 0; 4480 if (TXQACTIVE(txqs, 0)) 4481 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4482 if (TXQACTIVE(txqs, 1)) 4483 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4484 if (TXQACTIVE(txqs, 2)) 4485 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4486 if (TXQACTIVE(txqs, 3)) 4487 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4488 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4489 ath_tx_processq(sc, sc->sc_cabq, 1); 4490 if (nacked) 4491 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4492 4493 sc->sc_wd_timer = 0; 4494 4495 if (sc->sc_softled) 4496 ath_led_event(sc, sc->sc_txrix); 4497 4498 ATH_PCU_LOCK(sc); 4499 sc->sc_txproc_cnt--; 4500 ATH_PCU_UNLOCK(sc); 4501 4502 ATH_LOCK(sc); 4503 ath_power_restore_power_state(sc); 4504 ATH_UNLOCK(sc); 4505 4506 ath_tx_kick(sc); 4507 } 4508 4509 /* 4510 * Deferred processing of transmit interrupt. 4511 */ 4512 static void 4513 ath_tx_proc(void *arg, int npending) 4514 { 4515 struct ath_softc *sc = arg; 4516 int i, nacked; 4517 uint32_t txqs; 4518 4519 ATH_PCU_LOCK(sc); 4520 sc->sc_txproc_cnt++; 4521 txqs = sc->sc_txq_active; 4522 sc->sc_txq_active &= ~txqs; 4523 ATH_PCU_UNLOCK(sc); 4524 4525 ATH_LOCK(sc); 4526 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4527 ATH_UNLOCK(sc); 4528 4529 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4530 4531 /* 4532 * Process each active queue. 4533 */ 4534 nacked = 0; 4535 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4536 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4537 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4538 if (nacked) 4539 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4540 4541 sc->sc_wd_timer = 0; 4542 4543 if (sc->sc_softled) 4544 ath_led_event(sc, sc->sc_txrix); 4545 4546 ATH_PCU_LOCK(sc); 4547 sc->sc_txproc_cnt--; 4548 ATH_PCU_UNLOCK(sc); 4549 4550 ATH_LOCK(sc); 4551 ath_power_restore_power_state(sc); 4552 ATH_UNLOCK(sc); 4553 4554 ath_tx_kick(sc); 4555 } 4556 #undef TXQACTIVE 4557 4558 /* 4559 * Deferred processing of TXQ rescheduling. 4560 */ 4561 static void 4562 ath_txq_sched_tasklet(void *arg, int npending) 4563 { 4564 struct ath_softc *sc = arg; 4565 int i; 4566 4567 /* XXX is skipping ok? */ 4568 ATH_PCU_LOCK(sc); 4569 #if 0 4570 if (sc->sc_inreset_cnt > 0) { 4571 device_printf(sc->sc_dev, 4572 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4573 ATH_PCU_UNLOCK(sc); 4574 return; 4575 } 4576 #endif 4577 sc->sc_txproc_cnt++; 4578 ATH_PCU_UNLOCK(sc); 4579 4580 ATH_LOCK(sc); 4581 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4582 ATH_UNLOCK(sc); 4583 4584 ATH_TX_LOCK(sc); 4585 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4586 if (ATH_TXQ_SETUP(sc, i)) { 4587 ath_txq_sched(sc, &sc->sc_txq[i]); 4588 } 4589 } 4590 ATH_TX_UNLOCK(sc); 4591 4592 ATH_LOCK(sc); 4593 ath_power_restore_power_state(sc); 4594 ATH_UNLOCK(sc); 4595 4596 ATH_PCU_LOCK(sc); 4597 sc->sc_txproc_cnt--; 4598 ATH_PCU_UNLOCK(sc); 4599 } 4600 4601 void 4602 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4603 { 4604 4605 ATH_TXBUF_LOCK_ASSERT(sc); 4606 4607 if (bf->bf_flags & ATH_BUF_MGMT) 4608 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4609 else { 4610 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4611 sc->sc_txbuf_cnt++; 4612 if (sc->sc_txbuf_cnt > ath_txbuf) { 4613 device_printf(sc->sc_dev, 4614 "%s: sc_txbuf_cnt > %d?\n", 4615 __func__, 4616 ath_txbuf); 4617 sc->sc_txbuf_cnt = ath_txbuf; 4618 } 4619 } 4620 } 4621 4622 void 4623 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4624 { 4625 4626 ATH_TXBUF_LOCK_ASSERT(sc); 4627 4628 if (bf->bf_flags & ATH_BUF_MGMT) 4629 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4630 else { 4631 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4632 sc->sc_txbuf_cnt++; 4633 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4634 device_printf(sc->sc_dev, 4635 "%s: sc_txbuf_cnt > %d?\n", 4636 __func__, 4637 ATH_TXBUF); 4638 sc->sc_txbuf_cnt = ATH_TXBUF; 4639 } 4640 } 4641 } 4642 4643 /* 4644 * Free the holding buffer if it exists 4645 */ 4646 void 4647 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4648 { 4649 ATH_TXBUF_UNLOCK_ASSERT(sc); 4650 ATH_TXQ_LOCK_ASSERT(txq); 4651 4652 if (txq->axq_holdingbf == NULL) 4653 return; 4654 4655 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4656 4657 ATH_TXBUF_LOCK(sc); 4658 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4659 ATH_TXBUF_UNLOCK(sc); 4660 4661 txq->axq_holdingbf = NULL; 4662 } 4663 4664 /* 4665 * Add this buffer to the holding queue, freeing the previous 4666 * one if it exists. 4667 */ 4668 static void 4669 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4670 { 4671 struct ath_txq *txq; 4672 4673 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4674 4675 ATH_TXBUF_UNLOCK_ASSERT(sc); 4676 ATH_TXQ_LOCK_ASSERT(txq); 4677 4678 /* XXX assert ATH_BUF_BUSY is set */ 4679 4680 /* XXX assert the tx queue is under the max number */ 4681 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4682 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4683 __func__, 4684 bf, 4685 bf->bf_state.bfs_tx_queue); 4686 bf->bf_flags &= ~ATH_BUF_BUSY; 4687 ath_returnbuf_tail(sc, bf); 4688 return; 4689 } 4690 ath_txq_freeholdingbuf(sc, txq); 4691 txq->axq_holdingbf = bf; 4692 } 4693 4694 /* 4695 * Return a buffer to the pool and update the 'busy' flag on the 4696 * previous 'tail' entry. 4697 * 4698 * This _must_ only be called when the buffer is involved in a completed 4699 * TX. The logic is that if it was part of an active TX, the previous 4700 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4701 * for restart (eg for TDMA.) 4702 * 4703 * The caller must free the mbuf and recycle the node reference. 4704 * 4705 * XXX This method of handling busy / holding buffers is insanely stupid. 4706 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4707 * be much nicer if buffers in the processq() methods would instead be 4708 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4709 * exactly what hardware queue they came from in the first place. 4710 */ 4711 void 4712 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4713 { 4714 struct ath_txq *txq; 4715 4716 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4717 4718 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4719 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4720 4721 /* 4722 * If this buffer is busy, push it onto the holding queue. 4723 */ 4724 if (bf->bf_flags & ATH_BUF_BUSY) { 4725 ATH_TXQ_LOCK(txq); 4726 ath_txq_addholdingbuf(sc, bf); 4727 ATH_TXQ_UNLOCK(txq); 4728 return; 4729 } 4730 4731 /* 4732 * Not a busy buffer, so free normally 4733 */ 4734 ATH_TXBUF_LOCK(sc); 4735 ath_returnbuf_tail(sc, bf); 4736 ATH_TXBUF_UNLOCK(sc); 4737 } 4738 4739 /* 4740 * This is currently used by ath_tx_draintxq() and 4741 * ath_tx_tid_free_pkts(). 4742 * 4743 * It recycles a single ath_buf. 4744 */ 4745 void 4746 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4747 { 4748 struct ieee80211_node *ni = bf->bf_node; 4749 struct mbuf *m0 = bf->bf_m; 4750 4751 /* 4752 * Make sure that we only sync/unload if there's an mbuf. 4753 * If not (eg we cloned a buffer), the unload will have already 4754 * occurred. 4755 */ 4756 if (bf->bf_m != NULL) { 4757 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4758 BUS_DMASYNC_POSTWRITE); 4759 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4760 } 4761 4762 bf->bf_node = NULL; 4763 bf->bf_m = NULL; 4764 4765 /* Free the buffer, it's not needed any longer */ 4766 ath_freebuf(sc, bf); 4767 4768 /* Pass the buffer back to net80211 - completing it */ 4769 ieee80211_tx_complete(ni, m0, status); 4770 } 4771 4772 static struct ath_buf * 4773 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4774 { 4775 struct ath_buf *bf; 4776 4777 ATH_TXQ_LOCK_ASSERT(txq); 4778 4779 /* 4780 * Drain the FIFO queue first, then if it's 4781 * empty, move to the normal frame queue. 4782 */ 4783 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4784 if (bf != NULL) { 4785 /* 4786 * Is it the last buffer in this set? 4787 * Decrement the FIFO counter. 4788 */ 4789 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4790 if (txq->axq_fifo_depth == 0) { 4791 device_printf(sc->sc_dev, 4792 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4793 __func__, 4794 txq->axq_qnum, 4795 txq->fifo.axq_depth); 4796 } else 4797 txq->axq_fifo_depth--; 4798 } 4799 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4800 return (bf); 4801 } 4802 4803 /* 4804 * Debugging! 4805 */ 4806 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4807 device_printf(sc->sc_dev, 4808 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4809 __func__, 4810 txq->axq_qnum, 4811 txq->axq_fifo_depth, 4812 txq->fifo.axq_depth); 4813 } 4814 4815 /* 4816 * Now drain the pending queue. 4817 */ 4818 bf = TAILQ_FIRST(&txq->axq_q); 4819 if (bf == NULL) { 4820 txq->axq_link = NULL; 4821 return (NULL); 4822 } 4823 ATH_TXQ_REMOVE(txq, bf, bf_list); 4824 return (bf); 4825 } 4826 4827 void 4828 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4829 { 4830 #ifdef ATH_DEBUG 4831 struct ath_hal *ah = sc->sc_ah; 4832 #endif 4833 struct ath_buf *bf; 4834 u_int ix; 4835 4836 /* 4837 * NB: this assumes output has been stopped and 4838 * we do not need to block ath_tx_proc 4839 */ 4840 for (ix = 0;; ix++) { 4841 ATH_TXQ_LOCK(txq); 4842 bf = ath_tx_draintxq_get_one(sc, txq); 4843 if (bf == NULL) { 4844 ATH_TXQ_UNLOCK(txq); 4845 break; 4846 } 4847 if (bf->bf_state.bfs_aggr) 4848 txq->axq_aggr_depth--; 4849 #ifdef ATH_DEBUG 4850 if (sc->sc_debug & ATH_DEBUG_RESET) { 4851 struct ieee80211com *ic = &sc->sc_ic; 4852 int status = 0; 4853 4854 /* 4855 * EDMA operation has a TX completion FIFO 4856 * separate from the TX descriptor, so this 4857 * method of checking the "completion" status 4858 * is wrong. 4859 */ 4860 if (! sc->sc_isedma) { 4861 status = (ath_hal_txprocdesc(ah, 4862 bf->bf_lastds, 4863 &bf->bf_status.ds_txstat) == HAL_OK); 4864 } 4865 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4866 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4867 bf->bf_m->m_len, 0, -1); 4868 } 4869 #endif /* ATH_DEBUG */ 4870 /* 4871 * Since we're now doing magic in the completion 4872 * functions, we -must- call it for aggregation 4873 * destinations or BAW tracking will get upset. 4874 */ 4875 /* 4876 * Clear ATH_BUF_BUSY; the completion handler 4877 * will free the buffer. 4878 */ 4879 ATH_TXQ_UNLOCK(txq); 4880 bf->bf_flags &= ~ATH_BUF_BUSY; 4881 if (bf->bf_comp) 4882 bf->bf_comp(sc, bf, 1); 4883 else 4884 ath_tx_default_comp(sc, bf, 1); 4885 } 4886 4887 /* 4888 * Free the holding buffer if it exists 4889 */ 4890 ATH_TXQ_LOCK(txq); 4891 ath_txq_freeholdingbuf(sc, txq); 4892 ATH_TXQ_UNLOCK(txq); 4893 4894 /* 4895 * Drain software queued frames which are on 4896 * active TIDs. 4897 */ 4898 ath_tx_txq_drain(sc, txq); 4899 } 4900 4901 static void 4902 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4903 { 4904 struct ath_hal *ah = sc->sc_ah; 4905 4906 ATH_TXQ_LOCK_ASSERT(txq); 4907 4908 DPRINTF(sc, ATH_DEBUG_RESET, 4909 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 4910 "link %p, holdingbf=%p\n", 4911 __func__, 4912 txq->axq_qnum, 4913 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4914 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 4915 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 4916 txq->axq_flags, 4917 txq->axq_link, 4918 txq->axq_holdingbf); 4919 4920 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4921 /* We've stopped TX DMA, so mark this as stopped. */ 4922 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 4923 4924 #ifdef ATH_DEBUG 4925 if ((sc->sc_debug & ATH_DEBUG_RESET) 4926 && (txq->axq_holdingbf != NULL)) { 4927 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 4928 } 4929 #endif 4930 } 4931 4932 int 4933 ath_stoptxdma(struct ath_softc *sc) 4934 { 4935 struct ath_hal *ah = sc->sc_ah; 4936 int i; 4937 4938 /* XXX return value */ 4939 if (sc->sc_invalid) 4940 return 0; 4941 4942 if (!sc->sc_invalid) { 4943 /* don't touch the hardware if marked invalid */ 4944 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4945 __func__, sc->sc_bhalq, 4946 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4947 NULL); 4948 4949 /* stop the beacon queue */ 4950 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4951 4952 /* Stop the data queues */ 4953 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4954 if (ATH_TXQ_SETUP(sc, i)) { 4955 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4956 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4957 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4958 } 4959 } 4960 } 4961 4962 return 1; 4963 } 4964 4965 #ifdef ATH_DEBUG 4966 void 4967 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 4968 { 4969 struct ath_hal *ah = sc->sc_ah; 4970 struct ath_buf *bf; 4971 int i = 0; 4972 4973 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 4974 return; 4975 4976 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 4977 __func__, txq->axq_qnum); 4978 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 4979 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 4980 ath_hal_txprocdesc(ah, bf->bf_lastds, 4981 &bf->bf_status.ds_txstat) == HAL_OK); 4982 i++; 4983 } 4984 device_printf(sc->sc_dev, "%s: Q%d: end\n", 4985 __func__, txq->axq_qnum); 4986 } 4987 #endif /* ATH_DEBUG */ 4988 4989 /* 4990 * Drain the transmit queues and reclaim resources. 4991 */ 4992 void 4993 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4994 { 4995 struct ath_hal *ah = sc->sc_ah; 4996 struct ath_buf *bf_last; 4997 int i; 4998 4999 (void) ath_stoptxdma(sc); 5000 5001 /* 5002 * Dump the queue contents 5003 */ 5004 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5005 /* 5006 * XXX TODO: should we just handle the completed TX frames 5007 * here, whether or not the reset is a full one or not? 5008 */ 5009 if (ATH_TXQ_SETUP(sc, i)) { 5010 #ifdef ATH_DEBUG 5011 if (sc->sc_debug & ATH_DEBUG_RESET) 5012 ath_tx_dump(sc, &sc->sc_txq[i]); 5013 #endif /* ATH_DEBUG */ 5014 if (reset_type == ATH_RESET_NOLOSS) { 5015 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5016 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5017 /* 5018 * Free the holding buffer; DMA is now 5019 * stopped. 5020 */ 5021 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5022 /* 5023 * Setup the link pointer to be the 5024 * _last_ buffer/descriptor in the list. 5025 * If there's nothing in the list, set it 5026 * to NULL. 5027 */ 5028 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5029 axq_q_s); 5030 if (bf_last != NULL) { 5031 ath_hal_gettxdesclinkptr(ah, 5032 bf_last->bf_lastds, 5033 &sc->sc_txq[i].axq_link); 5034 } else { 5035 sc->sc_txq[i].axq_link = NULL; 5036 } 5037 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5038 } else 5039 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5040 } 5041 } 5042 #ifdef ATH_DEBUG 5043 if (sc->sc_debug & ATH_DEBUG_RESET) { 5044 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5045 if (bf != NULL && bf->bf_m != NULL) { 5046 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5047 ath_hal_txprocdesc(ah, bf->bf_lastds, 5048 &bf->bf_status.ds_txstat) == HAL_OK); 5049 ieee80211_dump_pkt(&sc->sc_ic, 5050 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5051 0, -1); 5052 } 5053 } 5054 #endif /* ATH_DEBUG */ 5055 sc->sc_wd_timer = 0; 5056 } 5057 5058 /* 5059 * Update internal state after a channel change. 5060 */ 5061 static void 5062 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5063 { 5064 enum ieee80211_phymode mode; 5065 5066 /* 5067 * Change channels and update the h/w rate map 5068 * if we're switching; e.g. 11a to 11b/g. 5069 */ 5070 mode = ieee80211_chan2mode(chan); 5071 if (mode != sc->sc_curmode) 5072 ath_setcurmode(sc, mode); 5073 sc->sc_curchan = chan; 5074 } 5075 5076 /* 5077 * Set/change channels. If the channel is really being changed, 5078 * it's done by resetting the chip. To accomplish this we must 5079 * first cleanup any pending DMA, then restart stuff after a la 5080 * ath_init. 5081 */ 5082 static int 5083 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5084 { 5085 struct ieee80211com *ic = &sc->sc_ic; 5086 struct ath_hal *ah = sc->sc_ah; 5087 int ret = 0; 5088 5089 /* Treat this as an interface reset */ 5090 ATH_PCU_UNLOCK_ASSERT(sc); 5091 ATH_UNLOCK_ASSERT(sc); 5092 5093 /* (Try to) stop TX/RX from occurring */ 5094 taskqueue_block(sc->sc_tq); 5095 5096 ATH_PCU_LOCK(sc); 5097 5098 /* Disable interrupts */ 5099 ath_hal_intrset(ah, 0); 5100 5101 /* Stop new RX/TX/interrupt completion */ 5102 if (ath_reset_grablock(sc, 1) == 0) { 5103 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5104 __func__); 5105 } 5106 5107 /* Stop pending RX/TX completion */ 5108 ath_txrx_stop_locked(sc); 5109 5110 ATH_PCU_UNLOCK(sc); 5111 5112 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5113 __func__, ieee80211_chan2ieee(ic, chan), 5114 chan->ic_freq, chan->ic_flags); 5115 if (chan != sc->sc_curchan) { 5116 HAL_STATUS status; 5117 /* 5118 * To switch channels clear any pending DMA operations; 5119 * wait long enough for the RX fifo to drain, reset the 5120 * hardware at the new frequency, and then re-enable 5121 * the relevant bits of the h/w. 5122 */ 5123 #if 0 5124 ath_hal_intrset(ah, 0); /* disable interrupts */ 5125 #endif 5126 ath_stoprecv(sc, 1); /* turn off frame recv */ 5127 /* 5128 * First, handle completed TX/RX frames. 5129 */ 5130 ath_rx_flush(sc); 5131 ath_draintxq(sc, ATH_RESET_NOLOSS); 5132 /* 5133 * Next, flush the non-scheduled frames. 5134 */ 5135 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5136 5137 ath_update_chainmasks(sc, chan); 5138 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5139 sc->sc_cur_rxchainmask); 5140 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5141 HAL_RESET_NORMAL, &status)) { 5142 device_printf(sc->sc_dev, "%s: unable to reset " 5143 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5144 __func__, ieee80211_chan2ieee(ic, chan), 5145 chan->ic_freq, chan->ic_flags, status); 5146 ret = EIO; 5147 goto finish; 5148 } 5149 sc->sc_diversity = ath_hal_getdiversity(ah); 5150 5151 ATH_RX_LOCK(sc); 5152 sc->sc_rx_stopped = 1; 5153 sc->sc_rx_resetted = 1; 5154 ATH_RX_UNLOCK(sc); 5155 5156 /* Let DFS at it in case it's a DFS channel */ 5157 ath_dfs_radar_enable(sc, chan); 5158 5159 /* Let spectral at in case spectral is enabled */ 5160 ath_spectral_enable(sc, chan); 5161 5162 /* 5163 * Let bluetooth coexistence at in case it's needed for this 5164 * channel 5165 */ 5166 ath_btcoex_enable(sc, ic->ic_curchan); 5167 5168 /* 5169 * If we're doing TDMA, enforce the TXOP limitation for chips 5170 * that support it. 5171 */ 5172 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5173 ath_hal_setenforcetxop(sc->sc_ah, 1); 5174 else 5175 ath_hal_setenforcetxop(sc->sc_ah, 0); 5176 5177 /* 5178 * Re-enable rx framework. 5179 */ 5180 if (ath_startrecv(sc) != 0) { 5181 device_printf(sc->sc_dev, 5182 "%s: unable to restart recv logic\n", __func__); 5183 ret = EIO; 5184 goto finish; 5185 } 5186 5187 /* 5188 * Change channels and update the h/w rate map 5189 * if we're switching; e.g. 11a to 11b/g. 5190 */ 5191 ath_chan_change(sc, chan); 5192 5193 /* 5194 * Reset clears the beacon timers; reset them 5195 * here if needed. 5196 */ 5197 if (sc->sc_beacons) { /* restart beacons */ 5198 #ifdef IEEE80211_SUPPORT_TDMA 5199 if (sc->sc_tdma) 5200 ath_tdma_config(sc, NULL); 5201 else 5202 #endif 5203 ath_beacon_config(sc, NULL); 5204 } 5205 5206 /* 5207 * Re-enable interrupts. 5208 */ 5209 #if 0 5210 ath_hal_intrset(ah, sc->sc_imask); 5211 #endif 5212 } 5213 5214 finish: 5215 ATH_PCU_LOCK(sc); 5216 sc->sc_inreset_cnt--; 5217 /* XXX only do this if sc_inreset_cnt == 0? */ 5218 ath_hal_intrset(ah, sc->sc_imask); 5219 ATH_PCU_UNLOCK(sc); 5220 5221 ath_txrx_start(sc); 5222 /* XXX ath_start? */ 5223 5224 return ret; 5225 } 5226 5227 /* 5228 * Periodically recalibrate the PHY to account 5229 * for temperature/environment changes. 5230 */ 5231 static void 5232 ath_calibrate(void *arg) 5233 { 5234 struct ath_softc *sc = arg; 5235 struct ath_hal *ah = sc->sc_ah; 5236 struct ieee80211com *ic = &sc->sc_ic; 5237 HAL_BOOL longCal, isCalDone = AH_TRUE; 5238 HAL_BOOL aniCal, shortCal = AH_FALSE; 5239 int nextcal; 5240 5241 ATH_LOCK_ASSERT(sc); 5242 5243 /* 5244 * Force the hardware awake for ANI work. 5245 */ 5246 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5247 5248 /* Skip trying to do this if we're in reset */ 5249 if (sc->sc_inreset_cnt) 5250 goto restart; 5251 5252 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5253 goto restart; 5254 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5255 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5256 if (sc->sc_doresetcal) 5257 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5258 5259 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5260 if (aniCal) { 5261 sc->sc_stats.ast_ani_cal++; 5262 sc->sc_lastani = ticks; 5263 ath_hal_ani_poll(ah, sc->sc_curchan); 5264 } 5265 5266 if (longCal) { 5267 sc->sc_stats.ast_per_cal++; 5268 sc->sc_lastlongcal = ticks; 5269 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5270 /* 5271 * Rfgain is out of bounds, reset the chip 5272 * to load new gain values. 5273 */ 5274 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5275 "%s: rfgain change\n", __func__); 5276 sc->sc_stats.ast_per_rfgain++; 5277 sc->sc_resetcal = 0; 5278 sc->sc_doresetcal = AH_TRUE; 5279 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5280 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5281 ath_power_restore_power_state(sc); 5282 return; 5283 } 5284 /* 5285 * If this long cal is after an idle period, then 5286 * reset the data collection state so we start fresh. 5287 */ 5288 if (sc->sc_resetcal) { 5289 (void) ath_hal_calreset(ah, sc->sc_curchan); 5290 sc->sc_lastcalreset = ticks; 5291 sc->sc_lastshortcal = ticks; 5292 sc->sc_resetcal = 0; 5293 sc->sc_doresetcal = AH_TRUE; 5294 } 5295 } 5296 5297 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5298 if (shortCal || longCal) { 5299 isCalDone = AH_FALSE; 5300 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5301 if (longCal) { 5302 /* 5303 * Calibrate noise floor data again in case of change. 5304 */ 5305 ath_hal_process_noisefloor(ah); 5306 } 5307 } else { 5308 DPRINTF(sc, ATH_DEBUG_ANY, 5309 "%s: calibration of channel %u failed\n", 5310 __func__, sc->sc_curchan->ic_freq); 5311 sc->sc_stats.ast_per_calfail++; 5312 } 5313 if (shortCal) 5314 sc->sc_lastshortcal = ticks; 5315 } 5316 if (!isCalDone) { 5317 restart: 5318 /* 5319 * Use a shorter interval to potentially collect multiple 5320 * data samples required to complete calibration. Once 5321 * we're told the work is done we drop back to a longer 5322 * interval between requests. We're more aggressive doing 5323 * work when operating as an AP to improve operation right 5324 * after startup. 5325 */ 5326 sc->sc_lastshortcal = ticks; 5327 nextcal = ath_shortcalinterval*hz/1000; 5328 if (sc->sc_opmode != HAL_M_HOSTAP) 5329 nextcal *= 10; 5330 sc->sc_doresetcal = AH_TRUE; 5331 } else { 5332 /* nextcal should be the shortest time for next event */ 5333 nextcal = ath_longcalinterval*hz; 5334 if (sc->sc_lastcalreset == 0) 5335 sc->sc_lastcalreset = sc->sc_lastlongcal; 5336 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5337 sc->sc_resetcal = 1; /* setup reset next trip */ 5338 sc->sc_doresetcal = AH_FALSE; 5339 } 5340 /* ANI calibration may occur more often than short/long/resetcal */ 5341 if (ath_anicalinterval > 0) 5342 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5343 5344 if (nextcal != 0) { 5345 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5346 __func__, nextcal, isCalDone ? "" : "!"); 5347 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5348 } else { 5349 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5350 __func__); 5351 /* NB: don't rearm timer */ 5352 } 5353 /* 5354 * Restore power state now that we're done. 5355 */ 5356 ath_power_restore_power_state(sc); 5357 } 5358 5359 static void 5360 ath_scan_start(struct ieee80211com *ic) 5361 { 5362 struct ath_softc *sc = ic->ic_softc; 5363 struct ath_hal *ah = sc->sc_ah; 5364 u_int32_t rfilt; 5365 5366 /* XXX calibration timer? */ 5367 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5368 5369 ATH_LOCK(sc); 5370 sc->sc_scanning = 1; 5371 sc->sc_syncbeacon = 0; 5372 rfilt = ath_calcrxfilter(sc); 5373 ATH_UNLOCK(sc); 5374 5375 ATH_PCU_LOCK(sc); 5376 ath_hal_setrxfilter(ah, rfilt); 5377 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5378 ATH_PCU_UNLOCK(sc); 5379 5380 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5381 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5382 } 5383 5384 static void 5385 ath_scan_end(struct ieee80211com *ic) 5386 { 5387 struct ath_softc *sc = ic->ic_softc; 5388 struct ath_hal *ah = sc->sc_ah; 5389 u_int32_t rfilt; 5390 5391 ATH_LOCK(sc); 5392 sc->sc_scanning = 0; 5393 rfilt = ath_calcrxfilter(sc); 5394 ATH_UNLOCK(sc); 5395 5396 ATH_PCU_LOCK(sc); 5397 ath_hal_setrxfilter(ah, rfilt); 5398 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5399 5400 ath_hal_process_noisefloor(ah); 5401 ATH_PCU_UNLOCK(sc); 5402 5403 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5404 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5405 sc->sc_curaid); 5406 } 5407 5408 #ifdef ATH_ENABLE_11N 5409 /* 5410 * For now, just do a channel change. 5411 * 5412 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5413 * control state and resetting the hardware without dropping frames out 5414 * of the queue. 5415 * 5416 * The unfortunate trouble here is making absolutely sure that the 5417 * channel width change has propagated enough so the hardware 5418 * absolutely isn't handed bogus frames for it's current operating 5419 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5420 * does occur in parallel, we need to make certain we've blocked 5421 * any further ongoing TX (and RX, that can cause raw TX) 5422 * before we do this. 5423 */ 5424 static void 5425 ath_update_chw(struct ieee80211com *ic) 5426 { 5427 struct ath_softc *sc = ic->ic_softc; 5428 5429 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5430 ath_set_channel(ic); 5431 } 5432 #endif /* ATH_ENABLE_11N */ 5433 5434 static void 5435 ath_set_channel(struct ieee80211com *ic) 5436 { 5437 struct ath_softc *sc = ic->ic_softc; 5438 5439 ATH_LOCK(sc); 5440 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5441 ATH_UNLOCK(sc); 5442 5443 (void) ath_chan_set(sc, ic->ic_curchan); 5444 /* 5445 * If we are returning to our bss channel then mark state 5446 * so the next recv'd beacon's tsf will be used to sync the 5447 * beacon timers. Note that since we only hear beacons in 5448 * sta/ibss mode this has no effect in other operating modes. 5449 */ 5450 ATH_LOCK(sc); 5451 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5452 sc->sc_syncbeacon = 1; 5453 ath_power_restore_power_state(sc); 5454 ATH_UNLOCK(sc); 5455 } 5456 5457 /* 5458 * Walk the vap list and check if there any vap's in RUN state. 5459 */ 5460 static int 5461 ath_isanyrunningvaps(struct ieee80211vap *this) 5462 { 5463 struct ieee80211com *ic = this->iv_ic; 5464 struct ieee80211vap *vap; 5465 5466 IEEE80211_LOCK_ASSERT(ic); 5467 5468 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5469 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5470 return 1; 5471 } 5472 return 0; 5473 } 5474 5475 static int 5476 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5477 { 5478 struct ieee80211com *ic = vap->iv_ic; 5479 struct ath_softc *sc = ic->ic_softc; 5480 struct ath_vap *avp = ATH_VAP(vap); 5481 struct ath_hal *ah = sc->sc_ah; 5482 struct ieee80211_node *ni = NULL; 5483 int i, error, stamode; 5484 u_int32_t rfilt; 5485 int csa_run_transition = 0; 5486 enum ieee80211_state ostate = vap->iv_state; 5487 5488 static const HAL_LED_STATE leds[] = { 5489 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5490 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5491 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5492 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5493 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5494 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5495 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5496 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5497 }; 5498 5499 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5500 ieee80211_state_name[ostate], 5501 ieee80211_state_name[nstate]); 5502 5503 /* 5504 * net80211 _should_ have the comlock asserted at this point. 5505 * There are some comments around the calls to vap->iv_newstate 5506 * which indicate that it (newstate) may end up dropping the 5507 * lock. This and the subsequent lock assert check after newstate 5508 * are an attempt to catch these and figure out how/why. 5509 */ 5510 IEEE80211_LOCK_ASSERT(ic); 5511 5512 /* Before we touch the hardware - wake it up */ 5513 ATH_LOCK(sc); 5514 /* 5515 * If the NIC is in anything other than SLEEP state, 5516 * we need to ensure that self-generated frames are 5517 * set for PWRMGT=0. Otherwise we may end up with 5518 * strange situations. 5519 * 5520 * XXX TODO: is this actually the case? :-) 5521 */ 5522 if (nstate != IEEE80211_S_SLEEP) 5523 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5524 5525 /* 5526 * Now, wake the thing up. 5527 */ 5528 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5529 5530 /* 5531 * And stop the calibration callout whilst we have 5532 * ATH_LOCK held. 5533 */ 5534 callout_stop(&sc->sc_cal_ch); 5535 ATH_UNLOCK(sc); 5536 5537 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5538 csa_run_transition = 1; 5539 5540 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5541 5542 if (nstate == IEEE80211_S_SCAN) { 5543 /* 5544 * Scanning: turn off beacon miss and don't beacon. 5545 * Mark beacon state so when we reach RUN state we'll 5546 * [re]setup beacons. Unblock the task q thread so 5547 * deferred interrupt processing is done. 5548 */ 5549 5550 /* Ensure we stay awake during scan */ 5551 ATH_LOCK(sc); 5552 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5553 ath_power_setpower(sc, HAL_PM_AWAKE); 5554 ATH_UNLOCK(sc); 5555 5556 ath_hal_intrset(ah, 5557 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5558 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5559 sc->sc_beacons = 0; 5560 taskqueue_unblock(sc->sc_tq); 5561 } 5562 5563 ni = ieee80211_ref_node(vap->iv_bss); 5564 rfilt = ath_calcrxfilter(sc); 5565 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5566 vap->iv_opmode == IEEE80211_M_AHDEMO || 5567 vap->iv_opmode == IEEE80211_M_IBSS); 5568 5569 /* 5570 * XXX Dont need to do this (and others) if we've transitioned 5571 * from SLEEP->RUN. 5572 */ 5573 if (stamode && nstate == IEEE80211_S_RUN) { 5574 sc->sc_curaid = ni->ni_associd; 5575 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5576 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5577 } 5578 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5579 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5580 ath_hal_setrxfilter(ah, rfilt); 5581 5582 /* XXX is this to restore keycache on resume? */ 5583 if (vap->iv_opmode != IEEE80211_M_STA && 5584 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5585 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5586 if (ath_hal_keyisvalid(ah, i)) 5587 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5588 } 5589 5590 /* 5591 * Invoke the parent method to do net80211 work. 5592 */ 5593 error = avp->av_newstate(vap, nstate, arg); 5594 if (error != 0) 5595 goto bad; 5596 5597 /* 5598 * See above: ensure av_newstate() doesn't drop the lock 5599 * on us. 5600 */ 5601 IEEE80211_LOCK_ASSERT(ic); 5602 5603 if (nstate == IEEE80211_S_RUN) { 5604 /* NB: collect bss node again, it may have changed */ 5605 ieee80211_free_node(ni); 5606 ni = ieee80211_ref_node(vap->iv_bss); 5607 5608 DPRINTF(sc, ATH_DEBUG_STATE, 5609 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5610 "capinfo 0x%04x chan %d\n", __func__, 5611 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5612 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5613 5614 switch (vap->iv_opmode) { 5615 #ifdef IEEE80211_SUPPORT_TDMA 5616 case IEEE80211_M_AHDEMO: 5617 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5618 break; 5619 /* fall thru... */ 5620 #endif 5621 case IEEE80211_M_HOSTAP: 5622 case IEEE80211_M_IBSS: 5623 case IEEE80211_M_MBSS: 5624 /* 5625 * Allocate and setup the beacon frame. 5626 * 5627 * Stop any previous beacon DMA. This may be 5628 * necessary, for example, when an ibss merge 5629 * causes reconfiguration; there will be a state 5630 * transition from RUN->RUN that means we may 5631 * be called with beacon transmission active. 5632 */ 5633 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5634 5635 error = ath_beacon_alloc(sc, ni); 5636 if (error != 0) 5637 goto bad; 5638 /* 5639 * If joining an adhoc network defer beacon timer 5640 * configuration to the next beacon frame so we 5641 * have a current TSF to use. Otherwise we're 5642 * starting an ibss/bss so there's no need to delay; 5643 * if this is the first vap moving to RUN state, then 5644 * beacon state needs to be [re]configured. 5645 */ 5646 if (vap->iv_opmode == IEEE80211_M_IBSS && 5647 ni->ni_tstamp.tsf != 0) { 5648 sc->sc_syncbeacon = 1; 5649 } else if (!sc->sc_beacons) { 5650 #ifdef IEEE80211_SUPPORT_TDMA 5651 if (vap->iv_caps & IEEE80211_C_TDMA) 5652 ath_tdma_config(sc, vap); 5653 else 5654 #endif 5655 ath_beacon_config(sc, vap); 5656 sc->sc_beacons = 1; 5657 } 5658 break; 5659 case IEEE80211_M_STA: 5660 /* 5661 * Defer beacon timer configuration to the next 5662 * beacon frame so we have a current TSF to use 5663 * (any TSF collected when scanning is likely old). 5664 * However if it's due to a CSA -> RUN transition, 5665 * force a beacon update so we pick up a lack of 5666 * beacons from an AP in CAC and thus force a 5667 * scan. 5668 * 5669 * And, there's also corner cases here where 5670 * after a scan, the AP may have disappeared. 5671 * In that case, we may not receive an actual 5672 * beacon to update the beacon timer and thus we 5673 * won't get notified of the missing beacons. 5674 */ 5675 if (ostate != IEEE80211_S_RUN && 5676 ostate != IEEE80211_S_SLEEP) { 5677 DPRINTF(sc, ATH_DEBUG_BEACON, 5678 "%s: STA; syncbeacon=1\n", __func__); 5679 sc->sc_syncbeacon = 1; 5680 5681 if (csa_run_transition) 5682 ath_beacon_config(sc, vap); 5683 5684 /* 5685 * PR: kern/175227 5686 * 5687 * Reconfigure beacons during reset; as otherwise 5688 * we won't get the beacon timers reprogrammed 5689 * after a reset and thus we won't pick up a 5690 * beacon miss interrupt. 5691 * 5692 * Hopefully we'll see a beacon before the BMISS 5693 * timer fires (too often), leading to a STA 5694 * disassociation. 5695 */ 5696 sc->sc_beacons = 1; 5697 } 5698 break; 5699 case IEEE80211_M_MONITOR: 5700 /* 5701 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5702 * transitions so we must re-enable interrupts here to 5703 * handle the case of a single monitor mode vap. 5704 */ 5705 ath_hal_intrset(ah, sc->sc_imask); 5706 break; 5707 case IEEE80211_M_WDS: 5708 break; 5709 default: 5710 break; 5711 } 5712 /* 5713 * Let the hal process statistics collected during a 5714 * scan so it can provide calibrated noise floor data. 5715 */ 5716 ath_hal_process_noisefloor(ah); 5717 /* 5718 * Reset rssi stats; maybe not the best place... 5719 */ 5720 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5721 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5722 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5723 5724 /* 5725 * Force awake for RUN mode. 5726 */ 5727 ATH_LOCK(sc); 5728 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5729 ath_power_setpower(sc, HAL_PM_AWAKE); 5730 5731 /* 5732 * Finally, start any timers and the task q thread 5733 * (in case we didn't go through SCAN state). 5734 */ 5735 if (ath_longcalinterval != 0) { 5736 /* start periodic recalibration timer */ 5737 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5738 } else { 5739 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5740 "%s: calibration disabled\n", __func__); 5741 } 5742 ATH_UNLOCK(sc); 5743 5744 taskqueue_unblock(sc->sc_tq); 5745 } else if (nstate == IEEE80211_S_INIT) { 5746 /* 5747 * If there are no vaps left in RUN state then 5748 * shutdown host/driver operation: 5749 * o disable interrupts 5750 * o disable the task queue thread 5751 * o mark beacon processing as stopped 5752 */ 5753 if (!ath_isanyrunningvaps(vap)) { 5754 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5755 /* disable interrupts */ 5756 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5757 taskqueue_block(sc->sc_tq); 5758 sc->sc_beacons = 0; 5759 } 5760 #ifdef IEEE80211_SUPPORT_TDMA 5761 ath_hal_setcca(ah, AH_TRUE); 5762 #endif 5763 } else if (nstate == IEEE80211_S_SLEEP) { 5764 /* We're going to sleep, so transition appropriately */ 5765 /* For now, only do this if we're a single STA vap */ 5766 if (sc->sc_nvaps == 1 && 5767 vap->iv_opmode == IEEE80211_M_STA) { 5768 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 5769 ATH_LOCK(sc); 5770 /* 5771 * Always at least set the self-generated 5772 * frame config to set PWRMGT=1. 5773 */ 5774 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 5775 5776 /* 5777 * If we're not syncing beacons, transition 5778 * to NETWORK_SLEEP. 5779 * 5780 * We stay awake if syncbeacon > 0 in case 5781 * we need to listen for some beacons otherwise 5782 * our beacon timer config may be wrong. 5783 */ 5784 if (sc->sc_syncbeacon == 0) { 5785 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 5786 } 5787 ATH_UNLOCK(sc); 5788 } 5789 } 5790 bad: 5791 ieee80211_free_node(ni); 5792 5793 /* 5794 * Restore the power state - either to what it was, or 5795 * to network_sleep if it's alright. 5796 */ 5797 ATH_LOCK(sc); 5798 ath_power_restore_power_state(sc); 5799 ATH_UNLOCK(sc); 5800 return error; 5801 } 5802 5803 /* 5804 * Allocate a key cache slot to the station so we can 5805 * setup a mapping from key index to node. The key cache 5806 * slot is needed for managing antenna state and for 5807 * compression when stations do not use crypto. We do 5808 * it uniliaterally here; if crypto is employed this slot 5809 * will be reassigned. 5810 */ 5811 static void 5812 ath_setup_stationkey(struct ieee80211_node *ni) 5813 { 5814 struct ieee80211vap *vap = ni->ni_vap; 5815 struct ath_softc *sc = vap->iv_ic->ic_softc; 5816 ieee80211_keyix keyix, rxkeyix; 5817 5818 /* XXX should take a locked ref to vap->iv_bss */ 5819 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5820 /* 5821 * Key cache is full; we'll fall back to doing 5822 * the more expensive lookup in software. Note 5823 * this also means no h/w compression. 5824 */ 5825 /* XXX msg+statistic */ 5826 } else { 5827 /* XXX locking? */ 5828 ni->ni_ucastkey.wk_keyix = keyix; 5829 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5830 /* NB: must mark device key to get called back on delete */ 5831 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5832 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5833 /* NB: this will create a pass-thru key entry */ 5834 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5835 } 5836 } 5837 5838 /* 5839 * Setup driver-specific state for a newly associated node. 5840 * Note that we're called also on a re-associate, the isnew 5841 * param tells us if this is the first time or not. 5842 */ 5843 static void 5844 ath_newassoc(struct ieee80211_node *ni, int isnew) 5845 { 5846 struct ath_node *an = ATH_NODE(ni); 5847 struct ieee80211vap *vap = ni->ni_vap; 5848 struct ath_softc *sc = vap->iv_ic->ic_softc; 5849 const struct ieee80211_txparam *tp = ni->ni_txparms; 5850 5851 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5852 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5853 5854 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 5855 __func__, 5856 ni->ni_macaddr, 5857 ":", 5858 isnew, 5859 an->an_is_powersave); 5860 5861 ATH_NODE_LOCK(an); 5862 ath_rate_newassoc(sc, an, isnew); 5863 ATH_NODE_UNLOCK(an); 5864 5865 if (isnew && 5866 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5867 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5868 ath_setup_stationkey(ni); 5869 5870 /* 5871 * If we're reassociating, make sure that any paused queues 5872 * get unpaused. 5873 * 5874 * Now, we may have frames in the hardware queue for this node. 5875 * So if we are reassociating and there are frames in the queue, 5876 * we need to go through the cleanup path to ensure that they're 5877 * marked as non-aggregate. 5878 */ 5879 if (! isnew) { 5880 DPRINTF(sc, ATH_DEBUG_NODE, 5881 "%s: %6D: reassoc; is_powersave=%d\n", 5882 __func__, 5883 ni->ni_macaddr, 5884 ":", 5885 an->an_is_powersave); 5886 5887 /* XXX for now, we can't hold the lock across assoc */ 5888 ath_tx_node_reassoc(sc, an); 5889 5890 /* XXX for now, we can't hold the lock across wakeup */ 5891 if (an->an_is_powersave) 5892 ath_tx_node_wakeup(sc, an); 5893 } 5894 } 5895 5896 static int 5897 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5898 int nchans, struct ieee80211_channel chans[]) 5899 { 5900 struct ath_softc *sc = ic->ic_softc; 5901 struct ath_hal *ah = sc->sc_ah; 5902 HAL_STATUS status; 5903 5904 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5905 "%s: rd %u cc %u location %c%s\n", 5906 __func__, reg->regdomain, reg->country, reg->location, 5907 reg->ecm ? " ecm" : ""); 5908 5909 status = ath_hal_set_channels(ah, chans, nchans, 5910 reg->country, reg->regdomain); 5911 if (status != HAL_OK) { 5912 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5913 __func__, status); 5914 return EINVAL; /* XXX */ 5915 } 5916 5917 return 0; 5918 } 5919 5920 static void 5921 ath_getradiocaps(struct ieee80211com *ic, 5922 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5923 { 5924 struct ath_softc *sc = ic->ic_softc; 5925 struct ath_hal *ah = sc->sc_ah; 5926 5927 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5928 __func__, SKU_DEBUG, CTRY_DEFAULT); 5929 5930 /* XXX check return */ 5931 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5932 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5933 5934 } 5935 5936 static int 5937 ath_getchannels(struct ath_softc *sc) 5938 { 5939 struct ieee80211com *ic = &sc->sc_ic; 5940 struct ath_hal *ah = sc->sc_ah; 5941 HAL_STATUS status; 5942 5943 /* 5944 * Collect channel set based on EEPROM contents. 5945 */ 5946 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5947 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5948 if (status != HAL_OK) { 5949 device_printf(sc->sc_dev, 5950 "%s: unable to collect channel list from hal, status %d\n", 5951 __func__, status); 5952 return EINVAL; 5953 } 5954 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5955 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5956 /* XXX map Atheros sku's to net80211 SKU's */ 5957 /* XXX net80211 types too small */ 5958 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5959 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5960 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5961 ic->ic_regdomain.isocc[1] = ' '; 5962 5963 ic->ic_regdomain.ecm = 1; 5964 ic->ic_regdomain.location = 'I'; 5965 5966 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5967 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5968 __func__, sc->sc_eerd, sc->sc_eecc, 5969 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5970 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5971 return 0; 5972 } 5973 5974 static int 5975 ath_rate_setup(struct ath_softc *sc, u_int mode) 5976 { 5977 struct ath_hal *ah = sc->sc_ah; 5978 const HAL_RATE_TABLE *rt; 5979 5980 switch (mode) { 5981 case IEEE80211_MODE_11A: 5982 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5983 break; 5984 case IEEE80211_MODE_HALF: 5985 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5986 break; 5987 case IEEE80211_MODE_QUARTER: 5988 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5989 break; 5990 case IEEE80211_MODE_11B: 5991 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5992 break; 5993 case IEEE80211_MODE_11G: 5994 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5995 break; 5996 case IEEE80211_MODE_TURBO_A: 5997 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5998 break; 5999 case IEEE80211_MODE_TURBO_G: 6000 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6001 break; 6002 case IEEE80211_MODE_STURBO_A: 6003 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6004 break; 6005 case IEEE80211_MODE_11NA: 6006 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6007 break; 6008 case IEEE80211_MODE_11NG: 6009 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6010 break; 6011 default: 6012 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6013 __func__, mode); 6014 return 0; 6015 } 6016 sc->sc_rates[mode] = rt; 6017 return (rt != NULL); 6018 } 6019 6020 static void 6021 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6022 { 6023 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6024 static const struct { 6025 u_int rate; /* tx/rx 802.11 rate */ 6026 u_int16_t timeOn; /* LED on time (ms) */ 6027 u_int16_t timeOff; /* LED off time (ms) */ 6028 } blinkrates[] = { 6029 { 108, 40, 10 }, 6030 { 96, 44, 11 }, 6031 { 72, 50, 13 }, 6032 { 48, 57, 14 }, 6033 { 36, 67, 16 }, 6034 { 24, 80, 20 }, 6035 { 22, 100, 25 }, 6036 { 18, 133, 34 }, 6037 { 12, 160, 40 }, 6038 { 10, 200, 50 }, 6039 { 6, 240, 58 }, 6040 { 4, 267, 66 }, 6041 { 2, 400, 100 }, 6042 { 0, 500, 130 }, 6043 /* XXX half/quarter rates */ 6044 }; 6045 const HAL_RATE_TABLE *rt; 6046 int i, j; 6047 6048 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6049 rt = sc->sc_rates[mode]; 6050 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6051 for (i = 0; i < rt->rateCount; i++) { 6052 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6053 if (rt->info[i].phy != IEEE80211_T_HT) 6054 sc->sc_rixmap[ieeerate] = i; 6055 else 6056 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6057 } 6058 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6059 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6060 if (i >= rt->rateCount) { 6061 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6062 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6063 continue; 6064 } 6065 sc->sc_hwmap[i].ieeerate = 6066 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6067 if (rt->info[i].phy == IEEE80211_T_HT) 6068 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6069 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6070 if (rt->info[i].shortPreamble || 6071 rt->info[i].phy == IEEE80211_T_OFDM) 6072 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6073 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6074 for (j = 0; j < nitems(blinkrates)-1; j++) 6075 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6076 break; 6077 /* NB: this uses the last entry if the rate isn't found */ 6078 /* XXX beware of overlow */ 6079 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6080 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6081 } 6082 sc->sc_currates = rt; 6083 sc->sc_curmode = mode; 6084 /* 6085 * All protection frames are transmitted at 2Mb/s for 6086 * 11g, otherwise at 1Mb/s. 6087 */ 6088 if (mode == IEEE80211_MODE_11G) 6089 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6090 else 6091 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6092 /* NB: caller is responsible for resetting rate control state */ 6093 } 6094 6095 static void 6096 ath_watchdog(void *arg) 6097 { 6098 struct ath_softc *sc = arg; 6099 struct ieee80211com *ic = &sc->sc_ic; 6100 int do_reset = 0; 6101 6102 ATH_LOCK_ASSERT(sc); 6103 6104 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6105 uint32_t hangs; 6106 6107 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6108 6109 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6110 hangs != 0) { 6111 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6112 hangs & 0xff ? "bb" : "mac", hangs); 6113 } else 6114 device_printf(sc->sc_dev, "device timeout\n"); 6115 do_reset = 1; 6116 counter_u64_add(ic->ic_oerrors, 1); 6117 sc->sc_stats.ast_watchdog++; 6118 6119 ath_power_restore_power_state(sc); 6120 } 6121 6122 /* 6123 * We can't hold the lock across the ath_reset() call. 6124 * 6125 * And since this routine can't hold a lock and sleep, 6126 * do the reset deferred. 6127 */ 6128 if (do_reset) { 6129 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6130 } 6131 6132 callout_schedule(&sc->sc_wd_ch, hz); 6133 } 6134 6135 static void 6136 ath_parent(struct ieee80211com *ic) 6137 { 6138 struct ath_softc *sc = ic->ic_softc; 6139 int error = EDOOFUS; 6140 6141 ATH_LOCK(sc); 6142 if (ic->ic_nrunning > 0) { 6143 /* 6144 * To avoid rescanning another access point, 6145 * do not call ath_init() here. Instead, 6146 * only reflect promisc mode settings. 6147 */ 6148 if (sc->sc_running) { 6149 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6150 ath_mode_init(sc); 6151 ath_power_restore_power_state(sc); 6152 } else if (!sc->sc_invalid) { 6153 /* 6154 * Beware of being called during attach/detach 6155 * to reset promiscuous mode. In that case we 6156 * will still be marked UP but not RUNNING. 6157 * However trying to re-init the interface 6158 * is the wrong thing to do as we've already 6159 * torn down much of our state. There's 6160 * probably a better way to deal with this. 6161 */ 6162 error = ath_init(sc); 6163 } 6164 } else { 6165 ath_stop(sc); 6166 if (!sc->sc_invalid) 6167 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6168 } 6169 ATH_UNLOCK(sc); 6170 6171 if (error == 0) { 6172 #ifdef ATH_TX99_DIAG 6173 if (sc->sc_tx99 != NULL) 6174 sc->sc_tx99->start(sc->sc_tx99); 6175 else 6176 #endif 6177 ieee80211_start_all(ic); 6178 } 6179 } 6180 6181 /* 6182 * Announce various information on device/driver attach. 6183 */ 6184 static void 6185 ath_announce(struct ath_softc *sc) 6186 { 6187 struct ath_hal *ah = sc->sc_ah; 6188 6189 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6190 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6191 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6192 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6193 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6194 if (bootverbose) { 6195 int i; 6196 for (i = 0; i <= WME_AC_VO; i++) { 6197 struct ath_txq *txq = sc->sc_ac2q[i]; 6198 device_printf(sc->sc_dev, 6199 "Use hw queue %u for %s traffic\n", 6200 txq->axq_qnum, ieee80211_wme_acnames[i]); 6201 } 6202 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6203 sc->sc_cabq->axq_qnum); 6204 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6205 sc->sc_bhalq); 6206 } 6207 if (ath_rxbuf != ATH_RXBUF) 6208 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6209 if (ath_txbuf != ATH_TXBUF) 6210 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6211 if (sc->sc_mcastkey && bootverbose) 6212 device_printf(sc->sc_dev, "using multicast key search\n"); 6213 } 6214 6215 static void 6216 ath_dfs_tasklet(void *p, int npending) 6217 { 6218 struct ath_softc *sc = (struct ath_softc *) p; 6219 struct ieee80211com *ic = &sc->sc_ic; 6220 6221 /* 6222 * If previous processing has found a radar event, 6223 * signal this to the net80211 layer to begin DFS 6224 * processing. 6225 */ 6226 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6227 /* DFS event found, initiate channel change */ 6228 /* 6229 * XXX doesn't currently tell us whether the event 6230 * XXX was found in the primary or extension 6231 * XXX channel! 6232 */ 6233 IEEE80211_LOCK(ic); 6234 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6235 IEEE80211_UNLOCK(ic); 6236 } 6237 } 6238 6239 /* 6240 * Enable/disable power save. This must be called with 6241 * no TX driver locks currently held, so it should only 6242 * be called from the RX path (which doesn't hold any 6243 * TX driver locks.) 6244 */ 6245 static void 6246 ath_node_powersave(struct ieee80211_node *ni, int enable) 6247 { 6248 #ifdef ATH_SW_PSQ 6249 struct ath_node *an = ATH_NODE(ni); 6250 struct ieee80211com *ic = ni->ni_ic; 6251 struct ath_softc *sc = ic->ic_softc; 6252 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6253 6254 /* XXX and no TXQ locks should be held here */ 6255 6256 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6257 __func__, 6258 ni->ni_macaddr, 6259 ":", 6260 !! enable); 6261 6262 /* Suspend or resume software queue handling */ 6263 if (enable) 6264 ath_tx_node_sleep(sc, an); 6265 else 6266 ath_tx_node_wakeup(sc, an); 6267 6268 /* Update net80211 state */ 6269 avp->av_node_ps(ni, enable); 6270 #else 6271 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6272 6273 /* Update net80211 state */ 6274 avp->av_node_ps(ni, enable); 6275 #endif/* ATH_SW_PSQ */ 6276 } 6277 6278 /* 6279 * Notification from net80211 that the powersave queue state has 6280 * changed. 6281 * 6282 * Since the software queue also may have some frames: 6283 * 6284 * + if the node software queue has frames and the TID state 6285 * is 0, we set the TIM; 6286 * + if the node and the stack are both empty, we clear the TIM bit. 6287 * + If the stack tries to set the bit, always set it. 6288 * + If the stack tries to clear the bit, only clear it if the 6289 * software queue in question is also cleared. 6290 * 6291 * TODO: this is called during node teardown; so let's ensure this 6292 * is all correctly handled and that the TIM bit is cleared. 6293 * It may be that the node flush is called _AFTER_ the net80211 6294 * stack clears the TIM. 6295 * 6296 * Here is the racy part. Since it's possible >1 concurrent, 6297 * overlapping TXes will appear complete with a TX completion in 6298 * another thread, it's possible that the concurrent TIM calls will 6299 * clash. We can't hold the node lock here because setting the 6300 * TIM grabs the net80211 comlock and this may cause a LOR. 6301 * The solution is either to totally serialise _everything_ at 6302 * this point (ie, all TX, completion and any reset/flush go into 6303 * one taskqueue) or a new "ath TIM lock" needs to be created that 6304 * just wraps the driver state change and this call to avp->av_set_tim(). 6305 * 6306 * The same race exists in the net80211 power save queue handling 6307 * as well. Since multiple transmitting threads may queue frames 6308 * into the driver, as well as ps-poll and the driver transmitting 6309 * frames (and thus clearing the psq), it's quite possible that 6310 * a packet entering the PSQ and a ps-poll being handled will 6311 * race, causing the TIM to be cleared and not re-set. 6312 */ 6313 static int 6314 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6315 { 6316 #ifdef ATH_SW_PSQ 6317 struct ieee80211com *ic = ni->ni_ic; 6318 struct ath_softc *sc = ic->ic_softc; 6319 struct ath_node *an = ATH_NODE(ni); 6320 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6321 int changed = 0; 6322 6323 ATH_TX_LOCK(sc); 6324 an->an_stack_psq = enable; 6325 6326 /* 6327 * This will get called for all operating modes, 6328 * even if avp->av_set_tim is unset. 6329 * It's currently set for hostap/ibss modes; but 6330 * the same infrastructure is used for both STA 6331 * and AP/IBSS node power save. 6332 */ 6333 if (avp->av_set_tim == NULL) { 6334 ATH_TX_UNLOCK(sc); 6335 return (0); 6336 } 6337 6338 /* 6339 * If setting the bit, always set it here. 6340 * If clearing the bit, only clear it if the 6341 * software queue is also empty. 6342 * 6343 * If the node has left power save, just clear the TIM 6344 * bit regardless of the state of the power save queue. 6345 * 6346 * XXX TODO: although atomics are used, it's quite possible 6347 * that a race will occur between this and setting/clearing 6348 * in another thread. TX completion will occur always in 6349 * one thread, however setting/clearing the TIM bit can come 6350 * from a variety of different process contexts! 6351 */ 6352 if (enable && an->an_tim_set == 1) { 6353 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6354 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6355 __func__, 6356 ni->ni_macaddr, 6357 ":", 6358 enable); 6359 ATH_TX_UNLOCK(sc); 6360 } else if (enable) { 6361 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6362 "%s: %6D: enable=%d, enabling TIM\n", 6363 __func__, 6364 ni->ni_macaddr, 6365 ":", 6366 enable); 6367 an->an_tim_set = 1; 6368 ATH_TX_UNLOCK(sc); 6369 changed = avp->av_set_tim(ni, enable); 6370 } else if (an->an_swq_depth == 0) { 6371 /* disable */ 6372 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6373 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6374 __func__, 6375 ni->ni_macaddr, 6376 ":", 6377 enable); 6378 an->an_tim_set = 0; 6379 ATH_TX_UNLOCK(sc); 6380 changed = avp->av_set_tim(ni, enable); 6381 } else if (! an->an_is_powersave) { 6382 /* 6383 * disable regardless; the node isn't in powersave now 6384 */ 6385 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6386 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6387 __func__, 6388 ni->ni_macaddr, 6389 ":", 6390 enable); 6391 an->an_tim_set = 0; 6392 ATH_TX_UNLOCK(sc); 6393 changed = avp->av_set_tim(ni, enable); 6394 } else { 6395 /* 6396 * psq disable, node is currently in powersave, node 6397 * software queue isn't empty, so don't clear the TIM bit 6398 * for now. 6399 */ 6400 ATH_TX_UNLOCK(sc); 6401 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6402 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6403 __func__, 6404 ni->ni_macaddr, 6405 ":", 6406 enable); 6407 changed = 0; 6408 } 6409 6410 return (changed); 6411 #else 6412 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6413 6414 /* 6415 * Some operating modes don't set av_set_tim(), so don't 6416 * update it here. 6417 */ 6418 if (avp->av_set_tim == NULL) 6419 return (0); 6420 6421 return (avp->av_set_tim(ni, enable)); 6422 #endif /* ATH_SW_PSQ */ 6423 } 6424 6425 /* 6426 * Set or update the TIM from the software queue. 6427 * 6428 * Check the software queue depth before attempting to do lock 6429 * anything; that avoids trying to obtain the lock. Then, 6430 * re-check afterwards to ensure nothing has changed in the 6431 * meantime. 6432 * 6433 * set: This is designed to be called from the TX path, after 6434 * a frame has been queued; to see if the swq > 0. 6435 * 6436 * clear: This is designed to be called from the buffer completion point 6437 * (right now it's ath_tx_default_comp()) where the state of 6438 * a software queue has changed. 6439 * 6440 * It makes sense to place it at buffer free / completion rather 6441 * than after each software queue operation, as there's no real 6442 * point in churning the TIM bit as the last frames in the software 6443 * queue are transmitted. If they fail and we retry them, we'd 6444 * just be setting the TIM bit again anyway. 6445 */ 6446 void 6447 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6448 int enable) 6449 { 6450 #ifdef ATH_SW_PSQ 6451 struct ath_node *an; 6452 struct ath_vap *avp; 6453 6454 /* Don't do this for broadcast/etc frames */ 6455 if (ni == NULL) 6456 return; 6457 6458 an = ATH_NODE(ni); 6459 avp = ATH_VAP(ni->ni_vap); 6460 6461 /* 6462 * And for operating modes without the TIM handler set, let's 6463 * just skip those. 6464 */ 6465 if (avp->av_set_tim == NULL) 6466 return; 6467 6468 ATH_TX_LOCK_ASSERT(sc); 6469 6470 if (enable) { 6471 if (an->an_is_powersave && 6472 an->an_tim_set == 0 && 6473 an->an_swq_depth != 0) { 6474 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6475 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6476 __func__, 6477 ni->ni_macaddr, 6478 ":"); 6479 an->an_tim_set = 1; 6480 (void) avp->av_set_tim(ni, 1); 6481 } 6482 } else { 6483 /* 6484 * Don't bother grabbing the lock unless the queue is empty. 6485 */ 6486 if (an->an_swq_depth != 0) 6487 return; 6488 6489 if (an->an_is_powersave && 6490 an->an_stack_psq == 0 && 6491 an->an_tim_set == 1 && 6492 an->an_swq_depth == 0) { 6493 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6494 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6495 " clear!\n", 6496 __func__, 6497 ni->ni_macaddr, 6498 ":"); 6499 an->an_tim_set = 0; 6500 (void) avp->av_set_tim(ni, 0); 6501 } 6502 } 6503 #else 6504 return; 6505 #endif /* ATH_SW_PSQ */ 6506 } 6507 6508 /* 6509 * Received a ps-poll frame from net80211. 6510 * 6511 * Here we get a chance to serve out a software-queued frame ourselves 6512 * before we punt it to net80211 to transmit us one itself - either 6513 * because there's traffic in the net80211 psq, or a NULL frame to 6514 * indicate there's nothing else. 6515 */ 6516 static void 6517 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6518 { 6519 #ifdef ATH_SW_PSQ 6520 struct ath_node *an; 6521 struct ath_vap *avp; 6522 struct ieee80211com *ic = ni->ni_ic; 6523 struct ath_softc *sc = ic->ic_softc; 6524 int tid; 6525 6526 /* Just paranoia */ 6527 if (ni == NULL) 6528 return; 6529 6530 /* 6531 * Unassociated (temporary node) station. 6532 */ 6533 if (ni->ni_associd == 0) 6534 return; 6535 6536 /* 6537 * We do have an active node, so let's begin looking into it. 6538 */ 6539 an = ATH_NODE(ni); 6540 avp = ATH_VAP(ni->ni_vap); 6541 6542 /* 6543 * For now, we just call the original ps-poll method. 6544 * Once we're ready to flip this on: 6545 * 6546 * + Set leak to 1, as no matter what we're going to have 6547 * to send a frame; 6548 * + Check the software queue and if there's something in it, 6549 * schedule the highest TID thas has traffic from this node. 6550 * Then make sure we schedule the software scheduler to 6551 * run so it picks up said frame. 6552 * 6553 * That way whatever happens, we'll at least send _a_ frame 6554 * to the given node. 6555 * 6556 * Again, yes, it's crappy QoS if the node has multiple 6557 * TIDs worth of traffic - but let's get it working first 6558 * before we optimise it. 6559 * 6560 * Also yes, there's definitely latency here - we're not 6561 * direct dispatching to the hardware in this path (and 6562 * we're likely being called from the packet receive path, 6563 * so going back into TX may be a little hairy!) but again 6564 * I'd like to get this working first before optimising 6565 * turn-around time. 6566 */ 6567 6568 ATH_TX_LOCK(sc); 6569 6570 /* 6571 * Legacy - we're called and the node isn't asleep. 6572 * Immediately punt. 6573 */ 6574 if (! an->an_is_powersave) { 6575 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6576 "%s: %6D: not in powersave?\n", 6577 __func__, 6578 ni->ni_macaddr, 6579 ":"); 6580 ATH_TX_UNLOCK(sc); 6581 avp->av_recv_pspoll(ni, m); 6582 return; 6583 } 6584 6585 /* 6586 * We're in powersave. 6587 * 6588 * Leak a frame. 6589 */ 6590 an->an_leak_count = 1; 6591 6592 /* 6593 * Now, if there's no frames in the node, just punt to 6594 * recv_pspoll. 6595 * 6596 * Don't bother checking if the TIM bit is set, we really 6597 * only care if there are any frames here! 6598 */ 6599 if (an->an_swq_depth == 0) { 6600 ATH_TX_UNLOCK(sc); 6601 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6602 "%s: %6D: SWQ empty; punting to net80211\n", 6603 __func__, 6604 ni->ni_macaddr, 6605 ":"); 6606 avp->av_recv_pspoll(ni, m); 6607 return; 6608 } 6609 6610 /* 6611 * Ok, let's schedule the highest TID that has traffic 6612 * and then schedule something. 6613 */ 6614 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6615 struct ath_tid *atid = &an->an_tid[tid]; 6616 /* 6617 * No frames? Skip. 6618 */ 6619 if (atid->axq_depth == 0) 6620 continue; 6621 ath_tx_tid_sched(sc, atid); 6622 /* 6623 * XXX we could do a direct call to the TXQ 6624 * scheduler code here to optimise latency 6625 * at the expense of a REALLY deep callstack. 6626 */ 6627 ATH_TX_UNLOCK(sc); 6628 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6629 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6630 "%s: %6D: leaking frame to TID %d\n", 6631 __func__, 6632 ni->ni_macaddr, 6633 ":", 6634 tid); 6635 return; 6636 } 6637 6638 ATH_TX_UNLOCK(sc); 6639 6640 /* 6641 * XXX nothing in the TIDs at this point? Eek. 6642 */ 6643 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6644 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6645 __func__, 6646 ni->ni_macaddr, 6647 ":"); 6648 avp->av_recv_pspoll(ni, m); 6649 #else 6650 avp->av_recv_pspoll(ni, m); 6651 #endif /* ATH_SW_PSQ */ 6652 } 6653 6654 MODULE_VERSION(if_ath, 1); 6655 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6656 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 6657 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6658 #endif 6659