1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 */ 46 #include "opt_ah.h" 47 #include "opt_wlan.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 #include <sys/kthread.h> 64 #include <sys/taskqueue.h> 65 #include <sys/priv.h> 66 #include <sys/module.h> 67 #include <sys/ktr.h> 68 #include <sys/smp.h> /* for mp_ncpus */ 69 70 #include <machine/bus.h> 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_types.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_llc.h> 79 80 #include <net80211/ieee80211_var.h> 81 #include <net80211/ieee80211_regdomain.h> 82 #ifdef IEEE80211_SUPPORT_SUPERG 83 #include <net80211/ieee80211_superg.h> 84 #endif 85 #ifdef IEEE80211_SUPPORT_TDMA 86 #include <net80211/ieee80211_tdma.h> 87 #endif 88 89 #include <net/bpf.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #include <netinet/if_ether.h> 94 #endif 95 96 #include <dev/ath/if_athvar.h> 97 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 98 #include <dev/ath/ath_hal/ah_diagcodes.h> 99 100 #include <dev/ath/if_ath_debug.h> 101 #include <dev/ath/if_ath_misc.h> 102 #include <dev/ath/if_ath_tx.h> 103 #include <dev/ath/if_ath_sysctl.h> 104 #include <dev/ath/if_ath_led.h> 105 #include <dev/ath/if_ath_keycache.h> 106 #include <dev/ath/if_athdfs.h> 107 108 #ifdef ATH_TX99_DIAG 109 #include <dev/ath/ath_tx99/ath_tx99.h> 110 #endif 111 112 #define ATH_KTR_INTR KTR_SPARE4 113 #define ATH_KTR_ERR KTR_SPARE3 114 115 /* 116 * ATH_BCBUF determines the number of vap's that can transmit 117 * beacons and also (currently) the number of vap's that can 118 * have unique mac addresses/bssid. When staggering beacons 119 * 4 is probably a good max as otherwise the beacons become 120 * very closely spaced and there is limited time for cab q traffic 121 * to go out. You can burst beacons instead but that is not good 122 * for stations in power save and at some point you really want 123 * another radio (and channel). 124 * 125 * The limit on the number of mac addresses is tied to our use of 126 * the U/L bit and tracking addresses in a byte; it would be 127 * worthwhile to allow more for applications like proxy sta. 128 */ 129 CTASSERT(ATH_BCBUF <= 8); 130 131 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 132 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 133 const uint8_t [IEEE80211_ADDR_LEN], 134 const uint8_t [IEEE80211_ADDR_LEN]); 135 static void ath_vap_delete(struct ieee80211vap *); 136 static void ath_init(void *); 137 static void ath_stop_locked(struct ifnet *); 138 static void ath_stop(struct ifnet *); 139 static void ath_start(struct ifnet *); 140 static int ath_reset_vap(struct ieee80211vap *, u_long); 141 static int ath_media_change(struct ifnet *); 142 static void ath_watchdog(void *); 143 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 144 static void ath_fatal_proc(void *, int); 145 static void ath_bmiss_vap(struct ieee80211vap *); 146 static void ath_bmiss_proc(void *, int); 147 static void ath_key_update_begin(struct ieee80211vap *); 148 static void ath_key_update_end(struct ieee80211vap *); 149 static void ath_update_mcast(struct ifnet *); 150 static void ath_update_promisc(struct ifnet *); 151 static void ath_mode_init(struct ath_softc *); 152 static void ath_setslottime(struct ath_softc *); 153 static void ath_updateslot(struct ifnet *); 154 static int ath_beaconq_setup(struct ath_hal *); 155 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 156 static void ath_beacon_update(struct ieee80211vap *, int item); 157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 158 static void ath_beacon_proc(void *, int); 159 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 160 struct ieee80211vap *); 161 static void ath_bstuck_proc(void *, int); 162 static void ath_reset_proc(void *, int); 163 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 164 static void ath_beacon_free(struct ath_softc *); 165 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 166 static void ath_descdma_cleanup(struct ath_softc *sc, 167 struct ath_descdma *, ath_bufhead *); 168 static int ath_desc_alloc(struct ath_softc *); 169 static void ath_desc_free(struct ath_softc *); 170 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 171 const uint8_t [IEEE80211_ADDR_LEN]); 172 static void ath_node_cleanup(struct ieee80211_node *); 173 static void ath_node_free(struct ieee80211_node *); 174 static void ath_node_getsignal(const struct ieee80211_node *, 175 int8_t *, int8_t *); 176 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 177 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 178 int subtype, int rssi, int nf); 179 static void ath_setdefantenna(struct ath_softc *, u_int); 180 static void ath_rx_proc(struct ath_softc *sc, int); 181 static void ath_rx_tasklet(void *, int); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static int ath_wme_update(struct ieee80211com *); 186 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 187 static void ath_tx_cleanup(struct ath_softc *); 188 static void ath_tx_proc_q0(void *, int); 189 static void ath_tx_proc_q0123(void *, int); 190 static void ath_tx_proc(void *, int); 191 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 192 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 193 static void ath_stoprecv(struct ath_softc *, int); 194 static int ath_startrecv(struct ath_softc *); 195 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_scan_start(struct ieee80211com *); 197 static void ath_scan_end(struct ieee80211com *); 198 static void ath_set_channel(struct ieee80211com *); 199 static void ath_calibrate(void *); 200 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 201 static void ath_setup_stationkey(struct ieee80211_node *); 202 static void ath_newassoc(struct ieee80211_node *, int); 203 static int ath_setregdomain(struct ieee80211com *, 204 struct ieee80211_regdomain *, int, 205 struct ieee80211_channel []); 206 static void ath_getradiocaps(struct ieee80211com *, int, int *, 207 struct ieee80211_channel []); 208 static int ath_getchannels(struct ath_softc *); 209 210 static int ath_rate_setup(struct ath_softc *, u_int mode); 211 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 212 213 static void ath_announce(struct ath_softc *); 214 215 static void ath_dfs_tasklet(void *, int); 216 217 #ifdef IEEE80211_SUPPORT_TDMA 218 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 219 u_int32_t bintval); 220 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 221 const struct ieee80211_tdma_state *tdma); 222 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 223 static void ath_tdma_update(struct ieee80211_node *ni, 224 const struct ieee80211_tdma_param *tdma, int); 225 static void ath_tdma_beacon_send(struct ath_softc *sc, 226 struct ieee80211vap *vap); 227 228 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 229 #define TDMA_LPF_LEN 6 230 #define TDMA_DUMMY_MARKER 0x127 231 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 232 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 233 #define TDMA_LPF(x, y, len) \ 234 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 235 #define TDMA_SAMPLE(x, y) do { \ 236 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 237 } while (0) 238 #define TDMA_EP_RND(x,mul) \ 239 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 240 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 241 #endif /* IEEE80211_SUPPORT_TDMA */ 242 243 SYSCTL_DECL(_hw_ath); 244 245 /* XXX validate sysctl values */ 246 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 248 0, "long chip calibration interval (secs)"); 249 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 251 0, "short chip calibration interval (msecs)"); 252 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 254 0, "reset chip calibration results (secs)"); 255 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 256 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 257 0, "ANI calibration (msecs)"); 258 259 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 260 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 261 0, "rx buffers allocated"); 262 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 263 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 264 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 265 0, "tx buffers allocated"); 266 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 267 268 static int ath_bstuck_threshold = 4; /* max missed beacons */ 269 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 270 0, "max missed beacon xmits before chip reset"); 271 272 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 273 274 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 275 #define HAL_MODE_HT40 \ 276 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 277 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 278 int 279 ath_attach(u_int16_t devid, struct ath_softc *sc) 280 { 281 struct ifnet *ifp; 282 struct ieee80211com *ic; 283 struct ath_hal *ah = NULL; 284 HAL_STATUS status; 285 int error = 0, i; 286 u_int wmodes; 287 uint8_t macaddr[IEEE80211_ADDR_LEN]; 288 int rx_chainmask, tx_chainmask; 289 290 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 291 292 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 293 if (ifp == NULL) { 294 device_printf(sc->sc_dev, "can not if_alloc()\n"); 295 error = ENOSPC; 296 goto bad; 297 } 298 ic = ifp->if_l2com; 299 300 /* set these up early for if_printf use */ 301 if_initname(ifp, device_get_name(sc->sc_dev), 302 device_get_unit(sc->sc_dev)); 303 304 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 305 sc->sc_eepromdata, &status); 306 if (ah == NULL) { 307 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 308 status); 309 error = ENXIO; 310 goto bad; 311 } 312 sc->sc_ah = ah; 313 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 314 #ifdef ATH_DEBUG 315 sc->sc_debug = ath_debug; 316 #endif 317 318 /* 319 * Check if the MAC has multi-rate retry support. 320 * We do this by trying to setup a fake extended 321 * descriptor. MAC's that don't have support will 322 * return false w/o doing anything. MAC's that do 323 * support it will return true w/o doing anything. 324 */ 325 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 326 327 /* 328 * Check if the device has hardware counters for PHY 329 * errors. If so we need to enable the MIB interrupt 330 * so we can act on stat triggers. 331 */ 332 if (ath_hal_hwphycounters(ah)) 333 sc->sc_needmib = 1; 334 335 /* 336 * Get the hardware key cache size. 337 */ 338 sc->sc_keymax = ath_hal_keycachesize(ah); 339 if (sc->sc_keymax > ATH_KEYMAX) { 340 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 341 ATH_KEYMAX, sc->sc_keymax); 342 sc->sc_keymax = ATH_KEYMAX; 343 } 344 /* 345 * Reset the key cache since some parts do not 346 * reset the contents on initial power up. 347 */ 348 for (i = 0; i < sc->sc_keymax; i++) 349 ath_hal_keyreset(ah, i); 350 351 /* 352 * Collect the default channel list. 353 */ 354 error = ath_getchannels(sc); 355 if (error != 0) 356 goto bad; 357 358 /* 359 * Setup rate tables for all potential media types. 360 */ 361 ath_rate_setup(sc, IEEE80211_MODE_11A); 362 ath_rate_setup(sc, IEEE80211_MODE_11B); 363 ath_rate_setup(sc, IEEE80211_MODE_11G); 364 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 365 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 366 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 367 ath_rate_setup(sc, IEEE80211_MODE_11NA); 368 ath_rate_setup(sc, IEEE80211_MODE_11NG); 369 ath_rate_setup(sc, IEEE80211_MODE_HALF); 370 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 371 372 /* NB: setup here so ath_rate_update is happy */ 373 ath_setcurmode(sc, IEEE80211_MODE_11A); 374 375 /* 376 * Allocate tx+rx descriptors and populate the lists. 377 */ 378 error = ath_desc_alloc(sc); 379 if (error != 0) { 380 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 381 goto bad; 382 } 383 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 384 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 385 386 ATH_TXBUF_LOCK_INIT(sc); 387 388 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 389 taskqueue_thread_enqueue, &sc->sc_tq); 390 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 391 "%s taskq", ifp->if_xname); 392 393 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 394 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 395 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 396 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 397 398 /* 399 * Allocate hardware transmit queues: one queue for 400 * beacon frames and one data queue for each QoS 401 * priority. Note that the hal handles resetting 402 * these queues at the needed time. 403 * 404 * XXX PS-Poll 405 */ 406 sc->sc_bhalq = ath_beaconq_setup(ah); 407 if (sc->sc_bhalq == (u_int) -1) { 408 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 409 error = EIO; 410 goto bad2; 411 } 412 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 413 if (sc->sc_cabq == NULL) { 414 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 415 error = EIO; 416 goto bad2; 417 } 418 /* NB: insure BK queue is the lowest priority h/w queue */ 419 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 420 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 421 ieee80211_wme_acnames[WME_AC_BK]); 422 error = EIO; 423 goto bad2; 424 } 425 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 426 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 427 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 428 /* 429 * Not enough hardware tx queues to properly do WME; 430 * just punt and assign them all to the same h/w queue. 431 * We could do a better job of this if, for example, 432 * we allocate queues when we switch from station to 433 * AP mode. 434 */ 435 if (sc->sc_ac2q[WME_AC_VI] != NULL) 436 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 437 if (sc->sc_ac2q[WME_AC_BE] != NULL) 438 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 439 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 440 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 441 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 442 } 443 444 /* 445 * Special case certain configurations. Note the 446 * CAB queue is handled by these specially so don't 447 * include them when checking the txq setup mask. 448 */ 449 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 450 case 0x01: 451 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 452 break; 453 case 0x0f: 454 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 455 break; 456 default: 457 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 458 break; 459 } 460 461 /* 462 * Setup rate control. Some rate control modules 463 * call back to change the anntena state so expose 464 * the necessary entry points. 465 * XXX maybe belongs in struct ath_ratectrl? 466 */ 467 sc->sc_setdefantenna = ath_setdefantenna; 468 sc->sc_rc = ath_rate_attach(sc); 469 if (sc->sc_rc == NULL) { 470 error = EIO; 471 goto bad2; 472 } 473 474 /* Attach DFS module */ 475 if (! ath_dfs_attach(sc)) { 476 device_printf(sc->sc_dev, 477 "%s: unable to attach DFS\n", __func__); 478 error = EIO; 479 goto bad2; 480 } 481 482 /* Start DFS processing tasklet */ 483 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 484 485 /* Configure LED state */ 486 sc->sc_blinking = 0; 487 sc->sc_ledstate = 1; 488 sc->sc_ledon = 0; /* low true */ 489 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 490 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 491 492 /* 493 * Don't setup hardware-based blinking. 494 * 495 * Although some NICs may have this configured in the 496 * default reset register values, the user may wish 497 * to alter which pins have which function. 498 * 499 * The reference driver attaches the MAC network LED to GPIO1 and 500 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 501 * NIC has these reversed. 502 */ 503 sc->sc_hardled = (1 == 0); 504 sc->sc_led_net_pin = -1; 505 sc->sc_led_pwr_pin = -1; 506 /* 507 * Auto-enable soft led processing for IBM cards and for 508 * 5211 minipci cards. Users can also manually enable/disable 509 * support with a sysctl. 510 */ 511 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 512 ath_led_config(sc); 513 ath_hal_setledstate(ah, HAL_LED_INIT); 514 515 ifp->if_softc = sc; 516 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 517 ifp->if_start = ath_start; 518 ifp->if_ioctl = ath_ioctl; 519 ifp->if_init = ath_init; 520 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 521 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 522 IFQ_SET_READY(&ifp->if_snd); 523 524 ic->ic_ifp = ifp; 525 /* XXX not right but it's not used anywhere important */ 526 ic->ic_phytype = IEEE80211_T_OFDM; 527 ic->ic_opmode = IEEE80211_M_STA; 528 ic->ic_caps = 529 IEEE80211_C_STA /* station mode */ 530 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 531 | IEEE80211_C_HOSTAP /* hostap mode */ 532 | IEEE80211_C_MONITOR /* monitor mode */ 533 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 534 | IEEE80211_C_WDS /* 4-address traffic works */ 535 | IEEE80211_C_MBSS /* mesh point link mode */ 536 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 537 | IEEE80211_C_SHSLOT /* short slot time supported */ 538 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 539 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 540 | IEEE80211_C_TXFRAG /* handle tx frags */ 541 #ifdef ATH_ENABLE_DFS 542 | IEEE80211_C_DFS /* Enable radar detection */ 543 #endif 544 ; 545 /* 546 * Query the hal to figure out h/w crypto support. 547 */ 548 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 549 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 550 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 551 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 552 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 553 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 554 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 555 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 556 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 557 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 558 /* 559 * Check if h/w does the MIC and/or whether the 560 * separate key cache entries are required to 561 * handle both tx+rx MIC keys. 562 */ 563 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 564 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 565 /* 566 * If the h/w supports storing tx+rx MIC keys 567 * in one cache slot automatically enable use. 568 */ 569 if (ath_hal_hastkipsplit(ah) || 570 !ath_hal_settkipsplit(ah, AH_FALSE)) 571 sc->sc_splitmic = 1; 572 /* 573 * If the h/w can do TKIP MIC together with WME then 574 * we use it; otherwise we force the MIC to be done 575 * in software by the net80211 layer. 576 */ 577 if (ath_hal_haswmetkipmic(ah)) 578 sc->sc_wmetkipmic = 1; 579 } 580 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 581 /* 582 * Check for multicast key search support. 583 */ 584 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 585 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 586 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 587 } 588 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 589 /* 590 * Mark key cache slots associated with global keys 591 * as in use. If we knew TKIP was not to be used we 592 * could leave the +32, +64, and +32+64 slots free. 593 */ 594 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 595 setbit(sc->sc_keymap, i); 596 setbit(sc->sc_keymap, i+64); 597 if (sc->sc_splitmic) { 598 setbit(sc->sc_keymap, i+32); 599 setbit(sc->sc_keymap, i+32+64); 600 } 601 } 602 /* 603 * TPC support can be done either with a global cap or 604 * per-packet support. The latter is not available on 605 * all parts. We're a bit pedantic here as all parts 606 * support a global cap. 607 */ 608 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 609 ic->ic_caps |= IEEE80211_C_TXPMGT; 610 611 /* 612 * Mark WME capability only if we have sufficient 613 * hardware queues to do proper priority scheduling. 614 */ 615 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 616 ic->ic_caps |= IEEE80211_C_WME; 617 /* 618 * Check for misc other capabilities. 619 */ 620 if (ath_hal_hasbursting(ah)) 621 ic->ic_caps |= IEEE80211_C_BURST; 622 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 623 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 624 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 625 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 626 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 627 if (ath_hal_hasfastframes(ah)) 628 ic->ic_caps |= IEEE80211_C_FF; 629 wmodes = ath_hal_getwirelessmodes(ah); 630 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 631 ic->ic_caps |= IEEE80211_C_TURBOP; 632 #ifdef IEEE80211_SUPPORT_TDMA 633 if (ath_hal_macversion(ah) > 0x78) { 634 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 635 ic->ic_tdma_update = ath_tdma_update; 636 } 637 #endif 638 639 /* 640 * TODO: enforce that at least this many frames are available 641 * in the txbuf list before allowing data frames (raw or 642 * otherwise) to be transmitted. 643 */ 644 sc->sc_txq_data_minfree = 10; 645 /* 646 * Leave this as default to maintain legacy behaviour. 647 * Shortening the cabq/mcastq may end up causing some 648 * undesirable behaviour. 649 */ 650 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 651 652 /* 653 * Allow the TX and RX chainmasks to be overridden by 654 * environment variables and/or device.hints. 655 * 656 * This must be done early - before the hardware is 657 * calibrated or before the 802.11n stream calculation 658 * is done. 659 */ 660 if (resource_int_value(device_get_name(sc->sc_dev), 661 device_get_unit(sc->sc_dev), "rx_chainmask", 662 &rx_chainmask) == 0) { 663 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 664 rx_chainmask); 665 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 666 } 667 if (resource_int_value(device_get_name(sc->sc_dev), 668 device_get_unit(sc->sc_dev), "tx_chainmask", 669 &tx_chainmask) == 0) { 670 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 671 tx_chainmask); 672 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 673 } 674 675 /* 676 * The if_ath 11n support is completely not ready for normal use. 677 * Enabling this option will likely break everything and everything. 678 * Don't think of doing that unless you know what you're doing. 679 */ 680 681 #ifdef ATH_ENABLE_11N 682 /* 683 * Query HT capabilities 684 */ 685 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 686 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 687 int rxs, txs; 688 689 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 690 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 691 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 692 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 693 | IEEE80211_HTCAP_MAXAMSDU_3839 694 /* max A-MSDU length */ 695 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 696 ; 697 698 /* 699 * Enable short-GI for HT20 only if the hardware 700 * advertises support. 701 * Notably, anything earlier than the AR9287 doesn't. 702 */ 703 if ((ath_hal_getcapability(ah, 704 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 705 (wmodes & HAL_MODE_HT20)) { 706 device_printf(sc->sc_dev, 707 "[HT] enabling short-GI in 20MHz mode\n"); 708 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 709 } 710 711 if (wmodes & HAL_MODE_HT40) 712 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 713 | IEEE80211_HTCAP_SHORTGI40; 714 715 /* 716 * TX/RX streams need to be taken into account when 717 * negotiating which MCS rates it'll receive and 718 * what MCS rates are available for TX. 719 */ 720 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 721 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 722 723 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 724 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 725 726 ic->ic_txstream = txs; 727 ic->ic_rxstream = rxs; 728 729 device_printf(sc->sc_dev, 730 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 731 } 732 #endif 733 734 /* 735 * Check if the hardware requires PCI register serialisation. 736 * Some of the Owl based MACs require this. 737 */ 738 if (mp_ncpus > 1 && 739 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 740 0, NULL) == HAL_OK) { 741 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 742 device_printf(sc->sc_dev, 743 "Enabling register serialisation\n"); 744 } 745 746 /* 747 * Indicate we need the 802.11 header padded to a 748 * 32-bit boundary for 4-address and QoS frames. 749 */ 750 ic->ic_flags |= IEEE80211_F_DATAPAD; 751 752 /* 753 * Query the hal about antenna support. 754 */ 755 sc->sc_defant = ath_hal_getdefantenna(ah); 756 757 /* 758 * Not all chips have the VEOL support we want to 759 * use with IBSS beacons; check here for it. 760 */ 761 sc->sc_hasveol = ath_hal_hasveol(ah); 762 763 /* get mac address from hardware */ 764 ath_hal_getmac(ah, macaddr); 765 if (sc->sc_hasbmask) 766 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 767 768 /* NB: used to size node table key mapping array */ 769 ic->ic_max_keyix = sc->sc_keymax; 770 /* call MI attach routine. */ 771 ieee80211_ifattach(ic, macaddr); 772 ic->ic_setregdomain = ath_setregdomain; 773 ic->ic_getradiocaps = ath_getradiocaps; 774 sc->sc_opmode = HAL_M_STA; 775 776 /* override default methods */ 777 ic->ic_newassoc = ath_newassoc; 778 ic->ic_updateslot = ath_updateslot; 779 ic->ic_wme.wme_update = ath_wme_update; 780 ic->ic_vap_create = ath_vap_create; 781 ic->ic_vap_delete = ath_vap_delete; 782 ic->ic_raw_xmit = ath_raw_xmit; 783 ic->ic_update_mcast = ath_update_mcast; 784 ic->ic_update_promisc = ath_update_promisc; 785 ic->ic_node_alloc = ath_node_alloc; 786 sc->sc_node_free = ic->ic_node_free; 787 ic->ic_node_free = ath_node_free; 788 sc->sc_node_cleanup = ic->ic_node_cleanup; 789 ic->ic_node_cleanup = ath_node_cleanup; 790 ic->ic_node_getsignal = ath_node_getsignal; 791 ic->ic_scan_start = ath_scan_start; 792 ic->ic_scan_end = ath_scan_end; 793 ic->ic_set_channel = ath_set_channel; 794 795 /* 802.11n specific - but just override anyway */ 796 sc->sc_addba_request = ic->ic_addba_request; 797 sc->sc_addba_response = ic->ic_addba_response; 798 sc->sc_addba_stop = ic->ic_addba_stop; 799 sc->sc_bar_response = ic->ic_bar_response; 800 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 801 802 ic->ic_addba_request = ath_addba_request; 803 ic->ic_addba_response = ath_addba_response; 804 ic->ic_addba_response_timeout = ath_addba_response_timeout; 805 ic->ic_addba_stop = ath_addba_stop; 806 ic->ic_bar_response = ath_bar_response; 807 808 ieee80211_radiotap_attach(ic, 809 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 810 ATH_TX_RADIOTAP_PRESENT, 811 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 812 ATH_RX_RADIOTAP_PRESENT); 813 814 /* 815 * Setup dynamic sysctl's now that country code and 816 * regdomain are available from the hal. 817 */ 818 ath_sysctlattach(sc); 819 ath_sysctl_stats_attach(sc); 820 ath_sysctl_hal_attach(sc); 821 822 if (bootverbose) 823 ieee80211_announce(ic); 824 ath_announce(sc); 825 return 0; 826 bad2: 827 ath_tx_cleanup(sc); 828 ath_desc_free(sc); 829 bad: 830 if (ah) 831 ath_hal_detach(ah); 832 if (ifp != NULL) 833 if_free(ifp); 834 sc->sc_invalid = 1; 835 return error; 836 } 837 838 int 839 ath_detach(struct ath_softc *sc) 840 { 841 struct ifnet *ifp = sc->sc_ifp; 842 843 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 844 __func__, ifp->if_flags); 845 846 /* 847 * NB: the order of these is important: 848 * o stop the chip so no more interrupts will fire 849 * o call the 802.11 layer before detaching the hal to 850 * insure callbacks into the driver to delete global 851 * key cache entries can be handled 852 * o free the taskqueue which drains any pending tasks 853 * o reclaim the tx queue data structures after calling 854 * the 802.11 layer as we'll get called back to reclaim 855 * node state and potentially want to use them 856 * o to cleanup the tx queues the hal is called, so detach 857 * it last 858 * Other than that, it's straightforward... 859 */ 860 ath_stop(ifp); 861 ieee80211_ifdetach(ifp->if_l2com); 862 taskqueue_free(sc->sc_tq); 863 #ifdef ATH_TX99_DIAG 864 if (sc->sc_tx99 != NULL) 865 sc->sc_tx99->detach(sc->sc_tx99); 866 #endif 867 ath_rate_detach(sc->sc_rc); 868 869 ath_dfs_detach(sc); 870 ath_desc_free(sc); 871 ath_tx_cleanup(sc); 872 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 873 if_free(ifp); 874 875 return 0; 876 } 877 878 /* 879 * MAC address handling for multiple BSS on the same radio. 880 * The first vap uses the MAC address from the EEPROM. For 881 * subsequent vap's we set the U/L bit (bit 1) in the MAC 882 * address and use the next six bits as an index. 883 */ 884 static void 885 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 886 { 887 int i; 888 889 if (clone && sc->sc_hasbmask) { 890 /* NB: we only do this if h/w supports multiple bssid */ 891 for (i = 0; i < 8; i++) 892 if ((sc->sc_bssidmask & (1<<i)) == 0) 893 break; 894 if (i != 0) 895 mac[0] |= (i << 2)|0x2; 896 } else 897 i = 0; 898 sc->sc_bssidmask |= 1<<i; 899 sc->sc_hwbssidmask[0] &= ~mac[0]; 900 if (i == 0) 901 sc->sc_nbssid0++; 902 } 903 904 static void 905 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 906 { 907 int i = mac[0] >> 2; 908 uint8_t mask; 909 910 if (i != 0 || --sc->sc_nbssid0 == 0) { 911 sc->sc_bssidmask &= ~(1<<i); 912 /* recalculate bssid mask from remaining addresses */ 913 mask = 0xff; 914 for (i = 1; i < 8; i++) 915 if (sc->sc_bssidmask & (1<<i)) 916 mask &= ~((i<<2)|0x2); 917 sc->sc_hwbssidmask[0] |= mask; 918 } 919 } 920 921 /* 922 * Assign a beacon xmit slot. We try to space out 923 * assignments so when beacons are staggered the 924 * traffic coming out of the cab q has maximal time 925 * to go out before the next beacon is scheduled. 926 */ 927 static int 928 assign_bslot(struct ath_softc *sc) 929 { 930 u_int slot, free; 931 932 free = 0; 933 for (slot = 0; slot < ATH_BCBUF; slot++) 934 if (sc->sc_bslot[slot] == NULL) { 935 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 936 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 937 return slot; 938 free = slot; 939 /* NB: keep looking for a double slot */ 940 } 941 return free; 942 } 943 944 static struct ieee80211vap * 945 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 946 enum ieee80211_opmode opmode, int flags, 947 const uint8_t bssid[IEEE80211_ADDR_LEN], 948 const uint8_t mac0[IEEE80211_ADDR_LEN]) 949 { 950 struct ath_softc *sc = ic->ic_ifp->if_softc; 951 struct ath_vap *avp; 952 struct ieee80211vap *vap; 953 uint8_t mac[IEEE80211_ADDR_LEN]; 954 int needbeacon, error; 955 enum ieee80211_opmode ic_opmode; 956 957 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 958 M_80211_VAP, M_WAITOK | M_ZERO); 959 needbeacon = 0; 960 IEEE80211_ADDR_COPY(mac, mac0); 961 962 ATH_LOCK(sc); 963 ic_opmode = opmode; /* default to opmode of new vap */ 964 switch (opmode) { 965 case IEEE80211_M_STA: 966 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 967 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 968 goto bad; 969 } 970 if (sc->sc_nvaps) { 971 /* 972 * With multiple vaps we must fall back 973 * to s/w beacon miss handling. 974 */ 975 flags |= IEEE80211_CLONE_NOBEACONS; 976 } 977 if (flags & IEEE80211_CLONE_NOBEACONS) { 978 /* 979 * Station mode w/o beacons are implemented w/ AP mode. 980 */ 981 ic_opmode = IEEE80211_M_HOSTAP; 982 } 983 break; 984 case IEEE80211_M_IBSS: 985 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 986 device_printf(sc->sc_dev, 987 "only 1 ibss vap supported\n"); 988 goto bad; 989 } 990 needbeacon = 1; 991 break; 992 case IEEE80211_M_AHDEMO: 993 #ifdef IEEE80211_SUPPORT_TDMA 994 if (flags & IEEE80211_CLONE_TDMA) { 995 if (sc->sc_nvaps != 0) { 996 device_printf(sc->sc_dev, 997 "only 1 tdma vap supported\n"); 998 goto bad; 999 } 1000 needbeacon = 1; 1001 flags |= IEEE80211_CLONE_NOBEACONS; 1002 } 1003 /* fall thru... */ 1004 #endif 1005 case IEEE80211_M_MONITOR: 1006 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1007 /* 1008 * Adopt existing mode. Adding a monitor or ahdemo 1009 * vap to an existing configuration is of dubious 1010 * value but should be ok. 1011 */ 1012 /* XXX not right for monitor mode */ 1013 ic_opmode = ic->ic_opmode; 1014 } 1015 break; 1016 case IEEE80211_M_HOSTAP: 1017 case IEEE80211_M_MBSS: 1018 needbeacon = 1; 1019 break; 1020 case IEEE80211_M_WDS: 1021 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1022 device_printf(sc->sc_dev, 1023 "wds not supported in sta mode\n"); 1024 goto bad; 1025 } 1026 /* 1027 * Silently remove any request for a unique 1028 * bssid; WDS vap's always share the local 1029 * mac address. 1030 */ 1031 flags &= ~IEEE80211_CLONE_BSSID; 1032 if (sc->sc_nvaps == 0) 1033 ic_opmode = IEEE80211_M_HOSTAP; 1034 else 1035 ic_opmode = ic->ic_opmode; 1036 break; 1037 default: 1038 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1039 goto bad; 1040 } 1041 /* 1042 * Check that a beacon buffer is available; the code below assumes it. 1043 */ 1044 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1045 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1046 goto bad; 1047 } 1048 1049 /* STA, AHDEMO? */ 1050 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1051 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1052 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1053 } 1054 1055 vap = &avp->av_vap; 1056 /* XXX can't hold mutex across if_alloc */ 1057 ATH_UNLOCK(sc); 1058 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1059 bssid, mac); 1060 ATH_LOCK(sc); 1061 if (error != 0) { 1062 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1063 __func__, error); 1064 goto bad2; 1065 } 1066 1067 /* h/w crypto support */ 1068 vap->iv_key_alloc = ath_key_alloc; 1069 vap->iv_key_delete = ath_key_delete; 1070 vap->iv_key_set = ath_key_set; 1071 vap->iv_key_update_begin = ath_key_update_begin; 1072 vap->iv_key_update_end = ath_key_update_end; 1073 1074 /* override various methods */ 1075 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1076 vap->iv_recv_mgmt = ath_recv_mgmt; 1077 vap->iv_reset = ath_reset_vap; 1078 vap->iv_update_beacon = ath_beacon_update; 1079 avp->av_newstate = vap->iv_newstate; 1080 vap->iv_newstate = ath_newstate; 1081 avp->av_bmiss = vap->iv_bmiss; 1082 vap->iv_bmiss = ath_bmiss_vap; 1083 1084 /* Set default parameters */ 1085 1086 /* 1087 * Anything earlier than some AR9300 series MACs don't 1088 * support a smaller MPDU density. 1089 */ 1090 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1091 /* 1092 * All NICs can handle the maximum size, however 1093 * AR5416 based MACs can only TX aggregates w/ RTS 1094 * protection when the total aggregate size is <= 8k. 1095 * However, for now that's enforced by the TX path. 1096 */ 1097 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1098 1099 avp->av_bslot = -1; 1100 if (needbeacon) { 1101 /* 1102 * Allocate beacon state and setup the q for buffered 1103 * multicast frames. We know a beacon buffer is 1104 * available because we checked above. 1105 */ 1106 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1107 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1108 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1109 /* 1110 * Assign the vap to a beacon xmit slot. As above 1111 * this cannot fail to find a free one. 1112 */ 1113 avp->av_bslot = assign_bslot(sc); 1114 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1115 ("beacon slot %u not empty", avp->av_bslot)); 1116 sc->sc_bslot[avp->av_bslot] = vap; 1117 sc->sc_nbcnvaps++; 1118 } 1119 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1120 /* 1121 * Multple vaps are to transmit beacons and we 1122 * have h/w support for TSF adjusting; enable 1123 * use of staggered beacons. 1124 */ 1125 sc->sc_stagbeacons = 1; 1126 } 1127 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1128 } 1129 1130 ic->ic_opmode = ic_opmode; 1131 if (opmode != IEEE80211_M_WDS) { 1132 sc->sc_nvaps++; 1133 if (opmode == IEEE80211_M_STA) 1134 sc->sc_nstavaps++; 1135 if (opmode == IEEE80211_M_MBSS) 1136 sc->sc_nmeshvaps++; 1137 } 1138 switch (ic_opmode) { 1139 case IEEE80211_M_IBSS: 1140 sc->sc_opmode = HAL_M_IBSS; 1141 break; 1142 case IEEE80211_M_STA: 1143 sc->sc_opmode = HAL_M_STA; 1144 break; 1145 case IEEE80211_M_AHDEMO: 1146 #ifdef IEEE80211_SUPPORT_TDMA 1147 if (vap->iv_caps & IEEE80211_C_TDMA) { 1148 sc->sc_tdma = 1; 1149 /* NB: disable tsf adjust */ 1150 sc->sc_stagbeacons = 0; 1151 } 1152 /* 1153 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1154 * just ap mode. 1155 */ 1156 /* fall thru... */ 1157 #endif 1158 case IEEE80211_M_HOSTAP: 1159 case IEEE80211_M_MBSS: 1160 sc->sc_opmode = HAL_M_HOSTAP; 1161 break; 1162 case IEEE80211_M_MONITOR: 1163 sc->sc_opmode = HAL_M_MONITOR; 1164 break; 1165 default: 1166 /* XXX should not happen */ 1167 break; 1168 } 1169 if (sc->sc_hastsfadd) { 1170 /* 1171 * Configure whether or not TSF adjust should be done. 1172 */ 1173 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1174 } 1175 if (flags & IEEE80211_CLONE_NOBEACONS) { 1176 /* 1177 * Enable s/w beacon miss handling. 1178 */ 1179 sc->sc_swbmiss = 1; 1180 } 1181 ATH_UNLOCK(sc); 1182 1183 /* complete setup */ 1184 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1185 return vap; 1186 bad2: 1187 reclaim_address(sc, mac); 1188 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1189 bad: 1190 free(avp, M_80211_VAP); 1191 ATH_UNLOCK(sc); 1192 return NULL; 1193 } 1194 1195 static void 1196 ath_vap_delete(struct ieee80211vap *vap) 1197 { 1198 struct ieee80211com *ic = vap->iv_ic; 1199 struct ifnet *ifp = ic->ic_ifp; 1200 struct ath_softc *sc = ifp->if_softc; 1201 struct ath_hal *ah = sc->sc_ah; 1202 struct ath_vap *avp = ATH_VAP(vap); 1203 1204 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1205 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1206 /* 1207 * Quiesce the hardware while we remove the vap. In 1208 * particular we need to reclaim all references to 1209 * the vap state by any frames pending on the tx queues. 1210 */ 1211 ath_hal_intrset(ah, 0); /* disable interrupts */ 1212 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1213 /* XXX Do all frames from all vaps/nodes need draining here? */ 1214 ath_stoprecv(sc, 1); /* stop recv side */ 1215 } 1216 1217 ieee80211_vap_detach(vap); 1218 1219 /* 1220 * XXX Danger Will Robinson! Danger! 1221 * 1222 * Because ieee80211_vap_detach() can queue a frame (the station 1223 * diassociate message?) after we've drained the TXQ and 1224 * flushed the software TXQ, we will end up with a frame queued 1225 * to a node whose vap is about to be freed. 1226 * 1227 * To work around this, flush the hardware/software again. 1228 * This may be racy - the ath task may be running and the packet 1229 * may be being scheduled between sw->hw txq. Tsk. 1230 * 1231 * TODO: figure out why a new node gets allocated somewhere around 1232 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1233 * call!) 1234 */ 1235 1236 ath_draintxq(sc, ATH_RESET_DEFAULT); 1237 1238 ATH_LOCK(sc); 1239 /* 1240 * Reclaim beacon state. Note this must be done before 1241 * the vap instance is reclaimed as we may have a reference 1242 * to it in the buffer for the beacon frame. 1243 */ 1244 if (avp->av_bcbuf != NULL) { 1245 if (avp->av_bslot != -1) { 1246 sc->sc_bslot[avp->av_bslot] = NULL; 1247 sc->sc_nbcnvaps--; 1248 } 1249 ath_beacon_return(sc, avp->av_bcbuf); 1250 avp->av_bcbuf = NULL; 1251 if (sc->sc_nbcnvaps == 0) { 1252 sc->sc_stagbeacons = 0; 1253 if (sc->sc_hastsfadd) 1254 ath_hal_settsfadjust(sc->sc_ah, 0); 1255 } 1256 /* 1257 * Reclaim any pending mcast frames for the vap. 1258 */ 1259 ath_tx_draintxq(sc, &avp->av_mcastq); 1260 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1261 } 1262 /* 1263 * Update bookkeeping. 1264 */ 1265 if (vap->iv_opmode == IEEE80211_M_STA) { 1266 sc->sc_nstavaps--; 1267 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1268 sc->sc_swbmiss = 0; 1269 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1270 vap->iv_opmode == IEEE80211_M_MBSS) { 1271 reclaim_address(sc, vap->iv_myaddr); 1272 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1273 if (vap->iv_opmode == IEEE80211_M_MBSS) 1274 sc->sc_nmeshvaps--; 1275 } 1276 if (vap->iv_opmode != IEEE80211_M_WDS) 1277 sc->sc_nvaps--; 1278 #ifdef IEEE80211_SUPPORT_TDMA 1279 /* TDMA operation ceases when the last vap is destroyed */ 1280 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1281 sc->sc_tdma = 0; 1282 sc->sc_swbmiss = 0; 1283 } 1284 #endif 1285 free(avp, M_80211_VAP); 1286 1287 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1288 /* 1289 * Restart rx+tx machines if still running (RUNNING will 1290 * be reset if we just destroyed the last vap). 1291 */ 1292 if (ath_startrecv(sc) != 0) 1293 if_printf(ifp, "%s: unable to restart recv logic\n", 1294 __func__); 1295 if (sc->sc_beacons) { /* restart beacons */ 1296 #ifdef IEEE80211_SUPPORT_TDMA 1297 if (sc->sc_tdma) 1298 ath_tdma_config(sc, NULL); 1299 else 1300 #endif 1301 ath_beacon_config(sc, NULL); 1302 } 1303 ath_hal_intrset(ah, sc->sc_imask); 1304 } 1305 ATH_UNLOCK(sc); 1306 } 1307 1308 void 1309 ath_suspend(struct ath_softc *sc) 1310 { 1311 struct ifnet *ifp = sc->sc_ifp; 1312 struct ieee80211com *ic = ifp->if_l2com; 1313 1314 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1315 __func__, ifp->if_flags); 1316 1317 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1318 if (ic->ic_opmode == IEEE80211_M_STA) 1319 ath_stop(ifp); 1320 else 1321 ieee80211_suspend_all(ic); 1322 /* 1323 * NB: don't worry about putting the chip in low power 1324 * mode; pci will power off our socket on suspend and 1325 * CardBus detaches the device. 1326 */ 1327 } 1328 1329 /* 1330 * Reset the key cache since some parts do not reset the 1331 * contents on resume. First we clear all entries, then 1332 * re-load keys that the 802.11 layer assumes are setup 1333 * in h/w. 1334 */ 1335 static void 1336 ath_reset_keycache(struct ath_softc *sc) 1337 { 1338 struct ifnet *ifp = sc->sc_ifp; 1339 struct ieee80211com *ic = ifp->if_l2com; 1340 struct ath_hal *ah = sc->sc_ah; 1341 int i; 1342 1343 for (i = 0; i < sc->sc_keymax; i++) 1344 ath_hal_keyreset(ah, i); 1345 ieee80211_crypto_reload_keys(ic); 1346 } 1347 1348 void 1349 ath_resume(struct ath_softc *sc) 1350 { 1351 struct ifnet *ifp = sc->sc_ifp; 1352 struct ieee80211com *ic = ifp->if_l2com; 1353 struct ath_hal *ah = sc->sc_ah; 1354 HAL_STATUS status; 1355 1356 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1357 __func__, ifp->if_flags); 1358 1359 /* 1360 * Must reset the chip before we reload the 1361 * keycache as we were powered down on suspend. 1362 */ 1363 ath_hal_reset(ah, sc->sc_opmode, 1364 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1365 AH_FALSE, &status); 1366 ath_reset_keycache(sc); 1367 1368 /* Let DFS at it in case it's a DFS channel */ 1369 ath_dfs_radar_enable(sc, ic->ic_curchan); 1370 1371 /* Restore the LED configuration */ 1372 ath_led_config(sc); 1373 ath_hal_setledstate(ah, HAL_LED_INIT); 1374 1375 if (sc->sc_resume_up) { 1376 if (ic->ic_opmode == IEEE80211_M_STA) { 1377 ath_init(sc); 1378 ath_hal_setledstate(ah, HAL_LED_RUN); 1379 /* 1380 * Program the beacon registers using the last rx'd 1381 * beacon frame and enable sync on the next beacon 1382 * we see. This should handle the case where we 1383 * wakeup and find the same AP and also the case where 1384 * we wakeup and need to roam. For the latter we 1385 * should get bmiss events that trigger a roam. 1386 */ 1387 ath_beacon_config(sc, NULL); 1388 sc->sc_syncbeacon = 1; 1389 } else 1390 ieee80211_resume_all(ic); 1391 } 1392 1393 /* XXX beacons ? */ 1394 } 1395 1396 void 1397 ath_shutdown(struct ath_softc *sc) 1398 { 1399 struct ifnet *ifp = sc->sc_ifp; 1400 1401 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1402 __func__, ifp->if_flags); 1403 1404 ath_stop(ifp); 1405 /* NB: no point powering down chip as we're about to reboot */ 1406 } 1407 1408 /* 1409 * Interrupt handler. Most of the actual processing is deferred. 1410 */ 1411 void 1412 ath_intr(void *arg) 1413 { 1414 struct ath_softc *sc = arg; 1415 struct ifnet *ifp = sc->sc_ifp; 1416 struct ath_hal *ah = sc->sc_ah; 1417 HAL_INT status = 0; 1418 uint32_t txqs; 1419 1420 /* 1421 * If we're inside a reset path, just print a warning and 1422 * clear the ISR. The reset routine will finish it for us. 1423 */ 1424 ATH_PCU_LOCK(sc); 1425 if (sc->sc_inreset_cnt) { 1426 HAL_INT status; 1427 ath_hal_getisr(ah, &status); /* clear ISR */ 1428 ath_hal_intrset(ah, 0); /* disable further intr's */ 1429 DPRINTF(sc, ATH_DEBUG_ANY, 1430 "%s: in reset, ignoring: status=0x%x\n", 1431 __func__, status); 1432 ATH_PCU_UNLOCK(sc); 1433 return; 1434 } 1435 1436 if (sc->sc_invalid) { 1437 /* 1438 * The hardware is not ready/present, don't touch anything. 1439 * Note this can happen early on if the IRQ is shared. 1440 */ 1441 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1442 ATH_PCU_UNLOCK(sc); 1443 return; 1444 } 1445 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1446 ATH_PCU_UNLOCK(sc); 1447 return; 1448 } 1449 1450 if ((ifp->if_flags & IFF_UP) == 0 || 1451 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1452 HAL_INT status; 1453 1454 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1455 __func__, ifp->if_flags); 1456 ath_hal_getisr(ah, &status); /* clear ISR */ 1457 ath_hal_intrset(ah, 0); /* disable further intr's */ 1458 ATH_PCU_UNLOCK(sc); 1459 return; 1460 } 1461 1462 /* 1463 * Figure out the reason(s) for the interrupt. Note 1464 * that the hal returns a pseudo-ISR that may include 1465 * bits we haven't explicitly enabled so we mask the 1466 * value to insure we only process bits we requested. 1467 */ 1468 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1469 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1470 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1471 #ifdef ATH_KTR_INTR_DEBUG 1472 CTR5(ATH_KTR_INTR, 1473 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1474 ah->ah_intrstate[0], 1475 ah->ah_intrstate[1], 1476 ah->ah_intrstate[2], 1477 ah->ah_intrstate[3], 1478 ah->ah_intrstate[6]); 1479 #endif 1480 status &= sc->sc_imask; /* discard unasked for bits */ 1481 1482 /* Short-circuit un-handled interrupts */ 1483 if (status == 0x0) { 1484 ATH_PCU_UNLOCK(sc); 1485 return; 1486 } 1487 1488 /* 1489 * Take a note that we're inside the interrupt handler, so 1490 * the reset routines know to wait. 1491 */ 1492 sc->sc_intr_cnt++; 1493 ATH_PCU_UNLOCK(sc); 1494 1495 /* 1496 * Handle the interrupt. We won't run concurrent with the reset 1497 * or channel change routines as they'll wait for sc_intr_cnt 1498 * to be 0 before continuing. 1499 */ 1500 if (status & HAL_INT_FATAL) { 1501 sc->sc_stats.ast_hardware++; 1502 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1503 ath_fatal_proc(sc, 0); 1504 } else { 1505 if (status & HAL_INT_SWBA) { 1506 /* 1507 * Software beacon alert--time to send a beacon. 1508 * Handle beacon transmission directly; deferring 1509 * this is too slow to meet timing constraints 1510 * under load. 1511 */ 1512 #ifdef IEEE80211_SUPPORT_TDMA 1513 if (sc->sc_tdma) { 1514 if (sc->sc_tdmaswba == 0) { 1515 struct ieee80211com *ic = ifp->if_l2com; 1516 struct ieee80211vap *vap = 1517 TAILQ_FIRST(&ic->ic_vaps); 1518 ath_tdma_beacon_send(sc, vap); 1519 sc->sc_tdmaswba = 1520 vap->iv_tdma->tdma_bintval; 1521 } else 1522 sc->sc_tdmaswba--; 1523 } else 1524 #endif 1525 { 1526 ath_beacon_proc(sc, 0); 1527 #ifdef IEEE80211_SUPPORT_SUPERG 1528 /* 1529 * Schedule the rx taskq in case there's no 1530 * traffic so any frames held on the staging 1531 * queue are aged and potentially flushed. 1532 */ 1533 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1534 #endif 1535 } 1536 } 1537 if (status & HAL_INT_RXEOL) { 1538 int imask; 1539 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1540 ATH_PCU_LOCK(sc); 1541 /* 1542 * NB: the hardware should re-read the link when 1543 * RXE bit is written, but it doesn't work at 1544 * least on older hardware revs. 1545 */ 1546 sc->sc_stats.ast_rxeol++; 1547 /* 1548 * Disable RXEOL/RXORN - prevent an interrupt 1549 * storm until the PCU logic can be reset. 1550 * In case the interface is reset some other 1551 * way before "sc_kickpcu" is called, don't 1552 * modify sc_imask - that way if it is reset 1553 * by a call to ath_reset() somehow, the 1554 * interrupt mask will be correctly reprogrammed. 1555 */ 1556 imask = sc->sc_imask; 1557 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1558 ath_hal_intrset(ah, imask); 1559 /* 1560 * Only blank sc_rxlink if we've not yet kicked 1561 * the PCU. 1562 * 1563 * This isn't entirely correct - the correct solution 1564 * would be to have a PCU lock and engage that for 1565 * the duration of the PCU fiddling; which would include 1566 * running the RX process. Otherwise we could end up 1567 * messing up the RX descriptor chain and making the 1568 * RX desc list much shorter. 1569 */ 1570 if (! sc->sc_kickpcu) 1571 sc->sc_rxlink = NULL; 1572 sc->sc_kickpcu = 1; 1573 /* 1574 * Enqueue an RX proc, to handled whatever 1575 * is in the RX queue. 1576 * This will then kick the PCU. 1577 */ 1578 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1579 ATH_PCU_UNLOCK(sc); 1580 } 1581 if (status & HAL_INT_TXURN) { 1582 sc->sc_stats.ast_txurn++; 1583 /* bump tx trigger level */ 1584 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1585 } 1586 if (status & HAL_INT_RX) { 1587 sc->sc_stats.ast_rx_intr++; 1588 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1589 } 1590 if (status & HAL_INT_TX) { 1591 sc->sc_stats.ast_tx_intr++; 1592 /* 1593 * Grab all the currently set bits in the HAL txq bitmap 1594 * and blank them. This is the only place we should be 1595 * doing this. 1596 */ 1597 ATH_PCU_LOCK(sc); 1598 txqs = 0xffffffff; 1599 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1600 sc->sc_txq_active |= txqs; 1601 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1602 ATH_PCU_UNLOCK(sc); 1603 } 1604 if (status & HAL_INT_BMISS) { 1605 sc->sc_stats.ast_bmiss++; 1606 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1607 } 1608 if (status & HAL_INT_GTT) 1609 sc->sc_stats.ast_tx_timeout++; 1610 if (status & HAL_INT_CST) 1611 sc->sc_stats.ast_tx_cst++; 1612 if (status & HAL_INT_MIB) { 1613 sc->sc_stats.ast_mib++; 1614 ATH_PCU_LOCK(sc); 1615 /* 1616 * Disable interrupts until we service the MIB 1617 * interrupt; otherwise it will continue to fire. 1618 */ 1619 ath_hal_intrset(ah, 0); 1620 /* 1621 * Let the hal handle the event. We assume it will 1622 * clear whatever condition caused the interrupt. 1623 */ 1624 ath_hal_mibevent(ah, &sc->sc_halstats); 1625 /* 1626 * Don't reset the interrupt if we've just 1627 * kicked the PCU, or we may get a nested 1628 * RXEOL before the rxproc has had a chance 1629 * to run. 1630 */ 1631 if (sc->sc_kickpcu == 0) 1632 ath_hal_intrset(ah, sc->sc_imask); 1633 ATH_PCU_UNLOCK(sc); 1634 } 1635 if (status & HAL_INT_RXORN) { 1636 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1637 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1638 sc->sc_stats.ast_rxorn++; 1639 } 1640 } 1641 ATH_PCU_LOCK(sc); 1642 sc->sc_intr_cnt--; 1643 ATH_PCU_UNLOCK(sc); 1644 } 1645 1646 static void 1647 ath_fatal_proc(void *arg, int pending) 1648 { 1649 struct ath_softc *sc = arg; 1650 struct ifnet *ifp = sc->sc_ifp; 1651 u_int32_t *state; 1652 u_int32_t len; 1653 void *sp; 1654 1655 if_printf(ifp, "hardware error; resetting\n"); 1656 /* 1657 * Fatal errors are unrecoverable. Typically these 1658 * are caused by DMA errors. Collect h/w state from 1659 * the hal so we can diagnose what's going on. 1660 */ 1661 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1662 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1663 state = sp; 1664 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1665 state[0], state[1] , state[2], state[3], 1666 state[4], state[5]); 1667 } 1668 ath_reset(ifp, ATH_RESET_NOLOSS); 1669 } 1670 1671 static void 1672 ath_bmiss_vap(struct ieee80211vap *vap) 1673 { 1674 /* 1675 * Workaround phantom bmiss interrupts by sanity-checking 1676 * the time of our last rx'd frame. If it is within the 1677 * beacon miss interval then ignore the interrupt. If it's 1678 * truly a bmiss we'll get another interrupt soon and that'll 1679 * be dispatched up for processing. Note this applies only 1680 * for h/w beacon miss events. 1681 */ 1682 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1683 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1684 struct ath_softc *sc = ifp->if_softc; 1685 u_int64_t lastrx = sc->sc_lastrx; 1686 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1687 /* XXX should take a locked ref to iv_bss */ 1688 u_int bmisstimeout = 1689 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1690 1691 DPRINTF(sc, ATH_DEBUG_BEACON, 1692 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1693 __func__, (unsigned long long) tsf, 1694 (unsigned long long)(tsf - lastrx), 1695 (unsigned long long) lastrx, bmisstimeout); 1696 1697 if (tsf - lastrx <= bmisstimeout) { 1698 sc->sc_stats.ast_bmiss_phantom++; 1699 return; 1700 } 1701 } 1702 ATH_VAP(vap)->av_bmiss(vap); 1703 } 1704 1705 static int 1706 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1707 { 1708 uint32_t rsize; 1709 void *sp; 1710 1711 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1712 return 0; 1713 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1714 *hangs = *(uint32_t *)sp; 1715 return 1; 1716 } 1717 1718 static void 1719 ath_bmiss_proc(void *arg, int pending) 1720 { 1721 struct ath_softc *sc = arg; 1722 struct ifnet *ifp = sc->sc_ifp; 1723 uint32_t hangs; 1724 1725 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1726 1727 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1728 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1729 ath_reset(ifp, ATH_RESET_NOLOSS); 1730 } else 1731 ieee80211_beacon_miss(ifp->if_l2com); 1732 } 1733 1734 /* 1735 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1736 * calcs together with WME. If necessary disable the crypto 1737 * hardware and mark the 802.11 state so keys will be setup 1738 * with the MIC work done in software. 1739 */ 1740 static void 1741 ath_settkipmic(struct ath_softc *sc) 1742 { 1743 struct ifnet *ifp = sc->sc_ifp; 1744 struct ieee80211com *ic = ifp->if_l2com; 1745 1746 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1747 if (ic->ic_flags & IEEE80211_F_WME) { 1748 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1749 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1750 } else { 1751 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1752 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1753 } 1754 } 1755 } 1756 1757 static void 1758 ath_init(void *arg) 1759 { 1760 struct ath_softc *sc = (struct ath_softc *) arg; 1761 struct ifnet *ifp = sc->sc_ifp; 1762 struct ieee80211com *ic = ifp->if_l2com; 1763 struct ath_hal *ah = sc->sc_ah; 1764 HAL_STATUS status; 1765 1766 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1767 __func__, ifp->if_flags); 1768 1769 ATH_LOCK(sc); 1770 /* 1771 * Stop anything previously setup. This is safe 1772 * whether this is the first time through or not. 1773 */ 1774 ath_stop_locked(ifp); 1775 1776 /* 1777 * The basic interface to setting the hardware in a good 1778 * state is ``reset''. On return the hardware is known to 1779 * be powered up and with interrupts disabled. This must 1780 * be followed by initialization of the appropriate bits 1781 * and then setup of the interrupt mask. 1782 */ 1783 ath_settkipmic(sc); 1784 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1785 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1786 status); 1787 ATH_UNLOCK(sc); 1788 return; 1789 } 1790 ath_chan_change(sc, ic->ic_curchan); 1791 1792 /* Let DFS at it in case it's a DFS channel */ 1793 ath_dfs_radar_enable(sc, ic->ic_curchan); 1794 1795 /* 1796 * Likewise this is set during reset so update 1797 * state cached in the driver. 1798 */ 1799 sc->sc_diversity = ath_hal_getdiversity(ah); 1800 sc->sc_lastlongcal = 0; 1801 sc->sc_resetcal = 1; 1802 sc->sc_lastcalreset = 0; 1803 sc->sc_lastani = 0; 1804 sc->sc_lastshortcal = 0; 1805 sc->sc_doresetcal = AH_FALSE; 1806 /* 1807 * Beacon timers were cleared here; give ath_newstate() 1808 * a hint that the beacon timers should be poked when 1809 * things transition to the RUN state. 1810 */ 1811 sc->sc_beacons = 0; 1812 1813 /* 1814 * Initial aggregation settings. 1815 */ 1816 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1817 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1818 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1819 1820 /* 1821 * Setup the hardware after reset: the key cache 1822 * is filled as needed and the receive engine is 1823 * set going. Frame transmit is handled entirely 1824 * in the frame output path; there's nothing to do 1825 * here except setup the interrupt mask. 1826 */ 1827 if (ath_startrecv(sc) != 0) { 1828 if_printf(ifp, "unable to start recv logic\n"); 1829 ATH_UNLOCK(sc); 1830 return; 1831 } 1832 1833 /* 1834 * Enable interrupts. 1835 */ 1836 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1837 | HAL_INT_RXEOL | HAL_INT_RXORN 1838 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1839 /* 1840 * Enable MIB interrupts when there are hardware phy counters. 1841 * Note we only do this (at the moment) for station mode. 1842 */ 1843 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1844 sc->sc_imask |= HAL_INT_MIB; 1845 1846 /* Enable global TX timeout and carrier sense timeout if available */ 1847 if (ath_hal_gtxto_supported(ah)) 1848 sc->sc_imask |= HAL_INT_GTT; 1849 1850 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1851 __func__, sc->sc_imask); 1852 1853 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1854 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1855 ath_hal_intrset(ah, sc->sc_imask); 1856 1857 ATH_UNLOCK(sc); 1858 1859 #ifdef ATH_TX99_DIAG 1860 if (sc->sc_tx99 != NULL) 1861 sc->sc_tx99->start(sc->sc_tx99); 1862 else 1863 #endif 1864 ieee80211_start_all(ic); /* start all vap's */ 1865 } 1866 1867 static void 1868 ath_stop_locked(struct ifnet *ifp) 1869 { 1870 struct ath_softc *sc = ifp->if_softc; 1871 struct ath_hal *ah = sc->sc_ah; 1872 1873 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1874 __func__, sc->sc_invalid, ifp->if_flags); 1875 1876 ATH_LOCK_ASSERT(sc); 1877 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1878 /* 1879 * Shutdown the hardware and driver: 1880 * reset 802.11 state machine 1881 * turn off timers 1882 * disable interrupts 1883 * turn off the radio 1884 * clear transmit machinery 1885 * clear receive machinery 1886 * drain and release tx queues 1887 * reclaim beacon resources 1888 * power down hardware 1889 * 1890 * Note that some of this work is not possible if the 1891 * hardware is gone (invalid). 1892 */ 1893 #ifdef ATH_TX99_DIAG 1894 if (sc->sc_tx99 != NULL) 1895 sc->sc_tx99->stop(sc->sc_tx99); 1896 #endif 1897 callout_stop(&sc->sc_wd_ch); 1898 sc->sc_wd_timer = 0; 1899 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1900 if (!sc->sc_invalid) { 1901 if (sc->sc_softled) { 1902 callout_stop(&sc->sc_ledtimer); 1903 ath_hal_gpioset(ah, sc->sc_ledpin, 1904 !sc->sc_ledon); 1905 sc->sc_blinking = 0; 1906 } 1907 ath_hal_intrset(ah, 0); 1908 } 1909 ath_draintxq(sc, ATH_RESET_DEFAULT); 1910 if (!sc->sc_invalid) { 1911 ath_stoprecv(sc, 1); 1912 ath_hal_phydisable(ah); 1913 } else 1914 sc->sc_rxlink = NULL; 1915 ath_beacon_free(sc); /* XXX not needed */ 1916 } 1917 } 1918 1919 #define MAX_TXRX_ITERATIONS 1000 1920 static void 1921 ath_txrx_stop_locked(struct ath_softc *sc) 1922 { 1923 int i = MAX_TXRX_ITERATIONS; 1924 1925 ATH_UNLOCK_ASSERT(sc); 1926 ATH_PCU_LOCK_ASSERT(sc); 1927 1928 /* 1929 * Sleep until all the pending operations have completed. 1930 * 1931 * The caller must ensure that reset has been incremented 1932 * or the pending operations may continue being queued. 1933 */ 1934 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1935 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1936 if (i <= 0) 1937 break; 1938 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1939 i--; 1940 } 1941 1942 if (i <= 0) 1943 device_printf(sc->sc_dev, 1944 "%s: didn't finish after %d iterations\n", 1945 __func__, MAX_TXRX_ITERATIONS); 1946 } 1947 #undef MAX_TXRX_ITERATIONS 1948 1949 #if 0 1950 static void 1951 ath_txrx_stop(struct ath_softc *sc) 1952 { 1953 ATH_UNLOCK_ASSERT(sc); 1954 ATH_PCU_UNLOCK_ASSERT(sc); 1955 1956 ATH_PCU_LOCK(sc); 1957 ath_txrx_stop_locked(sc); 1958 ATH_PCU_UNLOCK(sc); 1959 } 1960 #endif 1961 1962 static void 1963 ath_txrx_start(struct ath_softc *sc) 1964 { 1965 1966 taskqueue_unblock(sc->sc_tq); 1967 } 1968 1969 /* 1970 * Grab the reset lock, and wait around until noone else 1971 * is trying to do anything with it. 1972 * 1973 * This is totally horrible but we can't hold this lock for 1974 * long enough to do TX/RX or we end up with net80211/ip stack 1975 * LORs and eventual deadlock. 1976 * 1977 * "dowait" signals whether to spin, waiting for the reset 1978 * lock count to reach 0. This should (for now) only be used 1979 * during the reset path, as the rest of the code may not 1980 * be locking-reentrant enough to behave correctly. 1981 * 1982 * Another, cleaner way should be found to serialise all of 1983 * these operations. 1984 */ 1985 #define MAX_RESET_ITERATIONS 10 1986 static int 1987 ath_reset_grablock(struct ath_softc *sc, int dowait) 1988 { 1989 int w = 0; 1990 int i = MAX_RESET_ITERATIONS; 1991 1992 ATH_PCU_LOCK_ASSERT(sc); 1993 do { 1994 if (sc->sc_inreset_cnt == 0) { 1995 w = 1; 1996 break; 1997 } 1998 if (dowait == 0) { 1999 w = 0; 2000 break; 2001 } 2002 ATH_PCU_UNLOCK(sc); 2003 pause("ath_reset_grablock", 1); 2004 i--; 2005 ATH_PCU_LOCK(sc); 2006 } while (i > 0); 2007 2008 /* 2009 * We always increment the refcounter, regardless 2010 * of whether we succeeded to get it in an exclusive 2011 * way. 2012 */ 2013 sc->sc_inreset_cnt++; 2014 2015 if (i <= 0) 2016 device_printf(sc->sc_dev, 2017 "%s: didn't finish after %d iterations\n", 2018 __func__, MAX_RESET_ITERATIONS); 2019 2020 if (w == 0) 2021 device_printf(sc->sc_dev, 2022 "%s: warning, recursive reset path!\n", 2023 __func__); 2024 2025 return w; 2026 } 2027 #undef MAX_RESET_ITERATIONS 2028 2029 /* 2030 * XXX TODO: write ath_reset_releaselock 2031 */ 2032 2033 static void 2034 ath_stop(struct ifnet *ifp) 2035 { 2036 struct ath_softc *sc = ifp->if_softc; 2037 2038 ATH_LOCK(sc); 2039 ath_stop_locked(ifp); 2040 ATH_UNLOCK(sc); 2041 } 2042 2043 /* 2044 * Reset the hardware w/o losing operational state. This is 2045 * basically a more efficient way of doing ath_stop, ath_init, 2046 * followed by state transitions to the current 802.11 2047 * operational state. Used to recover from various errors and 2048 * to reset or reload hardware state. 2049 */ 2050 int 2051 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2052 { 2053 struct ath_softc *sc = ifp->if_softc; 2054 struct ieee80211com *ic = ifp->if_l2com; 2055 struct ath_hal *ah = sc->sc_ah; 2056 HAL_STATUS status; 2057 int i; 2058 2059 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2060 2061 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2062 ATH_PCU_UNLOCK_ASSERT(sc); 2063 ATH_UNLOCK_ASSERT(sc); 2064 2065 /* Try to (stop any further TX/RX from occuring */ 2066 taskqueue_block(sc->sc_tq); 2067 2068 ATH_PCU_LOCK(sc); 2069 ath_hal_intrset(ah, 0); /* disable interrupts */ 2070 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2071 if (ath_reset_grablock(sc, 1) == 0) { 2072 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2073 __func__); 2074 } 2075 ATH_PCU_UNLOCK(sc); 2076 2077 /* 2078 * Should now wait for pending TX/RX to complete 2079 * and block future ones from occuring. This needs to be 2080 * done before the TX queue is drained. 2081 */ 2082 ath_draintxq(sc, reset_type); /* stop xmit side */ 2083 2084 /* 2085 * Regardless of whether we're doing a no-loss flush or 2086 * not, stop the PCU and handle what's in the RX queue. 2087 * That way frames aren't dropped which shouldn't be. 2088 */ 2089 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2090 ath_rx_proc(sc, 0); 2091 2092 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2093 /* NB: indicate channel change so we do a full reset */ 2094 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2095 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2096 __func__, status); 2097 sc->sc_diversity = ath_hal_getdiversity(ah); 2098 2099 /* Let DFS at it in case it's a DFS channel */ 2100 ath_dfs_radar_enable(sc, ic->ic_curchan); 2101 2102 if (ath_startrecv(sc) != 0) /* restart recv */ 2103 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2104 /* 2105 * We may be doing a reset in response to an ioctl 2106 * that changes the channel so update any state that 2107 * might change as a result. 2108 */ 2109 ath_chan_change(sc, ic->ic_curchan); 2110 if (sc->sc_beacons) { /* restart beacons */ 2111 #ifdef IEEE80211_SUPPORT_TDMA 2112 if (sc->sc_tdma) 2113 ath_tdma_config(sc, NULL); 2114 else 2115 #endif 2116 ath_beacon_config(sc, NULL); 2117 } 2118 2119 /* 2120 * Release the reset lock and re-enable interrupts here. 2121 * If an interrupt was being processed in ath_intr(), 2122 * it would disable interrupts at this point. So we have 2123 * to atomically enable interrupts and decrement the 2124 * reset counter - this way ath_intr() doesn't end up 2125 * disabling interrupts without a corresponding enable 2126 * in the rest or channel change path. 2127 */ 2128 ATH_PCU_LOCK(sc); 2129 sc->sc_inreset_cnt--; 2130 /* XXX only do this if sc_inreset_cnt == 0? */ 2131 ath_hal_intrset(ah, sc->sc_imask); 2132 ATH_PCU_UNLOCK(sc); 2133 2134 /* 2135 * TX and RX can be started here. If it were started with 2136 * sc_inreset_cnt > 0, the TX and RX path would abort. 2137 * Thus if this is a nested call through the reset or 2138 * channel change code, TX completion will occur but 2139 * RX completion and ath_start / ath_tx_start will not 2140 * run. 2141 */ 2142 2143 /* Restart TX/RX as needed */ 2144 ath_txrx_start(sc); 2145 2146 /* XXX Restart TX completion and pending TX */ 2147 if (reset_type == ATH_RESET_NOLOSS) { 2148 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2149 if (ATH_TXQ_SETUP(sc, i)) { 2150 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2151 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2152 ath_txq_sched(sc, &sc->sc_txq[i]); 2153 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2154 } 2155 } 2156 } 2157 2158 /* 2159 * This may have been set during an ath_start() call which 2160 * set this once it detected a concurrent TX was going on. 2161 * So, clear it. 2162 */ 2163 IF_LOCK(&ifp->if_snd); 2164 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2165 IF_UNLOCK(&ifp->if_snd); 2166 2167 /* Handle any frames in the TX queue */ 2168 /* 2169 * XXX should this be done by the caller, rather than 2170 * ath_reset() ? 2171 */ 2172 ath_start(ifp); /* restart xmit */ 2173 return 0; 2174 } 2175 2176 static int 2177 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2178 { 2179 struct ieee80211com *ic = vap->iv_ic; 2180 struct ifnet *ifp = ic->ic_ifp; 2181 struct ath_softc *sc = ifp->if_softc; 2182 struct ath_hal *ah = sc->sc_ah; 2183 2184 switch (cmd) { 2185 case IEEE80211_IOC_TXPOWER: 2186 /* 2187 * If per-packet TPC is enabled, then we have nothing 2188 * to do; otherwise we need to force the global limit. 2189 * All this can happen directly; no need to reset. 2190 */ 2191 if (!ath_hal_gettpc(ah)) 2192 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2193 return 0; 2194 } 2195 /* XXX? Full or NOLOSS? */ 2196 return ath_reset(ifp, ATH_RESET_FULL); 2197 } 2198 2199 struct ath_buf * 2200 _ath_getbuf_locked(struct ath_softc *sc) 2201 { 2202 struct ath_buf *bf; 2203 2204 ATH_TXBUF_LOCK_ASSERT(sc); 2205 2206 bf = TAILQ_FIRST(&sc->sc_txbuf); 2207 if (bf == NULL) { 2208 sc->sc_stats.ast_tx_getnobuf++; 2209 } else { 2210 if (bf->bf_flags & ATH_BUF_BUSY) { 2211 sc->sc_stats.ast_tx_getbusybuf++; 2212 bf = NULL; 2213 } 2214 } 2215 2216 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2217 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2218 else 2219 bf = NULL; 2220 2221 if (bf == NULL) { 2222 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2223 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2224 "out of xmit buffers" : "xmit buffer busy"); 2225 return NULL; 2226 } 2227 2228 /* Valid bf here; clear some basic fields */ 2229 bf->bf_next = NULL; /* XXX just to be sure */ 2230 bf->bf_last = NULL; /* XXX again, just to be sure */ 2231 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2232 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2233 2234 return bf; 2235 } 2236 2237 /* 2238 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2239 * can't be thrown back on the queue as they could still be 2240 * in use by the hardware. 2241 * 2242 * This duplicates the buffer, or returns NULL. 2243 * 2244 * The descriptor is also copied but the link pointers and 2245 * the DMA segments aren't copied; this frame should thus 2246 * be again passed through the descriptor setup/chain routines 2247 * so the link is correct. 2248 * 2249 * The caller must free the buffer using ath_freebuf(). 2250 * 2251 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2252 * XXX in the TX pathway when retries are needed. 2253 * XXX Figure out how to keep some buffers free, or factor the 2254 * XXX number of busy buffers into the xmit path (ath_start()) 2255 * XXX so we don't over-commit. 2256 */ 2257 struct ath_buf * 2258 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2259 { 2260 struct ath_buf *tbf; 2261 2262 tbf = ath_getbuf(sc); 2263 if (tbf == NULL) 2264 return NULL; /* XXX failure? Why? */ 2265 2266 /* Copy basics */ 2267 tbf->bf_next = NULL; 2268 tbf->bf_nseg = bf->bf_nseg; 2269 tbf->bf_txflags = bf->bf_txflags; 2270 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2271 tbf->bf_status = bf->bf_status; 2272 tbf->bf_m = bf->bf_m; 2273 tbf->bf_node = bf->bf_node; 2274 /* will be setup by the chain/setup function */ 2275 tbf->bf_lastds = NULL; 2276 /* for now, last == self */ 2277 tbf->bf_last = tbf; 2278 tbf->bf_comp = bf->bf_comp; 2279 2280 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2281 2282 /* The caller has to re-init the descriptor + links */ 2283 2284 /* Copy state */ 2285 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2286 2287 return tbf; 2288 } 2289 2290 struct ath_buf * 2291 ath_getbuf(struct ath_softc *sc) 2292 { 2293 struct ath_buf *bf; 2294 2295 ATH_TXBUF_LOCK(sc); 2296 bf = _ath_getbuf_locked(sc); 2297 ATH_TXBUF_UNLOCK(sc); 2298 if (bf == NULL) { 2299 struct ifnet *ifp = sc->sc_ifp; 2300 2301 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2302 sc->sc_stats.ast_tx_qstop++; 2303 IF_LOCK(&ifp->if_snd); 2304 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2305 IF_UNLOCK(&ifp->if_snd); 2306 } 2307 return bf; 2308 } 2309 2310 static void 2311 ath_start(struct ifnet *ifp) 2312 { 2313 struct ath_softc *sc = ifp->if_softc; 2314 struct ieee80211_node *ni; 2315 struct ath_buf *bf; 2316 struct mbuf *m, *next; 2317 ath_bufhead frags; 2318 2319 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2320 return; 2321 2322 /* XXX is it ok to hold the ATH_LOCK here? */ 2323 ATH_PCU_LOCK(sc); 2324 if (sc->sc_inreset_cnt > 0) { 2325 device_printf(sc->sc_dev, 2326 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2327 ATH_PCU_UNLOCK(sc); 2328 IF_LOCK(&ifp->if_snd); 2329 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2330 IF_UNLOCK(&ifp->if_snd); 2331 return; 2332 } 2333 sc->sc_txstart_cnt++; 2334 ATH_PCU_UNLOCK(sc); 2335 2336 for (;;) { 2337 /* 2338 * Grab a TX buffer and associated resources. 2339 */ 2340 bf = ath_getbuf(sc); 2341 if (bf == NULL) 2342 break; 2343 2344 IFQ_DEQUEUE(&ifp->if_snd, m); 2345 if (m == NULL) { 2346 ATH_TXBUF_LOCK(sc); 2347 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2348 ATH_TXBUF_UNLOCK(sc); 2349 break; 2350 } 2351 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2352 /* 2353 * Check for fragmentation. If this frame 2354 * has been broken up verify we have enough 2355 * buffers to send all the fragments so all 2356 * go out or none... 2357 */ 2358 TAILQ_INIT(&frags); 2359 if ((m->m_flags & M_FRAG) && 2360 !ath_txfrag_setup(sc, &frags, m, ni)) { 2361 DPRINTF(sc, ATH_DEBUG_XMIT, 2362 "%s: out of txfrag buffers\n", __func__); 2363 sc->sc_stats.ast_tx_nofrag++; 2364 ifp->if_oerrors++; 2365 ath_freetx(m); 2366 goto bad; 2367 } 2368 ifp->if_opackets++; 2369 nextfrag: 2370 /* 2371 * Pass the frame to the h/w for transmission. 2372 * Fragmented frames have each frag chained together 2373 * with m_nextpkt. We know there are sufficient ath_buf's 2374 * to send all the frags because of work done by 2375 * ath_txfrag_setup. We leave m_nextpkt set while 2376 * calling ath_tx_start so it can use it to extend the 2377 * the tx duration to cover the subsequent frag and 2378 * so it can reclaim all the mbufs in case of an error; 2379 * ath_tx_start clears m_nextpkt once it commits to 2380 * handing the frame to the hardware. 2381 */ 2382 next = m->m_nextpkt; 2383 if (ath_tx_start(sc, ni, bf, m)) { 2384 bad: 2385 ifp->if_oerrors++; 2386 reclaim: 2387 bf->bf_m = NULL; 2388 bf->bf_node = NULL; 2389 ATH_TXBUF_LOCK(sc); 2390 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2391 ath_txfrag_cleanup(sc, &frags, ni); 2392 ATH_TXBUF_UNLOCK(sc); 2393 if (ni != NULL) 2394 ieee80211_free_node(ni); 2395 continue; 2396 } 2397 if (next != NULL) { 2398 /* 2399 * Beware of state changing between frags. 2400 * XXX check sta power-save state? 2401 */ 2402 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2403 DPRINTF(sc, ATH_DEBUG_XMIT, 2404 "%s: flush fragmented packet, state %s\n", 2405 __func__, 2406 ieee80211_state_name[ni->ni_vap->iv_state]); 2407 ath_freetx(next); 2408 goto reclaim; 2409 } 2410 m = next; 2411 bf = TAILQ_FIRST(&frags); 2412 KASSERT(bf != NULL, ("no buf for txfrag")); 2413 TAILQ_REMOVE(&frags, bf, bf_list); 2414 goto nextfrag; 2415 } 2416 2417 sc->sc_wd_timer = 5; 2418 } 2419 2420 ATH_PCU_LOCK(sc); 2421 sc->sc_txstart_cnt--; 2422 ATH_PCU_UNLOCK(sc); 2423 } 2424 2425 static int 2426 ath_media_change(struct ifnet *ifp) 2427 { 2428 int error = ieee80211_media_change(ifp); 2429 /* NB: only the fixed rate can change and that doesn't need a reset */ 2430 return (error == ENETRESET ? 0 : error); 2431 } 2432 2433 /* 2434 * Block/unblock tx+rx processing while a key change is done. 2435 * We assume the caller serializes key management operations 2436 * so we only need to worry about synchronization with other 2437 * uses that originate in the driver. 2438 */ 2439 static void 2440 ath_key_update_begin(struct ieee80211vap *vap) 2441 { 2442 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2443 struct ath_softc *sc = ifp->if_softc; 2444 2445 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2446 taskqueue_block(sc->sc_tq); 2447 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2448 } 2449 2450 static void 2451 ath_key_update_end(struct ieee80211vap *vap) 2452 { 2453 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2454 struct ath_softc *sc = ifp->if_softc; 2455 2456 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2457 IF_UNLOCK(&ifp->if_snd); 2458 taskqueue_unblock(sc->sc_tq); 2459 } 2460 2461 /* 2462 * Calculate the receive filter according to the 2463 * operating mode and state: 2464 * 2465 * o always accept unicast, broadcast, and multicast traffic 2466 * o accept PHY error frames when hardware doesn't have MIB support 2467 * to count and we need them for ANI (sta mode only until recently) 2468 * and we are not scanning (ANI is disabled) 2469 * NB: older hal's add rx filter bits out of sight and we need to 2470 * blindly preserve them 2471 * o probe request frames are accepted only when operating in 2472 * hostap, adhoc, mesh, or monitor modes 2473 * o enable promiscuous mode 2474 * - when in monitor mode 2475 * - if interface marked PROMISC (assumes bridge setting is filtered) 2476 * o accept beacons: 2477 * - when operating in station mode for collecting rssi data when 2478 * the station is otherwise quiet, or 2479 * - when operating in adhoc mode so the 802.11 layer creates 2480 * node table entries for peers, 2481 * - when scanning 2482 * - when doing s/w beacon miss (e.g. for ap+sta) 2483 * - when operating in ap mode in 11g to detect overlapping bss that 2484 * require protection 2485 * - when operating in mesh mode to detect neighbors 2486 * o accept control frames: 2487 * - when in monitor mode 2488 * XXX HT protection for 11n 2489 */ 2490 static u_int32_t 2491 ath_calcrxfilter(struct ath_softc *sc) 2492 { 2493 struct ifnet *ifp = sc->sc_ifp; 2494 struct ieee80211com *ic = ifp->if_l2com; 2495 u_int32_t rfilt; 2496 2497 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2498 if (!sc->sc_needmib && !sc->sc_scanning) 2499 rfilt |= HAL_RX_FILTER_PHYERR; 2500 if (ic->ic_opmode != IEEE80211_M_STA) 2501 rfilt |= HAL_RX_FILTER_PROBEREQ; 2502 /* XXX ic->ic_monvaps != 0? */ 2503 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2504 rfilt |= HAL_RX_FILTER_PROM; 2505 if (ic->ic_opmode == IEEE80211_M_STA || 2506 ic->ic_opmode == IEEE80211_M_IBSS || 2507 sc->sc_swbmiss || sc->sc_scanning) 2508 rfilt |= HAL_RX_FILTER_BEACON; 2509 /* 2510 * NB: We don't recalculate the rx filter when 2511 * ic_protmode changes; otherwise we could do 2512 * this only when ic_protmode != NONE. 2513 */ 2514 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2515 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2516 rfilt |= HAL_RX_FILTER_BEACON; 2517 2518 /* 2519 * Enable hardware PS-POLL RX only for hostap mode; 2520 * STA mode sends PS-POLL frames but never 2521 * receives them. 2522 */ 2523 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2524 0, NULL) == HAL_OK && 2525 ic->ic_opmode == IEEE80211_M_HOSTAP) 2526 rfilt |= HAL_RX_FILTER_PSPOLL; 2527 2528 if (sc->sc_nmeshvaps) { 2529 rfilt |= HAL_RX_FILTER_BEACON; 2530 if (sc->sc_hasbmatch) 2531 rfilt |= HAL_RX_FILTER_BSSID; 2532 else 2533 rfilt |= HAL_RX_FILTER_PROM; 2534 } 2535 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2536 rfilt |= HAL_RX_FILTER_CONTROL; 2537 2538 /* 2539 * Enable RX of compressed BAR frames only when doing 2540 * 802.11n. Required for A-MPDU. 2541 */ 2542 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2543 rfilt |= HAL_RX_FILTER_COMPBAR; 2544 2545 /* 2546 * Enable radar PHY errors if requested by the 2547 * DFS module. 2548 */ 2549 if (sc->sc_dodfs) 2550 rfilt |= HAL_RX_FILTER_PHYRADAR; 2551 2552 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2553 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2554 return rfilt; 2555 } 2556 2557 static void 2558 ath_update_promisc(struct ifnet *ifp) 2559 { 2560 struct ath_softc *sc = ifp->if_softc; 2561 u_int32_t rfilt; 2562 2563 /* configure rx filter */ 2564 rfilt = ath_calcrxfilter(sc); 2565 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2566 2567 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2568 } 2569 2570 static void 2571 ath_update_mcast(struct ifnet *ifp) 2572 { 2573 struct ath_softc *sc = ifp->if_softc; 2574 u_int32_t mfilt[2]; 2575 2576 /* calculate and install multicast filter */ 2577 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2578 struct ifmultiaddr *ifma; 2579 /* 2580 * Merge multicast addresses to form the hardware filter. 2581 */ 2582 mfilt[0] = mfilt[1] = 0; 2583 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2584 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2585 caddr_t dl; 2586 u_int32_t val; 2587 u_int8_t pos; 2588 2589 /* calculate XOR of eight 6bit values */ 2590 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2591 val = LE_READ_4(dl + 0); 2592 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2593 val = LE_READ_4(dl + 3); 2594 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2595 pos &= 0x3f; 2596 mfilt[pos / 32] |= (1 << (pos % 32)); 2597 } 2598 if_maddr_runlock(ifp); 2599 } else 2600 mfilt[0] = mfilt[1] = ~0; 2601 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2602 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2603 __func__, mfilt[0], mfilt[1]); 2604 } 2605 2606 static void 2607 ath_mode_init(struct ath_softc *sc) 2608 { 2609 struct ifnet *ifp = sc->sc_ifp; 2610 struct ath_hal *ah = sc->sc_ah; 2611 u_int32_t rfilt; 2612 2613 /* configure rx filter */ 2614 rfilt = ath_calcrxfilter(sc); 2615 ath_hal_setrxfilter(ah, rfilt); 2616 2617 /* configure operational mode */ 2618 ath_hal_setopmode(ah); 2619 2620 /* handle any link-level address change */ 2621 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2622 2623 /* calculate and install multicast filter */ 2624 ath_update_mcast(ifp); 2625 } 2626 2627 /* 2628 * Set the slot time based on the current setting. 2629 */ 2630 static void 2631 ath_setslottime(struct ath_softc *sc) 2632 { 2633 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2634 struct ath_hal *ah = sc->sc_ah; 2635 u_int usec; 2636 2637 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2638 usec = 13; 2639 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2640 usec = 21; 2641 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2642 /* honor short/long slot time only in 11g */ 2643 /* XXX shouldn't honor on pure g or turbo g channel */ 2644 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2645 usec = HAL_SLOT_TIME_9; 2646 else 2647 usec = HAL_SLOT_TIME_20; 2648 } else 2649 usec = HAL_SLOT_TIME_9; 2650 2651 DPRINTF(sc, ATH_DEBUG_RESET, 2652 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2653 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2654 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2655 2656 ath_hal_setslottime(ah, usec); 2657 sc->sc_updateslot = OK; 2658 } 2659 2660 /* 2661 * Callback from the 802.11 layer to update the 2662 * slot time based on the current setting. 2663 */ 2664 static void 2665 ath_updateslot(struct ifnet *ifp) 2666 { 2667 struct ath_softc *sc = ifp->if_softc; 2668 struct ieee80211com *ic = ifp->if_l2com; 2669 2670 /* 2671 * When not coordinating the BSS, change the hardware 2672 * immediately. For other operation we defer the change 2673 * until beacon updates have propagated to the stations. 2674 */ 2675 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2676 ic->ic_opmode == IEEE80211_M_MBSS) 2677 sc->sc_updateslot = UPDATE; 2678 else 2679 ath_setslottime(sc); 2680 } 2681 2682 /* 2683 * Setup a h/w transmit queue for beacons. 2684 */ 2685 static int 2686 ath_beaconq_setup(struct ath_hal *ah) 2687 { 2688 HAL_TXQ_INFO qi; 2689 2690 memset(&qi, 0, sizeof(qi)); 2691 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2692 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2693 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2694 /* NB: for dynamic turbo, don't enable any other interrupts */ 2695 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2696 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2697 } 2698 2699 /* 2700 * Setup the transmit queue parameters for the beacon queue. 2701 */ 2702 static int 2703 ath_beaconq_config(struct ath_softc *sc) 2704 { 2705 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2706 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2707 struct ath_hal *ah = sc->sc_ah; 2708 HAL_TXQ_INFO qi; 2709 2710 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2711 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2712 ic->ic_opmode == IEEE80211_M_MBSS) { 2713 /* 2714 * Always burst out beacon and CAB traffic. 2715 */ 2716 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2717 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2718 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2719 } else { 2720 struct wmeParams *wmep = 2721 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2722 /* 2723 * Adhoc mode; important thing is to use 2x cwmin. 2724 */ 2725 qi.tqi_aifs = wmep->wmep_aifsn; 2726 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2727 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2728 } 2729 2730 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2731 device_printf(sc->sc_dev, "unable to update parameters for " 2732 "beacon hardware queue!\n"); 2733 return 0; 2734 } else { 2735 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2736 return 1; 2737 } 2738 #undef ATH_EXPONENT_TO_VALUE 2739 } 2740 2741 /* 2742 * Allocate and setup an initial beacon frame. 2743 */ 2744 static int 2745 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2746 { 2747 struct ieee80211vap *vap = ni->ni_vap; 2748 struct ath_vap *avp = ATH_VAP(vap); 2749 struct ath_buf *bf; 2750 struct mbuf *m; 2751 int error; 2752 2753 bf = avp->av_bcbuf; 2754 DPRINTF(sc, ATH_DEBUG_NODE, "%s: bf_m=%p, bf_node=%p\n", 2755 __func__, bf->bf_m, bf->bf_node); 2756 if (bf->bf_m != NULL) { 2757 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2758 m_freem(bf->bf_m); 2759 bf->bf_m = NULL; 2760 } 2761 if (bf->bf_node != NULL) { 2762 ieee80211_free_node(bf->bf_node); 2763 bf->bf_node = NULL; 2764 } 2765 2766 /* 2767 * NB: the beacon data buffer must be 32-bit aligned; 2768 * we assume the mbuf routines will return us something 2769 * with this alignment (perhaps should assert). 2770 */ 2771 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2772 if (m == NULL) { 2773 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2774 sc->sc_stats.ast_be_nombuf++; 2775 return ENOMEM; 2776 } 2777 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2778 bf->bf_segs, &bf->bf_nseg, 2779 BUS_DMA_NOWAIT); 2780 if (error != 0) { 2781 device_printf(sc->sc_dev, 2782 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2783 __func__, error); 2784 m_freem(m); 2785 return error; 2786 } 2787 2788 /* 2789 * Calculate a TSF adjustment factor required for staggered 2790 * beacons. Note that we assume the format of the beacon 2791 * frame leaves the tstamp field immediately following the 2792 * header. 2793 */ 2794 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2795 uint64_t tsfadjust; 2796 struct ieee80211_frame *wh; 2797 2798 /* 2799 * The beacon interval is in TU's; the TSF is in usecs. 2800 * We figure out how many TU's to add to align the timestamp 2801 * then convert to TSF units and handle byte swapping before 2802 * inserting it in the frame. The hardware will then add this 2803 * each time a beacon frame is sent. Note that we align vap's 2804 * 1..N and leave vap 0 untouched. This means vap 0 has a 2805 * timestamp in one beacon interval while the others get a 2806 * timstamp aligned to the next interval. 2807 */ 2808 tsfadjust = ni->ni_intval * 2809 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2810 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2811 2812 DPRINTF(sc, ATH_DEBUG_BEACON, 2813 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2814 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2815 avp->av_bslot, ni->ni_intval, 2816 (long long unsigned) le64toh(tsfadjust)); 2817 2818 wh = mtod(m, struct ieee80211_frame *); 2819 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2820 } 2821 bf->bf_m = m; 2822 bf->bf_node = ieee80211_ref_node(ni); 2823 2824 return 0; 2825 } 2826 2827 /* 2828 * Setup the beacon frame for transmit. 2829 */ 2830 static void 2831 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2832 { 2833 #define USE_SHPREAMBLE(_ic) \ 2834 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2835 == IEEE80211_F_SHPREAMBLE) 2836 struct ieee80211_node *ni = bf->bf_node; 2837 struct ieee80211com *ic = ni->ni_ic; 2838 struct mbuf *m = bf->bf_m; 2839 struct ath_hal *ah = sc->sc_ah; 2840 struct ath_desc *ds; 2841 int flags, antenna; 2842 const HAL_RATE_TABLE *rt; 2843 u_int8_t rix, rate; 2844 2845 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2846 __func__, m, m->m_len); 2847 2848 /* setup descriptors */ 2849 ds = bf->bf_desc; 2850 bf->bf_last = bf; 2851 bf->bf_lastds = ds; 2852 2853 flags = HAL_TXDESC_NOACK; 2854 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2855 ds->ds_link = bf->bf_daddr; /* self-linked */ 2856 flags |= HAL_TXDESC_VEOL; 2857 /* 2858 * Let hardware handle antenna switching. 2859 */ 2860 antenna = sc->sc_txantenna; 2861 } else { 2862 ds->ds_link = 0; 2863 /* 2864 * Switch antenna every 4 beacons. 2865 * XXX assumes two antenna 2866 */ 2867 if (sc->sc_txantenna != 0) 2868 antenna = sc->sc_txantenna; 2869 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2870 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2871 else 2872 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2873 } 2874 2875 KASSERT(bf->bf_nseg == 1, 2876 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2877 ds->ds_data = bf->bf_segs[0].ds_addr; 2878 /* 2879 * Calculate rate code. 2880 * XXX everything at min xmit rate 2881 */ 2882 rix = 0; 2883 rt = sc->sc_currates; 2884 rate = rt->info[rix].rateCode; 2885 if (USE_SHPREAMBLE(ic)) 2886 rate |= rt->info[rix].shortPreamble; 2887 ath_hal_setuptxdesc(ah, ds 2888 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2889 , sizeof(struct ieee80211_frame)/* header length */ 2890 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2891 , ni->ni_txpower /* txpower XXX */ 2892 , rate, 1 /* series 0 rate/tries */ 2893 , HAL_TXKEYIX_INVALID /* no encryption */ 2894 , antenna /* antenna mode */ 2895 , flags /* no ack, veol for beacons */ 2896 , 0 /* rts/cts rate */ 2897 , 0 /* rts/cts duration */ 2898 ); 2899 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2900 ath_hal_filltxdesc(ah, ds 2901 , roundup(m->m_len, 4) /* buffer length */ 2902 , AH_TRUE /* first segment */ 2903 , AH_TRUE /* last segment */ 2904 , ds /* first descriptor */ 2905 ); 2906 #if 0 2907 ath_desc_swap(ds); 2908 #endif 2909 #undef USE_SHPREAMBLE 2910 } 2911 2912 static void 2913 ath_beacon_update(struct ieee80211vap *vap, int item) 2914 { 2915 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2916 2917 setbit(bo->bo_flags, item); 2918 } 2919 2920 /* 2921 * Append the contents of src to dst; both queues 2922 * are assumed to be locked. 2923 */ 2924 static void 2925 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2926 { 2927 2928 ATH_TXQ_LOCK_ASSERT(dst); 2929 ATH_TXQ_LOCK_ASSERT(src); 2930 2931 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2932 dst->axq_link = src->axq_link; 2933 src->axq_link = NULL; 2934 dst->axq_depth += src->axq_depth; 2935 dst->axq_aggr_depth += src->axq_aggr_depth; 2936 src->axq_depth = 0; 2937 src->axq_aggr_depth = 0; 2938 } 2939 2940 /* 2941 * Transmit a beacon frame at SWBA. Dynamic updates to the 2942 * frame contents are done as needed and the slot time is 2943 * also adjusted based on current state. 2944 */ 2945 static void 2946 ath_beacon_proc(void *arg, int pending) 2947 { 2948 struct ath_softc *sc = arg; 2949 struct ath_hal *ah = sc->sc_ah; 2950 struct ieee80211vap *vap; 2951 struct ath_buf *bf; 2952 int slot, otherant; 2953 uint32_t bfaddr; 2954 2955 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2956 __func__, pending); 2957 /* 2958 * Check if the previous beacon has gone out. If 2959 * not don't try to post another, skip this period 2960 * and wait for the next. Missed beacons indicate 2961 * a problem and should not occur. If we miss too 2962 * many consecutive beacons reset the device. 2963 */ 2964 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2965 sc->sc_bmisscount++; 2966 sc->sc_stats.ast_be_missed++; 2967 DPRINTF(sc, ATH_DEBUG_BEACON, 2968 "%s: missed %u consecutive beacons\n", 2969 __func__, sc->sc_bmisscount); 2970 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2971 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2972 return; 2973 } 2974 if (sc->sc_bmisscount != 0) { 2975 DPRINTF(sc, ATH_DEBUG_BEACON, 2976 "%s: resume beacon xmit after %u misses\n", 2977 __func__, sc->sc_bmisscount); 2978 sc->sc_bmisscount = 0; 2979 } 2980 2981 if (sc->sc_stagbeacons) { /* staggered beacons */ 2982 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2983 uint32_t tsftu; 2984 2985 tsftu = ath_hal_gettsf32(ah) >> 10; 2986 /* XXX lintval */ 2987 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2988 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2989 bfaddr = 0; 2990 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2991 bf = ath_beacon_generate(sc, vap); 2992 if (bf != NULL) 2993 bfaddr = bf->bf_daddr; 2994 } 2995 } else { /* burst'd beacons */ 2996 uint32_t *bflink = &bfaddr; 2997 2998 for (slot = 0; slot < ATH_BCBUF; slot++) { 2999 vap = sc->sc_bslot[slot]; 3000 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 3001 bf = ath_beacon_generate(sc, vap); 3002 if (bf != NULL) { 3003 *bflink = bf->bf_daddr; 3004 bflink = &bf->bf_desc->ds_link; 3005 } 3006 } 3007 } 3008 *bflink = 0; /* terminate list */ 3009 } 3010 3011 /* 3012 * Handle slot time change when a non-ERP station joins/leaves 3013 * an 11g network. The 802.11 layer notifies us via callback, 3014 * we mark updateslot, then wait one beacon before effecting 3015 * the change. This gives associated stations at least one 3016 * beacon interval to note the state change. 3017 */ 3018 /* XXX locking */ 3019 if (sc->sc_updateslot == UPDATE) { 3020 sc->sc_updateslot = COMMIT; /* commit next beacon */ 3021 sc->sc_slotupdate = slot; 3022 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 3023 ath_setslottime(sc); /* commit change to h/w */ 3024 3025 /* 3026 * Check recent per-antenna transmit statistics and flip 3027 * the default antenna if noticeably more frames went out 3028 * on the non-default antenna. 3029 * XXX assumes 2 anntenae 3030 */ 3031 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 3032 otherant = sc->sc_defant & 1 ? 2 : 1; 3033 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 3034 ath_setdefantenna(sc, otherant); 3035 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 3036 } 3037 3038 if (bfaddr != 0) { 3039 /* 3040 * Stop any current dma and put the new frame on the queue. 3041 * This should never fail since we check above that no frames 3042 * are still pending on the queue. 3043 */ 3044 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 3045 DPRINTF(sc, ATH_DEBUG_ANY, 3046 "%s: beacon queue %u did not stop?\n", 3047 __func__, sc->sc_bhalq); 3048 } 3049 /* NB: cabq traffic should already be queued and primed */ 3050 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 3051 ath_hal_txstart(ah, sc->sc_bhalq); 3052 3053 sc->sc_stats.ast_be_xmit++; 3054 } 3055 } 3056 3057 static struct ath_buf * 3058 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 3059 { 3060 struct ath_vap *avp = ATH_VAP(vap); 3061 struct ath_txq *cabq = sc->sc_cabq; 3062 struct ath_buf *bf; 3063 struct mbuf *m; 3064 int nmcastq, error; 3065 3066 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 3067 ("not running, state %d", vap->iv_state)); 3068 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3069 3070 /* 3071 * Update dynamic beacon contents. If this returns 3072 * non-zero then we need to remap the memory because 3073 * the beacon frame changed size (probably because 3074 * of the TIM bitmap). 3075 */ 3076 bf = avp->av_bcbuf; 3077 m = bf->bf_m; 3078 /* XXX lock mcastq? */ 3079 nmcastq = avp->av_mcastq.axq_depth; 3080 3081 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 3082 /* XXX too conservative? */ 3083 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3084 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3085 bf->bf_segs, &bf->bf_nseg, 3086 BUS_DMA_NOWAIT); 3087 if (error != 0) { 3088 if_printf(vap->iv_ifp, 3089 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3090 __func__, error); 3091 return NULL; 3092 } 3093 } 3094 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3095 DPRINTF(sc, ATH_DEBUG_BEACON, 3096 "%s: cabq did not drain, mcastq %u cabq %u\n", 3097 __func__, nmcastq, cabq->axq_depth); 3098 sc->sc_stats.ast_cabq_busy++; 3099 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3100 /* 3101 * CABQ traffic from a previous vap is still pending. 3102 * We must drain the q before this beacon frame goes 3103 * out as otherwise this vap's stations will get cab 3104 * frames from a different vap. 3105 * XXX could be slow causing us to miss DBA 3106 */ 3107 ath_tx_draintxq(sc, cabq); 3108 } 3109 } 3110 ath_beacon_setup(sc, bf); 3111 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3112 3113 /* 3114 * Enable the CAB queue before the beacon queue to 3115 * insure cab frames are triggered by this beacon. 3116 */ 3117 if (avp->av_boff.bo_tim[4] & 1) { 3118 struct ath_hal *ah = sc->sc_ah; 3119 3120 /* NB: only at DTIM */ 3121 ATH_TXQ_LOCK(cabq); 3122 ATH_TXQ_LOCK(&avp->av_mcastq); 3123 if (nmcastq) { 3124 struct ath_buf *bfm; 3125 3126 /* 3127 * Move frames from the s/w mcast q to the h/w cab q. 3128 * XXX MORE_DATA bit 3129 */ 3130 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 3131 if (cabq->axq_link != NULL) { 3132 *cabq->axq_link = bfm->bf_daddr; 3133 } else 3134 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3135 bfm->bf_daddr); 3136 ath_txqmove(cabq, &avp->av_mcastq); 3137 3138 sc->sc_stats.ast_cabq_xmit += nmcastq; 3139 } 3140 /* NB: gated by beacon so safe to start here */ 3141 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3142 ath_hal_txstart(ah, cabq->axq_qnum); 3143 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3144 ATH_TXQ_UNLOCK(cabq); 3145 } 3146 return bf; 3147 } 3148 3149 static void 3150 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3151 { 3152 struct ath_vap *avp = ATH_VAP(vap); 3153 struct ath_hal *ah = sc->sc_ah; 3154 struct ath_buf *bf; 3155 struct mbuf *m; 3156 int error; 3157 3158 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3159 3160 /* 3161 * Update dynamic beacon contents. If this returns 3162 * non-zero then we need to remap the memory because 3163 * the beacon frame changed size (probably because 3164 * of the TIM bitmap). 3165 */ 3166 bf = avp->av_bcbuf; 3167 m = bf->bf_m; 3168 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3169 /* XXX too conservative? */ 3170 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3171 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3172 bf->bf_segs, &bf->bf_nseg, 3173 BUS_DMA_NOWAIT); 3174 if (error != 0) { 3175 if_printf(vap->iv_ifp, 3176 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3177 __func__, error); 3178 return; 3179 } 3180 } 3181 ath_beacon_setup(sc, bf); 3182 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3183 3184 /* NB: caller is known to have already stopped tx dma */ 3185 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3186 ath_hal_txstart(ah, sc->sc_bhalq); 3187 } 3188 3189 /* 3190 * Reset the hardware, with no loss. 3191 * 3192 * This can't be used for a general case reset. 3193 */ 3194 static void 3195 ath_reset_proc(void *arg, int pending) 3196 { 3197 struct ath_softc *sc = arg; 3198 struct ifnet *ifp = sc->sc_ifp; 3199 3200 #if 0 3201 if_printf(ifp, "%s: resetting\n", __func__); 3202 #endif 3203 ath_reset(ifp, ATH_RESET_NOLOSS); 3204 } 3205 3206 /* 3207 * Reset the hardware after detecting beacons have stopped. 3208 */ 3209 static void 3210 ath_bstuck_proc(void *arg, int pending) 3211 { 3212 struct ath_softc *sc = arg; 3213 struct ifnet *ifp = sc->sc_ifp; 3214 uint32_t hangs = 0; 3215 3216 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3217 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3218 3219 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3220 sc->sc_bmisscount); 3221 sc->sc_stats.ast_bstuck++; 3222 /* 3223 * This assumes that there's no simultaneous channel mode change 3224 * occuring. 3225 */ 3226 ath_reset(ifp, ATH_RESET_NOLOSS); 3227 } 3228 3229 /* 3230 * Reclaim beacon resources and return buffer to the pool. 3231 */ 3232 static void 3233 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3234 { 3235 3236 DPRINTF(sc, ATH_DEBUG_NODE, "%s: free bf=%p, bf_m=%p, bf_node=%p\n", 3237 __func__, bf, bf->bf_m, bf->bf_node); 3238 if (bf->bf_m != NULL) { 3239 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3240 m_freem(bf->bf_m); 3241 bf->bf_m = NULL; 3242 } 3243 if (bf->bf_node != NULL) { 3244 ieee80211_free_node(bf->bf_node); 3245 bf->bf_node = NULL; 3246 } 3247 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3248 } 3249 3250 /* 3251 * Reclaim beacon resources. 3252 */ 3253 static void 3254 ath_beacon_free(struct ath_softc *sc) 3255 { 3256 struct ath_buf *bf; 3257 3258 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3259 DPRINTF(sc, ATH_DEBUG_NODE, 3260 "%s: free bf=%p, bf_m=%p, bf_node=%p\n", 3261 __func__, bf, bf->bf_m, bf->bf_node); 3262 if (bf->bf_m != NULL) { 3263 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3264 m_freem(bf->bf_m); 3265 bf->bf_m = NULL; 3266 } 3267 if (bf->bf_node != NULL) { 3268 ieee80211_free_node(bf->bf_node); 3269 bf->bf_node = NULL; 3270 } 3271 } 3272 } 3273 3274 /* 3275 * Configure the beacon and sleep timers. 3276 * 3277 * When operating as an AP this resets the TSF and sets 3278 * up the hardware to notify us when we need to issue beacons. 3279 * 3280 * When operating in station mode this sets up the beacon 3281 * timers according to the timestamp of the last received 3282 * beacon and the current TSF, configures PCF and DTIM 3283 * handling, programs the sleep registers so the hardware 3284 * will wakeup in time to receive beacons, and configures 3285 * the beacon miss handling so we'll receive a BMISS 3286 * interrupt when we stop seeing beacons from the AP 3287 * we've associated with. 3288 */ 3289 static void 3290 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3291 { 3292 #define TSF_TO_TU(_h,_l) \ 3293 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3294 #define FUDGE 2 3295 struct ath_hal *ah = sc->sc_ah; 3296 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3297 struct ieee80211_node *ni; 3298 u_int32_t nexttbtt, intval, tsftu; 3299 u_int64_t tsf; 3300 3301 if (vap == NULL) 3302 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3303 ni = ieee80211_ref_node(vap->iv_bss); 3304 3305 /* extract tstamp from last beacon and convert to TU */ 3306 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3307 LE_READ_4(ni->ni_tstamp.data)); 3308 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3309 ic->ic_opmode == IEEE80211_M_MBSS) { 3310 /* 3311 * For multi-bss ap/mesh support beacons are either staggered 3312 * evenly over N slots or burst together. For the former 3313 * arrange for the SWBA to be delivered for each slot. 3314 * Slots that are not occupied will generate nothing. 3315 */ 3316 /* NB: the beacon interval is kept internally in TU's */ 3317 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3318 if (sc->sc_stagbeacons) 3319 intval /= ATH_BCBUF; 3320 } else { 3321 /* NB: the beacon interval is kept internally in TU's */ 3322 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3323 } 3324 if (nexttbtt == 0) /* e.g. for ap mode */ 3325 nexttbtt = intval; 3326 else if (intval) /* NB: can be 0 for monitor mode */ 3327 nexttbtt = roundup(nexttbtt, intval); 3328 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3329 __func__, nexttbtt, intval, ni->ni_intval); 3330 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3331 HAL_BEACON_STATE bs; 3332 int dtimperiod, dtimcount; 3333 int cfpperiod, cfpcount; 3334 3335 /* 3336 * Setup dtim and cfp parameters according to 3337 * last beacon we received (which may be none). 3338 */ 3339 dtimperiod = ni->ni_dtim_period; 3340 if (dtimperiod <= 0) /* NB: 0 if not known */ 3341 dtimperiod = 1; 3342 dtimcount = ni->ni_dtim_count; 3343 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3344 dtimcount = 0; /* XXX? */ 3345 cfpperiod = 1; /* NB: no PCF support yet */ 3346 cfpcount = 0; 3347 /* 3348 * Pull nexttbtt forward to reflect the current 3349 * TSF and calculate dtim+cfp state for the result. 3350 */ 3351 tsf = ath_hal_gettsf64(ah); 3352 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3353 do { 3354 nexttbtt += intval; 3355 if (--dtimcount < 0) { 3356 dtimcount = dtimperiod - 1; 3357 if (--cfpcount < 0) 3358 cfpcount = cfpperiod - 1; 3359 } 3360 } while (nexttbtt < tsftu); 3361 memset(&bs, 0, sizeof(bs)); 3362 bs.bs_intval = intval; 3363 bs.bs_nexttbtt = nexttbtt; 3364 bs.bs_dtimperiod = dtimperiod*intval; 3365 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3366 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3367 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3368 bs.bs_cfpmaxduration = 0; 3369 #if 0 3370 /* 3371 * The 802.11 layer records the offset to the DTIM 3372 * bitmap while receiving beacons; use it here to 3373 * enable h/w detection of our AID being marked in 3374 * the bitmap vector (to indicate frames for us are 3375 * pending at the AP). 3376 * XXX do DTIM handling in s/w to WAR old h/w bugs 3377 * XXX enable based on h/w rev for newer chips 3378 */ 3379 bs.bs_timoffset = ni->ni_timoff; 3380 #endif 3381 /* 3382 * Calculate the number of consecutive beacons to miss 3383 * before taking a BMISS interrupt. 3384 * Note that we clamp the result to at most 10 beacons. 3385 */ 3386 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3387 if (bs.bs_bmissthreshold > 10) 3388 bs.bs_bmissthreshold = 10; 3389 else if (bs.bs_bmissthreshold <= 0) 3390 bs.bs_bmissthreshold = 1; 3391 3392 /* 3393 * Calculate sleep duration. The configuration is 3394 * given in ms. We insure a multiple of the beacon 3395 * period is used. Also, if the sleep duration is 3396 * greater than the DTIM period then it makes senses 3397 * to make it a multiple of that. 3398 * 3399 * XXX fixed at 100ms 3400 */ 3401 bs.bs_sleepduration = 3402 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3403 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3404 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3405 3406 DPRINTF(sc, ATH_DEBUG_BEACON, 3407 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3408 , __func__ 3409 , tsf, tsftu 3410 , bs.bs_intval 3411 , bs.bs_nexttbtt 3412 , bs.bs_dtimperiod 3413 , bs.bs_nextdtim 3414 , bs.bs_bmissthreshold 3415 , bs.bs_sleepduration 3416 , bs.bs_cfpperiod 3417 , bs.bs_cfpmaxduration 3418 , bs.bs_cfpnext 3419 , bs.bs_timoffset 3420 ); 3421 ath_hal_intrset(ah, 0); 3422 ath_hal_beacontimers(ah, &bs); 3423 sc->sc_imask |= HAL_INT_BMISS; 3424 ath_hal_intrset(ah, sc->sc_imask); 3425 } else { 3426 ath_hal_intrset(ah, 0); 3427 if (nexttbtt == intval) 3428 intval |= HAL_BEACON_RESET_TSF; 3429 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3430 /* 3431 * In IBSS mode enable the beacon timers but only 3432 * enable SWBA interrupts if we need to manually 3433 * prepare beacon frames. Otherwise we use a 3434 * self-linked tx descriptor and let the hardware 3435 * deal with things. 3436 */ 3437 intval |= HAL_BEACON_ENA; 3438 if (!sc->sc_hasveol) 3439 sc->sc_imask |= HAL_INT_SWBA; 3440 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3441 /* 3442 * Pull nexttbtt forward to reflect 3443 * the current TSF. 3444 */ 3445 tsf = ath_hal_gettsf64(ah); 3446 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3447 do { 3448 nexttbtt += intval; 3449 } while (nexttbtt < tsftu); 3450 } 3451 ath_beaconq_config(sc); 3452 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3453 ic->ic_opmode == IEEE80211_M_MBSS) { 3454 /* 3455 * In AP/mesh mode we enable the beacon timers 3456 * and SWBA interrupts to prepare beacon frames. 3457 */ 3458 intval |= HAL_BEACON_ENA; 3459 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3460 ath_beaconq_config(sc); 3461 } 3462 ath_hal_beaconinit(ah, nexttbtt, intval); 3463 sc->sc_bmisscount = 0; 3464 ath_hal_intrset(ah, sc->sc_imask); 3465 /* 3466 * When using a self-linked beacon descriptor in 3467 * ibss mode load it once here. 3468 */ 3469 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3470 ath_beacon_start_adhoc(sc, vap); 3471 } 3472 sc->sc_syncbeacon = 0; 3473 ieee80211_free_node(ni); 3474 #undef FUDGE 3475 #undef TSF_TO_TU 3476 } 3477 3478 static void 3479 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3480 { 3481 bus_addr_t *paddr = (bus_addr_t*) arg; 3482 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3483 *paddr = segs->ds_addr; 3484 } 3485 3486 static int 3487 ath_descdma_setup(struct ath_softc *sc, 3488 struct ath_descdma *dd, ath_bufhead *head, 3489 const char *name, int nbuf, int ndesc) 3490 { 3491 #define DS2PHYS(_dd, _ds) \ 3492 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3493 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3494 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3495 struct ifnet *ifp = sc->sc_ifp; 3496 uint8_t *ds; 3497 struct ath_buf *bf; 3498 int i, bsize, error; 3499 int desc_len; 3500 3501 desc_len = sizeof(struct ath_desc); 3502 3503 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3504 __func__, name, nbuf, ndesc); 3505 3506 dd->dd_name = name; 3507 dd->dd_desc_len = desc_len * nbuf * ndesc; 3508 3509 /* 3510 * Merlin work-around: 3511 * Descriptors that cross the 4KB boundary can't be used. 3512 * Assume one skipped descriptor per 4KB page. 3513 */ 3514 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3515 int numdescpage = 4096 / (desc_len * ndesc); 3516 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3517 } 3518 3519 /* 3520 * Setup DMA descriptor area. 3521 */ 3522 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3523 PAGE_SIZE, 0, /* alignment, bounds */ 3524 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3525 BUS_SPACE_MAXADDR, /* highaddr */ 3526 NULL, NULL, /* filter, filterarg */ 3527 dd->dd_desc_len, /* maxsize */ 3528 1, /* nsegments */ 3529 dd->dd_desc_len, /* maxsegsize */ 3530 BUS_DMA_ALLOCNOW, /* flags */ 3531 NULL, /* lockfunc */ 3532 NULL, /* lockarg */ 3533 &dd->dd_dmat); 3534 if (error != 0) { 3535 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3536 return error; 3537 } 3538 3539 /* allocate descriptors */ 3540 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3541 if (error != 0) { 3542 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3543 "error %u\n", dd->dd_name, error); 3544 goto fail0; 3545 } 3546 3547 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3548 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3549 &dd->dd_dmamap); 3550 if (error != 0) { 3551 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3552 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3553 goto fail1; 3554 } 3555 3556 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3557 dd->dd_desc, dd->dd_desc_len, 3558 ath_load_cb, &dd->dd_desc_paddr, 3559 BUS_DMA_NOWAIT); 3560 if (error != 0) { 3561 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3562 dd->dd_name, error); 3563 goto fail2; 3564 } 3565 3566 ds = (uint8_t *) dd->dd_desc; 3567 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3568 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3569 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3570 3571 /* allocate rx buffers */ 3572 bsize = sizeof(struct ath_buf) * nbuf; 3573 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3574 if (bf == NULL) { 3575 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3576 dd->dd_name, bsize); 3577 goto fail3; 3578 } 3579 dd->dd_bufptr = bf; 3580 3581 TAILQ_INIT(head); 3582 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3583 bf->bf_desc = (struct ath_desc *) ds; 3584 bf->bf_daddr = DS2PHYS(dd, ds); 3585 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3586 /* 3587 * Merlin WAR: Skip descriptor addresses which 3588 * cause 4KB boundary crossing along any point 3589 * in the descriptor. 3590 */ 3591 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3592 desc_len * ndesc)) { 3593 /* Start at the next page */ 3594 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3595 bf->bf_desc = (struct ath_desc *) ds; 3596 bf->bf_daddr = DS2PHYS(dd, ds); 3597 } 3598 } 3599 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3600 &bf->bf_dmamap); 3601 if (error != 0) { 3602 if_printf(ifp, "unable to create dmamap for %s " 3603 "buffer %u, error %u\n", dd->dd_name, i, error); 3604 ath_descdma_cleanup(sc, dd, head); 3605 return error; 3606 } 3607 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3608 TAILQ_INSERT_TAIL(head, bf, bf_list); 3609 } 3610 return 0; 3611 fail3: 3612 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3613 fail2: 3614 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3615 fail1: 3616 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3617 fail0: 3618 bus_dma_tag_destroy(dd->dd_dmat); 3619 memset(dd, 0, sizeof(*dd)); 3620 return error; 3621 #undef DS2PHYS 3622 #undef ATH_DESC_4KB_BOUND_CHECK 3623 } 3624 3625 static void 3626 ath_descdma_cleanup(struct ath_softc *sc, 3627 struct ath_descdma *dd, ath_bufhead *head) 3628 { 3629 struct ath_buf *bf; 3630 struct ieee80211_node *ni; 3631 3632 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3633 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3634 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3635 bus_dma_tag_destroy(dd->dd_dmat); 3636 3637 TAILQ_FOREACH(bf, head, bf_list) { 3638 if (bf->bf_m) { 3639 m_freem(bf->bf_m); 3640 bf->bf_m = NULL; 3641 } 3642 if (bf->bf_dmamap != NULL) { 3643 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3644 bf->bf_dmamap = NULL; 3645 } 3646 ni = bf->bf_node; 3647 bf->bf_node = NULL; 3648 if (ni != NULL) { 3649 /* 3650 * Reclaim node reference. 3651 */ 3652 ieee80211_free_node(ni); 3653 } 3654 } 3655 3656 TAILQ_INIT(head); 3657 free(dd->dd_bufptr, M_ATHDEV); 3658 memset(dd, 0, sizeof(*dd)); 3659 } 3660 3661 static int 3662 ath_desc_alloc(struct ath_softc *sc) 3663 { 3664 int error; 3665 3666 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3667 "rx", ath_rxbuf, 1); 3668 if (error != 0) 3669 return error; 3670 3671 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3672 "tx", ath_txbuf, ATH_TXDESC); 3673 if (error != 0) { 3674 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3675 return error; 3676 } 3677 3678 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3679 "beacon", ATH_BCBUF, 1); 3680 if (error != 0) { 3681 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3682 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3683 return error; 3684 } 3685 return 0; 3686 } 3687 3688 static void 3689 ath_desc_free(struct ath_softc *sc) 3690 { 3691 3692 if (sc->sc_bdma.dd_desc_len != 0) 3693 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3694 if (sc->sc_txdma.dd_desc_len != 0) 3695 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3696 if (sc->sc_rxdma.dd_desc_len != 0) 3697 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3698 } 3699 3700 static struct ieee80211_node * 3701 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3702 { 3703 struct ieee80211com *ic = vap->iv_ic; 3704 struct ath_softc *sc = ic->ic_ifp->if_softc; 3705 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3706 struct ath_node *an; 3707 3708 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3709 if (an == NULL) { 3710 /* XXX stat+msg */ 3711 return NULL; 3712 } 3713 ath_rate_node_init(sc, an); 3714 3715 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3716 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3717 device_get_nameunit(sc->sc_dev), an); 3718 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3719 3720 /* XXX setup ath_tid */ 3721 ath_tx_tid_init(sc, an); 3722 3723 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3724 return &an->an_node; 3725 } 3726 3727 static void 3728 ath_node_cleanup(struct ieee80211_node *ni) 3729 { 3730 struct ieee80211com *ic = ni->ni_ic; 3731 struct ath_softc *sc = ic->ic_ifp->if_softc; 3732 3733 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3734 ath_tx_node_flush(sc, ATH_NODE(ni)); 3735 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3736 sc->sc_node_cleanup(ni); 3737 } 3738 3739 static void 3740 ath_node_free(struct ieee80211_node *ni) 3741 { 3742 struct ieee80211com *ic = ni->ni_ic; 3743 struct ath_softc *sc = ic->ic_ifp->if_softc; 3744 3745 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3746 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3747 sc->sc_node_free(ni); 3748 } 3749 3750 static void 3751 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3752 { 3753 struct ieee80211com *ic = ni->ni_ic; 3754 struct ath_softc *sc = ic->ic_ifp->if_softc; 3755 struct ath_hal *ah = sc->sc_ah; 3756 3757 *rssi = ic->ic_node_getrssi(ni); 3758 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3759 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3760 else 3761 *noise = -95; /* nominally correct */ 3762 } 3763 3764 static int 3765 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3766 { 3767 struct ath_hal *ah = sc->sc_ah; 3768 int error; 3769 struct mbuf *m; 3770 struct ath_desc *ds; 3771 3772 m = bf->bf_m; 3773 if (m == NULL) { 3774 /* 3775 * NB: by assigning a page to the rx dma buffer we 3776 * implicitly satisfy the Atheros requirement that 3777 * this buffer be cache-line-aligned and sized to be 3778 * multiple of the cache line size. Not doing this 3779 * causes weird stuff to happen (for the 5210 at least). 3780 */ 3781 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3782 if (m == NULL) { 3783 DPRINTF(sc, ATH_DEBUG_ANY, 3784 "%s: no mbuf/cluster\n", __func__); 3785 sc->sc_stats.ast_rx_nombuf++; 3786 return ENOMEM; 3787 } 3788 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3789 3790 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3791 bf->bf_dmamap, m, 3792 bf->bf_segs, &bf->bf_nseg, 3793 BUS_DMA_NOWAIT); 3794 if (error != 0) { 3795 DPRINTF(sc, ATH_DEBUG_ANY, 3796 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3797 __func__, error); 3798 sc->sc_stats.ast_rx_busdma++; 3799 m_freem(m); 3800 return error; 3801 } 3802 KASSERT(bf->bf_nseg == 1, 3803 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3804 bf->bf_m = m; 3805 } 3806 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3807 3808 /* 3809 * Setup descriptors. For receive we always terminate 3810 * the descriptor list with a self-linked entry so we'll 3811 * not get overrun under high load (as can happen with a 3812 * 5212 when ANI processing enables PHY error frames). 3813 * 3814 * To insure the last descriptor is self-linked we create 3815 * each descriptor as self-linked and add it to the end. As 3816 * each additional descriptor is added the previous self-linked 3817 * entry is ``fixed'' naturally. This should be safe even 3818 * if DMA is happening. When processing RX interrupts we 3819 * never remove/process the last, self-linked, entry on the 3820 * descriptor list. This insures the hardware always has 3821 * someplace to write a new frame. 3822 */ 3823 /* 3824 * 11N: we can no longer afford to self link the last descriptor. 3825 * MAC acknowledges BA status as long as it copies frames to host 3826 * buffer (or rx fifo). This can incorrectly acknowledge packets 3827 * to a sender if last desc is self-linked. 3828 */ 3829 ds = bf->bf_desc; 3830 if (sc->sc_rxslink) 3831 ds->ds_link = bf->bf_daddr; /* link to self */ 3832 else 3833 ds->ds_link = 0; /* terminate the list */ 3834 ds->ds_data = bf->bf_segs[0].ds_addr; 3835 ath_hal_setuprxdesc(ah, ds 3836 , m->m_len /* buffer size */ 3837 , 0 3838 ); 3839 3840 if (sc->sc_rxlink != NULL) 3841 *sc->sc_rxlink = bf->bf_daddr; 3842 sc->sc_rxlink = &ds->ds_link; 3843 return 0; 3844 } 3845 3846 /* 3847 * Extend 15-bit time stamp from rx descriptor to 3848 * a full 64-bit TSF using the specified TSF. 3849 */ 3850 static __inline u_int64_t 3851 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3852 { 3853 if ((tsf & 0x7fff) < rstamp) 3854 tsf -= 0x8000; 3855 3856 return ((tsf &~ 0x7fff) | rstamp); 3857 } 3858 3859 /* 3860 * Extend 32-bit time stamp from rx descriptor to 3861 * a full 64-bit TSF using the specified TSF. 3862 */ 3863 static __inline u_int64_t 3864 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3865 { 3866 u_int32_t tsf_low = tsf & 0xffffffff; 3867 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3868 3869 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3870 tsf64 -= 0x100000000ULL; 3871 3872 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3873 tsf64 += 0x100000000ULL; 3874 3875 return tsf64; 3876 } 3877 3878 /* 3879 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3880 * Earlier hardware versions only wrote the low 15 bits of the 3881 * TSF into the RX descriptor; later versions (AR5416 and up) 3882 * include the 32 bit TSF value. 3883 */ 3884 static __inline u_int64_t 3885 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3886 { 3887 if (sc->sc_rxtsf32) 3888 return ath_extend_tsf32(rstamp, tsf); 3889 else 3890 return ath_extend_tsf15(rstamp, tsf); 3891 } 3892 3893 /* 3894 * Intercept management frames to collect beacon rssi data 3895 * and to do ibss merges. 3896 */ 3897 static void 3898 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3899 int subtype, int rssi, int nf) 3900 { 3901 struct ieee80211vap *vap = ni->ni_vap; 3902 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3903 3904 /* 3905 * Call up first so subsequent work can use information 3906 * potentially stored in the node (e.g. for ibss merge). 3907 */ 3908 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3909 switch (subtype) { 3910 case IEEE80211_FC0_SUBTYPE_BEACON: 3911 /* update rssi statistics for use by the hal */ 3912 /* XXX unlocked check against vap->iv_bss? */ 3913 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3914 if (sc->sc_syncbeacon && 3915 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3916 /* 3917 * Resync beacon timers using the tsf of the beacon 3918 * frame we just received. 3919 */ 3920 ath_beacon_config(sc, vap); 3921 } 3922 /* fall thru... */ 3923 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3924 if (vap->iv_opmode == IEEE80211_M_IBSS && 3925 vap->iv_state == IEEE80211_S_RUN) { 3926 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3927 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3928 ath_hal_gettsf64(sc->sc_ah)); 3929 /* 3930 * Handle ibss merge as needed; check the tsf on the 3931 * frame before attempting the merge. The 802.11 spec 3932 * says the station should change it's bssid to match 3933 * the oldest station with the same ssid, where oldest 3934 * is determined by the tsf. Note that hardware 3935 * reconfiguration happens through callback to 3936 * ath_newstate as the state machine will go from 3937 * RUN -> RUN when this happens. 3938 */ 3939 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3940 DPRINTF(sc, ATH_DEBUG_STATE, 3941 "ibss merge, rstamp %u tsf %ju " 3942 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3943 (uintmax_t)ni->ni_tstamp.tsf); 3944 (void) ieee80211_ibss_merge(ni); 3945 } 3946 } 3947 break; 3948 } 3949 } 3950 3951 /* 3952 * Set the default antenna. 3953 */ 3954 static void 3955 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3956 { 3957 struct ath_hal *ah = sc->sc_ah; 3958 3959 /* XXX block beacon interrupts */ 3960 ath_hal_setdefantenna(ah, antenna); 3961 if (sc->sc_defant != antenna) 3962 sc->sc_stats.ast_ant_defswitch++; 3963 sc->sc_defant = antenna; 3964 sc->sc_rxotherant = 0; 3965 } 3966 3967 static void 3968 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3969 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3970 { 3971 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3972 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3973 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3974 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3975 struct ath_softc *sc = ifp->if_softc; 3976 const HAL_RATE_TABLE *rt; 3977 uint8_t rix; 3978 3979 rt = sc->sc_currates; 3980 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3981 rix = rt->rateCodeToIndex[rs->rs_rate]; 3982 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3983 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3984 #ifdef AH_SUPPORT_AR5416 3985 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3986 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3987 struct ieee80211com *ic = ifp->if_l2com; 3988 3989 if ((rs->rs_flags & HAL_RX_2040) == 0) 3990 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3991 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3992 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3993 else 3994 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3995 if ((rs->rs_flags & HAL_RX_GI) == 0) 3996 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3997 } 3998 #endif 3999 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 4000 if (rs->rs_status & HAL_RXERR_CRC) 4001 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 4002 /* XXX propagate other error flags from descriptor */ 4003 sc->sc_rx_th.wr_antnoise = nf; 4004 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 4005 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 4006 #undef CHAN_HT 4007 #undef CHAN_HT20 4008 #undef CHAN_HT40U 4009 #undef CHAN_HT40D 4010 } 4011 4012 static void 4013 ath_handle_micerror(struct ieee80211com *ic, 4014 struct ieee80211_frame *wh, int keyix) 4015 { 4016 struct ieee80211_node *ni; 4017 4018 /* XXX recheck MIC to deal w/ chips that lie */ 4019 /* XXX discard MIC errors on !data frames */ 4020 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 4021 if (ni != NULL) { 4022 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 4023 ieee80211_free_node(ni); 4024 } 4025 } 4026 4027 /* 4028 * Only run the RX proc if it's not already running. 4029 * Since this may get run as part of the reset/flush path, 4030 * the task can't clash with an existing, running tasklet. 4031 */ 4032 static void 4033 ath_rx_tasklet(void *arg, int npending) 4034 { 4035 struct ath_softc *sc = arg; 4036 4037 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 4038 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 4039 ATH_PCU_LOCK(sc); 4040 if (sc->sc_inreset_cnt > 0) { 4041 device_printf(sc->sc_dev, 4042 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4043 ATH_PCU_UNLOCK(sc); 4044 return; 4045 } 4046 ATH_PCU_UNLOCK(sc); 4047 ath_rx_proc(sc, 1); 4048 } 4049 4050 static void 4051 ath_rx_proc(struct ath_softc *sc, int resched) 4052 { 4053 #define PA2DESC(_sc, _pa) \ 4054 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4055 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4056 struct ath_buf *bf; 4057 struct ifnet *ifp = sc->sc_ifp; 4058 struct ieee80211com *ic = ifp->if_l2com; 4059 struct ath_hal *ah = sc->sc_ah; 4060 struct ath_desc *ds; 4061 struct ath_rx_status *rs; 4062 struct mbuf *m; 4063 struct ieee80211_node *ni; 4064 int len, type, ngood; 4065 HAL_STATUS status; 4066 int16_t nf; 4067 u_int64_t tsf, rstamp; 4068 int npkts = 0; 4069 4070 /* XXX we must not hold the ATH_LOCK here */ 4071 ATH_UNLOCK_ASSERT(sc); 4072 ATH_PCU_UNLOCK_ASSERT(sc); 4073 4074 ATH_PCU_LOCK(sc); 4075 sc->sc_rxproc_cnt++; 4076 ATH_PCU_UNLOCK(sc); 4077 4078 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 4079 ngood = 0; 4080 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 4081 sc->sc_stats.ast_rx_noise = nf; 4082 tsf = ath_hal_gettsf64(ah); 4083 do { 4084 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4085 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 4086 if_printf(ifp, "%s: no buffer!\n", __func__); 4087 break; 4088 } else if (bf == NULL) { 4089 /* 4090 * End of List: 4091 * this can happen for non-self-linked RX chains 4092 */ 4093 sc->sc_stats.ast_rx_hitqueueend++; 4094 break; 4095 } 4096 m = bf->bf_m; 4097 if (m == NULL) { /* NB: shouldn't happen */ 4098 /* 4099 * If mbuf allocation failed previously there 4100 * will be no mbuf; try again to re-populate it. 4101 */ 4102 /* XXX make debug msg */ 4103 if_printf(ifp, "%s: no mbuf!\n", __func__); 4104 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4105 goto rx_next; 4106 } 4107 ds = bf->bf_desc; 4108 if (ds->ds_link == bf->bf_daddr) { 4109 /* NB: never process the self-linked entry at the end */ 4110 sc->sc_stats.ast_rx_hitqueueend++; 4111 break; 4112 } 4113 /* XXX sync descriptor memory */ 4114 /* 4115 * Must provide the virtual address of the current 4116 * descriptor, the physical address, and the virtual 4117 * address of the next descriptor in the h/w chain. 4118 * This allows the HAL to look ahead to see if the 4119 * hardware is done with a descriptor by checking the 4120 * done bit in the following descriptor and the address 4121 * of the current descriptor the DMA engine is working 4122 * on. All this is necessary because of our use of 4123 * a self-linked list to avoid rx overruns. 4124 */ 4125 rs = &bf->bf_status.ds_rxstat; 4126 status = ath_hal_rxprocdesc(ah, ds, 4127 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4128 #ifdef ATH_DEBUG 4129 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4130 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4131 #endif 4132 if (status == HAL_EINPROGRESS) 4133 break; 4134 4135 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4136 npkts++; 4137 4138 /* 4139 * Calculate the correct 64 bit TSF given 4140 * the TSF64 register value and rs_tstamp. 4141 */ 4142 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 4143 4144 /* These aren't specifically errors */ 4145 #ifdef AH_SUPPORT_AR5416 4146 if (rs->rs_flags & HAL_RX_GI) 4147 sc->sc_stats.ast_rx_halfgi++; 4148 if (rs->rs_flags & HAL_RX_2040) 4149 sc->sc_stats.ast_rx_2040++; 4150 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 4151 sc->sc_stats.ast_rx_pre_crc_err++; 4152 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 4153 sc->sc_stats.ast_rx_post_crc_err++; 4154 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 4155 sc->sc_stats.ast_rx_decrypt_busy_err++; 4156 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 4157 sc->sc_stats.ast_rx_hi_rx_chain++; 4158 #endif /* AH_SUPPORT_AR5416 */ 4159 4160 if (rs->rs_status != 0) { 4161 if (rs->rs_status & HAL_RXERR_CRC) 4162 sc->sc_stats.ast_rx_crcerr++; 4163 if (rs->rs_status & HAL_RXERR_FIFO) 4164 sc->sc_stats.ast_rx_fifoerr++; 4165 if (rs->rs_status & HAL_RXERR_PHY) { 4166 sc->sc_stats.ast_rx_phyerr++; 4167 /* Process DFS radar events */ 4168 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 4169 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 4170 /* Since we're touching the frame data, sync it */ 4171 bus_dmamap_sync(sc->sc_dmat, 4172 bf->bf_dmamap, 4173 BUS_DMASYNC_POSTREAD); 4174 /* Now pass it to the radar processing code */ 4175 ath_dfs_process_phy_err(sc, mtod(m, char *), rstamp, rs); 4176 } 4177 4178 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4179 if (rs->rs_phyerr < 64) 4180 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4181 goto rx_error; /* NB: don't count in ierrors */ 4182 } 4183 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4184 /* 4185 * Decrypt error. If the error occurred 4186 * because there was no hardware key, then 4187 * let the frame through so the upper layers 4188 * can process it. This is necessary for 5210 4189 * parts which have no way to setup a ``clear'' 4190 * key cache entry. 4191 * 4192 * XXX do key cache faulting 4193 */ 4194 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4195 goto rx_accept; 4196 sc->sc_stats.ast_rx_badcrypt++; 4197 } 4198 if (rs->rs_status & HAL_RXERR_MIC) { 4199 sc->sc_stats.ast_rx_badmic++; 4200 /* 4201 * Do minimal work required to hand off 4202 * the 802.11 header for notification. 4203 */ 4204 /* XXX frag's and qos frames */ 4205 len = rs->rs_datalen; 4206 if (len >= sizeof (struct ieee80211_frame)) { 4207 bus_dmamap_sync(sc->sc_dmat, 4208 bf->bf_dmamap, 4209 BUS_DMASYNC_POSTREAD); 4210 ath_handle_micerror(ic, 4211 mtod(m, struct ieee80211_frame *), 4212 sc->sc_splitmic ? 4213 rs->rs_keyix-32 : rs->rs_keyix); 4214 } 4215 } 4216 ifp->if_ierrors++; 4217 rx_error: 4218 /* 4219 * Cleanup any pending partial frame. 4220 */ 4221 if (sc->sc_rxpending != NULL) { 4222 m_freem(sc->sc_rxpending); 4223 sc->sc_rxpending = NULL; 4224 } 4225 /* 4226 * When a tap is present pass error frames 4227 * that have been requested. By default we 4228 * pass decrypt+mic errors but others may be 4229 * interesting (e.g. crc). 4230 */ 4231 if (ieee80211_radiotap_active(ic) && 4232 (rs->rs_status & sc->sc_monpass)) { 4233 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4234 BUS_DMASYNC_POSTREAD); 4235 /* NB: bpf needs the mbuf length setup */ 4236 len = rs->rs_datalen; 4237 m->m_pkthdr.len = m->m_len = len; 4238 bf->bf_m = NULL; 4239 ath_rx_tap(ifp, m, rs, rstamp, nf); 4240 ieee80211_radiotap_rx_all(ic, m); 4241 m_freem(m); 4242 } 4243 /* XXX pass MIC errors up for s/w reclaculation */ 4244 goto rx_next; 4245 } 4246 rx_accept: 4247 /* 4248 * Sync and unmap the frame. At this point we're 4249 * committed to passing the mbuf somewhere so clear 4250 * bf_m; this means a new mbuf must be allocated 4251 * when the rx descriptor is setup again to receive 4252 * another frame. 4253 */ 4254 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4255 BUS_DMASYNC_POSTREAD); 4256 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4257 bf->bf_m = NULL; 4258 4259 len = rs->rs_datalen; 4260 m->m_len = len; 4261 4262 if (rs->rs_more) { 4263 /* 4264 * Frame spans multiple descriptors; save 4265 * it for the next completed descriptor, it 4266 * will be used to construct a jumbogram. 4267 */ 4268 if (sc->sc_rxpending != NULL) { 4269 /* NB: max frame size is currently 2 clusters */ 4270 sc->sc_stats.ast_rx_toobig++; 4271 m_freem(sc->sc_rxpending); 4272 } 4273 m->m_pkthdr.rcvif = ifp; 4274 m->m_pkthdr.len = len; 4275 sc->sc_rxpending = m; 4276 goto rx_next; 4277 } else if (sc->sc_rxpending != NULL) { 4278 /* 4279 * This is the second part of a jumbogram, 4280 * chain it to the first mbuf, adjust the 4281 * frame length, and clear the rxpending state. 4282 */ 4283 sc->sc_rxpending->m_next = m; 4284 sc->sc_rxpending->m_pkthdr.len += len; 4285 m = sc->sc_rxpending; 4286 sc->sc_rxpending = NULL; 4287 } else { 4288 /* 4289 * Normal single-descriptor receive; setup 4290 * the rcvif and packet length. 4291 */ 4292 m->m_pkthdr.rcvif = ifp; 4293 m->m_pkthdr.len = len; 4294 } 4295 4296 /* 4297 * Validate rs->rs_antenna. 4298 * 4299 * Some users w/ AR9285 NICs have reported crashes 4300 * here because rs_antenna field is bogusly large. 4301 * Let's enforce the maximum antenna limit of 8 4302 * (and it shouldn't be hard coded, but that's a 4303 * separate problem) and if there's an issue, print 4304 * out an error and adjust rs_antenna to something 4305 * sensible. 4306 * 4307 * This code should be removed once the actual 4308 * root cause of the issue has been identified. 4309 * For example, it may be that the rs_antenna 4310 * field is only valid for the lsat frame of 4311 * an aggregate and it just happens that it is 4312 * "mostly" right. (This is a general statement - 4313 * the majority of the statistics are only valid 4314 * for the last frame in an aggregate. 4315 */ 4316 if (rs->rs_antenna > 7) { 4317 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 4318 __func__, rs->rs_antenna); 4319 #ifdef ATH_DEBUG 4320 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4321 #endif /* ATH_DEBUG */ 4322 rs->rs_antenna = 0; /* XXX better than nothing */ 4323 } 4324 4325 ifp->if_ipackets++; 4326 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4327 4328 /* 4329 * Populate the rx status block. When there are bpf 4330 * listeners we do the additional work to provide 4331 * complete status. Otherwise we fill in only the 4332 * material required by ieee80211_input. Note that 4333 * noise setting is filled in above. 4334 */ 4335 if (ieee80211_radiotap_active(ic)) 4336 ath_rx_tap(ifp, m, rs, rstamp, nf); 4337 4338 /* 4339 * From this point on we assume the frame is at least 4340 * as large as ieee80211_frame_min; verify that. 4341 */ 4342 if (len < IEEE80211_MIN_LEN) { 4343 if (!ieee80211_radiotap_active(ic)) { 4344 DPRINTF(sc, ATH_DEBUG_RECV, 4345 "%s: short packet %d\n", __func__, len); 4346 sc->sc_stats.ast_rx_tooshort++; 4347 } else { 4348 /* NB: in particular this captures ack's */ 4349 ieee80211_radiotap_rx_all(ic, m); 4350 } 4351 m_freem(m); 4352 goto rx_next; 4353 } 4354 4355 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4356 const HAL_RATE_TABLE *rt = sc->sc_currates; 4357 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4358 4359 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4360 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4361 } 4362 4363 m_adj(m, -IEEE80211_CRC_LEN); 4364 4365 /* 4366 * Locate the node for sender, track state, and then 4367 * pass the (referenced) node up to the 802.11 layer 4368 * for its use. 4369 */ 4370 ni = ieee80211_find_rxnode_withkey(ic, 4371 mtod(m, const struct ieee80211_frame_min *), 4372 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4373 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4374 sc->sc_lastrs = rs; 4375 4376 #ifdef AH_SUPPORT_AR5416 4377 if (rs->rs_isaggr) 4378 sc->sc_stats.ast_rx_agg++; 4379 #endif /* AH_SUPPORT_AR5416 */ 4380 4381 if (ni != NULL) { 4382 /* 4383 * Only punt packets for ampdu reorder processing for 4384 * 11n nodes; net80211 enforces that M_AMPDU is only 4385 * set for 11n nodes. 4386 */ 4387 if (ni->ni_flags & IEEE80211_NODE_HT) 4388 m->m_flags |= M_AMPDU; 4389 4390 /* 4391 * Sending station is known, dispatch directly. 4392 */ 4393 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4394 ieee80211_free_node(ni); 4395 /* 4396 * Arrange to update the last rx timestamp only for 4397 * frames from our ap when operating in station mode. 4398 * This assumes the rx key is always setup when 4399 * associated. 4400 */ 4401 if (ic->ic_opmode == IEEE80211_M_STA && 4402 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4403 ngood++; 4404 } else { 4405 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4406 } 4407 /* 4408 * Track rx rssi and do any rx antenna management. 4409 */ 4410 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4411 if (sc->sc_diversity) { 4412 /* 4413 * When using fast diversity, change the default rx 4414 * antenna if diversity chooses the other antenna 3 4415 * times in a row. 4416 */ 4417 if (sc->sc_defant != rs->rs_antenna) { 4418 if (++sc->sc_rxotherant >= 3) 4419 ath_setdefantenna(sc, rs->rs_antenna); 4420 } else 4421 sc->sc_rxotherant = 0; 4422 } 4423 4424 /* Newer school diversity - kite specific for now */ 4425 /* XXX perhaps migrate the normal diversity code to this? */ 4426 if ((ah)->ah_rxAntCombDiversity) 4427 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4428 4429 if (sc->sc_softled) { 4430 /* 4431 * Blink for any data frame. Otherwise do a 4432 * heartbeat-style blink when idle. The latter 4433 * is mainly for station mode where we depend on 4434 * periodic beacon frames to trigger the poll event. 4435 */ 4436 if (type == IEEE80211_FC0_TYPE_DATA) { 4437 const HAL_RATE_TABLE *rt = sc->sc_currates; 4438 ath_led_event(sc, 4439 rt->rateCodeToIndex[rs->rs_rate]); 4440 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4441 ath_led_event(sc, 0); 4442 } 4443 rx_next: 4444 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4445 } while (ath_rxbuf_init(sc, bf) == 0); 4446 4447 /* rx signal state monitoring */ 4448 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4449 if (ngood) 4450 sc->sc_lastrx = tsf; 4451 4452 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4453 /* Queue DFS tasklet if needed */ 4454 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4455 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4456 4457 /* 4458 * Now that all the RX frames were handled that 4459 * need to be handled, kick the PCU if there's 4460 * been an RXEOL condition. 4461 */ 4462 ATH_PCU_LOCK(sc); 4463 if (resched && sc->sc_kickpcu) { 4464 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4465 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4466 __func__, npkts); 4467 4468 /* XXX rxslink? */ 4469 /* 4470 * XXX can we hold the PCU lock here? 4471 * Are there any net80211 buffer calls involved? 4472 */ 4473 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4474 ath_hal_putrxbuf(ah, bf->bf_daddr); 4475 ath_hal_rxena(ah); /* enable recv descriptors */ 4476 ath_mode_init(sc); /* set filters, etc. */ 4477 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4478 4479 ath_hal_intrset(ah, sc->sc_imask); 4480 sc->sc_kickpcu = 0; 4481 } 4482 ATH_PCU_UNLOCK(sc); 4483 4484 /* XXX check this inside of IF_LOCK? */ 4485 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4486 #ifdef IEEE80211_SUPPORT_SUPERG 4487 ieee80211_ff_age_all(ic, 100); 4488 #endif 4489 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4490 ath_start(ifp); 4491 } 4492 #undef PA2DESC 4493 4494 ATH_PCU_LOCK(sc); 4495 sc->sc_rxproc_cnt--; 4496 ATH_PCU_UNLOCK(sc); 4497 } 4498 4499 static void 4500 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4501 { 4502 txq->axq_qnum = qnum; 4503 txq->axq_ac = 0; 4504 txq->axq_depth = 0; 4505 txq->axq_aggr_depth = 0; 4506 txq->axq_intrcnt = 0; 4507 txq->axq_link = NULL; 4508 txq->axq_softc = sc; 4509 TAILQ_INIT(&txq->axq_q); 4510 TAILQ_INIT(&txq->axq_tidq); 4511 ATH_TXQ_LOCK_INIT(sc, txq); 4512 } 4513 4514 /* 4515 * Setup a h/w transmit queue. 4516 */ 4517 static struct ath_txq * 4518 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4519 { 4520 #define N(a) (sizeof(a)/sizeof(a[0])) 4521 struct ath_hal *ah = sc->sc_ah; 4522 HAL_TXQ_INFO qi; 4523 int qnum; 4524 4525 memset(&qi, 0, sizeof(qi)); 4526 qi.tqi_subtype = subtype; 4527 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4528 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4529 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4530 /* 4531 * Enable interrupts only for EOL and DESC conditions. 4532 * We mark tx descriptors to receive a DESC interrupt 4533 * when a tx queue gets deep; otherwise waiting for the 4534 * EOL to reap descriptors. Note that this is done to 4535 * reduce interrupt load and this only defers reaping 4536 * descriptors, never transmitting frames. Aside from 4537 * reducing interrupts this also permits more concurrency. 4538 * The only potential downside is if the tx queue backs 4539 * up in which case the top half of the kernel may backup 4540 * due to a lack of tx descriptors. 4541 */ 4542 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4543 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4544 if (qnum == -1) { 4545 /* 4546 * NB: don't print a message, this happens 4547 * normally on parts with too few tx queues 4548 */ 4549 return NULL; 4550 } 4551 if (qnum >= N(sc->sc_txq)) { 4552 device_printf(sc->sc_dev, 4553 "hal qnum %u out of range, max %zu!\n", 4554 qnum, N(sc->sc_txq)); 4555 ath_hal_releasetxqueue(ah, qnum); 4556 return NULL; 4557 } 4558 if (!ATH_TXQ_SETUP(sc, qnum)) { 4559 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4560 sc->sc_txqsetup |= 1<<qnum; 4561 } 4562 return &sc->sc_txq[qnum]; 4563 #undef N 4564 } 4565 4566 /* 4567 * Setup a hardware data transmit queue for the specified 4568 * access control. The hal may not support all requested 4569 * queues in which case it will return a reference to a 4570 * previously setup queue. We record the mapping from ac's 4571 * to h/w queues for use by ath_tx_start and also track 4572 * the set of h/w queues being used to optimize work in the 4573 * transmit interrupt handler and related routines. 4574 */ 4575 static int 4576 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4577 { 4578 #define N(a) (sizeof(a)/sizeof(a[0])) 4579 struct ath_txq *txq; 4580 4581 if (ac >= N(sc->sc_ac2q)) { 4582 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4583 ac, N(sc->sc_ac2q)); 4584 return 0; 4585 } 4586 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4587 if (txq != NULL) { 4588 txq->axq_ac = ac; 4589 sc->sc_ac2q[ac] = txq; 4590 return 1; 4591 } else 4592 return 0; 4593 #undef N 4594 } 4595 4596 /* 4597 * Update WME parameters for a transmit queue. 4598 */ 4599 static int 4600 ath_txq_update(struct ath_softc *sc, int ac) 4601 { 4602 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4603 #define ATH_TXOP_TO_US(v) (v<<5) 4604 struct ifnet *ifp = sc->sc_ifp; 4605 struct ieee80211com *ic = ifp->if_l2com; 4606 struct ath_txq *txq = sc->sc_ac2q[ac]; 4607 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4608 struct ath_hal *ah = sc->sc_ah; 4609 HAL_TXQ_INFO qi; 4610 4611 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4612 #ifdef IEEE80211_SUPPORT_TDMA 4613 if (sc->sc_tdma) { 4614 /* 4615 * AIFS is zero so there's no pre-transmit wait. The 4616 * burst time defines the slot duration and is configured 4617 * through net80211. The QCU is setup to not do post-xmit 4618 * back off, lockout all lower-priority QCU's, and fire 4619 * off the DMA beacon alert timer which is setup based 4620 * on the slot configuration. 4621 */ 4622 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4623 | HAL_TXQ_TXERRINT_ENABLE 4624 | HAL_TXQ_TXURNINT_ENABLE 4625 | HAL_TXQ_TXEOLINT_ENABLE 4626 | HAL_TXQ_DBA_GATED 4627 | HAL_TXQ_BACKOFF_DISABLE 4628 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4629 ; 4630 qi.tqi_aifs = 0; 4631 /* XXX +dbaprep? */ 4632 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4633 qi.tqi_burstTime = qi.tqi_readyTime; 4634 } else { 4635 #endif 4636 /* 4637 * XXX shouldn't this just use the default flags 4638 * used in the previous queue setup? 4639 */ 4640 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4641 | HAL_TXQ_TXERRINT_ENABLE 4642 | HAL_TXQ_TXDESCINT_ENABLE 4643 | HAL_TXQ_TXURNINT_ENABLE 4644 | HAL_TXQ_TXEOLINT_ENABLE 4645 ; 4646 qi.tqi_aifs = wmep->wmep_aifsn; 4647 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4648 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4649 qi.tqi_readyTime = 0; 4650 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4651 #ifdef IEEE80211_SUPPORT_TDMA 4652 } 4653 #endif 4654 4655 DPRINTF(sc, ATH_DEBUG_RESET, 4656 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4657 __func__, txq->axq_qnum, qi.tqi_qflags, 4658 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4659 4660 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4661 if_printf(ifp, "unable to update hardware queue " 4662 "parameters for %s traffic!\n", 4663 ieee80211_wme_acnames[ac]); 4664 return 0; 4665 } else { 4666 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4667 return 1; 4668 } 4669 #undef ATH_TXOP_TO_US 4670 #undef ATH_EXPONENT_TO_VALUE 4671 } 4672 4673 /* 4674 * Callback from the 802.11 layer to update WME parameters. 4675 */ 4676 static int 4677 ath_wme_update(struct ieee80211com *ic) 4678 { 4679 struct ath_softc *sc = ic->ic_ifp->if_softc; 4680 4681 return !ath_txq_update(sc, WME_AC_BE) || 4682 !ath_txq_update(sc, WME_AC_BK) || 4683 !ath_txq_update(sc, WME_AC_VI) || 4684 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4685 } 4686 4687 /* 4688 * Reclaim resources for a setup queue. 4689 */ 4690 static void 4691 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4692 { 4693 4694 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4695 ATH_TXQ_LOCK_DESTROY(txq); 4696 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4697 } 4698 4699 /* 4700 * Reclaim all tx queue resources. 4701 */ 4702 static void 4703 ath_tx_cleanup(struct ath_softc *sc) 4704 { 4705 int i; 4706 4707 ATH_TXBUF_LOCK_DESTROY(sc); 4708 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4709 if (ATH_TXQ_SETUP(sc, i)) 4710 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4711 } 4712 4713 /* 4714 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4715 * using the current rates in sc_rixmap. 4716 */ 4717 int 4718 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4719 { 4720 int rix = sc->sc_rixmap[rate]; 4721 /* NB: return lowest rix for invalid rate */ 4722 return (rix == 0xff ? 0 : rix); 4723 } 4724 4725 static void 4726 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4727 struct ath_buf *bf) 4728 { 4729 struct ieee80211_node *ni = bf->bf_node; 4730 struct ifnet *ifp = sc->sc_ifp; 4731 struct ieee80211com *ic = ifp->if_l2com; 4732 int sr, lr, pri; 4733 4734 if (ts->ts_status == 0) { 4735 u_int8_t txant = ts->ts_antenna; 4736 sc->sc_stats.ast_ant_tx[txant]++; 4737 sc->sc_ant_tx[txant]++; 4738 if (ts->ts_finaltsi != 0) 4739 sc->sc_stats.ast_tx_altrate++; 4740 pri = M_WME_GETAC(bf->bf_m); 4741 if (pri >= WME_AC_VO) 4742 ic->ic_wme.wme_hipri_traffic++; 4743 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4744 ni->ni_inact = ni->ni_inact_reload; 4745 } else { 4746 if (ts->ts_status & HAL_TXERR_XRETRY) 4747 sc->sc_stats.ast_tx_xretries++; 4748 if (ts->ts_status & HAL_TXERR_FIFO) 4749 sc->sc_stats.ast_tx_fifoerr++; 4750 if (ts->ts_status & HAL_TXERR_FILT) 4751 sc->sc_stats.ast_tx_filtered++; 4752 if (ts->ts_status & HAL_TXERR_XTXOP) 4753 sc->sc_stats.ast_tx_xtxop++; 4754 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4755 sc->sc_stats.ast_tx_timerexpired++; 4756 4757 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4758 sc->sc_stats.ast_tx_data_underrun++; 4759 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4760 sc->sc_stats.ast_tx_delim_underrun++; 4761 4762 if (bf->bf_m->m_flags & M_FF) 4763 sc->sc_stats.ast_ff_txerr++; 4764 } 4765 /* XXX when is this valid? */ 4766 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4767 sc->sc_stats.ast_tx_desccfgerr++; 4768 4769 sr = ts->ts_shortretry; 4770 lr = ts->ts_longretry; 4771 sc->sc_stats.ast_tx_shortretry += sr; 4772 sc->sc_stats.ast_tx_longretry += lr; 4773 4774 } 4775 4776 /* 4777 * The default completion. If fail is 1, this means 4778 * "please don't retry the frame, and just return -1 status 4779 * to the net80211 stack. 4780 */ 4781 void 4782 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4783 { 4784 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4785 int st; 4786 4787 if (fail == 1) 4788 st = -1; 4789 else 4790 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4791 ts->ts_status : HAL_TXERR_XRETRY; 4792 4793 if (bf->bf_state.bfs_dobaw) 4794 device_printf(sc->sc_dev, 4795 "%s: dobaw should've been cleared!\n", __func__); 4796 if (bf->bf_next != NULL) 4797 device_printf(sc->sc_dev, 4798 "%s: bf_next not NULL!\n", __func__); 4799 4800 /* 4801 * Do any tx complete callback. Note this must 4802 * be done before releasing the node reference. 4803 * This will free the mbuf, release the net80211 4804 * node and recycle the ath_buf. 4805 */ 4806 ath_tx_freebuf(sc, bf, st); 4807 } 4808 4809 /* 4810 * Update rate control with the given completion status. 4811 */ 4812 void 4813 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4814 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4815 int nframes, int nbad) 4816 { 4817 struct ath_node *an; 4818 4819 /* Only for unicast frames */ 4820 if (ni == NULL) 4821 return; 4822 4823 an = ATH_NODE(ni); 4824 4825 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4826 ATH_NODE_LOCK(an); 4827 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4828 ATH_NODE_UNLOCK(an); 4829 } 4830 } 4831 4832 /* 4833 * Update the busy status of the last frame on the free list. 4834 * When doing TDMA, the busy flag tracks whether the hardware 4835 * currently points to this buffer or not, and thus gated DMA 4836 * may restart by re-reading the last descriptor in this 4837 * buffer. 4838 * 4839 * This should be called in the completion function once one 4840 * of the buffers has been used. 4841 */ 4842 static void 4843 ath_tx_update_busy(struct ath_softc *sc) 4844 { 4845 struct ath_buf *last; 4846 4847 /* 4848 * Since the last frame may still be marked 4849 * as ATH_BUF_BUSY, unmark it here before 4850 * finishing the frame processing. 4851 * Since we've completed a frame (aggregate 4852 * or otherwise), the hardware has moved on 4853 * and is no longer referencing the previous 4854 * descriptor. 4855 */ 4856 ATH_TXBUF_LOCK_ASSERT(sc); 4857 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4858 if (last != NULL) 4859 last->bf_flags &= ~ATH_BUF_BUSY; 4860 } 4861 4862 4863 /* 4864 * Process completed xmit descriptors from the specified queue. 4865 * Kick the packet scheduler if needed. This can occur from this 4866 * particular task. 4867 */ 4868 static int 4869 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4870 { 4871 struct ath_hal *ah = sc->sc_ah; 4872 struct ath_buf *bf; 4873 struct ath_desc *ds; 4874 struct ath_tx_status *ts; 4875 struct ieee80211_node *ni; 4876 struct ath_node *an; 4877 int nacked; 4878 HAL_STATUS status; 4879 4880 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4881 __func__, txq->axq_qnum, 4882 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4883 txq->axq_link); 4884 nacked = 0; 4885 for (;;) { 4886 ATH_TXQ_LOCK(txq); 4887 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4888 bf = TAILQ_FIRST(&txq->axq_q); 4889 if (bf == NULL) { 4890 ATH_TXQ_UNLOCK(txq); 4891 break; 4892 } 4893 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4894 ts = &bf->bf_status.ds_txstat; 4895 status = ath_hal_txprocdesc(ah, ds, ts); 4896 #ifdef ATH_DEBUG 4897 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4898 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4899 status == HAL_OK); 4900 #endif 4901 if (status == HAL_EINPROGRESS) { 4902 ATH_TXQ_UNLOCK(txq); 4903 break; 4904 } 4905 ATH_TXQ_REMOVE(txq, bf, bf_list); 4906 #ifdef IEEE80211_SUPPORT_TDMA 4907 if (txq->axq_depth > 0) { 4908 /* 4909 * More frames follow. Mark the buffer busy 4910 * so it's not re-used while the hardware may 4911 * still re-read the link field in the descriptor. 4912 * 4913 * Use the last buffer in an aggregate as that 4914 * is where the hardware may be - intermediate 4915 * descriptors won't be "busy". 4916 */ 4917 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4918 } else 4919 #else 4920 if (txq->axq_depth == 0) 4921 #endif 4922 txq->axq_link = NULL; 4923 if (bf->bf_state.bfs_aggr) 4924 txq->axq_aggr_depth--; 4925 4926 ni = bf->bf_node; 4927 /* 4928 * If unicast frame was ack'd update RSSI, 4929 * including the last rx time used to 4930 * workaround phantom bmiss interrupts. 4931 */ 4932 if (ni != NULL && ts->ts_status == 0 && 4933 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4934 nacked++; 4935 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4936 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4937 ts->ts_rssi); 4938 } 4939 ATH_TXQ_UNLOCK(txq); 4940 4941 /* If unicast frame, update general statistics */ 4942 if (ni != NULL) { 4943 an = ATH_NODE(ni); 4944 /* update statistics */ 4945 ath_tx_update_stats(sc, ts, bf); 4946 } 4947 4948 /* 4949 * Call the completion handler. 4950 * The completion handler is responsible for 4951 * calling the rate control code. 4952 * 4953 * Frames with no completion handler get the 4954 * rate control code called here. 4955 */ 4956 if (bf->bf_comp == NULL) { 4957 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4958 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4959 /* 4960 * XXX assume this isn't an aggregate 4961 * frame. 4962 */ 4963 ath_tx_update_ratectrl(sc, ni, 4964 bf->bf_state.bfs_rc, ts, 4965 bf->bf_state.bfs_pktlen, 1, 4966 (ts->ts_status == 0 ? 0 : 1)); 4967 } 4968 ath_tx_default_comp(sc, bf, 0); 4969 } else 4970 bf->bf_comp(sc, bf, 0); 4971 } 4972 #ifdef IEEE80211_SUPPORT_SUPERG 4973 /* 4974 * Flush fast-frame staging queue when traffic slows. 4975 */ 4976 if (txq->axq_depth <= 1) 4977 ieee80211_ff_flush(ic, txq->axq_ac); 4978 #endif 4979 4980 /* Kick the TXQ scheduler */ 4981 if (dosched) { 4982 ATH_TXQ_LOCK(txq); 4983 ath_txq_sched(sc, txq); 4984 ATH_TXQ_UNLOCK(txq); 4985 } 4986 4987 return nacked; 4988 } 4989 4990 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4991 4992 /* 4993 * Deferred processing of transmit interrupt; special-cased 4994 * for a single hardware transmit queue (e.g. 5210 and 5211). 4995 */ 4996 static void 4997 ath_tx_proc_q0(void *arg, int npending) 4998 { 4999 struct ath_softc *sc = arg; 5000 struct ifnet *ifp = sc->sc_ifp; 5001 uint32_t txqs; 5002 5003 ATH_PCU_LOCK(sc); 5004 sc->sc_txproc_cnt++; 5005 txqs = sc->sc_txq_active; 5006 sc->sc_txq_active &= ~txqs; 5007 ATH_PCU_UNLOCK(sc); 5008 5009 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 5010 /* XXX why is lastrx updated in tx code? */ 5011 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5012 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 5013 ath_tx_processq(sc, sc->sc_cabq, 1); 5014 IF_LOCK(&ifp->if_snd); 5015 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5016 IF_UNLOCK(&ifp->if_snd); 5017 sc->sc_wd_timer = 0; 5018 5019 if (sc->sc_softled) 5020 ath_led_event(sc, sc->sc_txrix); 5021 5022 ATH_PCU_LOCK(sc); 5023 sc->sc_txproc_cnt--; 5024 ATH_PCU_UNLOCK(sc); 5025 5026 ath_start(ifp); 5027 } 5028 5029 /* 5030 * Deferred processing of transmit interrupt; special-cased 5031 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 5032 */ 5033 static void 5034 ath_tx_proc_q0123(void *arg, int npending) 5035 { 5036 struct ath_softc *sc = arg; 5037 struct ifnet *ifp = sc->sc_ifp; 5038 int nacked; 5039 uint32_t txqs; 5040 5041 ATH_PCU_LOCK(sc); 5042 sc->sc_txproc_cnt++; 5043 txqs = sc->sc_txq_active; 5044 sc->sc_txq_active &= ~txqs; 5045 ATH_PCU_UNLOCK(sc); 5046 5047 /* 5048 * Process each active queue. 5049 */ 5050 nacked = 0; 5051 if (TXQACTIVE(txqs, 0)) 5052 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 5053 if (TXQACTIVE(txqs, 1)) 5054 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 5055 if (TXQACTIVE(txqs, 2)) 5056 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 5057 if (TXQACTIVE(txqs, 3)) 5058 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 5059 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 5060 ath_tx_processq(sc, sc->sc_cabq, 1); 5061 if (nacked) 5062 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5063 5064 IF_LOCK(&ifp->if_snd); 5065 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5066 IF_UNLOCK(&ifp->if_snd); 5067 sc->sc_wd_timer = 0; 5068 5069 if (sc->sc_softled) 5070 ath_led_event(sc, sc->sc_txrix); 5071 5072 ATH_PCU_LOCK(sc); 5073 sc->sc_txproc_cnt--; 5074 ATH_PCU_UNLOCK(sc); 5075 5076 ath_start(ifp); 5077 } 5078 5079 /* 5080 * Deferred processing of transmit interrupt. 5081 */ 5082 static void 5083 ath_tx_proc(void *arg, int npending) 5084 { 5085 struct ath_softc *sc = arg; 5086 struct ifnet *ifp = sc->sc_ifp; 5087 int i, nacked; 5088 uint32_t txqs; 5089 5090 ATH_PCU_LOCK(sc); 5091 sc->sc_txproc_cnt++; 5092 txqs = sc->sc_txq_active; 5093 sc->sc_txq_active &= ~txqs; 5094 ATH_PCU_UNLOCK(sc); 5095 5096 /* 5097 * Process each active queue. 5098 */ 5099 nacked = 0; 5100 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5101 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 5102 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 5103 if (nacked) 5104 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5105 5106 /* XXX check this inside of IF_LOCK? */ 5107 IF_LOCK(&ifp->if_snd); 5108 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5109 IF_UNLOCK(&ifp->if_snd); 5110 sc->sc_wd_timer = 0; 5111 5112 if (sc->sc_softled) 5113 ath_led_event(sc, sc->sc_txrix); 5114 5115 ATH_PCU_LOCK(sc); 5116 sc->sc_txproc_cnt--; 5117 ATH_PCU_UNLOCK(sc); 5118 5119 ath_start(ifp); 5120 } 5121 #undef TXQACTIVE 5122 5123 /* 5124 * Return a buffer to the pool and update the 'busy' flag on the 5125 * previous 'tail' entry. 5126 * 5127 * This _must_ only be called when the buffer is involved in a completed 5128 * TX. The logic is that if it was part of an active TX, the previous 5129 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5130 * for restart (eg for TDMA.) 5131 * 5132 * The caller must free the mbuf and recycle the node reference. 5133 */ 5134 void 5135 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5136 { 5137 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5138 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 5139 5140 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5141 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5142 5143 ATH_TXBUF_LOCK(sc); 5144 ath_tx_update_busy(sc); 5145 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5146 ATH_TXBUF_UNLOCK(sc); 5147 } 5148 5149 /* 5150 * This is currently used by ath_tx_draintxq() and 5151 * ath_tx_tid_free_pkts(). 5152 * 5153 * It recycles a single ath_buf. 5154 */ 5155 void 5156 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5157 { 5158 struct ieee80211_node *ni = bf->bf_node; 5159 struct mbuf *m0 = bf->bf_m; 5160 5161 bf->bf_node = NULL; 5162 bf->bf_m = NULL; 5163 5164 /* Free the buffer, it's not needed any longer */ 5165 ath_freebuf(sc, bf); 5166 5167 if (ni != NULL) { 5168 /* 5169 * Do any callback and reclaim the node reference. 5170 */ 5171 if (m0->m_flags & M_TXCB) 5172 ieee80211_process_callback(ni, m0, status); 5173 ieee80211_free_node(ni); 5174 } 5175 m_freem(m0); 5176 5177 /* 5178 * XXX the buffer used to be freed -after-, but the DMA map was 5179 * freed where ath_freebuf() now is. I've no idea what this 5180 * will do. 5181 */ 5182 } 5183 5184 void 5185 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5186 { 5187 #ifdef ATH_DEBUG 5188 struct ath_hal *ah = sc->sc_ah; 5189 #endif 5190 struct ath_buf *bf; 5191 u_int ix; 5192 5193 /* 5194 * NB: this assumes output has been stopped and 5195 * we do not need to block ath_tx_proc 5196 */ 5197 ATH_TXBUF_LOCK(sc); 5198 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 5199 if (bf != NULL) 5200 bf->bf_flags &= ~ATH_BUF_BUSY; 5201 ATH_TXBUF_UNLOCK(sc); 5202 5203 for (ix = 0;; ix++) { 5204 ATH_TXQ_LOCK(txq); 5205 bf = TAILQ_FIRST(&txq->axq_q); 5206 if (bf == NULL) { 5207 txq->axq_link = NULL; 5208 ATH_TXQ_UNLOCK(txq); 5209 break; 5210 } 5211 ATH_TXQ_REMOVE(txq, bf, bf_list); 5212 if (bf->bf_state.bfs_aggr) 5213 txq->axq_aggr_depth--; 5214 #ifdef ATH_DEBUG 5215 if (sc->sc_debug & ATH_DEBUG_RESET) { 5216 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5217 5218 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5219 ath_hal_txprocdesc(ah, bf->bf_lastds, 5220 &bf->bf_status.ds_txstat) == HAL_OK); 5221 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5222 bf->bf_m->m_len, 0, -1); 5223 } 5224 #endif /* ATH_DEBUG */ 5225 /* 5226 * Since we're now doing magic in the completion 5227 * functions, we -must- call it for aggregation 5228 * destinations or BAW tracking will get upset. 5229 */ 5230 /* 5231 * Clear ATH_BUF_BUSY; the completion handler 5232 * will free the buffer. 5233 */ 5234 ATH_TXQ_UNLOCK(txq); 5235 bf->bf_flags &= ~ATH_BUF_BUSY; 5236 if (bf->bf_comp) 5237 bf->bf_comp(sc, bf, 1); 5238 else 5239 ath_tx_default_comp(sc, bf, 1); 5240 } 5241 5242 /* 5243 * Drain software queued frames which are on 5244 * active TIDs. 5245 */ 5246 ath_tx_txq_drain(sc, txq); 5247 } 5248 5249 static void 5250 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5251 { 5252 struct ath_hal *ah = sc->sc_ah; 5253 5254 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5255 __func__, txq->axq_qnum, 5256 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5257 txq->axq_link); 5258 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5259 } 5260 5261 static int 5262 ath_stoptxdma(struct ath_softc *sc) 5263 { 5264 struct ath_hal *ah = sc->sc_ah; 5265 int i; 5266 5267 /* XXX return value */ 5268 if (sc->sc_invalid) 5269 return 0; 5270 5271 if (!sc->sc_invalid) { 5272 /* don't touch the hardware if marked invalid */ 5273 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5274 __func__, sc->sc_bhalq, 5275 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5276 NULL); 5277 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5278 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5279 if (ATH_TXQ_SETUP(sc, i)) 5280 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5281 } 5282 5283 return 1; 5284 } 5285 5286 /* 5287 * Drain the transmit queues and reclaim resources. 5288 */ 5289 static void 5290 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5291 { 5292 #ifdef ATH_DEBUG 5293 struct ath_hal *ah = sc->sc_ah; 5294 #endif 5295 struct ifnet *ifp = sc->sc_ifp; 5296 int i; 5297 5298 (void) ath_stoptxdma(sc); 5299 5300 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5301 /* 5302 * XXX TODO: should we just handle the completed TX frames 5303 * here, whether or not the reset is a full one or not? 5304 */ 5305 if (ATH_TXQ_SETUP(sc, i)) { 5306 if (reset_type == ATH_RESET_NOLOSS) 5307 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5308 else 5309 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5310 } 5311 } 5312 #ifdef ATH_DEBUG 5313 if (sc->sc_debug & ATH_DEBUG_RESET) { 5314 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5315 if (bf != NULL && bf->bf_m != NULL) { 5316 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5317 ath_hal_txprocdesc(ah, bf->bf_lastds, 5318 &bf->bf_status.ds_txstat) == HAL_OK); 5319 ieee80211_dump_pkt(ifp->if_l2com, 5320 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5321 0, -1); 5322 } 5323 } 5324 #endif /* ATH_DEBUG */ 5325 IF_LOCK(&ifp->if_snd); 5326 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5327 IF_UNLOCK(&ifp->if_snd); 5328 sc->sc_wd_timer = 0; 5329 } 5330 5331 /* 5332 * Disable the receive h/w in preparation for a reset. 5333 */ 5334 static void 5335 ath_stoprecv(struct ath_softc *sc, int dodelay) 5336 { 5337 #define PA2DESC(_sc, _pa) \ 5338 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5339 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5340 struct ath_hal *ah = sc->sc_ah; 5341 5342 ath_hal_stoppcurecv(ah); /* disable PCU */ 5343 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5344 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5345 if (dodelay) 5346 DELAY(3000); /* 3ms is long enough for 1 frame */ 5347 #ifdef ATH_DEBUG 5348 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5349 struct ath_buf *bf; 5350 u_int ix; 5351 5352 printf("%s: rx queue %p, link %p\n", __func__, 5353 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5354 ix = 0; 5355 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5356 struct ath_desc *ds = bf->bf_desc; 5357 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5358 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5359 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5360 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5361 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5362 ix++; 5363 } 5364 } 5365 #endif 5366 if (sc->sc_rxpending != NULL) { 5367 m_freem(sc->sc_rxpending); 5368 sc->sc_rxpending = NULL; 5369 } 5370 sc->sc_rxlink = NULL; /* just in case */ 5371 #undef PA2DESC 5372 } 5373 5374 /* 5375 * Enable the receive h/w following a reset. 5376 */ 5377 static int 5378 ath_startrecv(struct ath_softc *sc) 5379 { 5380 struct ath_hal *ah = sc->sc_ah; 5381 struct ath_buf *bf; 5382 5383 sc->sc_rxlink = NULL; 5384 sc->sc_rxpending = NULL; 5385 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5386 int error = ath_rxbuf_init(sc, bf); 5387 if (error != 0) { 5388 DPRINTF(sc, ATH_DEBUG_RECV, 5389 "%s: ath_rxbuf_init failed %d\n", 5390 __func__, error); 5391 return error; 5392 } 5393 } 5394 5395 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5396 ath_hal_putrxbuf(ah, bf->bf_daddr); 5397 ath_hal_rxena(ah); /* enable recv descriptors */ 5398 ath_mode_init(sc); /* set filters, etc. */ 5399 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5400 return 0; 5401 } 5402 5403 /* 5404 * Update internal state after a channel change. 5405 */ 5406 static void 5407 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5408 { 5409 enum ieee80211_phymode mode; 5410 5411 /* 5412 * Change channels and update the h/w rate map 5413 * if we're switching; e.g. 11a to 11b/g. 5414 */ 5415 mode = ieee80211_chan2mode(chan); 5416 if (mode != sc->sc_curmode) 5417 ath_setcurmode(sc, mode); 5418 sc->sc_curchan = chan; 5419 } 5420 5421 /* 5422 * Set/change channels. If the channel is really being changed, 5423 * it's done by resetting the chip. To accomplish this we must 5424 * first cleanup any pending DMA, then restart stuff after a la 5425 * ath_init. 5426 */ 5427 static int 5428 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5429 { 5430 struct ifnet *ifp = sc->sc_ifp; 5431 struct ieee80211com *ic = ifp->if_l2com; 5432 struct ath_hal *ah = sc->sc_ah; 5433 int ret = 0; 5434 5435 /* Treat this as an interface reset */ 5436 ATH_PCU_UNLOCK_ASSERT(sc); 5437 ATH_UNLOCK_ASSERT(sc); 5438 5439 /* (Try to) stop TX/RX from occuring */ 5440 taskqueue_block(sc->sc_tq); 5441 5442 ATH_PCU_LOCK(sc); 5443 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 5444 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 5445 if (ath_reset_grablock(sc, 1) == 0) { 5446 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5447 __func__); 5448 } 5449 ATH_PCU_UNLOCK(sc); 5450 5451 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5452 __func__, ieee80211_chan2ieee(ic, chan), 5453 chan->ic_freq, chan->ic_flags); 5454 if (chan != sc->sc_curchan) { 5455 HAL_STATUS status; 5456 /* 5457 * To switch channels clear any pending DMA operations; 5458 * wait long enough for the RX fifo to drain, reset the 5459 * hardware at the new frequency, and then re-enable 5460 * the relevant bits of the h/w. 5461 */ 5462 #if 0 5463 ath_hal_intrset(ah, 0); /* disable interrupts */ 5464 #endif 5465 ath_stoprecv(sc, 1); /* turn off frame recv */ 5466 /* 5467 * First, handle completed TX/RX frames. 5468 */ 5469 ath_rx_proc(sc, 0); 5470 ath_draintxq(sc, ATH_RESET_NOLOSS); 5471 /* 5472 * Next, flush the non-scheduled frames. 5473 */ 5474 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5475 5476 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5477 if_printf(ifp, "%s: unable to reset " 5478 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5479 __func__, ieee80211_chan2ieee(ic, chan), 5480 chan->ic_freq, chan->ic_flags, status); 5481 ret = EIO; 5482 goto finish; 5483 } 5484 sc->sc_diversity = ath_hal_getdiversity(ah); 5485 5486 /* Let DFS at it in case it's a DFS channel */ 5487 ath_dfs_radar_enable(sc, chan); 5488 5489 /* 5490 * Re-enable rx framework. 5491 */ 5492 if (ath_startrecv(sc) != 0) { 5493 if_printf(ifp, "%s: unable to restart recv logic\n", 5494 __func__); 5495 ret = EIO; 5496 goto finish; 5497 } 5498 5499 /* 5500 * Change channels and update the h/w rate map 5501 * if we're switching; e.g. 11a to 11b/g. 5502 */ 5503 ath_chan_change(sc, chan); 5504 5505 /* 5506 * Reset clears the beacon timers; reset them 5507 * here if needed. 5508 */ 5509 if (sc->sc_beacons) { /* restart beacons */ 5510 #ifdef IEEE80211_SUPPORT_TDMA 5511 if (sc->sc_tdma) 5512 ath_tdma_config(sc, NULL); 5513 else 5514 #endif 5515 ath_beacon_config(sc, NULL); 5516 } 5517 5518 /* 5519 * Re-enable interrupts. 5520 */ 5521 #if 0 5522 ath_hal_intrset(ah, sc->sc_imask); 5523 #endif 5524 } 5525 5526 finish: 5527 ATH_PCU_LOCK(sc); 5528 sc->sc_inreset_cnt--; 5529 /* XXX only do this if sc_inreset_cnt == 0? */ 5530 ath_hal_intrset(ah, sc->sc_imask); 5531 ATH_PCU_UNLOCK(sc); 5532 5533 IF_LOCK(&ifp->if_snd); 5534 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5535 IF_UNLOCK(&ifp->if_snd); 5536 ath_txrx_start(sc); 5537 /* XXX ath_start? */ 5538 5539 return ret; 5540 } 5541 5542 /* 5543 * Periodically recalibrate the PHY to account 5544 * for temperature/environment changes. 5545 */ 5546 static void 5547 ath_calibrate(void *arg) 5548 { 5549 struct ath_softc *sc = arg; 5550 struct ath_hal *ah = sc->sc_ah; 5551 struct ifnet *ifp = sc->sc_ifp; 5552 struct ieee80211com *ic = ifp->if_l2com; 5553 HAL_BOOL longCal, isCalDone; 5554 HAL_BOOL aniCal, shortCal = AH_FALSE; 5555 int nextcal; 5556 5557 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5558 goto restart; 5559 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5560 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5561 if (sc->sc_doresetcal) 5562 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5563 5564 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5565 if (aniCal) { 5566 sc->sc_stats.ast_ani_cal++; 5567 sc->sc_lastani = ticks; 5568 ath_hal_ani_poll(ah, sc->sc_curchan); 5569 } 5570 5571 if (longCal) { 5572 sc->sc_stats.ast_per_cal++; 5573 sc->sc_lastlongcal = ticks; 5574 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5575 /* 5576 * Rfgain is out of bounds, reset the chip 5577 * to load new gain values. 5578 */ 5579 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5580 "%s: rfgain change\n", __func__); 5581 sc->sc_stats.ast_per_rfgain++; 5582 sc->sc_resetcal = 0; 5583 sc->sc_doresetcal = AH_TRUE; 5584 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5585 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5586 return; 5587 } 5588 /* 5589 * If this long cal is after an idle period, then 5590 * reset the data collection state so we start fresh. 5591 */ 5592 if (sc->sc_resetcal) { 5593 (void) ath_hal_calreset(ah, sc->sc_curchan); 5594 sc->sc_lastcalreset = ticks; 5595 sc->sc_lastshortcal = ticks; 5596 sc->sc_resetcal = 0; 5597 sc->sc_doresetcal = AH_TRUE; 5598 } 5599 } 5600 5601 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5602 if (shortCal || longCal) { 5603 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5604 if (longCal) { 5605 /* 5606 * Calibrate noise floor data again in case of change. 5607 */ 5608 ath_hal_process_noisefloor(ah); 5609 } 5610 } else { 5611 DPRINTF(sc, ATH_DEBUG_ANY, 5612 "%s: calibration of channel %u failed\n", 5613 __func__, sc->sc_curchan->ic_freq); 5614 sc->sc_stats.ast_per_calfail++; 5615 } 5616 if (shortCal) 5617 sc->sc_lastshortcal = ticks; 5618 } 5619 if (!isCalDone) { 5620 restart: 5621 /* 5622 * Use a shorter interval to potentially collect multiple 5623 * data samples required to complete calibration. Once 5624 * we're told the work is done we drop back to a longer 5625 * interval between requests. We're more aggressive doing 5626 * work when operating as an AP to improve operation right 5627 * after startup. 5628 */ 5629 sc->sc_lastshortcal = ticks; 5630 nextcal = ath_shortcalinterval*hz/1000; 5631 if (sc->sc_opmode != HAL_M_HOSTAP) 5632 nextcal *= 10; 5633 sc->sc_doresetcal = AH_TRUE; 5634 } else { 5635 /* nextcal should be the shortest time for next event */ 5636 nextcal = ath_longcalinterval*hz; 5637 if (sc->sc_lastcalreset == 0) 5638 sc->sc_lastcalreset = sc->sc_lastlongcal; 5639 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5640 sc->sc_resetcal = 1; /* setup reset next trip */ 5641 sc->sc_doresetcal = AH_FALSE; 5642 } 5643 /* ANI calibration may occur more often than short/long/resetcal */ 5644 if (ath_anicalinterval > 0) 5645 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5646 5647 if (nextcal != 0) { 5648 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5649 __func__, nextcal, isCalDone ? "" : "!"); 5650 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5651 } else { 5652 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5653 __func__); 5654 /* NB: don't rearm timer */ 5655 } 5656 } 5657 5658 static void 5659 ath_scan_start(struct ieee80211com *ic) 5660 { 5661 struct ifnet *ifp = ic->ic_ifp; 5662 struct ath_softc *sc = ifp->if_softc; 5663 struct ath_hal *ah = sc->sc_ah; 5664 u_int32_t rfilt; 5665 5666 /* XXX calibration timer? */ 5667 5668 ATH_LOCK(sc); 5669 sc->sc_scanning = 1; 5670 sc->sc_syncbeacon = 0; 5671 rfilt = ath_calcrxfilter(sc); 5672 ATH_UNLOCK(sc); 5673 5674 ATH_PCU_LOCK(sc); 5675 ath_hal_setrxfilter(ah, rfilt); 5676 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5677 ATH_PCU_UNLOCK(sc); 5678 5679 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5680 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5681 } 5682 5683 static void 5684 ath_scan_end(struct ieee80211com *ic) 5685 { 5686 struct ifnet *ifp = ic->ic_ifp; 5687 struct ath_softc *sc = ifp->if_softc; 5688 struct ath_hal *ah = sc->sc_ah; 5689 u_int32_t rfilt; 5690 5691 ATH_LOCK(sc); 5692 sc->sc_scanning = 0; 5693 rfilt = ath_calcrxfilter(sc); 5694 ATH_UNLOCK(sc); 5695 5696 ATH_PCU_LOCK(sc); 5697 ath_hal_setrxfilter(ah, rfilt); 5698 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5699 5700 ath_hal_process_noisefloor(ah); 5701 ATH_PCU_UNLOCK(sc); 5702 5703 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5704 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5705 sc->sc_curaid); 5706 } 5707 5708 static void 5709 ath_set_channel(struct ieee80211com *ic) 5710 { 5711 struct ifnet *ifp = ic->ic_ifp; 5712 struct ath_softc *sc = ifp->if_softc; 5713 5714 (void) ath_chan_set(sc, ic->ic_curchan); 5715 /* 5716 * If we are returning to our bss channel then mark state 5717 * so the next recv'd beacon's tsf will be used to sync the 5718 * beacon timers. Note that since we only hear beacons in 5719 * sta/ibss mode this has no effect in other operating modes. 5720 */ 5721 ATH_LOCK(sc); 5722 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5723 sc->sc_syncbeacon = 1; 5724 ATH_UNLOCK(sc); 5725 } 5726 5727 /* 5728 * Walk the vap list and check if there any vap's in RUN state. 5729 */ 5730 static int 5731 ath_isanyrunningvaps(struct ieee80211vap *this) 5732 { 5733 struct ieee80211com *ic = this->iv_ic; 5734 struct ieee80211vap *vap; 5735 5736 IEEE80211_LOCK_ASSERT(ic); 5737 5738 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5739 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5740 return 1; 5741 } 5742 return 0; 5743 } 5744 5745 static int 5746 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5747 { 5748 struct ieee80211com *ic = vap->iv_ic; 5749 struct ath_softc *sc = ic->ic_ifp->if_softc; 5750 struct ath_vap *avp = ATH_VAP(vap); 5751 struct ath_hal *ah = sc->sc_ah; 5752 struct ieee80211_node *ni = NULL; 5753 int i, error, stamode; 5754 u_int32_t rfilt; 5755 int csa_run_transition = 0; 5756 static const HAL_LED_STATE leds[] = { 5757 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5758 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5759 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5760 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5761 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5762 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5763 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5764 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5765 }; 5766 5767 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5768 ieee80211_state_name[vap->iv_state], 5769 ieee80211_state_name[nstate]); 5770 5771 /* 5772 * net80211 _should_ have the comlock asserted at this point. 5773 * There are some comments around the calls to vap->iv_newstate 5774 * which indicate that it (newstate) may end up dropping the 5775 * lock. This and the subsequent lock assert check after newstate 5776 * are an attempt to catch these and figure out how/why. 5777 */ 5778 IEEE80211_LOCK_ASSERT(ic); 5779 5780 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5781 csa_run_transition = 1; 5782 5783 callout_drain(&sc->sc_cal_ch); 5784 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5785 5786 if (nstate == IEEE80211_S_SCAN) { 5787 /* 5788 * Scanning: turn off beacon miss and don't beacon. 5789 * Mark beacon state so when we reach RUN state we'll 5790 * [re]setup beacons. Unblock the task q thread so 5791 * deferred interrupt processing is done. 5792 */ 5793 ath_hal_intrset(ah, 5794 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5795 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5796 sc->sc_beacons = 0; 5797 taskqueue_unblock(sc->sc_tq); 5798 } 5799 5800 ni = ieee80211_ref_node(vap->iv_bss); 5801 rfilt = ath_calcrxfilter(sc); 5802 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5803 vap->iv_opmode == IEEE80211_M_AHDEMO || 5804 vap->iv_opmode == IEEE80211_M_IBSS); 5805 if (stamode && nstate == IEEE80211_S_RUN) { 5806 sc->sc_curaid = ni->ni_associd; 5807 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5808 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5809 } 5810 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5811 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5812 ath_hal_setrxfilter(ah, rfilt); 5813 5814 /* XXX is this to restore keycache on resume? */ 5815 if (vap->iv_opmode != IEEE80211_M_STA && 5816 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5817 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5818 if (ath_hal_keyisvalid(ah, i)) 5819 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5820 } 5821 5822 /* 5823 * Invoke the parent method to do net80211 work. 5824 */ 5825 error = avp->av_newstate(vap, nstate, arg); 5826 if (error != 0) 5827 goto bad; 5828 5829 /* 5830 * See above: ensure av_newstate() doesn't drop the lock 5831 * on us. 5832 */ 5833 IEEE80211_LOCK_ASSERT(ic); 5834 5835 if (nstate == IEEE80211_S_RUN) { 5836 /* NB: collect bss node again, it may have changed */ 5837 ieee80211_free_node(ni); 5838 ni = ieee80211_ref_node(vap->iv_bss); 5839 5840 DPRINTF(sc, ATH_DEBUG_STATE, 5841 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5842 "capinfo 0x%04x chan %d\n", __func__, 5843 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5844 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5845 5846 switch (vap->iv_opmode) { 5847 #ifdef IEEE80211_SUPPORT_TDMA 5848 case IEEE80211_M_AHDEMO: 5849 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5850 break; 5851 /* fall thru... */ 5852 #endif 5853 case IEEE80211_M_HOSTAP: 5854 case IEEE80211_M_IBSS: 5855 case IEEE80211_M_MBSS: 5856 /* 5857 * Allocate and setup the beacon frame. 5858 * 5859 * Stop any previous beacon DMA. This may be 5860 * necessary, for example, when an ibss merge 5861 * causes reconfiguration; there will be a state 5862 * transition from RUN->RUN that means we may 5863 * be called with beacon transmission active. 5864 */ 5865 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5866 5867 error = ath_beacon_alloc(sc, ni); 5868 if (error != 0) 5869 goto bad; 5870 /* 5871 * If joining an adhoc network defer beacon timer 5872 * configuration to the next beacon frame so we 5873 * have a current TSF to use. Otherwise we're 5874 * starting an ibss/bss so there's no need to delay; 5875 * if this is the first vap moving to RUN state, then 5876 * beacon state needs to be [re]configured. 5877 */ 5878 if (vap->iv_opmode == IEEE80211_M_IBSS && 5879 ni->ni_tstamp.tsf != 0) { 5880 sc->sc_syncbeacon = 1; 5881 } else if (!sc->sc_beacons) { 5882 #ifdef IEEE80211_SUPPORT_TDMA 5883 if (vap->iv_caps & IEEE80211_C_TDMA) 5884 ath_tdma_config(sc, vap); 5885 else 5886 #endif 5887 ath_beacon_config(sc, vap); 5888 sc->sc_beacons = 1; 5889 } 5890 break; 5891 case IEEE80211_M_STA: 5892 /* 5893 * Defer beacon timer configuration to the next 5894 * beacon frame so we have a current TSF to use 5895 * (any TSF collected when scanning is likely old). 5896 * However if it's due to a CSA -> RUN transition, 5897 * force a beacon update so we pick up a lack of 5898 * beacons from an AP in CAC and thus force a 5899 * scan. 5900 */ 5901 sc->sc_syncbeacon = 1; 5902 if (csa_run_transition) 5903 ath_beacon_config(sc, vap); 5904 break; 5905 case IEEE80211_M_MONITOR: 5906 /* 5907 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5908 * transitions so we must re-enable interrupts here to 5909 * handle the case of a single monitor mode vap. 5910 */ 5911 ath_hal_intrset(ah, sc->sc_imask); 5912 break; 5913 case IEEE80211_M_WDS: 5914 break; 5915 default: 5916 break; 5917 } 5918 /* 5919 * Let the hal process statistics collected during a 5920 * scan so it can provide calibrated noise floor data. 5921 */ 5922 ath_hal_process_noisefloor(ah); 5923 /* 5924 * Reset rssi stats; maybe not the best place... 5925 */ 5926 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5927 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5928 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5929 /* 5930 * Finally, start any timers and the task q thread 5931 * (in case we didn't go through SCAN state). 5932 */ 5933 if (ath_longcalinterval != 0) { 5934 /* start periodic recalibration timer */ 5935 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5936 } else { 5937 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5938 "%s: calibration disabled\n", __func__); 5939 } 5940 taskqueue_unblock(sc->sc_tq); 5941 } else if (nstate == IEEE80211_S_INIT) { 5942 /* 5943 * If there are no vaps left in RUN state then 5944 * shutdown host/driver operation: 5945 * o disable interrupts 5946 * o disable the task queue thread 5947 * o mark beacon processing as stopped 5948 */ 5949 if (!ath_isanyrunningvaps(vap)) { 5950 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5951 /* disable interrupts */ 5952 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5953 taskqueue_block(sc->sc_tq); 5954 sc->sc_beacons = 0; 5955 } 5956 #ifdef IEEE80211_SUPPORT_TDMA 5957 ath_hal_setcca(ah, AH_TRUE); 5958 #endif 5959 } 5960 bad: 5961 ieee80211_free_node(ni); 5962 return error; 5963 } 5964 5965 /* 5966 * Allocate a key cache slot to the station so we can 5967 * setup a mapping from key index to node. The key cache 5968 * slot is needed for managing antenna state and for 5969 * compression when stations do not use crypto. We do 5970 * it uniliaterally here; if crypto is employed this slot 5971 * will be reassigned. 5972 */ 5973 static void 5974 ath_setup_stationkey(struct ieee80211_node *ni) 5975 { 5976 struct ieee80211vap *vap = ni->ni_vap; 5977 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5978 ieee80211_keyix keyix, rxkeyix; 5979 5980 /* XXX should take a locked ref to vap->iv_bss */ 5981 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5982 /* 5983 * Key cache is full; we'll fall back to doing 5984 * the more expensive lookup in software. Note 5985 * this also means no h/w compression. 5986 */ 5987 /* XXX msg+statistic */ 5988 } else { 5989 /* XXX locking? */ 5990 ni->ni_ucastkey.wk_keyix = keyix; 5991 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5992 /* NB: must mark device key to get called back on delete */ 5993 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5994 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5995 /* NB: this will create a pass-thru key entry */ 5996 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5997 } 5998 } 5999 6000 /* 6001 * Setup driver-specific state for a newly associated node. 6002 * Note that we're called also on a re-associate, the isnew 6003 * param tells us if this is the first time or not. 6004 */ 6005 static void 6006 ath_newassoc(struct ieee80211_node *ni, int isnew) 6007 { 6008 struct ath_node *an = ATH_NODE(ni); 6009 struct ieee80211vap *vap = ni->ni_vap; 6010 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6011 const struct ieee80211_txparam *tp = ni->ni_txparms; 6012 6013 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6014 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6015 6016 ath_rate_newassoc(sc, an, isnew); 6017 if (isnew && 6018 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6019 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6020 ath_setup_stationkey(ni); 6021 } 6022 6023 static int 6024 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6025 int nchans, struct ieee80211_channel chans[]) 6026 { 6027 struct ath_softc *sc = ic->ic_ifp->if_softc; 6028 struct ath_hal *ah = sc->sc_ah; 6029 HAL_STATUS status; 6030 6031 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6032 "%s: rd %u cc %u location %c%s\n", 6033 __func__, reg->regdomain, reg->country, reg->location, 6034 reg->ecm ? " ecm" : ""); 6035 6036 status = ath_hal_set_channels(ah, chans, nchans, 6037 reg->country, reg->regdomain); 6038 if (status != HAL_OK) { 6039 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6040 __func__, status); 6041 return EINVAL; /* XXX */ 6042 } 6043 6044 return 0; 6045 } 6046 6047 static void 6048 ath_getradiocaps(struct ieee80211com *ic, 6049 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6050 { 6051 struct ath_softc *sc = ic->ic_ifp->if_softc; 6052 struct ath_hal *ah = sc->sc_ah; 6053 6054 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6055 __func__, SKU_DEBUG, CTRY_DEFAULT); 6056 6057 /* XXX check return */ 6058 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6059 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6060 6061 } 6062 6063 static int 6064 ath_getchannels(struct ath_softc *sc) 6065 { 6066 struct ifnet *ifp = sc->sc_ifp; 6067 struct ieee80211com *ic = ifp->if_l2com; 6068 struct ath_hal *ah = sc->sc_ah; 6069 HAL_STATUS status; 6070 6071 /* 6072 * Collect channel set based on EEPROM contents. 6073 */ 6074 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6075 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6076 if (status != HAL_OK) { 6077 if_printf(ifp, "%s: unable to collect channel list from hal, " 6078 "status %d\n", __func__, status); 6079 return EINVAL; 6080 } 6081 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6082 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6083 /* XXX map Atheros sku's to net80211 SKU's */ 6084 /* XXX net80211 types too small */ 6085 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6086 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6087 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6088 ic->ic_regdomain.isocc[1] = ' '; 6089 6090 ic->ic_regdomain.ecm = 1; 6091 ic->ic_regdomain.location = 'I'; 6092 6093 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6094 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6095 __func__, sc->sc_eerd, sc->sc_eecc, 6096 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6097 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6098 return 0; 6099 } 6100 6101 static int 6102 ath_rate_setup(struct ath_softc *sc, u_int mode) 6103 { 6104 struct ath_hal *ah = sc->sc_ah; 6105 const HAL_RATE_TABLE *rt; 6106 6107 switch (mode) { 6108 case IEEE80211_MODE_11A: 6109 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6110 break; 6111 case IEEE80211_MODE_HALF: 6112 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6113 break; 6114 case IEEE80211_MODE_QUARTER: 6115 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6116 break; 6117 case IEEE80211_MODE_11B: 6118 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6119 break; 6120 case IEEE80211_MODE_11G: 6121 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6122 break; 6123 case IEEE80211_MODE_TURBO_A: 6124 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6125 break; 6126 case IEEE80211_MODE_TURBO_G: 6127 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6128 break; 6129 case IEEE80211_MODE_STURBO_A: 6130 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6131 break; 6132 case IEEE80211_MODE_11NA: 6133 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6134 break; 6135 case IEEE80211_MODE_11NG: 6136 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6137 break; 6138 default: 6139 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6140 __func__, mode); 6141 return 0; 6142 } 6143 sc->sc_rates[mode] = rt; 6144 return (rt != NULL); 6145 } 6146 6147 static void 6148 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6149 { 6150 #define N(a) (sizeof(a)/sizeof(a[0])) 6151 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6152 static const struct { 6153 u_int rate; /* tx/rx 802.11 rate */ 6154 u_int16_t timeOn; /* LED on time (ms) */ 6155 u_int16_t timeOff; /* LED off time (ms) */ 6156 } blinkrates[] = { 6157 { 108, 40, 10 }, 6158 { 96, 44, 11 }, 6159 { 72, 50, 13 }, 6160 { 48, 57, 14 }, 6161 { 36, 67, 16 }, 6162 { 24, 80, 20 }, 6163 { 22, 100, 25 }, 6164 { 18, 133, 34 }, 6165 { 12, 160, 40 }, 6166 { 10, 200, 50 }, 6167 { 6, 240, 58 }, 6168 { 4, 267, 66 }, 6169 { 2, 400, 100 }, 6170 { 0, 500, 130 }, 6171 /* XXX half/quarter rates */ 6172 }; 6173 const HAL_RATE_TABLE *rt; 6174 int i, j; 6175 6176 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6177 rt = sc->sc_rates[mode]; 6178 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6179 for (i = 0; i < rt->rateCount; i++) { 6180 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6181 if (rt->info[i].phy != IEEE80211_T_HT) 6182 sc->sc_rixmap[ieeerate] = i; 6183 else 6184 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6185 } 6186 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6187 for (i = 0; i < N(sc->sc_hwmap); i++) { 6188 if (i >= rt->rateCount) { 6189 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6190 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6191 continue; 6192 } 6193 sc->sc_hwmap[i].ieeerate = 6194 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6195 if (rt->info[i].phy == IEEE80211_T_HT) 6196 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6197 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6198 if (rt->info[i].shortPreamble || 6199 rt->info[i].phy == IEEE80211_T_OFDM) 6200 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6201 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6202 for (j = 0; j < N(blinkrates)-1; j++) 6203 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6204 break; 6205 /* NB: this uses the last entry if the rate isn't found */ 6206 /* XXX beware of overlow */ 6207 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6208 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6209 } 6210 sc->sc_currates = rt; 6211 sc->sc_curmode = mode; 6212 /* 6213 * All protection frames are transmited at 2Mb/s for 6214 * 11g, otherwise at 1Mb/s. 6215 */ 6216 if (mode == IEEE80211_MODE_11G) 6217 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6218 else 6219 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6220 /* NB: caller is responsible for resetting rate control state */ 6221 #undef N 6222 } 6223 6224 static void 6225 ath_watchdog(void *arg) 6226 { 6227 struct ath_softc *sc = arg; 6228 int do_reset = 0; 6229 6230 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6231 struct ifnet *ifp = sc->sc_ifp; 6232 uint32_t hangs; 6233 6234 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6235 hangs != 0) { 6236 if_printf(ifp, "%s hang detected (0x%x)\n", 6237 hangs & 0xff ? "bb" : "mac", hangs); 6238 } else 6239 if_printf(ifp, "device timeout\n"); 6240 do_reset = 1; 6241 ifp->if_oerrors++; 6242 sc->sc_stats.ast_watchdog++; 6243 } 6244 6245 /* 6246 * We can't hold the lock across the ath_reset() call. 6247 * 6248 * And since this routine can't hold a lock and sleep, 6249 * do the reset deferred. 6250 */ 6251 if (do_reset) { 6252 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6253 } 6254 6255 callout_schedule(&sc->sc_wd_ch, hz); 6256 } 6257 6258 #ifdef ATH_DIAGAPI 6259 /* 6260 * Diagnostic interface to the HAL. This is used by various 6261 * tools to do things like retrieve register contents for 6262 * debugging. The mechanism is intentionally opaque so that 6263 * it can change frequently w/o concern for compatiblity. 6264 */ 6265 static int 6266 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6267 { 6268 struct ath_hal *ah = sc->sc_ah; 6269 u_int id = ad->ad_id & ATH_DIAG_ID; 6270 void *indata = NULL; 6271 void *outdata = NULL; 6272 u_int32_t insize = ad->ad_in_size; 6273 u_int32_t outsize = ad->ad_out_size; 6274 int error = 0; 6275 6276 if (ad->ad_id & ATH_DIAG_IN) { 6277 /* 6278 * Copy in data. 6279 */ 6280 indata = malloc(insize, M_TEMP, M_NOWAIT); 6281 if (indata == NULL) { 6282 error = ENOMEM; 6283 goto bad; 6284 } 6285 error = copyin(ad->ad_in_data, indata, insize); 6286 if (error) 6287 goto bad; 6288 } 6289 if (ad->ad_id & ATH_DIAG_DYN) { 6290 /* 6291 * Allocate a buffer for the results (otherwise the HAL 6292 * returns a pointer to a buffer where we can read the 6293 * results). Note that we depend on the HAL leaving this 6294 * pointer for us to use below in reclaiming the buffer; 6295 * may want to be more defensive. 6296 */ 6297 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6298 if (outdata == NULL) { 6299 error = ENOMEM; 6300 goto bad; 6301 } 6302 } 6303 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6304 if (outsize < ad->ad_out_size) 6305 ad->ad_out_size = outsize; 6306 if (outdata != NULL) 6307 error = copyout(outdata, ad->ad_out_data, 6308 ad->ad_out_size); 6309 } else { 6310 error = EINVAL; 6311 } 6312 bad: 6313 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6314 free(indata, M_TEMP); 6315 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6316 free(outdata, M_TEMP); 6317 return error; 6318 } 6319 #endif /* ATH_DIAGAPI */ 6320 6321 static int 6322 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6323 { 6324 #define IS_RUNNING(ifp) \ 6325 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6326 struct ath_softc *sc = ifp->if_softc; 6327 struct ieee80211com *ic = ifp->if_l2com; 6328 struct ifreq *ifr = (struct ifreq *)data; 6329 const HAL_RATE_TABLE *rt; 6330 int error = 0; 6331 6332 switch (cmd) { 6333 case SIOCSIFFLAGS: 6334 ATH_LOCK(sc); 6335 if (IS_RUNNING(ifp)) { 6336 /* 6337 * To avoid rescanning another access point, 6338 * do not call ath_init() here. Instead, 6339 * only reflect promisc mode settings. 6340 */ 6341 ath_mode_init(sc); 6342 } else if (ifp->if_flags & IFF_UP) { 6343 /* 6344 * Beware of being called during attach/detach 6345 * to reset promiscuous mode. In that case we 6346 * will still be marked UP but not RUNNING. 6347 * However trying to re-init the interface 6348 * is the wrong thing to do as we've already 6349 * torn down much of our state. There's 6350 * probably a better way to deal with this. 6351 */ 6352 if (!sc->sc_invalid) 6353 ath_init(sc); /* XXX lose error */ 6354 } else { 6355 ath_stop_locked(ifp); 6356 #ifdef notyet 6357 /* XXX must wakeup in places like ath_vap_delete */ 6358 if (!sc->sc_invalid) 6359 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6360 #endif 6361 } 6362 ATH_UNLOCK(sc); 6363 break; 6364 case SIOCGIFMEDIA: 6365 case SIOCSIFMEDIA: 6366 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6367 break; 6368 case SIOCGATHSTATS: 6369 /* NB: embed these numbers to get a consistent view */ 6370 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6371 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6372 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6373 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6374 #ifdef IEEE80211_SUPPORT_TDMA 6375 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6376 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6377 #endif 6378 rt = sc->sc_currates; 6379 sc->sc_stats.ast_tx_rate = 6380 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6381 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6382 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6383 return copyout(&sc->sc_stats, 6384 ifr->ifr_data, sizeof (sc->sc_stats)); 6385 case SIOCZATHSTATS: 6386 error = priv_check(curthread, PRIV_DRIVER); 6387 if (error == 0) 6388 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6389 break; 6390 #ifdef ATH_DIAGAPI 6391 case SIOCGATHDIAG: 6392 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6393 break; 6394 case SIOCGATHPHYERR: 6395 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6396 break; 6397 #endif 6398 case SIOCGIFADDR: 6399 error = ether_ioctl(ifp, cmd, data); 6400 break; 6401 default: 6402 error = EINVAL; 6403 break; 6404 } 6405 return error; 6406 #undef IS_RUNNING 6407 } 6408 6409 /* 6410 * Announce various information on device/driver attach. 6411 */ 6412 static void 6413 ath_announce(struct ath_softc *sc) 6414 { 6415 struct ifnet *ifp = sc->sc_ifp; 6416 struct ath_hal *ah = sc->sc_ah; 6417 6418 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6419 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6420 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6421 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6422 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6423 if (bootverbose) { 6424 int i; 6425 for (i = 0; i <= WME_AC_VO; i++) { 6426 struct ath_txq *txq = sc->sc_ac2q[i]; 6427 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6428 txq->axq_qnum, ieee80211_wme_acnames[i]); 6429 } 6430 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6431 sc->sc_cabq->axq_qnum); 6432 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6433 } 6434 if (ath_rxbuf != ATH_RXBUF) 6435 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6436 if (ath_txbuf != ATH_TXBUF) 6437 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6438 if (sc->sc_mcastkey && bootverbose) 6439 if_printf(ifp, "using multicast key search\n"); 6440 } 6441 6442 #ifdef IEEE80211_SUPPORT_TDMA 6443 static void 6444 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6445 { 6446 struct ath_hal *ah = sc->sc_ah; 6447 HAL_BEACON_TIMERS bt; 6448 6449 bt.bt_intval = bintval | HAL_BEACON_ENA; 6450 bt.bt_nexttbtt = nexttbtt; 6451 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6452 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6453 bt.bt_nextatim = nexttbtt+1; 6454 /* Enables TBTT, DBA, SWBA timers by default */ 6455 bt.bt_flags = 0; 6456 ath_hal_beaconsettimers(ah, &bt); 6457 } 6458 6459 /* 6460 * Calculate the beacon interval. This is periodic in the 6461 * superframe for the bss. We assume each station is configured 6462 * identically wrt transmit rate so the guard time we calculate 6463 * above will be the same on all stations. Note we need to 6464 * factor in the xmit time because the hardware will schedule 6465 * a frame for transmit if the start of the frame is within 6466 * the burst time. When we get hardware that properly kills 6467 * frames in the PCU we can reduce/eliminate the guard time. 6468 * 6469 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6470 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6471 * with 1us timer granularity should allow us to reduce/eliminate 6472 * this. 6473 */ 6474 static void 6475 ath_tdma_bintvalsetup(struct ath_softc *sc, 6476 const struct ieee80211_tdma_state *tdma) 6477 { 6478 /* copy from vap state (XXX check all vaps have same value?) */ 6479 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6480 6481 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6482 tdma->tdma_slotcnt, 1024); 6483 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6484 if (sc->sc_tdmabintval & 1) 6485 sc->sc_tdmabintval++; 6486 6487 if (tdma->tdma_slot == 0) { 6488 /* 6489 * Only slot 0 beacons; other slots respond. 6490 */ 6491 sc->sc_imask |= HAL_INT_SWBA; 6492 sc->sc_tdmaswba = 0; /* beacon immediately */ 6493 } else { 6494 /* XXX all vaps must be slot 0 or slot !0 */ 6495 sc->sc_imask &= ~HAL_INT_SWBA; 6496 } 6497 } 6498 6499 /* 6500 * Max 802.11 overhead. This assumes no 4-address frames and 6501 * the encapsulation done by ieee80211_encap (llc). We also 6502 * include potential crypto overhead. 6503 */ 6504 #define IEEE80211_MAXOVERHEAD \ 6505 (sizeof(struct ieee80211_qosframe) \ 6506 + sizeof(struct llc) \ 6507 + IEEE80211_ADDR_LEN \ 6508 + IEEE80211_WEP_IVLEN \ 6509 + IEEE80211_WEP_KIDLEN \ 6510 + IEEE80211_WEP_CRCLEN \ 6511 + IEEE80211_WEP_MICLEN \ 6512 + IEEE80211_CRC_LEN) 6513 6514 /* 6515 * Setup initially for tdma operation. Start the beacon 6516 * timers and enable SWBA if we are slot 0. Otherwise 6517 * we wait for slot 0 to arrive so we can sync up before 6518 * starting to transmit. 6519 */ 6520 static void 6521 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6522 { 6523 struct ath_hal *ah = sc->sc_ah; 6524 struct ifnet *ifp = sc->sc_ifp; 6525 struct ieee80211com *ic = ifp->if_l2com; 6526 const struct ieee80211_txparam *tp; 6527 const struct ieee80211_tdma_state *tdma = NULL; 6528 int rix; 6529 6530 if (vap == NULL) { 6531 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6532 if (vap == NULL) { 6533 if_printf(ifp, "%s: no vaps?\n", __func__); 6534 return; 6535 } 6536 } 6537 /* XXX should take a locked ref to iv_bss */ 6538 tp = vap->iv_bss->ni_txparms; 6539 /* 6540 * Calculate the guard time for each slot. This is the 6541 * time to send a maximal-size frame according to the 6542 * fixed/lowest transmit rate. Note that the interface 6543 * mtu does not include the 802.11 overhead so we must 6544 * tack that on (ath_hal_computetxtime includes the 6545 * preamble and plcp in it's calculation). 6546 */ 6547 tdma = vap->iv_tdma; 6548 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6549 rix = ath_tx_findrix(sc, tp->ucastrate); 6550 else 6551 rix = ath_tx_findrix(sc, tp->mcastrate); 6552 /* XXX short preamble assumed */ 6553 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6554 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6555 6556 ath_hal_intrset(ah, 0); 6557 6558 ath_beaconq_config(sc); /* setup h/w beacon q */ 6559 if (sc->sc_setcca) 6560 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6561 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6562 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6563 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6564 sc->sc_syncbeacon = 0; 6565 6566 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6567 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6568 6569 ath_hal_intrset(ah, sc->sc_imask); 6570 6571 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6572 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6573 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6574 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6575 sc->sc_tdmadbaprep); 6576 } 6577 6578 /* 6579 * Update tdma operation. Called from the 802.11 layer 6580 * when a beacon is received from the TDMA station operating 6581 * in the slot immediately preceding us in the bss. Use 6582 * the rx timestamp for the beacon frame to update our 6583 * beacon timers so we follow their schedule. Note that 6584 * by using the rx timestamp we implicitly include the 6585 * propagation delay in our schedule. 6586 */ 6587 static void 6588 ath_tdma_update(struct ieee80211_node *ni, 6589 const struct ieee80211_tdma_param *tdma, int changed) 6590 { 6591 #define TSF_TO_TU(_h,_l) \ 6592 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6593 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6594 struct ieee80211vap *vap = ni->ni_vap; 6595 struct ieee80211com *ic = ni->ni_ic; 6596 struct ath_softc *sc = ic->ic_ifp->if_softc; 6597 struct ath_hal *ah = sc->sc_ah; 6598 const HAL_RATE_TABLE *rt = sc->sc_currates; 6599 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6600 u_int32_t txtime, nextslottu; 6601 int32_t tudelta, tsfdelta; 6602 const struct ath_rx_status *rs; 6603 int rix; 6604 6605 sc->sc_stats.ast_tdma_update++; 6606 6607 /* 6608 * Check for and adopt configuration changes. 6609 */ 6610 if (changed != 0) { 6611 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6612 6613 ath_tdma_bintvalsetup(sc, ts); 6614 if (changed & TDMA_UPDATE_SLOTLEN) 6615 ath_wme_update(ic); 6616 6617 DPRINTF(sc, ATH_DEBUG_TDMA, 6618 "%s: adopt slot %u slotcnt %u slotlen %u us " 6619 "bintval %u TU\n", __func__, 6620 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6621 sc->sc_tdmabintval); 6622 6623 /* XXX right? */ 6624 ath_hal_intrset(ah, sc->sc_imask); 6625 /* NB: beacon timers programmed below */ 6626 } 6627 6628 /* extend rx timestamp to 64 bits */ 6629 rs = sc->sc_lastrs; 6630 tsf = ath_hal_gettsf64(ah); 6631 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6632 /* 6633 * The rx timestamp is set by the hardware on completing 6634 * reception (at the point where the rx descriptor is DMA'd 6635 * to the host). To find the start of our next slot we 6636 * must adjust this time by the time required to send 6637 * the packet just received. 6638 */ 6639 rix = rt->rateCodeToIndex[rs->rs_rate]; 6640 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6641 rt->info[rix].shortPreamble); 6642 /* NB: << 9 is to cvt to TU and /2 */ 6643 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6644 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6645 6646 /* 6647 * Retrieve the hardware NextTBTT in usecs 6648 * and calculate the difference between what the 6649 * other station thinks and what we have programmed. This 6650 * lets us figure how to adjust our timers to match. The 6651 * adjustments are done by pulling the TSF forward and possibly 6652 * rewriting the beacon timers. 6653 */ 6654 nexttbtt = ath_hal_getnexttbtt(ah); 6655 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6656 6657 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6658 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6659 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6660 6661 if (tsfdelta < 0) { 6662 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6663 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6664 tsfdelta = -tsfdelta % 1024; 6665 nextslottu++; 6666 } else if (tsfdelta > 0) { 6667 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6668 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6669 tsfdelta = 1024 - (tsfdelta % 1024); 6670 nextslottu++; 6671 } else { 6672 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6673 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6674 } 6675 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6676 6677 /* 6678 * Copy sender's timetstamp into tdma ie so they can 6679 * calculate roundtrip time. We submit a beacon frame 6680 * below after any timer adjustment. The frame goes out 6681 * at the next TBTT so the sender can calculate the 6682 * roundtrip by inspecting the tdma ie in our beacon frame. 6683 * 6684 * NB: This tstamp is subtlely preserved when 6685 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6686 * slot position changes) because ieee80211_add_tdma 6687 * skips over the data. 6688 */ 6689 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6690 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6691 &ni->ni_tstamp.data, 8); 6692 #if 0 6693 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6694 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6695 (unsigned long long) tsf, (unsigned long long) nextslot, 6696 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6697 #endif 6698 /* 6699 * Adjust the beacon timers only when pulling them forward 6700 * or when going back by less than the beacon interval. 6701 * Negative jumps larger than the beacon interval seem to 6702 * cause the timers to stop and generally cause instability. 6703 * This basically filters out jumps due to missed beacons. 6704 */ 6705 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6706 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6707 sc->sc_stats.ast_tdma_timers++; 6708 } 6709 if (tsfdelta > 0) { 6710 ath_hal_adjusttsf(ah, tsfdelta); 6711 sc->sc_stats.ast_tdma_tsf++; 6712 } 6713 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6714 #undef TU_TO_TSF 6715 #undef TSF_TO_TU 6716 } 6717 6718 /* 6719 * Transmit a beacon frame at SWBA. Dynamic updates 6720 * to the frame contents are done as needed. 6721 */ 6722 static void 6723 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6724 { 6725 struct ath_hal *ah = sc->sc_ah; 6726 struct ath_buf *bf; 6727 int otherant; 6728 6729 /* 6730 * Check if the previous beacon has gone out. If 6731 * not don't try to post another, skip this period 6732 * and wait for the next. Missed beacons indicate 6733 * a problem and should not occur. If we miss too 6734 * many consecutive beacons reset the device. 6735 */ 6736 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6737 sc->sc_bmisscount++; 6738 DPRINTF(sc, ATH_DEBUG_BEACON, 6739 "%s: missed %u consecutive beacons\n", 6740 __func__, sc->sc_bmisscount); 6741 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6742 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6743 return; 6744 } 6745 if (sc->sc_bmisscount != 0) { 6746 DPRINTF(sc, ATH_DEBUG_BEACON, 6747 "%s: resume beacon xmit after %u misses\n", 6748 __func__, sc->sc_bmisscount); 6749 sc->sc_bmisscount = 0; 6750 } 6751 6752 /* 6753 * Check recent per-antenna transmit statistics and flip 6754 * the default antenna if noticeably more frames went out 6755 * on the non-default antenna. 6756 * XXX assumes 2 anntenae 6757 */ 6758 if (!sc->sc_diversity) { 6759 otherant = sc->sc_defant & 1 ? 2 : 1; 6760 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6761 ath_setdefantenna(sc, otherant); 6762 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6763 } 6764 6765 bf = ath_beacon_generate(sc, vap); 6766 if (bf != NULL) { 6767 /* 6768 * Stop any current dma and put the new frame on the queue. 6769 * This should never fail since we check above that no frames 6770 * are still pending on the queue. 6771 */ 6772 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6773 DPRINTF(sc, ATH_DEBUG_ANY, 6774 "%s: beacon queue %u did not stop?\n", 6775 __func__, sc->sc_bhalq); 6776 /* NB: the HAL still stops DMA, so proceed */ 6777 } 6778 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6779 ath_hal_txstart(ah, sc->sc_bhalq); 6780 6781 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6782 6783 /* 6784 * Record local TSF for our last send for use 6785 * in arbitrating slot collisions. 6786 */ 6787 /* XXX should take a locked ref to iv_bss */ 6788 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6789 } 6790 } 6791 #endif /* IEEE80211_SUPPORT_TDMA */ 6792 6793 static void 6794 ath_dfs_tasklet(void *p, int npending) 6795 { 6796 struct ath_softc *sc = (struct ath_softc *) p; 6797 struct ifnet *ifp = sc->sc_ifp; 6798 struct ieee80211com *ic = ifp->if_l2com; 6799 6800 /* 6801 * If previous processing has found a radar event, 6802 * signal this to the net80211 layer to begin DFS 6803 * processing. 6804 */ 6805 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6806 /* DFS event found, initiate channel change */ 6807 /* 6808 * XXX doesn't currently tell us whether the event 6809 * XXX was found in the primary or extension 6810 * XXX channel! 6811 */ 6812 IEEE80211_LOCK(ic); 6813 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6814 IEEE80211_UNLOCK(ic); 6815 } 6816 } 6817 6818 MODULE_VERSION(if_ath, 1); 6819 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6820