1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_spectral.h> 117 #include <dev/ath/if_ath_lna_div.h> 118 #include <dev/ath/if_athdfs.h> 119 #include <dev/ath/if_ath_ioctl.h> 120 #include <dev/ath/if_ath_descdma.h> 121 122 #ifdef ATH_TX99_DIAG 123 #include <dev/ath/ath_tx99/ath_tx99.h> 124 #endif 125 126 #ifdef ATH_DEBUG_ALQ 127 #include <dev/ath/if_ath_alq.h> 128 #endif 129 130 /* 131 * Only enable this if you're working on PS-POLL support. 132 */ 133 #define ATH_SW_PSQ 134 135 /* 136 * ATH_BCBUF determines the number of vap's that can transmit 137 * beacons and also (currently) the number of vap's that can 138 * have unique mac addresses/bssid. When staggering beacons 139 * 4 is probably a good max as otherwise the beacons become 140 * very closely spaced and there is limited time for cab q traffic 141 * to go out. You can burst beacons instead but that is not good 142 * for stations in power save and at some point you really want 143 * another radio (and channel). 144 * 145 * The limit on the number of mac addresses is tied to our use of 146 * the U/L bit and tracking addresses in a byte; it would be 147 * worthwhile to allow more for applications like proxy sta. 148 */ 149 CTASSERT(ATH_BCBUF <= 8); 150 151 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 152 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 153 const uint8_t [IEEE80211_ADDR_LEN], 154 const uint8_t [IEEE80211_ADDR_LEN]); 155 static void ath_vap_delete(struct ieee80211vap *); 156 static int ath_init(struct ath_softc *); 157 static void ath_stop(struct ath_softc *); 158 static int ath_reset_vap(struct ieee80211vap *, u_long); 159 static int ath_transmit(struct ieee80211com *, struct mbuf *); 160 static int ath_media_change(struct ifnet *); 161 static void ath_watchdog(void *); 162 static void ath_parent(struct ieee80211com *); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_key_update_begin(struct ieee80211vap *); 167 static void ath_key_update_end(struct ieee80211vap *); 168 static void ath_update_mcast_hw(struct ath_softc *); 169 static void ath_update_mcast(struct ieee80211com *); 170 static void ath_update_promisc(struct ieee80211com *); 171 static void ath_updateslot(struct ieee80211com *); 172 static void ath_bstuck_proc(void *, int); 173 static void ath_reset_proc(void *, int); 174 static int ath_desc_alloc(struct ath_softc *); 175 static void ath_desc_free(struct ath_softc *); 176 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 177 const uint8_t [IEEE80211_ADDR_LEN]); 178 static void ath_node_cleanup(struct ieee80211_node *); 179 static void ath_node_free(struct ieee80211_node *); 180 static void ath_node_getsignal(const struct ieee80211_node *, 181 int8_t *, int8_t *); 182 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 183 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 184 static int ath_tx_setup(struct ath_softc *, int, int); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 188 int dosched); 189 static void ath_tx_proc_q0(void *, int); 190 static void ath_tx_proc_q0123(void *, int); 191 static void ath_tx_proc(void *, int); 192 static void ath_txq_sched_tasklet(void *, int); 193 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 #ifdef ATH_ENABLE_11N 199 static void ath_update_chw(struct ieee80211com *); 200 #endif /* ATH_ENABLE_11N */ 201 static void ath_calibrate(void *); 202 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 203 static void ath_setup_stationkey(struct ieee80211_node *); 204 static void ath_newassoc(struct ieee80211_node *, int); 205 static int ath_setregdomain(struct ieee80211com *, 206 struct ieee80211_regdomain *, int, 207 struct ieee80211_channel []); 208 static void ath_getradiocaps(struct ieee80211com *, int, int *, 209 struct ieee80211_channel []); 210 static int ath_getchannels(struct ath_softc *); 211 212 static int ath_rate_setup(struct ath_softc *, u_int mode); 213 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 214 215 static void ath_announce(struct ath_softc *); 216 217 static void ath_dfs_tasklet(void *, int); 218 static void ath_node_powersave(struct ieee80211_node *, int); 219 static int ath_node_set_tim(struct ieee80211_node *, int); 220 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 221 222 #ifdef IEEE80211_SUPPORT_TDMA 223 #include <dev/ath/if_ath_tdma.h> 224 #endif 225 226 SYSCTL_DECL(_hw_ath); 227 228 /* XXX validate sysctl values */ 229 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 231 0, "long chip calibration interval (secs)"); 232 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 234 0, "short chip calibration interval (msecs)"); 235 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 236 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 237 0, "reset chip calibration results (secs)"); 238 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 239 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 240 0, "ANI calibration (msecs)"); 241 242 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 244 0, "rx buffers allocated"); 245 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 247 0, "tx buffers allocated"); 248 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 250 0, "tx (mgmt) buffers allocated"); 251 252 int ath_bstuck_threshold = 4; /* max missed beacons */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 254 0, "max missed beacon xmits before chip reset"); 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 void 259 ath_legacy_attach_comp_func(struct ath_softc *sc) 260 { 261 262 /* 263 * Special case certain configurations. Note the 264 * CAB queue is handled by these specially so don't 265 * include them when checking the txq setup mask. 266 */ 267 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 268 case 0x01: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 270 break; 271 case 0x0f: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 273 break; 274 default: 275 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 276 break; 277 } 278 } 279 280 /* 281 * Set the target power mode. 282 * 283 * If this is called during a point in time where 284 * the hardware is being programmed elsewhere, it will 285 * simply store it away and update it when all current 286 * uses of the hardware are completed. 287 */ 288 void 289 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line) 290 { 291 ATH_LOCK_ASSERT(sc); 292 293 sc->sc_target_powerstate = power_state; 294 295 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 296 __func__, 297 file, 298 line, 299 power_state, 300 sc->sc_powersave_refcnt); 301 302 if (sc->sc_powersave_refcnt == 0 && 303 power_state != sc->sc_cur_powerstate) { 304 sc->sc_cur_powerstate = power_state; 305 ath_hal_setpower(sc->sc_ah, power_state); 306 307 /* 308 * If the NIC is force-awake, then set the 309 * self-gen frame state appropriately. 310 * 311 * If the nic is in network sleep or full-sleep, 312 * we let the above call leave the self-gen 313 * state as "sleep". 314 */ 315 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 316 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 317 ath_hal_setselfgenpower(sc->sc_ah, 318 sc->sc_target_selfgen_state); 319 } 320 } 321 } 322 323 /* 324 * Set the current self-generated frames state. 325 * 326 * This is separate from the target power mode. The chip may be 327 * awake but the desired state is "sleep", so frames sent to the 328 * destination has PWRMGT=1 in the 802.11 header. The NIC also 329 * needs to know to set PWRMGT=1 in self-generated frames. 330 */ 331 void 332 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 333 { 334 335 ATH_LOCK_ASSERT(sc); 336 337 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 338 __func__, 339 file, 340 line, 341 power_state, 342 sc->sc_target_selfgen_state); 343 344 sc->sc_target_selfgen_state = power_state; 345 346 /* 347 * If the NIC is force-awake, then set the power state. 348 * Network-state and full-sleep will already transition it to 349 * mark self-gen frames as sleeping - and we can't 350 * guarantee the NIC is awake to program the self-gen frame 351 * setting anyway. 352 */ 353 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 354 ath_hal_setselfgenpower(sc->sc_ah, power_state); 355 } 356 } 357 358 /* 359 * Set the hardware power mode and take a reference. 360 * 361 * This doesn't update the target power mode in the driver; 362 * it just updates the hardware power state. 363 * 364 * XXX it should only ever force the hardware awake; it should 365 * never be called to set it asleep. 366 */ 367 void 368 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 369 { 370 ATH_LOCK_ASSERT(sc); 371 372 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 373 __func__, 374 file, 375 line, 376 power_state, 377 sc->sc_powersave_refcnt); 378 379 sc->sc_powersave_refcnt++; 380 381 if (power_state != sc->sc_cur_powerstate) { 382 ath_hal_setpower(sc->sc_ah, power_state); 383 sc->sc_cur_powerstate = power_state; 384 385 /* 386 * Adjust the self-gen powerstate if appropriate. 387 */ 388 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 389 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 390 ath_hal_setselfgenpower(sc->sc_ah, 391 sc->sc_target_selfgen_state); 392 } 393 394 } 395 } 396 397 /* 398 * Restore the power save mode to what it once was. 399 * 400 * This will decrement the reference counter and once it hits 401 * zero, it'll restore the powersave state. 402 */ 403 void 404 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 405 { 406 407 ATH_LOCK_ASSERT(sc); 408 409 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 410 __func__, 411 file, 412 line, 413 sc->sc_powersave_refcnt, 414 sc->sc_target_powerstate); 415 416 if (sc->sc_powersave_refcnt == 0) 417 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 418 else 419 sc->sc_powersave_refcnt--; 420 421 if (sc->sc_powersave_refcnt == 0 && 422 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 423 sc->sc_cur_powerstate = sc->sc_target_powerstate; 424 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 425 } 426 427 /* 428 * Adjust the self-gen powerstate if appropriate. 429 */ 430 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 431 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 432 ath_hal_setselfgenpower(sc->sc_ah, 433 sc->sc_target_selfgen_state); 434 } 435 436 } 437 438 /* 439 * Configure the initial HAL configuration values based on bus 440 * specific parameters. 441 * 442 * Some PCI IDs and other information may need tweaking. 443 * 444 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 445 * if BT antenna diversity isn't enabled. 446 * 447 * So, let's also figure out how to enable BT diversity for AR9485. 448 */ 449 static void 450 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 451 { 452 /* XXX TODO: only for PCI devices? */ 453 454 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 455 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 456 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 457 ah_config->ath_hal_min_gainidx = AH_TRUE; 458 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 459 /* XXX low_rssi_thresh */ 460 /* XXX fast_div_bias */ 461 device_printf(sc->sc_dev, "configuring for %s\n", 462 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 463 "CUS198" : "CUS230"); 464 } 465 466 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 467 device_printf(sc->sc_dev, "CUS217 card detected\n"); 468 469 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 470 device_printf(sc->sc_dev, "CUS252 card detected\n"); 471 472 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 473 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 474 475 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 476 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 477 478 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 479 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 480 481 #if 0 482 /* 483 * Some WB335 cards do not support antenna diversity. Since 484 * we use a hardcoded value for AR9565 instead of using the 485 * EEPROM/OTP data, remove the combining feature from 486 * the HW capabilities bitmap. 487 */ 488 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 489 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 490 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 491 } 492 493 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 494 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 495 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 496 } 497 #endif 498 499 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 500 ah_config->ath_hal_pcie_waen = 0x0040473b; 501 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 502 } 503 504 #if 0 505 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 506 ah->config.no_pll_pwrsave = true; 507 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 508 } 509 #endif 510 511 } 512 513 /* 514 * Attempt to fetch the MAC address from the kernel environment. 515 * 516 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 517 */ 518 static int 519 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 520 { 521 char devid_str[32]; 522 int local_mac = 0; 523 char *local_macstr; 524 525 /* 526 * Fetch from the kenv rather than using hints. 527 * 528 * Hints would be nice but the transition to dynamic 529 * hints/kenv doesn't happen early enough for this 530 * to work reliably (eg on anything embedded.) 531 */ 532 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 533 device_get_name(sc->sc_dev), 534 device_get_unit(sc->sc_dev)); 535 536 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 537 uint32_t tmpmac[ETHER_ADDR_LEN]; 538 int count; 539 int i; 540 541 /* Have a MAC address; should use it */ 542 device_printf(sc->sc_dev, 543 "Overriding MAC address from environment: '%s'\n", 544 local_macstr); 545 546 /* Extract out the MAC address */ 547 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 548 &tmpmac[0], &tmpmac[1], 549 &tmpmac[2], &tmpmac[3], 550 &tmpmac[4], &tmpmac[5]); 551 if (count == 6) { 552 /* Valid! */ 553 local_mac = 1; 554 for (i = 0; i < ETHER_ADDR_LEN; i++) 555 macaddr[i] = tmpmac[i]; 556 } 557 /* Done! */ 558 freeenv(local_macstr); 559 local_macstr = NULL; 560 } 561 562 if (local_mac) 563 return (0); 564 return (-1); 565 } 566 567 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 568 #define HAL_MODE_HT40 \ 569 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 570 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 571 int 572 ath_attach(u_int16_t devid, struct ath_softc *sc) 573 { 574 struct ieee80211com *ic = &sc->sc_ic; 575 struct ath_hal *ah = NULL; 576 HAL_STATUS status; 577 int error = 0, i; 578 u_int wmodes; 579 int rx_chainmask, tx_chainmask; 580 HAL_OPS_CONFIG ah_config; 581 582 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 583 584 ic->ic_softc = sc; 585 ic->ic_name = device_get_nameunit(sc->sc_dev); 586 587 /* 588 * Configure the initial configuration data. 589 * 590 * This is stuff that may be needed early during attach 591 * rather than done via configuration calls later. 592 */ 593 bzero(&ah_config, sizeof(ah_config)); 594 ath_setup_hal_config(sc, &ah_config); 595 596 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 597 sc->sc_eepromdata, &ah_config, &status); 598 if (ah == NULL) { 599 device_printf(sc->sc_dev, 600 "unable to attach hardware; HAL status %u\n", status); 601 error = ENXIO; 602 goto bad; 603 } 604 sc->sc_ah = ah; 605 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 606 #ifdef ATH_DEBUG 607 sc->sc_debug = ath_debug; 608 #endif 609 610 /* 611 * Setup the DMA/EDMA functions based on the current 612 * hardware support. 613 * 614 * This is required before the descriptors are allocated. 615 */ 616 if (ath_hal_hasedma(sc->sc_ah)) { 617 sc->sc_isedma = 1; 618 ath_recv_setup_edma(sc); 619 ath_xmit_setup_edma(sc); 620 } else { 621 ath_recv_setup_legacy(sc); 622 ath_xmit_setup_legacy(sc); 623 } 624 625 if (ath_hal_hasmybeacon(sc->sc_ah)) { 626 sc->sc_do_mybeacon = 1; 627 } 628 629 /* 630 * Check if the MAC has multi-rate retry support. 631 * We do this by trying to setup a fake extended 632 * descriptor. MAC's that don't have support will 633 * return false w/o doing anything. MAC's that do 634 * support it will return true w/o doing anything. 635 */ 636 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 637 638 /* 639 * Check if the device has hardware counters for PHY 640 * errors. If so we need to enable the MIB interrupt 641 * so we can act on stat triggers. 642 */ 643 if (ath_hal_hwphycounters(ah)) 644 sc->sc_needmib = 1; 645 646 /* 647 * Get the hardware key cache size. 648 */ 649 sc->sc_keymax = ath_hal_keycachesize(ah); 650 if (sc->sc_keymax > ATH_KEYMAX) { 651 device_printf(sc->sc_dev, 652 "Warning, using only %u of %u key cache slots\n", 653 ATH_KEYMAX, sc->sc_keymax); 654 sc->sc_keymax = ATH_KEYMAX; 655 } 656 /* 657 * Reset the key cache since some parts do not 658 * reset the contents on initial power up. 659 */ 660 for (i = 0; i < sc->sc_keymax; i++) 661 ath_hal_keyreset(ah, i); 662 663 /* 664 * Collect the default channel list. 665 */ 666 error = ath_getchannels(sc); 667 if (error != 0) 668 goto bad; 669 670 /* 671 * Setup rate tables for all potential media types. 672 */ 673 ath_rate_setup(sc, IEEE80211_MODE_11A); 674 ath_rate_setup(sc, IEEE80211_MODE_11B); 675 ath_rate_setup(sc, IEEE80211_MODE_11G); 676 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 677 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 678 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 679 ath_rate_setup(sc, IEEE80211_MODE_11NA); 680 ath_rate_setup(sc, IEEE80211_MODE_11NG); 681 ath_rate_setup(sc, IEEE80211_MODE_HALF); 682 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 683 684 /* NB: setup here so ath_rate_update is happy */ 685 ath_setcurmode(sc, IEEE80211_MODE_11A); 686 687 /* 688 * Allocate TX descriptors and populate the lists. 689 */ 690 error = ath_desc_alloc(sc); 691 if (error != 0) { 692 device_printf(sc->sc_dev, 693 "failed to allocate TX descriptors: %d\n", error); 694 goto bad; 695 } 696 error = ath_txdma_setup(sc); 697 if (error != 0) { 698 device_printf(sc->sc_dev, 699 "failed to allocate TX descriptors: %d\n", error); 700 goto bad; 701 } 702 703 /* 704 * Allocate RX descriptors and populate the lists. 705 */ 706 error = ath_rxdma_setup(sc); 707 if (error != 0) { 708 device_printf(sc->sc_dev, 709 "failed to allocate RX descriptors: %d\n", error); 710 goto bad; 711 } 712 713 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 714 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 715 716 ATH_TXBUF_LOCK_INIT(sc); 717 718 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 719 taskqueue_thread_enqueue, &sc->sc_tq); 720 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 721 device_get_nameunit(sc->sc_dev)); 722 723 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 724 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 725 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 726 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 727 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 728 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 729 730 /* 731 * Allocate hardware transmit queues: one queue for 732 * beacon frames and one data queue for each QoS 733 * priority. Note that the hal handles resetting 734 * these queues at the needed time. 735 * 736 * XXX PS-Poll 737 */ 738 sc->sc_bhalq = ath_beaconq_setup(sc); 739 if (sc->sc_bhalq == (u_int) -1) { 740 device_printf(sc->sc_dev, 741 "unable to setup a beacon xmit queue!\n"); 742 error = EIO; 743 goto bad2; 744 } 745 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 746 if (sc->sc_cabq == NULL) { 747 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 748 error = EIO; 749 goto bad2; 750 } 751 /* NB: insure BK queue is the lowest priority h/w queue */ 752 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 753 device_printf(sc->sc_dev, 754 "unable to setup xmit queue for %s traffic!\n", 755 ieee80211_wme_acnames[WME_AC_BK]); 756 error = EIO; 757 goto bad2; 758 } 759 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 760 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 761 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 762 /* 763 * Not enough hardware tx queues to properly do WME; 764 * just punt and assign them all to the same h/w queue. 765 * We could do a better job of this if, for example, 766 * we allocate queues when we switch from station to 767 * AP mode. 768 */ 769 if (sc->sc_ac2q[WME_AC_VI] != NULL) 770 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 771 if (sc->sc_ac2q[WME_AC_BE] != NULL) 772 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 773 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 774 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 775 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 776 } 777 778 /* 779 * Attach the TX completion function. 780 * 781 * The non-EDMA chips may have some special case optimisations; 782 * this method gives everyone a chance to attach cleanly. 783 */ 784 sc->sc_tx.xmit_attach_comp_func(sc); 785 786 /* 787 * Setup rate control. Some rate control modules 788 * call back to change the anntena state so expose 789 * the necessary entry points. 790 * XXX maybe belongs in struct ath_ratectrl? 791 */ 792 sc->sc_setdefantenna = ath_setdefantenna; 793 sc->sc_rc = ath_rate_attach(sc); 794 if (sc->sc_rc == NULL) { 795 error = EIO; 796 goto bad2; 797 } 798 799 /* Attach DFS module */ 800 if (! ath_dfs_attach(sc)) { 801 device_printf(sc->sc_dev, 802 "%s: unable to attach DFS\n", __func__); 803 error = EIO; 804 goto bad2; 805 } 806 807 /* Attach spectral module */ 808 if (ath_spectral_attach(sc) < 0) { 809 device_printf(sc->sc_dev, 810 "%s: unable to attach spectral\n", __func__); 811 error = EIO; 812 goto bad2; 813 } 814 815 /* Attach bluetooth coexistence module */ 816 if (ath_btcoex_attach(sc) < 0) { 817 device_printf(sc->sc_dev, 818 "%s: unable to attach bluetooth coexistence\n", __func__); 819 error = EIO; 820 goto bad2; 821 } 822 823 /* Attach LNA diversity module */ 824 if (ath_lna_div_attach(sc) < 0) { 825 device_printf(sc->sc_dev, 826 "%s: unable to attach LNA diversity\n", __func__); 827 error = EIO; 828 goto bad2; 829 } 830 831 /* Start DFS processing tasklet */ 832 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 833 834 /* Configure LED state */ 835 sc->sc_blinking = 0; 836 sc->sc_ledstate = 1; 837 sc->sc_ledon = 0; /* low true */ 838 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 839 callout_init(&sc->sc_ledtimer, 1); 840 841 /* 842 * Don't setup hardware-based blinking. 843 * 844 * Although some NICs may have this configured in the 845 * default reset register values, the user may wish 846 * to alter which pins have which function. 847 * 848 * The reference driver attaches the MAC network LED to GPIO1 and 849 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 850 * NIC has these reversed. 851 */ 852 sc->sc_hardled = (1 == 0); 853 sc->sc_led_net_pin = -1; 854 sc->sc_led_pwr_pin = -1; 855 /* 856 * Auto-enable soft led processing for IBM cards and for 857 * 5211 minipci cards. Users can also manually enable/disable 858 * support with a sysctl. 859 */ 860 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 861 ath_led_config(sc); 862 ath_hal_setledstate(ah, HAL_LED_INIT); 863 864 /* XXX not right but it's not used anywhere important */ 865 ic->ic_phytype = IEEE80211_T_OFDM; 866 ic->ic_opmode = IEEE80211_M_STA; 867 ic->ic_caps = 868 IEEE80211_C_STA /* station mode */ 869 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 870 | IEEE80211_C_HOSTAP /* hostap mode */ 871 | IEEE80211_C_MONITOR /* monitor mode */ 872 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 873 | IEEE80211_C_WDS /* 4-address traffic works */ 874 | IEEE80211_C_MBSS /* mesh point link mode */ 875 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 876 | IEEE80211_C_SHSLOT /* short slot time supported */ 877 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 878 #ifndef ATH_ENABLE_11N 879 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 880 #endif 881 | IEEE80211_C_TXFRAG /* handle tx frags */ 882 #ifdef ATH_ENABLE_DFS 883 | IEEE80211_C_DFS /* Enable radar detection */ 884 #endif 885 | IEEE80211_C_PMGT /* Station side power mgmt */ 886 | IEEE80211_C_SWSLEEP 887 ; 888 /* 889 * Query the hal to figure out h/w crypto support. 890 */ 891 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 892 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 893 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 894 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 895 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 896 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 897 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 898 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 899 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 900 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 901 /* 902 * Check if h/w does the MIC and/or whether the 903 * separate key cache entries are required to 904 * handle both tx+rx MIC keys. 905 */ 906 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 907 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 908 /* 909 * If the h/w supports storing tx+rx MIC keys 910 * in one cache slot automatically enable use. 911 */ 912 if (ath_hal_hastkipsplit(ah) || 913 !ath_hal_settkipsplit(ah, AH_FALSE)) 914 sc->sc_splitmic = 1; 915 /* 916 * If the h/w can do TKIP MIC together with WME then 917 * we use it; otherwise we force the MIC to be done 918 * in software by the net80211 layer. 919 */ 920 if (ath_hal_haswmetkipmic(ah)) 921 sc->sc_wmetkipmic = 1; 922 } 923 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 924 /* 925 * Check for multicast key search support. 926 */ 927 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 928 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 929 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 930 } 931 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 932 /* 933 * Mark key cache slots associated with global keys 934 * as in use. If we knew TKIP was not to be used we 935 * could leave the +32, +64, and +32+64 slots free. 936 */ 937 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 938 setbit(sc->sc_keymap, i); 939 setbit(sc->sc_keymap, i+64); 940 if (sc->sc_splitmic) { 941 setbit(sc->sc_keymap, i+32); 942 setbit(sc->sc_keymap, i+32+64); 943 } 944 } 945 /* 946 * TPC support can be done either with a global cap or 947 * per-packet support. The latter is not available on 948 * all parts. We're a bit pedantic here as all parts 949 * support a global cap. 950 */ 951 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 952 ic->ic_caps |= IEEE80211_C_TXPMGT; 953 954 /* 955 * Mark WME capability only if we have sufficient 956 * hardware queues to do proper priority scheduling. 957 */ 958 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 959 ic->ic_caps |= IEEE80211_C_WME; 960 /* 961 * Check for misc other capabilities. 962 */ 963 if (ath_hal_hasbursting(ah)) 964 ic->ic_caps |= IEEE80211_C_BURST; 965 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 966 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 967 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 968 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 969 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 970 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 971 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 972 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 973 974 if (ath_hal_hasfastframes(ah)) 975 ic->ic_caps |= IEEE80211_C_FF; 976 wmodes = ath_hal_getwirelessmodes(ah); 977 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 978 ic->ic_caps |= IEEE80211_C_TURBOP; 979 #ifdef IEEE80211_SUPPORT_TDMA 980 if (ath_hal_macversion(ah) > 0x78) { 981 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 982 ic->ic_tdma_update = ath_tdma_update; 983 } 984 #endif 985 986 /* 987 * TODO: enforce that at least this many frames are available 988 * in the txbuf list before allowing data frames (raw or 989 * otherwise) to be transmitted. 990 */ 991 sc->sc_txq_data_minfree = 10; 992 /* 993 * Leave this as default to maintain legacy behaviour. 994 * Shortening the cabq/mcastq may end up causing some 995 * undesirable behaviour. 996 */ 997 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 998 999 /* 1000 * How deep can the node software TX queue get whilst it's asleep. 1001 */ 1002 sc->sc_txq_node_psq_maxdepth = 16; 1003 1004 /* 1005 * Default the maximum queue depth for a given node 1006 * to 1/4'th the TX buffers, or 64, whichever 1007 * is larger. 1008 */ 1009 sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4); 1010 1011 /* Enable CABQ by default */ 1012 sc->sc_cabq_enable = 1; 1013 1014 /* 1015 * Allow the TX and RX chainmasks to be overridden by 1016 * environment variables and/or device.hints. 1017 * 1018 * This must be done early - before the hardware is 1019 * calibrated or before the 802.11n stream calculation 1020 * is done. 1021 */ 1022 if (resource_int_value(device_get_name(sc->sc_dev), 1023 device_get_unit(sc->sc_dev), "rx_chainmask", 1024 &rx_chainmask) == 0) { 1025 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1026 rx_chainmask); 1027 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1028 } 1029 if (resource_int_value(device_get_name(sc->sc_dev), 1030 device_get_unit(sc->sc_dev), "tx_chainmask", 1031 &tx_chainmask) == 0) { 1032 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1033 tx_chainmask); 1034 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1035 } 1036 1037 /* 1038 * Query the TX/RX chainmask configuration. 1039 * 1040 * This is only relevant for 11n devices. 1041 */ 1042 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1043 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1044 1045 /* 1046 * Disable MRR with protected frames by default. 1047 * Only 802.11n series NICs can handle this. 1048 */ 1049 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1050 1051 /* 1052 * Query the enterprise mode information the HAL. 1053 */ 1054 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1055 &sc->sc_ent_cfg) == HAL_OK) 1056 sc->sc_use_ent = 1; 1057 1058 #ifdef ATH_ENABLE_11N 1059 /* 1060 * Query HT capabilities 1061 */ 1062 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1063 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1064 uint32_t rxs, txs; 1065 uint32_t ldpc; 1066 1067 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1068 1069 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1070 1071 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1072 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1073 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1074 | IEEE80211_HTCAP_MAXAMSDU_3839 1075 /* max A-MSDU length */ 1076 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1077 1078 /* 1079 * Enable short-GI for HT20 only if the hardware 1080 * advertises support. 1081 * Notably, anything earlier than the AR9287 doesn't. 1082 */ 1083 if ((ath_hal_getcapability(ah, 1084 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1085 (wmodes & HAL_MODE_HT20)) { 1086 device_printf(sc->sc_dev, 1087 "[HT] enabling short-GI in 20MHz mode\n"); 1088 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1089 } 1090 1091 if (wmodes & HAL_MODE_HT40) 1092 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1093 | IEEE80211_HTCAP_SHORTGI40; 1094 1095 /* 1096 * TX/RX streams need to be taken into account when 1097 * negotiating which MCS rates it'll receive and 1098 * what MCS rates are available for TX. 1099 */ 1100 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1101 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1102 ic->ic_txstream = txs; 1103 ic->ic_rxstream = rxs; 1104 1105 /* 1106 * Setup TX and RX STBC based on what the HAL allows and 1107 * the currently configured chainmask set. 1108 * Ie - don't enable STBC TX if only one chain is enabled. 1109 * STBC RX is fine on a single RX chain; it just won't 1110 * provide any real benefit. 1111 */ 1112 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1113 NULL) == HAL_OK) { 1114 sc->sc_rx_stbc = 1; 1115 device_printf(sc->sc_dev, 1116 "[HT] 1 stream STBC receive enabled\n"); 1117 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1118 } 1119 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1120 NULL) == HAL_OK) { 1121 sc->sc_tx_stbc = 1; 1122 device_printf(sc->sc_dev, 1123 "[HT] 1 stream STBC transmit enabled\n"); 1124 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1125 } 1126 1127 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1128 &sc->sc_rts_aggr_limit); 1129 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1130 device_printf(sc->sc_dev, 1131 "[HT] RTS aggregates limited to %d KiB\n", 1132 sc->sc_rts_aggr_limit / 1024); 1133 1134 /* 1135 * LDPC 1136 */ 1137 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1138 == HAL_OK && (ldpc == 1)) { 1139 sc->sc_has_ldpc = 1; 1140 device_printf(sc->sc_dev, 1141 "[HT] LDPC transmit/receive enabled\n"); 1142 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC; 1143 } 1144 1145 1146 device_printf(sc->sc_dev, 1147 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1148 } 1149 #endif 1150 1151 /* 1152 * Initial aggregation settings. 1153 */ 1154 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1155 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1156 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1157 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1158 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1159 sc->sc_delim_min_pad = 0; 1160 1161 /* 1162 * Check if the hardware requires PCI register serialisation. 1163 * Some of the Owl based MACs require this. 1164 */ 1165 if (mp_ncpus > 1 && 1166 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1167 0, NULL) == HAL_OK) { 1168 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1169 device_printf(sc->sc_dev, 1170 "Enabling register serialisation\n"); 1171 } 1172 1173 /* 1174 * Initialise the deferred completed RX buffer list. 1175 */ 1176 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1177 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1178 1179 /* 1180 * Indicate we need the 802.11 header padded to a 1181 * 32-bit boundary for 4-address and QoS frames. 1182 */ 1183 ic->ic_flags |= IEEE80211_F_DATAPAD; 1184 1185 /* 1186 * Query the hal about antenna support. 1187 */ 1188 sc->sc_defant = ath_hal_getdefantenna(ah); 1189 1190 /* 1191 * Not all chips have the VEOL support we want to 1192 * use with IBSS beacons; check here for it. 1193 */ 1194 sc->sc_hasveol = ath_hal_hasveol(ah); 1195 1196 /* get mac address from kenv first, then hardware */ 1197 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1198 /* Tell the HAL now about the new MAC */ 1199 ath_hal_setmac(ah, ic->ic_macaddr); 1200 } else { 1201 ath_hal_getmac(ah, ic->ic_macaddr); 1202 } 1203 1204 if (sc->sc_hasbmask) 1205 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1206 1207 /* NB: used to size node table key mapping array */ 1208 ic->ic_max_keyix = sc->sc_keymax; 1209 /* call MI attach routine. */ 1210 ieee80211_ifattach(ic); 1211 ic->ic_setregdomain = ath_setregdomain; 1212 ic->ic_getradiocaps = ath_getradiocaps; 1213 sc->sc_opmode = HAL_M_STA; 1214 1215 /* override default methods */ 1216 ic->ic_ioctl = ath_ioctl; 1217 ic->ic_parent = ath_parent; 1218 ic->ic_transmit = ath_transmit; 1219 ic->ic_newassoc = ath_newassoc; 1220 ic->ic_updateslot = ath_updateslot; 1221 ic->ic_wme.wme_update = ath_wme_update; 1222 ic->ic_vap_create = ath_vap_create; 1223 ic->ic_vap_delete = ath_vap_delete; 1224 ic->ic_raw_xmit = ath_raw_xmit; 1225 ic->ic_update_mcast = ath_update_mcast; 1226 ic->ic_update_promisc = ath_update_promisc; 1227 ic->ic_node_alloc = ath_node_alloc; 1228 sc->sc_node_free = ic->ic_node_free; 1229 ic->ic_node_free = ath_node_free; 1230 sc->sc_node_cleanup = ic->ic_node_cleanup; 1231 ic->ic_node_cleanup = ath_node_cleanup; 1232 ic->ic_node_getsignal = ath_node_getsignal; 1233 ic->ic_scan_start = ath_scan_start; 1234 ic->ic_scan_end = ath_scan_end; 1235 ic->ic_set_channel = ath_set_channel; 1236 #ifdef ATH_ENABLE_11N 1237 /* 802.11n specific - but just override anyway */ 1238 sc->sc_addba_request = ic->ic_addba_request; 1239 sc->sc_addba_response = ic->ic_addba_response; 1240 sc->sc_addba_stop = ic->ic_addba_stop; 1241 sc->sc_bar_response = ic->ic_bar_response; 1242 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1243 1244 ic->ic_addba_request = ath_addba_request; 1245 ic->ic_addba_response = ath_addba_response; 1246 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1247 ic->ic_addba_stop = ath_addba_stop; 1248 ic->ic_bar_response = ath_bar_response; 1249 1250 ic->ic_update_chw = ath_update_chw; 1251 #endif /* ATH_ENABLE_11N */ 1252 1253 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1254 /* 1255 * There's one vendor bitmap entry in the RX radiotap 1256 * header; make sure that's taken into account. 1257 */ 1258 ieee80211_radiotap_attachv(ic, 1259 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1260 ATH_TX_RADIOTAP_PRESENT, 1261 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1262 ATH_RX_RADIOTAP_PRESENT); 1263 #else 1264 /* 1265 * No vendor bitmap/extensions are present. 1266 */ 1267 ieee80211_radiotap_attach(ic, 1268 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1269 ATH_TX_RADIOTAP_PRESENT, 1270 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1271 ATH_RX_RADIOTAP_PRESENT); 1272 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1273 1274 /* 1275 * Setup the ALQ logging if required 1276 */ 1277 #ifdef ATH_DEBUG_ALQ 1278 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1279 if_ath_alq_setcfg(&sc->sc_alq, 1280 sc->sc_ah->ah_macVersion, 1281 sc->sc_ah->ah_macRev, 1282 sc->sc_ah->ah_phyRev, 1283 sc->sc_ah->ah_magic); 1284 #endif 1285 1286 /* 1287 * Setup dynamic sysctl's now that country code and 1288 * regdomain are available from the hal. 1289 */ 1290 ath_sysctlattach(sc); 1291 ath_sysctl_stats_attach(sc); 1292 ath_sysctl_hal_attach(sc); 1293 1294 if (bootverbose) 1295 ieee80211_announce(ic); 1296 ath_announce(sc); 1297 1298 /* 1299 * Put it to sleep for now. 1300 */ 1301 ATH_LOCK(sc); 1302 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 1303 ATH_UNLOCK(sc); 1304 1305 return 0; 1306 bad2: 1307 ath_tx_cleanup(sc); 1308 ath_desc_free(sc); 1309 ath_txdma_teardown(sc); 1310 ath_rxdma_teardown(sc); 1311 bad: 1312 if (ah) 1313 ath_hal_detach(ah); 1314 sc->sc_invalid = 1; 1315 return error; 1316 } 1317 1318 int 1319 ath_detach(struct ath_softc *sc) 1320 { 1321 1322 /* 1323 * NB: the order of these is important: 1324 * o stop the chip so no more interrupts will fire 1325 * o call the 802.11 layer before detaching the hal to 1326 * insure callbacks into the driver to delete global 1327 * key cache entries can be handled 1328 * o free the taskqueue which drains any pending tasks 1329 * o reclaim the tx queue data structures after calling 1330 * the 802.11 layer as we'll get called back to reclaim 1331 * node state and potentially want to use them 1332 * o to cleanup the tx queues the hal is called, so detach 1333 * it last 1334 * Other than that, it's straightforward... 1335 */ 1336 1337 /* 1338 * XXX Wake the hardware up first. ath_stop() will still 1339 * wake it up first, but I'd rather do it here just to 1340 * ensure it's awake. 1341 */ 1342 ATH_LOCK(sc); 1343 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1344 ath_power_setpower(sc, HAL_PM_AWAKE); 1345 1346 /* 1347 * Stop things cleanly. 1348 */ 1349 ath_stop(sc); 1350 ATH_UNLOCK(sc); 1351 1352 ieee80211_ifdetach(&sc->sc_ic); 1353 taskqueue_free(sc->sc_tq); 1354 #ifdef ATH_TX99_DIAG 1355 if (sc->sc_tx99 != NULL) 1356 sc->sc_tx99->detach(sc->sc_tx99); 1357 #endif 1358 ath_rate_detach(sc->sc_rc); 1359 #ifdef ATH_DEBUG_ALQ 1360 if_ath_alq_tidyup(&sc->sc_alq); 1361 #endif 1362 ath_lna_div_detach(sc); 1363 ath_btcoex_detach(sc); 1364 ath_spectral_detach(sc); 1365 ath_dfs_detach(sc); 1366 ath_desc_free(sc); 1367 ath_txdma_teardown(sc); 1368 ath_rxdma_teardown(sc); 1369 ath_tx_cleanup(sc); 1370 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1371 1372 return 0; 1373 } 1374 1375 /* 1376 * MAC address handling for multiple BSS on the same radio. 1377 * The first vap uses the MAC address from the EEPROM. For 1378 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1379 * address and use the next six bits as an index. 1380 */ 1381 static void 1382 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1383 { 1384 int i; 1385 1386 if (clone && sc->sc_hasbmask) { 1387 /* NB: we only do this if h/w supports multiple bssid */ 1388 for (i = 0; i < 8; i++) 1389 if ((sc->sc_bssidmask & (1<<i)) == 0) 1390 break; 1391 if (i != 0) 1392 mac[0] |= (i << 2)|0x2; 1393 } else 1394 i = 0; 1395 sc->sc_bssidmask |= 1<<i; 1396 sc->sc_hwbssidmask[0] &= ~mac[0]; 1397 if (i == 0) 1398 sc->sc_nbssid0++; 1399 } 1400 1401 static void 1402 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1403 { 1404 int i = mac[0] >> 2; 1405 uint8_t mask; 1406 1407 if (i != 0 || --sc->sc_nbssid0 == 0) { 1408 sc->sc_bssidmask &= ~(1<<i); 1409 /* recalculate bssid mask from remaining addresses */ 1410 mask = 0xff; 1411 for (i = 1; i < 8; i++) 1412 if (sc->sc_bssidmask & (1<<i)) 1413 mask &= ~((i<<2)|0x2); 1414 sc->sc_hwbssidmask[0] |= mask; 1415 } 1416 } 1417 1418 /* 1419 * Assign a beacon xmit slot. We try to space out 1420 * assignments so when beacons are staggered the 1421 * traffic coming out of the cab q has maximal time 1422 * to go out before the next beacon is scheduled. 1423 */ 1424 static int 1425 assign_bslot(struct ath_softc *sc) 1426 { 1427 u_int slot, free; 1428 1429 free = 0; 1430 for (slot = 0; slot < ATH_BCBUF; slot++) 1431 if (sc->sc_bslot[slot] == NULL) { 1432 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1433 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1434 return slot; 1435 free = slot; 1436 /* NB: keep looking for a double slot */ 1437 } 1438 return free; 1439 } 1440 1441 static struct ieee80211vap * 1442 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1443 enum ieee80211_opmode opmode, int flags, 1444 const uint8_t bssid[IEEE80211_ADDR_LEN], 1445 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1446 { 1447 struct ath_softc *sc = ic->ic_softc; 1448 struct ath_vap *avp; 1449 struct ieee80211vap *vap; 1450 uint8_t mac[IEEE80211_ADDR_LEN]; 1451 int needbeacon, error; 1452 enum ieee80211_opmode ic_opmode; 1453 1454 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1455 needbeacon = 0; 1456 IEEE80211_ADDR_COPY(mac, mac0); 1457 1458 ATH_LOCK(sc); 1459 ic_opmode = opmode; /* default to opmode of new vap */ 1460 switch (opmode) { 1461 case IEEE80211_M_STA: 1462 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1463 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1464 goto bad; 1465 } 1466 if (sc->sc_nvaps) { 1467 /* 1468 * With multiple vaps we must fall back 1469 * to s/w beacon miss handling. 1470 */ 1471 flags |= IEEE80211_CLONE_NOBEACONS; 1472 } 1473 if (flags & IEEE80211_CLONE_NOBEACONS) { 1474 /* 1475 * Station mode w/o beacons are implemented w/ AP mode. 1476 */ 1477 ic_opmode = IEEE80211_M_HOSTAP; 1478 } 1479 break; 1480 case IEEE80211_M_IBSS: 1481 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1482 device_printf(sc->sc_dev, 1483 "only 1 ibss vap supported\n"); 1484 goto bad; 1485 } 1486 needbeacon = 1; 1487 break; 1488 case IEEE80211_M_AHDEMO: 1489 #ifdef IEEE80211_SUPPORT_TDMA 1490 if (flags & IEEE80211_CLONE_TDMA) { 1491 if (sc->sc_nvaps != 0) { 1492 device_printf(sc->sc_dev, 1493 "only 1 tdma vap supported\n"); 1494 goto bad; 1495 } 1496 needbeacon = 1; 1497 flags |= IEEE80211_CLONE_NOBEACONS; 1498 } 1499 /* fall thru... */ 1500 #endif 1501 case IEEE80211_M_MONITOR: 1502 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1503 /* 1504 * Adopt existing mode. Adding a monitor or ahdemo 1505 * vap to an existing configuration is of dubious 1506 * value but should be ok. 1507 */ 1508 /* XXX not right for monitor mode */ 1509 ic_opmode = ic->ic_opmode; 1510 } 1511 break; 1512 case IEEE80211_M_HOSTAP: 1513 case IEEE80211_M_MBSS: 1514 needbeacon = 1; 1515 break; 1516 case IEEE80211_M_WDS: 1517 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1518 device_printf(sc->sc_dev, 1519 "wds not supported in sta mode\n"); 1520 goto bad; 1521 } 1522 /* 1523 * Silently remove any request for a unique 1524 * bssid; WDS vap's always share the local 1525 * mac address. 1526 */ 1527 flags &= ~IEEE80211_CLONE_BSSID; 1528 if (sc->sc_nvaps == 0) 1529 ic_opmode = IEEE80211_M_HOSTAP; 1530 else 1531 ic_opmode = ic->ic_opmode; 1532 break; 1533 default: 1534 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1535 goto bad; 1536 } 1537 /* 1538 * Check that a beacon buffer is available; the code below assumes it. 1539 */ 1540 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1541 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1542 goto bad; 1543 } 1544 1545 /* STA, AHDEMO? */ 1546 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1547 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1548 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1549 } 1550 1551 vap = &avp->av_vap; 1552 /* XXX can't hold mutex across if_alloc */ 1553 ATH_UNLOCK(sc); 1554 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1555 ATH_LOCK(sc); 1556 if (error != 0) { 1557 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1558 __func__, error); 1559 goto bad2; 1560 } 1561 1562 /* h/w crypto support */ 1563 vap->iv_key_alloc = ath_key_alloc; 1564 vap->iv_key_delete = ath_key_delete; 1565 vap->iv_key_set = ath_key_set; 1566 vap->iv_key_update_begin = ath_key_update_begin; 1567 vap->iv_key_update_end = ath_key_update_end; 1568 1569 /* override various methods */ 1570 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1571 vap->iv_recv_mgmt = ath_recv_mgmt; 1572 vap->iv_reset = ath_reset_vap; 1573 vap->iv_update_beacon = ath_beacon_update; 1574 avp->av_newstate = vap->iv_newstate; 1575 vap->iv_newstate = ath_newstate; 1576 avp->av_bmiss = vap->iv_bmiss; 1577 vap->iv_bmiss = ath_bmiss_vap; 1578 1579 avp->av_node_ps = vap->iv_node_ps; 1580 vap->iv_node_ps = ath_node_powersave; 1581 1582 avp->av_set_tim = vap->iv_set_tim; 1583 vap->iv_set_tim = ath_node_set_tim; 1584 1585 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1586 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1587 1588 /* Set default parameters */ 1589 1590 /* 1591 * Anything earlier than some AR9300 series MACs don't 1592 * support a smaller MPDU density. 1593 */ 1594 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1595 /* 1596 * All NICs can handle the maximum size, however 1597 * AR5416 based MACs can only TX aggregates w/ RTS 1598 * protection when the total aggregate size is <= 8k. 1599 * However, for now that's enforced by the TX path. 1600 */ 1601 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1602 1603 avp->av_bslot = -1; 1604 if (needbeacon) { 1605 /* 1606 * Allocate beacon state and setup the q for buffered 1607 * multicast frames. We know a beacon buffer is 1608 * available because we checked above. 1609 */ 1610 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1611 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1612 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1613 /* 1614 * Assign the vap to a beacon xmit slot. As above 1615 * this cannot fail to find a free one. 1616 */ 1617 avp->av_bslot = assign_bslot(sc); 1618 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1619 ("beacon slot %u not empty", avp->av_bslot)); 1620 sc->sc_bslot[avp->av_bslot] = vap; 1621 sc->sc_nbcnvaps++; 1622 } 1623 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1624 /* 1625 * Multple vaps are to transmit beacons and we 1626 * have h/w support for TSF adjusting; enable 1627 * use of staggered beacons. 1628 */ 1629 sc->sc_stagbeacons = 1; 1630 } 1631 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1632 } 1633 1634 ic->ic_opmode = ic_opmode; 1635 if (opmode != IEEE80211_M_WDS) { 1636 sc->sc_nvaps++; 1637 if (opmode == IEEE80211_M_STA) 1638 sc->sc_nstavaps++; 1639 if (opmode == IEEE80211_M_MBSS) 1640 sc->sc_nmeshvaps++; 1641 } 1642 switch (ic_opmode) { 1643 case IEEE80211_M_IBSS: 1644 sc->sc_opmode = HAL_M_IBSS; 1645 break; 1646 case IEEE80211_M_STA: 1647 sc->sc_opmode = HAL_M_STA; 1648 break; 1649 case IEEE80211_M_AHDEMO: 1650 #ifdef IEEE80211_SUPPORT_TDMA 1651 if (vap->iv_caps & IEEE80211_C_TDMA) { 1652 sc->sc_tdma = 1; 1653 /* NB: disable tsf adjust */ 1654 sc->sc_stagbeacons = 0; 1655 } 1656 /* 1657 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1658 * just ap mode. 1659 */ 1660 /* fall thru... */ 1661 #endif 1662 case IEEE80211_M_HOSTAP: 1663 case IEEE80211_M_MBSS: 1664 sc->sc_opmode = HAL_M_HOSTAP; 1665 break; 1666 case IEEE80211_M_MONITOR: 1667 sc->sc_opmode = HAL_M_MONITOR; 1668 break; 1669 default: 1670 /* XXX should not happen */ 1671 break; 1672 } 1673 if (sc->sc_hastsfadd) { 1674 /* 1675 * Configure whether or not TSF adjust should be done. 1676 */ 1677 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1678 } 1679 if (flags & IEEE80211_CLONE_NOBEACONS) { 1680 /* 1681 * Enable s/w beacon miss handling. 1682 */ 1683 sc->sc_swbmiss = 1; 1684 } 1685 ATH_UNLOCK(sc); 1686 1687 /* complete setup */ 1688 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1689 mac); 1690 return vap; 1691 bad2: 1692 reclaim_address(sc, mac); 1693 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1694 bad: 1695 free(avp, M_80211_VAP); 1696 ATH_UNLOCK(sc); 1697 return NULL; 1698 } 1699 1700 static void 1701 ath_vap_delete(struct ieee80211vap *vap) 1702 { 1703 struct ieee80211com *ic = vap->iv_ic; 1704 struct ath_softc *sc = ic->ic_softc; 1705 struct ath_hal *ah = sc->sc_ah; 1706 struct ath_vap *avp = ATH_VAP(vap); 1707 1708 ATH_LOCK(sc); 1709 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1710 ATH_UNLOCK(sc); 1711 1712 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1713 if (sc->sc_running) { 1714 /* 1715 * Quiesce the hardware while we remove the vap. In 1716 * particular we need to reclaim all references to 1717 * the vap state by any frames pending on the tx queues. 1718 */ 1719 ath_hal_intrset(ah, 0); /* disable interrupts */ 1720 /* XXX Do all frames from all vaps/nodes need draining here? */ 1721 ath_stoprecv(sc, 1); /* stop recv side */ 1722 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1723 } 1724 1725 /* .. leave the hardware awake for now. */ 1726 1727 ieee80211_vap_detach(vap); 1728 1729 /* 1730 * XXX Danger Will Robinson! Danger! 1731 * 1732 * Because ieee80211_vap_detach() can queue a frame (the station 1733 * diassociate message?) after we've drained the TXQ and 1734 * flushed the software TXQ, we will end up with a frame queued 1735 * to a node whose vap is about to be freed. 1736 * 1737 * To work around this, flush the hardware/software again. 1738 * This may be racy - the ath task may be running and the packet 1739 * may be being scheduled between sw->hw txq. Tsk. 1740 * 1741 * TODO: figure out why a new node gets allocated somewhere around 1742 * here (after the ath_tx_swq() call; and after an ath_stop() 1743 * call!) 1744 */ 1745 1746 ath_draintxq(sc, ATH_RESET_DEFAULT); 1747 1748 ATH_LOCK(sc); 1749 /* 1750 * Reclaim beacon state. Note this must be done before 1751 * the vap instance is reclaimed as we may have a reference 1752 * to it in the buffer for the beacon frame. 1753 */ 1754 if (avp->av_bcbuf != NULL) { 1755 if (avp->av_bslot != -1) { 1756 sc->sc_bslot[avp->av_bslot] = NULL; 1757 sc->sc_nbcnvaps--; 1758 } 1759 ath_beacon_return(sc, avp->av_bcbuf); 1760 avp->av_bcbuf = NULL; 1761 if (sc->sc_nbcnvaps == 0) { 1762 sc->sc_stagbeacons = 0; 1763 if (sc->sc_hastsfadd) 1764 ath_hal_settsfadjust(sc->sc_ah, 0); 1765 } 1766 /* 1767 * Reclaim any pending mcast frames for the vap. 1768 */ 1769 ath_tx_draintxq(sc, &avp->av_mcastq); 1770 } 1771 /* 1772 * Update bookkeeping. 1773 */ 1774 if (vap->iv_opmode == IEEE80211_M_STA) { 1775 sc->sc_nstavaps--; 1776 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1777 sc->sc_swbmiss = 0; 1778 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1779 vap->iv_opmode == IEEE80211_M_MBSS) { 1780 reclaim_address(sc, vap->iv_myaddr); 1781 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1782 if (vap->iv_opmode == IEEE80211_M_MBSS) 1783 sc->sc_nmeshvaps--; 1784 } 1785 if (vap->iv_opmode != IEEE80211_M_WDS) 1786 sc->sc_nvaps--; 1787 #ifdef IEEE80211_SUPPORT_TDMA 1788 /* TDMA operation ceases when the last vap is destroyed */ 1789 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1790 sc->sc_tdma = 0; 1791 sc->sc_swbmiss = 0; 1792 } 1793 #endif 1794 free(avp, M_80211_VAP); 1795 1796 if (sc->sc_running) { 1797 /* 1798 * Restart rx+tx machines if still running (RUNNING will 1799 * be reset if we just destroyed the last vap). 1800 */ 1801 if (ath_startrecv(sc) != 0) 1802 device_printf(sc->sc_dev, 1803 "%s: unable to restart recv logic\n", __func__); 1804 if (sc->sc_beacons) { /* restart beacons */ 1805 #ifdef IEEE80211_SUPPORT_TDMA 1806 if (sc->sc_tdma) 1807 ath_tdma_config(sc, NULL); 1808 else 1809 #endif 1810 ath_beacon_config(sc, NULL); 1811 } 1812 ath_hal_intrset(ah, sc->sc_imask); 1813 } 1814 1815 /* Ok, let the hardware asleep. */ 1816 ath_power_restore_power_state(sc); 1817 ATH_UNLOCK(sc); 1818 } 1819 1820 void 1821 ath_suspend(struct ath_softc *sc) 1822 { 1823 struct ieee80211com *ic = &sc->sc_ic; 1824 1825 sc->sc_resume_up = ic->ic_nrunning != 0; 1826 1827 ieee80211_suspend_all(ic); 1828 /* 1829 * NB: don't worry about putting the chip in low power 1830 * mode; pci will power off our socket on suspend and 1831 * CardBus detaches the device. 1832 * 1833 * XXX TODO: well, that's great, except for non-cardbus 1834 * devices! 1835 */ 1836 1837 /* 1838 * XXX This doesn't wait until all pending taskqueue 1839 * items and parallel transmit/receive/other threads 1840 * are running! 1841 */ 1842 ath_hal_intrset(sc->sc_ah, 0); 1843 taskqueue_block(sc->sc_tq); 1844 1845 ATH_LOCK(sc); 1846 callout_stop(&sc->sc_cal_ch); 1847 ATH_UNLOCK(sc); 1848 1849 /* 1850 * XXX ensure sc_invalid is 1 1851 */ 1852 1853 /* Disable the PCIe PHY, complete with workarounds */ 1854 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1855 } 1856 1857 /* 1858 * Reset the key cache since some parts do not reset the 1859 * contents on resume. First we clear all entries, then 1860 * re-load keys that the 802.11 layer assumes are setup 1861 * in h/w. 1862 */ 1863 static void 1864 ath_reset_keycache(struct ath_softc *sc) 1865 { 1866 struct ieee80211com *ic = &sc->sc_ic; 1867 struct ath_hal *ah = sc->sc_ah; 1868 int i; 1869 1870 ATH_LOCK(sc); 1871 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1872 for (i = 0; i < sc->sc_keymax; i++) 1873 ath_hal_keyreset(ah, i); 1874 ath_power_restore_power_state(sc); 1875 ATH_UNLOCK(sc); 1876 ieee80211_crypto_reload_keys(ic); 1877 } 1878 1879 /* 1880 * Fetch the current chainmask configuration based on the current 1881 * operating channel and options. 1882 */ 1883 static void 1884 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1885 { 1886 1887 /* 1888 * Set TX chainmask to the currently configured chainmask; 1889 * the TX chainmask depends upon the current operating mode. 1890 */ 1891 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1892 if (IEEE80211_IS_CHAN_HT(chan)) { 1893 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1894 } else { 1895 sc->sc_cur_txchainmask = 1; 1896 } 1897 1898 DPRINTF(sc, ATH_DEBUG_RESET, 1899 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1900 __func__, 1901 sc->sc_cur_txchainmask, 1902 sc->sc_cur_rxchainmask); 1903 } 1904 1905 void 1906 ath_resume(struct ath_softc *sc) 1907 { 1908 struct ieee80211com *ic = &sc->sc_ic; 1909 struct ath_hal *ah = sc->sc_ah; 1910 HAL_STATUS status; 1911 1912 ath_hal_enablepcie(ah, 0, 0); 1913 1914 /* 1915 * Must reset the chip before we reload the 1916 * keycache as we were powered down on suspend. 1917 */ 1918 ath_update_chainmasks(sc, 1919 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1920 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1921 sc->sc_cur_rxchainmask); 1922 1923 /* Ensure we set the current power state to on */ 1924 ATH_LOCK(sc); 1925 ath_power_setselfgen(sc, HAL_PM_AWAKE); 1926 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1927 ath_power_setpower(sc, HAL_PM_AWAKE); 1928 ATH_UNLOCK(sc); 1929 1930 ath_hal_reset(ah, sc->sc_opmode, 1931 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1932 AH_FALSE, HAL_RESET_NORMAL, &status); 1933 ath_reset_keycache(sc); 1934 1935 ATH_RX_LOCK(sc); 1936 sc->sc_rx_stopped = 1; 1937 sc->sc_rx_resetted = 1; 1938 ATH_RX_UNLOCK(sc); 1939 1940 /* Let DFS at it in case it's a DFS channel */ 1941 ath_dfs_radar_enable(sc, ic->ic_curchan); 1942 1943 /* Let spectral at in case spectral is enabled */ 1944 ath_spectral_enable(sc, ic->ic_curchan); 1945 1946 /* 1947 * Let bluetooth coexistence at in case it's needed for this channel 1948 */ 1949 ath_btcoex_enable(sc, ic->ic_curchan); 1950 1951 /* 1952 * If we're doing TDMA, enforce the TXOP limitation for chips that 1953 * support it. 1954 */ 1955 if (sc->sc_hasenforcetxop && sc->sc_tdma) 1956 ath_hal_setenforcetxop(sc->sc_ah, 1); 1957 else 1958 ath_hal_setenforcetxop(sc->sc_ah, 0); 1959 1960 /* Restore the LED configuration */ 1961 ath_led_config(sc); 1962 ath_hal_setledstate(ah, HAL_LED_INIT); 1963 1964 if (sc->sc_resume_up) 1965 ieee80211_resume_all(ic); 1966 1967 ATH_LOCK(sc); 1968 ath_power_restore_power_state(sc); 1969 ATH_UNLOCK(sc); 1970 1971 /* XXX beacons ? */ 1972 } 1973 1974 void 1975 ath_shutdown(struct ath_softc *sc) 1976 { 1977 1978 ATH_LOCK(sc); 1979 ath_stop(sc); 1980 ATH_UNLOCK(sc); 1981 /* NB: no point powering down chip as we're about to reboot */ 1982 } 1983 1984 /* 1985 * Interrupt handler. Most of the actual processing is deferred. 1986 */ 1987 void 1988 ath_intr(void *arg) 1989 { 1990 struct ath_softc *sc = arg; 1991 struct ath_hal *ah = sc->sc_ah; 1992 HAL_INT status = 0; 1993 uint32_t txqs; 1994 1995 /* 1996 * If we're inside a reset path, just print a warning and 1997 * clear the ISR. The reset routine will finish it for us. 1998 */ 1999 ATH_PCU_LOCK(sc); 2000 if (sc->sc_inreset_cnt) { 2001 HAL_INT status; 2002 ath_hal_getisr(ah, &status); /* clear ISR */ 2003 ath_hal_intrset(ah, 0); /* disable further intr's */ 2004 DPRINTF(sc, ATH_DEBUG_ANY, 2005 "%s: in reset, ignoring: status=0x%x\n", 2006 __func__, status); 2007 ATH_PCU_UNLOCK(sc); 2008 return; 2009 } 2010 2011 if (sc->sc_invalid) { 2012 /* 2013 * The hardware is not ready/present, don't touch anything. 2014 * Note this can happen early on if the IRQ is shared. 2015 */ 2016 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2017 ATH_PCU_UNLOCK(sc); 2018 return; 2019 } 2020 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2021 ATH_PCU_UNLOCK(sc); 2022 return; 2023 } 2024 2025 ATH_LOCK(sc); 2026 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2027 ATH_UNLOCK(sc); 2028 2029 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2030 HAL_INT status; 2031 2032 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2033 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2034 ath_hal_getisr(ah, &status); /* clear ISR */ 2035 ath_hal_intrset(ah, 0); /* disable further intr's */ 2036 ATH_PCU_UNLOCK(sc); 2037 2038 ATH_LOCK(sc); 2039 ath_power_restore_power_state(sc); 2040 ATH_UNLOCK(sc); 2041 return; 2042 } 2043 2044 /* 2045 * Figure out the reason(s) for the interrupt. Note 2046 * that the hal returns a pseudo-ISR that may include 2047 * bits we haven't explicitly enabled so we mask the 2048 * value to insure we only process bits we requested. 2049 */ 2050 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2051 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2052 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2053 #ifdef ATH_DEBUG_ALQ 2054 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2055 ah->ah_syncstate); 2056 #endif /* ATH_DEBUG_ALQ */ 2057 #ifdef ATH_KTR_INTR_DEBUG 2058 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2059 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2060 ah->ah_intrstate[0], 2061 ah->ah_intrstate[1], 2062 ah->ah_intrstate[2], 2063 ah->ah_intrstate[3], 2064 ah->ah_intrstate[6]); 2065 #endif 2066 2067 /* Squirrel away SYNC interrupt debugging */ 2068 if (ah->ah_syncstate != 0) { 2069 int i; 2070 for (i = 0; i < 32; i++) 2071 if (ah->ah_syncstate & (i << i)) 2072 sc->sc_intr_stats.sync_intr[i]++; 2073 } 2074 2075 status &= sc->sc_imask; /* discard unasked for bits */ 2076 2077 /* Short-circuit un-handled interrupts */ 2078 if (status == 0x0) { 2079 ATH_PCU_UNLOCK(sc); 2080 2081 ATH_LOCK(sc); 2082 ath_power_restore_power_state(sc); 2083 ATH_UNLOCK(sc); 2084 2085 return; 2086 } 2087 2088 /* 2089 * Take a note that we're inside the interrupt handler, so 2090 * the reset routines know to wait. 2091 */ 2092 sc->sc_intr_cnt++; 2093 ATH_PCU_UNLOCK(sc); 2094 2095 /* 2096 * Handle the interrupt. We won't run concurrent with the reset 2097 * or channel change routines as they'll wait for sc_intr_cnt 2098 * to be 0 before continuing. 2099 */ 2100 if (status & HAL_INT_FATAL) { 2101 sc->sc_stats.ast_hardware++; 2102 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2103 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2104 } else { 2105 if (status & HAL_INT_SWBA) { 2106 /* 2107 * Software beacon alert--time to send a beacon. 2108 * Handle beacon transmission directly; deferring 2109 * this is too slow to meet timing constraints 2110 * under load. 2111 */ 2112 #ifdef IEEE80211_SUPPORT_TDMA 2113 if (sc->sc_tdma) { 2114 if (sc->sc_tdmaswba == 0) { 2115 struct ieee80211com *ic = &sc->sc_ic; 2116 struct ieee80211vap *vap = 2117 TAILQ_FIRST(&ic->ic_vaps); 2118 ath_tdma_beacon_send(sc, vap); 2119 sc->sc_tdmaswba = 2120 vap->iv_tdma->tdma_bintval; 2121 } else 2122 sc->sc_tdmaswba--; 2123 } else 2124 #endif 2125 { 2126 ath_beacon_proc(sc, 0); 2127 #ifdef IEEE80211_SUPPORT_SUPERG 2128 /* 2129 * Schedule the rx taskq in case there's no 2130 * traffic so any frames held on the staging 2131 * queue are aged and potentially flushed. 2132 */ 2133 sc->sc_rx.recv_sched(sc, 1); 2134 #endif 2135 } 2136 } 2137 if (status & HAL_INT_RXEOL) { 2138 int imask; 2139 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2140 if (! sc->sc_isedma) { 2141 ATH_PCU_LOCK(sc); 2142 /* 2143 * NB: the hardware should re-read the link when 2144 * RXE bit is written, but it doesn't work at 2145 * least on older hardware revs. 2146 */ 2147 sc->sc_stats.ast_rxeol++; 2148 /* 2149 * Disable RXEOL/RXORN - prevent an interrupt 2150 * storm until the PCU logic can be reset. 2151 * In case the interface is reset some other 2152 * way before "sc_kickpcu" is called, don't 2153 * modify sc_imask - that way if it is reset 2154 * by a call to ath_reset() somehow, the 2155 * interrupt mask will be correctly reprogrammed. 2156 */ 2157 imask = sc->sc_imask; 2158 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2159 ath_hal_intrset(ah, imask); 2160 /* 2161 * Only blank sc_rxlink if we've not yet kicked 2162 * the PCU. 2163 * 2164 * This isn't entirely correct - the correct solution 2165 * would be to have a PCU lock and engage that for 2166 * the duration of the PCU fiddling; which would include 2167 * running the RX process. Otherwise we could end up 2168 * messing up the RX descriptor chain and making the 2169 * RX desc list much shorter. 2170 */ 2171 if (! sc->sc_kickpcu) 2172 sc->sc_rxlink = NULL; 2173 sc->sc_kickpcu = 1; 2174 ATH_PCU_UNLOCK(sc); 2175 } 2176 /* 2177 * Enqueue an RX proc to handle whatever 2178 * is in the RX queue. 2179 * This will then kick the PCU if required. 2180 */ 2181 sc->sc_rx.recv_sched(sc, 1); 2182 } 2183 if (status & HAL_INT_TXURN) { 2184 sc->sc_stats.ast_txurn++; 2185 /* bump tx trigger level */ 2186 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2187 } 2188 /* 2189 * Handle both the legacy and RX EDMA interrupt bits. 2190 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2191 */ 2192 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2193 sc->sc_stats.ast_rx_intr++; 2194 sc->sc_rx.recv_sched(sc, 1); 2195 } 2196 if (status & HAL_INT_TX) { 2197 sc->sc_stats.ast_tx_intr++; 2198 /* 2199 * Grab all the currently set bits in the HAL txq bitmap 2200 * and blank them. This is the only place we should be 2201 * doing this. 2202 */ 2203 if (! sc->sc_isedma) { 2204 ATH_PCU_LOCK(sc); 2205 txqs = 0xffffffff; 2206 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2207 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2208 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2209 txqs, 2210 sc->sc_txq_active, 2211 sc->sc_txq_active | txqs); 2212 sc->sc_txq_active |= txqs; 2213 ATH_PCU_UNLOCK(sc); 2214 } 2215 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2216 } 2217 if (status & HAL_INT_BMISS) { 2218 sc->sc_stats.ast_bmiss++; 2219 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2220 } 2221 if (status & HAL_INT_GTT) 2222 sc->sc_stats.ast_tx_timeout++; 2223 if (status & HAL_INT_CST) 2224 sc->sc_stats.ast_tx_cst++; 2225 if (status & HAL_INT_MIB) { 2226 sc->sc_stats.ast_mib++; 2227 ATH_PCU_LOCK(sc); 2228 /* 2229 * Disable interrupts until we service the MIB 2230 * interrupt; otherwise it will continue to fire. 2231 */ 2232 ath_hal_intrset(ah, 0); 2233 /* 2234 * Let the hal handle the event. We assume it will 2235 * clear whatever condition caused the interrupt. 2236 */ 2237 ath_hal_mibevent(ah, &sc->sc_halstats); 2238 /* 2239 * Don't reset the interrupt if we've just 2240 * kicked the PCU, or we may get a nested 2241 * RXEOL before the rxproc has had a chance 2242 * to run. 2243 */ 2244 if (sc->sc_kickpcu == 0) 2245 ath_hal_intrset(ah, sc->sc_imask); 2246 ATH_PCU_UNLOCK(sc); 2247 } 2248 if (status & HAL_INT_RXORN) { 2249 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2250 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2251 sc->sc_stats.ast_rxorn++; 2252 } 2253 if (status & HAL_INT_TSFOOR) { 2254 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2255 sc->sc_syncbeacon = 1; 2256 } 2257 } 2258 ATH_PCU_LOCK(sc); 2259 sc->sc_intr_cnt--; 2260 ATH_PCU_UNLOCK(sc); 2261 2262 ATH_LOCK(sc); 2263 ath_power_restore_power_state(sc); 2264 ATH_UNLOCK(sc); 2265 } 2266 2267 static void 2268 ath_fatal_proc(void *arg, int pending) 2269 { 2270 struct ath_softc *sc = arg; 2271 u_int32_t *state; 2272 u_int32_t len; 2273 void *sp; 2274 2275 if (sc->sc_invalid) 2276 return; 2277 2278 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2279 /* 2280 * Fatal errors are unrecoverable. Typically these 2281 * are caused by DMA errors. Collect h/w state from 2282 * the hal so we can diagnose what's going on. 2283 */ 2284 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2285 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2286 state = sp; 2287 device_printf(sc->sc_dev, 2288 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2289 state[1] , state[2], state[3], state[4], state[5]); 2290 } 2291 ath_reset(sc, ATH_RESET_NOLOSS); 2292 } 2293 2294 static void 2295 ath_bmiss_vap(struct ieee80211vap *vap) 2296 { 2297 struct ath_softc *sc = vap->iv_ic->ic_softc; 2298 2299 /* 2300 * Workaround phantom bmiss interrupts by sanity-checking 2301 * the time of our last rx'd frame. If it is within the 2302 * beacon miss interval then ignore the interrupt. If it's 2303 * truly a bmiss we'll get another interrupt soon and that'll 2304 * be dispatched up for processing. Note this applies only 2305 * for h/w beacon miss events. 2306 */ 2307 2308 /* 2309 * XXX TODO: Just read the TSF during the interrupt path; 2310 * that way we don't have to wake up again just to read it 2311 * again. 2312 */ 2313 ATH_LOCK(sc); 2314 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2315 ATH_UNLOCK(sc); 2316 2317 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2318 u_int64_t lastrx = sc->sc_lastrx; 2319 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2320 /* XXX should take a locked ref to iv_bss */ 2321 u_int bmisstimeout = 2322 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2323 2324 DPRINTF(sc, ATH_DEBUG_BEACON, 2325 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2326 __func__, (unsigned long long) tsf, 2327 (unsigned long long)(tsf - lastrx), 2328 (unsigned long long) lastrx, bmisstimeout); 2329 2330 if (tsf - lastrx <= bmisstimeout) { 2331 sc->sc_stats.ast_bmiss_phantom++; 2332 2333 ATH_LOCK(sc); 2334 ath_power_restore_power_state(sc); 2335 ATH_UNLOCK(sc); 2336 2337 return; 2338 } 2339 } 2340 2341 /* 2342 * There's no need to keep the hardware awake during the call 2343 * to av_bmiss(). 2344 */ 2345 ATH_LOCK(sc); 2346 ath_power_restore_power_state(sc); 2347 ATH_UNLOCK(sc); 2348 2349 /* 2350 * Attempt to force a beacon resync. 2351 */ 2352 sc->sc_syncbeacon = 1; 2353 2354 ATH_VAP(vap)->av_bmiss(vap); 2355 } 2356 2357 /* XXX this needs a force wakeup! */ 2358 int 2359 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2360 { 2361 uint32_t rsize; 2362 void *sp; 2363 2364 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2365 return 0; 2366 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2367 *hangs = *(uint32_t *)sp; 2368 return 1; 2369 } 2370 2371 static void 2372 ath_bmiss_proc(void *arg, int pending) 2373 { 2374 struct ath_softc *sc = arg; 2375 uint32_t hangs; 2376 2377 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2378 2379 ATH_LOCK(sc); 2380 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2381 ATH_UNLOCK(sc); 2382 2383 ath_beacon_miss(sc); 2384 2385 /* 2386 * Do a reset upon any becaon miss event. 2387 * 2388 * It may be a non-recognised RX clear hang which needs a reset 2389 * to clear. 2390 */ 2391 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2392 ath_reset(sc, ATH_RESET_NOLOSS); 2393 device_printf(sc->sc_dev, 2394 "bb hang detected (0x%x), resetting\n", hangs); 2395 } else { 2396 ath_reset(sc, ATH_RESET_NOLOSS); 2397 ieee80211_beacon_miss(&sc->sc_ic); 2398 } 2399 2400 /* Force a beacon resync, in case they've drifted */ 2401 sc->sc_syncbeacon = 1; 2402 2403 ATH_LOCK(sc); 2404 ath_power_restore_power_state(sc); 2405 ATH_UNLOCK(sc); 2406 } 2407 2408 /* 2409 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2410 * calcs together with WME. If necessary disable the crypto 2411 * hardware and mark the 802.11 state so keys will be setup 2412 * with the MIC work done in software. 2413 */ 2414 static void 2415 ath_settkipmic(struct ath_softc *sc) 2416 { 2417 struct ieee80211com *ic = &sc->sc_ic; 2418 2419 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2420 if (ic->ic_flags & IEEE80211_F_WME) { 2421 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2422 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2423 } else { 2424 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2425 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2426 } 2427 } 2428 } 2429 2430 static int 2431 ath_init(struct ath_softc *sc) 2432 { 2433 struct ieee80211com *ic = &sc->sc_ic; 2434 struct ath_hal *ah = sc->sc_ah; 2435 HAL_STATUS status; 2436 2437 ATH_LOCK_ASSERT(sc); 2438 2439 /* 2440 * Force the sleep state awake. 2441 */ 2442 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2443 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2444 ath_power_setpower(sc, HAL_PM_AWAKE); 2445 2446 /* 2447 * Stop anything previously setup. This is safe 2448 * whether this is the first time through or not. 2449 */ 2450 ath_stop(sc); 2451 2452 /* 2453 * The basic interface to setting the hardware in a good 2454 * state is ``reset''. On return the hardware is known to 2455 * be powered up and with interrupts disabled. This must 2456 * be followed by initialization of the appropriate bits 2457 * and then setup of the interrupt mask. 2458 */ 2459 ath_settkipmic(sc); 2460 ath_update_chainmasks(sc, ic->ic_curchan); 2461 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2462 sc->sc_cur_rxchainmask); 2463 2464 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2465 HAL_RESET_NORMAL, &status)) { 2466 device_printf(sc->sc_dev, 2467 "unable to reset hardware; hal status %u\n", status); 2468 return (ENODEV); 2469 } 2470 2471 ATH_RX_LOCK(sc); 2472 sc->sc_rx_stopped = 1; 2473 sc->sc_rx_resetted = 1; 2474 ATH_RX_UNLOCK(sc); 2475 2476 ath_chan_change(sc, ic->ic_curchan); 2477 2478 /* Let DFS at it in case it's a DFS channel */ 2479 ath_dfs_radar_enable(sc, ic->ic_curchan); 2480 2481 /* Let spectral at in case spectral is enabled */ 2482 ath_spectral_enable(sc, ic->ic_curchan); 2483 2484 /* 2485 * Let bluetooth coexistence at in case it's needed for this channel 2486 */ 2487 ath_btcoex_enable(sc, ic->ic_curchan); 2488 2489 /* 2490 * If we're doing TDMA, enforce the TXOP limitation for chips that 2491 * support it. 2492 */ 2493 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2494 ath_hal_setenforcetxop(sc->sc_ah, 1); 2495 else 2496 ath_hal_setenforcetxop(sc->sc_ah, 0); 2497 2498 /* 2499 * Likewise this is set during reset so update 2500 * state cached in the driver. 2501 */ 2502 sc->sc_diversity = ath_hal_getdiversity(ah); 2503 sc->sc_lastlongcal = ticks; 2504 sc->sc_resetcal = 1; 2505 sc->sc_lastcalreset = 0; 2506 sc->sc_lastani = ticks; 2507 sc->sc_lastshortcal = ticks; 2508 sc->sc_doresetcal = AH_FALSE; 2509 /* 2510 * Beacon timers were cleared here; give ath_newstate() 2511 * a hint that the beacon timers should be poked when 2512 * things transition to the RUN state. 2513 */ 2514 sc->sc_beacons = 0; 2515 2516 /* 2517 * Setup the hardware after reset: the key cache 2518 * is filled as needed and the receive engine is 2519 * set going. Frame transmit is handled entirely 2520 * in the frame output path; there's nothing to do 2521 * here except setup the interrupt mask. 2522 */ 2523 if (ath_startrecv(sc) != 0) { 2524 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2525 ath_power_restore_power_state(sc); 2526 return (ENODEV); 2527 } 2528 2529 /* 2530 * Enable interrupts. 2531 */ 2532 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2533 | HAL_INT_RXORN | HAL_INT_TXURN 2534 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2535 2536 /* 2537 * Enable RX EDMA bits. Note these overlap with 2538 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2539 */ 2540 if (sc->sc_isedma) 2541 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2542 2543 /* 2544 * If we're an EDMA NIC, we don't care about RXEOL. 2545 * Writing a new descriptor in will simply restart 2546 * RX DMA. 2547 */ 2548 if (! sc->sc_isedma) 2549 sc->sc_imask |= HAL_INT_RXEOL; 2550 2551 /* 2552 * Enable MIB interrupts when there are hardware phy counters. 2553 * Note we only do this (at the moment) for station mode. 2554 */ 2555 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2556 sc->sc_imask |= HAL_INT_MIB; 2557 2558 /* 2559 * XXX add capability for this. 2560 * 2561 * If we're in STA mode (and maybe IBSS?) then register for 2562 * TSFOOR interrupts. 2563 */ 2564 if (ic->ic_opmode == IEEE80211_M_STA) 2565 sc->sc_imask |= HAL_INT_TSFOOR; 2566 2567 /* Enable global TX timeout and carrier sense timeout if available */ 2568 if (ath_hal_gtxto_supported(ah)) 2569 sc->sc_imask |= HAL_INT_GTT; 2570 2571 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2572 __func__, sc->sc_imask); 2573 2574 sc->sc_running = 1; 2575 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2576 ath_hal_intrset(ah, sc->sc_imask); 2577 2578 ath_power_restore_power_state(sc); 2579 2580 return (0); 2581 } 2582 2583 static void 2584 ath_stop(struct ath_softc *sc) 2585 { 2586 struct ath_hal *ah = sc->sc_ah; 2587 2588 ATH_LOCK_ASSERT(sc); 2589 2590 /* 2591 * Wake the hardware up before fiddling with it. 2592 */ 2593 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2594 2595 if (sc->sc_running) { 2596 /* 2597 * Shutdown the hardware and driver: 2598 * reset 802.11 state machine 2599 * turn off timers 2600 * disable interrupts 2601 * turn off the radio 2602 * clear transmit machinery 2603 * clear receive machinery 2604 * drain and release tx queues 2605 * reclaim beacon resources 2606 * power down hardware 2607 * 2608 * Note that some of this work is not possible if the 2609 * hardware is gone (invalid). 2610 */ 2611 #ifdef ATH_TX99_DIAG 2612 if (sc->sc_tx99 != NULL) 2613 sc->sc_tx99->stop(sc->sc_tx99); 2614 #endif 2615 callout_stop(&sc->sc_wd_ch); 2616 sc->sc_wd_timer = 0; 2617 sc->sc_running = 0; 2618 if (!sc->sc_invalid) { 2619 if (sc->sc_softled) { 2620 callout_stop(&sc->sc_ledtimer); 2621 ath_hal_gpioset(ah, sc->sc_ledpin, 2622 !sc->sc_ledon); 2623 sc->sc_blinking = 0; 2624 } 2625 ath_hal_intrset(ah, 0); 2626 } 2627 /* XXX we should stop RX regardless of whether it's valid */ 2628 if (!sc->sc_invalid) { 2629 ath_stoprecv(sc, 1); 2630 ath_hal_phydisable(ah); 2631 } else 2632 sc->sc_rxlink = NULL; 2633 ath_draintxq(sc, ATH_RESET_DEFAULT); 2634 ath_beacon_free(sc); /* XXX not needed */ 2635 } 2636 2637 /* And now, restore the current power state */ 2638 ath_power_restore_power_state(sc); 2639 } 2640 2641 /* 2642 * Wait until all pending TX/RX has completed. 2643 * 2644 * This waits until all existing transmit, receive and interrupts 2645 * have completed. It's assumed that the caller has first 2646 * grabbed the reset lock so it doesn't try to do overlapping 2647 * chip resets. 2648 */ 2649 #define MAX_TXRX_ITERATIONS 100 2650 static void 2651 ath_txrx_stop_locked(struct ath_softc *sc) 2652 { 2653 int i = MAX_TXRX_ITERATIONS; 2654 2655 ATH_UNLOCK_ASSERT(sc); 2656 ATH_PCU_LOCK_ASSERT(sc); 2657 2658 /* 2659 * Sleep until all the pending operations have completed. 2660 * 2661 * The caller must ensure that reset has been incremented 2662 * or the pending operations may continue being queued. 2663 */ 2664 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2665 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2666 if (i <= 0) 2667 break; 2668 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2669 msecs_to_ticks(10)); 2670 i--; 2671 } 2672 2673 if (i <= 0) 2674 device_printf(sc->sc_dev, 2675 "%s: didn't finish after %d iterations\n", 2676 __func__, MAX_TXRX_ITERATIONS); 2677 } 2678 #undef MAX_TXRX_ITERATIONS 2679 2680 #if 0 2681 static void 2682 ath_txrx_stop(struct ath_softc *sc) 2683 { 2684 ATH_UNLOCK_ASSERT(sc); 2685 ATH_PCU_UNLOCK_ASSERT(sc); 2686 2687 ATH_PCU_LOCK(sc); 2688 ath_txrx_stop_locked(sc); 2689 ATH_PCU_UNLOCK(sc); 2690 } 2691 #endif 2692 2693 static void 2694 ath_txrx_start(struct ath_softc *sc) 2695 { 2696 2697 taskqueue_unblock(sc->sc_tq); 2698 } 2699 2700 /* 2701 * Grab the reset lock, and wait around until no one else 2702 * is trying to do anything with it. 2703 * 2704 * This is totally horrible but we can't hold this lock for 2705 * long enough to do TX/RX or we end up with net80211/ip stack 2706 * LORs and eventual deadlock. 2707 * 2708 * "dowait" signals whether to spin, waiting for the reset 2709 * lock count to reach 0. This should (for now) only be used 2710 * during the reset path, as the rest of the code may not 2711 * be locking-reentrant enough to behave correctly. 2712 * 2713 * Another, cleaner way should be found to serialise all of 2714 * these operations. 2715 */ 2716 #define MAX_RESET_ITERATIONS 25 2717 static int 2718 ath_reset_grablock(struct ath_softc *sc, int dowait) 2719 { 2720 int w = 0; 2721 int i = MAX_RESET_ITERATIONS; 2722 2723 ATH_PCU_LOCK_ASSERT(sc); 2724 do { 2725 if (sc->sc_inreset_cnt == 0) { 2726 w = 1; 2727 break; 2728 } 2729 if (dowait == 0) { 2730 w = 0; 2731 break; 2732 } 2733 ATH_PCU_UNLOCK(sc); 2734 /* 2735 * 1 tick is likely not enough time for long calibrations 2736 * to complete. So we should wait quite a while. 2737 */ 2738 pause("ath_reset_grablock", msecs_to_ticks(100)); 2739 i--; 2740 ATH_PCU_LOCK(sc); 2741 } while (i > 0); 2742 2743 /* 2744 * We always increment the refcounter, regardless 2745 * of whether we succeeded to get it in an exclusive 2746 * way. 2747 */ 2748 sc->sc_inreset_cnt++; 2749 2750 if (i <= 0) 2751 device_printf(sc->sc_dev, 2752 "%s: didn't finish after %d iterations\n", 2753 __func__, MAX_RESET_ITERATIONS); 2754 2755 if (w == 0) 2756 device_printf(sc->sc_dev, 2757 "%s: warning, recursive reset path!\n", 2758 __func__); 2759 2760 return w; 2761 } 2762 #undef MAX_RESET_ITERATIONS 2763 2764 /* 2765 * Reset the hardware w/o losing operational state. This is 2766 * basically a more efficient way of doing ath_stop, ath_init, 2767 * followed by state transitions to the current 802.11 2768 * operational state. Used to recover from various errors and 2769 * to reset or reload hardware state. 2770 */ 2771 int 2772 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2773 { 2774 struct ieee80211com *ic = &sc->sc_ic; 2775 struct ath_hal *ah = sc->sc_ah; 2776 HAL_STATUS status; 2777 int i; 2778 2779 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2780 2781 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2782 ATH_PCU_UNLOCK_ASSERT(sc); 2783 ATH_UNLOCK_ASSERT(sc); 2784 2785 /* Try to (stop any further TX/RX from occurring */ 2786 taskqueue_block(sc->sc_tq); 2787 2788 /* 2789 * Wake the hardware up. 2790 */ 2791 ATH_LOCK(sc); 2792 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2793 ATH_UNLOCK(sc); 2794 2795 ATH_PCU_LOCK(sc); 2796 2797 /* 2798 * Grab the reset lock before TX/RX is stopped. 2799 * 2800 * This is needed to ensure that when the TX/RX actually does finish, 2801 * no further TX/RX/reset runs in parallel with this. 2802 */ 2803 if (ath_reset_grablock(sc, 1) == 0) { 2804 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2805 __func__); 2806 } 2807 2808 /* disable interrupts */ 2809 ath_hal_intrset(ah, 0); 2810 2811 /* 2812 * Now, ensure that any in progress TX/RX completes before we 2813 * continue. 2814 */ 2815 ath_txrx_stop_locked(sc); 2816 2817 ATH_PCU_UNLOCK(sc); 2818 2819 /* 2820 * Regardless of whether we're doing a no-loss flush or 2821 * not, stop the PCU and handle what's in the RX queue. 2822 * That way frames aren't dropped which shouldn't be. 2823 */ 2824 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2825 ath_rx_flush(sc); 2826 2827 /* 2828 * Should now wait for pending TX/RX to complete 2829 * and block future ones from occurring. This needs to be 2830 * done before the TX queue is drained. 2831 */ 2832 ath_draintxq(sc, reset_type); /* stop xmit side */ 2833 2834 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2835 /* NB: indicate channel change so we do a full reset */ 2836 ath_update_chainmasks(sc, ic->ic_curchan); 2837 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2838 sc->sc_cur_rxchainmask); 2839 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2840 HAL_RESET_NORMAL, &status)) 2841 device_printf(sc->sc_dev, 2842 "%s: unable to reset hardware; hal status %u\n", 2843 __func__, status); 2844 sc->sc_diversity = ath_hal_getdiversity(ah); 2845 2846 ATH_RX_LOCK(sc); 2847 sc->sc_rx_stopped = 1; 2848 sc->sc_rx_resetted = 1; 2849 ATH_RX_UNLOCK(sc); 2850 2851 /* Let DFS at it in case it's a DFS channel */ 2852 ath_dfs_radar_enable(sc, ic->ic_curchan); 2853 2854 /* Let spectral at in case spectral is enabled */ 2855 ath_spectral_enable(sc, ic->ic_curchan); 2856 2857 /* 2858 * Let bluetooth coexistence at in case it's needed for this channel 2859 */ 2860 ath_btcoex_enable(sc, ic->ic_curchan); 2861 2862 /* 2863 * If we're doing TDMA, enforce the TXOP limitation for chips that 2864 * support it. 2865 */ 2866 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2867 ath_hal_setenforcetxop(sc->sc_ah, 1); 2868 else 2869 ath_hal_setenforcetxop(sc->sc_ah, 0); 2870 2871 if (ath_startrecv(sc) != 0) /* restart recv */ 2872 device_printf(sc->sc_dev, 2873 "%s: unable to start recv logic\n", __func__); 2874 /* 2875 * We may be doing a reset in response to an ioctl 2876 * that changes the channel so update any state that 2877 * might change as a result. 2878 */ 2879 ath_chan_change(sc, ic->ic_curchan); 2880 if (sc->sc_beacons) { /* restart beacons */ 2881 #ifdef IEEE80211_SUPPORT_TDMA 2882 if (sc->sc_tdma) 2883 ath_tdma_config(sc, NULL); 2884 else 2885 #endif 2886 ath_beacon_config(sc, NULL); 2887 } 2888 2889 /* 2890 * Release the reset lock and re-enable interrupts here. 2891 * If an interrupt was being processed in ath_intr(), 2892 * it would disable interrupts at this point. So we have 2893 * to atomically enable interrupts and decrement the 2894 * reset counter - this way ath_intr() doesn't end up 2895 * disabling interrupts without a corresponding enable 2896 * in the rest or channel change path. 2897 * 2898 * Grab the TX reference in case we need to transmit. 2899 * That way a parallel transmit doesn't. 2900 */ 2901 ATH_PCU_LOCK(sc); 2902 sc->sc_inreset_cnt--; 2903 sc->sc_txstart_cnt++; 2904 /* XXX only do this if sc_inreset_cnt == 0? */ 2905 ath_hal_intrset(ah, sc->sc_imask); 2906 ATH_PCU_UNLOCK(sc); 2907 2908 /* 2909 * TX and RX can be started here. If it were started with 2910 * sc_inreset_cnt > 0, the TX and RX path would abort. 2911 * Thus if this is a nested call through the reset or 2912 * channel change code, TX completion will occur but 2913 * RX completion and ath_start / ath_tx_start will not 2914 * run. 2915 */ 2916 2917 /* Restart TX/RX as needed */ 2918 ath_txrx_start(sc); 2919 2920 /* XXX TODO: we need to hold the tx refcount here! */ 2921 2922 /* Restart TX completion and pending TX */ 2923 if (reset_type == ATH_RESET_NOLOSS) { 2924 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2925 if (ATH_TXQ_SETUP(sc, i)) { 2926 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2927 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2928 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2929 2930 ATH_TX_LOCK(sc); 2931 ath_txq_sched(sc, &sc->sc_txq[i]); 2932 ATH_TX_UNLOCK(sc); 2933 } 2934 } 2935 } 2936 2937 ATH_LOCK(sc); 2938 ath_power_restore_power_state(sc); 2939 ATH_UNLOCK(sc); 2940 2941 ATH_PCU_LOCK(sc); 2942 sc->sc_txstart_cnt--; 2943 ATH_PCU_UNLOCK(sc); 2944 2945 /* Handle any frames in the TX queue */ 2946 /* 2947 * XXX should this be done by the caller, rather than 2948 * ath_reset() ? 2949 */ 2950 ath_tx_kick(sc); /* restart xmit */ 2951 return 0; 2952 } 2953 2954 static int 2955 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2956 { 2957 struct ieee80211com *ic = vap->iv_ic; 2958 struct ath_softc *sc = ic->ic_softc; 2959 struct ath_hal *ah = sc->sc_ah; 2960 2961 switch (cmd) { 2962 case IEEE80211_IOC_TXPOWER: 2963 /* 2964 * If per-packet TPC is enabled, then we have nothing 2965 * to do; otherwise we need to force the global limit. 2966 * All this can happen directly; no need to reset. 2967 */ 2968 if (!ath_hal_gettpc(ah)) 2969 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2970 return 0; 2971 } 2972 /* XXX? Full or NOLOSS? */ 2973 return ath_reset(sc, ATH_RESET_FULL); 2974 } 2975 2976 struct ath_buf * 2977 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2978 { 2979 struct ath_buf *bf; 2980 2981 ATH_TXBUF_LOCK_ASSERT(sc); 2982 2983 if (btype == ATH_BUFTYPE_MGMT) 2984 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2985 else 2986 bf = TAILQ_FIRST(&sc->sc_txbuf); 2987 2988 if (bf == NULL) { 2989 sc->sc_stats.ast_tx_getnobuf++; 2990 } else { 2991 if (bf->bf_flags & ATH_BUF_BUSY) { 2992 sc->sc_stats.ast_tx_getbusybuf++; 2993 bf = NULL; 2994 } 2995 } 2996 2997 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2998 if (btype == ATH_BUFTYPE_MGMT) 2999 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3000 else { 3001 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3002 sc->sc_txbuf_cnt--; 3003 3004 /* 3005 * This shuldn't happen; however just to be 3006 * safe print a warning and fudge the txbuf 3007 * count. 3008 */ 3009 if (sc->sc_txbuf_cnt < 0) { 3010 device_printf(sc->sc_dev, 3011 "%s: sc_txbuf_cnt < 0?\n", 3012 __func__); 3013 sc->sc_txbuf_cnt = 0; 3014 } 3015 } 3016 } else 3017 bf = NULL; 3018 3019 if (bf == NULL) { 3020 /* XXX should check which list, mgmt or otherwise */ 3021 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3022 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3023 "out of xmit buffers" : "xmit buffer busy"); 3024 return NULL; 3025 } 3026 3027 /* XXX TODO: should do this at buffer list initialisation */ 3028 /* XXX (then, ensure the buffer has the right flag set) */ 3029 bf->bf_flags = 0; 3030 if (btype == ATH_BUFTYPE_MGMT) 3031 bf->bf_flags |= ATH_BUF_MGMT; 3032 else 3033 bf->bf_flags &= (~ATH_BUF_MGMT); 3034 3035 /* Valid bf here; clear some basic fields */ 3036 bf->bf_next = NULL; /* XXX just to be sure */ 3037 bf->bf_last = NULL; /* XXX again, just to be sure */ 3038 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3039 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3040 3041 /* 3042 * Track the descriptor ID only if doing EDMA 3043 */ 3044 if (sc->sc_isedma) { 3045 bf->bf_descid = sc->sc_txbuf_descid; 3046 sc->sc_txbuf_descid++; 3047 } 3048 3049 return bf; 3050 } 3051 3052 /* 3053 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3054 * can't be thrown back on the queue as they could still be 3055 * in use by the hardware. 3056 * 3057 * This duplicates the buffer, or returns NULL. 3058 * 3059 * The descriptor is also copied but the link pointers and 3060 * the DMA segments aren't copied; this frame should thus 3061 * be again passed through the descriptor setup/chain routines 3062 * so the link is correct. 3063 * 3064 * The caller must free the buffer using ath_freebuf(). 3065 */ 3066 struct ath_buf * 3067 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3068 { 3069 struct ath_buf *tbf; 3070 3071 tbf = ath_getbuf(sc, 3072 (bf->bf_flags & ATH_BUF_MGMT) ? 3073 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3074 if (tbf == NULL) 3075 return NULL; /* XXX failure? Why? */ 3076 3077 /* Copy basics */ 3078 tbf->bf_next = NULL; 3079 tbf->bf_nseg = bf->bf_nseg; 3080 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3081 tbf->bf_status = bf->bf_status; 3082 tbf->bf_m = bf->bf_m; 3083 tbf->bf_node = bf->bf_node; 3084 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3085 /* will be setup by the chain/setup function */ 3086 tbf->bf_lastds = NULL; 3087 /* for now, last == self */ 3088 tbf->bf_last = tbf; 3089 tbf->bf_comp = bf->bf_comp; 3090 3091 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3092 3093 /* The caller has to re-init the descriptor + links */ 3094 3095 /* 3096 * Free the DMA mapping here, before we NULL the mbuf. 3097 * We must only call bus_dmamap_unload() once per mbuf chain 3098 * or behaviour is undefined. 3099 */ 3100 if (bf->bf_m != NULL) { 3101 /* 3102 * XXX is this POSTWRITE call required? 3103 */ 3104 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3105 BUS_DMASYNC_POSTWRITE); 3106 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3107 } 3108 3109 bf->bf_m = NULL; 3110 bf->bf_node = NULL; 3111 3112 /* Copy state */ 3113 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3114 3115 return tbf; 3116 } 3117 3118 struct ath_buf * 3119 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3120 { 3121 struct ath_buf *bf; 3122 3123 ATH_TXBUF_LOCK(sc); 3124 bf = _ath_getbuf_locked(sc, btype); 3125 /* 3126 * If a mgmt buffer was requested but we're out of those, 3127 * try requesting a normal one. 3128 */ 3129 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3130 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3131 ATH_TXBUF_UNLOCK(sc); 3132 if (bf == NULL) { 3133 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3134 sc->sc_stats.ast_tx_qstop++; 3135 } 3136 return bf; 3137 } 3138 3139 /* 3140 * Transmit a single frame. 3141 * 3142 * net80211 will free the node reference if the transmit 3143 * fails, so don't free the node reference here. 3144 */ 3145 static int 3146 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3147 { 3148 struct ath_softc *sc = ic->ic_softc; 3149 struct ieee80211_node *ni; 3150 struct mbuf *next; 3151 struct ath_buf *bf; 3152 ath_bufhead frags; 3153 int retval = 0; 3154 3155 /* 3156 * Tell the reset path that we're currently transmitting. 3157 */ 3158 ATH_PCU_LOCK(sc); 3159 if (sc->sc_inreset_cnt > 0) { 3160 DPRINTF(sc, ATH_DEBUG_XMIT, 3161 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3162 ATH_PCU_UNLOCK(sc); 3163 sc->sc_stats.ast_tx_qstop++; 3164 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3165 return (ENOBUFS); /* XXX should be EINVAL or? */ 3166 } 3167 sc->sc_txstart_cnt++; 3168 ATH_PCU_UNLOCK(sc); 3169 3170 /* Wake the hardware up already */ 3171 ATH_LOCK(sc); 3172 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3173 ATH_UNLOCK(sc); 3174 3175 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3176 /* 3177 * Grab the TX lock - it's ok to do this here; we haven't 3178 * yet started transmitting. 3179 */ 3180 ATH_TX_LOCK(sc); 3181 3182 /* 3183 * Node reference, if there's one. 3184 */ 3185 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3186 3187 /* 3188 * Enforce how deep a node queue can get. 3189 * 3190 * XXX it would be nicer if we kept an mbuf queue per 3191 * node and only whacked them into ath_bufs when we 3192 * are ready to schedule some traffic from them. 3193 * .. that may come later. 3194 * 3195 * XXX we should also track the per-node hardware queue 3196 * depth so it is easy to limit the _SUM_ of the swq and 3197 * hwq frames. Since we only schedule two HWQ frames 3198 * at a time, this should be OK for now. 3199 */ 3200 if ((!(m->m_flags & M_EAPOL)) && 3201 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3202 sc->sc_stats.ast_tx_nodeq_overflow++; 3203 retval = ENOBUFS; 3204 goto finish; 3205 } 3206 3207 /* 3208 * Check how many TX buffers are available. 3209 * 3210 * If this is for non-EAPOL traffic, just leave some 3211 * space free in order for buffer cloning and raw 3212 * frame transmission to occur. 3213 * 3214 * If it's for EAPOL traffic, ignore this for now. 3215 * Management traffic will be sent via the raw transmit 3216 * method which bypasses this check. 3217 * 3218 * This is needed to ensure that EAPOL frames during 3219 * (re) keying have a chance to go out. 3220 * 3221 * See kern/138379 for more information. 3222 */ 3223 if ((!(m->m_flags & M_EAPOL)) && 3224 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3225 sc->sc_stats.ast_tx_nobuf++; 3226 retval = ENOBUFS; 3227 goto finish; 3228 } 3229 3230 /* 3231 * Grab a TX buffer and associated resources. 3232 * 3233 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3234 * That way even with temporary buffer exhaustion due to 3235 * the data path doesn't leave us without the ability 3236 * to transmit management frames. 3237 * 3238 * Otherwise allocate a normal buffer. 3239 */ 3240 if (m->m_flags & M_EAPOL) 3241 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3242 else 3243 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3244 3245 if (bf == NULL) { 3246 /* 3247 * If we failed to allocate a buffer, fail. 3248 * 3249 * We shouldn't fail normally, due to the check 3250 * above. 3251 */ 3252 sc->sc_stats.ast_tx_nobuf++; 3253 retval = ENOBUFS; 3254 goto finish; 3255 } 3256 3257 /* 3258 * At this point we have a buffer; so we need to free it 3259 * if we hit any error conditions. 3260 */ 3261 3262 /* 3263 * Check for fragmentation. If this frame 3264 * has been broken up verify we have enough 3265 * buffers to send all the fragments so all 3266 * go out or none... 3267 */ 3268 TAILQ_INIT(&frags); 3269 if ((m->m_flags & M_FRAG) && 3270 !ath_txfrag_setup(sc, &frags, m, ni)) { 3271 DPRINTF(sc, ATH_DEBUG_XMIT, 3272 "%s: out of txfrag buffers\n", __func__); 3273 sc->sc_stats.ast_tx_nofrag++; 3274 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3275 /* 3276 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3277 * we shouldn't free it but return back. 3278 */ 3279 ieee80211_free_mbuf(m); 3280 m = NULL; 3281 goto bad; 3282 } 3283 3284 /* 3285 * At this point if we have any TX fragments, then we will 3286 * have bumped the node reference once for each of those. 3287 */ 3288 3289 /* 3290 * XXX Is there anything actually _enforcing_ that the 3291 * fragments are being transmitted in one hit, rather than 3292 * being interleaved with other transmissions on that 3293 * hardware queue? 3294 * 3295 * The ATH TX output lock is the only thing serialising this 3296 * right now. 3297 */ 3298 3299 /* 3300 * Calculate the "next fragment" length field in ath_buf 3301 * in order to let the transmit path know enough about 3302 * what to next write to the hardware. 3303 */ 3304 if (m->m_flags & M_FRAG) { 3305 struct ath_buf *fbf = bf; 3306 struct ath_buf *n_fbf = NULL; 3307 struct mbuf *fm = m->m_nextpkt; 3308 3309 /* 3310 * We need to walk the list of fragments and set 3311 * the next size to the following buffer. 3312 * However, the first buffer isn't in the frag 3313 * list, so we have to do some gymnastics here. 3314 */ 3315 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3316 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3317 fbf = n_fbf; 3318 fm = fm->m_nextpkt; 3319 } 3320 } 3321 3322 nextfrag: 3323 /* 3324 * Pass the frame to the h/w for transmission. 3325 * Fragmented frames have each frag chained together 3326 * with m_nextpkt. We know there are sufficient ath_buf's 3327 * to send all the frags because of work done by 3328 * ath_txfrag_setup. We leave m_nextpkt set while 3329 * calling ath_tx_start so it can use it to extend the 3330 * the tx duration to cover the subsequent frag and 3331 * so it can reclaim all the mbufs in case of an error; 3332 * ath_tx_start clears m_nextpkt once it commits to 3333 * handing the frame to the hardware. 3334 * 3335 * Note: if this fails, then the mbufs are freed but 3336 * not the node reference. 3337 * 3338 * So, we now have to free the node reference ourselves here 3339 * and return OK up to the stack. 3340 */ 3341 next = m->m_nextpkt; 3342 if (ath_tx_start(sc, ni, bf, m)) { 3343 bad: 3344 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3345 reclaim: 3346 bf->bf_m = NULL; 3347 bf->bf_node = NULL; 3348 ATH_TXBUF_LOCK(sc); 3349 ath_returnbuf_head(sc, bf); 3350 /* 3351 * Free the rest of the node references and 3352 * buffers for the fragment list. 3353 */ 3354 ath_txfrag_cleanup(sc, &frags, ni); 3355 ATH_TXBUF_UNLOCK(sc); 3356 3357 /* 3358 * XXX: And free the node/return OK; ath_tx_start() may have 3359 * modified the buffer. We currently have no way to 3360 * signify that the mbuf was freed but there was an error. 3361 */ 3362 ieee80211_free_node(ni); 3363 retval = 0; 3364 goto finish; 3365 } 3366 3367 /* 3368 * Check here if the node is in power save state. 3369 */ 3370 ath_tx_update_tim(sc, ni, 1); 3371 3372 if (next != NULL) { 3373 /* 3374 * Beware of state changing between frags. 3375 * XXX check sta power-save state? 3376 */ 3377 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3378 DPRINTF(sc, ATH_DEBUG_XMIT, 3379 "%s: flush fragmented packet, state %s\n", 3380 __func__, 3381 ieee80211_state_name[ni->ni_vap->iv_state]); 3382 /* XXX dmamap */ 3383 ieee80211_free_mbuf(next); 3384 goto reclaim; 3385 } 3386 m = next; 3387 bf = TAILQ_FIRST(&frags); 3388 KASSERT(bf != NULL, ("no buf for txfrag")); 3389 TAILQ_REMOVE(&frags, bf, bf_list); 3390 goto nextfrag; 3391 } 3392 3393 /* 3394 * Bump watchdog timer. 3395 */ 3396 sc->sc_wd_timer = 5; 3397 3398 finish: 3399 ATH_TX_UNLOCK(sc); 3400 3401 /* 3402 * Finished transmitting! 3403 */ 3404 ATH_PCU_LOCK(sc); 3405 sc->sc_txstart_cnt--; 3406 ATH_PCU_UNLOCK(sc); 3407 3408 /* Sleep the hardware if required */ 3409 ATH_LOCK(sc); 3410 ath_power_restore_power_state(sc); 3411 ATH_UNLOCK(sc); 3412 3413 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3414 3415 return (retval); 3416 } 3417 3418 static int 3419 ath_media_change(struct ifnet *ifp) 3420 { 3421 int error = ieee80211_media_change(ifp); 3422 /* NB: only the fixed rate can change and that doesn't need a reset */ 3423 return (error == ENETRESET ? 0 : error); 3424 } 3425 3426 /* 3427 * Block/unblock tx+rx processing while a key change is done. 3428 * We assume the caller serializes key management operations 3429 * so we only need to worry about synchronization with other 3430 * uses that originate in the driver. 3431 */ 3432 static void 3433 ath_key_update_begin(struct ieee80211vap *vap) 3434 { 3435 struct ath_softc *sc = vap->iv_ic->ic_softc; 3436 3437 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3438 taskqueue_block(sc->sc_tq); 3439 } 3440 3441 static void 3442 ath_key_update_end(struct ieee80211vap *vap) 3443 { 3444 struct ath_softc *sc = vap->iv_ic->ic_softc; 3445 3446 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3447 taskqueue_unblock(sc->sc_tq); 3448 } 3449 3450 static void 3451 ath_update_promisc(struct ieee80211com *ic) 3452 { 3453 struct ath_softc *sc = ic->ic_softc; 3454 u_int32_t rfilt; 3455 3456 /* configure rx filter */ 3457 ATH_LOCK(sc); 3458 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3459 rfilt = ath_calcrxfilter(sc); 3460 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3461 ath_power_restore_power_state(sc); 3462 ATH_UNLOCK(sc); 3463 3464 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3465 } 3466 3467 /* 3468 * Driver-internal mcast update call. 3469 * 3470 * Assumes the hardware is already awake. 3471 */ 3472 static void 3473 ath_update_mcast_hw(struct ath_softc *sc) 3474 { 3475 struct ieee80211com *ic = &sc->sc_ic; 3476 u_int32_t mfilt[2]; 3477 3478 /* calculate and install multicast filter */ 3479 if (ic->ic_allmulti == 0) { 3480 struct ieee80211vap *vap; 3481 struct ifnet *ifp; 3482 struct ifmultiaddr *ifma; 3483 3484 /* 3485 * Merge multicast addresses to form the hardware filter. 3486 */ 3487 mfilt[0] = mfilt[1] = 0; 3488 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3489 ifp = vap->iv_ifp; 3490 if_maddr_rlock(ifp); 3491 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3492 caddr_t dl; 3493 uint32_t val; 3494 uint8_t pos; 3495 3496 /* calculate XOR of eight 6bit values */ 3497 dl = LLADDR((struct sockaddr_dl *) 3498 ifma->ifma_addr); 3499 val = le32dec(dl + 0); 3500 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3501 val; 3502 val = le32dec(dl + 3); 3503 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3504 val; 3505 pos &= 0x3f; 3506 mfilt[pos / 32] |= (1 << (pos % 32)); 3507 } 3508 if_maddr_runlock(ifp); 3509 } 3510 } else 3511 mfilt[0] = mfilt[1] = ~0; 3512 3513 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3514 3515 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3516 __func__, mfilt[0], mfilt[1]); 3517 } 3518 3519 /* 3520 * Called from the net80211 layer - force the hardware 3521 * awake before operating. 3522 */ 3523 static void 3524 ath_update_mcast(struct ieee80211com *ic) 3525 { 3526 struct ath_softc *sc = ic->ic_softc; 3527 3528 ATH_LOCK(sc); 3529 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3530 ATH_UNLOCK(sc); 3531 3532 ath_update_mcast_hw(sc); 3533 3534 ATH_LOCK(sc); 3535 ath_power_restore_power_state(sc); 3536 ATH_UNLOCK(sc); 3537 } 3538 3539 void 3540 ath_mode_init(struct ath_softc *sc) 3541 { 3542 struct ieee80211com *ic = &sc->sc_ic; 3543 struct ath_hal *ah = sc->sc_ah; 3544 u_int32_t rfilt; 3545 3546 /* configure rx filter */ 3547 rfilt = ath_calcrxfilter(sc); 3548 ath_hal_setrxfilter(ah, rfilt); 3549 3550 /* configure operational mode */ 3551 ath_hal_setopmode(ah); 3552 3553 /* handle any link-level address change */ 3554 ath_hal_setmac(ah, ic->ic_macaddr); 3555 3556 /* calculate and install multicast filter */ 3557 ath_update_mcast_hw(sc); 3558 } 3559 3560 /* 3561 * Set the slot time based on the current setting. 3562 */ 3563 void 3564 ath_setslottime(struct ath_softc *sc) 3565 { 3566 struct ieee80211com *ic = &sc->sc_ic; 3567 struct ath_hal *ah = sc->sc_ah; 3568 u_int usec; 3569 3570 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3571 usec = 13; 3572 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3573 usec = 21; 3574 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3575 /* honor short/long slot time only in 11g */ 3576 /* XXX shouldn't honor on pure g or turbo g channel */ 3577 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3578 usec = HAL_SLOT_TIME_9; 3579 else 3580 usec = HAL_SLOT_TIME_20; 3581 } else 3582 usec = HAL_SLOT_TIME_9; 3583 3584 DPRINTF(sc, ATH_DEBUG_RESET, 3585 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3586 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3587 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3588 3589 /* Wake up the hardware first before updating the slot time */ 3590 ATH_LOCK(sc); 3591 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3592 ath_hal_setslottime(ah, usec); 3593 ath_power_restore_power_state(sc); 3594 sc->sc_updateslot = OK; 3595 ATH_UNLOCK(sc); 3596 } 3597 3598 /* 3599 * Callback from the 802.11 layer to update the 3600 * slot time based on the current setting. 3601 */ 3602 static void 3603 ath_updateslot(struct ieee80211com *ic) 3604 { 3605 struct ath_softc *sc = ic->ic_softc; 3606 3607 /* 3608 * When not coordinating the BSS, change the hardware 3609 * immediately. For other operation we defer the change 3610 * until beacon updates have propagated to the stations. 3611 * 3612 * XXX sc_updateslot isn't changed behind a lock? 3613 */ 3614 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3615 ic->ic_opmode == IEEE80211_M_MBSS) 3616 sc->sc_updateslot = UPDATE; 3617 else 3618 ath_setslottime(sc); 3619 } 3620 3621 /* 3622 * Append the contents of src to dst; both queues 3623 * are assumed to be locked. 3624 */ 3625 void 3626 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3627 { 3628 3629 ATH_TXQ_LOCK_ASSERT(src); 3630 ATH_TXQ_LOCK_ASSERT(dst); 3631 3632 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3633 dst->axq_link = src->axq_link; 3634 src->axq_link = NULL; 3635 dst->axq_depth += src->axq_depth; 3636 dst->axq_aggr_depth += src->axq_aggr_depth; 3637 src->axq_depth = 0; 3638 src->axq_aggr_depth = 0; 3639 } 3640 3641 /* 3642 * Reset the hardware, with no loss. 3643 * 3644 * This can't be used for a general case reset. 3645 */ 3646 static void 3647 ath_reset_proc(void *arg, int pending) 3648 { 3649 struct ath_softc *sc = arg; 3650 3651 #if 0 3652 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3653 #endif 3654 ath_reset(sc, ATH_RESET_NOLOSS); 3655 } 3656 3657 /* 3658 * Reset the hardware after detecting beacons have stopped. 3659 */ 3660 static void 3661 ath_bstuck_proc(void *arg, int pending) 3662 { 3663 struct ath_softc *sc = arg; 3664 uint32_t hangs = 0; 3665 3666 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3667 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3668 3669 #ifdef ATH_DEBUG_ALQ 3670 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3671 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3672 #endif 3673 3674 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3675 sc->sc_bmisscount); 3676 sc->sc_stats.ast_bstuck++; 3677 /* 3678 * This assumes that there's no simultaneous channel mode change 3679 * occurring. 3680 */ 3681 ath_reset(sc, ATH_RESET_NOLOSS); 3682 } 3683 3684 static int 3685 ath_desc_alloc(struct ath_softc *sc) 3686 { 3687 int error; 3688 3689 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3690 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3691 if (error != 0) { 3692 return error; 3693 } 3694 sc->sc_txbuf_cnt = ath_txbuf; 3695 3696 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3697 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3698 ATH_TXDESC); 3699 if (error != 0) { 3700 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3701 return error; 3702 } 3703 3704 /* 3705 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3706 * flag doesn't have to be set in ath_getbuf_locked(). 3707 */ 3708 3709 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3710 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3711 if (error != 0) { 3712 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3713 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3714 &sc->sc_txbuf_mgmt); 3715 return error; 3716 } 3717 return 0; 3718 } 3719 3720 static void 3721 ath_desc_free(struct ath_softc *sc) 3722 { 3723 3724 if (sc->sc_bdma.dd_desc_len != 0) 3725 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3726 if (sc->sc_txdma.dd_desc_len != 0) 3727 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3728 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3729 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3730 &sc->sc_txbuf_mgmt); 3731 } 3732 3733 static struct ieee80211_node * 3734 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3735 { 3736 struct ieee80211com *ic = vap->iv_ic; 3737 struct ath_softc *sc = ic->ic_softc; 3738 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3739 struct ath_node *an; 3740 3741 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3742 if (an == NULL) { 3743 /* XXX stat+msg */ 3744 return NULL; 3745 } 3746 ath_rate_node_init(sc, an); 3747 3748 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3749 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3750 device_get_nameunit(sc->sc_dev), an); 3751 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3752 3753 /* XXX setup ath_tid */ 3754 ath_tx_tid_init(sc, an); 3755 3756 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3757 return &an->an_node; 3758 } 3759 3760 static void 3761 ath_node_cleanup(struct ieee80211_node *ni) 3762 { 3763 struct ieee80211com *ic = ni->ni_ic; 3764 struct ath_softc *sc = ic->ic_softc; 3765 3766 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3767 ni->ni_macaddr, ":", ATH_NODE(ni)); 3768 3769 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3770 ath_tx_node_flush(sc, ATH_NODE(ni)); 3771 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3772 sc->sc_node_cleanup(ni); 3773 } 3774 3775 static void 3776 ath_node_free(struct ieee80211_node *ni) 3777 { 3778 struct ieee80211com *ic = ni->ni_ic; 3779 struct ath_softc *sc = ic->ic_softc; 3780 3781 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3782 ni->ni_macaddr, ":", ATH_NODE(ni)); 3783 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3784 sc->sc_node_free(ni); 3785 } 3786 3787 static void 3788 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3789 { 3790 struct ieee80211com *ic = ni->ni_ic; 3791 struct ath_softc *sc = ic->ic_softc; 3792 struct ath_hal *ah = sc->sc_ah; 3793 3794 *rssi = ic->ic_node_getrssi(ni); 3795 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3796 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3797 else 3798 *noise = -95; /* nominally correct */ 3799 } 3800 3801 /* 3802 * Set the default antenna. 3803 */ 3804 void 3805 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3806 { 3807 struct ath_hal *ah = sc->sc_ah; 3808 3809 /* XXX block beacon interrupts */ 3810 ath_hal_setdefantenna(ah, antenna); 3811 if (sc->sc_defant != antenna) 3812 sc->sc_stats.ast_ant_defswitch++; 3813 sc->sc_defant = antenna; 3814 sc->sc_rxotherant = 0; 3815 } 3816 3817 static void 3818 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3819 { 3820 txq->axq_qnum = qnum; 3821 txq->axq_ac = 0; 3822 txq->axq_depth = 0; 3823 txq->axq_aggr_depth = 0; 3824 txq->axq_intrcnt = 0; 3825 txq->axq_link = NULL; 3826 txq->axq_softc = sc; 3827 TAILQ_INIT(&txq->axq_q); 3828 TAILQ_INIT(&txq->axq_tidq); 3829 TAILQ_INIT(&txq->fifo.axq_q); 3830 ATH_TXQ_LOCK_INIT(sc, txq); 3831 } 3832 3833 /* 3834 * Setup a h/w transmit queue. 3835 */ 3836 static struct ath_txq * 3837 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3838 { 3839 struct ath_hal *ah = sc->sc_ah; 3840 HAL_TXQ_INFO qi; 3841 int qnum; 3842 3843 memset(&qi, 0, sizeof(qi)); 3844 qi.tqi_subtype = subtype; 3845 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3846 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3847 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3848 /* 3849 * Enable interrupts only for EOL and DESC conditions. 3850 * We mark tx descriptors to receive a DESC interrupt 3851 * when a tx queue gets deep; otherwise waiting for the 3852 * EOL to reap descriptors. Note that this is done to 3853 * reduce interrupt load and this only defers reaping 3854 * descriptors, never transmitting frames. Aside from 3855 * reducing interrupts this also permits more concurrency. 3856 * The only potential downside is if the tx queue backs 3857 * up in which case the top half of the kernel may backup 3858 * due to a lack of tx descriptors. 3859 */ 3860 if (sc->sc_isedma) 3861 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3862 HAL_TXQ_TXOKINT_ENABLE; 3863 else 3864 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3865 HAL_TXQ_TXDESCINT_ENABLE; 3866 3867 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3868 if (qnum == -1) { 3869 /* 3870 * NB: don't print a message, this happens 3871 * normally on parts with too few tx queues 3872 */ 3873 return NULL; 3874 } 3875 if (qnum >= nitems(sc->sc_txq)) { 3876 device_printf(sc->sc_dev, 3877 "hal qnum %u out of range, max %zu!\n", 3878 qnum, nitems(sc->sc_txq)); 3879 ath_hal_releasetxqueue(ah, qnum); 3880 return NULL; 3881 } 3882 if (!ATH_TXQ_SETUP(sc, qnum)) { 3883 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3884 sc->sc_txqsetup |= 1<<qnum; 3885 } 3886 return &sc->sc_txq[qnum]; 3887 } 3888 3889 /* 3890 * Setup a hardware data transmit queue for the specified 3891 * access control. The hal may not support all requested 3892 * queues in which case it will return a reference to a 3893 * previously setup queue. We record the mapping from ac's 3894 * to h/w queues for use by ath_tx_start and also track 3895 * the set of h/w queues being used to optimize work in the 3896 * transmit interrupt handler and related routines. 3897 */ 3898 static int 3899 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3900 { 3901 struct ath_txq *txq; 3902 3903 if (ac >= nitems(sc->sc_ac2q)) { 3904 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3905 ac, nitems(sc->sc_ac2q)); 3906 return 0; 3907 } 3908 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3909 if (txq != NULL) { 3910 txq->axq_ac = ac; 3911 sc->sc_ac2q[ac] = txq; 3912 return 1; 3913 } else 3914 return 0; 3915 } 3916 3917 /* 3918 * Update WME parameters for a transmit queue. 3919 */ 3920 static int 3921 ath_txq_update(struct ath_softc *sc, int ac) 3922 { 3923 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3924 struct ieee80211com *ic = &sc->sc_ic; 3925 struct ath_txq *txq = sc->sc_ac2q[ac]; 3926 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3927 struct ath_hal *ah = sc->sc_ah; 3928 HAL_TXQ_INFO qi; 3929 3930 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3931 #ifdef IEEE80211_SUPPORT_TDMA 3932 if (sc->sc_tdma) { 3933 /* 3934 * AIFS is zero so there's no pre-transmit wait. The 3935 * burst time defines the slot duration and is configured 3936 * through net80211. The QCU is setup to not do post-xmit 3937 * back off, lockout all lower-priority QCU's, and fire 3938 * off the DMA beacon alert timer which is setup based 3939 * on the slot configuration. 3940 */ 3941 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3942 | HAL_TXQ_TXERRINT_ENABLE 3943 | HAL_TXQ_TXURNINT_ENABLE 3944 | HAL_TXQ_TXEOLINT_ENABLE 3945 | HAL_TXQ_DBA_GATED 3946 | HAL_TXQ_BACKOFF_DISABLE 3947 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3948 ; 3949 qi.tqi_aifs = 0; 3950 /* XXX +dbaprep? */ 3951 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3952 qi.tqi_burstTime = qi.tqi_readyTime; 3953 } else { 3954 #endif 3955 /* 3956 * XXX shouldn't this just use the default flags 3957 * used in the previous queue setup? 3958 */ 3959 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3960 | HAL_TXQ_TXERRINT_ENABLE 3961 | HAL_TXQ_TXDESCINT_ENABLE 3962 | HAL_TXQ_TXURNINT_ENABLE 3963 | HAL_TXQ_TXEOLINT_ENABLE 3964 ; 3965 qi.tqi_aifs = wmep->wmep_aifsn; 3966 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3967 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3968 qi.tqi_readyTime = 0; 3969 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 3970 #ifdef IEEE80211_SUPPORT_TDMA 3971 } 3972 #endif 3973 3974 DPRINTF(sc, ATH_DEBUG_RESET, 3975 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3976 __func__, txq->axq_qnum, qi.tqi_qflags, 3977 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3978 3979 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3980 device_printf(sc->sc_dev, "unable to update hardware queue " 3981 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 3982 return 0; 3983 } else { 3984 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3985 return 1; 3986 } 3987 #undef ATH_EXPONENT_TO_VALUE 3988 } 3989 3990 /* 3991 * Callback from the 802.11 layer to update WME parameters. 3992 */ 3993 int 3994 ath_wme_update(struct ieee80211com *ic) 3995 { 3996 struct ath_softc *sc = ic->ic_softc; 3997 3998 return !ath_txq_update(sc, WME_AC_BE) || 3999 !ath_txq_update(sc, WME_AC_BK) || 4000 !ath_txq_update(sc, WME_AC_VI) || 4001 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4002 } 4003 4004 /* 4005 * Reclaim resources for a setup queue. 4006 */ 4007 static void 4008 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4009 { 4010 4011 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4012 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4013 ATH_TXQ_LOCK_DESTROY(txq); 4014 } 4015 4016 /* 4017 * Reclaim all tx queue resources. 4018 */ 4019 static void 4020 ath_tx_cleanup(struct ath_softc *sc) 4021 { 4022 int i; 4023 4024 ATH_TXBUF_LOCK_DESTROY(sc); 4025 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4026 if (ATH_TXQ_SETUP(sc, i)) 4027 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4028 } 4029 4030 /* 4031 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4032 * using the current rates in sc_rixmap. 4033 */ 4034 int 4035 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4036 { 4037 int rix = sc->sc_rixmap[rate]; 4038 /* NB: return lowest rix for invalid rate */ 4039 return (rix == 0xff ? 0 : rix); 4040 } 4041 4042 static void 4043 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4044 struct ath_buf *bf) 4045 { 4046 struct ieee80211_node *ni = bf->bf_node; 4047 struct ieee80211com *ic = &sc->sc_ic; 4048 int sr, lr, pri; 4049 4050 if (ts->ts_status == 0) { 4051 u_int8_t txant = ts->ts_antenna; 4052 sc->sc_stats.ast_ant_tx[txant]++; 4053 sc->sc_ant_tx[txant]++; 4054 if (ts->ts_finaltsi != 0) 4055 sc->sc_stats.ast_tx_altrate++; 4056 pri = M_WME_GETAC(bf->bf_m); 4057 if (pri >= WME_AC_VO) 4058 ic->ic_wme.wme_hipri_traffic++; 4059 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4060 ni->ni_inact = ni->ni_inact_reload; 4061 } else { 4062 if (ts->ts_status & HAL_TXERR_XRETRY) 4063 sc->sc_stats.ast_tx_xretries++; 4064 if (ts->ts_status & HAL_TXERR_FIFO) 4065 sc->sc_stats.ast_tx_fifoerr++; 4066 if (ts->ts_status & HAL_TXERR_FILT) 4067 sc->sc_stats.ast_tx_filtered++; 4068 if (ts->ts_status & HAL_TXERR_XTXOP) 4069 sc->sc_stats.ast_tx_xtxop++; 4070 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4071 sc->sc_stats.ast_tx_timerexpired++; 4072 4073 if (bf->bf_m->m_flags & M_FF) 4074 sc->sc_stats.ast_ff_txerr++; 4075 } 4076 /* XXX when is this valid? */ 4077 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4078 sc->sc_stats.ast_tx_desccfgerr++; 4079 /* 4080 * This can be valid for successful frame transmission! 4081 * If there's a TX FIFO underrun during aggregate transmission, 4082 * the MAC will pad the rest of the aggregate with delimiters. 4083 * If a BA is returned, the frame is marked as "OK" and it's up 4084 * to the TX completion code to notice which frames weren't 4085 * successfully transmitted. 4086 */ 4087 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4088 sc->sc_stats.ast_tx_data_underrun++; 4089 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4090 sc->sc_stats.ast_tx_delim_underrun++; 4091 4092 sr = ts->ts_shortretry; 4093 lr = ts->ts_longretry; 4094 sc->sc_stats.ast_tx_shortretry += sr; 4095 sc->sc_stats.ast_tx_longretry += lr; 4096 4097 } 4098 4099 /* 4100 * The default completion. If fail is 1, this means 4101 * "please don't retry the frame, and just return -1 status 4102 * to the net80211 stack. 4103 */ 4104 void 4105 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4106 { 4107 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4108 int st; 4109 4110 if (fail == 1) 4111 st = -1; 4112 else 4113 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4114 ts->ts_status : HAL_TXERR_XRETRY; 4115 4116 #if 0 4117 if (bf->bf_state.bfs_dobaw) 4118 device_printf(sc->sc_dev, 4119 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4120 __func__, 4121 bf, 4122 SEQNO(bf->bf_state.bfs_seqno)); 4123 #endif 4124 if (bf->bf_next != NULL) 4125 device_printf(sc->sc_dev, 4126 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4127 __func__, 4128 bf, 4129 SEQNO(bf->bf_state.bfs_seqno)); 4130 4131 /* 4132 * Check if the node software queue is empty; if so 4133 * then clear the TIM. 4134 * 4135 * This needs to be done before the buffer is freed as 4136 * otherwise the node reference will have been released 4137 * and the node may not actually exist any longer. 4138 * 4139 * XXX I don't like this belonging here, but it's cleaner 4140 * to do it here right now then all the other places 4141 * where ath_tx_default_comp() is called. 4142 * 4143 * XXX TODO: during drain, ensure that the callback is 4144 * being called so we get a chance to update the TIM. 4145 */ 4146 if (bf->bf_node) { 4147 ATH_TX_LOCK(sc); 4148 ath_tx_update_tim(sc, bf->bf_node, 0); 4149 ATH_TX_UNLOCK(sc); 4150 } 4151 4152 /* 4153 * Do any tx complete callback. Note this must 4154 * be done before releasing the node reference. 4155 * This will free the mbuf, release the net80211 4156 * node and recycle the ath_buf. 4157 */ 4158 ath_tx_freebuf(sc, bf, st); 4159 } 4160 4161 /* 4162 * Update rate control with the given completion status. 4163 */ 4164 void 4165 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4166 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4167 int nframes, int nbad) 4168 { 4169 struct ath_node *an; 4170 4171 /* Only for unicast frames */ 4172 if (ni == NULL) 4173 return; 4174 4175 an = ATH_NODE(ni); 4176 ATH_NODE_UNLOCK_ASSERT(an); 4177 4178 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4179 ATH_NODE_LOCK(an); 4180 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4181 ATH_NODE_UNLOCK(an); 4182 } 4183 } 4184 4185 /* 4186 * Process the completion of the given buffer. 4187 * 4188 * This calls the rate control update and then the buffer completion. 4189 * This will either free the buffer or requeue it. In any case, the 4190 * bf pointer should be treated as invalid after this function is called. 4191 */ 4192 void 4193 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4194 struct ath_tx_status *ts, struct ath_buf *bf) 4195 { 4196 struct ieee80211_node *ni = bf->bf_node; 4197 4198 ATH_TX_UNLOCK_ASSERT(sc); 4199 ATH_TXQ_UNLOCK_ASSERT(txq); 4200 4201 /* If unicast frame, update general statistics */ 4202 if (ni != NULL) { 4203 /* update statistics */ 4204 ath_tx_update_stats(sc, ts, bf); 4205 } 4206 4207 /* 4208 * Call the completion handler. 4209 * The completion handler is responsible for 4210 * calling the rate control code. 4211 * 4212 * Frames with no completion handler get the 4213 * rate control code called here. 4214 */ 4215 if (bf->bf_comp == NULL) { 4216 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4217 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4218 /* 4219 * XXX assume this isn't an aggregate 4220 * frame. 4221 */ 4222 ath_tx_update_ratectrl(sc, ni, 4223 bf->bf_state.bfs_rc, ts, 4224 bf->bf_state.bfs_pktlen, 1, 4225 (ts->ts_status == 0 ? 0 : 1)); 4226 } 4227 ath_tx_default_comp(sc, bf, 0); 4228 } else 4229 bf->bf_comp(sc, bf, 0); 4230 } 4231 4232 4233 4234 /* 4235 * Process completed xmit descriptors from the specified queue. 4236 * Kick the packet scheduler if needed. This can occur from this 4237 * particular task. 4238 */ 4239 static int 4240 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4241 { 4242 struct ath_hal *ah = sc->sc_ah; 4243 struct ath_buf *bf; 4244 struct ath_desc *ds; 4245 struct ath_tx_status *ts; 4246 struct ieee80211_node *ni; 4247 #ifdef IEEE80211_SUPPORT_SUPERG 4248 struct ieee80211com *ic = &sc->sc_ic; 4249 #endif /* IEEE80211_SUPPORT_SUPERG */ 4250 int nacked; 4251 HAL_STATUS status; 4252 4253 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4254 __func__, txq->axq_qnum, 4255 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4256 txq->axq_link); 4257 4258 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4259 "ath_tx_processq: txq=%u head %p link %p depth %p", 4260 txq->axq_qnum, 4261 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4262 txq->axq_link, 4263 txq->axq_depth); 4264 4265 nacked = 0; 4266 for (;;) { 4267 ATH_TXQ_LOCK(txq); 4268 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4269 bf = TAILQ_FIRST(&txq->axq_q); 4270 if (bf == NULL) { 4271 ATH_TXQ_UNLOCK(txq); 4272 break; 4273 } 4274 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4275 ts = &bf->bf_status.ds_txstat; 4276 4277 status = ath_hal_txprocdesc(ah, ds, ts); 4278 #ifdef ATH_DEBUG 4279 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4280 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4281 status == HAL_OK); 4282 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4283 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4284 status == HAL_OK); 4285 #endif 4286 #ifdef ATH_DEBUG_ALQ 4287 if (if_ath_alq_checkdebug(&sc->sc_alq, 4288 ATH_ALQ_EDMA_TXSTATUS)) { 4289 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4290 sc->sc_tx_statuslen, 4291 (char *) ds); 4292 } 4293 #endif 4294 4295 if (status == HAL_EINPROGRESS) { 4296 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4297 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4298 txq->axq_qnum, bf, ds); 4299 ATH_TXQ_UNLOCK(txq); 4300 break; 4301 } 4302 ATH_TXQ_REMOVE(txq, bf, bf_list); 4303 4304 /* 4305 * Sanity check. 4306 */ 4307 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4308 device_printf(sc->sc_dev, 4309 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4310 __func__, 4311 txq->axq_qnum, 4312 bf, 4313 bf->bf_state.bfs_tx_queue); 4314 } 4315 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4316 device_printf(sc->sc_dev, 4317 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4318 __func__, 4319 txq->axq_qnum, 4320 bf->bf_last, 4321 bf->bf_last->bf_state.bfs_tx_queue); 4322 } 4323 4324 #if 0 4325 if (txq->axq_depth > 0) { 4326 /* 4327 * More frames follow. Mark the buffer busy 4328 * so it's not re-used while the hardware may 4329 * still re-read the link field in the descriptor. 4330 * 4331 * Use the last buffer in an aggregate as that 4332 * is where the hardware may be - intermediate 4333 * descriptors won't be "busy". 4334 */ 4335 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4336 } else 4337 txq->axq_link = NULL; 4338 #else 4339 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4340 #endif 4341 if (bf->bf_state.bfs_aggr) 4342 txq->axq_aggr_depth--; 4343 4344 ni = bf->bf_node; 4345 4346 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4347 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4348 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4349 /* 4350 * If unicast frame was ack'd update RSSI, 4351 * including the last rx time used to 4352 * workaround phantom bmiss interrupts. 4353 */ 4354 if (ni != NULL && ts->ts_status == 0 && 4355 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4356 nacked++; 4357 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4358 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4359 ts->ts_rssi); 4360 } 4361 ATH_TXQ_UNLOCK(txq); 4362 4363 /* 4364 * Update statistics and call completion 4365 */ 4366 ath_tx_process_buf_completion(sc, txq, ts, bf); 4367 4368 /* XXX at this point, bf and ni may be totally invalid */ 4369 } 4370 #ifdef IEEE80211_SUPPORT_SUPERG 4371 /* 4372 * Flush fast-frame staging queue when traffic slows. 4373 */ 4374 if (txq->axq_depth <= 1) 4375 ieee80211_ff_flush(ic, txq->axq_ac); 4376 #endif 4377 4378 /* Kick the software TXQ scheduler */ 4379 if (dosched) { 4380 ATH_TX_LOCK(sc); 4381 ath_txq_sched(sc, txq); 4382 ATH_TX_UNLOCK(sc); 4383 } 4384 4385 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4386 "ath_tx_processq: txq=%u: done", 4387 txq->axq_qnum); 4388 4389 return nacked; 4390 } 4391 4392 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4393 4394 /* 4395 * Deferred processing of transmit interrupt; special-cased 4396 * for a single hardware transmit queue (e.g. 5210 and 5211). 4397 */ 4398 static void 4399 ath_tx_proc_q0(void *arg, int npending) 4400 { 4401 struct ath_softc *sc = arg; 4402 uint32_t txqs; 4403 4404 ATH_PCU_LOCK(sc); 4405 sc->sc_txproc_cnt++; 4406 txqs = sc->sc_txq_active; 4407 sc->sc_txq_active &= ~txqs; 4408 ATH_PCU_UNLOCK(sc); 4409 4410 ATH_LOCK(sc); 4411 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4412 ATH_UNLOCK(sc); 4413 4414 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4415 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4416 4417 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4418 /* XXX why is lastrx updated in tx code? */ 4419 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4420 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4421 ath_tx_processq(sc, sc->sc_cabq, 1); 4422 sc->sc_wd_timer = 0; 4423 4424 if (sc->sc_softled) 4425 ath_led_event(sc, sc->sc_txrix); 4426 4427 ATH_PCU_LOCK(sc); 4428 sc->sc_txproc_cnt--; 4429 ATH_PCU_UNLOCK(sc); 4430 4431 ATH_LOCK(sc); 4432 ath_power_restore_power_state(sc); 4433 ATH_UNLOCK(sc); 4434 4435 ath_tx_kick(sc); 4436 } 4437 4438 /* 4439 * Deferred processing of transmit interrupt; special-cased 4440 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4441 */ 4442 static void 4443 ath_tx_proc_q0123(void *arg, int npending) 4444 { 4445 struct ath_softc *sc = arg; 4446 int nacked; 4447 uint32_t txqs; 4448 4449 ATH_PCU_LOCK(sc); 4450 sc->sc_txproc_cnt++; 4451 txqs = sc->sc_txq_active; 4452 sc->sc_txq_active &= ~txqs; 4453 ATH_PCU_UNLOCK(sc); 4454 4455 ATH_LOCK(sc); 4456 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4457 ATH_UNLOCK(sc); 4458 4459 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4460 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4461 4462 /* 4463 * Process each active queue. 4464 */ 4465 nacked = 0; 4466 if (TXQACTIVE(txqs, 0)) 4467 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4468 if (TXQACTIVE(txqs, 1)) 4469 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4470 if (TXQACTIVE(txqs, 2)) 4471 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4472 if (TXQACTIVE(txqs, 3)) 4473 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4474 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4475 ath_tx_processq(sc, sc->sc_cabq, 1); 4476 if (nacked) 4477 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4478 4479 sc->sc_wd_timer = 0; 4480 4481 if (sc->sc_softled) 4482 ath_led_event(sc, sc->sc_txrix); 4483 4484 ATH_PCU_LOCK(sc); 4485 sc->sc_txproc_cnt--; 4486 ATH_PCU_UNLOCK(sc); 4487 4488 ATH_LOCK(sc); 4489 ath_power_restore_power_state(sc); 4490 ATH_UNLOCK(sc); 4491 4492 ath_tx_kick(sc); 4493 } 4494 4495 /* 4496 * Deferred processing of transmit interrupt. 4497 */ 4498 static void 4499 ath_tx_proc(void *arg, int npending) 4500 { 4501 struct ath_softc *sc = arg; 4502 int i, nacked; 4503 uint32_t txqs; 4504 4505 ATH_PCU_LOCK(sc); 4506 sc->sc_txproc_cnt++; 4507 txqs = sc->sc_txq_active; 4508 sc->sc_txq_active &= ~txqs; 4509 ATH_PCU_UNLOCK(sc); 4510 4511 ATH_LOCK(sc); 4512 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4513 ATH_UNLOCK(sc); 4514 4515 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4516 4517 /* 4518 * Process each active queue. 4519 */ 4520 nacked = 0; 4521 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4522 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4523 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4524 if (nacked) 4525 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4526 4527 sc->sc_wd_timer = 0; 4528 4529 if (sc->sc_softled) 4530 ath_led_event(sc, sc->sc_txrix); 4531 4532 ATH_PCU_LOCK(sc); 4533 sc->sc_txproc_cnt--; 4534 ATH_PCU_UNLOCK(sc); 4535 4536 ATH_LOCK(sc); 4537 ath_power_restore_power_state(sc); 4538 ATH_UNLOCK(sc); 4539 4540 ath_tx_kick(sc); 4541 } 4542 #undef TXQACTIVE 4543 4544 /* 4545 * Deferred processing of TXQ rescheduling. 4546 */ 4547 static void 4548 ath_txq_sched_tasklet(void *arg, int npending) 4549 { 4550 struct ath_softc *sc = arg; 4551 int i; 4552 4553 /* XXX is skipping ok? */ 4554 ATH_PCU_LOCK(sc); 4555 #if 0 4556 if (sc->sc_inreset_cnt > 0) { 4557 device_printf(sc->sc_dev, 4558 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4559 ATH_PCU_UNLOCK(sc); 4560 return; 4561 } 4562 #endif 4563 sc->sc_txproc_cnt++; 4564 ATH_PCU_UNLOCK(sc); 4565 4566 ATH_LOCK(sc); 4567 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4568 ATH_UNLOCK(sc); 4569 4570 ATH_TX_LOCK(sc); 4571 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4572 if (ATH_TXQ_SETUP(sc, i)) { 4573 ath_txq_sched(sc, &sc->sc_txq[i]); 4574 } 4575 } 4576 ATH_TX_UNLOCK(sc); 4577 4578 ATH_LOCK(sc); 4579 ath_power_restore_power_state(sc); 4580 ATH_UNLOCK(sc); 4581 4582 ATH_PCU_LOCK(sc); 4583 sc->sc_txproc_cnt--; 4584 ATH_PCU_UNLOCK(sc); 4585 } 4586 4587 void 4588 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4589 { 4590 4591 ATH_TXBUF_LOCK_ASSERT(sc); 4592 4593 if (bf->bf_flags & ATH_BUF_MGMT) 4594 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4595 else { 4596 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4597 sc->sc_txbuf_cnt++; 4598 if (sc->sc_txbuf_cnt > ath_txbuf) { 4599 device_printf(sc->sc_dev, 4600 "%s: sc_txbuf_cnt > %d?\n", 4601 __func__, 4602 ath_txbuf); 4603 sc->sc_txbuf_cnt = ath_txbuf; 4604 } 4605 } 4606 } 4607 4608 void 4609 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4610 { 4611 4612 ATH_TXBUF_LOCK_ASSERT(sc); 4613 4614 if (bf->bf_flags & ATH_BUF_MGMT) 4615 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4616 else { 4617 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4618 sc->sc_txbuf_cnt++; 4619 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4620 device_printf(sc->sc_dev, 4621 "%s: sc_txbuf_cnt > %d?\n", 4622 __func__, 4623 ATH_TXBUF); 4624 sc->sc_txbuf_cnt = ATH_TXBUF; 4625 } 4626 } 4627 } 4628 4629 /* 4630 * Free the holding buffer if it exists 4631 */ 4632 void 4633 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4634 { 4635 ATH_TXBUF_UNLOCK_ASSERT(sc); 4636 ATH_TXQ_LOCK_ASSERT(txq); 4637 4638 if (txq->axq_holdingbf == NULL) 4639 return; 4640 4641 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4642 4643 ATH_TXBUF_LOCK(sc); 4644 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4645 ATH_TXBUF_UNLOCK(sc); 4646 4647 txq->axq_holdingbf = NULL; 4648 } 4649 4650 /* 4651 * Add this buffer to the holding queue, freeing the previous 4652 * one if it exists. 4653 */ 4654 static void 4655 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4656 { 4657 struct ath_txq *txq; 4658 4659 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4660 4661 ATH_TXBUF_UNLOCK_ASSERT(sc); 4662 ATH_TXQ_LOCK_ASSERT(txq); 4663 4664 /* XXX assert ATH_BUF_BUSY is set */ 4665 4666 /* XXX assert the tx queue is under the max number */ 4667 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4668 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4669 __func__, 4670 bf, 4671 bf->bf_state.bfs_tx_queue); 4672 bf->bf_flags &= ~ATH_BUF_BUSY; 4673 ath_returnbuf_tail(sc, bf); 4674 return; 4675 } 4676 ath_txq_freeholdingbuf(sc, txq); 4677 txq->axq_holdingbf = bf; 4678 } 4679 4680 /* 4681 * Return a buffer to the pool and update the 'busy' flag on the 4682 * previous 'tail' entry. 4683 * 4684 * This _must_ only be called when the buffer is involved in a completed 4685 * TX. The logic is that if it was part of an active TX, the previous 4686 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4687 * for restart (eg for TDMA.) 4688 * 4689 * The caller must free the mbuf and recycle the node reference. 4690 * 4691 * XXX This method of handling busy / holding buffers is insanely stupid. 4692 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4693 * be much nicer if buffers in the processq() methods would instead be 4694 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4695 * exactly what hardware queue they came from in the first place. 4696 */ 4697 void 4698 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4699 { 4700 struct ath_txq *txq; 4701 4702 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4703 4704 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4705 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4706 4707 /* 4708 * If this buffer is busy, push it onto the holding queue. 4709 */ 4710 if (bf->bf_flags & ATH_BUF_BUSY) { 4711 ATH_TXQ_LOCK(txq); 4712 ath_txq_addholdingbuf(sc, bf); 4713 ATH_TXQ_UNLOCK(txq); 4714 return; 4715 } 4716 4717 /* 4718 * Not a busy buffer, so free normally 4719 */ 4720 ATH_TXBUF_LOCK(sc); 4721 ath_returnbuf_tail(sc, bf); 4722 ATH_TXBUF_UNLOCK(sc); 4723 } 4724 4725 /* 4726 * This is currently used by ath_tx_draintxq() and 4727 * ath_tx_tid_free_pkts(). 4728 * 4729 * It recycles a single ath_buf. 4730 */ 4731 void 4732 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4733 { 4734 struct ieee80211_node *ni = bf->bf_node; 4735 struct mbuf *m0 = bf->bf_m; 4736 4737 /* 4738 * Make sure that we only sync/unload if there's an mbuf. 4739 * If not (eg we cloned a buffer), the unload will have already 4740 * occurred. 4741 */ 4742 if (bf->bf_m != NULL) { 4743 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4744 BUS_DMASYNC_POSTWRITE); 4745 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4746 } 4747 4748 bf->bf_node = NULL; 4749 bf->bf_m = NULL; 4750 4751 /* Free the buffer, it's not needed any longer */ 4752 ath_freebuf(sc, bf); 4753 4754 /* Pass the buffer back to net80211 - completing it */ 4755 ieee80211_tx_complete(ni, m0, status); 4756 } 4757 4758 static struct ath_buf * 4759 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4760 { 4761 struct ath_buf *bf; 4762 4763 ATH_TXQ_LOCK_ASSERT(txq); 4764 4765 /* 4766 * Drain the FIFO queue first, then if it's 4767 * empty, move to the normal frame queue. 4768 */ 4769 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4770 if (bf != NULL) { 4771 /* 4772 * Is it the last buffer in this set? 4773 * Decrement the FIFO counter. 4774 */ 4775 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4776 if (txq->axq_fifo_depth == 0) { 4777 device_printf(sc->sc_dev, 4778 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4779 __func__, 4780 txq->axq_qnum, 4781 txq->fifo.axq_depth); 4782 } else 4783 txq->axq_fifo_depth--; 4784 } 4785 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4786 return (bf); 4787 } 4788 4789 /* 4790 * Debugging! 4791 */ 4792 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4793 device_printf(sc->sc_dev, 4794 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4795 __func__, 4796 txq->axq_qnum, 4797 txq->axq_fifo_depth, 4798 txq->fifo.axq_depth); 4799 } 4800 4801 /* 4802 * Now drain the pending queue. 4803 */ 4804 bf = TAILQ_FIRST(&txq->axq_q); 4805 if (bf == NULL) { 4806 txq->axq_link = NULL; 4807 return (NULL); 4808 } 4809 ATH_TXQ_REMOVE(txq, bf, bf_list); 4810 return (bf); 4811 } 4812 4813 void 4814 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4815 { 4816 #ifdef ATH_DEBUG 4817 struct ath_hal *ah = sc->sc_ah; 4818 #endif 4819 struct ath_buf *bf; 4820 u_int ix; 4821 4822 /* 4823 * NB: this assumes output has been stopped and 4824 * we do not need to block ath_tx_proc 4825 */ 4826 for (ix = 0;; ix++) { 4827 ATH_TXQ_LOCK(txq); 4828 bf = ath_tx_draintxq_get_one(sc, txq); 4829 if (bf == NULL) { 4830 ATH_TXQ_UNLOCK(txq); 4831 break; 4832 } 4833 if (bf->bf_state.bfs_aggr) 4834 txq->axq_aggr_depth--; 4835 #ifdef ATH_DEBUG 4836 if (sc->sc_debug & ATH_DEBUG_RESET) { 4837 struct ieee80211com *ic = &sc->sc_ic; 4838 int status = 0; 4839 4840 /* 4841 * EDMA operation has a TX completion FIFO 4842 * separate from the TX descriptor, so this 4843 * method of checking the "completion" status 4844 * is wrong. 4845 */ 4846 if (! sc->sc_isedma) { 4847 status = (ath_hal_txprocdesc(ah, 4848 bf->bf_lastds, 4849 &bf->bf_status.ds_txstat) == HAL_OK); 4850 } 4851 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4852 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4853 bf->bf_m->m_len, 0, -1); 4854 } 4855 #endif /* ATH_DEBUG */ 4856 /* 4857 * Since we're now doing magic in the completion 4858 * functions, we -must- call it for aggregation 4859 * destinations or BAW tracking will get upset. 4860 */ 4861 /* 4862 * Clear ATH_BUF_BUSY; the completion handler 4863 * will free the buffer. 4864 */ 4865 ATH_TXQ_UNLOCK(txq); 4866 bf->bf_flags &= ~ATH_BUF_BUSY; 4867 if (bf->bf_comp) 4868 bf->bf_comp(sc, bf, 1); 4869 else 4870 ath_tx_default_comp(sc, bf, 1); 4871 } 4872 4873 /* 4874 * Free the holding buffer if it exists 4875 */ 4876 ATH_TXQ_LOCK(txq); 4877 ath_txq_freeholdingbuf(sc, txq); 4878 ATH_TXQ_UNLOCK(txq); 4879 4880 /* 4881 * Drain software queued frames which are on 4882 * active TIDs. 4883 */ 4884 ath_tx_txq_drain(sc, txq); 4885 } 4886 4887 static void 4888 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4889 { 4890 struct ath_hal *ah = sc->sc_ah; 4891 4892 ATH_TXQ_LOCK_ASSERT(txq); 4893 4894 DPRINTF(sc, ATH_DEBUG_RESET, 4895 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 4896 "link %p, holdingbf=%p\n", 4897 __func__, 4898 txq->axq_qnum, 4899 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4900 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 4901 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 4902 txq->axq_flags, 4903 txq->axq_link, 4904 txq->axq_holdingbf); 4905 4906 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4907 /* We've stopped TX DMA, so mark this as stopped. */ 4908 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 4909 4910 #ifdef ATH_DEBUG 4911 if ((sc->sc_debug & ATH_DEBUG_RESET) 4912 && (txq->axq_holdingbf != NULL)) { 4913 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 4914 } 4915 #endif 4916 } 4917 4918 int 4919 ath_stoptxdma(struct ath_softc *sc) 4920 { 4921 struct ath_hal *ah = sc->sc_ah; 4922 int i; 4923 4924 /* XXX return value */ 4925 if (sc->sc_invalid) 4926 return 0; 4927 4928 if (!sc->sc_invalid) { 4929 /* don't touch the hardware if marked invalid */ 4930 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4931 __func__, sc->sc_bhalq, 4932 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4933 NULL); 4934 4935 /* stop the beacon queue */ 4936 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4937 4938 /* Stop the data queues */ 4939 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4940 if (ATH_TXQ_SETUP(sc, i)) { 4941 ATH_TXQ_LOCK(&sc->sc_txq[i]); 4942 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4943 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 4944 } 4945 } 4946 } 4947 4948 return 1; 4949 } 4950 4951 #ifdef ATH_DEBUG 4952 void 4953 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 4954 { 4955 struct ath_hal *ah = sc->sc_ah; 4956 struct ath_buf *bf; 4957 int i = 0; 4958 4959 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 4960 return; 4961 4962 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 4963 __func__, txq->axq_qnum); 4964 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 4965 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 4966 ath_hal_txprocdesc(ah, bf->bf_lastds, 4967 &bf->bf_status.ds_txstat) == HAL_OK); 4968 i++; 4969 } 4970 device_printf(sc->sc_dev, "%s: Q%d: end\n", 4971 __func__, txq->axq_qnum); 4972 } 4973 #endif /* ATH_DEBUG */ 4974 4975 /* 4976 * Drain the transmit queues and reclaim resources. 4977 */ 4978 void 4979 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4980 { 4981 struct ath_hal *ah = sc->sc_ah; 4982 struct ath_buf *bf_last; 4983 int i; 4984 4985 (void) ath_stoptxdma(sc); 4986 4987 /* 4988 * Dump the queue contents 4989 */ 4990 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4991 /* 4992 * XXX TODO: should we just handle the completed TX frames 4993 * here, whether or not the reset is a full one or not? 4994 */ 4995 if (ATH_TXQ_SETUP(sc, i)) { 4996 #ifdef ATH_DEBUG 4997 if (sc->sc_debug & ATH_DEBUG_RESET) 4998 ath_tx_dump(sc, &sc->sc_txq[i]); 4999 #endif /* ATH_DEBUG */ 5000 if (reset_type == ATH_RESET_NOLOSS) { 5001 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5002 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5003 /* 5004 * Free the holding buffer; DMA is now 5005 * stopped. 5006 */ 5007 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5008 /* 5009 * Setup the link pointer to be the 5010 * _last_ buffer/descriptor in the list. 5011 * If there's nothing in the list, set it 5012 * to NULL. 5013 */ 5014 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5015 axq_q_s); 5016 if (bf_last != NULL) { 5017 ath_hal_gettxdesclinkptr(ah, 5018 bf_last->bf_lastds, 5019 &sc->sc_txq[i].axq_link); 5020 } else { 5021 sc->sc_txq[i].axq_link = NULL; 5022 } 5023 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5024 } else 5025 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5026 } 5027 } 5028 #ifdef ATH_DEBUG 5029 if (sc->sc_debug & ATH_DEBUG_RESET) { 5030 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5031 if (bf != NULL && bf->bf_m != NULL) { 5032 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5033 ath_hal_txprocdesc(ah, bf->bf_lastds, 5034 &bf->bf_status.ds_txstat) == HAL_OK); 5035 ieee80211_dump_pkt(&sc->sc_ic, 5036 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5037 0, -1); 5038 } 5039 } 5040 #endif /* ATH_DEBUG */ 5041 sc->sc_wd_timer = 0; 5042 } 5043 5044 /* 5045 * Update internal state after a channel change. 5046 */ 5047 static void 5048 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5049 { 5050 enum ieee80211_phymode mode; 5051 5052 /* 5053 * Change channels and update the h/w rate map 5054 * if we're switching; e.g. 11a to 11b/g. 5055 */ 5056 mode = ieee80211_chan2mode(chan); 5057 if (mode != sc->sc_curmode) 5058 ath_setcurmode(sc, mode); 5059 sc->sc_curchan = chan; 5060 } 5061 5062 /* 5063 * Set/change channels. If the channel is really being changed, 5064 * it's done by resetting the chip. To accomplish this we must 5065 * first cleanup any pending DMA, then restart stuff after a la 5066 * ath_init. 5067 */ 5068 static int 5069 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5070 { 5071 struct ieee80211com *ic = &sc->sc_ic; 5072 struct ath_hal *ah = sc->sc_ah; 5073 int ret = 0; 5074 5075 /* Treat this as an interface reset */ 5076 ATH_PCU_UNLOCK_ASSERT(sc); 5077 ATH_UNLOCK_ASSERT(sc); 5078 5079 /* (Try to) stop TX/RX from occurring */ 5080 taskqueue_block(sc->sc_tq); 5081 5082 ATH_PCU_LOCK(sc); 5083 5084 /* Disable interrupts */ 5085 ath_hal_intrset(ah, 0); 5086 5087 /* Stop new RX/TX/interrupt completion */ 5088 if (ath_reset_grablock(sc, 1) == 0) { 5089 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5090 __func__); 5091 } 5092 5093 /* Stop pending RX/TX completion */ 5094 ath_txrx_stop_locked(sc); 5095 5096 ATH_PCU_UNLOCK(sc); 5097 5098 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5099 __func__, ieee80211_chan2ieee(ic, chan), 5100 chan->ic_freq, chan->ic_flags); 5101 if (chan != sc->sc_curchan) { 5102 HAL_STATUS status; 5103 /* 5104 * To switch channels clear any pending DMA operations; 5105 * wait long enough for the RX fifo to drain, reset the 5106 * hardware at the new frequency, and then re-enable 5107 * the relevant bits of the h/w. 5108 */ 5109 #if 0 5110 ath_hal_intrset(ah, 0); /* disable interrupts */ 5111 #endif 5112 ath_stoprecv(sc, 1); /* turn off frame recv */ 5113 /* 5114 * First, handle completed TX/RX frames. 5115 */ 5116 ath_rx_flush(sc); 5117 ath_draintxq(sc, ATH_RESET_NOLOSS); 5118 /* 5119 * Next, flush the non-scheduled frames. 5120 */ 5121 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5122 5123 ath_update_chainmasks(sc, chan); 5124 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5125 sc->sc_cur_rxchainmask); 5126 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5127 HAL_RESET_NORMAL, &status)) { 5128 device_printf(sc->sc_dev, "%s: unable to reset " 5129 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5130 __func__, ieee80211_chan2ieee(ic, chan), 5131 chan->ic_freq, chan->ic_flags, status); 5132 ret = EIO; 5133 goto finish; 5134 } 5135 sc->sc_diversity = ath_hal_getdiversity(ah); 5136 5137 ATH_RX_LOCK(sc); 5138 sc->sc_rx_stopped = 1; 5139 sc->sc_rx_resetted = 1; 5140 ATH_RX_UNLOCK(sc); 5141 5142 /* Let DFS at it in case it's a DFS channel */ 5143 ath_dfs_radar_enable(sc, chan); 5144 5145 /* Let spectral at in case spectral is enabled */ 5146 ath_spectral_enable(sc, chan); 5147 5148 /* 5149 * Let bluetooth coexistence at in case it's needed for this 5150 * channel 5151 */ 5152 ath_btcoex_enable(sc, ic->ic_curchan); 5153 5154 /* 5155 * If we're doing TDMA, enforce the TXOP limitation for chips 5156 * that support it. 5157 */ 5158 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5159 ath_hal_setenforcetxop(sc->sc_ah, 1); 5160 else 5161 ath_hal_setenforcetxop(sc->sc_ah, 0); 5162 5163 /* 5164 * Re-enable rx framework. 5165 */ 5166 if (ath_startrecv(sc) != 0) { 5167 device_printf(sc->sc_dev, 5168 "%s: unable to restart recv logic\n", __func__); 5169 ret = EIO; 5170 goto finish; 5171 } 5172 5173 /* 5174 * Change channels and update the h/w rate map 5175 * if we're switching; e.g. 11a to 11b/g. 5176 */ 5177 ath_chan_change(sc, chan); 5178 5179 /* 5180 * Reset clears the beacon timers; reset them 5181 * here if needed. 5182 */ 5183 if (sc->sc_beacons) { /* restart beacons */ 5184 #ifdef IEEE80211_SUPPORT_TDMA 5185 if (sc->sc_tdma) 5186 ath_tdma_config(sc, NULL); 5187 else 5188 #endif 5189 ath_beacon_config(sc, NULL); 5190 } 5191 5192 /* 5193 * Re-enable interrupts. 5194 */ 5195 #if 0 5196 ath_hal_intrset(ah, sc->sc_imask); 5197 #endif 5198 } 5199 5200 finish: 5201 ATH_PCU_LOCK(sc); 5202 sc->sc_inreset_cnt--; 5203 /* XXX only do this if sc_inreset_cnt == 0? */ 5204 ath_hal_intrset(ah, sc->sc_imask); 5205 ATH_PCU_UNLOCK(sc); 5206 5207 ath_txrx_start(sc); 5208 /* XXX ath_start? */ 5209 5210 return ret; 5211 } 5212 5213 /* 5214 * Periodically recalibrate the PHY to account 5215 * for temperature/environment changes. 5216 */ 5217 static void 5218 ath_calibrate(void *arg) 5219 { 5220 struct ath_softc *sc = arg; 5221 struct ath_hal *ah = sc->sc_ah; 5222 struct ieee80211com *ic = &sc->sc_ic; 5223 HAL_BOOL longCal, isCalDone = AH_TRUE; 5224 HAL_BOOL aniCal, shortCal = AH_FALSE; 5225 int nextcal; 5226 5227 ATH_LOCK_ASSERT(sc); 5228 5229 /* 5230 * Force the hardware awake for ANI work. 5231 */ 5232 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5233 5234 /* Skip trying to do this if we're in reset */ 5235 if (sc->sc_inreset_cnt) 5236 goto restart; 5237 5238 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5239 goto restart; 5240 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5241 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5242 if (sc->sc_doresetcal) 5243 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5244 5245 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5246 if (aniCal) { 5247 sc->sc_stats.ast_ani_cal++; 5248 sc->sc_lastani = ticks; 5249 ath_hal_ani_poll(ah, sc->sc_curchan); 5250 } 5251 5252 if (longCal) { 5253 sc->sc_stats.ast_per_cal++; 5254 sc->sc_lastlongcal = ticks; 5255 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5256 /* 5257 * Rfgain is out of bounds, reset the chip 5258 * to load new gain values. 5259 */ 5260 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5261 "%s: rfgain change\n", __func__); 5262 sc->sc_stats.ast_per_rfgain++; 5263 sc->sc_resetcal = 0; 5264 sc->sc_doresetcal = AH_TRUE; 5265 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5266 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5267 ath_power_restore_power_state(sc); 5268 return; 5269 } 5270 /* 5271 * If this long cal is after an idle period, then 5272 * reset the data collection state so we start fresh. 5273 */ 5274 if (sc->sc_resetcal) { 5275 (void) ath_hal_calreset(ah, sc->sc_curchan); 5276 sc->sc_lastcalreset = ticks; 5277 sc->sc_lastshortcal = ticks; 5278 sc->sc_resetcal = 0; 5279 sc->sc_doresetcal = AH_TRUE; 5280 } 5281 } 5282 5283 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5284 if (shortCal || longCal) { 5285 isCalDone = AH_FALSE; 5286 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5287 if (longCal) { 5288 /* 5289 * Calibrate noise floor data again in case of change. 5290 */ 5291 ath_hal_process_noisefloor(ah); 5292 } 5293 } else { 5294 DPRINTF(sc, ATH_DEBUG_ANY, 5295 "%s: calibration of channel %u failed\n", 5296 __func__, sc->sc_curchan->ic_freq); 5297 sc->sc_stats.ast_per_calfail++; 5298 } 5299 if (shortCal) 5300 sc->sc_lastshortcal = ticks; 5301 } 5302 if (!isCalDone) { 5303 restart: 5304 /* 5305 * Use a shorter interval to potentially collect multiple 5306 * data samples required to complete calibration. Once 5307 * we're told the work is done we drop back to a longer 5308 * interval between requests. We're more aggressive doing 5309 * work when operating as an AP to improve operation right 5310 * after startup. 5311 */ 5312 sc->sc_lastshortcal = ticks; 5313 nextcal = ath_shortcalinterval*hz/1000; 5314 if (sc->sc_opmode != HAL_M_HOSTAP) 5315 nextcal *= 10; 5316 sc->sc_doresetcal = AH_TRUE; 5317 } else { 5318 /* nextcal should be the shortest time for next event */ 5319 nextcal = ath_longcalinterval*hz; 5320 if (sc->sc_lastcalreset == 0) 5321 sc->sc_lastcalreset = sc->sc_lastlongcal; 5322 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5323 sc->sc_resetcal = 1; /* setup reset next trip */ 5324 sc->sc_doresetcal = AH_FALSE; 5325 } 5326 /* ANI calibration may occur more often than short/long/resetcal */ 5327 if (ath_anicalinterval > 0) 5328 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5329 5330 if (nextcal != 0) { 5331 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5332 __func__, nextcal, isCalDone ? "" : "!"); 5333 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5334 } else { 5335 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5336 __func__); 5337 /* NB: don't rearm timer */ 5338 } 5339 /* 5340 * Restore power state now that we're done. 5341 */ 5342 ath_power_restore_power_state(sc); 5343 } 5344 5345 static void 5346 ath_scan_start(struct ieee80211com *ic) 5347 { 5348 struct ath_softc *sc = ic->ic_softc; 5349 struct ath_hal *ah = sc->sc_ah; 5350 u_int32_t rfilt; 5351 5352 /* XXX calibration timer? */ 5353 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5354 5355 ATH_LOCK(sc); 5356 sc->sc_scanning = 1; 5357 sc->sc_syncbeacon = 0; 5358 rfilt = ath_calcrxfilter(sc); 5359 ATH_UNLOCK(sc); 5360 5361 ATH_PCU_LOCK(sc); 5362 ath_hal_setrxfilter(ah, rfilt); 5363 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5364 ATH_PCU_UNLOCK(sc); 5365 5366 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5367 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5368 } 5369 5370 static void 5371 ath_scan_end(struct ieee80211com *ic) 5372 { 5373 struct ath_softc *sc = ic->ic_softc; 5374 struct ath_hal *ah = sc->sc_ah; 5375 u_int32_t rfilt; 5376 5377 ATH_LOCK(sc); 5378 sc->sc_scanning = 0; 5379 rfilt = ath_calcrxfilter(sc); 5380 ATH_UNLOCK(sc); 5381 5382 ATH_PCU_LOCK(sc); 5383 ath_hal_setrxfilter(ah, rfilt); 5384 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5385 5386 ath_hal_process_noisefloor(ah); 5387 ATH_PCU_UNLOCK(sc); 5388 5389 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5390 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5391 sc->sc_curaid); 5392 } 5393 5394 #ifdef ATH_ENABLE_11N 5395 /* 5396 * For now, just do a channel change. 5397 * 5398 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5399 * control state and resetting the hardware without dropping frames out 5400 * of the queue. 5401 * 5402 * The unfortunate trouble here is making absolutely sure that the 5403 * channel width change has propagated enough so the hardware 5404 * absolutely isn't handed bogus frames for it's current operating 5405 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5406 * does occur in parallel, we need to make certain we've blocked 5407 * any further ongoing TX (and RX, that can cause raw TX) 5408 * before we do this. 5409 */ 5410 static void 5411 ath_update_chw(struct ieee80211com *ic) 5412 { 5413 struct ath_softc *sc = ic->ic_softc; 5414 5415 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5416 ath_set_channel(ic); 5417 } 5418 #endif /* ATH_ENABLE_11N */ 5419 5420 static void 5421 ath_set_channel(struct ieee80211com *ic) 5422 { 5423 struct ath_softc *sc = ic->ic_softc; 5424 5425 ATH_LOCK(sc); 5426 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5427 ATH_UNLOCK(sc); 5428 5429 (void) ath_chan_set(sc, ic->ic_curchan); 5430 /* 5431 * If we are returning to our bss channel then mark state 5432 * so the next recv'd beacon's tsf will be used to sync the 5433 * beacon timers. Note that since we only hear beacons in 5434 * sta/ibss mode this has no effect in other operating modes. 5435 */ 5436 ATH_LOCK(sc); 5437 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5438 sc->sc_syncbeacon = 1; 5439 ath_power_restore_power_state(sc); 5440 ATH_UNLOCK(sc); 5441 } 5442 5443 /* 5444 * Walk the vap list and check if there any vap's in RUN state. 5445 */ 5446 static int 5447 ath_isanyrunningvaps(struct ieee80211vap *this) 5448 { 5449 struct ieee80211com *ic = this->iv_ic; 5450 struct ieee80211vap *vap; 5451 5452 IEEE80211_LOCK_ASSERT(ic); 5453 5454 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5455 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5456 return 1; 5457 } 5458 return 0; 5459 } 5460 5461 static int 5462 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5463 { 5464 struct ieee80211com *ic = vap->iv_ic; 5465 struct ath_softc *sc = ic->ic_softc; 5466 struct ath_vap *avp = ATH_VAP(vap); 5467 struct ath_hal *ah = sc->sc_ah; 5468 struct ieee80211_node *ni = NULL; 5469 int i, error, stamode; 5470 u_int32_t rfilt; 5471 int csa_run_transition = 0; 5472 enum ieee80211_state ostate = vap->iv_state; 5473 5474 static const HAL_LED_STATE leds[] = { 5475 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5476 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5477 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5478 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5479 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5480 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5481 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5482 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5483 }; 5484 5485 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5486 ieee80211_state_name[ostate], 5487 ieee80211_state_name[nstate]); 5488 5489 /* 5490 * net80211 _should_ have the comlock asserted at this point. 5491 * There are some comments around the calls to vap->iv_newstate 5492 * which indicate that it (newstate) may end up dropping the 5493 * lock. This and the subsequent lock assert check after newstate 5494 * are an attempt to catch these and figure out how/why. 5495 */ 5496 IEEE80211_LOCK_ASSERT(ic); 5497 5498 /* Before we touch the hardware - wake it up */ 5499 ATH_LOCK(sc); 5500 /* 5501 * If the NIC is in anything other than SLEEP state, 5502 * we need to ensure that self-generated frames are 5503 * set for PWRMGT=0. Otherwise we may end up with 5504 * strange situations. 5505 * 5506 * XXX TODO: is this actually the case? :-) 5507 */ 5508 if (nstate != IEEE80211_S_SLEEP) 5509 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5510 5511 /* 5512 * Now, wake the thing up. 5513 */ 5514 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5515 5516 /* 5517 * And stop the calibration callout whilst we have 5518 * ATH_LOCK held. 5519 */ 5520 callout_stop(&sc->sc_cal_ch); 5521 ATH_UNLOCK(sc); 5522 5523 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5524 csa_run_transition = 1; 5525 5526 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5527 5528 if (nstate == IEEE80211_S_SCAN) { 5529 /* 5530 * Scanning: turn off beacon miss and don't beacon. 5531 * Mark beacon state so when we reach RUN state we'll 5532 * [re]setup beacons. Unblock the task q thread so 5533 * deferred interrupt processing is done. 5534 */ 5535 5536 /* Ensure we stay awake during scan */ 5537 ATH_LOCK(sc); 5538 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5539 ath_power_setpower(sc, HAL_PM_AWAKE); 5540 ATH_UNLOCK(sc); 5541 5542 ath_hal_intrset(ah, 5543 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5544 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5545 sc->sc_beacons = 0; 5546 taskqueue_unblock(sc->sc_tq); 5547 } 5548 5549 ni = ieee80211_ref_node(vap->iv_bss); 5550 rfilt = ath_calcrxfilter(sc); 5551 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5552 vap->iv_opmode == IEEE80211_M_AHDEMO || 5553 vap->iv_opmode == IEEE80211_M_IBSS); 5554 5555 /* 5556 * XXX Dont need to do this (and others) if we've transitioned 5557 * from SLEEP->RUN. 5558 */ 5559 if (stamode && nstate == IEEE80211_S_RUN) { 5560 sc->sc_curaid = ni->ni_associd; 5561 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5562 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5563 } 5564 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5565 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5566 ath_hal_setrxfilter(ah, rfilt); 5567 5568 /* XXX is this to restore keycache on resume? */ 5569 if (vap->iv_opmode != IEEE80211_M_STA && 5570 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5571 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5572 if (ath_hal_keyisvalid(ah, i)) 5573 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5574 } 5575 5576 /* 5577 * Invoke the parent method to do net80211 work. 5578 */ 5579 error = avp->av_newstate(vap, nstate, arg); 5580 if (error != 0) 5581 goto bad; 5582 5583 /* 5584 * See above: ensure av_newstate() doesn't drop the lock 5585 * on us. 5586 */ 5587 IEEE80211_LOCK_ASSERT(ic); 5588 5589 if (nstate == IEEE80211_S_RUN) { 5590 /* NB: collect bss node again, it may have changed */ 5591 ieee80211_free_node(ni); 5592 ni = ieee80211_ref_node(vap->iv_bss); 5593 5594 DPRINTF(sc, ATH_DEBUG_STATE, 5595 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5596 "capinfo 0x%04x chan %d\n", __func__, 5597 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5598 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5599 5600 switch (vap->iv_opmode) { 5601 #ifdef IEEE80211_SUPPORT_TDMA 5602 case IEEE80211_M_AHDEMO: 5603 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5604 break; 5605 /* fall thru... */ 5606 #endif 5607 case IEEE80211_M_HOSTAP: 5608 case IEEE80211_M_IBSS: 5609 case IEEE80211_M_MBSS: 5610 /* 5611 * Allocate and setup the beacon frame. 5612 * 5613 * Stop any previous beacon DMA. This may be 5614 * necessary, for example, when an ibss merge 5615 * causes reconfiguration; there will be a state 5616 * transition from RUN->RUN that means we may 5617 * be called with beacon transmission active. 5618 */ 5619 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5620 5621 error = ath_beacon_alloc(sc, ni); 5622 if (error != 0) 5623 goto bad; 5624 /* 5625 * If joining an adhoc network defer beacon timer 5626 * configuration to the next beacon frame so we 5627 * have a current TSF to use. Otherwise we're 5628 * starting an ibss/bss so there's no need to delay; 5629 * if this is the first vap moving to RUN state, then 5630 * beacon state needs to be [re]configured. 5631 */ 5632 if (vap->iv_opmode == IEEE80211_M_IBSS && 5633 ni->ni_tstamp.tsf != 0) { 5634 sc->sc_syncbeacon = 1; 5635 } else if (!sc->sc_beacons) { 5636 #ifdef IEEE80211_SUPPORT_TDMA 5637 if (vap->iv_caps & IEEE80211_C_TDMA) 5638 ath_tdma_config(sc, vap); 5639 else 5640 #endif 5641 ath_beacon_config(sc, vap); 5642 sc->sc_beacons = 1; 5643 } 5644 break; 5645 case IEEE80211_M_STA: 5646 /* 5647 * Defer beacon timer configuration to the next 5648 * beacon frame so we have a current TSF to use 5649 * (any TSF collected when scanning is likely old). 5650 * However if it's due to a CSA -> RUN transition, 5651 * force a beacon update so we pick up a lack of 5652 * beacons from an AP in CAC and thus force a 5653 * scan. 5654 * 5655 * And, there's also corner cases here where 5656 * after a scan, the AP may have disappeared. 5657 * In that case, we may not receive an actual 5658 * beacon to update the beacon timer and thus we 5659 * won't get notified of the missing beacons. 5660 */ 5661 if (ostate != IEEE80211_S_RUN && 5662 ostate != IEEE80211_S_SLEEP) { 5663 DPRINTF(sc, ATH_DEBUG_BEACON, 5664 "%s: STA; syncbeacon=1\n", __func__); 5665 sc->sc_syncbeacon = 1; 5666 5667 if (csa_run_transition) 5668 ath_beacon_config(sc, vap); 5669 5670 /* 5671 * PR: kern/175227 5672 * 5673 * Reconfigure beacons during reset; as otherwise 5674 * we won't get the beacon timers reprogrammed 5675 * after a reset and thus we won't pick up a 5676 * beacon miss interrupt. 5677 * 5678 * Hopefully we'll see a beacon before the BMISS 5679 * timer fires (too often), leading to a STA 5680 * disassociation. 5681 */ 5682 sc->sc_beacons = 1; 5683 } 5684 break; 5685 case IEEE80211_M_MONITOR: 5686 /* 5687 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5688 * transitions so we must re-enable interrupts here to 5689 * handle the case of a single monitor mode vap. 5690 */ 5691 ath_hal_intrset(ah, sc->sc_imask); 5692 break; 5693 case IEEE80211_M_WDS: 5694 break; 5695 default: 5696 break; 5697 } 5698 /* 5699 * Let the hal process statistics collected during a 5700 * scan so it can provide calibrated noise floor data. 5701 */ 5702 ath_hal_process_noisefloor(ah); 5703 /* 5704 * Reset rssi stats; maybe not the best place... 5705 */ 5706 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5707 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5708 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5709 5710 /* 5711 * Force awake for RUN mode. 5712 */ 5713 ATH_LOCK(sc); 5714 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5715 ath_power_setpower(sc, HAL_PM_AWAKE); 5716 5717 /* 5718 * Finally, start any timers and the task q thread 5719 * (in case we didn't go through SCAN state). 5720 */ 5721 if (ath_longcalinterval != 0) { 5722 /* start periodic recalibration timer */ 5723 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5724 } else { 5725 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5726 "%s: calibration disabled\n", __func__); 5727 } 5728 ATH_UNLOCK(sc); 5729 5730 taskqueue_unblock(sc->sc_tq); 5731 } else if (nstate == IEEE80211_S_INIT) { 5732 /* 5733 * If there are no vaps left in RUN state then 5734 * shutdown host/driver operation: 5735 * o disable interrupts 5736 * o disable the task queue thread 5737 * o mark beacon processing as stopped 5738 */ 5739 if (!ath_isanyrunningvaps(vap)) { 5740 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5741 /* disable interrupts */ 5742 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5743 taskqueue_block(sc->sc_tq); 5744 sc->sc_beacons = 0; 5745 } 5746 #ifdef IEEE80211_SUPPORT_TDMA 5747 ath_hal_setcca(ah, AH_TRUE); 5748 #endif 5749 } else if (nstate == IEEE80211_S_SLEEP) { 5750 /* We're going to sleep, so transition appropriately */ 5751 /* For now, only do this if we're a single STA vap */ 5752 if (sc->sc_nvaps == 1 && 5753 vap->iv_opmode == IEEE80211_M_STA) { 5754 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 5755 ATH_LOCK(sc); 5756 /* 5757 * Always at least set the self-generated 5758 * frame config to set PWRMGT=1. 5759 */ 5760 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 5761 5762 /* 5763 * If we're not syncing beacons, transition 5764 * to NETWORK_SLEEP. 5765 * 5766 * We stay awake if syncbeacon > 0 in case 5767 * we need to listen for some beacons otherwise 5768 * our beacon timer config may be wrong. 5769 */ 5770 if (sc->sc_syncbeacon == 0) { 5771 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP); 5772 } 5773 ATH_UNLOCK(sc); 5774 } 5775 } 5776 bad: 5777 ieee80211_free_node(ni); 5778 5779 /* 5780 * Restore the power state - either to what it was, or 5781 * to network_sleep if it's alright. 5782 */ 5783 ATH_LOCK(sc); 5784 ath_power_restore_power_state(sc); 5785 ATH_UNLOCK(sc); 5786 return error; 5787 } 5788 5789 /* 5790 * Allocate a key cache slot to the station so we can 5791 * setup a mapping from key index to node. The key cache 5792 * slot is needed for managing antenna state and for 5793 * compression when stations do not use crypto. We do 5794 * it uniliaterally here; if crypto is employed this slot 5795 * will be reassigned. 5796 */ 5797 static void 5798 ath_setup_stationkey(struct ieee80211_node *ni) 5799 { 5800 struct ieee80211vap *vap = ni->ni_vap; 5801 struct ath_softc *sc = vap->iv_ic->ic_softc; 5802 ieee80211_keyix keyix, rxkeyix; 5803 5804 /* XXX should take a locked ref to vap->iv_bss */ 5805 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5806 /* 5807 * Key cache is full; we'll fall back to doing 5808 * the more expensive lookup in software. Note 5809 * this also means no h/w compression. 5810 */ 5811 /* XXX msg+statistic */ 5812 } else { 5813 /* XXX locking? */ 5814 ni->ni_ucastkey.wk_keyix = keyix; 5815 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5816 /* NB: must mark device key to get called back on delete */ 5817 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5818 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5819 /* NB: this will create a pass-thru key entry */ 5820 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5821 } 5822 } 5823 5824 /* 5825 * Setup driver-specific state for a newly associated node. 5826 * Note that we're called also on a re-associate, the isnew 5827 * param tells us if this is the first time or not. 5828 */ 5829 static void 5830 ath_newassoc(struct ieee80211_node *ni, int isnew) 5831 { 5832 struct ath_node *an = ATH_NODE(ni); 5833 struct ieee80211vap *vap = ni->ni_vap; 5834 struct ath_softc *sc = vap->iv_ic->ic_softc; 5835 const struct ieee80211_txparam *tp = ni->ni_txparms; 5836 5837 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5838 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5839 5840 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 5841 __func__, 5842 ni->ni_macaddr, 5843 ":", 5844 isnew, 5845 an->an_is_powersave); 5846 5847 ATH_NODE_LOCK(an); 5848 ath_rate_newassoc(sc, an, isnew); 5849 ATH_NODE_UNLOCK(an); 5850 5851 if (isnew && 5852 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5853 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5854 ath_setup_stationkey(ni); 5855 5856 /* 5857 * If we're reassociating, make sure that any paused queues 5858 * get unpaused. 5859 * 5860 * Now, we may have frames in the hardware queue for this node. 5861 * So if we are reassociating and there are frames in the queue, 5862 * we need to go through the cleanup path to ensure that they're 5863 * marked as non-aggregate. 5864 */ 5865 if (! isnew) { 5866 DPRINTF(sc, ATH_DEBUG_NODE, 5867 "%s: %6D: reassoc; is_powersave=%d\n", 5868 __func__, 5869 ni->ni_macaddr, 5870 ":", 5871 an->an_is_powersave); 5872 5873 /* XXX for now, we can't hold the lock across assoc */ 5874 ath_tx_node_reassoc(sc, an); 5875 5876 /* XXX for now, we can't hold the lock across wakeup */ 5877 if (an->an_is_powersave) 5878 ath_tx_node_wakeup(sc, an); 5879 } 5880 } 5881 5882 static int 5883 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5884 int nchans, struct ieee80211_channel chans[]) 5885 { 5886 struct ath_softc *sc = ic->ic_softc; 5887 struct ath_hal *ah = sc->sc_ah; 5888 HAL_STATUS status; 5889 5890 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5891 "%s: rd %u cc %u location %c%s\n", 5892 __func__, reg->regdomain, reg->country, reg->location, 5893 reg->ecm ? " ecm" : ""); 5894 5895 status = ath_hal_set_channels(ah, chans, nchans, 5896 reg->country, reg->regdomain); 5897 if (status != HAL_OK) { 5898 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5899 __func__, status); 5900 return EINVAL; /* XXX */ 5901 } 5902 5903 return 0; 5904 } 5905 5906 static void 5907 ath_getradiocaps(struct ieee80211com *ic, 5908 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5909 { 5910 struct ath_softc *sc = ic->ic_softc; 5911 struct ath_hal *ah = sc->sc_ah; 5912 5913 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5914 __func__, SKU_DEBUG, CTRY_DEFAULT); 5915 5916 /* XXX check return */ 5917 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5918 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5919 5920 } 5921 5922 static int 5923 ath_getchannels(struct ath_softc *sc) 5924 { 5925 struct ieee80211com *ic = &sc->sc_ic; 5926 struct ath_hal *ah = sc->sc_ah; 5927 HAL_STATUS status; 5928 5929 /* 5930 * Collect channel set based on EEPROM contents. 5931 */ 5932 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5933 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5934 if (status != HAL_OK) { 5935 device_printf(sc->sc_dev, 5936 "%s: unable to collect channel list from hal, status %d\n", 5937 __func__, status); 5938 return EINVAL; 5939 } 5940 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5941 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5942 /* XXX map Atheros sku's to net80211 SKU's */ 5943 /* XXX net80211 types too small */ 5944 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5945 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5946 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5947 ic->ic_regdomain.isocc[1] = ' '; 5948 5949 ic->ic_regdomain.ecm = 1; 5950 ic->ic_regdomain.location = 'I'; 5951 5952 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5953 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5954 __func__, sc->sc_eerd, sc->sc_eecc, 5955 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5956 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5957 return 0; 5958 } 5959 5960 static int 5961 ath_rate_setup(struct ath_softc *sc, u_int mode) 5962 { 5963 struct ath_hal *ah = sc->sc_ah; 5964 const HAL_RATE_TABLE *rt; 5965 5966 switch (mode) { 5967 case IEEE80211_MODE_11A: 5968 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5969 break; 5970 case IEEE80211_MODE_HALF: 5971 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5972 break; 5973 case IEEE80211_MODE_QUARTER: 5974 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5975 break; 5976 case IEEE80211_MODE_11B: 5977 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5978 break; 5979 case IEEE80211_MODE_11G: 5980 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5981 break; 5982 case IEEE80211_MODE_TURBO_A: 5983 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5984 break; 5985 case IEEE80211_MODE_TURBO_G: 5986 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5987 break; 5988 case IEEE80211_MODE_STURBO_A: 5989 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5990 break; 5991 case IEEE80211_MODE_11NA: 5992 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5993 break; 5994 case IEEE80211_MODE_11NG: 5995 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5996 break; 5997 default: 5998 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5999 __func__, mode); 6000 return 0; 6001 } 6002 sc->sc_rates[mode] = rt; 6003 return (rt != NULL); 6004 } 6005 6006 static void 6007 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6008 { 6009 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6010 static const struct { 6011 u_int rate; /* tx/rx 802.11 rate */ 6012 u_int16_t timeOn; /* LED on time (ms) */ 6013 u_int16_t timeOff; /* LED off time (ms) */ 6014 } blinkrates[] = { 6015 { 108, 40, 10 }, 6016 { 96, 44, 11 }, 6017 { 72, 50, 13 }, 6018 { 48, 57, 14 }, 6019 { 36, 67, 16 }, 6020 { 24, 80, 20 }, 6021 { 22, 100, 25 }, 6022 { 18, 133, 34 }, 6023 { 12, 160, 40 }, 6024 { 10, 200, 50 }, 6025 { 6, 240, 58 }, 6026 { 4, 267, 66 }, 6027 { 2, 400, 100 }, 6028 { 0, 500, 130 }, 6029 /* XXX half/quarter rates */ 6030 }; 6031 const HAL_RATE_TABLE *rt; 6032 int i, j; 6033 6034 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6035 rt = sc->sc_rates[mode]; 6036 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6037 for (i = 0; i < rt->rateCount; i++) { 6038 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6039 if (rt->info[i].phy != IEEE80211_T_HT) 6040 sc->sc_rixmap[ieeerate] = i; 6041 else 6042 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6043 } 6044 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6045 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6046 if (i >= rt->rateCount) { 6047 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6048 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6049 continue; 6050 } 6051 sc->sc_hwmap[i].ieeerate = 6052 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6053 if (rt->info[i].phy == IEEE80211_T_HT) 6054 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6055 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6056 if (rt->info[i].shortPreamble || 6057 rt->info[i].phy == IEEE80211_T_OFDM) 6058 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6059 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6060 for (j = 0; j < nitems(blinkrates)-1; j++) 6061 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6062 break; 6063 /* NB: this uses the last entry if the rate isn't found */ 6064 /* XXX beware of overlow */ 6065 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6066 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6067 } 6068 sc->sc_currates = rt; 6069 sc->sc_curmode = mode; 6070 /* 6071 * All protection frames are transmitted at 2Mb/s for 6072 * 11g, otherwise at 1Mb/s. 6073 */ 6074 if (mode == IEEE80211_MODE_11G) 6075 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6076 else 6077 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6078 /* NB: caller is responsible for resetting rate control state */ 6079 } 6080 6081 static void 6082 ath_watchdog(void *arg) 6083 { 6084 struct ath_softc *sc = arg; 6085 struct ieee80211com *ic = &sc->sc_ic; 6086 int do_reset = 0; 6087 6088 ATH_LOCK_ASSERT(sc); 6089 6090 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6091 uint32_t hangs; 6092 6093 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6094 6095 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6096 hangs != 0) { 6097 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6098 hangs & 0xff ? "bb" : "mac", hangs); 6099 } else 6100 device_printf(sc->sc_dev, "device timeout\n"); 6101 do_reset = 1; 6102 counter_u64_add(ic->ic_oerrors, 1); 6103 sc->sc_stats.ast_watchdog++; 6104 6105 ath_power_restore_power_state(sc); 6106 } 6107 6108 /* 6109 * We can't hold the lock across the ath_reset() call. 6110 * 6111 * And since this routine can't hold a lock and sleep, 6112 * do the reset deferred. 6113 */ 6114 if (do_reset) { 6115 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6116 } 6117 6118 callout_schedule(&sc->sc_wd_ch, hz); 6119 } 6120 6121 static void 6122 ath_parent(struct ieee80211com *ic) 6123 { 6124 struct ath_softc *sc = ic->ic_softc; 6125 int error = EDOOFUS; 6126 6127 ATH_LOCK(sc); 6128 if (ic->ic_nrunning > 0) { 6129 /* 6130 * To avoid rescanning another access point, 6131 * do not call ath_init() here. Instead, 6132 * only reflect promisc mode settings. 6133 */ 6134 if (sc->sc_running) { 6135 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6136 ath_mode_init(sc); 6137 ath_power_restore_power_state(sc); 6138 } else if (!sc->sc_invalid) { 6139 /* 6140 * Beware of being called during attach/detach 6141 * to reset promiscuous mode. In that case we 6142 * will still be marked UP but not RUNNING. 6143 * However trying to re-init the interface 6144 * is the wrong thing to do as we've already 6145 * torn down much of our state. There's 6146 * probably a better way to deal with this. 6147 */ 6148 error = ath_init(sc); 6149 } 6150 } else { 6151 ath_stop(sc); 6152 if (!sc->sc_invalid) 6153 ath_power_setpower(sc, HAL_PM_FULL_SLEEP); 6154 } 6155 ATH_UNLOCK(sc); 6156 6157 if (error == 0) { 6158 #ifdef ATH_TX99_DIAG 6159 if (sc->sc_tx99 != NULL) 6160 sc->sc_tx99->start(sc->sc_tx99); 6161 else 6162 #endif 6163 ieee80211_start_all(ic); 6164 } 6165 } 6166 6167 /* 6168 * Announce various information on device/driver attach. 6169 */ 6170 static void 6171 ath_announce(struct ath_softc *sc) 6172 { 6173 struct ath_hal *ah = sc->sc_ah; 6174 6175 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6176 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6177 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6178 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6179 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6180 if (bootverbose) { 6181 int i; 6182 for (i = 0; i <= WME_AC_VO; i++) { 6183 struct ath_txq *txq = sc->sc_ac2q[i]; 6184 device_printf(sc->sc_dev, 6185 "Use hw queue %u for %s traffic\n", 6186 txq->axq_qnum, ieee80211_wme_acnames[i]); 6187 } 6188 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6189 sc->sc_cabq->axq_qnum); 6190 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6191 sc->sc_bhalq); 6192 } 6193 if (ath_rxbuf != ATH_RXBUF) 6194 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6195 if (ath_txbuf != ATH_TXBUF) 6196 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6197 if (sc->sc_mcastkey && bootverbose) 6198 device_printf(sc->sc_dev, "using multicast key search\n"); 6199 } 6200 6201 static void 6202 ath_dfs_tasklet(void *p, int npending) 6203 { 6204 struct ath_softc *sc = (struct ath_softc *) p; 6205 struct ieee80211com *ic = &sc->sc_ic; 6206 6207 /* 6208 * If previous processing has found a radar event, 6209 * signal this to the net80211 layer to begin DFS 6210 * processing. 6211 */ 6212 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6213 /* DFS event found, initiate channel change */ 6214 /* 6215 * XXX doesn't currently tell us whether the event 6216 * XXX was found in the primary or extension 6217 * XXX channel! 6218 */ 6219 IEEE80211_LOCK(ic); 6220 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6221 IEEE80211_UNLOCK(ic); 6222 } 6223 } 6224 6225 /* 6226 * Enable/disable power save. This must be called with 6227 * no TX driver locks currently held, so it should only 6228 * be called from the RX path (which doesn't hold any 6229 * TX driver locks.) 6230 */ 6231 static void 6232 ath_node_powersave(struct ieee80211_node *ni, int enable) 6233 { 6234 #ifdef ATH_SW_PSQ 6235 struct ath_node *an = ATH_NODE(ni); 6236 struct ieee80211com *ic = ni->ni_ic; 6237 struct ath_softc *sc = ic->ic_softc; 6238 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6239 6240 /* XXX and no TXQ locks should be held here */ 6241 6242 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6243 __func__, 6244 ni->ni_macaddr, 6245 ":", 6246 !! enable); 6247 6248 /* Suspend or resume software queue handling */ 6249 if (enable) 6250 ath_tx_node_sleep(sc, an); 6251 else 6252 ath_tx_node_wakeup(sc, an); 6253 6254 /* Update net80211 state */ 6255 avp->av_node_ps(ni, enable); 6256 #else 6257 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6258 6259 /* Update net80211 state */ 6260 avp->av_node_ps(ni, enable); 6261 #endif/* ATH_SW_PSQ */ 6262 } 6263 6264 /* 6265 * Notification from net80211 that the powersave queue state has 6266 * changed. 6267 * 6268 * Since the software queue also may have some frames: 6269 * 6270 * + if the node software queue has frames and the TID state 6271 * is 0, we set the TIM; 6272 * + if the node and the stack are both empty, we clear the TIM bit. 6273 * + If the stack tries to set the bit, always set it. 6274 * + If the stack tries to clear the bit, only clear it if the 6275 * software queue in question is also cleared. 6276 * 6277 * TODO: this is called during node teardown; so let's ensure this 6278 * is all correctly handled and that the TIM bit is cleared. 6279 * It may be that the node flush is called _AFTER_ the net80211 6280 * stack clears the TIM. 6281 * 6282 * Here is the racy part. Since it's possible >1 concurrent, 6283 * overlapping TXes will appear complete with a TX completion in 6284 * another thread, it's possible that the concurrent TIM calls will 6285 * clash. We can't hold the node lock here because setting the 6286 * TIM grabs the net80211 comlock and this may cause a LOR. 6287 * The solution is either to totally serialise _everything_ at 6288 * this point (ie, all TX, completion and any reset/flush go into 6289 * one taskqueue) or a new "ath TIM lock" needs to be created that 6290 * just wraps the driver state change and this call to avp->av_set_tim(). 6291 * 6292 * The same race exists in the net80211 power save queue handling 6293 * as well. Since multiple transmitting threads may queue frames 6294 * into the driver, as well as ps-poll and the driver transmitting 6295 * frames (and thus clearing the psq), it's quite possible that 6296 * a packet entering the PSQ and a ps-poll being handled will 6297 * race, causing the TIM to be cleared and not re-set. 6298 */ 6299 static int 6300 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6301 { 6302 #ifdef ATH_SW_PSQ 6303 struct ieee80211com *ic = ni->ni_ic; 6304 struct ath_softc *sc = ic->ic_softc; 6305 struct ath_node *an = ATH_NODE(ni); 6306 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6307 int changed = 0; 6308 6309 ATH_TX_LOCK(sc); 6310 an->an_stack_psq = enable; 6311 6312 /* 6313 * This will get called for all operating modes, 6314 * even if avp->av_set_tim is unset. 6315 * It's currently set for hostap/ibss modes; but 6316 * the same infrastructure is used for both STA 6317 * and AP/IBSS node power save. 6318 */ 6319 if (avp->av_set_tim == NULL) { 6320 ATH_TX_UNLOCK(sc); 6321 return (0); 6322 } 6323 6324 /* 6325 * If setting the bit, always set it here. 6326 * If clearing the bit, only clear it if the 6327 * software queue is also empty. 6328 * 6329 * If the node has left power save, just clear the TIM 6330 * bit regardless of the state of the power save queue. 6331 * 6332 * XXX TODO: although atomics are used, it's quite possible 6333 * that a race will occur between this and setting/clearing 6334 * in another thread. TX completion will occur always in 6335 * one thread, however setting/clearing the TIM bit can come 6336 * from a variety of different process contexts! 6337 */ 6338 if (enable && an->an_tim_set == 1) { 6339 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6340 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6341 __func__, 6342 ni->ni_macaddr, 6343 ":", 6344 enable); 6345 ATH_TX_UNLOCK(sc); 6346 } else if (enable) { 6347 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6348 "%s: %6D: enable=%d, enabling TIM\n", 6349 __func__, 6350 ni->ni_macaddr, 6351 ":", 6352 enable); 6353 an->an_tim_set = 1; 6354 ATH_TX_UNLOCK(sc); 6355 changed = avp->av_set_tim(ni, enable); 6356 } else if (an->an_swq_depth == 0) { 6357 /* disable */ 6358 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6359 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6360 __func__, 6361 ni->ni_macaddr, 6362 ":", 6363 enable); 6364 an->an_tim_set = 0; 6365 ATH_TX_UNLOCK(sc); 6366 changed = avp->av_set_tim(ni, enable); 6367 } else if (! an->an_is_powersave) { 6368 /* 6369 * disable regardless; the node isn't in powersave now 6370 */ 6371 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6372 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6373 __func__, 6374 ni->ni_macaddr, 6375 ":", 6376 enable); 6377 an->an_tim_set = 0; 6378 ATH_TX_UNLOCK(sc); 6379 changed = avp->av_set_tim(ni, enable); 6380 } else { 6381 /* 6382 * psq disable, node is currently in powersave, node 6383 * software queue isn't empty, so don't clear the TIM bit 6384 * for now. 6385 */ 6386 ATH_TX_UNLOCK(sc); 6387 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6388 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6389 __func__, 6390 ni->ni_macaddr, 6391 ":", 6392 enable); 6393 changed = 0; 6394 } 6395 6396 return (changed); 6397 #else 6398 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6399 6400 /* 6401 * Some operating modes don't set av_set_tim(), so don't 6402 * update it here. 6403 */ 6404 if (avp->av_set_tim == NULL) 6405 return (0); 6406 6407 return (avp->av_set_tim(ni, enable)); 6408 #endif /* ATH_SW_PSQ */ 6409 } 6410 6411 /* 6412 * Set or update the TIM from the software queue. 6413 * 6414 * Check the software queue depth before attempting to do lock 6415 * anything; that avoids trying to obtain the lock. Then, 6416 * re-check afterwards to ensure nothing has changed in the 6417 * meantime. 6418 * 6419 * set: This is designed to be called from the TX path, after 6420 * a frame has been queued; to see if the swq > 0. 6421 * 6422 * clear: This is designed to be called from the buffer completion point 6423 * (right now it's ath_tx_default_comp()) where the state of 6424 * a software queue has changed. 6425 * 6426 * It makes sense to place it at buffer free / completion rather 6427 * than after each software queue operation, as there's no real 6428 * point in churning the TIM bit as the last frames in the software 6429 * queue are transmitted. If they fail and we retry them, we'd 6430 * just be setting the TIM bit again anyway. 6431 */ 6432 void 6433 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6434 int enable) 6435 { 6436 #ifdef ATH_SW_PSQ 6437 struct ath_node *an; 6438 struct ath_vap *avp; 6439 6440 /* Don't do this for broadcast/etc frames */ 6441 if (ni == NULL) 6442 return; 6443 6444 an = ATH_NODE(ni); 6445 avp = ATH_VAP(ni->ni_vap); 6446 6447 /* 6448 * And for operating modes without the TIM handler set, let's 6449 * just skip those. 6450 */ 6451 if (avp->av_set_tim == NULL) 6452 return; 6453 6454 ATH_TX_LOCK_ASSERT(sc); 6455 6456 if (enable) { 6457 if (an->an_is_powersave && 6458 an->an_tim_set == 0 && 6459 an->an_swq_depth != 0) { 6460 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6461 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6462 __func__, 6463 ni->ni_macaddr, 6464 ":"); 6465 an->an_tim_set = 1; 6466 (void) avp->av_set_tim(ni, 1); 6467 } 6468 } else { 6469 /* 6470 * Don't bother grabbing the lock unless the queue is empty. 6471 */ 6472 if (an->an_swq_depth != 0) 6473 return; 6474 6475 if (an->an_is_powersave && 6476 an->an_stack_psq == 0 && 6477 an->an_tim_set == 1 && 6478 an->an_swq_depth == 0) { 6479 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6480 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6481 " clear!\n", 6482 __func__, 6483 ni->ni_macaddr, 6484 ":"); 6485 an->an_tim_set = 0; 6486 (void) avp->av_set_tim(ni, 0); 6487 } 6488 } 6489 #else 6490 return; 6491 #endif /* ATH_SW_PSQ */ 6492 } 6493 6494 /* 6495 * Received a ps-poll frame from net80211. 6496 * 6497 * Here we get a chance to serve out a software-queued frame ourselves 6498 * before we punt it to net80211 to transmit us one itself - either 6499 * because there's traffic in the net80211 psq, or a NULL frame to 6500 * indicate there's nothing else. 6501 */ 6502 static void 6503 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6504 { 6505 #ifdef ATH_SW_PSQ 6506 struct ath_node *an; 6507 struct ath_vap *avp; 6508 struct ieee80211com *ic = ni->ni_ic; 6509 struct ath_softc *sc = ic->ic_softc; 6510 int tid; 6511 6512 /* Just paranoia */ 6513 if (ni == NULL) 6514 return; 6515 6516 /* 6517 * Unassociated (temporary node) station. 6518 */ 6519 if (ni->ni_associd == 0) 6520 return; 6521 6522 /* 6523 * We do have an active node, so let's begin looking into it. 6524 */ 6525 an = ATH_NODE(ni); 6526 avp = ATH_VAP(ni->ni_vap); 6527 6528 /* 6529 * For now, we just call the original ps-poll method. 6530 * Once we're ready to flip this on: 6531 * 6532 * + Set leak to 1, as no matter what we're going to have 6533 * to send a frame; 6534 * + Check the software queue and if there's something in it, 6535 * schedule the highest TID thas has traffic from this node. 6536 * Then make sure we schedule the software scheduler to 6537 * run so it picks up said frame. 6538 * 6539 * That way whatever happens, we'll at least send _a_ frame 6540 * to the given node. 6541 * 6542 * Again, yes, it's crappy QoS if the node has multiple 6543 * TIDs worth of traffic - but let's get it working first 6544 * before we optimise it. 6545 * 6546 * Also yes, there's definitely latency here - we're not 6547 * direct dispatching to the hardware in this path (and 6548 * we're likely being called from the packet receive path, 6549 * so going back into TX may be a little hairy!) but again 6550 * I'd like to get this working first before optimising 6551 * turn-around time. 6552 */ 6553 6554 ATH_TX_LOCK(sc); 6555 6556 /* 6557 * Legacy - we're called and the node isn't asleep. 6558 * Immediately punt. 6559 */ 6560 if (! an->an_is_powersave) { 6561 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6562 "%s: %6D: not in powersave?\n", 6563 __func__, 6564 ni->ni_macaddr, 6565 ":"); 6566 ATH_TX_UNLOCK(sc); 6567 avp->av_recv_pspoll(ni, m); 6568 return; 6569 } 6570 6571 /* 6572 * We're in powersave. 6573 * 6574 * Leak a frame. 6575 */ 6576 an->an_leak_count = 1; 6577 6578 /* 6579 * Now, if there's no frames in the node, just punt to 6580 * recv_pspoll. 6581 * 6582 * Don't bother checking if the TIM bit is set, we really 6583 * only care if there are any frames here! 6584 */ 6585 if (an->an_swq_depth == 0) { 6586 ATH_TX_UNLOCK(sc); 6587 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6588 "%s: %6D: SWQ empty; punting to net80211\n", 6589 __func__, 6590 ni->ni_macaddr, 6591 ":"); 6592 avp->av_recv_pspoll(ni, m); 6593 return; 6594 } 6595 6596 /* 6597 * Ok, let's schedule the highest TID that has traffic 6598 * and then schedule something. 6599 */ 6600 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6601 struct ath_tid *atid = &an->an_tid[tid]; 6602 /* 6603 * No frames? Skip. 6604 */ 6605 if (atid->axq_depth == 0) 6606 continue; 6607 ath_tx_tid_sched(sc, atid); 6608 /* 6609 * XXX we could do a direct call to the TXQ 6610 * scheduler code here to optimise latency 6611 * at the expense of a REALLY deep callstack. 6612 */ 6613 ATH_TX_UNLOCK(sc); 6614 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6615 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6616 "%s: %6D: leaking frame to TID %d\n", 6617 __func__, 6618 ni->ni_macaddr, 6619 ":", 6620 tid); 6621 return; 6622 } 6623 6624 ATH_TX_UNLOCK(sc); 6625 6626 /* 6627 * XXX nothing in the TIDs at this point? Eek. 6628 */ 6629 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6630 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6631 __func__, 6632 ni->ni_macaddr, 6633 ":"); 6634 avp->av_recv_pspoll(ni, m); 6635 #else 6636 avp->av_recv_pspoll(ni, m); 6637 #endif /* ATH_SW_PSQ */ 6638 } 6639 6640 MODULE_VERSION(if_ath, 1); 6641 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6642 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 6643 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6644 #endif 6645