1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 29 * THE POSSIBILITY OF SUCH DAMAGES. 30 */ 31 32 #include <sys/cdefs.h> 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_btcoex_mci.h> 117 #include <dev/ath/if_ath_spectral.h> 118 #include <dev/ath/if_ath_lna_div.h> 119 #include <dev/ath/if_athdfs.h> 120 #include <dev/ath/if_ath_ioctl.h> 121 #include <dev/ath/if_ath_descdma.h> 122 123 #ifdef ATH_TX99_DIAG 124 #include <dev/ath/ath_tx99/ath_tx99.h> 125 #endif 126 127 #ifdef ATH_DEBUG_ALQ 128 #include <dev/ath/if_ath_alq.h> 129 #endif 130 131 /* 132 * Only enable this if you're working on PS-POLL support. 133 */ 134 #define ATH_SW_PSQ 135 136 /* 137 * ATH_BCBUF determines the number of vap's that can transmit 138 * beacons and also (currently) the number of vap's that can 139 * have unique mac addresses/bssid. When staggering beacons 140 * 4 is probably a good max as otherwise the beacons become 141 * very closely spaced and there is limited time for cab q traffic 142 * to go out. You can burst beacons instead but that is not good 143 * for stations in power save and at some point you really want 144 * another radio (and channel). 145 * 146 * The limit on the number of mac addresses is tied to our use of 147 * the U/L bit and tracking addresses in a byte; it would be 148 * worthwhile to allow more for applications like proxy sta. 149 */ 150 CTASSERT(ATH_BCBUF <= 8); 151 152 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 153 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 154 const uint8_t [IEEE80211_ADDR_LEN], 155 const uint8_t [IEEE80211_ADDR_LEN]); 156 static void ath_vap_delete(struct ieee80211vap *); 157 static int ath_init(struct ath_softc *); 158 static void ath_stop(struct ath_softc *); 159 static int ath_reset_vap(struct ieee80211vap *, u_long); 160 static int ath_transmit(struct ieee80211com *, struct mbuf *); 161 static void ath_watchdog(void *); 162 static void ath_parent(struct ieee80211com *); 163 static void ath_fatal_proc(void *, int); 164 static void ath_bmiss_vap(struct ieee80211vap *); 165 static void ath_bmiss_proc(void *, int); 166 static void ath_tsfoor_proc(void *, int); 167 static void ath_key_update_begin(struct ieee80211vap *); 168 static void ath_key_update_end(struct ieee80211vap *); 169 static void ath_update_mcast_hw(struct ath_softc *); 170 static void ath_update_mcast(struct ieee80211com *); 171 static void ath_update_promisc(struct ieee80211com *); 172 static void ath_updateslot(struct ieee80211com *); 173 static void ath_bstuck_proc(void *, int); 174 static void ath_reset_proc(void *, int); 175 static int ath_desc_alloc(struct ath_softc *); 176 static void ath_desc_free(struct ath_softc *); 177 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 178 const uint8_t [IEEE80211_ADDR_LEN]); 179 static void ath_node_cleanup(struct ieee80211_node *); 180 static void ath_node_free(struct ieee80211_node *); 181 static void ath_node_getsignal(const struct ieee80211_node *, 182 int8_t *, int8_t *); 183 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 184 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 185 static int ath_tx_setup(struct ath_softc *, int, int); 186 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 187 static void ath_tx_cleanup(struct ath_softc *); 188 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 189 int dosched); 190 static void ath_tx_proc_q0(void *, int); 191 static void ath_tx_proc_q0123(void *, int); 192 static void ath_tx_proc(void *, int); 193 static void ath_txq_sched_tasklet(void *, int); 194 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_scan_start(struct ieee80211com *); 197 static void ath_scan_end(struct ieee80211com *); 198 static void ath_set_channel(struct ieee80211com *); 199 #ifdef ATH_ENABLE_11N 200 static void ath_update_chw(struct ieee80211com *); 201 #endif /* ATH_ENABLE_11N */ 202 static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *); 203 static void ath_calibrate(void *); 204 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 205 static void ath_setup_stationkey(struct ieee80211_node *); 206 static void ath_newassoc(struct ieee80211_node *, int); 207 static int ath_setregdomain(struct ieee80211com *, 208 struct ieee80211_regdomain *, int, 209 struct ieee80211_channel []); 210 static void ath_getradiocaps(struct ieee80211com *, int, int *, 211 struct ieee80211_channel []); 212 static int ath_getchannels(struct ath_softc *); 213 214 static int ath_rate_setup(struct ath_softc *, u_int mode); 215 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 216 217 static void ath_announce(struct ath_softc *); 218 219 static void ath_dfs_tasklet(void *, int); 220 static void ath_node_powersave(struct ieee80211_node *, int); 221 static int ath_node_set_tim(struct ieee80211_node *, int); 222 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 223 224 #ifdef IEEE80211_SUPPORT_TDMA 225 #include <dev/ath/if_ath_tdma.h> 226 #endif 227 228 SYSCTL_DECL(_hw_ath); 229 230 /* XXX validate sysctl values */ 231 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 232 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 233 0, "long chip calibration interval (secs)"); 234 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 235 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 236 0, "short chip calibration interval (msecs)"); 237 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 238 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 239 0, "reset chip calibration results (secs)"); 240 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 242 0, "ANI calibration (msecs)"); 243 244 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 246 0, "rx buffers allocated"); 247 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 249 0, "tx buffers allocated"); 250 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 251 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 252 0, "tx (mgmt) buffers allocated"); 253 254 int ath_bstuck_threshold = 4; /* max missed beacons */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 256 0, "max missed beacon xmits before chip reset"); 257 258 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 259 260 void 261 ath_legacy_attach_comp_func(struct ath_softc *sc) 262 { 263 264 /* 265 * Special case certain configurations. Note the 266 * CAB queue is handled by these specially so don't 267 * include them when checking the txq setup mask. 268 */ 269 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 270 case 0x01: 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 272 break; 273 case 0x0f: 274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 275 break; 276 default: 277 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 278 break; 279 } 280 } 281 282 /* 283 * Set the target power mode. 284 * 285 * If this is called during a point in time where 286 * the hardware is being programmed elsewhere, it will 287 * simply store it away and update it when all current 288 * uses of the hardware are completed. 289 * 290 * If the chip is going into network sleep or power off, then 291 * we will wait until all uses of the chip are done before 292 * going into network sleep or power off. 293 * 294 * If the chip is being programmed full-awake, then immediately 295 * program it full-awake so we can actually stay awake rather than 296 * the chip potentially going to sleep underneath us. 297 */ 298 void 299 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 300 const char *file, int line) 301 { 302 ATH_LOCK_ASSERT(sc); 303 304 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 305 __func__, 306 file, 307 line, 308 power_state, 309 sc->sc_powersave_refcnt, 310 sc->sc_target_powerstate, 311 sc->sc_cur_powerstate); 312 313 sc->sc_target_powerstate = power_state; 314 315 /* 316 * Don't program the chip into network sleep if the chip 317 * is being programmed elsewhere. 318 * 319 * However, if the chip is being programmed /awake/, force 320 * the chip awake so we stay awake. 321 */ 322 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 323 power_state != sc->sc_cur_powerstate) { 324 sc->sc_cur_powerstate = power_state; 325 ath_hal_setpower(sc->sc_ah, power_state); 326 327 /* 328 * If the NIC is force-awake, then set the 329 * self-gen frame state appropriately. 330 * 331 * If the nic is in network sleep or full-sleep, 332 * we let the above call leave the self-gen 333 * state as "sleep". 334 */ 335 if (selfgen && 336 sc->sc_cur_powerstate == HAL_PM_AWAKE && 337 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 338 ath_hal_setselfgenpower(sc->sc_ah, 339 sc->sc_target_selfgen_state); 340 } 341 } 342 } 343 344 /* 345 * Set the current self-generated frames state. 346 * 347 * This is separate from the target power mode. The chip may be 348 * awake but the desired state is "sleep", so frames sent to the 349 * destination has PWRMGT=1 in the 802.11 header. The NIC also 350 * needs to know to set PWRMGT=1 in self-generated frames. 351 */ 352 void 353 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 354 { 355 356 ATH_LOCK_ASSERT(sc); 357 358 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 359 __func__, 360 file, 361 line, 362 power_state, 363 sc->sc_target_selfgen_state); 364 365 sc->sc_target_selfgen_state = power_state; 366 367 /* 368 * If the NIC is force-awake, then set the power state. 369 * Network-state and full-sleep will already transition it to 370 * mark self-gen frames as sleeping - and we can't 371 * guarantee the NIC is awake to program the self-gen frame 372 * setting anyway. 373 */ 374 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 375 ath_hal_setselfgenpower(sc->sc_ah, power_state); 376 } 377 } 378 379 /* 380 * Set the hardware power mode and take a reference. 381 * 382 * This doesn't update the target power mode in the driver; 383 * it just updates the hardware power state. 384 * 385 * XXX it should only ever force the hardware awake; it should 386 * never be called to set it asleep. 387 */ 388 void 389 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 390 { 391 ATH_LOCK_ASSERT(sc); 392 393 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 394 __func__, 395 file, 396 line, 397 power_state, 398 sc->sc_powersave_refcnt); 399 400 sc->sc_powersave_refcnt++; 401 402 /* 403 * Only do the power state change if we're not programming 404 * it elsewhere. 405 */ 406 if (power_state != sc->sc_cur_powerstate) { 407 ath_hal_setpower(sc->sc_ah, power_state); 408 sc->sc_cur_powerstate = power_state; 409 /* 410 * Adjust the self-gen powerstate if appropriate. 411 */ 412 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 413 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 414 ath_hal_setselfgenpower(sc->sc_ah, 415 sc->sc_target_selfgen_state); 416 } 417 } 418 } 419 420 /* 421 * Restore the power save mode to what it once was. 422 * 423 * This will decrement the reference counter and once it hits 424 * zero, it'll restore the powersave state. 425 */ 426 void 427 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 428 { 429 430 ATH_LOCK_ASSERT(sc); 431 432 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 433 __func__, 434 file, 435 line, 436 sc->sc_powersave_refcnt, 437 sc->sc_target_powerstate); 438 439 if (sc->sc_powersave_refcnt == 0) 440 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 441 else 442 sc->sc_powersave_refcnt--; 443 444 if (sc->sc_powersave_refcnt == 0 && 445 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 446 sc->sc_cur_powerstate = sc->sc_target_powerstate; 447 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 448 } 449 450 /* 451 * Adjust the self-gen powerstate if appropriate. 452 */ 453 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 454 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 455 ath_hal_setselfgenpower(sc->sc_ah, 456 sc->sc_target_selfgen_state); 457 } 458 459 } 460 461 /* 462 * Configure the initial HAL configuration values based on bus 463 * specific parameters. 464 * 465 * Some PCI IDs and other information may need tweaking. 466 * 467 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 468 * if BT antenna diversity isn't enabled. 469 * 470 * So, let's also figure out how to enable BT diversity for AR9485. 471 */ 472 static void 473 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 474 { 475 /* XXX TODO: only for PCI devices? */ 476 477 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 478 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 479 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 480 ah_config->ath_hal_min_gainidx = AH_TRUE; 481 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 482 /* XXX low_rssi_thresh */ 483 /* XXX fast_div_bias */ 484 device_printf(sc->sc_dev, "configuring for %s\n", 485 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 486 "CUS198" : "CUS230"); 487 } 488 489 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 490 device_printf(sc->sc_dev, "CUS217 card detected\n"); 491 492 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 493 device_printf(sc->sc_dev, "CUS252 card detected\n"); 494 495 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 496 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 497 498 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 499 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 500 501 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 502 device_printf(sc->sc_dev, 503 "Bluetooth Antenna Diversity card detected\n"); 504 505 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 506 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 507 508 #if 0 509 /* 510 * Some WB335 cards do not support antenna diversity. Since 511 * we use a hardcoded value for AR9565 instead of using the 512 * EEPROM/OTP data, remove the combining feature from 513 * the HW capabilities bitmap. 514 */ 515 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 516 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 517 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 518 } 519 520 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 521 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 522 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 523 } 524 #endif 525 526 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 527 ah_config->ath_hal_pcie_waen = 0x0040473b; 528 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 529 } 530 531 #if 0 532 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 533 ah->config.no_pll_pwrsave = true; 534 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 535 } 536 #endif 537 538 } 539 540 /* 541 * Attempt to fetch the MAC address from the kernel environment. 542 * 543 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 544 */ 545 static int 546 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 547 { 548 char devid_str[32]; 549 int local_mac = 0; 550 char *local_macstr; 551 552 /* 553 * Fetch from the kenv rather than using hints. 554 * 555 * Hints would be nice but the transition to dynamic 556 * hints/kenv doesn't happen early enough for this 557 * to work reliably (eg on anything embedded.) 558 */ 559 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 560 device_get_name(sc->sc_dev), 561 device_get_unit(sc->sc_dev)); 562 563 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 564 uint32_t tmpmac[ETHER_ADDR_LEN]; 565 int count; 566 int i; 567 568 /* Have a MAC address; should use it */ 569 device_printf(sc->sc_dev, 570 "Overriding MAC address from environment: '%s'\n", 571 local_macstr); 572 573 /* Extract out the MAC address */ 574 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 575 &tmpmac[0], &tmpmac[1], 576 &tmpmac[2], &tmpmac[3], 577 &tmpmac[4], &tmpmac[5]); 578 if (count == 6) { 579 /* Valid! */ 580 local_mac = 1; 581 for (i = 0; i < ETHER_ADDR_LEN; i++) 582 macaddr[i] = tmpmac[i]; 583 } 584 /* Done! */ 585 freeenv(local_macstr); 586 local_macstr = NULL; 587 } 588 589 if (local_mac) 590 return (0); 591 return (-1); 592 } 593 594 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 595 #define HAL_MODE_HT40 \ 596 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 597 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 598 int 599 ath_attach(u_int16_t devid, struct ath_softc *sc) 600 { 601 struct ieee80211com *ic = &sc->sc_ic; 602 struct ath_hal *ah = NULL; 603 HAL_STATUS status; 604 int error = 0, i; 605 u_int wmodes; 606 int rx_chainmask, tx_chainmask; 607 HAL_OPS_CONFIG ah_config; 608 609 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 610 611 ic->ic_softc = sc; 612 ic->ic_name = device_get_nameunit(sc->sc_dev); 613 614 /* 615 * Configure the initial configuration data. 616 * 617 * This is stuff that may be needed early during attach 618 * rather than done via configuration calls later. 619 */ 620 bzero(&ah_config, sizeof(ah_config)); 621 ath_setup_hal_config(sc, &ah_config); 622 623 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 624 sc->sc_eepromdata, &ah_config, &status); 625 if (ah == NULL) { 626 device_printf(sc->sc_dev, 627 "unable to attach hardware; HAL status %u\n", status); 628 error = ENXIO; 629 goto bad; 630 } 631 sc->sc_ah = ah; 632 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 633 #ifdef ATH_DEBUG 634 sc->sc_debug = ath_debug; 635 #endif 636 637 /* 638 * Force the chip awake during setup, just to keep 639 * the HAL/driver power tracking happy. 640 * 641 * There are some methods (eg ath_hal_setmac()) 642 * that poke the hardware. 643 */ 644 ATH_LOCK(sc); 645 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 646 ATH_UNLOCK(sc); 647 648 /* 649 * Setup the DMA/EDMA functions based on the current 650 * hardware support. 651 * 652 * This is required before the descriptors are allocated. 653 */ 654 if (ath_hal_hasedma(sc->sc_ah)) { 655 sc->sc_isedma = 1; 656 ath_recv_setup_edma(sc); 657 ath_xmit_setup_edma(sc); 658 } else { 659 ath_recv_setup_legacy(sc); 660 ath_xmit_setup_legacy(sc); 661 } 662 663 if (ath_hal_hasmybeacon(sc->sc_ah)) { 664 sc->sc_do_mybeacon = 1; 665 } 666 667 /* 668 * Check if the MAC has multi-rate retry support. 669 * We do this by trying to setup a fake extended 670 * descriptor. MAC's that don't have support will 671 * return false w/o doing anything. MAC's that do 672 * support it will return true w/o doing anything. 673 */ 674 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 675 676 /* 677 * Check if the device has hardware counters for PHY 678 * errors. If so we need to enable the MIB interrupt 679 * so we can act on stat triggers. 680 */ 681 if (ath_hal_hwphycounters(ah)) 682 sc->sc_needmib = 1; 683 684 /* 685 * Get the hardware key cache size. 686 */ 687 sc->sc_keymax = ath_hal_keycachesize(ah); 688 if (sc->sc_keymax > ATH_KEYMAX) { 689 device_printf(sc->sc_dev, 690 "Warning, using only %u of %u key cache slots\n", 691 ATH_KEYMAX, sc->sc_keymax); 692 sc->sc_keymax = ATH_KEYMAX; 693 } 694 /* 695 * Reset the key cache since some parts do not 696 * reset the contents on initial power up. 697 */ 698 for (i = 0; i < sc->sc_keymax; i++) 699 ath_hal_keyreset(ah, i); 700 701 /* 702 * Collect the default channel list. 703 */ 704 error = ath_getchannels(sc); 705 if (error != 0) 706 goto bad; 707 708 /* 709 * Setup rate tables for all potential media types. 710 */ 711 ath_rate_setup(sc, IEEE80211_MODE_11A); 712 ath_rate_setup(sc, IEEE80211_MODE_11B); 713 ath_rate_setup(sc, IEEE80211_MODE_11G); 714 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 715 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 716 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 717 ath_rate_setup(sc, IEEE80211_MODE_11NA); 718 ath_rate_setup(sc, IEEE80211_MODE_11NG); 719 ath_rate_setup(sc, IEEE80211_MODE_HALF); 720 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 721 722 /* NB: setup here so ath_rate_update is happy */ 723 ath_setcurmode(sc, IEEE80211_MODE_11A); 724 725 /* 726 * Allocate TX descriptors and populate the lists. 727 */ 728 error = ath_desc_alloc(sc); 729 if (error != 0) { 730 device_printf(sc->sc_dev, 731 "failed to allocate TX descriptors: %d\n", error); 732 goto bad; 733 } 734 error = ath_txdma_setup(sc); 735 if (error != 0) { 736 device_printf(sc->sc_dev, 737 "failed to allocate TX descriptors: %d\n", error); 738 goto bad; 739 } 740 741 /* 742 * Allocate RX descriptors and populate the lists. 743 */ 744 error = ath_rxdma_setup(sc); 745 if (error != 0) { 746 device_printf(sc->sc_dev, 747 "failed to allocate RX descriptors: %d\n", error); 748 goto bad; 749 } 750 751 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 752 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 753 754 ATH_TXBUF_LOCK_INIT(sc); 755 756 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 757 taskqueue_thread_enqueue, &sc->sc_tq); 758 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 759 device_get_nameunit(sc->sc_dev)); 760 761 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 762 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 763 TASK_INIT(&sc->sc_tsfoortask, 0, ath_tsfoor_proc, sc); 764 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 765 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 766 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 767 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 768 769 /* 770 * Allocate hardware transmit queues: one queue for 771 * beacon frames and one data queue for each QoS 772 * priority. Note that the hal handles resetting 773 * these queues at the needed time. 774 * 775 * XXX PS-Poll 776 */ 777 sc->sc_bhalq = ath_beaconq_setup(sc); 778 if (sc->sc_bhalq == (u_int) -1) { 779 device_printf(sc->sc_dev, 780 "unable to setup a beacon xmit queue!\n"); 781 error = EIO; 782 goto bad2; 783 } 784 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 785 if (sc->sc_cabq == NULL) { 786 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 787 error = EIO; 788 goto bad2; 789 } 790 /* NB: insure BK queue is the lowest priority h/w queue */ 791 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 792 device_printf(sc->sc_dev, 793 "unable to setup xmit queue for %s traffic!\n", 794 ieee80211_wme_acnames[WME_AC_BK]); 795 error = EIO; 796 goto bad2; 797 } 798 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 799 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 800 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 801 /* 802 * Not enough hardware tx queues to properly do WME; 803 * just punt and assign them all to the same h/w queue. 804 * We could do a better job of this if, for example, 805 * we allocate queues when we switch from station to 806 * AP mode. 807 */ 808 if (sc->sc_ac2q[WME_AC_VI] != NULL) 809 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 810 if (sc->sc_ac2q[WME_AC_BE] != NULL) 811 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 812 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 813 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 814 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 815 } 816 817 /* 818 * Attach the TX completion function. 819 * 820 * The non-EDMA chips may have some special case optimisations; 821 * this method gives everyone a chance to attach cleanly. 822 */ 823 sc->sc_tx.xmit_attach_comp_func(sc); 824 825 /* 826 * Setup rate control. Some rate control modules 827 * call back to change the anntena state so expose 828 * the necessary entry points. 829 * XXX maybe belongs in struct ath_ratectrl? 830 */ 831 sc->sc_setdefantenna = ath_setdefantenna; 832 sc->sc_rc = ath_rate_attach(sc); 833 if (sc->sc_rc == NULL) { 834 error = EIO; 835 goto bad2; 836 } 837 838 /* Attach DFS module */ 839 if (! ath_dfs_attach(sc)) { 840 device_printf(sc->sc_dev, 841 "%s: unable to attach DFS\n", __func__); 842 error = EIO; 843 goto bad2; 844 } 845 846 /* Attach spectral module */ 847 if (ath_spectral_attach(sc) < 0) { 848 device_printf(sc->sc_dev, 849 "%s: unable to attach spectral\n", __func__); 850 error = EIO; 851 goto bad2; 852 } 853 854 /* Attach bluetooth coexistence module */ 855 if (ath_btcoex_attach(sc) < 0) { 856 device_printf(sc->sc_dev, 857 "%s: unable to attach bluetooth coexistence\n", __func__); 858 error = EIO; 859 goto bad2; 860 } 861 862 /* Attach LNA diversity module */ 863 if (ath_lna_div_attach(sc) < 0) { 864 device_printf(sc->sc_dev, 865 "%s: unable to attach LNA diversity\n", __func__); 866 error = EIO; 867 goto bad2; 868 } 869 870 /* Start DFS processing tasklet */ 871 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 872 873 /* Configure LED state */ 874 sc->sc_blinking = 0; 875 sc->sc_ledstate = 1; 876 sc->sc_ledon = 0; /* low true */ 877 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 878 callout_init(&sc->sc_ledtimer, 1); 879 880 /* 881 * Don't setup hardware-based blinking. 882 * 883 * Although some NICs may have this configured in the 884 * default reset register values, the user may wish 885 * to alter which pins have which function. 886 * 887 * The reference driver attaches the MAC network LED to GPIO1 and 888 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 889 * NIC has these reversed. 890 */ 891 sc->sc_hardled = (1 == 0); 892 sc->sc_led_net_pin = -1; 893 sc->sc_led_pwr_pin = -1; 894 /* 895 * Auto-enable soft led processing for IBM cards and for 896 * 5211 minipci cards. Users can also manually enable/disable 897 * support with a sysctl. 898 */ 899 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 900 ath_led_config(sc); 901 ath_hal_setledstate(ah, HAL_LED_INIT); 902 903 /* XXX not right but it's not used anywhere important */ 904 ic->ic_phytype = IEEE80211_T_OFDM; 905 ic->ic_opmode = IEEE80211_M_STA; 906 ic->ic_caps = 907 IEEE80211_C_STA /* station mode */ 908 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 909 | IEEE80211_C_HOSTAP /* hostap mode */ 910 | IEEE80211_C_MONITOR /* monitor mode */ 911 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 912 | IEEE80211_C_WDS /* 4-address traffic works */ 913 | IEEE80211_C_MBSS /* mesh point link mode */ 914 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 915 | IEEE80211_C_SHSLOT /* short slot time supported */ 916 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 917 #ifndef ATH_ENABLE_11N 918 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 919 #endif 920 | IEEE80211_C_TXFRAG /* handle tx frags */ 921 #ifdef ATH_ENABLE_DFS 922 | IEEE80211_C_DFS /* Enable radar detection */ 923 #endif 924 | IEEE80211_C_PMGT /* Station side power mgmt */ 925 | IEEE80211_C_SWSLEEP 926 ; 927 928 ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD; 929 930 /* 931 * Query the hal to figure out h/w crypto support. 932 */ 933 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 934 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 935 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 936 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 937 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 938 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 939 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 940 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 941 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 942 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 943 /* 944 * Check if h/w does the MIC and/or whether the 945 * separate key cache entries are required to 946 * handle both tx+rx MIC keys. 947 */ 948 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 949 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 950 /* 951 * If the h/w supports storing tx+rx MIC keys 952 * in one cache slot automatically enable use. 953 */ 954 if (ath_hal_hastkipsplit(ah) || 955 !ath_hal_settkipsplit(ah, AH_FALSE)) 956 sc->sc_splitmic = 1; 957 /* 958 * If the h/w can do TKIP MIC together with WME then 959 * we use it; otherwise we force the MIC to be done 960 * in software by the net80211 layer. 961 */ 962 if (ath_hal_haswmetkipmic(ah)) 963 sc->sc_wmetkipmic = 1; 964 } 965 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 966 /* 967 * Check for multicast key search support. 968 */ 969 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 970 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 971 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 972 } 973 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 974 /* 975 * Mark key cache slots associated with global keys 976 * as in use. If we knew TKIP was not to be used we 977 * could leave the +32, +64, and +32+64 slots free. 978 */ 979 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 980 setbit(sc->sc_keymap, i); 981 setbit(sc->sc_keymap, i+64); 982 if (sc->sc_splitmic) { 983 setbit(sc->sc_keymap, i+32); 984 setbit(sc->sc_keymap, i+32+64); 985 } 986 } 987 /* 988 * TPC support can be done either with a global cap or 989 * per-packet support. The latter is not available on 990 * all parts. We're a bit pedantic here as all parts 991 * support a global cap. 992 */ 993 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 994 ic->ic_caps |= IEEE80211_C_TXPMGT; 995 996 /* 997 * Mark WME capability only if we have sufficient 998 * hardware queues to do proper priority scheduling. 999 */ 1000 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 1001 ic->ic_caps |= IEEE80211_C_WME; 1002 /* 1003 * Check for misc other capabilities. 1004 */ 1005 if (ath_hal_hasbursting(ah)) 1006 ic->ic_caps |= IEEE80211_C_BURST; 1007 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 1008 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 1009 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 1010 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 1011 1012 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 1013 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 1014 if (i == 32) { 1015 sc->sc_rxtsf32 = 1; 1016 } 1017 if (bootverbose) 1018 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1019 } 1020 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1021 if (bootverbose) 1022 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1023 } 1024 1025 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1026 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1027 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1028 1029 /* 1030 * Some WB335 cards do not support antenna diversity. Since 1031 * we use a hardcoded value for AR9565 instead of using the 1032 * EEPROM/OTP data, remove the combining feature from 1033 * the HW capabilities bitmap. 1034 */ 1035 /* 1036 * XXX TODO: check reference driver and ath9k for what to do 1037 * here for WB335. I think we have to actually disable the 1038 * LNA div processing in the HAL and instead use the hard 1039 * coded values; and then use BT diversity. 1040 * 1041 * .. but also need to setup MCI too for WB335.. 1042 */ 1043 #if 0 1044 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 1045 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n", 1046 __func__); 1047 sc->sc_dolnadiv = 0; 1048 } 1049 #endif 1050 1051 if (ath_hal_hasfastframes(ah)) 1052 ic->ic_caps |= IEEE80211_C_FF; 1053 wmodes = ath_hal_getwirelessmodes(ah); 1054 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1055 ic->ic_caps |= IEEE80211_C_TURBOP; 1056 #ifdef IEEE80211_SUPPORT_TDMA 1057 if (ath_hal_macversion(ah) > 0x78) { 1058 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1059 ic->ic_tdma_update = ath_tdma_update; 1060 } 1061 #endif 1062 1063 /* 1064 * TODO: enforce that at least this many frames are available 1065 * in the txbuf list before allowing data frames (raw or 1066 * otherwise) to be transmitted. 1067 */ 1068 sc->sc_txq_data_minfree = 10; 1069 1070 /* 1071 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1072 * is smaller. 1073 * 1074 * Anything bigger can potentially see the cabq consume 1075 * almost all buffers, starving everything else, only to 1076 * see most fail to transmit in the given beacon interval. 1077 */ 1078 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1079 1080 /* 1081 * How deep can the node software TX queue get whilst it's asleep. 1082 */ 1083 sc->sc_txq_node_psq_maxdepth = 16; 1084 1085 /* 1086 * Default the maximum queue to 1/4'th the TX buffers, or 1087 * 128, whichever is smaller. 1088 * 1089 * Set it to 128 instead of the previous default (64) because 1090 * at 64, two full A-MPDU subframes of 32 frames each is 1091 * enough to treat this node queue as full and all subsequent 1092 * traffic is dropped. Setting it to 128 means there'll 1093 * hopefully be another 64 frames in the software queue 1094 * to begin making A-MPDU frames out of. 1095 */ 1096 sc->sc_txq_node_maxdepth = MIN(128, ath_txbuf / 4); 1097 1098 /* Enable CABQ by default */ 1099 sc->sc_cabq_enable = 1; 1100 1101 /* 1102 * Allow the TX and RX chainmasks to be overridden by 1103 * environment variables and/or device.hints. 1104 * 1105 * This must be done early - before the hardware is 1106 * calibrated or before the 802.11n stream calculation 1107 * is done. 1108 */ 1109 if (resource_int_value(device_get_name(sc->sc_dev), 1110 device_get_unit(sc->sc_dev), "rx_chainmask", 1111 &rx_chainmask) == 0) { 1112 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1113 rx_chainmask); 1114 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1115 } 1116 if (resource_int_value(device_get_name(sc->sc_dev), 1117 device_get_unit(sc->sc_dev), "tx_chainmask", 1118 &tx_chainmask) == 0) { 1119 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1120 tx_chainmask); 1121 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1122 } 1123 1124 /* 1125 * Query the TX/RX chainmask configuration. 1126 * 1127 * This is only relevant for 11n devices. 1128 */ 1129 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1130 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1131 1132 /* 1133 * Disable MRR with protected frames by default. 1134 * Only 802.11n series NICs can handle this. 1135 */ 1136 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1137 1138 /* 1139 * Query the enterprise mode information the HAL. 1140 */ 1141 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1142 &sc->sc_ent_cfg) == HAL_OK) 1143 sc->sc_use_ent = 1; 1144 1145 #ifdef ATH_ENABLE_11N 1146 /* 1147 * Query HT capabilities 1148 */ 1149 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1150 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1151 uint32_t rxs, txs; 1152 uint32_t ldpc; 1153 1154 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1155 1156 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1157 1158 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1159 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1160 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1161 | IEEE80211_HTCAP_MAXAMSDU_3839 1162 /* max A-MSDU length */ 1163 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1164 1165 /* 1166 * Enable short-GI for HT20 only if the hardware 1167 * advertises support. 1168 * Notably, anything earlier than the AR9287 doesn't. 1169 */ 1170 if ((ath_hal_getcapability(ah, 1171 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1172 (wmodes & HAL_MODE_HT20)) { 1173 device_printf(sc->sc_dev, 1174 "[HT] enabling short-GI in 20MHz mode\n"); 1175 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1176 } 1177 1178 if (wmodes & HAL_MODE_HT40) 1179 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1180 | IEEE80211_HTCAP_SHORTGI40; 1181 1182 /* 1183 * TX/RX streams need to be taken into account when 1184 * negotiating which MCS rates it'll receive and 1185 * what MCS rates are available for TX. 1186 */ 1187 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1188 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1189 ic->ic_txstream = txs; 1190 ic->ic_rxstream = rxs; 1191 1192 /* 1193 * Setup TX and RX STBC based on what the HAL allows and 1194 * the currently configured chainmask set. 1195 * Ie - don't enable STBC TX if only one chain is enabled. 1196 * STBC RX is fine on a single RX chain; it just won't 1197 * provide any real benefit. 1198 */ 1199 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1200 NULL) == HAL_OK) { 1201 sc->sc_rx_stbc = 1; 1202 device_printf(sc->sc_dev, 1203 "[HT] 1 stream STBC receive enabled\n"); 1204 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1205 } 1206 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1207 NULL) == HAL_OK) { 1208 sc->sc_tx_stbc = 1; 1209 device_printf(sc->sc_dev, 1210 "[HT] 1 stream STBC transmit enabled\n"); 1211 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1212 } 1213 1214 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1215 &sc->sc_rts_aggr_limit); 1216 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1217 device_printf(sc->sc_dev, 1218 "[HT] RTS aggregates limited to %d KiB\n", 1219 sc->sc_rts_aggr_limit / 1024); 1220 1221 /* 1222 * LDPC 1223 */ 1224 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1225 == HAL_OK && (ldpc == 1)) { 1226 sc->sc_has_ldpc = 1; 1227 device_printf(sc->sc_dev, 1228 "[HT] LDPC transmit/receive enabled\n"); 1229 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1230 IEEE80211_HTC_TXLDPC; 1231 } 1232 1233 device_printf(sc->sc_dev, 1234 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1235 } 1236 #endif 1237 1238 /* 1239 * Initial aggregation settings. 1240 */ 1241 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1242 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1243 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1244 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1245 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1246 sc->sc_delim_min_pad = 0; 1247 1248 /* 1249 * Check if the hardware requires PCI register serialisation. 1250 * Some of the Owl based MACs require this. 1251 */ 1252 if (mp_ncpus > 1 && 1253 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1254 0, NULL) == HAL_OK) { 1255 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1256 device_printf(sc->sc_dev, 1257 "Enabling register serialisation\n"); 1258 } 1259 1260 /* 1261 * Initialise the deferred completed RX buffer list. 1262 */ 1263 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1264 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1265 1266 /* 1267 * Indicate we need the 802.11 header padded to a 1268 * 32-bit boundary for 4-address and QoS frames. 1269 */ 1270 ic->ic_flags |= IEEE80211_F_DATAPAD; 1271 1272 /* 1273 * Query the hal about antenna support. 1274 */ 1275 sc->sc_defant = ath_hal_getdefantenna(ah); 1276 1277 /* 1278 * Not all chips have the VEOL support we want to 1279 * use with IBSS beacons; check here for it. 1280 */ 1281 sc->sc_hasveol = ath_hal_hasveol(ah); 1282 1283 /* get mac address from kenv first, then hardware */ 1284 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1285 /* Tell the HAL now about the new MAC */ 1286 ath_hal_setmac(ah, ic->ic_macaddr); 1287 } else { 1288 ath_hal_getmac(ah, ic->ic_macaddr); 1289 } 1290 1291 if (sc->sc_hasbmask) 1292 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1293 1294 /* NB: used to size node table key mapping array */ 1295 ic->ic_max_keyix = sc->sc_keymax; 1296 /* call MI attach routine. */ 1297 ieee80211_ifattach(ic); 1298 ic->ic_setregdomain = ath_setregdomain; 1299 ic->ic_getradiocaps = ath_getradiocaps; 1300 sc->sc_opmode = HAL_M_STA; 1301 1302 /* override default methods */ 1303 ic->ic_ioctl = ath_ioctl; 1304 ic->ic_parent = ath_parent; 1305 ic->ic_transmit = ath_transmit; 1306 ic->ic_newassoc = ath_newassoc; 1307 ic->ic_updateslot = ath_updateslot; 1308 ic->ic_wme.wme_update = ath_wme_update; 1309 ic->ic_vap_create = ath_vap_create; 1310 ic->ic_vap_delete = ath_vap_delete; 1311 ic->ic_raw_xmit = ath_raw_xmit; 1312 ic->ic_update_mcast = ath_update_mcast; 1313 ic->ic_update_promisc = ath_update_promisc; 1314 ic->ic_node_alloc = ath_node_alloc; 1315 sc->sc_node_free = ic->ic_node_free; 1316 ic->ic_node_free = ath_node_free; 1317 sc->sc_node_cleanup = ic->ic_node_cleanup; 1318 ic->ic_node_cleanup = ath_node_cleanup; 1319 ic->ic_node_getsignal = ath_node_getsignal; 1320 ic->ic_scan_start = ath_scan_start; 1321 ic->ic_scan_end = ath_scan_end; 1322 ic->ic_set_channel = ath_set_channel; 1323 #ifdef ATH_ENABLE_11N 1324 /* 802.11n specific - but just override anyway */ 1325 sc->sc_addba_request = ic->ic_addba_request; 1326 sc->sc_addba_response = ic->ic_addba_response; 1327 sc->sc_addba_stop = ic->ic_addba_stop; 1328 sc->sc_bar_response = ic->ic_bar_response; 1329 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1330 1331 ic->ic_addba_request = ath_addba_request; 1332 ic->ic_addba_response = ath_addba_response; 1333 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1334 ic->ic_addba_stop = ath_addba_stop; 1335 ic->ic_bar_response = ath_bar_response; 1336 1337 ic->ic_update_chw = ath_update_chw; 1338 #endif /* ATH_ENABLE_11N */ 1339 ic->ic_set_quiet = ath_set_quiet_ie; 1340 1341 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1342 /* 1343 * There's one vendor bitmap entry in the RX radiotap 1344 * header; make sure that's taken into account. 1345 */ 1346 ieee80211_radiotap_attachv(ic, 1347 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1348 ATH_TX_RADIOTAP_PRESENT, 1349 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1350 ATH_RX_RADIOTAP_PRESENT); 1351 #else 1352 /* 1353 * No vendor bitmap/extensions are present. 1354 */ 1355 ieee80211_radiotap_attach(ic, 1356 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1357 ATH_TX_RADIOTAP_PRESENT, 1358 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1359 ATH_RX_RADIOTAP_PRESENT); 1360 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1361 1362 /* 1363 * Setup the ALQ logging if required 1364 */ 1365 #ifdef ATH_DEBUG_ALQ 1366 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1367 if_ath_alq_setcfg(&sc->sc_alq, 1368 sc->sc_ah->ah_macVersion, 1369 sc->sc_ah->ah_macRev, 1370 sc->sc_ah->ah_phyRev, 1371 sc->sc_ah->ah_magic); 1372 #endif 1373 1374 /* 1375 * Setup dynamic sysctl's now that country code and 1376 * regdomain are available from the hal. 1377 */ 1378 ath_sysctlattach(sc); 1379 ath_sysctl_stats_attach(sc); 1380 ath_sysctl_hal_attach(sc); 1381 1382 if (bootverbose) 1383 ieee80211_announce(ic); 1384 ath_announce(sc); 1385 1386 /* 1387 * Put it to sleep for now. 1388 */ 1389 ATH_LOCK(sc); 1390 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1391 ATH_UNLOCK(sc); 1392 1393 return 0; 1394 bad2: 1395 ath_tx_cleanup(sc); 1396 ath_desc_free(sc); 1397 ath_txdma_teardown(sc); 1398 ath_rxdma_teardown(sc); 1399 1400 bad: 1401 if (ah) 1402 ath_hal_detach(ah); 1403 sc->sc_invalid = 1; 1404 return error; 1405 } 1406 1407 int 1408 ath_detach(struct ath_softc *sc) 1409 { 1410 1411 /* 1412 * NB: the order of these is important: 1413 * o stop the chip so no more interrupts will fire 1414 * o call the 802.11 layer before detaching the hal to 1415 * insure callbacks into the driver to delete global 1416 * key cache entries can be handled 1417 * o free the taskqueue which drains any pending tasks 1418 * o reclaim the tx queue data structures after calling 1419 * the 802.11 layer as we'll get called back to reclaim 1420 * node state and potentially want to use them 1421 * o to cleanup the tx queues the hal is called, so detach 1422 * it last 1423 * Other than that, it's straightforward... 1424 */ 1425 1426 /* 1427 * XXX Wake the hardware up first. ath_stop() will still 1428 * wake it up first, but I'd rather do it here just to 1429 * ensure it's awake. 1430 */ 1431 ATH_LOCK(sc); 1432 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1433 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1434 1435 /* 1436 * Stop things cleanly. 1437 */ 1438 ath_stop(sc); 1439 ATH_UNLOCK(sc); 1440 1441 ieee80211_ifdetach(&sc->sc_ic); 1442 taskqueue_free(sc->sc_tq); 1443 #ifdef ATH_TX99_DIAG 1444 if (sc->sc_tx99 != NULL) 1445 sc->sc_tx99->detach(sc->sc_tx99); 1446 #endif 1447 ath_rate_detach(sc->sc_rc); 1448 #ifdef ATH_DEBUG_ALQ 1449 if_ath_alq_tidyup(&sc->sc_alq); 1450 #endif 1451 ath_lna_div_detach(sc); 1452 ath_btcoex_detach(sc); 1453 ath_spectral_detach(sc); 1454 ath_dfs_detach(sc); 1455 ath_desc_free(sc); 1456 ath_txdma_teardown(sc); 1457 ath_rxdma_teardown(sc); 1458 ath_tx_cleanup(sc); 1459 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1460 1461 return 0; 1462 } 1463 1464 /* 1465 * MAC address handling for multiple BSS on the same radio. 1466 * The first vap uses the MAC address from the EEPROM. For 1467 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1468 * address and use the next six bits as an index. 1469 */ 1470 static void 1471 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1472 { 1473 int i; 1474 1475 if (clone && sc->sc_hasbmask) { 1476 /* NB: we only do this if h/w supports multiple bssid */ 1477 for (i = 0; i < 8; i++) 1478 if ((sc->sc_bssidmask & (1<<i)) == 0) 1479 break; 1480 if (i != 0) 1481 mac[0] |= (i << 2)|0x2; 1482 } else 1483 i = 0; 1484 sc->sc_bssidmask |= 1<<i; 1485 sc->sc_hwbssidmask[0] &= ~mac[0]; 1486 if (i == 0) 1487 sc->sc_nbssid0++; 1488 } 1489 1490 static void 1491 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1492 { 1493 int i = mac[0] >> 2; 1494 uint8_t mask; 1495 1496 if (i != 0 || --sc->sc_nbssid0 == 0) { 1497 sc->sc_bssidmask &= ~(1<<i); 1498 /* recalculate bssid mask from remaining addresses */ 1499 mask = 0xff; 1500 for (i = 1; i < 8; i++) 1501 if (sc->sc_bssidmask & (1<<i)) 1502 mask &= ~((i<<2)|0x2); 1503 sc->sc_hwbssidmask[0] |= mask; 1504 } 1505 } 1506 1507 /* 1508 * Assign a beacon xmit slot. We try to space out 1509 * assignments so when beacons are staggered the 1510 * traffic coming out of the cab q has maximal time 1511 * to go out before the next beacon is scheduled. 1512 */ 1513 static int 1514 assign_bslot(struct ath_softc *sc) 1515 { 1516 u_int slot, free; 1517 1518 free = 0; 1519 for (slot = 0; slot < ATH_BCBUF; slot++) 1520 if (sc->sc_bslot[slot] == NULL) { 1521 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1522 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1523 return slot; 1524 free = slot; 1525 /* NB: keep looking for a double slot */ 1526 } 1527 return free; 1528 } 1529 1530 static struct ieee80211vap * 1531 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1532 enum ieee80211_opmode opmode, int flags, 1533 const uint8_t bssid[IEEE80211_ADDR_LEN], 1534 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1535 { 1536 struct ath_softc *sc = ic->ic_softc; 1537 struct ath_vap *avp; 1538 struct ieee80211vap *vap; 1539 uint8_t mac[IEEE80211_ADDR_LEN]; 1540 int needbeacon, error; 1541 enum ieee80211_opmode ic_opmode; 1542 1543 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1544 needbeacon = 0; 1545 IEEE80211_ADDR_COPY(mac, mac0); 1546 1547 ATH_LOCK(sc); 1548 ic_opmode = opmode; /* default to opmode of new vap */ 1549 switch (opmode) { 1550 case IEEE80211_M_STA: 1551 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1552 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1553 goto bad; 1554 } 1555 if (sc->sc_nvaps) { 1556 /* 1557 * With multiple vaps we must fall back 1558 * to s/w beacon miss handling. 1559 */ 1560 flags |= IEEE80211_CLONE_NOBEACONS; 1561 } 1562 if (flags & IEEE80211_CLONE_NOBEACONS) { 1563 /* 1564 * Station mode w/o beacons are implemented w/ AP mode. 1565 */ 1566 ic_opmode = IEEE80211_M_HOSTAP; 1567 } 1568 break; 1569 case IEEE80211_M_IBSS: 1570 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1571 device_printf(sc->sc_dev, 1572 "only 1 ibss vap supported\n"); 1573 goto bad; 1574 } 1575 needbeacon = 1; 1576 break; 1577 case IEEE80211_M_AHDEMO: 1578 #ifdef IEEE80211_SUPPORT_TDMA 1579 if (flags & IEEE80211_CLONE_TDMA) { 1580 if (sc->sc_nvaps != 0) { 1581 device_printf(sc->sc_dev, 1582 "only 1 tdma vap supported\n"); 1583 goto bad; 1584 } 1585 needbeacon = 1; 1586 flags |= IEEE80211_CLONE_NOBEACONS; 1587 } 1588 /* fall thru... */ 1589 #endif 1590 case IEEE80211_M_MONITOR: 1591 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1592 /* 1593 * Adopt existing mode. Adding a monitor or ahdemo 1594 * vap to an existing configuration is of dubious 1595 * value but should be ok. 1596 */ 1597 /* XXX not right for monitor mode */ 1598 ic_opmode = ic->ic_opmode; 1599 } 1600 break; 1601 case IEEE80211_M_HOSTAP: 1602 case IEEE80211_M_MBSS: 1603 needbeacon = 1; 1604 break; 1605 case IEEE80211_M_WDS: 1606 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1607 device_printf(sc->sc_dev, 1608 "wds not supported in sta mode\n"); 1609 goto bad; 1610 } 1611 /* 1612 * Silently remove any request for a unique 1613 * bssid; WDS vap's always share the local 1614 * mac address. 1615 */ 1616 flags &= ~IEEE80211_CLONE_BSSID; 1617 if (sc->sc_nvaps == 0) 1618 ic_opmode = IEEE80211_M_HOSTAP; 1619 else 1620 ic_opmode = ic->ic_opmode; 1621 break; 1622 default: 1623 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1624 goto bad; 1625 } 1626 /* 1627 * Check that a beacon buffer is available; the code below assumes it. 1628 */ 1629 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1630 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1631 goto bad; 1632 } 1633 1634 /* STA, AHDEMO? */ 1635 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) { 1636 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1637 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1638 } 1639 1640 vap = &avp->av_vap; 1641 /* XXX can't hold mutex across if_alloc */ 1642 ATH_UNLOCK(sc); 1643 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1644 ATH_LOCK(sc); 1645 if (error != 0) { 1646 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1647 __func__, error); 1648 goto bad2; 1649 } 1650 1651 /* h/w crypto support */ 1652 vap->iv_key_alloc = ath_key_alloc; 1653 vap->iv_key_delete = ath_key_delete; 1654 vap->iv_key_set = ath_key_set; 1655 vap->iv_key_update_begin = ath_key_update_begin; 1656 vap->iv_key_update_end = ath_key_update_end; 1657 1658 /* override various methods */ 1659 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1660 vap->iv_recv_mgmt = ath_recv_mgmt; 1661 vap->iv_reset = ath_reset_vap; 1662 vap->iv_update_beacon = ath_beacon_update; 1663 avp->av_newstate = vap->iv_newstate; 1664 vap->iv_newstate = ath_newstate; 1665 avp->av_bmiss = vap->iv_bmiss; 1666 vap->iv_bmiss = ath_bmiss_vap; 1667 1668 avp->av_node_ps = vap->iv_node_ps; 1669 vap->iv_node_ps = ath_node_powersave; 1670 1671 avp->av_set_tim = vap->iv_set_tim; 1672 vap->iv_set_tim = ath_node_set_tim; 1673 1674 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1675 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1676 1677 /* Set default parameters */ 1678 1679 /* 1680 * Anything earlier than some AR9300 series MACs don't 1681 * support a smaller MPDU density. 1682 */ 1683 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1684 /* 1685 * All NICs can handle the maximum size, however 1686 * AR5416 based MACs can only TX aggregates w/ RTS 1687 * protection when the total aggregate size is <= 8k. 1688 * However, for now that's enforced by the TX path. 1689 */ 1690 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1691 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1692 1693 avp->av_bslot = -1; 1694 if (needbeacon) { 1695 /* 1696 * Allocate beacon state and setup the q for buffered 1697 * multicast frames. We know a beacon buffer is 1698 * available because we checked above. 1699 */ 1700 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1701 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1702 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1703 /* 1704 * Assign the vap to a beacon xmit slot. As above 1705 * this cannot fail to find a free one. 1706 */ 1707 avp->av_bslot = assign_bslot(sc); 1708 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1709 ("beacon slot %u not empty", avp->av_bslot)); 1710 sc->sc_bslot[avp->av_bslot] = vap; 1711 sc->sc_nbcnvaps++; 1712 } 1713 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1714 /* 1715 * Multple vaps are to transmit beacons and we 1716 * have h/w support for TSF adjusting; enable 1717 * use of staggered beacons. 1718 */ 1719 sc->sc_stagbeacons = 1; 1720 } 1721 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1722 } 1723 1724 ic->ic_opmode = ic_opmode; 1725 if (opmode != IEEE80211_M_WDS) { 1726 sc->sc_nvaps++; 1727 if (opmode == IEEE80211_M_STA) 1728 sc->sc_nstavaps++; 1729 if (opmode == IEEE80211_M_MBSS) 1730 sc->sc_nmeshvaps++; 1731 } 1732 switch (ic_opmode) { 1733 case IEEE80211_M_IBSS: 1734 sc->sc_opmode = HAL_M_IBSS; 1735 break; 1736 case IEEE80211_M_STA: 1737 sc->sc_opmode = HAL_M_STA; 1738 break; 1739 case IEEE80211_M_AHDEMO: 1740 #ifdef IEEE80211_SUPPORT_TDMA 1741 if (vap->iv_caps & IEEE80211_C_TDMA) { 1742 sc->sc_tdma = 1; 1743 /* NB: disable tsf adjust */ 1744 sc->sc_stagbeacons = 0; 1745 } 1746 /* 1747 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1748 * just ap mode. 1749 */ 1750 /* fall thru... */ 1751 #endif 1752 case IEEE80211_M_HOSTAP: 1753 case IEEE80211_M_MBSS: 1754 sc->sc_opmode = HAL_M_HOSTAP; 1755 break; 1756 case IEEE80211_M_MONITOR: 1757 sc->sc_opmode = HAL_M_MONITOR; 1758 break; 1759 default: 1760 /* XXX should not happen */ 1761 break; 1762 } 1763 if (sc->sc_hastsfadd) { 1764 /* 1765 * Configure whether or not TSF adjust should be done. 1766 */ 1767 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1768 } 1769 if (flags & IEEE80211_CLONE_NOBEACONS) { 1770 /* 1771 * Enable s/w beacon miss handling. 1772 */ 1773 sc->sc_swbmiss = 1; 1774 } 1775 ATH_UNLOCK(sc); 1776 1777 /* complete setup */ 1778 ieee80211_vap_attach(vap, ieee80211_media_change, 1779 ieee80211_media_status, mac); 1780 return vap; 1781 bad2: 1782 reclaim_address(sc, mac); 1783 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1784 bad: 1785 free(avp, M_80211_VAP); 1786 ATH_UNLOCK(sc); 1787 return NULL; 1788 } 1789 1790 static void 1791 ath_vap_delete(struct ieee80211vap *vap) 1792 { 1793 struct ieee80211com *ic = vap->iv_ic; 1794 struct ath_softc *sc = ic->ic_softc; 1795 struct ath_hal *ah = sc->sc_ah; 1796 struct ath_vap *avp = ATH_VAP(vap); 1797 1798 ATH_LOCK(sc); 1799 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1800 ATH_UNLOCK(sc); 1801 1802 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1803 if (sc->sc_running) { 1804 /* 1805 * Quiesce the hardware while we remove the vap. In 1806 * particular we need to reclaim all references to 1807 * the vap state by any frames pending on the tx queues. 1808 */ 1809 ath_hal_intrset(ah, 0); /* disable interrupts */ 1810 /* XXX Do all frames from all vaps/nodes need draining here? */ 1811 ath_stoprecv(sc, 1); /* stop recv side */ 1812 ath_rx_flush(sc); 1813 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1814 } 1815 1816 /* .. leave the hardware awake for now. */ 1817 1818 ieee80211_vap_detach(vap); 1819 1820 /* 1821 * XXX Danger Will Robinson! Danger! 1822 * 1823 * Because ieee80211_vap_detach() can queue a frame (the station 1824 * diassociate message?) after we've drained the TXQ and 1825 * flushed the software TXQ, we will end up with a frame queued 1826 * to a node whose vap is about to be freed. 1827 * 1828 * To work around this, flush the hardware/software again. 1829 * This may be racy - the ath task may be running and the packet 1830 * may be being scheduled between sw->hw txq. Tsk. 1831 * 1832 * TODO: figure out why a new node gets allocated somewhere around 1833 * here (after the ath_tx_swq() call; and after an ath_stop() 1834 * call!) 1835 */ 1836 1837 ath_draintxq(sc, ATH_RESET_DEFAULT); 1838 1839 ATH_LOCK(sc); 1840 /* 1841 * Reclaim beacon state. Note this must be done before 1842 * the vap instance is reclaimed as we may have a reference 1843 * to it in the buffer for the beacon frame. 1844 */ 1845 if (avp->av_bcbuf != NULL) { 1846 if (avp->av_bslot != -1) { 1847 sc->sc_bslot[avp->av_bslot] = NULL; 1848 sc->sc_nbcnvaps--; 1849 } 1850 ath_beacon_return(sc, avp->av_bcbuf); 1851 avp->av_bcbuf = NULL; 1852 if (sc->sc_nbcnvaps == 0) { 1853 sc->sc_stagbeacons = 0; 1854 if (sc->sc_hastsfadd) 1855 ath_hal_settsfadjust(sc->sc_ah, 0); 1856 } 1857 /* 1858 * Reclaim any pending mcast frames for the vap. 1859 */ 1860 ath_tx_draintxq(sc, &avp->av_mcastq); 1861 } 1862 /* 1863 * Update bookkeeping. 1864 */ 1865 if (vap->iv_opmode == IEEE80211_M_STA) { 1866 sc->sc_nstavaps--; 1867 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1868 sc->sc_swbmiss = 0; 1869 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1870 vap->iv_opmode == IEEE80211_M_STA || 1871 vap->iv_opmode == IEEE80211_M_MBSS) { 1872 reclaim_address(sc, vap->iv_myaddr); 1873 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1874 if (vap->iv_opmode == IEEE80211_M_MBSS) 1875 sc->sc_nmeshvaps--; 1876 } 1877 if (vap->iv_opmode != IEEE80211_M_WDS) 1878 sc->sc_nvaps--; 1879 #ifdef IEEE80211_SUPPORT_TDMA 1880 /* TDMA operation ceases when the last vap is destroyed */ 1881 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1882 sc->sc_tdma = 0; 1883 sc->sc_swbmiss = 0; 1884 } 1885 #endif 1886 free(avp, M_80211_VAP); 1887 1888 if (sc->sc_running) { 1889 /* 1890 * Restart rx+tx machines if still running (RUNNING will 1891 * be reset if we just destroyed the last vap). 1892 */ 1893 if (ath_startrecv(sc) != 0) 1894 device_printf(sc->sc_dev, 1895 "%s: unable to restart recv logic\n", __func__); 1896 if (sc->sc_beacons) { /* restart beacons */ 1897 #ifdef IEEE80211_SUPPORT_TDMA 1898 if (sc->sc_tdma) 1899 ath_tdma_config(sc, NULL); 1900 else 1901 #endif 1902 ath_beacon_config(sc, NULL); 1903 } 1904 ath_hal_intrset(ah, sc->sc_imask); 1905 } 1906 1907 /* Ok, let the hardware asleep. */ 1908 ath_power_restore_power_state(sc); 1909 ATH_UNLOCK(sc); 1910 } 1911 1912 void 1913 ath_suspend(struct ath_softc *sc) 1914 { 1915 struct ieee80211com *ic = &sc->sc_ic; 1916 1917 sc->sc_resume_up = ic->ic_nrunning != 0; 1918 1919 ieee80211_suspend_all(ic); 1920 /* 1921 * NB: don't worry about putting the chip in low power 1922 * mode; pci will power off our socket on suspend and 1923 * CardBus detaches the device. 1924 * 1925 * XXX TODO: well, that's great, except for non-cardbus 1926 * devices! 1927 */ 1928 1929 /* 1930 * XXX This doesn't wait until all pending taskqueue 1931 * items and parallel transmit/receive/other threads 1932 * are running! 1933 */ 1934 ath_hal_intrset(sc->sc_ah, 0); 1935 taskqueue_block(sc->sc_tq); 1936 1937 ATH_LOCK(sc); 1938 callout_stop(&sc->sc_cal_ch); 1939 ATH_UNLOCK(sc); 1940 1941 /* 1942 * XXX ensure sc_invalid is 1 1943 */ 1944 1945 /* Disable the PCIe PHY, complete with workarounds */ 1946 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1947 } 1948 1949 /* 1950 * Reset the key cache since some parts do not reset the 1951 * contents on resume. First we clear all entries, then 1952 * re-load keys that the 802.11 layer assumes are setup 1953 * in h/w. 1954 */ 1955 static void 1956 ath_reset_keycache(struct ath_softc *sc) 1957 { 1958 struct ieee80211com *ic = &sc->sc_ic; 1959 struct ath_hal *ah = sc->sc_ah; 1960 int i; 1961 1962 ATH_LOCK(sc); 1963 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1964 for (i = 0; i < sc->sc_keymax; i++) 1965 ath_hal_keyreset(ah, i); 1966 ath_power_restore_power_state(sc); 1967 ATH_UNLOCK(sc); 1968 ieee80211_crypto_reload_keys(ic); 1969 } 1970 1971 /* 1972 * Fetch the current chainmask configuration based on the current 1973 * operating channel and options. 1974 */ 1975 static void 1976 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1977 { 1978 1979 /* 1980 * Set TX chainmask to the currently configured chainmask; 1981 * the TX chainmask depends upon the current operating mode. 1982 */ 1983 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1984 if (IEEE80211_IS_CHAN_HT(chan)) { 1985 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1986 } else { 1987 sc->sc_cur_txchainmask = 1; 1988 } 1989 1990 DPRINTF(sc, ATH_DEBUG_RESET, 1991 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1992 __func__, 1993 sc->sc_cur_txchainmask, 1994 sc->sc_cur_rxchainmask); 1995 } 1996 1997 void 1998 ath_resume(struct ath_softc *sc) 1999 { 2000 struct ieee80211com *ic = &sc->sc_ic; 2001 struct ath_hal *ah = sc->sc_ah; 2002 HAL_STATUS status; 2003 2004 ath_hal_enablepcie(ah, 0, 0); 2005 2006 /* 2007 * Must reset the chip before we reload the 2008 * keycache as we were powered down on suspend. 2009 */ 2010 ath_update_chainmasks(sc, 2011 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 2012 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2013 sc->sc_cur_rxchainmask); 2014 2015 /* Ensure we set the current power state to on */ 2016 ATH_LOCK(sc); 2017 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2018 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2019 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2020 ATH_UNLOCK(sc); 2021 2022 ath_hal_reset(ah, sc->sc_opmode, 2023 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 2024 AH_FALSE, HAL_RESET_NORMAL, &status); 2025 ath_reset_keycache(sc); 2026 2027 ATH_RX_LOCK(sc); 2028 sc->sc_rx_stopped = 1; 2029 sc->sc_rx_resetted = 1; 2030 ATH_RX_UNLOCK(sc); 2031 2032 /* Let DFS at it in case it's a DFS channel */ 2033 ath_dfs_radar_enable(sc, ic->ic_curchan); 2034 2035 /* Let spectral at in case spectral is enabled */ 2036 ath_spectral_enable(sc, ic->ic_curchan); 2037 2038 /* 2039 * Let bluetooth coexistence at in case it's needed for this channel 2040 */ 2041 ath_btcoex_enable(sc, ic->ic_curchan); 2042 2043 /* 2044 * If we're doing TDMA, enforce the TXOP limitation for chips that 2045 * support it. 2046 */ 2047 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2048 ath_hal_setenforcetxop(sc->sc_ah, 1); 2049 else 2050 ath_hal_setenforcetxop(sc->sc_ah, 0); 2051 2052 /* Restore the LED configuration */ 2053 ath_led_config(sc); 2054 ath_hal_setledstate(ah, HAL_LED_INIT); 2055 2056 if (sc->sc_resume_up) 2057 ieee80211_resume_all(ic); 2058 2059 ATH_LOCK(sc); 2060 ath_power_restore_power_state(sc); 2061 ATH_UNLOCK(sc); 2062 2063 /* XXX beacons ? */ 2064 } 2065 2066 void 2067 ath_shutdown(struct ath_softc *sc) 2068 { 2069 2070 ATH_LOCK(sc); 2071 ath_stop(sc); 2072 ATH_UNLOCK(sc); 2073 /* NB: no point powering down chip as we're about to reboot */ 2074 } 2075 2076 /* 2077 * Interrupt handler. Most of the actual processing is deferred. 2078 */ 2079 void 2080 ath_intr(void *arg) 2081 { 2082 struct ath_softc *sc = arg; 2083 struct ath_hal *ah = sc->sc_ah; 2084 HAL_INT status = 0; 2085 uint32_t txqs; 2086 2087 /* 2088 * If we're inside a reset path, just print a warning and 2089 * clear the ISR. The reset routine will finish it for us. 2090 */ 2091 ATH_PCU_LOCK(sc); 2092 if (sc->sc_inreset_cnt) { 2093 HAL_INT status; 2094 ath_hal_getisr(ah, &status); /* clear ISR */ 2095 ath_hal_intrset(ah, 0); /* disable further intr's */ 2096 DPRINTF(sc, ATH_DEBUG_ANY, 2097 "%s: in reset, ignoring: status=0x%x\n", 2098 __func__, status); 2099 ATH_PCU_UNLOCK(sc); 2100 return; 2101 } 2102 2103 if (sc->sc_invalid) { 2104 /* 2105 * The hardware is not ready/present, don't touch anything. 2106 * Note this can happen early on if the IRQ is shared. 2107 */ 2108 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2109 ATH_PCU_UNLOCK(sc); 2110 return; 2111 } 2112 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2113 ATH_PCU_UNLOCK(sc); 2114 return; 2115 } 2116 2117 ATH_LOCK(sc); 2118 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2119 ATH_UNLOCK(sc); 2120 2121 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2122 HAL_INT status; 2123 2124 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2125 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2126 ath_hal_getisr(ah, &status); /* clear ISR */ 2127 ath_hal_intrset(ah, 0); /* disable further intr's */ 2128 ATH_PCU_UNLOCK(sc); 2129 2130 ATH_LOCK(sc); 2131 ath_power_restore_power_state(sc); 2132 ATH_UNLOCK(sc); 2133 return; 2134 } 2135 2136 /* 2137 * Figure out the reason(s) for the interrupt. Note 2138 * that the hal returns a pseudo-ISR that may include 2139 * bits we haven't explicitly enabled so we mask the 2140 * value to insure we only process bits we requested. 2141 */ 2142 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2143 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2144 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2145 #ifdef ATH_DEBUG_ALQ 2146 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2147 ah->ah_syncstate); 2148 #endif /* ATH_DEBUG_ALQ */ 2149 #ifdef ATH_KTR_INTR_DEBUG 2150 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2151 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2152 ah->ah_intrstate[0], 2153 ah->ah_intrstate[1], 2154 ah->ah_intrstate[2], 2155 ah->ah_intrstate[3], 2156 ah->ah_intrstate[6]); 2157 #endif 2158 2159 /* Squirrel away SYNC interrupt debugging */ 2160 if (ah->ah_syncstate != 0) { 2161 int i; 2162 for (i = 0; i < 32; i++) 2163 if (ah->ah_syncstate & (1 << i)) 2164 sc->sc_intr_stats.sync_intr[i]++; 2165 } 2166 2167 status &= sc->sc_imask; /* discard unasked for bits */ 2168 2169 /* Short-circuit un-handled interrupts */ 2170 if (status == 0x0) { 2171 ATH_PCU_UNLOCK(sc); 2172 2173 ATH_LOCK(sc); 2174 ath_power_restore_power_state(sc); 2175 ATH_UNLOCK(sc); 2176 2177 return; 2178 } 2179 2180 /* 2181 * Take a note that we're inside the interrupt handler, so 2182 * the reset routines know to wait. 2183 */ 2184 sc->sc_intr_cnt++; 2185 ATH_PCU_UNLOCK(sc); 2186 2187 /* 2188 * Handle the interrupt. We won't run concurrent with the reset 2189 * or channel change routines as they'll wait for sc_intr_cnt 2190 * to be 0 before continuing. 2191 */ 2192 if (status & HAL_INT_FATAL) { 2193 sc->sc_stats.ast_hardware++; 2194 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2195 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2196 } else { 2197 if (status & HAL_INT_SWBA) { 2198 /* 2199 * Software beacon alert--time to send a beacon. 2200 * Handle beacon transmission directly; deferring 2201 * this is too slow to meet timing constraints 2202 * under load. 2203 */ 2204 #ifdef IEEE80211_SUPPORT_TDMA 2205 if (sc->sc_tdma) { 2206 if (sc->sc_tdmaswba == 0) { 2207 struct ieee80211com *ic = &sc->sc_ic; 2208 struct ieee80211vap *vap = 2209 TAILQ_FIRST(&ic->ic_vaps); 2210 ath_tdma_beacon_send(sc, vap); 2211 sc->sc_tdmaswba = 2212 vap->iv_tdma->tdma_bintval; 2213 } else 2214 sc->sc_tdmaswba--; 2215 } else 2216 #endif 2217 { 2218 ath_beacon_proc(sc, 0); 2219 #ifdef IEEE80211_SUPPORT_SUPERG 2220 /* 2221 * Schedule the rx taskq in case there's no 2222 * traffic so any frames held on the staging 2223 * queue are aged and potentially flushed. 2224 */ 2225 sc->sc_rx.recv_sched(sc, 1); 2226 #endif 2227 } 2228 } 2229 if (status & HAL_INT_RXEOL) { 2230 int imask; 2231 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2232 if (! sc->sc_isedma) { 2233 ATH_PCU_LOCK(sc); 2234 /* 2235 * NB: the hardware should re-read the link when 2236 * RXE bit is written, but it doesn't work at 2237 * least on older hardware revs. 2238 */ 2239 sc->sc_stats.ast_rxeol++; 2240 /* 2241 * Disable RXEOL/RXORN - prevent an interrupt 2242 * storm until the PCU logic can be reset. 2243 * In case the interface is reset some other 2244 * way before "sc_kickpcu" is called, don't 2245 * modify sc_imask - that way if it is reset 2246 * by a call to ath_reset() somehow, the 2247 * interrupt mask will be correctly reprogrammed. 2248 */ 2249 imask = sc->sc_imask; 2250 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2251 ath_hal_intrset(ah, imask); 2252 /* 2253 * Only blank sc_rxlink if we've not yet kicked 2254 * the PCU. 2255 * 2256 * This isn't entirely correct - the correct solution 2257 * would be to have a PCU lock and engage that for 2258 * the duration of the PCU fiddling; which would include 2259 * running the RX process. Otherwise we could end up 2260 * messing up the RX descriptor chain and making the 2261 * RX desc list much shorter. 2262 */ 2263 if (! sc->sc_kickpcu) 2264 sc->sc_rxlink = NULL; 2265 sc->sc_kickpcu = 1; 2266 ATH_PCU_UNLOCK(sc); 2267 } 2268 /* 2269 * Enqueue an RX proc to handle whatever 2270 * is in the RX queue. 2271 * This will then kick the PCU if required. 2272 */ 2273 sc->sc_rx.recv_sched(sc, 1); 2274 } 2275 if (status & HAL_INT_TXURN) { 2276 sc->sc_stats.ast_txurn++; 2277 /* bump tx trigger level */ 2278 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2279 } 2280 /* 2281 * Handle both the legacy and RX EDMA interrupt bits. 2282 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2283 */ 2284 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2285 sc->sc_stats.ast_rx_intr++; 2286 sc->sc_rx.recv_sched(sc, 1); 2287 } 2288 if (status & HAL_INT_TX) { 2289 sc->sc_stats.ast_tx_intr++; 2290 /* 2291 * Grab all the currently set bits in the HAL txq bitmap 2292 * and blank them. This is the only place we should be 2293 * doing this. 2294 */ 2295 if (! sc->sc_isedma) { 2296 ATH_PCU_LOCK(sc); 2297 txqs = 0xffffffff; 2298 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2299 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2300 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2301 txqs, 2302 sc->sc_txq_active, 2303 sc->sc_txq_active | txqs); 2304 sc->sc_txq_active |= txqs; 2305 ATH_PCU_UNLOCK(sc); 2306 } 2307 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2308 } 2309 if (status & HAL_INT_BMISS) { 2310 sc->sc_stats.ast_bmiss++; 2311 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2312 } 2313 if (status & HAL_INT_GTT) 2314 sc->sc_stats.ast_tx_timeout++; 2315 if (status & HAL_INT_CST) 2316 sc->sc_stats.ast_tx_cst++; 2317 if (status & HAL_INT_MIB) { 2318 sc->sc_stats.ast_mib++; 2319 ATH_PCU_LOCK(sc); 2320 /* 2321 * Disable interrupts until we service the MIB 2322 * interrupt; otherwise it will continue to fire. 2323 */ 2324 ath_hal_intrset(ah, 0); 2325 /* 2326 * Let the hal handle the event. We assume it will 2327 * clear whatever condition caused the interrupt. 2328 */ 2329 ath_hal_mibevent(ah, &sc->sc_halstats); 2330 /* 2331 * Don't reset the interrupt if we've just 2332 * kicked the PCU, or we may get a nested 2333 * RXEOL before the rxproc has had a chance 2334 * to run. 2335 */ 2336 if (sc->sc_kickpcu == 0) 2337 ath_hal_intrset(ah, sc->sc_imask); 2338 ATH_PCU_UNLOCK(sc); 2339 } 2340 if (status & HAL_INT_RXORN) { 2341 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2342 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2343 sc->sc_stats.ast_rxorn++; 2344 } 2345 if (status & HAL_INT_TSFOOR) { 2346 /* 2347 * out of range beacon - wake the chip up, 2348 * but don't modify self-gen frame config. 2349 * Do a full reset to clear any potential stuck 2350 * PHY/MAC that generated this condition. 2351 */ 2352 sc->sc_stats.ast_tsfoor++; 2353 ATH_LOCK(sc); 2354 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2355 ATH_UNLOCK(sc); 2356 taskqueue_enqueue(sc->sc_tq, &sc->sc_tsfoortask); 2357 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2358 } 2359 if (status & HAL_INT_MCI) { 2360 ath_btcoex_mci_intr(sc); 2361 } 2362 } 2363 ATH_PCU_LOCK(sc); 2364 sc->sc_intr_cnt--; 2365 ATH_PCU_UNLOCK(sc); 2366 2367 ATH_LOCK(sc); 2368 ath_power_restore_power_state(sc); 2369 ATH_UNLOCK(sc); 2370 } 2371 2372 static void 2373 ath_fatal_proc(void *arg, int pending) 2374 { 2375 struct ath_softc *sc = arg; 2376 u_int32_t *state; 2377 u_int32_t len; 2378 void *sp; 2379 2380 if (sc->sc_invalid) 2381 return; 2382 2383 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2384 /* 2385 * Fatal errors are unrecoverable. Typically these 2386 * are caused by DMA errors. Collect h/w state from 2387 * the hal so we can diagnose what's going on. 2388 */ 2389 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2390 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2391 state = sp; 2392 device_printf(sc->sc_dev, 2393 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2394 state[1] , state[2], state[3], state[4], state[5]); 2395 } 2396 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2397 } 2398 2399 static void 2400 ath_bmiss_vap(struct ieee80211vap *vap) 2401 { 2402 struct ath_softc *sc = vap->iv_ic->ic_softc; 2403 2404 /* 2405 * Workaround phantom bmiss interrupts by sanity-checking 2406 * the time of our last rx'd frame. If it is within the 2407 * beacon miss interval then ignore the interrupt. If it's 2408 * truly a bmiss we'll get another interrupt soon and that'll 2409 * be dispatched up for processing. Note this applies only 2410 * for h/w beacon miss events. 2411 */ 2412 2413 /* 2414 * XXX TODO: Just read the TSF during the interrupt path; 2415 * that way we don't have to wake up again just to read it 2416 * again. 2417 */ 2418 ATH_LOCK(sc); 2419 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2420 ATH_UNLOCK(sc); 2421 2422 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2423 u_int64_t lastrx = sc->sc_lastrx; 2424 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2425 /* XXX should take a locked ref to iv_bss */ 2426 u_int bmisstimeout = 2427 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2428 2429 DPRINTF(sc, ATH_DEBUG_BEACON, 2430 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2431 __func__, (unsigned long long) tsf, 2432 (unsigned long long)(tsf - lastrx), 2433 (unsigned long long) lastrx, bmisstimeout); 2434 2435 if (tsf - lastrx <= bmisstimeout) { 2436 sc->sc_stats.ast_bmiss_phantom++; 2437 2438 ATH_LOCK(sc); 2439 ath_power_restore_power_state(sc); 2440 ATH_UNLOCK(sc); 2441 2442 return; 2443 } 2444 } 2445 2446 /* 2447 * Keep the hardware awake if it's asleep (and leave self-gen 2448 * frame config alone) until the next beacon, so we can resync 2449 * against the next beacon. 2450 * 2451 * This handles three common beacon miss cases in STA powersave mode - 2452 * (a) the beacon TBTT isn't a multiple of bintval; 2453 * (b) the beacon was missed; and 2454 * (c) the beacons are being delayed because the AP is busy and 2455 * isn't reliably able to meet its TBTT. 2456 */ 2457 ATH_LOCK(sc); 2458 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2459 ath_power_restore_power_state(sc); 2460 ATH_UNLOCK(sc); 2461 2462 DPRINTF(sc, ATH_DEBUG_BEACON, 2463 "%s: forced awake; force syncbeacon=1\n", __func__); 2464 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2465 /* 2466 * Attempt to force a beacon resync. 2467 */ 2468 sc->sc_syncbeacon = 1; 2469 } 2470 2471 ATH_VAP(vap)->av_bmiss(vap); 2472 } 2473 2474 /* XXX this needs a force wakeup! */ 2475 int 2476 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2477 { 2478 uint32_t rsize; 2479 void *sp; 2480 2481 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2482 return 0; 2483 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2484 *hangs = *(uint32_t *)sp; 2485 return 1; 2486 } 2487 2488 static void 2489 ath_bmiss_proc(void *arg, int pending) 2490 { 2491 struct ath_softc *sc = arg; 2492 uint32_t hangs; 2493 2494 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2495 2496 ATH_LOCK(sc); 2497 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2498 ATH_UNLOCK(sc); 2499 2500 ath_beacon_miss(sc); 2501 2502 /* 2503 * Do a reset upon any beacon miss event. 2504 * 2505 * It may be a non-recognised RX clear hang which needs a reset 2506 * to clear. 2507 */ 2508 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2509 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC); 2510 device_printf(sc->sc_dev, 2511 "bb hang detected (0x%x), resetting\n", hangs); 2512 } else { 2513 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2514 ieee80211_beacon_miss(&sc->sc_ic); 2515 } 2516 2517 /* Force a beacon resync, in case they've drifted */ 2518 sc->sc_syncbeacon = 1; 2519 2520 ATH_LOCK(sc); 2521 ath_power_restore_power_state(sc); 2522 ATH_UNLOCK(sc); 2523 } 2524 2525 /* 2526 * Handle a TSF out of range interrupt in STA mode. 2527 * 2528 * This may be due to a partially deaf looking radio, so 2529 * do a full reset just in case it is indeed deaf and 2530 * resync the beacon. 2531 */ 2532 static void 2533 ath_tsfoor_proc(void *arg, int pending) 2534 { 2535 struct ath_softc *sc = arg; 2536 2537 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2538 2539 ATH_LOCK(sc); 2540 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2541 ATH_UNLOCK(sc); 2542 2543 /* 2544 * Do a full reset after any TSFOOR. It's possible that 2545 * we've gone deaf or partially deaf (eg due to calibration 2546 * failures) and this should clean things up a bit. 2547 */ 2548 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2549 2550 /* Force a beacon resync, in case they've drifted */ 2551 sc->sc_syncbeacon = 1; 2552 2553 ATH_LOCK(sc); 2554 ath_power_restore_power_state(sc); 2555 ATH_UNLOCK(sc); 2556 } 2557 2558 /* 2559 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2560 * calcs together with WME. If necessary disable the crypto 2561 * hardware and mark the 802.11 state so keys will be setup 2562 * with the MIC work done in software. 2563 */ 2564 static void 2565 ath_settkipmic(struct ath_softc *sc) 2566 { 2567 struct ieee80211com *ic = &sc->sc_ic; 2568 2569 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2570 if (ic->ic_flags & IEEE80211_F_WME) { 2571 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2572 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2573 } else { 2574 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2575 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2576 } 2577 } 2578 } 2579 2580 static void 2581 ath_vap_clear_quiet_ie(struct ath_softc *sc) 2582 { 2583 struct ieee80211com *ic = &sc->sc_ic; 2584 struct ieee80211vap *vap; 2585 struct ath_vap *avp; 2586 2587 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2588 avp = ATH_VAP(vap); 2589 /* Quiet time handling - ensure we resync */ 2590 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 2591 } 2592 } 2593 2594 static int 2595 ath_init(struct ath_softc *sc) 2596 { 2597 struct ieee80211com *ic = &sc->sc_ic; 2598 struct ath_hal *ah = sc->sc_ah; 2599 HAL_STATUS status; 2600 2601 ATH_LOCK_ASSERT(sc); 2602 2603 /* 2604 * Force the sleep state awake. 2605 */ 2606 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2607 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2608 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2609 2610 /* 2611 * Stop anything previously setup. This is safe 2612 * whether this is the first time through or not. 2613 */ 2614 ath_stop(sc); 2615 2616 /* 2617 * The basic interface to setting the hardware in a good 2618 * state is ``reset''. On return the hardware is known to 2619 * be powered up and with interrupts disabled. This must 2620 * be followed by initialization of the appropriate bits 2621 * and then setup of the interrupt mask. 2622 */ 2623 ath_settkipmic(sc); 2624 ath_update_chainmasks(sc, ic->ic_curchan); 2625 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2626 sc->sc_cur_rxchainmask); 2627 2628 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2629 HAL_RESET_NORMAL, &status)) { 2630 device_printf(sc->sc_dev, 2631 "unable to reset hardware; hal status %u\n", status); 2632 return (ENODEV); 2633 } 2634 2635 ATH_RX_LOCK(sc); 2636 sc->sc_rx_stopped = 1; 2637 sc->sc_rx_resetted = 1; 2638 ATH_RX_UNLOCK(sc); 2639 2640 /* Clear quiet IE state for each VAP */ 2641 ath_vap_clear_quiet_ie(sc); 2642 2643 ath_chan_change(sc, ic->ic_curchan); 2644 2645 /* Let DFS at it in case it's a DFS channel */ 2646 ath_dfs_radar_enable(sc, ic->ic_curchan); 2647 2648 /* Let spectral at in case spectral is enabled */ 2649 ath_spectral_enable(sc, ic->ic_curchan); 2650 2651 /* 2652 * Let bluetooth coexistence at in case it's needed for this channel 2653 */ 2654 ath_btcoex_enable(sc, ic->ic_curchan); 2655 2656 /* 2657 * If we're doing TDMA, enforce the TXOP limitation for chips that 2658 * support it. 2659 */ 2660 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2661 ath_hal_setenforcetxop(sc->sc_ah, 1); 2662 else 2663 ath_hal_setenforcetxop(sc->sc_ah, 0); 2664 2665 /* 2666 * Likewise this is set during reset so update 2667 * state cached in the driver. 2668 */ 2669 sc->sc_diversity = ath_hal_getdiversity(ah); 2670 sc->sc_lastlongcal = ticks; 2671 sc->sc_resetcal = 1; 2672 sc->sc_lastcalreset = 0; 2673 sc->sc_lastani = ticks; 2674 sc->sc_lastshortcal = ticks; 2675 sc->sc_doresetcal = AH_FALSE; 2676 /* 2677 * Beacon timers were cleared here; give ath_newstate() 2678 * a hint that the beacon timers should be poked when 2679 * things transition to the RUN state. 2680 */ 2681 sc->sc_beacons = 0; 2682 2683 /* 2684 * Setup the hardware after reset: the key cache 2685 * is filled as needed and the receive engine is 2686 * set going. Frame transmit is handled entirely 2687 * in the frame output path; there's nothing to do 2688 * here except setup the interrupt mask. 2689 */ 2690 if (ath_startrecv(sc) != 0) { 2691 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2692 ath_power_restore_power_state(sc); 2693 return (ENODEV); 2694 } 2695 2696 /* 2697 * Enable interrupts. 2698 */ 2699 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2700 | HAL_INT_RXORN | HAL_INT_TXURN 2701 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2702 2703 /* 2704 * Enable RX EDMA bits. Note these overlap with 2705 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2706 */ 2707 if (sc->sc_isedma) 2708 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2709 2710 /* 2711 * If we're an EDMA NIC, we don't care about RXEOL. 2712 * Writing a new descriptor in will simply restart 2713 * RX DMA. 2714 */ 2715 if (! sc->sc_isedma) 2716 sc->sc_imask |= HAL_INT_RXEOL; 2717 2718 /* 2719 * Enable MCI interrupt for MCI devices. 2720 */ 2721 if (sc->sc_btcoex_mci) 2722 sc->sc_imask |= HAL_INT_MCI; 2723 2724 /* 2725 * Enable MIB interrupts when there are hardware phy counters. 2726 * Note we only do this (at the moment) for station mode. 2727 */ 2728 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2729 sc->sc_imask |= HAL_INT_MIB; 2730 2731 /* 2732 * XXX add capability for this. 2733 * 2734 * If we're in STA mode (and maybe IBSS?) then register for 2735 * TSFOOR interrupts. 2736 */ 2737 if (ic->ic_opmode == IEEE80211_M_STA) 2738 sc->sc_imask |= HAL_INT_TSFOOR; 2739 2740 /* Enable global TX timeout and carrier sense timeout if available */ 2741 if (ath_hal_gtxto_supported(ah)) 2742 sc->sc_imask |= HAL_INT_GTT; 2743 2744 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2745 __func__, sc->sc_imask); 2746 2747 sc->sc_running = 1; 2748 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2749 ath_hal_intrset(ah, sc->sc_imask); 2750 2751 ath_power_restore_power_state(sc); 2752 2753 return (0); 2754 } 2755 2756 static void 2757 ath_stop(struct ath_softc *sc) 2758 { 2759 struct ath_hal *ah = sc->sc_ah; 2760 2761 ATH_LOCK_ASSERT(sc); 2762 2763 /* 2764 * Wake the hardware up before fiddling with it. 2765 */ 2766 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2767 2768 if (sc->sc_running) { 2769 /* 2770 * Shutdown the hardware and driver: 2771 * reset 802.11 state machine 2772 * turn off timers 2773 * disable interrupts 2774 * turn off the radio 2775 * clear transmit machinery 2776 * clear receive machinery 2777 * drain and release tx queues 2778 * reclaim beacon resources 2779 * power down hardware 2780 * 2781 * Note that some of this work is not possible if the 2782 * hardware is gone (invalid). 2783 */ 2784 #ifdef ATH_TX99_DIAG 2785 if (sc->sc_tx99 != NULL) 2786 sc->sc_tx99->stop(sc->sc_tx99); 2787 #endif 2788 callout_stop(&sc->sc_wd_ch); 2789 sc->sc_wd_timer = 0; 2790 sc->sc_running = 0; 2791 if (!sc->sc_invalid) { 2792 if (sc->sc_softled) { 2793 callout_stop(&sc->sc_ledtimer); 2794 ath_hal_gpioset(ah, sc->sc_ledpin, 2795 !sc->sc_ledon); 2796 sc->sc_blinking = 0; 2797 } 2798 ath_hal_intrset(ah, 0); 2799 } 2800 /* XXX we should stop RX regardless of whether it's valid */ 2801 if (!sc->sc_invalid) { 2802 ath_stoprecv(sc, 1); 2803 ath_hal_phydisable(ah); 2804 } else 2805 sc->sc_rxlink = NULL; 2806 ath_draintxq(sc, ATH_RESET_DEFAULT); 2807 ath_beacon_free(sc); /* XXX not needed */ 2808 } 2809 2810 /* And now, restore the current power state */ 2811 ath_power_restore_power_state(sc); 2812 } 2813 2814 /* 2815 * Wait until all pending TX/RX has completed. 2816 * 2817 * This waits until all existing transmit, receive and interrupts 2818 * have completed. It's assumed that the caller has first 2819 * grabbed the reset lock so it doesn't try to do overlapping 2820 * chip resets. 2821 */ 2822 #define MAX_TXRX_ITERATIONS 100 2823 static void 2824 ath_txrx_stop_locked(struct ath_softc *sc) 2825 { 2826 int i = MAX_TXRX_ITERATIONS; 2827 2828 ATH_UNLOCK_ASSERT(sc); 2829 ATH_PCU_LOCK_ASSERT(sc); 2830 2831 /* 2832 * Sleep until all the pending operations have completed. 2833 * 2834 * The caller must ensure that reset has been incremented 2835 * or the pending operations may continue being queued. 2836 */ 2837 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2838 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2839 if (i <= 0) 2840 break; 2841 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2842 msecs_to_ticks(10)); 2843 i--; 2844 } 2845 2846 if (i <= 0) 2847 device_printf(sc->sc_dev, 2848 "%s: didn't finish after %d iterations\n", 2849 __func__, MAX_TXRX_ITERATIONS); 2850 } 2851 #undef MAX_TXRX_ITERATIONS 2852 2853 #if 0 2854 static void 2855 ath_txrx_stop(struct ath_softc *sc) 2856 { 2857 ATH_UNLOCK_ASSERT(sc); 2858 ATH_PCU_UNLOCK_ASSERT(sc); 2859 2860 ATH_PCU_LOCK(sc); 2861 ath_txrx_stop_locked(sc); 2862 ATH_PCU_UNLOCK(sc); 2863 } 2864 #endif 2865 2866 static void 2867 ath_txrx_start(struct ath_softc *sc) 2868 { 2869 2870 taskqueue_unblock(sc->sc_tq); 2871 } 2872 2873 /* 2874 * Grab the reset lock, and wait around until no one else 2875 * is trying to do anything with it. 2876 * 2877 * This is totally horrible but we can't hold this lock for 2878 * long enough to do TX/RX or we end up with net80211/ip stack 2879 * LORs and eventual deadlock. 2880 * 2881 * "dowait" signals whether to spin, waiting for the reset 2882 * lock count to reach 0. This should (for now) only be used 2883 * during the reset path, as the rest of the code may not 2884 * be locking-reentrant enough to behave correctly. 2885 * 2886 * Another, cleaner way should be found to serialise all of 2887 * these operations. 2888 */ 2889 #define MAX_RESET_ITERATIONS 25 2890 static int 2891 ath_reset_grablock(struct ath_softc *sc, int dowait) 2892 { 2893 int w = 0; 2894 int i = MAX_RESET_ITERATIONS; 2895 2896 ATH_PCU_LOCK_ASSERT(sc); 2897 do { 2898 if (sc->sc_inreset_cnt == 0) { 2899 w = 1; 2900 break; 2901 } 2902 if (dowait == 0) { 2903 w = 0; 2904 break; 2905 } 2906 ATH_PCU_UNLOCK(sc); 2907 /* 2908 * 1 tick is likely not enough time for long calibrations 2909 * to complete. So we should wait quite a while. 2910 */ 2911 pause("ath_reset_grablock", msecs_to_ticks(100)); 2912 i--; 2913 ATH_PCU_LOCK(sc); 2914 } while (i > 0); 2915 2916 /* 2917 * We always increment the refcounter, regardless 2918 * of whether we succeeded to get it in an exclusive 2919 * way. 2920 */ 2921 sc->sc_inreset_cnt++; 2922 2923 if (i <= 0) 2924 device_printf(sc->sc_dev, 2925 "%s: didn't finish after %d iterations\n", 2926 __func__, MAX_RESET_ITERATIONS); 2927 2928 if (w == 0) 2929 device_printf(sc->sc_dev, 2930 "%s: warning, recursive reset path!\n", 2931 __func__); 2932 2933 return w; 2934 } 2935 #undef MAX_RESET_ITERATIONS 2936 2937 /* 2938 * Reset the hardware w/o losing operational state. This is 2939 * basically a more efficient way of doing ath_stop, ath_init, 2940 * followed by state transitions to the current 802.11 2941 * operational state. Used to recover from various errors and 2942 * to reset or reload hardware state. 2943 */ 2944 int 2945 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type, 2946 HAL_RESET_TYPE ah_reset_type) 2947 { 2948 struct ieee80211com *ic = &sc->sc_ic; 2949 struct ath_hal *ah = sc->sc_ah; 2950 HAL_STATUS status; 2951 int i; 2952 2953 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2954 2955 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2956 ATH_PCU_UNLOCK_ASSERT(sc); 2957 ATH_UNLOCK_ASSERT(sc); 2958 2959 /* Try to (stop any further TX/RX from occurring */ 2960 taskqueue_block(sc->sc_tq); 2961 2962 /* 2963 * Wake the hardware up. 2964 */ 2965 ATH_LOCK(sc); 2966 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2967 ATH_UNLOCK(sc); 2968 2969 ATH_PCU_LOCK(sc); 2970 2971 /* 2972 * Grab the reset lock before TX/RX is stopped. 2973 * 2974 * This is needed to ensure that when the TX/RX actually does finish, 2975 * no further TX/RX/reset runs in parallel with this. 2976 */ 2977 if (ath_reset_grablock(sc, 1) == 0) { 2978 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2979 __func__); 2980 } 2981 2982 /* disable interrupts */ 2983 ath_hal_intrset(ah, 0); 2984 2985 /* 2986 * Now, ensure that any in progress TX/RX completes before we 2987 * continue. 2988 */ 2989 ath_txrx_stop_locked(sc); 2990 2991 ATH_PCU_UNLOCK(sc); 2992 2993 /* 2994 * Regardless of whether we're doing a no-loss flush or 2995 * not, stop the PCU and handle what's in the RX queue. 2996 * That way frames aren't dropped which shouldn't be. 2997 */ 2998 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2999 ath_rx_flush(sc); 3000 3001 /* 3002 * Should now wait for pending TX/RX to complete 3003 * and block future ones from occurring. This needs to be 3004 * done before the TX queue is drained. 3005 */ 3006 ath_draintxq(sc, reset_type); /* stop xmit side */ 3007 3008 ath_settkipmic(sc); /* configure TKIP MIC handling */ 3009 /* NB: indicate channel change so we do a full reset */ 3010 ath_update_chainmasks(sc, ic->ic_curchan); 3011 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 3012 sc->sc_cur_rxchainmask); 3013 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 3014 ah_reset_type, &status)) 3015 device_printf(sc->sc_dev, 3016 "%s: unable to reset hardware; hal status %u\n", 3017 __func__, status); 3018 sc->sc_diversity = ath_hal_getdiversity(ah); 3019 3020 ATH_RX_LOCK(sc); 3021 sc->sc_rx_stopped = 1; 3022 sc->sc_rx_resetted = 1; 3023 ATH_RX_UNLOCK(sc); 3024 3025 /* Quiet time handling - ensure we resync */ 3026 ath_vap_clear_quiet_ie(sc); 3027 3028 /* Let DFS at it in case it's a DFS channel */ 3029 ath_dfs_radar_enable(sc, ic->ic_curchan); 3030 3031 /* Let spectral at in case spectral is enabled */ 3032 ath_spectral_enable(sc, ic->ic_curchan); 3033 3034 /* 3035 * Let bluetooth coexistence at in case it's needed for this channel 3036 */ 3037 ath_btcoex_enable(sc, ic->ic_curchan); 3038 3039 /* 3040 * If we're doing TDMA, enforce the TXOP limitation for chips that 3041 * support it. 3042 */ 3043 if (sc->sc_hasenforcetxop && sc->sc_tdma) 3044 ath_hal_setenforcetxop(sc->sc_ah, 1); 3045 else 3046 ath_hal_setenforcetxop(sc->sc_ah, 0); 3047 3048 if (ath_startrecv(sc) != 0) /* restart recv */ 3049 device_printf(sc->sc_dev, 3050 "%s: unable to start recv logic\n", __func__); 3051 /* 3052 * We may be doing a reset in response to an ioctl 3053 * that changes the channel so update any state that 3054 * might change as a result. 3055 */ 3056 ath_chan_change(sc, ic->ic_curchan); 3057 if (sc->sc_beacons) { /* restart beacons */ 3058 #ifdef IEEE80211_SUPPORT_TDMA 3059 if (sc->sc_tdma) 3060 ath_tdma_config(sc, NULL); 3061 else 3062 #endif 3063 ath_beacon_config(sc, NULL); 3064 } 3065 3066 /* 3067 * Release the reset lock and re-enable interrupts here. 3068 * If an interrupt was being processed in ath_intr(), 3069 * it would disable interrupts at this point. So we have 3070 * to atomically enable interrupts and decrement the 3071 * reset counter - this way ath_intr() doesn't end up 3072 * disabling interrupts without a corresponding enable 3073 * in the rest or channel change path. 3074 * 3075 * Grab the TX reference in case we need to transmit. 3076 * That way a parallel transmit doesn't. 3077 */ 3078 ATH_PCU_LOCK(sc); 3079 sc->sc_inreset_cnt--; 3080 sc->sc_txstart_cnt++; 3081 /* XXX only do this if sc_inreset_cnt == 0? */ 3082 ath_hal_intrset(ah, sc->sc_imask); 3083 ATH_PCU_UNLOCK(sc); 3084 3085 /* 3086 * TX and RX can be started here. If it were started with 3087 * sc_inreset_cnt > 0, the TX and RX path would abort. 3088 * Thus if this is a nested call through the reset or 3089 * channel change code, TX completion will occur but 3090 * RX completion and ath_start / ath_tx_start will not 3091 * run. 3092 */ 3093 3094 /* Restart TX/RX as needed */ 3095 ath_txrx_start(sc); 3096 3097 /* XXX TODO: we need to hold the tx refcount here! */ 3098 3099 /* Restart TX completion and pending TX */ 3100 if (reset_type == ATH_RESET_NOLOSS) { 3101 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3102 if (ATH_TXQ_SETUP(sc, i)) { 3103 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3104 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 3105 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3106 3107 ATH_TX_LOCK(sc); 3108 ath_txq_sched(sc, &sc->sc_txq[i]); 3109 ATH_TX_UNLOCK(sc); 3110 } 3111 } 3112 } 3113 3114 ATH_LOCK(sc); 3115 ath_power_restore_power_state(sc); 3116 ATH_UNLOCK(sc); 3117 3118 ATH_PCU_LOCK(sc); 3119 sc->sc_txstart_cnt--; 3120 ATH_PCU_UNLOCK(sc); 3121 3122 /* Handle any frames in the TX queue */ 3123 /* 3124 * XXX should this be done by the caller, rather than 3125 * ath_reset() ? 3126 */ 3127 ath_tx_kick(sc); /* restart xmit */ 3128 return 0; 3129 } 3130 3131 static int 3132 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3133 { 3134 struct ieee80211com *ic = vap->iv_ic; 3135 struct ath_softc *sc = ic->ic_softc; 3136 struct ath_hal *ah = sc->sc_ah; 3137 3138 switch (cmd) { 3139 case IEEE80211_IOC_TXPOWER: 3140 /* 3141 * If per-packet TPC is enabled, then we have nothing 3142 * to do; otherwise we need to force the global limit. 3143 * All this can happen directly; no need to reset. 3144 */ 3145 if (!ath_hal_gettpc(ah)) 3146 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3147 return 0; 3148 } 3149 /* XXX? Full or NOLOSS? */ 3150 return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL); 3151 } 3152 3153 struct ath_buf * 3154 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3155 { 3156 struct ath_buf *bf; 3157 3158 ATH_TXBUF_LOCK_ASSERT(sc); 3159 3160 if (btype == ATH_BUFTYPE_MGMT) 3161 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3162 else 3163 bf = TAILQ_FIRST(&sc->sc_txbuf); 3164 3165 if (bf == NULL) { 3166 sc->sc_stats.ast_tx_getnobuf++; 3167 } else { 3168 if (bf->bf_flags & ATH_BUF_BUSY) { 3169 sc->sc_stats.ast_tx_getbusybuf++; 3170 bf = NULL; 3171 } 3172 } 3173 3174 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3175 if (btype == ATH_BUFTYPE_MGMT) 3176 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3177 else { 3178 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3179 sc->sc_txbuf_cnt--; 3180 3181 /* 3182 * This shuldn't happen; however just to be 3183 * safe print a warning and fudge the txbuf 3184 * count. 3185 */ 3186 if (sc->sc_txbuf_cnt < 0) { 3187 device_printf(sc->sc_dev, 3188 "%s: sc_txbuf_cnt < 0?\n", 3189 __func__); 3190 sc->sc_txbuf_cnt = 0; 3191 } 3192 } 3193 } else 3194 bf = NULL; 3195 3196 if (bf == NULL) { 3197 /* XXX should check which list, mgmt or otherwise */ 3198 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3199 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3200 "out of xmit buffers" : "xmit buffer busy"); 3201 return NULL; 3202 } 3203 3204 /* XXX TODO: should do this at buffer list initialisation */ 3205 /* XXX (then, ensure the buffer has the right flag set) */ 3206 bf->bf_flags = 0; 3207 if (btype == ATH_BUFTYPE_MGMT) 3208 bf->bf_flags |= ATH_BUF_MGMT; 3209 else 3210 bf->bf_flags &= (~ATH_BUF_MGMT); 3211 3212 /* Valid bf here; clear some basic fields */ 3213 bf->bf_next = NULL; /* XXX just to be sure */ 3214 bf->bf_last = NULL; /* XXX again, just to be sure */ 3215 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3216 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3217 3218 /* 3219 * Track the descriptor ID only if doing EDMA 3220 */ 3221 if (sc->sc_isedma) { 3222 bf->bf_descid = sc->sc_txbuf_descid; 3223 sc->sc_txbuf_descid++; 3224 } 3225 3226 return bf; 3227 } 3228 3229 /* 3230 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3231 * can't be thrown back on the queue as they could still be 3232 * in use by the hardware. 3233 * 3234 * This duplicates the buffer, or returns NULL. 3235 * 3236 * The descriptor is also copied but the link pointers and 3237 * the DMA segments aren't copied; this frame should thus 3238 * be again passed through the descriptor setup/chain routines 3239 * so the link is correct. 3240 * 3241 * The caller must free the buffer using ath_freebuf(). 3242 */ 3243 struct ath_buf * 3244 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3245 { 3246 struct ath_buf *tbf; 3247 3248 tbf = ath_getbuf(sc, 3249 (bf->bf_flags & ATH_BUF_MGMT) ? 3250 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3251 if (tbf == NULL) 3252 return NULL; /* XXX failure? Why? */ 3253 3254 /* Copy basics */ 3255 tbf->bf_next = NULL; 3256 tbf->bf_nseg = bf->bf_nseg; 3257 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3258 tbf->bf_status = bf->bf_status; 3259 tbf->bf_m = bf->bf_m; 3260 tbf->bf_node = bf->bf_node; 3261 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3262 /* will be setup by the chain/setup function */ 3263 tbf->bf_lastds = NULL; 3264 /* for now, last == self */ 3265 tbf->bf_last = tbf; 3266 tbf->bf_comp = bf->bf_comp; 3267 3268 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3269 3270 /* The caller has to re-init the descriptor + links */ 3271 3272 /* 3273 * Free the DMA mapping here, before we NULL the mbuf. 3274 * We must only call bus_dmamap_unload() once per mbuf chain 3275 * or behaviour is undefined. 3276 */ 3277 if (bf->bf_m != NULL) { 3278 /* 3279 * XXX is this POSTWRITE call required? 3280 */ 3281 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3282 BUS_DMASYNC_POSTWRITE); 3283 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3284 } 3285 3286 bf->bf_m = NULL; 3287 bf->bf_node = NULL; 3288 3289 /* Copy state */ 3290 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3291 3292 return tbf; 3293 } 3294 3295 struct ath_buf * 3296 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3297 { 3298 struct ath_buf *bf; 3299 3300 ATH_TXBUF_LOCK(sc); 3301 bf = _ath_getbuf_locked(sc, btype); 3302 /* 3303 * If a mgmt buffer was requested but we're out of those, 3304 * try requesting a normal one. 3305 */ 3306 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3307 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3308 ATH_TXBUF_UNLOCK(sc); 3309 if (bf == NULL) { 3310 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3311 sc->sc_stats.ast_tx_qstop++; 3312 } 3313 return bf; 3314 } 3315 3316 /* 3317 * Transmit a single frame. 3318 * 3319 * net80211 will free the node reference if the transmit 3320 * fails, so don't free the node reference here. 3321 */ 3322 static int 3323 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3324 { 3325 struct ath_softc *sc = ic->ic_softc; 3326 struct ieee80211_node *ni; 3327 struct mbuf *next; 3328 struct ath_buf *bf; 3329 ath_bufhead frags; 3330 int retval = 0; 3331 3332 /* 3333 * Tell the reset path that we're currently transmitting. 3334 */ 3335 ATH_PCU_LOCK(sc); 3336 if (sc->sc_inreset_cnt > 0) { 3337 DPRINTF(sc, ATH_DEBUG_XMIT, 3338 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3339 ATH_PCU_UNLOCK(sc); 3340 sc->sc_stats.ast_tx_qstop++; 3341 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3342 return (ENOBUFS); /* XXX should be EINVAL or? */ 3343 } 3344 sc->sc_txstart_cnt++; 3345 ATH_PCU_UNLOCK(sc); 3346 3347 /* Wake the hardware up already */ 3348 ATH_LOCK(sc); 3349 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3350 ATH_UNLOCK(sc); 3351 3352 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3353 /* 3354 * Grab the TX lock - it's ok to do this here; we haven't 3355 * yet started transmitting. 3356 */ 3357 ATH_TX_LOCK(sc); 3358 3359 /* 3360 * Node reference, if there's one. 3361 */ 3362 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3363 3364 /* 3365 * Enforce how deep a node queue can get. 3366 * 3367 * XXX it would be nicer if we kept an mbuf queue per 3368 * node and only whacked them into ath_bufs when we 3369 * are ready to schedule some traffic from them. 3370 * .. that may come later. 3371 * 3372 * XXX we should also track the per-node hardware queue 3373 * depth so it is easy to limit the _SUM_ of the swq and 3374 * hwq frames. Since we only schedule two HWQ frames 3375 * at a time, this should be OK for now. 3376 */ 3377 if ((!(m->m_flags & M_EAPOL)) && 3378 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3379 sc->sc_stats.ast_tx_nodeq_overflow++; 3380 retval = ENOBUFS; 3381 goto finish; 3382 } 3383 3384 /* 3385 * Check how many TX buffers are available. 3386 * 3387 * If this is for non-EAPOL traffic, just leave some 3388 * space free in order for buffer cloning and raw 3389 * frame transmission to occur. 3390 * 3391 * If it's for EAPOL traffic, ignore this for now. 3392 * Management traffic will be sent via the raw transmit 3393 * method which bypasses this check. 3394 * 3395 * This is needed to ensure that EAPOL frames during 3396 * (re) keying have a chance to go out. 3397 * 3398 * See kern/138379 for more information. 3399 */ 3400 if ((!(m->m_flags & M_EAPOL)) && 3401 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3402 sc->sc_stats.ast_tx_nobuf++; 3403 retval = ENOBUFS; 3404 goto finish; 3405 } 3406 3407 /* 3408 * Grab a TX buffer and associated resources. 3409 * 3410 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3411 * That way even with temporary buffer exhaustion due to 3412 * the data path doesn't leave us without the ability 3413 * to transmit management frames. 3414 * 3415 * Otherwise allocate a normal buffer. 3416 */ 3417 if (m->m_flags & M_EAPOL) 3418 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3419 else 3420 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3421 3422 if (bf == NULL) { 3423 /* 3424 * If we failed to allocate a buffer, fail. 3425 * 3426 * We shouldn't fail normally, due to the check 3427 * above. 3428 */ 3429 sc->sc_stats.ast_tx_nobuf++; 3430 retval = ENOBUFS; 3431 goto finish; 3432 } 3433 3434 /* 3435 * At this point we have a buffer; so we need to free it 3436 * if we hit any error conditions. 3437 */ 3438 3439 /* 3440 * Check for fragmentation. If this frame 3441 * has been broken up verify we have enough 3442 * buffers to send all the fragments so all 3443 * go out or none... 3444 */ 3445 TAILQ_INIT(&frags); 3446 if ((m->m_flags & M_FRAG) && 3447 !ath_txfrag_setup(sc, &frags, m, ni)) { 3448 DPRINTF(sc, ATH_DEBUG_XMIT, 3449 "%s: out of txfrag buffers\n", __func__); 3450 sc->sc_stats.ast_tx_nofrag++; 3451 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3452 /* 3453 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3454 * we shouldn't free it but return back. 3455 */ 3456 ieee80211_free_mbuf(m); 3457 m = NULL; 3458 goto bad; 3459 } 3460 3461 /* 3462 * At this point if we have any TX fragments, then we will 3463 * have bumped the node reference once for each of those. 3464 */ 3465 3466 /* 3467 * XXX Is there anything actually _enforcing_ that the 3468 * fragments are being transmitted in one hit, rather than 3469 * being interleaved with other transmissions on that 3470 * hardware queue? 3471 * 3472 * The ATH TX output lock is the only thing serialising this 3473 * right now. 3474 */ 3475 3476 /* 3477 * Calculate the "next fragment" length field in ath_buf 3478 * in order to let the transmit path know enough about 3479 * what to next write to the hardware. 3480 */ 3481 if (m->m_flags & M_FRAG) { 3482 struct ath_buf *fbf = bf; 3483 struct ath_buf *n_fbf = NULL; 3484 struct mbuf *fm = m->m_nextpkt; 3485 3486 /* 3487 * We need to walk the list of fragments and set 3488 * the next size to the following buffer. 3489 * However, the first buffer isn't in the frag 3490 * list, so we have to do some gymnastics here. 3491 */ 3492 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3493 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3494 fbf = n_fbf; 3495 fm = fm->m_nextpkt; 3496 } 3497 } 3498 3499 nextfrag: 3500 /* 3501 * Pass the frame to the h/w for transmission. 3502 * Fragmented frames have each frag chained together 3503 * with m_nextpkt. We know there are sufficient ath_buf's 3504 * to send all the frags because of work done by 3505 * ath_txfrag_setup. We leave m_nextpkt set while 3506 * calling ath_tx_start so it can use it to extend the 3507 * the tx duration to cover the subsequent frag and 3508 * so it can reclaim all the mbufs in case of an error; 3509 * ath_tx_start clears m_nextpkt once it commits to 3510 * handing the frame to the hardware. 3511 * 3512 * Note: if this fails, then the mbufs are freed but 3513 * not the node reference. 3514 * 3515 * So, we now have to free the node reference ourselves here 3516 * and return OK up to the stack. 3517 */ 3518 next = m->m_nextpkt; 3519 if (ath_tx_start(sc, ni, bf, m)) { 3520 bad: 3521 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3522 reclaim: 3523 bf->bf_m = NULL; 3524 bf->bf_node = NULL; 3525 ATH_TXBUF_LOCK(sc); 3526 ath_returnbuf_head(sc, bf); 3527 /* 3528 * Free the rest of the node references and 3529 * buffers for the fragment list. 3530 */ 3531 ath_txfrag_cleanup(sc, &frags, ni); 3532 ATH_TXBUF_UNLOCK(sc); 3533 3534 /* 3535 * XXX: And free the node/return OK; ath_tx_start() may have 3536 * modified the buffer. We currently have no way to 3537 * signify that the mbuf was freed but there was an error. 3538 */ 3539 ieee80211_free_node(ni); 3540 retval = 0; 3541 goto finish; 3542 } 3543 3544 /* 3545 * Check here if the node is in power save state. 3546 */ 3547 ath_tx_update_tim(sc, ni, 1); 3548 3549 if (next != NULL) { 3550 /* 3551 * Beware of state changing between frags. 3552 * XXX check sta power-save state? 3553 */ 3554 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3555 DPRINTF(sc, ATH_DEBUG_XMIT, 3556 "%s: flush fragmented packet, state %s\n", 3557 __func__, 3558 ieee80211_state_name[ni->ni_vap->iv_state]); 3559 /* XXX dmamap */ 3560 ieee80211_free_mbuf(next); 3561 goto reclaim; 3562 } 3563 m = next; 3564 bf = TAILQ_FIRST(&frags); 3565 KASSERT(bf != NULL, ("no buf for txfrag")); 3566 TAILQ_REMOVE(&frags, bf, bf_list); 3567 goto nextfrag; 3568 } 3569 3570 /* 3571 * Bump watchdog timer. 3572 */ 3573 sc->sc_wd_timer = 5; 3574 3575 finish: 3576 ATH_TX_UNLOCK(sc); 3577 3578 /* 3579 * Finished transmitting! 3580 */ 3581 ATH_PCU_LOCK(sc); 3582 sc->sc_txstart_cnt--; 3583 ATH_PCU_UNLOCK(sc); 3584 3585 /* Sleep the hardware if required */ 3586 ATH_LOCK(sc); 3587 ath_power_restore_power_state(sc); 3588 ATH_UNLOCK(sc); 3589 3590 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3591 3592 return (retval); 3593 } 3594 3595 /* 3596 * Block/unblock tx+rx processing while a key change is done. 3597 * We assume the caller serializes key management operations 3598 * so we only need to worry about synchronization with other 3599 * uses that originate in the driver. 3600 */ 3601 static void 3602 ath_key_update_begin(struct ieee80211vap *vap) 3603 { 3604 struct ath_softc *sc = vap->iv_ic->ic_softc; 3605 3606 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3607 taskqueue_block(sc->sc_tq); 3608 } 3609 3610 static void 3611 ath_key_update_end(struct ieee80211vap *vap) 3612 { 3613 struct ath_softc *sc = vap->iv_ic->ic_softc; 3614 3615 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3616 taskqueue_unblock(sc->sc_tq); 3617 } 3618 3619 static void 3620 ath_update_promisc(struct ieee80211com *ic) 3621 { 3622 struct ath_softc *sc = ic->ic_softc; 3623 u_int32_t rfilt; 3624 3625 /* configure rx filter */ 3626 ATH_LOCK(sc); 3627 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3628 rfilt = ath_calcrxfilter(sc); 3629 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3630 ath_power_restore_power_state(sc); 3631 ATH_UNLOCK(sc); 3632 3633 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3634 } 3635 3636 static u_int 3637 ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 3638 { 3639 uint32_t val, *mfilt = arg; 3640 char *dl; 3641 uint8_t pos; 3642 3643 /* calculate XOR of eight 6bit values */ 3644 dl = LLADDR(sdl); 3645 val = le32dec(dl + 0); 3646 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3647 val = le32dec(dl + 3); 3648 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3649 pos &= 0x3f; 3650 mfilt[pos / 32] |= (1 << (pos % 32)); 3651 3652 return (1); 3653 } 3654 3655 /* 3656 * Driver-internal mcast update call. 3657 * 3658 * Assumes the hardware is already awake. 3659 */ 3660 static void 3661 ath_update_mcast_hw(struct ath_softc *sc) 3662 { 3663 struct ieee80211com *ic = &sc->sc_ic; 3664 u_int32_t mfilt[2]; 3665 3666 /* calculate and install multicast filter */ 3667 if (ic->ic_allmulti == 0) { 3668 struct ieee80211vap *vap; 3669 3670 /* 3671 * Merge multicast addresses to form the hardware filter. 3672 */ 3673 mfilt[0] = mfilt[1] = 0; 3674 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 3675 if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt); 3676 } else 3677 mfilt[0] = mfilt[1] = ~0; 3678 3679 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3680 3681 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3682 __func__, mfilt[0], mfilt[1]); 3683 } 3684 3685 /* 3686 * Called from the net80211 layer - force the hardware 3687 * awake before operating. 3688 */ 3689 static void 3690 ath_update_mcast(struct ieee80211com *ic) 3691 { 3692 struct ath_softc *sc = ic->ic_softc; 3693 3694 ATH_LOCK(sc); 3695 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3696 ATH_UNLOCK(sc); 3697 3698 ath_update_mcast_hw(sc); 3699 3700 ATH_LOCK(sc); 3701 ath_power_restore_power_state(sc); 3702 ATH_UNLOCK(sc); 3703 } 3704 3705 void 3706 ath_mode_init(struct ath_softc *sc) 3707 { 3708 struct ieee80211com *ic = &sc->sc_ic; 3709 struct ath_hal *ah = sc->sc_ah; 3710 u_int32_t rfilt; 3711 3712 /* XXX power state? */ 3713 3714 /* configure rx filter */ 3715 rfilt = ath_calcrxfilter(sc); 3716 ath_hal_setrxfilter(ah, rfilt); 3717 3718 /* configure operational mode */ 3719 ath_hal_setopmode(ah); 3720 3721 /* handle any link-level address change */ 3722 ath_hal_setmac(ah, ic->ic_macaddr); 3723 3724 /* calculate and install multicast filter */ 3725 ath_update_mcast_hw(sc); 3726 } 3727 3728 /* 3729 * Set the slot time based on the current setting. 3730 */ 3731 void 3732 ath_setslottime(struct ath_softc *sc) 3733 { 3734 struct ieee80211com *ic = &sc->sc_ic; 3735 struct ath_hal *ah = sc->sc_ah; 3736 u_int usec; 3737 3738 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3739 usec = 13; 3740 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3741 usec = 21; 3742 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3743 /* honor short/long slot time only in 11g */ 3744 /* XXX shouldn't honor on pure g or turbo g channel */ 3745 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3746 usec = HAL_SLOT_TIME_9; 3747 else 3748 usec = HAL_SLOT_TIME_20; 3749 } else 3750 usec = HAL_SLOT_TIME_9; 3751 3752 DPRINTF(sc, ATH_DEBUG_RESET, 3753 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3754 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3755 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3756 3757 /* Wake up the hardware first before updating the slot time */ 3758 ATH_LOCK(sc); 3759 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3760 ath_hal_setslottime(ah, usec); 3761 ath_power_restore_power_state(sc); 3762 sc->sc_updateslot = OK; 3763 ATH_UNLOCK(sc); 3764 } 3765 3766 /* 3767 * Callback from the 802.11 layer to update the 3768 * slot time based on the current setting. 3769 */ 3770 static void 3771 ath_updateslot(struct ieee80211com *ic) 3772 { 3773 struct ath_softc *sc = ic->ic_softc; 3774 3775 /* 3776 * When not coordinating the BSS, change the hardware 3777 * immediately. For other operation we defer the change 3778 * until beacon updates have propagated to the stations. 3779 * 3780 * XXX sc_updateslot isn't changed behind a lock? 3781 */ 3782 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3783 ic->ic_opmode == IEEE80211_M_MBSS) 3784 sc->sc_updateslot = UPDATE; 3785 else 3786 ath_setslottime(sc); 3787 } 3788 3789 /* 3790 * Append the contents of src to dst; both queues 3791 * are assumed to be locked. 3792 */ 3793 void 3794 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3795 { 3796 3797 ATH_TXQ_LOCK_ASSERT(src); 3798 ATH_TXQ_LOCK_ASSERT(dst); 3799 3800 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3801 dst->axq_link = src->axq_link; 3802 src->axq_link = NULL; 3803 dst->axq_depth += src->axq_depth; 3804 dst->axq_aggr_depth += src->axq_aggr_depth; 3805 src->axq_depth = 0; 3806 src->axq_aggr_depth = 0; 3807 } 3808 3809 /* 3810 * Reset the hardware, with no loss. 3811 * 3812 * This can't be used for a general case reset. 3813 */ 3814 static void 3815 ath_reset_proc(void *arg, int pending) 3816 { 3817 struct ath_softc *sc = arg; 3818 3819 #if 0 3820 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3821 #endif 3822 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3823 } 3824 3825 /* 3826 * Reset the hardware after detecting beacons have stopped. 3827 */ 3828 static void 3829 ath_bstuck_proc(void *arg, int pending) 3830 { 3831 struct ath_softc *sc = arg; 3832 uint32_t hangs = 0; 3833 3834 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3835 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3836 3837 #ifdef ATH_DEBUG_ALQ 3838 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3839 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3840 #endif 3841 3842 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3843 sc->sc_bmisscount); 3844 sc->sc_stats.ast_bstuck++; 3845 /* 3846 * This assumes that there's no simultaneous channel mode change 3847 * occurring. 3848 */ 3849 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3850 } 3851 3852 static int 3853 ath_desc_alloc(struct ath_softc *sc) 3854 { 3855 int error; 3856 3857 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3858 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3859 if (error != 0) { 3860 return error; 3861 } 3862 sc->sc_txbuf_cnt = ath_txbuf; 3863 3864 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3865 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3866 ATH_TXDESC); 3867 if (error != 0) { 3868 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3869 return error; 3870 } 3871 3872 /* 3873 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3874 * flag doesn't have to be set in ath_getbuf_locked(). 3875 */ 3876 3877 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3878 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3879 if (error != 0) { 3880 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3881 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3882 &sc->sc_txbuf_mgmt); 3883 return error; 3884 } 3885 return 0; 3886 } 3887 3888 static void 3889 ath_desc_free(struct ath_softc *sc) 3890 { 3891 3892 if (sc->sc_bdma.dd_desc_len != 0) 3893 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3894 if (sc->sc_txdma.dd_desc_len != 0) 3895 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3896 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3897 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3898 &sc->sc_txbuf_mgmt); 3899 } 3900 3901 static struct ieee80211_node * 3902 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3903 { 3904 struct ieee80211com *ic = vap->iv_ic; 3905 struct ath_softc *sc = ic->ic_softc; 3906 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3907 struct ath_node *an; 3908 3909 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3910 if (an == NULL) { 3911 /* XXX stat+msg */ 3912 return NULL; 3913 } 3914 ath_rate_node_init(sc, an); 3915 3916 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3917 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3918 device_get_nameunit(sc->sc_dev), an); 3919 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3920 3921 /* XXX setup ath_tid */ 3922 ath_tx_tid_init(sc, an); 3923 3924 an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 3925 an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 3926 an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 3927 3928 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3929 return &an->an_node; 3930 } 3931 3932 static void 3933 ath_node_cleanup(struct ieee80211_node *ni) 3934 { 3935 struct ieee80211com *ic = ni->ni_ic; 3936 struct ath_softc *sc = ic->ic_softc; 3937 3938 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3939 ni->ni_macaddr, ":", ATH_NODE(ni)); 3940 3941 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3942 ath_tx_node_flush(sc, ATH_NODE(ni)); 3943 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3944 sc->sc_node_cleanup(ni); 3945 } 3946 3947 static void 3948 ath_node_free(struct ieee80211_node *ni) 3949 { 3950 struct ieee80211com *ic = ni->ni_ic; 3951 struct ath_softc *sc = ic->ic_softc; 3952 3953 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3954 ni->ni_macaddr, ":", ATH_NODE(ni)); 3955 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3956 sc->sc_node_free(ni); 3957 } 3958 3959 static void 3960 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3961 { 3962 struct ieee80211com *ic = ni->ni_ic; 3963 struct ath_softc *sc = ic->ic_softc; 3964 struct ath_hal *ah = sc->sc_ah; 3965 3966 *rssi = ic->ic_node_getrssi(ni); 3967 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3968 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3969 else 3970 *noise = -95; /* nominally correct */ 3971 } 3972 3973 /* 3974 * Set the default antenna. 3975 */ 3976 void 3977 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3978 { 3979 struct ath_hal *ah = sc->sc_ah; 3980 3981 /* XXX block beacon interrupts */ 3982 ath_hal_setdefantenna(ah, antenna); 3983 if (sc->sc_defant != antenna) 3984 sc->sc_stats.ast_ant_defswitch++; 3985 sc->sc_defant = antenna; 3986 sc->sc_rxotherant = 0; 3987 } 3988 3989 static void 3990 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3991 { 3992 txq->axq_qnum = qnum; 3993 txq->axq_ac = 0; 3994 txq->axq_depth = 0; 3995 txq->axq_aggr_depth = 0; 3996 txq->axq_intrcnt = 0; 3997 txq->axq_link = NULL; 3998 txq->axq_softc = sc; 3999 TAILQ_INIT(&txq->axq_q); 4000 TAILQ_INIT(&txq->axq_tidq); 4001 TAILQ_INIT(&txq->fifo.axq_q); 4002 ATH_TXQ_LOCK_INIT(sc, txq); 4003 } 4004 4005 /* 4006 * Setup a h/w transmit queue. 4007 */ 4008 static struct ath_txq * 4009 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4010 { 4011 struct ath_hal *ah = sc->sc_ah; 4012 HAL_TXQ_INFO qi; 4013 int qnum; 4014 4015 memset(&qi, 0, sizeof(qi)); 4016 qi.tqi_subtype = subtype; 4017 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4018 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4019 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4020 /* 4021 * Enable interrupts only for EOL and DESC conditions. 4022 * We mark tx descriptors to receive a DESC interrupt 4023 * when a tx queue gets deep; otherwise waiting for the 4024 * EOL to reap descriptors. Note that this is done to 4025 * reduce interrupt load and this only defers reaping 4026 * descriptors, never transmitting frames. Aside from 4027 * reducing interrupts this also permits more concurrency. 4028 * The only potential downside is if the tx queue backs 4029 * up in which case the top half of the kernel may backup 4030 * due to a lack of tx descriptors. 4031 */ 4032 if (sc->sc_isedma) 4033 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4034 HAL_TXQ_TXOKINT_ENABLE; 4035 else 4036 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4037 HAL_TXQ_TXDESCINT_ENABLE; 4038 4039 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4040 if (qnum == -1) { 4041 /* 4042 * NB: don't print a message, this happens 4043 * normally on parts with too few tx queues 4044 */ 4045 return NULL; 4046 } 4047 if (qnum >= nitems(sc->sc_txq)) { 4048 device_printf(sc->sc_dev, 4049 "hal qnum %u out of range, max %zu!\n", 4050 qnum, nitems(sc->sc_txq)); 4051 ath_hal_releasetxqueue(ah, qnum); 4052 return NULL; 4053 } 4054 if (!ATH_TXQ_SETUP(sc, qnum)) { 4055 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4056 sc->sc_txqsetup |= 1<<qnum; 4057 } 4058 return &sc->sc_txq[qnum]; 4059 } 4060 4061 /* 4062 * Setup a hardware data transmit queue for the specified 4063 * access control. The hal may not support all requested 4064 * queues in which case it will return a reference to a 4065 * previously setup queue. We record the mapping from ac's 4066 * to h/w queues for use by ath_tx_start and also track 4067 * the set of h/w queues being used to optimize work in the 4068 * transmit interrupt handler and related routines. 4069 */ 4070 static int 4071 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4072 { 4073 struct ath_txq *txq; 4074 4075 if (ac >= nitems(sc->sc_ac2q)) { 4076 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4077 ac, nitems(sc->sc_ac2q)); 4078 return 0; 4079 } 4080 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4081 if (txq != NULL) { 4082 txq->axq_ac = ac; 4083 sc->sc_ac2q[ac] = txq; 4084 return 1; 4085 } else 4086 return 0; 4087 } 4088 4089 /* 4090 * Update WME parameters for a transmit queue. 4091 */ 4092 static int 4093 ath_txq_update(struct ath_softc *sc, int ac) 4094 { 4095 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4096 struct ieee80211com *ic = &sc->sc_ic; 4097 struct ath_txq *txq = sc->sc_ac2q[ac]; 4098 struct chanAccParams chp; 4099 struct wmeParams *wmep; 4100 struct ath_hal *ah = sc->sc_ah; 4101 HAL_TXQ_INFO qi; 4102 4103 ieee80211_wme_ic_getparams(ic, &chp); 4104 wmep = &chp.cap_wmeParams[ac]; 4105 4106 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4107 #ifdef IEEE80211_SUPPORT_TDMA 4108 if (sc->sc_tdma) { 4109 /* 4110 * AIFS is zero so there's no pre-transmit wait. The 4111 * burst time defines the slot duration and is configured 4112 * through net80211. The QCU is setup to not do post-xmit 4113 * back off, lockout all lower-priority QCU's, and fire 4114 * off the DMA beacon alert timer which is setup based 4115 * on the slot configuration. 4116 */ 4117 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4118 | HAL_TXQ_TXERRINT_ENABLE 4119 | HAL_TXQ_TXURNINT_ENABLE 4120 | HAL_TXQ_TXEOLINT_ENABLE 4121 | HAL_TXQ_DBA_GATED 4122 | HAL_TXQ_BACKOFF_DISABLE 4123 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4124 ; 4125 qi.tqi_aifs = 0; 4126 /* XXX +dbaprep? */ 4127 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4128 qi.tqi_burstTime = qi.tqi_readyTime; 4129 } else { 4130 #endif 4131 /* 4132 * XXX shouldn't this just use the default flags 4133 * used in the previous queue setup? 4134 */ 4135 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4136 | HAL_TXQ_TXERRINT_ENABLE 4137 | HAL_TXQ_TXDESCINT_ENABLE 4138 | HAL_TXQ_TXURNINT_ENABLE 4139 | HAL_TXQ_TXEOLINT_ENABLE 4140 ; 4141 qi.tqi_aifs = wmep->wmep_aifsn; 4142 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4143 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4144 qi.tqi_readyTime = 0; 4145 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4146 #ifdef IEEE80211_SUPPORT_TDMA 4147 } 4148 #endif 4149 4150 DPRINTF(sc, ATH_DEBUG_RESET, 4151 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4152 __func__, txq->axq_qnum, qi.tqi_qflags, 4153 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4154 4155 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4156 device_printf(sc->sc_dev, "unable to update hardware queue " 4157 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4158 return 0; 4159 } else { 4160 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4161 return 1; 4162 } 4163 #undef ATH_EXPONENT_TO_VALUE 4164 } 4165 4166 /* 4167 * Callback from the 802.11 layer to update WME parameters. 4168 */ 4169 int 4170 ath_wme_update(struct ieee80211com *ic) 4171 { 4172 struct ath_softc *sc = ic->ic_softc; 4173 4174 return !ath_txq_update(sc, WME_AC_BE) || 4175 !ath_txq_update(sc, WME_AC_BK) || 4176 !ath_txq_update(sc, WME_AC_VI) || 4177 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4178 } 4179 4180 /* 4181 * Reclaim resources for a setup queue. 4182 */ 4183 static void 4184 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4185 { 4186 4187 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4188 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4189 ATH_TXQ_LOCK_DESTROY(txq); 4190 } 4191 4192 /* 4193 * Reclaim all tx queue resources. 4194 */ 4195 static void 4196 ath_tx_cleanup(struct ath_softc *sc) 4197 { 4198 int i; 4199 4200 ATH_TXBUF_LOCK_DESTROY(sc); 4201 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4202 if (ATH_TXQ_SETUP(sc, i)) 4203 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4204 } 4205 4206 /* 4207 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4208 * using the current rates in sc_rixmap. 4209 */ 4210 int 4211 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4212 { 4213 int rix = sc->sc_rixmap[rate]; 4214 /* NB: return lowest rix for invalid rate */ 4215 return (rix == 0xff ? 0 : rix); 4216 } 4217 4218 static void 4219 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4220 struct ath_buf *bf) 4221 { 4222 struct ieee80211_node *ni = bf->bf_node; 4223 struct ieee80211com *ic = &sc->sc_ic; 4224 int sr, lr, pri; 4225 4226 if (ts->ts_status == 0) { 4227 u_int8_t txant = ts->ts_antenna; 4228 /* 4229 * Handle weird/corrupted tx antenna field 4230 */ 4231 if (txant >= ATH_IOCTL_STATS_NUM_TX_ANTENNA) 4232 txant = 0; 4233 sc->sc_stats.ast_ant_tx[txant]++; 4234 sc->sc_ant_tx[txant]++; 4235 if (ts->ts_finaltsi != 0) 4236 sc->sc_stats.ast_tx_altrate++; 4237 4238 /* XXX TODO: should do per-pri conuters */ 4239 pri = M_WME_GETAC(bf->bf_m); 4240 if (pri >= WME_AC_VO) 4241 ic->ic_wme.wme_hipri_traffic++; 4242 4243 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4244 ni->ni_inact = ni->ni_inact_reload; 4245 } else { 4246 if (ts->ts_status & HAL_TXERR_XRETRY) 4247 sc->sc_stats.ast_tx_xretries++; 4248 if (ts->ts_status & HAL_TXERR_FIFO) 4249 sc->sc_stats.ast_tx_fifoerr++; 4250 if (ts->ts_status & HAL_TXERR_FILT) 4251 sc->sc_stats.ast_tx_filtered++; 4252 if (ts->ts_status & HAL_TXERR_XTXOP) 4253 sc->sc_stats.ast_tx_xtxop++; 4254 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4255 sc->sc_stats.ast_tx_timerexpired++; 4256 4257 if (bf->bf_m->m_flags & M_FF) 4258 sc->sc_stats.ast_ff_txerr++; 4259 } 4260 /* XXX when is this valid? */ 4261 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4262 sc->sc_stats.ast_tx_desccfgerr++; 4263 /* 4264 * This can be valid for successful frame transmission! 4265 * If there's a TX FIFO underrun during aggregate transmission, 4266 * the MAC will pad the rest of the aggregate with delimiters. 4267 * If a BA is returned, the frame is marked as "OK" and it's up 4268 * to the TX completion code to notice which frames weren't 4269 * successfully transmitted. 4270 */ 4271 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4272 sc->sc_stats.ast_tx_data_underrun++; 4273 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4274 sc->sc_stats.ast_tx_delim_underrun++; 4275 4276 sr = ts->ts_shortretry; 4277 lr = ts->ts_longretry; 4278 sc->sc_stats.ast_tx_shortretry += sr; 4279 sc->sc_stats.ast_tx_longretry += lr; 4280 4281 } 4282 4283 /* 4284 * The default completion. If fail is 1, this means 4285 * "please don't retry the frame, and just return -1 status 4286 * to the net80211 stack. 4287 */ 4288 void 4289 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4290 { 4291 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4292 int st; 4293 4294 if (fail == 1) 4295 st = -1; 4296 else 4297 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4298 ts->ts_status : HAL_TXERR_XRETRY; 4299 4300 #if 0 4301 if (bf->bf_state.bfs_dobaw) 4302 device_printf(sc->sc_dev, 4303 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4304 __func__, 4305 bf, 4306 SEQNO(bf->bf_state.bfs_seqno)); 4307 #endif 4308 if (bf->bf_next != NULL) 4309 device_printf(sc->sc_dev, 4310 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4311 __func__, 4312 bf, 4313 SEQNO(bf->bf_state.bfs_seqno)); 4314 4315 /* 4316 * Check if the node software queue is empty; if so 4317 * then clear the TIM. 4318 * 4319 * This needs to be done before the buffer is freed as 4320 * otherwise the node reference will have been released 4321 * and the node may not actually exist any longer. 4322 * 4323 * XXX I don't like this belonging here, but it's cleaner 4324 * to do it here right now then all the other places 4325 * where ath_tx_default_comp() is called. 4326 * 4327 * XXX TODO: during drain, ensure that the callback is 4328 * being called so we get a chance to update the TIM. 4329 */ 4330 if (bf->bf_node) { 4331 ATH_TX_LOCK(sc); 4332 ath_tx_update_tim(sc, bf->bf_node, 0); 4333 ATH_TX_UNLOCK(sc); 4334 } 4335 4336 /* 4337 * Do any tx complete callback. Note this must 4338 * be done before releasing the node reference. 4339 * This will free the mbuf, release the net80211 4340 * node and recycle the ath_buf. 4341 */ 4342 ath_tx_freebuf(sc, bf, st); 4343 } 4344 4345 /* 4346 * Update rate control with the given completion status. 4347 */ 4348 void 4349 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4350 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4351 int rc_framelen, int nframes, int nbad) 4352 { 4353 struct ath_node *an; 4354 4355 /* Only for unicast frames */ 4356 if (ni == NULL) 4357 return; 4358 4359 an = ATH_NODE(ni); 4360 ATH_NODE_UNLOCK_ASSERT(an); 4361 4362 /* 4363 * XXX TODO: teach the rate control about TXERR_FILT and 4364 * see about handling it (eg see how many attempts were 4365 * made before it got filtered and account for that.) 4366 */ 4367 4368 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4369 ATH_NODE_LOCK(an); 4370 ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen, 4371 nframes, nbad); 4372 ATH_NODE_UNLOCK(an); 4373 } 4374 } 4375 4376 /* 4377 * Process the completion of the given buffer. 4378 * 4379 * This calls the rate control update and then the buffer completion. 4380 * This will either free the buffer or requeue it. In any case, the 4381 * bf pointer should be treated as invalid after this function is called. 4382 */ 4383 void 4384 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4385 struct ath_tx_status *ts, struct ath_buf *bf) 4386 { 4387 struct ieee80211_node *ni = bf->bf_node; 4388 4389 ATH_TX_UNLOCK_ASSERT(sc); 4390 ATH_TXQ_UNLOCK_ASSERT(txq); 4391 4392 /* If unicast frame, update general statistics */ 4393 if (ni != NULL) { 4394 /* update statistics */ 4395 ath_tx_update_stats(sc, ts, bf); 4396 } 4397 4398 /* 4399 * Call the completion handler. 4400 * The completion handler is responsible for 4401 * calling the rate control code. 4402 * 4403 * Frames with no completion handler get the 4404 * rate control code called here. 4405 */ 4406 if (bf->bf_comp == NULL) { 4407 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4408 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4409 /* 4410 * XXX assume this isn't an aggregate 4411 * frame. 4412 * 4413 * XXX TODO: also do this for filtered frames? 4414 * Once rate control knows about them? 4415 */ 4416 ath_tx_update_ratectrl(sc, ni, 4417 bf->bf_state.bfs_rc, ts, 4418 bf->bf_state.bfs_pktlen, 4419 bf->bf_state.bfs_pktlen, 4420 1, 4421 (ts->ts_status == 0 ? 0 : 1)); 4422 } 4423 ath_tx_default_comp(sc, bf, 0); 4424 } else 4425 bf->bf_comp(sc, bf, 0); 4426 } 4427 4428 /* 4429 * Process completed xmit descriptors from the specified queue. 4430 * Kick the packet scheduler if needed. This can occur from this 4431 * particular task. 4432 */ 4433 static int 4434 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4435 { 4436 struct ath_hal *ah = sc->sc_ah; 4437 struct ath_buf *bf; 4438 struct ath_desc *ds; 4439 struct ath_tx_status *ts; 4440 struct ieee80211_node *ni; 4441 #ifdef IEEE80211_SUPPORT_SUPERG 4442 struct ieee80211com *ic = &sc->sc_ic; 4443 #endif /* IEEE80211_SUPPORT_SUPERG */ 4444 int nacked; 4445 HAL_STATUS status; 4446 4447 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4448 __func__, txq->axq_qnum, 4449 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4450 txq->axq_link); 4451 4452 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4453 "ath_tx_processq: txq=%u head %p link %p depth %p", 4454 txq->axq_qnum, 4455 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4456 txq->axq_link, 4457 txq->axq_depth); 4458 4459 nacked = 0; 4460 for (;;) { 4461 ATH_TXQ_LOCK(txq); 4462 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4463 bf = TAILQ_FIRST(&txq->axq_q); 4464 if (bf == NULL) { 4465 ATH_TXQ_UNLOCK(txq); 4466 break; 4467 } 4468 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4469 ts = &bf->bf_status.ds_txstat; 4470 4471 status = ath_hal_txprocdesc(ah, ds, ts); 4472 #ifdef ATH_DEBUG 4473 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4474 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4475 status == HAL_OK); 4476 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4477 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4478 status == HAL_OK); 4479 #endif 4480 #ifdef ATH_DEBUG_ALQ 4481 if (if_ath_alq_checkdebug(&sc->sc_alq, 4482 ATH_ALQ_EDMA_TXSTATUS)) { 4483 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4484 sc->sc_tx_statuslen, 4485 (char *) ds); 4486 } 4487 #endif 4488 4489 if (status == HAL_EINPROGRESS) { 4490 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4491 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4492 txq->axq_qnum, bf, ds); 4493 ATH_TXQ_UNLOCK(txq); 4494 break; 4495 } 4496 ATH_TXQ_REMOVE(txq, bf, bf_list); 4497 4498 /* 4499 * Sanity check. 4500 */ 4501 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4502 device_printf(sc->sc_dev, 4503 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4504 __func__, 4505 txq->axq_qnum, 4506 bf, 4507 bf->bf_state.bfs_tx_queue); 4508 } 4509 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4510 device_printf(sc->sc_dev, 4511 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4512 __func__, 4513 txq->axq_qnum, 4514 bf->bf_last, 4515 bf->bf_last->bf_state.bfs_tx_queue); 4516 } 4517 4518 #if 0 4519 if (txq->axq_depth > 0) { 4520 /* 4521 * More frames follow. Mark the buffer busy 4522 * so it's not re-used while the hardware may 4523 * still re-read the link field in the descriptor. 4524 * 4525 * Use the last buffer in an aggregate as that 4526 * is where the hardware may be - intermediate 4527 * descriptors won't be "busy". 4528 */ 4529 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4530 } else 4531 txq->axq_link = NULL; 4532 #else 4533 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4534 #endif 4535 if (bf->bf_state.bfs_aggr) 4536 txq->axq_aggr_depth--; 4537 4538 ni = bf->bf_node; 4539 4540 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4541 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4542 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4543 /* 4544 * If unicast frame was ack'd update RSSI, 4545 * including the last rx time used to 4546 * workaround phantom bmiss interrupts. 4547 */ 4548 if (ni != NULL && ts->ts_status == 0 && 4549 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4550 nacked++; 4551 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4552 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4553 ts->ts_rssi); 4554 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi, 4555 ts->ts_rssi); 4556 } 4557 ATH_TXQ_UNLOCK(txq); 4558 4559 /* 4560 * Update statistics and call completion 4561 */ 4562 ath_tx_process_buf_completion(sc, txq, ts, bf); 4563 4564 /* XXX at this point, bf and ni may be totally invalid */ 4565 } 4566 #ifdef IEEE80211_SUPPORT_SUPERG 4567 /* 4568 * Flush fast-frame staging queue when traffic slows. 4569 */ 4570 if (txq->axq_depth <= 1) 4571 ieee80211_ff_flush(ic, txq->axq_ac); 4572 #endif 4573 4574 /* Kick the software TXQ scheduler */ 4575 if (dosched) { 4576 ATH_TX_LOCK(sc); 4577 ath_txq_sched(sc, txq); 4578 ATH_TX_UNLOCK(sc); 4579 } 4580 4581 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4582 "ath_tx_processq: txq=%u: done", 4583 txq->axq_qnum); 4584 4585 return nacked; 4586 } 4587 4588 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4589 4590 /* 4591 * Deferred processing of transmit interrupt; special-cased 4592 * for a single hardware transmit queue (e.g. 5210 and 5211). 4593 */ 4594 static void 4595 ath_tx_proc_q0(void *arg, int npending) 4596 { 4597 struct ath_softc *sc = arg; 4598 uint32_t txqs; 4599 4600 ATH_PCU_LOCK(sc); 4601 sc->sc_txproc_cnt++; 4602 txqs = sc->sc_txq_active; 4603 sc->sc_txq_active &= ~txqs; 4604 ATH_PCU_UNLOCK(sc); 4605 4606 ATH_LOCK(sc); 4607 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4608 ATH_UNLOCK(sc); 4609 4610 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4611 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4612 4613 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4614 /* XXX why is lastrx updated in tx code? */ 4615 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4616 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4617 ath_tx_processq(sc, sc->sc_cabq, 1); 4618 sc->sc_wd_timer = 0; 4619 4620 if (sc->sc_softled) 4621 ath_led_event(sc, sc->sc_txrix); 4622 4623 ATH_PCU_LOCK(sc); 4624 sc->sc_txproc_cnt--; 4625 ATH_PCU_UNLOCK(sc); 4626 4627 ATH_LOCK(sc); 4628 ath_power_restore_power_state(sc); 4629 ATH_UNLOCK(sc); 4630 4631 ath_tx_kick(sc); 4632 } 4633 4634 /* 4635 * Deferred processing of transmit interrupt; special-cased 4636 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4637 */ 4638 static void 4639 ath_tx_proc_q0123(void *arg, int npending) 4640 { 4641 struct ath_softc *sc = arg; 4642 int nacked; 4643 uint32_t txqs; 4644 4645 ATH_PCU_LOCK(sc); 4646 sc->sc_txproc_cnt++; 4647 txqs = sc->sc_txq_active; 4648 sc->sc_txq_active &= ~txqs; 4649 ATH_PCU_UNLOCK(sc); 4650 4651 ATH_LOCK(sc); 4652 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4653 ATH_UNLOCK(sc); 4654 4655 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4656 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4657 4658 /* 4659 * Process each active queue. 4660 */ 4661 nacked = 0; 4662 if (TXQACTIVE(txqs, 0)) 4663 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4664 if (TXQACTIVE(txqs, 1)) 4665 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4666 if (TXQACTIVE(txqs, 2)) 4667 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4668 if (TXQACTIVE(txqs, 3)) 4669 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4670 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4671 ath_tx_processq(sc, sc->sc_cabq, 1); 4672 if (nacked) 4673 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4674 4675 sc->sc_wd_timer = 0; 4676 4677 if (sc->sc_softled) 4678 ath_led_event(sc, sc->sc_txrix); 4679 4680 ATH_PCU_LOCK(sc); 4681 sc->sc_txproc_cnt--; 4682 ATH_PCU_UNLOCK(sc); 4683 4684 ATH_LOCK(sc); 4685 ath_power_restore_power_state(sc); 4686 ATH_UNLOCK(sc); 4687 4688 ath_tx_kick(sc); 4689 } 4690 4691 /* 4692 * Deferred processing of transmit interrupt. 4693 */ 4694 static void 4695 ath_tx_proc(void *arg, int npending) 4696 { 4697 struct ath_softc *sc = arg; 4698 int i, nacked; 4699 uint32_t txqs; 4700 4701 ATH_PCU_LOCK(sc); 4702 sc->sc_txproc_cnt++; 4703 txqs = sc->sc_txq_active; 4704 sc->sc_txq_active &= ~txqs; 4705 ATH_PCU_UNLOCK(sc); 4706 4707 ATH_LOCK(sc); 4708 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4709 ATH_UNLOCK(sc); 4710 4711 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4712 4713 /* 4714 * Process each active queue. 4715 */ 4716 nacked = 0; 4717 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4718 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4719 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4720 if (nacked) 4721 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4722 4723 sc->sc_wd_timer = 0; 4724 4725 if (sc->sc_softled) 4726 ath_led_event(sc, sc->sc_txrix); 4727 4728 ATH_PCU_LOCK(sc); 4729 sc->sc_txproc_cnt--; 4730 ATH_PCU_UNLOCK(sc); 4731 4732 ATH_LOCK(sc); 4733 ath_power_restore_power_state(sc); 4734 ATH_UNLOCK(sc); 4735 4736 ath_tx_kick(sc); 4737 } 4738 #undef TXQACTIVE 4739 4740 /* 4741 * Deferred processing of TXQ rescheduling. 4742 */ 4743 static void 4744 ath_txq_sched_tasklet(void *arg, int npending) 4745 { 4746 struct ath_softc *sc = arg; 4747 int i; 4748 4749 /* XXX is skipping ok? */ 4750 ATH_PCU_LOCK(sc); 4751 #if 0 4752 if (sc->sc_inreset_cnt > 0) { 4753 device_printf(sc->sc_dev, 4754 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4755 ATH_PCU_UNLOCK(sc); 4756 return; 4757 } 4758 #endif 4759 sc->sc_txproc_cnt++; 4760 ATH_PCU_UNLOCK(sc); 4761 4762 ATH_LOCK(sc); 4763 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4764 ATH_UNLOCK(sc); 4765 4766 ATH_TX_LOCK(sc); 4767 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4768 if (ATH_TXQ_SETUP(sc, i)) { 4769 ath_txq_sched(sc, &sc->sc_txq[i]); 4770 } 4771 } 4772 ATH_TX_UNLOCK(sc); 4773 4774 ATH_LOCK(sc); 4775 ath_power_restore_power_state(sc); 4776 ATH_UNLOCK(sc); 4777 4778 ATH_PCU_LOCK(sc); 4779 sc->sc_txproc_cnt--; 4780 ATH_PCU_UNLOCK(sc); 4781 } 4782 4783 void 4784 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4785 { 4786 4787 ATH_TXBUF_LOCK_ASSERT(sc); 4788 4789 if (bf->bf_flags & ATH_BUF_MGMT) 4790 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4791 else { 4792 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4793 sc->sc_txbuf_cnt++; 4794 if (sc->sc_txbuf_cnt > ath_txbuf) { 4795 device_printf(sc->sc_dev, 4796 "%s: sc_txbuf_cnt > %d?\n", 4797 __func__, 4798 ath_txbuf); 4799 sc->sc_txbuf_cnt = ath_txbuf; 4800 } 4801 } 4802 } 4803 4804 void 4805 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4806 { 4807 4808 ATH_TXBUF_LOCK_ASSERT(sc); 4809 4810 if (bf->bf_flags & ATH_BUF_MGMT) 4811 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4812 else { 4813 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4814 sc->sc_txbuf_cnt++; 4815 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4816 device_printf(sc->sc_dev, 4817 "%s: sc_txbuf_cnt > %d?\n", 4818 __func__, 4819 ATH_TXBUF); 4820 sc->sc_txbuf_cnt = ATH_TXBUF; 4821 } 4822 } 4823 } 4824 4825 /* 4826 * Free the holding buffer if it exists 4827 */ 4828 void 4829 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4830 { 4831 ATH_TXBUF_UNLOCK_ASSERT(sc); 4832 ATH_TXQ_LOCK_ASSERT(txq); 4833 4834 if (txq->axq_holdingbf == NULL) 4835 return; 4836 4837 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4838 4839 ATH_TXBUF_LOCK(sc); 4840 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4841 ATH_TXBUF_UNLOCK(sc); 4842 4843 txq->axq_holdingbf = NULL; 4844 } 4845 4846 /* 4847 * Add this buffer to the holding queue, freeing the previous 4848 * one if it exists. 4849 */ 4850 static void 4851 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4852 { 4853 struct ath_txq *txq; 4854 4855 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4856 4857 ATH_TXBUF_UNLOCK_ASSERT(sc); 4858 ATH_TXQ_LOCK_ASSERT(txq); 4859 4860 /* XXX assert ATH_BUF_BUSY is set */ 4861 4862 /* XXX assert the tx queue is under the max number */ 4863 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4864 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4865 __func__, 4866 bf, 4867 bf->bf_state.bfs_tx_queue); 4868 bf->bf_flags &= ~ATH_BUF_BUSY; 4869 ath_returnbuf_tail(sc, bf); 4870 return; 4871 } 4872 ath_txq_freeholdingbuf(sc, txq); 4873 txq->axq_holdingbf = bf; 4874 } 4875 4876 /* 4877 * Return a buffer to the pool and update the 'busy' flag on the 4878 * previous 'tail' entry. 4879 * 4880 * This _must_ only be called when the buffer is involved in a completed 4881 * TX. The logic is that if it was part of an active TX, the previous 4882 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4883 * for restart (eg for TDMA.) 4884 * 4885 * The caller must free the mbuf and recycle the node reference. 4886 * 4887 * XXX This method of handling busy / holding buffers is insanely stupid. 4888 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4889 * be much nicer if buffers in the processq() methods would instead be 4890 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4891 * exactly what hardware queue they came from in the first place. 4892 */ 4893 void 4894 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4895 { 4896 struct ath_txq *txq; 4897 4898 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4899 4900 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4901 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4902 4903 /* 4904 * If this buffer is busy, push it onto the holding queue. 4905 */ 4906 if (bf->bf_flags & ATH_BUF_BUSY) { 4907 ATH_TXQ_LOCK(txq); 4908 ath_txq_addholdingbuf(sc, bf); 4909 ATH_TXQ_UNLOCK(txq); 4910 return; 4911 } 4912 4913 /* 4914 * Not a busy buffer, so free normally 4915 */ 4916 ATH_TXBUF_LOCK(sc); 4917 ath_returnbuf_tail(sc, bf); 4918 ATH_TXBUF_UNLOCK(sc); 4919 } 4920 4921 /* 4922 * This is currently used by ath_tx_draintxq() and 4923 * ath_tx_tid_free_pkts(). 4924 * 4925 * It recycles a single ath_buf. 4926 */ 4927 void 4928 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4929 { 4930 struct ieee80211_node *ni = bf->bf_node; 4931 struct mbuf *m0 = bf->bf_m; 4932 4933 /* 4934 * Make sure that we only sync/unload if there's an mbuf. 4935 * If not (eg we cloned a buffer), the unload will have already 4936 * occurred. 4937 */ 4938 if (bf->bf_m != NULL) { 4939 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4940 BUS_DMASYNC_POSTWRITE); 4941 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4942 } 4943 4944 bf->bf_node = NULL; 4945 bf->bf_m = NULL; 4946 4947 /* Free the buffer, it's not needed any longer */ 4948 ath_freebuf(sc, bf); 4949 4950 /* Pass the buffer back to net80211 - completing it */ 4951 ieee80211_tx_complete(ni, m0, status); 4952 } 4953 4954 static struct ath_buf * 4955 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4956 { 4957 struct ath_buf *bf; 4958 4959 ATH_TXQ_LOCK_ASSERT(txq); 4960 4961 /* 4962 * Drain the FIFO queue first, then if it's 4963 * empty, move to the normal frame queue. 4964 */ 4965 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4966 if (bf != NULL) { 4967 /* 4968 * Is it the last buffer in this set? 4969 * Decrement the FIFO counter. 4970 */ 4971 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4972 if (txq->axq_fifo_depth == 0) { 4973 device_printf(sc->sc_dev, 4974 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4975 __func__, 4976 txq->axq_qnum, 4977 txq->fifo.axq_depth); 4978 } else 4979 txq->axq_fifo_depth--; 4980 } 4981 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4982 return (bf); 4983 } 4984 4985 /* 4986 * Debugging! 4987 */ 4988 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4989 device_printf(sc->sc_dev, 4990 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4991 __func__, 4992 txq->axq_qnum, 4993 txq->axq_fifo_depth, 4994 txq->fifo.axq_depth); 4995 } 4996 4997 /* 4998 * Now drain the pending queue. 4999 */ 5000 bf = TAILQ_FIRST(&txq->axq_q); 5001 if (bf == NULL) { 5002 txq->axq_link = NULL; 5003 return (NULL); 5004 } 5005 ATH_TXQ_REMOVE(txq, bf, bf_list); 5006 return (bf); 5007 } 5008 5009 void 5010 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5011 { 5012 #ifdef ATH_DEBUG 5013 struct ath_hal *ah = sc->sc_ah; 5014 #endif 5015 struct ath_buf *bf; 5016 u_int ix; 5017 5018 /* 5019 * NB: this assumes output has been stopped and 5020 * we do not need to block ath_tx_proc 5021 */ 5022 for (ix = 0;; ix++) { 5023 ATH_TXQ_LOCK(txq); 5024 bf = ath_tx_draintxq_get_one(sc, txq); 5025 if (bf == NULL) { 5026 ATH_TXQ_UNLOCK(txq); 5027 break; 5028 } 5029 if (bf->bf_state.bfs_aggr) 5030 txq->axq_aggr_depth--; 5031 #ifdef ATH_DEBUG 5032 if (sc->sc_debug & ATH_DEBUG_RESET) { 5033 struct ieee80211com *ic = &sc->sc_ic; 5034 int status = 0; 5035 5036 /* 5037 * EDMA operation has a TX completion FIFO 5038 * separate from the TX descriptor, so this 5039 * method of checking the "completion" status 5040 * is wrong. 5041 */ 5042 if (! sc->sc_isedma) { 5043 status = (ath_hal_txprocdesc(ah, 5044 bf->bf_lastds, 5045 &bf->bf_status.ds_txstat) == HAL_OK); 5046 } 5047 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5048 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5049 bf->bf_m->m_len, 0, -1); 5050 } 5051 #endif /* ATH_DEBUG */ 5052 /* 5053 * Since we're now doing magic in the completion 5054 * functions, we -must- call it for aggregation 5055 * destinations or BAW tracking will get upset. 5056 */ 5057 /* 5058 * Clear ATH_BUF_BUSY; the completion handler 5059 * will free the buffer. 5060 */ 5061 ATH_TXQ_UNLOCK(txq); 5062 bf->bf_flags &= ~ATH_BUF_BUSY; 5063 if (bf->bf_comp) 5064 bf->bf_comp(sc, bf, 1); 5065 else 5066 ath_tx_default_comp(sc, bf, 1); 5067 } 5068 5069 /* 5070 * Free the holding buffer if it exists 5071 */ 5072 ATH_TXQ_LOCK(txq); 5073 ath_txq_freeholdingbuf(sc, txq); 5074 ATH_TXQ_UNLOCK(txq); 5075 5076 /* 5077 * Drain software queued frames which are on 5078 * active TIDs. 5079 */ 5080 ath_tx_txq_drain(sc, txq); 5081 } 5082 5083 static void 5084 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5085 { 5086 struct ath_hal *ah = sc->sc_ah; 5087 5088 ATH_TXQ_LOCK_ASSERT(txq); 5089 5090 DPRINTF(sc, ATH_DEBUG_RESET, 5091 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5092 "link %p, holdingbf=%p\n", 5093 __func__, 5094 txq->axq_qnum, 5095 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5096 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5097 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5098 txq->axq_flags, 5099 txq->axq_link, 5100 txq->axq_holdingbf); 5101 5102 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5103 /* We've stopped TX DMA, so mark this as stopped. */ 5104 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5105 5106 #ifdef ATH_DEBUG 5107 if ((sc->sc_debug & ATH_DEBUG_RESET) 5108 && (txq->axq_holdingbf != NULL)) { 5109 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5110 } 5111 #endif 5112 } 5113 5114 int 5115 ath_stoptxdma(struct ath_softc *sc) 5116 { 5117 struct ath_hal *ah = sc->sc_ah; 5118 int i; 5119 5120 /* XXX return value */ 5121 if (sc->sc_invalid) 5122 return 0; 5123 5124 if (!sc->sc_invalid) { 5125 /* don't touch the hardware if marked invalid */ 5126 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5127 __func__, sc->sc_bhalq, 5128 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5129 NULL); 5130 5131 /* stop the beacon queue */ 5132 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5133 5134 /* Stop the data queues */ 5135 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5136 if (ATH_TXQ_SETUP(sc, i)) { 5137 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5138 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5139 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5140 } 5141 } 5142 } 5143 5144 return 1; 5145 } 5146 5147 #ifdef ATH_DEBUG 5148 void 5149 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5150 { 5151 struct ath_hal *ah = sc->sc_ah; 5152 struct ath_buf *bf; 5153 int i = 0; 5154 5155 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5156 return; 5157 5158 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5159 __func__, txq->axq_qnum); 5160 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5161 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5162 ath_hal_txprocdesc(ah, bf->bf_lastds, 5163 &bf->bf_status.ds_txstat) == HAL_OK); 5164 i++; 5165 } 5166 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5167 __func__, txq->axq_qnum); 5168 } 5169 #endif /* ATH_DEBUG */ 5170 5171 /* 5172 * Drain the transmit queues and reclaim resources. 5173 */ 5174 void 5175 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5176 { 5177 struct ath_hal *ah = sc->sc_ah; 5178 struct ath_buf *bf_last; 5179 int i; 5180 5181 (void) ath_stoptxdma(sc); 5182 5183 /* 5184 * Dump the queue contents 5185 */ 5186 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5187 /* 5188 * XXX TODO: should we just handle the completed TX frames 5189 * here, whether or not the reset is a full one or not? 5190 */ 5191 if (ATH_TXQ_SETUP(sc, i)) { 5192 #ifdef ATH_DEBUG 5193 if (sc->sc_debug & ATH_DEBUG_RESET) 5194 ath_tx_dump(sc, &sc->sc_txq[i]); 5195 #endif /* ATH_DEBUG */ 5196 if (reset_type == ATH_RESET_NOLOSS) { 5197 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5198 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5199 /* 5200 * Free the holding buffer; DMA is now 5201 * stopped. 5202 */ 5203 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5204 /* 5205 * Setup the link pointer to be the 5206 * _last_ buffer/descriptor in the list. 5207 * If there's nothing in the list, set it 5208 * to NULL. 5209 */ 5210 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5211 axq_q_s); 5212 if (bf_last != NULL) { 5213 ath_hal_gettxdesclinkptr(ah, 5214 bf_last->bf_lastds, 5215 &sc->sc_txq[i].axq_link); 5216 } else { 5217 sc->sc_txq[i].axq_link = NULL; 5218 } 5219 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5220 } else 5221 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5222 } 5223 } 5224 #ifdef ATH_DEBUG 5225 if (sc->sc_debug & ATH_DEBUG_RESET) { 5226 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5227 if (bf != NULL && bf->bf_m != NULL) { 5228 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5229 ath_hal_txprocdesc(ah, bf->bf_lastds, 5230 &bf->bf_status.ds_txstat) == HAL_OK); 5231 ieee80211_dump_pkt(&sc->sc_ic, 5232 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5233 0, -1); 5234 } 5235 } 5236 #endif /* ATH_DEBUG */ 5237 sc->sc_wd_timer = 0; 5238 } 5239 5240 /* 5241 * Update internal state after a channel change. 5242 */ 5243 static void 5244 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5245 { 5246 enum ieee80211_phymode mode; 5247 5248 /* 5249 * Change channels and update the h/w rate map 5250 * if we're switching; e.g. 11a to 11b/g. 5251 */ 5252 mode = ieee80211_chan2mode(chan); 5253 if (mode != sc->sc_curmode) 5254 ath_setcurmode(sc, mode); 5255 sc->sc_curchan = chan; 5256 } 5257 5258 /* 5259 * Set/change channels. If the channel is really being changed, 5260 * it's done by resetting the chip. To accomplish this we must 5261 * first cleanup any pending DMA, then restart stuff after a la 5262 * ath_init. 5263 */ 5264 static int 5265 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5266 { 5267 struct ieee80211com *ic = &sc->sc_ic; 5268 struct ath_hal *ah = sc->sc_ah; 5269 int ret = 0; 5270 5271 /* Treat this as an interface reset */ 5272 ATH_PCU_UNLOCK_ASSERT(sc); 5273 ATH_UNLOCK_ASSERT(sc); 5274 5275 /* (Try to) stop TX/RX from occurring */ 5276 taskqueue_block(sc->sc_tq); 5277 5278 ATH_PCU_LOCK(sc); 5279 5280 /* Disable interrupts */ 5281 ath_hal_intrset(ah, 0); 5282 5283 /* Stop new RX/TX/interrupt completion */ 5284 if (ath_reset_grablock(sc, 1) == 0) { 5285 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5286 __func__); 5287 } 5288 5289 /* Stop pending RX/TX completion */ 5290 ath_txrx_stop_locked(sc); 5291 5292 ATH_PCU_UNLOCK(sc); 5293 5294 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5295 __func__, ieee80211_chan2ieee(ic, chan), 5296 chan->ic_freq, chan->ic_flags); 5297 if (chan != sc->sc_curchan) { 5298 HAL_STATUS status; 5299 /* 5300 * To switch channels clear any pending DMA operations; 5301 * wait long enough for the RX fifo to drain, reset the 5302 * hardware at the new frequency, and then re-enable 5303 * the relevant bits of the h/w. 5304 */ 5305 #if 0 5306 ath_hal_intrset(ah, 0); /* disable interrupts */ 5307 #endif 5308 ath_stoprecv(sc, 1); /* turn off frame recv */ 5309 /* 5310 * First, handle completed TX/RX frames. 5311 */ 5312 ath_rx_flush(sc); 5313 ath_draintxq(sc, ATH_RESET_NOLOSS); 5314 /* 5315 * Next, flush the non-scheduled frames. 5316 */ 5317 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5318 5319 ath_update_chainmasks(sc, chan); 5320 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5321 sc->sc_cur_rxchainmask); 5322 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5323 HAL_RESET_NORMAL, &status)) { 5324 device_printf(sc->sc_dev, "%s: unable to reset " 5325 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5326 __func__, ieee80211_chan2ieee(ic, chan), 5327 chan->ic_freq, chan->ic_flags, status); 5328 ret = EIO; 5329 goto finish; 5330 } 5331 sc->sc_diversity = ath_hal_getdiversity(ah); 5332 5333 ATH_RX_LOCK(sc); 5334 sc->sc_rx_stopped = 1; 5335 sc->sc_rx_resetted = 1; 5336 ATH_RX_UNLOCK(sc); 5337 5338 /* Quiet time handling - ensure we resync */ 5339 ath_vap_clear_quiet_ie(sc); 5340 5341 /* Let DFS at it in case it's a DFS channel */ 5342 ath_dfs_radar_enable(sc, chan); 5343 5344 /* Let spectral at in case spectral is enabled */ 5345 ath_spectral_enable(sc, chan); 5346 5347 /* 5348 * Let bluetooth coexistence at in case it's needed for this 5349 * channel 5350 */ 5351 ath_btcoex_enable(sc, ic->ic_curchan); 5352 5353 /* 5354 * If we're doing TDMA, enforce the TXOP limitation for chips 5355 * that support it. 5356 */ 5357 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5358 ath_hal_setenforcetxop(sc->sc_ah, 1); 5359 else 5360 ath_hal_setenforcetxop(sc->sc_ah, 0); 5361 5362 /* 5363 * Re-enable rx framework. 5364 */ 5365 if (ath_startrecv(sc) != 0) { 5366 device_printf(sc->sc_dev, 5367 "%s: unable to restart recv logic\n", __func__); 5368 ret = EIO; 5369 goto finish; 5370 } 5371 5372 /* 5373 * Change channels and update the h/w rate map 5374 * if we're switching; e.g. 11a to 11b/g. 5375 */ 5376 ath_chan_change(sc, chan); 5377 5378 /* 5379 * Reset clears the beacon timers; reset them 5380 * here if needed. 5381 */ 5382 if (sc->sc_beacons) { /* restart beacons */ 5383 #ifdef IEEE80211_SUPPORT_TDMA 5384 if (sc->sc_tdma) 5385 ath_tdma_config(sc, NULL); 5386 else 5387 #endif 5388 ath_beacon_config(sc, NULL); 5389 } 5390 5391 /* 5392 * Re-enable interrupts. 5393 */ 5394 #if 0 5395 ath_hal_intrset(ah, sc->sc_imask); 5396 #endif 5397 } 5398 5399 finish: 5400 ATH_PCU_LOCK(sc); 5401 sc->sc_inreset_cnt--; 5402 /* XXX only do this if sc_inreset_cnt == 0? */ 5403 ath_hal_intrset(ah, sc->sc_imask); 5404 ATH_PCU_UNLOCK(sc); 5405 5406 ath_txrx_start(sc); 5407 /* XXX ath_start? */ 5408 5409 return ret; 5410 } 5411 5412 /* 5413 * Periodically recalibrate the PHY to account 5414 * for temperature/environment changes. 5415 */ 5416 static void 5417 ath_calibrate(void *arg) 5418 { 5419 struct ath_softc *sc = arg; 5420 struct ath_hal *ah = sc->sc_ah; 5421 struct ieee80211com *ic = &sc->sc_ic; 5422 HAL_BOOL longCal, isCalDone = AH_TRUE; 5423 HAL_BOOL aniCal, shortCal = AH_FALSE; 5424 int nextcal; 5425 5426 ATH_LOCK_ASSERT(sc); 5427 5428 /* 5429 * Force the hardware awake for ANI work. 5430 */ 5431 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5432 5433 /* Skip trying to do this if we're in reset */ 5434 if (sc->sc_inreset_cnt) 5435 goto restart; 5436 5437 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5438 goto restart; 5439 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5440 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5441 if (sc->sc_doresetcal) 5442 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5443 5444 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5445 if (aniCal) { 5446 sc->sc_stats.ast_ani_cal++; 5447 sc->sc_lastani = ticks; 5448 ath_hal_ani_poll(ah, sc->sc_curchan); 5449 } 5450 5451 if (longCal) { 5452 sc->sc_stats.ast_per_cal++; 5453 sc->sc_lastlongcal = ticks; 5454 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5455 /* 5456 * Rfgain is out of bounds, reset the chip 5457 * to load new gain values. 5458 */ 5459 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5460 "%s: rfgain change\n", __func__); 5461 sc->sc_stats.ast_per_rfgain++; 5462 sc->sc_resetcal = 0; 5463 sc->sc_doresetcal = AH_TRUE; 5464 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5465 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5466 ath_power_restore_power_state(sc); 5467 return; 5468 } 5469 /* 5470 * If this long cal is after an idle period, then 5471 * reset the data collection state so we start fresh. 5472 */ 5473 if (sc->sc_resetcal) { 5474 (void) ath_hal_calreset(ah, sc->sc_curchan); 5475 sc->sc_lastcalreset = ticks; 5476 sc->sc_lastshortcal = ticks; 5477 sc->sc_resetcal = 0; 5478 sc->sc_doresetcal = AH_TRUE; 5479 } 5480 } 5481 5482 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5483 if (shortCal || longCal) { 5484 isCalDone = AH_FALSE; 5485 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5486 if (longCal) { 5487 /* 5488 * Calibrate noise floor data again in case of change. 5489 */ 5490 ath_hal_process_noisefloor(ah); 5491 } 5492 } else { 5493 DPRINTF(sc, ATH_DEBUG_ANY, 5494 "%s: calibration of channel %u failed\n", 5495 __func__, sc->sc_curchan->ic_freq); 5496 sc->sc_stats.ast_per_calfail++; 5497 } 5498 /* 5499 * XXX TODO: get the NF calibration results from the HAL. 5500 * If we failed NF cal then schedule a hard reset to potentially 5501 * un-freeze the PHY. 5502 * 5503 * Note we have to be careful here to not get stuck in an 5504 * infinite NIC restart. Ideally we'd not restart if we 5505 * failed the first NF cal - that /can/ fail sometimes in 5506 * a noisy environment. 5507 * 5508 * Instead, we should likely temporarily shorten the longCal 5509 * period to happen pretty quickly and if a subsequent one 5510 * fails, do a full reset. 5511 */ 5512 if (shortCal) 5513 sc->sc_lastshortcal = ticks; 5514 } 5515 if (!isCalDone) { 5516 restart: 5517 /* 5518 * Use a shorter interval to potentially collect multiple 5519 * data samples required to complete calibration. Once 5520 * we're told the work is done we drop back to a longer 5521 * interval between requests. We're more aggressive doing 5522 * work when operating as an AP to improve operation right 5523 * after startup. 5524 */ 5525 sc->sc_lastshortcal = ticks; 5526 nextcal = ath_shortcalinterval*hz/1000; 5527 if (sc->sc_opmode != HAL_M_HOSTAP) 5528 nextcal *= 10; 5529 sc->sc_doresetcal = AH_TRUE; 5530 } else { 5531 /* nextcal should be the shortest time for next event */ 5532 nextcal = ath_longcalinterval*hz; 5533 if (sc->sc_lastcalreset == 0) 5534 sc->sc_lastcalreset = sc->sc_lastlongcal; 5535 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5536 sc->sc_resetcal = 1; /* setup reset next trip */ 5537 sc->sc_doresetcal = AH_FALSE; 5538 } 5539 /* ANI calibration may occur more often than short/long/resetcal */ 5540 if (ath_anicalinterval > 0) 5541 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5542 5543 if (nextcal != 0) { 5544 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5545 __func__, nextcal, isCalDone ? "" : "!"); 5546 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5547 } else { 5548 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5549 __func__); 5550 /* NB: don't rearm timer */ 5551 } 5552 /* 5553 * Restore power state now that we're done. 5554 */ 5555 ath_power_restore_power_state(sc); 5556 } 5557 5558 static void 5559 ath_scan_start(struct ieee80211com *ic) 5560 { 5561 struct ath_softc *sc = ic->ic_softc; 5562 struct ath_hal *ah = sc->sc_ah; 5563 u_int32_t rfilt; 5564 5565 /* XXX calibration timer? */ 5566 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5567 5568 ATH_LOCK(sc); 5569 sc->sc_scanning = 1; 5570 sc->sc_syncbeacon = 0; 5571 rfilt = ath_calcrxfilter(sc); 5572 ATH_UNLOCK(sc); 5573 5574 ATH_PCU_LOCK(sc); 5575 ath_hal_setrxfilter(ah, rfilt); 5576 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5577 ATH_PCU_UNLOCK(sc); 5578 5579 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5580 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5581 } 5582 5583 static void 5584 ath_scan_end(struct ieee80211com *ic) 5585 { 5586 struct ath_softc *sc = ic->ic_softc; 5587 struct ath_hal *ah = sc->sc_ah; 5588 u_int32_t rfilt; 5589 5590 ATH_LOCK(sc); 5591 sc->sc_scanning = 0; 5592 rfilt = ath_calcrxfilter(sc); 5593 ATH_UNLOCK(sc); 5594 5595 ATH_PCU_LOCK(sc); 5596 ath_hal_setrxfilter(ah, rfilt); 5597 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5598 5599 ath_hal_process_noisefloor(ah); 5600 ATH_PCU_UNLOCK(sc); 5601 5602 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5603 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5604 sc->sc_curaid); 5605 } 5606 5607 #ifdef ATH_ENABLE_11N 5608 /* 5609 * For now, just do a channel change. 5610 * 5611 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5612 * control state and resetting the hardware without dropping frames out 5613 * of the queue. 5614 * 5615 * The unfortunate trouble here is making absolutely sure that the 5616 * channel width change has propagated enough so the hardware 5617 * absolutely isn't handed bogus frames for it's current operating 5618 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5619 * does occur in parallel, we need to make certain we've blocked 5620 * any further ongoing TX (and RX, that can cause raw TX) 5621 * before we do this. 5622 */ 5623 static void 5624 ath_update_chw(struct ieee80211com *ic) 5625 { 5626 struct ath_softc *sc = ic->ic_softc; 5627 5628 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5629 device_printf(sc->sc_dev, "%s: called\n", __func__); 5630 5631 /* 5632 * XXX TODO: schedule a tasklet that stops things without freeing, 5633 * walks the now stopped TX queue(s) looking for frames to retry 5634 * as if we TX filtered them (whch may mean dropping non-ampdu frames!) 5635 * but okay) then place them back on the software queue so they 5636 * can have the rate control lookup done again. 5637 */ 5638 ath_set_channel(ic); 5639 } 5640 #endif /* ATH_ENABLE_11N */ 5641 5642 /* 5643 * This is called by the beacon parsing routine in the receive 5644 * path to update the current quiet time information provided by 5645 * an AP. 5646 * 5647 * This is STA specific, it doesn't take the AP TBTT/beacon slot 5648 * offset into account. 5649 * 5650 * The quiet IE doesn't control the /now/ beacon interval - it 5651 * controls the upcoming beacon interval. So, when tbtt=1, 5652 * the quiet element programming shall be for the next beacon 5653 * interval. There's no tbtt=0 behaviour defined, so don't. 5654 * 5655 * Since we're programming the next quiet interval, we have 5656 * to keep in mind what we will see when the next beacon 5657 * is received with potentially a quiet IE. For example, if 5658 * quiet_period is 1, then we are always getting a quiet interval 5659 * each TBTT - so if we just program it in upon each beacon received, 5660 * it will constantly reflect the "next" TBTT and we will never 5661 * let the counter stay programmed correctly. 5662 * 5663 * So: 5664 * + the first time we see the quiet IE, program it and store 5665 * the details somewhere; 5666 * + if the quiet parameters don't change (ie, period/duration/offset) 5667 * then just leave the programming enabled; 5668 * + (we can "skip" beacons, so don't try to enforce tbttcount unless 5669 * you're willing to also do the skipped beacon math); 5670 * + if the quiet IE is removed, then halt quiet time. 5671 */ 5672 static int 5673 ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie) 5674 { 5675 struct ieee80211_quiet_ie *q; 5676 struct ieee80211vap *vap = ni->ni_vap; 5677 struct ath_vap *avp = ATH_VAP(vap); 5678 struct ieee80211com *ic = vap->iv_ic; 5679 struct ath_softc *sc = ic->ic_softc; 5680 5681 if (vap->iv_opmode != IEEE80211_M_STA) 5682 return (0); 5683 5684 /* Verify we have a quiet time IE */ 5685 if (ie == NULL) { 5686 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5687 "%s: called; NULL IE, disabling\n", __func__); 5688 5689 ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE); 5690 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 5691 return (0); 5692 } 5693 5694 /* If we do, verify it's actually legit */ 5695 if (ie[0] != IEEE80211_ELEMID_QUIET) 5696 return 0; 5697 if (ie[1] != 6) 5698 return 0; 5699 5700 /* Note: this belongs in net80211, parsed out and everything */ 5701 q = (void *) ie; 5702 5703 /* 5704 * Compare what we have stored to what we last saw. 5705 * If they're the same then don't program in anything. 5706 */ 5707 if ((q->period == avp->quiet_ie.period) && 5708 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) && 5709 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset))) 5710 return (0); 5711 5712 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5713 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n", 5714 __func__, 5715 (int) q->tbttcount, 5716 (int) q->period, 5717 (int) le16dec(&q->duration), 5718 (int) le16dec(&q->offset)); 5719 5720 /* 5721 * Don't program in garbage values. 5722 */ 5723 if ((le16dec(&q->duration) == 0) || 5724 (le16dec(&q->duration) >= ni->ni_intval)) { 5725 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5726 "%s: invalid duration (%d)\n", __func__, 5727 le16dec(&q->duration)); 5728 return (0); 5729 } 5730 /* 5731 * Can have a 0 offset, but not a duration - so just check 5732 * they don't exceed the intval. 5733 */ 5734 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) { 5735 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5736 "%s: invalid duration + offset (%d+%d)\n", __func__, 5737 le16dec(&q->duration), 5738 le16dec(&q->offset)); 5739 return (0); 5740 } 5741 if (q->tbttcount == 0) { 5742 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5743 "%s: invalid tbttcount (0)\n", __func__); 5744 return (0); 5745 } 5746 if (q->period == 0) { 5747 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5748 "%s: invalid period (0)\n", __func__); 5749 return (0); 5750 } 5751 5752 /* 5753 * This is a new quiet time IE config, so wait until tbttcount 5754 * is equal to 1, and program it in. 5755 */ 5756 if (q->tbttcount == 1) { 5757 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5758 "%s: programming\n", __func__); 5759 ath_hal_set_quiet(sc->sc_ah, 5760 q->period * ni->ni_intval, /* convert to TU */ 5761 le16dec(&q->duration), /* already in TU */ 5762 le16dec(&q->offset) + ni->ni_intval, 5763 HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF); 5764 /* 5765 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for 5766 * STA mode 5767 */ 5768 5769 /* Update local state */ 5770 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie)); 5771 } 5772 5773 return (0); 5774 } 5775 5776 static void 5777 ath_set_channel(struct ieee80211com *ic) 5778 { 5779 struct ath_softc *sc = ic->ic_softc; 5780 5781 ATH_LOCK(sc); 5782 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5783 ATH_UNLOCK(sc); 5784 5785 (void) ath_chan_set(sc, ic->ic_curchan); 5786 /* 5787 * If we are returning to our bss channel then mark state 5788 * so the next recv'd beacon's tsf will be used to sync the 5789 * beacon timers. Note that since we only hear beacons in 5790 * sta/ibss mode this has no effect in other operating modes. 5791 */ 5792 ATH_LOCK(sc); 5793 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5794 sc->sc_syncbeacon = 1; 5795 ath_power_restore_power_state(sc); 5796 ATH_UNLOCK(sc); 5797 } 5798 5799 /* 5800 * Walk the vap list and check if there any vap's in RUN state. 5801 */ 5802 static int 5803 ath_isanyrunningvaps(struct ieee80211vap *this) 5804 { 5805 struct ieee80211com *ic = this->iv_ic; 5806 struct ieee80211vap *vap; 5807 5808 IEEE80211_LOCK_ASSERT(ic); 5809 5810 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5811 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5812 return 1; 5813 } 5814 return 0; 5815 } 5816 5817 static int 5818 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5819 { 5820 struct ieee80211com *ic = vap->iv_ic; 5821 struct ath_softc *sc = ic->ic_softc; 5822 struct ath_vap *avp = ATH_VAP(vap); 5823 struct ath_hal *ah = sc->sc_ah; 5824 struct ieee80211_node *ni = NULL; 5825 int i, error, stamode; 5826 u_int32_t rfilt; 5827 int csa_run_transition = 0; 5828 enum ieee80211_state ostate = vap->iv_state; 5829 5830 static const HAL_LED_STATE leds[] = { 5831 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5832 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5833 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5834 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5835 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5836 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5837 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5838 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5839 }; 5840 5841 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5842 ieee80211_state_name[ostate], 5843 ieee80211_state_name[nstate]); 5844 5845 /* 5846 * net80211 _should_ have the comlock asserted at this point. 5847 * There are some comments around the calls to vap->iv_newstate 5848 * which indicate that it (newstate) may end up dropping the 5849 * lock. This and the subsequent lock assert check after newstate 5850 * are an attempt to catch these and figure out how/why. 5851 */ 5852 IEEE80211_LOCK_ASSERT(ic); 5853 5854 /* Before we touch the hardware - wake it up */ 5855 ATH_LOCK(sc); 5856 /* 5857 * If the NIC is in anything other than SLEEP state, 5858 * we need to ensure that self-generated frames are 5859 * set for PWRMGT=0. Otherwise we may end up with 5860 * strange situations. 5861 * 5862 * XXX TODO: is this actually the case? :-) 5863 */ 5864 if (nstate != IEEE80211_S_SLEEP) 5865 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5866 5867 /* 5868 * Now, wake the thing up. 5869 */ 5870 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5871 5872 /* 5873 * And stop the calibration callout whilst we have 5874 * ATH_LOCK held. 5875 */ 5876 callout_stop(&sc->sc_cal_ch); 5877 ATH_UNLOCK(sc); 5878 5879 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5880 csa_run_transition = 1; 5881 5882 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5883 5884 if (nstate == IEEE80211_S_SCAN) { 5885 /* 5886 * Scanning: turn off beacon miss and don't beacon. 5887 * Mark beacon state so when we reach RUN state we'll 5888 * [re]setup beacons. Unblock the task q thread so 5889 * deferred interrupt processing is done. 5890 */ 5891 5892 /* Ensure we stay awake during scan */ 5893 ATH_LOCK(sc); 5894 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5895 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5896 ATH_UNLOCK(sc); 5897 5898 ath_hal_intrset(ah, 5899 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5900 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5901 sc->sc_beacons = 0; 5902 taskqueue_unblock(sc->sc_tq); 5903 } 5904 5905 ni = ieee80211_ref_node(vap->iv_bss); 5906 rfilt = ath_calcrxfilter(sc); 5907 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5908 vap->iv_opmode == IEEE80211_M_AHDEMO || 5909 vap->iv_opmode == IEEE80211_M_IBSS); 5910 5911 /* 5912 * XXX Dont need to do this (and others) if we've transitioned 5913 * from SLEEP->RUN. 5914 */ 5915 if (stamode && nstate == IEEE80211_S_RUN) { 5916 sc->sc_curaid = ni->ni_associd; 5917 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5918 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5919 } 5920 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5921 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5922 ath_hal_setrxfilter(ah, rfilt); 5923 5924 /* XXX is this to restore keycache on resume? */ 5925 if (vap->iv_opmode != IEEE80211_M_STA && 5926 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5927 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5928 if (ath_hal_keyisvalid(ah, i)) 5929 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5930 } 5931 5932 /* 5933 * Invoke the parent method to do net80211 work. 5934 */ 5935 error = avp->av_newstate(vap, nstate, arg); 5936 if (error != 0) 5937 goto bad; 5938 5939 /* 5940 * See above: ensure av_newstate() doesn't drop the lock 5941 * on us. 5942 */ 5943 IEEE80211_LOCK_ASSERT(ic); 5944 5945 /* 5946 * XXX TODO: if nstate is _S_CAC, then we should disable 5947 * ACK processing until CAC is completed. 5948 */ 5949 5950 /* 5951 * XXX TODO: if we're on a passive channel, then we should 5952 * not allow any ACKs or self-generated frames until we hear 5953 * a beacon. Unfortunately there isn't a notification from 5954 * net80211 so perhaps we could slot that particular check 5955 * into the mgmt receive path and just ensure that we clear 5956 * it on RX of beacons in passive mode (and only clear it 5957 * once, obviously.) 5958 */ 5959 5960 /* 5961 * XXX TODO: net80211 should be tracking whether channels 5962 * have heard beacons and are thus considered "OK" for 5963 * transmitting - and then inform the driver about this 5964 * state change. That way if we hear an AP go quiet 5965 * (and nothing else is beaconing on a channel) the 5966 * channel can go back to being passive until another 5967 * beacon is heard. 5968 */ 5969 5970 /* 5971 * XXX TODO: if nstate is _S_CAC, then we should disable 5972 * ACK processing until CAC is completed. 5973 */ 5974 5975 /* 5976 * XXX TODO: if we're on a passive channel, then we should 5977 * not allow any ACKs or self-generated frames until we hear 5978 * a beacon. Unfortunately there isn't a notification from 5979 * net80211 so perhaps we could slot that particular check 5980 * into the mgmt receive path and just ensure that we clear 5981 * it on RX of beacons in passive mode (and only clear it 5982 * once, obviously.) 5983 */ 5984 5985 /* 5986 * XXX TODO: net80211 should be tracking whether channels 5987 * have heard beacons and are thus considered "OK" for 5988 * transmitting - and then inform the driver about this 5989 * state change. That way if we hear an AP go quiet 5990 * (and nothing else is beaconing on a channel) the 5991 * channel can go back to being passive until another 5992 * beacon is heard. 5993 */ 5994 5995 if (nstate == IEEE80211_S_RUN) { 5996 /* NB: collect bss node again, it may have changed */ 5997 ieee80211_free_node(ni); 5998 ni = ieee80211_ref_node(vap->iv_bss); 5999 6000 DPRINTF(sc, ATH_DEBUG_STATE, 6001 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 6002 "capinfo 0x%04x chan %d\n", __func__, 6003 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 6004 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 6005 6006 switch (vap->iv_opmode) { 6007 #ifdef IEEE80211_SUPPORT_TDMA 6008 case IEEE80211_M_AHDEMO: 6009 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 6010 break; 6011 /* fall thru... */ 6012 #endif 6013 case IEEE80211_M_HOSTAP: 6014 case IEEE80211_M_IBSS: 6015 case IEEE80211_M_MBSS: 6016 6017 /* 6018 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.) 6019 * For channels that are in CAC, we may have disabled 6020 * this during CAC to ensure we don't ACK frames 6021 * sent to us. 6022 */ 6023 6024 /* 6025 * Allocate and setup the beacon frame. 6026 * 6027 * Stop any previous beacon DMA. This may be 6028 * necessary, for example, when an ibss merge 6029 * causes reconfiguration; there will be a state 6030 * transition from RUN->RUN that means we may 6031 * be called with beacon transmission active. 6032 */ 6033 ath_hal_stoptxdma(ah, sc->sc_bhalq); 6034 6035 error = ath_beacon_alloc(sc, ni); 6036 if (error != 0) 6037 goto bad; 6038 /* 6039 * If joining an adhoc network defer beacon timer 6040 * configuration to the next beacon frame so we 6041 * have a current TSF to use. Otherwise we're 6042 * starting an ibss/bss so there's no need to delay; 6043 * if this is the first vap moving to RUN state, then 6044 * beacon state needs to be [re]configured. 6045 */ 6046 if (vap->iv_opmode == IEEE80211_M_IBSS && 6047 ni->ni_tstamp.tsf != 0) { 6048 sc->sc_syncbeacon = 1; 6049 } else if (!sc->sc_beacons) { 6050 #ifdef IEEE80211_SUPPORT_TDMA 6051 if (vap->iv_caps & IEEE80211_C_TDMA) 6052 ath_tdma_config(sc, vap); 6053 else 6054 #endif 6055 ath_beacon_config(sc, vap); 6056 sc->sc_beacons = 1; 6057 } 6058 break; 6059 case IEEE80211_M_STA: 6060 /* 6061 * Defer beacon timer configuration to the next 6062 * beacon frame so we have a current TSF to use 6063 * (any TSF collected when scanning is likely old). 6064 * However if it's due to a CSA -> RUN transition, 6065 * force a beacon update so we pick up a lack of 6066 * beacons from an AP in CAC and thus force a 6067 * scan. 6068 * 6069 * And, there's also corner cases here where 6070 * after a scan, the AP may have disappeared. 6071 * In that case, we may not receive an actual 6072 * beacon to update the beacon timer and thus we 6073 * won't get notified of the missing beacons. 6074 * 6075 * Also, don't do any of this if we're not running 6076 * with hardware beacon support, as that'll interfere 6077 * with an AP VAP. 6078 */ 6079 if (ostate != IEEE80211_S_RUN && 6080 ostate != IEEE80211_S_SLEEP) { 6081 6082 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 6083 DPRINTF(sc, ATH_DEBUG_BEACON, 6084 "%s: STA; syncbeacon=1\n", __func__); 6085 sc->sc_syncbeacon = 1; 6086 if (csa_run_transition) 6087 ath_beacon_config(sc, vap); 6088 } 6089 6090 /* Quiet time handling - ensure we resync */ 6091 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6092 6093 /* 6094 * PR: kern/175227 6095 * 6096 * Reconfigure beacons during reset; as otherwise 6097 * we won't get the beacon timers reprogrammed 6098 * after a reset and thus we won't pick up a 6099 * beacon miss interrupt. 6100 * 6101 * Hopefully we'll see a beacon before the BMISS 6102 * timer fires (too often), leading to a STA 6103 * disassociation. 6104 */ 6105 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 6106 sc->sc_beacons = 1; 6107 } 6108 } 6109 break; 6110 case IEEE80211_M_MONITOR: 6111 /* 6112 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6113 * transitions so we must re-enable interrupts here to 6114 * handle the case of a single monitor mode vap. 6115 */ 6116 ath_hal_intrset(ah, sc->sc_imask); 6117 break; 6118 case IEEE80211_M_WDS: 6119 break; 6120 default: 6121 break; 6122 } 6123 /* 6124 * Let the hal process statistics collected during a 6125 * scan so it can provide calibrated noise floor data. 6126 */ 6127 ath_hal_process_noisefloor(ah); 6128 /* 6129 * Reset rssi stats; maybe not the best place... 6130 */ 6131 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6132 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6133 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6134 6135 /* 6136 * Force awake for RUN mode. 6137 */ 6138 ATH_LOCK(sc); 6139 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6140 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 6141 6142 /* 6143 * Finally, start any timers and the task q thread 6144 * (in case we didn't go through SCAN state). 6145 */ 6146 if (ath_longcalinterval != 0) { 6147 /* start periodic recalibration timer */ 6148 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6149 } else { 6150 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6151 "%s: calibration disabled\n", __func__); 6152 } 6153 ATH_UNLOCK(sc); 6154 6155 taskqueue_unblock(sc->sc_tq); 6156 } else if (nstate == IEEE80211_S_INIT) { 6157 /* Quiet time handling - ensure we resync */ 6158 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6159 6160 /* 6161 * If there are no vaps left in RUN state then 6162 * shutdown host/driver operation: 6163 * o disable interrupts 6164 * o disable the task queue thread 6165 * o mark beacon processing as stopped 6166 */ 6167 if (!ath_isanyrunningvaps(vap)) { 6168 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6169 /* disable interrupts */ 6170 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6171 taskqueue_block(sc->sc_tq); 6172 sc->sc_beacons = 0; 6173 } 6174 6175 /* 6176 * For at least STA mode we likely should clear the ANI 6177 * and NF calibration state and allow the NIC/HAL to figure 6178 * out optimal parameters at runtime. Otherwise if we 6179 * disassociate due to interference / deafness it may persist 6180 * when we reconnect. 6181 * 6182 * Note: may need to do this for other states too, not just 6183 * _S_INIT. 6184 */ 6185 #ifdef IEEE80211_SUPPORT_TDMA 6186 ath_hal_setcca(ah, AH_TRUE); 6187 #endif 6188 } else if (nstate == IEEE80211_S_SLEEP) { 6189 /* We're going to sleep, so transition appropriately */ 6190 /* For now, only do this if we're a single STA vap */ 6191 if (sc->sc_nvaps == 1 && 6192 vap->iv_opmode == IEEE80211_M_STA) { 6193 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6194 ATH_LOCK(sc); 6195 /* 6196 * Always at least set the self-generated 6197 * frame config to set PWRMGT=1. 6198 */ 6199 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6200 6201 /* 6202 * If we're not syncing beacons, transition 6203 * to NETWORK_SLEEP. 6204 * 6205 * We stay awake if syncbeacon > 0 in case 6206 * we need to listen for some beacons otherwise 6207 * our beacon timer config may be wrong. 6208 */ 6209 if (sc->sc_syncbeacon == 0) { 6210 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 6211 } 6212 ATH_UNLOCK(sc); 6213 } 6214 6215 /* 6216 * Note - the ANI/calibration timer isn't re-enabled during 6217 * network sleep for now. One unfortunate side-effect is that 6218 * the PHY/airtime statistics aren't gathered on the channel 6219 * but I haven't yet tested to see if reading those registers 6220 * CAN occur during network sleep. 6221 * 6222 * This should be revisited in a future commit, even if it's 6223 * just to split out the airtime polling from ANI/calibration. 6224 */ 6225 } else if (nstate == IEEE80211_S_SCAN) { 6226 /* Quiet time handling - ensure we resync */ 6227 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6228 6229 /* 6230 * If we're in scan mode then startpcureceive() is 6231 * hopefully being called with "reset ANI" for this channel; 6232 * but once we attempt to reassociate we program in the previous 6233 * ANI values and.. not do any calibration until we're running. 6234 * This may mean we stay deaf unless we can associate successfully. 6235 * 6236 * So do kick off the cal timer to get NF/ANI going. 6237 */ 6238 ATH_LOCK(sc); 6239 if (ath_longcalinterval != 0) { 6240 /* start periodic recalibration timer */ 6241 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6242 } else { 6243 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6244 "%s: calibration disabled\n", __func__); 6245 } 6246 ATH_UNLOCK(sc); 6247 } 6248 bad: 6249 ieee80211_free_node(ni); 6250 6251 /* 6252 * Restore the power state - either to what it was, or 6253 * to network_sleep if it's alright. 6254 */ 6255 ATH_LOCK(sc); 6256 ath_power_restore_power_state(sc); 6257 ATH_UNLOCK(sc); 6258 return error; 6259 } 6260 6261 /* 6262 * Allocate a key cache slot to the station so we can 6263 * setup a mapping from key index to node. The key cache 6264 * slot is needed for managing antenna state and for 6265 * compression when stations do not use crypto. We do 6266 * it uniliaterally here; if crypto is employed this slot 6267 * will be reassigned. 6268 */ 6269 static void 6270 ath_setup_stationkey(struct ieee80211_node *ni) 6271 { 6272 struct ieee80211vap *vap = ni->ni_vap; 6273 struct ath_softc *sc = vap->iv_ic->ic_softc; 6274 ieee80211_keyix keyix, rxkeyix; 6275 6276 /* XXX should take a locked ref to vap->iv_bss */ 6277 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6278 /* 6279 * Key cache is full; we'll fall back to doing 6280 * the more expensive lookup in software. Note 6281 * this also means no h/w compression. 6282 */ 6283 /* XXX msg+statistic */ 6284 } else { 6285 /* XXX locking? */ 6286 ni->ni_ucastkey.wk_keyix = keyix; 6287 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6288 /* NB: must mark device key to get called back on delete */ 6289 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6290 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6291 /* NB: this will create a pass-thru key entry */ 6292 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6293 } 6294 } 6295 6296 /* 6297 * Setup driver-specific state for a newly associated node. 6298 * Note that we're called also on a re-associate, the isnew 6299 * param tells us if this is the first time or not. 6300 */ 6301 static void 6302 ath_newassoc(struct ieee80211_node *ni, int isnew) 6303 { 6304 struct ath_node *an = ATH_NODE(ni); 6305 struct ieee80211vap *vap = ni->ni_vap; 6306 struct ath_softc *sc = vap->iv_ic->ic_softc; 6307 const struct ieee80211_txparam *tp = ni->ni_txparms; 6308 6309 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6310 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6311 6312 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6313 __func__, 6314 ni->ni_macaddr, 6315 ":", 6316 isnew, 6317 an->an_is_powersave); 6318 6319 ATH_NODE_LOCK(an); 6320 ath_rate_newassoc(sc, an, isnew); 6321 ATH_NODE_UNLOCK(an); 6322 6323 if (isnew && 6324 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6325 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6326 ath_setup_stationkey(ni); 6327 6328 /* 6329 * If we're reassociating, make sure that any paused queues 6330 * get unpaused. 6331 * 6332 * Now, we may have frames in the hardware queue for this node. 6333 * So if we are reassociating and there are frames in the queue, 6334 * we need to go through the cleanup path to ensure that they're 6335 * marked as non-aggregate. 6336 */ 6337 if (! isnew) { 6338 DPRINTF(sc, ATH_DEBUG_NODE, 6339 "%s: %6D: reassoc; is_powersave=%d\n", 6340 __func__, 6341 ni->ni_macaddr, 6342 ":", 6343 an->an_is_powersave); 6344 6345 /* XXX for now, we can't hold the lock across assoc */ 6346 ath_tx_node_reassoc(sc, an); 6347 6348 /* XXX for now, we can't hold the lock across wakeup */ 6349 if (an->an_is_powersave) 6350 ath_tx_node_wakeup(sc, an); 6351 } 6352 } 6353 6354 static int 6355 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6356 int nchans, struct ieee80211_channel chans[]) 6357 { 6358 struct ath_softc *sc = ic->ic_softc; 6359 struct ath_hal *ah = sc->sc_ah; 6360 HAL_STATUS status; 6361 6362 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6363 "%s: rd %u cc %u location %c%s\n", 6364 __func__, reg->regdomain, reg->country, reg->location, 6365 reg->ecm ? " ecm" : ""); 6366 6367 status = ath_hal_set_channels(ah, chans, nchans, 6368 reg->country, reg->regdomain); 6369 if (status != HAL_OK) { 6370 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6371 __func__, status); 6372 return EINVAL; /* XXX */ 6373 } 6374 6375 return 0; 6376 } 6377 6378 static void 6379 ath_getradiocaps(struct ieee80211com *ic, 6380 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6381 { 6382 struct ath_softc *sc = ic->ic_softc; 6383 struct ath_hal *ah = sc->sc_ah; 6384 6385 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6386 __func__, SKU_DEBUG, CTRY_DEFAULT); 6387 6388 /* XXX check return */ 6389 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6390 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6391 6392 } 6393 6394 static int 6395 ath_getchannels(struct ath_softc *sc) 6396 { 6397 struct ieee80211com *ic = &sc->sc_ic; 6398 struct ath_hal *ah = sc->sc_ah; 6399 HAL_STATUS status; 6400 6401 /* 6402 * Collect channel set based on EEPROM contents. 6403 */ 6404 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6405 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6406 if (status != HAL_OK) { 6407 device_printf(sc->sc_dev, 6408 "%s: unable to collect channel list from hal, status %d\n", 6409 __func__, status); 6410 return EINVAL; 6411 } 6412 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6413 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6414 /* XXX map Atheros sku's to net80211 SKU's */ 6415 /* XXX net80211 types too small */ 6416 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6417 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6418 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6419 ic->ic_regdomain.isocc[1] = ' '; 6420 6421 ic->ic_regdomain.ecm = 1; 6422 ic->ic_regdomain.location = 'I'; 6423 6424 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6425 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6426 __func__, sc->sc_eerd, sc->sc_eecc, 6427 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6428 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6429 return 0; 6430 } 6431 6432 static int 6433 ath_rate_setup(struct ath_softc *sc, u_int mode) 6434 { 6435 struct ath_hal *ah = sc->sc_ah; 6436 const HAL_RATE_TABLE *rt; 6437 6438 switch (mode) { 6439 case IEEE80211_MODE_11A: 6440 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6441 break; 6442 case IEEE80211_MODE_HALF: 6443 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6444 break; 6445 case IEEE80211_MODE_QUARTER: 6446 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6447 break; 6448 case IEEE80211_MODE_11B: 6449 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6450 break; 6451 case IEEE80211_MODE_11G: 6452 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6453 break; 6454 case IEEE80211_MODE_TURBO_A: 6455 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6456 break; 6457 case IEEE80211_MODE_TURBO_G: 6458 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6459 break; 6460 case IEEE80211_MODE_STURBO_A: 6461 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6462 break; 6463 case IEEE80211_MODE_11NA: 6464 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6465 break; 6466 case IEEE80211_MODE_11NG: 6467 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6468 break; 6469 default: 6470 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6471 __func__, mode); 6472 return 0; 6473 } 6474 sc->sc_rates[mode] = rt; 6475 return (rt != NULL); 6476 } 6477 6478 static void 6479 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6480 { 6481 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6482 static const struct { 6483 u_int rate; /* tx/rx 802.11 rate */ 6484 u_int16_t timeOn; /* LED on time (ms) */ 6485 u_int16_t timeOff; /* LED off time (ms) */ 6486 } blinkrates[] = { 6487 { 108, 40, 10 }, 6488 { 96, 44, 11 }, 6489 { 72, 50, 13 }, 6490 { 48, 57, 14 }, 6491 { 36, 67, 16 }, 6492 { 24, 80, 20 }, 6493 { 22, 100, 25 }, 6494 { 18, 133, 34 }, 6495 { 12, 160, 40 }, 6496 { 10, 200, 50 }, 6497 { 6, 240, 58 }, 6498 { 4, 267, 66 }, 6499 { 2, 400, 100 }, 6500 { 0, 500, 130 }, 6501 /* XXX half/quarter rates */ 6502 }; 6503 const HAL_RATE_TABLE *rt; 6504 int i, j; 6505 6506 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6507 rt = sc->sc_rates[mode]; 6508 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6509 for (i = 0; i < rt->rateCount; i++) { 6510 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6511 if (rt->info[i].phy != IEEE80211_T_HT) 6512 sc->sc_rixmap[ieeerate] = i; 6513 else 6514 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6515 } 6516 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6517 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6518 if (i >= rt->rateCount) { 6519 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6520 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6521 continue; 6522 } 6523 sc->sc_hwmap[i].ieeerate = 6524 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6525 if (rt->info[i].phy == IEEE80211_T_HT) 6526 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6527 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6528 if (rt->info[i].shortPreamble || 6529 rt->info[i].phy == IEEE80211_T_OFDM) 6530 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6531 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6532 for (j = 0; j < nitems(blinkrates)-1; j++) 6533 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6534 break; 6535 /* NB: this uses the last entry if the rate isn't found */ 6536 /* XXX beware of overlow */ 6537 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6538 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6539 } 6540 sc->sc_currates = rt; 6541 sc->sc_curmode = mode; 6542 /* 6543 * All protection frames are transmitted at 2Mb/s for 6544 * 11g, otherwise at 1Mb/s. 6545 */ 6546 if (mode == IEEE80211_MODE_11G) 6547 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6548 else 6549 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6550 /* NB: caller is responsible for resetting rate control state */ 6551 } 6552 6553 static void 6554 ath_watchdog(void *arg) 6555 { 6556 struct ath_softc *sc = arg; 6557 struct ieee80211com *ic = &sc->sc_ic; 6558 int do_reset = 0; 6559 6560 ATH_LOCK_ASSERT(sc); 6561 6562 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6563 uint32_t hangs; 6564 6565 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6566 6567 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6568 hangs != 0) { 6569 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6570 hangs & 0xff ? "bb" : "mac", hangs); 6571 } else 6572 device_printf(sc->sc_dev, "device timeout\n"); 6573 do_reset = 1; 6574 counter_u64_add(ic->ic_oerrors, 1); 6575 sc->sc_stats.ast_watchdog++; 6576 6577 ath_power_restore_power_state(sc); 6578 } 6579 6580 /* 6581 * We can't hold the lock across the ath_reset() call. 6582 * 6583 * And since this routine can't hold a lock and sleep, 6584 * do the reset deferred. 6585 */ 6586 if (do_reset) { 6587 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6588 } 6589 6590 callout_schedule(&sc->sc_wd_ch, hz); 6591 } 6592 6593 static void 6594 ath_parent(struct ieee80211com *ic) 6595 { 6596 struct ath_softc *sc = ic->ic_softc; 6597 int error = EDOOFUS; 6598 6599 ATH_LOCK(sc); 6600 if (ic->ic_nrunning > 0) { 6601 /* 6602 * To avoid rescanning another access point, 6603 * do not call ath_init() here. Instead, 6604 * only reflect promisc mode settings. 6605 */ 6606 if (sc->sc_running) { 6607 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6608 ath_mode_init(sc); 6609 ath_power_restore_power_state(sc); 6610 } else if (!sc->sc_invalid) { 6611 /* 6612 * Beware of being called during attach/detach 6613 * to reset promiscuous mode. In that case we 6614 * will still be marked UP but not RUNNING. 6615 * However trying to re-init the interface 6616 * is the wrong thing to do as we've already 6617 * torn down much of our state. There's 6618 * probably a better way to deal with this. 6619 */ 6620 error = ath_init(sc); 6621 } 6622 } else { 6623 ath_stop(sc); 6624 if (!sc->sc_invalid) 6625 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6626 } 6627 ATH_UNLOCK(sc); 6628 6629 if (error == 0) { 6630 #ifdef ATH_TX99_DIAG 6631 if (sc->sc_tx99 != NULL) 6632 sc->sc_tx99->start(sc->sc_tx99); 6633 else 6634 #endif 6635 ieee80211_start_all(ic); 6636 } 6637 } 6638 6639 /* 6640 * Announce various information on device/driver attach. 6641 */ 6642 static void 6643 ath_announce(struct ath_softc *sc) 6644 { 6645 struct ath_hal *ah = sc->sc_ah; 6646 6647 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6648 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6649 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6650 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6651 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6652 if (bootverbose) { 6653 int i; 6654 for (i = 0; i <= WME_AC_VO; i++) { 6655 struct ath_txq *txq = sc->sc_ac2q[i]; 6656 device_printf(sc->sc_dev, 6657 "Use hw queue %u for %s traffic\n", 6658 txq->axq_qnum, ieee80211_wme_acnames[i]); 6659 } 6660 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6661 sc->sc_cabq->axq_qnum); 6662 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6663 sc->sc_bhalq); 6664 } 6665 if (ath_rxbuf != ATH_RXBUF) 6666 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6667 if (ath_txbuf != ATH_TXBUF) 6668 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6669 if (sc->sc_mcastkey && bootverbose) 6670 device_printf(sc->sc_dev, "using multicast key search\n"); 6671 } 6672 6673 static void 6674 ath_dfs_tasklet(void *p, int npending) 6675 { 6676 struct ath_softc *sc = (struct ath_softc *) p; 6677 struct ieee80211com *ic = &sc->sc_ic; 6678 6679 /* 6680 * If previous processing has found a radar event, 6681 * signal this to the net80211 layer to begin DFS 6682 * processing. 6683 */ 6684 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6685 /* DFS event found, initiate channel change */ 6686 6687 /* 6688 * XXX TODO: immediately disable ACK processing 6689 * on the current channel. This would be done 6690 * by setting AR_DIAG_ACK_DIS (AR5212; may be 6691 * different for others) until we are out of 6692 * CAC. 6693 */ 6694 6695 /* 6696 * XXX doesn't currently tell us whether the event 6697 * XXX was found in the primary or extension 6698 * XXX channel! 6699 */ 6700 IEEE80211_LOCK(ic); 6701 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6702 IEEE80211_UNLOCK(ic); 6703 } 6704 } 6705 6706 /* 6707 * Enable/disable power save. This must be called with 6708 * no TX driver locks currently held, so it should only 6709 * be called from the RX path (which doesn't hold any 6710 * TX driver locks.) 6711 */ 6712 static void 6713 ath_node_powersave(struct ieee80211_node *ni, int enable) 6714 { 6715 #ifdef ATH_SW_PSQ 6716 struct ath_node *an = ATH_NODE(ni); 6717 struct ieee80211com *ic = ni->ni_ic; 6718 struct ath_softc *sc = ic->ic_softc; 6719 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6720 6721 /* XXX and no TXQ locks should be held here */ 6722 6723 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6724 __func__, 6725 ni->ni_macaddr, 6726 ":", 6727 !! enable); 6728 6729 /* Suspend or resume software queue handling */ 6730 if (enable) 6731 ath_tx_node_sleep(sc, an); 6732 else 6733 ath_tx_node_wakeup(sc, an); 6734 6735 /* Update net80211 state */ 6736 avp->av_node_ps(ni, enable); 6737 #else 6738 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6739 6740 /* Update net80211 state */ 6741 avp->av_node_ps(ni, enable); 6742 #endif/* ATH_SW_PSQ */ 6743 } 6744 6745 /* 6746 * Notification from net80211 that the powersave queue state has 6747 * changed. 6748 * 6749 * Since the software queue also may have some frames: 6750 * 6751 * + if the node software queue has frames and the TID state 6752 * is 0, we set the TIM; 6753 * + if the node and the stack are both empty, we clear the TIM bit. 6754 * + If the stack tries to set the bit, always set it. 6755 * + If the stack tries to clear the bit, only clear it if the 6756 * software queue in question is also cleared. 6757 * 6758 * TODO: this is called during node teardown; so let's ensure this 6759 * is all correctly handled and that the TIM bit is cleared. 6760 * It may be that the node flush is called _AFTER_ the net80211 6761 * stack clears the TIM. 6762 * 6763 * Here is the racy part. Since it's possible >1 concurrent, 6764 * overlapping TXes will appear complete with a TX completion in 6765 * another thread, it's possible that the concurrent TIM calls will 6766 * clash. We can't hold the node lock here because setting the 6767 * TIM grabs the net80211 comlock and this may cause a LOR. 6768 * The solution is either to totally serialise _everything_ at 6769 * this point (ie, all TX, completion and any reset/flush go into 6770 * one taskqueue) or a new "ath TIM lock" needs to be created that 6771 * just wraps the driver state change and this call to avp->av_set_tim(). 6772 * 6773 * The same race exists in the net80211 power save queue handling 6774 * as well. Since multiple transmitting threads may queue frames 6775 * into the driver, as well as ps-poll and the driver transmitting 6776 * frames (and thus clearing the psq), it's quite possible that 6777 * a packet entering the PSQ and a ps-poll being handled will 6778 * race, causing the TIM to be cleared and not re-set. 6779 */ 6780 static int 6781 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6782 { 6783 #ifdef ATH_SW_PSQ 6784 struct ieee80211com *ic = ni->ni_ic; 6785 struct ath_softc *sc = ic->ic_softc; 6786 struct ath_node *an = ATH_NODE(ni); 6787 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6788 int changed = 0; 6789 6790 ATH_TX_LOCK(sc); 6791 an->an_stack_psq = enable; 6792 6793 /* 6794 * This will get called for all operating modes, 6795 * even if avp->av_set_tim is unset. 6796 * It's currently set for hostap/ibss modes; but 6797 * the same infrastructure is used for both STA 6798 * and AP/IBSS node power save. 6799 */ 6800 if (avp->av_set_tim == NULL) { 6801 ATH_TX_UNLOCK(sc); 6802 return (0); 6803 } 6804 6805 /* 6806 * If setting the bit, always set it here. 6807 * If clearing the bit, only clear it if the 6808 * software queue is also empty. 6809 * 6810 * If the node has left power save, just clear the TIM 6811 * bit regardless of the state of the power save queue. 6812 * 6813 * XXX TODO: although atomics are used, it's quite possible 6814 * that a race will occur between this and setting/clearing 6815 * in another thread. TX completion will occur always in 6816 * one thread, however setting/clearing the TIM bit can come 6817 * from a variety of different process contexts! 6818 */ 6819 if (enable && an->an_tim_set == 1) { 6820 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6821 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6822 __func__, 6823 ni->ni_macaddr, 6824 ":", 6825 enable); 6826 ATH_TX_UNLOCK(sc); 6827 } else if (enable) { 6828 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6829 "%s: %6D: enable=%d, enabling TIM\n", 6830 __func__, 6831 ni->ni_macaddr, 6832 ":", 6833 enable); 6834 an->an_tim_set = 1; 6835 ATH_TX_UNLOCK(sc); 6836 changed = avp->av_set_tim(ni, enable); 6837 } else if (an->an_swq_depth == 0) { 6838 /* disable */ 6839 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6840 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6841 __func__, 6842 ni->ni_macaddr, 6843 ":", 6844 enable); 6845 an->an_tim_set = 0; 6846 ATH_TX_UNLOCK(sc); 6847 changed = avp->av_set_tim(ni, enable); 6848 } else if (! an->an_is_powersave) { 6849 /* 6850 * disable regardless; the node isn't in powersave now 6851 */ 6852 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6853 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6854 __func__, 6855 ni->ni_macaddr, 6856 ":", 6857 enable); 6858 an->an_tim_set = 0; 6859 ATH_TX_UNLOCK(sc); 6860 changed = avp->av_set_tim(ni, enable); 6861 } else { 6862 /* 6863 * psq disable, node is currently in powersave, node 6864 * software queue isn't empty, so don't clear the TIM bit 6865 * for now. 6866 */ 6867 ATH_TX_UNLOCK(sc); 6868 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6869 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6870 __func__, 6871 ni->ni_macaddr, 6872 ":", 6873 enable); 6874 changed = 0; 6875 } 6876 6877 return (changed); 6878 #else 6879 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6880 6881 /* 6882 * Some operating modes don't set av_set_tim(), so don't 6883 * update it here. 6884 */ 6885 if (avp->av_set_tim == NULL) 6886 return (0); 6887 6888 return (avp->av_set_tim(ni, enable)); 6889 #endif /* ATH_SW_PSQ */ 6890 } 6891 6892 /* 6893 * Set or update the TIM from the software queue. 6894 * 6895 * Check the software queue depth before attempting to do lock 6896 * anything; that avoids trying to obtain the lock. Then, 6897 * re-check afterwards to ensure nothing has changed in the 6898 * meantime. 6899 * 6900 * set: This is designed to be called from the TX path, after 6901 * a frame has been queued; to see if the swq > 0. 6902 * 6903 * clear: This is designed to be called from the buffer completion point 6904 * (right now it's ath_tx_default_comp()) where the state of 6905 * a software queue has changed. 6906 * 6907 * It makes sense to place it at buffer free / completion rather 6908 * than after each software queue operation, as there's no real 6909 * point in churning the TIM bit as the last frames in the software 6910 * queue are transmitted. If they fail and we retry them, we'd 6911 * just be setting the TIM bit again anyway. 6912 */ 6913 void 6914 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6915 int enable) 6916 { 6917 #ifdef ATH_SW_PSQ 6918 struct ath_node *an; 6919 struct ath_vap *avp; 6920 6921 /* Don't do this for broadcast/etc frames */ 6922 if (ni == NULL) 6923 return; 6924 6925 an = ATH_NODE(ni); 6926 avp = ATH_VAP(ni->ni_vap); 6927 6928 /* 6929 * And for operating modes without the TIM handler set, let's 6930 * just skip those. 6931 */ 6932 if (avp->av_set_tim == NULL) 6933 return; 6934 6935 ATH_TX_LOCK_ASSERT(sc); 6936 6937 if (enable) { 6938 if (an->an_is_powersave && 6939 an->an_tim_set == 0 && 6940 an->an_swq_depth != 0) { 6941 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6942 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6943 __func__, 6944 ni->ni_macaddr, 6945 ":"); 6946 an->an_tim_set = 1; 6947 (void) avp->av_set_tim(ni, 1); 6948 } 6949 } else { 6950 /* 6951 * Don't bother grabbing the lock unless the queue is empty. 6952 */ 6953 if (an->an_swq_depth != 0) 6954 return; 6955 6956 if (an->an_is_powersave && 6957 an->an_stack_psq == 0 && 6958 an->an_tim_set == 1 && 6959 an->an_swq_depth == 0) { 6960 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6961 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6962 " clear!\n", 6963 __func__, 6964 ni->ni_macaddr, 6965 ":"); 6966 an->an_tim_set = 0; 6967 (void) avp->av_set_tim(ni, 0); 6968 } 6969 } 6970 #else 6971 return; 6972 #endif /* ATH_SW_PSQ */ 6973 } 6974 6975 /* 6976 * Received a ps-poll frame from net80211. 6977 * 6978 * Here we get a chance to serve out a software-queued frame ourselves 6979 * before we punt it to net80211 to transmit us one itself - either 6980 * because there's traffic in the net80211 psq, or a NULL frame to 6981 * indicate there's nothing else. 6982 */ 6983 static void 6984 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6985 { 6986 #ifdef ATH_SW_PSQ 6987 struct ath_node *an; 6988 struct ath_vap *avp; 6989 struct ieee80211com *ic = ni->ni_ic; 6990 struct ath_softc *sc = ic->ic_softc; 6991 int tid; 6992 6993 /* Just paranoia */ 6994 if (ni == NULL) 6995 return; 6996 6997 /* 6998 * Unassociated (temporary node) station. 6999 */ 7000 if (ni->ni_associd == 0) 7001 return; 7002 7003 /* 7004 * We do have an active node, so let's begin looking into it. 7005 */ 7006 an = ATH_NODE(ni); 7007 avp = ATH_VAP(ni->ni_vap); 7008 7009 /* 7010 * For now, we just call the original ps-poll method. 7011 * Once we're ready to flip this on: 7012 * 7013 * + Set leak to 1, as no matter what we're going to have 7014 * to send a frame; 7015 * + Check the software queue and if there's something in it, 7016 * schedule the highest TID thas has traffic from this node. 7017 * Then make sure we schedule the software scheduler to 7018 * run so it picks up said frame. 7019 * 7020 * That way whatever happens, we'll at least send _a_ frame 7021 * to the given node. 7022 * 7023 * Again, yes, it's crappy QoS if the node has multiple 7024 * TIDs worth of traffic - but let's get it working first 7025 * before we optimise it. 7026 * 7027 * Also yes, there's definitely latency here - we're not 7028 * direct dispatching to the hardware in this path (and 7029 * we're likely being called from the packet receive path, 7030 * so going back into TX may be a little hairy!) but again 7031 * I'd like to get this working first before optimising 7032 * turn-around time. 7033 */ 7034 7035 ATH_TX_LOCK(sc); 7036 7037 /* 7038 * Legacy - we're called and the node isn't asleep. 7039 * Immediately punt. 7040 */ 7041 if (! an->an_is_powersave) { 7042 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7043 "%s: %6D: not in powersave?\n", 7044 __func__, 7045 ni->ni_macaddr, 7046 ":"); 7047 ATH_TX_UNLOCK(sc); 7048 avp->av_recv_pspoll(ni, m); 7049 return; 7050 } 7051 7052 /* 7053 * We're in powersave. 7054 * 7055 * Leak a frame. 7056 */ 7057 an->an_leak_count = 1; 7058 7059 /* 7060 * Now, if there's no frames in the node, just punt to 7061 * recv_pspoll. 7062 * 7063 * Don't bother checking if the TIM bit is set, we really 7064 * only care if there are any frames here! 7065 */ 7066 if (an->an_swq_depth == 0) { 7067 ATH_TX_UNLOCK(sc); 7068 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7069 "%s: %6D: SWQ empty; punting to net80211\n", 7070 __func__, 7071 ni->ni_macaddr, 7072 ":"); 7073 avp->av_recv_pspoll(ni, m); 7074 return; 7075 } 7076 7077 /* 7078 * Ok, let's schedule the highest TID that has traffic 7079 * and then schedule something. 7080 */ 7081 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7082 struct ath_tid *atid = &an->an_tid[tid]; 7083 /* 7084 * No frames? Skip. 7085 */ 7086 if (atid->axq_depth == 0) 7087 continue; 7088 ath_tx_tid_sched(sc, atid); 7089 /* 7090 * XXX we could do a direct call to the TXQ 7091 * scheduler code here to optimise latency 7092 * at the expense of a REALLY deep callstack. 7093 */ 7094 ATH_TX_UNLOCK(sc); 7095 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7096 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7097 "%s: %6D: leaking frame to TID %d\n", 7098 __func__, 7099 ni->ni_macaddr, 7100 ":", 7101 tid); 7102 return; 7103 } 7104 7105 ATH_TX_UNLOCK(sc); 7106 7107 /* 7108 * XXX nothing in the TIDs at this point? Eek. 7109 */ 7110 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7111 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7112 __func__, 7113 ni->ni_macaddr, 7114 ":"); 7115 avp->av_recv_pspoll(ni, m); 7116 #else 7117 avp->av_recv_pspoll(ni, m); 7118 #endif /* ATH_SW_PSQ */ 7119 } 7120 7121 MODULE_VERSION(ath_main, 1); 7122 MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */ 7123 MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1); 7124 MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1); 7125 MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1); 7126 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7127 MODULE_DEPEND(ath_main, alq, 1, 1, 1); 7128 #endif 7129