xref: /freebsd/sys/dev/ath/if_ath.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 #include <sys/module.h>
62 
63 #include <machine/bus.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_types.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 #include <net80211/ieee80211_regdomain.h>
75 #ifdef IEEE80211_SUPPORT_SUPERG
76 #include <net80211/ieee80211_superg.h>
77 #endif
78 #ifdef IEEE80211_SUPPORT_TDMA
79 #include <net80211/ieee80211_tdma.h>
80 #endif
81 
82 #include <net/bpf.h>
83 
84 #ifdef INET
85 #include <netinet/in.h>
86 #include <netinet/if_ether.h>
87 #endif
88 
89 #include <dev/ath/if_athvar.h>
90 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
91 #include <dev/ath/ath_hal/ah_diagcodes.h>
92 
93 #include <dev/ath/if_ath_debug.h>
94 #include <dev/ath/if_ath_misc.h>
95 #include <dev/ath/if_ath_tx.h>
96 #include <dev/ath/if_ath_sysctl.h>
97 #include <dev/ath/if_ath_keycache.h>
98 #include <dev/ath/if_athdfs.h>
99 
100 #ifdef ATH_TX99_DIAG
101 #include <dev/ath/ath_tx99/ath_tx99.h>
102 #endif
103 
104 
105 /*
106  * ATH_BCBUF determines the number of vap's that can transmit
107  * beacons and also (currently) the number of vap's that can
108  * have unique mac addresses/bssid.  When staggering beacons
109  * 4 is probably a good max as otherwise the beacons become
110  * very closely spaced and there is limited time for cab q traffic
111  * to go out.  You can burst beacons instead but that is not good
112  * for stations in power save and at some point you really want
113  * another radio (and channel).
114  *
115  * The limit on the number of mac addresses is tied to our use of
116  * the U/L bit and tracking addresses in a byte; it would be
117  * worthwhile to allow more for applications like proxy sta.
118  */
119 CTASSERT(ATH_BCBUF <= 8);
120 
121 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
122 		    const char name[IFNAMSIZ], int unit, int opmode,
123 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
124 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
125 static void	ath_vap_delete(struct ieee80211vap *);
126 static void	ath_init(void *);
127 static void	ath_stop_locked(struct ifnet *);
128 static void	ath_stop(struct ifnet *);
129 static void	ath_start(struct ifnet *);
130 static int	ath_reset_vap(struct ieee80211vap *, u_long);
131 static int	ath_media_change(struct ifnet *);
132 static void	ath_watchdog(void *);
133 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134 static void	ath_fatal_proc(void *, int);
135 static void	ath_bmiss_vap(struct ieee80211vap *);
136 static void	ath_bmiss_proc(void *, int);
137 static void	ath_key_update_begin(struct ieee80211vap *);
138 static void	ath_key_update_end(struct ieee80211vap *);
139 static void	ath_update_mcast(struct ifnet *);
140 static void	ath_update_promisc(struct ifnet *);
141 static void	ath_mode_init(struct ath_softc *);
142 static void	ath_setslottime(struct ath_softc *);
143 static void	ath_updateslot(struct ifnet *);
144 static int	ath_beaconq_setup(struct ath_hal *);
145 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
146 static void	ath_beacon_update(struct ieee80211vap *, int item);
147 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
148 static void	ath_beacon_proc(void *, int);
149 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
150 			struct ieee80211vap *);
151 static void	ath_bstuck_proc(void *, int);
152 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
153 static void	ath_beacon_free(struct ath_softc *);
154 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
155 static void	ath_descdma_cleanup(struct ath_softc *sc,
156 			struct ath_descdma *, ath_bufhead *);
157 static int	ath_desc_alloc(struct ath_softc *);
158 static void	ath_desc_free(struct ath_softc *);
159 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
160 			const uint8_t [IEEE80211_ADDR_LEN]);
161 static void	ath_node_free(struct ieee80211_node *);
162 static void	ath_node_getsignal(const struct ieee80211_node *,
163 			int8_t *, int8_t *);
164 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
165 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
166 			int subtype, int rssi, int nf);
167 static void	ath_setdefantenna(struct ath_softc *, u_int);
168 static void	ath_rx_proc(void *, int);
169 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
170 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
171 static int	ath_tx_setup(struct ath_softc *, int, int);
172 static int	ath_wme_update(struct ieee80211com *);
173 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
174 static void	ath_tx_cleanup(struct ath_softc *);
175 static void	ath_tx_proc_q0(void *, int);
176 static void	ath_tx_proc_q0123(void *, int);
177 static void	ath_tx_proc(void *, int);
178 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
179 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
180 static void	ath_draintxq(struct ath_softc *);
181 static void	ath_stoprecv(struct ath_softc *);
182 static int	ath_startrecv(struct ath_softc *);
183 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
184 static void	ath_scan_start(struct ieee80211com *);
185 static void	ath_scan_end(struct ieee80211com *);
186 static void	ath_set_channel(struct ieee80211com *);
187 static void	ath_calibrate(void *);
188 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189 static void	ath_setup_stationkey(struct ieee80211_node *);
190 static void	ath_newassoc(struct ieee80211_node *, int);
191 static int	ath_setregdomain(struct ieee80211com *,
192 		    struct ieee80211_regdomain *, int,
193 		    struct ieee80211_channel []);
194 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
195 		    struct ieee80211_channel []);
196 static int	ath_getchannels(struct ath_softc *);
197 static void	ath_led_event(struct ath_softc *, int);
198 
199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201 
202 static void	ath_announce(struct ath_softc *);
203 
204 static void	ath_dfs_tasklet(void *, int);
205 
206 #ifdef IEEE80211_SUPPORT_TDMA
207 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
208 		    u_int32_t bintval);
209 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
210 		    const struct ieee80211_tdma_state *tdma);
211 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
212 static void	ath_tdma_update(struct ieee80211_node *ni,
213 		    const struct ieee80211_tdma_param *tdma, int);
214 static void	ath_tdma_beacon_send(struct ath_softc *sc,
215 		    struct ieee80211vap *vap);
216 
217 static __inline void
218 ath_hal_setcca(struct ath_hal *ah, int ena)
219 {
220 	/*
221 	 * NB: fill me in; this is not provided by default because disabling
222 	 *     CCA in most locales violates regulatory.
223 	 */
224 }
225 
226 static __inline int
227 ath_hal_getcca(struct ath_hal *ah)
228 {
229 	u_int32_t diag;
230 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
231 		return 1;
232 	return ((diag & 0x500000) == 0);
233 }
234 
235 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
236 #define	TDMA_LPF_LEN		6
237 #define	TDMA_DUMMY_MARKER	0x127
238 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
239 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
240 #define	TDMA_LPF(x, y, len) \
241     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
242 #define	TDMA_SAMPLE(x, y) do {					\
243 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
244 } while (0)
245 #define	TDMA_EP_RND(x,mul) \
246 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
247 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
248 #endif /* IEEE80211_SUPPORT_TDMA */
249 
250 SYSCTL_DECL(_hw_ath);
251 
252 /* XXX validate sysctl values */
253 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
254 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
255 	    0, "long chip calibration interval (secs)");
256 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
257 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
258 	    0, "short chip calibration interval (msecs)");
259 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
260 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
261 	    0, "reset chip calibration results (secs)");
262 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
263 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
264 	    0, "ANI calibration (msecs)");
265 
266 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
267 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
268 	    0, "rx buffers allocated");
269 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
270 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
271 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
272 	    0, "tx buffers allocated");
273 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
274 
275 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
276 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
277 	    0, "max missed beacon xmits before chip reset");
278 
279 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
280 
281 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
282 #define	HAL_MODE_HT40 \
283 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
284 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
285 int
286 ath_attach(u_int16_t devid, struct ath_softc *sc)
287 {
288 	struct ifnet *ifp;
289 	struct ieee80211com *ic;
290 	struct ath_hal *ah = NULL;
291 	HAL_STATUS status;
292 	int error = 0, i;
293 	u_int wmodes;
294 	uint8_t macaddr[IEEE80211_ADDR_LEN];
295 
296 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
297 
298 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
299 	if (ifp == NULL) {
300 		device_printf(sc->sc_dev, "can not if_alloc()\n");
301 		error = ENOSPC;
302 		goto bad;
303 	}
304 	ic = ifp->if_l2com;
305 
306 	/* set these up early for if_printf use */
307 	if_initname(ifp, device_get_name(sc->sc_dev),
308 		device_get_unit(sc->sc_dev));
309 
310 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status);
311 	if (ah == NULL) {
312 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
313 			status);
314 		error = ENXIO;
315 		goto bad;
316 	}
317 	sc->sc_ah = ah;
318 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
319 #ifdef	ATH_DEBUG
320 	sc->sc_debug = ath_debug;
321 #endif
322 
323 	/*
324 	 * Check if the MAC has multi-rate retry support.
325 	 * We do this by trying to setup a fake extended
326 	 * descriptor.  MAC's that don't have support will
327 	 * return false w/o doing anything.  MAC's that do
328 	 * support it will return true w/o doing anything.
329 	 */
330 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
331 
332 	/*
333 	 * Check if the device has hardware counters for PHY
334 	 * errors.  If so we need to enable the MIB interrupt
335 	 * so we can act on stat triggers.
336 	 */
337 	if (ath_hal_hwphycounters(ah))
338 		sc->sc_needmib = 1;
339 
340 	/*
341 	 * Get the hardware key cache size.
342 	 */
343 	sc->sc_keymax = ath_hal_keycachesize(ah);
344 	if (sc->sc_keymax > ATH_KEYMAX) {
345 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
346 			ATH_KEYMAX, sc->sc_keymax);
347 		sc->sc_keymax = ATH_KEYMAX;
348 	}
349 	/*
350 	 * Reset the key cache since some parts do not
351 	 * reset the contents on initial power up.
352 	 */
353 	for (i = 0; i < sc->sc_keymax; i++)
354 		ath_hal_keyreset(ah, i);
355 
356 	/*
357 	 * Collect the default channel list.
358 	 */
359 	error = ath_getchannels(sc);
360 	if (error != 0)
361 		goto bad;
362 
363 	/*
364 	 * Setup rate tables for all potential media types.
365 	 */
366 	ath_rate_setup(sc, IEEE80211_MODE_11A);
367 	ath_rate_setup(sc, IEEE80211_MODE_11B);
368 	ath_rate_setup(sc, IEEE80211_MODE_11G);
369 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
370 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
371 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
372 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
373 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
374 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
375 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
376 
377 	/* NB: setup here so ath_rate_update is happy */
378 	ath_setcurmode(sc, IEEE80211_MODE_11A);
379 
380 	/*
381 	 * Allocate tx+rx descriptors and populate the lists.
382 	 */
383 	error = ath_desc_alloc(sc);
384 	if (error != 0) {
385 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
386 		goto bad;
387 	}
388 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
389 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
390 
391 	ATH_TXBUF_LOCK_INIT(sc);
392 
393 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
394 		taskqueue_thread_enqueue, &sc->sc_tq);
395 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
396 		"%s taskq", ifp->if_xname);
397 
398 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
399 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
400 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
401 
402 	/*
403 	 * Allocate hardware transmit queues: one queue for
404 	 * beacon frames and one data queue for each QoS
405 	 * priority.  Note that the hal handles resetting
406 	 * these queues at the needed time.
407 	 *
408 	 * XXX PS-Poll
409 	 */
410 	sc->sc_bhalq = ath_beaconq_setup(ah);
411 	if (sc->sc_bhalq == (u_int) -1) {
412 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
413 		error = EIO;
414 		goto bad2;
415 	}
416 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
417 	if (sc->sc_cabq == NULL) {
418 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
419 		error = EIO;
420 		goto bad2;
421 	}
422 	/* NB: insure BK queue is the lowest priority h/w queue */
423 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
424 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
425 			ieee80211_wme_acnames[WME_AC_BK]);
426 		error = EIO;
427 		goto bad2;
428 	}
429 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
430 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
431 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
432 		/*
433 		 * Not enough hardware tx queues to properly do WME;
434 		 * just punt and assign them all to the same h/w queue.
435 		 * We could do a better job of this if, for example,
436 		 * we allocate queues when we switch from station to
437 		 * AP mode.
438 		 */
439 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
440 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
441 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
442 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
443 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
444 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
445 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
446 	}
447 
448 	/*
449 	 * Special case certain configurations.  Note the
450 	 * CAB queue is handled by these specially so don't
451 	 * include them when checking the txq setup mask.
452 	 */
453 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
454 	case 0x01:
455 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
456 		break;
457 	case 0x0f:
458 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
459 		break;
460 	default:
461 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
462 		break;
463 	}
464 
465 	/*
466 	 * Setup rate control.  Some rate control modules
467 	 * call back to change the anntena state so expose
468 	 * the necessary entry points.
469 	 * XXX maybe belongs in struct ath_ratectrl?
470 	 */
471 	sc->sc_setdefantenna = ath_setdefantenna;
472 	sc->sc_rc = ath_rate_attach(sc);
473 	if (sc->sc_rc == NULL) {
474 		error = EIO;
475 		goto bad2;
476 	}
477 
478 	/* Attach DFS module */
479 	if (! ath_dfs_attach(sc)) {
480 		device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__);
481 		error = EIO;
482 		goto bad2;
483 	}
484 
485 	/* Start DFS processing tasklet */
486 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
487 
488 	sc->sc_blinking = 0;
489 	sc->sc_ledstate = 1;
490 	sc->sc_ledon = 0;			/* low true */
491 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
492 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
493 	/*
494 	 * Auto-enable soft led processing for IBM cards and for
495 	 * 5211 minipci cards.  Users can also manually enable/disable
496 	 * support with a sysctl.
497 	 */
498 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
499 	if (sc->sc_softled) {
500 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
501 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
502 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
503 	}
504 
505 	ifp->if_softc = sc;
506 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
507 	ifp->if_start = ath_start;
508 	ifp->if_ioctl = ath_ioctl;
509 	ifp->if_init = ath_init;
510 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
511 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
512 	IFQ_SET_READY(&ifp->if_snd);
513 
514 	ic->ic_ifp = ifp;
515 	/* XXX not right but it's not used anywhere important */
516 	ic->ic_phytype = IEEE80211_T_OFDM;
517 	ic->ic_opmode = IEEE80211_M_STA;
518 	ic->ic_caps =
519 		  IEEE80211_C_STA		/* station mode */
520 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
521 		| IEEE80211_C_HOSTAP		/* hostap mode */
522 		| IEEE80211_C_MONITOR		/* monitor mode */
523 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
524 		| IEEE80211_C_WDS		/* 4-address traffic works */
525 		| IEEE80211_C_MBSS		/* mesh point link mode */
526 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
527 		| IEEE80211_C_SHSLOT		/* short slot time supported */
528 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
529 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
530 		| IEEE80211_C_TXFRAG		/* handle tx frags */
531 		;
532 	/*
533 	 * Query the hal to figure out h/w crypto support.
534 	 */
535 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
536 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
537 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
538 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
539 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
540 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
541 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
542 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
543 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
544 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
545 		/*
546 		 * Check if h/w does the MIC and/or whether the
547 		 * separate key cache entries are required to
548 		 * handle both tx+rx MIC keys.
549 		 */
550 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
551 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
552 		/*
553 		 * If the h/w supports storing tx+rx MIC keys
554 		 * in one cache slot automatically enable use.
555 		 */
556 		if (ath_hal_hastkipsplit(ah) ||
557 		    !ath_hal_settkipsplit(ah, AH_FALSE))
558 			sc->sc_splitmic = 1;
559 		/*
560 		 * If the h/w can do TKIP MIC together with WME then
561 		 * we use it; otherwise we force the MIC to be done
562 		 * in software by the net80211 layer.
563 		 */
564 		if (ath_hal_haswmetkipmic(ah))
565 			sc->sc_wmetkipmic = 1;
566 	}
567 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
568 	/*
569 	 * Check for multicast key search support.
570 	 */
571 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
572 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
573 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
574 	}
575 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
576 	/*
577 	 * Mark key cache slots associated with global keys
578 	 * as in use.  If we knew TKIP was not to be used we
579 	 * could leave the +32, +64, and +32+64 slots free.
580 	 */
581 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
582 		setbit(sc->sc_keymap, i);
583 		setbit(sc->sc_keymap, i+64);
584 		if (sc->sc_splitmic) {
585 			setbit(sc->sc_keymap, i+32);
586 			setbit(sc->sc_keymap, i+32+64);
587 		}
588 	}
589 	/*
590 	 * TPC support can be done either with a global cap or
591 	 * per-packet support.  The latter is not available on
592 	 * all parts.  We're a bit pedantic here as all parts
593 	 * support a global cap.
594 	 */
595 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
596 		ic->ic_caps |= IEEE80211_C_TXPMGT;
597 
598 	/*
599 	 * Mark WME capability only if we have sufficient
600 	 * hardware queues to do proper priority scheduling.
601 	 */
602 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
603 		ic->ic_caps |= IEEE80211_C_WME;
604 	/*
605 	 * Check for misc other capabilities.
606 	 */
607 	if (ath_hal_hasbursting(ah))
608 		ic->ic_caps |= IEEE80211_C_BURST;
609 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
610 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
611 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
612 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
613 	if (ath_hal_hasfastframes(ah))
614 		ic->ic_caps |= IEEE80211_C_FF;
615 	wmodes = ath_hal_getwirelessmodes(ah);
616 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
617 		ic->ic_caps |= IEEE80211_C_TURBOP;
618 #ifdef IEEE80211_SUPPORT_TDMA
619 	if (ath_hal_macversion(ah) > 0x78) {
620 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
621 		ic->ic_tdma_update = ath_tdma_update;
622 	}
623 #endif
624 
625 	/*
626 	 * The if_ath 11n support is completely not ready for normal use.
627 	 * Enabling this option will likely break everything and everything.
628 	 * Don't think of doing that unless you know what you're doing.
629 	 */
630 
631 #ifdef	ATH_ENABLE_11N
632 	/*
633 	 * Query HT capabilities
634 	 */
635 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
636 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
637 		int rxs, txs;
638 
639 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
640 		ic->ic_htcaps = IEEE80211_HTC_HT		/* HT operation */
641 			    | IEEE80211_HTC_AMPDU		/* A-MPDU tx/rx */
642 			    | IEEE80211_HTC_AMSDU		/* A-MSDU tx/rx */
643 			    | IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
644 			    | IEEE80211_HTCAP_SMPS_OFF;		/* SM power save off */
645 			;
646 
647 		/*
648 		 * Enable short-GI for HT20 only if the hardware
649 		 * advertises support.
650 		 * Notably, anything earlier than the AR9287 doesn't.
651 		 */
652 		if ((ath_hal_getcapability(ah,
653 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
654 		    (wmodes & HAL_MODE_HT20)) {
655 			device_printf(sc->sc_dev,
656 			    "[HT] enabling short-GI in 20MHz mode\n");
657 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
658 		}
659 
660 		if (wmodes & HAL_MODE_HT40)
661 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
662 			    |  IEEE80211_HTCAP_SHORTGI40;
663 
664 		/*
665 		 * rx/tx stream is not currently used anywhere; it needs to be taken
666 		 * into account when negotiating which MCS rates it'll receive and
667 		 * what MCS rates are available for TX.
668 		 */
669 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
670 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
671 
672 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
673 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
674 
675 		ic->ic_txstream = txs;
676 		ic->ic_rxstream = rxs;
677 
678 		device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs);
679 	}
680 #endif
681 
682 	/*
683 	 * Indicate we need the 802.11 header padded to a
684 	 * 32-bit boundary for 4-address and QoS frames.
685 	 */
686 	ic->ic_flags |= IEEE80211_F_DATAPAD;
687 
688 	/*
689 	 * Query the hal about antenna support.
690 	 */
691 	sc->sc_defant = ath_hal_getdefantenna(ah);
692 
693 	/*
694 	 * Not all chips have the VEOL support we want to
695 	 * use with IBSS beacons; check here for it.
696 	 */
697 	sc->sc_hasveol = ath_hal_hasveol(ah);
698 
699 	/* get mac address from hardware */
700 	ath_hal_getmac(ah, macaddr);
701 	if (sc->sc_hasbmask)
702 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
703 
704 	/* NB: used to size node table key mapping array */
705 	ic->ic_max_keyix = sc->sc_keymax;
706 	/* call MI attach routine. */
707 	ieee80211_ifattach(ic, macaddr);
708 	ic->ic_setregdomain = ath_setregdomain;
709 	ic->ic_getradiocaps = ath_getradiocaps;
710 	sc->sc_opmode = HAL_M_STA;
711 
712 	/* override default methods */
713 	ic->ic_newassoc = ath_newassoc;
714 	ic->ic_updateslot = ath_updateslot;
715 	ic->ic_wme.wme_update = ath_wme_update;
716 	ic->ic_vap_create = ath_vap_create;
717 	ic->ic_vap_delete = ath_vap_delete;
718 	ic->ic_raw_xmit = ath_raw_xmit;
719 	ic->ic_update_mcast = ath_update_mcast;
720 	ic->ic_update_promisc = ath_update_promisc;
721 	ic->ic_node_alloc = ath_node_alloc;
722 	sc->sc_node_free = ic->ic_node_free;
723 	ic->ic_node_free = ath_node_free;
724 	ic->ic_node_getsignal = ath_node_getsignal;
725 	ic->ic_scan_start = ath_scan_start;
726 	ic->ic_scan_end = ath_scan_end;
727 	ic->ic_set_channel = ath_set_channel;
728 
729 	ieee80211_radiotap_attach(ic,
730 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
731 		ATH_TX_RADIOTAP_PRESENT,
732 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
733 		ATH_RX_RADIOTAP_PRESENT);
734 
735 	/*
736 	 * Setup dynamic sysctl's now that country code and
737 	 * regdomain are available from the hal.
738 	 */
739 	ath_sysctlattach(sc);
740 	ath_sysctl_stats_attach(sc);
741 
742 	if (bootverbose)
743 		ieee80211_announce(ic);
744 	ath_announce(sc);
745 	return 0;
746 bad2:
747 	ath_tx_cleanup(sc);
748 	ath_desc_free(sc);
749 bad:
750 	if (ah)
751 		ath_hal_detach(ah);
752 	if (ifp != NULL)
753 		if_free(ifp);
754 	sc->sc_invalid = 1;
755 	return error;
756 }
757 
758 int
759 ath_detach(struct ath_softc *sc)
760 {
761 	struct ifnet *ifp = sc->sc_ifp;
762 
763 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
764 		__func__, ifp->if_flags);
765 
766 	/*
767 	 * NB: the order of these is important:
768 	 * o stop the chip so no more interrupts will fire
769 	 * o call the 802.11 layer before detaching the hal to
770 	 *   insure callbacks into the driver to delete global
771 	 *   key cache entries can be handled
772 	 * o free the taskqueue which drains any pending tasks
773 	 * o reclaim the tx queue data structures after calling
774 	 *   the 802.11 layer as we'll get called back to reclaim
775 	 *   node state and potentially want to use them
776 	 * o to cleanup the tx queues the hal is called, so detach
777 	 *   it last
778 	 * Other than that, it's straightforward...
779 	 */
780 	ath_stop(ifp);
781 	ieee80211_ifdetach(ifp->if_l2com);
782 	taskqueue_free(sc->sc_tq);
783 #ifdef ATH_TX99_DIAG
784 	if (sc->sc_tx99 != NULL)
785 		sc->sc_tx99->detach(sc->sc_tx99);
786 #endif
787 	ath_rate_detach(sc->sc_rc);
788 
789 	ath_dfs_detach(sc);
790 	ath_desc_free(sc);
791 	ath_tx_cleanup(sc);
792 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
793 	if_free(ifp);
794 
795 	return 0;
796 }
797 
798 /*
799  * MAC address handling for multiple BSS on the same radio.
800  * The first vap uses the MAC address from the EEPROM.  For
801  * subsequent vap's we set the U/L bit (bit 1) in the MAC
802  * address and use the next six bits as an index.
803  */
804 static void
805 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
806 {
807 	int i;
808 
809 	if (clone && sc->sc_hasbmask) {
810 		/* NB: we only do this if h/w supports multiple bssid */
811 		for (i = 0; i < 8; i++)
812 			if ((sc->sc_bssidmask & (1<<i)) == 0)
813 				break;
814 		if (i != 0)
815 			mac[0] |= (i << 2)|0x2;
816 	} else
817 		i = 0;
818 	sc->sc_bssidmask |= 1<<i;
819 	sc->sc_hwbssidmask[0] &= ~mac[0];
820 	if (i == 0)
821 		sc->sc_nbssid0++;
822 }
823 
824 static void
825 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
826 {
827 	int i = mac[0] >> 2;
828 	uint8_t mask;
829 
830 	if (i != 0 || --sc->sc_nbssid0 == 0) {
831 		sc->sc_bssidmask &= ~(1<<i);
832 		/* recalculate bssid mask from remaining addresses */
833 		mask = 0xff;
834 		for (i = 1; i < 8; i++)
835 			if (sc->sc_bssidmask & (1<<i))
836 				mask &= ~((i<<2)|0x2);
837 		sc->sc_hwbssidmask[0] |= mask;
838 	}
839 }
840 
841 /*
842  * Assign a beacon xmit slot.  We try to space out
843  * assignments so when beacons are staggered the
844  * traffic coming out of the cab q has maximal time
845  * to go out before the next beacon is scheduled.
846  */
847 static int
848 assign_bslot(struct ath_softc *sc)
849 {
850 	u_int slot, free;
851 
852 	free = 0;
853 	for (slot = 0; slot < ATH_BCBUF; slot++)
854 		if (sc->sc_bslot[slot] == NULL) {
855 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
856 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
857 				return slot;
858 			free = slot;
859 			/* NB: keep looking for a double slot */
860 		}
861 	return free;
862 }
863 
864 static struct ieee80211vap *
865 ath_vap_create(struct ieee80211com *ic,
866 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
867 	const uint8_t bssid[IEEE80211_ADDR_LEN],
868 	const uint8_t mac0[IEEE80211_ADDR_LEN])
869 {
870 	struct ath_softc *sc = ic->ic_ifp->if_softc;
871 	struct ath_vap *avp;
872 	struct ieee80211vap *vap;
873 	uint8_t mac[IEEE80211_ADDR_LEN];
874 	int ic_opmode, needbeacon, error;
875 
876 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
877 	    M_80211_VAP, M_WAITOK | M_ZERO);
878 	needbeacon = 0;
879 	IEEE80211_ADDR_COPY(mac, mac0);
880 
881 	ATH_LOCK(sc);
882 	ic_opmode = opmode;		/* default to opmode of new vap */
883 	switch (opmode) {
884 	case IEEE80211_M_STA:
885 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
886 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
887 			goto bad;
888 		}
889 		if (sc->sc_nvaps) {
890 			/*
891 			 * With multiple vaps we must fall back
892 			 * to s/w beacon miss handling.
893 			 */
894 			flags |= IEEE80211_CLONE_NOBEACONS;
895 		}
896 		if (flags & IEEE80211_CLONE_NOBEACONS) {
897 			/*
898 			 * Station mode w/o beacons are implemented w/ AP mode.
899 			 */
900 			ic_opmode = IEEE80211_M_HOSTAP;
901 		}
902 		break;
903 	case IEEE80211_M_IBSS:
904 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
905 			device_printf(sc->sc_dev,
906 			    "only 1 ibss vap supported\n");
907 			goto bad;
908 		}
909 		needbeacon = 1;
910 		break;
911 	case IEEE80211_M_AHDEMO:
912 #ifdef IEEE80211_SUPPORT_TDMA
913 		if (flags & IEEE80211_CLONE_TDMA) {
914 			if (sc->sc_nvaps != 0) {
915 				device_printf(sc->sc_dev,
916 				    "only 1 tdma vap supported\n");
917 				goto bad;
918 			}
919 			needbeacon = 1;
920 			flags |= IEEE80211_CLONE_NOBEACONS;
921 		}
922 		/* fall thru... */
923 #endif
924 	case IEEE80211_M_MONITOR:
925 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
926 			/*
927 			 * Adopt existing mode.  Adding a monitor or ahdemo
928 			 * vap to an existing configuration is of dubious
929 			 * value but should be ok.
930 			 */
931 			/* XXX not right for monitor mode */
932 			ic_opmode = ic->ic_opmode;
933 		}
934 		break;
935 	case IEEE80211_M_HOSTAP:
936 	case IEEE80211_M_MBSS:
937 		needbeacon = 1;
938 		break;
939 	case IEEE80211_M_WDS:
940 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
941 			device_printf(sc->sc_dev,
942 			    "wds not supported in sta mode\n");
943 			goto bad;
944 		}
945 		/*
946 		 * Silently remove any request for a unique
947 		 * bssid; WDS vap's always share the local
948 		 * mac address.
949 		 */
950 		flags &= ~IEEE80211_CLONE_BSSID;
951 		if (sc->sc_nvaps == 0)
952 			ic_opmode = IEEE80211_M_HOSTAP;
953 		else
954 			ic_opmode = ic->ic_opmode;
955 		break;
956 	default:
957 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
958 		goto bad;
959 	}
960 	/*
961 	 * Check that a beacon buffer is available; the code below assumes it.
962 	 */
963 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
964 		device_printf(sc->sc_dev, "no beacon buffer available\n");
965 		goto bad;
966 	}
967 
968 	/* STA, AHDEMO? */
969 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
970 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
971 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
972 	}
973 
974 	vap = &avp->av_vap;
975 	/* XXX can't hold mutex across if_alloc */
976 	ATH_UNLOCK(sc);
977 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
978 	    bssid, mac);
979 	ATH_LOCK(sc);
980 	if (error != 0) {
981 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
982 		    __func__, error);
983 		goto bad2;
984 	}
985 
986 	/* h/w crypto support */
987 	vap->iv_key_alloc = ath_key_alloc;
988 	vap->iv_key_delete = ath_key_delete;
989 	vap->iv_key_set = ath_key_set;
990 	vap->iv_key_update_begin = ath_key_update_begin;
991 	vap->iv_key_update_end = ath_key_update_end;
992 
993 	/* override various methods */
994 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
995 	vap->iv_recv_mgmt = ath_recv_mgmt;
996 	vap->iv_reset = ath_reset_vap;
997 	vap->iv_update_beacon = ath_beacon_update;
998 	avp->av_newstate = vap->iv_newstate;
999 	vap->iv_newstate = ath_newstate;
1000 	avp->av_bmiss = vap->iv_bmiss;
1001 	vap->iv_bmiss = ath_bmiss_vap;
1002 
1003 	/* Set default parameters */
1004 
1005 	/*
1006 	 * Anything earlier than some AR9300 series MACs don't
1007 	 * support a smaller MPDU density.
1008 	 */
1009 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1010 	/*
1011 	 * All NICs can handle the maximum size, however
1012 	 * AR5416 based MACs can only TX aggregates w/ RTS
1013 	 * protection when the total aggregate size is <= 8k.
1014 	 * However, for now that's enforced by the TX path.
1015 	 */
1016 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1017 
1018 	avp->av_bslot = -1;
1019 	if (needbeacon) {
1020 		/*
1021 		 * Allocate beacon state and setup the q for buffered
1022 		 * multicast frames.  We know a beacon buffer is
1023 		 * available because we checked above.
1024 		 */
1025 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1026 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1027 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1028 			/*
1029 			 * Assign the vap to a beacon xmit slot.  As above
1030 			 * this cannot fail to find a free one.
1031 			 */
1032 			avp->av_bslot = assign_bslot(sc);
1033 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1034 			    ("beacon slot %u not empty", avp->av_bslot));
1035 			sc->sc_bslot[avp->av_bslot] = vap;
1036 			sc->sc_nbcnvaps++;
1037 		}
1038 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1039 			/*
1040 			 * Multple vaps are to transmit beacons and we
1041 			 * have h/w support for TSF adjusting; enable
1042 			 * use of staggered beacons.
1043 			 */
1044 			sc->sc_stagbeacons = 1;
1045 		}
1046 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1047 	}
1048 
1049 	ic->ic_opmode = ic_opmode;
1050 	if (opmode != IEEE80211_M_WDS) {
1051 		sc->sc_nvaps++;
1052 		if (opmode == IEEE80211_M_STA)
1053 			sc->sc_nstavaps++;
1054 		if (opmode == IEEE80211_M_MBSS)
1055 			sc->sc_nmeshvaps++;
1056 	}
1057 	switch (ic_opmode) {
1058 	case IEEE80211_M_IBSS:
1059 		sc->sc_opmode = HAL_M_IBSS;
1060 		break;
1061 	case IEEE80211_M_STA:
1062 		sc->sc_opmode = HAL_M_STA;
1063 		break;
1064 	case IEEE80211_M_AHDEMO:
1065 #ifdef IEEE80211_SUPPORT_TDMA
1066 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1067 			sc->sc_tdma = 1;
1068 			/* NB: disable tsf adjust */
1069 			sc->sc_stagbeacons = 0;
1070 		}
1071 		/*
1072 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1073 		 * just ap mode.
1074 		 */
1075 		/* fall thru... */
1076 #endif
1077 	case IEEE80211_M_HOSTAP:
1078 	case IEEE80211_M_MBSS:
1079 		sc->sc_opmode = HAL_M_HOSTAP;
1080 		break;
1081 	case IEEE80211_M_MONITOR:
1082 		sc->sc_opmode = HAL_M_MONITOR;
1083 		break;
1084 	default:
1085 		/* XXX should not happen */
1086 		break;
1087 	}
1088 	if (sc->sc_hastsfadd) {
1089 		/*
1090 		 * Configure whether or not TSF adjust should be done.
1091 		 */
1092 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1093 	}
1094 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1095 		/*
1096 		 * Enable s/w beacon miss handling.
1097 		 */
1098 		sc->sc_swbmiss = 1;
1099 	}
1100 	ATH_UNLOCK(sc);
1101 
1102 	/* complete setup */
1103 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1104 	return vap;
1105 bad2:
1106 	reclaim_address(sc, mac);
1107 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1108 bad:
1109 	free(avp, M_80211_VAP);
1110 	ATH_UNLOCK(sc);
1111 	return NULL;
1112 }
1113 
1114 static void
1115 ath_vap_delete(struct ieee80211vap *vap)
1116 {
1117 	struct ieee80211com *ic = vap->iv_ic;
1118 	struct ifnet *ifp = ic->ic_ifp;
1119 	struct ath_softc *sc = ifp->if_softc;
1120 	struct ath_hal *ah = sc->sc_ah;
1121 	struct ath_vap *avp = ATH_VAP(vap);
1122 
1123 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1124 		/*
1125 		 * Quiesce the hardware while we remove the vap.  In
1126 		 * particular we need to reclaim all references to
1127 		 * the vap state by any frames pending on the tx queues.
1128 		 */
1129 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1130 		ath_draintxq(sc);		/* stop xmit side */
1131 		ath_stoprecv(sc);		/* stop recv side */
1132 	}
1133 
1134 	ieee80211_vap_detach(vap);
1135 	ATH_LOCK(sc);
1136 	/*
1137 	 * Reclaim beacon state.  Note this must be done before
1138 	 * the vap instance is reclaimed as we may have a reference
1139 	 * to it in the buffer for the beacon frame.
1140 	 */
1141 	if (avp->av_bcbuf != NULL) {
1142 		if (avp->av_bslot != -1) {
1143 			sc->sc_bslot[avp->av_bslot] = NULL;
1144 			sc->sc_nbcnvaps--;
1145 		}
1146 		ath_beacon_return(sc, avp->av_bcbuf);
1147 		avp->av_bcbuf = NULL;
1148 		if (sc->sc_nbcnvaps == 0) {
1149 			sc->sc_stagbeacons = 0;
1150 			if (sc->sc_hastsfadd)
1151 				ath_hal_settsfadjust(sc->sc_ah, 0);
1152 		}
1153 		/*
1154 		 * Reclaim any pending mcast frames for the vap.
1155 		 */
1156 		ath_tx_draintxq(sc, &avp->av_mcastq);
1157 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1158 	}
1159 	/*
1160 	 * Update bookkeeping.
1161 	 */
1162 	if (vap->iv_opmode == IEEE80211_M_STA) {
1163 		sc->sc_nstavaps--;
1164 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1165 			sc->sc_swbmiss = 0;
1166 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1167 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1168 		reclaim_address(sc, vap->iv_myaddr);
1169 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1170 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1171 			sc->sc_nmeshvaps--;
1172 	}
1173 	if (vap->iv_opmode != IEEE80211_M_WDS)
1174 		sc->sc_nvaps--;
1175 #ifdef IEEE80211_SUPPORT_TDMA
1176 	/* TDMA operation ceases when the last vap is destroyed */
1177 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1178 		sc->sc_tdma = 0;
1179 		sc->sc_swbmiss = 0;
1180 	}
1181 #endif
1182 	ATH_UNLOCK(sc);
1183 	free(avp, M_80211_VAP);
1184 
1185 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1186 		/*
1187 		 * Restart rx+tx machines if still running (RUNNING will
1188 		 * be reset if we just destroyed the last vap).
1189 		 */
1190 		if (ath_startrecv(sc) != 0)
1191 			if_printf(ifp, "%s: unable to restart recv logic\n",
1192 			    __func__);
1193 		if (sc->sc_beacons) {		/* restart beacons */
1194 #ifdef IEEE80211_SUPPORT_TDMA
1195 			if (sc->sc_tdma)
1196 				ath_tdma_config(sc, NULL);
1197 			else
1198 #endif
1199 				ath_beacon_config(sc, NULL);
1200 		}
1201 		ath_hal_intrset(ah, sc->sc_imask);
1202 	}
1203 }
1204 
1205 void
1206 ath_suspend(struct ath_softc *sc)
1207 {
1208 	struct ifnet *ifp = sc->sc_ifp;
1209 	struct ieee80211com *ic = ifp->if_l2com;
1210 
1211 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1212 		__func__, ifp->if_flags);
1213 
1214 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1215 	if (ic->ic_opmode == IEEE80211_M_STA)
1216 		ath_stop(ifp);
1217 	else
1218 		ieee80211_suspend_all(ic);
1219 	/*
1220 	 * NB: don't worry about putting the chip in low power
1221 	 * mode; pci will power off our socket on suspend and
1222 	 * CardBus detaches the device.
1223 	 */
1224 }
1225 
1226 /*
1227  * Reset the key cache since some parts do not reset the
1228  * contents on resume.  First we clear all entries, then
1229  * re-load keys that the 802.11 layer assumes are setup
1230  * in h/w.
1231  */
1232 static void
1233 ath_reset_keycache(struct ath_softc *sc)
1234 {
1235 	struct ifnet *ifp = sc->sc_ifp;
1236 	struct ieee80211com *ic = ifp->if_l2com;
1237 	struct ath_hal *ah = sc->sc_ah;
1238 	int i;
1239 
1240 	for (i = 0; i < sc->sc_keymax; i++)
1241 		ath_hal_keyreset(ah, i);
1242 	ieee80211_crypto_reload_keys(ic);
1243 }
1244 
1245 void
1246 ath_resume(struct ath_softc *sc)
1247 {
1248 	struct ifnet *ifp = sc->sc_ifp;
1249 	struct ieee80211com *ic = ifp->if_l2com;
1250 	struct ath_hal *ah = sc->sc_ah;
1251 	HAL_STATUS status;
1252 
1253 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1254 		__func__, ifp->if_flags);
1255 
1256 	/*
1257 	 * Must reset the chip before we reload the
1258 	 * keycache as we were powered down on suspend.
1259 	 */
1260 	ath_hal_reset(ah, sc->sc_opmode,
1261 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1262 	    AH_FALSE, &status);
1263 	ath_reset_keycache(sc);
1264 
1265 	/* Let DFS at it in case it's a DFS channel */
1266 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1267 
1268 	if (sc->sc_resume_up) {
1269 		if (ic->ic_opmode == IEEE80211_M_STA) {
1270 			ath_init(sc);
1271 			/*
1272 			 * Program the beacon registers using the last rx'd
1273 			 * beacon frame and enable sync on the next beacon
1274 			 * we see.  This should handle the case where we
1275 			 * wakeup and find the same AP and also the case where
1276 			 * we wakeup and need to roam.  For the latter we
1277 			 * should get bmiss events that trigger a roam.
1278 			 */
1279 			ath_beacon_config(sc, NULL);
1280 			sc->sc_syncbeacon = 1;
1281 		} else
1282 			ieee80211_resume_all(ic);
1283 	}
1284 	if (sc->sc_softled) {
1285 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1286 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1287 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1288 	}
1289 }
1290 
1291 void
1292 ath_shutdown(struct ath_softc *sc)
1293 {
1294 	struct ifnet *ifp = sc->sc_ifp;
1295 
1296 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1297 		__func__, ifp->if_flags);
1298 
1299 	ath_stop(ifp);
1300 	/* NB: no point powering down chip as we're about to reboot */
1301 }
1302 
1303 /*
1304  * Interrupt handler.  Most of the actual processing is deferred.
1305  */
1306 void
1307 ath_intr(void *arg)
1308 {
1309 	struct ath_softc *sc = arg;
1310 	struct ifnet *ifp = sc->sc_ifp;
1311 	struct ath_hal *ah = sc->sc_ah;
1312 	HAL_INT status = 0;
1313 
1314 	if (sc->sc_invalid) {
1315 		/*
1316 		 * The hardware is not ready/present, don't touch anything.
1317 		 * Note this can happen early on if the IRQ is shared.
1318 		 */
1319 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1320 		return;
1321 	}
1322 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1323 		return;
1324 	if ((ifp->if_flags & IFF_UP) == 0 ||
1325 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1326 		HAL_INT status;
1327 
1328 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1329 			__func__, ifp->if_flags);
1330 		ath_hal_getisr(ah, &status);	/* clear ISR */
1331 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1332 		return;
1333 	}
1334 	/*
1335 	 * Figure out the reason(s) for the interrupt.  Note
1336 	 * that the hal returns a pseudo-ISR that may include
1337 	 * bits we haven't explicitly enabled so we mask the
1338 	 * value to insure we only process bits we requested.
1339 	 */
1340 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1341 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1342 	status &= sc->sc_imask;			/* discard unasked for bits */
1343 
1344 	/* Short-circuit un-handled interrupts */
1345 	if (status == 0x0)
1346 		return;
1347 
1348 	if (status & HAL_INT_FATAL) {
1349 		sc->sc_stats.ast_hardware++;
1350 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1351 		ath_fatal_proc(sc, 0);
1352 	} else {
1353 		if (status & HAL_INT_SWBA) {
1354 			/*
1355 			 * Software beacon alert--time to send a beacon.
1356 			 * Handle beacon transmission directly; deferring
1357 			 * this is too slow to meet timing constraints
1358 			 * under load.
1359 			 */
1360 #ifdef IEEE80211_SUPPORT_TDMA
1361 			if (sc->sc_tdma) {
1362 				if (sc->sc_tdmaswba == 0) {
1363 					struct ieee80211com *ic = ifp->if_l2com;
1364 					struct ieee80211vap *vap =
1365 					    TAILQ_FIRST(&ic->ic_vaps);
1366 					ath_tdma_beacon_send(sc, vap);
1367 					sc->sc_tdmaswba =
1368 					    vap->iv_tdma->tdma_bintval;
1369 				} else
1370 					sc->sc_tdmaswba--;
1371 			} else
1372 #endif
1373 			{
1374 				ath_beacon_proc(sc, 0);
1375 #ifdef IEEE80211_SUPPORT_SUPERG
1376 				/*
1377 				 * Schedule the rx taskq in case there's no
1378 				 * traffic so any frames held on the staging
1379 				 * queue are aged and potentially flushed.
1380 				 */
1381 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1382 #endif
1383 			}
1384 		}
1385 		if (status & HAL_INT_RXEOL) {
1386 			/*
1387 			 * NB: the hardware should re-read the link when
1388 			 *     RXE bit is written, but it doesn't work at
1389 			 *     least on older hardware revs.
1390 			 */
1391 			sc->sc_stats.ast_rxeol++;
1392 			sc->sc_rxlink = NULL;
1393 		}
1394 		if (status & HAL_INT_TXURN) {
1395 			sc->sc_stats.ast_txurn++;
1396 			/* bump tx trigger level */
1397 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1398 		}
1399 		if (status & HAL_INT_RX)
1400 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1401 		if (status & HAL_INT_TX)
1402 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1403 		if (status & HAL_INT_BMISS) {
1404 			sc->sc_stats.ast_bmiss++;
1405 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1406 		}
1407 		if (status & HAL_INT_GTT)
1408 			sc->sc_stats.ast_tx_timeout++;
1409 		if (status & HAL_INT_CST)
1410 			sc->sc_stats.ast_tx_cst++;
1411 		if (status & HAL_INT_MIB) {
1412 			sc->sc_stats.ast_mib++;
1413 			/*
1414 			 * Disable interrupts until we service the MIB
1415 			 * interrupt; otherwise it will continue to fire.
1416 			 */
1417 			ath_hal_intrset(ah, 0);
1418 			/*
1419 			 * Let the hal handle the event.  We assume it will
1420 			 * clear whatever condition caused the interrupt.
1421 			 */
1422 			ath_hal_mibevent(ah, &sc->sc_halstats);
1423 			ath_hal_intrset(ah, sc->sc_imask);
1424 		}
1425 		if (status & HAL_INT_RXORN) {
1426 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1427 			sc->sc_stats.ast_rxorn++;
1428 		}
1429 	}
1430 }
1431 
1432 static void
1433 ath_fatal_proc(void *arg, int pending)
1434 {
1435 	struct ath_softc *sc = arg;
1436 	struct ifnet *ifp = sc->sc_ifp;
1437 	u_int32_t *state;
1438 	u_int32_t len;
1439 	void *sp;
1440 
1441 	if_printf(ifp, "hardware error; resetting\n");
1442 	/*
1443 	 * Fatal errors are unrecoverable.  Typically these
1444 	 * are caused by DMA errors.  Collect h/w state from
1445 	 * the hal so we can diagnose what's going on.
1446 	 */
1447 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1448 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1449 		state = sp;
1450 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1451 		    state[0], state[1] , state[2], state[3],
1452 		    state[4], state[5]);
1453 	}
1454 	ath_reset(ifp);
1455 }
1456 
1457 static void
1458 ath_bmiss_vap(struct ieee80211vap *vap)
1459 {
1460 	/*
1461 	 * Workaround phantom bmiss interrupts by sanity-checking
1462 	 * the time of our last rx'd frame.  If it is within the
1463 	 * beacon miss interval then ignore the interrupt.  If it's
1464 	 * truly a bmiss we'll get another interrupt soon and that'll
1465 	 * be dispatched up for processing.  Note this applies only
1466 	 * for h/w beacon miss events.
1467 	 */
1468 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1469 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1470 		struct ath_softc *sc = ifp->if_softc;
1471 		u_int64_t lastrx = sc->sc_lastrx;
1472 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1473 		u_int bmisstimeout =
1474 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1475 
1476 		DPRINTF(sc, ATH_DEBUG_BEACON,
1477 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1478 		    __func__, (unsigned long long) tsf,
1479 		    (unsigned long long)(tsf - lastrx),
1480 		    (unsigned long long) lastrx, bmisstimeout);
1481 
1482 		if (tsf - lastrx <= bmisstimeout) {
1483 			sc->sc_stats.ast_bmiss_phantom++;
1484 			return;
1485 		}
1486 	}
1487 	ATH_VAP(vap)->av_bmiss(vap);
1488 }
1489 
1490 static int
1491 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1492 {
1493 	uint32_t rsize;
1494 	void *sp;
1495 
1496 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1497 		return 0;
1498 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1499 	*hangs = *(uint32_t *)sp;
1500 	return 1;
1501 }
1502 
1503 static void
1504 ath_bmiss_proc(void *arg, int pending)
1505 {
1506 	struct ath_softc *sc = arg;
1507 	struct ifnet *ifp = sc->sc_ifp;
1508 	uint32_t hangs;
1509 
1510 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1511 
1512 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1513 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1514 		ath_reset(ifp);
1515 	} else
1516 		ieee80211_beacon_miss(ifp->if_l2com);
1517 }
1518 
1519 /*
1520  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1521  * calcs together with WME.  If necessary disable the crypto
1522  * hardware and mark the 802.11 state so keys will be setup
1523  * with the MIC work done in software.
1524  */
1525 static void
1526 ath_settkipmic(struct ath_softc *sc)
1527 {
1528 	struct ifnet *ifp = sc->sc_ifp;
1529 	struct ieee80211com *ic = ifp->if_l2com;
1530 
1531 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1532 		if (ic->ic_flags & IEEE80211_F_WME) {
1533 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1534 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1535 		} else {
1536 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1537 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1538 		}
1539 	}
1540 }
1541 
1542 static void
1543 ath_init(void *arg)
1544 {
1545 	struct ath_softc *sc = (struct ath_softc *) arg;
1546 	struct ifnet *ifp = sc->sc_ifp;
1547 	struct ieee80211com *ic = ifp->if_l2com;
1548 	struct ath_hal *ah = sc->sc_ah;
1549 	HAL_STATUS status;
1550 
1551 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1552 		__func__, ifp->if_flags);
1553 
1554 	ATH_LOCK(sc);
1555 	/*
1556 	 * Stop anything previously setup.  This is safe
1557 	 * whether this is the first time through or not.
1558 	 */
1559 	ath_stop_locked(ifp);
1560 
1561 	/*
1562 	 * The basic interface to setting the hardware in a good
1563 	 * state is ``reset''.  On return the hardware is known to
1564 	 * be powered up and with interrupts disabled.  This must
1565 	 * be followed by initialization of the appropriate bits
1566 	 * and then setup of the interrupt mask.
1567 	 */
1568 	ath_settkipmic(sc);
1569 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1570 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1571 			status);
1572 		ATH_UNLOCK(sc);
1573 		return;
1574 	}
1575 	ath_chan_change(sc, ic->ic_curchan);
1576 
1577 	/* Let DFS at it in case it's a DFS channel */
1578 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1579 
1580 	/*
1581 	 * Likewise this is set during reset so update
1582 	 * state cached in the driver.
1583 	 */
1584 	sc->sc_diversity = ath_hal_getdiversity(ah);
1585 	sc->sc_lastlongcal = 0;
1586 	sc->sc_resetcal = 1;
1587 	sc->sc_lastcalreset = 0;
1588 	sc->sc_lastani = 0;
1589 	sc->sc_lastshortcal = 0;
1590 	sc->sc_doresetcal = AH_FALSE;
1591 
1592 	/*
1593 	 * Setup the hardware after reset: the key cache
1594 	 * is filled as needed and the receive engine is
1595 	 * set going.  Frame transmit is handled entirely
1596 	 * in the frame output path; there's nothing to do
1597 	 * here except setup the interrupt mask.
1598 	 */
1599 	if (ath_startrecv(sc) != 0) {
1600 		if_printf(ifp, "unable to start recv logic\n");
1601 		ATH_UNLOCK(sc);
1602 		return;
1603 	}
1604 
1605 	/*
1606 	 * Enable interrupts.
1607 	 */
1608 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1609 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1610 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1611 	/*
1612 	 * Enable MIB interrupts when there are hardware phy counters.
1613 	 * Note we only do this (at the moment) for station mode.
1614 	 */
1615 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1616 		sc->sc_imask |= HAL_INT_MIB;
1617 
1618 	/* Enable global TX timeout and carrier sense timeout if available */
1619 	if (ath_hal_gtxto_supported(ah))
1620 		sc->sc_imask |= HAL_INT_GTT;
1621 
1622 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1623 		__func__, sc->sc_imask);
1624 
1625 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1626 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1627 	ath_hal_intrset(ah, sc->sc_imask);
1628 
1629 	ATH_UNLOCK(sc);
1630 
1631 #ifdef ATH_TX99_DIAG
1632 	if (sc->sc_tx99 != NULL)
1633 		sc->sc_tx99->start(sc->sc_tx99);
1634 	else
1635 #endif
1636 	ieee80211_start_all(ic);		/* start all vap's */
1637 }
1638 
1639 static void
1640 ath_stop_locked(struct ifnet *ifp)
1641 {
1642 	struct ath_softc *sc = ifp->if_softc;
1643 	struct ath_hal *ah = sc->sc_ah;
1644 
1645 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1646 		__func__, sc->sc_invalid, ifp->if_flags);
1647 
1648 	ATH_LOCK_ASSERT(sc);
1649 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1650 		/*
1651 		 * Shutdown the hardware and driver:
1652 		 *    reset 802.11 state machine
1653 		 *    turn off timers
1654 		 *    disable interrupts
1655 		 *    turn off the radio
1656 		 *    clear transmit machinery
1657 		 *    clear receive machinery
1658 		 *    drain and release tx queues
1659 		 *    reclaim beacon resources
1660 		 *    power down hardware
1661 		 *
1662 		 * Note that some of this work is not possible if the
1663 		 * hardware is gone (invalid).
1664 		 */
1665 #ifdef ATH_TX99_DIAG
1666 		if (sc->sc_tx99 != NULL)
1667 			sc->sc_tx99->stop(sc->sc_tx99);
1668 #endif
1669 		callout_stop(&sc->sc_wd_ch);
1670 		sc->sc_wd_timer = 0;
1671 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1672 		if (!sc->sc_invalid) {
1673 			if (sc->sc_softled) {
1674 				callout_stop(&sc->sc_ledtimer);
1675 				ath_hal_gpioset(ah, sc->sc_ledpin,
1676 					!sc->sc_ledon);
1677 				sc->sc_blinking = 0;
1678 			}
1679 			ath_hal_intrset(ah, 0);
1680 		}
1681 		ath_draintxq(sc);
1682 		if (!sc->sc_invalid) {
1683 			ath_stoprecv(sc);
1684 			ath_hal_phydisable(ah);
1685 		} else
1686 			sc->sc_rxlink = NULL;
1687 		ath_beacon_free(sc);	/* XXX not needed */
1688 	}
1689 }
1690 
1691 static void
1692 ath_stop(struct ifnet *ifp)
1693 {
1694 	struct ath_softc *sc = ifp->if_softc;
1695 
1696 	ATH_LOCK(sc);
1697 	ath_stop_locked(ifp);
1698 	ATH_UNLOCK(sc);
1699 }
1700 
1701 /*
1702  * Reset the hardware w/o losing operational state.  This is
1703  * basically a more efficient way of doing ath_stop, ath_init,
1704  * followed by state transitions to the current 802.11
1705  * operational state.  Used to recover from various errors and
1706  * to reset or reload hardware state.
1707  */
1708 int
1709 ath_reset(struct ifnet *ifp)
1710 {
1711 	struct ath_softc *sc = ifp->if_softc;
1712 	struct ieee80211com *ic = ifp->if_l2com;
1713 	struct ath_hal *ah = sc->sc_ah;
1714 	HAL_STATUS status;
1715 
1716 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1717 	ath_draintxq(sc);		/* stop xmit side */
1718 	ath_stoprecv(sc);		/* stop recv side */
1719 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1720 	/* NB: indicate channel change so we do a full reset */
1721 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1722 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1723 			__func__, status);
1724 	sc->sc_diversity = ath_hal_getdiversity(ah);
1725 
1726 	/* Let DFS at it in case it's a DFS channel */
1727 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1728 
1729 	if (ath_startrecv(sc) != 0)	/* restart recv */
1730 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1731 	/*
1732 	 * We may be doing a reset in response to an ioctl
1733 	 * that changes the channel so update any state that
1734 	 * might change as a result.
1735 	 */
1736 	ath_chan_change(sc, ic->ic_curchan);
1737 	if (sc->sc_beacons) {		/* restart beacons */
1738 #ifdef IEEE80211_SUPPORT_TDMA
1739 		if (sc->sc_tdma)
1740 			ath_tdma_config(sc, NULL);
1741 		else
1742 #endif
1743 			ath_beacon_config(sc, NULL);
1744 	}
1745 	ath_hal_intrset(ah, sc->sc_imask);
1746 
1747 	ath_start(ifp);			/* restart xmit */
1748 	return 0;
1749 }
1750 
1751 static int
1752 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1753 {
1754 	struct ieee80211com *ic = vap->iv_ic;
1755 	struct ifnet *ifp = ic->ic_ifp;
1756 	struct ath_softc *sc = ifp->if_softc;
1757 	struct ath_hal *ah = sc->sc_ah;
1758 
1759 	switch (cmd) {
1760 	case IEEE80211_IOC_TXPOWER:
1761 		/*
1762 		 * If per-packet TPC is enabled, then we have nothing
1763 		 * to do; otherwise we need to force the global limit.
1764 		 * All this can happen directly; no need to reset.
1765 		 */
1766 		if (!ath_hal_gettpc(ah))
1767 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1768 		return 0;
1769 	}
1770 	return ath_reset(ifp);
1771 }
1772 
1773 struct ath_buf *
1774 _ath_getbuf_locked(struct ath_softc *sc)
1775 {
1776 	struct ath_buf *bf;
1777 
1778 	ATH_TXBUF_LOCK_ASSERT(sc);
1779 
1780 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1781 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1782 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1783 	else
1784 		bf = NULL;
1785 	if (bf == NULL) {
1786 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1787 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1788 			"out of xmit buffers" : "xmit buffer busy");
1789 	}
1790 	return bf;
1791 }
1792 
1793 struct ath_buf *
1794 ath_getbuf(struct ath_softc *sc)
1795 {
1796 	struct ath_buf *bf;
1797 
1798 	ATH_TXBUF_LOCK(sc);
1799 	bf = _ath_getbuf_locked(sc);
1800 	if (bf == NULL) {
1801 		struct ifnet *ifp = sc->sc_ifp;
1802 
1803 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1804 		sc->sc_stats.ast_tx_qstop++;
1805 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1806 	}
1807 	ATH_TXBUF_UNLOCK(sc);
1808 	return bf;
1809 }
1810 
1811 static void
1812 ath_start(struct ifnet *ifp)
1813 {
1814 	struct ath_softc *sc = ifp->if_softc;
1815 	struct ieee80211_node *ni;
1816 	struct ath_buf *bf;
1817 	struct mbuf *m, *next;
1818 	ath_bufhead frags;
1819 
1820 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1821 		return;
1822 	for (;;) {
1823 		/*
1824 		 * Grab a TX buffer and associated resources.
1825 		 */
1826 		bf = ath_getbuf(sc);
1827 		if (bf == NULL)
1828 			break;
1829 
1830 		IFQ_DEQUEUE(&ifp->if_snd, m);
1831 		if (m == NULL) {
1832 			ATH_TXBUF_LOCK(sc);
1833 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1834 			ATH_TXBUF_UNLOCK(sc);
1835 			break;
1836 		}
1837 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1838 		/*
1839 		 * Check for fragmentation.  If this frame
1840 		 * has been broken up verify we have enough
1841 		 * buffers to send all the fragments so all
1842 		 * go out or none...
1843 		 */
1844 		STAILQ_INIT(&frags);
1845 		if ((m->m_flags & M_FRAG) &&
1846 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1847 			DPRINTF(sc, ATH_DEBUG_XMIT,
1848 			    "%s: out of txfrag buffers\n", __func__);
1849 			sc->sc_stats.ast_tx_nofrag++;
1850 			ifp->if_oerrors++;
1851 			ath_freetx(m);
1852 			goto bad;
1853 		}
1854 		ifp->if_opackets++;
1855 	nextfrag:
1856 		/*
1857 		 * Pass the frame to the h/w for transmission.
1858 		 * Fragmented frames have each frag chained together
1859 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1860 		 * to send all the frags because of work done by
1861 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1862 		 * calling ath_tx_start so it can use it to extend the
1863 		 * the tx duration to cover the subsequent frag and
1864 		 * so it can reclaim all the mbufs in case of an error;
1865 		 * ath_tx_start clears m_nextpkt once it commits to
1866 		 * handing the frame to the hardware.
1867 		 */
1868 		next = m->m_nextpkt;
1869 		if (ath_tx_start(sc, ni, bf, m)) {
1870 	bad:
1871 			ifp->if_oerrors++;
1872 	reclaim:
1873 			bf->bf_m = NULL;
1874 			bf->bf_node = NULL;
1875 			ATH_TXBUF_LOCK(sc);
1876 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1877 			ath_txfrag_cleanup(sc, &frags, ni);
1878 			ATH_TXBUF_UNLOCK(sc);
1879 			if (ni != NULL)
1880 				ieee80211_free_node(ni);
1881 			continue;
1882 		}
1883 		if (next != NULL) {
1884 			/*
1885 			 * Beware of state changing between frags.
1886 			 * XXX check sta power-save state?
1887 			 */
1888 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1889 				DPRINTF(sc, ATH_DEBUG_XMIT,
1890 				    "%s: flush fragmented packet, state %s\n",
1891 				    __func__,
1892 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1893 				ath_freetx(next);
1894 				goto reclaim;
1895 			}
1896 			m = next;
1897 			bf = STAILQ_FIRST(&frags);
1898 			KASSERT(bf != NULL, ("no buf for txfrag"));
1899 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1900 			goto nextfrag;
1901 		}
1902 
1903 		sc->sc_wd_timer = 5;
1904 	}
1905 }
1906 
1907 static int
1908 ath_media_change(struct ifnet *ifp)
1909 {
1910 	int error = ieee80211_media_change(ifp);
1911 	/* NB: only the fixed rate can change and that doesn't need a reset */
1912 	return (error == ENETRESET ? 0 : error);
1913 }
1914 
1915 /*
1916  * Block/unblock tx+rx processing while a key change is done.
1917  * We assume the caller serializes key management operations
1918  * so we only need to worry about synchronization with other
1919  * uses that originate in the driver.
1920  */
1921 static void
1922 ath_key_update_begin(struct ieee80211vap *vap)
1923 {
1924 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1925 	struct ath_softc *sc = ifp->if_softc;
1926 
1927 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1928 	taskqueue_block(sc->sc_tq);
1929 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1930 }
1931 
1932 static void
1933 ath_key_update_end(struct ieee80211vap *vap)
1934 {
1935 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1936 	struct ath_softc *sc = ifp->if_softc;
1937 
1938 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1939 	IF_UNLOCK(&ifp->if_snd);
1940 	taskqueue_unblock(sc->sc_tq);
1941 }
1942 
1943 /*
1944  * Calculate the receive filter according to the
1945  * operating mode and state:
1946  *
1947  * o always accept unicast, broadcast, and multicast traffic
1948  * o accept PHY error frames when hardware doesn't have MIB support
1949  *   to count and we need them for ANI (sta mode only until recently)
1950  *   and we are not scanning (ANI is disabled)
1951  *   NB: older hal's add rx filter bits out of sight and we need to
1952  *	 blindly preserve them
1953  * o probe request frames are accepted only when operating in
1954  *   hostap, adhoc, mesh, or monitor modes
1955  * o enable promiscuous mode
1956  *   - when in monitor mode
1957  *   - if interface marked PROMISC (assumes bridge setting is filtered)
1958  * o accept beacons:
1959  *   - when operating in station mode for collecting rssi data when
1960  *     the station is otherwise quiet, or
1961  *   - when operating in adhoc mode so the 802.11 layer creates
1962  *     node table entries for peers,
1963  *   - when scanning
1964  *   - when doing s/w beacon miss (e.g. for ap+sta)
1965  *   - when operating in ap mode in 11g to detect overlapping bss that
1966  *     require protection
1967  *   - when operating in mesh mode to detect neighbors
1968  * o accept control frames:
1969  *   - when in monitor mode
1970  * XXX HT protection for 11n
1971  */
1972 static u_int32_t
1973 ath_calcrxfilter(struct ath_softc *sc)
1974 {
1975 	struct ifnet *ifp = sc->sc_ifp;
1976 	struct ieee80211com *ic = ifp->if_l2com;
1977 	u_int32_t rfilt;
1978 
1979 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1980 	if (!sc->sc_needmib && !sc->sc_scanning)
1981 		rfilt |= HAL_RX_FILTER_PHYERR;
1982 	if (ic->ic_opmode != IEEE80211_M_STA)
1983 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1984 	/* XXX ic->ic_monvaps != 0? */
1985 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
1986 		rfilt |= HAL_RX_FILTER_PROM;
1987 	if (ic->ic_opmode == IEEE80211_M_STA ||
1988 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1989 	    sc->sc_swbmiss || sc->sc_scanning)
1990 		rfilt |= HAL_RX_FILTER_BEACON;
1991 	/*
1992 	 * NB: We don't recalculate the rx filter when
1993 	 * ic_protmode changes; otherwise we could do
1994 	 * this only when ic_protmode != NONE.
1995 	 */
1996 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1997 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
1998 		rfilt |= HAL_RX_FILTER_BEACON;
1999 
2000 	/*
2001 	 * Enable hardware PS-POLL RX only for hostap mode;
2002 	 * STA mode sends PS-POLL frames but never
2003 	 * receives them.
2004 	 */
2005 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2006 	    0, NULL) == HAL_OK &&
2007 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2008 		rfilt |= HAL_RX_FILTER_PSPOLL;
2009 
2010 	if (sc->sc_nmeshvaps) {
2011 		rfilt |= HAL_RX_FILTER_BEACON;
2012 		if (sc->sc_hasbmatch)
2013 			rfilt |= HAL_RX_FILTER_BSSID;
2014 		else
2015 			rfilt |= HAL_RX_FILTER_PROM;
2016 	}
2017 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2018 		rfilt |= HAL_RX_FILTER_CONTROL;
2019 
2020 	if (sc->sc_dodfs) {
2021 		rfilt |= HAL_RX_FILTER_PHYRADAR;
2022 	}
2023 
2024 	/*
2025 	 * Enable RX of compressed BAR frames only when doing
2026 	 * 802.11n. Required for A-MPDU.
2027 	 */
2028 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2029 		rfilt |= HAL_RX_FILTER_COMPBAR;
2030 
2031 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2032 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2033 	return rfilt;
2034 }
2035 
2036 static void
2037 ath_update_promisc(struct ifnet *ifp)
2038 {
2039 	struct ath_softc *sc = ifp->if_softc;
2040 	u_int32_t rfilt;
2041 
2042 	/* configure rx filter */
2043 	rfilt = ath_calcrxfilter(sc);
2044 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2045 
2046 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2047 }
2048 
2049 static void
2050 ath_update_mcast(struct ifnet *ifp)
2051 {
2052 	struct ath_softc *sc = ifp->if_softc;
2053 	u_int32_t mfilt[2];
2054 
2055 	/* calculate and install multicast filter */
2056 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2057 		struct ifmultiaddr *ifma;
2058 		/*
2059 		 * Merge multicast addresses to form the hardware filter.
2060 		 */
2061 		mfilt[0] = mfilt[1] = 0;
2062 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2063 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2064 			caddr_t dl;
2065 			u_int32_t val;
2066 			u_int8_t pos;
2067 
2068 			/* calculate XOR of eight 6bit values */
2069 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2070 			val = LE_READ_4(dl + 0);
2071 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2072 			val = LE_READ_4(dl + 3);
2073 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2074 			pos &= 0x3f;
2075 			mfilt[pos / 32] |= (1 << (pos % 32));
2076 		}
2077 		if_maddr_runlock(ifp);
2078 	} else
2079 		mfilt[0] = mfilt[1] = ~0;
2080 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2081 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2082 		__func__, mfilt[0], mfilt[1]);
2083 }
2084 
2085 static void
2086 ath_mode_init(struct ath_softc *sc)
2087 {
2088 	struct ifnet *ifp = sc->sc_ifp;
2089 	struct ath_hal *ah = sc->sc_ah;
2090 	u_int32_t rfilt;
2091 
2092 	/* configure rx filter */
2093 	rfilt = ath_calcrxfilter(sc);
2094 	ath_hal_setrxfilter(ah, rfilt);
2095 
2096 	/* configure operational mode */
2097 	ath_hal_setopmode(ah);
2098 
2099 	/* handle any link-level address change */
2100 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2101 
2102 	/* calculate and install multicast filter */
2103 	ath_update_mcast(ifp);
2104 }
2105 
2106 /*
2107  * Set the slot time based on the current setting.
2108  */
2109 static void
2110 ath_setslottime(struct ath_softc *sc)
2111 {
2112 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2113 	struct ath_hal *ah = sc->sc_ah;
2114 	u_int usec;
2115 
2116 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2117 		usec = 13;
2118 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2119 		usec = 21;
2120 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2121 		/* honor short/long slot time only in 11g */
2122 		/* XXX shouldn't honor on pure g or turbo g channel */
2123 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2124 			usec = HAL_SLOT_TIME_9;
2125 		else
2126 			usec = HAL_SLOT_TIME_20;
2127 	} else
2128 		usec = HAL_SLOT_TIME_9;
2129 
2130 	DPRINTF(sc, ATH_DEBUG_RESET,
2131 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2132 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2133 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2134 
2135 	ath_hal_setslottime(ah, usec);
2136 	sc->sc_updateslot = OK;
2137 }
2138 
2139 /*
2140  * Callback from the 802.11 layer to update the
2141  * slot time based on the current setting.
2142  */
2143 static void
2144 ath_updateslot(struct ifnet *ifp)
2145 {
2146 	struct ath_softc *sc = ifp->if_softc;
2147 	struct ieee80211com *ic = ifp->if_l2com;
2148 
2149 	/*
2150 	 * When not coordinating the BSS, change the hardware
2151 	 * immediately.  For other operation we defer the change
2152 	 * until beacon updates have propagated to the stations.
2153 	 */
2154 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2155 	    ic->ic_opmode == IEEE80211_M_MBSS)
2156 		sc->sc_updateslot = UPDATE;
2157 	else
2158 		ath_setslottime(sc);
2159 }
2160 
2161 /*
2162  * Setup a h/w transmit queue for beacons.
2163  */
2164 static int
2165 ath_beaconq_setup(struct ath_hal *ah)
2166 {
2167 	HAL_TXQ_INFO qi;
2168 
2169 	memset(&qi, 0, sizeof(qi));
2170 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2171 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2172 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2173 	/* NB: for dynamic turbo, don't enable any other interrupts */
2174 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2175 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2176 }
2177 
2178 /*
2179  * Setup the transmit queue parameters for the beacon queue.
2180  */
2181 static int
2182 ath_beaconq_config(struct ath_softc *sc)
2183 {
2184 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2185 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2186 	struct ath_hal *ah = sc->sc_ah;
2187 	HAL_TXQ_INFO qi;
2188 
2189 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2190 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2191 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2192 		/*
2193 		 * Always burst out beacon and CAB traffic.
2194 		 */
2195 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2196 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2197 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2198 	} else {
2199 		struct wmeParams *wmep =
2200 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2201 		/*
2202 		 * Adhoc mode; important thing is to use 2x cwmin.
2203 		 */
2204 		qi.tqi_aifs = wmep->wmep_aifsn;
2205 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2206 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2207 	}
2208 
2209 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2210 		device_printf(sc->sc_dev, "unable to update parameters for "
2211 			"beacon hardware queue!\n");
2212 		return 0;
2213 	} else {
2214 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2215 		return 1;
2216 	}
2217 #undef ATH_EXPONENT_TO_VALUE
2218 }
2219 
2220 /*
2221  * Allocate and setup an initial beacon frame.
2222  */
2223 static int
2224 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2225 {
2226 	struct ieee80211vap *vap = ni->ni_vap;
2227 	struct ath_vap *avp = ATH_VAP(vap);
2228 	struct ath_buf *bf;
2229 	struct mbuf *m;
2230 	int error;
2231 
2232 	bf = avp->av_bcbuf;
2233 	if (bf->bf_m != NULL) {
2234 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2235 		m_freem(bf->bf_m);
2236 		bf->bf_m = NULL;
2237 	}
2238 	if (bf->bf_node != NULL) {
2239 		ieee80211_free_node(bf->bf_node);
2240 		bf->bf_node = NULL;
2241 	}
2242 
2243 	/*
2244 	 * NB: the beacon data buffer must be 32-bit aligned;
2245 	 * we assume the mbuf routines will return us something
2246 	 * with this alignment (perhaps should assert).
2247 	 */
2248 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2249 	if (m == NULL) {
2250 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2251 		sc->sc_stats.ast_be_nombuf++;
2252 		return ENOMEM;
2253 	}
2254 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2255 				     bf->bf_segs, &bf->bf_nseg,
2256 				     BUS_DMA_NOWAIT);
2257 	if (error != 0) {
2258 		device_printf(sc->sc_dev,
2259 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2260 		    __func__, error);
2261 		m_freem(m);
2262 		return error;
2263 	}
2264 
2265 	/*
2266 	 * Calculate a TSF adjustment factor required for staggered
2267 	 * beacons.  Note that we assume the format of the beacon
2268 	 * frame leaves the tstamp field immediately following the
2269 	 * header.
2270 	 */
2271 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2272 		uint64_t tsfadjust;
2273 		struct ieee80211_frame *wh;
2274 
2275 		/*
2276 		 * The beacon interval is in TU's; the TSF is in usecs.
2277 		 * We figure out how many TU's to add to align the timestamp
2278 		 * then convert to TSF units and handle byte swapping before
2279 		 * inserting it in the frame.  The hardware will then add this
2280 		 * each time a beacon frame is sent.  Note that we align vap's
2281 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2282 		 * timestamp in one beacon interval while the others get a
2283 		 * timstamp aligned to the next interval.
2284 		 */
2285 		tsfadjust = ni->ni_intval *
2286 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2287 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2288 
2289 		DPRINTF(sc, ATH_DEBUG_BEACON,
2290 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2291 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2292 		    avp->av_bslot, ni->ni_intval,
2293 		    (long long unsigned) le64toh(tsfadjust));
2294 
2295 		wh = mtod(m, struct ieee80211_frame *);
2296 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2297 	}
2298 	bf->bf_m = m;
2299 	bf->bf_node = ieee80211_ref_node(ni);
2300 
2301 	return 0;
2302 }
2303 
2304 /*
2305  * Setup the beacon frame for transmit.
2306  */
2307 static void
2308 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2309 {
2310 #define	USE_SHPREAMBLE(_ic) \
2311 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2312 		== IEEE80211_F_SHPREAMBLE)
2313 	struct ieee80211_node *ni = bf->bf_node;
2314 	struct ieee80211com *ic = ni->ni_ic;
2315 	struct mbuf *m = bf->bf_m;
2316 	struct ath_hal *ah = sc->sc_ah;
2317 	struct ath_desc *ds;
2318 	int flags, antenna;
2319 	const HAL_RATE_TABLE *rt;
2320 	u_int8_t rix, rate;
2321 
2322 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2323 		__func__, m, m->m_len);
2324 
2325 	/* setup descriptors */
2326 	ds = bf->bf_desc;
2327 
2328 	flags = HAL_TXDESC_NOACK;
2329 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2330 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2331 		flags |= HAL_TXDESC_VEOL;
2332 		/*
2333 		 * Let hardware handle antenna switching.
2334 		 */
2335 		antenna = sc->sc_txantenna;
2336 	} else {
2337 		ds->ds_link = 0;
2338 		/*
2339 		 * Switch antenna every 4 beacons.
2340 		 * XXX assumes two antenna
2341 		 */
2342 		if (sc->sc_txantenna != 0)
2343 			antenna = sc->sc_txantenna;
2344 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2345 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2346 		else
2347 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2348 	}
2349 
2350 	KASSERT(bf->bf_nseg == 1,
2351 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2352 	ds->ds_data = bf->bf_segs[0].ds_addr;
2353 	/*
2354 	 * Calculate rate code.
2355 	 * XXX everything at min xmit rate
2356 	 */
2357 	rix = 0;
2358 	rt = sc->sc_currates;
2359 	rate = rt->info[rix].rateCode;
2360 	if (USE_SHPREAMBLE(ic))
2361 		rate |= rt->info[rix].shortPreamble;
2362 	ath_hal_setuptxdesc(ah, ds
2363 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2364 		, sizeof(struct ieee80211_frame)/* header length */
2365 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2366 		, ni->ni_txpower		/* txpower XXX */
2367 		, rate, 1			/* series 0 rate/tries */
2368 		, HAL_TXKEYIX_INVALID		/* no encryption */
2369 		, antenna			/* antenna mode */
2370 		, flags				/* no ack, veol for beacons */
2371 		, 0				/* rts/cts rate */
2372 		, 0				/* rts/cts duration */
2373 	);
2374 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2375 	ath_hal_filltxdesc(ah, ds
2376 		, roundup(m->m_len, 4)		/* buffer length */
2377 		, AH_TRUE			/* first segment */
2378 		, AH_TRUE			/* last segment */
2379 		, ds				/* first descriptor */
2380 	);
2381 #if 0
2382 	ath_desc_swap(ds);
2383 #endif
2384 #undef USE_SHPREAMBLE
2385 }
2386 
2387 static void
2388 ath_beacon_update(struct ieee80211vap *vap, int item)
2389 {
2390 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2391 
2392 	setbit(bo->bo_flags, item);
2393 }
2394 
2395 /*
2396  * Append the contents of src to dst; both queues
2397  * are assumed to be locked.
2398  */
2399 static void
2400 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2401 {
2402 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2403 	dst->axq_link = src->axq_link;
2404 	src->axq_link = NULL;
2405 	dst->axq_depth += src->axq_depth;
2406 	src->axq_depth = 0;
2407 }
2408 
2409 /*
2410  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2411  * frame contents are done as needed and the slot time is
2412  * also adjusted based on current state.
2413  */
2414 static void
2415 ath_beacon_proc(void *arg, int pending)
2416 {
2417 	struct ath_softc *sc = arg;
2418 	struct ath_hal *ah = sc->sc_ah;
2419 	struct ieee80211vap *vap;
2420 	struct ath_buf *bf;
2421 	int slot, otherant;
2422 	uint32_t bfaddr;
2423 
2424 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2425 		__func__, pending);
2426 	/*
2427 	 * Check if the previous beacon has gone out.  If
2428 	 * not don't try to post another, skip this period
2429 	 * and wait for the next.  Missed beacons indicate
2430 	 * a problem and should not occur.  If we miss too
2431 	 * many consecutive beacons reset the device.
2432 	 */
2433 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2434 		sc->sc_bmisscount++;
2435 		sc->sc_stats.ast_be_missed++;
2436 		DPRINTF(sc, ATH_DEBUG_BEACON,
2437 			"%s: missed %u consecutive beacons\n",
2438 			__func__, sc->sc_bmisscount);
2439 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2440 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2441 		return;
2442 	}
2443 	if (sc->sc_bmisscount != 0) {
2444 		DPRINTF(sc, ATH_DEBUG_BEACON,
2445 			"%s: resume beacon xmit after %u misses\n",
2446 			__func__, sc->sc_bmisscount);
2447 		sc->sc_bmisscount = 0;
2448 	}
2449 
2450 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2451 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2452 		uint32_t tsftu;
2453 
2454 		tsftu = ath_hal_gettsf32(ah) >> 10;
2455 		/* XXX lintval */
2456 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2457 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2458 		bfaddr = 0;
2459 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2460 			bf = ath_beacon_generate(sc, vap);
2461 			if (bf != NULL)
2462 				bfaddr = bf->bf_daddr;
2463 		}
2464 	} else {					/* burst'd beacons */
2465 		uint32_t *bflink = &bfaddr;
2466 
2467 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2468 			vap = sc->sc_bslot[slot];
2469 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2470 				bf = ath_beacon_generate(sc, vap);
2471 				if (bf != NULL) {
2472 					*bflink = bf->bf_daddr;
2473 					bflink = &bf->bf_desc->ds_link;
2474 				}
2475 			}
2476 		}
2477 		*bflink = 0;				/* terminate list */
2478 	}
2479 
2480 	/*
2481 	 * Handle slot time change when a non-ERP station joins/leaves
2482 	 * an 11g network.  The 802.11 layer notifies us via callback,
2483 	 * we mark updateslot, then wait one beacon before effecting
2484 	 * the change.  This gives associated stations at least one
2485 	 * beacon interval to note the state change.
2486 	 */
2487 	/* XXX locking */
2488 	if (sc->sc_updateslot == UPDATE) {
2489 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2490 		sc->sc_slotupdate = slot;
2491 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2492 		ath_setslottime(sc);		/* commit change to h/w */
2493 
2494 	/*
2495 	 * Check recent per-antenna transmit statistics and flip
2496 	 * the default antenna if noticeably more frames went out
2497 	 * on the non-default antenna.
2498 	 * XXX assumes 2 anntenae
2499 	 */
2500 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2501 		otherant = sc->sc_defant & 1 ? 2 : 1;
2502 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2503 			ath_setdefantenna(sc, otherant);
2504 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2505 	}
2506 
2507 	if (bfaddr != 0) {
2508 		/*
2509 		 * Stop any current dma and put the new frame on the queue.
2510 		 * This should never fail since we check above that no frames
2511 		 * are still pending on the queue.
2512 		 */
2513 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2514 			DPRINTF(sc, ATH_DEBUG_ANY,
2515 				"%s: beacon queue %u did not stop?\n",
2516 				__func__, sc->sc_bhalq);
2517 		}
2518 		/* NB: cabq traffic should already be queued and primed */
2519 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2520 		ath_hal_txstart(ah, sc->sc_bhalq);
2521 
2522 		sc->sc_stats.ast_be_xmit++;
2523 	}
2524 }
2525 
2526 static struct ath_buf *
2527 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2528 {
2529 	struct ath_vap *avp = ATH_VAP(vap);
2530 	struct ath_txq *cabq = sc->sc_cabq;
2531 	struct ath_buf *bf;
2532 	struct mbuf *m;
2533 	int nmcastq, error;
2534 
2535 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2536 	    ("not running, state %d", vap->iv_state));
2537 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2538 
2539 	/*
2540 	 * Update dynamic beacon contents.  If this returns
2541 	 * non-zero then we need to remap the memory because
2542 	 * the beacon frame changed size (probably because
2543 	 * of the TIM bitmap).
2544 	 */
2545 	bf = avp->av_bcbuf;
2546 	m = bf->bf_m;
2547 	nmcastq = avp->av_mcastq.axq_depth;
2548 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2549 		/* XXX too conservative? */
2550 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2551 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2552 					     bf->bf_segs, &bf->bf_nseg,
2553 					     BUS_DMA_NOWAIT);
2554 		if (error != 0) {
2555 			if_printf(vap->iv_ifp,
2556 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2557 			    __func__, error);
2558 			return NULL;
2559 		}
2560 	}
2561 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2562 		DPRINTF(sc, ATH_DEBUG_BEACON,
2563 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2564 		    __func__, nmcastq, cabq->axq_depth);
2565 		sc->sc_stats.ast_cabq_busy++;
2566 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2567 			/*
2568 			 * CABQ traffic from a previous vap is still pending.
2569 			 * We must drain the q before this beacon frame goes
2570 			 * out as otherwise this vap's stations will get cab
2571 			 * frames from a different vap.
2572 			 * XXX could be slow causing us to miss DBA
2573 			 */
2574 			ath_tx_draintxq(sc, cabq);
2575 		}
2576 	}
2577 	ath_beacon_setup(sc, bf);
2578 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2579 
2580 	/*
2581 	 * Enable the CAB queue before the beacon queue to
2582 	 * insure cab frames are triggered by this beacon.
2583 	 */
2584 	if (avp->av_boff.bo_tim[4] & 1) {
2585 		struct ath_hal *ah = sc->sc_ah;
2586 
2587 		/* NB: only at DTIM */
2588 		ATH_TXQ_LOCK(cabq);
2589 		ATH_TXQ_LOCK(&avp->av_mcastq);
2590 		if (nmcastq) {
2591 			struct ath_buf *bfm;
2592 
2593 			/*
2594 			 * Move frames from the s/w mcast q to the h/w cab q.
2595 			 * XXX MORE_DATA bit
2596 			 */
2597 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2598 			if (cabq->axq_link != NULL) {
2599 				*cabq->axq_link = bfm->bf_daddr;
2600 			} else
2601 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2602 					bfm->bf_daddr);
2603 			ath_txqmove(cabq, &avp->av_mcastq);
2604 
2605 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2606 		}
2607 		/* NB: gated by beacon so safe to start here */
2608 		ath_hal_txstart(ah, cabq->axq_qnum);
2609 		ATH_TXQ_UNLOCK(cabq);
2610 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2611 	}
2612 	return bf;
2613 }
2614 
2615 static void
2616 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
2617 {
2618 	struct ath_vap *avp = ATH_VAP(vap);
2619 	struct ath_hal *ah = sc->sc_ah;
2620 	struct ath_buf *bf;
2621 	struct mbuf *m;
2622 	int error;
2623 
2624 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2625 
2626 	/*
2627 	 * Update dynamic beacon contents.  If this returns
2628 	 * non-zero then we need to remap the memory because
2629 	 * the beacon frame changed size (probably because
2630 	 * of the TIM bitmap).
2631 	 */
2632 	bf = avp->av_bcbuf;
2633 	m = bf->bf_m;
2634 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
2635 		/* XXX too conservative? */
2636 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2637 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2638 					     bf->bf_segs, &bf->bf_nseg,
2639 					     BUS_DMA_NOWAIT);
2640 		if (error != 0) {
2641 			if_printf(vap->iv_ifp,
2642 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2643 			    __func__, error);
2644 			return;
2645 		}
2646 	}
2647 	ath_beacon_setup(sc, bf);
2648 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2649 
2650 	/* NB: caller is known to have already stopped tx dma */
2651 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2652 	ath_hal_txstart(ah, sc->sc_bhalq);
2653 }
2654 
2655 /*
2656  * Reset the hardware after detecting beacons have stopped.
2657  */
2658 static void
2659 ath_bstuck_proc(void *arg, int pending)
2660 {
2661 	struct ath_softc *sc = arg;
2662 	struct ifnet *ifp = sc->sc_ifp;
2663 
2664 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2665 		sc->sc_bmisscount);
2666 	sc->sc_stats.ast_bstuck++;
2667 	ath_reset(ifp);
2668 }
2669 
2670 /*
2671  * Reclaim beacon resources and return buffer to the pool.
2672  */
2673 static void
2674 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
2675 {
2676 
2677 	if (bf->bf_m != NULL) {
2678 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2679 		m_freem(bf->bf_m);
2680 		bf->bf_m = NULL;
2681 	}
2682 	if (bf->bf_node != NULL) {
2683 		ieee80211_free_node(bf->bf_node);
2684 		bf->bf_node = NULL;
2685 	}
2686 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
2687 }
2688 
2689 /*
2690  * Reclaim beacon resources.
2691  */
2692 static void
2693 ath_beacon_free(struct ath_softc *sc)
2694 {
2695 	struct ath_buf *bf;
2696 
2697 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2698 		if (bf->bf_m != NULL) {
2699 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2700 			m_freem(bf->bf_m);
2701 			bf->bf_m = NULL;
2702 		}
2703 		if (bf->bf_node != NULL) {
2704 			ieee80211_free_node(bf->bf_node);
2705 			bf->bf_node = NULL;
2706 		}
2707 	}
2708 }
2709 
2710 /*
2711  * Configure the beacon and sleep timers.
2712  *
2713  * When operating as an AP this resets the TSF and sets
2714  * up the hardware to notify us when we need to issue beacons.
2715  *
2716  * When operating in station mode this sets up the beacon
2717  * timers according to the timestamp of the last received
2718  * beacon and the current TSF, configures PCF and DTIM
2719  * handling, programs the sleep registers so the hardware
2720  * will wakeup in time to receive beacons, and configures
2721  * the beacon miss handling so we'll receive a BMISS
2722  * interrupt when we stop seeing beacons from the AP
2723  * we've associated with.
2724  */
2725 static void
2726 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
2727 {
2728 #define	TSF_TO_TU(_h,_l) \
2729 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2730 #define	FUDGE	2
2731 	struct ath_hal *ah = sc->sc_ah;
2732 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2733 	struct ieee80211_node *ni;
2734 	u_int32_t nexttbtt, intval, tsftu;
2735 	u_int64_t tsf;
2736 
2737 	if (vap == NULL)
2738 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
2739 	ni = vap->iv_bss;
2740 
2741 	/* extract tstamp from last beacon and convert to TU */
2742 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2743 			     LE_READ_4(ni->ni_tstamp.data));
2744 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2745 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2746 		/*
2747 		 * For multi-bss ap/mesh support beacons are either staggered
2748 		 * evenly over N slots or burst together.  For the former
2749 		 * arrange for the SWBA to be delivered for each slot.
2750 		 * Slots that are not occupied will generate nothing.
2751 		 */
2752 		/* NB: the beacon interval is kept internally in TU's */
2753 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2754 		if (sc->sc_stagbeacons)
2755 			intval /= ATH_BCBUF;
2756 	} else {
2757 		/* NB: the beacon interval is kept internally in TU's */
2758 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2759 	}
2760 	if (nexttbtt == 0)		/* e.g. for ap mode */
2761 		nexttbtt = intval;
2762 	else if (intval)		/* NB: can be 0 for monitor mode */
2763 		nexttbtt = roundup(nexttbtt, intval);
2764 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2765 		__func__, nexttbtt, intval, ni->ni_intval);
2766 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
2767 		HAL_BEACON_STATE bs;
2768 		int dtimperiod, dtimcount;
2769 		int cfpperiod, cfpcount;
2770 
2771 		/*
2772 		 * Setup dtim and cfp parameters according to
2773 		 * last beacon we received (which may be none).
2774 		 */
2775 		dtimperiod = ni->ni_dtim_period;
2776 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2777 			dtimperiod = 1;
2778 		dtimcount = ni->ni_dtim_count;
2779 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2780 			dtimcount = 0;		/* XXX? */
2781 		cfpperiod = 1;			/* NB: no PCF support yet */
2782 		cfpcount = 0;
2783 		/*
2784 		 * Pull nexttbtt forward to reflect the current
2785 		 * TSF and calculate dtim+cfp state for the result.
2786 		 */
2787 		tsf = ath_hal_gettsf64(ah);
2788 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2789 		do {
2790 			nexttbtt += intval;
2791 			if (--dtimcount < 0) {
2792 				dtimcount = dtimperiod - 1;
2793 				if (--cfpcount < 0)
2794 					cfpcount = cfpperiod - 1;
2795 			}
2796 		} while (nexttbtt < tsftu);
2797 		memset(&bs, 0, sizeof(bs));
2798 		bs.bs_intval = intval;
2799 		bs.bs_nexttbtt = nexttbtt;
2800 		bs.bs_dtimperiod = dtimperiod*intval;
2801 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2802 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2803 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2804 		bs.bs_cfpmaxduration = 0;
2805 #if 0
2806 		/*
2807 		 * The 802.11 layer records the offset to the DTIM
2808 		 * bitmap while receiving beacons; use it here to
2809 		 * enable h/w detection of our AID being marked in
2810 		 * the bitmap vector (to indicate frames for us are
2811 		 * pending at the AP).
2812 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2813 		 * XXX enable based on h/w rev for newer chips
2814 		 */
2815 		bs.bs_timoffset = ni->ni_timoff;
2816 #endif
2817 		/*
2818 		 * Calculate the number of consecutive beacons to miss
2819 		 * before taking a BMISS interrupt.
2820 		 * Note that we clamp the result to at most 10 beacons.
2821 		 */
2822 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
2823 		if (bs.bs_bmissthreshold > 10)
2824 			bs.bs_bmissthreshold = 10;
2825 		else if (bs.bs_bmissthreshold <= 0)
2826 			bs.bs_bmissthreshold = 1;
2827 
2828 		/*
2829 		 * Calculate sleep duration.  The configuration is
2830 		 * given in ms.  We insure a multiple of the beacon
2831 		 * period is used.  Also, if the sleep duration is
2832 		 * greater than the DTIM period then it makes senses
2833 		 * to make it a multiple of that.
2834 		 *
2835 		 * XXX fixed at 100ms
2836 		 */
2837 		bs.bs_sleepduration =
2838 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2839 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2840 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2841 
2842 		DPRINTF(sc, ATH_DEBUG_BEACON,
2843 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2844 			, __func__
2845 			, tsf, tsftu
2846 			, bs.bs_intval
2847 			, bs.bs_nexttbtt
2848 			, bs.bs_dtimperiod
2849 			, bs.bs_nextdtim
2850 			, bs.bs_bmissthreshold
2851 			, bs.bs_sleepduration
2852 			, bs.bs_cfpperiod
2853 			, bs.bs_cfpmaxduration
2854 			, bs.bs_cfpnext
2855 			, bs.bs_timoffset
2856 		);
2857 		ath_hal_intrset(ah, 0);
2858 		ath_hal_beacontimers(ah, &bs);
2859 		sc->sc_imask |= HAL_INT_BMISS;
2860 		ath_hal_intrset(ah, sc->sc_imask);
2861 	} else {
2862 		ath_hal_intrset(ah, 0);
2863 		if (nexttbtt == intval)
2864 			intval |= HAL_BEACON_RESET_TSF;
2865 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2866 			/*
2867 			 * In IBSS mode enable the beacon timers but only
2868 			 * enable SWBA interrupts if we need to manually
2869 			 * prepare beacon frames.  Otherwise we use a
2870 			 * self-linked tx descriptor and let the hardware
2871 			 * deal with things.
2872 			 */
2873 			intval |= HAL_BEACON_ENA;
2874 			if (!sc->sc_hasveol)
2875 				sc->sc_imask |= HAL_INT_SWBA;
2876 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2877 				/*
2878 				 * Pull nexttbtt forward to reflect
2879 				 * the current TSF.
2880 				 */
2881 				tsf = ath_hal_gettsf64(ah);
2882 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2883 				do {
2884 					nexttbtt += intval;
2885 				} while (nexttbtt < tsftu);
2886 			}
2887 			ath_beaconq_config(sc);
2888 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2889 		    ic->ic_opmode == IEEE80211_M_MBSS) {
2890 			/*
2891 			 * In AP/mesh mode we enable the beacon timers
2892 			 * and SWBA interrupts to prepare beacon frames.
2893 			 */
2894 			intval |= HAL_BEACON_ENA;
2895 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2896 			ath_beaconq_config(sc);
2897 		}
2898 		ath_hal_beaconinit(ah, nexttbtt, intval);
2899 		sc->sc_bmisscount = 0;
2900 		ath_hal_intrset(ah, sc->sc_imask);
2901 		/*
2902 		 * When using a self-linked beacon descriptor in
2903 		 * ibss mode load it once here.
2904 		 */
2905 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2906 			ath_beacon_start_adhoc(sc, vap);
2907 	}
2908 	sc->sc_syncbeacon = 0;
2909 #undef FUDGE
2910 #undef TSF_TO_TU
2911 }
2912 
2913 static void
2914 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2915 {
2916 	bus_addr_t *paddr = (bus_addr_t*) arg;
2917 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2918 	*paddr = segs->ds_addr;
2919 }
2920 
2921 static int
2922 ath_descdma_setup(struct ath_softc *sc,
2923 	struct ath_descdma *dd, ath_bufhead *head,
2924 	const char *name, int nbuf, int ndesc)
2925 {
2926 #define	DS2PHYS(_dd, _ds) \
2927 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2928 	struct ifnet *ifp = sc->sc_ifp;
2929 	struct ath_desc *ds;
2930 	struct ath_buf *bf;
2931 	int i, bsize, error;
2932 
2933 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2934 	    __func__, name, nbuf, ndesc);
2935 
2936 	dd->dd_name = name;
2937 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2938 
2939 	/*
2940 	 * Setup DMA descriptor area.
2941 	 */
2942 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2943 		       PAGE_SIZE, 0,		/* alignment, bounds */
2944 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2945 		       BUS_SPACE_MAXADDR,	/* highaddr */
2946 		       NULL, NULL,		/* filter, filterarg */
2947 		       dd->dd_desc_len,		/* maxsize */
2948 		       1,			/* nsegments */
2949 		       dd->dd_desc_len,		/* maxsegsize */
2950 		       BUS_DMA_ALLOCNOW,	/* flags */
2951 		       NULL,			/* lockfunc */
2952 		       NULL,			/* lockarg */
2953 		       &dd->dd_dmat);
2954 	if (error != 0) {
2955 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2956 		return error;
2957 	}
2958 
2959 	/* allocate descriptors */
2960 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2961 	if (error != 0) {
2962 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2963 			"error %u\n", dd->dd_name, error);
2964 		goto fail0;
2965 	}
2966 
2967 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2968 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2969 				 &dd->dd_dmamap);
2970 	if (error != 0) {
2971 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2972 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2973 		goto fail1;
2974 	}
2975 
2976 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2977 				dd->dd_desc, dd->dd_desc_len,
2978 				ath_load_cb, &dd->dd_desc_paddr,
2979 				BUS_DMA_NOWAIT);
2980 	if (error != 0) {
2981 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2982 			dd->dd_name, error);
2983 		goto fail2;
2984 	}
2985 
2986 	ds = dd->dd_desc;
2987 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2988 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2989 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2990 
2991 	/* allocate rx buffers */
2992 	bsize = sizeof(struct ath_buf) * nbuf;
2993 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2994 	if (bf == NULL) {
2995 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2996 			dd->dd_name, bsize);
2997 		goto fail3;
2998 	}
2999 	dd->dd_bufptr = bf;
3000 
3001 	STAILQ_INIT(head);
3002 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3003 		bf->bf_desc = ds;
3004 		bf->bf_daddr = DS2PHYS(dd, ds);
3005 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3006 				&bf->bf_dmamap);
3007 		if (error != 0) {
3008 			if_printf(ifp, "unable to create dmamap for %s "
3009 				"buffer %u, error %u\n", dd->dd_name, i, error);
3010 			ath_descdma_cleanup(sc, dd, head);
3011 			return error;
3012 		}
3013 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3014 	}
3015 	return 0;
3016 fail3:
3017 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3018 fail2:
3019 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3020 fail1:
3021 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3022 fail0:
3023 	bus_dma_tag_destroy(dd->dd_dmat);
3024 	memset(dd, 0, sizeof(*dd));
3025 	return error;
3026 #undef DS2PHYS
3027 }
3028 
3029 static void
3030 ath_descdma_cleanup(struct ath_softc *sc,
3031 	struct ath_descdma *dd, ath_bufhead *head)
3032 {
3033 	struct ath_buf *bf;
3034 	struct ieee80211_node *ni;
3035 
3036 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3037 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3038 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3039 	bus_dma_tag_destroy(dd->dd_dmat);
3040 
3041 	STAILQ_FOREACH(bf, head, bf_list) {
3042 		if (bf->bf_m) {
3043 			m_freem(bf->bf_m);
3044 			bf->bf_m = NULL;
3045 		}
3046 		if (bf->bf_dmamap != NULL) {
3047 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3048 			bf->bf_dmamap = NULL;
3049 		}
3050 		ni = bf->bf_node;
3051 		bf->bf_node = NULL;
3052 		if (ni != NULL) {
3053 			/*
3054 			 * Reclaim node reference.
3055 			 */
3056 			ieee80211_free_node(ni);
3057 		}
3058 	}
3059 
3060 	STAILQ_INIT(head);
3061 	free(dd->dd_bufptr, M_ATHDEV);
3062 	memset(dd, 0, sizeof(*dd));
3063 }
3064 
3065 static int
3066 ath_desc_alloc(struct ath_softc *sc)
3067 {
3068 	int error;
3069 
3070 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3071 			"rx", ath_rxbuf, 1);
3072 	if (error != 0)
3073 		return error;
3074 
3075 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3076 			"tx", ath_txbuf, ATH_TXDESC);
3077 	if (error != 0) {
3078 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3079 		return error;
3080 	}
3081 
3082 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3083 			"beacon", ATH_BCBUF, 1);
3084 	if (error != 0) {
3085 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3086 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3087 		return error;
3088 	}
3089 	return 0;
3090 }
3091 
3092 static void
3093 ath_desc_free(struct ath_softc *sc)
3094 {
3095 
3096 	if (sc->sc_bdma.dd_desc_len != 0)
3097 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3098 	if (sc->sc_txdma.dd_desc_len != 0)
3099 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3100 	if (sc->sc_rxdma.dd_desc_len != 0)
3101 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3102 }
3103 
3104 static struct ieee80211_node *
3105 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3106 {
3107 	struct ieee80211com *ic = vap->iv_ic;
3108 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3109 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3110 	struct ath_node *an;
3111 
3112 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3113 	if (an == NULL) {
3114 		/* XXX stat+msg */
3115 		return NULL;
3116 	}
3117 	ath_rate_node_init(sc, an);
3118 
3119 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3120 	return &an->an_node;
3121 }
3122 
3123 static void
3124 ath_node_free(struct ieee80211_node *ni)
3125 {
3126 	struct ieee80211com *ic = ni->ni_ic;
3127         struct ath_softc *sc = ic->ic_ifp->if_softc;
3128 
3129 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3130 
3131 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3132 	sc->sc_node_free(ni);
3133 }
3134 
3135 static void
3136 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3137 {
3138 	struct ieee80211com *ic = ni->ni_ic;
3139 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3140 	struct ath_hal *ah = sc->sc_ah;
3141 
3142 	*rssi = ic->ic_node_getrssi(ni);
3143 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3144 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3145 	else
3146 		*noise = -95;		/* nominally correct */
3147 }
3148 
3149 static int
3150 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3151 {
3152 	struct ath_hal *ah = sc->sc_ah;
3153 	int error;
3154 	struct mbuf *m;
3155 	struct ath_desc *ds;
3156 
3157 	m = bf->bf_m;
3158 	if (m == NULL) {
3159 		/*
3160 		 * NB: by assigning a page to the rx dma buffer we
3161 		 * implicitly satisfy the Atheros requirement that
3162 		 * this buffer be cache-line-aligned and sized to be
3163 		 * multiple of the cache line size.  Not doing this
3164 		 * causes weird stuff to happen (for the 5210 at least).
3165 		 */
3166 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3167 		if (m == NULL) {
3168 			DPRINTF(sc, ATH_DEBUG_ANY,
3169 				"%s: no mbuf/cluster\n", __func__);
3170 			sc->sc_stats.ast_rx_nombuf++;
3171 			return ENOMEM;
3172 		}
3173 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3174 
3175 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3176 					     bf->bf_dmamap, m,
3177 					     bf->bf_segs, &bf->bf_nseg,
3178 					     BUS_DMA_NOWAIT);
3179 		if (error != 0) {
3180 			DPRINTF(sc, ATH_DEBUG_ANY,
3181 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3182 			    __func__, error);
3183 			sc->sc_stats.ast_rx_busdma++;
3184 			m_freem(m);
3185 			return error;
3186 		}
3187 		KASSERT(bf->bf_nseg == 1,
3188 			("multi-segment packet; nseg %u", bf->bf_nseg));
3189 		bf->bf_m = m;
3190 	}
3191 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3192 
3193 	/*
3194 	 * Setup descriptors.  For receive we always terminate
3195 	 * the descriptor list with a self-linked entry so we'll
3196 	 * not get overrun under high load (as can happen with a
3197 	 * 5212 when ANI processing enables PHY error frames).
3198 	 *
3199 	 * To insure the last descriptor is self-linked we create
3200 	 * each descriptor as self-linked and add it to the end.  As
3201 	 * each additional descriptor is added the previous self-linked
3202 	 * entry is ``fixed'' naturally.  This should be safe even
3203 	 * if DMA is happening.  When processing RX interrupts we
3204 	 * never remove/process the last, self-linked, entry on the
3205 	 * descriptor list.  This insures the hardware always has
3206 	 * someplace to write a new frame.
3207 	 */
3208 	/*
3209 	 * 11N: we can no longer afford to self link the last descriptor.
3210 	 * MAC acknowledges BA status as long as it copies frames to host
3211 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3212 	 * to a sender if last desc is self-linked.
3213 	 */
3214 	ds = bf->bf_desc;
3215 	if (sc->sc_rxslink)
3216 		ds->ds_link = bf->bf_daddr;	/* link to self */
3217 	else
3218 		ds->ds_link = 0;		/* terminate the list */
3219 	ds->ds_data = bf->bf_segs[0].ds_addr;
3220 	ath_hal_setuprxdesc(ah, ds
3221 		, m->m_len		/* buffer size */
3222 		, 0
3223 	);
3224 
3225 	if (sc->sc_rxlink != NULL)
3226 		*sc->sc_rxlink = bf->bf_daddr;
3227 	sc->sc_rxlink = &ds->ds_link;
3228 	return 0;
3229 }
3230 
3231 /*
3232  * Extend 15-bit time stamp from rx descriptor to
3233  * a full 64-bit TSF using the specified TSF.
3234  */
3235 static __inline u_int64_t
3236 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3237 {
3238 	if ((tsf & 0x7fff) < rstamp)
3239 		tsf -= 0x8000;
3240 	return ((tsf &~ 0x7fff) | rstamp);
3241 }
3242 
3243 /*
3244  * Intercept management frames to collect beacon rssi data
3245  * and to do ibss merges.
3246  */
3247 static void
3248 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3249 	int subtype, int rssi, int nf)
3250 {
3251 	struct ieee80211vap *vap = ni->ni_vap;
3252 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3253 
3254 	/*
3255 	 * Call up first so subsequent work can use information
3256 	 * potentially stored in the node (e.g. for ibss merge).
3257 	 */
3258 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3259 	switch (subtype) {
3260 	case IEEE80211_FC0_SUBTYPE_BEACON:
3261 		/* update rssi statistics for use by the hal */
3262 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3263 		if (sc->sc_syncbeacon &&
3264 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3265 			/*
3266 			 * Resync beacon timers using the tsf of the beacon
3267 			 * frame we just received.
3268 			 */
3269 			ath_beacon_config(sc, vap);
3270 		}
3271 		/* fall thru... */
3272 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3273 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3274 		    vap->iv_state == IEEE80211_S_RUN) {
3275 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3276 			uint64_t tsf = ath_extend_tsf(rstamp,
3277 				ath_hal_gettsf64(sc->sc_ah));
3278 			/*
3279 			 * Handle ibss merge as needed; check the tsf on the
3280 			 * frame before attempting the merge.  The 802.11 spec
3281 			 * says the station should change it's bssid to match
3282 			 * the oldest station with the same ssid, where oldest
3283 			 * is determined by the tsf.  Note that hardware
3284 			 * reconfiguration happens through callback to
3285 			 * ath_newstate as the state machine will go from
3286 			 * RUN -> RUN when this happens.
3287 			 */
3288 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3289 				DPRINTF(sc, ATH_DEBUG_STATE,
3290 				    "ibss merge, rstamp %u tsf %ju "
3291 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3292 				    (uintmax_t)ni->ni_tstamp.tsf);
3293 				(void) ieee80211_ibss_merge(ni);
3294 			}
3295 		}
3296 		break;
3297 	}
3298 }
3299 
3300 /*
3301  * Set the default antenna.
3302  */
3303 static void
3304 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3305 {
3306 	struct ath_hal *ah = sc->sc_ah;
3307 
3308 	/* XXX block beacon interrupts */
3309 	ath_hal_setdefantenna(ah, antenna);
3310 	if (sc->sc_defant != antenna)
3311 		sc->sc_stats.ast_ant_defswitch++;
3312 	sc->sc_defant = antenna;
3313 	sc->sc_rxotherant = 0;
3314 }
3315 
3316 static void
3317 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3318 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3319 {
3320 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3321 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3322 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3323 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3324 	struct ath_softc *sc = ifp->if_softc;
3325 	const HAL_RATE_TABLE *rt;
3326 	uint8_t rix;
3327 
3328 	rt = sc->sc_currates;
3329 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3330 	rix = rt->rateCodeToIndex[rs->rs_rate];
3331 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3332 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3333 #ifdef AH_SUPPORT_AR5416
3334 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3335 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3336 		struct ieee80211com *ic = ifp->if_l2com;
3337 
3338 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3339 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3340 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3341 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3342 		else
3343 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3344 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3345 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3346 	}
3347 #endif
3348 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3349 	if (rs->rs_status & HAL_RXERR_CRC)
3350 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3351 	/* XXX propagate other error flags from descriptor */
3352 	sc->sc_rx_th.wr_antnoise = nf;
3353 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3354 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3355 #undef CHAN_HT
3356 #undef CHAN_HT20
3357 #undef CHAN_HT40U
3358 #undef CHAN_HT40D
3359 }
3360 
3361 static void
3362 ath_handle_micerror(struct ieee80211com *ic,
3363 	struct ieee80211_frame *wh, int keyix)
3364 {
3365 	struct ieee80211_node *ni;
3366 
3367 	/* XXX recheck MIC to deal w/ chips that lie */
3368 	/* XXX discard MIC errors on !data frames */
3369 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3370 	if (ni != NULL) {
3371 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3372 		ieee80211_free_node(ni);
3373 	}
3374 }
3375 
3376 static void
3377 ath_rx_proc(void *arg, int npending)
3378 {
3379 #define	PA2DESC(_sc, _pa) \
3380 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3381 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3382 	struct ath_softc *sc = arg;
3383 	struct ath_buf *bf;
3384 	struct ifnet *ifp = sc->sc_ifp;
3385 	struct ieee80211com *ic = ifp->if_l2com;
3386 	struct ath_hal *ah = sc->sc_ah;
3387 	struct ath_desc *ds;
3388 	struct ath_rx_status *rs;
3389 	struct mbuf *m;
3390 	struct ieee80211_node *ni;
3391 	int len, type, ngood;
3392 	HAL_STATUS status;
3393 	int16_t nf;
3394 	u_int64_t tsf;
3395 
3396 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3397 	ngood = 0;
3398 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3399 	sc->sc_stats.ast_rx_noise = nf;
3400 	tsf = ath_hal_gettsf64(ah);
3401 	do {
3402 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3403 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
3404 			if_printf(ifp, "%s: no buffer!\n", __func__);
3405 			break;
3406 		} else if (bf == NULL) {
3407 			/*
3408 			 * End of List:
3409 			 * this can happen for non-self-linked RX chains
3410 			 */
3411 			sc->sc_stats.ast_rx_hitqueueend++;
3412 			break;
3413 		}
3414 		m = bf->bf_m;
3415 		if (m == NULL) {		/* NB: shouldn't happen */
3416 			/*
3417 			 * If mbuf allocation failed previously there
3418 			 * will be no mbuf; try again to re-populate it.
3419 			 */
3420 			/* XXX make debug msg */
3421 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3422 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3423 			goto rx_next;
3424 		}
3425 		ds = bf->bf_desc;
3426 		if (ds->ds_link == bf->bf_daddr) {
3427 			/* NB: never process the self-linked entry at the end */
3428 			sc->sc_stats.ast_rx_hitqueueend++;
3429 			break;
3430 		}
3431 		/* XXX sync descriptor memory */
3432 		/*
3433 		 * Must provide the virtual address of the current
3434 		 * descriptor, the physical address, and the virtual
3435 		 * address of the next descriptor in the h/w chain.
3436 		 * This allows the HAL to look ahead to see if the
3437 		 * hardware is done with a descriptor by checking the
3438 		 * done bit in the following descriptor and the address
3439 		 * of the current descriptor the DMA engine is working
3440 		 * on.  All this is necessary because of our use of
3441 		 * a self-linked list to avoid rx overruns.
3442 		 */
3443 		rs = &bf->bf_status.ds_rxstat;
3444 		status = ath_hal_rxprocdesc(ah, ds,
3445 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3446 #ifdef ATH_DEBUG
3447 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3448 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3449 #endif
3450 		if (status == HAL_EINPROGRESS)
3451 			break;
3452 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3453 
3454 		/* These aren't specifically errors */
3455 		if (rs->rs_flags & HAL_RX_GI)
3456 			sc->sc_stats.ast_rx_halfgi++;
3457 		if (rs->rs_flags & HAL_RX_2040)
3458 			sc->sc_stats.ast_rx_2040++;
3459 		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
3460 			sc->sc_stats.ast_rx_pre_crc_err++;
3461 		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
3462 			sc->sc_stats.ast_rx_post_crc_err++;
3463 		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
3464 			sc->sc_stats.ast_rx_decrypt_busy_err++;
3465 		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
3466 			sc->sc_stats.ast_rx_hi_rx_chain++;
3467 
3468 		if (rs->rs_status != 0) {
3469 			if (rs->rs_status & HAL_RXERR_CRC)
3470 				sc->sc_stats.ast_rx_crcerr++;
3471 			if (rs->rs_status & HAL_RXERR_FIFO)
3472 				sc->sc_stats.ast_rx_fifoerr++;
3473 			if (rs->rs_status & HAL_RXERR_PHY) {
3474 				sc->sc_stats.ast_rx_phyerr++;
3475 				/* Process DFS radar events */
3476 				ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs);
3477 
3478 				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
3479 				if (rs->rs_phyerr < 64)
3480 					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
3481 				goto rx_error;	/* NB: don't count in ierrors */
3482 			}
3483 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3484 				/*
3485 				 * Decrypt error.  If the error occurred
3486 				 * because there was no hardware key, then
3487 				 * let the frame through so the upper layers
3488 				 * can process it.  This is necessary for 5210
3489 				 * parts which have no way to setup a ``clear''
3490 				 * key cache entry.
3491 				 *
3492 				 * XXX do key cache faulting
3493 				 */
3494 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3495 					goto rx_accept;
3496 				sc->sc_stats.ast_rx_badcrypt++;
3497 			}
3498 			if (rs->rs_status & HAL_RXERR_MIC) {
3499 				sc->sc_stats.ast_rx_badmic++;
3500 				/*
3501 				 * Do minimal work required to hand off
3502 				 * the 802.11 header for notification.
3503 				 */
3504 				/* XXX frag's and qos frames */
3505 				len = rs->rs_datalen;
3506 				if (len >= sizeof (struct ieee80211_frame)) {
3507 					bus_dmamap_sync(sc->sc_dmat,
3508 					    bf->bf_dmamap,
3509 					    BUS_DMASYNC_POSTREAD);
3510 					ath_handle_micerror(ic,
3511 					    mtod(m, struct ieee80211_frame *),
3512 					    sc->sc_splitmic ?
3513 						rs->rs_keyix-32 : rs->rs_keyix);
3514 				}
3515 			}
3516 			ifp->if_ierrors++;
3517 rx_error:
3518 			/*
3519 			 * Cleanup any pending partial frame.
3520 			 */
3521 			if (sc->sc_rxpending != NULL) {
3522 				m_freem(sc->sc_rxpending);
3523 				sc->sc_rxpending = NULL;
3524 			}
3525 			/*
3526 			 * When a tap is present pass error frames
3527 			 * that have been requested.  By default we
3528 			 * pass decrypt+mic errors but others may be
3529 			 * interesting (e.g. crc).
3530 			 */
3531 			if (ieee80211_radiotap_active(ic) &&
3532 			    (rs->rs_status & sc->sc_monpass)) {
3533 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3534 				    BUS_DMASYNC_POSTREAD);
3535 				/* NB: bpf needs the mbuf length setup */
3536 				len = rs->rs_datalen;
3537 				m->m_pkthdr.len = m->m_len = len;
3538 				ath_rx_tap(ifp, m, rs, tsf, nf);
3539 				ieee80211_radiotap_rx_all(ic, m);
3540 			}
3541 			/* XXX pass MIC errors up for s/w reclaculation */
3542 			goto rx_next;
3543 		}
3544 rx_accept:
3545 		/*
3546 		 * Sync and unmap the frame.  At this point we're
3547 		 * committed to passing the mbuf somewhere so clear
3548 		 * bf_m; this means a new mbuf must be allocated
3549 		 * when the rx descriptor is setup again to receive
3550 		 * another frame.
3551 		 */
3552 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3553 		    BUS_DMASYNC_POSTREAD);
3554 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3555 		bf->bf_m = NULL;
3556 
3557 		len = rs->rs_datalen;
3558 		m->m_len = len;
3559 
3560 		if (rs->rs_more) {
3561 			/*
3562 			 * Frame spans multiple descriptors; save
3563 			 * it for the next completed descriptor, it
3564 			 * will be used to construct a jumbogram.
3565 			 */
3566 			if (sc->sc_rxpending != NULL) {
3567 				/* NB: max frame size is currently 2 clusters */
3568 				sc->sc_stats.ast_rx_toobig++;
3569 				m_freem(sc->sc_rxpending);
3570 			}
3571 			m->m_pkthdr.rcvif = ifp;
3572 			m->m_pkthdr.len = len;
3573 			sc->sc_rxpending = m;
3574 			goto rx_next;
3575 		} else if (sc->sc_rxpending != NULL) {
3576 			/*
3577 			 * This is the second part of a jumbogram,
3578 			 * chain it to the first mbuf, adjust the
3579 			 * frame length, and clear the rxpending state.
3580 			 */
3581 			sc->sc_rxpending->m_next = m;
3582 			sc->sc_rxpending->m_pkthdr.len += len;
3583 			m = sc->sc_rxpending;
3584 			sc->sc_rxpending = NULL;
3585 		} else {
3586 			/*
3587 			 * Normal single-descriptor receive; setup
3588 			 * the rcvif and packet length.
3589 			 */
3590 			m->m_pkthdr.rcvif = ifp;
3591 			m->m_pkthdr.len = len;
3592 		}
3593 
3594 		ifp->if_ipackets++;
3595 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3596 
3597 		/*
3598 		 * Populate the rx status block.  When there are bpf
3599 		 * listeners we do the additional work to provide
3600 		 * complete status.  Otherwise we fill in only the
3601 		 * material required by ieee80211_input.  Note that
3602 		 * noise setting is filled in above.
3603 		 */
3604 		if (ieee80211_radiotap_active(ic))
3605 			ath_rx_tap(ifp, m, rs, tsf, nf);
3606 
3607 		/*
3608 		 * From this point on we assume the frame is at least
3609 		 * as large as ieee80211_frame_min; verify that.
3610 		 */
3611 		if (len < IEEE80211_MIN_LEN) {
3612 			if (!ieee80211_radiotap_active(ic)) {
3613 				DPRINTF(sc, ATH_DEBUG_RECV,
3614 				    "%s: short packet %d\n", __func__, len);
3615 				sc->sc_stats.ast_rx_tooshort++;
3616 			} else {
3617 				/* NB: in particular this captures ack's */
3618 				ieee80211_radiotap_rx_all(ic, m);
3619 			}
3620 			m_freem(m);
3621 			goto rx_next;
3622 		}
3623 
3624 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3625 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3626 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3627 
3628 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3629 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3630 		}
3631 
3632 		m_adj(m, -IEEE80211_CRC_LEN);
3633 
3634 		/*
3635 		 * Locate the node for sender, track state, and then
3636 		 * pass the (referenced) node up to the 802.11 layer
3637 		 * for its use.
3638 		 */
3639 		ni = ieee80211_find_rxnode_withkey(ic,
3640 			mtod(m, const struct ieee80211_frame_min *),
3641 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3642 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3643 		sc->sc_lastrs = rs;
3644 
3645 		if (rs->rs_isaggr)
3646 			sc->sc_stats.ast_rx_agg++;
3647 
3648 		if (ni != NULL) {
3649 			/*
3650  			 * Only punt packets for ampdu reorder processing for
3651 			 * 11n nodes; net80211 enforces that M_AMPDU is only
3652 			 * set for 11n nodes.
3653  			 */
3654 			if (ni->ni_flags & IEEE80211_NODE_HT)
3655 				m->m_flags |= M_AMPDU;
3656 
3657 			/*
3658 			 * Sending station is known, dispatch directly.
3659 			 */
3660 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
3661 			ieee80211_free_node(ni);
3662 			/*
3663 			 * Arrange to update the last rx timestamp only for
3664 			 * frames from our ap when operating in station mode.
3665 			 * This assumes the rx key is always setup when
3666 			 * associated.
3667 			 */
3668 			if (ic->ic_opmode == IEEE80211_M_STA &&
3669 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3670 				ngood++;
3671 		} else {
3672 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
3673 		}
3674 		/*
3675 		 * Track rx rssi and do any rx antenna management.
3676 		 */
3677 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3678 		if (sc->sc_diversity) {
3679 			/*
3680 			 * When using fast diversity, change the default rx
3681 			 * antenna if diversity chooses the other antenna 3
3682 			 * times in a row.
3683 			 */
3684 			if (sc->sc_defant != rs->rs_antenna) {
3685 				if (++sc->sc_rxotherant >= 3)
3686 					ath_setdefantenna(sc, rs->rs_antenna);
3687 			} else
3688 				sc->sc_rxotherant = 0;
3689 		}
3690 
3691 		/* Newer school diversity - kite specific for now */
3692 		/* XXX perhaps migrate the normal diversity code to this? */
3693 		if ((ah)->ah_rxAntCombDiversity)
3694 			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
3695 
3696 		if (sc->sc_softled) {
3697 			/*
3698 			 * Blink for any data frame.  Otherwise do a
3699 			 * heartbeat-style blink when idle.  The latter
3700 			 * is mainly for station mode where we depend on
3701 			 * periodic beacon frames to trigger the poll event.
3702 			 */
3703 			if (type == IEEE80211_FC0_TYPE_DATA) {
3704 				const HAL_RATE_TABLE *rt = sc->sc_currates;
3705 				ath_led_event(sc,
3706 				    rt->rateCodeToIndex[rs->rs_rate]);
3707 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3708 				ath_led_event(sc, 0);
3709 		}
3710 rx_next:
3711 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3712 	} while (ath_rxbuf_init(sc, bf) == 0);
3713 
3714 	/* rx signal state monitoring */
3715 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
3716 	if (ngood)
3717 		sc->sc_lastrx = tsf;
3718 
3719 	/* Queue DFS tasklet if needed */
3720 	if (ath_dfs_tasklet_needed(sc, sc->sc_curchan))
3721 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
3722 
3723 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
3724 #ifdef IEEE80211_SUPPORT_SUPERG
3725 		ieee80211_ff_age_all(ic, 100);
3726 #endif
3727 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
3728 			ath_start(ifp);
3729 	}
3730 #undef PA2DESC
3731 }
3732 
3733 static void
3734 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3735 {
3736 	txq->axq_qnum = qnum;
3737 	txq->axq_ac = 0;
3738 	txq->axq_depth = 0;
3739 	txq->axq_intrcnt = 0;
3740 	txq->axq_link = NULL;
3741 	STAILQ_INIT(&txq->axq_q);
3742 	ATH_TXQ_LOCK_INIT(sc, txq);
3743 }
3744 
3745 /*
3746  * Setup a h/w transmit queue.
3747  */
3748 static struct ath_txq *
3749 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3750 {
3751 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3752 	struct ath_hal *ah = sc->sc_ah;
3753 	HAL_TXQ_INFO qi;
3754 	int qnum;
3755 
3756 	memset(&qi, 0, sizeof(qi));
3757 	qi.tqi_subtype = subtype;
3758 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3759 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3760 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3761 	/*
3762 	 * Enable interrupts only for EOL and DESC conditions.
3763 	 * We mark tx descriptors to receive a DESC interrupt
3764 	 * when a tx queue gets deep; otherwise waiting for the
3765 	 * EOL to reap descriptors.  Note that this is done to
3766 	 * reduce interrupt load and this only defers reaping
3767 	 * descriptors, never transmitting frames.  Aside from
3768 	 * reducing interrupts this also permits more concurrency.
3769 	 * The only potential downside is if the tx queue backs
3770 	 * up in which case the top half of the kernel may backup
3771 	 * due to a lack of tx descriptors.
3772 	 */
3773 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3774 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3775 	if (qnum == -1) {
3776 		/*
3777 		 * NB: don't print a message, this happens
3778 		 * normally on parts with too few tx queues
3779 		 */
3780 		return NULL;
3781 	}
3782 	if (qnum >= N(sc->sc_txq)) {
3783 		device_printf(sc->sc_dev,
3784 			"hal qnum %u out of range, max %zu!\n",
3785 			qnum, N(sc->sc_txq));
3786 		ath_hal_releasetxqueue(ah, qnum);
3787 		return NULL;
3788 	}
3789 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3790 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3791 		sc->sc_txqsetup |= 1<<qnum;
3792 	}
3793 	return &sc->sc_txq[qnum];
3794 #undef N
3795 }
3796 
3797 /*
3798  * Setup a hardware data transmit queue for the specified
3799  * access control.  The hal may not support all requested
3800  * queues in which case it will return a reference to a
3801  * previously setup queue.  We record the mapping from ac's
3802  * to h/w queues for use by ath_tx_start and also track
3803  * the set of h/w queues being used to optimize work in the
3804  * transmit interrupt handler and related routines.
3805  */
3806 static int
3807 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3808 {
3809 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3810 	struct ath_txq *txq;
3811 
3812 	if (ac >= N(sc->sc_ac2q)) {
3813 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3814 			ac, N(sc->sc_ac2q));
3815 		return 0;
3816 	}
3817 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3818 	if (txq != NULL) {
3819 		txq->axq_ac = ac;
3820 		sc->sc_ac2q[ac] = txq;
3821 		return 1;
3822 	} else
3823 		return 0;
3824 #undef N
3825 }
3826 
3827 /*
3828  * Update WME parameters for a transmit queue.
3829  */
3830 static int
3831 ath_txq_update(struct ath_softc *sc, int ac)
3832 {
3833 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3834 #define	ATH_TXOP_TO_US(v)		(v<<5)
3835 	struct ifnet *ifp = sc->sc_ifp;
3836 	struct ieee80211com *ic = ifp->if_l2com;
3837 	struct ath_txq *txq = sc->sc_ac2q[ac];
3838 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3839 	struct ath_hal *ah = sc->sc_ah;
3840 	HAL_TXQ_INFO qi;
3841 
3842 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3843 #ifdef IEEE80211_SUPPORT_TDMA
3844 	if (sc->sc_tdma) {
3845 		/*
3846 		 * AIFS is zero so there's no pre-transmit wait.  The
3847 		 * burst time defines the slot duration and is configured
3848 		 * through net80211.  The QCU is setup to not do post-xmit
3849 		 * back off, lockout all lower-priority QCU's, and fire
3850 		 * off the DMA beacon alert timer which is setup based
3851 		 * on the slot configuration.
3852 		 */
3853 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3854 			      | HAL_TXQ_TXERRINT_ENABLE
3855 			      | HAL_TXQ_TXURNINT_ENABLE
3856 			      | HAL_TXQ_TXEOLINT_ENABLE
3857 			      | HAL_TXQ_DBA_GATED
3858 			      | HAL_TXQ_BACKOFF_DISABLE
3859 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3860 			      ;
3861 		qi.tqi_aifs = 0;
3862 		/* XXX +dbaprep? */
3863 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3864 		qi.tqi_burstTime = qi.tqi_readyTime;
3865 	} else {
3866 #endif
3867 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3868 			      | HAL_TXQ_TXERRINT_ENABLE
3869 			      | HAL_TXQ_TXDESCINT_ENABLE
3870 			      | HAL_TXQ_TXURNINT_ENABLE
3871 			      ;
3872 		qi.tqi_aifs = wmep->wmep_aifsn;
3873 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3874 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3875 		qi.tqi_readyTime = 0;
3876 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3877 #ifdef IEEE80211_SUPPORT_TDMA
3878 	}
3879 #endif
3880 
3881 	DPRINTF(sc, ATH_DEBUG_RESET,
3882 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3883 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3884 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3885 
3886 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3887 		if_printf(ifp, "unable to update hardware queue "
3888 			"parameters for %s traffic!\n",
3889 			ieee80211_wme_acnames[ac]);
3890 		return 0;
3891 	} else {
3892 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3893 		return 1;
3894 	}
3895 #undef ATH_TXOP_TO_US
3896 #undef ATH_EXPONENT_TO_VALUE
3897 }
3898 
3899 /*
3900  * Callback from the 802.11 layer to update WME parameters.
3901  */
3902 static int
3903 ath_wme_update(struct ieee80211com *ic)
3904 {
3905 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3906 
3907 	return !ath_txq_update(sc, WME_AC_BE) ||
3908 	    !ath_txq_update(sc, WME_AC_BK) ||
3909 	    !ath_txq_update(sc, WME_AC_VI) ||
3910 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3911 }
3912 
3913 /*
3914  * Reclaim resources for a setup queue.
3915  */
3916 static void
3917 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3918 {
3919 
3920 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3921 	ATH_TXQ_LOCK_DESTROY(txq);
3922 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3923 }
3924 
3925 /*
3926  * Reclaim all tx queue resources.
3927  */
3928 static void
3929 ath_tx_cleanup(struct ath_softc *sc)
3930 {
3931 	int i;
3932 
3933 	ATH_TXBUF_LOCK_DESTROY(sc);
3934 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3935 		if (ATH_TXQ_SETUP(sc, i))
3936 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3937 }
3938 
3939 /*
3940  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3941  * using the current rates in sc_rixmap.
3942  */
3943 int
3944 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3945 {
3946 	int rix = sc->sc_rixmap[rate];
3947 	/* NB: return lowest rix for invalid rate */
3948 	return (rix == 0xff ? 0 : rix);
3949 }
3950 
3951 /*
3952  * Process completed xmit descriptors from the specified queue.
3953  */
3954 static int
3955 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3956 {
3957 	struct ath_hal *ah = sc->sc_ah;
3958 	struct ifnet *ifp = sc->sc_ifp;
3959 	struct ieee80211com *ic = ifp->if_l2com;
3960 	struct ath_buf *bf, *last;
3961 	struct ath_desc *ds, *ds0;
3962 	struct ath_tx_status *ts;
3963 	struct ieee80211_node *ni;
3964 	struct ath_node *an;
3965 	int sr, lr, pri, nacked;
3966 	HAL_STATUS status;
3967 
3968 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3969 		__func__, txq->axq_qnum,
3970 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3971 		txq->axq_link);
3972 	nacked = 0;
3973 	for (;;) {
3974 		ATH_TXQ_LOCK(txq);
3975 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3976 		bf = STAILQ_FIRST(&txq->axq_q);
3977 		if (bf == NULL) {
3978 			ATH_TXQ_UNLOCK(txq);
3979 			break;
3980 		}
3981 		ds0 = &bf->bf_desc[0];
3982 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3983 		ts = &bf->bf_status.ds_txstat;
3984 		status = ath_hal_txprocdesc(ah, ds, ts);
3985 #ifdef ATH_DEBUG
3986 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3987 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3988 			    status == HAL_OK);
3989 #endif
3990 		if (status == HAL_EINPROGRESS) {
3991 			ATH_TXQ_UNLOCK(txq);
3992 			break;
3993 		}
3994 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3995 #ifdef IEEE80211_SUPPORT_TDMA
3996 		if (txq->axq_depth > 0) {
3997 			/*
3998 			 * More frames follow.  Mark the buffer busy
3999 			 * so it's not re-used while the hardware may
4000 			 * still re-read the link field in the descriptor.
4001 			 */
4002 			bf->bf_flags |= ATH_BUF_BUSY;
4003 		} else
4004 #else
4005 		if (txq->axq_depth == 0)
4006 #endif
4007 			txq->axq_link = NULL;
4008 		ATH_TXQ_UNLOCK(txq);
4009 
4010 		ni = bf->bf_node;
4011 		if (ni != NULL) {
4012 			an = ATH_NODE(ni);
4013 			if (ts->ts_status == 0) {
4014 				u_int8_t txant = ts->ts_antenna;
4015 				sc->sc_stats.ast_ant_tx[txant]++;
4016 				sc->sc_ant_tx[txant]++;
4017 				if (ts->ts_finaltsi != 0)
4018 					sc->sc_stats.ast_tx_altrate++;
4019 				pri = M_WME_GETAC(bf->bf_m);
4020 				if (pri >= WME_AC_VO)
4021 					ic->ic_wme.wme_hipri_traffic++;
4022 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4023 					ni->ni_inact = ni->ni_inact_reload;
4024 			} else {
4025 				if (ts->ts_status & HAL_TXERR_XRETRY)
4026 					sc->sc_stats.ast_tx_xretries++;
4027 				if (ts->ts_status & HAL_TXERR_FIFO)
4028 					sc->sc_stats.ast_tx_fifoerr++;
4029 				if (ts->ts_status & HAL_TXERR_FILT)
4030 					sc->sc_stats.ast_tx_filtered++;
4031 				if (ts->ts_status & HAL_TXERR_XTXOP)
4032 					sc->sc_stats.ast_tx_xtxop++;
4033 				if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4034 					sc->sc_stats.ast_tx_timerexpired++;
4035 
4036 				/* XXX HAL_TX_DATA_UNDERRUN */
4037 				/* XXX HAL_TX_DELIM_UNDERRUN */
4038 
4039 				if (bf->bf_m->m_flags & M_FF)
4040 					sc->sc_stats.ast_ff_txerr++;
4041 			}
4042 			/* XXX when is this valid? */
4043 			if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4044 				sc->sc_stats.ast_tx_desccfgerr++;
4045 
4046 			sr = ts->ts_shortretry;
4047 			lr = ts->ts_longretry;
4048 			sc->sc_stats.ast_tx_shortretry += sr;
4049 			sc->sc_stats.ast_tx_longretry += lr;
4050 			/*
4051 			 * Hand the descriptor to the rate control algorithm.
4052 			 */
4053 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4054 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4055 				/*
4056 				 * If frame was ack'd update statistics,
4057 				 * including the last rx time used to
4058 				 * workaround phantom bmiss interrupts.
4059 				 */
4060 				if (ts->ts_status == 0) {
4061 					nacked++;
4062 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4063 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4064 						ts->ts_rssi);
4065 				}
4066 				ath_rate_tx_complete(sc, an, bf);
4067 			}
4068 			/*
4069 			 * Do any tx complete callback.  Note this must
4070 			 * be done before releasing the node reference.
4071 			 */
4072 			if (bf->bf_m->m_flags & M_TXCB)
4073 				ieee80211_process_callback(ni, bf->bf_m,
4074 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
4075 				        ts->ts_status : HAL_TXERR_XRETRY);
4076 			ieee80211_free_node(ni);
4077 		}
4078 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4079 		    BUS_DMASYNC_POSTWRITE);
4080 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4081 
4082 		m_freem(bf->bf_m);
4083 		bf->bf_m = NULL;
4084 		bf->bf_node = NULL;
4085 
4086 		ATH_TXBUF_LOCK(sc);
4087 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4088 		if (last != NULL)
4089 			last->bf_flags &= ~ATH_BUF_BUSY;
4090 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4091 		ATH_TXBUF_UNLOCK(sc);
4092 	}
4093 #ifdef IEEE80211_SUPPORT_SUPERG
4094 	/*
4095 	 * Flush fast-frame staging queue when traffic slows.
4096 	 */
4097 	if (txq->axq_depth <= 1)
4098 		ieee80211_ff_flush(ic, txq->axq_ac);
4099 #endif
4100 	return nacked;
4101 }
4102 
4103 static __inline int
4104 txqactive(struct ath_hal *ah, int qnum)
4105 {
4106 	u_int32_t txqs = 1<<qnum;
4107 	ath_hal_gettxintrtxqs(ah, &txqs);
4108 	return (txqs & (1<<qnum));
4109 }
4110 
4111 /*
4112  * Deferred processing of transmit interrupt; special-cased
4113  * for a single hardware transmit queue (e.g. 5210 and 5211).
4114  */
4115 static void
4116 ath_tx_proc_q0(void *arg, int npending)
4117 {
4118 	struct ath_softc *sc = arg;
4119 	struct ifnet *ifp = sc->sc_ifp;
4120 
4121 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4122 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4123 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4124 		ath_tx_processq(sc, sc->sc_cabq);
4125 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4126 	sc->sc_wd_timer = 0;
4127 
4128 	if (sc->sc_softled)
4129 		ath_led_event(sc, sc->sc_txrix);
4130 
4131 	ath_start(ifp);
4132 }
4133 
4134 /*
4135  * Deferred processing of transmit interrupt; special-cased
4136  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4137  */
4138 static void
4139 ath_tx_proc_q0123(void *arg, int npending)
4140 {
4141 	struct ath_softc *sc = arg;
4142 	struct ifnet *ifp = sc->sc_ifp;
4143 	int nacked;
4144 
4145 	/*
4146 	 * Process each active queue.
4147 	 */
4148 	nacked = 0;
4149 	if (txqactive(sc->sc_ah, 0))
4150 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4151 	if (txqactive(sc->sc_ah, 1))
4152 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4153 	if (txqactive(sc->sc_ah, 2))
4154 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4155 	if (txqactive(sc->sc_ah, 3))
4156 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4157 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4158 		ath_tx_processq(sc, sc->sc_cabq);
4159 	if (nacked)
4160 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4161 
4162 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4163 	sc->sc_wd_timer = 0;
4164 
4165 	if (sc->sc_softled)
4166 		ath_led_event(sc, sc->sc_txrix);
4167 
4168 	ath_start(ifp);
4169 }
4170 
4171 /*
4172  * Deferred processing of transmit interrupt.
4173  */
4174 static void
4175 ath_tx_proc(void *arg, int npending)
4176 {
4177 	struct ath_softc *sc = arg;
4178 	struct ifnet *ifp = sc->sc_ifp;
4179 	int i, nacked;
4180 
4181 	/*
4182 	 * Process each active queue.
4183 	 */
4184 	nacked = 0;
4185 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4186 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4187 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4188 	if (nacked)
4189 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4190 
4191 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4192 	sc->sc_wd_timer = 0;
4193 
4194 	if (sc->sc_softled)
4195 		ath_led_event(sc, sc->sc_txrix);
4196 
4197 	ath_start(ifp);
4198 }
4199 
4200 static void
4201 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4202 {
4203 #ifdef ATH_DEBUG
4204 	struct ath_hal *ah = sc->sc_ah;
4205 #endif
4206 	struct ieee80211_node *ni;
4207 	struct ath_buf *bf;
4208 	u_int ix;
4209 
4210 	/*
4211 	 * NB: this assumes output has been stopped and
4212 	 *     we do not need to block ath_tx_proc
4213 	 */
4214 	ATH_TXBUF_LOCK(sc);
4215 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4216 	if (bf != NULL)
4217 		bf->bf_flags &= ~ATH_BUF_BUSY;
4218 	ATH_TXBUF_UNLOCK(sc);
4219 	for (ix = 0;; ix++) {
4220 		ATH_TXQ_LOCK(txq);
4221 		bf = STAILQ_FIRST(&txq->axq_q);
4222 		if (bf == NULL) {
4223 			txq->axq_link = NULL;
4224 			ATH_TXQ_UNLOCK(txq);
4225 			break;
4226 		}
4227 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4228 		ATH_TXQ_UNLOCK(txq);
4229 #ifdef ATH_DEBUG
4230 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4231 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4232 
4233 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
4234 				ath_hal_txprocdesc(ah, bf->bf_desc,
4235 				    &bf->bf_status.ds_txstat) == HAL_OK);
4236 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4237 			    bf->bf_m->m_len, 0, -1);
4238 		}
4239 #endif /* ATH_DEBUG */
4240 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4241 		ni = bf->bf_node;
4242 		bf->bf_node = NULL;
4243 		if (ni != NULL) {
4244 			/*
4245 			 * Do any callback and reclaim the node reference.
4246 			 */
4247 			if (bf->bf_m->m_flags & M_TXCB)
4248 				ieee80211_process_callback(ni, bf->bf_m, -1);
4249 			ieee80211_free_node(ni);
4250 		}
4251 		m_freem(bf->bf_m);
4252 		bf->bf_m = NULL;
4253 		bf->bf_flags &= ~ATH_BUF_BUSY;
4254 
4255 		ATH_TXBUF_LOCK(sc);
4256 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4257 		ATH_TXBUF_UNLOCK(sc);
4258 	}
4259 }
4260 
4261 static void
4262 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4263 {
4264 	struct ath_hal *ah = sc->sc_ah;
4265 
4266 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4267 	    __func__, txq->axq_qnum,
4268 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4269 	    txq->axq_link);
4270 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4271 }
4272 
4273 /*
4274  * Drain the transmit queues and reclaim resources.
4275  */
4276 static void
4277 ath_draintxq(struct ath_softc *sc)
4278 {
4279 	struct ath_hal *ah = sc->sc_ah;
4280 	struct ifnet *ifp = sc->sc_ifp;
4281 	int i;
4282 
4283 	/* XXX return value */
4284 	if (!sc->sc_invalid) {
4285 		/* don't touch the hardware if marked invalid */
4286 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4287 		    __func__, sc->sc_bhalq,
4288 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4289 		    NULL);
4290 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4291 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4292 			if (ATH_TXQ_SETUP(sc, i))
4293 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4294 	}
4295 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4296 		if (ATH_TXQ_SETUP(sc, i))
4297 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4298 #ifdef ATH_DEBUG
4299 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4300 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4301 		if (bf != NULL && bf->bf_m != NULL) {
4302 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4303 				ath_hal_txprocdesc(ah, bf->bf_desc,
4304 				    &bf->bf_status.ds_txstat) == HAL_OK);
4305 			ieee80211_dump_pkt(ifp->if_l2com,
4306 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4307 			    0, -1);
4308 		}
4309 	}
4310 #endif /* ATH_DEBUG */
4311 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4312 	sc->sc_wd_timer = 0;
4313 }
4314 
4315 /*
4316  * Disable the receive h/w in preparation for a reset.
4317  */
4318 static void
4319 ath_stoprecv(struct ath_softc *sc)
4320 {
4321 #define	PA2DESC(_sc, _pa) \
4322 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4323 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4324 	struct ath_hal *ah = sc->sc_ah;
4325 
4326 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4327 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4328 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4329 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4330 #ifdef ATH_DEBUG
4331 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4332 		struct ath_buf *bf;
4333 		u_int ix;
4334 
4335 		printf("%s: rx queue %p, link %p\n", __func__,
4336 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4337 		ix = 0;
4338 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4339 			struct ath_desc *ds = bf->bf_desc;
4340 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4341 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4342 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4343 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4344 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
4345 			ix++;
4346 		}
4347 	}
4348 #endif
4349 	if (sc->sc_rxpending != NULL) {
4350 		m_freem(sc->sc_rxpending);
4351 		sc->sc_rxpending = NULL;
4352 	}
4353 	sc->sc_rxlink = NULL;		/* just in case */
4354 #undef PA2DESC
4355 }
4356 
4357 /*
4358  * Enable the receive h/w following a reset.
4359  */
4360 static int
4361 ath_startrecv(struct ath_softc *sc)
4362 {
4363 	struct ath_hal *ah = sc->sc_ah;
4364 	struct ath_buf *bf;
4365 
4366 	sc->sc_rxlink = NULL;
4367 	sc->sc_rxpending = NULL;
4368 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4369 		int error = ath_rxbuf_init(sc, bf);
4370 		if (error != 0) {
4371 			DPRINTF(sc, ATH_DEBUG_RECV,
4372 				"%s: ath_rxbuf_init failed %d\n",
4373 				__func__, error);
4374 			return error;
4375 		}
4376 	}
4377 
4378 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4379 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4380 	ath_hal_rxena(ah);		/* enable recv descriptors */
4381 	ath_mode_init(sc);		/* set filters, etc. */
4382 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4383 	return 0;
4384 }
4385 
4386 /*
4387  * Update internal state after a channel change.
4388  */
4389 static void
4390 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4391 {
4392 	enum ieee80211_phymode mode;
4393 
4394 	/*
4395 	 * Change channels and update the h/w rate map
4396 	 * if we're switching; e.g. 11a to 11b/g.
4397 	 */
4398 	mode = ieee80211_chan2mode(chan);
4399 	if (mode != sc->sc_curmode)
4400 		ath_setcurmode(sc, mode);
4401 	sc->sc_curchan = chan;
4402 }
4403 
4404 /*
4405  * Set/change channels.  If the channel is really being changed,
4406  * it's done by resetting the chip.  To accomplish this we must
4407  * first cleanup any pending DMA, then restart stuff after a la
4408  * ath_init.
4409  */
4410 static int
4411 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4412 {
4413 	struct ifnet *ifp = sc->sc_ifp;
4414 	struct ieee80211com *ic = ifp->if_l2com;
4415 	struct ath_hal *ah = sc->sc_ah;
4416 
4417 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4418 	    __func__, ieee80211_chan2ieee(ic, chan),
4419 	    chan->ic_freq, chan->ic_flags);
4420 	if (chan != sc->sc_curchan) {
4421 		HAL_STATUS status;
4422 		/*
4423 		 * To switch channels clear any pending DMA operations;
4424 		 * wait long enough for the RX fifo to drain, reset the
4425 		 * hardware at the new frequency, and then re-enable
4426 		 * the relevant bits of the h/w.
4427 		 */
4428 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4429 		ath_draintxq(sc);		/* clear pending tx frames */
4430 		ath_stoprecv(sc);		/* turn off frame recv */
4431 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4432 			if_printf(ifp, "%s: unable to reset "
4433 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4434 			    __func__, ieee80211_chan2ieee(ic, chan),
4435 			    chan->ic_freq, chan->ic_flags, status);
4436 			return EIO;
4437 		}
4438 		sc->sc_diversity = ath_hal_getdiversity(ah);
4439 
4440 		/* Let DFS at it in case it's a DFS channel */
4441 		ath_dfs_radar_enable(sc, ic->ic_curchan);
4442 
4443 		/*
4444 		 * Re-enable rx framework.
4445 		 */
4446 		if (ath_startrecv(sc) != 0) {
4447 			if_printf(ifp, "%s: unable to restart recv logic\n",
4448 			    __func__);
4449 			return EIO;
4450 		}
4451 
4452 		/*
4453 		 * Change channels and update the h/w rate map
4454 		 * if we're switching; e.g. 11a to 11b/g.
4455 		 */
4456 		ath_chan_change(sc, chan);
4457 
4458 		/*
4459 		 * Re-enable interrupts.
4460 		 */
4461 		ath_hal_intrset(ah, sc->sc_imask);
4462 	}
4463 	return 0;
4464 }
4465 
4466 /*
4467  * Periodically recalibrate the PHY to account
4468  * for temperature/environment changes.
4469  */
4470 static void
4471 ath_calibrate(void *arg)
4472 {
4473 	struct ath_softc *sc = arg;
4474 	struct ath_hal *ah = sc->sc_ah;
4475 	struct ifnet *ifp = sc->sc_ifp;
4476 	struct ieee80211com *ic = ifp->if_l2com;
4477 	HAL_BOOL longCal, isCalDone;
4478 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4479 	int nextcal;
4480 
4481 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4482 		goto restart;
4483 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4484 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4485 	if (sc->sc_doresetcal)
4486 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4487 
4488 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4489 	if (aniCal) {
4490 		sc->sc_stats.ast_ani_cal++;
4491 		sc->sc_lastani = ticks;
4492 		ath_hal_ani_poll(ah, sc->sc_curchan);
4493 	}
4494 
4495 	if (longCal) {
4496 		sc->sc_stats.ast_per_cal++;
4497 		sc->sc_lastlongcal = ticks;
4498 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4499 			/*
4500 			 * Rfgain is out of bounds, reset the chip
4501 			 * to load new gain values.
4502 			 */
4503 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4504 				"%s: rfgain change\n", __func__);
4505 			sc->sc_stats.ast_per_rfgain++;
4506 			ath_reset(ifp);
4507 		}
4508 		/*
4509 		 * If this long cal is after an idle period, then
4510 		 * reset the data collection state so we start fresh.
4511 		 */
4512 		if (sc->sc_resetcal) {
4513 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4514 			sc->sc_lastcalreset = ticks;
4515 			sc->sc_lastshortcal = ticks;
4516 			sc->sc_resetcal = 0;
4517 			sc->sc_doresetcal = AH_TRUE;
4518 		}
4519 	}
4520 
4521 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4522 	if (shortCal || longCal) {
4523 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4524 			if (longCal) {
4525 				/*
4526 				 * Calibrate noise floor data again in case of change.
4527 				 */
4528 				ath_hal_process_noisefloor(ah);
4529 			}
4530 		} else {
4531 			DPRINTF(sc, ATH_DEBUG_ANY,
4532 				"%s: calibration of channel %u failed\n",
4533 				__func__, sc->sc_curchan->ic_freq);
4534 			sc->sc_stats.ast_per_calfail++;
4535 		}
4536 		if (shortCal)
4537 			sc->sc_lastshortcal = ticks;
4538 	}
4539 	if (!isCalDone) {
4540 restart:
4541 		/*
4542 		 * Use a shorter interval to potentially collect multiple
4543 		 * data samples required to complete calibration.  Once
4544 		 * we're told the work is done we drop back to a longer
4545 		 * interval between requests.  We're more aggressive doing
4546 		 * work when operating as an AP to improve operation right
4547 		 * after startup.
4548 		 */
4549 		sc->sc_lastshortcal = ticks;
4550 		nextcal = ath_shortcalinterval*hz/1000;
4551 		if (sc->sc_opmode != HAL_M_HOSTAP)
4552 			nextcal *= 10;
4553 		sc->sc_doresetcal = AH_TRUE;
4554 	} else {
4555 		/* nextcal should be the shortest time for next event */
4556 		nextcal = ath_longcalinterval*hz;
4557 		if (sc->sc_lastcalreset == 0)
4558 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4559 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4560 			sc->sc_resetcal = 1;	/* setup reset next trip */
4561 		sc->sc_doresetcal = AH_FALSE;
4562 	}
4563 	/* ANI calibration may occur more often than short/long/resetcal */
4564 	if (ath_anicalinterval > 0)
4565 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4566 
4567 	if (nextcal != 0) {
4568 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4569 		    __func__, nextcal, isCalDone ? "" : "!");
4570 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4571 	} else {
4572 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4573 		    __func__);
4574 		/* NB: don't rearm timer */
4575 	}
4576 }
4577 
4578 static void
4579 ath_scan_start(struct ieee80211com *ic)
4580 {
4581 	struct ifnet *ifp = ic->ic_ifp;
4582 	struct ath_softc *sc = ifp->if_softc;
4583 	struct ath_hal *ah = sc->sc_ah;
4584 	u_int32_t rfilt;
4585 
4586 	/* XXX calibration timer? */
4587 
4588 	sc->sc_scanning = 1;
4589 	sc->sc_syncbeacon = 0;
4590 	rfilt = ath_calcrxfilter(sc);
4591 	ath_hal_setrxfilter(ah, rfilt);
4592 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4593 
4594 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4595 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4596 }
4597 
4598 static void
4599 ath_scan_end(struct ieee80211com *ic)
4600 {
4601 	struct ifnet *ifp = ic->ic_ifp;
4602 	struct ath_softc *sc = ifp->if_softc;
4603 	struct ath_hal *ah = sc->sc_ah;
4604 	u_int32_t rfilt;
4605 
4606 	sc->sc_scanning = 0;
4607 	rfilt = ath_calcrxfilter(sc);
4608 	ath_hal_setrxfilter(ah, rfilt);
4609 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4610 
4611 	ath_hal_process_noisefloor(ah);
4612 
4613 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4614 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4615 		 sc->sc_curaid);
4616 }
4617 
4618 static void
4619 ath_set_channel(struct ieee80211com *ic)
4620 {
4621 	struct ifnet *ifp = ic->ic_ifp;
4622 	struct ath_softc *sc = ifp->if_softc;
4623 
4624 	(void) ath_chan_set(sc, ic->ic_curchan);
4625 	/*
4626 	 * If we are returning to our bss channel then mark state
4627 	 * so the next recv'd beacon's tsf will be used to sync the
4628 	 * beacon timers.  Note that since we only hear beacons in
4629 	 * sta/ibss mode this has no effect in other operating modes.
4630 	 */
4631 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4632 		sc->sc_syncbeacon = 1;
4633 }
4634 
4635 /*
4636  * Walk the vap list and check if there any vap's in RUN state.
4637  */
4638 static int
4639 ath_isanyrunningvaps(struct ieee80211vap *this)
4640 {
4641 	struct ieee80211com *ic = this->iv_ic;
4642 	struct ieee80211vap *vap;
4643 
4644 	IEEE80211_LOCK_ASSERT(ic);
4645 
4646 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4647 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4648 			return 1;
4649 	}
4650 	return 0;
4651 }
4652 
4653 static int
4654 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4655 {
4656 	struct ieee80211com *ic = vap->iv_ic;
4657 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4658 	struct ath_vap *avp = ATH_VAP(vap);
4659 	struct ath_hal *ah = sc->sc_ah;
4660 	struct ieee80211_node *ni = NULL;
4661 	int i, error, stamode;
4662 	u_int32_t rfilt;
4663 	static const HAL_LED_STATE leds[] = {
4664 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4665 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4666 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4667 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4668 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4669 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4670 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4671 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4672 	};
4673 
4674 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4675 		ieee80211_state_name[vap->iv_state],
4676 		ieee80211_state_name[nstate]);
4677 
4678 	callout_drain(&sc->sc_cal_ch);
4679 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4680 
4681 	if (nstate == IEEE80211_S_SCAN) {
4682 		/*
4683 		 * Scanning: turn off beacon miss and don't beacon.
4684 		 * Mark beacon state so when we reach RUN state we'll
4685 		 * [re]setup beacons.  Unblock the task q thread so
4686 		 * deferred interrupt processing is done.
4687 		 */
4688 		ath_hal_intrset(ah,
4689 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4690 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4691 		sc->sc_beacons = 0;
4692 		taskqueue_unblock(sc->sc_tq);
4693 	}
4694 
4695 	ni = vap->iv_bss;
4696 	rfilt = ath_calcrxfilter(sc);
4697 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4698 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4699 		   vap->iv_opmode == IEEE80211_M_IBSS);
4700 	if (stamode && nstate == IEEE80211_S_RUN) {
4701 		sc->sc_curaid = ni->ni_associd;
4702 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4703 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4704 	}
4705 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4706 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4707 	ath_hal_setrxfilter(ah, rfilt);
4708 
4709 	/* XXX is this to restore keycache on resume? */
4710 	if (vap->iv_opmode != IEEE80211_M_STA &&
4711 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4712 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4713 			if (ath_hal_keyisvalid(ah, i))
4714 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4715 	}
4716 
4717 	/*
4718 	 * Invoke the parent method to do net80211 work.
4719 	 */
4720 	error = avp->av_newstate(vap, nstate, arg);
4721 	if (error != 0)
4722 		goto bad;
4723 
4724 	if (nstate == IEEE80211_S_RUN) {
4725 		/* NB: collect bss node again, it may have changed */
4726 		ni = vap->iv_bss;
4727 
4728 		DPRINTF(sc, ATH_DEBUG_STATE,
4729 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4730 		    "capinfo 0x%04x chan %d\n", __func__,
4731 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4732 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4733 
4734 		switch (vap->iv_opmode) {
4735 #ifdef IEEE80211_SUPPORT_TDMA
4736 		case IEEE80211_M_AHDEMO:
4737 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4738 				break;
4739 			/* fall thru... */
4740 #endif
4741 		case IEEE80211_M_HOSTAP:
4742 		case IEEE80211_M_IBSS:
4743 		case IEEE80211_M_MBSS:
4744 			/*
4745 			 * Allocate and setup the beacon frame.
4746 			 *
4747 			 * Stop any previous beacon DMA.  This may be
4748 			 * necessary, for example, when an ibss merge
4749 			 * causes reconfiguration; there will be a state
4750 			 * transition from RUN->RUN that means we may
4751 			 * be called with beacon transmission active.
4752 			 */
4753 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4754 
4755 			error = ath_beacon_alloc(sc, ni);
4756 			if (error != 0)
4757 				goto bad;
4758 			/*
4759 			 * If joining an adhoc network defer beacon timer
4760 			 * configuration to the next beacon frame so we
4761 			 * have a current TSF to use.  Otherwise we're
4762 			 * starting an ibss/bss so there's no need to delay;
4763 			 * if this is the first vap moving to RUN state, then
4764 			 * beacon state needs to be [re]configured.
4765 			 */
4766 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4767 			    ni->ni_tstamp.tsf != 0) {
4768 				sc->sc_syncbeacon = 1;
4769 			} else if (!sc->sc_beacons) {
4770 #ifdef IEEE80211_SUPPORT_TDMA
4771 				if (vap->iv_caps & IEEE80211_C_TDMA)
4772 					ath_tdma_config(sc, vap);
4773 				else
4774 #endif
4775 					ath_beacon_config(sc, vap);
4776 				sc->sc_beacons = 1;
4777 			}
4778 			break;
4779 		case IEEE80211_M_STA:
4780 			/*
4781 			 * Defer beacon timer configuration to the next
4782 			 * beacon frame so we have a current TSF to use
4783 			 * (any TSF collected when scanning is likely old).
4784 			 */
4785 			sc->sc_syncbeacon = 1;
4786 			break;
4787 		case IEEE80211_M_MONITOR:
4788 			/*
4789 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4790 			 * transitions so we must re-enable interrupts here to
4791 			 * handle the case of a single monitor mode vap.
4792 			 */
4793 			ath_hal_intrset(ah, sc->sc_imask);
4794 			break;
4795 		case IEEE80211_M_WDS:
4796 			break;
4797 		default:
4798 			break;
4799 		}
4800 		/*
4801 		 * Let the hal process statistics collected during a
4802 		 * scan so it can provide calibrated noise floor data.
4803 		 */
4804 		ath_hal_process_noisefloor(ah);
4805 		/*
4806 		 * Reset rssi stats; maybe not the best place...
4807 		 */
4808 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4809 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4810 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4811 		/*
4812 		 * Finally, start any timers and the task q thread
4813 		 * (in case we didn't go through SCAN state).
4814 		 */
4815 		if (ath_longcalinterval != 0) {
4816 			/* start periodic recalibration timer */
4817 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4818 		} else {
4819 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4820 			    "%s: calibration disabled\n", __func__);
4821 		}
4822 		taskqueue_unblock(sc->sc_tq);
4823 	} else if (nstate == IEEE80211_S_INIT) {
4824 		/*
4825 		 * If there are no vaps left in RUN state then
4826 		 * shutdown host/driver operation:
4827 		 * o disable interrupts
4828 		 * o disable the task queue thread
4829 		 * o mark beacon processing as stopped
4830 		 */
4831 		if (!ath_isanyrunningvaps(vap)) {
4832 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4833 			/* disable interrupts  */
4834 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4835 			taskqueue_block(sc->sc_tq);
4836 			sc->sc_beacons = 0;
4837 		}
4838 #ifdef IEEE80211_SUPPORT_TDMA
4839 		ath_hal_setcca(ah, AH_TRUE);
4840 #endif
4841 	}
4842 bad:
4843 	return error;
4844 }
4845 
4846 /*
4847  * Allocate a key cache slot to the station so we can
4848  * setup a mapping from key index to node. The key cache
4849  * slot is needed for managing antenna state and for
4850  * compression when stations do not use crypto.  We do
4851  * it uniliaterally here; if crypto is employed this slot
4852  * will be reassigned.
4853  */
4854 static void
4855 ath_setup_stationkey(struct ieee80211_node *ni)
4856 {
4857 	struct ieee80211vap *vap = ni->ni_vap;
4858 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4859 	ieee80211_keyix keyix, rxkeyix;
4860 
4861 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4862 		/*
4863 		 * Key cache is full; we'll fall back to doing
4864 		 * the more expensive lookup in software.  Note
4865 		 * this also means no h/w compression.
4866 		 */
4867 		/* XXX msg+statistic */
4868 	} else {
4869 		/* XXX locking? */
4870 		ni->ni_ucastkey.wk_keyix = keyix;
4871 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4872 		/* NB: must mark device key to get called back on delete */
4873 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4874 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4875 		/* NB: this will create a pass-thru key entry */
4876 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
4877 	}
4878 }
4879 
4880 /*
4881  * Setup driver-specific state for a newly associated node.
4882  * Note that we're called also on a re-associate, the isnew
4883  * param tells us if this is the first time or not.
4884  */
4885 static void
4886 ath_newassoc(struct ieee80211_node *ni, int isnew)
4887 {
4888 	struct ath_node *an = ATH_NODE(ni);
4889 	struct ieee80211vap *vap = ni->ni_vap;
4890 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4891 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4892 
4893 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4894 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4895 
4896 	ath_rate_newassoc(sc, an, isnew);
4897 	if (isnew &&
4898 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4899 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4900 		ath_setup_stationkey(ni);
4901 }
4902 
4903 static int
4904 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4905 	int nchans, struct ieee80211_channel chans[])
4906 {
4907 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4908 	struct ath_hal *ah = sc->sc_ah;
4909 	HAL_STATUS status;
4910 
4911 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4912 	    "%s: rd %u cc %u location %c%s\n",
4913 	    __func__, reg->regdomain, reg->country, reg->location,
4914 	    reg->ecm ? " ecm" : "");
4915 
4916 	status = ath_hal_set_channels(ah, chans, nchans,
4917 	    reg->country, reg->regdomain);
4918 	if (status != HAL_OK) {
4919 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4920 		    __func__, status);
4921 		return EINVAL;		/* XXX */
4922 	}
4923 	return 0;
4924 }
4925 
4926 static void
4927 ath_getradiocaps(struct ieee80211com *ic,
4928 	int maxchans, int *nchans, struct ieee80211_channel chans[])
4929 {
4930 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4931 	struct ath_hal *ah = sc->sc_ah;
4932 
4933 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4934 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4935 
4936 	/* XXX check return */
4937 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4938 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4939 
4940 }
4941 
4942 static int
4943 ath_getchannels(struct ath_softc *sc)
4944 {
4945 	struct ifnet *ifp = sc->sc_ifp;
4946 	struct ieee80211com *ic = ifp->if_l2com;
4947 	struct ath_hal *ah = sc->sc_ah;
4948 	HAL_STATUS status;
4949 
4950 	/*
4951 	 * Collect channel set based on EEPROM contents.
4952 	 */
4953 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4954 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4955 	if (status != HAL_OK) {
4956 		if_printf(ifp, "%s: unable to collect channel list from hal, "
4957 		    "status %d\n", __func__, status);
4958 		return EINVAL;
4959 	}
4960 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4961 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4962 	/* XXX map Atheros sku's to net80211 SKU's */
4963 	/* XXX net80211 types too small */
4964 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4965 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4966 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4967 	ic->ic_regdomain.isocc[1] = ' ';
4968 
4969 	ic->ic_regdomain.ecm = 1;
4970 	ic->ic_regdomain.location = 'I';
4971 
4972 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4973 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4974 	    __func__, sc->sc_eerd, sc->sc_eecc,
4975 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4976 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4977 	return 0;
4978 }
4979 
4980 static void
4981 ath_led_done(void *arg)
4982 {
4983 	struct ath_softc *sc = arg;
4984 
4985 	sc->sc_blinking = 0;
4986 }
4987 
4988 /*
4989  * Turn the LED off: flip the pin and then set a timer so no
4990  * update will happen for the specified duration.
4991  */
4992 static void
4993 ath_led_off(void *arg)
4994 {
4995 	struct ath_softc *sc = arg;
4996 
4997 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4998 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4999 }
5000 
5001 /*
5002  * Blink the LED according to the specified on/off times.
5003  */
5004 static void
5005 ath_led_blink(struct ath_softc *sc, int on, int off)
5006 {
5007 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5008 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5009 	sc->sc_blinking = 1;
5010 	sc->sc_ledoff = off;
5011 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5012 }
5013 
5014 static void
5015 ath_led_event(struct ath_softc *sc, int rix)
5016 {
5017 	sc->sc_ledevent = ticks;	/* time of last event */
5018 	if (sc->sc_blinking)		/* don't interrupt active blink */
5019 		return;
5020 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5021 }
5022 
5023 static int
5024 ath_rate_setup(struct ath_softc *sc, u_int mode)
5025 {
5026 	struct ath_hal *ah = sc->sc_ah;
5027 	const HAL_RATE_TABLE *rt;
5028 
5029 	switch (mode) {
5030 	case IEEE80211_MODE_11A:
5031 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5032 		break;
5033 	case IEEE80211_MODE_HALF:
5034 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5035 		break;
5036 	case IEEE80211_MODE_QUARTER:
5037 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5038 		break;
5039 	case IEEE80211_MODE_11B:
5040 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5041 		break;
5042 	case IEEE80211_MODE_11G:
5043 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5044 		break;
5045 	case IEEE80211_MODE_TURBO_A:
5046 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5047 		break;
5048 	case IEEE80211_MODE_TURBO_G:
5049 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5050 		break;
5051 	case IEEE80211_MODE_STURBO_A:
5052 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5053 		break;
5054 	case IEEE80211_MODE_11NA:
5055 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5056 		break;
5057 	case IEEE80211_MODE_11NG:
5058 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5059 		break;
5060 	default:
5061 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5062 			__func__, mode);
5063 		return 0;
5064 	}
5065 	sc->sc_rates[mode] = rt;
5066 	return (rt != NULL);
5067 }
5068 
5069 static void
5070 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5071 {
5072 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5073 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5074 	static const struct {
5075 		u_int		rate;		/* tx/rx 802.11 rate */
5076 		u_int16_t	timeOn;		/* LED on time (ms) */
5077 		u_int16_t	timeOff;	/* LED off time (ms) */
5078 	} blinkrates[] = {
5079 		{ 108,  40,  10 },
5080 		{  96,  44,  11 },
5081 		{  72,  50,  13 },
5082 		{  48,  57,  14 },
5083 		{  36,  67,  16 },
5084 		{  24,  80,  20 },
5085 		{  22, 100,  25 },
5086 		{  18, 133,  34 },
5087 		{  12, 160,  40 },
5088 		{  10, 200,  50 },
5089 		{   6, 240,  58 },
5090 		{   4, 267,  66 },
5091 		{   2, 400, 100 },
5092 		{   0, 500, 130 },
5093 		/* XXX half/quarter rates */
5094 	};
5095 	const HAL_RATE_TABLE *rt;
5096 	int i, j;
5097 
5098 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5099 	rt = sc->sc_rates[mode];
5100 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5101 	for (i = 0; i < rt->rateCount; i++) {
5102 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5103 		if (rt->info[i].phy != IEEE80211_T_HT)
5104 			sc->sc_rixmap[ieeerate] = i;
5105 		else
5106 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5107 	}
5108 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5109 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5110 		if (i >= rt->rateCount) {
5111 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5112 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5113 			continue;
5114 		}
5115 		sc->sc_hwmap[i].ieeerate =
5116 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5117 		if (rt->info[i].phy == IEEE80211_T_HT)
5118 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5119 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5120 		if (rt->info[i].shortPreamble ||
5121 		    rt->info[i].phy == IEEE80211_T_OFDM)
5122 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5123 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5124 		for (j = 0; j < N(blinkrates)-1; j++)
5125 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5126 				break;
5127 		/* NB: this uses the last entry if the rate isn't found */
5128 		/* XXX beware of overlow */
5129 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5130 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5131 	}
5132 	sc->sc_currates = rt;
5133 	sc->sc_curmode = mode;
5134 	/*
5135 	 * All protection frames are transmited at 2Mb/s for
5136 	 * 11g, otherwise at 1Mb/s.
5137 	 */
5138 	if (mode == IEEE80211_MODE_11G)
5139 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5140 	else
5141 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5142 	/* NB: caller is responsible for resetting rate control state */
5143 #undef N
5144 }
5145 
5146 static void
5147 ath_watchdog(void *arg)
5148 {
5149 	struct ath_softc *sc = arg;
5150 
5151 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5152 		struct ifnet *ifp = sc->sc_ifp;
5153 		uint32_t hangs;
5154 
5155 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5156 		    hangs != 0) {
5157 			if_printf(ifp, "%s hang detected (0x%x)\n",
5158 			    hangs & 0xff ? "bb" : "mac", hangs);
5159 		} else
5160 			if_printf(ifp, "device timeout\n");
5161 		ath_reset(ifp);
5162 		ifp->if_oerrors++;
5163 		sc->sc_stats.ast_watchdog++;
5164 	}
5165 	callout_schedule(&sc->sc_wd_ch, hz);
5166 }
5167 
5168 #ifdef ATH_DIAGAPI
5169 /*
5170  * Diagnostic interface to the HAL.  This is used by various
5171  * tools to do things like retrieve register contents for
5172  * debugging.  The mechanism is intentionally opaque so that
5173  * it can change frequently w/o concern for compatiblity.
5174  */
5175 static int
5176 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5177 {
5178 	struct ath_hal *ah = sc->sc_ah;
5179 	u_int id = ad->ad_id & ATH_DIAG_ID;
5180 	void *indata = NULL;
5181 	void *outdata = NULL;
5182 	u_int32_t insize = ad->ad_in_size;
5183 	u_int32_t outsize = ad->ad_out_size;
5184 	int error = 0;
5185 
5186 	if (ad->ad_id & ATH_DIAG_IN) {
5187 		/*
5188 		 * Copy in data.
5189 		 */
5190 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5191 		if (indata == NULL) {
5192 			error = ENOMEM;
5193 			goto bad;
5194 		}
5195 		error = copyin(ad->ad_in_data, indata, insize);
5196 		if (error)
5197 			goto bad;
5198 	}
5199 	if (ad->ad_id & ATH_DIAG_DYN) {
5200 		/*
5201 		 * Allocate a buffer for the results (otherwise the HAL
5202 		 * returns a pointer to a buffer where we can read the
5203 		 * results).  Note that we depend on the HAL leaving this
5204 		 * pointer for us to use below in reclaiming the buffer;
5205 		 * may want to be more defensive.
5206 		 */
5207 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5208 		if (outdata == NULL) {
5209 			error = ENOMEM;
5210 			goto bad;
5211 		}
5212 	}
5213 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5214 		if (outsize < ad->ad_out_size)
5215 			ad->ad_out_size = outsize;
5216 		if (outdata != NULL)
5217 			error = copyout(outdata, ad->ad_out_data,
5218 					ad->ad_out_size);
5219 	} else {
5220 		error = EINVAL;
5221 	}
5222 bad:
5223 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5224 		free(indata, M_TEMP);
5225 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5226 		free(outdata, M_TEMP);
5227 	return error;
5228 }
5229 #endif /* ATH_DIAGAPI */
5230 
5231 static int
5232 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5233 {
5234 #define	IS_RUNNING(ifp) \
5235 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5236 	struct ath_softc *sc = ifp->if_softc;
5237 	struct ieee80211com *ic = ifp->if_l2com;
5238 	struct ifreq *ifr = (struct ifreq *)data;
5239 	const HAL_RATE_TABLE *rt;
5240 	int error = 0;
5241 
5242 	switch (cmd) {
5243 	case SIOCSIFFLAGS:
5244 		ATH_LOCK(sc);
5245 		if (IS_RUNNING(ifp)) {
5246 			/*
5247 			 * To avoid rescanning another access point,
5248 			 * do not call ath_init() here.  Instead,
5249 			 * only reflect promisc mode settings.
5250 			 */
5251 			ath_mode_init(sc);
5252 		} else if (ifp->if_flags & IFF_UP) {
5253 			/*
5254 			 * Beware of being called during attach/detach
5255 			 * to reset promiscuous mode.  In that case we
5256 			 * will still be marked UP but not RUNNING.
5257 			 * However trying to re-init the interface
5258 			 * is the wrong thing to do as we've already
5259 			 * torn down much of our state.  There's
5260 			 * probably a better way to deal with this.
5261 			 */
5262 			if (!sc->sc_invalid)
5263 				ath_init(sc);	/* XXX lose error */
5264 		} else {
5265 			ath_stop_locked(ifp);
5266 #ifdef notyet
5267 			/* XXX must wakeup in places like ath_vap_delete */
5268 			if (!sc->sc_invalid)
5269 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5270 #endif
5271 		}
5272 		ATH_UNLOCK(sc);
5273 		break;
5274 	case SIOCGIFMEDIA:
5275 	case SIOCSIFMEDIA:
5276 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5277 		break;
5278 	case SIOCGATHSTATS:
5279 		/* NB: embed these numbers to get a consistent view */
5280 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5281 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5282 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5283 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5284 #ifdef IEEE80211_SUPPORT_TDMA
5285 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5286 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5287 #endif
5288 		rt = sc->sc_currates;
5289 		sc->sc_stats.ast_tx_rate =
5290 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5291 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5292 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5293 		return copyout(&sc->sc_stats,
5294 		    ifr->ifr_data, sizeof (sc->sc_stats));
5295 	case SIOCZATHSTATS:
5296 		error = priv_check(curthread, PRIV_DRIVER);
5297 		if (error == 0)
5298 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5299 		break;
5300 #ifdef ATH_DIAGAPI
5301 	case SIOCGATHDIAG:
5302 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5303 		break;
5304 #endif
5305 	case SIOCGIFADDR:
5306 		error = ether_ioctl(ifp, cmd, data);
5307 		break;
5308 	default:
5309 		error = EINVAL;
5310 		break;
5311 	}
5312 	return error;
5313 #undef IS_RUNNING
5314 }
5315 
5316 /*
5317  * Announce various information on device/driver attach.
5318  */
5319 static void
5320 ath_announce(struct ath_softc *sc)
5321 {
5322 	struct ifnet *ifp = sc->sc_ifp;
5323 	struct ath_hal *ah = sc->sc_ah;
5324 
5325 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5326 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5327 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5328 	if (bootverbose) {
5329 		int i;
5330 		for (i = 0; i <= WME_AC_VO; i++) {
5331 			struct ath_txq *txq = sc->sc_ac2q[i];
5332 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5333 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5334 		}
5335 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5336 			sc->sc_cabq->axq_qnum);
5337 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5338 	}
5339 	if (ath_rxbuf != ATH_RXBUF)
5340 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5341 	if (ath_txbuf != ATH_TXBUF)
5342 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5343 	if (sc->sc_mcastkey && bootverbose)
5344 		if_printf(ifp, "using multicast key search\n");
5345 }
5346 
5347 #ifdef IEEE80211_SUPPORT_TDMA
5348 static __inline uint32_t
5349 ath_hal_getnexttbtt(struct ath_hal *ah)
5350 {
5351 #define	AR_TIMER0	0x8028
5352 	return OS_REG_READ(ah, AR_TIMER0);
5353 }
5354 
5355 static __inline void
5356 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
5357 {
5358 	/* XXX handle wrap/overflow */
5359 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
5360 }
5361 
5362 static void
5363 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
5364 {
5365 	struct ath_hal *ah = sc->sc_ah;
5366 	HAL_BEACON_TIMERS bt;
5367 
5368 	bt.bt_intval = bintval | HAL_BEACON_ENA;
5369 	bt.bt_nexttbtt = nexttbtt;
5370 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
5371 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
5372 	bt.bt_nextatim = nexttbtt+1;
5373 	ath_hal_beaconsettimers(ah, &bt);
5374 }
5375 
5376 /*
5377  * Calculate the beacon interval.  This is periodic in the
5378  * superframe for the bss.  We assume each station is configured
5379  * identically wrt transmit rate so the guard time we calculate
5380  * above will be the same on all stations.  Note we need to
5381  * factor in the xmit time because the hardware will schedule
5382  * a frame for transmit if the start of the frame is within
5383  * the burst time.  When we get hardware that properly kills
5384  * frames in the PCU we can reduce/eliminate the guard time.
5385  *
5386  * Roundup to 1024 is so we have 1 TU buffer in the guard time
5387  * to deal with the granularity of the nexttbtt timer.  11n MAC's
5388  * with 1us timer granularity should allow us to reduce/eliminate
5389  * this.
5390  */
5391 static void
5392 ath_tdma_bintvalsetup(struct ath_softc *sc,
5393 	const struct ieee80211_tdma_state *tdma)
5394 {
5395 	/* copy from vap state (XXX check all vaps have same value?) */
5396 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
5397 
5398 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
5399 		tdma->tdma_slotcnt, 1024);
5400 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
5401 	if (sc->sc_tdmabintval & 1)
5402 		sc->sc_tdmabintval++;
5403 
5404 	if (tdma->tdma_slot == 0) {
5405 		/*
5406 		 * Only slot 0 beacons; other slots respond.
5407 		 */
5408 		sc->sc_imask |= HAL_INT_SWBA;
5409 		sc->sc_tdmaswba = 0;		/* beacon immediately */
5410 	} else {
5411 		/* XXX all vaps must be slot 0 or slot !0 */
5412 		sc->sc_imask &= ~HAL_INT_SWBA;
5413 	}
5414 }
5415 
5416 /*
5417  * Max 802.11 overhead.  This assumes no 4-address frames and
5418  * the encapsulation done by ieee80211_encap (llc).  We also
5419  * include potential crypto overhead.
5420  */
5421 #define	IEEE80211_MAXOVERHEAD \
5422 	(sizeof(struct ieee80211_qosframe) \
5423 	 + sizeof(struct llc) \
5424 	 + IEEE80211_ADDR_LEN \
5425 	 + IEEE80211_WEP_IVLEN \
5426 	 + IEEE80211_WEP_KIDLEN \
5427 	 + IEEE80211_WEP_CRCLEN \
5428 	 + IEEE80211_WEP_MICLEN \
5429 	 + IEEE80211_CRC_LEN)
5430 
5431 /*
5432  * Setup initially for tdma operation.  Start the beacon
5433  * timers and enable SWBA if we are slot 0.  Otherwise
5434  * we wait for slot 0 to arrive so we can sync up before
5435  * starting to transmit.
5436  */
5437 static void
5438 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
5439 {
5440 	struct ath_hal *ah = sc->sc_ah;
5441 	struct ifnet *ifp = sc->sc_ifp;
5442 	struct ieee80211com *ic = ifp->if_l2com;
5443 	const struct ieee80211_txparam *tp;
5444 	const struct ieee80211_tdma_state *tdma = NULL;
5445 	int rix;
5446 
5447 	if (vap == NULL) {
5448 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
5449 		if (vap == NULL) {
5450 			if_printf(ifp, "%s: no vaps?\n", __func__);
5451 			return;
5452 		}
5453 	}
5454 	tp = vap->iv_bss->ni_txparms;
5455 	/*
5456 	 * Calculate the guard time for each slot.  This is the
5457 	 * time to send a maximal-size frame according to the
5458 	 * fixed/lowest transmit rate.  Note that the interface
5459 	 * mtu does not include the 802.11 overhead so we must
5460 	 * tack that on (ath_hal_computetxtime includes the
5461 	 * preamble and plcp in it's calculation).
5462 	 */
5463 	tdma = vap->iv_tdma;
5464 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
5465 		rix = ath_tx_findrix(sc, tp->ucastrate);
5466 	else
5467 		rix = ath_tx_findrix(sc, tp->mcastrate);
5468 	/* XXX short preamble assumed */
5469 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
5470 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
5471 
5472 	ath_hal_intrset(ah, 0);
5473 
5474 	ath_beaconq_config(sc);			/* setup h/w beacon q */
5475 	if (sc->sc_setcca)
5476 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
5477 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
5478 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
5479 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
5480 	sc->sc_syncbeacon = 0;
5481 
5482 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
5483 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
5484 
5485 	ath_hal_intrset(ah, sc->sc_imask);
5486 
5487 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
5488 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
5489 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
5490 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
5491 	    sc->sc_tdmadbaprep);
5492 }
5493 
5494 /*
5495  * Update tdma operation.  Called from the 802.11 layer
5496  * when a beacon is received from the TDMA station operating
5497  * in the slot immediately preceding us in the bss.  Use
5498  * the rx timestamp for the beacon frame to update our
5499  * beacon timers so we follow their schedule.  Note that
5500  * by using the rx timestamp we implicitly include the
5501  * propagation delay in our schedule.
5502  */
5503 static void
5504 ath_tdma_update(struct ieee80211_node *ni,
5505 	const struct ieee80211_tdma_param *tdma, int changed)
5506 {
5507 #define	TSF_TO_TU(_h,_l) \
5508 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
5509 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
5510 	struct ieee80211vap *vap = ni->ni_vap;
5511 	struct ieee80211com *ic = ni->ni_ic;
5512 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5513 	struct ath_hal *ah = sc->sc_ah;
5514 	const HAL_RATE_TABLE *rt = sc->sc_currates;
5515 	u_int64_t tsf, rstamp, nextslot;
5516 	u_int32_t txtime, nextslottu, timer0;
5517 	int32_t tudelta, tsfdelta;
5518 	const struct ath_rx_status *rs;
5519 	int rix;
5520 
5521 	sc->sc_stats.ast_tdma_update++;
5522 
5523 	/*
5524 	 * Check for and adopt configuration changes.
5525 	 */
5526 	if (changed != 0) {
5527 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
5528 
5529 		ath_tdma_bintvalsetup(sc, ts);
5530 		if (changed & TDMA_UPDATE_SLOTLEN)
5531 			ath_wme_update(ic);
5532 
5533 		DPRINTF(sc, ATH_DEBUG_TDMA,
5534 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
5535 		    "bintval %u TU\n", __func__,
5536 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
5537 		    sc->sc_tdmabintval);
5538 
5539 		/* XXX right? */
5540 		ath_hal_intrset(ah, sc->sc_imask);
5541 		/* NB: beacon timers programmed below */
5542 	}
5543 
5544 	/* extend rx timestamp to 64 bits */
5545 	rs = sc->sc_lastrs;
5546 	tsf = ath_hal_gettsf64(ah);
5547 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
5548 	/*
5549 	 * The rx timestamp is set by the hardware on completing
5550 	 * reception (at the point where the rx descriptor is DMA'd
5551 	 * to the host).  To find the start of our next slot we
5552 	 * must adjust this time by the time required to send
5553 	 * the packet just received.
5554 	 */
5555 	rix = rt->rateCodeToIndex[rs->rs_rate];
5556 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
5557 	    rt->info[rix].shortPreamble);
5558 	/* NB: << 9 is to cvt to TU and /2 */
5559 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
5560 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
5561 
5562 	/*
5563 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
5564 	 * to usecs and calculate the difference between what the
5565 	 * other station thinks and what we have programmed.  This
5566 	 * lets us figure how to adjust our timers to match.  The
5567 	 * adjustments are done by pulling the TSF forward and possibly
5568 	 * rewriting the beacon timers.
5569 	 */
5570 	timer0 = ath_hal_getnexttbtt(ah);
5571 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
5572 
5573 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5574 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
5575 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
5576 
5577 	if (tsfdelta < 0) {
5578 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5579 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
5580 		tsfdelta = -tsfdelta % 1024;
5581 		nextslottu++;
5582 	} else if (tsfdelta > 0) {
5583 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
5584 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5585 		tsfdelta = 1024 - (tsfdelta % 1024);
5586 		nextslottu++;
5587 	} else {
5588 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5589 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5590 	}
5591 	tudelta = nextslottu - timer0;
5592 
5593 	/*
5594 	 * Copy sender's timetstamp into tdma ie so they can
5595 	 * calculate roundtrip time.  We submit a beacon frame
5596 	 * below after any timer adjustment.  The frame goes out
5597 	 * at the next TBTT so the sender can calculate the
5598 	 * roundtrip by inspecting the tdma ie in our beacon frame.
5599 	 *
5600 	 * NB: This tstamp is subtlely preserved when
5601 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
5602 	 *     slot position changes) because ieee80211_add_tdma
5603 	 *     skips over the data.
5604 	 */
5605 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
5606 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
5607 		&ni->ni_tstamp.data, 8);
5608 #if 0
5609 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5610 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
5611 	    (unsigned long long) tsf, (unsigned long long) nextslot,
5612 	    (int)(nextslot - tsf), tsfdelta,
5613 	    nextslottu, timer0, tudelta);
5614 #endif
5615 	/*
5616 	 * Adjust the beacon timers only when pulling them forward
5617 	 * or when going back by less than the beacon interval.
5618 	 * Negative jumps larger than the beacon interval seem to
5619 	 * cause the timers to stop and generally cause instability.
5620 	 * This basically filters out jumps due to missed beacons.
5621 	 */
5622 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
5623 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
5624 		sc->sc_stats.ast_tdma_timers++;
5625 	}
5626 	if (tsfdelta > 0) {
5627 		ath_hal_adjusttsf(ah, tsfdelta);
5628 		sc->sc_stats.ast_tdma_tsf++;
5629 	}
5630 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
5631 #undef TU_TO_TSF
5632 #undef TSF_TO_TU
5633 }
5634 
5635 /*
5636  * Transmit a beacon frame at SWBA.  Dynamic updates
5637  * to the frame contents are done as needed.
5638  */
5639 static void
5640 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
5641 {
5642 	struct ath_hal *ah = sc->sc_ah;
5643 	struct ath_buf *bf;
5644 	int otherant;
5645 
5646 	/*
5647 	 * Check if the previous beacon has gone out.  If
5648 	 * not don't try to post another, skip this period
5649 	 * and wait for the next.  Missed beacons indicate
5650 	 * a problem and should not occur.  If we miss too
5651 	 * many consecutive beacons reset the device.
5652 	 */
5653 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
5654 		sc->sc_bmisscount++;
5655 		DPRINTF(sc, ATH_DEBUG_BEACON,
5656 			"%s: missed %u consecutive beacons\n",
5657 			__func__, sc->sc_bmisscount);
5658 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
5659 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
5660 		return;
5661 	}
5662 	if (sc->sc_bmisscount != 0) {
5663 		DPRINTF(sc, ATH_DEBUG_BEACON,
5664 			"%s: resume beacon xmit after %u misses\n",
5665 			__func__, sc->sc_bmisscount);
5666 		sc->sc_bmisscount = 0;
5667 	}
5668 
5669 	/*
5670 	 * Check recent per-antenna transmit statistics and flip
5671 	 * the default antenna if noticeably more frames went out
5672 	 * on the non-default antenna.
5673 	 * XXX assumes 2 anntenae
5674 	 */
5675 	if (!sc->sc_diversity) {
5676 		otherant = sc->sc_defant & 1 ? 2 : 1;
5677 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
5678 			ath_setdefantenna(sc, otherant);
5679 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
5680 	}
5681 
5682 	bf = ath_beacon_generate(sc, vap);
5683 	if (bf != NULL) {
5684 		/*
5685 		 * Stop any current dma and put the new frame on the queue.
5686 		 * This should never fail since we check above that no frames
5687 		 * are still pending on the queue.
5688 		 */
5689 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
5690 			DPRINTF(sc, ATH_DEBUG_ANY,
5691 				"%s: beacon queue %u did not stop?\n",
5692 				__func__, sc->sc_bhalq);
5693 			/* NB: the HAL still stops DMA, so proceed */
5694 		}
5695 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
5696 		ath_hal_txstart(ah, sc->sc_bhalq);
5697 
5698 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
5699 
5700 		/*
5701 		 * Record local TSF for our last send for use
5702 		 * in arbitrating slot collisions.
5703 		 */
5704 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
5705 	}
5706 }
5707 #endif /* IEEE80211_SUPPORT_TDMA */
5708 
5709 static void
5710 ath_dfs_tasklet(void *p, int npending)
5711 {
5712 	struct ath_softc *sc = (struct ath_softc *) p;
5713 	struct ifnet *ifp = sc->sc_ifp;
5714 	struct ieee80211com *ic = ifp->if_l2com;
5715 
5716 	/*
5717 	 * If previous processing has found a radar event,
5718 	 * signal this to the net80211 layer to begin DFS
5719 	 * processing.
5720 	 */
5721 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5722 		/* DFS event found, initiate channel change */
5723 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5724 	}
5725 }
5726 
5727 MODULE_VERSION(if_ath, 1);
5728 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5729