1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_dl.h> 78 #include <net/if_media.h> 79 #include <net/if_types.h> 80 #include <net/if_arp.h> 81 #include <net/ethernet.h> 82 #include <net/if_llc.h> 83 84 #include <net80211/ieee80211_var.h> 85 #include <net80211/ieee80211_regdomain.h> 86 #ifdef IEEE80211_SUPPORT_SUPERG 87 #include <net80211/ieee80211_superg.h> 88 #endif 89 #ifdef IEEE80211_SUPPORT_TDMA 90 #include <net80211/ieee80211_tdma.h> 91 #endif 92 93 #include <net/bpf.h> 94 95 #ifdef INET 96 #include <netinet/in.h> 97 #include <netinet/if_ether.h> 98 #endif 99 100 #include <dev/ath/if_athvar.h> 101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 102 #include <dev/ath/ath_hal/ah_diagcodes.h> 103 104 #include <dev/ath/if_ath_debug.h> 105 #include <dev/ath/if_ath_misc.h> 106 #include <dev/ath/if_ath_tsf.h> 107 #include <dev/ath/if_ath_tx.h> 108 #include <dev/ath/if_ath_sysctl.h> 109 #include <dev/ath/if_ath_led.h> 110 #include <dev/ath/if_ath_keycache.h> 111 #include <dev/ath/if_ath_rx.h> 112 #include <dev/ath/if_ath_rx_edma.h> 113 #include <dev/ath/if_ath_tx_edma.h> 114 #include <dev/ath/if_ath_beacon.h> 115 #include <dev/ath/if_ath_btcoex.h> 116 #include <dev/ath/if_ath_btcoex_mci.h> 117 #include <dev/ath/if_ath_spectral.h> 118 #include <dev/ath/if_ath_lna_div.h> 119 #include <dev/ath/if_athdfs.h> 120 #include <dev/ath/if_ath_ioctl.h> 121 #include <dev/ath/if_ath_descdma.h> 122 123 #ifdef ATH_TX99_DIAG 124 #include <dev/ath/ath_tx99/ath_tx99.h> 125 #endif 126 127 #ifdef ATH_DEBUG_ALQ 128 #include <dev/ath/if_ath_alq.h> 129 #endif 130 131 /* 132 * Only enable this if you're working on PS-POLL support. 133 */ 134 #define ATH_SW_PSQ 135 136 /* 137 * ATH_BCBUF determines the number of vap's that can transmit 138 * beacons and also (currently) the number of vap's that can 139 * have unique mac addresses/bssid. When staggering beacons 140 * 4 is probably a good max as otherwise the beacons become 141 * very closely spaced and there is limited time for cab q traffic 142 * to go out. You can burst beacons instead but that is not good 143 * for stations in power save and at some point you really want 144 * another radio (and channel). 145 * 146 * The limit on the number of mac addresses is tied to our use of 147 * the U/L bit and tracking addresses in a byte; it would be 148 * worthwhile to allow more for applications like proxy sta. 149 */ 150 CTASSERT(ATH_BCBUF <= 8); 151 152 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 153 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 154 const uint8_t [IEEE80211_ADDR_LEN], 155 const uint8_t [IEEE80211_ADDR_LEN]); 156 static void ath_vap_delete(struct ieee80211vap *); 157 static int ath_init(struct ath_softc *); 158 static void ath_stop(struct ath_softc *); 159 static int ath_reset_vap(struct ieee80211vap *, u_long); 160 static int ath_transmit(struct ieee80211com *, struct mbuf *); 161 static int ath_media_change(struct ifnet *); 162 static void ath_watchdog(void *); 163 static void ath_parent(struct ieee80211com *); 164 static void ath_fatal_proc(void *, int); 165 static void ath_bmiss_vap(struct ieee80211vap *); 166 static void ath_bmiss_proc(void *, int); 167 static void ath_key_update_begin(struct ieee80211vap *); 168 static void ath_key_update_end(struct ieee80211vap *); 169 static void ath_update_mcast_hw(struct ath_softc *); 170 static void ath_update_mcast(struct ieee80211com *); 171 static void ath_update_promisc(struct ieee80211com *); 172 static void ath_updateslot(struct ieee80211com *); 173 static void ath_bstuck_proc(void *, int); 174 static void ath_reset_proc(void *, int); 175 static int ath_desc_alloc(struct ath_softc *); 176 static void ath_desc_free(struct ath_softc *); 177 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 178 const uint8_t [IEEE80211_ADDR_LEN]); 179 static void ath_node_cleanup(struct ieee80211_node *); 180 static void ath_node_free(struct ieee80211_node *); 181 static void ath_node_getsignal(const struct ieee80211_node *, 182 int8_t *, int8_t *); 183 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 184 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 185 static int ath_tx_setup(struct ath_softc *, int, int); 186 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 187 static void ath_tx_cleanup(struct ath_softc *); 188 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 189 int dosched); 190 static void ath_tx_proc_q0(void *, int); 191 static void ath_tx_proc_q0123(void *, int); 192 static void ath_tx_proc(void *, int); 193 static void ath_txq_sched_tasklet(void *, int); 194 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 196 static void ath_scan_start(struct ieee80211com *); 197 static void ath_scan_end(struct ieee80211com *); 198 static void ath_set_channel(struct ieee80211com *); 199 #ifdef ATH_ENABLE_11N 200 static void ath_update_chw(struct ieee80211com *); 201 #endif /* ATH_ENABLE_11N */ 202 static void ath_calibrate(void *); 203 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 204 static void ath_setup_stationkey(struct ieee80211_node *); 205 static void ath_newassoc(struct ieee80211_node *, int); 206 static int ath_setregdomain(struct ieee80211com *, 207 struct ieee80211_regdomain *, int, 208 struct ieee80211_channel []); 209 static void ath_getradiocaps(struct ieee80211com *, int, int *, 210 struct ieee80211_channel []); 211 static int ath_getchannels(struct ath_softc *); 212 213 static int ath_rate_setup(struct ath_softc *, u_int mode); 214 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 215 216 static void ath_announce(struct ath_softc *); 217 218 static void ath_dfs_tasklet(void *, int); 219 static void ath_node_powersave(struct ieee80211_node *, int); 220 static int ath_node_set_tim(struct ieee80211_node *, int); 221 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 222 223 #ifdef IEEE80211_SUPPORT_TDMA 224 #include <dev/ath/if_ath_tdma.h> 225 #endif 226 227 SYSCTL_DECL(_hw_ath); 228 229 /* XXX validate sysctl values */ 230 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 231 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 232 0, "long chip calibration interval (secs)"); 233 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 235 0, "short chip calibration interval (msecs)"); 236 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 238 0, "reset chip calibration results (secs)"); 239 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 241 0, "ANI calibration (msecs)"); 242 243 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 244 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 245 0, "rx buffers allocated"); 246 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 248 0, "tx buffers allocated"); 249 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 251 0, "tx (mgmt) buffers allocated"); 252 253 int ath_bstuck_threshold = 4; /* max missed beacons */ 254 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 255 0, "max missed beacon xmits before chip reset"); 256 257 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 258 259 void 260 ath_legacy_attach_comp_func(struct ath_softc *sc) 261 { 262 263 /* 264 * Special case certain configurations. Note the 265 * CAB queue is handled by these specially so don't 266 * include them when checking the txq setup mask. 267 */ 268 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 269 case 0x01: 270 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 271 break; 272 case 0x0f: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 274 break; 275 default: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 277 break; 278 } 279 } 280 281 /* 282 * Set the target power mode. 283 * 284 * If this is called during a point in time where 285 * the hardware is being programmed elsewhere, it will 286 * simply store it away and update it when all current 287 * uses of the hardware are completed. 288 * 289 * If the chip is going into network sleep or power off, then 290 * we will wait until all uses of the chip are done before 291 * going into network sleep or power off. 292 * 293 * If the chip is being programmed full-awake, then immediately 294 * program it full-awake so we can actually stay awake rather than 295 * the chip potentially going to sleep underneath us. 296 */ 297 void 298 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 299 const char *file, int line) 300 { 301 ATH_LOCK_ASSERT(sc); 302 303 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 304 __func__, 305 file, 306 line, 307 power_state, 308 sc->sc_powersave_refcnt, 309 sc->sc_target_powerstate, 310 sc->sc_cur_powerstate); 311 312 sc->sc_target_powerstate = power_state; 313 314 /* 315 * Don't program the chip into network sleep if the chip 316 * is being programmed elsewhere. 317 * 318 * However, if the chip is being programmed /awake/, force 319 * the chip awake so we stay awake. 320 */ 321 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 322 power_state != sc->sc_cur_powerstate) { 323 sc->sc_cur_powerstate = power_state; 324 ath_hal_setpower(sc->sc_ah, power_state); 325 326 /* 327 * If the NIC is force-awake, then set the 328 * self-gen frame state appropriately. 329 * 330 * If the nic is in network sleep or full-sleep, 331 * we let the above call leave the self-gen 332 * state as "sleep". 333 */ 334 if (selfgen && 335 sc->sc_cur_powerstate == HAL_PM_AWAKE && 336 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 337 ath_hal_setselfgenpower(sc->sc_ah, 338 sc->sc_target_selfgen_state); 339 } 340 } 341 } 342 343 /* 344 * Set the current self-generated frames state. 345 * 346 * This is separate from the target power mode. The chip may be 347 * awake but the desired state is "sleep", so frames sent to the 348 * destination has PWRMGT=1 in the 802.11 header. The NIC also 349 * needs to know to set PWRMGT=1 in self-generated frames. 350 */ 351 void 352 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 353 { 354 355 ATH_LOCK_ASSERT(sc); 356 357 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 358 __func__, 359 file, 360 line, 361 power_state, 362 sc->sc_target_selfgen_state); 363 364 sc->sc_target_selfgen_state = power_state; 365 366 /* 367 * If the NIC is force-awake, then set the power state. 368 * Network-state and full-sleep will already transition it to 369 * mark self-gen frames as sleeping - and we can't 370 * guarantee the NIC is awake to program the self-gen frame 371 * setting anyway. 372 */ 373 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 374 ath_hal_setselfgenpower(sc->sc_ah, power_state); 375 } 376 } 377 378 /* 379 * Set the hardware power mode and take a reference. 380 * 381 * This doesn't update the target power mode in the driver; 382 * it just updates the hardware power state. 383 * 384 * XXX it should only ever force the hardware awake; it should 385 * never be called to set it asleep. 386 */ 387 void 388 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 389 { 390 ATH_LOCK_ASSERT(sc); 391 392 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 393 __func__, 394 file, 395 line, 396 power_state, 397 sc->sc_powersave_refcnt); 398 399 sc->sc_powersave_refcnt++; 400 401 /* 402 * Only do the power state change if we're not programming 403 * it elsewhere. 404 */ 405 if (power_state != sc->sc_cur_powerstate) { 406 ath_hal_setpower(sc->sc_ah, power_state); 407 sc->sc_cur_powerstate = power_state; 408 /* 409 * Adjust the self-gen powerstate if appropriate. 410 */ 411 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 412 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 413 ath_hal_setselfgenpower(sc->sc_ah, 414 sc->sc_target_selfgen_state); 415 } 416 } 417 } 418 419 /* 420 * Restore the power save mode to what it once was. 421 * 422 * This will decrement the reference counter and once it hits 423 * zero, it'll restore the powersave state. 424 */ 425 void 426 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 427 { 428 429 ATH_LOCK_ASSERT(sc); 430 431 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 432 __func__, 433 file, 434 line, 435 sc->sc_powersave_refcnt, 436 sc->sc_target_powerstate); 437 438 if (sc->sc_powersave_refcnt == 0) 439 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 440 else 441 sc->sc_powersave_refcnt--; 442 443 if (sc->sc_powersave_refcnt == 0 && 444 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 445 sc->sc_cur_powerstate = sc->sc_target_powerstate; 446 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 447 } 448 449 /* 450 * Adjust the self-gen powerstate if appropriate. 451 */ 452 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 453 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 454 ath_hal_setselfgenpower(sc->sc_ah, 455 sc->sc_target_selfgen_state); 456 } 457 458 } 459 460 /* 461 * Configure the initial HAL configuration values based on bus 462 * specific parameters. 463 * 464 * Some PCI IDs and other information may need tweaking. 465 * 466 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 467 * if BT antenna diversity isn't enabled. 468 * 469 * So, let's also figure out how to enable BT diversity for AR9485. 470 */ 471 static void 472 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 473 { 474 /* XXX TODO: only for PCI devices? */ 475 476 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 477 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 478 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 479 ah_config->ath_hal_min_gainidx = AH_TRUE; 480 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 481 /* XXX low_rssi_thresh */ 482 /* XXX fast_div_bias */ 483 device_printf(sc->sc_dev, "configuring for %s\n", 484 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 485 "CUS198" : "CUS230"); 486 } 487 488 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 489 device_printf(sc->sc_dev, "CUS217 card detected\n"); 490 491 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 492 device_printf(sc->sc_dev, "CUS252 card detected\n"); 493 494 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 495 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 496 497 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 498 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 499 500 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 501 device_printf(sc->sc_dev, 502 "Bluetooth Antenna Diversity card detected\n"); 503 504 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 505 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 506 507 #if 0 508 /* 509 * Some WB335 cards do not support antenna diversity. Since 510 * we use a hardcoded value for AR9565 instead of using the 511 * EEPROM/OTP data, remove the combining feature from 512 * the HW capabilities bitmap. 513 */ 514 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 515 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 516 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 517 } 518 519 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 520 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 521 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 522 } 523 #endif 524 525 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 526 ah_config->ath_hal_pcie_waen = 0x0040473b; 527 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 528 } 529 530 #if 0 531 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 532 ah->config.no_pll_pwrsave = true; 533 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 534 } 535 #endif 536 537 } 538 539 /* 540 * Attempt to fetch the MAC address from the kernel environment. 541 * 542 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 543 */ 544 static int 545 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 546 { 547 char devid_str[32]; 548 int local_mac = 0; 549 char *local_macstr; 550 551 /* 552 * Fetch from the kenv rather than using hints. 553 * 554 * Hints would be nice but the transition to dynamic 555 * hints/kenv doesn't happen early enough for this 556 * to work reliably (eg on anything embedded.) 557 */ 558 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 559 device_get_name(sc->sc_dev), 560 device_get_unit(sc->sc_dev)); 561 562 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 563 uint32_t tmpmac[ETHER_ADDR_LEN]; 564 int count; 565 int i; 566 567 /* Have a MAC address; should use it */ 568 device_printf(sc->sc_dev, 569 "Overriding MAC address from environment: '%s'\n", 570 local_macstr); 571 572 /* Extract out the MAC address */ 573 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 574 &tmpmac[0], &tmpmac[1], 575 &tmpmac[2], &tmpmac[3], 576 &tmpmac[4], &tmpmac[5]); 577 if (count == 6) { 578 /* Valid! */ 579 local_mac = 1; 580 for (i = 0; i < ETHER_ADDR_LEN; i++) 581 macaddr[i] = tmpmac[i]; 582 } 583 /* Done! */ 584 freeenv(local_macstr); 585 local_macstr = NULL; 586 } 587 588 if (local_mac) 589 return (0); 590 return (-1); 591 } 592 593 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 594 #define HAL_MODE_HT40 \ 595 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 596 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 597 int 598 ath_attach(u_int16_t devid, struct ath_softc *sc) 599 { 600 struct ieee80211com *ic = &sc->sc_ic; 601 struct ath_hal *ah = NULL; 602 HAL_STATUS status; 603 int error = 0, i; 604 u_int wmodes; 605 int rx_chainmask, tx_chainmask; 606 HAL_OPS_CONFIG ah_config; 607 608 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 609 610 ic->ic_softc = sc; 611 ic->ic_name = device_get_nameunit(sc->sc_dev); 612 613 /* 614 * Configure the initial configuration data. 615 * 616 * This is stuff that may be needed early during attach 617 * rather than done via configuration calls later. 618 */ 619 bzero(&ah_config, sizeof(ah_config)); 620 ath_setup_hal_config(sc, &ah_config); 621 622 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 623 sc->sc_eepromdata, &ah_config, &status); 624 if (ah == NULL) { 625 device_printf(sc->sc_dev, 626 "unable to attach hardware; HAL status %u\n", status); 627 error = ENXIO; 628 goto bad; 629 } 630 sc->sc_ah = ah; 631 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 632 #ifdef ATH_DEBUG 633 sc->sc_debug = ath_debug; 634 #endif 635 636 /* 637 * Force the chip awake during setup, just to keep 638 * the HAL/driver power tracking happy. 639 * 640 * There are some methods (eg ath_hal_setmac()) 641 * that poke the hardware. 642 */ 643 ATH_LOCK(sc); 644 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 645 ATH_UNLOCK(sc); 646 647 /* 648 * Setup the DMA/EDMA functions based on the current 649 * hardware support. 650 * 651 * This is required before the descriptors are allocated. 652 */ 653 if (ath_hal_hasedma(sc->sc_ah)) { 654 sc->sc_isedma = 1; 655 ath_recv_setup_edma(sc); 656 ath_xmit_setup_edma(sc); 657 } else { 658 ath_recv_setup_legacy(sc); 659 ath_xmit_setup_legacy(sc); 660 } 661 662 if (ath_hal_hasmybeacon(sc->sc_ah)) { 663 sc->sc_do_mybeacon = 1; 664 } 665 666 /* 667 * Check if the MAC has multi-rate retry support. 668 * We do this by trying to setup a fake extended 669 * descriptor. MAC's that don't have support will 670 * return false w/o doing anything. MAC's that do 671 * support it will return true w/o doing anything. 672 */ 673 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 674 675 /* 676 * Check if the device has hardware counters for PHY 677 * errors. If so we need to enable the MIB interrupt 678 * so we can act on stat triggers. 679 */ 680 if (ath_hal_hwphycounters(ah)) 681 sc->sc_needmib = 1; 682 683 /* 684 * Get the hardware key cache size. 685 */ 686 sc->sc_keymax = ath_hal_keycachesize(ah); 687 if (sc->sc_keymax > ATH_KEYMAX) { 688 device_printf(sc->sc_dev, 689 "Warning, using only %u of %u key cache slots\n", 690 ATH_KEYMAX, sc->sc_keymax); 691 sc->sc_keymax = ATH_KEYMAX; 692 } 693 /* 694 * Reset the key cache since some parts do not 695 * reset the contents on initial power up. 696 */ 697 for (i = 0; i < sc->sc_keymax; i++) 698 ath_hal_keyreset(ah, i); 699 700 /* 701 * Collect the default channel list. 702 */ 703 error = ath_getchannels(sc); 704 if (error != 0) 705 goto bad; 706 707 /* 708 * Setup rate tables for all potential media types. 709 */ 710 ath_rate_setup(sc, IEEE80211_MODE_11A); 711 ath_rate_setup(sc, IEEE80211_MODE_11B); 712 ath_rate_setup(sc, IEEE80211_MODE_11G); 713 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 714 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 715 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 716 ath_rate_setup(sc, IEEE80211_MODE_11NA); 717 ath_rate_setup(sc, IEEE80211_MODE_11NG); 718 ath_rate_setup(sc, IEEE80211_MODE_HALF); 719 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 720 721 /* NB: setup here so ath_rate_update is happy */ 722 ath_setcurmode(sc, IEEE80211_MODE_11A); 723 724 /* 725 * Allocate TX descriptors and populate the lists. 726 */ 727 error = ath_desc_alloc(sc); 728 if (error != 0) { 729 device_printf(sc->sc_dev, 730 "failed to allocate TX descriptors: %d\n", error); 731 goto bad; 732 } 733 error = ath_txdma_setup(sc); 734 if (error != 0) { 735 device_printf(sc->sc_dev, 736 "failed to allocate TX descriptors: %d\n", error); 737 goto bad; 738 } 739 740 /* 741 * Allocate RX descriptors and populate the lists. 742 */ 743 error = ath_rxdma_setup(sc); 744 if (error != 0) { 745 device_printf(sc->sc_dev, 746 "failed to allocate RX descriptors: %d\n", error); 747 goto bad; 748 } 749 750 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 751 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 752 753 ATH_TXBUF_LOCK_INIT(sc); 754 755 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 756 taskqueue_thread_enqueue, &sc->sc_tq); 757 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 758 device_get_nameunit(sc->sc_dev)); 759 760 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 761 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 762 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 763 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 764 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 765 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 766 767 /* 768 * Allocate hardware transmit queues: one queue for 769 * beacon frames and one data queue for each QoS 770 * priority. Note that the hal handles resetting 771 * these queues at the needed time. 772 * 773 * XXX PS-Poll 774 */ 775 sc->sc_bhalq = ath_beaconq_setup(sc); 776 if (sc->sc_bhalq == (u_int) -1) { 777 device_printf(sc->sc_dev, 778 "unable to setup a beacon xmit queue!\n"); 779 error = EIO; 780 goto bad2; 781 } 782 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 783 if (sc->sc_cabq == NULL) { 784 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 785 error = EIO; 786 goto bad2; 787 } 788 /* NB: insure BK queue is the lowest priority h/w queue */ 789 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 790 device_printf(sc->sc_dev, 791 "unable to setup xmit queue for %s traffic!\n", 792 ieee80211_wme_acnames[WME_AC_BK]); 793 error = EIO; 794 goto bad2; 795 } 796 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 797 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 798 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 799 /* 800 * Not enough hardware tx queues to properly do WME; 801 * just punt and assign them all to the same h/w queue. 802 * We could do a better job of this if, for example, 803 * we allocate queues when we switch from station to 804 * AP mode. 805 */ 806 if (sc->sc_ac2q[WME_AC_VI] != NULL) 807 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 808 if (sc->sc_ac2q[WME_AC_BE] != NULL) 809 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 810 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 811 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 812 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 813 } 814 815 /* 816 * Attach the TX completion function. 817 * 818 * The non-EDMA chips may have some special case optimisations; 819 * this method gives everyone a chance to attach cleanly. 820 */ 821 sc->sc_tx.xmit_attach_comp_func(sc); 822 823 /* 824 * Setup rate control. Some rate control modules 825 * call back to change the anntena state so expose 826 * the necessary entry points. 827 * XXX maybe belongs in struct ath_ratectrl? 828 */ 829 sc->sc_setdefantenna = ath_setdefantenna; 830 sc->sc_rc = ath_rate_attach(sc); 831 if (sc->sc_rc == NULL) { 832 error = EIO; 833 goto bad2; 834 } 835 836 /* Attach DFS module */ 837 if (! ath_dfs_attach(sc)) { 838 device_printf(sc->sc_dev, 839 "%s: unable to attach DFS\n", __func__); 840 error = EIO; 841 goto bad2; 842 } 843 844 /* Attach spectral module */ 845 if (ath_spectral_attach(sc) < 0) { 846 device_printf(sc->sc_dev, 847 "%s: unable to attach spectral\n", __func__); 848 error = EIO; 849 goto bad2; 850 } 851 852 /* Attach bluetooth coexistence module */ 853 if (ath_btcoex_attach(sc) < 0) { 854 device_printf(sc->sc_dev, 855 "%s: unable to attach bluetooth coexistence\n", __func__); 856 error = EIO; 857 goto bad2; 858 } 859 860 /* Attach LNA diversity module */ 861 if (ath_lna_div_attach(sc) < 0) { 862 device_printf(sc->sc_dev, 863 "%s: unable to attach LNA diversity\n", __func__); 864 error = EIO; 865 goto bad2; 866 } 867 868 /* Start DFS processing tasklet */ 869 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 870 871 /* Configure LED state */ 872 sc->sc_blinking = 0; 873 sc->sc_ledstate = 1; 874 sc->sc_ledon = 0; /* low true */ 875 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 876 callout_init(&sc->sc_ledtimer, 1); 877 878 /* 879 * Don't setup hardware-based blinking. 880 * 881 * Although some NICs may have this configured in the 882 * default reset register values, the user may wish 883 * to alter which pins have which function. 884 * 885 * The reference driver attaches the MAC network LED to GPIO1 and 886 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 887 * NIC has these reversed. 888 */ 889 sc->sc_hardled = (1 == 0); 890 sc->sc_led_net_pin = -1; 891 sc->sc_led_pwr_pin = -1; 892 /* 893 * Auto-enable soft led processing for IBM cards and for 894 * 5211 minipci cards. Users can also manually enable/disable 895 * support with a sysctl. 896 */ 897 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 898 ath_led_config(sc); 899 ath_hal_setledstate(ah, HAL_LED_INIT); 900 901 /* XXX not right but it's not used anywhere important */ 902 ic->ic_phytype = IEEE80211_T_OFDM; 903 ic->ic_opmode = IEEE80211_M_STA; 904 ic->ic_caps = 905 IEEE80211_C_STA /* station mode */ 906 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 907 | IEEE80211_C_HOSTAP /* hostap mode */ 908 | IEEE80211_C_MONITOR /* monitor mode */ 909 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 910 | IEEE80211_C_WDS /* 4-address traffic works */ 911 | IEEE80211_C_MBSS /* mesh point link mode */ 912 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 913 | IEEE80211_C_SHSLOT /* short slot time supported */ 914 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 915 #ifndef ATH_ENABLE_11N 916 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 917 #endif 918 | IEEE80211_C_TXFRAG /* handle tx frags */ 919 #ifdef ATH_ENABLE_DFS 920 | IEEE80211_C_DFS /* Enable radar detection */ 921 #endif 922 | IEEE80211_C_PMGT /* Station side power mgmt */ 923 | IEEE80211_C_SWSLEEP 924 ; 925 /* 926 * Query the hal to figure out h/w crypto support. 927 */ 928 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 929 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 930 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 931 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 932 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 933 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 934 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 935 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 936 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 937 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 938 /* 939 * Check if h/w does the MIC and/or whether the 940 * separate key cache entries are required to 941 * handle both tx+rx MIC keys. 942 */ 943 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 944 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 945 /* 946 * If the h/w supports storing tx+rx MIC keys 947 * in one cache slot automatically enable use. 948 */ 949 if (ath_hal_hastkipsplit(ah) || 950 !ath_hal_settkipsplit(ah, AH_FALSE)) 951 sc->sc_splitmic = 1; 952 /* 953 * If the h/w can do TKIP MIC together with WME then 954 * we use it; otherwise we force the MIC to be done 955 * in software by the net80211 layer. 956 */ 957 if (ath_hal_haswmetkipmic(ah)) 958 sc->sc_wmetkipmic = 1; 959 } 960 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 961 /* 962 * Check for multicast key search support. 963 */ 964 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 965 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 966 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 967 } 968 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 969 /* 970 * Mark key cache slots associated with global keys 971 * as in use. If we knew TKIP was not to be used we 972 * could leave the +32, +64, and +32+64 slots free. 973 */ 974 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 975 setbit(sc->sc_keymap, i); 976 setbit(sc->sc_keymap, i+64); 977 if (sc->sc_splitmic) { 978 setbit(sc->sc_keymap, i+32); 979 setbit(sc->sc_keymap, i+32+64); 980 } 981 } 982 /* 983 * TPC support can be done either with a global cap or 984 * per-packet support. The latter is not available on 985 * all parts. We're a bit pedantic here as all parts 986 * support a global cap. 987 */ 988 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 989 ic->ic_caps |= IEEE80211_C_TXPMGT; 990 991 /* 992 * Mark WME capability only if we have sufficient 993 * hardware queues to do proper priority scheduling. 994 */ 995 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 996 ic->ic_caps |= IEEE80211_C_WME; 997 /* 998 * Check for misc other capabilities. 999 */ 1000 if (ath_hal_hasbursting(ah)) 1001 ic->ic_caps |= IEEE80211_C_BURST; 1002 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 1003 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 1004 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 1005 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 1006 1007 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 1008 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 1009 if (i == 32) { 1010 sc->sc_rxtsf32 = 1; 1011 } 1012 if (bootverbose) 1013 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1014 } 1015 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1016 if (bootverbose) 1017 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1018 } 1019 1020 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1021 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1022 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1023 1024 /* 1025 * Some WB335 cards do not support antenna diversity. Since 1026 * we use a hardcoded value for AR9565 instead of using the 1027 * EEPROM/OTP data, remove the combining feature from 1028 * the HW capabilities bitmap. 1029 */ 1030 /* 1031 * XXX TODO: check reference driver and ath9k for what to do 1032 * here for WB335. I think we have to actually disable the 1033 * LNA div processing in the HAL and instead use the hard 1034 * coded values; and then use BT diversity. 1035 * 1036 * .. but also need to setup MCI too for WB335.. 1037 */ 1038 #if 0 1039 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 1040 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n", 1041 __func__); 1042 sc->sc_dolnadiv = 0; 1043 } 1044 #endif 1045 1046 if (ath_hal_hasfastframes(ah)) 1047 ic->ic_caps |= IEEE80211_C_FF; 1048 wmodes = ath_hal_getwirelessmodes(ah); 1049 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1050 ic->ic_caps |= IEEE80211_C_TURBOP; 1051 #ifdef IEEE80211_SUPPORT_TDMA 1052 if (ath_hal_macversion(ah) > 0x78) { 1053 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1054 ic->ic_tdma_update = ath_tdma_update; 1055 } 1056 #endif 1057 1058 /* 1059 * TODO: enforce that at least this many frames are available 1060 * in the txbuf list before allowing data frames (raw or 1061 * otherwise) to be transmitted. 1062 */ 1063 sc->sc_txq_data_minfree = 10; 1064 1065 /* 1066 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1067 * is smaller. 1068 * 1069 * Anything bigger can potentially see the cabq consume 1070 * almost all buffers, starving everything else, only to 1071 * see most fail to transmit in the given beacon interval. 1072 */ 1073 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1074 1075 /* 1076 * How deep can the node software TX queue get whilst it's asleep. 1077 */ 1078 sc->sc_txq_node_psq_maxdepth = 16; 1079 1080 /* 1081 * Default the maximum queue to to 1/4'th the TX buffers, or 1082 * 64, whichever is smaller. 1083 */ 1084 sc->sc_txq_node_maxdepth = MIN(64, ath_txbuf / 4); 1085 1086 /* Enable CABQ by default */ 1087 sc->sc_cabq_enable = 1; 1088 1089 /* 1090 * Allow the TX and RX chainmasks to be overridden by 1091 * environment variables and/or device.hints. 1092 * 1093 * This must be done early - before the hardware is 1094 * calibrated or before the 802.11n stream calculation 1095 * is done. 1096 */ 1097 if (resource_int_value(device_get_name(sc->sc_dev), 1098 device_get_unit(sc->sc_dev), "rx_chainmask", 1099 &rx_chainmask) == 0) { 1100 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1101 rx_chainmask); 1102 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1103 } 1104 if (resource_int_value(device_get_name(sc->sc_dev), 1105 device_get_unit(sc->sc_dev), "tx_chainmask", 1106 &tx_chainmask) == 0) { 1107 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1108 tx_chainmask); 1109 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1110 } 1111 1112 /* 1113 * Query the TX/RX chainmask configuration. 1114 * 1115 * This is only relevant for 11n devices. 1116 */ 1117 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1118 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1119 1120 /* 1121 * Disable MRR with protected frames by default. 1122 * Only 802.11n series NICs can handle this. 1123 */ 1124 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1125 1126 /* 1127 * Query the enterprise mode information the HAL. 1128 */ 1129 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1130 &sc->sc_ent_cfg) == HAL_OK) 1131 sc->sc_use_ent = 1; 1132 1133 #ifdef ATH_ENABLE_11N 1134 /* 1135 * Query HT capabilities 1136 */ 1137 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1138 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1139 uint32_t rxs, txs; 1140 uint32_t ldpc; 1141 1142 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1143 1144 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1145 1146 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1147 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1148 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1149 | IEEE80211_HTCAP_MAXAMSDU_3839 1150 /* max A-MSDU length */ 1151 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1152 1153 /* 1154 * Enable short-GI for HT20 only if the hardware 1155 * advertises support. 1156 * Notably, anything earlier than the AR9287 doesn't. 1157 */ 1158 if ((ath_hal_getcapability(ah, 1159 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1160 (wmodes & HAL_MODE_HT20)) { 1161 device_printf(sc->sc_dev, 1162 "[HT] enabling short-GI in 20MHz mode\n"); 1163 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1164 } 1165 1166 if (wmodes & HAL_MODE_HT40) 1167 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1168 | IEEE80211_HTCAP_SHORTGI40; 1169 1170 /* 1171 * TX/RX streams need to be taken into account when 1172 * negotiating which MCS rates it'll receive and 1173 * what MCS rates are available for TX. 1174 */ 1175 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1176 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1177 ic->ic_txstream = txs; 1178 ic->ic_rxstream = rxs; 1179 1180 /* 1181 * Setup TX and RX STBC based on what the HAL allows and 1182 * the currently configured chainmask set. 1183 * Ie - don't enable STBC TX if only one chain is enabled. 1184 * STBC RX is fine on a single RX chain; it just won't 1185 * provide any real benefit. 1186 */ 1187 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1188 NULL) == HAL_OK) { 1189 sc->sc_rx_stbc = 1; 1190 device_printf(sc->sc_dev, 1191 "[HT] 1 stream STBC receive enabled\n"); 1192 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1193 } 1194 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1195 NULL) == HAL_OK) { 1196 sc->sc_tx_stbc = 1; 1197 device_printf(sc->sc_dev, 1198 "[HT] 1 stream STBC transmit enabled\n"); 1199 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1200 } 1201 1202 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1203 &sc->sc_rts_aggr_limit); 1204 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1205 device_printf(sc->sc_dev, 1206 "[HT] RTS aggregates limited to %d KiB\n", 1207 sc->sc_rts_aggr_limit / 1024); 1208 1209 /* 1210 * LDPC 1211 */ 1212 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1213 == HAL_OK && (ldpc == 1)) { 1214 sc->sc_has_ldpc = 1; 1215 device_printf(sc->sc_dev, 1216 "[HT] LDPC transmit/receive enabled\n"); 1217 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1218 IEEE80211_HTC_TXLDPC; 1219 } 1220 1221 1222 device_printf(sc->sc_dev, 1223 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1224 } 1225 #endif 1226 1227 /* 1228 * Initial aggregation settings. 1229 */ 1230 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1231 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1232 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1233 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1234 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1235 sc->sc_delim_min_pad = 0; 1236 1237 /* 1238 * Check if the hardware requires PCI register serialisation. 1239 * Some of the Owl based MACs require this. 1240 */ 1241 if (mp_ncpus > 1 && 1242 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1243 0, NULL) == HAL_OK) { 1244 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1245 device_printf(sc->sc_dev, 1246 "Enabling register serialisation\n"); 1247 } 1248 1249 /* 1250 * Initialise the deferred completed RX buffer list. 1251 */ 1252 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1253 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1254 1255 /* 1256 * Indicate we need the 802.11 header padded to a 1257 * 32-bit boundary for 4-address and QoS frames. 1258 */ 1259 ic->ic_flags |= IEEE80211_F_DATAPAD; 1260 1261 /* 1262 * Query the hal about antenna support. 1263 */ 1264 sc->sc_defant = ath_hal_getdefantenna(ah); 1265 1266 /* 1267 * Not all chips have the VEOL support we want to 1268 * use with IBSS beacons; check here for it. 1269 */ 1270 sc->sc_hasveol = ath_hal_hasveol(ah); 1271 1272 /* get mac address from kenv first, then hardware */ 1273 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1274 /* Tell the HAL now about the new MAC */ 1275 ath_hal_setmac(ah, ic->ic_macaddr); 1276 } else { 1277 ath_hal_getmac(ah, ic->ic_macaddr); 1278 } 1279 1280 if (sc->sc_hasbmask) 1281 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1282 1283 /* NB: used to size node table key mapping array */ 1284 ic->ic_max_keyix = sc->sc_keymax; 1285 /* call MI attach routine. */ 1286 ieee80211_ifattach(ic); 1287 ic->ic_setregdomain = ath_setregdomain; 1288 ic->ic_getradiocaps = ath_getradiocaps; 1289 sc->sc_opmode = HAL_M_STA; 1290 1291 /* override default methods */ 1292 ic->ic_ioctl = ath_ioctl; 1293 ic->ic_parent = ath_parent; 1294 ic->ic_transmit = ath_transmit; 1295 ic->ic_newassoc = ath_newassoc; 1296 ic->ic_updateslot = ath_updateslot; 1297 ic->ic_wme.wme_update = ath_wme_update; 1298 ic->ic_vap_create = ath_vap_create; 1299 ic->ic_vap_delete = ath_vap_delete; 1300 ic->ic_raw_xmit = ath_raw_xmit; 1301 ic->ic_update_mcast = ath_update_mcast; 1302 ic->ic_update_promisc = ath_update_promisc; 1303 ic->ic_node_alloc = ath_node_alloc; 1304 sc->sc_node_free = ic->ic_node_free; 1305 ic->ic_node_free = ath_node_free; 1306 sc->sc_node_cleanup = ic->ic_node_cleanup; 1307 ic->ic_node_cleanup = ath_node_cleanup; 1308 ic->ic_node_getsignal = ath_node_getsignal; 1309 ic->ic_scan_start = ath_scan_start; 1310 ic->ic_scan_end = ath_scan_end; 1311 ic->ic_set_channel = ath_set_channel; 1312 #ifdef ATH_ENABLE_11N 1313 /* 802.11n specific - but just override anyway */ 1314 sc->sc_addba_request = ic->ic_addba_request; 1315 sc->sc_addba_response = ic->ic_addba_response; 1316 sc->sc_addba_stop = ic->ic_addba_stop; 1317 sc->sc_bar_response = ic->ic_bar_response; 1318 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1319 1320 ic->ic_addba_request = ath_addba_request; 1321 ic->ic_addba_response = ath_addba_response; 1322 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1323 ic->ic_addba_stop = ath_addba_stop; 1324 ic->ic_bar_response = ath_bar_response; 1325 1326 ic->ic_update_chw = ath_update_chw; 1327 #endif /* ATH_ENABLE_11N */ 1328 1329 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1330 /* 1331 * There's one vendor bitmap entry in the RX radiotap 1332 * header; make sure that's taken into account. 1333 */ 1334 ieee80211_radiotap_attachv(ic, 1335 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1336 ATH_TX_RADIOTAP_PRESENT, 1337 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1338 ATH_RX_RADIOTAP_PRESENT); 1339 #else 1340 /* 1341 * No vendor bitmap/extensions are present. 1342 */ 1343 ieee80211_radiotap_attach(ic, 1344 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1345 ATH_TX_RADIOTAP_PRESENT, 1346 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1347 ATH_RX_RADIOTAP_PRESENT); 1348 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1349 1350 /* 1351 * Setup the ALQ logging if required 1352 */ 1353 #ifdef ATH_DEBUG_ALQ 1354 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1355 if_ath_alq_setcfg(&sc->sc_alq, 1356 sc->sc_ah->ah_macVersion, 1357 sc->sc_ah->ah_macRev, 1358 sc->sc_ah->ah_phyRev, 1359 sc->sc_ah->ah_magic); 1360 #endif 1361 1362 /* 1363 * Setup dynamic sysctl's now that country code and 1364 * regdomain are available from the hal. 1365 */ 1366 ath_sysctlattach(sc); 1367 ath_sysctl_stats_attach(sc); 1368 ath_sysctl_hal_attach(sc); 1369 1370 if (bootverbose) 1371 ieee80211_announce(ic); 1372 ath_announce(sc); 1373 1374 /* 1375 * Put it to sleep for now. 1376 */ 1377 ATH_LOCK(sc); 1378 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1379 ATH_UNLOCK(sc); 1380 1381 return 0; 1382 bad2: 1383 ath_tx_cleanup(sc); 1384 ath_desc_free(sc); 1385 ath_txdma_teardown(sc); 1386 ath_rxdma_teardown(sc); 1387 1388 bad: 1389 if (ah) 1390 ath_hal_detach(ah); 1391 sc->sc_invalid = 1; 1392 return error; 1393 } 1394 1395 int 1396 ath_detach(struct ath_softc *sc) 1397 { 1398 1399 /* 1400 * NB: the order of these is important: 1401 * o stop the chip so no more interrupts will fire 1402 * o call the 802.11 layer before detaching the hal to 1403 * insure callbacks into the driver to delete global 1404 * key cache entries can be handled 1405 * o free the taskqueue which drains any pending tasks 1406 * o reclaim the tx queue data structures after calling 1407 * the 802.11 layer as we'll get called back to reclaim 1408 * node state and potentially want to use them 1409 * o to cleanup the tx queues the hal is called, so detach 1410 * it last 1411 * Other than that, it's straightforward... 1412 */ 1413 1414 /* 1415 * XXX Wake the hardware up first. ath_stop() will still 1416 * wake it up first, but I'd rather do it here just to 1417 * ensure it's awake. 1418 */ 1419 ATH_LOCK(sc); 1420 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1421 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1422 1423 /* 1424 * Stop things cleanly. 1425 */ 1426 ath_stop(sc); 1427 ATH_UNLOCK(sc); 1428 1429 ieee80211_ifdetach(&sc->sc_ic); 1430 taskqueue_free(sc->sc_tq); 1431 #ifdef ATH_TX99_DIAG 1432 if (sc->sc_tx99 != NULL) 1433 sc->sc_tx99->detach(sc->sc_tx99); 1434 #endif 1435 ath_rate_detach(sc->sc_rc); 1436 #ifdef ATH_DEBUG_ALQ 1437 if_ath_alq_tidyup(&sc->sc_alq); 1438 #endif 1439 ath_lna_div_detach(sc); 1440 ath_btcoex_detach(sc); 1441 ath_spectral_detach(sc); 1442 ath_dfs_detach(sc); 1443 ath_desc_free(sc); 1444 ath_txdma_teardown(sc); 1445 ath_rxdma_teardown(sc); 1446 ath_tx_cleanup(sc); 1447 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1448 1449 return 0; 1450 } 1451 1452 /* 1453 * MAC address handling for multiple BSS on the same radio. 1454 * The first vap uses the MAC address from the EEPROM. For 1455 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1456 * address and use the next six bits as an index. 1457 */ 1458 static void 1459 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1460 { 1461 int i; 1462 1463 if (clone && sc->sc_hasbmask) { 1464 /* NB: we only do this if h/w supports multiple bssid */ 1465 for (i = 0; i < 8; i++) 1466 if ((sc->sc_bssidmask & (1<<i)) == 0) 1467 break; 1468 if (i != 0) 1469 mac[0] |= (i << 2)|0x2; 1470 } else 1471 i = 0; 1472 sc->sc_bssidmask |= 1<<i; 1473 sc->sc_hwbssidmask[0] &= ~mac[0]; 1474 if (i == 0) 1475 sc->sc_nbssid0++; 1476 } 1477 1478 static void 1479 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1480 { 1481 int i = mac[0] >> 2; 1482 uint8_t mask; 1483 1484 if (i != 0 || --sc->sc_nbssid0 == 0) { 1485 sc->sc_bssidmask &= ~(1<<i); 1486 /* recalculate bssid mask from remaining addresses */ 1487 mask = 0xff; 1488 for (i = 1; i < 8; i++) 1489 if (sc->sc_bssidmask & (1<<i)) 1490 mask &= ~((i<<2)|0x2); 1491 sc->sc_hwbssidmask[0] |= mask; 1492 } 1493 } 1494 1495 /* 1496 * Assign a beacon xmit slot. We try to space out 1497 * assignments so when beacons are staggered the 1498 * traffic coming out of the cab q has maximal time 1499 * to go out before the next beacon is scheduled. 1500 */ 1501 static int 1502 assign_bslot(struct ath_softc *sc) 1503 { 1504 u_int slot, free; 1505 1506 free = 0; 1507 for (slot = 0; slot < ATH_BCBUF; slot++) 1508 if (sc->sc_bslot[slot] == NULL) { 1509 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1510 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1511 return slot; 1512 free = slot; 1513 /* NB: keep looking for a double slot */ 1514 } 1515 return free; 1516 } 1517 1518 static struct ieee80211vap * 1519 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1520 enum ieee80211_opmode opmode, int flags, 1521 const uint8_t bssid[IEEE80211_ADDR_LEN], 1522 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1523 { 1524 struct ath_softc *sc = ic->ic_softc; 1525 struct ath_vap *avp; 1526 struct ieee80211vap *vap; 1527 uint8_t mac[IEEE80211_ADDR_LEN]; 1528 int needbeacon, error; 1529 enum ieee80211_opmode ic_opmode; 1530 1531 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1532 needbeacon = 0; 1533 IEEE80211_ADDR_COPY(mac, mac0); 1534 1535 ATH_LOCK(sc); 1536 ic_opmode = opmode; /* default to opmode of new vap */ 1537 switch (opmode) { 1538 case IEEE80211_M_STA: 1539 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1540 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1541 goto bad; 1542 } 1543 if (sc->sc_nvaps) { 1544 /* 1545 * With multiple vaps we must fall back 1546 * to s/w beacon miss handling. 1547 */ 1548 flags |= IEEE80211_CLONE_NOBEACONS; 1549 } 1550 if (flags & IEEE80211_CLONE_NOBEACONS) { 1551 /* 1552 * Station mode w/o beacons are implemented w/ AP mode. 1553 */ 1554 ic_opmode = IEEE80211_M_HOSTAP; 1555 } 1556 break; 1557 case IEEE80211_M_IBSS: 1558 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1559 device_printf(sc->sc_dev, 1560 "only 1 ibss vap supported\n"); 1561 goto bad; 1562 } 1563 needbeacon = 1; 1564 break; 1565 case IEEE80211_M_AHDEMO: 1566 #ifdef IEEE80211_SUPPORT_TDMA 1567 if (flags & IEEE80211_CLONE_TDMA) { 1568 if (sc->sc_nvaps != 0) { 1569 device_printf(sc->sc_dev, 1570 "only 1 tdma vap supported\n"); 1571 goto bad; 1572 } 1573 needbeacon = 1; 1574 flags |= IEEE80211_CLONE_NOBEACONS; 1575 } 1576 /* fall thru... */ 1577 #endif 1578 case IEEE80211_M_MONITOR: 1579 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1580 /* 1581 * Adopt existing mode. Adding a monitor or ahdemo 1582 * vap to an existing configuration is of dubious 1583 * value but should be ok. 1584 */ 1585 /* XXX not right for monitor mode */ 1586 ic_opmode = ic->ic_opmode; 1587 } 1588 break; 1589 case IEEE80211_M_HOSTAP: 1590 case IEEE80211_M_MBSS: 1591 needbeacon = 1; 1592 break; 1593 case IEEE80211_M_WDS: 1594 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1595 device_printf(sc->sc_dev, 1596 "wds not supported in sta mode\n"); 1597 goto bad; 1598 } 1599 /* 1600 * Silently remove any request for a unique 1601 * bssid; WDS vap's always share the local 1602 * mac address. 1603 */ 1604 flags &= ~IEEE80211_CLONE_BSSID; 1605 if (sc->sc_nvaps == 0) 1606 ic_opmode = IEEE80211_M_HOSTAP; 1607 else 1608 ic_opmode = ic->ic_opmode; 1609 break; 1610 default: 1611 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1612 goto bad; 1613 } 1614 /* 1615 * Check that a beacon buffer is available; the code below assumes it. 1616 */ 1617 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1618 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1619 goto bad; 1620 } 1621 1622 /* STA, AHDEMO? */ 1623 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1624 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1625 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1626 } 1627 1628 vap = &avp->av_vap; 1629 /* XXX can't hold mutex across if_alloc */ 1630 ATH_UNLOCK(sc); 1631 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1632 ATH_LOCK(sc); 1633 if (error != 0) { 1634 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1635 __func__, error); 1636 goto bad2; 1637 } 1638 1639 /* h/w crypto support */ 1640 vap->iv_key_alloc = ath_key_alloc; 1641 vap->iv_key_delete = ath_key_delete; 1642 vap->iv_key_set = ath_key_set; 1643 vap->iv_key_update_begin = ath_key_update_begin; 1644 vap->iv_key_update_end = ath_key_update_end; 1645 1646 /* override various methods */ 1647 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1648 vap->iv_recv_mgmt = ath_recv_mgmt; 1649 vap->iv_reset = ath_reset_vap; 1650 vap->iv_update_beacon = ath_beacon_update; 1651 avp->av_newstate = vap->iv_newstate; 1652 vap->iv_newstate = ath_newstate; 1653 avp->av_bmiss = vap->iv_bmiss; 1654 vap->iv_bmiss = ath_bmiss_vap; 1655 1656 avp->av_node_ps = vap->iv_node_ps; 1657 vap->iv_node_ps = ath_node_powersave; 1658 1659 avp->av_set_tim = vap->iv_set_tim; 1660 vap->iv_set_tim = ath_node_set_tim; 1661 1662 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1663 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1664 1665 /* Set default parameters */ 1666 1667 /* 1668 * Anything earlier than some AR9300 series MACs don't 1669 * support a smaller MPDU density. 1670 */ 1671 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1672 /* 1673 * All NICs can handle the maximum size, however 1674 * AR5416 based MACs can only TX aggregates w/ RTS 1675 * protection when the total aggregate size is <= 8k. 1676 * However, for now that's enforced by the TX path. 1677 */ 1678 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1679 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1680 1681 avp->av_bslot = -1; 1682 if (needbeacon) { 1683 /* 1684 * Allocate beacon state and setup the q for buffered 1685 * multicast frames. We know a beacon buffer is 1686 * available because we checked above. 1687 */ 1688 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1689 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1690 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1691 /* 1692 * Assign the vap to a beacon xmit slot. As above 1693 * this cannot fail to find a free one. 1694 */ 1695 avp->av_bslot = assign_bslot(sc); 1696 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1697 ("beacon slot %u not empty", avp->av_bslot)); 1698 sc->sc_bslot[avp->av_bslot] = vap; 1699 sc->sc_nbcnvaps++; 1700 } 1701 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1702 /* 1703 * Multple vaps are to transmit beacons and we 1704 * have h/w support for TSF adjusting; enable 1705 * use of staggered beacons. 1706 */ 1707 sc->sc_stagbeacons = 1; 1708 } 1709 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1710 } 1711 1712 ic->ic_opmode = ic_opmode; 1713 if (opmode != IEEE80211_M_WDS) { 1714 sc->sc_nvaps++; 1715 if (opmode == IEEE80211_M_STA) 1716 sc->sc_nstavaps++; 1717 if (opmode == IEEE80211_M_MBSS) 1718 sc->sc_nmeshvaps++; 1719 } 1720 switch (ic_opmode) { 1721 case IEEE80211_M_IBSS: 1722 sc->sc_opmode = HAL_M_IBSS; 1723 break; 1724 case IEEE80211_M_STA: 1725 sc->sc_opmode = HAL_M_STA; 1726 break; 1727 case IEEE80211_M_AHDEMO: 1728 #ifdef IEEE80211_SUPPORT_TDMA 1729 if (vap->iv_caps & IEEE80211_C_TDMA) { 1730 sc->sc_tdma = 1; 1731 /* NB: disable tsf adjust */ 1732 sc->sc_stagbeacons = 0; 1733 } 1734 /* 1735 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1736 * just ap mode. 1737 */ 1738 /* fall thru... */ 1739 #endif 1740 case IEEE80211_M_HOSTAP: 1741 case IEEE80211_M_MBSS: 1742 sc->sc_opmode = HAL_M_HOSTAP; 1743 break; 1744 case IEEE80211_M_MONITOR: 1745 sc->sc_opmode = HAL_M_MONITOR; 1746 break; 1747 default: 1748 /* XXX should not happen */ 1749 break; 1750 } 1751 if (sc->sc_hastsfadd) { 1752 /* 1753 * Configure whether or not TSF adjust should be done. 1754 */ 1755 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1756 } 1757 if (flags & IEEE80211_CLONE_NOBEACONS) { 1758 /* 1759 * Enable s/w beacon miss handling. 1760 */ 1761 sc->sc_swbmiss = 1; 1762 } 1763 ATH_UNLOCK(sc); 1764 1765 /* complete setup */ 1766 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status, 1767 mac); 1768 return vap; 1769 bad2: 1770 reclaim_address(sc, mac); 1771 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1772 bad: 1773 free(avp, M_80211_VAP); 1774 ATH_UNLOCK(sc); 1775 return NULL; 1776 } 1777 1778 static void 1779 ath_vap_delete(struct ieee80211vap *vap) 1780 { 1781 struct ieee80211com *ic = vap->iv_ic; 1782 struct ath_softc *sc = ic->ic_softc; 1783 struct ath_hal *ah = sc->sc_ah; 1784 struct ath_vap *avp = ATH_VAP(vap); 1785 1786 ATH_LOCK(sc); 1787 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1788 ATH_UNLOCK(sc); 1789 1790 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1791 if (sc->sc_running) { 1792 /* 1793 * Quiesce the hardware while we remove the vap. In 1794 * particular we need to reclaim all references to 1795 * the vap state by any frames pending on the tx queues. 1796 */ 1797 ath_hal_intrset(ah, 0); /* disable interrupts */ 1798 /* XXX Do all frames from all vaps/nodes need draining here? */ 1799 ath_stoprecv(sc, 1); /* stop recv side */ 1800 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1801 } 1802 1803 /* .. leave the hardware awake for now. */ 1804 1805 ieee80211_vap_detach(vap); 1806 1807 /* 1808 * XXX Danger Will Robinson! Danger! 1809 * 1810 * Because ieee80211_vap_detach() can queue a frame (the station 1811 * diassociate message?) after we've drained the TXQ and 1812 * flushed the software TXQ, we will end up with a frame queued 1813 * to a node whose vap is about to be freed. 1814 * 1815 * To work around this, flush the hardware/software again. 1816 * This may be racy - the ath task may be running and the packet 1817 * may be being scheduled between sw->hw txq. Tsk. 1818 * 1819 * TODO: figure out why a new node gets allocated somewhere around 1820 * here (after the ath_tx_swq() call; and after an ath_stop() 1821 * call!) 1822 */ 1823 1824 ath_draintxq(sc, ATH_RESET_DEFAULT); 1825 1826 ATH_LOCK(sc); 1827 /* 1828 * Reclaim beacon state. Note this must be done before 1829 * the vap instance is reclaimed as we may have a reference 1830 * to it in the buffer for the beacon frame. 1831 */ 1832 if (avp->av_bcbuf != NULL) { 1833 if (avp->av_bslot != -1) { 1834 sc->sc_bslot[avp->av_bslot] = NULL; 1835 sc->sc_nbcnvaps--; 1836 } 1837 ath_beacon_return(sc, avp->av_bcbuf); 1838 avp->av_bcbuf = NULL; 1839 if (sc->sc_nbcnvaps == 0) { 1840 sc->sc_stagbeacons = 0; 1841 if (sc->sc_hastsfadd) 1842 ath_hal_settsfadjust(sc->sc_ah, 0); 1843 } 1844 /* 1845 * Reclaim any pending mcast frames for the vap. 1846 */ 1847 ath_tx_draintxq(sc, &avp->av_mcastq); 1848 } 1849 /* 1850 * Update bookkeeping. 1851 */ 1852 if (vap->iv_opmode == IEEE80211_M_STA) { 1853 sc->sc_nstavaps--; 1854 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1855 sc->sc_swbmiss = 0; 1856 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1857 vap->iv_opmode == IEEE80211_M_MBSS) { 1858 reclaim_address(sc, vap->iv_myaddr); 1859 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1860 if (vap->iv_opmode == IEEE80211_M_MBSS) 1861 sc->sc_nmeshvaps--; 1862 } 1863 if (vap->iv_opmode != IEEE80211_M_WDS) 1864 sc->sc_nvaps--; 1865 #ifdef IEEE80211_SUPPORT_TDMA 1866 /* TDMA operation ceases when the last vap is destroyed */ 1867 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1868 sc->sc_tdma = 0; 1869 sc->sc_swbmiss = 0; 1870 } 1871 #endif 1872 free(avp, M_80211_VAP); 1873 1874 if (sc->sc_running) { 1875 /* 1876 * Restart rx+tx machines if still running (RUNNING will 1877 * be reset if we just destroyed the last vap). 1878 */ 1879 if (ath_startrecv(sc) != 0) 1880 device_printf(sc->sc_dev, 1881 "%s: unable to restart recv logic\n", __func__); 1882 if (sc->sc_beacons) { /* restart beacons */ 1883 #ifdef IEEE80211_SUPPORT_TDMA 1884 if (sc->sc_tdma) 1885 ath_tdma_config(sc, NULL); 1886 else 1887 #endif 1888 ath_beacon_config(sc, NULL); 1889 } 1890 ath_hal_intrset(ah, sc->sc_imask); 1891 } 1892 1893 /* Ok, let the hardware asleep. */ 1894 ath_power_restore_power_state(sc); 1895 ATH_UNLOCK(sc); 1896 } 1897 1898 void 1899 ath_suspend(struct ath_softc *sc) 1900 { 1901 struct ieee80211com *ic = &sc->sc_ic; 1902 1903 sc->sc_resume_up = ic->ic_nrunning != 0; 1904 1905 ieee80211_suspend_all(ic); 1906 /* 1907 * NB: don't worry about putting the chip in low power 1908 * mode; pci will power off our socket on suspend and 1909 * CardBus detaches the device. 1910 * 1911 * XXX TODO: well, that's great, except for non-cardbus 1912 * devices! 1913 */ 1914 1915 /* 1916 * XXX This doesn't wait until all pending taskqueue 1917 * items and parallel transmit/receive/other threads 1918 * are running! 1919 */ 1920 ath_hal_intrset(sc->sc_ah, 0); 1921 taskqueue_block(sc->sc_tq); 1922 1923 ATH_LOCK(sc); 1924 callout_stop(&sc->sc_cal_ch); 1925 ATH_UNLOCK(sc); 1926 1927 /* 1928 * XXX ensure sc_invalid is 1 1929 */ 1930 1931 /* Disable the PCIe PHY, complete with workarounds */ 1932 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1933 } 1934 1935 /* 1936 * Reset the key cache since some parts do not reset the 1937 * contents on resume. First we clear all entries, then 1938 * re-load keys that the 802.11 layer assumes are setup 1939 * in h/w. 1940 */ 1941 static void 1942 ath_reset_keycache(struct ath_softc *sc) 1943 { 1944 struct ieee80211com *ic = &sc->sc_ic; 1945 struct ath_hal *ah = sc->sc_ah; 1946 int i; 1947 1948 ATH_LOCK(sc); 1949 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1950 for (i = 0; i < sc->sc_keymax; i++) 1951 ath_hal_keyreset(ah, i); 1952 ath_power_restore_power_state(sc); 1953 ATH_UNLOCK(sc); 1954 ieee80211_crypto_reload_keys(ic); 1955 } 1956 1957 /* 1958 * Fetch the current chainmask configuration based on the current 1959 * operating channel and options. 1960 */ 1961 static void 1962 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1963 { 1964 1965 /* 1966 * Set TX chainmask to the currently configured chainmask; 1967 * the TX chainmask depends upon the current operating mode. 1968 */ 1969 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1970 if (IEEE80211_IS_CHAN_HT(chan)) { 1971 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1972 } else { 1973 sc->sc_cur_txchainmask = 1; 1974 } 1975 1976 DPRINTF(sc, ATH_DEBUG_RESET, 1977 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1978 __func__, 1979 sc->sc_cur_txchainmask, 1980 sc->sc_cur_rxchainmask); 1981 } 1982 1983 void 1984 ath_resume(struct ath_softc *sc) 1985 { 1986 struct ieee80211com *ic = &sc->sc_ic; 1987 struct ath_hal *ah = sc->sc_ah; 1988 HAL_STATUS status; 1989 1990 ath_hal_enablepcie(ah, 0, 0); 1991 1992 /* 1993 * Must reset the chip before we reload the 1994 * keycache as we were powered down on suspend. 1995 */ 1996 ath_update_chainmasks(sc, 1997 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1998 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1999 sc->sc_cur_rxchainmask); 2000 2001 /* Ensure we set the current power state to on */ 2002 ATH_LOCK(sc); 2003 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2004 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2005 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2006 ATH_UNLOCK(sc); 2007 2008 ath_hal_reset(ah, sc->sc_opmode, 2009 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 2010 AH_FALSE, HAL_RESET_NORMAL, &status); 2011 ath_reset_keycache(sc); 2012 2013 ATH_RX_LOCK(sc); 2014 sc->sc_rx_stopped = 1; 2015 sc->sc_rx_resetted = 1; 2016 ATH_RX_UNLOCK(sc); 2017 2018 /* Let DFS at it in case it's a DFS channel */ 2019 ath_dfs_radar_enable(sc, ic->ic_curchan); 2020 2021 /* Let spectral at in case spectral is enabled */ 2022 ath_spectral_enable(sc, ic->ic_curchan); 2023 2024 /* 2025 * Let bluetooth coexistence at in case it's needed for this channel 2026 */ 2027 ath_btcoex_enable(sc, ic->ic_curchan); 2028 2029 /* 2030 * If we're doing TDMA, enforce the TXOP limitation for chips that 2031 * support it. 2032 */ 2033 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2034 ath_hal_setenforcetxop(sc->sc_ah, 1); 2035 else 2036 ath_hal_setenforcetxop(sc->sc_ah, 0); 2037 2038 /* Restore the LED configuration */ 2039 ath_led_config(sc); 2040 ath_hal_setledstate(ah, HAL_LED_INIT); 2041 2042 if (sc->sc_resume_up) 2043 ieee80211_resume_all(ic); 2044 2045 ATH_LOCK(sc); 2046 ath_power_restore_power_state(sc); 2047 ATH_UNLOCK(sc); 2048 2049 /* XXX beacons ? */ 2050 } 2051 2052 void 2053 ath_shutdown(struct ath_softc *sc) 2054 { 2055 2056 ATH_LOCK(sc); 2057 ath_stop(sc); 2058 ATH_UNLOCK(sc); 2059 /* NB: no point powering down chip as we're about to reboot */ 2060 } 2061 2062 /* 2063 * Interrupt handler. Most of the actual processing is deferred. 2064 */ 2065 void 2066 ath_intr(void *arg) 2067 { 2068 struct ath_softc *sc = arg; 2069 struct ath_hal *ah = sc->sc_ah; 2070 HAL_INT status = 0; 2071 uint32_t txqs; 2072 2073 /* 2074 * If we're inside a reset path, just print a warning and 2075 * clear the ISR. The reset routine will finish it for us. 2076 */ 2077 ATH_PCU_LOCK(sc); 2078 if (sc->sc_inreset_cnt) { 2079 HAL_INT status; 2080 ath_hal_getisr(ah, &status); /* clear ISR */ 2081 ath_hal_intrset(ah, 0); /* disable further intr's */ 2082 DPRINTF(sc, ATH_DEBUG_ANY, 2083 "%s: in reset, ignoring: status=0x%x\n", 2084 __func__, status); 2085 ATH_PCU_UNLOCK(sc); 2086 return; 2087 } 2088 2089 if (sc->sc_invalid) { 2090 /* 2091 * The hardware is not ready/present, don't touch anything. 2092 * Note this can happen early on if the IRQ is shared. 2093 */ 2094 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2095 ATH_PCU_UNLOCK(sc); 2096 return; 2097 } 2098 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2099 ATH_PCU_UNLOCK(sc); 2100 return; 2101 } 2102 2103 ATH_LOCK(sc); 2104 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2105 ATH_UNLOCK(sc); 2106 2107 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2108 HAL_INT status; 2109 2110 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2111 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2112 ath_hal_getisr(ah, &status); /* clear ISR */ 2113 ath_hal_intrset(ah, 0); /* disable further intr's */ 2114 ATH_PCU_UNLOCK(sc); 2115 2116 ATH_LOCK(sc); 2117 ath_power_restore_power_state(sc); 2118 ATH_UNLOCK(sc); 2119 return; 2120 } 2121 2122 /* 2123 * Figure out the reason(s) for the interrupt. Note 2124 * that the hal returns a pseudo-ISR that may include 2125 * bits we haven't explicitly enabled so we mask the 2126 * value to insure we only process bits we requested. 2127 */ 2128 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2129 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2130 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2131 #ifdef ATH_DEBUG_ALQ 2132 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2133 ah->ah_syncstate); 2134 #endif /* ATH_DEBUG_ALQ */ 2135 #ifdef ATH_KTR_INTR_DEBUG 2136 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2137 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2138 ah->ah_intrstate[0], 2139 ah->ah_intrstate[1], 2140 ah->ah_intrstate[2], 2141 ah->ah_intrstate[3], 2142 ah->ah_intrstate[6]); 2143 #endif 2144 2145 /* Squirrel away SYNC interrupt debugging */ 2146 if (ah->ah_syncstate != 0) { 2147 int i; 2148 for (i = 0; i < 32; i++) 2149 if (ah->ah_syncstate & (i << i)) 2150 sc->sc_intr_stats.sync_intr[i]++; 2151 } 2152 2153 status &= sc->sc_imask; /* discard unasked for bits */ 2154 2155 /* Short-circuit un-handled interrupts */ 2156 if (status == 0x0) { 2157 ATH_PCU_UNLOCK(sc); 2158 2159 ATH_LOCK(sc); 2160 ath_power_restore_power_state(sc); 2161 ATH_UNLOCK(sc); 2162 2163 return; 2164 } 2165 2166 /* 2167 * Take a note that we're inside the interrupt handler, so 2168 * the reset routines know to wait. 2169 */ 2170 sc->sc_intr_cnt++; 2171 ATH_PCU_UNLOCK(sc); 2172 2173 /* 2174 * Handle the interrupt. We won't run concurrent with the reset 2175 * or channel change routines as they'll wait for sc_intr_cnt 2176 * to be 0 before continuing. 2177 */ 2178 if (status & HAL_INT_FATAL) { 2179 sc->sc_stats.ast_hardware++; 2180 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2181 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2182 } else { 2183 if (status & HAL_INT_SWBA) { 2184 /* 2185 * Software beacon alert--time to send a beacon. 2186 * Handle beacon transmission directly; deferring 2187 * this is too slow to meet timing constraints 2188 * under load. 2189 */ 2190 #ifdef IEEE80211_SUPPORT_TDMA 2191 if (sc->sc_tdma) { 2192 if (sc->sc_tdmaswba == 0) { 2193 struct ieee80211com *ic = &sc->sc_ic; 2194 struct ieee80211vap *vap = 2195 TAILQ_FIRST(&ic->ic_vaps); 2196 ath_tdma_beacon_send(sc, vap); 2197 sc->sc_tdmaswba = 2198 vap->iv_tdma->tdma_bintval; 2199 } else 2200 sc->sc_tdmaswba--; 2201 } else 2202 #endif 2203 { 2204 ath_beacon_proc(sc, 0); 2205 #ifdef IEEE80211_SUPPORT_SUPERG 2206 /* 2207 * Schedule the rx taskq in case there's no 2208 * traffic so any frames held on the staging 2209 * queue are aged and potentially flushed. 2210 */ 2211 sc->sc_rx.recv_sched(sc, 1); 2212 #endif 2213 } 2214 } 2215 if (status & HAL_INT_RXEOL) { 2216 int imask; 2217 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2218 if (! sc->sc_isedma) { 2219 ATH_PCU_LOCK(sc); 2220 /* 2221 * NB: the hardware should re-read the link when 2222 * RXE bit is written, but it doesn't work at 2223 * least on older hardware revs. 2224 */ 2225 sc->sc_stats.ast_rxeol++; 2226 /* 2227 * Disable RXEOL/RXORN - prevent an interrupt 2228 * storm until the PCU logic can be reset. 2229 * In case the interface is reset some other 2230 * way before "sc_kickpcu" is called, don't 2231 * modify sc_imask - that way if it is reset 2232 * by a call to ath_reset() somehow, the 2233 * interrupt mask will be correctly reprogrammed. 2234 */ 2235 imask = sc->sc_imask; 2236 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2237 ath_hal_intrset(ah, imask); 2238 /* 2239 * Only blank sc_rxlink if we've not yet kicked 2240 * the PCU. 2241 * 2242 * This isn't entirely correct - the correct solution 2243 * would be to have a PCU lock and engage that for 2244 * the duration of the PCU fiddling; which would include 2245 * running the RX process. Otherwise we could end up 2246 * messing up the RX descriptor chain and making the 2247 * RX desc list much shorter. 2248 */ 2249 if (! sc->sc_kickpcu) 2250 sc->sc_rxlink = NULL; 2251 sc->sc_kickpcu = 1; 2252 ATH_PCU_UNLOCK(sc); 2253 } 2254 /* 2255 * Enqueue an RX proc to handle whatever 2256 * is in the RX queue. 2257 * This will then kick the PCU if required. 2258 */ 2259 sc->sc_rx.recv_sched(sc, 1); 2260 } 2261 if (status & HAL_INT_TXURN) { 2262 sc->sc_stats.ast_txurn++; 2263 /* bump tx trigger level */ 2264 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2265 } 2266 /* 2267 * Handle both the legacy and RX EDMA interrupt bits. 2268 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2269 */ 2270 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2271 sc->sc_stats.ast_rx_intr++; 2272 sc->sc_rx.recv_sched(sc, 1); 2273 } 2274 if (status & HAL_INT_TX) { 2275 sc->sc_stats.ast_tx_intr++; 2276 /* 2277 * Grab all the currently set bits in the HAL txq bitmap 2278 * and blank them. This is the only place we should be 2279 * doing this. 2280 */ 2281 if (! sc->sc_isedma) { 2282 ATH_PCU_LOCK(sc); 2283 txqs = 0xffffffff; 2284 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2285 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2286 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2287 txqs, 2288 sc->sc_txq_active, 2289 sc->sc_txq_active | txqs); 2290 sc->sc_txq_active |= txqs; 2291 ATH_PCU_UNLOCK(sc); 2292 } 2293 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2294 } 2295 if (status & HAL_INT_BMISS) { 2296 sc->sc_stats.ast_bmiss++; 2297 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2298 } 2299 if (status & HAL_INT_GTT) 2300 sc->sc_stats.ast_tx_timeout++; 2301 if (status & HAL_INT_CST) 2302 sc->sc_stats.ast_tx_cst++; 2303 if (status & HAL_INT_MIB) { 2304 sc->sc_stats.ast_mib++; 2305 ATH_PCU_LOCK(sc); 2306 /* 2307 * Disable interrupts until we service the MIB 2308 * interrupt; otherwise it will continue to fire. 2309 */ 2310 ath_hal_intrset(ah, 0); 2311 /* 2312 * Let the hal handle the event. We assume it will 2313 * clear whatever condition caused the interrupt. 2314 */ 2315 ath_hal_mibevent(ah, &sc->sc_halstats); 2316 /* 2317 * Don't reset the interrupt if we've just 2318 * kicked the PCU, or we may get a nested 2319 * RXEOL before the rxproc has had a chance 2320 * to run. 2321 */ 2322 if (sc->sc_kickpcu == 0) 2323 ath_hal_intrset(ah, sc->sc_imask); 2324 ATH_PCU_UNLOCK(sc); 2325 } 2326 if (status & HAL_INT_RXORN) { 2327 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2328 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2329 sc->sc_stats.ast_rxorn++; 2330 } 2331 if (status & HAL_INT_TSFOOR) { 2332 /* out of range beacon - wake the chip up, 2333 * but don't modify self-gen frame config */ 2334 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2335 sc->sc_syncbeacon = 1; 2336 ATH_LOCK(sc); 2337 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2338 ATH_UNLOCK(sc); 2339 } 2340 if (status & HAL_INT_MCI) { 2341 ath_btcoex_mci_intr(sc); 2342 } 2343 } 2344 ATH_PCU_LOCK(sc); 2345 sc->sc_intr_cnt--; 2346 ATH_PCU_UNLOCK(sc); 2347 2348 ATH_LOCK(sc); 2349 ath_power_restore_power_state(sc); 2350 ATH_UNLOCK(sc); 2351 } 2352 2353 static void 2354 ath_fatal_proc(void *arg, int pending) 2355 { 2356 struct ath_softc *sc = arg; 2357 u_int32_t *state; 2358 u_int32_t len; 2359 void *sp; 2360 2361 if (sc->sc_invalid) 2362 return; 2363 2364 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2365 /* 2366 * Fatal errors are unrecoverable. Typically these 2367 * are caused by DMA errors. Collect h/w state from 2368 * the hal so we can diagnose what's going on. 2369 */ 2370 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2371 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2372 state = sp; 2373 device_printf(sc->sc_dev, 2374 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2375 state[1] , state[2], state[3], state[4], state[5]); 2376 } 2377 ath_reset(sc, ATH_RESET_NOLOSS); 2378 } 2379 2380 static void 2381 ath_bmiss_vap(struct ieee80211vap *vap) 2382 { 2383 struct ath_softc *sc = vap->iv_ic->ic_softc; 2384 2385 /* 2386 * Workaround phantom bmiss interrupts by sanity-checking 2387 * the time of our last rx'd frame. If it is within the 2388 * beacon miss interval then ignore the interrupt. If it's 2389 * truly a bmiss we'll get another interrupt soon and that'll 2390 * be dispatched up for processing. Note this applies only 2391 * for h/w beacon miss events. 2392 */ 2393 2394 /* 2395 * XXX TODO: Just read the TSF during the interrupt path; 2396 * that way we don't have to wake up again just to read it 2397 * again. 2398 */ 2399 ATH_LOCK(sc); 2400 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2401 ATH_UNLOCK(sc); 2402 2403 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2404 u_int64_t lastrx = sc->sc_lastrx; 2405 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2406 /* XXX should take a locked ref to iv_bss */ 2407 u_int bmisstimeout = 2408 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2409 2410 DPRINTF(sc, ATH_DEBUG_BEACON, 2411 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2412 __func__, (unsigned long long) tsf, 2413 (unsigned long long)(tsf - lastrx), 2414 (unsigned long long) lastrx, bmisstimeout); 2415 2416 if (tsf - lastrx <= bmisstimeout) { 2417 sc->sc_stats.ast_bmiss_phantom++; 2418 2419 ATH_LOCK(sc); 2420 ath_power_restore_power_state(sc); 2421 ATH_UNLOCK(sc); 2422 2423 return; 2424 } 2425 } 2426 2427 /* 2428 * Keep the hardware awake if it's asleep (and leave self-gen 2429 * frame config alone) until the next beacon, so we can resync 2430 * against the next beacon. 2431 * 2432 * This handles three common beacon miss cases in STA powersave mode - 2433 * (a) the beacon TBTT isnt a multiple of bintval; 2434 * (b) the beacon was missed; and 2435 * (c) the beacons are being delayed because the AP is busy and 2436 * isn't reliably able to meet its TBTT. 2437 */ 2438 ATH_LOCK(sc); 2439 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2440 ath_power_restore_power_state(sc); 2441 ATH_UNLOCK(sc); 2442 DPRINTF(sc, ATH_DEBUG_BEACON, 2443 "%s: forced awake; force syncbeacon=1\n", __func__); 2444 2445 /* 2446 * Attempt to force a beacon resync. 2447 */ 2448 sc->sc_syncbeacon = 1; 2449 2450 ATH_VAP(vap)->av_bmiss(vap); 2451 } 2452 2453 /* XXX this needs a force wakeup! */ 2454 int 2455 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2456 { 2457 uint32_t rsize; 2458 void *sp; 2459 2460 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2461 return 0; 2462 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2463 *hangs = *(uint32_t *)sp; 2464 return 1; 2465 } 2466 2467 static void 2468 ath_bmiss_proc(void *arg, int pending) 2469 { 2470 struct ath_softc *sc = arg; 2471 uint32_t hangs; 2472 2473 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2474 2475 ATH_LOCK(sc); 2476 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2477 ATH_UNLOCK(sc); 2478 2479 ath_beacon_miss(sc); 2480 2481 /* 2482 * Do a reset upon any becaon miss event. 2483 * 2484 * It may be a non-recognised RX clear hang which needs a reset 2485 * to clear. 2486 */ 2487 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2488 ath_reset(sc, ATH_RESET_NOLOSS); 2489 device_printf(sc->sc_dev, 2490 "bb hang detected (0x%x), resetting\n", hangs); 2491 } else { 2492 ath_reset(sc, ATH_RESET_NOLOSS); 2493 ieee80211_beacon_miss(&sc->sc_ic); 2494 } 2495 2496 /* Force a beacon resync, in case they've drifted */ 2497 sc->sc_syncbeacon = 1; 2498 2499 ATH_LOCK(sc); 2500 ath_power_restore_power_state(sc); 2501 ATH_UNLOCK(sc); 2502 } 2503 2504 /* 2505 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2506 * calcs together with WME. If necessary disable the crypto 2507 * hardware and mark the 802.11 state so keys will be setup 2508 * with the MIC work done in software. 2509 */ 2510 static void 2511 ath_settkipmic(struct ath_softc *sc) 2512 { 2513 struct ieee80211com *ic = &sc->sc_ic; 2514 2515 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2516 if (ic->ic_flags & IEEE80211_F_WME) { 2517 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2518 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2519 } else { 2520 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2521 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2522 } 2523 } 2524 } 2525 2526 static int 2527 ath_init(struct ath_softc *sc) 2528 { 2529 struct ieee80211com *ic = &sc->sc_ic; 2530 struct ath_hal *ah = sc->sc_ah; 2531 HAL_STATUS status; 2532 2533 ATH_LOCK_ASSERT(sc); 2534 2535 /* 2536 * Force the sleep state awake. 2537 */ 2538 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2539 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2540 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2541 2542 /* 2543 * Stop anything previously setup. This is safe 2544 * whether this is the first time through or not. 2545 */ 2546 ath_stop(sc); 2547 2548 /* 2549 * The basic interface to setting the hardware in a good 2550 * state is ``reset''. On return the hardware is known to 2551 * be powered up and with interrupts disabled. This must 2552 * be followed by initialization of the appropriate bits 2553 * and then setup of the interrupt mask. 2554 */ 2555 ath_settkipmic(sc); 2556 ath_update_chainmasks(sc, ic->ic_curchan); 2557 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2558 sc->sc_cur_rxchainmask); 2559 2560 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2561 HAL_RESET_NORMAL, &status)) { 2562 device_printf(sc->sc_dev, 2563 "unable to reset hardware; hal status %u\n", status); 2564 return (ENODEV); 2565 } 2566 2567 ATH_RX_LOCK(sc); 2568 sc->sc_rx_stopped = 1; 2569 sc->sc_rx_resetted = 1; 2570 ATH_RX_UNLOCK(sc); 2571 2572 ath_chan_change(sc, ic->ic_curchan); 2573 2574 /* Let DFS at it in case it's a DFS channel */ 2575 ath_dfs_radar_enable(sc, ic->ic_curchan); 2576 2577 /* Let spectral at in case spectral is enabled */ 2578 ath_spectral_enable(sc, ic->ic_curchan); 2579 2580 /* 2581 * Let bluetooth coexistence at in case it's needed for this channel 2582 */ 2583 ath_btcoex_enable(sc, ic->ic_curchan); 2584 2585 /* 2586 * If we're doing TDMA, enforce the TXOP limitation for chips that 2587 * support it. 2588 */ 2589 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2590 ath_hal_setenforcetxop(sc->sc_ah, 1); 2591 else 2592 ath_hal_setenforcetxop(sc->sc_ah, 0); 2593 2594 /* 2595 * Likewise this is set during reset so update 2596 * state cached in the driver. 2597 */ 2598 sc->sc_diversity = ath_hal_getdiversity(ah); 2599 sc->sc_lastlongcal = ticks; 2600 sc->sc_resetcal = 1; 2601 sc->sc_lastcalreset = 0; 2602 sc->sc_lastani = ticks; 2603 sc->sc_lastshortcal = ticks; 2604 sc->sc_doresetcal = AH_FALSE; 2605 /* 2606 * Beacon timers were cleared here; give ath_newstate() 2607 * a hint that the beacon timers should be poked when 2608 * things transition to the RUN state. 2609 */ 2610 sc->sc_beacons = 0; 2611 2612 /* 2613 * Setup the hardware after reset: the key cache 2614 * is filled as needed and the receive engine is 2615 * set going. Frame transmit is handled entirely 2616 * in the frame output path; there's nothing to do 2617 * here except setup the interrupt mask. 2618 */ 2619 if (ath_startrecv(sc) != 0) { 2620 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2621 ath_power_restore_power_state(sc); 2622 return (ENODEV); 2623 } 2624 2625 /* 2626 * Enable interrupts. 2627 */ 2628 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2629 | HAL_INT_RXORN | HAL_INT_TXURN 2630 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2631 2632 /* 2633 * Enable RX EDMA bits. Note these overlap with 2634 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2635 */ 2636 if (sc->sc_isedma) 2637 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2638 2639 /* 2640 * If we're an EDMA NIC, we don't care about RXEOL. 2641 * Writing a new descriptor in will simply restart 2642 * RX DMA. 2643 */ 2644 if (! sc->sc_isedma) 2645 sc->sc_imask |= HAL_INT_RXEOL; 2646 2647 /* 2648 * Enable MCI interrupt for MCI devices. 2649 */ 2650 if (sc->sc_btcoex_mci) 2651 sc->sc_imask |= HAL_INT_MCI; 2652 2653 /* 2654 * Enable MIB interrupts when there are hardware phy counters. 2655 * Note we only do this (at the moment) for station mode. 2656 */ 2657 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2658 sc->sc_imask |= HAL_INT_MIB; 2659 2660 /* 2661 * XXX add capability for this. 2662 * 2663 * If we're in STA mode (and maybe IBSS?) then register for 2664 * TSFOOR interrupts. 2665 */ 2666 if (ic->ic_opmode == IEEE80211_M_STA) 2667 sc->sc_imask |= HAL_INT_TSFOOR; 2668 2669 /* Enable global TX timeout and carrier sense timeout if available */ 2670 if (ath_hal_gtxto_supported(ah)) 2671 sc->sc_imask |= HAL_INT_GTT; 2672 2673 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2674 __func__, sc->sc_imask); 2675 2676 sc->sc_running = 1; 2677 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2678 ath_hal_intrset(ah, sc->sc_imask); 2679 2680 ath_power_restore_power_state(sc); 2681 2682 return (0); 2683 } 2684 2685 static void 2686 ath_stop(struct ath_softc *sc) 2687 { 2688 struct ath_hal *ah = sc->sc_ah; 2689 2690 ATH_LOCK_ASSERT(sc); 2691 2692 /* 2693 * Wake the hardware up before fiddling with it. 2694 */ 2695 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2696 2697 if (sc->sc_running) { 2698 /* 2699 * Shutdown the hardware and driver: 2700 * reset 802.11 state machine 2701 * turn off timers 2702 * disable interrupts 2703 * turn off the radio 2704 * clear transmit machinery 2705 * clear receive machinery 2706 * drain and release tx queues 2707 * reclaim beacon resources 2708 * power down hardware 2709 * 2710 * Note that some of this work is not possible if the 2711 * hardware is gone (invalid). 2712 */ 2713 #ifdef ATH_TX99_DIAG 2714 if (sc->sc_tx99 != NULL) 2715 sc->sc_tx99->stop(sc->sc_tx99); 2716 #endif 2717 callout_stop(&sc->sc_wd_ch); 2718 sc->sc_wd_timer = 0; 2719 sc->sc_running = 0; 2720 if (!sc->sc_invalid) { 2721 if (sc->sc_softled) { 2722 callout_stop(&sc->sc_ledtimer); 2723 ath_hal_gpioset(ah, sc->sc_ledpin, 2724 !sc->sc_ledon); 2725 sc->sc_blinking = 0; 2726 } 2727 ath_hal_intrset(ah, 0); 2728 } 2729 /* XXX we should stop RX regardless of whether it's valid */ 2730 if (!sc->sc_invalid) { 2731 ath_stoprecv(sc, 1); 2732 ath_hal_phydisable(ah); 2733 } else 2734 sc->sc_rxlink = NULL; 2735 ath_draintxq(sc, ATH_RESET_DEFAULT); 2736 ath_beacon_free(sc); /* XXX not needed */ 2737 } 2738 2739 /* And now, restore the current power state */ 2740 ath_power_restore_power_state(sc); 2741 } 2742 2743 /* 2744 * Wait until all pending TX/RX has completed. 2745 * 2746 * This waits until all existing transmit, receive and interrupts 2747 * have completed. It's assumed that the caller has first 2748 * grabbed the reset lock so it doesn't try to do overlapping 2749 * chip resets. 2750 */ 2751 #define MAX_TXRX_ITERATIONS 100 2752 static void 2753 ath_txrx_stop_locked(struct ath_softc *sc) 2754 { 2755 int i = MAX_TXRX_ITERATIONS; 2756 2757 ATH_UNLOCK_ASSERT(sc); 2758 ATH_PCU_LOCK_ASSERT(sc); 2759 2760 /* 2761 * Sleep until all the pending operations have completed. 2762 * 2763 * The caller must ensure that reset has been incremented 2764 * or the pending operations may continue being queued. 2765 */ 2766 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2767 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2768 if (i <= 0) 2769 break; 2770 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2771 msecs_to_ticks(10)); 2772 i--; 2773 } 2774 2775 if (i <= 0) 2776 device_printf(sc->sc_dev, 2777 "%s: didn't finish after %d iterations\n", 2778 __func__, MAX_TXRX_ITERATIONS); 2779 } 2780 #undef MAX_TXRX_ITERATIONS 2781 2782 #if 0 2783 static void 2784 ath_txrx_stop(struct ath_softc *sc) 2785 { 2786 ATH_UNLOCK_ASSERT(sc); 2787 ATH_PCU_UNLOCK_ASSERT(sc); 2788 2789 ATH_PCU_LOCK(sc); 2790 ath_txrx_stop_locked(sc); 2791 ATH_PCU_UNLOCK(sc); 2792 } 2793 #endif 2794 2795 static void 2796 ath_txrx_start(struct ath_softc *sc) 2797 { 2798 2799 taskqueue_unblock(sc->sc_tq); 2800 } 2801 2802 /* 2803 * Grab the reset lock, and wait around until no one else 2804 * is trying to do anything with it. 2805 * 2806 * This is totally horrible but we can't hold this lock for 2807 * long enough to do TX/RX or we end up with net80211/ip stack 2808 * LORs and eventual deadlock. 2809 * 2810 * "dowait" signals whether to spin, waiting for the reset 2811 * lock count to reach 0. This should (for now) only be used 2812 * during the reset path, as the rest of the code may not 2813 * be locking-reentrant enough to behave correctly. 2814 * 2815 * Another, cleaner way should be found to serialise all of 2816 * these operations. 2817 */ 2818 #define MAX_RESET_ITERATIONS 25 2819 static int 2820 ath_reset_grablock(struct ath_softc *sc, int dowait) 2821 { 2822 int w = 0; 2823 int i = MAX_RESET_ITERATIONS; 2824 2825 ATH_PCU_LOCK_ASSERT(sc); 2826 do { 2827 if (sc->sc_inreset_cnt == 0) { 2828 w = 1; 2829 break; 2830 } 2831 if (dowait == 0) { 2832 w = 0; 2833 break; 2834 } 2835 ATH_PCU_UNLOCK(sc); 2836 /* 2837 * 1 tick is likely not enough time for long calibrations 2838 * to complete. So we should wait quite a while. 2839 */ 2840 pause("ath_reset_grablock", msecs_to_ticks(100)); 2841 i--; 2842 ATH_PCU_LOCK(sc); 2843 } while (i > 0); 2844 2845 /* 2846 * We always increment the refcounter, regardless 2847 * of whether we succeeded to get it in an exclusive 2848 * way. 2849 */ 2850 sc->sc_inreset_cnt++; 2851 2852 if (i <= 0) 2853 device_printf(sc->sc_dev, 2854 "%s: didn't finish after %d iterations\n", 2855 __func__, MAX_RESET_ITERATIONS); 2856 2857 if (w == 0) 2858 device_printf(sc->sc_dev, 2859 "%s: warning, recursive reset path!\n", 2860 __func__); 2861 2862 return w; 2863 } 2864 #undef MAX_RESET_ITERATIONS 2865 2866 /* 2867 * Reset the hardware w/o losing operational state. This is 2868 * basically a more efficient way of doing ath_stop, ath_init, 2869 * followed by state transitions to the current 802.11 2870 * operational state. Used to recover from various errors and 2871 * to reset or reload hardware state. 2872 */ 2873 int 2874 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 2875 { 2876 struct ieee80211com *ic = &sc->sc_ic; 2877 struct ath_hal *ah = sc->sc_ah; 2878 HAL_STATUS status; 2879 int i; 2880 2881 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2882 2883 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2884 ATH_PCU_UNLOCK_ASSERT(sc); 2885 ATH_UNLOCK_ASSERT(sc); 2886 2887 /* Try to (stop any further TX/RX from occurring */ 2888 taskqueue_block(sc->sc_tq); 2889 2890 /* 2891 * Wake the hardware up. 2892 */ 2893 ATH_LOCK(sc); 2894 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2895 ATH_UNLOCK(sc); 2896 2897 ATH_PCU_LOCK(sc); 2898 2899 /* 2900 * Grab the reset lock before TX/RX is stopped. 2901 * 2902 * This is needed to ensure that when the TX/RX actually does finish, 2903 * no further TX/RX/reset runs in parallel with this. 2904 */ 2905 if (ath_reset_grablock(sc, 1) == 0) { 2906 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2907 __func__); 2908 } 2909 2910 /* disable interrupts */ 2911 ath_hal_intrset(ah, 0); 2912 2913 /* 2914 * Now, ensure that any in progress TX/RX completes before we 2915 * continue. 2916 */ 2917 ath_txrx_stop_locked(sc); 2918 2919 ATH_PCU_UNLOCK(sc); 2920 2921 /* 2922 * Regardless of whether we're doing a no-loss flush or 2923 * not, stop the PCU and handle what's in the RX queue. 2924 * That way frames aren't dropped which shouldn't be. 2925 */ 2926 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2927 ath_rx_flush(sc); 2928 2929 /* 2930 * Should now wait for pending TX/RX to complete 2931 * and block future ones from occurring. This needs to be 2932 * done before the TX queue is drained. 2933 */ 2934 ath_draintxq(sc, reset_type); /* stop xmit side */ 2935 2936 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2937 /* NB: indicate channel change so we do a full reset */ 2938 ath_update_chainmasks(sc, ic->ic_curchan); 2939 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2940 sc->sc_cur_rxchainmask); 2941 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 2942 HAL_RESET_NORMAL, &status)) 2943 device_printf(sc->sc_dev, 2944 "%s: unable to reset hardware; hal status %u\n", 2945 __func__, status); 2946 sc->sc_diversity = ath_hal_getdiversity(ah); 2947 2948 ATH_RX_LOCK(sc); 2949 sc->sc_rx_stopped = 1; 2950 sc->sc_rx_resetted = 1; 2951 ATH_RX_UNLOCK(sc); 2952 2953 /* Let DFS at it in case it's a DFS channel */ 2954 ath_dfs_radar_enable(sc, ic->ic_curchan); 2955 2956 /* Let spectral at in case spectral is enabled */ 2957 ath_spectral_enable(sc, ic->ic_curchan); 2958 2959 /* 2960 * Let bluetooth coexistence at in case it's needed for this channel 2961 */ 2962 ath_btcoex_enable(sc, ic->ic_curchan); 2963 2964 /* 2965 * If we're doing TDMA, enforce the TXOP limitation for chips that 2966 * support it. 2967 */ 2968 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2969 ath_hal_setenforcetxop(sc->sc_ah, 1); 2970 else 2971 ath_hal_setenforcetxop(sc->sc_ah, 0); 2972 2973 if (ath_startrecv(sc) != 0) /* restart recv */ 2974 device_printf(sc->sc_dev, 2975 "%s: unable to start recv logic\n", __func__); 2976 /* 2977 * We may be doing a reset in response to an ioctl 2978 * that changes the channel so update any state that 2979 * might change as a result. 2980 */ 2981 ath_chan_change(sc, ic->ic_curchan); 2982 if (sc->sc_beacons) { /* restart beacons */ 2983 #ifdef IEEE80211_SUPPORT_TDMA 2984 if (sc->sc_tdma) 2985 ath_tdma_config(sc, NULL); 2986 else 2987 #endif 2988 ath_beacon_config(sc, NULL); 2989 } 2990 2991 /* 2992 * Release the reset lock and re-enable interrupts here. 2993 * If an interrupt was being processed in ath_intr(), 2994 * it would disable interrupts at this point. So we have 2995 * to atomically enable interrupts and decrement the 2996 * reset counter - this way ath_intr() doesn't end up 2997 * disabling interrupts without a corresponding enable 2998 * in the rest or channel change path. 2999 * 3000 * Grab the TX reference in case we need to transmit. 3001 * That way a parallel transmit doesn't. 3002 */ 3003 ATH_PCU_LOCK(sc); 3004 sc->sc_inreset_cnt--; 3005 sc->sc_txstart_cnt++; 3006 /* XXX only do this if sc_inreset_cnt == 0? */ 3007 ath_hal_intrset(ah, sc->sc_imask); 3008 ATH_PCU_UNLOCK(sc); 3009 3010 /* 3011 * TX and RX can be started here. If it were started with 3012 * sc_inreset_cnt > 0, the TX and RX path would abort. 3013 * Thus if this is a nested call through the reset or 3014 * channel change code, TX completion will occur but 3015 * RX completion and ath_start / ath_tx_start will not 3016 * run. 3017 */ 3018 3019 /* Restart TX/RX as needed */ 3020 ath_txrx_start(sc); 3021 3022 /* XXX TODO: we need to hold the tx refcount here! */ 3023 3024 /* Restart TX completion and pending TX */ 3025 if (reset_type == ATH_RESET_NOLOSS) { 3026 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3027 if (ATH_TXQ_SETUP(sc, i)) { 3028 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3029 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 3030 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3031 3032 ATH_TX_LOCK(sc); 3033 ath_txq_sched(sc, &sc->sc_txq[i]); 3034 ATH_TX_UNLOCK(sc); 3035 } 3036 } 3037 } 3038 3039 ATH_LOCK(sc); 3040 ath_power_restore_power_state(sc); 3041 ATH_UNLOCK(sc); 3042 3043 ATH_PCU_LOCK(sc); 3044 sc->sc_txstart_cnt--; 3045 ATH_PCU_UNLOCK(sc); 3046 3047 /* Handle any frames in the TX queue */ 3048 /* 3049 * XXX should this be done by the caller, rather than 3050 * ath_reset() ? 3051 */ 3052 ath_tx_kick(sc); /* restart xmit */ 3053 return 0; 3054 } 3055 3056 static int 3057 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3058 { 3059 struct ieee80211com *ic = vap->iv_ic; 3060 struct ath_softc *sc = ic->ic_softc; 3061 struct ath_hal *ah = sc->sc_ah; 3062 3063 switch (cmd) { 3064 case IEEE80211_IOC_TXPOWER: 3065 /* 3066 * If per-packet TPC is enabled, then we have nothing 3067 * to do; otherwise we need to force the global limit. 3068 * All this can happen directly; no need to reset. 3069 */ 3070 if (!ath_hal_gettpc(ah)) 3071 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3072 return 0; 3073 } 3074 /* XXX? Full or NOLOSS? */ 3075 return ath_reset(sc, ATH_RESET_FULL); 3076 } 3077 3078 struct ath_buf * 3079 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3080 { 3081 struct ath_buf *bf; 3082 3083 ATH_TXBUF_LOCK_ASSERT(sc); 3084 3085 if (btype == ATH_BUFTYPE_MGMT) 3086 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3087 else 3088 bf = TAILQ_FIRST(&sc->sc_txbuf); 3089 3090 if (bf == NULL) { 3091 sc->sc_stats.ast_tx_getnobuf++; 3092 } else { 3093 if (bf->bf_flags & ATH_BUF_BUSY) { 3094 sc->sc_stats.ast_tx_getbusybuf++; 3095 bf = NULL; 3096 } 3097 } 3098 3099 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3100 if (btype == ATH_BUFTYPE_MGMT) 3101 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3102 else { 3103 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3104 sc->sc_txbuf_cnt--; 3105 3106 /* 3107 * This shuldn't happen; however just to be 3108 * safe print a warning and fudge the txbuf 3109 * count. 3110 */ 3111 if (sc->sc_txbuf_cnt < 0) { 3112 device_printf(sc->sc_dev, 3113 "%s: sc_txbuf_cnt < 0?\n", 3114 __func__); 3115 sc->sc_txbuf_cnt = 0; 3116 } 3117 } 3118 } else 3119 bf = NULL; 3120 3121 if (bf == NULL) { 3122 /* XXX should check which list, mgmt or otherwise */ 3123 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3124 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3125 "out of xmit buffers" : "xmit buffer busy"); 3126 return NULL; 3127 } 3128 3129 /* XXX TODO: should do this at buffer list initialisation */ 3130 /* XXX (then, ensure the buffer has the right flag set) */ 3131 bf->bf_flags = 0; 3132 if (btype == ATH_BUFTYPE_MGMT) 3133 bf->bf_flags |= ATH_BUF_MGMT; 3134 else 3135 bf->bf_flags &= (~ATH_BUF_MGMT); 3136 3137 /* Valid bf here; clear some basic fields */ 3138 bf->bf_next = NULL; /* XXX just to be sure */ 3139 bf->bf_last = NULL; /* XXX again, just to be sure */ 3140 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3141 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3142 3143 /* 3144 * Track the descriptor ID only if doing EDMA 3145 */ 3146 if (sc->sc_isedma) { 3147 bf->bf_descid = sc->sc_txbuf_descid; 3148 sc->sc_txbuf_descid++; 3149 } 3150 3151 return bf; 3152 } 3153 3154 /* 3155 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3156 * can't be thrown back on the queue as they could still be 3157 * in use by the hardware. 3158 * 3159 * This duplicates the buffer, or returns NULL. 3160 * 3161 * The descriptor is also copied but the link pointers and 3162 * the DMA segments aren't copied; this frame should thus 3163 * be again passed through the descriptor setup/chain routines 3164 * so the link is correct. 3165 * 3166 * The caller must free the buffer using ath_freebuf(). 3167 */ 3168 struct ath_buf * 3169 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3170 { 3171 struct ath_buf *tbf; 3172 3173 tbf = ath_getbuf(sc, 3174 (bf->bf_flags & ATH_BUF_MGMT) ? 3175 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3176 if (tbf == NULL) 3177 return NULL; /* XXX failure? Why? */ 3178 3179 /* Copy basics */ 3180 tbf->bf_next = NULL; 3181 tbf->bf_nseg = bf->bf_nseg; 3182 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3183 tbf->bf_status = bf->bf_status; 3184 tbf->bf_m = bf->bf_m; 3185 tbf->bf_node = bf->bf_node; 3186 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3187 /* will be setup by the chain/setup function */ 3188 tbf->bf_lastds = NULL; 3189 /* for now, last == self */ 3190 tbf->bf_last = tbf; 3191 tbf->bf_comp = bf->bf_comp; 3192 3193 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3194 3195 /* The caller has to re-init the descriptor + links */ 3196 3197 /* 3198 * Free the DMA mapping here, before we NULL the mbuf. 3199 * We must only call bus_dmamap_unload() once per mbuf chain 3200 * or behaviour is undefined. 3201 */ 3202 if (bf->bf_m != NULL) { 3203 /* 3204 * XXX is this POSTWRITE call required? 3205 */ 3206 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3207 BUS_DMASYNC_POSTWRITE); 3208 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3209 } 3210 3211 bf->bf_m = NULL; 3212 bf->bf_node = NULL; 3213 3214 /* Copy state */ 3215 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3216 3217 return tbf; 3218 } 3219 3220 struct ath_buf * 3221 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3222 { 3223 struct ath_buf *bf; 3224 3225 ATH_TXBUF_LOCK(sc); 3226 bf = _ath_getbuf_locked(sc, btype); 3227 /* 3228 * If a mgmt buffer was requested but we're out of those, 3229 * try requesting a normal one. 3230 */ 3231 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3232 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3233 ATH_TXBUF_UNLOCK(sc); 3234 if (bf == NULL) { 3235 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3236 sc->sc_stats.ast_tx_qstop++; 3237 } 3238 return bf; 3239 } 3240 3241 /* 3242 * Transmit a single frame. 3243 * 3244 * net80211 will free the node reference if the transmit 3245 * fails, so don't free the node reference here. 3246 */ 3247 static int 3248 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3249 { 3250 struct ath_softc *sc = ic->ic_softc; 3251 struct ieee80211_node *ni; 3252 struct mbuf *next; 3253 struct ath_buf *bf; 3254 ath_bufhead frags; 3255 int retval = 0; 3256 3257 /* 3258 * Tell the reset path that we're currently transmitting. 3259 */ 3260 ATH_PCU_LOCK(sc); 3261 if (sc->sc_inreset_cnt > 0) { 3262 DPRINTF(sc, ATH_DEBUG_XMIT, 3263 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3264 ATH_PCU_UNLOCK(sc); 3265 sc->sc_stats.ast_tx_qstop++; 3266 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3267 return (ENOBUFS); /* XXX should be EINVAL or? */ 3268 } 3269 sc->sc_txstart_cnt++; 3270 ATH_PCU_UNLOCK(sc); 3271 3272 /* Wake the hardware up already */ 3273 ATH_LOCK(sc); 3274 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3275 ATH_UNLOCK(sc); 3276 3277 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3278 /* 3279 * Grab the TX lock - it's ok to do this here; we haven't 3280 * yet started transmitting. 3281 */ 3282 ATH_TX_LOCK(sc); 3283 3284 /* 3285 * Node reference, if there's one. 3286 */ 3287 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3288 3289 /* 3290 * Enforce how deep a node queue can get. 3291 * 3292 * XXX it would be nicer if we kept an mbuf queue per 3293 * node and only whacked them into ath_bufs when we 3294 * are ready to schedule some traffic from them. 3295 * .. that may come later. 3296 * 3297 * XXX we should also track the per-node hardware queue 3298 * depth so it is easy to limit the _SUM_ of the swq and 3299 * hwq frames. Since we only schedule two HWQ frames 3300 * at a time, this should be OK for now. 3301 */ 3302 if ((!(m->m_flags & M_EAPOL)) && 3303 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3304 sc->sc_stats.ast_tx_nodeq_overflow++; 3305 retval = ENOBUFS; 3306 goto finish; 3307 } 3308 3309 /* 3310 * Check how many TX buffers are available. 3311 * 3312 * If this is for non-EAPOL traffic, just leave some 3313 * space free in order for buffer cloning and raw 3314 * frame transmission to occur. 3315 * 3316 * If it's for EAPOL traffic, ignore this for now. 3317 * Management traffic will be sent via the raw transmit 3318 * method which bypasses this check. 3319 * 3320 * This is needed to ensure that EAPOL frames during 3321 * (re) keying have a chance to go out. 3322 * 3323 * See kern/138379 for more information. 3324 */ 3325 if ((!(m->m_flags & M_EAPOL)) && 3326 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3327 sc->sc_stats.ast_tx_nobuf++; 3328 retval = ENOBUFS; 3329 goto finish; 3330 } 3331 3332 /* 3333 * Grab a TX buffer and associated resources. 3334 * 3335 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3336 * That way even with temporary buffer exhaustion due to 3337 * the data path doesn't leave us without the ability 3338 * to transmit management frames. 3339 * 3340 * Otherwise allocate a normal buffer. 3341 */ 3342 if (m->m_flags & M_EAPOL) 3343 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3344 else 3345 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3346 3347 if (bf == NULL) { 3348 /* 3349 * If we failed to allocate a buffer, fail. 3350 * 3351 * We shouldn't fail normally, due to the check 3352 * above. 3353 */ 3354 sc->sc_stats.ast_tx_nobuf++; 3355 retval = ENOBUFS; 3356 goto finish; 3357 } 3358 3359 /* 3360 * At this point we have a buffer; so we need to free it 3361 * if we hit any error conditions. 3362 */ 3363 3364 /* 3365 * Check for fragmentation. If this frame 3366 * has been broken up verify we have enough 3367 * buffers to send all the fragments so all 3368 * go out or none... 3369 */ 3370 TAILQ_INIT(&frags); 3371 if ((m->m_flags & M_FRAG) && 3372 !ath_txfrag_setup(sc, &frags, m, ni)) { 3373 DPRINTF(sc, ATH_DEBUG_XMIT, 3374 "%s: out of txfrag buffers\n", __func__); 3375 sc->sc_stats.ast_tx_nofrag++; 3376 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3377 /* 3378 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3379 * we shouldn't free it but return back. 3380 */ 3381 ieee80211_free_mbuf(m); 3382 m = NULL; 3383 goto bad; 3384 } 3385 3386 /* 3387 * At this point if we have any TX fragments, then we will 3388 * have bumped the node reference once for each of those. 3389 */ 3390 3391 /* 3392 * XXX Is there anything actually _enforcing_ that the 3393 * fragments are being transmitted in one hit, rather than 3394 * being interleaved with other transmissions on that 3395 * hardware queue? 3396 * 3397 * The ATH TX output lock is the only thing serialising this 3398 * right now. 3399 */ 3400 3401 /* 3402 * Calculate the "next fragment" length field in ath_buf 3403 * in order to let the transmit path know enough about 3404 * what to next write to the hardware. 3405 */ 3406 if (m->m_flags & M_FRAG) { 3407 struct ath_buf *fbf = bf; 3408 struct ath_buf *n_fbf = NULL; 3409 struct mbuf *fm = m->m_nextpkt; 3410 3411 /* 3412 * We need to walk the list of fragments and set 3413 * the next size to the following buffer. 3414 * However, the first buffer isn't in the frag 3415 * list, so we have to do some gymnastics here. 3416 */ 3417 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3418 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3419 fbf = n_fbf; 3420 fm = fm->m_nextpkt; 3421 } 3422 } 3423 3424 nextfrag: 3425 /* 3426 * Pass the frame to the h/w for transmission. 3427 * Fragmented frames have each frag chained together 3428 * with m_nextpkt. We know there are sufficient ath_buf's 3429 * to send all the frags because of work done by 3430 * ath_txfrag_setup. We leave m_nextpkt set while 3431 * calling ath_tx_start so it can use it to extend the 3432 * the tx duration to cover the subsequent frag and 3433 * so it can reclaim all the mbufs in case of an error; 3434 * ath_tx_start clears m_nextpkt once it commits to 3435 * handing the frame to the hardware. 3436 * 3437 * Note: if this fails, then the mbufs are freed but 3438 * not the node reference. 3439 * 3440 * So, we now have to free the node reference ourselves here 3441 * and return OK up to the stack. 3442 */ 3443 next = m->m_nextpkt; 3444 if (ath_tx_start(sc, ni, bf, m)) { 3445 bad: 3446 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3447 reclaim: 3448 bf->bf_m = NULL; 3449 bf->bf_node = NULL; 3450 ATH_TXBUF_LOCK(sc); 3451 ath_returnbuf_head(sc, bf); 3452 /* 3453 * Free the rest of the node references and 3454 * buffers for the fragment list. 3455 */ 3456 ath_txfrag_cleanup(sc, &frags, ni); 3457 ATH_TXBUF_UNLOCK(sc); 3458 3459 /* 3460 * XXX: And free the node/return OK; ath_tx_start() may have 3461 * modified the buffer. We currently have no way to 3462 * signify that the mbuf was freed but there was an error. 3463 */ 3464 ieee80211_free_node(ni); 3465 retval = 0; 3466 goto finish; 3467 } 3468 3469 /* 3470 * Check here if the node is in power save state. 3471 */ 3472 ath_tx_update_tim(sc, ni, 1); 3473 3474 if (next != NULL) { 3475 /* 3476 * Beware of state changing between frags. 3477 * XXX check sta power-save state? 3478 */ 3479 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3480 DPRINTF(sc, ATH_DEBUG_XMIT, 3481 "%s: flush fragmented packet, state %s\n", 3482 __func__, 3483 ieee80211_state_name[ni->ni_vap->iv_state]); 3484 /* XXX dmamap */ 3485 ieee80211_free_mbuf(next); 3486 goto reclaim; 3487 } 3488 m = next; 3489 bf = TAILQ_FIRST(&frags); 3490 KASSERT(bf != NULL, ("no buf for txfrag")); 3491 TAILQ_REMOVE(&frags, bf, bf_list); 3492 goto nextfrag; 3493 } 3494 3495 /* 3496 * Bump watchdog timer. 3497 */ 3498 sc->sc_wd_timer = 5; 3499 3500 finish: 3501 ATH_TX_UNLOCK(sc); 3502 3503 /* 3504 * Finished transmitting! 3505 */ 3506 ATH_PCU_LOCK(sc); 3507 sc->sc_txstart_cnt--; 3508 ATH_PCU_UNLOCK(sc); 3509 3510 /* Sleep the hardware if required */ 3511 ATH_LOCK(sc); 3512 ath_power_restore_power_state(sc); 3513 ATH_UNLOCK(sc); 3514 3515 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3516 3517 return (retval); 3518 } 3519 3520 static int 3521 ath_media_change(struct ifnet *ifp) 3522 { 3523 int error = ieee80211_media_change(ifp); 3524 /* NB: only the fixed rate can change and that doesn't need a reset */ 3525 return (error == ENETRESET ? 0 : error); 3526 } 3527 3528 /* 3529 * Block/unblock tx+rx processing while a key change is done. 3530 * We assume the caller serializes key management operations 3531 * so we only need to worry about synchronization with other 3532 * uses that originate in the driver. 3533 */ 3534 static void 3535 ath_key_update_begin(struct ieee80211vap *vap) 3536 { 3537 struct ath_softc *sc = vap->iv_ic->ic_softc; 3538 3539 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3540 taskqueue_block(sc->sc_tq); 3541 } 3542 3543 static void 3544 ath_key_update_end(struct ieee80211vap *vap) 3545 { 3546 struct ath_softc *sc = vap->iv_ic->ic_softc; 3547 3548 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3549 taskqueue_unblock(sc->sc_tq); 3550 } 3551 3552 static void 3553 ath_update_promisc(struct ieee80211com *ic) 3554 { 3555 struct ath_softc *sc = ic->ic_softc; 3556 u_int32_t rfilt; 3557 3558 /* configure rx filter */ 3559 ATH_LOCK(sc); 3560 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3561 rfilt = ath_calcrxfilter(sc); 3562 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3563 ath_power_restore_power_state(sc); 3564 ATH_UNLOCK(sc); 3565 3566 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3567 } 3568 3569 /* 3570 * Driver-internal mcast update call. 3571 * 3572 * Assumes the hardware is already awake. 3573 */ 3574 static void 3575 ath_update_mcast_hw(struct ath_softc *sc) 3576 { 3577 struct ieee80211com *ic = &sc->sc_ic; 3578 u_int32_t mfilt[2]; 3579 3580 /* calculate and install multicast filter */ 3581 if (ic->ic_allmulti == 0) { 3582 struct ieee80211vap *vap; 3583 struct ifnet *ifp; 3584 struct ifmultiaddr *ifma; 3585 3586 /* 3587 * Merge multicast addresses to form the hardware filter. 3588 */ 3589 mfilt[0] = mfilt[1] = 0; 3590 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 3591 ifp = vap->iv_ifp; 3592 if_maddr_rlock(ifp); 3593 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3594 caddr_t dl; 3595 uint32_t val; 3596 uint8_t pos; 3597 3598 /* calculate XOR of eight 6bit values */ 3599 dl = LLADDR((struct sockaddr_dl *) 3600 ifma->ifma_addr); 3601 val = le32dec(dl + 0); 3602 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3603 val; 3604 val = le32dec(dl + 3); 3605 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ 3606 val; 3607 pos &= 0x3f; 3608 mfilt[pos / 32] |= (1 << (pos % 32)); 3609 } 3610 if_maddr_runlock(ifp); 3611 } 3612 } else 3613 mfilt[0] = mfilt[1] = ~0; 3614 3615 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3616 3617 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3618 __func__, mfilt[0], mfilt[1]); 3619 } 3620 3621 /* 3622 * Called from the net80211 layer - force the hardware 3623 * awake before operating. 3624 */ 3625 static void 3626 ath_update_mcast(struct ieee80211com *ic) 3627 { 3628 struct ath_softc *sc = ic->ic_softc; 3629 3630 ATH_LOCK(sc); 3631 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3632 ATH_UNLOCK(sc); 3633 3634 ath_update_mcast_hw(sc); 3635 3636 ATH_LOCK(sc); 3637 ath_power_restore_power_state(sc); 3638 ATH_UNLOCK(sc); 3639 } 3640 3641 void 3642 ath_mode_init(struct ath_softc *sc) 3643 { 3644 struct ieee80211com *ic = &sc->sc_ic; 3645 struct ath_hal *ah = sc->sc_ah; 3646 u_int32_t rfilt; 3647 3648 /* XXX power state? */ 3649 3650 /* configure rx filter */ 3651 rfilt = ath_calcrxfilter(sc); 3652 ath_hal_setrxfilter(ah, rfilt); 3653 3654 /* configure operational mode */ 3655 ath_hal_setopmode(ah); 3656 3657 /* handle any link-level address change */ 3658 ath_hal_setmac(ah, ic->ic_macaddr); 3659 3660 /* calculate and install multicast filter */ 3661 ath_update_mcast_hw(sc); 3662 } 3663 3664 /* 3665 * Set the slot time based on the current setting. 3666 */ 3667 void 3668 ath_setslottime(struct ath_softc *sc) 3669 { 3670 struct ieee80211com *ic = &sc->sc_ic; 3671 struct ath_hal *ah = sc->sc_ah; 3672 u_int usec; 3673 3674 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3675 usec = 13; 3676 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3677 usec = 21; 3678 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3679 /* honor short/long slot time only in 11g */ 3680 /* XXX shouldn't honor on pure g or turbo g channel */ 3681 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3682 usec = HAL_SLOT_TIME_9; 3683 else 3684 usec = HAL_SLOT_TIME_20; 3685 } else 3686 usec = HAL_SLOT_TIME_9; 3687 3688 DPRINTF(sc, ATH_DEBUG_RESET, 3689 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3690 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3691 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3692 3693 /* Wake up the hardware first before updating the slot time */ 3694 ATH_LOCK(sc); 3695 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3696 ath_hal_setslottime(ah, usec); 3697 ath_power_restore_power_state(sc); 3698 sc->sc_updateslot = OK; 3699 ATH_UNLOCK(sc); 3700 } 3701 3702 /* 3703 * Callback from the 802.11 layer to update the 3704 * slot time based on the current setting. 3705 */ 3706 static void 3707 ath_updateslot(struct ieee80211com *ic) 3708 { 3709 struct ath_softc *sc = ic->ic_softc; 3710 3711 /* 3712 * When not coordinating the BSS, change the hardware 3713 * immediately. For other operation we defer the change 3714 * until beacon updates have propagated to the stations. 3715 * 3716 * XXX sc_updateslot isn't changed behind a lock? 3717 */ 3718 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3719 ic->ic_opmode == IEEE80211_M_MBSS) 3720 sc->sc_updateslot = UPDATE; 3721 else 3722 ath_setslottime(sc); 3723 } 3724 3725 /* 3726 * Append the contents of src to dst; both queues 3727 * are assumed to be locked. 3728 */ 3729 void 3730 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3731 { 3732 3733 ATH_TXQ_LOCK_ASSERT(src); 3734 ATH_TXQ_LOCK_ASSERT(dst); 3735 3736 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3737 dst->axq_link = src->axq_link; 3738 src->axq_link = NULL; 3739 dst->axq_depth += src->axq_depth; 3740 dst->axq_aggr_depth += src->axq_aggr_depth; 3741 src->axq_depth = 0; 3742 src->axq_aggr_depth = 0; 3743 } 3744 3745 /* 3746 * Reset the hardware, with no loss. 3747 * 3748 * This can't be used for a general case reset. 3749 */ 3750 static void 3751 ath_reset_proc(void *arg, int pending) 3752 { 3753 struct ath_softc *sc = arg; 3754 3755 #if 0 3756 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3757 #endif 3758 ath_reset(sc, ATH_RESET_NOLOSS); 3759 } 3760 3761 /* 3762 * Reset the hardware after detecting beacons have stopped. 3763 */ 3764 static void 3765 ath_bstuck_proc(void *arg, int pending) 3766 { 3767 struct ath_softc *sc = arg; 3768 uint32_t hangs = 0; 3769 3770 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3771 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3772 3773 #ifdef ATH_DEBUG_ALQ 3774 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3775 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3776 #endif 3777 3778 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3779 sc->sc_bmisscount); 3780 sc->sc_stats.ast_bstuck++; 3781 /* 3782 * This assumes that there's no simultaneous channel mode change 3783 * occurring. 3784 */ 3785 ath_reset(sc, ATH_RESET_NOLOSS); 3786 } 3787 3788 static int 3789 ath_desc_alloc(struct ath_softc *sc) 3790 { 3791 int error; 3792 3793 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3794 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3795 if (error != 0) { 3796 return error; 3797 } 3798 sc->sc_txbuf_cnt = ath_txbuf; 3799 3800 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3801 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3802 ATH_TXDESC); 3803 if (error != 0) { 3804 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3805 return error; 3806 } 3807 3808 /* 3809 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3810 * flag doesn't have to be set in ath_getbuf_locked(). 3811 */ 3812 3813 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3814 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3815 if (error != 0) { 3816 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3817 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3818 &sc->sc_txbuf_mgmt); 3819 return error; 3820 } 3821 return 0; 3822 } 3823 3824 static void 3825 ath_desc_free(struct ath_softc *sc) 3826 { 3827 3828 if (sc->sc_bdma.dd_desc_len != 0) 3829 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3830 if (sc->sc_txdma.dd_desc_len != 0) 3831 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3832 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3833 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3834 &sc->sc_txbuf_mgmt); 3835 } 3836 3837 static struct ieee80211_node * 3838 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3839 { 3840 struct ieee80211com *ic = vap->iv_ic; 3841 struct ath_softc *sc = ic->ic_softc; 3842 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3843 struct ath_node *an; 3844 3845 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3846 if (an == NULL) { 3847 /* XXX stat+msg */ 3848 return NULL; 3849 } 3850 ath_rate_node_init(sc, an); 3851 3852 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3853 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3854 device_get_nameunit(sc->sc_dev), an); 3855 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3856 3857 /* XXX setup ath_tid */ 3858 ath_tx_tid_init(sc, an); 3859 3860 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3861 return &an->an_node; 3862 } 3863 3864 static void 3865 ath_node_cleanup(struct ieee80211_node *ni) 3866 { 3867 struct ieee80211com *ic = ni->ni_ic; 3868 struct ath_softc *sc = ic->ic_softc; 3869 3870 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3871 ni->ni_macaddr, ":", ATH_NODE(ni)); 3872 3873 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3874 ath_tx_node_flush(sc, ATH_NODE(ni)); 3875 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3876 sc->sc_node_cleanup(ni); 3877 } 3878 3879 static void 3880 ath_node_free(struct ieee80211_node *ni) 3881 { 3882 struct ieee80211com *ic = ni->ni_ic; 3883 struct ath_softc *sc = ic->ic_softc; 3884 3885 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3886 ni->ni_macaddr, ":", ATH_NODE(ni)); 3887 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3888 sc->sc_node_free(ni); 3889 } 3890 3891 static void 3892 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3893 { 3894 struct ieee80211com *ic = ni->ni_ic; 3895 struct ath_softc *sc = ic->ic_softc; 3896 struct ath_hal *ah = sc->sc_ah; 3897 3898 *rssi = ic->ic_node_getrssi(ni); 3899 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3900 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3901 else 3902 *noise = -95; /* nominally correct */ 3903 } 3904 3905 /* 3906 * Set the default antenna. 3907 */ 3908 void 3909 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3910 { 3911 struct ath_hal *ah = sc->sc_ah; 3912 3913 /* XXX block beacon interrupts */ 3914 ath_hal_setdefantenna(ah, antenna); 3915 if (sc->sc_defant != antenna) 3916 sc->sc_stats.ast_ant_defswitch++; 3917 sc->sc_defant = antenna; 3918 sc->sc_rxotherant = 0; 3919 } 3920 3921 static void 3922 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3923 { 3924 txq->axq_qnum = qnum; 3925 txq->axq_ac = 0; 3926 txq->axq_depth = 0; 3927 txq->axq_aggr_depth = 0; 3928 txq->axq_intrcnt = 0; 3929 txq->axq_link = NULL; 3930 txq->axq_softc = sc; 3931 TAILQ_INIT(&txq->axq_q); 3932 TAILQ_INIT(&txq->axq_tidq); 3933 TAILQ_INIT(&txq->fifo.axq_q); 3934 ATH_TXQ_LOCK_INIT(sc, txq); 3935 } 3936 3937 /* 3938 * Setup a h/w transmit queue. 3939 */ 3940 static struct ath_txq * 3941 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3942 { 3943 struct ath_hal *ah = sc->sc_ah; 3944 HAL_TXQ_INFO qi; 3945 int qnum; 3946 3947 memset(&qi, 0, sizeof(qi)); 3948 qi.tqi_subtype = subtype; 3949 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3950 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3951 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3952 /* 3953 * Enable interrupts only for EOL and DESC conditions. 3954 * We mark tx descriptors to receive a DESC interrupt 3955 * when a tx queue gets deep; otherwise waiting for the 3956 * EOL to reap descriptors. Note that this is done to 3957 * reduce interrupt load and this only defers reaping 3958 * descriptors, never transmitting frames. Aside from 3959 * reducing interrupts this also permits more concurrency. 3960 * The only potential downside is if the tx queue backs 3961 * up in which case the top half of the kernel may backup 3962 * due to a lack of tx descriptors. 3963 */ 3964 if (sc->sc_isedma) 3965 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3966 HAL_TXQ_TXOKINT_ENABLE; 3967 else 3968 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 3969 HAL_TXQ_TXDESCINT_ENABLE; 3970 3971 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3972 if (qnum == -1) { 3973 /* 3974 * NB: don't print a message, this happens 3975 * normally on parts with too few tx queues 3976 */ 3977 return NULL; 3978 } 3979 if (qnum >= nitems(sc->sc_txq)) { 3980 device_printf(sc->sc_dev, 3981 "hal qnum %u out of range, max %zu!\n", 3982 qnum, nitems(sc->sc_txq)); 3983 ath_hal_releasetxqueue(ah, qnum); 3984 return NULL; 3985 } 3986 if (!ATH_TXQ_SETUP(sc, qnum)) { 3987 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3988 sc->sc_txqsetup |= 1<<qnum; 3989 } 3990 return &sc->sc_txq[qnum]; 3991 } 3992 3993 /* 3994 * Setup a hardware data transmit queue for the specified 3995 * access control. The hal may not support all requested 3996 * queues in which case it will return a reference to a 3997 * previously setup queue. We record the mapping from ac's 3998 * to h/w queues for use by ath_tx_start and also track 3999 * the set of h/w queues being used to optimize work in the 4000 * transmit interrupt handler and related routines. 4001 */ 4002 static int 4003 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4004 { 4005 struct ath_txq *txq; 4006 4007 if (ac >= nitems(sc->sc_ac2q)) { 4008 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4009 ac, nitems(sc->sc_ac2q)); 4010 return 0; 4011 } 4012 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4013 if (txq != NULL) { 4014 txq->axq_ac = ac; 4015 sc->sc_ac2q[ac] = txq; 4016 return 1; 4017 } else 4018 return 0; 4019 } 4020 4021 /* 4022 * Update WME parameters for a transmit queue. 4023 */ 4024 static int 4025 ath_txq_update(struct ath_softc *sc, int ac) 4026 { 4027 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4028 struct ieee80211com *ic = &sc->sc_ic; 4029 struct ath_txq *txq = sc->sc_ac2q[ac]; 4030 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4031 struct ath_hal *ah = sc->sc_ah; 4032 HAL_TXQ_INFO qi; 4033 4034 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4035 #ifdef IEEE80211_SUPPORT_TDMA 4036 if (sc->sc_tdma) { 4037 /* 4038 * AIFS is zero so there's no pre-transmit wait. The 4039 * burst time defines the slot duration and is configured 4040 * through net80211. The QCU is setup to not do post-xmit 4041 * back off, lockout all lower-priority QCU's, and fire 4042 * off the DMA beacon alert timer which is setup based 4043 * on the slot configuration. 4044 */ 4045 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4046 | HAL_TXQ_TXERRINT_ENABLE 4047 | HAL_TXQ_TXURNINT_ENABLE 4048 | HAL_TXQ_TXEOLINT_ENABLE 4049 | HAL_TXQ_DBA_GATED 4050 | HAL_TXQ_BACKOFF_DISABLE 4051 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4052 ; 4053 qi.tqi_aifs = 0; 4054 /* XXX +dbaprep? */ 4055 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4056 qi.tqi_burstTime = qi.tqi_readyTime; 4057 } else { 4058 #endif 4059 /* 4060 * XXX shouldn't this just use the default flags 4061 * used in the previous queue setup? 4062 */ 4063 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4064 | HAL_TXQ_TXERRINT_ENABLE 4065 | HAL_TXQ_TXDESCINT_ENABLE 4066 | HAL_TXQ_TXURNINT_ENABLE 4067 | HAL_TXQ_TXEOLINT_ENABLE 4068 ; 4069 qi.tqi_aifs = wmep->wmep_aifsn; 4070 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4071 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4072 qi.tqi_readyTime = 0; 4073 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4074 #ifdef IEEE80211_SUPPORT_TDMA 4075 } 4076 #endif 4077 4078 DPRINTF(sc, ATH_DEBUG_RESET, 4079 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4080 __func__, txq->axq_qnum, qi.tqi_qflags, 4081 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4082 4083 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4084 device_printf(sc->sc_dev, "unable to update hardware queue " 4085 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4086 return 0; 4087 } else { 4088 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4089 return 1; 4090 } 4091 #undef ATH_EXPONENT_TO_VALUE 4092 } 4093 4094 /* 4095 * Callback from the 802.11 layer to update WME parameters. 4096 */ 4097 int 4098 ath_wme_update(struct ieee80211com *ic) 4099 { 4100 struct ath_softc *sc = ic->ic_softc; 4101 4102 return !ath_txq_update(sc, WME_AC_BE) || 4103 !ath_txq_update(sc, WME_AC_BK) || 4104 !ath_txq_update(sc, WME_AC_VI) || 4105 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4106 } 4107 4108 /* 4109 * Reclaim resources for a setup queue. 4110 */ 4111 static void 4112 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4113 { 4114 4115 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4116 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4117 ATH_TXQ_LOCK_DESTROY(txq); 4118 } 4119 4120 /* 4121 * Reclaim all tx queue resources. 4122 */ 4123 static void 4124 ath_tx_cleanup(struct ath_softc *sc) 4125 { 4126 int i; 4127 4128 ATH_TXBUF_LOCK_DESTROY(sc); 4129 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4130 if (ATH_TXQ_SETUP(sc, i)) 4131 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4132 } 4133 4134 /* 4135 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4136 * using the current rates in sc_rixmap. 4137 */ 4138 int 4139 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4140 { 4141 int rix = sc->sc_rixmap[rate]; 4142 /* NB: return lowest rix for invalid rate */ 4143 return (rix == 0xff ? 0 : rix); 4144 } 4145 4146 static void 4147 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4148 struct ath_buf *bf) 4149 { 4150 struct ieee80211_node *ni = bf->bf_node; 4151 struct ieee80211com *ic = &sc->sc_ic; 4152 int sr, lr, pri; 4153 4154 if (ts->ts_status == 0) { 4155 u_int8_t txant = ts->ts_antenna; 4156 sc->sc_stats.ast_ant_tx[txant]++; 4157 sc->sc_ant_tx[txant]++; 4158 if (ts->ts_finaltsi != 0) 4159 sc->sc_stats.ast_tx_altrate++; 4160 pri = M_WME_GETAC(bf->bf_m); 4161 if (pri >= WME_AC_VO) 4162 ic->ic_wme.wme_hipri_traffic++; 4163 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4164 ni->ni_inact = ni->ni_inact_reload; 4165 } else { 4166 if (ts->ts_status & HAL_TXERR_XRETRY) 4167 sc->sc_stats.ast_tx_xretries++; 4168 if (ts->ts_status & HAL_TXERR_FIFO) 4169 sc->sc_stats.ast_tx_fifoerr++; 4170 if (ts->ts_status & HAL_TXERR_FILT) 4171 sc->sc_stats.ast_tx_filtered++; 4172 if (ts->ts_status & HAL_TXERR_XTXOP) 4173 sc->sc_stats.ast_tx_xtxop++; 4174 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4175 sc->sc_stats.ast_tx_timerexpired++; 4176 4177 if (bf->bf_m->m_flags & M_FF) 4178 sc->sc_stats.ast_ff_txerr++; 4179 } 4180 /* XXX when is this valid? */ 4181 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4182 sc->sc_stats.ast_tx_desccfgerr++; 4183 /* 4184 * This can be valid for successful frame transmission! 4185 * If there's a TX FIFO underrun during aggregate transmission, 4186 * the MAC will pad the rest of the aggregate with delimiters. 4187 * If a BA is returned, the frame is marked as "OK" and it's up 4188 * to the TX completion code to notice which frames weren't 4189 * successfully transmitted. 4190 */ 4191 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4192 sc->sc_stats.ast_tx_data_underrun++; 4193 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4194 sc->sc_stats.ast_tx_delim_underrun++; 4195 4196 sr = ts->ts_shortretry; 4197 lr = ts->ts_longretry; 4198 sc->sc_stats.ast_tx_shortretry += sr; 4199 sc->sc_stats.ast_tx_longretry += lr; 4200 4201 } 4202 4203 /* 4204 * The default completion. If fail is 1, this means 4205 * "please don't retry the frame, and just return -1 status 4206 * to the net80211 stack. 4207 */ 4208 void 4209 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4210 { 4211 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4212 int st; 4213 4214 if (fail == 1) 4215 st = -1; 4216 else 4217 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4218 ts->ts_status : HAL_TXERR_XRETRY; 4219 4220 #if 0 4221 if (bf->bf_state.bfs_dobaw) 4222 device_printf(sc->sc_dev, 4223 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4224 __func__, 4225 bf, 4226 SEQNO(bf->bf_state.bfs_seqno)); 4227 #endif 4228 if (bf->bf_next != NULL) 4229 device_printf(sc->sc_dev, 4230 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4231 __func__, 4232 bf, 4233 SEQNO(bf->bf_state.bfs_seqno)); 4234 4235 /* 4236 * Check if the node software queue is empty; if so 4237 * then clear the TIM. 4238 * 4239 * This needs to be done before the buffer is freed as 4240 * otherwise the node reference will have been released 4241 * and the node may not actually exist any longer. 4242 * 4243 * XXX I don't like this belonging here, but it's cleaner 4244 * to do it here right now then all the other places 4245 * where ath_tx_default_comp() is called. 4246 * 4247 * XXX TODO: during drain, ensure that the callback is 4248 * being called so we get a chance to update the TIM. 4249 */ 4250 if (bf->bf_node) { 4251 ATH_TX_LOCK(sc); 4252 ath_tx_update_tim(sc, bf->bf_node, 0); 4253 ATH_TX_UNLOCK(sc); 4254 } 4255 4256 /* 4257 * Do any tx complete callback. Note this must 4258 * be done before releasing the node reference. 4259 * This will free the mbuf, release the net80211 4260 * node and recycle the ath_buf. 4261 */ 4262 ath_tx_freebuf(sc, bf, st); 4263 } 4264 4265 /* 4266 * Update rate control with the given completion status. 4267 */ 4268 void 4269 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4270 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4271 int nframes, int nbad) 4272 { 4273 struct ath_node *an; 4274 4275 /* Only for unicast frames */ 4276 if (ni == NULL) 4277 return; 4278 4279 an = ATH_NODE(ni); 4280 ATH_NODE_UNLOCK_ASSERT(an); 4281 4282 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4283 ATH_NODE_LOCK(an); 4284 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4285 ATH_NODE_UNLOCK(an); 4286 } 4287 } 4288 4289 /* 4290 * Process the completion of the given buffer. 4291 * 4292 * This calls the rate control update and then the buffer completion. 4293 * This will either free the buffer or requeue it. In any case, the 4294 * bf pointer should be treated as invalid after this function is called. 4295 */ 4296 void 4297 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4298 struct ath_tx_status *ts, struct ath_buf *bf) 4299 { 4300 struct ieee80211_node *ni = bf->bf_node; 4301 4302 ATH_TX_UNLOCK_ASSERT(sc); 4303 ATH_TXQ_UNLOCK_ASSERT(txq); 4304 4305 /* If unicast frame, update general statistics */ 4306 if (ni != NULL) { 4307 /* update statistics */ 4308 ath_tx_update_stats(sc, ts, bf); 4309 } 4310 4311 /* 4312 * Call the completion handler. 4313 * The completion handler is responsible for 4314 * calling the rate control code. 4315 * 4316 * Frames with no completion handler get the 4317 * rate control code called here. 4318 */ 4319 if (bf->bf_comp == NULL) { 4320 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4321 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4322 /* 4323 * XXX assume this isn't an aggregate 4324 * frame. 4325 */ 4326 ath_tx_update_ratectrl(sc, ni, 4327 bf->bf_state.bfs_rc, ts, 4328 bf->bf_state.bfs_pktlen, 1, 4329 (ts->ts_status == 0 ? 0 : 1)); 4330 } 4331 ath_tx_default_comp(sc, bf, 0); 4332 } else 4333 bf->bf_comp(sc, bf, 0); 4334 } 4335 4336 4337 4338 /* 4339 * Process completed xmit descriptors from the specified queue. 4340 * Kick the packet scheduler if needed. This can occur from this 4341 * particular task. 4342 */ 4343 static int 4344 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4345 { 4346 struct ath_hal *ah = sc->sc_ah; 4347 struct ath_buf *bf; 4348 struct ath_desc *ds; 4349 struct ath_tx_status *ts; 4350 struct ieee80211_node *ni; 4351 #ifdef IEEE80211_SUPPORT_SUPERG 4352 struct ieee80211com *ic = &sc->sc_ic; 4353 #endif /* IEEE80211_SUPPORT_SUPERG */ 4354 int nacked; 4355 HAL_STATUS status; 4356 4357 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4358 __func__, txq->axq_qnum, 4359 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4360 txq->axq_link); 4361 4362 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4363 "ath_tx_processq: txq=%u head %p link %p depth %p", 4364 txq->axq_qnum, 4365 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4366 txq->axq_link, 4367 txq->axq_depth); 4368 4369 nacked = 0; 4370 for (;;) { 4371 ATH_TXQ_LOCK(txq); 4372 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4373 bf = TAILQ_FIRST(&txq->axq_q); 4374 if (bf == NULL) { 4375 ATH_TXQ_UNLOCK(txq); 4376 break; 4377 } 4378 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4379 ts = &bf->bf_status.ds_txstat; 4380 4381 status = ath_hal_txprocdesc(ah, ds, ts); 4382 #ifdef ATH_DEBUG 4383 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4384 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4385 status == HAL_OK); 4386 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4387 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4388 status == HAL_OK); 4389 #endif 4390 #ifdef ATH_DEBUG_ALQ 4391 if (if_ath_alq_checkdebug(&sc->sc_alq, 4392 ATH_ALQ_EDMA_TXSTATUS)) { 4393 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4394 sc->sc_tx_statuslen, 4395 (char *) ds); 4396 } 4397 #endif 4398 4399 if (status == HAL_EINPROGRESS) { 4400 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4401 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4402 txq->axq_qnum, bf, ds); 4403 ATH_TXQ_UNLOCK(txq); 4404 break; 4405 } 4406 ATH_TXQ_REMOVE(txq, bf, bf_list); 4407 4408 /* 4409 * Sanity check. 4410 */ 4411 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4412 device_printf(sc->sc_dev, 4413 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4414 __func__, 4415 txq->axq_qnum, 4416 bf, 4417 bf->bf_state.bfs_tx_queue); 4418 } 4419 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4420 device_printf(sc->sc_dev, 4421 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4422 __func__, 4423 txq->axq_qnum, 4424 bf->bf_last, 4425 bf->bf_last->bf_state.bfs_tx_queue); 4426 } 4427 4428 #if 0 4429 if (txq->axq_depth > 0) { 4430 /* 4431 * More frames follow. Mark the buffer busy 4432 * so it's not re-used while the hardware may 4433 * still re-read the link field in the descriptor. 4434 * 4435 * Use the last buffer in an aggregate as that 4436 * is where the hardware may be - intermediate 4437 * descriptors won't be "busy". 4438 */ 4439 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4440 } else 4441 txq->axq_link = NULL; 4442 #else 4443 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4444 #endif 4445 if (bf->bf_state.bfs_aggr) 4446 txq->axq_aggr_depth--; 4447 4448 ni = bf->bf_node; 4449 4450 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4451 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4452 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4453 /* 4454 * If unicast frame was ack'd update RSSI, 4455 * including the last rx time used to 4456 * workaround phantom bmiss interrupts. 4457 */ 4458 if (ni != NULL && ts->ts_status == 0 && 4459 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4460 nacked++; 4461 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4462 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4463 ts->ts_rssi); 4464 } 4465 ATH_TXQ_UNLOCK(txq); 4466 4467 /* 4468 * Update statistics and call completion 4469 */ 4470 ath_tx_process_buf_completion(sc, txq, ts, bf); 4471 4472 /* XXX at this point, bf and ni may be totally invalid */ 4473 } 4474 #ifdef IEEE80211_SUPPORT_SUPERG 4475 /* 4476 * Flush fast-frame staging queue when traffic slows. 4477 */ 4478 if (txq->axq_depth <= 1) 4479 ieee80211_ff_flush(ic, txq->axq_ac); 4480 #endif 4481 4482 /* Kick the software TXQ scheduler */ 4483 if (dosched) { 4484 ATH_TX_LOCK(sc); 4485 ath_txq_sched(sc, txq); 4486 ATH_TX_UNLOCK(sc); 4487 } 4488 4489 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4490 "ath_tx_processq: txq=%u: done", 4491 txq->axq_qnum); 4492 4493 return nacked; 4494 } 4495 4496 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4497 4498 /* 4499 * Deferred processing of transmit interrupt; special-cased 4500 * for a single hardware transmit queue (e.g. 5210 and 5211). 4501 */ 4502 static void 4503 ath_tx_proc_q0(void *arg, int npending) 4504 { 4505 struct ath_softc *sc = arg; 4506 uint32_t txqs; 4507 4508 ATH_PCU_LOCK(sc); 4509 sc->sc_txproc_cnt++; 4510 txqs = sc->sc_txq_active; 4511 sc->sc_txq_active &= ~txqs; 4512 ATH_PCU_UNLOCK(sc); 4513 4514 ATH_LOCK(sc); 4515 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4516 ATH_UNLOCK(sc); 4517 4518 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4519 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4520 4521 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4522 /* XXX why is lastrx updated in tx code? */ 4523 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4524 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4525 ath_tx_processq(sc, sc->sc_cabq, 1); 4526 sc->sc_wd_timer = 0; 4527 4528 if (sc->sc_softled) 4529 ath_led_event(sc, sc->sc_txrix); 4530 4531 ATH_PCU_LOCK(sc); 4532 sc->sc_txproc_cnt--; 4533 ATH_PCU_UNLOCK(sc); 4534 4535 ATH_LOCK(sc); 4536 ath_power_restore_power_state(sc); 4537 ATH_UNLOCK(sc); 4538 4539 ath_tx_kick(sc); 4540 } 4541 4542 /* 4543 * Deferred processing of transmit interrupt; special-cased 4544 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4545 */ 4546 static void 4547 ath_tx_proc_q0123(void *arg, int npending) 4548 { 4549 struct ath_softc *sc = arg; 4550 int nacked; 4551 uint32_t txqs; 4552 4553 ATH_PCU_LOCK(sc); 4554 sc->sc_txproc_cnt++; 4555 txqs = sc->sc_txq_active; 4556 sc->sc_txq_active &= ~txqs; 4557 ATH_PCU_UNLOCK(sc); 4558 4559 ATH_LOCK(sc); 4560 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4561 ATH_UNLOCK(sc); 4562 4563 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4564 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4565 4566 /* 4567 * Process each active queue. 4568 */ 4569 nacked = 0; 4570 if (TXQACTIVE(txqs, 0)) 4571 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4572 if (TXQACTIVE(txqs, 1)) 4573 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4574 if (TXQACTIVE(txqs, 2)) 4575 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4576 if (TXQACTIVE(txqs, 3)) 4577 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4578 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4579 ath_tx_processq(sc, sc->sc_cabq, 1); 4580 if (nacked) 4581 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4582 4583 sc->sc_wd_timer = 0; 4584 4585 if (sc->sc_softled) 4586 ath_led_event(sc, sc->sc_txrix); 4587 4588 ATH_PCU_LOCK(sc); 4589 sc->sc_txproc_cnt--; 4590 ATH_PCU_UNLOCK(sc); 4591 4592 ATH_LOCK(sc); 4593 ath_power_restore_power_state(sc); 4594 ATH_UNLOCK(sc); 4595 4596 ath_tx_kick(sc); 4597 } 4598 4599 /* 4600 * Deferred processing of transmit interrupt. 4601 */ 4602 static void 4603 ath_tx_proc(void *arg, int npending) 4604 { 4605 struct ath_softc *sc = arg; 4606 int i, nacked; 4607 uint32_t txqs; 4608 4609 ATH_PCU_LOCK(sc); 4610 sc->sc_txproc_cnt++; 4611 txqs = sc->sc_txq_active; 4612 sc->sc_txq_active &= ~txqs; 4613 ATH_PCU_UNLOCK(sc); 4614 4615 ATH_LOCK(sc); 4616 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4617 ATH_UNLOCK(sc); 4618 4619 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4620 4621 /* 4622 * Process each active queue. 4623 */ 4624 nacked = 0; 4625 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4626 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4627 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4628 if (nacked) 4629 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4630 4631 sc->sc_wd_timer = 0; 4632 4633 if (sc->sc_softled) 4634 ath_led_event(sc, sc->sc_txrix); 4635 4636 ATH_PCU_LOCK(sc); 4637 sc->sc_txproc_cnt--; 4638 ATH_PCU_UNLOCK(sc); 4639 4640 ATH_LOCK(sc); 4641 ath_power_restore_power_state(sc); 4642 ATH_UNLOCK(sc); 4643 4644 ath_tx_kick(sc); 4645 } 4646 #undef TXQACTIVE 4647 4648 /* 4649 * Deferred processing of TXQ rescheduling. 4650 */ 4651 static void 4652 ath_txq_sched_tasklet(void *arg, int npending) 4653 { 4654 struct ath_softc *sc = arg; 4655 int i; 4656 4657 /* XXX is skipping ok? */ 4658 ATH_PCU_LOCK(sc); 4659 #if 0 4660 if (sc->sc_inreset_cnt > 0) { 4661 device_printf(sc->sc_dev, 4662 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4663 ATH_PCU_UNLOCK(sc); 4664 return; 4665 } 4666 #endif 4667 sc->sc_txproc_cnt++; 4668 ATH_PCU_UNLOCK(sc); 4669 4670 ATH_LOCK(sc); 4671 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4672 ATH_UNLOCK(sc); 4673 4674 ATH_TX_LOCK(sc); 4675 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4676 if (ATH_TXQ_SETUP(sc, i)) { 4677 ath_txq_sched(sc, &sc->sc_txq[i]); 4678 } 4679 } 4680 ATH_TX_UNLOCK(sc); 4681 4682 ATH_LOCK(sc); 4683 ath_power_restore_power_state(sc); 4684 ATH_UNLOCK(sc); 4685 4686 ATH_PCU_LOCK(sc); 4687 sc->sc_txproc_cnt--; 4688 ATH_PCU_UNLOCK(sc); 4689 } 4690 4691 void 4692 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4693 { 4694 4695 ATH_TXBUF_LOCK_ASSERT(sc); 4696 4697 if (bf->bf_flags & ATH_BUF_MGMT) 4698 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4699 else { 4700 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4701 sc->sc_txbuf_cnt++; 4702 if (sc->sc_txbuf_cnt > ath_txbuf) { 4703 device_printf(sc->sc_dev, 4704 "%s: sc_txbuf_cnt > %d?\n", 4705 __func__, 4706 ath_txbuf); 4707 sc->sc_txbuf_cnt = ath_txbuf; 4708 } 4709 } 4710 } 4711 4712 void 4713 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4714 { 4715 4716 ATH_TXBUF_LOCK_ASSERT(sc); 4717 4718 if (bf->bf_flags & ATH_BUF_MGMT) 4719 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4720 else { 4721 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4722 sc->sc_txbuf_cnt++; 4723 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4724 device_printf(sc->sc_dev, 4725 "%s: sc_txbuf_cnt > %d?\n", 4726 __func__, 4727 ATH_TXBUF); 4728 sc->sc_txbuf_cnt = ATH_TXBUF; 4729 } 4730 } 4731 } 4732 4733 /* 4734 * Free the holding buffer if it exists 4735 */ 4736 void 4737 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4738 { 4739 ATH_TXBUF_UNLOCK_ASSERT(sc); 4740 ATH_TXQ_LOCK_ASSERT(txq); 4741 4742 if (txq->axq_holdingbf == NULL) 4743 return; 4744 4745 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4746 4747 ATH_TXBUF_LOCK(sc); 4748 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4749 ATH_TXBUF_UNLOCK(sc); 4750 4751 txq->axq_holdingbf = NULL; 4752 } 4753 4754 /* 4755 * Add this buffer to the holding queue, freeing the previous 4756 * one if it exists. 4757 */ 4758 static void 4759 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4760 { 4761 struct ath_txq *txq; 4762 4763 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4764 4765 ATH_TXBUF_UNLOCK_ASSERT(sc); 4766 ATH_TXQ_LOCK_ASSERT(txq); 4767 4768 /* XXX assert ATH_BUF_BUSY is set */ 4769 4770 /* XXX assert the tx queue is under the max number */ 4771 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4772 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4773 __func__, 4774 bf, 4775 bf->bf_state.bfs_tx_queue); 4776 bf->bf_flags &= ~ATH_BUF_BUSY; 4777 ath_returnbuf_tail(sc, bf); 4778 return; 4779 } 4780 ath_txq_freeholdingbuf(sc, txq); 4781 txq->axq_holdingbf = bf; 4782 } 4783 4784 /* 4785 * Return a buffer to the pool and update the 'busy' flag on the 4786 * previous 'tail' entry. 4787 * 4788 * This _must_ only be called when the buffer is involved in a completed 4789 * TX. The logic is that if it was part of an active TX, the previous 4790 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4791 * for restart (eg for TDMA.) 4792 * 4793 * The caller must free the mbuf and recycle the node reference. 4794 * 4795 * XXX This method of handling busy / holding buffers is insanely stupid. 4796 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4797 * be much nicer if buffers in the processq() methods would instead be 4798 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4799 * exactly what hardware queue they came from in the first place. 4800 */ 4801 void 4802 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4803 { 4804 struct ath_txq *txq; 4805 4806 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4807 4808 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4809 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4810 4811 /* 4812 * If this buffer is busy, push it onto the holding queue. 4813 */ 4814 if (bf->bf_flags & ATH_BUF_BUSY) { 4815 ATH_TXQ_LOCK(txq); 4816 ath_txq_addholdingbuf(sc, bf); 4817 ATH_TXQ_UNLOCK(txq); 4818 return; 4819 } 4820 4821 /* 4822 * Not a busy buffer, so free normally 4823 */ 4824 ATH_TXBUF_LOCK(sc); 4825 ath_returnbuf_tail(sc, bf); 4826 ATH_TXBUF_UNLOCK(sc); 4827 } 4828 4829 /* 4830 * This is currently used by ath_tx_draintxq() and 4831 * ath_tx_tid_free_pkts(). 4832 * 4833 * It recycles a single ath_buf. 4834 */ 4835 void 4836 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4837 { 4838 struct ieee80211_node *ni = bf->bf_node; 4839 struct mbuf *m0 = bf->bf_m; 4840 4841 /* 4842 * Make sure that we only sync/unload if there's an mbuf. 4843 * If not (eg we cloned a buffer), the unload will have already 4844 * occurred. 4845 */ 4846 if (bf->bf_m != NULL) { 4847 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4848 BUS_DMASYNC_POSTWRITE); 4849 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4850 } 4851 4852 bf->bf_node = NULL; 4853 bf->bf_m = NULL; 4854 4855 /* Free the buffer, it's not needed any longer */ 4856 ath_freebuf(sc, bf); 4857 4858 /* Pass the buffer back to net80211 - completing it */ 4859 ieee80211_tx_complete(ni, m0, status); 4860 } 4861 4862 static struct ath_buf * 4863 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4864 { 4865 struct ath_buf *bf; 4866 4867 ATH_TXQ_LOCK_ASSERT(txq); 4868 4869 /* 4870 * Drain the FIFO queue first, then if it's 4871 * empty, move to the normal frame queue. 4872 */ 4873 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4874 if (bf != NULL) { 4875 /* 4876 * Is it the last buffer in this set? 4877 * Decrement the FIFO counter. 4878 */ 4879 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4880 if (txq->axq_fifo_depth == 0) { 4881 device_printf(sc->sc_dev, 4882 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4883 __func__, 4884 txq->axq_qnum, 4885 txq->fifo.axq_depth); 4886 } else 4887 txq->axq_fifo_depth--; 4888 } 4889 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4890 return (bf); 4891 } 4892 4893 /* 4894 * Debugging! 4895 */ 4896 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4897 device_printf(sc->sc_dev, 4898 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4899 __func__, 4900 txq->axq_qnum, 4901 txq->axq_fifo_depth, 4902 txq->fifo.axq_depth); 4903 } 4904 4905 /* 4906 * Now drain the pending queue. 4907 */ 4908 bf = TAILQ_FIRST(&txq->axq_q); 4909 if (bf == NULL) { 4910 txq->axq_link = NULL; 4911 return (NULL); 4912 } 4913 ATH_TXQ_REMOVE(txq, bf, bf_list); 4914 return (bf); 4915 } 4916 4917 void 4918 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4919 { 4920 #ifdef ATH_DEBUG 4921 struct ath_hal *ah = sc->sc_ah; 4922 #endif 4923 struct ath_buf *bf; 4924 u_int ix; 4925 4926 /* 4927 * NB: this assumes output has been stopped and 4928 * we do not need to block ath_tx_proc 4929 */ 4930 for (ix = 0;; ix++) { 4931 ATH_TXQ_LOCK(txq); 4932 bf = ath_tx_draintxq_get_one(sc, txq); 4933 if (bf == NULL) { 4934 ATH_TXQ_UNLOCK(txq); 4935 break; 4936 } 4937 if (bf->bf_state.bfs_aggr) 4938 txq->axq_aggr_depth--; 4939 #ifdef ATH_DEBUG 4940 if (sc->sc_debug & ATH_DEBUG_RESET) { 4941 struct ieee80211com *ic = &sc->sc_ic; 4942 int status = 0; 4943 4944 /* 4945 * EDMA operation has a TX completion FIFO 4946 * separate from the TX descriptor, so this 4947 * method of checking the "completion" status 4948 * is wrong. 4949 */ 4950 if (! sc->sc_isedma) { 4951 status = (ath_hal_txprocdesc(ah, 4952 bf->bf_lastds, 4953 &bf->bf_status.ds_txstat) == HAL_OK); 4954 } 4955 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4956 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4957 bf->bf_m->m_len, 0, -1); 4958 } 4959 #endif /* ATH_DEBUG */ 4960 /* 4961 * Since we're now doing magic in the completion 4962 * functions, we -must- call it for aggregation 4963 * destinations or BAW tracking will get upset. 4964 */ 4965 /* 4966 * Clear ATH_BUF_BUSY; the completion handler 4967 * will free the buffer. 4968 */ 4969 ATH_TXQ_UNLOCK(txq); 4970 bf->bf_flags &= ~ATH_BUF_BUSY; 4971 if (bf->bf_comp) 4972 bf->bf_comp(sc, bf, 1); 4973 else 4974 ath_tx_default_comp(sc, bf, 1); 4975 } 4976 4977 /* 4978 * Free the holding buffer if it exists 4979 */ 4980 ATH_TXQ_LOCK(txq); 4981 ath_txq_freeholdingbuf(sc, txq); 4982 ATH_TXQ_UNLOCK(txq); 4983 4984 /* 4985 * Drain software queued frames which are on 4986 * active TIDs. 4987 */ 4988 ath_tx_txq_drain(sc, txq); 4989 } 4990 4991 static void 4992 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4993 { 4994 struct ath_hal *ah = sc->sc_ah; 4995 4996 ATH_TXQ_LOCK_ASSERT(txq); 4997 4998 DPRINTF(sc, ATH_DEBUG_RESET, 4999 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5000 "link %p, holdingbf=%p\n", 5001 __func__, 5002 txq->axq_qnum, 5003 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5004 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5005 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5006 txq->axq_flags, 5007 txq->axq_link, 5008 txq->axq_holdingbf); 5009 5010 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5011 /* We've stopped TX DMA, so mark this as stopped. */ 5012 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5013 5014 #ifdef ATH_DEBUG 5015 if ((sc->sc_debug & ATH_DEBUG_RESET) 5016 && (txq->axq_holdingbf != NULL)) { 5017 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5018 } 5019 #endif 5020 } 5021 5022 int 5023 ath_stoptxdma(struct ath_softc *sc) 5024 { 5025 struct ath_hal *ah = sc->sc_ah; 5026 int i; 5027 5028 /* XXX return value */ 5029 if (sc->sc_invalid) 5030 return 0; 5031 5032 if (!sc->sc_invalid) { 5033 /* don't touch the hardware if marked invalid */ 5034 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5035 __func__, sc->sc_bhalq, 5036 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5037 NULL); 5038 5039 /* stop the beacon queue */ 5040 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5041 5042 /* Stop the data queues */ 5043 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5044 if (ATH_TXQ_SETUP(sc, i)) { 5045 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5046 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5047 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5048 } 5049 } 5050 } 5051 5052 return 1; 5053 } 5054 5055 #ifdef ATH_DEBUG 5056 void 5057 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5058 { 5059 struct ath_hal *ah = sc->sc_ah; 5060 struct ath_buf *bf; 5061 int i = 0; 5062 5063 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5064 return; 5065 5066 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5067 __func__, txq->axq_qnum); 5068 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5069 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5070 ath_hal_txprocdesc(ah, bf->bf_lastds, 5071 &bf->bf_status.ds_txstat) == HAL_OK); 5072 i++; 5073 } 5074 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5075 __func__, txq->axq_qnum); 5076 } 5077 #endif /* ATH_DEBUG */ 5078 5079 /* 5080 * Drain the transmit queues and reclaim resources. 5081 */ 5082 void 5083 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5084 { 5085 struct ath_hal *ah = sc->sc_ah; 5086 struct ath_buf *bf_last; 5087 int i; 5088 5089 (void) ath_stoptxdma(sc); 5090 5091 /* 5092 * Dump the queue contents 5093 */ 5094 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5095 /* 5096 * XXX TODO: should we just handle the completed TX frames 5097 * here, whether or not the reset is a full one or not? 5098 */ 5099 if (ATH_TXQ_SETUP(sc, i)) { 5100 #ifdef ATH_DEBUG 5101 if (sc->sc_debug & ATH_DEBUG_RESET) 5102 ath_tx_dump(sc, &sc->sc_txq[i]); 5103 #endif /* ATH_DEBUG */ 5104 if (reset_type == ATH_RESET_NOLOSS) { 5105 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5106 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5107 /* 5108 * Free the holding buffer; DMA is now 5109 * stopped. 5110 */ 5111 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5112 /* 5113 * Setup the link pointer to be the 5114 * _last_ buffer/descriptor in the list. 5115 * If there's nothing in the list, set it 5116 * to NULL. 5117 */ 5118 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5119 axq_q_s); 5120 if (bf_last != NULL) { 5121 ath_hal_gettxdesclinkptr(ah, 5122 bf_last->bf_lastds, 5123 &sc->sc_txq[i].axq_link); 5124 } else { 5125 sc->sc_txq[i].axq_link = NULL; 5126 } 5127 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5128 } else 5129 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5130 } 5131 } 5132 #ifdef ATH_DEBUG 5133 if (sc->sc_debug & ATH_DEBUG_RESET) { 5134 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5135 if (bf != NULL && bf->bf_m != NULL) { 5136 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5137 ath_hal_txprocdesc(ah, bf->bf_lastds, 5138 &bf->bf_status.ds_txstat) == HAL_OK); 5139 ieee80211_dump_pkt(&sc->sc_ic, 5140 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5141 0, -1); 5142 } 5143 } 5144 #endif /* ATH_DEBUG */ 5145 sc->sc_wd_timer = 0; 5146 } 5147 5148 /* 5149 * Update internal state after a channel change. 5150 */ 5151 static void 5152 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5153 { 5154 enum ieee80211_phymode mode; 5155 5156 /* 5157 * Change channels and update the h/w rate map 5158 * if we're switching; e.g. 11a to 11b/g. 5159 */ 5160 mode = ieee80211_chan2mode(chan); 5161 if (mode != sc->sc_curmode) 5162 ath_setcurmode(sc, mode); 5163 sc->sc_curchan = chan; 5164 } 5165 5166 /* 5167 * Set/change channels. If the channel is really being changed, 5168 * it's done by resetting the chip. To accomplish this we must 5169 * first cleanup any pending DMA, then restart stuff after a la 5170 * ath_init. 5171 */ 5172 static int 5173 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5174 { 5175 struct ieee80211com *ic = &sc->sc_ic; 5176 struct ath_hal *ah = sc->sc_ah; 5177 int ret = 0; 5178 5179 /* Treat this as an interface reset */ 5180 ATH_PCU_UNLOCK_ASSERT(sc); 5181 ATH_UNLOCK_ASSERT(sc); 5182 5183 /* (Try to) stop TX/RX from occurring */ 5184 taskqueue_block(sc->sc_tq); 5185 5186 ATH_PCU_LOCK(sc); 5187 5188 /* Disable interrupts */ 5189 ath_hal_intrset(ah, 0); 5190 5191 /* Stop new RX/TX/interrupt completion */ 5192 if (ath_reset_grablock(sc, 1) == 0) { 5193 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5194 __func__); 5195 } 5196 5197 /* Stop pending RX/TX completion */ 5198 ath_txrx_stop_locked(sc); 5199 5200 ATH_PCU_UNLOCK(sc); 5201 5202 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5203 __func__, ieee80211_chan2ieee(ic, chan), 5204 chan->ic_freq, chan->ic_flags); 5205 if (chan != sc->sc_curchan) { 5206 HAL_STATUS status; 5207 /* 5208 * To switch channels clear any pending DMA operations; 5209 * wait long enough for the RX fifo to drain, reset the 5210 * hardware at the new frequency, and then re-enable 5211 * the relevant bits of the h/w. 5212 */ 5213 #if 0 5214 ath_hal_intrset(ah, 0); /* disable interrupts */ 5215 #endif 5216 ath_stoprecv(sc, 1); /* turn off frame recv */ 5217 /* 5218 * First, handle completed TX/RX frames. 5219 */ 5220 ath_rx_flush(sc); 5221 ath_draintxq(sc, ATH_RESET_NOLOSS); 5222 /* 5223 * Next, flush the non-scheduled frames. 5224 */ 5225 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5226 5227 ath_update_chainmasks(sc, chan); 5228 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5229 sc->sc_cur_rxchainmask); 5230 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5231 HAL_RESET_NORMAL, &status)) { 5232 device_printf(sc->sc_dev, "%s: unable to reset " 5233 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5234 __func__, ieee80211_chan2ieee(ic, chan), 5235 chan->ic_freq, chan->ic_flags, status); 5236 ret = EIO; 5237 goto finish; 5238 } 5239 sc->sc_diversity = ath_hal_getdiversity(ah); 5240 5241 ATH_RX_LOCK(sc); 5242 sc->sc_rx_stopped = 1; 5243 sc->sc_rx_resetted = 1; 5244 ATH_RX_UNLOCK(sc); 5245 5246 /* Let DFS at it in case it's a DFS channel */ 5247 ath_dfs_radar_enable(sc, chan); 5248 5249 /* Let spectral at in case spectral is enabled */ 5250 ath_spectral_enable(sc, chan); 5251 5252 /* 5253 * Let bluetooth coexistence at in case it's needed for this 5254 * channel 5255 */ 5256 ath_btcoex_enable(sc, ic->ic_curchan); 5257 5258 /* 5259 * If we're doing TDMA, enforce the TXOP limitation for chips 5260 * that support it. 5261 */ 5262 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5263 ath_hal_setenforcetxop(sc->sc_ah, 1); 5264 else 5265 ath_hal_setenforcetxop(sc->sc_ah, 0); 5266 5267 /* 5268 * Re-enable rx framework. 5269 */ 5270 if (ath_startrecv(sc) != 0) { 5271 device_printf(sc->sc_dev, 5272 "%s: unable to restart recv logic\n", __func__); 5273 ret = EIO; 5274 goto finish; 5275 } 5276 5277 /* 5278 * Change channels and update the h/w rate map 5279 * if we're switching; e.g. 11a to 11b/g. 5280 */ 5281 ath_chan_change(sc, chan); 5282 5283 /* 5284 * Reset clears the beacon timers; reset them 5285 * here if needed. 5286 */ 5287 if (sc->sc_beacons) { /* restart beacons */ 5288 #ifdef IEEE80211_SUPPORT_TDMA 5289 if (sc->sc_tdma) 5290 ath_tdma_config(sc, NULL); 5291 else 5292 #endif 5293 ath_beacon_config(sc, NULL); 5294 } 5295 5296 /* 5297 * Re-enable interrupts. 5298 */ 5299 #if 0 5300 ath_hal_intrset(ah, sc->sc_imask); 5301 #endif 5302 } 5303 5304 finish: 5305 ATH_PCU_LOCK(sc); 5306 sc->sc_inreset_cnt--; 5307 /* XXX only do this if sc_inreset_cnt == 0? */ 5308 ath_hal_intrset(ah, sc->sc_imask); 5309 ATH_PCU_UNLOCK(sc); 5310 5311 ath_txrx_start(sc); 5312 /* XXX ath_start? */ 5313 5314 return ret; 5315 } 5316 5317 /* 5318 * Periodically recalibrate the PHY to account 5319 * for temperature/environment changes. 5320 */ 5321 static void 5322 ath_calibrate(void *arg) 5323 { 5324 struct ath_softc *sc = arg; 5325 struct ath_hal *ah = sc->sc_ah; 5326 struct ieee80211com *ic = &sc->sc_ic; 5327 HAL_BOOL longCal, isCalDone = AH_TRUE; 5328 HAL_BOOL aniCal, shortCal = AH_FALSE; 5329 int nextcal; 5330 5331 ATH_LOCK_ASSERT(sc); 5332 5333 /* 5334 * Force the hardware awake for ANI work. 5335 */ 5336 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5337 5338 /* Skip trying to do this if we're in reset */ 5339 if (sc->sc_inreset_cnt) 5340 goto restart; 5341 5342 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5343 goto restart; 5344 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5345 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5346 if (sc->sc_doresetcal) 5347 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5348 5349 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5350 if (aniCal) { 5351 sc->sc_stats.ast_ani_cal++; 5352 sc->sc_lastani = ticks; 5353 ath_hal_ani_poll(ah, sc->sc_curchan); 5354 } 5355 5356 if (longCal) { 5357 sc->sc_stats.ast_per_cal++; 5358 sc->sc_lastlongcal = ticks; 5359 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5360 /* 5361 * Rfgain is out of bounds, reset the chip 5362 * to load new gain values. 5363 */ 5364 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5365 "%s: rfgain change\n", __func__); 5366 sc->sc_stats.ast_per_rfgain++; 5367 sc->sc_resetcal = 0; 5368 sc->sc_doresetcal = AH_TRUE; 5369 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5370 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5371 ath_power_restore_power_state(sc); 5372 return; 5373 } 5374 /* 5375 * If this long cal is after an idle period, then 5376 * reset the data collection state so we start fresh. 5377 */ 5378 if (sc->sc_resetcal) { 5379 (void) ath_hal_calreset(ah, sc->sc_curchan); 5380 sc->sc_lastcalreset = ticks; 5381 sc->sc_lastshortcal = ticks; 5382 sc->sc_resetcal = 0; 5383 sc->sc_doresetcal = AH_TRUE; 5384 } 5385 } 5386 5387 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5388 if (shortCal || longCal) { 5389 isCalDone = AH_FALSE; 5390 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5391 if (longCal) { 5392 /* 5393 * Calibrate noise floor data again in case of change. 5394 */ 5395 ath_hal_process_noisefloor(ah); 5396 } 5397 } else { 5398 DPRINTF(sc, ATH_DEBUG_ANY, 5399 "%s: calibration of channel %u failed\n", 5400 __func__, sc->sc_curchan->ic_freq); 5401 sc->sc_stats.ast_per_calfail++; 5402 } 5403 if (shortCal) 5404 sc->sc_lastshortcal = ticks; 5405 } 5406 if (!isCalDone) { 5407 restart: 5408 /* 5409 * Use a shorter interval to potentially collect multiple 5410 * data samples required to complete calibration. Once 5411 * we're told the work is done we drop back to a longer 5412 * interval between requests. We're more aggressive doing 5413 * work when operating as an AP to improve operation right 5414 * after startup. 5415 */ 5416 sc->sc_lastshortcal = ticks; 5417 nextcal = ath_shortcalinterval*hz/1000; 5418 if (sc->sc_opmode != HAL_M_HOSTAP) 5419 nextcal *= 10; 5420 sc->sc_doresetcal = AH_TRUE; 5421 } else { 5422 /* nextcal should be the shortest time for next event */ 5423 nextcal = ath_longcalinterval*hz; 5424 if (sc->sc_lastcalreset == 0) 5425 sc->sc_lastcalreset = sc->sc_lastlongcal; 5426 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5427 sc->sc_resetcal = 1; /* setup reset next trip */ 5428 sc->sc_doresetcal = AH_FALSE; 5429 } 5430 /* ANI calibration may occur more often than short/long/resetcal */ 5431 if (ath_anicalinterval > 0) 5432 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5433 5434 if (nextcal != 0) { 5435 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5436 __func__, nextcal, isCalDone ? "" : "!"); 5437 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5438 } else { 5439 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5440 __func__); 5441 /* NB: don't rearm timer */ 5442 } 5443 /* 5444 * Restore power state now that we're done. 5445 */ 5446 ath_power_restore_power_state(sc); 5447 } 5448 5449 static void 5450 ath_scan_start(struct ieee80211com *ic) 5451 { 5452 struct ath_softc *sc = ic->ic_softc; 5453 struct ath_hal *ah = sc->sc_ah; 5454 u_int32_t rfilt; 5455 5456 /* XXX calibration timer? */ 5457 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5458 5459 ATH_LOCK(sc); 5460 sc->sc_scanning = 1; 5461 sc->sc_syncbeacon = 0; 5462 rfilt = ath_calcrxfilter(sc); 5463 ATH_UNLOCK(sc); 5464 5465 ATH_PCU_LOCK(sc); 5466 ath_hal_setrxfilter(ah, rfilt); 5467 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5468 ATH_PCU_UNLOCK(sc); 5469 5470 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5471 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5472 } 5473 5474 static void 5475 ath_scan_end(struct ieee80211com *ic) 5476 { 5477 struct ath_softc *sc = ic->ic_softc; 5478 struct ath_hal *ah = sc->sc_ah; 5479 u_int32_t rfilt; 5480 5481 ATH_LOCK(sc); 5482 sc->sc_scanning = 0; 5483 rfilt = ath_calcrxfilter(sc); 5484 ATH_UNLOCK(sc); 5485 5486 ATH_PCU_LOCK(sc); 5487 ath_hal_setrxfilter(ah, rfilt); 5488 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5489 5490 ath_hal_process_noisefloor(ah); 5491 ATH_PCU_UNLOCK(sc); 5492 5493 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5494 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5495 sc->sc_curaid); 5496 } 5497 5498 #ifdef ATH_ENABLE_11N 5499 /* 5500 * For now, just do a channel change. 5501 * 5502 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5503 * control state and resetting the hardware without dropping frames out 5504 * of the queue. 5505 * 5506 * The unfortunate trouble here is making absolutely sure that the 5507 * channel width change has propagated enough so the hardware 5508 * absolutely isn't handed bogus frames for it's current operating 5509 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5510 * does occur in parallel, we need to make certain we've blocked 5511 * any further ongoing TX (and RX, that can cause raw TX) 5512 * before we do this. 5513 */ 5514 static void 5515 ath_update_chw(struct ieee80211com *ic) 5516 { 5517 struct ath_softc *sc = ic->ic_softc; 5518 5519 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5520 ath_set_channel(ic); 5521 } 5522 #endif /* ATH_ENABLE_11N */ 5523 5524 static void 5525 ath_set_channel(struct ieee80211com *ic) 5526 { 5527 struct ath_softc *sc = ic->ic_softc; 5528 5529 ATH_LOCK(sc); 5530 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5531 ATH_UNLOCK(sc); 5532 5533 (void) ath_chan_set(sc, ic->ic_curchan); 5534 /* 5535 * If we are returning to our bss channel then mark state 5536 * so the next recv'd beacon's tsf will be used to sync the 5537 * beacon timers. Note that since we only hear beacons in 5538 * sta/ibss mode this has no effect in other operating modes. 5539 */ 5540 ATH_LOCK(sc); 5541 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5542 sc->sc_syncbeacon = 1; 5543 ath_power_restore_power_state(sc); 5544 ATH_UNLOCK(sc); 5545 } 5546 5547 /* 5548 * Walk the vap list and check if there any vap's in RUN state. 5549 */ 5550 static int 5551 ath_isanyrunningvaps(struct ieee80211vap *this) 5552 { 5553 struct ieee80211com *ic = this->iv_ic; 5554 struct ieee80211vap *vap; 5555 5556 IEEE80211_LOCK_ASSERT(ic); 5557 5558 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5559 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5560 return 1; 5561 } 5562 return 0; 5563 } 5564 5565 static int 5566 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5567 { 5568 struct ieee80211com *ic = vap->iv_ic; 5569 struct ath_softc *sc = ic->ic_softc; 5570 struct ath_vap *avp = ATH_VAP(vap); 5571 struct ath_hal *ah = sc->sc_ah; 5572 struct ieee80211_node *ni = NULL; 5573 int i, error, stamode; 5574 u_int32_t rfilt; 5575 int csa_run_transition = 0; 5576 enum ieee80211_state ostate = vap->iv_state; 5577 5578 static const HAL_LED_STATE leds[] = { 5579 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5580 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5581 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5582 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5583 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5584 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5585 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5586 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5587 }; 5588 5589 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5590 ieee80211_state_name[ostate], 5591 ieee80211_state_name[nstate]); 5592 5593 /* 5594 * net80211 _should_ have the comlock asserted at this point. 5595 * There are some comments around the calls to vap->iv_newstate 5596 * which indicate that it (newstate) may end up dropping the 5597 * lock. This and the subsequent lock assert check after newstate 5598 * are an attempt to catch these and figure out how/why. 5599 */ 5600 IEEE80211_LOCK_ASSERT(ic); 5601 5602 /* Before we touch the hardware - wake it up */ 5603 ATH_LOCK(sc); 5604 /* 5605 * If the NIC is in anything other than SLEEP state, 5606 * we need to ensure that self-generated frames are 5607 * set for PWRMGT=0. Otherwise we may end up with 5608 * strange situations. 5609 * 5610 * XXX TODO: is this actually the case? :-) 5611 */ 5612 if (nstate != IEEE80211_S_SLEEP) 5613 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5614 5615 /* 5616 * Now, wake the thing up. 5617 */ 5618 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5619 5620 /* 5621 * And stop the calibration callout whilst we have 5622 * ATH_LOCK held. 5623 */ 5624 callout_stop(&sc->sc_cal_ch); 5625 ATH_UNLOCK(sc); 5626 5627 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5628 csa_run_transition = 1; 5629 5630 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5631 5632 if (nstate == IEEE80211_S_SCAN) { 5633 /* 5634 * Scanning: turn off beacon miss and don't beacon. 5635 * Mark beacon state so when we reach RUN state we'll 5636 * [re]setup beacons. Unblock the task q thread so 5637 * deferred interrupt processing is done. 5638 */ 5639 5640 /* Ensure we stay awake during scan */ 5641 ATH_LOCK(sc); 5642 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5643 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5644 ATH_UNLOCK(sc); 5645 5646 ath_hal_intrset(ah, 5647 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5648 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5649 sc->sc_beacons = 0; 5650 taskqueue_unblock(sc->sc_tq); 5651 } 5652 5653 ni = ieee80211_ref_node(vap->iv_bss); 5654 rfilt = ath_calcrxfilter(sc); 5655 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5656 vap->iv_opmode == IEEE80211_M_AHDEMO || 5657 vap->iv_opmode == IEEE80211_M_IBSS); 5658 5659 /* 5660 * XXX Dont need to do this (and others) if we've transitioned 5661 * from SLEEP->RUN. 5662 */ 5663 if (stamode && nstate == IEEE80211_S_RUN) { 5664 sc->sc_curaid = ni->ni_associd; 5665 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5666 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5667 } 5668 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5669 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5670 ath_hal_setrxfilter(ah, rfilt); 5671 5672 /* XXX is this to restore keycache on resume? */ 5673 if (vap->iv_opmode != IEEE80211_M_STA && 5674 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5675 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5676 if (ath_hal_keyisvalid(ah, i)) 5677 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5678 } 5679 5680 /* 5681 * Invoke the parent method to do net80211 work. 5682 */ 5683 error = avp->av_newstate(vap, nstate, arg); 5684 if (error != 0) 5685 goto bad; 5686 5687 /* 5688 * See above: ensure av_newstate() doesn't drop the lock 5689 * on us. 5690 */ 5691 IEEE80211_LOCK_ASSERT(ic); 5692 5693 /* 5694 * XXX TODO: if nstate is _S_CAC, then we should disable 5695 * ACK processing until CAC is completed. 5696 */ 5697 5698 /* 5699 * XXX TODO: if we're on a passive channel, then we should 5700 * not allow any ACKs or self-generated frames until we hear 5701 * a beacon. Unfortunately there isn't a notification from 5702 * net80211 so perhaps we could slot that particular check 5703 * into the mgmt receive path and just ensure that we clear 5704 * it on RX of beacons in passive mode (and only clear it 5705 * once, obviously.) 5706 */ 5707 5708 /* 5709 * XXX TODO: net80211 should be tracking whether channels 5710 * have heard beacons and are thus considered "OK" for 5711 * transmitting - and then inform the driver about this 5712 * state change. That way if we hear an AP go quiet 5713 * (and nothing else is beaconing on a channel) the 5714 * channel can go back to being passive until another 5715 * beacon is heard. 5716 */ 5717 5718 /* 5719 * XXX TODO: if nstate is _S_CAC, then we should disable 5720 * ACK processing until CAC is completed. 5721 */ 5722 5723 /* 5724 * XXX TODO: if we're on a passive channel, then we should 5725 * not allow any ACKs or self-generated frames until we hear 5726 * a beacon. Unfortunately there isn't a notification from 5727 * net80211 so perhaps we could slot that particular check 5728 * into the mgmt receive path and just ensure that we clear 5729 * it on RX of beacons in passive mode (and only clear it 5730 * once, obviously.) 5731 */ 5732 5733 /* 5734 * XXX TODO: net80211 should be tracking whether channels 5735 * have heard beacons and are thus considered "OK" for 5736 * transmitting - and then inform the driver about this 5737 * state change. That way if we hear an AP go quiet 5738 * (and nothing else is beaconing on a channel) the 5739 * channel can go back to being passive until another 5740 * beacon is heard. 5741 */ 5742 5743 if (nstate == IEEE80211_S_RUN) { 5744 /* NB: collect bss node again, it may have changed */ 5745 ieee80211_free_node(ni); 5746 ni = ieee80211_ref_node(vap->iv_bss); 5747 5748 DPRINTF(sc, ATH_DEBUG_STATE, 5749 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5750 "capinfo 0x%04x chan %d\n", __func__, 5751 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5752 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5753 5754 switch (vap->iv_opmode) { 5755 #ifdef IEEE80211_SUPPORT_TDMA 5756 case IEEE80211_M_AHDEMO: 5757 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5758 break; 5759 /* fall thru... */ 5760 #endif 5761 case IEEE80211_M_HOSTAP: 5762 case IEEE80211_M_IBSS: 5763 case IEEE80211_M_MBSS: 5764 5765 /* 5766 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.) 5767 * For channels that are in CAC, we may have disabled 5768 * this during CAC to ensure we don't ACK frames 5769 * sent to us. 5770 */ 5771 5772 /* 5773 * Allocate and setup the beacon frame. 5774 * 5775 * Stop any previous beacon DMA. This may be 5776 * necessary, for example, when an ibss merge 5777 * causes reconfiguration; there will be a state 5778 * transition from RUN->RUN that means we may 5779 * be called with beacon transmission active. 5780 */ 5781 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5782 5783 error = ath_beacon_alloc(sc, ni); 5784 if (error != 0) 5785 goto bad; 5786 /* 5787 * If joining an adhoc network defer beacon timer 5788 * configuration to the next beacon frame so we 5789 * have a current TSF to use. Otherwise we're 5790 * starting an ibss/bss so there's no need to delay; 5791 * if this is the first vap moving to RUN state, then 5792 * beacon state needs to be [re]configured. 5793 */ 5794 if (vap->iv_opmode == IEEE80211_M_IBSS && 5795 ni->ni_tstamp.tsf != 0) { 5796 sc->sc_syncbeacon = 1; 5797 } else if (!sc->sc_beacons) { 5798 #ifdef IEEE80211_SUPPORT_TDMA 5799 if (vap->iv_caps & IEEE80211_C_TDMA) 5800 ath_tdma_config(sc, vap); 5801 else 5802 #endif 5803 ath_beacon_config(sc, vap); 5804 sc->sc_beacons = 1; 5805 } 5806 break; 5807 case IEEE80211_M_STA: 5808 /* 5809 * Defer beacon timer configuration to the next 5810 * beacon frame so we have a current TSF to use 5811 * (any TSF collected when scanning is likely old). 5812 * However if it's due to a CSA -> RUN transition, 5813 * force a beacon update so we pick up a lack of 5814 * beacons from an AP in CAC and thus force a 5815 * scan. 5816 * 5817 * And, there's also corner cases here where 5818 * after a scan, the AP may have disappeared. 5819 * In that case, we may not receive an actual 5820 * beacon to update the beacon timer and thus we 5821 * won't get notified of the missing beacons. 5822 */ 5823 if (ostate != IEEE80211_S_RUN && 5824 ostate != IEEE80211_S_SLEEP) { 5825 DPRINTF(sc, ATH_DEBUG_BEACON, 5826 "%s: STA; syncbeacon=1\n", __func__); 5827 sc->sc_syncbeacon = 1; 5828 5829 if (csa_run_transition) 5830 ath_beacon_config(sc, vap); 5831 5832 /* 5833 * PR: kern/175227 5834 * 5835 * Reconfigure beacons during reset; as otherwise 5836 * we won't get the beacon timers reprogrammed 5837 * after a reset and thus we won't pick up a 5838 * beacon miss interrupt. 5839 * 5840 * Hopefully we'll see a beacon before the BMISS 5841 * timer fires (too often), leading to a STA 5842 * disassociation. 5843 */ 5844 sc->sc_beacons = 1; 5845 } 5846 break; 5847 case IEEE80211_M_MONITOR: 5848 /* 5849 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5850 * transitions so we must re-enable interrupts here to 5851 * handle the case of a single monitor mode vap. 5852 */ 5853 ath_hal_intrset(ah, sc->sc_imask); 5854 break; 5855 case IEEE80211_M_WDS: 5856 break; 5857 default: 5858 break; 5859 } 5860 /* 5861 * Let the hal process statistics collected during a 5862 * scan so it can provide calibrated noise floor data. 5863 */ 5864 ath_hal_process_noisefloor(ah); 5865 /* 5866 * Reset rssi stats; maybe not the best place... 5867 */ 5868 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5869 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5870 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5871 5872 /* 5873 * Force awake for RUN mode. 5874 */ 5875 ATH_LOCK(sc); 5876 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5877 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5878 5879 /* 5880 * Finally, start any timers and the task q thread 5881 * (in case we didn't go through SCAN state). 5882 */ 5883 if (ath_longcalinterval != 0) { 5884 /* start periodic recalibration timer */ 5885 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5886 } else { 5887 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5888 "%s: calibration disabled\n", __func__); 5889 } 5890 ATH_UNLOCK(sc); 5891 5892 taskqueue_unblock(sc->sc_tq); 5893 } else if (nstate == IEEE80211_S_INIT) { 5894 /* 5895 * If there are no vaps left in RUN state then 5896 * shutdown host/driver operation: 5897 * o disable interrupts 5898 * o disable the task queue thread 5899 * o mark beacon processing as stopped 5900 */ 5901 if (!ath_isanyrunningvaps(vap)) { 5902 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5903 /* disable interrupts */ 5904 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5905 taskqueue_block(sc->sc_tq); 5906 sc->sc_beacons = 0; 5907 } 5908 #ifdef IEEE80211_SUPPORT_TDMA 5909 ath_hal_setcca(ah, AH_TRUE); 5910 #endif 5911 } else if (nstate == IEEE80211_S_SLEEP) { 5912 /* We're going to sleep, so transition appropriately */ 5913 /* For now, only do this if we're a single STA vap */ 5914 if (sc->sc_nvaps == 1 && 5915 vap->iv_opmode == IEEE80211_M_STA) { 5916 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 5917 ATH_LOCK(sc); 5918 /* 5919 * Always at least set the self-generated 5920 * frame config to set PWRMGT=1. 5921 */ 5922 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 5923 5924 /* 5925 * If we're not syncing beacons, transition 5926 * to NETWORK_SLEEP. 5927 * 5928 * We stay awake if syncbeacon > 0 in case 5929 * we need to listen for some beacons otherwise 5930 * our beacon timer config may be wrong. 5931 */ 5932 if (sc->sc_syncbeacon == 0) { 5933 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 5934 } 5935 ATH_UNLOCK(sc); 5936 } 5937 } 5938 bad: 5939 ieee80211_free_node(ni); 5940 5941 /* 5942 * Restore the power state - either to what it was, or 5943 * to network_sleep if it's alright. 5944 */ 5945 ATH_LOCK(sc); 5946 ath_power_restore_power_state(sc); 5947 ATH_UNLOCK(sc); 5948 return error; 5949 } 5950 5951 /* 5952 * Allocate a key cache slot to the station so we can 5953 * setup a mapping from key index to node. The key cache 5954 * slot is needed for managing antenna state and for 5955 * compression when stations do not use crypto. We do 5956 * it uniliaterally here; if crypto is employed this slot 5957 * will be reassigned. 5958 */ 5959 static void 5960 ath_setup_stationkey(struct ieee80211_node *ni) 5961 { 5962 struct ieee80211vap *vap = ni->ni_vap; 5963 struct ath_softc *sc = vap->iv_ic->ic_softc; 5964 ieee80211_keyix keyix, rxkeyix; 5965 5966 /* XXX should take a locked ref to vap->iv_bss */ 5967 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5968 /* 5969 * Key cache is full; we'll fall back to doing 5970 * the more expensive lookup in software. Note 5971 * this also means no h/w compression. 5972 */ 5973 /* XXX msg+statistic */ 5974 } else { 5975 /* XXX locking? */ 5976 ni->ni_ucastkey.wk_keyix = keyix; 5977 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5978 /* NB: must mark device key to get called back on delete */ 5979 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5980 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5981 /* NB: this will create a pass-thru key entry */ 5982 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5983 } 5984 } 5985 5986 /* 5987 * Setup driver-specific state for a newly associated node. 5988 * Note that we're called also on a re-associate, the isnew 5989 * param tells us if this is the first time or not. 5990 */ 5991 static void 5992 ath_newassoc(struct ieee80211_node *ni, int isnew) 5993 { 5994 struct ath_node *an = ATH_NODE(ni); 5995 struct ieee80211vap *vap = ni->ni_vap; 5996 struct ath_softc *sc = vap->iv_ic->ic_softc; 5997 const struct ieee80211_txparam *tp = ni->ni_txparms; 5998 5999 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6000 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6001 6002 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6003 __func__, 6004 ni->ni_macaddr, 6005 ":", 6006 isnew, 6007 an->an_is_powersave); 6008 6009 ATH_NODE_LOCK(an); 6010 ath_rate_newassoc(sc, an, isnew); 6011 ATH_NODE_UNLOCK(an); 6012 6013 if (isnew && 6014 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6015 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6016 ath_setup_stationkey(ni); 6017 6018 /* 6019 * If we're reassociating, make sure that any paused queues 6020 * get unpaused. 6021 * 6022 * Now, we may have frames in the hardware queue for this node. 6023 * So if we are reassociating and there are frames in the queue, 6024 * we need to go through the cleanup path to ensure that they're 6025 * marked as non-aggregate. 6026 */ 6027 if (! isnew) { 6028 DPRINTF(sc, ATH_DEBUG_NODE, 6029 "%s: %6D: reassoc; is_powersave=%d\n", 6030 __func__, 6031 ni->ni_macaddr, 6032 ":", 6033 an->an_is_powersave); 6034 6035 /* XXX for now, we can't hold the lock across assoc */ 6036 ath_tx_node_reassoc(sc, an); 6037 6038 /* XXX for now, we can't hold the lock across wakeup */ 6039 if (an->an_is_powersave) 6040 ath_tx_node_wakeup(sc, an); 6041 } 6042 } 6043 6044 static int 6045 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6046 int nchans, struct ieee80211_channel chans[]) 6047 { 6048 struct ath_softc *sc = ic->ic_softc; 6049 struct ath_hal *ah = sc->sc_ah; 6050 HAL_STATUS status; 6051 6052 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6053 "%s: rd %u cc %u location %c%s\n", 6054 __func__, reg->regdomain, reg->country, reg->location, 6055 reg->ecm ? " ecm" : ""); 6056 6057 status = ath_hal_set_channels(ah, chans, nchans, 6058 reg->country, reg->regdomain); 6059 if (status != HAL_OK) { 6060 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6061 __func__, status); 6062 return EINVAL; /* XXX */ 6063 } 6064 6065 return 0; 6066 } 6067 6068 static void 6069 ath_getradiocaps(struct ieee80211com *ic, 6070 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6071 { 6072 struct ath_softc *sc = ic->ic_softc; 6073 struct ath_hal *ah = sc->sc_ah; 6074 6075 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6076 __func__, SKU_DEBUG, CTRY_DEFAULT); 6077 6078 /* XXX check return */ 6079 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6080 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6081 6082 } 6083 6084 static int 6085 ath_getchannels(struct ath_softc *sc) 6086 { 6087 struct ieee80211com *ic = &sc->sc_ic; 6088 struct ath_hal *ah = sc->sc_ah; 6089 HAL_STATUS status; 6090 6091 /* 6092 * Collect channel set based on EEPROM contents. 6093 */ 6094 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6095 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6096 if (status != HAL_OK) { 6097 device_printf(sc->sc_dev, 6098 "%s: unable to collect channel list from hal, status %d\n", 6099 __func__, status); 6100 return EINVAL; 6101 } 6102 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6103 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6104 /* XXX map Atheros sku's to net80211 SKU's */ 6105 /* XXX net80211 types too small */ 6106 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6107 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6108 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6109 ic->ic_regdomain.isocc[1] = ' '; 6110 6111 ic->ic_regdomain.ecm = 1; 6112 ic->ic_regdomain.location = 'I'; 6113 6114 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6115 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6116 __func__, sc->sc_eerd, sc->sc_eecc, 6117 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6118 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6119 return 0; 6120 } 6121 6122 static int 6123 ath_rate_setup(struct ath_softc *sc, u_int mode) 6124 { 6125 struct ath_hal *ah = sc->sc_ah; 6126 const HAL_RATE_TABLE *rt; 6127 6128 switch (mode) { 6129 case IEEE80211_MODE_11A: 6130 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6131 break; 6132 case IEEE80211_MODE_HALF: 6133 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6134 break; 6135 case IEEE80211_MODE_QUARTER: 6136 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6137 break; 6138 case IEEE80211_MODE_11B: 6139 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6140 break; 6141 case IEEE80211_MODE_11G: 6142 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6143 break; 6144 case IEEE80211_MODE_TURBO_A: 6145 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6146 break; 6147 case IEEE80211_MODE_TURBO_G: 6148 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6149 break; 6150 case IEEE80211_MODE_STURBO_A: 6151 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6152 break; 6153 case IEEE80211_MODE_11NA: 6154 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6155 break; 6156 case IEEE80211_MODE_11NG: 6157 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6158 break; 6159 default: 6160 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6161 __func__, mode); 6162 return 0; 6163 } 6164 sc->sc_rates[mode] = rt; 6165 return (rt != NULL); 6166 } 6167 6168 static void 6169 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6170 { 6171 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6172 static const struct { 6173 u_int rate; /* tx/rx 802.11 rate */ 6174 u_int16_t timeOn; /* LED on time (ms) */ 6175 u_int16_t timeOff; /* LED off time (ms) */ 6176 } blinkrates[] = { 6177 { 108, 40, 10 }, 6178 { 96, 44, 11 }, 6179 { 72, 50, 13 }, 6180 { 48, 57, 14 }, 6181 { 36, 67, 16 }, 6182 { 24, 80, 20 }, 6183 { 22, 100, 25 }, 6184 { 18, 133, 34 }, 6185 { 12, 160, 40 }, 6186 { 10, 200, 50 }, 6187 { 6, 240, 58 }, 6188 { 4, 267, 66 }, 6189 { 2, 400, 100 }, 6190 { 0, 500, 130 }, 6191 /* XXX half/quarter rates */ 6192 }; 6193 const HAL_RATE_TABLE *rt; 6194 int i, j; 6195 6196 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6197 rt = sc->sc_rates[mode]; 6198 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6199 for (i = 0; i < rt->rateCount; i++) { 6200 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6201 if (rt->info[i].phy != IEEE80211_T_HT) 6202 sc->sc_rixmap[ieeerate] = i; 6203 else 6204 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6205 } 6206 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6207 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6208 if (i >= rt->rateCount) { 6209 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6210 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6211 continue; 6212 } 6213 sc->sc_hwmap[i].ieeerate = 6214 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6215 if (rt->info[i].phy == IEEE80211_T_HT) 6216 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6217 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6218 if (rt->info[i].shortPreamble || 6219 rt->info[i].phy == IEEE80211_T_OFDM) 6220 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6221 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6222 for (j = 0; j < nitems(blinkrates)-1; j++) 6223 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6224 break; 6225 /* NB: this uses the last entry if the rate isn't found */ 6226 /* XXX beware of overlow */ 6227 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6228 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6229 } 6230 sc->sc_currates = rt; 6231 sc->sc_curmode = mode; 6232 /* 6233 * All protection frames are transmitted at 2Mb/s for 6234 * 11g, otherwise at 1Mb/s. 6235 */ 6236 if (mode == IEEE80211_MODE_11G) 6237 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6238 else 6239 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6240 /* NB: caller is responsible for resetting rate control state */ 6241 } 6242 6243 static void 6244 ath_watchdog(void *arg) 6245 { 6246 struct ath_softc *sc = arg; 6247 struct ieee80211com *ic = &sc->sc_ic; 6248 int do_reset = 0; 6249 6250 ATH_LOCK_ASSERT(sc); 6251 6252 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6253 uint32_t hangs; 6254 6255 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6256 6257 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6258 hangs != 0) { 6259 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6260 hangs & 0xff ? "bb" : "mac", hangs); 6261 } else 6262 device_printf(sc->sc_dev, "device timeout\n"); 6263 do_reset = 1; 6264 counter_u64_add(ic->ic_oerrors, 1); 6265 sc->sc_stats.ast_watchdog++; 6266 6267 ath_power_restore_power_state(sc); 6268 } 6269 6270 /* 6271 * We can't hold the lock across the ath_reset() call. 6272 * 6273 * And since this routine can't hold a lock and sleep, 6274 * do the reset deferred. 6275 */ 6276 if (do_reset) { 6277 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6278 } 6279 6280 callout_schedule(&sc->sc_wd_ch, hz); 6281 } 6282 6283 static void 6284 ath_parent(struct ieee80211com *ic) 6285 { 6286 struct ath_softc *sc = ic->ic_softc; 6287 int error = EDOOFUS; 6288 6289 ATH_LOCK(sc); 6290 if (ic->ic_nrunning > 0) { 6291 /* 6292 * To avoid rescanning another access point, 6293 * do not call ath_init() here. Instead, 6294 * only reflect promisc mode settings. 6295 */ 6296 if (sc->sc_running) { 6297 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6298 ath_mode_init(sc); 6299 ath_power_restore_power_state(sc); 6300 } else if (!sc->sc_invalid) { 6301 /* 6302 * Beware of being called during attach/detach 6303 * to reset promiscuous mode. In that case we 6304 * will still be marked UP but not RUNNING. 6305 * However trying to re-init the interface 6306 * is the wrong thing to do as we've already 6307 * torn down much of our state. There's 6308 * probably a better way to deal with this. 6309 */ 6310 error = ath_init(sc); 6311 } 6312 } else { 6313 ath_stop(sc); 6314 if (!sc->sc_invalid) 6315 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6316 } 6317 ATH_UNLOCK(sc); 6318 6319 if (error == 0) { 6320 #ifdef ATH_TX99_DIAG 6321 if (sc->sc_tx99 != NULL) 6322 sc->sc_tx99->start(sc->sc_tx99); 6323 else 6324 #endif 6325 ieee80211_start_all(ic); 6326 } 6327 } 6328 6329 /* 6330 * Announce various information on device/driver attach. 6331 */ 6332 static void 6333 ath_announce(struct ath_softc *sc) 6334 { 6335 struct ath_hal *ah = sc->sc_ah; 6336 6337 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6338 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6339 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6340 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6341 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6342 if (bootverbose) { 6343 int i; 6344 for (i = 0; i <= WME_AC_VO; i++) { 6345 struct ath_txq *txq = sc->sc_ac2q[i]; 6346 device_printf(sc->sc_dev, 6347 "Use hw queue %u for %s traffic\n", 6348 txq->axq_qnum, ieee80211_wme_acnames[i]); 6349 } 6350 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6351 sc->sc_cabq->axq_qnum); 6352 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6353 sc->sc_bhalq); 6354 } 6355 if (ath_rxbuf != ATH_RXBUF) 6356 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6357 if (ath_txbuf != ATH_TXBUF) 6358 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6359 if (sc->sc_mcastkey && bootverbose) 6360 device_printf(sc->sc_dev, "using multicast key search\n"); 6361 } 6362 6363 static void 6364 ath_dfs_tasklet(void *p, int npending) 6365 { 6366 struct ath_softc *sc = (struct ath_softc *) p; 6367 struct ieee80211com *ic = &sc->sc_ic; 6368 6369 /* 6370 * If previous processing has found a radar event, 6371 * signal this to the net80211 layer to begin DFS 6372 * processing. 6373 */ 6374 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6375 /* DFS event found, initiate channel change */ 6376 6377 /* 6378 * XXX TODO: immediately disable ACK processing 6379 * on the current channel. This would be done 6380 * by setting AR_DIAG_ACK_DIS (AR5212; may be 6381 * different for others) until we are out of 6382 * CAC. 6383 */ 6384 6385 /* 6386 * XXX doesn't currently tell us whether the event 6387 * XXX was found in the primary or extension 6388 * XXX channel! 6389 */ 6390 IEEE80211_LOCK(ic); 6391 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6392 IEEE80211_UNLOCK(ic); 6393 } 6394 } 6395 6396 /* 6397 * Enable/disable power save. This must be called with 6398 * no TX driver locks currently held, so it should only 6399 * be called from the RX path (which doesn't hold any 6400 * TX driver locks.) 6401 */ 6402 static void 6403 ath_node_powersave(struct ieee80211_node *ni, int enable) 6404 { 6405 #ifdef ATH_SW_PSQ 6406 struct ath_node *an = ATH_NODE(ni); 6407 struct ieee80211com *ic = ni->ni_ic; 6408 struct ath_softc *sc = ic->ic_softc; 6409 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6410 6411 /* XXX and no TXQ locks should be held here */ 6412 6413 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6414 __func__, 6415 ni->ni_macaddr, 6416 ":", 6417 !! enable); 6418 6419 /* Suspend or resume software queue handling */ 6420 if (enable) 6421 ath_tx_node_sleep(sc, an); 6422 else 6423 ath_tx_node_wakeup(sc, an); 6424 6425 /* Update net80211 state */ 6426 avp->av_node_ps(ni, enable); 6427 #else 6428 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6429 6430 /* Update net80211 state */ 6431 avp->av_node_ps(ni, enable); 6432 #endif/* ATH_SW_PSQ */ 6433 } 6434 6435 /* 6436 * Notification from net80211 that the powersave queue state has 6437 * changed. 6438 * 6439 * Since the software queue also may have some frames: 6440 * 6441 * + if the node software queue has frames and the TID state 6442 * is 0, we set the TIM; 6443 * + if the node and the stack are both empty, we clear the TIM bit. 6444 * + If the stack tries to set the bit, always set it. 6445 * + If the stack tries to clear the bit, only clear it if the 6446 * software queue in question is also cleared. 6447 * 6448 * TODO: this is called during node teardown; so let's ensure this 6449 * is all correctly handled and that the TIM bit is cleared. 6450 * It may be that the node flush is called _AFTER_ the net80211 6451 * stack clears the TIM. 6452 * 6453 * Here is the racy part. Since it's possible >1 concurrent, 6454 * overlapping TXes will appear complete with a TX completion in 6455 * another thread, it's possible that the concurrent TIM calls will 6456 * clash. We can't hold the node lock here because setting the 6457 * TIM grabs the net80211 comlock and this may cause a LOR. 6458 * The solution is either to totally serialise _everything_ at 6459 * this point (ie, all TX, completion and any reset/flush go into 6460 * one taskqueue) or a new "ath TIM lock" needs to be created that 6461 * just wraps the driver state change and this call to avp->av_set_tim(). 6462 * 6463 * The same race exists in the net80211 power save queue handling 6464 * as well. Since multiple transmitting threads may queue frames 6465 * into the driver, as well as ps-poll and the driver transmitting 6466 * frames (and thus clearing the psq), it's quite possible that 6467 * a packet entering the PSQ and a ps-poll being handled will 6468 * race, causing the TIM to be cleared and not re-set. 6469 */ 6470 static int 6471 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6472 { 6473 #ifdef ATH_SW_PSQ 6474 struct ieee80211com *ic = ni->ni_ic; 6475 struct ath_softc *sc = ic->ic_softc; 6476 struct ath_node *an = ATH_NODE(ni); 6477 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6478 int changed = 0; 6479 6480 ATH_TX_LOCK(sc); 6481 an->an_stack_psq = enable; 6482 6483 /* 6484 * This will get called for all operating modes, 6485 * even if avp->av_set_tim is unset. 6486 * It's currently set for hostap/ibss modes; but 6487 * the same infrastructure is used for both STA 6488 * and AP/IBSS node power save. 6489 */ 6490 if (avp->av_set_tim == NULL) { 6491 ATH_TX_UNLOCK(sc); 6492 return (0); 6493 } 6494 6495 /* 6496 * If setting the bit, always set it here. 6497 * If clearing the bit, only clear it if the 6498 * software queue is also empty. 6499 * 6500 * If the node has left power save, just clear the TIM 6501 * bit regardless of the state of the power save queue. 6502 * 6503 * XXX TODO: although atomics are used, it's quite possible 6504 * that a race will occur between this and setting/clearing 6505 * in another thread. TX completion will occur always in 6506 * one thread, however setting/clearing the TIM bit can come 6507 * from a variety of different process contexts! 6508 */ 6509 if (enable && an->an_tim_set == 1) { 6510 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6511 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6512 __func__, 6513 ni->ni_macaddr, 6514 ":", 6515 enable); 6516 ATH_TX_UNLOCK(sc); 6517 } else if (enable) { 6518 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6519 "%s: %6D: enable=%d, enabling TIM\n", 6520 __func__, 6521 ni->ni_macaddr, 6522 ":", 6523 enable); 6524 an->an_tim_set = 1; 6525 ATH_TX_UNLOCK(sc); 6526 changed = avp->av_set_tim(ni, enable); 6527 } else if (an->an_swq_depth == 0) { 6528 /* disable */ 6529 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6530 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6531 __func__, 6532 ni->ni_macaddr, 6533 ":", 6534 enable); 6535 an->an_tim_set = 0; 6536 ATH_TX_UNLOCK(sc); 6537 changed = avp->av_set_tim(ni, enable); 6538 } else if (! an->an_is_powersave) { 6539 /* 6540 * disable regardless; the node isn't in powersave now 6541 */ 6542 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6543 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6544 __func__, 6545 ni->ni_macaddr, 6546 ":", 6547 enable); 6548 an->an_tim_set = 0; 6549 ATH_TX_UNLOCK(sc); 6550 changed = avp->av_set_tim(ni, enable); 6551 } else { 6552 /* 6553 * psq disable, node is currently in powersave, node 6554 * software queue isn't empty, so don't clear the TIM bit 6555 * for now. 6556 */ 6557 ATH_TX_UNLOCK(sc); 6558 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6559 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6560 __func__, 6561 ni->ni_macaddr, 6562 ":", 6563 enable); 6564 changed = 0; 6565 } 6566 6567 return (changed); 6568 #else 6569 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6570 6571 /* 6572 * Some operating modes don't set av_set_tim(), so don't 6573 * update it here. 6574 */ 6575 if (avp->av_set_tim == NULL) 6576 return (0); 6577 6578 return (avp->av_set_tim(ni, enable)); 6579 #endif /* ATH_SW_PSQ */ 6580 } 6581 6582 /* 6583 * Set or update the TIM from the software queue. 6584 * 6585 * Check the software queue depth before attempting to do lock 6586 * anything; that avoids trying to obtain the lock. Then, 6587 * re-check afterwards to ensure nothing has changed in the 6588 * meantime. 6589 * 6590 * set: This is designed to be called from the TX path, after 6591 * a frame has been queued; to see if the swq > 0. 6592 * 6593 * clear: This is designed to be called from the buffer completion point 6594 * (right now it's ath_tx_default_comp()) where the state of 6595 * a software queue has changed. 6596 * 6597 * It makes sense to place it at buffer free / completion rather 6598 * than after each software queue operation, as there's no real 6599 * point in churning the TIM bit as the last frames in the software 6600 * queue are transmitted. If they fail and we retry them, we'd 6601 * just be setting the TIM bit again anyway. 6602 */ 6603 void 6604 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6605 int enable) 6606 { 6607 #ifdef ATH_SW_PSQ 6608 struct ath_node *an; 6609 struct ath_vap *avp; 6610 6611 /* Don't do this for broadcast/etc frames */ 6612 if (ni == NULL) 6613 return; 6614 6615 an = ATH_NODE(ni); 6616 avp = ATH_VAP(ni->ni_vap); 6617 6618 /* 6619 * And for operating modes without the TIM handler set, let's 6620 * just skip those. 6621 */ 6622 if (avp->av_set_tim == NULL) 6623 return; 6624 6625 ATH_TX_LOCK_ASSERT(sc); 6626 6627 if (enable) { 6628 if (an->an_is_powersave && 6629 an->an_tim_set == 0 && 6630 an->an_swq_depth != 0) { 6631 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6632 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6633 __func__, 6634 ni->ni_macaddr, 6635 ":"); 6636 an->an_tim_set = 1; 6637 (void) avp->av_set_tim(ni, 1); 6638 } 6639 } else { 6640 /* 6641 * Don't bother grabbing the lock unless the queue is empty. 6642 */ 6643 if (an->an_swq_depth != 0) 6644 return; 6645 6646 if (an->an_is_powersave && 6647 an->an_stack_psq == 0 && 6648 an->an_tim_set == 1 && 6649 an->an_swq_depth == 0) { 6650 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6651 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6652 " clear!\n", 6653 __func__, 6654 ni->ni_macaddr, 6655 ":"); 6656 an->an_tim_set = 0; 6657 (void) avp->av_set_tim(ni, 0); 6658 } 6659 } 6660 #else 6661 return; 6662 #endif /* ATH_SW_PSQ */ 6663 } 6664 6665 /* 6666 * Received a ps-poll frame from net80211. 6667 * 6668 * Here we get a chance to serve out a software-queued frame ourselves 6669 * before we punt it to net80211 to transmit us one itself - either 6670 * because there's traffic in the net80211 psq, or a NULL frame to 6671 * indicate there's nothing else. 6672 */ 6673 static void 6674 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6675 { 6676 #ifdef ATH_SW_PSQ 6677 struct ath_node *an; 6678 struct ath_vap *avp; 6679 struct ieee80211com *ic = ni->ni_ic; 6680 struct ath_softc *sc = ic->ic_softc; 6681 int tid; 6682 6683 /* Just paranoia */ 6684 if (ni == NULL) 6685 return; 6686 6687 /* 6688 * Unassociated (temporary node) station. 6689 */ 6690 if (ni->ni_associd == 0) 6691 return; 6692 6693 /* 6694 * We do have an active node, so let's begin looking into it. 6695 */ 6696 an = ATH_NODE(ni); 6697 avp = ATH_VAP(ni->ni_vap); 6698 6699 /* 6700 * For now, we just call the original ps-poll method. 6701 * Once we're ready to flip this on: 6702 * 6703 * + Set leak to 1, as no matter what we're going to have 6704 * to send a frame; 6705 * + Check the software queue and if there's something in it, 6706 * schedule the highest TID thas has traffic from this node. 6707 * Then make sure we schedule the software scheduler to 6708 * run so it picks up said frame. 6709 * 6710 * That way whatever happens, we'll at least send _a_ frame 6711 * to the given node. 6712 * 6713 * Again, yes, it's crappy QoS if the node has multiple 6714 * TIDs worth of traffic - but let's get it working first 6715 * before we optimise it. 6716 * 6717 * Also yes, there's definitely latency here - we're not 6718 * direct dispatching to the hardware in this path (and 6719 * we're likely being called from the packet receive path, 6720 * so going back into TX may be a little hairy!) but again 6721 * I'd like to get this working first before optimising 6722 * turn-around time. 6723 */ 6724 6725 ATH_TX_LOCK(sc); 6726 6727 /* 6728 * Legacy - we're called and the node isn't asleep. 6729 * Immediately punt. 6730 */ 6731 if (! an->an_is_powersave) { 6732 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6733 "%s: %6D: not in powersave?\n", 6734 __func__, 6735 ni->ni_macaddr, 6736 ":"); 6737 ATH_TX_UNLOCK(sc); 6738 avp->av_recv_pspoll(ni, m); 6739 return; 6740 } 6741 6742 /* 6743 * We're in powersave. 6744 * 6745 * Leak a frame. 6746 */ 6747 an->an_leak_count = 1; 6748 6749 /* 6750 * Now, if there's no frames in the node, just punt to 6751 * recv_pspoll. 6752 * 6753 * Don't bother checking if the TIM bit is set, we really 6754 * only care if there are any frames here! 6755 */ 6756 if (an->an_swq_depth == 0) { 6757 ATH_TX_UNLOCK(sc); 6758 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6759 "%s: %6D: SWQ empty; punting to net80211\n", 6760 __func__, 6761 ni->ni_macaddr, 6762 ":"); 6763 avp->av_recv_pspoll(ni, m); 6764 return; 6765 } 6766 6767 /* 6768 * Ok, let's schedule the highest TID that has traffic 6769 * and then schedule something. 6770 */ 6771 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 6772 struct ath_tid *atid = &an->an_tid[tid]; 6773 /* 6774 * No frames? Skip. 6775 */ 6776 if (atid->axq_depth == 0) 6777 continue; 6778 ath_tx_tid_sched(sc, atid); 6779 /* 6780 * XXX we could do a direct call to the TXQ 6781 * scheduler code here to optimise latency 6782 * at the expense of a REALLY deep callstack. 6783 */ 6784 ATH_TX_UNLOCK(sc); 6785 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 6786 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6787 "%s: %6D: leaking frame to TID %d\n", 6788 __func__, 6789 ni->ni_macaddr, 6790 ":", 6791 tid); 6792 return; 6793 } 6794 6795 ATH_TX_UNLOCK(sc); 6796 6797 /* 6798 * XXX nothing in the TIDs at this point? Eek. 6799 */ 6800 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6801 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 6802 __func__, 6803 ni->ni_macaddr, 6804 ":"); 6805 avp->av_recv_pspoll(ni, m); 6806 #else 6807 avp->av_recv_pspoll(ni, m); 6808 #endif /* ATH_SW_PSQ */ 6809 } 6810 6811 MODULE_VERSION(if_ath, 1); 6812 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6813 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 6814 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 6815 #endif 6816