xref: /freebsd/sys/dev/ath/if_ath.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 #include <sys/kthread.h>
64 #include <sys/taskqueue.h>
65 
66 #include <machine/bus.h>
67 
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_types.h>
72 #include <net/if_arp.h>
73 #include <net/ethernet.h>
74 #include <net/if_llc.h>
75 
76 #include <net80211/ieee80211_var.h>
77 
78 #include <net/bpf.h>
79 
80 #ifdef INET
81 #include <netinet/in.h>
82 #include <netinet/if_ether.h>
83 #endif
84 
85 #define	AR_DEBUG
86 #include <dev/ath/if_athvar.h>
87 #include <contrib/dev/ath/ah_desc.h>
88 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
89 
90 #ifdef ATH_TX99_DIAG
91 #include <dev/ath/ath_tx99/ath_tx99.h>
92 #endif
93 
94 /* unaligned little endian access */
95 #define LE_READ_2(p)							\
96 	((u_int16_t)							\
97 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
98 #define LE_READ_4(p)							\
99 	((u_int32_t)							\
100 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
101 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
102 
103 enum {
104 	ATH_LED_TX,
105 	ATH_LED_RX,
106 	ATH_LED_POLL,
107 };
108 
109 static void	ath_init(void *);
110 static void	ath_stop_locked(struct ifnet *);
111 static void	ath_stop(struct ifnet *);
112 static void	ath_start(struct ifnet *);
113 static int	ath_reset(struct ifnet *);
114 static int	ath_media_change(struct ifnet *);
115 static void	ath_watchdog(struct ifnet *);
116 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
117 static void	ath_fatal_proc(void *, int);
118 static void	ath_rxorn_proc(void *, int);
119 static void	ath_bmiss_proc(void *, int);
120 static void	ath_radar_proc(void *, int);
121 static int	ath_key_alloc(struct ieee80211com *,
122 			const struct ieee80211_key *,
123 			ieee80211_keyix *, ieee80211_keyix *);
124 static int	ath_key_delete(struct ieee80211com *,
125 			const struct ieee80211_key *);
126 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
127 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
128 static void	ath_key_update_begin(struct ieee80211com *);
129 static void	ath_key_update_end(struct ieee80211com *);
130 static void	ath_mode_init(struct ath_softc *);
131 static void	ath_setslottime(struct ath_softc *);
132 static void	ath_updateslot(struct ifnet *);
133 static int	ath_beaconq_setup(struct ath_hal *);
134 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
135 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
136 static void	ath_beacon_proc(void *, int);
137 static void	ath_bstuck_proc(void *, int);
138 static void	ath_beacon_free(struct ath_softc *);
139 static void	ath_beacon_config(struct ath_softc *);
140 static void	ath_descdma_cleanup(struct ath_softc *sc,
141 			struct ath_descdma *, ath_bufhead *);
142 static int	ath_desc_alloc(struct ath_softc *);
143 static void	ath_desc_free(struct ath_softc *);
144 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
145 static void	ath_node_free(struct ieee80211_node *);
146 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
147 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
148 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
149 			struct ieee80211_node *ni,
150 			int subtype, int rssi, u_int32_t rstamp);
151 static void	ath_setdefantenna(struct ath_softc *, u_int);
152 static void	ath_rx_proc(void *, int);
153 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
154 static int	ath_tx_setup(struct ath_softc *, int, int);
155 static int	ath_wme_update(struct ieee80211com *);
156 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
157 static void	ath_tx_cleanup(struct ath_softc *);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc_q0(void *, int);
161 static void	ath_tx_proc_q0123(void *, int);
162 static void	ath_tx_proc(void *, int);
163 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
164 static void	ath_draintxq(struct ath_softc *);
165 static void	ath_stoprecv(struct ath_softc *);
166 static int	ath_startrecv(struct ath_softc *);
167 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
168 static void	ath_next_scan(void *);
169 static void	ath_calibrate(void *);
170 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
171 static void	ath_setup_stationkey(struct ieee80211_node *);
172 static void	ath_newassoc(struct ieee80211_node *, int);
173 static int	ath_getchannels(struct ath_softc *, u_int cc,
174 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
175 static void	ath_led_event(struct ath_softc *, int);
176 static void	ath_update_txpow(struct ath_softc *);
177 
178 static int	ath_rate_setup(struct ath_softc *, u_int mode);
179 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
180 
181 static void	ath_sysctlattach(struct ath_softc *);
182 static void	ath_bpfattach(struct ath_softc *);
183 static void	ath_announce(struct ath_softc *);
184 
185 SYSCTL_DECL(_hw_ath);
186 
187 /* XXX validate sysctl values */
188 static	int ath_dwelltime = 200;		/* 5 channels/second */
189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
190 	    0, "channel dwell time (ms) for AP/station scanning");
191 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
192 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
193 	    0, "chip calibration interval (secs)");
194 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
195 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
196 	    0, "outdoor operation");
197 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
198 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
199 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
200 	    0, "extended channel mode");
201 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
202 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
203 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
204 	    0, "country code");
205 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
206 static	int ath_regdomain = 0;			/* regulatory domain */
207 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
208 	    0, "regulatory domain");
209 
210 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
211 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf,
212 	    0, "rx buffers allocated");
213 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
214 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
215 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf,
216 	    0, "tx buffers allocated");
217 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
218 
219 #ifdef AR_DEBUG
220 static	int ath_debug = 0;
221 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
222 	    0, "control debugging printfs");
223 TUNABLE_INT("hw.ath.debug", &ath_debug);
224 enum {
225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
246 	ATH_DEBUG_ANY		= 0xffffffff
247 };
248 #define	IFF_DUMPPKTS(sc, m) \
249 	((sc->sc_debug & (m)) || \
250 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define	DPRINTF(sc, m, fmt, ...) do {				\
252 	if (sc->sc_debug & (m))					\
253 		printf(fmt, __VA_ARGS__);			\
254 } while (0)
255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
257 		ath_keyprint(__func__, ix, hk, mac);		\
258 } while (0)
259 static	void ath_printrxbuf(struct ath_buf *bf, u_int ix, int);
260 static	void ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done);
261 #else
262 #define	IFF_DUMPPKTS(sc, m) \
263 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define	DPRINTF(sc, m, fmt, ...) do {				\
265 	(void) sc;						\
266 } while (0)
267 #define	KEYPRINTF(sc, k, ix, mac) do {				\
268 	(void) sc;						\
269 } while (0)
270 #endif
271 
272 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
273 
274 int
275 ath_attach(u_int16_t devid, struct ath_softc *sc)
276 {
277 	struct ifnet *ifp;
278 	struct ieee80211com *ic = &sc->sc_ic;
279 	struct ath_hal *ah = NULL;
280 	HAL_STATUS status;
281 	int error = 0, i;
282 
283 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
284 
285 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
286 	if (ifp == NULL) {
287 		device_printf(sc->sc_dev, "can not if_alloc()\n");
288 		error = ENOSPC;
289 		goto bad;
290 	}
291 
292 	/* set these up early for if_printf use */
293 	if_initname(ifp, device_get_name(sc->sc_dev),
294 		device_get_unit(sc->sc_dev));
295 
296 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
297 	if (ah == NULL) {
298 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
299 			status);
300 		error = ENXIO;
301 		goto bad;
302 	}
303 	if (ah->ah_abi != HAL_ABI_VERSION) {
304 		if_printf(ifp, "HAL ABI mismatch detected "
305 			"(HAL:0x%x != driver:0x%x)\n",
306 			ah->ah_abi, HAL_ABI_VERSION);
307 		error = ENXIO;
308 		goto bad;
309 	}
310 	sc->sc_ah = ah;
311 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
312 
313 	/*
314 	 * Check if the MAC has multi-rate retry support.
315 	 * We do this by trying to setup a fake extended
316 	 * descriptor.  MAC's that don't have support will
317 	 * return false w/o doing anything.  MAC's that do
318 	 * support it will return true w/o doing anything.
319 	 */
320 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
321 
322 	/*
323 	 * Check if the device has hardware counters for PHY
324 	 * errors.  If so we need to enable the MIB interrupt
325 	 * so we can act on stat triggers.
326 	 */
327 	if (ath_hal_hwphycounters(ah))
328 		sc->sc_needmib = 1;
329 
330 	/*
331 	 * Get the hardware key cache size.
332 	 */
333 	sc->sc_keymax = ath_hal_keycachesize(ah);
334 	if (sc->sc_keymax > ATH_KEYMAX) {
335 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
336 			ATH_KEYMAX, sc->sc_keymax);
337 		sc->sc_keymax = ATH_KEYMAX;
338 	}
339 	/*
340 	 * Reset the key cache since some parts do not
341 	 * reset the contents on initial power up.
342 	 */
343 	for (i = 0; i < sc->sc_keymax; i++)
344 		ath_hal_keyreset(ah, i);
345 	/*
346 	 * Mark key cache slots associated with global keys
347 	 * as in use.  If we knew TKIP was not to be used we
348 	 * could leave the +32, +64, and +32+64 slots free.
349 	 * XXX only for splitmic.
350 	 */
351 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
352 		setbit(sc->sc_keymap, i);
353 		setbit(sc->sc_keymap, i+32);
354 		setbit(sc->sc_keymap, i+64);
355 		setbit(sc->sc_keymap, i+32+64);
356 	}
357 
358 	/*
359 	 * Collect the channel list using the default country
360 	 * code and including outdoor channels.  The 802.11 layer
361 	 * is resposible for filtering this list based on settings
362 	 * like the phy mode.
363 	 */
364 	error = ath_getchannels(sc, ath_countrycode,
365 			ath_outdoor, ath_xchanmode);
366 	if (error != 0)
367 		goto bad;
368 
369 	/*
370 	 * Setup rate tables for all potential media types.
371 	 */
372 	ath_rate_setup(sc, IEEE80211_MODE_11A);
373 	ath_rate_setup(sc, IEEE80211_MODE_11B);
374 	ath_rate_setup(sc, IEEE80211_MODE_11G);
375 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
376 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
377 	/* NB: setup here so ath_rate_update is happy */
378 	ath_setcurmode(sc, IEEE80211_MODE_11A);
379 
380 	/*
381 	 * Allocate tx+rx descriptors and populate the lists.
382 	 */
383 	error = ath_desc_alloc(sc);
384 	if (error != 0) {
385 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
386 		goto bad;
387 	}
388 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
389 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
390 	callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
391 
392 	ATH_TXBUF_LOCK_INIT(sc);
393 
394 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
395 		taskqueue_thread_enqueue, &sc->sc_tq);
396 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
397 		"%s taskq", ifp->if_xname);
398 
399 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
400 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
401 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
402 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
403 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
404 
405 	/*
406 	 * Allocate hardware transmit queues: one queue for
407 	 * beacon frames and one data queue for each QoS
408 	 * priority.  Note that the hal handles reseting
409 	 * these queues at the needed time.
410 	 *
411 	 * XXX PS-Poll
412 	 */
413 	sc->sc_bhalq = ath_beaconq_setup(ah);
414 	if (sc->sc_bhalq == (u_int) -1) {
415 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
416 		error = EIO;
417 		goto bad2;
418 	}
419 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
420 	if (sc->sc_cabq == NULL) {
421 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
422 		error = EIO;
423 		goto bad2;
424 	}
425 	/* NB: insure BK queue is the lowest priority h/w queue */
426 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
427 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
428 			ieee80211_wme_acnames[WME_AC_BK]);
429 		error = EIO;
430 		goto bad2;
431 	}
432 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
433 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
434 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
435 		/*
436 		 * Not enough hardware tx queues to properly do WME;
437 		 * just punt and assign them all to the same h/w queue.
438 		 * We could do a better job of this if, for example,
439 		 * we allocate queues when we switch from station to
440 		 * AP mode.
441 		 */
442 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
443 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
444 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
445 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
446 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
447 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
448 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
449 	}
450 
451 	/*
452 	 * Special case certain configurations.  Note the
453 	 * CAB queue is handled by these specially so don't
454 	 * include them when checking the txq setup mask.
455 	 */
456 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
457 	case 0x01:
458 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
459 		break;
460 	case 0x0f:
461 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
462 		break;
463 	default:
464 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
465 		break;
466 	}
467 
468 	/*
469 	 * Setup rate control.  Some rate control modules
470 	 * call back to change the anntena state so expose
471 	 * the necessary entry points.
472 	 * XXX maybe belongs in struct ath_ratectrl?
473 	 */
474 	sc->sc_setdefantenna = ath_setdefantenna;
475 	sc->sc_rc = ath_rate_attach(sc);
476 	if (sc->sc_rc == NULL) {
477 		error = EIO;
478 		goto bad2;
479 	}
480 
481 	sc->sc_blinking = 0;
482 	sc->sc_ledstate = 1;
483 	sc->sc_ledon = 0;			/* low true */
484 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
485 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
486 	/*
487 	 * Auto-enable soft led processing for IBM cards and for
488 	 * 5211 minipci cards.  Users can also manually enable/disable
489 	 * support with a sysctl.
490 	 */
491 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
492 	if (sc->sc_softled) {
493 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
494 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
495 	}
496 
497 	ifp->if_softc = sc;
498 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
499 	ifp->if_start = ath_start;
500 	ifp->if_watchdog = ath_watchdog;
501 	ifp->if_ioctl = ath_ioctl;
502 	ifp->if_init = ath_init;
503 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
504 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
505 	IFQ_SET_READY(&ifp->if_snd);
506 
507 	ic->ic_ifp = ifp;
508 	ic->ic_reset = ath_reset;
509 	ic->ic_newassoc = ath_newassoc;
510 	ic->ic_updateslot = ath_updateslot;
511 	ic->ic_wme.wme_update = ath_wme_update;
512 	/* XXX not right but it's not used anywhere important */
513 	ic->ic_phytype = IEEE80211_T_OFDM;
514 	ic->ic_opmode = IEEE80211_M_STA;
515 	ic->ic_caps =
516 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
517 		| IEEE80211_C_HOSTAP		/* hostap mode */
518 		| IEEE80211_C_MONITOR		/* monitor mode */
519 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
520 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
521 		| IEEE80211_C_SHSLOT		/* short slot time supported */
522 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
523 		;
524 	/*
525 	 * Query the hal to figure out h/w crypto support.
526 	 */
527 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
528 		ic->ic_caps |= IEEE80211_C_WEP;
529 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
530 		ic->ic_caps |= IEEE80211_C_AES;
531 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
532 		ic->ic_caps |= IEEE80211_C_AES_CCM;
533 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
534 		ic->ic_caps |= IEEE80211_C_CKIP;
535 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
536 		ic->ic_caps |= IEEE80211_C_TKIP;
537 		/*
538 		 * Check if h/w does the MIC and/or whether the
539 		 * separate key cache entries are required to
540 		 * handle both tx+rx MIC keys.
541 		 */
542 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
543 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
544 		if (ath_hal_tkipsplit(ah))
545 			sc->sc_splitmic = 1;
546 	}
547 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
548 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
549 	/*
550 	 * TPC support can be done either with a global cap or
551 	 * per-packet support.  The latter is not available on
552 	 * all parts.  We're a bit pedantic here as all parts
553 	 * support a global cap.
554 	 */
555 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
556 		ic->ic_caps |= IEEE80211_C_TXPMGT;
557 
558 	/*
559 	 * Mark WME capability only if we have sufficient
560 	 * hardware queues to do proper priority scheduling.
561 	 */
562 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
563 		ic->ic_caps |= IEEE80211_C_WME;
564 	/*
565 	 * Check for misc other capabilities.
566 	 */
567 	if (ath_hal_hasbursting(ah))
568 		ic->ic_caps |= IEEE80211_C_BURST;
569 
570 	/*
571 	 * Indicate we need the 802.11 header padded to a
572 	 * 32-bit boundary for 4-address and QoS frames.
573 	 */
574 	ic->ic_flags |= IEEE80211_F_DATAPAD;
575 
576 	/*
577 	 * Query the hal about antenna support.
578 	 */
579 	sc->sc_defant = ath_hal_getdefantenna(ah);
580 
581 	/*
582 	 * Not all chips have the VEOL support we want to
583 	 * use with IBSS beacons; check here for it.
584 	 */
585 	sc->sc_hasveol = ath_hal_hasveol(ah);
586 
587 	/* get mac address from hardware */
588 	ath_hal_getmac(ah, ic->ic_myaddr);
589 
590 	/* call MI attach routine. */
591 	ieee80211_ifattach(ic);
592 	sc->sc_opmode = ic->ic_opmode;
593 	/* override default methods */
594 	ic->ic_node_alloc = ath_node_alloc;
595 	sc->sc_node_free = ic->ic_node_free;
596 	ic->ic_node_free = ath_node_free;
597 	ic->ic_node_getrssi = ath_node_getrssi;
598 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
599 	ic->ic_recv_mgmt = ath_recv_mgmt;
600 	sc->sc_newstate = ic->ic_newstate;
601 	ic->ic_newstate = ath_newstate;
602 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
603 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
604 	ic->ic_crypto.cs_key_delete = ath_key_delete;
605 	ic->ic_crypto.cs_key_set = ath_key_set;
606 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
607 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
608 	/* complete initialization */
609 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
610 
611 	ath_bpfattach(sc);
612 	/*
613 	 * Setup dynamic sysctl's now that country code and
614 	 * regdomain are available from the hal.
615 	 */
616 	ath_sysctlattach(sc);
617 
618 	if (bootverbose)
619 		ieee80211_announce(ic);
620 	ath_announce(sc);
621 	return 0;
622 bad2:
623 	ath_tx_cleanup(sc);
624 	ath_desc_free(sc);
625 bad:
626 	if (ah)
627 		ath_hal_detach(ah);
628 	if (ifp != NULL)
629 		if_free(ifp);
630 	sc->sc_invalid = 1;
631 	return error;
632 }
633 
634 int
635 ath_detach(struct ath_softc *sc)
636 {
637 	struct ifnet *ifp = sc->sc_ifp;
638 
639 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
640 		__func__, ifp->if_flags);
641 
642 	ath_stop(ifp);
643 	bpfdetach(ifp);
644 	/*
645 	 * NB: the order of these is important:
646 	 * o call the 802.11 layer before detaching the hal to
647 	 *   insure callbacks into the driver to delete global
648 	 *   key cache entries can be handled
649 	 * o reclaim the tx queue data structures after calling
650 	 *   the 802.11 layer as we'll get called back to reclaim
651 	 *   node state and potentially want to use them
652 	 * o to cleanup the tx queues the hal is called, so detach
653 	 *   it last
654 	 * Other than that, it's straightforward...
655 	 */
656 	ieee80211_ifdetach(&sc->sc_ic);
657 #ifdef ATH_TX99_DIAG
658 	if (sc->sc_tx99 != NULL)
659 		sc->sc_tx99->detach(sc->sc_tx99);
660 #endif
661 	taskqueue_free(sc->sc_tq);
662 	ath_rate_detach(sc->sc_rc);
663 	ath_desc_free(sc);
664 	ath_tx_cleanup(sc);
665 	ath_hal_detach(sc->sc_ah);
666 	if_free(ifp);
667 
668 	return 0;
669 }
670 
671 void
672 ath_suspend(struct ath_softc *sc)
673 {
674 	struct ifnet *ifp = sc->sc_ifp;
675 
676 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
677 		__func__, ifp->if_flags);
678 
679 	ath_stop(ifp);
680 }
681 
682 void
683 ath_resume(struct ath_softc *sc)
684 {
685 	struct ifnet *ifp = sc->sc_ifp;
686 
687 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
688 		__func__, ifp->if_flags);
689 
690 	if (ifp->if_flags & IFF_UP) {
691 		ath_init(sc);
692 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
693 			ath_start(ifp);
694 	}
695 	if (sc->sc_softled) {
696 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
697 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
698 	}
699 }
700 
701 void
702 ath_shutdown(struct ath_softc *sc)
703 {
704 	struct ifnet *ifp = sc->sc_ifp;
705 
706 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
707 		__func__, ifp->if_flags);
708 
709 	ath_stop(ifp);
710 }
711 
712 /*
713  * Interrupt handler.  Most of the actual processing is deferred.
714  */
715 void
716 ath_intr(void *arg)
717 {
718 	struct ath_softc *sc = arg;
719 	struct ifnet *ifp = sc->sc_ifp;
720 	struct ath_hal *ah = sc->sc_ah;
721 	HAL_INT status;
722 
723 	if (sc->sc_invalid) {
724 		/*
725 		 * The hardware is not ready/present, don't touch anything.
726 		 * Note this can happen early on if the IRQ is shared.
727 		 */
728 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
729 		return;
730 	}
731 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
732 		return;
733 	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
734 	    IFF_DRV_RUNNING))) {
735 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
736 			__func__, ifp->if_flags);
737 		ath_hal_getisr(ah, &status);	/* clear ISR */
738 		ath_hal_intrset(ah, 0);		/* disable further intr's */
739 		return;
740 	}
741 	/*
742 	 * Figure out the reason(s) for the interrupt.  Note
743 	 * that the hal returns a pseudo-ISR that may include
744 	 * bits we haven't explicitly enabled so we mask the
745 	 * value to insure we only process bits we requested.
746 	 */
747 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
748 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
749 	status &= sc->sc_imask;			/* discard unasked for bits */
750 	if (status & HAL_INT_FATAL) {
751 		sc->sc_stats.ast_hardware++;
752 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
753 		ath_fatal_proc(sc, 0);
754 	} else if (status & HAL_INT_RXORN) {
755 		sc->sc_stats.ast_rxorn++;
756 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
757 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
758 	} else {
759 		if (status & HAL_INT_SWBA) {
760 			/*
761 			 * Software beacon alert--time to send a beacon.
762 			 * Handle beacon transmission directly; deferring
763 			 * this is too slow to meet timing constraints
764 			 * under load.
765 			 */
766 			ath_beacon_proc(sc, 0);
767 		}
768 		if (status & HAL_INT_RXEOL) {
769 			/*
770 			 * NB: the hardware should re-read the link when
771 			 *     RXE bit is written, but it doesn't work at
772 			 *     least on older hardware revs.
773 			 */
774 			sc->sc_stats.ast_rxeol++;
775 			sc->sc_rxlink = NULL;
776 		}
777 		if (status & HAL_INT_TXURN) {
778 			sc->sc_stats.ast_txurn++;
779 			/* bump tx trigger level */
780 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
781 		}
782 		if (status & HAL_INT_RX)
783 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
784 		if (status & HAL_INT_TX)
785 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
786 		if (status & HAL_INT_BMISS) {
787 			sc->sc_stats.ast_bmiss++;
788 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
789 		}
790 		if (status & HAL_INT_MIB) {
791 			sc->sc_stats.ast_mib++;
792 			/*
793 			 * Disable interrupts until we service the MIB
794 			 * interrupt; otherwise it will continue to fire.
795 			 */
796 			ath_hal_intrset(ah, 0);
797 			/*
798 			 * Let the hal handle the event.  We assume it will
799 			 * clear whatever condition caused the interrupt.
800 			 */
801 			ath_hal_mibevent(ah, &sc->sc_halstats);
802 			ath_hal_intrset(ah, sc->sc_imask);
803 		}
804 	}
805 }
806 
807 static void
808 ath_fatal_proc(void *arg, int pending)
809 {
810 	struct ath_softc *sc = arg;
811 	struct ifnet *ifp = sc->sc_ifp;
812 	u_int32_t *state;
813 	u_int32_t len;
814 
815 	if_printf(ifp, "hardware error; resetting\n");
816 	/*
817 	 * Fatal errors are unrecoverable.  Typically these
818 	 * are caused by DMA errors.  Collect h/w state from
819 	 * the hal so we can diagnose what's going on.
820 	 */
821 	if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) {
822 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
823 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
824 		    state[0], state[1] , state[2], state[3],
825 		    state[4], state[5]);
826 	}
827 	ath_reset(ifp);
828 }
829 
830 static void
831 ath_rxorn_proc(void *arg, int pending)
832 {
833 	struct ath_softc *sc = arg;
834 	struct ifnet *ifp = sc->sc_ifp;
835 
836 	if_printf(ifp, "rx FIFO overrun; resetting\n");
837 	ath_reset(ifp);
838 }
839 
840 static void
841 ath_bmiss_proc(void *arg, int pending)
842 {
843 	struct ath_softc *sc = arg;
844 	struct ieee80211com *ic = &sc->sc_ic;
845 
846 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
847 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
848 		("unexpect operating mode %u", ic->ic_opmode));
849 	if (ic->ic_state == IEEE80211_S_RUN) {
850 		u_int64_t lastrx = sc->sc_lastrx;
851 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
852 		u_int bmisstimeout =
853 			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
854 
855 		DPRINTF(sc, ATH_DEBUG_BEACON,
856 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
857 		    __func__, (unsigned long long) tsf,
858 		    (unsigned long long)(tsf - lastrx),
859 		    (unsigned long long) lastrx, bmisstimeout);
860 		/*
861 		 * Workaround phantom bmiss interrupts by sanity-checking
862 		 * the time of our last rx'd frame.  If it is within the
863 		 * beacon miss interval then ignore the interrupt.  If it's
864 		 * truly a bmiss we'll get another interrupt soon and that'll
865 		 * be dispatched up for processing.
866 		 */
867 		if (tsf - lastrx > bmisstimeout) {
868 			NET_LOCK_GIANT();
869 			ieee80211_beacon_miss(ic);
870 			NET_UNLOCK_GIANT();
871 		} else
872 			sc->sc_stats.ast_bmiss_phantom++;
873 	}
874 }
875 
876 static void
877 ath_radar_proc(void *arg, int pending)
878 {
879 	struct ath_softc *sc = arg;
880 	struct ifnet *ifp = sc->sc_ifp;
881 	struct ath_hal *ah = sc->sc_ah;
882 	HAL_CHANNEL hchan;
883 
884 	if (ath_hal_procdfs(ah, &hchan)) {
885 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
886 			hchan.channel, hchan.channelFlags, hchan.privFlags);
887 		/*
888 		 * Initiate channel change.
889 		 */
890 		/* XXX not yet */
891 	}
892 }
893 
894 static u_int
895 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
896 {
897 #define	N(a)	(sizeof(a) / sizeof(a[0]))
898 	static const u_int modeflags[] = {
899 		0,			/* IEEE80211_MODE_AUTO */
900 		CHANNEL_A,		/* IEEE80211_MODE_11A */
901 		CHANNEL_B,		/* IEEE80211_MODE_11B */
902 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
903 		0,			/* IEEE80211_MODE_FH */
904 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
905 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
906 	};
907 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
908 
909 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
910 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
911 	return modeflags[mode];
912 #undef N
913 }
914 
915 static void
916 ath_init(void *arg)
917 {
918 	struct ath_softc *sc = (struct ath_softc *) arg;
919 	struct ieee80211com *ic = &sc->sc_ic;
920 	struct ifnet *ifp = sc->sc_ifp;
921 	struct ath_hal *ah = sc->sc_ah;
922 	HAL_STATUS status;
923 
924 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
925 		__func__, ifp->if_flags);
926 
927 	ATH_LOCK(sc);
928 	/*
929 	 * Stop anything previously setup.  This is safe
930 	 * whether this is the first time through or not.
931 	 */
932 	ath_stop_locked(ifp);
933 
934 	/*
935 	 * The basic interface to setting the hardware in a good
936 	 * state is ``reset''.  On return the hardware is known to
937 	 * be powered up and with interrupts disabled.  This must
938 	 * be followed by initialization of the appropriate bits
939 	 * and then setup of the interrupt mask.
940 	 */
941 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
942 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
943 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
944 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
945 			status);
946 		goto done;
947 	}
948 
949 	/*
950 	 * This is needed only to setup initial state
951 	 * but it's best done after a reset.
952 	 */
953 	ath_update_txpow(sc);
954 	/*
955 	 * Likewise this is set during reset so update
956 	 * state cached in the driver.
957 	 */
958 	sc->sc_diversity = ath_hal_getdiversity(ah);
959 	sc->sc_calinterval = 1;
960 	sc->sc_caltries = 0;
961 
962 	/*
963 	 * Setup the hardware after reset: the key cache
964 	 * is filled as needed and the receive engine is
965 	 * set going.  Frame transmit is handled entirely
966 	 * in the frame output path; there's nothing to do
967 	 * here except setup the interrupt mask.
968 	 */
969 	if (ath_startrecv(sc) != 0) {
970 		if_printf(ifp, "unable to start recv logic\n");
971 		goto done;
972 	}
973 
974 	/*
975 	 * Enable interrupts.
976 	 */
977 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
978 		  | HAL_INT_RXEOL | HAL_INT_RXORN
979 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
980 	/*
981 	 * Enable MIB interrupts when there are hardware phy counters.
982 	 * Note we only do this (at the moment) for station mode.
983 	 */
984 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
985 		sc->sc_imask |= HAL_INT_MIB;
986 	ath_hal_intrset(ah, sc->sc_imask);
987 
988 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
989 	ic->ic_state = IEEE80211_S_INIT;
990 
991 	/*
992 	 * The hardware should be ready to go now so it's safe
993 	 * to kick the 802.11 state machine as it's likely to
994 	 * immediately call back to us to send mgmt frames.
995 	 */
996 	ath_chan_change(sc, ic->ic_curchan);
997 #ifdef ATH_TX99_DIAG
998 	if (sc->sc_tx99 != NULL)
999 		sc->sc_tx99->start(sc->sc_tx99);
1000 	else
1001 #endif
1002 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1003 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1004 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1005 	} else
1006 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1007 done:
1008 	ATH_UNLOCK(sc);
1009 }
1010 
1011 static void
1012 ath_stop_locked(struct ifnet *ifp)
1013 {
1014 	struct ath_softc *sc = ifp->if_softc;
1015 	struct ieee80211com *ic = &sc->sc_ic;
1016 	struct ath_hal *ah = sc->sc_ah;
1017 
1018 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1019 		__func__, sc->sc_invalid, ifp->if_flags);
1020 
1021 	ATH_LOCK_ASSERT(sc);
1022 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1023 		/*
1024 		 * Shutdown the hardware and driver:
1025 		 *    reset 802.11 state machine
1026 		 *    turn off timers
1027 		 *    disable interrupts
1028 		 *    turn off the radio
1029 		 *    clear transmit machinery
1030 		 *    clear receive machinery
1031 		 *    drain and release tx queues
1032 		 *    reclaim beacon resources
1033 		 *    power down hardware
1034 		 *
1035 		 * Note that some of this work is not possible if the
1036 		 * hardware is gone (invalid).
1037 		 */
1038 #ifdef ATH_TX99_DIAG
1039 		if (sc->sc_tx99 != NULL)
1040 			sc->sc_tx99->stop(sc->sc_tx99);
1041 #endif
1042 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1043 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1044 		ifp->if_timer = 0;
1045 		if (!sc->sc_invalid) {
1046 			if (sc->sc_softled) {
1047 				callout_stop(&sc->sc_ledtimer);
1048 				ath_hal_gpioset(ah, sc->sc_ledpin,
1049 					!sc->sc_ledon);
1050 				sc->sc_blinking = 0;
1051 			}
1052 			ath_hal_intrset(ah, 0);
1053 		}
1054 		ath_draintxq(sc);
1055 		if (!sc->sc_invalid) {
1056 			ath_stoprecv(sc);
1057 			ath_hal_phydisable(ah);
1058 		} else
1059 			sc->sc_rxlink = NULL;
1060 		IFQ_DRV_PURGE(&ifp->if_snd);
1061 		ath_beacon_free(sc);
1062 	}
1063 }
1064 
1065 static void
1066 ath_stop(struct ifnet *ifp)
1067 {
1068 	struct ath_softc *sc = ifp->if_softc;
1069 
1070 	ATH_LOCK(sc);
1071 	ath_stop_locked(ifp);
1072 	if (!sc->sc_invalid) {
1073 		/*
1074 		 * Set the chip in full sleep mode.  Note that we are
1075 		 * careful to do this only when bringing the interface
1076 		 * completely to a stop.  When the chip is in this state
1077 		 * it must be carefully woken up or references to
1078 		 * registers in the PCI clock domain may freeze the bus
1079 		 * (and system).  This varies by chip and is mostly an
1080 		 * issue with newer parts that go to sleep more quickly.
1081 		 */
1082 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1083 	}
1084 	ATH_UNLOCK(sc);
1085 }
1086 
1087 /*
1088  * Reset the hardware w/o losing operational state.  This is
1089  * basically a more efficient way of doing ath_stop, ath_init,
1090  * followed by state transitions to the current 802.11
1091  * operational state.  Used to recover from various errors and
1092  * to reset or reload hardware state.
1093  */
1094 static int
1095 ath_reset(struct ifnet *ifp)
1096 {
1097 	struct ath_softc *sc = ifp->if_softc;
1098 	struct ieee80211com *ic = &sc->sc_ic;
1099 	struct ath_hal *ah = sc->sc_ah;
1100 	struct ieee80211_channel *c;
1101 	HAL_STATUS status;
1102 
1103 	/*
1104 	 * Convert to a HAL channel description with the flags
1105 	 * constrained to reflect the current operating mode.
1106 	 */
1107 	c = ic->ic_curchan;
1108 	sc->sc_curchan.channel = c->ic_freq;
1109 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1110 
1111 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1112 	ath_draintxq(sc);		/* stop xmit side */
1113 	ath_stoprecv(sc);		/* stop recv side */
1114 	/* NB: indicate channel change so we do a full reset */
1115 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1116 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1117 			__func__, status);
1118 	ath_update_txpow(sc);		/* update tx power state */
1119 	sc->sc_diversity = ath_hal_getdiversity(ah);
1120 	sc->sc_calinterval = 1;
1121 	sc->sc_caltries = 0;
1122 	/*
1123 	 * We may be doing a reset in response to an ioctl
1124 	 * that changes the channel so update any state that
1125 	 * might change as a result.
1126 	 */
1127 	ath_chan_change(sc, c);
1128 	if (ath_startrecv(sc) != 0)	/* restart recv */
1129 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1130 	if (ic->ic_state == IEEE80211_S_RUN)
1131 		ath_beacon_config(sc);	/* restart beacons */
1132 	ath_hal_intrset(ah, sc->sc_imask);
1133 
1134 	ath_start(ifp);			/* restart xmit */
1135 	return 0;
1136 }
1137 
1138 static void
1139 ath_start(struct ifnet *ifp)
1140 {
1141 	struct ath_softc *sc = ifp->if_softc;
1142 	struct ath_hal *ah = sc->sc_ah;
1143 	struct ieee80211com *ic = &sc->sc_ic;
1144 	struct ieee80211_node *ni;
1145 	struct ath_buf *bf;
1146 	struct mbuf *m;
1147 	struct ieee80211_frame *wh;
1148 	struct ether_header *eh;
1149 
1150 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1151 		return;
1152 	for (;;) {
1153 		/*
1154 		 * Grab a TX buffer and associated resources.
1155 		 */
1156 		ATH_TXBUF_LOCK(sc);
1157 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1158 		if (bf != NULL)
1159 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1160 		ATH_TXBUF_UNLOCK(sc);
1161 		if (bf == NULL) {
1162 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1163 				__func__);
1164 			sc->sc_stats.ast_tx_qstop++;
1165 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1166 			break;
1167 		}
1168 		/*
1169 		 * Poll the management queue for frames; they
1170 		 * have priority over normal data frames.
1171 		 */
1172 		IF_DEQUEUE(&ic->ic_mgtq, m);
1173 		if (m == NULL) {
1174 			/*
1175 			 * No data frames go out unless we're associated.
1176 			 */
1177 			if (ic->ic_state != IEEE80211_S_RUN) {
1178 				DPRINTF(sc, ATH_DEBUG_XMIT,
1179 				    "%s: discard data packet, state %s\n",
1180 				    __func__,
1181 				    ieee80211_state_name[ic->ic_state]);
1182 				sc->sc_stats.ast_tx_discard++;
1183 				ATH_TXBUF_LOCK(sc);
1184 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1185 				ATH_TXBUF_UNLOCK(sc);
1186 				break;
1187 			}
1188 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1189 			if (m == NULL) {
1190 				ATH_TXBUF_LOCK(sc);
1191 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1192 				ATH_TXBUF_UNLOCK(sc);
1193 				break;
1194 			}
1195 			/*
1196 			 * Find the node for the destination so we can do
1197 			 * things like power save and fast frames aggregation.
1198 			 */
1199 			if (m->m_len < sizeof(struct ether_header) &&
1200 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1201 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1202 				ni = NULL;
1203 				goto bad;
1204 			}
1205 			eh = mtod(m, struct ether_header *);
1206 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1207 			if (ni == NULL) {
1208 				/* NB: ieee80211_find_txnode does stat+msg */
1209 				m_freem(m);
1210 				goto bad;
1211 			}
1212 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1213 			    (m->m_flags & M_PWR_SAV) == 0) {
1214 				/*
1215 				 * Station in power save mode; pass the frame
1216 				 * to the 802.11 layer and continue.  We'll get
1217 				 * the frame back when the time is right.
1218 				 */
1219 				ieee80211_pwrsave(ic, ni, m);
1220 				goto reclaim;
1221 			}
1222 			/* calculate priority so we can find the tx queue */
1223 			if (ieee80211_classify(ic, m, ni)) {
1224 				DPRINTF(sc, ATH_DEBUG_XMIT,
1225 					"%s: discard, classification failure\n",
1226 					__func__);
1227 				m_freem(m);
1228 				goto bad;
1229 			}
1230 			ifp->if_opackets++;
1231 			BPF_MTAP(ifp, m);
1232 			/*
1233 			 * Encapsulate the packet in prep for transmission.
1234 			 */
1235 			m = ieee80211_encap(ic, m, ni);
1236 			if (m == NULL) {
1237 				DPRINTF(sc, ATH_DEBUG_XMIT,
1238 					"%s: encapsulation failure\n",
1239 					__func__);
1240 				sc->sc_stats.ast_tx_encap++;
1241 				goto bad;
1242 			}
1243 		} else {
1244 			/*
1245 			 * Hack!  The referenced node pointer is in the
1246 			 * rcvif field of the packet header.  This is
1247 			 * placed there by ieee80211_mgmt_output because
1248 			 * we need to hold the reference with the frame
1249 			 * and there's no other way (other than packet
1250 			 * tags which we consider too expensive to use)
1251 			 * to pass it along.
1252 			 */
1253 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1254 			m->m_pkthdr.rcvif = NULL;
1255 
1256 			wh = mtod(m, struct ieee80211_frame *);
1257 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1258 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1259 				/* fill time stamp */
1260 				u_int64_t tsf;
1261 				u_int32_t *tstamp;
1262 
1263 				tsf = ath_hal_gettsf64(ah);
1264 				/* XXX: adjust 100us delay to xmit */
1265 				tsf += 100;
1266 				tstamp = (u_int32_t *)&wh[1];
1267 				tstamp[0] = htole32(tsf & 0xffffffff);
1268 				tstamp[1] = htole32(tsf >> 32);
1269 			}
1270 			sc->sc_stats.ast_tx_mgmt++;
1271 		}
1272 
1273 		if (ath_tx_start(sc, ni, bf, m)) {
1274 	bad:
1275 			ifp->if_oerrors++;
1276 	reclaim:
1277 			ATH_TXBUF_LOCK(sc);
1278 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1279 			ATH_TXBUF_UNLOCK(sc);
1280 			if (ni != NULL)
1281 				ieee80211_free_node(ni);
1282 			continue;
1283 		}
1284 
1285 		sc->sc_tx_timer = 5;
1286 		ifp->if_timer = 1;
1287 	}
1288 }
1289 
1290 static int
1291 ath_media_change(struct ifnet *ifp)
1292 {
1293 #define	IS_UP(ifp) \
1294 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1295 	int error;
1296 
1297 	error = ieee80211_media_change(ifp);
1298 	if (error == ENETRESET) {
1299 		struct ath_softc *sc = ifp->if_softc;
1300 		struct ieee80211com *ic = &sc->sc_ic;
1301 
1302 		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1303 			/*
1304 			 * Adhoc demo mode is just ibss mode w/o beacons
1305 			 * (mostly).  The hal knows nothing about it;
1306 			 * tell it we're operating in ibss mode.
1307 			 */
1308 			sc->sc_opmode = HAL_M_IBSS;
1309 		} else
1310 			sc->sc_opmode = ic->ic_opmode;
1311 		if (IS_UP(ifp))
1312 			ath_init(ifp->if_softc);	/* XXX lose error */
1313 		error = 0;
1314 	}
1315 	return error;
1316 #undef IS_UP
1317 }
1318 
1319 #ifdef AR_DEBUG
1320 static void
1321 ath_keyprint(const char *tag, u_int ix,
1322 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1323 {
1324 	static const char *ciphers[] = {
1325 		"WEP",
1326 		"AES-OCB",
1327 		"AES-CCM",
1328 		"CKIP",
1329 		"TKIP",
1330 		"CLR",
1331 	};
1332 	int i, n;
1333 
1334 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1335 	for (i = 0, n = hk->kv_len; i < n; i++)
1336 		printf("%02x", hk->kv_val[i]);
1337 	printf(" mac %s", ether_sprintf(mac));
1338 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1339 		printf(" mic ");
1340 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1341 			printf("%02x", hk->kv_mic[i]);
1342 	}
1343 	printf("\n");
1344 }
1345 #endif
1346 
1347 /*
1348  * Set a TKIP key into the hardware.  This handles the
1349  * potential distribution of key state to multiple key
1350  * cache slots for TKIP.
1351  */
1352 static int
1353 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1354 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1355 {
1356 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1357 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1358 	struct ath_hal *ah = sc->sc_ah;
1359 
1360 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1361 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1362 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1363 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1364 		/*
1365 		 * TX key goes at first index, RX key at the rx index.
1366 		 * The hal handles the MIC keys at index+64.
1367 		 */
1368 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1369 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1370 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1371 			return 0;
1372 
1373 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1374 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1375 		/* XXX delete tx key on failure? */
1376 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1377 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1378 		/*
1379 		 * TX/RX key goes at first index.
1380 		 * The hal handles the MIC keys are index+64.
1381 		 */
1382 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1383 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1384 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1385 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1386 	}
1387 	return 0;
1388 #undef IEEE80211_KEY_XR
1389 }
1390 
1391 /*
1392  * Set a net80211 key into the hardware.  This handles the
1393  * potential distribution of key state to multiple key
1394  * cache slots for TKIP with hardware MIC support.
1395  */
1396 static int
1397 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1398 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1399 	struct ieee80211_node *bss)
1400 {
1401 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1402 	static const u_int8_t ciphermap[] = {
1403 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1404 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1405 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1406 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1407 		(u_int8_t) -1,		/* 4 is not allocated */
1408 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1409 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1410 	};
1411 	struct ath_hal *ah = sc->sc_ah;
1412 	const struct ieee80211_cipher *cip = k->wk_cipher;
1413 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1414 	const u_int8_t *mac;
1415 	HAL_KEYVAL hk;
1416 
1417 	memset(&hk, 0, sizeof(hk));
1418 	/*
1419 	 * Software crypto uses a "clear key" so non-crypto
1420 	 * state kept in the key cache are maintained and
1421 	 * so that rx frames have an entry to match.
1422 	 */
1423 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1424 		KASSERT(cip->ic_cipher < N(ciphermap),
1425 			("invalid cipher type %u", cip->ic_cipher));
1426 		hk.kv_type = ciphermap[cip->ic_cipher];
1427 		hk.kv_len = k->wk_keylen;
1428 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1429 	} else
1430 		hk.kv_type = HAL_CIPHER_CLR;
1431 
1432 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1433 		/*
1434 		 * Group keys on hardware that supports multicast frame
1435 		 * key search use a mac that is the sender's address with
1436 		 * the high bit set instead of the app-specified address.
1437 		 */
1438 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1439 		gmac[0] |= 0x80;
1440 		mac = gmac;
1441 	} else
1442 		mac = mac0;
1443 
1444 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1445 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1446 	    sc->sc_splitmic) {
1447 		return ath_keyset_tkip(sc, k, &hk, mac);
1448 	} else {
1449 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1450 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1451 	}
1452 #undef N
1453 }
1454 
1455 /*
1456  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1457  * each key, one for decrypt/encrypt and the other for the MIC.
1458  */
1459 static u_int16_t
1460 key_alloc_2pair(struct ath_softc *sc,
1461 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1462 {
1463 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1464 	u_int i, keyix;
1465 
1466 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1467 	/* XXX could optimize */
1468 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1469 		u_int8_t b = sc->sc_keymap[i];
1470 		if (b != 0xff) {
1471 			/*
1472 			 * One or more slots in this byte are free.
1473 			 */
1474 			keyix = i*NBBY;
1475 			while (b & 1) {
1476 		again:
1477 				keyix++;
1478 				b >>= 1;
1479 			}
1480 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1481 			if (isset(sc->sc_keymap, keyix+32) ||
1482 			    isset(sc->sc_keymap, keyix+64) ||
1483 			    isset(sc->sc_keymap, keyix+32+64)) {
1484 				/* full pair unavailable */
1485 				/* XXX statistic */
1486 				if (keyix == (i+1)*NBBY) {
1487 					/* no slots were appropriate, advance */
1488 					continue;
1489 				}
1490 				goto again;
1491 			}
1492 			setbit(sc->sc_keymap, keyix);
1493 			setbit(sc->sc_keymap, keyix+64);
1494 			setbit(sc->sc_keymap, keyix+32);
1495 			setbit(sc->sc_keymap, keyix+32+64);
1496 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1497 				"%s: key pair %u,%u %u,%u\n",
1498 				__func__, keyix, keyix+64,
1499 				keyix+32, keyix+32+64);
1500 			*txkeyix = keyix;
1501 			*rxkeyix = keyix+32;
1502 			return 1;
1503 		}
1504 	}
1505 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1506 	return 0;
1507 #undef N
1508 }
1509 
1510 /*
1511  * Allocate a single key cache slot.
1512  */
1513 static int
1514 key_alloc_single(struct ath_softc *sc,
1515 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1516 {
1517 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1518 	u_int i, keyix;
1519 
1520 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1521 	for (i = 0; i < N(sc->sc_keymap); i++) {
1522 		u_int8_t b = sc->sc_keymap[i];
1523 		if (b != 0xff) {
1524 			/*
1525 			 * One or more slots are free.
1526 			 */
1527 			keyix = i*NBBY;
1528 			while (b & 1)
1529 				keyix++, b >>= 1;
1530 			setbit(sc->sc_keymap, keyix);
1531 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1532 				__func__, keyix);
1533 			*txkeyix = *rxkeyix = keyix;
1534 			return 1;
1535 		}
1536 	}
1537 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1538 	return 0;
1539 #undef N
1540 }
1541 
1542 /*
1543  * Allocate one or more key cache slots for a uniacst key.  The
1544  * key itself is needed only to identify the cipher.  For hardware
1545  * TKIP with split cipher+MIC keys we allocate two key cache slot
1546  * pairs so that we can setup separate TX and RX MIC keys.  Note
1547  * that the MIC key for a TKIP key at slot i is assumed by the
1548  * hardware to be at slot i+64.  This limits TKIP keys to the first
1549  * 64 entries.
1550  */
1551 static int
1552 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1553 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1554 {
1555 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1556 
1557 	/*
1558 	 * Group key allocation must be handled specially for
1559 	 * parts that do not support multicast key cache search
1560 	 * functionality.  For those parts the key id must match
1561 	 * the h/w key index so lookups find the right key.  On
1562 	 * parts w/ the key search facility we install the sender's
1563 	 * mac address (with the high bit set) and let the hardware
1564 	 * find the key w/o using the key id.  This is preferred as
1565 	 * it permits us to support multiple users for adhoc and/or
1566 	 * multi-station operation.
1567 	 */
1568 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1569 		if (!(&ic->ic_nw_keys[0] <= k &&
1570 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1571 			/* should not happen */
1572 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1573 				"%s: bogus group key\n", __func__);
1574 			return 0;
1575 		}
1576 		/*
1577 		 * XXX we pre-allocate the global keys so
1578 		 * have no way to check if they've already been allocated.
1579 		 */
1580 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1581 		return 1;
1582 	}
1583 
1584 	/*
1585 	 * We allocate two pair for TKIP when using the h/w to do
1586 	 * the MIC.  For everything else, including software crypto,
1587 	 * we allocate a single entry.  Note that s/w crypto requires
1588 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1589 	 * not support pass-through cache entries and we map all
1590 	 * those requests to slot 0.
1591 	 */
1592 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1593 		return key_alloc_single(sc, keyix, rxkeyix);
1594 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1595 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1596 		return key_alloc_2pair(sc, keyix, rxkeyix);
1597 	} else {
1598 		return key_alloc_single(sc, keyix, rxkeyix);
1599 	}
1600 }
1601 
1602 /*
1603  * Delete an entry in the key cache allocated by ath_key_alloc.
1604  */
1605 static int
1606 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1607 {
1608 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1609 	struct ath_hal *ah = sc->sc_ah;
1610 	const struct ieee80211_cipher *cip = k->wk_cipher;
1611 	u_int keyix = k->wk_keyix;
1612 
1613 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1614 
1615 	ath_hal_keyreset(ah, keyix);
1616 	/*
1617 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1618 	 */
1619 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1620 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1621 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1622 	if (keyix >= IEEE80211_WEP_NKID) {
1623 		/*
1624 		 * Don't touch keymap entries for global keys so
1625 		 * they are never considered for dynamic allocation.
1626 		 */
1627 		clrbit(sc->sc_keymap, keyix);
1628 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1629 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1630 		    sc->sc_splitmic) {
1631 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1632 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1633 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1634 		}
1635 	}
1636 	return 1;
1637 }
1638 
1639 /*
1640  * Set the key cache contents for the specified key.  Key cache
1641  * slot(s) must already have been allocated by ath_key_alloc.
1642  */
1643 static int
1644 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1645 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1646 {
1647 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1648 
1649 	return ath_keyset(sc, k, mac, ic->ic_bss);
1650 }
1651 
1652 /*
1653  * Block/unblock tx+rx processing while a key change is done.
1654  * We assume the caller serializes key management operations
1655  * so we only need to worry about synchronization with other
1656  * uses that originate in the driver.
1657  */
1658 static void
1659 ath_key_update_begin(struct ieee80211com *ic)
1660 {
1661 	struct ifnet *ifp = ic->ic_ifp;
1662 	struct ath_softc *sc = ifp->if_softc;
1663 
1664 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1665 #if 0
1666 	tasklet_disable(&sc->sc_rxtq);
1667 #endif
1668 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1669 }
1670 
1671 static void
1672 ath_key_update_end(struct ieee80211com *ic)
1673 {
1674 	struct ifnet *ifp = ic->ic_ifp;
1675 	struct ath_softc *sc = ifp->if_softc;
1676 
1677 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1678 	IF_UNLOCK(&ifp->if_snd);
1679 #if 0
1680 	tasklet_enable(&sc->sc_rxtq);
1681 #endif
1682 }
1683 
1684 /*
1685  * Calculate the receive filter according to the
1686  * operating mode and state:
1687  *
1688  * o always accept unicast, broadcast, and multicast traffic
1689  * o maintain current state of phy error reception (the hal
1690  *   may enable phy error frames for noise immunity work)
1691  * o probe request frames are accepted only when operating in
1692  *   hostap, adhoc, or monitor modes
1693  * o enable promiscuous mode according to the interface state
1694  * o accept beacons:
1695  *   - when operating in adhoc mode so the 802.11 layer creates
1696  *     node table entries for peers,
1697  *   - when operating in station mode for collecting rssi data when
1698  *     the station is otherwise quiet, or
1699  *   - when scanning
1700  */
1701 static u_int32_t
1702 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1703 {
1704 #define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
1705 	struct ieee80211com *ic = &sc->sc_ic;
1706 	struct ath_hal *ah = sc->sc_ah;
1707 	struct ifnet *ifp = sc->sc_ifp;
1708 	u_int32_t rfilt;
1709 
1710 	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
1711 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1712 	if (ic->ic_opmode != IEEE80211_M_STA)
1713 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1714 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1715 	    (ifp->if_flags & IFF_PROMISC))
1716 		rfilt |= HAL_RX_FILTER_PROM;
1717 	if (ic->ic_opmode == IEEE80211_M_STA ||
1718 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1719 	    state == IEEE80211_S_SCAN)
1720 		rfilt |= HAL_RX_FILTER_BEACON;
1721 	return rfilt;
1722 #undef RX_FILTER_PRESERVE
1723 }
1724 
1725 static void
1726 ath_mode_init(struct ath_softc *sc)
1727 {
1728 	struct ieee80211com *ic = &sc->sc_ic;
1729 	struct ath_hal *ah = sc->sc_ah;
1730 	struct ifnet *ifp = sc->sc_ifp;
1731 	u_int32_t rfilt, mfilt[2], val;
1732 	u_int8_t pos;
1733 	struct ifmultiaddr *ifma;
1734 
1735 	/* configure rx filter */
1736 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1737 	ath_hal_setrxfilter(ah, rfilt);
1738 
1739 	/* configure operational mode */
1740 	ath_hal_setopmode(ah);
1741 
1742 	/*
1743 	 * Handle any link-level address change.  Note that we only
1744 	 * need to force ic_myaddr; any other addresses are handled
1745 	 * as a byproduct of the ifnet code marking the interface
1746 	 * down then up.
1747 	 *
1748 	 * XXX should get from lladdr instead of arpcom but that's more work
1749 	 */
1750 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1751 	ath_hal_setmac(ah, ic->ic_myaddr);
1752 
1753 	/* calculate and install multicast filter */
1754 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1755 		mfilt[0] = mfilt[1] = 0;
1756 		IF_ADDR_LOCK(ifp);
1757 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1758 			caddr_t dl;
1759 
1760 			/* calculate XOR of eight 6bit values */
1761 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1762 			val = LE_READ_4(dl + 0);
1763 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1764 			val = LE_READ_4(dl + 3);
1765 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1766 			pos &= 0x3f;
1767 			mfilt[pos / 32] |= (1 << (pos % 32));
1768 		}
1769 		IF_ADDR_UNLOCK(ifp);
1770 	} else {
1771 		mfilt[0] = mfilt[1] = ~0;
1772 	}
1773 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1774 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1775 		__func__, rfilt, mfilt[0], mfilt[1]);
1776 }
1777 
1778 /*
1779  * Set the slot time based on the current setting.
1780  */
1781 static void
1782 ath_setslottime(struct ath_softc *sc)
1783 {
1784 	struct ieee80211com *ic = &sc->sc_ic;
1785 	struct ath_hal *ah = sc->sc_ah;
1786 
1787 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1788 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1789 	else
1790 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1791 	sc->sc_updateslot = OK;
1792 }
1793 
1794 /*
1795  * Callback from the 802.11 layer to update the
1796  * slot time based on the current setting.
1797  */
1798 static void
1799 ath_updateslot(struct ifnet *ifp)
1800 {
1801 	struct ath_softc *sc = ifp->if_softc;
1802 	struct ieee80211com *ic = &sc->sc_ic;
1803 
1804 	/*
1805 	 * When not coordinating the BSS, change the hardware
1806 	 * immediately.  For other operation we defer the change
1807 	 * until beacon updates have propagated to the stations.
1808 	 */
1809 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1810 		sc->sc_updateslot = UPDATE;
1811 	else
1812 		ath_setslottime(sc);
1813 }
1814 
1815 /*
1816  * Setup a h/w transmit queue for beacons.
1817  */
1818 static int
1819 ath_beaconq_setup(struct ath_hal *ah)
1820 {
1821 	HAL_TXQ_INFO qi;
1822 
1823 	memset(&qi, 0, sizeof(qi));
1824 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1825 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1826 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1827 	/* NB: for dynamic turbo, don't enable any other interrupts */
1828 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1829 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1830 }
1831 
1832 /*
1833  * Setup the transmit queue parameters for the beacon queue.
1834  */
1835 static int
1836 ath_beaconq_config(struct ath_softc *sc)
1837 {
1838 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1839 	struct ieee80211com *ic = &sc->sc_ic;
1840 	struct ath_hal *ah = sc->sc_ah;
1841 	HAL_TXQ_INFO qi;
1842 
1843 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1844 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1845 		/*
1846 		 * Always burst out beacon and CAB traffic.
1847 		 */
1848 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1849 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1850 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1851 	} else {
1852 		struct wmeParams *wmep =
1853 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1854 		/*
1855 		 * Adhoc mode; important thing is to use 2x cwmin.
1856 		 */
1857 		qi.tqi_aifs = wmep->wmep_aifsn;
1858 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1859 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1860 	}
1861 
1862 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1863 		device_printf(sc->sc_dev, "unable to update parameters for "
1864 			"beacon hardware queue!\n");
1865 		return 0;
1866 	} else {
1867 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1868 		return 1;
1869 	}
1870 #undef ATH_EXPONENT_TO_VALUE
1871 }
1872 
1873 /*
1874  * Allocate and setup an initial beacon frame.
1875  */
1876 static int
1877 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1878 {
1879 	struct ieee80211com *ic = ni->ni_ic;
1880 	struct ath_buf *bf;
1881 	struct mbuf *m;
1882 	int error;
1883 
1884 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1885 	if (bf == NULL) {
1886 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1887 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1888 		return ENOMEM;			/* XXX */
1889 	}
1890 	/*
1891 	 * NB: the beacon data buffer must be 32-bit aligned;
1892 	 * we assume the mbuf routines will return us something
1893 	 * with this alignment (perhaps should assert).
1894 	 */
1895 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1896 	if (m == NULL) {
1897 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1898 			__func__);
1899 		sc->sc_stats.ast_be_nombuf++;
1900 		return ENOMEM;
1901 	}
1902 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1903 				     bf->bf_segs, &bf->bf_nseg,
1904 				     BUS_DMA_NOWAIT);
1905 	if (error == 0) {
1906 		bf->bf_m = m;
1907 		bf->bf_node = ieee80211_ref_node(ni);
1908 	} else {
1909 		m_freem(m);
1910 	}
1911 	return error;
1912 }
1913 
1914 /*
1915  * Setup the beacon frame for transmit.
1916  */
1917 static void
1918 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1919 {
1920 #define	USE_SHPREAMBLE(_ic) \
1921 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1922 		== IEEE80211_F_SHPREAMBLE)
1923 	struct ieee80211_node *ni = bf->bf_node;
1924 	struct ieee80211com *ic = ni->ni_ic;
1925 	struct mbuf *m = bf->bf_m;
1926 	struct ath_hal *ah = sc->sc_ah;
1927 	struct ath_desc *ds;
1928 	int flags, antenna;
1929 	const HAL_RATE_TABLE *rt;
1930 	u_int8_t rix, rate;
1931 
1932 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1933 		__func__, m, m->m_len);
1934 
1935 	/* setup descriptors */
1936 	ds = bf->bf_desc;
1937 
1938 	flags = HAL_TXDESC_NOACK;
1939 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1940 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1941 		flags |= HAL_TXDESC_VEOL;
1942 		/*
1943 		 * Let hardware handle antenna switching.
1944 		 */
1945 		antenna = sc->sc_txantenna;
1946 	} else {
1947 		ds->ds_link = 0;
1948 		/*
1949 		 * Switch antenna every 4 beacons.
1950 		 * XXX assumes two antenna
1951 		 */
1952 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1953 	}
1954 
1955 	KASSERT(bf->bf_nseg == 1,
1956 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1957 	ds->ds_data = bf->bf_segs[0].ds_addr;
1958 	/*
1959 	 * Calculate rate code.
1960 	 * XXX everything at min xmit rate
1961 	 */
1962 	rix = sc->sc_minrateix;
1963 	rt = sc->sc_currates;
1964 	rate = rt->info[rix].rateCode;
1965 	if (USE_SHPREAMBLE(ic))
1966 		rate |= rt->info[rix].shortPreamble;
1967 	ath_hal_setuptxdesc(ah, ds
1968 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1969 		, sizeof(struct ieee80211_frame)/* header length */
1970 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1971 		, ni->ni_txpower		/* txpower XXX */
1972 		, rate, 1			/* series 0 rate/tries */
1973 		, HAL_TXKEYIX_INVALID		/* no encryption */
1974 		, antenna			/* antenna mode */
1975 		, flags				/* no ack, veol for beacons */
1976 		, 0				/* rts/cts rate */
1977 		, 0				/* rts/cts duration */
1978 	);
1979 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1980 	ath_hal_filltxdesc(ah, ds
1981 		, roundup(m->m_len, 4)		/* buffer length */
1982 		, AH_TRUE			/* first segment */
1983 		, AH_TRUE			/* last segment */
1984 		, ds				/* first descriptor */
1985 	);
1986 #undef USE_SHPREAMBLE
1987 }
1988 
1989 /*
1990  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1991  * frame contents are done as needed and the slot time is
1992  * also adjusted based on current state.
1993  */
1994 static void
1995 ath_beacon_proc(void *arg, int pending)
1996 {
1997 	struct ath_softc *sc = arg;
1998 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1999 	struct ieee80211_node *ni = bf->bf_node;
2000 	struct ieee80211com *ic = ni->ni_ic;
2001 	struct ath_hal *ah = sc->sc_ah;
2002 	struct mbuf *m;
2003 	int ncabq, error, otherant;
2004 
2005 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2006 		__func__, pending);
2007 
2008 	if (ic->ic_opmode == IEEE80211_M_STA ||
2009 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2010 	    bf == NULL || bf->bf_m == NULL) {
2011 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2012 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2013 		return;
2014 	}
2015 	/*
2016 	 * Check if the previous beacon has gone out.  If
2017 	 * not don't try to post another, skip this period
2018 	 * and wait for the next.  Missed beacons indicate
2019 	 * a problem and should not occur.  If we miss too
2020 	 * many consecutive beacons reset the device.
2021 	 */
2022 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2023 		sc->sc_bmisscount++;
2024 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2025 			"%s: missed %u consecutive beacons\n",
2026 			__func__, sc->sc_bmisscount);
2027 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2028 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2029 		return;
2030 	}
2031 	if (sc->sc_bmisscount != 0) {
2032 		DPRINTF(sc, ATH_DEBUG_BEACON,
2033 			"%s: resume beacon xmit after %u misses\n",
2034 			__func__, sc->sc_bmisscount);
2035 		sc->sc_bmisscount = 0;
2036 	}
2037 
2038 	/*
2039 	 * Update dynamic beacon contents.  If this returns
2040 	 * non-zero then we need to remap the memory because
2041 	 * the beacon frame changed size (probably because
2042 	 * of the TIM bitmap).
2043 	 */
2044 	m = bf->bf_m;
2045 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2046 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2047 		/* XXX too conservative? */
2048 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2049 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2050 					     bf->bf_segs, &bf->bf_nseg,
2051 					     BUS_DMA_NOWAIT);
2052 		if (error != 0) {
2053 			if_printf(ic->ic_ifp,
2054 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2055 			    __func__, error);
2056 			return;
2057 		}
2058 	}
2059 
2060 	/*
2061 	 * Handle slot time change when a non-ERP station joins/leaves
2062 	 * an 11g network.  The 802.11 layer notifies us via callback,
2063 	 * we mark updateslot, then wait one beacon before effecting
2064 	 * the change.  This gives associated stations at least one
2065 	 * beacon interval to note the state change.
2066 	 */
2067 	/* XXX locking */
2068 	if (sc->sc_updateslot == UPDATE)
2069 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2070 	else if (sc->sc_updateslot == COMMIT)
2071 		ath_setslottime(sc);		/* commit change to h/w */
2072 
2073 	/*
2074 	 * Check recent per-antenna transmit statistics and flip
2075 	 * the default antenna if noticeably more frames went out
2076 	 * on the non-default antenna.
2077 	 * XXX assumes 2 anntenae
2078 	 */
2079 	otherant = sc->sc_defant & 1 ? 2 : 1;
2080 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2081 		ath_setdefantenna(sc, otherant);
2082 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2083 
2084 	/*
2085 	 * Construct tx descriptor.
2086 	 */
2087 	ath_beacon_setup(sc, bf);
2088 
2089 	/*
2090 	 * Stop any current dma and put the new frame on the queue.
2091 	 * This should never fail since we check above that no frames
2092 	 * are still pending on the queue.
2093 	 */
2094 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2095 		DPRINTF(sc, ATH_DEBUG_ANY,
2096 			"%s: beacon queue %u did not stop?\n",
2097 			__func__, sc->sc_bhalq);
2098 	}
2099 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2100 
2101 	/*
2102 	 * Enable the CAB queue before the beacon queue to
2103 	 * insure cab frames are triggered by this beacon.
2104 	 */
2105 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2106 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2107 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2108 	ath_hal_txstart(ah, sc->sc_bhalq);
2109 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2110 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2111 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2112 
2113 	sc->sc_stats.ast_be_xmit++;
2114 }
2115 
2116 /*
2117  * Reset the hardware after detecting beacons have stopped.
2118  */
2119 static void
2120 ath_bstuck_proc(void *arg, int pending)
2121 {
2122 	struct ath_softc *sc = arg;
2123 	struct ifnet *ifp = sc->sc_ifp;
2124 
2125 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2126 		sc->sc_bmisscount);
2127 	ath_reset(ifp);
2128 }
2129 
2130 /*
2131  * Reclaim beacon resources.
2132  */
2133 static void
2134 ath_beacon_free(struct ath_softc *sc)
2135 {
2136 	struct ath_buf *bf;
2137 
2138 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2139 		if (bf->bf_m != NULL) {
2140 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2141 			m_freem(bf->bf_m);
2142 			bf->bf_m = NULL;
2143 		}
2144 		if (bf->bf_node != NULL) {
2145 			ieee80211_free_node(bf->bf_node);
2146 			bf->bf_node = NULL;
2147 		}
2148 	}
2149 }
2150 
2151 /*
2152  * Configure the beacon and sleep timers.
2153  *
2154  * When operating as an AP this resets the TSF and sets
2155  * up the hardware to notify us when we need to issue beacons.
2156  *
2157  * When operating in station mode this sets up the beacon
2158  * timers according to the timestamp of the last received
2159  * beacon and the current TSF, configures PCF and DTIM
2160  * handling, programs the sleep registers so the hardware
2161  * will wakeup in time to receive beacons, and configures
2162  * the beacon miss handling so we'll receive a BMISS
2163  * interrupt when we stop seeing beacons from the AP
2164  * we've associated with.
2165  */
2166 static void
2167 ath_beacon_config(struct ath_softc *sc)
2168 {
2169 #define	TSF_TO_TU(_h,_l) \
2170 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2171 #define	FUDGE	2
2172 	struct ath_hal *ah = sc->sc_ah;
2173 	struct ieee80211com *ic = &sc->sc_ic;
2174 	struct ieee80211_node *ni = ic->ic_bss;
2175 	u_int32_t nexttbtt, intval, tsftu;
2176 	u_int64_t tsf;
2177 
2178 	/* extract tstamp from last beacon and convert to TU */
2179 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2180 			     LE_READ_4(ni->ni_tstamp.data));
2181 	/* NB: the beacon interval is kept internally in TU's */
2182 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2183 	if (nexttbtt == 0)		/* e.g. for ap mode */
2184 		nexttbtt = intval;
2185 	else if (intval)		/* NB: can be 0 for monitor mode */
2186 		nexttbtt = roundup(nexttbtt, intval);
2187 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2188 		__func__, nexttbtt, intval, ni->ni_intval);
2189 	if (ic->ic_opmode == IEEE80211_M_STA) {
2190 		HAL_BEACON_STATE bs;
2191 		int dtimperiod, dtimcount;
2192 		int cfpperiod, cfpcount;
2193 
2194 		/*
2195 		 * Setup dtim and cfp parameters according to
2196 		 * last beacon we received (which may be none).
2197 		 */
2198 		dtimperiod = ni->ni_dtim_period;
2199 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2200 			dtimperiod = 1;
2201 		dtimcount = ni->ni_dtim_count;
2202 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2203 			dtimcount = 0;		/* XXX? */
2204 		cfpperiod = 1;			/* NB: no PCF support yet */
2205 		cfpcount = 0;
2206 		/*
2207 		 * Pull nexttbtt forward to reflect the current
2208 		 * TSF and calculate dtim+cfp state for the result.
2209 		 */
2210 		tsf = ath_hal_gettsf64(ah);
2211 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2212 		do {
2213 			nexttbtt += intval;
2214 			if (--dtimcount < 0) {
2215 				dtimcount = dtimperiod - 1;
2216 				if (--cfpcount < 0)
2217 					cfpcount = cfpperiod - 1;
2218 			}
2219 		} while (nexttbtt < tsftu);
2220 		memset(&bs, 0, sizeof(bs));
2221 		bs.bs_intval = intval;
2222 		bs.bs_nexttbtt = nexttbtt;
2223 		bs.bs_dtimperiod = dtimperiod*intval;
2224 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2225 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2226 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2227 		bs.bs_cfpmaxduration = 0;
2228 #if 0
2229 		/*
2230 		 * The 802.11 layer records the offset to the DTIM
2231 		 * bitmap while receiving beacons; use it here to
2232 		 * enable h/w detection of our AID being marked in
2233 		 * the bitmap vector (to indicate frames for us are
2234 		 * pending at the AP).
2235 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2236 		 * XXX enable based on h/w rev for newer chips
2237 		 */
2238 		bs.bs_timoffset = ni->ni_timoff;
2239 #endif
2240 		/*
2241 		 * Calculate the number of consecutive beacons to miss
2242 		 * before taking a BMISS interrupt.  The configuration
2243 		 * is specified in ms, so we need to convert that to
2244 		 * TU's and then calculate based on the beacon interval.
2245 		 * Note that we clamp the result to at most 10 beacons.
2246 		 */
2247 		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2248 		if (bs.bs_bmissthreshold > 10)
2249 			bs.bs_bmissthreshold = 10;
2250 		else if (bs.bs_bmissthreshold <= 0)
2251 			bs.bs_bmissthreshold = 1;
2252 
2253 		/*
2254 		 * Calculate sleep duration.  The configuration is
2255 		 * given in ms.  We insure a multiple of the beacon
2256 		 * period is used.  Also, if the sleep duration is
2257 		 * greater than the DTIM period then it makes senses
2258 		 * to make it a multiple of that.
2259 		 *
2260 		 * XXX fixed at 100ms
2261 		 */
2262 		bs.bs_sleepduration =
2263 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2264 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2265 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2266 
2267 		DPRINTF(sc, ATH_DEBUG_BEACON,
2268 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2269 			, __func__
2270 			, tsf, tsftu
2271 			, bs.bs_intval
2272 			, bs.bs_nexttbtt
2273 			, bs.bs_dtimperiod
2274 			, bs.bs_nextdtim
2275 			, bs.bs_bmissthreshold
2276 			, bs.bs_sleepduration
2277 			, bs.bs_cfpperiod
2278 			, bs.bs_cfpmaxduration
2279 			, bs.bs_cfpnext
2280 			, bs.bs_timoffset
2281 		);
2282 		ath_hal_intrset(ah, 0);
2283 		ath_hal_beacontimers(ah, &bs);
2284 		sc->sc_imask |= HAL_INT_BMISS;
2285 		ath_hal_intrset(ah, sc->sc_imask);
2286 	} else {
2287 		ath_hal_intrset(ah, 0);
2288 		if (nexttbtt == intval)
2289 			intval |= HAL_BEACON_RESET_TSF;
2290 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2291 			/*
2292 			 * In IBSS mode enable the beacon timers but only
2293 			 * enable SWBA interrupts if we need to manually
2294 			 * prepare beacon frames.  Otherwise we use a
2295 			 * self-linked tx descriptor and let the hardware
2296 			 * deal with things.
2297 			 */
2298 			intval |= HAL_BEACON_ENA;
2299 			if (!sc->sc_hasveol)
2300 				sc->sc_imask |= HAL_INT_SWBA;
2301 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2302 				/*
2303 				 * Pull nexttbtt forward to reflect
2304 				 * the current TSF.
2305 				 */
2306 				tsf = ath_hal_gettsf64(ah);
2307 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2308 				do {
2309 					nexttbtt += intval;
2310 				} while (nexttbtt < tsftu);
2311 			}
2312 			ath_beaconq_config(sc);
2313 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2314 			/*
2315 			 * In AP mode we enable the beacon timers and
2316 			 * SWBA interrupts to prepare beacon frames.
2317 			 */
2318 			intval |= HAL_BEACON_ENA;
2319 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2320 			ath_beaconq_config(sc);
2321 		}
2322 		ath_hal_beaconinit(ah, nexttbtt, intval);
2323 		sc->sc_bmisscount = 0;
2324 		ath_hal_intrset(ah, sc->sc_imask);
2325 		/*
2326 		 * When using a self-linked beacon descriptor in
2327 		 * ibss mode load it once here.
2328 		 */
2329 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2330 			ath_beacon_proc(sc, 0);
2331 	}
2332 	sc->sc_syncbeacon = 0;
2333 #undef FUDGE
2334 #undef TSF_TO_TU
2335 }
2336 
2337 static void
2338 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2339 {
2340 	bus_addr_t *paddr = (bus_addr_t*) arg;
2341 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2342 	*paddr = segs->ds_addr;
2343 }
2344 
2345 static int
2346 ath_descdma_setup(struct ath_softc *sc,
2347 	struct ath_descdma *dd, ath_bufhead *head,
2348 	const char *name, int nbuf, int ndesc)
2349 {
2350 #define	DS2PHYS(_dd, _ds) \
2351 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2352 	struct ifnet *ifp = sc->sc_ifp;
2353 	struct ath_desc *ds;
2354 	struct ath_buf *bf;
2355 	int i, bsize, error;
2356 
2357 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2358 	    __func__, name, nbuf, ndesc);
2359 
2360 	dd->dd_name = name;
2361 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2362 
2363 	/*
2364 	 * Setup DMA descriptor area.
2365 	 */
2366 	error = bus_dma_tag_create(NULL,	/* parent */
2367 		       PAGE_SIZE, 0,		/* alignment, bounds */
2368 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2369 		       BUS_SPACE_MAXADDR,	/* highaddr */
2370 		       NULL, NULL,		/* filter, filterarg */
2371 		       dd->dd_desc_len,		/* maxsize */
2372 		       1,			/* nsegments */
2373 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2374 		       BUS_DMA_ALLOCNOW,	/* flags */
2375 		       NULL,			/* lockfunc */
2376 		       NULL,			/* lockarg */
2377 		       &dd->dd_dmat);
2378 	if (error != 0) {
2379 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2380 		return error;
2381 	}
2382 
2383 	/* allocate descriptors */
2384 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2385 	if (error != 0) {
2386 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2387 			"error %u\n", dd->dd_name, error);
2388 		goto fail0;
2389 	}
2390 
2391 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2392 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2393 	if (error != 0) {
2394 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2395 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2396 		goto fail1;
2397 	}
2398 
2399 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2400 				dd->dd_desc, dd->dd_desc_len,
2401 				ath_load_cb, &dd->dd_desc_paddr,
2402 				BUS_DMA_NOWAIT);
2403 	if (error != 0) {
2404 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2405 			dd->dd_name, error);
2406 		goto fail2;
2407 	}
2408 
2409 	ds = dd->dd_desc;
2410 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2411 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2412 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2413 
2414 	/* allocate rx buffers */
2415 	bsize = sizeof(struct ath_buf) * nbuf;
2416 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2417 	if (bf == NULL) {
2418 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2419 			dd->dd_name, bsize);
2420 		goto fail3;
2421 	}
2422 	dd->dd_bufptr = bf;
2423 
2424 	STAILQ_INIT(head);
2425 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2426 		bf->bf_desc = ds;
2427 		bf->bf_daddr = DS2PHYS(dd, ds);
2428 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2429 				&bf->bf_dmamap);
2430 		if (error != 0) {
2431 			if_printf(ifp, "unable to create dmamap for %s "
2432 				"buffer %u, error %u\n", dd->dd_name, i, error);
2433 			ath_descdma_cleanup(sc, dd, head);
2434 			return error;
2435 		}
2436 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2437 	}
2438 	return 0;
2439 fail3:
2440 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2441 fail2:
2442 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2443 fail1:
2444 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2445 fail0:
2446 	bus_dma_tag_destroy(dd->dd_dmat);
2447 	memset(dd, 0, sizeof(*dd));
2448 	return error;
2449 #undef DS2PHYS
2450 }
2451 
2452 static void
2453 ath_descdma_cleanup(struct ath_softc *sc,
2454 	struct ath_descdma *dd, ath_bufhead *head)
2455 {
2456 	struct ath_buf *bf;
2457 	struct ieee80211_node *ni;
2458 
2459 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2460 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2461 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2462 	bus_dma_tag_destroy(dd->dd_dmat);
2463 
2464 	STAILQ_FOREACH(bf, head, bf_list) {
2465 		if (bf->bf_m) {
2466 			m_freem(bf->bf_m);
2467 			bf->bf_m = NULL;
2468 		}
2469 		if (bf->bf_dmamap != NULL) {
2470 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2471 			bf->bf_dmamap = NULL;
2472 		}
2473 		ni = bf->bf_node;
2474 		bf->bf_node = NULL;
2475 		if (ni != NULL) {
2476 			/*
2477 			 * Reclaim node reference.
2478 			 */
2479 			ieee80211_free_node(ni);
2480 		}
2481 	}
2482 
2483 	STAILQ_INIT(head);
2484 	free(dd->dd_bufptr, M_ATHDEV);
2485 	memset(dd, 0, sizeof(*dd));
2486 }
2487 
2488 static int
2489 ath_desc_alloc(struct ath_softc *sc)
2490 {
2491 	int error;
2492 
2493 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2494 			"rx", ath_rxbuf, 1);
2495 	if (error != 0)
2496 		return error;
2497 
2498 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2499 			"tx", ath_txbuf, ATH_TXDESC);
2500 	if (error != 0) {
2501 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2502 		return error;
2503 	}
2504 
2505 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2506 			"beacon", 1, 1);
2507 	if (error != 0) {
2508 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2509 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2510 		return error;
2511 	}
2512 	return 0;
2513 }
2514 
2515 static void
2516 ath_desc_free(struct ath_softc *sc)
2517 {
2518 
2519 	if (sc->sc_bdma.dd_desc_len != 0)
2520 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2521 	if (sc->sc_txdma.dd_desc_len != 0)
2522 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2523 	if (sc->sc_rxdma.dd_desc_len != 0)
2524 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2525 }
2526 
2527 static struct ieee80211_node *
2528 ath_node_alloc(struct ieee80211_node_table *nt)
2529 {
2530 	struct ieee80211com *ic = nt->nt_ic;
2531 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2532 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2533 	struct ath_node *an;
2534 
2535 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2536 	if (an == NULL) {
2537 		/* XXX stat+msg */
2538 		return NULL;
2539 	}
2540 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2541 	ath_rate_node_init(sc, an);
2542 
2543 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2544 	return &an->an_node;
2545 }
2546 
2547 static void
2548 ath_node_free(struct ieee80211_node *ni)
2549 {
2550 	struct ieee80211com *ic = ni->ni_ic;
2551         struct ath_softc *sc = ic->ic_ifp->if_softc;
2552 
2553 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2554 
2555 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2556 	sc->sc_node_free(ni);
2557 }
2558 
2559 static u_int8_t
2560 ath_node_getrssi(const struct ieee80211_node *ni)
2561 {
2562 #define	HAL_EP_RND(x, mul) \
2563 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2564 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2565 	int32_t rssi;
2566 
2567 	/*
2568 	 * When only one frame is received there will be no state in
2569 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2570 	 */
2571 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2572 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2573 	else
2574 		rssi = ni->ni_rssi;
2575 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2576 #undef HAL_EP_RND
2577 }
2578 
2579 static int
2580 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2581 {
2582 	struct ath_hal *ah = sc->sc_ah;
2583 	int error;
2584 	struct mbuf *m;
2585 	struct ath_desc *ds;
2586 
2587 	m = bf->bf_m;
2588 	if (m == NULL) {
2589 		/*
2590 		 * NB: by assigning a page to the rx dma buffer we
2591 		 * implicitly satisfy the Atheros requirement that
2592 		 * this buffer be cache-line-aligned and sized to be
2593 		 * multiple of the cache line size.  Not doing this
2594 		 * causes weird stuff to happen (for the 5210 at least).
2595 		 */
2596 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2597 		if (m == NULL) {
2598 			DPRINTF(sc, ATH_DEBUG_ANY,
2599 				"%s: no mbuf/cluster\n", __func__);
2600 			sc->sc_stats.ast_rx_nombuf++;
2601 			return ENOMEM;
2602 		}
2603 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2604 
2605 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2606 					     bf->bf_dmamap, m,
2607 					     bf->bf_segs, &bf->bf_nseg,
2608 					     BUS_DMA_NOWAIT);
2609 		if (error != 0) {
2610 			DPRINTF(sc, ATH_DEBUG_ANY,
2611 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2612 			    __func__, error);
2613 			sc->sc_stats.ast_rx_busdma++;
2614 			m_freem(m);
2615 			return error;
2616 		}
2617 		KASSERT(bf->bf_nseg == 1,
2618 			("multi-segment packet; nseg %u", bf->bf_nseg));
2619 		bf->bf_m = m;
2620 	}
2621 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2622 
2623 	/*
2624 	 * Setup descriptors.  For receive we always terminate
2625 	 * the descriptor list with a self-linked entry so we'll
2626 	 * not get overrun under high load (as can happen with a
2627 	 * 5212 when ANI processing enables PHY error frames).
2628 	 *
2629 	 * To insure the last descriptor is self-linked we create
2630 	 * each descriptor as self-linked and add it to the end.  As
2631 	 * each additional descriptor is added the previous self-linked
2632 	 * entry is ``fixed'' naturally.  This should be safe even
2633 	 * if DMA is happening.  When processing RX interrupts we
2634 	 * never remove/process the last, self-linked, entry on the
2635 	 * descriptor list.  This insures the hardware always has
2636 	 * someplace to write a new frame.
2637 	 */
2638 	ds = bf->bf_desc;
2639 	ds->ds_link = bf->bf_daddr;	/* link to self */
2640 	ds->ds_data = bf->bf_segs[0].ds_addr;
2641 	ds->ds_vdata = mtod(m, void *);	/* for radar */
2642 	ath_hal_setuprxdesc(ah, ds
2643 		, m->m_len		/* buffer size */
2644 		, 0
2645 	);
2646 
2647 	if (sc->sc_rxlink != NULL)
2648 		*sc->sc_rxlink = bf->bf_daddr;
2649 	sc->sc_rxlink = &ds->ds_link;
2650 	return 0;
2651 }
2652 
2653 /*
2654  * Extend 15-bit time stamp from rx descriptor to
2655  * a full 64-bit TSF using the specified TSF.
2656  */
2657 static __inline u_int64_t
2658 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2659 {
2660 	if ((tsf & 0x7fff) < rstamp)
2661 		tsf -= 0x8000;
2662 	return ((tsf &~ 0x7fff) | rstamp);
2663 }
2664 
2665 /*
2666  * Intercept management frames to collect beacon rssi data
2667  * and to do ibss merges.
2668  */
2669 static void
2670 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2671 	struct ieee80211_node *ni,
2672 	int subtype, int rssi, u_int32_t rstamp)
2673 {
2674 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2675 
2676 	/*
2677 	 * Call up first so subsequent work can use information
2678 	 * potentially stored in the node (e.g. for ibss merge).
2679 	 */
2680 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2681 	switch (subtype) {
2682 	case IEEE80211_FC0_SUBTYPE_BEACON:
2683 		/* update rssi statistics for use by the hal */
2684 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2685 		if (sc->sc_syncbeacon &&
2686 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2687 			/*
2688 			 * Resync beacon timers using the tsf of the beacon
2689 			 * frame we just received.
2690 			 */
2691 			ath_beacon_config(sc);
2692 		}
2693 		/* fall thru... */
2694 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2695 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2696 		    ic->ic_state == IEEE80211_S_RUN) {
2697 			u_int64_t tsf = ath_extend_tsf(rstamp,
2698 				ath_hal_gettsf64(sc->sc_ah));
2699 			/*
2700 			 * Handle ibss merge as needed; check the tsf on the
2701 			 * frame before attempting the merge.  The 802.11 spec
2702 			 * says the station should change it's bssid to match
2703 			 * the oldest station with the same ssid, where oldest
2704 			 * is determined by the tsf.  Note that hardware
2705 			 * reconfiguration happens through callback to
2706 			 * ath_newstate as the state machine will go from
2707 			 * RUN -> RUN when this happens.
2708 			 */
2709 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2710 				DPRINTF(sc, ATH_DEBUG_STATE,
2711 				    "ibss merge, rstamp %u tsf %ju "
2712 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2713 				    (uintmax_t)ni->ni_tstamp.tsf);
2714 				(void) ieee80211_ibss_merge(ni);
2715 			}
2716 		}
2717 		break;
2718 	}
2719 }
2720 
2721 /*
2722  * Set the default antenna.
2723  */
2724 static void
2725 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2726 {
2727 	struct ath_hal *ah = sc->sc_ah;
2728 
2729 	/* XXX block beacon interrupts */
2730 	ath_hal_setdefantenna(ah, antenna);
2731 	if (sc->sc_defant != antenna)
2732 		sc->sc_stats.ast_ant_defswitch++;
2733 	sc->sc_defant = antenna;
2734 	sc->sc_rxotherant = 0;
2735 }
2736 
2737 static int
2738 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2739 	const struct ath_desc *ds, u_int64_t tsf, int16_t nf)
2740 {
2741 	u_int8_t rix;
2742 
2743 	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2744 
2745 	/*
2746 	 * Discard anything shorter than an ack or cts.
2747 	 */
2748 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2749 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2750 			__func__, m->m_pkthdr.len);
2751 		sc->sc_stats.ast_rx_tooshort++;
2752 		return 0;
2753 	}
2754 	sc->sc_rx_th.wr_tsf = htole64(
2755 		ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
2756 	rix = ds->ds_rxstat.rs_rate;
2757 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2758 	if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2759 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2760 	/* XXX propagate other error flags from descriptor */
2761 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2762 	sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
2763 	sc->sc_rx_th.wr_antnoise = nf;
2764 	sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2765 
2766 	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
2767 
2768 	return 1;
2769 }
2770 
2771 static void
2772 ath_rx_proc(void *arg, int npending)
2773 {
2774 #define	PA2DESC(_sc, _pa) \
2775 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2776 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2777 	struct ath_softc *sc = arg;
2778 	struct ath_buf *bf;
2779 	struct ieee80211com *ic = &sc->sc_ic;
2780 	struct ifnet *ifp = sc->sc_ifp;
2781 	struct ath_hal *ah = sc->sc_ah;
2782 	struct ath_desc *ds;
2783 	struct mbuf *m;
2784 	struct ieee80211_node *ni;
2785 	struct ath_node *an;
2786 	int len, type, ngood;
2787 	u_int phyerr;
2788 	HAL_STATUS status;
2789 	int16_t nf;
2790 	u_int64_t tsf;
2791 
2792 	NET_LOCK_GIANT();		/* XXX */
2793 
2794 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2795 	ngood = 0;
2796 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2797 	tsf = ath_hal_gettsf64(ah);
2798 	do {
2799 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2800 		if (bf == NULL) {		/* NB: shouldn't happen */
2801 			if_printf(ifp, "%s: no buffer!\n", __func__);
2802 			break;
2803 		}
2804 		m = bf->bf_m;
2805 		if (m == NULL) {		/* NB: shouldn't happen */
2806 			/*
2807 			 * If mbuf allocation failed previously there
2808 			 * will be no mbuf; try again to re-populate it.
2809 			 */
2810 			/* XXX make debug msg */
2811 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2812 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2813 			goto rx_next;
2814 		}
2815 		ds = bf->bf_desc;
2816 		if (ds->ds_link == bf->bf_daddr) {
2817 			/* NB: never process the self-linked entry at the end */
2818 			break;
2819 		}
2820 		/* XXX sync descriptor memory */
2821 		/*
2822 		 * Must provide the virtual address of the current
2823 		 * descriptor, the physical address, and the virtual
2824 		 * address of the next descriptor in the h/w chain.
2825 		 * This allows the HAL to look ahead to see if the
2826 		 * hardware is done with a descriptor by checking the
2827 		 * done bit in the following descriptor and the address
2828 		 * of the current descriptor the DMA engine is working
2829 		 * on.  All this is necessary because of our use of
2830 		 * a self-linked list to avoid rx overruns.
2831 		 */
2832 		status = ath_hal_rxprocdesc(ah, ds,
2833 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2834 #ifdef AR_DEBUG
2835 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2836 			ath_printrxbuf(bf, 0, status == HAL_OK);
2837 #endif
2838 		if (status == HAL_EINPROGRESS)
2839 			break;
2840 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2841 		if (ds->ds_rxstat.rs_more) {
2842 			/*
2843 			 * Frame spans multiple descriptors; this
2844 			 * cannot happen yet as we don't support
2845 			 * jumbograms.  If not in monitor mode,
2846 			 * discard the frame.
2847 			 */
2848 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2849 				sc->sc_stats.ast_rx_toobig++;
2850 				goto rx_next;
2851 			}
2852 			/* fall thru for monitor mode handling... */
2853 		} else if (ds->ds_rxstat.rs_status != 0) {
2854 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2855 				sc->sc_stats.ast_rx_crcerr++;
2856 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2857 				sc->sc_stats.ast_rx_fifoerr++;
2858 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2859 				sc->sc_stats.ast_rx_phyerr++;
2860 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2861 				sc->sc_stats.ast_rx_phy[phyerr]++;
2862 				goto rx_next;
2863 			}
2864 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2865 				/*
2866 				 * Decrypt error.  If the error occurred
2867 				 * because there was no hardware key, then
2868 				 * let the frame through so the upper layers
2869 				 * can process it.  This is necessary for 5210
2870 				 * parts which have no way to setup a ``clear''
2871 				 * key cache entry.
2872 				 *
2873 				 * XXX do key cache faulting
2874 				 */
2875 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2876 					goto rx_accept;
2877 				sc->sc_stats.ast_rx_badcrypt++;
2878 			}
2879 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2880 				sc->sc_stats.ast_rx_badmic++;
2881 				/*
2882 				 * Do minimal work required to hand off
2883 				 * the 802.11 header for notifcation.
2884 				 */
2885 				/* XXX frag's and qos frames */
2886 				len = ds->ds_rxstat.rs_datalen;
2887 				if (len >= sizeof (struct ieee80211_frame)) {
2888 					bus_dmamap_sync(sc->sc_dmat,
2889 					    bf->bf_dmamap,
2890 					    BUS_DMASYNC_POSTREAD);
2891 					ieee80211_notify_michael_failure(ic,
2892 					    mtod(m, struct ieee80211_frame *),
2893 					    sc->sc_splitmic ?
2894 					        ds->ds_rxstat.rs_keyix-32 :
2895 					        ds->ds_rxstat.rs_keyix
2896 					);
2897 				}
2898 			}
2899 			ifp->if_ierrors++;
2900 			/*
2901 			 * When a tap is present pass error frames
2902 			 * that have been requested.  By default we
2903 			 * pass decrypt+mic errors but others may be
2904 			 * interesting (e.g. crc).
2905 			 */
2906 			if (sc->sc_drvbpf != NULL &&
2907 			    (ds->ds_rxstat.rs_status & sc->sc_monpass)) {
2908 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2909 				    BUS_DMASYNC_POSTREAD);
2910 				/* NB: bpf needs the mbuf length setup */
2911 				len = ds->ds_rxstat.rs_datalen;
2912 				m->m_pkthdr.len = m->m_len = len;
2913 				(void) ath_rx_tap(sc, m, ds, tsf, nf);
2914 			}
2915 			/* XXX pass MIC errors up for s/w reclaculation */
2916 			goto rx_next;
2917 		}
2918 rx_accept:
2919 		/*
2920 		 * Sync and unmap the frame.  At this point we're
2921 		 * committed to passing the mbuf somewhere so clear
2922 		 * bf_m; this means a new mbuf must be allocated
2923 		 * when the rx descriptor is setup again to receive
2924 		 * another frame.
2925 		 */
2926 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2927 		    BUS_DMASYNC_POSTREAD);
2928 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2929 		bf->bf_m = NULL;
2930 
2931 		m->m_pkthdr.rcvif = ifp;
2932 		len = ds->ds_rxstat.rs_datalen;
2933 		m->m_pkthdr.len = m->m_len = len;
2934 
2935 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2936 
2937 		if (sc->sc_drvbpf != NULL && !ath_rx_tap(sc, m, ds, tsf, nf)) {
2938 			m_freem(m);		/* XXX reclaim */
2939 			goto rx_next;
2940 		}
2941 
2942 		/*
2943 		 * From this point on we assume the frame is at least
2944 		 * as large as ieee80211_frame_min; verify that.
2945 		 */
2946 		if (len < IEEE80211_MIN_LEN) {
2947 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2948 				__func__, len);
2949 			sc->sc_stats.ast_rx_tooshort++;
2950 			m_freem(m);
2951 			goto rx_next;
2952 		}
2953 
2954 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2955 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2956 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2957 				   ds->ds_rxstat.rs_rssi);
2958 		}
2959 
2960 		m_adj(m, -IEEE80211_CRC_LEN);
2961 
2962 		/*
2963 		 * Locate the node for sender, track state, and then
2964 		 * pass the (referenced) node up to the 802.11 layer
2965 		 * for its use.
2966 		 */
2967 		ni = ieee80211_find_rxnode_withkey(ic,
2968 			mtod(m, const struct ieee80211_frame_min *),
2969 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2970 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2971 		/*
2972 		 * Track rx rssi and do any rx antenna management.
2973 		 */
2974 		an = ATH_NODE(ni);
2975 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2976 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
2977 		/*
2978 		 * Send frame up for processing.
2979 		 */
2980 		type = ieee80211_input(ic, m, ni,
2981 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2982 		ieee80211_free_node(ni);
2983 		if (sc->sc_diversity) {
2984 			/*
2985 			 * When using fast diversity, change the default rx
2986 			 * antenna if diversity chooses the other antenna 3
2987 			 * times in a row.
2988 			 */
2989 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2990 				if (++sc->sc_rxotherant >= 3)
2991 					ath_setdefantenna(sc,
2992 						ds->ds_rxstat.rs_antenna);
2993 			} else
2994 				sc->sc_rxotherant = 0;
2995 		}
2996 		if (sc->sc_softled) {
2997 			/*
2998 			 * Blink for any data frame.  Otherwise do a
2999 			 * heartbeat-style blink when idle.  The latter
3000 			 * is mainly for station mode where we depend on
3001 			 * periodic beacon frames to trigger the poll event.
3002 			 */
3003 			if (type == IEEE80211_FC0_TYPE_DATA) {
3004 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3005 				ath_led_event(sc, ATH_LED_RX);
3006 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3007 				ath_led_event(sc, ATH_LED_POLL);
3008 		}
3009 		/*
3010 		 * Arrange to update the last rx timestamp only for
3011 		 * frames from our ap when operating in station mode.
3012 		 * This assumes the rx key is always setup when associated.
3013 		 */
3014 		if (ic->ic_opmode == IEEE80211_M_STA &&
3015 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3016 			ngood++;
3017 rx_next:
3018 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3019 	} while (ath_rxbuf_init(sc, bf) == 0);
3020 
3021 	/* rx signal state monitoring */
3022 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3023 	if (ath_hal_radar_event(ah))
3024 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
3025 	if (ngood)
3026 		sc->sc_lastrx = tsf;
3027 
3028 	NET_UNLOCK_GIANT();		/* XXX */
3029 #undef PA2DESC
3030 }
3031 
3032 /*
3033  * Setup a h/w transmit queue.
3034  */
3035 static struct ath_txq *
3036 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3037 {
3038 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3039 	struct ath_hal *ah = sc->sc_ah;
3040 	HAL_TXQ_INFO qi;
3041 	int qnum;
3042 
3043 	memset(&qi, 0, sizeof(qi));
3044 	qi.tqi_subtype = subtype;
3045 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3046 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3047 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3048 	/*
3049 	 * Enable interrupts only for EOL and DESC conditions.
3050 	 * We mark tx descriptors to receive a DESC interrupt
3051 	 * when a tx queue gets deep; otherwise waiting for the
3052 	 * EOL to reap descriptors.  Note that this is done to
3053 	 * reduce interrupt load and this only defers reaping
3054 	 * descriptors, never transmitting frames.  Aside from
3055 	 * reducing interrupts this also permits more concurrency.
3056 	 * The only potential downside is if the tx queue backs
3057 	 * up in which case the top half of the kernel may backup
3058 	 * due to a lack of tx descriptors.
3059 	 */
3060 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3061 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3062 	if (qnum == -1) {
3063 		/*
3064 		 * NB: don't print a message, this happens
3065 		 * normally on parts with too few tx queues
3066 		 */
3067 		return NULL;
3068 	}
3069 	if (qnum >= N(sc->sc_txq)) {
3070 		device_printf(sc->sc_dev,
3071 			"hal qnum %u out of range, max %zu!\n",
3072 			qnum, N(sc->sc_txq));
3073 		ath_hal_releasetxqueue(ah, qnum);
3074 		return NULL;
3075 	}
3076 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3077 		struct ath_txq *txq = &sc->sc_txq[qnum];
3078 
3079 		txq->axq_qnum = qnum;
3080 		txq->axq_depth = 0;
3081 		txq->axq_intrcnt = 0;
3082 		txq->axq_link = NULL;
3083 		STAILQ_INIT(&txq->axq_q);
3084 		ATH_TXQ_LOCK_INIT(sc, txq);
3085 		sc->sc_txqsetup |= 1<<qnum;
3086 	}
3087 	return &sc->sc_txq[qnum];
3088 #undef N
3089 }
3090 
3091 /*
3092  * Setup a hardware data transmit queue for the specified
3093  * access control.  The hal may not support all requested
3094  * queues in which case it will return a reference to a
3095  * previously setup queue.  We record the mapping from ac's
3096  * to h/w queues for use by ath_tx_start and also track
3097  * the set of h/w queues being used to optimize work in the
3098  * transmit interrupt handler and related routines.
3099  */
3100 static int
3101 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3102 {
3103 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3104 	struct ath_txq *txq;
3105 
3106 	if (ac >= N(sc->sc_ac2q)) {
3107 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3108 			ac, N(sc->sc_ac2q));
3109 		return 0;
3110 	}
3111 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3112 	if (txq != NULL) {
3113 		sc->sc_ac2q[ac] = txq;
3114 		return 1;
3115 	} else
3116 		return 0;
3117 #undef N
3118 }
3119 
3120 /*
3121  * Update WME parameters for a transmit queue.
3122  */
3123 static int
3124 ath_txq_update(struct ath_softc *sc, int ac)
3125 {
3126 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3127 #define	ATH_TXOP_TO_US(v)		(v<<5)
3128 	struct ieee80211com *ic = &sc->sc_ic;
3129 	struct ath_txq *txq = sc->sc_ac2q[ac];
3130 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3131 	struct ath_hal *ah = sc->sc_ah;
3132 	HAL_TXQ_INFO qi;
3133 
3134 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3135 	qi.tqi_aifs = wmep->wmep_aifsn;
3136 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3137 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3138 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3139 
3140 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3141 		device_printf(sc->sc_dev, "unable to update hardware queue "
3142 			"parameters for %s traffic!\n",
3143 			ieee80211_wme_acnames[ac]);
3144 		return 0;
3145 	} else {
3146 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3147 		return 1;
3148 	}
3149 #undef ATH_TXOP_TO_US
3150 #undef ATH_EXPONENT_TO_VALUE
3151 }
3152 
3153 /*
3154  * Callback from the 802.11 layer to update WME parameters.
3155  */
3156 static int
3157 ath_wme_update(struct ieee80211com *ic)
3158 {
3159 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3160 
3161 	return !ath_txq_update(sc, WME_AC_BE) ||
3162 	    !ath_txq_update(sc, WME_AC_BK) ||
3163 	    !ath_txq_update(sc, WME_AC_VI) ||
3164 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3165 }
3166 
3167 /*
3168  * Reclaim resources for a setup queue.
3169  */
3170 static void
3171 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3172 {
3173 
3174 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3175 	ATH_TXQ_LOCK_DESTROY(txq);
3176 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3177 }
3178 
3179 /*
3180  * Reclaim all tx queue resources.
3181  */
3182 static void
3183 ath_tx_cleanup(struct ath_softc *sc)
3184 {
3185 	int i;
3186 
3187 	ATH_TXBUF_LOCK_DESTROY(sc);
3188 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3189 		if (ATH_TXQ_SETUP(sc, i))
3190 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3191 }
3192 
3193 /*
3194  * Defragment an mbuf chain, returning at most maxfrags separate
3195  * mbufs+clusters.  If this is not possible NULL is returned and
3196  * the original mbuf chain is left in it's present (potentially
3197  * modified) state.  We use two techniques: collapsing consecutive
3198  * mbufs and replacing consecutive mbufs by a cluster.
3199  */
3200 static struct mbuf *
3201 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3202 {
3203 	struct mbuf *m, *n, *n2, **prev;
3204 	u_int curfrags;
3205 
3206 	/*
3207 	 * Calculate the current number of frags.
3208 	 */
3209 	curfrags = 0;
3210 	for (m = m0; m != NULL; m = m->m_next)
3211 		curfrags++;
3212 	/*
3213 	 * First, try to collapse mbufs.  Note that we always collapse
3214 	 * towards the front so we don't need to deal with moving the
3215 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3216 	 * less data than the following.
3217 	 */
3218 	m = m0;
3219 again:
3220 	for (;;) {
3221 		n = m->m_next;
3222 		if (n == NULL)
3223 			break;
3224 		if ((m->m_flags & M_RDONLY) == 0 &&
3225 		    n->m_len < M_TRAILINGSPACE(m)) {
3226 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3227 				n->m_len);
3228 			m->m_len += n->m_len;
3229 			m->m_next = n->m_next;
3230 			m_free(n);
3231 			if (--curfrags <= maxfrags)
3232 				return m0;
3233 		} else
3234 			m = n;
3235 	}
3236 	KASSERT(maxfrags > 1,
3237 		("maxfrags %u, but normal collapse failed", maxfrags));
3238 	/*
3239 	 * Collapse consecutive mbufs to a cluster.
3240 	 */
3241 	prev = &m0->m_next;		/* NB: not the first mbuf */
3242 	while ((n = *prev) != NULL) {
3243 		if ((n2 = n->m_next) != NULL &&
3244 		    n->m_len + n2->m_len < MCLBYTES) {
3245 			m = m_getcl(how, MT_DATA, 0);
3246 			if (m == NULL)
3247 				goto bad;
3248 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3249 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3250 				n2->m_len);
3251 			m->m_len = n->m_len + n2->m_len;
3252 			m->m_next = n2->m_next;
3253 			*prev = m;
3254 			m_free(n);
3255 			m_free(n2);
3256 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3257 				return m0;
3258 			/*
3259 			 * Still not there, try the normal collapse
3260 			 * again before we allocate another cluster.
3261 			 */
3262 			goto again;
3263 		}
3264 		prev = &n->m_next;
3265 	}
3266 	/*
3267 	 * No place where we can collapse to a cluster; punt.
3268 	 * This can occur if, for example, you request 2 frags
3269 	 * but the packet requires that both be clusters (we
3270 	 * never reallocate the first mbuf to avoid moving the
3271 	 * packet header).
3272 	 */
3273 bad:
3274 	return NULL;
3275 }
3276 
3277 /*
3278  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3279  */
3280 static int
3281 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3282 {
3283 	int i;
3284 
3285 	for (i = 0; i < rt->rateCount; i++)
3286 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3287 			return i;
3288 	return 0;		/* NB: lowest rate */
3289 }
3290 
3291 static int
3292 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3293     struct mbuf *m0)
3294 {
3295 	struct ieee80211com *ic = &sc->sc_ic;
3296 	struct ath_hal *ah = sc->sc_ah;
3297 	struct ifnet *ifp = sc->sc_ifp;
3298 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3299 	int i, error, iswep, ismcast, ismrr;
3300 	int keyix, hdrlen, pktlen, try0;
3301 	u_int8_t rix, txrate, ctsrate;
3302 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3303 	struct ath_desc *ds, *ds0;
3304 	struct ath_txq *txq;
3305 	struct ieee80211_frame *wh;
3306 	u_int subtype, flags, ctsduration;
3307 	HAL_PKT_TYPE atype;
3308 	const HAL_RATE_TABLE *rt;
3309 	HAL_BOOL shortPreamble;
3310 	struct ath_node *an;
3311 	struct mbuf *m;
3312 	u_int pri;
3313 
3314 	wh = mtod(m0, struct ieee80211_frame *);
3315 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3316 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3317 	hdrlen = ieee80211_anyhdrsize(wh);
3318 	/*
3319 	 * Packet length must not include any
3320 	 * pad bytes; deduct them here.
3321 	 */
3322 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3323 
3324 	if (iswep) {
3325 		const struct ieee80211_cipher *cip;
3326 		struct ieee80211_key *k;
3327 
3328 		/*
3329 		 * Construct the 802.11 header+trailer for an encrypted
3330 		 * frame. The only reason this can fail is because of an
3331 		 * unknown or unsupported cipher/key type.
3332 		 */
3333 		k = ieee80211_crypto_encap(ic, ni, m0);
3334 		if (k == NULL) {
3335 			/*
3336 			 * This can happen when the key is yanked after the
3337 			 * frame was queued.  Just discard the frame; the
3338 			 * 802.11 layer counts failures and provides
3339 			 * debugging/diagnostics.
3340 			 */
3341 			m_freem(m0);
3342 			return EIO;
3343 		}
3344 		/*
3345 		 * Adjust the packet + header lengths for the crypto
3346 		 * additions and calculate the h/w key index.  When
3347 		 * a s/w mic is done the frame will have had any mic
3348 		 * added to it prior to entry so m0->m_pkthdr.len above will
3349 		 * account for it. Otherwise we need to add it to the
3350 		 * packet length.
3351 		 */
3352 		cip = k->wk_cipher;
3353 		hdrlen += cip->ic_header;
3354 		pktlen += cip->ic_header + cip->ic_trailer;
3355 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3356 			pktlen += cip->ic_miclen;
3357 		keyix = k->wk_keyix;
3358 
3359 		/* packet header may have moved, reset our local pointer */
3360 		wh = mtod(m0, struct ieee80211_frame *);
3361 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3362 		/*
3363 		 * Use station key cache slot, if assigned.
3364 		 */
3365 		keyix = ni->ni_ucastkey.wk_keyix;
3366 		if (keyix == IEEE80211_KEYIX_NONE)
3367 			keyix = HAL_TXKEYIX_INVALID;
3368 	} else
3369 		keyix = HAL_TXKEYIX_INVALID;
3370 
3371 	pktlen += IEEE80211_CRC_LEN;
3372 
3373 	/*
3374 	 * Load the DMA map so any coalescing is done.  This
3375 	 * also calculates the number of descriptors we need.
3376 	 */
3377 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3378 				     bf->bf_segs, &bf->bf_nseg,
3379 				     BUS_DMA_NOWAIT);
3380 	if (error == EFBIG) {
3381 		/* XXX packet requires too many descriptors */
3382 		bf->bf_nseg = ATH_TXDESC+1;
3383 	} else if (error != 0) {
3384 		sc->sc_stats.ast_tx_busdma++;
3385 		m_freem(m0);
3386 		return error;
3387 	}
3388 	/*
3389 	 * Discard null packets and check for packets that
3390 	 * require too many TX descriptors.  We try to convert
3391 	 * the latter to a cluster.
3392 	 */
3393 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3394 		sc->sc_stats.ast_tx_linear++;
3395 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3396 		if (m == NULL) {
3397 			m_freem(m0);
3398 			sc->sc_stats.ast_tx_nombuf++;
3399 			return ENOMEM;
3400 		}
3401 		m0 = m;
3402 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3403 					     bf->bf_segs, &bf->bf_nseg,
3404 					     BUS_DMA_NOWAIT);
3405 		if (error != 0) {
3406 			sc->sc_stats.ast_tx_busdma++;
3407 			m_freem(m0);
3408 			return error;
3409 		}
3410 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3411 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3412 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3413 		sc->sc_stats.ast_tx_nodata++;
3414 		m_freem(m0);
3415 		return EIO;
3416 	}
3417 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3418 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3419 	bf->bf_m = m0;
3420 	bf->bf_node = ni;			/* NB: held reference */
3421 
3422 	/* setup descriptors */
3423 	ds = bf->bf_desc;
3424 	rt = sc->sc_currates;
3425 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3426 
3427 	/*
3428 	 * NB: the 802.11 layer marks whether or not we should
3429 	 * use short preamble based on the current mode and
3430 	 * negotiated parameters.
3431 	 */
3432 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3433 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3434 		shortPreamble = AH_TRUE;
3435 		sc->sc_stats.ast_tx_shortpre++;
3436 	} else {
3437 		shortPreamble = AH_FALSE;
3438 	}
3439 
3440 	an = ATH_NODE(ni);
3441 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3442 	ismrr = 0;				/* default no multi-rate retry*/
3443 	/*
3444 	 * Calculate Atheros packet type from IEEE80211 packet header,
3445 	 * setup for rate calculations, and select h/w transmit queue.
3446 	 */
3447 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3448 	case IEEE80211_FC0_TYPE_MGT:
3449 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3450 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3451 			atype = HAL_PKT_TYPE_BEACON;
3452 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3453 			atype = HAL_PKT_TYPE_PROBE_RESP;
3454 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3455 			atype = HAL_PKT_TYPE_ATIM;
3456 		else
3457 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3458 		rix = sc->sc_minrateix;
3459 		txrate = rt->info[rix].rateCode;
3460 		if (shortPreamble)
3461 			txrate |= rt->info[rix].shortPreamble;
3462 		try0 = ATH_TXMGTTRY;
3463 		/* NB: force all management frames to highest queue */
3464 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3465 			/* NB: force all management frames to highest queue */
3466 			pri = WME_AC_VO;
3467 		} else
3468 			pri = WME_AC_BE;
3469 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3470 		break;
3471 	case IEEE80211_FC0_TYPE_CTL:
3472 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3473 		rix = sc->sc_minrateix;
3474 		txrate = rt->info[rix].rateCode;
3475 		if (shortPreamble)
3476 			txrate |= rt->info[rix].shortPreamble;
3477 		try0 = ATH_TXMGTTRY;
3478 		/* NB: force all ctl frames to highest queue */
3479 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3480 			/* NB: force all ctl frames to highest queue */
3481 			pri = WME_AC_VO;
3482 		} else
3483 			pri = WME_AC_BE;
3484 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3485 		break;
3486 	case IEEE80211_FC0_TYPE_DATA:
3487 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3488 		/*
3489 		 * Data frames: multicast frames go out at a fixed rate,
3490 		 * otherwise consult the rate control module for the
3491 		 * rate to use.
3492 		 */
3493 		if (ismcast) {
3494 			/*
3495 			 * Check mcast rate setting in case it's changed.
3496 			 * XXX move out of fastpath
3497 			 */
3498 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3499 				sc->sc_mcastrix =
3500 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3501 				sc->sc_mcastrate = ic->ic_mcast_rate;
3502 			}
3503 			rix = sc->sc_mcastrix;
3504 			txrate = rt->info[rix].rateCode;
3505 			if (shortPreamble)
3506 				txrate |= rt->info[rix].shortPreamble;
3507 			try0 = 1;
3508 		} else {
3509 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3510 				&rix, &try0, &txrate);
3511 			sc->sc_txrate = txrate;		/* for LED blinking */
3512 			if (try0 != ATH_TXMAXTRY)
3513 				ismrr = 1;
3514 		}
3515 		pri = M_WME_GETAC(m0);
3516 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3517 			flags |= HAL_TXDESC_NOACK;
3518 		break;
3519 	default:
3520 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3521 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3522 		/* XXX statistic */
3523 		m_freem(m0);
3524 		return EIO;
3525 	}
3526 	txq = sc->sc_ac2q[pri];
3527 
3528 	/*
3529 	 * When servicing one or more stations in power-save mode
3530 	 * multicast frames must be buffered until after the beacon.
3531 	 * We use the CAB queue for that.
3532 	 */
3533 	if (ismcast && ic->ic_ps_sta) {
3534 		txq = sc->sc_cabq;
3535 		/* XXX? more bit in 802.11 frame header */
3536 	}
3537 
3538 	/*
3539 	 * Calculate miscellaneous flags.
3540 	 */
3541 	if (ismcast) {
3542 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3543 	} else if (pktlen > ic->ic_rtsthreshold) {
3544 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3545 		cix = rt->info[rix].controlRate;
3546 		sc->sc_stats.ast_tx_rts++;
3547 	}
3548 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3549 		sc->sc_stats.ast_tx_noack++;
3550 
3551 	/*
3552 	 * If 802.11g protection is enabled, determine whether
3553 	 * to use RTS/CTS or just CTS.  Note that this is only
3554 	 * done for OFDM unicast frames.
3555 	 */
3556 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3557 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3558 	    (flags & HAL_TXDESC_NOACK) == 0) {
3559 		/* XXX fragments must use CCK rates w/ protection */
3560 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3561 			flags |= HAL_TXDESC_RTSENA;
3562 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3563 			flags |= HAL_TXDESC_CTSENA;
3564 		cix = rt->info[sc->sc_protrix].controlRate;
3565 		sc->sc_stats.ast_tx_protect++;
3566 	}
3567 
3568 	/*
3569 	 * Calculate duration.  This logically belongs in the 802.11
3570 	 * layer but it lacks sufficient information to calculate it.
3571 	 */
3572 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3573 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3574 		u_int16_t dur;
3575 		/*
3576 		 * XXX not right with fragmentation.
3577 		 */
3578 		if (shortPreamble)
3579 			dur = rt->info[rix].spAckDuration;
3580 		else
3581 			dur = rt->info[rix].lpAckDuration;
3582 		*(u_int16_t *)wh->i_dur = htole16(dur);
3583 	}
3584 
3585 	/*
3586 	 * Calculate RTS/CTS rate and duration if needed.
3587 	 */
3588 	ctsduration = 0;
3589 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3590 		/*
3591 		 * CTS transmit rate is derived from the transmit rate
3592 		 * by looking in the h/w rate table.  We must also factor
3593 		 * in whether or not a short preamble is to be used.
3594 		 */
3595 		/* NB: cix is set above where RTS/CTS is enabled */
3596 		KASSERT(cix != 0xff, ("cix not setup"));
3597 		ctsrate = rt->info[cix].rateCode;
3598 		/*
3599 		 * Compute the transmit duration based on the frame
3600 		 * size and the size of an ACK frame.  We call into the
3601 		 * HAL to do the computation since it depends on the
3602 		 * characteristics of the actual PHY being used.
3603 		 *
3604 		 * NB: CTS is assumed the same size as an ACK so we can
3605 		 *     use the precalculated ACK durations.
3606 		 */
3607 		if (shortPreamble) {
3608 			ctsrate |= rt->info[cix].shortPreamble;
3609 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3610 				ctsduration += rt->info[cix].spAckDuration;
3611 			ctsduration += ath_hal_computetxtime(ah,
3612 				rt, pktlen, rix, AH_TRUE);
3613 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3614 				ctsduration += rt->info[rix].spAckDuration;
3615 		} else {
3616 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3617 				ctsduration += rt->info[cix].lpAckDuration;
3618 			ctsduration += ath_hal_computetxtime(ah,
3619 				rt, pktlen, rix, AH_FALSE);
3620 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3621 				ctsduration += rt->info[rix].lpAckDuration;
3622 		}
3623 		/*
3624 		 * Must disable multi-rate retry when using RTS/CTS.
3625 		 */
3626 		ismrr = 0;
3627 		try0 = ATH_TXMGTTRY;		/* XXX */
3628 	} else
3629 		ctsrate = 0;
3630 
3631 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3632 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3633 			sc->sc_hwmap[txrate].ieeerate, -1);
3634 
3635 	if (ic->ic_rawbpf)
3636 		bpf_mtap(ic->ic_rawbpf, m0);
3637 	if (sc->sc_drvbpf) {
3638 		u_int64_t tsf = ath_hal_gettsf64(ah);
3639 
3640 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3641 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3642 		if (iswep)
3643 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3644 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3645 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3646 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3647 
3648 		bpf_mtap2(sc->sc_drvbpf,
3649 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3650 	}
3651 
3652 	/*
3653 	 * Determine if a tx interrupt should be generated for
3654 	 * this descriptor.  We take a tx interrupt to reap
3655 	 * descriptors when the h/w hits an EOL condition or
3656 	 * when the descriptor is specifically marked to generate
3657 	 * an interrupt.  We periodically mark descriptors in this
3658 	 * way to insure timely replenishing of the supply needed
3659 	 * for sending frames.  Defering interrupts reduces system
3660 	 * load and potentially allows more concurrent work to be
3661 	 * done but if done to aggressively can cause senders to
3662 	 * backup.
3663 	 *
3664 	 * NB: use >= to deal with sc_txintrperiod changing
3665 	 *     dynamically through sysctl.
3666 	 */
3667 	if (flags & HAL_TXDESC_INTREQ) {
3668 		txq->axq_intrcnt = 0;
3669 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3670 		flags |= HAL_TXDESC_INTREQ;
3671 		txq->axq_intrcnt = 0;
3672 	}
3673 
3674 	/*
3675 	 * Formulate first tx descriptor with tx controls.
3676 	 */
3677 	/* XXX check return value? */
3678 	ath_hal_setuptxdesc(ah, ds
3679 		, pktlen		/* packet length */
3680 		, hdrlen		/* header length */
3681 		, atype			/* Atheros packet type */
3682 		, ni->ni_txpower	/* txpower */
3683 		, txrate, try0		/* series 0 rate/tries */
3684 		, keyix			/* key cache index */
3685 		, sc->sc_txantenna	/* antenna mode */
3686 		, flags			/* flags */
3687 		, ctsrate		/* rts/cts rate */
3688 		, ctsduration		/* rts/cts duration */
3689 	);
3690 	bf->bf_flags = flags;
3691 	/*
3692 	 * Setup the multi-rate retry state only when we're
3693 	 * going to use it.  This assumes ath_hal_setuptxdesc
3694 	 * initializes the descriptors (so we don't have to)
3695 	 * when the hardware supports multi-rate retry and
3696 	 * we don't use it.
3697 	 */
3698 	if (ismrr)
3699 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3700 
3701 	/*
3702 	 * Fillin the remainder of the descriptor info.
3703 	 */
3704 	ds0 = ds;
3705 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3706 		ds->ds_data = bf->bf_segs[i].ds_addr;
3707 		if (i == bf->bf_nseg - 1)
3708 			ds->ds_link = 0;
3709 		else
3710 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3711 		ath_hal_filltxdesc(ah, ds
3712 			, bf->bf_segs[i].ds_len	/* segment length */
3713 			, i == 0		/* first segment */
3714 			, i == bf->bf_nseg - 1	/* last segment */
3715 			, ds0			/* first descriptor */
3716 		);
3717 		DPRINTF(sc, ATH_DEBUG_XMIT,
3718 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3719 			__func__, i, ds->ds_link, ds->ds_data,
3720 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3721 	}
3722 	/*
3723 	 * Insert the frame on the outbound list and
3724 	 * pass it on to the hardware.
3725 	 */
3726 	ATH_TXQ_LOCK(txq);
3727 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3728 	if (txq->axq_link == NULL) {
3729 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3730 		DPRINTF(sc, ATH_DEBUG_XMIT,
3731 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3732 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3733 			txq->axq_depth);
3734 	} else {
3735 		*txq->axq_link = bf->bf_daddr;
3736 		DPRINTF(sc, ATH_DEBUG_XMIT,
3737 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3738 			txq->axq_qnum, txq->axq_link,
3739 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3740 	}
3741 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3742 	/*
3743 	 * The CAB queue is started from the SWBA handler since
3744 	 * frames only go out on DTIM and to avoid possible races.
3745 	 */
3746 	if (txq != sc->sc_cabq)
3747 		ath_hal_txstart(ah, txq->axq_qnum);
3748 	ATH_TXQ_UNLOCK(txq);
3749 
3750 	return 0;
3751 }
3752 
3753 /*
3754  * Process completed xmit descriptors from the specified queue.
3755  */
3756 static int
3757 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3758 {
3759 	struct ath_hal *ah = sc->sc_ah;
3760 	struct ieee80211com *ic = &sc->sc_ic;
3761 	struct ath_buf *bf;
3762 	struct ath_desc *ds, *ds0;
3763 	struct ieee80211_node *ni;
3764 	struct ath_node *an;
3765 	int sr, lr, pri, nacked;
3766 	HAL_STATUS status;
3767 
3768 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3769 		__func__, txq->axq_qnum,
3770 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3771 		txq->axq_link);
3772 	nacked = 0;
3773 	for (;;) {
3774 		ATH_TXQ_LOCK(txq);
3775 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3776 		bf = STAILQ_FIRST(&txq->axq_q);
3777 		if (bf == NULL) {
3778 			ATH_TXQ_UNLOCK(txq);
3779 			break;
3780 		}
3781 		ds0 = &bf->bf_desc[0];
3782 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3783 		status = ath_hal_txprocdesc(ah, ds);
3784 #ifdef AR_DEBUG
3785 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3786 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
3787 #endif
3788 		if (status == HAL_EINPROGRESS) {
3789 			ATH_TXQ_UNLOCK(txq);
3790 			break;
3791 		}
3792 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3793 		if (txq->axq_depth == 0)
3794 			txq->axq_link = NULL;
3795 		ATH_TXQ_UNLOCK(txq);
3796 
3797 		ni = bf->bf_node;
3798 		if (ni != NULL) {
3799 			an = ATH_NODE(ni);
3800 			if (ds->ds_txstat.ts_status == 0) {
3801 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3802 				sc->sc_stats.ast_ant_tx[txant]++;
3803 				sc->sc_ant_tx[txant]++;
3804 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3805 					sc->sc_stats.ast_tx_altrate++;
3806 				sc->sc_stats.ast_tx_rssi =
3807 					ds->ds_txstat.ts_rssi;
3808 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3809 					ds->ds_txstat.ts_rssi);
3810 				pri = M_WME_GETAC(bf->bf_m);
3811 				if (pri >= WME_AC_VO)
3812 					ic->ic_wme.wme_hipri_traffic++;
3813 				ni->ni_inact = ni->ni_inact_reload;
3814 			} else {
3815 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3816 					sc->sc_stats.ast_tx_xretries++;
3817 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3818 					sc->sc_stats.ast_tx_fifoerr++;
3819 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3820 					sc->sc_stats.ast_tx_filtered++;
3821 			}
3822 			sr = ds->ds_txstat.ts_shortretry;
3823 			lr = ds->ds_txstat.ts_longretry;
3824 			sc->sc_stats.ast_tx_shortretry += sr;
3825 			sc->sc_stats.ast_tx_longretry += lr;
3826 			/*
3827 			 * Hand the descriptor to the rate control algorithm.
3828 			 */
3829 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3830 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3831 				/*
3832 				 * If frame was ack'd update the last rx time
3833 				 * used to workaround phantom bmiss interrupts.
3834 				 */
3835 				if (ds->ds_txstat.ts_status == 0)
3836 					nacked++;
3837 				ath_rate_tx_complete(sc, an, ds, ds0);
3838 			}
3839 			/*
3840 			 * Reclaim reference to node.
3841 			 *
3842 			 * NB: the node may be reclaimed here if, for example
3843 			 *     this is a DEAUTH message that was sent and the
3844 			 *     node was timed out due to inactivity.
3845 			 */
3846 			ieee80211_free_node(ni);
3847 		}
3848 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3849 		    BUS_DMASYNC_POSTWRITE);
3850 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3851 		m_freem(bf->bf_m);
3852 		bf->bf_m = NULL;
3853 		bf->bf_node = NULL;
3854 
3855 		ATH_TXBUF_LOCK(sc);
3856 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3857 		ATH_TXBUF_UNLOCK(sc);
3858 	}
3859 	return nacked;
3860 }
3861 
3862 static __inline int
3863 txqactive(struct ath_hal *ah, int qnum)
3864 {
3865 	u_int32_t txqs = 1<<qnum;
3866 	ath_hal_gettxintrtxqs(ah, &txqs);
3867 	return (txqs & (1<<qnum));
3868 }
3869 
3870 /*
3871  * Deferred processing of transmit interrupt; special-cased
3872  * for a single hardware transmit queue (e.g. 5210 and 5211).
3873  */
3874 static void
3875 ath_tx_proc_q0(void *arg, int npending)
3876 {
3877 	struct ath_softc *sc = arg;
3878 	struct ifnet *ifp = sc->sc_ifp;
3879 
3880 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
3881 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3882 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3883 		ath_tx_processq(sc, sc->sc_cabq);
3884 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3885 	sc->sc_tx_timer = 0;
3886 
3887 	if (sc->sc_softled)
3888 		ath_led_event(sc, ATH_LED_TX);
3889 
3890 	ath_start(ifp);
3891 }
3892 
3893 /*
3894  * Deferred processing of transmit interrupt; special-cased
3895  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3896  */
3897 static void
3898 ath_tx_proc_q0123(void *arg, int npending)
3899 {
3900 	struct ath_softc *sc = arg;
3901 	struct ifnet *ifp = sc->sc_ifp;
3902 	int nacked;
3903 
3904 	/*
3905 	 * Process each active queue.
3906 	 */
3907 	nacked = 0;
3908 	if (txqactive(sc->sc_ah, 0))
3909 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
3910 	if (txqactive(sc->sc_ah, 1))
3911 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
3912 	if (txqactive(sc->sc_ah, 2))
3913 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
3914 	if (txqactive(sc->sc_ah, 3))
3915 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
3916 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3917 		ath_tx_processq(sc, sc->sc_cabq);
3918 	if (nacked)
3919 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3920 
3921 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3922 	sc->sc_tx_timer = 0;
3923 
3924 	if (sc->sc_softled)
3925 		ath_led_event(sc, ATH_LED_TX);
3926 
3927 	ath_start(ifp);
3928 }
3929 
3930 /*
3931  * Deferred processing of transmit interrupt.
3932  */
3933 static void
3934 ath_tx_proc(void *arg, int npending)
3935 {
3936 	struct ath_softc *sc = arg;
3937 	struct ifnet *ifp = sc->sc_ifp;
3938 	int i, nacked;
3939 
3940 	/*
3941 	 * Process each active queue.
3942 	 */
3943 	nacked = 0;
3944 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3945 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
3946 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
3947 	if (nacked)
3948 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3949 
3950 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3951 	sc->sc_tx_timer = 0;
3952 
3953 	if (sc->sc_softled)
3954 		ath_led_event(sc, ATH_LED_TX);
3955 
3956 	ath_start(ifp);
3957 }
3958 
3959 static void
3960 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3961 {
3962 #ifdef AR_DEBUG
3963 	struct ath_hal *ah = sc->sc_ah;
3964 #endif
3965 	struct ieee80211_node *ni;
3966 	struct ath_buf *bf;
3967 	u_int ix;
3968 
3969 	/*
3970 	 * NB: this assumes output has been stopped and
3971 	 *     we do not need to block ath_tx_tasklet
3972 	 */
3973 	for (ix = 0;; ix++) {
3974 		ATH_TXQ_LOCK(txq);
3975 		bf = STAILQ_FIRST(&txq->axq_q);
3976 		if (bf == NULL) {
3977 			txq->axq_link = NULL;
3978 			ATH_TXQ_UNLOCK(txq);
3979 			break;
3980 		}
3981 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3982 		ATH_TXQ_UNLOCK(txq);
3983 #ifdef AR_DEBUG
3984 		if (sc->sc_debug & ATH_DEBUG_RESET)
3985 			ath_printtxbuf(bf, txq->axq_qnum, ix,
3986 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3987 #endif /* AR_DEBUG */
3988 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3989 		m_freem(bf->bf_m);
3990 		bf->bf_m = NULL;
3991 		ni = bf->bf_node;
3992 		bf->bf_node = NULL;
3993 		if (ni != NULL) {
3994 			/*
3995 			 * Reclaim node reference.
3996 			 */
3997 			ieee80211_free_node(ni);
3998 		}
3999 		ATH_TXBUF_LOCK(sc);
4000 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4001 		ATH_TXBUF_UNLOCK(sc);
4002 	}
4003 }
4004 
4005 static void
4006 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4007 {
4008 	struct ath_hal *ah = sc->sc_ah;
4009 
4010 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4011 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4012 	    __func__, txq->axq_qnum,
4013 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4014 	    txq->axq_link);
4015 }
4016 
4017 /*
4018  * Drain the transmit queues and reclaim resources.
4019  */
4020 static void
4021 ath_draintxq(struct ath_softc *sc)
4022 {
4023 	struct ath_hal *ah = sc->sc_ah;
4024 	struct ifnet *ifp = sc->sc_ifp;
4025 	int i;
4026 
4027 	/* XXX return value */
4028 	if (!sc->sc_invalid) {
4029 		/* don't touch the hardware if marked invalid */
4030 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4031 		DPRINTF(sc, ATH_DEBUG_RESET,
4032 		    "%s: beacon queue %p\n", __func__,
4033 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4034 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4035 			if (ATH_TXQ_SETUP(sc, i))
4036 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4037 	}
4038 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4039 		if (ATH_TXQ_SETUP(sc, i))
4040 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4041 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4042 	sc->sc_tx_timer = 0;
4043 }
4044 
4045 /*
4046  * Disable the receive h/w in preparation for a reset.
4047  */
4048 static void
4049 ath_stoprecv(struct ath_softc *sc)
4050 {
4051 #define	PA2DESC(_sc, _pa) \
4052 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4053 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4054 	struct ath_hal *ah = sc->sc_ah;
4055 
4056 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4057 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4058 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4059 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4060 #ifdef AR_DEBUG
4061 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4062 		struct ath_buf *bf;
4063 		u_int ix;
4064 
4065 		printf("%s: rx queue %p, link %p\n", __func__,
4066 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4067 		ix = 0;
4068 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4069 			struct ath_desc *ds = bf->bf_desc;
4070 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4071 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4072 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4073 				ath_printrxbuf(bf, ix, status == HAL_OK);
4074 			ix++;
4075 		}
4076 	}
4077 #endif
4078 	sc->sc_rxlink = NULL;		/* just in case */
4079 #undef PA2DESC
4080 }
4081 
4082 /*
4083  * Enable the receive h/w following a reset.
4084  */
4085 static int
4086 ath_startrecv(struct ath_softc *sc)
4087 {
4088 	struct ath_hal *ah = sc->sc_ah;
4089 	struct ath_buf *bf;
4090 
4091 	sc->sc_rxlink = NULL;
4092 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4093 		int error = ath_rxbuf_init(sc, bf);
4094 		if (error != 0) {
4095 			DPRINTF(sc, ATH_DEBUG_RECV,
4096 				"%s: ath_rxbuf_init failed %d\n",
4097 				__func__, error);
4098 			return error;
4099 		}
4100 	}
4101 
4102 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4103 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4104 	ath_hal_rxena(ah);		/* enable recv descriptors */
4105 	ath_mode_init(sc);		/* set filters, etc. */
4106 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4107 	return 0;
4108 }
4109 
4110 /*
4111  * Update internal state after a channel change.
4112  */
4113 static void
4114 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4115 {
4116 	struct ieee80211com *ic = &sc->sc_ic;
4117 	enum ieee80211_phymode mode;
4118 	u_int16_t flags;
4119 
4120 	/*
4121 	 * Change channels and update the h/w rate map
4122 	 * if we're switching; e.g. 11a to 11b/g.
4123 	 */
4124 	mode = ieee80211_chan2mode(ic, chan);
4125 	if (mode != sc->sc_curmode)
4126 		ath_setcurmode(sc, mode);
4127 	/*
4128 	 * Update BPF state.  NB: ethereal et. al. don't handle
4129 	 * merged flags well so pick a unique mode for their use.
4130 	 */
4131 	if (IEEE80211_IS_CHAN_A(chan))
4132 		flags = IEEE80211_CHAN_A;
4133 	/* XXX 11g schizophrenia */
4134 	else if (IEEE80211_IS_CHAN_G(chan) ||
4135 	    IEEE80211_IS_CHAN_PUREG(chan))
4136 		flags = IEEE80211_CHAN_G;
4137 	else
4138 		flags = IEEE80211_CHAN_B;
4139 	if (IEEE80211_IS_CHAN_T(chan))
4140 		flags |= IEEE80211_CHAN_TURBO;
4141 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4142 		htole16(chan->ic_freq);
4143 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4144 		htole16(flags);
4145 }
4146 
4147 /*
4148  * Poll for a channel clear indication; this is required
4149  * for channels requiring DFS and not previously visited
4150  * and/or with a recent radar detection.
4151  */
4152 static void
4153 ath_dfswait(void *arg)
4154 {
4155 	struct ath_softc *sc = arg;
4156 	struct ath_hal *ah = sc->sc_ah;
4157 	HAL_CHANNEL hchan;
4158 
4159 	ath_hal_radar_wait(ah, &hchan);
4160 	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4161 	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4162 
4163 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4164 		if_printf(sc->sc_ifp,
4165 		    "channel %u/0x%x/0x%x has interference\n",
4166 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4167 		return;
4168 	}
4169 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4170 		/* XXX should not happen */
4171 		return;
4172 	}
4173 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4174 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4175 		sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4176 		if_printf(sc->sc_ifp,
4177 		    "channel %u/0x%x/0x%x marked clear\n",
4178 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4179 	} else
4180 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4181 }
4182 
4183 /*
4184  * Set/change channels.  If the channel is really being changed,
4185  * it's done by reseting the chip.  To accomplish this we must
4186  * first cleanup any pending DMA, then restart stuff after a la
4187  * ath_init.
4188  */
4189 static int
4190 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4191 {
4192 	struct ath_hal *ah = sc->sc_ah;
4193 	struct ieee80211com *ic = &sc->sc_ic;
4194 	HAL_CHANNEL hchan;
4195 
4196 	/*
4197 	 * Convert to a HAL channel description with
4198 	 * the flags constrained to reflect the current
4199 	 * operating mode.
4200 	 */
4201 	hchan.channel = chan->ic_freq;
4202 	hchan.channelFlags = ath_chan2flags(ic, chan);
4203 
4204 	DPRINTF(sc, ATH_DEBUG_RESET,
4205 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4206 	    __func__,
4207 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4208 		sc->sc_curchan.channelFlags),
4209 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4210 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4211 	        hchan.channel, hchan.channelFlags);
4212 	if (hchan.channel != sc->sc_curchan.channel ||
4213 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4214 		HAL_STATUS status;
4215 
4216 		/*
4217 		 * To switch channels clear any pending DMA operations;
4218 		 * wait long enough for the RX fifo to drain, reset the
4219 		 * hardware at the new frequency, and then re-enable
4220 		 * the relevant bits of the h/w.
4221 		 */
4222 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4223 		ath_draintxq(sc);		/* clear pending tx frames */
4224 		ath_stoprecv(sc);		/* turn off frame recv */
4225 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
4226 			if_printf(ic->ic_ifp, "%s: unable to reset "
4227 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
4228 			    __func__, ieee80211_chan2ieee(ic, chan),
4229 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4230 			return EIO;
4231 		}
4232 		sc->sc_curchan = hchan;
4233 		ath_update_txpow(sc);		/* update tx power state */
4234 		sc->sc_diversity = ath_hal_getdiversity(ah);
4235 		sc->sc_calinterval = 1;
4236 		sc->sc_caltries = 0;
4237 
4238 		/*
4239 		 * Re-enable rx framework.
4240 		 */
4241 		if (ath_startrecv(sc) != 0) {
4242 			if_printf(ic->ic_ifp,
4243 				"%s: unable to restart recv logic\n", __func__);
4244 			return EIO;
4245 		}
4246 
4247 		/*
4248 		 * Change channels and update the h/w rate map
4249 		 * if we're switching; e.g. 11a to 11b/g.
4250 		 */
4251 		ic->ic_ibss_chan = chan;
4252 		ath_chan_change(sc, chan);
4253 
4254 		/*
4255 		 * Handle DFS required waiting period to determine
4256 		 * if channel is clear of radar traffic.
4257 		 */
4258 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4259 #define	DFS_AND_NOT_CLEAR(_c) \
4260 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4261 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4262 				if_printf(sc->sc_ifp,
4263 					"wait for DFS clear channel signal\n");
4264 				/* XXX stop sndq */
4265 				sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4266 				callout_reset(&sc->sc_dfs_ch,
4267 					2 * hz, ath_dfswait, sc);
4268 			} else
4269 				callout_stop(&sc->sc_dfs_ch);
4270 #undef DFS_NOT_CLEAR
4271 		}
4272 
4273 		/*
4274 		 * Re-enable interrupts.
4275 		 */
4276 		ath_hal_intrset(ah, sc->sc_imask);
4277 	}
4278 	return 0;
4279 }
4280 
4281 static void
4282 ath_next_scan(void *arg)
4283 {
4284 	struct ath_softc *sc = arg;
4285 	struct ieee80211com *ic = &sc->sc_ic;
4286 
4287 	if (ic->ic_state == IEEE80211_S_SCAN)
4288 		ieee80211_next_scan(ic);
4289 }
4290 
4291 /*
4292  * Periodically recalibrate the PHY to account
4293  * for temperature/environment changes.
4294  */
4295 static void
4296 ath_calibrate(void *arg)
4297 {
4298 	struct ath_softc *sc = arg;
4299 	struct ath_hal *ah = sc->sc_ah;
4300 	HAL_BOOL iqCalDone;
4301 
4302 	sc->sc_stats.ast_per_cal++;
4303 
4304 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4305 		/*
4306 		 * Rfgain is out of bounds, reset the chip
4307 		 * to load new gain values.
4308 		 */
4309 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4310 			"%s: rfgain change\n", __func__);
4311 		sc->sc_stats.ast_per_rfgain++;
4312 		ath_reset(sc->sc_ifp);
4313 	}
4314 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4315 		DPRINTF(sc, ATH_DEBUG_ANY,
4316 			"%s: calibration of channel %u failed\n",
4317 			__func__, sc->sc_curchan.channel);
4318 		sc->sc_stats.ast_per_calfail++;
4319 	}
4320 	/*
4321 	 * Calibrate noise floor data again in case of change.
4322 	 */
4323 	ath_hal_process_noisefloor(ah);
4324 	/*
4325 	 * Poll more frequently when the IQ calibration is in
4326 	 * progress to speedup loading the final settings.
4327 	 * We temper this aggressive polling with an exponential
4328 	 * back off after 4 tries up to ath_calinterval.
4329 	 */
4330 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4331 		sc->sc_caltries = 0;
4332 		sc->sc_calinterval = ath_calinterval;
4333 	} else if (sc->sc_caltries > 4) {
4334 		sc->sc_caltries = 0;
4335 		sc->sc_calinterval <<= 1;
4336 		if (sc->sc_calinterval > ath_calinterval)
4337 			sc->sc_calinterval = ath_calinterval;
4338 	}
4339 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4340 		("bad calibration interval %u", sc->sc_calinterval));
4341 
4342 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4343 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4344 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4345 	sc->sc_caltries++;
4346 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4347 		ath_calibrate, sc);
4348 }
4349 
4350 static int
4351 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4352 {
4353 	struct ifnet *ifp = ic->ic_ifp;
4354 	struct ath_softc *sc = ifp->if_softc;
4355 	struct ath_hal *ah = sc->sc_ah;
4356 	struct ieee80211_node *ni;
4357 	int i, error;
4358 	const u_int8_t *bssid;
4359 	u_int32_t rfilt;
4360 	static const HAL_LED_STATE leds[] = {
4361 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4362 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4363 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4364 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4365 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4366 	};
4367 
4368 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4369 		ieee80211_state_name[ic->ic_state],
4370 		ieee80211_state_name[nstate]);
4371 
4372 	callout_stop(&sc->sc_scan_ch);
4373 	callout_stop(&sc->sc_cal_ch);
4374 	callout_stop(&sc->sc_dfs_ch);
4375 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4376 
4377 	if (nstate == IEEE80211_S_INIT) {
4378 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4379 		/*
4380 		 * NB: disable interrupts so we don't rx frames.
4381 		 */
4382 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4383 		/*
4384 		 * Notify the rate control algorithm.
4385 		 */
4386 		ath_rate_newstate(sc, nstate);
4387 		goto done;
4388 	}
4389 	ni = ic->ic_bss;
4390 	error = ath_chan_set(sc, ic->ic_curchan);
4391 	if (error != 0)
4392 		goto bad;
4393 	rfilt = ath_calcrxfilter(sc, nstate);
4394 	if (nstate == IEEE80211_S_SCAN)
4395 		bssid = ifp->if_broadcastaddr;
4396 	else
4397 		bssid = ni->ni_bssid;
4398 	ath_hal_setrxfilter(ah, rfilt);
4399 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4400 		 __func__, rfilt, ether_sprintf(bssid));
4401 
4402 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4403 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4404 	else
4405 		ath_hal_setassocid(ah, bssid, 0);
4406 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4407 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4408 			if (ath_hal_keyisvalid(ah, i))
4409 				ath_hal_keysetmac(ah, i, bssid);
4410 	}
4411 
4412 	/*
4413 	 * Notify the rate control algorithm so rates
4414 	 * are setup should ath_beacon_alloc be called.
4415 	 */
4416 	ath_rate_newstate(sc, nstate);
4417 
4418 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4419 		/* nothing to do */;
4420 	} else if (nstate == IEEE80211_S_RUN) {
4421 		DPRINTF(sc, ATH_DEBUG_STATE,
4422 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4423 			"capinfo=0x%04x chan=%d\n"
4424 			 , __func__
4425 			 , ic->ic_flags
4426 			 , ni->ni_intval
4427 			 , ether_sprintf(ni->ni_bssid)
4428 			 , ni->ni_capinfo
4429 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4430 
4431 		switch (ic->ic_opmode) {
4432 		case IEEE80211_M_HOSTAP:
4433 		case IEEE80211_M_IBSS:
4434 			/*
4435 			 * Allocate and setup the beacon frame.
4436 			 *
4437 			 * Stop any previous beacon DMA.  This may be
4438 			 * necessary, for example, when an ibss merge
4439 			 * causes reconfiguration; there will be a state
4440 			 * transition from RUN->RUN that means we may
4441 			 * be called with beacon transmission active.
4442 			 */
4443 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4444 			ath_beacon_free(sc);
4445 			error = ath_beacon_alloc(sc, ni);
4446 			if (error != 0)
4447 				goto bad;
4448 			/*
4449 			 * If joining an adhoc network defer beacon timer
4450 			 * configuration to the next beacon frame so we
4451 			 * have a current TSF to use.  Otherwise we're
4452 			 * starting an ibss/bss so there's no need to delay.
4453 			 */
4454 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4455 			    ic->ic_bss->ni_tstamp.tsf != 0)
4456 				sc->sc_syncbeacon = 1;
4457 			else
4458 				ath_beacon_config(sc);
4459 			break;
4460 		case IEEE80211_M_STA:
4461 			/*
4462 			 * Allocate a key cache slot to the station.
4463 			 */
4464 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4465 			    sc->sc_hasclrkey &&
4466 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4467 				ath_setup_stationkey(ni);
4468 			/*
4469 			 * Defer beacon timer configuration to the next
4470 			 * beacon frame so we have a current TSF to use
4471 			 * (any TSF collected when scanning is likely old).
4472 			 */
4473 			sc->sc_syncbeacon = 1;
4474 			break;
4475 		default:
4476 			break;
4477 		}
4478 
4479 		/*
4480 		 * Let the hal process statistics collected during a
4481 		 * scan so it can provide calibrated noise floor data.
4482 		 */
4483 		ath_hal_process_noisefloor(ah);
4484 		/*
4485 		 * Reset rssi stats; maybe not the best place...
4486 		 */
4487 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4488 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4489 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4490 	} else {
4491 		ath_hal_intrset(ah,
4492 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4493 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4494 	}
4495 done:
4496 	/*
4497 	 * Invoke the parent method to complete the work.
4498 	 */
4499 	error = sc->sc_newstate(ic, nstate, arg);
4500 	/*
4501 	 * Finally, start any timers.
4502 	 */
4503 	if (nstate == IEEE80211_S_RUN) {
4504 		/* start periodic recalibration timer */
4505 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4506 			ath_calibrate, sc);
4507 	} else if (nstate == IEEE80211_S_SCAN) {
4508 		/* start ap/neighbor scan timer */
4509 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4510 			ath_next_scan, sc);
4511 	}
4512 bad:
4513 	return error;
4514 }
4515 
4516 /*
4517  * Allocate a key cache slot to the station so we can
4518  * setup a mapping from key index to node. The key cache
4519  * slot is needed for managing antenna state and for
4520  * compression when stations do not use crypto.  We do
4521  * it uniliaterally here; if crypto is employed this slot
4522  * will be reassigned.
4523  */
4524 static void
4525 ath_setup_stationkey(struct ieee80211_node *ni)
4526 {
4527 	struct ieee80211com *ic = ni->ni_ic;
4528 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4529 	ieee80211_keyix keyix, rxkeyix;
4530 
4531 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4532 		/*
4533 		 * Key cache is full; we'll fall back to doing
4534 		 * the more expensive lookup in software.  Note
4535 		 * this also means no h/w compression.
4536 		 */
4537 		/* XXX msg+statistic */
4538 	} else {
4539 		/* XXX locking? */
4540 		ni->ni_ucastkey.wk_keyix = keyix;
4541 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4542 		/* NB: this will create a pass-thru key entry */
4543 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4544 	}
4545 }
4546 
4547 /*
4548  * Setup driver-specific state for a newly associated node.
4549  * Note that we're called also on a re-associate, the isnew
4550  * param tells us if this is the first time or not.
4551  */
4552 static void
4553 ath_newassoc(struct ieee80211_node *ni, int isnew)
4554 {
4555 	struct ieee80211com *ic = ni->ni_ic;
4556 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4557 
4558 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4559 	if (isnew &&
4560 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4561 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4562 		    ("new assoc with a unicast key already setup (keyix %u)",
4563 		    ni->ni_ucastkey.wk_keyix));
4564 		ath_setup_stationkey(ni);
4565 	}
4566 }
4567 
4568 static int
4569 ath_getchannels(struct ath_softc *sc, u_int cc,
4570 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4571 {
4572 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4573 	struct ieee80211com *ic = &sc->sc_ic;
4574 	struct ifnet *ifp = sc->sc_ifp;
4575 	struct ath_hal *ah = sc->sc_ah;
4576 	HAL_CHANNEL *chans;
4577 	int i, ix, nchan;
4578 
4579 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4580 			M_TEMP, M_NOWAIT);
4581 	if (chans == NULL) {
4582 		if_printf(ifp, "unable to allocate channel table\n");
4583 		return ENOMEM;
4584 	}
4585 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4586 	    NULL, 0, NULL,
4587 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4588 		u_int32_t rd;
4589 
4590 		ath_hal_getregdomain(ah, &rd);
4591 		if_printf(ifp, "unable to collect channel list from hal; "
4592 			"regdomain likely %u country code %u\n", rd, cc);
4593 		free(chans, M_TEMP);
4594 		return EINVAL;
4595 	}
4596 
4597 	/*
4598 	 * Convert HAL channels to ieee80211 ones and insert
4599 	 * them in the table according to their channel number.
4600 	 */
4601 	for (i = 0; i < nchan; i++) {
4602 		HAL_CHANNEL *c = &chans[i];
4603 		u_int16_t flags;
4604 
4605 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4606 		if (ix > IEEE80211_CHAN_MAX) {
4607 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4608 				ix, c->channel, c->channelFlags);
4609 			continue;
4610 		}
4611 		if (ix < 0) {
4612 			/* XXX can't handle stuff <2400 right now */
4613 			if (bootverbose)
4614 				if_printf(ifp, "hal channel %d (%u/%x) "
4615 				    "cannot be handled; ignored\n",
4616 				    ix, c->channel, c->channelFlags);
4617 			continue;
4618 		}
4619 		/*
4620 		 * Calculate net80211 flags; most are compatible
4621 		 * but some need massaging.  Note the static turbo
4622 		 * conversion can be removed once net80211 is updated
4623 		 * to understand static vs. dynamic turbo.
4624 		 */
4625 		flags = c->channelFlags & COMPAT;
4626 		if (c->channelFlags & CHANNEL_STURBO)
4627 			flags |= IEEE80211_CHAN_TURBO;
4628 		if (ic->ic_channels[ix].ic_freq == 0) {
4629 			ic->ic_channels[ix].ic_freq = c->channel;
4630 			ic->ic_channels[ix].ic_flags = flags;
4631 		} else {
4632 			/* channels overlap; e.g. 11g and 11b */
4633 			ic->ic_channels[ix].ic_flags |= flags;
4634 		}
4635 	}
4636 	free(chans, M_TEMP);
4637 	return 0;
4638 #undef COMPAT
4639 }
4640 
4641 static void
4642 ath_led_done(void *arg)
4643 {
4644 	struct ath_softc *sc = arg;
4645 
4646 	sc->sc_blinking = 0;
4647 }
4648 
4649 /*
4650  * Turn the LED off: flip the pin and then set a timer so no
4651  * update will happen for the specified duration.
4652  */
4653 static void
4654 ath_led_off(void *arg)
4655 {
4656 	struct ath_softc *sc = arg;
4657 
4658 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4659 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4660 }
4661 
4662 /*
4663  * Blink the LED according to the specified on/off times.
4664  */
4665 static void
4666 ath_led_blink(struct ath_softc *sc, int on, int off)
4667 {
4668 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4669 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4670 	sc->sc_blinking = 1;
4671 	sc->sc_ledoff = off;
4672 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4673 }
4674 
4675 static void
4676 ath_led_event(struct ath_softc *sc, int event)
4677 {
4678 
4679 	sc->sc_ledevent = ticks;	/* time of last event */
4680 	if (sc->sc_blinking)		/* don't interrupt active blink */
4681 		return;
4682 	switch (event) {
4683 	case ATH_LED_POLL:
4684 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4685 			sc->sc_hwmap[0].ledoff);
4686 		break;
4687 	case ATH_LED_TX:
4688 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4689 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4690 		break;
4691 	case ATH_LED_RX:
4692 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4693 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4694 		break;
4695 	}
4696 }
4697 
4698 static void
4699 ath_update_txpow(struct ath_softc *sc)
4700 {
4701 	struct ieee80211com *ic = &sc->sc_ic;
4702 	struct ath_hal *ah = sc->sc_ah;
4703 	u_int32_t txpow;
4704 
4705 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4706 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4707 		/* read back in case value is clamped */
4708 		ath_hal_gettxpowlimit(ah, &txpow);
4709 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4710 	}
4711 	/*
4712 	 * Fetch max tx power level for status requests.
4713 	 */
4714 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4715 	ic->ic_bss->ni_txpower = txpow;
4716 }
4717 
4718 static void
4719 rate_setup(struct ath_softc *sc,
4720 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4721 {
4722 	int i, maxrates;
4723 
4724 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4725 		DPRINTF(sc, ATH_DEBUG_ANY,
4726 			"%s: rate table too small (%u > %u)\n",
4727 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4728 		maxrates = IEEE80211_RATE_MAXSIZE;
4729 	} else
4730 		maxrates = rt->rateCount;
4731 	for (i = 0; i < maxrates; i++)
4732 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4733 	rs->rs_nrates = maxrates;
4734 }
4735 
4736 static int
4737 ath_rate_setup(struct ath_softc *sc, u_int mode)
4738 {
4739 	struct ath_hal *ah = sc->sc_ah;
4740 	struct ieee80211com *ic = &sc->sc_ic;
4741 	const HAL_RATE_TABLE *rt;
4742 
4743 	switch (mode) {
4744 	case IEEE80211_MODE_11A:
4745 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4746 		break;
4747 	case IEEE80211_MODE_11B:
4748 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4749 		break;
4750 	case IEEE80211_MODE_11G:
4751 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4752 		break;
4753 	case IEEE80211_MODE_TURBO_A:
4754 		/* XXX until static/dynamic turbo is fixed */
4755 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4756 		break;
4757 	case IEEE80211_MODE_TURBO_G:
4758 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4759 		break;
4760 	default:
4761 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4762 			__func__, mode);
4763 		return 0;
4764 	}
4765 	sc->sc_rates[mode] = rt;
4766 	if (rt != NULL) {
4767 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4768 		return 1;
4769 	} else
4770 		return 0;
4771 }
4772 
4773 static void
4774 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4775 {
4776 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4777 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4778 	static const struct {
4779 		u_int		rate;		/* tx/rx 802.11 rate */
4780 		u_int16_t	timeOn;		/* LED on time (ms) */
4781 		u_int16_t	timeOff;	/* LED off time (ms) */
4782 	} blinkrates[] = {
4783 		{ 108,  40,  10 },
4784 		{  96,  44,  11 },
4785 		{  72,  50,  13 },
4786 		{  48,  57,  14 },
4787 		{  36,  67,  16 },
4788 		{  24,  80,  20 },
4789 		{  22, 100,  25 },
4790 		{  18, 133,  34 },
4791 		{  12, 160,  40 },
4792 		{  10, 200,  50 },
4793 		{   6, 240,  58 },
4794 		{   4, 267,  66 },
4795 		{   2, 400, 100 },
4796 		{   0, 500, 130 },
4797 	};
4798 	const HAL_RATE_TABLE *rt;
4799 	int i, j;
4800 
4801 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4802 	rt = sc->sc_rates[mode];
4803 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4804 	for (i = 0; i < rt->rateCount; i++)
4805 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4806 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4807 	for (i = 0; i < 32; i++) {
4808 		u_int8_t ix = rt->rateCodeToIndex[i];
4809 		if (ix == 0xff) {
4810 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4811 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4812 			continue;
4813 		}
4814 		sc->sc_hwmap[i].ieeerate =
4815 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4816 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4817 		if (rt->info[ix].shortPreamble ||
4818 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4819 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4820 		/* NB: receive frames include FCS */
4821 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4822 			IEEE80211_RADIOTAP_F_FCS;
4823 		/* setup blink rate table to avoid per-packet lookup */
4824 		for (j = 0; j < N(blinkrates)-1; j++)
4825 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4826 				break;
4827 		/* NB: this uses the last entry if the rate isn't found */
4828 		/* XXX beware of overlow */
4829 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4830 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4831 	}
4832 	sc->sc_currates = rt;
4833 	sc->sc_curmode = mode;
4834 	/*
4835 	 * All protection frames are transmited at 2Mb/s for
4836 	 * 11g, otherwise at 1Mb/s.
4837 	 */
4838 	if (mode == IEEE80211_MODE_11G)
4839 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4840 	else
4841 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4842 	/* rate index used to send management frames */
4843 	sc->sc_minrateix = 0;
4844 	/*
4845 	 * Setup multicast rate state.
4846 	 */
4847 	/* XXX layering violation */
4848 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4849 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4850 	/* NB: caller is responsible for reseting rate control state */
4851 #undef N
4852 }
4853 
4854 #ifdef AR_DEBUG
4855 static void
4856 ath_printrxbuf(struct ath_buf *bf, u_int ix, int done)
4857 {
4858 	struct ath_desc *ds;
4859 	int i;
4860 
4861 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4862 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
4863 		       "      %08x %08x %08x %08x\n",
4864 		    ix, ds, (struct ath_desc *)bf->bf_daddr + i,
4865 		    ds->ds_link, ds->ds_data,
4866 		    !done ? "" : (ds->ds_rxstat.rs_status == 0) ? " *" : " !",
4867 		    ds->ds_ctl0, ds->ds_ctl1,
4868 		    ds->ds_hw[0], ds->ds_hw[1]);
4869 	}
4870 }
4871 
4872 static void
4873 ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done)
4874 {
4875 	struct ath_desc *ds;
4876 	int i;
4877 
4878 	printf("Q%u[%3u]", qnum, ix);
4879 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4880 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
4881 		       "        %08x %08x %08x %08x %08x %08x\n",
4882 		    ds, (struct ath_desc *)bf->bf_daddr + i,
4883 		    ds->ds_link, ds->ds_data, bf->bf_flags,
4884 		    !done ? "" : (ds->ds_txstat.ts_status == 0) ? " *" : " !",
4885 		    ds->ds_ctl0, ds->ds_ctl1,
4886 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
4887 	}
4888 }
4889 #endif /* AR_DEBUG */
4890 
4891 static void
4892 ath_watchdog(struct ifnet *ifp)
4893 {
4894 	struct ath_softc *sc = ifp->if_softc;
4895 	struct ieee80211com *ic = &sc->sc_ic;
4896 
4897 	ifp->if_timer = 0;
4898 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
4899 		return;
4900 	if (sc->sc_tx_timer) {
4901 		if (--sc->sc_tx_timer == 0) {
4902 			if_printf(ifp, "device timeout\n");
4903 			ath_reset(ifp);
4904 			ifp->if_oerrors++;
4905 			sc->sc_stats.ast_watchdog++;
4906 		} else
4907 			ifp->if_timer = 1;
4908 	}
4909 	ieee80211_watchdog(ic);
4910 }
4911 
4912 /*
4913  * Diagnostic interface to the HAL.  This is used by various
4914  * tools to do things like retrieve register contents for
4915  * debugging.  The mechanism is intentionally opaque so that
4916  * it can change frequently w/o concern for compatiblity.
4917  */
4918 static int
4919 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4920 {
4921 	struct ath_hal *ah = sc->sc_ah;
4922 	u_int id = ad->ad_id & ATH_DIAG_ID;
4923 	void *indata = NULL;
4924 	void *outdata = NULL;
4925 	u_int32_t insize = ad->ad_in_size;
4926 	u_int32_t outsize = ad->ad_out_size;
4927 	int error = 0;
4928 
4929 	if (ad->ad_id & ATH_DIAG_IN) {
4930 		/*
4931 		 * Copy in data.
4932 		 */
4933 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4934 		if (indata == NULL) {
4935 			error = ENOMEM;
4936 			goto bad;
4937 		}
4938 		error = copyin(ad->ad_in_data, indata, insize);
4939 		if (error)
4940 			goto bad;
4941 	}
4942 	if (ad->ad_id & ATH_DIAG_DYN) {
4943 		/*
4944 		 * Allocate a buffer for the results (otherwise the HAL
4945 		 * returns a pointer to a buffer where we can read the
4946 		 * results).  Note that we depend on the HAL leaving this
4947 		 * pointer for us to use below in reclaiming the buffer;
4948 		 * may want to be more defensive.
4949 		 */
4950 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4951 		if (outdata == NULL) {
4952 			error = ENOMEM;
4953 			goto bad;
4954 		}
4955 	}
4956 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4957 		if (outsize < ad->ad_out_size)
4958 			ad->ad_out_size = outsize;
4959 		if (outdata != NULL)
4960 			error = copyout(outdata, ad->ad_out_data,
4961 					ad->ad_out_size);
4962 	} else {
4963 		error = EINVAL;
4964 	}
4965 bad:
4966 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4967 		free(indata, M_TEMP);
4968 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4969 		free(outdata, M_TEMP);
4970 	return error;
4971 }
4972 
4973 static int
4974 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4975 {
4976 #define	IS_RUNNING(ifp) \
4977 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4978 	struct ath_softc *sc = ifp->if_softc;
4979 	struct ieee80211com *ic = &sc->sc_ic;
4980 	struct ifreq *ifr = (struct ifreq *)data;
4981 	int error = 0;
4982 
4983 	ATH_LOCK(sc);
4984 	switch (cmd) {
4985 	case SIOCSIFFLAGS:
4986 		if (IS_RUNNING(ifp)) {
4987 			/*
4988 			 * To avoid rescanning another access point,
4989 			 * do not call ath_init() here.  Instead,
4990 			 * only reflect promisc mode settings.
4991 			 */
4992 			ath_mode_init(sc);
4993 		} else if (ifp->if_flags & IFF_UP) {
4994 			/*
4995 			 * Beware of being called during attach/detach
4996 			 * to reset promiscuous mode.  In that case we
4997 			 * will still be marked UP but not RUNNING.
4998 			 * However trying to re-init the interface
4999 			 * is the wrong thing to do as we've already
5000 			 * torn down much of our state.  There's
5001 			 * probably a better way to deal with this.
5002 			 */
5003 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5004 				ath_init(sc);	/* XXX lose error */
5005 		} else
5006 			ath_stop_locked(ifp);
5007 		break;
5008 	case SIOCADDMULTI:
5009 	case SIOCDELMULTI:
5010 		/*
5011 		 * The upper layer has already installed/removed
5012 		 * the multicast address(es), just recalculate the
5013 		 * multicast filter for the card.
5014 		 */
5015 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5016 			ath_mode_init(sc);
5017 		break;
5018 	case SIOCGATHSTATS:
5019 		/* NB: embed these numbers to get a consistent view */
5020 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5021 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5022 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5023 		ATH_UNLOCK(sc);
5024 		/*
5025 		 * NB: Drop the softc lock in case of a page fault;
5026 		 * we'll accept any potential inconsisentcy in the
5027 		 * statistics.  The alternative is to copy the data
5028 		 * to a local structure.
5029 		 */
5030 		return copyout(&sc->sc_stats,
5031 				ifr->ifr_data, sizeof (sc->sc_stats));
5032 	case SIOCGATHDIAG:
5033 		ATH_UNLOCK(sc);
5034 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5035 		ATH_LOCK(sc);
5036 		break;
5037 	default:
5038 		error = ieee80211_ioctl(ic, cmd, data);
5039 		if (error == ENETRESET) {
5040 			if (IS_RUNNING(ifp) &&
5041 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5042 				ath_init(sc);	/* XXX lose error */
5043 			error = 0;
5044 		}
5045 		if (error == ERESTART)
5046 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5047 		break;
5048 	}
5049 	ATH_UNLOCK(sc);
5050 	return error;
5051 #undef IS_RUNNING
5052 }
5053 
5054 static int
5055 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5056 {
5057 	struct ath_softc *sc = arg1;
5058 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
5059 	int error;
5060 
5061 	error = sysctl_handle_int(oidp, &slottime, 0, req);
5062 	if (error || !req->newptr)
5063 		return error;
5064 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5065 }
5066 
5067 static int
5068 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5069 {
5070 	struct ath_softc *sc = arg1;
5071 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5072 	int error;
5073 
5074 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5075 	if (error || !req->newptr)
5076 		return error;
5077 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5078 }
5079 
5080 static int
5081 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5082 {
5083 	struct ath_softc *sc = arg1;
5084 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5085 	int error;
5086 
5087 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5088 	if (error || !req->newptr)
5089 		return error;
5090 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5091 }
5092 
5093 static int
5094 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5095 {
5096 	struct ath_softc *sc = arg1;
5097 	int softled = sc->sc_softled;
5098 	int error;
5099 
5100 	error = sysctl_handle_int(oidp, &softled, 0, req);
5101 	if (error || !req->newptr)
5102 		return error;
5103 	softled = (softled != 0);
5104 	if (softled != sc->sc_softled) {
5105 		if (softled) {
5106 			/* NB: handle any sc_ledpin change */
5107 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5108 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5109 				!sc->sc_ledon);
5110 		}
5111 		sc->sc_softled = softled;
5112 	}
5113 	return 0;
5114 }
5115 
5116 static int
5117 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
5118 {
5119 	struct ath_softc *sc = arg1;
5120 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
5121 	int error;
5122 
5123 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
5124 	if (!error && req->newptr)
5125 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
5126 	return error;
5127 }
5128 
5129 static int
5130 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
5131 {
5132 	struct ath_softc *sc = arg1;
5133 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
5134 	int error;
5135 
5136 	error = sysctl_handle_int(oidp, &diversity, 0, req);
5137 	if (error || !req->newptr)
5138 		return error;
5139 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
5140 		return EINVAL;
5141 	sc->sc_diversity = diversity;
5142 	return 0;
5143 }
5144 
5145 static int
5146 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
5147 {
5148 	struct ath_softc *sc = arg1;
5149 	u_int32_t diag;
5150 	int error;
5151 
5152 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
5153 		return EINVAL;
5154 	error = sysctl_handle_int(oidp, &diag, 0, req);
5155 	if (error || !req->newptr)
5156 		return error;
5157 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
5158 }
5159 
5160 static int
5161 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
5162 {
5163 	struct ath_softc *sc = arg1;
5164 	struct ifnet *ifp = sc->sc_ifp;
5165 	u_int32_t scale;
5166 	int error;
5167 
5168 	ath_hal_gettpscale(sc->sc_ah, &scale);
5169 	error = sysctl_handle_int(oidp, &scale, 0, req);
5170 	if (error || !req->newptr)
5171 		return error;
5172 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
5173 }
5174 
5175 static int
5176 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
5177 {
5178 	struct ath_softc *sc = arg1;
5179 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
5180 	int error;
5181 
5182 	error = sysctl_handle_int(oidp, &tpc, 0, req);
5183 	if (error || !req->newptr)
5184 		return error;
5185 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
5186 }
5187 
5188 static int
5189 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
5190 {
5191 	struct ath_softc *sc = arg1;
5192 	struct ath_hal *ah = sc->sc_ah;
5193 	u_int rfkill = ath_hal_getrfkill(ah);
5194 	int error;
5195 
5196 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
5197 	if (error || !req->newptr)
5198 		return error;
5199 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
5200 		return 0;
5201 	if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(sc->sc_ifp) != 0)
5202 		return EINVAL;
5203 	else
5204 		return 0;
5205 }
5206 
5207 static int
5208 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
5209 {
5210 	struct ath_softc *sc = arg1;
5211 	u_int rfsilent;
5212 	int error;
5213 
5214 	ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
5215 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
5216 	if (error || !req->newptr)
5217 		return error;
5218 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
5219 		return EINVAL;
5220 	sc->sc_rfsilentpin = rfsilent & 0x1c;
5221 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
5222 	return 0;
5223 }
5224 
5225 static int
5226 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5227 {
5228 	struct ath_softc *sc = arg1;
5229 	u_int32_t rd;
5230 	int error;
5231 
5232 	if (!ath_hal_getregdomain(sc->sc_ah, &rd))
5233 		return EINVAL;
5234 	error = sysctl_handle_int(oidp, &rd, 0, req);
5235 	if (error || !req->newptr)
5236 		return error;
5237 	return !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0;
5238 }
5239 
5240 static int
5241 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
5242 {
5243 	struct ath_softc *sc = arg1;
5244 	u_int32_t tpack;
5245 	int error;
5246 
5247 	ath_hal_gettpack(sc->sc_ah, &tpack);
5248 	error = sysctl_handle_int(oidp, &tpack, 0, req);
5249 	if (error || !req->newptr)
5250 		return error;
5251 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
5252 }
5253 
5254 static int
5255 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
5256 {
5257 	struct ath_softc *sc = arg1;
5258 	u_int32_t tpcts;
5259 	int error;
5260 
5261 	ath_hal_gettpcts(sc->sc_ah, &tpcts);
5262 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
5263 	if (error || !req->newptr)
5264 		return error;
5265 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
5266 }
5267 
5268 static void
5269 ath_sysctlattach(struct ath_softc *sc)
5270 {
5271 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5272 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5273 	struct ath_hal *ah = sc->sc_ah;
5274 
5275 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
5276 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5277 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
5278 		"EEPROM country code");
5279 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5280 		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5281 		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5282 #ifdef	AR_DEBUG
5283 	sc->sc_debug = ath_debug;
5284 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5285 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5286 		"control debugging printfs");
5287 #endif
5288 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5289 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5290 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5291 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5292 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5293 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5294 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5295 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5296 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5297 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5298 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5299 		ath_sysctl_softled, "I", "enable/disable software LED support");
5300 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5301 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5302 		"GPIO pin connected to LED");
5303 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5304 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5305 		"setting to turn LED on");
5306 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5307 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5308 		"idle time for inactivity LED (ticks)");
5309 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5310 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
5311 		"tx antenna (0=auto)");
5312 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5313 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5314 		ath_sysctl_rxantenna, "I", "default/rx antenna");
5315 	if (ath_hal_hasdiversity(ah))
5316 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5317 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5318 			ath_sysctl_diversity, "I", "antenna diversity");
5319 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5320 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5321 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5322 		"tx descriptor batching");
5323 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5324 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5325 		ath_sysctl_diag, "I", "h/w diagnostic control");
5326 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5327 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5328 		ath_sysctl_tpscale, "I", "tx power scaling");
5329 	if (ath_hal_hastpc(ah)) {
5330 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5331 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5332 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5333 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5334 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5335 			ath_sysctl_tpack, "I", "tx power for ack frames");
5336 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5337 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5338 			ath_sysctl_tpcts, "I", "tx power for cts frames");
5339 	}
5340 	if (ath_hal_hasrfsilent(ah)) {
5341 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5342 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5343 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
5344 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5345 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5346 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
5347 	}
5348 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5349 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5350 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5351 		"mask of error frames to pass when monitoring");
5352 }
5353 
5354 static void
5355 ath_bpfattach(struct ath_softc *sc)
5356 {
5357 	struct ifnet *ifp = sc->sc_ifp;
5358 
5359 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5360 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5361 		&sc->sc_drvbpf);
5362 	/*
5363 	 * Initialize constant fields.
5364 	 * XXX make header lengths a multiple of 32-bits so subsequent
5365 	 *     headers are properly aligned; this is a kludge to keep
5366 	 *     certain applications happy.
5367 	 *
5368 	 * NB: the channel is setup each time we transition to the
5369 	 *     RUN state to avoid filling it in for each frame.
5370 	 */
5371 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5372 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5373 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5374 
5375 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5376 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5377 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5378 }
5379 
5380 /*
5381  * Announce various information on device/driver attach.
5382  */
5383 static void
5384 ath_announce(struct ath_softc *sc)
5385 {
5386 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5387 	struct ifnet *ifp = sc->sc_ifp;
5388 	struct ath_hal *ah = sc->sc_ah;
5389 	u_int modes, cc;
5390 
5391 	if_printf(ifp, "mac %d.%d phy %d.%d",
5392 		ah->ah_macVersion, ah->ah_macRev,
5393 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5394 	/*
5395 	 * Print radio revision(s).  We check the wireless modes
5396 	 * to avoid falsely printing revs for inoperable parts.
5397 	 * Dual-band radio revs are returned in the 5Ghz rev number.
5398 	 */
5399 	ath_hal_getcountrycode(ah, &cc);
5400 	modes = ath_hal_getwirelessmodes(ah, cc);
5401 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5402 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5403 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5404 				ah->ah_analog5GhzRev >> 4,
5405 				ah->ah_analog5GhzRev & 0xf,
5406 				ah->ah_analog2GhzRev >> 4,
5407 				ah->ah_analog2GhzRev & 0xf);
5408 		else
5409 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5410 				ah->ah_analog5GhzRev & 0xf);
5411 	} else
5412 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5413 			ah->ah_analog5GhzRev & 0xf);
5414 	printf("\n");
5415 	if (bootverbose) {
5416 		int i;
5417 		for (i = 0; i <= WME_AC_VO; i++) {
5418 			struct ath_txq *txq = sc->sc_ac2q[i];
5419 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5420 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5421 		}
5422 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5423 			sc->sc_cabq->axq_qnum);
5424 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5425 	}
5426 	if (ath_rxbuf != ATH_RXBUF)
5427 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5428 	if (ath_txbuf != ATH_TXBUF)
5429 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5430 #undef HAL_MODE_DUALBAND
5431 }
5432