1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 */ 46 #include "opt_ah.h" 47 #include "opt_wlan.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 #include <sys/kthread.h> 64 #include <sys/taskqueue.h> 65 #include <sys/priv.h> 66 #include <sys/module.h> 67 #include <sys/ktr.h> 68 #include <sys/smp.h> /* for mp_ncpus */ 69 70 #include <machine/bus.h> 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_types.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_llc.h> 79 80 #include <net80211/ieee80211_var.h> 81 #include <net80211/ieee80211_regdomain.h> 82 #ifdef IEEE80211_SUPPORT_SUPERG 83 #include <net80211/ieee80211_superg.h> 84 #endif 85 #ifdef IEEE80211_SUPPORT_TDMA 86 #include <net80211/ieee80211_tdma.h> 87 #endif 88 89 #include <net/bpf.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #include <netinet/if_ether.h> 94 #endif 95 96 #include <dev/ath/if_athvar.h> 97 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 98 #include <dev/ath/ath_hal/ah_diagcodes.h> 99 100 #include <dev/ath/if_ath_debug.h> 101 #include <dev/ath/if_ath_misc.h> 102 #include <dev/ath/if_ath_tx.h> 103 #include <dev/ath/if_ath_sysctl.h> 104 #include <dev/ath/if_ath_led.h> 105 #include <dev/ath/if_ath_keycache.h> 106 #include <dev/ath/if_athdfs.h> 107 108 #ifdef ATH_TX99_DIAG 109 #include <dev/ath/ath_tx99/ath_tx99.h> 110 #endif 111 112 #define ATH_KTR_INTR KTR_SPARE4 113 #define ATH_KTR_ERR KTR_SPARE3 114 115 /* 116 * ATH_BCBUF determines the number of vap's that can transmit 117 * beacons and also (currently) the number of vap's that can 118 * have unique mac addresses/bssid. When staggering beacons 119 * 4 is probably a good max as otherwise the beacons become 120 * very closely spaced and there is limited time for cab q traffic 121 * to go out. You can burst beacons instead but that is not good 122 * for stations in power save and at some point you really want 123 * another radio (and channel). 124 * 125 * The limit on the number of mac addresses is tied to our use of 126 * the U/L bit and tracking addresses in a byte; it would be 127 * worthwhile to allow more for applications like proxy sta. 128 */ 129 CTASSERT(ATH_BCBUF <= 8); 130 131 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 132 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 133 const uint8_t [IEEE80211_ADDR_LEN], 134 const uint8_t [IEEE80211_ADDR_LEN]); 135 static void ath_vap_delete(struct ieee80211vap *); 136 static void ath_init(void *); 137 static void ath_stop_locked(struct ifnet *); 138 static void ath_stop(struct ifnet *); 139 static void ath_start(struct ifnet *); 140 static int ath_reset_vap(struct ieee80211vap *, u_long); 141 static int ath_media_change(struct ifnet *); 142 static void ath_watchdog(void *); 143 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 144 static void ath_fatal_proc(void *, int); 145 static void ath_bmiss_vap(struct ieee80211vap *); 146 static void ath_bmiss_proc(void *, int); 147 static void ath_key_update_begin(struct ieee80211vap *); 148 static void ath_key_update_end(struct ieee80211vap *); 149 static void ath_update_mcast(struct ifnet *); 150 static void ath_update_promisc(struct ifnet *); 151 static void ath_mode_init(struct ath_softc *); 152 static void ath_setslottime(struct ath_softc *); 153 static void ath_updateslot(struct ifnet *); 154 static int ath_beaconq_setup(struct ath_hal *); 155 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 156 static void ath_beacon_update(struct ieee80211vap *, int item); 157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 158 static void ath_beacon_proc(void *, int); 159 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 160 struct ieee80211vap *); 161 static void ath_bstuck_proc(void *, int); 162 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 163 static void ath_beacon_free(struct ath_softc *); 164 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 165 static void ath_descdma_cleanup(struct ath_softc *sc, 166 struct ath_descdma *, ath_bufhead *); 167 static int ath_desc_alloc(struct ath_softc *); 168 static void ath_desc_free(struct ath_softc *); 169 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 170 const uint8_t [IEEE80211_ADDR_LEN]); 171 static void ath_node_cleanup(struct ieee80211_node *); 172 static void ath_node_free(struct ieee80211_node *); 173 static void ath_node_getsignal(const struct ieee80211_node *, 174 int8_t *, int8_t *); 175 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 176 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 177 int subtype, int rssi, int nf); 178 static void ath_setdefantenna(struct ath_softc *, u_int); 179 static void ath_rx_proc(struct ath_softc *sc, int); 180 static void ath_rx_tasklet(void *, int); 181 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 182 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 183 static int ath_tx_setup(struct ath_softc *, int, int); 184 static int ath_wme_update(struct ieee80211com *); 185 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 186 static void ath_tx_cleanup(struct ath_softc *); 187 static void ath_tx_proc_q0(void *, int); 188 static void ath_tx_proc_q0123(void *, int); 189 static void ath_tx_proc(void *, int); 190 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 191 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 192 static void ath_stoprecv(struct ath_softc *, int); 193 static int ath_startrecv(struct ath_softc *); 194 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 195 static void ath_scan_start(struct ieee80211com *); 196 static void ath_scan_end(struct ieee80211com *); 197 static void ath_set_channel(struct ieee80211com *); 198 static void ath_calibrate(void *); 199 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 200 static void ath_setup_stationkey(struct ieee80211_node *); 201 static void ath_newassoc(struct ieee80211_node *, int); 202 static int ath_setregdomain(struct ieee80211com *, 203 struct ieee80211_regdomain *, int, 204 struct ieee80211_channel []); 205 static void ath_getradiocaps(struct ieee80211com *, int, int *, 206 struct ieee80211_channel []); 207 static int ath_getchannels(struct ath_softc *); 208 209 static int ath_rate_setup(struct ath_softc *, u_int mode); 210 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 211 212 static void ath_announce(struct ath_softc *); 213 214 static void ath_dfs_tasklet(void *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 218 u_int32_t bintval); 219 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 220 const struct ieee80211_tdma_state *tdma); 221 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 222 static void ath_tdma_update(struct ieee80211_node *ni, 223 const struct ieee80211_tdma_param *tdma, int); 224 static void ath_tdma_beacon_send(struct ath_softc *sc, 225 struct ieee80211vap *vap); 226 227 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 228 #define TDMA_LPF_LEN 6 229 #define TDMA_DUMMY_MARKER 0x127 230 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 231 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 232 #define TDMA_LPF(x, y, len) \ 233 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 234 #define TDMA_SAMPLE(x, y) do { \ 235 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 236 } while (0) 237 #define TDMA_EP_RND(x,mul) \ 238 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 239 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 240 #endif /* IEEE80211_SUPPORT_TDMA */ 241 242 SYSCTL_DECL(_hw_ath); 243 244 /* XXX validate sysctl values */ 245 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 247 0, "long chip calibration interval (secs)"); 248 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 250 0, "short chip calibration interval (msecs)"); 251 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 253 0, "reset chip calibration results (secs)"); 254 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 256 0, "ANI calibration (msecs)"); 257 258 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 260 0, "rx buffers allocated"); 261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 262 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 264 0, "tx buffers allocated"); 265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 266 267 static int ath_bstuck_threshold = 4; /* max missed beacons */ 268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 269 0, "max missed beacon xmits before chip reset"); 270 271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 272 273 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 274 #define HAL_MODE_HT40 \ 275 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 276 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 277 int 278 ath_attach(u_int16_t devid, struct ath_softc *sc) 279 { 280 struct ifnet *ifp; 281 struct ieee80211com *ic; 282 struct ath_hal *ah = NULL; 283 HAL_STATUS status; 284 int error = 0, i; 285 u_int wmodes; 286 uint8_t macaddr[IEEE80211_ADDR_LEN]; 287 288 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 289 290 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 291 if (ifp == NULL) { 292 device_printf(sc->sc_dev, "can not if_alloc()\n"); 293 error = ENOSPC; 294 goto bad; 295 } 296 ic = ifp->if_l2com; 297 298 /* set these up early for if_printf use */ 299 if_initname(ifp, device_get_name(sc->sc_dev), 300 device_get_unit(sc->sc_dev)); 301 302 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 303 sc->sc_eepromdata, &status); 304 if (ah == NULL) { 305 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 306 status); 307 error = ENXIO; 308 goto bad; 309 } 310 sc->sc_ah = ah; 311 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 312 #ifdef ATH_DEBUG 313 sc->sc_debug = ath_debug; 314 #endif 315 316 /* 317 * Check if the MAC has multi-rate retry support. 318 * We do this by trying to setup a fake extended 319 * descriptor. MAC's that don't have support will 320 * return false w/o doing anything. MAC's that do 321 * support it will return true w/o doing anything. 322 */ 323 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 324 325 /* 326 * Check if the device has hardware counters for PHY 327 * errors. If so we need to enable the MIB interrupt 328 * so we can act on stat triggers. 329 */ 330 if (ath_hal_hwphycounters(ah)) 331 sc->sc_needmib = 1; 332 333 /* 334 * Get the hardware key cache size. 335 */ 336 sc->sc_keymax = ath_hal_keycachesize(ah); 337 if (sc->sc_keymax > ATH_KEYMAX) { 338 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 339 ATH_KEYMAX, sc->sc_keymax); 340 sc->sc_keymax = ATH_KEYMAX; 341 } 342 /* 343 * Reset the key cache since some parts do not 344 * reset the contents on initial power up. 345 */ 346 for (i = 0; i < sc->sc_keymax; i++) 347 ath_hal_keyreset(ah, i); 348 349 /* 350 * Collect the default channel list. 351 */ 352 error = ath_getchannels(sc); 353 if (error != 0) 354 goto bad; 355 356 /* 357 * Setup rate tables for all potential media types. 358 */ 359 ath_rate_setup(sc, IEEE80211_MODE_11A); 360 ath_rate_setup(sc, IEEE80211_MODE_11B); 361 ath_rate_setup(sc, IEEE80211_MODE_11G); 362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 363 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 364 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 365 ath_rate_setup(sc, IEEE80211_MODE_11NA); 366 ath_rate_setup(sc, IEEE80211_MODE_11NG); 367 ath_rate_setup(sc, IEEE80211_MODE_HALF); 368 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 369 370 /* NB: setup here so ath_rate_update is happy */ 371 ath_setcurmode(sc, IEEE80211_MODE_11A); 372 373 /* 374 * Allocate tx+rx descriptors and populate the lists. 375 */ 376 error = ath_desc_alloc(sc); 377 if (error != 0) { 378 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 379 goto bad; 380 } 381 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 382 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 383 384 ATH_TXBUF_LOCK_INIT(sc); 385 386 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 387 taskqueue_thread_enqueue, &sc->sc_tq); 388 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 389 "%s taskq", ifp->if_xname); 390 391 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 392 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 393 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 394 395 /* 396 * Allocate hardware transmit queues: one queue for 397 * beacon frames and one data queue for each QoS 398 * priority. Note that the hal handles resetting 399 * these queues at the needed time. 400 * 401 * XXX PS-Poll 402 */ 403 sc->sc_bhalq = ath_beaconq_setup(ah); 404 if (sc->sc_bhalq == (u_int) -1) { 405 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 406 error = EIO; 407 goto bad2; 408 } 409 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 410 if (sc->sc_cabq == NULL) { 411 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 412 error = EIO; 413 goto bad2; 414 } 415 /* NB: insure BK queue is the lowest priority h/w queue */ 416 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 417 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 418 ieee80211_wme_acnames[WME_AC_BK]); 419 error = EIO; 420 goto bad2; 421 } 422 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 423 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 424 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 425 /* 426 * Not enough hardware tx queues to properly do WME; 427 * just punt and assign them all to the same h/w queue. 428 * We could do a better job of this if, for example, 429 * we allocate queues when we switch from station to 430 * AP mode. 431 */ 432 if (sc->sc_ac2q[WME_AC_VI] != NULL) 433 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 434 if (sc->sc_ac2q[WME_AC_BE] != NULL) 435 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 436 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 437 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 438 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 439 } 440 441 /* 442 * Special case certain configurations. Note the 443 * CAB queue is handled by these specially so don't 444 * include them when checking the txq setup mask. 445 */ 446 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 447 case 0x01: 448 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 449 break; 450 case 0x0f: 451 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 452 break; 453 default: 454 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 455 break; 456 } 457 458 /* 459 * Setup rate control. Some rate control modules 460 * call back to change the anntena state so expose 461 * the necessary entry points. 462 * XXX maybe belongs in struct ath_ratectrl? 463 */ 464 sc->sc_setdefantenna = ath_setdefantenna; 465 sc->sc_rc = ath_rate_attach(sc); 466 if (sc->sc_rc == NULL) { 467 error = EIO; 468 goto bad2; 469 } 470 471 /* Attach DFS module */ 472 if (! ath_dfs_attach(sc)) { 473 device_printf(sc->sc_dev, 474 "%s: unable to attach DFS\n", __func__); 475 error = EIO; 476 goto bad2; 477 } 478 479 /* Start DFS processing tasklet */ 480 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 481 482 /* Configure LED state */ 483 sc->sc_blinking = 0; 484 sc->sc_ledstate = 1; 485 sc->sc_ledon = 0; /* low true */ 486 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 487 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 488 489 /* 490 * Don't setup hardware-based blinking. 491 * 492 * Although some NICs may have this configured in the 493 * default reset register values, the user may wish 494 * to alter which pins have which function. 495 * 496 * The reference driver attaches the MAC network LED to GPIO1 and 497 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 498 * NIC has these reversed. 499 */ 500 sc->sc_hardled = (1 == 0); 501 sc->sc_led_net_pin = -1; 502 sc->sc_led_pwr_pin = -1; 503 /* 504 * Auto-enable soft led processing for IBM cards and for 505 * 5211 minipci cards. Users can also manually enable/disable 506 * support with a sysctl. 507 */ 508 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 509 ath_led_config(sc); 510 ath_hal_setledstate(ah, HAL_LED_INIT); 511 512 ifp->if_softc = sc; 513 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 514 ifp->if_start = ath_start; 515 ifp->if_ioctl = ath_ioctl; 516 ifp->if_init = ath_init; 517 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 518 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 519 IFQ_SET_READY(&ifp->if_snd); 520 521 ic->ic_ifp = ifp; 522 /* XXX not right but it's not used anywhere important */ 523 ic->ic_phytype = IEEE80211_T_OFDM; 524 ic->ic_opmode = IEEE80211_M_STA; 525 ic->ic_caps = 526 IEEE80211_C_STA /* station mode */ 527 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 528 | IEEE80211_C_HOSTAP /* hostap mode */ 529 | IEEE80211_C_MONITOR /* monitor mode */ 530 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 531 | IEEE80211_C_WDS /* 4-address traffic works */ 532 | IEEE80211_C_MBSS /* mesh point link mode */ 533 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 534 | IEEE80211_C_SHSLOT /* short slot time supported */ 535 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 536 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 537 | IEEE80211_C_TXFRAG /* handle tx frags */ 538 #ifdef ATH_ENABLE_DFS 539 | IEEE80211_C_DFS /* Enable radar detection */ 540 #endif 541 ; 542 /* 543 * Query the hal to figure out h/w crypto support. 544 */ 545 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 546 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 547 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 548 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 549 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 550 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 551 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 552 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 554 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 555 /* 556 * Check if h/w does the MIC and/or whether the 557 * separate key cache entries are required to 558 * handle both tx+rx MIC keys. 559 */ 560 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 561 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 562 /* 563 * If the h/w supports storing tx+rx MIC keys 564 * in one cache slot automatically enable use. 565 */ 566 if (ath_hal_hastkipsplit(ah) || 567 !ath_hal_settkipsplit(ah, AH_FALSE)) 568 sc->sc_splitmic = 1; 569 /* 570 * If the h/w can do TKIP MIC together with WME then 571 * we use it; otherwise we force the MIC to be done 572 * in software by the net80211 layer. 573 */ 574 if (ath_hal_haswmetkipmic(ah)) 575 sc->sc_wmetkipmic = 1; 576 } 577 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 578 /* 579 * Check for multicast key search support. 580 */ 581 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 582 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 583 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 584 } 585 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 586 /* 587 * Mark key cache slots associated with global keys 588 * as in use. If we knew TKIP was not to be used we 589 * could leave the +32, +64, and +32+64 slots free. 590 */ 591 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 592 setbit(sc->sc_keymap, i); 593 setbit(sc->sc_keymap, i+64); 594 if (sc->sc_splitmic) { 595 setbit(sc->sc_keymap, i+32); 596 setbit(sc->sc_keymap, i+32+64); 597 } 598 } 599 /* 600 * TPC support can be done either with a global cap or 601 * per-packet support. The latter is not available on 602 * all parts. We're a bit pedantic here as all parts 603 * support a global cap. 604 */ 605 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 606 ic->ic_caps |= IEEE80211_C_TXPMGT; 607 608 /* 609 * Mark WME capability only if we have sufficient 610 * hardware queues to do proper priority scheduling. 611 */ 612 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 613 ic->ic_caps |= IEEE80211_C_WME; 614 /* 615 * Check for misc other capabilities. 616 */ 617 if (ath_hal_hasbursting(ah)) 618 ic->ic_caps |= IEEE80211_C_BURST; 619 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 620 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 621 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 622 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 623 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 624 if (ath_hal_hasfastframes(ah)) 625 ic->ic_caps |= IEEE80211_C_FF; 626 wmodes = ath_hal_getwirelessmodes(ah); 627 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 628 ic->ic_caps |= IEEE80211_C_TURBOP; 629 #ifdef IEEE80211_SUPPORT_TDMA 630 if (ath_hal_macversion(ah) > 0x78) { 631 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 632 ic->ic_tdma_update = ath_tdma_update; 633 } 634 #endif 635 636 /* 637 * The if_ath 11n support is completely not ready for normal use. 638 * Enabling this option will likely break everything and everything. 639 * Don't think of doing that unless you know what you're doing. 640 */ 641 642 #ifdef ATH_ENABLE_11N 643 /* 644 * Query HT capabilities 645 */ 646 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 647 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 648 int rxs, txs; 649 650 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 651 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 652 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 653 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 654 | IEEE80211_HTCAP_MAXAMSDU_3839 655 /* max A-MSDU length */ 656 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 657 ; 658 659 /* 660 * Enable short-GI for HT20 only if the hardware 661 * advertises support. 662 * Notably, anything earlier than the AR9287 doesn't. 663 */ 664 if ((ath_hal_getcapability(ah, 665 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 666 (wmodes & HAL_MODE_HT20)) { 667 device_printf(sc->sc_dev, 668 "[HT] enabling short-GI in 20MHz mode\n"); 669 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 670 } 671 672 if (wmodes & HAL_MODE_HT40) 673 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 674 | IEEE80211_HTCAP_SHORTGI40; 675 676 /* 677 * TX/RX streams need to be taken into account when 678 * negotiating which MCS rates it'll receive and 679 * what MCS rates are available for TX. 680 */ 681 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs); 682 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs); 683 684 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 685 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 686 687 ic->ic_txstream = txs; 688 ic->ic_rxstream = rxs; 689 690 device_printf(sc->sc_dev, 691 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 692 } 693 #endif 694 695 /* 696 * Check if the hardware requires PCI register serialisation. 697 * Some of the Owl based MACs require this. 698 */ 699 if (mp_ncpus > 1 && 700 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 701 0, NULL) == HAL_OK) { 702 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 703 device_printf(sc->sc_dev, 704 "Enabling register serialisation\n"); 705 } 706 707 /* 708 * Indicate we need the 802.11 header padded to a 709 * 32-bit boundary for 4-address and QoS frames. 710 */ 711 ic->ic_flags |= IEEE80211_F_DATAPAD; 712 713 /* 714 * Query the hal about antenna support. 715 */ 716 sc->sc_defant = ath_hal_getdefantenna(ah); 717 718 /* 719 * Not all chips have the VEOL support we want to 720 * use with IBSS beacons; check here for it. 721 */ 722 sc->sc_hasveol = ath_hal_hasveol(ah); 723 724 /* get mac address from hardware */ 725 ath_hal_getmac(ah, macaddr); 726 if (sc->sc_hasbmask) 727 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 728 729 /* NB: used to size node table key mapping array */ 730 ic->ic_max_keyix = sc->sc_keymax; 731 /* call MI attach routine. */ 732 ieee80211_ifattach(ic, macaddr); 733 ic->ic_setregdomain = ath_setregdomain; 734 ic->ic_getradiocaps = ath_getradiocaps; 735 sc->sc_opmode = HAL_M_STA; 736 737 /* override default methods */ 738 ic->ic_newassoc = ath_newassoc; 739 ic->ic_updateslot = ath_updateslot; 740 ic->ic_wme.wme_update = ath_wme_update; 741 ic->ic_vap_create = ath_vap_create; 742 ic->ic_vap_delete = ath_vap_delete; 743 ic->ic_raw_xmit = ath_raw_xmit; 744 ic->ic_update_mcast = ath_update_mcast; 745 ic->ic_update_promisc = ath_update_promisc; 746 ic->ic_node_alloc = ath_node_alloc; 747 sc->sc_node_free = ic->ic_node_free; 748 ic->ic_node_free = ath_node_free; 749 sc->sc_node_cleanup = ic->ic_node_cleanup; 750 ic->ic_node_cleanup = ath_node_cleanup; 751 ic->ic_node_getsignal = ath_node_getsignal; 752 ic->ic_scan_start = ath_scan_start; 753 ic->ic_scan_end = ath_scan_end; 754 ic->ic_set_channel = ath_set_channel; 755 756 /* 802.11n specific - but just override anyway */ 757 sc->sc_addba_request = ic->ic_addba_request; 758 sc->sc_addba_response = ic->ic_addba_response; 759 sc->sc_addba_stop = ic->ic_addba_stop; 760 sc->sc_bar_response = ic->ic_bar_response; 761 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 762 763 ic->ic_addba_request = ath_addba_request; 764 ic->ic_addba_response = ath_addba_response; 765 ic->ic_addba_response_timeout = ath_addba_response_timeout; 766 ic->ic_addba_stop = ath_addba_stop; 767 ic->ic_bar_response = ath_bar_response; 768 769 ieee80211_radiotap_attach(ic, 770 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 771 ATH_TX_RADIOTAP_PRESENT, 772 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 773 ATH_RX_RADIOTAP_PRESENT); 774 775 /* 776 * Setup dynamic sysctl's now that country code and 777 * regdomain are available from the hal. 778 */ 779 ath_sysctlattach(sc); 780 ath_sysctl_stats_attach(sc); 781 ath_sysctl_hal_attach(sc); 782 783 if (bootverbose) 784 ieee80211_announce(ic); 785 ath_announce(sc); 786 return 0; 787 bad2: 788 ath_tx_cleanup(sc); 789 ath_desc_free(sc); 790 bad: 791 if (ah) 792 ath_hal_detach(ah); 793 if (ifp != NULL) 794 if_free(ifp); 795 sc->sc_invalid = 1; 796 return error; 797 } 798 799 int 800 ath_detach(struct ath_softc *sc) 801 { 802 struct ifnet *ifp = sc->sc_ifp; 803 804 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 805 __func__, ifp->if_flags); 806 807 /* 808 * NB: the order of these is important: 809 * o stop the chip so no more interrupts will fire 810 * o call the 802.11 layer before detaching the hal to 811 * insure callbacks into the driver to delete global 812 * key cache entries can be handled 813 * o free the taskqueue which drains any pending tasks 814 * o reclaim the tx queue data structures after calling 815 * the 802.11 layer as we'll get called back to reclaim 816 * node state and potentially want to use them 817 * o to cleanup the tx queues the hal is called, so detach 818 * it last 819 * Other than that, it's straightforward... 820 */ 821 ath_stop(ifp); 822 ieee80211_ifdetach(ifp->if_l2com); 823 taskqueue_free(sc->sc_tq); 824 #ifdef ATH_TX99_DIAG 825 if (sc->sc_tx99 != NULL) 826 sc->sc_tx99->detach(sc->sc_tx99); 827 #endif 828 ath_rate_detach(sc->sc_rc); 829 830 ath_dfs_detach(sc); 831 ath_desc_free(sc); 832 ath_tx_cleanup(sc); 833 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 834 if_free(ifp); 835 836 return 0; 837 } 838 839 /* 840 * MAC address handling for multiple BSS on the same radio. 841 * The first vap uses the MAC address from the EEPROM. For 842 * subsequent vap's we set the U/L bit (bit 1) in the MAC 843 * address and use the next six bits as an index. 844 */ 845 static void 846 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 847 { 848 int i; 849 850 if (clone && sc->sc_hasbmask) { 851 /* NB: we only do this if h/w supports multiple bssid */ 852 for (i = 0; i < 8; i++) 853 if ((sc->sc_bssidmask & (1<<i)) == 0) 854 break; 855 if (i != 0) 856 mac[0] |= (i << 2)|0x2; 857 } else 858 i = 0; 859 sc->sc_bssidmask |= 1<<i; 860 sc->sc_hwbssidmask[0] &= ~mac[0]; 861 if (i == 0) 862 sc->sc_nbssid0++; 863 } 864 865 static void 866 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 867 { 868 int i = mac[0] >> 2; 869 uint8_t mask; 870 871 if (i != 0 || --sc->sc_nbssid0 == 0) { 872 sc->sc_bssidmask &= ~(1<<i); 873 /* recalculate bssid mask from remaining addresses */ 874 mask = 0xff; 875 for (i = 1; i < 8; i++) 876 if (sc->sc_bssidmask & (1<<i)) 877 mask &= ~((i<<2)|0x2); 878 sc->sc_hwbssidmask[0] |= mask; 879 } 880 } 881 882 /* 883 * Assign a beacon xmit slot. We try to space out 884 * assignments so when beacons are staggered the 885 * traffic coming out of the cab q has maximal time 886 * to go out before the next beacon is scheduled. 887 */ 888 static int 889 assign_bslot(struct ath_softc *sc) 890 { 891 u_int slot, free; 892 893 free = 0; 894 for (slot = 0; slot < ATH_BCBUF; slot++) 895 if (sc->sc_bslot[slot] == NULL) { 896 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 897 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 898 return slot; 899 free = slot; 900 /* NB: keep looking for a double slot */ 901 } 902 return free; 903 } 904 905 static struct ieee80211vap * 906 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 907 enum ieee80211_opmode opmode, int flags, 908 const uint8_t bssid[IEEE80211_ADDR_LEN], 909 const uint8_t mac0[IEEE80211_ADDR_LEN]) 910 { 911 struct ath_softc *sc = ic->ic_ifp->if_softc; 912 struct ath_vap *avp; 913 struct ieee80211vap *vap; 914 uint8_t mac[IEEE80211_ADDR_LEN]; 915 int needbeacon, error; 916 enum ieee80211_opmode ic_opmode; 917 918 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 919 M_80211_VAP, M_WAITOK | M_ZERO); 920 needbeacon = 0; 921 IEEE80211_ADDR_COPY(mac, mac0); 922 923 ATH_LOCK(sc); 924 ic_opmode = opmode; /* default to opmode of new vap */ 925 switch (opmode) { 926 case IEEE80211_M_STA: 927 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 928 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 929 goto bad; 930 } 931 if (sc->sc_nvaps) { 932 /* 933 * With multiple vaps we must fall back 934 * to s/w beacon miss handling. 935 */ 936 flags |= IEEE80211_CLONE_NOBEACONS; 937 } 938 if (flags & IEEE80211_CLONE_NOBEACONS) { 939 /* 940 * Station mode w/o beacons are implemented w/ AP mode. 941 */ 942 ic_opmode = IEEE80211_M_HOSTAP; 943 } 944 break; 945 case IEEE80211_M_IBSS: 946 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 947 device_printf(sc->sc_dev, 948 "only 1 ibss vap supported\n"); 949 goto bad; 950 } 951 needbeacon = 1; 952 break; 953 case IEEE80211_M_AHDEMO: 954 #ifdef IEEE80211_SUPPORT_TDMA 955 if (flags & IEEE80211_CLONE_TDMA) { 956 if (sc->sc_nvaps != 0) { 957 device_printf(sc->sc_dev, 958 "only 1 tdma vap supported\n"); 959 goto bad; 960 } 961 needbeacon = 1; 962 flags |= IEEE80211_CLONE_NOBEACONS; 963 } 964 /* fall thru... */ 965 #endif 966 case IEEE80211_M_MONITOR: 967 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 968 /* 969 * Adopt existing mode. Adding a monitor or ahdemo 970 * vap to an existing configuration is of dubious 971 * value but should be ok. 972 */ 973 /* XXX not right for monitor mode */ 974 ic_opmode = ic->ic_opmode; 975 } 976 break; 977 case IEEE80211_M_HOSTAP: 978 case IEEE80211_M_MBSS: 979 needbeacon = 1; 980 break; 981 case IEEE80211_M_WDS: 982 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 983 device_printf(sc->sc_dev, 984 "wds not supported in sta mode\n"); 985 goto bad; 986 } 987 /* 988 * Silently remove any request for a unique 989 * bssid; WDS vap's always share the local 990 * mac address. 991 */ 992 flags &= ~IEEE80211_CLONE_BSSID; 993 if (sc->sc_nvaps == 0) 994 ic_opmode = IEEE80211_M_HOSTAP; 995 else 996 ic_opmode = ic->ic_opmode; 997 break; 998 default: 999 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1000 goto bad; 1001 } 1002 /* 1003 * Check that a beacon buffer is available; the code below assumes it. 1004 */ 1005 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1006 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1007 goto bad; 1008 } 1009 1010 /* STA, AHDEMO? */ 1011 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1012 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1013 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1014 } 1015 1016 vap = &avp->av_vap; 1017 /* XXX can't hold mutex across if_alloc */ 1018 ATH_UNLOCK(sc); 1019 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1020 bssid, mac); 1021 ATH_LOCK(sc); 1022 if (error != 0) { 1023 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1024 __func__, error); 1025 goto bad2; 1026 } 1027 1028 /* h/w crypto support */ 1029 vap->iv_key_alloc = ath_key_alloc; 1030 vap->iv_key_delete = ath_key_delete; 1031 vap->iv_key_set = ath_key_set; 1032 vap->iv_key_update_begin = ath_key_update_begin; 1033 vap->iv_key_update_end = ath_key_update_end; 1034 1035 /* override various methods */ 1036 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1037 vap->iv_recv_mgmt = ath_recv_mgmt; 1038 vap->iv_reset = ath_reset_vap; 1039 vap->iv_update_beacon = ath_beacon_update; 1040 avp->av_newstate = vap->iv_newstate; 1041 vap->iv_newstate = ath_newstate; 1042 avp->av_bmiss = vap->iv_bmiss; 1043 vap->iv_bmiss = ath_bmiss_vap; 1044 1045 /* Set default parameters */ 1046 1047 /* 1048 * Anything earlier than some AR9300 series MACs don't 1049 * support a smaller MPDU density. 1050 */ 1051 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1052 /* 1053 * All NICs can handle the maximum size, however 1054 * AR5416 based MACs can only TX aggregates w/ RTS 1055 * protection when the total aggregate size is <= 8k. 1056 * However, for now that's enforced by the TX path. 1057 */ 1058 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1059 1060 avp->av_bslot = -1; 1061 if (needbeacon) { 1062 /* 1063 * Allocate beacon state and setup the q for buffered 1064 * multicast frames. We know a beacon buffer is 1065 * available because we checked above. 1066 */ 1067 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1068 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1069 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1070 /* 1071 * Assign the vap to a beacon xmit slot. As above 1072 * this cannot fail to find a free one. 1073 */ 1074 avp->av_bslot = assign_bslot(sc); 1075 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1076 ("beacon slot %u not empty", avp->av_bslot)); 1077 sc->sc_bslot[avp->av_bslot] = vap; 1078 sc->sc_nbcnvaps++; 1079 } 1080 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1081 /* 1082 * Multple vaps are to transmit beacons and we 1083 * have h/w support for TSF adjusting; enable 1084 * use of staggered beacons. 1085 */ 1086 sc->sc_stagbeacons = 1; 1087 } 1088 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1089 } 1090 1091 ic->ic_opmode = ic_opmode; 1092 if (opmode != IEEE80211_M_WDS) { 1093 sc->sc_nvaps++; 1094 if (opmode == IEEE80211_M_STA) 1095 sc->sc_nstavaps++; 1096 if (opmode == IEEE80211_M_MBSS) 1097 sc->sc_nmeshvaps++; 1098 } 1099 switch (ic_opmode) { 1100 case IEEE80211_M_IBSS: 1101 sc->sc_opmode = HAL_M_IBSS; 1102 break; 1103 case IEEE80211_M_STA: 1104 sc->sc_opmode = HAL_M_STA; 1105 break; 1106 case IEEE80211_M_AHDEMO: 1107 #ifdef IEEE80211_SUPPORT_TDMA 1108 if (vap->iv_caps & IEEE80211_C_TDMA) { 1109 sc->sc_tdma = 1; 1110 /* NB: disable tsf adjust */ 1111 sc->sc_stagbeacons = 0; 1112 } 1113 /* 1114 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1115 * just ap mode. 1116 */ 1117 /* fall thru... */ 1118 #endif 1119 case IEEE80211_M_HOSTAP: 1120 case IEEE80211_M_MBSS: 1121 sc->sc_opmode = HAL_M_HOSTAP; 1122 break; 1123 case IEEE80211_M_MONITOR: 1124 sc->sc_opmode = HAL_M_MONITOR; 1125 break; 1126 default: 1127 /* XXX should not happen */ 1128 break; 1129 } 1130 if (sc->sc_hastsfadd) { 1131 /* 1132 * Configure whether or not TSF adjust should be done. 1133 */ 1134 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1135 } 1136 if (flags & IEEE80211_CLONE_NOBEACONS) { 1137 /* 1138 * Enable s/w beacon miss handling. 1139 */ 1140 sc->sc_swbmiss = 1; 1141 } 1142 ATH_UNLOCK(sc); 1143 1144 /* complete setup */ 1145 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1146 return vap; 1147 bad2: 1148 reclaim_address(sc, mac); 1149 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1150 bad: 1151 free(avp, M_80211_VAP); 1152 ATH_UNLOCK(sc); 1153 return NULL; 1154 } 1155 1156 static void 1157 ath_vap_delete(struct ieee80211vap *vap) 1158 { 1159 struct ieee80211com *ic = vap->iv_ic; 1160 struct ifnet *ifp = ic->ic_ifp; 1161 struct ath_softc *sc = ifp->if_softc; 1162 struct ath_hal *ah = sc->sc_ah; 1163 struct ath_vap *avp = ATH_VAP(vap); 1164 1165 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1166 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1167 /* 1168 * Quiesce the hardware while we remove the vap. In 1169 * particular we need to reclaim all references to 1170 * the vap state by any frames pending on the tx queues. 1171 */ 1172 ath_hal_intrset(ah, 0); /* disable interrupts */ 1173 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1174 /* XXX Do all frames from all vaps/nodes need draining here? */ 1175 ath_stoprecv(sc, 1); /* stop recv side */ 1176 } 1177 1178 ieee80211_vap_detach(vap); 1179 1180 /* 1181 * XXX Danger Will Robinson! Danger! 1182 * 1183 * Because ieee80211_vap_detach() can queue a frame (the station 1184 * diassociate message?) after we've drained the TXQ and 1185 * flushed the software TXQ, we will end up with a frame queued 1186 * to a node whose vap is about to be freed. 1187 * 1188 * To work around this, flush the hardware/software again. 1189 * This may be racy - the ath task may be running and the packet 1190 * may be being scheduled between sw->hw txq. Tsk. 1191 * 1192 * TODO: figure out why a new node gets allocated somewhere around 1193 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1194 * call!) 1195 */ 1196 1197 ath_draintxq(sc, ATH_RESET_DEFAULT); 1198 1199 ATH_LOCK(sc); 1200 /* 1201 * Reclaim beacon state. Note this must be done before 1202 * the vap instance is reclaimed as we may have a reference 1203 * to it in the buffer for the beacon frame. 1204 */ 1205 if (avp->av_bcbuf != NULL) { 1206 if (avp->av_bslot != -1) { 1207 sc->sc_bslot[avp->av_bslot] = NULL; 1208 sc->sc_nbcnvaps--; 1209 } 1210 ath_beacon_return(sc, avp->av_bcbuf); 1211 avp->av_bcbuf = NULL; 1212 if (sc->sc_nbcnvaps == 0) { 1213 sc->sc_stagbeacons = 0; 1214 if (sc->sc_hastsfadd) 1215 ath_hal_settsfadjust(sc->sc_ah, 0); 1216 } 1217 /* 1218 * Reclaim any pending mcast frames for the vap. 1219 */ 1220 ath_tx_draintxq(sc, &avp->av_mcastq); 1221 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1222 } 1223 /* 1224 * Update bookkeeping. 1225 */ 1226 if (vap->iv_opmode == IEEE80211_M_STA) { 1227 sc->sc_nstavaps--; 1228 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1229 sc->sc_swbmiss = 0; 1230 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1231 vap->iv_opmode == IEEE80211_M_MBSS) { 1232 reclaim_address(sc, vap->iv_myaddr); 1233 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1234 if (vap->iv_opmode == IEEE80211_M_MBSS) 1235 sc->sc_nmeshvaps--; 1236 } 1237 if (vap->iv_opmode != IEEE80211_M_WDS) 1238 sc->sc_nvaps--; 1239 #ifdef IEEE80211_SUPPORT_TDMA 1240 /* TDMA operation ceases when the last vap is destroyed */ 1241 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1242 sc->sc_tdma = 0; 1243 sc->sc_swbmiss = 0; 1244 } 1245 #endif 1246 free(avp, M_80211_VAP); 1247 1248 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1249 /* 1250 * Restart rx+tx machines if still running (RUNNING will 1251 * be reset if we just destroyed the last vap). 1252 */ 1253 if (ath_startrecv(sc) != 0) 1254 if_printf(ifp, "%s: unable to restart recv logic\n", 1255 __func__); 1256 if (sc->sc_beacons) { /* restart beacons */ 1257 #ifdef IEEE80211_SUPPORT_TDMA 1258 if (sc->sc_tdma) 1259 ath_tdma_config(sc, NULL); 1260 else 1261 #endif 1262 ath_beacon_config(sc, NULL); 1263 } 1264 ath_hal_intrset(ah, sc->sc_imask); 1265 } 1266 ATH_UNLOCK(sc); 1267 } 1268 1269 void 1270 ath_suspend(struct ath_softc *sc) 1271 { 1272 struct ifnet *ifp = sc->sc_ifp; 1273 struct ieee80211com *ic = ifp->if_l2com; 1274 1275 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1276 __func__, ifp->if_flags); 1277 1278 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1279 if (ic->ic_opmode == IEEE80211_M_STA) 1280 ath_stop(ifp); 1281 else 1282 ieee80211_suspend_all(ic); 1283 /* 1284 * NB: don't worry about putting the chip in low power 1285 * mode; pci will power off our socket on suspend and 1286 * CardBus detaches the device. 1287 */ 1288 } 1289 1290 /* 1291 * Reset the key cache since some parts do not reset the 1292 * contents on resume. First we clear all entries, then 1293 * re-load keys that the 802.11 layer assumes are setup 1294 * in h/w. 1295 */ 1296 static void 1297 ath_reset_keycache(struct ath_softc *sc) 1298 { 1299 struct ifnet *ifp = sc->sc_ifp; 1300 struct ieee80211com *ic = ifp->if_l2com; 1301 struct ath_hal *ah = sc->sc_ah; 1302 int i; 1303 1304 for (i = 0; i < sc->sc_keymax; i++) 1305 ath_hal_keyreset(ah, i); 1306 ieee80211_crypto_reload_keys(ic); 1307 } 1308 1309 void 1310 ath_resume(struct ath_softc *sc) 1311 { 1312 struct ifnet *ifp = sc->sc_ifp; 1313 struct ieee80211com *ic = ifp->if_l2com; 1314 struct ath_hal *ah = sc->sc_ah; 1315 HAL_STATUS status; 1316 1317 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1318 __func__, ifp->if_flags); 1319 1320 /* 1321 * Must reset the chip before we reload the 1322 * keycache as we were powered down on suspend. 1323 */ 1324 ath_hal_reset(ah, sc->sc_opmode, 1325 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1326 AH_FALSE, &status); 1327 ath_reset_keycache(sc); 1328 1329 /* Let DFS at it in case it's a DFS channel */ 1330 ath_dfs_radar_enable(sc, ic->ic_curchan); 1331 1332 /* Restore the LED configuration */ 1333 ath_led_config(sc); 1334 ath_hal_setledstate(ah, HAL_LED_INIT); 1335 1336 if (sc->sc_resume_up) { 1337 if (ic->ic_opmode == IEEE80211_M_STA) { 1338 ath_init(sc); 1339 ath_hal_setledstate(ah, HAL_LED_RUN); 1340 /* 1341 * Program the beacon registers using the last rx'd 1342 * beacon frame and enable sync on the next beacon 1343 * we see. This should handle the case where we 1344 * wakeup and find the same AP and also the case where 1345 * we wakeup and need to roam. For the latter we 1346 * should get bmiss events that trigger a roam. 1347 */ 1348 ath_beacon_config(sc, NULL); 1349 sc->sc_syncbeacon = 1; 1350 } else 1351 ieee80211_resume_all(ic); 1352 } 1353 1354 /* XXX beacons ? */ 1355 } 1356 1357 void 1358 ath_shutdown(struct ath_softc *sc) 1359 { 1360 struct ifnet *ifp = sc->sc_ifp; 1361 1362 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1363 __func__, ifp->if_flags); 1364 1365 ath_stop(ifp); 1366 /* NB: no point powering down chip as we're about to reboot */ 1367 } 1368 1369 /* 1370 * Interrupt handler. Most of the actual processing is deferred. 1371 */ 1372 void 1373 ath_intr(void *arg) 1374 { 1375 struct ath_softc *sc = arg; 1376 struct ifnet *ifp = sc->sc_ifp; 1377 struct ath_hal *ah = sc->sc_ah; 1378 HAL_INT status = 0; 1379 uint32_t txqs; 1380 1381 /* 1382 * If we're inside a reset path, just print a warning and 1383 * clear the ISR. The reset routine will finish it for us. 1384 */ 1385 ATH_PCU_LOCK(sc); 1386 if (sc->sc_inreset_cnt) { 1387 HAL_INT status; 1388 ath_hal_getisr(ah, &status); /* clear ISR */ 1389 ath_hal_intrset(ah, 0); /* disable further intr's */ 1390 DPRINTF(sc, ATH_DEBUG_ANY, 1391 "%s: in reset, ignoring: status=0x%x\n", 1392 __func__, status); 1393 ATH_PCU_UNLOCK(sc); 1394 return; 1395 } 1396 1397 if (sc->sc_invalid) { 1398 /* 1399 * The hardware is not ready/present, don't touch anything. 1400 * Note this can happen early on if the IRQ is shared. 1401 */ 1402 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1403 ATH_PCU_UNLOCK(sc); 1404 return; 1405 } 1406 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1407 ATH_PCU_UNLOCK(sc); 1408 return; 1409 } 1410 1411 if ((ifp->if_flags & IFF_UP) == 0 || 1412 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1413 HAL_INT status; 1414 1415 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1416 __func__, ifp->if_flags); 1417 ath_hal_getisr(ah, &status); /* clear ISR */ 1418 ath_hal_intrset(ah, 0); /* disable further intr's */ 1419 ATH_PCU_UNLOCK(sc); 1420 return; 1421 } 1422 1423 /* 1424 * Figure out the reason(s) for the interrupt. Note 1425 * that the hal returns a pseudo-ISR that may include 1426 * bits we haven't explicitly enabled so we mask the 1427 * value to insure we only process bits we requested. 1428 */ 1429 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1430 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1431 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1432 #ifdef ATH_KTR_INTR_DEBUG 1433 CTR5(ATH_KTR_INTR, 1434 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1435 ah->ah_intrstate[0], 1436 ah->ah_intrstate[1], 1437 ah->ah_intrstate[2], 1438 ah->ah_intrstate[3], 1439 ah->ah_intrstate[6]); 1440 #endif 1441 status &= sc->sc_imask; /* discard unasked for bits */ 1442 1443 /* Short-circuit un-handled interrupts */ 1444 if (status == 0x0) { 1445 ATH_PCU_UNLOCK(sc); 1446 return; 1447 } 1448 1449 /* 1450 * Take a note that we're inside the interrupt handler, so 1451 * the reset routines know to wait. 1452 */ 1453 sc->sc_intr_cnt++; 1454 ATH_PCU_UNLOCK(sc); 1455 1456 /* 1457 * Handle the interrupt. We won't run concurrent with the reset 1458 * or channel change routines as they'll wait for sc_intr_cnt 1459 * to be 0 before continuing. 1460 */ 1461 if (status & HAL_INT_FATAL) { 1462 sc->sc_stats.ast_hardware++; 1463 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1464 ath_fatal_proc(sc, 0); 1465 } else { 1466 if (status & HAL_INT_SWBA) { 1467 /* 1468 * Software beacon alert--time to send a beacon. 1469 * Handle beacon transmission directly; deferring 1470 * this is too slow to meet timing constraints 1471 * under load. 1472 */ 1473 #ifdef IEEE80211_SUPPORT_TDMA 1474 if (sc->sc_tdma) { 1475 if (sc->sc_tdmaswba == 0) { 1476 struct ieee80211com *ic = ifp->if_l2com; 1477 struct ieee80211vap *vap = 1478 TAILQ_FIRST(&ic->ic_vaps); 1479 ath_tdma_beacon_send(sc, vap); 1480 sc->sc_tdmaswba = 1481 vap->iv_tdma->tdma_bintval; 1482 } else 1483 sc->sc_tdmaswba--; 1484 } else 1485 #endif 1486 { 1487 ath_beacon_proc(sc, 0); 1488 #ifdef IEEE80211_SUPPORT_SUPERG 1489 /* 1490 * Schedule the rx taskq in case there's no 1491 * traffic so any frames held on the staging 1492 * queue are aged and potentially flushed. 1493 */ 1494 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1495 #endif 1496 } 1497 } 1498 if (status & HAL_INT_RXEOL) { 1499 int imask; 1500 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1501 ATH_PCU_LOCK(sc); 1502 /* 1503 * NB: the hardware should re-read the link when 1504 * RXE bit is written, but it doesn't work at 1505 * least on older hardware revs. 1506 */ 1507 sc->sc_stats.ast_rxeol++; 1508 /* 1509 * Disable RXEOL/RXORN - prevent an interrupt 1510 * storm until the PCU logic can be reset. 1511 * In case the interface is reset some other 1512 * way before "sc_kickpcu" is called, don't 1513 * modify sc_imask - that way if it is reset 1514 * by a call to ath_reset() somehow, the 1515 * interrupt mask will be correctly reprogrammed. 1516 */ 1517 imask = sc->sc_imask; 1518 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1519 ath_hal_intrset(ah, imask); 1520 /* 1521 * Only blank sc_rxlink if we've not yet kicked 1522 * the PCU. 1523 * 1524 * This isn't entirely correct - the correct solution 1525 * would be to have a PCU lock and engage that for 1526 * the duration of the PCU fiddling; which would include 1527 * running the RX process. Otherwise we could end up 1528 * messing up the RX descriptor chain and making the 1529 * RX desc list much shorter. 1530 */ 1531 if (! sc->sc_kickpcu) 1532 sc->sc_rxlink = NULL; 1533 sc->sc_kickpcu = 1; 1534 /* 1535 * Enqueue an RX proc, to handled whatever 1536 * is in the RX queue. 1537 * This will then kick the PCU. 1538 */ 1539 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1540 ATH_PCU_UNLOCK(sc); 1541 } 1542 if (status & HAL_INT_TXURN) { 1543 sc->sc_stats.ast_txurn++; 1544 /* bump tx trigger level */ 1545 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1546 } 1547 if (status & HAL_INT_RX) { 1548 sc->sc_stats.ast_rx_intr++; 1549 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1550 } 1551 if (status & HAL_INT_TX) { 1552 sc->sc_stats.ast_tx_intr++; 1553 /* 1554 * Grab all the currently set bits in the HAL txq bitmap 1555 * and blank them. This is the only place we should be 1556 * doing this. 1557 */ 1558 ATH_PCU_LOCK(sc); 1559 txqs = 0xffffffff; 1560 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1561 sc->sc_txq_active |= txqs; 1562 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1563 ATH_PCU_UNLOCK(sc); 1564 } 1565 if (status & HAL_INT_BMISS) { 1566 sc->sc_stats.ast_bmiss++; 1567 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1568 } 1569 if (status & HAL_INT_GTT) 1570 sc->sc_stats.ast_tx_timeout++; 1571 if (status & HAL_INT_CST) 1572 sc->sc_stats.ast_tx_cst++; 1573 if (status & HAL_INT_MIB) { 1574 sc->sc_stats.ast_mib++; 1575 ATH_PCU_LOCK(sc); 1576 /* 1577 * Disable interrupts until we service the MIB 1578 * interrupt; otherwise it will continue to fire. 1579 */ 1580 ath_hal_intrset(ah, 0); 1581 /* 1582 * Let the hal handle the event. We assume it will 1583 * clear whatever condition caused the interrupt. 1584 */ 1585 ath_hal_mibevent(ah, &sc->sc_halstats); 1586 /* 1587 * Don't reset the interrupt if we've just 1588 * kicked the PCU, or we may get a nested 1589 * RXEOL before the rxproc has had a chance 1590 * to run. 1591 */ 1592 if (sc->sc_kickpcu == 0) 1593 ath_hal_intrset(ah, sc->sc_imask); 1594 ATH_PCU_UNLOCK(sc); 1595 } 1596 if (status & HAL_INT_RXORN) { 1597 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1598 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1599 sc->sc_stats.ast_rxorn++; 1600 } 1601 } 1602 ATH_PCU_LOCK(sc); 1603 sc->sc_intr_cnt--; 1604 ATH_PCU_UNLOCK(sc); 1605 } 1606 1607 static void 1608 ath_fatal_proc(void *arg, int pending) 1609 { 1610 struct ath_softc *sc = arg; 1611 struct ifnet *ifp = sc->sc_ifp; 1612 u_int32_t *state; 1613 u_int32_t len; 1614 void *sp; 1615 1616 if_printf(ifp, "hardware error; resetting\n"); 1617 /* 1618 * Fatal errors are unrecoverable. Typically these 1619 * are caused by DMA errors. Collect h/w state from 1620 * the hal so we can diagnose what's going on. 1621 */ 1622 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1623 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1624 state = sp; 1625 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1626 state[0], state[1] , state[2], state[3], 1627 state[4], state[5]); 1628 } 1629 ath_reset(ifp, ATH_RESET_NOLOSS); 1630 } 1631 1632 static void 1633 ath_bmiss_vap(struct ieee80211vap *vap) 1634 { 1635 /* 1636 * Workaround phantom bmiss interrupts by sanity-checking 1637 * the time of our last rx'd frame. If it is within the 1638 * beacon miss interval then ignore the interrupt. If it's 1639 * truly a bmiss we'll get another interrupt soon and that'll 1640 * be dispatched up for processing. Note this applies only 1641 * for h/w beacon miss events. 1642 */ 1643 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1644 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1645 struct ath_softc *sc = ifp->if_softc; 1646 u_int64_t lastrx = sc->sc_lastrx; 1647 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1648 u_int bmisstimeout = 1649 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1650 1651 DPRINTF(sc, ATH_DEBUG_BEACON, 1652 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1653 __func__, (unsigned long long) tsf, 1654 (unsigned long long)(tsf - lastrx), 1655 (unsigned long long) lastrx, bmisstimeout); 1656 1657 if (tsf - lastrx <= bmisstimeout) { 1658 sc->sc_stats.ast_bmiss_phantom++; 1659 return; 1660 } 1661 } 1662 ATH_VAP(vap)->av_bmiss(vap); 1663 } 1664 1665 static int 1666 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1667 { 1668 uint32_t rsize; 1669 void *sp; 1670 1671 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1672 return 0; 1673 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1674 *hangs = *(uint32_t *)sp; 1675 return 1; 1676 } 1677 1678 static void 1679 ath_bmiss_proc(void *arg, int pending) 1680 { 1681 struct ath_softc *sc = arg; 1682 struct ifnet *ifp = sc->sc_ifp; 1683 uint32_t hangs; 1684 1685 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1686 1687 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1688 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1689 ath_reset(ifp, ATH_RESET_NOLOSS); 1690 } else 1691 ieee80211_beacon_miss(ifp->if_l2com); 1692 } 1693 1694 /* 1695 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1696 * calcs together with WME. If necessary disable the crypto 1697 * hardware and mark the 802.11 state so keys will be setup 1698 * with the MIC work done in software. 1699 */ 1700 static void 1701 ath_settkipmic(struct ath_softc *sc) 1702 { 1703 struct ifnet *ifp = sc->sc_ifp; 1704 struct ieee80211com *ic = ifp->if_l2com; 1705 1706 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1707 if (ic->ic_flags & IEEE80211_F_WME) { 1708 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1709 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1710 } else { 1711 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1712 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1713 } 1714 } 1715 } 1716 1717 static void 1718 ath_init(void *arg) 1719 { 1720 struct ath_softc *sc = (struct ath_softc *) arg; 1721 struct ifnet *ifp = sc->sc_ifp; 1722 struct ieee80211com *ic = ifp->if_l2com; 1723 struct ath_hal *ah = sc->sc_ah; 1724 HAL_STATUS status; 1725 1726 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1727 __func__, ifp->if_flags); 1728 1729 ATH_LOCK(sc); 1730 /* 1731 * Stop anything previously setup. This is safe 1732 * whether this is the first time through or not. 1733 */ 1734 ath_stop_locked(ifp); 1735 1736 /* 1737 * The basic interface to setting the hardware in a good 1738 * state is ``reset''. On return the hardware is known to 1739 * be powered up and with interrupts disabled. This must 1740 * be followed by initialization of the appropriate bits 1741 * and then setup of the interrupt mask. 1742 */ 1743 ath_settkipmic(sc); 1744 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1745 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1746 status); 1747 ATH_UNLOCK(sc); 1748 return; 1749 } 1750 ath_chan_change(sc, ic->ic_curchan); 1751 1752 /* Let DFS at it in case it's a DFS channel */ 1753 ath_dfs_radar_enable(sc, ic->ic_curchan); 1754 1755 /* 1756 * Likewise this is set during reset so update 1757 * state cached in the driver. 1758 */ 1759 sc->sc_diversity = ath_hal_getdiversity(ah); 1760 sc->sc_lastlongcal = 0; 1761 sc->sc_resetcal = 1; 1762 sc->sc_lastcalreset = 0; 1763 sc->sc_lastani = 0; 1764 sc->sc_lastshortcal = 0; 1765 sc->sc_doresetcal = AH_FALSE; 1766 /* 1767 * Beacon timers were cleared here; give ath_newstate() 1768 * a hint that the beacon timers should be poked when 1769 * things transition to the RUN state. 1770 */ 1771 sc->sc_beacons = 0; 1772 1773 /* 1774 * Initial aggregation settings. 1775 */ 1776 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1777 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1778 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1779 1780 /* 1781 * Setup the hardware after reset: the key cache 1782 * is filled as needed and the receive engine is 1783 * set going. Frame transmit is handled entirely 1784 * in the frame output path; there's nothing to do 1785 * here except setup the interrupt mask. 1786 */ 1787 if (ath_startrecv(sc) != 0) { 1788 if_printf(ifp, "unable to start recv logic\n"); 1789 ATH_UNLOCK(sc); 1790 return; 1791 } 1792 1793 /* 1794 * Enable interrupts. 1795 */ 1796 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1797 | HAL_INT_RXEOL | HAL_INT_RXORN 1798 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1799 /* 1800 * Enable MIB interrupts when there are hardware phy counters. 1801 * Note we only do this (at the moment) for station mode. 1802 */ 1803 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1804 sc->sc_imask |= HAL_INT_MIB; 1805 1806 /* Enable global TX timeout and carrier sense timeout if available */ 1807 if (ath_hal_gtxto_supported(ah)) 1808 sc->sc_imask |= HAL_INT_GTT; 1809 1810 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1811 __func__, sc->sc_imask); 1812 1813 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1814 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1815 ath_hal_intrset(ah, sc->sc_imask); 1816 1817 ATH_UNLOCK(sc); 1818 1819 #ifdef ATH_TX99_DIAG 1820 if (sc->sc_tx99 != NULL) 1821 sc->sc_tx99->start(sc->sc_tx99); 1822 else 1823 #endif 1824 ieee80211_start_all(ic); /* start all vap's */ 1825 } 1826 1827 static void 1828 ath_stop_locked(struct ifnet *ifp) 1829 { 1830 struct ath_softc *sc = ifp->if_softc; 1831 struct ath_hal *ah = sc->sc_ah; 1832 1833 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1834 __func__, sc->sc_invalid, ifp->if_flags); 1835 1836 ATH_LOCK_ASSERT(sc); 1837 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1838 /* 1839 * Shutdown the hardware and driver: 1840 * reset 802.11 state machine 1841 * turn off timers 1842 * disable interrupts 1843 * turn off the radio 1844 * clear transmit machinery 1845 * clear receive machinery 1846 * drain and release tx queues 1847 * reclaim beacon resources 1848 * power down hardware 1849 * 1850 * Note that some of this work is not possible if the 1851 * hardware is gone (invalid). 1852 */ 1853 #ifdef ATH_TX99_DIAG 1854 if (sc->sc_tx99 != NULL) 1855 sc->sc_tx99->stop(sc->sc_tx99); 1856 #endif 1857 callout_stop(&sc->sc_wd_ch); 1858 sc->sc_wd_timer = 0; 1859 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1860 if (!sc->sc_invalid) { 1861 if (sc->sc_softled) { 1862 callout_stop(&sc->sc_ledtimer); 1863 ath_hal_gpioset(ah, sc->sc_ledpin, 1864 !sc->sc_ledon); 1865 sc->sc_blinking = 0; 1866 } 1867 ath_hal_intrset(ah, 0); 1868 } 1869 ath_draintxq(sc, ATH_RESET_DEFAULT); 1870 if (!sc->sc_invalid) { 1871 ath_stoprecv(sc, 1); 1872 ath_hal_phydisable(ah); 1873 } else 1874 sc->sc_rxlink = NULL; 1875 ath_beacon_free(sc); /* XXX not needed */ 1876 } 1877 } 1878 1879 #define MAX_TXRX_ITERATIONS 1000 1880 static void 1881 ath_txrx_stop(struct ath_softc *sc) 1882 { 1883 int i = MAX_TXRX_ITERATIONS; 1884 1885 ATH_UNLOCK_ASSERT(sc); 1886 /* Stop any new TX/RX from occuring */ 1887 taskqueue_block(sc->sc_tq); 1888 1889 ATH_PCU_LOCK(sc); 1890 /* 1891 * Sleep until all the pending operations have completed. 1892 * 1893 * The caller must ensure that reset has been incremented 1894 * or the pending operations may continue being queued. 1895 */ 1896 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1897 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1898 if (i <= 0) 1899 break; 1900 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1901 i--; 1902 } 1903 ATH_PCU_UNLOCK(sc); 1904 1905 if (i <= 0) 1906 device_printf(sc->sc_dev, 1907 "%s: didn't finish after %d iterations\n", 1908 __func__, MAX_TXRX_ITERATIONS); 1909 } 1910 #undef MAX_TXRX_ITERATIONS 1911 1912 static void 1913 ath_txrx_start(struct ath_softc *sc) 1914 { 1915 1916 taskqueue_unblock(sc->sc_tq); 1917 } 1918 1919 /* 1920 * Grab the reset lock, and wait around until noone else 1921 * is trying to do anything with it. 1922 * 1923 * This is totally horrible but we can't hold this lock for 1924 * long enough to do TX/RX or we end up with net80211/ip stack 1925 * LORs and eventual deadlock. 1926 * 1927 * "dowait" signals whether to spin, waiting for the reset 1928 * lock count to reach 0. This should (for now) only be used 1929 * during the reset path, as the rest of the code may not 1930 * be locking-reentrant enough to behave correctly. 1931 * 1932 * Another, cleaner way should be found to serialise all of 1933 * these operations. 1934 */ 1935 #define MAX_RESET_ITERATIONS 10 1936 static int 1937 ath_reset_grablock(struct ath_softc *sc, int dowait) 1938 { 1939 int w = 0; 1940 int i = MAX_RESET_ITERATIONS; 1941 1942 ATH_PCU_LOCK_ASSERT(sc); 1943 do { 1944 if (sc->sc_inreset_cnt == 0) { 1945 w = 1; 1946 break; 1947 } 1948 if (dowait == 0) { 1949 w = 0; 1950 break; 1951 } 1952 ATH_PCU_UNLOCK(sc); 1953 pause("ath_reset_grablock", 1); 1954 i--; 1955 ATH_PCU_LOCK(sc); 1956 } while (i > 0); 1957 1958 /* 1959 * We always increment the refcounter, regardless 1960 * of whether we succeeded to get it in an exclusive 1961 * way. 1962 */ 1963 sc->sc_inreset_cnt++; 1964 1965 if (i <= 0) 1966 device_printf(sc->sc_dev, 1967 "%s: didn't finish after %d iterations\n", 1968 __func__, MAX_RESET_ITERATIONS); 1969 1970 if (w == 0) 1971 device_printf(sc->sc_dev, 1972 "%s: warning, recursive reset path!\n", 1973 __func__); 1974 1975 return w; 1976 } 1977 #undef MAX_RESET_ITERATIONS 1978 1979 /* 1980 * XXX TODO: write ath_reset_releaselock 1981 */ 1982 1983 static void 1984 ath_stop(struct ifnet *ifp) 1985 { 1986 struct ath_softc *sc = ifp->if_softc; 1987 1988 ATH_LOCK(sc); 1989 ath_stop_locked(ifp); 1990 ATH_UNLOCK(sc); 1991 } 1992 1993 /* 1994 * Reset the hardware w/o losing operational state. This is 1995 * basically a more efficient way of doing ath_stop, ath_init, 1996 * followed by state transitions to the current 802.11 1997 * operational state. Used to recover from various errors and 1998 * to reset or reload hardware state. 1999 */ 2000 int 2001 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2002 { 2003 struct ath_softc *sc = ifp->if_softc; 2004 struct ieee80211com *ic = ifp->if_l2com; 2005 struct ath_hal *ah = sc->sc_ah; 2006 HAL_STATUS status; 2007 int i; 2008 2009 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2010 2011 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2012 ATH_PCU_UNLOCK_ASSERT(sc); 2013 ATH_UNLOCK_ASSERT(sc); 2014 2015 ATH_PCU_LOCK(sc); 2016 if (ath_reset_grablock(sc, 1) == 0) { 2017 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2018 __func__); 2019 } 2020 ath_hal_intrset(ah, 0); /* disable interrupts */ 2021 ATH_PCU_UNLOCK(sc); 2022 2023 /* 2024 * Should now wait for pending TX/RX to complete 2025 * and block future ones from occuring. This needs to be 2026 * done before the TX queue is drained. 2027 */ 2028 ath_txrx_stop(sc); 2029 ath_draintxq(sc, reset_type); /* stop xmit side */ 2030 2031 /* 2032 * Regardless of whether we're doing a no-loss flush or 2033 * not, stop the PCU and handle what's in the RX queue. 2034 * That way frames aren't dropped which shouldn't be. 2035 */ 2036 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2037 ath_rx_proc(sc, 0); 2038 2039 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2040 /* NB: indicate channel change so we do a full reset */ 2041 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2042 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2043 __func__, status); 2044 sc->sc_diversity = ath_hal_getdiversity(ah); 2045 2046 /* Let DFS at it in case it's a DFS channel */ 2047 ath_dfs_radar_enable(sc, ic->ic_curchan); 2048 2049 if (ath_startrecv(sc) != 0) /* restart recv */ 2050 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2051 /* 2052 * We may be doing a reset in response to an ioctl 2053 * that changes the channel so update any state that 2054 * might change as a result. 2055 */ 2056 ath_chan_change(sc, ic->ic_curchan); 2057 if (sc->sc_beacons) { /* restart beacons */ 2058 #ifdef IEEE80211_SUPPORT_TDMA 2059 if (sc->sc_tdma) 2060 ath_tdma_config(sc, NULL); 2061 else 2062 #endif 2063 ath_beacon_config(sc, NULL); 2064 } 2065 2066 /* 2067 * Release the reset lock and re-enable interrupts here. 2068 * If an interrupt was being processed in ath_intr(), 2069 * it would disable interrupts at this point. So we have 2070 * to atomically enable interrupts and decrement the 2071 * reset counter - this way ath_intr() doesn't end up 2072 * disabling interrupts without a corresponding enable 2073 * in the rest or channel change path. 2074 */ 2075 ATH_PCU_LOCK(sc); 2076 sc->sc_inreset_cnt--; 2077 /* XXX only do this if sc_inreset_cnt == 0? */ 2078 ath_hal_intrset(ah, sc->sc_imask); 2079 ATH_PCU_UNLOCK(sc); 2080 2081 /* 2082 * TX and RX can be started here. If it were started with 2083 * sc_inreset_cnt > 0, the TX and RX path would abort. 2084 * Thus if this is a nested call through the reset or 2085 * channel change code, TX completion will occur but 2086 * RX completion and ath_start / ath_tx_start will not 2087 * run. 2088 */ 2089 2090 /* Restart TX/RX as needed */ 2091 ath_txrx_start(sc); 2092 2093 /* XXX Restart TX completion and pending TX */ 2094 if (reset_type == ATH_RESET_NOLOSS) { 2095 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2096 if (ATH_TXQ_SETUP(sc, i)) { 2097 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2098 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2099 ath_txq_sched(sc, &sc->sc_txq[i]); 2100 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2101 } 2102 } 2103 } 2104 2105 /* 2106 * This may have been set during an ath_start() call which 2107 * set this once it detected a concurrent TX was going on. 2108 * So, clear it. 2109 */ 2110 /* XXX do this inside of IF_LOCK? */ 2111 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2112 2113 /* Handle any frames in the TX queue */ 2114 /* 2115 * XXX should this be done by the caller, rather than 2116 * ath_reset() ? 2117 */ 2118 ath_start(ifp); /* restart xmit */ 2119 return 0; 2120 } 2121 2122 static int 2123 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2124 { 2125 struct ieee80211com *ic = vap->iv_ic; 2126 struct ifnet *ifp = ic->ic_ifp; 2127 struct ath_softc *sc = ifp->if_softc; 2128 struct ath_hal *ah = sc->sc_ah; 2129 2130 switch (cmd) { 2131 case IEEE80211_IOC_TXPOWER: 2132 /* 2133 * If per-packet TPC is enabled, then we have nothing 2134 * to do; otherwise we need to force the global limit. 2135 * All this can happen directly; no need to reset. 2136 */ 2137 if (!ath_hal_gettpc(ah)) 2138 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2139 return 0; 2140 } 2141 /* XXX? Full or NOLOSS? */ 2142 return ath_reset(ifp, ATH_RESET_FULL); 2143 } 2144 2145 struct ath_buf * 2146 _ath_getbuf_locked(struct ath_softc *sc) 2147 { 2148 struct ath_buf *bf; 2149 2150 ATH_TXBUF_LOCK_ASSERT(sc); 2151 2152 bf = TAILQ_FIRST(&sc->sc_txbuf); 2153 if (bf == NULL) { 2154 sc->sc_stats.ast_tx_getnobuf++; 2155 } else { 2156 if (bf->bf_flags & ATH_BUF_BUSY) { 2157 sc->sc_stats.ast_tx_getbusybuf++; 2158 bf = NULL; 2159 } 2160 } 2161 2162 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2163 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2164 else 2165 bf = NULL; 2166 2167 if (bf == NULL) { 2168 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2169 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2170 "out of xmit buffers" : "xmit buffer busy"); 2171 return NULL; 2172 } 2173 2174 /* Valid bf here; clear some basic fields */ 2175 bf->bf_next = NULL; /* XXX just to be sure */ 2176 bf->bf_last = NULL; /* XXX again, just to be sure */ 2177 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2178 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2179 2180 return bf; 2181 } 2182 2183 /* 2184 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2185 * can't be thrown back on the queue as they could still be 2186 * in use by the hardware. 2187 * 2188 * This duplicates the buffer, or returns NULL. 2189 * 2190 * The descriptor is also copied but the link pointers and 2191 * the DMA segments aren't copied; this frame should thus 2192 * be again passed through the descriptor setup/chain routines 2193 * so the link is correct. 2194 * 2195 * The caller must free the buffer using ath_freebuf(). 2196 * 2197 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2198 * XXX in the TX pathway when retries are needed. 2199 * XXX Figure out how to keep some buffers free, or factor the 2200 * XXX number of busy buffers into the xmit path (ath_start()) 2201 * XXX so we don't over-commit. 2202 */ 2203 struct ath_buf * 2204 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2205 { 2206 struct ath_buf *tbf; 2207 2208 tbf = ath_getbuf(sc); 2209 if (tbf == NULL) 2210 return NULL; /* XXX failure? Why? */ 2211 2212 /* Copy basics */ 2213 tbf->bf_next = NULL; 2214 tbf->bf_nseg = bf->bf_nseg; 2215 tbf->bf_txflags = bf->bf_txflags; 2216 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2217 tbf->bf_status = bf->bf_status; 2218 tbf->bf_m = bf->bf_m; 2219 tbf->bf_node = bf->bf_node; 2220 /* will be setup by the chain/setup function */ 2221 tbf->bf_lastds = NULL; 2222 /* for now, last == self */ 2223 tbf->bf_last = tbf; 2224 tbf->bf_comp = bf->bf_comp; 2225 2226 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2227 2228 /* The caller has to re-init the descriptor + links */ 2229 2230 /* Copy state */ 2231 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2232 2233 return tbf; 2234 } 2235 2236 struct ath_buf * 2237 ath_getbuf(struct ath_softc *sc) 2238 { 2239 struct ath_buf *bf; 2240 2241 ATH_TXBUF_LOCK(sc); 2242 bf = _ath_getbuf_locked(sc); 2243 if (bf == NULL) { 2244 struct ifnet *ifp = sc->sc_ifp; 2245 2246 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2247 sc->sc_stats.ast_tx_qstop++; 2248 /* XXX do this inside of IF_LOCK? */ 2249 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2250 } 2251 ATH_TXBUF_UNLOCK(sc); 2252 return bf; 2253 } 2254 2255 static void 2256 ath_start(struct ifnet *ifp) 2257 { 2258 struct ath_softc *sc = ifp->if_softc; 2259 struct ieee80211_node *ni; 2260 struct ath_buf *bf; 2261 struct mbuf *m, *next; 2262 ath_bufhead frags; 2263 2264 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2265 return; 2266 2267 /* XXX is it ok to hold the ATH_LOCK here? */ 2268 ATH_PCU_LOCK(sc); 2269 if (sc->sc_inreset_cnt > 0) { 2270 device_printf(sc->sc_dev, 2271 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2272 /* XXX do this inside of IF_LOCK? */ 2273 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2274 ATH_PCU_UNLOCK(sc); 2275 return; 2276 } 2277 sc->sc_txstart_cnt++; 2278 ATH_PCU_UNLOCK(sc); 2279 2280 for (;;) { 2281 /* 2282 * Grab a TX buffer and associated resources. 2283 */ 2284 bf = ath_getbuf(sc); 2285 if (bf == NULL) 2286 break; 2287 2288 IFQ_DEQUEUE(&ifp->if_snd, m); 2289 if (m == NULL) { 2290 ATH_TXBUF_LOCK(sc); 2291 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2292 ATH_TXBUF_UNLOCK(sc); 2293 break; 2294 } 2295 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2296 /* 2297 * Check for fragmentation. If this frame 2298 * has been broken up verify we have enough 2299 * buffers to send all the fragments so all 2300 * go out or none... 2301 */ 2302 TAILQ_INIT(&frags); 2303 if ((m->m_flags & M_FRAG) && 2304 !ath_txfrag_setup(sc, &frags, m, ni)) { 2305 DPRINTF(sc, ATH_DEBUG_XMIT, 2306 "%s: out of txfrag buffers\n", __func__); 2307 sc->sc_stats.ast_tx_nofrag++; 2308 ifp->if_oerrors++; 2309 ath_freetx(m); 2310 goto bad; 2311 } 2312 ifp->if_opackets++; 2313 nextfrag: 2314 /* 2315 * Pass the frame to the h/w for transmission. 2316 * Fragmented frames have each frag chained together 2317 * with m_nextpkt. We know there are sufficient ath_buf's 2318 * to send all the frags because of work done by 2319 * ath_txfrag_setup. We leave m_nextpkt set while 2320 * calling ath_tx_start so it can use it to extend the 2321 * the tx duration to cover the subsequent frag and 2322 * so it can reclaim all the mbufs in case of an error; 2323 * ath_tx_start clears m_nextpkt once it commits to 2324 * handing the frame to the hardware. 2325 */ 2326 next = m->m_nextpkt; 2327 if (ath_tx_start(sc, ni, bf, m)) { 2328 bad: 2329 ifp->if_oerrors++; 2330 reclaim: 2331 bf->bf_m = NULL; 2332 bf->bf_node = NULL; 2333 ATH_TXBUF_LOCK(sc); 2334 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2335 ath_txfrag_cleanup(sc, &frags, ni); 2336 ATH_TXBUF_UNLOCK(sc); 2337 if (ni != NULL) 2338 ieee80211_free_node(ni); 2339 continue; 2340 } 2341 if (next != NULL) { 2342 /* 2343 * Beware of state changing between frags. 2344 * XXX check sta power-save state? 2345 */ 2346 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2347 DPRINTF(sc, ATH_DEBUG_XMIT, 2348 "%s: flush fragmented packet, state %s\n", 2349 __func__, 2350 ieee80211_state_name[ni->ni_vap->iv_state]); 2351 ath_freetx(next); 2352 goto reclaim; 2353 } 2354 m = next; 2355 bf = TAILQ_FIRST(&frags); 2356 KASSERT(bf != NULL, ("no buf for txfrag")); 2357 TAILQ_REMOVE(&frags, bf, bf_list); 2358 goto nextfrag; 2359 } 2360 2361 sc->sc_wd_timer = 5; 2362 } 2363 2364 ATH_PCU_LOCK(sc); 2365 sc->sc_txstart_cnt--; 2366 ATH_PCU_UNLOCK(sc); 2367 } 2368 2369 static int 2370 ath_media_change(struct ifnet *ifp) 2371 { 2372 int error = ieee80211_media_change(ifp); 2373 /* NB: only the fixed rate can change and that doesn't need a reset */ 2374 return (error == ENETRESET ? 0 : error); 2375 } 2376 2377 /* 2378 * Block/unblock tx+rx processing while a key change is done. 2379 * We assume the caller serializes key management operations 2380 * so we only need to worry about synchronization with other 2381 * uses that originate in the driver. 2382 */ 2383 static void 2384 ath_key_update_begin(struct ieee80211vap *vap) 2385 { 2386 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2387 struct ath_softc *sc = ifp->if_softc; 2388 2389 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2390 taskqueue_block(sc->sc_tq); 2391 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2392 } 2393 2394 static void 2395 ath_key_update_end(struct ieee80211vap *vap) 2396 { 2397 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2398 struct ath_softc *sc = ifp->if_softc; 2399 2400 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2401 IF_UNLOCK(&ifp->if_snd); 2402 taskqueue_unblock(sc->sc_tq); 2403 } 2404 2405 /* 2406 * Calculate the receive filter according to the 2407 * operating mode and state: 2408 * 2409 * o always accept unicast, broadcast, and multicast traffic 2410 * o accept PHY error frames when hardware doesn't have MIB support 2411 * to count and we need them for ANI (sta mode only until recently) 2412 * and we are not scanning (ANI is disabled) 2413 * NB: older hal's add rx filter bits out of sight and we need to 2414 * blindly preserve them 2415 * o probe request frames are accepted only when operating in 2416 * hostap, adhoc, mesh, or monitor modes 2417 * o enable promiscuous mode 2418 * - when in monitor mode 2419 * - if interface marked PROMISC (assumes bridge setting is filtered) 2420 * o accept beacons: 2421 * - when operating in station mode for collecting rssi data when 2422 * the station is otherwise quiet, or 2423 * - when operating in adhoc mode so the 802.11 layer creates 2424 * node table entries for peers, 2425 * - when scanning 2426 * - when doing s/w beacon miss (e.g. for ap+sta) 2427 * - when operating in ap mode in 11g to detect overlapping bss that 2428 * require protection 2429 * - when operating in mesh mode to detect neighbors 2430 * o accept control frames: 2431 * - when in monitor mode 2432 * XXX HT protection for 11n 2433 */ 2434 static u_int32_t 2435 ath_calcrxfilter(struct ath_softc *sc) 2436 { 2437 struct ifnet *ifp = sc->sc_ifp; 2438 struct ieee80211com *ic = ifp->if_l2com; 2439 u_int32_t rfilt; 2440 2441 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2442 if (!sc->sc_needmib && !sc->sc_scanning) 2443 rfilt |= HAL_RX_FILTER_PHYERR; 2444 if (ic->ic_opmode != IEEE80211_M_STA) 2445 rfilt |= HAL_RX_FILTER_PROBEREQ; 2446 /* XXX ic->ic_monvaps != 0? */ 2447 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2448 rfilt |= HAL_RX_FILTER_PROM; 2449 if (ic->ic_opmode == IEEE80211_M_STA || 2450 ic->ic_opmode == IEEE80211_M_IBSS || 2451 sc->sc_swbmiss || sc->sc_scanning) 2452 rfilt |= HAL_RX_FILTER_BEACON; 2453 /* 2454 * NB: We don't recalculate the rx filter when 2455 * ic_protmode changes; otherwise we could do 2456 * this only when ic_protmode != NONE. 2457 */ 2458 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2459 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2460 rfilt |= HAL_RX_FILTER_BEACON; 2461 2462 /* 2463 * Enable hardware PS-POLL RX only for hostap mode; 2464 * STA mode sends PS-POLL frames but never 2465 * receives them. 2466 */ 2467 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2468 0, NULL) == HAL_OK && 2469 ic->ic_opmode == IEEE80211_M_HOSTAP) 2470 rfilt |= HAL_RX_FILTER_PSPOLL; 2471 2472 if (sc->sc_nmeshvaps) { 2473 rfilt |= HAL_RX_FILTER_BEACON; 2474 if (sc->sc_hasbmatch) 2475 rfilt |= HAL_RX_FILTER_BSSID; 2476 else 2477 rfilt |= HAL_RX_FILTER_PROM; 2478 } 2479 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2480 rfilt |= HAL_RX_FILTER_CONTROL; 2481 2482 /* 2483 * Enable RX of compressed BAR frames only when doing 2484 * 802.11n. Required for A-MPDU. 2485 */ 2486 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2487 rfilt |= HAL_RX_FILTER_COMPBAR; 2488 2489 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2490 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2491 return rfilt; 2492 } 2493 2494 static void 2495 ath_update_promisc(struct ifnet *ifp) 2496 { 2497 struct ath_softc *sc = ifp->if_softc; 2498 u_int32_t rfilt; 2499 2500 /* configure rx filter */ 2501 rfilt = ath_calcrxfilter(sc); 2502 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2503 2504 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2505 } 2506 2507 static void 2508 ath_update_mcast(struct ifnet *ifp) 2509 { 2510 struct ath_softc *sc = ifp->if_softc; 2511 u_int32_t mfilt[2]; 2512 2513 /* calculate and install multicast filter */ 2514 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2515 struct ifmultiaddr *ifma; 2516 /* 2517 * Merge multicast addresses to form the hardware filter. 2518 */ 2519 mfilt[0] = mfilt[1] = 0; 2520 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2521 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2522 caddr_t dl; 2523 u_int32_t val; 2524 u_int8_t pos; 2525 2526 /* calculate XOR of eight 6bit values */ 2527 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2528 val = LE_READ_4(dl + 0); 2529 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2530 val = LE_READ_4(dl + 3); 2531 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2532 pos &= 0x3f; 2533 mfilt[pos / 32] |= (1 << (pos % 32)); 2534 } 2535 if_maddr_runlock(ifp); 2536 } else 2537 mfilt[0] = mfilt[1] = ~0; 2538 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2539 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2540 __func__, mfilt[0], mfilt[1]); 2541 } 2542 2543 static void 2544 ath_mode_init(struct ath_softc *sc) 2545 { 2546 struct ifnet *ifp = sc->sc_ifp; 2547 struct ath_hal *ah = sc->sc_ah; 2548 u_int32_t rfilt; 2549 2550 /* configure rx filter */ 2551 rfilt = ath_calcrxfilter(sc); 2552 ath_hal_setrxfilter(ah, rfilt); 2553 2554 /* configure operational mode */ 2555 ath_hal_setopmode(ah); 2556 2557 /* handle any link-level address change */ 2558 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2559 2560 /* calculate and install multicast filter */ 2561 ath_update_mcast(ifp); 2562 } 2563 2564 /* 2565 * Set the slot time based on the current setting. 2566 */ 2567 static void 2568 ath_setslottime(struct ath_softc *sc) 2569 { 2570 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2571 struct ath_hal *ah = sc->sc_ah; 2572 u_int usec; 2573 2574 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2575 usec = 13; 2576 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2577 usec = 21; 2578 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2579 /* honor short/long slot time only in 11g */ 2580 /* XXX shouldn't honor on pure g or turbo g channel */ 2581 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2582 usec = HAL_SLOT_TIME_9; 2583 else 2584 usec = HAL_SLOT_TIME_20; 2585 } else 2586 usec = HAL_SLOT_TIME_9; 2587 2588 DPRINTF(sc, ATH_DEBUG_RESET, 2589 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2590 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2591 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2592 2593 ath_hal_setslottime(ah, usec); 2594 sc->sc_updateslot = OK; 2595 } 2596 2597 /* 2598 * Callback from the 802.11 layer to update the 2599 * slot time based on the current setting. 2600 */ 2601 static void 2602 ath_updateslot(struct ifnet *ifp) 2603 { 2604 struct ath_softc *sc = ifp->if_softc; 2605 struct ieee80211com *ic = ifp->if_l2com; 2606 2607 /* 2608 * When not coordinating the BSS, change the hardware 2609 * immediately. For other operation we defer the change 2610 * until beacon updates have propagated to the stations. 2611 */ 2612 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2613 ic->ic_opmode == IEEE80211_M_MBSS) 2614 sc->sc_updateslot = UPDATE; 2615 else 2616 ath_setslottime(sc); 2617 } 2618 2619 /* 2620 * Setup a h/w transmit queue for beacons. 2621 */ 2622 static int 2623 ath_beaconq_setup(struct ath_hal *ah) 2624 { 2625 HAL_TXQ_INFO qi; 2626 2627 memset(&qi, 0, sizeof(qi)); 2628 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2629 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2630 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2631 /* NB: for dynamic turbo, don't enable any other interrupts */ 2632 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2633 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2634 } 2635 2636 /* 2637 * Setup the transmit queue parameters for the beacon queue. 2638 */ 2639 static int 2640 ath_beaconq_config(struct ath_softc *sc) 2641 { 2642 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2643 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2644 struct ath_hal *ah = sc->sc_ah; 2645 HAL_TXQ_INFO qi; 2646 2647 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2648 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2649 ic->ic_opmode == IEEE80211_M_MBSS) { 2650 /* 2651 * Always burst out beacon and CAB traffic. 2652 */ 2653 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2654 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2655 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2656 } else { 2657 struct wmeParams *wmep = 2658 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2659 /* 2660 * Adhoc mode; important thing is to use 2x cwmin. 2661 */ 2662 qi.tqi_aifs = wmep->wmep_aifsn; 2663 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2664 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2665 } 2666 2667 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2668 device_printf(sc->sc_dev, "unable to update parameters for " 2669 "beacon hardware queue!\n"); 2670 return 0; 2671 } else { 2672 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2673 return 1; 2674 } 2675 #undef ATH_EXPONENT_TO_VALUE 2676 } 2677 2678 /* 2679 * Allocate and setup an initial beacon frame. 2680 */ 2681 static int 2682 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2683 { 2684 struct ieee80211vap *vap = ni->ni_vap; 2685 struct ath_vap *avp = ATH_VAP(vap); 2686 struct ath_buf *bf; 2687 struct mbuf *m; 2688 int error; 2689 2690 bf = avp->av_bcbuf; 2691 if (bf->bf_m != NULL) { 2692 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2693 m_freem(bf->bf_m); 2694 bf->bf_m = NULL; 2695 } 2696 if (bf->bf_node != NULL) { 2697 ieee80211_free_node(bf->bf_node); 2698 bf->bf_node = NULL; 2699 } 2700 2701 /* 2702 * NB: the beacon data buffer must be 32-bit aligned; 2703 * we assume the mbuf routines will return us something 2704 * with this alignment (perhaps should assert). 2705 */ 2706 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2707 if (m == NULL) { 2708 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2709 sc->sc_stats.ast_be_nombuf++; 2710 return ENOMEM; 2711 } 2712 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2713 bf->bf_segs, &bf->bf_nseg, 2714 BUS_DMA_NOWAIT); 2715 if (error != 0) { 2716 device_printf(sc->sc_dev, 2717 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2718 __func__, error); 2719 m_freem(m); 2720 return error; 2721 } 2722 2723 /* 2724 * Calculate a TSF adjustment factor required for staggered 2725 * beacons. Note that we assume the format of the beacon 2726 * frame leaves the tstamp field immediately following the 2727 * header. 2728 */ 2729 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2730 uint64_t tsfadjust; 2731 struct ieee80211_frame *wh; 2732 2733 /* 2734 * The beacon interval is in TU's; the TSF is in usecs. 2735 * We figure out how many TU's to add to align the timestamp 2736 * then convert to TSF units and handle byte swapping before 2737 * inserting it in the frame. The hardware will then add this 2738 * each time a beacon frame is sent. Note that we align vap's 2739 * 1..N and leave vap 0 untouched. This means vap 0 has a 2740 * timestamp in one beacon interval while the others get a 2741 * timstamp aligned to the next interval. 2742 */ 2743 tsfadjust = ni->ni_intval * 2744 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2745 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2746 2747 DPRINTF(sc, ATH_DEBUG_BEACON, 2748 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2749 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2750 avp->av_bslot, ni->ni_intval, 2751 (long long unsigned) le64toh(tsfadjust)); 2752 2753 wh = mtod(m, struct ieee80211_frame *); 2754 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2755 } 2756 bf->bf_m = m; 2757 bf->bf_node = ieee80211_ref_node(ni); 2758 2759 return 0; 2760 } 2761 2762 /* 2763 * Setup the beacon frame for transmit. 2764 */ 2765 static void 2766 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2767 { 2768 #define USE_SHPREAMBLE(_ic) \ 2769 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2770 == IEEE80211_F_SHPREAMBLE) 2771 struct ieee80211_node *ni = bf->bf_node; 2772 struct ieee80211com *ic = ni->ni_ic; 2773 struct mbuf *m = bf->bf_m; 2774 struct ath_hal *ah = sc->sc_ah; 2775 struct ath_desc *ds; 2776 int flags, antenna; 2777 const HAL_RATE_TABLE *rt; 2778 u_int8_t rix, rate; 2779 2780 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2781 __func__, m, m->m_len); 2782 2783 /* setup descriptors */ 2784 ds = bf->bf_desc; 2785 bf->bf_last = bf; 2786 bf->bf_lastds = ds; 2787 2788 flags = HAL_TXDESC_NOACK; 2789 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2790 ds->ds_link = bf->bf_daddr; /* self-linked */ 2791 flags |= HAL_TXDESC_VEOL; 2792 /* 2793 * Let hardware handle antenna switching. 2794 */ 2795 antenna = sc->sc_txantenna; 2796 } else { 2797 ds->ds_link = 0; 2798 /* 2799 * Switch antenna every 4 beacons. 2800 * XXX assumes two antenna 2801 */ 2802 if (sc->sc_txantenna != 0) 2803 antenna = sc->sc_txantenna; 2804 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2805 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2806 else 2807 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2808 } 2809 2810 KASSERT(bf->bf_nseg == 1, 2811 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2812 ds->ds_data = bf->bf_segs[0].ds_addr; 2813 /* 2814 * Calculate rate code. 2815 * XXX everything at min xmit rate 2816 */ 2817 rix = 0; 2818 rt = sc->sc_currates; 2819 rate = rt->info[rix].rateCode; 2820 if (USE_SHPREAMBLE(ic)) 2821 rate |= rt->info[rix].shortPreamble; 2822 ath_hal_setuptxdesc(ah, ds 2823 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2824 , sizeof(struct ieee80211_frame)/* header length */ 2825 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2826 , ni->ni_txpower /* txpower XXX */ 2827 , rate, 1 /* series 0 rate/tries */ 2828 , HAL_TXKEYIX_INVALID /* no encryption */ 2829 , antenna /* antenna mode */ 2830 , flags /* no ack, veol for beacons */ 2831 , 0 /* rts/cts rate */ 2832 , 0 /* rts/cts duration */ 2833 ); 2834 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2835 ath_hal_filltxdesc(ah, ds 2836 , roundup(m->m_len, 4) /* buffer length */ 2837 , AH_TRUE /* first segment */ 2838 , AH_TRUE /* last segment */ 2839 , ds /* first descriptor */ 2840 ); 2841 #if 0 2842 ath_desc_swap(ds); 2843 #endif 2844 #undef USE_SHPREAMBLE 2845 } 2846 2847 static void 2848 ath_beacon_update(struct ieee80211vap *vap, int item) 2849 { 2850 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2851 2852 setbit(bo->bo_flags, item); 2853 } 2854 2855 /* 2856 * Append the contents of src to dst; both queues 2857 * are assumed to be locked. 2858 */ 2859 static void 2860 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2861 { 2862 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2863 dst->axq_link = src->axq_link; 2864 src->axq_link = NULL; 2865 dst->axq_depth += src->axq_depth; 2866 dst->axq_aggr_depth += src->axq_aggr_depth; 2867 src->axq_depth = 0; 2868 src->axq_aggr_depth = 0; 2869 } 2870 2871 /* 2872 * Transmit a beacon frame at SWBA. Dynamic updates to the 2873 * frame contents are done as needed and the slot time is 2874 * also adjusted based on current state. 2875 */ 2876 static void 2877 ath_beacon_proc(void *arg, int pending) 2878 { 2879 struct ath_softc *sc = arg; 2880 struct ath_hal *ah = sc->sc_ah; 2881 struct ieee80211vap *vap; 2882 struct ath_buf *bf; 2883 int slot, otherant; 2884 uint32_t bfaddr; 2885 2886 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2887 __func__, pending); 2888 /* 2889 * Check if the previous beacon has gone out. If 2890 * not don't try to post another, skip this period 2891 * and wait for the next. Missed beacons indicate 2892 * a problem and should not occur. If we miss too 2893 * many consecutive beacons reset the device. 2894 */ 2895 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2896 sc->sc_bmisscount++; 2897 sc->sc_stats.ast_be_missed++; 2898 DPRINTF(sc, ATH_DEBUG_BEACON, 2899 "%s: missed %u consecutive beacons\n", 2900 __func__, sc->sc_bmisscount); 2901 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2902 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2903 return; 2904 } 2905 if (sc->sc_bmisscount != 0) { 2906 DPRINTF(sc, ATH_DEBUG_BEACON, 2907 "%s: resume beacon xmit after %u misses\n", 2908 __func__, sc->sc_bmisscount); 2909 sc->sc_bmisscount = 0; 2910 } 2911 2912 if (sc->sc_stagbeacons) { /* staggered beacons */ 2913 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2914 uint32_t tsftu; 2915 2916 tsftu = ath_hal_gettsf32(ah) >> 10; 2917 /* XXX lintval */ 2918 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2919 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2920 bfaddr = 0; 2921 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2922 bf = ath_beacon_generate(sc, vap); 2923 if (bf != NULL) 2924 bfaddr = bf->bf_daddr; 2925 } 2926 } else { /* burst'd beacons */ 2927 uint32_t *bflink = &bfaddr; 2928 2929 for (slot = 0; slot < ATH_BCBUF; slot++) { 2930 vap = sc->sc_bslot[slot]; 2931 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2932 bf = ath_beacon_generate(sc, vap); 2933 if (bf != NULL) { 2934 *bflink = bf->bf_daddr; 2935 bflink = &bf->bf_desc->ds_link; 2936 } 2937 } 2938 } 2939 *bflink = 0; /* terminate list */ 2940 } 2941 2942 /* 2943 * Handle slot time change when a non-ERP station joins/leaves 2944 * an 11g network. The 802.11 layer notifies us via callback, 2945 * we mark updateslot, then wait one beacon before effecting 2946 * the change. This gives associated stations at least one 2947 * beacon interval to note the state change. 2948 */ 2949 /* XXX locking */ 2950 if (sc->sc_updateslot == UPDATE) { 2951 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2952 sc->sc_slotupdate = slot; 2953 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 2954 ath_setslottime(sc); /* commit change to h/w */ 2955 2956 /* 2957 * Check recent per-antenna transmit statistics and flip 2958 * the default antenna if noticeably more frames went out 2959 * on the non-default antenna. 2960 * XXX assumes 2 anntenae 2961 */ 2962 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 2963 otherant = sc->sc_defant & 1 ? 2 : 1; 2964 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2965 ath_setdefantenna(sc, otherant); 2966 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2967 } 2968 2969 if (bfaddr != 0) { 2970 /* 2971 * Stop any current dma and put the new frame on the queue. 2972 * This should never fail since we check above that no frames 2973 * are still pending on the queue. 2974 */ 2975 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2976 DPRINTF(sc, ATH_DEBUG_ANY, 2977 "%s: beacon queue %u did not stop?\n", 2978 __func__, sc->sc_bhalq); 2979 } 2980 /* NB: cabq traffic should already be queued and primed */ 2981 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 2982 ath_hal_txstart(ah, sc->sc_bhalq); 2983 2984 sc->sc_stats.ast_be_xmit++; 2985 } 2986 } 2987 2988 static struct ath_buf * 2989 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 2990 { 2991 struct ath_vap *avp = ATH_VAP(vap); 2992 struct ath_txq *cabq = sc->sc_cabq; 2993 struct ath_buf *bf; 2994 struct mbuf *m; 2995 int nmcastq, error; 2996 2997 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2998 ("not running, state %d", vap->iv_state)); 2999 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3000 3001 /* 3002 * Update dynamic beacon contents. If this returns 3003 * non-zero then we need to remap the memory because 3004 * the beacon frame changed size (probably because 3005 * of the TIM bitmap). 3006 */ 3007 bf = avp->av_bcbuf; 3008 m = bf->bf_m; 3009 nmcastq = avp->av_mcastq.axq_depth; 3010 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 3011 /* XXX too conservative? */ 3012 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3013 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3014 bf->bf_segs, &bf->bf_nseg, 3015 BUS_DMA_NOWAIT); 3016 if (error != 0) { 3017 if_printf(vap->iv_ifp, 3018 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3019 __func__, error); 3020 return NULL; 3021 } 3022 } 3023 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3024 DPRINTF(sc, ATH_DEBUG_BEACON, 3025 "%s: cabq did not drain, mcastq %u cabq %u\n", 3026 __func__, nmcastq, cabq->axq_depth); 3027 sc->sc_stats.ast_cabq_busy++; 3028 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3029 /* 3030 * CABQ traffic from a previous vap is still pending. 3031 * We must drain the q before this beacon frame goes 3032 * out as otherwise this vap's stations will get cab 3033 * frames from a different vap. 3034 * XXX could be slow causing us to miss DBA 3035 */ 3036 ath_tx_draintxq(sc, cabq); 3037 } 3038 } 3039 ath_beacon_setup(sc, bf); 3040 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3041 3042 /* 3043 * Enable the CAB queue before the beacon queue to 3044 * insure cab frames are triggered by this beacon. 3045 */ 3046 if (avp->av_boff.bo_tim[4] & 1) { 3047 struct ath_hal *ah = sc->sc_ah; 3048 3049 /* NB: only at DTIM */ 3050 ATH_TXQ_LOCK(cabq); 3051 ATH_TXQ_LOCK(&avp->av_mcastq); 3052 if (nmcastq) { 3053 struct ath_buf *bfm; 3054 3055 /* 3056 * Move frames from the s/w mcast q to the h/w cab q. 3057 * XXX MORE_DATA bit 3058 */ 3059 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 3060 if (cabq->axq_link != NULL) { 3061 *cabq->axq_link = bfm->bf_daddr; 3062 } else 3063 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3064 bfm->bf_daddr); 3065 ath_txqmove(cabq, &avp->av_mcastq); 3066 3067 sc->sc_stats.ast_cabq_xmit += nmcastq; 3068 } 3069 /* NB: gated by beacon so safe to start here */ 3070 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3071 ath_hal_txstart(ah, cabq->axq_qnum); 3072 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3073 ATH_TXQ_UNLOCK(cabq); 3074 } 3075 return bf; 3076 } 3077 3078 static void 3079 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3080 { 3081 struct ath_vap *avp = ATH_VAP(vap); 3082 struct ath_hal *ah = sc->sc_ah; 3083 struct ath_buf *bf; 3084 struct mbuf *m; 3085 int error; 3086 3087 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3088 3089 /* 3090 * Update dynamic beacon contents. If this returns 3091 * non-zero then we need to remap the memory because 3092 * the beacon frame changed size (probably because 3093 * of the TIM bitmap). 3094 */ 3095 bf = avp->av_bcbuf; 3096 m = bf->bf_m; 3097 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3098 /* XXX too conservative? */ 3099 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3100 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3101 bf->bf_segs, &bf->bf_nseg, 3102 BUS_DMA_NOWAIT); 3103 if (error != 0) { 3104 if_printf(vap->iv_ifp, 3105 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3106 __func__, error); 3107 return; 3108 } 3109 } 3110 ath_beacon_setup(sc, bf); 3111 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3112 3113 /* NB: caller is known to have already stopped tx dma */ 3114 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3115 ath_hal_txstart(ah, sc->sc_bhalq); 3116 } 3117 3118 /* 3119 * Reset the hardware after detecting beacons have stopped. 3120 */ 3121 static void 3122 ath_bstuck_proc(void *arg, int pending) 3123 { 3124 struct ath_softc *sc = arg; 3125 struct ifnet *ifp = sc->sc_ifp; 3126 uint32_t hangs = 0; 3127 3128 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3129 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3130 3131 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3132 sc->sc_bmisscount); 3133 sc->sc_stats.ast_bstuck++; 3134 /* 3135 * This assumes that there's no simultaneous channel mode change 3136 * occuring. 3137 */ 3138 ath_reset(ifp, ATH_RESET_NOLOSS); 3139 } 3140 3141 /* 3142 * Reclaim beacon resources and return buffer to the pool. 3143 */ 3144 static void 3145 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3146 { 3147 3148 if (bf->bf_m != NULL) { 3149 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3150 m_freem(bf->bf_m); 3151 bf->bf_m = NULL; 3152 } 3153 if (bf->bf_node != NULL) { 3154 ieee80211_free_node(bf->bf_node); 3155 bf->bf_node = NULL; 3156 } 3157 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3158 } 3159 3160 /* 3161 * Reclaim beacon resources. 3162 */ 3163 static void 3164 ath_beacon_free(struct ath_softc *sc) 3165 { 3166 struct ath_buf *bf; 3167 3168 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3169 if (bf->bf_m != NULL) { 3170 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3171 m_freem(bf->bf_m); 3172 bf->bf_m = NULL; 3173 } 3174 if (bf->bf_node != NULL) { 3175 ieee80211_free_node(bf->bf_node); 3176 bf->bf_node = NULL; 3177 } 3178 } 3179 } 3180 3181 /* 3182 * Configure the beacon and sleep timers. 3183 * 3184 * When operating as an AP this resets the TSF and sets 3185 * up the hardware to notify us when we need to issue beacons. 3186 * 3187 * When operating in station mode this sets up the beacon 3188 * timers according to the timestamp of the last received 3189 * beacon and the current TSF, configures PCF and DTIM 3190 * handling, programs the sleep registers so the hardware 3191 * will wakeup in time to receive beacons, and configures 3192 * the beacon miss handling so we'll receive a BMISS 3193 * interrupt when we stop seeing beacons from the AP 3194 * we've associated with. 3195 */ 3196 static void 3197 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3198 { 3199 #define TSF_TO_TU(_h,_l) \ 3200 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3201 #define FUDGE 2 3202 struct ath_hal *ah = sc->sc_ah; 3203 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3204 struct ieee80211_node *ni; 3205 u_int32_t nexttbtt, intval, tsftu; 3206 u_int64_t tsf; 3207 3208 if (vap == NULL) 3209 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3210 ni = vap->iv_bss; 3211 3212 /* extract tstamp from last beacon and convert to TU */ 3213 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3214 LE_READ_4(ni->ni_tstamp.data)); 3215 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3216 ic->ic_opmode == IEEE80211_M_MBSS) { 3217 /* 3218 * For multi-bss ap/mesh support beacons are either staggered 3219 * evenly over N slots or burst together. For the former 3220 * arrange for the SWBA to be delivered for each slot. 3221 * Slots that are not occupied will generate nothing. 3222 */ 3223 /* NB: the beacon interval is kept internally in TU's */ 3224 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3225 if (sc->sc_stagbeacons) 3226 intval /= ATH_BCBUF; 3227 } else { 3228 /* NB: the beacon interval is kept internally in TU's */ 3229 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3230 } 3231 if (nexttbtt == 0) /* e.g. for ap mode */ 3232 nexttbtt = intval; 3233 else if (intval) /* NB: can be 0 for monitor mode */ 3234 nexttbtt = roundup(nexttbtt, intval); 3235 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3236 __func__, nexttbtt, intval, ni->ni_intval); 3237 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3238 HAL_BEACON_STATE bs; 3239 int dtimperiod, dtimcount; 3240 int cfpperiod, cfpcount; 3241 3242 /* 3243 * Setup dtim and cfp parameters according to 3244 * last beacon we received (which may be none). 3245 */ 3246 dtimperiod = ni->ni_dtim_period; 3247 if (dtimperiod <= 0) /* NB: 0 if not known */ 3248 dtimperiod = 1; 3249 dtimcount = ni->ni_dtim_count; 3250 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3251 dtimcount = 0; /* XXX? */ 3252 cfpperiod = 1; /* NB: no PCF support yet */ 3253 cfpcount = 0; 3254 /* 3255 * Pull nexttbtt forward to reflect the current 3256 * TSF and calculate dtim+cfp state for the result. 3257 */ 3258 tsf = ath_hal_gettsf64(ah); 3259 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3260 do { 3261 nexttbtt += intval; 3262 if (--dtimcount < 0) { 3263 dtimcount = dtimperiod - 1; 3264 if (--cfpcount < 0) 3265 cfpcount = cfpperiod - 1; 3266 } 3267 } while (nexttbtt < tsftu); 3268 memset(&bs, 0, sizeof(bs)); 3269 bs.bs_intval = intval; 3270 bs.bs_nexttbtt = nexttbtt; 3271 bs.bs_dtimperiod = dtimperiod*intval; 3272 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3273 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3274 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3275 bs.bs_cfpmaxduration = 0; 3276 #if 0 3277 /* 3278 * The 802.11 layer records the offset to the DTIM 3279 * bitmap while receiving beacons; use it here to 3280 * enable h/w detection of our AID being marked in 3281 * the bitmap vector (to indicate frames for us are 3282 * pending at the AP). 3283 * XXX do DTIM handling in s/w to WAR old h/w bugs 3284 * XXX enable based on h/w rev for newer chips 3285 */ 3286 bs.bs_timoffset = ni->ni_timoff; 3287 #endif 3288 /* 3289 * Calculate the number of consecutive beacons to miss 3290 * before taking a BMISS interrupt. 3291 * Note that we clamp the result to at most 10 beacons. 3292 */ 3293 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3294 if (bs.bs_bmissthreshold > 10) 3295 bs.bs_bmissthreshold = 10; 3296 else if (bs.bs_bmissthreshold <= 0) 3297 bs.bs_bmissthreshold = 1; 3298 3299 /* 3300 * Calculate sleep duration. The configuration is 3301 * given in ms. We insure a multiple of the beacon 3302 * period is used. Also, if the sleep duration is 3303 * greater than the DTIM period then it makes senses 3304 * to make it a multiple of that. 3305 * 3306 * XXX fixed at 100ms 3307 */ 3308 bs.bs_sleepduration = 3309 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3310 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3311 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3312 3313 DPRINTF(sc, ATH_DEBUG_BEACON, 3314 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3315 , __func__ 3316 , tsf, tsftu 3317 , bs.bs_intval 3318 , bs.bs_nexttbtt 3319 , bs.bs_dtimperiod 3320 , bs.bs_nextdtim 3321 , bs.bs_bmissthreshold 3322 , bs.bs_sleepduration 3323 , bs.bs_cfpperiod 3324 , bs.bs_cfpmaxduration 3325 , bs.bs_cfpnext 3326 , bs.bs_timoffset 3327 ); 3328 ath_hal_intrset(ah, 0); 3329 ath_hal_beacontimers(ah, &bs); 3330 sc->sc_imask |= HAL_INT_BMISS; 3331 ath_hal_intrset(ah, sc->sc_imask); 3332 } else { 3333 ath_hal_intrset(ah, 0); 3334 if (nexttbtt == intval) 3335 intval |= HAL_BEACON_RESET_TSF; 3336 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3337 /* 3338 * In IBSS mode enable the beacon timers but only 3339 * enable SWBA interrupts if we need to manually 3340 * prepare beacon frames. Otherwise we use a 3341 * self-linked tx descriptor and let the hardware 3342 * deal with things. 3343 */ 3344 intval |= HAL_BEACON_ENA; 3345 if (!sc->sc_hasveol) 3346 sc->sc_imask |= HAL_INT_SWBA; 3347 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3348 /* 3349 * Pull nexttbtt forward to reflect 3350 * the current TSF. 3351 */ 3352 tsf = ath_hal_gettsf64(ah); 3353 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3354 do { 3355 nexttbtt += intval; 3356 } while (nexttbtt < tsftu); 3357 } 3358 ath_beaconq_config(sc); 3359 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3360 ic->ic_opmode == IEEE80211_M_MBSS) { 3361 /* 3362 * In AP/mesh mode we enable the beacon timers 3363 * and SWBA interrupts to prepare beacon frames. 3364 */ 3365 intval |= HAL_BEACON_ENA; 3366 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3367 ath_beaconq_config(sc); 3368 } 3369 ath_hal_beaconinit(ah, nexttbtt, intval); 3370 sc->sc_bmisscount = 0; 3371 ath_hal_intrset(ah, sc->sc_imask); 3372 /* 3373 * When using a self-linked beacon descriptor in 3374 * ibss mode load it once here. 3375 */ 3376 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3377 ath_beacon_start_adhoc(sc, vap); 3378 } 3379 sc->sc_syncbeacon = 0; 3380 #undef FUDGE 3381 #undef TSF_TO_TU 3382 } 3383 3384 static void 3385 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3386 { 3387 bus_addr_t *paddr = (bus_addr_t*) arg; 3388 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3389 *paddr = segs->ds_addr; 3390 } 3391 3392 static int 3393 ath_descdma_setup(struct ath_softc *sc, 3394 struct ath_descdma *dd, ath_bufhead *head, 3395 const char *name, int nbuf, int ndesc) 3396 { 3397 #define DS2PHYS(_dd, _ds) \ 3398 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3399 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3400 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3401 struct ifnet *ifp = sc->sc_ifp; 3402 uint8_t *ds; 3403 struct ath_buf *bf; 3404 int i, bsize, error; 3405 int desc_len; 3406 3407 desc_len = sizeof(struct ath_desc); 3408 3409 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3410 __func__, name, nbuf, ndesc); 3411 3412 dd->dd_name = name; 3413 dd->dd_desc_len = desc_len * nbuf * ndesc; 3414 3415 /* 3416 * Merlin work-around: 3417 * Descriptors that cross the 4KB boundary can't be used. 3418 * Assume one skipped descriptor per 4KB page. 3419 */ 3420 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3421 int numdescpage = 4096 / (desc_len * ndesc); 3422 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3423 } 3424 3425 /* 3426 * Setup DMA descriptor area. 3427 */ 3428 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3429 PAGE_SIZE, 0, /* alignment, bounds */ 3430 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3431 BUS_SPACE_MAXADDR, /* highaddr */ 3432 NULL, NULL, /* filter, filterarg */ 3433 dd->dd_desc_len, /* maxsize */ 3434 1, /* nsegments */ 3435 dd->dd_desc_len, /* maxsegsize */ 3436 BUS_DMA_ALLOCNOW, /* flags */ 3437 NULL, /* lockfunc */ 3438 NULL, /* lockarg */ 3439 &dd->dd_dmat); 3440 if (error != 0) { 3441 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3442 return error; 3443 } 3444 3445 /* allocate descriptors */ 3446 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3447 if (error != 0) { 3448 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3449 "error %u\n", dd->dd_name, error); 3450 goto fail0; 3451 } 3452 3453 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3454 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3455 &dd->dd_dmamap); 3456 if (error != 0) { 3457 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3458 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3459 goto fail1; 3460 } 3461 3462 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3463 dd->dd_desc, dd->dd_desc_len, 3464 ath_load_cb, &dd->dd_desc_paddr, 3465 BUS_DMA_NOWAIT); 3466 if (error != 0) { 3467 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3468 dd->dd_name, error); 3469 goto fail2; 3470 } 3471 3472 ds = (uint8_t *) dd->dd_desc; 3473 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3474 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3475 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3476 3477 /* allocate rx buffers */ 3478 bsize = sizeof(struct ath_buf) * nbuf; 3479 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3480 if (bf == NULL) { 3481 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3482 dd->dd_name, bsize); 3483 goto fail3; 3484 } 3485 dd->dd_bufptr = bf; 3486 3487 TAILQ_INIT(head); 3488 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3489 bf->bf_desc = (struct ath_desc *) ds; 3490 bf->bf_daddr = DS2PHYS(dd, ds); 3491 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3492 /* 3493 * Merlin WAR: Skip descriptor addresses which 3494 * cause 4KB boundary crossing along any point 3495 * in the descriptor. 3496 */ 3497 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3498 desc_len * ndesc)) { 3499 /* Start at the next page */ 3500 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3501 bf->bf_desc = (struct ath_desc *) ds; 3502 bf->bf_daddr = DS2PHYS(dd, ds); 3503 } 3504 } 3505 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3506 &bf->bf_dmamap); 3507 if (error != 0) { 3508 if_printf(ifp, "unable to create dmamap for %s " 3509 "buffer %u, error %u\n", dd->dd_name, i, error); 3510 ath_descdma_cleanup(sc, dd, head); 3511 return error; 3512 } 3513 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3514 TAILQ_INSERT_TAIL(head, bf, bf_list); 3515 } 3516 return 0; 3517 fail3: 3518 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3519 fail2: 3520 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3521 fail1: 3522 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3523 fail0: 3524 bus_dma_tag_destroy(dd->dd_dmat); 3525 memset(dd, 0, sizeof(*dd)); 3526 return error; 3527 #undef DS2PHYS 3528 #undef ATH_DESC_4KB_BOUND_CHECK 3529 } 3530 3531 static void 3532 ath_descdma_cleanup(struct ath_softc *sc, 3533 struct ath_descdma *dd, ath_bufhead *head) 3534 { 3535 struct ath_buf *bf; 3536 struct ieee80211_node *ni; 3537 3538 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3539 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3540 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3541 bus_dma_tag_destroy(dd->dd_dmat); 3542 3543 TAILQ_FOREACH(bf, head, bf_list) { 3544 if (bf->bf_m) { 3545 m_freem(bf->bf_m); 3546 bf->bf_m = NULL; 3547 } 3548 if (bf->bf_dmamap != NULL) { 3549 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3550 bf->bf_dmamap = NULL; 3551 } 3552 ni = bf->bf_node; 3553 bf->bf_node = NULL; 3554 if (ni != NULL) { 3555 /* 3556 * Reclaim node reference. 3557 */ 3558 ieee80211_free_node(ni); 3559 } 3560 } 3561 3562 TAILQ_INIT(head); 3563 free(dd->dd_bufptr, M_ATHDEV); 3564 memset(dd, 0, sizeof(*dd)); 3565 } 3566 3567 static int 3568 ath_desc_alloc(struct ath_softc *sc) 3569 { 3570 int error; 3571 3572 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3573 "rx", ath_rxbuf, 1); 3574 if (error != 0) 3575 return error; 3576 3577 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3578 "tx", ath_txbuf, ATH_TXDESC); 3579 if (error != 0) { 3580 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3581 return error; 3582 } 3583 3584 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3585 "beacon", ATH_BCBUF, 1); 3586 if (error != 0) { 3587 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3588 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3589 return error; 3590 } 3591 return 0; 3592 } 3593 3594 static void 3595 ath_desc_free(struct ath_softc *sc) 3596 { 3597 3598 if (sc->sc_bdma.dd_desc_len != 0) 3599 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3600 if (sc->sc_txdma.dd_desc_len != 0) 3601 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3602 if (sc->sc_rxdma.dd_desc_len != 0) 3603 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3604 } 3605 3606 static struct ieee80211_node * 3607 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3608 { 3609 struct ieee80211com *ic = vap->iv_ic; 3610 struct ath_softc *sc = ic->ic_ifp->if_softc; 3611 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3612 struct ath_node *an; 3613 3614 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3615 if (an == NULL) { 3616 /* XXX stat+msg */ 3617 return NULL; 3618 } 3619 ath_rate_node_init(sc, an); 3620 3621 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3622 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3623 device_get_nameunit(sc->sc_dev), an); 3624 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3625 3626 /* XXX setup ath_tid */ 3627 ath_tx_tid_init(sc, an); 3628 3629 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3630 return &an->an_node; 3631 } 3632 3633 static void 3634 ath_node_cleanup(struct ieee80211_node *ni) 3635 { 3636 struct ieee80211com *ic = ni->ni_ic; 3637 struct ath_softc *sc = ic->ic_ifp->if_softc; 3638 3639 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3640 ath_tx_node_flush(sc, ATH_NODE(ni)); 3641 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3642 sc->sc_node_cleanup(ni); 3643 } 3644 3645 static void 3646 ath_node_free(struct ieee80211_node *ni) 3647 { 3648 struct ieee80211com *ic = ni->ni_ic; 3649 struct ath_softc *sc = ic->ic_ifp->if_softc; 3650 3651 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3652 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3653 sc->sc_node_free(ni); 3654 } 3655 3656 static void 3657 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3658 { 3659 struct ieee80211com *ic = ni->ni_ic; 3660 struct ath_softc *sc = ic->ic_ifp->if_softc; 3661 struct ath_hal *ah = sc->sc_ah; 3662 3663 *rssi = ic->ic_node_getrssi(ni); 3664 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3665 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3666 else 3667 *noise = -95; /* nominally correct */ 3668 } 3669 3670 static int 3671 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3672 { 3673 struct ath_hal *ah = sc->sc_ah; 3674 int error; 3675 struct mbuf *m; 3676 struct ath_desc *ds; 3677 3678 m = bf->bf_m; 3679 if (m == NULL) { 3680 /* 3681 * NB: by assigning a page to the rx dma buffer we 3682 * implicitly satisfy the Atheros requirement that 3683 * this buffer be cache-line-aligned and sized to be 3684 * multiple of the cache line size. Not doing this 3685 * causes weird stuff to happen (for the 5210 at least). 3686 */ 3687 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3688 if (m == NULL) { 3689 DPRINTF(sc, ATH_DEBUG_ANY, 3690 "%s: no mbuf/cluster\n", __func__); 3691 sc->sc_stats.ast_rx_nombuf++; 3692 return ENOMEM; 3693 } 3694 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3695 3696 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3697 bf->bf_dmamap, m, 3698 bf->bf_segs, &bf->bf_nseg, 3699 BUS_DMA_NOWAIT); 3700 if (error != 0) { 3701 DPRINTF(sc, ATH_DEBUG_ANY, 3702 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3703 __func__, error); 3704 sc->sc_stats.ast_rx_busdma++; 3705 m_freem(m); 3706 return error; 3707 } 3708 KASSERT(bf->bf_nseg == 1, 3709 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3710 bf->bf_m = m; 3711 } 3712 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3713 3714 /* 3715 * Setup descriptors. For receive we always terminate 3716 * the descriptor list with a self-linked entry so we'll 3717 * not get overrun under high load (as can happen with a 3718 * 5212 when ANI processing enables PHY error frames). 3719 * 3720 * To insure the last descriptor is self-linked we create 3721 * each descriptor as self-linked and add it to the end. As 3722 * each additional descriptor is added the previous self-linked 3723 * entry is ``fixed'' naturally. This should be safe even 3724 * if DMA is happening. When processing RX interrupts we 3725 * never remove/process the last, self-linked, entry on the 3726 * descriptor list. This insures the hardware always has 3727 * someplace to write a new frame. 3728 */ 3729 /* 3730 * 11N: we can no longer afford to self link the last descriptor. 3731 * MAC acknowledges BA status as long as it copies frames to host 3732 * buffer (or rx fifo). This can incorrectly acknowledge packets 3733 * to a sender if last desc is self-linked. 3734 */ 3735 ds = bf->bf_desc; 3736 if (sc->sc_rxslink) 3737 ds->ds_link = bf->bf_daddr; /* link to self */ 3738 else 3739 ds->ds_link = 0; /* terminate the list */ 3740 ds->ds_data = bf->bf_segs[0].ds_addr; 3741 ath_hal_setuprxdesc(ah, ds 3742 , m->m_len /* buffer size */ 3743 , 0 3744 ); 3745 3746 if (sc->sc_rxlink != NULL) 3747 *sc->sc_rxlink = bf->bf_daddr; 3748 sc->sc_rxlink = &ds->ds_link; 3749 return 0; 3750 } 3751 3752 /* 3753 * Extend 15-bit time stamp from rx descriptor to 3754 * a full 64-bit TSF using the specified TSF. 3755 */ 3756 static __inline u_int64_t 3757 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3758 { 3759 if ((tsf & 0x7fff) < rstamp) 3760 tsf -= 0x8000; 3761 3762 return ((tsf &~ 0x7fff) | rstamp); 3763 } 3764 3765 /* 3766 * Extend 32-bit time stamp from rx descriptor to 3767 * a full 64-bit TSF using the specified TSF. 3768 */ 3769 static __inline u_int64_t 3770 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3771 { 3772 u_int32_t tsf_low = tsf & 0xffffffff; 3773 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3774 3775 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3776 tsf64 -= 0x100000000ULL; 3777 3778 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3779 tsf64 += 0x100000000ULL; 3780 3781 return tsf64; 3782 } 3783 3784 /* 3785 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3786 * Earlier hardware versions only wrote the low 15 bits of the 3787 * TSF into the RX descriptor; later versions (AR5416 and up) 3788 * include the 32 bit TSF value. 3789 */ 3790 static __inline u_int64_t 3791 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3792 { 3793 if (sc->sc_rxtsf32) 3794 return ath_extend_tsf32(rstamp, tsf); 3795 else 3796 return ath_extend_tsf15(rstamp, tsf); 3797 } 3798 3799 /* 3800 * Intercept management frames to collect beacon rssi data 3801 * and to do ibss merges. 3802 */ 3803 static void 3804 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3805 int subtype, int rssi, int nf) 3806 { 3807 struct ieee80211vap *vap = ni->ni_vap; 3808 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3809 3810 /* 3811 * Call up first so subsequent work can use information 3812 * potentially stored in the node (e.g. for ibss merge). 3813 */ 3814 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3815 switch (subtype) { 3816 case IEEE80211_FC0_SUBTYPE_BEACON: 3817 /* update rssi statistics for use by the hal */ 3818 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3819 if (sc->sc_syncbeacon && 3820 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3821 /* 3822 * Resync beacon timers using the tsf of the beacon 3823 * frame we just received. 3824 */ 3825 ath_beacon_config(sc, vap); 3826 } 3827 /* fall thru... */ 3828 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3829 if (vap->iv_opmode == IEEE80211_M_IBSS && 3830 vap->iv_state == IEEE80211_S_RUN) { 3831 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3832 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3833 ath_hal_gettsf64(sc->sc_ah)); 3834 /* 3835 * Handle ibss merge as needed; check the tsf on the 3836 * frame before attempting the merge. The 802.11 spec 3837 * says the station should change it's bssid to match 3838 * the oldest station with the same ssid, where oldest 3839 * is determined by the tsf. Note that hardware 3840 * reconfiguration happens through callback to 3841 * ath_newstate as the state machine will go from 3842 * RUN -> RUN when this happens. 3843 */ 3844 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3845 DPRINTF(sc, ATH_DEBUG_STATE, 3846 "ibss merge, rstamp %u tsf %ju " 3847 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3848 (uintmax_t)ni->ni_tstamp.tsf); 3849 (void) ieee80211_ibss_merge(ni); 3850 } 3851 } 3852 break; 3853 } 3854 } 3855 3856 /* 3857 * Set the default antenna. 3858 */ 3859 static void 3860 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3861 { 3862 struct ath_hal *ah = sc->sc_ah; 3863 3864 /* XXX block beacon interrupts */ 3865 ath_hal_setdefantenna(ah, antenna); 3866 if (sc->sc_defant != antenna) 3867 sc->sc_stats.ast_ant_defswitch++; 3868 sc->sc_defant = antenna; 3869 sc->sc_rxotherant = 0; 3870 } 3871 3872 static void 3873 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3874 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3875 { 3876 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3877 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3878 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3879 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3880 struct ath_softc *sc = ifp->if_softc; 3881 const HAL_RATE_TABLE *rt; 3882 uint8_t rix; 3883 3884 rt = sc->sc_currates; 3885 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3886 rix = rt->rateCodeToIndex[rs->rs_rate]; 3887 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3888 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3889 #ifdef AH_SUPPORT_AR5416 3890 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3891 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3892 struct ieee80211com *ic = ifp->if_l2com; 3893 3894 if ((rs->rs_flags & HAL_RX_2040) == 0) 3895 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3896 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3897 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3898 else 3899 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3900 if ((rs->rs_flags & HAL_RX_GI) == 0) 3901 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3902 } 3903 #endif 3904 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 3905 if (rs->rs_status & HAL_RXERR_CRC) 3906 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3907 /* XXX propagate other error flags from descriptor */ 3908 sc->sc_rx_th.wr_antnoise = nf; 3909 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 3910 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3911 #undef CHAN_HT 3912 #undef CHAN_HT20 3913 #undef CHAN_HT40U 3914 #undef CHAN_HT40D 3915 } 3916 3917 static void 3918 ath_handle_micerror(struct ieee80211com *ic, 3919 struct ieee80211_frame *wh, int keyix) 3920 { 3921 struct ieee80211_node *ni; 3922 3923 /* XXX recheck MIC to deal w/ chips that lie */ 3924 /* XXX discard MIC errors on !data frames */ 3925 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3926 if (ni != NULL) { 3927 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3928 ieee80211_free_node(ni); 3929 } 3930 } 3931 3932 /* 3933 * Only run the RX proc if it's not already running. 3934 * Since this may get run as part of the reset/flush path, 3935 * the task can't clash with an existing, running tasklet. 3936 */ 3937 static void 3938 ath_rx_tasklet(void *arg, int npending) 3939 { 3940 struct ath_softc *sc = arg; 3941 3942 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 3943 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3944 ATH_PCU_LOCK(sc); 3945 if (sc->sc_inreset_cnt > 0) { 3946 device_printf(sc->sc_dev, 3947 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3948 ATH_PCU_UNLOCK(sc); 3949 return; 3950 } 3951 ATH_PCU_UNLOCK(sc); 3952 ath_rx_proc(sc, 1); 3953 } 3954 3955 static void 3956 ath_rx_proc(struct ath_softc *sc, int resched) 3957 { 3958 #define PA2DESC(_sc, _pa) \ 3959 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3960 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3961 struct ath_buf *bf; 3962 struct ifnet *ifp = sc->sc_ifp; 3963 struct ieee80211com *ic = ifp->if_l2com; 3964 struct ath_hal *ah = sc->sc_ah; 3965 struct ath_desc *ds; 3966 struct ath_rx_status *rs; 3967 struct mbuf *m; 3968 struct ieee80211_node *ni; 3969 int len, type, ngood; 3970 HAL_STATUS status; 3971 int16_t nf; 3972 u_int64_t tsf; 3973 int npkts = 0; 3974 3975 /* XXX we must not hold the ATH_LOCK here */ 3976 ATH_UNLOCK_ASSERT(sc); 3977 ATH_PCU_UNLOCK_ASSERT(sc); 3978 3979 ATH_PCU_LOCK(sc); 3980 sc->sc_rxproc_cnt++; 3981 ATH_PCU_UNLOCK(sc); 3982 3983 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 3984 ngood = 0; 3985 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 3986 sc->sc_stats.ast_rx_noise = nf; 3987 tsf = ath_hal_gettsf64(ah); 3988 do { 3989 bf = TAILQ_FIRST(&sc->sc_rxbuf); 3990 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 3991 if_printf(ifp, "%s: no buffer!\n", __func__); 3992 break; 3993 } else if (bf == NULL) { 3994 /* 3995 * End of List: 3996 * this can happen for non-self-linked RX chains 3997 */ 3998 sc->sc_stats.ast_rx_hitqueueend++; 3999 break; 4000 } 4001 m = bf->bf_m; 4002 if (m == NULL) { /* NB: shouldn't happen */ 4003 /* 4004 * If mbuf allocation failed previously there 4005 * will be no mbuf; try again to re-populate it. 4006 */ 4007 /* XXX make debug msg */ 4008 if_printf(ifp, "%s: no mbuf!\n", __func__); 4009 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4010 goto rx_next; 4011 } 4012 ds = bf->bf_desc; 4013 if (ds->ds_link == bf->bf_daddr) { 4014 /* NB: never process the self-linked entry at the end */ 4015 sc->sc_stats.ast_rx_hitqueueend++; 4016 break; 4017 } 4018 /* XXX sync descriptor memory */ 4019 /* 4020 * Must provide the virtual address of the current 4021 * descriptor, the physical address, and the virtual 4022 * address of the next descriptor in the h/w chain. 4023 * This allows the HAL to look ahead to see if the 4024 * hardware is done with a descriptor by checking the 4025 * done bit in the following descriptor and the address 4026 * of the current descriptor the DMA engine is working 4027 * on. All this is necessary because of our use of 4028 * a self-linked list to avoid rx overruns. 4029 */ 4030 rs = &bf->bf_status.ds_rxstat; 4031 status = ath_hal_rxprocdesc(ah, ds, 4032 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4033 #ifdef ATH_DEBUG 4034 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4035 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4036 #endif 4037 if (status == HAL_EINPROGRESS) 4038 break; 4039 4040 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4041 npkts++; 4042 4043 /* These aren't specifically errors */ 4044 #ifdef AH_SUPPORT_AR5416 4045 if (rs->rs_flags & HAL_RX_GI) 4046 sc->sc_stats.ast_rx_halfgi++; 4047 if (rs->rs_flags & HAL_RX_2040) 4048 sc->sc_stats.ast_rx_2040++; 4049 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 4050 sc->sc_stats.ast_rx_pre_crc_err++; 4051 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 4052 sc->sc_stats.ast_rx_post_crc_err++; 4053 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 4054 sc->sc_stats.ast_rx_decrypt_busy_err++; 4055 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 4056 sc->sc_stats.ast_rx_hi_rx_chain++; 4057 #endif /* AH_SUPPORT_AR5416 */ 4058 4059 if (rs->rs_status != 0) { 4060 if (rs->rs_status & HAL_RXERR_CRC) 4061 sc->sc_stats.ast_rx_crcerr++; 4062 if (rs->rs_status & HAL_RXERR_FIFO) 4063 sc->sc_stats.ast_rx_fifoerr++; 4064 if (rs->rs_status & HAL_RXERR_PHY) { 4065 sc->sc_stats.ast_rx_phyerr++; 4066 /* Process DFS radar events */ 4067 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 4068 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 4069 /* Since we're touching the frame data, sync it */ 4070 bus_dmamap_sync(sc->sc_dmat, 4071 bf->bf_dmamap, 4072 BUS_DMASYNC_POSTREAD); 4073 /* Now pass it to the radar processing code */ 4074 ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs); 4075 } 4076 4077 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4078 if (rs->rs_phyerr < 64) 4079 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4080 goto rx_error; /* NB: don't count in ierrors */ 4081 } 4082 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4083 /* 4084 * Decrypt error. If the error occurred 4085 * because there was no hardware key, then 4086 * let the frame through so the upper layers 4087 * can process it. This is necessary for 5210 4088 * parts which have no way to setup a ``clear'' 4089 * key cache entry. 4090 * 4091 * XXX do key cache faulting 4092 */ 4093 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4094 goto rx_accept; 4095 sc->sc_stats.ast_rx_badcrypt++; 4096 } 4097 if (rs->rs_status & HAL_RXERR_MIC) { 4098 sc->sc_stats.ast_rx_badmic++; 4099 /* 4100 * Do minimal work required to hand off 4101 * the 802.11 header for notification. 4102 */ 4103 /* XXX frag's and qos frames */ 4104 len = rs->rs_datalen; 4105 if (len >= sizeof (struct ieee80211_frame)) { 4106 bus_dmamap_sync(sc->sc_dmat, 4107 bf->bf_dmamap, 4108 BUS_DMASYNC_POSTREAD); 4109 ath_handle_micerror(ic, 4110 mtod(m, struct ieee80211_frame *), 4111 sc->sc_splitmic ? 4112 rs->rs_keyix-32 : rs->rs_keyix); 4113 } 4114 } 4115 ifp->if_ierrors++; 4116 rx_error: 4117 /* 4118 * Cleanup any pending partial frame. 4119 */ 4120 if (sc->sc_rxpending != NULL) { 4121 m_freem(sc->sc_rxpending); 4122 sc->sc_rxpending = NULL; 4123 } 4124 /* 4125 * When a tap is present pass error frames 4126 * that have been requested. By default we 4127 * pass decrypt+mic errors but others may be 4128 * interesting (e.g. crc). 4129 */ 4130 if (ieee80211_radiotap_active(ic) && 4131 (rs->rs_status & sc->sc_monpass)) { 4132 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4133 BUS_DMASYNC_POSTREAD); 4134 /* NB: bpf needs the mbuf length setup */ 4135 len = rs->rs_datalen; 4136 m->m_pkthdr.len = m->m_len = len; 4137 bf->bf_m = NULL; 4138 ath_rx_tap(ifp, m, rs, tsf, nf); 4139 ieee80211_radiotap_rx_all(ic, m); 4140 m_freem(m); 4141 } 4142 /* XXX pass MIC errors up for s/w reclaculation */ 4143 goto rx_next; 4144 } 4145 rx_accept: 4146 /* 4147 * Sync and unmap the frame. At this point we're 4148 * committed to passing the mbuf somewhere so clear 4149 * bf_m; this means a new mbuf must be allocated 4150 * when the rx descriptor is setup again to receive 4151 * another frame. 4152 */ 4153 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4154 BUS_DMASYNC_POSTREAD); 4155 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4156 bf->bf_m = NULL; 4157 4158 len = rs->rs_datalen; 4159 m->m_len = len; 4160 4161 if (rs->rs_more) { 4162 /* 4163 * Frame spans multiple descriptors; save 4164 * it for the next completed descriptor, it 4165 * will be used to construct a jumbogram. 4166 */ 4167 if (sc->sc_rxpending != NULL) { 4168 /* NB: max frame size is currently 2 clusters */ 4169 sc->sc_stats.ast_rx_toobig++; 4170 m_freem(sc->sc_rxpending); 4171 } 4172 m->m_pkthdr.rcvif = ifp; 4173 m->m_pkthdr.len = len; 4174 sc->sc_rxpending = m; 4175 goto rx_next; 4176 } else if (sc->sc_rxpending != NULL) { 4177 /* 4178 * This is the second part of a jumbogram, 4179 * chain it to the first mbuf, adjust the 4180 * frame length, and clear the rxpending state. 4181 */ 4182 sc->sc_rxpending->m_next = m; 4183 sc->sc_rxpending->m_pkthdr.len += len; 4184 m = sc->sc_rxpending; 4185 sc->sc_rxpending = NULL; 4186 } else { 4187 /* 4188 * Normal single-descriptor receive; setup 4189 * the rcvif and packet length. 4190 */ 4191 m->m_pkthdr.rcvif = ifp; 4192 m->m_pkthdr.len = len; 4193 } 4194 4195 /* 4196 * Validate rs->rs_antenna. 4197 * 4198 * Some users w/ AR9285 NICs have reported crashes 4199 * here because rs_antenna field is bogusly large. 4200 * Let's enforce the maximum antenna limit of 8 4201 * (and it shouldn't be hard coded, but that's a 4202 * separate problem) and if there's an issue, print 4203 * out an error and adjust rs_antenna to something 4204 * sensible. 4205 * 4206 * This code should be removed once the actual 4207 * root cause of the issue has been identified. 4208 * For example, it may be that the rs_antenna 4209 * field is only valid for the lsat frame of 4210 * an aggregate and it just happens that it is 4211 * "mostly" right. (This is a general statement - 4212 * the majority of the statistics are only valid 4213 * for the last frame in an aggregate. 4214 */ 4215 if (rs->rs_antenna > 7) { 4216 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 4217 __func__, rs->rs_antenna); 4218 #ifdef ATH_DEBUG 4219 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4220 #endif /* ATH_DEBUG */ 4221 rs->rs_antenna = 0; /* XXX better than nothing */ 4222 } 4223 4224 ifp->if_ipackets++; 4225 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4226 4227 /* 4228 * Populate the rx status block. When there are bpf 4229 * listeners we do the additional work to provide 4230 * complete status. Otherwise we fill in only the 4231 * material required by ieee80211_input. Note that 4232 * noise setting is filled in above. 4233 */ 4234 if (ieee80211_radiotap_active(ic)) 4235 ath_rx_tap(ifp, m, rs, tsf, nf); 4236 4237 /* 4238 * From this point on we assume the frame is at least 4239 * as large as ieee80211_frame_min; verify that. 4240 */ 4241 if (len < IEEE80211_MIN_LEN) { 4242 if (!ieee80211_radiotap_active(ic)) { 4243 DPRINTF(sc, ATH_DEBUG_RECV, 4244 "%s: short packet %d\n", __func__, len); 4245 sc->sc_stats.ast_rx_tooshort++; 4246 } else { 4247 /* NB: in particular this captures ack's */ 4248 ieee80211_radiotap_rx_all(ic, m); 4249 } 4250 m_freem(m); 4251 goto rx_next; 4252 } 4253 4254 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4255 const HAL_RATE_TABLE *rt = sc->sc_currates; 4256 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4257 4258 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4259 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4260 } 4261 4262 m_adj(m, -IEEE80211_CRC_LEN); 4263 4264 /* 4265 * Locate the node for sender, track state, and then 4266 * pass the (referenced) node up to the 802.11 layer 4267 * for its use. 4268 */ 4269 ni = ieee80211_find_rxnode_withkey(ic, 4270 mtod(m, const struct ieee80211_frame_min *), 4271 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4272 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4273 sc->sc_lastrs = rs; 4274 4275 #ifdef AH_SUPPORT_AR5416 4276 if (rs->rs_isaggr) 4277 sc->sc_stats.ast_rx_agg++; 4278 #endif /* AH_SUPPORT_AR5416 */ 4279 4280 if (ni != NULL) { 4281 /* 4282 * Only punt packets for ampdu reorder processing for 4283 * 11n nodes; net80211 enforces that M_AMPDU is only 4284 * set for 11n nodes. 4285 */ 4286 if (ni->ni_flags & IEEE80211_NODE_HT) 4287 m->m_flags |= M_AMPDU; 4288 4289 /* 4290 * Sending station is known, dispatch directly. 4291 */ 4292 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4293 ieee80211_free_node(ni); 4294 /* 4295 * Arrange to update the last rx timestamp only for 4296 * frames from our ap when operating in station mode. 4297 * This assumes the rx key is always setup when 4298 * associated. 4299 */ 4300 if (ic->ic_opmode == IEEE80211_M_STA && 4301 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4302 ngood++; 4303 } else { 4304 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4305 } 4306 /* 4307 * Track rx rssi and do any rx antenna management. 4308 */ 4309 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4310 if (sc->sc_diversity) { 4311 /* 4312 * When using fast diversity, change the default rx 4313 * antenna if diversity chooses the other antenna 3 4314 * times in a row. 4315 */ 4316 if (sc->sc_defant != rs->rs_antenna) { 4317 if (++sc->sc_rxotherant >= 3) 4318 ath_setdefantenna(sc, rs->rs_antenna); 4319 } else 4320 sc->sc_rxotherant = 0; 4321 } 4322 4323 /* Newer school diversity - kite specific for now */ 4324 /* XXX perhaps migrate the normal diversity code to this? */ 4325 if ((ah)->ah_rxAntCombDiversity) 4326 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4327 4328 if (sc->sc_softled) { 4329 /* 4330 * Blink for any data frame. Otherwise do a 4331 * heartbeat-style blink when idle. The latter 4332 * is mainly for station mode where we depend on 4333 * periodic beacon frames to trigger the poll event. 4334 */ 4335 if (type == IEEE80211_FC0_TYPE_DATA) { 4336 const HAL_RATE_TABLE *rt = sc->sc_currates; 4337 ath_led_event(sc, 4338 rt->rateCodeToIndex[rs->rs_rate]); 4339 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4340 ath_led_event(sc, 0); 4341 } 4342 rx_next: 4343 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4344 } while (ath_rxbuf_init(sc, bf) == 0); 4345 4346 /* rx signal state monitoring */ 4347 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4348 if (ngood) 4349 sc->sc_lastrx = tsf; 4350 4351 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4352 /* Queue DFS tasklet if needed */ 4353 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4354 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4355 4356 /* 4357 * Now that all the RX frames were handled that 4358 * need to be handled, kick the PCU if there's 4359 * been an RXEOL condition. 4360 */ 4361 ATH_PCU_LOCK(sc); 4362 if (resched && sc->sc_kickpcu) { 4363 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4364 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4365 __func__, npkts); 4366 4367 /* XXX rxslink? */ 4368 /* 4369 * XXX can we hold the PCU lock here? 4370 * Are there any net80211 buffer calls involved? 4371 */ 4372 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4373 ath_hal_putrxbuf(ah, bf->bf_daddr); 4374 ath_hal_rxena(ah); /* enable recv descriptors */ 4375 ath_mode_init(sc); /* set filters, etc. */ 4376 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4377 4378 ath_hal_intrset(ah, sc->sc_imask); 4379 sc->sc_kickpcu = 0; 4380 } 4381 ATH_PCU_UNLOCK(sc); 4382 4383 /* XXX check this inside of IF_LOCK? */ 4384 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4385 #ifdef IEEE80211_SUPPORT_SUPERG 4386 ieee80211_ff_age_all(ic, 100); 4387 #endif 4388 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4389 ath_start(ifp); 4390 } 4391 #undef PA2DESC 4392 4393 ATH_PCU_LOCK(sc); 4394 sc->sc_rxproc_cnt--; 4395 ATH_PCU_UNLOCK(sc); 4396 } 4397 4398 static void 4399 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4400 { 4401 txq->axq_qnum = qnum; 4402 txq->axq_ac = 0; 4403 txq->axq_depth = 0; 4404 txq->axq_aggr_depth = 0; 4405 txq->axq_intrcnt = 0; 4406 txq->axq_link = NULL; 4407 txq->axq_softc = sc; 4408 TAILQ_INIT(&txq->axq_q); 4409 TAILQ_INIT(&txq->axq_tidq); 4410 ATH_TXQ_LOCK_INIT(sc, txq); 4411 } 4412 4413 /* 4414 * Setup a h/w transmit queue. 4415 */ 4416 static struct ath_txq * 4417 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4418 { 4419 #define N(a) (sizeof(a)/sizeof(a[0])) 4420 struct ath_hal *ah = sc->sc_ah; 4421 HAL_TXQ_INFO qi; 4422 int qnum; 4423 4424 memset(&qi, 0, sizeof(qi)); 4425 qi.tqi_subtype = subtype; 4426 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4427 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4428 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4429 /* 4430 * Enable interrupts only for EOL and DESC conditions. 4431 * We mark tx descriptors to receive a DESC interrupt 4432 * when a tx queue gets deep; otherwise waiting for the 4433 * EOL to reap descriptors. Note that this is done to 4434 * reduce interrupt load and this only defers reaping 4435 * descriptors, never transmitting frames. Aside from 4436 * reducing interrupts this also permits more concurrency. 4437 * The only potential downside is if the tx queue backs 4438 * up in which case the top half of the kernel may backup 4439 * due to a lack of tx descriptors. 4440 */ 4441 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4442 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4443 if (qnum == -1) { 4444 /* 4445 * NB: don't print a message, this happens 4446 * normally on parts with too few tx queues 4447 */ 4448 return NULL; 4449 } 4450 if (qnum >= N(sc->sc_txq)) { 4451 device_printf(sc->sc_dev, 4452 "hal qnum %u out of range, max %zu!\n", 4453 qnum, N(sc->sc_txq)); 4454 ath_hal_releasetxqueue(ah, qnum); 4455 return NULL; 4456 } 4457 if (!ATH_TXQ_SETUP(sc, qnum)) { 4458 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4459 sc->sc_txqsetup |= 1<<qnum; 4460 } 4461 return &sc->sc_txq[qnum]; 4462 #undef N 4463 } 4464 4465 /* 4466 * Setup a hardware data transmit queue for the specified 4467 * access control. The hal may not support all requested 4468 * queues in which case it will return a reference to a 4469 * previously setup queue. We record the mapping from ac's 4470 * to h/w queues for use by ath_tx_start and also track 4471 * the set of h/w queues being used to optimize work in the 4472 * transmit interrupt handler and related routines. 4473 */ 4474 static int 4475 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4476 { 4477 #define N(a) (sizeof(a)/sizeof(a[0])) 4478 struct ath_txq *txq; 4479 4480 if (ac >= N(sc->sc_ac2q)) { 4481 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4482 ac, N(sc->sc_ac2q)); 4483 return 0; 4484 } 4485 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4486 if (txq != NULL) { 4487 txq->axq_ac = ac; 4488 sc->sc_ac2q[ac] = txq; 4489 return 1; 4490 } else 4491 return 0; 4492 #undef N 4493 } 4494 4495 /* 4496 * Update WME parameters for a transmit queue. 4497 */ 4498 static int 4499 ath_txq_update(struct ath_softc *sc, int ac) 4500 { 4501 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4502 #define ATH_TXOP_TO_US(v) (v<<5) 4503 struct ifnet *ifp = sc->sc_ifp; 4504 struct ieee80211com *ic = ifp->if_l2com; 4505 struct ath_txq *txq = sc->sc_ac2q[ac]; 4506 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4507 struct ath_hal *ah = sc->sc_ah; 4508 HAL_TXQ_INFO qi; 4509 4510 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4511 #ifdef IEEE80211_SUPPORT_TDMA 4512 if (sc->sc_tdma) { 4513 /* 4514 * AIFS is zero so there's no pre-transmit wait. The 4515 * burst time defines the slot duration and is configured 4516 * through net80211. The QCU is setup to not do post-xmit 4517 * back off, lockout all lower-priority QCU's, and fire 4518 * off the DMA beacon alert timer which is setup based 4519 * on the slot configuration. 4520 */ 4521 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4522 | HAL_TXQ_TXERRINT_ENABLE 4523 | HAL_TXQ_TXURNINT_ENABLE 4524 | HAL_TXQ_TXEOLINT_ENABLE 4525 | HAL_TXQ_DBA_GATED 4526 | HAL_TXQ_BACKOFF_DISABLE 4527 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4528 ; 4529 qi.tqi_aifs = 0; 4530 /* XXX +dbaprep? */ 4531 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4532 qi.tqi_burstTime = qi.tqi_readyTime; 4533 } else { 4534 #endif 4535 /* 4536 * XXX shouldn't this just use the default flags 4537 * used in the previous queue setup? 4538 */ 4539 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4540 | HAL_TXQ_TXERRINT_ENABLE 4541 | HAL_TXQ_TXDESCINT_ENABLE 4542 | HAL_TXQ_TXURNINT_ENABLE 4543 | HAL_TXQ_TXEOLINT_ENABLE 4544 ; 4545 qi.tqi_aifs = wmep->wmep_aifsn; 4546 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4547 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4548 qi.tqi_readyTime = 0; 4549 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4550 #ifdef IEEE80211_SUPPORT_TDMA 4551 } 4552 #endif 4553 4554 DPRINTF(sc, ATH_DEBUG_RESET, 4555 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4556 __func__, txq->axq_qnum, qi.tqi_qflags, 4557 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4558 4559 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4560 if_printf(ifp, "unable to update hardware queue " 4561 "parameters for %s traffic!\n", 4562 ieee80211_wme_acnames[ac]); 4563 return 0; 4564 } else { 4565 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4566 return 1; 4567 } 4568 #undef ATH_TXOP_TO_US 4569 #undef ATH_EXPONENT_TO_VALUE 4570 } 4571 4572 /* 4573 * Callback from the 802.11 layer to update WME parameters. 4574 */ 4575 static int 4576 ath_wme_update(struct ieee80211com *ic) 4577 { 4578 struct ath_softc *sc = ic->ic_ifp->if_softc; 4579 4580 return !ath_txq_update(sc, WME_AC_BE) || 4581 !ath_txq_update(sc, WME_AC_BK) || 4582 !ath_txq_update(sc, WME_AC_VI) || 4583 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4584 } 4585 4586 /* 4587 * Reclaim resources for a setup queue. 4588 */ 4589 static void 4590 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4591 { 4592 4593 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4594 ATH_TXQ_LOCK_DESTROY(txq); 4595 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4596 } 4597 4598 /* 4599 * Reclaim all tx queue resources. 4600 */ 4601 static void 4602 ath_tx_cleanup(struct ath_softc *sc) 4603 { 4604 int i; 4605 4606 ATH_TXBUF_LOCK_DESTROY(sc); 4607 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4608 if (ATH_TXQ_SETUP(sc, i)) 4609 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4610 } 4611 4612 /* 4613 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4614 * using the current rates in sc_rixmap. 4615 */ 4616 int 4617 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4618 { 4619 int rix = sc->sc_rixmap[rate]; 4620 /* NB: return lowest rix for invalid rate */ 4621 return (rix == 0xff ? 0 : rix); 4622 } 4623 4624 static void 4625 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4626 struct ath_buf *bf) 4627 { 4628 struct ieee80211_node *ni = bf->bf_node; 4629 struct ifnet *ifp = sc->sc_ifp; 4630 struct ieee80211com *ic = ifp->if_l2com; 4631 int sr, lr, pri; 4632 4633 if (ts->ts_status == 0) { 4634 u_int8_t txant = ts->ts_antenna; 4635 sc->sc_stats.ast_ant_tx[txant]++; 4636 sc->sc_ant_tx[txant]++; 4637 if (ts->ts_finaltsi != 0) 4638 sc->sc_stats.ast_tx_altrate++; 4639 pri = M_WME_GETAC(bf->bf_m); 4640 if (pri >= WME_AC_VO) 4641 ic->ic_wme.wme_hipri_traffic++; 4642 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4643 ni->ni_inact = ni->ni_inact_reload; 4644 } else { 4645 if (ts->ts_status & HAL_TXERR_XRETRY) 4646 sc->sc_stats.ast_tx_xretries++; 4647 if (ts->ts_status & HAL_TXERR_FIFO) 4648 sc->sc_stats.ast_tx_fifoerr++; 4649 if (ts->ts_status & HAL_TXERR_FILT) 4650 sc->sc_stats.ast_tx_filtered++; 4651 if (ts->ts_status & HAL_TXERR_XTXOP) 4652 sc->sc_stats.ast_tx_xtxop++; 4653 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4654 sc->sc_stats.ast_tx_timerexpired++; 4655 4656 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4657 sc->sc_stats.ast_tx_data_underrun++; 4658 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4659 sc->sc_stats.ast_tx_delim_underrun++; 4660 4661 if (bf->bf_m->m_flags & M_FF) 4662 sc->sc_stats.ast_ff_txerr++; 4663 } 4664 /* XXX when is this valid? */ 4665 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4666 sc->sc_stats.ast_tx_desccfgerr++; 4667 4668 sr = ts->ts_shortretry; 4669 lr = ts->ts_longretry; 4670 sc->sc_stats.ast_tx_shortretry += sr; 4671 sc->sc_stats.ast_tx_longretry += lr; 4672 4673 } 4674 4675 /* 4676 * The default completion. If fail is 1, this means 4677 * "please don't retry the frame, and just return -1 status 4678 * to the net80211 stack. 4679 */ 4680 void 4681 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4682 { 4683 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4684 int st; 4685 4686 if (fail == 1) 4687 st = -1; 4688 else 4689 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4690 ts->ts_status : HAL_TXERR_XRETRY; 4691 4692 if (bf->bf_state.bfs_dobaw) 4693 device_printf(sc->sc_dev, 4694 "%s: dobaw should've been cleared!\n", __func__); 4695 if (bf->bf_next != NULL) 4696 device_printf(sc->sc_dev, 4697 "%s: bf_next not NULL!\n", __func__); 4698 4699 /* 4700 * Do any tx complete callback. Note this must 4701 * be done before releasing the node reference. 4702 * This will free the mbuf, release the net80211 4703 * node and recycle the ath_buf. 4704 */ 4705 ath_tx_freebuf(sc, bf, st); 4706 } 4707 4708 /* 4709 * Update rate control with the given completion status. 4710 */ 4711 void 4712 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4713 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4714 int nframes, int nbad) 4715 { 4716 struct ath_node *an; 4717 4718 /* Only for unicast frames */ 4719 if (ni == NULL) 4720 return; 4721 4722 an = ATH_NODE(ni); 4723 4724 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4725 ATH_NODE_LOCK(an); 4726 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4727 ATH_NODE_UNLOCK(an); 4728 } 4729 } 4730 4731 /* 4732 * Update the busy status of the last frame on the free list. 4733 * When doing TDMA, the busy flag tracks whether the hardware 4734 * currently points to this buffer or not, and thus gated DMA 4735 * may restart by re-reading the last descriptor in this 4736 * buffer. 4737 * 4738 * This should be called in the completion function once one 4739 * of the buffers has been used. 4740 */ 4741 static void 4742 ath_tx_update_busy(struct ath_softc *sc) 4743 { 4744 struct ath_buf *last; 4745 4746 /* 4747 * Since the last frame may still be marked 4748 * as ATH_BUF_BUSY, unmark it here before 4749 * finishing the frame processing. 4750 * Since we've completed a frame (aggregate 4751 * or otherwise), the hardware has moved on 4752 * and is no longer referencing the previous 4753 * descriptor. 4754 */ 4755 ATH_TXBUF_LOCK_ASSERT(sc); 4756 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4757 if (last != NULL) 4758 last->bf_flags &= ~ATH_BUF_BUSY; 4759 } 4760 4761 4762 /* 4763 * Process completed xmit descriptors from the specified queue. 4764 * Kick the packet scheduler if needed. This can occur from this 4765 * particular task. 4766 */ 4767 static int 4768 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4769 { 4770 struct ath_hal *ah = sc->sc_ah; 4771 struct ath_buf *bf; 4772 struct ath_desc *ds; 4773 struct ath_tx_status *ts; 4774 struct ieee80211_node *ni; 4775 struct ath_node *an; 4776 int nacked; 4777 HAL_STATUS status; 4778 4779 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4780 __func__, txq->axq_qnum, 4781 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4782 txq->axq_link); 4783 nacked = 0; 4784 for (;;) { 4785 ATH_TXQ_LOCK(txq); 4786 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4787 bf = TAILQ_FIRST(&txq->axq_q); 4788 if (bf == NULL) { 4789 ATH_TXQ_UNLOCK(txq); 4790 break; 4791 } 4792 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4793 ts = &bf->bf_status.ds_txstat; 4794 status = ath_hal_txprocdesc(ah, ds, ts); 4795 #ifdef ATH_DEBUG 4796 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4797 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4798 status == HAL_OK); 4799 #endif 4800 if (status == HAL_EINPROGRESS) { 4801 ATH_TXQ_UNLOCK(txq); 4802 break; 4803 } 4804 ATH_TXQ_REMOVE(txq, bf, bf_list); 4805 #ifdef IEEE80211_SUPPORT_TDMA 4806 if (txq->axq_depth > 0) { 4807 /* 4808 * More frames follow. Mark the buffer busy 4809 * so it's not re-used while the hardware may 4810 * still re-read the link field in the descriptor. 4811 * 4812 * Use the last buffer in an aggregate as that 4813 * is where the hardware may be - intermediate 4814 * descriptors won't be "busy". 4815 */ 4816 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4817 } else 4818 #else 4819 if (txq->axq_depth == 0) 4820 #endif 4821 txq->axq_link = NULL; 4822 if (bf->bf_state.bfs_aggr) 4823 txq->axq_aggr_depth--; 4824 4825 ni = bf->bf_node; 4826 /* 4827 * If unicast frame was ack'd update RSSI, 4828 * including the last rx time used to 4829 * workaround phantom bmiss interrupts. 4830 */ 4831 if (ni != NULL && ts->ts_status == 0 && 4832 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4833 nacked++; 4834 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4835 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4836 ts->ts_rssi); 4837 } 4838 ATH_TXQ_UNLOCK(txq); 4839 4840 /* If unicast frame, update general statistics */ 4841 if (ni != NULL) { 4842 an = ATH_NODE(ni); 4843 /* update statistics */ 4844 ath_tx_update_stats(sc, ts, bf); 4845 } 4846 4847 /* 4848 * Call the completion handler. 4849 * The completion handler is responsible for 4850 * calling the rate control code. 4851 * 4852 * Frames with no completion handler get the 4853 * rate control code called here. 4854 */ 4855 if (bf->bf_comp == NULL) { 4856 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4857 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4858 /* 4859 * XXX assume this isn't an aggregate 4860 * frame. 4861 */ 4862 ath_tx_update_ratectrl(sc, ni, 4863 bf->bf_state.bfs_rc, ts, 4864 bf->bf_state.bfs_pktlen, 1, 4865 (ts->ts_status == 0 ? 0 : 1)); 4866 } 4867 ath_tx_default_comp(sc, bf, 0); 4868 } else 4869 bf->bf_comp(sc, bf, 0); 4870 } 4871 #ifdef IEEE80211_SUPPORT_SUPERG 4872 /* 4873 * Flush fast-frame staging queue when traffic slows. 4874 */ 4875 if (txq->axq_depth <= 1) 4876 ieee80211_ff_flush(ic, txq->axq_ac); 4877 #endif 4878 4879 /* Kick the TXQ scheduler */ 4880 if (dosched) { 4881 ATH_TXQ_LOCK(txq); 4882 ath_txq_sched(sc, txq); 4883 ATH_TXQ_UNLOCK(txq); 4884 } 4885 4886 return nacked; 4887 } 4888 4889 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4890 4891 /* 4892 * Deferred processing of transmit interrupt; special-cased 4893 * for a single hardware transmit queue (e.g. 5210 and 5211). 4894 */ 4895 static void 4896 ath_tx_proc_q0(void *arg, int npending) 4897 { 4898 struct ath_softc *sc = arg; 4899 struct ifnet *ifp = sc->sc_ifp; 4900 uint32_t txqs; 4901 4902 ATH_PCU_LOCK(sc); 4903 sc->sc_txproc_cnt++; 4904 txqs = sc->sc_txq_active; 4905 sc->sc_txq_active &= ~txqs; 4906 ATH_PCU_UNLOCK(sc); 4907 4908 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4909 /* XXX why is lastrx updated in tx code? */ 4910 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4911 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4912 ath_tx_processq(sc, sc->sc_cabq, 1); 4913 /* XXX check this inside of IF_LOCK? */ 4914 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4915 sc->sc_wd_timer = 0; 4916 4917 if (sc->sc_softled) 4918 ath_led_event(sc, sc->sc_txrix); 4919 4920 ATH_PCU_LOCK(sc); 4921 sc->sc_txproc_cnt--; 4922 ATH_PCU_UNLOCK(sc); 4923 4924 ath_start(ifp); 4925 } 4926 4927 /* 4928 * Deferred processing of transmit interrupt; special-cased 4929 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4930 */ 4931 static void 4932 ath_tx_proc_q0123(void *arg, int npending) 4933 { 4934 struct ath_softc *sc = arg; 4935 struct ifnet *ifp = sc->sc_ifp; 4936 int nacked; 4937 uint32_t txqs; 4938 4939 ATH_PCU_LOCK(sc); 4940 sc->sc_txproc_cnt++; 4941 txqs = sc->sc_txq_active; 4942 sc->sc_txq_active &= ~txqs; 4943 ATH_PCU_UNLOCK(sc); 4944 4945 /* 4946 * Process each active queue. 4947 */ 4948 nacked = 0; 4949 if (TXQACTIVE(txqs, 0)) 4950 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4951 if (TXQACTIVE(txqs, 1)) 4952 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4953 if (TXQACTIVE(txqs, 2)) 4954 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4955 if (TXQACTIVE(txqs, 3)) 4956 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4957 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4958 ath_tx_processq(sc, sc->sc_cabq, 1); 4959 if (nacked) 4960 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4961 4962 /* XXX check this inside of IF_LOCK? */ 4963 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4964 sc->sc_wd_timer = 0; 4965 4966 if (sc->sc_softled) 4967 ath_led_event(sc, sc->sc_txrix); 4968 4969 ATH_PCU_LOCK(sc); 4970 sc->sc_txproc_cnt--; 4971 ATH_PCU_UNLOCK(sc); 4972 4973 ath_start(ifp); 4974 } 4975 4976 /* 4977 * Deferred processing of transmit interrupt. 4978 */ 4979 static void 4980 ath_tx_proc(void *arg, int npending) 4981 { 4982 struct ath_softc *sc = arg; 4983 struct ifnet *ifp = sc->sc_ifp; 4984 int i, nacked; 4985 uint32_t txqs; 4986 4987 ATH_PCU_LOCK(sc); 4988 sc->sc_txproc_cnt++; 4989 txqs = sc->sc_txq_active; 4990 sc->sc_txq_active &= ~txqs; 4991 ATH_PCU_UNLOCK(sc); 4992 4993 /* 4994 * Process each active queue. 4995 */ 4996 nacked = 0; 4997 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4998 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4999 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 5000 if (nacked) 5001 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 5002 5003 /* XXX check this inside of IF_LOCK? */ 5004 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5005 sc->sc_wd_timer = 0; 5006 5007 if (sc->sc_softled) 5008 ath_led_event(sc, sc->sc_txrix); 5009 5010 ATH_PCU_LOCK(sc); 5011 sc->sc_txproc_cnt--; 5012 ATH_PCU_UNLOCK(sc); 5013 5014 ath_start(ifp); 5015 } 5016 #undef TXQACTIVE 5017 5018 /* 5019 * Return a buffer to the pool and update the 'busy' flag on the 5020 * previous 'tail' entry. 5021 * 5022 * This _must_ only be called when the buffer is involved in a completed 5023 * TX. The logic is that if it was part of an active TX, the previous 5024 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5025 * for restart (eg for TDMA.) 5026 * 5027 * The caller must free the mbuf and recycle the node reference. 5028 */ 5029 void 5030 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5031 { 5032 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5033 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 5034 5035 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5036 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5037 5038 ATH_TXBUF_LOCK(sc); 5039 ath_tx_update_busy(sc); 5040 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5041 ATH_TXBUF_UNLOCK(sc); 5042 } 5043 5044 /* 5045 * This is currently used by ath_tx_draintxq() and 5046 * ath_tx_tid_free_pkts(). 5047 * 5048 * It recycles a single ath_buf. 5049 */ 5050 void 5051 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5052 { 5053 struct ieee80211_node *ni = bf->bf_node; 5054 struct mbuf *m0 = bf->bf_m; 5055 5056 bf->bf_node = NULL; 5057 bf->bf_m = NULL; 5058 5059 /* Free the buffer, it's not needed any longer */ 5060 ath_freebuf(sc, bf); 5061 5062 if (ni != NULL) { 5063 /* 5064 * Do any callback and reclaim the node reference. 5065 */ 5066 if (m0->m_flags & M_TXCB) 5067 ieee80211_process_callback(ni, m0, status); 5068 ieee80211_free_node(ni); 5069 } 5070 m_freem(m0); 5071 5072 /* 5073 * XXX the buffer used to be freed -after-, but the DMA map was 5074 * freed where ath_freebuf() now is. I've no idea what this 5075 * will do. 5076 */ 5077 } 5078 5079 void 5080 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5081 { 5082 #ifdef ATH_DEBUG 5083 struct ath_hal *ah = sc->sc_ah; 5084 #endif 5085 struct ath_buf *bf; 5086 u_int ix; 5087 5088 /* 5089 * NB: this assumes output has been stopped and 5090 * we do not need to block ath_tx_proc 5091 */ 5092 ATH_TXBUF_LOCK(sc); 5093 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 5094 if (bf != NULL) 5095 bf->bf_flags &= ~ATH_BUF_BUSY; 5096 ATH_TXBUF_UNLOCK(sc); 5097 5098 for (ix = 0;; ix++) { 5099 ATH_TXQ_LOCK(txq); 5100 bf = TAILQ_FIRST(&txq->axq_q); 5101 if (bf == NULL) { 5102 txq->axq_link = NULL; 5103 ATH_TXQ_UNLOCK(txq); 5104 break; 5105 } 5106 ATH_TXQ_REMOVE(txq, bf, bf_list); 5107 if (bf->bf_state.bfs_aggr) 5108 txq->axq_aggr_depth--; 5109 #ifdef ATH_DEBUG 5110 if (sc->sc_debug & ATH_DEBUG_RESET) { 5111 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5112 5113 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5114 ath_hal_txprocdesc(ah, bf->bf_lastds, 5115 &bf->bf_status.ds_txstat) == HAL_OK); 5116 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5117 bf->bf_m->m_len, 0, -1); 5118 } 5119 #endif /* ATH_DEBUG */ 5120 /* 5121 * Since we're now doing magic in the completion 5122 * functions, we -must- call it for aggregation 5123 * destinations or BAW tracking will get upset. 5124 */ 5125 /* 5126 * Clear ATH_BUF_BUSY; the completion handler 5127 * will free the buffer. 5128 */ 5129 ATH_TXQ_UNLOCK(txq); 5130 bf->bf_flags &= ~ATH_BUF_BUSY; 5131 if (bf->bf_comp) 5132 bf->bf_comp(sc, bf, 1); 5133 else 5134 ath_tx_default_comp(sc, bf, 1); 5135 } 5136 5137 /* 5138 * Drain software queued frames which are on 5139 * active TIDs. 5140 */ 5141 ath_tx_txq_drain(sc, txq); 5142 } 5143 5144 static void 5145 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5146 { 5147 struct ath_hal *ah = sc->sc_ah; 5148 5149 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5150 __func__, txq->axq_qnum, 5151 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5152 txq->axq_link); 5153 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5154 } 5155 5156 static int 5157 ath_stoptxdma(struct ath_softc *sc) 5158 { 5159 struct ath_hal *ah = sc->sc_ah; 5160 int i; 5161 5162 /* XXX return value */ 5163 if (sc->sc_invalid) 5164 return 0; 5165 5166 if (!sc->sc_invalid) { 5167 /* don't touch the hardware if marked invalid */ 5168 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5169 __func__, sc->sc_bhalq, 5170 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5171 NULL); 5172 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5173 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5174 if (ATH_TXQ_SETUP(sc, i)) 5175 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5176 } 5177 5178 return 1; 5179 } 5180 5181 /* 5182 * Drain the transmit queues and reclaim resources. 5183 */ 5184 static void 5185 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5186 { 5187 #ifdef ATH_DEBUG 5188 struct ath_hal *ah = sc->sc_ah; 5189 #endif 5190 struct ifnet *ifp = sc->sc_ifp; 5191 int i; 5192 5193 (void) ath_stoptxdma(sc); 5194 5195 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5196 /* 5197 * XXX TODO: should we just handle the completed TX frames 5198 * here, whether or not the reset is a full one or not? 5199 */ 5200 if (ATH_TXQ_SETUP(sc, i)) { 5201 if (reset_type == ATH_RESET_NOLOSS) 5202 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5203 else 5204 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5205 } 5206 } 5207 #ifdef ATH_DEBUG 5208 if (sc->sc_debug & ATH_DEBUG_RESET) { 5209 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5210 if (bf != NULL && bf->bf_m != NULL) { 5211 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5212 ath_hal_txprocdesc(ah, bf->bf_lastds, 5213 &bf->bf_status.ds_txstat) == HAL_OK); 5214 ieee80211_dump_pkt(ifp->if_l2com, 5215 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5216 0, -1); 5217 } 5218 } 5219 #endif /* ATH_DEBUG */ 5220 /* XXX check this inside of IF_LOCK? */ 5221 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5222 sc->sc_wd_timer = 0; 5223 } 5224 5225 /* 5226 * Disable the receive h/w in preparation for a reset. 5227 */ 5228 static void 5229 ath_stoprecv(struct ath_softc *sc, int dodelay) 5230 { 5231 #define PA2DESC(_sc, _pa) \ 5232 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5233 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5234 struct ath_hal *ah = sc->sc_ah; 5235 5236 ath_hal_stoppcurecv(ah); /* disable PCU */ 5237 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5238 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5239 if (dodelay) 5240 DELAY(3000); /* 3ms is long enough for 1 frame */ 5241 #ifdef ATH_DEBUG 5242 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5243 struct ath_buf *bf; 5244 u_int ix; 5245 5246 printf("%s: rx queue %p, link %p\n", __func__, 5247 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5248 ix = 0; 5249 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5250 struct ath_desc *ds = bf->bf_desc; 5251 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5252 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5253 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5254 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5255 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5256 ix++; 5257 } 5258 } 5259 #endif 5260 if (sc->sc_rxpending != NULL) { 5261 m_freem(sc->sc_rxpending); 5262 sc->sc_rxpending = NULL; 5263 } 5264 sc->sc_rxlink = NULL; /* just in case */ 5265 #undef PA2DESC 5266 } 5267 5268 /* 5269 * Enable the receive h/w following a reset. 5270 */ 5271 static int 5272 ath_startrecv(struct ath_softc *sc) 5273 { 5274 struct ath_hal *ah = sc->sc_ah; 5275 struct ath_buf *bf; 5276 5277 sc->sc_rxlink = NULL; 5278 sc->sc_rxpending = NULL; 5279 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5280 int error = ath_rxbuf_init(sc, bf); 5281 if (error != 0) { 5282 DPRINTF(sc, ATH_DEBUG_RECV, 5283 "%s: ath_rxbuf_init failed %d\n", 5284 __func__, error); 5285 return error; 5286 } 5287 } 5288 5289 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5290 ath_hal_putrxbuf(ah, bf->bf_daddr); 5291 ath_hal_rxena(ah); /* enable recv descriptors */ 5292 ath_mode_init(sc); /* set filters, etc. */ 5293 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5294 return 0; 5295 } 5296 5297 /* 5298 * Update internal state after a channel change. 5299 */ 5300 static void 5301 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5302 { 5303 enum ieee80211_phymode mode; 5304 5305 /* 5306 * Change channels and update the h/w rate map 5307 * if we're switching; e.g. 11a to 11b/g. 5308 */ 5309 mode = ieee80211_chan2mode(chan); 5310 if (mode != sc->sc_curmode) 5311 ath_setcurmode(sc, mode); 5312 sc->sc_curchan = chan; 5313 } 5314 5315 /* 5316 * Set/change channels. If the channel is really being changed, 5317 * it's done by resetting the chip. To accomplish this we must 5318 * first cleanup any pending DMA, then restart stuff after a la 5319 * ath_init. 5320 */ 5321 static int 5322 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5323 { 5324 struct ifnet *ifp = sc->sc_ifp; 5325 struct ieee80211com *ic = ifp->if_l2com; 5326 struct ath_hal *ah = sc->sc_ah; 5327 int ret = 0; 5328 int dointr = 0; 5329 5330 /* Treat this as an interface reset */ 5331 ATH_PCU_LOCK(sc); 5332 if (ath_reset_grablock(sc, 1) == 0) { 5333 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5334 __func__); 5335 } 5336 if (chan != sc->sc_curchan) { 5337 dointr = 1; 5338 /* XXX only do this if inreset_cnt is 1? */ 5339 ath_hal_intrset(ah, 0); 5340 } 5341 ATH_PCU_UNLOCK(sc); 5342 ath_txrx_stop(sc); 5343 5344 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5345 __func__, ieee80211_chan2ieee(ic, chan), 5346 chan->ic_freq, chan->ic_flags); 5347 if (chan != sc->sc_curchan) { 5348 HAL_STATUS status; 5349 /* 5350 * To switch channels clear any pending DMA operations; 5351 * wait long enough for the RX fifo to drain, reset the 5352 * hardware at the new frequency, and then re-enable 5353 * the relevant bits of the h/w. 5354 */ 5355 #if 0 5356 ath_hal_intrset(ah, 0); /* disable interrupts */ 5357 #endif 5358 ath_stoprecv(sc, 1); /* turn off frame recv */ 5359 /* 5360 * First, handle completed TX/RX frames. 5361 */ 5362 ath_rx_proc(sc, 0); 5363 ath_draintxq(sc, ATH_RESET_NOLOSS); 5364 /* 5365 * Next, flush the non-scheduled frames. 5366 */ 5367 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5368 5369 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5370 if_printf(ifp, "%s: unable to reset " 5371 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5372 __func__, ieee80211_chan2ieee(ic, chan), 5373 chan->ic_freq, chan->ic_flags, status); 5374 ret = EIO; 5375 goto finish; 5376 } 5377 sc->sc_diversity = ath_hal_getdiversity(ah); 5378 5379 /* Let DFS at it in case it's a DFS channel */ 5380 ath_dfs_radar_enable(sc, ic->ic_curchan); 5381 5382 /* 5383 * Re-enable rx framework. 5384 */ 5385 if (ath_startrecv(sc) != 0) { 5386 if_printf(ifp, "%s: unable to restart recv logic\n", 5387 __func__); 5388 ret = EIO; 5389 goto finish; 5390 } 5391 5392 /* 5393 * Change channels and update the h/w rate map 5394 * if we're switching; e.g. 11a to 11b/g. 5395 */ 5396 ath_chan_change(sc, chan); 5397 5398 /* 5399 * Reset clears the beacon timers; reset them 5400 * here if needed. 5401 */ 5402 if (sc->sc_beacons) { /* restart beacons */ 5403 #ifdef IEEE80211_SUPPORT_TDMA 5404 if (sc->sc_tdma) 5405 ath_tdma_config(sc, NULL); 5406 else 5407 #endif 5408 ath_beacon_config(sc, NULL); 5409 } 5410 5411 #if 0 5412 /* 5413 * Re-enable interrupts. 5414 */ 5415 ath_hal_intrset(ah, sc->sc_imask); 5416 #endif 5417 } 5418 5419 finish: 5420 ATH_PCU_LOCK(sc); 5421 sc->sc_inreset_cnt--; 5422 /* XXX only do this if sc_inreset_cnt == 0? */ 5423 if (dointr) 5424 ath_hal_intrset(ah, sc->sc_imask); 5425 ATH_PCU_UNLOCK(sc); 5426 5427 /* XXX do this inside of IF_LOCK? */ 5428 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5429 ath_txrx_start(sc); 5430 /* XXX ath_start? */ 5431 5432 return ret; 5433 } 5434 5435 /* 5436 * Periodically recalibrate the PHY to account 5437 * for temperature/environment changes. 5438 */ 5439 static void 5440 ath_calibrate(void *arg) 5441 { 5442 struct ath_softc *sc = arg; 5443 struct ath_hal *ah = sc->sc_ah; 5444 struct ifnet *ifp = sc->sc_ifp; 5445 struct ieee80211com *ic = ifp->if_l2com; 5446 HAL_BOOL longCal, isCalDone; 5447 HAL_BOOL aniCal, shortCal = AH_FALSE; 5448 int nextcal; 5449 5450 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5451 goto restart; 5452 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5453 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5454 if (sc->sc_doresetcal) 5455 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5456 5457 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5458 if (aniCal) { 5459 sc->sc_stats.ast_ani_cal++; 5460 sc->sc_lastani = ticks; 5461 ath_hal_ani_poll(ah, sc->sc_curchan); 5462 } 5463 5464 if (longCal) { 5465 sc->sc_stats.ast_per_cal++; 5466 sc->sc_lastlongcal = ticks; 5467 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5468 /* 5469 * Rfgain is out of bounds, reset the chip 5470 * to load new gain values. 5471 */ 5472 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5473 "%s: rfgain change\n", __func__); 5474 sc->sc_stats.ast_per_rfgain++; 5475 /* 5476 * Drop lock - we can't hold it across the 5477 * ath_reset() call. Instead, we'll drop 5478 * out here, do a reset, then reschedule 5479 * the callout. 5480 */ 5481 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5482 sc->sc_resetcal = 0; 5483 sc->sc_doresetcal = AH_TRUE; 5484 ATH_UNLOCK(sc); 5485 ath_reset(ifp, ATH_RESET_NOLOSS); 5486 ATH_LOCK(sc); 5487 return; 5488 } 5489 /* 5490 * If this long cal is after an idle period, then 5491 * reset the data collection state so we start fresh. 5492 */ 5493 if (sc->sc_resetcal) { 5494 (void) ath_hal_calreset(ah, sc->sc_curchan); 5495 sc->sc_lastcalreset = ticks; 5496 sc->sc_lastshortcal = ticks; 5497 sc->sc_resetcal = 0; 5498 sc->sc_doresetcal = AH_TRUE; 5499 } 5500 } 5501 5502 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5503 if (shortCal || longCal) { 5504 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5505 if (longCal) { 5506 /* 5507 * Calibrate noise floor data again in case of change. 5508 */ 5509 ath_hal_process_noisefloor(ah); 5510 } 5511 } else { 5512 DPRINTF(sc, ATH_DEBUG_ANY, 5513 "%s: calibration of channel %u failed\n", 5514 __func__, sc->sc_curchan->ic_freq); 5515 sc->sc_stats.ast_per_calfail++; 5516 } 5517 if (shortCal) 5518 sc->sc_lastshortcal = ticks; 5519 } 5520 if (!isCalDone) { 5521 restart: 5522 /* 5523 * Use a shorter interval to potentially collect multiple 5524 * data samples required to complete calibration. Once 5525 * we're told the work is done we drop back to a longer 5526 * interval between requests. We're more aggressive doing 5527 * work when operating as an AP to improve operation right 5528 * after startup. 5529 */ 5530 sc->sc_lastshortcal = ticks; 5531 nextcal = ath_shortcalinterval*hz/1000; 5532 if (sc->sc_opmode != HAL_M_HOSTAP) 5533 nextcal *= 10; 5534 sc->sc_doresetcal = AH_TRUE; 5535 } else { 5536 /* nextcal should be the shortest time for next event */ 5537 nextcal = ath_longcalinterval*hz; 5538 if (sc->sc_lastcalreset == 0) 5539 sc->sc_lastcalreset = sc->sc_lastlongcal; 5540 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5541 sc->sc_resetcal = 1; /* setup reset next trip */ 5542 sc->sc_doresetcal = AH_FALSE; 5543 } 5544 /* ANI calibration may occur more often than short/long/resetcal */ 5545 if (ath_anicalinterval > 0) 5546 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5547 5548 if (nextcal != 0) { 5549 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5550 __func__, nextcal, isCalDone ? "" : "!"); 5551 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5552 } else { 5553 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5554 __func__); 5555 /* NB: don't rearm timer */ 5556 } 5557 } 5558 5559 static void 5560 ath_scan_start(struct ieee80211com *ic) 5561 { 5562 struct ifnet *ifp = ic->ic_ifp; 5563 struct ath_softc *sc = ifp->if_softc; 5564 struct ath_hal *ah = sc->sc_ah; 5565 u_int32_t rfilt; 5566 5567 /* XXX calibration timer? */ 5568 5569 sc->sc_scanning = 1; 5570 sc->sc_syncbeacon = 0; 5571 rfilt = ath_calcrxfilter(sc); 5572 ath_hal_setrxfilter(ah, rfilt); 5573 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5574 5575 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5576 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5577 } 5578 5579 static void 5580 ath_scan_end(struct ieee80211com *ic) 5581 { 5582 struct ifnet *ifp = ic->ic_ifp; 5583 struct ath_softc *sc = ifp->if_softc; 5584 struct ath_hal *ah = sc->sc_ah; 5585 u_int32_t rfilt; 5586 5587 sc->sc_scanning = 0; 5588 rfilt = ath_calcrxfilter(sc); 5589 ath_hal_setrxfilter(ah, rfilt); 5590 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5591 5592 ath_hal_process_noisefloor(ah); 5593 5594 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5595 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5596 sc->sc_curaid); 5597 } 5598 5599 static void 5600 ath_set_channel(struct ieee80211com *ic) 5601 { 5602 struct ifnet *ifp = ic->ic_ifp; 5603 struct ath_softc *sc = ifp->if_softc; 5604 5605 (void) ath_chan_set(sc, ic->ic_curchan); 5606 /* 5607 * If we are returning to our bss channel then mark state 5608 * so the next recv'd beacon's tsf will be used to sync the 5609 * beacon timers. Note that since we only hear beacons in 5610 * sta/ibss mode this has no effect in other operating modes. 5611 */ 5612 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5613 sc->sc_syncbeacon = 1; 5614 } 5615 5616 /* 5617 * Walk the vap list and check if there any vap's in RUN state. 5618 */ 5619 static int 5620 ath_isanyrunningvaps(struct ieee80211vap *this) 5621 { 5622 struct ieee80211com *ic = this->iv_ic; 5623 struct ieee80211vap *vap; 5624 5625 IEEE80211_LOCK_ASSERT(ic); 5626 5627 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5628 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5629 return 1; 5630 } 5631 return 0; 5632 } 5633 5634 static int 5635 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5636 { 5637 struct ieee80211com *ic = vap->iv_ic; 5638 struct ath_softc *sc = ic->ic_ifp->if_softc; 5639 struct ath_vap *avp = ATH_VAP(vap); 5640 struct ath_hal *ah = sc->sc_ah; 5641 struct ieee80211_node *ni = NULL; 5642 int i, error, stamode; 5643 u_int32_t rfilt; 5644 int csa_run_transition = 0; 5645 static const HAL_LED_STATE leds[] = { 5646 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5647 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5648 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5649 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5650 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5651 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5652 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5653 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5654 }; 5655 5656 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5657 ieee80211_state_name[vap->iv_state], 5658 ieee80211_state_name[nstate]); 5659 5660 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5661 csa_run_transition = 1; 5662 5663 callout_drain(&sc->sc_cal_ch); 5664 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5665 5666 if (nstate == IEEE80211_S_SCAN) { 5667 /* 5668 * Scanning: turn off beacon miss and don't beacon. 5669 * Mark beacon state so when we reach RUN state we'll 5670 * [re]setup beacons. Unblock the task q thread so 5671 * deferred interrupt processing is done. 5672 */ 5673 ath_hal_intrset(ah, 5674 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5675 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5676 sc->sc_beacons = 0; 5677 taskqueue_unblock(sc->sc_tq); 5678 } 5679 5680 ni = vap->iv_bss; 5681 rfilt = ath_calcrxfilter(sc); 5682 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5683 vap->iv_opmode == IEEE80211_M_AHDEMO || 5684 vap->iv_opmode == IEEE80211_M_IBSS); 5685 if (stamode && nstate == IEEE80211_S_RUN) { 5686 sc->sc_curaid = ni->ni_associd; 5687 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5688 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5689 } 5690 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5691 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5692 ath_hal_setrxfilter(ah, rfilt); 5693 5694 /* XXX is this to restore keycache on resume? */ 5695 if (vap->iv_opmode != IEEE80211_M_STA && 5696 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5697 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5698 if (ath_hal_keyisvalid(ah, i)) 5699 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5700 } 5701 5702 /* 5703 * Invoke the parent method to do net80211 work. 5704 */ 5705 error = avp->av_newstate(vap, nstate, arg); 5706 if (error != 0) 5707 goto bad; 5708 5709 if (nstate == IEEE80211_S_RUN) { 5710 /* NB: collect bss node again, it may have changed */ 5711 ni = vap->iv_bss; 5712 5713 DPRINTF(sc, ATH_DEBUG_STATE, 5714 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5715 "capinfo 0x%04x chan %d\n", __func__, 5716 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5717 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5718 5719 switch (vap->iv_opmode) { 5720 #ifdef IEEE80211_SUPPORT_TDMA 5721 case IEEE80211_M_AHDEMO: 5722 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5723 break; 5724 /* fall thru... */ 5725 #endif 5726 case IEEE80211_M_HOSTAP: 5727 case IEEE80211_M_IBSS: 5728 case IEEE80211_M_MBSS: 5729 /* 5730 * Allocate and setup the beacon frame. 5731 * 5732 * Stop any previous beacon DMA. This may be 5733 * necessary, for example, when an ibss merge 5734 * causes reconfiguration; there will be a state 5735 * transition from RUN->RUN that means we may 5736 * be called with beacon transmission active. 5737 */ 5738 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5739 5740 error = ath_beacon_alloc(sc, ni); 5741 if (error != 0) 5742 goto bad; 5743 /* 5744 * If joining an adhoc network defer beacon timer 5745 * configuration to the next beacon frame so we 5746 * have a current TSF to use. Otherwise we're 5747 * starting an ibss/bss so there's no need to delay; 5748 * if this is the first vap moving to RUN state, then 5749 * beacon state needs to be [re]configured. 5750 */ 5751 if (vap->iv_opmode == IEEE80211_M_IBSS && 5752 ni->ni_tstamp.tsf != 0) { 5753 sc->sc_syncbeacon = 1; 5754 } else if (!sc->sc_beacons) { 5755 #ifdef IEEE80211_SUPPORT_TDMA 5756 if (vap->iv_caps & IEEE80211_C_TDMA) 5757 ath_tdma_config(sc, vap); 5758 else 5759 #endif 5760 ath_beacon_config(sc, vap); 5761 sc->sc_beacons = 1; 5762 } 5763 break; 5764 case IEEE80211_M_STA: 5765 /* 5766 * Defer beacon timer configuration to the next 5767 * beacon frame so we have a current TSF to use 5768 * (any TSF collected when scanning is likely old). 5769 * However if it's due to a CSA -> RUN transition, 5770 * force a beacon update so we pick up a lack of 5771 * beacons from an AP in CAC and thus force a 5772 * scan. 5773 */ 5774 sc->sc_syncbeacon = 1; 5775 if (csa_run_transition) 5776 ath_beacon_config(sc, vap); 5777 break; 5778 case IEEE80211_M_MONITOR: 5779 /* 5780 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5781 * transitions so we must re-enable interrupts here to 5782 * handle the case of a single monitor mode vap. 5783 */ 5784 ath_hal_intrset(ah, sc->sc_imask); 5785 break; 5786 case IEEE80211_M_WDS: 5787 break; 5788 default: 5789 break; 5790 } 5791 /* 5792 * Let the hal process statistics collected during a 5793 * scan so it can provide calibrated noise floor data. 5794 */ 5795 ath_hal_process_noisefloor(ah); 5796 /* 5797 * Reset rssi stats; maybe not the best place... 5798 */ 5799 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5800 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5801 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5802 /* 5803 * Finally, start any timers and the task q thread 5804 * (in case we didn't go through SCAN state). 5805 */ 5806 if (ath_longcalinterval != 0) { 5807 /* start periodic recalibration timer */ 5808 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5809 } else { 5810 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5811 "%s: calibration disabled\n", __func__); 5812 } 5813 taskqueue_unblock(sc->sc_tq); 5814 } else if (nstate == IEEE80211_S_INIT) { 5815 /* 5816 * If there are no vaps left in RUN state then 5817 * shutdown host/driver operation: 5818 * o disable interrupts 5819 * o disable the task queue thread 5820 * o mark beacon processing as stopped 5821 */ 5822 if (!ath_isanyrunningvaps(vap)) { 5823 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5824 /* disable interrupts */ 5825 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5826 taskqueue_block(sc->sc_tq); 5827 sc->sc_beacons = 0; 5828 } 5829 #ifdef IEEE80211_SUPPORT_TDMA 5830 ath_hal_setcca(ah, AH_TRUE); 5831 #endif 5832 } 5833 bad: 5834 return error; 5835 } 5836 5837 /* 5838 * Allocate a key cache slot to the station so we can 5839 * setup a mapping from key index to node. The key cache 5840 * slot is needed for managing antenna state and for 5841 * compression when stations do not use crypto. We do 5842 * it uniliaterally here; if crypto is employed this slot 5843 * will be reassigned. 5844 */ 5845 static void 5846 ath_setup_stationkey(struct ieee80211_node *ni) 5847 { 5848 struct ieee80211vap *vap = ni->ni_vap; 5849 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5850 ieee80211_keyix keyix, rxkeyix; 5851 5852 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5853 /* 5854 * Key cache is full; we'll fall back to doing 5855 * the more expensive lookup in software. Note 5856 * this also means no h/w compression. 5857 */ 5858 /* XXX msg+statistic */ 5859 } else { 5860 /* XXX locking? */ 5861 ni->ni_ucastkey.wk_keyix = keyix; 5862 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5863 /* NB: must mark device key to get called back on delete */ 5864 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5865 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5866 /* NB: this will create a pass-thru key entry */ 5867 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5868 } 5869 } 5870 5871 /* 5872 * Setup driver-specific state for a newly associated node. 5873 * Note that we're called also on a re-associate, the isnew 5874 * param tells us if this is the first time or not. 5875 */ 5876 static void 5877 ath_newassoc(struct ieee80211_node *ni, int isnew) 5878 { 5879 struct ath_node *an = ATH_NODE(ni); 5880 struct ieee80211vap *vap = ni->ni_vap; 5881 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5882 const struct ieee80211_txparam *tp = ni->ni_txparms; 5883 5884 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5885 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5886 5887 ath_rate_newassoc(sc, an, isnew); 5888 if (isnew && 5889 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5890 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5891 ath_setup_stationkey(ni); 5892 } 5893 5894 static int 5895 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5896 int nchans, struct ieee80211_channel chans[]) 5897 { 5898 struct ath_softc *sc = ic->ic_ifp->if_softc; 5899 struct ath_hal *ah = sc->sc_ah; 5900 HAL_STATUS status; 5901 5902 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5903 "%s: rd %u cc %u location %c%s\n", 5904 __func__, reg->regdomain, reg->country, reg->location, 5905 reg->ecm ? " ecm" : ""); 5906 5907 status = ath_hal_set_channels(ah, chans, nchans, 5908 reg->country, reg->regdomain); 5909 if (status != HAL_OK) { 5910 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5911 __func__, status); 5912 return EINVAL; /* XXX */ 5913 } 5914 5915 return 0; 5916 } 5917 5918 static void 5919 ath_getradiocaps(struct ieee80211com *ic, 5920 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5921 { 5922 struct ath_softc *sc = ic->ic_ifp->if_softc; 5923 struct ath_hal *ah = sc->sc_ah; 5924 5925 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5926 __func__, SKU_DEBUG, CTRY_DEFAULT); 5927 5928 /* XXX check return */ 5929 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5930 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5931 5932 } 5933 5934 static int 5935 ath_getchannels(struct ath_softc *sc) 5936 { 5937 struct ifnet *ifp = sc->sc_ifp; 5938 struct ieee80211com *ic = ifp->if_l2com; 5939 struct ath_hal *ah = sc->sc_ah; 5940 HAL_STATUS status; 5941 5942 /* 5943 * Collect channel set based on EEPROM contents. 5944 */ 5945 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5946 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5947 if (status != HAL_OK) { 5948 if_printf(ifp, "%s: unable to collect channel list from hal, " 5949 "status %d\n", __func__, status); 5950 return EINVAL; 5951 } 5952 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5953 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5954 /* XXX map Atheros sku's to net80211 SKU's */ 5955 /* XXX net80211 types too small */ 5956 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5957 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5958 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5959 ic->ic_regdomain.isocc[1] = ' '; 5960 5961 ic->ic_regdomain.ecm = 1; 5962 ic->ic_regdomain.location = 'I'; 5963 5964 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5965 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5966 __func__, sc->sc_eerd, sc->sc_eecc, 5967 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5968 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5969 return 0; 5970 } 5971 5972 static int 5973 ath_rate_setup(struct ath_softc *sc, u_int mode) 5974 { 5975 struct ath_hal *ah = sc->sc_ah; 5976 const HAL_RATE_TABLE *rt; 5977 5978 switch (mode) { 5979 case IEEE80211_MODE_11A: 5980 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5981 break; 5982 case IEEE80211_MODE_HALF: 5983 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5984 break; 5985 case IEEE80211_MODE_QUARTER: 5986 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5987 break; 5988 case IEEE80211_MODE_11B: 5989 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5990 break; 5991 case IEEE80211_MODE_11G: 5992 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5993 break; 5994 case IEEE80211_MODE_TURBO_A: 5995 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5996 break; 5997 case IEEE80211_MODE_TURBO_G: 5998 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5999 break; 6000 case IEEE80211_MODE_STURBO_A: 6001 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6002 break; 6003 case IEEE80211_MODE_11NA: 6004 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6005 break; 6006 case IEEE80211_MODE_11NG: 6007 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6008 break; 6009 default: 6010 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6011 __func__, mode); 6012 return 0; 6013 } 6014 sc->sc_rates[mode] = rt; 6015 return (rt != NULL); 6016 } 6017 6018 static void 6019 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6020 { 6021 #define N(a) (sizeof(a)/sizeof(a[0])) 6022 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6023 static const struct { 6024 u_int rate; /* tx/rx 802.11 rate */ 6025 u_int16_t timeOn; /* LED on time (ms) */ 6026 u_int16_t timeOff; /* LED off time (ms) */ 6027 } blinkrates[] = { 6028 { 108, 40, 10 }, 6029 { 96, 44, 11 }, 6030 { 72, 50, 13 }, 6031 { 48, 57, 14 }, 6032 { 36, 67, 16 }, 6033 { 24, 80, 20 }, 6034 { 22, 100, 25 }, 6035 { 18, 133, 34 }, 6036 { 12, 160, 40 }, 6037 { 10, 200, 50 }, 6038 { 6, 240, 58 }, 6039 { 4, 267, 66 }, 6040 { 2, 400, 100 }, 6041 { 0, 500, 130 }, 6042 /* XXX half/quarter rates */ 6043 }; 6044 const HAL_RATE_TABLE *rt; 6045 int i, j; 6046 6047 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6048 rt = sc->sc_rates[mode]; 6049 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6050 for (i = 0; i < rt->rateCount; i++) { 6051 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6052 if (rt->info[i].phy != IEEE80211_T_HT) 6053 sc->sc_rixmap[ieeerate] = i; 6054 else 6055 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6056 } 6057 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6058 for (i = 0; i < N(sc->sc_hwmap); i++) { 6059 if (i >= rt->rateCount) { 6060 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6061 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6062 continue; 6063 } 6064 sc->sc_hwmap[i].ieeerate = 6065 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6066 if (rt->info[i].phy == IEEE80211_T_HT) 6067 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6068 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6069 if (rt->info[i].shortPreamble || 6070 rt->info[i].phy == IEEE80211_T_OFDM) 6071 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6072 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6073 for (j = 0; j < N(blinkrates)-1; j++) 6074 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6075 break; 6076 /* NB: this uses the last entry if the rate isn't found */ 6077 /* XXX beware of overlow */ 6078 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6079 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6080 } 6081 sc->sc_currates = rt; 6082 sc->sc_curmode = mode; 6083 /* 6084 * All protection frames are transmited at 2Mb/s for 6085 * 11g, otherwise at 1Mb/s. 6086 */ 6087 if (mode == IEEE80211_MODE_11G) 6088 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6089 else 6090 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6091 /* NB: caller is responsible for resetting rate control state */ 6092 #undef N 6093 } 6094 6095 static void 6096 ath_watchdog(void *arg) 6097 { 6098 struct ath_softc *sc = arg; 6099 int do_reset = 0; 6100 6101 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6102 struct ifnet *ifp = sc->sc_ifp; 6103 uint32_t hangs; 6104 6105 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6106 hangs != 0) { 6107 if_printf(ifp, "%s hang detected (0x%x)\n", 6108 hangs & 0xff ? "bb" : "mac", hangs); 6109 } else 6110 if_printf(ifp, "device timeout\n"); 6111 do_reset = 1; 6112 ifp->if_oerrors++; 6113 sc->sc_stats.ast_watchdog++; 6114 } 6115 6116 /* 6117 * We can't hold the lock across the ath_reset() call. 6118 */ 6119 if (do_reset) { 6120 ATH_UNLOCK(sc); 6121 ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS); 6122 ATH_LOCK(sc); 6123 } 6124 6125 callout_schedule(&sc->sc_wd_ch, hz); 6126 } 6127 6128 #ifdef ATH_DIAGAPI 6129 /* 6130 * Diagnostic interface to the HAL. This is used by various 6131 * tools to do things like retrieve register contents for 6132 * debugging. The mechanism is intentionally opaque so that 6133 * it can change frequently w/o concern for compatiblity. 6134 */ 6135 static int 6136 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6137 { 6138 struct ath_hal *ah = sc->sc_ah; 6139 u_int id = ad->ad_id & ATH_DIAG_ID; 6140 void *indata = NULL; 6141 void *outdata = NULL; 6142 u_int32_t insize = ad->ad_in_size; 6143 u_int32_t outsize = ad->ad_out_size; 6144 int error = 0; 6145 6146 if (ad->ad_id & ATH_DIAG_IN) { 6147 /* 6148 * Copy in data. 6149 */ 6150 indata = malloc(insize, M_TEMP, M_NOWAIT); 6151 if (indata == NULL) { 6152 error = ENOMEM; 6153 goto bad; 6154 } 6155 error = copyin(ad->ad_in_data, indata, insize); 6156 if (error) 6157 goto bad; 6158 } 6159 if (ad->ad_id & ATH_DIAG_DYN) { 6160 /* 6161 * Allocate a buffer for the results (otherwise the HAL 6162 * returns a pointer to a buffer where we can read the 6163 * results). Note that we depend on the HAL leaving this 6164 * pointer for us to use below in reclaiming the buffer; 6165 * may want to be more defensive. 6166 */ 6167 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6168 if (outdata == NULL) { 6169 error = ENOMEM; 6170 goto bad; 6171 } 6172 } 6173 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6174 if (outsize < ad->ad_out_size) 6175 ad->ad_out_size = outsize; 6176 if (outdata != NULL) 6177 error = copyout(outdata, ad->ad_out_data, 6178 ad->ad_out_size); 6179 } else { 6180 error = EINVAL; 6181 } 6182 bad: 6183 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6184 free(indata, M_TEMP); 6185 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6186 free(outdata, M_TEMP); 6187 return error; 6188 } 6189 #endif /* ATH_DIAGAPI */ 6190 6191 static int 6192 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6193 { 6194 #define IS_RUNNING(ifp) \ 6195 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6196 struct ath_softc *sc = ifp->if_softc; 6197 struct ieee80211com *ic = ifp->if_l2com; 6198 struct ifreq *ifr = (struct ifreq *)data; 6199 const HAL_RATE_TABLE *rt; 6200 int error = 0; 6201 6202 switch (cmd) { 6203 case SIOCSIFFLAGS: 6204 ATH_LOCK(sc); 6205 if (IS_RUNNING(ifp)) { 6206 /* 6207 * To avoid rescanning another access point, 6208 * do not call ath_init() here. Instead, 6209 * only reflect promisc mode settings. 6210 */ 6211 ath_mode_init(sc); 6212 } else if (ifp->if_flags & IFF_UP) { 6213 /* 6214 * Beware of being called during attach/detach 6215 * to reset promiscuous mode. In that case we 6216 * will still be marked UP but not RUNNING. 6217 * However trying to re-init the interface 6218 * is the wrong thing to do as we've already 6219 * torn down much of our state. There's 6220 * probably a better way to deal with this. 6221 */ 6222 if (!sc->sc_invalid) 6223 ath_init(sc); /* XXX lose error */ 6224 } else { 6225 ath_stop_locked(ifp); 6226 #ifdef notyet 6227 /* XXX must wakeup in places like ath_vap_delete */ 6228 if (!sc->sc_invalid) 6229 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6230 #endif 6231 } 6232 ATH_UNLOCK(sc); 6233 break; 6234 case SIOCGIFMEDIA: 6235 case SIOCSIFMEDIA: 6236 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6237 break; 6238 case SIOCGATHSTATS: 6239 /* NB: embed these numbers to get a consistent view */ 6240 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6241 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6242 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6243 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6244 #ifdef IEEE80211_SUPPORT_TDMA 6245 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6246 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6247 #endif 6248 rt = sc->sc_currates; 6249 sc->sc_stats.ast_tx_rate = 6250 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6251 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6252 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6253 return copyout(&sc->sc_stats, 6254 ifr->ifr_data, sizeof (sc->sc_stats)); 6255 case SIOCZATHSTATS: 6256 error = priv_check(curthread, PRIV_DRIVER); 6257 if (error == 0) 6258 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6259 break; 6260 #ifdef ATH_DIAGAPI 6261 case SIOCGATHDIAG: 6262 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6263 break; 6264 case SIOCGATHPHYERR: 6265 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6266 break; 6267 #endif 6268 case SIOCGIFADDR: 6269 error = ether_ioctl(ifp, cmd, data); 6270 break; 6271 default: 6272 error = EINVAL; 6273 break; 6274 } 6275 return error; 6276 #undef IS_RUNNING 6277 } 6278 6279 /* 6280 * Announce various information on device/driver attach. 6281 */ 6282 static void 6283 ath_announce(struct ath_softc *sc) 6284 { 6285 struct ifnet *ifp = sc->sc_ifp; 6286 struct ath_hal *ah = sc->sc_ah; 6287 6288 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6289 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6290 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6291 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6292 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6293 if (bootverbose) { 6294 int i; 6295 for (i = 0; i <= WME_AC_VO; i++) { 6296 struct ath_txq *txq = sc->sc_ac2q[i]; 6297 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6298 txq->axq_qnum, ieee80211_wme_acnames[i]); 6299 } 6300 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6301 sc->sc_cabq->axq_qnum); 6302 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6303 } 6304 if (ath_rxbuf != ATH_RXBUF) 6305 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6306 if (ath_txbuf != ATH_TXBUF) 6307 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6308 if (sc->sc_mcastkey && bootverbose) 6309 if_printf(ifp, "using multicast key search\n"); 6310 } 6311 6312 #ifdef IEEE80211_SUPPORT_TDMA 6313 static void 6314 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6315 { 6316 struct ath_hal *ah = sc->sc_ah; 6317 HAL_BEACON_TIMERS bt; 6318 6319 bt.bt_intval = bintval | HAL_BEACON_ENA; 6320 bt.bt_nexttbtt = nexttbtt; 6321 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6322 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6323 bt.bt_nextatim = nexttbtt+1; 6324 /* Enables TBTT, DBA, SWBA timers by default */ 6325 bt.bt_flags = 0; 6326 ath_hal_beaconsettimers(ah, &bt); 6327 } 6328 6329 /* 6330 * Calculate the beacon interval. This is periodic in the 6331 * superframe for the bss. We assume each station is configured 6332 * identically wrt transmit rate so the guard time we calculate 6333 * above will be the same on all stations. Note we need to 6334 * factor in the xmit time because the hardware will schedule 6335 * a frame for transmit if the start of the frame is within 6336 * the burst time. When we get hardware that properly kills 6337 * frames in the PCU we can reduce/eliminate the guard time. 6338 * 6339 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6340 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6341 * with 1us timer granularity should allow us to reduce/eliminate 6342 * this. 6343 */ 6344 static void 6345 ath_tdma_bintvalsetup(struct ath_softc *sc, 6346 const struct ieee80211_tdma_state *tdma) 6347 { 6348 /* copy from vap state (XXX check all vaps have same value?) */ 6349 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6350 6351 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6352 tdma->tdma_slotcnt, 1024); 6353 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6354 if (sc->sc_tdmabintval & 1) 6355 sc->sc_tdmabintval++; 6356 6357 if (tdma->tdma_slot == 0) { 6358 /* 6359 * Only slot 0 beacons; other slots respond. 6360 */ 6361 sc->sc_imask |= HAL_INT_SWBA; 6362 sc->sc_tdmaswba = 0; /* beacon immediately */ 6363 } else { 6364 /* XXX all vaps must be slot 0 or slot !0 */ 6365 sc->sc_imask &= ~HAL_INT_SWBA; 6366 } 6367 } 6368 6369 /* 6370 * Max 802.11 overhead. This assumes no 4-address frames and 6371 * the encapsulation done by ieee80211_encap (llc). We also 6372 * include potential crypto overhead. 6373 */ 6374 #define IEEE80211_MAXOVERHEAD \ 6375 (sizeof(struct ieee80211_qosframe) \ 6376 + sizeof(struct llc) \ 6377 + IEEE80211_ADDR_LEN \ 6378 + IEEE80211_WEP_IVLEN \ 6379 + IEEE80211_WEP_KIDLEN \ 6380 + IEEE80211_WEP_CRCLEN \ 6381 + IEEE80211_WEP_MICLEN \ 6382 + IEEE80211_CRC_LEN) 6383 6384 /* 6385 * Setup initially for tdma operation. Start the beacon 6386 * timers and enable SWBA if we are slot 0. Otherwise 6387 * we wait for slot 0 to arrive so we can sync up before 6388 * starting to transmit. 6389 */ 6390 static void 6391 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6392 { 6393 struct ath_hal *ah = sc->sc_ah; 6394 struct ifnet *ifp = sc->sc_ifp; 6395 struct ieee80211com *ic = ifp->if_l2com; 6396 const struct ieee80211_txparam *tp; 6397 const struct ieee80211_tdma_state *tdma = NULL; 6398 int rix; 6399 6400 if (vap == NULL) { 6401 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6402 if (vap == NULL) { 6403 if_printf(ifp, "%s: no vaps?\n", __func__); 6404 return; 6405 } 6406 } 6407 tp = vap->iv_bss->ni_txparms; 6408 /* 6409 * Calculate the guard time for each slot. This is the 6410 * time to send a maximal-size frame according to the 6411 * fixed/lowest transmit rate. Note that the interface 6412 * mtu does not include the 802.11 overhead so we must 6413 * tack that on (ath_hal_computetxtime includes the 6414 * preamble and plcp in it's calculation). 6415 */ 6416 tdma = vap->iv_tdma; 6417 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6418 rix = ath_tx_findrix(sc, tp->ucastrate); 6419 else 6420 rix = ath_tx_findrix(sc, tp->mcastrate); 6421 /* XXX short preamble assumed */ 6422 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6423 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6424 6425 ath_hal_intrset(ah, 0); 6426 6427 ath_beaconq_config(sc); /* setup h/w beacon q */ 6428 if (sc->sc_setcca) 6429 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6430 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6431 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6432 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6433 sc->sc_syncbeacon = 0; 6434 6435 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6436 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6437 6438 ath_hal_intrset(ah, sc->sc_imask); 6439 6440 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6441 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6442 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6443 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6444 sc->sc_tdmadbaprep); 6445 } 6446 6447 /* 6448 * Update tdma operation. Called from the 802.11 layer 6449 * when a beacon is received from the TDMA station operating 6450 * in the slot immediately preceding us in the bss. Use 6451 * the rx timestamp for the beacon frame to update our 6452 * beacon timers so we follow their schedule. Note that 6453 * by using the rx timestamp we implicitly include the 6454 * propagation delay in our schedule. 6455 */ 6456 static void 6457 ath_tdma_update(struct ieee80211_node *ni, 6458 const struct ieee80211_tdma_param *tdma, int changed) 6459 { 6460 #define TSF_TO_TU(_h,_l) \ 6461 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6462 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6463 struct ieee80211vap *vap = ni->ni_vap; 6464 struct ieee80211com *ic = ni->ni_ic; 6465 struct ath_softc *sc = ic->ic_ifp->if_softc; 6466 struct ath_hal *ah = sc->sc_ah; 6467 const HAL_RATE_TABLE *rt = sc->sc_currates; 6468 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6469 u_int32_t txtime, nextslottu; 6470 int32_t tudelta, tsfdelta; 6471 const struct ath_rx_status *rs; 6472 int rix; 6473 6474 sc->sc_stats.ast_tdma_update++; 6475 6476 /* 6477 * Check for and adopt configuration changes. 6478 */ 6479 if (changed != 0) { 6480 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6481 6482 ath_tdma_bintvalsetup(sc, ts); 6483 if (changed & TDMA_UPDATE_SLOTLEN) 6484 ath_wme_update(ic); 6485 6486 DPRINTF(sc, ATH_DEBUG_TDMA, 6487 "%s: adopt slot %u slotcnt %u slotlen %u us " 6488 "bintval %u TU\n", __func__, 6489 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6490 sc->sc_tdmabintval); 6491 6492 /* XXX right? */ 6493 ath_hal_intrset(ah, sc->sc_imask); 6494 /* NB: beacon timers programmed below */ 6495 } 6496 6497 /* extend rx timestamp to 64 bits */ 6498 rs = sc->sc_lastrs; 6499 tsf = ath_hal_gettsf64(ah); 6500 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6501 /* 6502 * The rx timestamp is set by the hardware on completing 6503 * reception (at the point where the rx descriptor is DMA'd 6504 * to the host). To find the start of our next slot we 6505 * must adjust this time by the time required to send 6506 * the packet just received. 6507 */ 6508 rix = rt->rateCodeToIndex[rs->rs_rate]; 6509 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6510 rt->info[rix].shortPreamble); 6511 /* NB: << 9 is to cvt to TU and /2 */ 6512 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6513 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6514 6515 /* 6516 * Retrieve the hardware NextTBTT in usecs 6517 * and calculate the difference between what the 6518 * other station thinks and what we have programmed. This 6519 * lets us figure how to adjust our timers to match. The 6520 * adjustments are done by pulling the TSF forward and possibly 6521 * rewriting the beacon timers. 6522 */ 6523 nexttbtt = ath_hal_getnexttbtt(ah); 6524 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6525 6526 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6527 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6528 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6529 6530 if (tsfdelta < 0) { 6531 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6532 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6533 tsfdelta = -tsfdelta % 1024; 6534 nextslottu++; 6535 } else if (tsfdelta > 0) { 6536 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6537 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6538 tsfdelta = 1024 - (tsfdelta % 1024); 6539 nextslottu++; 6540 } else { 6541 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6542 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6543 } 6544 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6545 6546 /* 6547 * Copy sender's timetstamp into tdma ie so they can 6548 * calculate roundtrip time. We submit a beacon frame 6549 * below after any timer adjustment. The frame goes out 6550 * at the next TBTT so the sender can calculate the 6551 * roundtrip by inspecting the tdma ie in our beacon frame. 6552 * 6553 * NB: This tstamp is subtlely preserved when 6554 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6555 * slot position changes) because ieee80211_add_tdma 6556 * skips over the data. 6557 */ 6558 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6559 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6560 &ni->ni_tstamp.data, 8); 6561 #if 0 6562 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6563 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6564 (unsigned long long) tsf, (unsigned long long) nextslot, 6565 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6566 #endif 6567 /* 6568 * Adjust the beacon timers only when pulling them forward 6569 * or when going back by less than the beacon interval. 6570 * Negative jumps larger than the beacon interval seem to 6571 * cause the timers to stop and generally cause instability. 6572 * This basically filters out jumps due to missed beacons. 6573 */ 6574 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6575 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6576 sc->sc_stats.ast_tdma_timers++; 6577 } 6578 if (tsfdelta > 0) { 6579 ath_hal_adjusttsf(ah, tsfdelta); 6580 sc->sc_stats.ast_tdma_tsf++; 6581 } 6582 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6583 #undef TU_TO_TSF 6584 #undef TSF_TO_TU 6585 } 6586 6587 /* 6588 * Transmit a beacon frame at SWBA. Dynamic updates 6589 * to the frame contents are done as needed. 6590 */ 6591 static void 6592 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6593 { 6594 struct ath_hal *ah = sc->sc_ah; 6595 struct ath_buf *bf; 6596 int otherant; 6597 6598 /* 6599 * Check if the previous beacon has gone out. If 6600 * not don't try to post another, skip this period 6601 * and wait for the next. Missed beacons indicate 6602 * a problem and should not occur. If we miss too 6603 * many consecutive beacons reset the device. 6604 */ 6605 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6606 sc->sc_bmisscount++; 6607 DPRINTF(sc, ATH_DEBUG_BEACON, 6608 "%s: missed %u consecutive beacons\n", 6609 __func__, sc->sc_bmisscount); 6610 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6611 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6612 return; 6613 } 6614 if (sc->sc_bmisscount != 0) { 6615 DPRINTF(sc, ATH_DEBUG_BEACON, 6616 "%s: resume beacon xmit after %u misses\n", 6617 __func__, sc->sc_bmisscount); 6618 sc->sc_bmisscount = 0; 6619 } 6620 6621 /* 6622 * Check recent per-antenna transmit statistics and flip 6623 * the default antenna if noticeably more frames went out 6624 * on the non-default antenna. 6625 * XXX assumes 2 anntenae 6626 */ 6627 if (!sc->sc_diversity) { 6628 otherant = sc->sc_defant & 1 ? 2 : 1; 6629 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6630 ath_setdefantenna(sc, otherant); 6631 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6632 } 6633 6634 bf = ath_beacon_generate(sc, vap); 6635 if (bf != NULL) { 6636 /* 6637 * Stop any current dma and put the new frame on the queue. 6638 * This should never fail since we check above that no frames 6639 * are still pending on the queue. 6640 */ 6641 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6642 DPRINTF(sc, ATH_DEBUG_ANY, 6643 "%s: beacon queue %u did not stop?\n", 6644 __func__, sc->sc_bhalq); 6645 /* NB: the HAL still stops DMA, so proceed */ 6646 } 6647 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6648 ath_hal_txstart(ah, sc->sc_bhalq); 6649 6650 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6651 6652 /* 6653 * Record local TSF for our last send for use 6654 * in arbitrating slot collisions. 6655 */ 6656 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6657 } 6658 } 6659 #endif /* IEEE80211_SUPPORT_TDMA */ 6660 6661 static void 6662 ath_dfs_tasklet(void *p, int npending) 6663 { 6664 struct ath_softc *sc = (struct ath_softc *) p; 6665 struct ifnet *ifp = sc->sc_ifp; 6666 struct ieee80211com *ic = ifp->if_l2com; 6667 6668 /* 6669 * If previous processing has found a radar event, 6670 * signal this to the net80211 layer to begin DFS 6671 * processing. 6672 */ 6673 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6674 /* DFS event found, initiate channel change */ 6675 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6676 } 6677 } 6678 6679 MODULE_VERSION(if_ath, 1); 6680 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6681