1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 */ 46 #include "opt_ah.h" 47 #include "opt_wlan.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 #include <sys/kthread.h> 64 #include <sys/taskqueue.h> 65 #include <sys/priv.h> 66 #include <sys/module.h> 67 #include <sys/ktr.h> 68 #include <sys/smp.h> /* for mp_ncpus */ 69 70 #include <machine/bus.h> 71 72 #include <net/if.h> 73 #include <net/if_dl.h> 74 #include <net/if_media.h> 75 #include <net/if_types.h> 76 #include <net/if_arp.h> 77 #include <net/ethernet.h> 78 #include <net/if_llc.h> 79 80 #include <net80211/ieee80211_var.h> 81 #include <net80211/ieee80211_regdomain.h> 82 #ifdef IEEE80211_SUPPORT_SUPERG 83 #include <net80211/ieee80211_superg.h> 84 #endif 85 #ifdef IEEE80211_SUPPORT_TDMA 86 #include <net80211/ieee80211_tdma.h> 87 #endif 88 89 #include <net/bpf.h> 90 91 #ifdef INET 92 #include <netinet/in.h> 93 #include <netinet/if_ether.h> 94 #endif 95 96 #include <dev/ath/if_athvar.h> 97 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 98 #include <dev/ath/ath_hal/ah_diagcodes.h> 99 100 #include <dev/ath/if_ath_debug.h> 101 #include <dev/ath/if_ath_misc.h> 102 #include <dev/ath/if_ath_tx.h> 103 #include <dev/ath/if_ath_sysctl.h> 104 #include <dev/ath/if_ath_keycache.h> 105 #include <dev/ath/if_athdfs.h> 106 107 #ifdef ATH_TX99_DIAG 108 #include <dev/ath/ath_tx99/ath_tx99.h> 109 #endif 110 111 #define ATH_KTR_INTR KTR_SPARE4 112 #define ATH_KTR_ERR KTR_SPARE3 113 114 /* 115 * ATH_BCBUF determines the number of vap's that can transmit 116 * beacons and also (currently) the number of vap's that can 117 * have unique mac addresses/bssid. When staggering beacons 118 * 4 is probably a good max as otherwise the beacons become 119 * very closely spaced and there is limited time for cab q traffic 120 * to go out. You can burst beacons instead but that is not good 121 * for stations in power save and at some point you really want 122 * another radio (and channel). 123 * 124 * The limit on the number of mac addresses is tied to our use of 125 * the U/L bit and tracking addresses in a byte; it would be 126 * worthwhile to allow more for applications like proxy sta. 127 */ 128 CTASSERT(ATH_BCBUF <= 8); 129 130 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 131 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 132 const uint8_t [IEEE80211_ADDR_LEN], 133 const uint8_t [IEEE80211_ADDR_LEN]); 134 static void ath_vap_delete(struct ieee80211vap *); 135 static void ath_init(void *); 136 static void ath_stop_locked(struct ifnet *); 137 static void ath_stop(struct ifnet *); 138 static void ath_start(struct ifnet *); 139 static int ath_reset_vap(struct ieee80211vap *, u_long); 140 static int ath_media_change(struct ifnet *); 141 static void ath_watchdog(void *); 142 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 143 static void ath_fatal_proc(void *, int); 144 static void ath_bmiss_vap(struct ieee80211vap *); 145 static void ath_bmiss_proc(void *, int); 146 static void ath_key_update_begin(struct ieee80211vap *); 147 static void ath_key_update_end(struct ieee80211vap *); 148 static void ath_update_mcast(struct ifnet *); 149 static void ath_update_promisc(struct ifnet *); 150 static void ath_mode_init(struct ath_softc *); 151 static void ath_setslottime(struct ath_softc *); 152 static void ath_updateslot(struct ifnet *); 153 static int ath_beaconq_setup(struct ath_hal *); 154 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 155 static void ath_beacon_update(struct ieee80211vap *, int item); 156 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 157 static void ath_beacon_proc(void *, int); 158 static struct ath_buf *ath_beacon_generate(struct ath_softc *, 159 struct ieee80211vap *); 160 static void ath_bstuck_proc(void *, int); 161 static void ath_beacon_return(struct ath_softc *, struct ath_buf *); 162 static void ath_beacon_free(struct ath_softc *); 163 static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *); 164 static void ath_descdma_cleanup(struct ath_softc *sc, 165 struct ath_descdma *, ath_bufhead *); 166 static int ath_desc_alloc(struct ath_softc *); 167 static void ath_desc_free(struct ath_softc *); 168 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 169 const uint8_t [IEEE80211_ADDR_LEN]); 170 static void ath_node_cleanup(struct ieee80211_node *); 171 static void ath_node_free(struct ieee80211_node *); 172 static void ath_node_getsignal(const struct ieee80211_node *, 173 int8_t *, int8_t *); 174 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 175 static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 176 int subtype, int rssi, int nf); 177 static void ath_setdefantenna(struct ath_softc *, u_int); 178 static void ath_rx_proc(struct ath_softc *sc, int); 179 static void ath_rx_tasklet(void *, int); 180 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 181 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 182 static int ath_tx_setup(struct ath_softc *, int, int); 183 static int ath_wme_update(struct ieee80211com *); 184 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 185 static void ath_tx_cleanup(struct ath_softc *); 186 static void ath_tx_proc_q0(void *, int); 187 static void ath_tx_proc_q0123(void *, int); 188 static void ath_tx_proc(void *, int); 189 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type); 191 static void ath_stoprecv(struct ath_softc *, int); 192 static int ath_startrecv(struct ath_softc *); 193 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 194 static void ath_scan_start(struct ieee80211com *); 195 static void ath_scan_end(struct ieee80211com *); 196 static void ath_set_channel(struct ieee80211com *); 197 static void ath_calibrate(void *); 198 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 199 static void ath_setup_stationkey(struct ieee80211_node *); 200 static void ath_newassoc(struct ieee80211_node *, int); 201 static int ath_setregdomain(struct ieee80211com *, 202 struct ieee80211_regdomain *, int, 203 struct ieee80211_channel []); 204 static void ath_getradiocaps(struct ieee80211com *, int, int *, 205 struct ieee80211_channel []); 206 static int ath_getchannels(struct ath_softc *); 207 static void ath_led_event(struct ath_softc *, int); 208 209 static int ath_rate_setup(struct ath_softc *, u_int mode); 210 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 211 212 static void ath_announce(struct ath_softc *); 213 214 static void ath_dfs_tasklet(void *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, 218 u_int32_t bintval); 219 static void ath_tdma_bintvalsetup(struct ath_softc *sc, 220 const struct ieee80211_tdma_state *tdma); 221 static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap); 222 static void ath_tdma_update(struct ieee80211_node *ni, 223 const struct ieee80211_tdma_param *tdma, int); 224 static void ath_tdma_beacon_send(struct ath_softc *sc, 225 struct ieee80211vap *vap); 226 227 #define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */ 228 #define TDMA_LPF_LEN 6 229 #define TDMA_DUMMY_MARKER 0x127 230 #define TDMA_EP_MUL(x, mul) ((x) * (mul)) 231 #define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER)) 232 #define TDMA_LPF(x, y, len) \ 233 ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y)) 234 #define TDMA_SAMPLE(x, y) do { \ 235 x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \ 236 } while (0) 237 #define TDMA_EP_RND(x,mul) \ 238 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 239 #define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER) 240 #endif /* IEEE80211_SUPPORT_TDMA */ 241 242 SYSCTL_DECL(_hw_ath); 243 244 /* XXX validate sysctl values */ 245 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 246 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 247 0, "long chip calibration interval (secs)"); 248 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 249 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 250 0, "short chip calibration interval (msecs)"); 251 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 252 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 253 0, "reset chip calibration results (secs)"); 254 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 255 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 256 0, "ANI calibration (msecs)"); 257 258 static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 259 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 260 0, "rx buffers allocated"); 261 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 262 static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 263 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 264 0, "tx buffers allocated"); 265 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 266 267 static int ath_bstuck_threshold = 4; /* max missed beacons */ 268 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 269 0, "max missed beacon xmits before chip reset"); 270 271 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 272 273 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 274 #define HAL_MODE_HT40 \ 275 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 276 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 277 int 278 ath_attach(u_int16_t devid, struct ath_softc *sc) 279 { 280 struct ifnet *ifp; 281 struct ieee80211com *ic; 282 struct ath_hal *ah = NULL; 283 HAL_STATUS status; 284 int error = 0, i; 285 u_int wmodes; 286 uint8_t macaddr[IEEE80211_ADDR_LEN]; 287 288 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 289 290 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 291 if (ifp == NULL) { 292 device_printf(sc->sc_dev, "can not if_alloc()\n"); 293 error = ENOSPC; 294 goto bad; 295 } 296 ic = ifp->if_l2com; 297 298 /* set these up early for if_printf use */ 299 if_initname(ifp, device_get_name(sc->sc_dev), 300 device_get_unit(sc->sc_dev)); 301 302 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 303 sc->sc_eepromdata, &status); 304 if (ah == NULL) { 305 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 306 status); 307 error = ENXIO; 308 goto bad; 309 } 310 sc->sc_ah = ah; 311 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 312 #ifdef ATH_DEBUG 313 sc->sc_debug = ath_debug; 314 #endif 315 316 /* 317 * Check if the MAC has multi-rate retry support. 318 * We do this by trying to setup a fake extended 319 * descriptor. MAC's that don't have support will 320 * return false w/o doing anything. MAC's that do 321 * support it will return true w/o doing anything. 322 */ 323 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 324 325 /* 326 * Check if the device has hardware counters for PHY 327 * errors. If so we need to enable the MIB interrupt 328 * so we can act on stat triggers. 329 */ 330 if (ath_hal_hwphycounters(ah)) 331 sc->sc_needmib = 1; 332 333 /* 334 * Get the hardware key cache size. 335 */ 336 sc->sc_keymax = ath_hal_keycachesize(ah); 337 if (sc->sc_keymax > ATH_KEYMAX) { 338 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 339 ATH_KEYMAX, sc->sc_keymax); 340 sc->sc_keymax = ATH_KEYMAX; 341 } 342 /* 343 * Reset the key cache since some parts do not 344 * reset the contents on initial power up. 345 */ 346 for (i = 0; i < sc->sc_keymax; i++) 347 ath_hal_keyreset(ah, i); 348 349 /* 350 * Collect the default channel list. 351 */ 352 error = ath_getchannels(sc); 353 if (error != 0) 354 goto bad; 355 356 /* 357 * Setup rate tables for all potential media types. 358 */ 359 ath_rate_setup(sc, IEEE80211_MODE_11A); 360 ath_rate_setup(sc, IEEE80211_MODE_11B); 361 ath_rate_setup(sc, IEEE80211_MODE_11G); 362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 363 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 364 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 365 ath_rate_setup(sc, IEEE80211_MODE_11NA); 366 ath_rate_setup(sc, IEEE80211_MODE_11NG); 367 ath_rate_setup(sc, IEEE80211_MODE_HALF); 368 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 369 370 /* NB: setup here so ath_rate_update is happy */ 371 ath_setcurmode(sc, IEEE80211_MODE_11A); 372 373 /* 374 * Allocate tx+rx descriptors and populate the lists. 375 */ 376 error = ath_desc_alloc(sc); 377 if (error != 0) { 378 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 379 goto bad; 380 } 381 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 382 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 383 384 ATH_TXBUF_LOCK_INIT(sc); 385 386 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 387 taskqueue_thread_enqueue, &sc->sc_tq); 388 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 389 "%s taskq", ifp->if_xname); 390 391 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc); 392 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 393 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 394 395 /* 396 * Allocate hardware transmit queues: one queue for 397 * beacon frames and one data queue for each QoS 398 * priority. Note that the hal handles resetting 399 * these queues at the needed time. 400 * 401 * XXX PS-Poll 402 */ 403 sc->sc_bhalq = ath_beaconq_setup(ah); 404 if (sc->sc_bhalq == (u_int) -1) { 405 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 406 error = EIO; 407 goto bad2; 408 } 409 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 410 if (sc->sc_cabq == NULL) { 411 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 412 error = EIO; 413 goto bad2; 414 } 415 /* NB: insure BK queue is the lowest priority h/w queue */ 416 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 417 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 418 ieee80211_wme_acnames[WME_AC_BK]); 419 error = EIO; 420 goto bad2; 421 } 422 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 423 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 424 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 425 /* 426 * Not enough hardware tx queues to properly do WME; 427 * just punt and assign them all to the same h/w queue. 428 * We could do a better job of this if, for example, 429 * we allocate queues when we switch from station to 430 * AP mode. 431 */ 432 if (sc->sc_ac2q[WME_AC_VI] != NULL) 433 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 434 if (sc->sc_ac2q[WME_AC_BE] != NULL) 435 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 436 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 437 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 438 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 439 } 440 441 /* 442 * Special case certain configurations. Note the 443 * CAB queue is handled by these specially so don't 444 * include them when checking the txq setup mask. 445 */ 446 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 447 case 0x01: 448 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 449 break; 450 case 0x0f: 451 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 452 break; 453 default: 454 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 455 break; 456 } 457 458 /* 459 * Setup rate control. Some rate control modules 460 * call back to change the anntena state so expose 461 * the necessary entry points. 462 * XXX maybe belongs in struct ath_ratectrl? 463 */ 464 sc->sc_setdefantenna = ath_setdefantenna; 465 sc->sc_rc = ath_rate_attach(sc); 466 if (sc->sc_rc == NULL) { 467 error = EIO; 468 goto bad2; 469 } 470 471 /* Attach DFS module */ 472 if (! ath_dfs_attach(sc)) { 473 device_printf(sc->sc_dev, 474 "%s: unable to attach DFS\n", __func__); 475 error = EIO; 476 goto bad2; 477 } 478 479 /* Start DFS processing tasklet */ 480 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 481 482 sc->sc_blinking = 0; 483 sc->sc_ledstate = 1; 484 sc->sc_ledon = 0; /* low true */ 485 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 486 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 487 /* 488 * Auto-enable soft led processing for IBM cards and for 489 * 5211 minipci cards. Users can also manually enable/disable 490 * support with a sysctl. 491 */ 492 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 493 if (sc->sc_softled) { 494 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 495 HAL_GPIO_MUX_MAC_NETWORK_LED); 496 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 497 } 498 499 ifp->if_softc = sc; 500 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 501 ifp->if_start = ath_start; 502 ifp->if_ioctl = ath_ioctl; 503 ifp->if_init = ath_init; 504 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 505 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 506 IFQ_SET_READY(&ifp->if_snd); 507 508 ic->ic_ifp = ifp; 509 /* XXX not right but it's not used anywhere important */ 510 ic->ic_phytype = IEEE80211_T_OFDM; 511 ic->ic_opmode = IEEE80211_M_STA; 512 ic->ic_caps = 513 IEEE80211_C_STA /* station mode */ 514 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 515 | IEEE80211_C_HOSTAP /* hostap mode */ 516 | IEEE80211_C_MONITOR /* monitor mode */ 517 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 518 | IEEE80211_C_WDS /* 4-address traffic works */ 519 | IEEE80211_C_MBSS /* mesh point link mode */ 520 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 521 | IEEE80211_C_SHSLOT /* short slot time supported */ 522 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 523 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 524 | IEEE80211_C_TXFRAG /* handle tx frags */ 525 #ifdef ATH_ENABLE_DFS 526 | IEEE80211_C_DFS /* Enable radar detection */ 527 #endif 528 ; 529 /* 530 * Query the hal to figure out h/w crypto support. 531 */ 532 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 533 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 534 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 535 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 537 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 539 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 541 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 542 /* 543 * Check if h/w does the MIC and/or whether the 544 * separate key cache entries are required to 545 * handle both tx+rx MIC keys. 546 */ 547 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 548 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 549 /* 550 * If the h/w supports storing tx+rx MIC keys 551 * in one cache slot automatically enable use. 552 */ 553 if (ath_hal_hastkipsplit(ah) || 554 !ath_hal_settkipsplit(ah, AH_FALSE)) 555 sc->sc_splitmic = 1; 556 /* 557 * If the h/w can do TKIP MIC together with WME then 558 * we use it; otherwise we force the MIC to be done 559 * in software by the net80211 layer. 560 */ 561 if (ath_hal_haswmetkipmic(ah)) 562 sc->sc_wmetkipmic = 1; 563 } 564 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 565 /* 566 * Check for multicast key search support. 567 */ 568 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 569 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 570 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 571 } 572 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 573 /* 574 * Mark key cache slots associated with global keys 575 * as in use. If we knew TKIP was not to be used we 576 * could leave the +32, +64, and +32+64 slots free. 577 */ 578 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 579 setbit(sc->sc_keymap, i); 580 setbit(sc->sc_keymap, i+64); 581 if (sc->sc_splitmic) { 582 setbit(sc->sc_keymap, i+32); 583 setbit(sc->sc_keymap, i+32+64); 584 } 585 } 586 /* 587 * TPC support can be done either with a global cap or 588 * per-packet support. The latter is not available on 589 * all parts. We're a bit pedantic here as all parts 590 * support a global cap. 591 */ 592 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 593 ic->ic_caps |= IEEE80211_C_TXPMGT; 594 595 /* 596 * Mark WME capability only if we have sufficient 597 * hardware queues to do proper priority scheduling. 598 */ 599 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 600 ic->ic_caps |= IEEE80211_C_WME; 601 /* 602 * Check for misc other capabilities. 603 */ 604 if (ath_hal_hasbursting(ah)) 605 ic->ic_caps |= IEEE80211_C_BURST; 606 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 607 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 608 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 609 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 610 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 611 if (ath_hal_hasfastframes(ah)) 612 ic->ic_caps |= IEEE80211_C_FF; 613 wmodes = ath_hal_getwirelessmodes(ah); 614 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 615 ic->ic_caps |= IEEE80211_C_TURBOP; 616 #ifdef IEEE80211_SUPPORT_TDMA 617 if (ath_hal_macversion(ah) > 0x78) { 618 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 619 ic->ic_tdma_update = ath_tdma_update; 620 } 621 #endif 622 623 /* 624 * The if_ath 11n support is completely not ready for normal use. 625 * Enabling this option will likely break everything and everything. 626 * Don't think of doing that unless you know what you're doing. 627 */ 628 629 #ifdef ATH_ENABLE_11N 630 /* 631 * Query HT capabilities 632 */ 633 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 634 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 635 int rxs, txs; 636 637 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 638 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 639 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 640 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 641 | IEEE80211_HTCAP_MAXAMSDU_3839 642 /* max A-MSDU length */ 643 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 644 ; 645 646 /* 647 * Enable short-GI for HT20 only if the hardware 648 * advertises support. 649 * Notably, anything earlier than the AR9287 doesn't. 650 */ 651 if ((ath_hal_getcapability(ah, 652 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 653 (wmodes & HAL_MODE_HT20)) { 654 device_printf(sc->sc_dev, 655 "[HT] enabling short-GI in 20MHz mode\n"); 656 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 657 } 658 659 if (wmodes & HAL_MODE_HT40) 660 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 661 | IEEE80211_HTCAP_SHORTGI40; 662 663 /* 664 * TX/RX streams need to be taken into account when 665 * negotiating which MCS rates it'll receive and 666 * what MCS rates are available for TX. 667 */ 668 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs); 669 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs); 670 671 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 672 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 673 674 ic->ic_txstream = txs; 675 ic->ic_rxstream = rxs; 676 677 device_printf(sc->sc_dev, 678 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 679 } 680 #endif 681 682 /* 683 * Check if the hardware requires PCI register serialisation. 684 * Some of the Owl based MACs require this. 685 */ 686 if (mp_ncpus > 1 && 687 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 688 0, NULL) == HAL_OK) { 689 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 690 device_printf(sc->sc_dev, 691 "Enabling register serialisation\n"); 692 } 693 694 /* 695 * Indicate we need the 802.11 header padded to a 696 * 32-bit boundary for 4-address and QoS frames. 697 */ 698 ic->ic_flags |= IEEE80211_F_DATAPAD; 699 700 /* 701 * Query the hal about antenna support. 702 */ 703 sc->sc_defant = ath_hal_getdefantenna(ah); 704 705 /* 706 * Not all chips have the VEOL support we want to 707 * use with IBSS beacons; check here for it. 708 */ 709 sc->sc_hasveol = ath_hal_hasveol(ah); 710 711 /* get mac address from hardware */ 712 ath_hal_getmac(ah, macaddr); 713 if (sc->sc_hasbmask) 714 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 715 716 /* NB: used to size node table key mapping array */ 717 ic->ic_max_keyix = sc->sc_keymax; 718 /* call MI attach routine. */ 719 ieee80211_ifattach(ic, macaddr); 720 ic->ic_setregdomain = ath_setregdomain; 721 ic->ic_getradiocaps = ath_getradiocaps; 722 sc->sc_opmode = HAL_M_STA; 723 724 /* override default methods */ 725 ic->ic_newassoc = ath_newassoc; 726 ic->ic_updateslot = ath_updateslot; 727 ic->ic_wme.wme_update = ath_wme_update; 728 ic->ic_vap_create = ath_vap_create; 729 ic->ic_vap_delete = ath_vap_delete; 730 ic->ic_raw_xmit = ath_raw_xmit; 731 ic->ic_update_mcast = ath_update_mcast; 732 ic->ic_update_promisc = ath_update_promisc; 733 ic->ic_node_alloc = ath_node_alloc; 734 sc->sc_node_free = ic->ic_node_free; 735 ic->ic_node_free = ath_node_free; 736 sc->sc_node_cleanup = ic->ic_node_cleanup; 737 ic->ic_node_cleanup = ath_node_cleanup; 738 ic->ic_node_getsignal = ath_node_getsignal; 739 ic->ic_scan_start = ath_scan_start; 740 ic->ic_scan_end = ath_scan_end; 741 ic->ic_set_channel = ath_set_channel; 742 743 /* 802.11n specific - but just override anyway */ 744 sc->sc_addba_request = ic->ic_addba_request; 745 sc->sc_addba_response = ic->ic_addba_response; 746 sc->sc_addba_stop = ic->ic_addba_stop; 747 sc->sc_bar_response = ic->ic_bar_response; 748 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 749 750 ic->ic_addba_request = ath_addba_request; 751 ic->ic_addba_response = ath_addba_response; 752 ic->ic_addba_response_timeout = ath_addba_response_timeout; 753 ic->ic_addba_stop = ath_addba_stop; 754 ic->ic_bar_response = ath_bar_response; 755 756 ieee80211_radiotap_attach(ic, 757 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 758 ATH_TX_RADIOTAP_PRESENT, 759 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 760 ATH_RX_RADIOTAP_PRESENT); 761 762 /* 763 * Setup dynamic sysctl's now that country code and 764 * regdomain are available from the hal. 765 */ 766 ath_sysctlattach(sc); 767 ath_sysctl_stats_attach(sc); 768 ath_sysctl_hal_attach(sc); 769 770 if (bootverbose) 771 ieee80211_announce(ic); 772 ath_announce(sc); 773 return 0; 774 bad2: 775 ath_tx_cleanup(sc); 776 ath_desc_free(sc); 777 bad: 778 if (ah) 779 ath_hal_detach(ah); 780 if (ifp != NULL) 781 if_free(ifp); 782 sc->sc_invalid = 1; 783 return error; 784 } 785 786 int 787 ath_detach(struct ath_softc *sc) 788 { 789 struct ifnet *ifp = sc->sc_ifp; 790 791 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 792 __func__, ifp->if_flags); 793 794 /* 795 * NB: the order of these is important: 796 * o stop the chip so no more interrupts will fire 797 * o call the 802.11 layer before detaching the hal to 798 * insure callbacks into the driver to delete global 799 * key cache entries can be handled 800 * o free the taskqueue which drains any pending tasks 801 * o reclaim the tx queue data structures after calling 802 * the 802.11 layer as we'll get called back to reclaim 803 * node state and potentially want to use them 804 * o to cleanup the tx queues the hal is called, so detach 805 * it last 806 * Other than that, it's straightforward... 807 */ 808 ath_stop(ifp); 809 ieee80211_ifdetach(ifp->if_l2com); 810 taskqueue_free(sc->sc_tq); 811 #ifdef ATH_TX99_DIAG 812 if (sc->sc_tx99 != NULL) 813 sc->sc_tx99->detach(sc->sc_tx99); 814 #endif 815 ath_rate_detach(sc->sc_rc); 816 817 ath_dfs_detach(sc); 818 ath_desc_free(sc); 819 ath_tx_cleanup(sc); 820 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 821 if_free(ifp); 822 823 return 0; 824 } 825 826 /* 827 * MAC address handling for multiple BSS on the same radio. 828 * The first vap uses the MAC address from the EEPROM. For 829 * subsequent vap's we set the U/L bit (bit 1) in the MAC 830 * address and use the next six bits as an index. 831 */ 832 static void 833 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 834 { 835 int i; 836 837 if (clone && sc->sc_hasbmask) { 838 /* NB: we only do this if h/w supports multiple bssid */ 839 for (i = 0; i < 8; i++) 840 if ((sc->sc_bssidmask & (1<<i)) == 0) 841 break; 842 if (i != 0) 843 mac[0] |= (i << 2)|0x2; 844 } else 845 i = 0; 846 sc->sc_bssidmask |= 1<<i; 847 sc->sc_hwbssidmask[0] &= ~mac[0]; 848 if (i == 0) 849 sc->sc_nbssid0++; 850 } 851 852 static void 853 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 854 { 855 int i = mac[0] >> 2; 856 uint8_t mask; 857 858 if (i != 0 || --sc->sc_nbssid0 == 0) { 859 sc->sc_bssidmask &= ~(1<<i); 860 /* recalculate bssid mask from remaining addresses */ 861 mask = 0xff; 862 for (i = 1; i < 8; i++) 863 if (sc->sc_bssidmask & (1<<i)) 864 mask &= ~((i<<2)|0x2); 865 sc->sc_hwbssidmask[0] |= mask; 866 } 867 } 868 869 /* 870 * Assign a beacon xmit slot. We try to space out 871 * assignments so when beacons are staggered the 872 * traffic coming out of the cab q has maximal time 873 * to go out before the next beacon is scheduled. 874 */ 875 static int 876 assign_bslot(struct ath_softc *sc) 877 { 878 u_int slot, free; 879 880 free = 0; 881 for (slot = 0; slot < ATH_BCBUF; slot++) 882 if (sc->sc_bslot[slot] == NULL) { 883 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 884 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 885 return slot; 886 free = slot; 887 /* NB: keep looking for a double slot */ 888 } 889 return free; 890 } 891 892 static struct ieee80211vap * 893 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 894 enum ieee80211_opmode opmode, int flags, 895 const uint8_t bssid[IEEE80211_ADDR_LEN], 896 const uint8_t mac0[IEEE80211_ADDR_LEN]) 897 { 898 struct ath_softc *sc = ic->ic_ifp->if_softc; 899 struct ath_vap *avp; 900 struct ieee80211vap *vap; 901 uint8_t mac[IEEE80211_ADDR_LEN]; 902 int needbeacon, error; 903 enum ieee80211_opmode ic_opmode; 904 905 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 906 M_80211_VAP, M_WAITOK | M_ZERO); 907 needbeacon = 0; 908 IEEE80211_ADDR_COPY(mac, mac0); 909 910 ATH_LOCK(sc); 911 ic_opmode = opmode; /* default to opmode of new vap */ 912 switch (opmode) { 913 case IEEE80211_M_STA: 914 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 915 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 916 goto bad; 917 } 918 if (sc->sc_nvaps) { 919 /* 920 * With multiple vaps we must fall back 921 * to s/w beacon miss handling. 922 */ 923 flags |= IEEE80211_CLONE_NOBEACONS; 924 } 925 if (flags & IEEE80211_CLONE_NOBEACONS) { 926 /* 927 * Station mode w/o beacons are implemented w/ AP mode. 928 */ 929 ic_opmode = IEEE80211_M_HOSTAP; 930 } 931 break; 932 case IEEE80211_M_IBSS: 933 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 934 device_printf(sc->sc_dev, 935 "only 1 ibss vap supported\n"); 936 goto bad; 937 } 938 needbeacon = 1; 939 break; 940 case IEEE80211_M_AHDEMO: 941 #ifdef IEEE80211_SUPPORT_TDMA 942 if (flags & IEEE80211_CLONE_TDMA) { 943 if (sc->sc_nvaps != 0) { 944 device_printf(sc->sc_dev, 945 "only 1 tdma vap supported\n"); 946 goto bad; 947 } 948 needbeacon = 1; 949 flags |= IEEE80211_CLONE_NOBEACONS; 950 } 951 /* fall thru... */ 952 #endif 953 case IEEE80211_M_MONITOR: 954 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 955 /* 956 * Adopt existing mode. Adding a monitor or ahdemo 957 * vap to an existing configuration is of dubious 958 * value but should be ok. 959 */ 960 /* XXX not right for monitor mode */ 961 ic_opmode = ic->ic_opmode; 962 } 963 break; 964 case IEEE80211_M_HOSTAP: 965 case IEEE80211_M_MBSS: 966 needbeacon = 1; 967 break; 968 case IEEE80211_M_WDS: 969 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 970 device_printf(sc->sc_dev, 971 "wds not supported in sta mode\n"); 972 goto bad; 973 } 974 /* 975 * Silently remove any request for a unique 976 * bssid; WDS vap's always share the local 977 * mac address. 978 */ 979 flags &= ~IEEE80211_CLONE_BSSID; 980 if (sc->sc_nvaps == 0) 981 ic_opmode = IEEE80211_M_HOSTAP; 982 else 983 ic_opmode = ic->ic_opmode; 984 break; 985 default: 986 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 987 goto bad; 988 } 989 /* 990 * Check that a beacon buffer is available; the code below assumes it. 991 */ 992 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 993 device_printf(sc->sc_dev, "no beacon buffer available\n"); 994 goto bad; 995 } 996 997 /* STA, AHDEMO? */ 998 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 999 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1000 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1001 } 1002 1003 vap = &avp->av_vap; 1004 /* XXX can't hold mutex across if_alloc */ 1005 ATH_UNLOCK(sc); 1006 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1007 bssid, mac); 1008 ATH_LOCK(sc); 1009 if (error != 0) { 1010 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1011 __func__, error); 1012 goto bad2; 1013 } 1014 1015 /* h/w crypto support */ 1016 vap->iv_key_alloc = ath_key_alloc; 1017 vap->iv_key_delete = ath_key_delete; 1018 vap->iv_key_set = ath_key_set; 1019 vap->iv_key_update_begin = ath_key_update_begin; 1020 vap->iv_key_update_end = ath_key_update_end; 1021 1022 /* override various methods */ 1023 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1024 vap->iv_recv_mgmt = ath_recv_mgmt; 1025 vap->iv_reset = ath_reset_vap; 1026 vap->iv_update_beacon = ath_beacon_update; 1027 avp->av_newstate = vap->iv_newstate; 1028 vap->iv_newstate = ath_newstate; 1029 avp->av_bmiss = vap->iv_bmiss; 1030 vap->iv_bmiss = ath_bmiss_vap; 1031 1032 /* Set default parameters */ 1033 1034 /* 1035 * Anything earlier than some AR9300 series MACs don't 1036 * support a smaller MPDU density. 1037 */ 1038 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1039 /* 1040 * All NICs can handle the maximum size, however 1041 * AR5416 based MACs can only TX aggregates w/ RTS 1042 * protection when the total aggregate size is <= 8k. 1043 * However, for now that's enforced by the TX path. 1044 */ 1045 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1046 1047 avp->av_bslot = -1; 1048 if (needbeacon) { 1049 /* 1050 * Allocate beacon state and setup the q for buffered 1051 * multicast frames. We know a beacon buffer is 1052 * available because we checked above. 1053 */ 1054 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1055 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1056 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1057 /* 1058 * Assign the vap to a beacon xmit slot. As above 1059 * this cannot fail to find a free one. 1060 */ 1061 avp->av_bslot = assign_bslot(sc); 1062 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1063 ("beacon slot %u not empty", avp->av_bslot)); 1064 sc->sc_bslot[avp->av_bslot] = vap; 1065 sc->sc_nbcnvaps++; 1066 } 1067 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1068 /* 1069 * Multple vaps are to transmit beacons and we 1070 * have h/w support for TSF adjusting; enable 1071 * use of staggered beacons. 1072 */ 1073 sc->sc_stagbeacons = 1; 1074 } 1075 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1076 } 1077 1078 ic->ic_opmode = ic_opmode; 1079 if (opmode != IEEE80211_M_WDS) { 1080 sc->sc_nvaps++; 1081 if (opmode == IEEE80211_M_STA) 1082 sc->sc_nstavaps++; 1083 if (opmode == IEEE80211_M_MBSS) 1084 sc->sc_nmeshvaps++; 1085 } 1086 switch (ic_opmode) { 1087 case IEEE80211_M_IBSS: 1088 sc->sc_opmode = HAL_M_IBSS; 1089 break; 1090 case IEEE80211_M_STA: 1091 sc->sc_opmode = HAL_M_STA; 1092 break; 1093 case IEEE80211_M_AHDEMO: 1094 #ifdef IEEE80211_SUPPORT_TDMA 1095 if (vap->iv_caps & IEEE80211_C_TDMA) { 1096 sc->sc_tdma = 1; 1097 /* NB: disable tsf adjust */ 1098 sc->sc_stagbeacons = 0; 1099 } 1100 /* 1101 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1102 * just ap mode. 1103 */ 1104 /* fall thru... */ 1105 #endif 1106 case IEEE80211_M_HOSTAP: 1107 case IEEE80211_M_MBSS: 1108 sc->sc_opmode = HAL_M_HOSTAP; 1109 break; 1110 case IEEE80211_M_MONITOR: 1111 sc->sc_opmode = HAL_M_MONITOR; 1112 break; 1113 default: 1114 /* XXX should not happen */ 1115 break; 1116 } 1117 if (sc->sc_hastsfadd) { 1118 /* 1119 * Configure whether or not TSF adjust should be done. 1120 */ 1121 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1122 } 1123 if (flags & IEEE80211_CLONE_NOBEACONS) { 1124 /* 1125 * Enable s/w beacon miss handling. 1126 */ 1127 sc->sc_swbmiss = 1; 1128 } 1129 ATH_UNLOCK(sc); 1130 1131 /* complete setup */ 1132 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1133 return vap; 1134 bad2: 1135 reclaim_address(sc, mac); 1136 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1137 bad: 1138 free(avp, M_80211_VAP); 1139 ATH_UNLOCK(sc); 1140 return NULL; 1141 } 1142 1143 static void 1144 ath_vap_delete(struct ieee80211vap *vap) 1145 { 1146 struct ieee80211com *ic = vap->iv_ic; 1147 struct ifnet *ifp = ic->ic_ifp; 1148 struct ath_softc *sc = ifp->if_softc; 1149 struct ath_hal *ah = sc->sc_ah; 1150 struct ath_vap *avp = ATH_VAP(vap); 1151 1152 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1153 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1154 /* 1155 * Quiesce the hardware while we remove the vap. In 1156 * particular we need to reclaim all references to 1157 * the vap state by any frames pending on the tx queues. 1158 */ 1159 ath_hal_intrset(ah, 0); /* disable interrupts */ 1160 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1161 /* XXX Do all frames from all vaps/nodes need draining here? */ 1162 ath_stoprecv(sc, 1); /* stop recv side */ 1163 } 1164 1165 ieee80211_vap_detach(vap); 1166 1167 /* 1168 * XXX Danger Will Robinson! Danger! 1169 * 1170 * Because ieee80211_vap_detach() can queue a frame (the station 1171 * diassociate message?) after we've drained the TXQ and 1172 * flushed the software TXQ, we will end up with a frame queued 1173 * to a node whose vap is about to be freed. 1174 * 1175 * To work around this, flush the hardware/software again. 1176 * This may be racy - the ath task may be running and the packet 1177 * may be being scheduled between sw->hw txq. Tsk. 1178 * 1179 * TODO: figure out why a new node gets allocated somewhere around 1180 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1181 * call!) 1182 */ 1183 1184 ath_draintxq(sc, ATH_RESET_DEFAULT); 1185 1186 ATH_LOCK(sc); 1187 /* 1188 * Reclaim beacon state. Note this must be done before 1189 * the vap instance is reclaimed as we may have a reference 1190 * to it in the buffer for the beacon frame. 1191 */ 1192 if (avp->av_bcbuf != NULL) { 1193 if (avp->av_bslot != -1) { 1194 sc->sc_bslot[avp->av_bslot] = NULL; 1195 sc->sc_nbcnvaps--; 1196 } 1197 ath_beacon_return(sc, avp->av_bcbuf); 1198 avp->av_bcbuf = NULL; 1199 if (sc->sc_nbcnvaps == 0) { 1200 sc->sc_stagbeacons = 0; 1201 if (sc->sc_hastsfadd) 1202 ath_hal_settsfadjust(sc->sc_ah, 0); 1203 } 1204 /* 1205 * Reclaim any pending mcast frames for the vap. 1206 */ 1207 ath_tx_draintxq(sc, &avp->av_mcastq); 1208 ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq); 1209 } 1210 /* 1211 * Update bookkeeping. 1212 */ 1213 if (vap->iv_opmode == IEEE80211_M_STA) { 1214 sc->sc_nstavaps--; 1215 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1216 sc->sc_swbmiss = 0; 1217 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1218 vap->iv_opmode == IEEE80211_M_MBSS) { 1219 reclaim_address(sc, vap->iv_myaddr); 1220 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1221 if (vap->iv_opmode == IEEE80211_M_MBSS) 1222 sc->sc_nmeshvaps--; 1223 } 1224 if (vap->iv_opmode != IEEE80211_M_WDS) 1225 sc->sc_nvaps--; 1226 #ifdef IEEE80211_SUPPORT_TDMA 1227 /* TDMA operation ceases when the last vap is destroyed */ 1228 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1229 sc->sc_tdma = 0; 1230 sc->sc_swbmiss = 0; 1231 } 1232 #endif 1233 free(avp, M_80211_VAP); 1234 1235 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1236 /* 1237 * Restart rx+tx machines if still running (RUNNING will 1238 * be reset if we just destroyed the last vap). 1239 */ 1240 if (ath_startrecv(sc) != 0) 1241 if_printf(ifp, "%s: unable to restart recv logic\n", 1242 __func__); 1243 if (sc->sc_beacons) { /* restart beacons */ 1244 #ifdef IEEE80211_SUPPORT_TDMA 1245 if (sc->sc_tdma) 1246 ath_tdma_config(sc, NULL); 1247 else 1248 #endif 1249 ath_beacon_config(sc, NULL); 1250 } 1251 ath_hal_intrset(ah, sc->sc_imask); 1252 } 1253 ATH_UNLOCK(sc); 1254 } 1255 1256 void 1257 ath_suspend(struct ath_softc *sc) 1258 { 1259 struct ifnet *ifp = sc->sc_ifp; 1260 struct ieee80211com *ic = ifp->if_l2com; 1261 1262 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1263 __func__, ifp->if_flags); 1264 1265 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1266 if (ic->ic_opmode == IEEE80211_M_STA) 1267 ath_stop(ifp); 1268 else 1269 ieee80211_suspend_all(ic); 1270 /* 1271 * NB: don't worry about putting the chip in low power 1272 * mode; pci will power off our socket on suspend and 1273 * CardBus detaches the device. 1274 */ 1275 } 1276 1277 /* 1278 * Reset the key cache since some parts do not reset the 1279 * contents on resume. First we clear all entries, then 1280 * re-load keys that the 802.11 layer assumes are setup 1281 * in h/w. 1282 */ 1283 static void 1284 ath_reset_keycache(struct ath_softc *sc) 1285 { 1286 struct ifnet *ifp = sc->sc_ifp; 1287 struct ieee80211com *ic = ifp->if_l2com; 1288 struct ath_hal *ah = sc->sc_ah; 1289 int i; 1290 1291 for (i = 0; i < sc->sc_keymax; i++) 1292 ath_hal_keyreset(ah, i); 1293 ieee80211_crypto_reload_keys(ic); 1294 } 1295 1296 void 1297 ath_resume(struct ath_softc *sc) 1298 { 1299 struct ifnet *ifp = sc->sc_ifp; 1300 struct ieee80211com *ic = ifp->if_l2com; 1301 struct ath_hal *ah = sc->sc_ah; 1302 HAL_STATUS status; 1303 1304 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1305 __func__, ifp->if_flags); 1306 1307 /* 1308 * Must reset the chip before we reload the 1309 * keycache as we were powered down on suspend. 1310 */ 1311 ath_hal_reset(ah, sc->sc_opmode, 1312 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1313 AH_FALSE, &status); 1314 ath_reset_keycache(sc); 1315 1316 /* Let DFS at it in case it's a DFS channel */ 1317 ath_dfs_radar_enable(sc, ic->ic_curchan); 1318 1319 if (sc->sc_resume_up) { 1320 if (ic->ic_opmode == IEEE80211_M_STA) { 1321 ath_init(sc); 1322 /* 1323 * Program the beacon registers using the last rx'd 1324 * beacon frame and enable sync on the next beacon 1325 * we see. This should handle the case where we 1326 * wakeup and find the same AP and also the case where 1327 * we wakeup and need to roam. For the latter we 1328 * should get bmiss events that trigger a roam. 1329 */ 1330 ath_beacon_config(sc, NULL); 1331 sc->sc_syncbeacon = 1; 1332 } else 1333 ieee80211_resume_all(ic); 1334 } 1335 if (sc->sc_softled) { 1336 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin, 1337 HAL_GPIO_MUX_MAC_NETWORK_LED); 1338 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 1339 } 1340 1341 /* XXX beacons ? */ 1342 } 1343 1344 void 1345 ath_shutdown(struct ath_softc *sc) 1346 { 1347 struct ifnet *ifp = sc->sc_ifp; 1348 1349 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1350 __func__, ifp->if_flags); 1351 1352 ath_stop(ifp); 1353 /* NB: no point powering down chip as we're about to reboot */ 1354 } 1355 1356 /* 1357 * Interrupt handler. Most of the actual processing is deferred. 1358 */ 1359 void 1360 ath_intr(void *arg) 1361 { 1362 struct ath_softc *sc = arg; 1363 struct ifnet *ifp = sc->sc_ifp; 1364 struct ath_hal *ah = sc->sc_ah; 1365 HAL_INT status = 0; 1366 uint32_t txqs; 1367 1368 /* 1369 * If we're inside a reset path, just print a warning and 1370 * clear the ISR. The reset routine will finish it for us. 1371 */ 1372 ATH_PCU_LOCK(sc); 1373 if (sc->sc_inreset_cnt) { 1374 HAL_INT status; 1375 ath_hal_getisr(ah, &status); /* clear ISR */ 1376 ath_hal_intrset(ah, 0); /* disable further intr's */ 1377 DPRINTF(sc, ATH_DEBUG_ANY, 1378 "%s: in reset, ignoring: status=0x%x\n", 1379 __func__, status); 1380 ATH_PCU_UNLOCK(sc); 1381 return; 1382 } 1383 1384 if (sc->sc_invalid) { 1385 /* 1386 * The hardware is not ready/present, don't touch anything. 1387 * Note this can happen early on if the IRQ is shared. 1388 */ 1389 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1390 ATH_PCU_UNLOCK(sc); 1391 return; 1392 } 1393 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1394 ATH_PCU_UNLOCK(sc); 1395 return; 1396 } 1397 1398 if ((ifp->if_flags & IFF_UP) == 0 || 1399 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1400 HAL_INT status; 1401 1402 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1403 __func__, ifp->if_flags); 1404 ath_hal_getisr(ah, &status); /* clear ISR */ 1405 ath_hal_intrset(ah, 0); /* disable further intr's */ 1406 ATH_PCU_UNLOCK(sc); 1407 return; 1408 } 1409 1410 /* 1411 * Figure out the reason(s) for the interrupt. Note 1412 * that the hal returns a pseudo-ISR that may include 1413 * bits we haven't explicitly enabled so we mask the 1414 * value to insure we only process bits we requested. 1415 */ 1416 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1417 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1418 CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status); 1419 #ifdef ATH_KTR_INTR_DEBUG 1420 CTR5(ATH_KTR_INTR, 1421 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1422 ah->ah_intrstate[0], 1423 ah->ah_intrstate[1], 1424 ah->ah_intrstate[2], 1425 ah->ah_intrstate[3], 1426 ah->ah_intrstate[6]); 1427 #endif 1428 status &= sc->sc_imask; /* discard unasked for bits */ 1429 1430 /* Short-circuit un-handled interrupts */ 1431 if (status == 0x0) { 1432 ATH_PCU_UNLOCK(sc); 1433 return; 1434 } 1435 1436 /* 1437 * Take a note that we're inside the interrupt handler, so 1438 * the reset routines know to wait. 1439 */ 1440 sc->sc_intr_cnt++; 1441 ATH_PCU_UNLOCK(sc); 1442 1443 /* 1444 * Handle the interrupt. We won't run concurrent with the reset 1445 * or channel change routines as they'll wait for sc_intr_cnt 1446 * to be 0 before continuing. 1447 */ 1448 if (status & HAL_INT_FATAL) { 1449 sc->sc_stats.ast_hardware++; 1450 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1451 ath_fatal_proc(sc, 0); 1452 } else { 1453 if (status & HAL_INT_SWBA) { 1454 /* 1455 * Software beacon alert--time to send a beacon. 1456 * Handle beacon transmission directly; deferring 1457 * this is too slow to meet timing constraints 1458 * under load. 1459 */ 1460 #ifdef IEEE80211_SUPPORT_TDMA 1461 if (sc->sc_tdma) { 1462 if (sc->sc_tdmaswba == 0) { 1463 struct ieee80211com *ic = ifp->if_l2com; 1464 struct ieee80211vap *vap = 1465 TAILQ_FIRST(&ic->ic_vaps); 1466 ath_tdma_beacon_send(sc, vap); 1467 sc->sc_tdmaswba = 1468 vap->iv_tdma->tdma_bintval; 1469 } else 1470 sc->sc_tdmaswba--; 1471 } else 1472 #endif 1473 { 1474 ath_beacon_proc(sc, 0); 1475 #ifdef IEEE80211_SUPPORT_SUPERG 1476 /* 1477 * Schedule the rx taskq in case there's no 1478 * traffic so any frames held on the staging 1479 * queue are aged and potentially flushed. 1480 */ 1481 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1482 #endif 1483 } 1484 } 1485 if (status & HAL_INT_RXEOL) { 1486 int imask; 1487 CTR0(ATH_KTR_ERR, "ath_intr: RXEOL"); 1488 ATH_PCU_LOCK(sc); 1489 /* 1490 * NB: the hardware should re-read the link when 1491 * RXE bit is written, but it doesn't work at 1492 * least on older hardware revs. 1493 */ 1494 sc->sc_stats.ast_rxeol++; 1495 /* 1496 * Disable RXEOL/RXORN - prevent an interrupt 1497 * storm until the PCU logic can be reset. 1498 * In case the interface is reset some other 1499 * way before "sc_kickpcu" is called, don't 1500 * modify sc_imask - that way if it is reset 1501 * by a call to ath_reset() somehow, the 1502 * interrupt mask will be correctly reprogrammed. 1503 */ 1504 imask = sc->sc_imask; 1505 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1506 ath_hal_intrset(ah, imask); 1507 /* 1508 * Only blank sc_rxlink if we've not yet kicked 1509 * the PCU. 1510 * 1511 * This isn't entirely correct - the correct solution 1512 * would be to have a PCU lock and engage that for 1513 * the duration of the PCU fiddling; which would include 1514 * running the RX process. Otherwise we could end up 1515 * messing up the RX descriptor chain and making the 1516 * RX desc list much shorter. 1517 */ 1518 if (! sc->sc_kickpcu) 1519 sc->sc_rxlink = NULL; 1520 sc->sc_kickpcu = 1; 1521 /* 1522 * Enqueue an RX proc, to handled whatever 1523 * is in the RX queue. 1524 * This will then kick the PCU. 1525 */ 1526 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1527 ATH_PCU_UNLOCK(sc); 1528 } 1529 if (status & HAL_INT_TXURN) { 1530 sc->sc_stats.ast_txurn++; 1531 /* bump tx trigger level */ 1532 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1533 } 1534 if (status & HAL_INT_RX) { 1535 sc->sc_stats.ast_rx_intr++; 1536 taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); 1537 } 1538 if (status & HAL_INT_TX) { 1539 sc->sc_stats.ast_tx_intr++; 1540 /* 1541 * Grab all the currently set bits in the HAL txq bitmap 1542 * and blank them. This is the only place we should be 1543 * doing this. 1544 */ 1545 ATH_PCU_LOCK(sc); 1546 txqs = 0xffffffff; 1547 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1548 sc->sc_txq_active |= txqs; 1549 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1550 ATH_PCU_UNLOCK(sc); 1551 } 1552 if (status & HAL_INT_BMISS) { 1553 sc->sc_stats.ast_bmiss++; 1554 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1555 } 1556 if (status & HAL_INT_GTT) 1557 sc->sc_stats.ast_tx_timeout++; 1558 if (status & HAL_INT_CST) 1559 sc->sc_stats.ast_tx_cst++; 1560 if (status & HAL_INT_MIB) { 1561 sc->sc_stats.ast_mib++; 1562 ATH_PCU_LOCK(sc); 1563 /* 1564 * Disable interrupts until we service the MIB 1565 * interrupt; otherwise it will continue to fire. 1566 */ 1567 ath_hal_intrset(ah, 0); 1568 /* 1569 * Let the hal handle the event. We assume it will 1570 * clear whatever condition caused the interrupt. 1571 */ 1572 ath_hal_mibevent(ah, &sc->sc_halstats); 1573 /* 1574 * Don't reset the interrupt if we've just 1575 * kicked the PCU, or we may get a nested 1576 * RXEOL before the rxproc has had a chance 1577 * to run. 1578 */ 1579 if (sc->sc_kickpcu == 0) 1580 ath_hal_intrset(ah, sc->sc_imask); 1581 ATH_PCU_UNLOCK(sc); 1582 } 1583 if (status & HAL_INT_RXORN) { 1584 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1585 CTR0(ATH_KTR_ERR, "ath_intr: RXORN"); 1586 sc->sc_stats.ast_rxorn++; 1587 } 1588 } 1589 ATH_PCU_LOCK(sc); 1590 sc->sc_intr_cnt--; 1591 ATH_PCU_UNLOCK(sc); 1592 } 1593 1594 static void 1595 ath_fatal_proc(void *arg, int pending) 1596 { 1597 struct ath_softc *sc = arg; 1598 struct ifnet *ifp = sc->sc_ifp; 1599 u_int32_t *state; 1600 u_int32_t len; 1601 void *sp; 1602 1603 if_printf(ifp, "hardware error; resetting\n"); 1604 /* 1605 * Fatal errors are unrecoverable. Typically these 1606 * are caused by DMA errors. Collect h/w state from 1607 * the hal so we can diagnose what's going on. 1608 */ 1609 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1610 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1611 state = sp; 1612 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1613 state[0], state[1] , state[2], state[3], 1614 state[4], state[5]); 1615 } 1616 ath_reset(ifp, ATH_RESET_NOLOSS); 1617 } 1618 1619 static void 1620 ath_bmiss_vap(struct ieee80211vap *vap) 1621 { 1622 /* 1623 * Workaround phantom bmiss interrupts by sanity-checking 1624 * the time of our last rx'd frame. If it is within the 1625 * beacon miss interval then ignore the interrupt. If it's 1626 * truly a bmiss we'll get another interrupt soon and that'll 1627 * be dispatched up for processing. Note this applies only 1628 * for h/w beacon miss events. 1629 */ 1630 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1631 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1632 struct ath_softc *sc = ifp->if_softc; 1633 u_int64_t lastrx = sc->sc_lastrx; 1634 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1635 u_int bmisstimeout = 1636 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1637 1638 DPRINTF(sc, ATH_DEBUG_BEACON, 1639 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1640 __func__, (unsigned long long) tsf, 1641 (unsigned long long)(tsf - lastrx), 1642 (unsigned long long) lastrx, bmisstimeout); 1643 1644 if (tsf - lastrx <= bmisstimeout) { 1645 sc->sc_stats.ast_bmiss_phantom++; 1646 return; 1647 } 1648 } 1649 ATH_VAP(vap)->av_bmiss(vap); 1650 } 1651 1652 static int 1653 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1654 { 1655 uint32_t rsize; 1656 void *sp; 1657 1658 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1659 return 0; 1660 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1661 *hangs = *(uint32_t *)sp; 1662 return 1; 1663 } 1664 1665 static void 1666 ath_bmiss_proc(void *arg, int pending) 1667 { 1668 struct ath_softc *sc = arg; 1669 struct ifnet *ifp = sc->sc_ifp; 1670 uint32_t hangs; 1671 1672 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1673 1674 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1675 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1676 ath_reset(ifp, ATH_RESET_NOLOSS); 1677 } else 1678 ieee80211_beacon_miss(ifp->if_l2com); 1679 } 1680 1681 /* 1682 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1683 * calcs together with WME. If necessary disable the crypto 1684 * hardware and mark the 802.11 state so keys will be setup 1685 * with the MIC work done in software. 1686 */ 1687 static void 1688 ath_settkipmic(struct ath_softc *sc) 1689 { 1690 struct ifnet *ifp = sc->sc_ifp; 1691 struct ieee80211com *ic = ifp->if_l2com; 1692 1693 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1694 if (ic->ic_flags & IEEE80211_F_WME) { 1695 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1696 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1697 } else { 1698 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1699 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1700 } 1701 } 1702 } 1703 1704 static void 1705 ath_init(void *arg) 1706 { 1707 struct ath_softc *sc = (struct ath_softc *) arg; 1708 struct ifnet *ifp = sc->sc_ifp; 1709 struct ieee80211com *ic = ifp->if_l2com; 1710 struct ath_hal *ah = sc->sc_ah; 1711 HAL_STATUS status; 1712 1713 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1714 __func__, ifp->if_flags); 1715 1716 ATH_LOCK(sc); 1717 /* 1718 * Stop anything previously setup. This is safe 1719 * whether this is the first time through or not. 1720 */ 1721 ath_stop_locked(ifp); 1722 1723 /* 1724 * The basic interface to setting the hardware in a good 1725 * state is ``reset''. On return the hardware is known to 1726 * be powered up and with interrupts disabled. This must 1727 * be followed by initialization of the appropriate bits 1728 * and then setup of the interrupt mask. 1729 */ 1730 ath_settkipmic(sc); 1731 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1732 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1733 status); 1734 ATH_UNLOCK(sc); 1735 return; 1736 } 1737 ath_chan_change(sc, ic->ic_curchan); 1738 1739 /* Let DFS at it in case it's a DFS channel */ 1740 ath_dfs_radar_enable(sc, ic->ic_curchan); 1741 1742 /* 1743 * Likewise this is set during reset so update 1744 * state cached in the driver. 1745 */ 1746 sc->sc_diversity = ath_hal_getdiversity(ah); 1747 sc->sc_lastlongcal = 0; 1748 sc->sc_resetcal = 1; 1749 sc->sc_lastcalreset = 0; 1750 sc->sc_lastani = 0; 1751 sc->sc_lastshortcal = 0; 1752 sc->sc_doresetcal = AH_FALSE; 1753 /* 1754 * Beacon timers were cleared here; give ath_newstate() 1755 * a hint that the beacon timers should be poked when 1756 * things transition to the RUN state. 1757 */ 1758 sc->sc_beacons = 0; 1759 1760 /* 1761 * Initial aggregation settings. 1762 */ 1763 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 1764 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1765 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1766 1767 /* 1768 * Setup the hardware after reset: the key cache 1769 * is filled as needed and the receive engine is 1770 * set going. Frame transmit is handled entirely 1771 * in the frame output path; there's nothing to do 1772 * here except setup the interrupt mask. 1773 */ 1774 if (ath_startrecv(sc) != 0) { 1775 if_printf(ifp, "unable to start recv logic\n"); 1776 ATH_UNLOCK(sc); 1777 return; 1778 } 1779 1780 /* 1781 * Enable interrupts. 1782 */ 1783 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1784 | HAL_INT_RXEOL | HAL_INT_RXORN 1785 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1786 /* 1787 * Enable MIB interrupts when there are hardware phy counters. 1788 * Note we only do this (at the moment) for station mode. 1789 */ 1790 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1791 sc->sc_imask |= HAL_INT_MIB; 1792 1793 /* Enable global TX timeout and carrier sense timeout if available */ 1794 if (ath_hal_gtxto_supported(ah)) 1795 sc->sc_imask |= HAL_INT_GTT; 1796 1797 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 1798 __func__, sc->sc_imask); 1799 1800 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1801 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 1802 ath_hal_intrset(ah, sc->sc_imask); 1803 1804 ATH_UNLOCK(sc); 1805 1806 #ifdef ATH_TX99_DIAG 1807 if (sc->sc_tx99 != NULL) 1808 sc->sc_tx99->start(sc->sc_tx99); 1809 else 1810 #endif 1811 ieee80211_start_all(ic); /* start all vap's */ 1812 } 1813 1814 static void 1815 ath_stop_locked(struct ifnet *ifp) 1816 { 1817 struct ath_softc *sc = ifp->if_softc; 1818 struct ath_hal *ah = sc->sc_ah; 1819 1820 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1821 __func__, sc->sc_invalid, ifp->if_flags); 1822 1823 ATH_LOCK_ASSERT(sc); 1824 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1825 /* 1826 * Shutdown the hardware and driver: 1827 * reset 802.11 state machine 1828 * turn off timers 1829 * disable interrupts 1830 * turn off the radio 1831 * clear transmit machinery 1832 * clear receive machinery 1833 * drain and release tx queues 1834 * reclaim beacon resources 1835 * power down hardware 1836 * 1837 * Note that some of this work is not possible if the 1838 * hardware is gone (invalid). 1839 */ 1840 #ifdef ATH_TX99_DIAG 1841 if (sc->sc_tx99 != NULL) 1842 sc->sc_tx99->stop(sc->sc_tx99); 1843 #endif 1844 callout_stop(&sc->sc_wd_ch); 1845 sc->sc_wd_timer = 0; 1846 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1847 if (!sc->sc_invalid) { 1848 if (sc->sc_softled) { 1849 callout_stop(&sc->sc_ledtimer); 1850 ath_hal_gpioset(ah, sc->sc_ledpin, 1851 !sc->sc_ledon); 1852 sc->sc_blinking = 0; 1853 } 1854 ath_hal_intrset(ah, 0); 1855 } 1856 ath_draintxq(sc, ATH_RESET_DEFAULT); 1857 if (!sc->sc_invalid) { 1858 ath_stoprecv(sc, 1); 1859 ath_hal_phydisable(ah); 1860 } else 1861 sc->sc_rxlink = NULL; 1862 ath_beacon_free(sc); /* XXX not needed */ 1863 } 1864 } 1865 1866 #define MAX_TXRX_ITERATIONS 1000 1867 static void 1868 ath_txrx_stop(struct ath_softc *sc) 1869 { 1870 int i = MAX_TXRX_ITERATIONS; 1871 1872 ATH_UNLOCK_ASSERT(sc); 1873 /* Stop any new TX/RX from occuring */ 1874 taskqueue_block(sc->sc_tq); 1875 1876 ATH_PCU_LOCK(sc); 1877 /* 1878 * Sleep until all the pending operations have completed. 1879 * 1880 * The caller must ensure that reset has been incremented 1881 * or the pending operations may continue being queued. 1882 */ 1883 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 1884 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 1885 if (i <= 0) 1886 break; 1887 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 1888 i--; 1889 } 1890 ATH_PCU_UNLOCK(sc); 1891 1892 if (i <= 0) 1893 device_printf(sc->sc_dev, 1894 "%s: didn't finish after %d iterations\n", 1895 __func__, MAX_TXRX_ITERATIONS); 1896 } 1897 #undef MAX_TXRX_ITERATIONS 1898 1899 static void 1900 ath_txrx_start(struct ath_softc *sc) 1901 { 1902 1903 taskqueue_unblock(sc->sc_tq); 1904 } 1905 1906 /* 1907 * Grab the reset lock, and wait around until noone else 1908 * is trying to do anything with it. 1909 * 1910 * This is totally horrible but we can't hold this lock for 1911 * long enough to do TX/RX or we end up with net80211/ip stack 1912 * LORs and eventual deadlock. 1913 * 1914 * "dowait" signals whether to spin, waiting for the reset 1915 * lock count to reach 0. This should (for now) only be used 1916 * during the reset path, as the rest of the code may not 1917 * be locking-reentrant enough to behave correctly. 1918 * 1919 * Another, cleaner way should be found to serialise all of 1920 * these operations. 1921 */ 1922 #define MAX_RESET_ITERATIONS 10 1923 static int 1924 ath_reset_grablock(struct ath_softc *sc, int dowait) 1925 { 1926 int w = 0; 1927 int i = MAX_RESET_ITERATIONS; 1928 1929 ATH_PCU_LOCK_ASSERT(sc); 1930 do { 1931 if (sc->sc_inreset_cnt == 0) { 1932 w = 1; 1933 break; 1934 } 1935 if (dowait == 0) { 1936 w = 0; 1937 break; 1938 } 1939 ATH_PCU_UNLOCK(sc); 1940 pause("ath_reset_grablock", 1); 1941 i--; 1942 ATH_PCU_LOCK(sc); 1943 } while (i > 0); 1944 1945 /* 1946 * We always increment the refcounter, regardless 1947 * of whether we succeeded to get it in an exclusive 1948 * way. 1949 */ 1950 sc->sc_inreset_cnt++; 1951 1952 if (i <= 0) 1953 device_printf(sc->sc_dev, 1954 "%s: didn't finish after %d iterations\n", 1955 __func__, MAX_RESET_ITERATIONS); 1956 1957 if (w == 0) 1958 device_printf(sc->sc_dev, 1959 "%s: warning, recursive reset path!\n", 1960 __func__); 1961 1962 return w; 1963 } 1964 #undef MAX_RESET_ITERATIONS 1965 1966 /* 1967 * XXX TODO: write ath_reset_releaselock 1968 */ 1969 1970 static void 1971 ath_stop(struct ifnet *ifp) 1972 { 1973 struct ath_softc *sc = ifp->if_softc; 1974 1975 ATH_LOCK(sc); 1976 ath_stop_locked(ifp); 1977 ATH_UNLOCK(sc); 1978 } 1979 1980 /* 1981 * Reset the hardware w/o losing operational state. This is 1982 * basically a more efficient way of doing ath_stop, ath_init, 1983 * followed by state transitions to the current 802.11 1984 * operational state. Used to recover from various errors and 1985 * to reset or reload hardware state. 1986 */ 1987 int 1988 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 1989 { 1990 struct ath_softc *sc = ifp->if_softc; 1991 struct ieee80211com *ic = ifp->if_l2com; 1992 struct ath_hal *ah = sc->sc_ah; 1993 HAL_STATUS status; 1994 int i; 1995 1996 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1997 1998 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 1999 ATH_PCU_UNLOCK_ASSERT(sc); 2000 ATH_UNLOCK_ASSERT(sc); 2001 2002 ATH_PCU_LOCK(sc); 2003 if (ath_reset_grablock(sc, 1) == 0) { 2004 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2005 __func__); 2006 } 2007 ath_hal_intrset(ah, 0); /* disable interrupts */ 2008 ATH_PCU_UNLOCK(sc); 2009 2010 /* 2011 * Should now wait for pending TX/RX to complete 2012 * and block future ones from occuring. This needs to be 2013 * done before the TX queue is drained. 2014 */ 2015 ath_txrx_stop(sc); 2016 ath_draintxq(sc, reset_type); /* stop xmit side */ 2017 2018 /* 2019 * Regardless of whether we're doing a no-loss flush or 2020 * not, stop the PCU and handle what's in the RX queue. 2021 * That way frames aren't dropped which shouldn't be. 2022 */ 2023 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2024 ath_rx_proc(sc, 0); 2025 2026 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2027 /* NB: indicate channel change so we do a full reset */ 2028 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2029 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2030 __func__, status); 2031 sc->sc_diversity = ath_hal_getdiversity(ah); 2032 2033 /* Let DFS at it in case it's a DFS channel */ 2034 ath_dfs_radar_enable(sc, ic->ic_curchan); 2035 2036 if (ath_startrecv(sc) != 0) /* restart recv */ 2037 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2038 /* 2039 * We may be doing a reset in response to an ioctl 2040 * that changes the channel so update any state that 2041 * might change as a result. 2042 */ 2043 ath_chan_change(sc, ic->ic_curchan); 2044 if (sc->sc_beacons) { /* restart beacons */ 2045 #ifdef IEEE80211_SUPPORT_TDMA 2046 if (sc->sc_tdma) 2047 ath_tdma_config(sc, NULL); 2048 else 2049 #endif 2050 ath_beacon_config(sc, NULL); 2051 } 2052 2053 /* 2054 * Release the reset lock and re-enable interrupts here. 2055 * If an interrupt was being processed in ath_intr(), 2056 * it would disable interrupts at this point. So we have 2057 * to atomically enable interrupts and decrement the 2058 * reset counter - this way ath_intr() doesn't end up 2059 * disabling interrupts without a corresponding enable 2060 * in the rest or channel change path. 2061 */ 2062 ATH_PCU_LOCK(sc); 2063 sc->sc_inreset_cnt--; 2064 /* XXX only do this if sc_inreset_cnt == 0? */ 2065 ath_hal_intrset(ah, sc->sc_imask); 2066 ATH_PCU_UNLOCK(sc); 2067 2068 /* 2069 * TX and RX can be started here. If it were started with 2070 * sc_inreset_cnt > 0, the TX and RX path would abort. 2071 * Thus if this is a nested call through the reset or 2072 * channel change code, TX completion will occur but 2073 * RX completion and ath_start / ath_tx_start will not 2074 * run. 2075 */ 2076 2077 /* Restart TX/RX as needed */ 2078 ath_txrx_start(sc); 2079 2080 /* XXX Restart TX completion and pending TX */ 2081 if (reset_type == ATH_RESET_NOLOSS) { 2082 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2083 if (ATH_TXQ_SETUP(sc, i)) { 2084 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2085 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2086 ath_txq_sched(sc, &sc->sc_txq[i]); 2087 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2088 } 2089 } 2090 } 2091 2092 /* 2093 * This may have been set during an ath_start() call which 2094 * set this once it detected a concurrent TX was going on. 2095 * So, clear it. 2096 */ 2097 /* XXX do this inside of IF_LOCK? */ 2098 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2099 2100 /* Handle any frames in the TX queue */ 2101 /* 2102 * XXX should this be done by the caller, rather than 2103 * ath_reset() ? 2104 */ 2105 ath_start(ifp); /* restart xmit */ 2106 return 0; 2107 } 2108 2109 static int 2110 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2111 { 2112 struct ieee80211com *ic = vap->iv_ic; 2113 struct ifnet *ifp = ic->ic_ifp; 2114 struct ath_softc *sc = ifp->if_softc; 2115 struct ath_hal *ah = sc->sc_ah; 2116 2117 switch (cmd) { 2118 case IEEE80211_IOC_TXPOWER: 2119 /* 2120 * If per-packet TPC is enabled, then we have nothing 2121 * to do; otherwise we need to force the global limit. 2122 * All this can happen directly; no need to reset. 2123 */ 2124 if (!ath_hal_gettpc(ah)) 2125 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2126 return 0; 2127 } 2128 /* XXX? Full or NOLOSS? */ 2129 return ath_reset(ifp, ATH_RESET_FULL); 2130 } 2131 2132 struct ath_buf * 2133 _ath_getbuf_locked(struct ath_softc *sc) 2134 { 2135 struct ath_buf *bf; 2136 2137 ATH_TXBUF_LOCK_ASSERT(sc); 2138 2139 bf = TAILQ_FIRST(&sc->sc_txbuf); 2140 if (bf == NULL) { 2141 sc->sc_stats.ast_tx_getnobuf++; 2142 } else { 2143 if (bf->bf_flags & ATH_BUF_BUSY) { 2144 sc->sc_stats.ast_tx_getbusybuf++; 2145 bf = NULL; 2146 } 2147 } 2148 2149 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) 2150 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2151 else 2152 bf = NULL; 2153 2154 if (bf == NULL) { 2155 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2156 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2157 "out of xmit buffers" : "xmit buffer busy"); 2158 return NULL; 2159 } 2160 2161 /* Valid bf here; clear some basic fields */ 2162 bf->bf_next = NULL; /* XXX just to be sure */ 2163 bf->bf_last = NULL; /* XXX again, just to be sure */ 2164 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2165 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2166 2167 return bf; 2168 } 2169 2170 /* 2171 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2172 * can't be thrown back on the queue as they could still be 2173 * in use by the hardware. 2174 * 2175 * This duplicates the buffer, or returns NULL. 2176 * 2177 * The descriptor is also copied but the link pointers and 2178 * the DMA segments aren't copied; this frame should thus 2179 * be again passed through the descriptor setup/chain routines 2180 * so the link is correct. 2181 * 2182 * The caller must free the buffer using ath_freebuf(). 2183 * 2184 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2185 * XXX in the TX pathway when retries are needed. 2186 * XXX Figure out how to keep some buffers free, or factor the 2187 * XXX number of busy buffers into the xmit path (ath_start()) 2188 * XXX so we don't over-commit. 2189 */ 2190 struct ath_buf * 2191 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2192 { 2193 struct ath_buf *tbf; 2194 2195 tbf = ath_getbuf(sc); 2196 if (tbf == NULL) 2197 return NULL; /* XXX failure? Why? */ 2198 2199 /* Copy basics */ 2200 tbf->bf_next = NULL; 2201 tbf->bf_nseg = bf->bf_nseg; 2202 tbf->bf_txflags = bf->bf_txflags; 2203 tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY; 2204 tbf->bf_status = bf->bf_status; 2205 tbf->bf_m = bf->bf_m; 2206 tbf->bf_node = bf->bf_node; 2207 /* will be setup by the chain/setup function */ 2208 tbf->bf_lastds = NULL; 2209 /* for now, last == self */ 2210 tbf->bf_last = tbf; 2211 tbf->bf_comp = bf->bf_comp; 2212 2213 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2214 2215 /* The caller has to re-init the descriptor + links */ 2216 2217 /* Copy state */ 2218 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2219 2220 return tbf; 2221 } 2222 2223 struct ath_buf * 2224 ath_getbuf(struct ath_softc *sc) 2225 { 2226 struct ath_buf *bf; 2227 2228 ATH_TXBUF_LOCK(sc); 2229 bf = _ath_getbuf_locked(sc); 2230 if (bf == NULL) { 2231 struct ifnet *ifp = sc->sc_ifp; 2232 2233 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2234 sc->sc_stats.ast_tx_qstop++; 2235 /* XXX do this inside of IF_LOCK? */ 2236 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2237 } 2238 ATH_TXBUF_UNLOCK(sc); 2239 return bf; 2240 } 2241 2242 static void 2243 ath_start(struct ifnet *ifp) 2244 { 2245 struct ath_softc *sc = ifp->if_softc; 2246 struct ieee80211_node *ni; 2247 struct ath_buf *bf; 2248 struct mbuf *m, *next; 2249 ath_bufhead frags; 2250 2251 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2252 return; 2253 2254 /* XXX is it ok to hold the ATH_LOCK here? */ 2255 ATH_PCU_LOCK(sc); 2256 if (sc->sc_inreset_cnt > 0) { 2257 device_printf(sc->sc_dev, 2258 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2259 /* XXX do this inside of IF_LOCK? */ 2260 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2261 ATH_PCU_UNLOCK(sc); 2262 return; 2263 } 2264 sc->sc_txstart_cnt++; 2265 ATH_PCU_UNLOCK(sc); 2266 2267 for (;;) { 2268 /* 2269 * Grab a TX buffer and associated resources. 2270 */ 2271 bf = ath_getbuf(sc); 2272 if (bf == NULL) 2273 break; 2274 2275 IFQ_DEQUEUE(&ifp->if_snd, m); 2276 if (m == NULL) { 2277 ATH_TXBUF_LOCK(sc); 2278 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2279 ATH_TXBUF_UNLOCK(sc); 2280 break; 2281 } 2282 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2283 /* 2284 * Check for fragmentation. If this frame 2285 * has been broken up verify we have enough 2286 * buffers to send all the fragments so all 2287 * go out or none... 2288 */ 2289 TAILQ_INIT(&frags); 2290 if ((m->m_flags & M_FRAG) && 2291 !ath_txfrag_setup(sc, &frags, m, ni)) { 2292 DPRINTF(sc, ATH_DEBUG_XMIT, 2293 "%s: out of txfrag buffers\n", __func__); 2294 sc->sc_stats.ast_tx_nofrag++; 2295 ifp->if_oerrors++; 2296 ath_freetx(m); 2297 goto bad; 2298 } 2299 ifp->if_opackets++; 2300 nextfrag: 2301 /* 2302 * Pass the frame to the h/w for transmission. 2303 * Fragmented frames have each frag chained together 2304 * with m_nextpkt. We know there are sufficient ath_buf's 2305 * to send all the frags because of work done by 2306 * ath_txfrag_setup. We leave m_nextpkt set while 2307 * calling ath_tx_start so it can use it to extend the 2308 * the tx duration to cover the subsequent frag and 2309 * so it can reclaim all the mbufs in case of an error; 2310 * ath_tx_start clears m_nextpkt once it commits to 2311 * handing the frame to the hardware. 2312 */ 2313 next = m->m_nextpkt; 2314 if (ath_tx_start(sc, ni, bf, m)) { 2315 bad: 2316 ifp->if_oerrors++; 2317 reclaim: 2318 bf->bf_m = NULL; 2319 bf->bf_node = NULL; 2320 ATH_TXBUF_LOCK(sc); 2321 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 2322 ath_txfrag_cleanup(sc, &frags, ni); 2323 ATH_TXBUF_UNLOCK(sc); 2324 if (ni != NULL) 2325 ieee80211_free_node(ni); 2326 continue; 2327 } 2328 if (next != NULL) { 2329 /* 2330 * Beware of state changing between frags. 2331 * XXX check sta power-save state? 2332 */ 2333 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2334 DPRINTF(sc, ATH_DEBUG_XMIT, 2335 "%s: flush fragmented packet, state %s\n", 2336 __func__, 2337 ieee80211_state_name[ni->ni_vap->iv_state]); 2338 ath_freetx(next); 2339 goto reclaim; 2340 } 2341 m = next; 2342 bf = TAILQ_FIRST(&frags); 2343 KASSERT(bf != NULL, ("no buf for txfrag")); 2344 TAILQ_REMOVE(&frags, bf, bf_list); 2345 goto nextfrag; 2346 } 2347 2348 sc->sc_wd_timer = 5; 2349 } 2350 2351 ATH_PCU_LOCK(sc); 2352 sc->sc_txstart_cnt--; 2353 ATH_PCU_UNLOCK(sc); 2354 } 2355 2356 static int 2357 ath_media_change(struct ifnet *ifp) 2358 { 2359 int error = ieee80211_media_change(ifp); 2360 /* NB: only the fixed rate can change and that doesn't need a reset */ 2361 return (error == ENETRESET ? 0 : error); 2362 } 2363 2364 /* 2365 * Block/unblock tx+rx processing while a key change is done. 2366 * We assume the caller serializes key management operations 2367 * so we only need to worry about synchronization with other 2368 * uses that originate in the driver. 2369 */ 2370 static void 2371 ath_key_update_begin(struct ieee80211vap *vap) 2372 { 2373 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2374 struct ath_softc *sc = ifp->if_softc; 2375 2376 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2377 taskqueue_block(sc->sc_tq); 2378 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2379 } 2380 2381 static void 2382 ath_key_update_end(struct ieee80211vap *vap) 2383 { 2384 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2385 struct ath_softc *sc = ifp->if_softc; 2386 2387 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2388 IF_UNLOCK(&ifp->if_snd); 2389 taskqueue_unblock(sc->sc_tq); 2390 } 2391 2392 /* 2393 * Calculate the receive filter according to the 2394 * operating mode and state: 2395 * 2396 * o always accept unicast, broadcast, and multicast traffic 2397 * o accept PHY error frames when hardware doesn't have MIB support 2398 * to count and we need them for ANI (sta mode only until recently) 2399 * and we are not scanning (ANI is disabled) 2400 * NB: older hal's add rx filter bits out of sight and we need to 2401 * blindly preserve them 2402 * o probe request frames are accepted only when operating in 2403 * hostap, adhoc, mesh, or monitor modes 2404 * o enable promiscuous mode 2405 * - when in monitor mode 2406 * - if interface marked PROMISC (assumes bridge setting is filtered) 2407 * o accept beacons: 2408 * - when operating in station mode for collecting rssi data when 2409 * the station is otherwise quiet, or 2410 * - when operating in adhoc mode so the 802.11 layer creates 2411 * node table entries for peers, 2412 * - when scanning 2413 * - when doing s/w beacon miss (e.g. for ap+sta) 2414 * - when operating in ap mode in 11g to detect overlapping bss that 2415 * require protection 2416 * - when operating in mesh mode to detect neighbors 2417 * o accept control frames: 2418 * - when in monitor mode 2419 * XXX HT protection for 11n 2420 */ 2421 static u_int32_t 2422 ath_calcrxfilter(struct ath_softc *sc) 2423 { 2424 struct ifnet *ifp = sc->sc_ifp; 2425 struct ieee80211com *ic = ifp->if_l2com; 2426 u_int32_t rfilt; 2427 2428 rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 2429 if (!sc->sc_needmib && !sc->sc_scanning) 2430 rfilt |= HAL_RX_FILTER_PHYERR; 2431 if (ic->ic_opmode != IEEE80211_M_STA) 2432 rfilt |= HAL_RX_FILTER_PROBEREQ; 2433 /* XXX ic->ic_monvaps != 0? */ 2434 if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC)) 2435 rfilt |= HAL_RX_FILTER_PROM; 2436 if (ic->ic_opmode == IEEE80211_M_STA || 2437 ic->ic_opmode == IEEE80211_M_IBSS || 2438 sc->sc_swbmiss || sc->sc_scanning) 2439 rfilt |= HAL_RX_FILTER_BEACON; 2440 /* 2441 * NB: We don't recalculate the rx filter when 2442 * ic_protmode changes; otherwise we could do 2443 * this only when ic_protmode != NONE. 2444 */ 2445 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 2446 IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) 2447 rfilt |= HAL_RX_FILTER_BEACON; 2448 2449 /* 2450 * Enable hardware PS-POLL RX only for hostap mode; 2451 * STA mode sends PS-POLL frames but never 2452 * receives them. 2453 */ 2454 if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL, 2455 0, NULL) == HAL_OK && 2456 ic->ic_opmode == IEEE80211_M_HOSTAP) 2457 rfilt |= HAL_RX_FILTER_PSPOLL; 2458 2459 if (sc->sc_nmeshvaps) { 2460 rfilt |= HAL_RX_FILTER_BEACON; 2461 if (sc->sc_hasbmatch) 2462 rfilt |= HAL_RX_FILTER_BSSID; 2463 else 2464 rfilt |= HAL_RX_FILTER_PROM; 2465 } 2466 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2467 rfilt |= HAL_RX_FILTER_CONTROL; 2468 2469 /* 2470 * Enable RX of compressed BAR frames only when doing 2471 * 802.11n. Required for A-MPDU. 2472 */ 2473 if (IEEE80211_IS_CHAN_HT(ic->ic_curchan)) 2474 rfilt |= HAL_RX_FILTER_COMPBAR; 2475 2476 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n", 2477 __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags); 2478 return rfilt; 2479 } 2480 2481 static void 2482 ath_update_promisc(struct ifnet *ifp) 2483 { 2484 struct ath_softc *sc = ifp->if_softc; 2485 u_int32_t rfilt; 2486 2487 /* configure rx filter */ 2488 rfilt = ath_calcrxfilter(sc); 2489 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2490 2491 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2492 } 2493 2494 static void 2495 ath_update_mcast(struct ifnet *ifp) 2496 { 2497 struct ath_softc *sc = ifp->if_softc; 2498 u_int32_t mfilt[2]; 2499 2500 /* calculate and install multicast filter */ 2501 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2502 struct ifmultiaddr *ifma; 2503 /* 2504 * Merge multicast addresses to form the hardware filter. 2505 */ 2506 mfilt[0] = mfilt[1] = 0; 2507 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2508 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2509 caddr_t dl; 2510 u_int32_t val; 2511 u_int8_t pos; 2512 2513 /* calculate XOR of eight 6bit values */ 2514 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2515 val = LE_READ_4(dl + 0); 2516 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2517 val = LE_READ_4(dl + 3); 2518 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2519 pos &= 0x3f; 2520 mfilt[pos / 32] |= (1 << (pos % 32)); 2521 } 2522 if_maddr_runlock(ifp); 2523 } else 2524 mfilt[0] = mfilt[1] = ~0; 2525 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2526 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2527 __func__, mfilt[0], mfilt[1]); 2528 } 2529 2530 static void 2531 ath_mode_init(struct ath_softc *sc) 2532 { 2533 struct ifnet *ifp = sc->sc_ifp; 2534 struct ath_hal *ah = sc->sc_ah; 2535 u_int32_t rfilt; 2536 2537 /* configure rx filter */ 2538 rfilt = ath_calcrxfilter(sc); 2539 ath_hal_setrxfilter(ah, rfilt); 2540 2541 /* configure operational mode */ 2542 ath_hal_setopmode(ah); 2543 2544 /* handle any link-level address change */ 2545 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2546 2547 /* calculate and install multicast filter */ 2548 ath_update_mcast(ifp); 2549 } 2550 2551 /* 2552 * Set the slot time based on the current setting. 2553 */ 2554 static void 2555 ath_setslottime(struct ath_softc *sc) 2556 { 2557 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2558 struct ath_hal *ah = sc->sc_ah; 2559 u_int usec; 2560 2561 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2562 usec = 13; 2563 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2564 usec = 21; 2565 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2566 /* honor short/long slot time only in 11g */ 2567 /* XXX shouldn't honor on pure g or turbo g channel */ 2568 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2569 usec = HAL_SLOT_TIME_9; 2570 else 2571 usec = HAL_SLOT_TIME_20; 2572 } else 2573 usec = HAL_SLOT_TIME_9; 2574 2575 DPRINTF(sc, ATH_DEBUG_RESET, 2576 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2577 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2578 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2579 2580 ath_hal_setslottime(ah, usec); 2581 sc->sc_updateslot = OK; 2582 } 2583 2584 /* 2585 * Callback from the 802.11 layer to update the 2586 * slot time based on the current setting. 2587 */ 2588 static void 2589 ath_updateslot(struct ifnet *ifp) 2590 { 2591 struct ath_softc *sc = ifp->if_softc; 2592 struct ieee80211com *ic = ifp->if_l2com; 2593 2594 /* 2595 * When not coordinating the BSS, change the hardware 2596 * immediately. For other operation we defer the change 2597 * until beacon updates have propagated to the stations. 2598 */ 2599 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2600 ic->ic_opmode == IEEE80211_M_MBSS) 2601 sc->sc_updateslot = UPDATE; 2602 else 2603 ath_setslottime(sc); 2604 } 2605 2606 /* 2607 * Setup a h/w transmit queue for beacons. 2608 */ 2609 static int 2610 ath_beaconq_setup(struct ath_hal *ah) 2611 { 2612 HAL_TXQ_INFO qi; 2613 2614 memset(&qi, 0, sizeof(qi)); 2615 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2616 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2617 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2618 /* NB: for dynamic turbo, don't enable any other interrupts */ 2619 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2620 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2621 } 2622 2623 /* 2624 * Setup the transmit queue parameters for the beacon queue. 2625 */ 2626 static int 2627 ath_beaconq_config(struct ath_softc *sc) 2628 { 2629 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2630 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2631 struct ath_hal *ah = sc->sc_ah; 2632 HAL_TXQ_INFO qi; 2633 2634 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2635 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2636 ic->ic_opmode == IEEE80211_M_MBSS) { 2637 /* 2638 * Always burst out beacon and CAB traffic. 2639 */ 2640 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2641 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2642 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2643 } else { 2644 struct wmeParams *wmep = 2645 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2646 /* 2647 * Adhoc mode; important thing is to use 2x cwmin. 2648 */ 2649 qi.tqi_aifs = wmep->wmep_aifsn; 2650 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2651 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2652 } 2653 2654 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2655 device_printf(sc->sc_dev, "unable to update parameters for " 2656 "beacon hardware queue!\n"); 2657 return 0; 2658 } else { 2659 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2660 return 1; 2661 } 2662 #undef ATH_EXPONENT_TO_VALUE 2663 } 2664 2665 /* 2666 * Allocate and setup an initial beacon frame. 2667 */ 2668 static int 2669 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2670 { 2671 struct ieee80211vap *vap = ni->ni_vap; 2672 struct ath_vap *avp = ATH_VAP(vap); 2673 struct ath_buf *bf; 2674 struct mbuf *m; 2675 int error; 2676 2677 bf = avp->av_bcbuf; 2678 if (bf->bf_m != NULL) { 2679 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2680 m_freem(bf->bf_m); 2681 bf->bf_m = NULL; 2682 } 2683 if (bf->bf_node != NULL) { 2684 ieee80211_free_node(bf->bf_node); 2685 bf->bf_node = NULL; 2686 } 2687 2688 /* 2689 * NB: the beacon data buffer must be 32-bit aligned; 2690 * we assume the mbuf routines will return us something 2691 * with this alignment (perhaps should assert). 2692 */ 2693 m = ieee80211_beacon_alloc(ni, &avp->av_boff); 2694 if (m == NULL) { 2695 device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__); 2696 sc->sc_stats.ast_be_nombuf++; 2697 return ENOMEM; 2698 } 2699 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 2700 bf->bf_segs, &bf->bf_nseg, 2701 BUS_DMA_NOWAIT); 2702 if (error != 0) { 2703 device_printf(sc->sc_dev, 2704 "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n", 2705 __func__, error); 2706 m_freem(m); 2707 return error; 2708 } 2709 2710 /* 2711 * Calculate a TSF adjustment factor required for staggered 2712 * beacons. Note that we assume the format of the beacon 2713 * frame leaves the tstamp field immediately following the 2714 * header. 2715 */ 2716 if (sc->sc_stagbeacons && avp->av_bslot > 0) { 2717 uint64_t tsfadjust; 2718 struct ieee80211_frame *wh; 2719 2720 /* 2721 * The beacon interval is in TU's; the TSF is in usecs. 2722 * We figure out how many TU's to add to align the timestamp 2723 * then convert to TSF units and handle byte swapping before 2724 * inserting it in the frame. The hardware will then add this 2725 * each time a beacon frame is sent. Note that we align vap's 2726 * 1..N and leave vap 0 untouched. This means vap 0 has a 2727 * timestamp in one beacon interval while the others get a 2728 * timstamp aligned to the next interval. 2729 */ 2730 tsfadjust = ni->ni_intval * 2731 (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF; 2732 tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */ 2733 2734 DPRINTF(sc, ATH_DEBUG_BEACON, 2735 "%s: %s beacons bslot %d intval %u tsfadjust %llu\n", 2736 __func__, sc->sc_stagbeacons ? "stagger" : "burst", 2737 avp->av_bslot, ni->ni_intval, 2738 (long long unsigned) le64toh(tsfadjust)); 2739 2740 wh = mtod(m, struct ieee80211_frame *); 2741 memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust)); 2742 } 2743 bf->bf_m = m; 2744 bf->bf_node = ieee80211_ref_node(ni); 2745 2746 return 0; 2747 } 2748 2749 /* 2750 * Setup the beacon frame for transmit. 2751 */ 2752 static void 2753 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2754 { 2755 #define USE_SHPREAMBLE(_ic) \ 2756 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2757 == IEEE80211_F_SHPREAMBLE) 2758 struct ieee80211_node *ni = bf->bf_node; 2759 struct ieee80211com *ic = ni->ni_ic; 2760 struct mbuf *m = bf->bf_m; 2761 struct ath_hal *ah = sc->sc_ah; 2762 struct ath_desc *ds; 2763 int flags, antenna; 2764 const HAL_RATE_TABLE *rt; 2765 u_int8_t rix, rate; 2766 2767 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n", 2768 __func__, m, m->m_len); 2769 2770 /* setup descriptors */ 2771 ds = bf->bf_desc; 2772 bf->bf_last = bf; 2773 bf->bf_lastds = ds; 2774 2775 flags = HAL_TXDESC_NOACK; 2776 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2777 ds->ds_link = bf->bf_daddr; /* self-linked */ 2778 flags |= HAL_TXDESC_VEOL; 2779 /* 2780 * Let hardware handle antenna switching. 2781 */ 2782 antenna = sc->sc_txantenna; 2783 } else { 2784 ds->ds_link = 0; 2785 /* 2786 * Switch antenna every 4 beacons. 2787 * XXX assumes two antenna 2788 */ 2789 if (sc->sc_txantenna != 0) 2790 antenna = sc->sc_txantenna; 2791 else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0) 2792 antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1); 2793 else 2794 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2795 } 2796 2797 KASSERT(bf->bf_nseg == 1, 2798 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2799 ds->ds_data = bf->bf_segs[0].ds_addr; 2800 /* 2801 * Calculate rate code. 2802 * XXX everything at min xmit rate 2803 */ 2804 rix = 0; 2805 rt = sc->sc_currates; 2806 rate = rt->info[rix].rateCode; 2807 if (USE_SHPREAMBLE(ic)) 2808 rate |= rt->info[rix].shortPreamble; 2809 ath_hal_setuptxdesc(ah, ds 2810 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2811 , sizeof(struct ieee80211_frame)/* header length */ 2812 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2813 , ni->ni_txpower /* txpower XXX */ 2814 , rate, 1 /* series 0 rate/tries */ 2815 , HAL_TXKEYIX_INVALID /* no encryption */ 2816 , antenna /* antenna mode */ 2817 , flags /* no ack, veol for beacons */ 2818 , 0 /* rts/cts rate */ 2819 , 0 /* rts/cts duration */ 2820 ); 2821 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2822 ath_hal_filltxdesc(ah, ds 2823 , roundup(m->m_len, 4) /* buffer length */ 2824 , AH_TRUE /* first segment */ 2825 , AH_TRUE /* last segment */ 2826 , ds /* first descriptor */ 2827 ); 2828 #if 0 2829 ath_desc_swap(ds); 2830 #endif 2831 #undef USE_SHPREAMBLE 2832 } 2833 2834 static void 2835 ath_beacon_update(struct ieee80211vap *vap, int item) 2836 { 2837 struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff; 2838 2839 setbit(bo->bo_flags, item); 2840 } 2841 2842 /* 2843 * Append the contents of src to dst; both queues 2844 * are assumed to be locked. 2845 */ 2846 static void 2847 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2848 { 2849 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2850 dst->axq_link = src->axq_link; 2851 src->axq_link = NULL; 2852 dst->axq_depth += src->axq_depth; 2853 dst->axq_aggr_depth += src->axq_aggr_depth; 2854 src->axq_depth = 0; 2855 src->axq_aggr_depth = 0; 2856 } 2857 2858 /* 2859 * Transmit a beacon frame at SWBA. Dynamic updates to the 2860 * frame contents are done as needed and the slot time is 2861 * also adjusted based on current state. 2862 */ 2863 static void 2864 ath_beacon_proc(void *arg, int pending) 2865 { 2866 struct ath_softc *sc = arg; 2867 struct ath_hal *ah = sc->sc_ah; 2868 struct ieee80211vap *vap; 2869 struct ath_buf *bf; 2870 int slot, otherant; 2871 uint32_t bfaddr; 2872 2873 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2874 __func__, pending); 2875 /* 2876 * Check if the previous beacon has gone out. If 2877 * not don't try to post another, skip this period 2878 * and wait for the next. Missed beacons indicate 2879 * a problem and should not occur. If we miss too 2880 * many consecutive beacons reset the device. 2881 */ 2882 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2883 sc->sc_bmisscount++; 2884 sc->sc_stats.ast_be_missed++; 2885 DPRINTF(sc, ATH_DEBUG_BEACON, 2886 "%s: missed %u consecutive beacons\n", 2887 __func__, sc->sc_bmisscount); 2888 if (sc->sc_bmisscount >= ath_bstuck_threshold) 2889 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 2890 return; 2891 } 2892 if (sc->sc_bmisscount != 0) { 2893 DPRINTF(sc, ATH_DEBUG_BEACON, 2894 "%s: resume beacon xmit after %u misses\n", 2895 __func__, sc->sc_bmisscount); 2896 sc->sc_bmisscount = 0; 2897 } 2898 2899 if (sc->sc_stagbeacons) { /* staggered beacons */ 2900 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2901 uint32_t tsftu; 2902 2903 tsftu = ath_hal_gettsf32(ah) >> 10; 2904 /* XXX lintval */ 2905 slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval; 2906 vap = sc->sc_bslot[(slot+1) % ATH_BCBUF]; 2907 bfaddr = 0; 2908 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2909 bf = ath_beacon_generate(sc, vap); 2910 if (bf != NULL) 2911 bfaddr = bf->bf_daddr; 2912 } 2913 } else { /* burst'd beacons */ 2914 uint32_t *bflink = &bfaddr; 2915 2916 for (slot = 0; slot < ATH_BCBUF; slot++) { 2917 vap = sc->sc_bslot[slot]; 2918 if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) { 2919 bf = ath_beacon_generate(sc, vap); 2920 if (bf != NULL) { 2921 *bflink = bf->bf_daddr; 2922 bflink = &bf->bf_desc->ds_link; 2923 } 2924 } 2925 } 2926 *bflink = 0; /* terminate list */ 2927 } 2928 2929 /* 2930 * Handle slot time change when a non-ERP station joins/leaves 2931 * an 11g network. The 802.11 layer notifies us via callback, 2932 * we mark updateslot, then wait one beacon before effecting 2933 * the change. This gives associated stations at least one 2934 * beacon interval to note the state change. 2935 */ 2936 /* XXX locking */ 2937 if (sc->sc_updateslot == UPDATE) { 2938 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2939 sc->sc_slotupdate = slot; 2940 } else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot) 2941 ath_setslottime(sc); /* commit change to h/w */ 2942 2943 /* 2944 * Check recent per-antenna transmit statistics and flip 2945 * the default antenna if noticeably more frames went out 2946 * on the non-default antenna. 2947 * XXX assumes 2 anntenae 2948 */ 2949 if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) { 2950 otherant = sc->sc_defant & 1 ? 2 : 1; 2951 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2952 ath_setdefantenna(sc, otherant); 2953 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2954 } 2955 2956 if (bfaddr != 0) { 2957 /* 2958 * Stop any current dma and put the new frame on the queue. 2959 * This should never fail since we check above that no frames 2960 * are still pending on the queue. 2961 */ 2962 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2963 DPRINTF(sc, ATH_DEBUG_ANY, 2964 "%s: beacon queue %u did not stop?\n", 2965 __func__, sc->sc_bhalq); 2966 } 2967 /* NB: cabq traffic should already be queued and primed */ 2968 ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr); 2969 ath_hal_txstart(ah, sc->sc_bhalq); 2970 2971 sc->sc_stats.ast_be_xmit++; 2972 } 2973 } 2974 2975 static struct ath_buf * 2976 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap) 2977 { 2978 struct ath_vap *avp = ATH_VAP(vap); 2979 struct ath_txq *cabq = sc->sc_cabq; 2980 struct ath_buf *bf; 2981 struct mbuf *m; 2982 int nmcastq, error; 2983 2984 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2985 ("not running, state %d", vap->iv_state)); 2986 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 2987 2988 /* 2989 * Update dynamic beacon contents. If this returns 2990 * non-zero then we need to remap the memory because 2991 * the beacon frame changed size (probably because 2992 * of the TIM bitmap). 2993 */ 2994 bf = avp->av_bcbuf; 2995 m = bf->bf_m; 2996 nmcastq = avp->av_mcastq.axq_depth; 2997 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) { 2998 /* XXX too conservative? */ 2999 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3000 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3001 bf->bf_segs, &bf->bf_nseg, 3002 BUS_DMA_NOWAIT); 3003 if (error != 0) { 3004 if_printf(vap->iv_ifp, 3005 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3006 __func__, error); 3007 return NULL; 3008 } 3009 } 3010 if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) { 3011 DPRINTF(sc, ATH_DEBUG_BEACON, 3012 "%s: cabq did not drain, mcastq %u cabq %u\n", 3013 __func__, nmcastq, cabq->axq_depth); 3014 sc->sc_stats.ast_cabq_busy++; 3015 if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) { 3016 /* 3017 * CABQ traffic from a previous vap is still pending. 3018 * We must drain the q before this beacon frame goes 3019 * out as otherwise this vap's stations will get cab 3020 * frames from a different vap. 3021 * XXX could be slow causing us to miss DBA 3022 */ 3023 ath_tx_draintxq(sc, cabq); 3024 } 3025 } 3026 ath_beacon_setup(sc, bf); 3027 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3028 3029 /* 3030 * Enable the CAB queue before the beacon queue to 3031 * insure cab frames are triggered by this beacon. 3032 */ 3033 if (avp->av_boff.bo_tim[4] & 1) { 3034 struct ath_hal *ah = sc->sc_ah; 3035 3036 /* NB: only at DTIM */ 3037 ATH_TXQ_LOCK(cabq); 3038 ATH_TXQ_LOCK(&avp->av_mcastq); 3039 if (nmcastq) { 3040 struct ath_buf *bfm; 3041 3042 /* 3043 * Move frames from the s/w mcast q to the h/w cab q. 3044 * XXX MORE_DATA bit 3045 */ 3046 bfm = TAILQ_FIRST(&avp->av_mcastq.axq_q); 3047 if (cabq->axq_link != NULL) { 3048 *cabq->axq_link = bfm->bf_daddr; 3049 } else 3050 ath_hal_puttxbuf(ah, cabq->axq_qnum, 3051 bfm->bf_daddr); 3052 ath_txqmove(cabq, &avp->av_mcastq); 3053 3054 sc->sc_stats.ast_cabq_xmit += nmcastq; 3055 } 3056 /* NB: gated by beacon so safe to start here */ 3057 if (! TAILQ_EMPTY(&(cabq->axq_q))) 3058 ath_hal_txstart(ah, cabq->axq_qnum); 3059 ATH_TXQ_UNLOCK(&avp->av_mcastq); 3060 ATH_TXQ_UNLOCK(cabq); 3061 } 3062 return bf; 3063 } 3064 3065 static void 3066 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap) 3067 { 3068 struct ath_vap *avp = ATH_VAP(vap); 3069 struct ath_hal *ah = sc->sc_ah; 3070 struct ath_buf *bf; 3071 struct mbuf *m; 3072 int error; 3073 3074 KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer")); 3075 3076 /* 3077 * Update dynamic beacon contents. If this returns 3078 * non-zero then we need to remap the memory because 3079 * the beacon frame changed size (probably because 3080 * of the TIM bitmap). 3081 */ 3082 bf = avp->av_bcbuf; 3083 m = bf->bf_m; 3084 if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) { 3085 /* XXX too conservative? */ 3086 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3087 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 3088 bf->bf_segs, &bf->bf_nseg, 3089 BUS_DMA_NOWAIT); 3090 if (error != 0) { 3091 if_printf(vap->iv_ifp, 3092 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 3093 __func__, error); 3094 return; 3095 } 3096 } 3097 ath_beacon_setup(sc, bf); 3098 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3099 3100 /* NB: caller is known to have already stopped tx dma */ 3101 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 3102 ath_hal_txstart(ah, sc->sc_bhalq); 3103 } 3104 3105 /* 3106 * Reset the hardware after detecting beacons have stopped. 3107 */ 3108 static void 3109 ath_bstuck_proc(void *arg, int pending) 3110 { 3111 struct ath_softc *sc = arg; 3112 struct ifnet *ifp = sc->sc_ifp; 3113 uint32_t hangs = 0; 3114 3115 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3116 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 3117 3118 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 3119 sc->sc_bmisscount); 3120 sc->sc_stats.ast_bstuck++; 3121 /* 3122 * This assumes that there's no simultaneous channel mode change 3123 * occuring. 3124 */ 3125 ath_reset(ifp, ATH_RESET_NOLOSS); 3126 } 3127 3128 /* 3129 * Reclaim beacon resources and return buffer to the pool. 3130 */ 3131 static void 3132 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf) 3133 { 3134 3135 if (bf->bf_m != NULL) { 3136 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3137 m_freem(bf->bf_m); 3138 bf->bf_m = NULL; 3139 } 3140 if (bf->bf_node != NULL) { 3141 ieee80211_free_node(bf->bf_node); 3142 bf->bf_node = NULL; 3143 } 3144 TAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list); 3145 } 3146 3147 /* 3148 * Reclaim beacon resources. 3149 */ 3150 static void 3151 ath_beacon_free(struct ath_softc *sc) 3152 { 3153 struct ath_buf *bf; 3154 3155 TAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 3156 if (bf->bf_m != NULL) { 3157 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3158 m_freem(bf->bf_m); 3159 bf->bf_m = NULL; 3160 } 3161 if (bf->bf_node != NULL) { 3162 ieee80211_free_node(bf->bf_node); 3163 bf->bf_node = NULL; 3164 } 3165 } 3166 } 3167 3168 /* 3169 * Configure the beacon and sleep timers. 3170 * 3171 * When operating as an AP this resets the TSF and sets 3172 * up the hardware to notify us when we need to issue beacons. 3173 * 3174 * When operating in station mode this sets up the beacon 3175 * timers according to the timestamp of the last received 3176 * beacon and the current TSF, configures PCF and DTIM 3177 * handling, programs the sleep registers so the hardware 3178 * will wakeup in time to receive beacons, and configures 3179 * the beacon miss handling so we'll receive a BMISS 3180 * interrupt when we stop seeing beacons from the AP 3181 * we've associated with. 3182 */ 3183 static void 3184 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap) 3185 { 3186 #define TSF_TO_TU(_h,_l) \ 3187 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 3188 #define FUDGE 2 3189 struct ath_hal *ah = sc->sc_ah; 3190 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3191 struct ieee80211_node *ni; 3192 u_int32_t nexttbtt, intval, tsftu; 3193 u_int64_t tsf; 3194 3195 if (vap == NULL) 3196 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 3197 ni = vap->iv_bss; 3198 3199 /* extract tstamp from last beacon and convert to TU */ 3200 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 3201 LE_READ_4(ni->ni_tstamp.data)); 3202 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3203 ic->ic_opmode == IEEE80211_M_MBSS) { 3204 /* 3205 * For multi-bss ap/mesh support beacons are either staggered 3206 * evenly over N slots or burst together. For the former 3207 * arrange for the SWBA to be delivered for each slot. 3208 * Slots that are not occupied will generate nothing. 3209 */ 3210 /* NB: the beacon interval is kept internally in TU's */ 3211 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3212 if (sc->sc_stagbeacons) 3213 intval /= ATH_BCBUF; 3214 } else { 3215 /* NB: the beacon interval is kept internally in TU's */ 3216 intval = ni->ni_intval & HAL_BEACON_PERIOD; 3217 } 3218 if (nexttbtt == 0) /* e.g. for ap mode */ 3219 nexttbtt = intval; 3220 else if (intval) /* NB: can be 0 for monitor mode */ 3221 nexttbtt = roundup(nexttbtt, intval); 3222 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 3223 __func__, nexttbtt, intval, ni->ni_intval); 3224 if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) { 3225 HAL_BEACON_STATE bs; 3226 int dtimperiod, dtimcount; 3227 int cfpperiod, cfpcount; 3228 3229 /* 3230 * Setup dtim and cfp parameters according to 3231 * last beacon we received (which may be none). 3232 */ 3233 dtimperiod = ni->ni_dtim_period; 3234 if (dtimperiod <= 0) /* NB: 0 if not known */ 3235 dtimperiod = 1; 3236 dtimcount = ni->ni_dtim_count; 3237 if (dtimcount >= dtimperiod) /* NB: sanity check */ 3238 dtimcount = 0; /* XXX? */ 3239 cfpperiod = 1; /* NB: no PCF support yet */ 3240 cfpcount = 0; 3241 /* 3242 * Pull nexttbtt forward to reflect the current 3243 * TSF and calculate dtim+cfp state for the result. 3244 */ 3245 tsf = ath_hal_gettsf64(ah); 3246 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3247 do { 3248 nexttbtt += intval; 3249 if (--dtimcount < 0) { 3250 dtimcount = dtimperiod - 1; 3251 if (--cfpcount < 0) 3252 cfpcount = cfpperiod - 1; 3253 } 3254 } while (nexttbtt < tsftu); 3255 memset(&bs, 0, sizeof(bs)); 3256 bs.bs_intval = intval; 3257 bs.bs_nexttbtt = nexttbtt; 3258 bs.bs_dtimperiod = dtimperiod*intval; 3259 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 3260 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 3261 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 3262 bs.bs_cfpmaxduration = 0; 3263 #if 0 3264 /* 3265 * The 802.11 layer records the offset to the DTIM 3266 * bitmap while receiving beacons; use it here to 3267 * enable h/w detection of our AID being marked in 3268 * the bitmap vector (to indicate frames for us are 3269 * pending at the AP). 3270 * XXX do DTIM handling in s/w to WAR old h/w bugs 3271 * XXX enable based on h/w rev for newer chips 3272 */ 3273 bs.bs_timoffset = ni->ni_timoff; 3274 #endif 3275 /* 3276 * Calculate the number of consecutive beacons to miss 3277 * before taking a BMISS interrupt. 3278 * Note that we clamp the result to at most 10 beacons. 3279 */ 3280 bs.bs_bmissthreshold = vap->iv_bmissthreshold; 3281 if (bs.bs_bmissthreshold > 10) 3282 bs.bs_bmissthreshold = 10; 3283 else if (bs.bs_bmissthreshold <= 0) 3284 bs.bs_bmissthreshold = 1; 3285 3286 /* 3287 * Calculate sleep duration. The configuration is 3288 * given in ms. We insure a multiple of the beacon 3289 * period is used. Also, if the sleep duration is 3290 * greater than the DTIM period then it makes senses 3291 * to make it a multiple of that. 3292 * 3293 * XXX fixed at 100ms 3294 */ 3295 bs.bs_sleepduration = 3296 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 3297 if (bs.bs_sleepduration > bs.bs_dtimperiod) 3298 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 3299 3300 DPRINTF(sc, ATH_DEBUG_BEACON, 3301 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 3302 , __func__ 3303 , tsf, tsftu 3304 , bs.bs_intval 3305 , bs.bs_nexttbtt 3306 , bs.bs_dtimperiod 3307 , bs.bs_nextdtim 3308 , bs.bs_bmissthreshold 3309 , bs.bs_sleepduration 3310 , bs.bs_cfpperiod 3311 , bs.bs_cfpmaxduration 3312 , bs.bs_cfpnext 3313 , bs.bs_timoffset 3314 ); 3315 ath_hal_intrset(ah, 0); 3316 ath_hal_beacontimers(ah, &bs); 3317 sc->sc_imask |= HAL_INT_BMISS; 3318 ath_hal_intrset(ah, sc->sc_imask); 3319 } else { 3320 ath_hal_intrset(ah, 0); 3321 if (nexttbtt == intval) 3322 intval |= HAL_BEACON_RESET_TSF; 3323 if (ic->ic_opmode == IEEE80211_M_IBSS) { 3324 /* 3325 * In IBSS mode enable the beacon timers but only 3326 * enable SWBA interrupts if we need to manually 3327 * prepare beacon frames. Otherwise we use a 3328 * self-linked tx descriptor and let the hardware 3329 * deal with things. 3330 */ 3331 intval |= HAL_BEACON_ENA; 3332 if (!sc->sc_hasveol) 3333 sc->sc_imask |= HAL_INT_SWBA; 3334 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 3335 /* 3336 * Pull nexttbtt forward to reflect 3337 * the current TSF. 3338 */ 3339 tsf = ath_hal_gettsf64(ah); 3340 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 3341 do { 3342 nexttbtt += intval; 3343 } while (nexttbtt < tsftu); 3344 } 3345 ath_beaconq_config(sc); 3346 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3347 ic->ic_opmode == IEEE80211_M_MBSS) { 3348 /* 3349 * In AP/mesh mode we enable the beacon timers 3350 * and SWBA interrupts to prepare beacon frames. 3351 */ 3352 intval |= HAL_BEACON_ENA; 3353 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 3354 ath_beaconq_config(sc); 3355 } 3356 ath_hal_beaconinit(ah, nexttbtt, intval); 3357 sc->sc_bmisscount = 0; 3358 ath_hal_intrset(ah, sc->sc_imask); 3359 /* 3360 * When using a self-linked beacon descriptor in 3361 * ibss mode load it once here. 3362 */ 3363 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 3364 ath_beacon_start_adhoc(sc, vap); 3365 } 3366 sc->sc_syncbeacon = 0; 3367 #undef FUDGE 3368 #undef TSF_TO_TU 3369 } 3370 3371 static void 3372 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 3373 { 3374 bus_addr_t *paddr = (bus_addr_t*) arg; 3375 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 3376 *paddr = segs->ds_addr; 3377 } 3378 3379 static int 3380 ath_descdma_setup(struct ath_softc *sc, 3381 struct ath_descdma *dd, ath_bufhead *head, 3382 const char *name, int nbuf, int ndesc) 3383 { 3384 #define DS2PHYS(_dd, _ds) \ 3385 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3386 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3387 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3388 struct ifnet *ifp = sc->sc_ifp; 3389 uint8_t *ds; 3390 struct ath_buf *bf; 3391 int i, bsize, error; 3392 int desc_len; 3393 3394 desc_len = sizeof(struct ath_desc); 3395 3396 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 3397 __func__, name, nbuf, ndesc); 3398 3399 dd->dd_name = name; 3400 dd->dd_desc_len = desc_len * nbuf * ndesc; 3401 3402 /* 3403 * Merlin work-around: 3404 * Descriptors that cross the 4KB boundary can't be used. 3405 * Assume one skipped descriptor per 4KB page. 3406 */ 3407 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3408 int numdescpage = 4096 / (desc_len * ndesc); 3409 dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096; 3410 } 3411 3412 /* 3413 * Setup DMA descriptor area. 3414 */ 3415 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3416 PAGE_SIZE, 0, /* alignment, bounds */ 3417 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3418 BUS_SPACE_MAXADDR, /* highaddr */ 3419 NULL, NULL, /* filter, filterarg */ 3420 dd->dd_desc_len, /* maxsize */ 3421 1, /* nsegments */ 3422 dd->dd_desc_len, /* maxsegsize */ 3423 BUS_DMA_ALLOCNOW, /* flags */ 3424 NULL, /* lockfunc */ 3425 NULL, /* lockarg */ 3426 &dd->dd_dmat); 3427 if (error != 0) { 3428 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3429 return error; 3430 } 3431 3432 /* allocate descriptors */ 3433 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 3434 if (error != 0) { 3435 if_printf(ifp, "unable to create dmamap for %s descriptors, " 3436 "error %u\n", dd->dd_name, error); 3437 goto fail0; 3438 } 3439 3440 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3441 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3442 &dd->dd_dmamap); 3443 if (error != 0) { 3444 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3445 "error %u\n", nbuf * ndesc, dd->dd_name, error); 3446 goto fail1; 3447 } 3448 3449 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3450 dd->dd_desc, dd->dd_desc_len, 3451 ath_load_cb, &dd->dd_desc_paddr, 3452 BUS_DMA_NOWAIT); 3453 if (error != 0) { 3454 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3455 dd->dd_name, error); 3456 goto fail2; 3457 } 3458 3459 ds = (uint8_t *) dd->dd_desc; 3460 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3461 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 3462 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 3463 3464 /* allocate rx buffers */ 3465 bsize = sizeof(struct ath_buf) * nbuf; 3466 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3467 if (bf == NULL) { 3468 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3469 dd->dd_name, bsize); 3470 goto fail3; 3471 } 3472 dd->dd_bufptr = bf; 3473 3474 TAILQ_INIT(head); 3475 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) { 3476 bf->bf_desc = (struct ath_desc *) ds; 3477 bf->bf_daddr = DS2PHYS(dd, ds); 3478 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3479 /* 3480 * Merlin WAR: Skip descriptor addresses which 3481 * cause 4KB boundary crossing along any point 3482 * in the descriptor. 3483 */ 3484 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3485 desc_len * ndesc)) { 3486 /* Start at the next page */ 3487 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3488 bf->bf_desc = (struct ath_desc *) ds; 3489 bf->bf_daddr = DS2PHYS(dd, ds); 3490 } 3491 } 3492 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3493 &bf->bf_dmamap); 3494 if (error != 0) { 3495 if_printf(ifp, "unable to create dmamap for %s " 3496 "buffer %u, error %u\n", dd->dd_name, i, error); 3497 ath_descdma_cleanup(sc, dd, head); 3498 return error; 3499 } 3500 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3501 TAILQ_INSERT_TAIL(head, bf, bf_list); 3502 } 3503 return 0; 3504 fail3: 3505 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3506 fail2: 3507 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3508 fail1: 3509 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3510 fail0: 3511 bus_dma_tag_destroy(dd->dd_dmat); 3512 memset(dd, 0, sizeof(*dd)); 3513 return error; 3514 #undef DS2PHYS 3515 #undef ATH_DESC_4KB_BOUND_CHECK 3516 } 3517 3518 static void 3519 ath_descdma_cleanup(struct ath_softc *sc, 3520 struct ath_descdma *dd, ath_bufhead *head) 3521 { 3522 struct ath_buf *bf; 3523 struct ieee80211_node *ni; 3524 3525 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3526 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3527 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 3528 bus_dma_tag_destroy(dd->dd_dmat); 3529 3530 TAILQ_FOREACH(bf, head, bf_list) { 3531 if (bf->bf_m) { 3532 m_freem(bf->bf_m); 3533 bf->bf_m = NULL; 3534 } 3535 if (bf->bf_dmamap != NULL) { 3536 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3537 bf->bf_dmamap = NULL; 3538 } 3539 ni = bf->bf_node; 3540 bf->bf_node = NULL; 3541 if (ni != NULL) { 3542 /* 3543 * Reclaim node reference. 3544 */ 3545 ieee80211_free_node(ni); 3546 } 3547 } 3548 3549 TAILQ_INIT(head); 3550 free(dd->dd_bufptr, M_ATHDEV); 3551 memset(dd, 0, sizeof(*dd)); 3552 } 3553 3554 static int 3555 ath_desc_alloc(struct ath_softc *sc) 3556 { 3557 int error; 3558 3559 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 3560 "rx", ath_rxbuf, 1); 3561 if (error != 0) 3562 return error; 3563 3564 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3565 "tx", ath_txbuf, ATH_TXDESC); 3566 if (error != 0) { 3567 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3568 return error; 3569 } 3570 3571 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3572 "beacon", ATH_BCBUF, 1); 3573 if (error != 0) { 3574 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3575 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3576 return error; 3577 } 3578 return 0; 3579 } 3580 3581 static void 3582 ath_desc_free(struct ath_softc *sc) 3583 { 3584 3585 if (sc->sc_bdma.dd_desc_len != 0) 3586 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3587 if (sc->sc_txdma.dd_desc_len != 0) 3588 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3589 if (sc->sc_rxdma.dd_desc_len != 0) 3590 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 3591 } 3592 3593 static struct ieee80211_node * 3594 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3595 { 3596 struct ieee80211com *ic = vap->iv_ic; 3597 struct ath_softc *sc = ic->ic_ifp->if_softc; 3598 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3599 struct ath_node *an; 3600 3601 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3602 if (an == NULL) { 3603 /* XXX stat+msg */ 3604 return NULL; 3605 } 3606 ath_rate_node_init(sc, an); 3607 3608 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3609 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3610 device_get_nameunit(sc->sc_dev), an); 3611 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3612 3613 /* XXX setup ath_tid */ 3614 ath_tx_tid_init(sc, an); 3615 3616 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3617 return &an->an_node; 3618 } 3619 3620 static void 3621 ath_node_cleanup(struct ieee80211_node *ni) 3622 { 3623 struct ieee80211com *ic = ni->ni_ic; 3624 struct ath_softc *sc = ic->ic_ifp->if_softc; 3625 3626 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3627 ath_tx_node_flush(sc, ATH_NODE(ni)); 3628 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3629 sc->sc_node_cleanup(ni); 3630 } 3631 3632 static void 3633 ath_node_free(struct ieee80211_node *ni) 3634 { 3635 struct ieee80211com *ic = ni->ni_ic; 3636 struct ath_softc *sc = ic->ic_ifp->if_softc; 3637 3638 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3639 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3640 sc->sc_node_free(ni); 3641 } 3642 3643 static void 3644 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3645 { 3646 struct ieee80211com *ic = ni->ni_ic; 3647 struct ath_softc *sc = ic->ic_ifp->if_softc; 3648 struct ath_hal *ah = sc->sc_ah; 3649 3650 *rssi = ic->ic_node_getrssi(ni); 3651 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3652 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3653 else 3654 *noise = -95; /* nominally correct */ 3655 } 3656 3657 static int 3658 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 3659 { 3660 struct ath_hal *ah = sc->sc_ah; 3661 int error; 3662 struct mbuf *m; 3663 struct ath_desc *ds; 3664 3665 m = bf->bf_m; 3666 if (m == NULL) { 3667 /* 3668 * NB: by assigning a page to the rx dma buffer we 3669 * implicitly satisfy the Atheros requirement that 3670 * this buffer be cache-line-aligned and sized to be 3671 * multiple of the cache line size. Not doing this 3672 * causes weird stuff to happen (for the 5210 at least). 3673 */ 3674 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3675 if (m == NULL) { 3676 DPRINTF(sc, ATH_DEBUG_ANY, 3677 "%s: no mbuf/cluster\n", __func__); 3678 sc->sc_stats.ast_rx_nombuf++; 3679 return ENOMEM; 3680 } 3681 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 3682 3683 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 3684 bf->bf_dmamap, m, 3685 bf->bf_segs, &bf->bf_nseg, 3686 BUS_DMA_NOWAIT); 3687 if (error != 0) { 3688 DPRINTF(sc, ATH_DEBUG_ANY, 3689 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 3690 __func__, error); 3691 sc->sc_stats.ast_rx_busdma++; 3692 m_freem(m); 3693 return error; 3694 } 3695 KASSERT(bf->bf_nseg == 1, 3696 ("multi-segment packet; nseg %u", bf->bf_nseg)); 3697 bf->bf_m = m; 3698 } 3699 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 3700 3701 /* 3702 * Setup descriptors. For receive we always terminate 3703 * the descriptor list with a self-linked entry so we'll 3704 * not get overrun under high load (as can happen with a 3705 * 5212 when ANI processing enables PHY error frames). 3706 * 3707 * To insure the last descriptor is self-linked we create 3708 * each descriptor as self-linked and add it to the end. As 3709 * each additional descriptor is added the previous self-linked 3710 * entry is ``fixed'' naturally. This should be safe even 3711 * if DMA is happening. When processing RX interrupts we 3712 * never remove/process the last, self-linked, entry on the 3713 * descriptor list. This insures the hardware always has 3714 * someplace to write a new frame. 3715 */ 3716 /* 3717 * 11N: we can no longer afford to self link the last descriptor. 3718 * MAC acknowledges BA status as long as it copies frames to host 3719 * buffer (or rx fifo). This can incorrectly acknowledge packets 3720 * to a sender if last desc is self-linked. 3721 */ 3722 ds = bf->bf_desc; 3723 if (sc->sc_rxslink) 3724 ds->ds_link = bf->bf_daddr; /* link to self */ 3725 else 3726 ds->ds_link = 0; /* terminate the list */ 3727 ds->ds_data = bf->bf_segs[0].ds_addr; 3728 ath_hal_setuprxdesc(ah, ds 3729 , m->m_len /* buffer size */ 3730 , 0 3731 ); 3732 3733 if (sc->sc_rxlink != NULL) 3734 *sc->sc_rxlink = bf->bf_daddr; 3735 sc->sc_rxlink = &ds->ds_link; 3736 return 0; 3737 } 3738 3739 /* 3740 * Extend 15-bit time stamp from rx descriptor to 3741 * a full 64-bit TSF using the specified TSF. 3742 */ 3743 static __inline u_int64_t 3744 ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf) 3745 { 3746 if ((tsf & 0x7fff) < rstamp) 3747 tsf -= 0x8000; 3748 3749 return ((tsf &~ 0x7fff) | rstamp); 3750 } 3751 3752 /* 3753 * Extend 32-bit time stamp from rx descriptor to 3754 * a full 64-bit TSF using the specified TSF. 3755 */ 3756 static __inline u_int64_t 3757 ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf) 3758 { 3759 u_int32_t tsf_low = tsf & 0xffffffff; 3760 u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp; 3761 3762 if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000)) 3763 tsf64 -= 0x100000000ULL; 3764 3765 if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000)) 3766 tsf64 += 0x100000000ULL; 3767 3768 return tsf64; 3769 } 3770 3771 /* 3772 * Extend the TSF from the RX descriptor to a full 64 bit TSF. 3773 * Earlier hardware versions only wrote the low 15 bits of the 3774 * TSF into the RX descriptor; later versions (AR5416 and up) 3775 * include the 32 bit TSF value. 3776 */ 3777 static __inline u_int64_t 3778 ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf) 3779 { 3780 if (sc->sc_rxtsf32) 3781 return ath_extend_tsf32(rstamp, tsf); 3782 else 3783 return ath_extend_tsf15(rstamp, tsf); 3784 } 3785 3786 /* 3787 * Intercept management frames to collect beacon rssi data 3788 * and to do ibss merges. 3789 */ 3790 static void 3791 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, 3792 int subtype, int rssi, int nf) 3793 { 3794 struct ieee80211vap *vap = ni->ni_vap; 3795 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3796 3797 /* 3798 * Call up first so subsequent work can use information 3799 * potentially stored in the node (e.g. for ibss merge). 3800 */ 3801 ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf); 3802 switch (subtype) { 3803 case IEEE80211_FC0_SUBTYPE_BEACON: 3804 /* update rssi statistics for use by the hal */ 3805 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 3806 if (sc->sc_syncbeacon && 3807 ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) { 3808 /* 3809 * Resync beacon timers using the tsf of the beacon 3810 * frame we just received. 3811 */ 3812 ath_beacon_config(sc, vap); 3813 } 3814 /* fall thru... */ 3815 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3816 if (vap->iv_opmode == IEEE80211_M_IBSS && 3817 vap->iv_state == IEEE80211_S_RUN) { 3818 uint32_t rstamp = sc->sc_lastrs->rs_tstamp; 3819 uint64_t tsf = ath_extend_tsf(sc, rstamp, 3820 ath_hal_gettsf64(sc->sc_ah)); 3821 /* 3822 * Handle ibss merge as needed; check the tsf on the 3823 * frame before attempting the merge. The 802.11 spec 3824 * says the station should change it's bssid to match 3825 * the oldest station with the same ssid, where oldest 3826 * is determined by the tsf. Note that hardware 3827 * reconfiguration happens through callback to 3828 * ath_newstate as the state machine will go from 3829 * RUN -> RUN when this happens. 3830 */ 3831 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 3832 DPRINTF(sc, ATH_DEBUG_STATE, 3833 "ibss merge, rstamp %u tsf %ju " 3834 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 3835 (uintmax_t)ni->ni_tstamp.tsf); 3836 (void) ieee80211_ibss_merge(ni); 3837 } 3838 } 3839 break; 3840 } 3841 } 3842 3843 /* 3844 * Set the default antenna. 3845 */ 3846 static void 3847 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3848 { 3849 struct ath_hal *ah = sc->sc_ah; 3850 3851 /* XXX block beacon interrupts */ 3852 ath_hal_setdefantenna(ah, antenna); 3853 if (sc->sc_defant != antenna) 3854 sc->sc_stats.ast_ant_defswitch++; 3855 sc->sc_defant = antenna; 3856 sc->sc_rxotherant = 0; 3857 } 3858 3859 static void 3860 ath_rx_tap(struct ifnet *ifp, struct mbuf *m, 3861 const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf) 3862 { 3863 #define CHAN_HT20 htole32(IEEE80211_CHAN_HT20) 3864 #define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U) 3865 #define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D) 3866 #define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D) 3867 struct ath_softc *sc = ifp->if_softc; 3868 const HAL_RATE_TABLE *rt; 3869 uint8_t rix; 3870 3871 rt = sc->sc_currates; 3872 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3873 rix = rt->rateCodeToIndex[rs->rs_rate]; 3874 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3875 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3876 #ifdef AH_SUPPORT_AR5416 3877 sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT; 3878 if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */ 3879 struct ieee80211com *ic = ifp->if_l2com; 3880 3881 if ((rs->rs_flags & HAL_RX_2040) == 0) 3882 sc->sc_rx_th.wr_chan_flags |= CHAN_HT20; 3883 else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan)) 3884 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U; 3885 else 3886 sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D; 3887 if ((rs->rs_flags & HAL_RX_GI) == 0) 3888 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 3889 } 3890 #endif 3891 sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf)); 3892 if (rs->rs_status & HAL_RXERR_CRC) 3893 sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3894 /* XXX propagate other error flags from descriptor */ 3895 sc->sc_rx_th.wr_antnoise = nf; 3896 sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi; 3897 sc->sc_rx_th.wr_antenna = rs->rs_antenna; 3898 #undef CHAN_HT 3899 #undef CHAN_HT20 3900 #undef CHAN_HT40U 3901 #undef CHAN_HT40D 3902 } 3903 3904 static void 3905 ath_handle_micerror(struct ieee80211com *ic, 3906 struct ieee80211_frame *wh, int keyix) 3907 { 3908 struct ieee80211_node *ni; 3909 3910 /* XXX recheck MIC to deal w/ chips that lie */ 3911 /* XXX discard MIC errors on !data frames */ 3912 ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); 3913 if (ni != NULL) { 3914 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix); 3915 ieee80211_free_node(ni); 3916 } 3917 } 3918 3919 /* 3920 * Only run the RX proc if it's not already running. 3921 * Since this may get run as part of the reset/flush path, 3922 * the task can't clash with an existing, running tasklet. 3923 */ 3924 static void 3925 ath_rx_tasklet(void *arg, int npending) 3926 { 3927 struct ath_softc *sc = arg; 3928 3929 CTR1(ATH_KTR_INTR, "ath_rx_proc: pending=%d", npending); 3930 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3931 ATH_PCU_LOCK(sc); 3932 if (sc->sc_inreset_cnt > 0) { 3933 device_printf(sc->sc_dev, 3934 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 3935 ATH_PCU_UNLOCK(sc); 3936 return; 3937 } 3938 ATH_PCU_UNLOCK(sc); 3939 ath_rx_proc(sc, 1); 3940 } 3941 3942 static void 3943 ath_rx_proc(struct ath_softc *sc, int resched) 3944 { 3945 #define PA2DESC(_sc, _pa) \ 3946 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3947 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3948 struct ath_buf *bf; 3949 struct ifnet *ifp = sc->sc_ifp; 3950 struct ieee80211com *ic = ifp->if_l2com; 3951 struct ath_hal *ah = sc->sc_ah; 3952 struct ath_desc *ds; 3953 struct ath_rx_status *rs; 3954 struct mbuf *m; 3955 struct ieee80211_node *ni; 3956 int len, type, ngood; 3957 HAL_STATUS status; 3958 int16_t nf; 3959 u_int64_t tsf; 3960 int npkts = 0; 3961 3962 /* XXX we must not hold the ATH_LOCK here */ 3963 ATH_UNLOCK_ASSERT(sc); 3964 ATH_PCU_UNLOCK_ASSERT(sc); 3965 3966 ATH_PCU_LOCK(sc); 3967 sc->sc_rxproc_cnt++; 3968 ATH_PCU_UNLOCK(sc); 3969 3970 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__); 3971 ngood = 0; 3972 nf = ath_hal_getchannoise(ah, sc->sc_curchan); 3973 sc->sc_stats.ast_rx_noise = nf; 3974 tsf = ath_hal_gettsf64(ah); 3975 do { 3976 bf = TAILQ_FIRST(&sc->sc_rxbuf); 3977 if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */ 3978 if_printf(ifp, "%s: no buffer!\n", __func__); 3979 break; 3980 } else if (bf == NULL) { 3981 /* 3982 * End of List: 3983 * this can happen for non-self-linked RX chains 3984 */ 3985 sc->sc_stats.ast_rx_hitqueueend++; 3986 break; 3987 } 3988 m = bf->bf_m; 3989 if (m == NULL) { /* NB: shouldn't happen */ 3990 /* 3991 * If mbuf allocation failed previously there 3992 * will be no mbuf; try again to re-populate it. 3993 */ 3994 /* XXX make debug msg */ 3995 if_printf(ifp, "%s: no mbuf!\n", __func__); 3996 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 3997 goto rx_next; 3998 } 3999 ds = bf->bf_desc; 4000 if (ds->ds_link == bf->bf_daddr) { 4001 /* NB: never process the self-linked entry at the end */ 4002 sc->sc_stats.ast_rx_hitqueueend++; 4003 break; 4004 } 4005 /* XXX sync descriptor memory */ 4006 /* 4007 * Must provide the virtual address of the current 4008 * descriptor, the physical address, and the virtual 4009 * address of the next descriptor in the h/w chain. 4010 * This allows the HAL to look ahead to see if the 4011 * hardware is done with a descriptor by checking the 4012 * done bit in the following descriptor and the address 4013 * of the current descriptor the DMA engine is working 4014 * on. All this is necessary because of our use of 4015 * a self-linked list to avoid rx overruns. 4016 */ 4017 rs = &bf->bf_status.ds_rxstat; 4018 status = ath_hal_rxprocdesc(ah, ds, 4019 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 4020 #ifdef ATH_DEBUG 4021 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 4022 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4023 #endif 4024 if (status == HAL_EINPROGRESS) 4025 break; 4026 4027 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 4028 npkts++; 4029 4030 /* These aren't specifically errors */ 4031 #ifdef AH_SUPPORT_AR5416 4032 if (rs->rs_flags & HAL_RX_GI) 4033 sc->sc_stats.ast_rx_halfgi++; 4034 if (rs->rs_flags & HAL_RX_2040) 4035 sc->sc_stats.ast_rx_2040++; 4036 if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE) 4037 sc->sc_stats.ast_rx_pre_crc_err++; 4038 if (rs->rs_flags & HAL_RX_DELIM_CRC_POST) 4039 sc->sc_stats.ast_rx_post_crc_err++; 4040 if (rs->rs_flags & HAL_RX_DECRYPT_BUSY) 4041 sc->sc_stats.ast_rx_decrypt_busy_err++; 4042 if (rs->rs_flags & HAL_RX_HI_RX_CHAIN) 4043 sc->sc_stats.ast_rx_hi_rx_chain++; 4044 #endif /* AH_SUPPORT_AR5416 */ 4045 4046 if (rs->rs_status != 0) { 4047 if (rs->rs_status & HAL_RXERR_CRC) 4048 sc->sc_stats.ast_rx_crcerr++; 4049 if (rs->rs_status & HAL_RXERR_FIFO) 4050 sc->sc_stats.ast_rx_fifoerr++; 4051 if (rs->rs_status & HAL_RXERR_PHY) { 4052 sc->sc_stats.ast_rx_phyerr++; 4053 /* Process DFS radar events */ 4054 if ((rs->rs_phyerr == HAL_PHYERR_RADAR) || 4055 (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) { 4056 /* Since we're touching the frame data, sync it */ 4057 bus_dmamap_sync(sc->sc_dmat, 4058 bf->bf_dmamap, 4059 BUS_DMASYNC_POSTREAD); 4060 /* Now pass it to the radar processing code */ 4061 ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs); 4062 } 4063 4064 /* Be suitably paranoid about receiving phy errors out of the stats array bounds */ 4065 if (rs->rs_phyerr < 64) 4066 sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++; 4067 goto rx_error; /* NB: don't count in ierrors */ 4068 } 4069 if (rs->rs_status & HAL_RXERR_DECRYPT) { 4070 /* 4071 * Decrypt error. If the error occurred 4072 * because there was no hardware key, then 4073 * let the frame through so the upper layers 4074 * can process it. This is necessary for 5210 4075 * parts which have no way to setup a ``clear'' 4076 * key cache entry. 4077 * 4078 * XXX do key cache faulting 4079 */ 4080 if (rs->rs_keyix == HAL_RXKEYIX_INVALID) 4081 goto rx_accept; 4082 sc->sc_stats.ast_rx_badcrypt++; 4083 } 4084 if (rs->rs_status & HAL_RXERR_MIC) { 4085 sc->sc_stats.ast_rx_badmic++; 4086 /* 4087 * Do minimal work required to hand off 4088 * the 802.11 header for notification. 4089 */ 4090 /* XXX frag's and qos frames */ 4091 len = rs->rs_datalen; 4092 if (len >= sizeof (struct ieee80211_frame)) { 4093 bus_dmamap_sync(sc->sc_dmat, 4094 bf->bf_dmamap, 4095 BUS_DMASYNC_POSTREAD); 4096 ath_handle_micerror(ic, 4097 mtod(m, struct ieee80211_frame *), 4098 sc->sc_splitmic ? 4099 rs->rs_keyix-32 : rs->rs_keyix); 4100 } 4101 } 4102 ifp->if_ierrors++; 4103 rx_error: 4104 /* 4105 * Cleanup any pending partial frame. 4106 */ 4107 if (sc->sc_rxpending != NULL) { 4108 m_freem(sc->sc_rxpending); 4109 sc->sc_rxpending = NULL; 4110 } 4111 /* 4112 * When a tap is present pass error frames 4113 * that have been requested. By default we 4114 * pass decrypt+mic errors but others may be 4115 * interesting (e.g. crc). 4116 */ 4117 if (ieee80211_radiotap_active(ic) && 4118 (rs->rs_status & sc->sc_monpass)) { 4119 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4120 BUS_DMASYNC_POSTREAD); 4121 /* NB: bpf needs the mbuf length setup */ 4122 len = rs->rs_datalen; 4123 m->m_pkthdr.len = m->m_len = len; 4124 bf->bf_m = NULL; 4125 ath_rx_tap(ifp, m, rs, tsf, nf); 4126 ieee80211_radiotap_rx_all(ic, m); 4127 m_freem(m); 4128 } 4129 /* XXX pass MIC errors up for s/w reclaculation */ 4130 goto rx_next; 4131 } 4132 rx_accept: 4133 /* 4134 * Sync and unmap the frame. At this point we're 4135 * committed to passing the mbuf somewhere so clear 4136 * bf_m; this means a new mbuf must be allocated 4137 * when the rx descriptor is setup again to receive 4138 * another frame. 4139 */ 4140 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4141 BUS_DMASYNC_POSTREAD); 4142 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4143 bf->bf_m = NULL; 4144 4145 len = rs->rs_datalen; 4146 m->m_len = len; 4147 4148 if (rs->rs_more) { 4149 /* 4150 * Frame spans multiple descriptors; save 4151 * it for the next completed descriptor, it 4152 * will be used to construct a jumbogram. 4153 */ 4154 if (sc->sc_rxpending != NULL) { 4155 /* NB: max frame size is currently 2 clusters */ 4156 sc->sc_stats.ast_rx_toobig++; 4157 m_freem(sc->sc_rxpending); 4158 } 4159 m->m_pkthdr.rcvif = ifp; 4160 m->m_pkthdr.len = len; 4161 sc->sc_rxpending = m; 4162 goto rx_next; 4163 } else if (sc->sc_rxpending != NULL) { 4164 /* 4165 * This is the second part of a jumbogram, 4166 * chain it to the first mbuf, adjust the 4167 * frame length, and clear the rxpending state. 4168 */ 4169 sc->sc_rxpending->m_next = m; 4170 sc->sc_rxpending->m_pkthdr.len += len; 4171 m = sc->sc_rxpending; 4172 sc->sc_rxpending = NULL; 4173 } else { 4174 /* 4175 * Normal single-descriptor receive; setup 4176 * the rcvif and packet length. 4177 */ 4178 m->m_pkthdr.rcvif = ifp; 4179 m->m_pkthdr.len = len; 4180 } 4181 4182 /* 4183 * Validate rs->rs_antenna. 4184 * 4185 * Some users w/ AR9285 NICs have reported crashes 4186 * here because rs_antenna field is bogusly large. 4187 * Let's enforce the maximum antenna limit of 8 4188 * (and it shouldn't be hard coded, but that's a 4189 * separate problem) and if there's an issue, print 4190 * out an error and adjust rs_antenna to something 4191 * sensible. 4192 * 4193 * This code should be removed once the actual 4194 * root cause of the issue has been identified. 4195 * For example, it may be that the rs_antenna 4196 * field is only valid for the lsat frame of 4197 * an aggregate and it just happens that it is 4198 * "mostly" right. (This is a general statement - 4199 * the majority of the statistics are only valid 4200 * for the last frame in an aggregate. 4201 */ 4202 if (rs->rs_antenna > 7) { 4203 device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n", 4204 __func__, rs->rs_antenna); 4205 #ifdef ATH_DEBUG 4206 ath_printrxbuf(sc, bf, 0, status == HAL_OK); 4207 #endif /* ATH_DEBUG */ 4208 rs->rs_antenna = 0; /* XXX better than nothing */ 4209 } 4210 4211 ifp->if_ipackets++; 4212 sc->sc_stats.ast_ant_rx[rs->rs_antenna]++; 4213 4214 /* 4215 * Populate the rx status block. When there are bpf 4216 * listeners we do the additional work to provide 4217 * complete status. Otherwise we fill in only the 4218 * material required by ieee80211_input. Note that 4219 * noise setting is filled in above. 4220 */ 4221 if (ieee80211_radiotap_active(ic)) 4222 ath_rx_tap(ifp, m, rs, tsf, nf); 4223 4224 /* 4225 * From this point on we assume the frame is at least 4226 * as large as ieee80211_frame_min; verify that. 4227 */ 4228 if (len < IEEE80211_MIN_LEN) { 4229 if (!ieee80211_radiotap_active(ic)) { 4230 DPRINTF(sc, ATH_DEBUG_RECV, 4231 "%s: short packet %d\n", __func__, len); 4232 sc->sc_stats.ast_rx_tooshort++; 4233 } else { 4234 /* NB: in particular this captures ack's */ 4235 ieee80211_radiotap_rx_all(ic, m); 4236 } 4237 m_freem(m); 4238 goto rx_next; 4239 } 4240 4241 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 4242 const HAL_RATE_TABLE *rt = sc->sc_currates; 4243 uint8_t rix = rt->rateCodeToIndex[rs->rs_rate]; 4244 4245 ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, 4246 sc->sc_hwmap[rix].ieeerate, rs->rs_rssi); 4247 } 4248 4249 m_adj(m, -IEEE80211_CRC_LEN); 4250 4251 /* 4252 * Locate the node for sender, track state, and then 4253 * pass the (referenced) node up to the 802.11 layer 4254 * for its use. 4255 */ 4256 ni = ieee80211_find_rxnode_withkey(ic, 4257 mtod(m, const struct ieee80211_frame_min *), 4258 rs->rs_keyix == HAL_RXKEYIX_INVALID ? 4259 IEEE80211_KEYIX_NONE : rs->rs_keyix); 4260 sc->sc_lastrs = rs; 4261 4262 #ifdef AH_SUPPORT_AR5416 4263 if (rs->rs_isaggr) 4264 sc->sc_stats.ast_rx_agg++; 4265 #endif /* AH_SUPPORT_AR5416 */ 4266 4267 if (ni != NULL) { 4268 /* 4269 * Only punt packets for ampdu reorder processing for 4270 * 11n nodes; net80211 enforces that M_AMPDU is only 4271 * set for 11n nodes. 4272 */ 4273 if (ni->ni_flags & IEEE80211_NODE_HT) 4274 m->m_flags |= M_AMPDU; 4275 4276 /* 4277 * Sending station is known, dispatch directly. 4278 */ 4279 type = ieee80211_input(ni, m, rs->rs_rssi, nf); 4280 ieee80211_free_node(ni); 4281 /* 4282 * Arrange to update the last rx timestamp only for 4283 * frames from our ap when operating in station mode. 4284 * This assumes the rx key is always setup when 4285 * associated. 4286 */ 4287 if (ic->ic_opmode == IEEE80211_M_STA && 4288 rs->rs_keyix != HAL_RXKEYIX_INVALID) 4289 ngood++; 4290 } else { 4291 type = ieee80211_input_all(ic, m, rs->rs_rssi, nf); 4292 } 4293 /* 4294 * Track rx rssi and do any rx antenna management. 4295 */ 4296 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi); 4297 if (sc->sc_diversity) { 4298 /* 4299 * When using fast diversity, change the default rx 4300 * antenna if diversity chooses the other antenna 3 4301 * times in a row. 4302 */ 4303 if (sc->sc_defant != rs->rs_antenna) { 4304 if (++sc->sc_rxotherant >= 3) 4305 ath_setdefantenna(sc, rs->rs_antenna); 4306 } else 4307 sc->sc_rxotherant = 0; 4308 } 4309 4310 /* Newer school diversity - kite specific for now */ 4311 /* XXX perhaps migrate the normal diversity code to this? */ 4312 if ((ah)->ah_rxAntCombDiversity) 4313 (*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz); 4314 4315 if (sc->sc_softled) { 4316 /* 4317 * Blink for any data frame. Otherwise do a 4318 * heartbeat-style blink when idle. The latter 4319 * is mainly for station mode where we depend on 4320 * periodic beacon frames to trigger the poll event. 4321 */ 4322 if (type == IEEE80211_FC0_TYPE_DATA) { 4323 const HAL_RATE_TABLE *rt = sc->sc_currates; 4324 ath_led_event(sc, 4325 rt->rateCodeToIndex[rs->rs_rate]); 4326 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 4327 ath_led_event(sc, 0); 4328 } 4329 rx_next: 4330 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 4331 } while (ath_rxbuf_init(sc, bf) == 0); 4332 4333 /* rx signal state monitoring */ 4334 ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan); 4335 if (ngood) 4336 sc->sc_lastrx = tsf; 4337 4338 CTR2(ATH_KTR_INTR, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood); 4339 /* Queue DFS tasklet if needed */ 4340 if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan)) 4341 taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask); 4342 4343 /* 4344 * Now that all the RX frames were handled that 4345 * need to be handled, kick the PCU if there's 4346 * been an RXEOL condition. 4347 */ 4348 ATH_PCU_LOCK(sc); 4349 if (resched && sc->sc_kickpcu) { 4350 CTR0(ATH_KTR_ERR, "ath_rx_proc: kickpcu"); 4351 device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n", 4352 __func__, npkts); 4353 4354 /* XXX rxslink? */ 4355 /* 4356 * XXX can we hold the PCU lock here? 4357 * Are there any net80211 buffer calls involved? 4358 */ 4359 bf = TAILQ_FIRST(&sc->sc_rxbuf); 4360 ath_hal_putrxbuf(ah, bf->bf_daddr); 4361 ath_hal_rxena(ah); /* enable recv descriptors */ 4362 ath_mode_init(sc); /* set filters, etc. */ 4363 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4364 4365 ath_hal_intrset(ah, sc->sc_imask); 4366 sc->sc_kickpcu = 0; 4367 } 4368 ATH_PCU_UNLOCK(sc); 4369 4370 /* XXX check this inside of IF_LOCK? */ 4371 if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) { 4372 #ifdef IEEE80211_SUPPORT_SUPERG 4373 ieee80211_ff_age_all(ic, 100); 4374 #endif 4375 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 4376 ath_start(ifp); 4377 } 4378 #undef PA2DESC 4379 4380 ATH_PCU_LOCK(sc); 4381 sc->sc_rxproc_cnt--; 4382 ATH_PCU_UNLOCK(sc); 4383 } 4384 4385 static void 4386 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 4387 { 4388 txq->axq_qnum = qnum; 4389 txq->axq_ac = 0; 4390 txq->axq_depth = 0; 4391 txq->axq_aggr_depth = 0; 4392 txq->axq_intrcnt = 0; 4393 txq->axq_link = NULL; 4394 txq->axq_softc = sc; 4395 TAILQ_INIT(&txq->axq_q); 4396 TAILQ_INIT(&txq->axq_tidq); 4397 ATH_TXQ_LOCK_INIT(sc, txq); 4398 } 4399 4400 /* 4401 * Setup a h/w transmit queue. 4402 */ 4403 static struct ath_txq * 4404 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4405 { 4406 #define N(a) (sizeof(a)/sizeof(a[0])) 4407 struct ath_hal *ah = sc->sc_ah; 4408 HAL_TXQ_INFO qi; 4409 int qnum; 4410 4411 memset(&qi, 0, sizeof(qi)); 4412 qi.tqi_subtype = subtype; 4413 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4414 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4415 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4416 /* 4417 * Enable interrupts only for EOL and DESC conditions. 4418 * We mark tx descriptors to receive a DESC interrupt 4419 * when a tx queue gets deep; otherwise waiting for the 4420 * EOL to reap descriptors. Note that this is done to 4421 * reduce interrupt load and this only defers reaping 4422 * descriptors, never transmitting frames. Aside from 4423 * reducing interrupts this also permits more concurrency. 4424 * The only potential downside is if the tx queue backs 4425 * up in which case the top half of the kernel may backup 4426 * due to a lack of tx descriptors. 4427 */ 4428 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 4429 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4430 if (qnum == -1) { 4431 /* 4432 * NB: don't print a message, this happens 4433 * normally on parts with too few tx queues 4434 */ 4435 return NULL; 4436 } 4437 if (qnum >= N(sc->sc_txq)) { 4438 device_printf(sc->sc_dev, 4439 "hal qnum %u out of range, max %zu!\n", 4440 qnum, N(sc->sc_txq)); 4441 ath_hal_releasetxqueue(ah, qnum); 4442 return NULL; 4443 } 4444 if (!ATH_TXQ_SETUP(sc, qnum)) { 4445 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4446 sc->sc_txqsetup |= 1<<qnum; 4447 } 4448 return &sc->sc_txq[qnum]; 4449 #undef N 4450 } 4451 4452 /* 4453 * Setup a hardware data transmit queue for the specified 4454 * access control. The hal may not support all requested 4455 * queues in which case it will return a reference to a 4456 * previously setup queue. We record the mapping from ac's 4457 * to h/w queues for use by ath_tx_start and also track 4458 * the set of h/w queues being used to optimize work in the 4459 * transmit interrupt handler and related routines. 4460 */ 4461 static int 4462 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4463 { 4464 #define N(a) (sizeof(a)/sizeof(a[0])) 4465 struct ath_txq *txq; 4466 4467 if (ac >= N(sc->sc_ac2q)) { 4468 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4469 ac, N(sc->sc_ac2q)); 4470 return 0; 4471 } 4472 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4473 if (txq != NULL) { 4474 txq->axq_ac = ac; 4475 sc->sc_ac2q[ac] = txq; 4476 return 1; 4477 } else 4478 return 0; 4479 #undef N 4480 } 4481 4482 /* 4483 * Update WME parameters for a transmit queue. 4484 */ 4485 static int 4486 ath_txq_update(struct ath_softc *sc, int ac) 4487 { 4488 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4489 #define ATH_TXOP_TO_US(v) (v<<5) 4490 struct ifnet *ifp = sc->sc_ifp; 4491 struct ieee80211com *ic = ifp->if_l2com; 4492 struct ath_txq *txq = sc->sc_ac2q[ac]; 4493 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 4494 struct ath_hal *ah = sc->sc_ah; 4495 HAL_TXQ_INFO qi; 4496 4497 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4498 #ifdef IEEE80211_SUPPORT_TDMA 4499 if (sc->sc_tdma) { 4500 /* 4501 * AIFS is zero so there's no pre-transmit wait. The 4502 * burst time defines the slot duration and is configured 4503 * through net80211. The QCU is setup to not do post-xmit 4504 * back off, lockout all lower-priority QCU's, and fire 4505 * off the DMA beacon alert timer which is setup based 4506 * on the slot configuration. 4507 */ 4508 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4509 | HAL_TXQ_TXERRINT_ENABLE 4510 | HAL_TXQ_TXURNINT_ENABLE 4511 | HAL_TXQ_TXEOLINT_ENABLE 4512 | HAL_TXQ_DBA_GATED 4513 | HAL_TXQ_BACKOFF_DISABLE 4514 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4515 ; 4516 qi.tqi_aifs = 0; 4517 /* XXX +dbaprep? */ 4518 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4519 qi.tqi_burstTime = qi.tqi_readyTime; 4520 } else { 4521 #endif 4522 /* 4523 * XXX shouldn't this just use the default flags 4524 * used in the previous queue setup? 4525 */ 4526 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4527 | HAL_TXQ_TXERRINT_ENABLE 4528 | HAL_TXQ_TXDESCINT_ENABLE 4529 | HAL_TXQ_TXURNINT_ENABLE 4530 | HAL_TXQ_TXEOLINT_ENABLE 4531 ; 4532 qi.tqi_aifs = wmep->wmep_aifsn; 4533 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4534 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4535 qi.tqi_readyTime = 0; 4536 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 4537 #ifdef IEEE80211_SUPPORT_TDMA 4538 } 4539 #endif 4540 4541 DPRINTF(sc, ATH_DEBUG_RESET, 4542 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4543 __func__, txq->axq_qnum, qi.tqi_qflags, 4544 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4545 4546 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4547 if_printf(ifp, "unable to update hardware queue " 4548 "parameters for %s traffic!\n", 4549 ieee80211_wme_acnames[ac]); 4550 return 0; 4551 } else { 4552 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4553 return 1; 4554 } 4555 #undef ATH_TXOP_TO_US 4556 #undef ATH_EXPONENT_TO_VALUE 4557 } 4558 4559 /* 4560 * Callback from the 802.11 layer to update WME parameters. 4561 */ 4562 static int 4563 ath_wme_update(struct ieee80211com *ic) 4564 { 4565 struct ath_softc *sc = ic->ic_ifp->if_softc; 4566 4567 return !ath_txq_update(sc, WME_AC_BE) || 4568 !ath_txq_update(sc, WME_AC_BK) || 4569 !ath_txq_update(sc, WME_AC_VI) || 4570 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4571 } 4572 4573 /* 4574 * Reclaim resources for a setup queue. 4575 */ 4576 static void 4577 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4578 { 4579 4580 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4581 ATH_TXQ_LOCK_DESTROY(txq); 4582 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4583 } 4584 4585 /* 4586 * Reclaim all tx queue resources. 4587 */ 4588 static void 4589 ath_tx_cleanup(struct ath_softc *sc) 4590 { 4591 int i; 4592 4593 ATH_TXBUF_LOCK_DESTROY(sc); 4594 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4595 if (ATH_TXQ_SETUP(sc, i)) 4596 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4597 } 4598 4599 /* 4600 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4601 * using the current rates in sc_rixmap. 4602 */ 4603 int 4604 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4605 { 4606 int rix = sc->sc_rixmap[rate]; 4607 /* NB: return lowest rix for invalid rate */ 4608 return (rix == 0xff ? 0 : rix); 4609 } 4610 4611 static void 4612 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4613 struct ath_buf *bf) 4614 { 4615 struct ieee80211_node *ni = bf->bf_node; 4616 struct ifnet *ifp = sc->sc_ifp; 4617 struct ieee80211com *ic = ifp->if_l2com; 4618 int sr, lr, pri; 4619 4620 if (ts->ts_status == 0) { 4621 u_int8_t txant = ts->ts_antenna; 4622 sc->sc_stats.ast_ant_tx[txant]++; 4623 sc->sc_ant_tx[txant]++; 4624 if (ts->ts_finaltsi != 0) 4625 sc->sc_stats.ast_tx_altrate++; 4626 pri = M_WME_GETAC(bf->bf_m); 4627 if (pri >= WME_AC_VO) 4628 ic->ic_wme.wme_hipri_traffic++; 4629 if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) 4630 ni->ni_inact = ni->ni_inact_reload; 4631 } else { 4632 if (ts->ts_status & HAL_TXERR_XRETRY) 4633 sc->sc_stats.ast_tx_xretries++; 4634 if (ts->ts_status & HAL_TXERR_FIFO) 4635 sc->sc_stats.ast_tx_fifoerr++; 4636 if (ts->ts_status & HAL_TXERR_FILT) 4637 sc->sc_stats.ast_tx_filtered++; 4638 if (ts->ts_status & HAL_TXERR_XTXOP) 4639 sc->sc_stats.ast_tx_xtxop++; 4640 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4641 sc->sc_stats.ast_tx_timerexpired++; 4642 4643 if (ts->ts_status & HAL_TX_DATA_UNDERRUN) 4644 sc->sc_stats.ast_tx_data_underrun++; 4645 if (ts->ts_status & HAL_TX_DELIM_UNDERRUN) 4646 sc->sc_stats.ast_tx_delim_underrun++; 4647 4648 if (bf->bf_m->m_flags & M_FF) 4649 sc->sc_stats.ast_ff_txerr++; 4650 } 4651 /* XXX when is this valid? */ 4652 if (ts->ts_status & HAL_TX_DESC_CFG_ERR) 4653 sc->sc_stats.ast_tx_desccfgerr++; 4654 4655 sr = ts->ts_shortretry; 4656 lr = ts->ts_longretry; 4657 sc->sc_stats.ast_tx_shortretry += sr; 4658 sc->sc_stats.ast_tx_longretry += lr; 4659 4660 } 4661 4662 /* 4663 * The default completion. If fail is 1, this means 4664 * "please don't retry the frame, and just return -1 status 4665 * to the net80211 stack. 4666 */ 4667 void 4668 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4669 { 4670 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4671 int st; 4672 4673 if (fail == 1) 4674 st = -1; 4675 else 4676 st = ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0) ? 4677 ts->ts_status : HAL_TXERR_XRETRY; 4678 4679 if (bf->bf_state.bfs_dobaw) 4680 device_printf(sc->sc_dev, 4681 "%s: dobaw should've been cleared!\n", __func__); 4682 if (bf->bf_next != NULL) 4683 device_printf(sc->sc_dev, 4684 "%s: bf_next not NULL!\n", __func__); 4685 4686 /* 4687 * Do any tx complete callback. Note this must 4688 * be done before releasing the node reference. 4689 * This will free the mbuf, release the net80211 4690 * node and recycle the ath_buf. 4691 */ 4692 ath_tx_freebuf(sc, bf, st); 4693 } 4694 4695 /* 4696 * Update rate control with the given completion status. 4697 */ 4698 void 4699 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4700 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4701 int nframes, int nbad) 4702 { 4703 struct ath_node *an; 4704 4705 /* Only for unicast frames */ 4706 if (ni == NULL) 4707 return; 4708 4709 an = ATH_NODE(ni); 4710 4711 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4712 ATH_NODE_LOCK(an); 4713 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 4714 ATH_NODE_UNLOCK(an); 4715 } 4716 } 4717 4718 /* 4719 * Update the busy status of the last frame on the free list. 4720 * When doing TDMA, the busy flag tracks whether the hardware 4721 * currently points to this buffer or not, and thus gated DMA 4722 * may restart by re-reading the last descriptor in this 4723 * buffer. 4724 * 4725 * This should be called in the completion function once one 4726 * of the buffers has been used. 4727 */ 4728 static void 4729 ath_tx_update_busy(struct ath_softc *sc) 4730 { 4731 struct ath_buf *last; 4732 4733 /* 4734 * Since the last frame may still be marked 4735 * as ATH_BUF_BUSY, unmark it here before 4736 * finishing the frame processing. 4737 * Since we've completed a frame (aggregate 4738 * or otherwise), the hardware has moved on 4739 * and is no longer referencing the previous 4740 * descriptor. 4741 */ 4742 ATH_TXBUF_LOCK_ASSERT(sc); 4743 last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 4744 if (last != NULL) 4745 last->bf_flags &= ~ATH_BUF_BUSY; 4746 } 4747 4748 4749 /* 4750 * Process completed xmit descriptors from the specified queue. 4751 * Kick the packet scheduler if needed. This can occur from this 4752 * particular task. 4753 */ 4754 static int 4755 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4756 { 4757 struct ath_hal *ah = sc->sc_ah; 4758 struct ath_buf *bf; 4759 struct ath_desc *ds; 4760 struct ath_tx_status *ts; 4761 struct ieee80211_node *ni; 4762 struct ath_node *an; 4763 int nacked; 4764 HAL_STATUS status; 4765 4766 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4767 __func__, txq->axq_qnum, 4768 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4769 txq->axq_link); 4770 nacked = 0; 4771 for (;;) { 4772 ATH_TXQ_LOCK(txq); 4773 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4774 bf = TAILQ_FIRST(&txq->axq_q); 4775 if (bf == NULL) { 4776 ATH_TXQ_UNLOCK(txq); 4777 break; 4778 } 4779 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4780 ts = &bf->bf_status.ds_txstat; 4781 status = ath_hal_txprocdesc(ah, ds, ts); 4782 #ifdef ATH_DEBUG 4783 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4784 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4785 status == HAL_OK); 4786 #endif 4787 if (status == HAL_EINPROGRESS) { 4788 ATH_TXQ_UNLOCK(txq); 4789 break; 4790 } 4791 ATH_TXQ_REMOVE(txq, bf, bf_list); 4792 #ifdef IEEE80211_SUPPORT_TDMA 4793 if (txq->axq_depth > 0) { 4794 /* 4795 * More frames follow. Mark the buffer busy 4796 * so it's not re-used while the hardware may 4797 * still re-read the link field in the descriptor. 4798 * 4799 * Use the last buffer in an aggregate as that 4800 * is where the hardware may be - intermediate 4801 * descriptors won't be "busy". 4802 */ 4803 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4804 } else 4805 #else 4806 if (txq->axq_depth == 0) 4807 #endif 4808 txq->axq_link = NULL; 4809 if (bf->bf_state.bfs_aggr) 4810 txq->axq_aggr_depth--; 4811 4812 ni = bf->bf_node; 4813 /* 4814 * If unicast frame was ack'd update RSSI, 4815 * including the last rx time used to 4816 * workaround phantom bmiss interrupts. 4817 */ 4818 if (ni != NULL && ts->ts_status == 0 && 4819 ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)) { 4820 nacked++; 4821 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4822 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4823 ts->ts_rssi); 4824 } 4825 ATH_TXQ_UNLOCK(txq); 4826 4827 /* If unicast frame, update general statistics */ 4828 if (ni != NULL) { 4829 an = ATH_NODE(ni); 4830 /* update statistics */ 4831 ath_tx_update_stats(sc, ts, bf); 4832 } 4833 4834 /* 4835 * Call the completion handler. 4836 * The completion handler is responsible for 4837 * calling the rate control code. 4838 * 4839 * Frames with no completion handler get the 4840 * rate control code called here. 4841 */ 4842 if (bf->bf_comp == NULL) { 4843 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4844 (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) { 4845 /* 4846 * XXX assume this isn't an aggregate 4847 * frame. 4848 */ 4849 ath_tx_update_ratectrl(sc, ni, 4850 bf->bf_state.bfs_rc, ts, 4851 bf->bf_state.bfs_pktlen, 1, 4852 (ts->ts_status == 0 ? 0 : 1)); 4853 } 4854 ath_tx_default_comp(sc, bf, 0); 4855 } else 4856 bf->bf_comp(sc, bf, 0); 4857 } 4858 #ifdef IEEE80211_SUPPORT_SUPERG 4859 /* 4860 * Flush fast-frame staging queue when traffic slows. 4861 */ 4862 if (txq->axq_depth <= 1) 4863 ieee80211_ff_flush(ic, txq->axq_ac); 4864 #endif 4865 4866 /* Kick the TXQ scheduler */ 4867 if (dosched) { 4868 ATH_TXQ_LOCK(txq); 4869 ath_txq_sched(sc, txq); 4870 ATH_TXQ_UNLOCK(txq); 4871 } 4872 4873 return nacked; 4874 } 4875 4876 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4877 4878 /* 4879 * Deferred processing of transmit interrupt; special-cased 4880 * for a single hardware transmit queue (e.g. 5210 and 5211). 4881 */ 4882 static void 4883 ath_tx_proc_q0(void *arg, int npending) 4884 { 4885 struct ath_softc *sc = arg; 4886 struct ifnet *ifp = sc->sc_ifp; 4887 uint32_t txqs; 4888 4889 ATH_PCU_LOCK(sc); 4890 sc->sc_txproc_cnt++; 4891 txqs = sc->sc_txq_active; 4892 sc->sc_txq_active &= ~txqs; 4893 ATH_PCU_UNLOCK(sc); 4894 4895 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4896 /* XXX why is lastrx updated in tx code? */ 4897 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4898 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4899 ath_tx_processq(sc, sc->sc_cabq, 1); 4900 /* XXX check this inside of IF_LOCK? */ 4901 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4902 sc->sc_wd_timer = 0; 4903 4904 if (sc->sc_softled) 4905 ath_led_event(sc, sc->sc_txrix); 4906 4907 ATH_PCU_LOCK(sc); 4908 sc->sc_txproc_cnt--; 4909 ATH_PCU_UNLOCK(sc); 4910 4911 ath_start(ifp); 4912 } 4913 4914 /* 4915 * Deferred processing of transmit interrupt; special-cased 4916 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4917 */ 4918 static void 4919 ath_tx_proc_q0123(void *arg, int npending) 4920 { 4921 struct ath_softc *sc = arg; 4922 struct ifnet *ifp = sc->sc_ifp; 4923 int nacked; 4924 uint32_t txqs; 4925 4926 ATH_PCU_LOCK(sc); 4927 sc->sc_txproc_cnt++; 4928 txqs = sc->sc_txq_active; 4929 sc->sc_txq_active &= ~txqs; 4930 ATH_PCU_UNLOCK(sc); 4931 4932 /* 4933 * Process each active queue. 4934 */ 4935 nacked = 0; 4936 if (TXQACTIVE(txqs, 0)) 4937 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4938 if (TXQACTIVE(txqs, 1)) 4939 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4940 if (TXQACTIVE(txqs, 2)) 4941 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4942 if (TXQACTIVE(txqs, 3)) 4943 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4944 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4945 ath_tx_processq(sc, sc->sc_cabq, 1); 4946 if (nacked) 4947 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4948 4949 /* XXX check this inside of IF_LOCK? */ 4950 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4951 sc->sc_wd_timer = 0; 4952 4953 if (sc->sc_softled) 4954 ath_led_event(sc, sc->sc_txrix); 4955 4956 ATH_PCU_LOCK(sc); 4957 sc->sc_txproc_cnt--; 4958 ATH_PCU_UNLOCK(sc); 4959 4960 ath_start(ifp); 4961 } 4962 4963 /* 4964 * Deferred processing of transmit interrupt. 4965 */ 4966 static void 4967 ath_tx_proc(void *arg, int npending) 4968 { 4969 struct ath_softc *sc = arg; 4970 struct ifnet *ifp = sc->sc_ifp; 4971 int i, nacked; 4972 uint32_t txqs; 4973 4974 ATH_PCU_LOCK(sc); 4975 sc->sc_txproc_cnt++; 4976 txqs = sc->sc_txq_active; 4977 sc->sc_txq_active &= ~txqs; 4978 ATH_PCU_UNLOCK(sc); 4979 4980 /* 4981 * Process each active queue. 4982 */ 4983 nacked = 0; 4984 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4985 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4986 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4987 if (nacked) 4988 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4989 4990 /* XXX check this inside of IF_LOCK? */ 4991 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4992 sc->sc_wd_timer = 0; 4993 4994 if (sc->sc_softled) 4995 ath_led_event(sc, sc->sc_txrix); 4996 4997 ATH_PCU_LOCK(sc); 4998 sc->sc_txproc_cnt--; 4999 ATH_PCU_UNLOCK(sc); 5000 5001 ath_start(ifp); 5002 } 5003 #undef TXQACTIVE 5004 5005 /* 5006 * Return a buffer to the pool and update the 'busy' flag on the 5007 * previous 'tail' entry. 5008 * 5009 * This _must_ only be called when the buffer is involved in a completed 5010 * TX. The logic is that if it was part of an active TX, the previous 5011 * buffer on the list is now not involved in a halted TX DMA queue, waiting 5012 * for restart (eg for TDMA.) 5013 * 5014 * The caller must free the mbuf and recycle the node reference. 5015 */ 5016 void 5017 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 5018 { 5019 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 5020 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 5021 5022 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 5023 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 5024 5025 ATH_TXBUF_LOCK(sc); 5026 ath_tx_update_busy(sc); 5027 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 5028 ATH_TXBUF_UNLOCK(sc); 5029 } 5030 5031 /* 5032 * This is currently used by ath_tx_draintxq() and 5033 * ath_tx_tid_free_pkts(). 5034 * 5035 * It recycles a single ath_buf. 5036 */ 5037 void 5038 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 5039 { 5040 struct ieee80211_node *ni = bf->bf_node; 5041 struct mbuf *m0 = bf->bf_m; 5042 5043 bf->bf_node = NULL; 5044 bf->bf_m = NULL; 5045 5046 /* Free the buffer, it's not needed any longer */ 5047 ath_freebuf(sc, bf); 5048 5049 if (ni != NULL) { 5050 /* 5051 * Do any callback and reclaim the node reference. 5052 */ 5053 if (m0->m_flags & M_TXCB) 5054 ieee80211_process_callback(ni, m0, status); 5055 ieee80211_free_node(ni); 5056 } 5057 m_freem(m0); 5058 5059 /* 5060 * XXX the buffer used to be freed -after-, but the DMA map was 5061 * freed where ath_freebuf() now is. I've no idea what this 5062 * will do. 5063 */ 5064 } 5065 5066 void 5067 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5068 { 5069 #ifdef ATH_DEBUG 5070 struct ath_hal *ah = sc->sc_ah; 5071 #endif 5072 struct ath_buf *bf; 5073 u_int ix; 5074 5075 /* 5076 * NB: this assumes output has been stopped and 5077 * we do not need to block ath_tx_proc 5078 */ 5079 ATH_TXBUF_LOCK(sc); 5080 bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s); 5081 if (bf != NULL) 5082 bf->bf_flags &= ~ATH_BUF_BUSY; 5083 ATH_TXBUF_UNLOCK(sc); 5084 5085 for (ix = 0;; ix++) { 5086 ATH_TXQ_LOCK(txq); 5087 bf = TAILQ_FIRST(&txq->axq_q); 5088 if (bf == NULL) { 5089 txq->axq_link = NULL; 5090 ATH_TXQ_UNLOCK(txq); 5091 break; 5092 } 5093 ATH_TXQ_REMOVE(txq, bf, bf_list); 5094 if (bf->bf_state.bfs_aggr) 5095 txq->axq_aggr_depth--; 5096 #ifdef ATH_DEBUG 5097 if (sc->sc_debug & ATH_DEBUG_RESET) { 5098 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5099 5100 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, 5101 ath_hal_txprocdesc(ah, bf->bf_lastds, 5102 &bf->bf_status.ds_txstat) == HAL_OK); 5103 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5104 bf->bf_m->m_len, 0, -1); 5105 } 5106 #endif /* ATH_DEBUG */ 5107 /* 5108 * Since we're now doing magic in the completion 5109 * functions, we -must- call it for aggregation 5110 * destinations or BAW tracking will get upset. 5111 */ 5112 /* 5113 * Clear ATH_BUF_BUSY; the completion handler 5114 * will free the buffer. 5115 */ 5116 ATH_TXQ_UNLOCK(txq); 5117 bf->bf_flags &= ~ATH_BUF_BUSY; 5118 if (bf->bf_comp) 5119 bf->bf_comp(sc, bf, 1); 5120 else 5121 ath_tx_default_comp(sc, bf, 1); 5122 } 5123 5124 /* 5125 * Drain software queued frames which are on 5126 * active TIDs. 5127 */ 5128 ath_tx_txq_drain(sc, txq); 5129 } 5130 5131 static void 5132 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5133 { 5134 struct ath_hal *ah = sc->sc_ah; 5135 5136 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5137 __func__, txq->axq_qnum, 5138 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5139 txq->axq_link); 5140 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5141 } 5142 5143 static int 5144 ath_stoptxdma(struct ath_softc *sc) 5145 { 5146 struct ath_hal *ah = sc->sc_ah; 5147 int i; 5148 5149 /* XXX return value */ 5150 if (sc->sc_invalid) 5151 return 0; 5152 5153 if (!sc->sc_invalid) { 5154 /* don't touch the hardware if marked invalid */ 5155 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5156 __func__, sc->sc_bhalq, 5157 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5158 NULL); 5159 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5160 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 5161 if (ATH_TXQ_SETUP(sc, i)) 5162 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5163 } 5164 5165 return 1; 5166 } 5167 5168 /* 5169 * Drain the transmit queues and reclaim resources. 5170 */ 5171 static void 5172 ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5173 { 5174 #ifdef ATH_DEBUG 5175 struct ath_hal *ah = sc->sc_ah; 5176 #endif 5177 struct ifnet *ifp = sc->sc_ifp; 5178 int i; 5179 5180 (void) ath_stoptxdma(sc); 5181 5182 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5183 /* 5184 * XXX TODO: should we just handle the completed TX frames 5185 * here, whether or not the reset is a full one or not? 5186 */ 5187 if (ATH_TXQ_SETUP(sc, i)) { 5188 if (reset_type == ATH_RESET_NOLOSS) 5189 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5190 else 5191 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5192 } 5193 } 5194 #ifdef ATH_DEBUG 5195 if (sc->sc_debug & ATH_DEBUG_RESET) { 5196 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5197 if (bf != NULL && bf->bf_m != NULL) { 5198 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5199 ath_hal_txprocdesc(ah, bf->bf_lastds, 5200 &bf->bf_status.ds_txstat) == HAL_OK); 5201 ieee80211_dump_pkt(ifp->if_l2com, 5202 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5203 0, -1); 5204 } 5205 } 5206 #endif /* ATH_DEBUG */ 5207 /* XXX check this inside of IF_LOCK? */ 5208 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5209 sc->sc_wd_timer = 0; 5210 } 5211 5212 /* 5213 * Disable the receive h/w in preparation for a reset. 5214 */ 5215 static void 5216 ath_stoprecv(struct ath_softc *sc, int dodelay) 5217 { 5218 #define PA2DESC(_sc, _pa) \ 5219 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 5220 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 5221 struct ath_hal *ah = sc->sc_ah; 5222 5223 ath_hal_stoppcurecv(ah); /* disable PCU */ 5224 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 5225 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 5226 if (dodelay) 5227 DELAY(3000); /* 3ms is long enough for 1 frame */ 5228 #ifdef ATH_DEBUG 5229 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 5230 struct ath_buf *bf; 5231 u_int ix; 5232 5233 printf("%s: rx queue %p, link %p\n", __func__, 5234 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 5235 ix = 0; 5236 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5237 struct ath_desc *ds = bf->bf_desc; 5238 struct ath_rx_status *rs = &bf->bf_status.ds_rxstat; 5239 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 5240 bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs); 5241 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 5242 ath_printrxbuf(sc, bf, ix, status == HAL_OK); 5243 ix++; 5244 } 5245 } 5246 #endif 5247 if (sc->sc_rxpending != NULL) { 5248 m_freem(sc->sc_rxpending); 5249 sc->sc_rxpending = NULL; 5250 } 5251 sc->sc_rxlink = NULL; /* just in case */ 5252 #undef PA2DESC 5253 } 5254 5255 /* 5256 * Enable the receive h/w following a reset. 5257 */ 5258 static int 5259 ath_startrecv(struct ath_softc *sc) 5260 { 5261 struct ath_hal *ah = sc->sc_ah; 5262 struct ath_buf *bf; 5263 5264 sc->sc_rxlink = NULL; 5265 sc->sc_rxpending = NULL; 5266 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 5267 int error = ath_rxbuf_init(sc, bf); 5268 if (error != 0) { 5269 DPRINTF(sc, ATH_DEBUG_RECV, 5270 "%s: ath_rxbuf_init failed %d\n", 5271 __func__, error); 5272 return error; 5273 } 5274 } 5275 5276 bf = TAILQ_FIRST(&sc->sc_rxbuf); 5277 ath_hal_putrxbuf(ah, bf->bf_daddr); 5278 ath_hal_rxena(ah); /* enable recv descriptors */ 5279 ath_mode_init(sc); /* set filters, etc. */ 5280 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 5281 return 0; 5282 } 5283 5284 /* 5285 * Update internal state after a channel change. 5286 */ 5287 static void 5288 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5289 { 5290 enum ieee80211_phymode mode; 5291 5292 /* 5293 * Change channels and update the h/w rate map 5294 * if we're switching; e.g. 11a to 11b/g. 5295 */ 5296 mode = ieee80211_chan2mode(chan); 5297 if (mode != sc->sc_curmode) 5298 ath_setcurmode(sc, mode); 5299 sc->sc_curchan = chan; 5300 } 5301 5302 /* 5303 * Set/change channels. If the channel is really being changed, 5304 * it's done by resetting the chip. To accomplish this we must 5305 * first cleanup any pending DMA, then restart stuff after a la 5306 * ath_init. 5307 */ 5308 static int 5309 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5310 { 5311 struct ifnet *ifp = sc->sc_ifp; 5312 struct ieee80211com *ic = ifp->if_l2com; 5313 struct ath_hal *ah = sc->sc_ah; 5314 int ret = 0; 5315 int dointr = 0; 5316 5317 /* Treat this as an interface reset */ 5318 ATH_PCU_LOCK(sc); 5319 if (ath_reset_grablock(sc, 1) == 0) { 5320 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5321 __func__); 5322 } 5323 if (chan != sc->sc_curchan) { 5324 dointr = 1; 5325 /* XXX only do this if inreset_cnt is 1? */ 5326 ath_hal_intrset(ah, 0); 5327 } 5328 ATH_PCU_UNLOCK(sc); 5329 ath_txrx_stop(sc); 5330 5331 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5332 __func__, ieee80211_chan2ieee(ic, chan), 5333 chan->ic_freq, chan->ic_flags); 5334 if (chan != sc->sc_curchan) { 5335 HAL_STATUS status; 5336 /* 5337 * To switch channels clear any pending DMA operations; 5338 * wait long enough for the RX fifo to drain, reset the 5339 * hardware at the new frequency, and then re-enable 5340 * the relevant bits of the h/w. 5341 */ 5342 #if 0 5343 ath_hal_intrset(ah, 0); /* disable interrupts */ 5344 #endif 5345 ath_stoprecv(sc, 1); /* turn off frame recv */ 5346 /* 5347 * First, handle completed TX/RX frames. 5348 */ 5349 ath_rx_proc(sc, 0); 5350 ath_draintxq(sc, ATH_RESET_NOLOSS); 5351 /* 5352 * Next, flush the non-scheduled frames. 5353 */ 5354 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5355 5356 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 5357 if_printf(ifp, "%s: unable to reset " 5358 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5359 __func__, ieee80211_chan2ieee(ic, chan), 5360 chan->ic_freq, chan->ic_flags, status); 5361 ret = EIO; 5362 goto finish; 5363 } 5364 sc->sc_diversity = ath_hal_getdiversity(ah); 5365 5366 /* Let DFS at it in case it's a DFS channel */ 5367 ath_dfs_radar_enable(sc, ic->ic_curchan); 5368 5369 /* 5370 * Re-enable rx framework. 5371 */ 5372 if (ath_startrecv(sc) != 0) { 5373 if_printf(ifp, "%s: unable to restart recv logic\n", 5374 __func__); 5375 ret = EIO; 5376 goto finish; 5377 } 5378 5379 /* 5380 * Change channels and update the h/w rate map 5381 * if we're switching; e.g. 11a to 11b/g. 5382 */ 5383 ath_chan_change(sc, chan); 5384 5385 /* 5386 * Reset clears the beacon timers; reset them 5387 * here if needed. 5388 */ 5389 if (sc->sc_beacons) { /* restart beacons */ 5390 #ifdef IEEE80211_SUPPORT_TDMA 5391 if (sc->sc_tdma) 5392 ath_tdma_config(sc, NULL); 5393 else 5394 #endif 5395 ath_beacon_config(sc, NULL); 5396 } 5397 5398 #if 0 5399 /* 5400 * Re-enable interrupts. 5401 */ 5402 ath_hal_intrset(ah, sc->sc_imask); 5403 #endif 5404 } 5405 5406 finish: 5407 ATH_PCU_LOCK(sc); 5408 sc->sc_inreset_cnt--; 5409 /* XXX only do this if sc_inreset_cnt == 0? */ 5410 if (dointr) 5411 ath_hal_intrset(ah, sc->sc_imask); 5412 ATH_PCU_UNLOCK(sc); 5413 5414 /* XXX do this inside of IF_LOCK? */ 5415 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 5416 ath_txrx_start(sc); 5417 /* XXX ath_start? */ 5418 5419 return ret; 5420 } 5421 5422 /* 5423 * Periodically recalibrate the PHY to account 5424 * for temperature/environment changes. 5425 */ 5426 static void 5427 ath_calibrate(void *arg) 5428 { 5429 struct ath_softc *sc = arg; 5430 struct ath_hal *ah = sc->sc_ah; 5431 struct ifnet *ifp = sc->sc_ifp; 5432 struct ieee80211com *ic = ifp->if_l2com; 5433 HAL_BOOL longCal, isCalDone; 5434 HAL_BOOL aniCal, shortCal = AH_FALSE; 5435 int nextcal; 5436 5437 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5438 goto restart; 5439 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5440 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5441 if (sc->sc_doresetcal) 5442 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5443 5444 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5445 if (aniCal) { 5446 sc->sc_stats.ast_ani_cal++; 5447 sc->sc_lastani = ticks; 5448 ath_hal_ani_poll(ah, sc->sc_curchan); 5449 } 5450 5451 if (longCal) { 5452 sc->sc_stats.ast_per_cal++; 5453 sc->sc_lastlongcal = ticks; 5454 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5455 /* 5456 * Rfgain is out of bounds, reset the chip 5457 * to load new gain values. 5458 */ 5459 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5460 "%s: rfgain change\n", __func__); 5461 sc->sc_stats.ast_per_rfgain++; 5462 /* 5463 * Drop lock - we can't hold it across the 5464 * ath_reset() call. Instead, we'll drop 5465 * out here, do a reset, then reschedule 5466 * the callout. 5467 */ 5468 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5469 sc->sc_resetcal = 0; 5470 sc->sc_doresetcal = AH_TRUE; 5471 ATH_UNLOCK(sc); 5472 ath_reset(ifp, ATH_RESET_NOLOSS); 5473 ATH_LOCK(sc); 5474 return; 5475 } 5476 /* 5477 * If this long cal is after an idle period, then 5478 * reset the data collection state so we start fresh. 5479 */ 5480 if (sc->sc_resetcal) { 5481 (void) ath_hal_calreset(ah, sc->sc_curchan); 5482 sc->sc_lastcalreset = ticks; 5483 sc->sc_lastshortcal = ticks; 5484 sc->sc_resetcal = 0; 5485 sc->sc_doresetcal = AH_TRUE; 5486 } 5487 } 5488 5489 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5490 if (shortCal || longCal) { 5491 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5492 if (longCal) { 5493 /* 5494 * Calibrate noise floor data again in case of change. 5495 */ 5496 ath_hal_process_noisefloor(ah); 5497 } 5498 } else { 5499 DPRINTF(sc, ATH_DEBUG_ANY, 5500 "%s: calibration of channel %u failed\n", 5501 __func__, sc->sc_curchan->ic_freq); 5502 sc->sc_stats.ast_per_calfail++; 5503 } 5504 if (shortCal) 5505 sc->sc_lastshortcal = ticks; 5506 } 5507 if (!isCalDone) { 5508 restart: 5509 /* 5510 * Use a shorter interval to potentially collect multiple 5511 * data samples required to complete calibration. Once 5512 * we're told the work is done we drop back to a longer 5513 * interval between requests. We're more aggressive doing 5514 * work when operating as an AP to improve operation right 5515 * after startup. 5516 */ 5517 sc->sc_lastshortcal = ticks; 5518 nextcal = ath_shortcalinterval*hz/1000; 5519 if (sc->sc_opmode != HAL_M_HOSTAP) 5520 nextcal *= 10; 5521 sc->sc_doresetcal = AH_TRUE; 5522 } else { 5523 /* nextcal should be the shortest time for next event */ 5524 nextcal = ath_longcalinterval*hz; 5525 if (sc->sc_lastcalreset == 0) 5526 sc->sc_lastcalreset = sc->sc_lastlongcal; 5527 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5528 sc->sc_resetcal = 1; /* setup reset next trip */ 5529 sc->sc_doresetcal = AH_FALSE; 5530 } 5531 /* ANI calibration may occur more often than short/long/resetcal */ 5532 if (ath_anicalinterval > 0) 5533 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5534 5535 if (nextcal != 0) { 5536 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5537 __func__, nextcal, isCalDone ? "" : "!"); 5538 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5539 } else { 5540 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5541 __func__); 5542 /* NB: don't rearm timer */ 5543 } 5544 } 5545 5546 static void 5547 ath_scan_start(struct ieee80211com *ic) 5548 { 5549 struct ifnet *ifp = ic->ic_ifp; 5550 struct ath_softc *sc = ifp->if_softc; 5551 struct ath_hal *ah = sc->sc_ah; 5552 u_int32_t rfilt; 5553 5554 /* XXX calibration timer? */ 5555 5556 sc->sc_scanning = 1; 5557 sc->sc_syncbeacon = 0; 5558 rfilt = ath_calcrxfilter(sc); 5559 ath_hal_setrxfilter(ah, rfilt); 5560 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 5561 5562 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5563 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 5564 } 5565 5566 static void 5567 ath_scan_end(struct ieee80211com *ic) 5568 { 5569 struct ifnet *ifp = ic->ic_ifp; 5570 struct ath_softc *sc = ifp->if_softc; 5571 struct ath_hal *ah = sc->sc_ah; 5572 u_int32_t rfilt; 5573 5574 sc->sc_scanning = 0; 5575 rfilt = ath_calcrxfilter(sc); 5576 ath_hal_setrxfilter(ah, rfilt); 5577 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5578 5579 ath_hal_process_noisefloor(ah); 5580 5581 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5582 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5583 sc->sc_curaid); 5584 } 5585 5586 static void 5587 ath_set_channel(struct ieee80211com *ic) 5588 { 5589 struct ifnet *ifp = ic->ic_ifp; 5590 struct ath_softc *sc = ifp->if_softc; 5591 5592 (void) ath_chan_set(sc, ic->ic_curchan); 5593 /* 5594 * If we are returning to our bss channel then mark state 5595 * so the next recv'd beacon's tsf will be used to sync the 5596 * beacon timers. Note that since we only hear beacons in 5597 * sta/ibss mode this has no effect in other operating modes. 5598 */ 5599 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5600 sc->sc_syncbeacon = 1; 5601 } 5602 5603 /* 5604 * Walk the vap list and check if there any vap's in RUN state. 5605 */ 5606 static int 5607 ath_isanyrunningvaps(struct ieee80211vap *this) 5608 { 5609 struct ieee80211com *ic = this->iv_ic; 5610 struct ieee80211vap *vap; 5611 5612 IEEE80211_LOCK_ASSERT(ic); 5613 5614 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5615 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5616 return 1; 5617 } 5618 return 0; 5619 } 5620 5621 static int 5622 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5623 { 5624 struct ieee80211com *ic = vap->iv_ic; 5625 struct ath_softc *sc = ic->ic_ifp->if_softc; 5626 struct ath_vap *avp = ATH_VAP(vap); 5627 struct ath_hal *ah = sc->sc_ah; 5628 struct ieee80211_node *ni = NULL; 5629 int i, error, stamode; 5630 u_int32_t rfilt; 5631 int csa_run_transition = 0; 5632 static const HAL_LED_STATE leds[] = { 5633 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5634 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5635 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5636 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5637 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5638 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5639 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5640 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5641 }; 5642 5643 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5644 ieee80211_state_name[vap->iv_state], 5645 ieee80211_state_name[nstate]); 5646 5647 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5648 csa_run_transition = 1; 5649 5650 callout_drain(&sc->sc_cal_ch); 5651 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5652 5653 if (nstate == IEEE80211_S_SCAN) { 5654 /* 5655 * Scanning: turn off beacon miss and don't beacon. 5656 * Mark beacon state so when we reach RUN state we'll 5657 * [re]setup beacons. Unblock the task q thread so 5658 * deferred interrupt processing is done. 5659 */ 5660 ath_hal_intrset(ah, 5661 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5662 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5663 sc->sc_beacons = 0; 5664 taskqueue_unblock(sc->sc_tq); 5665 } 5666 5667 ni = vap->iv_bss; 5668 rfilt = ath_calcrxfilter(sc); 5669 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5670 vap->iv_opmode == IEEE80211_M_AHDEMO || 5671 vap->iv_opmode == IEEE80211_M_IBSS); 5672 if (stamode && nstate == IEEE80211_S_RUN) { 5673 sc->sc_curaid = ni->ni_associd; 5674 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5675 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5676 } 5677 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5678 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5679 ath_hal_setrxfilter(ah, rfilt); 5680 5681 /* XXX is this to restore keycache on resume? */ 5682 if (vap->iv_opmode != IEEE80211_M_STA && 5683 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5684 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5685 if (ath_hal_keyisvalid(ah, i)) 5686 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5687 } 5688 5689 /* 5690 * Invoke the parent method to do net80211 work. 5691 */ 5692 error = avp->av_newstate(vap, nstate, arg); 5693 if (error != 0) 5694 goto bad; 5695 5696 if (nstate == IEEE80211_S_RUN) { 5697 /* NB: collect bss node again, it may have changed */ 5698 ni = vap->iv_bss; 5699 5700 DPRINTF(sc, ATH_DEBUG_STATE, 5701 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5702 "capinfo 0x%04x chan %d\n", __func__, 5703 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5704 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5705 5706 switch (vap->iv_opmode) { 5707 #ifdef IEEE80211_SUPPORT_TDMA 5708 case IEEE80211_M_AHDEMO: 5709 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 5710 break; 5711 /* fall thru... */ 5712 #endif 5713 case IEEE80211_M_HOSTAP: 5714 case IEEE80211_M_IBSS: 5715 case IEEE80211_M_MBSS: 5716 /* 5717 * Allocate and setup the beacon frame. 5718 * 5719 * Stop any previous beacon DMA. This may be 5720 * necessary, for example, when an ibss merge 5721 * causes reconfiguration; there will be a state 5722 * transition from RUN->RUN that means we may 5723 * be called with beacon transmission active. 5724 */ 5725 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5726 5727 error = ath_beacon_alloc(sc, ni); 5728 if (error != 0) 5729 goto bad; 5730 /* 5731 * If joining an adhoc network defer beacon timer 5732 * configuration to the next beacon frame so we 5733 * have a current TSF to use. Otherwise we're 5734 * starting an ibss/bss so there's no need to delay; 5735 * if this is the first vap moving to RUN state, then 5736 * beacon state needs to be [re]configured. 5737 */ 5738 if (vap->iv_opmode == IEEE80211_M_IBSS && 5739 ni->ni_tstamp.tsf != 0) { 5740 sc->sc_syncbeacon = 1; 5741 } else if (!sc->sc_beacons) { 5742 #ifdef IEEE80211_SUPPORT_TDMA 5743 if (vap->iv_caps & IEEE80211_C_TDMA) 5744 ath_tdma_config(sc, vap); 5745 else 5746 #endif 5747 ath_beacon_config(sc, vap); 5748 sc->sc_beacons = 1; 5749 } 5750 break; 5751 case IEEE80211_M_STA: 5752 /* 5753 * Defer beacon timer configuration to the next 5754 * beacon frame so we have a current TSF to use 5755 * (any TSF collected when scanning is likely old). 5756 * However if it's due to a CSA -> RUN transition, 5757 * force a beacon update so we pick up a lack of 5758 * beacons from an AP in CAC and thus force a 5759 * scan. 5760 */ 5761 sc->sc_syncbeacon = 1; 5762 if (csa_run_transition) 5763 ath_beacon_config(sc, vap); 5764 break; 5765 case IEEE80211_M_MONITOR: 5766 /* 5767 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5768 * transitions so we must re-enable interrupts here to 5769 * handle the case of a single monitor mode vap. 5770 */ 5771 ath_hal_intrset(ah, sc->sc_imask); 5772 break; 5773 case IEEE80211_M_WDS: 5774 break; 5775 default: 5776 break; 5777 } 5778 /* 5779 * Let the hal process statistics collected during a 5780 * scan so it can provide calibrated noise floor data. 5781 */ 5782 ath_hal_process_noisefloor(ah); 5783 /* 5784 * Reset rssi stats; maybe not the best place... 5785 */ 5786 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5787 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5788 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5789 /* 5790 * Finally, start any timers and the task q thread 5791 * (in case we didn't go through SCAN state). 5792 */ 5793 if (ath_longcalinterval != 0) { 5794 /* start periodic recalibration timer */ 5795 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5796 } else { 5797 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5798 "%s: calibration disabled\n", __func__); 5799 } 5800 taskqueue_unblock(sc->sc_tq); 5801 } else if (nstate == IEEE80211_S_INIT) { 5802 /* 5803 * If there are no vaps left in RUN state then 5804 * shutdown host/driver operation: 5805 * o disable interrupts 5806 * o disable the task queue thread 5807 * o mark beacon processing as stopped 5808 */ 5809 if (!ath_isanyrunningvaps(vap)) { 5810 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5811 /* disable interrupts */ 5812 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5813 taskqueue_block(sc->sc_tq); 5814 sc->sc_beacons = 0; 5815 } 5816 #ifdef IEEE80211_SUPPORT_TDMA 5817 ath_hal_setcca(ah, AH_TRUE); 5818 #endif 5819 } 5820 bad: 5821 return error; 5822 } 5823 5824 /* 5825 * Allocate a key cache slot to the station so we can 5826 * setup a mapping from key index to node. The key cache 5827 * slot is needed for managing antenna state and for 5828 * compression when stations do not use crypto. We do 5829 * it uniliaterally here; if crypto is employed this slot 5830 * will be reassigned. 5831 */ 5832 static void 5833 ath_setup_stationkey(struct ieee80211_node *ni) 5834 { 5835 struct ieee80211vap *vap = ni->ni_vap; 5836 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5837 ieee80211_keyix keyix, rxkeyix; 5838 5839 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5840 /* 5841 * Key cache is full; we'll fall back to doing 5842 * the more expensive lookup in software. Note 5843 * this also means no h/w compression. 5844 */ 5845 /* XXX msg+statistic */ 5846 } else { 5847 /* XXX locking? */ 5848 ni->ni_ucastkey.wk_keyix = keyix; 5849 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5850 /* NB: must mark device key to get called back on delete */ 5851 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5852 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5853 /* NB: this will create a pass-thru key entry */ 5854 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5855 } 5856 } 5857 5858 /* 5859 * Setup driver-specific state for a newly associated node. 5860 * Note that we're called also on a re-associate, the isnew 5861 * param tells us if this is the first time or not. 5862 */ 5863 static void 5864 ath_newassoc(struct ieee80211_node *ni, int isnew) 5865 { 5866 struct ath_node *an = ATH_NODE(ni); 5867 struct ieee80211vap *vap = ni->ni_vap; 5868 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5869 const struct ieee80211_txparam *tp = ni->ni_txparms; 5870 5871 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5872 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5873 5874 ath_rate_newassoc(sc, an, isnew); 5875 if (isnew && 5876 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5877 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5878 ath_setup_stationkey(ni); 5879 } 5880 5881 static int 5882 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5883 int nchans, struct ieee80211_channel chans[]) 5884 { 5885 struct ath_softc *sc = ic->ic_ifp->if_softc; 5886 struct ath_hal *ah = sc->sc_ah; 5887 HAL_STATUS status; 5888 5889 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5890 "%s: rd %u cc %u location %c%s\n", 5891 __func__, reg->regdomain, reg->country, reg->location, 5892 reg->ecm ? " ecm" : ""); 5893 5894 status = ath_hal_set_channels(ah, chans, nchans, 5895 reg->country, reg->regdomain); 5896 if (status != HAL_OK) { 5897 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5898 __func__, status); 5899 return EINVAL; /* XXX */ 5900 } 5901 5902 return 0; 5903 } 5904 5905 static void 5906 ath_getradiocaps(struct ieee80211com *ic, 5907 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5908 { 5909 struct ath_softc *sc = ic->ic_ifp->if_softc; 5910 struct ath_hal *ah = sc->sc_ah; 5911 5912 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5913 __func__, SKU_DEBUG, CTRY_DEFAULT); 5914 5915 /* XXX check return */ 5916 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5917 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5918 5919 } 5920 5921 static int 5922 ath_getchannels(struct ath_softc *sc) 5923 { 5924 struct ifnet *ifp = sc->sc_ifp; 5925 struct ieee80211com *ic = ifp->if_l2com; 5926 struct ath_hal *ah = sc->sc_ah; 5927 HAL_STATUS status; 5928 5929 /* 5930 * Collect channel set based on EEPROM contents. 5931 */ 5932 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5933 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5934 if (status != HAL_OK) { 5935 if_printf(ifp, "%s: unable to collect channel list from hal, " 5936 "status %d\n", __func__, status); 5937 return EINVAL; 5938 } 5939 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5940 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5941 /* XXX map Atheros sku's to net80211 SKU's */ 5942 /* XXX net80211 types too small */ 5943 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5944 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5945 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5946 ic->ic_regdomain.isocc[1] = ' '; 5947 5948 ic->ic_regdomain.ecm = 1; 5949 ic->ic_regdomain.location = 'I'; 5950 5951 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5952 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5953 __func__, sc->sc_eerd, sc->sc_eecc, 5954 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5955 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5956 return 0; 5957 } 5958 5959 static void 5960 ath_led_done(void *arg) 5961 { 5962 struct ath_softc *sc = arg; 5963 5964 sc->sc_blinking = 0; 5965 } 5966 5967 /* 5968 * Turn the LED off: flip the pin and then set a timer so no 5969 * update will happen for the specified duration. 5970 */ 5971 static void 5972 ath_led_off(void *arg) 5973 { 5974 struct ath_softc *sc = arg; 5975 5976 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 5977 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 5978 } 5979 5980 /* 5981 * Blink the LED according to the specified on/off times. 5982 */ 5983 static void 5984 ath_led_blink(struct ath_softc *sc, int on, int off) 5985 { 5986 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 5987 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 5988 sc->sc_blinking = 1; 5989 sc->sc_ledoff = off; 5990 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 5991 } 5992 5993 static void 5994 ath_led_event(struct ath_softc *sc, int rix) 5995 { 5996 sc->sc_ledevent = ticks; /* time of last event */ 5997 if (sc->sc_blinking) /* don't interrupt active blink */ 5998 return; 5999 ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff); 6000 } 6001 6002 static int 6003 ath_rate_setup(struct ath_softc *sc, u_int mode) 6004 { 6005 struct ath_hal *ah = sc->sc_ah; 6006 const HAL_RATE_TABLE *rt; 6007 6008 switch (mode) { 6009 case IEEE80211_MODE_11A: 6010 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6011 break; 6012 case IEEE80211_MODE_HALF: 6013 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6014 break; 6015 case IEEE80211_MODE_QUARTER: 6016 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6017 break; 6018 case IEEE80211_MODE_11B: 6019 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6020 break; 6021 case IEEE80211_MODE_11G: 6022 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6023 break; 6024 case IEEE80211_MODE_TURBO_A: 6025 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6026 break; 6027 case IEEE80211_MODE_TURBO_G: 6028 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6029 break; 6030 case IEEE80211_MODE_STURBO_A: 6031 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6032 break; 6033 case IEEE80211_MODE_11NA: 6034 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6035 break; 6036 case IEEE80211_MODE_11NG: 6037 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6038 break; 6039 default: 6040 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6041 __func__, mode); 6042 return 0; 6043 } 6044 sc->sc_rates[mode] = rt; 6045 return (rt != NULL); 6046 } 6047 6048 static void 6049 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6050 { 6051 #define N(a) (sizeof(a)/sizeof(a[0])) 6052 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6053 static const struct { 6054 u_int rate; /* tx/rx 802.11 rate */ 6055 u_int16_t timeOn; /* LED on time (ms) */ 6056 u_int16_t timeOff; /* LED off time (ms) */ 6057 } blinkrates[] = { 6058 { 108, 40, 10 }, 6059 { 96, 44, 11 }, 6060 { 72, 50, 13 }, 6061 { 48, 57, 14 }, 6062 { 36, 67, 16 }, 6063 { 24, 80, 20 }, 6064 { 22, 100, 25 }, 6065 { 18, 133, 34 }, 6066 { 12, 160, 40 }, 6067 { 10, 200, 50 }, 6068 { 6, 240, 58 }, 6069 { 4, 267, 66 }, 6070 { 2, 400, 100 }, 6071 { 0, 500, 130 }, 6072 /* XXX half/quarter rates */ 6073 }; 6074 const HAL_RATE_TABLE *rt; 6075 int i, j; 6076 6077 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6078 rt = sc->sc_rates[mode]; 6079 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6080 for (i = 0; i < rt->rateCount; i++) { 6081 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6082 if (rt->info[i].phy != IEEE80211_T_HT) 6083 sc->sc_rixmap[ieeerate] = i; 6084 else 6085 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6086 } 6087 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6088 for (i = 0; i < N(sc->sc_hwmap); i++) { 6089 if (i >= rt->rateCount) { 6090 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6091 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6092 continue; 6093 } 6094 sc->sc_hwmap[i].ieeerate = 6095 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6096 if (rt->info[i].phy == IEEE80211_T_HT) 6097 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6098 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6099 if (rt->info[i].shortPreamble || 6100 rt->info[i].phy == IEEE80211_T_OFDM) 6101 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6102 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6103 for (j = 0; j < N(blinkrates)-1; j++) 6104 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6105 break; 6106 /* NB: this uses the last entry if the rate isn't found */ 6107 /* XXX beware of overlow */ 6108 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6109 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6110 } 6111 sc->sc_currates = rt; 6112 sc->sc_curmode = mode; 6113 /* 6114 * All protection frames are transmited at 2Mb/s for 6115 * 11g, otherwise at 1Mb/s. 6116 */ 6117 if (mode == IEEE80211_MODE_11G) 6118 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6119 else 6120 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6121 /* NB: caller is responsible for resetting rate control state */ 6122 #undef N 6123 } 6124 6125 static void 6126 ath_watchdog(void *arg) 6127 { 6128 struct ath_softc *sc = arg; 6129 int do_reset = 0; 6130 6131 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6132 struct ifnet *ifp = sc->sc_ifp; 6133 uint32_t hangs; 6134 6135 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6136 hangs != 0) { 6137 if_printf(ifp, "%s hang detected (0x%x)\n", 6138 hangs & 0xff ? "bb" : "mac", hangs); 6139 } else 6140 if_printf(ifp, "device timeout\n"); 6141 do_reset = 1; 6142 ifp->if_oerrors++; 6143 sc->sc_stats.ast_watchdog++; 6144 } 6145 6146 /* 6147 * We can't hold the lock across the ath_reset() call. 6148 */ 6149 if (do_reset) { 6150 ATH_UNLOCK(sc); 6151 ath_reset(sc->sc_ifp, ATH_RESET_NOLOSS); 6152 ATH_LOCK(sc); 6153 } 6154 6155 callout_schedule(&sc->sc_wd_ch, hz); 6156 } 6157 6158 #ifdef ATH_DIAGAPI 6159 /* 6160 * Diagnostic interface to the HAL. This is used by various 6161 * tools to do things like retrieve register contents for 6162 * debugging. The mechanism is intentionally opaque so that 6163 * it can change frequently w/o concern for compatiblity. 6164 */ 6165 static int 6166 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 6167 { 6168 struct ath_hal *ah = sc->sc_ah; 6169 u_int id = ad->ad_id & ATH_DIAG_ID; 6170 void *indata = NULL; 6171 void *outdata = NULL; 6172 u_int32_t insize = ad->ad_in_size; 6173 u_int32_t outsize = ad->ad_out_size; 6174 int error = 0; 6175 6176 if (ad->ad_id & ATH_DIAG_IN) { 6177 /* 6178 * Copy in data. 6179 */ 6180 indata = malloc(insize, M_TEMP, M_NOWAIT); 6181 if (indata == NULL) { 6182 error = ENOMEM; 6183 goto bad; 6184 } 6185 error = copyin(ad->ad_in_data, indata, insize); 6186 if (error) 6187 goto bad; 6188 } 6189 if (ad->ad_id & ATH_DIAG_DYN) { 6190 /* 6191 * Allocate a buffer for the results (otherwise the HAL 6192 * returns a pointer to a buffer where we can read the 6193 * results). Note that we depend on the HAL leaving this 6194 * pointer for us to use below in reclaiming the buffer; 6195 * may want to be more defensive. 6196 */ 6197 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 6198 if (outdata == NULL) { 6199 error = ENOMEM; 6200 goto bad; 6201 } 6202 } 6203 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 6204 if (outsize < ad->ad_out_size) 6205 ad->ad_out_size = outsize; 6206 if (outdata != NULL) 6207 error = copyout(outdata, ad->ad_out_data, 6208 ad->ad_out_size); 6209 } else { 6210 error = EINVAL; 6211 } 6212 bad: 6213 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 6214 free(indata, M_TEMP); 6215 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 6216 free(outdata, M_TEMP); 6217 return error; 6218 } 6219 #endif /* ATH_DIAGAPI */ 6220 6221 static int 6222 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 6223 { 6224 #define IS_RUNNING(ifp) \ 6225 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 6226 struct ath_softc *sc = ifp->if_softc; 6227 struct ieee80211com *ic = ifp->if_l2com; 6228 struct ifreq *ifr = (struct ifreq *)data; 6229 const HAL_RATE_TABLE *rt; 6230 int error = 0; 6231 6232 switch (cmd) { 6233 case SIOCSIFFLAGS: 6234 ATH_LOCK(sc); 6235 if (IS_RUNNING(ifp)) { 6236 /* 6237 * To avoid rescanning another access point, 6238 * do not call ath_init() here. Instead, 6239 * only reflect promisc mode settings. 6240 */ 6241 ath_mode_init(sc); 6242 } else if (ifp->if_flags & IFF_UP) { 6243 /* 6244 * Beware of being called during attach/detach 6245 * to reset promiscuous mode. In that case we 6246 * will still be marked UP but not RUNNING. 6247 * However trying to re-init the interface 6248 * is the wrong thing to do as we've already 6249 * torn down much of our state. There's 6250 * probably a better way to deal with this. 6251 */ 6252 if (!sc->sc_invalid) 6253 ath_init(sc); /* XXX lose error */ 6254 } else { 6255 ath_stop_locked(ifp); 6256 #ifdef notyet 6257 /* XXX must wakeup in places like ath_vap_delete */ 6258 if (!sc->sc_invalid) 6259 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 6260 #endif 6261 } 6262 ATH_UNLOCK(sc); 6263 break; 6264 case SIOCGIFMEDIA: 6265 case SIOCSIFMEDIA: 6266 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 6267 break; 6268 case SIOCGATHSTATS: 6269 /* NB: embed these numbers to get a consistent view */ 6270 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 6271 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 6272 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 6273 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 6274 #ifdef IEEE80211_SUPPORT_TDMA 6275 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 6276 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 6277 #endif 6278 rt = sc->sc_currates; 6279 sc->sc_stats.ast_tx_rate = 6280 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 6281 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 6282 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 6283 return copyout(&sc->sc_stats, 6284 ifr->ifr_data, sizeof (sc->sc_stats)); 6285 case SIOCZATHSTATS: 6286 error = priv_check(curthread, PRIV_DRIVER); 6287 if (error == 0) 6288 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 6289 break; 6290 #ifdef ATH_DIAGAPI 6291 case SIOCGATHDIAG: 6292 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 6293 break; 6294 case SIOCGATHPHYERR: 6295 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 6296 break; 6297 #endif 6298 case SIOCGIFADDR: 6299 error = ether_ioctl(ifp, cmd, data); 6300 break; 6301 default: 6302 error = EINVAL; 6303 break; 6304 } 6305 return error; 6306 #undef IS_RUNNING 6307 } 6308 6309 /* 6310 * Announce various information on device/driver attach. 6311 */ 6312 static void 6313 ath_announce(struct ath_softc *sc) 6314 { 6315 struct ifnet *ifp = sc->sc_ifp; 6316 struct ath_hal *ah = sc->sc_ah; 6317 6318 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 6319 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6320 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6321 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6322 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6323 if (bootverbose) { 6324 int i; 6325 for (i = 0; i <= WME_AC_VO; i++) { 6326 struct ath_txq *txq = sc->sc_ac2q[i]; 6327 if_printf(ifp, "Use hw queue %u for %s traffic\n", 6328 txq->axq_qnum, ieee80211_wme_acnames[i]); 6329 } 6330 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 6331 sc->sc_cabq->axq_qnum); 6332 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 6333 } 6334 if (ath_rxbuf != ATH_RXBUF) 6335 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 6336 if (ath_txbuf != ATH_TXBUF) 6337 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 6338 if (sc->sc_mcastkey && bootverbose) 6339 if_printf(ifp, "using multicast key search\n"); 6340 } 6341 6342 #ifdef IEEE80211_SUPPORT_TDMA 6343 static void 6344 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval) 6345 { 6346 struct ath_hal *ah = sc->sc_ah; 6347 HAL_BEACON_TIMERS bt; 6348 6349 bt.bt_intval = bintval | HAL_BEACON_ENA; 6350 bt.bt_nexttbtt = nexttbtt; 6351 bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep; 6352 bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep; 6353 bt.bt_nextatim = nexttbtt+1; 6354 /* Enables TBTT, DBA, SWBA timers by default */ 6355 bt.bt_flags = 0; 6356 ath_hal_beaconsettimers(ah, &bt); 6357 } 6358 6359 /* 6360 * Calculate the beacon interval. This is periodic in the 6361 * superframe for the bss. We assume each station is configured 6362 * identically wrt transmit rate so the guard time we calculate 6363 * above will be the same on all stations. Note we need to 6364 * factor in the xmit time because the hardware will schedule 6365 * a frame for transmit if the start of the frame is within 6366 * the burst time. When we get hardware that properly kills 6367 * frames in the PCU we can reduce/eliminate the guard time. 6368 * 6369 * Roundup to 1024 is so we have 1 TU buffer in the guard time 6370 * to deal with the granularity of the nexttbtt timer. 11n MAC's 6371 * with 1us timer granularity should allow us to reduce/eliminate 6372 * this. 6373 */ 6374 static void 6375 ath_tdma_bintvalsetup(struct ath_softc *sc, 6376 const struct ieee80211_tdma_state *tdma) 6377 { 6378 /* copy from vap state (XXX check all vaps have same value?) */ 6379 sc->sc_tdmaslotlen = tdma->tdma_slotlen; 6380 6381 sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) * 6382 tdma->tdma_slotcnt, 1024); 6383 sc->sc_tdmabintval >>= 10; /* TSF -> TU */ 6384 if (sc->sc_tdmabintval & 1) 6385 sc->sc_tdmabintval++; 6386 6387 if (tdma->tdma_slot == 0) { 6388 /* 6389 * Only slot 0 beacons; other slots respond. 6390 */ 6391 sc->sc_imask |= HAL_INT_SWBA; 6392 sc->sc_tdmaswba = 0; /* beacon immediately */ 6393 } else { 6394 /* XXX all vaps must be slot 0 or slot !0 */ 6395 sc->sc_imask &= ~HAL_INT_SWBA; 6396 } 6397 } 6398 6399 /* 6400 * Max 802.11 overhead. This assumes no 4-address frames and 6401 * the encapsulation done by ieee80211_encap (llc). We also 6402 * include potential crypto overhead. 6403 */ 6404 #define IEEE80211_MAXOVERHEAD \ 6405 (sizeof(struct ieee80211_qosframe) \ 6406 + sizeof(struct llc) \ 6407 + IEEE80211_ADDR_LEN \ 6408 + IEEE80211_WEP_IVLEN \ 6409 + IEEE80211_WEP_KIDLEN \ 6410 + IEEE80211_WEP_CRCLEN \ 6411 + IEEE80211_WEP_MICLEN \ 6412 + IEEE80211_CRC_LEN) 6413 6414 /* 6415 * Setup initially for tdma operation. Start the beacon 6416 * timers and enable SWBA if we are slot 0. Otherwise 6417 * we wait for slot 0 to arrive so we can sync up before 6418 * starting to transmit. 6419 */ 6420 static void 6421 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap) 6422 { 6423 struct ath_hal *ah = sc->sc_ah; 6424 struct ifnet *ifp = sc->sc_ifp; 6425 struct ieee80211com *ic = ifp->if_l2com; 6426 const struct ieee80211_txparam *tp; 6427 const struct ieee80211_tdma_state *tdma = NULL; 6428 int rix; 6429 6430 if (vap == NULL) { 6431 vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */ 6432 if (vap == NULL) { 6433 if_printf(ifp, "%s: no vaps?\n", __func__); 6434 return; 6435 } 6436 } 6437 tp = vap->iv_bss->ni_txparms; 6438 /* 6439 * Calculate the guard time for each slot. This is the 6440 * time to send a maximal-size frame according to the 6441 * fixed/lowest transmit rate. Note that the interface 6442 * mtu does not include the 802.11 overhead so we must 6443 * tack that on (ath_hal_computetxtime includes the 6444 * preamble and plcp in it's calculation). 6445 */ 6446 tdma = vap->iv_tdma; 6447 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 6448 rix = ath_tx_findrix(sc, tp->ucastrate); 6449 else 6450 rix = ath_tx_findrix(sc, tp->mcastrate); 6451 /* XXX short preamble assumed */ 6452 sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates, 6453 ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE); 6454 6455 ath_hal_intrset(ah, 0); 6456 6457 ath_beaconq_config(sc); /* setup h/w beacon q */ 6458 if (sc->sc_setcca) 6459 ath_hal_setcca(ah, AH_FALSE); /* disable CCA */ 6460 ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */ 6461 ath_tdma_settimers(sc, sc->sc_tdmabintval, 6462 sc->sc_tdmabintval | HAL_BEACON_RESET_TSF); 6463 sc->sc_syncbeacon = 0; 6464 6465 sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER; 6466 sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER; 6467 6468 ath_hal_intrset(ah, sc->sc_imask); 6469 6470 DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u " 6471 "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__, 6472 tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt, 6473 tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval, 6474 sc->sc_tdmadbaprep); 6475 } 6476 6477 /* 6478 * Update tdma operation. Called from the 802.11 layer 6479 * when a beacon is received from the TDMA station operating 6480 * in the slot immediately preceding us in the bss. Use 6481 * the rx timestamp for the beacon frame to update our 6482 * beacon timers so we follow their schedule. Note that 6483 * by using the rx timestamp we implicitly include the 6484 * propagation delay in our schedule. 6485 */ 6486 static void 6487 ath_tdma_update(struct ieee80211_node *ni, 6488 const struct ieee80211_tdma_param *tdma, int changed) 6489 { 6490 #define TSF_TO_TU(_h,_l) \ 6491 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 6492 #define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10) 6493 struct ieee80211vap *vap = ni->ni_vap; 6494 struct ieee80211com *ic = ni->ni_ic; 6495 struct ath_softc *sc = ic->ic_ifp->if_softc; 6496 struct ath_hal *ah = sc->sc_ah; 6497 const HAL_RATE_TABLE *rt = sc->sc_currates; 6498 u_int64_t tsf, rstamp, nextslot, nexttbtt; 6499 u_int32_t txtime, nextslottu; 6500 int32_t tudelta, tsfdelta; 6501 const struct ath_rx_status *rs; 6502 int rix; 6503 6504 sc->sc_stats.ast_tdma_update++; 6505 6506 /* 6507 * Check for and adopt configuration changes. 6508 */ 6509 if (changed != 0) { 6510 const struct ieee80211_tdma_state *ts = vap->iv_tdma; 6511 6512 ath_tdma_bintvalsetup(sc, ts); 6513 if (changed & TDMA_UPDATE_SLOTLEN) 6514 ath_wme_update(ic); 6515 6516 DPRINTF(sc, ATH_DEBUG_TDMA, 6517 "%s: adopt slot %u slotcnt %u slotlen %u us " 6518 "bintval %u TU\n", __func__, 6519 ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen, 6520 sc->sc_tdmabintval); 6521 6522 /* XXX right? */ 6523 ath_hal_intrset(ah, sc->sc_imask); 6524 /* NB: beacon timers programmed below */ 6525 } 6526 6527 /* extend rx timestamp to 64 bits */ 6528 rs = sc->sc_lastrs; 6529 tsf = ath_hal_gettsf64(ah); 6530 rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf); 6531 /* 6532 * The rx timestamp is set by the hardware on completing 6533 * reception (at the point where the rx descriptor is DMA'd 6534 * to the host). To find the start of our next slot we 6535 * must adjust this time by the time required to send 6536 * the packet just received. 6537 */ 6538 rix = rt->rateCodeToIndex[rs->rs_rate]; 6539 txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix, 6540 rt->info[rix].shortPreamble); 6541 /* NB: << 9 is to cvt to TU and /2 */ 6542 nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9); 6543 nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD; 6544 6545 /* 6546 * Retrieve the hardware NextTBTT in usecs 6547 * and calculate the difference between what the 6548 * other station thinks and what we have programmed. This 6549 * lets us figure how to adjust our timers to match. The 6550 * adjustments are done by pulling the TSF forward and possibly 6551 * rewriting the beacon timers. 6552 */ 6553 nexttbtt = ath_hal_getnexttbtt(ah); 6554 tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt); 6555 6556 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6557 "tsfdelta %d avg +%d/-%d\n", tsfdelta, 6558 TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam)); 6559 6560 if (tsfdelta < 0) { 6561 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6562 TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta); 6563 tsfdelta = -tsfdelta % 1024; 6564 nextslottu++; 6565 } else if (tsfdelta > 0) { 6566 TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta); 6567 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6568 tsfdelta = 1024 - (tsfdelta % 1024); 6569 nextslottu++; 6570 } else { 6571 TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0); 6572 TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0); 6573 } 6574 tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt); 6575 6576 /* 6577 * Copy sender's timetstamp into tdma ie so they can 6578 * calculate roundtrip time. We submit a beacon frame 6579 * below after any timer adjustment. The frame goes out 6580 * at the next TBTT so the sender can calculate the 6581 * roundtrip by inspecting the tdma ie in our beacon frame. 6582 * 6583 * NB: This tstamp is subtlely preserved when 6584 * IEEE80211_BEACON_TDMA is marked (e.g. when the 6585 * slot position changes) because ieee80211_add_tdma 6586 * skips over the data. 6587 */ 6588 memcpy(ATH_VAP(vap)->av_boff.bo_tdma + 6589 __offsetof(struct ieee80211_tdma_param, tdma_tstamp), 6590 &ni->ni_tstamp.data, 8); 6591 #if 0 6592 DPRINTF(sc, ATH_DEBUG_TDMA_TIMER, 6593 "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n", 6594 (unsigned long long) tsf, (unsigned long long) nextslot, 6595 (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta); 6596 #endif 6597 /* 6598 * Adjust the beacon timers only when pulling them forward 6599 * or when going back by less than the beacon interval. 6600 * Negative jumps larger than the beacon interval seem to 6601 * cause the timers to stop and generally cause instability. 6602 * This basically filters out jumps due to missed beacons. 6603 */ 6604 if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) { 6605 ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval); 6606 sc->sc_stats.ast_tdma_timers++; 6607 } 6608 if (tsfdelta > 0) { 6609 ath_hal_adjusttsf(ah, tsfdelta); 6610 sc->sc_stats.ast_tdma_tsf++; 6611 } 6612 ath_tdma_beacon_send(sc, vap); /* prepare response */ 6613 #undef TU_TO_TSF 6614 #undef TSF_TO_TU 6615 } 6616 6617 /* 6618 * Transmit a beacon frame at SWBA. Dynamic updates 6619 * to the frame contents are done as needed. 6620 */ 6621 static void 6622 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap) 6623 { 6624 struct ath_hal *ah = sc->sc_ah; 6625 struct ath_buf *bf; 6626 int otherant; 6627 6628 /* 6629 * Check if the previous beacon has gone out. If 6630 * not don't try to post another, skip this period 6631 * and wait for the next. Missed beacons indicate 6632 * a problem and should not occur. If we miss too 6633 * many consecutive beacons reset the device. 6634 */ 6635 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 6636 sc->sc_bmisscount++; 6637 DPRINTF(sc, ATH_DEBUG_BEACON, 6638 "%s: missed %u consecutive beacons\n", 6639 __func__, sc->sc_bmisscount); 6640 if (sc->sc_bmisscount >= ath_bstuck_threshold) 6641 taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask); 6642 return; 6643 } 6644 if (sc->sc_bmisscount != 0) { 6645 DPRINTF(sc, ATH_DEBUG_BEACON, 6646 "%s: resume beacon xmit after %u misses\n", 6647 __func__, sc->sc_bmisscount); 6648 sc->sc_bmisscount = 0; 6649 } 6650 6651 /* 6652 * Check recent per-antenna transmit statistics and flip 6653 * the default antenna if noticeably more frames went out 6654 * on the non-default antenna. 6655 * XXX assumes 2 anntenae 6656 */ 6657 if (!sc->sc_diversity) { 6658 otherant = sc->sc_defant & 1 ? 2 : 1; 6659 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 6660 ath_setdefantenna(sc, otherant); 6661 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 6662 } 6663 6664 bf = ath_beacon_generate(sc, vap); 6665 if (bf != NULL) { 6666 /* 6667 * Stop any current dma and put the new frame on the queue. 6668 * This should never fail since we check above that no frames 6669 * are still pending on the queue. 6670 */ 6671 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 6672 DPRINTF(sc, ATH_DEBUG_ANY, 6673 "%s: beacon queue %u did not stop?\n", 6674 __func__, sc->sc_bhalq); 6675 /* NB: the HAL still stops DMA, so proceed */ 6676 } 6677 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 6678 ath_hal_txstart(ah, sc->sc_bhalq); 6679 6680 sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */ 6681 6682 /* 6683 * Record local TSF for our last send for use 6684 * in arbitrating slot collisions. 6685 */ 6686 vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah); 6687 } 6688 } 6689 #endif /* IEEE80211_SUPPORT_TDMA */ 6690 6691 static void 6692 ath_dfs_tasklet(void *p, int npending) 6693 { 6694 struct ath_softc *sc = (struct ath_softc *) p; 6695 struct ifnet *ifp = sc->sc_ifp; 6696 struct ieee80211com *ic = ifp->if_l2com; 6697 6698 /* 6699 * If previous processing has found a radar event, 6700 * signal this to the net80211 layer to begin DFS 6701 * processing. 6702 */ 6703 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6704 /* DFS event found, initiate channel change */ 6705 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6706 } 6707 } 6708 6709 MODULE_VERSION(if_ath, 1); 6710 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 6711