xref: /freebsd/sys/dev/ath/if_ath.c (revision 7dfd9569a2f0637fb9a48157b1c1bfe5709faee3)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 #include "opt_ath.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/sysctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/malloc.h>
55 #include <sys/lock.h>
56 #include <sys/mutex.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/sockio.h>
60 #include <sys/errno.h>
61 #include <sys/callout.h>
62 #include <sys/bus.h>
63 #include <sys/endian.h>
64 #include <sys/kthread.h>
65 #include <sys/taskqueue.h>
66 
67 #include <machine/bus.h>
68 
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_arp.h>
74 #include <net/ethernet.h>
75 #include <net/if_llc.h>
76 
77 #include <net80211/ieee80211_var.h>
78 
79 #include <net/bpf.h>
80 
81 #ifdef INET
82 #include <netinet/in.h>
83 #include <netinet/if_ether.h>
84 #endif
85 
86 #include <dev/ath/if_athvar.h>
87 #include <contrib/dev/ath/ah_desc.h>
88 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
89 
90 #ifdef ATH_TX99_DIAG
91 #include <dev/ath/ath_tx99/ath_tx99.h>
92 #endif
93 
94 /* unaligned little endian access */
95 #define LE_READ_2(p)							\
96 	((u_int16_t)							\
97 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
98 #define LE_READ_4(p)							\
99 	((u_int32_t)							\
100 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
101 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
102 
103 enum {
104 	ATH_LED_TX,
105 	ATH_LED_RX,
106 	ATH_LED_POLL,
107 };
108 
109 static void	ath_init(void *);
110 static void	ath_stop_locked(struct ifnet *);
111 static void	ath_stop(struct ifnet *);
112 static void	ath_start(struct ifnet *);
113 static int	ath_reset(struct ifnet *);
114 static int	ath_media_change(struct ifnet *);
115 static void	ath_watchdog(struct ifnet *);
116 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
117 static void	ath_fatal_proc(void *, int);
118 static void	ath_rxorn_proc(void *, int);
119 static void	ath_bmiss_proc(void *, int);
120 static void	ath_radar_proc(void *, int);
121 static int	ath_key_alloc(struct ieee80211com *,
122 			const struct ieee80211_key *,
123 			ieee80211_keyix *, ieee80211_keyix *);
124 static int	ath_key_delete(struct ieee80211com *,
125 			const struct ieee80211_key *);
126 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
127 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
128 static void	ath_key_update_begin(struct ieee80211com *);
129 static void	ath_key_update_end(struct ieee80211com *);
130 static void	ath_mode_init(struct ath_softc *);
131 static void	ath_setslottime(struct ath_softc *);
132 static void	ath_updateslot(struct ifnet *);
133 static int	ath_beaconq_setup(struct ath_hal *);
134 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
135 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
136 static void	ath_beacon_proc(void *, int);
137 static void	ath_bstuck_proc(void *, int);
138 static void	ath_beacon_free(struct ath_softc *);
139 static void	ath_beacon_config(struct ath_softc *);
140 static void	ath_descdma_cleanup(struct ath_softc *sc,
141 			struct ath_descdma *, ath_bufhead *);
142 static int	ath_desc_alloc(struct ath_softc *);
143 static void	ath_desc_free(struct ath_softc *);
144 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
145 static void	ath_node_free(struct ieee80211_node *);
146 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
147 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
148 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
149 			struct ieee80211_node *ni,
150 			int subtype, int rssi, u_int32_t rstamp);
151 static void	ath_setdefantenna(struct ath_softc *, u_int);
152 static void	ath_rx_proc(void *, int);
153 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
154 static int	ath_tx_setup(struct ath_softc *, int, int);
155 static int	ath_wme_update(struct ieee80211com *);
156 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
157 static void	ath_tx_cleanup(struct ath_softc *);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc_q0(void *, int);
161 static void	ath_tx_proc_q0123(void *, int);
162 static void	ath_tx_proc(void *, int);
163 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
164 static void	ath_draintxq(struct ath_softc *);
165 static void	ath_stoprecv(struct ath_softc *);
166 static int	ath_startrecv(struct ath_softc *);
167 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
168 static void	ath_next_scan(void *);
169 static void	ath_calibrate(void *);
170 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
171 static void	ath_setup_stationkey(struct ieee80211_node *);
172 static void	ath_newassoc(struct ieee80211_node *, int);
173 static int	ath_getchannels(struct ath_softc *, u_int cc,
174 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
175 static void	ath_led_event(struct ath_softc *, int);
176 static void	ath_update_txpow(struct ath_softc *);
177 
178 static int	ath_rate_setup(struct ath_softc *, u_int mode);
179 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
180 
181 static void	ath_sysctlattach(struct ath_softc *);
182 static void	ath_bpfattach(struct ath_softc *);
183 static void	ath_announce(struct ath_softc *);
184 
185 SYSCTL_DECL(_hw_ath);
186 
187 /* XXX validate sysctl values */
188 static	int ath_dwelltime = 200;		/* 5 channels/second */
189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
190 	    0, "channel dwell time (ms) for AP/station scanning");
191 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
192 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
193 	    0, "chip calibration interval (secs)");
194 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
195 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
196 	    0, "outdoor operation");
197 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
198 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
199 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
200 	    0, "extended channel mode");
201 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
202 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
203 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
204 	    0, "country code");
205 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
206 static	int ath_regdomain = 0;			/* regulatory domain */
207 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
208 	    0, "regulatory domain");
209 
210 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
211 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf,
212 	    0, "rx buffers allocated");
213 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
214 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
215 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf,
216 	    0, "tx buffers allocated");
217 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
218 
219 #ifdef ATH_DEBUG
220 static	int ath_debug = 0;
221 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
222 	    0, "control debugging printfs");
223 TUNABLE_INT("hw.ath.debug", &ath_debug);
224 enum {
225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
246 	ATH_DEBUG_ANY		= 0xffffffff
247 };
248 #define	IFF_DUMPPKTS(sc, m) \
249 	((sc->sc_debug & (m)) || \
250 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define	DPRINTF(sc, m, fmt, ...) do {				\
252 	if (sc->sc_debug & (m))					\
253 		printf(fmt, __VA_ARGS__);			\
254 } while (0)
255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
257 		ath_keyprint(__func__, ix, hk, mac);		\
258 } while (0)
259 static	void ath_printrxbuf(struct ath_buf *bf, u_int ix, int);
260 static	void ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done);
261 #else
262 #define	IFF_DUMPPKTS(sc, m) \
263 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define	DPRINTF(sc, m, fmt, ...) do {				\
265 	(void) sc;						\
266 } while (0)
267 #define	KEYPRINTF(sc, k, ix, mac) do {				\
268 	(void) sc;						\
269 } while (0)
270 #endif
271 
272 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
273 
274 int
275 ath_attach(u_int16_t devid, struct ath_softc *sc)
276 {
277 	struct ifnet *ifp;
278 	struct ieee80211com *ic = &sc->sc_ic;
279 	struct ath_hal *ah = NULL;
280 	HAL_STATUS status;
281 	int error = 0, i;
282 
283 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
284 
285 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
286 	if (ifp == NULL) {
287 		device_printf(sc->sc_dev, "can not if_alloc()\n");
288 		error = ENOSPC;
289 		goto bad;
290 	}
291 
292 	/* set these up early for if_printf use */
293 	if_initname(ifp, device_get_name(sc->sc_dev),
294 		device_get_unit(sc->sc_dev));
295 
296 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
297 	if (ah == NULL) {
298 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
299 			status);
300 		error = ENXIO;
301 		goto bad;
302 	}
303 	if (ah->ah_abi != HAL_ABI_VERSION) {
304 		if_printf(ifp, "HAL ABI mismatch detected "
305 			"(HAL:0x%x != driver:0x%x)\n",
306 			ah->ah_abi, HAL_ABI_VERSION);
307 		error = ENXIO;
308 		goto bad;
309 	}
310 	sc->sc_ah = ah;
311 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
312 
313 	/*
314 	 * Check if the MAC has multi-rate retry support.
315 	 * We do this by trying to setup a fake extended
316 	 * descriptor.  MAC's that don't have support will
317 	 * return false w/o doing anything.  MAC's that do
318 	 * support it will return true w/o doing anything.
319 	 */
320 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
321 
322 	/*
323 	 * Check if the device has hardware counters for PHY
324 	 * errors.  If so we need to enable the MIB interrupt
325 	 * so we can act on stat triggers.
326 	 */
327 	if (ath_hal_hwphycounters(ah))
328 		sc->sc_needmib = 1;
329 
330 	/*
331 	 * Get the hardware key cache size.
332 	 */
333 	sc->sc_keymax = ath_hal_keycachesize(ah);
334 	if (sc->sc_keymax > ATH_KEYMAX) {
335 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
336 			ATH_KEYMAX, sc->sc_keymax);
337 		sc->sc_keymax = ATH_KEYMAX;
338 	}
339 	/*
340 	 * Reset the key cache since some parts do not
341 	 * reset the contents on initial power up.
342 	 */
343 	for (i = 0; i < sc->sc_keymax; i++)
344 		ath_hal_keyreset(ah, i);
345 	/*
346 	 * Mark key cache slots associated with global keys
347 	 * as in use.  If we knew TKIP was not to be used we
348 	 * could leave the +32, +64, and +32+64 slots free.
349 	 * XXX only for splitmic.
350 	 */
351 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
352 		setbit(sc->sc_keymap, i);
353 		setbit(sc->sc_keymap, i+32);
354 		setbit(sc->sc_keymap, i+64);
355 		setbit(sc->sc_keymap, i+32+64);
356 	}
357 
358 	/*
359 	 * Collect the channel list using the default country
360 	 * code and including outdoor channels.  The 802.11 layer
361 	 * is resposible for filtering this list based on settings
362 	 * like the phy mode.
363 	 */
364 	error = ath_getchannels(sc, ath_countrycode,
365 			ath_outdoor, ath_xchanmode);
366 	if (error != 0)
367 		goto bad;
368 
369 	/*
370 	 * Setup rate tables for all potential media types.
371 	 */
372 	ath_rate_setup(sc, IEEE80211_MODE_11A);
373 	ath_rate_setup(sc, IEEE80211_MODE_11B);
374 	ath_rate_setup(sc, IEEE80211_MODE_11G);
375 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
376 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
377 	/* NB: setup here so ath_rate_update is happy */
378 	ath_setcurmode(sc, IEEE80211_MODE_11A);
379 
380 	/*
381 	 * Allocate tx+rx descriptors and populate the lists.
382 	 */
383 	error = ath_desc_alloc(sc);
384 	if (error != 0) {
385 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
386 		goto bad;
387 	}
388 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
389 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
390 	callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
391 
392 	ATH_TXBUF_LOCK_INIT(sc);
393 
394 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
395 		taskqueue_thread_enqueue, &sc->sc_tq);
396 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
397 		"%s taskq", ifp->if_xname);
398 
399 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
400 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
401 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
402 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
403 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
404 
405 	/*
406 	 * Allocate hardware transmit queues: one queue for
407 	 * beacon frames and one data queue for each QoS
408 	 * priority.  Note that the hal handles reseting
409 	 * these queues at the needed time.
410 	 *
411 	 * XXX PS-Poll
412 	 */
413 	sc->sc_bhalq = ath_beaconq_setup(ah);
414 	if (sc->sc_bhalq == (u_int) -1) {
415 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
416 		error = EIO;
417 		goto bad2;
418 	}
419 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
420 	if (sc->sc_cabq == NULL) {
421 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
422 		error = EIO;
423 		goto bad2;
424 	}
425 	/* NB: insure BK queue is the lowest priority h/w queue */
426 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
427 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
428 			ieee80211_wme_acnames[WME_AC_BK]);
429 		error = EIO;
430 		goto bad2;
431 	}
432 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
433 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
434 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
435 		/*
436 		 * Not enough hardware tx queues to properly do WME;
437 		 * just punt and assign them all to the same h/w queue.
438 		 * We could do a better job of this if, for example,
439 		 * we allocate queues when we switch from station to
440 		 * AP mode.
441 		 */
442 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
443 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
444 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
445 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
446 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
447 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
448 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
449 	}
450 
451 	/*
452 	 * Special case certain configurations.  Note the
453 	 * CAB queue is handled by these specially so don't
454 	 * include them when checking the txq setup mask.
455 	 */
456 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
457 	case 0x01:
458 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
459 		break;
460 	case 0x0f:
461 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
462 		break;
463 	default:
464 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
465 		break;
466 	}
467 
468 	/*
469 	 * Setup rate control.  Some rate control modules
470 	 * call back to change the anntena state so expose
471 	 * the necessary entry points.
472 	 * XXX maybe belongs in struct ath_ratectrl?
473 	 */
474 	sc->sc_setdefantenna = ath_setdefantenna;
475 	sc->sc_rc = ath_rate_attach(sc);
476 	if (sc->sc_rc == NULL) {
477 		error = EIO;
478 		goto bad2;
479 	}
480 
481 	sc->sc_blinking = 0;
482 	sc->sc_ledstate = 1;
483 	sc->sc_ledon = 0;			/* low true */
484 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
485 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
486 	/*
487 	 * Auto-enable soft led processing for IBM cards and for
488 	 * 5211 minipci cards.  Users can also manually enable/disable
489 	 * support with a sysctl.
490 	 */
491 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
492 	if (sc->sc_softled) {
493 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
494 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
495 	}
496 
497 	ifp->if_softc = sc;
498 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
499 	ifp->if_start = ath_start;
500 	ifp->if_watchdog = ath_watchdog;
501 	ifp->if_ioctl = ath_ioctl;
502 	ifp->if_init = ath_init;
503 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
504 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
505 	IFQ_SET_READY(&ifp->if_snd);
506 
507 	ic->ic_ifp = ifp;
508 	ic->ic_reset = ath_reset;
509 	ic->ic_newassoc = ath_newassoc;
510 	ic->ic_updateslot = ath_updateslot;
511 	ic->ic_wme.wme_update = ath_wme_update;
512 	/* XXX not right but it's not used anywhere important */
513 	ic->ic_phytype = IEEE80211_T_OFDM;
514 	ic->ic_opmode = IEEE80211_M_STA;
515 	ic->ic_caps =
516 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
517 		| IEEE80211_C_HOSTAP		/* hostap mode */
518 		| IEEE80211_C_MONITOR		/* monitor mode */
519 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
520 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
521 		| IEEE80211_C_SHSLOT		/* short slot time supported */
522 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
523 		;
524 	/*
525 	 * Query the hal to figure out h/w crypto support.
526 	 */
527 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
528 		ic->ic_caps |= IEEE80211_C_WEP;
529 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
530 		ic->ic_caps |= IEEE80211_C_AES;
531 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
532 		ic->ic_caps |= IEEE80211_C_AES_CCM;
533 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
534 		ic->ic_caps |= IEEE80211_C_CKIP;
535 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
536 		ic->ic_caps |= IEEE80211_C_TKIP;
537 		/*
538 		 * Check if h/w does the MIC and/or whether the
539 		 * separate key cache entries are required to
540 		 * handle both tx+rx MIC keys.
541 		 */
542 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
543 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
544 		if (ath_hal_tkipsplit(ah))
545 			sc->sc_splitmic = 1;
546 	}
547 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
548 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
549 	/*
550 	 * TPC support can be done either with a global cap or
551 	 * per-packet support.  The latter is not available on
552 	 * all parts.  We're a bit pedantic here as all parts
553 	 * support a global cap.
554 	 */
555 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
556 		ic->ic_caps |= IEEE80211_C_TXPMGT;
557 
558 	/*
559 	 * Mark WME capability only if we have sufficient
560 	 * hardware queues to do proper priority scheduling.
561 	 */
562 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
563 		ic->ic_caps |= IEEE80211_C_WME;
564 	/*
565 	 * Check for misc other capabilities.
566 	 */
567 	if (ath_hal_hasbursting(ah))
568 		ic->ic_caps |= IEEE80211_C_BURST;
569 
570 	/*
571 	 * Indicate we need the 802.11 header padded to a
572 	 * 32-bit boundary for 4-address and QoS frames.
573 	 */
574 	ic->ic_flags |= IEEE80211_F_DATAPAD;
575 
576 	/*
577 	 * Query the hal about antenna support.
578 	 */
579 	sc->sc_defant = ath_hal_getdefantenna(ah);
580 
581 	/*
582 	 * Not all chips have the VEOL support we want to
583 	 * use with IBSS beacons; check here for it.
584 	 */
585 	sc->sc_hasveol = ath_hal_hasveol(ah);
586 
587 	/* get mac address from hardware */
588 	ath_hal_getmac(ah, ic->ic_myaddr);
589 
590 	/* call MI attach routine. */
591 	ieee80211_ifattach(ic);
592 	sc->sc_opmode = ic->ic_opmode;
593 	/* override default methods */
594 	ic->ic_node_alloc = ath_node_alloc;
595 	sc->sc_node_free = ic->ic_node_free;
596 	ic->ic_node_free = ath_node_free;
597 	ic->ic_node_getrssi = ath_node_getrssi;
598 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
599 	ic->ic_recv_mgmt = ath_recv_mgmt;
600 	sc->sc_newstate = ic->ic_newstate;
601 	ic->ic_newstate = ath_newstate;
602 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
603 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
604 	ic->ic_crypto.cs_key_delete = ath_key_delete;
605 	ic->ic_crypto.cs_key_set = ath_key_set;
606 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
607 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
608 	/* complete initialization */
609 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
610 
611 	ath_bpfattach(sc);
612 	/*
613 	 * Setup dynamic sysctl's now that country code and
614 	 * regdomain are available from the hal.
615 	 */
616 	ath_sysctlattach(sc);
617 
618 	if (bootverbose)
619 		ieee80211_announce(ic);
620 	ath_announce(sc);
621 	return 0;
622 bad2:
623 	ath_tx_cleanup(sc);
624 	ath_desc_free(sc);
625 bad:
626 	if (ah)
627 		ath_hal_detach(ah);
628 	if (ifp != NULL)
629 		if_free(ifp);
630 	sc->sc_invalid = 1;
631 	return error;
632 }
633 
634 int
635 ath_detach(struct ath_softc *sc)
636 {
637 	struct ifnet *ifp = sc->sc_ifp;
638 
639 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
640 		__func__, ifp->if_flags);
641 
642 	ath_stop(ifp);
643 	bpfdetach(ifp);
644 	/*
645 	 * NB: the order of these is important:
646 	 * o call the 802.11 layer before detaching the hal to
647 	 *   insure callbacks into the driver to delete global
648 	 *   key cache entries can be handled
649 	 * o reclaim the tx queue data structures after calling
650 	 *   the 802.11 layer as we'll get called back to reclaim
651 	 *   node state and potentially want to use them
652 	 * o to cleanup the tx queues the hal is called, so detach
653 	 *   it last
654 	 * Other than that, it's straightforward...
655 	 */
656 	ieee80211_ifdetach(&sc->sc_ic);
657 #ifdef ATH_TX99_DIAG
658 	if (sc->sc_tx99 != NULL)
659 		sc->sc_tx99->detach(sc->sc_tx99);
660 #endif
661 	taskqueue_free(sc->sc_tq);
662 	ath_rate_detach(sc->sc_rc);
663 	ath_desc_free(sc);
664 	ath_tx_cleanup(sc);
665 	ath_hal_detach(sc->sc_ah);
666 	if_free(ifp);
667 
668 	return 0;
669 }
670 
671 void
672 ath_suspend(struct ath_softc *sc)
673 {
674 	struct ifnet *ifp = sc->sc_ifp;
675 
676 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
677 		__func__, ifp->if_flags);
678 
679 	ath_stop(ifp);
680 }
681 
682 void
683 ath_resume(struct ath_softc *sc)
684 {
685 	struct ifnet *ifp = sc->sc_ifp;
686 
687 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
688 		__func__, ifp->if_flags);
689 
690 	if (ifp->if_flags & IFF_UP) {
691 		ath_init(sc);
692 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
693 			ath_start(ifp);
694 	}
695 	if (sc->sc_softled) {
696 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
697 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
698 	}
699 }
700 
701 void
702 ath_shutdown(struct ath_softc *sc)
703 {
704 	struct ifnet *ifp = sc->sc_ifp;
705 
706 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
707 		__func__, ifp->if_flags);
708 
709 	ath_stop(ifp);
710 }
711 
712 /*
713  * Interrupt handler.  Most of the actual processing is deferred.
714  */
715 void
716 ath_intr(void *arg)
717 {
718 	struct ath_softc *sc = arg;
719 	struct ifnet *ifp = sc->sc_ifp;
720 	struct ath_hal *ah = sc->sc_ah;
721 	HAL_INT status;
722 
723 	if (sc->sc_invalid) {
724 		/*
725 		 * The hardware is not ready/present, don't touch anything.
726 		 * Note this can happen early on if the IRQ is shared.
727 		 */
728 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
729 		return;
730 	}
731 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
732 		return;
733 	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
734 	    IFF_DRV_RUNNING))) {
735 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
736 			__func__, ifp->if_flags);
737 		ath_hal_getisr(ah, &status);	/* clear ISR */
738 		ath_hal_intrset(ah, 0);		/* disable further intr's */
739 		return;
740 	}
741 	/*
742 	 * Figure out the reason(s) for the interrupt.  Note
743 	 * that the hal returns a pseudo-ISR that may include
744 	 * bits we haven't explicitly enabled so we mask the
745 	 * value to insure we only process bits we requested.
746 	 */
747 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
748 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
749 	status &= sc->sc_imask;			/* discard unasked for bits */
750 	if (status & HAL_INT_FATAL) {
751 		sc->sc_stats.ast_hardware++;
752 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
753 		ath_fatal_proc(sc, 0);
754 	} else if (status & HAL_INT_RXORN) {
755 		sc->sc_stats.ast_rxorn++;
756 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
757 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
758 	} else {
759 		if (status & HAL_INT_SWBA) {
760 			/*
761 			 * Software beacon alert--time to send a beacon.
762 			 * Handle beacon transmission directly; deferring
763 			 * this is too slow to meet timing constraints
764 			 * under load.
765 			 */
766 			ath_beacon_proc(sc, 0);
767 		}
768 		if (status & HAL_INT_RXEOL) {
769 			/*
770 			 * NB: the hardware should re-read the link when
771 			 *     RXE bit is written, but it doesn't work at
772 			 *     least on older hardware revs.
773 			 */
774 			sc->sc_stats.ast_rxeol++;
775 			sc->sc_rxlink = NULL;
776 		}
777 		if (status & HAL_INT_TXURN) {
778 			sc->sc_stats.ast_txurn++;
779 			/* bump tx trigger level */
780 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
781 		}
782 		if (status & HAL_INT_RX)
783 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
784 		if (status & HAL_INT_TX)
785 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
786 		if (status & HAL_INT_BMISS) {
787 			sc->sc_stats.ast_bmiss++;
788 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
789 		}
790 		if (status & HAL_INT_MIB) {
791 			sc->sc_stats.ast_mib++;
792 			/*
793 			 * Disable interrupts until we service the MIB
794 			 * interrupt; otherwise it will continue to fire.
795 			 */
796 			ath_hal_intrset(ah, 0);
797 			/*
798 			 * Let the hal handle the event.  We assume it will
799 			 * clear whatever condition caused the interrupt.
800 			 */
801 			ath_hal_mibevent(ah, &sc->sc_halstats);
802 			ath_hal_intrset(ah, sc->sc_imask);
803 		}
804 	}
805 }
806 
807 static void
808 ath_fatal_proc(void *arg, int pending)
809 {
810 	struct ath_softc *sc = arg;
811 	struct ifnet *ifp = sc->sc_ifp;
812 	u_int32_t *state;
813 	u_int32_t len;
814 
815 	if_printf(ifp, "hardware error; resetting\n");
816 	/*
817 	 * Fatal errors are unrecoverable.  Typically these
818 	 * are caused by DMA errors.  Collect h/w state from
819 	 * the hal so we can diagnose what's going on.
820 	 */
821 	if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) {
822 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
823 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
824 		    state[0], state[1] , state[2], state[3],
825 		    state[4], state[5]);
826 	}
827 	ath_reset(ifp);
828 }
829 
830 static void
831 ath_rxorn_proc(void *arg, int pending)
832 {
833 	struct ath_softc *sc = arg;
834 	struct ifnet *ifp = sc->sc_ifp;
835 
836 	if_printf(ifp, "rx FIFO overrun; resetting\n");
837 	ath_reset(ifp);
838 }
839 
840 static void
841 ath_bmiss_proc(void *arg, int pending)
842 {
843 	struct ath_softc *sc = arg;
844 	struct ieee80211com *ic = &sc->sc_ic;
845 
846 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
847 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
848 		("unexpect operating mode %u", ic->ic_opmode));
849 	if (ic->ic_state == IEEE80211_S_RUN) {
850 		u_int64_t lastrx = sc->sc_lastrx;
851 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
852 		u_int bmisstimeout =
853 			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
854 
855 		DPRINTF(sc, ATH_DEBUG_BEACON,
856 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
857 		    __func__, (unsigned long long) tsf,
858 		    (unsigned long long)(tsf - lastrx),
859 		    (unsigned long long) lastrx, bmisstimeout);
860 		/*
861 		 * Workaround phantom bmiss interrupts by sanity-checking
862 		 * the time of our last rx'd frame.  If it is within the
863 		 * beacon miss interval then ignore the interrupt.  If it's
864 		 * truly a bmiss we'll get another interrupt soon and that'll
865 		 * be dispatched up for processing.
866 		 */
867 		if (tsf - lastrx > bmisstimeout) {
868 			NET_LOCK_GIANT();
869 			ieee80211_beacon_miss(ic);
870 			NET_UNLOCK_GIANT();
871 		} else
872 			sc->sc_stats.ast_bmiss_phantom++;
873 	}
874 }
875 
876 static void
877 ath_radar_proc(void *arg, int pending)
878 {
879 	struct ath_softc *sc = arg;
880 	struct ifnet *ifp = sc->sc_ifp;
881 	struct ath_hal *ah = sc->sc_ah;
882 	HAL_CHANNEL hchan;
883 
884 	if (ath_hal_procdfs(ah, &hchan)) {
885 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
886 			hchan.channel, hchan.channelFlags, hchan.privFlags);
887 		/*
888 		 * Initiate channel change.
889 		 */
890 		/* XXX not yet */
891 	}
892 }
893 
894 static u_int
895 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
896 {
897 #define	N(a)	(sizeof(a) / sizeof(a[0]))
898 	static const u_int modeflags[] = {
899 		0,			/* IEEE80211_MODE_AUTO */
900 		CHANNEL_A,		/* IEEE80211_MODE_11A */
901 		CHANNEL_B,		/* IEEE80211_MODE_11B */
902 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
903 		0,			/* IEEE80211_MODE_FH */
904 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
905 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
906 	};
907 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
908 
909 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
910 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
911 	return modeflags[mode];
912 #undef N
913 }
914 
915 static void
916 ath_init(void *arg)
917 {
918 	struct ath_softc *sc = (struct ath_softc *) arg;
919 	struct ieee80211com *ic = &sc->sc_ic;
920 	struct ifnet *ifp = sc->sc_ifp;
921 	struct ath_hal *ah = sc->sc_ah;
922 	HAL_STATUS status;
923 
924 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
925 		__func__, ifp->if_flags);
926 
927 	ATH_LOCK(sc);
928 	/*
929 	 * Stop anything previously setup.  This is safe
930 	 * whether this is the first time through or not.
931 	 */
932 	ath_stop_locked(ifp);
933 
934 	/*
935 	 * The basic interface to setting the hardware in a good
936 	 * state is ``reset''.  On return the hardware is known to
937 	 * be powered up and with interrupts disabled.  This must
938 	 * be followed by initialization of the appropriate bits
939 	 * and then setup of the interrupt mask.
940 	 */
941 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
942 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
943 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
944 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
945 			status);
946 		goto done;
947 	}
948 
949 	/*
950 	 * This is needed only to setup initial state
951 	 * but it's best done after a reset.
952 	 */
953 	ath_update_txpow(sc);
954 	/*
955 	 * Likewise this is set during reset so update
956 	 * state cached in the driver.
957 	 */
958 	sc->sc_diversity = ath_hal_getdiversity(ah);
959 	sc->sc_calinterval = 1;
960 	sc->sc_caltries = 0;
961 
962 	/*
963 	 * Setup the hardware after reset: the key cache
964 	 * is filled as needed and the receive engine is
965 	 * set going.  Frame transmit is handled entirely
966 	 * in the frame output path; there's nothing to do
967 	 * here except setup the interrupt mask.
968 	 */
969 	if (ath_startrecv(sc) != 0) {
970 		if_printf(ifp, "unable to start recv logic\n");
971 		goto done;
972 	}
973 
974 	/*
975 	 * Enable interrupts.
976 	 */
977 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
978 		  | HAL_INT_RXEOL | HAL_INT_RXORN
979 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
980 	/*
981 	 * Enable MIB interrupts when there are hardware phy counters.
982 	 * Note we only do this (at the moment) for station mode.
983 	 */
984 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
985 		sc->sc_imask |= HAL_INT_MIB;
986 	ath_hal_intrset(ah, sc->sc_imask);
987 
988 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
989 	ic->ic_state = IEEE80211_S_INIT;
990 
991 	/*
992 	 * The hardware should be ready to go now so it's safe
993 	 * to kick the 802.11 state machine as it's likely to
994 	 * immediately call back to us to send mgmt frames.
995 	 */
996 	ath_chan_change(sc, ic->ic_curchan);
997 #ifdef ATH_TX99_DIAG
998 	if (sc->sc_tx99 != NULL)
999 		sc->sc_tx99->start(sc->sc_tx99);
1000 	else
1001 #endif
1002 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1003 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1004 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1005 	} else
1006 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1007 done:
1008 	ATH_UNLOCK(sc);
1009 }
1010 
1011 static void
1012 ath_stop_locked(struct ifnet *ifp)
1013 {
1014 	struct ath_softc *sc = ifp->if_softc;
1015 	struct ieee80211com *ic = &sc->sc_ic;
1016 	struct ath_hal *ah = sc->sc_ah;
1017 
1018 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1019 		__func__, sc->sc_invalid, ifp->if_flags);
1020 
1021 	ATH_LOCK_ASSERT(sc);
1022 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1023 		/*
1024 		 * Shutdown the hardware and driver:
1025 		 *    reset 802.11 state machine
1026 		 *    turn off timers
1027 		 *    disable interrupts
1028 		 *    turn off the radio
1029 		 *    clear transmit machinery
1030 		 *    clear receive machinery
1031 		 *    drain and release tx queues
1032 		 *    reclaim beacon resources
1033 		 *    power down hardware
1034 		 *
1035 		 * Note that some of this work is not possible if the
1036 		 * hardware is gone (invalid).
1037 		 */
1038 #ifdef ATH_TX99_DIAG
1039 		if (sc->sc_tx99 != NULL)
1040 			sc->sc_tx99->stop(sc->sc_tx99);
1041 #endif
1042 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1043 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1044 		ifp->if_timer = 0;
1045 		if (!sc->sc_invalid) {
1046 			if (sc->sc_softled) {
1047 				callout_stop(&sc->sc_ledtimer);
1048 				ath_hal_gpioset(ah, sc->sc_ledpin,
1049 					!sc->sc_ledon);
1050 				sc->sc_blinking = 0;
1051 			}
1052 			ath_hal_intrset(ah, 0);
1053 		}
1054 		ath_draintxq(sc);
1055 		if (!sc->sc_invalid) {
1056 			ath_stoprecv(sc);
1057 			ath_hal_phydisable(ah);
1058 		} else
1059 			sc->sc_rxlink = NULL;
1060 		IFQ_DRV_PURGE(&ifp->if_snd);
1061 		ath_beacon_free(sc);
1062 	}
1063 }
1064 
1065 static void
1066 ath_stop(struct ifnet *ifp)
1067 {
1068 	struct ath_softc *sc = ifp->if_softc;
1069 
1070 	ATH_LOCK(sc);
1071 	ath_stop_locked(ifp);
1072 	if (!sc->sc_invalid) {
1073 		/*
1074 		 * Set the chip in full sleep mode.  Note that we are
1075 		 * careful to do this only when bringing the interface
1076 		 * completely to a stop.  When the chip is in this state
1077 		 * it must be carefully woken up or references to
1078 		 * registers in the PCI clock domain may freeze the bus
1079 		 * (and system).  This varies by chip and is mostly an
1080 		 * issue with newer parts that go to sleep more quickly.
1081 		 */
1082 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1083 	}
1084 	ATH_UNLOCK(sc);
1085 }
1086 
1087 /*
1088  * Reset the hardware w/o losing operational state.  This is
1089  * basically a more efficient way of doing ath_stop, ath_init,
1090  * followed by state transitions to the current 802.11
1091  * operational state.  Used to recover from various errors and
1092  * to reset or reload hardware state.
1093  */
1094 static int
1095 ath_reset(struct ifnet *ifp)
1096 {
1097 	struct ath_softc *sc = ifp->if_softc;
1098 	struct ieee80211com *ic = &sc->sc_ic;
1099 	struct ath_hal *ah = sc->sc_ah;
1100 	struct ieee80211_channel *c;
1101 	HAL_STATUS status;
1102 
1103 	/*
1104 	 * Convert to a HAL channel description with the flags
1105 	 * constrained to reflect the current operating mode.
1106 	 */
1107 	c = ic->ic_curchan;
1108 	sc->sc_curchan.channel = c->ic_freq;
1109 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1110 
1111 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1112 	ath_draintxq(sc);		/* stop xmit side */
1113 	ath_stoprecv(sc);		/* stop recv side */
1114 	/* NB: indicate channel change so we do a full reset */
1115 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1116 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1117 			__func__, status);
1118 	ath_update_txpow(sc);		/* update tx power state */
1119 	sc->sc_diversity = ath_hal_getdiversity(ah);
1120 	sc->sc_calinterval = 1;
1121 	sc->sc_caltries = 0;
1122 	/*
1123 	 * We may be doing a reset in response to an ioctl
1124 	 * that changes the channel so update any state that
1125 	 * might change as a result.
1126 	 */
1127 	ath_chan_change(sc, c);
1128 	if (ath_startrecv(sc) != 0)	/* restart recv */
1129 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1130 	if (ic->ic_state == IEEE80211_S_RUN)
1131 		ath_beacon_config(sc);	/* restart beacons */
1132 	ath_hal_intrset(ah, sc->sc_imask);
1133 
1134 	ath_start(ifp);			/* restart xmit */
1135 	return 0;
1136 }
1137 
1138 static void
1139 ath_start(struct ifnet *ifp)
1140 {
1141 	struct ath_softc *sc = ifp->if_softc;
1142 	struct ath_hal *ah = sc->sc_ah;
1143 	struct ieee80211com *ic = &sc->sc_ic;
1144 	struct ieee80211_node *ni;
1145 	struct ath_buf *bf;
1146 	struct mbuf *m;
1147 	struct ieee80211_frame *wh;
1148 	struct ether_header *eh;
1149 
1150 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1151 		return;
1152 	for (;;) {
1153 		/*
1154 		 * Grab a TX buffer and associated resources.
1155 		 */
1156 		ATH_TXBUF_LOCK(sc);
1157 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1158 		if (bf != NULL)
1159 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1160 		ATH_TXBUF_UNLOCK(sc);
1161 		if (bf == NULL) {
1162 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1163 				__func__);
1164 			sc->sc_stats.ast_tx_qstop++;
1165 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1166 			break;
1167 		}
1168 		/*
1169 		 * Poll the management queue for frames; they
1170 		 * have priority over normal data frames.
1171 		 */
1172 		IF_DEQUEUE(&ic->ic_mgtq, m);
1173 		if (m == NULL) {
1174 			/*
1175 			 * No data frames go out unless we're associated.
1176 			 */
1177 			if (ic->ic_state != IEEE80211_S_RUN) {
1178 				DPRINTF(sc, ATH_DEBUG_XMIT,
1179 				    "%s: discard data packet, state %s\n",
1180 				    __func__,
1181 				    ieee80211_state_name[ic->ic_state]);
1182 				sc->sc_stats.ast_tx_discard++;
1183 				ATH_TXBUF_LOCK(sc);
1184 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1185 				ATH_TXBUF_UNLOCK(sc);
1186 				break;
1187 			}
1188 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1189 			if (m == NULL) {
1190 				ATH_TXBUF_LOCK(sc);
1191 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1192 				ATH_TXBUF_UNLOCK(sc);
1193 				break;
1194 			}
1195 			/*
1196 			 * Find the node for the destination so we can do
1197 			 * things like power save and fast frames aggregation.
1198 			 */
1199 			if (m->m_len < sizeof(struct ether_header) &&
1200 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1201 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1202 				ni = NULL;
1203 				goto bad;
1204 			}
1205 			eh = mtod(m, struct ether_header *);
1206 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1207 			if (ni == NULL) {
1208 				/* NB: ieee80211_find_txnode does stat+msg */
1209 				m_freem(m);
1210 				goto bad;
1211 			}
1212 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1213 			    (m->m_flags & M_PWR_SAV) == 0) {
1214 				/*
1215 				 * Station in power save mode; pass the frame
1216 				 * to the 802.11 layer and continue.  We'll get
1217 				 * the frame back when the time is right.
1218 				 */
1219 				ieee80211_pwrsave(ic, ni, m);
1220 				goto reclaim;
1221 			}
1222 			/* calculate priority so we can find the tx queue */
1223 			if (ieee80211_classify(ic, m, ni)) {
1224 				DPRINTF(sc, ATH_DEBUG_XMIT,
1225 					"%s: discard, classification failure\n",
1226 					__func__);
1227 				m_freem(m);
1228 				goto bad;
1229 			}
1230 			ifp->if_opackets++;
1231 			BPF_MTAP(ifp, m);
1232 			/*
1233 			 * Encapsulate the packet in prep for transmission.
1234 			 */
1235 			m = ieee80211_encap(ic, m, ni);
1236 			if (m == NULL) {
1237 				DPRINTF(sc, ATH_DEBUG_XMIT,
1238 					"%s: encapsulation failure\n",
1239 					__func__);
1240 				sc->sc_stats.ast_tx_encap++;
1241 				goto bad;
1242 			}
1243 		} else {
1244 			/*
1245 			 * Hack!  The referenced node pointer is in the
1246 			 * rcvif field of the packet header.  This is
1247 			 * placed there by ieee80211_mgmt_output because
1248 			 * we need to hold the reference with the frame
1249 			 * and there's no other way (other than packet
1250 			 * tags which we consider too expensive to use)
1251 			 * to pass it along.
1252 			 */
1253 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1254 			m->m_pkthdr.rcvif = NULL;
1255 
1256 			wh = mtod(m, struct ieee80211_frame *);
1257 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1258 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1259 				/* fill time stamp */
1260 				u_int64_t tsf;
1261 				u_int32_t *tstamp;
1262 
1263 				tsf = ath_hal_gettsf64(ah);
1264 				/* XXX: adjust 100us delay to xmit */
1265 				tsf += 100;
1266 				tstamp = (u_int32_t *)&wh[1];
1267 				tstamp[0] = htole32(tsf & 0xffffffff);
1268 				tstamp[1] = htole32(tsf >> 32);
1269 			}
1270 			sc->sc_stats.ast_tx_mgmt++;
1271 		}
1272 
1273 		if (ath_tx_start(sc, ni, bf, m)) {
1274 	bad:
1275 			ifp->if_oerrors++;
1276 	reclaim:
1277 			ATH_TXBUF_LOCK(sc);
1278 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1279 			ATH_TXBUF_UNLOCK(sc);
1280 			if (ni != NULL)
1281 				ieee80211_free_node(ni);
1282 			continue;
1283 		}
1284 
1285 		sc->sc_tx_timer = 5;
1286 		ifp->if_timer = 1;
1287 	}
1288 }
1289 
1290 static int
1291 ath_media_change(struct ifnet *ifp)
1292 {
1293 #define	IS_UP(ifp) \
1294 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1295 	int error;
1296 
1297 	error = ieee80211_media_change(ifp);
1298 	if (error == ENETRESET) {
1299 		struct ath_softc *sc = ifp->if_softc;
1300 		struct ieee80211com *ic = &sc->sc_ic;
1301 
1302 		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1303 			/*
1304 			 * Adhoc demo mode is just ibss mode w/o beacons
1305 			 * (mostly).  The hal knows nothing about it;
1306 			 * tell it we're operating in ibss mode.
1307 			 */
1308 			sc->sc_opmode = HAL_M_IBSS;
1309 		} else
1310 			sc->sc_opmode = ic->ic_opmode;
1311 		if (IS_UP(ifp))
1312 			ath_init(ifp->if_softc);	/* XXX lose error */
1313 		error = 0;
1314 	}
1315 	return error;
1316 #undef IS_UP
1317 }
1318 
1319 #ifdef ATH_DEBUG
1320 static void
1321 ath_keyprint(const char *tag, u_int ix,
1322 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1323 {
1324 	static const char *ciphers[] = {
1325 		"WEP",
1326 		"AES-OCB",
1327 		"AES-CCM",
1328 		"CKIP",
1329 		"TKIP",
1330 		"CLR",
1331 	};
1332 	int i, n;
1333 
1334 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1335 	for (i = 0, n = hk->kv_len; i < n; i++)
1336 		printf("%02x", hk->kv_val[i]);
1337 	printf(" mac %s", ether_sprintf(mac));
1338 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1339 		printf(" mic ");
1340 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1341 			printf("%02x", hk->kv_mic[i]);
1342 	}
1343 	printf("\n");
1344 }
1345 #endif
1346 
1347 /*
1348  * Set a TKIP key into the hardware.  This handles the
1349  * potential distribution of key state to multiple key
1350  * cache slots for TKIP.
1351  */
1352 static int
1353 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1354 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1355 {
1356 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1357 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1358 	struct ath_hal *ah = sc->sc_ah;
1359 
1360 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1361 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1362 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1363 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1364 		/*
1365 		 * TX key goes at first index, RX key at the rx index.
1366 		 * The hal handles the MIC keys at index+64.
1367 		 */
1368 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1369 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1370 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1371 			return 0;
1372 
1373 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1374 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1375 		/* XXX delete tx key on failure? */
1376 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1377 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1378 		/*
1379 		 * TX/RX key goes at first index.
1380 		 * The hal handles the MIC keys are index+64.
1381 		 */
1382 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1383 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1384 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1385 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1386 	}
1387 	return 0;
1388 #undef IEEE80211_KEY_XR
1389 }
1390 
1391 /*
1392  * Set a net80211 key into the hardware.  This handles the
1393  * potential distribution of key state to multiple key
1394  * cache slots for TKIP with hardware MIC support.
1395  */
1396 static int
1397 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1398 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1399 	struct ieee80211_node *bss)
1400 {
1401 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1402 	static const u_int8_t ciphermap[] = {
1403 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1404 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1405 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1406 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1407 		(u_int8_t) -1,		/* 4 is not allocated */
1408 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1409 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1410 	};
1411 	struct ath_hal *ah = sc->sc_ah;
1412 	const struct ieee80211_cipher *cip = k->wk_cipher;
1413 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1414 	const u_int8_t *mac;
1415 	HAL_KEYVAL hk;
1416 
1417 	memset(&hk, 0, sizeof(hk));
1418 	/*
1419 	 * Software crypto uses a "clear key" so non-crypto
1420 	 * state kept in the key cache are maintained and
1421 	 * so that rx frames have an entry to match.
1422 	 */
1423 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1424 		KASSERT(cip->ic_cipher < N(ciphermap),
1425 			("invalid cipher type %u", cip->ic_cipher));
1426 		hk.kv_type = ciphermap[cip->ic_cipher];
1427 		hk.kv_len = k->wk_keylen;
1428 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1429 	} else
1430 		hk.kv_type = HAL_CIPHER_CLR;
1431 
1432 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1433 		/*
1434 		 * Group keys on hardware that supports multicast frame
1435 		 * key search use a mac that is the sender's address with
1436 		 * the high bit set instead of the app-specified address.
1437 		 */
1438 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1439 		gmac[0] |= 0x80;
1440 		mac = gmac;
1441 	} else
1442 		mac = mac0;
1443 
1444 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1445 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1446 	    sc->sc_splitmic) {
1447 		return ath_keyset_tkip(sc, k, &hk, mac);
1448 	} else {
1449 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1450 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1451 	}
1452 #undef N
1453 }
1454 
1455 /*
1456  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1457  * each key, one for decrypt/encrypt and the other for the MIC.
1458  */
1459 static u_int16_t
1460 key_alloc_2pair(struct ath_softc *sc,
1461 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1462 {
1463 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1464 	u_int i, keyix;
1465 
1466 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1467 	/* XXX could optimize */
1468 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1469 		u_int8_t b = sc->sc_keymap[i];
1470 		if (b != 0xff) {
1471 			/*
1472 			 * One or more slots in this byte are free.
1473 			 */
1474 			keyix = i*NBBY;
1475 			while (b & 1) {
1476 		again:
1477 				keyix++;
1478 				b >>= 1;
1479 			}
1480 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1481 			if (isset(sc->sc_keymap, keyix+32) ||
1482 			    isset(sc->sc_keymap, keyix+64) ||
1483 			    isset(sc->sc_keymap, keyix+32+64)) {
1484 				/* full pair unavailable */
1485 				/* XXX statistic */
1486 				if (keyix == (i+1)*NBBY) {
1487 					/* no slots were appropriate, advance */
1488 					continue;
1489 				}
1490 				goto again;
1491 			}
1492 			setbit(sc->sc_keymap, keyix);
1493 			setbit(sc->sc_keymap, keyix+64);
1494 			setbit(sc->sc_keymap, keyix+32);
1495 			setbit(sc->sc_keymap, keyix+32+64);
1496 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1497 				"%s: key pair %u,%u %u,%u\n",
1498 				__func__, keyix, keyix+64,
1499 				keyix+32, keyix+32+64);
1500 			*txkeyix = keyix;
1501 			*rxkeyix = keyix+32;
1502 			return 1;
1503 		}
1504 	}
1505 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1506 	return 0;
1507 #undef N
1508 }
1509 
1510 /*
1511  * Allocate a single key cache slot.
1512  */
1513 static int
1514 key_alloc_single(struct ath_softc *sc,
1515 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1516 {
1517 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1518 	u_int i, keyix;
1519 
1520 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1521 	for (i = 0; i < N(sc->sc_keymap); i++) {
1522 		u_int8_t b = sc->sc_keymap[i];
1523 		if (b != 0xff) {
1524 			/*
1525 			 * One or more slots are free.
1526 			 */
1527 			keyix = i*NBBY;
1528 			while (b & 1)
1529 				keyix++, b >>= 1;
1530 			setbit(sc->sc_keymap, keyix);
1531 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1532 				__func__, keyix);
1533 			*txkeyix = *rxkeyix = keyix;
1534 			return 1;
1535 		}
1536 	}
1537 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1538 	return 0;
1539 #undef N
1540 }
1541 
1542 /*
1543  * Allocate one or more key cache slots for a uniacst key.  The
1544  * key itself is needed only to identify the cipher.  For hardware
1545  * TKIP with split cipher+MIC keys we allocate two key cache slot
1546  * pairs so that we can setup separate TX and RX MIC keys.  Note
1547  * that the MIC key for a TKIP key at slot i is assumed by the
1548  * hardware to be at slot i+64.  This limits TKIP keys to the first
1549  * 64 entries.
1550  */
1551 static int
1552 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1553 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1554 {
1555 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1556 
1557 	/*
1558 	 * Group key allocation must be handled specially for
1559 	 * parts that do not support multicast key cache search
1560 	 * functionality.  For those parts the key id must match
1561 	 * the h/w key index so lookups find the right key.  On
1562 	 * parts w/ the key search facility we install the sender's
1563 	 * mac address (with the high bit set) and let the hardware
1564 	 * find the key w/o using the key id.  This is preferred as
1565 	 * it permits us to support multiple users for adhoc and/or
1566 	 * multi-station operation.
1567 	 */
1568 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1569 		if (!(&ic->ic_nw_keys[0] <= k &&
1570 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1571 			/* should not happen */
1572 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1573 				"%s: bogus group key\n", __func__);
1574 			return 0;
1575 		}
1576 		/*
1577 		 * XXX we pre-allocate the global keys so
1578 		 * have no way to check if they've already been allocated.
1579 		 */
1580 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1581 		return 1;
1582 	}
1583 
1584 	/*
1585 	 * We allocate two pair for TKIP when using the h/w to do
1586 	 * the MIC.  For everything else, including software crypto,
1587 	 * we allocate a single entry.  Note that s/w crypto requires
1588 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1589 	 * not support pass-through cache entries and we map all
1590 	 * those requests to slot 0.
1591 	 */
1592 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1593 		return key_alloc_single(sc, keyix, rxkeyix);
1594 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1595 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1596 		return key_alloc_2pair(sc, keyix, rxkeyix);
1597 	} else {
1598 		return key_alloc_single(sc, keyix, rxkeyix);
1599 	}
1600 }
1601 
1602 /*
1603  * Delete an entry in the key cache allocated by ath_key_alloc.
1604  */
1605 static int
1606 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1607 {
1608 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1609 	struct ath_hal *ah = sc->sc_ah;
1610 	const struct ieee80211_cipher *cip = k->wk_cipher;
1611 	u_int keyix = k->wk_keyix;
1612 
1613 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1614 
1615 	ath_hal_keyreset(ah, keyix);
1616 	/*
1617 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1618 	 */
1619 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1620 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1621 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1622 	if (keyix >= IEEE80211_WEP_NKID) {
1623 		/*
1624 		 * Don't touch keymap entries for global keys so
1625 		 * they are never considered for dynamic allocation.
1626 		 */
1627 		clrbit(sc->sc_keymap, keyix);
1628 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1629 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1630 		    sc->sc_splitmic) {
1631 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1632 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1633 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1634 		}
1635 	}
1636 	return 1;
1637 }
1638 
1639 /*
1640  * Set the key cache contents for the specified key.  Key cache
1641  * slot(s) must already have been allocated by ath_key_alloc.
1642  */
1643 static int
1644 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1645 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1646 {
1647 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1648 
1649 	return ath_keyset(sc, k, mac, ic->ic_bss);
1650 }
1651 
1652 /*
1653  * Block/unblock tx+rx processing while a key change is done.
1654  * We assume the caller serializes key management operations
1655  * so we only need to worry about synchronization with other
1656  * uses that originate in the driver.
1657  */
1658 static void
1659 ath_key_update_begin(struct ieee80211com *ic)
1660 {
1661 	struct ifnet *ifp = ic->ic_ifp;
1662 	struct ath_softc *sc = ifp->if_softc;
1663 
1664 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1665 #if 0
1666 	tasklet_disable(&sc->sc_rxtq);
1667 #endif
1668 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1669 }
1670 
1671 static void
1672 ath_key_update_end(struct ieee80211com *ic)
1673 {
1674 	struct ifnet *ifp = ic->ic_ifp;
1675 	struct ath_softc *sc = ifp->if_softc;
1676 
1677 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1678 	IF_UNLOCK(&ifp->if_snd);
1679 #if 0
1680 	tasklet_enable(&sc->sc_rxtq);
1681 #endif
1682 }
1683 
1684 /*
1685  * Calculate the receive filter according to the
1686  * operating mode and state:
1687  *
1688  * o always accept unicast, broadcast, and multicast traffic
1689  * o maintain current state of phy error reception (the hal
1690  *   may enable phy error frames for noise immunity work)
1691  * o probe request frames are accepted only when operating in
1692  *   hostap, adhoc, or monitor modes
1693  * o enable promiscuous mode according to the interface state
1694  * o accept beacons:
1695  *   - when operating in adhoc mode so the 802.11 layer creates
1696  *     node table entries for peers,
1697  *   - when operating in station mode for collecting rssi data when
1698  *     the station is otherwise quiet, or
1699  *   - when scanning
1700  */
1701 static u_int32_t
1702 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1703 {
1704 #define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
1705 	struct ieee80211com *ic = &sc->sc_ic;
1706 	struct ath_hal *ah = sc->sc_ah;
1707 	struct ifnet *ifp = sc->sc_ifp;
1708 	u_int32_t rfilt;
1709 
1710 	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
1711 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1712 	if (ic->ic_opmode != IEEE80211_M_STA)
1713 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1714 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1715 	    (ifp->if_flags & IFF_PROMISC))
1716 		rfilt |= HAL_RX_FILTER_PROM;
1717 	if (ic->ic_opmode == IEEE80211_M_STA ||
1718 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1719 	    state == IEEE80211_S_SCAN)
1720 		rfilt |= HAL_RX_FILTER_BEACON;
1721 	return rfilt;
1722 #undef RX_FILTER_PRESERVE
1723 }
1724 
1725 static void
1726 ath_mode_init(struct ath_softc *sc)
1727 {
1728 	struct ieee80211com *ic = &sc->sc_ic;
1729 	struct ath_hal *ah = sc->sc_ah;
1730 	struct ifnet *ifp = sc->sc_ifp;
1731 	u_int32_t rfilt, mfilt[2], val;
1732 	u_int8_t pos;
1733 	struct ifmultiaddr *ifma;
1734 
1735 	/* configure rx filter */
1736 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1737 	ath_hal_setrxfilter(ah, rfilt);
1738 
1739 	/* configure operational mode */
1740 	ath_hal_setopmode(ah);
1741 
1742 	/*
1743 	 * Handle any link-level address change.  Note that we only
1744 	 * need to force ic_myaddr; any other addresses are handled
1745 	 * as a byproduct of the ifnet code marking the interface
1746 	 * down then up.
1747 	 *
1748 	 * XXX should get from lladdr instead of arpcom but that's more work
1749 	 */
1750 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1751 	ath_hal_setmac(ah, ic->ic_myaddr);
1752 
1753 	/* calculate and install multicast filter */
1754 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1755 		mfilt[0] = mfilt[1] = 0;
1756 		IF_ADDR_LOCK(ifp);
1757 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1758 			caddr_t dl;
1759 
1760 			/* calculate XOR of eight 6bit values */
1761 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1762 			val = LE_READ_4(dl + 0);
1763 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1764 			val = LE_READ_4(dl + 3);
1765 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1766 			pos &= 0x3f;
1767 			mfilt[pos / 32] |= (1 << (pos % 32));
1768 		}
1769 		IF_ADDR_UNLOCK(ifp);
1770 	} else {
1771 		mfilt[0] = mfilt[1] = ~0;
1772 	}
1773 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1774 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1775 		__func__, rfilt, mfilt[0], mfilt[1]);
1776 }
1777 
1778 /*
1779  * Set the slot time based on the current setting.
1780  */
1781 static void
1782 ath_setslottime(struct ath_softc *sc)
1783 {
1784 	struct ieee80211com *ic = &sc->sc_ic;
1785 	struct ath_hal *ah = sc->sc_ah;
1786 
1787 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1788 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1789 	else
1790 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1791 	sc->sc_updateslot = OK;
1792 }
1793 
1794 /*
1795  * Callback from the 802.11 layer to update the
1796  * slot time based on the current setting.
1797  */
1798 static void
1799 ath_updateslot(struct ifnet *ifp)
1800 {
1801 	struct ath_softc *sc = ifp->if_softc;
1802 	struct ieee80211com *ic = &sc->sc_ic;
1803 
1804 	/*
1805 	 * When not coordinating the BSS, change the hardware
1806 	 * immediately.  For other operation we defer the change
1807 	 * until beacon updates have propagated to the stations.
1808 	 */
1809 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1810 		sc->sc_updateslot = UPDATE;
1811 	else
1812 		ath_setslottime(sc);
1813 }
1814 
1815 /*
1816  * Setup a h/w transmit queue for beacons.
1817  */
1818 static int
1819 ath_beaconq_setup(struct ath_hal *ah)
1820 {
1821 	HAL_TXQ_INFO qi;
1822 
1823 	memset(&qi, 0, sizeof(qi));
1824 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1825 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1826 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1827 	/* NB: for dynamic turbo, don't enable any other interrupts */
1828 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1829 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1830 }
1831 
1832 /*
1833  * Setup the transmit queue parameters for the beacon queue.
1834  */
1835 static int
1836 ath_beaconq_config(struct ath_softc *sc)
1837 {
1838 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1839 	struct ieee80211com *ic = &sc->sc_ic;
1840 	struct ath_hal *ah = sc->sc_ah;
1841 	HAL_TXQ_INFO qi;
1842 
1843 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1844 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1845 		/*
1846 		 * Always burst out beacon and CAB traffic.
1847 		 */
1848 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1849 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1850 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1851 	} else {
1852 		struct wmeParams *wmep =
1853 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1854 		/*
1855 		 * Adhoc mode; important thing is to use 2x cwmin.
1856 		 */
1857 		qi.tqi_aifs = wmep->wmep_aifsn;
1858 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1859 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1860 	}
1861 
1862 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1863 		device_printf(sc->sc_dev, "unable to update parameters for "
1864 			"beacon hardware queue!\n");
1865 		return 0;
1866 	} else {
1867 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1868 		return 1;
1869 	}
1870 #undef ATH_EXPONENT_TO_VALUE
1871 }
1872 
1873 /*
1874  * Allocate and setup an initial beacon frame.
1875  */
1876 static int
1877 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1878 {
1879 	struct ieee80211com *ic = ni->ni_ic;
1880 	struct ath_buf *bf;
1881 	struct mbuf *m;
1882 	int error;
1883 
1884 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1885 	if (bf == NULL) {
1886 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1887 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1888 		return ENOMEM;			/* XXX */
1889 	}
1890 	/*
1891 	 * NB: the beacon data buffer must be 32-bit aligned;
1892 	 * we assume the mbuf routines will return us something
1893 	 * with this alignment (perhaps should assert).
1894 	 */
1895 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1896 	if (m == NULL) {
1897 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1898 			__func__);
1899 		sc->sc_stats.ast_be_nombuf++;
1900 		return ENOMEM;
1901 	}
1902 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1903 				     bf->bf_segs, &bf->bf_nseg,
1904 				     BUS_DMA_NOWAIT);
1905 	if (error == 0) {
1906 		bf->bf_m = m;
1907 		bf->bf_node = ieee80211_ref_node(ni);
1908 	} else {
1909 		m_freem(m);
1910 	}
1911 	return error;
1912 }
1913 
1914 /*
1915  * Setup the beacon frame for transmit.
1916  */
1917 static void
1918 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1919 {
1920 #define	USE_SHPREAMBLE(_ic) \
1921 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1922 		== IEEE80211_F_SHPREAMBLE)
1923 	struct ieee80211_node *ni = bf->bf_node;
1924 	struct ieee80211com *ic = ni->ni_ic;
1925 	struct mbuf *m = bf->bf_m;
1926 	struct ath_hal *ah = sc->sc_ah;
1927 	struct ath_desc *ds;
1928 	int flags, antenna;
1929 	const HAL_RATE_TABLE *rt;
1930 	u_int8_t rix, rate;
1931 
1932 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
1933 		__func__, m, m->m_len);
1934 
1935 	/* setup descriptors */
1936 	ds = bf->bf_desc;
1937 
1938 	flags = HAL_TXDESC_NOACK;
1939 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1940 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1941 		flags |= HAL_TXDESC_VEOL;
1942 		/*
1943 		 * Let hardware handle antenna switching.
1944 		 */
1945 		antenna = sc->sc_txantenna;
1946 	} else {
1947 		ds->ds_link = 0;
1948 		/*
1949 		 * Switch antenna every 4 beacons.
1950 		 * XXX assumes two antenna
1951 		 */
1952 		antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna
1953 			: (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1954 	}
1955 
1956 	KASSERT(bf->bf_nseg == 1,
1957 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1958 	ds->ds_data = bf->bf_segs[0].ds_addr;
1959 	/*
1960 	 * Calculate rate code.
1961 	 * XXX everything at min xmit rate
1962 	 */
1963 	rix = sc->sc_minrateix;
1964 	rt = sc->sc_currates;
1965 	rate = rt->info[rix].rateCode;
1966 	if (USE_SHPREAMBLE(ic))
1967 		rate |= rt->info[rix].shortPreamble;
1968 	ath_hal_setuptxdesc(ah, ds
1969 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1970 		, sizeof(struct ieee80211_frame)/* header length */
1971 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1972 		, ni->ni_txpower		/* txpower XXX */
1973 		, rate, 1			/* series 0 rate/tries */
1974 		, HAL_TXKEYIX_INVALID		/* no encryption */
1975 		, antenna			/* antenna mode */
1976 		, flags				/* no ack, veol for beacons */
1977 		, 0				/* rts/cts rate */
1978 		, 0				/* rts/cts duration */
1979 	);
1980 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1981 	ath_hal_filltxdesc(ah, ds
1982 		, roundup(m->m_len, 4)		/* buffer length */
1983 		, AH_TRUE			/* first segment */
1984 		, AH_TRUE			/* last segment */
1985 		, ds				/* first descriptor */
1986 	);
1987 #undef USE_SHPREAMBLE
1988 }
1989 
1990 /*
1991  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1992  * frame contents are done as needed and the slot time is
1993  * also adjusted based on current state.
1994  */
1995 static void
1996 ath_beacon_proc(void *arg, int pending)
1997 {
1998 	struct ath_softc *sc = arg;
1999 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2000 	struct ieee80211_node *ni = bf->bf_node;
2001 	struct ieee80211com *ic = ni->ni_ic;
2002 	struct ath_hal *ah = sc->sc_ah;
2003 	struct mbuf *m;
2004 	int ncabq, error, otherant;
2005 
2006 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2007 		__func__, pending);
2008 
2009 	if (ic->ic_opmode == IEEE80211_M_STA ||
2010 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2011 	    bf == NULL || bf->bf_m == NULL) {
2012 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2013 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2014 		return;
2015 	}
2016 	/*
2017 	 * Check if the previous beacon has gone out.  If
2018 	 * not don't try to post another, skip this period
2019 	 * and wait for the next.  Missed beacons indicate
2020 	 * a problem and should not occur.  If we miss too
2021 	 * many consecutive beacons reset the device.
2022 	 */
2023 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2024 		sc->sc_bmisscount++;
2025 		DPRINTF(sc, ATH_DEBUG_BEACON,
2026 			"%s: missed %u consecutive beacons\n",
2027 			__func__, sc->sc_bmisscount);
2028 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2029 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2030 		return;
2031 	}
2032 	if (sc->sc_bmisscount != 0) {
2033 		DPRINTF(sc, ATH_DEBUG_BEACON,
2034 			"%s: resume beacon xmit after %u misses\n",
2035 			__func__, sc->sc_bmisscount);
2036 		sc->sc_bmisscount = 0;
2037 	}
2038 
2039 	/*
2040 	 * Update dynamic beacon contents.  If this returns
2041 	 * non-zero then we need to remap the memory because
2042 	 * the beacon frame changed size (probably because
2043 	 * of the TIM bitmap).
2044 	 */
2045 	m = bf->bf_m;
2046 	ncabq = sc->sc_cabq->axq_depth;
2047 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2048 		/* XXX too conservative? */
2049 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2050 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2051 					     bf->bf_segs, &bf->bf_nseg,
2052 					     BUS_DMA_NOWAIT);
2053 		if (error != 0) {
2054 			if_printf(ic->ic_ifp,
2055 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2056 			    __func__, error);
2057 			return;
2058 		}
2059 	}
2060 
2061 	/*
2062 	 * Handle slot time change when a non-ERP station joins/leaves
2063 	 * an 11g network.  The 802.11 layer notifies us via callback,
2064 	 * we mark updateslot, then wait one beacon before effecting
2065 	 * the change.  This gives associated stations at least one
2066 	 * beacon interval to note the state change.
2067 	 */
2068 	/* XXX locking */
2069 	if (sc->sc_updateslot == UPDATE)
2070 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2071 	else if (sc->sc_updateslot == COMMIT)
2072 		ath_setslottime(sc);		/* commit change to h/w */
2073 
2074 	/*
2075 	 * Check recent per-antenna transmit statistics and flip
2076 	 * the default antenna if noticeably more frames went out
2077 	 * on the non-default antenna.
2078 	 * XXX assumes 2 anntenae
2079 	 */
2080 	otherant = sc->sc_defant & 1 ? 2 : 1;
2081 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2082 		ath_setdefantenna(sc, otherant);
2083 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2084 
2085 	/*
2086 	 * Construct tx descriptor.
2087 	 */
2088 	ath_beacon_setup(sc, bf);
2089 
2090 	/*
2091 	 * Stop any current dma and put the new frame on the queue.
2092 	 * This should never fail since we check above that no frames
2093 	 * are still pending on the queue.
2094 	 */
2095 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2096 		DPRINTF(sc, ATH_DEBUG_ANY,
2097 			"%s: beacon queue %u did not stop?\n",
2098 			__func__, sc->sc_bhalq);
2099 	}
2100 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2101 
2102 	/*
2103 	 * Enable the CAB queue before the beacon queue to
2104 	 * insure cab frames are triggered by this beacon.
2105 	 */
2106 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2107 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2108 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2109 	ath_hal_txstart(ah, sc->sc_bhalq);
2110 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2111 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2112 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2113 
2114 	sc->sc_stats.ast_be_xmit++;
2115 }
2116 
2117 /*
2118  * Reset the hardware after detecting beacons have stopped.
2119  */
2120 static void
2121 ath_bstuck_proc(void *arg, int pending)
2122 {
2123 	struct ath_softc *sc = arg;
2124 	struct ifnet *ifp = sc->sc_ifp;
2125 
2126 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2127 		sc->sc_bmisscount);
2128 	ath_reset(ifp);
2129 }
2130 
2131 /*
2132  * Reclaim beacon resources.
2133  */
2134 static void
2135 ath_beacon_free(struct ath_softc *sc)
2136 {
2137 	struct ath_buf *bf;
2138 
2139 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2140 		if (bf->bf_m != NULL) {
2141 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2142 			m_freem(bf->bf_m);
2143 			bf->bf_m = NULL;
2144 		}
2145 		if (bf->bf_node != NULL) {
2146 			ieee80211_free_node(bf->bf_node);
2147 			bf->bf_node = NULL;
2148 		}
2149 	}
2150 }
2151 
2152 /*
2153  * Configure the beacon and sleep timers.
2154  *
2155  * When operating as an AP this resets the TSF and sets
2156  * up the hardware to notify us when we need to issue beacons.
2157  *
2158  * When operating in station mode this sets up the beacon
2159  * timers according to the timestamp of the last received
2160  * beacon and the current TSF, configures PCF and DTIM
2161  * handling, programs the sleep registers so the hardware
2162  * will wakeup in time to receive beacons, and configures
2163  * the beacon miss handling so we'll receive a BMISS
2164  * interrupt when we stop seeing beacons from the AP
2165  * we've associated with.
2166  */
2167 static void
2168 ath_beacon_config(struct ath_softc *sc)
2169 {
2170 #define	TSF_TO_TU(_h,_l) \
2171 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2172 #define	FUDGE	2
2173 	struct ath_hal *ah = sc->sc_ah;
2174 	struct ieee80211com *ic = &sc->sc_ic;
2175 	struct ieee80211_node *ni = ic->ic_bss;
2176 	u_int32_t nexttbtt, intval, tsftu;
2177 	u_int64_t tsf;
2178 
2179 	/* extract tstamp from last beacon and convert to TU */
2180 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2181 			     LE_READ_4(ni->ni_tstamp.data));
2182 	/* NB: the beacon interval is kept internally in TU's */
2183 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2184 	if (nexttbtt == 0)		/* e.g. for ap mode */
2185 		nexttbtt = intval;
2186 	else if (intval)		/* NB: can be 0 for monitor mode */
2187 		nexttbtt = roundup(nexttbtt, intval);
2188 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2189 		__func__, nexttbtt, intval, ni->ni_intval);
2190 	if (ic->ic_opmode == IEEE80211_M_STA) {
2191 		HAL_BEACON_STATE bs;
2192 		int dtimperiod, dtimcount;
2193 		int cfpperiod, cfpcount;
2194 
2195 		/*
2196 		 * Setup dtim and cfp parameters according to
2197 		 * last beacon we received (which may be none).
2198 		 */
2199 		dtimperiod = ni->ni_dtim_period;
2200 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2201 			dtimperiod = 1;
2202 		dtimcount = ni->ni_dtim_count;
2203 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2204 			dtimcount = 0;		/* XXX? */
2205 		cfpperiod = 1;			/* NB: no PCF support yet */
2206 		cfpcount = 0;
2207 		/*
2208 		 * Pull nexttbtt forward to reflect the current
2209 		 * TSF and calculate dtim+cfp state for the result.
2210 		 */
2211 		tsf = ath_hal_gettsf64(ah);
2212 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2213 		do {
2214 			nexttbtt += intval;
2215 			if (--dtimcount < 0) {
2216 				dtimcount = dtimperiod - 1;
2217 				if (--cfpcount < 0)
2218 					cfpcount = cfpperiod - 1;
2219 			}
2220 		} while (nexttbtt < tsftu);
2221 		memset(&bs, 0, sizeof(bs));
2222 		bs.bs_intval = intval;
2223 		bs.bs_nexttbtt = nexttbtt;
2224 		bs.bs_dtimperiod = dtimperiod*intval;
2225 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2226 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2227 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2228 		bs.bs_cfpmaxduration = 0;
2229 #if 0
2230 		/*
2231 		 * The 802.11 layer records the offset to the DTIM
2232 		 * bitmap while receiving beacons; use it here to
2233 		 * enable h/w detection of our AID being marked in
2234 		 * the bitmap vector (to indicate frames for us are
2235 		 * pending at the AP).
2236 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2237 		 * XXX enable based on h/w rev for newer chips
2238 		 */
2239 		bs.bs_timoffset = ni->ni_timoff;
2240 #endif
2241 		/*
2242 		 * Calculate the number of consecutive beacons to miss
2243 		 * before taking a BMISS interrupt.  The configuration
2244 		 * is specified in ms, so we need to convert that to
2245 		 * TU's and then calculate based on the beacon interval.
2246 		 * Note that we clamp the result to at most 10 beacons.
2247 		 */
2248 		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2249 		if (bs.bs_bmissthreshold > 10)
2250 			bs.bs_bmissthreshold = 10;
2251 		else if (bs.bs_bmissthreshold <= 0)
2252 			bs.bs_bmissthreshold = 1;
2253 
2254 		/*
2255 		 * Calculate sleep duration.  The configuration is
2256 		 * given in ms.  We insure a multiple of the beacon
2257 		 * period is used.  Also, if the sleep duration is
2258 		 * greater than the DTIM period then it makes senses
2259 		 * to make it a multiple of that.
2260 		 *
2261 		 * XXX fixed at 100ms
2262 		 */
2263 		bs.bs_sleepduration =
2264 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2265 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2266 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2267 
2268 		DPRINTF(sc, ATH_DEBUG_BEACON,
2269 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2270 			, __func__
2271 			, tsf, tsftu
2272 			, bs.bs_intval
2273 			, bs.bs_nexttbtt
2274 			, bs.bs_dtimperiod
2275 			, bs.bs_nextdtim
2276 			, bs.bs_bmissthreshold
2277 			, bs.bs_sleepduration
2278 			, bs.bs_cfpperiod
2279 			, bs.bs_cfpmaxduration
2280 			, bs.bs_cfpnext
2281 			, bs.bs_timoffset
2282 		);
2283 		ath_hal_intrset(ah, 0);
2284 		ath_hal_beacontimers(ah, &bs);
2285 		sc->sc_imask |= HAL_INT_BMISS;
2286 		ath_hal_intrset(ah, sc->sc_imask);
2287 	} else {
2288 		ath_hal_intrset(ah, 0);
2289 		if (nexttbtt == intval)
2290 			intval |= HAL_BEACON_RESET_TSF;
2291 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2292 			/*
2293 			 * In IBSS mode enable the beacon timers but only
2294 			 * enable SWBA interrupts if we need to manually
2295 			 * prepare beacon frames.  Otherwise we use a
2296 			 * self-linked tx descriptor and let the hardware
2297 			 * deal with things.
2298 			 */
2299 			intval |= HAL_BEACON_ENA;
2300 			if (!sc->sc_hasveol)
2301 				sc->sc_imask |= HAL_INT_SWBA;
2302 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2303 				/*
2304 				 * Pull nexttbtt forward to reflect
2305 				 * the current TSF.
2306 				 */
2307 				tsf = ath_hal_gettsf64(ah);
2308 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2309 				do {
2310 					nexttbtt += intval;
2311 				} while (nexttbtt < tsftu);
2312 			}
2313 			ath_beaconq_config(sc);
2314 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2315 			/*
2316 			 * In AP mode we enable the beacon timers and
2317 			 * SWBA interrupts to prepare beacon frames.
2318 			 */
2319 			intval |= HAL_BEACON_ENA;
2320 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2321 			ath_beaconq_config(sc);
2322 		}
2323 		ath_hal_beaconinit(ah, nexttbtt, intval);
2324 		sc->sc_bmisscount = 0;
2325 		ath_hal_intrset(ah, sc->sc_imask);
2326 		/*
2327 		 * When using a self-linked beacon descriptor in
2328 		 * ibss mode load it once here.
2329 		 */
2330 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2331 			ath_beacon_proc(sc, 0);
2332 	}
2333 	sc->sc_syncbeacon = 0;
2334 #undef FUDGE
2335 #undef TSF_TO_TU
2336 }
2337 
2338 static void
2339 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2340 {
2341 	bus_addr_t *paddr = (bus_addr_t*) arg;
2342 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2343 	*paddr = segs->ds_addr;
2344 }
2345 
2346 static int
2347 ath_descdma_setup(struct ath_softc *sc,
2348 	struct ath_descdma *dd, ath_bufhead *head,
2349 	const char *name, int nbuf, int ndesc)
2350 {
2351 #define	DS2PHYS(_dd, _ds) \
2352 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2353 	struct ifnet *ifp = sc->sc_ifp;
2354 	struct ath_desc *ds;
2355 	struct ath_buf *bf;
2356 	int i, bsize, error;
2357 
2358 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2359 	    __func__, name, nbuf, ndesc);
2360 
2361 	dd->dd_name = name;
2362 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2363 
2364 	/*
2365 	 * Setup DMA descriptor area.
2366 	 */
2367 	error = bus_dma_tag_create(NULL,	/* parent */
2368 		       PAGE_SIZE, 0,		/* alignment, bounds */
2369 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2370 		       BUS_SPACE_MAXADDR,	/* highaddr */
2371 		       NULL, NULL,		/* filter, filterarg */
2372 		       dd->dd_desc_len,		/* maxsize */
2373 		       1,			/* nsegments */
2374 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2375 		       BUS_DMA_ALLOCNOW,	/* flags */
2376 		       NULL,			/* lockfunc */
2377 		       NULL,			/* lockarg */
2378 		       &dd->dd_dmat);
2379 	if (error != 0) {
2380 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2381 		return error;
2382 	}
2383 
2384 	/* allocate descriptors */
2385 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2386 	if (error != 0) {
2387 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2388 			"error %u\n", dd->dd_name, error);
2389 		goto fail0;
2390 	}
2391 
2392 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2393 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2394 	if (error != 0) {
2395 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2396 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2397 		goto fail1;
2398 	}
2399 
2400 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2401 				dd->dd_desc, dd->dd_desc_len,
2402 				ath_load_cb, &dd->dd_desc_paddr,
2403 				BUS_DMA_NOWAIT);
2404 	if (error != 0) {
2405 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2406 			dd->dd_name, error);
2407 		goto fail2;
2408 	}
2409 
2410 	ds = dd->dd_desc;
2411 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2412 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2413 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2414 
2415 	/* allocate rx buffers */
2416 	bsize = sizeof(struct ath_buf) * nbuf;
2417 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2418 	if (bf == NULL) {
2419 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2420 			dd->dd_name, bsize);
2421 		goto fail3;
2422 	}
2423 	dd->dd_bufptr = bf;
2424 
2425 	STAILQ_INIT(head);
2426 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2427 		bf->bf_desc = ds;
2428 		bf->bf_daddr = DS2PHYS(dd, ds);
2429 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2430 				&bf->bf_dmamap);
2431 		if (error != 0) {
2432 			if_printf(ifp, "unable to create dmamap for %s "
2433 				"buffer %u, error %u\n", dd->dd_name, i, error);
2434 			ath_descdma_cleanup(sc, dd, head);
2435 			return error;
2436 		}
2437 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2438 	}
2439 	return 0;
2440 fail3:
2441 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2442 fail2:
2443 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2444 fail1:
2445 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2446 fail0:
2447 	bus_dma_tag_destroy(dd->dd_dmat);
2448 	memset(dd, 0, sizeof(*dd));
2449 	return error;
2450 #undef DS2PHYS
2451 }
2452 
2453 static void
2454 ath_descdma_cleanup(struct ath_softc *sc,
2455 	struct ath_descdma *dd, ath_bufhead *head)
2456 {
2457 	struct ath_buf *bf;
2458 	struct ieee80211_node *ni;
2459 
2460 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2461 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2462 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2463 	bus_dma_tag_destroy(dd->dd_dmat);
2464 
2465 	STAILQ_FOREACH(bf, head, bf_list) {
2466 		if (bf->bf_m) {
2467 			m_freem(bf->bf_m);
2468 			bf->bf_m = NULL;
2469 		}
2470 		if (bf->bf_dmamap != NULL) {
2471 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2472 			bf->bf_dmamap = NULL;
2473 		}
2474 		ni = bf->bf_node;
2475 		bf->bf_node = NULL;
2476 		if (ni != NULL) {
2477 			/*
2478 			 * Reclaim node reference.
2479 			 */
2480 			ieee80211_free_node(ni);
2481 		}
2482 	}
2483 
2484 	STAILQ_INIT(head);
2485 	free(dd->dd_bufptr, M_ATHDEV);
2486 	memset(dd, 0, sizeof(*dd));
2487 }
2488 
2489 static int
2490 ath_desc_alloc(struct ath_softc *sc)
2491 {
2492 	int error;
2493 
2494 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2495 			"rx", ath_rxbuf, 1);
2496 	if (error != 0)
2497 		return error;
2498 
2499 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2500 			"tx", ath_txbuf, ATH_TXDESC);
2501 	if (error != 0) {
2502 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2503 		return error;
2504 	}
2505 
2506 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2507 			"beacon", 1, 1);
2508 	if (error != 0) {
2509 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2510 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2511 		return error;
2512 	}
2513 	return 0;
2514 }
2515 
2516 static void
2517 ath_desc_free(struct ath_softc *sc)
2518 {
2519 
2520 	if (sc->sc_bdma.dd_desc_len != 0)
2521 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2522 	if (sc->sc_txdma.dd_desc_len != 0)
2523 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2524 	if (sc->sc_rxdma.dd_desc_len != 0)
2525 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2526 }
2527 
2528 static struct ieee80211_node *
2529 ath_node_alloc(struct ieee80211_node_table *nt)
2530 {
2531 	struct ieee80211com *ic = nt->nt_ic;
2532 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2533 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2534 	struct ath_node *an;
2535 
2536 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2537 	if (an == NULL) {
2538 		/* XXX stat+msg */
2539 		return NULL;
2540 	}
2541 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2542 	ath_rate_node_init(sc, an);
2543 
2544 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2545 	return &an->an_node;
2546 }
2547 
2548 static void
2549 ath_node_free(struct ieee80211_node *ni)
2550 {
2551 	struct ieee80211com *ic = ni->ni_ic;
2552         struct ath_softc *sc = ic->ic_ifp->if_softc;
2553 
2554 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2555 
2556 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2557 	sc->sc_node_free(ni);
2558 }
2559 
2560 static u_int8_t
2561 ath_node_getrssi(const struct ieee80211_node *ni)
2562 {
2563 #define	HAL_EP_RND(x, mul) \
2564 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2565 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2566 	int32_t rssi;
2567 
2568 	/*
2569 	 * When only one frame is received there will be no state in
2570 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2571 	 */
2572 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2573 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2574 	else
2575 		rssi = ni->ni_rssi;
2576 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2577 #undef HAL_EP_RND
2578 }
2579 
2580 static int
2581 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2582 {
2583 	struct ath_hal *ah = sc->sc_ah;
2584 	int error;
2585 	struct mbuf *m;
2586 	struct ath_desc *ds;
2587 
2588 	m = bf->bf_m;
2589 	if (m == NULL) {
2590 		/*
2591 		 * NB: by assigning a page to the rx dma buffer we
2592 		 * implicitly satisfy the Atheros requirement that
2593 		 * this buffer be cache-line-aligned and sized to be
2594 		 * multiple of the cache line size.  Not doing this
2595 		 * causes weird stuff to happen (for the 5210 at least).
2596 		 */
2597 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2598 		if (m == NULL) {
2599 			DPRINTF(sc, ATH_DEBUG_ANY,
2600 				"%s: no mbuf/cluster\n", __func__);
2601 			sc->sc_stats.ast_rx_nombuf++;
2602 			return ENOMEM;
2603 		}
2604 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2605 
2606 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2607 					     bf->bf_dmamap, m,
2608 					     bf->bf_segs, &bf->bf_nseg,
2609 					     BUS_DMA_NOWAIT);
2610 		if (error != 0) {
2611 			DPRINTF(sc, ATH_DEBUG_ANY,
2612 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2613 			    __func__, error);
2614 			sc->sc_stats.ast_rx_busdma++;
2615 			m_freem(m);
2616 			return error;
2617 		}
2618 		KASSERT(bf->bf_nseg == 1,
2619 			("multi-segment packet; nseg %u", bf->bf_nseg));
2620 		bf->bf_m = m;
2621 	}
2622 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2623 
2624 	/*
2625 	 * Setup descriptors.  For receive we always terminate
2626 	 * the descriptor list with a self-linked entry so we'll
2627 	 * not get overrun under high load (as can happen with a
2628 	 * 5212 when ANI processing enables PHY error frames).
2629 	 *
2630 	 * To insure the last descriptor is self-linked we create
2631 	 * each descriptor as self-linked and add it to the end.  As
2632 	 * each additional descriptor is added the previous self-linked
2633 	 * entry is ``fixed'' naturally.  This should be safe even
2634 	 * if DMA is happening.  When processing RX interrupts we
2635 	 * never remove/process the last, self-linked, entry on the
2636 	 * descriptor list.  This insures the hardware always has
2637 	 * someplace to write a new frame.
2638 	 */
2639 	ds = bf->bf_desc;
2640 	ds->ds_link = bf->bf_daddr;	/* link to self */
2641 	ds->ds_data = bf->bf_segs[0].ds_addr;
2642 	ds->ds_vdata = mtod(m, void *);	/* for radar */
2643 	ath_hal_setuprxdesc(ah, ds
2644 		, m->m_len		/* buffer size */
2645 		, 0
2646 	);
2647 
2648 	if (sc->sc_rxlink != NULL)
2649 		*sc->sc_rxlink = bf->bf_daddr;
2650 	sc->sc_rxlink = &ds->ds_link;
2651 	return 0;
2652 }
2653 
2654 /*
2655  * Extend 15-bit time stamp from rx descriptor to
2656  * a full 64-bit TSF using the specified TSF.
2657  */
2658 static __inline u_int64_t
2659 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2660 {
2661 	if ((tsf & 0x7fff) < rstamp)
2662 		tsf -= 0x8000;
2663 	return ((tsf &~ 0x7fff) | rstamp);
2664 }
2665 
2666 /*
2667  * Intercept management frames to collect beacon rssi data
2668  * and to do ibss merges.
2669  */
2670 static void
2671 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2672 	struct ieee80211_node *ni,
2673 	int subtype, int rssi, u_int32_t rstamp)
2674 {
2675 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2676 
2677 	/*
2678 	 * Call up first so subsequent work can use information
2679 	 * potentially stored in the node (e.g. for ibss merge).
2680 	 */
2681 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2682 	switch (subtype) {
2683 	case IEEE80211_FC0_SUBTYPE_BEACON:
2684 		/* update rssi statistics for use by the hal */
2685 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2686 		if (sc->sc_syncbeacon &&
2687 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2688 			/*
2689 			 * Resync beacon timers using the tsf of the beacon
2690 			 * frame we just received.
2691 			 */
2692 			ath_beacon_config(sc);
2693 		}
2694 		/* fall thru... */
2695 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2696 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2697 		    ic->ic_state == IEEE80211_S_RUN) {
2698 			u_int64_t tsf = ath_extend_tsf(rstamp,
2699 				ath_hal_gettsf64(sc->sc_ah));
2700 			/*
2701 			 * Handle ibss merge as needed; check the tsf on the
2702 			 * frame before attempting the merge.  The 802.11 spec
2703 			 * says the station should change it's bssid to match
2704 			 * the oldest station with the same ssid, where oldest
2705 			 * is determined by the tsf.  Note that hardware
2706 			 * reconfiguration happens through callback to
2707 			 * ath_newstate as the state machine will go from
2708 			 * RUN -> RUN when this happens.
2709 			 */
2710 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2711 				DPRINTF(sc, ATH_DEBUG_STATE,
2712 				    "ibss merge, rstamp %u tsf %ju "
2713 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2714 				    (uintmax_t)ni->ni_tstamp.tsf);
2715 				(void) ieee80211_ibss_merge(ni);
2716 			}
2717 		}
2718 		break;
2719 	}
2720 }
2721 
2722 /*
2723  * Set the default antenna.
2724  */
2725 static void
2726 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2727 {
2728 	struct ath_hal *ah = sc->sc_ah;
2729 
2730 	/* XXX block beacon interrupts */
2731 	ath_hal_setdefantenna(ah, antenna);
2732 	if (sc->sc_defant != antenna)
2733 		sc->sc_stats.ast_ant_defswitch++;
2734 	sc->sc_defant = antenna;
2735 	sc->sc_rxotherant = 0;
2736 }
2737 
2738 static int
2739 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2740 	const struct ath_desc *ds, u_int64_t tsf, int16_t nf)
2741 {
2742 	u_int8_t rix;
2743 
2744 	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2745 
2746 	/*
2747 	 * Discard anything shorter than an ack or cts.
2748 	 */
2749 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2750 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2751 			__func__, m->m_pkthdr.len);
2752 		sc->sc_stats.ast_rx_tooshort++;
2753 		return 0;
2754 	}
2755 	sc->sc_rx_th.wr_tsf = htole64(
2756 		ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
2757 	rix = ds->ds_rxstat.rs_rate;
2758 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2759 	if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2760 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2761 	/* XXX propagate other error flags from descriptor */
2762 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2763 	sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
2764 	sc->sc_rx_th.wr_antnoise = nf;
2765 	sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2766 
2767 	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
2768 
2769 	return 1;
2770 }
2771 
2772 static void
2773 ath_rx_proc(void *arg, int npending)
2774 {
2775 #define	PA2DESC(_sc, _pa) \
2776 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2777 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2778 	struct ath_softc *sc = arg;
2779 	struct ath_buf *bf;
2780 	struct ieee80211com *ic = &sc->sc_ic;
2781 	struct ifnet *ifp = sc->sc_ifp;
2782 	struct ath_hal *ah = sc->sc_ah;
2783 	struct ath_desc *ds;
2784 	struct mbuf *m;
2785 	struct ieee80211_node *ni;
2786 	struct ath_node *an;
2787 	int len, type, ngood;
2788 	u_int phyerr;
2789 	HAL_STATUS status;
2790 	int16_t nf;
2791 	u_int64_t tsf;
2792 
2793 	NET_LOCK_GIANT();		/* XXX */
2794 
2795 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2796 	ngood = 0;
2797 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2798 	tsf = ath_hal_gettsf64(ah);
2799 	do {
2800 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2801 		if (bf == NULL) {		/* NB: shouldn't happen */
2802 			if_printf(ifp, "%s: no buffer!\n", __func__);
2803 			break;
2804 		}
2805 		m = bf->bf_m;
2806 		if (m == NULL) {		/* NB: shouldn't happen */
2807 			/*
2808 			 * If mbuf allocation failed previously there
2809 			 * will be no mbuf; try again to re-populate it.
2810 			 */
2811 			/* XXX make debug msg */
2812 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2813 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2814 			goto rx_next;
2815 		}
2816 		ds = bf->bf_desc;
2817 		if (ds->ds_link == bf->bf_daddr) {
2818 			/* NB: never process the self-linked entry at the end */
2819 			break;
2820 		}
2821 		/* XXX sync descriptor memory */
2822 		/*
2823 		 * Must provide the virtual address of the current
2824 		 * descriptor, the physical address, and the virtual
2825 		 * address of the next descriptor in the h/w chain.
2826 		 * This allows the HAL to look ahead to see if the
2827 		 * hardware is done with a descriptor by checking the
2828 		 * done bit in the following descriptor and the address
2829 		 * of the current descriptor the DMA engine is working
2830 		 * on.  All this is necessary because of our use of
2831 		 * a self-linked list to avoid rx overruns.
2832 		 */
2833 		status = ath_hal_rxprocdesc(ah, ds,
2834 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2835 #ifdef ATH_DEBUG
2836 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2837 			ath_printrxbuf(bf, 0, status == HAL_OK);
2838 #endif
2839 		if (status == HAL_EINPROGRESS)
2840 			break;
2841 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2842 		if (ds->ds_rxstat.rs_more) {
2843 			/*
2844 			 * Frame spans multiple descriptors; this
2845 			 * cannot happen yet as we don't support
2846 			 * jumbograms.  If not in monitor mode,
2847 			 * discard the frame.
2848 			 */
2849 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2850 				sc->sc_stats.ast_rx_toobig++;
2851 				goto rx_next;
2852 			}
2853 			/* fall thru for monitor mode handling... */
2854 		} else if (ds->ds_rxstat.rs_status != 0) {
2855 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2856 				sc->sc_stats.ast_rx_crcerr++;
2857 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2858 				sc->sc_stats.ast_rx_fifoerr++;
2859 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2860 				sc->sc_stats.ast_rx_phyerr++;
2861 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2862 				sc->sc_stats.ast_rx_phy[phyerr]++;
2863 				goto rx_next;
2864 			}
2865 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2866 				/*
2867 				 * Decrypt error.  If the error occurred
2868 				 * because there was no hardware key, then
2869 				 * let the frame through so the upper layers
2870 				 * can process it.  This is necessary for 5210
2871 				 * parts which have no way to setup a ``clear''
2872 				 * key cache entry.
2873 				 *
2874 				 * XXX do key cache faulting
2875 				 */
2876 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2877 					goto rx_accept;
2878 				sc->sc_stats.ast_rx_badcrypt++;
2879 			}
2880 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2881 				sc->sc_stats.ast_rx_badmic++;
2882 				/*
2883 				 * Do minimal work required to hand off
2884 				 * the 802.11 header for notifcation.
2885 				 */
2886 				/* XXX frag's and qos frames */
2887 				len = ds->ds_rxstat.rs_datalen;
2888 				if (len >= sizeof (struct ieee80211_frame)) {
2889 					bus_dmamap_sync(sc->sc_dmat,
2890 					    bf->bf_dmamap,
2891 					    BUS_DMASYNC_POSTREAD);
2892 					ieee80211_notify_michael_failure(ic,
2893 					    mtod(m, struct ieee80211_frame *),
2894 					    sc->sc_splitmic ?
2895 					        ds->ds_rxstat.rs_keyix-32 :
2896 					        ds->ds_rxstat.rs_keyix
2897 					);
2898 				}
2899 			}
2900 			ifp->if_ierrors++;
2901 			/*
2902 			 * When a tap is present pass error frames
2903 			 * that have been requested.  By default we
2904 			 * pass decrypt+mic errors but others may be
2905 			 * interesting (e.g. crc).
2906 			 */
2907 			if (sc->sc_drvbpf != NULL &&
2908 			    (ds->ds_rxstat.rs_status & sc->sc_monpass)) {
2909 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2910 				    BUS_DMASYNC_POSTREAD);
2911 				/* NB: bpf needs the mbuf length setup */
2912 				len = ds->ds_rxstat.rs_datalen;
2913 				m->m_pkthdr.len = m->m_len = len;
2914 				(void) ath_rx_tap(sc, m, ds, tsf, nf);
2915 			}
2916 			/* XXX pass MIC errors up for s/w reclaculation */
2917 			goto rx_next;
2918 		}
2919 rx_accept:
2920 		/*
2921 		 * Sync and unmap the frame.  At this point we're
2922 		 * committed to passing the mbuf somewhere so clear
2923 		 * bf_m; this means a new mbuf must be allocated
2924 		 * when the rx descriptor is setup again to receive
2925 		 * another frame.
2926 		 */
2927 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2928 		    BUS_DMASYNC_POSTREAD);
2929 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2930 		bf->bf_m = NULL;
2931 
2932 		m->m_pkthdr.rcvif = ifp;
2933 		len = ds->ds_rxstat.rs_datalen;
2934 		m->m_pkthdr.len = m->m_len = len;
2935 
2936 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2937 
2938 		if (sc->sc_drvbpf != NULL && !ath_rx_tap(sc, m, ds, tsf, nf)) {
2939 			m_freem(m);		/* XXX reclaim */
2940 			goto rx_next;
2941 		}
2942 
2943 		/*
2944 		 * From this point on we assume the frame is at least
2945 		 * as large as ieee80211_frame_min; verify that.
2946 		 */
2947 		if (len < IEEE80211_MIN_LEN) {
2948 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2949 				__func__, len);
2950 			sc->sc_stats.ast_rx_tooshort++;
2951 			m_freem(m);
2952 			goto rx_next;
2953 		}
2954 
2955 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2956 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2957 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2958 				   ds->ds_rxstat.rs_rssi);
2959 		}
2960 
2961 		m_adj(m, -IEEE80211_CRC_LEN);
2962 
2963 		/*
2964 		 * Locate the node for sender, track state, and then
2965 		 * pass the (referenced) node up to the 802.11 layer
2966 		 * for its use.
2967 		 */
2968 		ni = ieee80211_find_rxnode_withkey(ic,
2969 			mtod(m, const struct ieee80211_frame_min *),
2970 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2971 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2972 		/*
2973 		 * Track rx rssi and do any rx antenna management.
2974 		 */
2975 		an = ATH_NODE(ni);
2976 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2977 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
2978 		/*
2979 		 * Send frame up for processing.
2980 		 */
2981 		type = ieee80211_input(ic, m, ni,
2982 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2983 		ieee80211_free_node(ni);
2984 		if (sc->sc_diversity) {
2985 			/*
2986 			 * When using fast diversity, change the default rx
2987 			 * antenna if diversity chooses the other antenna 3
2988 			 * times in a row.
2989 			 */
2990 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2991 				if (++sc->sc_rxotherant >= 3)
2992 					ath_setdefantenna(sc,
2993 						ds->ds_rxstat.rs_antenna);
2994 			} else
2995 				sc->sc_rxotherant = 0;
2996 		}
2997 		if (sc->sc_softled) {
2998 			/*
2999 			 * Blink for any data frame.  Otherwise do a
3000 			 * heartbeat-style blink when idle.  The latter
3001 			 * is mainly for station mode where we depend on
3002 			 * periodic beacon frames to trigger the poll event.
3003 			 */
3004 			if (type == IEEE80211_FC0_TYPE_DATA) {
3005 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3006 				ath_led_event(sc, ATH_LED_RX);
3007 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3008 				ath_led_event(sc, ATH_LED_POLL);
3009 		}
3010 		/*
3011 		 * Arrange to update the last rx timestamp only for
3012 		 * frames from our ap when operating in station mode.
3013 		 * This assumes the rx key is always setup when associated.
3014 		 */
3015 		if (ic->ic_opmode == IEEE80211_M_STA &&
3016 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3017 			ngood++;
3018 rx_next:
3019 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3020 	} while (ath_rxbuf_init(sc, bf) == 0);
3021 
3022 	/* rx signal state monitoring */
3023 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3024 	if (ath_hal_radar_event(ah))
3025 		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
3026 	if (ngood)
3027 		sc->sc_lastrx = tsf;
3028 
3029 	NET_UNLOCK_GIANT();		/* XXX */
3030 #undef PA2DESC
3031 }
3032 
3033 /*
3034  * Setup a h/w transmit queue.
3035  */
3036 static struct ath_txq *
3037 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3038 {
3039 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3040 	struct ath_hal *ah = sc->sc_ah;
3041 	HAL_TXQ_INFO qi;
3042 	int qnum;
3043 
3044 	memset(&qi, 0, sizeof(qi));
3045 	qi.tqi_subtype = subtype;
3046 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3047 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3048 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3049 	/*
3050 	 * Enable interrupts only for EOL and DESC conditions.
3051 	 * We mark tx descriptors to receive a DESC interrupt
3052 	 * when a tx queue gets deep; otherwise waiting for the
3053 	 * EOL to reap descriptors.  Note that this is done to
3054 	 * reduce interrupt load and this only defers reaping
3055 	 * descriptors, never transmitting frames.  Aside from
3056 	 * reducing interrupts this also permits more concurrency.
3057 	 * The only potential downside is if the tx queue backs
3058 	 * up in which case the top half of the kernel may backup
3059 	 * due to a lack of tx descriptors.
3060 	 */
3061 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3062 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3063 	if (qnum == -1) {
3064 		/*
3065 		 * NB: don't print a message, this happens
3066 		 * normally on parts with too few tx queues
3067 		 */
3068 		return NULL;
3069 	}
3070 	if (qnum >= N(sc->sc_txq)) {
3071 		device_printf(sc->sc_dev,
3072 			"hal qnum %u out of range, max %zu!\n",
3073 			qnum, N(sc->sc_txq));
3074 		ath_hal_releasetxqueue(ah, qnum);
3075 		return NULL;
3076 	}
3077 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3078 		struct ath_txq *txq = &sc->sc_txq[qnum];
3079 
3080 		txq->axq_qnum = qnum;
3081 		txq->axq_depth = 0;
3082 		txq->axq_intrcnt = 0;
3083 		txq->axq_link = NULL;
3084 		STAILQ_INIT(&txq->axq_q);
3085 		ATH_TXQ_LOCK_INIT(sc, txq);
3086 		sc->sc_txqsetup |= 1<<qnum;
3087 	}
3088 	return &sc->sc_txq[qnum];
3089 #undef N
3090 }
3091 
3092 /*
3093  * Setup a hardware data transmit queue for the specified
3094  * access control.  The hal may not support all requested
3095  * queues in which case it will return a reference to a
3096  * previously setup queue.  We record the mapping from ac's
3097  * to h/w queues for use by ath_tx_start and also track
3098  * the set of h/w queues being used to optimize work in the
3099  * transmit interrupt handler and related routines.
3100  */
3101 static int
3102 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3103 {
3104 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3105 	struct ath_txq *txq;
3106 
3107 	if (ac >= N(sc->sc_ac2q)) {
3108 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3109 			ac, N(sc->sc_ac2q));
3110 		return 0;
3111 	}
3112 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3113 	if (txq != NULL) {
3114 		sc->sc_ac2q[ac] = txq;
3115 		return 1;
3116 	} else
3117 		return 0;
3118 #undef N
3119 }
3120 
3121 /*
3122  * Update WME parameters for a transmit queue.
3123  */
3124 static int
3125 ath_txq_update(struct ath_softc *sc, int ac)
3126 {
3127 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3128 #define	ATH_TXOP_TO_US(v)		(v<<5)
3129 	struct ieee80211com *ic = &sc->sc_ic;
3130 	struct ath_txq *txq = sc->sc_ac2q[ac];
3131 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3132 	struct ath_hal *ah = sc->sc_ah;
3133 	HAL_TXQ_INFO qi;
3134 
3135 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3136 	qi.tqi_aifs = wmep->wmep_aifsn;
3137 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3138 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3139 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3140 
3141 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3142 		device_printf(sc->sc_dev, "unable to update hardware queue "
3143 			"parameters for %s traffic!\n",
3144 			ieee80211_wme_acnames[ac]);
3145 		return 0;
3146 	} else {
3147 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3148 		return 1;
3149 	}
3150 #undef ATH_TXOP_TO_US
3151 #undef ATH_EXPONENT_TO_VALUE
3152 }
3153 
3154 /*
3155  * Callback from the 802.11 layer to update WME parameters.
3156  */
3157 static int
3158 ath_wme_update(struct ieee80211com *ic)
3159 {
3160 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3161 
3162 	return !ath_txq_update(sc, WME_AC_BE) ||
3163 	    !ath_txq_update(sc, WME_AC_BK) ||
3164 	    !ath_txq_update(sc, WME_AC_VI) ||
3165 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3166 }
3167 
3168 /*
3169  * Reclaim resources for a setup queue.
3170  */
3171 static void
3172 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3173 {
3174 
3175 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3176 	ATH_TXQ_LOCK_DESTROY(txq);
3177 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3178 }
3179 
3180 /*
3181  * Reclaim all tx queue resources.
3182  */
3183 static void
3184 ath_tx_cleanup(struct ath_softc *sc)
3185 {
3186 	int i;
3187 
3188 	ATH_TXBUF_LOCK_DESTROY(sc);
3189 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3190 		if (ATH_TXQ_SETUP(sc, i))
3191 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3192 }
3193 
3194 /*
3195  * Defragment an mbuf chain, returning at most maxfrags separate
3196  * mbufs+clusters.  If this is not possible NULL is returned and
3197  * the original mbuf chain is left in it's present (potentially
3198  * modified) state.  We use two techniques: collapsing consecutive
3199  * mbufs and replacing consecutive mbufs by a cluster.
3200  */
3201 static struct mbuf *
3202 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3203 {
3204 	struct mbuf *m, *n, *n2, **prev;
3205 	u_int curfrags;
3206 
3207 	/*
3208 	 * Calculate the current number of frags.
3209 	 */
3210 	curfrags = 0;
3211 	for (m = m0; m != NULL; m = m->m_next)
3212 		curfrags++;
3213 	/*
3214 	 * First, try to collapse mbufs.  Note that we always collapse
3215 	 * towards the front so we don't need to deal with moving the
3216 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3217 	 * less data than the following.
3218 	 */
3219 	m = m0;
3220 again:
3221 	for (;;) {
3222 		n = m->m_next;
3223 		if (n == NULL)
3224 			break;
3225 		if ((m->m_flags & M_RDONLY) == 0 &&
3226 		    n->m_len < M_TRAILINGSPACE(m)) {
3227 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3228 				n->m_len);
3229 			m->m_len += n->m_len;
3230 			m->m_next = n->m_next;
3231 			m_free(n);
3232 			if (--curfrags <= maxfrags)
3233 				return m0;
3234 		} else
3235 			m = n;
3236 	}
3237 	KASSERT(maxfrags > 1,
3238 		("maxfrags %u, but normal collapse failed", maxfrags));
3239 	/*
3240 	 * Collapse consecutive mbufs to a cluster.
3241 	 */
3242 	prev = &m0->m_next;		/* NB: not the first mbuf */
3243 	while ((n = *prev) != NULL) {
3244 		if ((n2 = n->m_next) != NULL &&
3245 		    n->m_len + n2->m_len < MCLBYTES) {
3246 			m = m_getcl(how, MT_DATA, 0);
3247 			if (m == NULL)
3248 				goto bad;
3249 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3250 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3251 				n2->m_len);
3252 			m->m_len = n->m_len + n2->m_len;
3253 			m->m_next = n2->m_next;
3254 			*prev = m;
3255 			m_free(n);
3256 			m_free(n2);
3257 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3258 				return m0;
3259 			/*
3260 			 * Still not there, try the normal collapse
3261 			 * again before we allocate another cluster.
3262 			 */
3263 			goto again;
3264 		}
3265 		prev = &n->m_next;
3266 	}
3267 	/*
3268 	 * No place where we can collapse to a cluster; punt.
3269 	 * This can occur if, for example, you request 2 frags
3270 	 * but the packet requires that both be clusters (we
3271 	 * never reallocate the first mbuf to avoid moving the
3272 	 * packet header).
3273 	 */
3274 bad:
3275 	return NULL;
3276 }
3277 
3278 /*
3279  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3280  */
3281 static int
3282 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3283 {
3284 	int i;
3285 
3286 	for (i = 0; i < rt->rateCount; i++)
3287 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3288 			return i;
3289 	return 0;		/* NB: lowest rate */
3290 }
3291 
3292 static int
3293 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3294     struct mbuf *m0)
3295 {
3296 	struct ieee80211com *ic = &sc->sc_ic;
3297 	struct ath_hal *ah = sc->sc_ah;
3298 	struct ifnet *ifp = sc->sc_ifp;
3299 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3300 	int i, error, iswep, ismcast, ismrr;
3301 	int keyix, hdrlen, pktlen, try0;
3302 	u_int8_t rix, txrate, ctsrate;
3303 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3304 	struct ath_desc *ds, *ds0;
3305 	struct ath_txq *txq;
3306 	struct ieee80211_frame *wh;
3307 	u_int subtype, flags, ctsduration;
3308 	HAL_PKT_TYPE atype;
3309 	const HAL_RATE_TABLE *rt;
3310 	HAL_BOOL shortPreamble;
3311 	struct ath_node *an;
3312 	struct mbuf *m;
3313 	u_int pri;
3314 
3315 	wh = mtod(m0, struct ieee80211_frame *);
3316 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3317 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3318 	hdrlen = ieee80211_anyhdrsize(wh);
3319 	/*
3320 	 * Packet length must not include any
3321 	 * pad bytes; deduct them here.
3322 	 */
3323 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3324 
3325 	if (iswep) {
3326 		const struct ieee80211_cipher *cip;
3327 		struct ieee80211_key *k;
3328 
3329 		/*
3330 		 * Construct the 802.11 header+trailer for an encrypted
3331 		 * frame. The only reason this can fail is because of an
3332 		 * unknown or unsupported cipher/key type.
3333 		 */
3334 		k = ieee80211_crypto_encap(ic, ni, m0);
3335 		if (k == NULL) {
3336 			/*
3337 			 * This can happen when the key is yanked after the
3338 			 * frame was queued.  Just discard the frame; the
3339 			 * 802.11 layer counts failures and provides
3340 			 * debugging/diagnostics.
3341 			 */
3342 			m_freem(m0);
3343 			return EIO;
3344 		}
3345 		/*
3346 		 * Adjust the packet + header lengths for the crypto
3347 		 * additions and calculate the h/w key index.  When
3348 		 * a s/w mic is done the frame will have had any mic
3349 		 * added to it prior to entry so m0->m_pkthdr.len above will
3350 		 * account for it. Otherwise we need to add it to the
3351 		 * packet length.
3352 		 */
3353 		cip = k->wk_cipher;
3354 		hdrlen += cip->ic_header;
3355 		pktlen += cip->ic_header + cip->ic_trailer;
3356 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3357 			pktlen += cip->ic_miclen;
3358 		keyix = k->wk_keyix;
3359 
3360 		/* packet header may have moved, reset our local pointer */
3361 		wh = mtod(m0, struct ieee80211_frame *);
3362 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3363 		/*
3364 		 * Use station key cache slot, if assigned.
3365 		 */
3366 		keyix = ni->ni_ucastkey.wk_keyix;
3367 		if (keyix == IEEE80211_KEYIX_NONE)
3368 			keyix = HAL_TXKEYIX_INVALID;
3369 	} else
3370 		keyix = HAL_TXKEYIX_INVALID;
3371 
3372 	pktlen += IEEE80211_CRC_LEN;
3373 
3374 	/*
3375 	 * Load the DMA map so any coalescing is done.  This
3376 	 * also calculates the number of descriptors we need.
3377 	 */
3378 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3379 				     bf->bf_segs, &bf->bf_nseg,
3380 				     BUS_DMA_NOWAIT);
3381 	if (error == EFBIG) {
3382 		/* XXX packet requires too many descriptors */
3383 		bf->bf_nseg = ATH_TXDESC+1;
3384 	} else if (error != 0) {
3385 		sc->sc_stats.ast_tx_busdma++;
3386 		m_freem(m0);
3387 		return error;
3388 	}
3389 	/*
3390 	 * Discard null packets and check for packets that
3391 	 * require too many TX descriptors.  We try to convert
3392 	 * the latter to a cluster.
3393 	 */
3394 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3395 		sc->sc_stats.ast_tx_linear++;
3396 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3397 		if (m == NULL) {
3398 			m_freem(m0);
3399 			sc->sc_stats.ast_tx_nombuf++;
3400 			return ENOMEM;
3401 		}
3402 		m0 = m;
3403 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3404 					     bf->bf_segs, &bf->bf_nseg,
3405 					     BUS_DMA_NOWAIT);
3406 		if (error != 0) {
3407 			sc->sc_stats.ast_tx_busdma++;
3408 			m_freem(m0);
3409 			return error;
3410 		}
3411 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3412 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3413 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3414 		sc->sc_stats.ast_tx_nodata++;
3415 		m_freem(m0);
3416 		return EIO;
3417 	}
3418 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3419 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3420 	bf->bf_m = m0;
3421 	bf->bf_node = ni;			/* NB: held reference */
3422 
3423 	/* setup descriptors */
3424 	ds = bf->bf_desc;
3425 	rt = sc->sc_currates;
3426 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3427 
3428 	/*
3429 	 * NB: the 802.11 layer marks whether or not we should
3430 	 * use short preamble based on the current mode and
3431 	 * negotiated parameters.
3432 	 */
3433 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3434 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3435 		shortPreamble = AH_TRUE;
3436 		sc->sc_stats.ast_tx_shortpre++;
3437 	} else {
3438 		shortPreamble = AH_FALSE;
3439 	}
3440 
3441 	an = ATH_NODE(ni);
3442 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3443 	ismrr = 0;				/* default no multi-rate retry*/
3444 	/*
3445 	 * Calculate Atheros packet type from IEEE80211 packet header,
3446 	 * setup for rate calculations, and select h/w transmit queue.
3447 	 */
3448 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3449 	case IEEE80211_FC0_TYPE_MGT:
3450 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3451 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3452 			atype = HAL_PKT_TYPE_BEACON;
3453 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3454 			atype = HAL_PKT_TYPE_PROBE_RESP;
3455 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3456 			atype = HAL_PKT_TYPE_ATIM;
3457 		else
3458 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3459 		rix = sc->sc_minrateix;
3460 		txrate = rt->info[rix].rateCode;
3461 		if (shortPreamble)
3462 			txrate |= rt->info[rix].shortPreamble;
3463 		try0 = ATH_TXMGTTRY;
3464 		/* NB: force all management frames to highest queue */
3465 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3466 			/* NB: force all management frames to highest queue */
3467 			pri = WME_AC_VO;
3468 		} else
3469 			pri = WME_AC_BE;
3470 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3471 		break;
3472 	case IEEE80211_FC0_TYPE_CTL:
3473 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3474 		rix = sc->sc_minrateix;
3475 		txrate = rt->info[rix].rateCode;
3476 		if (shortPreamble)
3477 			txrate |= rt->info[rix].shortPreamble;
3478 		try0 = ATH_TXMGTTRY;
3479 		/* NB: force all ctl frames to highest queue */
3480 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3481 			/* NB: force all ctl frames to highest queue */
3482 			pri = WME_AC_VO;
3483 		} else
3484 			pri = WME_AC_BE;
3485 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3486 		break;
3487 	case IEEE80211_FC0_TYPE_DATA:
3488 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3489 		/*
3490 		 * Data frames: multicast frames go out at a fixed rate,
3491 		 * otherwise consult the rate control module for the
3492 		 * rate to use.
3493 		 */
3494 		if (ismcast) {
3495 			/*
3496 			 * Check mcast rate setting in case it's changed.
3497 			 * XXX move out of fastpath
3498 			 */
3499 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3500 				sc->sc_mcastrix =
3501 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3502 				sc->sc_mcastrate = ic->ic_mcast_rate;
3503 			}
3504 			rix = sc->sc_mcastrix;
3505 			txrate = rt->info[rix].rateCode;
3506 			if (shortPreamble)
3507 				txrate |= rt->info[rix].shortPreamble;
3508 			try0 = 1;
3509 		} else {
3510 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3511 				&rix, &try0, &txrate);
3512 			sc->sc_txrate = txrate;		/* for LED blinking */
3513 			if (try0 != ATH_TXMAXTRY)
3514 				ismrr = 1;
3515 		}
3516 		pri = M_WME_GETAC(m0);
3517 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3518 			flags |= HAL_TXDESC_NOACK;
3519 		break;
3520 	default:
3521 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3522 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3523 		/* XXX statistic */
3524 		m_freem(m0);
3525 		return EIO;
3526 	}
3527 	txq = sc->sc_ac2q[pri];
3528 
3529 	/*
3530 	 * When servicing one or more stations in power-save mode
3531 	 * multicast frames must be buffered until after the beacon.
3532 	 * We use the CAB queue for that.
3533 	 */
3534 	if (ismcast && ic->ic_ps_sta) {
3535 		txq = sc->sc_cabq;
3536 		/* XXX? more bit in 802.11 frame header */
3537 	}
3538 
3539 	/*
3540 	 * Calculate miscellaneous flags.
3541 	 */
3542 	if (ismcast) {
3543 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3544 	} else if (pktlen > ic->ic_rtsthreshold) {
3545 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3546 		cix = rt->info[rix].controlRate;
3547 		sc->sc_stats.ast_tx_rts++;
3548 	}
3549 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3550 		sc->sc_stats.ast_tx_noack++;
3551 
3552 	/*
3553 	 * If 802.11g protection is enabled, determine whether
3554 	 * to use RTS/CTS or just CTS.  Note that this is only
3555 	 * done for OFDM unicast frames.
3556 	 */
3557 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3558 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3559 	    (flags & HAL_TXDESC_NOACK) == 0) {
3560 		/* XXX fragments must use CCK rates w/ protection */
3561 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3562 			flags |= HAL_TXDESC_RTSENA;
3563 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3564 			flags |= HAL_TXDESC_CTSENA;
3565 		cix = rt->info[sc->sc_protrix].controlRate;
3566 		sc->sc_stats.ast_tx_protect++;
3567 	}
3568 
3569 	/*
3570 	 * Calculate duration.  This logically belongs in the 802.11
3571 	 * layer but it lacks sufficient information to calculate it.
3572 	 */
3573 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3574 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3575 		u_int16_t dur;
3576 		/*
3577 		 * XXX not right with fragmentation.
3578 		 */
3579 		if (shortPreamble)
3580 			dur = rt->info[rix].spAckDuration;
3581 		else
3582 			dur = rt->info[rix].lpAckDuration;
3583 		*(u_int16_t *)wh->i_dur = htole16(dur);
3584 	}
3585 
3586 	/*
3587 	 * Calculate RTS/CTS rate and duration if needed.
3588 	 */
3589 	ctsduration = 0;
3590 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3591 		/*
3592 		 * CTS transmit rate is derived from the transmit rate
3593 		 * by looking in the h/w rate table.  We must also factor
3594 		 * in whether or not a short preamble is to be used.
3595 		 */
3596 		/* NB: cix is set above where RTS/CTS is enabled */
3597 		KASSERT(cix != 0xff, ("cix not setup"));
3598 		ctsrate = rt->info[cix].rateCode;
3599 		/*
3600 		 * Compute the transmit duration based on the frame
3601 		 * size and the size of an ACK frame.  We call into the
3602 		 * HAL to do the computation since it depends on the
3603 		 * characteristics of the actual PHY being used.
3604 		 *
3605 		 * NB: CTS is assumed the same size as an ACK so we can
3606 		 *     use the precalculated ACK durations.
3607 		 */
3608 		if (shortPreamble) {
3609 			ctsrate |= rt->info[cix].shortPreamble;
3610 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3611 				ctsduration += rt->info[cix].spAckDuration;
3612 			ctsduration += ath_hal_computetxtime(ah,
3613 				rt, pktlen, rix, AH_TRUE);
3614 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3615 				ctsduration += rt->info[rix].spAckDuration;
3616 		} else {
3617 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3618 				ctsduration += rt->info[cix].lpAckDuration;
3619 			ctsduration += ath_hal_computetxtime(ah,
3620 				rt, pktlen, rix, AH_FALSE);
3621 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3622 				ctsduration += rt->info[rix].lpAckDuration;
3623 		}
3624 		/*
3625 		 * Must disable multi-rate retry when using RTS/CTS.
3626 		 */
3627 		ismrr = 0;
3628 		try0 = ATH_TXMGTTRY;		/* XXX */
3629 	} else
3630 		ctsrate = 0;
3631 
3632 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3633 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3634 			sc->sc_hwmap[txrate].ieeerate, -1);
3635 
3636 	if (ic->ic_rawbpf)
3637 		bpf_mtap(ic->ic_rawbpf, m0);
3638 	if (sc->sc_drvbpf) {
3639 		u_int64_t tsf = ath_hal_gettsf64(ah);
3640 
3641 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3642 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3643 		if (iswep)
3644 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3645 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3646 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3647 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3648 
3649 		bpf_mtap2(sc->sc_drvbpf,
3650 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3651 	}
3652 
3653 	/*
3654 	 * Determine if a tx interrupt should be generated for
3655 	 * this descriptor.  We take a tx interrupt to reap
3656 	 * descriptors when the h/w hits an EOL condition or
3657 	 * when the descriptor is specifically marked to generate
3658 	 * an interrupt.  We periodically mark descriptors in this
3659 	 * way to insure timely replenishing of the supply needed
3660 	 * for sending frames.  Defering interrupts reduces system
3661 	 * load and potentially allows more concurrent work to be
3662 	 * done but if done to aggressively can cause senders to
3663 	 * backup.
3664 	 *
3665 	 * NB: use >= to deal with sc_txintrperiod changing
3666 	 *     dynamically through sysctl.
3667 	 */
3668 	if (flags & HAL_TXDESC_INTREQ) {
3669 		txq->axq_intrcnt = 0;
3670 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3671 		flags |= HAL_TXDESC_INTREQ;
3672 		txq->axq_intrcnt = 0;
3673 	}
3674 
3675 	/*
3676 	 * Formulate first tx descriptor with tx controls.
3677 	 */
3678 	/* XXX check return value? */
3679 	ath_hal_setuptxdesc(ah, ds
3680 		, pktlen		/* packet length */
3681 		, hdrlen		/* header length */
3682 		, atype			/* Atheros packet type */
3683 		, ni->ni_txpower	/* txpower */
3684 		, txrate, try0		/* series 0 rate/tries */
3685 		, keyix			/* key cache index */
3686 		, sc->sc_txantenna	/* antenna mode */
3687 		, flags			/* flags */
3688 		, ctsrate		/* rts/cts rate */
3689 		, ctsduration		/* rts/cts duration */
3690 	);
3691 	bf->bf_flags = flags;
3692 	/*
3693 	 * Setup the multi-rate retry state only when we're
3694 	 * going to use it.  This assumes ath_hal_setuptxdesc
3695 	 * initializes the descriptors (so we don't have to)
3696 	 * when the hardware supports multi-rate retry and
3697 	 * we don't use it.
3698 	 */
3699 	if (ismrr)
3700 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3701 
3702 	/*
3703 	 * Fillin the remainder of the descriptor info.
3704 	 */
3705 	ds0 = ds;
3706 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3707 		ds->ds_data = bf->bf_segs[i].ds_addr;
3708 		if (i == bf->bf_nseg - 1)
3709 			ds->ds_link = 0;
3710 		else
3711 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3712 		ath_hal_filltxdesc(ah, ds
3713 			, bf->bf_segs[i].ds_len	/* segment length */
3714 			, i == 0		/* first segment */
3715 			, i == bf->bf_nseg - 1	/* last segment */
3716 			, ds0			/* first descriptor */
3717 		);
3718 		DPRINTF(sc, ATH_DEBUG_XMIT,
3719 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3720 			__func__, i, ds->ds_link, ds->ds_data,
3721 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3722 	}
3723 	/*
3724 	 * Insert the frame on the outbound list and
3725 	 * pass it on to the hardware.
3726 	 */
3727 	ATH_TXQ_LOCK(txq);
3728 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3729 	if (txq->axq_link == NULL) {
3730 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3731 		DPRINTF(sc, ATH_DEBUG_XMIT,
3732 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3733 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3734 			txq->axq_depth);
3735 	} else {
3736 		*txq->axq_link = bf->bf_daddr;
3737 		DPRINTF(sc, ATH_DEBUG_XMIT,
3738 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3739 			txq->axq_qnum, txq->axq_link,
3740 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3741 	}
3742 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3743 	/*
3744 	 * The CAB queue is started from the SWBA handler since
3745 	 * frames only go out on DTIM and to avoid possible races.
3746 	 */
3747 	if (txq != sc->sc_cabq)
3748 		ath_hal_txstart(ah, txq->axq_qnum);
3749 	ATH_TXQ_UNLOCK(txq);
3750 
3751 	return 0;
3752 }
3753 
3754 /*
3755  * Process completed xmit descriptors from the specified queue.
3756  */
3757 static int
3758 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3759 {
3760 	struct ath_hal *ah = sc->sc_ah;
3761 	struct ieee80211com *ic = &sc->sc_ic;
3762 	struct ath_buf *bf;
3763 	struct ath_desc *ds, *ds0;
3764 	struct ieee80211_node *ni;
3765 	struct ath_node *an;
3766 	int sr, lr, pri, nacked;
3767 	HAL_STATUS status;
3768 
3769 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3770 		__func__, txq->axq_qnum,
3771 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3772 		txq->axq_link);
3773 	nacked = 0;
3774 	for (;;) {
3775 		ATH_TXQ_LOCK(txq);
3776 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3777 		bf = STAILQ_FIRST(&txq->axq_q);
3778 		if (bf == NULL) {
3779 			ATH_TXQ_UNLOCK(txq);
3780 			break;
3781 		}
3782 		ds0 = &bf->bf_desc[0];
3783 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3784 		status = ath_hal_txprocdesc(ah, ds);
3785 #ifdef ATH_DEBUG
3786 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3787 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
3788 #endif
3789 		if (status == HAL_EINPROGRESS) {
3790 			ATH_TXQ_UNLOCK(txq);
3791 			break;
3792 		}
3793 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3794 		if (txq->axq_depth == 0)
3795 			txq->axq_link = NULL;
3796 		ATH_TXQ_UNLOCK(txq);
3797 
3798 		ni = bf->bf_node;
3799 		if (ni != NULL) {
3800 			an = ATH_NODE(ni);
3801 			if (ds->ds_txstat.ts_status == 0) {
3802 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3803 				sc->sc_stats.ast_ant_tx[txant]++;
3804 				sc->sc_ant_tx[txant]++;
3805 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3806 					sc->sc_stats.ast_tx_altrate++;
3807 				sc->sc_stats.ast_tx_rssi =
3808 					ds->ds_txstat.ts_rssi;
3809 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3810 					ds->ds_txstat.ts_rssi);
3811 				pri = M_WME_GETAC(bf->bf_m);
3812 				if (pri >= WME_AC_VO)
3813 					ic->ic_wme.wme_hipri_traffic++;
3814 				ni->ni_inact = ni->ni_inact_reload;
3815 			} else {
3816 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3817 					sc->sc_stats.ast_tx_xretries++;
3818 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3819 					sc->sc_stats.ast_tx_fifoerr++;
3820 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3821 					sc->sc_stats.ast_tx_filtered++;
3822 			}
3823 			sr = ds->ds_txstat.ts_shortretry;
3824 			lr = ds->ds_txstat.ts_longretry;
3825 			sc->sc_stats.ast_tx_shortretry += sr;
3826 			sc->sc_stats.ast_tx_longretry += lr;
3827 			/*
3828 			 * Hand the descriptor to the rate control algorithm.
3829 			 */
3830 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3831 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3832 				/*
3833 				 * If frame was ack'd update the last rx time
3834 				 * used to workaround phantom bmiss interrupts.
3835 				 */
3836 				if (ds->ds_txstat.ts_status == 0)
3837 					nacked++;
3838 				ath_rate_tx_complete(sc, an, ds, ds0);
3839 			}
3840 			/*
3841 			 * Reclaim reference to node.
3842 			 *
3843 			 * NB: the node may be reclaimed here if, for example
3844 			 *     this is a DEAUTH message that was sent and the
3845 			 *     node was timed out due to inactivity.
3846 			 */
3847 			ieee80211_free_node(ni);
3848 		}
3849 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3850 		    BUS_DMASYNC_POSTWRITE);
3851 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3852 		m_freem(bf->bf_m);
3853 		bf->bf_m = NULL;
3854 		bf->bf_node = NULL;
3855 
3856 		ATH_TXBUF_LOCK(sc);
3857 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3858 		ATH_TXBUF_UNLOCK(sc);
3859 	}
3860 	return nacked;
3861 }
3862 
3863 static __inline int
3864 txqactive(struct ath_hal *ah, int qnum)
3865 {
3866 	u_int32_t txqs = 1<<qnum;
3867 	ath_hal_gettxintrtxqs(ah, &txqs);
3868 	return (txqs & (1<<qnum));
3869 }
3870 
3871 /*
3872  * Deferred processing of transmit interrupt; special-cased
3873  * for a single hardware transmit queue (e.g. 5210 and 5211).
3874  */
3875 static void
3876 ath_tx_proc_q0(void *arg, int npending)
3877 {
3878 	struct ath_softc *sc = arg;
3879 	struct ifnet *ifp = sc->sc_ifp;
3880 
3881 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
3882 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3883 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3884 		ath_tx_processq(sc, sc->sc_cabq);
3885 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3886 	sc->sc_tx_timer = 0;
3887 
3888 	if (sc->sc_softled)
3889 		ath_led_event(sc, ATH_LED_TX);
3890 
3891 	ath_start(ifp);
3892 }
3893 
3894 /*
3895  * Deferred processing of transmit interrupt; special-cased
3896  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3897  */
3898 static void
3899 ath_tx_proc_q0123(void *arg, int npending)
3900 {
3901 	struct ath_softc *sc = arg;
3902 	struct ifnet *ifp = sc->sc_ifp;
3903 	int nacked;
3904 
3905 	/*
3906 	 * Process each active queue.
3907 	 */
3908 	nacked = 0;
3909 	if (txqactive(sc->sc_ah, 0))
3910 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
3911 	if (txqactive(sc->sc_ah, 1))
3912 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
3913 	if (txqactive(sc->sc_ah, 2))
3914 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
3915 	if (txqactive(sc->sc_ah, 3))
3916 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
3917 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3918 		ath_tx_processq(sc, sc->sc_cabq);
3919 	if (nacked)
3920 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3921 
3922 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3923 	sc->sc_tx_timer = 0;
3924 
3925 	if (sc->sc_softled)
3926 		ath_led_event(sc, ATH_LED_TX);
3927 
3928 	ath_start(ifp);
3929 }
3930 
3931 /*
3932  * Deferred processing of transmit interrupt.
3933  */
3934 static void
3935 ath_tx_proc(void *arg, int npending)
3936 {
3937 	struct ath_softc *sc = arg;
3938 	struct ifnet *ifp = sc->sc_ifp;
3939 	int i, nacked;
3940 
3941 	/*
3942 	 * Process each active queue.
3943 	 */
3944 	nacked = 0;
3945 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3946 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
3947 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
3948 	if (nacked)
3949 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3950 
3951 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3952 	sc->sc_tx_timer = 0;
3953 
3954 	if (sc->sc_softled)
3955 		ath_led_event(sc, ATH_LED_TX);
3956 
3957 	ath_start(ifp);
3958 }
3959 
3960 static void
3961 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3962 {
3963 #ifdef ATH_DEBUG
3964 	struct ath_hal *ah = sc->sc_ah;
3965 #endif
3966 	struct ieee80211_node *ni;
3967 	struct ath_buf *bf;
3968 	u_int ix;
3969 
3970 	/*
3971 	 * NB: this assumes output has been stopped and
3972 	 *     we do not need to block ath_tx_tasklet
3973 	 */
3974 	for (ix = 0;; ix++) {
3975 		ATH_TXQ_LOCK(txq);
3976 		bf = STAILQ_FIRST(&txq->axq_q);
3977 		if (bf == NULL) {
3978 			txq->axq_link = NULL;
3979 			ATH_TXQ_UNLOCK(txq);
3980 			break;
3981 		}
3982 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3983 		ATH_TXQ_UNLOCK(txq);
3984 #ifdef ATH_DEBUG
3985 		if (sc->sc_debug & ATH_DEBUG_RESET) {
3986 			ath_printtxbuf(bf, txq->axq_qnum, ix,
3987 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3988 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
3989 				bf->bf_m->m_len, 0, -1);
3990 		}
3991 #endif /* ATH_DEBUG */
3992 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3993 		m_freem(bf->bf_m);
3994 		bf->bf_m = NULL;
3995 		ni = bf->bf_node;
3996 		bf->bf_node = NULL;
3997 		if (ni != NULL) {
3998 			/*
3999 			 * Reclaim node reference.
4000 			 */
4001 			ieee80211_free_node(ni);
4002 		}
4003 		ATH_TXBUF_LOCK(sc);
4004 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4005 		ATH_TXBUF_UNLOCK(sc);
4006 	}
4007 }
4008 
4009 static void
4010 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4011 {
4012 	struct ath_hal *ah = sc->sc_ah;
4013 
4014 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4015 	    __func__, txq->axq_qnum,
4016 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4017 	    txq->axq_link);
4018 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4019 }
4020 
4021 /*
4022  * Drain the transmit queues and reclaim resources.
4023  */
4024 static void
4025 ath_draintxq(struct ath_softc *sc)
4026 {
4027 	struct ath_hal *ah = sc->sc_ah;
4028 	struct ifnet *ifp = sc->sc_ifp;
4029 	int i;
4030 
4031 	/* XXX return value */
4032 	if (!sc->sc_invalid) {
4033 		/* don't touch the hardware if marked invalid */
4034 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4035 		    __func__, sc->sc_bhalq,
4036 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4037 		    NULL);
4038 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4039 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4040 			if (ATH_TXQ_SETUP(sc, i))
4041 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4042 	}
4043 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4044 		if (ATH_TXQ_SETUP(sc, i))
4045 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4046 #ifdef ATH_DEBUG
4047 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4048 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4049 		if (bf != NULL && bf->bf_m != NULL) {
4050 			ath_printtxbuf(bf, sc->sc_bhalq, 0,
4051 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4052 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4053 				bf->bf_m->m_len, 0, -1);
4054 		}
4055 	}
4056 #endif /* ATH_DEBUG */
4057 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4058 	sc->sc_tx_timer = 0;
4059 }
4060 
4061 /*
4062  * Disable the receive h/w in preparation for a reset.
4063  */
4064 static void
4065 ath_stoprecv(struct ath_softc *sc)
4066 {
4067 #define	PA2DESC(_sc, _pa) \
4068 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4069 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4070 	struct ath_hal *ah = sc->sc_ah;
4071 
4072 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4073 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4074 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4075 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4076 #ifdef ATH_DEBUG
4077 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4078 		struct ath_buf *bf;
4079 		u_int ix;
4080 
4081 		printf("%s: rx queue %p, link %p\n", __func__,
4082 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4083 		ix = 0;
4084 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4085 			struct ath_desc *ds = bf->bf_desc;
4086 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4087 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4088 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4089 				ath_printrxbuf(bf, ix, status == HAL_OK);
4090 			ix++;
4091 		}
4092 	}
4093 #endif
4094 	sc->sc_rxlink = NULL;		/* just in case */
4095 #undef PA2DESC
4096 }
4097 
4098 /*
4099  * Enable the receive h/w following a reset.
4100  */
4101 static int
4102 ath_startrecv(struct ath_softc *sc)
4103 {
4104 	struct ath_hal *ah = sc->sc_ah;
4105 	struct ath_buf *bf;
4106 
4107 	sc->sc_rxlink = NULL;
4108 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4109 		int error = ath_rxbuf_init(sc, bf);
4110 		if (error != 0) {
4111 			DPRINTF(sc, ATH_DEBUG_RECV,
4112 				"%s: ath_rxbuf_init failed %d\n",
4113 				__func__, error);
4114 			return error;
4115 		}
4116 	}
4117 
4118 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4119 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4120 	ath_hal_rxena(ah);		/* enable recv descriptors */
4121 	ath_mode_init(sc);		/* set filters, etc. */
4122 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4123 	return 0;
4124 }
4125 
4126 /*
4127  * Update internal state after a channel change.
4128  */
4129 static void
4130 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4131 {
4132 	struct ieee80211com *ic = &sc->sc_ic;
4133 	enum ieee80211_phymode mode;
4134 	u_int16_t flags;
4135 
4136 	/*
4137 	 * Change channels and update the h/w rate map
4138 	 * if we're switching; e.g. 11a to 11b/g.
4139 	 */
4140 	mode = ieee80211_chan2mode(ic, chan);
4141 	if (mode != sc->sc_curmode)
4142 		ath_setcurmode(sc, mode);
4143 	/*
4144 	 * Update BPF state.  NB: ethereal et. al. don't handle
4145 	 * merged flags well so pick a unique mode for their use.
4146 	 */
4147 	if (IEEE80211_IS_CHAN_A(chan))
4148 		flags = IEEE80211_CHAN_A;
4149 	/* XXX 11g schizophrenia */
4150 	else if (IEEE80211_IS_CHAN_G(chan) ||
4151 	    IEEE80211_IS_CHAN_PUREG(chan))
4152 		flags = IEEE80211_CHAN_G;
4153 	else
4154 		flags = IEEE80211_CHAN_B;
4155 	if (IEEE80211_IS_CHAN_T(chan))
4156 		flags |= IEEE80211_CHAN_TURBO;
4157 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4158 		htole16(chan->ic_freq);
4159 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4160 		htole16(flags);
4161 }
4162 
4163 /*
4164  * Poll for a channel clear indication; this is required
4165  * for channels requiring DFS and not previously visited
4166  * and/or with a recent radar detection.
4167  */
4168 static void
4169 ath_dfswait(void *arg)
4170 {
4171 	struct ath_softc *sc = arg;
4172 	struct ath_hal *ah = sc->sc_ah;
4173 	HAL_CHANNEL hchan;
4174 
4175 	ath_hal_radar_wait(ah, &hchan);
4176 	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4177 	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4178 
4179 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4180 		if_printf(sc->sc_ifp,
4181 		    "channel %u/0x%x/0x%x has interference\n",
4182 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4183 		return;
4184 	}
4185 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4186 		/* XXX should not happen */
4187 		return;
4188 	}
4189 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4190 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4191 		sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4192 		if_printf(sc->sc_ifp,
4193 		    "channel %u/0x%x/0x%x marked clear\n",
4194 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4195 	} else
4196 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4197 }
4198 
4199 /*
4200  * Set/change channels.  If the channel is really being changed,
4201  * it's done by reseting the chip.  To accomplish this we must
4202  * first cleanup any pending DMA, then restart stuff after a la
4203  * ath_init.
4204  */
4205 static int
4206 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4207 {
4208 	struct ath_hal *ah = sc->sc_ah;
4209 	struct ieee80211com *ic = &sc->sc_ic;
4210 	HAL_CHANNEL hchan;
4211 
4212 	/*
4213 	 * Convert to a HAL channel description with
4214 	 * the flags constrained to reflect the current
4215 	 * operating mode.
4216 	 */
4217 	hchan.channel = chan->ic_freq;
4218 	hchan.channelFlags = ath_chan2flags(ic, chan);
4219 
4220 	DPRINTF(sc, ATH_DEBUG_RESET,
4221 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4222 	    __func__,
4223 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4224 		sc->sc_curchan.channelFlags),
4225 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4226 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4227 	        hchan.channel, hchan.channelFlags);
4228 	if (hchan.channel != sc->sc_curchan.channel ||
4229 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4230 		HAL_STATUS status;
4231 
4232 		/*
4233 		 * To switch channels clear any pending DMA operations;
4234 		 * wait long enough for the RX fifo to drain, reset the
4235 		 * hardware at the new frequency, and then re-enable
4236 		 * the relevant bits of the h/w.
4237 		 */
4238 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4239 		ath_draintxq(sc);		/* clear pending tx frames */
4240 		ath_stoprecv(sc);		/* turn off frame recv */
4241 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
4242 			if_printf(ic->ic_ifp, "%s: unable to reset "
4243 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
4244 			    __func__, ieee80211_chan2ieee(ic, chan),
4245 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4246 			return EIO;
4247 		}
4248 		sc->sc_curchan = hchan;
4249 		ath_update_txpow(sc);		/* update tx power state */
4250 		sc->sc_diversity = ath_hal_getdiversity(ah);
4251 		sc->sc_calinterval = 1;
4252 		sc->sc_caltries = 0;
4253 
4254 		/*
4255 		 * Re-enable rx framework.
4256 		 */
4257 		if (ath_startrecv(sc) != 0) {
4258 			if_printf(ic->ic_ifp,
4259 				"%s: unable to restart recv logic\n", __func__);
4260 			return EIO;
4261 		}
4262 
4263 		/*
4264 		 * Change channels and update the h/w rate map
4265 		 * if we're switching; e.g. 11a to 11b/g.
4266 		 */
4267 		ic->ic_ibss_chan = chan;
4268 		ath_chan_change(sc, chan);
4269 
4270 		/*
4271 		 * Handle DFS required waiting period to determine
4272 		 * if channel is clear of radar traffic.
4273 		 */
4274 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4275 #define	DFS_AND_NOT_CLEAR(_c) \
4276 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4277 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4278 				if_printf(sc->sc_ifp,
4279 					"wait for DFS clear channel signal\n");
4280 				/* XXX stop sndq */
4281 				sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4282 				callout_reset(&sc->sc_dfs_ch,
4283 					2 * hz, ath_dfswait, sc);
4284 			} else
4285 				callout_stop(&sc->sc_dfs_ch);
4286 #undef DFS_NOT_CLEAR
4287 		}
4288 
4289 		/*
4290 		 * Re-enable interrupts.
4291 		 */
4292 		ath_hal_intrset(ah, sc->sc_imask);
4293 	}
4294 	return 0;
4295 }
4296 
4297 static void
4298 ath_next_scan(void *arg)
4299 {
4300 	struct ath_softc *sc = arg;
4301 	struct ieee80211com *ic = &sc->sc_ic;
4302 
4303 	if (ic->ic_state == IEEE80211_S_SCAN)
4304 		ieee80211_next_scan(ic);
4305 }
4306 
4307 /*
4308  * Periodically recalibrate the PHY to account
4309  * for temperature/environment changes.
4310  */
4311 static void
4312 ath_calibrate(void *arg)
4313 {
4314 	struct ath_softc *sc = arg;
4315 	struct ath_hal *ah = sc->sc_ah;
4316 	HAL_BOOL iqCalDone;
4317 
4318 	sc->sc_stats.ast_per_cal++;
4319 
4320 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4321 		/*
4322 		 * Rfgain is out of bounds, reset the chip
4323 		 * to load new gain values.
4324 		 */
4325 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4326 			"%s: rfgain change\n", __func__);
4327 		sc->sc_stats.ast_per_rfgain++;
4328 		ath_reset(sc->sc_ifp);
4329 	}
4330 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4331 		DPRINTF(sc, ATH_DEBUG_ANY,
4332 			"%s: calibration of channel %u failed\n",
4333 			__func__, sc->sc_curchan.channel);
4334 		sc->sc_stats.ast_per_calfail++;
4335 	}
4336 	/*
4337 	 * Calibrate noise floor data again in case of change.
4338 	 */
4339 	ath_hal_process_noisefloor(ah);
4340 	/*
4341 	 * Poll more frequently when the IQ calibration is in
4342 	 * progress to speedup loading the final settings.
4343 	 * We temper this aggressive polling with an exponential
4344 	 * back off after 4 tries up to ath_calinterval.
4345 	 */
4346 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4347 		sc->sc_caltries = 0;
4348 		sc->sc_calinterval = ath_calinterval;
4349 	} else if (sc->sc_caltries > 4) {
4350 		sc->sc_caltries = 0;
4351 		sc->sc_calinterval <<= 1;
4352 		if (sc->sc_calinterval > ath_calinterval)
4353 			sc->sc_calinterval = ath_calinterval;
4354 	}
4355 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4356 		("bad calibration interval %u", sc->sc_calinterval));
4357 
4358 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4359 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4360 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4361 	sc->sc_caltries++;
4362 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4363 		ath_calibrate, sc);
4364 }
4365 
4366 static int
4367 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4368 {
4369 	struct ifnet *ifp = ic->ic_ifp;
4370 	struct ath_softc *sc = ifp->if_softc;
4371 	struct ath_hal *ah = sc->sc_ah;
4372 	struct ieee80211_node *ni;
4373 	int i, error;
4374 	const u_int8_t *bssid;
4375 	u_int32_t rfilt;
4376 	static const HAL_LED_STATE leds[] = {
4377 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4378 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4379 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4380 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4381 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4382 	};
4383 
4384 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4385 		ieee80211_state_name[ic->ic_state],
4386 		ieee80211_state_name[nstate]);
4387 
4388 	callout_stop(&sc->sc_scan_ch);
4389 	callout_stop(&sc->sc_cal_ch);
4390 	callout_stop(&sc->sc_dfs_ch);
4391 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4392 
4393 	if (nstate == IEEE80211_S_INIT) {
4394 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4395 		/*
4396 		 * NB: disable interrupts so we don't rx frames.
4397 		 */
4398 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4399 		/*
4400 		 * Notify the rate control algorithm.
4401 		 */
4402 		ath_rate_newstate(sc, nstate);
4403 		goto done;
4404 	}
4405 	ni = ic->ic_bss;
4406 	error = ath_chan_set(sc, ic->ic_curchan);
4407 	if (error != 0)
4408 		goto bad;
4409 	rfilt = ath_calcrxfilter(sc, nstate);
4410 	if (nstate == IEEE80211_S_SCAN)
4411 		bssid = ifp->if_broadcastaddr;
4412 	else
4413 		bssid = ni->ni_bssid;
4414 	ath_hal_setrxfilter(ah, rfilt);
4415 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4416 		 __func__, rfilt, ether_sprintf(bssid));
4417 
4418 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4419 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4420 	else
4421 		ath_hal_setassocid(ah, bssid, 0);
4422 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4423 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4424 			if (ath_hal_keyisvalid(ah, i))
4425 				ath_hal_keysetmac(ah, i, bssid);
4426 	}
4427 
4428 	/*
4429 	 * Notify the rate control algorithm so rates
4430 	 * are setup should ath_beacon_alloc be called.
4431 	 */
4432 	ath_rate_newstate(sc, nstate);
4433 
4434 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4435 		/* nothing to do */;
4436 	} else if (nstate == IEEE80211_S_RUN) {
4437 		DPRINTF(sc, ATH_DEBUG_STATE,
4438 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4439 			"capinfo=0x%04x chan=%d\n"
4440 			 , __func__
4441 			 , ic->ic_flags
4442 			 , ni->ni_intval
4443 			 , ether_sprintf(ni->ni_bssid)
4444 			 , ni->ni_capinfo
4445 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4446 
4447 		switch (ic->ic_opmode) {
4448 		case IEEE80211_M_HOSTAP:
4449 		case IEEE80211_M_IBSS:
4450 			/*
4451 			 * Allocate and setup the beacon frame.
4452 			 *
4453 			 * Stop any previous beacon DMA.  This may be
4454 			 * necessary, for example, when an ibss merge
4455 			 * causes reconfiguration; there will be a state
4456 			 * transition from RUN->RUN that means we may
4457 			 * be called with beacon transmission active.
4458 			 */
4459 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4460 			ath_beacon_free(sc);
4461 			error = ath_beacon_alloc(sc, ni);
4462 			if (error != 0)
4463 				goto bad;
4464 			/*
4465 			 * If joining an adhoc network defer beacon timer
4466 			 * configuration to the next beacon frame so we
4467 			 * have a current TSF to use.  Otherwise we're
4468 			 * starting an ibss/bss so there's no need to delay.
4469 			 */
4470 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4471 			    ic->ic_bss->ni_tstamp.tsf != 0)
4472 				sc->sc_syncbeacon = 1;
4473 			else
4474 				ath_beacon_config(sc);
4475 			break;
4476 		case IEEE80211_M_STA:
4477 			/*
4478 			 * Allocate a key cache slot to the station.
4479 			 */
4480 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4481 			    sc->sc_hasclrkey &&
4482 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4483 				ath_setup_stationkey(ni);
4484 			/*
4485 			 * Defer beacon timer configuration to the next
4486 			 * beacon frame so we have a current TSF to use
4487 			 * (any TSF collected when scanning is likely old).
4488 			 */
4489 			sc->sc_syncbeacon = 1;
4490 			break;
4491 		default:
4492 			break;
4493 		}
4494 
4495 		/*
4496 		 * Let the hal process statistics collected during a
4497 		 * scan so it can provide calibrated noise floor data.
4498 		 */
4499 		ath_hal_process_noisefloor(ah);
4500 		/*
4501 		 * Reset rssi stats; maybe not the best place...
4502 		 */
4503 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4504 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4505 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4506 	} else {
4507 		ath_hal_intrset(ah,
4508 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4509 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4510 	}
4511 done:
4512 	/*
4513 	 * Invoke the parent method to complete the work.
4514 	 */
4515 	error = sc->sc_newstate(ic, nstate, arg);
4516 	/*
4517 	 * Finally, start any timers.
4518 	 */
4519 	if (nstate == IEEE80211_S_RUN) {
4520 		/* start periodic recalibration timer */
4521 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4522 			ath_calibrate, sc);
4523 	} else if (nstate == IEEE80211_S_SCAN) {
4524 		/* start ap/neighbor scan timer */
4525 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4526 			ath_next_scan, sc);
4527 	}
4528 bad:
4529 	return error;
4530 }
4531 
4532 /*
4533  * Allocate a key cache slot to the station so we can
4534  * setup a mapping from key index to node. The key cache
4535  * slot is needed for managing antenna state and for
4536  * compression when stations do not use crypto.  We do
4537  * it uniliaterally here; if crypto is employed this slot
4538  * will be reassigned.
4539  */
4540 static void
4541 ath_setup_stationkey(struct ieee80211_node *ni)
4542 {
4543 	struct ieee80211com *ic = ni->ni_ic;
4544 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4545 	ieee80211_keyix keyix, rxkeyix;
4546 
4547 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4548 		/*
4549 		 * Key cache is full; we'll fall back to doing
4550 		 * the more expensive lookup in software.  Note
4551 		 * this also means no h/w compression.
4552 		 */
4553 		/* XXX msg+statistic */
4554 	} else {
4555 		/* XXX locking? */
4556 		ni->ni_ucastkey.wk_keyix = keyix;
4557 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4558 		/* NB: this will create a pass-thru key entry */
4559 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4560 	}
4561 }
4562 
4563 /*
4564  * Setup driver-specific state for a newly associated node.
4565  * Note that we're called also on a re-associate, the isnew
4566  * param tells us if this is the first time or not.
4567  */
4568 static void
4569 ath_newassoc(struct ieee80211_node *ni, int isnew)
4570 {
4571 	struct ieee80211com *ic = ni->ni_ic;
4572 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4573 
4574 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4575 	if (isnew &&
4576 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4577 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4578 		    ("new assoc with a unicast key already setup (keyix %u)",
4579 		    ni->ni_ucastkey.wk_keyix));
4580 		ath_setup_stationkey(ni);
4581 	}
4582 }
4583 
4584 static int
4585 ath_getchannels(struct ath_softc *sc, u_int cc,
4586 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4587 {
4588 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4589 #define IS_CHAN_PUBLIC_SAFETY(_c) \
4590 	(((_c)->channelFlags & CHANNEL_5GHZ) && \
4591 	 ((_c)->channel > 4940 && (_c)->channel < 4990))
4592 	struct ieee80211com *ic = &sc->sc_ic;
4593 	struct ifnet *ifp = sc->sc_ifp;
4594 	struct ath_hal *ah = sc->sc_ah;
4595 	HAL_CHANNEL *chans;
4596 	int i, ix, nchan;
4597 
4598 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4599 			M_TEMP, M_NOWAIT);
4600 	if (chans == NULL) {
4601 		if_printf(ifp, "unable to allocate channel table\n");
4602 		return ENOMEM;
4603 	}
4604 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4605 	    NULL, 0, NULL,
4606 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4607 		u_int32_t rd;
4608 
4609 		ath_hal_getregdomain(ah, &rd);
4610 		if_printf(ifp, "unable to collect channel list from hal; "
4611 			"regdomain likely %u country code %u\n", rd, cc);
4612 		free(chans, M_TEMP);
4613 		return EINVAL;
4614 	}
4615 
4616 	/*
4617 	 * Convert HAL channels to ieee80211 ones and insert
4618 	 * them in the table according to their channel number.
4619 	 */
4620 	for (i = 0; i < nchan; i++) {
4621 		HAL_CHANNEL *c = &chans[i];
4622 		u_int16_t flags;
4623 
4624 		/*
4625 		 * XXX we're not ready to handle the ieee number mapping
4626 		 * for public safety channels as they overlap with any
4627 		 * 2GHz channels; for now use the non-public safety
4628 		 * numbering which is non-overlapping.
4629 		 */
4630 		if (IS_CHAN_PUBLIC_SAFETY(c))
4631 			ix = (c->channel - 4000) / 5;
4632 		else
4633 			ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4634 		if (ix > IEEE80211_CHAN_MAX) {
4635 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4636 				ix, c->channel, c->channelFlags);
4637 			continue;
4638 		}
4639 		if (ix < 0) {
4640 			/* XXX can't handle stuff <2400 right now */
4641 			if (bootverbose)
4642 				if_printf(ifp, "hal channel %d (%u/%x) "
4643 				    "cannot be handled; ignored\n",
4644 				    ix, c->channel, c->channelFlags);
4645 			continue;
4646 		}
4647 		/*
4648 		 * Calculate net80211 flags; most are compatible
4649 		 * but some need massaging.  Note the static turbo
4650 		 * conversion can be removed once net80211 is updated
4651 		 * to understand static vs. dynamic turbo.
4652 		 */
4653 		flags = c->channelFlags & COMPAT;
4654 		if (c->channelFlags & CHANNEL_STURBO)
4655 			flags |= IEEE80211_CHAN_TURBO;
4656 		if (ic->ic_channels[ix].ic_freq == 0) {
4657 			ic->ic_channels[ix].ic_freq = c->channel;
4658 			ic->ic_channels[ix].ic_flags = flags;
4659 		} else {
4660 			/* channels overlap; e.g. 11g and 11b */
4661 			ic->ic_channels[ix].ic_flags |= flags;
4662 		}
4663 	}
4664 	free(chans, M_TEMP);
4665 	return 0;
4666 #undef IS_CHAN_PUBLIC_SAFETY
4667 #undef COMPAT
4668 }
4669 
4670 static void
4671 ath_led_done(void *arg)
4672 {
4673 	struct ath_softc *sc = arg;
4674 
4675 	sc->sc_blinking = 0;
4676 }
4677 
4678 /*
4679  * Turn the LED off: flip the pin and then set a timer so no
4680  * update will happen for the specified duration.
4681  */
4682 static void
4683 ath_led_off(void *arg)
4684 {
4685 	struct ath_softc *sc = arg;
4686 
4687 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4688 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4689 }
4690 
4691 /*
4692  * Blink the LED according to the specified on/off times.
4693  */
4694 static void
4695 ath_led_blink(struct ath_softc *sc, int on, int off)
4696 {
4697 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4698 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4699 	sc->sc_blinking = 1;
4700 	sc->sc_ledoff = off;
4701 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4702 }
4703 
4704 static void
4705 ath_led_event(struct ath_softc *sc, int event)
4706 {
4707 
4708 	sc->sc_ledevent = ticks;	/* time of last event */
4709 	if (sc->sc_blinking)		/* don't interrupt active blink */
4710 		return;
4711 	switch (event) {
4712 	case ATH_LED_POLL:
4713 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4714 			sc->sc_hwmap[0].ledoff);
4715 		break;
4716 	case ATH_LED_TX:
4717 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4718 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4719 		break;
4720 	case ATH_LED_RX:
4721 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4722 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4723 		break;
4724 	}
4725 }
4726 
4727 static void
4728 ath_update_txpow(struct ath_softc *sc)
4729 {
4730 	struct ieee80211com *ic = &sc->sc_ic;
4731 	struct ath_hal *ah = sc->sc_ah;
4732 	u_int32_t txpow;
4733 
4734 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4735 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4736 		/* read back in case value is clamped */
4737 		ath_hal_gettxpowlimit(ah, &txpow);
4738 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4739 	}
4740 	/*
4741 	 * Fetch max tx power level for status requests.
4742 	 */
4743 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4744 	ic->ic_bss->ni_txpower = txpow;
4745 }
4746 
4747 static void
4748 rate_setup(struct ath_softc *sc,
4749 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4750 {
4751 	int i, maxrates;
4752 
4753 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4754 		DPRINTF(sc, ATH_DEBUG_ANY,
4755 			"%s: rate table too small (%u > %u)\n",
4756 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4757 		maxrates = IEEE80211_RATE_MAXSIZE;
4758 	} else
4759 		maxrates = rt->rateCount;
4760 	for (i = 0; i < maxrates; i++)
4761 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4762 	rs->rs_nrates = maxrates;
4763 }
4764 
4765 static int
4766 ath_rate_setup(struct ath_softc *sc, u_int mode)
4767 {
4768 	struct ath_hal *ah = sc->sc_ah;
4769 	struct ieee80211com *ic = &sc->sc_ic;
4770 	const HAL_RATE_TABLE *rt;
4771 
4772 	switch (mode) {
4773 	case IEEE80211_MODE_11A:
4774 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4775 		break;
4776 	case IEEE80211_MODE_11B:
4777 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4778 		break;
4779 	case IEEE80211_MODE_11G:
4780 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4781 		break;
4782 	case IEEE80211_MODE_TURBO_A:
4783 		/* XXX until static/dynamic turbo is fixed */
4784 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4785 		break;
4786 	case IEEE80211_MODE_TURBO_G:
4787 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4788 		break;
4789 	default:
4790 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4791 			__func__, mode);
4792 		return 0;
4793 	}
4794 	sc->sc_rates[mode] = rt;
4795 	if (rt != NULL) {
4796 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4797 		return 1;
4798 	} else
4799 		return 0;
4800 }
4801 
4802 static void
4803 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4804 {
4805 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4806 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4807 	static const struct {
4808 		u_int		rate;		/* tx/rx 802.11 rate */
4809 		u_int16_t	timeOn;		/* LED on time (ms) */
4810 		u_int16_t	timeOff;	/* LED off time (ms) */
4811 	} blinkrates[] = {
4812 		{ 108,  40,  10 },
4813 		{  96,  44,  11 },
4814 		{  72,  50,  13 },
4815 		{  48,  57,  14 },
4816 		{  36,  67,  16 },
4817 		{  24,  80,  20 },
4818 		{  22, 100,  25 },
4819 		{  18, 133,  34 },
4820 		{  12, 160,  40 },
4821 		{  10, 200,  50 },
4822 		{   6, 240,  58 },
4823 		{   4, 267,  66 },
4824 		{   2, 400, 100 },
4825 		{   0, 500, 130 },
4826 	};
4827 	const HAL_RATE_TABLE *rt;
4828 	int i, j;
4829 
4830 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4831 	rt = sc->sc_rates[mode];
4832 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4833 	for (i = 0; i < rt->rateCount; i++)
4834 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4835 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4836 	for (i = 0; i < 32; i++) {
4837 		u_int8_t ix = rt->rateCodeToIndex[i];
4838 		if (ix == 0xff) {
4839 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4840 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4841 			continue;
4842 		}
4843 		sc->sc_hwmap[i].ieeerate =
4844 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4845 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4846 		if (rt->info[ix].shortPreamble ||
4847 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4848 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4849 		/* NB: receive frames include FCS */
4850 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4851 			IEEE80211_RADIOTAP_F_FCS;
4852 		/* setup blink rate table to avoid per-packet lookup */
4853 		for (j = 0; j < N(blinkrates)-1; j++)
4854 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4855 				break;
4856 		/* NB: this uses the last entry if the rate isn't found */
4857 		/* XXX beware of overlow */
4858 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4859 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4860 	}
4861 	sc->sc_currates = rt;
4862 	sc->sc_curmode = mode;
4863 	/*
4864 	 * All protection frames are transmited at 2Mb/s for
4865 	 * 11g, otherwise at 1Mb/s.
4866 	 */
4867 	if (mode == IEEE80211_MODE_11G)
4868 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4869 	else
4870 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4871 	/* rate index used to send management frames */
4872 	sc->sc_minrateix = 0;
4873 	/*
4874 	 * Setup multicast rate state.
4875 	 */
4876 	/* XXX layering violation */
4877 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4878 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4879 	/* NB: caller is responsible for reseting rate control state */
4880 #undef N
4881 }
4882 
4883 #ifdef ATH_DEBUG
4884 static void
4885 ath_printrxbuf(struct ath_buf *bf, u_int ix, int done)
4886 {
4887 	struct ath_desc *ds;
4888 	int i;
4889 
4890 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4891 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
4892 		       "      %08x %08x %08x %08x\n",
4893 		    ix, ds, (struct ath_desc *)bf->bf_daddr + i,
4894 		    ds->ds_link, ds->ds_data,
4895 		    !done ? "" : (ds->ds_rxstat.rs_status == 0) ? " *" : " !",
4896 		    ds->ds_ctl0, ds->ds_ctl1,
4897 		    ds->ds_hw[0], ds->ds_hw[1]);
4898 	}
4899 }
4900 
4901 static void
4902 ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done)
4903 {
4904 	struct ath_desc *ds;
4905 	int i;
4906 
4907 	printf("Q%u[%3u]", qnum, ix);
4908 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4909 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
4910 		       "        %08x %08x %08x %08x %08x %08x\n",
4911 		    ds, (struct ath_desc *)bf->bf_daddr + i,
4912 		    ds->ds_link, ds->ds_data, bf->bf_flags,
4913 		    !done ? "" : (ds->ds_txstat.ts_status == 0) ? " *" : " !",
4914 		    ds->ds_ctl0, ds->ds_ctl1,
4915 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
4916 	}
4917 }
4918 #endif /* ATH_DEBUG */
4919 
4920 static void
4921 ath_watchdog(struct ifnet *ifp)
4922 {
4923 	struct ath_softc *sc = ifp->if_softc;
4924 	struct ieee80211com *ic = &sc->sc_ic;
4925 
4926 	ifp->if_timer = 0;
4927 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
4928 		return;
4929 	if (sc->sc_tx_timer) {
4930 		if (--sc->sc_tx_timer == 0) {
4931 			if_printf(ifp, "device timeout\n");
4932 			ath_reset(ifp);
4933 			ifp->if_oerrors++;
4934 			sc->sc_stats.ast_watchdog++;
4935 		} else
4936 			ifp->if_timer = 1;
4937 	}
4938 	ieee80211_watchdog(ic);
4939 }
4940 
4941 #ifdef ATH_DIAGAPI
4942 /*
4943  * Diagnostic interface to the HAL.  This is used by various
4944  * tools to do things like retrieve register contents for
4945  * debugging.  The mechanism is intentionally opaque so that
4946  * it can change frequently w/o concern for compatiblity.
4947  */
4948 static int
4949 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4950 {
4951 	struct ath_hal *ah = sc->sc_ah;
4952 	u_int id = ad->ad_id & ATH_DIAG_ID;
4953 	void *indata = NULL;
4954 	void *outdata = NULL;
4955 	u_int32_t insize = ad->ad_in_size;
4956 	u_int32_t outsize = ad->ad_out_size;
4957 	int error = 0;
4958 
4959 	if (ad->ad_id & ATH_DIAG_IN) {
4960 		/*
4961 		 * Copy in data.
4962 		 */
4963 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4964 		if (indata == NULL) {
4965 			error = ENOMEM;
4966 			goto bad;
4967 		}
4968 		error = copyin(ad->ad_in_data, indata, insize);
4969 		if (error)
4970 			goto bad;
4971 	}
4972 	if (ad->ad_id & ATH_DIAG_DYN) {
4973 		/*
4974 		 * Allocate a buffer for the results (otherwise the HAL
4975 		 * returns a pointer to a buffer where we can read the
4976 		 * results).  Note that we depend on the HAL leaving this
4977 		 * pointer for us to use below in reclaiming the buffer;
4978 		 * may want to be more defensive.
4979 		 */
4980 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4981 		if (outdata == NULL) {
4982 			error = ENOMEM;
4983 			goto bad;
4984 		}
4985 	}
4986 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4987 		if (outsize < ad->ad_out_size)
4988 			ad->ad_out_size = outsize;
4989 		if (outdata != NULL)
4990 			error = copyout(outdata, ad->ad_out_data,
4991 					ad->ad_out_size);
4992 	} else {
4993 		error = EINVAL;
4994 	}
4995 bad:
4996 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4997 		free(indata, M_TEMP);
4998 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4999 		free(outdata, M_TEMP);
5000 	return error;
5001 }
5002 #endif /* ATH_DIAGAPI */
5003 
5004 static int
5005 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5006 {
5007 #define	IS_RUNNING(ifp) \
5008 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5009 	struct ath_softc *sc = ifp->if_softc;
5010 	struct ieee80211com *ic = &sc->sc_ic;
5011 	struct ifreq *ifr = (struct ifreq *)data;
5012 	int error = 0;
5013 
5014 	ATH_LOCK(sc);
5015 	switch (cmd) {
5016 	case SIOCSIFFLAGS:
5017 		if (IS_RUNNING(ifp)) {
5018 			/*
5019 			 * To avoid rescanning another access point,
5020 			 * do not call ath_init() here.  Instead,
5021 			 * only reflect promisc mode settings.
5022 			 */
5023 			ath_mode_init(sc);
5024 		} else if (ifp->if_flags & IFF_UP) {
5025 			/*
5026 			 * Beware of being called during attach/detach
5027 			 * to reset promiscuous mode.  In that case we
5028 			 * will still be marked UP but not RUNNING.
5029 			 * However trying to re-init the interface
5030 			 * is the wrong thing to do as we've already
5031 			 * torn down much of our state.  There's
5032 			 * probably a better way to deal with this.
5033 			 */
5034 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5035 				ath_init(sc);	/* XXX lose error */
5036 		} else
5037 			ath_stop_locked(ifp);
5038 		break;
5039 	case SIOCADDMULTI:
5040 	case SIOCDELMULTI:
5041 		/*
5042 		 * The upper layer has already installed/removed
5043 		 * the multicast address(es), just recalculate the
5044 		 * multicast filter for the card.
5045 		 */
5046 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5047 			ath_mode_init(sc);
5048 		break;
5049 	case SIOCGATHSTATS:
5050 		/* NB: embed these numbers to get a consistent view */
5051 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5052 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5053 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5054 		ATH_UNLOCK(sc);
5055 		/*
5056 		 * NB: Drop the softc lock in case of a page fault;
5057 		 * we'll accept any potential inconsisentcy in the
5058 		 * statistics.  The alternative is to copy the data
5059 		 * to a local structure.
5060 		 */
5061 		return copyout(&sc->sc_stats,
5062 				ifr->ifr_data, sizeof (sc->sc_stats));
5063 #ifdef ATH_DIAGAPI
5064 	case SIOCGATHDIAG:
5065 		ATH_UNLOCK(sc);
5066 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5067 		ATH_LOCK(sc);
5068 		break;
5069 #endif
5070 	default:
5071 		error = ieee80211_ioctl(ic, cmd, data);
5072 		if (error == ENETRESET) {
5073 			if (IS_RUNNING(ifp) &&
5074 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5075 				ath_init(sc);	/* XXX lose error */
5076 			error = 0;
5077 		}
5078 		if (error == ERESTART)
5079 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5080 		break;
5081 	}
5082 	ATH_UNLOCK(sc);
5083 	return error;
5084 #undef IS_RUNNING
5085 }
5086 
5087 static int
5088 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5089 {
5090 	struct ath_softc *sc = arg1;
5091 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
5092 	int error;
5093 
5094 	error = sysctl_handle_int(oidp, &slottime, 0, req);
5095 	if (error || !req->newptr)
5096 		return error;
5097 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5098 }
5099 
5100 static int
5101 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5102 {
5103 	struct ath_softc *sc = arg1;
5104 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5105 	int error;
5106 
5107 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5108 	if (error || !req->newptr)
5109 		return error;
5110 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5111 }
5112 
5113 static int
5114 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5115 {
5116 	struct ath_softc *sc = arg1;
5117 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5118 	int error;
5119 
5120 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5121 	if (error || !req->newptr)
5122 		return error;
5123 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5124 }
5125 
5126 static int
5127 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5128 {
5129 	struct ath_softc *sc = arg1;
5130 	int softled = sc->sc_softled;
5131 	int error;
5132 
5133 	error = sysctl_handle_int(oidp, &softled, 0, req);
5134 	if (error || !req->newptr)
5135 		return error;
5136 	softled = (softled != 0);
5137 	if (softled != sc->sc_softled) {
5138 		if (softled) {
5139 			/* NB: handle any sc_ledpin change */
5140 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5141 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5142 				!sc->sc_ledon);
5143 		}
5144 		sc->sc_softled = softled;
5145 	}
5146 	return 0;
5147 }
5148 
5149 static int
5150 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
5151 {
5152 	struct ath_softc *sc = arg1;
5153 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
5154 	int error;
5155 
5156 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
5157 	if (!error && req->newptr)
5158 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
5159 	return error;
5160 }
5161 
5162 static int
5163 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
5164 {
5165 	struct ath_softc *sc = arg1;
5166 	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
5167 	int error;
5168 
5169 	error = sysctl_handle_int(oidp, &diversity, 0, req);
5170 	if (error || !req->newptr)
5171 		return error;
5172 	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
5173 		return EINVAL;
5174 	sc->sc_diversity = diversity;
5175 	return 0;
5176 }
5177 
5178 static int
5179 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
5180 {
5181 	struct ath_softc *sc = arg1;
5182 	u_int32_t diag;
5183 	int error;
5184 
5185 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
5186 		return EINVAL;
5187 	error = sysctl_handle_int(oidp, &diag, 0, req);
5188 	if (error || !req->newptr)
5189 		return error;
5190 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
5191 }
5192 
5193 static int
5194 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
5195 {
5196 	struct ath_softc *sc = arg1;
5197 	struct ifnet *ifp = sc->sc_ifp;
5198 	u_int32_t scale;
5199 	int error;
5200 
5201 	ath_hal_gettpscale(sc->sc_ah, &scale);
5202 	error = sysctl_handle_int(oidp, &scale, 0, req);
5203 	if (error || !req->newptr)
5204 		return error;
5205 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
5206 }
5207 
5208 static int
5209 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
5210 {
5211 	struct ath_softc *sc = arg1;
5212 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
5213 	int error;
5214 
5215 	error = sysctl_handle_int(oidp, &tpc, 0, req);
5216 	if (error || !req->newptr)
5217 		return error;
5218 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
5219 }
5220 
5221 static int
5222 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
5223 {
5224 	struct ath_softc *sc = arg1;
5225 	struct ath_hal *ah = sc->sc_ah;
5226 	u_int rfkill = ath_hal_getrfkill(ah);
5227 	int error;
5228 
5229 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
5230 	if (error || !req->newptr)
5231 		return error;
5232 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
5233 		return 0;
5234 	if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(sc->sc_ifp) != 0)
5235 		return EINVAL;
5236 	else
5237 		return 0;
5238 }
5239 
5240 static int
5241 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
5242 {
5243 	struct ath_softc *sc = arg1;
5244 	u_int rfsilent;
5245 	int error;
5246 
5247 	ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
5248 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
5249 	if (error || !req->newptr)
5250 		return error;
5251 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
5252 		return EINVAL;
5253 	sc->sc_rfsilentpin = rfsilent & 0x1c;
5254 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
5255 	return 0;
5256 }
5257 
5258 static int
5259 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5260 {
5261 	struct ath_softc *sc = arg1;
5262 	u_int32_t rd;
5263 	int error;
5264 
5265 	if (!ath_hal_getregdomain(sc->sc_ah, &rd))
5266 		return EINVAL;
5267 	error = sysctl_handle_int(oidp, &rd, 0, req);
5268 	if (error || !req->newptr)
5269 		return error;
5270 	return !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0;
5271 }
5272 
5273 static int
5274 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
5275 {
5276 	struct ath_softc *sc = arg1;
5277 	u_int32_t tpack;
5278 	int error;
5279 
5280 	ath_hal_gettpack(sc->sc_ah, &tpack);
5281 	error = sysctl_handle_int(oidp, &tpack, 0, req);
5282 	if (error || !req->newptr)
5283 		return error;
5284 	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
5285 }
5286 
5287 static int
5288 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
5289 {
5290 	struct ath_softc *sc = arg1;
5291 	u_int32_t tpcts;
5292 	int error;
5293 
5294 	ath_hal_gettpcts(sc->sc_ah, &tpcts);
5295 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
5296 	if (error || !req->newptr)
5297 		return error;
5298 	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
5299 }
5300 
5301 static void
5302 ath_sysctlattach(struct ath_softc *sc)
5303 {
5304 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5305 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5306 	struct ath_hal *ah = sc->sc_ah;
5307 
5308 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
5309 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5310 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
5311 		"EEPROM country code");
5312 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5313 		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5314 		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5315 #ifdef	ATH_DEBUG
5316 	sc->sc_debug = ath_debug;
5317 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5318 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5319 		"control debugging printfs");
5320 #endif
5321 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5322 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5323 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5324 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5325 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5326 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5327 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5328 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5329 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5330 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5331 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5332 		ath_sysctl_softled, "I", "enable/disable software LED support");
5333 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5334 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5335 		"GPIO pin connected to LED");
5336 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5337 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5338 		"setting to turn LED on");
5339 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5340 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5341 		"idle time for inactivity LED (ticks)");
5342 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5343 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
5344 		"tx antenna (0=auto)");
5345 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5346 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5347 		ath_sysctl_rxantenna, "I", "default/rx antenna");
5348 	if (ath_hal_hasdiversity(ah))
5349 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5350 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5351 			ath_sysctl_diversity, "I", "antenna diversity");
5352 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5353 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5354 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5355 		"tx descriptor batching");
5356 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5357 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5358 		ath_sysctl_diag, "I", "h/w diagnostic control");
5359 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5360 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5361 		ath_sysctl_tpscale, "I", "tx power scaling");
5362 	if (ath_hal_hastpc(ah)) {
5363 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5364 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5365 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5366 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5367 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5368 			ath_sysctl_tpack, "I", "tx power for ack frames");
5369 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5370 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5371 			ath_sysctl_tpcts, "I", "tx power for cts frames");
5372 	}
5373 	if (ath_hal_hasrfsilent(ah)) {
5374 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5375 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5376 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
5377 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5378 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5379 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
5380 	}
5381 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5382 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5383 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5384 		"mask of error frames to pass when monitoring");
5385 }
5386 
5387 static void
5388 ath_bpfattach(struct ath_softc *sc)
5389 {
5390 	struct ifnet *ifp = sc->sc_ifp;
5391 
5392 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5393 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5394 		&sc->sc_drvbpf);
5395 	/*
5396 	 * Initialize constant fields.
5397 	 * XXX make header lengths a multiple of 32-bits so subsequent
5398 	 *     headers are properly aligned; this is a kludge to keep
5399 	 *     certain applications happy.
5400 	 *
5401 	 * NB: the channel is setup each time we transition to the
5402 	 *     RUN state to avoid filling it in for each frame.
5403 	 */
5404 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5405 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5406 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5407 
5408 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5409 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5410 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5411 }
5412 
5413 /*
5414  * Announce various information on device/driver attach.
5415  */
5416 static void
5417 ath_announce(struct ath_softc *sc)
5418 {
5419 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5420 	struct ifnet *ifp = sc->sc_ifp;
5421 	struct ath_hal *ah = sc->sc_ah;
5422 	u_int modes, cc;
5423 
5424 	if_printf(ifp, "mac %d.%d phy %d.%d",
5425 		ah->ah_macVersion, ah->ah_macRev,
5426 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5427 	/*
5428 	 * Print radio revision(s).  We check the wireless modes
5429 	 * to avoid falsely printing revs for inoperable parts.
5430 	 * Dual-band radio revs are returned in the 5Ghz rev number.
5431 	 */
5432 	ath_hal_getcountrycode(ah, &cc);
5433 	modes = ath_hal_getwirelessmodes(ah, cc);
5434 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5435 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5436 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5437 				ah->ah_analog5GhzRev >> 4,
5438 				ah->ah_analog5GhzRev & 0xf,
5439 				ah->ah_analog2GhzRev >> 4,
5440 				ah->ah_analog2GhzRev & 0xf);
5441 		else
5442 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5443 				ah->ah_analog5GhzRev & 0xf);
5444 	} else
5445 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5446 			ah->ah_analog5GhzRev & 0xf);
5447 	printf("\n");
5448 	if (bootverbose) {
5449 		int i;
5450 		for (i = 0; i <= WME_AC_VO; i++) {
5451 			struct ath_txq *txq = sc->sc_ac2q[i];
5452 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5453 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5454 		}
5455 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5456 			sc->sc_cabq->axq_qnum);
5457 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5458 	}
5459 	if (ath_rxbuf != ATH_RXBUF)
5460 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5461 	if (ath_txbuf != ATH_TXBUF)
5462 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5463 #undef HAL_MODE_DUALBAND
5464 }
5465