xref: /freebsd/sys/dev/ath/if_ath.c (revision 74bf4e164ba5851606a27d4feff27717452583e5)
1 /*-
2  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 
86 /* unalligned little endian access */
87 #define LE_READ_2(p)							\
88 	((u_int16_t)							\
89 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
90 #define LE_READ_4(p)							\
91 	((u_int32_t)							\
92 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
93 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
94 
95 static void	ath_init(void *);
96 static void	ath_stop(struct ifnet *);
97 static void	ath_start(struct ifnet *);
98 static void	ath_reset(struct ath_softc *);
99 static int	ath_media_change(struct ifnet *);
100 static void	ath_watchdog(struct ifnet *);
101 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
102 static void	ath_fatal_proc(void *, int);
103 static void	ath_rxorn_proc(void *, int);
104 static void	ath_bmiss_proc(void *, int);
105 static void	ath_initkeytable(struct ath_softc *);
106 static void	ath_mode_init(struct ath_softc *);
107 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
108 static void	ath_beacon_proc(void *, int);
109 static void	ath_beacon_free(struct ath_softc *);
110 static void	ath_beacon_config(struct ath_softc *);
111 static int	ath_desc_alloc(struct ath_softc *);
112 static void	ath_desc_free(struct ath_softc *);
113 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
114 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
115 static void	ath_node_copy(struct ieee80211com *,
116 			struct ieee80211_node *, const struct ieee80211_node *);
117 static u_int8_t	ath_node_getrssi(struct ieee80211com *,
118 			struct ieee80211_node *);
119 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
120 static void	ath_rx_proc(void *, int);
121 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
122 			     struct ath_buf *, struct mbuf *);
123 static void	ath_tx_proc(void *, int);
124 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
125 static void	ath_draintxq(struct ath_softc *);
126 static void	ath_stoprecv(struct ath_softc *);
127 static int	ath_startrecv(struct ath_softc *);
128 static void	ath_next_scan(void *);
129 static void	ath_calibrate(void *);
130 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
131 static void	ath_newassoc(struct ieee80211com *,
132 			struct ieee80211_node *, int);
133 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
134 
135 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
136 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
137 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
138 static void	ath_rate_ctl(void *, struct ieee80211_node *);
139 
140 SYSCTL_DECL(_hw_ath);
141 
142 /* XXX validate sysctl values */
143 static	int ath_dwelltime = 200;		/* 5 channels/second */
144 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
145 	    0, "channel dwell time (ms) for AP/station scanning");
146 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
147 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
148 	    0, "chip calibration interval (secs)");
149 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
150 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
151 	    0, "enable/disable outdoor operation");
152 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
153 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
154 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
155 	    0, "country code");
156 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
157 static	int ath_regdomain = 0;			/* regulatory domain */
158 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
159 	    0, "regulatory domain");
160 
161 #ifdef AR_DEBUG
162 int	ath_debug = 0;
163 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
164 	    0, "control debugging printfs");
165 TUNABLE_INT("hw.ath.debug", &ath_debug);
166 #define	IFF_DUMPPKTS(_ifp, _m) \
167 	((ath_debug & _m) || \
168 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
169 static	void ath_printrxbuf(struct ath_buf *bf, int);
170 static	void ath_printtxbuf(struct ath_buf *bf, int);
171 enum {
172 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
173 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
174 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
175 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
176 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
177 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
178 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
179 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
180 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
181 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
182 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
183 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
184 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
185 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
186 	ATH_DEBUG_ANY		= 0xffffffff
187 };
188 #define	DPRINTF(_m,X)	if (ath_debug & _m) printf X
189 #else
190 #define	IFF_DUMPPKTS(_ifp, _m) \
191 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
192 #define	DPRINTF(_m, X)
193 #endif
194 
195 int
196 ath_attach(u_int16_t devid, struct ath_softc *sc)
197 {
198 	struct ieee80211com *ic = &sc->sc_ic;
199 	struct ifnet *ifp = &ic->ic_if;
200 	struct ath_hal *ah;
201 	HAL_STATUS status;
202 	int error = 0;
203 
204 	DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
205 
206 	/* set these up early for if_printf use */
207 	if_initname(ifp, device_get_name(sc->sc_dev),
208 	    device_get_unit(sc->sc_dev));
209 
210 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
211 	if (ah == NULL) {
212 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
213 			status);
214 		error = ENXIO;
215 		goto bad;
216 	}
217 	if (ah->ah_abi != HAL_ABI_VERSION) {
218 		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
219 			ah->ah_abi, HAL_ABI_VERSION);
220 		error = ENXIO;
221 		goto bad;
222 	}
223 	if_printf(ifp, "mac %d.%d phy %d.%d",
224 		ah->ah_macVersion, ah->ah_macRev,
225 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
226 	if (ah->ah_analog5GhzRev)
227 		printf(" 5ghz radio %d.%d",
228 			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
229 	if (ah->ah_analog2GhzRev)
230 		printf(" 2ghz radio %d.%d",
231 			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
232 	printf("\n");
233 	sc->sc_ah = ah;
234 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
235 
236 	/*
237 	 * Collect the channel list using the default country
238 	 * code and including outdoor channels.  The 802.11 layer
239 	 * is resposible for filtering this list based on settings
240 	 * like the phy mode.
241 	 */
242 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
243 	if (error != 0)
244 		goto bad;
245 	/*
246 	 * Copy these back; they are set as a side effect
247 	 * of constructing the channel list.
248 	 */
249 	ath_regdomain = ath_hal_getregdomain(ah);
250 	ath_countrycode = ath_hal_getcountrycode(ah);
251 
252 	/*
253 	 * Setup rate tables for all potential media types.
254 	 */
255 	ath_rate_setup(sc, IEEE80211_MODE_11A);
256 	ath_rate_setup(sc, IEEE80211_MODE_11B);
257 	ath_rate_setup(sc, IEEE80211_MODE_11G);
258 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
259 
260 	error = ath_desc_alloc(sc);
261 	if (error != 0) {
262 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
263 		goto bad;
264 	}
265 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
266 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
267 
268 	ATH_TXBUF_LOCK_INIT(sc);
269 	ATH_TXQ_LOCK_INIT(sc);
270 
271 	TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
272 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
273 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
274 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
275 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
276 
277 	/*
278 	 * For now just pre-allocate one data queue and one
279 	 * beacon queue.  Note that the HAL handles resetting
280 	 * them at the needed time.  Eventually we'll want to
281 	 * allocate more tx queues for splitting management
282 	 * frames and for QOS support.
283 	 */
284 	sc->sc_txhalq = ath_hal_setuptxqueue(ah,
285 		HAL_TX_QUEUE_DATA,
286 		AH_TRUE			/* enable interrupts */
287 	);
288 	if (sc->sc_txhalq == (u_int) -1) {
289 		if_printf(ifp, "unable to setup a data xmit queue!\n");
290 		goto bad2;
291 	}
292 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,
293 		HAL_TX_QUEUE_BEACON,
294 		AH_TRUE			/* enable interrupts */
295 	);
296 	if (sc->sc_bhalq == (u_int) -1) {
297 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
298 		goto bad2;
299 	}
300 
301 	ifp->if_softc = sc;
302 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
303 	ifp->if_start = ath_start;
304 	ifp->if_watchdog = ath_watchdog;
305 	ifp->if_ioctl = ath_ioctl;
306 	ifp->if_init = ath_init;
307 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
308 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
309 	IFQ_SET_READY(&ifp->if_snd);
310 
311 	ic->ic_softc = sc;
312 	ic->ic_newassoc = ath_newassoc;
313 	/* XXX not right but it's not used anywhere important */
314 	ic->ic_phytype = IEEE80211_T_OFDM;
315 	ic->ic_opmode = IEEE80211_M_STA;
316 	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
317 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
318 		| IEEE80211_C_HOSTAP		/* hostap mode */
319 		| IEEE80211_C_MONITOR		/* monitor mode */
320 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
321 		;
322 
323 	/* get mac address from hardware */
324 	ath_hal_getmac(ah, ic->ic_myaddr);
325 
326 	/* call MI attach routine. */
327 	ieee80211_ifattach(ifp);
328 	/* override default methods */
329 	ic->ic_node_alloc = ath_node_alloc;
330 	sc->sc_node_free = ic->ic_node_free;
331 	ic->ic_node_free = ath_node_free;
332 	sc->sc_node_copy = ic->ic_node_copy;
333 	ic->ic_node_copy = ath_node_copy;
334 	ic->ic_node_getrssi = ath_node_getrssi;
335 	sc->sc_newstate = ic->ic_newstate;
336 	ic->ic_newstate = ath_newstate;
337 	/* complete initialization */
338 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
339 
340 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
341 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
342 		&sc->sc_drvbpf);
343 	/*
344 	 * Initialize constant fields.
345 	 * XXX make header lengths a multiple of 32-bits so subsequent
346 	 *     headers are properly aligned; this is a kludge to keep
347 	 *     certain applications happy.
348 	 *
349 	 * NB: the channel is setup each time we transition to the
350 	 *     RUN state to avoid filling it in for each frame.
351 	 */
352 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
353 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
354 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
355 
356 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
357 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
358 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
359 
360 	return 0;
361 bad2:
362 	ath_desc_free(sc);
363 bad:
364 	if (ah)
365 		ath_hal_detach(ah);
366 	sc->sc_invalid = 1;
367 	return error;
368 }
369 
370 int
371 ath_detach(struct ath_softc *sc)
372 {
373 	struct ifnet *ifp = &sc->sc_ic.ic_if;
374 
375 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
376 
377 	ath_stop(ifp);
378 	bpfdetach(ifp);
379 	ath_desc_free(sc);
380 	ath_hal_detach(sc->sc_ah);
381 	ieee80211_ifdetach(ifp);
382 
383 	ATH_TXBUF_LOCK_DESTROY(sc);
384 	ATH_TXQ_LOCK_DESTROY(sc);
385 
386 	return 0;
387 }
388 
389 void
390 ath_suspend(struct ath_softc *sc)
391 {
392 	struct ifnet *ifp = &sc->sc_ic.ic_if;
393 
394 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
395 
396 	ath_stop(ifp);
397 }
398 
399 void
400 ath_resume(struct ath_softc *sc)
401 {
402 	struct ifnet *ifp = &sc->sc_ic.ic_if;
403 
404 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
405 
406 	if (ifp->if_flags & IFF_UP) {
407 		ath_init(ifp);
408 		if (ifp->if_flags & IFF_RUNNING)
409 			ath_start(ifp);
410 	}
411 }
412 
413 void
414 ath_shutdown(struct ath_softc *sc)
415 {
416 	struct ifnet *ifp = &sc->sc_ic.ic_if;
417 
418 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
419 
420 	ath_stop(ifp);
421 }
422 
423 void
424 ath_intr(void *arg)
425 {
426 	struct ath_softc *sc = arg;
427 	struct ieee80211com *ic = &sc->sc_ic;
428 	struct ifnet *ifp = &ic->ic_if;
429 	struct ath_hal *ah = sc->sc_ah;
430 	HAL_INT status;
431 
432 	if (sc->sc_invalid) {
433 		/*
434 		 * The hardware is not ready/present, don't touch anything.
435 		 * Note this can happen early on if the IRQ is shared.
436 		 */
437 		DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
438 		return;
439 	}
440 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
441 		return;
442 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
443 		DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
444 			__func__, ifp->if_flags));
445 		ath_hal_getisr(ah, &status);	/* clear ISR */
446 		ath_hal_intrset(ah, 0);		/* disable further intr's */
447 		return;
448 	}
449 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
450 	DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
451 #ifdef AR_DEBUG
452 	if (ath_debug &&
453 	    (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
454 		if_printf(ifp, "ath_intr: status 0x%x\n", status);
455 		ath_hal_dumpstate(ah);
456 	}
457 #endif /* AR_DEBUG */
458 	status &= sc->sc_imask;			/* discard unasked for bits */
459 	if (status & HAL_INT_FATAL) {
460 		sc->sc_stats.ast_hardware++;
461 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
462 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
463 	} else if (status & HAL_INT_RXORN) {
464 		sc->sc_stats.ast_rxorn++;
465 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
466 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
467 	} else {
468 		if (status & HAL_INT_RXEOL) {
469 			/*
470 			 * NB: the hardware should re-read the link when
471 			 *     RXE bit is written, but it doesn't work at
472 			 *     least on older hardware revs.
473 			 */
474 			sc->sc_stats.ast_rxeol++;
475 			sc->sc_rxlink = NULL;
476 		}
477 		if (status & HAL_INT_TXURN) {
478 			sc->sc_stats.ast_txurn++;
479 			/* bump tx trigger level */
480 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
481 		}
482 		if (status & HAL_INT_RX)
483 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
484 		if (status & HAL_INT_TX)
485 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
486 		if (status & HAL_INT_SWBA) {
487 			/*
488 			 * Handle beacon transmission directly; deferring
489 			 * this is too slow to meet timing constraints
490 			 * under load.
491 			 */
492 			ath_beacon_proc(sc, 0);
493 		}
494 		if (status & HAL_INT_BMISS) {
495 			sc->sc_stats.ast_bmiss++;
496 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
497 		}
498 	}
499 }
500 
501 static void
502 ath_fatal_proc(void *arg, int pending)
503 {
504 	struct ath_softc *sc = arg;
505 
506 	device_printf(sc->sc_dev, "hardware error; resetting\n");
507 	ath_reset(sc);
508 }
509 
510 static void
511 ath_rxorn_proc(void *arg, int pending)
512 {
513 	struct ath_softc *sc = arg;
514 
515 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
516 	ath_reset(sc);
517 }
518 
519 static void
520 ath_bmiss_proc(void *arg, int pending)
521 {
522 	struct ath_softc *sc = arg;
523 	struct ieee80211com *ic = &sc->sc_ic;
524 
525 	DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
526 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
527 		("unexpect operating mode %u", ic->ic_opmode));
528 	if (ic->ic_state == IEEE80211_S_RUN) {
529 		/*
530 		 * Rather than go directly to scan state, try to
531 		 * reassociate first.  If that fails then the state
532 		 * machine will drop us into scanning after timing
533 		 * out waiting for a probe response.
534 		 */
535 		NET_LOCK_GIANT();
536 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
537 		NET_UNLOCK_GIANT();
538 	}
539 }
540 
541 static u_int
542 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
543 {
544 	static const u_int modeflags[] = {
545 		0,			/* IEEE80211_MODE_AUTO */
546 		CHANNEL_A,		/* IEEE80211_MODE_11A */
547 		CHANNEL_B,		/* IEEE80211_MODE_11B */
548 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
549 		CHANNEL_T		/* IEEE80211_MODE_TURBO */
550 	};
551 	return modeflags[ieee80211_chan2mode(ic, chan)];
552 }
553 
554 static void
555 ath_init(void *arg)
556 {
557 	struct ath_softc *sc = (struct ath_softc *) arg;
558 	struct ieee80211com *ic = &sc->sc_ic;
559 	struct ifnet *ifp = &ic->ic_if;
560 	struct ieee80211_node *ni;
561 	enum ieee80211_phymode mode;
562 	struct ath_hal *ah = sc->sc_ah;
563 	HAL_STATUS status;
564 	HAL_CHANNEL hchan;
565 
566 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
567 		__func__, ifp->if_flags));
568 
569 	ATH_LOCK(sc);
570 	/*
571 	 * Stop anything previously setup.  This is safe
572 	 * whether this is the first time through or not.
573 	 */
574 	ath_stop(ifp);
575 
576 	/*
577 	 * The basic interface to setting the hardware in a good
578 	 * state is ``reset''.  On return the hardware is known to
579 	 * be powered up and with interrupts disabled.  This must
580 	 * be followed by initialization of the appropriate bits
581 	 * and then setup of the interrupt mask.
582 	 */
583 	hchan.channel = ic->ic_ibss_chan->ic_freq;
584 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
585 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
586 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
587 			status);
588 		goto done;
589 	}
590 
591 	/*
592 	 * Setup the hardware after reset: the key cache
593 	 * is filled as needed and the receive engine is
594 	 * set going.  Frame transmit is handled entirely
595 	 * in the frame output path; there's nothing to do
596 	 * here except setup the interrupt mask.
597 	 */
598 	if (ic->ic_flags & IEEE80211_F_WEPON)
599 		ath_initkeytable(sc);
600 	if (ath_startrecv(sc) != 0) {
601 		if_printf(ifp, "unable to start recv logic\n");
602 		goto done;
603 	}
604 
605 	/*
606 	 * Enable interrupts.
607 	 */
608 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
609 		  | HAL_INT_RXEOL | HAL_INT_RXORN
610 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
611 	ath_hal_intrset(ah, sc->sc_imask);
612 
613 	ifp->if_flags |= IFF_RUNNING;
614 	ic->ic_state = IEEE80211_S_INIT;
615 
616 	/*
617 	 * The hardware should be ready to go now so it's safe
618 	 * to kick the 802.11 state machine as it's likely to
619 	 * immediately call back to us to send mgmt frames.
620 	 */
621 	ni = ic->ic_bss;
622 	ni->ni_chan = ic->ic_ibss_chan;
623 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
624 	if (mode != sc->sc_curmode)
625 		ath_setcurmode(sc, mode);
626 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
627 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
628 	else
629 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
630 done:
631 	ATH_UNLOCK(sc);
632 }
633 
634 static void
635 ath_stop(struct ifnet *ifp)
636 {
637 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
638 	struct ath_softc *sc = ifp->if_softc;
639 	struct ath_hal *ah = sc->sc_ah;
640 
641 	DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
642 		__func__, sc->sc_invalid, ifp->if_flags));
643 
644 	ATH_LOCK(sc);
645 	if (ifp->if_flags & IFF_RUNNING) {
646 		/*
647 		 * Shutdown the hardware and driver:
648 		 *    disable interrupts
649 		 *    turn off timers
650 		 *    clear transmit machinery
651 		 *    clear receive machinery
652 		 *    drain and release tx queues
653 		 *    reclaim beacon resources
654 		 *    reset 802.11 state machine
655 		 *    power down hardware
656 		 *
657 		 * Note that some of this work is not possible if the
658 		 * hardware is gone (invalid).
659 		 */
660 		ifp->if_flags &= ~IFF_RUNNING;
661 		ifp->if_timer = 0;
662 		if (!sc->sc_invalid)
663 			ath_hal_intrset(ah, 0);
664 		ath_draintxq(sc);
665 		if (!sc->sc_invalid)
666 			ath_stoprecv(sc);
667 		else
668 			sc->sc_rxlink = NULL;
669 		IFQ_DRV_PURGE(&ifp->if_snd);
670 		ath_beacon_free(sc);
671 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
672 		if (!sc->sc_invalid)
673 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
674 	}
675 	ATH_UNLOCK(sc);
676 }
677 
678 /*
679  * Reset the hardware w/o losing operational state.  This is
680  * basically a more efficient way of doing ath_stop, ath_init,
681  * followed by state transitions to the current 802.11
682  * operational state.  Used to recover from errors rx overrun
683  * and to reset the hardware when rf gain settings must be reset.
684  */
685 static void
686 ath_reset(struct ath_softc *sc)
687 {
688 	struct ieee80211com *ic = &sc->sc_ic;
689 	struct ifnet *ifp = &ic->ic_if;
690 	struct ath_hal *ah = sc->sc_ah;
691 	struct ieee80211_channel *c;
692 	HAL_STATUS status;
693 	HAL_CHANNEL hchan;
694 
695 	/*
696 	 * Convert to a HAL channel description with the flags
697 	 * constrained to reflect the current operating mode.
698 	 */
699 	c = ic->ic_ibss_chan;
700 	hchan.channel = c->ic_freq;
701 	hchan.channelFlags = ath_chan2flags(ic, c);
702 
703 	ath_hal_intrset(ah, 0);		/* disable interrupts */
704 	ath_draintxq(sc);		/* stop xmit side */
705 	ath_stoprecv(sc);		/* stop recv side */
706 	/* NB: indicate channel change so we do a full reset */
707 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
708 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
709 			__func__, status);
710 	ath_hal_intrset(ah, sc->sc_imask);
711 	if (ath_startrecv(sc) != 0)	/* restart recv */
712 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
713 	ath_start(ifp);			/* restart xmit */
714 	if (ic->ic_state == IEEE80211_S_RUN)
715 		ath_beacon_config(sc);	/* restart beacons */
716 }
717 
718 static void
719 ath_start(struct ifnet *ifp)
720 {
721 	struct ath_softc *sc = ifp->if_softc;
722 	struct ath_hal *ah = sc->sc_ah;
723 	struct ieee80211com *ic = &sc->sc_ic;
724 	struct ieee80211_node *ni;
725 	struct ath_buf *bf;
726 	struct mbuf *m;
727 	struct ieee80211_frame *wh;
728 
729 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
730 		return;
731 	for (;;) {
732 		/*
733 		 * Grab a TX buffer and associated resources.
734 		 */
735 		ATH_TXBUF_LOCK(sc);
736 		bf = TAILQ_FIRST(&sc->sc_txbuf);
737 		if (bf != NULL)
738 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
739 		ATH_TXBUF_UNLOCK(sc);
740 		if (bf == NULL) {
741 			DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
742 				__func__));
743 			sc->sc_stats.ast_tx_qstop++;
744 			ifp->if_flags |= IFF_OACTIVE;
745 			break;
746 		}
747 		/*
748 		 * Poll the management queue for frames; they
749 		 * have priority over normal data frames.
750 		 */
751 		IF_DEQUEUE(&ic->ic_mgtq, m);
752 		if (m == NULL) {
753 			/*
754 			 * No data frames go out unless we're associated.
755 			 */
756 			if (ic->ic_state != IEEE80211_S_RUN) {
757 				DPRINTF(ATH_DEBUG_ANY,
758 					("%s: ignore data packet, state %u\n",
759 					__func__, ic->ic_state));
760 				sc->sc_stats.ast_tx_discard++;
761 				ATH_TXBUF_LOCK(sc);
762 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
763 				ATH_TXBUF_UNLOCK(sc);
764 				break;
765 			}
766 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
767 			if (m == NULL) {
768 				ATH_TXBUF_LOCK(sc);
769 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
770 				ATH_TXBUF_UNLOCK(sc);
771 				break;
772 			}
773 			ifp->if_opackets++;
774 			BPF_MTAP(ifp, m);
775 			/*
776 			 * Encapsulate the packet in prep for transmission.
777 			 */
778 			m = ieee80211_encap(ifp, m, &ni);
779 			if (m == NULL) {
780 				DPRINTF(ATH_DEBUG_ANY,
781 					("%s: encapsulation failure\n",
782 					__func__));
783 				sc->sc_stats.ast_tx_encap++;
784 				goto bad;
785 			}
786 			wh = mtod(m, struct ieee80211_frame *);
787 			if (ic->ic_flags & IEEE80211_F_WEPON)
788 				wh->i_fc[1] |= IEEE80211_FC1_WEP;
789 		} else {
790 			/*
791 			 * Hack!  The referenced node pointer is in the
792 			 * rcvif field of the packet header.  This is
793 			 * placed there by ieee80211_mgmt_output because
794 			 * we need to hold the reference with the frame
795 			 * and there's no other way (other than packet
796 			 * tags which we consider too expensive to use)
797 			 * to pass it along.
798 			 */
799 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
800 			m->m_pkthdr.rcvif = NULL;
801 
802 			wh = mtod(m, struct ieee80211_frame *);
803 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
804 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
805 				/* fill time stamp */
806 				u_int64_t tsf;
807 				u_int32_t *tstamp;
808 
809 				tsf = ath_hal_gettsf64(ah);
810 				/* XXX: adjust 100us delay to xmit */
811 				tsf += 100;
812 				tstamp = (u_int32_t *)&wh[1];
813 				tstamp[0] = htole32(tsf & 0xffffffff);
814 				tstamp[1] = htole32(tsf >> 32);
815 			}
816 			sc->sc_stats.ast_tx_mgmt++;
817 		}
818 
819 		if (ath_tx_start(sc, ni, bf, m)) {
820 	bad:
821 			ATH_TXBUF_LOCK(sc);
822 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
823 			ATH_TXBUF_UNLOCK(sc);
824 			ifp->if_oerrors++;
825 			if (ni && ni != ic->ic_bss)
826 				ieee80211_free_node(ic, ni);
827 			continue;
828 		}
829 
830 		sc->sc_tx_timer = 5;
831 		ifp->if_timer = 1;
832 	}
833 }
834 
835 static int
836 ath_media_change(struct ifnet *ifp)
837 {
838 	int error;
839 
840 	error = ieee80211_media_change(ifp);
841 	if (error == ENETRESET) {
842 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
843 		    (IFF_RUNNING|IFF_UP))
844 			ath_init(ifp);		/* XXX lose error */
845 		error = 0;
846 	}
847 	return error;
848 }
849 
850 static void
851 ath_watchdog(struct ifnet *ifp)
852 {
853 	struct ath_softc *sc = ifp->if_softc;
854 	struct ieee80211com *ic = &sc->sc_ic;
855 
856 	ifp->if_timer = 0;
857 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
858 		return;
859 	if (sc->sc_tx_timer) {
860 		if (--sc->sc_tx_timer == 0) {
861 			if_printf(ifp, "device timeout\n");
862 #ifdef AR_DEBUG
863 			if (ath_debug & ATH_DEBUG_WATCHDOG)
864 				ath_hal_dumpstate(sc->sc_ah);
865 #endif /* AR_DEBUG */
866 			ath_reset(sc);
867 			ifp->if_oerrors++;
868 			sc->sc_stats.ast_watchdog++;
869 			return;
870 		}
871 		ifp->if_timer = 1;
872 	}
873 	if (ic->ic_fixed_rate == -1) {
874 		/*
875 		 * Run the rate control algorithm if we're not
876 		 * locked at a fixed rate.
877 		 */
878 		if (ic->ic_opmode == IEEE80211_M_STA)
879 			ath_rate_ctl(sc, ic->ic_bss);
880 		else
881 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
882 	}
883 	ieee80211_watchdog(ifp);
884 }
885 
886 static int
887 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
888 {
889 	struct ath_softc *sc = ifp->if_softc;
890 	struct ifreq *ifr = (struct ifreq *)data;
891 	int error = 0;
892 
893 	ATH_LOCK(sc);
894 	switch (cmd) {
895 	case SIOCSIFFLAGS:
896 		if (ifp->if_flags & IFF_UP) {
897 			if (ifp->if_flags & IFF_RUNNING) {
898 				/*
899 				 * To avoid rescanning another access point,
900 				 * do not call ath_init() here.  Instead,
901 				 * only reflect promisc mode settings.
902 				 */
903 				ath_mode_init(sc);
904 			} else {
905 				/*
906 				 * Beware of being called during detach to
907 				 * reset promiscuous mode.  In that case we
908 				 * will still be marked UP but not RUNNING.
909 				 * However trying to re-init the interface
910 				 * is the wrong thing to do as we've already
911 				 * torn down much of our state.  There's
912 				 * probably a better way to deal with this.
913 				 */
914 				if (!sc->sc_invalid)
915 					ath_init(ifp);	/* XXX lose error */
916 			}
917 		} else
918 			ath_stop(ifp);
919 		break;
920 	case SIOCADDMULTI:
921 	case SIOCDELMULTI:
922 		/*
923 		 * The upper layer has already installed/removed
924 		 * the multicast address(es), just recalculate the
925 		 * multicast filter for the card.
926 		 */
927 		if (ifp->if_flags & IFF_RUNNING)
928 			ath_mode_init(sc);
929 		break;
930 	case SIOCGATHSTATS:
931 		error = copyout(&sc->sc_stats,
932 				ifr->ifr_data, sizeof (sc->sc_stats));
933 		break;
934 	case SIOCGATHDIAG: {
935 		struct ath_diag *ad = (struct ath_diag *)data;
936 		struct ath_hal *ah = sc->sc_ah;
937 		void *data;
938 		u_int size;
939 
940 		if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
941 			if (size < ad->ad_size)
942 				ad->ad_size = size;
943 			if (data)
944 				error = copyout(data, ad->ad_data, ad->ad_size);
945 		} else
946 			error = EINVAL;
947 		break;
948 	}
949 	default:
950 		error = ieee80211_ioctl(ifp, cmd, data);
951 		if (error == ENETRESET) {
952 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
953 			    (IFF_RUNNING|IFF_UP))
954 				ath_init(ifp);		/* XXX lose error */
955 			error = 0;
956 		}
957 		break;
958 	}
959 	ATH_UNLOCK(sc);
960 	return error;
961 }
962 
963 /*
964  * Fill the hardware key cache with key entries.
965  */
966 static void
967 ath_initkeytable(struct ath_softc *sc)
968 {
969 	struct ieee80211com *ic = &sc->sc_ic;
970 	struct ath_hal *ah = sc->sc_ah;
971 	int i;
972 
973 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
974 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
975 		if (k->wk_len == 0)
976 			ath_hal_keyreset(ah, i);
977 		else
978 			/* XXX return value */
979 			/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
980 			ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
981 	}
982 }
983 
984 /*
985  * Calculate the receive filter according to the
986  * operating mode and state:
987  *
988  * o always accept unicast, broadcast, and multicast traffic
989  * o maintain current state of phy error reception
990  * o probe request frames are accepted only when operating in
991  *   hostap, adhoc, or monitor modes
992  * o enable promiscuous mode according to the interface state
993  * o accept beacons:
994  *   - when operating in adhoc mode so the 802.11 layer creates
995  *     node table entries for peers,
996  *   - when operating in station mode for collecting rssi data when
997  *     the station is otherwise quiet, or
998  *   - when scanning
999  */
1000 static u_int32_t
1001 ath_calcrxfilter(struct ath_softc *sc)
1002 {
1003 	struct ieee80211com *ic = &sc->sc_ic;
1004 	struct ath_hal *ah = sc->sc_ah;
1005 	struct ifnet *ifp = &ic->ic_if;
1006 	u_int32_t rfilt;
1007 
1008 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1009 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1010 	if (ic->ic_opmode != IEEE80211_M_STA)
1011 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1012 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1013 	    (ifp->if_flags & IFF_PROMISC))
1014 		rfilt |= HAL_RX_FILTER_PROM;
1015 	if (ic->ic_opmode == IEEE80211_M_STA ||
1016 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1017 	    ic->ic_state == IEEE80211_S_SCAN)
1018 		rfilt |= HAL_RX_FILTER_BEACON;
1019 	return rfilt;
1020 }
1021 
1022 static void
1023 ath_mode_init(struct ath_softc *sc)
1024 {
1025 	struct ieee80211com *ic = &sc->sc_ic;
1026 	struct ath_hal *ah = sc->sc_ah;
1027 	struct ifnet *ifp = &ic->ic_if;
1028 	u_int32_t rfilt, mfilt[2], val;
1029 	u_int8_t pos;
1030 	struct ifmultiaddr *ifma;
1031 
1032 	/* configure rx filter */
1033 	rfilt = ath_calcrxfilter(sc);
1034 	ath_hal_setrxfilter(ah, rfilt);
1035 
1036 	/* configure operational mode */
1037 	ath_hal_setopmode(ah, ic->ic_opmode);
1038 
1039 	/* calculate and install multicast filter */
1040 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1041 		mfilt[0] = mfilt[1] = 0;
1042 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1043 			caddr_t dl;
1044 
1045 			/* calculate XOR of eight 6bit values */
1046 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1047 			val = LE_READ_4(dl + 0);
1048 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1049 			val = LE_READ_4(dl + 3);
1050 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1051 			pos &= 0x3f;
1052 			mfilt[pos / 32] |= (1 << (pos % 32));
1053 		}
1054 	} else {
1055 		mfilt[0] = mfilt[1] = ~0;
1056 	}
1057 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1058 	DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1059 		__func__, rfilt, mfilt[0], mfilt[1]));
1060 }
1061 
1062 static void
1063 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1064 {
1065 	struct ath_buf *bf = arg;
1066 
1067 	KASSERT(nseg <= ATH_MAX_SCATTER,
1068 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1069 	bf->bf_mapsize = mapsize;
1070 	bf->bf_nseg = nseg;
1071 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1072 }
1073 
1074 static int
1075 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1076 {
1077 	struct ieee80211com *ic = &sc->sc_ic;
1078 	struct ifnet *ifp = &ic->ic_if;
1079 	struct ath_hal *ah = sc->sc_ah;
1080 	struct ieee80211_frame *wh;
1081 	struct ath_buf *bf;
1082 	struct ath_desc *ds;
1083 	struct mbuf *m;
1084 	int error, pktlen;
1085 	u_int8_t *frm, rate;
1086 	u_int16_t capinfo;
1087 	struct ieee80211_rateset *rs;
1088 	const HAL_RATE_TABLE *rt;
1089 
1090 	bf = sc->sc_bcbuf;
1091 	if (bf->bf_m != NULL) {
1092 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1093 		m_freem(bf->bf_m);
1094 		bf->bf_m = NULL;
1095 		bf->bf_node = NULL;
1096 	}
1097 	/*
1098 	 * NB: the beacon data buffer must be 32-bit aligned;
1099 	 * we assume the mbuf routines will return us something
1100 	 * with this alignment (perhaps should assert).
1101 	 */
1102 	rs = &ni->ni_rates;
1103 	pktlen = sizeof (struct ieee80211_frame)
1104 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1105 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1106 		pktlen += 2;
1107 	if (pktlen <= MHLEN)
1108 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1109 	else
1110 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1111 	if (m == NULL) {
1112 		DPRINTF(ATH_DEBUG_BEACON,
1113 			("%s: cannot get mbuf/cluster; size %u\n",
1114 			__func__, pktlen));
1115 		sc->sc_stats.ast_be_nombuf++;
1116 		return ENOMEM;
1117 	}
1118 
1119 	wh = mtod(m, struct ieee80211_frame *);
1120 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1121 	    IEEE80211_FC0_SUBTYPE_BEACON;
1122 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1123 	*(u_int16_t *)wh->i_dur = 0;
1124 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1125 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1126 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1127 	*(u_int16_t *)wh->i_seq = 0;
1128 
1129 	/*
1130 	 * beacon frame format
1131 	 *	[8] time stamp
1132 	 *	[2] beacon interval
1133 	 *	[2] cabability information
1134 	 *	[tlv] ssid
1135 	 *	[tlv] supported rates
1136 	 *	[tlv] parameter set (IBSS)
1137 	 *	[tlv] extended supported rates
1138 	 */
1139 	frm = (u_int8_t *)&wh[1];
1140 	memset(frm, 0, 8);	/* timestamp is set by hardware */
1141 	frm += 8;
1142 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1143 	frm += 2;
1144 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1145 		capinfo = IEEE80211_CAPINFO_IBSS;
1146 	else
1147 		capinfo = IEEE80211_CAPINFO_ESS;
1148 	if (ic->ic_flags & IEEE80211_F_WEPON)
1149 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1150 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1151 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1152 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1153 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1154 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1155 	*(u_int16_t *)frm = htole16(capinfo);
1156 	frm += 2;
1157 	*frm++ = IEEE80211_ELEMID_SSID;
1158 	*frm++ = ni->ni_esslen;
1159 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1160 	frm += ni->ni_esslen;
1161 	frm = ieee80211_add_rates(frm, rs);
1162 	*frm++ = IEEE80211_ELEMID_DSPARMS;
1163 	*frm++ = 1;
1164 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1165 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1166 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1167 		*frm++ = 2;
1168 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1169 	} else {
1170 		/* TODO: TIM */
1171 		*frm++ = IEEE80211_ELEMID_TIM;
1172 		*frm++ = 4;	/* length */
1173 		*frm++ = 0;	/* DTIM count */
1174 		*frm++ = 1;	/* DTIM period */
1175 		*frm++ = 0;	/* bitmap control */
1176 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1177 	}
1178 	frm = ieee80211_add_xrates(frm, rs);
1179 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1180 	KASSERT(m->m_pkthdr.len <= pktlen,
1181 		("beacon bigger than expected, len %u calculated %u",
1182 		m->m_pkthdr.len, pktlen));
1183 
1184 	DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1185 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1186 				     ath_mbuf_load_cb, bf,
1187 				     BUS_DMA_NOWAIT);
1188 	if (error != 0) {
1189 		m_freem(m);
1190 		return error;
1191 	}
1192 	KASSERT(bf->bf_nseg == 1,
1193 		("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1194 	bf->bf_m = m;
1195 
1196 	/* setup descriptors */
1197 	ds = bf->bf_desc;
1198 
1199 	ds->ds_link = 0;
1200 	ds->ds_data = bf->bf_segs[0].ds_addr;
1201 	/*
1202 	 * Calculate rate code.
1203 	 * XXX everything at min xmit rate
1204 	 */
1205 	rt = sc->sc_currates;
1206 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1207 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1208 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1209 	else
1210 		rate = rt->info[0].rateCode;
1211 	ath_hal_setuptxdesc(ah, ds
1212 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1213 		, sizeof(struct ieee80211_frame)	/* header length */
1214 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1215 		, 0x20				/* txpower XXX */
1216 		, rate, 1			/* series 0 rate/tries */
1217 		, HAL_TXKEYIX_INVALID		/* no encryption */
1218 		, 0				/* antenna mode */
1219 		, HAL_TXDESC_NOACK		/* no ack for beacons */
1220 		, 0				/* rts/cts rate */
1221 		, 0				/* rts/cts duration */
1222 	);
1223 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1224 	/* XXX verify mbuf data area covers this roundup */
1225 	ath_hal_filltxdesc(ah, ds
1226 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1227 		, AH_TRUE				/* first segment */
1228 		, AH_TRUE				/* last segment */
1229 	);
1230 
1231 	return 0;
1232 }
1233 
1234 static void
1235 ath_beacon_proc(void *arg, int pending)
1236 {
1237 	struct ath_softc *sc = arg;
1238 	struct ieee80211com *ic = &sc->sc_ic;
1239 	struct ath_buf *bf = sc->sc_bcbuf;
1240 	struct ath_hal *ah = sc->sc_ah;
1241 
1242 	DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1243 	if (ic->ic_opmode == IEEE80211_M_STA ||
1244 	    bf == NULL || bf->bf_m == NULL) {
1245 		DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1246 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1247 		return;
1248 	}
1249 	/* TODO: update beacon to reflect PS poll state */
1250 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1251 		DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1252 			__func__, sc->sc_bhalq));
1253 		/* NB: the HAL still stops DMA, so proceed */
1254 	}
1255 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1256 
1257 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1258 	ath_hal_txstart(ah, sc->sc_bhalq);
1259 	DPRINTF(ATH_DEBUG_BEACON_PROC,
1260 		("%s: TXDP%u = %p (%p)\n", __func__,
1261 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1262 }
1263 
1264 static void
1265 ath_beacon_free(struct ath_softc *sc)
1266 {
1267 	struct ath_buf *bf = sc->sc_bcbuf;
1268 
1269 	if (bf->bf_m != NULL) {
1270 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1271 		m_freem(bf->bf_m);
1272 		bf->bf_m = NULL;
1273 		bf->bf_node = NULL;
1274 	}
1275 }
1276 
1277 /*
1278  * Configure the beacon and sleep timers.
1279  *
1280  * When operating as an AP this resets the TSF and sets
1281  * up the hardware to notify us when we need to issue beacons.
1282  *
1283  * When operating in station mode this sets up the beacon
1284  * timers according to the timestamp of the last received
1285  * beacon and the current TSF, configures PCF and DTIM
1286  * handling, programs the sleep registers so the hardware
1287  * will wakeup in time to receive beacons, and configures
1288  * the beacon miss handling so we'll receive a BMISS
1289  * interrupt when we stop seeing beacons from the AP
1290  * we've associated with.
1291  */
1292 static void
1293 ath_beacon_config(struct ath_softc *sc)
1294 {
1295 	struct ath_hal *ah = sc->sc_ah;
1296 	struct ieee80211com *ic = &sc->sc_ic;
1297 	struct ieee80211_node *ni = ic->ic_bss;
1298 	u_int32_t nexttbtt;
1299 
1300 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1301 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1302 	DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
1303 	nexttbtt += ni->ni_intval;
1304 	if (ic->ic_opmode == IEEE80211_M_STA) {
1305 		HAL_BEACON_STATE bs;
1306 		u_int32_t bmisstime;
1307 
1308 		/* NB: no PCF support right now */
1309 		memset(&bs, 0, sizeof(bs));
1310 		bs.bs_intval = ni->ni_intval;
1311 		bs.bs_nexttbtt = nexttbtt;
1312 		bs.bs_dtimperiod = bs.bs_intval;
1313 		bs.bs_nextdtim = nexttbtt;
1314 		/*
1315 		 * Calculate the number of consecutive beacons to miss
1316 		 * before taking a BMISS interrupt.  The configuration
1317 		 * is specified in ms, so we need to convert that to
1318 		 * TU's and then calculate based on the beacon interval.
1319 		 * Note that we clamp the result to at most 10 beacons.
1320 		 */
1321 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1322 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1323 		if (bs.bs_bmissthreshold > 10)
1324 			bs.bs_bmissthreshold = 10;
1325 		else if (bs.bs_bmissthreshold <= 0)
1326 			bs.bs_bmissthreshold = 1;
1327 
1328 		/*
1329 		 * Calculate sleep duration.  The configuration is
1330 		 * given in ms.  We insure a multiple of the beacon
1331 		 * period is used.  Also, if the sleep duration is
1332 		 * greater than the DTIM period then it makes senses
1333 		 * to make it a multiple of that.
1334 		 *
1335 		 * XXX fixed at 100ms
1336 		 */
1337 		bs.bs_sleepduration =
1338 			roundup((100 * 1000) / 1024, bs.bs_intval);
1339 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1340 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1341 
1342 		DPRINTF(ATH_DEBUG_BEACON,
1343 			("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1344 			, __func__
1345 			, bs.bs_intval
1346 			, bs.bs_nexttbtt
1347 			, bs.bs_dtimperiod
1348 			, bs.bs_nextdtim
1349 			, bs.bs_bmissthreshold
1350 			, bs.bs_sleepduration
1351 		));
1352 		ath_hal_intrset(ah, 0);
1353 		/*
1354 		 * Reset our tsf so the hardware will update the
1355 		 * tsf register to reflect timestamps found in
1356 		 * received beacons.
1357 		 */
1358 		ath_hal_resettsf(ah);
1359 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1360 		sc->sc_imask |= HAL_INT_BMISS;
1361 		ath_hal_intrset(ah, sc->sc_imask);
1362 	} else {
1363 		DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1364 			__func__, ni->ni_intval, nexttbtt));
1365 		ath_hal_intrset(ah, 0);
1366 		ath_hal_beaconinit(ah, ic->ic_opmode,
1367 			nexttbtt, ni->ni_intval);
1368 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1369 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1370 		ath_hal_intrset(ah, sc->sc_imask);
1371 	}
1372 }
1373 
1374 static void
1375 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1376 {
1377 	bus_addr_t *paddr = (bus_addr_t*) arg;
1378 	*paddr = segs->ds_addr;
1379 }
1380 
1381 static int
1382 ath_desc_alloc(struct ath_softc *sc)
1383 {
1384 	int i, bsize, error;
1385 	struct ath_desc *ds;
1386 	struct ath_buf *bf;
1387 
1388 	/* allocate descriptors */
1389 	sc->sc_desc_len = sizeof(struct ath_desc) *
1390 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1391 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1392 	if (error != 0)
1393 		return error;
1394 
1395 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1396 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1397 	if (error != 0)
1398 		goto fail0;
1399 
1400 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1401 				sc->sc_desc, sc->sc_desc_len,
1402 				ath_load_cb, &sc->sc_desc_paddr,
1403 				BUS_DMA_NOWAIT);
1404 	if (error != 0)
1405 		goto fail1;
1406 
1407 	ds = sc->sc_desc;
1408 	DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
1409 	    __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
1410 	    /*XXX*/ (u_long) sc->sc_desc_len));
1411 
1412 	/* allocate buffers */
1413 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1414 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1415 	if (bf == NULL)
1416 		goto fail2;
1417 	sc->sc_bufptr = bf;
1418 
1419 	TAILQ_INIT(&sc->sc_rxbuf);
1420 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1421 		bf->bf_desc = ds;
1422 		bf->bf_daddr = sc->sc_desc_paddr +
1423 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1424 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1425 					  &bf->bf_dmamap);
1426 		if (error != 0)
1427 			break;
1428 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1429 	}
1430 
1431 	TAILQ_INIT(&sc->sc_txbuf);
1432 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1433 		bf->bf_desc = ds;
1434 		bf->bf_daddr = sc->sc_desc_paddr +
1435 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1436 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1437 					  &bf->bf_dmamap);
1438 		if (error != 0)
1439 			break;
1440 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1441 	}
1442 	TAILQ_INIT(&sc->sc_txq);
1443 
1444 	/* beacon buffer */
1445 	bf->bf_desc = ds;
1446 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1447 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1448 	if (error != 0)
1449 		return error;
1450 	sc->sc_bcbuf = bf;
1451 	return 0;
1452 
1453 fail2:
1454 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1455 fail1:
1456 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1457 fail0:
1458 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1459 	sc->sc_ddmamap = NULL;
1460 	return error;
1461 }
1462 
1463 static void
1464 ath_desc_free(struct ath_softc *sc)
1465 {
1466 	struct ath_buf *bf;
1467 
1468 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1469 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1470 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1471 
1472 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1473 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1474 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1475 		m_freem(bf->bf_m);
1476 	}
1477 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1478 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1479 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1480 		if (bf->bf_m) {
1481 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1482 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1483 			m_freem(bf->bf_m);
1484 			bf->bf_m = NULL;
1485 		}
1486 	}
1487 	if (sc->sc_bcbuf != NULL) {
1488 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1489 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1490 		sc->sc_bcbuf = NULL;
1491 	}
1492 
1493 	TAILQ_INIT(&sc->sc_rxbuf);
1494 	TAILQ_INIT(&sc->sc_txbuf);
1495 	TAILQ_INIT(&sc->sc_txq);
1496 	free(sc->sc_bufptr, M_DEVBUF);
1497 	sc->sc_bufptr = NULL;
1498 }
1499 
1500 static struct ieee80211_node *
1501 ath_node_alloc(struct ieee80211com *ic)
1502 {
1503 	struct ath_node *an =
1504 		malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
1505 	if (an) {
1506 		int i;
1507 		for (i = 0; i < ATH_RHIST_SIZE; i++)
1508 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1509 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1510 		return &an->an_node;
1511 	} else
1512 		return NULL;
1513 }
1514 
1515 static void
1516 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1517 {
1518         struct ath_softc *sc = ic->ic_if.if_softc;
1519 	struct ath_buf *bf;
1520 
1521 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1522 		if (bf->bf_node == ni)
1523 			bf->bf_node = NULL;
1524 	}
1525 	(*sc->sc_node_free)(ic, ni);
1526 }
1527 
1528 static void
1529 ath_node_copy(struct ieee80211com *ic,
1530 	struct ieee80211_node *dst, const struct ieee80211_node *src)
1531 {
1532         struct ath_softc *sc = ic->ic_if.if_softc;
1533 
1534 	memcpy(&dst[1], &src[1],
1535 		sizeof(struct ath_node) - sizeof(struct ieee80211_node));
1536 	(*sc->sc_node_copy)(ic, dst, src);
1537 }
1538 
1539 
1540 static u_int8_t
1541 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
1542 {
1543 	struct ath_node *an = ATH_NODE(ni);
1544 	int i, now, nsamples, rssi;
1545 
1546 	/*
1547 	 * Calculate the average over the last second of sampled data.
1548 	 */
1549 	now = ticks;
1550 	nsamples = 0;
1551 	rssi = 0;
1552 	i = an->an_rx_hist_next;
1553 	do {
1554 		struct ath_recv_hist *rh = &an->an_rx_hist[i];
1555 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
1556 			goto done;
1557 		if (now - rh->arh_ticks > hz)
1558 			goto done;
1559 		rssi += rh->arh_rssi;
1560 		nsamples++;
1561 		if (i == 0)
1562 			i = ATH_RHIST_SIZE-1;
1563 		else
1564 			i--;
1565 	} while (i != an->an_rx_hist_next);
1566 done:
1567 	/*
1568 	 * Return either the average or the last known
1569 	 * value if there is no recent data.
1570 	 */
1571 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
1572 }
1573 
1574 static int
1575 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1576 {
1577 	struct ath_hal *ah = sc->sc_ah;
1578 	int error;
1579 	struct mbuf *m;
1580 	struct ath_desc *ds;
1581 
1582 	m = bf->bf_m;
1583 	if (m == NULL) {
1584 		/*
1585 		 * NB: by assigning a page to the rx dma buffer we
1586 		 * implicitly satisfy the Atheros requirement that
1587 		 * this buffer be cache-line-aligned and sized to be
1588 		 * multiple of the cache line size.  Not doing this
1589 		 * causes weird stuff to happen (for the 5210 at least).
1590 		 */
1591 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1592 		if (m == NULL) {
1593 			DPRINTF(ATH_DEBUG_ANY,
1594 				("%s: no mbuf/cluster\n", __func__));
1595 			sc->sc_stats.ast_rx_nombuf++;
1596 			return ENOMEM;
1597 		}
1598 		bf->bf_m = m;
1599 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1600 
1601 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1602 					     ath_mbuf_load_cb, bf,
1603 					     BUS_DMA_NOWAIT);
1604 		if (error != 0) {
1605 			DPRINTF(ATH_DEBUG_ANY,
1606 				("%s: bus_dmamap_load_mbuf failed; error %d\n",
1607 				__func__, error));
1608 			sc->sc_stats.ast_rx_busdma++;
1609 			return error;
1610 		}
1611 		KASSERT(bf->bf_nseg == 1,
1612 			("ath_rxbuf_init: multi-segment packet; nseg %u",
1613 			bf->bf_nseg));
1614 	}
1615 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
1616 
1617 	/*
1618 	 * Setup descriptors.  For receive we always terminate
1619 	 * the descriptor list with a self-linked entry so we'll
1620 	 * not get overrun under high load (as can happen with a
1621 	 * 5212 when ANI processing enables PHY errors).
1622 	 *
1623 	 * To insure the last descriptor is self-linked we create
1624 	 * each descriptor as self-linked and add it to the end.  As
1625 	 * each additional descriptor is added the previous self-linked
1626 	 * entry is ``fixed'' naturally.  This should be safe even
1627 	 * if DMA is happening.  When processing RX interrupts we
1628 	 * never remove/process the last, self-linked, entry on the
1629 	 * descriptor list.  This insures the hardware always has
1630 	 * someplace to write a new frame.
1631 	 */
1632 	ds = bf->bf_desc;
1633 	ds->ds_link = bf->bf_daddr;	/* link to self */
1634 	ds->ds_data = bf->bf_segs[0].ds_addr;
1635 	ath_hal_setuprxdesc(ah, ds
1636 		, m->m_len		/* buffer size */
1637 		, 0
1638 	);
1639 
1640 	if (sc->sc_rxlink != NULL)
1641 		*sc->sc_rxlink = bf->bf_daddr;
1642 	sc->sc_rxlink = &ds->ds_link;
1643 	return 0;
1644 }
1645 
1646 static void
1647 ath_rx_proc(void *arg, int npending)
1648 {
1649 #define	PA2DESC(_sc, _pa) \
1650 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
1651 		((_pa) - (_sc)->sc_desc_paddr)))
1652 	struct ath_softc *sc = arg;
1653 	struct ath_buf *bf;
1654 	struct ieee80211com *ic = &sc->sc_ic;
1655 	struct ifnet *ifp = &ic->ic_if;
1656 	struct ath_hal *ah = sc->sc_ah;
1657 	struct ath_desc *ds;
1658 	struct mbuf *m;
1659 	struct ieee80211_frame *wh, whbuf;
1660 	struct ieee80211_node *ni;
1661 	struct ath_node *an;
1662 	struct ath_recv_hist *rh;
1663 	int len;
1664 	u_int phyerr;
1665 	HAL_STATUS status;
1666 
1667 	NET_LOCK_GIANT();		/* XXX */
1668 
1669 	DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
1670 	do {
1671 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1672 		if (bf == NULL) {		/* NB: shouldn't happen */
1673 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
1674 			break;
1675 		}
1676 		ds = bf->bf_desc;
1677 		if (ds->ds_link == bf->bf_daddr) {
1678 			/* NB: never process the self-linked entry at the end */
1679 			break;
1680 		}
1681 		m = bf->bf_m;
1682 		if (m == NULL) {		/* NB: shouldn't happen */
1683 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1684 			continue;
1685 		}
1686 		/* XXX sync descriptor memory */
1687 		/*
1688 		 * Must provide the virtual address of the current
1689 		 * descriptor, the physical address, and the virtual
1690 		 * address of the next descriptor in the h/w chain.
1691 		 * This allows the HAL to look ahead to see if the
1692 		 * hardware is done with a descriptor by checking the
1693 		 * done bit in the following descriptor and the address
1694 		 * of the current descriptor the DMA engine is working
1695 		 * on.  All this is necessary because of our use of
1696 		 * a self-linked list to avoid rx overruns.
1697 		 */
1698 		status = ath_hal_rxprocdesc(ah, ds,
1699 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
1700 #ifdef AR_DEBUG
1701 		if (ath_debug & ATH_DEBUG_RECV_DESC)
1702 			ath_printrxbuf(bf, status == HAL_OK);
1703 #endif
1704 		if (status == HAL_EINPROGRESS)
1705 			break;
1706 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1707 		if (ds->ds_rxstat.rs_status != 0) {
1708 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1709 				sc->sc_stats.ast_rx_crcerr++;
1710 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1711 				sc->sc_stats.ast_rx_fifoerr++;
1712 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1713 				sc->sc_stats.ast_rx_badcrypt++;
1714 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1715 				sc->sc_stats.ast_rx_phyerr++;
1716 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1717 				sc->sc_stats.ast_rx_phy[phyerr]++;
1718 			} else {
1719 				/*
1720 				 * NB: don't count PHY errors as input errors;
1721 				 * we enable them on the 5212 to collect info
1722 				 * about environmental noise and, in that
1723 				 * setting, they don't really reflect tx/rx
1724 				 * errors.
1725 				 */
1726 				ifp->if_ierrors++;
1727 			}
1728 			goto rx_next;
1729 		}
1730 
1731 		len = ds->ds_rxstat.rs_datalen;
1732 		if (len < IEEE80211_MIN_LEN) {
1733 			DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
1734 				__func__, len));
1735 			sc->sc_stats.ast_rx_tooshort++;
1736 			goto rx_next;
1737 		}
1738 
1739 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
1740 		    BUS_DMASYNC_POSTREAD);
1741 
1742 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1743 		bf->bf_m = NULL;
1744 		m->m_pkthdr.rcvif = ifp;
1745 		m->m_pkthdr.len = m->m_len = len;
1746 
1747 		if (sc->sc_drvbpf) {
1748 			sc->sc_rx_th.wr_rate =
1749 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
1750 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
1751 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
1752 			/* XXX TSF */
1753 
1754 			bpf_mtap2(sc->sc_drvbpf,
1755 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
1756 		}
1757 
1758 		m_adj(m, -IEEE80211_CRC_LEN);
1759 		wh = mtod(m, struct ieee80211_frame *);
1760 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1761 			/*
1762 			 * WEP is decrypted by hardware. Clear WEP bit
1763 			 * and trim WEP header for ieee80211_input().
1764 			 */
1765 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1766 			memcpy(&whbuf, wh, sizeof(whbuf));
1767 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1768 			wh = mtod(m, struct ieee80211_frame *);
1769 			memcpy(wh, &whbuf, sizeof(whbuf));
1770 			/*
1771 			 * Also trim WEP ICV from the tail.
1772 			 */
1773 			m_adj(m, -IEEE80211_WEP_CRCLEN);
1774 		}
1775 
1776 		/*
1777 		 * Locate the node for sender, track state, and
1778 		 * then pass this node (referenced) up to the 802.11
1779 		 * layer for its use.  We are required to pass
1780 		 * something so we fall back to ic_bss when this frame
1781 		 * is from an unknown sender.
1782 		 */
1783 		if (ic->ic_opmode != IEEE80211_M_STA) {
1784 			ni = ieee80211_find_node(ic, wh->i_addr2);
1785 			if (ni == NULL)
1786 				ni = ieee80211_ref_node(ic->ic_bss);
1787 		} else
1788 			ni = ieee80211_ref_node(ic->ic_bss);
1789 
1790 		/*
1791 		 * Record driver-specific state.
1792 		 */
1793 		an = ATH_NODE(ni);
1794 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
1795 			an->an_rx_hist_next = 0;
1796 		rh = &an->an_rx_hist[an->an_rx_hist_next];
1797 		rh->arh_ticks = ticks;
1798 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
1799 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
1800 
1801 		/*
1802 		 * Send frame up for processing.
1803 		 */
1804 		ieee80211_input(ifp, m, ni,
1805 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
1806 
1807 		/*
1808 		 * The frame may have caused the node to be marked for
1809 		 * reclamation (e.g. in response to a DEAUTH message)
1810 		 * so use free_node here instead of unref_node.
1811 		 */
1812 		if (ni == ic->ic_bss)
1813 			ieee80211_unref_node(&ni);
1814 		else
1815 			ieee80211_free_node(ic, ni);
1816   rx_next:
1817 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1818 	} while (ath_rxbuf_init(sc, bf) == 0);
1819 
1820 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
1821 	ath_hal_rxena(ah);			/* in case of RXEOL */
1822 
1823 	NET_UNLOCK_GIANT();		/* XXX */
1824 #undef PA2DESC
1825 }
1826 
1827 /*
1828  * XXX Size of an ACK control frame in bytes.
1829  */
1830 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
1831 
1832 static int
1833 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
1834     struct mbuf *m0)
1835 {
1836 	struct ieee80211com *ic = &sc->sc_ic;
1837 	struct ath_hal *ah = sc->sc_ah;
1838 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1839 	int i, error, iswep, hdrlen, pktlen;
1840 	u_int8_t rix, cix, txrate, ctsrate;
1841 	struct ath_desc *ds;
1842 	struct mbuf *m;
1843 	struct ieee80211_frame *wh;
1844 	u_int32_t iv;
1845 	u_int8_t *ivp;
1846 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
1847 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
1848 	u_int subtype, flags, ctsduration, antenna;
1849 	HAL_PKT_TYPE atype;
1850 	const HAL_RATE_TABLE *rt;
1851 	HAL_BOOL shortPreamble;
1852 	struct ath_node *an;
1853 
1854 	wh = mtod(m0, struct ieee80211_frame *);
1855 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1856 	hdrlen = sizeof(struct ieee80211_frame);
1857 	pktlen = m0->m_pkthdr.len;
1858 
1859 	if (iswep) {
1860 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
1861 		m_adj(m0, hdrlen);
1862 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
1863 		if (m0 == NULL) {
1864 			sc->sc_stats.ast_tx_nombuf++;
1865 			return ENOMEM;
1866 		}
1867 		ivp = hdrbuf + hdrlen;
1868 		wh = mtod(m0, struct ieee80211_frame *);
1869 		/*
1870 		 * XXX
1871 		 * IV must not duplicate during the lifetime of the key.
1872 		 * But no mechanism to renew keys is defined in IEEE 802.11
1873 		 * WEP.  And IV may be duplicated between other stations
1874 		 * because of the session key itself is shared.
1875 		 * So we use pseudo random IV for now, though it is not the
1876 		 * right way.
1877 		 */
1878                 iv = ic->ic_iv;
1879 		/*
1880 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
1881 		 * (B, 255, N) with 3 <= B < 8
1882 		 */
1883 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1884 			iv += 0x000100;
1885 		ic->ic_iv = iv + 1;
1886 		for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
1887 			ivp[i] = iv;
1888 			iv >>= 8;
1889 		}
1890 		ivp[i] = sc->sc_ic.ic_wep_txkey << 6;	/* Key ID and pad */
1891 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
1892 		/*
1893 		 * The ICV length must be included into hdrlen and pktlen.
1894 		 */
1895 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
1896 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
1897 	}
1898 	pktlen += IEEE80211_CRC_LEN;
1899 
1900 	/*
1901 	 * Load the DMA map so any coalescing is done.  This
1902 	 * also calculates the number of descriptors we need.
1903 	 */
1904 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1905 				     ath_mbuf_load_cb, bf,
1906 				     BUS_DMA_NOWAIT);
1907 	if (error == EFBIG) {
1908 		/* XXX packet requires too many descriptors */
1909 		bf->bf_nseg = ATH_TXDESC+1;
1910 	} else if (error != 0) {
1911 		sc->sc_stats.ast_tx_busdma++;
1912 		m_freem(m0);
1913 		return error;
1914 	}
1915 	/*
1916 	 * Discard null packets and check for packets that
1917 	 * require too many TX descriptors.  We try to convert
1918 	 * the latter to a cluster.
1919 	 */
1920 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
1921 		sc->sc_stats.ast_tx_linear++;
1922 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1923 		if (m == NULL) {
1924 			sc->sc_stats.ast_tx_nombuf++;
1925 			m_freem(m0);
1926 			return ENOMEM;
1927 		}
1928 		M_MOVE_PKTHDR(m, m0);
1929 		MCLGET(m, M_DONTWAIT);
1930 		if ((m->m_flags & M_EXT) == 0) {
1931 			sc->sc_stats.ast_tx_nomcl++;
1932 			m_freem(m0);
1933 			m_free(m);
1934 			return ENOMEM;
1935 		}
1936 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1937 		m_freem(m0);
1938 		m->m_len = m->m_pkthdr.len;
1939 		m0 = m;
1940 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1941 					     ath_mbuf_load_cb, bf,
1942 					     BUS_DMA_NOWAIT);
1943 		if (error != 0) {
1944 			sc->sc_stats.ast_tx_busdma++;
1945 			m_freem(m0);
1946 			return error;
1947 		}
1948 		KASSERT(bf->bf_nseg == 1,
1949 			("ath_tx_start: packet not one segment; nseg %u",
1950 			bf->bf_nseg));
1951 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
1952 		sc->sc_stats.ast_tx_nodata++;
1953 		m_freem(m0);
1954 		return EIO;
1955 	}
1956 	DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
1957 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1958 	bf->bf_m = m0;
1959 	bf->bf_node = ni;			/* NB: held reference */
1960 
1961 	/* setup descriptors */
1962 	ds = bf->bf_desc;
1963 	rt = sc->sc_currates;
1964 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1965 
1966 	/*
1967 	 * Calculate Atheros packet type from IEEE80211 packet header
1968 	 * and setup for rate calculations.
1969 	 */
1970 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
1971 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1972 	case IEEE80211_FC0_TYPE_MGT:
1973 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1974 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1975 			atype = HAL_PKT_TYPE_BEACON;
1976 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1977 			atype = HAL_PKT_TYPE_PROBE_RESP;
1978 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1979 			atype = HAL_PKT_TYPE_ATIM;
1980 		rix = 0;			/* XXX lowest rate */
1981 		break;
1982 	case IEEE80211_FC0_TYPE_CTL:
1983 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1984 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
1985 			atype = HAL_PKT_TYPE_PSPOLL;
1986 		rix = 0;			/* XXX lowest rate */
1987 		break;
1988 	default:
1989 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
1990 				IEEE80211_RATE_VAL];
1991 		if (rix == 0xff) {
1992 			if_printf(ifp, "bogus xmit rate 0x%x\n",
1993 				ni->ni_rates.rs_rates[ni->ni_txrate]);
1994 			sc->sc_stats.ast_tx_badrate++;
1995 			m_freem(m0);
1996 			return EIO;
1997 		}
1998 		break;
1999 	}
2000 	/*
2001 	 * NB: the 802.11 layer marks whether or not we should
2002 	 * use short preamble based on the current mode and
2003 	 * negotiated parameters.
2004 	 */
2005 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2006 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2007 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2008 		shortPreamble = AH_TRUE;
2009 		sc->sc_stats.ast_tx_shortpre++;
2010 	} else {
2011 		txrate = rt->info[rix].rateCode;
2012 		shortPreamble = AH_FALSE;
2013 	}
2014 
2015 	/*
2016 	 * Calculate miscellaneous flags.
2017 	 */
2018 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
2019 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2020 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
2021 		sc->sc_stats.ast_tx_noack++;
2022 	} else if (pktlen > ic->ic_rtsthreshold) {
2023 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
2024 		sc->sc_stats.ast_tx_rts++;
2025 	}
2026 
2027 	/*
2028 	 * Calculate duration.  This logically belongs in the 802.11
2029 	 * layer but it lacks sufficient information to calculate it.
2030 	 */
2031 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
2032 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2033 		u_int16_t dur;
2034 		/*
2035 		 * XXX not right with fragmentation.
2036 		 */
2037 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2038 				rix, shortPreamble);
2039 		*((u_int16_t*) wh->i_dur) = htole16(dur);
2040 	}
2041 
2042 	/*
2043 	 * Calculate RTS/CTS rate and duration if needed.
2044 	 */
2045 	ctsduration = 0;
2046 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2047 		/*
2048 		 * CTS transmit rate is derived from the transmit rate
2049 		 * by looking in the h/w rate table.  We must also factor
2050 		 * in whether or not a short preamble is to be used.
2051 		 */
2052 		cix = rt->info[rix].controlRate;
2053 		ctsrate = rt->info[cix].rateCode;
2054 		if (shortPreamble)
2055 			ctsrate |= rt->info[cix].shortPreamble;
2056 		/*
2057 		 * Compute the transmit duration based on the size
2058 		 * of an ACK frame.  We call into the HAL to do the
2059 		 * computation since it depends on the characteristics
2060 		 * of the actual PHY being used.
2061 		 */
2062 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
2063 			ctsduration += ath_hal_computetxtime(ah,
2064 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2065 		}
2066 		/* SIFS + data */
2067 		ctsduration += ath_hal_computetxtime(ah,
2068 			rt, pktlen, rix, shortPreamble);
2069 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
2070 			ctsduration += ath_hal_computetxtime(ah,
2071 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2072 		}
2073 	} else
2074 		ctsrate = 0;
2075 
2076 	/*
2077 	 * For now use the antenna on which the last good
2078 	 * frame was received on.  We assume this field is
2079 	 * initialized to 0 which gives us ``auto'' or the
2080 	 * ``default'' antenna.
2081 	 */
2082 	an = (struct ath_node *) ni;
2083 	if (an->an_tx_antenna)
2084 		antenna = an->an_tx_antenna;
2085 	else
2086 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2087 
2088 	if (ic->ic_rawbpf)
2089 		bpf_mtap(ic->ic_rawbpf, m0);
2090 	if (sc->sc_drvbpf) {
2091 		sc->sc_tx_th.wt_flags = 0;
2092 		if (shortPreamble)
2093 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2094 		if (iswep)
2095 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2096 		sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2097 		sc->sc_tx_th.wt_txpower = 60/2;		/* XXX */
2098 		sc->sc_tx_th.wt_antenna = antenna;
2099 
2100 		bpf_mtap2(sc->sc_drvbpf,
2101 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
2102 	}
2103 
2104 	/*
2105 	 * Formulate first tx descriptor with tx controls.
2106 	 */
2107 	/* XXX check return value? */
2108 	ath_hal_setuptxdesc(ah, ds
2109 		, pktlen		/* packet length */
2110 		, hdrlen		/* header length */
2111 		, atype			/* Atheros packet type */
2112 		, 60			/* txpower XXX */
2113 		, txrate, 1+10		/* series 0 rate/tries */
2114 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2115 		, antenna		/* antenna mode */
2116 		, flags			/* flags */
2117 		, ctsrate		/* rts/cts rate */
2118 		, ctsduration		/* rts/cts duration */
2119 	);
2120 #ifdef notyet
2121 	ath_hal_setupxtxdesc(ah, ds
2122 		, AH_FALSE		/* short preamble */
2123 		, 0, 0			/* series 1 rate/tries */
2124 		, 0, 0			/* series 2 rate/tries */
2125 		, 0, 0			/* series 3 rate/tries */
2126 	);
2127 #endif
2128 	/*
2129 	 * Fillin the remainder of the descriptor info.
2130 	 */
2131 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2132 		ds->ds_data = bf->bf_segs[i].ds_addr;
2133 		if (i == bf->bf_nseg - 1)
2134 			ds->ds_link = 0;
2135 		else
2136 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2137 		ath_hal_filltxdesc(ah, ds
2138 			, bf->bf_segs[i].ds_len	/* segment length */
2139 			, i == 0		/* first segment */
2140 			, i == bf->bf_nseg - 1	/* last segment */
2141 		);
2142 		DPRINTF(ATH_DEBUG_XMIT,
2143 			("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2144 			__func__, i, ds->ds_link, ds->ds_data,
2145 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2146 	}
2147 
2148 	/*
2149 	 * Insert the frame on the outbound list and
2150 	 * pass it on to the hardware.
2151 	 */
2152 	ATH_TXQ_LOCK(sc);
2153 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2154 	if (sc->sc_txlink == NULL) {
2155 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2156 		DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2157 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2158 	} else {
2159 		*sc->sc_txlink = bf->bf_daddr;
2160 		DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2161 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2162 	}
2163 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2164 	ATH_TXQ_UNLOCK(sc);
2165 
2166 	ath_hal_txstart(ah, sc->sc_txhalq);
2167 	return 0;
2168 }
2169 
2170 static void
2171 ath_tx_proc(void *arg, int npending)
2172 {
2173 	struct ath_softc *sc = arg;
2174 	struct ath_hal *ah = sc->sc_ah;
2175 	struct ath_buf *bf;
2176 	struct ieee80211com *ic = &sc->sc_ic;
2177 	struct ifnet *ifp = &ic->ic_if;
2178 	struct ath_desc *ds;
2179 	struct ieee80211_node *ni;
2180 	struct ath_node *an;
2181 	int sr, lr;
2182 	HAL_STATUS status;
2183 
2184 	DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
2185 		__func__, npending,
2186 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2187 		sc->sc_txlink));
2188 	for (;;) {
2189 		ATH_TXQ_LOCK(sc);
2190 		bf = TAILQ_FIRST(&sc->sc_txq);
2191 		if (bf == NULL) {
2192 			sc->sc_txlink = NULL;
2193 			ATH_TXQ_UNLOCK(sc);
2194 			break;
2195 		}
2196 		/* only the last descriptor is needed */
2197 		ds = &bf->bf_desc[bf->bf_nseg - 1];
2198 		status = ath_hal_txprocdesc(ah, ds);
2199 #ifdef AR_DEBUG
2200 		if (ath_debug & ATH_DEBUG_XMIT_DESC)
2201 			ath_printtxbuf(bf, status == HAL_OK);
2202 #endif
2203 		if (status == HAL_EINPROGRESS) {
2204 			ATH_TXQ_UNLOCK(sc);
2205 			break;
2206 		}
2207 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2208 		ATH_TXQ_UNLOCK(sc);
2209 
2210 		ni = bf->bf_node;
2211 		if (ni != NULL) {
2212 			an = (struct ath_node *) ni;
2213 			if (ds->ds_txstat.ts_status == 0) {
2214 				an->an_tx_ok++;
2215 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2216 			} else {
2217 				an->an_tx_err++;
2218 				ifp->if_oerrors++;
2219 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2220 					sc->sc_stats.ast_tx_xretries++;
2221 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2222 					sc->sc_stats.ast_tx_fifoerr++;
2223 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2224 					sc->sc_stats.ast_tx_filtered++;
2225 				an->an_tx_antenna = 0;	/* invalidate */
2226 			}
2227 			sr = ds->ds_txstat.ts_shortretry;
2228 			lr = ds->ds_txstat.ts_longretry;
2229 			sc->sc_stats.ast_tx_shortretry += sr;
2230 			sc->sc_stats.ast_tx_longretry += lr;
2231 			if (sr + lr)
2232 				an->an_tx_retr++;
2233 			/*
2234 			 * Reclaim reference to node.
2235 			 *
2236 			 * NB: the node may be reclaimed here if, for example
2237 			 *     this is a DEAUTH message that was sent and the
2238 			 *     node was timed out due to inactivity.
2239 			 */
2240 			if (ni != ic->ic_bss)
2241 				ieee80211_free_node(ic, ni);
2242 		}
2243 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2244 		    BUS_DMASYNC_POSTWRITE);
2245 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2246 		m_freem(bf->bf_m);
2247 		bf->bf_m = NULL;
2248 		bf->bf_node = NULL;
2249 
2250 		ATH_TXBUF_LOCK(sc);
2251 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2252 		ATH_TXBUF_UNLOCK(sc);
2253 	}
2254 	ifp->if_flags &= ~IFF_OACTIVE;
2255 	sc->sc_tx_timer = 0;
2256 
2257 	ath_start(ifp);
2258 }
2259 
2260 /*
2261  * Drain the transmit queue and reclaim resources.
2262  */
2263 static void
2264 ath_draintxq(struct ath_softc *sc)
2265 {
2266 	struct ath_hal *ah = sc->sc_ah;
2267 	struct ieee80211com *ic = &sc->sc_ic;
2268 	struct ifnet *ifp = &ic->ic_if;
2269 	struct ieee80211_node *ni;
2270 	struct ath_buf *bf;
2271 
2272 	/* XXX return value */
2273 	if (!sc->sc_invalid) {
2274 		/* don't touch the hardware if marked invalid */
2275 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2276 		DPRINTF(ATH_DEBUG_RESET,
2277 		    ("%s: tx queue %p, link %p\n", __func__,
2278 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2279 		    sc->sc_txlink));
2280 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2281 		DPRINTF(ATH_DEBUG_RESET,
2282 		    ("%s: beacon queue %p\n", __func__,
2283 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2284 	}
2285 	for (;;) {
2286 		ATH_TXQ_LOCK(sc);
2287 		bf = TAILQ_FIRST(&sc->sc_txq);
2288 		if (bf == NULL) {
2289 			sc->sc_txlink = NULL;
2290 			ATH_TXQ_UNLOCK(sc);
2291 			break;
2292 		}
2293 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2294 		ATH_TXQ_UNLOCK(sc);
2295 #ifdef AR_DEBUG
2296 		if (ath_debug & ATH_DEBUG_RESET)
2297 			ath_printtxbuf(bf,
2298 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2299 #endif /* AR_DEBUG */
2300 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2301 		m_freem(bf->bf_m);
2302 		bf->bf_m = NULL;
2303 		ni = bf->bf_node;
2304 		bf->bf_node = NULL;
2305 		if (ni != NULL && ni != ic->ic_bss) {
2306 			/*
2307 			 * Reclaim node reference.
2308 			 */
2309 			ieee80211_free_node(ic, ni);
2310 		}
2311 		ATH_TXBUF_LOCK(sc);
2312 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2313 		ATH_TXBUF_UNLOCK(sc);
2314 	}
2315 	ifp->if_flags &= ~IFF_OACTIVE;
2316 	sc->sc_tx_timer = 0;
2317 }
2318 
2319 /*
2320  * Disable the receive h/w in preparation for a reset.
2321  */
2322 static void
2323 ath_stoprecv(struct ath_softc *sc)
2324 {
2325 #define	PA2DESC(_sc, _pa) \
2326 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2327 		((_pa) - (_sc)->sc_desc_paddr)))
2328 	struct ath_hal *ah = sc->sc_ah;
2329 
2330 	ath_hal_stoppcurecv(ah);	/* disable PCU */
2331 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
2332 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
2333 	DELAY(3000);			/* long enough for 1 frame */
2334 #ifdef AR_DEBUG
2335 	if (ath_debug & ATH_DEBUG_RESET) {
2336 		struct ath_buf *bf;
2337 
2338 		printf("%s: rx queue %p, link %p\n", __func__,
2339 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
2340 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2341 			struct ath_desc *ds = bf->bf_desc;
2342 			if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2343 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
2344 				ath_printrxbuf(bf, 1);
2345 		}
2346 	}
2347 #endif
2348 	sc->sc_rxlink = NULL;		/* just in case */
2349 #undef PA2DESC
2350 }
2351 
2352 /*
2353  * Enable the receive h/w following a reset.
2354  */
2355 static int
2356 ath_startrecv(struct ath_softc *sc)
2357 {
2358 	struct ath_hal *ah = sc->sc_ah;
2359 	struct ath_buf *bf;
2360 
2361 	sc->sc_rxlink = NULL;
2362 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2363 		int error = ath_rxbuf_init(sc, bf);
2364 		if (error != 0) {
2365 			DPRINTF(ATH_DEBUG_RECV,
2366 				("%s: ath_rxbuf_init failed %d\n",
2367 				__func__, error));
2368 			return error;
2369 		}
2370 	}
2371 
2372 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
2373 	ath_hal_putrxbuf(ah, bf->bf_daddr);
2374 	ath_hal_rxena(ah);		/* enable recv descriptors */
2375 	ath_mode_init(sc);		/* set filters, etc. */
2376 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
2377 	return 0;
2378 }
2379 
2380 /*
2381  * Set/change channels.  If the channel is really being changed,
2382  * it's done by resetting the chip.  To accomplish this we must
2383  * first cleanup any pending DMA, then restart stuff after a la
2384  * ath_init.
2385  */
2386 static int
2387 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2388 {
2389 	struct ath_hal *ah = sc->sc_ah;
2390 	struct ieee80211com *ic = &sc->sc_ic;
2391 
2392 	DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
2393 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2394 		ic->ic_ibss_chan->ic_freq,
2395 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2396 	if (chan != ic->ic_ibss_chan) {
2397 		HAL_STATUS status;
2398 		HAL_CHANNEL hchan;
2399 		enum ieee80211_phymode mode;
2400 
2401 		/*
2402 		 * To switch channels clear any pending DMA operations;
2403 		 * wait long enough for the RX fifo to drain, reset the
2404 		 * hardware at the new frequency, and then re-enable
2405 		 * the relevant bits of the h/w.
2406 		 */
2407 		ath_hal_intrset(ah, 0);		/* disable interrupts */
2408 		ath_draintxq(sc);		/* clear pending tx frames */
2409 		ath_stoprecv(sc);		/* turn off frame recv */
2410 		/*
2411 		 * Convert to a HAL channel description with
2412 		 * the flags constrained to reflect the current
2413 		 * operating mode.
2414 		 */
2415 		hchan.channel = chan->ic_freq;
2416 		hchan.channelFlags = ath_chan2flags(ic, chan);
2417 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2418 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2419 				"channel %u (%u Mhz)\n",
2420 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2421 			return EIO;
2422 		}
2423 		/*
2424 		 * Re-enable rx framework.
2425 		 */
2426 		if (ath_startrecv(sc) != 0) {
2427 			if_printf(&ic->ic_if,
2428 				"ath_chan_set: unable to restart recv logic\n");
2429 			return EIO;
2430 		}
2431 
2432 		/*
2433 		 * Update BPF state.
2434 		 */
2435 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2436 			htole16(chan->ic_freq);
2437 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2438 			htole16(chan->ic_flags);
2439 
2440 		/*
2441 		 * Change channels and update the h/w rate map
2442 		 * if we're switching; e.g. 11a to 11b/g.
2443 		 */
2444 		ic->ic_ibss_chan = chan;
2445 		mode = ieee80211_chan2mode(ic, chan);
2446 		if (mode != sc->sc_curmode)
2447 			ath_setcurmode(sc, mode);
2448 
2449 		/*
2450 		 * Re-enable interrupts.
2451 		 */
2452 		ath_hal_intrset(ah, sc->sc_imask);
2453 	}
2454 	return 0;
2455 }
2456 
2457 static void
2458 ath_next_scan(void *arg)
2459 {
2460 	struct ath_softc *sc = arg;
2461 	struct ieee80211com *ic = &sc->sc_ic;
2462 	struct ifnet *ifp = &ic->ic_if;
2463 
2464 	if (ic->ic_state == IEEE80211_S_SCAN)
2465 		ieee80211_next_scan(ifp);
2466 }
2467 
2468 /*
2469  * Periodically recalibrate the PHY to account
2470  * for temperature/environment changes.
2471  */
2472 static void
2473 ath_calibrate(void *arg)
2474 {
2475 	struct ath_softc *sc = arg;
2476 	struct ath_hal *ah = sc->sc_ah;
2477 	struct ieee80211com *ic = &sc->sc_ic;
2478 	struct ieee80211_channel *c;
2479 	HAL_CHANNEL hchan;
2480 
2481 	sc->sc_stats.ast_per_cal++;
2482 
2483 	/*
2484 	 * Convert to a HAL channel description with the flags
2485 	 * constrained to reflect the current operating mode.
2486 	 */
2487 	c = ic->ic_ibss_chan;
2488 	hchan.channel = c->ic_freq;
2489 	hchan.channelFlags = ath_chan2flags(ic, c);
2490 
2491 	DPRINTF(ATH_DEBUG_CALIBRATE,
2492 		("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2493 
2494 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2495 		/*
2496 		 * Rfgain is out of bounds, reset the chip
2497 		 * to load new gain values.
2498 		 */
2499 		sc->sc_stats.ast_per_rfgain++;
2500 		ath_reset(sc);
2501 	}
2502 	if (!ath_hal_calibrate(ah, &hchan)) {
2503 		DPRINTF(ATH_DEBUG_ANY,
2504 			("%s: calibration of channel %u failed\n",
2505 			__func__, c->ic_freq));
2506 		sc->sc_stats.ast_per_calfail++;
2507 	}
2508 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2509 }
2510 
2511 static int
2512 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2513 {
2514 	struct ifnet *ifp = &ic->ic_if;
2515 	struct ath_softc *sc = ifp->if_softc;
2516 	struct ath_hal *ah = sc->sc_ah;
2517 	struct ieee80211_node *ni;
2518 	int i, error;
2519 	const u_int8_t *bssid;
2520 	u_int32_t rfilt;
2521 	static const HAL_LED_STATE leds[] = {
2522 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
2523 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
2524 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
2525 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
2526 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
2527 	};
2528 
2529 	DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
2530 		ieee80211_state_name[ic->ic_state],
2531 		ieee80211_state_name[nstate]));
2532 
2533 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
2534 
2535 	if (nstate == IEEE80211_S_INIT) {
2536 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2537 		ath_hal_intrset(ah, sc->sc_imask);
2538 		callout_stop(&sc->sc_scan_ch);
2539 		callout_stop(&sc->sc_cal_ch);
2540 		return (*sc->sc_newstate)(ic, nstate, arg);
2541 	}
2542 	ni = ic->ic_bss;
2543 	error = ath_chan_set(sc, ni->ni_chan);
2544 	if (error != 0)
2545 		goto bad;
2546 	rfilt = ath_calcrxfilter(sc);
2547 	if (nstate == IEEE80211_S_SCAN) {
2548 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2549 			ath_next_scan, sc);
2550 		bssid = ifp->if_broadcastaddr;
2551 	} else {
2552 		callout_stop(&sc->sc_scan_ch);
2553 		bssid = ni->ni_bssid;
2554 	}
2555 	ath_hal_setrxfilter(ah, rfilt);
2556 	DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
2557 		 __func__, rfilt, ether_sprintf(bssid)));
2558 
2559 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2560 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
2561 	else
2562 		ath_hal_setassocid(ah, bssid, 0);
2563 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2564 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2565 			if (ath_hal_keyisvalid(ah, i))
2566 				ath_hal_keysetmac(ah, i, bssid);
2567 	}
2568 
2569 	if (nstate == IEEE80211_S_RUN) {
2570 		DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2571 			"capinfo=0x%04x chan=%d\n"
2572 			 , __func__
2573 			 , ic->ic_flags
2574 			 , ni->ni_intval
2575 			 , ether_sprintf(ni->ni_bssid)
2576 			 , ni->ni_capinfo
2577 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2578 
2579 		/*
2580 		 * Allocate and setup the beacon frame for AP or adhoc mode.
2581 		 */
2582 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2583 		    ic->ic_opmode == IEEE80211_M_IBSS) {
2584 			error = ath_beacon_alloc(sc, ni);
2585 			if (error != 0)
2586 				goto bad;
2587 		}
2588 
2589 		/*
2590 		 * Configure the beacon and sleep timers.
2591 		 */
2592 		ath_beacon_config(sc);
2593 
2594 		/* start periodic recalibration timer */
2595 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2596 			ath_calibrate, sc);
2597 	} else {
2598 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2599 		ath_hal_intrset(ah, sc->sc_imask);
2600 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
2601 	}
2602 	/*
2603 	 * Reset the rate control state.
2604 	 */
2605 	ath_rate_ctl_reset(sc, nstate);
2606 	/*
2607 	 * Invoke the parent method to complete the work.
2608 	 */
2609 	return (*sc->sc_newstate)(ic, nstate, arg);
2610 bad:
2611 	callout_stop(&sc->sc_scan_ch);
2612 	callout_stop(&sc->sc_cal_ch);
2613 	/* NB: do not invoke the parent */
2614 	return error;
2615 }
2616 
2617 /*
2618  * Setup driver-specific state for a newly associated node.
2619  * Note that we're called also on a re-associate, the isnew
2620  * param tells us if this is the first time or not.
2621  */
2622 static void
2623 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2624 {
2625 	if (isnew) {
2626 		struct ath_node *an = (struct ath_node *) ni;
2627 
2628 		an->an_tx_ok = an->an_tx_err =
2629 			an->an_tx_retr = an->an_tx_upper = 0;
2630 		/* start with highest negotiated rate */
2631 		/*
2632 		 * XXX should do otherwise but only when
2633 		 * the rate control algorithm is better.
2634 		 */
2635 		KASSERT(ni->ni_rates.rs_nrates > 0,
2636 			("new association w/ no rates!"));
2637 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2638 	}
2639 }
2640 
2641 static int
2642 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2643 {
2644 	struct ieee80211com *ic = &sc->sc_ic;
2645 	struct ifnet *ifp = &ic->ic_if;
2646 	struct ath_hal *ah = sc->sc_ah;
2647 	HAL_CHANNEL *chans;
2648 	int i, ix, nchan;
2649 
2650 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2651 			M_TEMP, M_NOWAIT);
2652 	if (chans == NULL) {
2653 		if_printf(ifp, "unable to allocate channel table\n");
2654 		return ENOMEM;
2655 	}
2656 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2657 	    cc, HAL_MODE_ALL, outdoor)) {
2658 		if_printf(ifp, "unable to collect channel list from hal\n");
2659 		free(chans, M_TEMP);
2660 		return EINVAL;
2661 	}
2662 
2663 	/*
2664 	 * Convert HAL channels to ieee80211 ones and insert
2665 	 * them in the table according to their channel number.
2666 	 */
2667 	for (i = 0; i < nchan; i++) {
2668 		HAL_CHANNEL *c = &chans[i];
2669 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2670 		if (ix > IEEE80211_CHAN_MAX) {
2671 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2672 				ix, c->channel, c->channelFlags);
2673 			continue;
2674 		}
2675 		/* NB: flags are known to be compatible */
2676 		if (ic->ic_channels[ix].ic_freq == 0) {
2677 			ic->ic_channels[ix].ic_freq = c->channel;
2678 			ic->ic_channels[ix].ic_flags = c->channelFlags;
2679 		} else {
2680 			/* channels overlap; e.g. 11g and 11b */
2681 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
2682 		}
2683 	}
2684 	free(chans, M_TEMP);
2685 	return 0;
2686 }
2687 
2688 static int
2689 ath_rate_setup(struct ath_softc *sc, u_int mode)
2690 {
2691 	struct ath_hal *ah = sc->sc_ah;
2692 	struct ieee80211com *ic = &sc->sc_ic;
2693 	const HAL_RATE_TABLE *rt;
2694 	struct ieee80211_rateset *rs;
2695 	int i, maxrates;
2696 
2697 	switch (mode) {
2698 	case IEEE80211_MODE_11A:
2699 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2700 		break;
2701 	case IEEE80211_MODE_11B:
2702 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2703 		break;
2704 	case IEEE80211_MODE_11G:
2705 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2706 		break;
2707 	case IEEE80211_MODE_TURBO:
2708 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2709 		break;
2710 	default:
2711 		DPRINTF(ATH_DEBUG_ANY,
2712 			("%s: invalid mode %u\n", __func__, mode));
2713 		return 0;
2714 	}
2715 	rt = sc->sc_rates[mode];
2716 	if (rt == NULL)
2717 		return 0;
2718 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2719 		DPRINTF(ATH_DEBUG_ANY,
2720 			("%s: rate table too small (%u > %u)\n",
2721 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2722 		maxrates = IEEE80211_RATE_MAXSIZE;
2723 	} else
2724 		maxrates = rt->rateCount;
2725 	rs = &ic->ic_sup_rates[mode];
2726 	for (i = 0; i < maxrates; i++)
2727 		rs->rs_rates[i] = rt->info[i].dot11Rate;
2728 	rs->rs_nrates = maxrates;
2729 	return 1;
2730 }
2731 
2732 static void
2733 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2734 {
2735 	const HAL_RATE_TABLE *rt;
2736 	int i;
2737 
2738 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2739 	rt = sc->sc_rates[mode];
2740 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2741 	for (i = 0; i < rt->rateCount; i++)
2742 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2743 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2744 	for (i = 0; i < 32; i++)
2745 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2746 	sc->sc_currates = rt;
2747 	sc->sc_curmode = mode;
2748 }
2749 
2750 /*
2751  * Reset the rate control state for each 802.11 state transition.
2752  */
2753 static void
2754 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2755 {
2756 	struct ieee80211com *ic = &sc->sc_ic;
2757 	struct ieee80211_node *ni;
2758 	struct ath_node *an;
2759 
2760 	if (ic->ic_opmode != IEEE80211_M_STA) {
2761 		/*
2762 		 * When operating as a station the node table holds
2763 		 * the AP's that were discovered during scanning.
2764 		 * For any other operating mode we want to reset the
2765 		 * tx rate state of each node.
2766 		 */
2767 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
2768 			ni->ni_txrate = 0;		/* use lowest rate */
2769 			an = (struct ath_node *) ni;
2770 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
2771 			    an->an_tx_upper = 0;
2772 		}
2773 	}
2774 	/*
2775 	 * Reset local xmit state; this is really only meaningful
2776 	 * when operating in station or adhoc mode.
2777 	 */
2778 	ni = ic->ic_bss;
2779 	an = (struct ath_node *) ni;
2780 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
2781 	if (state == IEEE80211_S_RUN) {
2782 		/* start with highest negotiated rate */
2783 		KASSERT(ni->ni_rates.rs_nrates > 0,
2784 			("transition to RUN state w/ no rates!"));
2785 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2786 	} else {
2787 		/* use lowest rate */
2788 		ni->ni_txrate = 0;
2789 	}
2790 }
2791 
2792 /*
2793  * Examine and potentially adjust the transmit rate.
2794  */
2795 static void
2796 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
2797 {
2798 	struct ath_softc *sc = arg;
2799 	struct ath_node *an = (struct ath_node *) ni;
2800 	struct ieee80211_rateset *rs = &ni->ni_rates;
2801 	int mod = 0, orate, enough;
2802 
2803 	/*
2804 	 * Rate control
2805 	 * XXX: very primitive version.
2806 	 */
2807 	sc->sc_stats.ast_rate_calls++;
2808 
2809 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
2810 
2811 	/* no packet reached -> down */
2812 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
2813 		mod = -1;
2814 
2815 	/* all packets needs retry in average -> down */
2816 	if (enough && an->an_tx_ok < an->an_tx_retr)
2817 		mod = -1;
2818 
2819 	/* no error and less than 10% of packets needs retry -> up */
2820 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
2821 		mod = 1;
2822 
2823 	orate = ni->ni_txrate;
2824 	switch (mod) {
2825 	case 0:
2826 		if (enough && an->an_tx_upper > 0)
2827 			an->an_tx_upper--;
2828 		break;
2829 	case -1:
2830 		if (ni->ni_txrate > 0) {
2831 			ni->ni_txrate--;
2832 			sc->sc_stats.ast_rate_drop++;
2833 		}
2834 		an->an_tx_upper = 0;
2835 		break;
2836 	case 1:
2837 		if (++an->an_tx_upper < 2)
2838 			break;
2839 		an->an_tx_upper = 0;
2840 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
2841 			ni->ni_txrate++;
2842 			sc->sc_stats.ast_rate_raise++;
2843 		}
2844 		break;
2845 	}
2846 
2847 	if (ni->ni_txrate != orate) {
2848 		DPRINTF(ATH_DEBUG_RATE,
2849 		    ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
2850 		    __func__,
2851 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
2852 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
2853 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
2854 	}
2855 	if (ni->ni_txrate != orate || enough)
2856 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2857 }
2858 
2859 #ifdef AR_DEBUG
2860 static int
2861 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
2862 {
2863 	char dmode[64];
2864 	int error;
2865 
2866 	strncpy(dmode, "", sizeof(dmode) - 1);
2867 	dmode[sizeof(dmode) - 1] = '\0';
2868 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2869 
2870 	if (error == 0 && req->newptr != NULL) {
2871 		struct ifnet *ifp;
2872 		struct ath_softc *sc;
2873 
2874 		ifp = ifunit("ath0");		/* XXX */
2875 		if (!ifp)
2876 			return EINVAL;
2877 		sc = ifp->if_softc;
2878 		if (strcmp(dmode, "hal") == 0)
2879 			ath_hal_dumpstate(sc->sc_ah);
2880 		else
2881 			return EINVAL;
2882 	}
2883 	return error;
2884 }
2885 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2886 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
2887 
2888 static void
2889 ath_printrxbuf(struct ath_buf *bf, int done)
2890 {
2891 	struct ath_desc *ds;
2892 	int i;
2893 
2894 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2895 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
2896 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2897 		    ds->ds_link, ds->ds_data,
2898 		    ds->ds_ctl0, ds->ds_ctl1,
2899 		    ds->ds_hw[0], ds->ds_hw[1],
2900 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
2901 	}
2902 }
2903 
2904 static void
2905 ath_printtxbuf(struct ath_buf *bf, int done)
2906 {
2907 	struct ath_desc *ds;
2908 	int i;
2909 
2910 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2911 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
2912 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2913 		    ds->ds_link, ds->ds_data,
2914 		    ds->ds_ctl0, ds->ds_ctl1,
2915 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
2916 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
2917 	}
2918 }
2919 #endif /* AR_DEBUG */
2920