xref: /freebsd/sys/dev/ath/if_ath.c (revision 730cecb05aaf016ac52ef7cfc691ccec3a0408cd)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h>	/* for mp_ncpus */
72 
73 #include <machine/bus.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_var.h>
84 #include <net80211/ieee80211_regdomain.h>
85 #ifdef IEEE80211_SUPPORT_SUPERG
86 #include <net80211/ieee80211_superg.h>
87 #endif
88 #ifdef IEEE80211_SUPPORT_TDMA
89 #include <net80211/ieee80211_tdma.h>
90 #endif
91 
92 #include <net/bpf.h>
93 
94 #ifdef INET
95 #include <netinet/in.h>
96 #include <netinet/if_ether.h>
97 #endif
98 
99 #include <dev/ath/if_athvar.h>
100 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101 #include <dev/ath/ath_hal/ah_diagcodes.h>
102 
103 #include <dev/ath/if_ath_debug.h>
104 #include <dev/ath/if_ath_misc.h>
105 #include <dev/ath/if_ath_tsf.h>
106 #include <dev/ath/if_ath_tx.h>
107 #include <dev/ath/if_ath_sysctl.h>
108 #include <dev/ath/if_ath_led.h>
109 #include <dev/ath/if_ath_keycache.h>
110 #include <dev/ath/if_ath_rx.h>
111 #include <dev/ath/if_ath_rx_edma.h>
112 #include <dev/ath/if_ath_tx_edma.h>
113 #include <dev/ath/if_ath_beacon.h>
114 #include <dev/ath/if_ath_spectral.h>
115 #include <dev/ath/if_athdfs.h>
116 
117 #ifdef ATH_TX99_DIAG
118 #include <dev/ath/ath_tx99/ath_tx99.h>
119 #endif
120 
121 #ifdef	ATH_DEBUG_ALQ
122 #include <dev/ath/if_ath_alq.h>
123 #endif
124 
125 /*
126  * Only enable this if you're working on PS-POLL support.
127  */
128 #undef	ATH_SW_PSQ
129 
130 /*
131  * ATH_BCBUF determines the number of vap's that can transmit
132  * beacons and also (currently) the number of vap's that can
133  * have unique mac addresses/bssid.  When staggering beacons
134  * 4 is probably a good max as otherwise the beacons become
135  * very closely spaced and there is limited time for cab q traffic
136  * to go out.  You can burst beacons instead but that is not good
137  * for stations in power save and at some point you really want
138  * another radio (and channel).
139  *
140  * The limit on the number of mac addresses is tied to our use of
141  * the U/L bit and tracking addresses in a byte; it would be
142  * worthwhile to allow more for applications like proxy sta.
143  */
144 CTASSERT(ATH_BCBUF <= 8);
145 
146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
147 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
148 		    const uint8_t [IEEE80211_ADDR_LEN],
149 		    const uint8_t [IEEE80211_ADDR_LEN]);
150 static void	ath_vap_delete(struct ieee80211vap *);
151 static void	ath_init(void *);
152 static void	ath_stop_locked(struct ifnet *);
153 static void	ath_stop(struct ifnet *);
154 static int	ath_reset_vap(struct ieee80211vap *, u_long);
155 static void	ath_start_queue(struct ifnet *ifp);
156 static int	ath_media_change(struct ifnet *);
157 static void	ath_watchdog(void *);
158 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
159 static void	ath_fatal_proc(void *, int);
160 static void	ath_bmiss_vap(struct ieee80211vap *);
161 static void	ath_bmiss_proc(void *, int);
162 static void	ath_key_update_begin(struct ieee80211vap *);
163 static void	ath_key_update_end(struct ieee80211vap *);
164 static void	ath_update_mcast(struct ifnet *);
165 static void	ath_update_promisc(struct ifnet *);
166 static void	ath_updateslot(struct ifnet *);
167 static void	ath_bstuck_proc(void *, int);
168 static void	ath_reset_proc(void *, int);
169 static int	ath_desc_alloc(struct ath_softc *);
170 static void	ath_desc_free(struct ath_softc *);
171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
172 			const uint8_t [IEEE80211_ADDR_LEN]);
173 static void	ath_node_cleanup(struct ieee80211_node *);
174 static void	ath_node_free(struct ieee80211_node *);
175 static void	ath_node_getsignal(const struct ieee80211_node *,
176 			int8_t *, int8_t *);
177 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
179 static int	ath_tx_setup(struct ath_softc *, int, int);
180 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
181 static void	ath_tx_cleanup(struct ath_softc *);
182 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
183 		    int dosched);
184 static void	ath_tx_proc_q0(void *, int);
185 static void	ath_tx_proc_q0123(void *, int);
186 static void	ath_tx_proc(void *, int);
187 static void	ath_txq_sched_tasklet(void *, int);
188 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void	ath_scan_start(struct ieee80211com *);
191 static void	ath_scan_end(struct ieee80211com *);
192 static void	ath_set_channel(struct ieee80211com *);
193 #ifdef	ATH_ENABLE_11N
194 static void	ath_update_chw(struct ieee80211com *);
195 #endif	/* ATH_ENABLE_11N */
196 static void	ath_calibrate(void *);
197 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	ath_setup_stationkey(struct ieee80211_node *);
199 static void	ath_newassoc(struct ieee80211_node *, int);
200 static int	ath_setregdomain(struct ieee80211com *,
201 		    struct ieee80211_regdomain *, int,
202 		    struct ieee80211_channel []);
203 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204 		    struct ieee80211_channel []);
205 static int	ath_getchannels(struct ath_softc *);
206 
207 static int	ath_rate_setup(struct ath_softc *, u_int mode);
208 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
209 
210 static void	ath_announce(struct ath_softc *);
211 
212 static void	ath_dfs_tasklet(void *, int);
213 static void	ath_node_powersave(struct ieee80211_node *, int);
214 static int	ath_node_set_tim(struct ieee80211_node *, int);
215 
216 #ifdef IEEE80211_SUPPORT_TDMA
217 #include <dev/ath/if_ath_tdma.h>
218 #endif
219 
220 SYSCTL_DECL(_hw_ath);
221 
222 /* XXX validate sysctl values */
223 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
225 	    0, "long chip calibration interval (secs)");
226 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
228 	    0, "short chip calibration interval (msecs)");
229 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
231 	    0, "reset chip calibration results (secs)");
232 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
234 	    0, "ANI calibration (msecs)");
235 
236 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
238 	    0, "rx buffers allocated");
239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
240 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
242 	    0, "tx buffers allocated");
243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
246 	    0, "tx (mgmt) buffers allocated");
247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
248 
249 int ath_bstuck_threshold = 4;		/* max missed beacons */
250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
251 	    0, "max missed beacon xmits before chip reset");
252 
253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
254 
255 void
256 ath_legacy_attach_comp_func(struct ath_softc *sc)
257 {
258 
259 	/*
260 	 * Special case certain configurations.  Note the
261 	 * CAB queue is handled by these specially so don't
262 	 * include them when checking the txq setup mask.
263 	 */
264 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
265 	case 0x01:
266 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
267 		break;
268 	case 0x0f:
269 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
270 		break;
271 	default:
272 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
273 		break;
274 	}
275 }
276 
277 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
278 #define	HAL_MODE_HT40 \
279 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
280 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
281 int
282 ath_attach(u_int16_t devid, struct ath_softc *sc)
283 {
284 	struct ifnet *ifp;
285 	struct ieee80211com *ic;
286 	struct ath_hal *ah = NULL;
287 	HAL_STATUS status;
288 	int error = 0, i;
289 	u_int wmodes;
290 	uint8_t macaddr[IEEE80211_ADDR_LEN];
291 	int rx_chainmask, tx_chainmask;
292 
293 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
294 
295 	CURVNET_SET(vnet0);
296 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
297 	if (ifp == NULL) {
298 		device_printf(sc->sc_dev, "can not if_alloc()\n");
299 		error = ENOSPC;
300 		CURVNET_RESTORE();
301 		goto bad;
302 	}
303 	ic = ifp->if_l2com;
304 
305 	/* set these up early for if_printf use */
306 	if_initname(ifp, device_get_name(sc->sc_dev),
307 		device_get_unit(sc->sc_dev));
308 	CURVNET_RESTORE();
309 
310 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
311 	    sc->sc_eepromdata, &status);
312 	if (ah == NULL) {
313 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314 			status);
315 		error = ENXIO;
316 		goto bad;
317 	}
318 	sc->sc_ah = ah;
319 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
320 #ifdef	ATH_DEBUG
321 	sc->sc_debug = ath_debug;
322 #endif
323 
324 	/*
325 	 * Setup the DMA/EDMA functions based on the current
326 	 * hardware support.
327 	 *
328 	 * This is required before the descriptors are allocated.
329 	 */
330 	if (ath_hal_hasedma(sc->sc_ah)) {
331 		sc->sc_isedma = 1;
332 		ath_recv_setup_edma(sc);
333 		ath_xmit_setup_edma(sc);
334 	} else {
335 		ath_recv_setup_legacy(sc);
336 		ath_xmit_setup_legacy(sc);
337 	}
338 
339 	/*
340 	 * Check if the MAC has multi-rate retry support.
341 	 * We do this by trying to setup a fake extended
342 	 * descriptor.  MAC's that don't have support will
343 	 * return false w/o doing anything.  MAC's that do
344 	 * support it will return true w/o doing anything.
345 	 */
346 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
347 
348 	/*
349 	 * Check if the device has hardware counters for PHY
350 	 * errors.  If so we need to enable the MIB interrupt
351 	 * so we can act on stat triggers.
352 	 */
353 	if (ath_hal_hwphycounters(ah))
354 		sc->sc_needmib = 1;
355 
356 	/*
357 	 * Get the hardware key cache size.
358 	 */
359 	sc->sc_keymax = ath_hal_keycachesize(ah);
360 	if (sc->sc_keymax > ATH_KEYMAX) {
361 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
362 			ATH_KEYMAX, sc->sc_keymax);
363 		sc->sc_keymax = ATH_KEYMAX;
364 	}
365 	/*
366 	 * Reset the key cache since some parts do not
367 	 * reset the contents on initial power up.
368 	 */
369 	for (i = 0; i < sc->sc_keymax; i++)
370 		ath_hal_keyreset(ah, i);
371 
372 	/*
373 	 * Collect the default channel list.
374 	 */
375 	error = ath_getchannels(sc);
376 	if (error != 0)
377 		goto bad;
378 
379 	/*
380 	 * Setup rate tables for all potential media types.
381 	 */
382 	ath_rate_setup(sc, IEEE80211_MODE_11A);
383 	ath_rate_setup(sc, IEEE80211_MODE_11B);
384 	ath_rate_setup(sc, IEEE80211_MODE_11G);
385 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
386 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
387 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
388 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
389 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
390 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
391 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
392 
393 	/* NB: setup here so ath_rate_update is happy */
394 	ath_setcurmode(sc, IEEE80211_MODE_11A);
395 
396 	/*
397 	 * Allocate TX descriptors and populate the lists.
398 	 */
399 	error = ath_desc_alloc(sc);
400 	if (error != 0) {
401 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
402 		    error);
403 		goto bad;
404 	}
405 	error = ath_txdma_setup(sc);
406 	if (error != 0) {
407 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
408 		    error);
409 		goto bad;
410 	}
411 
412 	/*
413 	 * Allocate RX descriptors and populate the lists.
414 	 */
415 	error = ath_rxdma_setup(sc);
416 	if (error != 0) {
417 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
418 		    error);
419 		goto bad;
420 	}
421 
422 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
423 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
424 
425 	ATH_TXBUF_LOCK_INIT(sc);
426 
427 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
428 		taskqueue_thread_enqueue, &sc->sc_tq);
429 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
430 		"%s taskq", ifp->if_xname);
431 
432 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
433 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
434 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
435 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
436 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
437 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
438 
439 	/* XXX make this a higher priority taskqueue? */
440 	TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc);
441 
442 	/*
443 	 * Allocate hardware transmit queues: one queue for
444 	 * beacon frames and one data queue for each QoS
445 	 * priority.  Note that the hal handles resetting
446 	 * these queues at the needed time.
447 	 *
448 	 * XXX PS-Poll
449 	 */
450 	sc->sc_bhalq = ath_beaconq_setup(sc);
451 	if (sc->sc_bhalq == (u_int) -1) {
452 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
453 		error = EIO;
454 		goto bad2;
455 	}
456 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
457 	if (sc->sc_cabq == NULL) {
458 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
459 		error = EIO;
460 		goto bad2;
461 	}
462 	/* NB: insure BK queue is the lowest priority h/w queue */
463 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
464 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
465 			ieee80211_wme_acnames[WME_AC_BK]);
466 		error = EIO;
467 		goto bad2;
468 	}
469 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
470 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
471 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
472 		/*
473 		 * Not enough hardware tx queues to properly do WME;
474 		 * just punt and assign them all to the same h/w queue.
475 		 * We could do a better job of this if, for example,
476 		 * we allocate queues when we switch from station to
477 		 * AP mode.
478 		 */
479 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
480 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
481 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
482 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
483 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
484 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
485 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
486 	}
487 
488 	/*
489 	 * Attach the TX completion function.
490 	 *
491 	 * The non-EDMA chips may have some special case optimisations;
492 	 * this method gives everyone a chance to attach cleanly.
493 	 */
494 	sc->sc_tx.xmit_attach_comp_func(sc);
495 
496 	/*
497 	 * Setup rate control.  Some rate control modules
498 	 * call back to change the anntena state so expose
499 	 * the necessary entry points.
500 	 * XXX maybe belongs in struct ath_ratectrl?
501 	 */
502 	sc->sc_setdefantenna = ath_setdefantenna;
503 	sc->sc_rc = ath_rate_attach(sc);
504 	if (sc->sc_rc == NULL) {
505 		error = EIO;
506 		goto bad2;
507 	}
508 
509 	/* Attach DFS module */
510 	if (! ath_dfs_attach(sc)) {
511 		device_printf(sc->sc_dev,
512 		    "%s: unable to attach DFS\n", __func__);
513 		error = EIO;
514 		goto bad2;
515 	}
516 
517 	/* Attach spectral module */
518 	if (ath_spectral_attach(sc) < 0) {
519 		device_printf(sc->sc_dev,
520 		    "%s: unable to attach spectral\n", __func__);
521 		error = EIO;
522 		goto bad2;
523 	}
524 
525 	/* Start DFS processing tasklet */
526 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
527 
528 	/* Configure LED state */
529 	sc->sc_blinking = 0;
530 	sc->sc_ledstate = 1;
531 	sc->sc_ledon = 0;			/* low true */
532 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
533 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
534 
535 	/*
536 	 * Don't setup hardware-based blinking.
537 	 *
538 	 * Although some NICs may have this configured in the
539 	 * default reset register values, the user may wish
540 	 * to alter which pins have which function.
541 	 *
542 	 * The reference driver attaches the MAC network LED to GPIO1 and
543 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
544 	 * NIC has these reversed.
545 	 */
546 	sc->sc_hardled = (1 == 0);
547 	sc->sc_led_net_pin = -1;
548 	sc->sc_led_pwr_pin = -1;
549 	/*
550 	 * Auto-enable soft led processing for IBM cards and for
551 	 * 5211 minipci cards.  Users can also manually enable/disable
552 	 * support with a sysctl.
553 	 */
554 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
555 	ath_led_config(sc);
556 	ath_hal_setledstate(ah, HAL_LED_INIT);
557 
558 	ifp->if_softc = sc;
559 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
560 	ifp->if_start = ath_start_queue;
561 	ifp->if_ioctl = ath_ioctl;
562 	ifp->if_init = ath_init;
563 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
564 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
565 	IFQ_SET_READY(&ifp->if_snd);
566 
567 	ic->ic_ifp = ifp;
568 	/* XXX not right but it's not used anywhere important */
569 	ic->ic_phytype = IEEE80211_T_OFDM;
570 	ic->ic_opmode = IEEE80211_M_STA;
571 	ic->ic_caps =
572 		  IEEE80211_C_STA		/* station mode */
573 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
574 		| IEEE80211_C_HOSTAP		/* hostap mode */
575 		| IEEE80211_C_MONITOR		/* monitor mode */
576 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
577 		| IEEE80211_C_WDS		/* 4-address traffic works */
578 		| IEEE80211_C_MBSS		/* mesh point link mode */
579 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580 		| IEEE80211_C_SHSLOT		/* short slot time supported */
581 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
582 #ifndef	ATH_ENABLE_11N
583 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
584 #endif
585 		| IEEE80211_C_TXFRAG		/* handle tx frags */
586 #ifdef	ATH_ENABLE_DFS
587 		| IEEE80211_C_DFS		/* Enable radar detection */
588 #endif
589 		;
590 	/*
591 	 * Query the hal to figure out h/w crypto support.
592 	 */
593 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
594 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
595 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
596 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
597 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
598 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
599 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
600 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
601 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
602 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
603 		/*
604 		 * Check if h/w does the MIC and/or whether the
605 		 * separate key cache entries are required to
606 		 * handle both tx+rx MIC keys.
607 		 */
608 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
609 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
610 		/*
611 		 * If the h/w supports storing tx+rx MIC keys
612 		 * in one cache slot automatically enable use.
613 		 */
614 		if (ath_hal_hastkipsplit(ah) ||
615 		    !ath_hal_settkipsplit(ah, AH_FALSE))
616 			sc->sc_splitmic = 1;
617 		/*
618 		 * If the h/w can do TKIP MIC together with WME then
619 		 * we use it; otherwise we force the MIC to be done
620 		 * in software by the net80211 layer.
621 		 */
622 		if (ath_hal_haswmetkipmic(ah))
623 			sc->sc_wmetkipmic = 1;
624 	}
625 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
626 	/*
627 	 * Check for multicast key search support.
628 	 */
629 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
630 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
631 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
632 	}
633 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
634 	/*
635 	 * Mark key cache slots associated with global keys
636 	 * as in use.  If we knew TKIP was not to be used we
637 	 * could leave the +32, +64, and +32+64 slots free.
638 	 */
639 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
640 		setbit(sc->sc_keymap, i);
641 		setbit(sc->sc_keymap, i+64);
642 		if (sc->sc_splitmic) {
643 			setbit(sc->sc_keymap, i+32);
644 			setbit(sc->sc_keymap, i+32+64);
645 		}
646 	}
647 	/*
648 	 * TPC support can be done either with a global cap or
649 	 * per-packet support.  The latter is not available on
650 	 * all parts.  We're a bit pedantic here as all parts
651 	 * support a global cap.
652 	 */
653 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
654 		ic->ic_caps |= IEEE80211_C_TXPMGT;
655 
656 	/*
657 	 * Mark WME capability only if we have sufficient
658 	 * hardware queues to do proper priority scheduling.
659 	 */
660 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
661 		ic->ic_caps |= IEEE80211_C_WME;
662 	/*
663 	 * Check for misc other capabilities.
664 	 */
665 	if (ath_hal_hasbursting(ah))
666 		ic->ic_caps |= IEEE80211_C_BURST;
667 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
668 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
669 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
670 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
671 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
672 	if (ath_hal_hasfastframes(ah))
673 		ic->ic_caps |= IEEE80211_C_FF;
674 	wmodes = ath_hal_getwirelessmodes(ah);
675 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
676 		ic->ic_caps |= IEEE80211_C_TURBOP;
677 #ifdef IEEE80211_SUPPORT_TDMA
678 	if (ath_hal_macversion(ah) > 0x78) {
679 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
680 		ic->ic_tdma_update = ath_tdma_update;
681 	}
682 #endif
683 
684 	/*
685 	 * TODO: enforce that at least this many frames are available
686 	 * in the txbuf list before allowing data frames (raw or
687 	 * otherwise) to be transmitted.
688 	 */
689 	sc->sc_txq_data_minfree = 10;
690 	/*
691 	 * Leave this as default to maintain legacy behaviour.
692 	 * Shortening the cabq/mcastq may end up causing some
693 	 * undesirable behaviour.
694 	 */
695 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
696 
697 	/* Enable CABQ by default */
698 	sc->sc_cabq_enable = 1;
699 
700 	/*
701 	 * Allow the TX and RX chainmasks to be overridden by
702 	 * environment variables and/or device.hints.
703 	 *
704 	 * This must be done early - before the hardware is
705 	 * calibrated or before the 802.11n stream calculation
706 	 * is done.
707 	 */
708 	if (resource_int_value(device_get_name(sc->sc_dev),
709 	    device_get_unit(sc->sc_dev), "rx_chainmask",
710 	    &rx_chainmask) == 0) {
711 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
712 		    rx_chainmask);
713 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
714 	}
715 	if (resource_int_value(device_get_name(sc->sc_dev),
716 	    device_get_unit(sc->sc_dev), "tx_chainmask",
717 	    &tx_chainmask) == 0) {
718 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
719 		    tx_chainmask);
720 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
721 	}
722 
723 	/*
724 	 * Disable MRR with protected frames by default.
725 	 * Only 802.11n series NICs can handle this.
726 	 */
727 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
728 
729 	/*
730 	 * Query the enterprise mode information the HAL.
731 	 */
732 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
733 	    &sc->sc_ent_cfg) == HAL_OK)
734 		sc->sc_use_ent = 1;
735 
736 #ifdef	ATH_ENABLE_11N
737 	/*
738 	 * Query HT capabilities
739 	 */
740 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
741 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
742 		int rxs, txs;
743 
744 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
745 
746 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
747 
748 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
749 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
750 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
751 			    | IEEE80211_HTCAP_MAXAMSDU_3839
752 			    				/* max A-MSDU length */
753 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
754 			;
755 
756 		/*
757 		 * Enable short-GI for HT20 only if the hardware
758 		 * advertises support.
759 		 * Notably, anything earlier than the AR9287 doesn't.
760 		 */
761 		if ((ath_hal_getcapability(ah,
762 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
763 		    (wmodes & HAL_MODE_HT20)) {
764 			device_printf(sc->sc_dev,
765 			    "[HT] enabling short-GI in 20MHz mode\n");
766 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
767 		}
768 
769 		if (wmodes & HAL_MODE_HT40)
770 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
771 			    |  IEEE80211_HTCAP_SHORTGI40;
772 
773 		/*
774 		 * TX/RX streams need to be taken into account when
775 		 * negotiating which MCS rates it'll receive and
776 		 * what MCS rates are available for TX.
777 		 */
778 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
779 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
780 
781 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
782 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
783 
784 		ic->ic_txstream = txs;
785 		ic->ic_rxstream = rxs;
786 
787 		/*
788 		 * Setup TX and RX STBC based on what the HAL allows and
789 		 * the currently configured chainmask set.
790 		 * Ie - don't enable STBC TX if only one chain is enabled.
791 		 * STBC RX is fine on a single RX chain; it just won't
792 		 * provide any real benefit.
793 		 */
794 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
795 		    NULL) == HAL_OK) {
796 			sc->sc_rx_stbc = 1;
797 			device_printf(sc->sc_dev,
798 			    "[HT] 1 stream STBC receive enabled\n");
799 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
800 		}
801 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
802 		    NULL) == HAL_OK) {
803 			sc->sc_tx_stbc = 1;
804 			device_printf(sc->sc_dev,
805 			    "[HT] 1 stream STBC transmit enabled\n");
806 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
807 		}
808 
809 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
810 		    &sc->sc_rts_aggr_limit);
811 		if (sc->sc_rts_aggr_limit != (64 * 1024))
812 			device_printf(sc->sc_dev,
813 			    "[HT] RTS aggregates limited to %d KiB\n",
814 			    sc->sc_rts_aggr_limit / 1024);
815 
816 		device_printf(sc->sc_dev,
817 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
818 	}
819 #endif
820 
821 	/*
822 	 * Initial aggregation settings.
823 	 */
824 	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
825 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
826 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
827 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
828 	sc->sc_delim_min_pad = 0;
829 
830 	/*
831 	 * Check if the hardware requires PCI register serialisation.
832 	 * Some of the Owl based MACs require this.
833 	 */
834 	if (mp_ncpus > 1 &&
835 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
836 	     0, NULL) == HAL_OK) {
837 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
838 		device_printf(sc->sc_dev,
839 		    "Enabling register serialisation\n");
840 	}
841 
842 	/*
843 	 * Initialise the deferred completed RX buffer list.
844 	 */
845 	TAILQ_INIT(&sc->sc_rx_rxlist);
846 
847 	/*
848 	 * Indicate we need the 802.11 header padded to a
849 	 * 32-bit boundary for 4-address and QoS frames.
850 	 */
851 	ic->ic_flags |= IEEE80211_F_DATAPAD;
852 
853 	/*
854 	 * Query the hal about antenna support.
855 	 */
856 	sc->sc_defant = ath_hal_getdefantenna(ah);
857 
858 	/*
859 	 * Not all chips have the VEOL support we want to
860 	 * use with IBSS beacons; check here for it.
861 	 */
862 	sc->sc_hasveol = ath_hal_hasveol(ah);
863 
864 	/* get mac address from hardware */
865 	ath_hal_getmac(ah, macaddr);
866 	if (sc->sc_hasbmask)
867 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
868 
869 	/* NB: used to size node table key mapping array */
870 	ic->ic_max_keyix = sc->sc_keymax;
871 	/* call MI attach routine. */
872 	ieee80211_ifattach(ic, macaddr);
873 	ic->ic_setregdomain = ath_setregdomain;
874 	ic->ic_getradiocaps = ath_getradiocaps;
875 	sc->sc_opmode = HAL_M_STA;
876 
877 	/* override default methods */
878 	ic->ic_newassoc = ath_newassoc;
879 	ic->ic_updateslot = ath_updateslot;
880 	ic->ic_wme.wme_update = ath_wme_update;
881 	ic->ic_vap_create = ath_vap_create;
882 	ic->ic_vap_delete = ath_vap_delete;
883 	ic->ic_raw_xmit = ath_raw_xmit;
884 	ic->ic_update_mcast = ath_update_mcast;
885 	ic->ic_update_promisc = ath_update_promisc;
886 	ic->ic_node_alloc = ath_node_alloc;
887 	sc->sc_node_free = ic->ic_node_free;
888 	ic->ic_node_free = ath_node_free;
889 	sc->sc_node_cleanup = ic->ic_node_cleanup;
890 	ic->ic_node_cleanup = ath_node_cleanup;
891 	ic->ic_node_getsignal = ath_node_getsignal;
892 	ic->ic_scan_start = ath_scan_start;
893 	ic->ic_scan_end = ath_scan_end;
894 	ic->ic_set_channel = ath_set_channel;
895 #ifdef	ATH_ENABLE_11N
896 	/* 802.11n specific - but just override anyway */
897 	sc->sc_addba_request = ic->ic_addba_request;
898 	sc->sc_addba_response = ic->ic_addba_response;
899 	sc->sc_addba_stop = ic->ic_addba_stop;
900 	sc->sc_bar_response = ic->ic_bar_response;
901 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
902 
903 	ic->ic_addba_request = ath_addba_request;
904 	ic->ic_addba_response = ath_addba_response;
905 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
906 	ic->ic_addba_stop = ath_addba_stop;
907 	ic->ic_bar_response = ath_bar_response;
908 
909 	ic->ic_update_chw = ath_update_chw;
910 #endif	/* ATH_ENABLE_11N */
911 
912 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
913 	/*
914 	 * There's one vendor bitmap entry in the RX radiotap
915 	 * header; make sure that's taken into account.
916 	 */
917 	ieee80211_radiotap_attachv(ic,
918 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
919 		ATH_TX_RADIOTAP_PRESENT,
920 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
921 		ATH_RX_RADIOTAP_PRESENT);
922 #else
923 	/*
924 	 * No vendor bitmap/extensions are present.
925 	 */
926 	ieee80211_radiotap_attach(ic,
927 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
928 		ATH_TX_RADIOTAP_PRESENT,
929 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
930 		ATH_RX_RADIOTAP_PRESENT);
931 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
932 
933 	/*
934 	 * Setup the ALQ logging if required
935 	 */
936 #ifdef	ATH_DEBUG_ALQ
937 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
938 	if_ath_alq_setcfg(&sc->sc_alq,
939 	    sc->sc_ah->ah_macVersion,
940 	    sc->sc_ah->ah_macRev,
941 	    sc->sc_ah->ah_phyRev,
942 	    sc->sc_ah->ah_magic);
943 #endif
944 
945 	/*
946 	 * Setup dynamic sysctl's now that country code and
947 	 * regdomain are available from the hal.
948 	 */
949 	ath_sysctlattach(sc);
950 	ath_sysctl_stats_attach(sc);
951 	ath_sysctl_hal_attach(sc);
952 
953 	if (bootverbose)
954 		ieee80211_announce(ic);
955 	ath_announce(sc);
956 	return 0;
957 bad2:
958 	ath_tx_cleanup(sc);
959 	ath_desc_free(sc);
960 	ath_txdma_teardown(sc);
961 	ath_rxdma_teardown(sc);
962 bad:
963 	if (ah)
964 		ath_hal_detach(ah);
965 
966 	/*
967 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
968 	 */
969 	if (ifp != NULL && ifp->if_vnet) {
970 		CURVNET_SET(ifp->if_vnet);
971 		if_free(ifp);
972 		CURVNET_RESTORE();
973 	} else if (ifp != NULL)
974 		if_free(ifp);
975 	sc->sc_invalid = 1;
976 	return error;
977 }
978 
979 int
980 ath_detach(struct ath_softc *sc)
981 {
982 	struct ifnet *ifp = sc->sc_ifp;
983 
984 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
985 		__func__, ifp->if_flags);
986 
987 	/*
988 	 * NB: the order of these is important:
989 	 * o stop the chip so no more interrupts will fire
990 	 * o call the 802.11 layer before detaching the hal to
991 	 *   insure callbacks into the driver to delete global
992 	 *   key cache entries can be handled
993 	 * o free the taskqueue which drains any pending tasks
994 	 * o reclaim the tx queue data structures after calling
995 	 *   the 802.11 layer as we'll get called back to reclaim
996 	 *   node state and potentially want to use them
997 	 * o to cleanup the tx queues the hal is called, so detach
998 	 *   it last
999 	 * Other than that, it's straightforward...
1000 	 */
1001 	ath_stop(ifp);
1002 	ieee80211_ifdetach(ifp->if_l2com);
1003 	taskqueue_free(sc->sc_tq);
1004 #ifdef ATH_TX99_DIAG
1005 	if (sc->sc_tx99 != NULL)
1006 		sc->sc_tx99->detach(sc->sc_tx99);
1007 #endif
1008 	ath_rate_detach(sc->sc_rc);
1009 #ifdef	ATH_DEBUG_ALQ
1010 	if_ath_alq_tidyup(&sc->sc_alq);
1011 #endif
1012 	ath_spectral_detach(sc);
1013 	ath_dfs_detach(sc);
1014 	ath_desc_free(sc);
1015 	ath_txdma_teardown(sc);
1016 	ath_rxdma_teardown(sc);
1017 	ath_tx_cleanup(sc);
1018 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1019 
1020 	CURVNET_SET(ifp->if_vnet);
1021 	if_free(ifp);
1022 	CURVNET_RESTORE();
1023 
1024 	return 0;
1025 }
1026 
1027 /*
1028  * MAC address handling for multiple BSS on the same radio.
1029  * The first vap uses the MAC address from the EEPROM.  For
1030  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1031  * address and use the next six bits as an index.
1032  */
1033 static void
1034 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1035 {
1036 	int i;
1037 
1038 	if (clone && sc->sc_hasbmask) {
1039 		/* NB: we only do this if h/w supports multiple bssid */
1040 		for (i = 0; i < 8; i++)
1041 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1042 				break;
1043 		if (i != 0)
1044 			mac[0] |= (i << 2)|0x2;
1045 	} else
1046 		i = 0;
1047 	sc->sc_bssidmask |= 1<<i;
1048 	sc->sc_hwbssidmask[0] &= ~mac[0];
1049 	if (i == 0)
1050 		sc->sc_nbssid0++;
1051 }
1052 
1053 static void
1054 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1055 {
1056 	int i = mac[0] >> 2;
1057 	uint8_t mask;
1058 
1059 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1060 		sc->sc_bssidmask &= ~(1<<i);
1061 		/* recalculate bssid mask from remaining addresses */
1062 		mask = 0xff;
1063 		for (i = 1; i < 8; i++)
1064 			if (sc->sc_bssidmask & (1<<i))
1065 				mask &= ~((i<<2)|0x2);
1066 		sc->sc_hwbssidmask[0] |= mask;
1067 	}
1068 }
1069 
1070 /*
1071  * Assign a beacon xmit slot.  We try to space out
1072  * assignments so when beacons are staggered the
1073  * traffic coming out of the cab q has maximal time
1074  * to go out before the next beacon is scheduled.
1075  */
1076 static int
1077 assign_bslot(struct ath_softc *sc)
1078 {
1079 	u_int slot, free;
1080 
1081 	free = 0;
1082 	for (slot = 0; slot < ATH_BCBUF; slot++)
1083 		if (sc->sc_bslot[slot] == NULL) {
1084 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1085 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1086 				return slot;
1087 			free = slot;
1088 			/* NB: keep looking for a double slot */
1089 		}
1090 	return free;
1091 }
1092 
1093 static struct ieee80211vap *
1094 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1095     enum ieee80211_opmode opmode, int flags,
1096     const uint8_t bssid[IEEE80211_ADDR_LEN],
1097     const uint8_t mac0[IEEE80211_ADDR_LEN])
1098 {
1099 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1100 	struct ath_vap *avp;
1101 	struct ieee80211vap *vap;
1102 	uint8_t mac[IEEE80211_ADDR_LEN];
1103 	int needbeacon, error;
1104 	enum ieee80211_opmode ic_opmode;
1105 
1106 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1107 	    M_80211_VAP, M_WAITOK | M_ZERO);
1108 	needbeacon = 0;
1109 	IEEE80211_ADDR_COPY(mac, mac0);
1110 
1111 	ATH_LOCK(sc);
1112 	ic_opmode = opmode;		/* default to opmode of new vap */
1113 	switch (opmode) {
1114 	case IEEE80211_M_STA:
1115 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1116 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1117 			goto bad;
1118 		}
1119 		if (sc->sc_nvaps) {
1120 			/*
1121 			 * With multiple vaps we must fall back
1122 			 * to s/w beacon miss handling.
1123 			 */
1124 			flags |= IEEE80211_CLONE_NOBEACONS;
1125 		}
1126 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1127 			/*
1128 			 * Station mode w/o beacons are implemented w/ AP mode.
1129 			 */
1130 			ic_opmode = IEEE80211_M_HOSTAP;
1131 		}
1132 		break;
1133 	case IEEE80211_M_IBSS:
1134 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1135 			device_printf(sc->sc_dev,
1136 			    "only 1 ibss vap supported\n");
1137 			goto bad;
1138 		}
1139 		needbeacon = 1;
1140 		break;
1141 	case IEEE80211_M_AHDEMO:
1142 #ifdef IEEE80211_SUPPORT_TDMA
1143 		if (flags & IEEE80211_CLONE_TDMA) {
1144 			if (sc->sc_nvaps != 0) {
1145 				device_printf(sc->sc_dev,
1146 				    "only 1 tdma vap supported\n");
1147 				goto bad;
1148 			}
1149 			needbeacon = 1;
1150 			flags |= IEEE80211_CLONE_NOBEACONS;
1151 		}
1152 		/* fall thru... */
1153 #endif
1154 	case IEEE80211_M_MONITOR:
1155 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1156 			/*
1157 			 * Adopt existing mode.  Adding a monitor or ahdemo
1158 			 * vap to an existing configuration is of dubious
1159 			 * value but should be ok.
1160 			 */
1161 			/* XXX not right for monitor mode */
1162 			ic_opmode = ic->ic_opmode;
1163 		}
1164 		break;
1165 	case IEEE80211_M_HOSTAP:
1166 	case IEEE80211_M_MBSS:
1167 		needbeacon = 1;
1168 		break;
1169 	case IEEE80211_M_WDS:
1170 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1171 			device_printf(sc->sc_dev,
1172 			    "wds not supported in sta mode\n");
1173 			goto bad;
1174 		}
1175 		/*
1176 		 * Silently remove any request for a unique
1177 		 * bssid; WDS vap's always share the local
1178 		 * mac address.
1179 		 */
1180 		flags &= ~IEEE80211_CLONE_BSSID;
1181 		if (sc->sc_nvaps == 0)
1182 			ic_opmode = IEEE80211_M_HOSTAP;
1183 		else
1184 			ic_opmode = ic->ic_opmode;
1185 		break;
1186 	default:
1187 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1188 		goto bad;
1189 	}
1190 	/*
1191 	 * Check that a beacon buffer is available; the code below assumes it.
1192 	 */
1193 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1194 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1195 		goto bad;
1196 	}
1197 
1198 	/* STA, AHDEMO? */
1199 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1200 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1201 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1202 	}
1203 
1204 	vap = &avp->av_vap;
1205 	/* XXX can't hold mutex across if_alloc */
1206 	ATH_UNLOCK(sc);
1207 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1208 	    bssid, mac);
1209 	ATH_LOCK(sc);
1210 	if (error != 0) {
1211 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1212 		    __func__, error);
1213 		goto bad2;
1214 	}
1215 
1216 	/* h/w crypto support */
1217 	vap->iv_key_alloc = ath_key_alloc;
1218 	vap->iv_key_delete = ath_key_delete;
1219 	vap->iv_key_set = ath_key_set;
1220 	vap->iv_key_update_begin = ath_key_update_begin;
1221 	vap->iv_key_update_end = ath_key_update_end;
1222 
1223 	/* override various methods */
1224 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1225 	vap->iv_recv_mgmt = ath_recv_mgmt;
1226 	vap->iv_reset = ath_reset_vap;
1227 	vap->iv_update_beacon = ath_beacon_update;
1228 	avp->av_newstate = vap->iv_newstate;
1229 	vap->iv_newstate = ath_newstate;
1230 	avp->av_bmiss = vap->iv_bmiss;
1231 	vap->iv_bmiss = ath_bmiss_vap;
1232 
1233 	avp->av_node_ps = vap->iv_node_ps;
1234 	vap->iv_node_ps = ath_node_powersave;
1235 
1236 	avp->av_set_tim = vap->iv_set_tim;
1237 	vap->iv_set_tim = ath_node_set_tim;
1238 
1239 	/* Set default parameters */
1240 
1241 	/*
1242 	 * Anything earlier than some AR9300 series MACs don't
1243 	 * support a smaller MPDU density.
1244 	 */
1245 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1246 	/*
1247 	 * All NICs can handle the maximum size, however
1248 	 * AR5416 based MACs can only TX aggregates w/ RTS
1249 	 * protection when the total aggregate size is <= 8k.
1250 	 * However, for now that's enforced by the TX path.
1251 	 */
1252 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1253 
1254 	avp->av_bslot = -1;
1255 	if (needbeacon) {
1256 		/*
1257 		 * Allocate beacon state and setup the q for buffered
1258 		 * multicast frames.  We know a beacon buffer is
1259 		 * available because we checked above.
1260 		 */
1261 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1262 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1263 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1264 			/*
1265 			 * Assign the vap to a beacon xmit slot.  As above
1266 			 * this cannot fail to find a free one.
1267 			 */
1268 			avp->av_bslot = assign_bslot(sc);
1269 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1270 			    ("beacon slot %u not empty", avp->av_bslot));
1271 			sc->sc_bslot[avp->av_bslot] = vap;
1272 			sc->sc_nbcnvaps++;
1273 		}
1274 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1275 			/*
1276 			 * Multple vaps are to transmit beacons and we
1277 			 * have h/w support for TSF adjusting; enable
1278 			 * use of staggered beacons.
1279 			 */
1280 			sc->sc_stagbeacons = 1;
1281 		}
1282 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1283 	}
1284 
1285 	ic->ic_opmode = ic_opmode;
1286 	if (opmode != IEEE80211_M_WDS) {
1287 		sc->sc_nvaps++;
1288 		if (opmode == IEEE80211_M_STA)
1289 			sc->sc_nstavaps++;
1290 		if (opmode == IEEE80211_M_MBSS)
1291 			sc->sc_nmeshvaps++;
1292 	}
1293 	switch (ic_opmode) {
1294 	case IEEE80211_M_IBSS:
1295 		sc->sc_opmode = HAL_M_IBSS;
1296 		break;
1297 	case IEEE80211_M_STA:
1298 		sc->sc_opmode = HAL_M_STA;
1299 		break;
1300 	case IEEE80211_M_AHDEMO:
1301 #ifdef IEEE80211_SUPPORT_TDMA
1302 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1303 			sc->sc_tdma = 1;
1304 			/* NB: disable tsf adjust */
1305 			sc->sc_stagbeacons = 0;
1306 		}
1307 		/*
1308 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1309 		 * just ap mode.
1310 		 */
1311 		/* fall thru... */
1312 #endif
1313 	case IEEE80211_M_HOSTAP:
1314 	case IEEE80211_M_MBSS:
1315 		sc->sc_opmode = HAL_M_HOSTAP;
1316 		break;
1317 	case IEEE80211_M_MONITOR:
1318 		sc->sc_opmode = HAL_M_MONITOR;
1319 		break;
1320 	default:
1321 		/* XXX should not happen */
1322 		break;
1323 	}
1324 	if (sc->sc_hastsfadd) {
1325 		/*
1326 		 * Configure whether or not TSF adjust should be done.
1327 		 */
1328 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1329 	}
1330 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1331 		/*
1332 		 * Enable s/w beacon miss handling.
1333 		 */
1334 		sc->sc_swbmiss = 1;
1335 	}
1336 	ATH_UNLOCK(sc);
1337 
1338 	/* complete setup */
1339 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1340 	return vap;
1341 bad2:
1342 	reclaim_address(sc, mac);
1343 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1344 bad:
1345 	free(avp, M_80211_VAP);
1346 	ATH_UNLOCK(sc);
1347 	return NULL;
1348 }
1349 
1350 static void
1351 ath_vap_delete(struct ieee80211vap *vap)
1352 {
1353 	struct ieee80211com *ic = vap->iv_ic;
1354 	struct ifnet *ifp = ic->ic_ifp;
1355 	struct ath_softc *sc = ifp->if_softc;
1356 	struct ath_hal *ah = sc->sc_ah;
1357 	struct ath_vap *avp = ATH_VAP(vap);
1358 
1359 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1360 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1361 		/*
1362 		 * Quiesce the hardware while we remove the vap.  In
1363 		 * particular we need to reclaim all references to
1364 		 * the vap state by any frames pending on the tx queues.
1365 		 */
1366 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1367 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1368 		/* XXX Do all frames from all vaps/nodes need draining here? */
1369 		ath_stoprecv(sc, 1);		/* stop recv side */
1370 	}
1371 
1372 	ieee80211_vap_detach(vap);
1373 
1374 	/*
1375 	 * XXX Danger Will Robinson! Danger!
1376 	 *
1377 	 * Because ieee80211_vap_detach() can queue a frame (the station
1378 	 * diassociate message?) after we've drained the TXQ and
1379 	 * flushed the software TXQ, we will end up with a frame queued
1380 	 * to a node whose vap is about to be freed.
1381 	 *
1382 	 * To work around this, flush the hardware/software again.
1383 	 * This may be racy - the ath task may be running and the packet
1384 	 * may be being scheduled between sw->hw txq. Tsk.
1385 	 *
1386 	 * TODO: figure out why a new node gets allocated somewhere around
1387 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1388 	 * call!)
1389 	 */
1390 
1391 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1392 
1393 	ATH_LOCK(sc);
1394 	/*
1395 	 * Reclaim beacon state.  Note this must be done before
1396 	 * the vap instance is reclaimed as we may have a reference
1397 	 * to it in the buffer for the beacon frame.
1398 	 */
1399 	if (avp->av_bcbuf != NULL) {
1400 		if (avp->av_bslot != -1) {
1401 			sc->sc_bslot[avp->av_bslot] = NULL;
1402 			sc->sc_nbcnvaps--;
1403 		}
1404 		ath_beacon_return(sc, avp->av_bcbuf);
1405 		avp->av_bcbuf = NULL;
1406 		if (sc->sc_nbcnvaps == 0) {
1407 			sc->sc_stagbeacons = 0;
1408 			if (sc->sc_hastsfadd)
1409 				ath_hal_settsfadjust(sc->sc_ah, 0);
1410 		}
1411 		/*
1412 		 * Reclaim any pending mcast frames for the vap.
1413 		 */
1414 		ath_tx_draintxq(sc, &avp->av_mcastq);
1415 	}
1416 	/*
1417 	 * Update bookkeeping.
1418 	 */
1419 	if (vap->iv_opmode == IEEE80211_M_STA) {
1420 		sc->sc_nstavaps--;
1421 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1422 			sc->sc_swbmiss = 0;
1423 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1424 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1425 		reclaim_address(sc, vap->iv_myaddr);
1426 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1427 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1428 			sc->sc_nmeshvaps--;
1429 	}
1430 	if (vap->iv_opmode != IEEE80211_M_WDS)
1431 		sc->sc_nvaps--;
1432 #ifdef IEEE80211_SUPPORT_TDMA
1433 	/* TDMA operation ceases when the last vap is destroyed */
1434 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1435 		sc->sc_tdma = 0;
1436 		sc->sc_swbmiss = 0;
1437 	}
1438 #endif
1439 	free(avp, M_80211_VAP);
1440 
1441 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1442 		/*
1443 		 * Restart rx+tx machines if still running (RUNNING will
1444 		 * be reset if we just destroyed the last vap).
1445 		 */
1446 		if (ath_startrecv(sc) != 0)
1447 			if_printf(ifp, "%s: unable to restart recv logic\n",
1448 			    __func__);
1449 		if (sc->sc_beacons) {		/* restart beacons */
1450 #ifdef IEEE80211_SUPPORT_TDMA
1451 			if (sc->sc_tdma)
1452 				ath_tdma_config(sc, NULL);
1453 			else
1454 #endif
1455 				ath_beacon_config(sc, NULL);
1456 		}
1457 		ath_hal_intrset(ah, sc->sc_imask);
1458 	}
1459 	ATH_UNLOCK(sc);
1460 }
1461 
1462 void
1463 ath_suspend(struct ath_softc *sc)
1464 {
1465 	struct ifnet *ifp = sc->sc_ifp;
1466 	struct ieee80211com *ic = ifp->if_l2com;
1467 
1468 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1469 		__func__, ifp->if_flags);
1470 
1471 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1472 
1473 	ieee80211_suspend_all(ic);
1474 	/*
1475 	 * NB: don't worry about putting the chip in low power
1476 	 * mode; pci will power off our socket on suspend and
1477 	 * CardBus detaches the device.
1478 	 */
1479 
1480 	/*
1481 	 * XXX ensure none of the taskqueues are running
1482 	 * XXX ensure sc_invalid is 1
1483 	 * XXX ensure the calibration callout is disabled
1484 	 */
1485 
1486 	/* Disable the PCIe PHY, complete with workarounds */
1487 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1488 }
1489 
1490 /*
1491  * Reset the key cache since some parts do not reset the
1492  * contents on resume.  First we clear all entries, then
1493  * re-load keys that the 802.11 layer assumes are setup
1494  * in h/w.
1495  */
1496 static void
1497 ath_reset_keycache(struct ath_softc *sc)
1498 {
1499 	struct ifnet *ifp = sc->sc_ifp;
1500 	struct ieee80211com *ic = ifp->if_l2com;
1501 	struct ath_hal *ah = sc->sc_ah;
1502 	int i;
1503 
1504 	for (i = 0; i < sc->sc_keymax; i++)
1505 		ath_hal_keyreset(ah, i);
1506 	ieee80211_crypto_reload_keys(ic);
1507 }
1508 
1509 /*
1510  * Fetch the current chainmask configuration based on the current
1511  * operating channel and options.
1512  */
1513 static void
1514 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1515 {
1516 
1517 	/*
1518 	 * Set TX chainmask to the currently configured chainmask;
1519 	 * the TX chainmask depends upon the current operating mode.
1520 	 */
1521 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1522 	if (IEEE80211_IS_CHAN_HT(chan)) {
1523 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1524 	} else {
1525 		sc->sc_cur_txchainmask = 1;
1526 	}
1527 }
1528 
1529 void
1530 ath_resume(struct ath_softc *sc)
1531 {
1532 	struct ifnet *ifp = sc->sc_ifp;
1533 	struct ieee80211com *ic = ifp->if_l2com;
1534 	struct ath_hal *ah = sc->sc_ah;
1535 	HAL_STATUS status;
1536 
1537 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1538 		__func__, ifp->if_flags);
1539 
1540 	/* Re-enable PCIe, re-enable the PCIe bus */
1541 	ath_hal_enablepcie(ah, 0, 0);
1542 
1543 	/*
1544 	 * Must reset the chip before we reload the
1545 	 * keycache as we were powered down on suspend.
1546 	 */
1547 	ath_update_chainmasks(sc,
1548 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1549 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1550 	    sc->sc_cur_rxchainmask);
1551 	ath_hal_reset(ah, sc->sc_opmode,
1552 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1553 	    AH_FALSE, &status);
1554 	ath_reset_keycache(sc);
1555 
1556 	/* Let DFS at it in case it's a DFS channel */
1557 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1558 
1559 	/* Let spectral at in case spectral is enabled */
1560 	ath_spectral_enable(sc, ic->ic_curchan);
1561 
1562 	/* Restore the LED configuration */
1563 	ath_led_config(sc);
1564 	ath_hal_setledstate(ah, HAL_LED_INIT);
1565 
1566 	if (sc->sc_resume_up)
1567 		ieee80211_resume_all(ic);
1568 
1569 	/* XXX beacons ? */
1570 }
1571 
1572 void
1573 ath_shutdown(struct ath_softc *sc)
1574 {
1575 	struct ifnet *ifp = sc->sc_ifp;
1576 
1577 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1578 		__func__, ifp->if_flags);
1579 
1580 	ath_stop(ifp);
1581 	/* NB: no point powering down chip as we're about to reboot */
1582 }
1583 
1584 /*
1585  * Interrupt handler.  Most of the actual processing is deferred.
1586  */
1587 void
1588 ath_intr(void *arg)
1589 {
1590 	struct ath_softc *sc = arg;
1591 	struct ifnet *ifp = sc->sc_ifp;
1592 	struct ath_hal *ah = sc->sc_ah;
1593 	HAL_INT status = 0;
1594 	uint32_t txqs;
1595 
1596 	/*
1597 	 * If we're inside a reset path, just print a warning and
1598 	 * clear the ISR. The reset routine will finish it for us.
1599 	 */
1600 	ATH_PCU_LOCK(sc);
1601 	if (sc->sc_inreset_cnt) {
1602 		HAL_INT status;
1603 		ath_hal_getisr(ah, &status);	/* clear ISR */
1604 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1605 		DPRINTF(sc, ATH_DEBUG_ANY,
1606 		    "%s: in reset, ignoring: status=0x%x\n",
1607 		    __func__, status);
1608 		ATH_PCU_UNLOCK(sc);
1609 		return;
1610 	}
1611 
1612 	if (sc->sc_invalid) {
1613 		/*
1614 		 * The hardware is not ready/present, don't touch anything.
1615 		 * Note this can happen early on if the IRQ is shared.
1616 		 */
1617 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1618 		ATH_PCU_UNLOCK(sc);
1619 		return;
1620 	}
1621 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1622 		ATH_PCU_UNLOCK(sc);
1623 		return;
1624 	}
1625 
1626 	if ((ifp->if_flags & IFF_UP) == 0 ||
1627 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1628 		HAL_INT status;
1629 
1630 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1631 			__func__, ifp->if_flags);
1632 		ath_hal_getisr(ah, &status);	/* clear ISR */
1633 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1634 		ATH_PCU_UNLOCK(sc);
1635 		return;
1636 	}
1637 
1638 	/*
1639 	 * Figure out the reason(s) for the interrupt.  Note
1640 	 * that the hal returns a pseudo-ISR that may include
1641 	 * bits we haven't explicitly enabled so we mask the
1642 	 * value to insure we only process bits we requested.
1643 	 */
1644 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1645 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1646 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1647 #ifdef	ATH_DEBUG_ALQ
1648 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1649 	    ah->ah_syncstate);
1650 #endif	/* ATH_DEBUG_ALQ */
1651 #ifdef	ATH_KTR_INTR_DEBUG
1652 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1653 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1654 	    ah->ah_intrstate[0],
1655 	    ah->ah_intrstate[1],
1656 	    ah->ah_intrstate[2],
1657 	    ah->ah_intrstate[3],
1658 	    ah->ah_intrstate[6]);
1659 #endif
1660 
1661 	/* Squirrel away SYNC interrupt debugging */
1662 	if (ah->ah_syncstate != 0) {
1663 		int i;
1664 		for (i = 0; i < 32; i++)
1665 			if (ah->ah_syncstate & (i << i))
1666 				sc->sc_intr_stats.sync_intr[i]++;
1667 	}
1668 
1669 	status &= sc->sc_imask;			/* discard unasked for bits */
1670 
1671 	/* Short-circuit un-handled interrupts */
1672 	if (status == 0x0) {
1673 		ATH_PCU_UNLOCK(sc);
1674 		return;
1675 	}
1676 
1677 	/*
1678 	 * Take a note that we're inside the interrupt handler, so
1679 	 * the reset routines know to wait.
1680 	 */
1681 	sc->sc_intr_cnt++;
1682 	ATH_PCU_UNLOCK(sc);
1683 
1684 	/*
1685 	 * Handle the interrupt. We won't run concurrent with the reset
1686 	 * or channel change routines as they'll wait for sc_intr_cnt
1687 	 * to be 0 before continuing.
1688 	 */
1689 	if (status & HAL_INT_FATAL) {
1690 		sc->sc_stats.ast_hardware++;
1691 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1692 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1693 	} else {
1694 		if (status & HAL_INT_SWBA) {
1695 			/*
1696 			 * Software beacon alert--time to send a beacon.
1697 			 * Handle beacon transmission directly; deferring
1698 			 * this is too slow to meet timing constraints
1699 			 * under load.
1700 			 */
1701 #ifdef IEEE80211_SUPPORT_TDMA
1702 			if (sc->sc_tdma) {
1703 				if (sc->sc_tdmaswba == 0) {
1704 					struct ieee80211com *ic = ifp->if_l2com;
1705 					struct ieee80211vap *vap =
1706 					    TAILQ_FIRST(&ic->ic_vaps);
1707 					ath_tdma_beacon_send(sc, vap);
1708 					sc->sc_tdmaswba =
1709 					    vap->iv_tdma->tdma_bintval;
1710 				} else
1711 					sc->sc_tdmaswba--;
1712 			} else
1713 #endif
1714 			{
1715 				ath_beacon_proc(sc, 0);
1716 #ifdef IEEE80211_SUPPORT_SUPERG
1717 				/*
1718 				 * Schedule the rx taskq in case there's no
1719 				 * traffic so any frames held on the staging
1720 				 * queue are aged and potentially flushed.
1721 				 */
1722 				sc->sc_rx.recv_sched(sc, 1);
1723 #endif
1724 			}
1725 		}
1726 		if (status & HAL_INT_RXEOL) {
1727 			int imask;
1728 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1729 			ATH_PCU_LOCK(sc);
1730 			/*
1731 			 * NB: the hardware should re-read the link when
1732 			 *     RXE bit is written, but it doesn't work at
1733 			 *     least on older hardware revs.
1734 			 */
1735 			sc->sc_stats.ast_rxeol++;
1736 			/*
1737 			 * Disable RXEOL/RXORN - prevent an interrupt
1738 			 * storm until the PCU logic can be reset.
1739 			 * In case the interface is reset some other
1740 			 * way before "sc_kickpcu" is called, don't
1741 			 * modify sc_imask - that way if it is reset
1742 			 * by a call to ath_reset() somehow, the
1743 			 * interrupt mask will be correctly reprogrammed.
1744 			 */
1745 			imask = sc->sc_imask;
1746 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1747 			ath_hal_intrset(ah, imask);
1748 			/*
1749 			 * Only blank sc_rxlink if we've not yet kicked
1750 			 * the PCU.
1751 			 *
1752 			 * This isn't entirely correct - the correct solution
1753 			 * would be to have a PCU lock and engage that for
1754 			 * the duration of the PCU fiddling; which would include
1755 			 * running the RX process. Otherwise we could end up
1756 			 * messing up the RX descriptor chain and making the
1757 			 * RX desc list much shorter.
1758 			 */
1759 			if (! sc->sc_kickpcu)
1760 				sc->sc_rxlink = NULL;
1761 			sc->sc_kickpcu = 1;
1762 			ATH_PCU_UNLOCK(sc);
1763 			/*
1764 			 * Enqueue an RX proc, to handled whatever
1765 			 * is in the RX queue.
1766 			 * This will then kick the PCU.
1767 			 */
1768 			sc->sc_rx.recv_sched(sc, 1);
1769 		}
1770 		if (status & HAL_INT_TXURN) {
1771 			sc->sc_stats.ast_txurn++;
1772 			/* bump tx trigger level */
1773 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1774 		}
1775 		/*
1776 		 * Handle both the legacy and RX EDMA interrupt bits.
1777 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1778 		 */
1779 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1780 			sc->sc_stats.ast_rx_intr++;
1781 			sc->sc_rx.recv_sched(sc, 1);
1782 		}
1783 		if (status & HAL_INT_TX) {
1784 			sc->sc_stats.ast_tx_intr++;
1785 			/*
1786 			 * Grab all the currently set bits in the HAL txq bitmap
1787 			 * and blank them. This is the only place we should be
1788 			 * doing this.
1789 			 */
1790 			if (! sc->sc_isedma) {
1791 				ATH_PCU_LOCK(sc);
1792 				txqs = 0xffffffff;
1793 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1794 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1795 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1796 				    txqs,
1797 				    sc->sc_txq_active,
1798 				    sc->sc_txq_active | txqs);
1799 				sc->sc_txq_active |= txqs;
1800 				ATH_PCU_UNLOCK(sc);
1801 			}
1802 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1803 		}
1804 		if (status & HAL_INT_BMISS) {
1805 			sc->sc_stats.ast_bmiss++;
1806 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1807 		}
1808 		if (status & HAL_INT_GTT)
1809 			sc->sc_stats.ast_tx_timeout++;
1810 		if (status & HAL_INT_CST)
1811 			sc->sc_stats.ast_tx_cst++;
1812 		if (status & HAL_INT_MIB) {
1813 			sc->sc_stats.ast_mib++;
1814 			ATH_PCU_LOCK(sc);
1815 			/*
1816 			 * Disable interrupts until we service the MIB
1817 			 * interrupt; otherwise it will continue to fire.
1818 			 */
1819 			ath_hal_intrset(ah, 0);
1820 			/*
1821 			 * Let the hal handle the event.  We assume it will
1822 			 * clear whatever condition caused the interrupt.
1823 			 */
1824 			ath_hal_mibevent(ah, &sc->sc_halstats);
1825 			/*
1826 			 * Don't reset the interrupt if we've just
1827 			 * kicked the PCU, or we may get a nested
1828 			 * RXEOL before the rxproc has had a chance
1829 			 * to run.
1830 			 */
1831 			if (sc->sc_kickpcu == 0)
1832 				ath_hal_intrset(ah, sc->sc_imask);
1833 			ATH_PCU_UNLOCK(sc);
1834 		}
1835 		if (status & HAL_INT_RXORN) {
1836 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1837 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1838 			sc->sc_stats.ast_rxorn++;
1839 		}
1840 	}
1841 	ATH_PCU_LOCK(sc);
1842 	sc->sc_intr_cnt--;
1843 	ATH_PCU_UNLOCK(sc);
1844 }
1845 
1846 static void
1847 ath_fatal_proc(void *arg, int pending)
1848 {
1849 	struct ath_softc *sc = arg;
1850 	struct ifnet *ifp = sc->sc_ifp;
1851 	u_int32_t *state;
1852 	u_int32_t len;
1853 	void *sp;
1854 
1855 	if_printf(ifp, "hardware error; resetting\n");
1856 	/*
1857 	 * Fatal errors are unrecoverable.  Typically these
1858 	 * are caused by DMA errors.  Collect h/w state from
1859 	 * the hal so we can diagnose what's going on.
1860 	 */
1861 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1862 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1863 		state = sp;
1864 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1865 		    state[0], state[1] , state[2], state[3],
1866 		    state[4], state[5]);
1867 	}
1868 	ath_reset(ifp, ATH_RESET_NOLOSS);
1869 }
1870 
1871 static void
1872 ath_bmiss_vap(struct ieee80211vap *vap)
1873 {
1874 	/*
1875 	 * Workaround phantom bmiss interrupts by sanity-checking
1876 	 * the time of our last rx'd frame.  If it is within the
1877 	 * beacon miss interval then ignore the interrupt.  If it's
1878 	 * truly a bmiss we'll get another interrupt soon and that'll
1879 	 * be dispatched up for processing.  Note this applies only
1880 	 * for h/w beacon miss events.
1881 	 */
1882 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1883 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1884 		struct ath_softc *sc = ifp->if_softc;
1885 		u_int64_t lastrx = sc->sc_lastrx;
1886 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1887 		/* XXX should take a locked ref to iv_bss */
1888 		u_int bmisstimeout =
1889 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1890 
1891 		DPRINTF(sc, ATH_DEBUG_BEACON,
1892 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1893 		    __func__, (unsigned long long) tsf,
1894 		    (unsigned long long)(tsf - lastrx),
1895 		    (unsigned long long) lastrx, bmisstimeout);
1896 
1897 		if (tsf - lastrx <= bmisstimeout) {
1898 			sc->sc_stats.ast_bmiss_phantom++;
1899 			return;
1900 		}
1901 	}
1902 	ATH_VAP(vap)->av_bmiss(vap);
1903 }
1904 
1905 int
1906 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1907 {
1908 	uint32_t rsize;
1909 	void *sp;
1910 
1911 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1912 		return 0;
1913 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1914 	*hangs = *(uint32_t *)sp;
1915 	return 1;
1916 }
1917 
1918 static void
1919 ath_bmiss_proc(void *arg, int pending)
1920 {
1921 	struct ath_softc *sc = arg;
1922 	struct ifnet *ifp = sc->sc_ifp;
1923 	uint32_t hangs;
1924 
1925 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1926 
1927 	/*
1928 	 * Do a reset upon any becaon miss event.
1929 	 *
1930 	 * It may be a non-recognised RX clear hang which needs a reset
1931 	 * to clear.
1932 	 */
1933 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1934 		ath_reset(ifp, ATH_RESET_NOLOSS);
1935 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1936 	} else {
1937 		ath_reset(ifp, ATH_RESET_NOLOSS);
1938 		ieee80211_beacon_miss(ifp->if_l2com);
1939 	}
1940 }
1941 
1942 /*
1943  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1944  * calcs together with WME.  If necessary disable the crypto
1945  * hardware and mark the 802.11 state so keys will be setup
1946  * with the MIC work done in software.
1947  */
1948 static void
1949 ath_settkipmic(struct ath_softc *sc)
1950 {
1951 	struct ifnet *ifp = sc->sc_ifp;
1952 	struct ieee80211com *ic = ifp->if_l2com;
1953 
1954 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1955 		if (ic->ic_flags & IEEE80211_F_WME) {
1956 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1957 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1958 		} else {
1959 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1960 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1961 		}
1962 	}
1963 }
1964 
1965 static void
1966 ath_init(void *arg)
1967 {
1968 	struct ath_softc *sc = (struct ath_softc *) arg;
1969 	struct ifnet *ifp = sc->sc_ifp;
1970 	struct ieee80211com *ic = ifp->if_l2com;
1971 	struct ath_hal *ah = sc->sc_ah;
1972 	HAL_STATUS status;
1973 
1974 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1975 		__func__, ifp->if_flags);
1976 
1977 	ATH_LOCK(sc);
1978 	/*
1979 	 * Stop anything previously setup.  This is safe
1980 	 * whether this is the first time through or not.
1981 	 */
1982 	ath_stop_locked(ifp);
1983 
1984 	/*
1985 	 * The basic interface to setting the hardware in a good
1986 	 * state is ``reset''.  On return the hardware is known to
1987 	 * be powered up and with interrupts disabled.  This must
1988 	 * be followed by initialization of the appropriate bits
1989 	 * and then setup of the interrupt mask.
1990 	 */
1991 	ath_settkipmic(sc);
1992 	ath_update_chainmasks(sc, ic->ic_curchan);
1993 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1994 	    sc->sc_cur_rxchainmask);
1995 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1996 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1997 			status);
1998 		ATH_UNLOCK(sc);
1999 		return;
2000 	}
2001 	ath_chan_change(sc, ic->ic_curchan);
2002 
2003 	/* Let DFS at it in case it's a DFS channel */
2004 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2005 
2006 	/* Let spectral at in case spectral is enabled */
2007 	ath_spectral_enable(sc, ic->ic_curchan);
2008 
2009 	/*
2010 	 * Likewise this is set during reset so update
2011 	 * state cached in the driver.
2012 	 */
2013 	sc->sc_diversity = ath_hal_getdiversity(ah);
2014 	sc->sc_lastlongcal = 0;
2015 	sc->sc_resetcal = 1;
2016 	sc->sc_lastcalreset = 0;
2017 	sc->sc_lastani = 0;
2018 	sc->sc_lastshortcal = 0;
2019 	sc->sc_doresetcal = AH_FALSE;
2020 	/*
2021 	 * Beacon timers were cleared here; give ath_newstate()
2022 	 * a hint that the beacon timers should be poked when
2023 	 * things transition to the RUN state.
2024 	 */
2025 	sc->sc_beacons = 0;
2026 
2027 	/*
2028 	 * Setup the hardware after reset: the key cache
2029 	 * is filled as needed and the receive engine is
2030 	 * set going.  Frame transmit is handled entirely
2031 	 * in the frame output path; there's nothing to do
2032 	 * here except setup the interrupt mask.
2033 	 */
2034 	if (ath_startrecv(sc) != 0) {
2035 		if_printf(ifp, "unable to start recv logic\n");
2036 		ATH_UNLOCK(sc);
2037 		return;
2038 	}
2039 
2040 	/*
2041 	 * Enable interrupts.
2042 	 */
2043 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2044 		  | HAL_INT_RXEOL | HAL_INT_RXORN
2045 		  | HAL_INT_TXURN
2046 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2047 
2048 	/*
2049 	 * Enable RX EDMA bits.  Note these overlap with
2050 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2051 	 */
2052 	if (sc->sc_isedma)
2053 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2054 
2055 	/*
2056 	 * Enable MIB interrupts when there are hardware phy counters.
2057 	 * Note we only do this (at the moment) for station mode.
2058 	 */
2059 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2060 		sc->sc_imask |= HAL_INT_MIB;
2061 
2062 	/* Enable global TX timeout and carrier sense timeout if available */
2063 	if (ath_hal_gtxto_supported(ah))
2064 		sc->sc_imask |= HAL_INT_GTT;
2065 
2066 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2067 		__func__, sc->sc_imask);
2068 
2069 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2070 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2071 	ath_hal_intrset(ah, sc->sc_imask);
2072 
2073 	ATH_UNLOCK(sc);
2074 
2075 #ifdef ATH_TX99_DIAG
2076 	if (sc->sc_tx99 != NULL)
2077 		sc->sc_tx99->start(sc->sc_tx99);
2078 	else
2079 #endif
2080 	ieee80211_start_all(ic);		/* start all vap's */
2081 }
2082 
2083 static void
2084 ath_stop_locked(struct ifnet *ifp)
2085 {
2086 	struct ath_softc *sc = ifp->if_softc;
2087 	struct ath_hal *ah = sc->sc_ah;
2088 
2089 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2090 		__func__, sc->sc_invalid, ifp->if_flags);
2091 
2092 	ATH_LOCK_ASSERT(sc);
2093 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2094 		/*
2095 		 * Shutdown the hardware and driver:
2096 		 *    reset 802.11 state machine
2097 		 *    turn off timers
2098 		 *    disable interrupts
2099 		 *    turn off the radio
2100 		 *    clear transmit machinery
2101 		 *    clear receive machinery
2102 		 *    drain and release tx queues
2103 		 *    reclaim beacon resources
2104 		 *    power down hardware
2105 		 *
2106 		 * Note that some of this work is not possible if the
2107 		 * hardware is gone (invalid).
2108 		 */
2109 #ifdef ATH_TX99_DIAG
2110 		if (sc->sc_tx99 != NULL)
2111 			sc->sc_tx99->stop(sc->sc_tx99);
2112 #endif
2113 		callout_stop(&sc->sc_wd_ch);
2114 		sc->sc_wd_timer = 0;
2115 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2116 		if (!sc->sc_invalid) {
2117 			if (sc->sc_softled) {
2118 				callout_stop(&sc->sc_ledtimer);
2119 				ath_hal_gpioset(ah, sc->sc_ledpin,
2120 					!sc->sc_ledon);
2121 				sc->sc_blinking = 0;
2122 			}
2123 			ath_hal_intrset(ah, 0);
2124 		}
2125 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2126 		if (!sc->sc_invalid) {
2127 			ath_stoprecv(sc, 1);
2128 			ath_hal_phydisable(ah);
2129 		} else
2130 			sc->sc_rxlink = NULL;
2131 		ath_beacon_free(sc);	/* XXX not needed */
2132 	}
2133 }
2134 
2135 #define	MAX_TXRX_ITERATIONS	1000
2136 static void
2137 ath_txrx_stop_locked(struct ath_softc *sc)
2138 {
2139 	int i = MAX_TXRX_ITERATIONS;
2140 
2141 	ATH_UNLOCK_ASSERT(sc);
2142 	ATH_PCU_LOCK_ASSERT(sc);
2143 
2144 	/*
2145 	 * Sleep until all the pending operations have completed.
2146 	 *
2147 	 * The caller must ensure that reset has been incremented
2148 	 * or the pending operations may continue being queued.
2149 	 */
2150 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2151 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2152 		if (i <= 0)
2153 			break;
2154 		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2155 		i--;
2156 	}
2157 
2158 	if (i <= 0)
2159 		device_printf(sc->sc_dev,
2160 		    "%s: didn't finish after %d iterations\n",
2161 		    __func__, MAX_TXRX_ITERATIONS);
2162 }
2163 #undef	MAX_TXRX_ITERATIONS
2164 
2165 #if 0
2166 static void
2167 ath_txrx_stop(struct ath_softc *sc)
2168 {
2169 	ATH_UNLOCK_ASSERT(sc);
2170 	ATH_PCU_UNLOCK_ASSERT(sc);
2171 
2172 	ATH_PCU_LOCK(sc);
2173 	ath_txrx_stop_locked(sc);
2174 	ATH_PCU_UNLOCK(sc);
2175 }
2176 #endif
2177 
2178 static void
2179 ath_txrx_start(struct ath_softc *sc)
2180 {
2181 
2182 	taskqueue_unblock(sc->sc_tq);
2183 }
2184 
2185 /*
2186  * Grab the reset lock, and wait around until noone else
2187  * is trying to do anything with it.
2188  *
2189  * This is totally horrible but we can't hold this lock for
2190  * long enough to do TX/RX or we end up with net80211/ip stack
2191  * LORs and eventual deadlock.
2192  *
2193  * "dowait" signals whether to spin, waiting for the reset
2194  * lock count to reach 0. This should (for now) only be used
2195  * during the reset path, as the rest of the code may not
2196  * be locking-reentrant enough to behave correctly.
2197  *
2198  * Another, cleaner way should be found to serialise all of
2199  * these operations.
2200  */
2201 #define	MAX_RESET_ITERATIONS	10
2202 static int
2203 ath_reset_grablock(struct ath_softc *sc, int dowait)
2204 {
2205 	int w = 0;
2206 	int i = MAX_RESET_ITERATIONS;
2207 
2208 	ATH_PCU_LOCK_ASSERT(sc);
2209 	do {
2210 		if (sc->sc_inreset_cnt == 0) {
2211 			w = 1;
2212 			break;
2213 		}
2214 		if (dowait == 0) {
2215 			w = 0;
2216 			break;
2217 		}
2218 		ATH_PCU_UNLOCK(sc);
2219 		pause("ath_reset_grablock", 1);
2220 		i--;
2221 		ATH_PCU_LOCK(sc);
2222 	} while (i > 0);
2223 
2224 	/*
2225 	 * We always increment the refcounter, regardless
2226 	 * of whether we succeeded to get it in an exclusive
2227 	 * way.
2228 	 */
2229 	sc->sc_inreset_cnt++;
2230 
2231 	if (i <= 0)
2232 		device_printf(sc->sc_dev,
2233 		    "%s: didn't finish after %d iterations\n",
2234 		    __func__, MAX_RESET_ITERATIONS);
2235 
2236 	if (w == 0)
2237 		device_printf(sc->sc_dev,
2238 		    "%s: warning, recursive reset path!\n",
2239 		    __func__);
2240 
2241 	return w;
2242 }
2243 #undef MAX_RESET_ITERATIONS
2244 
2245 /*
2246  * XXX TODO: write ath_reset_releaselock
2247  */
2248 
2249 static void
2250 ath_stop(struct ifnet *ifp)
2251 {
2252 	struct ath_softc *sc = ifp->if_softc;
2253 
2254 	ATH_LOCK(sc);
2255 	ath_stop_locked(ifp);
2256 	ATH_UNLOCK(sc);
2257 }
2258 
2259 /*
2260  * Reset the hardware w/o losing operational state.  This is
2261  * basically a more efficient way of doing ath_stop, ath_init,
2262  * followed by state transitions to the current 802.11
2263  * operational state.  Used to recover from various errors and
2264  * to reset or reload hardware state.
2265  */
2266 int
2267 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2268 {
2269 	struct ath_softc *sc = ifp->if_softc;
2270 	struct ieee80211com *ic = ifp->if_l2com;
2271 	struct ath_hal *ah = sc->sc_ah;
2272 	HAL_STATUS status;
2273 	int i;
2274 
2275 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2276 
2277 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2278 	ATH_PCU_UNLOCK_ASSERT(sc);
2279 	ATH_UNLOCK_ASSERT(sc);
2280 
2281 	/* Try to (stop any further TX/RX from occuring */
2282 	taskqueue_block(sc->sc_tq);
2283 
2284 	ATH_PCU_LOCK(sc);
2285 	ath_hal_intrset(ah, 0);		/* disable interrupts */
2286 	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2287 	if (ath_reset_grablock(sc, 1) == 0) {
2288 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2289 		    __func__);
2290 	}
2291 	ATH_PCU_UNLOCK(sc);
2292 
2293 	/*
2294 	 * Should now wait for pending TX/RX to complete
2295 	 * and block future ones from occuring. This needs to be
2296 	 * done before the TX queue is drained.
2297 	 */
2298 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2299 
2300 	/*
2301 	 * Regardless of whether we're doing a no-loss flush or
2302 	 * not, stop the PCU and handle what's in the RX queue.
2303 	 * That way frames aren't dropped which shouldn't be.
2304 	 */
2305 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2306 	ath_rx_flush(sc);
2307 
2308 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2309 	/* NB: indicate channel change so we do a full reset */
2310 	ath_update_chainmasks(sc, ic->ic_curchan);
2311 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2312 	    sc->sc_cur_rxchainmask);
2313 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2314 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2315 			__func__, status);
2316 	sc->sc_diversity = ath_hal_getdiversity(ah);
2317 
2318 	/* Let DFS at it in case it's a DFS channel */
2319 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2320 
2321 	/* Let spectral at in case spectral is enabled */
2322 	ath_spectral_enable(sc, ic->ic_curchan);
2323 
2324 	if (ath_startrecv(sc) != 0)	/* restart recv */
2325 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2326 	/*
2327 	 * We may be doing a reset in response to an ioctl
2328 	 * that changes the channel so update any state that
2329 	 * might change as a result.
2330 	 */
2331 	ath_chan_change(sc, ic->ic_curchan);
2332 	if (sc->sc_beacons) {		/* restart beacons */
2333 #ifdef IEEE80211_SUPPORT_TDMA
2334 		if (sc->sc_tdma)
2335 			ath_tdma_config(sc, NULL);
2336 		else
2337 #endif
2338 			ath_beacon_config(sc, NULL);
2339 	}
2340 
2341 	/*
2342 	 * Release the reset lock and re-enable interrupts here.
2343 	 * If an interrupt was being processed in ath_intr(),
2344 	 * it would disable interrupts at this point. So we have
2345 	 * to atomically enable interrupts and decrement the
2346 	 * reset counter - this way ath_intr() doesn't end up
2347 	 * disabling interrupts without a corresponding enable
2348 	 * in the rest or channel change path.
2349 	 */
2350 	ATH_PCU_LOCK(sc);
2351 	sc->sc_inreset_cnt--;
2352 	/* XXX only do this if sc_inreset_cnt == 0? */
2353 	ath_hal_intrset(ah, sc->sc_imask);
2354 	ATH_PCU_UNLOCK(sc);
2355 
2356 	/*
2357 	 * TX and RX can be started here. If it were started with
2358 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2359 	 * Thus if this is a nested call through the reset or
2360 	 * channel change code, TX completion will occur but
2361 	 * RX completion and ath_start / ath_tx_start will not
2362 	 * run.
2363 	 */
2364 
2365 	/* Restart TX/RX as needed */
2366 	ath_txrx_start(sc);
2367 
2368 	/* Restart TX completion and pending TX */
2369 	if (reset_type == ATH_RESET_NOLOSS) {
2370 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2371 			if (ATH_TXQ_SETUP(sc, i)) {
2372 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2373 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2374 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2375 
2376 				ATH_TX_LOCK(sc);
2377 				ath_txq_sched(sc, &sc->sc_txq[i]);
2378 				ATH_TX_UNLOCK(sc);
2379 			}
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * This may have been set during an ath_start() call which
2385 	 * set this once it detected a concurrent TX was going on.
2386 	 * So, clear it.
2387 	 */
2388 	IF_LOCK(&ifp->if_snd);
2389 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2390 	IF_UNLOCK(&ifp->if_snd);
2391 
2392 	/* Handle any frames in the TX queue */
2393 	/*
2394 	 * XXX should this be done by the caller, rather than
2395 	 * ath_reset() ?
2396 	 */
2397 	ath_tx_kick(sc);		/* restart xmit */
2398 	return 0;
2399 }
2400 
2401 static int
2402 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2403 {
2404 	struct ieee80211com *ic = vap->iv_ic;
2405 	struct ifnet *ifp = ic->ic_ifp;
2406 	struct ath_softc *sc = ifp->if_softc;
2407 	struct ath_hal *ah = sc->sc_ah;
2408 
2409 	switch (cmd) {
2410 	case IEEE80211_IOC_TXPOWER:
2411 		/*
2412 		 * If per-packet TPC is enabled, then we have nothing
2413 		 * to do; otherwise we need to force the global limit.
2414 		 * All this can happen directly; no need to reset.
2415 		 */
2416 		if (!ath_hal_gettpc(ah))
2417 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2418 		return 0;
2419 	}
2420 	/* XXX? Full or NOLOSS? */
2421 	return ath_reset(ifp, ATH_RESET_FULL);
2422 }
2423 
2424 struct ath_buf *
2425 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2426 {
2427 	struct ath_buf *bf;
2428 
2429 	ATH_TXBUF_LOCK_ASSERT(sc);
2430 
2431 	if (btype == ATH_BUFTYPE_MGMT)
2432 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2433 	else
2434 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2435 
2436 	if (bf == NULL) {
2437 		sc->sc_stats.ast_tx_getnobuf++;
2438 	} else {
2439 		if (bf->bf_flags & ATH_BUF_BUSY) {
2440 			sc->sc_stats.ast_tx_getbusybuf++;
2441 			bf = NULL;
2442 		}
2443 	}
2444 
2445 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2446 		if (btype == ATH_BUFTYPE_MGMT)
2447 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2448 		else {
2449 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2450 			sc->sc_txbuf_cnt--;
2451 
2452 			/*
2453 			 * This shuldn't happen; however just to be
2454 			 * safe print a warning and fudge the txbuf
2455 			 * count.
2456 			 */
2457 			if (sc->sc_txbuf_cnt < 0) {
2458 				device_printf(sc->sc_dev,
2459 				    "%s: sc_txbuf_cnt < 0?\n",
2460 				    __func__);
2461 				sc->sc_txbuf_cnt = 0;
2462 			}
2463 		}
2464 	} else
2465 		bf = NULL;
2466 
2467 	if (bf == NULL) {
2468 		/* XXX should check which list, mgmt or otherwise */
2469 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2470 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2471 			"out of xmit buffers" : "xmit buffer busy");
2472 		return NULL;
2473 	}
2474 
2475 	/* XXX TODO: should do this at buffer list initialisation */
2476 	/* XXX (then, ensure the buffer has the right flag set) */
2477 	if (btype == ATH_BUFTYPE_MGMT)
2478 		bf->bf_flags |= ATH_BUF_MGMT;
2479 	else
2480 		bf->bf_flags &= (~ATH_BUF_MGMT);
2481 
2482 	/* Valid bf here; clear some basic fields */
2483 	bf->bf_next = NULL;	/* XXX just to be sure */
2484 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2485 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2486 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2487 
2488 	/*
2489 	 * Track the descriptor ID only if doing EDMA
2490 	 */
2491 	if (sc->sc_isedma) {
2492 		bf->bf_descid = sc->sc_txbuf_descid;
2493 		sc->sc_txbuf_descid++;
2494 	}
2495 
2496 	return bf;
2497 }
2498 
2499 /*
2500  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2501  * can't be thrown back on the queue as they could still be
2502  * in use by the hardware.
2503  *
2504  * This duplicates the buffer, or returns NULL.
2505  *
2506  * The descriptor is also copied but the link pointers and
2507  * the DMA segments aren't copied; this frame should thus
2508  * be again passed through the descriptor setup/chain routines
2509  * so the link is correct.
2510  *
2511  * The caller must free the buffer using ath_freebuf().
2512  *
2513  * XXX TODO: this call shouldn't fail as it'll cause packet loss
2514  * XXX in the TX pathway when retries are needed.
2515  * XXX Figure out how to keep some buffers free, or factor the
2516  * XXX number of busy buffers into the xmit path (ath_start())
2517  * XXX so we don't over-commit.
2518  */
2519 struct ath_buf *
2520 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2521 {
2522 	struct ath_buf *tbf;
2523 
2524 	tbf = ath_getbuf(sc,
2525 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2526 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2527 	if (tbf == NULL)
2528 		return NULL;	/* XXX failure? Why? */
2529 
2530 	/* Copy basics */
2531 	tbf->bf_next = NULL;
2532 	tbf->bf_nseg = bf->bf_nseg;
2533 	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2534 	tbf->bf_status = bf->bf_status;
2535 	tbf->bf_m = bf->bf_m;
2536 	/*
2537 	 * XXX Copy the node reference, the caller is responsible
2538 	 * for deleting the node reference before it frees its
2539 	 * buffer.
2540 	 *
2541 	 * XXX It's done like this so we don't call the net80211
2542 	 * code whilst having active TX queue locks held.
2543 	 */
2544 	tbf->bf_node = bf->bf_node;
2545 	/* will be setup by the chain/setup function */
2546 	tbf->bf_lastds = NULL;
2547 	/* for now, last == self */
2548 	tbf->bf_last = tbf;
2549 	tbf->bf_comp = bf->bf_comp;
2550 
2551 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2552 
2553 	/* The caller has to re-init the descriptor + links */
2554 
2555 	/* Copy state */
2556 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2557 
2558 	return tbf;
2559 }
2560 
2561 struct ath_buf *
2562 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2563 {
2564 	struct ath_buf *bf;
2565 
2566 	ATH_TXBUF_LOCK(sc);
2567 	bf = _ath_getbuf_locked(sc, btype);
2568 	/*
2569 	 * If a mgmt buffer was requested but we're out of those,
2570 	 * try requesting a normal one.
2571 	 */
2572 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2573 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2574 	ATH_TXBUF_UNLOCK(sc);
2575 	if (bf == NULL) {
2576 		struct ifnet *ifp = sc->sc_ifp;
2577 
2578 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2579 		sc->sc_stats.ast_tx_qstop++;
2580 		IF_LOCK(&ifp->if_snd);
2581 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2582 		IF_UNLOCK(&ifp->if_snd);
2583 	}
2584 	return bf;
2585 }
2586 
2587 static void
2588 ath_start_queue(struct ifnet *ifp)
2589 {
2590 	struct ath_softc *sc = ifp->if_softc;
2591 
2592 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
2593 	ath_tx_kick(sc);
2594 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
2595 }
2596 
2597 void
2598 ath_start_task(void *arg, int npending)
2599 {
2600 	struct ath_softc *sc = (struct ath_softc *) arg;
2601 	struct ifnet *ifp = sc->sc_ifp;
2602 
2603 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
2604 
2605 	/* XXX is it ok to hold the ATH_LOCK here? */
2606 	ATH_PCU_LOCK(sc);
2607 	if (sc->sc_inreset_cnt > 0) {
2608 		device_printf(sc->sc_dev,
2609 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2610 		ATH_PCU_UNLOCK(sc);
2611 		IF_LOCK(&ifp->if_snd);
2612 		sc->sc_stats.ast_tx_qstop++;
2613 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2614 		IF_UNLOCK(&ifp->if_snd);
2615 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2616 		return;
2617 	}
2618 	sc->sc_txstart_cnt++;
2619 	ATH_PCU_UNLOCK(sc);
2620 
2621 	ATH_TX_LOCK(sc);
2622 	ath_start(sc->sc_ifp);
2623 	ATH_TX_UNLOCK(sc);
2624 
2625 	ATH_PCU_LOCK(sc);
2626 	sc->sc_txstart_cnt--;
2627 	ATH_PCU_UNLOCK(sc);
2628 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
2629 }
2630 
2631 void
2632 ath_start(struct ifnet *ifp)
2633 {
2634 	struct ath_softc *sc = ifp->if_softc;
2635 	struct ieee80211_node *ni;
2636 	struct ath_buf *bf;
2637 	struct mbuf *m, *next;
2638 	ath_bufhead frags;
2639 	int npkts = 0;
2640 
2641 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2642 		return;
2643 
2644 	ATH_TX_LOCK_ASSERT(sc);
2645 
2646 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
2647 
2648 	for (;;) {
2649 		ATH_TXBUF_LOCK(sc);
2650 		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2651 			/* XXX increment counter? */
2652 			ATH_TXBUF_UNLOCK(sc);
2653 			IF_LOCK(&ifp->if_snd);
2654 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2655 			IF_UNLOCK(&ifp->if_snd);
2656 			break;
2657 		}
2658 		ATH_TXBUF_UNLOCK(sc);
2659 
2660 		/*
2661 		 * Grab a TX buffer and associated resources.
2662 		 */
2663 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2664 		if (bf == NULL)
2665 			break;
2666 
2667 		IFQ_DEQUEUE(&ifp->if_snd, m);
2668 		if (m == NULL) {
2669 			ATH_TXBUF_LOCK(sc);
2670 			ath_returnbuf_head(sc, bf);
2671 			ATH_TXBUF_UNLOCK(sc);
2672 			break;
2673 		}
2674 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2675 		npkts ++;
2676 		/*
2677 		 * Check for fragmentation.  If this frame
2678 		 * has been broken up verify we have enough
2679 		 * buffers to send all the fragments so all
2680 		 * go out or none...
2681 		 */
2682 		TAILQ_INIT(&frags);
2683 		if ((m->m_flags & M_FRAG) &&
2684 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2685 			DPRINTF(sc, ATH_DEBUG_XMIT,
2686 			    "%s: out of txfrag buffers\n", __func__);
2687 			sc->sc_stats.ast_tx_nofrag++;
2688 			ifp->if_oerrors++;
2689 			ath_freetx(m);
2690 			goto bad;
2691 		}
2692 		ifp->if_opackets++;
2693 	nextfrag:
2694 		/*
2695 		 * Pass the frame to the h/w for transmission.
2696 		 * Fragmented frames have each frag chained together
2697 		 * with m_nextpkt.  We know there are sufficient ath_buf's
2698 		 * to send all the frags because of work done by
2699 		 * ath_txfrag_setup.  We leave m_nextpkt set while
2700 		 * calling ath_tx_start so it can use it to extend the
2701 		 * the tx duration to cover the subsequent frag and
2702 		 * so it can reclaim all the mbufs in case of an error;
2703 		 * ath_tx_start clears m_nextpkt once it commits to
2704 		 * handing the frame to the hardware.
2705 		 */
2706 		next = m->m_nextpkt;
2707 		if (ath_tx_start(sc, ni, bf, m)) {
2708 	bad:
2709 			ifp->if_oerrors++;
2710 	reclaim:
2711 			bf->bf_m = NULL;
2712 			bf->bf_node = NULL;
2713 			ATH_TXBUF_LOCK(sc);
2714 			ath_returnbuf_head(sc, bf);
2715 			ath_txfrag_cleanup(sc, &frags, ni);
2716 			ATH_TXBUF_UNLOCK(sc);
2717 			/*
2718 			 * XXX todo, free the node outside of
2719 			 * the TX lock context!
2720 			 */
2721 			if (ni != NULL)
2722 				ieee80211_free_node(ni);
2723 			continue;
2724 		}
2725 
2726 		/*
2727 		 * Check here if the node is in power save state.
2728 		 */
2729 		ath_tx_update_tim(sc, ni, 1);
2730 
2731 		if (next != NULL) {
2732 			/*
2733 			 * Beware of state changing between frags.
2734 			 * XXX check sta power-save state?
2735 			 */
2736 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2737 				DPRINTF(sc, ATH_DEBUG_XMIT,
2738 				    "%s: flush fragmented packet, state %s\n",
2739 				    __func__,
2740 				    ieee80211_state_name[ni->ni_vap->iv_state]);
2741 				ath_freetx(next);
2742 				goto reclaim;
2743 			}
2744 			m = next;
2745 			bf = TAILQ_FIRST(&frags);
2746 			KASSERT(bf != NULL, ("no buf for txfrag"));
2747 			TAILQ_REMOVE(&frags, bf, bf_list);
2748 			goto nextfrag;
2749 		}
2750 
2751 		sc->sc_wd_timer = 5;
2752 	}
2753 	ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
2754 }
2755 static int
2756 ath_media_change(struct ifnet *ifp)
2757 {
2758 	int error = ieee80211_media_change(ifp);
2759 	/* NB: only the fixed rate can change and that doesn't need a reset */
2760 	return (error == ENETRESET ? 0 : error);
2761 }
2762 
2763 /*
2764  * Block/unblock tx+rx processing while a key change is done.
2765  * We assume the caller serializes key management operations
2766  * so we only need to worry about synchronization with other
2767  * uses that originate in the driver.
2768  */
2769 static void
2770 ath_key_update_begin(struct ieee80211vap *vap)
2771 {
2772 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2773 	struct ath_softc *sc = ifp->if_softc;
2774 
2775 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2776 	taskqueue_block(sc->sc_tq);
2777 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2778 }
2779 
2780 static void
2781 ath_key_update_end(struct ieee80211vap *vap)
2782 {
2783 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2784 	struct ath_softc *sc = ifp->if_softc;
2785 
2786 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2787 	IF_UNLOCK(&ifp->if_snd);
2788 	taskqueue_unblock(sc->sc_tq);
2789 }
2790 
2791 static void
2792 ath_update_promisc(struct ifnet *ifp)
2793 {
2794 	struct ath_softc *sc = ifp->if_softc;
2795 	u_int32_t rfilt;
2796 
2797 	/* configure rx filter */
2798 	rfilt = ath_calcrxfilter(sc);
2799 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2800 
2801 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2802 }
2803 
2804 static void
2805 ath_update_mcast(struct ifnet *ifp)
2806 {
2807 	struct ath_softc *sc = ifp->if_softc;
2808 	u_int32_t mfilt[2];
2809 
2810 	/* calculate and install multicast filter */
2811 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2812 		struct ifmultiaddr *ifma;
2813 		/*
2814 		 * Merge multicast addresses to form the hardware filter.
2815 		 */
2816 		mfilt[0] = mfilt[1] = 0;
2817 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2818 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2819 			caddr_t dl;
2820 			u_int32_t val;
2821 			u_int8_t pos;
2822 
2823 			/* calculate XOR of eight 6bit values */
2824 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2825 			val = LE_READ_4(dl + 0);
2826 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2827 			val = LE_READ_4(dl + 3);
2828 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2829 			pos &= 0x3f;
2830 			mfilt[pos / 32] |= (1 << (pos % 32));
2831 		}
2832 		if_maddr_runlock(ifp);
2833 	} else
2834 		mfilt[0] = mfilt[1] = ~0;
2835 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2836 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2837 		__func__, mfilt[0], mfilt[1]);
2838 }
2839 
2840 void
2841 ath_mode_init(struct ath_softc *sc)
2842 {
2843 	struct ifnet *ifp = sc->sc_ifp;
2844 	struct ath_hal *ah = sc->sc_ah;
2845 	u_int32_t rfilt;
2846 
2847 	/* configure rx filter */
2848 	rfilt = ath_calcrxfilter(sc);
2849 	ath_hal_setrxfilter(ah, rfilt);
2850 
2851 	/* configure operational mode */
2852 	ath_hal_setopmode(ah);
2853 
2854 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2855 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2856 	    __func__,
2857 	    ah,
2858 	    ifp,
2859 	    (ifp == NULL) ? NULL : ifp->if_addr);
2860 
2861 	/* handle any link-level address change */
2862 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2863 
2864 	/* calculate and install multicast filter */
2865 	ath_update_mcast(ifp);
2866 }
2867 
2868 /*
2869  * Set the slot time based on the current setting.
2870  */
2871 void
2872 ath_setslottime(struct ath_softc *sc)
2873 {
2874 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2875 	struct ath_hal *ah = sc->sc_ah;
2876 	u_int usec;
2877 
2878 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2879 		usec = 13;
2880 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2881 		usec = 21;
2882 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2883 		/* honor short/long slot time only in 11g */
2884 		/* XXX shouldn't honor on pure g or turbo g channel */
2885 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2886 			usec = HAL_SLOT_TIME_9;
2887 		else
2888 			usec = HAL_SLOT_TIME_20;
2889 	} else
2890 		usec = HAL_SLOT_TIME_9;
2891 
2892 	DPRINTF(sc, ATH_DEBUG_RESET,
2893 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2894 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2895 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2896 
2897 	ath_hal_setslottime(ah, usec);
2898 	sc->sc_updateslot = OK;
2899 }
2900 
2901 /*
2902  * Callback from the 802.11 layer to update the
2903  * slot time based on the current setting.
2904  */
2905 static void
2906 ath_updateslot(struct ifnet *ifp)
2907 {
2908 	struct ath_softc *sc = ifp->if_softc;
2909 	struct ieee80211com *ic = ifp->if_l2com;
2910 
2911 	/*
2912 	 * When not coordinating the BSS, change the hardware
2913 	 * immediately.  For other operation we defer the change
2914 	 * until beacon updates have propagated to the stations.
2915 	 */
2916 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2917 	    ic->ic_opmode == IEEE80211_M_MBSS)
2918 		sc->sc_updateslot = UPDATE;
2919 	else
2920 		ath_setslottime(sc);
2921 }
2922 
2923 /*
2924  * Append the contents of src to dst; both queues
2925  * are assumed to be locked.
2926  */
2927 void
2928 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2929 {
2930 
2931 	ATH_TXQ_LOCK_ASSERT(src);
2932 	ATH_TXQ_LOCK_ASSERT(dst);
2933 
2934 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2935 	dst->axq_link = src->axq_link;
2936 	src->axq_link = NULL;
2937 	dst->axq_depth += src->axq_depth;
2938 	dst->axq_aggr_depth += src->axq_aggr_depth;
2939 	src->axq_depth = 0;
2940 	src->axq_aggr_depth = 0;
2941 }
2942 
2943 /*
2944  * Reset the hardware, with no loss.
2945  *
2946  * This can't be used for a general case reset.
2947  */
2948 static void
2949 ath_reset_proc(void *arg, int pending)
2950 {
2951 	struct ath_softc *sc = arg;
2952 	struct ifnet *ifp = sc->sc_ifp;
2953 
2954 #if 0
2955 	if_printf(ifp, "%s: resetting\n", __func__);
2956 #endif
2957 	ath_reset(ifp, ATH_RESET_NOLOSS);
2958 }
2959 
2960 /*
2961  * Reset the hardware after detecting beacons have stopped.
2962  */
2963 static void
2964 ath_bstuck_proc(void *arg, int pending)
2965 {
2966 	struct ath_softc *sc = arg;
2967 	struct ifnet *ifp = sc->sc_ifp;
2968 	uint32_t hangs = 0;
2969 
2970 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2971 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2972 
2973 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2974 		sc->sc_bmisscount);
2975 	sc->sc_stats.ast_bstuck++;
2976 	/*
2977 	 * This assumes that there's no simultaneous channel mode change
2978 	 * occuring.
2979 	 */
2980 	ath_reset(ifp, ATH_RESET_NOLOSS);
2981 }
2982 
2983 static void
2984 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2985 {
2986 	bus_addr_t *paddr = (bus_addr_t*) arg;
2987 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2988 	*paddr = segs->ds_addr;
2989 }
2990 
2991 /*
2992  * Allocate the descriptors and appropriate DMA tag/setup.
2993  *
2994  * For some situations (eg EDMA TX completion), there isn't a requirement
2995  * for the ath_buf entries to be allocated.
2996  */
2997 int
2998 ath_descdma_alloc_desc(struct ath_softc *sc,
2999 	struct ath_descdma *dd, ath_bufhead *head,
3000 	const char *name, int ds_size, int ndesc)
3001 {
3002 #define	DS2PHYS(_dd, _ds) \
3003 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3004 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3005 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3006 	struct ifnet *ifp = sc->sc_ifp;
3007 	int error;
3008 
3009 	dd->dd_descsize = ds_size;
3010 
3011 	DPRINTF(sc, ATH_DEBUG_RESET,
3012 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3013 	    __func__, name, ndesc, dd->dd_descsize);
3014 
3015 	dd->dd_name = name;
3016 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3017 
3018 	/*
3019 	 * Merlin work-around:
3020 	 * Descriptors that cross the 4KB boundary can't be used.
3021 	 * Assume one skipped descriptor per 4KB page.
3022 	 */
3023 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3024 		int numpages = dd->dd_desc_len / 4096;
3025 		dd->dd_desc_len += ds_size * numpages;
3026 	}
3027 
3028 	/*
3029 	 * Setup DMA descriptor area.
3030 	 */
3031 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3032 		       PAGE_SIZE, 0,		/* alignment, bounds */
3033 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3034 		       BUS_SPACE_MAXADDR,	/* highaddr */
3035 		       NULL, NULL,		/* filter, filterarg */
3036 		       dd->dd_desc_len,		/* maxsize */
3037 		       1,			/* nsegments */
3038 		       dd->dd_desc_len,		/* maxsegsize */
3039 		       BUS_DMA_ALLOCNOW,	/* flags */
3040 		       NULL,			/* lockfunc */
3041 		       NULL,			/* lockarg */
3042 		       &dd->dd_dmat);
3043 	if (error != 0) {
3044 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3045 		return error;
3046 	}
3047 
3048 	/* allocate descriptors */
3049 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3050 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3051 				 &dd->dd_dmamap);
3052 	if (error != 0) {
3053 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3054 			"error %u\n", ndesc, dd->dd_name, error);
3055 		goto fail1;
3056 	}
3057 
3058 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3059 				dd->dd_desc, dd->dd_desc_len,
3060 				ath_load_cb, &dd->dd_desc_paddr,
3061 				BUS_DMA_NOWAIT);
3062 	if (error != 0) {
3063 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3064 			dd->dd_name, error);
3065 		goto fail2;
3066 	}
3067 
3068 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3069 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3070 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3071 	    /*XXX*/ (u_long) dd->dd_desc_len);
3072 
3073 	return (0);
3074 
3075 fail2:
3076 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3077 fail1:
3078 	bus_dma_tag_destroy(dd->dd_dmat);
3079 	memset(dd, 0, sizeof(*dd));
3080 	return error;
3081 #undef DS2PHYS
3082 #undef ATH_DESC_4KB_BOUND_CHECK
3083 }
3084 
3085 int
3086 ath_descdma_setup(struct ath_softc *sc,
3087 	struct ath_descdma *dd, ath_bufhead *head,
3088 	const char *name, int ds_size, int nbuf, int ndesc)
3089 {
3090 #define	DS2PHYS(_dd, _ds) \
3091 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3092 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3093 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3094 	struct ifnet *ifp = sc->sc_ifp;
3095 	uint8_t *ds;
3096 	struct ath_buf *bf;
3097 	int i, bsize, error;
3098 
3099 	/* Allocate descriptors */
3100 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3101 	    nbuf * ndesc);
3102 
3103 	/* Assume any errors during allocation were dealt with */
3104 	if (error != 0) {
3105 		return (error);
3106 	}
3107 
3108 	ds = (uint8_t *) dd->dd_desc;
3109 
3110 	/* allocate rx buffers */
3111 	bsize = sizeof(struct ath_buf) * nbuf;
3112 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3113 	if (bf == NULL) {
3114 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3115 			dd->dd_name, bsize);
3116 		goto fail3;
3117 	}
3118 	dd->dd_bufptr = bf;
3119 
3120 	TAILQ_INIT(head);
3121 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3122 		bf->bf_desc = (struct ath_desc *) ds;
3123 		bf->bf_daddr = DS2PHYS(dd, ds);
3124 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3125 			/*
3126 			 * Merlin WAR: Skip descriptor addresses which
3127 			 * cause 4KB boundary crossing along any point
3128 			 * in the descriptor.
3129 			 */
3130 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3131 			     dd->dd_descsize)) {
3132 				/* Start at the next page */
3133 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3134 				bf->bf_desc = (struct ath_desc *) ds;
3135 				bf->bf_daddr = DS2PHYS(dd, ds);
3136 			}
3137 		}
3138 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3139 				&bf->bf_dmamap);
3140 		if (error != 0) {
3141 			if_printf(ifp, "unable to create dmamap for %s "
3142 				"buffer %u, error %u\n", dd->dd_name, i, error);
3143 			ath_descdma_cleanup(sc, dd, head);
3144 			return error;
3145 		}
3146 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3147 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3148 	}
3149 
3150 	/*
3151 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3152 	 * allocation otherwise weird stuff will occur and crash your
3153 	 * machine.
3154 	 */
3155 	return 0;
3156 	/* XXX this should likely just call ath_descdma_cleanup() */
3157 fail3:
3158 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3159 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3160 	bus_dma_tag_destroy(dd->dd_dmat);
3161 	memset(dd, 0, sizeof(*dd));
3162 	return error;
3163 #undef DS2PHYS
3164 #undef ATH_DESC_4KB_BOUND_CHECK
3165 }
3166 
3167 /*
3168  * Allocate ath_buf entries but no descriptor contents.
3169  *
3170  * This is for RX EDMA where the descriptors are the header part of
3171  * the RX buffer.
3172  */
3173 int
3174 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3175 	struct ath_descdma *dd, ath_bufhead *head,
3176 	const char *name, int nbuf, int rx_status_len)
3177 {
3178 	struct ifnet *ifp = sc->sc_ifp;
3179 	struct ath_buf *bf;
3180 	int i, bsize, error;
3181 
3182 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3183 	    __func__, name, nbuf);
3184 
3185 	dd->dd_name = name;
3186 	/*
3187 	 * This is (mostly) purely for show.  We're not allocating any actual
3188 	 * descriptors here as EDMA RX has the descriptor be part
3189 	 * of the RX buffer.
3190 	 *
3191 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3192 	 * whether we have already freed this DMA mapping.
3193 	 */
3194 	dd->dd_desc_len = rx_status_len * nbuf;
3195 	dd->dd_descsize = rx_status_len;
3196 
3197 	/* allocate rx buffers */
3198 	bsize = sizeof(struct ath_buf) * nbuf;
3199 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3200 	if (bf == NULL) {
3201 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3202 			dd->dd_name, bsize);
3203 		error = ENOMEM;
3204 		goto fail3;
3205 	}
3206 	dd->dd_bufptr = bf;
3207 
3208 	TAILQ_INIT(head);
3209 	for (i = 0; i < nbuf; i++, bf++) {
3210 		bf->bf_desc = NULL;
3211 		bf->bf_daddr = 0;
3212 		bf->bf_lastds = NULL;	/* Just an initial value */
3213 
3214 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3215 				&bf->bf_dmamap);
3216 		if (error != 0) {
3217 			if_printf(ifp, "unable to create dmamap for %s "
3218 				"buffer %u, error %u\n", dd->dd_name, i, error);
3219 			ath_descdma_cleanup(sc, dd, head);
3220 			return error;
3221 		}
3222 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3223 	}
3224 	return 0;
3225 fail3:
3226 	memset(dd, 0, sizeof(*dd));
3227 	return error;
3228 }
3229 
3230 void
3231 ath_descdma_cleanup(struct ath_softc *sc,
3232 	struct ath_descdma *dd, ath_bufhead *head)
3233 {
3234 	struct ath_buf *bf;
3235 	struct ieee80211_node *ni;
3236 
3237 	if (dd->dd_dmamap != 0) {
3238 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3239 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3240 		bus_dma_tag_destroy(dd->dd_dmat);
3241 	}
3242 
3243 	if (head != NULL) {
3244 		TAILQ_FOREACH(bf, head, bf_list) {
3245 			if (bf->bf_m) {
3246 				m_freem(bf->bf_m);
3247 				bf->bf_m = NULL;
3248 			}
3249 			if (bf->bf_dmamap != NULL) {
3250 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3251 				bf->bf_dmamap = NULL;
3252 			}
3253 			ni = bf->bf_node;
3254 			bf->bf_node = NULL;
3255 			if (ni != NULL) {
3256 				/*
3257 				 * Reclaim node reference.
3258 				 */
3259 				ieee80211_free_node(ni);
3260 			}
3261 		}
3262 	}
3263 
3264 	if (head != NULL)
3265 		TAILQ_INIT(head);
3266 
3267 	if (dd->dd_bufptr != NULL)
3268 		free(dd->dd_bufptr, M_ATHDEV);
3269 	memset(dd, 0, sizeof(*dd));
3270 }
3271 
3272 static int
3273 ath_desc_alloc(struct ath_softc *sc)
3274 {
3275 	int error;
3276 
3277 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3278 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
3279 	if (error != 0) {
3280 		return error;
3281 	}
3282 	sc->sc_txbuf_cnt = ath_txbuf;
3283 
3284 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3285 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3286 		    ATH_TXDESC);
3287 	if (error != 0) {
3288 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3289 		return error;
3290 	}
3291 
3292 	/*
3293 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3294 	 * flag doesn't have to be set in ath_getbuf_locked().
3295 	 */
3296 
3297 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3298 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3299 	if (error != 0) {
3300 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3301 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3302 		    &sc->sc_txbuf_mgmt);
3303 		return error;
3304 	}
3305 	return 0;
3306 }
3307 
3308 static void
3309 ath_desc_free(struct ath_softc *sc)
3310 {
3311 
3312 	if (sc->sc_bdma.dd_desc_len != 0)
3313 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3314 	if (sc->sc_txdma.dd_desc_len != 0)
3315 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3316 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3317 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3318 		    &sc->sc_txbuf_mgmt);
3319 }
3320 
3321 static struct ieee80211_node *
3322 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3323 {
3324 	struct ieee80211com *ic = vap->iv_ic;
3325 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3326 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3327 	struct ath_node *an;
3328 
3329 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3330 	if (an == NULL) {
3331 		/* XXX stat+msg */
3332 		return NULL;
3333 	}
3334 	ath_rate_node_init(sc, an);
3335 
3336 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3337 	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3338 	    device_get_nameunit(sc->sc_dev), an);
3339 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3340 
3341 	/* XXX setup ath_tid */
3342 	ath_tx_tid_init(sc, an);
3343 
3344 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3345 	return &an->an_node;
3346 }
3347 
3348 static void
3349 ath_node_cleanup(struct ieee80211_node *ni)
3350 {
3351 	struct ieee80211com *ic = ni->ni_ic;
3352 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3353 
3354 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3355 	ath_tx_node_flush(sc, ATH_NODE(ni));
3356 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3357 	sc->sc_node_cleanup(ni);
3358 }
3359 
3360 static void
3361 ath_node_free(struct ieee80211_node *ni)
3362 {
3363 	struct ieee80211com *ic = ni->ni_ic;
3364 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3365 
3366 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3367 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3368 	sc->sc_node_free(ni);
3369 }
3370 
3371 static void
3372 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3373 {
3374 	struct ieee80211com *ic = ni->ni_ic;
3375 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3376 	struct ath_hal *ah = sc->sc_ah;
3377 
3378 	*rssi = ic->ic_node_getrssi(ni);
3379 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3380 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3381 	else
3382 		*noise = -95;		/* nominally correct */
3383 }
3384 
3385 /*
3386  * Set the default antenna.
3387  */
3388 void
3389 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3390 {
3391 	struct ath_hal *ah = sc->sc_ah;
3392 
3393 	/* XXX block beacon interrupts */
3394 	ath_hal_setdefantenna(ah, antenna);
3395 	if (sc->sc_defant != antenna)
3396 		sc->sc_stats.ast_ant_defswitch++;
3397 	sc->sc_defant = antenna;
3398 	sc->sc_rxotherant = 0;
3399 }
3400 
3401 static void
3402 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3403 {
3404 	txq->axq_qnum = qnum;
3405 	txq->axq_ac = 0;
3406 	txq->axq_depth = 0;
3407 	txq->axq_aggr_depth = 0;
3408 	txq->axq_intrcnt = 0;
3409 	txq->axq_link = NULL;
3410 	txq->axq_softc = sc;
3411 	TAILQ_INIT(&txq->axq_q);
3412 	TAILQ_INIT(&txq->axq_tidq);
3413 	ATH_TXQ_LOCK_INIT(sc, txq);
3414 }
3415 
3416 /*
3417  * Setup a h/w transmit queue.
3418  */
3419 static struct ath_txq *
3420 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3421 {
3422 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3423 	struct ath_hal *ah = sc->sc_ah;
3424 	HAL_TXQ_INFO qi;
3425 	int qnum;
3426 
3427 	memset(&qi, 0, sizeof(qi));
3428 	qi.tqi_subtype = subtype;
3429 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3430 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3431 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3432 	/*
3433 	 * Enable interrupts only for EOL and DESC conditions.
3434 	 * We mark tx descriptors to receive a DESC interrupt
3435 	 * when a tx queue gets deep; otherwise waiting for the
3436 	 * EOL to reap descriptors.  Note that this is done to
3437 	 * reduce interrupt load and this only defers reaping
3438 	 * descriptors, never transmitting frames.  Aside from
3439 	 * reducing interrupts this also permits more concurrency.
3440 	 * The only potential downside is if the tx queue backs
3441 	 * up in which case the top half of the kernel may backup
3442 	 * due to a lack of tx descriptors.
3443 	 */
3444 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3445 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3446 	if (qnum == -1) {
3447 		/*
3448 		 * NB: don't print a message, this happens
3449 		 * normally on parts with too few tx queues
3450 		 */
3451 		return NULL;
3452 	}
3453 	if (qnum >= N(sc->sc_txq)) {
3454 		device_printf(sc->sc_dev,
3455 			"hal qnum %u out of range, max %zu!\n",
3456 			qnum, N(sc->sc_txq));
3457 		ath_hal_releasetxqueue(ah, qnum);
3458 		return NULL;
3459 	}
3460 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3461 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3462 		sc->sc_txqsetup |= 1<<qnum;
3463 	}
3464 	return &sc->sc_txq[qnum];
3465 #undef N
3466 }
3467 
3468 /*
3469  * Setup a hardware data transmit queue for the specified
3470  * access control.  The hal may not support all requested
3471  * queues in which case it will return a reference to a
3472  * previously setup queue.  We record the mapping from ac's
3473  * to h/w queues for use by ath_tx_start and also track
3474  * the set of h/w queues being used to optimize work in the
3475  * transmit interrupt handler and related routines.
3476  */
3477 static int
3478 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3479 {
3480 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3481 	struct ath_txq *txq;
3482 
3483 	if (ac >= N(sc->sc_ac2q)) {
3484 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3485 			ac, N(sc->sc_ac2q));
3486 		return 0;
3487 	}
3488 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3489 	if (txq != NULL) {
3490 		txq->axq_ac = ac;
3491 		sc->sc_ac2q[ac] = txq;
3492 		return 1;
3493 	} else
3494 		return 0;
3495 #undef N
3496 }
3497 
3498 /*
3499  * Update WME parameters for a transmit queue.
3500  */
3501 static int
3502 ath_txq_update(struct ath_softc *sc, int ac)
3503 {
3504 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3505 #define	ATH_TXOP_TO_US(v)		(v<<5)
3506 	struct ifnet *ifp = sc->sc_ifp;
3507 	struct ieee80211com *ic = ifp->if_l2com;
3508 	struct ath_txq *txq = sc->sc_ac2q[ac];
3509 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3510 	struct ath_hal *ah = sc->sc_ah;
3511 	HAL_TXQ_INFO qi;
3512 
3513 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3514 #ifdef IEEE80211_SUPPORT_TDMA
3515 	if (sc->sc_tdma) {
3516 		/*
3517 		 * AIFS is zero so there's no pre-transmit wait.  The
3518 		 * burst time defines the slot duration and is configured
3519 		 * through net80211.  The QCU is setup to not do post-xmit
3520 		 * back off, lockout all lower-priority QCU's, and fire
3521 		 * off the DMA beacon alert timer which is setup based
3522 		 * on the slot configuration.
3523 		 */
3524 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3525 			      | HAL_TXQ_TXERRINT_ENABLE
3526 			      | HAL_TXQ_TXURNINT_ENABLE
3527 			      | HAL_TXQ_TXEOLINT_ENABLE
3528 			      | HAL_TXQ_DBA_GATED
3529 			      | HAL_TXQ_BACKOFF_DISABLE
3530 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3531 			      ;
3532 		qi.tqi_aifs = 0;
3533 		/* XXX +dbaprep? */
3534 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3535 		qi.tqi_burstTime = qi.tqi_readyTime;
3536 	} else {
3537 #endif
3538 		/*
3539 		 * XXX shouldn't this just use the default flags
3540 		 * used in the previous queue setup?
3541 		 */
3542 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3543 			      | HAL_TXQ_TXERRINT_ENABLE
3544 			      | HAL_TXQ_TXDESCINT_ENABLE
3545 			      | HAL_TXQ_TXURNINT_ENABLE
3546 			      | HAL_TXQ_TXEOLINT_ENABLE
3547 			      ;
3548 		qi.tqi_aifs = wmep->wmep_aifsn;
3549 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3550 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3551 		qi.tqi_readyTime = 0;
3552 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3553 #ifdef IEEE80211_SUPPORT_TDMA
3554 	}
3555 #endif
3556 
3557 	DPRINTF(sc, ATH_DEBUG_RESET,
3558 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3559 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3560 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3561 
3562 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3563 		if_printf(ifp, "unable to update hardware queue "
3564 			"parameters for %s traffic!\n",
3565 			ieee80211_wme_acnames[ac]);
3566 		return 0;
3567 	} else {
3568 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3569 		return 1;
3570 	}
3571 #undef ATH_TXOP_TO_US
3572 #undef ATH_EXPONENT_TO_VALUE
3573 }
3574 
3575 /*
3576  * Callback from the 802.11 layer to update WME parameters.
3577  */
3578 int
3579 ath_wme_update(struct ieee80211com *ic)
3580 {
3581 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3582 
3583 	return !ath_txq_update(sc, WME_AC_BE) ||
3584 	    !ath_txq_update(sc, WME_AC_BK) ||
3585 	    !ath_txq_update(sc, WME_AC_VI) ||
3586 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3587 }
3588 
3589 /*
3590  * Reclaim resources for a setup queue.
3591  */
3592 static void
3593 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3594 {
3595 
3596 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3597 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3598 	ATH_TXQ_LOCK_DESTROY(txq);
3599 }
3600 
3601 /*
3602  * Reclaim all tx queue resources.
3603  */
3604 static void
3605 ath_tx_cleanup(struct ath_softc *sc)
3606 {
3607 	int i;
3608 
3609 	ATH_TXBUF_LOCK_DESTROY(sc);
3610 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3611 		if (ATH_TXQ_SETUP(sc, i))
3612 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3613 }
3614 
3615 /*
3616  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3617  * using the current rates in sc_rixmap.
3618  */
3619 int
3620 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3621 {
3622 	int rix = sc->sc_rixmap[rate];
3623 	/* NB: return lowest rix for invalid rate */
3624 	return (rix == 0xff ? 0 : rix);
3625 }
3626 
3627 static void
3628 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3629     struct ath_buf *bf)
3630 {
3631 	struct ieee80211_node *ni = bf->bf_node;
3632 	struct ifnet *ifp = sc->sc_ifp;
3633 	struct ieee80211com *ic = ifp->if_l2com;
3634 	int sr, lr, pri;
3635 
3636 	if (ts->ts_status == 0) {
3637 		u_int8_t txant = ts->ts_antenna;
3638 		sc->sc_stats.ast_ant_tx[txant]++;
3639 		sc->sc_ant_tx[txant]++;
3640 		if (ts->ts_finaltsi != 0)
3641 			sc->sc_stats.ast_tx_altrate++;
3642 		pri = M_WME_GETAC(bf->bf_m);
3643 		if (pri >= WME_AC_VO)
3644 			ic->ic_wme.wme_hipri_traffic++;
3645 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3646 			ni->ni_inact = ni->ni_inact_reload;
3647 	} else {
3648 		if (ts->ts_status & HAL_TXERR_XRETRY)
3649 			sc->sc_stats.ast_tx_xretries++;
3650 		if (ts->ts_status & HAL_TXERR_FIFO)
3651 			sc->sc_stats.ast_tx_fifoerr++;
3652 		if (ts->ts_status & HAL_TXERR_FILT)
3653 			sc->sc_stats.ast_tx_filtered++;
3654 		if (ts->ts_status & HAL_TXERR_XTXOP)
3655 			sc->sc_stats.ast_tx_xtxop++;
3656 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3657 			sc->sc_stats.ast_tx_timerexpired++;
3658 
3659 		if (bf->bf_m->m_flags & M_FF)
3660 			sc->sc_stats.ast_ff_txerr++;
3661 	}
3662 	/* XXX when is this valid? */
3663 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
3664 		sc->sc_stats.ast_tx_desccfgerr++;
3665 	/*
3666 	 * This can be valid for successful frame transmission!
3667 	 * If there's a TX FIFO underrun during aggregate transmission,
3668 	 * the MAC will pad the rest of the aggregate with delimiters.
3669 	 * If a BA is returned, the frame is marked as "OK" and it's up
3670 	 * to the TX completion code to notice which frames weren't
3671 	 * successfully transmitted.
3672 	 */
3673 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
3674 		sc->sc_stats.ast_tx_data_underrun++;
3675 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
3676 		sc->sc_stats.ast_tx_delim_underrun++;
3677 
3678 	sr = ts->ts_shortretry;
3679 	lr = ts->ts_longretry;
3680 	sc->sc_stats.ast_tx_shortretry += sr;
3681 	sc->sc_stats.ast_tx_longretry += lr;
3682 
3683 }
3684 
3685 /*
3686  * The default completion. If fail is 1, this means
3687  * "please don't retry the frame, and just return -1 status
3688  * to the net80211 stack.
3689  */
3690 void
3691 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3692 {
3693 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3694 	int st;
3695 
3696 	if (fail == 1)
3697 		st = -1;
3698 	else
3699 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3700 		    ts->ts_status : HAL_TXERR_XRETRY;
3701 
3702 #if 0
3703 	if (bf->bf_state.bfs_dobaw)
3704 		device_printf(sc->sc_dev,
3705 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3706 		    __func__,
3707 		    bf,
3708 		    SEQNO(bf->bf_state.bfs_seqno));
3709 #endif
3710 	if (bf->bf_next != NULL)
3711 		device_printf(sc->sc_dev,
3712 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3713 		    __func__,
3714 		    bf,
3715 		    SEQNO(bf->bf_state.bfs_seqno));
3716 
3717 	/*
3718 	 * Check if the node software queue is empty; if so
3719 	 * then clear the TIM.
3720 	 *
3721 	 * This needs to be done before the buffer is freed as
3722 	 * otherwise the node reference will have been released
3723 	 * and the node may not actually exist any longer.
3724 	 *
3725 	 * XXX I don't like this belonging here, but it's cleaner
3726 	 * to do it here right now then all the other places
3727 	 * where ath_tx_default_comp() is called.
3728 	 *
3729 	 * XXX TODO: during drain, ensure that the callback is
3730 	 * being called so we get a chance to update the TIM.
3731 	 */
3732 	if (bf->bf_node)
3733 		ath_tx_update_tim(sc, bf->bf_node, 0);
3734 
3735 	/*
3736 	 * Do any tx complete callback.  Note this must
3737 	 * be done before releasing the node reference.
3738 	 * This will free the mbuf, release the net80211
3739 	 * node and recycle the ath_buf.
3740 	 */
3741 	ath_tx_freebuf(sc, bf, st);
3742 }
3743 
3744 /*
3745  * Update rate control with the given completion status.
3746  */
3747 void
3748 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3749     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3750     int nframes, int nbad)
3751 {
3752 	struct ath_node *an;
3753 
3754 	/* Only for unicast frames */
3755 	if (ni == NULL)
3756 		return;
3757 
3758 	an = ATH_NODE(ni);
3759 	ATH_NODE_UNLOCK_ASSERT(an);
3760 
3761 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3762 		ATH_NODE_LOCK(an);
3763 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3764 		ATH_NODE_UNLOCK(an);
3765 	}
3766 }
3767 
3768 /*
3769  * Process the completion of the given buffer.
3770  *
3771  * This calls the rate control update and then the buffer completion.
3772  * This will either free the buffer or requeue it.  In any case, the
3773  * bf pointer should be treated as invalid after this function is called.
3774  */
3775 void
3776 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3777     struct ath_tx_status *ts, struct ath_buf *bf)
3778 {
3779 	struct ieee80211_node *ni = bf->bf_node;
3780 	struct ath_node *an = NULL;
3781 
3782 	ATH_TX_UNLOCK_ASSERT(sc);
3783 
3784 	/* If unicast frame, update general statistics */
3785 	if (ni != NULL) {
3786 		an = ATH_NODE(ni);
3787 		/* update statistics */
3788 		ath_tx_update_stats(sc, ts, bf);
3789 	}
3790 
3791 	/*
3792 	 * Call the completion handler.
3793 	 * The completion handler is responsible for
3794 	 * calling the rate control code.
3795 	 *
3796 	 * Frames with no completion handler get the
3797 	 * rate control code called here.
3798 	 */
3799 	if (bf->bf_comp == NULL) {
3800 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3801 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3802 			/*
3803 			 * XXX assume this isn't an aggregate
3804 			 * frame.
3805 			 */
3806 			ath_tx_update_ratectrl(sc, ni,
3807 			     bf->bf_state.bfs_rc, ts,
3808 			    bf->bf_state.bfs_pktlen, 1,
3809 			    (ts->ts_status == 0 ? 0 : 1));
3810 		}
3811 		ath_tx_default_comp(sc, bf, 0);
3812 	} else
3813 		bf->bf_comp(sc, bf, 0);
3814 }
3815 
3816 
3817 
3818 /*
3819  * Process completed xmit descriptors from the specified queue.
3820  * Kick the packet scheduler if needed. This can occur from this
3821  * particular task.
3822  */
3823 static int
3824 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3825 {
3826 	struct ath_hal *ah = sc->sc_ah;
3827 	struct ath_buf *bf;
3828 	struct ath_desc *ds;
3829 	struct ath_tx_status *ts;
3830 	struct ieee80211_node *ni;
3831 #ifdef	IEEE80211_SUPPORT_SUPERG
3832 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3833 #endif	/* IEEE80211_SUPPORT_SUPERG */
3834 	int nacked;
3835 	HAL_STATUS status;
3836 
3837 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3838 		__func__, txq->axq_qnum,
3839 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3840 		txq->axq_link);
3841 
3842 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3843 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3844 	    txq->axq_qnum,
3845 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3846 	    txq->axq_link,
3847 	    txq->axq_depth);
3848 
3849 	nacked = 0;
3850 	for (;;) {
3851 		ATH_TXQ_LOCK(txq);
3852 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3853 		bf = TAILQ_FIRST(&txq->axq_q);
3854 		if (bf == NULL) {
3855 			ATH_TXQ_UNLOCK(txq);
3856 			break;
3857 		}
3858 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3859 		ts = &bf->bf_status.ds_txstat;
3860 
3861 		status = ath_hal_txprocdesc(ah, ds, ts);
3862 #ifdef ATH_DEBUG
3863 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3864 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3865 			    status == HAL_OK);
3866 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3867 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3868 			    status == HAL_OK);
3869 #endif
3870 #ifdef	ATH_DEBUG_ALQ
3871 		if (if_ath_alq_checkdebug(&sc->sc_alq,
3872 		    ATH_ALQ_EDMA_TXSTATUS)) {
3873 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
3874 			sc->sc_tx_statuslen,
3875 			(char *) ds);
3876 		}
3877 #endif
3878 
3879 		if (status == HAL_EINPROGRESS) {
3880 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3881 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3882 			    txq->axq_qnum, bf, ds);
3883 			ATH_TXQ_UNLOCK(txq);
3884 			break;
3885 		}
3886 		ATH_TXQ_REMOVE(txq, bf, bf_list);
3887 		if (txq->axq_depth > 0) {
3888 			/*
3889 			 * More frames follow.  Mark the buffer busy
3890 			 * so it's not re-used while the hardware may
3891 			 * still re-read the link field in the descriptor.
3892 			 *
3893 			 * Use the last buffer in an aggregate as that
3894 			 * is where the hardware may be - intermediate
3895 			 * descriptors won't be "busy".
3896 			 */
3897 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3898 		} else
3899 			txq->axq_link = NULL;
3900 		if (bf->bf_state.bfs_aggr)
3901 			txq->axq_aggr_depth--;
3902 
3903 		ni = bf->bf_node;
3904 
3905 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
3906 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
3907 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
3908 		/*
3909 		 * If unicast frame was ack'd update RSSI,
3910 		 * including the last rx time used to
3911 		 * workaround phantom bmiss interrupts.
3912 		 */
3913 		if (ni != NULL && ts->ts_status == 0 &&
3914 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3915 			nacked++;
3916 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3917 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3918 				ts->ts_rssi);
3919 		}
3920 		ATH_TXQ_UNLOCK(txq);
3921 
3922 		/*
3923 		 * Update statistics and call completion
3924 		 */
3925 		ath_tx_process_buf_completion(sc, txq, ts, bf);
3926 
3927 		/* XXX at this point, bf and ni may be totally invalid */
3928 	}
3929 #ifdef IEEE80211_SUPPORT_SUPERG
3930 	/*
3931 	 * Flush fast-frame staging queue when traffic slows.
3932 	 */
3933 	if (txq->axq_depth <= 1)
3934 		ieee80211_ff_flush(ic, txq->axq_ac);
3935 #endif
3936 
3937 	/* Kick the software TXQ scheduler */
3938 	if (dosched) {
3939 		ATH_TX_LOCK(sc);
3940 		ath_txq_sched(sc, txq);
3941 		ATH_TX_UNLOCK(sc);
3942 	}
3943 
3944 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3945 	    "ath_tx_processq: txq=%u: done",
3946 	    txq->axq_qnum);
3947 
3948 	return nacked;
3949 }
3950 
3951 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3952 
3953 /*
3954  * Deferred processing of transmit interrupt; special-cased
3955  * for a single hardware transmit queue (e.g. 5210 and 5211).
3956  */
3957 static void
3958 ath_tx_proc_q0(void *arg, int npending)
3959 {
3960 	struct ath_softc *sc = arg;
3961 	struct ifnet *ifp = sc->sc_ifp;
3962 	uint32_t txqs;
3963 
3964 	ATH_PCU_LOCK(sc);
3965 	sc->sc_txproc_cnt++;
3966 	txqs = sc->sc_txq_active;
3967 	sc->sc_txq_active &= ~txqs;
3968 	ATH_PCU_UNLOCK(sc);
3969 
3970 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3971 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
3972 
3973 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3974 		/* XXX why is lastrx updated in tx code? */
3975 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3976 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3977 		ath_tx_processq(sc, sc->sc_cabq, 1);
3978 	IF_LOCK(&ifp->if_snd);
3979 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3980 	IF_UNLOCK(&ifp->if_snd);
3981 	sc->sc_wd_timer = 0;
3982 
3983 	if (sc->sc_softled)
3984 		ath_led_event(sc, sc->sc_txrix);
3985 
3986 	ATH_PCU_LOCK(sc);
3987 	sc->sc_txproc_cnt--;
3988 	ATH_PCU_UNLOCK(sc);
3989 
3990 	ath_tx_kick(sc);
3991 }
3992 
3993 /*
3994  * Deferred processing of transmit interrupt; special-cased
3995  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3996  */
3997 static void
3998 ath_tx_proc_q0123(void *arg, int npending)
3999 {
4000 	struct ath_softc *sc = arg;
4001 	struct ifnet *ifp = sc->sc_ifp;
4002 	int nacked;
4003 	uint32_t txqs;
4004 
4005 	ATH_PCU_LOCK(sc);
4006 	sc->sc_txproc_cnt++;
4007 	txqs = sc->sc_txq_active;
4008 	sc->sc_txq_active &= ~txqs;
4009 	ATH_PCU_UNLOCK(sc);
4010 
4011 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4012 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4013 
4014 	/*
4015 	 * Process each active queue.
4016 	 */
4017 	nacked = 0;
4018 	if (TXQACTIVE(txqs, 0))
4019 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4020 	if (TXQACTIVE(txqs, 1))
4021 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4022 	if (TXQACTIVE(txqs, 2))
4023 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4024 	if (TXQACTIVE(txqs, 3))
4025 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4026 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4027 		ath_tx_processq(sc, sc->sc_cabq, 1);
4028 	if (nacked)
4029 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4030 
4031 	IF_LOCK(&ifp->if_snd);
4032 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4033 	IF_UNLOCK(&ifp->if_snd);
4034 	sc->sc_wd_timer = 0;
4035 
4036 	if (sc->sc_softled)
4037 		ath_led_event(sc, sc->sc_txrix);
4038 
4039 	ATH_PCU_LOCK(sc);
4040 	sc->sc_txproc_cnt--;
4041 	ATH_PCU_UNLOCK(sc);
4042 
4043 	ath_tx_kick(sc);
4044 }
4045 
4046 /*
4047  * Deferred processing of transmit interrupt.
4048  */
4049 static void
4050 ath_tx_proc(void *arg, int npending)
4051 {
4052 	struct ath_softc *sc = arg;
4053 	struct ifnet *ifp = sc->sc_ifp;
4054 	int i, nacked;
4055 	uint32_t txqs;
4056 
4057 	ATH_PCU_LOCK(sc);
4058 	sc->sc_txproc_cnt++;
4059 	txqs = sc->sc_txq_active;
4060 	sc->sc_txq_active &= ~txqs;
4061 	ATH_PCU_UNLOCK(sc);
4062 
4063 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4064 
4065 	/*
4066 	 * Process each active queue.
4067 	 */
4068 	nacked = 0;
4069 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4070 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4071 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4072 	if (nacked)
4073 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4074 
4075 	/* XXX check this inside of IF_LOCK? */
4076 	IF_LOCK(&ifp->if_snd);
4077 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4078 	IF_UNLOCK(&ifp->if_snd);
4079 	sc->sc_wd_timer = 0;
4080 
4081 	if (sc->sc_softled)
4082 		ath_led_event(sc, sc->sc_txrix);
4083 
4084 	ATH_PCU_LOCK(sc);
4085 	sc->sc_txproc_cnt--;
4086 	ATH_PCU_UNLOCK(sc);
4087 
4088 	ath_tx_kick(sc);
4089 }
4090 #undef	TXQACTIVE
4091 
4092 /*
4093  * Deferred processing of TXQ rescheduling.
4094  */
4095 static void
4096 ath_txq_sched_tasklet(void *arg, int npending)
4097 {
4098 	struct ath_softc *sc = arg;
4099 	int i;
4100 
4101 	/* XXX is skipping ok? */
4102 	ATH_PCU_LOCK(sc);
4103 #if 0
4104 	if (sc->sc_inreset_cnt > 0) {
4105 		device_printf(sc->sc_dev,
4106 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4107 		ATH_PCU_UNLOCK(sc);
4108 		return;
4109 	}
4110 #endif
4111 	sc->sc_txproc_cnt++;
4112 	ATH_PCU_UNLOCK(sc);
4113 
4114 	ATH_TX_LOCK(sc);
4115 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4116 		if (ATH_TXQ_SETUP(sc, i)) {
4117 			ath_txq_sched(sc, &sc->sc_txq[i]);
4118 		}
4119 	}
4120 	ATH_TX_UNLOCK(sc);
4121 
4122 	ATH_PCU_LOCK(sc);
4123 	sc->sc_txproc_cnt--;
4124 	ATH_PCU_UNLOCK(sc);
4125 }
4126 
4127 void
4128 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4129 {
4130 
4131 	ATH_TXBUF_LOCK_ASSERT(sc);
4132 
4133 	if (bf->bf_flags & ATH_BUF_MGMT)
4134 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4135 	else {
4136 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4137 		sc->sc_txbuf_cnt++;
4138 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4139 			device_printf(sc->sc_dev,
4140 			    "%s: sc_txbuf_cnt > %d?\n",
4141 			    __func__,
4142 			    ath_txbuf);
4143 			sc->sc_txbuf_cnt = ath_txbuf;
4144 		}
4145 	}
4146 }
4147 
4148 void
4149 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4150 {
4151 
4152 	ATH_TXBUF_LOCK_ASSERT(sc);
4153 
4154 	if (bf->bf_flags & ATH_BUF_MGMT)
4155 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4156 	else {
4157 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4158 		sc->sc_txbuf_cnt++;
4159 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4160 			device_printf(sc->sc_dev,
4161 			    "%s: sc_txbuf_cnt > %d?\n",
4162 			    __func__,
4163 			    ATH_TXBUF);
4164 			sc->sc_txbuf_cnt = ATH_TXBUF;
4165 		}
4166 	}
4167 }
4168 
4169 /*
4170  * Free the holding buffer if it exists
4171  */
4172 static void
4173 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4174 {
4175 	ATH_TXBUF_LOCK_ASSERT(sc);
4176 
4177 	if (txq->axq_holdingbf == NULL)
4178 		return;
4179 
4180 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4181 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4182 	txq->axq_holdingbf = NULL;
4183 }
4184 
4185 /*
4186  * Add this buffer to the holding queue, freeing the previous
4187  * one if it exists.
4188  */
4189 static void
4190 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4191 {
4192 	struct ath_txq *txq;
4193 
4194 	ATH_TXBUF_LOCK_ASSERT(sc);
4195 
4196 	/* XXX assert ATH_BUF_BUSY is set */
4197 
4198 	/* XXX assert the tx queue is under the max number */
4199 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4200 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4201 		    __func__,
4202 		    bf,
4203 		    bf->bf_state.bfs_tx_queue);
4204 		bf->bf_flags &= ~ATH_BUF_BUSY;
4205 		ath_returnbuf_tail(sc, bf);
4206 		return;
4207 	}
4208 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4209 	ath_txq_freeholdingbuf(sc, txq);
4210 	txq->axq_holdingbf = bf;
4211 }
4212 
4213 /*
4214  * Return a buffer to the pool and update the 'busy' flag on the
4215  * previous 'tail' entry.
4216  *
4217  * This _must_ only be called when the buffer is involved in a completed
4218  * TX. The logic is that if it was part of an active TX, the previous
4219  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4220  * for restart (eg for TDMA.)
4221  *
4222  * The caller must free the mbuf and recycle the node reference.
4223  */
4224 void
4225 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4226 {
4227 	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4228 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
4229 
4230 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4231 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4232 
4233 	/*
4234 	 * If this buffer is busy, push it onto the holding queue
4235 	 */
4236 	if (bf->bf_flags & ATH_BUF_BUSY) {
4237 		ATH_TXBUF_LOCK(sc);
4238 		ath_txq_addholdingbuf(sc, bf);
4239 		ATH_TXBUF_UNLOCK(sc);
4240 		return;
4241 	}
4242 
4243 	/*
4244 	 * Not a busy buffer, so free normally
4245 	 */
4246 	ATH_TXBUF_LOCK(sc);
4247 	ath_returnbuf_tail(sc, bf);
4248 	ATH_TXBUF_UNLOCK(sc);
4249 }
4250 
4251 /*
4252  * This is currently used by ath_tx_draintxq() and
4253  * ath_tx_tid_free_pkts().
4254  *
4255  * It recycles a single ath_buf.
4256  */
4257 void
4258 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4259 {
4260 	struct ieee80211_node *ni = bf->bf_node;
4261 	struct mbuf *m0 = bf->bf_m;
4262 
4263 	bf->bf_node = NULL;
4264 	bf->bf_m = NULL;
4265 
4266 	/* Free the buffer, it's not needed any longer */
4267 	ath_freebuf(sc, bf);
4268 
4269 	if (ni != NULL) {
4270 		/*
4271 		 * Do any callback and reclaim the node reference.
4272 		 */
4273 		if (m0->m_flags & M_TXCB)
4274 			ieee80211_process_callback(ni, m0, status);
4275 		ieee80211_free_node(ni);
4276 	}
4277 	m_freem(m0);
4278 
4279 	/*
4280 	 * XXX the buffer used to be freed -after-, but the DMA map was
4281 	 * freed where ath_freebuf() now is. I've no idea what this
4282 	 * will do.
4283 	 */
4284 }
4285 
4286 void
4287 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4288 {
4289 #ifdef ATH_DEBUG
4290 	struct ath_hal *ah = sc->sc_ah;
4291 #endif
4292 	struct ath_buf *bf;
4293 	u_int ix;
4294 
4295 	/*
4296 	 * NB: this assumes output has been stopped and
4297 	 *     we do not need to block ath_tx_proc
4298 	 */
4299 	for (ix = 0;; ix++) {
4300 		ATH_TXQ_LOCK(txq);
4301 		bf = TAILQ_FIRST(&txq->axq_q);
4302 		if (bf == NULL) {
4303 			txq->axq_link = NULL;
4304 			/*
4305 			 * There's currently no flag that indicates
4306 			 * a buffer is on the FIFO.  So until that
4307 			 * occurs, just clear the FIFO counter here.
4308 			 *
4309 			 * Yes, this means that if something in parallel
4310 			 * is pushing things onto this TXQ and pushing
4311 			 * _that_ into the hardware, things will get
4312 			 * very fruity very quickly.
4313 			 */
4314 			txq->axq_fifo_depth = 0;
4315 			ATH_TXQ_UNLOCK(txq);
4316 			break;
4317 		}
4318 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4319 		if (bf->bf_state.bfs_aggr)
4320 			txq->axq_aggr_depth--;
4321 #ifdef ATH_DEBUG
4322 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4323 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4324 			int status = 0;
4325 
4326 			/*
4327 			 * EDMA operation has a TX completion FIFO
4328 			 * separate from the TX descriptor, so this
4329 			 * method of checking the "completion" status
4330 			 * is wrong.
4331 			 */
4332 			if (! sc->sc_isedma) {
4333 				status = (ath_hal_txprocdesc(ah,
4334 				    bf->bf_lastds,
4335 				    &bf->bf_status.ds_txstat) == HAL_OK);
4336 			}
4337 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4338 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4339 			    bf->bf_m->m_len, 0, -1);
4340 		}
4341 #endif /* ATH_DEBUG */
4342 		/*
4343 		 * Since we're now doing magic in the completion
4344 		 * functions, we -must- call it for aggregation
4345 		 * destinations or BAW tracking will get upset.
4346 		 */
4347 		/*
4348 		 * Clear ATH_BUF_BUSY; the completion handler
4349 		 * will free the buffer.
4350 		 */
4351 		ATH_TXQ_UNLOCK(txq);
4352 		bf->bf_flags &= ~ATH_BUF_BUSY;
4353 		if (bf->bf_comp)
4354 			bf->bf_comp(sc, bf, 1);
4355 		else
4356 			ath_tx_default_comp(sc, bf, 1);
4357 	}
4358 
4359 	/*
4360 	 * Free the holding buffer if it exists
4361 	 */
4362 	ATH_TXBUF_LOCK(sc);
4363 	ath_txq_freeholdingbuf(sc, txq);
4364 	ATH_TXBUF_UNLOCK(sc);
4365 
4366 	/*
4367 	 * Drain software queued frames which are on
4368 	 * active TIDs.
4369 	 */
4370 	ath_tx_txq_drain(sc, txq);
4371 }
4372 
4373 static void
4374 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4375 {
4376 	struct ath_hal *ah = sc->sc_ah;
4377 
4378 	DPRINTF(sc, ATH_DEBUG_RESET,
4379 	    "%s: tx queue [%u] %p, flags 0x%08x, link %p\n",
4380 	    __func__,
4381 	    txq->axq_qnum,
4382 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4383 	    txq->axq_flags,
4384 	    txq->axq_link);
4385 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4386 }
4387 
4388 int
4389 ath_stoptxdma(struct ath_softc *sc)
4390 {
4391 	struct ath_hal *ah = sc->sc_ah;
4392 	int i;
4393 
4394 	/* XXX return value */
4395 	if (sc->sc_invalid)
4396 		return 0;
4397 
4398 	if (!sc->sc_invalid) {
4399 		/* don't touch the hardware if marked invalid */
4400 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4401 		    __func__, sc->sc_bhalq,
4402 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4403 		    NULL);
4404 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4405 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4406 			if (ATH_TXQ_SETUP(sc, i))
4407 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4408 	}
4409 
4410 	return 1;
4411 }
4412 
4413 /*
4414  * Drain the transmit queues and reclaim resources.
4415  */
4416 void
4417 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4418 {
4419 #ifdef	ATH_DEBUG
4420 	struct ath_hal *ah = sc->sc_ah;
4421 #endif
4422 	struct ifnet *ifp = sc->sc_ifp;
4423 	int i;
4424 
4425 	(void) ath_stoptxdma(sc);
4426 
4427 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4428 		/*
4429 		 * XXX TODO: should we just handle the completed TX frames
4430 		 * here, whether or not the reset is a full one or not?
4431 		 */
4432 		if (ATH_TXQ_SETUP(sc, i)) {
4433 			if (reset_type == ATH_RESET_NOLOSS)
4434 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4435 			else
4436 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4437 		}
4438 	}
4439 #ifdef ATH_DEBUG
4440 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4441 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4442 		if (bf != NULL && bf->bf_m != NULL) {
4443 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4444 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4445 				    &bf->bf_status.ds_txstat) == HAL_OK);
4446 			ieee80211_dump_pkt(ifp->if_l2com,
4447 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4448 			    0, -1);
4449 		}
4450 	}
4451 #endif /* ATH_DEBUG */
4452 	IF_LOCK(&ifp->if_snd);
4453 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4454 	IF_UNLOCK(&ifp->if_snd);
4455 	sc->sc_wd_timer = 0;
4456 }
4457 
4458 /*
4459  * Update internal state after a channel change.
4460  */
4461 static void
4462 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4463 {
4464 	enum ieee80211_phymode mode;
4465 
4466 	/*
4467 	 * Change channels and update the h/w rate map
4468 	 * if we're switching; e.g. 11a to 11b/g.
4469 	 */
4470 	mode = ieee80211_chan2mode(chan);
4471 	if (mode != sc->sc_curmode)
4472 		ath_setcurmode(sc, mode);
4473 	sc->sc_curchan = chan;
4474 }
4475 
4476 /*
4477  * Set/change channels.  If the channel is really being changed,
4478  * it's done by resetting the chip.  To accomplish this we must
4479  * first cleanup any pending DMA, then restart stuff after a la
4480  * ath_init.
4481  */
4482 static int
4483 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4484 {
4485 	struct ifnet *ifp = sc->sc_ifp;
4486 	struct ieee80211com *ic = ifp->if_l2com;
4487 	struct ath_hal *ah = sc->sc_ah;
4488 	int ret = 0;
4489 
4490 	/* Treat this as an interface reset */
4491 	ATH_PCU_UNLOCK_ASSERT(sc);
4492 	ATH_UNLOCK_ASSERT(sc);
4493 
4494 	/* (Try to) stop TX/RX from occuring */
4495 	taskqueue_block(sc->sc_tq);
4496 
4497 	ATH_PCU_LOCK(sc);
4498 	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4499 	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4500 	if (ath_reset_grablock(sc, 1) == 0) {
4501 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4502 		    __func__);
4503 	}
4504 	ATH_PCU_UNLOCK(sc);
4505 
4506 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4507 	    __func__, ieee80211_chan2ieee(ic, chan),
4508 	    chan->ic_freq, chan->ic_flags);
4509 	if (chan != sc->sc_curchan) {
4510 		HAL_STATUS status;
4511 		/*
4512 		 * To switch channels clear any pending DMA operations;
4513 		 * wait long enough for the RX fifo to drain, reset the
4514 		 * hardware at the new frequency, and then re-enable
4515 		 * the relevant bits of the h/w.
4516 		 */
4517 #if 0
4518 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4519 #endif
4520 		ath_stoprecv(sc, 1);		/* turn off frame recv */
4521 		/*
4522 		 * First, handle completed TX/RX frames.
4523 		 */
4524 		ath_rx_flush(sc);
4525 		ath_draintxq(sc, ATH_RESET_NOLOSS);
4526 		/*
4527 		 * Next, flush the non-scheduled frames.
4528 		 */
4529 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4530 
4531 		ath_update_chainmasks(sc, chan);
4532 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
4533 		    sc->sc_cur_rxchainmask);
4534 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4535 			if_printf(ifp, "%s: unable to reset "
4536 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4537 			    __func__, ieee80211_chan2ieee(ic, chan),
4538 			    chan->ic_freq, chan->ic_flags, status);
4539 			ret = EIO;
4540 			goto finish;
4541 		}
4542 		sc->sc_diversity = ath_hal_getdiversity(ah);
4543 
4544 		/* Let DFS at it in case it's a DFS channel */
4545 		ath_dfs_radar_enable(sc, chan);
4546 
4547 		/* Let spectral at in case spectral is enabled */
4548 		ath_spectral_enable(sc, chan);
4549 
4550 		/*
4551 		 * Re-enable rx framework.
4552 		 */
4553 		if (ath_startrecv(sc) != 0) {
4554 			if_printf(ifp, "%s: unable to restart recv logic\n",
4555 			    __func__);
4556 			ret = EIO;
4557 			goto finish;
4558 		}
4559 
4560 		/*
4561 		 * Change channels and update the h/w rate map
4562 		 * if we're switching; e.g. 11a to 11b/g.
4563 		 */
4564 		ath_chan_change(sc, chan);
4565 
4566 		/*
4567 		 * Reset clears the beacon timers; reset them
4568 		 * here if needed.
4569 		 */
4570 		if (sc->sc_beacons) {		/* restart beacons */
4571 #ifdef IEEE80211_SUPPORT_TDMA
4572 			if (sc->sc_tdma)
4573 				ath_tdma_config(sc, NULL);
4574 			else
4575 #endif
4576 			ath_beacon_config(sc, NULL);
4577 		}
4578 
4579 		/*
4580 		 * Re-enable interrupts.
4581 		 */
4582 #if 0
4583 		ath_hal_intrset(ah, sc->sc_imask);
4584 #endif
4585 	}
4586 
4587 finish:
4588 	ATH_PCU_LOCK(sc);
4589 	sc->sc_inreset_cnt--;
4590 	/* XXX only do this if sc_inreset_cnt == 0? */
4591 	ath_hal_intrset(ah, sc->sc_imask);
4592 	ATH_PCU_UNLOCK(sc);
4593 
4594 	IF_LOCK(&ifp->if_snd);
4595 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4596 	IF_UNLOCK(&ifp->if_snd);
4597 	ath_txrx_start(sc);
4598 	/* XXX ath_start? */
4599 
4600 	return ret;
4601 }
4602 
4603 /*
4604  * Periodically recalibrate the PHY to account
4605  * for temperature/environment changes.
4606  */
4607 static void
4608 ath_calibrate(void *arg)
4609 {
4610 	struct ath_softc *sc = arg;
4611 	struct ath_hal *ah = sc->sc_ah;
4612 	struct ifnet *ifp = sc->sc_ifp;
4613 	struct ieee80211com *ic = ifp->if_l2com;
4614 	HAL_BOOL longCal, isCalDone = AH_TRUE;
4615 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4616 	int nextcal;
4617 
4618 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4619 		goto restart;
4620 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4621 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4622 	if (sc->sc_doresetcal)
4623 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4624 
4625 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4626 	if (aniCal) {
4627 		sc->sc_stats.ast_ani_cal++;
4628 		sc->sc_lastani = ticks;
4629 		ath_hal_ani_poll(ah, sc->sc_curchan);
4630 	}
4631 
4632 	if (longCal) {
4633 		sc->sc_stats.ast_per_cal++;
4634 		sc->sc_lastlongcal = ticks;
4635 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4636 			/*
4637 			 * Rfgain is out of bounds, reset the chip
4638 			 * to load new gain values.
4639 			 */
4640 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4641 				"%s: rfgain change\n", __func__);
4642 			sc->sc_stats.ast_per_rfgain++;
4643 			sc->sc_resetcal = 0;
4644 			sc->sc_doresetcal = AH_TRUE;
4645 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4646 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4647 			return;
4648 		}
4649 		/*
4650 		 * If this long cal is after an idle period, then
4651 		 * reset the data collection state so we start fresh.
4652 		 */
4653 		if (sc->sc_resetcal) {
4654 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4655 			sc->sc_lastcalreset = ticks;
4656 			sc->sc_lastshortcal = ticks;
4657 			sc->sc_resetcal = 0;
4658 			sc->sc_doresetcal = AH_TRUE;
4659 		}
4660 	}
4661 
4662 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4663 	if (shortCal || longCal) {
4664 		isCalDone = AH_FALSE;
4665 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4666 			if (longCal) {
4667 				/*
4668 				 * Calibrate noise floor data again in case of change.
4669 				 */
4670 				ath_hal_process_noisefloor(ah);
4671 			}
4672 		} else {
4673 			DPRINTF(sc, ATH_DEBUG_ANY,
4674 				"%s: calibration of channel %u failed\n",
4675 				__func__, sc->sc_curchan->ic_freq);
4676 			sc->sc_stats.ast_per_calfail++;
4677 		}
4678 		if (shortCal)
4679 			sc->sc_lastshortcal = ticks;
4680 	}
4681 	if (!isCalDone) {
4682 restart:
4683 		/*
4684 		 * Use a shorter interval to potentially collect multiple
4685 		 * data samples required to complete calibration.  Once
4686 		 * we're told the work is done we drop back to a longer
4687 		 * interval between requests.  We're more aggressive doing
4688 		 * work when operating as an AP to improve operation right
4689 		 * after startup.
4690 		 */
4691 		sc->sc_lastshortcal = ticks;
4692 		nextcal = ath_shortcalinterval*hz/1000;
4693 		if (sc->sc_opmode != HAL_M_HOSTAP)
4694 			nextcal *= 10;
4695 		sc->sc_doresetcal = AH_TRUE;
4696 	} else {
4697 		/* nextcal should be the shortest time for next event */
4698 		nextcal = ath_longcalinterval*hz;
4699 		if (sc->sc_lastcalreset == 0)
4700 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4701 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4702 			sc->sc_resetcal = 1;	/* setup reset next trip */
4703 		sc->sc_doresetcal = AH_FALSE;
4704 	}
4705 	/* ANI calibration may occur more often than short/long/resetcal */
4706 	if (ath_anicalinterval > 0)
4707 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4708 
4709 	if (nextcal != 0) {
4710 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4711 		    __func__, nextcal, isCalDone ? "" : "!");
4712 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4713 	} else {
4714 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4715 		    __func__);
4716 		/* NB: don't rearm timer */
4717 	}
4718 }
4719 
4720 static void
4721 ath_scan_start(struct ieee80211com *ic)
4722 {
4723 	struct ifnet *ifp = ic->ic_ifp;
4724 	struct ath_softc *sc = ifp->if_softc;
4725 	struct ath_hal *ah = sc->sc_ah;
4726 	u_int32_t rfilt;
4727 
4728 	/* XXX calibration timer? */
4729 
4730 	ATH_LOCK(sc);
4731 	sc->sc_scanning = 1;
4732 	sc->sc_syncbeacon = 0;
4733 	rfilt = ath_calcrxfilter(sc);
4734 	ATH_UNLOCK(sc);
4735 
4736 	ATH_PCU_LOCK(sc);
4737 	ath_hal_setrxfilter(ah, rfilt);
4738 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4739 	ATH_PCU_UNLOCK(sc);
4740 
4741 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4742 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4743 }
4744 
4745 static void
4746 ath_scan_end(struct ieee80211com *ic)
4747 {
4748 	struct ifnet *ifp = ic->ic_ifp;
4749 	struct ath_softc *sc = ifp->if_softc;
4750 	struct ath_hal *ah = sc->sc_ah;
4751 	u_int32_t rfilt;
4752 
4753 	ATH_LOCK(sc);
4754 	sc->sc_scanning = 0;
4755 	rfilt = ath_calcrxfilter(sc);
4756 	ATH_UNLOCK(sc);
4757 
4758 	ATH_PCU_LOCK(sc);
4759 	ath_hal_setrxfilter(ah, rfilt);
4760 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4761 
4762 	ath_hal_process_noisefloor(ah);
4763 	ATH_PCU_UNLOCK(sc);
4764 
4765 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4766 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4767 		 sc->sc_curaid);
4768 }
4769 
4770 #ifdef	ATH_ENABLE_11N
4771 /*
4772  * For now, just do a channel change.
4773  *
4774  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4775  * control state and resetting the hardware without dropping frames out
4776  * of the queue.
4777  *
4778  * The unfortunate trouble here is making absolutely sure that the
4779  * channel width change has propagated enough so the hardware
4780  * absolutely isn't handed bogus frames for it's current operating
4781  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4782  * does occur in parallel, we need to make certain we've blocked
4783  * any further ongoing TX (and RX, that can cause raw TX)
4784  * before we do this.
4785  */
4786 static void
4787 ath_update_chw(struct ieee80211com *ic)
4788 {
4789 	struct ifnet *ifp = ic->ic_ifp;
4790 	struct ath_softc *sc = ifp->if_softc;
4791 
4792 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4793 	ath_set_channel(ic);
4794 }
4795 #endif	/* ATH_ENABLE_11N */
4796 
4797 static void
4798 ath_set_channel(struct ieee80211com *ic)
4799 {
4800 	struct ifnet *ifp = ic->ic_ifp;
4801 	struct ath_softc *sc = ifp->if_softc;
4802 
4803 	(void) ath_chan_set(sc, ic->ic_curchan);
4804 	/*
4805 	 * If we are returning to our bss channel then mark state
4806 	 * so the next recv'd beacon's tsf will be used to sync the
4807 	 * beacon timers.  Note that since we only hear beacons in
4808 	 * sta/ibss mode this has no effect in other operating modes.
4809 	 */
4810 	ATH_LOCK(sc);
4811 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4812 		sc->sc_syncbeacon = 1;
4813 	ATH_UNLOCK(sc);
4814 }
4815 
4816 /*
4817  * Walk the vap list and check if there any vap's in RUN state.
4818  */
4819 static int
4820 ath_isanyrunningvaps(struct ieee80211vap *this)
4821 {
4822 	struct ieee80211com *ic = this->iv_ic;
4823 	struct ieee80211vap *vap;
4824 
4825 	IEEE80211_LOCK_ASSERT(ic);
4826 
4827 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4828 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4829 			return 1;
4830 	}
4831 	return 0;
4832 }
4833 
4834 static int
4835 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4836 {
4837 	struct ieee80211com *ic = vap->iv_ic;
4838 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4839 	struct ath_vap *avp = ATH_VAP(vap);
4840 	struct ath_hal *ah = sc->sc_ah;
4841 	struct ieee80211_node *ni = NULL;
4842 	int i, error, stamode;
4843 	u_int32_t rfilt;
4844 	int csa_run_transition = 0;
4845 
4846 	static const HAL_LED_STATE leds[] = {
4847 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4848 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4849 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4850 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4851 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4852 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4853 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4854 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4855 	};
4856 
4857 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4858 		ieee80211_state_name[vap->iv_state],
4859 		ieee80211_state_name[nstate]);
4860 
4861 	/*
4862 	 * net80211 _should_ have the comlock asserted at this point.
4863 	 * There are some comments around the calls to vap->iv_newstate
4864 	 * which indicate that it (newstate) may end up dropping the
4865 	 * lock.  This and the subsequent lock assert check after newstate
4866 	 * are an attempt to catch these and figure out how/why.
4867 	 */
4868 	IEEE80211_LOCK_ASSERT(ic);
4869 
4870 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4871 		csa_run_transition = 1;
4872 
4873 	callout_drain(&sc->sc_cal_ch);
4874 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4875 
4876 	if (nstate == IEEE80211_S_SCAN) {
4877 		/*
4878 		 * Scanning: turn off beacon miss and don't beacon.
4879 		 * Mark beacon state so when we reach RUN state we'll
4880 		 * [re]setup beacons.  Unblock the task q thread so
4881 		 * deferred interrupt processing is done.
4882 		 */
4883 		ath_hal_intrset(ah,
4884 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4885 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4886 		sc->sc_beacons = 0;
4887 		taskqueue_unblock(sc->sc_tq);
4888 	}
4889 
4890 	ni = ieee80211_ref_node(vap->iv_bss);
4891 	rfilt = ath_calcrxfilter(sc);
4892 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4893 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4894 		   vap->iv_opmode == IEEE80211_M_IBSS);
4895 	if (stamode && nstate == IEEE80211_S_RUN) {
4896 		sc->sc_curaid = ni->ni_associd;
4897 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4898 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4899 	}
4900 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4901 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4902 	ath_hal_setrxfilter(ah, rfilt);
4903 
4904 	/* XXX is this to restore keycache on resume? */
4905 	if (vap->iv_opmode != IEEE80211_M_STA &&
4906 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4907 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4908 			if (ath_hal_keyisvalid(ah, i))
4909 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4910 	}
4911 
4912 	/*
4913 	 * Invoke the parent method to do net80211 work.
4914 	 */
4915 	error = avp->av_newstate(vap, nstate, arg);
4916 	if (error != 0)
4917 		goto bad;
4918 
4919 	/*
4920 	 * See above: ensure av_newstate() doesn't drop the lock
4921 	 * on us.
4922 	 */
4923 	IEEE80211_LOCK_ASSERT(ic);
4924 
4925 	if (nstate == IEEE80211_S_RUN) {
4926 		/* NB: collect bss node again, it may have changed */
4927 		ieee80211_free_node(ni);
4928 		ni = ieee80211_ref_node(vap->iv_bss);
4929 
4930 		DPRINTF(sc, ATH_DEBUG_STATE,
4931 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4932 		    "capinfo 0x%04x chan %d\n", __func__,
4933 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4934 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4935 
4936 		switch (vap->iv_opmode) {
4937 #ifdef IEEE80211_SUPPORT_TDMA
4938 		case IEEE80211_M_AHDEMO:
4939 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4940 				break;
4941 			/* fall thru... */
4942 #endif
4943 		case IEEE80211_M_HOSTAP:
4944 		case IEEE80211_M_IBSS:
4945 		case IEEE80211_M_MBSS:
4946 			/*
4947 			 * Allocate and setup the beacon frame.
4948 			 *
4949 			 * Stop any previous beacon DMA.  This may be
4950 			 * necessary, for example, when an ibss merge
4951 			 * causes reconfiguration; there will be a state
4952 			 * transition from RUN->RUN that means we may
4953 			 * be called with beacon transmission active.
4954 			 */
4955 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4956 
4957 			error = ath_beacon_alloc(sc, ni);
4958 			if (error != 0)
4959 				goto bad;
4960 			/*
4961 			 * If joining an adhoc network defer beacon timer
4962 			 * configuration to the next beacon frame so we
4963 			 * have a current TSF to use.  Otherwise we're
4964 			 * starting an ibss/bss so there's no need to delay;
4965 			 * if this is the first vap moving to RUN state, then
4966 			 * beacon state needs to be [re]configured.
4967 			 */
4968 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4969 			    ni->ni_tstamp.tsf != 0) {
4970 				sc->sc_syncbeacon = 1;
4971 			} else if (!sc->sc_beacons) {
4972 #ifdef IEEE80211_SUPPORT_TDMA
4973 				if (vap->iv_caps & IEEE80211_C_TDMA)
4974 					ath_tdma_config(sc, vap);
4975 				else
4976 #endif
4977 					ath_beacon_config(sc, vap);
4978 				sc->sc_beacons = 1;
4979 			}
4980 			break;
4981 		case IEEE80211_M_STA:
4982 			/*
4983 			 * Defer beacon timer configuration to the next
4984 			 * beacon frame so we have a current TSF to use
4985 			 * (any TSF collected when scanning is likely old).
4986 			 * However if it's due to a CSA -> RUN transition,
4987 			 * force a beacon update so we pick up a lack of
4988 			 * beacons from an AP in CAC and thus force a
4989 			 * scan.
4990 			 *
4991 			 * And, there's also corner cases here where
4992 			 * after a scan, the AP may have disappeared.
4993 			 * In that case, we may not receive an actual
4994 			 * beacon to update the beacon timer and thus we
4995 			 * won't get notified of the missing beacons.
4996 			 */
4997 			sc->sc_syncbeacon = 1;
4998 #if 0
4999 			if (csa_run_transition)
5000 #endif
5001 				ath_beacon_config(sc, vap);
5002 
5003 			/*
5004 			 * PR: kern/175227
5005 			 *
5006 			 * Reconfigure beacons during reset; as otherwise
5007 			 * we won't get the beacon timers reprogrammed
5008 			 * after a reset and thus we won't pick up a
5009 			 * beacon miss interrupt.
5010 			 *
5011 			 * Hopefully we'll see a beacon before the BMISS
5012 			 * timer fires (too often), leading to a STA
5013 			 * disassociation.
5014 			 */
5015 			sc->sc_beacons = 1;
5016 			break;
5017 		case IEEE80211_M_MONITOR:
5018 			/*
5019 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5020 			 * transitions so we must re-enable interrupts here to
5021 			 * handle the case of a single monitor mode vap.
5022 			 */
5023 			ath_hal_intrset(ah, sc->sc_imask);
5024 			break;
5025 		case IEEE80211_M_WDS:
5026 			break;
5027 		default:
5028 			break;
5029 		}
5030 		/*
5031 		 * Let the hal process statistics collected during a
5032 		 * scan so it can provide calibrated noise floor data.
5033 		 */
5034 		ath_hal_process_noisefloor(ah);
5035 		/*
5036 		 * Reset rssi stats; maybe not the best place...
5037 		 */
5038 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5039 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5040 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5041 		/*
5042 		 * Finally, start any timers and the task q thread
5043 		 * (in case we didn't go through SCAN state).
5044 		 */
5045 		if (ath_longcalinterval != 0) {
5046 			/* start periodic recalibration timer */
5047 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5048 		} else {
5049 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5050 			    "%s: calibration disabled\n", __func__);
5051 		}
5052 		taskqueue_unblock(sc->sc_tq);
5053 	} else if (nstate == IEEE80211_S_INIT) {
5054 		/*
5055 		 * If there are no vaps left in RUN state then
5056 		 * shutdown host/driver operation:
5057 		 * o disable interrupts
5058 		 * o disable the task queue thread
5059 		 * o mark beacon processing as stopped
5060 		 */
5061 		if (!ath_isanyrunningvaps(vap)) {
5062 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5063 			/* disable interrupts  */
5064 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5065 			taskqueue_block(sc->sc_tq);
5066 			sc->sc_beacons = 0;
5067 		}
5068 #ifdef IEEE80211_SUPPORT_TDMA
5069 		ath_hal_setcca(ah, AH_TRUE);
5070 #endif
5071 	}
5072 bad:
5073 	ieee80211_free_node(ni);
5074 	return error;
5075 }
5076 
5077 /*
5078  * Allocate a key cache slot to the station so we can
5079  * setup a mapping from key index to node. The key cache
5080  * slot is needed for managing antenna state and for
5081  * compression when stations do not use crypto.  We do
5082  * it uniliaterally here; if crypto is employed this slot
5083  * will be reassigned.
5084  */
5085 static void
5086 ath_setup_stationkey(struct ieee80211_node *ni)
5087 {
5088 	struct ieee80211vap *vap = ni->ni_vap;
5089 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5090 	ieee80211_keyix keyix, rxkeyix;
5091 
5092 	/* XXX should take a locked ref to vap->iv_bss */
5093 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5094 		/*
5095 		 * Key cache is full; we'll fall back to doing
5096 		 * the more expensive lookup in software.  Note
5097 		 * this also means no h/w compression.
5098 		 */
5099 		/* XXX msg+statistic */
5100 	} else {
5101 		/* XXX locking? */
5102 		ni->ni_ucastkey.wk_keyix = keyix;
5103 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5104 		/* NB: must mark device key to get called back on delete */
5105 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5106 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5107 		/* NB: this will create a pass-thru key entry */
5108 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5109 	}
5110 }
5111 
5112 /*
5113  * Setup driver-specific state for a newly associated node.
5114  * Note that we're called also on a re-associate, the isnew
5115  * param tells us if this is the first time or not.
5116  */
5117 static void
5118 ath_newassoc(struct ieee80211_node *ni, int isnew)
5119 {
5120 	struct ath_node *an = ATH_NODE(ni);
5121 	struct ieee80211vap *vap = ni->ni_vap;
5122 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5123 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5124 
5125 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5126 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5127 
5128 	ath_rate_newassoc(sc, an, isnew);
5129 	if (isnew &&
5130 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5131 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5132 		ath_setup_stationkey(ni);
5133 }
5134 
5135 static int
5136 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5137 	int nchans, struct ieee80211_channel chans[])
5138 {
5139 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5140 	struct ath_hal *ah = sc->sc_ah;
5141 	HAL_STATUS status;
5142 
5143 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5144 	    "%s: rd %u cc %u location %c%s\n",
5145 	    __func__, reg->regdomain, reg->country, reg->location,
5146 	    reg->ecm ? " ecm" : "");
5147 
5148 	status = ath_hal_set_channels(ah, chans, nchans,
5149 	    reg->country, reg->regdomain);
5150 	if (status != HAL_OK) {
5151 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5152 		    __func__, status);
5153 		return EINVAL;		/* XXX */
5154 	}
5155 
5156 	return 0;
5157 }
5158 
5159 static void
5160 ath_getradiocaps(struct ieee80211com *ic,
5161 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5162 {
5163 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5164 	struct ath_hal *ah = sc->sc_ah;
5165 
5166 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5167 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5168 
5169 	/* XXX check return */
5170 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5171 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5172 
5173 }
5174 
5175 static int
5176 ath_getchannels(struct ath_softc *sc)
5177 {
5178 	struct ifnet *ifp = sc->sc_ifp;
5179 	struct ieee80211com *ic = ifp->if_l2com;
5180 	struct ath_hal *ah = sc->sc_ah;
5181 	HAL_STATUS status;
5182 
5183 	/*
5184 	 * Collect channel set based on EEPROM contents.
5185 	 */
5186 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5187 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5188 	if (status != HAL_OK) {
5189 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5190 		    "status %d\n", __func__, status);
5191 		return EINVAL;
5192 	}
5193 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5194 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5195 	/* XXX map Atheros sku's to net80211 SKU's */
5196 	/* XXX net80211 types too small */
5197 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5198 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5199 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5200 	ic->ic_regdomain.isocc[1] = ' ';
5201 
5202 	ic->ic_regdomain.ecm = 1;
5203 	ic->ic_regdomain.location = 'I';
5204 
5205 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5206 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5207 	    __func__, sc->sc_eerd, sc->sc_eecc,
5208 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5209 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5210 	return 0;
5211 }
5212 
5213 static int
5214 ath_rate_setup(struct ath_softc *sc, u_int mode)
5215 {
5216 	struct ath_hal *ah = sc->sc_ah;
5217 	const HAL_RATE_TABLE *rt;
5218 
5219 	switch (mode) {
5220 	case IEEE80211_MODE_11A:
5221 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5222 		break;
5223 	case IEEE80211_MODE_HALF:
5224 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5225 		break;
5226 	case IEEE80211_MODE_QUARTER:
5227 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5228 		break;
5229 	case IEEE80211_MODE_11B:
5230 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5231 		break;
5232 	case IEEE80211_MODE_11G:
5233 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5234 		break;
5235 	case IEEE80211_MODE_TURBO_A:
5236 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5237 		break;
5238 	case IEEE80211_MODE_TURBO_G:
5239 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5240 		break;
5241 	case IEEE80211_MODE_STURBO_A:
5242 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5243 		break;
5244 	case IEEE80211_MODE_11NA:
5245 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5246 		break;
5247 	case IEEE80211_MODE_11NG:
5248 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5249 		break;
5250 	default:
5251 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5252 			__func__, mode);
5253 		return 0;
5254 	}
5255 	sc->sc_rates[mode] = rt;
5256 	return (rt != NULL);
5257 }
5258 
5259 static void
5260 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5261 {
5262 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5263 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5264 	static const struct {
5265 		u_int		rate;		/* tx/rx 802.11 rate */
5266 		u_int16_t	timeOn;		/* LED on time (ms) */
5267 		u_int16_t	timeOff;	/* LED off time (ms) */
5268 	} blinkrates[] = {
5269 		{ 108,  40,  10 },
5270 		{  96,  44,  11 },
5271 		{  72,  50,  13 },
5272 		{  48,  57,  14 },
5273 		{  36,  67,  16 },
5274 		{  24,  80,  20 },
5275 		{  22, 100,  25 },
5276 		{  18, 133,  34 },
5277 		{  12, 160,  40 },
5278 		{  10, 200,  50 },
5279 		{   6, 240,  58 },
5280 		{   4, 267,  66 },
5281 		{   2, 400, 100 },
5282 		{   0, 500, 130 },
5283 		/* XXX half/quarter rates */
5284 	};
5285 	const HAL_RATE_TABLE *rt;
5286 	int i, j;
5287 
5288 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5289 	rt = sc->sc_rates[mode];
5290 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5291 	for (i = 0; i < rt->rateCount; i++) {
5292 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5293 		if (rt->info[i].phy != IEEE80211_T_HT)
5294 			sc->sc_rixmap[ieeerate] = i;
5295 		else
5296 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5297 	}
5298 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5299 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5300 		if (i >= rt->rateCount) {
5301 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5302 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5303 			continue;
5304 		}
5305 		sc->sc_hwmap[i].ieeerate =
5306 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5307 		if (rt->info[i].phy == IEEE80211_T_HT)
5308 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5309 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5310 		if (rt->info[i].shortPreamble ||
5311 		    rt->info[i].phy == IEEE80211_T_OFDM)
5312 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5313 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5314 		for (j = 0; j < N(blinkrates)-1; j++)
5315 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5316 				break;
5317 		/* NB: this uses the last entry if the rate isn't found */
5318 		/* XXX beware of overlow */
5319 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5320 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5321 	}
5322 	sc->sc_currates = rt;
5323 	sc->sc_curmode = mode;
5324 	/*
5325 	 * All protection frames are transmited at 2Mb/s for
5326 	 * 11g, otherwise at 1Mb/s.
5327 	 */
5328 	if (mode == IEEE80211_MODE_11G)
5329 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5330 	else
5331 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5332 	/* NB: caller is responsible for resetting rate control state */
5333 #undef N
5334 }
5335 
5336 static void
5337 ath_watchdog(void *arg)
5338 {
5339 	struct ath_softc *sc = arg;
5340 	int do_reset = 0;
5341 
5342 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5343 		struct ifnet *ifp = sc->sc_ifp;
5344 		uint32_t hangs;
5345 
5346 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5347 		    hangs != 0) {
5348 			if_printf(ifp, "%s hang detected (0x%x)\n",
5349 			    hangs & 0xff ? "bb" : "mac", hangs);
5350 		} else
5351 			if_printf(ifp, "device timeout\n");
5352 		do_reset = 1;
5353 		ifp->if_oerrors++;
5354 		sc->sc_stats.ast_watchdog++;
5355 	}
5356 
5357 	/*
5358 	 * We can't hold the lock across the ath_reset() call.
5359 	 *
5360 	 * And since this routine can't hold a lock and sleep,
5361 	 * do the reset deferred.
5362 	 */
5363 	if (do_reset) {
5364 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5365 	}
5366 
5367 	callout_schedule(&sc->sc_wd_ch, hz);
5368 }
5369 
5370 /*
5371  * Fetch the rate control statistics for the given node.
5372  */
5373 static int
5374 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5375 {
5376 	struct ath_node *an;
5377 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5378 	struct ieee80211_node *ni;
5379 	int error = 0;
5380 
5381 	/* Perform a lookup on the given node */
5382 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5383 	if (ni == NULL) {
5384 		error = EINVAL;
5385 		goto bad;
5386 	}
5387 
5388 	/* Lock the ath_node */
5389 	an = ATH_NODE(ni);
5390 	ATH_NODE_LOCK(an);
5391 
5392 	/* Fetch the rate control stats for this node */
5393 	error = ath_rate_fetch_node_stats(sc, an, rs);
5394 
5395 	/* No matter what happens here, just drop through */
5396 
5397 	/* Unlock the ath_node */
5398 	ATH_NODE_UNLOCK(an);
5399 
5400 	/* Unref the node */
5401 	ieee80211_node_decref(ni);
5402 
5403 bad:
5404 	return (error);
5405 }
5406 
5407 #ifdef ATH_DIAGAPI
5408 /*
5409  * Diagnostic interface to the HAL.  This is used by various
5410  * tools to do things like retrieve register contents for
5411  * debugging.  The mechanism is intentionally opaque so that
5412  * it can change frequently w/o concern for compatiblity.
5413  */
5414 static int
5415 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5416 {
5417 	struct ath_hal *ah = sc->sc_ah;
5418 	u_int id = ad->ad_id & ATH_DIAG_ID;
5419 	void *indata = NULL;
5420 	void *outdata = NULL;
5421 	u_int32_t insize = ad->ad_in_size;
5422 	u_int32_t outsize = ad->ad_out_size;
5423 	int error = 0;
5424 
5425 	if (ad->ad_id & ATH_DIAG_IN) {
5426 		/*
5427 		 * Copy in data.
5428 		 */
5429 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5430 		if (indata == NULL) {
5431 			error = ENOMEM;
5432 			goto bad;
5433 		}
5434 		error = copyin(ad->ad_in_data, indata, insize);
5435 		if (error)
5436 			goto bad;
5437 	}
5438 	if (ad->ad_id & ATH_DIAG_DYN) {
5439 		/*
5440 		 * Allocate a buffer for the results (otherwise the HAL
5441 		 * returns a pointer to a buffer where we can read the
5442 		 * results).  Note that we depend on the HAL leaving this
5443 		 * pointer for us to use below in reclaiming the buffer;
5444 		 * may want to be more defensive.
5445 		 */
5446 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5447 		if (outdata == NULL) {
5448 			error = ENOMEM;
5449 			goto bad;
5450 		}
5451 	}
5452 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5453 		if (outsize < ad->ad_out_size)
5454 			ad->ad_out_size = outsize;
5455 		if (outdata != NULL)
5456 			error = copyout(outdata, ad->ad_out_data,
5457 					ad->ad_out_size);
5458 	} else {
5459 		error = EINVAL;
5460 	}
5461 bad:
5462 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5463 		free(indata, M_TEMP);
5464 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5465 		free(outdata, M_TEMP);
5466 	return error;
5467 }
5468 #endif /* ATH_DIAGAPI */
5469 
5470 static int
5471 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5472 {
5473 #define	IS_RUNNING(ifp) \
5474 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5475 	struct ath_softc *sc = ifp->if_softc;
5476 	struct ieee80211com *ic = ifp->if_l2com;
5477 	struct ifreq *ifr = (struct ifreq *)data;
5478 	const HAL_RATE_TABLE *rt;
5479 	int error = 0;
5480 
5481 	switch (cmd) {
5482 	case SIOCSIFFLAGS:
5483 		ATH_LOCK(sc);
5484 		if (IS_RUNNING(ifp)) {
5485 			/*
5486 			 * To avoid rescanning another access point,
5487 			 * do not call ath_init() here.  Instead,
5488 			 * only reflect promisc mode settings.
5489 			 */
5490 			ath_mode_init(sc);
5491 		} else if (ifp->if_flags & IFF_UP) {
5492 			/*
5493 			 * Beware of being called during attach/detach
5494 			 * to reset promiscuous mode.  In that case we
5495 			 * will still be marked UP but not RUNNING.
5496 			 * However trying to re-init the interface
5497 			 * is the wrong thing to do as we've already
5498 			 * torn down much of our state.  There's
5499 			 * probably a better way to deal with this.
5500 			 */
5501 			if (!sc->sc_invalid)
5502 				ath_init(sc);	/* XXX lose error */
5503 		} else {
5504 			ath_stop_locked(ifp);
5505 #ifdef notyet
5506 			/* XXX must wakeup in places like ath_vap_delete */
5507 			if (!sc->sc_invalid)
5508 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5509 #endif
5510 		}
5511 		ATH_UNLOCK(sc);
5512 		break;
5513 	case SIOCGIFMEDIA:
5514 	case SIOCSIFMEDIA:
5515 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5516 		break;
5517 	case SIOCGATHSTATS:
5518 		/* NB: embed these numbers to get a consistent view */
5519 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5520 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5521 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5522 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5523 #ifdef IEEE80211_SUPPORT_TDMA
5524 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5525 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5526 #endif
5527 		rt = sc->sc_currates;
5528 		sc->sc_stats.ast_tx_rate =
5529 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5530 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5531 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5532 		return copyout(&sc->sc_stats,
5533 		    ifr->ifr_data, sizeof (sc->sc_stats));
5534 	case SIOCGATHAGSTATS:
5535 		return copyout(&sc->sc_aggr_stats,
5536 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5537 	case SIOCZATHSTATS:
5538 		error = priv_check(curthread, PRIV_DRIVER);
5539 		if (error == 0) {
5540 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5541 			memset(&sc->sc_aggr_stats, 0,
5542 			    sizeof(sc->sc_aggr_stats));
5543 			memset(&sc->sc_intr_stats, 0,
5544 			    sizeof(sc->sc_intr_stats));
5545 		}
5546 		break;
5547 #ifdef ATH_DIAGAPI
5548 	case SIOCGATHDIAG:
5549 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5550 		break;
5551 	case SIOCGATHPHYERR:
5552 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5553 		break;
5554 #endif
5555 	case SIOCGATHSPECTRAL:
5556 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
5557 		break;
5558 	case SIOCGATHNODERATESTATS:
5559 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5560 		break;
5561 	case SIOCGIFADDR:
5562 		error = ether_ioctl(ifp, cmd, data);
5563 		break;
5564 	default:
5565 		error = EINVAL;
5566 		break;
5567 	}
5568 	return error;
5569 #undef IS_RUNNING
5570 }
5571 
5572 /*
5573  * Announce various information on device/driver attach.
5574  */
5575 static void
5576 ath_announce(struct ath_softc *sc)
5577 {
5578 	struct ifnet *ifp = sc->sc_ifp;
5579 	struct ath_hal *ah = sc->sc_ah;
5580 
5581 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5582 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5583 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5584 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5585 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5586 	if (bootverbose) {
5587 		int i;
5588 		for (i = 0; i <= WME_AC_VO; i++) {
5589 			struct ath_txq *txq = sc->sc_ac2q[i];
5590 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5591 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5592 		}
5593 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5594 			sc->sc_cabq->axq_qnum);
5595 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5596 	}
5597 	if (ath_rxbuf != ATH_RXBUF)
5598 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5599 	if (ath_txbuf != ATH_TXBUF)
5600 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5601 	if (sc->sc_mcastkey && bootverbose)
5602 		if_printf(ifp, "using multicast key search\n");
5603 }
5604 
5605 static void
5606 ath_dfs_tasklet(void *p, int npending)
5607 {
5608 	struct ath_softc *sc = (struct ath_softc *) p;
5609 	struct ifnet *ifp = sc->sc_ifp;
5610 	struct ieee80211com *ic = ifp->if_l2com;
5611 
5612 	/*
5613 	 * If previous processing has found a radar event,
5614 	 * signal this to the net80211 layer to begin DFS
5615 	 * processing.
5616 	 */
5617 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5618 		/* DFS event found, initiate channel change */
5619 		/*
5620 		 * XXX doesn't currently tell us whether the event
5621 		 * XXX was found in the primary or extension
5622 		 * XXX channel!
5623 		 */
5624 		IEEE80211_LOCK(ic);
5625 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5626 		IEEE80211_UNLOCK(ic);
5627 	}
5628 }
5629 
5630 /*
5631  * Enable/disable power save.  This must be called with
5632  * no TX driver locks currently held, so it should only
5633  * be called from the RX path (which doesn't hold any
5634  * TX driver locks.)
5635  */
5636 static void
5637 ath_node_powersave(struct ieee80211_node *ni, int enable)
5638 {
5639 #ifdef	ATH_SW_PSQ
5640 	struct ath_node *an = ATH_NODE(ni);
5641 	struct ieee80211com *ic = ni->ni_ic;
5642 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5643 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5644 
5645 	ATH_NODE_UNLOCK_ASSERT(an);
5646 	/* XXX and no TXQ locks should be held here */
5647 
5648 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5649 	    __func__, ni, enable);
5650 
5651 	/* Suspend or resume software queue handling */
5652 	if (enable)
5653 		ath_tx_node_sleep(sc, an);
5654 	else
5655 		ath_tx_node_wakeup(sc, an);
5656 
5657 	/* Update net80211 state */
5658 	avp->av_node_ps(ni, enable);
5659 #else
5660 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5661 
5662 	/* Update net80211 state */
5663 	avp->av_node_ps(ni, enable);
5664 #endif/* ATH_SW_PSQ */
5665 }
5666 
5667 /*
5668  * Notification from net80211 that the powersave queue state has
5669  * changed.
5670  *
5671  * Since the software queue also may have some frames:
5672  *
5673  * + if the node software queue has frames and the TID state
5674  *   is 0, we set the TIM;
5675  * + if the node and the stack are both empty, we clear the TIM bit.
5676  * + If the stack tries to set the bit, always set it.
5677  * + If the stack tries to clear the bit, only clear it if the
5678  *   software queue in question is also cleared.
5679  *
5680  * TODO: this is called during node teardown; so let's ensure this
5681  * is all correctly handled and that the TIM bit is cleared.
5682  * It may be that the node flush is called _AFTER_ the net80211
5683  * stack clears the TIM.
5684  *
5685  * Here is the racy part.  Since it's possible >1 concurrent,
5686  * overlapping TXes will appear complete with a TX completion in
5687  * another thread, it's possible that the concurrent TIM calls will
5688  * clash.  We can't hold the node lock here because setting the
5689  * TIM grabs the net80211 comlock and this may cause a LOR.
5690  * The solution is either to totally serialise _everything_ at
5691  * this point (ie, all TX, completion and any reset/flush go into
5692  * one taskqueue) or a new "ath TIM lock" needs to be created that
5693  * just wraps the driver state change and this call to avp->av_set_tim().
5694  *
5695  * The same race exists in the net80211 power save queue handling
5696  * as well.  Since multiple transmitting threads may queue frames
5697  * into the driver, as well as ps-poll and the driver transmitting
5698  * frames (and thus clearing the psq), it's quite possible that
5699  * a packet entering the PSQ and a ps-poll being handled will
5700  * race, causing the TIM to be cleared and not re-set.
5701  */
5702 static int
5703 ath_node_set_tim(struct ieee80211_node *ni, int enable)
5704 {
5705 #ifdef	ATH_SW_PSQ
5706 	struct ieee80211com *ic = ni->ni_ic;
5707 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5708 	struct ath_node *an = ATH_NODE(ni);
5709 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5710 	int changed = 0;
5711 
5712 	ATH_NODE_UNLOCK_ASSERT(an);
5713 
5714 	/*
5715 	 * For now, just track and then update the TIM.
5716 	 */
5717 	ATH_NODE_LOCK(an);
5718 	an->an_stack_psq = enable;
5719 
5720 	/*
5721 	 * This will get called for all operating modes,
5722 	 * even if avp->av_set_tim is unset.
5723 	 * It's currently set for hostap/ibss modes; but
5724 	 * the same infrastructure is used for both STA
5725 	 * and AP/IBSS node power save.
5726 	 */
5727 	if (avp->av_set_tim == NULL) {
5728 		ATH_NODE_UNLOCK(an);
5729 		return (0);
5730 	}
5731 
5732 	/*
5733 	 * If setting the bit, always set it here.
5734 	 * If clearing the bit, only clear it if the
5735 	 * software queue is also empty.
5736 	 *
5737 	 * If the node has left power save, just clear the TIM
5738 	 * bit regardless of the state of the power save queue.
5739 	 *
5740 	 * XXX TODO: although atomics are used, it's quite possible
5741 	 * that a race will occur between this and setting/clearing
5742 	 * in another thread.  TX completion will occur always in
5743 	 * one thread, however setting/clearing the TIM bit can come
5744 	 * from a variety of different process contexts!
5745 	 */
5746 	if (enable && an->an_tim_set == 1) {
5747 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5748 		    "%s: an=%p, enable=%d, tim_set=1, ignoring\n",
5749 		    __func__, an, enable);
5750 		ATH_NODE_UNLOCK(an);
5751 	} else if (enable) {
5752 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5753 		    "%s: an=%p, enable=%d, enabling TIM\n",
5754 		    __func__, an, enable);
5755 		an->an_tim_set = 1;
5756 		ATH_NODE_UNLOCK(an);
5757 		changed = avp->av_set_tim(ni, enable);
5758 	} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
5759 		/* disable */
5760 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5761 		    "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
5762 		    __func__, an, enable);
5763 		an->an_tim_set = 0;
5764 		ATH_NODE_UNLOCK(an);
5765 		changed = avp->av_set_tim(ni, enable);
5766 	} else if (! an->an_is_powersave) {
5767 		/*
5768 		 * disable regardless; the node isn't in powersave now
5769 		 */
5770 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5771 		    "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
5772 		    __func__, an, enable);
5773 		an->an_tim_set = 0;
5774 		ATH_NODE_UNLOCK(an);
5775 		changed = avp->av_set_tim(ni, enable);
5776 	} else {
5777 		/*
5778 		 * psq disable, node is currently in powersave, node
5779 		 * software queue isn't empty, so don't clear the TIM bit
5780 		 * for now.
5781 		 */
5782 		ATH_NODE_UNLOCK(an);
5783 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5784 		    "%s: enable=%d, an_swq_depth > 0, ignoring\n",
5785 		    __func__, enable);
5786 		changed = 0;
5787 	}
5788 
5789 	return (changed);
5790 #else
5791 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5792 
5793 	/*
5794 	 * Some operating modes don't set av_set_tim(), so don't
5795 	 * update it here.
5796 	 */
5797 	if (avp->av_set_tim == NULL)
5798 		return (0);
5799 
5800 	return (avp->av_set_tim(ni, enable));
5801 #endif /* ATH_SW_PSQ */
5802 }
5803 
5804 /*
5805  * Set or update the TIM from the software queue.
5806  *
5807  * Check the software queue depth before attempting to do lock
5808  * anything; that avoids trying to obtain the lock.  Then,
5809  * re-check afterwards to ensure nothing has changed in the
5810  * meantime.
5811  *
5812  * set:   This is designed to be called from the TX path, after
5813  *        a frame has been queued; to see if the swq > 0.
5814  *
5815  * clear: This is designed to be called from the buffer completion point
5816  *        (right now it's ath_tx_default_comp()) where the state of
5817  *        a software queue has changed.
5818  *
5819  * It makes sense to place it at buffer free / completion rather
5820  * than after each software queue operation, as there's no real
5821  * point in churning the TIM bit as the last frames in the software
5822  * queue are transmitted.  If they fail and we retry them, we'd
5823  * just be setting the TIM bit again anyway.
5824  */
5825 void
5826 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
5827      int enable)
5828 {
5829 #ifdef	ATH_SW_PSQ
5830 	struct ath_node *an;
5831 	struct ath_vap *avp;
5832 
5833 	/* Don't do this for broadcast/etc frames */
5834 	if (ni == NULL)
5835 		return;
5836 
5837 	an = ATH_NODE(ni);
5838 	avp = ATH_VAP(ni->ni_vap);
5839 
5840 	/*
5841 	 * And for operating modes without the TIM handler set, let's
5842 	 * just skip those.
5843 	 */
5844 	if (avp->av_set_tim == NULL)
5845 		return;
5846 
5847 	ATH_NODE_UNLOCK_ASSERT(an);
5848 
5849 	if (enable) {
5850 		/*
5851 		 * Don't bother grabbing the lock unless the queue is not
5852 		 * empty.
5853 		 */
5854 		if (atomic_load_acq_int(&an->an_swq_depth) == 0)
5855 			return;
5856 
5857 		ATH_NODE_LOCK(an);
5858 		if (an->an_is_powersave &&
5859 		    an->an_tim_set == 0 &&
5860 		    atomic_load_acq_int(&an->an_swq_depth) != 0) {
5861 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5862 			    "%s: an=%p, swq_depth>0, tim_set=0, set!\n",
5863 			    __func__, an);
5864 			an->an_tim_set = 1;
5865 			ATH_NODE_UNLOCK(an);
5866 			(void) avp->av_set_tim(ni, 1);
5867 		} else {
5868 			ATH_NODE_UNLOCK(an);
5869 		}
5870 	} else {
5871 		/*
5872 		 * Don't bother grabbing the lock unless the queue is empty.
5873 		 */
5874 		if (atomic_load_acq_int(&an->an_swq_depth) != 0)
5875 			return;
5876 
5877 		ATH_NODE_LOCK(an);
5878 		if (an->an_is_powersave &&
5879 		    an->an_stack_psq == 0 &&
5880 		    an->an_tim_set == 1 &&
5881 		    atomic_load_acq_int(&an->an_swq_depth) == 0) {
5882 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5883 			    "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
5884 			    " clear!\n",
5885 			    __func__, an);
5886 			an->an_tim_set = 0;
5887 			ATH_NODE_UNLOCK(an);
5888 			(void) avp->av_set_tim(ni, 0);
5889 		} else {
5890 			ATH_NODE_UNLOCK(an);
5891 		}
5892 	}
5893 #else
5894 	return;
5895 #endif	/* ATH_SW_PSQ */
5896 }
5897 
5898 MODULE_VERSION(if_ath, 1);
5899 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5900 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5901 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5902 #endif
5903