xref: /freebsd/sys/dev/ath/if_ath.c (revision 6e0da4f753ed6b5d26395001a6194b4fdea70177)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
86 
87 /* unalligned little endian access */
88 #define LE_READ_2(p)							\
89 	((u_int16_t)							\
90 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
91 #define LE_READ_4(p)							\
92 	((u_int32_t)							\
93 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
94 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95 
96 static void	ath_init(void *);
97 static void	ath_stop_locked(struct ifnet *);
98 static void	ath_stop(struct ifnet *);
99 static void	ath_start(struct ifnet *);
100 static int	ath_reset(struct ifnet *);
101 static int	ath_media_change(struct ifnet *);
102 static void	ath_watchdog(struct ifnet *);
103 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
104 static void	ath_fatal_proc(void *, int);
105 static void	ath_rxorn_proc(void *, int);
106 static void	ath_bmiss_proc(void *, int);
107 static void	ath_initkeytable(struct ath_softc *);
108 static int	ath_key_alloc(struct ieee80211com *,
109 			const struct ieee80211_key *);
110 static int	ath_key_delete(struct ieee80211com *,
111 			const struct ieee80211_key *);
112 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
113 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
114 static void	ath_key_update_begin(struct ieee80211com *);
115 static void	ath_key_update_end(struct ieee80211com *);
116 static void	ath_mode_init(struct ath_softc *);
117 static void	ath_setslottime(struct ath_softc *);
118 static void	ath_updateslot(struct ifnet *);
119 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
120 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
121 static void	ath_beacon_proc(void *, int);
122 static void	ath_bstuck_proc(void *, int);
123 static void	ath_beacon_free(struct ath_softc *);
124 static void	ath_beacon_config(struct ath_softc *);
125 static void	ath_descdma_cleanup(struct ath_softc *sc,
126 			struct ath_descdma *, ath_bufhead *);
127 static int	ath_desc_alloc(struct ath_softc *);
128 static void	ath_desc_free(struct ath_softc *);
129 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
130 static void	ath_node_free(struct ieee80211_node *);
131 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
132 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
133 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
134 			struct ieee80211_node *ni,
135 			int subtype, int rssi, u_int32_t rstamp);
136 static void	ath_setdefantenna(struct ath_softc *, u_int);
137 static void	ath_rx_proc(void *, int);
138 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
139 static int	ath_tx_setup(struct ath_softc *, int, int);
140 static int	ath_wme_update(struct ieee80211com *);
141 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
142 static void	ath_tx_cleanup(struct ath_softc *);
143 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
144 			     struct ath_buf *, struct mbuf *);
145 static void	ath_tx_proc_q0(void *, int);
146 static void	ath_tx_proc_q0123(void *, int);
147 static void	ath_tx_proc(void *, int);
148 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
149 static void	ath_draintxq(struct ath_softc *);
150 static void	ath_stoprecv(struct ath_softc *);
151 static int	ath_startrecv(struct ath_softc *);
152 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
153 static void	ath_next_scan(void *);
154 static void	ath_calibrate(void *);
155 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
156 static void	ath_newassoc(struct ieee80211com *,
157 			struct ieee80211_node *, int);
158 static int	ath_getchannels(struct ath_softc *, u_int cc,
159 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
160 static void	ath_update_led(struct ath_softc *);
161 static void	ath_update_txpow(struct ath_softc *);
162 
163 static int	ath_rate_setup(struct ath_softc *, u_int mode);
164 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
165 
166 static void	ath_sysctlattach(struct ath_softc *);
167 static void	ath_bpfattach(struct ath_softc *);
168 static void	ath_announce(struct ath_softc *);
169 
170 SYSCTL_DECL(_hw_ath);
171 
172 /* XXX validate sysctl values */
173 static	int ath_dwelltime = 200;		/* 5 channels/second */
174 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
175 	    0, "channel dwell time (ms) for AP/station scanning");
176 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
177 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
178 	    0, "chip calibration interval (secs)");
179 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
180 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
181 	    0, "outdoor operation");
182 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
183 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
184 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
185 	    0, "extended channel mode");
186 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
187 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
188 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
189 	    0, "country code");
190 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
191 static	int ath_regdomain = 0;			/* regulatory domain */
192 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
193 	    0, "regulatory domain");
194 
195 #ifdef AR_DEBUG
196 static	int ath_debug = 0;
197 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
198 	    0, "control debugging printfs");
199 TUNABLE_INT("hw.ath.debug", &ath_debug);
200 enum {
201 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
202 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
203 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
204 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
205 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
206 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
207 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
208 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
209 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
210 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
211 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
212 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
213 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
214 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
215 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
216 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
217 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
218 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
219 	ATH_DEBUG_ANY		= 0xffffffff
220 };
221 #define	IFF_DUMPPKTS(sc, m) \
222 	((sc->sc_debug & m) || \
223 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
224 #define	DPRINTF(sc, m, fmt, ...) do {				\
225 	if (sc->sc_debug & m)					\
226 		printf(fmt, __VA_ARGS__);			\
227 } while (0)
228 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
229 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
230 		ath_keyprint(__func__, ix, hk, mac);		\
231 } while (0)
232 static	void ath_printrxbuf(struct ath_buf *bf, int);
233 static	void ath_printtxbuf(struct ath_buf *bf, int);
234 #else
235 #define	IFF_DUMPPKTS(sc, m) \
236 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
237 #define	DPRINTF(m, fmt, ...)
238 #define	KEYPRINTF(sc, k, ix, mac)
239 #endif
240 
241 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
242 
243 int
244 ath_attach(u_int16_t devid, struct ath_softc *sc)
245 {
246 	struct ifnet *ifp = &sc->sc_if;
247 	struct ieee80211com *ic = &sc->sc_ic;
248 	struct ath_hal *ah;
249 	HAL_STATUS status;
250 	int error = 0, i;
251 
252 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
253 
254 	/* set these up early for if_printf use */
255 	if_initname(ifp, device_get_name(sc->sc_dev),
256 		device_get_unit(sc->sc_dev));
257 
258 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
259 	if (ah == NULL) {
260 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
261 			status);
262 		error = ENXIO;
263 		goto bad;
264 	}
265 	if (ah->ah_abi != HAL_ABI_VERSION) {
266 		if_printf(ifp, "HAL ABI mismatch detected "
267 			"(HAL:0x%x != driver:0x%x)\n",
268 			ah->ah_abi, HAL_ABI_VERSION);
269 		error = ENXIO;
270 		goto bad;
271 	}
272 	sc->sc_ah = ah;
273 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
274 
275 	/*
276 	 * Check if the MAC has multi-rate retry support.
277 	 * We do this by trying to setup a fake extended
278 	 * descriptor.  MAC's that don't have support will
279 	 * return false w/o doing anything.  MAC's that do
280 	 * support it will return true w/o doing anything.
281 	 */
282 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
283 
284 	/*
285 	 * Check if the device has hardware counters for PHY
286 	 * errors.  If so we need to enable the MIB interrupt
287 	 * so we can act on stat triggers.
288 	 */
289 	if (ath_hal_hwphycounters(ah))
290 		sc->sc_needmib = 1;
291 
292 	/*
293 	 * Get the hardware key cache size.
294 	 */
295 	sc->sc_keymax = ath_hal_keycachesize(ah);
296 	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
297 		if_printf(ifp,
298 			"Warning, using only %zu of %u key cache slots\n",
299 			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
300 		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
301 	}
302 	/*
303 	 * Reset the key cache since some parts do not
304 	 * reset the contents on initial power up.
305 	 */
306 	for (i = 0; i < sc->sc_keymax; i++)
307 		ath_hal_keyreset(ah, i);
308 	/*
309 	 * Mark key cache slots associated with global keys
310 	 * as in use.  If we knew TKIP was not to be used we
311 	 * could leave the +32, +64, and +32+64 slots free.
312 	 * XXX only for splitmic.
313 	 */
314 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
315 		setbit(sc->sc_keymap, i);
316 		setbit(sc->sc_keymap, i+32);
317 		setbit(sc->sc_keymap, i+64);
318 		setbit(sc->sc_keymap, i+32+64);
319 	}
320 
321 	/*
322 	 * Collect the channel list using the default country
323 	 * code and including outdoor channels.  The 802.11 layer
324 	 * is resposible for filtering this list based on settings
325 	 * like the phy mode.
326 	 */
327 	error = ath_getchannels(sc, ath_countrycode,
328 			ath_outdoor, ath_xchanmode);
329 	if (error != 0)
330 		goto bad;
331 	/*
332 	 * Setup dynamic sysctl's now that country code and
333 	 * regdomain are available from the hal.
334 	 */
335 	ath_sysctlattach(sc);
336 
337 	/*
338 	 * Setup rate tables for all potential media types.
339 	 */
340 	ath_rate_setup(sc, IEEE80211_MODE_11A);
341 	ath_rate_setup(sc, IEEE80211_MODE_11B);
342 	ath_rate_setup(sc, IEEE80211_MODE_11G);
343 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
344 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
345 	/* NB: setup here so ath_rate_update is happy */
346 	ath_setcurmode(sc, IEEE80211_MODE_11A);
347 
348 	/*
349 	 * Allocate tx+rx descriptors and populate the lists.
350 	 */
351 	error = ath_desc_alloc(sc);
352 	if (error != 0) {
353 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
354 		goto bad;
355 	}
356 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
357 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
358 
359 	ATH_TXBUF_LOCK_INIT(sc);
360 
361 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
362 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
363 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
364 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
365 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
366 
367 	/*
368 	 * Allocate hardware transmit queues: one queue for
369 	 * beacon frames and one data queue for each QoS
370 	 * priority.  Note that the hal handles reseting
371 	 * these queues at the needed time.
372 	 *
373 	 * XXX PS-Poll
374 	 */
375 	sc->sc_bhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, NULL);
376 	if (sc->sc_bhalq == (u_int) -1) {
377 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
378 		error = EIO;
379 		goto bad2;
380 	}
381 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
382 	if (sc->sc_cabq == NULL) {
383 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
384 		error = EIO;
385 		goto bad2;
386 	}
387 	/* NB: insure BK queue is the lowest priority h/w queue */
388 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
389 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
390 			ieee80211_wme_acnames[WME_AC_BK]);
391 		error = EIO;
392 		goto bad2;
393 	}
394 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
395 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
396 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
397 		/*
398 		 * Not enough hardware tx queues to properly do WME;
399 		 * just punt and assign them all to the same h/w queue.
400 		 * We could do a better job of this if, for example,
401 		 * we allocate queues when we switch from station to
402 		 * AP mode.
403 		 */
404 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
405 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
406 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
407 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
408 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
409 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
410 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
411 	}
412 
413 	/*
414 	 * Special case certain configurations.  Note the
415 	 * CAB queue is handled by these specially so don't
416 	 * include them when checking the txq setup mask.
417 	 */
418 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
419 	case 0x01:
420 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
421 		break;
422 	case 0x0f:
423 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
424 		break;
425 	default:
426 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
427 		break;
428 	}
429 
430 	/*
431 	 * Setup rate control.  Some rate control modules
432 	 * call back to change the anntena state so expose
433 	 * the necessary entry points.
434 	 * XXX maybe belongs in struct ath_ratectrl?
435 	 */
436 	sc->sc_setdefantenna = ath_setdefantenna;
437 	sc->sc_rc = ath_rate_attach(sc);
438 	if (sc->sc_rc == NULL) {
439 		error = EIO;
440 		goto bad2;
441 	}
442 
443 	sc->sc_ledstate = 1;
444 	/*
445 	 * Auto-enable soft led processing for IBM cards and for
446 	 * 5211 minipci cards.  Users can also manually enable/disable
447 	 * support with a sysctl.
448 	 */
449 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
450 	if (sc->sc_softled) {
451 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
452 		ath_hal_gpioset(ah, sc->sc_ledpin, 0);
453 	}
454 
455 	ifp->if_softc = sc;
456 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
457 	ifp->if_start = ath_start;
458 	ifp->if_watchdog = ath_watchdog;
459 	ifp->if_ioctl = ath_ioctl;
460 	ifp->if_init = ath_init;
461 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
462 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
463 	IFQ_SET_READY(&ifp->if_snd);
464 
465 	ic->ic_ifp = ifp;
466 	ic->ic_reset = ath_reset;
467 	ic->ic_newassoc = ath_newassoc;
468 	ic->ic_updateslot = ath_updateslot;
469 	ic->ic_wme.wme_update = ath_wme_update;
470 	/* XXX not right but it's not used anywhere important */
471 	ic->ic_phytype = IEEE80211_T_OFDM;
472 	ic->ic_opmode = IEEE80211_M_STA;
473 	ic->ic_caps =
474 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
475 		| IEEE80211_C_HOSTAP		/* hostap mode */
476 		| IEEE80211_C_MONITOR		/* monitor mode */
477 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
478 		| IEEE80211_C_SHSLOT		/* short slot time supported */
479 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
480 		;
481 	/*
482 	 * Query the hal to figure out h/w crypto support.
483 	 */
484 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
485 		ic->ic_caps |= IEEE80211_C_WEP;
486 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
487 		ic->ic_caps |= IEEE80211_C_AES;
488 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
489 		ic->ic_caps |= IEEE80211_C_AES_CCM;
490 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
491 		ic->ic_caps |= IEEE80211_C_CKIP;
492 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
493 		ic->ic_caps |= IEEE80211_C_TKIP;
494 		/*
495 		 * Check if h/w does the MIC and/or whether the
496 		 * separate key cache entries are required to
497 		 * handle both tx+rx MIC keys.
498 		 */
499 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
500 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
501 		if (ath_hal_tkipsplit(ah))
502 			sc->sc_splitmic = 1;
503 	}
504 	/*
505 	 * TPC support can be done either with a global cap or
506 	 * per-packet support.  The latter is not available on
507 	 * all parts.  We're a bit pedantic here as all parts
508 	 * support a global cap.
509 	 */
510 	sc->sc_hastpc = ath_hal_hastpc(ah);
511 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
512 		ic->ic_caps |= IEEE80211_C_TXPMGT;
513 
514 	/*
515 	 * Mark WME capability only if we have sufficient
516 	 * hardware queues to do proper priority scheduling.
517 	 */
518 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
519 		ic->ic_caps |= IEEE80211_C_WME;
520 	/*
521 	 * Check for frame bursting capability.
522 	 */
523 	if (ath_hal_hasbursting(ah))
524 		ic->ic_caps |= IEEE80211_C_BURST;
525 
526 	/*
527 	 * Indicate we need the 802.11 header padded to a
528 	 * 32-bit boundary for 4-address and QoS frames.
529 	 */
530 	ic->ic_flags |= IEEE80211_F_DATAPAD;
531 
532 	/*
533 	 * Query the hal about antenna support.
534 	 */
535 	if (ath_hal_hasdiversity(ah)) {
536 		sc->sc_hasdiversity = 1;
537 		sc->sc_diversity = ath_hal_getdiversity(ah);
538 	}
539 	sc->sc_defant = ath_hal_getdefantenna(ah);
540 
541 	/*
542 	 * Not all chips have the VEOL support we want to
543 	 * use with IBSS beacons; check here for it.
544 	 */
545 	sc->sc_hasveol = ath_hal_hasveol(ah);
546 
547 	/* get mac address from hardware */
548 	ath_hal_getmac(ah, ic->ic_myaddr);
549 
550 	/* call MI attach routine. */
551 	ieee80211_ifattach(ic);
552 	/* override default methods */
553 	ic->ic_node_alloc = ath_node_alloc;
554 	sc->sc_node_free = ic->ic_node_free;
555 	ic->ic_node_free = ath_node_free;
556 	ic->ic_node_getrssi = ath_node_getrssi;
557 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
558 	ic->ic_recv_mgmt = ath_recv_mgmt;
559 	sc->sc_newstate = ic->ic_newstate;
560 	ic->ic_newstate = ath_newstate;
561 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
562 	ic->ic_crypto.cs_key_delete = ath_key_delete;
563 	ic->ic_crypto.cs_key_set = ath_key_set;
564 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
565 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
566 	/* complete initialization */
567 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
568 
569 	ath_bpfattach(sc);
570 
571 	if (bootverbose)
572 		ieee80211_announce(ic);
573 	ath_announce(sc);
574 	return 0;
575 bad2:
576 	ath_tx_cleanup(sc);
577 	ath_desc_free(sc);
578 bad:
579 	if (ah)
580 		ath_hal_detach(ah);
581 	sc->sc_invalid = 1;
582 	return error;
583 }
584 
585 int
586 ath_detach(struct ath_softc *sc)
587 {
588 	struct ifnet *ifp = &sc->sc_if;
589 
590 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
591 		__func__, ifp->if_flags);
592 
593 	ath_stop(ifp);
594 	bpfdetach(ifp);
595 	/*
596 	 * NB: the order of these is important:
597 	 * o call the 802.11 layer before detaching the hal to
598 	 *   insure callbacks into the driver to delete global
599 	 *   key cache entries can be handled
600 	 * o reclaim the tx queue data structures after calling
601 	 *   the 802.11 layer as we'll get called back to reclaim
602 	 *   node state and potentially want to use them
603 	 * o to cleanup the tx queues the hal is called, so detach
604 	 *   it last
605 	 * Other than that, it's straightforward...
606 	 */
607 	ieee80211_ifdetach(&sc->sc_ic);
608 	ath_rate_detach(sc->sc_rc);
609 	ath_desc_free(sc);
610 	ath_tx_cleanup(sc);
611 	ath_hal_detach(sc->sc_ah);
612 
613 	return 0;
614 }
615 
616 void
617 ath_suspend(struct ath_softc *sc)
618 {
619 	struct ifnet *ifp = &sc->sc_if;
620 
621 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
622 		__func__, ifp->if_flags);
623 
624 	ath_stop(ifp);
625 }
626 
627 void
628 ath_resume(struct ath_softc *sc)
629 {
630 	struct ifnet *ifp = &sc->sc_if;
631 
632 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
633 		__func__, ifp->if_flags);
634 
635 	if (ifp->if_flags & IFF_UP) {
636 		ath_init(ifp);
637 		if (ifp->if_flags & IFF_RUNNING)
638 			ath_start(ifp);
639 	}
640 }
641 
642 void
643 ath_shutdown(struct ath_softc *sc)
644 {
645 	struct ifnet *ifp = &sc->sc_if;
646 
647 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
648 		__func__, ifp->if_flags);
649 
650 	ath_stop(ifp);
651 }
652 
653 /*
654  * Interrupt handler.  Most of the actual processing is deferred.
655  */
656 void
657 ath_intr(void *arg)
658 {
659 	struct ath_softc *sc = arg;
660 	struct ifnet *ifp = &sc->sc_if;
661 	struct ath_hal *ah = sc->sc_ah;
662 	HAL_INT status;
663 
664 	if (sc->sc_invalid) {
665 		/*
666 		 * The hardware is not ready/present, don't touch anything.
667 		 * Note this can happen early on if the IRQ is shared.
668 		 */
669 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
670 		return;
671 	}
672 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
673 		return;
674 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
675 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
676 			__func__, ifp->if_flags);
677 		ath_hal_getisr(ah, &status);	/* clear ISR */
678 		ath_hal_intrset(ah, 0);		/* disable further intr's */
679 		return;
680 	}
681 	/*
682 	 * Figure out the reason(s) for the interrupt.  Note
683 	 * that the hal returns a pseudo-ISR that may include
684 	 * bits we haven't explicitly enabled so we mask the
685 	 * value to insure we only process bits we requested.
686 	 */
687 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
688 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
689 	status &= sc->sc_imask;			/* discard unasked for bits */
690 	if (status & HAL_INT_FATAL) {
691 		/*
692 		 * Fatal errors are unrecoverable.  Typically
693 		 * these are caused by DMA errors.  Unfortunately
694 		 * the exact reason is not (presently) returned
695 		 * by the hal.
696 		 */
697 		sc->sc_stats.ast_hardware++;
698 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
699 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
700 	} else if (status & HAL_INT_RXORN) {
701 		sc->sc_stats.ast_rxorn++;
702 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
703 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
704 	} else {
705 		if (status & HAL_INT_SWBA) {
706 			/*
707 			 * Software beacon alert--time to send a beacon.
708 			 * Handle beacon transmission directly; deferring
709 			 * this is too slow to meet timing constraints
710 			 * under load.
711 			 */
712 			ath_beacon_proc(sc, 0);
713 		}
714 		if (status & HAL_INT_RXEOL) {
715 			/*
716 			 * NB: the hardware should re-read the link when
717 			 *     RXE bit is written, but it doesn't work at
718 			 *     least on older hardware revs.
719 			 */
720 			sc->sc_stats.ast_rxeol++;
721 			sc->sc_rxlink = NULL;
722 		}
723 		if (status & HAL_INT_TXURN) {
724 			sc->sc_stats.ast_txurn++;
725 			/* bump tx trigger level */
726 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
727 		}
728 		if (status & HAL_INT_RX)
729 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
730 		if (status & HAL_INT_TX)
731 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
732 		if (status & HAL_INT_BMISS) {
733 			sc->sc_stats.ast_bmiss++;
734 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
735 		}
736 		if (status & HAL_INT_MIB) {
737 			sc->sc_stats.ast_mib++;
738 			/*
739 			 * Disable interrupts until we service the MIB
740 			 * interrupt; otherwise it will continue to fire.
741 			 */
742 			ath_hal_intrset(ah, 0);
743 			/*
744 			 * Let the hal handle the event.  We assume it will
745 			 * clear whatever condition caused the interrupt.
746 			 */
747 			ath_hal_mibevent(ah,
748 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
749 			ath_hal_intrset(ah, sc->sc_imask);
750 		}
751 	}
752 }
753 
754 static void
755 ath_fatal_proc(void *arg, int pending)
756 {
757 	struct ath_softc *sc = arg;
758 	struct ifnet *ifp = &sc->sc_if;
759 
760 	if_printf(ifp, "hardware error; resetting\n");
761 	ath_reset(ifp);
762 }
763 
764 static void
765 ath_rxorn_proc(void *arg, int pending)
766 {
767 	struct ath_softc *sc = arg;
768 	struct ifnet *ifp = &sc->sc_if;
769 
770 	if_printf(ifp, "rx FIFO overrun; resetting\n");
771 	ath_reset(ifp);
772 }
773 
774 static void
775 ath_bmiss_proc(void *arg, int pending)
776 {
777 	struct ath_softc *sc = arg;
778 	struct ieee80211com *ic = &sc->sc_ic;
779 
780 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
781 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
782 		("unexpect operating mode %u", ic->ic_opmode));
783 	if (ic->ic_state == IEEE80211_S_RUN) {
784 		/*
785 		 * Rather than go directly to scan state, try to
786 		 * reassociate first.  If that fails then the state
787 		 * machine will drop us into scanning after timing
788 		 * out waiting for a probe response.
789 		 */
790 		NET_LOCK_GIANT();
791 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
792 		NET_UNLOCK_GIANT();
793 	}
794 }
795 
796 static u_int
797 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
798 {
799 #define	N(a)	(sizeof(a) / sizeof(a[0]))
800 	static const u_int modeflags[] = {
801 		0,			/* IEEE80211_MODE_AUTO */
802 		CHANNEL_A,		/* IEEE80211_MODE_11A */
803 		CHANNEL_B,		/* IEEE80211_MODE_11B */
804 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
805 		0,			/* IEEE80211_MODE_FH */
806 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
807 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
808 	};
809 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
810 
811 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
812 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
813 	return modeflags[mode];
814 #undef N
815 }
816 
817 static void
818 ath_init(void *arg)
819 {
820 	struct ath_softc *sc = (struct ath_softc *) arg;
821 	struct ieee80211com *ic = &sc->sc_ic;
822 	struct ifnet *ifp = &sc->sc_if;
823 	struct ieee80211_node *ni;
824 	struct ath_hal *ah = sc->sc_ah;
825 	HAL_STATUS status;
826 
827 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
828 		__func__, ifp->if_flags);
829 
830 	ATH_LOCK(sc);
831 	/*
832 	 * Stop anything previously setup.  This is safe
833 	 * whether this is the first time through or not.
834 	 */
835 	ath_stop_locked(ifp);
836 
837 	/*
838 	 * The basic interface to setting the hardware in a good
839 	 * state is ``reset''.  On return the hardware is known to
840 	 * be powered up and with interrupts disabled.  This must
841 	 * be followed by initialization of the appropriate bits
842 	 * and then setup of the interrupt mask.
843 	 */
844 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
845 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
846 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
847 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
848 			status);
849 		goto done;
850 	}
851 
852 	/*
853 	 * This is needed only to setup initial state
854 	 * but it's best done after a reset.
855 	 */
856 	ath_update_txpow(sc);
857 
858 	/*
859 	 * Setup the hardware after reset: the key cache
860 	 * is filled as needed and the receive engine is
861 	 * set going.  Frame transmit is handled entirely
862 	 * in the frame output path; there's nothing to do
863 	 * here except setup the interrupt mask.
864 	 */
865 	ath_initkeytable(sc);		/* XXX still needed? */
866 	if (ath_startrecv(sc) != 0) {
867 		if_printf(ifp, "unable to start recv logic\n");
868 		goto done;
869 	}
870 
871 	/*
872 	 * Enable interrupts.
873 	 */
874 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
875 		  | HAL_INT_RXEOL | HAL_INT_RXORN
876 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
877 	/*
878 	 * Enable MIB interrupts when there are hardware phy counters.
879 	 * Note we only do this (at the moment) for station mode.
880 	 */
881 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
882 		sc->sc_imask |= HAL_INT_MIB;
883 	ath_hal_intrset(ah, sc->sc_imask);
884 
885 	ifp->if_flags |= IFF_RUNNING;
886 	ic->ic_state = IEEE80211_S_INIT;
887 
888 	/*
889 	 * The hardware should be ready to go now so it's safe
890 	 * to kick the 802.11 state machine as it's likely to
891 	 * immediately call back to us to send mgmt frames.
892 	 */
893 	ni = ic->ic_bss;
894 	ni->ni_chan = ic->ic_ibss_chan;
895 	ath_chan_change(sc, ni->ni_chan);
896 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
897 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
898 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
899 	} else
900 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
901 done:
902 	ATH_UNLOCK(sc);
903 }
904 
905 static void
906 ath_stop_locked(struct ifnet *ifp)
907 {
908 	struct ath_softc *sc = ifp->if_softc;
909 	struct ieee80211com *ic = &sc->sc_ic;
910 	struct ath_hal *ah = sc->sc_ah;
911 
912 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
913 		__func__, sc->sc_invalid, ifp->if_flags);
914 
915 	ATH_LOCK_ASSERT(sc);
916 	if (ifp->if_flags & IFF_RUNNING) {
917 		/*
918 		 * Shutdown the hardware and driver:
919 		 *    reset 802.11 state machine
920 		 *    turn off timers
921 		 *    disable interrupts
922 		 *    turn off the radio
923 		 *    clear transmit machinery
924 		 *    clear receive machinery
925 		 *    drain and release tx queues
926 		 *    reclaim beacon resources
927 		 *    power down hardware
928 		 *
929 		 * Note that some of this work is not possible if the
930 		 * hardware is gone (invalid).
931 		 */
932 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
933 		ifp->if_flags &= ~IFF_RUNNING;
934 		ifp->if_timer = 0;
935 		if (!sc->sc_invalid) {
936 			if (sc->sc_softled)
937 				ath_hal_gpioset(ah, sc->sc_ledpin, 1);
938 			ath_hal_intrset(ah, 0);
939 		}
940 		ath_draintxq(sc);
941 		if (!sc->sc_invalid) {
942 			ath_stoprecv(sc);
943 			ath_hal_phydisable(ah);
944 		} else
945 			sc->sc_rxlink = NULL;
946 		IFQ_DRV_PURGE(&ifp->if_snd);
947 		ath_beacon_free(sc);
948 	}
949 }
950 
951 static void
952 ath_stop(struct ifnet *ifp)
953 {
954 	struct ath_softc *sc = ifp->if_softc;
955 
956 	ATH_LOCK(sc);
957 	ath_stop_locked(ifp);
958 	if (!sc->sc_invalid) {
959 		/*
960 		 * Set the chip in full sleep mode.  Note that we are
961 		 * careful to do this only when bringing the interface
962 		 * completely to a stop.  When the chip is in this state
963 		 * it must be carefully woken up or references to
964 		 * registers in the PCI clock domain may freeze the bus
965 		 * (and system).  This varies by chip and is mostly an
966 		 * issue with newer parts that go to sleep more quickly.
967 		 */
968 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
969 	}
970 	ATH_UNLOCK(sc);
971 }
972 
973 /*
974  * Reset the hardware w/o losing operational state.  This is
975  * basically a more efficient way of doing ath_stop, ath_init,
976  * followed by state transitions to the current 802.11
977  * operational state.  Used to recover from various errors and
978  * to reset or reload hardware state.
979  */
980 static int
981 ath_reset(struct ifnet *ifp)
982 {
983 	struct ath_softc *sc = ifp->if_softc;
984 	struct ieee80211com *ic = &sc->sc_ic;
985 	struct ath_hal *ah = sc->sc_ah;
986 	struct ieee80211_channel *c;
987 	HAL_STATUS status;
988 
989 	/*
990 	 * Convert to a HAL channel description with the flags
991 	 * constrained to reflect the current operating mode.
992 	 */
993 	c = ic->ic_ibss_chan;
994 	sc->sc_curchan.channel = c->ic_freq;
995 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
996 
997 	ath_hal_intrset(ah, 0);		/* disable interrupts */
998 	ath_draintxq(sc);		/* stop xmit side */
999 	ath_stoprecv(sc);		/* stop recv side */
1000 	/* NB: indicate channel change so we do a full reset */
1001 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1002 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1003 			__func__, status);
1004 	ath_update_txpow(sc);		/* update tx power state */
1005 	if (ath_startrecv(sc) != 0)	/* restart recv */
1006 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1007 	/*
1008 	 * We may be doing a reset in response to an ioctl
1009 	 * that changes the channel so update any state that
1010 	 * might change as a result.
1011 	 */
1012 	ath_chan_change(sc, c);
1013 	if (ic->ic_state == IEEE80211_S_RUN)
1014 		ath_beacon_config(sc);	/* restart beacons */
1015 	ath_hal_intrset(ah, sc->sc_imask);
1016 
1017 	ath_start(ifp);			/* restart xmit */
1018 	return 0;
1019 }
1020 
1021 static void
1022 ath_start(struct ifnet *ifp)
1023 {
1024 	struct ath_softc *sc = ifp->if_softc;
1025 	struct ath_hal *ah = sc->sc_ah;
1026 	struct ieee80211com *ic = &sc->sc_ic;
1027 	struct ieee80211_node *ni;
1028 	struct ath_buf *bf;
1029 	struct mbuf *m;
1030 	struct ieee80211_frame *wh;
1031 	struct ether_header *eh;
1032 
1033 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1034 		return;
1035 	for (;;) {
1036 		/*
1037 		 * Grab a TX buffer and associated resources.
1038 		 */
1039 		ATH_TXBUF_LOCK(sc);
1040 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1041 		if (bf != NULL)
1042 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1043 		ATH_TXBUF_UNLOCK(sc);
1044 		if (bf == NULL) {
1045 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1046 				__func__);
1047 			sc->sc_stats.ast_tx_qstop++;
1048 			ifp->if_flags |= IFF_OACTIVE;
1049 			break;
1050 		}
1051 		/*
1052 		 * Poll the management queue for frames; they
1053 		 * have priority over normal data frames.
1054 		 */
1055 		IF_DEQUEUE(&ic->ic_mgtq, m);
1056 		if (m == NULL) {
1057 			/*
1058 			 * No data frames go out unless we're associated.
1059 			 */
1060 			if (ic->ic_state != IEEE80211_S_RUN) {
1061 				DPRINTF(sc, ATH_DEBUG_ANY,
1062 					"%s: ignore data packet, state %u\n",
1063 					__func__, ic->ic_state);
1064 				sc->sc_stats.ast_tx_discard++;
1065 				ATH_TXBUF_LOCK(sc);
1066 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1067 				ATH_TXBUF_UNLOCK(sc);
1068 				break;
1069 			}
1070 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1071 			if (m == NULL) {
1072 				ATH_TXBUF_LOCK(sc);
1073 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1074 				ATH_TXBUF_UNLOCK(sc);
1075 				break;
1076 			}
1077 			/*
1078 			 * Find the node for the destination so we can do
1079 			 * things like power save and fast frames aggregation.
1080 			 */
1081 			if (m->m_len < sizeof(struct ether_header) &&
1082 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1083 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1084 				ni = NULL;
1085 				goto bad;
1086 			}
1087 			eh = mtod(m, struct ether_header *);
1088 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1089 			if (ni == NULL) {
1090 				/* NB: ieee80211_find_txnode does stat+msg */
1091 				goto bad;
1092 			}
1093 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1094 			    (m->m_flags & M_PWR_SAV) == 0) {
1095 				/*
1096 				 * Station in power save mode; pass the frame
1097 				 * to the 802.11 layer and continue.  We'll get
1098 				 * the frame back when the time is right.
1099 				 */
1100 				ieee80211_pwrsave(ic, ni, m);
1101 				goto reclaim;
1102 			}
1103 			/* calculate priority so we can find the tx queue */
1104 			if (ieee80211_classify(ic, m, ni)) {
1105 				DPRINTF(sc, ATH_DEBUG_XMIT,
1106 					"%s: discard, classification failure\n",
1107 					__func__);
1108 				goto bad;
1109 			}
1110 			ifp->if_opackets++;
1111 			BPF_MTAP(ifp, m);
1112 			/*
1113 			 * Encapsulate the packet in prep for transmission.
1114 			 */
1115 			m = ieee80211_encap(ic, m, ni);
1116 			if (m == NULL) {
1117 				DPRINTF(sc, ATH_DEBUG_ANY,
1118 					"%s: encapsulation failure\n",
1119 					__func__);
1120 				sc->sc_stats.ast_tx_encap++;
1121 				goto bad;
1122 			}
1123 		} else {
1124 			/*
1125 			 * Hack!  The referenced node pointer is in the
1126 			 * rcvif field of the packet header.  This is
1127 			 * placed there by ieee80211_mgmt_output because
1128 			 * we need to hold the reference with the frame
1129 			 * and there's no other way (other than packet
1130 			 * tags which we consider too expensive to use)
1131 			 * to pass it along.
1132 			 */
1133 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1134 			m->m_pkthdr.rcvif = NULL;
1135 
1136 			wh = mtod(m, struct ieee80211_frame *);
1137 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1138 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1139 				/* fill time stamp */
1140 				u_int64_t tsf;
1141 				u_int32_t *tstamp;
1142 
1143 				tsf = ath_hal_gettsf64(ah);
1144 				/* XXX: adjust 100us delay to xmit */
1145 				tsf += 100;
1146 				tstamp = (u_int32_t *)&wh[1];
1147 				tstamp[0] = htole32(tsf & 0xffffffff);
1148 				tstamp[1] = htole32(tsf >> 32);
1149 			}
1150 			sc->sc_stats.ast_tx_mgmt++;
1151 		}
1152 
1153 		if (ath_tx_start(sc, ni, bf, m)) {
1154 	bad:
1155 			ifp->if_oerrors++;
1156 	reclaim:
1157 			ATH_TXBUF_LOCK(sc);
1158 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1159 			ATH_TXBUF_UNLOCK(sc);
1160 			if (ni != NULL)
1161 				ieee80211_free_node(ni);
1162 			continue;
1163 		}
1164 
1165 		sc->sc_tx_timer = 5;
1166 		ifp->if_timer = 1;
1167 	}
1168 }
1169 
1170 static int
1171 ath_media_change(struct ifnet *ifp)
1172 {
1173 #define	IS_UP(ifp) \
1174 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1175 	int error;
1176 
1177 	error = ieee80211_media_change(ifp);
1178 	if (error == ENETRESET) {
1179 		if (IS_UP(ifp))
1180 			ath_init(ifp);		/* XXX lose error */
1181 		error = 0;
1182 	}
1183 	return error;
1184 #undef IS_UP
1185 }
1186 
1187 #ifdef AR_DEBUG
1188 static void
1189 ath_keyprint(const char *tag, u_int ix,
1190 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1191 {
1192 	static const char *ciphers[] = {
1193 		"WEP",
1194 		"AES-OCB",
1195 		"AES-CCM",
1196 		"CKIP",
1197 		"TKIP",
1198 		"CLR",
1199 	};
1200 	int i, n;
1201 
1202 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1203 	for (i = 0, n = hk->kv_len; i < n; i++)
1204 		printf("%02x", hk->kv_val[i]);
1205 	printf(" mac %s", ether_sprintf(mac));
1206 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1207 		printf(" mic ");
1208 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1209 			printf("%02x", hk->kv_mic[i]);
1210 	}
1211 	printf("\n");
1212 }
1213 #endif
1214 
1215 /*
1216  * Set a TKIP key into the hardware.  This handles the
1217  * potential distribution of key state to multiple key
1218  * cache slots for TKIP.
1219  */
1220 static int
1221 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1222 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1223 {
1224 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1225 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1226 	struct ath_hal *ah = sc->sc_ah;
1227 
1228 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1229 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1230 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1231 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1232 		/*
1233 		 * TX key goes at first index, RX key at +32.
1234 		 * The hal handles the MIC keys at index+64.
1235 		 */
1236 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1237 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1238 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1239 			return 0;
1240 
1241 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1242 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1243 		/* XXX delete tx key on failure? */
1244 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1245 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1246 		/*
1247 		 * TX/RX key goes at first index.
1248 		 * The hal handles the MIC keys are index+64.
1249 		 */
1250 		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1251 			("group key at index %u", k->wk_keyix));
1252 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1253 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1254 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1255 		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1256 	}
1257 	/* XXX key w/o xmit/recv; need this for compression? */
1258 	return 0;
1259 #undef IEEE80211_KEY_XR
1260 }
1261 
1262 /*
1263  * Set a net80211 key into the hardware.  This handles the
1264  * potential distribution of key state to multiple key
1265  * cache slots for TKIP with hardware MIC support.
1266  */
1267 static int
1268 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1269 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1270 {
1271 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1272 	static const u_int8_t ciphermap[] = {
1273 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1274 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1275 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1276 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1277 		(u_int8_t) -1,		/* 4 is not allocated */
1278 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1279 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1280 	};
1281 	struct ath_hal *ah = sc->sc_ah;
1282 	const struct ieee80211_cipher *cip = k->wk_cipher;
1283 	HAL_KEYVAL hk;
1284 
1285 	memset(&hk, 0, sizeof(hk));
1286 	/*
1287 	 * Software crypto uses a "clear key" so non-crypto
1288 	 * state kept in the key cache are maintained and
1289 	 * so that rx frames have an entry to match.
1290 	 */
1291 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1292 		KASSERT(cip->ic_cipher < N(ciphermap),
1293 			("invalid cipher type %u", cip->ic_cipher));
1294 		hk.kv_type = ciphermap[cip->ic_cipher];
1295 		hk.kv_len = k->wk_keylen;
1296 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1297 	} else
1298 		hk.kv_type = HAL_CIPHER_CLR;
1299 
1300 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1301 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1302 	    sc->sc_splitmic) {
1303 		return ath_keyset_tkip(sc, k, &hk, mac);
1304 	} else {
1305 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1306 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1307 	}
1308 #undef N
1309 }
1310 
1311 /*
1312  * Fill the hardware key cache with key entries.
1313  */
1314 static void
1315 ath_initkeytable(struct ath_softc *sc)
1316 {
1317 	struct ieee80211com *ic = &sc->sc_ic;
1318 	struct ifnet *ifp = &sc->sc_if;
1319 	struct ath_hal *ah = sc->sc_ah;
1320 	const u_int8_t *bssid;
1321 	int i;
1322 
1323 	/* XXX maybe should reset all keys when !PRIVACY */
1324 	if (ic->ic_state == IEEE80211_S_SCAN)
1325 		bssid = ifp->if_broadcastaddr;
1326 	else
1327 		bssid = ic->ic_bss->ni_bssid;
1328 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1329 		struct ieee80211_key *k = &ic->ic_nw_keys[i];
1330 
1331 		if (k->wk_keylen == 0) {
1332 			ath_hal_keyreset(ah, i);
1333 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1334 				__func__, i);
1335 		} else {
1336 			ath_keyset(sc, k, bssid);
1337 		}
1338 	}
1339 }
1340 
1341 /*
1342  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1343  * each key, one for decrypt/encrypt and the other for the MIC.
1344  */
1345 static u_int16_t
1346 key_alloc_2pair(struct ath_softc *sc)
1347 {
1348 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1349 	u_int i, keyix;
1350 
1351 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1352 	/* XXX could optimize */
1353 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1354 		u_int8_t b = sc->sc_keymap[i];
1355 		if (b != 0xff) {
1356 			/*
1357 			 * One or more slots in this byte are free.
1358 			 */
1359 			keyix = i*NBBY;
1360 			while (b & 1) {
1361 		again:
1362 				keyix++;
1363 				b >>= 1;
1364 			}
1365 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1366 			if (isset(sc->sc_keymap, keyix+32) ||
1367 			    isset(sc->sc_keymap, keyix+64) ||
1368 			    isset(sc->sc_keymap, keyix+32+64)) {
1369 				/* full pair unavailable */
1370 				/* XXX statistic */
1371 				if (keyix == (i+1)*NBBY) {
1372 					/* no slots were appropriate, advance */
1373 					continue;
1374 				}
1375 				goto again;
1376 			}
1377 			setbit(sc->sc_keymap, keyix);
1378 			setbit(sc->sc_keymap, keyix+64);
1379 			setbit(sc->sc_keymap, keyix+32);
1380 			setbit(sc->sc_keymap, keyix+32+64);
1381 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1382 				"%s: key pair %u,%u %u,%u\n",
1383 				__func__, keyix, keyix+64,
1384 				keyix+32, keyix+32+64);
1385 			return keyix;
1386 		}
1387 	}
1388 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1389 	return IEEE80211_KEYIX_NONE;
1390 #undef N
1391 }
1392 
1393 /*
1394  * Allocate a single key cache slot.
1395  */
1396 static u_int16_t
1397 key_alloc_single(struct ath_softc *sc)
1398 {
1399 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1400 	u_int i, keyix;
1401 
1402 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1403 	for (i = 0; i < N(sc->sc_keymap); i++) {
1404 		u_int8_t b = sc->sc_keymap[i];
1405 		if (b != 0xff) {
1406 			/*
1407 			 * One or more slots are free.
1408 			 */
1409 			keyix = i*NBBY;
1410 			while (b & 1)
1411 				keyix++, b >>= 1;
1412 			setbit(sc->sc_keymap, keyix);
1413 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1414 				__func__, keyix);
1415 			return keyix;
1416 		}
1417 	}
1418 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1419 	return IEEE80211_KEYIX_NONE;
1420 #undef N
1421 }
1422 
1423 /*
1424  * Allocate one or more key cache slots for a uniacst key.  The
1425  * key itself is needed only to identify the cipher.  For hardware
1426  * TKIP with split cipher+MIC keys we allocate two key cache slot
1427  * pairs so that we can setup separate TX and RX MIC keys.  Note
1428  * that the MIC key for a TKIP key at slot i is assumed by the
1429  * hardware to be at slot i+64.  This limits TKIP keys to the first
1430  * 64 entries.
1431  */
1432 static int
1433 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1434 {
1435 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1436 
1437 	/*
1438 	 * We allocate two pair for TKIP when using the h/w to do
1439 	 * the MIC.  For everything else, including software crypto,
1440 	 * we allocate a single entry.  Note that s/w crypto requires
1441 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1442 	 * not support pass-through cache entries and we map all
1443 	 * those requests to slot 0.
1444 	 */
1445 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1446 		return key_alloc_single(sc);
1447 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1448 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1449 		return key_alloc_2pair(sc);
1450 	} else {
1451 		return key_alloc_single(sc);
1452 	}
1453 }
1454 
1455 /*
1456  * Delete an entry in the key cache allocated by ath_key_alloc.
1457  */
1458 static int
1459 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1460 {
1461 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1462 	struct ath_hal *ah = sc->sc_ah;
1463 	const struct ieee80211_cipher *cip = k->wk_cipher;
1464 	u_int keyix = k->wk_keyix;
1465 
1466 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1467 
1468 	ath_hal_keyreset(ah, keyix);
1469 	/*
1470 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1471 	 */
1472 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1473 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1474 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1475 	if (keyix >= IEEE80211_WEP_NKID) {
1476 		/*
1477 		 * Don't touch keymap entries for global keys so
1478 		 * they are never considered for dynamic allocation.
1479 		 */
1480 		clrbit(sc->sc_keymap, keyix);
1481 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1482 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1483 		    sc->sc_splitmic) {
1484 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1485 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1486 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1487 		}
1488 	}
1489 	return 1;
1490 }
1491 
1492 /*
1493  * Set the key cache contents for the specified key.  Key cache
1494  * slot(s) must already have been allocated by ath_key_alloc.
1495  */
1496 static int
1497 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1498 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1499 {
1500 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1501 
1502 	return ath_keyset(sc, k, mac);
1503 }
1504 
1505 /*
1506  * Block/unblock tx+rx processing while a key change is done.
1507  * We assume the caller serializes key management operations
1508  * so we only need to worry about synchronization with other
1509  * uses that originate in the driver.
1510  */
1511 static void
1512 ath_key_update_begin(struct ieee80211com *ic)
1513 {
1514 	struct ifnet *ifp = ic->ic_ifp;
1515 	struct ath_softc *sc = ifp->if_softc;
1516 
1517 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1518 #if 0
1519 	tasklet_disable(&sc->sc_rxtq);
1520 #endif
1521 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1522 }
1523 
1524 static void
1525 ath_key_update_end(struct ieee80211com *ic)
1526 {
1527 	struct ifnet *ifp = ic->ic_ifp;
1528 	struct ath_softc *sc = ifp->if_softc;
1529 
1530 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1531 	IF_UNLOCK(&ifp->if_snd);
1532 #if 0
1533 	tasklet_enable(&sc->sc_rxtq);
1534 #endif
1535 }
1536 
1537 /*
1538  * Calculate the receive filter according to the
1539  * operating mode and state:
1540  *
1541  * o always accept unicast, broadcast, and multicast traffic
1542  * o maintain current state of phy error reception (the hal
1543  *   may enable phy error frames for noise immunity work)
1544  * o probe request frames are accepted only when operating in
1545  *   hostap, adhoc, or monitor modes
1546  * o enable promiscuous mode according to the interface state
1547  * o accept beacons:
1548  *   - when operating in adhoc mode so the 802.11 layer creates
1549  *     node table entries for peers,
1550  *   - when operating in station mode for collecting rssi data when
1551  *     the station is otherwise quiet, or
1552  *   - when scanning
1553  */
1554 static u_int32_t
1555 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1556 {
1557 	struct ieee80211com *ic = &sc->sc_ic;
1558 	struct ath_hal *ah = sc->sc_ah;
1559 	struct ifnet *ifp = &sc->sc_if;
1560 	u_int32_t rfilt;
1561 
1562 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1563 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1564 	if (ic->ic_opmode != IEEE80211_M_STA)
1565 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1566 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1567 	    (ifp->if_flags & IFF_PROMISC))
1568 		rfilt |= HAL_RX_FILTER_PROM;
1569 	if (ic->ic_opmode == IEEE80211_M_STA ||
1570 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1571 	    state == IEEE80211_S_SCAN)
1572 		rfilt |= HAL_RX_FILTER_BEACON;
1573 	return rfilt;
1574 }
1575 
1576 static void
1577 ath_mode_init(struct ath_softc *sc)
1578 {
1579 	struct ieee80211com *ic = &sc->sc_ic;
1580 	struct ath_hal *ah = sc->sc_ah;
1581 	struct ifnet *ifp = &sc->sc_if;
1582 	u_int32_t rfilt, mfilt[2], val;
1583 	u_int8_t pos;
1584 	struct ifmultiaddr *ifma;
1585 
1586 	/* configure rx filter */
1587 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1588 	ath_hal_setrxfilter(ah, rfilt);
1589 
1590 	/* configure operational mode */
1591 	ath_hal_setopmode(ah);
1592 
1593 	/*
1594 	 * Handle any link-level address change.  Note that we only
1595 	 * need to force ic_myaddr; any other addresses are handled
1596 	 * as a byproduct of the ifnet code marking the interface
1597 	 * down then up.
1598 	 *
1599 	 * XXX should get from lladdr instead of arpcom but that's more work
1600 	 */
1601 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr);
1602 	ath_hal_setmac(ah, ic->ic_myaddr);
1603 
1604 	/* calculate and install multicast filter */
1605 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1606 		mfilt[0] = mfilt[1] = 0;
1607 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1608 			caddr_t dl;
1609 
1610 			/* calculate XOR of eight 6bit values */
1611 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1612 			val = LE_READ_4(dl + 0);
1613 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1614 			val = LE_READ_4(dl + 3);
1615 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1616 			pos &= 0x3f;
1617 			mfilt[pos / 32] |= (1 << (pos % 32));
1618 		}
1619 	} else {
1620 		mfilt[0] = mfilt[1] = ~0;
1621 	}
1622 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1623 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1624 		__func__, rfilt, mfilt[0], mfilt[1]);
1625 }
1626 
1627 static void
1628 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1629 {
1630 	struct ath_buf *bf = arg;
1631 
1632 	KASSERT(nseg <= ATH_MAX_SCATTER, ("too many DMA segments %u", nseg));
1633 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1634 	bf->bf_mapsize = mapsize;
1635 	bf->bf_nseg = nseg;
1636 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1637 }
1638 
1639 /*
1640  * Set the slot time based on the current setting.
1641  */
1642 static void
1643 ath_setslottime(struct ath_softc *sc)
1644 {
1645 	struct ieee80211com *ic = &sc->sc_ic;
1646 	struct ath_hal *ah = sc->sc_ah;
1647 
1648 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1649 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1650 	else
1651 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1652 	sc->sc_updateslot = OK;
1653 }
1654 
1655 /*
1656  * Callback from the 802.11 layer to update the
1657  * slot time based on the current setting.
1658  */
1659 static void
1660 ath_updateslot(struct ifnet *ifp)
1661 {
1662 	struct ath_softc *sc = ifp->if_softc;
1663 	struct ieee80211com *ic = &sc->sc_ic;
1664 
1665 	/*
1666 	 * When not coordinating the BSS, change the hardware
1667 	 * immediately.  For other operation we defer the change
1668 	 * until beacon updates have propagated to the stations.
1669 	 */
1670 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1671 		sc->sc_updateslot = UPDATE;
1672 	else
1673 		ath_setslottime(sc);
1674 }
1675 
1676 /*
1677  * Allocate and setup an initial beacon frame.
1678  */
1679 static int
1680 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1681 {
1682 	struct ieee80211com *ic = ni->ni_ic;
1683 	struct ath_buf *bf;
1684 	struct mbuf *m;
1685 	int error;
1686 
1687 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1688 	if (bf == NULL) {
1689 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1690 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1691 		return ENOMEM;			/* XXX */
1692 	}
1693 	if (bf->bf_m != NULL) {
1694 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1695 		m_freem(bf->bf_m);
1696 		bf->bf_m = NULL;
1697 		bf->bf_node = NULL;
1698 	}
1699 	/*
1700 	 * NB: the beacon data buffer must be 32-bit aligned;
1701 	 * we assume the mbuf routines will return us something
1702 	 * with this alignment (perhaps should assert).
1703 	 */
1704 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1705 	if (m == NULL) {
1706 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1707 			__func__);
1708 		sc->sc_stats.ast_be_nombuf++;
1709 		return ENOMEM;
1710 	}
1711 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1712 				     ath_mbuf_load_cb, bf,
1713 				     BUS_DMA_NOWAIT);
1714 	if (error == 0) {
1715 		bf->bf_m = m;
1716 		bf->bf_node = ni;		/* NB: no held reference */
1717 	} else {
1718 		m_freem(m);
1719 	}
1720 	return error;
1721 }
1722 
1723 /*
1724  * Setup the beacon frame for transmit.
1725  */
1726 static void
1727 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1728 {
1729 #define	USE_SHPREAMBLE(_ic) \
1730 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1731 		== IEEE80211_F_SHPREAMBLE)
1732 	struct ieee80211_node *ni = bf->bf_node;
1733 	struct ieee80211com *ic = ni->ni_ic;
1734 	struct mbuf *m = bf->bf_m;
1735 	struct ath_hal *ah = sc->sc_ah;
1736 	struct ath_node *an = ATH_NODE(ni);
1737 	struct ath_desc *ds;
1738 	int flags, antenna;
1739 	u_int8_t rate;
1740 
1741 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1742 		__func__, m, m->m_len);
1743 
1744 	/* setup descriptors */
1745 	ds = bf->bf_desc;
1746 
1747 	flags = HAL_TXDESC_NOACK;
1748 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1749 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1750 		flags |= HAL_TXDESC_VEOL;
1751 		/*
1752 		 * Let hardware handle antenna switching.
1753 		 */
1754 		antenna = 0;
1755 	} else {
1756 		ds->ds_link = 0;
1757 		/*
1758 		 * Switch antenna every 4 beacons.
1759 		 * XXX assumes two antenna
1760 		 */
1761 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1762 	}
1763 
1764 	KASSERT(bf->bf_nseg == 1,
1765 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1766 	ds->ds_data = bf->bf_segs[0].ds_addr;
1767 	/*
1768 	 * Calculate rate code.
1769 	 * XXX everything at min xmit rate
1770 	 */
1771 	if (USE_SHPREAMBLE(ic))
1772 		rate = an->an_tx_mgtratesp;
1773 	else
1774 		rate = an->an_tx_mgtrate;
1775 	ath_hal_setuptxdesc(ah, ds
1776 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1777 		, sizeof(struct ieee80211_frame)/* header length */
1778 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1779 		, ni->ni_txpower		/* txpower XXX */
1780 		, rate, 1			/* series 0 rate/tries */
1781 		, HAL_TXKEYIX_INVALID		/* no encryption */
1782 		, antenna			/* antenna mode */
1783 		, flags				/* no ack, veol for beacons */
1784 		, 0				/* rts/cts rate */
1785 		, 0				/* rts/cts duration */
1786 	);
1787 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1788 	ath_hal_filltxdesc(ah, ds
1789 		, roundup(m->m_len, 4)		/* buffer length */
1790 		, AH_TRUE			/* first segment */
1791 		, AH_TRUE			/* last segment */
1792 		, ds				/* first descriptor */
1793 	);
1794 #undef USE_SHPREAMBLE
1795 }
1796 
1797 /*
1798  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1799  * frame contents are done as needed and the slot time is
1800  * also adjusted based on current state.
1801  */
1802 static void
1803 ath_beacon_proc(void *arg, int pending)
1804 {
1805 	struct ath_softc *sc = arg;
1806 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1807 	struct ieee80211_node *ni = bf->bf_node;
1808 	struct ieee80211com *ic = ni->ni_ic;
1809 	struct ath_hal *ah = sc->sc_ah;
1810 	struct mbuf *m;
1811 	int ncabq, error, otherant;
1812 
1813 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1814 		__func__, pending);
1815 
1816 	if (ic->ic_opmode == IEEE80211_M_STA ||
1817 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1818 	    bf == NULL || bf->bf_m == NULL) {
1819 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1820 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1821 		return;
1822 	}
1823 	/*
1824 	 * Check if the previous beacon has gone out.  If
1825 	 * not don't don't try to post another, skip this
1826 	 * period and wait for the next.  Missed beacons
1827 	 * indicate a problem and should not occur.  If we
1828 	 * miss too many consecutive beacons reset the device.
1829 	 */
1830 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1831 		sc->sc_bmisscount++;
1832 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1833 			"%s: missed %u consecutive beacons\n",
1834 			__func__, sc->sc_bmisscount);
1835 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1836 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1837 		return;
1838 	}
1839 	if (sc->sc_bmisscount != 0) {
1840 		DPRINTF(sc, ATH_DEBUG_BEACON,
1841 			"%s: resume beacon xmit after %u misses\n",
1842 			__func__, sc->sc_bmisscount);
1843 		sc->sc_bmisscount = 0;
1844 	}
1845 
1846 	/*
1847 	 * Update dynamic beacon contents.  If this returns
1848 	 * non-zero then we need to remap the memory because
1849 	 * the beacon frame changed size (probably because
1850 	 * of the TIM bitmap).
1851 	 */
1852 	m = bf->bf_m;
1853 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1854 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1855 		/* XXX too conservative? */
1856 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1857 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1858 					     ath_mbuf_load_cb, bf,
1859 					     BUS_DMA_NOWAIT);
1860 		if (error != 0) {
1861 			if_printf(ic->ic_ifp,
1862 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
1863 			    __func__, error);
1864 			return;
1865 		}
1866 	}
1867 
1868 	/*
1869 	 * Handle slot time change when a non-ERP station joins/leaves
1870 	 * an 11g network.  The 802.11 layer notifies us via callback,
1871 	 * we mark updateslot, then wait one beacon before effecting
1872 	 * the change.  This gives associated stations at least one
1873 	 * beacon interval to note the state change.
1874 	 */
1875 	/* XXX locking */
1876 	if (sc->sc_updateslot == UPDATE)
1877 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1878 	else if (sc->sc_updateslot == COMMIT)
1879 		ath_setslottime(sc);		/* commit change to h/w */
1880 
1881 	/*
1882 	 * Check recent per-antenna transmit statistics and flip
1883 	 * the default antenna if noticeably more frames went out
1884 	 * on the non-default antenna.
1885 	 * XXX assumes 2 anntenae
1886 	 */
1887 	otherant = sc->sc_defant & 1 ? 2 : 1;
1888 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1889 		ath_setdefantenna(sc, otherant);
1890 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1891 
1892 	/*
1893 	 * Construct tx descriptor.
1894 	 */
1895 	ath_beacon_setup(sc, bf);
1896 
1897 	/*
1898 	 * Stop any current dma and put the new frame on the queue.
1899 	 * This should never fail since we check above that no frames
1900 	 * are still pending on the queue.
1901 	 */
1902 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1903 		DPRINTF(sc, ATH_DEBUG_ANY,
1904 			"%s: beacon queue %u did not stop?\n",
1905 			__func__, sc->sc_bhalq);
1906 	}
1907 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1908 
1909 	/*
1910 	 * Enable the CAB queue before the beacon queue to
1911 	 * insure cab frames are triggered by this beacon.
1912 	 */
1913 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
1914 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
1915 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1916 	ath_hal_txstart(ah, sc->sc_bhalq);
1917 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1918 		"%s: TXDP[%u] = %p (%p)\n", __func__,
1919 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
1920 
1921 	sc->sc_stats.ast_be_xmit++;
1922 }
1923 
1924 /*
1925  * Reset the hardware after detecting beacons have stopped.
1926  */
1927 static void
1928 ath_bstuck_proc(void *arg, int pending)
1929 {
1930 	struct ath_softc *sc = arg;
1931 	struct ifnet *ifp = &sc->sc_if;
1932 
1933 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
1934 		sc->sc_bmisscount);
1935 	ath_reset(ifp);
1936 }
1937 
1938 /*
1939  * Reclaim beacon resources.
1940  */
1941 static void
1942 ath_beacon_free(struct ath_softc *sc)
1943 {
1944 	struct ath_buf *bf;
1945 
1946 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list)
1947 		if (bf->bf_m != NULL) {
1948 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1949 			m_freem(bf->bf_m);
1950 			bf->bf_m = NULL;
1951 			bf->bf_node = NULL;
1952 		}
1953 }
1954 
1955 /*
1956  * Configure the beacon and sleep timers.
1957  *
1958  * When operating as an AP this resets the TSF and sets
1959  * up the hardware to notify us when we need to issue beacons.
1960  *
1961  * When operating in station mode this sets up the beacon
1962  * timers according to the timestamp of the last received
1963  * beacon and the current TSF, configures PCF and DTIM
1964  * handling, programs the sleep registers so the hardware
1965  * will wakeup in time to receive beacons, and configures
1966  * the beacon miss handling so we'll receive a BMISS
1967  * interrupt when we stop seeing beacons from the AP
1968  * we've associated with.
1969  */
1970 static void
1971 ath_beacon_config(struct ath_softc *sc)
1972 {
1973 #define	MS_TO_TU(x)	(((x) * 1000) / 1024)
1974 	struct ath_hal *ah = sc->sc_ah;
1975 	struct ieee80211com *ic = &sc->sc_ic;
1976 	struct ieee80211_node *ni = ic->ic_bss;
1977 	u_int32_t nexttbtt, intval;
1978 
1979 	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
1980 	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
1981 	intval = MS_TO_TU(ni->ni_intval) & HAL_BEACON_PERIOD;
1982 	if (nexttbtt == 0)		/* e.g. for ap mode */
1983 		nexttbtt = intval;
1984 	else if (intval)		/* NB: can be 0 for monitor mode */
1985 		nexttbtt = roundup(nexttbtt, intval);
1986 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
1987 		__func__, nexttbtt, intval, ni->ni_intval);
1988 	if (ic->ic_opmode == IEEE80211_M_STA) {
1989 		HAL_BEACON_STATE bs;
1990 		u_int32_t bmisstime;
1991 
1992 		/* NB: no PCF support right now */
1993 		memset(&bs, 0, sizeof(bs));
1994 		bs.bs_intval = intval;
1995 		bs.bs_nexttbtt = nexttbtt;
1996 		bs.bs_dtimperiod = bs.bs_intval;
1997 		bs.bs_nextdtim = nexttbtt;
1998 		/*
1999 		 * The 802.11 layer records the offset to the DTIM
2000 		 * bitmap while receiving beacons; use it here to
2001 		 * enable h/w detection of our AID being marked in
2002 		 * the bitmap vector (to indicate frames for us are
2003 		 * pending at the AP).
2004 		 */
2005 		bs.bs_timoffset = ni->ni_timoff;
2006 		/*
2007 		 * Calculate the number of consecutive beacons to miss
2008 		 * before taking a BMISS interrupt.  The configuration
2009 		 * is specified in ms, so we need to convert that to
2010 		 * TU's and then calculate based on the beacon interval.
2011 		 * Note that we clamp the result to at most 10 beacons.
2012 		 */
2013 		bmisstime = MS_TO_TU(ic->ic_bmisstimeout);
2014 		bs.bs_bmissthreshold = howmany(bmisstime, intval);
2015 		if (bs.bs_bmissthreshold > 10)
2016 			bs.bs_bmissthreshold = 10;
2017 		else if (bs.bs_bmissthreshold <= 0)
2018 			bs.bs_bmissthreshold = 1;
2019 
2020 		/*
2021 		 * Calculate sleep duration.  The configuration is
2022 		 * given in ms.  We insure a multiple of the beacon
2023 		 * period is used.  Also, if the sleep duration is
2024 		 * greater than the DTIM period then it makes senses
2025 		 * to make it a multiple of that.
2026 		 *
2027 		 * XXX fixed at 100ms
2028 		 */
2029 		bs.bs_sleepduration = roundup(MS_TO_TU(100), bs.bs_intval);
2030 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2031 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2032 
2033 		DPRINTF(sc, ATH_DEBUG_BEACON,
2034 			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2035 			, __func__
2036 			, bs.bs_intval
2037 			, bs.bs_nexttbtt
2038 			, bs.bs_dtimperiod
2039 			, bs.bs_nextdtim
2040 			, bs.bs_bmissthreshold
2041 			, bs.bs_sleepduration
2042 			, bs.bs_cfpperiod
2043 			, bs.bs_cfpmaxduration
2044 			, bs.bs_cfpnext
2045 			, bs.bs_timoffset
2046 		);
2047 		ath_hal_intrset(ah, 0);
2048 		ath_hal_beacontimers(ah, &bs);
2049 		sc->sc_imask |= HAL_INT_BMISS;
2050 		ath_hal_intrset(ah, sc->sc_imask);
2051 	} else {
2052 		ath_hal_intrset(ah, 0);
2053 		if (nexttbtt == intval)
2054 			intval |= HAL_BEACON_RESET_TSF;
2055 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2056 			/*
2057 			 * In IBSS mode enable the beacon timers but only
2058 			 * enable SWBA interrupts if we need to manually
2059 			 * prepare beacon frames.  Otherwise we use a
2060 			 * self-linked tx descriptor and let the hardware
2061 			 * deal with things.
2062 			 */
2063 			intval |= HAL_BEACON_ENA;
2064 			if (!sc->sc_hasveol)
2065 				sc->sc_imask |= HAL_INT_SWBA;
2066 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2067 			/*
2068 			 * In AP mode we enable the beacon timers and
2069 			 * SWBA interrupts to prepare beacon frames.
2070 			 */
2071 			intval |= HAL_BEACON_ENA;
2072 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2073 		}
2074 		ath_hal_beaconinit(ah, nexttbtt, intval);
2075 		sc->sc_bmisscount = 0;
2076 		ath_hal_intrset(ah, sc->sc_imask);
2077 		/*
2078 		 * When using a self-linked beacon descriptor in
2079 		 * ibss mode load it once here.
2080 		 */
2081 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2082 			ath_beacon_proc(sc, 0);
2083 	}
2084 #undef MS_TO_TU
2085 }
2086 
2087 static void
2088 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2089 {
2090 	bus_addr_t *paddr = (bus_addr_t*) arg;
2091 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2092 	*paddr = segs->ds_addr;
2093 }
2094 
2095 static int
2096 ath_descdma_setup(struct ath_softc *sc,
2097 	struct ath_descdma *dd, ath_bufhead *head,
2098 	const char *name, int nbuf, int ndesc)
2099 {
2100 #define	DS2PHYS(_dd, _ds) \
2101 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2102 	struct ifnet *ifp = &sc->sc_if;
2103 	struct ath_desc *ds;
2104 	struct ath_buf *bf;
2105 	int i, bsize, error;
2106 
2107 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2108 	    __func__, name, nbuf, ndesc);
2109 
2110 	dd->dd_name = name;
2111 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2112 
2113 	/*
2114 	 * Setup DMA descriptor area.
2115 	 */
2116 	error = bus_dma_tag_create(NULL,	/* parent */
2117 		       PAGE_SIZE, 0,		/* alignment, bounds */
2118 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2119 		       BUS_SPACE_MAXADDR,	/* highaddr */
2120 		       NULL, NULL,		/* filter, filterarg */
2121 		       dd->dd_desc_len,		/* maxsize */
2122 		       1,			/* nsegments */
2123 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2124 		       BUS_DMA_ALLOCNOW,	/* flags */
2125 		       NULL,			/* lockfunc */
2126 		       NULL,			/* lockarg */
2127 		       &dd->dd_dmat);
2128 	if (error != 0) {
2129 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2130 		return error;
2131 	}
2132 
2133 	/* allocate descriptors */
2134 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2135 	if (error != 0) {
2136 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2137 			"error %u\n", dd->dd_name, error);
2138 		goto fail0;
2139 	}
2140 
2141 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2142 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2143 	if (error != 0) {
2144 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2145 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2146 		goto fail1;
2147 	}
2148 
2149 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2150 				dd->dd_desc, dd->dd_desc_len,
2151 				ath_load_cb, &dd->dd_desc_paddr,
2152 				BUS_DMA_NOWAIT);
2153 	if (error != 0) {
2154 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2155 			dd->dd_name, error);
2156 		goto fail2;
2157 	}
2158 
2159 	ds = dd->dd_desc;
2160 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2161 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2162 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2163 
2164 	/* allocate rx buffers */
2165 	bsize = sizeof(struct ath_buf) * nbuf;
2166 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2167 	if (bf == NULL) {
2168 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2169 			dd->dd_name, bsize);
2170 		goto fail3;
2171 	}
2172 	dd->dd_bufptr = bf;
2173 
2174 	STAILQ_INIT(head);
2175 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2176 		bf->bf_desc = ds;
2177 		bf->bf_daddr = DS2PHYS(dd, ds);
2178 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2179 				&bf->bf_dmamap);
2180 		if (error != 0) {
2181 			if_printf(ifp, "unable to create dmamap for %s "
2182 				"buffer %u, error %u\n", dd->dd_name, i, error);
2183 			ath_descdma_cleanup(sc, dd, head);
2184 			return error;
2185 		}
2186 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2187 	}
2188 	return 0;
2189 fail3:
2190 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2191 fail2:
2192 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2193 fail1:
2194 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2195 fail0:
2196 	bus_dma_tag_destroy(dd->dd_dmat);
2197 	memset(dd, 0, sizeof(*dd));
2198 	return error;
2199 #undef DS2PHYS
2200 }
2201 
2202 static void
2203 ath_descdma_cleanup(struct ath_softc *sc,
2204 	struct ath_descdma *dd, ath_bufhead *head)
2205 {
2206 	struct ath_buf *bf;
2207 	struct ieee80211_node *ni;
2208 
2209 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2210 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2211 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2212 	bus_dma_tag_destroy(dd->dd_dmat);
2213 
2214 	STAILQ_FOREACH(bf, head, bf_list) {
2215 		if (bf->bf_m) {
2216 			m_freem(bf->bf_m);
2217 			bf->bf_m = NULL;
2218 		}
2219 		if (bf->bf_dmamap != NULL) {
2220 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2221 			bf->bf_dmamap = NULL;
2222 		}
2223 		ni = bf->bf_node;
2224 		bf->bf_node = NULL;
2225 		if (ni != NULL) {
2226 			/*
2227 			 * Reclaim node reference.
2228 			 */
2229 			ieee80211_free_node(ni);
2230 		}
2231 	}
2232 
2233 	STAILQ_INIT(head);
2234 	free(dd->dd_bufptr, M_ATHDEV);
2235 	memset(dd, 0, sizeof(*dd));
2236 }
2237 
2238 static int
2239 ath_desc_alloc(struct ath_softc *sc)
2240 {
2241 	int error;
2242 
2243 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2244 			"rx", ATH_RXBUF, 1);
2245 	if (error != 0)
2246 		return error;
2247 
2248 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2249 			"tx", ATH_TXBUF, ATH_TXDESC);
2250 	if (error != 0) {
2251 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2252 		return error;
2253 	}
2254 
2255 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2256 			"beacon", 1, 1);
2257 	if (error != 0) {
2258 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2259 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2260 		return error;
2261 	}
2262 	return 0;
2263 }
2264 
2265 static void
2266 ath_desc_free(struct ath_softc *sc)
2267 {
2268 
2269 	if (sc->sc_bdma.dd_desc_len != 0)
2270 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2271 	if (sc->sc_txdma.dd_desc_len != 0)
2272 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2273 	if (sc->sc_rxdma.dd_desc_len != 0)
2274 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2275 }
2276 
2277 static struct ieee80211_node *
2278 ath_node_alloc(struct ieee80211_node_table *nt)
2279 {
2280 	struct ieee80211com *ic = nt->nt_ic;
2281 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2282 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2283 	struct ath_node *an;
2284 
2285 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2286 	if (an == NULL) {
2287 		/* XXX stat+msg */
2288 		return NULL;
2289 	}
2290 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2291 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2292 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2293 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2294 	ath_rate_node_init(sc, an);
2295 
2296 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2297 	return &an->an_node;
2298 }
2299 
2300 static void
2301 ath_node_free(struct ieee80211_node *ni)
2302 {
2303 	struct ieee80211com *ic = ni->ni_ic;
2304         struct ath_softc *sc = ic->ic_ifp->if_softc;
2305 
2306 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2307 
2308 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2309 	sc->sc_node_free(ni);
2310 }
2311 
2312 static u_int8_t
2313 ath_node_getrssi(const struct ieee80211_node *ni)
2314 {
2315 #define	HAL_EP_RND(x, mul) \
2316 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2317 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2318 	int32_t rssi;
2319 
2320 	/*
2321 	 * When only one frame is received there will be no state in
2322 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2323 	 */
2324 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2325 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2326 	else
2327 		rssi = ni->ni_rssi;
2328 	/* NB: theoretically we shouldn't need this, but be paranoid */
2329 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2330 #undef HAL_EP_RND
2331 }
2332 
2333 static int
2334 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2335 {
2336 	struct ath_hal *ah = sc->sc_ah;
2337 	int error;
2338 	struct mbuf *m;
2339 	struct ath_desc *ds;
2340 
2341 	m = bf->bf_m;
2342 	if (m == NULL) {
2343 		/*
2344 		 * NB: by assigning a page to the rx dma buffer we
2345 		 * implicitly satisfy the Atheros requirement that
2346 		 * this buffer be cache-line-aligned and sized to be
2347 		 * multiple of the cache line size.  Not doing this
2348 		 * causes weird stuff to happen (for the 5210 at least).
2349 		 */
2350 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2351 		if (m == NULL) {
2352 			DPRINTF(sc, ATH_DEBUG_ANY,
2353 				"%s: no mbuf/cluster\n", __func__);
2354 			sc->sc_stats.ast_rx_nombuf++;
2355 			return ENOMEM;
2356 		}
2357 		bf->bf_m = m;
2358 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2359 
2360 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2361 					     bf->bf_dmamap, m,
2362 					     ath_mbuf_load_cb, bf,
2363 					     BUS_DMA_NOWAIT);
2364 		if (error != 0) {
2365 			DPRINTF(sc, ATH_DEBUG_ANY,
2366 				"%s: bus_dmamap_load_mbuf failed; error %d\n",
2367 				__func__, error);
2368 			sc->sc_stats.ast_rx_busdma++;
2369 			return error;
2370 		}
2371 		KASSERT(bf->bf_nseg == 1,
2372 			("multi-segment packet; nseg %u", bf->bf_nseg));
2373 	}
2374 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2375 
2376 	/*
2377 	 * Setup descriptors.  For receive we always terminate
2378 	 * the descriptor list with a self-linked entry so we'll
2379 	 * not get overrun under high load (as can happen with a
2380 	 * 5212 when ANI processing enables PHY error frames).
2381 	 *
2382 	 * To insure the last descriptor is self-linked we create
2383 	 * each descriptor as self-linked and add it to the end.  As
2384 	 * each additional descriptor is added the previous self-linked
2385 	 * entry is ``fixed'' naturally.  This should be safe even
2386 	 * if DMA is happening.  When processing RX interrupts we
2387 	 * never remove/process the last, self-linked, entry on the
2388 	 * descriptor list.  This insures the hardware always has
2389 	 * someplace to write a new frame.
2390 	 */
2391 	ds = bf->bf_desc;
2392 	ds->ds_link = bf->bf_daddr;	/* link to self */
2393 	ds->ds_data = bf->bf_segs[0].ds_addr;
2394 	ath_hal_setuprxdesc(ah, ds
2395 		, m->m_len		/* buffer size */
2396 		, 0
2397 	);
2398 
2399 	if (sc->sc_rxlink != NULL)
2400 		*sc->sc_rxlink = bf->bf_daddr;
2401 	sc->sc_rxlink = &ds->ds_link;
2402 	return 0;
2403 }
2404 
2405 /*
2406  * Intercept management frames to collect beacon rssi data
2407  * and to do ibss merges.
2408  */
2409 static void
2410 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2411 	struct ieee80211_node *ni,
2412 	int subtype, int rssi, u_int32_t rstamp)
2413 {
2414 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2415 
2416 	/*
2417 	 * Call up first so subsequent work can use information
2418 	 * potentially stored in the node (e.g. for ibss merge).
2419 	 */
2420 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2421 	switch (subtype) {
2422 	case IEEE80211_FC0_SUBTYPE_BEACON:
2423 		/* update rssi statistics for use by the hal */
2424 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2425 		/* fall thru... */
2426 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2427 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2428 		    ic->ic_state == IEEE80211_S_RUN) {
2429 			struct ath_hal *ah = sc->sc_ah;
2430 			/* XXX extend rstamp */
2431 			u_int64_t tsf = ath_hal_gettsf64(ah);
2432 
2433 			/*
2434 			 * Handle ibss merge as needed; check the tsf on the
2435 			 * frame before attempting the merge.  The 802.11 spec
2436 			 * says the station should change it's bssid to match
2437 			 * the oldest station with the same ssid, where oldest
2438 			 * is determined by the tsf.
2439 			 */
2440 			if (le64toh(ni->ni_tstamp.tsf) >= tsf &&
2441 			    ieee80211_ibss_merge(ic, ni))
2442 				ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0);
2443 		}
2444 		break;
2445 	}
2446 }
2447 
2448 /*
2449  * Set the default antenna.
2450  */
2451 static void
2452 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2453 {
2454 	struct ath_hal *ah = sc->sc_ah;
2455 
2456 	/* XXX block beacon interrupts */
2457 	ath_hal_setdefantenna(ah, antenna);
2458 	if (sc->sc_defant != antenna)
2459 		sc->sc_stats.ast_ant_defswitch++;
2460 	sc->sc_defant = antenna;
2461 	sc->sc_rxotherant = 0;
2462 }
2463 
2464 static void
2465 ath_rx_proc(void *arg, int npending)
2466 {
2467 #define	PA2DESC(_sc, _pa) \
2468 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2469 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2470 	struct ath_softc *sc = arg;
2471 	struct ath_buf *bf;
2472 	struct ieee80211com *ic = &sc->sc_ic;
2473 	struct ifnet *ifp = &sc->sc_if;
2474 	struct ath_hal *ah = sc->sc_ah;
2475 	struct ath_desc *ds;
2476 	struct mbuf *m;
2477 	struct ieee80211_node *ni;
2478 	struct ath_node *an;
2479 	int len;
2480 	u_int phyerr;
2481 	HAL_STATUS status;
2482 
2483 	NET_LOCK_GIANT();		/* XXX */
2484 
2485 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2486 	do {
2487 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2488 		if (bf == NULL) {		/* NB: shouldn't happen */
2489 			if_printf(ifp, "%s: no buffer!\n", __func__);
2490 			break;
2491 		}
2492 		ds = bf->bf_desc;
2493 		if (ds->ds_link == bf->bf_daddr) {
2494 			/* NB: never process the self-linked entry at the end */
2495 			break;
2496 		}
2497 		m = bf->bf_m;
2498 		if (m == NULL) {		/* NB: shouldn't happen */
2499 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2500 			continue;
2501 		}
2502 		/* XXX sync descriptor memory */
2503 		/*
2504 		 * Must provide the virtual address of the current
2505 		 * descriptor, the physical address, and the virtual
2506 		 * address of the next descriptor in the h/w chain.
2507 		 * This allows the HAL to look ahead to see if the
2508 		 * hardware is done with a descriptor by checking the
2509 		 * done bit in the following descriptor and the address
2510 		 * of the current descriptor the DMA engine is working
2511 		 * on.  All this is necessary because of our use of
2512 		 * a self-linked list to avoid rx overruns.
2513 		 */
2514 		status = ath_hal_rxprocdesc(ah, ds,
2515 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2516 #ifdef AR_DEBUG
2517 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2518 			ath_printrxbuf(bf, status == HAL_OK);
2519 #endif
2520 		if (status == HAL_EINPROGRESS)
2521 			break;
2522 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2523 		if (ds->ds_rxstat.rs_more) {
2524 			/*
2525 			 * Frame spans multiple descriptors; this
2526 			 * cannot happen yet as we don't support
2527 			 * jumbograms.  If not in monitor mode,
2528 			 * discard the frame.
2529 			 */
2530 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2531 				sc->sc_stats.ast_rx_toobig++;
2532 				goto rx_next;
2533 			}
2534 			/* fall thru for monitor mode handling... */
2535 		} else if (ds->ds_rxstat.rs_status != 0) {
2536 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2537 				sc->sc_stats.ast_rx_crcerr++;
2538 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2539 				sc->sc_stats.ast_rx_fifoerr++;
2540 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2541 				sc->sc_stats.ast_rx_phyerr++;
2542 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2543 				sc->sc_stats.ast_rx_phy[phyerr]++;
2544 				goto rx_next;
2545 			}
2546 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2547 				/*
2548 				 * Decrypt error.  If the error occurred
2549 				 * because there was no hardware key, then
2550 				 * let the frame through so the upper layers
2551 				 * can process it.  This is necessary for 5210
2552 				 * parts which have no way to setup a ``clear''
2553 				 * key cache entry.
2554 				 *
2555 				 * XXX do key cache faulting
2556 				 */
2557 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2558 					goto rx_accept;
2559 				sc->sc_stats.ast_rx_badcrypt++;
2560 			}
2561 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2562 				sc->sc_stats.ast_rx_badmic++;
2563 				/*
2564 				 * Do minimal work required to hand off
2565 				 * the 802.11 header for notifcation.
2566 				 */
2567 				/* XXX frag's and qos frames */
2568 				len = ds->ds_rxstat.rs_datalen;
2569 				if (len >= sizeof (struct ieee80211_frame)) {
2570 					bus_dmamap_sync(sc->sc_dmat,
2571 					    bf->bf_dmamap,
2572 					    BUS_DMASYNC_POSTREAD);
2573 					ieee80211_notify_michael_failure(ic,
2574 					    mtod(m, struct ieee80211_frame *),
2575 					    sc->sc_splitmic ?
2576 					        ds->ds_rxstat.rs_keyix-32 :
2577 					        ds->ds_rxstat.rs_keyix
2578 					);
2579 				}
2580 			}
2581 			ifp->if_ierrors++;
2582 			/*
2583 			 * Reject error frames, we normally don't want
2584 			 * to see them in monitor mode (in monitor mode
2585 			 * allow through packets that have crypto problems).
2586 			 */
2587 			if ((ds->ds_rxstat.rs_status &~
2588 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2589 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2590 				goto rx_next;
2591 		}
2592 rx_accept:
2593 		/*
2594 		 * Sync and unmap the frame.  At this point we're
2595 		 * committed to passing the mbuf somewhere so clear
2596 		 * bf_m; this means a new sk_buff must be allocated
2597 		 * when the rx descriptor is setup again to receive
2598 		 * another frame.
2599 		 */
2600 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2601 		    BUS_DMASYNC_POSTREAD);
2602 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2603 		bf->bf_m = NULL;
2604 
2605 		m->m_pkthdr.rcvif = ifp;
2606 		len = ds->ds_rxstat.rs_datalen;
2607 		m->m_pkthdr.len = m->m_len = len;
2608 
2609 		if (sc->sc_softled)
2610 			ath_update_led(sc);
2611 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2612 
2613 		if (sc->sc_drvbpf) {
2614 			const void *data;
2615 			int hdrsize, hdrspace;
2616 			u_int8_t rix;
2617 
2618 			/*
2619 			 * Discard anything shorter than an ack or cts.
2620 			 */
2621 			if (len < IEEE80211_ACK_LEN) {
2622 				DPRINTF(sc, ATH_DEBUG_RECV,
2623 					"%s: runt packet %d\n",
2624 					__func__, len);
2625 				sc->sc_stats.ast_rx_tooshort++;
2626 				m_freem(m);
2627 				goto rx_next;
2628 			}
2629 			rix = ds->ds_rxstat.rs_rate;
2630 			sc->sc_rx_th.wr_flags = sc->sc_hwflags[rix];
2631 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix];
2632 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2633 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2634 			/* XXX TSF */
2635 
2636 			/*
2637 			 * Gag, deal with hardware padding of headers. This
2638 			 * only happens for QoS frames.  We copy the 802.11
2639 			 * header out-of-line and supply it separately, then
2640 			 * adjust the mbuf chain.  It would be better if we
2641 			 * could just flag the packet in the radiotap header
2642 			 * and have applications DTRT.
2643 			 */
2644 			if (len > sizeof(struct ieee80211_qosframe)) {
2645 				data = mtod(m, const void *);
2646 				hdrsize = ieee80211_anyhdrsize(data);
2647 				if (hdrsize & 3) {
2648 					bcopy(data, &sc->sc_rx_wh, hdrsize);
2649 					hdrspace = roundup(hdrsize,
2650 						sizeof(u_int32_t));
2651 					m->m_data += hdrspace;
2652 					m->m_len -= hdrspace;
2653 					bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx,
2654 						sc->sc_rx_rt_len + hdrsize, m);
2655 					m->m_data -= hdrspace;
2656 					m->m_len += hdrspace;
2657 				} else
2658 					bpf_mtap2(sc->sc_drvbpf,
2659 					     &sc->sc_rx, sc->sc_rx_rt_len, m);
2660 			} else
2661 				bpf_mtap2(sc->sc_drvbpf,
2662 				    &sc->sc_rx, sc->sc_rx_rt_len, m);
2663 		}
2664 
2665 		/*
2666 		 * From this point on we assume the frame is at least
2667 		 * as large as ieee80211_frame_min; verify that.
2668 		 */
2669 		if (len < IEEE80211_MIN_LEN) {
2670 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2671 				__func__, len);
2672 			sc->sc_stats.ast_rx_tooshort++;
2673 			m_freem(m);
2674 			goto rx_next;
2675 		}
2676 
2677 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2678 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2679 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate],
2680 				   ds->ds_rxstat.rs_rssi);
2681 		}
2682 
2683 		m_adj(m, -IEEE80211_CRC_LEN);
2684 
2685 		/*
2686 		 * Locate the node for sender, track state, and then
2687 		 * pass the (referenced) node up to the 802.11 layer
2688 		 * for its use.
2689 		 */
2690 		ni = ieee80211_find_rxnode(ic,
2691 			mtod(m, const struct ieee80211_frame_min *));
2692 
2693 		/*
2694 		 * Track rx rssi and do any rx antenna management.
2695 		 */
2696 		an = ATH_NODE(ni);
2697 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2698 		if (sc->sc_diversity) {
2699 			/*
2700 			 * When using fast diversity, change the default rx
2701 			 * antenna if diversity chooses the other antenna 3
2702 			 * times in a row.
2703 			 */
2704 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2705 				if (++sc->sc_rxotherant >= 3)
2706 					ath_setdefantenna(sc,
2707 						ds->ds_rxstat.rs_antenna);
2708 			} else
2709 				sc->sc_rxotherant = 0;
2710 		}
2711 
2712 		/*
2713 		 * Send frame up for processing.
2714 		 */
2715 		ieee80211_input(ic, m, ni,
2716 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2717 
2718 		/*
2719 		 * Reclaim node reference.
2720 		 */
2721 		ieee80211_free_node(ni);
2722 rx_next:
2723 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2724 	} while (ath_rxbuf_init(sc, bf) == 0);
2725 
2726 	/* rx signal state monitoring */
2727 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2728 
2729 	NET_UNLOCK_GIANT();		/* XXX */
2730 #undef PA2DESC
2731 }
2732 
2733 /*
2734  * Setup a h/w transmit queue.
2735  */
2736 static struct ath_txq *
2737 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2738 {
2739 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2740 	struct ath_hal *ah = sc->sc_ah;
2741 	HAL_TXQ_INFO qi;
2742 	int qnum;
2743 
2744 	memset(&qi, 0, sizeof(qi));
2745 	qi.tqi_subtype = subtype;
2746 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2747 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2748 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2749 	/*
2750 	 * Enable interrupts only for EOL and DESC conditions.
2751 	 * We mark tx descriptors to receive a DESC interrupt
2752 	 * when a tx queue gets deep; otherwise waiting for the
2753 	 * EOL to reap descriptors.  Note that this is done to
2754 	 * reduce interrupt load and this only defers reaping
2755 	 * descriptors, never transmitting frames.  Aside from
2756 	 * reducing interrupts this also permits more concurrency.
2757 	 * The only potential downside is if the tx queue backs
2758 	 * up in which case the top half of the kernel may backup
2759 	 * due to a lack of tx descriptors.
2760 	 */
2761 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2762 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2763 	if (qnum == -1) {
2764 		/*
2765 		 * NB: don't print a message, this happens
2766 		 * normally on parts with too few tx queues
2767 		 */
2768 		return NULL;
2769 	}
2770 	if (qnum >= N(sc->sc_txq)) {
2771 		device_printf(sc->sc_dev,
2772 			"hal qnum %u out of range, max %zu!\n",
2773 			qnum, N(sc->sc_txq));
2774 		ath_hal_releasetxqueue(ah, qnum);
2775 		return NULL;
2776 	}
2777 	if (!ATH_TXQ_SETUP(sc, qnum)) {
2778 		struct ath_txq *txq = &sc->sc_txq[qnum];
2779 
2780 		txq->axq_qnum = qnum;
2781 		txq->axq_depth = 0;
2782 		txq->axq_intrcnt = 0;
2783 		txq->axq_link = NULL;
2784 		STAILQ_INIT(&txq->axq_q);
2785 		ATH_TXQ_LOCK_INIT(sc, txq);
2786 		sc->sc_txqsetup |= 1<<qnum;
2787 	}
2788 	return &sc->sc_txq[qnum];
2789 #undef N
2790 }
2791 
2792 /*
2793  * Setup a hardware data transmit queue for the specified
2794  * access control.  The hal may not support all requested
2795  * queues in which case it will return a reference to a
2796  * previously setup queue.  We record the mapping from ac's
2797  * to h/w queues for use by ath_tx_start and also track
2798  * the set of h/w queues being used to optimize work in the
2799  * transmit interrupt handler and related routines.
2800  */
2801 static int
2802 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2803 {
2804 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2805 	struct ath_txq *txq;
2806 
2807 	if (ac >= N(sc->sc_ac2q)) {
2808 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2809 			ac, N(sc->sc_ac2q));
2810 		return 0;
2811 	}
2812 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2813 	if (txq != NULL) {
2814 		sc->sc_ac2q[ac] = txq;
2815 		return 1;
2816 	} else
2817 		return 0;
2818 #undef N
2819 }
2820 
2821 /*
2822  * Update WME parameters for a transmit queue.
2823  */
2824 static int
2825 ath_txq_update(struct ath_softc *sc, int ac)
2826 {
2827 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2828 #define	ATH_TXOP_TO_US(v)		(v<<5)
2829 	struct ieee80211com *ic = &sc->sc_ic;
2830 	struct ath_txq *txq = sc->sc_ac2q[ac];
2831 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2832 	struct ath_hal *ah = sc->sc_ah;
2833 	HAL_TXQ_INFO qi;
2834 
2835 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2836 	qi.tqi_aifs = wmep->wmep_aifsn;
2837 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2838 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2839 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2840 
2841 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2842 		device_printf(sc->sc_dev, "unable to update hardware queue "
2843 			"parameters for %s traffic!\n",
2844 			ieee80211_wme_acnames[ac]);
2845 		return 0;
2846 	} else {
2847 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2848 		return 1;
2849 	}
2850 #undef ATH_TXOP_TO_US
2851 #undef ATH_EXPONENT_TO_VALUE
2852 }
2853 
2854 /*
2855  * Callback from the 802.11 layer to update WME parameters.
2856  */
2857 static int
2858 ath_wme_update(struct ieee80211com *ic)
2859 {
2860 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2861 
2862 	return !ath_txq_update(sc, WME_AC_BE) ||
2863 	    !ath_txq_update(sc, WME_AC_BK) ||
2864 	    !ath_txq_update(sc, WME_AC_VI) ||
2865 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
2866 }
2867 
2868 /*
2869  * Reclaim resources for a setup queue.
2870  */
2871 static void
2872 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2873 {
2874 
2875 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2876 	ATH_TXQ_LOCK_DESTROY(txq);
2877 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2878 }
2879 
2880 /*
2881  * Reclaim all tx queue resources.
2882  */
2883 static void
2884 ath_tx_cleanup(struct ath_softc *sc)
2885 {
2886 	int i;
2887 
2888 	ATH_TXBUF_LOCK_DESTROY(sc);
2889 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2890 		if (ATH_TXQ_SETUP(sc, i))
2891 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
2892 }
2893 
2894 static int
2895 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2896     struct mbuf *m0)
2897 {
2898 	struct ieee80211com *ic = &sc->sc_ic;
2899 	struct ath_hal *ah = sc->sc_ah;
2900 	struct ifnet *ifp = &sc->sc_if;
2901 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
2902 	u_int8_t rix, txrate, ctsrate;
2903 	u_int8_t cix = 0xff;		/* NB: silence compiler */
2904 	struct ath_desc *ds, *ds0;
2905 	struct ath_txq *txq;
2906 	struct mbuf *m;
2907 	struct ieee80211_frame *wh;
2908 	u_int subtype, flags, ctsduration;
2909 	HAL_PKT_TYPE atype;
2910 	const HAL_RATE_TABLE *rt;
2911 	HAL_BOOL shortPreamble;
2912 	struct ath_node *an;
2913 
2914 	wh = mtod(m0, struct ieee80211_frame *);
2915 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2916 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2917 	hdrlen = ieee80211_anyhdrsize(wh);
2918 	/*
2919 	 * Packet length must not include any
2920 	 * pad bytes; deduct them here.
2921 	 */
2922 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
2923 
2924 	if (iswep) {
2925 		const struct ieee80211_cipher *cip;
2926 		struct ieee80211_key *k;
2927 
2928 		/*
2929 		 * Construct the 802.11 header+trailer for an encrypted
2930 		 * frame. The only reason this can fail is because of an
2931 		 * unknown or unsupported cipher/key type.
2932 		 */
2933 		k = ieee80211_crypto_encap(ic, ni, m0);
2934 		if (k == NULL) {
2935 			/*
2936 			 * This can happen when the key is yanked after the
2937 			 * frame was queued.  Just discard the frame; the
2938 			 * 802.11 layer counts failures and provides
2939 			 * debugging/diagnostics.
2940 			 */
2941 			return EIO;
2942 		}
2943 		/*
2944 		 * Adjust the packet + header lengths for the crypto
2945 		 * additions and calculate the h/w key index.  When
2946 		 * a s/w mic is done the frame will have had any mic
2947 		 * added to it prior to entry so skb->len above will
2948 		 * account for it. Otherwise we need to add it to the
2949 		 * packet length.
2950 		 */
2951 		cip = k->wk_cipher;
2952 		hdrlen += cip->ic_header;
2953 		pktlen += cip->ic_header + cip->ic_trailer;
2954 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
2955 			pktlen += cip->ic_miclen;
2956 		keyix = k->wk_keyix;
2957 
2958 		/* packet header may have moved, reset our local pointer */
2959 		wh = mtod(m0, struct ieee80211_frame *);
2960 	} else
2961 		keyix = HAL_TXKEYIX_INVALID;
2962 
2963 	pktlen += IEEE80211_CRC_LEN;
2964 
2965 	/*
2966 	 * Load the DMA map so any coalescing is done.  This
2967 	 * also calculates the number of descriptors we need.
2968 	 */
2969 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
2970 				     ath_mbuf_load_cb, bf,
2971 				     BUS_DMA_NOWAIT);
2972 	if (error == EFBIG) {
2973 		/* XXX packet requires too many descriptors */
2974 		bf->bf_nseg = ATH_TXDESC+1;
2975 	} else if (error != 0) {
2976 		sc->sc_stats.ast_tx_busdma++;
2977 		m_freem(m0);
2978 		return error;
2979 	}
2980 	/*
2981 	 * Discard null packets and check for packets that
2982 	 * require too many TX descriptors.  We try to convert
2983 	 * the latter to a cluster.
2984 	 */
2985 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
2986 		sc->sc_stats.ast_tx_linear++;
2987 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2988 		if (m == NULL) {
2989 			sc->sc_stats.ast_tx_nombuf++;
2990 			m_freem(m0);
2991 			return ENOMEM;
2992 		}
2993 		M_MOVE_PKTHDR(m, m0);
2994 		MCLGET(m, M_DONTWAIT);
2995 		if ((m->m_flags & M_EXT) == 0) {
2996 			sc->sc_stats.ast_tx_nomcl++;
2997 			m_freem(m0);
2998 			m_free(m);
2999 			return ENOMEM;
3000 		}
3001 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3002 		m_freem(m0);
3003 		m->m_len = m->m_pkthdr.len;
3004 		m0 = m;
3005 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3006 					     ath_mbuf_load_cb, bf,
3007 					     BUS_DMA_NOWAIT);
3008 		if (error != 0) {
3009 			sc->sc_stats.ast_tx_busdma++;
3010 			m_freem(m0);
3011 			return error;
3012 		}
3013 		KASSERT(bf->bf_nseg == 1,
3014 			("packet not one segment; nseg %u", bf->bf_nseg));
3015 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3016 		sc->sc_stats.ast_tx_nodata++;
3017 		m_freem(m0);
3018 		return EIO;
3019 	}
3020 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3021 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3022 	bf->bf_m = m0;
3023 	bf->bf_node = ni;			/* NB: held reference */
3024 
3025 	/* setup descriptors */
3026 	ds = bf->bf_desc;
3027 	rt = sc->sc_currates;
3028 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3029 
3030 	/*
3031 	 * NB: the 802.11 layer marks whether or not we should
3032 	 * use short preamble based on the current mode and
3033 	 * negotiated parameters.
3034 	 */
3035 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3036 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3037 		shortPreamble = AH_TRUE;
3038 		sc->sc_stats.ast_tx_shortpre++;
3039 	} else {
3040 		shortPreamble = AH_FALSE;
3041 	}
3042 
3043 	an = ATH_NODE(ni);
3044 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3045 	/*
3046 	 * Calculate Atheros packet type from IEEE80211 packet header,
3047 	 * setup for rate calculations, and select h/w transmit queue.
3048 	 */
3049 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3050 	case IEEE80211_FC0_TYPE_MGT:
3051 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3052 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3053 			atype = HAL_PKT_TYPE_BEACON;
3054 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3055 			atype = HAL_PKT_TYPE_PROBE_RESP;
3056 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3057 			atype = HAL_PKT_TYPE_ATIM;
3058 		else
3059 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3060 		rix = 0;			/* XXX lowest rate */
3061 		try0 = ATH_TXMAXTRY;
3062 		if (shortPreamble)
3063 			txrate = an->an_tx_mgtratesp;
3064 		else
3065 			txrate = an->an_tx_mgtrate;
3066 		/* NB: force all management frames to highest queue */
3067 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3068 			/* NB: force all management frames to highest queue */
3069 			txq = sc->sc_ac2q[WME_AC_VO];
3070 		} else
3071 			txq = sc->sc_ac2q[WME_AC_BE];
3072 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3073 		break;
3074 	case IEEE80211_FC0_TYPE_CTL:
3075 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3076 		rix = 0;			/* XXX lowest rate */
3077 		try0 = ATH_TXMAXTRY;
3078 		if (shortPreamble)
3079 			txrate = an->an_tx_mgtratesp;
3080 		else
3081 			txrate = an->an_tx_mgtrate;
3082 		/* NB: force all ctl frames to highest queue */
3083 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3084 			/* NB: force all ctl frames to highest queue */
3085 			txq = sc->sc_ac2q[WME_AC_VO];
3086 		} else
3087 			txq = sc->sc_ac2q[WME_AC_BE];
3088 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3089 		break;
3090 	case IEEE80211_FC0_TYPE_DATA:
3091 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3092 		/*
3093 		 * Data frames; consult the rate control module.
3094 		 */
3095 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3096 			&rix, &try0, &txrate);
3097 		/*
3098 		 * Default all non-QoS traffic to the background queue.
3099 		 */
3100 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3101 			u_int pri = M_WME_GETAC(m0);
3102 			txq = sc->sc_ac2q[pri];
3103 			if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[pri].wmep_noackPolicy)
3104 				 flags |= HAL_TXDESC_NOACK;
3105 		} else
3106 			txq = sc->sc_ac2q[WME_AC_BE];
3107 		break;
3108 	default:
3109 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3110 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3111 		/* XXX statistic */
3112 		m_freem(m0);
3113 		return EIO;
3114 	}
3115 
3116 	/*
3117 	 * When servicing one or more stations in power-save mode
3118 	 * multicast frames must be buffered until after the beacon.
3119 	 * We use the CAB queue for that.
3120 	 */
3121 	if (ismcast && ic->ic_ps_sta) {
3122 		txq = sc->sc_cabq;
3123 		/* XXX? more bit in 802.11 frame header */
3124 	}
3125 
3126 	/*
3127 	 * Calculate miscellaneous flags.
3128 	 */
3129 	if (ismcast) {
3130 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3131 		sc->sc_stats.ast_tx_noack++;
3132 	} else if (pktlen > ic->ic_rtsthreshold) {
3133 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3134 		cix = rt->info[rix].controlRate;
3135 		sc->sc_stats.ast_tx_rts++;
3136 	}
3137 
3138 	/*
3139 	 * If 802.11g protection is enabled, determine whether
3140 	 * to use RTS/CTS or just CTS.  Note that this is only
3141 	 * done for OFDM unicast frames.
3142 	 */
3143 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3144 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3145 	    (flags & HAL_TXDESC_NOACK) == 0) {
3146 		/* XXX fragments must use CCK rates w/ protection */
3147 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3148 			flags |= HAL_TXDESC_RTSENA;
3149 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3150 			flags |= HAL_TXDESC_CTSENA;
3151 		cix = rt->info[sc->sc_protrix].controlRate;
3152 		sc->sc_stats.ast_tx_protect++;
3153 	}
3154 
3155 	/*
3156 	 * Calculate duration.  This logically belongs in the 802.11
3157 	 * layer but it lacks sufficient information to calculate it.
3158 	 */
3159 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3160 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3161 		u_int16_t dur;
3162 		/*
3163 		 * XXX not right with fragmentation.
3164 		 */
3165 		if (shortPreamble)
3166 			dur = rt->info[rix].spAckDuration;
3167 		else
3168 			dur = rt->info[rix].lpAckDuration;
3169 		*(u_int16_t *)wh->i_dur = htole16(dur);
3170 	}
3171 
3172 	/*
3173 	 * Calculate RTS/CTS rate and duration if needed.
3174 	 */
3175 	ctsduration = 0;
3176 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3177 		/*
3178 		 * CTS transmit rate is derived from the transmit rate
3179 		 * by looking in the h/w rate table.  We must also factor
3180 		 * in whether or not a short preamble is to be used.
3181 		 */
3182 		/* NB: cix is set above where RTS/CTS is enabled */
3183 		KASSERT(cix != 0xff, ("cix not setup"));
3184 		ctsrate = rt->info[cix].rateCode;
3185 		/*
3186 		 * Compute the transmit duration based on the frame
3187 		 * size and the size of an ACK frame.  We call into the
3188 		 * HAL to do the computation since it depends on the
3189 		 * characteristics of the actual PHY being used.
3190 		 *
3191 		 * NB: CTS is assumed the same size as an ACK so we can
3192 		 *     use the precalculated ACK durations.
3193 		 */
3194 		if (shortPreamble) {
3195 			ctsrate |= rt->info[cix].shortPreamble;
3196 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3197 				ctsduration += rt->info[cix].spAckDuration;
3198 			ctsduration += ath_hal_computetxtime(ah,
3199 				rt, pktlen, rix, AH_TRUE);
3200 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3201 				ctsduration += rt->info[cix].spAckDuration;
3202 		} else {
3203 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3204 				ctsduration += rt->info[cix].lpAckDuration;
3205 			ctsduration += ath_hal_computetxtime(ah,
3206 				rt, pktlen, rix, AH_FALSE);
3207 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3208 				ctsduration += rt->info[cix].lpAckDuration;
3209 		}
3210 		/*
3211 		 * Must disable multi-rate retry when using RTS/CTS.
3212 		 */
3213 		try0 = ATH_TXMAXTRY;
3214 	} else
3215 		ctsrate = 0;
3216 
3217 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3218 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3219 			sc->sc_hwmap[txrate], -1);
3220 
3221 	if (ic->ic_rawbpf)
3222 		bpf_mtap(ic->ic_rawbpf, m0);
3223 	if (sc->sc_drvbpf) {
3224 		sc->sc_tx_th.wt_flags = sc->sc_hwflags[txrate];
3225 		if (iswep)
3226 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3227 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate];
3228 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3229 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3230 
3231 		bpf_mtap2(sc->sc_drvbpf,
3232 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3233 	}
3234 
3235 	/*
3236 	 * Determine if a tx interrupt should be generated for
3237 	 * this descriptor.  We take a tx interrupt to reap
3238 	 * descriptors when the h/w hits an EOL condition or
3239 	 * when the descriptor is specifically marked to generate
3240 	 * an interrupt.  We periodically mark descriptors in this
3241 	 * way to insure timely replenishing of the supply needed
3242 	 * for sending frames.  Defering interrupts reduces system
3243 	 * load and potentially allows more concurrent work to be
3244 	 * done but if done to aggressively can cause senders to
3245 	 * backup.
3246 	 *
3247 	 * NB: use >= to deal with sc_txintrperiod changing
3248 	 *     dynamically through sysctl.
3249 	 */
3250 	if (flags & HAL_TXDESC_INTREQ) {
3251 		txq->axq_intrcnt = 0;
3252 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3253 		flags |= HAL_TXDESC_INTREQ;
3254 		txq->axq_intrcnt = 0;
3255 	}
3256 
3257 	/*
3258 	 * Formulate first tx descriptor with tx controls.
3259 	 */
3260 	/* XXX check return value? */
3261 	ath_hal_setuptxdesc(ah, ds
3262 		, pktlen		/* packet length */
3263 		, hdrlen		/* header length */
3264 		, atype			/* Atheros packet type */
3265 		, ni->ni_txpower	/* txpower */
3266 		, txrate, try0		/* series 0 rate/tries */
3267 		, keyix			/* key cache index */
3268 		, sc->sc_txantenna	/* antenna mode */
3269 		, flags			/* flags */
3270 		, ctsrate		/* rts/cts rate */
3271 		, ctsduration		/* rts/cts duration */
3272 	);
3273 	/*
3274 	 * Setup the multi-rate retry state only when we're
3275 	 * going to use it.  This assumes ath_hal_setuptxdesc
3276 	 * initializes the descriptors (so we don't have to)
3277 	 * when the hardware supports multi-rate retry and
3278 	 * we don't use it.
3279 	 */
3280 	if (try0 != ATH_TXMAXTRY)
3281 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3282 
3283 	/*
3284 	 * Fillin the remainder of the descriptor info.
3285 	 */
3286 	ds0 = ds;
3287 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3288 		ds->ds_data = bf->bf_segs[i].ds_addr;
3289 		if (i == bf->bf_nseg - 1)
3290 			ds->ds_link = 0;
3291 		else
3292 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3293 		ath_hal_filltxdesc(ah, ds
3294 			, bf->bf_segs[i].ds_len	/* segment length */
3295 			, i == 0		/* first segment */
3296 			, i == bf->bf_nseg - 1	/* last segment */
3297 			, ds0			/* first descriptor */
3298 		);
3299 		DPRINTF(sc, ATH_DEBUG_XMIT,
3300 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3301 			__func__, i, ds->ds_link, ds->ds_data,
3302 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3303 	}
3304 #if 0
3305 	if ((flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) &&
3306   	    !ath_hal_updateCTSForBursting(ah, ds
3307 		     , txq->axq_linkbuf != NULL ?
3308 			txq->axq_linkbuf->bf_desc : NULL
3309 		     , txq->axq_lastdsWithCTS
3310 		     , txq->axq_gatingds
3311 		     , IEEE80211_TXOP_TO_US(ic->ic_chanParams.cap_wmeParams[skb->priority].wmep_txopLimit)
3312 		     , ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE))) {
3313 		ATH_TXQ_LOCK(txq);
3314 		txq->axq_lastdsWithCTS = ds;
3315 		/* set gating Desc to final desc */
3316 		txq->axq_gatingds = (struct ath_desc *)txq->axq_link;
3317 		ATH_TXQ_UNLOCK(txq);
3318 	}
3319 #endif
3320 	/*
3321 	 * Insert the frame on the outbound list and
3322 	 * pass it on to the hardware.
3323 	 */
3324 	ATH_TXQ_LOCK(txq);
3325 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3326 	if (txq->axq_link == NULL) {
3327 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3328 		DPRINTF(sc, ATH_DEBUG_XMIT,
3329 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3330 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3331 			txq->axq_depth);
3332 	} else {
3333 		*txq->axq_link = bf->bf_daddr;
3334 		DPRINTF(sc, ATH_DEBUG_XMIT,
3335 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3336 			txq->axq_qnum, txq->axq_link,
3337 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3338 	}
3339 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3340 	ATH_TXQ_UNLOCK(txq);
3341 
3342 	if (sc->sc_softled)
3343 		ath_update_led(sc);
3344 
3345 	/*
3346 	 * The CAB queue is started from the SWBA handler since
3347 	 * frames only go out on DTIM and to avoid possible races.
3348 	 */
3349 	if (txq != sc->sc_cabq)
3350 		ath_hal_txstart(ah, txq->axq_qnum);
3351 	return 0;
3352 }
3353 
3354 /*
3355  * Process completed xmit descriptors from the specified queue.
3356  */
3357 static void
3358 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3359 {
3360 	struct ath_hal *ah = sc->sc_ah;
3361 	struct ieee80211com *ic = &sc->sc_ic;
3362 	struct ath_buf *bf;
3363 	struct ath_desc *ds;
3364 	struct ieee80211_node *ni;
3365 	struct ath_node *an;
3366 	int sr, lr, pri;
3367 	HAL_STATUS status;
3368 
3369 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3370 		__func__, txq->axq_qnum,
3371 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3372 		txq->axq_link);
3373 	for (;;) {
3374 		ATH_TXQ_LOCK(txq);
3375 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3376 		bf = STAILQ_FIRST(&txq->axq_q);
3377 		if (bf == NULL) {
3378 			txq->axq_link = NULL;
3379 			ATH_TXQ_UNLOCK(txq);
3380 			break;
3381 		}
3382 		/* only the last descriptor is needed */
3383 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3384 		status = ath_hal_txprocdesc(ah, ds);
3385 #ifdef AR_DEBUG
3386 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3387 			ath_printtxbuf(bf, status == HAL_OK);
3388 #endif
3389 		if (status == HAL_EINPROGRESS) {
3390 			ATH_TXQ_UNLOCK(txq);
3391 			break;
3392 		}
3393 #if 0
3394 		if (bf->bf_desc == txq->axq_lastdsWithCTS)
3395 			txq->axq_lastdsWithCTS = NULL;
3396 		if (ds == txq->axq_gatingds)
3397 			txq->axq_gatingds = NULL;
3398 #endif
3399 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3400 		ATH_TXQ_UNLOCK(txq);
3401 
3402 		ni = bf->bf_node;
3403 		if (ni != NULL) {
3404 			an = ATH_NODE(ni);
3405 			if (ds->ds_txstat.ts_status == 0) {
3406 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3407 				sc->sc_stats.ast_ant_tx[txant]++;
3408 				sc->sc_ant_tx[txant]++;
3409 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3410 					sc->sc_stats.ast_tx_altrate++;
3411 				sc->sc_stats.ast_tx_rssi =
3412 					ds->ds_txstat.ts_rssi;
3413 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3414 					ds->ds_txstat.ts_rssi);
3415 				pri = M_WME_GETAC(bf->bf_m);
3416 				if (pri >= WME_AC_VO)
3417 					ic->ic_wme.wme_hipri_traffic++;
3418 				ni->ni_inact = ni->ni_inact_reload;
3419 			} else {
3420 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3421 					sc->sc_stats.ast_tx_xretries++;
3422 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3423 					sc->sc_stats.ast_tx_fifoerr++;
3424 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3425 					sc->sc_stats.ast_tx_filtered++;
3426 			}
3427 			sr = ds->ds_txstat.ts_shortretry;
3428 			lr = ds->ds_txstat.ts_longretry;
3429 			sc->sc_stats.ast_tx_shortretry += sr;
3430 			sc->sc_stats.ast_tx_longretry += lr;
3431 			/*
3432 			 * Hand the descriptor to the rate control algorithm.
3433 			 */
3434 			ath_rate_tx_complete(sc, an, ds);
3435 			/*
3436 			 * Reclaim reference to node.
3437 			 *
3438 			 * NB: the node may be reclaimed here if, for example
3439 			 *     this is a DEAUTH message that was sent and the
3440 			 *     node was timed out due to inactivity.
3441 			 */
3442 			ieee80211_free_node(ni);
3443 		}
3444 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3445 		    BUS_DMASYNC_POSTWRITE);
3446 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3447 		m_freem(bf->bf_m);
3448 		bf->bf_m = NULL;
3449 		bf->bf_node = NULL;
3450 
3451 		ATH_TXBUF_LOCK(sc);
3452 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3453 		ATH_TXBUF_UNLOCK(sc);
3454 	}
3455 }
3456 
3457 /*
3458  * Deferred processing of transmit interrupt; special-cased
3459  * for a single hardware transmit queue (e.g. 5210 and 5211).
3460  */
3461 static void
3462 ath_tx_proc_q0(void *arg, int npending)
3463 {
3464 	struct ath_softc *sc = arg;
3465 	struct ifnet *ifp = &sc->sc_if;
3466 
3467 	ath_tx_processq(sc, &sc->sc_txq[0]);
3468 	ath_tx_processq(sc, sc->sc_cabq);
3469 	ifp->if_flags &= ~IFF_OACTIVE;
3470 	sc->sc_tx_timer = 0;
3471 
3472 	ath_start(ifp);
3473 }
3474 
3475 /*
3476  * Deferred processing of transmit interrupt; special-cased
3477  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3478  */
3479 static void
3480 ath_tx_proc_q0123(void *arg, int npending)
3481 {
3482 	struct ath_softc *sc = arg;
3483 	struct ifnet *ifp = &sc->sc_if;
3484 
3485 	/*
3486 	 * Process each active queue.
3487 	 */
3488 	ath_tx_processq(sc, &sc->sc_txq[0]);
3489 	ath_tx_processq(sc, &sc->sc_txq[1]);
3490 	ath_tx_processq(sc, &sc->sc_txq[2]);
3491 	ath_tx_processq(sc, &sc->sc_txq[3]);
3492 	ath_tx_processq(sc, sc->sc_cabq);
3493 
3494 	ifp->if_flags &= ~IFF_OACTIVE;
3495 	sc->sc_tx_timer = 0;
3496 
3497 	ath_start(ifp);
3498 }
3499 
3500 /*
3501  * Deferred processing of transmit interrupt.
3502  */
3503 static void
3504 ath_tx_proc(void *arg, int npending)
3505 {
3506 	struct ath_softc *sc = arg;
3507 	struct ifnet *ifp = &sc->sc_if;
3508 	int i;
3509 
3510 	/*
3511 	 * Process each active queue.
3512 	 */
3513 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3514 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3515 		if (ATH_TXQ_SETUP(sc, i))
3516 			ath_tx_processq(sc, &sc->sc_txq[i]);
3517 
3518 	ifp->if_flags &= ~IFF_OACTIVE;
3519 	sc->sc_tx_timer = 0;
3520 
3521 	ath_start(ifp);
3522 }
3523 
3524 static void
3525 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3526 {
3527 	struct ath_hal *ah = sc->sc_ah;
3528 	struct ieee80211_node *ni;
3529 	struct ath_buf *bf;
3530 
3531 	/*
3532 	 * NB: this assumes output has been stopped and
3533 	 *     we do not need to block ath_tx_tasklet
3534 	 */
3535 	for (;;) {
3536 		ATH_TXQ_LOCK(txq);
3537 		bf = STAILQ_FIRST(&txq->axq_q);
3538 		if (bf == NULL) {
3539 			txq->axq_link = NULL;
3540 			ATH_TXQ_UNLOCK(txq);
3541 			break;
3542 		}
3543 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3544 		ATH_TXQ_UNLOCK(txq);
3545 #ifdef AR_DEBUG
3546 		if (sc->sc_debug & ATH_DEBUG_RESET)
3547 			ath_printtxbuf(bf,
3548 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3549 #endif /* AR_DEBUG */
3550 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3551 		m_freem(bf->bf_m);
3552 		bf->bf_m = NULL;
3553 		ni = bf->bf_node;
3554 		bf->bf_node = NULL;
3555 		if (ni != NULL) {
3556 			/*
3557 			 * Reclaim node reference.
3558 			 */
3559 			ieee80211_free_node(ni);
3560 		}
3561 		ATH_TXBUF_LOCK(sc);
3562 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3563 		ATH_TXBUF_UNLOCK(sc);
3564 	}
3565 }
3566 
3567 static void
3568 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3569 {
3570 	struct ath_hal *ah = sc->sc_ah;
3571 
3572 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3573 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3574 	    __func__, txq->axq_qnum,
3575 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3576 	    txq->axq_link);
3577 }
3578 
3579 /*
3580  * Drain the transmit queues and reclaim resources.
3581  */
3582 static void
3583 ath_draintxq(struct ath_softc *sc)
3584 {
3585 	struct ath_hal *ah = sc->sc_ah;
3586 	struct ifnet *ifp = &sc->sc_if;
3587 	int i;
3588 
3589 	/* XXX return value */
3590 	if (!sc->sc_invalid) {
3591 		/* don't touch the hardware if marked invalid */
3592 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3593 		DPRINTF(sc, ATH_DEBUG_RESET,
3594 		    "%s: beacon queue %p\n", __func__,
3595 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3596 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3597 			if (ATH_TXQ_SETUP(sc, i))
3598 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3599 	}
3600 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3601 		if (ATH_TXQ_SETUP(sc, i))
3602 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3603 	ifp->if_flags &= ~IFF_OACTIVE;
3604 	sc->sc_tx_timer = 0;
3605 }
3606 
3607 /*
3608  * Disable the receive h/w in preparation for a reset.
3609  */
3610 static void
3611 ath_stoprecv(struct ath_softc *sc)
3612 {
3613 #define	PA2DESC(_sc, _pa) \
3614 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3615 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3616 	struct ath_hal *ah = sc->sc_ah;
3617 
3618 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3619 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3620 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3621 	DELAY(3000);			/* 3ms is long enough for 1 frame */
3622 #ifdef AR_DEBUG
3623 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3624 		struct ath_buf *bf;
3625 
3626 		printf("%s: rx queue %p, link %p\n", __func__,
3627 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3628 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3629 			struct ath_desc *ds = bf->bf_desc;
3630 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3631 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3632 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3633 				ath_printrxbuf(bf, status == HAL_OK);
3634 		}
3635 	}
3636 #endif
3637 	sc->sc_rxlink = NULL;		/* just in case */
3638 #undef PA2DESC
3639 }
3640 
3641 /*
3642  * Enable the receive h/w following a reset.
3643  */
3644 static int
3645 ath_startrecv(struct ath_softc *sc)
3646 {
3647 	struct ath_hal *ah = sc->sc_ah;
3648 	struct ath_buf *bf;
3649 
3650 	sc->sc_rxlink = NULL;
3651 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3652 		int error = ath_rxbuf_init(sc, bf);
3653 		if (error != 0) {
3654 			DPRINTF(sc, ATH_DEBUG_RECV,
3655 				"%s: ath_rxbuf_init failed %d\n",
3656 				__func__, error);
3657 			return error;
3658 		}
3659 	}
3660 
3661 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3662 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3663 	ath_hal_rxena(ah);		/* enable recv descriptors */
3664 	ath_mode_init(sc);		/* set filters, etc. */
3665 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3666 	return 0;
3667 }
3668 
3669 /*
3670  * Update internal state after a channel change.
3671  */
3672 static void
3673 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3674 {
3675 	struct ieee80211com *ic = &sc->sc_ic;
3676 	enum ieee80211_phymode mode;
3677 	u_int16_t flags;
3678 
3679 	/*
3680 	 * Change channels and update the h/w rate map
3681 	 * if we're switching; e.g. 11a to 11b/g.
3682 	 */
3683 	mode = ieee80211_chan2mode(ic, chan);
3684 	if (mode != sc->sc_curmode)
3685 		ath_setcurmode(sc, mode);
3686 	/*
3687 	 * Update BPF state.  NB: ethereal et. al. don't handle
3688 	 * merged flags well so pick a unique mode for their use.
3689 	 */
3690 	if (IEEE80211_IS_CHAN_A(chan))
3691 		flags = IEEE80211_CHAN_A;
3692 	/* XXX 11g schizophrenia */
3693 	else if (IEEE80211_IS_CHAN_G(chan) ||
3694 	    IEEE80211_IS_CHAN_PUREG(chan))
3695 		flags = IEEE80211_CHAN_G;
3696 	else
3697 		flags = IEEE80211_CHAN_B;
3698 	if (IEEE80211_IS_CHAN_T(chan))
3699 		flags |= IEEE80211_CHAN_TURBO;
3700 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3701 		htole16(chan->ic_freq);
3702 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3703 		htole16(flags);
3704 }
3705 
3706 /*
3707  * Set/change channels.  If the channel is really being changed,
3708  * it's done by reseting the chip.  To accomplish this we must
3709  * first cleanup any pending DMA, then restart stuff after a la
3710  * ath_init.
3711  */
3712 static int
3713 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3714 {
3715 	struct ath_hal *ah = sc->sc_ah;
3716 	struct ieee80211com *ic = &sc->sc_ic;
3717 	HAL_CHANNEL hchan;
3718 
3719 	/*
3720 	 * Convert to a HAL channel description with
3721 	 * the flags constrained to reflect the current
3722 	 * operating mode.
3723 	 */
3724 	hchan.channel = chan->ic_freq;
3725 	hchan.channelFlags = ath_chan2flags(ic, chan);
3726 
3727 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3728 	    __func__,
3729 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3730 		sc->sc_curchan.channelFlags),
3731 	    	sc->sc_curchan.channel,
3732 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3733 	if (hchan.channel != sc->sc_curchan.channel ||
3734 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3735 		HAL_STATUS status;
3736 
3737 		/*
3738 		 * To switch channels clear any pending DMA operations;
3739 		 * wait long enough for the RX fifo to drain, reset the
3740 		 * hardware at the new frequency, and then re-enable
3741 		 * the relevant bits of the h/w.
3742 		 */
3743 		ath_hal_intrset(ah, 0);		/* disable interrupts */
3744 		ath_draintxq(sc);		/* clear pending tx frames */
3745 		ath_stoprecv(sc);		/* turn off frame recv */
3746 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3747 			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3748 				"channel %u (%u Mhz)\n",
3749 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3750 			return EIO;
3751 		}
3752 		sc->sc_curchan = hchan;
3753 		ath_update_txpow(sc);		/* update tx power state */
3754 
3755 		/*
3756 		 * Re-enable rx framework.
3757 		 */
3758 		if (ath_startrecv(sc) != 0) {
3759 			if_printf(ic->ic_ifp,
3760 				"ath_chan_set: unable to restart recv logic\n");
3761 			return EIO;
3762 		}
3763 
3764 		/*
3765 		 * Change channels and update the h/w rate map
3766 		 * if we're switching; e.g. 11a to 11b/g.
3767 		 */
3768 		ic->ic_ibss_chan = chan;
3769 		ath_chan_change(sc, chan);
3770 
3771 		/*
3772 		 * Re-enable interrupts.
3773 		 */
3774 		ath_hal_intrset(ah, sc->sc_imask);
3775 	}
3776 	return 0;
3777 }
3778 
3779 static void
3780 ath_next_scan(void *arg)
3781 {
3782 	struct ath_softc *sc = arg;
3783 	struct ieee80211com *ic = &sc->sc_ic;
3784 
3785 	if (ic->ic_state == IEEE80211_S_SCAN)
3786 		ieee80211_next_scan(ic);
3787 }
3788 
3789 /*
3790  * Periodically recalibrate the PHY to account
3791  * for temperature/environment changes.
3792  */
3793 static void
3794 ath_calibrate(void *arg)
3795 {
3796 	struct ath_softc *sc = arg;
3797 	struct ath_hal *ah = sc->sc_ah;
3798 
3799 	sc->sc_stats.ast_per_cal++;
3800 
3801 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
3802 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
3803 
3804 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3805 		/*
3806 		 * Rfgain is out of bounds, reset the chip
3807 		 * to load new gain values.
3808 		 */
3809 		sc->sc_stats.ast_per_rfgain++;
3810 		ath_reset(&sc->sc_if);
3811 	}
3812 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
3813 		DPRINTF(sc, ATH_DEBUG_ANY,
3814 			"%s: calibration of channel %u failed\n",
3815 			__func__, sc->sc_curchan.channel);
3816 		sc->sc_stats.ast_per_calfail++;
3817 	}
3818 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
3819 }
3820 
3821 static int
3822 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3823 {
3824 	struct ifnet *ifp = ic->ic_ifp;
3825 	struct ath_softc *sc = ifp->if_softc;
3826 	struct ath_hal *ah = sc->sc_ah;
3827 	struct ieee80211_node *ni;
3828 	int i, error;
3829 	const u_int8_t *bssid;
3830 	u_int32_t rfilt;
3831 	static const HAL_LED_STATE leds[] = {
3832 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
3833 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
3834 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
3835 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
3836 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
3837 	};
3838 
3839 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
3840 		ieee80211_state_name[ic->ic_state],
3841 		ieee80211_state_name[nstate]);
3842 
3843 	callout_stop(&sc->sc_scan_ch);
3844 	callout_stop(&sc->sc_cal_ch);
3845 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
3846 
3847 	if (nstate == IEEE80211_S_INIT) {
3848 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3849 		ath_hal_intrset(ah, sc->sc_imask);
3850 		/*
3851 		 * Notify the rate control algorithm.
3852 		 */
3853 		ath_rate_newstate(sc, nstate);
3854 		goto done;
3855 	}
3856 	ni = ic->ic_bss;
3857 	error = ath_chan_set(sc, ni->ni_chan);
3858 	if (error != 0)
3859 		goto bad;
3860 	rfilt = ath_calcrxfilter(sc, nstate);
3861 	if (nstate == IEEE80211_S_SCAN)
3862 		bssid = ifp->if_broadcastaddr;
3863 	else
3864 		bssid = ni->ni_bssid;
3865 	ath_hal_setrxfilter(ah, rfilt);
3866 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
3867 		 __func__, rfilt, ether_sprintf(bssid));
3868 
3869 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3870 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
3871 	else
3872 		ath_hal_setassocid(ah, bssid, 0);
3873 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3874 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
3875 			if (ath_hal_keyisvalid(ah, i))
3876 				ath_hal_keysetmac(ah, i, bssid);
3877 	}
3878 
3879 	/*
3880 	 * Notify the rate control algorithm so rates
3881 	 * are setup should ath_beacon_alloc be called.
3882 	 */
3883 	ath_rate_newstate(sc, nstate);
3884 
3885 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3886 		/* nothing to do */;
3887 	} else if (nstate == IEEE80211_S_RUN) {
3888 		DPRINTF(sc, ATH_DEBUG_STATE,
3889 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3890 			"capinfo=0x%04x chan=%d\n"
3891 			 , __func__
3892 			 , ic->ic_flags
3893 			 , ni->ni_intval
3894 			 , ether_sprintf(ni->ni_bssid)
3895 			 , ni->ni_capinfo
3896 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
3897 
3898 		/*
3899 		 * Allocate and setup the beacon frame for AP or adhoc mode.
3900 		 */
3901 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3902 		    ic->ic_opmode == IEEE80211_M_IBSS) {
3903 			error = ath_beacon_alloc(sc, ni);
3904 			if (error != 0)
3905 				goto bad;
3906 		}
3907 
3908 		/*
3909 		 * Configure the beacon and sleep timers.
3910 		 */
3911 		ath_beacon_config(sc);
3912 	} else {
3913 		ath_hal_intrset(ah,
3914 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
3915 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3916 	}
3917 done:
3918 	/*
3919 	 * Invoke the parent method to complete the work.
3920 	 */
3921 	error = sc->sc_newstate(ic, nstate, arg);
3922 	/*
3923 	 * Finally, start any timers.
3924 	 */
3925 	if (nstate == IEEE80211_S_RUN) {
3926 		/* start periodic recalibration timer */
3927 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
3928 			ath_calibrate, sc);
3929 	} else if (nstate == IEEE80211_S_SCAN) {
3930 		/* start ap/neighbor scan timer */
3931 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
3932 			ath_next_scan, sc);
3933 	}
3934 bad:
3935 	return error;
3936 }
3937 
3938 /*
3939  * Setup driver-specific state for a newly associated node.
3940  * Note that we're called also on a re-associate, the isnew
3941  * param tells us if this is the first time or not.
3942  */
3943 static void
3944 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3945 {
3946 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3947 
3948 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
3949 }
3950 
3951 static int
3952 ath_getchannels(struct ath_softc *sc, u_int cc,
3953 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
3954 {
3955 	struct ieee80211com *ic = &sc->sc_ic;
3956 	struct ifnet *ifp = &sc->sc_if;
3957 	struct ath_hal *ah = sc->sc_ah;
3958 	HAL_CHANNEL *chans;
3959 	int i, ix, nchan;
3960 
3961 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3962 			M_TEMP, M_NOWAIT);
3963 	if (chans == NULL) {
3964 		if_printf(ifp, "unable to allocate channel table\n");
3965 		return ENOMEM;
3966 	}
3967 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3968 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3969 		u_int32_t rd;
3970 
3971 		ath_hal_getregdomain(ah, &rd);
3972 		if_printf(ifp, "unable to collect channel list from hal; "
3973 			"regdomain likely %u country code %u\n", rd, cc);
3974 		free(chans, M_TEMP);
3975 		return EINVAL;
3976 	}
3977 
3978 	/*
3979 	 * Convert HAL channels to ieee80211 ones and insert
3980 	 * them in the table according to their channel number.
3981 	 */
3982 	for (i = 0; i < nchan; i++) {
3983 		HAL_CHANNEL *c = &chans[i];
3984 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3985 		if (ix > IEEE80211_CHAN_MAX) {
3986 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3987 				ix, c->channel, c->channelFlags);
3988 			continue;
3989 		}
3990 		/* NB: flags are known to be compatible */
3991 		if (ic->ic_channels[ix].ic_freq == 0) {
3992 			ic->ic_channels[ix].ic_freq = c->channel;
3993 			ic->ic_channels[ix].ic_flags = c->channelFlags;
3994 		} else {
3995 			/* channels overlap; e.g. 11g and 11b */
3996 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
3997 		}
3998 	}
3999 	free(chans, M_TEMP);
4000 	return 0;
4001 }
4002 
4003 static void
4004 ath_update_led(struct ath_softc *sc)
4005 {
4006 	struct ieee80211com *ic = &sc->sc_ic;
4007 	struct ath_hal *ah = sc->sc_ah;
4008 	u_int32_t threshold;
4009 
4010 	/*
4011 	 * When not associated, flash LED on for 5s, off for 200ms.
4012 	 * XXX this assumes 100ms beacon interval.
4013 	 */
4014 	if (ic->ic_state != IEEE80211_S_RUN) {
4015 		threshold = 2 + sc->sc_ledstate * 48;
4016 	} else {
4017 		threshold = 2 + sc->sc_ledstate * 18;
4018 	}
4019 	if (ic->ic_stats.is_rx_beacon - sc->sc_beacons >= threshold) {
4020 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
4021 		ath_hal_gpioset(ah, sc->sc_ledpin, sc->sc_ledstate);
4022 		sc->sc_ledstate ^= 1;
4023 		sc->sc_beacons = ic->ic_stats.is_rx_beacon;
4024 	}
4025 }
4026 
4027 static void
4028 ath_update_txpow(struct ath_softc *sc)
4029 {
4030 	struct ieee80211com *ic = &sc->sc_ic;
4031 	struct ath_hal *ah = sc->sc_ah;
4032 	u_int32_t txpow;
4033 
4034 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4035 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4036 		/* read back in case value is clamped */
4037 		ath_hal_gettxpowlimit(ah, &txpow);
4038 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4039 	}
4040 	/*
4041 	 * Fetch max tx power level for status requests.
4042 	 */
4043 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4044 	ic->ic_bss->ni_txpower = txpow;
4045 }
4046 
4047 static int
4048 ath_rate_setup(struct ath_softc *sc, u_int mode)
4049 {
4050 	struct ath_hal *ah = sc->sc_ah;
4051 	struct ieee80211com *ic = &sc->sc_ic;
4052 	const HAL_RATE_TABLE *rt;
4053 	struct ieee80211_rateset *rs;
4054 	int i, maxrates;
4055 
4056 	switch (mode) {
4057 	case IEEE80211_MODE_11A:
4058 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4059 		break;
4060 	case IEEE80211_MODE_11B:
4061 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4062 		break;
4063 	case IEEE80211_MODE_11G:
4064 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4065 		break;
4066 	case IEEE80211_MODE_TURBO_A:
4067 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4068 		break;
4069 	case IEEE80211_MODE_TURBO_G:
4070 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4071 		break;
4072 	default:
4073 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4074 			__func__, mode);
4075 		return 0;
4076 	}
4077 	rt = sc->sc_rates[mode];
4078 	if (rt == NULL)
4079 		return 0;
4080 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4081 		DPRINTF(sc, ATH_DEBUG_ANY,
4082 			"%s: rate table too small (%u > %u)\n",
4083 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4084 		maxrates = IEEE80211_RATE_MAXSIZE;
4085 	} else
4086 		maxrates = rt->rateCount;
4087 	rs = &ic->ic_sup_rates[mode];
4088 	for (i = 0; i < maxrates; i++)
4089 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4090 	rs->rs_nrates = maxrates;
4091 	return 1;
4092 }
4093 
4094 static void
4095 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4096 {
4097 	const HAL_RATE_TABLE *rt;
4098 	int i;
4099 
4100 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4101 	rt = sc->sc_rates[mode];
4102 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4103 	for (i = 0; i < rt->rateCount; i++)
4104 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4105 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4106 	memset(sc->sc_hwflags, 0, sizeof(sc->sc_hwflags));
4107 	for (i = 0; i < 32; i++) {
4108 		u_int8_t ix = rt->rateCodeToIndex[i];
4109 		if (ix == 0xff)
4110 			continue;
4111 		sc->sc_hwmap[i] = rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4112 		if (rt->info[ix].shortPreamble ||
4113 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4114 			sc->sc_hwflags[i] |= IEEE80211_RADIOTAP_F_SHORTPRE;
4115 	}
4116 	sc->sc_currates = rt;
4117 	sc->sc_curmode = mode;
4118 	/*
4119 	 * All protection frames are transmited at 2Mb/s for
4120 	 * 11g, otherwise at 1Mb/s.
4121 	 * XXX select protection rate index from rate table.
4122 	 */
4123 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4124 	/* NB: caller is responsible for reseting rate control state */
4125 }
4126 
4127 #ifdef AR_DEBUG
4128 static void
4129 ath_printrxbuf(struct ath_buf *bf, int done)
4130 {
4131 	struct ath_desc *ds;
4132 	int i;
4133 
4134 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4135 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4136 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4137 		    ds->ds_link, ds->ds_data,
4138 		    ds->ds_ctl0, ds->ds_ctl1,
4139 		    ds->ds_hw[0], ds->ds_hw[1],
4140 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4141 	}
4142 }
4143 
4144 static void
4145 ath_printtxbuf(struct ath_buf *bf, int done)
4146 {
4147 	struct ath_desc *ds;
4148 	int i;
4149 
4150 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4151 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4152 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4153 		    ds->ds_link, ds->ds_data,
4154 		    ds->ds_ctl0, ds->ds_ctl1,
4155 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4156 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4157 	}
4158 }
4159 #endif /* AR_DEBUG */
4160 
4161 static void
4162 ath_watchdog(struct ifnet *ifp)
4163 {
4164 	struct ath_softc *sc = ifp->if_softc;
4165 	struct ieee80211com *ic = &sc->sc_ic;
4166 
4167 	ifp->if_timer = 0;
4168 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4169 		return;
4170 	if (sc->sc_tx_timer) {
4171 		if (--sc->sc_tx_timer == 0) {
4172 			if_printf(ifp, "device timeout\n");
4173 			ath_reset(ifp);
4174 			ifp->if_oerrors++;
4175 			sc->sc_stats.ast_watchdog++;
4176 		} else
4177 			ifp->if_timer = 1;
4178 	}
4179 	ieee80211_watchdog(ic);
4180 }
4181 
4182 /*
4183  * Diagnostic interface to the HAL.  This is used by various
4184  * tools to do things like retrieve register contents for
4185  * debugging.  The mechanism is intentionally opaque so that
4186  * it can change frequently w/o concern for compatiblity.
4187  */
4188 static int
4189 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4190 {
4191 	struct ath_hal *ah = sc->sc_ah;
4192 	u_int id = ad->ad_id & ATH_DIAG_ID;
4193 	void *indata = NULL;
4194 	void *outdata = NULL;
4195 	u_int32_t insize = ad->ad_in_size;
4196 	u_int32_t outsize = ad->ad_out_size;
4197 	int error = 0;
4198 
4199 	if (ad->ad_id & ATH_DIAG_IN) {
4200 		/*
4201 		 * Copy in data.
4202 		 */
4203 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4204 		if (indata == NULL) {
4205 			error = ENOMEM;
4206 			goto bad;
4207 		}
4208 		error = copyin(ad->ad_in_data, indata, insize);
4209 		if (error)
4210 			goto bad;
4211 	}
4212 	if (ad->ad_id & ATH_DIAG_DYN) {
4213 		/*
4214 		 * Allocate a buffer for the results (otherwise the HAL
4215 		 * returns a pointer to a buffer where we can read the
4216 		 * results).  Note that we depend on the HAL leaving this
4217 		 * pointer for us to use below in reclaiming the buffer;
4218 		 * may want to be more defensive.
4219 		 */
4220 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4221 		if (outdata == NULL) {
4222 			error = ENOMEM;
4223 			goto bad;
4224 		}
4225 	}
4226 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4227 		if (outsize < ad->ad_out_size)
4228 			ad->ad_out_size = outsize;
4229 		if (outdata != NULL)
4230 			error = copyout(outdata, ad->ad_out_data,
4231 					ad->ad_out_size);
4232 	} else {
4233 		error = EINVAL;
4234 	}
4235 bad:
4236 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4237 		free(indata, M_TEMP);
4238 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4239 		free(outdata, M_TEMP);
4240 	return error;
4241 }
4242 
4243 static int
4244 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4245 {
4246 #define	IS_RUNNING(ifp) \
4247 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4248 	struct ath_softc *sc = ifp->if_softc;
4249 	struct ieee80211com *ic = &sc->sc_ic;
4250 	struct ifreq *ifr = (struct ifreq *)data;
4251 	int error = 0;
4252 
4253 	ATH_LOCK(sc);
4254 	switch (cmd) {
4255 	case SIOCSIFFLAGS:
4256 		if (IS_RUNNING(ifp)) {
4257 			/*
4258 			 * To avoid rescanning another access point,
4259 			 * do not call ath_init() here.  Instead,
4260 			 * only reflect promisc mode settings.
4261 			 */
4262 			ath_mode_init(sc);
4263 		} else if (ifp->if_flags & IFF_UP) {
4264 			/*
4265 			 * Beware of being called during attach/detach
4266 			 * to reset promiscuous mode.  In that case we
4267 			 * will still be marked UP but not RUNNING.
4268 			 * However trying to re-init the interface
4269 			 * is the wrong thing to do as we've already
4270 			 * torn down much of our state.  There's
4271 			 * probably a better way to deal with this.
4272 			 */
4273 			if (!sc->sc_invalid && ic->ic_bss != NULL)
4274 				ath_init(ifp);	/* XXX lose error */
4275 		} else
4276 			ath_stop_locked(ifp);
4277 		break;
4278 	case SIOCADDMULTI:
4279 	case SIOCDELMULTI:
4280 		/*
4281 		 * The upper layer has already installed/removed
4282 		 * the multicast address(es), just recalculate the
4283 		 * multicast filter for the card.
4284 		 */
4285 		if (ifp->if_flags & IFF_RUNNING)
4286 			ath_mode_init(sc);
4287 		break;
4288 	case SIOCGATHSTATS:
4289 		/* NB: embed these numbers to get a consistent view */
4290 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4291 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4292 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4293 		ATH_UNLOCK(sc);
4294 		/*
4295 		 * NB: Drop the softc lock in case of a page fault;
4296 		 * we'll accept any potential inconsisentcy in the
4297 		 * statistics.  The alternative is to copy the data
4298 		 * to a local structure.
4299 		 */
4300 		return copyout(&sc->sc_stats,
4301 				ifr->ifr_data, sizeof (sc->sc_stats));
4302 	case SIOCGATHDIAG:
4303 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4304 		break;
4305 	default:
4306 		error = ieee80211_ioctl(ic, cmd, data);
4307 		if (error == ENETRESET) {
4308 			if (IS_RUNNING(ifp) &&
4309 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4310 				ath_init(ifp);	/* XXX lose error */
4311 			error = 0;
4312 		}
4313 		if (error == ERESTART)
4314 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4315 		break;
4316 	}
4317 	ATH_UNLOCK(sc);
4318 	return error;
4319 #undef IS_RUNNING
4320 }
4321 
4322 static int
4323 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4324 {
4325 	struct ath_softc *sc = arg1;
4326 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4327 	int error;
4328 
4329 	error = sysctl_handle_int(oidp, &slottime, 0, req);
4330 	if (error || !req->newptr)
4331 		return error;
4332 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4333 }
4334 
4335 static int
4336 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4337 {
4338 	struct ath_softc *sc = arg1;
4339 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4340 	int error;
4341 
4342 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4343 	if (error || !req->newptr)
4344 		return error;
4345 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4346 }
4347 
4348 static int
4349 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4350 {
4351 	struct ath_softc *sc = arg1;
4352 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4353 	int error;
4354 
4355 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4356 	if (error || !req->newptr)
4357 		return error;
4358 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4359 }
4360 
4361 static int
4362 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4363 {
4364 	struct ath_softc *sc = arg1;
4365 	int softled = sc->sc_softled;
4366 	int error;
4367 
4368 	error = sysctl_handle_int(oidp, &softled, 0, req);
4369 	if (error || !req->newptr)
4370 		return error;
4371 	if (softled > 1)
4372 		softled = 1;
4373 	if (softled != sc->sc_softled) {
4374 		if (softled)
4375 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4376 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !softled);
4377 		sc->sc_softled = softled;
4378 	}
4379 	return 0;
4380 }
4381 
4382 static int
4383 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4384 {
4385 	struct ath_softc *sc = arg1;
4386 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4387 	int error;
4388 
4389 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4390 	if (!error && req->newptr)
4391 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4392 	return error;
4393 }
4394 
4395 static int
4396 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4397 {
4398 	struct ath_softc *sc = arg1;
4399 	u_int diversity = sc->sc_diversity;
4400 	int error;
4401 
4402 	error = sysctl_handle_int(oidp, &diversity, 0, req);
4403 	if (error || !req->newptr)
4404 		return error;
4405 	sc->sc_diversity = diversity;
4406 	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4407 }
4408 
4409 static int
4410 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4411 {
4412 	struct ath_softc *sc = arg1;
4413 	u_int32_t diag;
4414 	int error;
4415 
4416 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4417 		return EINVAL;
4418 	error = sysctl_handle_int(oidp, &diag, 0, req);
4419 	if (error || !req->newptr)
4420 		return error;
4421 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4422 }
4423 
4424 static int
4425 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4426 {
4427 	struct ath_softc *sc = arg1;
4428 	struct ifnet *ifp = &sc->sc_if;
4429 	u_int32_t scale;
4430 	int error;
4431 
4432 	ath_hal_gettpscale(sc->sc_ah, &scale);
4433 	error = sysctl_handle_int(oidp, &scale, 0, req);
4434 	if (error || !req->newptr)
4435 		return error;
4436 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4437 }
4438 
4439 static int
4440 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4441 {
4442 	struct ath_softc *sc = arg1;
4443 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4444 	int error;
4445 
4446 	error = sysctl_handle_int(oidp, &tpc, 0, req);
4447 	if (error || !req->newptr)
4448 		return error;
4449 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4450 }
4451 
4452 static void
4453 ath_sysctlattach(struct ath_softc *sc)
4454 {
4455 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4456 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4457 
4458 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4459 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4460 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4461 		"EEPROM country code");
4462 	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4463 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4464 		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4465 		"EEPROM regdomain code");
4466 	sc->sc_debug = ath_debug;
4467 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4468 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4469 		"control debugging printfs");
4470 
4471 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4472 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4473 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4474 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4475 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4476 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4477 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4478 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4479 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4480 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4481 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4482 		ath_sysctl_softled, "I", "enable/disable software LED support");
4483 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4484 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4485 		"GPIO pin connected to LED");
4486 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4487 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4488 		"tx antenna (0=auto)");
4489 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4490 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4491 		ath_sysctl_rxantenna, "I", "default/rx antenna");
4492 	if (sc->sc_hasdiversity)
4493 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4494 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4495 			ath_sysctl_diversity, "I", "antenna diversity");
4496 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4497 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4498 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4499 		"tx descriptor batching");
4500 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4501 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4502 		ath_sysctl_diag, "I", "h/w diagnostic control");
4503 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4504 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4505 		ath_sysctl_tpscale, "I", "tx power scaling");
4506 	if (sc->sc_hastpc)
4507 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4508 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4509 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4510 }
4511 
4512 static void
4513 ath_bpfattach(struct ath_softc *sc)
4514 {
4515 	struct ifnet *ifp = &sc->sc_if;
4516 
4517 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4518 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4519 		&sc->sc_drvbpf);
4520 	/*
4521 	 * Initialize constant fields.
4522 	 * XXX make header lengths a multiple of 32-bits so subsequent
4523 	 *     headers are properly aligned; this is a kludge to keep
4524 	 *     certain applications happy.
4525 	 *
4526 	 * NB: the channel is setup each time we transition to the
4527 	 *     RUN state to avoid filling it in for each frame.
4528 	 */
4529 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4530 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4531 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4532 
4533 	sc->sc_rx_rt_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4534 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_rt_len);
4535 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4536 }
4537 
4538 /*
4539  * Announce various information on device/driver attach.
4540  */
4541 static void
4542 ath_announce(struct ath_softc *sc)
4543 {
4544 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4545 	struct ifnet *ifp = &sc->sc_if;
4546 	struct ath_hal *ah = sc->sc_ah;
4547 	u_int modes, cc;
4548 
4549 	if_printf(ifp, "mac %d.%d phy %d.%d",
4550 		ah->ah_macVersion, ah->ah_macRev,
4551 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4552 	/*
4553 	 * Print radio revision(s).  We check the wireless modes
4554 	 * to avoid falsely printing revs for inoperable parts.
4555 	 * Dual-band radio revs are returned in the 5Ghz rev number.
4556 	 */
4557 	ath_hal_getcountrycode(ah, &cc);
4558 	modes = ath_hal_getwirelessmodes(ah, cc);
4559 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4560 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4561 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4562 				ah->ah_analog5GhzRev >> 4,
4563 				ah->ah_analog5GhzRev & 0xf,
4564 				ah->ah_analog2GhzRev >> 4,
4565 				ah->ah_analog2GhzRev & 0xf);
4566 		else
4567 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4568 				ah->ah_analog5GhzRev & 0xf);
4569 	} else
4570 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4571 			ah->ah_analog5GhzRev & 0xf);
4572 	printf("\n");
4573 	if (bootverbose) {
4574 		int i;
4575 		for (i = 0; i <= WME_AC_VO; i++) {
4576 			struct ath_txq *txq = sc->sc_ac2q[i];
4577 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4578 				txq->axq_qnum, ieee80211_wme_acnames[i]);
4579 		}
4580 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4581 			sc->sc_cabq->axq_qnum);
4582 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4583 	}
4584 #undef HAL_MODE_DUALBAND
4585 }
4586