1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 29 * THE POSSIBILITY OF SUCH DAMAGES. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * Driver for the Atheros Wireless LAN controller. 37 * 38 * This software is derived from work of Atsushi Onoe; his contribution 39 * is greatly appreciated. 40 */ 41 42 #include "opt_inet.h" 43 #include "opt_ath.h" 44 /* 45 * This is needed for register operations which are performed 46 * by the driver - eg, calls to ath_hal_gettsf32(). 47 * 48 * It's also required for any AH_DEBUG checks in here, eg the 49 * module dependencies. 50 */ 51 #include "opt_ah.h" 52 #include "opt_wlan.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/sysctl.h> 57 #include <sys/mbuf.h> 58 #include <sys/malloc.h> 59 #include <sys/lock.h> 60 #include <sys/mutex.h> 61 #include <sys/kernel.h> 62 #include <sys/socket.h> 63 #include <sys/sockio.h> 64 #include <sys/errno.h> 65 #include <sys/callout.h> 66 #include <sys/bus.h> 67 #include <sys/endian.h> 68 #include <sys/kthread.h> 69 #include <sys/taskqueue.h> 70 #include <sys/priv.h> 71 #include <sys/module.h> 72 #include <sys/ktr.h> 73 #include <sys/smp.h> /* for mp_ncpus */ 74 75 #include <machine/bus.h> 76 77 #include <net/if.h> 78 #include <net/if_var.h> 79 #include <net/if_dl.h> 80 #include <net/if_media.h> 81 #include <net/if_types.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_llc.h> 85 86 #include <net80211/ieee80211_var.h> 87 #include <net80211/ieee80211_regdomain.h> 88 #ifdef IEEE80211_SUPPORT_SUPERG 89 #include <net80211/ieee80211_superg.h> 90 #endif 91 #ifdef IEEE80211_SUPPORT_TDMA 92 #include <net80211/ieee80211_tdma.h> 93 #endif 94 95 #include <net/bpf.h> 96 97 #ifdef INET 98 #include <netinet/in.h> 99 #include <netinet/if_ether.h> 100 #endif 101 102 #include <dev/ath/if_athvar.h> 103 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 104 #include <dev/ath/ath_hal/ah_diagcodes.h> 105 106 #include <dev/ath/if_ath_debug.h> 107 #include <dev/ath/if_ath_misc.h> 108 #include <dev/ath/if_ath_tsf.h> 109 #include <dev/ath/if_ath_tx.h> 110 #include <dev/ath/if_ath_sysctl.h> 111 #include <dev/ath/if_ath_led.h> 112 #include <dev/ath/if_ath_keycache.h> 113 #include <dev/ath/if_ath_rx.h> 114 #include <dev/ath/if_ath_rx_edma.h> 115 #include <dev/ath/if_ath_tx_edma.h> 116 #include <dev/ath/if_ath_beacon.h> 117 #include <dev/ath/if_ath_btcoex.h> 118 #include <dev/ath/if_ath_btcoex_mci.h> 119 #include <dev/ath/if_ath_spectral.h> 120 #include <dev/ath/if_ath_lna_div.h> 121 #include <dev/ath/if_athdfs.h> 122 #include <dev/ath/if_ath_ioctl.h> 123 #include <dev/ath/if_ath_descdma.h> 124 125 #ifdef ATH_TX99_DIAG 126 #include <dev/ath/ath_tx99/ath_tx99.h> 127 #endif 128 129 #ifdef ATH_DEBUG_ALQ 130 #include <dev/ath/if_ath_alq.h> 131 #endif 132 133 /* 134 * Only enable this if you're working on PS-POLL support. 135 */ 136 #define ATH_SW_PSQ 137 138 /* 139 * ATH_BCBUF determines the number of vap's that can transmit 140 * beacons and also (currently) the number of vap's that can 141 * have unique mac addresses/bssid. When staggering beacons 142 * 4 is probably a good max as otherwise the beacons become 143 * very closely spaced and there is limited time for cab q traffic 144 * to go out. You can burst beacons instead but that is not good 145 * for stations in power save and at some point you really want 146 * another radio (and channel). 147 * 148 * The limit on the number of mac addresses is tied to our use of 149 * the U/L bit and tracking addresses in a byte; it would be 150 * worthwhile to allow more for applications like proxy sta. 151 */ 152 CTASSERT(ATH_BCBUF <= 8); 153 154 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 155 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 156 const uint8_t [IEEE80211_ADDR_LEN], 157 const uint8_t [IEEE80211_ADDR_LEN]); 158 static void ath_vap_delete(struct ieee80211vap *); 159 static int ath_init(struct ath_softc *); 160 static void ath_stop(struct ath_softc *); 161 static int ath_reset_vap(struct ieee80211vap *, u_long); 162 static int ath_transmit(struct ieee80211com *, struct mbuf *); 163 static void ath_watchdog(void *); 164 static void ath_parent(struct ieee80211com *); 165 static void ath_fatal_proc(void *, int); 166 static void ath_bmiss_vap(struct ieee80211vap *); 167 static void ath_bmiss_proc(void *, int); 168 static void ath_tsfoor_proc(void *, int); 169 static void ath_key_update_begin(struct ieee80211vap *); 170 static void ath_key_update_end(struct ieee80211vap *); 171 static void ath_update_mcast_hw(struct ath_softc *); 172 static void ath_update_mcast(struct ieee80211com *); 173 static void ath_update_promisc(struct ieee80211com *); 174 static void ath_updateslot(struct ieee80211com *); 175 static void ath_bstuck_proc(void *, int); 176 static void ath_reset_proc(void *, int); 177 static int ath_desc_alloc(struct ath_softc *); 178 static void ath_desc_free(struct ath_softc *); 179 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 180 const uint8_t [IEEE80211_ADDR_LEN]); 181 static void ath_node_cleanup(struct ieee80211_node *); 182 static void ath_node_free(struct ieee80211_node *); 183 static void ath_node_getsignal(const struct ieee80211_node *, 184 int8_t *, int8_t *); 185 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 187 static int ath_tx_setup(struct ath_softc *, int, int); 188 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 189 static void ath_tx_cleanup(struct ath_softc *); 190 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 191 int dosched); 192 static void ath_tx_proc_q0(void *, int); 193 static void ath_tx_proc_q0123(void *, int); 194 static void ath_tx_proc(void *, int); 195 static void ath_txq_sched_tasklet(void *, int); 196 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 197 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 198 static void ath_scan_start(struct ieee80211com *); 199 static void ath_scan_end(struct ieee80211com *); 200 static void ath_set_channel(struct ieee80211com *); 201 #ifdef ATH_ENABLE_11N 202 static void ath_update_chw(struct ieee80211com *); 203 #endif /* ATH_ENABLE_11N */ 204 static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *); 205 static void ath_calibrate(void *); 206 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 207 static void ath_setup_stationkey(struct ieee80211_node *); 208 static void ath_newassoc(struct ieee80211_node *, int); 209 static int ath_setregdomain(struct ieee80211com *, 210 struct ieee80211_regdomain *, int, 211 struct ieee80211_channel []); 212 static void ath_getradiocaps(struct ieee80211com *, int, int *, 213 struct ieee80211_channel []); 214 static int ath_getchannels(struct ath_softc *); 215 216 static int ath_rate_setup(struct ath_softc *, u_int mode); 217 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 218 219 static void ath_announce(struct ath_softc *); 220 221 static void ath_dfs_tasklet(void *, int); 222 static void ath_node_powersave(struct ieee80211_node *, int); 223 static int ath_node_set_tim(struct ieee80211_node *, int); 224 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 225 226 #ifdef IEEE80211_SUPPORT_TDMA 227 #include <dev/ath/if_ath_tdma.h> 228 #endif 229 230 SYSCTL_DECL(_hw_ath); 231 232 /* XXX validate sysctl values */ 233 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 235 0, "long chip calibration interval (secs)"); 236 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 238 0, "short chip calibration interval (msecs)"); 239 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 241 0, "reset chip calibration results (secs)"); 242 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 244 0, "ANI calibration (msecs)"); 245 246 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 248 0, "rx buffers allocated"); 249 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 251 0, "tx buffers allocated"); 252 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 254 0, "tx (mgmt) buffers allocated"); 255 256 int ath_bstuck_threshold = 4; /* max missed beacons */ 257 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 258 0, "max missed beacon xmits before chip reset"); 259 260 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 261 262 void 263 ath_legacy_attach_comp_func(struct ath_softc *sc) 264 { 265 266 /* 267 * Special case certain configurations. Note the 268 * CAB queue is handled by these specially so don't 269 * include them when checking the txq setup mask. 270 */ 271 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 272 case 0x01: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 274 break; 275 case 0x0f: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 277 break; 278 default: 279 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 280 break; 281 } 282 } 283 284 /* 285 * Set the target power mode. 286 * 287 * If this is called during a point in time where 288 * the hardware is being programmed elsewhere, it will 289 * simply store it away and update it when all current 290 * uses of the hardware are completed. 291 * 292 * If the chip is going into network sleep or power off, then 293 * we will wait until all uses of the chip are done before 294 * going into network sleep or power off. 295 * 296 * If the chip is being programmed full-awake, then immediately 297 * program it full-awake so we can actually stay awake rather than 298 * the chip potentially going to sleep underneath us. 299 */ 300 void 301 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 302 const char *file, int line) 303 { 304 ATH_LOCK_ASSERT(sc); 305 306 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 307 __func__, 308 file, 309 line, 310 power_state, 311 sc->sc_powersave_refcnt, 312 sc->sc_target_powerstate, 313 sc->sc_cur_powerstate); 314 315 sc->sc_target_powerstate = power_state; 316 317 /* 318 * Don't program the chip into network sleep if the chip 319 * is being programmed elsewhere. 320 * 321 * However, if the chip is being programmed /awake/, force 322 * the chip awake so we stay awake. 323 */ 324 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 325 power_state != sc->sc_cur_powerstate) { 326 sc->sc_cur_powerstate = power_state; 327 ath_hal_setpower(sc->sc_ah, power_state); 328 329 /* 330 * If the NIC is force-awake, then set the 331 * self-gen frame state appropriately. 332 * 333 * If the nic is in network sleep or full-sleep, 334 * we let the above call leave the self-gen 335 * state as "sleep". 336 */ 337 if (selfgen && 338 sc->sc_cur_powerstate == HAL_PM_AWAKE && 339 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 340 ath_hal_setselfgenpower(sc->sc_ah, 341 sc->sc_target_selfgen_state); 342 } 343 } 344 } 345 346 /* 347 * Set the current self-generated frames state. 348 * 349 * This is separate from the target power mode. The chip may be 350 * awake but the desired state is "sleep", so frames sent to the 351 * destination has PWRMGT=1 in the 802.11 header. The NIC also 352 * needs to know to set PWRMGT=1 in self-generated frames. 353 */ 354 void 355 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 356 { 357 358 ATH_LOCK_ASSERT(sc); 359 360 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 361 __func__, 362 file, 363 line, 364 power_state, 365 sc->sc_target_selfgen_state); 366 367 sc->sc_target_selfgen_state = power_state; 368 369 /* 370 * If the NIC is force-awake, then set the power state. 371 * Network-state and full-sleep will already transition it to 372 * mark self-gen frames as sleeping - and we can't 373 * guarantee the NIC is awake to program the self-gen frame 374 * setting anyway. 375 */ 376 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 377 ath_hal_setselfgenpower(sc->sc_ah, power_state); 378 } 379 } 380 381 /* 382 * Set the hardware power mode and take a reference. 383 * 384 * This doesn't update the target power mode in the driver; 385 * it just updates the hardware power state. 386 * 387 * XXX it should only ever force the hardware awake; it should 388 * never be called to set it asleep. 389 */ 390 void 391 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 392 { 393 ATH_LOCK_ASSERT(sc); 394 395 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 396 __func__, 397 file, 398 line, 399 power_state, 400 sc->sc_powersave_refcnt); 401 402 sc->sc_powersave_refcnt++; 403 404 /* 405 * Only do the power state change if we're not programming 406 * it elsewhere. 407 */ 408 if (power_state != sc->sc_cur_powerstate) { 409 ath_hal_setpower(sc->sc_ah, power_state); 410 sc->sc_cur_powerstate = power_state; 411 /* 412 * Adjust the self-gen powerstate if appropriate. 413 */ 414 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 415 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 416 ath_hal_setselfgenpower(sc->sc_ah, 417 sc->sc_target_selfgen_state); 418 } 419 } 420 } 421 422 /* 423 * Restore the power save mode to what it once was. 424 * 425 * This will decrement the reference counter and once it hits 426 * zero, it'll restore the powersave state. 427 */ 428 void 429 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 430 { 431 432 ATH_LOCK_ASSERT(sc); 433 434 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 435 __func__, 436 file, 437 line, 438 sc->sc_powersave_refcnt, 439 sc->sc_target_powerstate); 440 441 if (sc->sc_powersave_refcnt == 0) 442 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 443 else 444 sc->sc_powersave_refcnt--; 445 446 if (sc->sc_powersave_refcnt == 0 && 447 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 448 sc->sc_cur_powerstate = sc->sc_target_powerstate; 449 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 450 } 451 452 /* 453 * Adjust the self-gen powerstate if appropriate. 454 */ 455 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 456 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 457 ath_hal_setselfgenpower(sc->sc_ah, 458 sc->sc_target_selfgen_state); 459 } 460 461 } 462 463 /* 464 * Configure the initial HAL configuration values based on bus 465 * specific parameters. 466 * 467 * Some PCI IDs and other information may need tweaking. 468 * 469 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 470 * if BT antenna diversity isn't enabled. 471 * 472 * So, let's also figure out how to enable BT diversity for AR9485. 473 */ 474 static void 475 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 476 { 477 /* XXX TODO: only for PCI devices? */ 478 479 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 480 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 481 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 482 ah_config->ath_hal_min_gainidx = AH_TRUE; 483 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 484 /* XXX low_rssi_thresh */ 485 /* XXX fast_div_bias */ 486 device_printf(sc->sc_dev, "configuring for %s\n", 487 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 488 "CUS198" : "CUS230"); 489 } 490 491 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 492 device_printf(sc->sc_dev, "CUS217 card detected\n"); 493 494 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 495 device_printf(sc->sc_dev, "CUS252 card detected\n"); 496 497 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 498 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 499 500 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 501 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 502 503 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 504 device_printf(sc->sc_dev, 505 "Bluetooth Antenna Diversity card detected\n"); 506 507 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 508 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 509 510 #if 0 511 /* 512 * Some WB335 cards do not support antenna diversity. Since 513 * we use a hardcoded value for AR9565 instead of using the 514 * EEPROM/OTP data, remove the combining feature from 515 * the HW capabilities bitmap. 516 */ 517 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 518 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 519 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 520 } 521 522 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 523 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 524 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 525 } 526 #endif 527 528 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 529 ah_config->ath_hal_pcie_waen = 0x0040473b; 530 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 531 } 532 533 #if 0 534 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 535 ah->config.no_pll_pwrsave = true; 536 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 537 } 538 #endif 539 540 } 541 542 /* 543 * Attempt to fetch the MAC address from the kernel environment. 544 * 545 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 546 */ 547 static int 548 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 549 { 550 char devid_str[32]; 551 int local_mac = 0; 552 char *local_macstr; 553 554 /* 555 * Fetch from the kenv rather than using hints. 556 * 557 * Hints would be nice but the transition to dynamic 558 * hints/kenv doesn't happen early enough for this 559 * to work reliably (eg on anything embedded.) 560 */ 561 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 562 device_get_name(sc->sc_dev), 563 device_get_unit(sc->sc_dev)); 564 565 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 566 uint32_t tmpmac[ETHER_ADDR_LEN]; 567 int count; 568 int i; 569 570 /* Have a MAC address; should use it */ 571 device_printf(sc->sc_dev, 572 "Overriding MAC address from environment: '%s'\n", 573 local_macstr); 574 575 /* Extract out the MAC address */ 576 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 577 &tmpmac[0], &tmpmac[1], 578 &tmpmac[2], &tmpmac[3], 579 &tmpmac[4], &tmpmac[5]); 580 if (count == 6) { 581 /* Valid! */ 582 local_mac = 1; 583 for (i = 0; i < ETHER_ADDR_LEN; i++) 584 macaddr[i] = tmpmac[i]; 585 } 586 /* Done! */ 587 freeenv(local_macstr); 588 local_macstr = NULL; 589 } 590 591 if (local_mac) 592 return (0); 593 return (-1); 594 } 595 596 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 597 #define HAL_MODE_HT40 \ 598 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 599 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 600 int 601 ath_attach(u_int16_t devid, struct ath_softc *sc) 602 { 603 struct ieee80211com *ic = &sc->sc_ic; 604 struct ath_hal *ah = NULL; 605 HAL_STATUS status; 606 int error = 0, i; 607 u_int wmodes; 608 int rx_chainmask, tx_chainmask; 609 HAL_OPS_CONFIG ah_config; 610 611 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 612 613 ic->ic_softc = sc; 614 ic->ic_name = device_get_nameunit(sc->sc_dev); 615 616 /* 617 * Configure the initial configuration data. 618 * 619 * This is stuff that may be needed early during attach 620 * rather than done via configuration calls later. 621 */ 622 bzero(&ah_config, sizeof(ah_config)); 623 ath_setup_hal_config(sc, &ah_config); 624 625 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 626 sc->sc_eepromdata, &ah_config, &status); 627 if (ah == NULL) { 628 device_printf(sc->sc_dev, 629 "unable to attach hardware; HAL status %u\n", status); 630 error = ENXIO; 631 goto bad; 632 } 633 sc->sc_ah = ah; 634 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 635 #ifdef ATH_DEBUG 636 sc->sc_debug = ath_debug; 637 #endif 638 639 /* 640 * Force the chip awake during setup, just to keep 641 * the HAL/driver power tracking happy. 642 * 643 * There are some methods (eg ath_hal_setmac()) 644 * that poke the hardware. 645 */ 646 ATH_LOCK(sc); 647 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 648 ATH_UNLOCK(sc); 649 650 /* 651 * Setup the DMA/EDMA functions based on the current 652 * hardware support. 653 * 654 * This is required before the descriptors are allocated. 655 */ 656 if (ath_hal_hasedma(sc->sc_ah)) { 657 sc->sc_isedma = 1; 658 ath_recv_setup_edma(sc); 659 ath_xmit_setup_edma(sc); 660 } else { 661 ath_recv_setup_legacy(sc); 662 ath_xmit_setup_legacy(sc); 663 } 664 665 if (ath_hal_hasmybeacon(sc->sc_ah)) { 666 sc->sc_do_mybeacon = 1; 667 } 668 669 /* 670 * Check if the MAC has multi-rate retry support. 671 * We do this by trying to setup a fake extended 672 * descriptor. MAC's that don't have support will 673 * return false w/o doing anything. MAC's that do 674 * support it will return true w/o doing anything. 675 */ 676 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 677 678 /* 679 * Check if the device has hardware counters for PHY 680 * errors. If so we need to enable the MIB interrupt 681 * so we can act on stat triggers. 682 */ 683 if (ath_hal_hwphycounters(ah)) 684 sc->sc_needmib = 1; 685 686 /* 687 * Get the hardware key cache size. 688 */ 689 sc->sc_keymax = ath_hal_keycachesize(ah); 690 if (sc->sc_keymax > ATH_KEYMAX) { 691 device_printf(sc->sc_dev, 692 "Warning, using only %u of %u key cache slots\n", 693 ATH_KEYMAX, sc->sc_keymax); 694 sc->sc_keymax = ATH_KEYMAX; 695 } 696 /* 697 * Reset the key cache since some parts do not 698 * reset the contents on initial power up. 699 */ 700 for (i = 0; i < sc->sc_keymax; i++) 701 ath_hal_keyreset(ah, i); 702 703 /* 704 * Collect the default channel list. 705 */ 706 error = ath_getchannels(sc); 707 if (error != 0) 708 goto bad; 709 710 /* 711 * Setup rate tables for all potential media types. 712 */ 713 ath_rate_setup(sc, IEEE80211_MODE_11A); 714 ath_rate_setup(sc, IEEE80211_MODE_11B); 715 ath_rate_setup(sc, IEEE80211_MODE_11G); 716 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 717 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 718 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 719 ath_rate_setup(sc, IEEE80211_MODE_11NA); 720 ath_rate_setup(sc, IEEE80211_MODE_11NG); 721 ath_rate_setup(sc, IEEE80211_MODE_HALF); 722 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 723 724 /* NB: setup here so ath_rate_update is happy */ 725 ath_setcurmode(sc, IEEE80211_MODE_11A); 726 727 /* 728 * Allocate TX descriptors and populate the lists. 729 */ 730 error = ath_desc_alloc(sc); 731 if (error != 0) { 732 device_printf(sc->sc_dev, 733 "failed to allocate TX descriptors: %d\n", error); 734 goto bad; 735 } 736 error = ath_txdma_setup(sc); 737 if (error != 0) { 738 device_printf(sc->sc_dev, 739 "failed to allocate TX descriptors: %d\n", error); 740 goto bad; 741 } 742 743 /* 744 * Allocate RX descriptors and populate the lists. 745 */ 746 error = ath_rxdma_setup(sc); 747 if (error != 0) { 748 device_printf(sc->sc_dev, 749 "failed to allocate RX descriptors: %d\n", error); 750 goto bad; 751 } 752 753 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 754 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 755 756 ATH_TXBUF_LOCK_INIT(sc); 757 758 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 759 taskqueue_thread_enqueue, &sc->sc_tq); 760 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 761 device_get_nameunit(sc->sc_dev)); 762 763 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 764 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 765 TASK_INIT(&sc->sc_tsfoortask, 0, ath_tsfoor_proc, sc); 766 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 767 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 768 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 769 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 770 771 /* 772 * Allocate hardware transmit queues: one queue for 773 * beacon frames and one data queue for each QoS 774 * priority. Note that the hal handles resetting 775 * these queues at the needed time. 776 * 777 * XXX PS-Poll 778 */ 779 sc->sc_bhalq = ath_beaconq_setup(sc); 780 if (sc->sc_bhalq == (u_int) -1) { 781 device_printf(sc->sc_dev, 782 "unable to setup a beacon xmit queue!\n"); 783 error = EIO; 784 goto bad2; 785 } 786 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 787 if (sc->sc_cabq == NULL) { 788 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 789 error = EIO; 790 goto bad2; 791 } 792 /* NB: insure BK queue is the lowest priority h/w queue */ 793 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 794 device_printf(sc->sc_dev, 795 "unable to setup xmit queue for %s traffic!\n", 796 ieee80211_wme_acnames[WME_AC_BK]); 797 error = EIO; 798 goto bad2; 799 } 800 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 801 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 802 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 803 /* 804 * Not enough hardware tx queues to properly do WME; 805 * just punt and assign them all to the same h/w queue. 806 * We could do a better job of this if, for example, 807 * we allocate queues when we switch from station to 808 * AP mode. 809 */ 810 if (sc->sc_ac2q[WME_AC_VI] != NULL) 811 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 812 if (sc->sc_ac2q[WME_AC_BE] != NULL) 813 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 814 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 815 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 816 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 817 } 818 819 /* 820 * Attach the TX completion function. 821 * 822 * The non-EDMA chips may have some special case optimisations; 823 * this method gives everyone a chance to attach cleanly. 824 */ 825 sc->sc_tx.xmit_attach_comp_func(sc); 826 827 /* 828 * Setup rate control. Some rate control modules 829 * call back to change the anntena state so expose 830 * the necessary entry points. 831 * XXX maybe belongs in struct ath_ratectrl? 832 */ 833 sc->sc_setdefantenna = ath_setdefantenna; 834 sc->sc_rc = ath_rate_attach(sc); 835 if (sc->sc_rc == NULL) { 836 error = EIO; 837 goto bad2; 838 } 839 840 /* Attach DFS module */ 841 if (! ath_dfs_attach(sc)) { 842 device_printf(sc->sc_dev, 843 "%s: unable to attach DFS\n", __func__); 844 error = EIO; 845 goto bad2; 846 } 847 848 /* Attach spectral module */ 849 if (ath_spectral_attach(sc) < 0) { 850 device_printf(sc->sc_dev, 851 "%s: unable to attach spectral\n", __func__); 852 error = EIO; 853 goto bad2; 854 } 855 856 /* Attach bluetooth coexistence module */ 857 if (ath_btcoex_attach(sc) < 0) { 858 device_printf(sc->sc_dev, 859 "%s: unable to attach bluetooth coexistence\n", __func__); 860 error = EIO; 861 goto bad2; 862 } 863 864 /* Attach LNA diversity module */ 865 if (ath_lna_div_attach(sc) < 0) { 866 device_printf(sc->sc_dev, 867 "%s: unable to attach LNA diversity\n", __func__); 868 error = EIO; 869 goto bad2; 870 } 871 872 /* Start DFS processing tasklet */ 873 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 874 875 /* Configure LED state */ 876 sc->sc_blinking = 0; 877 sc->sc_ledstate = 1; 878 sc->sc_ledon = 0; /* low true */ 879 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 880 callout_init(&sc->sc_ledtimer, 1); 881 882 /* 883 * Don't setup hardware-based blinking. 884 * 885 * Although some NICs may have this configured in the 886 * default reset register values, the user may wish 887 * to alter which pins have which function. 888 * 889 * The reference driver attaches the MAC network LED to GPIO1 and 890 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 891 * NIC has these reversed. 892 */ 893 sc->sc_hardled = (1 == 0); 894 sc->sc_led_net_pin = -1; 895 sc->sc_led_pwr_pin = -1; 896 /* 897 * Auto-enable soft led processing for IBM cards and for 898 * 5211 minipci cards. Users can also manually enable/disable 899 * support with a sysctl. 900 */ 901 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 902 ath_led_config(sc); 903 ath_hal_setledstate(ah, HAL_LED_INIT); 904 905 /* XXX not right but it's not used anywhere important */ 906 ic->ic_phytype = IEEE80211_T_OFDM; 907 ic->ic_opmode = IEEE80211_M_STA; 908 ic->ic_caps = 909 IEEE80211_C_STA /* station mode */ 910 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 911 | IEEE80211_C_HOSTAP /* hostap mode */ 912 | IEEE80211_C_MONITOR /* monitor mode */ 913 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 914 | IEEE80211_C_WDS /* 4-address traffic works */ 915 | IEEE80211_C_MBSS /* mesh point link mode */ 916 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 917 | IEEE80211_C_SHSLOT /* short slot time supported */ 918 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 919 #ifndef ATH_ENABLE_11N 920 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 921 #endif 922 | IEEE80211_C_TXFRAG /* handle tx frags */ 923 #ifdef ATH_ENABLE_DFS 924 | IEEE80211_C_DFS /* Enable radar detection */ 925 #endif 926 | IEEE80211_C_PMGT /* Station side power mgmt */ 927 | IEEE80211_C_SWSLEEP 928 ; 929 /* 930 * Query the hal to figure out h/w crypto support. 931 */ 932 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 933 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 934 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 935 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 936 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 937 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 938 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 939 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 940 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 941 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 942 /* 943 * Check if h/w does the MIC and/or whether the 944 * separate key cache entries are required to 945 * handle both tx+rx MIC keys. 946 */ 947 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 948 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 949 /* 950 * If the h/w supports storing tx+rx MIC keys 951 * in one cache slot automatically enable use. 952 */ 953 if (ath_hal_hastkipsplit(ah) || 954 !ath_hal_settkipsplit(ah, AH_FALSE)) 955 sc->sc_splitmic = 1; 956 /* 957 * If the h/w can do TKIP MIC together with WME then 958 * we use it; otherwise we force the MIC to be done 959 * in software by the net80211 layer. 960 */ 961 if (ath_hal_haswmetkipmic(ah)) 962 sc->sc_wmetkipmic = 1; 963 } 964 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 965 /* 966 * Check for multicast key search support. 967 */ 968 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 969 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 970 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 971 } 972 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 973 /* 974 * Mark key cache slots associated with global keys 975 * as in use. If we knew TKIP was not to be used we 976 * could leave the +32, +64, and +32+64 slots free. 977 */ 978 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 979 setbit(sc->sc_keymap, i); 980 setbit(sc->sc_keymap, i+64); 981 if (sc->sc_splitmic) { 982 setbit(sc->sc_keymap, i+32); 983 setbit(sc->sc_keymap, i+32+64); 984 } 985 } 986 /* 987 * TPC support can be done either with a global cap or 988 * per-packet support. The latter is not available on 989 * all parts. We're a bit pedantic here as all parts 990 * support a global cap. 991 */ 992 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 993 ic->ic_caps |= IEEE80211_C_TXPMGT; 994 995 /* 996 * Mark WME capability only if we have sufficient 997 * hardware queues to do proper priority scheduling. 998 */ 999 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 1000 ic->ic_caps |= IEEE80211_C_WME; 1001 /* 1002 * Check for misc other capabilities. 1003 */ 1004 if (ath_hal_hasbursting(ah)) 1005 ic->ic_caps |= IEEE80211_C_BURST; 1006 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 1007 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 1008 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 1009 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 1010 1011 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 1012 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 1013 if (i == 32) { 1014 sc->sc_rxtsf32 = 1; 1015 } 1016 if (bootverbose) 1017 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1018 } 1019 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1020 if (bootverbose) 1021 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1022 } 1023 1024 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1025 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1026 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1027 1028 /* 1029 * Some WB335 cards do not support antenna diversity. Since 1030 * we use a hardcoded value for AR9565 instead of using the 1031 * EEPROM/OTP data, remove the combining feature from 1032 * the HW capabilities bitmap. 1033 */ 1034 /* 1035 * XXX TODO: check reference driver and ath9k for what to do 1036 * here for WB335. I think we have to actually disable the 1037 * LNA div processing in the HAL and instead use the hard 1038 * coded values; and then use BT diversity. 1039 * 1040 * .. but also need to setup MCI too for WB335.. 1041 */ 1042 #if 0 1043 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 1044 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n", 1045 __func__); 1046 sc->sc_dolnadiv = 0; 1047 } 1048 #endif 1049 1050 if (ath_hal_hasfastframes(ah)) 1051 ic->ic_caps |= IEEE80211_C_FF; 1052 wmodes = ath_hal_getwirelessmodes(ah); 1053 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1054 ic->ic_caps |= IEEE80211_C_TURBOP; 1055 #ifdef IEEE80211_SUPPORT_TDMA 1056 if (ath_hal_macversion(ah) > 0x78) { 1057 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1058 ic->ic_tdma_update = ath_tdma_update; 1059 } 1060 #endif 1061 1062 /* 1063 * TODO: enforce that at least this many frames are available 1064 * in the txbuf list before allowing data frames (raw or 1065 * otherwise) to be transmitted. 1066 */ 1067 sc->sc_txq_data_minfree = 10; 1068 1069 /* 1070 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1071 * is smaller. 1072 * 1073 * Anything bigger can potentially see the cabq consume 1074 * almost all buffers, starving everything else, only to 1075 * see most fail to transmit in the given beacon interval. 1076 */ 1077 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1078 1079 /* 1080 * How deep can the node software TX queue get whilst it's asleep. 1081 */ 1082 sc->sc_txq_node_psq_maxdepth = 16; 1083 1084 /* 1085 * Default the maximum queue to 1/4'th the TX buffers, or 1086 * 64, whichever is smaller. 1087 */ 1088 sc->sc_txq_node_maxdepth = MIN(64, ath_txbuf / 4); 1089 1090 /* Enable CABQ by default */ 1091 sc->sc_cabq_enable = 1; 1092 1093 /* 1094 * Allow the TX and RX chainmasks to be overridden by 1095 * environment variables and/or device.hints. 1096 * 1097 * This must be done early - before the hardware is 1098 * calibrated or before the 802.11n stream calculation 1099 * is done. 1100 */ 1101 if (resource_int_value(device_get_name(sc->sc_dev), 1102 device_get_unit(sc->sc_dev), "rx_chainmask", 1103 &rx_chainmask) == 0) { 1104 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1105 rx_chainmask); 1106 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1107 } 1108 if (resource_int_value(device_get_name(sc->sc_dev), 1109 device_get_unit(sc->sc_dev), "tx_chainmask", 1110 &tx_chainmask) == 0) { 1111 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1112 tx_chainmask); 1113 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1114 } 1115 1116 /* 1117 * Query the TX/RX chainmask configuration. 1118 * 1119 * This is only relevant for 11n devices. 1120 */ 1121 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1122 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1123 1124 /* 1125 * Disable MRR with protected frames by default. 1126 * Only 802.11n series NICs can handle this. 1127 */ 1128 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1129 1130 /* 1131 * Query the enterprise mode information the HAL. 1132 */ 1133 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1134 &sc->sc_ent_cfg) == HAL_OK) 1135 sc->sc_use_ent = 1; 1136 1137 #ifdef ATH_ENABLE_11N 1138 /* 1139 * Query HT capabilities 1140 */ 1141 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1142 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1143 uint32_t rxs, txs; 1144 uint32_t ldpc; 1145 1146 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1147 1148 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1149 1150 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1151 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1152 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1153 | IEEE80211_HTCAP_MAXAMSDU_3839 1154 /* max A-MSDU length */ 1155 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1156 1157 /* 1158 * Enable short-GI for HT20 only if the hardware 1159 * advertises support. 1160 * Notably, anything earlier than the AR9287 doesn't. 1161 */ 1162 if ((ath_hal_getcapability(ah, 1163 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1164 (wmodes & HAL_MODE_HT20)) { 1165 device_printf(sc->sc_dev, 1166 "[HT] enabling short-GI in 20MHz mode\n"); 1167 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1168 } 1169 1170 if (wmodes & HAL_MODE_HT40) 1171 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1172 | IEEE80211_HTCAP_SHORTGI40; 1173 1174 /* 1175 * TX/RX streams need to be taken into account when 1176 * negotiating which MCS rates it'll receive and 1177 * what MCS rates are available for TX. 1178 */ 1179 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1180 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1181 ic->ic_txstream = txs; 1182 ic->ic_rxstream = rxs; 1183 1184 /* 1185 * Setup TX and RX STBC based on what the HAL allows and 1186 * the currently configured chainmask set. 1187 * Ie - don't enable STBC TX if only one chain is enabled. 1188 * STBC RX is fine on a single RX chain; it just won't 1189 * provide any real benefit. 1190 */ 1191 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1192 NULL) == HAL_OK) { 1193 sc->sc_rx_stbc = 1; 1194 device_printf(sc->sc_dev, 1195 "[HT] 1 stream STBC receive enabled\n"); 1196 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1197 } 1198 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1199 NULL) == HAL_OK) { 1200 sc->sc_tx_stbc = 1; 1201 device_printf(sc->sc_dev, 1202 "[HT] 1 stream STBC transmit enabled\n"); 1203 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1204 } 1205 1206 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1207 &sc->sc_rts_aggr_limit); 1208 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1209 device_printf(sc->sc_dev, 1210 "[HT] RTS aggregates limited to %d KiB\n", 1211 sc->sc_rts_aggr_limit / 1024); 1212 1213 /* 1214 * LDPC 1215 */ 1216 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1217 == HAL_OK && (ldpc == 1)) { 1218 sc->sc_has_ldpc = 1; 1219 device_printf(sc->sc_dev, 1220 "[HT] LDPC transmit/receive enabled\n"); 1221 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1222 IEEE80211_HTC_TXLDPC; 1223 } 1224 1225 device_printf(sc->sc_dev, 1226 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1227 } 1228 #endif 1229 1230 /* 1231 * Initial aggregation settings. 1232 */ 1233 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1234 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1235 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1236 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1237 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1238 sc->sc_delim_min_pad = 0; 1239 1240 /* 1241 * Check if the hardware requires PCI register serialisation. 1242 * Some of the Owl based MACs require this. 1243 */ 1244 if (mp_ncpus > 1 && 1245 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1246 0, NULL) == HAL_OK) { 1247 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1248 device_printf(sc->sc_dev, 1249 "Enabling register serialisation\n"); 1250 } 1251 1252 /* 1253 * Initialise the deferred completed RX buffer list. 1254 */ 1255 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1256 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1257 1258 /* 1259 * Indicate we need the 802.11 header padded to a 1260 * 32-bit boundary for 4-address and QoS frames. 1261 */ 1262 ic->ic_flags |= IEEE80211_F_DATAPAD; 1263 1264 /* 1265 * Query the hal about antenna support. 1266 */ 1267 sc->sc_defant = ath_hal_getdefantenna(ah); 1268 1269 /* 1270 * Not all chips have the VEOL support we want to 1271 * use with IBSS beacons; check here for it. 1272 */ 1273 sc->sc_hasveol = ath_hal_hasveol(ah); 1274 1275 /* get mac address from kenv first, then hardware */ 1276 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1277 /* Tell the HAL now about the new MAC */ 1278 ath_hal_setmac(ah, ic->ic_macaddr); 1279 } else { 1280 ath_hal_getmac(ah, ic->ic_macaddr); 1281 } 1282 1283 if (sc->sc_hasbmask) 1284 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1285 1286 /* NB: used to size node table key mapping array */ 1287 ic->ic_max_keyix = sc->sc_keymax; 1288 /* call MI attach routine. */ 1289 ieee80211_ifattach(ic); 1290 ic->ic_setregdomain = ath_setregdomain; 1291 ic->ic_getradiocaps = ath_getradiocaps; 1292 sc->sc_opmode = HAL_M_STA; 1293 1294 /* override default methods */ 1295 ic->ic_ioctl = ath_ioctl; 1296 ic->ic_parent = ath_parent; 1297 ic->ic_transmit = ath_transmit; 1298 ic->ic_newassoc = ath_newassoc; 1299 ic->ic_updateslot = ath_updateslot; 1300 ic->ic_wme.wme_update = ath_wme_update; 1301 ic->ic_vap_create = ath_vap_create; 1302 ic->ic_vap_delete = ath_vap_delete; 1303 ic->ic_raw_xmit = ath_raw_xmit; 1304 ic->ic_update_mcast = ath_update_mcast; 1305 ic->ic_update_promisc = ath_update_promisc; 1306 ic->ic_node_alloc = ath_node_alloc; 1307 sc->sc_node_free = ic->ic_node_free; 1308 ic->ic_node_free = ath_node_free; 1309 sc->sc_node_cleanup = ic->ic_node_cleanup; 1310 ic->ic_node_cleanup = ath_node_cleanup; 1311 ic->ic_node_getsignal = ath_node_getsignal; 1312 ic->ic_scan_start = ath_scan_start; 1313 ic->ic_scan_end = ath_scan_end; 1314 ic->ic_set_channel = ath_set_channel; 1315 #ifdef ATH_ENABLE_11N 1316 /* 802.11n specific - but just override anyway */ 1317 sc->sc_addba_request = ic->ic_addba_request; 1318 sc->sc_addba_response = ic->ic_addba_response; 1319 sc->sc_addba_stop = ic->ic_addba_stop; 1320 sc->sc_bar_response = ic->ic_bar_response; 1321 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1322 1323 ic->ic_addba_request = ath_addba_request; 1324 ic->ic_addba_response = ath_addba_response; 1325 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1326 ic->ic_addba_stop = ath_addba_stop; 1327 ic->ic_bar_response = ath_bar_response; 1328 1329 ic->ic_update_chw = ath_update_chw; 1330 #endif /* ATH_ENABLE_11N */ 1331 ic->ic_set_quiet = ath_set_quiet_ie; 1332 1333 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1334 /* 1335 * There's one vendor bitmap entry in the RX radiotap 1336 * header; make sure that's taken into account. 1337 */ 1338 ieee80211_radiotap_attachv(ic, 1339 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1340 ATH_TX_RADIOTAP_PRESENT, 1341 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1342 ATH_RX_RADIOTAP_PRESENT); 1343 #else 1344 /* 1345 * No vendor bitmap/extensions are present. 1346 */ 1347 ieee80211_radiotap_attach(ic, 1348 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1349 ATH_TX_RADIOTAP_PRESENT, 1350 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1351 ATH_RX_RADIOTAP_PRESENT); 1352 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1353 1354 /* 1355 * Setup the ALQ logging if required 1356 */ 1357 #ifdef ATH_DEBUG_ALQ 1358 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1359 if_ath_alq_setcfg(&sc->sc_alq, 1360 sc->sc_ah->ah_macVersion, 1361 sc->sc_ah->ah_macRev, 1362 sc->sc_ah->ah_phyRev, 1363 sc->sc_ah->ah_magic); 1364 #endif 1365 1366 /* 1367 * Setup dynamic sysctl's now that country code and 1368 * regdomain are available from the hal. 1369 */ 1370 ath_sysctlattach(sc); 1371 ath_sysctl_stats_attach(sc); 1372 ath_sysctl_hal_attach(sc); 1373 1374 if (bootverbose) 1375 ieee80211_announce(ic); 1376 ath_announce(sc); 1377 1378 /* 1379 * Put it to sleep for now. 1380 */ 1381 ATH_LOCK(sc); 1382 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1383 ATH_UNLOCK(sc); 1384 1385 return 0; 1386 bad2: 1387 ath_tx_cleanup(sc); 1388 ath_desc_free(sc); 1389 ath_txdma_teardown(sc); 1390 ath_rxdma_teardown(sc); 1391 1392 bad: 1393 if (ah) 1394 ath_hal_detach(ah); 1395 sc->sc_invalid = 1; 1396 return error; 1397 } 1398 1399 int 1400 ath_detach(struct ath_softc *sc) 1401 { 1402 1403 /* 1404 * NB: the order of these is important: 1405 * o stop the chip so no more interrupts will fire 1406 * o call the 802.11 layer before detaching the hal to 1407 * insure callbacks into the driver to delete global 1408 * key cache entries can be handled 1409 * o free the taskqueue which drains any pending tasks 1410 * o reclaim the tx queue data structures after calling 1411 * the 802.11 layer as we'll get called back to reclaim 1412 * node state and potentially want to use them 1413 * o to cleanup the tx queues the hal is called, so detach 1414 * it last 1415 * Other than that, it's straightforward... 1416 */ 1417 1418 /* 1419 * XXX Wake the hardware up first. ath_stop() will still 1420 * wake it up first, but I'd rather do it here just to 1421 * ensure it's awake. 1422 */ 1423 ATH_LOCK(sc); 1424 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1425 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1426 1427 /* 1428 * Stop things cleanly. 1429 */ 1430 ath_stop(sc); 1431 ATH_UNLOCK(sc); 1432 1433 ieee80211_ifdetach(&sc->sc_ic); 1434 taskqueue_free(sc->sc_tq); 1435 #ifdef ATH_TX99_DIAG 1436 if (sc->sc_tx99 != NULL) 1437 sc->sc_tx99->detach(sc->sc_tx99); 1438 #endif 1439 ath_rate_detach(sc->sc_rc); 1440 #ifdef ATH_DEBUG_ALQ 1441 if_ath_alq_tidyup(&sc->sc_alq); 1442 #endif 1443 ath_lna_div_detach(sc); 1444 ath_btcoex_detach(sc); 1445 ath_spectral_detach(sc); 1446 ath_dfs_detach(sc); 1447 ath_desc_free(sc); 1448 ath_txdma_teardown(sc); 1449 ath_rxdma_teardown(sc); 1450 ath_tx_cleanup(sc); 1451 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1452 1453 return 0; 1454 } 1455 1456 /* 1457 * MAC address handling for multiple BSS on the same radio. 1458 * The first vap uses the MAC address from the EEPROM. For 1459 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1460 * address and use the next six bits as an index. 1461 */ 1462 static void 1463 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1464 { 1465 int i; 1466 1467 if (clone && sc->sc_hasbmask) { 1468 /* NB: we only do this if h/w supports multiple bssid */ 1469 for (i = 0; i < 8; i++) 1470 if ((sc->sc_bssidmask & (1<<i)) == 0) 1471 break; 1472 if (i != 0) 1473 mac[0] |= (i << 2)|0x2; 1474 } else 1475 i = 0; 1476 sc->sc_bssidmask |= 1<<i; 1477 sc->sc_hwbssidmask[0] &= ~mac[0]; 1478 if (i == 0) 1479 sc->sc_nbssid0++; 1480 } 1481 1482 static void 1483 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1484 { 1485 int i = mac[0] >> 2; 1486 uint8_t mask; 1487 1488 if (i != 0 || --sc->sc_nbssid0 == 0) { 1489 sc->sc_bssidmask &= ~(1<<i); 1490 /* recalculate bssid mask from remaining addresses */ 1491 mask = 0xff; 1492 for (i = 1; i < 8; i++) 1493 if (sc->sc_bssidmask & (1<<i)) 1494 mask &= ~((i<<2)|0x2); 1495 sc->sc_hwbssidmask[0] |= mask; 1496 } 1497 } 1498 1499 /* 1500 * Assign a beacon xmit slot. We try to space out 1501 * assignments so when beacons are staggered the 1502 * traffic coming out of the cab q has maximal time 1503 * to go out before the next beacon is scheduled. 1504 */ 1505 static int 1506 assign_bslot(struct ath_softc *sc) 1507 { 1508 u_int slot, free; 1509 1510 free = 0; 1511 for (slot = 0; slot < ATH_BCBUF; slot++) 1512 if (sc->sc_bslot[slot] == NULL) { 1513 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1514 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1515 return slot; 1516 free = slot; 1517 /* NB: keep looking for a double slot */ 1518 } 1519 return free; 1520 } 1521 1522 static struct ieee80211vap * 1523 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1524 enum ieee80211_opmode opmode, int flags, 1525 const uint8_t bssid[IEEE80211_ADDR_LEN], 1526 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1527 { 1528 struct ath_softc *sc = ic->ic_softc; 1529 struct ath_vap *avp; 1530 struct ieee80211vap *vap; 1531 uint8_t mac[IEEE80211_ADDR_LEN]; 1532 int needbeacon, error; 1533 enum ieee80211_opmode ic_opmode; 1534 1535 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1536 needbeacon = 0; 1537 IEEE80211_ADDR_COPY(mac, mac0); 1538 1539 ATH_LOCK(sc); 1540 ic_opmode = opmode; /* default to opmode of new vap */ 1541 switch (opmode) { 1542 case IEEE80211_M_STA: 1543 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1544 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1545 goto bad; 1546 } 1547 if (sc->sc_nvaps) { 1548 /* 1549 * With multiple vaps we must fall back 1550 * to s/w beacon miss handling. 1551 */ 1552 flags |= IEEE80211_CLONE_NOBEACONS; 1553 } 1554 if (flags & IEEE80211_CLONE_NOBEACONS) { 1555 /* 1556 * Station mode w/o beacons are implemented w/ AP mode. 1557 */ 1558 ic_opmode = IEEE80211_M_HOSTAP; 1559 } 1560 break; 1561 case IEEE80211_M_IBSS: 1562 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1563 device_printf(sc->sc_dev, 1564 "only 1 ibss vap supported\n"); 1565 goto bad; 1566 } 1567 needbeacon = 1; 1568 break; 1569 case IEEE80211_M_AHDEMO: 1570 #ifdef IEEE80211_SUPPORT_TDMA 1571 if (flags & IEEE80211_CLONE_TDMA) { 1572 if (sc->sc_nvaps != 0) { 1573 device_printf(sc->sc_dev, 1574 "only 1 tdma vap supported\n"); 1575 goto bad; 1576 } 1577 needbeacon = 1; 1578 flags |= IEEE80211_CLONE_NOBEACONS; 1579 } 1580 /* fall thru... */ 1581 #endif 1582 case IEEE80211_M_MONITOR: 1583 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1584 /* 1585 * Adopt existing mode. Adding a monitor or ahdemo 1586 * vap to an existing configuration is of dubious 1587 * value but should be ok. 1588 */ 1589 /* XXX not right for monitor mode */ 1590 ic_opmode = ic->ic_opmode; 1591 } 1592 break; 1593 case IEEE80211_M_HOSTAP: 1594 case IEEE80211_M_MBSS: 1595 needbeacon = 1; 1596 break; 1597 case IEEE80211_M_WDS: 1598 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1599 device_printf(sc->sc_dev, 1600 "wds not supported in sta mode\n"); 1601 goto bad; 1602 } 1603 /* 1604 * Silently remove any request for a unique 1605 * bssid; WDS vap's always share the local 1606 * mac address. 1607 */ 1608 flags &= ~IEEE80211_CLONE_BSSID; 1609 if (sc->sc_nvaps == 0) 1610 ic_opmode = IEEE80211_M_HOSTAP; 1611 else 1612 ic_opmode = ic->ic_opmode; 1613 break; 1614 default: 1615 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1616 goto bad; 1617 } 1618 /* 1619 * Check that a beacon buffer is available; the code below assumes it. 1620 */ 1621 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1622 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1623 goto bad; 1624 } 1625 1626 /* STA, AHDEMO? */ 1627 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) { 1628 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1629 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1630 } 1631 1632 vap = &avp->av_vap; 1633 /* XXX can't hold mutex across if_alloc */ 1634 ATH_UNLOCK(sc); 1635 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1636 ATH_LOCK(sc); 1637 if (error != 0) { 1638 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1639 __func__, error); 1640 goto bad2; 1641 } 1642 1643 /* h/w crypto support */ 1644 vap->iv_key_alloc = ath_key_alloc; 1645 vap->iv_key_delete = ath_key_delete; 1646 vap->iv_key_set = ath_key_set; 1647 vap->iv_key_update_begin = ath_key_update_begin; 1648 vap->iv_key_update_end = ath_key_update_end; 1649 1650 /* override various methods */ 1651 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1652 vap->iv_recv_mgmt = ath_recv_mgmt; 1653 vap->iv_reset = ath_reset_vap; 1654 vap->iv_update_beacon = ath_beacon_update; 1655 avp->av_newstate = vap->iv_newstate; 1656 vap->iv_newstate = ath_newstate; 1657 avp->av_bmiss = vap->iv_bmiss; 1658 vap->iv_bmiss = ath_bmiss_vap; 1659 1660 avp->av_node_ps = vap->iv_node_ps; 1661 vap->iv_node_ps = ath_node_powersave; 1662 1663 avp->av_set_tim = vap->iv_set_tim; 1664 vap->iv_set_tim = ath_node_set_tim; 1665 1666 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1667 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1668 1669 /* Set default parameters */ 1670 1671 /* 1672 * Anything earlier than some AR9300 series MACs don't 1673 * support a smaller MPDU density. 1674 */ 1675 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1676 /* 1677 * All NICs can handle the maximum size, however 1678 * AR5416 based MACs can only TX aggregates w/ RTS 1679 * protection when the total aggregate size is <= 8k. 1680 * However, for now that's enforced by the TX path. 1681 */ 1682 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1683 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1684 1685 avp->av_bslot = -1; 1686 if (needbeacon) { 1687 /* 1688 * Allocate beacon state and setup the q for buffered 1689 * multicast frames. We know a beacon buffer is 1690 * available because we checked above. 1691 */ 1692 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1693 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1694 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1695 /* 1696 * Assign the vap to a beacon xmit slot. As above 1697 * this cannot fail to find a free one. 1698 */ 1699 avp->av_bslot = assign_bslot(sc); 1700 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1701 ("beacon slot %u not empty", avp->av_bslot)); 1702 sc->sc_bslot[avp->av_bslot] = vap; 1703 sc->sc_nbcnvaps++; 1704 } 1705 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1706 /* 1707 * Multple vaps are to transmit beacons and we 1708 * have h/w support for TSF adjusting; enable 1709 * use of staggered beacons. 1710 */ 1711 sc->sc_stagbeacons = 1; 1712 } 1713 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1714 } 1715 1716 ic->ic_opmode = ic_opmode; 1717 if (opmode != IEEE80211_M_WDS) { 1718 sc->sc_nvaps++; 1719 if (opmode == IEEE80211_M_STA) 1720 sc->sc_nstavaps++; 1721 if (opmode == IEEE80211_M_MBSS) 1722 sc->sc_nmeshvaps++; 1723 } 1724 switch (ic_opmode) { 1725 case IEEE80211_M_IBSS: 1726 sc->sc_opmode = HAL_M_IBSS; 1727 break; 1728 case IEEE80211_M_STA: 1729 sc->sc_opmode = HAL_M_STA; 1730 break; 1731 case IEEE80211_M_AHDEMO: 1732 #ifdef IEEE80211_SUPPORT_TDMA 1733 if (vap->iv_caps & IEEE80211_C_TDMA) { 1734 sc->sc_tdma = 1; 1735 /* NB: disable tsf adjust */ 1736 sc->sc_stagbeacons = 0; 1737 } 1738 /* 1739 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1740 * just ap mode. 1741 */ 1742 /* fall thru... */ 1743 #endif 1744 case IEEE80211_M_HOSTAP: 1745 case IEEE80211_M_MBSS: 1746 sc->sc_opmode = HAL_M_HOSTAP; 1747 break; 1748 case IEEE80211_M_MONITOR: 1749 sc->sc_opmode = HAL_M_MONITOR; 1750 break; 1751 default: 1752 /* XXX should not happen */ 1753 break; 1754 } 1755 if (sc->sc_hastsfadd) { 1756 /* 1757 * Configure whether or not TSF adjust should be done. 1758 */ 1759 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1760 } 1761 if (flags & IEEE80211_CLONE_NOBEACONS) { 1762 /* 1763 * Enable s/w beacon miss handling. 1764 */ 1765 sc->sc_swbmiss = 1; 1766 } 1767 ATH_UNLOCK(sc); 1768 1769 /* complete setup */ 1770 ieee80211_vap_attach(vap, ieee80211_media_change, 1771 ieee80211_media_status, mac); 1772 return vap; 1773 bad2: 1774 reclaim_address(sc, mac); 1775 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1776 bad: 1777 free(avp, M_80211_VAP); 1778 ATH_UNLOCK(sc); 1779 return NULL; 1780 } 1781 1782 static void 1783 ath_vap_delete(struct ieee80211vap *vap) 1784 { 1785 struct ieee80211com *ic = vap->iv_ic; 1786 struct ath_softc *sc = ic->ic_softc; 1787 struct ath_hal *ah = sc->sc_ah; 1788 struct ath_vap *avp = ATH_VAP(vap); 1789 1790 ATH_LOCK(sc); 1791 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1792 ATH_UNLOCK(sc); 1793 1794 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1795 if (sc->sc_running) { 1796 /* 1797 * Quiesce the hardware while we remove the vap. In 1798 * particular we need to reclaim all references to 1799 * the vap state by any frames pending on the tx queues. 1800 */ 1801 ath_hal_intrset(ah, 0); /* disable interrupts */ 1802 /* XXX Do all frames from all vaps/nodes need draining here? */ 1803 ath_stoprecv(sc, 1); /* stop recv side */ 1804 ath_rx_flush(sc); 1805 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1806 } 1807 1808 /* .. leave the hardware awake for now. */ 1809 1810 ieee80211_vap_detach(vap); 1811 1812 /* 1813 * XXX Danger Will Robinson! Danger! 1814 * 1815 * Because ieee80211_vap_detach() can queue a frame (the station 1816 * diassociate message?) after we've drained the TXQ and 1817 * flushed the software TXQ, we will end up with a frame queued 1818 * to a node whose vap is about to be freed. 1819 * 1820 * To work around this, flush the hardware/software again. 1821 * This may be racy - the ath task may be running and the packet 1822 * may be being scheduled between sw->hw txq. Tsk. 1823 * 1824 * TODO: figure out why a new node gets allocated somewhere around 1825 * here (after the ath_tx_swq() call; and after an ath_stop() 1826 * call!) 1827 */ 1828 1829 ath_draintxq(sc, ATH_RESET_DEFAULT); 1830 1831 ATH_LOCK(sc); 1832 /* 1833 * Reclaim beacon state. Note this must be done before 1834 * the vap instance is reclaimed as we may have a reference 1835 * to it in the buffer for the beacon frame. 1836 */ 1837 if (avp->av_bcbuf != NULL) { 1838 if (avp->av_bslot != -1) { 1839 sc->sc_bslot[avp->av_bslot] = NULL; 1840 sc->sc_nbcnvaps--; 1841 } 1842 ath_beacon_return(sc, avp->av_bcbuf); 1843 avp->av_bcbuf = NULL; 1844 if (sc->sc_nbcnvaps == 0) { 1845 sc->sc_stagbeacons = 0; 1846 if (sc->sc_hastsfadd) 1847 ath_hal_settsfadjust(sc->sc_ah, 0); 1848 } 1849 /* 1850 * Reclaim any pending mcast frames for the vap. 1851 */ 1852 ath_tx_draintxq(sc, &avp->av_mcastq); 1853 } 1854 /* 1855 * Update bookkeeping. 1856 */ 1857 if (vap->iv_opmode == IEEE80211_M_STA) { 1858 sc->sc_nstavaps--; 1859 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1860 sc->sc_swbmiss = 0; 1861 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1862 vap->iv_opmode == IEEE80211_M_STA || 1863 vap->iv_opmode == IEEE80211_M_MBSS) { 1864 reclaim_address(sc, vap->iv_myaddr); 1865 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1866 if (vap->iv_opmode == IEEE80211_M_MBSS) 1867 sc->sc_nmeshvaps--; 1868 } 1869 if (vap->iv_opmode != IEEE80211_M_WDS) 1870 sc->sc_nvaps--; 1871 #ifdef IEEE80211_SUPPORT_TDMA 1872 /* TDMA operation ceases when the last vap is destroyed */ 1873 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1874 sc->sc_tdma = 0; 1875 sc->sc_swbmiss = 0; 1876 } 1877 #endif 1878 free(avp, M_80211_VAP); 1879 1880 if (sc->sc_running) { 1881 /* 1882 * Restart rx+tx machines if still running (RUNNING will 1883 * be reset if we just destroyed the last vap). 1884 */ 1885 if (ath_startrecv(sc) != 0) 1886 device_printf(sc->sc_dev, 1887 "%s: unable to restart recv logic\n", __func__); 1888 if (sc->sc_beacons) { /* restart beacons */ 1889 #ifdef IEEE80211_SUPPORT_TDMA 1890 if (sc->sc_tdma) 1891 ath_tdma_config(sc, NULL); 1892 else 1893 #endif 1894 ath_beacon_config(sc, NULL); 1895 } 1896 ath_hal_intrset(ah, sc->sc_imask); 1897 } 1898 1899 /* Ok, let the hardware asleep. */ 1900 ath_power_restore_power_state(sc); 1901 ATH_UNLOCK(sc); 1902 } 1903 1904 void 1905 ath_suspend(struct ath_softc *sc) 1906 { 1907 struct ieee80211com *ic = &sc->sc_ic; 1908 1909 sc->sc_resume_up = ic->ic_nrunning != 0; 1910 1911 ieee80211_suspend_all(ic); 1912 /* 1913 * NB: don't worry about putting the chip in low power 1914 * mode; pci will power off our socket on suspend and 1915 * CardBus detaches the device. 1916 * 1917 * XXX TODO: well, that's great, except for non-cardbus 1918 * devices! 1919 */ 1920 1921 /* 1922 * XXX This doesn't wait until all pending taskqueue 1923 * items and parallel transmit/receive/other threads 1924 * are running! 1925 */ 1926 ath_hal_intrset(sc->sc_ah, 0); 1927 taskqueue_block(sc->sc_tq); 1928 1929 ATH_LOCK(sc); 1930 callout_stop(&sc->sc_cal_ch); 1931 ATH_UNLOCK(sc); 1932 1933 /* 1934 * XXX ensure sc_invalid is 1 1935 */ 1936 1937 /* Disable the PCIe PHY, complete with workarounds */ 1938 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1939 } 1940 1941 /* 1942 * Reset the key cache since some parts do not reset the 1943 * contents on resume. First we clear all entries, then 1944 * re-load keys that the 802.11 layer assumes are setup 1945 * in h/w. 1946 */ 1947 static void 1948 ath_reset_keycache(struct ath_softc *sc) 1949 { 1950 struct ieee80211com *ic = &sc->sc_ic; 1951 struct ath_hal *ah = sc->sc_ah; 1952 int i; 1953 1954 ATH_LOCK(sc); 1955 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1956 for (i = 0; i < sc->sc_keymax; i++) 1957 ath_hal_keyreset(ah, i); 1958 ath_power_restore_power_state(sc); 1959 ATH_UNLOCK(sc); 1960 ieee80211_crypto_reload_keys(ic); 1961 } 1962 1963 /* 1964 * Fetch the current chainmask configuration based on the current 1965 * operating channel and options. 1966 */ 1967 static void 1968 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1969 { 1970 1971 /* 1972 * Set TX chainmask to the currently configured chainmask; 1973 * the TX chainmask depends upon the current operating mode. 1974 */ 1975 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1976 if (IEEE80211_IS_CHAN_HT(chan)) { 1977 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1978 } else { 1979 sc->sc_cur_txchainmask = 1; 1980 } 1981 1982 DPRINTF(sc, ATH_DEBUG_RESET, 1983 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1984 __func__, 1985 sc->sc_cur_txchainmask, 1986 sc->sc_cur_rxchainmask); 1987 } 1988 1989 void 1990 ath_resume(struct ath_softc *sc) 1991 { 1992 struct ieee80211com *ic = &sc->sc_ic; 1993 struct ath_hal *ah = sc->sc_ah; 1994 HAL_STATUS status; 1995 1996 ath_hal_enablepcie(ah, 0, 0); 1997 1998 /* 1999 * Must reset the chip before we reload the 2000 * keycache as we were powered down on suspend. 2001 */ 2002 ath_update_chainmasks(sc, 2003 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 2004 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2005 sc->sc_cur_rxchainmask); 2006 2007 /* Ensure we set the current power state to on */ 2008 ATH_LOCK(sc); 2009 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2010 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2011 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2012 ATH_UNLOCK(sc); 2013 2014 ath_hal_reset(ah, sc->sc_opmode, 2015 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 2016 AH_FALSE, HAL_RESET_NORMAL, &status); 2017 ath_reset_keycache(sc); 2018 2019 ATH_RX_LOCK(sc); 2020 sc->sc_rx_stopped = 1; 2021 sc->sc_rx_resetted = 1; 2022 ATH_RX_UNLOCK(sc); 2023 2024 /* Let DFS at it in case it's a DFS channel */ 2025 ath_dfs_radar_enable(sc, ic->ic_curchan); 2026 2027 /* Let spectral at in case spectral is enabled */ 2028 ath_spectral_enable(sc, ic->ic_curchan); 2029 2030 /* 2031 * Let bluetooth coexistence at in case it's needed for this channel 2032 */ 2033 ath_btcoex_enable(sc, ic->ic_curchan); 2034 2035 /* 2036 * If we're doing TDMA, enforce the TXOP limitation for chips that 2037 * support it. 2038 */ 2039 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2040 ath_hal_setenforcetxop(sc->sc_ah, 1); 2041 else 2042 ath_hal_setenforcetxop(sc->sc_ah, 0); 2043 2044 /* Restore the LED configuration */ 2045 ath_led_config(sc); 2046 ath_hal_setledstate(ah, HAL_LED_INIT); 2047 2048 if (sc->sc_resume_up) 2049 ieee80211_resume_all(ic); 2050 2051 ATH_LOCK(sc); 2052 ath_power_restore_power_state(sc); 2053 ATH_UNLOCK(sc); 2054 2055 /* XXX beacons ? */ 2056 } 2057 2058 void 2059 ath_shutdown(struct ath_softc *sc) 2060 { 2061 2062 ATH_LOCK(sc); 2063 ath_stop(sc); 2064 ATH_UNLOCK(sc); 2065 /* NB: no point powering down chip as we're about to reboot */ 2066 } 2067 2068 /* 2069 * Interrupt handler. Most of the actual processing is deferred. 2070 */ 2071 void 2072 ath_intr(void *arg) 2073 { 2074 struct ath_softc *sc = arg; 2075 struct ath_hal *ah = sc->sc_ah; 2076 HAL_INT status = 0; 2077 uint32_t txqs; 2078 2079 /* 2080 * If we're inside a reset path, just print a warning and 2081 * clear the ISR. The reset routine will finish it for us. 2082 */ 2083 ATH_PCU_LOCK(sc); 2084 if (sc->sc_inreset_cnt) { 2085 HAL_INT status; 2086 ath_hal_getisr(ah, &status); /* clear ISR */ 2087 ath_hal_intrset(ah, 0); /* disable further intr's */ 2088 DPRINTF(sc, ATH_DEBUG_ANY, 2089 "%s: in reset, ignoring: status=0x%x\n", 2090 __func__, status); 2091 ATH_PCU_UNLOCK(sc); 2092 return; 2093 } 2094 2095 if (sc->sc_invalid) { 2096 /* 2097 * The hardware is not ready/present, don't touch anything. 2098 * Note this can happen early on if the IRQ is shared. 2099 */ 2100 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2101 ATH_PCU_UNLOCK(sc); 2102 return; 2103 } 2104 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2105 ATH_PCU_UNLOCK(sc); 2106 return; 2107 } 2108 2109 ATH_LOCK(sc); 2110 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2111 ATH_UNLOCK(sc); 2112 2113 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2114 HAL_INT status; 2115 2116 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2117 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2118 ath_hal_getisr(ah, &status); /* clear ISR */ 2119 ath_hal_intrset(ah, 0); /* disable further intr's */ 2120 ATH_PCU_UNLOCK(sc); 2121 2122 ATH_LOCK(sc); 2123 ath_power_restore_power_state(sc); 2124 ATH_UNLOCK(sc); 2125 return; 2126 } 2127 2128 /* 2129 * Figure out the reason(s) for the interrupt. Note 2130 * that the hal returns a pseudo-ISR that may include 2131 * bits we haven't explicitly enabled so we mask the 2132 * value to insure we only process bits we requested. 2133 */ 2134 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2135 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2136 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2137 #ifdef ATH_DEBUG_ALQ 2138 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2139 ah->ah_syncstate); 2140 #endif /* ATH_DEBUG_ALQ */ 2141 #ifdef ATH_KTR_INTR_DEBUG 2142 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2143 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2144 ah->ah_intrstate[0], 2145 ah->ah_intrstate[1], 2146 ah->ah_intrstate[2], 2147 ah->ah_intrstate[3], 2148 ah->ah_intrstate[6]); 2149 #endif 2150 2151 /* Squirrel away SYNC interrupt debugging */ 2152 if (ah->ah_syncstate != 0) { 2153 int i; 2154 for (i = 0; i < 32; i++) 2155 if (ah->ah_syncstate & (1 << i)) 2156 sc->sc_intr_stats.sync_intr[i]++; 2157 } 2158 2159 status &= sc->sc_imask; /* discard unasked for bits */ 2160 2161 /* Short-circuit un-handled interrupts */ 2162 if (status == 0x0) { 2163 ATH_PCU_UNLOCK(sc); 2164 2165 ATH_LOCK(sc); 2166 ath_power_restore_power_state(sc); 2167 ATH_UNLOCK(sc); 2168 2169 return; 2170 } 2171 2172 /* 2173 * Take a note that we're inside the interrupt handler, so 2174 * the reset routines know to wait. 2175 */ 2176 sc->sc_intr_cnt++; 2177 ATH_PCU_UNLOCK(sc); 2178 2179 /* 2180 * Handle the interrupt. We won't run concurrent with the reset 2181 * or channel change routines as they'll wait for sc_intr_cnt 2182 * to be 0 before continuing. 2183 */ 2184 if (status & HAL_INT_FATAL) { 2185 sc->sc_stats.ast_hardware++; 2186 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2187 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2188 } else { 2189 if (status & HAL_INT_SWBA) { 2190 /* 2191 * Software beacon alert--time to send a beacon. 2192 * Handle beacon transmission directly; deferring 2193 * this is too slow to meet timing constraints 2194 * under load. 2195 */ 2196 #ifdef IEEE80211_SUPPORT_TDMA 2197 if (sc->sc_tdma) { 2198 if (sc->sc_tdmaswba == 0) { 2199 struct ieee80211com *ic = &sc->sc_ic; 2200 struct ieee80211vap *vap = 2201 TAILQ_FIRST(&ic->ic_vaps); 2202 ath_tdma_beacon_send(sc, vap); 2203 sc->sc_tdmaswba = 2204 vap->iv_tdma->tdma_bintval; 2205 } else 2206 sc->sc_tdmaswba--; 2207 } else 2208 #endif 2209 { 2210 ath_beacon_proc(sc, 0); 2211 #ifdef IEEE80211_SUPPORT_SUPERG 2212 /* 2213 * Schedule the rx taskq in case there's no 2214 * traffic so any frames held on the staging 2215 * queue are aged and potentially flushed. 2216 */ 2217 sc->sc_rx.recv_sched(sc, 1); 2218 #endif 2219 } 2220 } 2221 if (status & HAL_INT_RXEOL) { 2222 int imask; 2223 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2224 if (! sc->sc_isedma) { 2225 ATH_PCU_LOCK(sc); 2226 /* 2227 * NB: the hardware should re-read the link when 2228 * RXE bit is written, but it doesn't work at 2229 * least on older hardware revs. 2230 */ 2231 sc->sc_stats.ast_rxeol++; 2232 /* 2233 * Disable RXEOL/RXORN - prevent an interrupt 2234 * storm until the PCU logic can be reset. 2235 * In case the interface is reset some other 2236 * way before "sc_kickpcu" is called, don't 2237 * modify sc_imask - that way if it is reset 2238 * by a call to ath_reset() somehow, the 2239 * interrupt mask will be correctly reprogrammed. 2240 */ 2241 imask = sc->sc_imask; 2242 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2243 ath_hal_intrset(ah, imask); 2244 /* 2245 * Only blank sc_rxlink if we've not yet kicked 2246 * the PCU. 2247 * 2248 * This isn't entirely correct - the correct solution 2249 * would be to have a PCU lock and engage that for 2250 * the duration of the PCU fiddling; which would include 2251 * running the RX process. Otherwise we could end up 2252 * messing up the RX descriptor chain and making the 2253 * RX desc list much shorter. 2254 */ 2255 if (! sc->sc_kickpcu) 2256 sc->sc_rxlink = NULL; 2257 sc->sc_kickpcu = 1; 2258 ATH_PCU_UNLOCK(sc); 2259 } 2260 /* 2261 * Enqueue an RX proc to handle whatever 2262 * is in the RX queue. 2263 * This will then kick the PCU if required. 2264 */ 2265 sc->sc_rx.recv_sched(sc, 1); 2266 } 2267 if (status & HAL_INT_TXURN) { 2268 sc->sc_stats.ast_txurn++; 2269 /* bump tx trigger level */ 2270 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2271 } 2272 /* 2273 * Handle both the legacy and RX EDMA interrupt bits. 2274 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2275 */ 2276 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2277 sc->sc_stats.ast_rx_intr++; 2278 sc->sc_rx.recv_sched(sc, 1); 2279 } 2280 if (status & HAL_INT_TX) { 2281 sc->sc_stats.ast_tx_intr++; 2282 /* 2283 * Grab all the currently set bits in the HAL txq bitmap 2284 * and blank them. This is the only place we should be 2285 * doing this. 2286 */ 2287 if (! sc->sc_isedma) { 2288 ATH_PCU_LOCK(sc); 2289 txqs = 0xffffffff; 2290 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2291 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2292 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2293 txqs, 2294 sc->sc_txq_active, 2295 sc->sc_txq_active | txqs); 2296 sc->sc_txq_active |= txqs; 2297 ATH_PCU_UNLOCK(sc); 2298 } 2299 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2300 } 2301 if (status & HAL_INT_BMISS) { 2302 sc->sc_stats.ast_bmiss++; 2303 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2304 } 2305 if (status & HAL_INT_GTT) 2306 sc->sc_stats.ast_tx_timeout++; 2307 if (status & HAL_INT_CST) 2308 sc->sc_stats.ast_tx_cst++; 2309 if (status & HAL_INT_MIB) { 2310 sc->sc_stats.ast_mib++; 2311 ATH_PCU_LOCK(sc); 2312 /* 2313 * Disable interrupts until we service the MIB 2314 * interrupt; otherwise it will continue to fire. 2315 */ 2316 ath_hal_intrset(ah, 0); 2317 /* 2318 * Let the hal handle the event. We assume it will 2319 * clear whatever condition caused the interrupt. 2320 */ 2321 ath_hal_mibevent(ah, &sc->sc_halstats); 2322 /* 2323 * Don't reset the interrupt if we've just 2324 * kicked the PCU, or we may get a nested 2325 * RXEOL before the rxproc has had a chance 2326 * to run. 2327 */ 2328 if (sc->sc_kickpcu == 0) 2329 ath_hal_intrset(ah, sc->sc_imask); 2330 ATH_PCU_UNLOCK(sc); 2331 } 2332 if (status & HAL_INT_RXORN) { 2333 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2334 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2335 sc->sc_stats.ast_rxorn++; 2336 } 2337 if (status & HAL_INT_TSFOOR) { 2338 /* 2339 * out of range beacon - wake the chip up, 2340 * but don't modify self-gen frame config. 2341 * Do a full reset to clear any potential stuck 2342 * PHY/MAC that generated this condition. 2343 */ 2344 sc->sc_stats.ast_tsfoor++; 2345 ATH_LOCK(sc); 2346 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2347 ATH_UNLOCK(sc); 2348 taskqueue_enqueue(sc->sc_tq, &sc->sc_tsfoortask); 2349 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2350 } 2351 if (status & HAL_INT_MCI) { 2352 ath_btcoex_mci_intr(sc); 2353 } 2354 } 2355 ATH_PCU_LOCK(sc); 2356 sc->sc_intr_cnt--; 2357 ATH_PCU_UNLOCK(sc); 2358 2359 ATH_LOCK(sc); 2360 ath_power_restore_power_state(sc); 2361 ATH_UNLOCK(sc); 2362 } 2363 2364 static void 2365 ath_fatal_proc(void *arg, int pending) 2366 { 2367 struct ath_softc *sc = arg; 2368 u_int32_t *state; 2369 u_int32_t len; 2370 void *sp; 2371 2372 if (sc->sc_invalid) 2373 return; 2374 2375 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2376 /* 2377 * Fatal errors are unrecoverable. Typically these 2378 * are caused by DMA errors. Collect h/w state from 2379 * the hal so we can diagnose what's going on. 2380 */ 2381 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2382 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2383 state = sp; 2384 device_printf(sc->sc_dev, 2385 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2386 state[1] , state[2], state[3], state[4], state[5]); 2387 } 2388 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2389 } 2390 2391 static void 2392 ath_bmiss_vap(struct ieee80211vap *vap) 2393 { 2394 struct ath_softc *sc = vap->iv_ic->ic_softc; 2395 2396 /* 2397 * Workaround phantom bmiss interrupts by sanity-checking 2398 * the time of our last rx'd frame. If it is within the 2399 * beacon miss interval then ignore the interrupt. If it's 2400 * truly a bmiss we'll get another interrupt soon and that'll 2401 * be dispatched up for processing. Note this applies only 2402 * for h/w beacon miss events. 2403 */ 2404 2405 /* 2406 * XXX TODO: Just read the TSF during the interrupt path; 2407 * that way we don't have to wake up again just to read it 2408 * again. 2409 */ 2410 ATH_LOCK(sc); 2411 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2412 ATH_UNLOCK(sc); 2413 2414 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2415 u_int64_t lastrx = sc->sc_lastrx; 2416 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2417 /* XXX should take a locked ref to iv_bss */ 2418 u_int bmisstimeout = 2419 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2420 2421 DPRINTF(sc, ATH_DEBUG_BEACON, 2422 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2423 __func__, (unsigned long long) tsf, 2424 (unsigned long long)(tsf - lastrx), 2425 (unsigned long long) lastrx, bmisstimeout); 2426 2427 if (tsf - lastrx <= bmisstimeout) { 2428 sc->sc_stats.ast_bmiss_phantom++; 2429 2430 ATH_LOCK(sc); 2431 ath_power_restore_power_state(sc); 2432 ATH_UNLOCK(sc); 2433 2434 return; 2435 } 2436 } 2437 2438 /* 2439 * Keep the hardware awake if it's asleep (and leave self-gen 2440 * frame config alone) until the next beacon, so we can resync 2441 * against the next beacon. 2442 * 2443 * This handles three common beacon miss cases in STA powersave mode - 2444 * (a) the beacon TBTT isnt a multiple of bintval; 2445 * (b) the beacon was missed; and 2446 * (c) the beacons are being delayed because the AP is busy and 2447 * isn't reliably able to meet its TBTT. 2448 */ 2449 ATH_LOCK(sc); 2450 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2451 ath_power_restore_power_state(sc); 2452 ATH_UNLOCK(sc); 2453 DPRINTF(sc, ATH_DEBUG_BEACON, 2454 "%s: forced awake; force syncbeacon=1\n", __func__); 2455 2456 /* 2457 * Attempt to force a beacon resync. 2458 */ 2459 sc->sc_syncbeacon = 1; 2460 2461 ATH_VAP(vap)->av_bmiss(vap); 2462 } 2463 2464 /* XXX this needs a force wakeup! */ 2465 int 2466 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2467 { 2468 uint32_t rsize; 2469 void *sp; 2470 2471 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2472 return 0; 2473 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2474 *hangs = *(uint32_t *)sp; 2475 return 1; 2476 } 2477 2478 static void 2479 ath_bmiss_proc(void *arg, int pending) 2480 { 2481 struct ath_softc *sc = arg; 2482 uint32_t hangs; 2483 2484 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2485 2486 ATH_LOCK(sc); 2487 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2488 ATH_UNLOCK(sc); 2489 2490 ath_beacon_miss(sc); 2491 2492 /* 2493 * Do a reset upon any beacon miss event. 2494 * 2495 * It may be a non-recognised RX clear hang which needs a reset 2496 * to clear. 2497 */ 2498 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2499 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC); 2500 device_printf(sc->sc_dev, 2501 "bb hang detected (0x%x), resetting\n", hangs); 2502 } else { 2503 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2504 ieee80211_beacon_miss(&sc->sc_ic); 2505 } 2506 2507 /* Force a beacon resync, in case they've drifted */ 2508 sc->sc_syncbeacon = 1; 2509 2510 ATH_LOCK(sc); 2511 ath_power_restore_power_state(sc); 2512 ATH_UNLOCK(sc); 2513 } 2514 2515 /* 2516 * Handle a TSF out of range interrupt in STA mode. 2517 * 2518 * This may be due to a partially deaf looking radio, so 2519 * do a full reset just in case it is indeed deaf and 2520 * resync the beacon. 2521 */ 2522 static void 2523 ath_tsfoor_proc(void *arg, int pending) 2524 { 2525 struct ath_softc *sc = arg; 2526 2527 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2528 2529 ATH_LOCK(sc); 2530 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2531 ATH_UNLOCK(sc); 2532 2533 /* 2534 * Do a full reset after any TSFOOR. It's possible that 2535 * we've gone deaf or partially deaf (eg due to calibration 2536 * failures) and this should clean things up a bit. 2537 */ 2538 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2539 2540 /* Force a beacon resync, in case they've drifted */ 2541 sc->sc_syncbeacon = 1; 2542 2543 ATH_LOCK(sc); 2544 ath_power_restore_power_state(sc); 2545 ATH_UNLOCK(sc); 2546 } 2547 2548 /* 2549 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2550 * calcs together with WME. If necessary disable the crypto 2551 * hardware and mark the 802.11 state so keys will be setup 2552 * with the MIC work done in software. 2553 */ 2554 static void 2555 ath_settkipmic(struct ath_softc *sc) 2556 { 2557 struct ieee80211com *ic = &sc->sc_ic; 2558 2559 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2560 if (ic->ic_flags & IEEE80211_F_WME) { 2561 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2562 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2563 } else { 2564 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2565 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2566 } 2567 } 2568 } 2569 2570 static void 2571 ath_vap_clear_quiet_ie(struct ath_softc *sc) 2572 { 2573 struct ieee80211com *ic = &sc->sc_ic; 2574 struct ieee80211vap *vap; 2575 struct ath_vap *avp; 2576 2577 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2578 avp = ATH_VAP(vap); 2579 /* Quiet time handling - ensure we resync */ 2580 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 2581 } 2582 } 2583 2584 static int 2585 ath_init(struct ath_softc *sc) 2586 { 2587 struct ieee80211com *ic = &sc->sc_ic; 2588 struct ath_hal *ah = sc->sc_ah; 2589 HAL_STATUS status; 2590 2591 ATH_LOCK_ASSERT(sc); 2592 2593 /* 2594 * Force the sleep state awake. 2595 */ 2596 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2597 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2598 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2599 2600 /* 2601 * Stop anything previously setup. This is safe 2602 * whether this is the first time through or not. 2603 */ 2604 ath_stop(sc); 2605 2606 /* 2607 * The basic interface to setting the hardware in a good 2608 * state is ``reset''. On return the hardware is known to 2609 * be powered up and with interrupts disabled. This must 2610 * be followed by initialization of the appropriate bits 2611 * and then setup of the interrupt mask. 2612 */ 2613 ath_settkipmic(sc); 2614 ath_update_chainmasks(sc, ic->ic_curchan); 2615 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2616 sc->sc_cur_rxchainmask); 2617 2618 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2619 HAL_RESET_NORMAL, &status)) { 2620 device_printf(sc->sc_dev, 2621 "unable to reset hardware; hal status %u\n", status); 2622 return (ENODEV); 2623 } 2624 2625 ATH_RX_LOCK(sc); 2626 sc->sc_rx_stopped = 1; 2627 sc->sc_rx_resetted = 1; 2628 ATH_RX_UNLOCK(sc); 2629 2630 /* Clear quiet IE state for each VAP */ 2631 ath_vap_clear_quiet_ie(sc); 2632 2633 ath_chan_change(sc, ic->ic_curchan); 2634 2635 /* Let DFS at it in case it's a DFS channel */ 2636 ath_dfs_radar_enable(sc, ic->ic_curchan); 2637 2638 /* Let spectral at in case spectral is enabled */ 2639 ath_spectral_enable(sc, ic->ic_curchan); 2640 2641 /* 2642 * Let bluetooth coexistence at in case it's needed for this channel 2643 */ 2644 ath_btcoex_enable(sc, ic->ic_curchan); 2645 2646 /* 2647 * If we're doing TDMA, enforce the TXOP limitation for chips that 2648 * support it. 2649 */ 2650 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2651 ath_hal_setenforcetxop(sc->sc_ah, 1); 2652 else 2653 ath_hal_setenforcetxop(sc->sc_ah, 0); 2654 2655 /* 2656 * Likewise this is set during reset so update 2657 * state cached in the driver. 2658 */ 2659 sc->sc_diversity = ath_hal_getdiversity(ah); 2660 sc->sc_lastlongcal = ticks; 2661 sc->sc_resetcal = 1; 2662 sc->sc_lastcalreset = 0; 2663 sc->sc_lastani = ticks; 2664 sc->sc_lastshortcal = ticks; 2665 sc->sc_doresetcal = AH_FALSE; 2666 /* 2667 * Beacon timers were cleared here; give ath_newstate() 2668 * a hint that the beacon timers should be poked when 2669 * things transition to the RUN state. 2670 */ 2671 sc->sc_beacons = 0; 2672 2673 /* 2674 * Setup the hardware after reset: the key cache 2675 * is filled as needed and the receive engine is 2676 * set going. Frame transmit is handled entirely 2677 * in the frame output path; there's nothing to do 2678 * here except setup the interrupt mask. 2679 */ 2680 if (ath_startrecv(sc) != 0) { 2681 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2682 ath_power_restore_power_state(sc); 2683 return (ENODEV); 2684 } 2685 2686 /* 2687 * Enable interrupts. 2688 */ 2689 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2690 | HAL_INT_RXORN | HAL_INT_TXURN 2691 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2692 2693 /* 2694 * Enable RX EDMA bits. Note these overlap with 2695 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2696 */ 2697 if (sc->sc_isedma) 2698 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2699 2700 /* 2701 * If we're an EDMA NIC, we don't care about RXEOL. 2702 * Writing a new descriptor in will simply restart 2703 * RX DMA. 2704 */ 2705 if (! sc->sc_isedma) 2706 sc->sc_imask |= HAL_INT_RXEOL; 2707 2708 /* 2709 * Enable MCI interrupt for MCI devices. 2710 */ 2711 if (sc->sc_btcoex_mci) 2712 sc->sc_imask |= HAL_INT_MCI; 2713 2714 /* 2715 * Enable MIB interrupts when there are hardware phy counters. 2716 * Note we only do this (at the moment) for station mode. 2717 */ 2718 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2719 sc->sc_imask |= HAL_INT_MIB; 2720 2721 /* 2722 * XXX add capability for this. 2723 * 2724 * If we're in STA mode (and maybe IBSS?) then register for 2725 * TSFOOR interrupts. 2726 */ 2727 if (ic->ic_opmode == IEEE80211_M_STA) 2728 sc->sc_imask |= HAL_INT_TSFOOR; 2729 2730 /* Enable global TX timeout and carrier sense timeout if available */ 2731 if (ath_hal_gtxto_supported(ah)) 2732 sc->sc_imask |= HAL_INT_GTT; 2733 2734 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2735 __func__, sc->sc_imask); 2736 2737 sc->sc_running = 1; 2738 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2739 ath_hal_intrset(ah, sc->sc_imask); 2740 2741 ath_power_restore_power_state(sc); 2742 2743 return (0); 2744 } 2745 2746 static void 2747 ath_stop(struct ath_softc *sc) 2748 { 2749 struct ath_hal *ah = sc->sc_ah; 2750 2751 ATH_LOCK_ASSERT(sc); 2752 2753 /* 2754 * Wake the hardware up before fiddling with it. 2755 */ 2756 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2757 2758 if (sc->sc_running) { 2759 /* 2760 * Shutdown the hardware and driver: 2761 * reset 802.11 state machine 2762 * turn off timers 2763 * disable interrupts 2764 * turn off the radio 2765 * clear transmit machinery 2766 * clear receive machinery 2767 * drain and release tx queues 2768 * reclaim beacon resources 2769 * power down hardware 2770 * 2771 * Note that some of this work is not possible if the 2772 * hardware is gone (invalid). 2773 */ 2774 #ifdef ATH_TX99_DIAG 2775 if (sc->sc_tx99 != NULL) 2776 sc->sc_tx99->stop(sc->sc_tx99); 2777 #endif 2778 callout_stop(&sc->sc_wd_ch); 2779 sc->sc_wd_timer = 0; 2780 sc->sc_running = 0; 2781 if (!sc->sc_invalid) { 2782 if (sc->sc_softled) { 2783 callout_stop(&sc->sc_ledtimer); 2784 ath_hal_gpioset(ah, sc->sc_ledpin, 2785 !sc->sc_ledon); 2786 sc->sc_blinking = 0; 2787 } 2788 ath_hal_intrset(ah, 0); 2789 } 2790 /* XXX we should stop RX regardless of whether it's valid */ 2791 if (!sc->sc_invalid) { 2792 ath_stoprecv(sc, 1); 2793 ath_hal_phydisable(ah); 2794 } else 2795 sc->sc_rxlink = NULL; 2796 ath_draintxq(sc, ATH_RESET_DEFAULT); 2797 ath_beacon_free(sc); /* XXX not needed */ 2798 } 2799 2800 /* And now, restore the current power state */ 2801 ath_power_restore_power_state(sc); 2802 } 2803 2804 /* 2805 * Wait until all pending TX/RX has completed. 2806 * 2807 * This waits until all existing transmit, receive and interrupts 2808 * have completed. It's assumed that the caller has first 2809 * grabbed the reset lock so it doesn't try to do overlapping 2810 * chip resets. 2811 */ 2812 #define MAX_TXRX_ITERATIONS 100 2813 static void 2814 ath_txrx_stop_locked(struct ath_softc *sc) 2815 { 2816 int i = MAX_TXRX_ITERATIONS; 2817 2818 ATH_UNLOCK_ASSERT(sc); 2819 ATH_PCU_LOCK_ASSERT(sc); 2820 2821 /* 2822 * Sleep until all the pending operations have completed. 2823 * 2824 * The caller must ensure that reset has been incremented 2825 * or the pending operations may continue being queued. 2826 */ 2827 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2828 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2829 if (i <= 0) 2830 break; 2831 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2832 msecs_to_ticks(10)); 2833 i--; 2834 } 2835 2836 if (i <= 0) 2837 device_printf(sc->sc_dev, 2838 "%s: didn't finish after %d iterations\n", 2839 __func__, MAX_TXRX_ITERATIONS); 2840 } 2841 #undef MAX_TXRX_ITERATIONS 2842 2843 #if 0 2844 static void 2845 ath_txrx_stop(struct ath_softc *sc) 2846 { 2847 ATH_UNLOCK_ASSERT(sc); 2848 ATH_PCU_UNLOCK_ASSERT(sc); 2849 2850 ATH_PCU_LOCK(sc); 2851 ath_txrx_stop_locked(sc); 2852 ATH_PCU_UNLOCK(sc); 2853 } 2854 #endif 2855 2856 static void 2857 ath_txrx_start(struct ath_softc *sc) 2858 { 2859 2860 taskqueue_unblock(sc->sc_tq); 2861 } 2862 2863 /* 2864 * Grab the reset lock, and wait around until no one else 2865 * is trying to do anything with it. 2866 * 2867 * This is totally horrible but we can't hold this lock for 2868 * long enough to do TX/RX or we end up with net80211/ip stack 2869 * LORs and eventual deadlock. 2870 * 2871 * "dowait" signals whether to spin, waiting for the reset 2872 * lock count to reach 0. This should (for now) only be used 2873 * during the reset path, as the rest of the code may not 2874 * be locking-reentrant enough to behave correctly. 2875 * 2876 * Another, cleaner way should be found to serialise all of 2877 * these operations. 2878 */ 2879 #define MAX_RESET_ITERATIONS 25 2880 static int 2881 ath_reset_grablock(struct ath_softc *sc, int dowait) 2882 { 2883 int w = 0; 2884 int i = MAX_RESET_ITERATIONS; 2885 2886 ATH_PCU_LOCK_ASSERT(sc); 2887 do { 2888 if (sc->sc_inreset_cnt == 0) { 2889 w = 1; 2890 break; 2891 } 2892 if (dowait == 0) { 2893 w = 0; 2894 break; 2895 } 2896 ATH_PCU_UNLOCK(sc); 2897 /* 2898 * 1 tick is likely not enough time for long calibrations 2899 * to complete. So we should wait quite a while. 2900 */ 2901 pause("ath_reset_grablock", msecs_to_ticks(100)); 2902 i--; 2903 ATH_PCU_LOCK(sc); 2904 } while (i > 0); 2905 2906 /* 2907 * We always increment the refcounter, regardless 2908 * of whether we succeeded to get it in an exclusive 2909 * way. 2910 */ 2911 sc->sc_inreset_cnt++; 2912 2913 if (i <= 0) 2914 device_printf(sc->sc_dev, 2915 "%s: didn't finish after %d iterations\n", 2916 __func__, MAX_RESET_ITERATIONS); 2917 2918 if (w == 0) 2919 device_printf(sc->sc_dev, 2920 "%s: warning, recursive reset path!\n", 2921 __func__); 2922 2923 return w; 2924 } 2925 #undef MAX_RESET_ITERATIONS 2926 2927 /* 2928 * Reset the hardware w/o losing operational state. This is 2929 * basically a more efficient way of doing ath_stop, ath_init, 2930 * followed by state transitions to the current 802.11 2931 * operational state. Used to recover from various errors and 2932 * to reset or reload hardware state. 2933 */ 2934 int 2935 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type, 2936 HAL_RESET_TYPE ah_reset_type) 2937 { 2938 struct ieee80211com *ic = &sc->sc_ic; 2939 struct ath_hal *ah = sc->sc_ah; 2940 HAL_STATUS status; 2941 int i; 2942 2943 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2944 2945 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2946 ATH_PCU_UNLOCK_ASSERT(sc); 2947 ATH_UNLOCK_ASSERT(sc); 2948 2949 /* Try to (stop any further TX/RX from occurring */ 2950 taskqueue_block(sc->sc_tq); 2951 2952 /* 2953 * Wake the hardware up. 2954 */ 2955 ATH_LOCK(sc); 2956 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2957 ATH_UNLOCK(sc); 2958 2959 ATH_PCU_LOCK(sc); 2960 2961 /* 2962 * Grab the reset lock before TX/RX is stopped. 2963 * 2964 * This is needed to ensure that when the TX/RX actually does finish, 2965 * no further TX/RX/reset runs in parallel with this. 2966 */ 2967 if (ath_reset_grablock(sc, 1) == 0) { 2968 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2969 __func__); 2970 } 2971 2972 /* disable interrupts */ 2973 ath_hal_intrset(ah, 0); 2974 2975 /* 2976 * Now, ensure that any in progress TX/RX completes before we 2977 * continue. 2978 */ 2979 ath_txrx_stop_locked(sc); 2980 2981 ATH_PCU_UNLOCK(sc); 2982 2983 /* 2984 * Regardless of whether we're doing a no-loss flush or 2985 * not, stop the PCU and handle what's in the RX queue. 2986 * That way frames aren't dropped which shouldn't be. 2987 */ 2988 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2989 ath_rx_flush(sc); 2990 2991 /* 2992 * Should now wait for pending TX/RX to complete 2993 * and block future ones from occurring. This needs to be 2994 * done before the TX queue is drained. 2995 */ 2996 ath_draintxq(sc, reset_type); /* stop xmit side */ 2997 2998 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2999 /* NB: indicate channel change so we do a full reset */ 3000 ath_update_chainmasks(sc, ic->ic_curchan); 3001 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 3002 sc->sc_cur_rxchainmask); 3003 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 3004 ah_reset_type, &status)) 3005 device_printf(sc->sc_dev, 3006 "%s: unable to reset hardware; hal status %u\n", 3007 __func__, status); 3008 sc->sc_diversity = ath_hal_getdiversity(ah); 3009 3010 ATH_RX_LOCK(sc); 3011 sc->sc_rx_stopped = 1; 3012 sc->sc_rx_resetted = 1; 3013 ATH_RX_UNLOCK(sc); 3014 3015 /* Quiet time handling - ensure we resync */ 3016 ath_vap_clear_quiet_ie(sc); 3017 3018 /* Let DFS at it in case it's a DFS channel */ 3019 ath_dfs_radar_enable(sc, ic->ic_curchan); 3020 3021 /* Let spectral at in case spectral is enabled */ 3022 ath_spectral_enable(sc, ic->ic_curchan); 3023 3024 /* 3025 * Let bluetooth coexistence at in case it's needed for this channel 3026 */ 3027 ath_btcoex_enable(sc, ic->ic_curchan); 3028 3029 /* 3030 * If we're doing TDMA, enforce the TXOP limitation for chips that 3031 * support it. 3032 */ 3033 if (sc->sc_hasenforcetxop && sc->sc_tdma) 3034 ath_hal_setenforcetxop(sc->sc_ah, 1); 3035 else 3036 ath_hal_setenforcetxop(sc->sc_ah, 0); 3037 3038 if (ath_startrecv(sc) != 0) /* restart recv */ 3039 device_printf(sc->sc_dev, 3040 "%s: unable to start recv logic\n", __func__); 3041 /* 3042 * We may be doing a reset in response to an ioctl 3043 * that changes the channel so update any state that 3044 * might change as a result. 3045 */ 3046 ath_chan_change(sc, ic->ic_curchan); 3047 if (sc->sc_beacons) { /* restart beacons */ 3048 #ifdef IEEE80211_SUPPORT_TDMA 3049 if (sc->sc_tdma) 3050 ath_tdma_config(sc, NULL); 3051 else 3052 #endif 3053 ath_beacon_config(sc, NULL); 3054 } 3055 3056 /* 3057 * Release the reset lock and re-enable interrupts here. 3058 * If an interrupt was being processed in ath_intr(), 3059 * it would disable interrupts at this point. So we have 3060 * to atomically enable interrupts and decrement the 3061 * reset counter - this way ath_intr() doesn't end up 3062 * disabling interrupts without a corresponding enable 3063 * in the rest or channel change path. 3064 * 3065 * Grab the TX reference in case we need to transmit. 3066 * That way a parallel transmit doesn't. 3067 */ 3068 ATH_PCU_LOCK(sc); 3069 sc->sc_inreset_cnt--; 3070 sc->sc_txstart_cnt++; 3071 /* XXX only do this if sc_inreset_cnt == 0? */ 3072 ath_hal_intrset(ah, sc->sc_imask); 3073 ATH_PCU_UNLOCK(sc); 3074 3075 /* 3076 * TX and RX can be started here. If it were started with 3077 * sc_inreset_cnt > 0, the TX and RX path would abort. 3078 * Thus if this is a nested call through the reset or 3079 * channel change code, TX completion will occur but 3080 * RX completion and ath_start / ath_tx_start will not 3081 * run. 3082 */ 3083 3084 /* Restart TX/RX as needed */ 3085 ath_txrx_start(sc); 3086 3087 /* XXX TODO: we need to hold the tx refcount here! */ 3088 3089 /* Restart TX completion and pending TX */ 3090 if (reset_type == ATH_RESET_NOLOSS) { 3091 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3092 if (ATH_TXQ_SETUP(sc, i)) { 3093 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3094 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 3095 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3096 3097 ATH_TX_LOCK(sc); 3098 ath_txq_sched(sc, &sc->sc_txq[i]); 3099 ATH_TX_UNLOCK(sc); 3100 } 3101 } 3102 } 3103 3104 ATH_LOCK(sc); 3105 ath_power_restore_power_state(sc); 3106 ATH_UNLOCK(sc); 3107 3108 ATH_PCU_LOCK(sc); 3109 sc->sc_txstart_cnt--; 3110 ATH_PCU_UNLOCK(sc); 3111 3112 /* Handle any frames in the TX queue */ 3113 /* 3114 * XXX should this be done by the caller, rather than 3115 * ath_reset() ? 3116 */ 3117 ath_tx_kick(sc); /* restart xmit */ 3118 return 0; 3119 } 3120 3121 static int 3122 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3123 { 3124 struct ieee80211com *ic = vap->iv_ic; 3125 struct ath_softc *sc = ic->ic_softc; 3126 struct ath_hal *ah = sc->sc_ah; 3127 3128 switch (cmd) { 3129 case IEEE80211_IOC_TXPOWER: 3130 /* 3131 * If per-packet TPC is enabled, then we have nothing 3132 * to do; otherwise we need to force the global limit. 3133 * All this can happen directly; no need to reset. 3134 */ 3135 if (!ath_hal_gettpc(ah)) 3136 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3137 return 0; 3138 } 3139 /* XXX? Full or NOLOSS? */ 3140 return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL); 3141 } 3142 3143 struct ath_buf * 3144 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3145 { 3146 struct ath_buf *bf; 3147 3148 ATH_TXBUF_LOCK_ASSERT(sc); 3149 3150 if (btype == ATH_BUFTYPE_MGMT) 3151 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3152 else 3153 bf = TAILQ_FIRST(&sc->sc_txbuf); 3154 3155 if (bf == NULL) { 3156 sc->sc_stats.ast_tx_getnobuf++; 3157 } else { 3158 if (bf->bf_flags & ATH_BUF_BUSY) { 3159 sc->sc_stats.ast_tx_getbusybuf++; 3160 bf = NULL; 3161 } 3162 } 3163 3164 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3165 if (btype == ATH_BUFTYPE_MGMT) 3166 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3167 else { 3168 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3169 sc->sc_txbuf_cnt--; 3170 3171 /* 3172 * This shuldn't happen; however just to be 3173 * safe print a warning and fudge the txbuf 3174 * count. 3175 */ 3176 if (sc->sc_txbuf_cnt < 0) { 3177 device_printf(sc->sc_dev, 3178 "%s: sc_txbuf_cnt < 0?\n", 3179 __func__); 3180 sc->sc_txbuf_cnt = 0; 3181 } 3182 } 3183 } else 3184 bf = NULL; 3185 3186 if (bf == NULL) { 3187 /* XXX should check which list, mgmt or otherwise */ 3188 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3189 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3190 "out of xmit buffers" : "xmit buffer busy"); 3191 return NULL; 3192 } 3193 3194 /* XXX TODO: should do this at buffer list initialisation */ 3195 /* XXX (then, ensure the buffer has the right flag set) */ 3196 bf->bf_flags = 0; 3197 if (btype == ATH_BUFTYPE_MGMT) 3198 bf->bf_flags |= ATH_BUF_MGMT; 3199 else 3200 bf->bf_flags &= (~ATH_BUF_MGMT); 3201 3202 /* Valid bf here; clear some basic fields */ 3203 bf->bf_next = NULL; /* XXX just to be sure */ 3204 bf->bf_last = NULL; /* XXX again, just to be sure */ 3205 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3206 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3207 3208 /* 3209 * Track the descriptor ID only if doing EDMA 3210 */ 3211 if (sc->sc_isedma) { 3212 bf->bf_descid = sc->sc_txbuf_descid; 3213 sc->sc_txbuf_descid++; 3214 } 3215 3216 return bf; 3217 } 3218 3219 /* 3220 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3221 * can't be thrown back on the queue as they could still be 3222 * in use by the hardware. 3223 * 3224 * This duplicates the buffer, or returns NULL. 3225 * 3226 * The descriptor is also copied but the link pointers and 3227 * the DMA segments aren't copied; this frame should thus 3228 * be again passed through the descriptor setup/chain routines 3229 * so the link is correct. 3230 * 3231 * The caller must free the buffer using ath_freebuf(). 3232 */ 3233 struct ath_buf * 3234 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3235 { 3236 struct ath_buf *tbf; 3237 3238 tbf = ath_getbuf(sc, 3239 (bf->bf_flags & ATH_BUF_MGMT) ? 3240 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3241 if (tbf == NULL) 3242 return NULL; /* XXX failure? Why? */ 3243 3244 /* Copy basics */ 3245 tbf->bf_next = NULL; 3246 tbf->bf_nseg = bf->bf_nseg; 3247 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3248 tbf->bf_status = bf->bf_status; 3249 tbf->bf_m = bf->bf_m; 3250 tbf->bf_node = bf->bf_node; 3251 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3252 /* will be setup by the chain/setup function */ 3253 tbf->bf_lastds = NULL; 3254 /* for now, last == self */ 3255 tbf->bf_last = tbf; 3256 tbf->bf_comp = bf->bf_comp; 3257 3258 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3259 3260 /* The caller has to re-init the descriptor + links */ 3261 3262 /* 3263 * Free the DMA mapping here, before we NULL the mbuf. 3264 * We must only call bus_dmamap_unload() once per mbuf chain 3265 * or behaviour is undefined. 3266 */ 3267 if (bf->bf_m != NULL) { 3268 /* 3269 * XXX is this POSTWRITE call required? 3270 */ 3271 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3272 BUS_DMASYNC_POSTWRITE); 3273 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3274 } 3275 3276 bf->bf_m = NULL; 3277 bf->bf_node = NULL; 3278 3279 /* Copy state */ 3280 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3281 3282 return tbf; 3283 } 3284 3285 struct ath_buf * 3286 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3287 { 3288 struct ath_buf *bf; 3289 3290 ATH_TXBUF_LOCK(sc); 3291 bf = _ath_getbuf_locked(sc, btype); 3292 /* 3293 * If a mgmt buffer was requested but we're out of those, 3294 * try requesting a normal one. 3295 */ 3296 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3297 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3298 ATH_TXBUF_UNLOCK(sc); 3299 if (bf == NULL) { 3300 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3301 sc->sc_stats.ast_tx_qstop++; 3302 } 3303 return bf; 3304 } 3305 3306 /* 3307 * Transmit a single frame. 3308 * 3309 * net80211 will free the node reference if the transmit 3310 * fails, so don't free the node reference here. 3311 */ 3312 static int 3313 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3314 { 3315 struct ath_softc *sc = ic->ic_softc; 3316 struct ieee80211_node *ni; 3317 struct mbuf *next; 3318 struct ath_buf *bf; 3319 ath_bufhead frags; 3320 int retval = 0; 3321 3322 /* 3323 * Tell the reset path that we're currently transmitting. 3324 */ 3325 ATH_PCU_LOCK(sc); 3326 if (sc->sc_inreset_cnt > 0) { 3327 DPRINTF(sc, ATH_DEBUG_XMIT, 3328 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3329 ATH_PCU_UNLOCK(sc); 3330 sc->sc_stats.ast_tx_qstop++; 3331 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3332 return (ENOBUFS); /* XXX should be EINVAL or? */ 3333 } 3334 sc->sc_txstart_cnt++; 3335 ATH_PCU_UNLOCK(sc); 3336 3337 /* Wake the hardware up already */ 3338 ATH_LOCK(sc); 3339 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3340 ATH_UNLOCK(sc); 3341 3342 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3343 /* 3344 * Grab the TX lock - it's ok to do this here; we haven't 3345 * yet started transmitting. 3346 */ 3347 ATH_TX_LOCK(sc); 3348 3349 /* 3350 * Node reference, if there's one. 3351 */ 3352 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3353 3354 /* 3355 * Enforce how deep a node queue can get. 3356 * 3357 * XXX it would be nicer if we kept an mbuf queue per 3358 * node and only whacked them into ath_bufs when we 3359 * are ready to schedule some traffic from them. 3360 * .. that may come later. 3361 * 3362 * XXX we should also track the per-node hardware queue 3363 * depth so it is easy to limit the _SUM_ of the swq and 3364 * hwq frames. Since we only schedule two HWQ frames 3365 * at a time, this should be OK for now. 3366 */ 3367 if ((!(m->m_flags & M_EAPOL)) && 3368 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3369 sc->sc_stats.ast_tx_nodeq_overflow++; 3370 retval = ENOBUFS; 3371 goto finish; 3372 } 3373 3374 /* 3375 * Check how many TX buffers are available. 3376 * 3377 * If this is for non-EAPOL traffic, just leave some 3378 * space free in order for buffer cloning and raw 3379 * frame transmission to occur. 3380 * 3381 * If it's for EAPOL traffic, ignore this for now. 3382 * Management traffic will be sent via the raw transmit 3383 * method which bypasses this check. 3384 * 3385 * This is needed to ensure that EAPOL frames during 3386 * (re) keying have a chance to go out. 3387 * 3388 * See kern/138379 for more information. 3389 */ 3390 if ((!(m->m_flags & M_EAPOL)) && 3391 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3392 sc->sc_stats.ast_tx_nobuf++; 3393 retval = ENOBUFS; 3394 goto finish; 3395 } 3396 3397 /* 3398 * Grab a TX buffer and associated resources. 3399 * 3400 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3401 * That way even with temporary buffer exhaustion due to 3402 * the data path doesn't leave us without the ability 3403 * to transmit management frames. 3404 * 3405 * Otherwise allocate a normal buffer. 3406 */ 3407 if (m->m_flags & M_EAPOL) 3408 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3409 else 3410 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3411 3412 if (bf == NULL) { 3413 /* 3414 * If we failed to allocate a buffer, fail. 3415 * 3416 * We shouldn't fail normally, due to the check 3417 * above. 3418 */ 3419 sc->sc_stats.ast_tx_nobuf++; 3420 retval = ENOBUFS; 3421 goto finish; 3422 } 3423 3424 /* 3425 * At this point we have a buffer; so we need to free it 3426 * if we hit any error conditions. 3427 */ 3428 3429 /* 3430 * Check for fragmentation. If this frame 3431 * has been broken up verify we have enough 3432 * buffers to send all the fragments so all 3433 * go out or none... 3434 */ 3435 TAILQ_INIT(&frags); 3436 if ((m->m_flags & M_FRAG) && 3437 !ath_txfrag_setup(sc, &frags, m, ni)) { 3438 DPRINTF(sc, ATH_DEBUG_XMIT, 3439 "%s: out of txfrag buffers\n", __func__); 3440 sc->sc_stats.ast_tx_nofrag++; 3441 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3442 /* 3443 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3444 * we shouldn't free it but return back. 3445 */ 3446 ieee80211_free_mbuf(m); 3447 m = NULL; 3448 goto bad; 3449 } 3450 3451 /* 3452 * At this point if we have any TX fragments, then we will 3453 * have bumped the node reference once for each of those. 3454 */ 3455 3456 /* 3457 * XXX Is there anything actually _enforcing_ that the 3458 * fragments are being transmitted in one hit, rather than 3459 * being interleaved with other transmissions on that 3460 * hardware queue? 3461 * 3462 * The ATH TX output lock is the only thing serialising this 3463 * right now. 3464 */ 3465 3466 /* 3467 * Calculate the "next fragment" length field in ath_buf 3468 * in order to let the transmit path know enough about 3469 * what to next write to the hardware. 3470 */ 3471 if (m->m_flags & M_FRAG) { 3472 struct ath_buf *fbf = bf; 3473 struct ath_buf *n_fbf = NULL; 3474 struct mbuf *fm = m->m_nextpkt; 3475 3476 /* 3477 * We need to walk the list of fragments and set 3478 * the next size to the following buffer. 3479 * However, the first buffer isn't in the frag 3480 * list, so we have to do some gymnastics here. 3481 */ 3482 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3483 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3484 fbf = n_fbf; 3485 fm = fm->m_nextpkt; 3486 } 3487 } 3488 3489 nextfrag: 3490 /* 3491 * Pass the frame to the h/w for transmission. 3492 * Fragmented frames have each frag chained together 3493 * with m_nextpkt. We know there are sufficient ath_buf's 3494 * to send all the frags because of work done by 3495 * ath_txfrag_setup. We leave m_nextpkt set while 3496 * calling ath_tx_start so it can use it to extend the 3497 * the tx duration to cover the subsequent frag and 3498 * so it can reclaim all the mbufs in case of an error; 3499 * ath_tx_start clears m_nextpkt once it commits to 3500 * handing the frame to the hardware. 3501 * 3502 * Note: if this fails, then the mbufs are freed but 3503 * not the node reference. 3504 * 3505 * So, we now have to free the node reference ourselves here 3506 * and return OK up to the stack. 3507 */ 3508 next = m->m_nextpkt; 3509 if (ath_tx_start(sc, ni, bf, m)) { 3510 bad: 3511 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3512 reclaim: 3513 bf->bf_m = NULL; 3514 bf->bf_node = NULL; 3515 ATH_TXBUF_LOCK(sc); 3516 ath_returnbuf_head(sc, bf); 3517 /* 3518 * Free the rest of the node references and 3519 * buffers for the fragment list. 3520 */ 3521 ath_txfrag_cleanup(sc, &frags, ni); 3522 ATH_TXBUF_UNLOCK(sc); 3523 3524 /* 3525 * XXX: And free the node/return OK; ath_tx_start() may have 3526 * modified the buffer. We currently have no way to 3527 * signify that the mbuf was freed but there was an error. 3528 */ 3529 ieee80211_free_node(ni); 3530 retval = 0; 3531 goto finish; 3532 } 3533 3534 /* 3535 * Check here if the node is in power save state. 3536 */ 3537 ath_tx_update_tim(sc, ni, 1); 3538 3539 if (next != NULL) { 3540 /* 3541 * Beware of state changing between frags. 3542 * XXX check sta power-save state? 3543 */ 3544 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3545 DPRINTF(sc, ATH_DEBUG_XMIT, 3546 "%s: flush fragmented packet, state %s\n", 3547 __func__, 3548 ieee80211_state_name[ni->ni_vap->iv_state]); 3549 /* XXX dmamap */ 3550 ieee80211_free_mbuf(next); 3551 goto reclaim; 3552 } 3553 m = next; 3554 bf = TAILQ_FIRST(&frags); 3555 KASSERT(bf != NULL, ("no buf for txfrag")); 3556 TAILQ_REMOVE(&frags, bf, bf_list); 3557 goto nextfrag; 3558 } 3559 3560 /* 3561 * Bump watchdog timer. 3562 */ 3563 sc->sc_wd_timer = 5; 3564 3565 finish: 3566 ATH_TX_UNLOCK(sc); 3567 3568 /* 3569 * Finished transmitting! 3570 */ 3571 ATH_PCU_LOCK(sc); 3572 sc->sc_txstart_cnt--; 3573 ATH_PCU_UNLOCK(sc); 3574 3575 /* Sleep the hardware if required */ 3576 ATH_LOCK(sc); 3577 ath_power_restore_power_state(sc); 3578 ATH_UNLOCK(sc); 3579 3580 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3581 3582 return (retval); 3583 } 3584 3585 /* 3586 * Block/unblock tx+rx processing while a key change is done. 3587 * We assume the caller serializes key management operations 3588 * so we only need to worry about synchronization with other 3589 * uses that originate in the driver. 3590 */ 3591 static void 3592 ath_key_update_begin(struct ieee80211vap *vap) 3593 { 3594 struct ath_softc *sc = vap->iv_ic->ic_softc; 3595 3596 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3597 taskqueue_block(sc->sc_tq); 3598 } 3599 3600 static void 3601 ath_key_update_end(struct ieee80211vap *vap) 3602 { 3603 struct ath_softc *sc = vap->iv_ic->ic_softc; 3604 3605 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3606 taskqueue_unblock(sc->sc_tq); 3607 } 3608 3609 static void 3610 ath_update_promisc(struct ieee80211com *ic) 3611 { 3612 struct ath_softc *sc = ic->ic_softc; 3613 u_int32_t rfilt; 3614 3615 /* configure rx filter */ 3616 ATH_LOCK(sc); 3617 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3618 rfilt = ath_calcrxfilter(sc); 3619 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3620 ath_power_restore_power_state(sc); 3621 ATH_UNLOCK(sc); 3622 3623 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3624 } 3625 3626 static u_int 3627 ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 3628 { 3629 uint32_t val, *mfilt = arg; 3630 char *dl; 3631 uint8_t pos; 3632 3633 /* calculate XOR of eight 6bit values */ 3634 dl = LLADDR(sdl); 3635 val = le32dec(dl + 0); 3636 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3637 val = le32dec(dl + 3); 3638 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3639 pos &= 0x3f; 3640 mfilt[pos / 32] |= (1 << (pos % 32)); 3641 3642 return (1); 3643 } 3644 3645 /* 3646 * Driver-internal mcast update call. 3647 * 3648 * Assumes the hardware is already awake. 3649 */ 3650 static void 3651 ath_update_mcast_hw(struct ath_softc *sc) 3652 { 3653 struct ieee80211com *ic = &sc->sc_ic; 3654 u_int32_t mfilt[2]; 3655 3656 /* calculate and install multicast filter */ 3657 if (ic->ic_allmulti == 0) { 3658 struct ieee80211vap *vap; 3659 3660 /* 3661 * Merge multicast addresses to form the hardware filter. 3662 */ 3663 mfilt[0] = mfilt[1] = 0; 3664 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 3665 if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt); 3666 } else 3667 mfilt[0] = mfilt[1] = ~0; 3668 3669 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3670 3671 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3672 __func__, mfilt[0], mfilt[1]); 3673 } 3674 3675 /* 3676 * Called from the net80211 layer - force the hardware 3677 * awake before operating. 3678 */ 3679 static void 3680 ath_update_mcast(struct ieee80211com *ic) 3681 { 3682 struct ath_softc *sc = ic->ic_softc; 3683 3684 ATH_LOCK(sc); 3685 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3686 ATH_UNLOCK(sc); 3687 3688 ath_update_mcast_hw(sc); 3689 3690 ATH_LOCK(sc); 3691 ath_power_restore_power_state(sc); 3692 ATH_UNLOCK(sc); 3693 } 3694 3695 void 3696 ath_mode_init(struct ath_softc *sc) 3697 { 3698 struct ieee80211com *ic = &sc->sc_ic; 3699 struct ath_hal *ah = sc->sc_ah; 3700 u_int32_t rfilt; 3701 3702 /* XXX power state? */ 3703 3704 /* configure rx filter */ 3705 rfilt = ath_calcrxfilter(sc); 3706 ath_hal_setrxfilter(ah, rfilt); 3707 3708 /* configure operational mode */ 3709 ath_hal_setopmode(ah); 3710 3711 /* handle any link-level address change */ 3712 ath_hal_setmac(ah, ic->ic_macaddr); 3713 3714 /* calculate and install multicast filter */ 3715 ath_update_mcast_hw(sc); 3716 } 3717 3718 /* 3719 * Set the slot time based on the current setting. 3720 */ 3721 void 3722 ath_setslottime(struct ath_softc *sc) 3723 { 3724 struct ieee80211com *ic = &sc->sc_ic; 3725 struct ath_hal *ah = sc->sc_ah; 3726 u_int usec; 3727 3728 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3729 usec = 13; 3730 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3731 usec = 21; 3732 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3733 /* honor short/long slot time only in 11g */ 3734 /* XXX shouldn't honor on pure g or turbo g channel */ 3735 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3736 usec = HAL_SLOT_TIME_9; 3737 else 3738 usec = HAL_SLOT_TIME_20; 3739 } else 3740 usec = HAL_SLOT_TIME_9; 3741 3742 DPRINTF(sc, ATH_DEBUG_RESET, 3743 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3744 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3745 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3746 3747 /* Wake up the hardware first before updating the slot time */ 3748 ATH_LOCK(sc); 3749 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3750 ath_hal_setslottime(ah, usec); 3751 ath_power_restore_power_state(sc); 3752 sc->sc_updateslot = OK; 3753 ATH_UNLOCK(sc); 3754 } 3755 3756 /* 3757 * Callback from the 802.11 layer to update the 3758 * slot time based on the current setting. 3759 */ 3760 static void 3761 ath_updateslot(struct ieee80211com *ic) 3762 { 3763 struct ath_softc *sc = ic->ic_softc; 3764 3765 /* 3766 * When not coordinating the BSS, change the hardware 3767 * immediately. For other operation we defer the change 3768 * until beacon updates have propagated to the stations. 3769 * 3770 * XXX sc_updateslot isn't changed behind a lock? 3771 */ 3772 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3773 ic->ic_opmode == IEEE80211_M_MBSS) 3774 sc->sc_updateslot = UPDATE; 3775 else 3776 ath_setslottime(sc); 3777 } 3778 3779 /* 3780 * Append the contents of src to dst; both queues 3781 * are assumed to be locked. 3782 */ 3783 void 3784 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3785 { 3786 3787 ATH_TXQ_LOCK_ASSERT(src); 3788 ATH_TXQ_LOCK_ASSERT(dst); 3789 3790 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3791 dst->axq_link = src->axq_link; 3792 src->axq_link = NULL; 3793 dst->axq_depth += src->axq_depth; 3794 dst->axq_aggr_depth += src->axq_aggr_depth; 3795 src->axq_depth = 0; 3796 src->axq_aggr_depth = 0; 3797 } 3798 3799 /* 3800 * Reset the hardware, with no loss. 3801 * 3802 * This can't be used for a general case reset. 3803 */ 3804 static void 3805 ath_reset_proc(void *arg, int pending) 3806 { 3807 struct ath_softc *sc = arg; 3808 3809 #if 0 3810 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3811 #endif 3812 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3813 } 3814 3815 /* 3816 * Reset the hardware after detecting beacons have stopped. 3817 */ 3818 static void 3819 ath_bstuck_proc(void *arg, int pending) 3820 { 3821 struct ath_softc *sc = arg; 3822 uint32_t hangs = 0; 3823 3824 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3825 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3826 3827 #ifdef ATH_DEBUG_ALQ 3828 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3829 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3830 #endif 3831 3832 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3833 sc->sc_bmisscount); 3834 sc->sc_stats.ast_bstuck++; 3835 /* 3836 * This assumes that there's no simultaneous channel mode change 3837 * occurring. 3838 */ 3839 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3840 } 3841 3842 static int 3843 ath_desc_alloc(struct ath_softc *sc) 3844 { 3845 int error; 3846 3847 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3848 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3849 if (error != 0) { 3850 return error; 3851 } 3852 sc->sc_txbuf_cnt = ath_txbuf; 3853 3854 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3855 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3856 ATH_TXDESC); 3857 if (error != 0) { 3858 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3859 return error; 3860 } 3861 3862 /* 3863 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3864 * flag doesn't have to be set in ath_getbuf_locked(). 3865 */ 3866 3867 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3868 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3869 if (error != 0) { 3870 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3871 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3872 &sc->sc_txbuf_mgmt); 3873 return error; 3874 } 3875 return 0; 3876 } 3877 3878 static void 3879 ath_desc_free(struct ath_softc *sc) 3880 { 3881 3882 if (sc->sc_bdma.dd_desc_len != 0) 3883 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3884 if (sc->sc_txdma.dd_desc_len != 0) 3885 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3886 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3887 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3888 &sc->sc_txbuf_mgmt); 3889 } 3890 3891 static struct ieee80211_node * 3892 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3893 { 3894 struct ieee80211com *ic = vap->iv_ic; 3895 struct ath_softc *sc = ic->ic_softc; 3896 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3897 struct ath_node *an; 3898 3899 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3900 if (an == NULL) { 3901 /* XXX stat+msg */ 3902 return NULL; 3903 } 3904 ath_rate_node_init(sc, an); 3905 3906 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3907 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3908 device_get_nameunit(sc->sc_dev), an); 3909 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3910 3911 /* XXX setup ath_tid */ 3912 ath_tx_tid_init(sc, an); 3913 3914 an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 3915 an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 3916 an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 3917 3918 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3919 return &an->an_node; 3920 } 3921 3922 static void 3923 ath_node_cleanup(struct ieee80211_node *ni) 3924 { 3925 struct ieee80211com *ic = ni->ni_ic; 3926 struct ath_softc *sc = ic->ic_softc; 3927 3928 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3929 ni->ni_macaddr, ":", ATH_NODE(ni)); 3930 3931 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3932 ath_tx_node_flush(sc, ATH_NODE(ni)); 3933 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3934 sc->sc_node_cleanup(ni); 3935 } 3936 3937 static void 3938 ath_node_free(struct ieee80211_node *ni) 3939 { 3940 struct ieee80211com *ic = ni->ni_ic; 3941 struct ath_softc *sc = ic->ic_softc; 3942 3943 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3944 ni->ni_macaddr, ":", ATH_NODE(ni)); 3945 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3946 sc->sc_node_free(ni); 3947 } 3948 3949 static void 3950 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3951 { 3952 struct ieee80211com *ic = ni->ni_ic; 3953 struct ath_softc *sc = ic->ic_softc; 3954 struct ath_hal *ah = sc->sc_ah; 3955 3956 *rssi = ic->ic_node_getrssi(ni); 3957 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3958 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3959 else 3960 *noise = -95; /* nominally correct */ 3961 } 3962 3963 /* 3964 * Set the default antenna. 3965 */ 3966 void 3967 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3968 { 3969 struct ath_hal *ah = sc->sc_ah; 3970 3971 /* XXX block beacon interrupts */ 3972 ath_hal_setdefantenna(ah, antenna); 3973 if (sc->sc_defant != antenna) 3974 sc->sc_stats.ast_ant_defswitch++; 3975 sc->sc_defant = antenna; 3976 sc->sc_rxotherant = 0; 3977 } 3978 3979 static void 3980 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3981 { 3982 txq->axq_qnum = qnum; 3983 txq->axq_ac = 0; 3984 txq->axq_depth = 0; 3985 txq->axq_aggr_depth = 0; 3986 txq->axq_intrcnt = 0; 3987 txq->axq_link = NULL; 3988 txq->axq_softc = sc; 3989 TAILQ_INIT(&txq->axq_q); 3990 TAILQ_INIT(&txq->axq_tidq); 3991 TAILQ_INIT(&txq->fifo.axq_q); 3992 ATH_TXQ_LOCK_INIT(sc, txq); 3993 } 3994 3995 /* 3996 * Setup a h/w transmit queue. 3997 */ 3998 static struct ath_txq * 3999 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4000 { 4001 struct ath_hal *ah = sc->sc_ah; 4002 HAL_TXQ_INFO qi; 4003 int qnum; 4004 4005 memset(&qi, 0, sizeof(qi)); 4006 qi.tqi_subtype = subtype; 4007 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4008 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4009 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4010 /* 4011 * Enable interrupts only for EOL and DESC conditions. 4012 * We mark tx descriptors to receive a DESC interrupt 4013 * when a tx queue gets deep; otherwise waiting for the 4014 * EOL to reap descriptors. Note that this is done to 4015 * reduce interrupt load and this only defers reaping 4016 * descriptors, never transmitting frames. Aside from 4017 * reducing interrupts this also permits more concurrency. 4018 * The only potential downside is if the tx queue backs 4019 * up in which case the top half of the kernel may backup 4020 * due to a lack of tx descriptors. 4021 */ 4022 if (sc->sc_isedma) 4023 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4024 HAL_TXQ_TXOKINT_ENABLE; 4025 else 4026 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4027 HAL_TXQ_TXDESCINT_ENABLE; 4028 4029 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4030 if (qnum == -1) { 4031 /* 4032 * NB: don't print a message, this happens 4033 * normally on parts with too few tx queues 4034 */ 4035 return NULL; 4036 } 4037 if (qnum >= nitems(sc->sc_txq)) { 4038 device_printf(sc->sc_dev, 4039 "hal qnum %u out of range, max %zu!\n", 4040 qnum, nitems(sc->sc_txq)); 4041 ath_hal_releasetxqueue(ah, qnum); 4042 return NULL; 4043 } 4044 if (!ATH_TXQ_SETUP(sc, qnum)) { 4045 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4046 sc->sc_txqsetup |= 1<<qnum; 4047 } 4048 return &sc->sc_txq[qnum]; 4049 } 4050 4051 /* 4052 * Setup a hardware data transmit queue for the specified 4053 * access control. The hal may not support all requested 4054 * queues in which case it will return a reference to a 4055 * previously setup queue. We record the mapping from ac's 4056 * to h/w queues for use by ath_tx_start and also track 4057 * the set of h/w queues being used to optimize work in the 4058 * transmit interrupt handler and related routines. 4059 */ 4060 static int 4061 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4062 { 4063 struct ath_txq *txq; 4064 4065 if (ac >= nitems(sc->sc_ac2q)) { 4066 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4067 ac, nitems(sc->sc_ac2q)); 4068 return 0; 4069 } 4070 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4071 if (txq != NULL) { 4072 txq->axq_ac = ac; 4073 sc->sc_ac2q[ac] = txq; 4074 return 1; 4075 } else 4076 return 0; 4077 } 4078 4079 /* 4080 * Update WME parameters for a transmit queue. 4081 */ 4082 static int 4083 ath_txq_update(struct ath_softc *sc, int ac) 4084 { 4085 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4086 struct ieee80211com *ic = &sc->sc_ic; 4087 struct ath_txq *txq = sc->sc_ac2q[ac]; 4088 struct chanAccParams chp; 4089 struct wmeParams *wmep; 4090 struct ath_hal *ah = sc->sc_ah; 4091 HAL_TXQ_INFO qi; 4092 4093 ieee80211_wme_ic_getparams(ic, &chp); 4094 wmep = &chp.cap_wmeParams[ac]; 4095 4096 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4097 #ifdef IEEE80211_SUPPORT_TDMA 4098 if (sc->sc_tdma) { 4099 /* 4100 * AIFS is zero so there's no pre-transmit wait. The 4101 * burst time defines the slot duration and is configured 4102 * through net80211. The QCU is setup to not do post-xmit 4103 * back off, lockout all lower-priority QCU's, and fire 4104 * off the DMA beacon alert timer which is setup based 4105 * on the slot configuration. 4106 */ 4107 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4108 | HAL_TXQ_TXERRINT_ENABLE 4109 | HAL_TXQ_TXURNINT_ENABLE 4110 | HAL_TXQ_TXEOLINT_ENABLE 4111 | HAL_TXQ_DBA_GATED 4112 | HAL_TXQ_BACKOFF_DISABLE 4113 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4114 ; 4115 qi.tqi_aifs = 0; 4116 /* XXX +dbaprep? */ 4117 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4118 qi.tqi_burstTime = qi.tqi_readyTime; 4119 } else { 4120 #endif 4121 /* 4122 * XXX shouldn't this just use the default flags 4123 * used in the previous queue setup? 4124 */ 4125 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4126 | HAL_TXQ_TXERRINT_ENABLE 4127 | HAL_TXQ_TXDESCINT_ENABLE 4128 | HAL_TXQ_TXURNINT_ENABLE 4129 | HAL_TXQ_TXEOLINT_ENABLE 4130 ; 4131 qi.tqi_aifs = wmep->wmep_aifsn; 4132 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4133 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4134 qi.tqi_readyTime = 0; 4135 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4136 #ifdef IEEE80211_SUPPORT_TDMA 4137 } 4138 #endif 4139 4140 DPRINTF(sc, ATH_DEBUG_RESET, 4141 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4142 __func__, txq->axq_qnum, qi.tqi_qflags, 4143 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4144 4145 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4146 device_printf(sc->sc_dev, "unable to update hardware queue " 4147 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4148 return 0; 4149 } else { 4150 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4151 return 1; 4152 } 4153 #undef ATH_EXPONENT_TO_VALUE 4154 } 4155 4156 /* 4157 * Callback from the 802.11 layer to update WME parameters. 4158 */ 4159 int 4160 ath_wme_update(struct ieee80211com *ic) 4161 { 4162 struct ath_softc *sc = ic->ic_softc; 4163 4164 return !ath_txq_update(sc, WME_AC_BE) || 4165 !ath_txq_update(sc, WME_AC_BK) || 4166 !ath_txq_update(sc, WME_AC_VI) || 4167 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4168 } 4169 4170 /* 4171 * Reclaim resources for a setup queue. 4172 */ 4173 static void 4174 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4175 { 4176 4177 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4178 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4179 ATH_TXQ_LOCK_DESTROY(txq); 4180 } 4181 4182 /* 4183 * Reclaim all tx queue resources. 4184 */ 4185 static void 4186 ath_tx_cleanup(struct ath_softc *sc) 4187 { 4188 int i; 4189 4190 ATH_TXBUF_LOCK_DESTROY(sc); 4191 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4192 if (ATH_TXQ_SETUP(sc, i)) 4193 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4194 } 4195 4196 /* 4197 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4198 * using the current rates in sc_rixmap. 4199 */ 4200 int 4201 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4202 { 4203 int rix = sc->sc_rixmap[rate]; 4204 /* NB: return lowest rix for invalid rate */ 4205 return (rix == 0xff ? 0 : rix); 4206 } 4207 4208 static void 4209 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4210 struct ath_buf *bf) 4211 { 4212 struct ieee80211_node *ni = bf->bf_node; 4213 struct ieee80211com *ic = &sc->sc_ic; 4214 int sr, lr, pri; 4215 4216 if (ts->ts_status == 0) { 4217 u_int8_t txant = ts->ts_antenna; 4218 /* 4219 * Handle weird/corrupted tx antenna field 4220 */ 4221 if (txant >= ATH_IOCTL_STATS_NUM_TX_ANTENNA) 4222 txant = 0; 4223 sc->sc_stats.ast_ant_tx[txant]++; 4224 sc->sc_ant_tx[txant]++; 4225 if (ts->ts_finaltsi != 0) 4226 sc->sc_stats.ast_tx_altrate++; 4227 4228 /* XXX TODO: should do per-pri conuters */ 4229 pri = M_WME_GETAC(bf->bf_m); 4230 if (pri >= WME_AC_VO) 4231 ic->ic_wme.wme_hipri_traffic++; 4232 4233 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4234 ni->ni_inact = ni->ni_inact_reload; 4235 } else { 4236 if (ts->ts_status & HAL_TXERR_XRETRY) 4237 sc->sc_stats.ast_tx_xretries++; 4238 if (ts->ts_status & HAL_TXERR_FIFO) 4239 sc->sc_stats.ast_tx_fifoerr++; 4240 if (ts->ts_status & HAL_TXERR_FILT) 4241 sc->sc_stats.ast_tx_filtered++; 4242 if (ts->ts_status & HAL_TXERR_XTXOP) 4243 sc->sc_stats.ast_tx_xtxop++; 4244 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4245 sc->sc_stats.ast_tx_timerexpired++; 4246 4247 if (bf->bf_m->m_flags & M_FF) 4248 sc->sc_stats.ast_ff_txerr++; 4249 } 4250 /* XXX when is this valid? */ 4251 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4252 sc->sc_stats.ast_tx_desccfgerr++; 4253 /* 4254 * This can be valid for successful frame transmission! 4255 * If there's a TX FIFO underrun during aggregate transmission, 4256 * the MAC will pad the rest of the aggregate with delimiters. 4257 * If a BA is returned, the frame is marked as "OK" and it's up 4258 * to the TX completion code to notice which frames weren't 4259 * successfully transmitted. 4260 */ 4261 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4262 sc->sc_stats.ast_tx_data_underrun++; 4263 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4264 sc->sc_stats.ast_tx_delim_underrun++; 4265 4266 sr = ts->ts_shortretry; 4267 lr = ts->ts_longretry; 4268 sc->sc_stats.ast_tx_shortretry += sr; 4269 sc->sc_stats.ast_tx_longretry += lr; 4270 4271 } 4272 4273 /* 4274 * The default completion. If fail is 1, this means 4275 * "please don't retry the frame, and just return -1 status 4276 * to the net80211 stack. 4277 */ 4278 void 4279 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4280 { 4281 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4282 int st; 4283 4284 if (fail == 1) 4285 st = -1; 4286 else 4287 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4288 ts->ts_status : HAL_TXERR_XRETRY; 4289 4290 #if 0 4291 if (bf->bf_state.bfs_dobaw) 4292 device_printf(sc->sc_dev, 4293 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4294 __func__, 4295 bf, 4296 SEQNO(bf->bf_state.bfs_seqno)); 4297 #endif 4298 if (bf->bf_next != NULL) 4299 device_printf(sc->sc_dev, 4300 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4301 __func__, 4302 bf, 4303 SEQNO(bf->bf_state.bfs_seqno)); 4304 4305 /* 4306 * Check if the node software queue is empty; if so 4307 * then clear the TIM. 4308 * 4309 * This needs to be done before the buffer is freed as 4310 * otherwise the node reference will have been released 4311 * and the node may not actually exist any longer. 4312 * 4313 * XXX I don't like this belonging here, but it's cleaner 4314 * to do it here right now then all the other places 4315 * where ath_tx_default_comp() is called. 4316 * 4317 * XXX TODO: during drain, ensure that the callback is 4318 * being called so we get a chance to update the TIM. 4319 */ 4320 if (bf->bf_node) { 4321 ATH_TX_LOCK(sc); 4322 ath_tx_update_tim(sc, bf->bf_node, 0); 4323 ATH_TX_UNLOCK(sc); 4324 } 4325 4326 /* 4327 * Do any tx complete callback. Note this must 4328 * be done before releasing the node reference. 4329 * This will free the mbuf, release the net80211 4330 * node and recycle the ath_buf. 4331 */ 4332 ath_tx_freebuf(sc, bf, st); 4333 } 4334 4335 /* 4336 * Update rate control with the given completion status. 4337 */ 4338 void 4339 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4340 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4341 int rc_framelen, int nframes, int nbad) 4342 { 4343 struct ath_node *an; 4344 4345 /* Only for unicast frames */ 4346 if (ni == NULL) 4347 return; 4348 4349 an = ATH_NODE(ni); 4350 ATH_NODE_UNLOCK_ASSERT(an); 4351 4352 /* 4353 * XXX TODO: teach the rate control about TXERR_FILT and 4354 * see about handling it (eg see how many attempts were 4355 * made before it got filtered and account for that.) 4356 */ 4357 4358 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4359 ATH_NODE_LOCK(an); 4360 ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen, 4361 nframes, nbad); 4362 ATH_NODE_UNLOCK(an); 4363 } 4364 } 4365 4366 /* 4367 * Process the completion of the given buffer. 4368 * 4369 * This calls the rate control update and then the buffer completion. 4370 * This will either free the buffer or requeue it. In any case, the 4371 * bf pointer should be treated as invalid after this function is called. 4372 */ 4373 void 4374 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4375 struct ath_tx_status *ts, struct ath_buf *bf) 4376 { 4377 struct ieee80211_node *ni = bf->bf_node; 4378 4379 ATH_TX_UNLOCK_ASSERT(sc); 4380 ATH_TXQ_UNLOCK_ASSERT(txq); 4381 4382 /* If unicast frame, update general statistics */ 4383 if (ni != NULL) { 4384 /* update statistics */ 4385 ath_tx_update_stats(sc, ts, bf); 4386 } 4387 4388 /* 4389 * Call the completion handler. 4390 * The completion handler is responsible for 4391 * calling the rate control code. 4392 * 4393 * Frames with no completion handler get the 4394 * rate control code called here. 4395 */ 4396 if (bf->bf_comp == NULL) { 4397 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4398 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4399 /* 4400 * XXX assume this isn't an aggregate 4401 * frame. 4402 * 4403 * XXX TODO: also do this for filtered frames? 4404 * Once rate control knows about them? 4405 */ 4406 ath_tx_update_ratectrl(sc, ni, 4407 bf->bf_state.bfs_rc, ts, 4408 bf->bf_state.bfs_pktlen, 4409 bf->bf_state.bfs_pktlen, 4410 1, 4411 (ts->ts_status == 0 ? 0 : 1)); 4412 } 4413 ath_tx_default_comp(sc, bf, 0); 4414 } else 4415 bf->bf_comp(sc, bf, 0); 4416 } 4417 4418 /* 4419 * Process completed xmit descriptors from the specified queue. 4420 * Kick the packet scheduler if needed. This can occur from this 4421 * particular task. 4422 */ 4423 static int 4424 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4425 { 4426 struct ath_hal *ah = sc->sc_ah; 4427 struct ath_buf *bf; 4428 struct ath_desc *ds; 4429 struct ath_tx_status *ts; 4430 struct ieee80211_node *ni; 4431 #ifdef IEEE80211_SUPPORT_SUPERG 4432 struct ieee80211com *ic = &sc->sc_ic; 4433 #endif /* IEEE80211_SUPPORT_SUPERG */ 4434 int nacked; 4435 HAL_STATUS status; 4436 4437 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4438 __func__, txq->axq_qnum, 4439 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4440 txq->axq_link); 4441 4442 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4443 "ath_tx_processq: txq=%u head %p link %p depth %p", 4444 txq->axq_qnum, 4445 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4446 txq->axq_link, 4447 txq->axq_depth); 4448 4449 nacked = 0; 4450 for (;;) { 4451 ATH_TXQ_LOCK(txq); 4452 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4453 bf = TAILQ_FIRST(&txq->axq_q); 4454 if (bf == NULL) { 4455 ATH_TXQ_UNLOCK(txq); 4456 break; 4457 } 4458 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4459 ts = &bf->bf_status.ds_txstat; 4460 4461 status = ath_hal_txprocdesc(ah, ds, ts); 4462 #ifdef ATH_DEBUG 4463 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4464 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4465 status == HAL_OK); 4466 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4467 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4468 status == HAL_OK); 4469 #endif 4470 #ifdef ATH_DEBUG_ALQ 4471 if (if_ath_alq_checkdebug(&sc->sc_alq, 4472 ATH_ALQ_EDMA_TXSTATUS)) { 4473 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4474 sc->sc_tx_statuslen, 4475 (char *) ds); 4476 } 4477 #endif 4478 4479 if (status == HAL_EINPROGRESS) { 4480 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4481 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4482 txq->axq_qnum, bf, ds); 4483 ATH_TXQ_UNLOCK(txq); 4484 break; 4485 } 4486 ATH_TXQ_REMOVE(txq, bf, bf_list); 4487 4488 /* 4489 * Sanity check. 4490 */ 4491 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4492 device_printf(sc->sc_dev, 4493 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4494 __func__, 4495 txq->axq_qnum, 4496 bf, 4497 bf->bf_state.bfs_tx_queue); 4498 } 4499 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4500 device_printf(sc->sc_dev, 4501 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4502 __func__, 4503 txq->axq_qnum, 4504 bf->bf_last, 4505 bf->bf_last->bf_state.bfs_tx_queue); 4506 } 4507 4508 #if 0 4509 if (txq->axq_depth > 0) { 4510 /* 4511 * More frames follow. Mark the buffer busy 4512 * so it's not re-used while the hardware may 4513 * still re-read the link field in the descriptor. 4514 * 4515 * Use the last buffer in an aggregate as that 4516 * is where the hardware may be - intermediate 4517 * descriptors won't be "busy". 4518 */ 4519 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4520 } else 4521 txq->axq_link = NULL; 4522 #else 4523 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4524 #endif 4525 if (bf->bf_state.bfs_aggr) 4526 txq->axq_aggr_depth--; 4527 4528 ni = bf->bf_node; 4529 4530 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4531 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4532 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4533 /* 4534 * If unicast frame was ack'd update RSSI, 4535 * including the last rx time used to 4536 * workaround phantom bmiss interrupts. 4537 */ 4538 if (ni != NULL && ts->ts_status == 0 && 4539 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4540 nacked++; 4541 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4542 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4543 ts->ts_rssi); 4544 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi, 4545 ts->ts_rssi); 4546 } 4547 ATH_TXQ_UNLOCK(txq); 4548 4549 /* 4550 * Update statistics and call completion 4551 */ 4552 ath_tx_process_buf_completion(sc, txq, ts, bf); 4553 4554 /* XXX at this point, bf and ni may be totally invalid */ 4555 } 4556 #ifdef IEEE80211_SUPPORT_SUPERG 4557 /* 4558 * Flush fast-frame staging queue when traffic slows. 4559 */ 4560 if (txq->axq_depth <= 1) 4561 ieee80211_ff_flush(ic, txq->axq_ac); 4562 #endif 4563 4564 /* Kick the software TXQ scheduler */ 4565 if (dosched) { 4566 ATH_TX_LOCK(sc); 4567 ath_txq_sched(sc, txq); 4568 ATH_TX_UNLOCK(sc); 4569 } 4570 4571 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4572 "ath_tx_processq: txq=%u: done", 4573 txq->axq_qnum); 4574 4575 return nacked; 4576 } 4577 4578 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4579 4580 /* 4581 * Deferred processing of transmit interrupt; special-cased 4582 * for a single hardware transmit queue (e.g. 5210 and 5211). 4583 */ 4584 static void 4585 ath_tx_proc_q0(void *arg, int npending) 4586 { 4587 struct ath_softc *sc = arg; 4588 uint32_t txqs; 4589 4590 ATH_PCU_LOCK(sc); 4591 sc->sc_txproc_cnt++; 4592 txqs = sc->sc_txq_active; 4593 sc->sc_txq_active &= ~txqs; 4594 ATH_PCU_UNLOCK(sc); 4595 4596 ATH_LOCK(sc); 4597 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4598 ATH_UNLOCK(sc); 4599 4600 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4601 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4602 4603 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4604 /* XXX why is lastrx updated in tx code? */ 4605 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4606 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4607 ath_tx_processq(sc, sc->sc_cabq, 1); 4608 sc->sc_wd_timer = 0; 4609 4610 if (sc->sc_softled) 4611 ath_led_event(sc, sc->sc_txrix); 4612 4613 ATH_PCU_LOCK(sc); 4614 sc->sc_txproc_cnt--; 4615 ATH_PCU_UNLOCK(sc); 4616 4617 ATH_LOCK(sc); 4618 ath_power_restore_power_state(sc); 4619 ATH_UNLOCK(sc); 4620 4621 ath_tx_kick(sc); 4622 } 4623 4624 /* 4625 * Deferred processing of transmit interrupt; special-cased 4626 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4627 */ 4628 static void 4629 ath_tx_proc_q0123(void *arg, int npending) 4630 { 4631 struct ath_softc *sc = arg; 4632 int nacked; 4633 uint32_t txqs; 4634 4635 ATH_PCU_LOCK(sc); 4636 sc->sc_txproc_cnt++; 4637 txqs = sc->sc_txq_active; 4638 sc->sc_txq_active &= ~txqs; 4639 ATH_PCU_UNLOCK(sc); 4640 4641 ATH_LOCK(sc); 4642 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4643 ATH_UNLOCK(sc); 4644 4645 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4646 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4647 4648 /* 4649 * Process each active queue. 4650 */ 4651 nacked = 0; 4652 if (TXQACTIVE(txqs, 0)) 4653 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4654 if (TXQACTIVE(txqs, 1)) 4655 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4656 if (TXQACTIVE(txqs, 2)) 4657 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4658 if (TXQACTIVE(txqs, 3)) 4659 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4660 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4661 ath_tx_processq(sc, sc->sc_cabq, 1); 4662 if (nacked) 4663 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4664 4665 sc->sc_wd_timer = 0; 4666 4667 if (sc->sc_softled) 4668 ath_led_event(sc, sc->sc_txrix); 4669 4670 ATH_PCU_LOCK(sc); 4671 sc->sc_txproc_cnt--; 4672 ATH_PCU_UNLOCK(sc); 4673 4674 ATH_LOCK(sc); 4675 ath_power_restore_power_state(sc); 4676 ATH_UNLOCK(sc); 4677 4678 ath_tx_kick(sc); 4679 } 4680 4681 /* 4682 * Deferred processing of transmit interrupt. 4683 */ 4684 static void 4685 ath_tx_proc(void *arg, int npending) 4686 { 4687 struct ath_softc *sc = arg; 4688 int i, nacked; 4689 uint32_t txqs; 4690 4691 ATH_PCU_LOCK(sc); 4692 sc->sc_txproc_cnt++; 4693 txqs = sc->sc_txq_active; 4694 sc->sc_txq_active &= ~txqs; 4695 ATH_PCU_UNLOCK(sc); 4696 4697 ATH_LOCK(sc); 4698 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4699 ATH_UNLOCK(sc); 4700 4701 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4702 4703 /* 4704 * Process each active queue. 4705 */ 4706 nacked = 0; 4707 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4708 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4709 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4710 if (nacked) 4711 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4712 4713 sc->sc_wd_timer = 0; 4714 4715 if (sc->sc_softled) 4716 ath_led_event(sc, sc->sc_txrix); 4717 4718 ATH_PCU_LOCK(sc); 4719 sc->sc_txproc_cnt--; 4720 ATH_PCU_UNLOCK(sc); 4721 4722 ATH_LOCK(sc); 4723 ath_power_restore_power_state(sc); 4724 ATH_UNLOCK(sc); 4725 4726 ath_tx_kick(sc); 4727 } 4728 #undef TXQACTIVE 4729 4730 /* 4731 * Deferred processing of TXQ rescheduling. 4732 */ 4733 static void 4734 ath_txq_sched_tasklet(void *arg, int npending) 4735 { 4736 struct ath_softc *sc = arg; 4737 int i; 4738 4739 /* XXX is skipping ok? */ 4740 ATH_PCU_LOCK(sc); 4741 #if 0 4742 if (sc->sc_inreset_cnt > 0) { 4743 device_printf(sc->sc_dev, 4744 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4745 ATH_PCU_UNLOCK(sc); 4746 return; 4747 } 4748 #endif 4749 sc->sc_txproc_cnt++; 4750 ATH_PCU_UNLOCK(sc); 4751 4752 ATH_LOCK(sc); 4753 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4754 ATH_UNLOCK(sc); 4755 4756 ATH_TX_LOCK(sc); 4757 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4758 if (ATH_TXQ_SETUP(sc, i)) { 4759 ath_txq_sched(sc, &sc->sc_txq[i]); 4760 } 4761 } 4762 ATH_TX_UNLOCK(sc); 4763 4764 ATH_LOCK(sc); 4765 ath_power_restore_power_state(sc); 4766 ATH_UNLOCK(sc); 4767 4768 ATH_PCU_LOCK(sc); 4769 sc->sc_txproc_cnt--; 4770 ATH_PCU_UNLOCK(sc); 4771 } 4772 4773 void 4774 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4775 { 4776 4777 ATH_TXBUF_LOCK_ASSERT(sc); 4778 4779 if (bf->bf_flags & ATH_BUF_MGMT) 4780 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4781 else { 4782 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4783 sc->sc_txbuf_cnt++; 4784 if (sc->sc_txbuf_cnt > ath_txbuf) { 4785 device_printf(sc->sc_dev, 4786 "%s: sc_txbuf_cnt > %d?\n", 4787 __func__, 4788 ath_txbuf); 4789 sc->sc_txbuf_cnt = ath_txbuf; 4790 } 4791 } 4792 } 4793 4794 void 4795 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4796 { 4797 4798 ATH_TXBUF_LOCK_ASSERT(sc); 4799 4800 if (bf->bf_flags & ATH_BUF_MGMT) 4801 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4802 else { 4803 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4804 sc->sc_txbuf_cnt++; 4805 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4806 device_printf(sc->sc_dev, 4807 "%s: sc_txbuf_cnt > %d?\n", 4808 __func__, 4809 ATH_TXBUF); 4810 sc->sc_txbuf_cnt = ATH_TXBUF; 4811 } 4812 } 4813 } 4814 4815 /* 4816 * Free the holding buffer if it exists 4817 */ 4818 void 4819 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4820 { 4821 ATH_TXBUF_UNLOCK_ASSERT(sc); 4822 ATH_TXQ_LOCK_ASSERT(txq); 4823 4824 if (txq->axq_holdingbf == NULL) 4825 return; 4826 4827 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4828 4829 ATH_TXBUF_LOCK(sc); 4830 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4831 ATH_TXBUF_UNLOCK(sc); 4832 4833 txq->axq_holdingbf = NULL; 4834 } 4835 4836 /* 4837 * Add this buffer to the holding queue, freeing the previous 4838 * one if it exists. 4839 */ 4840 static void 4841 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4842 { 4843 struct ath_txq *txq; 4844 4845 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4846 4847 ATH_TXBUF_UNLOCK_ASSERT(sc); 4848 ATH_TXQ_LOCK_ASSERT(txq); 4849 4850 /* XXX assert ATH_BUF_BUSY is set */ 4851 4852 /* XXX assert the tx queue is under the max number */ 4853 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4854 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4855 __func__, 4856 bf, 4857 bf->bf_state.bfs_tx_queue); 4858 bf->bf_flags &= ~ATH_BUF_BUSY; 4859 ath_returnbuf_tail(sc, bf); 4860 return; 4861 } 4862 ath_txq_freeholdingbuf(sc, txq); 4863 txq->axq_holdingbf = bf; 4864 } 4865 4866 /* 4867 * Return a buffer to the pool and update the 'busy' flag on the 4868 * previous 'tail' entry. 4869 * 4870 * This _must_ only be called when the buffer is involved in a completed 4871 * TX. The logic is that if it was part of an active TX, the previous 4872 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4873 * for restart (eg for TDMA.) 4874 * 4875 * The caller must free the mbuf and recycle the node reference. 4876 * 4877 * XXX This method of handling busy / holding buffers is insanely stupid. 4878 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4879 * be much nicer if buffers in the processq() methods would instead be 4880 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4881 * exactly what hardware queue they came from in the first place. 4882 */ 4883 void 4884 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4885 { 4886 struct ath_txq *txq; 4887 4888 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4889 4890 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4891 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4892 4893 /* 4894 * If this buffer is busy, push it onto the holding queue. 4895 */ 4896 if (bf->bf_flags & ATH_BUF_BUSY) { 4897 ATH_TXQ_LOCK(txq); 4898 ath_txq_addholdingbuf(sc, bf); 4899 ATH_TXQ_UNLOCK(txq); 4900 return; 4901 } 4902 4903 /* 4904 * Not a busy buffer, so free normally 4905 */ 4906 ATH_TXBUF_LOCK(sc); 4907 ath_returnbuf_tail(sc, bf); 4908 ATH_TXBUF_UNLOCK(sc); 4909 } 4910 4911 /* 4912 * This is currently used by ath_tx_draintxq() and 4913 * ath_tx_tid_free_pkts(). 4914 * 4915 * It recycles a single ath_buf. 4916 */ 4917 void 4918 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4919 { 4920 struct ieee80211_node *ni = bf->bf_node; 4921 struct mbuf *m0 = bf->bf_m; 4922 4923 /* 4924 * Make sure that we only sync/unload if there's an mbuf. 4925 * If not (eg we cloned a buffer), the unload will have already 4926 * occurred. 4927 */ 4928 if (bf->bf_m != NULL) { 4929 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4930 BUS_DMASYNC_POSTWRITE); 4931 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4932 } 4933 4934 bf->bf_node = NULL; 4935 bf->bf_m = NULL; 4936 4937 /* Free the buffer, it's not needed any longer */ 4938 ath_freebuf(sc, bf); 4939 4940 /* Pass the buffer back to net80211 - completing it */ 4941 ieee80211_tx_complete(ni, m0, status); 4942 } 4943 4944 static struct ath_buf * 4945 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4946 { 4947 struct ath_buf *bf; 4948 4949 ATH_TXQ_LOCK_ASSERT(txq); 4950 4951 /* 4952 * Drain the FIFO queue first, then if it's 4953 * empty, move to the normal frame queue. 4954 */ 4955 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4956 if (bf != NULL) { 4957 /* 4958 * Is it the last buffer in this set? 4959 * Decrement the FIFO counter. 4960 */ 4961 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4962 if (txq->axq_fifo_depth == 0) { 4963 device_printf(sc->sc_dev, 4964 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4965 __func__, 4966 txq->axq_qnum, 4967 txq->fifo.axq_depth); 4968 } else 4969 txq->axq_fifo_depth--; 4970 } 4971 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4972 return (bf); 4973 } 4974 4975 /* 4976 * Debugging! 4977 */ 4978 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4979 device_printf(sc->sc_dev, 4980 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4981 __func__, 4982 txq->axq_qnum, 4983 txq->axq_fifo_depth, 4984 txq->fifo.axq_depth); 4985 } 4986 4987 /* 4988 * Now drain the pending queue. 4989 */ 4990 bf = TAILQ_FIRST(&txq->axq_q); 4991 if (bf == NULL) { 4992 txq->axq_link = NULL; 4993 return (NULL); 4994 } 4995 ATH_TXQ_REMOVE(txq, bf, bf_list); 4996 return (bf); 4997 } 4998 4999 void 5000 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5001 { 5002 #ifdef ATH_DEBUG 5003 struct ath_hal *ah = sc->sc_ah; 5004 #endif 5005 struct ath_buf *bf; 5006 u_int ix; 5007 5008 /* 5009 * NB: this assumes output has been stopped and 5010 * we do not need to block ath_tx_proc 5011 */ 5012 for (ix = 0;; ix++) { 5013 ATH_TXQ_LOCK(txq); 5014 bf = ath_tx_draintxq_get_one(sc, txq); 5015 if (bf == NULL) { 5016 ATH_TXQ_UNLOCK(txq); 5017 break; 5018 } 5019 if (bf->bf_state.bfs_aggr) 5020 txq->axq_aggr_depth--; 5021 #ifdef ATH_DEBUG 5022 if (sc->sc_debug & ATH_DEBUG_RESET) { 5023 struct ieee80211com *ic = &sc->sc_ic; 5024 int status = 0; 5025 5026 /* 5027 * EDMA operation has a TX completion FIFO 5028 * separate from the TX descriptor, so this 5029 * method of checking the "completion" status 5030 * is wrong. 5031 */ 5032 if (! sc->sc_isedma) { 5033 status = (ath_hal_txprocdesc(ah, 5034 bf->bf_lastds, 5035 &bf->bf_status.ds_txstat) == HAL_OK); 5036 } 5037 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5038 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5039 bf->bf_m->m_len, 0, -1); 5040 } 5041 #endif /* ATH_DEBUG */ 5042 /* 5043 * Since we're now doing magic in the completion 5044 * functions, we -must- call it for aggregation 5045 * destinations or BAW tracking will get upset. 5046 */ 5047 /* 5048 * Clear ATH_BUF_BUSY; the completion handler 5049 * will free the buffer. 5050 */ 5051 ATH_TXQ_UNLOCK(txq); 5052 bf->bf_flags &= ~ATH_BUF_BUSY; 5053 if (bf->bf_comp) 5054 bf->bf_comp(sc, bf, 1); 5055 else 5056 ath_tx_default_comp(sc, bf, 1); 5057 } 5058 5059 /* 5060 * Free the holding buffer if it exists 5061 */ 5062 ATH_TXQ_LOCK(txq); 5063 ath_txq_freeholdingbuf(sc, txq); 5064 ATH_TXQ_UNLOCK(txq); 5065 5066 /* 5067 * Drain software queued frames which are on 5068 * active TIDs. 5069 */ 5070 ath_tx_txq_drain(sc, txq); 5071 } 5072 5073 static void 5074 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5075 { 5076 struct ath_hal *ah = sc->sc_ah; 5077 5078 ATH_TXQ_LOCK_ASSERT(txq); 5079 5080 DPRINTF(sc, ATH_DEBUG_RESET, 5081 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5082 "link %p, holdingbf=%p\n", 5083 __func__, 5084 txq->axq_qnum, 5085 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5086 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5087 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5088 txq->axq_flags, 5089 txq->axq_link, 5090 txq->axq_holdingbf); 5091 5092 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5093 /* We've stopped TX DMA, so mark this as stopped. */ 5094 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5095 5096 #ifdef ATH_DEBUG 5097 if ((sc->sc_debug & ATH_DEBUG_RESET) 5098 && (txq->axq_holdingbf != NULL)) { 5099 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5100 } 5101 #endif 5102 } 5103 5104 int 5105 ath_stoptxdma(struct ath_softc *sc) 5106 { 5107 struct ath_hal *ah = sc->sc_ah; 5108 int i; 5109 5110 /* XXX return value */ 5111 if (sc->sc_invalid) 5112 return 0; 5113 5114 if (!sc->sc_invalid) { 5115 /* don't touch the hardware if marked invalid */ 5116 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5117 __func__, sc->sc_bhalq, 5118 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5119 NULL); 5120 5121 /* stop the beacon queue */ 5122 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5123 5124 /* Stop the data queues */ 5125 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5126 if (ATH_TXQ_SETUP(sc, i)) { 5127 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5128 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5129 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5130 } 5131 } 5132 } 5133 5134 return 1; 5135 } 5136 5137 #ifdef ATH_DEBUG 5138 void 5139 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5140 { 5141 struct ath_hal *ah = sc->sc_ah; 5142 struct ath_buf *bf; 5143 int i = 0; 5144 5145 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5146 return; 5147 5148 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5149 __func__, txq->axq_qnum); 5150 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5151 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5152 ath_hal_txprocdesc(ah, bf->bf_lastds, 5153 &bf->bf_status.ds_txstat) == HAL_OK); 5154 i++; 5155 } 5156 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5157 __func__, txq->axq_qnum); 5158 } 5159 #endif /* ATH_DEBUG */ 5160 5161 /* 5162 * Drain the transmit queues and reclaim resources. 5163 */ 5164 void 5165 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5166 { 5167 struct ath_hal *ah = sc->sc_ah; 5168 struct ath_buf *bf_last; 5169 int i; 5170 5171 (void) ath_stoptxdma(sc); 5172 5173 /* 5174 * Dump the queue contents 5175 */ 5176 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5177 /* 5178 * XXX TODO: should we just handle the completed TX frames 5179 * here, whether or not the reset is a full one or not? 5180 */ 5181 if (ATH_TXQ_SETUP(sc, i)) { 5182 #ifdef ATH_DEBUG 5183 if (sc->sc_debug & ATH_DEBUG_RESET) 5184 ath_tx_dump(sc, &sc->sc_txq[i]); 5185 #endif /* ATH_DEBUG */ 5186 if (reset_type == ATH_RESET_NOLOSS) { 5187 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5188 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5189 /* 5190 * Free the holding buffer; DMA is now 5191 * stopped. 5192 */ 5193 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5194 /* 5195 * Setup the link pointer to be the 5196 * _last_ buffer/descriptor in the list. 5197 * If there's nothing in the list, set it 5198 * to NULL. 5199 */ 5200 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5201 axq_q_s); 5202 if (bf_last != NULL) { 5203 ath_hal_gettxdesclinkptr(ah, 5204 bf_last->bf_lastds, 5205 &sc->sc_txq[i].axq_link); 5206 } else { 5207 sc->sc_txq[i].axq_link = NULL; 5208 } 5209 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5210 } else 5211 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5212 } 5213 } 5214 #ifdef ATH_DEBUG 5215 if (sc->sc_debug & ATH_DEBUG_RESET) { 5216 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5217 if (bf != NULL && bf->bf_m != NULL) { 5218 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5219 ath_hal_txprocdesc(ah, bf->bf_lastds, 5220 &bf->bf_status.ds_txstat) == HAL_OK); 5221 ieee80211_dump_pkt(&sc->sc_ic, 5222 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5223 0, -1); 5224 } 5225 } 5226 #endif /* ATH_DEBUG */ 5227 sc->sc_wd_timer = 0; 5228 } 5229 5230 /* 5231 * Update internal state after a channel change. 5232 */ 5233 static void 5234 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5235 { 5236 enum ieee80211_phymode mode; 5237 5238 /* 5239 * Change channels and update the h/w rate map 5240 * if we're switching; e.g. 11a to 11b/g. 5241 */ 5242 mode = ieee80211_chan2mode(chan); 5243 if (mode != sc->sc_curmode) 5244 ath_setcurmode(sc, mode); 5245 sc->sc_curchan = chan; 5246 } 5247 5248 /* 5249 * Set/change channels. If the channel is really being changed, 5250 * it's done by resetting the chip. To accomplish this we must 5251 * first cleanup any pending DMA, then restart stuff after a la 5252 * ath_init. 5253 */ 5254 static int 5255 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5256 { 5257 struct ieee80211com *ic = &sc->sc_ic; 5258 struct ath_hal *ah = sc->sc_ah; 5259 int ret = 0; 5260 5261 /* Treat this as an interface reset */ 5262 ATH_PCU_UNLOCK_ASSERT(sc); 5263 ATH_UNLOCK_ASSERT(sc); 5264 5265 /* (Try to) stop TX/RX from occurring */ 5266 taskqueue_block(sc->sc_tq); 5267 5268 ATH_PCU_LOCK(sc); 5269 5270 /* Disable interrupts */ 5271 ath_hal_intrset(ah, 0); 5272 5273 /* Stop new RX/TX/interrupt completion */ 5274 if (ath_reset_grablock(sc, 1) == 0) { 5275 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5276 __func__); 5277 } 5278 5279 /* Stop pending RX/TX completion */ 5280 ath_txrx_stop_locked(sc); 5281 5282 ATH_PCU_UNLOCK(sc); 5283 5284 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5285 __func__, ieee80211_chan2ieee(ic, chan), 5286 chan->ic_freq, chan->ic_flags); 5287 if (chan != sc->sc_curchan) { 5288 HAL_STATUS status; 5289 /* 5290 * To switch channels clear any pending DMA operations; 5291 * wait long enough for the RX fifo to drain, reset the 5292 * hardware at the new frequency, and then re-enable 5293 * the relevant bits of the h/w. 5294 */ 5295 #if 0 5296 ath_hal_intrset(ah, 0); /* disable interrupts */ 5297 #endif 5298 ath_stoprecv(sc, 1); /* turn off frame recv */ 5299 /* 5300 * First, handle completed TX/RX frames. 5301 */ 5302 ath_rx_flush(sc); 5303 ath_draintxq(sc, ATH_RESET_NOLOSS); 5304 /* 5305 * Next, flush the non-scheduled frames. 5306 */ 5307 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5308 5309 ath_update_chainmasks(sc, chan); 5310 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5311 sc->sc_cur_rxchainmask); 5312 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5313 HAL_RESET_NORMAL, &status)) { 5314 device_printf(sc->sc_dev, "%s: unable to reset " 5315 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5316 __func__, ieee80211_chan2ieee(ic, chan), 5317 chan->ic_freq, chan->ic_flags, status); 5318 ret = EIO; 5319 goto finish; 5320 } 5321 sc->sc_diversity = ath_hal_getdiversity(ah); 5322 5323 ATH_RX_LOCK(sc); 5324 sc->sc_rx_stopped = 1; 5325 sc->sc_rx_resetted = 1; 5326 ATH_RX_UNLOCK(sc); 5327 5328 /* Quiet time handling - ensure we resync */ 5329 ath_vap_clear_quiet_ie(sc); 5330 5331 /* Let DFS at it in case it's a DFS channel */ 5332 ath_dfs_radar_enable(sc, chan); 5333 5334 /* Let spectral at in case spectral is enabled */ 5335 ath_spectral_enable(sc, chan); 5336 5337 /* 5338 * Let bluetooth coexistence at in case it's needed for this 5339 * channel 5340 */ 5341 ath_btcoex_enable(sc, ic->ic_curchan); 5342 5343 /* 5344 * If we're doing TDMA, enforce the TXOP limitation for chips 5345 * that support it. 5346 */ 5347 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5348 ath_hal_setenforcetxop(sc->sc_ah, 1); 5349 else 5350 ath_hal_setenforcetxop(sc->sc_ah, 0); 5351 5352 /* 5353 * Re-enable rx framework. 5354 */ 5355 if (ath_startrecv(sc) != 0) { 5356 device_printf(sc->sc_dev, 5357 "%s: unable to restart recv logic\n", __func__); 5358 ret = EIO; 5359 goto finish; 5360 } 5361 5362 /* 5363 * Change channels and update the h/w rate map 5364 * if we're switching; e.g. 11a to 11b/g. 5365 */ 5366 ath_chan_change(sc, chan); 5367 5368 /* 5369 * Reset clears the beacon timers; reset them 5370 * here if needed. 5371 */ 5372 if (sc->sc_beacons) { /* restart beacons */ 5373 #ifdef IEEE80211_SUPPORT_TDMA 5374 if (sc->sc_tdma) 5375 ath_tdma_config(sc, NULL); 5376 else 5377 #endif 5378 ath_beacon_config(sc, NULL); 5379 } 5380 5381 /* 5382 * Re-enable interrupts. 5383 */ 5384 #if 0 5385 ath_hal_intrset(ah, sc->sc_imask); 5386 #endif 5387 } 5388 5389 finish: 5390 ATH_PCU_LOCK(sc); 5391 sc->sc_inreset_cnt--; 5392 /* XXX only do this if sc_inreset_cnt == 0? */ 5393 ath_hal_intrset(ah, sc->sc_imask); 5394 ATH_PCU_UNLOCK(sc); 5395 5396 ath_txrx_start(sc); 5397 /* XXX ath_start? */ 5398 5399 return ret; 5400 } 5401 5402 /* 5403 * Periodically recalibrate the PHY to account 5404 * for temperature/environment changes. 5405 */ 5406 static void 5407 ath_calibrate(void *arg) 5408 { 5409 struct ath_softc *sc = arg; 5410 struct ath_hal *ah = sc->sc_ah; 5411 struct ieee80211com *ic = &sc->sc_ic; 5412 HAL_BOOL longCal, isCalDone = AH_TRUE; 5413 HAL_BOOL aniCal, shortCal = AH_FALSE; 5414 int nextcal; 5415 5416 ATH_LOCK_ASSERT(sc); 5417 5418 /* 5419 * Force the hardware awake for ANI work. 5420 */ 5421 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5422 5423 /* Skip trying to do this if we're in reset */ 5424 if (sc->sc_inreset_cnt) 5425 goto restart; 5426 5427 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5428 goto restart; 5429 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5430 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5431 if (sc->sc_doresetcal) 5432 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5433 5434 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5435 if (aniCal) { 5436 sc->sc_stats.ast_ani_cal++; 5437 sc->sc_lastani = ticks; 5438 ath_hal_ani_poll(ah, sc->sc_curchan); 5439 } 5440 5441 if (longCal) { 5442 sc->sc_stats.ast_per_cal++; 5443 sc->sc_lastlongcal = ticks; 5444 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5445 /* 5446 * Rfgain is out of bounds, reset the chip 5447 * to load new gain values. 5448 */ 5449 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5450 "%s: rfgain change\n", __func__); 5451 sc->sc_stats.ast_per_rfgain++; 5452 sc->sc_resetcal = 0; 5453 sc->sc_doresetcal = AH_TRUE; 5454 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5455 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5456 ath_power_restore_power_state(sc); 5457 return; 5458 } 5459 /* 5460 * If this long cal is after an idle period, then 5461 * reset the data collection state so we start fresh. 5462 */ 5463 if (sc->sc_resetcal) { 5464 (void) ath_hal_calreset(ah, sc->sc_curchan); 5465 sc->sc_lastcalreset = ticks; 5466 sc->sc_lastshortcal = ticks; 5467 sc->sc_resetcal = 0; 5468 sc->sc_doresetcal = AH_TRUE; 5469 } 5470 } 5471 5472 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5473 if (shortCal || longCal) { 5474 isCalDone = AH_FALSE; 5475 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5476 if (longCal) { 5477 /* 5478 * Calibrate noise floor data again in case of change. 5479 */ 5480 ath_hal_process_noisefloor(ah); 5481 } 5482 } else { 5483 DPRINTF(sc, ATH_DEBUG_ANY, 5484 "%s: calibration of channel %u failed\n", 5485 __func__, sc->sc_curchan->ic_freq); 5486 sc->sc_stats.ast_per_calfail++; 5487 } 5488 /* 5489 * XXX TODO: get the NF calibration results from the HAL. 5490 * If we failed NF cal then schedule a hard reset to potentially 5491 * un-freeze the PHY. 5492 * 5493 * Note we have to be careful here to not get stuck in an 5494 * infinite NIC restart. Ideally we'd not restart if we 5495 * failed the first NF cal - that /can/ fail sometimes in 5496 * a noisy environment. 5497 * 5498 * Instead, we should likely temporarily shorten the longCal 5499 * period to happen pretty quickly and if a subsequent one 5500 * fails, do a full reset. 5501 */ 5502 if (shortCal) 5503 sc->sc_lastshortcal = ticks; 5504 } 5505 if (!isCalDone) { 5506 restart: 5507 /* 5508 * Use a shorter interval to potentially collect multiple 5509 * data samples required to complete calibration. Once 5510 * we're told the work is done we drop back to a longer 5511 * interval between requests. We're more aggressive doing 5512 * work when operating as an AP to improve operation right 5513 * after startup. 5514 */ 5515 sc->sc_lastshortcal = ticks; 5516 nextcal = ath_shortcalinterval*hz/1000; 5517 if (sc->sc_opmode != HAL_M_HOSTAP) 5518 nextcal *= 10; 5519 sc->sc_doresetcal = AH_TRUE; 5520 } else { 5521 /* nextcal should be the shortest time for next event */ 5522 nextcal = ath_longcalinterval*hz; 5523 if (sc->sc_lastcalreset == 0) 5524 sc->sc_lastcalreset = sc->sc_lastlongcal; 5525 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5526 sc->sc_resetcal = 1; /* setup reset next trip */ 5527 sc->sc_doresetcal = AH_FALSE; 5528 } 5529 /* ANI calibration may occur more often than short/long/resetcal */ 5530 if (ath_anicalinterval > 0) 5531 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5532 5533 if (nextcal != 0) { 5534 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5535 __func__, nextcal, isCalDone ? "" : "!"); 5536 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5537 } else { 5538 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5539 __func__); 5540 /* NB: don't rearm timer */ 5541 } 5542 /* 5543 * Restore power state now that we're done. 5544 */ 5545 ath_power_restore_power_state(sc); 5546 } 5547 5548 static void 5549 ath_scan_start(struct ieee80211com *ic) 5550 { 5551 struct ath_softc *sc = ic->ic_softc; 5552 struct ath_hal *ah = sc->sc_ah; 5553 u_int32_t rfilt; 5554 5555 /* XXX calibration timer? */ 5556 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5557 5558 ATH_LOCK(sc); 5559 sc->sc_scanning = 1; 5560 sc->sc_syncbeacon = 0; 5561 rfilt = ath_calcrxfilter(sc); 5562 ATH_UNLOCK(sc); 5563 5564 ATH_PCU_LOCK(sc); 5565 ath_hal_setrxfilter(ah, rfilt); 5566 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5567 ATH_PCU_UNLOCK(sc); 5568 5569 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5570 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5571 } 5572 5573 static void 5574 ath_scan_end(struct ieee80211com *ic) 5575 { 5576 struct ath_softc *sc = ic->ic_softc; 5577 struct ath_hal *ah = sc->sc_ah; 5578 u_int32_t rfilt; 5579 5580 ATH_LOCK(sc); 5581 sc->sc_scanning = 0; 5582 rfilt = ath_calcrxfilter(sc); 5583 ATH_UNLOCK(sc); 5584 5585 ATH_PCU_LOCK(sc); 5586 ath_hal_setrxfilter(ah, rfilt); 5587 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5588 5589 ath_hal_process_noisefloor(ah); 5590 ATH_PCU_UNLOCK(sc); 5591 5592 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5593 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5594 sc->sc_curaid); 5595 } 5596 5597 #ifdef ATH_ENABLE_11N 5598 /* 5599 * For now, just do a channel change. 5600 * 5601 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5602 * control state and resetting the hardware without dropping frames out 5603 * of the queue. 5604 * 5605 * The unfortunate trouble here is making absolutely sure that the 5606 * channel width change has propagated enough so the hardware 5607 * absolutely isn't handed bogus frames for it's current operating 5608 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5609 * does occur in parallel, we need to make certain we've blocked 5610 * any further ongoing TX (and RX, that can cause raw TX) 5611 * before we do this. 5612 */ 5613 static void 5614 ath_update_chw(struct ieee80211com *ic) 5615 { 5616 struct ath_softc *sc = ic->ic_softc; 5617 5618 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5619 device_printf(sc->sc_dev, "%s: called\n", __func__); 5620 5621 /* 5622 * XXX TODO: schedule a tasklet that stops things without freeing, 5623 * walks the now stopped TX queue(s) looking for frames to retry 5624 * as if we TX filtered them (whch may mean dropping non-ampdu frames!) 5625 * but okay) then place them back on the software queue so they 5626 * can have the rate control lookup done again. 5627 */ 5628 ath_set_channel(ic); 5629 } 5630 #endif /* ATH_ENABLE_11N */ 5631 5632 /* 5633 * This is called by the beacon parsing routine in the receive 5634 * path to update the current quiet time information provided by 5635 * an AP. 5636 * 5637 * This is STA specific, it doesn't take the AP TBTT/beacon slot 5638 * offset into account. 5639 * 5640 * The quiet IE doesn't control the /now/ beacon interval - it 5641 * controls the upcoming beacon interval. So, when tbtt=1, 5642 * the quiet element programming shall be for the next beacon 5643 * interval. There's no tbtt=0 behaviour defined, so don't. 5644 * 5645 * Since we're programming the next quiet interval, we have 5646 * to keep in mind what we will see when the next beacon 5647 * is received with potentially a quiet IE. For example, if 5648 * quiet_period is 1, then we are always getting a quiet interval 5649 * each TBTT - so if we just program it in upon each beacon received, 5650 * it will constantly reflect the "next" TBTT and we will never 5651 * let the counter stay programmed correctly. 5652 * 5653 * So: 5654 * + the first time we see the quiet IE, program it and store 5655 * the details somewhere; 5656 * + if the quiet parameters don't change (ie, period/duration/offset) 5657 * then just leave the programming enabled; 5658 * + (we can "skip" beacons, so don't try to enforce tbttcount unless 5659 * you're willing to also do the skipped beacon math); 5660 * + if the quiet IE is removed, then halt quiet time. 5661 */ 5662 static int 5663 ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie) 5664 { 5665 struct ieee80211_quiet_ie *q; 5666 struct ieee80211vap *vap = ni->ni_vap; 5667 struct ath_vap *avp = ATH_VAP(vap); 5668 struct ieee80211com *ic = vap->iv_ic; 5669 struct ath_softc *sc = ic->ic_softc; 5670 5671 if (vap->iv_opmode != IEEE80211_M_STA) 5672 return (0); 5673 5674 /* Verify we have a quiet time IE */ 5675 if (ie == NULL) { 5676 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5677 "%s: called; NULL IE, disabling\n", __func__); 5678 5679 ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE); 5680 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 5681 return (0); 5682 } 5683 5684 /* If we do, verify it's actually legit */ 5685 if (ie[0] != IEEE80211_ELEMID_QUIET) 5686 return 0; 5687 if (ie[1] != 6) 5688 return 0; 5689 5690 /* Note: this belongs in net80211, parsed out and everything */ 5691 q = (void *) ie; 5692 5693 /* 5694 * Compare what we have stored to what we last saw. 5695 * If they're the same then don't program in anything. 5696 */ 5697 if ((q->period == avp->quiet_ie.period) && 5698 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) && 5699 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset))) 5700 return (0); 5701 5702 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5703 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n", 5704 __func__, 5705 (int) q->tbttcount, 5706 (int) q->period, 5707 (int) le16dec(&q->duration), 5708 (int) le16dec(&q->offset)); 5709 5710 /* 5711 * Don't program in garbage values. 5712 */ 5713 if ((le16dec(&q->duration) == 0) || 5714 (le16dec(&q->duration) >= ni->ni_intval)) { 5715 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5716 "%s: invalid duration (%d)\n", __func__, 5717 le16dec(&q->duration)); 5718 return (0); 5719 } 5720 /* 5721 * Can have a 0 offset, but not a duration - so just check 5722 * they don't exceed the intval. 5723 */ 5724 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) { 5725 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5726 "%s: invalid duration + offset (%d+%d)\n", __func__, 5727 le16dec(&q->duration), 5728 le16dec(&q->offset)); 5729 return (0); 5730 } 5731 if (q->tbttcount == 0) { 5732 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5733 "%s: invalid tbttcount (0)\n", __func__); 5734 return (0); 5735 } 5736 if (q->period == 0) { 5737 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5738 "%s: invalid period (0)\n", __func__); 5739 return (0); 5740 } 5741 5742 /* 5743 * This is a new quiet time IE config, so wait until tbttcount 5744 * is equal to 1, and program it in. 5745 */ 5746 if (q->tbttcount == 1) { 5747 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5748 "%s: programming\n", __func__); 5749 ath_hal_set_quiet(sc->sc_ah, 5750 q->period * ni->ni_intval, /* convert to TU */ 5751 le16dec(&q->duration), /* already in TU */ 5752 le16dec(&q->offset) + ni->ni_intval, 5753 HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF); 5754 /* 5755 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for 5756 * STA mode 5757 */ 5758 5759 /* Update local state */ 5760 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie)); 5761 } 5762 5763 return (0); 5764 } 5765 5766 static void 5767 ath_set_channel(struct ieee80211com *ic) 5768 { 5769 struct ath_softc *sc = ic->ic_softc; 5770 5771 ATH_LOCK(sc); 5772 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5773 ATH_UNLOCK(sc); 5774 5775 (void) ath_chan_set(sc, ic->ic_curchan); 5776 /* 5777 * If we are returning to our bss channel then mark state 5778 * so the next recv'd beacon's tsf will be used to sync the 5779 * beacon timers. Note that since we only hear beacons in 5780 * sta/ibss mode this has no effect in other operating modes. 5781 */ 5782 ATH_LOCK(sc); 5783 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5784 sc->sc_syncbeacon = 1; 5785 ath_power_restore_power_state(sc); 5786 ATH_UNLOCK(sc); 5787 } 5788 5789 /* 5790 * Walk the vap list and check if there any vap's in RUN state. 5791 */ 5792 static int 5793 ath_isanyrunningvaps(struct ieee80211vap *this) 5794 { 5795 struct ieee80211com *ic = this->iv_ic; 5796 struct ieee80211vap *vap; 5797 5798 IEEE80211_LOCK_ASSERT(ic); 5799 5800 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5801 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5802 return 1; 5803 } 5804 return 0; 5805 } 5806 5807 static int 5808 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5809 { 5810 struct ieee80211com *ic = vap->iv_ic; 5811 struct ath_softc *sc = ic->ic_softc; 5812 struct ath_vap *avp = ATH_VAP(vap); 5813 struct ath_hal *ah = sc->sc_ah; 5814 struct ieee80211_node *ni = NULL; 5815 int i, error, stamode; 5816 u_int32_t rfilt; 5817 int csa_run_transition = 0; 5818 enum ieee80211_state ostate = vap->iv_state; 5819 5820 static const HAL_LED_STATE leds[] = { 5821 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5822 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5823 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5824 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5825 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5826 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5827 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5828 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5829 }; 5830 5831 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5832 ieee80211_state_name[ostate], 5833 ieee80211_state_name[nstate]); 5834 5835 /* 5836 * net80211 _should_ have the comlock asserted at this point. 5837 * There are some comments around the calls to vap->iv_newstate 5838 * which indicate that it (newstate) may end up dropping the 5839 * lock. This and the subsequent lock assert check after newstate 5840 * are an attempt to catch these and figure out how/why. 5841 */ 5842 IEEE80211_LOCK_ASSERT(ic); 5843 5844 /* Before we touch the hardware - wake it up */ 5845 ATH_LOCK(sc); 5846 /* 5847 * If the NIC is in anything other than SLEEP state, 5848 * we need to ensure that self-generated frames are 5849 * set for PWRMGT=0. Otherwise we may end up with 5850 * strange situations. 5851 * 5852 * XXX TODO: is this actually the case? :-) 5853 */ 5854 if (nstate != IEEE80211_S_SLEEP) 5855 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5856 5857 /* 5858 * Now, wake the thing up. 5859 */ 5860 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5861 5862 /* 5863 * And stop the calibration callout whilst we have 5864 * ATH_LOCK held. 5865 */ 5866 callout_stop(&sc->sc_cal_ch); 5867 ATH_UNLOCK(sc); 5868 5869 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5870 csa_run_transition = 1; 5871 5872 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5873 5874 if (nstate == IEEE80211_S_SCAN) { 5875 /* 5876 * Scanning: turn off beacon miss and don't beacon. 5877 * Mark beacon state so when we reach RUN state we'll 5878 * [re]setup beacons. Unblock the task q thread so 5879 * deferred interrupt processing is done. 5880 */ 5881 5882 /* Ensure we stay awake during scan */ 5883 ATH_LOCK(sc); 5884 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5885 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5886 ATH_UNLOCK(sc); 5887 5888 ath_hal_intrset(ah, 5889 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5890 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5891 sc->sc_beacons = 0; 5892 taskqueue_unblock(sc->sc_tq); 5893 } 5894 5895 ni = ieee80211_ref_node(vap->iv_bss); 5896 rfilt = ath_calcrxfilter(sc); 5897 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5898 vap->iv_opmode == IEEE80211_M_AHDEMO || 5899 vap->iv_opmode == IEEE80211_M_IBSS); 5900 5901 /* 5902 * XXX Dont need to do this (and others) if we've transitioned 5903 * from SLEEP->RUN. 5904 */ 5905 if (stamode && nstate == IEEE80211_S_RUN) { 5906 sc->sc_curaid = ni->ni_associd; 5907 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5908 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5909 } 5910 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5911 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5912 ath_hal_setrxfilter(ah, rfilt); 5913 5914 /* XXX is this to restore keycache on resume? */ 5915 if (vap->iv_opmode != IEEE80211_M_STA && 5916 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5917 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5918 if (ath_hal_keyisvalid(ah, i)) 5919 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5920 } 5921 5922 /* 5923 * Invoke the parent method to do net80211 work. 5924 */ 5925 error = avp->av_newstate(vap, nstate, arg); 5926 if (error != 0) 5927 goto bad; 5928 5929 /* 5930 * See above: ensure av_newstate() doesn't drop the lock 5931 * on us. 5932 */ 5933 IEEE80211_LOCK_ASSERT(ic); 5934 5935 /* 5936 * XXX TODO: if nstate is _S_CAC, then we should disable 5937 * ACK processing until CAC is completed. 5938 */ 5939 5940 /* 5941 * XXX TODO: if we're on a passive channel, then we should 5942 * not allow any ACKs or self-generated frames until we hear 5943 * a beacon. Unfortunately there isn't a notification from 5944 * net80211 so perhaps we could slot that particular check 5945 * into the mgmt receive path and just ensure that we clear 5946 * it on RX of beacons in passive mode (and only clear it 5947 * once, obviously.) 5948 */ 5949 5950 /* 5951 * XXX TODO: net80211 should be tracking whether channels 5952 * have heard beacons and are thus considered "OK" for 5953 * transmitting - and then inform the driver about this 5954 * state change. That way if we hear an AP go quiet 5955 * (and nothing else is beaconing on a channel) the 5956 * channel can go back to being passive until another 5957 * beacon is heard. 5958 */ 5959 5960 /* 5961 * XXX TODO: if nstate is _S_CAC, then we should disable 5962 * ACK processing until CAC is completed. 5963 */ 5964 5965 /* 5966 * XXX TODO: if we're on a passive channel, then we should 5967 * not allow any ACKs or self-generated frames until we hear 5968 * a beacon. Unfortunately there isn't a notification from 5969 * net80211 so perhaps we could slot that particular check 5970 * into the mgmt receive path and just ensure that we clear 5971 * it on RX of beacons in passive mode (and only clear it 5972 * once, obviously.) 5973 */ 5974 5975 /* 5976 * XXX TODO: net80211 should be tracking whether channels 5977 * have heard beacons and are thus considered "OK" for 5978 * transmitting - and then inform the driver about this 5979 * state change. That way if we hear an AP go quiet 5980 * (and nothing else is beaconing on a channel) the 5981 * channel can go back to being passive until another 5982 * beacon is heard. 5983 */ 5984 5985 if (nstate == IEEE80211_S_RUN) { 5986 /* NB: collect bss node again, it may have changed */ 5987 ieee80211_free_node(ni); 5988 ni = ieee80211_ref_node(vap->iv_bss); 5989 5990 DPRINTF(sc, ATH_DEBUG_STATE, 5991 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 5992 "capinfo 0x%04x chan %d\n", __func__, 5993 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 5994 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 5995 5996 switch (vap->iv_opmode) { 5997 #ifdef IEEE80211_SUPPORT_TDMA 5998 case IEEE80211_M_AHDEMO: 5999 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 6000 break; 6001 /* fall thru... */ 6002 #endif 6003 case IEEE80211_M_HOSTAP: 6004 case IEEE80211_M_IBSS: 6005 case IEEE80211_M_MBSS: 6006 6007 /* 6008 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.) 6009 * For channels that are in CAC, we may have disabled 6010 * this during CAC to ensure we don't ACK frames 6011 * sent to us. 6012 */ 6013 6014 /* 6015 * Allocate and setup the beacon frame. 6016 * 6017 * Stop any previous beacon DMA. This may be 6018 * necessary, for example, when an ibss merge 6019 * causes reconfiguration; there will be a state 6020 * transition from RUN->RUN that means we may 6021 * be called with beacon transmission active. 6022 */ 6023 ath_hal_stoptxdma(ah, sc->sc_bhalq); 6024 6025 error = ath_beacon_alloc(sc, ni); 6026 if (error != 0) 6027 goto bad; 6028 /* 6029 * If joining an adhoc network defer beacon timer 6030 * configuration to the next beacon frame so we 6031 * have a current TSF to use. Otherwise we're 6032 * starting an ibss/bss so there's no need to delay; 6033 * if this is the first vap moving to RUN state, then 6034 * beacon state needs to be [re]configured. 6035 */ 6036 if (vap->iv_opmode == IEEE80211_M_IBSS && 6037 ni->ni_tstamp.tsf != 0) { 6038 sc->sc_syncbeacon = 1; 6039 } else if (!sc->sc_beacons) { 6040 #ifdef IEEE80211_SUPPORT_TDMA 6041 if (vap->iv_caps & IEEE80211_C_TDMA) 6042 ath_tdma_config(sc, vap); 6043 else 6044 #endif 6045 ath_beacon_config(sc, vap); 6046 sc->sc_beacons = 1; 6047 } 6048 break; 6049 case IEEE80211_M_STA: 6050 /* 6051 * Defer beacon timer configuration to the next 6052 * beacon frame so we have a current TSF to use 6053 * (any TSF collected when scanning is likely old). 6054 * However if it's due to a CSA -> RUN transition, 6055 * force a beacon update so we pick up a lack of 6056 * beacons from an AP in CAC and thus force a 6057 * scan. 6058 * 6059 * And, there's also corner cases here where 6060 * after a scan, the AP may have disappeared. 6061 * In that case, we may not receive an actual 6062 * beacon to update the beacon timer and thus we 6063 * won't get notified of the missing beacons. 6064 */ 6065 if (ostate != IEEE80211_S_RUN && 6066 ostate != IEEE80211_S_SLEEP) { 6067 DPRINTF(sc, ATH_DEBUG_BEACON, 6068 "%s: STA; syncbeacon=1\n", __func__); 6069 sc->sc_syncbeacon = 1; 6070 6071 /* Quiet time handling - ensure we resync */ 6072 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6073 6074 if (csa_run_transition) 6075 ath_beacon_config(sc, vap); 6076 6077 /* 6078 * PR: kern/175227 6079 * 6080 * Reconfigure beacons during reset; as otherwise 6081 * we won't get the beacon timers reprogrammed 6082 * after a reset and thus we won't pick up a 6083 * beacon miss interrupt. 6084 * 6085 * Hopefully we'll see a beacon before the BMISS 6086 * timer fires (too often), leading to a STA 6087 * disassociation. 6088 */ 6089 sc->sc_beacons = 1; 6090 } 6091 break; 6092 case IEEE80211_M_MONITOR: 6093 /* 6094 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6095 * transitions so we must re-enable interrupts here to 6096 * handle the case of a single monitor mode vap. 6097 */ 6098 ath_hal_intrset(ah, sc->sc_imask); 6099 break; 6100 case IEEE80211_M_WDS: 6101 break; 6102 default: 6103 break; 6104 } 6105 /* 6106 * Let the hal process statistics collected during a 6107 * scan so it can provide calibrated noise floor data. 6108 */ 6109 ath_hal_process_noisefloor(ah); 6110 /* 6111 * Reset rssi stats; maybe not the best place... 6112 */ 6113 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6114 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6115 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6116 6117 /* 6118 * Force awake for RUN mode. 6119 */ 6120 ATH_LOCK(sc); 6121 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6122 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 6123 6124 /* 6125 * Finally, start any timers and the task q thread 6126 * (in case we didn't go through SCAN state). 6127 */ 6128 if (ath_longcalinterval != 0) { 6129 /* start periodic recalibration timer */ 6130 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6131 } else { 6132 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6133 "%s: calibration disabled\n", __func__); 6134 } 6135 ATH_UNLOCK(sc); 6136 6137 taskqueue_unblock(sc->sc_tq); 6138 } else if (nstate == IEEE80211_S_INIT) { 6139 /* Quiet time handling - ensure we resync */ 6140 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6141 6142 /* 6143 * If there are no vaps left in RUN state then 6144 * shutdown host/driver operation: 6145 * o disable interrupts 6146 * o disable the task queue thread 6147 * o mark beacon processing as stopped 6148 */ 6149 if (!ath_isanyrunningvaps(vap)) { 6150 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6151 /* disable interrupts */ 6152 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6153 taskqueue_block(sc->sc_tq); 6154 sc->sc_beacons = 0; 6155 } 6156 6157 /* 6158 * For at least STA mode we likely should clear the ANI 6159 * and NF calibration state and allow the NIC/HAL to figure 6160 * out optimal parameters at runtime. Otherwise if we 6161 * disassociate due to interference / deafness it may persist 6162 * when we reconnect. 6163 * 6164 * Note: may need to do this for other states too, not just 6165 * _S_INIT. 6166 */ 6167 #ifdef IEEE80211_SUPPORT_TDMA 6168 ath_hal_setcca(ah, AH_TRUE); 6169 #endif 6170 } else if (nstate == IEEE80211_S_SLEEP) { 6171 /* We're going to sleep, so transition appropriately */ 6172 /* For now, only do this if we're a single STA vap */ 6173 if (sc->sc_nvaps == 1 && 6174 vap->iv_opmode == IEEE80211_M_STA) { 6175 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6176 ATH_LOCK(sc); 6177 /* 6178 * Always at least set the self-generated 6179 * frame config to set PWRMGT=1. 6180 */ 6181 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6182 6183 /* 6184 * If we're not syncing beacons, transition 6185 * to NETWORK_SLEEP. 6186 * 6187 * We stay awake if syncbeacon > 0 in case 6188 * we need to listen for some beacons otherwise 6189 * our beacon timer config may be wrong. 6190 */ 6191 if (sc->sc_syncbeacon == 0) { 6192 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 6193 } 6194 ATH_UNLOCK(sc); 6195 } 6196 6197 /* 6198 * Note - the ANI/calibration timer isn't re-enabled during 6199 * network sleep for now. One unfortunate side-effect is that 6200 * the PHY/airtime statistics aren't gathered on the channel 6201 * but I haven't yet tested to see if reading those registers 6202 * CAN occur during network sleep. 6203 * 6204 * This should be revisited in a future commit, even if it's 6205 * just to split out the airtime polling from ANI/calibration. 6206 */ 6207 } else if (nstate == IEEE80211_S_SCAN) { 6208 /* Quiet time handling - ensure we resync */ 6209 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6210 6211 /* 6212 * If we're in scan mode then startpcureceive() is 6213 * hopefully being called with "reset ANI" for this channel; 6214 * but once we attempt to reassociate we program in the previous 6215 * ANI values and.. not do any calibration until we're running. 6216 * This may mean we stay deaf unless we can associate successfully. 6217 * 6218 * So do kick off the cal timer to get NF/ANI going. 6219 */ 6220 ATH_LOCK(sc); 6221 if (ath_longcalinterval != 0) { 6222 /* start periodic recalibration timer */ 6223 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6224 } else { 6225 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6226 "%s: calibration disabled\n", __func__); 6227 } 6228 ATH_UNLOCK(sc); 6229 } 6230 bad: 6231 ieee80211_free_node(ni); 6232 6233 /* 6234 * Restore the power state - either to what it was, or 6235 * to network_sleep if it's alright. 6236 */ 6237 ATH_LOCK(sc); 6238 ath_power_restore_power_state(sc); 6239 ATH_UNLOCK(sc); 6240 return error; 6241 } 6242 6243 /* 6244 * Allocate a key cache slot to the station so we can 6245 * setup a mapping from key index to node. The key cache 6246 * slot is needed for managing antenna state and for 6247 * compression when stations do not use crypto. We do 6248 * it uniliaterally here; if crypto is employed this slot 6249 * will be reassigned. 6250 */ 6251 static void 6252 ath_setup_stationkey(struct ieee80211_node *ni) 6253 { 6254 struct ieee80211vap *vap = ni->ni_vap; 6255 struct ath_softc *sc = vap->iv_ic->ic_softc; 6256 ieee80211_keyix keyix, rxkeyix; 6257 6258 /* XXX should take a locked ref to vap->iv_bss */ 6259 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6260 /* 6261 * Key cache is full; we'll fall back to doing 6262 * the more expensive lookup in software. Note 6263 * this also means no h/w compression. 6264 */ 6265 /* XXX msg+statistic */ 6266 } else { 6267 /* XXX locking? */ 6268 ni->ni_ucastkey.wk_keyix = keyix; 6269 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6270 /* NB: must mark device key to get called back on delete */ 6271 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6272 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6273 /* NB: this will create a pass-thru key entry */ 6274 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6275 } 6276 } 6277 6278 /* 6279 * Setup driver-specific state for a newly associated node. 6280 * Note that we're called also on a re-associate, the isnew 6281 * param tells us if this is the first time or not. 6282 */ 6283 static void 6284 ath_newassoc(struct ieee80211_node *ni, int isnew) 6285 { 6286 struct ath_node *an = ATH_NODE(ni); 6287 struct ieee80211vap *vap = ni->ni_vap; 6288 struct ath_softc *sc = vap->iv_ic->ic_softc; 6289 const struct ieee80211_txparam *tp = ni->ni_txparms; 6290 6291 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6292 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6293 6294 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6295 __func__, 6296 ni->ni_macaddr, 6297 ":", 6298 isnew, 6299 an->an_is_powersave); 6300 6301 ATH_NODE_LOCK(an); 6302 ath_rate_newassoc(sc, an, isnew); 6303 ATH_NODE_UNLOCK(an); 6304 6305 if (isnew && 6306 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6307 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6308 ath_setup_stationkey(ni); 6309 6310 /* 6311 * If we're reassociating, make sure that any paused queues 6312 * get unpaused. 6313 * 6314 * Now, we may have frames in the hardware queue for this node. 6315 * So if we are reassociating and there are frames in the queue, 6316 * we need to go through the cleanup path to ensure that they're 6317 * marked as non-aggregate. 6318 */ 6319 if (! isnew) { 6320 DPRINTF(sc, ATH_DEBUG_NODE, 6321 "%s: %6D: reassoc; is_powersave=%d\n", 6322 __func__, 6323 ni->ni_macaddr, 6324 ":", 6325 an->an_is_powersave); 6326 6327 /* XXX for now, we can't hold the lock across assoc */ 6328 ath_tx_node_reassoc(sc, an); 6329 6330 /* XXX for now, we can't hold the lock across wakeup */ 6331 if (an->an_is_powersave) 6332 ath_tx_node_wakeup(sc, an); 6333 } 6334 } 6335 6336 static int 6337 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6338 int nchans, struct ieee80211_channel chans[]) 6339 { 6340 struct ath_softc *sc = ic->ic_softc; 6341 struct ath_hal *ah = sc->sc_ah; 6342 HAL_STATUS status; 6343 6344 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6345 "%s: rd %u cc %u location %c%s\n", 6346 __func__, reg->regdomain, reg->country, reg->location, 6347 reg->ecm ? " ecm" : ""); 6348 6349 status = ath_hal_set_channels(ah, chans, nchans, 6350 reg->country, reg->regdomain); 6351 if (status != HAL_OK) { 6352 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6353 __func__, status); 6354 return EINVAL; /* XXX */ 6355 } 6356 6357 return 0; 6358 } 6359 6360 static void 6361 ath_getradiocaps(struct ieee80211com *ic, 6362 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6363 { 6364 struct ath_softc *sc = ic->ic_softc; 6365 struct ath_hal *ah = sc->sc_ah; 6366 6367 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6368 __func__, SKU_DEBUG, CTRY_DEFAULT); 6369 6370 /* XXX check return */ 6371 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6372 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6373 6374 } 6375 6376 static int 6377 ath_getchannels(struct ath_softc *sc) 6378 { 6379 struct ieee80211com *ic = &sc->sc_ic; 6380 struct ath_hal *ah = sc->sc_ah; 6381 HAL_STATUS status; 6382 6383 /* 6384 * Collect channel set based on EEPROM contents. 6385 */ 6386 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6387 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6388 if (status != HAL_OK) { 6389 device_printf(sc->sc_dev, 6390 "%s: unable to collect channel list from hal, status %d\n", 6391 __func__, status); 6392 return EINVAL; 6393 } 6394 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6395 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6396 /* XXX map Atheros sku's to net80211 SKU's */ 6397 /* XXX net80211 types too small */ 6398 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6399 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6400 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6401 ic->ic_regdomain.isocc[1] = ' '; 6402 6403 ic->ic_regdomain.ecm = 1; 6404 ic->ic_regdomain.location = 'I'; 6405 6406 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6407 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6408 __func__, sc->sc_eerd, sc->sc_eecc, 6409 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6410 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6411 return 0; 6412 } 6413 6414 static int 6415 ath_rate_setup(struct ath_softc *sc, u_int mode) 6416 { 6417 struct ath_hal *ah = sc->sc_ah; 6418 const HAL_RATE_TABLE *rt; 6419 6420 switch (mode) { 6421 case IEEE80211_MODE_11A: 6422 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6423 break; 6424 case IEEE80211_MODE_HALF: 6425 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6426 break; 6427 case IEEE80211_MODE_QUARTER: 6428 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6429 break; 6430 case IEEE80211_MODE_11B: 6431 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6432 break; 6433 case IEEE80211_MODE_11G: 6434 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6435 break; 6436 case IEEE80211_MODE_TURBO_A: 6437 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6438 break; 6439 case IEEE80211_MODE_TURBO_G: 6440 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6441 break; 6442 case IEEE80211_MODE_STURBO_A: 6443 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6444 break; 6445 case IEEE80211_MODE_11NA: 6446 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6447 break; 6448 case IEEE80211_MODE_11NG: 6449 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6450 break; 6451 default: 6452 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6453 __func__, mode); 6454 return 0; 6455 } 6456 sc->sc_rates[mode] = rt; 6457 return (rt != NULL); 6458 } 6459 6460 static void 6461 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6462 { 6463 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6464 static const struct { 6465 u_int rate; /* tx/rx 802.11 rate */ 6466 u_int16_t timeOn; /* LED on time (ms) */ 6467 u_int16_t timeOff; /* LED off time (ms) */ 6468 } blinkrates[] = { 6469 { 108, 40, 10 }, 6470 { 96, 44, 11 }, 6471 { 72, 50, 13 }, 6472 { 48, 57, 14 }, 6473 { 36, 67, 16 }, 6474 { 24, 80, 20 }, 6475 { 22, 100, 25 }, 6476 { 18, 133, 34 }, 6477 { 12, 160, 40 }, 6478 { 10, 200, 50 }, 6479 { 6, 240, 58 }, 6480 { 4, 267, 66 }, 6481 { 2, 400, 100 }, 6482 { 0, 500, 130 }, 6483 /* XXX half/quarter rates */ 6484 }; 6485 const HAL_RATE_TABLE *rt; 6486 int i, j; 6487 6488 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6489 rt = sc->sc_rates[mode]; 6490 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6491 for (i = 0; i < rt->rateCount; i++) { 6492 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6493 if (rt->info[i].phy != IEEE80211_T_HT) 6494 sc->sc_rixmap[ieeerate] = i; 6495 else 6496 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6497 } 6498 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6499 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6500 if (i >= rt->rateCount) { 6501 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6502 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6503 continue; 6504 } 6505 sc->sc_hwmap[i].ieeerate = 6506 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6507 if (rt->info[i].phy == IEEE80211_T_HT) 6508 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6509 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6510 if (rt->info[i].shortPreamble || 6511 rt->info[i].phy == IEEE80211_T_OFDM) 6512 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6513 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6514 for (j = 0; j < nitems(blinkrates)-1; j++) 6515 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6516 break; 6517 /* NB: this uses the last entry if the rate isn't found */ 6518 /* XXX beware of overlow */ 6519 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6520 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6521 } 6522 sc->sc_currates = rt; 6523 sc->sc_curmode = mode; 6524 /* 6525 * All protection frames are transmitted at 2Mb/s for 6526 * 11g, otherwise at 1Mb/s. 6527 */ 6528 if (mode == IEEE80211_MODE_11G) 6529 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6530 else 6531 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6532 /* NB: caller is responsible for resetting rate control state */ 6533 } 6534 6535 static void 6536 ath_watchdog(void *arg) 6537 { 6538 struct ath_softc *sc = arg; 6539 struct ieee80211com *ic = &sc->sc_ic; 6540 int do_reset = 0; 6541 6542 ATH_LOCK_ASSERT(sc); 6543 6544 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6545 uint32_t hangs; 6546 6547 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6548 6549 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6550 hangs != 0) { 6551 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6552 hangs & 0xff ? "bb" : "mac", hangs); 6553 } else 6554 device_printf(sc->sc_dev, "device timeout\n"); 6555 do_reset = 1; 6556 counter_u64_add(ic->ic_oerrors, 1); 6557 sc->sc_stats.ast_watchdog++; 6558 6559 ath_power_restore_power_state(sc); 6560 } 6561 6562 /* 6563 * We can't hold the lock across the ath_reset() call. 6564 * 6565 * And since this routine can't hold a lock and sleep, 6566 * do the reset deferred. 6567 */ 6568 if (do_reset) { 6569 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6570 } 6571 6572 callout_schedule(&sc->sc_wd_ch, hz); 6573 } 6574 6575 static void 6576 ath_parent(struct ieee80211com *ic) 6577 { 6578 struct ath_softc *sc = ic->ic_softc; 6579 int error = EDOOFUS; 6580 6581 ATH_LOCK(sc); 6582 if (ic->ic_nrunning > 0) { 6583 /* 6584 * To avoid rescanning another access point, 6585 * do not call ath_init() here. Instead, 6586 * only reflect promisc mode settings. 6587 */ 6588 if (sc->sc_running) { 6589 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6590 ath_mode_init(sc); 6591 ath_power_restore_power_state(sc); 6592 } else if (!sc->sc_invalid) { 6593 /* 6594 * Beware of being called during attach/detach 6595 * to reset promiscuous mode. In that case we 6596 * will still be marked UP but not RUNNING. 6597 * However trying to re-init the interface 6598 * is the wrong thing to do as we've already 6599 * torn down much of our state. There's 6600 * probably a better way to deal with this. 6601 */ 6602 error = ath_init(sc); 6603 } 6604 } else { 6605 ath_stop(sc); 6606 if (!sc->sc_invalid) 6607 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6608 } 6609 ATH_UNLOCK(sc); 6610 6611 if (error == 0) { 6612 #ifdef ATH_TX99_DIAG 6613 if (sc->sc_tx99 != NULL) 6614 sc->sc_tx99->start(sc->sc_tx99); 6615 else 6616 #endif 6617 ieee80211_start_all(ic); 6618 } 6619 } 6620 6621 /* 6622 * Announce various information on device/driver attach. 6623 */ 6624 static void 6625 ath_announce(struct ath_softc *sc) 6626 { 6627 struct ath_hal *ah = sc->sc_ah; 6628 6629 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6630 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6631 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6632 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6633 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6634 if (bootverbose) { 6635 int i; 6636 for (i = 0; i <= WME_AC_VO; i++) { 6637 struct ath_txq *txq = sc->sc_ac2q[i]; 6638 device_printf(sc->sc_dev, 6639 "Use hw queue %u for %s traffic\n", 6640 txq->axq_qnum, ieee80211_wme_acnames[i]); 6641 } 6642 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6643 sc->sc_cabq->axq_qnum); 6644 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6645 sc->sc_bhalq); 6646 } 6647 if (ath_rxbuf != ATH_RXBUF) 6648 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6649 if (ath_txbuf != ATH_TXBUF) 6650 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6651 if (sc->sc_mcastkey && bootverbose) 6652 device_printf(sc->sc_dev, "using multicast key search\n"); 6653 } 6654 6655 static void 6656 ath_dfs_tasklet(void *p, int npending) 6657 { 6658 struct ath_softc *sc = (struct ath_softc *) p; 6659 struct ieee80211com *ic = &sc->sc_ic; 6660 6661 /* 6662 * If previous processing has found a radar event, 6663 * signal this to the net80211 layer to begin DFS 6664 * processing. 6665 */ 6666 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6667 /* DFS event found, initiate channel change */ 6668 6669 /* 6670 * XXX TODO: immediately disable ACK processing 6671 * on the current channel. This would be done 6672 * by setting AR_DIAG_ACK_DIS (AR5212; may be 6673 * different for others) until we are out of 6674 * CAC. 6675 */ 6676 6677 /* 6678 * XXX doesn't currently tell us whether the event 6679 * XXX was found in the primary or extension 6680 * XXX channel! 6681 */ 6682 IEEE80211_LOCK(ic); 6683 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6684 IEEE80211_UNLOCK(ic); 6685 } 6686 } 6687 6688 /* 6689 * Enable/disable power save. This must be called with 6690 * no TX driver locks currently held, so it should only 6691 * be called from the RX path (which doesn't hold any 6692 * TX driver locks.) 6693 */ 6694 static void 6695 ath_node_powersave(struct ieee80211_node *ni, int enable) 6696 { 6697 #ifdef ATH_SW_PSQ 6698 struct ath_node *an = ATH_NODE(ni); 6699 struct ieee80211com *ic = ni->ni_ic; 6700 struct ath_softc *sc = ic->ic_softc; 6701 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6702 6703 /* XXX and no TXQ locks should be held here */ 6704 6705 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6706 __func__, 6707 ni->ni_macaddr, 6708 ":", 6709 !! enable); 6710 6711 /* Suspend or resume software queue handling */ 6712 if (enable) 6713 ath_tx_node_sleep(sc, an); 6714 else 6715 ath_tx_node_wakeup(sc, an); 6716 6717 /* Update net80211 state */ 6718 avp->av_node_ps(ni, enable); 6719 #else 6720 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6721 6722 /* Update net80211 state */ 6723 avp->av_node_ps(ni, enable); 6724 #endif/* ATH_SW_PSQ */ 6725 } 6726 6727 /* 6728 * Notification from net80211 that the powersave queue state has 6729 * changed. 6730 * 6731 * Since the software queue also may have some frames: 6732 * 6733 * + if the node software queue has frames and the TID state 6734 * is 0, we set the TIM; 6735 * + if the node and the stack are both empty, we clear the TIM bit. 6736 * + If the stack tries to set the bit, always set it. 6737 * + If the stack tries to clear the bit, only clear it if the 6738 * software queue in question is also cleared. 6739 * 6740 * TODO: this is called during node teardown; so let's ensure this 6741 * is all correctly handled and that the TIM bit is cleared. 6742 * It may be that the node flush is called _AFTER_ the net80211 6743 * stack clears the TIM. 6744 * 6745 * Here is the racy part. Since it's possible >1 concurrent, 6746 * overlapping TXes will appear complete with a TX completion in 6747 * another thread, it's possible that the concurrent TIM calls will 6748 * clash. We can't hold the node lock here because setting the 6749 * TIM grabs the net80211 comlock and this may cause a LOR. 6750 * The solution is either to totally serialise _everything_ at 6751 * this point (ie, all TX, completion and any reset/flush go into 6752 * one taskqueue) or a new "ath TIM lock" needs to be created that 6753 * just wraps the driver state change and this call to avp->av_set_tim(). 6754 * 6755 * The same race exists in the net80211 power save queue handling 6756 * as well. Since multiple transmitting threads may queue frames 6757 * into the driver, as well as ps-poll and the driver transmitting 6758 * frames (and thus clearing the psq), it's quite possible that 6759 * a packet entering the PSQ and a ps-poll being handled will 6760 * race, causing the TIM to be cleared and not re-set. 6761 */ 6762 static int 6763 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6764 { 6765 #ifdef ATH_SW_PSQ 6766 struct ieee80211com *ic = ni->ni_ic; 6767 struct ath_softc *sc = ic->ic_softc; 6768 struct ath_node *an = ATH_NODE(ni); 6769 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6770 int changed = 0; 6771 6772 ATH_TX_LOCK(sc); 6773 an->an_stack_psq = enable; 6774 6775 /* 6776 * This will get called for all operating modes, 6777 * even if avp->av_set_tim is unset. 6778 * It's currently set for hostap/ibss modes; but 6779 * the same infrastructure is used for both STA 6780 * and AP/IBSS node power save. 6781 */ 6782 if (avp->av_set_tim == NULL) { 6783 ATH_TX_UNLOCK(sc); 6784 return (0); 6785 } 6786 6787 /* 6788 * If setting the bit, always set it here. 6789 * If clearing the bit, only clear it if the 6790 * software queue is also empty. 6791 * 6792 * If the node has left power save, just clear the TIM 6793 * bit regardless of the state of the power save queue. 6794 * 6795 * XXX TODO: although atomics are used, it's quite possible 6796 * that a race will occur between this and setting/clearing 6797 * in another thread. TX completion will occur always in 6798 * one thread, however setting/clearing the TIM bit can come 6799 * from a variety of different process contexts! 6800 */ 6801 if (enable && an->an_tim_set == 1) { 6802 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6803 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6804 __func__, 6805 ni->ni_macaddr, 6806 ":", 6807 enable); 6808 ATH_TX_UNLOCK(sc); 6809 } else if (enable) { 6810 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6811 "%s: %6D: enable=%d, enabling TIM\n", 6812 __func__, 6813 ni->ni_macaddr, 6814 ":", 6815 enable); 6816 an->an_tim_set = 1; 6817 ATH_TX_UNLOCK(sc); 6818 changed = avp->av_set_tim(ni, enable); 6819 } else if (an->an_swq_depth == 0) { 6820 /* disable */ 6821 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6822 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6823 __func__, 6824 ni->ni_macaddr, 6825 ":", 6826 enable); 6827 an->an_tim_set = 0; 6828 ATH_TX_UNLOCK(sc); 6829 changed = avp->av_set_tim(ni, enable); 6830 } else if (! an->an_is_powersave) { 6831 /* 6832 * disable regardless; the node isn't in powersave now 6833 */ 6834 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6835 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6836 __func__, 6837 ni->ni_macaddr, 6838 ":", 6839 enable); 6840 an->an_tim_set = 0; 6841 ATH_TX_UNLOCK(sc); 6842 changed = avp->av_set_tim(ni, enable); 6843 } else { 6844 /* 6845 * psq disable, node is currently in powersave, node 6846 * software queue isn't empty, so don't clear the TIM bit 6847 * for now. 6848 */ 6849 ATH_TX_UNLOCK(sc); 6850 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6851 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6852 __func__, 6853 ni->ni_macaddr, 6854 ":", 6855 enable); 6856 changed = 0; 6857 } 6858 6859 return (changed); 6860 #else 6861 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6862 6863 /* 6864 * Some operating modes don't set av_set_tim(), so don't 6865 * update it here. 6866 */ 6867 if (avp->av_set_tim == NULL) 6868 return (0); 6869 6870 return (avp->av_set_tim(ni, enable)); 6871 #endif /* ATH_SW_PSQ */ 6872 } 6873 6874 /* 6875 * Set or update the TIM from the software queue. 6876 * 6877 * Check the software queue depth before attempting to do lock 6878 * anything; that avoids trying to obtain the lock. Then, 6879 * re-check afterwards to ensure nothing has changed in the 6880 * meantime. 6881 * 6882 * set: This is designed to be called from the TX path, after 6883 * a frame has been queued; to see if the swq > 0. 6884 * 6885 * clear: This is designed to be called from the buffer completion point 6886 * (right now it's ath_tx_default_comp()) where the state of 6887 * a software queue has changed. 6888 * 6889 * It makes sense to place it at buffer free / completion rather 6890 * than after each software queue operation, as there's no real 6891 * point in churning the TIM bit as the last frames in the software 6892 * queue are transmitted. If they fail and we retry them, we'd 6893 * just be setting the TIM bit again anyway. 6894 */ 6895 void 6896 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6897 int enable) 6898 { 6899 #ifdef ATH_SW_PSQ 6900 struct ath_node *an; 6901 struct ath_vap *avp; 6902 6903 /* Don't do this for broadcast/etc frames */ 6904 if (ni == NULL) 6905 return; 6906 6907 an = ATH_NODE(ni); 6908 avp = ATH_VAP(ni->ni_vap); 6909 6910 /* 6911 * And for operating modes without the TIM handler set, let's 6912 * just skip those. 6913 */ 6914 if (avp->av_set_tim == NULL) 6915 return; 6916 6917 ATH_TX_LOCK_ASSERT(sc); 6918 6919 if (enable) { 6920 if (an->an_is_powersave && 6921 an->an_tim_set == 0 && 6922 an->an_swq_depth != 0) { 6923 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6924 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6925 __func__, 6926 ni->ni_macaddr, 6927 ":"); 6928 an->an_tim_set = 1; 6929 (void) avp->av_set_tim(ni, 1); 6930 } 6931 } else { 6932 /* 6933 * Don't bother grabbing the lock unless the queue is empty. 6934 */ 6935 if (an->an_swq_depth != 0) 6936 return; 6937 6938 if (an->an_is_powersave && 6939 an->an_stack_psq == 0 && 6940 an->an_tim_set == 1 && 6941 an->an_swq_depth == 0) { 6942 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6943 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6944 " clear!\n", 6945 __func__, 6946 ni->ni_macaddr, 6947 ":"); 6948 an->an_tim_set = 0; 6949 (void) avp->av_set_tim(ni, 0); 6950 } 6951 } 6952 #else 6953 return; 6954 #endif /* ATH_SW_PSQ */ 6955 } 6956 6957 /* 6958 * Received a ps-poll frame from net80211. 6959 * 6960 * Here we get a chance to serve out a software-queued frame ourselves 6961 * before we punt it to net80211 to transmit us one itself - either 6962 * because there's traffic in the net80211 psq, or a NULL frame to 6963 * indicate there's nothing else. 6964 */ 6965 static void 6966 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6967 { 6968 #ifdef ATH_SW_PSQ 6969 struct ath_node *an; 6970 struct ath_vap *avp; 6971 struct ieee80211com *ic = ni->ni_ic; 6972 struct ath_softc *sc = ic->ic_softc; 6973 int tid; 6974 6975 /* Just paranoia */ 6976 if (ni == NULL) 6977 return; 6978 6979 /* 6980 * Unassociated (temporary node) station. 6981 */ 6982 if (ni->ni_associd == 0) 6983 return; 6984 6985 /* 6986 * We do have an active node, so let's begin looking into it. 6987 */ 6988 an = ATH_NODE(ni); 6989 avp = ATH_VAP(ni->ni_vap); 6990 6991 /* 6992 * For now, we just call the original ps-poll method. 6993 * Once we're ready to flip this on: 6994 * 6995 * + Set leak to 1, as no matter what we're going to have 6996 * to send a frame; 6997 * + Check the software queue and if there's something in it, 6998 * schedule the highest TID thas has traffic from this node. 6999 * Then make sure we schedule the software scheduler to 7000 * run so it picks up said frame. 7001 * 7002 * That way whatever happens, we'll at least send _a_ frame 7003 * to the given node. 7004 * 7005 * Again, yes, it's crappy QoS if the node has multiple 7006 * TIDs worth of traffic - but let's get it working first 7007 * before we optimise it. 7008 * 7009 * Also yes, there's definitely latency here - we're not 7010 * direct dispatching to the hardware in this path (and 7011 * we're likely being called from the packet receive path, 7012 * so going back into TX may be a little hairy!) but again 7013 * I'd like to get this working first before optimising 7014 * turn-around time. 7015 */ 7016 7017 ATH_TX_LOCK(sc); 7018 7019 /* 7020 * Legacy - we're called and the node isn't asleep. 7021 * Immediately punt. 7022 */ 7023 if (! an->an_is_powersave) { 7024 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7025 "%s: %6D: not in powersave?\n", 7026 __func__, 7027 ni->ni_macaddr, 7028 ":"); 7029 ATH_TX_UNLOCK(sc); 7030 avp->av_recv_pspoll(ni, m); 7031 return; 7032 } 7033 7034 /* 7035 * We're in powersave. 7036 * 7037 * Leak a frame. 7038 */ 7039 an->an_leak_count = 1; 7040 7041 /* 7042 * Now, if there's no frames in the node, just punt to 7043 * recv_pspoll. 7044 * 7045 * Don't bother checking if the TIM bit is set, we really 7046 * only care if there are any frames here! 7047 */ 7048 if (an->an_swq_depth == 0) { 7049 ATH_TX_UNLOCK(sc); 7050 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7051 "%s: %6D: SWQ empty; punting to net80211\n", 7052 __func__, 7053 ni->ni_macaddr, 7054 ":"); 7055 avp->av_recv_pspoll(ni, m); 7056 return; 7057 } 7058 7059 /* 7060 * Ok, let's schedule the highest TID that has traffic 7061 * and then schedule something. 7062 */ 7063 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7064 struct ath_tid *atid = &an->an_tid[tid]; 7065 /* 7066 * No frames? Skip. 7067 */ 7068 if (atid->axq_depth == 0) 7069 continue; 7070 ath_tx_tid_sched(sc, atid); 7071 /* 7072 * XXX we could do a direct call to the TXQ 7073 * scheduler code here to optimise latency 7074 * at the expense of a REALLY deep callstack. 7075 */ 7076 ATH_TX_UNLOCK(sc); 7077 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7078 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7079 "%s: %6D: leaking frame to TID %d\n", 7080 __func__, 7081 ni->ni_macaddr, 7082 ":", 7083 tid); 7084 return; 7085 } 7086 7087 ATH_TX_UNLOCK(sc); 7088 7089 /* 7090 * XXX nothing in the TIDs at this point? Eek. 7091 */ 7092 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7093 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7094 __func__, 7095 ni->ni_macaddr, 7096 ":"); 7097 avp->av_recv_pspoll(ni, m); 7098 #else 7099 avp->av_recv_pspoll(ni, m); 7100 #endif /* ATH_SW_PSQ */ 7101 } 7102 7103 MODULE_VERSION(ath_main, 1); 7104 MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */ 7105 MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1); 7106 MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1); 7107 MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1); 7108 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7109 MODULE_DEPEND(ath_main, alq, 1, 1, 1); 7110 #endif 7111