1 /*- 2 * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 3. Neither the names of the above-listed copyright holders nor the names 16 * of any contributors may be used to endorse or promote products derived 17 * from this software without specific prior written permission. 18 * 19 * Alternatively, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") version 2 as published by the Free 21 * Software Foundation. 22 * 23 * NO WARRANTY 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 34 * THE POSSIBILITY OF SUCH DAMAGES. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /* 41 * Driver for the Atheros Wireless LAN controller. 42 * 43 * This software is derived from work of Atsushi Onoe; his contribution 44 * is greatly appreciated. 45 */ 46 47 #include "opt_inet.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 64 #include <machine/bus.h> 65 66 #include <net/if.h> 67 #include <net/if_dl.h> 68 #include <net/if_media.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 75 #include <net/bpf.h> 76 77 #ifdef INET 78 #include <netinet/in.h> 79 #include <netinet/if_ether.h> 80 #endif 81 82 #define AR_DEBUG 83 #include <dev/ath/if_athvar.h> 84 #include <contrib/dev/ath/ah_desc.h> 85 86 /* unalligned little endian access */ 87 #define LE_READ_2(p) \ 88 ((u_int16_t) \ 89 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 90 #define LE_READ_4(p) \ 91 ((u_int32_t) \ 92 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 93 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 94 95 static void ath_init(void *); 96 static void ath_stop(struct ifnet *); 97 static void ath_start(struct ifnet *); 98 static void ath_reset(struct ath_softc *); 99 static int ath_media_change(struct ifnet *); 100 static void ath_watchdog(struct ifnet *); 101 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 102 static void ath_fatal_proc(void *, int); 103 static void ath_rxorn_proc(void *, int); 104 static void ath_bmiss_proc(void *, int); 105 static void ath_initkeytable(struct ath_softc *); 106 static void ath_mode_init(struct ath_softc *); 107 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 108 static void ath_beacon_proc(void *, int); 109 static void ath_beacon_free(struct ath_softc *); 110 static void ath_beacon_config(struct ath_softc *); 111 static int ath_desc_alloc(struct ath_softc *); 112 static void ath_desc_free(struct ath_softc *); 113 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *); 114 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *); 115 static void ath_node_copy(struct ieee80211com *, 116 struct ieee80211_node *, const struct ieee80211_node *); 117 static u_int8_t ath_node_getrssi(struct ieee80211com *, 118 struct ieee80211_node *); 119 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 120 static void ath_rx_proc(void *, int); 121 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 122 struct ath_buf *, struct mbuf *); 123 static void ath_tx_proc(void *, int); 124 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 125 static void ath_draintxq(struct ath_softc *); 126 static void ath_stoprecv(struct ath_softc *); 127 static int ath_startrecv(struct ath_softc *); 128 static void ath_next_scan(void *); 129 static void ath_calibrate(void *); 130 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 131 static void ath_newassoc(struct ieee80211com *, 132 struct ieee80211_node *, int); 133 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor); 134 135 static int ath_rate_setup(struct ath_softc *sc, u_int mode); 136 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 137 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state); 138 static void ath_rate_ctl(void *, struct ieee80211_node *); 139 140 SYSCTL_DECL(_hw_ath); 141 142 /* XXX validate sysctl values */ 143 static int ath_dwelltime = 200; /* 5 channels/second */ 144 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime, 145 0, "channel dwell time (ms) for AP/station scanning"); 146 static int ath_calinterval = 30; /* calibrate every 30 secs */ 147 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 148 0, "chip calibration interval (secs)"); 149 static int ath_outdoor = AH_TRUE; /* outdoor operation */ 150 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor, 151 0, "enable/disable outdoor operation"); 152 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor); 153 static int ath_countrycode = CTRY_DEFAULT; /* country code */ 154 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode, 155 0, "country code"); 156 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode); 157 static int ath_regdomain = 0; /* regulatory domain */ 158 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain, 159 0, "regulatory domain"); 160 161 #ifdef AR_DEBUG 162 int ath_debug = 0; 163 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 164 0, "control debugging printfs"); 165 TUNABLE_INT("hw.ath.debug", &ath_debug); 166 #define IFF_DUMPPKTS(_ifp, _m) \ 167 ((ath_debug & _m) || \ 168 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 169 static void ath_printrxbuf(struct ath_buf *bf, int); 170 static void ath_printtxbuf(struct ath_buf *bf, int); 171 enum { 172 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 173 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 174 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 175 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 176 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 177 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 178 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 179 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 180 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 181 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 182 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 183 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 184 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 185 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 186 ATH_DEBUG_ANY = 0xffffffff 187 }; 188 #define DPRINTF(_m,X) if (ath_debug & _m) printf X 189 #else 190 #define IFF_DUMPPKTS(_ifp, _m) \ 191 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 192 #define DPRINTF(_m, X) 193 #endif 194 195 int 196 ath_attach(u_int16_t devid, struct ath_softc *sc) 197 { 198 struct ieee80211com *ic = &sc->sc_ic; 199 struct ifnet *ifp = &ic->ic_if; 200 struct ath_hal *ah; 201 HAL_STATUS status; 202 int error = 0; 203 204 DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid)); 205 206 /* set these up early for if_printf use */ 207 if_initname(ifp, device_get_name(sc->sc_dev), 208 device_get_unit(sc->sc_dev)); 209 210 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 211 if (ah == NULL) { 212 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 213 status); 214 error = ENXIO; 215 goto bad; 216 } 217 if (ah->ah_abi != HAL_ABI_VERSION) { 218 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n", 219 ah->ah_abi, HAL_ABI_VERSION); 220 error = ENXIO; 221 goto bad; 222 } 223 if_printf(ifp, "mac %d.%d phy %d.%d", 224 ah->ah_macVersion, ah->ah_macRev, 225 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 226 if (ah->ah_analog5GhzRev) 227 printf(" 5ghz radio %d.%d", 228 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf); 229 if (ah->ah_analog2GhzRev) 230 printf(" 2ghz radio %d.%d", 231 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf); 232 printf("\n"); 233 sc->sc_ah = ah; 234 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 235 236 /* 237 * Collect the channel list using the default country 238 * code and including outdoor channels. The 802.11 layer 239 * is resposible for filtering this list based on settings 240 * like the phy mode. 241 */ 242 error = ath_getchannels(sc, ath_countrycode, ath_outdoor); 243 if (error != 0) 244 goto bad; 245 /* 246 * Copy these back; they are set as a side effect 247 * of constructing the channel list. 248 */ 249 ath_regdomain = ath_hal_getregdomain(ah); 250 ath_countrycode = ath_hal_getcountrycode(ah); 251 252 /* 253 * Setup rate tables for all potential media types. 254 */ 255 ath_rate_setup(sc, IEEE80211_MODE_11A); 256 ath_rate_setup(sc, IEEE80211_MODE_11B); 257 ath_rate_setup(sc, IEEE80211_MODE_11G); 258 ath_rate_setup(sc, IEEE80211_MODE_TURBO); 259 260 error = ath_desc_alloc(sc); 261 if (error != 0) { 262 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 263 goto bad; 264 } 265 callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE); 266 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE); 267 268 ATH_TXBUF_LOCK_INIT(sc); 269 ATH_TXQ_LOCK_INIT(sc); 270 271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 272 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 273 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 274 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 275 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 276 277 /* 278 * For now just pre-allocate one data queue and one 279 * beacon queue. Note that the HAL handles resetting 280 * them at the needed time. Eventually we'll want to 281 * allocate more tx queues for splitting management 282 * frames and for QOS support. 283 */ 284 sc->sc_txhalq = ath_hal_setuptxqueue(ah, 285 HAL_TX_QUEUE_DATA, 286 AH_TRUE /* enable interrupts */ 287 ); 288 if (sc->sc_txhalq == (u_int) -1) { 289 if_printf(ifp, "unable to setup a data xmit queue!\n"); 290 goto bad2; 291 } 292 sc->sc_bhalq = ath_hal_setuptxqueue(ah, 293 HAL_TX_QUEUE_BEACON, 294 AH_TRUE /* enable interrupts */ 295 ); 296 if (sc->sc_bhalq == (u_int) -1) { 297 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 298 goto bad2; 299 } 300 301 ifp->if_softc = sc; 302 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 303 ifp->if_start = ath_start; 304 ifp->if_watchdog = ath_watchdog; 305 ifp->if_ioctl = ath_ioctl; 306 ifp->if_init = ath_init; 307 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; 308 309 ic->ic_softc = sc; 310 ic->ic_newassoc = ath_newassoc; 311 /* XXX not right but it's not used anywhere important */ 312 ic->ic_phytype = IEEE80211_T_OFDM; 313 ic->ic_opmode = IEEE80211_M_STA; 314 ic->ic_caps = IEEE80211_C_WEP /* wep supported */ 315 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 316 | IEEE80211_C_HOSTAP /* hostap mode */ 317 | IEEE80211_C_MONITOR /* monitor mode */ 318 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 319 ; 320 321 /* get mac address from hardware */ 322 ath_hal_getmac(ah, ic->ic_myaddr); 323 324 /* call MI attach routine. */ 325 ieee80211_ifattach(ifp); 326 /* override default methods */ 327 ic->ic_node_alloc = ath_node_alloc; 328 sc->sc_node_free = ic->ic_node_free; 329 ic->ic_node_free = ath_node_free; 330 sc->sc_node_copy = ic->ic_node_copy; 331 ic->ic_node_copy = ath_node_copy; 332 ic->ic_node_getrssi = ath_node_getrssi; 333 sc->sc_newstate = ic->ic_newstate; 334 ic->ic_newstate = ath_newstate; 335 /* complete initialization */ 336 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status); 337 338 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 339 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 340 &sc->sc_drvbpf); 341 /* 342 * Initialize constant fields. 343 * XXX make header lengths a multiple of 32-bits so subsequent 344 * headers are properly aligned; this is a kludge to keep 345 * certain applications happy. 346 * 347 * NB: the channel is setup each time we transition to the 348 * RUN state to avoid filling it in for each frame. 349 */ 350 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 351 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 352 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 353 354 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 355 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 356 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 357 358 return 0; 359 bad2: 360 ath_desc_free(sc); 361 bad: 362 if (ah) 363 ath_hal_detach(ah); 364 sc->sc_invalid = 1; 365 return error; 366 } 367 368 int 369 ath_detach(struct ath_softc *sc) 370 { 371 struct ifnet *ifp = &sc->sc_ic.ic_if; 372 373 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 374 375 ath_stop(ifp); 376 bpfdetach(ifp); 377 ath_desc_free(sc); 378 ath_hal_detach(sc->sc_ah); 379 ieee80211_ifdetach(ifp); 380 381 ATH_TXBUF_LOCK_DESTROY(sc); 382 ATH_TXQ_LOCK_DESTROY(sc); 383 384 return 0; 385 } 386 387 void 388 ath_suspend(struct ath_softc *sc) 389 { 390 struct ifnet *ifp = &sc->sc_ic.ic_if; 391 392 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 393 394 ath_stop(ifp); 395 } 396 397 void 398 ath_resume(struct ath_softc *sc) 399 { 400 struct ifnet *ifp = &sc->sc_ic.ic_if; 401 402 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 403 404 if (ifp->if_flags & IFF_UP) { 405 ath_init(ifp); 406 if (ifp->if_flags & IFF_RUNNING) 407 ath_start(ifp); 408 } 409 } 410 411 void 412 ath_shutdown(struct ath_softc *sc) 413 { 414 struct ifnet *ifp = &sc->sc_ic.ic_if; 415 416 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 417 418 ath_stop(ifp); 419 } 420 421 void 422 ath_intr(void *arg) 423 { 424 struct ath_softc *sc = arg; 425 struct ieee80211com *ic = &sc->sc_ic; 426 struct ifnet *ifp = &ic->ic_if; 427 struct ath_hal *ah = sc->sc_ah; 428 HAL_INT status; 429 430 if (sc->sc_invalid) { 431 /* 432 * The hardware is not ready/present, don't touch anything. 433 * Note this can happen early on if the IRQ is shared. 434 */ 435 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__)); 436 return; 437 } 438 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 439 return; 440 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 441 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 442 __func__, ifp->if_flags)); 443 ath_hal_getisr(ah, &status); /* clear ISR */ 444 ath_hal_intrset(ah, 0); /* disable further intr's */ 445 return; 446 } 447 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 448 DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status)); 449 #ifdef AR_DEBUG 450 if (ath_debug && 451 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) { 452 if_printf(ifp, "ath_intr: status 0x%x\n", status); 453 ath_hal_dumpstate(ah); 454 } 455 #endif /* AR_DEBUG */ 456 status &= sc->sc_imask; /* discard unasked for bits */ 457 if (status & HAL_INT_FATAL) { 458 sc->sc_stats.ast_hardware++; 459 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 460 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask); 461 } else if (status & HAL_INT_RXORN) { 462 sc->sc_stats.ast_rxorn++; 463 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 464 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask); 465 } else { 466 if (status & HAL_INT_RXEOL) { 467 /* 468 * NB: the hardware should re-read the link when 469 * RXE bit is written, but it doesn't work at 470 * least on older hardware revs. 471 */ 472 sc->sc_stats.ast_rxeol++; 473 sc->sc_rxlink = NULL; 474 } 475 if (status & HAL_INT_TXURN) { 476 sc->sc_stats.ast_txurn++; 477 /* bump tx trigger level */ 478 ath_hal_updatetxtriglevel(ah, AH_TRUE); 479 } 480 if (status & HAL_INT_RX) 481 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask); 482 if (status & HAL_INT_TX) 483 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask); 484 if (status & HAL_INT_SWBA) { 485 /* 486 * Handle beacon transmission directly; deferring 487 * this is too slow to meet timing constraints 488 * under load. 489 */ 490 ath_beacon_proc(sc, 0); 491 } 492 if (status & HAL_INT_BMISS) { 493 sc->sc_stats.ast_bmiss++; 494 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask); 495 } 496 } 497 } 498 499 static void 500 ath_fatal_proc(void *arg, int pending) 501 { 502 struct ath_softc *sc = arg; 503 504 device_printf(sc->sc_dev, "hardware error; resetting\n"); 505 ath_reset(sc); 506 } 507 508 static void 509 ath_rxorn_proc(void *arg, int pending) 510 { 511 struct ath_softc *sc = arg; 512 513 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n"); 514 ath_reset(sc); 515 } 516 517 static void 518 ath_bmiss_proc(void *arg, int pending) 519 { 520 struct ath_softc *sc = arg; 521 struct ieee80211com *ic = &sc->sc_ic; 522 523 DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending)); 524 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 525 ("unexpect operating mode %u", ic->ic_opmode)); 526 if (ic->ic_state == IEEE80211_S_RUN) { 527 /* 528 * Rather than go directly to scan state, try to 529 * reassociate first. If that fails then the state 530 * machine will drop us into scanning after timing 531 * out waiting for a probe response. 532 */ 533 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 534 } 535 } 536 537 static u_int 538 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 539 { 540 static const u_int modeflags[] = { 541 0, /* IEEE80211_MODE_AUTO */ 542 CHANNEL_A, /* IEEE80211_MODE_11A */ 543 CHANNEL_B, /* IEEE80211_MODE_11B */ 544 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 545 CHANNEL_T /* IEEE80211_MODE_TURBO */ 546 }; 547 return modeflags[ieee80211_chan2mode(ic, chan)]; 548 } 549 550 static void 551 ath_init(void *arg) 552 { 553 struct ath_softc *sc = (struct ath_softc *) arg; 554 struct ieee80211com *ic = &sc->sc_ic; 555 struct ifnet *ifp = &ic->ic_if; 556 struct ieee80211_node *ni; 557 enum ieee80211_phymode mode; 558 struct ath_hal *ah = sc->sc_ah; 559 HAL_STATUS status; 560 HAL_CHANNEL hchan; 561 562 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 563 __func__, ifp->if_flags)); 564 565 ATH_LOCK(sc); 566 /* 567 * Stop anything previously setup. This is safe 568 * whether this is the first time through or not. 569 */ 570 ath_stop(ifp); 571 572 /* 573 * The basic interface to setting the hardware in a good 574 * state is ``reset''. On return the hardware is known to 575 * be powered up and with interrupts disabled. This must 576 * be followed by initialization of the appropriate bits 577 * and then setup of the interrupt mask. 578 */ 579 hchan.channel = ic->ic_ibss_chan->ic_freq; 580 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); 581 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) { 582 if_printf(ifp, "unable to reset hardware; hal status %u\n", 583 status); 584 goto done; 585 } 586 587 /* 588 * Setup the hardware after reset: the key cache 589 * is filled as needed and the receive engine is 590 * set going. Frame transmit is handled entirely 591 * in the frame output path; there's nothing to do 592 * here except setup the interrupt mask. 593 */ 594 if (ic->ic_flags & IEEE80211_F_WEPON) 595 ath_initkeytable(sc); 596 if (ath_startrecv(sc) != 0) { 597 if_printf(ifp, "unable to start recv logic\n"); 598 goto done; 599 } 600 601 /* 602 * Enable interrupts. 603 */ 604 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 605 | HAL_INT_RXEOL | HAL_INT_RXORN 606 | HAL_INT_FATAL | HAL_INT_GLOBAL; 607 ath_hal_intrset(ah, sc->sc_imask); 608 609 ifp->if_flags |= IFF_RUNNING; 610 ic->ic_state = IEEE80211_S_INIT; 611 612 /* 613 * The hardware should be ready to go now so it's safe 614 * to kick the 802.11 state machine as it's likely to 615 * immediately call back to us to send mgmt frames. 616 */ 617 ni = ic->ic_bss; 618 ni->ni_chan = ic->ic_ibss_chan; 619 mode = ieee80211_chan2mode(ic, ni->ni_chan); 620 if (mode != sc->sc_curmode) 621 ath_setcurmode(sc, mode); 622 if (ic->ic_opmode != IEEE80211_M_MONITOR) 623 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 624 else 625 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 626 done: 627 ATH_UNLOCK(sc); 628 } 629 630 static void 631 ath_stop(struct ifnet *ifp) 632 { 633 struct ieee80211com *ic = (struct ieee80211com *) ifp; 634 struct ath_softc *sc = ifp->if_softc; 635 struct ath_hal *ah = sc->sc_ah; 636 637 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n", 638 __func__, sc->sc_invalid, ifp->if_flags)); 639 640 ATH_LOCK(sc); 641 if (ifp->if_flags & IFF_RUNNING) { 642 /* 643 * Shutdown the hardware and driver: 644 * disable interrupts 645 * turn off timers 646 * clear transmit machinery 647 * clear receive machinery 648 * drain and release tx queues 649 * reclaim beacon resources 650 * reset 802.11 state machine 651 * power down hardware 652 * 653 * Note that some of this work is not possible if the 654 * hardware is gone (invalid). 655 */ 656 ifp->if_flags &= ~IFF_RUNNING; 657 ifp->if_timer = 0; 658 if (!sc->sc_invalid) 659 ath_hal_intrset(ah, 0); 660 ath_draintxq(sc); 661 if (!sc->sc_invalid) 662 ath_stoprecv(sc); 663 else 664 sc->sc_rxlink = NULL; 665 IF_DRAIN(&ifp->if_snd); 666 ath_beacon_free(sc); 667 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 668 if (!sc->sc_invalid) 669 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0); 670 } 671 ATH_UNLOCK(sc); 672 } 673 674 /* 675 * Reset the hardware w/o losing operational state. This is 676 * basically a more efficient way of doing ath_stop, ath_init, 677 * followed by state transitions to the current 802.11 678 * operational state. Used to recover from errors rx overrun 679 * and to reset the hardware when rf gain settings must be reset. 680 */ 681 static void 682 ath_reset(struct ath_softc *sc) 683 { 684 struct ieee80211com *ic = &sc->sc_ic; 685 struct ifnet *ifp = &ic->ic_if; 686 struct ath_hal *ah = sc->sc_ah; 687 struct ieee80211_channel *c; 688 HAL_STATUS status; 689 HAL_CHANNEL hchan; 690 691 /* 692 * Convert to a HAL channel description with the flags 693 * constrained to reflect the current operating mode. 694 */ 695 c = ic->ic_ibss_chan; 696 hchan.channel = c->ic_freq; 697 hchan.channelFlags = ath_chan2flags(ic, c); 698 699 ath_hal_intrset(ah, 0); /* disable interrupts */ 700 ath_draintxq(sc); /* stop xmit side */ 701 ath_stoprecv(sc); /* stop recv side */ 702 /* NB: indicate channel change so we do a full reset */ 703 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) 704 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 705 __func__, status); 706 ath_hal_intrset(ah, sc->sc_imask); 707 if (ath_startrecv(sc) != 0) /* restart recv */ 708 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 709 ath_start(ifp); /* restart xmit */ 710 if (ic->ic_state == IEEE80211_S_RUN) 711 ath_beacon_config(sc); /* restart beacons */ 712 } 713 714 static void 715 ath_start(struct ifnet *ifp) 716 { 717 struct ath_softc *sc = ifp->if_softc; 718 struct ath_hal *ah = sc->sc_ah; 719 struct ieee80211com *ic = &sc->sc_ic; 720 struct ieee80211_node *ni; 721 struct ath_buf *bf; 722 struct mbuf *m; 723 struct ieee80211_frame *wh; 724 725 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 726 return; 727 for (;;) { 728 /* 729 * Grab a TX buffer and associated resources. 730 */ 731 ATH_TXBUF_LOCK(sc); 732 bf = TAILQ_FIRST(&sc->sc_txbuf); 733 if (bf != NULL) 734 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 735 ATH_TXBUF_UNLOCK(sc); 736 if (bf == NULL) { 737 DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n", 738 __func__)); 739 sc->sc_stats.ast_tx_qstop++; 740 ifp->if_flags |= IFF_OACTIVE; 741 break; 742 } 743 /* 744 * Poll the management queue for frames; they 745 * have priority over normal data frames. 746 */ 747 IF_DEQUEUE(&ic->ic_mgtq, m); 748 if (m == NULL) { 749 /* 750 * No data frames go out unless we're associated. 751 */ 752 if (ic->ic_state != IEEE80211_S_RUN) { 753 DPRINTF(ATH_DEBUG_ANY, 754 ("%s: ignore data packet, state %u\n", 755 __func__, ic->ic_state)); 756 sc->sc_stats.ast_tx_discard++; 757 ATH_TXBUF_LOCK(sc); 758 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 759 ATH_TXBUF_UNLOCK(sc); 760 break; 761 } 762 IF_DEQUEUE(&ifp->if_snd, m); 763 if (m == NULL) { 764 ATH_TXBUF_LOCK(sc); 765 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 766 ATH_TXBUF_UNLOCK(sc); 767 break; 768 } 769 ifp->if_opackets++; 770 BPF_MTAP(ifp, m); 771 /* 772 * Encapsulate the packet in prep for transmission. 773 */ 774 m = ieee80211_encap(ifp, m, &ni); 775 if (m == NULL) { 776 DPRINTF(ATH_DEBUG_ANY, 777 ("%s: encapsulation failure\n", 778 __func__)); 779 sc->sc_stats.ast_tx_encap++; 780 goto bad; 781 } 782 wh = mtod(m, struct ieee80211_frame *); 783 if (ic->ic_flags & IEEE80211_F_WEPON) 784 wh->i_fc[1] |= IEEE80211_FC1_WEP; 785 } else { 786 /* 787 * Hack! The referenced node pointer is in the 788 * rcvif field of the packet header. This is 789 * placed there by ieee80211_mgmt_output because 790 * we need to hold the reference with the frame 791 * and there's no other way (other than packet 792 * tags which we consider too expensive to use) 793 * to pass it along. 794 */ 795 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 796 m->m_pkthdr.rcvif = NULL; 797 798 wh = mtod(m, struct ieee80211_frame *); 799 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 800 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 801 /* fill time stamp */ 802 u_int64_t tsf; 803 u_int32_t *tstamp; 804 805 tsf = ath_hal_gettsf64(ah); 806 /* XXX: adjust 100us delay to xmit */ 807 tsf += 100; 808 tstamp = (u_int32_t *)&wh[1]; 809 tstamp[0] = htole32(tsf & 0xffffffff); 810 tstamp[1] = htole32(tsf >> 32); 811 } 812 sc->sc_stats.ast_tx_mgmt++; 813 } 814 815 if (ath_tx_start(sc, ni, bf, m)) { 816 bad: 817 ATH_TXBUF_LOCK(sc); 818 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 819 ATH_TXBUF_UNLOCK(sc); 820 ifp->if_oerrors++; 821 if (ni && ni != ic->ic_bss) 822 ieee80211_free_node(ic, ni); 823 continue; 824 } 825 826 sc->sc_tx_timer = 5; 827 ifp->if_timer = 1; 828 } 829 } 830 831 static int 832 ath_media_change(struct ifnet *ifp) 833 { 834 int error; 835 836 error = ieee80211_media_change(ifp); 837 if (error == ENETRESET) { 838 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 839 (IFF_RUNNING|IFF_UP)) 840 ath_init(ifp); /* XXX lose error */ 841 error = 0; 842 } 843 return error; 844 } 845 846 static void 847 ath_watchdog(struct ifnet *ifp) 848 { 849 struct ath_softc *sc = ifp->if_softc; 850 struct ieee80211com *ic = &sc->sc_ic; 851 852 ifp->if_timer = 0; 853 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 854 return; 855 if (sc->sc_tx_timer) { 856 if (--sc->sc_tx_timer == 0) { 857 if_printf(ifp, "device timeout\n"); 858 #ifdef AR_DEBUG 859 if (ath_debug & ATH_DEBUG_WATCHDOG) 860 ath_hal_dumpstate(sc->sc_ah); 861 #endif /* AR_DEBUG */ 862 ath_reset(sc); 863 ifp->if_oerrors++; 864 sc->sc_stats.ast_watchdog++; 865 return; 866 } 867 ifp->if_timer = 1; 868 } 869 if (ic->ic_fixed_rate == -1) { 870 /* 871 * Run the rate control algorithm if we're not 872 * locked at a fixed rate. 873 */ 874 if (ic->ic_opmode == IEEE80211_M_STA) 875 ath_rate_ctl(sc, ic->ic_bss); 876 else 877 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc); 878 } 879 ieee80211_watchdog(ifp); 880 } 881 882 static int 883 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 884 { 885 struct ath_softc *sc = ifp->if_softc; 886 struct ifreq *ifr = (struct ifreq *)data; 887 int error = 0; 888 889 ATH_LOCK(sc); 890 switch (cmd) { 891 case SIOCSIFFLAGS: 892 if (ifp->if_flags & IFF_UP) { 893 if (ifp->if_flags & IFF_RUNNING) { 894 /* 895 * To avoid rescanning another access point, 896 * do not call ath_init() here. Instead, 897 * only reflect promisc mode settings. 898 */ 899 ath_mode_init(sc); 900 } else { 901 /* 902 * Beware of being called during detach to 903 * reset promiscuous mode. In that case we 904 * will still be marked UP but not RUNNING. 905 * However trying to re-init the interface 906 * is the wrong thing to do as we've already 907 * torn down much of our state. There's 908 * probably a better way to deal with this. 909 */ 910 if (!sc->sc_invalid) 911 ath_init(ifp); /* XXX lose error */ 912 } 913 } else 914 ath_stop(ifp); 915 break; 916 case SIOCADDMULTI: 917 case SIOCDELMULTI: 918 /* 919 * The upper layer has already installed/removed 920 * the multicast address(es), just recalculate the 921 * multicast filter for the card. 922 */ 923 if (ifp->if_flags & IFF_RUNNING) 924 ath_mode_init(sc); 925 break; 926 case SIOCGATHSTATS: 927 error = copyout(&sc->sc_stats, 928 ifr->ifr_data, sizeof (sc->sc_stats)); 929 break; 930 case SIOCGATHDIAG: { 931 struct ath_diag *ad = (struct ath_diag *)data; 932 struct ath_hal *ah = sc->sc_ah; 933 void *data; 934 u_int size; 935 936 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) { 937 if (size < ad->ad_size) 938 ad->ad_size = size; 939 if (data) 940 error = copyout(data, ad->ad_data, ad->ad_size); 941 } else 942 error = EINVAL; 943 break; 944 } 945 default: 946 error = ieee80211_ioctl(ifp, cmd, data); 947 if (error == ENETRESET) { 948 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 949 (IFF_RUNNING|IFF_UP)) 950 ath_init(ifp); /* XXX lose error */ 951 error = 0; 952 } 953 break; 954 } 955 ATH_UNLOCK(sc); 956 return error; 957 } 958 959 /* 960 * Fill the hardware key cache with key entries. 961 */ 962 static void 963 ath_initkeytable(struct ath_softc *sc) 964 { 965 struct ieee80211com *ic = &sc->sc_ic; 966 struct ath_hal *ah = sc->sc_ah; 967 int i; 968 969 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 970 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i]; 971 if (k->wk_len == 0) 972 ath_hal_keyreset(ah, i); 973 else 974 /* XXX return value */ 975 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */ 976 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k); 977 } 978 } 979 980 /* 981 * Calculate the receive filter according to the 982 * operating mode and state: 983 * 984 * o always accept unicast, broadcast, and multicast traffic 985 * o maintain current state of phy error reception 986 * o probe request frames are accepted only when operating in 987 * hostap, adhoc, or monitor modes 988 * o enable promiscuous mode according to the interface state 989 * o accept beacons: 990 * - when operating in adhoc mode so the 802.11 layer creates 991 * node table entries for peers, 992 * - when operating in station mode for collecting rssi data when 993 * the station is otherwise quiet, or 994 * - when scanning 995 */ 996 static u_int32_t 997 ath_calcrxfilter(struct ath_softc *sc) 998 { 999 struct ieee80211com *ic = &sc->sc_ic; 1000 struct ath_hal *ah = sc->sc_ah; 1001 struct ifnet *ifp = &ic->ic_if; 1002 u_int32_t rfilt; 1003 1004 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1005 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1006 if (ic->ic_opmode != IEEE80211_M_STA) 1007 rfilt |= HAL_RX_FILTER_PROBEREQ; 1008 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1009 (ifp->if_flags & IFF_PROMISC)) 1010 rfilt |= HAL_RX_FILTER_PROM; 1011 if (ic->ic_opmode == IEEE80211_M_STA || 1012 ic->ic_opmode == IEEE80211_M_IBSS || 1013 ic->ic_state == IEEE80211_S_SCAN) 1014 rfilt |= HAL_RX_FILTER_BEACON; 1015 return rfilt; 1016 } 1017 1018 static void 1019 ath_mode_init(struct ath_softc *sc) 1020 { 1021 struct ieee80211com *ic = &sc->sc_ic; 1022 struct ath_hal *ah = sc->sc_ah; 1023 struct ifnet *ifp = &ic->ic_if; 1024 u_int32_t rfilt, mfilt[2], val; 1025 u_int8_t pos; 1026 struct ifmultiaddr *ifma; 1027 1028 /* configure rx filter */ 1029 rfilt = ath_calcrxfilter(sc); 1030 ath_hal_setrxfilter(ah, rfilt); 1031 1032 /* configure operational mode */ 1033 ath_hal_setopmode(ah, ic->ic_opmode); 1034 1035 /* calculate and install multicast filter */ 1036 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1037 mfilt[0] = mfilt[1] = 0; 1038 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1039 caddr_t dl; 1040 1041 /* calculate XOR of eight 6bit values */ 1042 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1043 val = LE_READ_4(dl + 0); 1044 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1045 val = LE_READ_4(dl + 3); 1046 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1047 pos &= 0x3f; 1048 mfilt[pos / 32] |= (1 << (pos % 32)); 1049 } 1050 } else { 1051 mfilt[0] = mfilt[1] = ~0; 1052 } 1053 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1054 DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n", 1055 __func__, rfilt, mfilt[0], mfilt[1])); 1056 } 1057 1058 static void 1059 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error) 1060 { 1061 struct ath_buf *bf = arg; 1062 1063 KASSERT(nseg <= ATH_MAX_SCATTER, 1064 ("ath_mbuf_load_cb: too many DMA segments %u", nseg)); 1065 bf->bf_mapsize = mapsize; 1066 bf->bf_nseg = nseg; 1067 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0])); 1068 } 1069 1070 static int 1071 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1072 { 1073 struct ieee80211com *ic = &sc->sc_ic; 1074 struct ifnet *ifp = &ic->ic_if; 1075 struct ath_hal *ah = sc->sc_ah; 1076 struct ieee80211_frame *wh; 1077 struct ath_buf *bf; 1078 struct ath_desc *ds; 1079 struct mbuf *m; 1080 int error, pktlen; 1081 u_int8_t *frm, rate; 1082 u_int16_t capinfo; 1083 struct ieee80211_rateset *rs; 1084 const HAL_RATE_TABLE *rt; 1085 1086 bf = sc->sc_bcbuf; 1087 if (bf->bf_m != NULL) { 1088 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1089 m_freem(bf->bf_m); 1090 bf->bf_m = NULL; 1091 bf->bf_node = NULL; 1092 } 1093 /* 1094 * NB: the beacon data buffer must be 32-bit aligned; 1095 * we assume the mbuf routines will return us something 1096 * with this alignment (perhaps should assert). 1097 */ 1098 rs = &ni->ni_rates; 1099 pktlen = sizeof (struct ieee80211_frame) 1100 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6; 1101 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 1102 pktlen += 2; 1103 if (pktlen <= MHLEN) 1104 MGETHDR(m, M_DONTWAIT, MT_DATA); 1105 else 1106 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1107 if (m == NULL) { 1108 DPRINTF(ATH_DEBUG_BEACON, 1109 ("%s: cannot get mbuf/cluster; size %u\n", 1110 __func__, pktlen)); 1111 sc->sc_stats.ast_be_nombuf++; 1112 return ENOMEM; 1113 } 1114 1115 wh = mtod(m, struct ieee80211_frame *); 1116 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1117 IEEE80211_FC0_SUBTYPE_BEACON; 1118 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1119 *(u_int16_t *)wh->i_dur = 0; 1120 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN); 1121 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN); 1122 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN); 1123 *(u_int16_t *)wh->i_seq = 0; 1124 1125 /* 1126 * beacon frame format 1127 * [8] time stamp 1128 * [2] beacon interval 1129 * [2] cabability information 1130 * [tlv] ssid 1131 * [tlv] supported rates 1132 * [tlv] parameter set (IBSS) 1133 * [tlv] extended supported rates 1134 */ 1135 frm = (u_int8_t *)&wh[1]; 1136 memset(frm, 0, 8); /* timestamp is set by hardware */ 1137 frm += 8; 1138 *(u_int16_t *)frm = htole16(ni->ni_intval); 1139 frm += 2; 1140 if (ic->ic_opmode == IEEE80211_M_IBSS) 1141 capinfo = IEEE80211_CAPINFO_IBSS; 1142 else 1143 capinfo = IEEE80211_CAPINFO_ESS; 1144 if (ic->ic_flags & IEEE80211_F_WEPON) 1145 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1146 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1147 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1148 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1149 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1150 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1151 *(u_int16_t *)frm = htole16(capinfo); 1152 frm += 2; 1153 *frm++ = IEEE80211_ELEMID_SSID; 1154 *frm++ = ni->ni_esslen; 1155 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1156 frm += ni->ni_esslen; 1157 frm = ieee80211_add_rates(frm, rs); 1158 *frm++ = IEEE80211_ELEMID_DSPARMS; 1159 *frm++ = 1; 1160 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1161 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1162 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1163 *frm++ = 2; 1164 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1165 } else { 1166 /* TODO: TIM */ 1167 *frm++ = IEEE80211_ELEMID_TIM; 1168 *frm++ = 4; /* length */ 1169 *frm++ = 0; /* DTIM count */ 1170 *frm++ = 1; /* DTIM period */ 1171 *frm++ = 0; /* bitmap control */ 1172 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */ 1173 } 1174 frm = ieee80211_add_xrates(frm, rs); 1175 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1176 KASSERT(m->m_pkthdr.len <= pktlen, 1177 ("beacon bigger than expected, len %u calculated %u", 1178 m->m_pkthdr.len, pktlen)); 1179 1180 DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len)); 1181 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1182 ath_mbuf_load_cb, bf, 1183 BUS_DMA_NOWAIT); 1184 if (error != 0) { 1185 m_freem(m); 1186 return error; 1187 } 1188 KASSERT(bf->bf_nseg == 1, 1189 ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg)); 1190 bf->bf_m = m; 1191 1192 /* setup descriptors */ 1193 ds = bf->bf_desc; 1194 1195 ds->ds_link = 0; 1196 ds->ds_data = bf->bf_segs[0].ds_addr; 1197 /* 1198 * Calculate rate code. 1199 * XXX everything at min xmit rate 1200 */ 1201 rt = sc->sc_currates; 1202 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1203 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1204 rate = rt->info[0].rateCode | rt->info[0].shortPreamble; 1205 else 1206 rate = rt->info[0].rateCode; 1207 ath_hal_setuptxdesc(ah, ds 1208 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */ 1209 , sizeof(struct ieee80211_frame) /* header length */ 1210 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1211 , 0x20 /* txpower XXX */ 1212 , rate, 1 /* series 0 rate/tries */ 1213 , HAL_TXKEYIX_INVALID /* no encryption */ 1214 , 0 /* antenna mode */ 1215 , HAL_TXDESC_NOACK /* no ack for beacons */ 1216 , 0 /* rts/cts rate */ 1217 , 0 /* rts/cts duration */ 1218 ); 1219 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1220 /* XXX verify mbuf data area covers this roundup */ 1221 ath_hal_filltxdesc(ah, ds 1222 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */ 1223 , AH_TRUE /* first segment */ 1224 , AH_TRUE /* last segment */ 1225 ); 1226 1227 return 0; 1228 } 1229 1230 static void 1231 ath_beacon_proc(void *arg, int pending) 1232 { 1233 struct ath_softc *sc = arg; 1234 struct ieee80211com *ic = &sc->sc_ic; 1235 struct ath_buf *bf = sc->sc_bcbuf; 1236 struct ath_hal *ah = sc->sc_ah; 1237 1238 DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending)); 1239 if (ic->ic_opmode == IEEE80211_M_STA || 1240 bf == NULL || bf->bf_m == NULL) { 1241 DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n", 1242 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL)); 1243 return; 1244 } 1245 /* TODO: update beacon to reflect PS poll state */ 1246 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 1247 DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n", 1248 __func__, sc->sc_bhalq)); 1249 /* NB: the HAL still stops DMA, so proceed */ 1250 } 1251 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 1252 1253 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 1254 ath_hal_txstart(ah, sc->sc_bhalq); 1255 DPRINTF(ATH_DEBUG_BEACON_PROC, 1256 ("%s: TXDP%u = %p (%p)\n", __func__, 1257 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc)); 1258 } 1259 1260 static void 1261 ath_beacon_free(struct ath_softc *sc) 1262 { 1263 struct ath_buf *bf = sc->sc_bcbuf; 1264 1265 if (bf->bf_m != NULL) { 1266 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1267 m_freem(bf->bf_m); 1268 bf->bf_m = NULL; 1269 bf->bf_node = NULL; 1270 } 1271 } 1272 1273 /* 1274 * Configure the beacon and sleep timers. 1275 * 1276 * When operating as an AP this resets the TSF and sets 1277 * up the hardware to notify us when we need to issue beacons. 1278 * 1279 * When operating in station mode this sets up the beacon 1280 * timers according to the timestamp of the last received 1281 * beacon and the current TSF, configures PCF and DTIM 1282 * handling, programs the sleep registers so the hardware 1283 * will wakeup in time to receive beacons, and configures 1284 * the beacon miss handling so we'll receive a BMISS 1285 * interrupt when we stop seeing beacons from the AP 1286 * we've associated with. 1287 */ 1288 static void 1289 ath_beacon_config(struct ath_softc *sc) 1290 { 1291 struct ath_hal *ah = sc->sc_ah; 1292 struct ieee80211com *ic = &sc->sc_ic; 1293 struct ieee80211_node *ni = ic->ic_bss; 1294 u_int32_t nexttbtt; 1295 1296 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) | 1297 (LE_READ_4(ni->ni_tstamp) >> 10); 1298 DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt)); 1299 nexttbtt += ni->ni_intval; 1300 if (ic->ic_opmode == IEEE80211_M_STA) { 1301 HAL_BEACON_STATE bs; 1302 u_int32_t bmisstime; 1303 1304 /* NB: no PCF support right now */ 1305 memset(&bs, 0, sizeof(bs)); 1306 bs.bs_intval = ni->ni_intval; 1307 bs.bs_nexttbtt = nexttbtt; 1308 bs.bs_dtimperiod = bs.bs_intval; 1309 bs.bs_nextdtim = nexttbtt; 1310 /* 1311 * Calculate the number of consecutive beacons to miss 1312 * before taking a BMISS interrupt. The configuration 1313 * is specified in ms, so we need to convert that to 1314 * TU's and then calculate based on the beacon interval. 1315 * Note that we clamp the result to at most 10 beacons. 1316 */ 1317 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024; 1318 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval); 1319 if (bs.bs_bmissthreshold > 10) 1320 bs.bs_bmissthreshold = 10; 1321 else if (bs.bs_bmissthreshold <= 0) 1322 bs.bs_bmissthreshold = 1; 1323 1324 /* 1325 * Calculate sleep duration. The configuration is 1326 * given in ms. We insure a multiple of the beacon 1327 * period is used. Also, if the sleep duration is 1328 * greater than the DTIM period then it makes senses 1329 * to make it a multiple of that. 1330 * 1331 * XXX fixed at 100ms 1332 */ 1333 bs.bs_sleepduration = 1334 roundup((100 * 1000) / 1024, bs.bs_intval); 1335 if (bs.bs_sleepduration > bs.bs_dtimperiod) 1336 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 1337 1338 DPRINTF(ATH_DEBUG_BEACON, 1339 ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n" 1340 , __func__ 1341 , bs.bs_intval 1342 , bs.bs_nexttbtt 1343 , bs.bs_dtimperiod 1344 , bs.bs_nextdtim 1345 , bs.bs_bmissthreshold 1346 , bs.bs_sleepduration 1347 )); 1348 ath_hal_intrset(ah, 0); 1349 /* 1350 * Reset our tsf so the hardware will update the 1351 * tsf register to reflect timestamps found in 1352 * received beacons. 1353 */ 1354 ath_hal_resettsf(ah); 1355 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0); 1356 sc->sc_imask |= HAL_INT_BMISS; 1357 ath_hal_intrset(ah, sc->sc_imask); 1358 } else { 1359 DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n", 1360 __func__, ni->ni_intval, nexttbtt)); 1361 ath_hal_intrset(ah, 0); 1362 ath_hal_beaconinit(ah, ic->ic_opmode, 1363 nexttbtt, ni->ni_intval); 1364 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1365 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 1366 ath_hal_intrset(ah, sc->sc_imask); 1367 } 1368 } 1369 1370 static void 1371 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1372 { 1373 bus_addr_t *paddr = (bus_addr_t*) arg; 1374 *paddr = segs->ds_addr; 1375 } 1376 1377 static int 1378 ath_desc_alloc(struct ath_softc *sc) 1379 { 1380 int i, bsize, error; 1381 struct ath_desc *ds; 1382 struct ath_buf *bf; 1383 1384 /* allocate descriptors */ 1385 sc->sc_desc_len = sizeof(struct ath_desc) * 1386 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1); 1387 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap); 1388 if (error != 0) 1389 return error; 1390 1391 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc, 1392 BUS_DMA_NOWAIT, &sc->sc_ddmamap); 1393 if (error != 0) 1394 goto fail0; 1395 1396 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, 1397 sc->sc_desc, sc->sc_desc_len, 1398 ath_load_cb, &sc->sc_desc_paddr, 1399 BUS_DMA_NOWAIT); 1400 if (error != 0) 1401 goto fail1; 1402 1403 ds = sc->sc_desc; 1404 DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n", 1405 __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr, 1406 /*XXX*/ (u_long) sc->sc_desc_len)); 1407 1408 /* allocate buffers */ 1409 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1); 1410 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO); 1411 if (bf == NULL) 1412 goto fail2; 1413 sc->sc_bufptr = bf; 1414 1415 TAILQ_INIT(&sc->sc_rxbuf); 1416 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) { 1417 bf->bf_desc = ds; 1418 bf->bf_daddr = sc->sc_desc_paddr + 1419 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1420 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 1421 &bf->bf_dmamap); 1422 if (error != 0) 1423 break; 1424 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1425 } 1426 1427 TAILQ_INIT(&sc->sc_txbuf); 1428 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) { 1429 bf->bf_desc = ds; 1430 bf->bf_daddr = sc->sc_desc_paddr + 1431 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1432 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 1433 &bf->bf_dmamap); 1434 if (error != 0) 1435 break; 1436 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1437 } 1438 TAILQ_INIT(&sc->sc_txq); 1439 1440 /* beacon buffer */ 1441 bf->bf_desc = ds; 1442 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); 1443 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); 1444 if (error != 0) 1445 return error; 1446 sc->sc_bcbuf = bf; 1447 return 0; 1448 1449 fail2: 1450 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 1451 fail1: 1452 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap); 1453 fail0: 1454 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 1455 sc->sc_ddmamap = NULL; 1456 return error; 1457 } 1458 1459 static void 1460 ath_desc_free(struct ath_softc *sc) 1461 { 1462 struct ath_buf *bf; 1463 1464 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 1465 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap); 1466 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 1467 1468 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 1469 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1470 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1471 m_freem(bf->bf_m); 1472 } 1473 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list) 1474 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1475 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 1476 if (bf->bf_m) { 1477 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1478 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 1479 m_freem(bf->bf_m); 1480 bf->bf_m = NULL; 1481 } 1482 } 1483 if (sc->sc_bcbuf != NULL) { 1484 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 1485 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 1486 sc->sc_bcbuf = NULL; 1487 } 1488 1489 TAILQ_INIT(&sc->sc_rxbuf); 1490 TAILQ_INIT(&sc->sc_txbuf); 1491 TAILQ_INIT(&sc->sc_txq); 1492 free(sc->sc_bufptr, M_DEVBUF); 1493 sc->sc_bufptr = NULL; 1494 } 1495 1496 static struct ieee80211_node * 1497 ath_node_alloc(struct ieee80211com *ic) 1498 { 1499 struct ath_node *an = 1500 malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO); 1501 if (an) { 1502 int i; 1503 for (i = 0; i < ATH_RHIST_SIZE; i++) 1504 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME; 1505 an->an_rx_hist_next = ATH_RHIST_SIZE-1; 1506 return &an->an_node; 1507 } else 1508 return NULL; 1509 } 1510 1511 static void 1512 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) 1513 { 1514 struct ath_softc *sc = ic->ic_if.if_softc; 1515 struct ath_buf *bf; 1516 1517 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 1518 if (bf->bf_node == ni) 1519 bf->bf_node = NULL; 1520 } 1521 (*sc->sc_node_free)(ic, ni); 1522 } 1523 1524 static void 1525 ath_node_copy(struct ieee80211com *ic, 1526 struct ieee80211_node *dst, const struct ieee80211_node *src) 1527 { 1528 struct ath_softc *sc = ic->ic_if.if_softc; 1529 1530 memcpy(&dst[1], &src[1], 1531 sizeof(struct ath_node) - sizeof(struct ieee80211_node)); 1532 (*sc->sc_node_copy)(ic, dst, src); 1533 } 1534 1535 1536 static u_int8_t 1537 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni) 1538 { 1539 struct ath_node *an = ATH_NODE(ni); 1540 int i, now, nsamples, rssi; 1541 1542 /* 1543 * Calculate the average over the last second of sampled data. 1544 */ 1545 now = ticks; 1546 nsamples = 0; 1547 rssi = 0; 1548 i = an->an_rx_hist_next; 1549 do { 1550 struct ath_recv_hist *rh = &an->an_rx_hist[i]; 1551 if (rh->arh_ticks == ATH_RHIST_NOTIME) 1552 goto done; 1553 if (now - rh->arh_ticks > hz) 1554 goto done; 1555 rssi += rh->arh_rssi; 1556 nsamples++; 1557 if (i == 0) 1558 i = ATH_RHIST_SIZE-1; 1559 else 1560 i--; 1561 } while (i != an->an_rx_hist_next); 1562 done: 1563 /* 1564 * Return either the average or the last known 1565 * value if there is no recent data. 1566 */ 1567 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi); 1568 } 1569 1570 static int 1571 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 1572 { 1573 struct ath_hal *ah = sc->sc_ah; 1574 int error; 1575 struct mbuf *m; 1576 struct ath_desc *ds; 1577 1578 m = bf->bf_m; 1579 if (m == NULL) { 1580 /* 1581 * NB: by assigning a page to the rx dma buffer we 1582 * implicitly satisfy the Atheros requirement that 1583 * this buffer be cache-line-aligned and sized to be 1584 * multiple of the cache line size. Not doing this 1585 * causes weird stuff to happen (for the 5210 at least). 1586 */ 1587 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1588 if (m == NULL) { 1589 DPRINTF(ATH_DEBUG_ANY, 1590 ("%s: no mbuf/cluster\n", __func__)); 1591 sc->sc_stats.ast_rx_nombuf++; 1592 return ENOMEM; 1593 } 1594 bf->bf_m = m; 1595 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 1596 1597 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1598 ath_mbuf_load_cb, bf, 1599 BUS_DMA_NOWAIT); 1600 if (error != 0) { 1601 DPRINTF(ATH_DEBUG_ANY, 1602 ("%s: bus_dmamap_load_mbuf failed; error %d\n", 1603 __func__, error)); 1604 sc->sc_stats.ast_rx_busdma++; 1605 return error; 1606 } 1607 KASSERT(bf->bf_nseg == 1, 1608 ("ath_rxbuf_init: multi-segment packet; nseg %u", 1609 bf->bf_nseg)); 1610 } 1611 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 1612 1613 /* 1614 * Setup descriptors. For receive we always terminate 1615 * the descriptor list with a self-linked entry so we'll 1616 * not get overrun under high load (as can happen with a 1617 * 5212 when ANI processing enables PHY errors). 1618 * 1619 * To insure the last descriptor is self-linked we create 1620 * each descriptor as self-linked and add it to the end. As 1621 * each additional descriptor is added the previous self-linked 1622 * entry is ``fixed'' naturally. This should be safe even 1623 * if DMA is happening. When processing RX interrupts we 1624 * never remove/process the last, self-linked, entry on the 1625 * descriptor list. This insures the hardware always has 1626 * someplace to write a new frame. 1627 */ 1628 ds = bf->bf_desc; 1629 ds->ds_link = bf->bf_daddr; /* link to self */ 1630 ds->ds_data = bf->bf_segs[0].ds_addr; 1631 ath_hal_setuprxdesc(ah, ds 1632 , m->m_len /* buffer size */ 1633 , 0 1634 ); 1635 1636 if (sc->sc_rxlink != NULL) 1637 *sc->sc_rxlink = bf->bf_daddr; 1638 sc->sc_rxlink = &ds->ds_link; 1639 return 0; 1640 } 1641 1642 static void 1643 ath_rx_proc(void *arg, int npending) 1644 { 1645 #define PA2DESC(_sc, _pa) \ 1646 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 1647 ((_pa) - (_sc)->sc_desc_paddr))) 1648 struct ath_softc *sc = arg; 1649 struct ath_buf *bf; 1650 struct ieee80211com *ic = &sc->sc_ic; 1651 struct ifnet *ifp = &ic->ic_if; 1652 struct ath_hal *ah = sc->sc_ah; 1653 struct ath_desc *ds; 1654 struct mbuf *m; 1655 struct ieee80211_frame *wh, whbuf; 1656 struct ieee80211_node *ni; 1657 struct ath_node *an; 1658 struct ath_recv_hist *rh; 1659 int len; 1660 u_int phyerr; 1661 HAL_STATUS status; 1662 1663 DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending)); 1664 do { 1665 bf = TAILQ_FIRST(&sc->sc_rxbuf); 1666 if (bf == NULL) { /* NB: shouldn't happen */ 1667 if_printf(ifp, "ath_rx_proc: no buffer!\n"); 1668 break; 1669 } 1670 ds = bf->bf_desc; 1671 if (ds->ds_link == bf->bf_daddr) { 1672 /* NB: never process the self-linked entry at the end */ 1673 break; 1674 } 1675 m = bf->bf_m; 1676 if (m == NULL) { /* NB: shouldn't happen */ 1677 if_printf(ifp, "ath_rx_proc: no mbuf!\n"); 1678 continue; 1679 } 1680 /* XXX sync descriptor memory */ 1681 /* 1682 * Must provide the virtual address of the current 1683 * descriptor, the physical address, and the virtual 1684 * address of the next descriptor in the h/w chain. 1685 * This allows the HAL to look ahead to see if the 1686 * hardware is done with a descriptor by checking the 1687 * done bit in the following descriptor and the address 1688 * of the current descriptor the DMA engine is working 1689 * on. All this is necessary because of our use of 1690 * a self-linked list to avoid rx overruns. 1691 */ 1692 status = ath_hal_rxprocdesc(ah, ds, 1693 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 1694 #ifdef AR_DEBUG 1695 if (ath_debug & ATH_DEBUG_RECV_DESC) 1696 ath_printrxbuf(bf, status == HAL_OK); 1697 #endif 1698 if (status == HAL_EINPROGRESS) 1699 break; 1700 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 1701 if (ds->ds_rxstat.rs_status != 0) { 1702 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 1703 sc->sc_stats.ast_rx_crcerr++; 1704 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 1705 sc->sc_stats.ast_rx_fifoerr++; 1706 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) 1707 sc->sc_stats.ast_rx_badcrypt++; 1708 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 1709 sc->sc_stats.ast_rx_phyerr++; 1710 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 1711 sc->sc_stats.ast_rx_phy[phyerr]++; 1712 } else { 1713 /* 1714 * NB: don't count PHY errors as input errors; 1715 * we enable them on the 5212 to collect info 1716 * about environmental noise and, in that 1717 * setting, they don't really reflect tx/rx 1718 * errors. 1719 */ 1720 ifp->if_ierrors++; 1721 } 1722 goto rx_next; 1723 } 1724 1725 len = ds->ds_rxstat.rs_datalen; 1726 if (len < IEEE80211_MIN_LEN) { 1727 DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n", 1728 __func__, len)); 1729 sc->sc_stats.ast_rx_tooshort++; 1730 goto rx_next; 1731 } 1732 1733 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 1734 BUS_DMASYNC_POSTREAD); 1735 1736 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1737 bf->bf_m = NULL; 1738 m->m_pkthdr.rcvif = ifp; 1739 m->m_pkthdr.len = m->m_len = len; 1740 1741 if (sc->sc_drvbpf) { 1742 sc->sc_rx_th.wr_rate = 1743 sc->sc_hwmap[ds->ds_rxstat.rs_rate]; 1744 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 1745 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 1746 /* XXX TSF */ 1747 1748 bpf_mtap2(sc->sc_drvbpf, 1749 &sc->sc_rx_th, sc->sc_rx_th_len, m); 1750 } 1751 1752 m_adj(m, -IEEE80211_CRC_LEN); 1753 wh = mtod(m, struct ieee80211_frame *); 1754 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1755 /* 1756 * WEP is decrypted by hardware. Clear WEP bit 1757 * and trim WEP header for ieee80211_input(). 1758 */ 1759 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1760 memcpy(&whbuf, wh, sizeof(whbuf)); 1761 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN); 1762 wh = mtod(m, struct ieee80211_frame *); 1763 memcpy(wh, &whbuf, sizeof(whbuf)); 1764 /* 1765 * Also trim WEP ICV from the tail. 1766 */ 1767 m_adj(m, -IEEE80211_WEP_CRCLEN); 1768 } 1769 1770 /* 1771 * Locate the node for sender, track state, and 1772 * then pass this node (referenced) up to the 802.11 1773 * layer for its use. We are required to pass 1774 * something so we fall back to ic_bss when this frame 1775 * is from an unknown sender. 1776 */ 1777 if (ic->ic_opmode != IEEE80211_M_STA) { 1778 ni = ieee80211_find_node(ic, wh->i_addr2); 1779 if (ni == NULL) 1780 ni = ieee80211_ref_node(ic->ic_bss); 1781 } else 1782 ni = ieee80211_ref_node(ic->ic_bss); 1783 1784 /* 1785 * Record driver-specific state. 1786 */ 1787 an = ATH_NODE(ni); 1788 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE) 1789 an->an_rx_hist_next = 0; 1790 rh = &an->an_rx_hist[an->an_rx_hist_next]; 1791 rh->arh_ticks = ticks; 1792 rh->arh_rssi = ds->ds_rxstat.rs_rssi; 1793 rh->arh_antenna = ds->ds_rxstat.rs_antenna; 1794 1795 /* 1796 * Send frame up for processing. 1797 */ 1798 ieee80211_input(ifp, m, ni, 1799 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 1800 1801 /* 1802 * The frame may have caused the node to be marked for 1803 * reclamation (e.g. in response to a DEAUTH message) 1804 * so use free_node here instead of unref_node. 1805 */ 1806 if (ni == ic->ic_bss) 1807 ieee80211_unref_node(&ni); 1808 else 1809 ieee80211_free_node(ic, ni); 1810 rx_next: 1811 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1812 } while (ath_rxbuf_init(sc, bf) == 0); 1813 1814 ath_hal_rxmonitor(ah); /* rx signal state monitoring */ 1815 ath_hal_rxena(ah); /* in case of RXEOL */ 1816 #undef PA2DESC 1817 } 1818 1819 /* 1820 * XXX Size of an ACK control frame in bytes. 1821 */ 1822 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4) 1823 1824 static int 1825 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 1826 struct mbuf *m0) 1827 { 1828 struct ieee80211com *ic = &sc->sc_ic; 1829 struct ath_hal *ah = sc->sc_ah; 1830 struct ifnet *ifp = &sc->sc_ic.ic_if; 1831 int i, error, iswep, hdrlen, pktlen; 1832 u_int8_t rix, cix, txrate, ctsrate; 1833 struct ath_desc *ds; 1834 struct mbuf *m; 1835 struct ieee80211_frame *wh; 1836 u_int32_t iv; 1837 u_int8_t *ivp; 1838 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) + 1839 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN]; 1840 u_int subtype, flags, ctsduration, antenna; 1841 HAL_PKT_TYPE atype; 1842 const HAL_RATE_TABLE *rt; 1843 HAL_BOOL shortPreamble; 1844 struct ath_node *an; 1845 1846 wh = mtod(m0, struct ieee80211_frame *); 1847 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 1848 hdrlen = sizeof(struct ieee80211_frame); 1849 pktlen = m0->m_pkthdr.len; 1850 1851 if (iswep) { 1852 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen); 1853 m_adj(m0, hdrlen); 1854 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT); 1855 if (m0 == NULL) { 1856 sc->sc_stats.ast_tx_nombuf++; 1857 return ENOMEM; 1858 } 1859 ivp = hdrbuf + hdrlen; 1860 wh = mtod(m0, struct ieee80211_frame *); 1861 /* 1862 * XXX 1863 * IV must not duplicate during the lifetime of the key. 1864 * But no mechanism to renew keys is defined in IEEE 802.11 1865 * WEP. And IV may be duplicated between other stations 1866 * because of the session key itself is shared. 1867 * So we use pseudo random IV for now, though it is not the 1868 * right way. 1869 */ 1870 iv = ic->ic_iv; 1871 /* 1872 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: 1873 * (B, 255, N) with 3 <= B < 8 1874 */ 1875 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00) 1876 iv += 0x000100; 1877 ic->ic_iv = iv + 1; 1878 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) { 1879 ivp[i] = iv; 1880 iv >>= 8; 1881 } 1882 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */ 1883 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf)); 1884 /* 1885 * The ICV length must be included into hdrlen and pktlen. 1886 */ 1887 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN; 1888 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN; 1889 } 1890 pktlen += IEEE80211_CRC_LEN; 1891 1892 /* 1893 * Load the DMA map so any coalescing is done. This 1894 * also calculates the number of descriptors we need. 1895 */ 1896 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 1897 ath_mbuf_load_cb, bf, 1898 BUS_DMA_NOWAIT); 1899 if (error == EFBIG) { 1900 /* XXX packet requires too many descriptors */ 1901 bf->bf_nseg = ATH_TXDESC+1; 1902 } else if (error != 0) { 1903 sc->sc_stats.ast_tx_busdma++; 1904 m_freem(m0); 1905 return error; 1906 } 1907 /* 1908 * Discard null packets and check for packets that 1909 * require too many TX descriptors. We try to convert 1910 * the latter to a cluster. 1911 */ 1912 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 1913 sc->sc_stats.ast_tx_linear++; 1914 MGETHDR(m, M_DONTWAIT, MT_DATA); 1915 if (m == NULL) { 1916 sc->sc_stats.ast_tx_nombuf++; 1917 m_freem(m0); 1918 return ENOMEM; 1919 } 1920 M_MOVE_PKTHDR(m, m0); 1921 MCLGET(m, M_DONTWAIT); 1922 if ((m->m_flags & M_EXT) == 0) { 1923 sc->sc_stats.ast_tx_nomcl++; 1924 m_freem(m0); 1925 m_free(m); 1926 return ENOMEM; 1927 } 1928 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 1929 m_freem(m0); 1930 m->m_len = m->m_pkthdr.len; 1931 m0 = m; 1932 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 1933 ath_mbuf_load_cb, bf, 1934 BUS_DMA_NOWAIT); 1935 if (error != 0) { 1936 sc->sc_stats.ast_tx_busdma++; 1937 m_freem(m0); 1938 return error; 1939 } 1940 KASSERT(bf->bf_nseg == 1, 1941 ("ath_tx_start: packet not one segment; nseg %u", 1942 bf->bf_nseg)); 1943 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 1944 sc->sc_stats.ast_tx_nodata++; 1945 m_freem(m0); 1946 return EIO; 1947 } 1948 DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen)); 1949 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 1950 bf->bf_m = m0; 1951 bf->bf_node = ni; /* NB: held reference */ 1952 1953 /* setup descriptors */ 1954 ds = bf->bf_desc; 1955 rt = sc->sc_currates; 1956 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1957 1958 /* 1959 * Calculate Atheros packet type from IEEE80211 packet header 1960 * and setup for rate calculations. 1961 */ 1962 atype = HAL_PKT_TYPE_NORMAL; /* default */ 1963 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 1964 case IEEE80211_FC0_TYPE_MGT: 1965 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1966 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 1967 atype = HAL_PKT_TYPE_BEACON; 1968 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1969 atype = HAL_PKT_TYPE_PROBE_RESP; 1970 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 1971 atype = HAL_PKT_TYPE_ATIM; 1972 rix = 0; /* XXX lowest rate */ 1973 break; 1974 case IEEE80211_FC0_TYPE_CTL: 1975 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1976 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL) 1977 atype = HAL_PKT_TYPE_PSPOLL; 1978 rix = 0; /* XXX lowest rate */ 1979 break; 1980 default: 1981 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] & 1982 IEEE80211_RATE_VAL]; 1983 if (rix == 0xff) { 1984 if_printf(ifp, "bogus xmit rate 0x%x\n", 1985 ni->ni_rates.rs_rates[ni->ni_txrate]); 1986 sc->sc_stats.ast_tx_badrate++; 1987 m_freem(m0); 1988 return EIO; 1989 } 1990 break; 1991 } 1992 /* 1993 * NB: the 802.11 layer marks whether or not we should 1994 * use short preamble based on the current mode and 1995 * negotiated parameters. 1996 */ 1997 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1998 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 1999 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble; 2000 shortPreamble = AH_TRUE; 2001 sc->sc_stats.ast_tx_shortpre++; 2002 } else { 2003 txrate = rt->info[rix].rateCode; 2004 shortPreamble = AH_FALSE; 2005 } 2006 2007 /* 2008 * Calculate miscellaneous flags. 2009 */ 2010 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */ 2011 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2012 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 2013 sc->sc_stats.ast_tx_noack++; 2014 } else if (pktlen > ic->ic_rtsthreshold) { 2015 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 2016 sc->sc_stats.ast_tx_rts++; 2017 } 2018 2019 /* 2020 * Calculate duration. This logically belongs in the 802.11 2021 * layer but it lacks sufficient information to calculate it. 2022 */ 2023 if ((flags & HAL_TXDESC_NOACK) == 0 && 2024 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 2025 u_int16_t dur; 2026 /* 2027 * XXX not right with fragmentation. 2028 */ 2029 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE, 2030 rix, shortPreamble); 2031 *((u_int16_t*) wh->i_dur) = htole16(dur); 2032 } 2033 2034 /* 2035 * Calculate RTS/CTS rate and duration if needed. 2036 */ 2037 ctsduration = 0; 2038 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 2039 /* 2040 * CTS transmit rate is derived from the transmit rate 2041 * by looking in the h/w rate table. We must also factor 2042 * in whether or not a short preamble is to be used. 2043 */ 2044 cix = rt->info[rix].controlRate; 2045 ctsrate = rt->info[cix].rateCode; 2046 if (shortPreamble) 2047 ctsrate |= rt->info[cix].shortPreamble; 2048 /* 2049 * Compute the transmit duration based on the size 2050 * of an ACK frame. We call into the HAL to do the 2051 * computation since it depends on the characteristics 2052 * of the actual PHY being used. 2053 */ 2054 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */ 2055 ctsduration += ath_hal_computetxtime(ah, 2056 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2057 } 2058 /* SIFS + data */ 2059 ctsduration += ath_hal_computetxtime(ah, 2060 rt, pktlen, rix, shortPreamble); 2061 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */ 2062 ctsduration += ath_hal_computetxtime(ah, 2063 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2064 } 2065 } else 2066 ctsrate = 0; 2067 2068 /* 2069 * For now use the antenna on which the last good 2070 * frame was received on. We assume this field is 2071 * initialized to 0 which gives us ``auto'' or the 2072 * ``default'' antenna. 2073 */ 2074 an = (struct ath_node *) ni; 2075 if (an->an_tx_antenna) 2076 antenna = an->an_tx_antenna; 2077 else 2078 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna; 2079 2080 if (ic->ic_rawbpf) 2081 bpf_mtap(ic->ic_rawbpf, m0); 2082 if (sc->sc_drvbpf) { 2083 sc->sc_tx_th.wt_flags = 0; 2084 if (shortPreamble) 2085 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2086 if (iswep) 2087 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2088 sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2089 sc->sc_tx_th.wt_txpower = 60/2; /* XXX */ 2090 sc->sc_tx_th.wt_antenna = antenna; 2091 2092 bpf_mtap2(sc->sc_drvbpf, 2093 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 2094 } 2095 2096 /* 2097 * Formulate first tx descriptor with tx controls. 2098 */ 2099 /* XXX check return value? */ 2100 ath_hal_setuptxdesc(ah, ds 2101 , pktlen /* packet length */ 2102 , hdrlen /* header length */ 2103 , atype /* Atheros packet type */ 2104 , 60 /* txpower XXX */ 2105 , txrate, 1+10 /* series 0 rate/tries */ 2106 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID 2107 , antenna /* antenna mode */ 2108 , flags /* flags */ 2109 , ctsrate /* rts/cts rate */ 2110 , ctsduration /* rts/cts duration */ 2111 ); 2112 #ifdef notyet 2113 ath_hal_setupxtxdesc(ah, ds 2114 , AH_FALSE /* short preamble */ 2115 , 0, 0 /* series 1 rate/tries */ 2116 , 0, 0 /* series 2 rate/tries */ 2117 , 0, 0 /* series 3 rate/tries */ 2118 ); 2119 #endif 2120 /* 2121 * Fillin the remainder of the descriptor info. 2122 */ 2123 for (i = 0; i < bf->bf_nseg; i++, ds++) { 2124 ds->ds_data = bf->bf_segs[i].ds_addr; 2125 if (i == bf->bf_nseg - 1) 2126 ds->ds_link = 0; 2127 else 2128 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 2129 ath_hal_filltxdesc(ah, ds 2130 , bf->bf_segs[i].ds_len /* segment length */ 2131 , i == 0 /* first segment */ 2132 , i == bf->bf_nseg - 1 /* last segment */ 2133 ); 2134 DPRINTF(ATH_DEBUG_XMIT, 2135 ("%s: %d: %08x %08x %08x %08x %08x %08x\n", 2136 __func__, i, ds->ds_link, ds->ds_data, 2137 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1])); 2138 } 2139 2140 /* 2141 * Insert the frame on the outbound list and 2142 * pass it on to the hardware. 2143 */ 2144 ATH_TXQ_LOCK(sc); 2145 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list); 2146 if (sc->sc_txlink == NULL) { 2147 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr); 2148 DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__, 2149 (caddr_t)bf->bf_daddr, bf->bf_desc)); 2150 } else { 2151 *sc->sc_txlink = bf->bf_daddr; 2152 DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__, 2153 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc)); 2154 } 2155 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 2156 ATH_TXQ_UNLOCK(sc); 2157 2158 ath_hal_txstart(ah, sc->sc_txhalq); 2159 return 0; 2160 } 2161 2162 static void 2163 ath_tx_proc(void *arg, int npending) 2164 { 2165 struct ath_softc *sc = arg; 2166 struct ath_hal *ah = sc->sc_ah; 2167 struct ath_buf *bf; 2168 struct ieee80211com *ic = &sc->sc_ic; 2169 struct ifnet *ifp = &ic->ic_if; 2170 struct ath_desc *ds; 2171 struct ieee80211_node *ni; 2172 struct ath_node *an; 2173 int sr, lr; 2174 HAL_STATUS status; 2175 2176 DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n", 2177 __func__, npending, 2178 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq), 2179 sc->sc_txlink)); 2180 for (;;) { 2181 ATH_TXQ_LOCK(sc); 2182 bf = TAILQ_FIRST(&sc->sc_txq); 2183 if (bf == NULL) { 2184 sc->sc_txlink = NULL; 2185 ATH_TXQ_UNLOCK(sc); 2186 break; 2187 } 2188 /* only the last descriptor is needed */ 2189 ds = &bf->bf_desc[bf->bf_nseg - 1]; 2190 status = ath_hal_txprocdesc(ah, ds); 2191 #ifdef AR_DEBUG 2192 if (ath_debug & ATH_DEBUG_XMIT_DESC) 2193 ath_printtxbuf(bf, status == HAL_OK); 2194 #endif 2195 if (status == HAL_EINPROGRESS) { 2196 ATH_TXQ_UNLOCK(sc); 2197 break; 2198 } 2199 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2200 ATH_TXQ_UNLOCK(sc); 2201 2202 ni = bf->bf_node; 2203 if (ni != NULL) { 2204 an = (struct ath_node *) ni; 2205 if (ds->ds_txstat.ts_status == 0) { 2206 an->an_tx_ok++; 2207 an->an_tx_antenna = ds->ds_txstat.ts_antenna; 2208 } else { 2209 an->an_tx_err++; 2210 ifp->if_oerrors++; 2211 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 2212 sc->sc_stats.ast_tx_xretries++; 2213 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 2214 sc->sc_stats.ast_tx_fifoerr++; 2215 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 2216 sc->sc_stats.ast_tx_filtered++; 2217 an->an_tx_antenna = 0; /* invalidate */ 2218 } 2219 sr = ds->ds_txstat.ts_shortretry; 2220 lr = ds->ds_txstat.ts_longretry; 2221 sc->sc_stats.ast_tx_shortretry += sr; 2222 sc->sc_stats.ast_tx_longretry += lr; 2223 if (sr + lr) 2224 an->an_tx_retr++; 2225 /* 2226 * Reclaim reference to node. 2227 * 2228 * NB: the node may be reclaimed here if, for example 2229 * this is a DEAUTH message that was sent and the 2230 * node was timed out due to inactivity. 2231 */ 2232 if (ni != ic->ic_bss) 2233 ieee80211_free_node(ic, ni); 2234 } 2235 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2236 BUS_DMASYNC_POSTWRITE); 2237 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2238 m_freem(bf->bf_m); 2239 bf->bf_m = NULL; 2240 bf->bf_node = NULL; 2241 2242 ATH_TXBUF_LOCK(sc); 2243 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2244 ATH_TXBUF_UNLOCK(sc); 2245 } 2246 ifp->if_flags &= ~IFF_OACTIVE; 2247 sc->sc_tx_timer = 0; 2248 2249 ath_start(ifp); 2250 } 2251 2252 /* 2253 * Drain the transmit queue and reclaim resources. 2254 */ 2255 static void 2256 ath_draintxq(struct ath_softc *sc) 2257 { 2258 struct ath_hal *ah = sc->sc_ah; 2259 struct ieee80211com *ic = &sc->sc_ic; 2260 struct ifnet *ifp = &ic->ic_if; 2261 struct ieee80211_node *ni; 2262 struct ath_buf *bf; 2263 2264 /* XXX return value */ 2265 if (!sc->sc_invalid) { 2266 /* don't touch the hardware if marked invalid */ 2267 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq); 2268 DPRINTF(ATH_DEBUG_RESET, 2269 ("%s: tx queue %p, link %p\n", __func__, 2270 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq), 2271 sc->sc_txlink)); 2272 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 2273 DPRINTF(ATH_DEBUG_RESET, 2274 ("%s: beacon queue %p\n", __func__, 2275 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq))); 2276 } 2277 for (;;) { 2278 ATH_TXQ_LOCK(sc); 2279 bf = TAILQ_FIRST(&sc->sc_txq); 2280 if (bf == NULL) { 2281 sc->sc_txlink = NULL; 2282 ATH_TXQ_UNLOCK(sc); 2283 break; 2284 } 2285 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2286 ATH_TXQ_UNLOCK(sc); 2287 #ifdef AR_DEBUG 2288 if (ath_debug & ATH_DEBUG_RESET) 2289 ath_printtxbuf(bf, 2290 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 2291 #endif /* AR_DEBUG */ 2292 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2293 m_freem(bf->bf_m); 2294 bf->bf_m = NULL; 2295 ni = bf->bf_node; 2296 bf->bf_node = NULL; 2297 if (ni != NULL && ni != ic->ic_bss) { 2298 /* 2299 * Reclaim node reference. 2300 */ 2301 ieee80211_free_node(ic, ni); 2302 } 2303 ATH_TXBUF_LOCK(sc); 2304 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2305 ATH_TXBUF_UNLOCK(sc); 2306 } 2307 ifp->if_flags &= ~IFF_OACTIVE; 2308 sc->sc_tx_timer = 0; 2309 } 2310 2311 /* 2312 * Disable the receive h/w in preparation for a reset. 2313 */ 2314 static void 2315 ath_stoprecv(struct ath_softc *sc) 2316 { 2317 #define PA2DESC(_sc, _pa) \ 2318 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 2319 ((_pa) - (_sc)->sc_desc_paddr))) 2320 struct ath_hal *ah = sc->sc_ah; 2321 2322 ath_hal_stoppcurecv(ah); /* disable PCU */ 2323 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 2324 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 2325 DELAY(3000); /* long enough for 1 frame */ 2326 #ifdef AR_DEBUG 2327 if (ath_debug & ATH_DEBUG_RESET) { 2328 struct ath_buf *bf; 2329 2330 printf("%s: rx queue %p, link %p\n", __func__, 2331 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 2332 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 2333 struct ath_desc *ds = bf->bf_desc; 2334 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr, 2335 PA2DESC(sc, ds->ds_link)) == HAL_OK) 2336 ath_printrxbuf(bf, 1); 2337 } 2338 } 2339 #endif 2340 sc->sc_rxlink = NULL; /* just in case */ 2341 #undef PA2DESC 2342 } 2343 2344 /* 2345 * Enable the receive h/w following a reset. 2346 */ 2347 static int 2348 ath_startrecv(struct ath_softc *sc) 2349 { 2350 struct ath_hal *ah = sc->sc_ah; 2351 struct ath_buf *bf; 2352 2353 sc->sc_rxlink = NULL; 2354 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 2355 int error = ath_rxbuf_init(sc, bf); 2356 if (error != 0) { 2357 DPRINTF(ATH_DEBUG_RECV, 2358 ("%s: ath_rxbuf_init failed %d\n", 2359 __func__, error)); 2360 return error; 2361 } 2362 } 2363 2364 bf = TAILQ_FIRST(&sc->sc_rxbuf); 2365 ath_hal_putrxbuf(ah, bf->bf_daddr); 2366 ath_hal_rxena(ah); /* enable recv descriptors */ 2367 ath_mode_init(sc); /* set filters, etc. */ 2368 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 2369 return 0; 2370 } 2371 2372 /* 2373 * Set/change channels. If the channel is really being changed, 2374 * it's done by resetting the chip. To accomplish this we must 2375 * first cleanup any pending DMA, then restart stuff after a la 2376 * ath_init. 2377 */ 2378 static int 2379 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 2380 { 2381 struct ath_hal *ah = sc->sc_ah; 2382 struct ieee80211com *ic = &sc->sc_ic; 2383 2384 DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__, 2385 ieee80211_chan2ieee(ic, ic->ic_ibss_chan), 2386 ic->ic_ibss_chan->ic_freq, 2387 ieee80211_chan2ieee(ic, chan), chan->ic_freq)); 2388 if (chan != ic->ic_ibss_chan) { 2389 HAL_STATUS status; 2390 HAL_CHANNEL hchan; 2391 enum ieee80211_phymode mode; 2392 2393 /* 2394 * To switch channels clear any pending DMA operations; 2395 * wait long enough for the RX fifo to drain, reset the 2396 * hardware at the new frequency, and then re-enable 2397 * the relevant bits of the h/w. 2398 */ 2399 ath_hal_intrset(ah, 0); /* disable interrupts */ 2400 ath_draintxq(sc); /* clear pending tx frames */ 2401 ath_stoprecv(sc); /* turn off frame recv */ 2402 /* 2403 * Convert to a HAL channel description with 2404 * the flags constrained to reflect the current 2405 * operating mode. 2406 */ 2407 hchan.channel = chan->ic_freq; 2408 hchan.channelFlags = ath_chan2flags(ic, chan); 2409 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 2410 if_printf(&ic->ic_if, "ath_chan_set: unable to reset " 2411 "channel %u (%u Mhz)\n", 2412 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 2413 return EIO; 2414 } 2415 /* 2416 * Re-enable rx framework. 2417 */ 2418 if (ath_startrecv(sc) != 0) { 2419 if_printf(&ic->ic_if, 2420 "ath_chan_set: unable to restart recv logic\n"); 2421 return EIO; 2422 } 2423 2424 /* 2425 * Update BPF state. 2426 */ 2427 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 2428 htole16(chan->ic_freq); 2429 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 2430 htole16(chan->ic_flags); 2431 2432 /* 2433 * Change channels and update the h/w rate map 2434 * if we're switching; e.g. 11a to 11b/g. 2435 */ 2436 ic->ic_ibss_chan = chan; 2437 mode = ieee80211_chan2mode(ic, chan); 2438 if (mode != sc->sc_curmode) 2439 ath_setcurmode(sc, mode); 2440 2441 /* 2442 * Re-enable interrupts. 2443 */ 2444 ath_hal_intrset(ah, sc->sc_imask); 2445 } 2446 return 0; 2447 } 2448 2449 static void 2450 ath_next_scan(void *arg) 2451 { 2452 struct ath_softc *sc = arg; 2453 struct ieee80211com *ic = &sc->sc_ic; 2454 struct ifnet *ifp = &ic->ic_if; 2455 2456 if (ic->ic_state == IEEE80211_S_SCAN) 2457 ieee80211_next_scan(ifp); 2458 } 2459 2460 /* 2461 * Periodically recalibrate the PHY to account 2462 * for temperature/environment changes. 2463 */ 2464 static void 2465 ath_calibrate(void *arg) 2466 { 2467 struct ath_softc *sc = arg; 2468 struct ath_hal *ah = sc->sc_ah; 2469 struct ieee80211com *ic = &sc->sc_ic; 2470 struct ieee80211_channel *c; 2471 HAL_CHANNEL hchan; 2472 2473 sc->sc_stats.ast_per_cal++; 2474 2475 /* 2476 * Convert to a HAL channel description with the flags 2477 * constrained to reflect the current operating mode. 2478 */ 2479 c = ic->ic_ibss_chan; 2480 hchan.channel = c->ic_freq; 2481 hchan.channelFlags = ath_chan2flags(ic, c); 2482 2483 DPRINTF(ATH_DEBUG_CALIBRATE, 2484 ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags)); 2485 2486 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 2487 /* 2488 * Rfgain is out of bounds, reset the chip 2489 * to load new gain values. 2490 */ 2491 sc->sc_stats.ast_per_rfgain++; 2492 ath_reset(sc); 2493 } 2494 if (!ath_hal_calibrate(ah, &hchan)) { 2495 DPRINTF(ATH_DEBUG_ANY, 2496 ("%s: calibration of channel %u failed\n", 2497 __func__, c->ic_freq)); 2498 sc->sc_stats.ast_per_calfail++; 2499 } 2500 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc); 2501 } 2502 2503 static int 2504 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2505 { 2506 struct ifnet *ifp = &ic->ic_if; 2507 struct ath_softc *sc = ifp->if_softc; 2508 struct ath_hal *ah = sc->sc_ah; 2509 struct ieee80211_node *ni; 2510 int i, error; 2511 const u_int8_t *bssid; 2512 u_int32_t rfilt; 2513 static const HAL_LED_STATE leds[] = { 2514 HAL_LED_INIT, /* IEEE80211_S_INIT */ 2515 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 2516 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 2517 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 2518 HAL_LED_RUN, /* IEEE80211_S_RUN */ 2519 }; 2520 2521 DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__, 2522 ieee80211_state_name[ic->ic_state], 2523 ieee80211_state_name[nstate])); 2524 2525 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 2526 2527 if (nstate == IEEE80211_S_INIT) { 2528 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 2529 ath_hal_intrset(ah, sc->sc_imask); 2530 callout_stop(&sc->sc_scan_ch); 2531 callout_stop(&sc->sc_cal_ch); 2532 return (*sc->sc_newstate)(ic, nstate, arg); 2533 } 2534 ni = ic->ic_bss; 2535 error = ath_chan_set(sc, ni->ni_chan); 2536 if (error != 0) 2537 goto bad; 2538 rfilt = ath_calcrxfilter(sc); 2539 if (nstate == IEEE80211_S_SCAN) { 2540 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000, 2541 ath_next_scan, sc); 2542 bssid = ifp->if_broadcastaddr; 2543 } else { 2544 callout_stop(&sc->sc_scan_ch); 2545 bssid = ni->ni_bssid; 2546 } 2547 ath_hal_setrxfilter(ah, rfilt); 2548 DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n", 2549 __func__, rfilt, ether_sprintf(bssid))); 2550 2551 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 2552 ath_hal_setassocid(ah, bssid, ni->ni_associd); 2553 else 2554 ath_hal_setassocid(ah, bssid, 0); 2555 if (ic->ic_flags & IEEE80211_F_WEPON) { 2556 for (i = 0; i < IEEE80211_WEP_NKID; i++) 2557 if (ath_hal_keyisvalid(ah, i)) 2558 ath_hal_keysetmac(ah, i, bssid); 2559 } 2560 2561 if (nstate == IEEE80211_S_RUN) { 2562 DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 2563 "capinfo=0x%04x chan=%d\n" 2564 , __func__ 2565 , ic->ic_flags 2566 , ni->ni_intval 2567 , ether_sprintf(ni->ni_bssid) 2568 , ni->ni_capinfo 2569 , ieee80211_chan2ieee(ic, ni->ni_chan))); 2570 2571 /* 2572 * Allocate and setup the beacon frame for AP or adhoc mode. 2573 */ 2574 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2575 ic->ic_opmode == IEEE80211_M_IBSS) { 2576 error = ath_beacon_alloc(sc, ni); 2577 if (error != 0) 2578 goto bad; 2579 } 2580 2581 /* 2582 * Configure the beacon and sleep timers. 2583 */ 2584 ath_beacon_config(sc); 2585 2586 /* start periodic recalibration timer */ 2587 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, 2588 ath_calibrate, sc); 2589 } else { 2590 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 2591 ath_hal_intrset(ah, sc->sc_imask); 2592 callout_stop(&sc->sc_cal_ch); /* no calibration */ 2593 } 2594 /* 2595 * Reset the rate control state. 2596 */ 2597 ath_rate_ctl_reset(sc, nstate); 2598 /* 2599 * Invoke the parent method to complete the work. 2600 */ 2601 return (*sc->sc_newstate)(ic, nstate, arg); 2602 bad: 2603 callout_stop(&sc->sc_scan_ch); 2604 callout_stop(&sc->sc_cal_ch); 2605 /* NB: do not invoke the parent */ 2606 return error; 2607 } 2608 2609 /* 2610 * Setup driver-specific state for a newly associated node. 2611 * Note that we're called also on a re-associate, the isnew 2612 * param tells us if this is the first time or not. 2613 */ 2614 static void 2615 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2616 { 2617 if (isnew) { 2618 struct ath_node *an = (struct ath_node *) ni; 2619 2620 an->an_tx_ok = an->an_tx_err = 2621 an->an_tx_retr = an->an_tx_upper = 0; 2622 /* start with highest negotiated rate */ 2623 /* 2624 * XXX should do otherwise but only when 2625 * the rate control algorithm is better. 2626 */ 2627 KASSERT(ni->ni_rates.rs_nrates > 0, 2628 ("new association w/ no rates!")); 2629 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 2630 } 2631 } 2632 2633 static int 2634 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor) 2635 { 2636 struct ieee80211com *ic = &sc->sc_ic; 2637 struct ifnet *ifp = &ic->ic_if; 2638 struct ath_hal *ah = sc->sc_ah; 2639 HAL_CHANNEL *chans; 2640 int i, ix, nchan; 2641 2642 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 2643 M_TEMP, M_NOWAIT); 2644 if (chans == NULL) { 2645 if_printf(ifp, "unable to allocate channel table\n"); 2646 return ENOMEM; 2647 } 2648 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 2649 cc, HAL_MODE_ALL, outdoor)) { 2650 if_printf(ifp, "unable to collect channel list from hal\n"); 2651 free(chans, M_TEMP); 2652 return EINVAL; 2653 } 2654 2655 /* 2656 * Convert HAL channels to ieee80211 ones and insert 2657 * them in the table according to their channel number. 2658 */ 2659 for (i = 0; i < nchan; i++) { 2660 HAL_CHANNEL *c = &chans[i]; 2661 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 2662 if (ix > IEEE80211_CHAN_MAX) { 2663 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 2664 ix, c->channel, c->channelFlags); 2665 continue; 2666 } 2667 /* NB: flags are known to be compatible */ 2668 if (ic->ic_channels[ix].ic_freq == 0) { 2669 ic->ic_channels[ix].ic_freq = c->channel; 2670 ic->ic_channels[ix].ic_flags = c->channelFlags; 2671 } else { 2672 /* channels overlap; e.g. 11g and 11b */ 2673 ic->ic_channels[ix].ic_flags |= c->channelFlags; 2674 } 2675 } 2676 free(chans, M_TEMP); 2677 return 0; 2678 } 2679 2680 static int 2681 ath_rate_setup(struct ath_softc *sc, u_int mode) 2682 { 2683 struct ath_hal *ah = sc->sc_ah; 2684 struct ieee80211com *ic = &sc->sc_ic; 2685 const HAL_RATE_TABLE *rt; 2686 struct ieee80211_rateset *rs; 2687 int i, maxrates; 2688 2689 switch (mode) { 2690 case IEEE80211_MODE_11A: 2691 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 2692 break; 2693 case IEEE80211_MODE_11B: 2694 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 2695 break; 2696 case IEEE80211_MODE_11G: 2697 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 2698 break; 2699 case IEEE80211_MODE_TURBO: 2700 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 2701 break; 2702 default: 2703 DPRINTF(ATH_DEBUG_ANY, 2704 ("%s: invalid mode %u\n", __func__, mode)); 2705 return 0; 2706 } 2707 rt = sc->sc_rates[mode]; 2708 if (rt == NULL) 2709 return 0; 2710 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 2711 DPRINTF(ATH_DEBUG_ANY, 2712 ("%s: rate table too small (%u > %u)\n", 2713 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE)); 2714 maxrates = IEEE80211_RATE_MAXSIZE; 2715 } else 2716 maxrates = rt->rateCount; 2717 rs = &ic->ic_sup_rates[mode]; 2718 for (i = 0; i < maxrates; i++) 2719 rs->rs_rates[i] = rt->info[i].dot11Rate; 2720 rs->rs_nrates = maxrates; 2721 return 1; 2722 } 2723 2724 static void 2725 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 2726 { 2727 const HAL_RATE_TABLE *rt; 2728 int i; 2729 2730 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 2731 rt = sc->sc_rates[mode]; 2732 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 2733 for (i = 0; i < rt->rateCount; i++) 2734 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 2735 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 2736 for (i = 0; i < 32; i++) 2737 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate; 2738 sc->sc_currates = rt; 2739 sc->sc_curmode = mode; 2740 } 2741 2742 /* 2743 * Reset the rate control state for each 802.11 state transition. 2744 */ 2745 static void 2746 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state) 2747 { 2748 struct ieee80211com *ic = &sc->sc_ic; 2749 struct ieee80211_node *ni; 2750 struct ath_node *an; 2751 2752 if (ic->ic_opmode != IEEE80211_M_STA) { 2753 /* 2754 * When operating as a station the node table holds 2755 * the AP's that were discovered during scanning. 2756 * For any other operating mode we want to reset the 2757 * tx rate state of each node. 2758 */ 2759 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) { 2760 ni->ni_txrate = 0; /* use lowest rate */ 2761 an = (struct ath_node *) ni; 2762 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 2763 an->an_tx_upper = 0; 2764 } 2765 } 2766 /* 2767 * Reset local xmit state; this is really only meaningful 2768 * when operating in station or adhoc mode. 2769 */ 2770 ni = ic->ic_bss; 2771 an = (struct ath_node *) ni; 2772 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; 2773 if (state == IEEE80211_S_RUN) { 2774 /* start with highest negotiated rate */ 2775 KASSERT(ni->ni_rates.rs_nrates > 0, 2776 ("transition to RUN state w/ no rates!")); 2777 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 2778 } else { 2779 /* use lowest rate */ 2780 ni->ni_txrate = 0; 2781 } 2782 } 2783 2784 /* 2785 * Examine and potentially adjust the transmit rate. 2786 */ 2787 static void 2788 ath_rate_ctl(void *arg, struct ieee80211_node *ni) 2789 { 2790 struct ath_softc *sc = arg; 2791 struct ath_node *an = (struct ath_node *) ni; 2792 struct ieee80211_rateset *rs = &ni->ni_rates; 2793 int mod = 0, orate, enough; 2794 2795 /* 2796 * Rate control 2797 * XXX: very primitive version. 2798 */ 2799 sc->sc_stats.ast_rate_calls++; 2800 2801 enough = (an->an_tx_ok + an->an_tx_err >= 10); 2802 2803 /* no packet reached -> down */ 2804 if (an->an_tx_err > 0 && an->an_tx_ok == 0) 2805 mod = -1; 2806 2807 /* all packets needs retry in average -> down */ 2808 if (enough && an->an_tx_ok < an->an_tx_retr) 2809 mod = -1; 2810 2811 /* no error and less than 10% of packets needs retry -> up */ 2812 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10) 2813 mod = 1; 2814 2815 orate = ni->ni_txrate; 2816 switch (mod) { 2817 case 0: 2818 if (enough && an->an_tx_upper > 0) 2819 an->an_tx_upper--; 2820 break; 2821 case -1: 2822 if (ni->ni_txrate > 0) { 2823 ni->ni_txrate--; 2824 sc->sc_stats.ast_rate_drop++; 2825 } 2826 an->an_tx_upper = 0; 2827 break; 2828 case 1: 2829 if (++an->an_tx_upper < 2) 2830 break; 2831 an->an_tx_upper = 0; 2832 if (ni->ni_txrate + 1 < rs->rs_nrates) { 2833 ni->ni_txrate++; 2834 sc->sc_stats.ast_rate_raise++; 2835 } 2836 break; 2837 } 2838 2839 if (ni->ni_txrate != orate) { 2840 DPRINTF(ATH_DEBUG_RATE, 2841 ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n", 2842 __func__, 2843 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2, 2844 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2, 2845 an->an_tx_ok, an->an_tx_err, an->an_tx_retr)); 2846 } 2847 if (ni->ni_txrate != orate || enough) 2848 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0; 2849 } 2850 2851 #ifdef AR_DEBUG 2852 static int 2853 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS) 2854 { 2855 char dmode[64]; 2856 int error; 2857 2858 strncpy(dmode, "", sizeof(dmode) - 1); 2859 dmode[sizeof(dmode) - 1] = '\0'; 2860 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req); 2861 2862 if (error == 0 && req->newptr != NULL) { 2863 struct ifnet *ifp; 2864 struct ath_softc *sc; 2865 2866 ifp = ifunit("ath0"); /* XXX */ 2867 if (!ifp) 2868 return EINVAL; 2869 sc = ifp->if_softc; 2870 if (strcmp(dmode, "hal") == 0) 2871 ath_hal_dumpstate(sc->sc_ah); 2872 else 2873 return EINVAL; 2874 } 2875 return error; 2876 } 2877 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW, 2878 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state"); 2879 2880 static void 2881 ath_printrxbuf(struct ath_buf *bf, int done) 2882 { 2883 struct ath_desc *ds; 2884 int i; 2885 2886 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 2887 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 2888 i, ds, (struct ath_desc *)bf->bf_daddr + i, 2889 ds->ds_link, ds->ds_data, 2890 ds->ds_ctl0, ds->ds_ctl1, 2891 ds->ds_hw[0], ds->ds_hw[1], 2892 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 2893 } 2894 } 2895 2896 static void 2897 ath_printtxbuf(struct ath_buf *bf, int done) 2898 { 2899 struct ath_desc *ds; 2900 int i; 2901 2902 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 2903 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 2904 i, ds, (struct ath_desc *)bf->bf_daddr + i, 2905 ds->ds_link, ds->ds_data, 2906 ds->ds_ctl0, ds->ds_ctl1, 2907 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 2908 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 2909 } 2910 } 2911 #endif /* AR_DEBUG */ 2912