xref: /freebsd/sys/dev/ath/if_ath.c (revision 6b3455a7665208c366849f0b2b3bc916fb97516e)
1 /*-
2  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 
86 /* unalligned little endian access */
87 #define LE_READ_2(p)							\
88 	((u_int16_t)							\
89 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
90 #define LE_READ_4(p)							\
91 	((u_int32_t)							\
92 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
93 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
94 
95 static void	ath_init(void *);
96 static void	ath_stop(struct ifnet *);
97 static void	ath_start(struct ifnet *);
98 static void	ath_reset(struct ath_softc *);
99 static int	ath_media_change(struct ifnet *);
100 static void	ath_watchdog(struct ifnet *);
101 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
102 static void	ath_fatal_proc(void *, int);
103 static void	ath_rxorn_proc(void *, int);
104 static void	ath_bmiss_proc(void *, int);
105 static void	ath_initkeytable(struct ath_softc *);
106 static void	ath_mode_init(struct ath_softc *);
107 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
108 static void	ath_beacon_proc(void *, int);
109 static void	ath_beacon_free(struct ath_softc *);
110 static void	ath_beacon_config(struct ath_softc *);
111 static int	ath_desc_alloc(struct ath_softc *);
112 static void	ath_desc_free(struct ath_softc *);
113 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
114 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
115 static void	ath_node_copy(struct ieee80211com *,
116 			struct ieee80211_node *, const struct ieee80211_node *);
117 static u_int8_t	ath_node_getrssi(struct ieee80211com *,
118 			struct ieee80211_node *);
119 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
120 static void	ath_rx_proc(void *, int);
121 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
122 			     struct ath_buf *, struct mbuf *);
123 static void	ath_tx_proc(void *, int);
124 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
125 static void	ath_draintxq(struct ath_softc *);
126 static void	ath_stoprecv(struct ath_softc *);
127 static int	ath_startrecv(struct ath_softc *);
128 static void	ath_next_scan(void *);
129 static void	ath_calibrate(void *);
130 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
131 static void	ath_newassoc(struct ieee80211com *,
132 			struct ieee80211_node *, int);
133 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
134 
135 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
136 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
137 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
138 static void	ath_rate_ctl(void *, struct ieee80211_node *);
139 
140 SYSCTL_DECL(_hw_ath);
141 
142 /* XXX validate sysctl values */
143 static	int ath_dwelltime = 200;		/* 5 channels/second */
144 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
145 	    0, "channel dwell time (ms) for AP/station scanning");
146 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
147 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
148 	    0, "chip calibration interval (secs)");
149 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
150 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
151 	    0, "enable/disable outdoor operation");
152 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
153 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
154 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
155 	    0, "country code");
156 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
157 static	int ath_regdomain = 0;			/* regulatory domain */
158 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
159 	    0, "regulatory domain");
160 
161 #ifdef AR_DEBUG
162 int	ath_debug = 0;
163 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
164 	    0, "control debugging printfs");
165 TUNABLE_INT("hw.ath.debug", &ath_debug);
166 #define	IFF_DUMPPKTS(_ifp, _m) \
167 	((ath_debug & _m) || \
168 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
169 static	void ath_printrxbuf(struct ath_buf *bf, int);
170 static	void ath_printtxbuf(struct ath_buf *bf, int);
171 enum {
172 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
173 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
174 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
175 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
176 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
177 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
178 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
179 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
180 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
181 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
182 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
183 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
184 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
185 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
186 	ATH_DEBUG_ANY		= 0xffffffff
187 };
188 #define	DPRINTF(_m,X)	if (ath_debug & _m) printf X
189 #else
190 #define	IFF_DUMPPKTS(_ifp, _m) \
191 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
192 #define	DPRINTF(_m, X)
193 #endif
194 
195 int
196 ath_attach(u_int16_t devid, struct ath_softc *sc)
197 {
198 	struct ieee80211com *ic = &sc->sc_ic;
199 	struct ifnet *ifp = &ic->ic_if;
200 	struct ath_hal *ah;
201 	HAL_STATUS status;
202 	int error = 0;
203 
204 	DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
205 
206 	/* set these up early for if_printf use */
207 	if_initname(ifp, device_get_name(sc->sc_dev),
208 	    device_get_unit(sc->sc_dev));
209 
210 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
211 	if (ah == NULL) {
212 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
213 			status);
214 		error = ENXIO;
215 		goto bad;
216 	}
217 	if (ah->ah_abi != HAL_ABI_VERSION) {
218 		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
219 			ah->ah_abi, HAL_ABI_VERSION);
220 		error = ENXIO;
221 		goto bad;
222 	}
223 	if_printf(ifp, "mac %d.%d phy %d.%d",
224 		ah->ah_macVersion, ah->ah_macRev,
225 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
226 	if (ah->ah_analog5GhzRev)
227 		printf(" 5ghz radio %d.%d",
228 			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
229 	if (ah->ah_analog2GhzRev)
230 		printf(" 2ghz radio %d.%d",
231 			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
232 	printf("\n");
233 	sc->sc_ah = ah;
234 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
235 
236 	/*
237 	 * Collect the channel list using the default country
238 	 * code and including outdoor channels.  The 802.11 layer
239 	 * is resposible for filtering this list based on settings
240 	 * like the phy mode.
241 	 */
242 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
243 	if (error != 0)
244 		goto bad;
245 	/*
246 	 * Copy these back; they are set as a side effect
247 	 * of constructing the channel list.
248 	 */
249 	ath_regdomain = ath_hal_getregdomain(ah);
250 	ath_countrycode = ath_hal_getcountrycode(ah);
251 
252 	/*
253 	 * Setup rate tables for all potential media types.
254 	 */
255 	ath_rate_setup(sc, IEEE80211_MODE_11A);
256 	ath_rate_setup(sc, IEEE80211_MODE_11B);
257 	ath_rate_setup(sc, IEEE80211_MODE_11G);
258 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
259 
260 	error = ath_desc_alloc(sc);
261 	if (error != 0) {
262 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
263 		goto bad;
264 	}
265 	callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE);
266 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
267 
268 	ATH_TXBUF_LOCK_INIT(sc);
269 	ATH_TXQ_LOCK_INIT(sc);
270 
271 	TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
272 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
273 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
274 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
275 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
276 
277 	/*
278 	 * For now just pre-allocate one data queue and one
279 	 * beacon queue.  Note that the HAL handles resetting
280 	 * them at the needed time.  Eventually we'll want to
281 	 * allocate more tx queues for splitting management
282 	 * frames and for QOS support.
283 	 */
284 	sc->sc_txhalq = ath_hal_setuptxqueue(ah,
285 		HAL_TX_QUEUE_DATA,
286 		AH_TRUE			/* enable interrupts */
287 	);
288 	if (sc->sc_txhalq == (u_int) -1) {
289 		if_printf(ifp, "unable to setup a data xmit queue!\n");
290 		goto bad2;
291 	}
292 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,
293 		HAL_TX_QUEUE_BEACON,
294 		AH_TRUE			/* enable interrupts */
295 	);
296 	if (sc->sc_bhalq == (u_int) -1) {
297 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
298 		goto bad2;
299 	}
300 
301 	ifp->if_softc = sc;
302 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
303 	ifp->if_start = ath_start;
304 	ifp->if_watchdog = ath_watchdog;
305 	ifp->if_ioctl = ath_ioctl;
306 	ifp->if_init = ath_init;
307 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
308 
309 	ic->ic_softc = sc;
310 	ic->ic_newassoc = ath_newassoc;
311 	/* XXX not right but it's not used anywhere important */
312 	ic->ic_phytype = IEEE80211_T_OFDM;
313 	ic->ic_opmode = IEEE80211_M_STA;
314 	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
315 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
316 		| IEEE80211_C_HOSTAP		/* hostap mode */
317 		| IEEE80211_C_MONITOR		/* monitor mode */
318 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
319 		;
320 
321 	/* get mac address from hardware */
322 	ath_hal_getmac(ah, ic->ic_myaddr);
323 
324 	/* call MI attach routine. */
325 	ieee80211_ifattach(ifp);
326 	/* override default methods */
327 	ic->ic_node_alloc = ath_node_alloc;
328 	sc->sc_node_free = ic->ic_node_free;
329 	ic->ic_node_free = ath_node_free;
330 	sc->sc_node_copy = ic->ic_node_copy;
331 	ic->ic_node_copy = ath_node_copy;
332 	ic->ic_node_getrssi = ath_node_getrssi;
333 	sc->sc_newstate = ic->ic_newstate;
334 	ic->ic_newstate = ath_newstate;
335 	/* complete initialization */
336 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
337 
338 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
339 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
340 		&sc->sc_drvbpf);
341 	/*
342 	 * Initialize constant fields.
343 	 * XXX make header lengths a multiple of 32-bits so subsequent
344 	 *     headers are properly aligned; this is a kludge to keep
345 	 *     certain applications happy.
346 	 *
347 	 * NB: the channel is setup each time we transition to the
348 	 *     RUN state to avoid filling it in for each frame.
349 	 */
350 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
351 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
352 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
353 
354 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
355 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
356 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
357 
358 	return 0;
359 bad2:
360 	ath_desc_free(sc);
361 bad:
362 	if (ah)
363 		ath_hal_detach(ah);
364 	sc->sc_invalid = 1;
365 	return error;
366 }
367 
368 int
369 ath_detach(struct ath_softc *sc)
370 {
371 	struct ifnet *ifp = &sc->sc_ic.ic_if;
372 
373 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
374 
375 	ath_stop(ifp);
376 	bpfdetach(ifp);
377 	ath_desc_free(sc);
378 	ath_hal_detach(sc->sc_ah);
379 	ieee80211_ifdetach(ifp);
380 
381 	ATH_TXBUF_LOCK_DESTROY(sc);
382 	ATH_TXQ_LOCK_DESTROY(sc);
383 
384 	return 0;
385 }
386 
387 void
388 ath_suspend(struct ath_softc *sc)
389 {
390 	struct ifnet *ifp = &sc->sc_ic.ic_if;
391 
392 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
393 
394 	ath_stop(ifp);
395 }
396 
397 void
398 ath_resume(struct ath_softc *sc)
399 {
400 	struct ifnet *ifp = &sc->sc_ic.ic_if;
401 
402 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
403 
404 	if (ifp->if_flags & IFF_UP) {
405 		ath_init(ifp);
406 		if (ifp->if_flags & IFF_RUNNING)
407 			ath_start(ifp);
408 	}
409 }
410 
411 void
412 ath_shutdown(struct ath_softc *sc)
413 {
414 	struct ifnet *ifp = &sc->sc_ic.ic_if;
415 
416 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
417 
418 	ath_stop(ifp);
419 }
420 
421 void
422 ath_intr(void *arg)
423 {
424 	struct ath_softc *sc = arg;
425 	struct ieee80211com *ic = &sc->sc_ic;
426 	struct ifnet *ifp = &ic->ic_if;
427 	struct ath_hal *ah = sc->sc_ah;
428 	HAL_INT status;
429 
430 	if (sc->sc_invalid) {
431 		/*
432 		 * The hardware is not ready/present, don't touch anything.
433 		 * Note this can happen early on if the IRQ is shared.
434 		 */
435 		DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
436 		return;
437 	}
438 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
439 		return;
440 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
441 		DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
442 			__func__, ifp->if_flags));
443 		ath_hal_getisr(ah, &status);	/* clear ISR */
444 		ath_hal_intrset(ah, 0);		/* disable further intr's */
445 		return;
446 	}
447 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
448 	DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
449 #ifdef AR_DEBUG
450 	if (ath_debug &&
451 	    (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
452 		if_printf(ifp, "ath_intr: status 0x%x\n", status);
453 		ath_hal_dumpstate(ah);
454 	}
455 #endif /* AR_DEBUG */
456 	status &= sc->sc_imask;			/* discard unasked for bits */
457 	if (status & HAL_INT_FATAL) {
458 		sc->sc_stats.ast_hardware++;
459 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
460 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
461 	} else if (status & HAL_INT_RXORN) {
462 		sc->sc_stats.ast_rxorn++;
463 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
464 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
465 	} else {
466 		if (status & HAL_INT_RXEOL) {
467 			/*
468 			 * NB: the hardware should re-read the link when
469 			 *     RXE bit is written, but it doesn't work at
470 			 *     least on older hardware revs.
471 			 */
472 			sc->sc_stats.ast_rxeol++;
473 			sc->sc_rxlink = NULL;
474 		}
475 		if (status & HAL_INT_TXURN) {
476 			sc->sc_stats.ast_txurn++;
477 			/* bump tx trigger level */
478 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
479 		}
480 		if (status & HAL_INT_RX)
481 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
482 		if (status & HAL_INT_TX)
483 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
484 		if (status & HAL_INT_SWBA) {
485 			/*
486 			 * Handle beacon transmission directly; deferring
487 			 * this is too slow to meet timing constraints
488 			 * under load.
489 			 */
490 			ath_beacon_proc(sc, 0);
491 		}
492 		if (status & HAL_INT_BMISS) {
493 			sc->sc_stats.ast_bmiss++;
494 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
495 		}
496 	}
497 }
498 
499 static void
500 ath_fatal_proc(void *arg, int pending)
501 {
502 	struct ath_softc *sc = arg;
503 
504 	device_printf(sc->sc_dev, "hardware error; resetting\n");
505 	ath_reset(sc);
506 }
507 
508 static void
509 ath_rxorn_proc(void *arg, int pending)
510 {
511 	struct ath_softc *sc = arg;
512 
513 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
514 	ath_reset(sc);
515 }
516 
517 static void
518 ath_bmiss_proc(void *arg, int pending)
519 {
520 	struct ath_softc *sc = arg;
521 	struct ieee80211com *ic = &sc->sc_ic;
522 
523 	DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
524 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
525 		("unexpect operating mode %u", ic->ic_opmode));
526 	if (ic->ic_state == IEEE80211_S_RUN) {
527 		/*
528 		 * Rather than go directly to scan state, try to
529 		 * reassociate first.  If that fails then the state
530 		 * machine will drop us into scanning after timing
531 		 * out waiting for a probe response.
532 		 */
533 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
534 	}
535 }
536 
537 static u_int
538 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
539 {
540 	static const u_int modeflags[] = {
541 		0,			/* IEEE80211_MODE_AUTO */
542 		CHANNEL_A,		/* IEEE80211_MODE_11A */
543 		CHANNEL_B,		/* IEEE80211_MODE_11B */
544 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
545 		CHANNEL_T		/* IEEE80211_MODE_TURBO */
546 	};
547 	return modeflags[ieee80211_chan2mode(ic, chan)];
548 }
549 
550 static void
551 ath_init(void *arg)
552 {
553 	struct ath_softc *sc = (struct ath_softc *) arg;
554 	struct ieee80211com *ic = &sc->sc_ic;
555 	struct ifnet *ifp = &ic->ic_if;
556 	struct ieee80211_node *ni;
557 	enum ieee80211_phymode mode;
558 	struct ath_hal *ah = sc->sc_ah;
559 	HAL_STATUS status;
560 	HAL_CHANNEL hchan;
561 
562 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
563 		__func__, ifp->if_flags));
564 
565 	ATH_LOCK(sc);
566 	/*
567 	 * Stop anything previously setup.  This is safe
568 	 * whether this is the first time through or not.
569 	 */
570 	ath_stop(ifp);
571 
572 	/*
573 	 * The basic interface to setting the hardware in a good
574 	 * state is ``reset''.  On return the hardware is known to
575 	 * be powered up and with interrupts disabled.  This must
576 	 * be followed by initialization of the appropriate bits
577 	 * and then setup of the interrupt mask.
578 	 */
579 	hchan.channel = ic->ic_ibss_chan->ic_freq;
580 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
581 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
582 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
583 			status);
584 		goto done;
585 	}
586 
587 	/*
588 	 * Setup the hardware after reset: the key cache
589 	 * is filled as needed and the receive engine is
590 	 * set going.  Frame transmit is handled entirely
591 	 * in the frame output path; there's nothing to do
592 	 * here except setup the interrupt mask.
593 	 */
594 	if (ic->ic_flags & IEEE80211_F_WEPON)
595 		ath_initkeytable(sc);
596 	if (ath_startrecv(sc) != 0) {
597 		if_printf(ifp, "unable to start recv logic\n");
598 		goto done;
599 	}
600 
601 	/*
602 	 * Enable interrupts.
603 	 */
604 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
605 		  | HAL_INT_RXEOL | HAL_INT_RXORN
606 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
607 	ath_hal_intrset(ah, sc->sc_imask);
608 
609 	ifp->if_flags |= IFF_RUNNING;
610 	ic->ic_state = IEEE80211_S_INIT;
611 
612 	/*
613 	 * The hardware should be ready to go now so it's safe
614 	 * to kick the 802.11 state machine as it's likely to
615 	 * immediately call back to us to send mgmt frames.
616 	 */
617 	ni = ic->ic_bss;
618 	ni->ni_chan = ic->ic_ibss_chan;
619 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
620 	if (mode != sc->sc_curmode)
621 		ath_setcurmode(sc, mode);
622 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
623 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
624 	else
625 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
626 done:
627 	ATH_UNLOCK(sc);
628 }
629 
630 static void
631 ath_stop(struct ifnet *ifp)
632 {
633 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
634 	struct ath_softc *sc = ifp->if_softc;
635 	struct ath_hal *ah = sc->sc_ah;
636 
637 	DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
638 		__func__, sc->sc_invalid, ifp->if_flags));
639 
640 	ATH_LOCK(sc);
641 	if (ifp->if_flags & IFF_RUNNING) {
642 		/*
643 		 * Shutdown the hardware and driver:
644 		 *    disable interrupts
645 		 *    turn off timers
646 		 *    clear transmit machinery
647 		 *    clear receive machinery
648 		 *    drain and release tx queues
649 		 *    reclaim beacon resources
650 		 *    reset 802.11 state machine
651 		 *    power down hardware
652 		 *
653 		 * Note that some of this work is not possible if the
654 		 * hardware is gone (invalid).
655 		 */
656 		ifp->if_flags &= ~IFF_RUNNING;
657 		ifp->if_timer = 0;
658 		if (!sc->sc_invalid)
659 			ath_hal_intrset(ah, 0);
660 		ath_draintxq(sc);
661 		if (!sc->sc_invalid)
662 			ath_stoprecv(sc);
663 		else
664 			sc->sc_rxlink = NULL;
665 		IF_DRAIN(&ifp->if_snd);
666 		ath_beacon_free(sc);
667 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
668 		if (!sc->sc_invalid)
669 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
670 	}
671 	ATH_UNLOCK(sc);
672 }
673 
674 /*
675  * Reset the hardware w/o losing operational state.  This is
676  * basically a more efficient way of doing ath_stop, ath_init,
677  * followed by state transitions to the current 802.11
678  * operational state.  Used to recover from errors rx overrun
679  * and to reset the hardware when rf gain settings must be reset.
680  */
681 static void
682 ath_reset(struct ath_softc *sc)
683 {
684 	struct ieee80211com *ic = &sc->sc_ic;
685 	struct ifnet *ifp = &ic->ic_if;
686 	struct ath_hal *ah = sc->sc_ah;
687 	struct ieee80211_channel *c;
688 	HAL_STATUS status;
689 	HAL_CHANNEL hchan;
690 
691 	/*
692 	 * Convert to a HAL channel description with the flags
693 	 * constrained to reflect the current operating mode.
694 	 */
695 	c = ic->ic_ibss_chan;
696 	hchan.channel = c->ic_freq;
697 	hchan.channelFlags = ath_chan2flags(ic, c);
698 
699 	ath_hal_intrset(ah, 0);		/* disable interrupts */
700 	ath_draintxq(sc);		/* stop xmit side */
701 	ath_stoprecv(sc);		/* stop recv side */
702 	/* NB: indicate channel change so we do a full reset */
703 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
704 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
705 			__func__, status);
706 	ath_hal_intrset(ah, sc->sc_imask);
707 	if (ath_startrecv(sc) != 0)	/* restart recv */
708 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
709 	ath_start(ifp);			/* restart xmit */
710 	if (ic->ic_state == IEEE80211_S_RUN)
711 		ath_beacon_config(sc);	/* restart beacons */
712 }
713 
714 static void
715 ath_start(struct ifnet *ifp)
716 {
717 	struct ath_softc *sc = ifp->if_softc;
718 	struct ath_hal *ah = sc->sc_ah;
719 	struct ieee80211com *ic = &sc->sc_ic;
720 	struct ieee80211_node *ni;
721 	struct ath_buf *bf;
722 	struct mbuf *m;
723 	struct ieee80211_frame *wh;
724 
725 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
726 		return;
727 	for (;;) {
728 		/*
729 		 * Grab a TX buffer and associated resources.
730 		 */
731 		ATH_TXBUF_LOCK(sc);
732 		bf = TAILQ_FIRST(&sc->sc_txbuf);
733 		if (bf != NULL)
734 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
735 		ATH_TXBUF_UNLOCK(sc);
736 		if (bf == NULL) {
737 			DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
738 				__func__));
739 			sc->sc_stats.ast_tx_qstop++;
740 			ifp->if_flags |= IFF_OACTIVE;
741 			break;
742 		}
743 		/*
744 		 * Poll the management queue for frames; they
745 		 * have priority over normal data frames.
746 		 */
747 		IF_DEQUEUE(&ic->ic_mgtq, m);
748 		if (m == NULL) {
749 			/*
750 			 * No data frames go out unless we're associated.
751 			 */
752 			if (ic->ic_state != IEEE80211_S_RUN) {
753 				DPRINTF(ATH_DEBUG_ANY,
754 					("%s: ignore data packet, state %u\n",
755 					__func__, ic->ic_state));
756 				sc->sc_stats.ast_tx_discard++;
757 				ATH_TXBUF_LOCK(sc);
758 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
759 				ATH_TXBUF_UNLOCK(sc);
760 				break;
761 			}
762 			IF_DEQUEUE(&ifp->if_snd, m);
763 			if (m == NULL) {
764 				ATH_TXBUF_LOCK(sc);
765 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
766 				ATH_TXBUF_UNLOCK(sc);
767 				break;
768 			}
769 			ifp->if_opackets++;
770 			BPF_MTAP(ifp, m);
771 			/*
772 			 * Encapsulate the packet in prep for transmission.
773 			 */
774 			m = ieee80211_encap(ifp, m, &ni);
775 			if (m == NULL) {
776 				DPRINTF(ATH_DEBUG_ANY,
777 					("%s: encapsulation failure\n",
778 					__func__));
779 				sc->sc_stats.ast_tx_encap++;
780 				goto bad;
781 			}
782 			wh = mtod(m, struct ieee80211_frame *);
783 			if (ic->ic_flags & IEEE80211_F_WEPON)
784 				wh->i_fc[1] |= IEEE80211_FC1_WEP;
785 		} else {
786 			/*
787 			 * Hack!  The referenced node pointer is in the
788 			 * rcvif field of the packet header.  This is
789 			 * placed there by ieee80211_mgmt_output because
790 			 * we need to hold the reference with the frame
791 			 * and there's no other way (other than packet
792 			 * tags which we consider too expensive to use)
793 			 * to pass it along.
794 			 */
795 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
796 			m->m_pkthdr.rcvif = NULL;
797 
798 			wh = mtod(m, struct ieee80211_frame *);
799 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
800 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
801 				/* fill time stamp */
802 				u_int64_t tsf;
803 				u_int32_t *tstamp;
804 
805 				tsf = ath_hal_gettsf64(ah);
806 				/* XXX: adjust 100us delay to xmit */
807 				tsf += 100;
808 				tstamp = (u_int32_t *)&wh[1];
809 				tstamp[0] = htole32(tsf & 0xffffffff);
810 				tstamp[1] = htole32(tsf >> 32);
811 			}
812 			sc->sc_stats.ast_tx_mgmt++;
813 		}
814 
815 		if (ath_tx_start(sc, ni, bf, m)) {
816 	bad:
817 			ATH_TXBUF_LOCK(sc);
818 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
819 			ATH_TXBUF_UNLOCK(sc);
820 			ifp->if_oerrors++;
821 			if (ni && ni != ic->ic_bss)
822 				ieee80211_free_node(ic, ni);
823 			continue;
824 		}
825 
826 		sc->sc_tx_timer = 5;
827 		ifp->if_timer = 1;
828 	}
829 }
830 
831 static int
832 ath_media_change(struct ifnet *ifp)
833 {
834 	int error;
835 
836 	error = ieee80211_media_change(ifp);
837 	if (error == ENETRESET) {
838 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
839 		    (IFF_RUNNING|IFF_UP))
840 			ath_init(ifp);		/* XXX lose error */
841 		error = 0;
842 	}
843 	return error;
844 }
845 
846 static void
847 ath_watchdog(struct ifnet *ifp)
848 {
849 	struct ath_softc *sc = ifp->if_softc;
850 	struct ieee80211com *ic = &sc->sc_ic;
851 
852 	ifp->if_timer = 0;
853 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
854 		return;
855 	if (sc->sc_tx_timer) {
856 		if (--sc->sc_tx_timer == 0) {
857 			if_printf(ifp, "device timeout\n");
858 #ifdef AR_DEBUG
859 			if (ath_debug & ATH_DEBUG_WATCHDOG)
860 				ath_hal_dumpstate(sc->sc_ah);
861 #endif /* AR_DEBUG */
862 			ath_reset(sc);
863 			ifp->if_oerrors++;
864 			sc->sc_stats.ast_watchdog++;
865 			return;
866 		}
867 		ifp->if_timer = 1;
868 	}
869 	if (ic->ic_fixed_rate == -1) {
870 		/*
871 		 * Run the rate control algorithm if we're not
872 		 * locked at a fixed rate.
873 		 */
874 		if (ic->ic_opmode == IEEE80211_M_STA)
875 			ath_rate_ctl(sc, ic->ic_bss);
876 		else
877 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
878 	}
879 	ieee80211_watchdog(ifp);
880 }
881 
882 static int
883 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
884 {
885 	struct ath_softc *sc = ifp->if_softc;
886 	struct ifreq *ifr = (struct ifreq *)data;
887 	int error = 0;
888 
889 	ATH_LOCK(sc);
890 	switch (cmd) {
891 	case SIOCSIFFLAGS:
892 		if (ifp->if_flags & IFF_UP) {
893 			if (ifp->if_flags & IFF_RUNNING) {
894 				/*
895 				 * To avoid rescanning another access point,
896 				 * do not call ath_init() here.  Instead,
897 				 * only reflect promisc mode settings.
898 				 */
899 				ath_mode_init(sc);
900 			} else {
901 				/*
902 				 * Beware of being called during detach to
903 				 * reset promiscuous mode.  In that case we
904 				 * will still be marked UP but not RUNNING.
905 				 * However trying to re-init the interface
906 				 * is the wrong thing to do as we've already
907 				 * torn down much of our state.  There's
908 				 * probably a better way to deal with this.
909 				 */
910 				if (!sc->sc_invalid)
911 					ath_init(ifp);	/* XXX lose error */
912 			}
913 		} else
914 			ath_stop(ifp);
915 		break;
916 	case SIOCADDMULTI:
917 	case SIOCDELMULTI:
918 		/*
919 		 * The upper layer has already installed/removed
920 		 * the multicast address(es), just recalculate the
921 		 * multicast filter for the card.
922 		 */
923 		if (ifp->if_flags & IFF_RUNNING)
924 			ath_mode_init(sc);
925 		break;
926 	case SIOCGATHSTATS:
927 		error = copyout(&sc->sc_stats,
928 				ifr->ifr_data, sizeof (sc->sc_stats));
929 		break;
930 	case SIOCGATHDIAG: {
931 		struct ath_diag *ad = (struct ath_diag *)data;
932 		struct ath_hal *ah = sc->sc_ah;
933 		void *data;
934 		u_int size;
935 
936 		if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
937 			if (size < ad->ad_size)
938 				ad->ad_size = size;
939 			if (data)
940 				error = copyout(data, ad->ad_data, ad->ad_size);
941 		} else
942 			error = EINVAL;
943 		break;
944 	}
945 	default:
946 		error = ieee80211_ioctl(ifp, cmd, data);
947 		if (error == ENETRESET) {
948 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
949 			    (IFF_RUNNING|IFF_UP))
950 				ath_init(ifp);		/* XXX lose error */
951 			error = 0;
952 		}
953 		break;
954 	}
955 	ATH_UNLOCK(sc);
956 	return error;
957 }
958 
959 /*
960  * Fill the hardware key cache with key entries.
961  */
962 static void
963 ath_initkeytable(struct ath_softc *sc)
964 {
965 	struct ieee80211com *ic = &sc->sc_ic;
966 	struct ath_hal *ah = sc->sc_ah;
967 	int i;
968 
969 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
970 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
971 		if (k->wk_len == 0)
972 			ath_hal_keyreset(ah, i);
973 		else
974 			/* XXX return value */
975 			/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
976 			ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
977 	}
978 }
979 
980 /*
981  * Calculate the receive filter according to the
982  * operating mode and state:
983  *
984  * o always accept unicast, broadcast, and multicast traffic
985  * o maintain current state of phy error reception
986  * o probe request frames are accepted only when operating in
987  *   hostap, adhoc, or monitor modes
988  * o enable promiscuous mode according to the interface state
989  * o accept beacons:
990  *   - when operating in adhoc mode so the 802.11 layer creates
991  *     node table entries for peers,
992  *   - when operating in station mode for collecting rssi data when
993  *     the station is otherwise quiet, or
994  *   - when scanning
995  */
996 static u_int32_t
997 ath_calcrxfilter(struct ath_softc *sc)
998 {
999 	struct ieee80211com *ic = &sc->sc_ic;
1000 	struct ath_hal *ah = sc->sc_ah;
1001 	struct ifnet *ifp = &ic->ic_if;
1002 	u_int32_t rfilt;
1003 
1004 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1005 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1006 	if (ic->ic_opmode != IEEE80211_M_STA)
1007 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1008 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1009 	    (ifp->if_flags & IFF_PROMISC))
1010 		rfilt |= HAL_RX_FILTER_PROM;
1011 	if (ic->ic_opmode == IEEE80211_M_STA ||
1012 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1013 	    ic->ic_state == IEEE80211_S_SCAN)
1014 		rfilt |= HAL_RX_FILTER_BEACON;
1015 	return rfilt;
1016 }
1017 
1018 static void
1019 ath_mode_init(struct ath_softc *sc)
1020 {
1021 	struct ieee80211com *ic = &sc->sc_ic;
1022 	struct ath_hal *ah = sc->sc_ah;
1023 	struct ifnet *ifp = &ic->ic_if;
1024 	u_int32_t rfilt, mfilt[2], val;
1025 	u_int8_t pos;
1026 	struct ifmultiaddr *ifma;
1027 
1028 	/* configure rx filter */
1029 	rfilt = ath_calcrxfilter(sc);
1030 	ath_hal_setrxfilter(ah, rfilt);
1031 
1032 	/* configure operational mode */
1033 	ath_hal_setopmode(ah, ic->ic_opmode);
1034 
1035 	/* calculate and install multicast filter */
1036 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1037 		mfilt[0] = mfilt[1] = 0;
1038 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1039 			caddr_t dl;
1040 
1041 			/* calculate XOR of eight 6bit values */
1042 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1043 			val = LE_READ_4(dl + 0);
1044 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1045 			val = LE_READ_4(dl + 3);
1046 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1047 			pos &= 0x3f;
1048 			mfilt[pos / 32] |= (1 << (pos % 32));
1049 		}
1050 	} else {
1051 		mfilt[0] = mfilt[1] = ~0;
1052 	}
1053 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1054 	DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1055 		__func__, rfilt, mfilt[0], mfilt[1]));
1056 }
1057 
1058 static void
1059 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1060 {
1061 	struct ath_buf *bf = arg;
1062 
1063 	KASSERT(nseg <= ATH_MAX_SCATTER,
1064 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1065 	bf->bf_mapsize = mapsize;
1066 	bf->bf_nseg = nseg;
1067 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1068 }
1069 
1070 static int
1071 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1072 {
1073 	struct ieee80211com *ic = &sc->sc_ic;
1074 	struct ifnet *ifp = &ic->ic_if;
1075 	struct ath_hal *ah = sc->sc_ah;
1076 	struct ieee80211_frame *wh;
1077 	struct ath_buf *bf;
1078 	struct ath_desc *ds;
1079 	struct mbuf *m;
1080 	int error, pktlen;
1081 	u_int8_t *frm, rate;
1082 	u_int16_t capinfo;
1083 	struct ieee80211_rateset *rs;
1084 	const HAL_RATE_TABLE *rt;
1085 
1086 	bf = sc->sc_bcbuf;
1087 	if (bf->bf_m != NULL) {
1088 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1089 		m_freem(bf->bf_m);
1090 		bf->bf_m = NULL;
1091 		bf->bf_node = NULL;
1092 	}
1093 	/*
1094 	 * NB: the beacon data buffer must be 32-bit aligned;
1095 	 * we assume the mbuf routines will return us something
1096 	 * with this alignment (perhaps should assert).
1097 	 */
1098 	rs = &ni->ni_rates;
1099 	pktlen = sizeof (struct ieee80211_frame)
1100 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1101 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1102 		pktlen += 2;
1103 	if (pktlen <= MHLEN)
1104 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1105 	else
1106 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1107 	if (m == NULL) {
1108 		DPRINTF(ATH_DEBUG_BEACON,
1109 			("%s: cannot get mbuf/cluster; size %u\n",
1110 			__func__, pktlen));
1111 		sc->sc_stats.ast_be_nombuf++;
1112 		return ENOMEM;
1113 	}
1114 
1115 	wh = mtod(m, struct ieee80211_frame *);
1116 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1117 	    IEEE80211_FC0_SUBTYPE_BEACON;
1118 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1119 	*(u_int16_t *)wh->i_dur = 0;
1120 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1121 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1122 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1123 	*(u_int16_t *)wh->i_seq = 0;
1124 
1125 	/*
1126 	 * beacon frame format
1127 	 *	[8] time stamp
1128 	 *	[2] beacon interval
1129 	 *	[2] cabability information
1130 	 *	[tlv] ssid
1131 	 *	[tlv] supported rates
1132 	 *	[tlv] parameter set (IBSS)
1133 	 *	[tlv] extended supported rates
1134 	 */
1135 	frm = (u_int8_t *)&wh[1];
1136 	memset(frm, 0, 8);	/* timestamp is set by hardware */
1137 	frm += 8;
1138 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1139 	frm += 2;
1140 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1141 		capinfo = IEEE80211_CAPINFO_IBSS;
1142 	else
1143 		capinfo = IEEE80211_CAPINFO_ESS;
1144 	if (ic->ic_flags & IEEE80211_F_WEPON)
1145 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1146 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1147 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1148 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1149 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1150 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1151 	*(u_int16_t *)frm = htole16(capinfo);
1152 	frm += 2;
1153 	*frm++ = IEEE80211_ELEMID_SSID;
1154 	*frm++ = ni->ni_esslen;
1155 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1156 	frm += ni->ni_esslen;
1157 	frm = ieee80211_add_rates(frm, rs);
1158 	*frm++ = IEEE80211_ELEMID_DSPARMS;
1159 	*frm++ = 1;
1160 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1161 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1162 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1163 		*frm++ = 2;
1164 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1165 	} else {
1166 		/* TODO: TIM */
1167 		*frm++ = IEEE80211_ELEMID_TIM;
1168 		*frm++ = 4;	/* length */
1169 		*frm++ = 0;	/* DTIM count */
1170 		*frm++ = 1;	/* DTIM period */
1171 		*frm++ = 0;	/* bitmap control */
1172 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1173 	}
1174 	frm = ieee80211_add_xrates(frm, rs);
1175 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1176 	KASSERT(m->m_pkthdr.len <= pktlen,
1177 		("beacon bigger than expected, len %u calculated %u",
1178 		m->m_pkthdr.len, pktlen));
1179 
1180 	DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1181 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1182 				     ath_mbuf_load_cb, bf,
1183 				     BUS_DMA_NOWAIT);
1184 	if (error != 0) {
1185 		m_freem(m);
1186 		return error;
1187 	}
1188 	KASSERT(bf->bf_nseg == 1,
1189 		("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1190 	bf->bf_m = m;
1191 
1192 	/* setup descriptors */
1193 	ds = bf->bf_desc;
1194 
1195 	ds->ds_link = 0;
1196 	ds->ds_data = bf->bf_segs[0].ds_addr;
1197 	/*
1198 	 * Calculate rate code.
1199 	 * XXX everything at min xmit rate
1200 	 */
1201 	rt = sc->sc_currates;
1202 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1203 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1204 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1205 	else
1206 		rate = rt->info[0].rateCode;
1207 	ath_hal_setuptxdesc(ah, ds
1208 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1209 		, sizeof(struct ieee80211_frame)	/* header length */
1210 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1211 		, 0x20				/* txpower XXX */
1212 		, rate, 1			/* series 0 rate/tries */
1213 		, HAL_TXKEYIX_INVALID		/* no encryption */
1214 		, 0				/* antenna mode */
1215 		, HAL_TXDESC_NOACK		/* no ack for beacons */
1216 		, 0				/* rts/cts rate */
1217 		, 0				/* rts/cts duration */
1218 	);
1219 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1220 	/* XXX verify mbuf data area covers this roundup */
1221 	ath_hal_filltxdesc(ah, ds
1222 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1223 		, AH_TRUE				/* first segment */
1224 		, AH_TRUE				/* last segment */
1225 	);
1226 
1227 	return 0;
1228 }
1229 
1230 static void
1231 ath_beacon_proc(void *arg, int pending)
1232 {
1233 	struct ath_softc *sc = arg;
1234 	struct ieee80211com *ic = &sc->sc_ic;
1235 	struct ath_buf *bf = sc->sc_bcbuf;
1236 	struct ath_hal *ah = sc->sc_ah;
1237 
1238 	DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1239 	if (ic->ic_opmode == IEEE80211_M_STA ||
1240 	    bf == NULL || bf->bf_m == NULL) {
1241 		DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1242 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1243 		return;
1244 	}
1245 	/* TODO: update beacon to reflect PS poll state */
1246 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1247 		DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1248 			__func__, sc->sc_bhalq));
1249 		/* NB: the HAL still stops DMA, so proceed */
1250 	}
1251 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1252 
1253 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1254 	ath_hal_txstart(ah, sc->sc_bhalq);
1255 	DPRINTF(ATH_DEBUG_BEACON_PROC,
1256 		("%s: TXDP%u = %p (%p)\n", __func__,
1257 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1258 }
1259 
1260 static void
1261 ath_beacon_free(struct ath_softc *sc)
1262 {
1263 	struct ath_buf *bf = sc->sc_bcbuf;
1264 
1265 	if (bf->bf_m != NULL) {
1266 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1267 		m_freem(bf->bf_m);
1268 		bf->bf_m = NULL;
1269 		bf->bf_node = NULL;
1270 	}
1271 }
1272 
1273 /*
1274  * Configure the beacon and sleep timers.
1275  *
1276  * When operating as an AP this resets the TSF and sets
1277  * up the hardware to notify us when we need to issue beacons.
1278  *
1279  * When operating in station mode this sets up the beacon
1280  * timers according to the timestamp of the last received
1281  * beacon and the current TSF, configures PCF and DTIM
1282  * handling, programs the sleep registers so the hardware
1283  * will wakeup in time to receive beacons, and configures
1284  * the beacon miss handling so we'll receive a BMISS
1285  * interrupt when we stop seeing beacons from the AP
1286  * we've associated with.
1287  */
1288 static void
1289 ath_beacon_config(struct ath_softc *sc)
1290 {
1291 	struct ath_hal *ah = sc->sc_ah;
1292 	struct ieee80211com *ic = &sc->sc_ic;
1293 	struct ieee80211_node *ni = ic->ic_bss;
1294 	u_int32_t nexttbtt;
1295 
1296 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1297 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1298 	DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
1299 	nexttbtt += ni->ni_intval;
1300 	if (ic->ic_opmode == IEEE80211_M_STA) {
1301 		HAL_BEACON_STATE bs;
1302 		u_int32_t bmisstime;
1303 
1304 		/* NB: no PCF support right now */
1305 		memset(&bs, 0, sizeof(bs));
1306 		bs.bs_intval = ni->ni_intval;
1307 		bs.bs_nexttbtt = nexttbtt;
1308 		bs.bs_dtimperiod = bs.bs_intval;
1309 		bs.bs_nextdtim = nexttbtt;
1310 		/*
1311 		 * Calculate the number of consecutive beacons to miss
1312 		 * before taking a BMISS interrupt.  The configuration
1313 		 * is specified in ms, so we need to convert that to
1314 		 * TU's and then calculate based on the beacon interval.
1315 		 * Note that we clamp the result to at most 10 beacons.
1316 		 */
1317 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1318 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1319 		if (bs.bs_bmissthreshold > 10)
1320 			bs.bs_bmissthreshold = 10;
1321 		else if (bs.bs_bmissthreshold <= 0)
1322 			bs.bs_bmissthreshold = 1;
1323 
1324 		/*
1325 		 * Calculate sleep duration.  The configuration is
1326 		 * given in ms.  We insure a multiple of the beacon
1327 		 * period is used.  Also, if the sleep duration is
1328 		 * greater than the DTIM period then it makes senses
1329 		 * to make it a multiple of that.
1330 		 *
1331 		 * XXX fixed at 100ms
1332 		 */
1333 		bs.bs_sleepduration =
1334 			roundup((100 * 1000) / 1024, bs.bs_intval);
1335 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1336 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1337 
1338 		DPRINTF(ATH_DEBUG_BEACON,
1339 			("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1340 			, __func__
1341 			, bs.bs_intval
1342 			, bs.bs_nexttbtt
1343 			, bs.bs_dtimperiod
1344 			, bs.bs_nextdtim
1345 			, bs.bs_bmissthreshold
1346 			, bs.bs_sleepduration
1347 		));
1348 		ath_hal_intrset(ah, 0);
1349 		/*
1350 		 * Reset our tsf so the hardware will update the
1351 		 * tsf register to reflect timestamps found in
1352 		 * received beacons.
1353 		 */
1354 		ath_hal_resettsf(ah);
1355 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1356 		sc->sc_imask |= HAL_INT_BMISS;
1357 		ath_hal_intrset(ah, sc->sc_imask);
1358 	} else {
1359 		DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1360 			__func__, ni->ni_intval, nexttbtt));
1361 		ath_hal_intrset(ah, 0);
1362 		ath_hal_beaconinit(ah, ic->ic_opmode,
1363 			nexttbtt, ni->ni_intval);
1364 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1365 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1366 		ath_hal_intrset(ah, sc->sc_imask);
1367 	}
1368 }
1369 
1370 static void
1371 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1372 {
1373 	bus_addr_t *paddr = (bus_addr_t*) arg;
1374 	*paddr = segs->ds_addr;
1375 }
1376 
1377 static int
1378 ath_desc_alloc(struct ath_softc *sc)
1379 {
1380 	int i, bsize, error;
1381 	struct ath_desc *ds;
1382 	struct ath_buf *bf;
1383 
1384 	/* allocate descriptors */
1385 	sc->sc_desc_len = sizeof(struct ath_desc) *
1386 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1387 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1388 	if (error != 0)
1389 		return error;
1390 
1391 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1392 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1393 	if (error != 0)
1394 		goto fail0;
1395 
1396 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1397 				sc->sc_desc, sc->sc_desc_len,
1398 				ath_load_cb, &sc->sc_desc_paddr,
1399 				BUS_DMA_NOWAIT);
1400 	if (error != 0)
1401 		goto fail1;
1402 
1403 	ds = sc->sc_desc;
1404 	DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
1405 	    __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
1406 	    /*XXX*/ (u_long) sc->sc_desc_len));
1407 
1408 	/* allocate buffers */
1409 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1410 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1411 	if (bf == NULL)
1412 		goto fail2;
1413 	sc->sc_bufptr = bf;
1414 
1415 	TAILQ_INIT(&sc->sc_rxbuf);
1416 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1417 		bf->bf_desc = ds;
1418 		bf->bf_daddr = sc->sc_desc_paddr +
1419 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1420 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1421 					  &bf->bf_dmamap);
1422 		if (error != 0)
1423 			break;
1424 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1425 	}
1426 
1427 	TAILQ_INIT(&sc->sc_txbuf);
1428 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1429 		bf->bf_desc = ds;
1430 		bf->bf_daddr = sc->sc_desc_paddr +
1431 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1432 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1433 					  &bf->bf_dmamap);
1434 		if (error != 0)
1435 			break;
1436 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1437 	}
1438 	TAILQ_INIT(&sc->sc_txq);
1439 
1440 	/* beacon buffer */
1441 	bf->bf_desc = ds;
1442 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1443 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1444 	if (error != 0)
1445 		return error;
1446 	sc->sc_bcbuf = bf;
1447 	return 0;
1448 
1449 fail2:
1450 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1451 fail1:
1452 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1453 fail0:
1454 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1455 	sc->sc_ddmamap = NULL;
1456 	return error;
1457 }
1458 
1459 static void
1460 ath_desc_free(struct ath_softc *sc)
1461 {
1462 	struct ath_buf *bf;
1463 
1464 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1465 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1466 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1467 
1468 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1469 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1470 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1471 		m_freem(bf->bf_m);
1472 	}
1473 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1474 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1475 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1476 		if (bf->bf_m) {
1477 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1478 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1479 			m_freem(bf->bf_m);
1480 			bf->bf_m = NULL;
1481 		}
1482 	}
1483 	if (sc->sc_bcbuf != NULL) {
1484 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1485 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1486 		sc->sc_bcbuf = NULL;
1487 	}
1488 
1489 	TAILQ_INIT(&sc->sc_rxbuf);
1490 	TAILQ_INIT(&sc->sc_txbuf);
1491 	TAILQ_INIT(&sc->sc_txq);
1492 	free(sc->sc_bufptr, M_DEVBUF);
1493 	sc->sc_bufptr = NULL;
1494 }
1495 
1496 static struct ieee80211_node *
1497 ath_node_alloc(struct ieee80211com *ic)
1498 {
1499 	struct ath_node *an =
1500 		malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
1501 	if (an) {
1502 		int i;
1503 		for (i = 0; i < ATH_RHIST_SIZE; i++)
1504 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1505 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1506 		return &an->an_node;
1507 	} else
1508 		return NULL;
1509 }
1510 
1511 static void
1512 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1513 {
1514         struct ath_softc *sc = ic->ic_if.if_softc;
1515 	struct ath_buf *bf;
1516 
1517 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1518 		if (bf->bf_node == ni)
1519 			bf->bf_node = NULL;
1520 	}
1521 	(*sc->sc_node_free)(ic, ni);
1522 }
1523 
1524 static void
1525 ath_node_copy(struct ieee80211com *ic,
1526 	struct ieee80211_node *dst, const struct ieee80211_node *src)
1527 {
1528         struct ath_softc *sc = ic->ic_if.if_softc;
1529 
1530 	memcpy(&dst[1], &src[1],
1531 		sizeof(struct ath_node) - sizeof(struct ieee80211_node));
1532 	(*sc->sc_node_copy)(ic, dst, src);
1533 }
1534 
1535 
1536 static u_int8_t
1537 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
1538 {
1539 	struct ath_node *an = ATH_NODE(ni);
1540 	int i, now, nsamples, rssi;
1541 
1542 	/*
1543 	 * Calculate the average over the last second of sampled data.
1544 	 */
1545 	now = ticks;
1546 	nsamples = 0;
1547 	rssi = 0;
1548 	i = an->an_rx_hist_next;
1549 	do {
1550 		struct ath_recv_hist *rh = &an->an_rx_hist[i];
1551 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
1552 			goto done;
1553 		if (now - rh->arh_ticks > hz)
1554 			goto done;
1555 		rssi += rh->arh_rssi;
1556 		nsamples++;
1557 		if (i == 0)
1558 			i = ATH_RHIST_SIZE-1;
1559 		else
1560 			i--;
1561 	} while (i != an->an_rx_hist_next);
1562 done:
1563 	/*
1564 	 * Return either the average or the last known
1565 	 * value if there is no recent data.
1566 	 */
1567 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
1568 }
1569 
1570 static int
1571 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1572 {
1573 	struct ath_hal *ah = sc->sc_ah;
1574 	int error;
1575 	struct mbuf *m;
1576 	struct ath_desc *ds;
1577 
1578 	m = bf->bf_m;
1579 	if (m == NULL) {
1580 		/*
1581 		 * NB: by assigning a page to the rx dma buffer we
1582 		 * implicitly satisfy the Atheros requirement that
1583 		 * this buffer be cache-line-aligned and sized to be
1584 		 * multiple of the cache line size.  Not doing this
1585 		 * causes weird stuff to happen (for the 5210 at least).
1586 		 */
1587 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1588 		if (m == NULL) {
1589 			DPRINTF(ATH_DEBUG_ANY,
1590 				("%s: no mbuf/cluster\n", __func__));
1591 			sc->sc_stats.ast_rx_nombuf++;
1592 			return ENOMEM;
1593 		}
1594 		bf->bf_m = m;
1595 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1596 
1597 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1598 					     ath_mbuf_load_cb, bf,
1599 					     BUS_DMA_NOWAIT);
1600 		if (error != 0) {
1601 			DPRINTF(ATH_DEBUG_ANY,
1602 				("%s: bus_dmamap_load_mbuf failed; error %d\n",
1603 				__func__, error));
1604 			sc->sc_stats.ast_rx_busdma++;
1605 			return error;
1606 		}
1607 		KASSERT(bf->bf_nseg == 1,
1608 			("ath_rxbuf_init: multi-segment packet; nseg %u",
1609 			bf->bf_nseg));
1610 	}
1611 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
1612 
1613 	/*
1614 	 * Setup descriptors.  For receive we always terminate
1615 	 * the descriptor list with a self-linked entry so we'll
1616 	 * not get overrun under high load (as can happen with a
1617 	 * 5212 when ANI processing enables PHY errors).
1618 	 *
1619 	 * To insure the last descriptor is self-linked we create
1620 	 * each descriptor as self-linked and add it to the end.  As
1621 	 * each additional descriptor is added the previous self-linked
1622 	 * entry is ``fixed'' naturally.  This should be safe even
1623 	 * if DMA is happening.  When processing RX interrupts we
1624 	 * never remove/process the last, self-linked, entry on the
1625 	 * descriptor list.  This insures the hardware always has
1626 	 * someplace to write a new frame.
1627 	 */
1628 	ds = bf->bf_desc;
1629 	ds->ds_link = bf->bf_daddr;	/* link to self */
1630 	ds->ds_data = bf->bf_segs[0].ds_addr;
1631 	ath_hal_setuprxdesc(ah, ds
1632 		, m->m_len		/* buffer size */
1633 		, 0
1634 	);
1635 
1636 	if (sc->sc_rxlink != NULL)
1637 		*sc->sc_rxlink = bf->bf_daddr;
1638 	sc->sc_rxlink = &ds->ds_link;
1639 	return 0;
1640 }
1641 
1642 static void
1643 ath_rx_proc(void *arg, int npending)
1644 {
1645 #define	PA2DESC(_sc, _pa) \
1646 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
1647 		((_pa) - (_sc)->sc_desc_paddr)))
1648 	struct ath_softc *sc = arg;
1649 	struct ath_buf *bf;
1650 	struct ieee80211com *ic = &sc->sc_ic;
1651 	struct ifnet *ifp = &ic->ic_if;
1652 	struct ath_hal *ah = sc->sc_ah;
1653 	struct ath_desc *ds;
1654 	struct mbuf *m;
1655 	struct ieee80211_frame *wh, whbuf;
1656 	struct ieee80211_node *ni;
1657 	struct ath_node *an;
1658 	struct ath_recv_hist *rh;
1659 	int len;
1660 	u_int phyerr;
1661 	HAL_STATUS status;
1662 
1663 	DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
1664 	do {
1665 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1666 		if (bf == NULL) {		/* NB: shouldn't happen */
1667 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
1668 			break;
1669 		}
1670 		ds = bf->bf_desc;
1671 		if (ds->ds_link == bf->bf_daddr) {
1672 			/* NB: never process the self-linked entry at the end */
1673 			break;
1674 		}
1675 		m = bf->bf_m;
1676 		if (m == NULL) {		/* NB: shouldn't happen */
1677 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1678 			continue;
1679 		}
1680 		/* XXX sync descriptor memory */
1681 		/*
1682 		 * Must provide the virtual address of the current
1683 		 * descriptor, the physical address, and the virtual
1684 		 * address of the next descriptor in the h/w chain.
1685 		 * This allows the HAL to look ahead to see if the
1686 		 * hardware is done with a descriptor by checking the
1687 		 * done bit in the following descriptor and the address
1688 		 * of the current descriptor the DMA engine is working
1689 		 * on.  All this is necessary because of our use of
1690 		 * a self-linked list to avoid rx overruns.
1691 		 */
1692 		status = ath_hal_rxprocdesc(ah, ds,
1693 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
1694 #ifdef AR_DEBUG
1695 		if (ath_debug & ATH_DEBUG_RECV_DESC)
1696 			ath_printrxbuf(bf, status == HAL_OK);
1697 #endif
1698 		if (status == HAL_EINPROGRESS)
1699 			break;
1700 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1701 		if (ds->ds_rxstat.rs_status != 0) {
1702 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1703 				sc->sc_stats.ast_rx_crcerr++;
1704 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1705 				sc->sc_stats.ast_rx_fifoerr++;
1706 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1707 				sc->sc_stats.ast_rx_badcrypt++;
1708 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1709 				sc->sc_stats.ast_rx_phyerr++;
1710 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1711 				sc->sc_stats.ast_rx_phy[phyerr]++;
1712 			} else {
1713 				/*
1714 				 * NB: don't count PHY errors as input errors;
1715 				 * we enable them on the 5212 to collect info
1716 				 * about environmental noise and, in that
1717 				 * setting, they don't really reflect tx/rx
1718 				 * errors.
1719 				 */
1720 				ifp->if_ierrors++;
1721 			}
1722 			goto rx_next;
1723 		}
1724 
1725 		len = ds->ds_rxstat.rs_datalen;
1726 		if (len < IEEE80211_MIN_LEN) {
1727 			DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
1728 				__func__, len));
1729 			sc->sc_stats.ast_rx_tooshort++;
1730 			goto rx_next;
1731 		}
1732 
1733 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
1734 		    BUS_DMASYNC_POSTREAD);
1735 
1736 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1737 		bf->bf_m = NULL;
1738 		m->m_pkthdr.rcvif = ifp;
1739 		m->m_pkthdr.len = m->m_len = len;
1740 
1741 		if (sc->sc_drvbpf) {
1742 			sc->sc_rx_th.wr_rate =
1743 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
1744 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
1745 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
1746 			/* XXX TSF */
1747 
1748 			bpf_mtap2(sc->sc_drvbpf,
1749 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
1750 		}
1751 
1752 		m_adj(m, -IEEE80211_CRC_LEN);
1753 		wh = mtod(m, struct ieee80211_frame *);
1754 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1755 			/*
1756 			 * WEP is decrypted by hardware. Clear WEP bit
1757 			 * and trim WEP header for ieee80211_input().
1758 			 */
1759 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1760 			memcpy(&whbuf, wh, sizeof(whbuf));
1761 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1762 			wh = mtod(m, struct ieee80211_frame *);
1763 			memcpy(wh, &whbuf, sizeof(whbuf));
1764 			/*
1765 			 * Also trim WEP ICV from the tail.
1766 			 */
1767 			m_adj(m, -IEEE80211_WEP_CRCLEN);
1768 		}
1769 
1770 		/*
1771 		 * Locate the node for sender, track state, and
1772 		 * then pass this node (referenced) up to the 802.11
1773 		 * layer for its use.  We are required to pass
1774 		 * something so we fall back to ic_bss when this frame
1775 		 * is from an unknown sender.
1776 		 */
1777 		if (ic->ic_opmode != IEEE80211_M_STA) {
1778 			ni = ieee80211_find_node(ic, wh->i_addr2);
1779 			if (ni == NULL)
1780 				ni = ieee80211_ref_node(ic->ic_bss);
1781 		} else
1782 			ni = ieee80211_ref_node(ic->ic_bss);
1783 
1784 		/*
1785 		 * Record driver-specific state.
1786 		 */
1787 		an = ATH_NODE(ni);
1788 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
1789 			an->an_rx_hist_next = 0;
1790 		rh = &an->an_rx_hist[an->an_rx_hist_next];
1791 		rh->arh_ticks = ticks;
1792 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
1793 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
1794 
1795 		/*
1796 		 * Send frame up for processing.
1797 		 */
1798 		ieee80211_input(ifp, m, ni,
1799 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
1800 
1801 		/*
1802 		 * The frame may have caused the node to be marked for
1803 		 * reclamation (e.g. in response to a DEAUTH message)
1804 		 * so use free_node here instead of unref_node.
1805 		 */
1806 		if (ni == ic->ic_bss)
1807 			ieee80211_unref_node(&ni);
1808 		else
1809 			ieee80211_free_node(ic, ni);
1810   rx_next:
1811 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1812 	} while (ath_rxbuf_init(sc, bf) == 0);
1813 
1814 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
1815 	ath_hal_rxena(ah);			/* in case of RXEOL */
1816 #undef PA2DESC
1817 }
1818 
1819 /*
1820  * XXX Size of an ACK control frame in bytes.
1821  */
1822 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
1823 
1824 static int
1825 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
1826     struct mbuf *m0)
1827 {
1828 	struct ieee80211com *ic = &sc->sc_ic;
1829 	struct ath_hal *ah = sc->sc_ah;
1830 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1831 	int i, error, iswep, hdrlen, pktlen;
1832 	u_int8_t rix, cix, txrate, ctsrate;
1833 	struct ath_desc *ds;
1834 	struct mbuf *m;
1835 	struct ieee80211_frame *wh;
1836 	u_int32_t iv;
1837 	u_int8_t *ivp;
1838 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
1839 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
1840 	u_int subtype, flags, ctsduration, antenna;
1841 	HAL_PKT_TYPE atype;
1842 	const HAL_RATE_TABLE *rt;
1843 	HAL_BOOL shortPreamble;
1844 	struct ath_node *an;
1845 
1846 	wh = mtod(m0, struct ieee80211_frame *);
1847 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1848 	hdrlen = sizeof(struct ieee80211_frame);
1849 	pktlen = m0->m_pkthdr.len;
1850 
1851 	if (iswep) {
1852 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
1853 		m_adj(m0, hdrlen);
1854 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
1855 		if (m0 == NULL) {
1856 			sc->sc_stats.ast_tx_nombuf++;
1857 			return ENOMEM;
1858 		}
1859 		ivp = hdrbuf + hdrlen;
1860 		wh = mtod(m0, struct ieee80211_frame *);
1861 		/*
1862 		 * XXX
1863 		 * IV must not duplicate during the lifetime of the key.
1864 		 * But no mechanism to renew keys is defined in IEEE 802.11
1865 		 * WEP.  And IV may be duplicated between other stations
1866 		 * because of the session key itself is shared.
1867 		 * So we use pseudo random IV for now, though it is not the
1868 		 * right way.
1869 		 */
1870                 iv = ic->ic_iv;
1871 		/*
1872 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
1873 		 * (B, 255, N) with 3 <= B < 8
1874 		 */
1875 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1876 			iv += 0x000100;
1877 		ic->ic_iv = iv + 1;
1878 		for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
1879 			ivp[i] = iv;
1880 			iv >>= 8;
1881 		}
1882 		ivp[i] = sc->sc_ic.ic_wep_txkey << 6;	/* Key ID and pad */
1883 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
1884 		/*
1885 		 * The ICV length must be included into hdrlen and pktlen.
1886 		 */
1887 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
1888 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
1889 	}
1890 	pktlen += IEEE80211_CRC_LEN;
1891 
1892 	/*
1893 	 * Load the DMA map so any coalescing is done.  This
1894 	 * also calculates the number of descriptors we need.
1895 	 */
1896 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1897 				     ath_mbuf_load_cb, bf,
1898 				     BUS_DMA_NOWAIT);
1899 	if (error == EFBIG) {
1900 		/* XXX packet requires too many descriptors */
1901 		bf->bf_nseg = ATH_TXDESC+1;
1902 	} else if (error != 0) {
1903 		sc->sc_stats.ast_tx_busdma++;
1904 		m_freem(m0);
1905 		return error;
1906 	}
1907 	/*
1908 	 * Discard null packets and check for packets that
1909 	 * require too many TX descriptors.  We try to convert
1910 	 * the latter to a cluster.
1911 	 */
1912 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
1913 		sc->sc_stats.ast_tx_linear++;
1914 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1915 		if (m == NULL) {
1916 			sc->sc_stats.ast_tx_nombuf++;
1917 			m_freem(m0);
1918 			return ENOMEM;
1919 		}
1920 		M_MOVE_PKTHDR(m, m0);
1921 		MCLGET(m, M_DONTWAIT);
1922 		if ((m->m_flags & M_EXT) == 0) {
1923 			sc->sc_stats.ast_tx_nomcl++;
1924 			m_freem(m0);
1925 			m_free(m);
1926 			return ENOMEM;
1927 		}
1928 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1929 		m_freem(m0);
1930 		m->m_len = m->m_pkthdr.len;
1931 		m0 = m;
1932 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1933 					     ath_mbuf_load_cb, bf,
1934 					     BUS_DMA_NOWAIT);
1935 		if (error != 0) {
1936 			sc->sc_stats.ast_tx_busdma++;
1937 			m_freem(m0);
1938 			return error;
1939 		}
1940 		KASSERT(bf->bf_nseg == 1,
1941 			("ath_tx_start: packet not one segment; nseg %u",
1942 			bf->bf_nseg));
1943 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
1944 		sc->sc_stats.ast_tx_nodata++;
1945 		m_freem(m0);
1946 		return EIO;
1947 	}
1948 	DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
1949 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1950 	bf->bf_m = m0;
1951 	bf->bf_node = ni;			/* NB: held reference */
1952 
1953 	/* setup descriptors */
1954 	ds = bf->bf_desc;
1955 	rt = sc->sc_currates;
1956 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1957 
1958 	/*
1959 	 * Calculate Atheros packet type from IEEE80211 packet header
1960 	 * and setup for rate calculations.
1961 	 */
1962 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
1963 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1964 	case IEEE80211_FC0_TYPE_MGT:
1965 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1966 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1967 			atype = HAL_PKT_TYPE_BEACON;
1968 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1969 			atype = HAL_PKT_TYPE_PROBE_RESP;
1970 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1971 			atype = HAL_PKT_TYPE_ATIM;
1972 		rix = 0;			/* XXX lowest rate */
1973 		break;
1974 	case IEEE80211_FC0_TYPE_CTL:
1975 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1976 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
1977 			atype = HAL_PKT_TYPE_PSPOLL;
1978 		rix = 0;			/* XXX lowest rate */
1979 		break;
1980 	default:
1981 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
1982 				IEEE80211_RATE_VAL];
1983 		if (rix == 0xff) {
1984 			if_printf(ifp, "bogus xmit rate 0x%x\n",
1985 				ni->ni_rates.rs_rates[ni->ni_txrate]);
1986 			sc->sc_stats.ast_tx_badrate++;
1987 			m_freem(m0);
1988 			return EIO;
1989 		}
1990 		break;
1991 	}
1992 	/*
1993 	 * NB: the 802.11 layer marks whether or not we should
1994 	 * use short preamble based on the current mode and
1995 	 * negotiated parameters.
1996 	 */
1997 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1998 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1999 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2000 		shortPreamble = AH_TRUE;
2001 		sc->sc_stats.ast_tx_shortpre++;
2002 	} else {
2003 		txrate = rt->info[rix].rateCode;
2004 		shortPreamble = AH_FALSE;
2005 	}
2006 
2007 	/*
2008 	 * Calculate miscellaneous flags.
2009 	 */
2010 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
2011 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2012 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
2013 		sc->sc_stats.ast_tx_noack++;
2014 	} else if (pktlen > ic->ic_rtsthreshold) {
2015 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
2016 		sc->sc_stats.ast_tx_rts++;
2017 	}
2018 
2019 	/*
2020 	 * Calculate duration.  This logically belongs in the 802.11
2021 	 * layer but it lacks sufficient information to calculate it.
2022 	 */
2023 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
2024 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2025 		u_int16_t dur;
2026 		/*
2027 		 * XXX not right with fragmentation.
2028 		 */
2029 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2030 				rix, shortPreamble);
2031 		*((u_int16_t*) wh->i_dur) = htole16(dur);
2032 	}
2033 
2034 	/*
2035 	 * Calculate RTS/CTS rate and duration if needed.
2036 	 */
2037 	ctsduration = 0;
2038 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2039 		/*
2040 		 * CTS transmit rate is derived from the transmit rate
2041 		 * by looking in the h/w rate table.  We must also factor
2042 		 * in whether or not a short preamble is to be used.
2043 		 */
2044 		cix = rt->info[rix].controlRate;
2045 		ctsrate = rt->info[cix].rateCode;
2046 		if (shortPreamble)
2047 			ctsrate |= rt->info[cix].shortPreamble;
2048 		/*
2049 		 * Compute the transmit duration based on the size
2050 		 * of an ACK frame.  We call into the HAL to do the
2051 		 * computation since it depends on the characteristics
2052 		 * of the actual PHY being used.
2053 		 */
2054 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
2055 			ctsduration += ath_hal_computetxtime(ah,
2056 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2057 		}
2058 		/* SIFS + data */
2059 		ctsduration += ath_hal_computetxtime(ah,
2060 			rt, pktlen, rix, shortPreamble);
2061 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
2062 			ctsduration += ath_hal_computetxtime(ah,
2063 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2064 		}
2065 	} else
2066 		ctsrate = 0;
2067 
2068 	/*
2069 	 * For now use the antenna on which the last good
2070 	 * frame was received on.  We assume this field is
2071 	 * initialized to 0 which gives us ``auto'' or the
2072 	 * ``default'' antenna.
2073 	 */
2074 	an = (struct ath_node *) ni;
2075 	if (an->an_tx_antenna)
2076 		antenna = an->an_tx_antenna;
2077 	else
2078 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2079 
2080 	if (ic->ic_rawbpf)
2081 		bpf_mtap(ic->ic_rawbpf, m0);
2082 	if (sc->sc_drvbpf) {
2083 		sc->sc_tx_th.wt_flags = 0;
2084 		if (shortPreamble)
2085 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2086 		if (iswep)
2087 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2088 		sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2089 		sc->sc_tx_th.wt_txpower = 60/2;		/* XXX */
2090 		sc->sc_tx_th.wt_antenna = antenna;
2091 
2092 		bpf_mtap2(sc->sc_drvbpf,
2093 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
2094 	}
2095 
2096 	/*
2097 	 * Formulate first tx descriptor with tx controls.
2098 	 */
2099 	/* XXX check return value? */
2100 	ath_hal_setuptxdesc(ah, ds
2101 		, pktlen		/* packet length */
2102 		, hdrlen		/* header length */
2103 		, atype			/* Atheros packet type */
2104 		, 60			/* txpower XXX */
2105 		, txrate, 1+10		/* series 0 rate/tries */
2106 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2107 		, antenna		/* antenna mode */
2108 		, flags			/* flags */
2109 		, ctsrate		/* rts/cts rate */
2110 		, ctsduration		/* rts/cts duration */
2111 	);
2112 #ifdef notyet
2113 	ath_hal_setupxtxdesc(ah, ds
2114 		, AH_FALSE		/* short preamble */
2115 		, 0, 0			/* series 1 rate/tries */
2116 		, 0, 0			/* series 2 rate/tries */
2117 		, 0, 0			/* series 3 rate/tries */
2118 	);
2119 #endif
2120 	/*
2121 	 * Fillin the remainder of the descriptor info.
2122 	 */
2123 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2124 		ds->ds_data = bf->bf_segs[i].ds_addr;
2125 		if (i == bf->bf_nseg - 1)
2126 			ds->ds_link = 0;
2127 		else
2128 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2129 		ath_hal_filltxdesc(ah, ds
2130 			, bf->bf_segs[i].ds_len	/* segment length */
2131 			, i == 0		/* first segment */
2132 			, i == bf->bf_nseg - 1	/* last segment */
2133 		);
2134 		DPRINTF(ATH_DEBUG_XMIT,
2135 			("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2136 			__func__, i, ds->ds_link, ds->ds_data,
2137 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2138 	}
2139 
2140 	/*
2141 	 * Insert the frame on the outbound list and
2142 	 * pass it on to the hardware.
2143 	 */
2144 	ATH_TXQ_LOCK(sc);
2145 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2146 	if (sc->sc_txlink == NULL) {
2147 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2148 		DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2149 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2150 	} else {
2151 		*sc->sc_txlink = bf->bf_daddr;
2152 		DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2153 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2154 	}
2155 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2156 	ATH_TXQ_UNLOCK(sc);
2157 
2158 	ath_hal_txstart(ah, sc->sc_txhalq);
2159 	return 0;
2160 }
2161 
2162 static void
2163 ath_tx_proc(void *arg, int npending)
2164 {
2165 	struct ath_softc *sc = arg;
2166 	struct ath_hal *ah = sc->sc_ah;
2167 	struct ath_buf *bf;
2168 	struct ieee80211com *ic = &sc->sc_ic;
2169 	struct ifnet *ifp = &ic->ic_if;
2170 	struct ath_desc *ds;
2171 	struct ieee80211_node *ni;
2172 	struct ath_node *an;
2173 	int sr, lr;
2174 	HAL_STATUS status;
2175 
2176 	DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
2177 		__func__, npending,
2178 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2179 		sc->sc_txlink));
2180 	for (;;) {
2181 		ATH_TXQ_LOCK(sc);
2182 		bf = TAILQ_FIRST(&sc->sc_txq);
2183 		if (bf == NULL) {
2184 			sc->sc_txlink = NULL;
2185 			ATH_TXQ_UNLOCK(sc);
2186 			break;
2187 		}
2188 		/* only the last descriptor is needed */
2189 		ds = &bf->bf_desc[bf->bf_nseg - 1];
2190 		status = ath_hal_txprocdesc(ah, ds);
2191 #ifdef AR_DEBUG
2192 		if (ath_debug & ATH_DEBUG_XMIT_DESC)
2193 			ath_printtxbuf(bf, status == HAL_OK);
2194 #endif
2195 		if (status == HAL_EINPROGRESS) {
2196 			ATH_TXQ_UNLOCK(sc);
2197 			break;
2198 		}
2199 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2200 		ATH_TXQ_UNLOCK(sc);
2201 
2202 		ni = bf->bf_node;
2203 		if (ni != NULL) {
2204 			an = (struct ath_node *) ni;
2205 			if (ds->ds_txstat.ts_status == 0) {
2206 				an->an_tx_ok++;
2207 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2208 			} else {
2209 				an->an_tx_err++;
2210 				ifp->if_oerrors++;
2211 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2212 					sc->sc_stats.ast_tx_xretries++;
2213 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2214 					sc->sc_stats.ast_tx_fifoerr++;
2215 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2216 					sc->sc_stats.ast_tx_filtered++;
2217 				an->an_tx_antenna = 0;	/* invalidate */
2218 			}
2219 			sr = ds->ds_txstat.ts_shortretry;
2220 			lr = ds->ds_txstat.ts_longretry;
2221 			sc->sc_stats.ast_tx_shortretry += sr;
2222 			sc->sc_stats.ast_tx_longretry += lr;
2223 			if (sr + lr)
2224 				an->an_tx_retr++;
2225 			/*
2226 			 * Reclaim reference to node.
2227 			 *
2228 			 * NB: the node may be reclaimed here if, for example
2229 			 *     this is a DEAUTH message that was sent and the
2230 			 *     node was timed out due to inactivity.
2231 			 */
2232 			if (ni != ic->ic_bss)
2233 				ieee80211_free_node(ic, ni);
2234 		}
2235 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2236 		    BUS_DMASYNC_POSTWRITE);
2237 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2238 		m_freem(bf->bf_m);
2239 		bf->bf_m = NULL;
2240 		bf->bf_node = NULL;
2241 
2242 		ATH_TXBUF_LOCK(sc);
2243 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2244 		ATH_TXBUF_UNLOCK(sc);
2245 	}
2246 	ifp->if_flags &= ~IFF_OACTIVE;
2247 	sc->sc_tx_timer = 0;
2248 
2249 	ath_start(ifp);
2250 }
2251 
2252 /*
2253  * Drain the transmit queue and reclaim resources.
2254  */
2255 static void
2256 ath_draintxq(struct ath_softc *sc)
2257 {
2258 	struct ath_hal *ah = sc->sc_ah;
2259 	struct ieee80211com *ic = &sc->sc_ic;
2260 	struct ifnet *ifp = &ic->ic_if;
2261 	struct ieee80211_node *ni;
2262 	struct ath_buf *bf;
2263 
2264 	/* XXX return value */
2265 	if (!sc->sc_invalid) {
2266 		/* don't touch the hardware if marked invalid */
2267 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2268 		DPRINTF(ATH_DEBUG_RESET,
2269 		    ("%s: tx queue %p, link %p\n", __func__,
2270 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2271 		    sc->sc_txlink));
2272 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2273 		DPRINTF(ATH_DEBUG_RESET,
2274 		    ("%s: beacon queue %p\n", __func__,
2275 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2276 	}
2277 	for (;;) {
2278 		ATH_TXQ_LOCK(sc);
2279 		bf = TAILQ_FIRST(&sc->sc_txq);
2280 		if (bf == NULL) {
2281 			sc->sc_txlink = NULL;
2282 			ATH_TXQ_UNLOCK(sc);
2283 			break;
2284 		}
2285 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2286 		ATH_TXQ_UNLOCK(sc);
2287 #ifdef AR_DEBUG
2288 		if (ath_debug & ATH_DEBUG_RESET)
2289 			ath_printtxbuf(bf,
2290 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2291 #endif /* AR_DEBUG */
2292 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2293 		m_freem(bf->bf_m);
2294 		bf->bf_m = NULL;
2295 		ni = bf->bf_node;
2296 		bf->bf_node = NULL;
2297 		if (ni != NULL && ni != ic->ic_bss) {
2298 			/*
2299 			 * Reclaim node reference.
2300 			 */
2301 			ieee80211_free_node(ic, ni);
2302 		}
2303 		ATH_TXBUF_LOCK(sc);
2304 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2305 		ATH_TXBUF_UNLOCK(sc);
2306 	}
2307 	ifp->if_flags &= ~IFF_OACTIVE;
2308 	sc->sc_tx_timer = 0;
2309 }
2310 
2311 /*
2312  * Disable the receive h/w in preparation for a reset.
2313  */
2314 static void
2315 ath_stoprecv(struct ath_softc *sc)
2316 {
2317 #define	PA2DESC(_sc, _pa) \
2318 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2319 		((_pa) - (_sc)->sc_desc_paddr)))
2320 	struct ath_hal *ah = sc->sc_ah;
2321 
2322 	ath_hal_stoppcurecv(ah);	/* disable PCU */
2323 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
2324 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
2325 	DELAY(3000);			/* long enough for 1 frame */
2326 #ifdef AR_DEBUG
2327 	if (ath_debug & ATH_DEBUG_RESET) {
2328 		struct ath_buf *bf;
2329 
2330 		printf("%s: rx queue %p, link %p\n", __func__,
2331 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
2332 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2333 			struct ath_desc *ds = bf->bf_desc;
2334 			if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2335 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
2336 				ath_printrxbuf(bf, 1);
2337 		}
2338 	}
2339 #endif
2340 	sc->sc_rxlink = NULL;		/* just in case */
2341 #undef PA2DESC
2342 }
2343 
2344 /*
2345  * Enable the receive h/w following a reset.
2346  */
2347 static int
2348 ath_startrecv(struct ath_softc *sc)
2349 {
2350 	struct ath_hal *ah = sc->sc_ah;
2351 	struct ath_buf *bf;
2352 
2353 	sc->sc_rxlink = NULL;
2354 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2355 		int error = ath_rxbuf_init(sc, bf);
2356 		if (error != 0) {
2357 			DPRINTF(ATH_DEBUG_RECV,
2358 				("%s: ath_rxbuf_init failed %d\n",
2359 				__func__, error));
2360 			return error;
2361 		}
2362 	}
2363 
2364 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
2365 	ath_hal_putrxbuf(ah, bf->bf_daddr);
2366 	ath_hal_rxena(ah);		/* enable recv descriptors */
2367 	ath_mode_init(sc);		/* set filters, etc. */
2368 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
2369 	return 0;
2370 }
2371 
2372 /*
2373  * Set/change channels.  If the channel is really being changed,
2374  * it's done by resetting the chip.  To accomplish this we must
2375  * first cleanup any pending DMA, then restart stuff after a la
2376  * ath_init.
2377  */
2378 static int
2379 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2380 {
2381 	struct ath_hal *ah = sc->sc_ah;
2382 	struct ieee80211com *ic = &sc->sc_ic;
2383 
2384 	DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
2385 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2386 		ic->ic_ibss_chan->ic_freq,
2387 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2388 	if (chan != ic->ic_ibss_chan) {
2389 		HAL_STATUS status;
2390 		HAL_CHANNEL hchan;
2391 		enum ieee80211_phymode mode;
2392 
2393 		/*
2394 		 * To switch channels clear any pending DMA operations;
2395 		 * wait long enough for the RX fifo to drain, reset the
2396 		 * hardware at the new frequency, and then re-enable
2397 		 * the relevant bits of the h/w.
2398 		 */
2399 		ath_hal_intrset(ah, 0);		/* disable interrupts */
2400 		ath_draintxq(sc);		/* clear pending tx frames */
2401 		ath_stoprecv(sc);		/* turn off frame recv */
2402 		/*
2403 		 * Convert to a HAL channel description with
2404 		 * the flags constrained to reflect the current
2405 		 * operating mode.
2406 		 */
2407 		hchan.channel = chan->ic_freq;
2408 		hchan.channelFlags = ath_chan2flags(ic, chan);
2409 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2410 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2411 				"channel %u (%u Mhz)\n",
2412 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2413 			return EIO;
2414 		}
2415 		/*
2416 		 * Re-enable rx framework.
2417 		 */
2418 		if (ath_startrecv(sc) != 0) {
2419 			if_printf(&ic->ic_if,
2420 				"ath_chan_set: unable to restart recv logic\n");
2421 			return EIO;
2422 		}
2423 
2424 		/*
2425 		 * Update BPF state.
2426 		 */
2427 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2428 			htole16(chan->ic_freq);
2429 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2430 			htole16(chan->ic_flags);
2431 
2432 		/*
2433 		 * Change channels and update the h/w rate map
2434 		 * if we're switching; e.g. 11a to 11b/g.
2435 		 */
2436 		ic->ic_ibss_chan = chan;
2437 		mode = ieee80211_chan2mode(ic, chan);
2438 		if (mode != sc->sc_curmode)
2439 			ath_setcurmode(sc, mode);
2440 
2441 		/*
2442 		 * Re-enable interrupts.
2443 		 */
2444 		ath_hal_intrset(ah, sc->sc_imask);
2445 	}
2446 	return 0;
2447 }
2448 
2449 static void
2450 ath_next_scan(void *arg)
2451 {
2452 	struct ath_softc *sc = arg;
2453 	struct ieee80211com *ic = &sc->sc_ic;
2454 	struct ifnet *ifp = &ic->ic_if;
2455 
2456 	if (ic->ic_state == IEEE80211_S_SCAN)
2457 		ieee80211_next_scan(ifp);
2458 }
2459 
2460 /*
2461  * Periodically recalibrate the PHY to account
2462  * for temperature/environment changes.
2463  */
2464 static void
2465 ath_calibrate(void *arg)
2466 {
2467 	struct ath_softc *sc = arg;
2468 	struct ath_hal *ah = sc->sc_ah;
2469 	struct ieee80211com *ic = &sc->sc_ic;
2470 	struct ieee80211_channel *c;
2471 	HAL_CHANNEL hchan;
2472 
2473 	sc->sc_stats.ast_per_cal++;
2474 
2475 	/*
2476 	 * Convert to a HAL channel description with the flags
2477 	 * constrained to reflect the current operating mode.
2478 	 */
2479 	c = ic->ic_ibss_chan;
2480 	hchan.channel = c->ic_freq;
2481 	hchan.channelFlags = ath_chan2flags(ic, c);
2482 
2483 	DPRINTF(ATH_DEBUG_CALIBRATE,
2484 		("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2485 
2486 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2487 		/*
2488 		 * Rfgain is out of bounds, reset the chip
2489 		 * to load new gain values.
2490 		 */
2491 		sc->sc_stats.ast_per_rfgain++;
2492 		ath_reset(sc);
2493 	}
2494 	if (!ath_hal_calibrate(ah, &hchan)) {
2495 		DPRINTF(ATH_DEBUG_ANY,
2496 			("%s: calibration of channel %u failed\n",
2497 			__func__, c->ic_freq));
2498 		sc->sc_stats.ast_per_calfail++;
2499 	}
2500 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2501 }
2502 
2503 static int
2504 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2505 {
2506 	struct ifnet *ifp = &ic->ic_if;
2507 	struct ath_softc *sc = ifp->if_softc;
2508 	struct ath_hal *ah = sc->sc_ah;
2509 	struct ieee80211_node *ni;
2510 	int i, error;
2511 	const u_int8_t *bssid;
2512 	u_int32_t rfilt;
2513 	static const HAL_LED_STATE leds[] = {
2514 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
2515 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
2516 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
2517 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
2518 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
2519 	};
2520 
2521 	DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
2522 		ieee80211_state_name[ic->ic_state],
2523 		ieee80211_state_name[nstate]));
2524 
2525 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
2526 
2527 	if (nstate == IEEE80211_S_INIT) {
2528 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2529 		ath_hal_intrset(ah, sc->sc_imask);
2530 		callout_stop(&sc->sc_scan_ch);
2531 		callout_stop(&sc->sc_cal_ch);
2532 		return (*sc->sc_newstate)(ic, nstate, arg);
2533 	}
2534 	ni = ic->ic_bss;
2535 	error = ath_chan_set(sc, ni->ni_chan);
2536 	if (error != 0)
2537 		goto bad;
2538 	rfilt = ath_calcrxfilter(sc);
2539 	if (nstate == IEEE80211_S_SCAN) {
2540 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2541 			ath_next_scan, sc);
2542 		bssid = ifp->if_broadcastaddr;
2543 	} else {
2544 		callout_stop(&sc->sc_scan_ch);
2545 		bssid = ni->ni_bssid;
2546 	}
2547 	ath_hal_setrxfilter(ah, rfilt);
2548 	DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
2549 		 __func__, rfilt, ether_sprintf(bssid)));
2550 
2551 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2552 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
2553 	else
2554 		ath_hal_setassocid(ah, bssid, 0);
2555 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2556 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2557 			if (ath_hal_keyisvalid(ah, i))
2558 				ath_hal_keysetmac(ah, i, bssid);
2559 	}
2560 
2561 	if (nstate == IEEE80211_S_RUN) {
2562 		DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2563 			"capinfo=0x%04x chan=%d\n"
2564 			 , __func__
2565 			 , ic->ic_flags
2566 			 , ni->ni_intval
2567 			 , ether_sprintf(ni->ni_bssid)
2568 			 , ni->ni_capinfo
2569 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2570 
2571 		/*
2572 		 * Allocate and setup the beacon frame for AP or adhoc mode.
2573 		 */
2574 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2575 		    ic->ic_opmode == IEEE80211_M_IBSS) {
2576 			error = ath_beacon_alloc(sc, ni);
2577 			if (error != 0)
2578 				goto bad;
2579 		}
2580 
2581 		/*
2582 		 * Configure the beacon and sleep timers.
2583 		 */
2584 		ath_beacon_config(sc);
2585 
2586 		/* start periodic recalibration timer */
2587 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2588 			ath_calibrate, sc);
2589 	} else {
2590 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2591 		ath_hal_intrset(ah, sc->sc_imask);
2592 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
2593 	}
2594 	/*
2595 	 * Reset the rate control state.
2596 	 */
2597 	ath_rate_ctl_reset(sc, nstate);
2598 	/*
2599 	 * Invoke the parent method to complete the work.
2600 	 */
2601 	return (*sc->sc_newstate)(ic, nstate, arg);
2602 bad:
2603 	callout_stop(&sc->sc_scan_ch);
2604 	callout_stop(&sc->sc_cal_ch);
2605 	/* NB: do not invoke the parent */
2606 	return error;
2607 }
2608 
2609 /*
2610  * Setup driver-specific state for a newly associated node.
2611  * Note that we're called also on a re-associate, the isnew
2612  * param tells us if this is the first time or not.
2613  */
2614 static void
2615 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2616 {
2617 	if (isnew) {
2618 		struct ath_node *an = (struct ath_node *) ni;
2619 
2620 		an->an_tx_ok = an->an_tx_err =
2621 			an->an_tx_retr = an->an_tx_upper = 0;
2622 		/* start with highest negotiated rate */
2623 		/*
2624 		 * XXX should do otherwise but only when
2625 		 * the rate control algorithm is better.
2626 		 */
2627 		KASSERT(ni->ni_rates.rs_nrates > 0,
2628 			("new association w/ no rates!"));
2629 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2630 	}
2631 }
2632 
2633 static int
2634 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2635 {
2636 	struct ieee80211com *ic = &sc->sc_ic;
2637 	struct ifnet *ifp = &ic->ic_if;
2638 	struct ath_hal *ah = sc->sc_ah;
2639 	HAL_CHANNEL *chans;
2640 	int i, ix, nchan;
2641 
2642 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2643 			M_TEMP, M_NOWAIT);
2644 	if (chans == NULL) {
2645 		if_printf(ifp, "unable to allocate channel table\n");
2646 		return ENOMEM;
2647 	}
2648 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2649 	    cc, HAL_MODE_ALL, outdoor)) {
2650 		if_printf(ifp, "unable to collect channel list from hal\n");
2651 		free(chans, M_TEMP);
2652 		return EINVAL;
2653 	}
2654 
2655 	/*
2656 	 * Convert HAL channels to ieee80211 ones and insert
2657 	 * them in the table according to their channel number.
2658 	 */
2659 	for (i = 0; i < nchan; i++) {
2660 		HAL_CHANNEL *c = &chans[i];
2661 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2662 		if (ix > IEEE80211_CHAN_MAX) {
2663 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2664 				ix, c->channel, c->channelFlags);
2665 			continue;
2666 		}
2667 		/* NB: flags are known to be compatible */
2668 		if (ic->ic_channels[ix].ic_freq == 0) {
2669 			ic->ic_channels[ix].ic_freq = c->channel;
2670 			ic->ic_channels[ix].ic_flags = c->channelFlags;
2671 		} else {
2672 			/* channels overlap; e.g. 11g and 11b */
2673 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
2674 		}
2675 	}
2676 	free(chans, M_TEMP);
2677 	return 0;
2678 }
2679 
2680 static int
2681 ath_rate_setup(struct ath_softc *sc, u_int mode)
2682 {
2683 	struct ath_hal *ah = sc->sc_ah;
2684 	struct ieee80211com *ic = &sc->sc_ic;
2685 	const HAL_RATE_TABLE *rt;
2686 	struct ieee80211_rateset *rs;
2687 	int i, maxrates;
2688 
2689 	switch (mode) {
2690 	case IEEE80211_MODE_11A:
2691 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2692 		break;
2693 	case IEEE80211_MODE_11B:
2694 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2695 		break;
2696 	case IEEE80211_MODE_11G:
2697 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2698 		break;
2699 	case IEEE80211_MODE_TURBO:
2700 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2701 		break;
2702 	default:
2703 		DPRINTF(ATH_DEBUG_ANY,
2704 			("%s: invalid mode %u\n", __func__, mode));
2705 		return 0;
2706 	}
2707 	rt = sc->sc_rates[mode];
2708 	if (rt == NULL)
2709 		return 0;
2710 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2711 		DPRINTF(ATH_DEBUG_ANY,
2712 			("%s: rate table too small (%u > %u)\n",
2713 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2714 		maxrates = IEEE80211_RATE_MAXSIZE;
2715 	} else
2716 		maxrates = rt->rateCount;
2717 	rs = &ic->ic_sup_rates[mode];
2718 	for (i = 0; i < maxrates; i++)
2719 		rs->rs_rates[i] = rt->info[i].dot11Rate;
2720 	rs->rs_nrates = maxrates;
2721 	return 1;
2722 }
2723 
2724 static void
2725 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2726 {
2727 	const HAL_RATE_TABLE *rt;
2728 	int i;
2729 
2730 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2731 	rt = sc->sc_rates[mode];
2732 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2733 	for (i = 0; i < rt->rateCount; i++)
2734 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2735 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2736 	for (i = 0; i < 32; i++)
2737 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2738 	sc->sc_currates = rt;
2739 	sc->sc_curmode = mode;
2740 }
2741 
2742 /*
2743  * Reset the rate control state for each 802.11 state transition.
2744  */
2745 static void
2746 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2747 {
2748 	struct ieee80211com *ic = &sc->sc_ic;
2749 	struct ieee80211_node *ni;
2750 	struct ath_node *an;
2751 
2752 	if (ic->ic_opmode != IEEE80211_M_STA) {
2753 		/*
2754 		 * When operating as a station the node table holds
2755 		 * the AP's that were discovered during scanning.
2756 		 * For any other operating mode we want to reset the
2757 		 * tx rate state of each node.
2758 		 */
2759 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
2760 			ni->ni_txrate = 0;		/* use lowest rate */
2761 			an = (struct ath_node *) ni;
2762 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
2763 			    an->an_tx_upper = 0;
2764 		}
2765 	}
2766 	/*
2767 	 * Reset local xmit state; this is really only meaningful
2768 	 * when operating in station or adhoc mode.
2769 	 */
2770 	ni = ic->ic_bss;
2771 	an = (struct ath_node *) ni;
2772 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
2773 	if (state == IEEE80211_S_RUN) {
2774 		/* start with highest negotiated rate */
2775 		KASSERT(ni->ni_rates.rs_nrates > 0,
2776 			("transition to RUN state w/ no rates!"));
2777 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2778 	} else {
2779 		/* use lowest rate */
2780 		ni->ni_txrate = 0;
2781 	}
2782 }
2783 
2784 /*
2785  * Examine and potentially adjust the transmit rate.
2786  */
2787 static void
2788 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
2789 {
2790 	struct ath_softc *sc = arg;
2791 	struct ath_node *an = (struct ath_node *) ni;
2792 	struct ieee80211_rateset *rs = &ni->ni_rates;
2793 	int mod = 0, orate, enough;
2794 
2795 	/*
2796 	 * Rate control
2797 	 * XXX: very primitive version.
2798 	 */
2799 	sc->sc_stats.ast_rate_calls++;
2800 
2801 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
2802 
2803 	/* no packet reached -> down */
2804 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
2805 		mod = -1;
2806 
2807 	/* all packets needs retry in average -> down */
2808 	if (enough && an->an_tx_ok < an->an_tx_retr)
2809 		mod = -1;
2810 
2811 	/* no error and less than 10% of packets needs retry -> up */
2812 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
2813 		mod = 1;
2814 
2815 	orate = ni->ni_txrate;
2816 	switch (mod) {
2817 	case 0:
2818 		if (enough && an->an_tx_upper > 0)
2819 			an->an_tx_upper--;
2820 		break;
2821 	case -1:
2822 		if (ni->ni_txrate > 0) {
2823 			ni->ni_txrate--;
2824 			sc->sc_stats.ast_rate_drop++;
2825 		}
2826 		an->an_tx_upper = 0;
2827 		break;
2828 	case 1:
2829 		if (++an->an_tx_upper < 2)
2830 			break;
2831 		an->an_tx_upper = 0;
2832 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
2833 			ni->ni_txrate++;
2834 			sc->sc_stats.ast_rate_raise++;
2835 		}
2836 		break;
2837 	}
2838 
2839 	if (ni->ni_txrate != orate) {
2840 		DPRINTF(ATH_DEBUG_RATE,
2841 		    ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
2842 		    __func__,
2843 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
2844 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
2845 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
2846 	}
2847 	if (ni->ni_txrate != orate || enough)
2848 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2849 }
2850 
2851 #ifdef AR_DEBUG
2852 static int
2853 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
2854 {
2855 	char dmode[64];
2856 	int error;
2857 
2858 	strncpy(dmode, "", sizeof(dmode) - 1);
2859 	dmode[sizeof(dmode) - 1] = '\0';
2860 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2861 
2862 	if (error == 0 && req->newptr != NULL) {
2863 		struct ifnet *ifp;
2864 		struct ath_softc *sc;
2865 
2866 		ifp = ifunit("ath0");		/* XXX */
2867 		if (!ifp)
2868 			return EINVAL;
2869 		sc = ifp->if_softc;
2870 		if (strcmp(dmode, "hal") == 0)
2871 			ath_hal_dumpstate(sc->sc_ah);
2872 		else
2873 			return EINVAL;
2874 	}
2875 	return error;
2876 }
2877 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2878 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
2879 
2880 static void
2881 ath_printrxbuf(struct ath_buf *bf, int done)
2882 {
2883 	struct ath_desc *ds;
2884 	int i;
2885 
2886 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2887 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
2888 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2889 		    ds->ds_link, ds->ds_data,
2890 		    ds->ds_ctl0, ds->ds_ctl1,
2891 		    ds->ds_hw[0], ds->ds_hw[1],
2892 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
2893 	}
2894 }
2895 
2896 static void
2897 ath_printtxbuf(struct ath_buf *bf, int done)
2898 {
2899 	struct ath_desc *ds;
2900 	int i;
2901 
2902 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2903 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
2904 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2905 		    ds->ds_link, ds->ds_data,
2906 		    ds->ds_ctl0, ds->ds_ctl1,
2907 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
2908 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
2909 	}
2910 }
2911 #endif /* AR_DEBUG */
2912