1 /*- 2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 3. Neither the names of the above-listed copyright holders nor the names 16 * of any contributors may be used to endorse or promote products derived 17 * from this software without specific prior written permission. 18 * 19 * Alternatively, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") version 2 as published by the Free 21 * Software Foundation. 22 * 23 * NO WARRANTY 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 34 * THE POSSIBILITY OF SUCH DAMAGES. 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /* 41 * Driver for the Atheros Wireless LAN controller. 42 * 43 * This software is derived from work of Atsushi Onoe; his contribution 44 * is greatly appreciated. 45 */ 46 47 #include "opt_inet.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/sysctl.h> 52 #include <sys/mbuf.h> 53 #include <sys/malloc.h> 54 #include <sys/lock.h> 55 #include <sys/mutex.h> 56 #include <sys/kernel.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/errno.h> 60 #include <sys/callout.h> 61 #include <sys/bus.h> 62 #include <sys/endian.h> 63 64 #include <machine/bus.h> 65 66 #include <net/if.h> 67 #include <net/if_dl.h> 68 #include <net/if_media.h> 69 #include <net/if_arp.h> 70 #include <net/ethernet.h> 71 #include <net/if_llc.h> 72 73 #include <net80211/ieee80211_var.h> 74 75 #include <net/bpf.h> 76 77 #ifdef INET 78 #include <netinet/in.h> 79 #include <netinet/if_ether.h> 80 #endif 81 82 #define AR_DEBUG 83 #include <dev/ath/if_athvar.h> 84 #include <contrib/dev/ath/ah_desc.h> 85 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */ 86 87 /* unalligned little endian access */ 88 #define LE_READ_2(p) \ 89 ((u_int16_t) \ 90 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 91 #define LE_READ_4(p) \ 92 ((u_int32_t) \ 93 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 94 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 95 96 enum { 97 ATH_LED_TX, 98 ATH_LED_RX, 99 ATH_LED_POLL, 100 }; 101 102 static void ath_init(void *); 103 static void ath_stop_locked(struct ifnet *); 104 static void ath_stop(struct ifnet *); 105 static void ath_start(struct ifnet *); 106 static int ath_reset(struct ifnet *); 107 static int ath_media_change(struct ifnet *); 108 static void ath_watchdog(struct ifnet *); 109 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 110 static void ath_fatal_proc(void *, int); 111 static void ath_rxorn_proc(void *, int); 112 static void ath_bmiss_proc(void *, int); 113 static void ath_initkeytable(struct ath_softc *); 114 static int ath_key_alloc(struct ieee80211com *, 115 const struct ieee80211_key *); 116 static int ath_key_delete(struct ieee80211com *, 117 const struct ieee80211_key *); 118 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 119 const u_int8_t mac[IEEE80211_ADDR_LEN]); 120 static void ath_key_update_begin(struct ieee80211com *); 121 static void ath_key_update_end(struct ieee80211com *); 122 static void ath_mode_init(struct ath_softc *); 123 static void ath_setslottime(struct ath_softc *); 124 static void ath_updateslot(struct ifnet *); 125 static int ath_beaconq_setup(struct ath_hal *); 126 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 127 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 128 static void ath_beacon_proc(void *, int); 129 static void ath_bstuck_proc(void *, int); 130 static void ath_beacon_free(struct ath_softc *); 131 static void ath_beacon_config(struct ath_softc *); 132 static void ath_descdma_cleanup(struct ath_softc *sc, 133 struct ath_descdma *, ath_bufhead *); 134 static int ath_desc_alloc(struct ath_softc *); 135 static void ath_desc_free(struct ath_softc *); 136 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 137 static void ath_node_free(struct ieee80211_node *); 138 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 139 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 140 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 141 struct ieee80211_node *ni, 142 int subtype, int rssi, u_int32_t rstamp); 143 static void ath_setdefantenna(struct ath_softc *, u_int); 144 static void ath_rx_proc(void *, int); 145 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 146 static int ath_tx_setup(struct ath_softc *, int, int); 147 static int ath_wme_update(struct ieee80211com *); 148 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 149 static void ath_tx_cleanup(struct ath_softc *); 150 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 151 struct ath_buf *, struct mbuf *); 152 static void ath_tx_proc_q0(void *, int); 153 static void ath_tx_proc_q0123(void *, int); 154 static void ath_tx_proc(void *, int); 155 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 156 static void ath_draintxq(struct ath_softc *); 157 static void ath_stoprecv(struct ath_softc *); 158 static int ath_startrecv(struct ath_softc *); 159 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 160 static void ath_next_scan(void *); 161 static void ath_calibrate(void *); 162 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 163 static void ath_newassoc(struct ieee80211com *, 164 struct ieee80211_node *, int); 165 static int ath_getchannels(struct ath_softc *, u_int cc, 166 HAL_BOOL outdoor, HAL_BOOL xchanmode); 167 static void ath_led_event(struct ath_softc *, int); 168 static void ath_update_txpow(struct ath_softc *); 169 170 static int ath_rate_setup(struct ath_softc *, u_int mode); 171 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 172 173 static void ath_sysctlattach(struct ath_softc *); 174 static void ath_bpfattach(struct ath_softc *); 175 static void ath_announce(struct ath_softc *); 176 177 SYSCTL_DECL(_hw_ath); 178 179 /* XXX validate sysctl values */ 180 static int ath_dwelltime = 200; /* 5 channels/second */ 181 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime, 182 0, "channel dwell time (ms) for AP/station scanning"); 183 static int ath_calinterval = 30; /* calibrate every 30 secs */ 184 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 185 0, "chip calibration interval (secs)"); 186 static int ath_outdoor = AH_TRUE; /* outdoor operation */ 187 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor, 188 0, "outdoor operation"); 189 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor); 190 static int ath_xchanmode = AH_TRUE; /* extended channel use */ 191 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode, 192 0, "extended channel mode"); 193 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode); 194 static int ath_countrycode = CTRY_DEFAULT; /* country code */ 195 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode, 196 0, "country code"); 197 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode); 198 static int ath_regdomain = 0; /* regulatory domain */ 199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain, 200 0, "regulatory domain"); 201 202 #ifdef AR_DEBUG 203 static int ath_debug = 0; 204 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 205 0, "control debugging printfs"); 206 TUNABLE_INT("hw.ath.debug", &ath_debug); 207 enum { 208 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 209 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 210 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 211 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 212 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 213 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 214 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 215 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 216 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 217 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 218 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 219 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 220 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 221 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 222 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 223 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 224 ATH_DEBUG_NODE = 0x00080000, /* node management */ 225 ATH_DEBUG_LED = 0x00100000, /* led management */ 226 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 227 ATH_DEBUG_ANY = 0xffffffff 228 }; 229 #define IFF_DUMPPKTS(sc, m) \ 230 ((sc->sc_debug & (m)) || \ 231 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 232 #define DPRINTF(sc, m, fmt, ...) do { \ 233 if (sc->sc_debug & (m)) \ 234 printf(fmt, __VA_ARGS__); \ 235 } while (0) 236 #define KEYPRINTF(sc, ix, hk, mac) do { \ 237 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 238 ath_keyprint(__func__, ix, hk, mac); \ 239 } while (0) 240 static void ath_printrxbuf(struct ath_buf *bf, int); 241 static void ath_printtxbuf(struct ath_buf *bf, int); 242 #else 243 #define IFF_DUMPPKTS(sc, m) \ 244 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 245 #define DPRINTF(m, fmt, ...) 246 #define KEYPRINTF(sc, k, ix, mac) 247 #endif 248 249 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 250 251 int 252 ath_attach(u_int16_t devid, struct ath_softc *sc) 253 { 254 struct ifnet *ifp = &sc->sc_if; 255 struct ieee80211com *ic = &sc->sc_ic; 256 struct ath_hal *ah; 257 HAL_STATUS status; 258 int error = 0, i; 259 260 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 261 262 /* set these up early for if_printf use */ 263 if_initname(ifp, device_get_name(sc->sc_dev), 264 device_get_unit(sc->sc_dev)); 265 266 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 267 if (ah == NULL) { 268 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 269 status); 270 error = ENXIO; 271 goto bad; 272 } 273 if (ah->ah_abi != HAL_ABI_VERSION) { 274 if_printf(ifp, "HAL ABI mismatch detected " 275 "(HAL:0x%x != driver:0x%x)\n", 276 ah->ah_abi, HAL_ABI_VERSION); 277 error = ENXIO; 278 goto bad; 279 } 280 sc->sc_ah = ah; 281 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 282 283 /* 284 * Check if the MAC has multi-rate retry support. 285 * We do this by trying to setup a fake extended 286 * descriptor. MAC's that don't have support will 287 * return false w/o doing anything. MAC's that do 288 * support it will return true w/o doing anything. 289 */ 290 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 291 292 /* 293 * Check if the device has hardware counters for PHY 294 * errors. If so we need to enable the MIB interrupt 295 * so we can act on stat triggers. 296 */ 297 if (ath_hal_hwphycounters(ah)) 298 sc->sc_needmib = 1; 299 300 /* 301 * Get the hardware key cache size. 302 */ 303 sc->sc_keymax = ath_hal_keycachesize(ah); 304 if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) { 305 if_printf(ifp, 306 "Warning, using only %zu of %u key cache slots\n", 307 sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax); 308 sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY; 309 } 310 /* 311 * Reset the key cache since some parts do not 312 * reset the contents on initial power up. 313 */ 314 for (i = 0; i < sc->sc_keymax; i++) 315 ath_hal_keyreset(ah, i); 316 /* 317 * Mark key cache slots associated with global keys 318 * as in use. If we knew TKIP was not to be used we 319 * could leave the +32, +64, and +32+64 slots free. 320 * XXX only for splitmic. 321 */ 322 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 323 setbit(sc->sc_keymap, i); 324 setbit(sc->sc_keymap, i+32); 325 setbit(sc->sc_keymap, i+64); 326 setbit(sc->sc_keymap, i+32+64); 327 } 328 329 /* 330 * Collect the channel list using the default country 331 * code and including outdoor channels. The 802.11 layer 332 * is resposible for filtering this list based on settings 333 * like the phy mode. 334 */ 335 error = ath_getchannels(sc, ath_countrycode, 336 ath_outdoor, ath_xchanmode); 337 if (error != 0) 338 goto bad; 339 /* 340 * Setup dynamic sysctl's now that country code and 341 * regdomain are available from the hal. 342 */ 343 ath_sysctlattach(sc); 344 345 /* 346 * Setup rate tables for all potential media types. 347 */ 348 ath_rate_setup(sc, IEEE80211_MODE_11A); 349 ath_rate_setup(sc, IEEE80211_MODE_11B); 350 ath_rate_setup(sc, IEEE80211_MODE_11G); 351 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 352 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 353 /* NB: setup here so ath_rate_update is happy */ 354 ath_setcurmode(sc, IEEE80211_MODE_11A); 355 356 /* 357 * Allocate tx+rx descriptors and populate the lists. 358 */ 359 error = ath_desc_alloc(sc); 360 if (error != 0) { 361 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 362 goto bad; 363 } 364 callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 365 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE); 366 367 ATH_TXBUF_LOCK_INIT(sc); 368 369 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 370 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 371 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 372 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 373 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc); 374 375 /* 376 * Allocate hardware transmit queues: one queue for 377 * beacon frames and one data queue for each QoS 378 * priority. Note that the hal handles reseting 379 * these queues at the needed time. 380 * 381 * XXX PS-Poll 382 */ 383 sc->sc_bhalq = ath_beaconq_setup(ah); 384 if (sc->sc_bhalq == (u_int) -1) { 385 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 386 error = EIO; 387 goto bad2; 388 } 389 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 390 if (sc->sc_cabq == NULL) { 391 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 392 error = EIO; 393 goto bad2; 394 } 395 /* NB: insure BK queue is the lowest priority h/w queue */ 396 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 397 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 398 ieee80211_wme_acnames[WME_AC_BK]); 399 error = EIO; 400 goto bad2; 401 } 402 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 403 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 404 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 405 /* 406 * Not enough hardware tx queues to properly do WME; 407 * just punt and assign them all to the same h/w queue. 408 * We could do a better job of this if, for example, 409 * we allocate queues when we switch from station to 410 * AP mode. 411 */ 412 if (sc->sc_ac2q[WME_AC_VI] != NULL) 413 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 414 if (sc->sc_ac2q[WME_AC_BE] != NULL) 415 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 416 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 417 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 418 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 419 } 420 421 /* 422 * Special case certain configurations. Note the 423 * CAB queue is handled by these specially so don't 424 * include them when checking the txq setup mask. 425 */ 426 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 427 case 0x01: 428 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 429 break; 430 case 0x0f: 431 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 432 break; 433 default: 434 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 435 break; 436 } 437 438 /* 439 * Setup rate control. Some rate control modules 440 * call back to change the anntena state so expose 441 * the necessary entry points. 442 * XXX maybe belongs in struct ath_ratectrl? 443 */ 444 sc->sc_setdefantenna = ath_setdefantenna; 445 sc->sc_rc = ath_rate_attach(sc); 446 if (sc->sc_rc == NULL) { 447 error = EIO; 448 goto bad2; 449 } 450 451 sc->sc_blinking = 0; 452 sc->sc_ledstate = 1; 453 sc->sc_ledon = 0; /* low true */ 454 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 455 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 456 /* 457 * Auto-enable soft led processing for IBM cards and for 458 * 5211 minipci cards. Users can also manually enable/disable 459 * support with a sysctl. 460 */ 461 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 462 if (sc->sc_softled) { 463 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 464 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 465 } 466 467 ifp->if_softc = sc; 468 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 469 ifp->if_start = ath_start; 470 ifp->if_watchdog = ath_watchdog; 471 ifp->if_ioctl = ath_ioctl; 472 ifp->if_init = ath_init; 473 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 474 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 475 IFQ_SET_READY(&ifp->if_snd); 476 477 ic->ic_ifp = ifp; 478 ic->ic_reset = ath_reset; 479 ic->ic_newassoc = ath_newassoc; 480 ic->ic_updateslot = ath_updateslot; 481 ic->ic_wme.wme_update = ath_wme_update; 482 /* XXX not right but it's not used anywhere important */ 483 ic->ic_phytype = IEEE80211_T_OFDM; 484 ic->ic_opmode = IEEE80211_M_STA; 485 ic->ic_caps = 486 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 487 | IEEE80211_C_HOSTAP /* hostap mode */ 488 | IEEE80211_C_MONITOR /* monitor mode */ 489 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 490 | IEEE80211_C_SHSLOT /* short slot time supported */ 491 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 492 ; 493 /* 494 * Query the hal to figure out h/w crypto support. 495 */ 496 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 497 ic->ic_caps |= IEEE80211_C_WEP; 498 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 499 ic->ic_caps |= IEEE80211_C_AES; 500 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 501 ic->ic_caps |= IEEE80211_C_AES_CCM; 502 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 503 ic->ic_caps |= IEEE80211_C_CKIP; 504 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 505 ic->ic_caps |= IEEE80211_C_TKIP; 506 /* 507 * Check if h/w does the MIC and/or whether the 508 * separate key cache entries are required to 509 * handle both tx+rx MIC keys. 510 */ 511 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 512 ic->ic_caps |= IEEE80211_C_TKIPMIC; 513 if (ath_hal_tkipsplit(ah)) 514 sc->sc_splitmic = 1; 515 } 516 /* 517 * TPC support can be done either with a global cap or 518 * per-packet support. The latter is not available on 519 * all parts. We're a bit pedantic here as all parts 520 * support a global cap. 521 */ 522 sc->sc_hastpc = ath_hal_hastpc(ah); 523 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah)) 524 ic->ic_caps |= IEEE80211_C_TXPMGT; 525 526 /* 527 * Mark WME capability only if we have sufficient 528 * hardware queues to do proper priority scheduling. 529 */ 530 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 531 ic->ic_caps |= IEEE80211_C_WME; 532 /* 533 * Check for frame bursting capability. 534 */ 535 if (ath_hal_hasbursting(ah)) 536 ic->ic_caps |= IEEE80211_C_BURST; 537 538 /* 539 * Indicate we need the 802.11 header padded to a 540 * 32-bit boundary for 4-address and QoS frames. 541 */ 542 ic->ic_flags |= IEEE80211_F_DATAPAD; 543 544 /* 545 * Query the hal about antenna support. 546 */ 547 if (ath_hal_hasdiversity(ah)) { 548 sc->sc_hasdiversity = 1; 549 sc->sc_diversity = ath_hal_getdiversity(ah); 550 } 551 sc->sc_defant = ath_hal_getdefantenna(ah); 552 553 /* 554 * Not all chips have the VEOL support we want to 555 * use with IBSS beacons; check here for it. 556 */ 557 sc->sc_hasveol = ath_hal_hasveol(ah); 558 559 /* get mac address from hardware */ 560 ath_hal_getmac(ah, ic->ic_myaddr); 561 562 /* call MI attach routine. */ 563 ieee80211_ifattach(ic); 564 /* override default methods */ 565 ic->ic_node_alloc = ath_node_alloc; 566 sc->sc_node_free = ic->ic_node_free; 567 ic->ic_node_free = ath_node_free; 568 ic->ic_node_getrssi = ath_node_getrssi; 569 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 570 ic->ic_recv_mgmt = ath_recv_mgmt; 571 sc->sc_newstate = ic->ic_newstate; 572 ic->ic_newstate = ath_newstate; 573 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 574 ic->ic_crypto.cs_key_delete = ath_key_delete; 575 ic->ic_crypto.cs_key_set = ath_key_set; 576 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 577 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 578 /* complete initialization */ 579 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 580 581 ath_bpfattach(sc); 582 583 if (bootverbose) 584 ieee80211_announce(ic); 585 ath_announce(sc); 586 return 0; 587 bad2: 588 ath_tx_cleanup(sc); 589 ath_desc_free(sc); 590 bad: 591 if (ah) 592 ath_hal_detach(ah); 593 sc->sc_invalid = 1; 594 return error; 595 } 596 597 int 598 ath_detach(struct ath_softc *sc) 599 { 600 struct ifnet *ifp = &sc->sc_if; 601 602 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 603 __func__, ifp->if_flags); 604 605 ath_stop(ifp); 606 bpfdetach(ifp); 607 /* 608 * NB: the order of these is important: 609 * o call the 802.11 layer before detaching the hal to 610 * insure callbacks into the driver to delete global 611 * key cache entries can be handled 612 * o reclaim the tx queue data structures after calling 613 * the 802.11 layer as we'll get called back to reclaim 614 * node state and potentially want to use them 615 * o to cleanup the tx queues the hal is called, so detach 616 * it last 617 * Other than that, it's straightforward... 618 */ 619 ieee80211_ifdetach(&sc->sc_ic); 620 ath_rate_detach(sc->sc_rc); 621 ath_desc_free(sc); 622 ath_tx_cleanup(sc); 623 ath_hal_detach(sc->sc_ah); 624 625 return 0; 626 } 627 628 void 629 ath_suspend(struct ath_softc *sc) 630 { 631 struct ifnet *ifp = &sc->sc_if; 632 633 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 634 __func__, ifp->if_flags); 635 636 ath_stop(ifp); 637 } 638 639 void 640 ath_resume(struct ath_softc *sc) 641 { 642 struct ifnet *ifp = &sc->sc_if; 643 644 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 645 __func__, ifp->if_flags); 646 647 if (ifp->if_flags & IFF_UP) { 648 ath_init(ifp); 649 if (ifp->if_flags & IFF_RUNNING) 650 ath_start(ifp); 651 } 652 } 653 654 void 655 ath_shutdown(struct ath_softc *sc) 656 { 657 struct ifnet *ifp = &sc->sc_if; 658 659 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 660 __func__, ifp->if_flags); 661 662 ath_stop(ifp); 663 } 664 665 /* 666 * Interrupt handler. Most of the actual processing is deferred. 667 */ 668 void 669 ath_intr(void *arg) 670 { 671 struct ath_softc *sc = arg; 672 struct ifnet *ifp = &sc->sc_if; 673 struct ath_hal *ah = sc->sc_ah; 674 HAL_INT status; 675 676 if (sc->sc_invalid) { 677 /* 678 * The hardware is not ready/present, don't touch anything. 679 * Note this can happen early on if the IRQ is shared. 680 */ 681 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 682 return; 683 } 684 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 685 return; 686 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 687 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 688 __func__, ifp->if_flags); 689 ath_hal_getisr(ah, &status); /* clear ISR */ 690 ath_hal_intrset(ah, 0); /* disable further intr's */ 691 return; 692 } 693 /* 694 * Figure out the reason(s) for the interrupt. Note 695 * that the hal returns a pseudo-ISR that may include 696 * bits we haven't explicitly enabled so we mask the 697 * value to insure we only process bits we requested. 698 */ 699 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 700 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 701 status &= sc->sc_imask; /* discard unasked for bits */ 702 if (status & HAL_INT_FATAL) { 703 /* 704 * Fatal errors are unrecoverable. Typically 705 * these are caused by DMA errors. Unfortunately 706 * the exact reason is not (presently) returned 707 * by the hal. 708 */ 709 sc->sc_stats.ast_hardware++; 710 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 711 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask); 712 } else if (status & HAL_INT_RXORN) { 713 sc->sc_stats.ast_rxorn++; 714 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 715 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask); 716 } else { 717 if (status & HAL_INT_SWBA) { 718 /* 719 * Software beacon alert--time to send a beacon. 720 * Handle beacon transmission directly; deferring 721 * this is too slow to meet timing constraints 722 * under load. 723 */ 724 ath_beacon_proc(sc, 0); 725 } 726 if (status & HAL_INT_RXEOL) { 727 /* 728 * NB: the hardware should re-read the link when 729 * RXE bit is written, but it doesn't work at 730 * least on older hardware revs. 731 */ 732 sc->sc_stats.ast_rxeol++; 733 sc->sc_rxlink = NULL; 734 } 735 if (status & HAL_INT_TXURN) { 736 sc->sc_stats.ast_txurn++; 737 /* bump tx trigger level */ 738 ath_hal_updatetxtriglevel(ah, AH_TRUE); 739 } 740 if (status & HAL_INT_RX) 741 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask); 742 if (status & HAL_INT_TX) 743 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask); 744 if (status & HAL_INT_BMISS) { 745 sc->sc_stats.ast_bmiss++; 746 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask); 747 } 748 if (status & HAL_INT_MIB) { 749 sc->sc_stats.ast_mib++; 750 /* 751 * Disable interrupts until we service the MIB 752 * interrupt; otherwise it will continue to fire. 753 */ 754 ath_hal_intrset(ah, 0); 755 /* 756 * Let the hal handle the event. We assume it will 757 * clear whatever condition caused the interrupt. 758 */ 759 ath_hal_mibevent(ah, 760 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats); 761 ath_hal_intrset(ah, sc->sc_imask); 762 } 763 } 764 } 765 766 static void 767 ath_fatal_proc(void *arg, int pending) 768 { 769 struct ath_softc *sc = arg; 770 struct ifnet *ifp = &sc->sc_if; 771 772 if_printf(ifp, "hardware error; resetting\n"); 773 ath_reset(ifp); 774 } 775 776 static void 777 ath_rxorn_proc(void *arg, int pending) 778 { 779 struct ath_softc *sc = arg; 780 struct ifnet *ifp = &sc->sc_if; 781 782 if_printf(ifp, "rx FIFO overrun; resetting\n"); 783 ath_reset(ifp); 784 } 785 786 static void 787 ath_bmiss_proc(void *arg, int pending) 788 { 789 struct ath_softc *sc = arg; 790 struct ieee80211com *ic = &sc->sc_ic; 791 792 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 793 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 794 ("unexpect operating mode %u", ic->ic_opmode)); 795 if (ic->ic_state == IEEE80211_S_RUN) { 796 /* 797 * Rather than go directly to scan state, try to 798 * reassociate first. If that fails then the state 799 * machine will drop us into scanning after timing 800 * out waiting for a probe response. 801 */ 802 NET_LOCK_GIANT(); 803 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 804 NET_UNLOCK_GIANT(); 805 } 806 } 807 808 static u_int 809 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 810 { 811 #define N(a) (sizeof(a) / sizeof(a[0])) 812 static const u_int modeflags[] = { 813 0, /* IEEE80211_MODE_AUTO */ 814 CHANNEL_A, /* IEEE80211_MODE_11A */ 815 CHANNEL_B, /* IEEE80211_MODE_11B */ 816 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 817 0, /* IEEE80211_MODE_FH */ 818 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */ 819 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 820 }; 821 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 822 823 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 824 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 825 return modeflags[mode]; 826 #undef N 827 } 828 829 static void 830 ath_init(void *arg) 831 { 832 struct ath_softc *sc = (struct ath_softc *) arg; 833 struct ieee80211com *ic = &sc->sc_ic; 834 struct ifnet *ifp = &sc->sc_if; 835 struct ieee80211_node *ni; 836 struct ath_hal *ah = sc->sc_ah; 837 HAL_STATUS status; 838 839 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 840 __func__, ifp->if_flags); 841 842 ATH_LOCK(sc); 843 /* 844 * Stop anything previously setup. This is safe 845 * whether this is the first time through or not. 846 */ 847 ath_stop_locked(ifp); 848 849 /* 850 * The basic interface to setting the hardware in a good 851 * state is ``reset''. On return the hardware is known to 852 * be powered up and with interrupts disabled. This must 853 * be followed by initialization of the appropriate bits 854 * and then setup of the interrupt mask. 855 */ 856 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq; 857 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); 858 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 859 if_printf(ifp, "unable to reset hardware; hal status %u\n", 860 status); 861 goto done; 862 } 863 864 /* 865 * This is needed only to setup initial state 866 * but it's best done after a reset. 867 */ 868 ath_update_txpow(sc); 869 870 /* 871 * Setup the hardware after reset: the key cache 872 * is filled as needed and the receive engine is 873 * set going. Frame transmit is handled entirely 874 * in the frame output path; there's nothing to do 875 * here except setup the interrupt mask. 876 */ 877 ath_initkeytable(sc); /* XXX still needed? */ 878 if (ath_startrecv(sc) != 0) { 879 if_printf(ifp, "unable to start recv logic\n"); 880 goto done; 881 } 882 883 /* 884 * Enable interrupts. 885 */ 886 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 887 | HAL_INT_RXEOL | HAL_INT_RXORN 888 | HAL_INT_FATAL | HAL_INT_GLOBAL; 889 /* 890 * Enable MIB interrupts when there are hardware phy counters. 891 * Note we only do this (at the moment) for station mode. 892 */ 893 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 894 sc->sc_imask |= HAL_INT_MIB; 895 ath_hal_intrset(ah, sc->sc_imask); 896 897 ifp->if_flags |= IFF_RUNNING; 898 ic->ic_state = IEEE80211_S_INIT; 899 900 /* 901 * The hardware should be ready to go now so it's safe 902 * to kick the 802.11 state machine as it's likely to 903 * immediately call back to us to send mgmt frames. 904 */ 905 ni = ic->ic_bss; 906 ni->ni_chan = ic->ic_ibss_chan; 907 ath_chan_change(sc, ni->ni_chan); 908 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 909 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 910 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 911 } else 912 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 913 done: 914 ATH_UNLOCK(sc); 915 } 916 917 static void 918 ath_stop_locked(struct ifnet *ifp) 919 { 920 struct ath_softc *sc = ifp->if_softc; 921 struct ieee80211com *ic = &sc->sc_ic; 922 struct ath_hal *ah = sc->sc_ah; 923 924 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 925 __func__, sc->sc_invalid, ifp->if_flags); 926 927 ATH_LOCK_ASSERT(sc); 928 if (ifp->if_flags & IFF_RUNNING) { 929 /* 930 * Shutdown the hardware and driver: 931 * reset 802.11 state machine 932 * turn off timers 933 * disable interrupts 934 * turn off the radio 935 * clear transmit machinery 936 * clear receive machinery 937 * drain and release tx queues 938 * reclaim beacon resources 939 * power down hardware 940 * 941 * Note that some of this work is not possible if the 942 * hardware is gone (invalid). 943 */ 944 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 945 ifp->if_flags &= ~IFF_RUNNING; 946 ifp->if_timer = 0; 947 if (!sc->sc_invalid) { 948 if (sc->sc_softled) { 949 callout_stop(&sc->sc_ledtimer); 950 ath_hal_gpioset(ah, sc->sc_ledpin, 951 !sc->sc_ledon); 952 sc->sc_blinking = 0; 953 } 954 ath_hal_intrset(ah, 0); 955 } 956 ath_draintxq(sc); 957 if (!sc->sc_invalid) { 958 ath_stoprecv(sc); 959 ath_hal_phydisable(ah); 960 } else 961 sc->sc_rxlink = NULL; 962 IFQ_DRV_PURGE(&ifp->if_snd); 963 ath_beacon_free(sc); 964 } 965 } 966 967 static void 968 ath_stop(struct ifnet *ifp) 969 { 970 struct ath_softc *sc = ifp->if_softc; 971 972 ATH_LOCK(sc); 973 ath_stop_locked(ifp); 974 if (!sc->sc_invalid) { 975 /* 976 * Set the chip in full sleep mode. Note that we are 977 * careful to do this only when bringing the interface 978 * completely to a stop. When the chip is in this state 979 * it must be carefully woken up or references to 980 * registers in the PCI clock domain may freeze the bus 981 * (and system). This varies by chip and is mostly an 982 * issue with newer parts that go to sleep more quickly. 983 */ 984 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0); 985 } 986 ATH_UNLOCK(sc); 987 } 988 989 /* 990 * Reset the hardware w/o losing operational state. This is 991 * basically a more efficient way of doing ath_stop, ath_init, 992 * followed by state transitions to the current 802.11 993 * operational state. Used to recover from various errors and 994 * to reset or reload hardware state. 995 */ 996 static int 997 ath_reset(struct ifnet *ifp) 998 { 999 struct ath_softc *sc = ifp->if_softc; 1000 struct ieee80211com *ic = &sc->sc_ic; 1001 struct ath_hal *ah = sc->sc_ah; 1002 struct ieee80211_channel *c; 1003 HAL_STATUS status; 1004 1005 /* 1006 * Convert to a HAL channel description with the flags 1007 * constrained to reflect the current operating mode. 1008 */ 1009 c = ic->ic_ibss_chan; 1010 sc->sc_curchan.channel = c->ic_freq; 1011 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1012 1013 ath_hal_intrset(ah, 0); /* disable interrupts */ 1014 ath_draintxq(sc); /* stop xmit side */ 1015 ath_stoprecv(sc); /* stop recv side */ 1016 /* NB: indicate channel change so we do a full reset */ 1017 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1018 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1019 __func__, status); 1020 ath_update_txpow(sc); /* update tx power state */ 1021 if (ath_startrecv(sc) != 0) /* restart recv */ 1022 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1023 /* 1024 * We may be doing a reset in response to an ioctl 1025 * that changes the channel so update any state that 1026 * might change as a result. 1027 */ 1028 ath_chan_change(sc, c); 1029 if (ic->ic_state == IEEE80211_S_RUN) 1030 ath_beacon_config(sc); /* restart beacons */ 1031 ath_hal_intrset(ah, sc->sc_imask); 1032 1033 ath_start(ifp); /* restart xmit */ 1034 return 0; 1035 } 1036 1037 static void 1038 ath_start(struct ifnet *ifp) 1039 { 1040 struct ath_softc *sc = ifp->if_softc; 1041 struct ath_hal *ah = sc->sc_ah; 1042 struct ieee80211com *ic = &sc->sc_ic; 1043 struct ieee80211_node *ni; 1044 struct ath_buf *bf; 1045 struct mbuf *m; 1046 struct ieee80211_frame *wh; 1047 struct ether_header *eh; 1048 1049 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1050 return; 1051 for (;;) { 1052 /* 1053 * Grab a TX buffer and associated resources. 1054 */ 1055 ATH_TXBUF_LOCK(sc); 1056 bf = STAILQ_FIRST(&sc->sc_txbuf); 1057 if (bf != NULL) 1058 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1059 ATH_TXBUF_UNLOCK(sc); 1060 if (bf == NULL) { 1061 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n", 1062 __func__); 1063 sc->sc_stats.ast_tx_qstop++; 1064 ifp->if_flags |= IFF_OACTIVE; 1065 break; 1066 } 1067 /* 1068 * Poll the management queue for frames; they 1069 * have priority over normal data frames. 1070 */ 1071 IF_DEQUEUE(&ic->ic_mgtq, m); 1072 if (m == NULL) { 1073 /* 1074 * No data frames go out unless we're associated. 1075 */ 1076 if (ic->ic_state != IEEE80211_S_RUN) { 1077 DPRINTF(sc, ATH_DEBUG_ANY, 1078 "%s: ignore data packet, state %u\n", 1079 __func__, ic->ic_state); 1080 sc->sc_stats.ast_tx_discard++; 1081 ATH_TXBUF_LOCK(sc); 1082 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1083 ATH_TXBUF_UNLOCK(sc); 1084 break; 1085 } 1086 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1087 if (m == NULL) { 1088 ATH_TXBUF_LOCK(sc); 1089 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1090 ATH_TXBUF_UNLOCK(sc); 1091 break; 1092 } 1093 /* 1094 * Find the node for the destination so we can do 1095 * things like power save and fast frames aggregation. 1096 */ 1097 if (m->m_len < sizeof(struct ether_header) && 1098 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1099 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1100 ni = NULL; 1101 goto bad; 1102 } 1103 eh = mtod(m, struct ether_header *); 1104 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1105 if (ni == NULL) { 1106 /* NB: ieee80211_find_txnode does stat+msg */ 1107 goto bad; 1108 } 1109 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1110 (m->m_flags & M_PWR_SAV) == 0) { 1111 /* 1112 * Station in power save mode; pass the frame 1113 * to the 802.11 layer and continue. We'll get 1114 * the frame back when the time is right. 1115 */ 1116 ieee80211_pwrsave(ic, ni, m); 1117 goto reclaim; 1118 } 1119 /* calculate priority so we can find the tx queue */ 1120 if (ieee80211_classify(ic, m, ni)) { 1121 DPRINTF(sc, ATH_DEBUG_XMIT, 1122 "%s: discard, classification failure\n", 1123 __func__); 1124 goto bad; 1125 } 1126 ifp->if_opackets++; 1127 BPF_MTAP(ifp, m); 1128 /* 1129 * Encapsulate the packet in prep for transmission. 1130 */ 1131 m = ieee80211_encap(ic, m, ni); 1132 if (m == NULL) { 1133 DPRINTF(sc, ATH_DEBUG_ANY, 1134 "%s: encapsulation failure\n", 1135 __func__); 1136 sc->sc_stats.ast_tx_encap++; 1137 goto bad; 1138 } 1139 } else { 1140 /* 1141 * Hack! The referenced node pointer is in the 1142 * rcvif field of the packet header. This is 1143 * placed there by ieee80211_mgmt_output because 1144 * we need to hold the reference with the frame 1145 * and there's no other way (other than packet 1146 * tags which we consider too expensive to use) 1147 * to pass it along. 1148 */ 1149 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1150 m->m_pkthdr.rcvif = NULL; 1151 1152 wh = mtod(m, struct ieee80211_frame *); 1153 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1154 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1155 /* fill time stamp */ 1156 u_int64_t tsf; 1157 u_int32_t *tstamp; 1158 1159 tsf = ath_hal_gettsf64(ah); 1160 /* XXX: adjust 100us delay to xmit */ 1161 tsf += 100; 1162 tstamp = (u_int32_t *)&wh[1]; 1163 tstamp[0] = htole32(tsf & 0xffffffff); 1164 tstamp[1] = htole32(tsf >> 32); 1165 } 1166 sc->sc_stats.ast_tx_mgmt++; 1167 } 1168 1169 if (ath_tx_start(sc, ni, bf, m)) { 1170 bad: 1171 ifp->if_oerrors++; 1172 reclaim: 1173 ATH_TXBUF_LOCK(sc); 1174 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1175 ATH_TXBUF_UNLOCK(sc); 1176 if (ni != NULL) 1177 ieee80211_free_node(ni); 1178 continue; 1179 } 1180 1181 sc->sc_tx_timer = 5; 1182 ifp->if_timer = 1; 1183 } 1184 } 1185 1186 static int 1187 ath_media_change(struct ifnet *ifp) 1188 { 1189 #define IS_UP(ifp) \ 1190 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) 1191 int error; 1192 1193 error = ieee80211_media_change(ifp); 1194 if (error == ENETRESET) { 1195 if (IS_UP(ifp)) 1196 ath_init(ifp); /* XXX lose error */ 1197 error = 0; 1198 } 1199 return error; 1200 #undef IS_UP 1201 } 1202 1203 #ifdef AR_DEBUG 1204 static void 1205 ath_keyprint(const char *tag, u_int ix, 1206 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1207 { 1208 static const char *ciphers[] = { 1209 "WEP", 1210 "AES-OCB", 1211 "AES-CCM", 1212 "CKIP", 1213 "TKIP", 1214 "CLR", 1215 }; 1216 int i, n; 1217 1218 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1219 for (i = 0, n = hk->kv_len; i < n; i++) 1220 printf("%02x", hk->kv_val[i]); 1221 printf(" mac %s", ether_sprintf(mac)); 1222 if (hk->kv_type == HAL_CIPHER_TKIP) { 1223 printf(" mic "); 1224 for (i = 0; i < sizeof(hk->kv_mic); i++) 1225 printf("%02x", hk->kv_mic[i]); 1226 } 1227 printf("\n"); 1228 } 1229 #endif 1230 1231 /* 1232 * Set a TKIP key into the hardware. This handles the 1233 * potential distribution of key state to multiple key 1234 * cache slots for TKIP. 1235 */ 1236 static int 1237 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1238 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1239 { 1240 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1241 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1242 struct ath_hal *ah = sc->sc_ah; 1243 1244 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1245 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1246 KASSERT(sc->sc_splitmic, ("key cache !split")); 1247 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1248 /* 1249 * TX key goes at first index, RX key at +32. 1250 * The hal handles the MIC keys at index+64. 1251 */ 1252 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1253 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1254 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 1255 return 0; 1256 1257 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1258 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1259 /* XXX delete tx key on failure? */ 1260 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 1261 } else if (k->wk_flags & IEEE80211_KEY_XR) { 1262 /* 1263 * TX/RX key goes at first index. 1264 * The hal handles the MIC keys are index+64. 1265 */ 1266 KASSERT(k->wk_keyix < IEEE80211_WEP_NKID, 1267 ("group key at index %u", k->wk_keyix)); 1268 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ? 1269 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic)); 1270 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1271 return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid); 1272 } 1273 /* XXX key w/o xmit/recv; need this for compression? */ 1274 return 0; 1275 #undef IEEE80211_KEY_XR 1276 } 1277 1278 /* 1279 * Set a net80211 key into the hardware. This handles the 1280 * potential distribution of key state to multiple key 1281 * cache slots for TKIP with hardware MIC support. 1282 */ 1283 static int 1284 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1285 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1286 { 1287 #define N(a) (sizeof(a)/sizeof(a[0])) 1288 static const u_int8_t ciphermap[] = { 1289 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1290 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1291 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1292 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1293 (u_int8_t) -1, /* 4 is not allocated */ 1294 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1295 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1296 }; 1297 struct ath_hal *ah = sc->sc_ah; 1298 const struct ieee80211_cipher *cip = k->wk_cipher; 1299 HAL_KEYVAL hk; 1300 1301 memset(&hk, 0, sizeof(hk)); 1302 /* 1303 * Software crypto uses a "clear key" so non-crypto 1304 * state kept in the key cache are maintained and 1305 * so that rx frames have an entry to match. 1306 */ 1307 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1308 KASSERT(cip->ic_cipher < N(ciphermap), 1309 ("invalid cipher type %u", cip->ic_cipher)); 1310 hk.kv_type = ciphermap[cip->ic_cipher]; 1311 hk.kv_len = k->wk_keylen; 1312 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1313 } else 1314 hk.kv_type = HAL_CIPHER_CLR; 1315 1316 if (hk.kv_type == HAL_CIPHER_TKIP && 1317 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1318 sc->sc_splitmic) { 1319 return ath_keyset_tkip(sc, k, &hk, mac); 1320 } else { 1321 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1322 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 1323 } 1324 #undef N 1325 } 1326 1327 /* 1328 * Fill the hardware key cache with key entries. 1329 */ 1330 static void 1331 ath_initkeytable(struct ath_softc *sc) 1332 { 1333 struct ieee80211com *ic = &sc->sc_ic; 1334 struct ifnet *ifp = &sc->sc_if; 1335 struct ath_hal *ah = sc->sc_ah; 1336 const u_int8_t *bssid; 1337 int i; 1338 1339 /* XXX maybe should reset all keys when !PRIVACY */ 1340 if (ic->ic_state == IEEE80211_S_SCAN) 1341 bssid = ifp->if_broadcastaddr; 1342 else 1343 bssid = ic->ic_bss->ni_bssid; 1344 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1345 struct ieee80211_key *k = &ic->ic_nw_keys[i]; 1346 1347 if (k->wk_keylen == 0) { 1348 ath_hal_keyreset(ah, i); 1349 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n", 1350 __func__, i); 1351 } else { 1352 ath_keyset(sc, k, bssid); 1353 } 1354 } 1355 } 1356 1357 /* 1358 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1359 * each key, one for decrypt/encrypt and the other for the MIC. 1360 */ 1361 static u_int16_t 1362 key_alloc_2pair(struct ath_softc *sc) 1363 { 1364 #define N(a) (sizeof(a)/sizeof(a[0])) 1365 u_int i, keyix; 1366 1367 KASSERT(sc->sc_splitmic, ("key cache !split")); 1368 /* XXX could optimize */ 1369 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1370 u_int8_t b = sc->sc_keymap[i]; 1371 if (b != 0xff) { 1372 /* 1373 * One or more slots in this byte are free. 1374 */ 1375 keyix = i*NBBY; 1376 while (b & 1) { 1377 again: 1378 keyix++; 1379 b >>= 1; 1380 } 1381 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1382 if (isset(sc->sc_keymap, keyix+32) || 1383 isset(sc->sc_keymap, keyix+64) || 1384 isset(sc->sc_keymap, keyix+32+64)) { 1385 /* full pair unavailable */ 1386 /* XXX statistic */ 1387 if (keyix == (i+1)*NBBY) { 1388 /* no slots were appropriate, advance */ 1389 continue; 1390 } 1391 goto again; 1392 } 1393 setbit(sc->sc_keymap, keyix); 1394 setbit(sc->sc_keymap, keyix+64); 1395 setbit(sc->sc_keymap, keyix+32); 1396 setbit(sc->sc_keymap, keyix+32+64); 1397 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1398 "%s: key pair %u,%u %u,%u\n", 1399 __func__, keyix, keyix+64, 1400 keyix+32, keyix+32+64); 1401 return keyix; 1402 } 1403 } 1404 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1405 return IEEE80211_KEYIX_NONE; 1406 #undef N 1407 } 1408 1409 /* 1410 * Allocate a single key cache slot. 1411 */ 1412 static u_int16_t 1413 key_alloc_single(struct ath_softc *sc) 1414 { 1415 #define N(a) (sizeof(a)/sizeof(a[0])) 1416 u_int i, keyix; 1417 1418 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1419 for (i = 0; i < N(sc->sc_keymap); i++) { 1420 u_int8_t b = sc->sc_keymap[i]; 1421 if (b != 0xff) { 1422 /* 1423 * One or more slots are free. 1424 */ 1425 keyix = i*NBBY; 1426 while (b & 1) 1427 keyix++, b >>= 1; 1428 setbit(sc->sc_keymap, keyix); 1429 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1430 __func__, keyix); 1431 return keyix; 1432 } 1433 } 1434 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1435 return IEEE80211_KEYIX_NONE; 1436 #undef N 1437 } 1438 1439 /* 1440 * Allocate one or more key cache slots for a uniacst key. The 1441 * key itself is needed only to identify the cipher. For hardware 1442 * TKIP with split cipher+MIC keys we allocate two key cache slot 1443 * pairs so that we can setup separate TX and RX MIC keys. Note 1444 * that the MIC key for a TKIP key at slot i is assumed by the 1445 * hardware to be at slot i+64. This limits TKIP keys to the first 1446 * 64 entries. 1447 */ 1448 static int 1449 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k) 1450 { 1451 struct ath_softc *sc = ic->ic_ifp->if_softc; 1452 1453 /* 1454 * We allocate two pair for TKIP when using the h/w to do 1455 * the MIC. For everything else, including software crypto, 1456 * we allocate a single entry. Note that s/w crypto requires 1457 * a pass-through slot on the 5211 and 5212. The 5210 does 1458 * not support pass-through cache entries and we map all 1459 * those requests to slot 0. 1460 */ 1461 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1462 return key_alloc_single(sc); 1463 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1464 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1465 return key_alloc_2pair(sc); 1466 } else { 1467 return key_alloc_single(sc); 1468 } 1469 } 1470 1471 /* 1472 * Delete an entry in the key cache allocated by ath_key_alloc. 1473 */ 1474 static int 1475 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1476 { 1477 struct ath_softc *sc = ic->ic_ifp->if_softc; 1478 struct ath_hal *ah = sc->sc_ah; 1479 const struct ieee80211_cipher *cip = k->wk_cipher; 1480 u_int keyix = k->wk_keyix; 1481 1482 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1483 1484 ath_hal_keyreset(ah, keyix); 1485 /* 1486 * Handle split tx/rx keying required for TKIP with h/w MIC. 1487 */ 1488 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1489 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1490 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1491 if (keyix >= IEEE80211_WEP_NKID) { 1492 /* 1493 * Don't touch keymap entries for global keys so 1494 * they are never considered for dynamic allocation. 1495 */ 1496 clrbit(sc->sc_keymap, keyix); 1497 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1498 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1499 sc->sc_splitmic) { 1500 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1501 clrbit(sc->sc_keymap, keyix+32); /* RX key */ 1502 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */ 1503 } 1504 } 1505 return 1; 1506 } 1507 1508 /* 1509 * Set the key cache contents for the specified key. Key cache 1510 * slot(s) must already have been allocated by ath_key_alloc. 1511 */ 1512 static int 1513 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1514 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1515 { 1516 struct ath_softc *sc = ic->ic_ifp->if_softc; 1517 1518 return ath_keyset(sc, k, mac); 1519 } 1520 1521 /* 1522 * Block/unblock tx+rx processing while a key change is done. 1523 * We assume the caller serializes key management operations 1524 * so we only need to worry about synchronization with other 1525 * uses that originate in the driver. 1526 */ 1527 static void 1528 ath_key_update_begin(struct ieee80211com *ic) 1529 { 1530 struct ifnet *ifp = ic->ic_ifp; 1531 struct ath_softc *sc = ifp->if_softc; 1532 1533 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1534 #if 0 1535 tasklet_disable(&sc->sc_rxtq); 1536 #endif 1537 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1538 } 1539 1540 static void 1541 ath_key_update_end(struct ieee80211com *ic) 1542 { 1543 struct ifnet *ifp = ic->ic_ifp; 1544 struct ath_softc *sc = ifp->if_softc; 1545 1546 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1547 IF_UNLOCK(&ifp->if_snd); 1548 #if 0 1549 tasklet_enable(&sc->sc_rxtq); 1550 #endif 1551 } 1552 1553 /* 1554 * Calculate the receive filter according to the 1555 * operating mode and state: 1556 * 1557 * o always accept unicast, broadcast, and multicast traffic 1558 * o maintain current state of phy error reception (the hal 1559 * may enable phy error frames for noise immunity work) 1560 * o probe request frames are accepted only when operating in 1561 * hostap, adhoc, or monitor modes 1562 * o enable promiscuous mode according to the interface state 1563 * o accept beacons: 1564 * - when operating in adhoc mode so the 802.11 layer creates 1565 * node table entries for peers, 1566 * - when operating in station mode for collecting rssi data when 1567 * the station is otherwise quiet, or 1568 * - when scanning 1569 */ 1570 static u_int32_t 1571 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1572 { 1573 struct ieee80211com *ic = &sc->sc_ic; 1574 struct ath_hal *ah = sc->sc_ah; 1575 struct ifnet *ifp = &sc->sc_if; 1576 u_int32_t rfilt; 1577 1578 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1579 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1580 if (ic->ic_opmode != IEEE80211_M_STA) 1581 rfilt |= HAL_RX_FILTER_PROBEREQ; 1582 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1583 (ifp->if_flags & IFF_PROMISC)) 1584 rfilt |= HAL_RX_FILTER_PROM; 1585 if (ic->ic_opmode == IEEE80211_M_STA || 1586 ic->ic_opmode == IEEE80211_M_IBSS || 1587 state == IEEE80211_S_SCAN) 1588 rfilt |= HAL_RX_FILTER_BEACON; 1589 return rfilt; 1590 } 1591 1592 static void 1593 ath_mode_init(struct ath_softc *sc) 1594 { 1595 struct ieee80211com *ic = &sc->sc_ic; 1596 struct ath_hal *ah = sc->sc_ah; 1597 struct ifnet *ifp = &sc->sc_if; 1598 u_int32_t rfilt, mfilt[2], val; 1599 u_int8_t pos; 1600 struct ifmultiaddr *ifma; 1601 1602 /* configure rx filter */ 1603 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1604 ath_hal_setrxfilter(ah, rfilt); 1605 1606 /* configure operational mode */ 1607 ath_hal_setopmode(ah); 1608 1609 /* 1610 * Handle any link-level address change. Note that we only 1611 * need to force ic_myaddr; any other addresses are handled 1612 * as a byproduct of the ifnet code marking the interface 1613 * down then up. 1614 * 1615 * XXX should get from lladdr instead of arpcom but that's more work 1616 */ 1617 IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr); 1618 ath_hal_setmac(ah, ic->ic_myaddr); 1619 1620 /* calculate and install multicast filter */ 1621 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1622 mfilt[0] = mfilt[1] = 0; 1623 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1624 caddr_t dl; 1625 1626 /* calculate XOR of eight 6bit values */ 1627 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1628 val = LE_READ_4(dl + 0); 1629 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1630 val = LE_READ_4(dl + 3); 1631 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1632 pos &= 0x3f; 1633 mfilt[pos / 32] |= (1 << (pos % 32)); 1634 } 1635 } else { 1636 mfilt[0] = mfilt[1] = ~0; 1637 } 1638 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1639 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 1640 __func__, rfilt, mfilt[0], mfilt[1]); 1641 } 1642 1643 /* 1644 * Set the slot time based on the current setting. 1645 */ 1646 static void 1647 ath_setslottime(struct ath_softc *sc) 1648 { 1649 struct ieee80211com *ic = &sc->sc_ic; 1650 struct ath_hal *ah = sc->sc_ah; 1651 1652 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1653 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 1654 else 1655 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 1656 sc->sc_updateslot = OK; 1657 } 1658 1659 /* 1660 * Callback from the 802.11 layer to update the 1661 * slot time based on the current setting. 1662 */ 1663 static void 1664 ath_updateslot(struct ifnet *ifp) 1665 { 1666 struct ath_softc *sc = ifp->if_softc; 1667 struct ieee80211com *ic = &sc->sc_ic; 1668 1669 /* 1670 * When not coordinating the BSS, change the hardware 1671 * immediately. For other operation we defer the change 1672 * until beacon updates have propagated to the stations. 1673 */ 1674 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1675 sc->sc_updateslot = UPDATE; 1676 else 1677 ath_setslottime(sc); 1678 } 1679 1680 /* 1681 * Setup a h/w transmit queue for beacons. 1682 */ 1683 static int 1684 ath_beaconq_setup(struct ath_hal *ah) 1685 { 1686 HAL_TXQ_INFO qi; 1687 1688 memset(&qi, 0, sizeof(qi)); 1689 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 1690 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 1691 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 1692 /* NB: don't enable any interrupts */ 1693 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 1694 } 1695 1696 /* 1697 * Allocate and setup an initial beacon frame. 1698 */ 1699 static int 1700 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1701 { 1702 struct ieee80211com *ic = ni->ni_ic; 1703 struct ath_buf *bf; 1704 struct mbuf *m; 1705 int error; 1706 1707 bf = STAILQ_FIRST(&sc->sc_bbuf); 1708 if (bf == NULL) { 1709 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 1710 sc->sc_stats.ast_be_nombuf++; /* XXX */ 1711 return ENOMEM; /* XXX */ 1712 } 1713 /* 1714 * NB: the beacon data buffer must be 32-bit aligned; 1715 * we assume the mbuf routines will return us something 1716 * with this alignment (perhaps should assert). 1717 */ 1718 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 1719 if (m == NULL) { 1720 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 1721 __func__); 1722 sc->sc_stats.ast_be_nombuf++; 1723 return ENOMEM; 1724 } 1725 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 1726 bf->bf_segs, &bf->bf_nseg, 1727 BUS_DMA_NOWAIT); 1728 if (error == 0) { 1729 bf->bf_m = m; 1730 bf->bf_node = ieee80211_ref_node(ni); 1731 } else { 1732 m_freem(m); 1733 } 1734 return error; 1735 } 1736 1737 /* 1738 * Setup the beacon frame for transmit. 1739 */ 1740 static void 1741 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 1742 { 1743 #define USE_SHPREAMBLE(_ic) \ 1744 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 1745 == IEEE80211_F_SHPREAMBLE) 1746 struct ieee80211_node *ni = bf->bf_node; 1747 struct ieee80211com *ic = ni->ni_ic; 1748 struct mbuf *m = bf->bf_m; 1749 struct ath_hal *ah = sc->sc_ah; 1750 struct ath_node *an = ATH_NODE(ni); 1751 struct ath_desc *ds; 1752 int flags, antenna; 1753 u_int8_t rate; 1754 1755 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 1756 __func__, m, m->m_len); 1757 1758 /* setup descriptors */ 1759 ds = bf->bf_desc; 1760 1761 flags = HAL_TXDESC_NOACK; 1762 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 1763 ds->ds_link = bf->bf_daddr; /* self-linked */ 1764 flags |= HAL_TXDESC_VEOL; 1765 /* 1766 * Let hardware handle antenna switching. 1767 */ 1768 antenna = 0; 1769 } else { 1770 ds->ds_link = 0; 1771 /* 1772 * Switch antenna every 4 beacons. 1773 * XXX assumes two antenna 1774 */ 1775 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 1776 } 1777 1778 KASSERT(bf->bf_nseg == 1, 1779 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 1780 ds->ds_data = bf->bf_segs[0].ds_addr; 1781 /* 1782 * Calculate rate code. 1783 * XXX everything at min xmit rate 1784 */ 1785 if (USE_SHPREAMBLE(ic)) 1786 rate = an->an_tx_mgtratesp; 1787 else 1788 rate = an->an_tx_mgtrate; 1789 ath_hal_setuptxdesc(ah, ds 1790 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 1791 , sizeof(struct ieee80211_frame)/* header length */ 1792 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1793 , ni->ni_txpower /* txpower XXX */ 1794 , rate, 1 /* series 0 rate/tries */ 1795 , HAL_TXKEYIX_INVALID /* no encryption */ 1796 , antenna /* antenna mode */ 1797 , flags /* no ack, veol for beacons */ 1798 , 0 /* rts/cts rate */ 1799 , 0 /* rts/cts duration */ 1800 ); 1801 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1802 ath_hal_filltxdesc(ah, ds 1803 , roundup(m->m_len, 4) /* buffer length */ 1804 , AH_TRUE /* first segment */ 1805 , AH_TRUE /* last segment */ 1806 , ds /* first descriptor */ 1807 ); 1808 #undef USE_SHPREAMBLE 1809 } 1810 1811 /* 1812 * Transmit a beacon frame at SWBA. Dynamic updates to the 1813 * frame contents are done as needed and the slot time is 1814 * also adjusted based on current state. 1815 */ 1816 static void 1817 ath_beacon_proc(void *arg, int pending) 1818 { 1819 struct ath_softc *sc = arg; 1820 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 1821 struct ieee80211_node *ni = bf->bf_node; 1822 struct ieee80211com *ic = ni->ni_ic; 1823 struct ath_hal *ah = sc->sc_ah; 1824 struct mbuf *m; 1825 int ncabq, error, otherant; 1826 1827 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 1828 __func__, pending); 1829 1830 if (ic->ic_opmode == IEEE80211_M_STA || 1831 ic->ic_opmode == IEEE80211_M_MONITOR || 1832 bf == NULL || bf->bf_m == NULL) { 1833 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 1834 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 1835 return; 1836 } 1837 /* 1838 * Check if the previous beacon has gone out. If 1839 * not don't don't try to post another, skip this 1840 * period and wait for the next. Missed beacons 1841 * indicate a problem and should not occur. If we 1842 * miss too many consecutive beacons reset the device. 1843 */ 1844 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 1845 sc->sc_bmisscount++; 1846 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 1847 "%s: missed %u consecutive beacons\n", 1848 __func__, sc->sc_bmisscount); 1849 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 1850 taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask); 1851 return; 1852 } 1853 if (sc->sc_bmisscount != 0) { 1854 DPRINTF(sc, ATH_DEBUG_BEACON, 1855 "%s: resume beacon xmit after %u misses\n", 1856 __func__, sc->sc_bmisscount); 1857 sc->sc_bmisscount = 0; 1858 } 1859 1860 /* 1861 * Update dynamic beacon contents. If this returns 1862 * non-zero then we need to remap the memory because 1863 * the beacon frame changed size (probably because 1864 * of the TIM bitmap). 1865 */ 1866 m = bf->bf_m; 1867 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 1868 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 1869 /* XXX too conservative? */ 1870 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1871 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m, 1872 bf->bf_segs, &bf->bf_nseg, 1873 BUS_DMA_NOWAIT); 1874 if (error != 0) { 1875 if_printf(ic->ic_ifp, 1876 "%s: bus_dmamap_load_mbuf_sg failed, error %u\n", 1877 __func__, error); 1878 return; 1879 } 1880 } 1881 1882 /* 1883 * Handle slot time change when a non-ERP station joins/leaves 1884 * an 11g network. The 802.11 layer notifies us via callback, 1885 * we mark updateslot, then wait one beacon before effecting 1886 * the change. This gives associated stations at least one 1887 * beacon interval to note the state change. 1888 */ 1889 /* XXX locking */ 1890 if (sc->sc_updateslot == UPDATE) 1891 sc->sc_updateslot = COMMIT; /* commit next beacon */ 1892 else if (sc->sc_updateslot == COMMIT) 1893 ath_setslottime(sc); /* commit change to h/w */ 1894 1895 /* 1896 * Check recent per-antenna transmit statistics and flip 1897 * the default antenna if noticeably more frames went out 1898 * on the non-default antenna. 1899 * XXX assumes 2 anntenae 1900 */ 1901 otherant = sc->sc_defant & 1 ? 2 : 1; 1902 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 1903 ath_setdefantenna(sc, otherant); 1904 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 1905 1906 /* 1907 * Construct tx descriptor. 1908 */ 1909 ath_beacon_setup(sc, bf); 1910 1911 /* 1912 * Stop any current dma and put the new frame on the queue. 1913 * This should never fail since we check above that no frames 1914 * are still pending on the queue. 1915 */ 1916 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 1917 DPRINTF(sc, ATH_DEBUG_ANY, 1918 "%s: beacon queue %u did not stop?\n", 1919 __func__, sc->sc_bhalq); 1920 } 1921 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 1922 1923 /* 1924 * Enable the CAB queue before the beacon queue to 1925 * insure cab frames are triggered by this beacon. 1926 */ 1927 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */ 1928 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 1929 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 1930 ath_hal_txstart(ah, sc->sc_bhalq); 1931 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 1932 "%s: TXDP[%u] = %p (%p)\n", __func__, 1933 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc); 1934 1935 sc->sc_stats.ast_be_xmit++; 1936 } 1937 1938 /* 1939 * Reset the hardware after detecting beacons have stopped. 1940 */ 1941 static void 1942 ath_bstuck_proc(void *arg, int pending) 1943 { 1944 struct ath_softc *sc = arg; 1945 struct ifnet *ifp = &sc->sc_if; 1946 1947 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 1948 sc->sc_bmisscount); 1949 ath_reset(ifp); 1950 } 1951 1952 /* 1953 * Reclaim beacon resources. 1954 */ 1955 static void 1956 ath_beacon_free(struct ath_softc *sc) 1957 { 1958 struct ath_buf *bf; 1959 1960 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 1961 if (bf->bf_m != NULL) { 1962 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1963 m_freem(bf->bf_m); 1964 bf->bf_m = NULL; 1965 } 1966 if (bf->bf_node != NULL) { 1967 ieee80211_free_node(bf->bf_node); 1968 bf->bf_node = NULL; 1969 } 1970 } 1971 } 1972 1973 /* 1974 * Configure the beacon and sleep timers. 1975 * 1976 * When operating as an AP this resets the TSF and sets 1977 * up the hardware to notify us when we need to issue beacons. 1978 * 1979 * When operating in station mode this sets up the beacon 1980 * timers according to the timestamp of the last received 1981 * beacon and the current TSF, configures PCF and DTIM 1982 * handling, programs the sleep registers so the hardware 1983 * will wakeup in time to receive beacons, and configures 1984 * the beacon miss handling so we'll receive a BMISS 1985 * interrupt when we stop seeing beacons from the AP 1986 * we've associated with. 1987 */ 1988 static void 1989 ath_beacon_config(struct ath_softc *sc) 1990 { 1991 struct ath_hal *ah = sc->sc_ah; 1992 struct ieee80211com *ic = &sc->sc_ic; 1993 struct ieee80211_node *ni = ic->ic_bss; 1994 u_int32_t nexttbtt, intval; 1995 1996 nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) | 1997 (LE_READ_4(ni->ni_tstamp.data) >> 10); 1998 intval = ni->ni_intval & HAL_BEACON_PERIOD; 1999 if (nexttbtt == 0) /* e.g. for ap mode */ 2000 nexttbtt = intval; 2001 else if (intval) /* NB: can be 0 for monitor mode */ 2002 nexttbtt = roundup(nexttbtt, intval); 2003 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2004 __func__, nexttbtt, intval, ni->ni_intval); 2005 if (ic->ic_opmode == IEEE80211_M_STA) { 2006 HAL_BEACON_STATE bs; 2007 2008 /* NB: no PCF support right now */ 2009 memset(&bs, 0, sizeof(bs)); 2010 bs.bs_intval = intval; 2011 bs.bs_nexttbtt = nexttbtt; 2012 bs.bs_dtimperiod = bs.bs_intval; 2013 bs.bs_nextdtim = nexttbtt; 2014 /* 2015 * The 802.11 layer records the offset to the DTIM 2016 * bitmap while receiving beacons; use it here to 2017 * enable h/w detection of our AID being marked in 2018 * the bitmap vector (to indicate frames for us are 2019 * pending at the AP). 2020 */ 2021 bs.bs_timoffset = ni->ni_timoff; 2022 /* 2023 * Calculate the number of consecutive beacons to miss 2024 * before taking a BMISS interrupt. The configuration 2025 * is specified in ms, so we need to convert that to 2026 * TU's and then calculate based on the beacon interval. 2027 * Note that we clamp the result to at most 10 beacons. 2028 */ 2029 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2030 if (bs.bs_bmissthreshold > 10) 2031 bs.bs_bmissthreshold = 10; 2032 else if (bs.bs_bmissthreshold <= 0) 2033 bs.bs_bmissthreshold = 1; 2034 2035 /* 2036 * Calculate sleep duration. The configuration is 2037 * given in ms. We insure a multiple of the beacon 2038 * period is used. Also, if the sleep duration is 2039 * greater than the DTIM period then it makes senses 2040 * to make it a multiple of that. 2041 * 2042 * XXX fixed at 100ms 2043 */ 2044 bs.bs_sleepduration = 2045 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2046 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2047 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2048 2049 DPRINTF(sc, ATH_DEBUG_BEACON, 2050 "%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2051 , __func__ 2052 , bs.bs_intval 2053 , bs.bs_nexttbtt 2054 , bs.bs_dtimperiod 2055 , bs.bs_nextdtim 2056 , bs.bs_bmissthreshold 2057 , bs.bs_sleepduration 2058 , bs.bs_cfpperiod 2059 , bs.bs_cfpmaxduration 2060 , bs.bs_cfpnext 2061 , bs.bs_timoffset 2062 ); 2063 ath_hal_intrset(ah, 0); 2064 ath_hal_beacontimers(ah, &bs); 2065 sc->sc_imask |= HAL_INT_BMISS; 2066 ath_hal_intrset(ah, sc->sc_imask); 2067 } else { 2068 ath_hal_intrset(ah, 0); 2069 if (nexttbtt == intval) 2070 intval |= HAL_BEACON_RESET_TSF; 2071 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2072 /* 2073 * In IBSS mode enable the beacon timers but only 2074 * enable SWBA interrupts if we need to manually 2075 * prepare beacon frames. Otherwise we use a 2076 * self-linked tx descriptor and let the hardware 2077 * deal with things. 2078 */ 2079 intval |= HAL_BEACON_ENA; 2080 if (!sc->sc_hasveol) 2081 sc->sc_imask |= HAL_INT_SWBA; 2082 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2083 /* 2084 * In AP mode we enable the beacon timers and 2085 * SWBA interrupts to prepare beacon frames. 2086 */ 2087 intval |= HAL_BEACON_ENA; 2088 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2089 } 2090 ath_hal_beaconinit(ah, nexttbtt, intval); 2091 sc->sc_bmisscount = 0; 2092 ath_hal_intrset(ah, sc->sc_imask); 2093 /* 2094 * When using a self-linked beacon descriptor in 2095 * ibss mode load it once here. 2096 */ 2097 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2098 ath_beacon_proc(sc, 0); 2099 } 2100 } 2101 2102 static void 2103 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2104 { 2105 bus_addr_t *paddr = (bus_addr_t*) arg; 2106 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2107 *paddr = segs->ds_addr; 2108 } 2109 2110 static int 2111 ath_descdma_setup(struct ath_softc *sc, 2112 struct ath_descdma *dd, ath_bufhead *head, 2113 const char *name, int nbuf, int ndesc) 2114 { 2115 #define DS2PHYS(_dd, _ds) \ 2116 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2117 struct ifnet *ifp = &sc->sc_if; 2118 struct ath_desc *ds; 2119 struct ath_buf *bf; 2120 int i, bsize, error; 2121 2122 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2123 __func__, name, nbuf, ndesc); 2124 2125 dd->dd_name = name; 2126 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2127 2128 /* 2129 * Setup DMA descriptor area. 2130 */ 2131 error = bus_dma_tag_create(NULL, /* parent */ 2132 PAGE_SIZE, 0, /* alignment, bounds */ 2133 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 2134 BUS_SPACE_MAXADDR, /* highaddr */ 2135 NULL, NULL, /* filter, filterarg */ 2136 dd->dd_desc_len, /* maxsize */ 2137 1, /* nsegments */ 2138 BUS_SPACE_MAXADDR, /* maxsegsize */ 2139 BUS_DMA_ALLOCNOW, /* flags */ 2140 NULL, /* lockfunc */ 2141 NULL, /* lockarg */ 2142 &dd->dd_dmat); 2143 if (error != 0) { 2144 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 2145 return error; 2146 } 2147 2148 /* allocate descriptors */ 2149 error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2150 if (error != 0) { 2151 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2152 "error %u\n", dd->dd_name, error); 2153 goto fail0; 2154 } 2155 2156 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 2157 BUS_DMA_NOWAIT, &dd->dd_dmamap); 2158 if (error != 0) { 2159 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2160 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2161 goto fail1; 2162 } 2163 2164 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 2165 dd->dd_desc, dd->dd_desc_len, 2166 ath_load_cb, &dd->dd_desc_paddr, 2167 BUS_DMA_NOWAIT); 2168 if (error != 0) { 2169 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2170 dd->dd_name, error); 2171 goto fail2; 2172 } 2173 2174 ds = dd->dd_desc; 2175 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2176 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2177 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2178 2179 /* allocate rx buffers */ 2180 bsize = sizeof(struct ath_buf) * nbuf; 2181 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2182 if (bf == NULL) { 2183 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2184 dd->dd_name, bsize); 2185 goto fail3; 2186 } 2187 dd->dd_bufptr = bf; 2188 2189 STAILQ_INIT(head); 2190 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2191 bf->bf_desc = ds; 2192 bf->bf_daddr = DS2PHYS(dd, ds); 2193 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 2194 &bf->bf_dmamap); 2195 if (error != 0) { 2196 if_printf(ifp, "unable to create dmamap for %s " 2197 "buffer %u, error %u\n", dd->dd_name, i, error); 2198 ath_descdma_cleanup(sc, dd, head); 2199 return error; 2200 } 2201 STAILQ_INSERT_TAIL(head, bf, bf_list); 2202 } 2203 return 0; 2204 fail3: 2205 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2206 fail2: 2207 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2208 fail1: 2209 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2210 fail0: 2211 bus_dma_tag_destroy(dd->dd_dmat); 2212 memset(dd, 0, sizeof(*dd)); 2213 return error; 2214 #undef DS2PHYS 2215 } 2216 2217 static void 2218 ath_descdma_cleanup(struct ath_softc *sc, 2219 struct ath_descdma *dd, ath_bufhead *head) 2220 { 2221 struct ath_buf *bf; 2222 struct ieee80211_node *ni; 2223 2224 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2225 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 2226 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2227 bus_dma_tag_destroy(dd->dd_dmat); 2228 2229 STAILQ_FOREACH(bf, head, bf_list) { 2230 if (bf->bf_m) { 2231 m_freem(bf->bf_m); 2232 bf->bf_m = NULL; 2233 } 2234 if (bf->bf_dmamap != NULL) { 2235 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2236 bf->bf_dmamap = NULL; 2237 } 2238 ni = bf->bf_node; 2239 bf->bf_node = NULL; 2240 if (ni != NULL) { 2241 /* 2242 * Reclaim node reference. 2243 */ 2244 ieee80211_free_node(ni); 2245 } 2246 } 2247 2248 STAILQ_INIT(head); 2249 free(dd->dd_bufptr, M_ATHDEV); 2250 memset(dd, 0, sizeof(*dd)); 2251 } 2252 2253 static int 2254 ath_desc_alloc(struct ath_softc *sc) 2255 { 2256 int error; 2257 2258 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2259 "rx", ATH_RXBUF, 1); 2260 if (error != 0) 2261 return error; 2262 2263 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2264 "tx", ATH_TXBUF, ATH_TXDESC); 2265 if (error != 0) { 2266 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2267 return error; 2268 } 2269 2270 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2271 "beacon", 1, 1); 2272 if (error != 0) { 2273 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2274 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2275 return error; 2276 } 2277 return 0; 2278 } 2279 2280 static void 2281 ath_desc_free(struct ath_softc *sc) 2282 { 2283 2284 if (sc->sc_bdma.dd_desc_len != 0) 2285 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2286 if (sc->sc_txdma.dd_desc_len != 0) 2287 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2288 if (sc->sc_rxdma.dd_desc_len != 0) 2289 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2290 } 2291 2292 static struct ieee80211_node * 2293 ath_node_alloc(struct ieee80211_node_table *nt) 2294 { 2295 struct ieee80211com *ic = nt->nt_ic; 2296 struct ath_softc *sc = ic->ic_ifp->if_softc; 2297 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2298 struct ath_node *an; 2299 2300 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2301 if (an == NULL) { 2302 /* XXX stat+msg */ 2303 return NULL; 2304 } 2305 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2306 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 2307 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 2308 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 2309 ath_rate_node_init(sc, an); 2310 2311 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2312 return &an->an_node; 2313 } 2314 2315 static void 2316 ath_node_free(struct ieee80211_node *ni) 2317 { 2318 struct ieee80211com *ic = ni->ni_ic; 2319 struct ath_softc *sc = ic->ic_ifp->if_softc; 2320 2321 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2322 2323 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2324 sc->sc_node_free(ni); 2325 } 2326 2327 static u_int8_t 2328 ath_node_getrssi(const struct ieee80211_node *ni) 2329 { 2330 #define HAL_EP_RND(x, mul) \ 2331 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2332 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2333 int32_t rssi; 2334 2335 /* 2336 * When only one frame is received there will be no state in 2337 * avgrssi so fallback on the value recorded by the 802.11 layer. 2338 */ 2339 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2340 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2341 else 2342 rssi = ni->ni_rssi; 2343 /* NB: theoretically we shouldn't need this, but be paranoid */ 2344 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2345 #undef HAL_EP_RND 2346 } 2347 2348 static int 2349 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2350 { 2351 struct ath_hal *ah = sc->sc_ah; 2352 int error; 2353 struct mbuf *m; 2354 struct ath_desc *ds; 2355 2356 m = bf->bf_m; 2357 if (m == NULL) { 2358 /* 2359 * NB: by assigning a page to the rx dma buffer we 2360 * implicitly satisfy the Atheros requirement that 2361 * this buffer be cache-line-aligned and sized to be 2362 * multiple of the cache line size. Not doing this 2363 * causes weird stuff to happen (for the 5210 at least). 2364 */ 2365 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2366 if (m == NULL) { 2367 DPRINTF(sc, ATH_DEBUG_ANY, 2368 "%s: no mbuf/cluster\n", __func__); 2369 sc->sc_stats.ast_rx_nombuf++; 2370 return ENOMEM; 2371 } 2372 bf->bf_m = m; 2373 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2374 2375 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, 2376 bf->bf_dmamap, m, 2377 bf->bf_segs, &bf->bf_nseg, 2378 BUS_DMA_NOWAIT); 2379 if (error != 0) { 2380 DPRINTF(sc, ATH_DEBUG_ANY, 2381 "%s: bus_dmamap_load_mbuf_sg failed; error %d\n", 2382 __func__, error); 2383 sc->sc_stats.ast_rx_busdma++; 2384 return error; 2385 } 2386 KASSERT(bf->bf_nseg == 1, 2387 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2388 } 2389 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD); 2390 2391 /* 2392 * Setup descriptors. For receive we always terminate 2393 * the descriptor list with a self-linked entry so we'll 2394 * not get overrun under high load (as can happen with a 2395 * 5212 when ANI processing enables PHY error frames). 2396 * 2397 * To insure the last descriptor is self-linked we create 2398 * each descriptor as self-linked and add it to the end. As 2399 * each additional descriptor is added the previous self-linked 2400 * entry is ``fixed'' naturally. This should be safe even 2401 * if DMA is happening. When processing RX interrupts we 2402 * never remove/process the last, self-linked, entry on the 2403 * descriptor list. This insures the hardware always has 2404 * someplace to write a new frame. 2405 */ 2406 ds = bf->bf_desc; 2407 ds->ds_link = bf->bf_daddr; /* link to self */ 2408 ds->ds_data = bf->bf_segs[0].ds_addr; 2409 ath_hal_setuprxdesc(ah, ds 2410 , m->m_len /* buffer size */ 2411 , 0 2412 ); 2413 2414 if (sc->sc_rxlink != NULL) 2415 *sc->sc_rxlink = bf->bf_daddr; 2416 sc->sc_rxlink = &ds->ds_link; 2417 return 0; 2418 } 2419 2420 /* 2421 * Intercept management frames to collect beacon rssi data 2422 * and to do ibss merges. 2423 */ 2424 static void 2425 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2426 struct ieee80211_node *ni, 2427 int subtype, int rssi, u_int32_t rstamp) 2428 { 2429 struct ath_softc *sc = ic->ic_ifp->if_softc; 2430 2431 /* 2432 * Call up first so subsequent work can use information 2433 * potentially stored in the node (e.g. for ibss merge). 2434 */ 2435 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2436 switch (subtype) { 2437 case IEEE80211_FC0_SUBTYPE_BEACON: 2438 /* update rssi statistics for use by the hal */ 2439 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi); 2440 /* fall thru... */ 2441 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2442 if (ic->ic_opmode == IEEE80211_M_IBSS && 2443 ic->ic_state == IEEE80211_S_RUN) { 2444 struct ath_hal *ah = sc->sc_ah; 2445 /* XXX extend rstamp */ 2446 u_int64_t tsf = ath_hal_gettsf64(ah); 2447 2448 /* 2449 * Handle ibss merge as needed; check the tsf on the 2450 * frame before attempting the merge. The 802.11 spec 2451 * says the station should change it's bssid to match 2452 * the oldest station with the same ssid, where oldest 2453 * is determined by the tsf. Note that hardware 2454 * reconfiguration happens through callback to 2455 * ath_newstate as the state machine will be go 2456 * from RUN -> RUN when this happens. 2457 */ 2458 if (le64toh(ni->ni_tstamp.tsf) >= tsf) 2459 (void) ieee80211_ibss_merge(ic, ni); 2460 } 2461 break; 2462 } 2463 } 2464 2465 /* 2466 * Set the default antenna. 2467 */ 2468 static void 2469 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2470 { 2471 struct ath_hal *ah = sc->sc_ah; 2472 2473 /* XXX block beacon interrupts */ 2474 ath_hal_setdefantenna(ah, antenna); 2475 if (sc->sc_defant != antenna) 2476 sc->sc_stats.ast_ant_defswitch++; 2477 sc->sc_defant = antenna; 2478 sc->sc_rxotherant = 0; 2479 } 2480 2481 static void 2482 ath_rx_proc(void *arg, int npending) 2483 { 2484 #define PA2DESC(_sc, _pa) \ 2485 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 2486 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2487 struct ath_softc *sc = arg; 2488 struct ath_buf *bf; 2489 struct ieee80211com *ic = &sc->sc_ic; 2490 struct ifnet *ifp = &sc->sc_if; 2491 struct ath_hal *ah = sc->sc_ah; 2492 struct ath_desc *ds; 2493 struct mbuf *m; 2494 struct ieee80211_node *ni; 2495 struct ath_node *an; 2496 int len; 2497 u_int phyerr; 2498 HAL_STATUS status; 2499 2500 NET_LOCK_GIANT(); /* XXX */ 2501 2502 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 2503 do { 2504 bf = STAILQ_FIRST(&sc->sc_rxbuf); 2505 if (bf == NULL) { /* NB: shouldn't happen */ 2506 if_printf(ifp, "%s: no buffer!\n", __func__); 2507 break; 2508 } 2509 ds = bf->bf_desc; 2510 if (ds->ds_link == bf->bf_daddr) { 2511 /* NB: never process the self-linked entry at the end */ 2512 break; 2513 } 2514 m = bf->bf_m; 2515 if (m == NULL) { /* NB: shouldn't happen */ 2516 if_printf(ifp, "%s: no mbuf!\n", __func__); 2517 continue; 2518 } 2519 /* XXX sync descriptor memory */ 2520 /* 2521 * Must provide the virtual address of the current 2522 * descriptor, the physical address, and the virtual 2523 * address of the next descriptor in the h/w chain. 2524 * This allows the HAL to look ahead to see if the 2525 * hardware is done with a descriptor by checking the 2526 * done bit in the following descriptor and the address 2527 * of the current descriptor the DMA engine is working 2528 * on. All this is necessary because of our use of 2529 * a self-linked list to avoid rx overruns. 2530 */ 2531 status = ath_hal_rxprocdesc(ah, ds, 2532 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2533 #ifdef AR_DEBUG 2534 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 2535 ath_printrxbuf(bf, status == HAL_OK); 2536 #endif 2537 if (status == HAL_EINPROGRESS) 2538 break; 2539 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 2540 if (ds->ds_rxstat.rs_more) { 2541 /* 2542 * Frame spans multiple descriptors; this 2543 * cannot happen yet as we don't support 2544 * jumbograms. If not in monitor mode, 2545 * discard the frame. 2546 */ 2547 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2548 sc->sc_stats.ast_rx_toobig++; 2549 goto rx_next; 2550 } 2551 /* fall thru for monitor mode handling... */ 2552 } else if (ds->ds_rxstat.rs_status != 0) { 2553 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2554 sc->sc_stats.ast_rx_crcerr++; 2555 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2556 sc->sc_stats.ast_rx_fifoerr++; 2557 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2558 sc->sc_stats.ast_rx_phyerr++; 2559 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2560 sc->sc_stats.ast_rx_phy[phyerr]++; 2561 goto rx_next; 2562 } 2563 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 2564 /* 2565 * Decrypt error. If the error occurred 2566 * because there was no hardware key, then 2567 * let the frame through so the upper layers 2568 * can process it. This is necessary for 5210 2569 * parts which have no way to setup a ``clear'' 2570 * key cache entry. 2571 * 2572 * XXX do key cache faulting 2573 */ 2574 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 2575 goto rx_accept; 2576 sc->sc_stats.ast_rx_badcrypt++; 2577 } 2578 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 2579 sc->sc_stats.ast_rx_badmic++; 2580 /* 2581 * Do minimal work required to hand off 2582 * the 802.11 header for notifcation. 2583 */ 2584 /* XXX frag's and qos frames */ 2585 len = ds->ds_rxstat.rs_datalen; 2586 if (len >= sizeof (struct ieee80211_frame)) { 2587 bus_dmamap_sync(sc->sc_dmat, 2588 bf->bf_dmamap, 2589 BUS_DMASYNC_POSTREAD); 2590 ieee80211_notify_michael_failure(ic, 2591 mtod(m, struct ieee80211_frame *), 2592 sc->sc_splitmic ? 2593 ds->ds_rxstat.rs_keyix-32 : 2594 ds->ds_rxstat.rs_keyix 2595 ); 2596 } 2597 } 2598 ifp->if_ierrors++; 2599 /* 2600 * Reject error frames, we normally don't want 2601 * to see them in monitor mode (in monitor mode 2602 * allow through packets that have crypto problems). 2603 */ 2604 if ((ds->ds_rxstat.rs_status &~ 2605 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) || 2606 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 2607 goto rx_next; 2608 } 2609 rx_accept: 2610 /* 2611 * Sync and unmap the frame. At this point we're 2612 * committed to passing the mbuf somewhere so clear 2613 * bf_m; this means a new sk_buff must be allocated 2614 * when the rx descriptor is setup again to receive 2615 * another frame. 2616 */ 2617 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2618 BUS_DMASYNC_POSTREAD); 2619 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2620 bf->bf_m = NULL; 2621 2622 m->m_pkthdr.rcvif = ifp; 2623 len = ds->ds_rxstat.rs_datalen; 2624 m->m_pkthdr.len = m->m_len = len; 2625 2626 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 2627 2628 if (sc->sc_drvbpf) { 2629 u_int8_t rix; 2630 2631 /* 2632 * Discard anything shorter than an ack or cts. 2633 */ 2634 if (len < IEEE80211_ACK_LEN) { 2635 DPRINTF(sc, ATH_DEBUG_RECV, 2636 "%s: runt packet %d\n", 2637 __func__, len); 2638 sc->sc_stats.ast_rx_tooshort++; 2639 m_freem(m); 2640 goto rx_next; 2641 } 2642 rix = ds->ds_rxstat.rs_rate; 2643 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 2644 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 2645 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 2646 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 2647 /* XXX TSF */ 2648 2649 bpf_mtap2(sc->sc_drvbpf, 2650 &sc->sc_rx_th, sc->sc_rx_th_len, m); 2651 } 2652 2653 /* 2654 * From this point on we assume the frame is at least 2655 * as large as ieee80211_frame_min; verify that. 2656 */ 2657 if (len < IEEE80211_MIN_LEN) { 2658 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 2659 __func__, len); 2660 sc->sc_stats.ast_rx_tooshort++; 2661 m_freem(m); 2662 goto rx_next; 2663 } 2664 2665 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 2666 ieee80211_dump_pkt(mtod(m, caddr_t), len, 2667 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 2668 ds->ds_rxstat.rs_rssi); 2669 } 2670 2671 m_adj(m, -IEEE80211_CRC_LEN); 2672 2673 /* 2674 * Locate the node for sender, track state, and then 2675 * pass the (referenced) node up to the 802.11 layer 2676 * for its use. 2677 */ 2678 ni = ieee80211_find_rxnode(ic, 2679 mtod(m, const struct ieee80211_frame_min *)); 2680 2681 /* 2682 * Track rx rssi and do any rx antenna management. 2683 */ 2684 an = ATH_NODE(ni); 2685 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 2686 if (sc->sc_diversity) { 2687 /* 2688 * When using fast diversity, change the default rx 2689 * antenna if diversity chooses the other antenna 3 2690 * times in a row. 2691 */ 2692 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 2693 if (++sc->sc_rxotherant >= 3) 2694 ath_setdefantenna(sc, 2695 ds->ds_rxstat.rs_antenna); 2696 } else 2697 sc->sc_rxotherant = 0; 2698 } 2699 2700 /* 2701 * Send frame up for processing. 2702 */ 2703 ieee80211_input(ic, m, ni, 2704 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2705 2706 if (sc->sc_softled) { 2707 /* 2708 * Blink for any data frame. Otherwise do a 2709 * heartbeat-style blink when idle. The latter 2710 * is mainly for station mode where we depend on 2711 * periodic beacon frames to trigger the poll event. 2712 */ 2713 if (sc->sc_ipackets != ifp->if_ipackets) { 2714 sc->sc_ipackets = ifp->if_ipackets; 2715 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 2716 ath_led_event(sc, ATH_LED_RX); 2717 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 2718 ath_led_event(sc, ATH_LED_POLL); 2719 } 2720 2721 /* 2722 * Reclaim node reference. 2723 */ 2724 ieee80211_free_node(ni); 2725 rx_next: 2726 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2727 } while (ath_rxbuf_init(sc, bf) == 0); 2728 2729 /* rx signal state monitoring */ 2730 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats); 2731 2732 NET_UNLOCK_GIANT(); /* XXX */ 2733 #undef PA2DESC 2734 } 2735 2736 /* 2737 * Setup a h/w transmit queue. 2738 */ 2739 static struct ath_txq * 2740 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 2741 { 2742 #define N(a) (sizeof(a)/sizeof(a[0])) 2743 struct ath_hal *ah = sc->sc_ah; 2744 HAL_TXQ_INFO qi; 2745 int qnum; 2746 2747 memset(&qi, 0, sizeof(qi)); 2748 qi.tqi_subtype = subtype; 2749 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2750 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2751 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2752 /* 2753 * Enable interrupts only for EOL and DESC conditions. 2754 * We mark tx descriptors to receive a DESC interrupt 2755 * when a tx queue gets deep; otherwise waiting for the 2756 * EOL to reap descriptors. Note that this is done to 2757 * reduce interrupt load and this only defers reaping 2758 * descriptors, never transmitting frames. Aside from 2759 * reducing interrupts this also permits more concurrency. 2760 * The only potential downside is if the tx queue backs 2761 * up in which case the top half of the kernel may backup 2762 * due to a lack of tx descriptors. 2763 */ 2764 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; 2765 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 2766 if (qnum == -1) { 2767 /* 2768 * NB: don't print a message, this happens 2769 * normally on parts with too few tx queues 2770 */ 2771 return NULL; 2772 } 2773 if (qnum >= N(sc->sc_txq)) { 2774 device_printf(sc->sc_dev, 2775 "hal qnum %u out of range, max %zu!\n", 2776 qnum, N(sc->sc_txq)); 2777 ath_hal_releasetxqueue(ah, qnum); 2778 return NULL; 2779 } 2780 if (!ATH_TXQ_SETUP(sc, qnum)) { 2781 struct ath_txq *txq = &sc->sc_txq[qnum]; 2782 2783 txq->axq_qnum = qnum; 2784 txq->axq_depth = 0; 2785 txq->axq_intrcnt = 0; 2786 txq->axq_link = NULL; 2787 STAILQ_INIT(&txq->axq_q); 2788 ATH_TXQ_LOCK_INIT(sc, txq); 2789 sc->sc_txqsetup |= 1<<qnum; 2790 } 2791 return &sc->sc_txq[qnum]; 2792 #undef N 2793 } 2794 2795 /* 2796 * Setup a hardware data transmit queue for the specified 2797 * access control. The hal may not support all requested 2798 * queues in which case it will return a reference to a 2799 * previously setup queue. We record the mapping from ac's 2800 * to h/w queues for use by ath_tx_start and also track 2801 * the set of h/w queues being used to optimize work in the 2802 * transmit interrupt handler and related routines. 2803 */ 2804 static int 2805 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 2806 { 2807 #define N(a) (sizeof(a)/sizeof(a[0])) 2808 struct ath_txq *txq; 2809 2810 if (ac >= N(sc->sc_ac2q)) { 2811 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 2812 ac, N(sc->sc_ac2q)); 2813 return 0; 2814 } 2815 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 2816 if (txq != NULL) { 2817 sc->sc_ac2q[ac] = txq; 2818 return 1; 2819 } else 2820 return 0; 2821 #undef N 2822 } 2823 2824 /* 2825 * Update WME parameters for a transmit queue. 2826 */ 2827 static int 2828 ath_txq_update(struct ath_softc *sc, int ac) 2829 { 2830 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 2831 #define ATH_TXOP_TO_US(v) (v<<5) 2832 struct ieee80211com *ic = &sc->sc_ic; 2833 struct ath_txq *txq = sc->sc_ac2q[ac]; 2834 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2835 struct ath_hal *ah = sc->sc_ah; 2836 HAL_TXQ_INFO qi; 2837 2838 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 2839 qi.tqi_aifs = wmep->wmep_aifsn; 2840 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2841 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2842 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 2843 2844 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 2845 device_printf(sc->sc_dev, "unable to update hardware queue " 2846 "parameters for %s traffic!\n", 2847 ieee80211_wme_acnames[ac]); 2848 return 0; 2849 } else { 2850 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 2851 return 1; 2852 } 2853 #undef ATH_TXOP_TO_US 2854 #undef ATH_EXPONENT_TO_VALUE 2855 } 2856 2857 /* 2858 * Callback from the 802.11 layer to update WME parameters. 2859 */ 2860 static int 2861 ath_wme_update(struct ieee80211com *ic) 2862 { 2863 struct ath_softc *sc = ic->ic_ifp->if_softc; 2864 2865 return !ath_txq_update(sc, WME_AC_BE) || 2866 !ath_txq_update(sc, WME_AC_BK) || 2867 !ath_txq_update(sc, WME_AC_VI) || 2868 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 2869 } 2870 2871 /* 2872 * Reclaim resources for a setup queue. 2873 */ 2874 static void 2875 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 2876 { 2877 2878 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 2879 ATH_TXQ_LOCK_DESTROY(txq); 2880 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 2881 } 2882 2883 /* 2884 * Reclaim all tx queue resources. 2885 */ 2886 static void 2887 ath_tx_cleanup(struct ath_softc *sc) 2888 { 2889 int i; 2890 2891 ATH_TXBUF_LOCK_DESTROY(sc); 2892 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 2893 if (ATH_TXQ_SETUP(sc, i)) 2894 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 2895 } 2896 2897 static int 2898 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 2899 struct mbuf *m0) 2900 { 2901 struct ieee80211com *ic = &sc->sc_ic; 2902 struct ath_hal *ah = sc->sc_ah; 2903 struct ifnet *ifp = &sc->sc_if; 2904 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0; 2905 u_int8_t rix, txrate, ctsrate; 2906 u_int8_t cix = 0xff; /* NB: silence compiler */ 2907 struct ath_desc *ds, *ds0; 2908 struct ath_txq *txq; 2909 struct ieee80211_frame *wh; 2910 u_int subtype, flags, ctsduration; 2911 HAL_PKT_TYPE atype; 2912 const HAL_RATE_TABLE *rt; 2913 HAL_BOOL shortPreamble; 2914 struct ath_node *an; 2915 2916 wh = mtod(m0, struct ieee80211_frame *); 2917 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 2918 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2919 hdrlen = ieee80211_anyhdrsize(wh); 2920 /* 2921 * Packet length must not include any 2922 * pad bytes; deduct them here. 2923 */ 2924 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 2925 2926 if (iswep) { 2927 const struct ieee80211_cipher *cip; 2928 struct ieee80211_key *k; 2929 2930 /* 2931 * Construct the 802.11 header+trailer for an encrypted 2932 * frame. The only reason this can fail is because of an 2933 * unknown or unsupported cipher/key type. 2934 */ 2935 k = ieee80211_crypto_encap(ic, ni, m0); 2936 if (k == NULL) { 2937 /* 2938 * This can happen when the key is yanked after the 2939 * frame was queued. Just discard the frame; the 2940 * 802.11 layer counts failures and provides 2941 * debugging/diagnostics. 2942 */ 2943 return EIO; 2944 } 2945 /* 2946 * Adjust the packet + header lengths for the crypto 2947 * additions and calculate the h/w key index. When 2948 * a s/w mic is done the frame will have had any mic 2949 * added to it prior to entry so skb->len above will 2950 * account for it. Otherwise we need to add it to the 2951 * packet length. 2952 */ 2953 cip = k->wk_cipher; 2954 hdrlen += cip->ic_header; 2955 pktlen += cip->ic_header + cip->ic_trailer; 2956 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0) 2957 pktlen += cip->ic_miclen; 2958 keyix = k->wk_keyix; 2959 2960 /* packet header may have moved, reset our local pointer */ 2961 wh = mtod(m0, struct ieee80211_frame *); 2962 } else 2963 keyix = HAL_TXKEYIX_INVALID; 2964 2965 pktlen += IEEE80211_CRC_LEN; 2966 2967 /* 2968 * Load the DMA map so any coalescing is done. This 2969 * also calculates the number of descriptors we need. 2970 */ 2971 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 2972 bf->bf_segs, &bf->bf_nseg, 2973 BUS_DMA_NOWAIT); 2974 if (error == EFBIG) { 2975 /* XXX packet requires too many descriptors */ 2976 bf->bf_nseg = ATH_TXDESC+1; 2977 } else if (error != 0) { 2978 sc->sc_stats.ast_tx_busdma++; 2979 m_freem(m0); 2980 return error; 2981 } 2982 /* 2983 * Discard null packets and check for packets that 2984 * require too many TX descriptors. We try to convert 2985 * the latter to a cluster. 2986 */ 2987 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */ 2988 sc->sc_stats.ast_tx_linear++; 2989 m0 = m_defrag(m0, M_DONTWAIT); 2990 if (m0 == NULL) { 2991 sc->sc_stats.ast_tx_nombuf++; 2992 m_freem(m0); 2993 return ENOMEM; 2994 } 2995 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, 2996 bf->bf_segs, &bf->bf_nseg, 2997 BUS_DMA_NOWAIT); 2998 if (error != 0) { 2999 sc->sc_stats.ast_tx_busdma++; 3000 m_freem(m0); 3001 return error; 3002 } 3003 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3004 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3005 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3006 sc->sc_stats.ast_tx_nodata++; 3007 m_freem(m0); 3008 return EIO; 3009 } 3010 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3011 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); 3012 bf->bf_m = m0; 3013 bf->bf_node = ni; /* NB: held reference */ 3014 3015 /* setup descriptors */ 3016 ds = bf->bf_desc; 3017 rt = sc->sc_currates; 3018 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3019 3020 /* 3021 * NB: the 802.11 layer marks whether or not we should 3022 * use short preamble based on the current mode and 3023 * negotiated parameters. 3024 */ 3025 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3026 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 3027 shortPreamble = AH_TRUE; 3028 sc->sc_stats.ast_tx_shortpre++; 3029 } else { 3030 shortPreamble = AH_FALSE; 3031 } 3032 3033 an = ATH_NODE(ni); 3034 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3035 /* 3036 * Calculate Atheros packet type from IEEE80211 packet header, 3037 * setup for rate calculations, and select h/w transmit queue. 3038 */ 3039 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3040 case IEEE80211_FC0_TYPE_MGT: 3041 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3042 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3043 atype = HAL_PKT_TYPE_BEACON; 3044 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3045 atype = HAL_PKT_TYPE_PROBE_RESP; 3046 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3047 atype = HAL_PKT_TYPE_ATIM; 3048 else 3049 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3050 rix = 0; /* XXX lowest rate */ 3051 try0 = ATH_TXMAXTRY; 3052 if (shortPreamble) 3053 txrate = an->an_tx_mgtratesp; 3054 else 3055 txrate = an->an_tx_mgtrate; 3056 /* NB: force all management frames to highest queue */ 3057 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3058 /* NB: force all management frames to highest queue */ 3059 txq = sc->sc_ac2q[WME_AC_VO]; 3060 } else 3061 txq = sc->sc_ac2q[WME_AC_BE]; 3062 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3063 break; 3064 case IEEE80211_FC0_TYPE_CTL: 3065 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3066 rix = 0; /* XXX lowest rate */ 3067 try0 = ATH_TXMAXTRY; 3068 if (shortPreamble) 3069 txrate = an->an_tx_mgtratesp; 3070 else 3071 txrate = an->an_tx_mgtrate; 3072 /* NB: force all ctl frames to highest queue */ 3073 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3074 /* NB: force all ctl frames to highest queue */ 3075 txq = sc->sc_ac2q[WME_AC_VO]; 3076 } else 3077 txq = sc->sc_ac2q[WME_AC_BE]; 3078 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3079 break; 3080 case IEEE80211_FC0_TYPE_DATA: 3081 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3082 /* 3083 * Data frames; consult the rate control module. 3084 */ 3085 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3086 &rix, &try0, &txrate); 3087 sc->sc_txrate = txrate; /* for LED blinking */ 3088 /* 3089 * Default all non-QoS traffic to the background queue. 3090 */ 3091 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 3092 u_int pri = M_WME_GETAC(m0); 3093 txq = sc->sc_ac2q[pri]; 3094 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[pri].wmep_noackPolicy) { 3095 flags |= HAL_TXDESC_NOACK; 3096 sc->sc_stats.ast_tx_noack++; 3097 } 3098 } else 3099 txq = sc->sc_ac2q[WME_AC_BE]; 3100 break; 3101 default: 3102 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3103 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3104 /* XXX statistic */ 3105 m_freem(m0); 3106 return EIO; 3107 } 3108 3109 /* 3110 * When servicing one or more stations in power-save mode 3111 * multicast frames must be buffered until after the beacon. 3112 * We use the CAB queue for that. 3113 */ 3114 if (ismcast && ic->ic_ps_sta) { 3115 txq = sc->sc_cabq; 3116 /* XXX? more bit in 802.11 frame header */ 3117 } 3118 3119 /* 3120 * Calculate miscellaneous flags. 3121 */ 3122 if (ismcast) { 3123 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3124 sc->sc_stats.ast_tx_noack++; 3125 } else if (pktlen > ic->ic_rtsthreshold) { 3126 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3127 cix = rt->info[rix].controlRate; 3128 sc->sc_stats.ast_tx_rts++; 3129 } 3130 3131 /* 3132 * If 802.11g protection is enabled, determine whether 3133 * to use RTS/CTS or just CTS. Note that this is only 3134 * done for OFDM unicast frames. 3135 */ 3136 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3137 rt->info[rix].phy == IEEE80211_T_OFDM && 3138 (flags & HAL_TXDESC_NOACK) == 0) { 3139 /* XXX fragments must use CCK rates w/ protection */ 3140 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3141 flags |= HAL_TXDESC_RTSENA; 3142 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3143 flags |= HAL_TXDESC_CTSENA; 3144 cix = rt->info[sc->sc_protrix].controlRate; 3145 sc->sc_stats.ast_tx_protect++; 3146 } 3147 3148 /* 3149 * Calculate duration. This logically belongs in the 802.11 3150 * layer but it lacks sufficient information to calculate it. 3151 */ 3152 if ((flags & HAL_TXDESC_NOACK) == 0 && 3153 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3154 u_int16_t dur; 3155 /* 3156 * XXX not right with fragmentation. 3157 */ 3158 if (shortPreamble) 3159 dur = rt->info[rix].spAckDuration; 3160 else 3161 dur = rt->info[rix].lpAckDuration; 3162 *(u_int16_t *)wh->i_dur = htole16(dur); 3163 } 3164 3165 /* 3166 * Calculate RTS/CTS rate and duration if needed. 3167 */ 3168 ctsduration = 0; 3169 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3170 /* 3171 * CTS transmit rate is derived from the transmit rate 3172 * by looking in the h/w rate table. We must also factor 3173 * in whether or not a short preamble is to be used. 3174 */ 3175 /* NB: cix is set above where RTS/CTS is enabled */ 3176 KASSERT(cix != 0xff, ("cix not setup")); 3177 ctsrate = rt->info[cix].rateCode; 3178 /* 3179 * Compute the transmit duration based on the frame 3180 * size and the size of an ACK frame. We call into the 3181 * HAL to do the computation since it depends on the 3182 * characteristics of the actual PHY being used. 3183 * 3184 * NB: CTS is assumed the same size as an ACK so we can 3185 * use the precalculated ACK durations. 3186 */ 3187 if (shortPreamble) { 3188 ctsrate |= rt->info[cix].shortPreamble; 3189 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3190 ctsduration += rt->info[cix].spAckDuration; 3191 ctsduration += ath_hal_computetxtime(ah, 3192 rt, pktlen, rix, AH_TRUE); 3193 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3194 ctsduration += rt->info[cix].spAckDuration; 3195 } else { 3196 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3197 ctsduration += rt->info[cix].lpAckDuration; 3198 ctsduration += ath_hal_computetxtime(ah, 3199 rt, pktlen, rix, AH_FALSE); 3200 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3201 ctsduration += rt->info[cix].lpAckDuration; 3202 } 3203 /* 3204 * Must disable multi-rate retry when using RTS/CTS. 3205 */ 3206 try0 = ATH_TXMAXTRY; 3207 } else 3208 ctsrate = 0; 3209 3210 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3211 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len, 3212 sc->sc_hwmap[txrate].ieeerate, -1); 3213 3214 if (ic->ic_rawbpf) 3215 bpf_mtap(ic->ic_rawbpf, m0); 3216 if (sc->sc_drvbpf) { 3217 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3218 if (iswep) 3219 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3220 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3221 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3222 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3223 3224 bpf_mtap2(sc->sc_drvbpf, 3225 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3226 } 3227 3228 /* 3229 * Determine if a tx interrupt should be generated for 3230 * this descriptor. We take a tx interrupt to reap 3231 * descriptors when the h/w hits an EOL condition or 3232 * when the descriptor is specifically marked to generate 3233 * an interrupt. We periodically mark descriptors in this 3234 * way to insure timely replenishing of the supply needed 3235 * for sending frames. Defering interrupts reduces system 3236 * load and potentially allows more concurrent work to be 3237 * done but if done to aggressively can cause senders to 3238 * backup. 3239 * 3240 * NB: use >= to deal with sc_txintrperiod changing 3241 * dynamically through sysctl. 3242 */ 3243 if (flags & HAL_TXDESC_INTREQ) { 3244 txq->axq_intrcnt = 0; 3245 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3246 flags |= HAL_TXDESC_INTREQ; 3247 txq->axq_intrcnt = 0; 3248 } 3249 3250 /* 3251 * Formulate first tx descriptor with tx controls. 3252 */ 3253 /* XXX check return value? */ 3254 ath_hal_setuptxdesc(ah, ds 3255 , pktlen /* packet length */ 3256 , hdrlen /* header length */ 3257 , atype /* Atheros packet type */ 3258 , ni->ni_txpower /* txpower */ 3259 , txrate, try0 /* series 0 rate/tries */ 3260 , keyix /* key cache index */ 3261 , sc->sc_txantenna /* antenna mode */ 3262 , flags /* flags */ 3263 , ctsrate /* rts/cts rate */ 3264 , ctsduration /* rts/cts duration */ 3265 ); 3266 /* 3267 * Setup the multi-rate retry state only when we're 3268 * going to use it. This assumes ath_hal_setuptxdesc 3269 * initializes the descriptors (so we don't have to) 3270 * when the hardware supports multi-rate retry and 3271 * we don't use it. 3272 */ 3273 if (try0 != ATH_TXMAXTRY) 3274 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 3275 3276 /* 3277 * Fillin the remainder of the descriptor info. 3278 */ 3279 ds0 = ds; 3280 for (i = 0; i < bf->bf_nseg; i++, ds++) { 3281 ds->ds_data = bf->bf_segs[i].ds_addr; 3282 if (i == bf->bf_nseg - 1) 3283 ds->ds_link = 0; 3284 else 3285 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 3286 ath_hal_filltxdesc(ah, ds 3287 , bf->bf_segs[i].ds_len /* segment length */ 3288 , i == 0 /* first segment */ 3289 , i == bf->bf_nseg - 1 /* last segment */ 3290 , ds0 /* first descriptor */ 3291 ); 3292 DPRINTF(sc, ATH_DEBUG_XMIT, 3293 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 3294 __func__, i, ds->ds_link, ds->ds_data, 3295 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 3296 } 3297 #if 0 3298 if ((flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) && 3299 !ath_hal_updateCTSForBursting(ah, ds 3300 , txq->axq_linkbuf != NULL ? 3301 txq->axq_linkbuf->bf_desc : NULL 3302 , txq->axq_lastdsWithCTS 3303 , txq->axq_gatingds 3304 , IEEE80211_TXOP_TO_US(ic->ic_chanParams.cap_wmeParams[skb->priority].wmep_txopLimit) 3305 , ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE))) { 3306 ATH_TXQ_LOCK(txq); 3307 txq->axq_lastdsWithCTS = ds; 3308 /* set gating Desc to final desc */ 3309 txq->axq_gatingds = (struct ath_desc *)txq->axq_link; 3310 ATH_TXQ_UNLOCK(txq); 3311 } 3312 #endif 3313 /* 3314 * Insert the frame on the outbound list and 3315 * pass it on to the hardware. 3316 */ 3317 ATH_TXQ_LOCK(txq); 3318 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 3319 if (txq->axq_link == NULL) { 3320 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 3321 DPRINTF(sc, ATH_DEBUG_XMIT, 3322 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, 3323 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, 3324 txq->axq_depth); 3325 } else { 3326 *txq->axq_link = bf->bf_daddr; 3327 DPRINTF(sc, ATH_DEBUG_XMIT, 3328 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 3329 txq->axq_qnum, txq->axq_link, 3330 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 3331 } 3332 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 3333 ATH_TXQ_UNLOCK(txq); 3334 3335 /* 3336 * The CAB queue is started from the SWBA handler since 3337 * frames only go out on DTIM and to avoid possible races. 3338 */ 3339 if (txq != sc->sc_cabq) 3340 ath_hal_txstart(ah, txq->axq_qnum); 3341 return 0; 3342 } 3343 3344 /* 3345 * Process completed xmit descriptors from the specified queue. 3346 */ 3347 static void 3348 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 3349 { 3350 struct ath_hal *ah = sc->sc_ah; 3351 struct ieee80211com *ic = &sc->sc_ic; 3352 struct ath_buf *bf; 3353 struct ath_desc *ds; 3354 struct ieee80211_node *ni; 3355 struct ath_node *an; 3356 int sr, lr, pri; 3357 HAL_STATUS status; 3358 3359 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3360 __func__, txq->axq_qnum, 3361 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3362 txq->axq_link); 3363 for (;;) { 3364 ATH_TXQ_LOCK(txq); 3365 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3366 bf = STAILQ_FIRST(&txq->axq_q); 3367 if (bf == NULL) { 3368 txq->axq_link = NULL; 3369 ATH_TXQ_UNLOCK(txq); 3370 break; 3371 } 3372 /* only the last descriptor is needed */ 3373 ds = &bf->bf_desc[bf->bf_nseg - 1]; 3374 status = ath_hal_txprocdesc(ah, ds); 3375 #ifdef AR_DEBUG 3376 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3377 ath_printtxbuf(bf, status == HAL_OK); 3378 #endif 3379 if (status == HAL_EINPROGRESS) { 3380 ATH_TXQ_UNLOCK(txq); 3381 break; 3382 } 3383 #if 0 3384 if (bf->bf_desc == txq->axq_lastdsWithCTS) 3385 txq->axq_lastdsWithCTS = NULL; 3386 if (ds == txq->axq_gatingds) 3387 txq->axq_gatingds = NULL; 3388 #endif 3389 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3390 ATH_TXQ_UNLOCK(txq); 3391 3392 ni = bf->bf_node; 3393 if (ni != NULL) { 3394 an = ATH_NODE(ni); 3395 if (ds->ds_txstat.ts_status == 0) { 3396 u_int8_t txant = ds->ds_txstat.ts_antenna; 3397 sc->sc_stats.ast_ant_tx[txant]++; 3398 sc->sc_ant_tx[txant]++; 3399 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 3400 sc->sc_stats.ast_tx_altrate++; 3401 sc->sc_stats.ast_tx_rssi = 3402 ds->ds_txstat.ts_rssi; 3403 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi, 3404 ds->ds_txstat.ts_rssi); 3405 pri = M_WME_GETAC(bf->bf_m); 3406 if (pri >= WME_AC_VO) 3407 ic->ic_wme.wme_hipri_traffic++; 3408 ni->ni_inact = ni->ni_inact_reload; 3409 } else { 3410 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 3411 sc->sc_stats.ast_tx_xretries++; 3412 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 3413 sc->sc_stats.ast_tx_fifoerr++; 3414 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 3415 sc->sc_stats.ast_tx_filtered++; 3416 } 3417 sr = ds->ds_txstat.ts_shortretry; 3418 lr = ds->ds_txstat.ts_longretry; 3419 sc->sc_stats.ast_tx_shortretry += sr; 3420 sc->sc_stats.ast_tx_longretry += lr; 3421 /* 3422 * Hand the descriptor to the rate control algorithm. 3423 */ 3424 ath_rate_tx_complete(sc, an, ds); 3425 /* 3426 * Reclaim reference to node. 3427 * 3428 * NB: the node may be reclaimed here if, for example 3429 * this is a DEAUTH message that was sent and the 3430 * node was timed out due to inactivity. 3431 */ 3432 ieee80211_free_node(ni); 3433 } 3434 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3435 BUS_DMASYNC_POSTWRITE); 3436 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3437 m_freem(bf->bf_m); 3438 bf->bf_m = NULL; 3439 bf->bf_node = NULL; 3440 3441 ATH_TXBUF_LOCK(sc); 3442 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3443 ATH_TXBUF_UNLOCK(sc); 3444 } 3445 } 3446 3447 /* 3448 * Deferred processing of transmit interrupt; special-cased 3449 * for a single hardware transmit queue (e.g. 5210 and 5211). 3450 */ 3451 static void 3452 ath_tx_proc_q0(void *arg, int npending) 3453 { 3454 struct ath_softc *sc = arg; 3455 struct ifnet *ifp = &sc->sc_if; 3456 3457 ath_tx_processq(sc, &sc->sc_txq[0]); 3458 ath_tx_processq(sc, sc->sc_cabq); 3459 ifp->if_flags &= ~IFF_OACTIVE; 3460 sc->sc_tx_timer = 0; 3461 3462 if (sc->sc_softled) 3463 ath_led_event(sc, ATH_LED_TX); 3464 3465 ath_start(ifp); 3466 } 3467 3468 /* 3469 * Deferred processing of transmit interrupt; special-cased 3470 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3471 */ 3472 static void 3473 ath_tx_proc_q0123(void *arg, int npending) 3474 { 3475 struct ath_softc *sc = arg; 3476 struct ifnet *ifp = &sc->sc_if; 3477 3478 /* 3479 * Process each active queue. 3480 */ 3481 ath_tx_processq(sc, &sc->sc_txq[0]); 3482 ath_tx_processq(sc, &sc->sc_txq[1]); 3483 ath_tx_processq(sc, &sc->sc_txq[2]); 3484 ath_tx_processq(sc, &sc->sc_txq[3]); 3485 ath_tx_processq(sc, sc->sc_cabq); 3486 3487 ifp->if_flags &= ~IFF_OACTIVE; 3488 sc->sc_tx_timer = 0; 3489 3490 if (sc->sc_softled) 3491 ath_led_event(sc, ATH_LED_TX); 3492 3493 ath_start(ifp); 3494 } 3495 3496 /* 3497 * Deferred processing of transmit interrupt. 3498 */ 3499 static void 3500 ath_tx_proc(void *arg, int npending) 3501 { 3502 struct ath_softc *sc = arg; 3503 struct ifnet *ifp = &sc->sc_if; 3504 int i; 3505 3506 /* 3507 * Process each active queue. 3508 */ 3509 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */ 3510 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3511 if (ATH_TXQ_SETUP(sc, i)) 3512 ath_tx_processq(sc, &sc->sc_txq[i]); 3513 3514 ifp->if_flags &= ~IFF_OACTIVE; 3515 sc->sc_tx_timer = 0; 3516 3517 if (sc->sc_softled) 3518 ath_led_event(sc, ATH_LED_TX); 3519 3520 ath_start(ifp); 3521 } 3522 3523 static void 3524 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3525 { 3526 struct ath_hal *ah = sc->sc_ah; 3527 struct ieee80211_node *ni; 3528 struct ath_buf *bf; 3529 3530 /* 3531 * NB: this assumes output has been stopped and 3532 * we do not need to block ath_tx_tasklet 3533 */ 3534 for (;;) { 3535 ATH_TXQ_LOCK(txq); 3536 bf = STAILQ_FIRST(&txq->axq_q); 3537 if (bf == NULL) { 3538 txq->axq_link = NULL; 3539 ATH_TXQ_UNLOCK(txq); 3540 break; 3541 } 3542 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3543 ATH_TXQ_UNLOCK(txq); 3544 #ifdef AR_DEBUG 3545 if (sc->sc_debug & ATH_DEBUG_RESET) 3546 ath_printtxbuf(bf, 3547 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 3548 #endif /* AR_DEBUG */ 3549 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3550 m_freem(bf->bf_m); 3551 bf->bf_m = NULL; 3552 ni = bf->bf_node; 3553 bf->bf_node = NULL; 3554 if (ni != NULL) { 3555 /* 3556 * Reclaim node reference. 3557 */ 3558 ieee80211_free_node(ni); 3559 } 3560 ATH_TXBUF_LOCK(sc); 3561 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3562 ATH_TXBUF_UNLOCK(sc); 3563 } 3564 } 3565 3566 static void 3567 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 3568 { 3569 struct ath_hal *ah = sc->sc_ah; 3570 3571 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 3572 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 3573 __func__, txq->axq_qnum, 3574 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 3575 txq->axq_link); 3576 } 3577 3578 /* 3579 * Drain the transmit queues and reclaim resources. 3580 */ 3581 static void 3582 ath_draintxq(struct ath_softc *sc) 3583 { 3584 struct ath_hal *ah = sc->sc_ah; 3585 struct ifnet *ifp = &sc->sc_if; 3586 int i; 3587 3588 /* XXX return value */ 3589 if (!sc->sc_invalid) { 3590 /* don't touch the hardware if marked invalid */ 3591 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 3592 DPRINTF(sc, ATH_DEBUG_RESET, 3593 "%s: beacon queue %p\n", __func__, 3594 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 3595 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3596 if (ATH_TXQ_SETUP(sc, i)) 3597 ath_tx_stopdma(sc, &sc->sc_txq[i]); 3598 } 3599 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3600 if (ATH_TXQ_SETUP(sc, i)) 3601 ath_tx_draintxq(sc, &sc->sc_txq[i]); 3602 ifp->if_flags &= ~IFF_OACTIVE; 3603 sc->sc_tx_timer = 0; 3604 } 3605 3606 /* 3607 * Disable the receive h/w in preparation for a reset. 3608 */ 3609 static void 3610 ath_stoprecv(struct ath_softc *sc) 3611 { 3612 #define PA2DESC(_sc, _pa) \ 3613 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 3614 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3615 struct ath_hal *ah = sc->sc_ah; 3616 3617 ath_hal_stoppcurecv(ah); /* disable PCU */ 3618 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 3619 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 3620 DELAY(3000); /* 3ms is long enough for 1 frame */ 3621 #ifdef AR_DEBUG 3622 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 3623 struct ath_buf *bf; 3624 3625 printf("%s: rx queue %p, link %p\n", __func__, 3626 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 3627 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3628 struct ath_desc *ds = bf->bf_desc; 3629 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 3630 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 3631 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 3632 ath_printrxbuf(bf, status == HAL_OK); 3633 } 3634 } 3635 #endif 3636 sc->sc_rxlink = NULL; /* just in case */ 3637 #undef PA2DESC 3638 } 3639 3640 /* 3641 * Enable the receive h/w following a reset. 3642 */ 3643 static int 3644 ath_startrecv(struct ath_softc *sc) 3645 { 3646 struct ath_hal *ah = sc->sc_ah; 3647 struct ath_buf *bf; 3648 3649 sc->sc_rxlink = NULL; 3650 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3651 int error = ath_rxbuf_init(sc, bf); 3652 if (error != 0) { 3653 DPRINTF(sc, ATH_DEBUG_RECV, 3654 "%s: ath_rxbuf_init failed %d\n", 3655 __func__, error); 3656 return error; 3657 } 3658 } 3659 3660 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3661 ath_hal_putrxbuf(ah, bf->bf_daddr); 3662 ath_hal_rxena(ah); /* enable recv descriptors */ 3663 ath_mode_init(sc); /* set filters, etc. */ 3664 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 3665 return 0; 3666 } 3667 3668 /* 3669 * Update internal state after a channel change. 3670 */ 3671 static void 3672 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 3673 { 3674 struct ieee80211com *ic = &sc->sc_ic; 3675 enum ieee80211_phymode mode; 3676 u_int16_t flags; 3677 3678 /* 3679 * Change channels and update the h/w rate map 3680 * if we're switching; e.g. 11a to 11b/g. 3681 */ 3682 mode = ieee80211_chan2mode(ic, chan); 3683 if (mode != sc->sc_curmode) 3684 ath_setcurmode(sc, mode); 3685 /* 3686 * Update BPF state. NB: ethereal et. al. don't handle 3687 * merged flags well so pick a unique mode for their use. 3688 */ 3689 if (IEEE80211_IS_CHAN_A(chan)) 3690 flags = IEEE80211_CHAN_A; 3691 /* XXX 11g schizophrenia */ 3692 else if (IEEE80211_IS_CHAN_G(chan) || 3693 IEEE80211_IS_CHAN_PUREG(chan)) 3694 flags = IEEE80211_CHAN_G; 3695 else 3696 flags = IEEE80211_CHAN_B; 3697 if (IEEE80211_IS_CHAN_T(chan)) 3698 flags |= IEEE80211_CHAN_TURBO; 3699 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 3700 htole16(chan->ic_freq); 3701 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 3702 htole16(flags); 3703 } 3704 3705 /* 3706 * Set/change channels. If the channel is really being changed, 3707 * it's done by reseting the chip. To accomplish this we must 3708 * first cleanup any pending DMA, then restart stuff after a la 3709 * ath_init. 3710 */ 3711 static int 3712 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 3713 { 3714 struct ath_hal *ah = sc->sc_ah; 3715 struct ieee80211com *ic = &sc->sc_ic; 3716 HAL_CHANNEL hchan; 3717 3718 /* 3719 * Convert to a HAL channel description with 3720 * the flags constrained to reflect the current 3721 * operating mode. 3722 */ 3723 hchan.channel = chan->ic_freq; 3724 hchan.channelFlags = ath_chan2flags(ic, chan); 3725 3726 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n", 3727 __func__, 3728 ath_hal_mhz2ieee(sc->sc_curchan.channel, 3729 sc->sc_curchan.channelFlags), 3730 sc->sc_curchan.channel, 3731 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel); 3732 if (hchan.channel != sc->sc_curchan.channel || 3733 hchan.channelFlags != sc->sc_curchan.channelFlags) { 3734 HAL_STATUS status; 3735 3736 /* 3737 * To switch channels clear any pending DMA operations; 3738 * wait long enough for the RX fifo to drain, reset the 3739 * hardware at the new frequency, and then re-enable 3740 * the relevant bits of the h/w. 3741 */ 3742 ath_hal_intrset(ah, 0); /* disable interrupts */ 3743 ath_draintxq(sc); /* clear pending tx frames */ 3744 ath_stoprecv(sc); /* turn off frame recv */ 3745 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 3746 if_printf(ic->ic_ifp, "ath_chan_set: unable to reset " 3747 "channel %u (%u Mhz)\n", 3748 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 3749 return EIO; 3750 } 3751 sc->sc_curchan = hchan; 3752 ath_update_txpow(sc); /* update tx power state */ 3753 3754 /* 3755 * Re-enable rx framework. 3756 */ 3757 if (ath_startrecv(sc) != 0) { 3758 if_printf(ic->ic_ifp, 3759 "ath_chan_set: unable to restart recv logic\n"); 3760 return EIO; 3761 } 3762 3763 /* 3764 * Change channels and update the h/w rate map 3765 * if we're switching; e.g. 11a to 11b/g. 3766 */ 3767 ic->ic_ibss_chan = chan; 3768 ath_chan_change(sc, chan); 3769 3770 /* 3771 * Re-enable interrupts. 3772 */ 3773 ath_hal_intrset(ah, sc->sc_imask); 3774 } 3775 return 0; 3776 } 3777 3778 static void 3779 ath_next_scan(void *arg) 3780 { 3781 struct ath_softc *sc = arg; 3782 struct ieee80211com *ic = &sc->sc_ic; 3783 3784 if (ic->ic_state == IEEE80211_S_SCAN) 3785 ieee80211_next_scan(ic); 3786 } 3787 3788 /* 3789 * Periodically recalibrate the PHY to account 3790 * for temperature/environment changes. 3791 */ 3792 static void 3793 ath_calibrate(void *arg) 3794 { 3795 struct ath_softc *sc = arg; 3796 struct ath_hal *ah = sc->sc_ah; 3797 3798 sc->sc_stats.ast_per_cal++; 3799 3800 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n", 3801 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags); 3802 3803 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 3804 /* 3805 * Rfgain is out of bounds, reset the chip 3806 * to load new gain values. 3807 */ 3808 sc->sc_stats.ast_per_rfgain++; 3809 ath_reset(&sc->sc_if); 3810 } 3811 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) { 3812 DPRINTF(sc, ATH_DEBUG_ANY, 3813 "%s: calibration of channel %u failed\n", 3814 __func__, sc->sc_curchan.channel); 3815 sc->sc_stats.ast_per_calfail++; 3816 } 3817 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc); 3818 } 3819 3820 static int 3821 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 3822 { 3823 struct ifnet *ifp = ic->ic_ifp; 3824 struct ath_softc *sc = ifp->if_softc; 3825 struct ath_hal *ah = sc->sc_ah; 3826 struct ieee80211_node *ni; 3827 int i, error; 3828 const u_int8_t *bssid; 3829 u_int32_t rfilt; 3830 static const HAL_LED_STATE leds[] = { 3831 HAL_LED_INIT, /* IEEE80211_S_INIT */ 3832 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 3833 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 3834 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 3835 HAL_LED_RUN, /* IEEE80211_S_RUN */ 3836 }; 3837 3838 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 3839 ieee80211_state_name[ic->ic_state], 3840 ieee80211_state_name[nstate]); 3841 3842 callout_stop(&sc->sc_scan_ch); 3843 callout_stop(&sc->sc_cal_ch); 3844 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 3845 3846 if (nstate == IEEE80211_S_INIT) { 3847 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 3848 /* 3849 * NB: disable interrupts so we don't rx frames. 3850 */ 3851 ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL); 3852 /* 3853 * Notify the rate control algorithm. 3854 */ 3855 ath_rate_newstate(sc, nstate); 3856 goto done; 3857 } 3858 ni = ic->ic_bss; 3859 error = ath_chan_set(sc, ni->ni_chan); 3860 if (error != 0) 3861 goto bad; 3862 rfilt = ath_calcrxfilter(sc, nstate); 3863 if (nstate == IEEE80211_S_SCAN) 3864 bssid = ifp->if_broadcastaddr; 3865 else 3866 bssid = ni->ni_bssid; 3867 ath_hal_setrxfilter(ah, rfilt); 3868 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 3869 __func__, rfilt, ether_sprintf(bssid)); 3870 3871 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 3872 ath_hal_setassocid(ah, bssid, ni->ni_associd); 3873 else 3874 ath_hal_setassocid(ah, bssid, 0); 3875 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 3876 for (i = 0; i < IEEE80211_WEP_NKID; i++) 3877 if (ath_hal_keyisvalid(ah, i)) 3878 ath_hal_keysetmac(ah, i, bssid); 3879 } 3880 3881 /* 3882 * Notify the rate control algorithm so rates 3883 * are setup should ath_beacon_alloc be called. 3884 */ 3885 ath_rate_newstate(sc, nstate); 3886 3887 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3888 /* nothing to do */; 3889 } else if (nstate == IEEE80211_S_RUN) { 3890 DPRINTF(sc, ATH_DEBUG_STATE, 3891 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 3892 "capinfo=0x%04x chan=%d\n" 3893 , __func__ 3894 , ic->ic_flags 3895 , ni->ni_intval 3896 , ether_sprintf(ni->ni_bssid) 3897 , ni->ni_capinfo 3898 , ieee80211_chan2ieee(ic, ni->ni_chan)); 3899 3900 /* 3901 * Allocate and setup the beacon frame for AP or adhoc mode. 3902 */ 3903 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3904 ic->ic_opmode == IEEE80211_M_IBSS) { 3905 /* 3906 * Stop any previous beacon DMA. This may be 3907 * necessary, for example, when an ibss merge 3908 * causes reconfiguration; there will be a state 3909 * transition from RUN->RUN that means we may 3910 * be called with beacon transmission active. 3911 */ 3912 ath_hal_stoptxdma(ah, sc->sc_bhalq); 3913 ath_beacon_free(sc); 3914 error = ath_beacon_alloc(sc, ni); 3915 if (error != 0) 3916 goto bad; 3917 } 3918 3919 /* 3920 * Configure the beacon and sleep timers. 3921 */ 3922 ath_beacon_config(sc); 3923 } else { 3924 ath_hal_intrset(ah, 3925 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 3926 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 3927 } 3928 done: 3929 /* 3930 * Invoke the parent method to complete the work. 3931 */ 3932 error = sc->sc_newstate(ic, nstate, arg); 3933 /* 3934 * Finally, start any timers. 3935 */ 3936 if (nstate == IEEE80211_S_RUN) { 3937 /* start periodic recalibration timer */ 3938 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, 3939 ath_calibrate, sc); 3940 } else if (nstate == IEEE80211_S_SCAN) { 3941 /* start ap/neighbor scan timer */ 3942 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 3943 ath_next_scan, sc); 3944 } 3945 bad: 3946 return error; 3947 } 3948 3949 /* 3950 * Setup driver-specific state for a newly associated node. 3951 * Note that we're called also on a re-associate, the isnew 3952 * param tells us if this is the first time or not. 3953 */ 3954 static void 3955 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 3956 { 3957 struct ath_softc *sc = ic->ic_ifp->if_softc; 3958 3959 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 3960 } 3961 3962 static int 3963 ath_getchannels(struct ath_softc *sc, u_int cc, 3964 HAL_BOOL outdoor, HAL_BOOL xchanmode) 3965 { 3966 struct ieee80211com *ic = &sc->sc_ic; 3967 struct ifnet *ifp = &sc->sc_if; 3968 struct ath_hal *ah = sc->sc_ah; 3969 HAL_CHANNEL *chans; 3970 int i, ix, nchan; 3971 3972 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 3973 M_TEMP, M_NOWAIT); 3974 if (chans == NULL) { 3975 if_printf(ifp, "unable to allocate channel table\n"); 3976 return ENOMEM; 3977 } 3978 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 3979 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 3980 u_int32_t rd; 3981 3982 ath_hal_getregdomain(ah, &rd); 3983 if_printf(ifp, "unable to collect channel list from hal; " 3984 "regdomain likely %u country code %u\n", rd, cc); 3985 free(chans, M_TEMP); 3986 return EINVAL; 3987 } 3988 3989 /* 3990 * Convert HAL channels to ieee80211 ones and insert 3991 * them in the table according to their channel number. 3992 */ 3993 for (i = 0; i < nchan; i++) { 3994 HAL_CHANNEL *c = &chans[i]; 3995 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 3996 if (ix > IEEE80211_CHAN_MAX) { 3997 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 3998 ix, c->channel, c->channelFlags); 3999 continue; 4000 } 4001 /* NB: flags are known to be compatible */ 4002 if (ic->ic_channels[ix].ic_freq == 0) { 4003 ic->ic_channels[ix].ic_freq = c->channel; 4004 ic->ic_channels[ix].ic_flags = c->channelFlags; 4005 } else { 4006 /* channels overlap; e.g. 11g and 11b */ 4007 ic->ic_channels[ix].ic_flags |= c->channelFlags; 4008 } 4009 } 4010 free(chans, M_TEMP); 4011 return 0; 4012 } 4013 4014 static void 4015 ath_led_done(void *arg) 4016 { 4017 struct ath_softc *sc = arg; 4018 4019 sc->sc_blinking = 0; 4020 } 4021 4022 /* 4023 * Turn the LED off: flip the pin and then set a timer so no 4024 * update will happen for the specified duration. 4025 */ 4026 static void 4027 ath_led_off(void *arg) 4028 { 4029 struct ath_softc *sc = arg; 4030 4031 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4032 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4033 } 4034 4035 /* 4036 * Blink the LED according to the specified on/off times. 4037 */ 4038 static void 4039 ath_led_blink(struct ath_softc *sc, int on, int off) 4040 { 4041 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4042 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4043 sc->sc_blinking = 1; 4044 sc->sc_ledoff = off; 4045 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4046 } 4047 4048 static void 4049 ath_led_event(struct ath_softc *sc, int event) 4050 { 4051 4052 sc->sc_ledevent = ticks; /* time of last event */ 4053 if (sc->sc_blinking) /* don't interrupt active blink */ 4054 return; 4055 switch (event) { 4056 case ATH_LED_POLL: 4057 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4058 sc->sc_hwmap[0].ledoff); 4059 break; 4060 case ATH_LED_TX: 4061 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4062 sc->sc_hwmap[sc->sc_txrate].ledoff); 4063 break; 4064 case ATH_LED_RX: 4065 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 4066 sc->sc_hwmap[sc->sc_rxrate].ledoff); 4067 break; 4068 } 4069 } 4070 4071 static void 4072 ath_update_txpow(struct ath_softc *sc) 4073 { 4074 struct ieee80211com *ic = &sc->sc_ic; 4075 struct ath_hal *ah = sc->sc_ah; 4076 u_int32_t txpow; 4077 4078 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 4079 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 4080 /* read back in case value is clamped */ 4081 ath_hal_gettxpowlimit(ah, &txpow); 4082 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 4083 } 4084 /* 4085 * Fetch max tx power level for status requests. 4086 */ 4087 ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 4088 ic->ic_bss->ni_txpower = txpow; 4089 } 4090 4091 static int 4092 ath_rate_setup(struct ath_softc *sc, u_int mode) 4093 { 4094 struct ath_hal *ah = sc->sc_ah; 4095 struct ieee80211com *ic = &sc->sc_ic; 4096 const HAL_RATE_TABLE *rt; 4097 struct ieee80211_rateset *rs; 4098 int i, maxrates; 4099 4100 switch (mode) { 4101 case IEEE80211_MODE_11A: 4102 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 4103 break; 4104 case IEEE80211_MODE_11B: 4105 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 4106 break; 4107 case IEEE80211_MODE_11G: 4108 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 4109 break; 4110 case IEEE80211_MODE_TURBO_A: 4111 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4112 break; 4113 case IEEE80211_MODE_TURBO_G: 4114 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G); 4115 break; 4116 default: 4117 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4118 __func__, mode); 4119 return 0; 4120 } 4121 rt = sc->sc_rates[mode]; 4122 if (rt == NULL) 4123 return 0; 4124 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 4125 DPRINTF(sc, ATH_DEBUG_ANY, 4126 "%s: rate table too small (%u > %u)\n", 4127 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 4128 maxrates = IEEE80211_RATE_MAXSIZE; 4129 } else 4130 maxrates = rt->rateCount; 4131 rs = &ic->ic_sup_rates[mode]; 4132 for (i = 0; i < maxrates; i++) 4133 rs->rs_rates[i] = rt->info[i].dot11Rate; 4134 rs->rs_nrates = maxrates; 4135 return 1; 4136 } 4137 4138 static void 4139 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4140 { 4141 #define N(a) (sizeof(a)/sizeof(a[0])) 4142 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4143 static const struct { 4144 u_int rate; /* tx/rx 802.11 rate */ 4145 u_int16_t timeOn; /* LED on time (ms) */ 4146 u_int16_t timeOff; /* LED off time (ms) */ 4147 } blinkrates[] = { 4148 { 108, 40, 10 }, 4149 { 96, 44, 11 }, 4150 { 72, 50, 13 }, 4151 { 48, 57, 14 }, 4152 { 36, 67, 16 }, 4153 { 24, 80, 20 }, 4154 { 22, 100, 25 }, 4155 { 18, 133, 34 }, 4156 { 12, 160, 40 }, 4157 { 10, 200, 50 }, 4158 { 6, 240, 58 }, 4159 { 4, 267, 66 }, 4160 { 2, 400, 100 }, 4161 { 0, 500, 130 }, 4162 }; 4163 const HAL_RATE_TABLE *rt; 4164 int i, j; 4165 4166 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4167 rt = sc->sc_rates[mode]; 4168 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4169 for (i = 0; i < rt->rateCount; i++) 4170 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 4171 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4172 for (i = 0; i < 32; i++) { 4173 u_int8_t ix = rt->rateCodeToIndex[i]; 4174 if (ix == 0xff) { 4175 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4176 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4177 continue; 4178 } 4179 sc->sc_hwmap[i].ieeerate = 4180 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 4181 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4182 if (rt->info[ix].shortPreamble || 4183 rt->info[ix].phy == IEEE80211_T_OFDM) 4184 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4185 /* NB: receive frames include FCS */ 4186 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 4187 IEEE80211_RADIOTAP_F_FCS; 4188 /* setup blink rate table to avoid per-packet lookup */ 4189 for (j = 0; j < N(blinkrates)-1; j++) 4190 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4191 break; 4192 /* NB: this uses the last entry if the rate isn't found */ 4193 /* XXX beware of overlow */ 4194 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4195 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4196 } 4197 sc->sc_currates = rt; 4198 sc->sc_curmode = mode; 4199 /* 4200 * All protection frames are transmited at 2Mb/s for 4201 * 11g, otherwise at 1Mb/s. 4202 * XXX select protection rate index from rate table. 4203 */ 4204 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0); 4205 /* NB: caller is responsible for reseting rate control state */ 4206 #undef N 4207 } 4208 4209 #ifdef AR_DEBUG 4210 static void 4211 ath_printrxbuf(struct ath_buf *bf, int done) 4212 { 4213 struct ath_desc *ds; 4214 int i; 4215 4216 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4217 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 4218 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4219 ds->ds_link, ds->ds_data, 4220 ds->ds_ctl0, ds->ds_ctl1, 4221 ds->ds_hw[0], ds->ds_hw[1], 4222 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 4223 } 4224 } 4225 4226 static void 4227 ath_printtxbuf(struct ath_buf *bf, int done) 4228 { 4229 struct ath_desc *ds; 4230 int i; 4231 4232 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4233 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 4234 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4235 ds->ds_link, ds->ds_data, 4236 ds->ds_ctl0, ds->ds_ctl1, 4237 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 4238 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 4239 } 4240 } 4241 #endif /* AR_DEBUG */ 4242 4243 static void 4244 ath_watchdog(struct ifnet *ifp) 4245 { 4246 struct ath_softc *sc = ifp->if_softc; 4247 struct ieee80211com *ic = &sc->sc_ic; 4248 4249 ifp->if_timer = 0; 4250 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 4251 return; 4252 if (sc->sc_tx_timer) { 4253 if (--sc->sc_tx_timer == 0) { 4254 if_printf(ifp, "device timeout\n"); 4255 ath_reset(ifp); 4256 ifp->if_oerrors++; 4257 sc->sc_stats.ast_watchdog++; 4258 } else 4259 ifp->if_timer = 1; 4260 } 4261 ieee80211_watchdog(ic); 4262 } 4263 4264 /* 4265 * Diagnostic interface to the HAL. This is used by various 4266 * tools to do things like retrieve register contents for 4267 * debugging. The mechanism is intentionally opaque so that 4268 * it can change frequently w/o concern for compatiblity. 4269 */ 4270 static int 4271 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4272 { 4273 struct ath_hal *ah = sc->sc_ah; 4274 u_int id = ad->ad_id & ATH_DIAG_ID; 4275 void *indata = NULL; 4276 void *outdata = NULL; 4277 u_int32_t insize = ad->ad_in_size; 4278 u_int32_t outsize = ad->ad_out_size; 4279 int error = 0; 4280 4281 if (ad->ad_id & ATH_DIAG_IN) { 4282 /* 4283 * Copy in data. 4284 */ 4285 indata = malloc(insize, M_TEMP, M_NOWAIT); 4286 if (indata == NULL) { 4287 error = ENOMEM; 4288 goto bad; 4289 } 4290 error = copyin(ad->ad_in_data, indata, insize); 4291 if (error) 4292 goto bad; 4293 } 4294 if (ad->ad_id & ATH_DIAG_DYN) { 4295 /* 4296 * Allocate a buffer for the results (otherwise the HAL 4297 * returns a pointer to a buffer where we can read the 4298 * results). Note that we depend on the HAL leaving this 4299 * pointer for us to use below in reclaiming the buffer; 4300 * may want to be more defensive. 4301 */ 4302 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4303 if (outdata == NULL) { 4304 error = ENOMEM; 4305 goto bad; 4306 } 4307 } 4308 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4309 if (outsize < ad->ad_out_size) 4310 ad->ad_out_size = outsize; 4311 if (outdata != NULL) 4312 error = copyout(outdata, ad->ad_out_data, 4313 ad->ad_out_size); 4314 } else { 4315 error = EINVAL; 4316 } 4317 bad: 4318 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4319 free(indata, M_TEMP); 4320 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4321 free(outdata, M_TEMP); 4322 return error; 4323 } 4324 4325 static int 4326 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4327 { 4328 #define IS_RUNNING(ifp) \ 4329 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) 4330 struct ath_softc *sc = ifp->if_softc; 4331 struct ieee80211com *ic = &sc->sc_ic; 4332 struct ifreq *ifr = (struct ifreq *)data; 4333 int error = 0; 4334 4335 ATH_LOCK(sc); 4336 switch (cmd) { 4337 case SIOCSIFFLAGS: 4338 if (IS_RUNNING(ifp)) { 4339 /* 4340 * To avoid rescanning another access point, 4341 * do not call ath_init() here. Instead, 4342 * only reflect promisc mode settings. 4343 */ 4344 ath_mode_init(sc); 4345 } else if (ifp->if_flags & IFF_UP) { 4346 /* 4347 * Beware of being called during attach/detach 4348 * to reset promiscuous mode. In that case we 4349 * will still be marked UP but not RUNNING. 4350 * However trying to re-init the interface 4351 * is the wrong thing to do as we've already 4352 * torn down much of our state. There's 4353 * probably a better way to deal with this. 4354 */ 4355 if (!sc->sc_invalid && ic->ic_bss != NULL) 4356 ath_init(ifp); /* XXX lose error */ 4357 } else 4358 ath_stop_locked(ifp); 4359 break; 4360 case SIOCADDMULTI: 4361 case SIOCDELMULTI: 4362 /* 4363 * The upper layer has already installed/removed 4364 * the multicast address(es), just recalculate the 4365 * multicast filter for the card. 4366 */ 4367 if (ifp->if_flags & IFF_RUNNING) 4368 ath_mode_init(sc); 4369 break; 4370 case SIOCGATHSTATS: 4371 /* NB: embed these numbers to get a consistent view */ 4372 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4373 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4374 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 4375 ATH_UNLOCK(sc); 4376 /* 4377 * NB: Drop the softc lock in case of a page fault; 4378 * we'll accept any potential inconsisentcy in the 4379 * statistics. The alternative is to copy the data 4380 * to a local structure. 4381 */ 4382 return copyout(&sc->sc_stats, 4383 ifr->ifr_data, sizeof (sc->sc_stats)); 4384 case SIOCGATHDIAG: 4385 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 4386 break; 4387 default: 4388 error = ieee80211_ioctl(ic, cmd, data); 4389 if (error == ENETRESET) { 4390 if (IS_RUNNING(ifp) && 4391 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 4392 ath_init(ifp); /* XXX lose error */ 4393 error = 0; 4394 } 4395 if (error == ERESTART) 4396 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0; 4397 break; 4398 } 4399 ATH_UNLOCK(sc); 4400 return error; 4401 #undef IS_RUNNING 4402 } 4403 4404 static int 4405 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS) 4406 { 4407 struct ath_softc *sc = arg1; 4408 u_int slottime = ath_hal_getslottime(sc->sc_ah); 4409 int error; 4410 4411 error = sysctl_handle_int(oidp, &slottime, 0, req); 4412 if (error || !req->newptr) 4413 return error; 4414 return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0; 4415 } 4416 4417 static int 4418 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS) 4419 { 4420 struct ath_softc *sc = arg1; 4421 u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah); 4422 int error; 4423 4424 error = sysctl_handle_int(oidp, &acktimeout, 0, req); 4425 if (error || !req->newptr) 4426 return error; 4427 return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0; 4428 } 4429 4430 static int 4431 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS) 4432 { 4433 struct ath_softc *sc = arg1; 4434 u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah); 4435 int error; 4436 4437 error = sysctl_handle_int(oidp, &ctstimeout, 0, req); 4438 if (error || !req->newptr) 4439 return error; 4440 return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0; 4441 } 4442 4443 static int 4444 ath_sysctl_softled(SYSCTL_HANDLER_ARGS) 4445 { 4446 struct ath_softc *sc = arg1; 4447 int softled = sc->sc_softled; 4448 int error; 4449 4450 error = sysctl_handle_int(oidp, &softled, 0, req); 4451 if (error || !req->newptr) 4452 return error; 4453 softled = (softled != 0); 4454 if (softled != sc->sc_softled) { 4455 if (softled) { 4456 /* NB: handle any sc_ledpin change */ 4457 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 4458 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, 4459 !sc->sc_ledon); 4460 } 4461 sc->sc_softled = softled; 4462 } 4463 return 0; 4464 } 4465 4466 static int 4467 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS) 4468 { 4469 struct ath_softc *sc = arg1; 4470 u_int defantenna = ath_hal_getdefantenna(sc->sc_ah); 4471 int error; 4472 4473 error = sysctl_handle_int(oidp, &defantenna, 0, req); 4474 if (!error && req->newptr) 4475 ath_hal_setdefantenna(sc->sc_ah, defantenna); 4476 return error; 4477 } 4478 4479 static int 4480 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS) 4481 { 4482 struct ath_softc *sc = arg1; 4483 u_int diversity = sc->sc_diversity; 4484 int error; 4485 4486 error = sysctl_handle_int(oidp, &diversity, 0, req); 4487 if (error || !req->newptr) 4488 return error; 4489 sc->sc_diversity = diversity; 4490 return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0; 4491 } 4492 4493 static int 4494 ath_sysctl_diag(SYSCTL_HANDLER_ARGS) 4495 { 4496 struct ath_softc *sc = arg1; 4497 u_int32_t diag; 4498 int error; 4499 4500 if (!ath_hal_getdiag(sc->sc_ah, &diag)) 4501 return EINVAL; 4502 error = sysctl_handle_int(oidp, &diag, 0, req); 4503 if (error || !req->newptr) 4504 return error; 4505 return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0; 4506 } 4507 4508 static int 4509 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS) 4510 { 4511 struct ath_softc *sc = arg1; 4512 struct ifnet *ifp = &sc->sc_if; 4513 u_int32_t scale; 4514 int error; 4515 4516 ath_hal_gettpscale(sc->sc_ah, &scale); 4517 error = sysctl_handle_int(oidp, &scale, 0, req); 4518 if (error || !req->newptr) 4519 return error; 4520 return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp); 4521 } 4522 4523 static int 4524 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS) 4525 { 4526 struct ath_softc *sc = arg1; 4527 u_int tpc = ath_hal_gettpc(sc->sc_ah); 4528 int error; 4529 4530 error = sysctl_handle_int(oidp, &tpc, 0, req); 4531 if (error || !req->newptr) 4532 return error; 4533 return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0; 4534 } 4535 4536 static void 4537 ath_sysctlattach(struct ath_softc *sc) 4538 { 4539 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 4540 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 4541 4542 ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode); 4543 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4544 "countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0, 4545 "EEPROM country code"); 4546 ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain); 4547 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4548 "regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0, 4549 "EEPROM regdomain code"); 4550 sc->sc_debug = ath_debug; 4551 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4552 "debug", CTLFLAG_RW, &sc->sc_debug, 0, 4553 "control debugging printfs"); 4554 4555 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4556 "slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4557 ath_sysctl_slottime, "I", "802.11 slot time (us)"); 4558 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4559 "acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4560 ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)"); 4561 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4562 "ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4563 ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)"); 4564 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4565 "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4566 ath_sysctl_softled, "I", "enable/disable software LED support"); 4567 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4568 "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, 4569 "GPIO pin connected to LED"); 4570 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4571 "ledon", CTLFLAG_RW, &sc->sc_ledon, 0, 4572 "setting to turn LED on"); 4573 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4574 "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, 4575 "idle time for inactivity LED (ticks)"); 4576 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4577 "txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0, 4578 "tx antenna (0=auto)"); 4579 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4580 "rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4581 ath_sysctl_rxantenna, "I", "default/rx antenna"); 4582 if (sc->sc_hasdiversity) 4583 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4584 "diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4585 ath_sysctl_diversity, "I", "antenna diversity"); 4586 sc->sc_txintrperiod = ATH_TXINTR_PERIOD; 4587 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4588 "txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0, 4589 "tx descriptor batching"); 4590 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4591 "diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4592 ath_sysctl_diag, "I", "h/w diagnostic control"); 4593 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4594 "tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4595 ath_sysctl_tpscale, "I", "tx power scaling"); 4596 if (sc->sc_hastpc) 4597 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 4598 "tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0, 4599 ath_sysctl_tpc, "I", "enable/disable per-packet TPC"); 4600 } 4601 4602 static void 4603 ath_bpfattach(struct ath_softc *sc) 4604 { 4605 struct ifnet *ifp = &sc->sc_if; 4606 4607 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 4608 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 4609 &sc->sc_drvbpf); 4610 /* 4611 * Initialize constant fields. 4612 * XXX make header lengths a multiple of 32-bits so subsequent 4613 * headers are properly aligned; this is a kludge to keep 4614 * certain applications happy. 4615 * 4616 * NB: the channel is setup each time we transition to the 4617 * RUN state to avoid filling it in for each frame. 4618 */ 4619 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 4620 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 4621 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 4622 4623 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 4624 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 4625 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 4626 } 4627 4628 /* 4629 * Announce various information on device/driver attach. 4630 */ 4631 static void 4632 ath_announce(struct ath_softc *sc) 4633 { 4634 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 4635 struct ifnet *ifp = &sc->sc_if; 4636 struct ath_hal *ah = sc->sc_ah; 4637 u_int modes, cc; 4638 4639 if_printf(ifp, "mac %d.%d phy %d.%d", 4640 ah->ah_macVersion, ah->ah_macRev, 4641 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 4642 /* 4643 * Print radio revision(s). We check the wireless modes 4644 * to avoid falsely printing revs for inoperable parts. 4645 * Dual-band radio revs are returned in the 5Ghz rev number. 4646 */ 4647 ath_hal_getcountrycode(ah, &cc); 4648 modes = ath_hal_getwirelessmodes(ah, cc); 4649 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 4650 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 4651 printf(" 5ghz radio %d.%d 2ghz radio %d.%d", 4652 ah->ah_analog5GhzRev >> 4, 4653 ah->ah_analog5GhzRev & 0xf, 4654 ah->ah_analog2GhzRev >> 4, 4655 ah->ah_analog2GhzRev & 0xf); 4656 else 4657 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4658 ah->ah_analog5GhzRev & 0xf); 4659 } else 4660 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4661 ah->ah_analog5GhzRev & 0xf); 4662 printf("\n"); 4663 if (bootverbose) { 4664 int i; 4665 for (i = 0; i <= WME_AC_VO; i++) { 4666 struct ath_txq *txq = sc->sc_ac2q[i]; 4667 if_printf(ifp, "Use hw queue %u for %s traffic\n", 4668 txq->axq_qnum, ieee80211_wme_acnames[i]); 4669 } 4670 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 4671 sc->sc_cabq->axq_qnum); 4672 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 4673 } 4674 #undef HAL_MODE_DUALBAND 4675 } 4676