xref: /freebsd/sys/dev/ath/if_ath.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/lock.h>
55 #include <sys/mutex.h>
56 #include <sys/kernel.h>
57 #include <sys/socket.h>
58 #include <sys/sockio.h>
59 #include <sys/errno.h>
60 #include <sys/callout.h>
61 #include <sys/bus.h>
62 #include <sys/endian.h>
63 
64 #include <machine/bus.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_arp.h>
70 #include <net/ethernet.h>
71 #include <net/if_llc.h>
72 
73 #include <net80211/ieee80211_var.h>
74 
75 #include <net/bpf.h>
76 
77 #ifdef INET
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #endif
81 
82 #define	AR_DEBUG
83 #include <dev/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
86 
87 /* unalligned little endian access */
88 #define LE_READ_2(p)							\
89 	((u_int16_t)							\
90 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
91 #define LE_READ_4(p)							\
92 	((u_int32_t)							\
93 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
94 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95 
96 enum {
97 	ATH_LED_TX,
98 	ATH_LED_RX,
99 	ATH_LED_POLL,
100 };
101 
102 static void	ath_init(void *);
103 static void	ath_stop_locked(struct ifnet *);
104 static void	ath_stop(struct ifnet *);
105 static void	ath_start(struct ifnet *);
106 static int	ath_reset(struct ifnet *);
107 static int	ath_media_change(struct ifnet *);
108 static void	ath_watchdog(struct ifnet *);
109 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
110 static void	ath_fatal_proc(void *, int);
111 static void	ath_rxorn_proc(void *, int);
112 static void	ath_bmiss_proc(void *, int);
113 static void	ath_initkeytable(struct ath_softc *);
114 static int	ath_key_alloc(struct ieee80211com *,
115 			const struct ieee80211_key *);
116 static int	ath_key_delete(struct ieee80211com *,
117 			const struct ieee80211_key *);
118 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120 static void	ath_key_update_begin(struct ieee80211com *);
121 static void	ath_key_update_end(struct ieee80211com *);
122 static void	ath_mode_init(struct ath_softc *);
123 static void	ath_setslottime(struct ath_softc *);
124 static void	ath_updateslot(struct ifnet *);
125 static int	ath_beaconq_setup(struct ath_hal *);
126 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128 static void	ath_beacon_proc(void *, int);
129 static void	ath_bstuck_proc(void *, int);
130 static void	ath_beacon_free(struct ath_softc *);
131 static void	ath_beacon_config(struct ath_softc *);
132 static void	ath_descdma_cleanup(struct ath_softc *sc,
133 			struct ath_descdma *, ath_bufhead *);
134 static int	ath_desc_alloc(struct ath_softc *);
135 static void	ath_desc_free(struct ath_softc *);
136 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137 static void	ath_node_free(struct ieee80211_node *);
138 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
139 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141 			struct ieee80211_node *ni,
142 			int subtype, int rssi, u_int32_t rstamp);
143 static void	ath_setdefantenna(struct ath_softc *, u_int);
144 static void	ath_rx_proc(void *, int);
145 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146 static int	ath_tx_setup(struct ath_softc *, int, int);
147 static int	ath_wme_update(struct ieee80211com *);
148 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149 static void	ath_tx_cleanup(struct ath_softc *);
150 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151 			     struct ath_buf *, struct mbuf *);
152 static void	ath_tx_proc_q0(void *, int);
153 static void	ath_tx_proc_q0123(void *, int);
154 static void	ath_tx_proc(void *, int);
155 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156 static void	ath_draintxq(struct ath_softc *);
157 static void	ath_stoprecv(struct ath_softc *);
158 static int	ath_startrecv(struct ath_softc *);
159 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160 static void	ath_next_scan(void *);
161 static void	ath_calibrate(void *);
162 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163 static void	ath_newassoc(struct ieee80211com *,
164 			struct ieee80211_node *, int);
165 static int	ath_getchannels(struct ath_softc *, u_int cc,
166 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
167 static void	ath_led_event(struct ath_softc *, int);
168 static void	ath_update_txpow(struct ath_softc *);
169 
170 static int	ath_rate_setup(struct ath_softc *, u_int mode);
171 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
172 
173 static void	ath_sysctlattach(struct ath_softc *);
174 static void	ath_bpfattach(struct ath_softc *);
175 static void	ath_announce(struct ath_softc *);
176 
177 SYSCTL_DECL(_hw_ath);
178 
179 /* XXX validate sysctl values */
180 static	int ath_dwelltime = 200;		/* 5 channels/second */
181 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
182 	    0, "channel dwell time (ms) for AP/station scanning");
183 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
184 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185 	    0, "chip calibration interval (secs)");
186 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
187 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
188 	    0, "outdoor operation");
189 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
190 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
191 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
192 	    0, "extended channel mode");
193 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
194 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
195 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
196 	    0, "country code");
197 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
198 static	int ath_regdomain = 0;			/* regulatory domain */
199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200 	    0, "regulatory domain");
201 
202 #ifdef AR_DEBUG
203 static	int ath_debug = 0;
204 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
205 	    0, "control debugging printfs");
206 TUNABLE_INT("hw.ath.debug", &ath_debug);
207 enum {
208 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
209 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
210 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
211 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
212 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
213 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
214 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
215 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
216 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
217 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
218 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
219 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
220 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
221 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
222 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
223 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
224 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
225 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
226 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
227 	ATH_DEBUG_ANY		= 0xffffffff
228 };
229 #define	IFF_DUMPPKTS(sc, m) \
230 	((sc->sc_debug & (m)) || \
231 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232 #define	DPRINTF(sc, m, fmt, ...) do {				\
233 	if (sc->sc_debug & (m))					\
234 		printf(fmt, __VA_ARGS__);			\
235 } while (0)
236 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
237 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
238 		ath_keyprint(__func__, ix, hk, mac);		\
239 } while (0)
240 static	void ath_printrxbuf(struct ath_buf *bf, int);
241 static	void ath_printtxbuf(struct ath_buf *bf, int);
242 #else
243 #define	IFF_DUMPPKTS(sc, m) \
244 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define	DPRINTF(m, fmt, ...)
246 #define	KEYPRINTF(sc, k, ix, mac)
247 #endif
248 
249 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
250 
251 int
252 ath_attach(u_int16_t devid, struct ath_softc *sc)
253 {
254 	struct ifnet *ifp = &sc->sc_if;
255 	struct ieee80211com *ic = &sc->sc_ic;
256 	struct ath_hal *ah;
257 	HAL_STATUS status;
258 	int error = 0, i;
259 
260 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
261 
262 	/* set these up early for if_printf use */
263 	if_initname(ifp, device_get_name(sc->sc_dev),
264 		device_get_unit(sc->sc_dev));
265 
266 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
267 	if (ah == NULL) {
268 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
269 			status);
270 		error = ENXIO;
271 		goto bad;
272 	}
273 	if (ah->ah_abi != HAL_ABI_VERSION) {
274 		if_printf(ifp, "HAL ABI mismatch detected "
275 			"(HAL:0x%x != driver:0x%x)\n",
276 			ah->ah_abi, HAL_ABI_VERSION);
277 		error = ENXIO;
278 		goto bad;
279 	}
280 	sc->sc_ah = ah;
281 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
282 
283 	/*
284 	 * Check if the MAC has multi-rate retry support.
285 	 * We do this by trying to setup a fake extended
286 	 * descriptor.  MAC's that don't have support will
287 	 * return false w/o doing anything.  MAC's that do
288 	 * support it will return true w/o doing anything.
289 	 */
290 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
291 
292 	/*
293 	 * Check if the device has hardware counters for PHY
294 	 * errors.  If so we need to enable the MIB interrupt
295 	 * so we can act on stat triggers.
296 	 */
297 	if (ath_hal_hwphycounters(ah))
298 		sc->sc_needmib = 1;
299 
300 	/*
301 	 * Get the hardware key cache size.
302 	 */
303 	sc->sc_keymax = ath_hal_keycachesize(ah);
304 	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
305 		if_printf(ifp,
306 			"Warning, using only %zu of %u key cache slots\n",
307 			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
308 		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
309 	}
310 	/*
311 	 * Reset the key cache since some parts do not
312 	 * reset the contents on initial power up.
313 	 */
314 	for (i = 0; i < sc->sc_keymax; i++)
315 		ath_hal_keyreset(ah, i);
316 	/*
317 	 * Mark key cache slots associated with global keys
318 	 * as in use.  If we knew TKIP was not to be used we
319 	 * could leave the +32, +64, and +32+64 slots free.
320 	 * XXX only for splitmic.
321 	 */
322 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
323 		setbit(sc->sc_keymap, i);
324 		setbit(sc->sc_keymap, i+32);
325 		setbit(sc->sc_keymap, i+64);
326 		setbit(sc->sc_keymap, i+32+64);
327 	}
328 
329 	/*
330 	 * Collect the channel list using the default country
331 	 * code and including outdoor channels.  The 802.11 layer
332 	 * is resposible for filtering this list based on settings
333 	 * like the phy mode.
334 	 */
335 	error = ath_getchannels(sc, ath_countrycode,
336 			ath_outdoor, ath_xchanmode);
337 	if (error != 0)
338 		goto bad;
339 	/*
340 	 * Setup dynamic sysctl's now that country code and
341 	 * regdomain are available from the hal.
342 	 */
343 	ath_sysctlattach(sc);
344 
345 	/*
346 	 * Setup rate tables for all potential media types.
347 	 */
348 	ath_rate_setup(sc, IEEE80211_MODE_11A);
349 	ath_rate_setup(sc, IEEE80211_MODE_11B);
350 	ath_rate_setup(sc, IEEE80211_MODE_11G);
351 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
352 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
353 	/* NB: setup here so ath_rate_update is happy */
354 	ath_setcurmode(sc, IEEE80211_MODE_11A);
355 
356 	/*
357 	 * Allocate tx+rx descriptors and populate the lists.
358 	 */
359 	error = ath_desc_alloc(sc);
360 	if (error != 0) {
361 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
362 		goto bad;
363 	}
364 	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
365 	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
366 
367 	ATH_TXBUF_LOCK_INIT(sc);
368 
369 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
370 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
371 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
372 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
373 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
374 
375 	/*
376 	 * Allocate hardware transmit queues: one queue for
377 	 * beacon frames and one data queue for each QoS
378 	 * priority.  Note that the hal handles reseting
379 	 * these queues at the needed time.
380 	 *
381 	 * XXX PS-Poll
382 	 */
383 	sc->sc_bhalq = ath_beaconq_setup(ah);
384 	if (sc->sc_bhalq == (u_int) -1) {
385 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
386 		error = EIO;
387 		goto bad2;
388 	}
389 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
390 	if (sc->sc_cabq == NULL) {
391 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
392 		error = EIO;
393 		goto bad2;
394 	}
395 	/* NB: insure BK queue is the lowest priority h/w queue */
396 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
397 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
398 			ieee80211_wme_acnames[WME_AC_BK]);
399 		error = EIO;
400 		goto bad2;
401 	}
402 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
403 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
404 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
405 		/*
406 		 * Not enough hardware tx queues to properly do WME;
407 		 * just punt and assign them all to the same h/w queue.
408 		 * We could do a better job of this if, for example,
409 		 * we allocate queues when we switch from station to
410 		 * AP mode.
411 		 */
412 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
413 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
414 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
415 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
416 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
417 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
418 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
419 	}
420 
421 	/*
422 	 * Special case certain configurations.  Note the
423 	 * CAB queue is handled by these specially so don't
424 	 * include them when checking the txq setup mask.
425 	 */
426 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
427 	case 0x01:
428 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
429 		break;
430 	case 0x0f:
431 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
432 		break;
433 	default:
434 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
435 		break;
436 	}
437 
438 	/*
439 	 * Setup rate control.  Some rate control modules
440 	 * call back to change the anntena state so expose
441 	 * the necessary entry points.
442 	 * XXX maybe belongs in struct ath_ratectrl?
443 	 */
444 	sc->sc_setdefantenna = ath_setdefantenna;
445 	sc->sc_rc = ath_rate_attach(sc);
446 	if (sc->sc_rc == NULL) {
447 		error = EIO;
448 		goto bad2;
449 	}
450 
451 	sc->sc_blinking = 0;
452 	sc->sc_ledstate = 1;
453 	sc->sc_ledon = 0;			/* low true */
454 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
455 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
456 	/*
457 	 * Auto-enable soft led processing for IBM cards and for
458 	 * 5211 minipci cards.  Users can also manually enable/disable
459 	 * support with a sysctl.
460 	 */
461 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
462 	if (sc->sc_softled) {
463 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
464 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
465 	}
466 
467 	ifp->if_softc = sc;
468 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
469 	ifp->if_start = ath_start;
470 	ifp->if_watchdog = ath_watchdog;
471 	ifp->if_ioctl = ath_ioctl;
472 	ifp->if_init = ath_init;
473 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
474 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
475 	IFQ_SET_READY(&ifp->if_snd);
476 
477 	ic->ic_ifp = ifp;
478 	ic->ic_reset = ath_reset;
479 	ic->ic_newassoc = ath_newassoc;
480 	ic->ic_updateslot = ath_updateslot;
481 	ic->ic_wme.wme_update = ath_wme_update;
482 	/* XXX not right but it's not used anywhere important */
483 	ic->ic_phytype = IEEE80211_T_OFDM;
484 	ic->ic_opmode = IEEE80211_M_STA;
485 	ic->ic_caps =
486 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
487 		| IEEE80211_C_HOSTAP		/* hostap mode */
488 		| IEEE80211_C_MONITOR		/* monitor mode */
489 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
490 		| IEEE80211_C_SHSLOT		/* short slot time supported */
491 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
492 		;
493 	/*
494 	 * Query the hal to figure out h/w crypto support.
495 	 */
496 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
497 		ic->ic_caps |= IEEE80211_C_WEP;
498 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
499 		ic->ic_caps |= IEEE80211_C_AES;
500 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
501 		ic->ic_caps |= IEEE80211_C_AES_CCM;
502 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
503 		ic->ic_caps |= IEEE80211_C_CKIP;
504 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
505 		ic->ic_caps |= IEEE80211_C_TKIP;
506 		/*
507 		 * Check if h/w does the MIC and/or whether the
508 		 * separate key cache entries are required to
509 		 * handle both tx+rx MIC keys.
510 		 */
511 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
512 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
513 		if (ath_hal_tkipsplit(ah))
514 			sc->sc_splitmic = 1;
515 	}
516 	/*
517 	 * TPC support can be done either with a global cap or
518 	 * per-packet support.  The latter is not available on
519 	 * all parts.  We're a bit pedantic here as all parts
520 	 * support a global cap.
521 	 */
522 	sc->sc_hastpc = ath_hal_hastpc(ah);
523 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
524 		ic->ic_caps |= IEEE80211_C_TXPMGT;
525 
526 	/*
527 	 * Mark WME capability only if we have sufficient
528 	 * hardware queues to do proper priority scheduling.
529 	 */
530 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
531 		ic->ic_caps |= IEEE80211_C_WME;
532 	/*
533 	 * Check for frame bursting capability.
534 	 */
535 	if (ath_hal_hasbursting(ah))
536 		ic->ic_caps |= IEEE80211_C_BURST;
537 
538 	/*
539 	 * Indicate we need the 802.11 header padded to a
540 	 * 32-bit boundary for 4-address and QoS frames.
541 	 */
542 	ic->ic_flags |= IEEE80211_F_DATAPAD;
543 
544 	/*
545 	 * Query the hal about antenna support.
546 	 */
547 	if (ath_hal_hasdiversity(ah)) {
548 		sc->sc_hasdiversity = 1;
549 		sc->sc_diversity = ath_hal_getdiversity(ah);
550 	}
551 	sc->sc_defant = ath_hal_getdefantenna(ah);
552 
553 	/*
554 	 * Not all chips have the VEOL support we want to
555 	 * use with IBSS beacons; check here for it.
556 	 */
557 	sc->sc_hasveol = ath_hal_hasveol(ah);
558 
559 	/* get mac address from hardware */
560 	ath_hal_getmac(ah, ic->ic_myaddr);
561 
562 	/* call MI attach routine. */
563 	ieee80211_ifattach(ic);
564 	/* override default methods */
565 	ic->ic_node_alloc = ath_node_alloc;
566 	sc->sc_node_free = ic->ic_node_free;
567 	ic->ic_node_free = ath_node_free;
568 	ic->ic_node_getrssi = ath_node_getrssi;
569 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
570 	ic->ic_recv_mgmt = ath_recv_mgmt;
571 	sc->sc_newstate = ic->ic_newstate;
572 	ic->ic_newstate = ath_newstate;
573 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574 	ic->ic_crypto.cs_key_delete = ath_key_delete;
575 	ic->ic_crypto.cs_key_set = ath_key_set;
576 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578 	/* complete initialization */
579 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580 
581 	ath_bpfattach(sc);
582 
583 	if (bootverbose)
584 		ieee80211_announce(ic);
585 	ath_announce(sc);
586 	return 0;
587 bad2:
588 	ath_tx_cleanup(sc);
589 	ath_desc_free(sc);
590 bad:
591 	if (ah)
592 		ath_hal_detach(ah);
593 	sc->sc_invalid = 1;
594 	return error;
595 }
596 
597 int
598 ath_detach(struct ath_softc *sc)
599 {
600 	struct ifnet *ifp = &sc->sc_if;
601 
602 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
603 		__func__, ifp->if_flags);
604 
605 	ath_stop(ifp);
606 	bpfdetach(ifp);
607 	/*
608 	 * NB: the order of these is important:
609 	 * o call the 802.11 layer before detaching the hal to
610 	 *   insure callbacks into the driver to delete global
611 	 *   key cache entries can be handled
612 	 * o reclaim the tx queue data structures after calling
613 	 *   the 802.11 layer as we'll get called back to reclaim
614 	 *   node state and potentially want to use them
615 	 * o to cleanup the tx queues the hal is called, so detach
616 	 *   it last
617 	 * Other than that, it's straightforward...
618 	 */
619 	ieee80211_ifdetach(&sc->sc_ic);
620 	ath_rate_detach(sc->sc_rc);
621 	ath_desc_free(sc);
622 	ath_tx_cleanup(sc);
623 	ath_hal_detach(sc->sc_ah);
624 
625 	return 0;
626 }
627 
628 void
629 ath_suspend(struct ath_softc *sc)
630 {
631 	struct ifnet *ifp = &sc->sc_if;
632 
633 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
634 		__func__, ifp->if_flags);
635 
636 	ath_stop(ifp);
637 }
638 
639 void
640 ath_resume(struct ath_softc *sc)
641 {
642 	struct ifnet *ifp = &sc->sc_if;
643 
644 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645 		__func__, ifp->if_flags);
646 
647 	if (ifp->if_flags & IFF_UP) {
648 		ath_init(ifp);
649 		if (ifp->if_flags & IFF_RUNNING)
650 			ath_start(ifp);
651 	}
652 }
653 
654 void
655 ath_shutdown(struct ath_softc *sc)
656 {
657 	struct ifnet *ifp = &sc->sc_if;
658 
659 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
660 		__func__, ifp->if_flags);
661 
662 	ath_stop(ifp);
663 }
664 
665 /*
666  * Interrupt handler.  Most of the actual processing is deferred.
667  */
668 void
669 ath_intr(void *arg)
670 {
671 	struct ath_softc *sc = arg;
672 	struct ifnet *ifp = &sc->sc_if;
673 	struct ath_hal *ah = sc->sc_ah;
674 	HAL_INT status;
675 
676 	if (sc->sc_invalid) {
677 		/*
678 		 * The hardware is not ready/present, don't touch anything.
679 		 * Note this can happen early on if the IRQ is shared.
680 		 */
681 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
682 		return;
683 	}
684 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
685 		return;
686 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
687 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
688 			__func__, ifp->if_flags);
689 		ath_hal_getisr(ah, &status);	/* clear ISR */
690 		ath_hal_intrset(ah, 0);		/* disable further intr's */
691 		return;
692 	}
693 	/*
694 	 * Figure out the reason(s) for the interrupt.  Note
695 	 * that the hal returns a pseudo-ISR that may include
696 	 * bits we haven't explicitly enabled so we mask the
697 	 * value to insure we only process bits we requested.
698 	 */
699 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
700 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
701 	status &= sc->sc_imask;			/* discard unasked for bits */
702 	if (status & HAL_INT_FATAL) {
703 		/*
704 		 * Fatal errors are unrecoverable.  Typically
705 		 * these are caused by DMA errors.  Unfortunately
706 		 * the exact reason is not (presently) returned
707 		 * by the hal.
708 		 */
709 		sc->sc_stats.ast_hardware++;
710 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
711 		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
712 	} else if (status & HAL_INT_RXORN) {
713 		sc->sc_stats.ast_rxorn++;
714 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
715 		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
716 	} else {
717 		if (status & HAL_INT_SWBA) {
718 			/*
719 			 * Software beacon alert--time to send a beacon.
720 			 * Handle beacon transmission directly; deferring
721 			 * this is too slow to meet timing constraints
722 			 * under load.
723 			 */
724 			ath_beacon_proc(sc, 0);
725 		}
726 		if (status & HAL_INT_RXEOL) {
727 			/*
728 			 * NB: the hardware should re-read the link when
729 			 *     RXE bit is written, but it doesn't work at
730 			 *     least on older hardware revs.
731 			 */
732 			sc->sc_stats.ast_rxeol++;
733 			sc->sc_rxlink = NULL;
734 		}
735 		if (status & HAL_INT_TXURN) {
736 			sc->sc_stats.ast_txurn++;
737 			/* bump tx trigger level */
738 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
739 		}
740 		if (status & HAL_INT_RX)
741 			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
742 		if (status & HAL_INT_TX)
743 			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
744 		if (status & HAL_INT_BMISS) {
745 			sc->sc_stats.ast_bmiss++;
746 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
747 		}
748 		if (status & HAL_INT_MIB) {
749 			sc->sc_stats.ast_mib++;
750 			/*
751 			 * Disable interrupts until we service the MIB
752 			 * interrupt; otherwise it will continue to fire.
753 			 */
754 			ath_hal_intrset(ah, 0);
755 			/*
756 			 * Let the hal handle the event.  We assume it will
757 			 * clear whatever condition caused the interrupt.
758 			 */
759 			ath_hal_mibevent(ah,
760 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
761 			ath_hal_intrset(ah, sc->sc_imask);
762 		}
763 	}
764 }
765 
766 static void
767 ath_fatal_proc(void *arg, int pending)
768 {
769 	struct ath_softc *sc = arg;
770 	struct ifnet *ifp = &sc->sc_if;
771 
772 	if_printf(ifp, "hardware error; resetting\n");
773 	ath_reset(ifp);
774 }
775 
776 static void
777 ath_rxorn_proc(void *arg, int pending)
778 {
779 	struct ath_softc *sc = arg;
780 	struct ifnet *ifp = &sc->sc_if;
781 
782 	if_printf(ifp, "rx FIFO overrun; resetting\n");
783 	ath_reset(ifp);
784 }
785 
786 static void
787 ath_bmiss_proc(void *arg, int pending)
788 {
789 	struct ath_softc *sc = arg;
790 	struct ieee80211com *ic = &sc->sc_ic;
791 
792 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
793 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
794 		("unexpect operating mode %u", ic->ic_opmode));
795 	if (ic->ic_state == IEEE80211_S_RUN) {
796 		/*
797 		 * Rather than go directly to scan state, try to
798 		 * reassociate first.  If that fails then the state
799 		 * machine will drop us into scanning after timing
800 		 * out waiting for a probe response.
801 		 */
802 		NET_LOCK_GIANT();
803 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
804 		NET_UNLOCK_GIANT();
805 	}
806 }
807 
808 static u_int
809 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
810 {
811 #define	N(a)	(sizeof(a) / sizeof(a[0]))
812 	static const u_int modeflags[] = {
813 		0,			/* IEEE80211_MODE_AUTO */
814 		CHANNEL_A,		/* IEEE80211_MODE_11A */
815 		CHANNEL_B,		/* IEEE80211_MODE_11B */
816 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
817 		0,			/* IEEE80211_MODE_FH */
818 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
819 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
820 	};
821 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
822 
823 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
824 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
825 	return modeflags[mode];
826 #undef N
827 }
828 
829 static void
830 ath_init(void *arg)
831 {
832 	struct ath_softc *sc = (struct ath_softc *) arg;
833 	struct ieee80211com *ic = &sc->sc_ic;
834 	struct ifnet *ifp = &sc->sc_if;
835 	struct ieee80211_node *ni;
836 	struct ath_hal *ah = sc->sc_ah;
837 	HAL_STATUS status;
838 
839 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
840 		__func__, ifp->if_flags);
841 
842 	ATH_LOCK(sc);
843 	/*
844 	 * Stop anything previously setup.  This is safe
845 	 * whether this is the first time through or not.
846 	 */
847 	ath_stop_locked(ifp);
848 
849 	/*
850 	 * The basic interface to setting the hardware in a good
851 	 * state is ``reset''.  On return the hardware is known to
852 	 * be powered up and with interrupts disabled.  This must
853 	 * be followed by initialization of the appropriate bits
854 	 * and then setup of the interrupt mask.
855 	 */
856 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
857 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
858 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
859 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
860 			status);
861 		goto done;
862 	}
863 
864 	/*
865 	 * This is needed only to setup initial state
866 	 * but it's best done after a reset.
867 	 */
868 	ath_update_txpow(sc);
869 
870 	/*
871 	 * Setup the hardware after reset: the key cache
872 	 * is filled as needed and the receive engine is
873 	 * set going.  Frame transmit is handled entirely
874 	 * in the frame output path; there's nothing to do
875 	 * here except setup the interrupt mask.
876 	 */
877 	ath_initkeytable(sc);		/* XXX still needed? */
878 	if (ath_startrecv(sc) != 0) {
879 		if_printf(ifp, "unable to start recv logic\n");
880 		goto done;
881 	}
882 
883 	/*
884 	 * Enable interrupts.
885 	 */
886 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
887 		  | HAL_INT_RXEOL | HAL_INT_RXORN
888 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
889 	/*
890 	 * Enable MIB interrupts when there are hardware phy counters.
891 	 * Note we only do this (at the moment) for station mode.
892 	 */
893 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
894 		sc->sc_imask |= HAL_INT_MIB;
895 	ath_hal_intrset(ah, sc->sc_imask);
896 
897 	ifp->if_flags |= IFF_RUNNING;
898 	ic->ic_state = IEEE80211_S_INIT;
899 
900 	/*
901 	 * The hardware should be ready to go now so it's safe
902 	 * to kick the 802.11 state machine as it's likely to
903 	 * immediately call back to us to send mgmt frames.
904 	 */
905 	ni = ic->ic_bss;
906 	ni->ni_chan = ic->ic_ibss_chan;
907 	ath_chan_change(sc, ni->ni_chan);
908 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
909 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
910 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
911 	} else
912 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
913 done:
914 	ATH_UNLOCK(sc);
915 }
916 
917 static void
918 ath_stop_locked(struct ifnet *ifp)
919 {
920 	struct ath_softc *sc = ifp->if_softc;
921 	struct ieee80211com *ic = &sc->sc_ic;
922 	struct ath_hal *ah = sc->sc_ah;
923 
924 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
925 		__func__, sc->sc_invalid, ifp->if_flags);
926 
927 	ATH_LOCK_ASSERT(sc);
928 	if (ifp->if_flags & IFF_RUNNING) {
929 		/*
930 		 * Shutdown the hardware and driver:
931 		 *    reset 802.11 state machine
932 		 *    turn off timers
933 		 *    disable interrupts
934 		 *    turn off the radio
935 		 *    clear transmit machinery
936 		 *    clear receive machinery
937 		 *    drain and release tx queues
938 		 *    reclaim beacon resources
939 		 *    power down hardware
940 		 *
941 		 * Note that some of this work is not possible if the
942 		 * hardware is gone (invalid).
943 		 */
944 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
945 		ifp->if_flags &= ~IFF_RUNNING;
946 		ifp->if_timer = 0;
947 		if (!sc->sc_invalid) {
948 			if (sc->sc_softled) {
949 				callout_stop(&sc->sc_ledtimer);
950 				ath_hal_gpioset(ah, sc->sc_ledpin,
951 					!sc->sc_ledon);
952 				sc->sc_blinking = 0;
953 			}
954 			ath_hal_intrset(ah, 0);
955 		}
956 		ath_draintxq(sc);
957 		if (!sc->sc_invalid) {
958 			ath_stoprecv(sc);
959 			ath_hal_phydisable(ah);
960 		} else
961 			sc->sc_rxlink = NULL;
962 		IFQ_DRV_PURGE(&ifp->if_snd);
963 		ath_beacon_free(sc);
964 	}
965 }
966 
967 static void
968 ath_stop(struct ifnet *ifp)
969 {
970 	struct ath_softc *sc = ifp->if_softc;
971 
972 	ATH_LOCK(sc);
973 	ath_stop_locked(ifp);
974 	if (!sc->sc_invalid) {
975 		/*
976 		 * Set the chip in full sleep mode.  Note that we are
977 		 * careful to do this only when bringing the interface
978 		 * completely to a stop.  When the chip is in this state
979 		 * it must be carefully woken up or references to
980 		 * registers in the PCI clock domain may freeze the bus
981 		 * (and system).  This varies by chip and is mostly an
982 		 * issue with newer parts that go to sleep more quickly.
983 		 */
984 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
985 	}
986 	ATH_UNLOCK(sc);
987 }
988 
989 /*
990  * Reset the hardware w/o losing operational state.  This is
991  * basically a more efficient way of doing ath_stop, ath_init,
992  * followed by state transitions to the current 802.11
993  * operational state.  Used to recover from various errors and
994  * to reset or reload hardware state.
995  */
996 static int
997 ath_reset(struct ifnet *ifp)
998 {
999 	struct ath_softc *sc = ifp->if_softc;
1000 	struct ieee80211com *ic = &sc->sc_ic;
1001 	struct ath_hal *ah = sc->sc_ah;
1002 	struct ieee80211_channel *c;
1003 	HAL_STATUS status;
1004 
1005 	/*
1006 	 * Convert to a HAL channel description with the flags
1007 	 * constrained to reflect the current operating mode.
1008 	 */
1009 	c = ic->ic_ibss_chan;
1010 	sc->sc_curchan.channel = c->ic_freq;
1011 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1012 
1013 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1014 	ath_draintxq(sc);		/* stop xmit side */
1015 	ath_stoprecv(sc);		/* stop recv side */
1016 	/* NB: indicate channel change so we do a full reset */
1017 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1018 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1019 			__func__, status);
1020 	ath_update_txpow(sc);		/* update tx power state */
1021 	if (ath_startrecv(sc) != 0)	/* restart recv */
1022 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1023 	/*
1024 	 * We may be doing a reset in response to an ioctl
1025 	 * that changes the channel so update any state that
1026 	 * might change as a result.
1027 	 */
1028 	ath_chan_change(sc, c);
1029 	if (ic->ic_state == IEEE80211_S_RUN)
1030 		ath_beacon_config(sc);	/* restart beacons */
1031 	ath_hal_intrset(ah, sc->sc_imask);
1032 
1033 	ath_start(ifp);			/* restart xmit */
1034 	return 0;
1035 }
1036 
1037 static void
1038 ath_start(struct ifnet *ifp)
1039 {
1040 	struct ath_softc *sc = ifp->if_softc;
1041 	struct ath_hal *ah = sc->sc_ah;
1042 	struct ieee80211com *ic = &sc->sc_ic;
1043 	struct ieee80211_node *ni;
1044 	struct ath_buf *bf;
1045 	struct mbuf *m;
1046 	struct ieee80211_frame *wh;
1047 	struct ether_header *eh;
1048 
1049 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1050 		return;
1051 	for (;;) {
1052 		/*
1053 		 * Grab a TX buffer and associated resources.
1054 		 */
1055 		ATH_TXBUF_LOCK(sc);
1056 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1057 		if (bf != NULL)
1058 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1059 		ATH_TXBUF_UNLOCK(sc);
1060 		if (bf == NULL) {
1061 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1062 				__func__);
1063 			sc->sc_stats.ast_tx_qstop++;
1064 			ifp->if_flags |= IFF_OACTIVE;
1065 			break;
1066 		}
1067 		/*
1068 		 * Poll the management queue for frames; they
1069 		 * have priority over normal data frames.
1070 		 */
1071 		IF_DEQUEUE(&ic->ic_mgtq, m);
1072 		if (m == NULL) {
1073 			/*
1074 			 * No data frames go out unless we're associated.
1075 			 */
1076 			if (ic->ic_state != IEEE80211_S_RUN) {
1077 				DPRINTF(sc, ATH_DEBUG_ANY,
1078 					"%s: ignore data packet, state %u\n",
1079 					__func__, ic->ic_state);
1080 				sc->sc_stats.ast_tx_discard++;
1081 				ATH_TXBUF_LOCK(sc);
1082 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1083 				ATH_TXBUF_UNLOCK(sc);
1084 				break;
1085 			}
1086 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1087 			if (m == NULL) {
1088 				ATH_TXBUF_LOCK(sc);
1089 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1090 				ATH_TXBUF_UNLOCK(sc);
1091 				break;
1092 			}
1093 			/*
1094 			 * Find the node for the destination so we can do
1095 			 * things like power save and fast frames aggregation.
1096 			 */
1097 			if (m->m_len < sizeof(struct ether_header) &&
1098 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1099 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1100 				ni = NULL;
1101 				goto bad;
1102 			}
1103 			eh = mtod(m, struct ether_header *);
1104 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1105 			if (ni == NULL) {
1106 				/* NB: ieee80211_find_txnode does stat+msg */
1107 				goto bad;
1108 			}
1109 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1110 			    (m->m_flags & M_PWR_SAV) == 0) {
1111 				/*
1112 				 * Station in power save mode; pass the frame
1113 				 * to the 802.11 layer and continue.  We'll get
1114 				 * the frame back when the time is right.
1115 				 */
1116 				ieee80211_pwrsave(ic, ni, m);
1117 				goto reclaim;
1118 			}
1119 			/* calculate priority so we can find the tx queue */
1120 			if (ieee80211_classify(ic, m, ni)) {
1121 				DPRINTF(sc, ATH_DEBUG_XMIT,
1122 					"%s: discard, classification failure\n",
1123 					__func__);
1124 				goto bad;
1125 			}
1126 			ifp->if_opackets++;
1127 			BPF_MTAP(ifp, m);
1128 			/*
1129 			 * Encapsulate the packet in prep for transmission.
1130 			 */
1131 			m = ieee80211_encap(ic, m, ni);
1132 			if (m == NULL) {
1133 				DPRINTF(sc, ATH_DEBUG_ANY,
1134 					"%s: encapsulation failure\n",
1135 					__func__);
1136 				sc->sc_stats.ast_tx_encap++;
1137 				goto bad;
1138 			}
1139 		} else {
1140 			/*
1141 			 * Hack!  The referenced node pointer is in the
1142 			 * rcvif field of the packet header.  This is
1143 			 * placed there by ieee80211_mgmt_output because
1144 			 * we need to hold the reference with the frame
1145 			 * and there's no other way (other than packet
1146 			 * tags which we consider too expensive to use)
1147 			 * to pass it along.
1148 			 */
1149 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1150 			m->m_pkthdr.rcvif = NULL;
1151 
1152 			wh = mtod(m, struct ieee80211_frame *);
1153 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1154 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1155 				/* fill time stamp */
1156 				u_int64_t tsf;
1157 				u_int32_t *tstamp;
1158 
1159 				tsf = ath_hal_gettsf64(ah);
1160 				/* XXX: adjust 100us delay to xmit */
1161 				tsf += 100;
1162 				tstamp = (u_int32_t *)&wh[1];
1163 				tstamp[0] = htole32(tsf & 0xffffffff);
1164 				tstamp[1] = htole32(tsf >> 32);
1165 			}
1166 			sc->sc_stats.ast_tx_mgmt++;
1167 		}
1168 
1169 		if (ath_tx_start(sc, ni, bf, m)) {
1170 	bad:
1171 			ifp->if_oerrors++;
1172 	reclaim:
1173 			ATH_TXBUF_LOCK(sc);
1174 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1175 			ATH_TXBUF_UNLOCK(sc);
1176 			if (ni != NULL)
1177 				ieee80211_free_node(ni);
1178 			continue;
1179 		}
1180 
1181 		sc->sc_tx_timer = 5;
1182 		ifp->if_timer = 1;
1183 	}
1184 }
1185 
1186 static int
1187 ath_media_change(struct ifnet *ifp)
1188 {
1189 #define	IS_UP(ifp) \
1190 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1191 	int error;
1192 
1193 	error = ieee80211_media_change(ifp);
1194 	if (error == ENETRESET) {
1195 		if (IS_UP(ifp))
1196 			ath_init(ifp);		/* XXX lose error */
1197 		error = 0;
1198 	}
1199 	return error;
1200 #undef IS_UP
1201 }
1202 
1203 #ifdef AR_DEBUG
1204 static void
1205 ath_keyprint(const char *tag, u_int ix,
1206 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1207 {
1208 	static const char *ciphers[] = {
1209 		"WEP",
1210 		"AES-OCB",
1211 		"AES-CCM",
1212 		"CKIP",
1213 		"TKIP",
1214 		"CLR",
1215 	};
1216 	int i, n;
1217 
1218 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1219 	for (i = 0, n = hk->kv_len; i < n; i++)
1220 		printf("%02x", hk->kv_val[i]);
1221 	printf(" mac %s", ether_sprintf(mac));
1222 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1223 		printf(" mic ");
1224 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1225 			printf("%02x", hk->kv_mic[i]);
1226 	}
1227 	printf("\n");
1228 }
1229 #endif
1230 
1231 /*
1232  * Set a TKIP key into the hardware.  This handles the
1233  * potential distribution of key state to multiple key
1234  * cache slots for TKIP.
1235  */
1236 static int
1237 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1238 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1239 {
1240 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1241 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1242 	struct ath_hal *ah = sc->sc_ah;
1243 
1244 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1245 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1246 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1247 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1248 		/*
1249 		 * TX key goes at first index, RX key at +32.
1250 		 * The hal handles the MIC keys at index+64.
1251 		 */
1252 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1253 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1254 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1255 			return 0;
1256 
1257 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1258 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1259 		/* XXX delete tx key on failure? */
1260 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1261 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1262 		/*
1263 		 * TX/RX key goes at first index.
1264 		 * The hal handles the MIC keys are index+64.
1265 		 */
1266 		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1267 			("group key at index %u", k->wk_keyix));
1268 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1269 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1270 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1271 		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1272 	}
1273 	/* XXX key w/o xmit/recv; need this for compression? */
1274 	return 0;
1275 #undef IEEE80211_KEY_XR
1276 }
1277 
1278 /*
1279  * Set a net80211 key into the hardware.  This handles the
1280  * potential distribution of key state to multiple key
1281  * cache slots for TKIP with hardware MIC support.
1282  */
1283 static int
1284 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1285 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1286 {
1287 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1288 	static const u_int8_t ciphermap[] = {
1289 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1290 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1291 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1292 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1293 		(u_int8_t) -1,		/* 4 is not allocated */
1294 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1295 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1296 	};
1297 	struct ath_hal *ah = sc->sc_ah;
1298 	const struct ieee80211_cipher *cip = k->wk_cipher;
1299 	HAL_KEYVAL hk;
1300 
1301 	memset(&hk, 0, sizeof(hk));
1302 	/*
1303 	 * Software crypto uses a "clear key" so non-crypto
1304 	 * state kept in the key cache are maintained and
1305 	 * so that rx frames have an entry to match.
1306 	 */
1307 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1308 		KASSERT(cip->ic_cipher < N(ciphermap),
1309 			("invalid cipher type %u", cip->ic_cipher));
1310 		hk.kv_type = ciphermap[cip->ic_cipher];
1311 		hk.kv_len = k->wk_keylen;
1312 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1313 	} else
1314 		hk.kv_type = HAL_CIPHER_CLR;
1315 
1316 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1317 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1318 	    sc->sc_splitmic) {
1319 		return ath_keyset_tkip(sc, k, &hk, mac);
1320 	} else {
1321 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1322 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1323 	}
1324 #undef N
1325 }
1326 
1327 /*
1328  * Fill the hardware key cache with key entries.
1329  */
1330 static void
1331 ath_initkeytable(struct ath_softc *sc)
1332 {
1333 	struct ieee80211com *ic = &sc->sc_ic;
1334 	struct ifnet *ifp = &sc->sc_if;
1335 	struct ath_hal *ah = sc->sc_ah;
1336 	const u_int8_t *bssid;
1337 	int i;
1338 
1339 	/* XXX maybe should reset all keys when !PRIVACY */
1340 	if (ic->ic_state == IEEE80211_S_SCAN)
1341 		bssid = ifp->if_broadcastaddr;
1342 	else
1343 		bssid = ic->ic_bss->ni_bssid;
1344 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1345 		struct ieee80211_key *k = &ic->ic_nw_keys[i];
1346 
1347 		if (k->wk_keylen == 0) {
1348 			ath_hal_keyreset(ah, i);
1349 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1350 				__func__, i);
1351 		} else {
1352 			ath_keyset(sc, k, bssid);
1353 		}
1354 	}
1355 }
1356 
1357 /*
1358  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1359  * each key, one for decrypt/encrypt and the other for the MIC.
1360  */
1361 static u_int16_t
1362 key_alloc_2pair(struct ath_softc *sc)
1363 {
1364 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1365 	u_int i, keyix;
1366 
1367 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1368 	/* XXX could optimize */
1369 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1370 		u_int8_t b = sc->sc_keymap[i];
1371 		if (b != 0xff) {
1372 			/*
1373 			 * One or more slots in this byte are free.
1374 			 */
1375 			keyix = i*NBBY;
1376 			while (b & 1) {
1377 		again:
1378 				keyix++;
1379 				b >>= 1;
1380 			}
1381 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1382 			if (isset(sc->sc_keymap, keyix+32) ||
1383 			    isset(sc->sc_keymap, keyix+64) ||
1384 			    isset(sc->sc_keymap, keyix+32+64)) {
1385 				/* full pair unavailable */
1386 				/* XXX statistic */
1387 				if (keyix == (i+1)*NBBY) {
1388 					/* no slots were appropriate, advance */
1389 					continue;
1390 				}
1391 				goto again;
1392 			}
1393 			setbit(sc->sc_keymap, keyix);
1394 			setbit(sc->sc_keymap, keyix+64);
1395 			setbit(sc->sc_keymap, keyix+32);
1396 			setbit(sc->sc_keymap, keyix+32+64);
1397 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1398 				"%s: key pair %u,%u %u,%u\n",
1399 				__func__, keyix, keyix+64,
1400 				keyix+32, keyix+32+64);
1401 			return keyix;
1402 		}
1403 	}
1404 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1405 	return IEEE80211_KEYIX_NONE;
1406 #undef N
1407 }
1408 
1409 /*
1410  * Allocate a single key cache slot.
1411  */
1412 static u_int16_t
1413 key_alloc_single(struct ath_softc *sc)
1414 {
1415 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1416 	u_int i, keyix;
1417 
1418 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1419 	for (i = 0; i < N(sc->sc_keymap); i++) {
1420 		u_int8_t b = sc->sc_keymap[i];
1421 		if (b != 0xff) {
1422 			/*
1423 			 * One or more slots are free.
1424 			 */
1425 			keyix = i*NBBY;
1426 			while (b & 1)
1427 				keyix++, b >>= 1;
1428 			setbit(sc->sc_keymap, keyix);
1429 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1430 				__func__, keyix);
1431 			return keyix;
1432 		}
1433 	}
1434 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1435 	return IEEE80211_KEYIX_NONE;
1436 #undef N
1437 }
1438 
1439 /*
1440  * Allocate one or more key cache slots for a uniacst key.  The
1441  * key itself is needed only to identify the cipher.  For hardware
1442  * TKIP with split cipher+MIC keys we allocate two key cache slot
1443  * pairs so that we can setup separate TX and RX MIC keys.  Note
1444  * that the MIC key for a TKIP key at slot i is assumed by the
1445  * hardware to be at slot i+64.  This limits TKIP keys to the first
1446  * 64 entries.
1447  */
1448 static int
1449 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1450 {
1451 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1452 
1453 	/*
1454 	 * We allocate two pair for TKIP when using the h/w to do
1455 	 * the MIC.  For everything else, including software crypto,
1456 	 * we allocate a single entry.  Note that s/w crypto requires
1457 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1458 	 * not support pass-through cache entries and we map all
1459 	 * those requests to slot 0.
1460 	 */
1461 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1462 		return key_alloc_single(sc);
1463 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1464 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1465 		return key_alloc_2pair(sc);
1466 	} else {
1467 		return key_alloc_single(sc);
1468 	}
1469 }
1470 
1471 /*
1472  * Delete an entry in the key cache allocated by ath_key_alloc.
1473  */
1474 static int
1475 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1476 {
1477 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1478 	struct ath_hal *ah = sc->sc_ah;
1479 	const struct ieee80211_cipher *cip = k->wk_cipher;
1480 	u_int keyix = k->wk_keyix;
1481 
1482 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1483 
1484 	ath_hal_keyreset(ah, keyix);
1485 	/*
1486 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1487 	 */
1488 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1489 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1490 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1491 	if (keyix >= IEEE80211_WEP_NKID) {
1492 		/*
1493 		 * Don't touch keymap entries for global keys so
1494 		 * they are never considered for dynamic allocation.
1495 		 */
1496 		clrbit(sc->sc_keymap, keyix);
1497 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1498 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1499 		    sc->sc_splitmic) {
1500 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1501 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1502 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1503 		}
1504 	}
1505 	return 1;
1506 }
1507 
1508 /*
1509  * Set the key cache contents for the specified key.  Key cache
1510  * slot(s) must already have been allocated by ath_key_alloc.
1511  */
1512 static int
1513 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1514 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1515 {
1516 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1517 
1518 	return ath_keyset(sc, k, mac);
1519 }
1520 
1521 /*
1522  * Block/unblock tx+rx processing while a key change is done.
1523  * We assume the caller serializes key management operations
1524  * so we only need to worry about synchronization with other
1525  * uses that originate in the driver.
1526  */
1527 static void
1528 ath_key_update_begin(struct ieee80211com *ic)
1529 {
1530 	struct ifnet *ifp = ic->ic_ifp;
1531 	struct ath_softc *sc = ifp->if_softc;
1532 
1533 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1534 #if 0
1535 	tasklet_disable(&sc->sc_rxtq);
1536 #endif
1537 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1538 }
1539 
1540 static void
1541 ath_key_update_end(struct ieee80211com *ic)
1542 {
1543 	struct ifnet *ifp = ic->ic_ifp;
1544 	struct ath_softc *sc = ifp->if_softc;
1545 
1546 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1547 	IF_UNLOCK(&ifp->if_snd);
1548 #if 0
1549 	tasklet_enable(&sc->sc_rxtq);
1550 #endif
1551 }
1552 
1553 /*
1554  * Calculate the receive filter according to the
1555  * operating mode and state:
1556  *
1557  * o always accept unicast, broadcast, and multicast traffic
1558  * o maintain current state of phy error reception (the hal
1559  *   may enable phy error frames for noise immunity work)
1560  * o probe request frames are accepted only when operating in
1561  *   hostap, adhoc, or monitor modes
1562  * o enable promiscuous mode according to the interface state
1563  * o accept beacons:
1564  *   - when operating in adhoc mode so the 802.11 layer creates
1565  *     node table entries for peers,
1566  *   - when operating in station mode for collecting rssi data when
1567  *     the station is otherwise quiet, or
1568  *   - when scanning
1569  */
1570 static u_int32_t
1571 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1572 {
1573 	struct ieee80211com *ic = &sc->sc_ic;
1574 	struct ath_hal *ah = sc->sc_ah;
1575 	struct ifnet *ifp = &sc->sc_if;
1576 	u_int32_t rfilt;
1577 
1578 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1579 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1580 	if (ic->ic_opmode != IEEE80211_M_STA)
1581 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1582 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1583 	    (ifp->if_flags & IFF_PROMISC))
1584 		rfilt |= HAL_RX_FILTER_PROM;
1585 	if (ic->ic_opmode == IEEE80211_M_STA ||
1586 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1587 	    state == IEEE80211_S_SCAN)
1588 		rfilt |= HAL_RX_FILTER_BEACON;
1589 	return rfilt;
1590 }
1591 
1592 static void
1593 ath_mode_init(struct ath_softc *sc)
1594 {
1595 	struct ieee80211com *ic = &sc->sc_ic;
1596 	struct ath_hal *ah = sc->sc_ah;
1597 	struct ifnet *ifp = &sc->sc_if;
1598 	u_int32_t rfilt, mfilt[2], val;
1599 	u_int8_t pos;
1600 	struct ifmultiaddr *ifma;
1601 
1602 	/* configure rx filter */
1603 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1604 	ath_hal_setrxfilter(ah, rfilt);
1605 
1606 	/* configure operational mode */
1607 	ath_hal_setopmode(ah);
1608 
1609 	/*
1610 	 * Handle any link-level address change.  Note that we only
1611 	 * need to force ic_myaddr; any other addresses are handled
1612 	 * as a byproduct of the ifnet code marking the interface
1613 	 * down then up.
1614 	 *
1615 	 * XXX should get from lladdr instead of arpcom but that's more work
1616 	 */
1617 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr);
1618 	ath_hal_setmac(ah, ic->ic_myaddr);
1619 
1620 	/* calculate and install multicast filter */
1621 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1622 		mfilt[0] = mfilt[1] = 0;
1623 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1624 			caddr_t dl;
1625 
1626 			/* calculate XOR of eight 6bit values */
1627 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1628 			val = LE_READ_4(dl + 0);
1629 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1630 			val = LE_READ_4(dl + 3);
1631 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1632 			pos &= 0x3f;
1633 			mfilt[pos / 32] |= (1 << (pos % 32));
1634 		}
1635 	} else {
1636 		mfilt[0] = mfilt[1] = ~0;
1637 	}
1638 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1639 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1640 		__func__, rfilt, mfilt[0], mfilt[1]);
1641 }
1642 
1643 /*
1644  * Set the slot time based on the current setting.
1645  */
1646 static void
1647 ath_setslottime(struct ath_softc *sc)
1648 {
1649 	struct ieee80211com *ic = &sc->sc_ic;
1650 	struct ath_hal *ah = sc->sc_ah;
1651 
1652 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1653 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1654 	else
1655 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1656 	sc->sc_updateslot = OK;
1657 }
1658 
1659 /*
1660  * Callback from the 802.11 layer to update the
1661  * slot time based on the current setting.
1662  */
1663 static void
1664 ath_updateslot(struct ifnet *ifp)
1665 {
1666 	struct ath_softc *sc = ifp->if_softc;
1667 	struct ieee80211com *ic = &sc->sc_ic;
1668 
1669 	/*
1670 	 * When not coordinating the BSS, change the hardware
1671 	 * immediately.  For other operation we defer the change
1672 	 * until beacon updates have propagated to the stations.
1673 	 */
1674 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1675 		sc->sc_updateslot = UPDATE;
1676 	else
1677 		ath_setslottime(sc);
1678 }
1679 
1680 /*
1681  * Setup a h/w transmit queue for beacons.
1682  */
1683 static int
1684 ath_beaconq_setup(struct ath_hal *ah)
1685 {
1686 	HAL_TXQ_INFO qi;
1687 
1688 	memset(&qi, 0, sizeof(qi));
1689 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1690 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1691 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1692 	/* NB: don't enable any interrupts */
1693 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1694 }
1695 
1696 /*
1697  * Allocate and setup an initial beacon frame.
1698  */
1699 static int
1700 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1701 {
1702 	struct ieee80211com *ic = ni->ni_ic;
1703 	struct ath_buf *bf;
1704 	struct mbuf *m;
1705 	int error;
1706 
1707 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1708 	if (bf == NULL) {
1709 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1710 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1711 		return ENOMEM;			/* XXX */
1712 	}
1713 	/*
1714 	 * NB: the beacon data buffer must be 32-bit aligned;
1715 	 * we assume the mbuf routines will return us something
1716 	 * with this alignment (perhaps should assert).
1717 	 */
1718 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1719 	if (m == NULL) {
1720 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1721 			__func__);
1722 		sc->sc_stats.ast_be_nombuf++;
1723 		return ENOMEM;
1724 	}
1725 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1726 				     bf->bf_segs, &bf->bf_nseg,
1727 				     BUS_DMA_NOWAIT);
1728 	if (error == 0) {
1729 		bf->bf_m = m;
1730 		bf->bf_node = ieee80211_ref_node(ni);
1731 	} else {
1732 		m_freem(m);
1733 	}
1734 	return error;
1735 }
1736 
1737 /*
1738  * Setup the beacon frame for transmit.
1739  */
1740 static void
1741 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1742 {
1743 #define	USE_SHPREAMBLE(_ic) \
1744 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1745 		== IEEE80211_F_SHPREAMBLE)
1746 	struct ieee80211_node *ni = bf->bf_node;
1747 	struct ieee80211com *ic = ni->ni_ic;
1748 	struct mbuf *m = bf->bf_m;
1749 	struct ath_hal *ah = sc->sc_ah;
1750 	struct ath_node *an = ATH_NODE(ni);
1751 	struct ath_desc *ds;
1752 	int flags, antenna;
1753 	u_int8_t rate;
1754 
1755 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1756 		__func__, m, m->m_len);
1757 
1758 	/* setup descriptors */
1759 	ds = bf->bf_desc;
1760 
1761 	flags = HAL_TXDESC_NOACK;
1762 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1763 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1764 		flags |= HAL_TXDESC_VEOL;
1765 		/*
1766 		 * Let hardware handle antenna switching.
1767 		 */
1768 		antenna = 0;
1769 	} else {
1770 		ds->ds_link = 0;
1771 		/*
1772 		 * Switch antenna every 4 beacons.
1773 		 * XXX assumes two antenna
1774 		 */
1775 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1776 	}
1777 
1778 	KASSERT(bf->bf_nseg == 1,
1779 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1780 	ds->ds_data = bf->bf_segs[0].ds_addr;
1781 	/*
1782 	 * Calculate rate code.
1783 	 * XXX everything at min xmit rate
1784 	 */
1785 	if (USE_SHPREAMBLE(ic))
1786 		rate = an->an_tx_mgtratesp;
1787 	else
1788 		rate = an->an_tx_mgtrate;
1789 	ath_hal_setuptxdesc(ah, ds
1790 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1791 		, sizeof(struct ieee80211_frame)/* header length */
1792 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1793 		, ni->ni_txpower		/* txpower XXX */
1794 		, rate, 1			/* series 0 rate/tries */
1795 		, HAL_TXKEYIX_INVALID		/* no encryption */
1796 		, antenna			/* antenna mode */
1797 		, flags				/* no ack, veol for beacons */
1798 		, 0				/* rts/cts rate */
1799 		, 0				/* rts/cts duration */
1800 	);
1801 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1802 	ath_hal_filltxdesc(ah, ds
1803 		, roundup(m->m_len, 4)		/* buffer length */
1804 		, AH_TRUE			/* first segment */
1805 		, AH_TRUE			/* last segment */
1806 		, ds				/* first descriptor */
1807 	);
1808 #undef USE_SHPREAMBLE
1809 }
1810 
1811 /*
1812  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1813  * frame contents are done as needed and the slot time is
1814  * also adjusted based on current state.
1815  */
1816 static void
1817 ath_beacon_proc(void *arg, int pending)
1818 {
1819 	struct ath_softc *sc = arg;
1820 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1821 	struct ieee80211_node *ni = bf->bf_node;
1822 	struct ieee80211com *ic = ni->ni_ic;
1823 	struct ath_hal *ah = sc->sc_ah;
1824 	struct mbuf *m;
1825 	int ncabq, error, otherant;
1826 
1827 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1828 		__func__, pending);
1829 
1830 	if (ic->ic_opmode == IEEE80211_M_STA ||
1831 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1832 	    bf == NULL || bf->bf_m == NULL) {
1833 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1834 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1835 		return;
1836 	}
1837 	/*
1838 	 * Check if the previous beacon has gone out.  If
1839 	 * not don't don't try to post another, skip this
1840 	 * period and wait for the next.  Missed beacons
1841 	 * indicate a problem and should not occur.  If we
1842 	 * miss too many consecutive beacons reset the device.
1843 	 */
1844 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1845 		sc->sc_bmisscount++;
1846 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1847 			"%s: missed %u consecutive beacons\n",
1848 			__func__, sc->sc_bmisscount);
1849 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1850 			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1851 		return;
1852 	}
1853 	if (sc->sc_bmisscount != 0) {
1854 		DPRINTF(sc, ATH_DEBUG_BEACON,
1855 			"%s: resume beacon xmit after %u misses\n",
1856 			__func__, sc->sc_bmisscount);
1857 		sc->sc_bmisscount = 0;
1858 	}
1859 
1860 	/*
1861 	 * Update dynamic beacon contents.  If this returns
1862 	 * non-zero then we need to remap the memory because
1863 	 * the beacon frame changed size (probably because
1864 	 * of the TIM bitmap).
1865 	 */
1866 	m = bf->bf_m;
1867 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1868 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1869 		/* XXX too conservative? */
1870 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1871 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1872 					     bf->bf_segs, &bf->bf_nseg,
1873 					     BUS_DMA_NOWAIT);
1874 		if (error != 0) {
1875 			if_printf(ic->ic_ifp,
1876 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1877 			    __func__, error);
1878 			return;
1879 		}
1880 	}
1881 
1882 	/*
1883 	 * Handle slot time change when a non-ERP station joins/leaves
1884 	 * an 11g network.  The 802.11 layer notifies us via callback,
1885 	 * we mark updateslot, then wait one beacon before effecting
1886 	 * the change.  This gives associated stations at least one
1887 	 * beacon interval to note the state change.
1888 	 */
1889 	/* XXX locking */
1890 	if (sc->sc_updateslot == UPDATE)
1891 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1892 	else if (sc->sc_updateslot == COMMIT)
1893 		ath_setslottime(sc);		/* commit change to h/w */
1894 
1895 	/*
1896 	 * Check recent per-antenna transmit statistics and flip
1897 	 * the default antenna if noticeably more frames went out
1898 	 * on the non-default antenna.
1899 	 * XXX assumes 2 anntenae
1900 	 */
1901 	otherant = sc->sc_defant & 1 ? 2 : 1;
1902 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1903 		ath_setdefantenna(sc, otherant);
1904 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1905 
1906 	/*
1907 	 * Construct tx descriptor.
1908 	 */
1909 	ath_beacon_setup(sc, bf);
1910 
1911 	/*
1912 	 * Stop any current dma and put the new frame on the queue.
1913 	 * This should never fail since we check above that no frames
1914 	 * are still pending on the queue.
1915 	 */
1916 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1917 		DPRINTF(sc, ATH_DEBUG_ANY,
1918 			"%s: beacon queue %u did not stop?\n",
1919 			__func__, sc->sc_bhalq);
1920 	}
1921 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1922 
1923 	/*
1924 	 * Enable the CAB queue before the beacon queue to
1925 	 * insure cab frames are triggered by this beacon.
1926 	 */
1927 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
1928 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
1929 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1930 	ath_hal_txstart(ah, sc->sc_bhalq);
1931 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1932 		"%s: TXDP[%u] = %p (%p)\n", __func__,
1933 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
1934 
1935 	sc->sc_stats.ast_be_xmit++;
1936 }
1937 
1938 /*
1939  * Reset the hardware after detecting beacons have stopped.
1940  */
1941 static void
1942 ath_bstuck_proc(void *arg, int pending)
1943 {
1944 	struct ath_softc *sc = arg;
1945 	struct ifnet *ifp = &sc->sc_if;
1946 
1947 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
1948 		sc->sc_bmisscount);
1949 	ath_reset(ifp);
1950 }
1951 
1952 /*
1953  * Reclaim beacon resources.
1954  */
1955 static void
1956 ath_beacon_free(struct ath_softc *sc)
1957 {
1958 	struct ath_buf *bf;
1959 
1960 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
1961 		if (bf->bf_m != NULL) {
1962 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1963 			m_freem(bf->bf_m);
1964 			bf->bf_m = NULL;
1965 		}
1966 		if (bf->bf_node != NULL) {
1967 			ieee80211_free_node(bf->bf_node);
1968 			bf->bf_node = NULL;
1969 		}
1970 	}
1971 }
1972 
1973 /*
1974  * Configure the beacon and sleep timers.
1975  *
1976  * When operating as an AP this resets the TSF and sets
1977  * up the hardware to notify us when we need to issue beacons.
1978  *
1979  * When operating in station mode this sets up the beacon
1980  * timers according to the timestamp of the last received
1981  * beacon and the current TSF, configures PCF and DTIM
1982  * handling, programs the sleep registers so the hardware
1983  * will wakeup in time to receive beacons, and configures
1984  * the beacon miss handling so we'll receive a BMISS
1985  * interrupt when we stop seeing beacons from the AP
1986  * we've associated with.
1987  */
1988 static void
1989 ath_beacon_config(struct ath_softc *sc)
1990 {
1991 	struct ath_hal *ah = sc->sc_ah;
1992 	struct ieee80211com *ic = &sc->sc_ic;
1993 	struct ieee80211_node *ni = ic->ic_bss;
1994 	u_int32_t nexttbtt, intval;
1995 
1996 	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
1997 	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
1998 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
1999 	if (nexttbtt == 0)		/* e.g. for ap mode */
2000 		nexttbtt = intval;
2001 	else if (intval)		/* NB: can be 0 for monitor mode */
2002 		nexttbtt = roundup(nexttbtt, intval);
2003 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2004 		__func__, nexttbtt, intval, ni->ni_intval);
2005 	if (ic->ic_opmode == IEEE80211_M_STA) {
2006 		HAL_BEACON_STATE bs;
2007 
2008 		/* NB: no PCF support right now */
2009 		memset(&bs, 0, sizeof(bs));
2010 		bs.bs_intval = intval;
2011 		bs.bs_nexttbtt = nexttbtt;
2012 		bs.bs_dtimperiod = bs.bs_intval;
2013 		bs.bs_nextdtim = nexttbtt;
2014 		/*
2015 		 * The 802.11 layer records the offset to the DTIM
2016 		 * bitmap while receiving beacons; use it here to
2017 		 * enable h/w detection of our AID being marked in
2018 		 * the bitmap vector (to indicate frames for us are
2019 		 * pending at the AP).
2020 		 */
2021 		bs.bs_timoffset = ni->ni_timoff;
2022 		/*
2023 		 * Calculate the number of consecutive beacons to miss
2024 		 * before taking a BMISS interrupt.  The configuration
2025 		 * is specified in ms, so we need to convert that to
2026 		 * TU's and then calculate based on the beacon interval.
2027 		 * Note that we clamp the result to at most 10 beacons.
2028 		 */
2029 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2030 		if (bs.bs_bmissthreshold > 10)
2031 			bs.bs_bmissthreshold = 10;
2032 		else if (bs.bs_bmissthreshold <= 0)
2033 			bs.bs_bmissthreshold = 1;
2034 
2035 		/*
2036 		 * Calculate sleep duration.  The configuration is
2037 		 * given in ms.  We insure a multiple of the beacon
2038 		 * period is used.  Also, if the sleep duration is
2039 		 * greater than the DTIM period then it makes senses
2040 		 * to make it a multiple of that.
2041 		 *
2042 		 * XXX fixed at 100ms
2043 		 */
2044 		bs.bs_sleepduration =
2045 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2046 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2047 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2048 
2049 		DPRINTF(sc, ATH_DEBUG_BEACON,
2050 			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2051 			, __func__
2052 			, bs.bs_intval
2053 			, bs.bs_nexttbtt
2054 			, bs.bs_dtimperiod
2055 			, bs.bs_nextdtim
2056 			, bs.bs_bmissthreshold
2057 			, bs.bs_sleepduration
2058 			, bs.bs_cfpperiod
2059 			, bs.bs_cfpmaxduration
2060 			, bs.bs_cfpnext
2061 			, bs.bs_timoffset
2062 		);
2063 		ath_hal_intrset(ah, 0);
2064 		ath_hal_beacontimers(ah, &bs);
2065 		sc->sc_imask |= HAL_INT_BMISS;
2066 		ath_hal_intrset(ah, sc->sc_imask);
2067 	} else {
2068 		ath_hal_intrset(ah, 0);
2069 		if (nexttbtt == intval)
2070 			intval |= HAL_BEACON_RESET_TSF;
2071 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2072 			/*
2073 			 * In IBSS mode enable the beacon timers but only
2074 			 * enable SWBA interrupts if we need to manually
2075 			 * prepare beacon frames.  Otherwise we use a
2076 			 * self-linked tx descriptor and let the hardware
2077 			 * deal with things.
2078 			 */
2079 			intval |= HAL_BEACON_ENA;
2080 			if (!sc->sc_hasveol)
2081 				sc->sc_imask |= HAL_INT_SWBA;
2082 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2083 			/*
2084 			 * In AP mode we enable the beacon timers and
2085 			 * SWBA interrupts to prepare beacon frames.
2086 			 */
2087 			intval |= HAL_BEACON_ENA;
2088 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2089 		}
2090 		ath_hal_beaconinit(ah, nexttbtt, intval);
2091 		sc->sc_bmisscount = 0;
2092 		ath_hal_intrset(ah, sc->sc_imask);
2093 		/*
2094 		 * When using a self-linked beacon descriptor in
2095 		 * ibss mode load it once here.
2096 		 */
2097 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2098 			ath_beacon_proc(sc, 0);
2099 	}
2100 }
2101 
2102 static void
2103 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2104 {
2105 	bus_addr_t *paddr = (bus_addr_t*) arg;
2106 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2107 	*paddr = segs->ds_addr;
2108 }
2109 
2110 static int
2111 ath_descdma_setup(struct ath_softc *sc,
2112 	struct ath_descdma *dd, ath_bufhead *head,
2113 	const char *name, int nbuf, int ndesc)
2114 {
2115 #define	DS2PHYS(_dd, _ds) \
2116 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2117 	struct ifnet *ifp = &sc->sc_if;
2118 	struct ath_desc *ds;
2119 	struct ath_buf *bf;
2120 	int i, bsize, error;
2121 
2122 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2123 	    __func__, name, nbuf, ndesc);
2124 
2125 	dd->dd_name = name;
2126 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2127 
2128 	/*
2129 	 * Setup DMA descriptor area.
2130 	 */
2131 	error = bus_dma_tag_create(NULL,	/* parent */
2132 		       PAGE_SIZE, 0,		/* alignment, bounds */
2133 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2134 		       BUS_SPACE_MAXADDR,	/* highaddr */
2135 		       NULL, NULL,		/* filter, filterarg */
2136 		       dd->dd_desc_len,		/* maxsize */
2137 		       1,			/* nsegments */
2138 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2139 		       BUS_DMA_ALLOCNOW,	/* flags */
2140 		       NULL,			/* lockfunc */
2141 		       NULL,			/* lockarg */
2142 		       &dd->dd_dmat);
2143 	if (error != 0) {
2144 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2145 		return error;
2146 	}
2147 
2148 	/* allocate descriptors */
2149 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2150 	if (error != 0) {
2151 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2152 			"error %u\n", dd->dd_name, error);
2153 		goto fail0;
2154 	}
2155 
2156 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2157 				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2158 	if (error != 0) {
2159 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2160 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2161 		goto fail1;
2162 	}
2163 
2164 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2165 				dd->dd_desc, dd->dd_desc_len,
2166 				ath_load_cb, &dd->dd_desc_paddr,
2167 				BUS_DMA_NOWAIT);
2168 	if (error != 0) {
2169 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2170 			dd->dd_name, error);
2171 		goto fail2;
2172 	}
2173 
2174 	ds = dd->dd_desc;
2175 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2176 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2177 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2178 
2179 	/* allocate rx buffers */
2180 	bsize = sizeof(struct ath_buf) * nbuf;
2181 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2182 	if (bf == NULL) {
2183 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2184 			dd->dd_name, bsize);
2185 		goto fail3;
2186 	}
2187 	dd->dd_bufptr = bf;
2188 
2189 	STAILQ_INIT(head);
2190 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2191 		bf->bf_desc = ds;
2192 		bf->bf_daddr = DS2PHYS(dd, ds);
2193 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2194 				&bf->bf_dmamap);
2195 		if (error != 0) {
2196 			if_printf(ifp, "unable to create dmamap for %s "
2197 				"buffer %u, error %u\n", dd->dd_name, i, error);
2198 			ath_descdma_cleanup(sc, dd, head);
2199 			return error;
2200 		}
2201 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2202 	}
2203 	return 0;
2204 fail3:
2205 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2206 fail2:
2207 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2208 fail1:
2209 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2210 fail0:
2211 	bus_dma_tag_destroy(dd->dd_dmat);
2212 	memset(dd, 0, sizeof(*dd));
2213 	return error;
2214 #undef DS2PHYS
2215 }
2216 
2217 static void
2218 ath_descdma_cleanup(struct ath_softc *sc,
2219 	struct ath_descdma *dd, ath_bufhead *head)
2220 {
2221 	struct ath_buf *bf;
2222 	struct ieee80211_node *ni;
2223 
2224 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2225 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2226 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2227 	bus_dma_tag_destroy(dd->dd_dmat);
2228 
2229 	STAILQ_FOREACH(bf, head, bf_list) {
2230 		if (bf->bf_m) {
2231 			m_freem(bf->bf_m);
2232 			bf->bf_m = NULL;
2233 		}
2234 		if (bf->bf_dmamap != NULL) {
2235 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2236 			bf->bf_dmamap = NULL;
2237 		}
2238 		ni = bf->bf_node;
2239 		bf->bf_node = NULL;
2240 		if (ni != NULL) {
2241 			/*
2242 			 * Reclaim node reference.
2243 			 */
2244 			ieee80211_free_node(ni);
2245 		}
2246 	}
2247 
2248 	STAILQ_INIT(head);
2249 	free(dd->dd_bufptr, M_ATHDEV);
2250 	memset(dd, 0, sizeof(*dd));
2251 }
2252 
2253 static int
2254 ath_desc_alloc(struct ath_softc *sc)
2255 {
2256 	int error;
2257 
2258 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2259 			"rx", ATH_RXBUF, 1);
2260 	if (error != 0)
2261 		return error;
2262 
2263 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2264 			"tx", ATH_TXBUF, ATH_TXDESC);
2265 	if (error != 0) {
2266 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2267 		return error;
2268 	}
2269 
2270 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2271 			"beacon", 1, 1);
2272 	if (error != 0) {
2273 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2274 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2275 		return error;
2276 	}
2277 	return 0;
2278 }
2279 
2280 static void
2281 ath_desc_free(struct ath_softc *sc)
2282 {
2283 
2284 	if (sc->sc_bdma.dd_desc_len != 0)
2285 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2286 	if (sc->sc_txdma.dd_desc_len != 0)
2287 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2288 	if (sc->sc_rxdma.dd_desc_len != 0)
2289 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2290 }
2291 
2292 static struct ieee80211_node *
2293 ath_node_alloc(struct ieee80211_node_table *nt)
2294 {
2295 	struct ieee80211com *ic = nt->nt_ic;
2296 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2297 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2298 	struct ath_node *an;
2299 
2300 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2301 	if (an == NULL) {
2302 		/* XXX stat+msg */
2303 		return NULL;
2304 	}
2305 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2306 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2307 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2308 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2309 	ath_rate_node_init(sc, an);
2310 
2311 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2312 	return &an->an_node;
2313 }
2314 
2315 static void
2316 ath_node_free(struct ieee80211_node *ni)
2317 {
2318 	struct ieee80211com *ic = ni->ni_ic;
2319         struct ath_softc *sc = ic->ic_ifp->if_softc;
2320 
2321 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2322 
2323 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2324 	sc->sc_node_free(ni);
2325 }
2326 
2327 static u_int8_t
2328 ath_node_getrssi(const struct ieee80211_node *ni)
2329 {
2330 #define	HAL_EP_RND(x, mul) \
2331 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2332 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2333 	int32_t rssi;
2334 
2335 	/*
2336 	 * When only one frame is received there will be no state in
2337 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2338 	 */
2339 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2340 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2341 	else
2342 		rssi = ni->ni_rssi;
2343 	/* NB: theoretically we shouldn't need this, but be paranoid */
2344 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2345 #undef HAL_EP_RND
2346 }
2347 
2348 static int
2349 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2350 {
2351 	struct ath_hal *ah = sc->sc_ah;
2352 	int error;
2353 	struct mbuf *m;
2354 	struct ath_desc *ds;
2355 
2356 	m = bf->bf_m;
2357 	if (m == NULL) {
2358 		/*
2359 		 * NB: by assigning a page to the rx dma buffer we
2360 		 * implicitly satisfy the Atheros requirement that
2361 		 * this buffer be cache-line-aligned and sized to be
2362 		 * multiple of the cache line size.  Not doing this
2363 		 * causes weird stuff to happen (for the 5210 at least).
2364 		 */
2365 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2366 		if (m == NULL) {
2367 			DPRINTF(sc, ATH_DEBUG_ANY,
2368 				"%s: no mbuf/cluster\n", __func__);
2369 			sc->sc_stats.ast_rx_nombuf++;
2370 			return ENOMEM;
2371 		}
2372 		bf->bf_m = m;
2373 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2374 
2375 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2376 					     bf->bf_dmamap, m,
2377 					     bf->bf_segs, &bf->bf_nseg,
2378 					     BUS_DMA_NOWAIT);
2379 		if (error != 0) {
2380 			DPRINTF(sc, ATH_DEBUG_ANY,
2381 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2382 			    __func__, error);
2383 			sc->sc_stats.ast_rx_busdma++;
2384 			return error;
2385 		}
2386 		KASSERT(bf->bf_nseg == 1,
2387 			("multi-segment packet; nseg %u", bf->bf_nseg));
2388 	}
2389 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2390 
2391 	/*
2392 	 * Setup descriptors.  For receive we always terminate
2393 	 * the descriptor list with a self-linked entry so we'll
2394 	 * not get overrun under high load (as can happen with a
2395 	 * 5212 when ANI processing enables PHY error frames).
2396 	 *
2397 	 * To insure the last descriptor is self-linked we create
2398 	 * each descriptor as self-linked and add it to the end.  As
2399 	 * each additional descriptor is added the previous self-linked
2400 	 * entry is ``fixed'' naturally.  This should be safe even
2401 	 * if DMA is happening.  When processing RX interrupts we
2402 	 * never remove/process the last, self-linked, entry on the
2403 	 * descriptor list.  This insures the hardware always has
2404 	 * someplace to write a new frame.
2405 	 */
2406 	ds = bf->bf_desc;
2407 	ds->ds_link = bf->bf_daddr;	/* link to self */
2408 	ds->ds_data = bf->bf_segs[0].ds_addr;
2409 	ath_hal_setuprxdesc(ah, ds
2410 		, m->m_len		/* buffer size */
2411 		, 0
2412 	);
2413 
2414 	if (sc->sc_rxlink != NULL)
2415 		*sc->sc_rxlink = bf->bf_daddr;
2416 	sc->sc_rxlink = &ds->ds_link;
2417 	return 0;
2418 }
2419 
2420 /*
2421  * Intercept management frames to collect beacon rssi data
2422  * and to do ibss merges.
2423  */
2424 static void
2425 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2426 	struct ieee80211_node *ni,
2427 	int subtype, int rssi, u_int32_t rstamp)
2428 {
2429 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2430 
2431 	/*
2432 	 * Call up first so subsequent work can use information
2433 	 * potentially stored in the node (e.g. for ibss merge).
2434 	 */
2435 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2436 	switch (subtype) {
2437 	case IEEE80211_FC0_SUBTYPE_BEACON:
2438 		/* update rssi statistics for use by the hal */
2439 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2440 		/* fall thru... */
2441 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2442 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2443 		    ic->ic_state == IEEE80211_S_RUN) {
2444 			struct ath_hal *ah = sc->sc_ah;
2445 			/* XXX extend rstamp */
2446 			u_int64_t tsf = ath_hal_gettsf64(ah);
2447 
2448 			/*
2449 			 * Handle ibss merge as needed; check the tsf on the
2450 			 * frame before attempting the merge.  The 802.11 spec
2451 			 * says the station should change it's bssid to match
2452 			 * the oldest station with the same ssid, where oldest
2453 			 * is determined by the tsf.  Note that hardware
2454 			 * reconfiguration happens through callback to
2455 			 * ath_newstate as the state machine will be go
2456 			 * from RUN -> RUN when this happens.
2457 			 */
2458 			if (le64toh(ni->ni_tstamp.tsf) >= tsf)
2459 				(void) ieee80211_ibss_merge(ic, ni);
2460 		}
2461 		break;
2462 	}
2463 }
2464 
2465 /*
2466  * Set the default antenna.
2467  */
2468 static void
2469 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2470 {
2471 	struct ath_hal *ah = sc->sc_ah;
2472 
2473 	/* XXX block beacon interrupts */
2474 	ath_hal_setdefantenna(ah, antenna);
2475 	if (sc->sc_defant != antenna)
2476 		sc->sc_stats.ast_ant_defswitch++;
2477 	sc->sc_defant = antenna;
2478 	sc->sc_rxotherant = 0;
2479 }
2480 
2481 static void
2482 ath_rx_proc(void *arg, int npending)
2483 {
2484 #define	PA2DESC(_sc, _pa) \
2485 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2486 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2487 	struct ath_softc *sc = arg;
2488 	struct ath_buf *bf;
2489 	struct ieee80211com *ic = &sc->sc_ic;
2490 	struct ifnet *ifp = &sc->sc_if;
2491 	struct ath_hal *ah = sc->sc_ah;
2492 	struct ath_desc *ds;
2493 	struct mbuf *m;
2494 	struct ieee80211_node *ni;
2495 	struct ath_node *an;
2496 	int len;
2497 	u_int phyerr;
2498 	HAL_STATUS status;
2499 
2500 	NET_LOCK_GIANT();		/* XXX */
2501 
2502 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2503 	do {
2504 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2505 		if (bf == NULL) {		/* NB: shouldn't happen */
2506 			if_printf(ifp, "%s: no buffer!\n", __func__);
2507 			break;
2508 		}
2509 		ds = bf->bf_desc;
2510 		if (ds->ds_link == bf->bf_daddr) {
2511 			/* NB: never process the self-linked entry at the end */
2512 			break;
2513 		}
2514 		m = bf->bf_m;
2515 		if (m == NULL) {		/* NB: shouldn't happen */
2516 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2517 			continue;
2518 		}
2519 		/* XXX sync descriptor memory */
2520 		/*
2521 		 * Must provide the virtual address of the current
2522 		 * descriptor, the physical address, and the virtual
2523 		 * address of the next descriptor in the h/w chain.
2524 		 * This allows the HAL to look ahead to see if the
2525 		 * hardware is done with a descriptor by checking the
2526 		 * done bit in the following descriptor and the address
2527 		 * of the current descriptor the DMA engine is working
2528 		 * on.  All this is necessary because of our use of
2529 		 * a self-linked list to avoid rx overruns.
2530 		 */
2531 		status = ath_hal_rxprocdesc(ah, ds,
2532 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2533 #ifdef AR_DEBUG
2534 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2535 			ath_printrxbuf(bf, status == HAL_OK);
2536 #endif
2537 		if (status == HAL_EINPROGRESS)
2538 			break;
2539 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2540 		if (ds->ds_rxstat.rs_more) {
2541 			/*
2542 			 * Frame spans multiple descriptors; this
2543 			 * cannot happen yet as we don't support
2544 			 * jumbograms.  If not in monitor mode,
2545 			 * discard the frame.
2546 			 */
2547 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2548 				sc->sc_stats.ast_rx_toobig++;
2549 				goto rx_next;
2550 			}
2551 			/* fall thru for monitor mode handling... */
2552 		} else if (ds->ds_rxstat.rs_status != 0) {
2553 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2554 				sc->sc_stats.ast_rx_crcerr++;
2555 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2556 				sc->sc_stats.ast_rx_fifoerr++;
2557 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2558 				sc->sc_stats.ast_rx_phyerr++;
2559 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2560 				sc->sc_stats.ast_rx_phy[phyerr]++;
2561 				goto rx_next;
2562 			}
2563 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2564 				/*
2565 				 * Decrypt error.  If the error occurred
2566 				 * because there was no hardware key, then
2567 				 * let the frame through so the upper layers
2568 				 * can process it.  This is necessary for 5210
2569 				 * parts which have no way to setup a ``clear''
2570 				 * key cache entry.
2571 				 *
2572 				 * XXX do key cache faulting
2573 				 */
2574 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2575 					goto rx_accept;
2576 				sc->sc_stats.ast_rx_badcrypt++;
2577 			}
2578 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2579 				sc->sc_stats.ast_rx_badmic++;
2580 				/*
2581 				 * Do minimal work required to hand off
2582 				 * the 802.11 header for notifcation.
2583 				 */
2584 				/* XXX frag's and qos frames */
2585 				len = ds->ds_rxstat.rs_datalen;
2586 				if (len >= sizeof (struct ieee80211_frame)) {
2587 					bus_dmamap_sync(sc->sc_dmat,
2588 					    bf->bf_dmamap,
2589 					    BUS_DMASYNC_POSTREAD);
2590 					ieee80211_notify_michael_failure(ic,
2591 					    mtod(m, struct ieee80211_frame *),
2592 					    sc->sc_splitmic ?
2593 					        ds->ds_rxstat.rs_keyix-32 :
2594 					        ds->ds_rxstat.rs_keyix
2595 					);
2596 				}
2597 			}
2598 			ifp->if_ierrors++;
2599 			/*
2600 			 * Reject error frames, we normally don't want
2601 			 * to see them in monitor mode (in monitor mode
2602 			 * allow through packets that have crypto problems).
2603 			 */
2604 			if ((ds->ds_rxstat.rs_status &~
2605 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2606 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2607 				goto rx_next;
2608 		}
2609 rx_accept:
2610 		/*
2611 		 * Sync and unmap the frame.  At this point we're
2612 		 * committed to passing the mbuf somewhere so clear
2613 		 * bf_m; this means a new sk_buff must be allocated
2614 		 * when the rx descriptor is setup again to receive
2615 		 * another frame.
2616 		 */
2617 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2618 		    BUS_DMASYNC_POSTREAD);
2619 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2620 		bf->bf_m = NULL;
2621 
2622 		m->m_pkthdr.rcvif = ifp;
2623 		len = ds->ds_rxstat.rs_datalen;
2624 		m->m_pkthdr.len = m->m_len = len;
2625 
2626 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2627 
2628 		if (sc->sc_drvbpf) {
2629 			u_int8_t rix;
2630 
2631 			/*
2632 			 * Discard anything shorter than an ack or cts.
2633 			 */
2634 			if (len < IEEE80211_ACK_LEN) {
2635 				DPRINTF(sc, ATH_DEBUG_RECV,
2636 					"%s: runt packet %d\n",
2637 					__func__, len);
2638 				sc->sc_stats.ast_rx_tooshort++;
2639 				m_freem(m);
2640 				goto rx_next;
2641 			}
2642 			rix = ds->ds_rxstat.rs_rate;
2643 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2644 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2645 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2646 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2647 			/* XXX TSF */
2648 
2649 			bpf_mtap2(sc->sc_drvbpf,
2650 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2651 		}
2652 
2653 		/*
2654 		 * From this point on we assume the frame is at least
2655 		 * as large as ieee80211_frame_min; verify that.
2656 		 */
2657 		if (len < IEEE80211_MIN_LEN) {
2658 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2659 				__func__, len);
2660 			sc->sc_stats.ast_rx_tooshort++;
2661 			m_freem(m);
2662 			goto rx_next;
2663 		}
2664 
2665 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2666 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2667 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2668 				   ds->ds_rxstat.rs_rssi);
2669 		}
2670 
2671 		m_adj(m, -IEEE80211_CRC_LEN);
2672 
2673 		/*
2674 		 * Locate the node for sender, track state, and then
2675 		 * pass the (referenced) node up to the 802.11 layer
2676 		 * for its use.
2677 		 */
2678 		ni = ieee80211_find_rxnode(ic,
2679 			mtod(m, const struct ieee80211_frame_min *));
2680 
2681 		/*
2682 		 * Track rx rssi and do any rx antenna management.
2683 		 */
2684 		an = ATH_NODE(ni);
2685 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2686 		if (sc->sc_diversity) {
2687 			/*
2688 			 * When using fast diversity, change the default rx
2689 			 * antenna if diversity chooses the other antenna 3
2690 			 * times in a row.
2691 			 */
2692 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2693 				if (++sc->sc_rxotherant >= 3)
2694 					ath_setdefantenna(sc,
2695 						ds->ds_rxstat.rs_antenna);
2696 			} else
2697 				sc->sc_rxotherant = 0;
2698 		}
2699 
2700 		/*
2701 		 * Send frame up for processing.
2702 		 */
2703 		ieee80211_input(ic, m, ni,
2704 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2705 
2706 		if (sc->sc_softled) {
2707 			/*
2708 			 * Blink for any data frame.  Otherwise do a
2709 			 * heartbeat-style blink when idle.  The latter
2710 			 * is mainly for station mode where we depend on
2711 			 * periodic beacon frames to trigger the poll event.
2712 			 */
2713 			if (sc->sc_ipackets != ifp->if_ipackets) {
2714 				sc->sc_ipackets = ifp->if_ipackets;
2715 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2716 				ath_led_event(sc, ATH_LED_RX);
2717 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2718 				ath_led_event(sc, ATH_LED_POLL);
2719 		}
2720 
2721 		/*
2722 		 * Reclaim node reference.
2723 		 */
2724 		ieee80211_free_node(ni);
2725 rx_next:
2726 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2727 	} while (ath_rxbuf_init(sc, bf) == 0);
2728 
2729 	/* rx signal state monitoring */
2730 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2731 
2732 	NET_UNLOCK_GIANT();		/* XXX */
2733 #undef PA2DESC
2734 }
2735 
2736 /*
2737  * Setup a h/w transmit queue.
2738  */
2739 static struct ath_txq *
2740 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2741 {
2742 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2743 	struct ath_hal *ah = sc->sc_ah;
2744 	HAL_TXQ_INFO qi;
2745 	int qnum;
2746 
2747 	memset(&qi, 0, sizeof(qi));
2748 	qi.tqi_subtype = subtype;
2749 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2750 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2751 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2752 	/*
2753 	 * Enable interrupts only for EOL and DESC conditions.
2754 	 * We mark tx descriptors to receive a DESC interrupt
2755 	 * when a tx queue gets deep; otherwise waiting for the
2756 	 * EOL to reap descriptors.  Note that this is done to
2757 	 * reduce interrupt load and this only defers reaping
2758 	 * descriptors, never transmitting frames.  Aside from
2759 	 * reducing interrupts this also permits more concurrency.
2760 	 * The only potential downside is if the tx queue backs
2761 	 * up in which case the top half of the kernel may backup
2762 	 * due to a lack of tx descriptors.
2763 	 */
2764 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2765 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2766 	if (qnum == -1) {
2767 		/*
2768 		 * NB: don't print a message, this happens
2769 		 * normally on parts with too few tx queues
2770 		 */
2771 		return NULL;
2772 	}
2773 	if (qnum >= N(sc->sc_txq)) {
2774 		device_printf(sc->sc_dev,
2775 			"hal qnum %u out of range, max %zu!\n",
2776 			qnum, N(sc->sc_txq));
2777 		ath_hal_releasetxqueue(ah, qnum);
2778 		return NULL;
2779 	}
2780 	if (!ATH_TXQ_SETUP(sc, qnum)) {
2781 		struct ath_txq *txq = &sc->sc_txq[qnum];
2782 
2783 		txq->axq_qnum = qnum;
2784 		txq->axq_depth = 0;
2785 		txq->axq_intrcnt = 0;
2786 		txq->axq_link = NULL;
2787 		STAILQ_INIT(&txq->axq_q);
2788 		ATH_TXQ_LOCK_INIT(sc, txq);
2789 		sc->sc_txqsetup |= 1<<qnum;
2790 	}
2791 	return &sc->sc_txq[qnum];
2792 #undef N
2793 }
2794 
2795 /*
2796  * Setup a hardware data transmit queue for the specified
2797  * access control.  The hal may not support all requested
2798  * queues in which case it will return a reference to a
2799  * previously setup queue.  We record the mapping from ac's
2800  * to h/w queues for use by ath_tx_start and also track
2801  * the set of h/w queues being used to optimize work in the
2802  * transmit interrupt handler and related routines.
2803  */
2804 static int
2805 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2806 {
2807 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2808 	struct ath_txq *txq;
2809 
2810 	if (ac >= N(sc->sc_ac2q)) {
2811 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2812 			ac, N(sc->sc_ac2q));
2813 		return 0;
2814 	}
2815 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2816 	if (txq != NULL) {
2817 		sc->sc_ac2q[ac] = txq;
2818 		return 1;
2819 	} else
2820 		return 0;
2821 #undef N
2822 }
2823 
2824 /*
2825  * Update WME parameters for a transmit queue.
2826  */
2827 static int
2828 ath_txq_update(struct ath_softc *sc, int ac)
2829 {
2830 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2831 #define	ATH_TXOP_TO_US(v)		(v<<5)
2832 	struct ieee80211com *ic = &sc->sc_ic;
2833 	struct ath_txq *txq = sc->sc_ac2q[ac];
2834 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2835 	struct ath_hal *ah = sc->sc_ah;
2836 	HAL_TXQ_INFO qi;
2837 
2838 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2839 	qi.tqi_aifs = wmep->wmep_aifsn;
2840 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2841 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2842 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2843 
2844 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2845 		device_printf(sc->sc_dev, "unable to update hardware queue "
2846 			"parameters for %s traffic!\n",
2847 			ieee80211_wme_acnames[ac]);
2848 		return 0;
2849 	} else {
2850 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2851 		return 1;
2852 	}
2853 #undef ATH_TXOP_TO_US
2854 #undef ATH_EXPONENT_TO_VALUE
2855 }
2856 
2857 /*
2858  * Callback from the 802.11 layer to update WME parameters.
2859  */
2860 static int
2861 ath_wme_update(struct ieee80211com *ic)
2862 {
2863 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2864 
2865 	return !ath_txq_update(sc, WME_AC_BE) ||
2866 	    !ath_txq_update(sc, WME_AC_BK) ||
2867 	    !ath_txq_update(sc, WME_AC_VI) ||
2868 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
2869 }
2870 
2871 /*
2872  * Reclaim resources for a setup queue.
2873  */
2874 static void
2875 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2876 {
2877 
2878 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2879 	ATH_TXQ_LOCK_DESTROY(txq);
2880 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2881 }
2882 
2883 /*
2884  * Reclaim all tx queue resources.
2885  */
2886 static void
2887 ath_tx_cleanup(struct ath_softc *sc)
2888 {
2889 	int i;
2890 
2891 	ATH_TXBUF_LOCK_DESTROY(sc);
2892 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2893 		if (ATH_TXQ_SETUP(sc, i))
2894 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
2895 }
2896 
2897 static int
2898 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2899     struct mbuf *m0)
2900 {
2901 	struct ieee80211com *ic = &sc->sc_ic;
2902 	struct ath_hal *ah = sc->sc_ah;
2903 	struct ifnet *ifp = &sc->sc_if;
2904 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
2905 	u_int8_t rix, txrate, ctsrate;
2906 	u_int8_t cix = 0xff;		/* NB: silence compiler */
2907 	struct ath_desc *ds, *ds0;
2908 	struct ath_txq *txq;
2909 	struct ieee80211_frame *wh;
2910 	u_int subtype, flags, ctsduration;
2911 	HAL_PKT_TYPE atype;
2912 	const HAL_RATE_TABLE *rt;
2913 	HAL_BOOL shortPreamble;
2914 	struct ath_node *an;
2915 
2916 	wh = mtod(m0, struct ieee80211_frame *);
2917 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2918 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2919 	hdrlen = ieee80211_anyhdrsize(wh);
2920 	/*
2921 	 * Packet length must not include any
2922 	 * pad bytes; deduct them here.
2923 	 */
2924 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
2925 
2926 	if (iswep) {
2927 		const struct ieee80211_cipher *cip;
2928 		struct ieee80211_key *k;
2929 
2930 		/*
2931 		 * Construct the 802.11 header+trailer for an encrypted
2932 		 * frame. The only reason this can fail is because of an
2933 		 * unknown or unsupported cipher/key type.
2934 		 */
2935 		k = ieee80211_crypto_encap(ic, ni, m0);
2936 		if (k == NULL) {
2937 			/*
2938 			 * This can happen when the key is yanked after the
2939 			 * frame was queued.  Just discard the frame; the
2940 			 * 802.11 layer counts failures and provides
2941 			 * debugging/diagnostics.
2942 			 */
2943 			return EIO;
2944 		}
2945 		/*
2946 		 * Adjust the packet + header lengths for the crypto
2947 		 * additions and calculate the h/w key index.  When
2948 		 * a s/w mic is done the frame will have had any mic
2949 		 * added to it prior to entry so skb->len above will
2950 		 * account for it. Otherwise we need to add it to the
2951 		 * packet length.
2952 		 */
2953 		cip = k->wk_cipher;
2954 		hdrlen += cip->ic_header;
2955 		pktlen += cip->ic_header + cip->ic_trailer;
2956 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
2957 			pktlen += cip->ic_miclen;
2958 		keyix = k->wk_keyix;
2959 
2960 		/* packet header may have moved, reset our local pointer */
2961 		wh = mtod(m0, struct ieee80211_frame *);
2962 	} else
2963 		keyix = HAL_TXKEYIX_INVALID;
2964 
2965 	pktlen += IEEE80211_CRC_LEN;
2966 
2967 	/*
2968 	 * Load the DMA map so any coalescing is done.  This
2969 	 * also calculates the number of descriptors we need.
2970 	 */
2971 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2972 				     bf->bf_segs, &bf->bf_nseg,
2973 				     BUS_DMA_NOWAIT);
2974 	if (error == EFBIG) {
2975 		/* XXX packet requires too many descriptors */
2976 		bf->bf_nseg = ATH_TXDESC+1;
2977 	} else if (error != 0) {
2978 		sc->sc_stats.ast_tx_busdma++;
2979 		m_freem(m0);
2980 		return error;
2981 	}
2982 	/*
2983 	 * Discard null packets and check for packets that
2984 	 * require too many TX descriptors.  We try to convert
2985 	 * the latter to a cluster.
2986 	 */
2987 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
2988 		sc->sc_stats.ast_tx_linear++;
2989 		m0 = m_defrag(m0, M_DONTWAIT);
2990 		if (m0 == NULL) {
2991 			sc->sc_stats.ast_tx_nombuf++;
2992 			m_freem(m0);
2993 			return ENOMEM;
2994 		}
2995 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
2996 					     bf->bf_segs, &bf->bf_nseg,
2997 					     BUS_DMA_NOWAIT);
2998 		if (error != 0) {
2999 			sc->sc_stats.ast_tx_busdma++;
3000 			m_freem(m0);
3001 			return error;
3002 		}
3003 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3004 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3005 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3006 		sc->sc_stats.ast_tx_nodata++;
3007 		m_freem(m0);
3008 		return EIO;
3009 	}
3010 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3011 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3012 	bf->bf_m = m0;
3013 	bf->bf_node = ni;			/* NB: held reference */
3014 
3015 	/* setup descriptors */
3016 	ds = bf->bf_desc;
3017 	rt = sc->sc_currates;
3018 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3019 
3020 	/*
3021 	 * NB: the 802.11 layer marks whether or not we should
3022 	 * use short preamble based on the current mode and
3023 	 * negotiated parameters.
3024 	 */
3025 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3026 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3027 		shortPreamble = AH_TRUE;
3028 		sc->sc_stats.ast_tx_shortpre++;
3029 	} else {
3030 		shortPreamble = AH_FALSE;
3031 	}
3032 
3033 	an = ATH_NODE(ni);
3034 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3035 	/*
3036 	 * Calculate Atheros packet type from IEEE80211 packet header,
3037 	 * setup for rate calculations, and select h/w transmit queue.
3038 	 */
3039 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3040 	case IEEE80211_FC0_TYPE_MGT:
3041 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3042 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3043 			atype = HAL_PKT_TYPE_BEACON;
3044 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3045 			atype = HAL_PKT_TYPE_PROBE_RESP;
3046 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3047 			atype = HAL_PKT_TYPE_ATIM;
3048 		else
3049 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3050 		rix = 0;			/* XXX lowest rate */
3051 		try0 = ATH_TXMAXTRY;
3052 		if (shortPreamble)
3053 			txrate = an->an_tx_mgtratesp;
3054 		else
3055 			txrate = an->an_tx_mgtrate;
3056 		/* NB: force all management frames to highest queue */
3057 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3058 			/* NB: force all management frames to highest queue */
3059 			txq = sc->sc_ac2q[WME_AC_VO];
3060 		} else
3061 			txq = sc->sc_ac2q[WME_AC_BE];
3062 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3063 		break;
3064 	case IEEE80211_FC0_TYPE_CTL:
3065 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3066 		rix = 0;			/* XXX lowest rate */
3067 		try0 = ATH_TXMAXTRY;
3068 		if (shortPreamble)
3069 			txrate = an->an_tx_mgtratesp;
3070 		else
3071 			txrate = an->an_tx_mgtrate;
3072 		/* NB: force all ctl frames to highest queue */
3073 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3074 			/* NB: force all ctl frames to highest queue */
3075 			txq = sc->sc_ac2q[WME_AC_VO];
3076 		} else
3077 			txq = sc->sc_ac2q[WME_AC_BE];
3078 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3079 		break;
3080 	case IEEE80211_FC0_TYPE_DATA:
3081 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3082 		/*
3083 		 * Data frames; consult the rate control module.
3084 		 */
3085 		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3086 			&rix, &try0, &txrate);
3087 		sc->sc_txrate = txrate;			/* for LED blinking */
3088 		/*
3089 		 * Default all non-QoS traffic to the background queue.
3090 		 */
3091 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3092 			u_int pri = M_WME_GETAC(m0);
3093 			txq = sc->sc_ac2q[pri];
3094 			if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[pri].wmep_noackPolicy) {
3095 				flags |= HAL_TXDESC_NOACK;
3096 				sc->sc_stats.ast_tx_noack++;
3097 			}
3098 		} else
3099 			txq = sc->sc_ac2q[WME_AC_BE];
3100 		break;
3101 	default:
3102 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3103 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3104 		/* XXX statistic */
3105 		m_freem(m0);
3106 		return EIO;
3107 	}
3108 
3109 	/*
3110 	 * When servicing one or more stations in power-save mode
3111 	 * multicast frames must be buffered until after the beacon.
3112 	 * We use the CAB queue for that.
3113 	 */
3114 	if (ismcast && ic->ic_ps_sta) {
3115 		txq = sc->sc_cabq;
3116 		/* XXX? more bit in 802.11 frame header */
3117 	}
3118 
3119 	/*
3120 	 * Calculate miscellaneous flags.
3121 	 */
3122 	if (ismcast) {
3123 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3124 		sc->sc_stats.ast_tx_noack++;
3125 	} else if (pktlen > ic->ic_rtsthreshold) {
3126 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3127 		cix = rt->info[rix].controlRate;
3128 		sc->sc_stats.ast_tx_rts++;
3129 	}
3130 
3131 	/*
3132 	 * If 802.11g protection is enabled, determine whether
3133 	 * to use RTS/CTS or just CTS.  Note that this is only
3134 	 * done for OFDM unicast frames.
3135 	 */
3136 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3137 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3138 	    (flags & HAL_TXDESC_NOACK) == 0) {
3139 		/* XXX fragments must use CCK rates w/ protection */
3140 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3141 			flags |= HAL_TXDESC_RTSENA;
3142 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3143 			flags |= HAL_TXDESC_CTSENA;
3144 		cix = rt->info[sc->sc_protrix].controlRate;
3145 		sc->sc_stats.ast_tx_protect++;
3146 	}
3147 
3148 	/*
3149 	 * Calculate duration.  This logically belongs in the 802.11
3150 	 * layer but it lacks sufficient information to calculate it.
3151 	 */
3152 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3153 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3154 		u_int16_t dur;
3155 		/*
3156 		 * XXX not right with fragmentation.
3157 		 */
3158 		if (shortPreamble)
3159 			dur = rt->info[rix].spAckDuration;
3160 		else
3161 			dur = rt->info[rix].lpAckDuration;
3162 		*(u_int16_t *)wh->i_dur = htole16(dur);
3163 	}
3164 
3165 	/*
3166 	 * Calculate RTS/CTS rate and duration if needed.
3167 	 */
3168 	ctsduration = 0;
3169 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3170 		/*
3171 		 * CTS transmit rate is derived from the transmit rate
3172 		 * by looking in the h/w rate table.  We must also factor
3173 		 * in whether or not a short preamble is to be used.
3174 		 */
3175 		/* NB: cix is set above where RTS/CTS is enabled */
3176 		KASSERT(cix != 0xff, ("cix not setup"));
3177 		ctsrate = rt->info[cix].rateCode;
3178 		/*
3179 		 * Compute the transmit duration based on the frame
3180 		 * size and the size of an ACK frame.  We call into the
3181 		 * HAL to do the computation since it depends on the
3182 		 * characteristics of the actual PHY being used.
3183 		 *
3184 		 * NB: CTS is assumed the same size as an ACK so we can
3185 		 *     use the precalculated ACK durations.
3186 		 */
3187 		if (shortPreamble) {
3188 			ctsrate |= rt->info[cix].shortPreamble;
3189 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3190 				ctsduration += rt->info[cix].spAckDuration;
3191 			ctsduration += ath_hal_computetxtime(ah,
3192 				rt, pktlen, rix, AH_TRUE);
3193 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3194 				ctsduration += rt->info[cix].spAckDuration;
3195 		} else {
3196 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3197 				ctsduration += rt->info[cix].lpAckDuration;
3198 			ctsduration += ath_hal_computetxtime(ah,
3199 				rt, pktlen, rix, AH_FALSE);
3200 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3201 				ctsduration += rt->info[cix].lpAckDuration;
3202 		}
3203 		/*
3204 		 * Must disable multi-rate retry when using RTS/CTS.
3205 		 */
3206 		try0 = ATH_TXMAXTRY;
3207 	} else
3208 		ctsrate = 0;
3209 
3210 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3211 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3212 			sc->sc_hwmap[txrate].ieeerate, -1);
3213 
3214 	if (ic->ic_rawbpf)
3215 		bpf_mtap(ic->ic_rawbpf, m0);
3216 	if (sc->sc_drvbpf) {
3217 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3218 		if (iswep)
3219 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3220 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3221 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3222 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3223 
3224 		bpf_mtap2(sc->sc_drvbpf,
3225 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3226 	}
3227 
3228 	/*
3229 	 * Determine if a tx interrupt should be generated for
3230 	 * this descriptor.  We take a tx interrupt to reap
3231 	 * descriptors when the h/w hits an EOL condition or
3232 	 * when the descriptor is specifically marked to generate
3233 	 * an interrupt.  We periodically mark descriptors in this
3234 	 * way to insure timely replenishing of the supply needed
3235 	 * for sending frames.  Defering interrupts reduces system
3236 	 * load and potentially allows more concurrent work to be
3237 	 * done but if done to aggressively can cause senders to
3238 	 * backup.
3239 	 *
3240 	 * NB: use >= to deal with sc_txintrperiod changing
3241 	 *     dynamically through sysctl.
3242 	 */
3243 	if (flags & HAL_TXDESC_INTREQ) {
3244 		txq->axq_intrcnt = 0;
3245 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3246 		flags |= HAL_TXDESC_INTREQ;
3247 		txq->axq_intrcnt = 0;
3248 	}
3249 
3250 	/*
3251 	 * Formulate first tx descriptor with tx controls.
3252 	 */
3253 	/* XXX check return value? */
3254 	ath_hal_setuptxdesc(ah, ds
3255 		, pktlen		/* packet length */
3256 		, hdrlen		/* header length */
3257 		, atype			/* Atheros packet type */
3258 		, ni->ni_txpower	/* txpower */
3259 		, txrate, try0		/* series 0 rate/tries */
3260 		, keyix			/* key cache index */
3261 		, sc->sc_txantenna	/* antenna mode */
3262 		, flags			/* flags */
3263 		, ctsrate		/* rts/cts rate */
3264 		, ctsduration		/* rts/cts duration */
3265 	);
3266 	/*
3267 	 * Setup the multi-rate retry state only when we're
3268 	 * going to use it.  This assumes ath_hal_setuptxdesc
3269 	 * initializes the descriptors (so we don't have to)
3270 	 * when the hardware supports multi-rate retry and
3271 	 * we don't use it.
3272 	 */
3273 	if (try0 != ATH_TXMAXTRY)
3274 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3275 
3276 	/*
3277 	 * Fillin the remainder of the descriptor info.
3278 	 */
3279 	ds0 = ds;
3280 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3281 		ds->ds_data = bf->bf_segs[i].ds_addr;
3282 		if (i == bf->bf_nseg - 1)
3283 			ds->ds_link = 0;
3284 		else
3285 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3286 		ath_hal_filltxdesc(ah, ds
3287 			, bf->bf_segs[i].ds_len	/* segment length */
3288 			, i == 0		/* first segment */
3289 			, i == bf->bf_nseg - 1	/* last segment */
3290 			, ds0			/* first descriptor */
3291 		);
3292 		DPRINTF(sc, ATH_DEBUG_XMIT,
3293 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3294 			__func__, i, ds->ds_link, ds->ds_data,
3295 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3296 	}
3297 #if 0
3298 	if ((flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) &&
3299   	    !ath_hal_updateCTSForBursting(ah, ds
3300 		     , txq->axq_linkbuf != NULL ?
3301 			txq->axq_linkbuf->bf_desc : NULL
3302 		     , txq->axq_lastdsWithCTS
3303 		     , txq->axq_gatingds
3304 		     , IEEE80211_TXOP_TO_US(ic->ic_chanParams.cap_wmeParams[skb->priority].wmep_txopLimit)
3305 		     , ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE))) {
3306 		ATH_TXQ_LOCK(txq);
3307 		txq->axq_lastdsWithCTS = ds;
3308 		/* set gating Desc to final desc */
3309 		txq->axq_gatingds = (struct ath_desc *)txq->axq_link;
3310 		ATH_TXQ_UNLOCK(txq);
3311 	}
3312 #endif
3313 	/*
3314 	 * Insert the frame on the outbound list and
3315 	 * pass it on to the hardware.
3316 	 */
3317 	ATH_TXQ_LOCK(txq);
3318 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3319 	if (txq->axq_link == NULL) {
3320 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3321 		DPRINTF(sc, ATH_DEBUG_XMIT,
3322 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3323 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3324 			txq->axq_depth);
3325 	} else {
3326 		*txq->axq_link = bf->bf_daddr;
3327 		DPRINTF(sc, ATH_DEBUG_XMIT,
3328 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3329 			txq->axq_qnum, txq->axq_link,
3330 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3331 	}
3332 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3333 	ATH_TXQ_UNLOCK(txq);
3334 
3335 	/*
3336 	 * The CAB queue is started from the SWBA handler since
3337 	 * frames only go out on DTIM and to avoid possible races.
3338 	 */
3339 	if (txq != sc->sc_cabq)
3340 		ath_hal_txstart(ah, txq->axq_qnum);
3341 	return 0;
3342 }
3343 
3344 /*
3345  * Process completed xmit descriptors from the specified queue.
3346  */
3347 static void
3348 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3349 {
3350 	struct ath_hal *ah = sc->sc_ah;
3351 	struct ieee80211com *ic = &sc->sc_ic;
3352 	struct ath_buf *bf;
3353 	struct ath_desc *ds;
3354 	struct ieee80211_node *ni;
3355 	struct ath_node *an;
3356 	int sr, lr, pri;
3357 	HAL_STATUS status;
3358 
3359 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3360 		__func__, txq->axq_qnum,
3361 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3362 		txq->axq_link);
3363 	for (;;) {
3364 		ATH_TXQ_LOCK(txq);
3365 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3366 		bf = STAILQ_FIRST(&txq->axq_q);
3367 		if (bf == NULL) {
3368 			txq->axq_link = NULL;
3369 			ATH_TXQ_UNLOCK(txq);
3370 			break;
3371 		}
3372 		/* only the last descriptor is needed */
3373 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3374 		status = ath_hal_txprocdesc(ah, ds);
3375 #ifdef AR_DEBUG
3376 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3377 			ath_printtxbuf(bf, status == HAL_OK);
3378 #endif
3379 		if (status == HAL_EINPROGRESS) {
3380 			ATH_TXQ_UNLOCK(txq);
3381 			break;
3382 		}
3383 #if 0
3384 		if (bf->bf_desc == txq->axq_lastdsWithCTS)
3385 			txq->axq_lastdsWithCTS = NULL;
3386 		if (ds == txq->axq_gatingds)
3387 			txq->axq_gatingds = NULL;
3388 #endif
3389 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3390 		ATH_TXQ_UNLOCK(txq);
3391 
3392 		ni = bf->bf_node;
3393 		if (ni != NULL) {
3394 			an = ATH_NODE(ni);
3395 			if (ds->ds_txstat.ts_status == 0) {
3396 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3397 				sc->sc_stats.ast_ant_tx[txant]++;
3398 				sc->sc_ant_tx[txant]++;
3399 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3400 					sc->sc_stats.ast_tx_altrate++;
3401 				sc->sc_stats.ast_tx_rssi =
3402 					ds->ds_txstat.ts_rssi;
3403 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3404 					ds->ds_txstat.ts_rssi);
3405 				pri = M_WME_GETAC(bf->bf_m);
3406 				if (pri >= WME_AC_VO)
3407 					ic->ic_wme.wme_hipri_traffic++;
3408 				ni->ni_inact = ni->ni_inact_reload;
3409 			} else {
3410 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3411 					sc->sc_stats.ast_tx_xretries++;
3412 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3413 					sc->sc_stats.ast_tx_fifoerr++;
3414 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3415 					sc->sc_stats.ast_tx_filtered++;
3416 			}
3417 			sr = ds->ds_txstat.ts_shortretry;
3418 			lr = ds->ds_txstat.ts_longretry;
3419 			sc->sc_stats.ast_tx_shortretry += sr;
3420 			sc->sc_stats.ast_tx_longretry += lr;
3421 			/*
3422 			 * Hand the descriptor to the rate control algorithm.
3423 			 */
3424 			ath_rate_tx_complete(sc, an, ds);
3425 			/*
3426 			 * Reclaim reference to node.
3427 			 *
3428 			 * NB: the node may be reclaimed here if, for example
3429 			 *     this is a DEAUTH message that was sent and the
3430 			 *     node was timed out due to inactivity.
3431 			 */
3432 			ieee80211_free_node(ni);
3433 		}
3434 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3435 		    BUS_DMASYNC_POSTWRITE);
3436 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3437 		m_freem(bf->bf_m);
3438 		bf->bf_m = NULL;
3439 		bf->bf_node = NULL;
3440 
3441 		ATH_TXBUF_LOCK(sc);
3442 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3443 		ATH_TXBUF_UNLOCK(sc);
3444 	}
3445 }
3446 
3447 /*
3448  * Deferred processing of transmit interrupt; special-cased
3449  * for a single hardware transmit queue (e.g. 5210 and 5211).
3450  */
3451 static void
3452 ath_tx_proc_q0(void *arg, int npending)
3453 {
3454 	struct ath_softc *sc = arg;
3455 	struct ifnet *ifp = &sc->sc_if;
3456 
3457 	ath_tx_processq(sc, &sc->sc_txq[0]);
3458 	ath_tx_processq(sc, sc->sc_cabq);
3459 	ifp->if_flags &= ~IFF_OACTIVE;
3460 	sc->sc_tx_timer = 0;
3461 
3462 	if (sc->sc_softled)
3463 		ath_led_event(sc, ATH_LED_TX);
3464 
3465 	ath_start(ifp);
3466 }
3467 
3468 /*
3469  * Deferred processing of transmit interrupt; special-cased
3470  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3471  */
3472 static void
3473 ath_tx_proc_q0123(void *arg, int npending)
3474 {
3475 	struct ath_softc *sc = arg;
3476 	struct ifnet *ifp = &sc->sc_if;
3477 
3478 	/*
3479 	 * Process each active queue.
3480 	 */
3481 	ath_tx_processq(sc, &sc->sc_txq[0]);
3482 	ath_tx_processq(sc, &sc->sc_txq[1]);
3483 	ath_tx_processq(sc, &sc->sc_txq[2]);
3484 	ath_tx_processq(sc, &sc->sc_txq[3]);
3485 	ath_tx_processq(sc, sc->sc_cabq);
3486 
3487 	ifp->if_flags &= ~IFF_OACTIVE;
3488 	sc->sc_tx_timer = 0;
3489 
3490 	if (sc->sc_softled)
3491 		ath_led_event(sc, ATH_LED_TX);
3492 
3493 	ath_start(ifp);
3494 }
3495 
3496 /*
3497  * Deferred processing of transmit interrupt.
3498  */
3499 static void
3500 ath_tx_proc(void *arg, int npending)
3501 {
3502 	struct ath_softc *sc = arg;
3503 	struct ifnet *ifp = &sc->sc_if;
3504 	int i;
3505 
3506 	/*
3507 	 * Process each active queue.
3508 	 */
3509 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3510 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3511 		if (ATH_TXQ_SETUP(sc, i))
3512 			ath_tx_processq(sc, &sc->sc_txq[i]);
3513 
3514 	ifp->if_flags &= ~IFF_OACTIVE;
3515 	sc->sc_tx_timer = 0;
3516 
3517 	if (sc->sc_softled)
3518 		ath_led_event(sc, ATH_LED_TX);
3519 
3520 	ath_start(ifp);
3521 }
3522 
3523 static void
3524 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3525 {
3526 	struct ath_hal *ah = sc->sc_ah;
3527 	struct ieee80211_node *ni;
3528 	struct ath_buf *bf;
3529 
3530 	/*
3531 	 * NB: this assumes output has been stopped and
3532 	 *     we do not need to block ath_tx_tasklet
3533 	 */
3534 	for (;;) {
3535 		ATH_TXQ_LOCK(txq);
3536 		bf = STAILQ_FIRST(&txq->axq_q);
3537 		if (bf == NULL) {
3538 			txq->axq_link = NULL;
3539 			ATH_TXQ_UNLOCK(txq);
3540 			break;
3541 		}
3542 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3543 		ATH_TXQ_UNLOCK(txq);
3544 #ifdef AR_DEBUG
3545 		if (sc->sc_debug & ATH_DEBUG_RESET)
3546 			ath_printtxbuf(bf,
3547 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3548 #endif /* AR_DEBUG */
3549 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3550 		m_freem(bf->bf_m);
3551 		bf->bf_m = NULL;
3552 		ni = bf->bf_node;
3553 		bf->bf_node = NULL;
3554 		if (ni != NULL) {
3555 			/*
3556 			 * Reclaim node reference.
3557 			 */
3558 			ieee80211_free_node(ni);
3559 		}
3560 		ATH_TXBUF_LOCK(sc);
3561 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3562 		ATH_TXBUF_UNLOCK(sc);
3563 	}
3564 }
3565 
3566 static void
3567 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3568 {
3569 	struct ath_hal *ah = sc->sc_ah;
3570 
3571 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3572 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3573 	    __func__, txq->axq_qnum,
3574 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3575 	    txq->axq_link);
3576 }
3577 
3578 /*
3579  * Drain the transmit queues and reclaim resources.
3580  */
3581 static void
3582 ath_draintxq(struct ath_softc *sc)
3583 {
3584 	struct ath_hal *ah = sc->sc_ah;
3585 	struct ifnet *ifp = &sc->sc_if;
3586 	int i;
3587 
3588 	/* XXX return value */
3589 	if (!sc->sc_invalid) {
3590 		/* don't touch the hardware if marked invalid */
3591 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3592 		DPRINTF(sc, ATH_DEBUG_RESET,
3593 		    "%s: beacon queue %p\n", __func__,
3594 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3595 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3596 			if (ATH_TXQ_SETUP(sc, i))
3597 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3598 	}
3599 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3600 		if (ATH_TXQ_SETUP(sc, i))
3601 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3602 	ifp->if_flags &= ~IFF_OACTIVE;
3603 	sc->sc_tx_timer = 0;
3604 }
3605 
3606 /*
3607  * Disable the receive h/w in preparation for a reset.
3608  */
3609 static void
3610 ath_stoprecv(struct ath_softc *sc)
3611 {
3612 #define	PA2DESC(_sc, _pa) \
3613 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3614 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3615 	struct ath_hal *ah = sc->sc_ah;
3616 
3617 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3618 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3619 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3620 	DELAY(3000);			/* 3ms is long enough for 1 frame */
3621 #ifdef AR_DEBUG
3622 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3623 		struct ath_buf *bf;
3624 
3625 		printf("%s: rx queue %p, link %p\n", __func__,
3626 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3627 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3628 			struct ath_desc *ds = bf->bf_desc;
3629 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3630 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3631 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3632 				ath_printrxbuf(bf, status == HAL_OK);
3633 		}
3634 	}
3635 #endif
3636 	sc->sc_rxlink = NULL;		/* just in case */
3637 #undef PA2DESC
3638 }
3639 
3640 /*
3641  * Enable the receive h/w following a reset.
3642  */
3643 static int
3644 ath_startrecv(struct ath_softc *sc)
3645 {
3646 	struct ath_hal *ah = sc->sc_ah;
3647 	struct ath_buf *bf;
3648 
3649 	sc->sc_rxlink = NULL;
3650 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3651 		int error = ath_rxbuf_init(sc, bf);
3652 		if (error != 0) {
3653 			DPRINTF(sc, ATH_DEBUG_RECV,
3654 				"%s: ath_rxbuf_init failed %d\n",
3655 				__func__, error);
3656 			return error;
3657 		}
3658 	}
3659 
3660 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3661 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3662 	ath_hal_rxena(ah);		/* enable recv descriptors */
3663 	ath_mode_init(sc);		/* set filters, etc. */
3664 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3665 	return 0;
3666 }
3667 
3668 /*
3669  * Update internal state after a channel change.
3670  */
3671 static void
3672 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3673 {
3674 	struct ieee80211com *ic = &sc->sc_ic;
3675 	enum ieee80211_phymode mode;
3676 	u_int16_t flags;
3677 
3678 	/*
3679 	 * Change channels and update the h/w rate map
3680 	 * if we're switching; e.g. 11a to 11b/g.
3681 	 */
3682 	mode = ieee80211_chan2mode(ic, chan);
3683 	if (mode != sc->sc_curmode)
3684 		ath_setcurmode(sc, mode);
3685 	/*
3686 	 * Update BPF state.  NB: ethereal et. al. don't handle
3687 	 * merged flags well so pick a unique mode for their use.
3688 	 */
3689 	if (IEEE80211_IS_CHAN_A(chan))
3690 		flags = IEEE80211_CHAN_A;
3691 	/* XXX 11g schizophrenia */
3692 	else if (IEEE80211_IS_CHAN_G(chan) ||
3693 	    IEEE80211_IS_CHAN_PUREG(chan))
3694 		flags = IEEE80211_CHAN_G;
3695 	else
3696 		flags = IEEE80211_CHAN_B;
3697 	if (IEEE80211_IS_CHAN_T(chan))
3698 		flags |= IEEE80211_CHAN_TURBO;
3699 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3700 		htole16(chan->ic_freq);
3701 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3702 		htole16(flags);
3703 }
3704 
3705 /*
3706  * Set/change channels.  If the channel is really being changed,
3707  * it's done by reseting the chip.  To accomplish this we must
3708  * first cleanup any pending DMA, then restart stuff after a la
3709  * ath_init.
3710  */
3711 static int
3712 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3713 {
3714 	struct ath_hal *ah = sc->sc_ah;
3715 	struct ieee80211com *ic = &sc->sc_ic;
3716 	HAL_CHANNEL hchan;
3717 
3718 	/*
3719 	 * Convert to a HAL channel description with
3720 	 * the flags constrained to reflect the current
3721 	 * operating mode.
3722 	 */
3723 	hchan.channel = chan->ic_freq;
3724 	hchan.channelFlags = ath_chan2flags(ic, chan);
3725 
3726 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3727 	    __func__,
3728 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3729 		sc->sc_curchan.channelFlags),
3730 	    	sc->sc_curchan.channel,
3731 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3732 	if (hchan.channel != sc->sc_curchan.channel ||
3733 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3734 		HAL_STATUS status;
3735 
3736 		/*
3737 		 * To switch channels clear any pending DMA operations;
3738 		 * wait long enough for the RX fifo to drain, reset the
3739 		 * hardware at the new frequency, and then re-enable
3740 		 * the relevant bits of the h/w.
3741 		 */
3742 		ath_hal_intrset(ah, 0);		/* disable interrupts */
3743 		ath_draintxq(sc);		/* clear pending tx frames */
3744 		ath_stoprecv(sc);		/* turn off frame recv */
3745 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3746 			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3747 				"channel %u (%u Mhz)\n",
3748 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3749 			return EIO;
3750 		}
3751 		sc->sc_curchan = hchan;
3752 		ath_update_txpow(sc);		/* update tx power state */
3753 
3754 		/*
3755 		 * Re-enable rx framework.
3756 		 */
3757 		if (ath_startrecv(sc) != 0) {
3758 			if_printf(ic->ic_ifp,
3759 				"ath_chan_set: unable to restart recv logic\n");
3760 			return EIO;
3761 		}
3762 
3763 		/*
3764 		 * Change channels and update the h/w rate map
3765 		 * if we're switching; e.g. 11a to 11b/g.
3766 		 */
3767 		ic->ic_ibss_chan = chan;
3768 		ath_chan_change(sc, chan);
3769 
3770 		/*
3771 		 * Re-enable interrupts.
3772 		 */
3773 		ath_hal_intrset(ah, sc->sc_imask);
3774 	}
3775 	return 0;
3776 }
3777 
3778 static void
3779 ath_next_scan(void *arg)
3780 {
3781 	struct ath_softc *sc = arg;
3782 	struct ieee80211com *ic = &sc->sc_ic;
3783 
3784 	if (ic->ic_state == IEEE80211_S_SCAN)
3785 		ieee80211_next_scan(ic);
3786 }
3787 
3788 /*
3789  * Periodically recalibrate the PHY to account
3790  * for temperature/environment changes.
3791  */
3792 static void
3793 ath_calibrate(void *arg)
3794 {
3795 	struct ath_softc *sc = arg;
3796 	struct ath_hal *ah = sc->sc_ah;
3797 
3798 	sc->sc_stats.ast_per_cal++;
3799 
3800 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
3801 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
3802 
3803 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3804 		/*
3805 		 * Rfgain is out of bounds, reset the chip
3806 		 * to load new gain values.
3807 		 */
3808 		sc->sc_stats.ast_per_rfgain++;
3809 		ath_reset(&sc->sc_if);
3810 	}
3811 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
3812 		DPRINTF(sc, ATH_DEBUG_ANY,
3813 			"%s: calibration of channel %u failed\n",
3814 			__func__, sc->sc_curchan.channel);
3815 		sc->sc_stats.ast_per_calfail++;
3816 	}
3817 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
3818 }
3819 
3820 static int
3821 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3822 {
3823 	struct ifnet *ifp = ic->ic_ifp;
3824 	struct ath_softc *sc = ifp->if_softc;
3825 	struct ath_hal *ah = sc->sc_ah;
3826 	struct ieee80211_node *ni;
3827 	int i, error;
3828 	const u_int8_t *bssid;
3829 	u_int32_t rfilt;
3830 	static const HAL_LED_STATE leds[] = {
3831 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
3832 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
3833 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
3834 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
3835 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
3836 	};
3837 
3838 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
3839 		ieee80211_state_name[ic->ic_state],
3840 		ieee80211_state_name[nstate]);
3841 
3842 	callout_stop(&sc->sc_scan_ch);
3843 	callout_stop(&sc->sc_cal_ch);
3844 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
3845 
3846 	if (nstate == IEEE80211_S_INIT) {
3847 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3848 		/*
3849 		 * NB: disable interrupts so we don't rx frames.
3850 		 */
3851 		ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL);
3852 		/*
3853 		 * Notify the rate control algorithm.
3854 		 */
3855 		ath_rate_newstate(sc, nstate);
3856 		goto done;
3857 	}
3858 	ni = ic->ic_bss;
3859 	error = ath_chan_set(sc, ni->ni_chan);
3860 	if (error != 0)
3861 		goto bad;
3862 	rfilt = ath_calcrxfilter(sc, nstate);
3863 	if (nstate == IEEE80211_S_SCAN)
3864 		bssid = ifp->if_broadcastaddr;
3865 	else
3866 		bssid = ni->ni_bssid;
3867 	ath_hal_setrxfilter(ah, rfilt);
3868 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
3869 		 __func__, rfilt, ether_sprintf(bssid));
3870 
3871 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3872 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
3873 	else
3874 		ath_hal_setassocid(ah, bssid, 0);
3875 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3876 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
3877 			if (ath_hal_keyisvalid(ah, i))
3878 				ath_hal_keysetmac(ah, i, bssid);
3879 	}
3880 
3881 	/*
3882 	 * Notify the rate control algorithm so rates
3883 	 * are setup should ath_beacon_alloc be called.
3884 	 */
3885 	ath_rate_newstate(sc, nstate);
3886 
3887 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3888 		/* nothing to do */;
3889 	} else if (nstate == IEEE80211_S_RUN) {
3890 		DPRINTF(sc, ATH_DEBUG_STATE,
3891 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3892 			"capinfo=0x%04x chan=%d\n"
3893 			 , __func__
3894 			 , ic->ic_flags
3895 			 , ni->ni_intval
3896 			 , ether_sprintf(ni->ni_bssid)
3897 			 , ni->ni_capinfo
3898 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
3899 
3900 		/*
3901 		 * Allocate and setup the beacon frame for AP or adhoc mode.
3902 		 */
3903 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3904 		    ic->ic_opmode == IEEE80211_M_IBSS) {
3905 			/*
3906 			 * Stop any previous beacon DMA.  This may be
3907 			 * necessary, for example, when an ibss merge
3908 			 * causes reconfiguration; there will be a state
3909 			 * transition from RUN->RUN that means we may
3910 			 * be called with beacon transmission active.
3911 			 */
3912 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
3913 			ath_beacon_free(sc);
3914 			error = ath_beacon_alloc(sc, ni);
3915 			if (error != 0)
3916 				goto bad;
3917 		}
3918 
3919 		/*
3920 		 * Configure the beacon and sleep timers.
3921 		 */
3922 		ath_beacon_config(sc);
3923 	} else {
3924 		ath_hal_intrset(ah,
3925 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
3926 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3927 	}
3928 done:
3929 	/*
3930 	 * Invoke the parent method to complete the work.
3931 	 */
3932 	error = sc->sc_newstate(ic, nstate, arg);
3933 	/*
3934 	 * Finally, start any timers.
3935 	 */
3936 	if (nstate == IEEE80211_S_RUN) {
3937 		/* start periodic recalibration timer */
3938 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
3939 			ath_calibrate, sc);
3940 	} else if (nstate == IEEE80211_S_SCAN) {
3941 		/* start ap/neighbor scan timer */
3942 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
3943 			ath_next_scan, sc);
3944 	}
3945 bad:
3946 	return error;
3947 }
3948 
3949 /*
3950  * Setup driver-specific state for a newly associated node.
3951  * Note that we're called also on a re-associate, the isnew
3952  * param tells us if this is the first time or not.
3953  */
3954 static void
3955 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3956 {
3957 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3958 
3959 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
3960 }
3961 
3962 static int
3963 ath_getchannels(struct ath_softc *sc, u_int cc,
3964 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
3965 {
3966 	struct ieee80211com *ic = &sc->sc_ic;
3967 	struct ifnet *ifp = &sc->sc_if;
3968 	struct ath_hal *ah = sc->sc_ah;
3969 	HAL_CHANNEL *chans;
3970 	int i, ix, nchan;
3971 
3972 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3973 			M_TEMP, M_NOWAIT);
3974 	if (chans == NULL) {
3975 		if_printf(ifp, "unable to allocate channel table\n");
3976 		return ENOMEM;
3977 	}
3978 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3979 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3980 		u_int32_t rd;
3981 
3982 		ath_hal_getregdomain(ah, &rd);
3983 		if_printf(ifp, "unable to collect channel list from hal; "
3984 			"regdomain likely %u country code %u\n", rd, cc);
3985 		free(chans, M_TEMP);
3986 		return EINVAL;
3987 	}
3988 
3989 	/*
3990 	 * Convert HAL channels to ieee80211 ones and insert
3991 	 * them in the table according to their channel number.
3992 	 */
3993 	for (i = 0; i < nchan; i++) {
3994 		HAL_CHANNEL *c = &chans[i];
3995 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3996 		if (ix > IEEE80211_CHAN_MAX) {
3997 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3998 				ix, c->channel, c->channelFlags);
3999 			continue;
4000 		}
4001 		/* NB: flags are known to be compatible */
4002 		if (ic->ic_channels[ix].ic_freq == 0) {
4003 			ic->ic_channels[ix].ic_freq = c->channel;
4004 			ic->ic_channels[ix].ic_flags = c->channelFlags;
4005 		} else {
4006 			/* channels overlap; e.g. 11g and 11b */
4007 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4008 		}
4009 	}
4010 	free(chans, M_TEMP);
4011 	return 0;
4012 }
4013 
4014 static void
4015 ath_led_done(void *arg)
4016 {
4017 	struct ath_softc *sc = arg;
4018 
4019 	sc->sc_blinking = 0;
4020 }
4021 
4022 /*
4023  * Turn the LED off: flip the pin and then set a timer so no
4024  * update will happen for the specified duration.
4025  */
4026 static void
4027 ath_led_off(void *arg)
4028 {
4029 	struct ath_softc *sc = arg;
4030 
4031 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4032 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4033 }
4034 
4035 /*
4036  * Blink the LED according to the specified on/off times.
4037  */
4038 static void
4039 ath_led_blink(struct ath_softc *sc, int on, int off)
4040 {
4041 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4042 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4043 	sc->sc_blinking = 1;
4044 	sc->sc_ledoff = off;
4045 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4046 }
4047 
4048 static void
4049 ath_led_event(struct ath_softc *sc, int event)
4050 {
4051 
4052 	sc->sc_ledevent = ticks;	/* time of last event */
4053 	if (sc->sc_blinking)		/* don't interrupt active blink */
4054 		return;
4055 	switch (event) {
4056 	case ATH_LED_POLL:
4057 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4058 			sc->sc_hwmap[0].ledoff);
4059 		break;
4060 	case ATH_LED_TX:
4061 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4062 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4063 		break;
4064 	case ATH_LED_RX:
4065 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4066 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4067 		break;
4068 	}
4069 }
4070 
4071 static void
4072 ath_update_txpow(struct ath_softc *sc)
4073 {
4074 	struct ieee80211com *ic = &sc->sc_ic;
4075 	struct ath_hal *ah = sc->sc_ah;
4076 	u_int32_t txpow;
4077 
4078 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4079 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4080 		/* read back in case value is clamped */
4081 		ath_hal_gettxpowlimit(ah, &txpow);
4082 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4083 	}
4084 	/*
4085 	 * Fetch max tx power level for status requests.
4086 	 */
4087 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4088 	ic->ic_bss->ni_txpower = txpow;
4089 }
4090 
4091 static int
4092 ath_rate_setup(struct ath_softc *sc, u_int mode)
4093 {
4094 	struct ath_hal *ah = sc->sc_ah;
4095 	struct ieee80211com *ic = &sc->sc_ic;
4096 	const HAL_RATE_TABLE *rt;
4097 	struct ieee80211_rateset *rs;
4098 	int i, maxrates;
4099 
4100 	switch (mode) {
4101 	case IEEE80211_MODE_11A:
4102 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4103 		break;
4104 	case IEEE80211_MODE_11B:
4105 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4106 		break;
4107 	case IEEE80211_MODE_11G:
4108 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4109 		break;
4110 	case IEEE80211_MODE_TURBO_A:
4111 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4112 		break;
4113 	case IEEE80211_MODE_TURBO_G:
4114 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4115 		break;
4116 	default:
4117 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4118 			__func__, mode);
4119 		return 0;
4120 	}
4121 	rt = sc->sc_rates[mode];
4122 	if (rt == NULL)
4123 		return 0;
4124 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4125 		DPRINTF(sc, ATH_DEBUG_ANY,
4126 			"%s: rate table too small (%u > %u)\n",
4127 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4128 		maxrates = IEEE80211_RATE_MAXSIZE;
4129 	} else
4130 		maxrates = rt->rateCount;
4131 	rs = &ic->ic_sup_rates[mode];
4132 	for (i = 0; i < maxrates; i++)
4133 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4134 	rs->rs_nrates = maxrates;
4135 	return 1;
4136 }
4137 
4138 static void
4139 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4140 {
4141 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4142 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4143 	static const struct {
4144 		u_int		rate;		/* tx/rx 802.11 rate */
4145 		u_int16_t	timeOn;		/* LED on time (ms) */
4146 		u_int16_t	timeOff;	/* LED off time (ms) */
4147 	} blinkrates[] = {
4148 		{ 108,  40,  10 },
4149 		{  96,  44,  11 },
4150 		{  72,  50,  13 },
4151 		{  48,  57,  14 },
4152 		{  36,  67,  16 },
4153 		{  24,  80,  20 },
4154 		{  22, 100,  25 },
4155 		{  18, 133,  34 },
4156 		{  12, 160,  40 },
4157 		{  10, 200,  50 },
4158 		{   6, 240,  58 },
4159 		{   4, 267,  66 },
4160 		{   2, 400, 100 },
4161 		{   0, 500, 130 },
4162 	};
4163 	const HAL_RATE_TABLE *rt;
4164 	int i, j;
4165 
4166 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4167 	rt = sc->sc_rates[mode];
4168 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4169 	for (i = 0; i < rt->rateCount; i++)
4170 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4171 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4172 	for (i = 0; i < 32; i++) {
4173 		u_int8_t ix = rt->rateCodeToIndex[i];
4174 		if (ix == 0xff) {
4175 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4176 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4177 			continue;
4178 		}
4179 		sc->sc_hwmap[i].ieeerate =
4180 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4181 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4182 		if (rt->info[ix].shortPreamble ||
4183 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4184 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4185 		/* NB: receive frames include FCS */
4186 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4187 			IEEE80211_RADIOTAP_F_FCS;
4188 		/* setup blink rate table to avoid per-packet lookup */
4189 		for (j = 0; j < N(blinkrates)-1; j++)
4190 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4191 				break;
4192 		/* NB: this uses the last entry if the rate isn't found */
4193 		/* XXX beware of overlow */
4194 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4195 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4196 	}
4197 	sc->sc_currates = rt;
4198 	sc->sc_curmode = mode;
4199 	/*
4200 	 * All protection frames are transmited at 2Mb/s for
4201 	 * 11g, otherwise at 1Mb/s.
4202 	 * XXX select protection rate index from rate table.
4203 	 */
4204 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4205 	/* NB: caller is responsible for reseting rate control state */
4206 #undef N
4207 }
4208 
4209 #ifdef AR_DEBUG
4210 static void
4211 ath_printrxbuf(struct ath_buf *bf, int done)
4212 {
4213 	struct ath_desc *ds;
4214 	int i;
4215 
4216 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4217 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4218 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4219 		    ds->ds_link, ds->ds_data,
4220 		    ds->ds_ctl0, ds->ds_ctl1,
4221 		    ds->ds_hw[0], ds->ds_hw[1],
4222 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4223 	}
4224 }
4225 
4226 static void
4227 ath_printtxbuf(struct ath_buf *bf, int done)
4228 {
4229 	struct ath_desc *ds;
4230 	int i;
4231 
4232 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4233 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4234 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4235 		    ds->ds_link, ds->ds_data,
4236 		    ds->ds_ctl0, ds->ds_ctl1,
4237 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4238 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4239 	}
4240 }
4241 #endif /* AR_DEBUG */
4242 
4243 static void
4244 ath_watchdog(struct ifnet *ifp)
4245 {
4246 	struct ath_softc *sc = ifp->if_softc;
4247 	struct ieee80211com *ic = &sc->sc_ic;
4248 
4249 	ifp->if_timer = 0;
4250 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4251 		return;
4252 	if (sc->sc_tx_timer) {
4253 		if (--sc->sc_tx_timer == 0) {
4254 			if_printf(ifp, "device timeout\n");
4255 			ath_reset(ifp);
4256 			ifp->if_oerrors++;
4257 			sc->sc_stats.ast_watchdog++;
4258 		} else
4259 			ifp->if_timer = 1;
4260 	}
4261 	ieee80211_watchdog(ic);
4262 }
4263 
4264 /*
4265  * Diagnostic interface to the HAL.  This is used by various
4266  * tools to do things like retrieve register contents for
4267  * debugging.  The mechanism is intentionally opaque so that
4268  * it can change frequently w/o concern for compatiblity.
4269  */
4270 static int
4271 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4272 {
4273 	struct ath_hal *ah = sc->sc_ah;
4274 	u_int id = ad->ad_id & ATH_DIAG_ID;
4275 	void *indata = NULL;
4276 	void *outdata = NULL;
4277 	u_int32_t insize = ad->ad_in_size;
4278 	u_int32_t outsize = ad->ad_out_size;
4279 	int error = 0;
4280 
4281 	if (ad->ad_id & ATH_DIAG_IN) {
4282 		/*
4283 		 * Copy in data.
4284 		 */
4285 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4286 		if (indata == NULL) {
4287 			error = ENOMEM;
4288 			goto bad;
4289 		}
4290 		error = copyin(ad->ad_in_data, indata, insize);
4291 		if (error)
4292 			goto bad;
4293 	}
4294 	if (ad->ad_id & ATH_DIAG_DYN) {
4295 		/*
4296 		 * Allocate a buffer for the results (otherwise the HAL
4297 		 * returns a pointer to a buffer where we can read the
4298 		 * results).  Note that we depend on the HAL leaving this
4299 		 * pointer for us to use below in reclaiming the buffer;
4300 		 * may want to be more defensive.
4301 		 */
4302 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4303 		if (outdata == NULL) {
4304 			error = ENOMEM;
4305 			goto bad;
4306 		}
4307 	}
4308 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4309 		if (outsize < ad->ad_out_size)
4310 			ad->ad_out_size = outsize;
4311 		if (outdata != NULL)
4312 			error = copyout(outdata, ad->ad_out_data,
4313 					ad->ad_out_size);
4314 	} else {
4315 		error = EINVAL;
4316 	}
4317 bad:
4318 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4319 		free(indata, M_TEMP);
4320 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4321 		free(outdata, M_TEMP);
4322 	return error;
4323 }
4324 
4325 static int
4326 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4327 {
4328 #define	IS_RUNNING(ifp) \
4329 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4330 	struct ath_softc *sc = ifp->if_softc;
4331 	struct ieee80211com *ic = &sc->sc_ic;
4332 	struct ifreq *ifr = (struct ifreq *)data;
4333 	int error = 0;
4334 
4335 	ATH_LOCK(sc);
4336 	switch (cmd) {
4337 	case SIOCSIFFLAGS:
4338 		if (IS_RUNNING(ifp)) {
4339 			/*
4340 			 * To avoid rescanning another access point,
4341 			 * do not call ath_init() here.  Instead,
4342 			 * only reflect promisc mode settings.
4343 			 */
4344 			ath_mode_init(sc);
4345 		} else if (ifp->if_flags & IFF_UP) {
4346 			/*
4347 			 * Beware of being called during attach/detach
4348 			 * to reset promiscuous mode.  In that case we
4349 			 * will still be marked UP but not RUNNING.
4350 			 * However trying to re-init the interface
4351 			 * is the wrong thing to do as we've already
4352 			 * torn down much of our state.  There's
4353 			 * probably a better way to deal with this.
4354 			 */
4355 			if (!sc->sc_invalid && ic->ic_bss != NULL)
4356 				ath_init(ifp);	/* XXX lose error */
4357 		} else
4358 			ath_stop_locked(ifp);
4359 		break;
4360 	case SIOCADDMULTI:
4361 	case SIOCDELMULTI:
4362 		/*
4363 		 * The upper layer has already installed/removed
4364 		 * the multicast address(es), just recalculate the
4365 		 * multicast filter for the card.
4366 		 */
4367 		if (ifp->if_flags & IFF_RUNNING)
4368 			ath_mode_init(sc);
4369 		break;
4370 	case SIOCGATHSTATS:
4371 		/* NB: embed these numbers to get a consistent view */
4372 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4373 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4374 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4375 		ATH_UNLOCK(sc);
4376 		/*
4377 		 * NB: Drop the softc lock in case of a page fault;
4378 		 * we'll accept any potential inconsisentcy in the
4379 		 * statistics.  The alternative is to copy the data
4380 		 * to a local structure.
4381 		 */
4382 		return copyout(&sc->sc_stats,
4383 				ifr->ifr_data, sizeof (sc->sc_stats));
4384 	case SIOCGATHDIAG:
4385 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4386 		break;
4387 	default:
4388 		error = ieee80211_ioctl(ic, cmd, data);
4389 		if (error == ENETRESET) {
4390 			if (IS_RUNNING(ifp) &&
4391 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4392 				ath_init(ifp);	/* XXX lose error */
4393 			error = 0;
4394 		}
4395 		if (error == ERESTART)
4396 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4397 		break;
4398 	}
4399 	ATH_UNLOCK(sc);
4400 	return error;
4401 #undef IS_RUNNING
4402 }
4403 
4404 static int
4405 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4406 {
4407 	struct ath_softc *sc = arg1;
4408 	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4409 	int error;
4410 
4411 	error = sysctl_handle_int(oidp, &slottime, 0, req);
4412 	if (error || !req->newptr)
4413 		return error;
4414 	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4415 }
4416 
4417 static int
4418 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4419 {
4420 	struct ath_softc *sc = arg1;
4421 	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4422 	int error;
4423 
4424 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4425 	if (error || !req->newptr)
4426 		return error;
4427 	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4428 }
4429 
4430 static int
4431 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4432 {
4433 	struct ath_softc *sc = arg1;
4434 	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4435 	int error;
4436 
4437 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4438 	if (error || !req->newptr)
4439 		return error;
4440 	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4441 }
4442 
4443 static int
4444 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4445 {
4446 	struct ath_softc *sc = arg1;
4447 	int softled = sc->sc_softled;
4448 	int error;
4449 
4450 	error = sysctl_handle_int(oidp, &softled, 0, req);
4451 	if (error || !req->newptr)
4452 		return error;
4453 	softled = (softled != 0);
4454 	if (softled != sc->sc_softled) {
4455 		if (softled) {
4456 			/* NB: handle any sc_ledpin change */
4457 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4458 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4459 				!sc->sc_ledon);
4460 		}
4461 		sc->sc_softled = softled;
4462 	}
4463 	return 0;
4464 }
4465 
4466 static int
4467 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4468 {
4469 	struct ath_softc *sc = arg1;
4470 	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4471 	int error;
4472 
4473 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4474 	if (!error && req->newptr)
4475 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4476 	return error;
4477 }
4478 
4479 static int
4480 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4481 {
4482 	struct ath_softc *sc = arg1;
4483 	u_int diversity = sc->sc_diversity;
4484 	int error;
4485 
4486 	error = sysctl_handle_int(oidp, &diversity, 0, req);
4487 	if (error || !req->newptr)
4488 		return error;
4489 	sc->sc_diversity = diversity;
4490 	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4491 }
4492 
4493 static int
4494 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4495 {
4496 	struct ath_softc *sc = arg1;
4497 	u_int32_t diag;
4498 	int error;
4499 
4500 	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4501 		return EINVAL;
4502 	error = sysctl_handle_int(oidp, &diag, 0, req);
4503 	if (error || !req->newptr)
4504 		return error;
4505 	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4506 }
4507 
4508 static int
4509 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4510 {
4511 	struct ath_softc *sc = arg1;
4512 	struct ifnet *ifp = &sc->sc_if;
4513 	u_int32_t scale;
4514 	int error;
4515 
4516 	ath_hal_gettpscale(sc->sc_ah, &scale);
4517 	error = sysctl_handle_int(oidp, &scale, 0, req);
4518 	if (error || !req->newptr)
4519 		return error;
4520 	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4521 }
4522 
4523 static int
4524 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4525 {
4526 	struct ath_softc *sc = arg1;
4527 	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4528 	int error;
4529 
4530 	error = sysctl_handle_int(oidp, &tpc, 0, req);
4531 	if (error || !req->newptr)
4532 		return error;
4533 	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4534 }
4535 
4536 static void
4537 ath_sysctlattach(struct ath_softc *sc)
4538 {
4539 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4540 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4541 
4542 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4543 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4544 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4545 		"EEPROM country code");
4546 	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4547 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4548 		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4549 		"EEPROM regdomain code");
4550 	sc->sc_debug = ath_debug;
4551 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4552 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4553 		"control debugging printfs");
4554 
4555 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4556 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4557 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4558 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4559 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4560 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4561 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4562 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4563 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4564 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4565 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4566 		ath_sysctl_softled, "I", "enable/disable software LED support");
4567 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4568 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4569 		"GPIO pin connected to LED");
4570 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4571 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4572 		"setting to turn LED on");
4573 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4574 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4575 		"idle time for inactivity LED (ticks)");
4576 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4577 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4578 		"tx antenna (0=auto)");
4579 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4580 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4581 		ath_sysctl_rxantenna, "I", "default/rx antenna");
4582 	if (sc->sc_hasdiversity)
4583 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4584 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4585 			ath_sysctl_diversity, "I", "antenna diversity");
4586 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4587 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4588 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4589 		"tx descriptor batching");
4590 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4591 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4592 		ath_sysctl_diag, "I", "h/w diagnostic control");
4593 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4594 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4595 		ath_sysctl_tpscale, "I", "tx power scaling");
4596 	if (sc->sc_hastpc)
4597 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4598 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4599 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4600 }
4601 
4602 static void
4603 ath_bpfattach(struct ath_softc *sc)
4604 {
4605 	struct ifnet *ifp = &sc->sc_if;
4606 
4607 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4608 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4609 		&sc->sc_drvbpf);
4610 	/*
4611 	 * Initialize constant fields.
4612 	 * XXX make header lengths a multiple of 32-bits so subsequent
4613 	 *     headers are properly aligned; this is a kludge to keep
4614 	 *     certain applications happy.
4615 	 *
4616 	 * NB: the channel is setup each time we transition to the
4617 	 *     RUN state to avoid filling it in for each frame.
4618 	 */
4619 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4620 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4621 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4622 
4623 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4624 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4625 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4626 }
4627 
4628 /*
4629  * Announce various information on device/driver attach.
4630  */
4631 static void
4632 ath_announce(struct ath_softc *sc)
4633 {
4634 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4635 	struct ifnet *ifp = &sc->sc_if;
4636 	struct ath_hal *ah = sc->sc_ah;
4637 	u_int modes, cc;
4638 
4639 	if_printf(ifp, "mac %d.%d phy %d.%d",
4640 		ah->ah_macVersion, ah->ah_macRev,
4641 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4642 	/*
4643 	 * Print radio revision(s).  We check the wireless modes
4644 	 * to avoid falsely printing revs for inoperable parts.
4645 	 * Dual-band radio revs are returned in the 5Ghz rev number.
4646 	 */
4647 	ath_hal_getcountrycode(ah, &cc);
4648 	modes = ath_hal_getwirelessmodes(ah, cc);
4649 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4650 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4651 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4652 				ah->ah_analog5GhzRev >> 4,
4653 				ah->ah_analog5GhzRev & 0xf,
4654 				ah->ah_analog2GhzRev >> 4,
4655 				ah->ah_analog2GhzRev & 0xf);
4656 		else
4657 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4658 				ah->ah_analog5GhzRev & 0xf);
4659 	} else
4660 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4661 			ah->ah_analog5GhzRev & 0xf);
4662 	printf("\n");
4663 	if (bootverbose) {
4664 		int i;
4665 		for (i = 0; i <= WME_AC_VO; i++) {
4666 			struct ath_txq *txq = sc->sc_ac2q[i];
4667 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4668 				txq->axq_qnum, ieee80211_wme_acnames[i]);
4669 		}
4670 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4671 			sc->sc_cabq->axq_qnum);
4672 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4673 	}
4674 #undef HAL_MODE_DUALBAND
4675 }
4676